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Foreword

Among the chemical elements that populate the periodic table, carbon has arguably
had the most dramatic impact in human civilization. Carbon appears naturally in
two different crystalline forms known as diamond and graphite. The main difference
among these two allotropes is given by the way in which carbon atoms are connected
to each other. In graphite, carbon atoms form regular hexagonal lattices in which
every atom is connected to three others. In diamond, however, carbon atoms are
arranged into a variation of the face-centred cubic shape in which every atom is
connected to the other four. This mere connectivity of the atoms defines a series of
properties which remain invariant after any deformation of the molecule that does
not involve breaking (or creating) any bond. When these topological arrangements
of atoms are embedded into the three-dimensional (3D) space, other characteristic
properties of the allotropes emerge. The cubic network of diamond, for instance,
results in a very rigid structure which is characteristic of its hardness, while graphite
forms the typical planar sheets that can displace one over the other. The first group
of properties is referred to as topological, while the second group is referred to as
geometric.

The mathematical differences between the topological and the geometric views
of the molecular structure can be even more appreciated in another carbon allotrope:
fullerenes.

The topology of fullerenes consists of carbon atoms which are connected to
other three atoms; however, whereas graphite has only hexagons in their structure,
fullerenes have also pentagons. Topologically speaking, fullerenes are planar like
graphite, i.e. they can be embedded into a plane without their bonds being crossed.
However, when fullerenes are embedded into the 3D space, their typical spherical
shape emerges. This is a consequence of other physical and chemical properties
of carbon atoms, such as hybridization. In fullerenes, carbon has sp2 hybridization
which, together with the appropriate location of the pentagonal rings, makes the
spherical shape emerging.

From a chemist viewpoint, topology implies a series of physical and chemical
properties such as hybridization and inter-atomic repulsion. which allow a better
understanding of the properties of materials. For instance, in carbon nanotubes, the
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viii Foreword

different topological arrangements, i.e. armchair, zigzag or chiral, largely influence
the electronic band structure of these molecules and their physical properties like
the metallic or semiconducting character.

Carbon is so rich in its molecular arrangements that we can study topology and
geometry by using it as an example. For instance, graphene can be used to study
Euclidean geometry due to its zero Gaussian curvature. Fullerenes, on the other
hand, can be used to illustrate spherical or elliptical geometry where the Gaussian
curvature is positive and the sum of angles of a triangle is larger than 180ı. Even
more, it has been proved that carbon nanomaterials in which the surface bends with
negative curvature, like in hyperbolic spaces, are also possible. The ‘schwarzites’
belong to this category of compounds.

The topologies of many of carbon nanomaterials are also nontrivial. Apart from
the fullerenes with genus equal to zero, like the sphere, toroidal graphite has
also been found to be stable, matching the topology with genus equal to one,
like a torus. More exotic structures have also been proposed which correspond to
topologies with genus larger than 20 and even to spheres with more than 20 handles.
This volume presents some of these exciting carbon geometries and topologies.
Interesting properties of fullerenes, nanotubes, graphene, schwarzites and other
nanomaterials are inferred here from the analysis of the connectivity patterns of
these topological arrangements. More sophisticated techniques are also explored,
although the authors have mainly focused on the connectivity patterns defining the
nature of these molecules.

This book will appeal to mathematicians as well as chemists, physicists and
material scientists. The former, particularly the ones interested in exploring carbon
allotropes and the nanomaterials deriving from them, will find the book of great
interest as it exemplifies some of the concepts they use in their everyday work and it
challenges them with some of the problems of this area. The latter, particularly the
ones studying carbon materials, will be attracted by the basic concepts of topology
and geometry examined in the book. Not only they will develop a better understand-
ing of molecular, physical and chemical properties of these nanomaterials, but they
will also get introduced to new topological and geometrical worlds still unexplored.

Carbon will surely surprise us all.

Glasgow Ernesto Estrada
18/04/2012



Preface

Topological Modelling of Nanostructures and Extended Systems gathers the
contributions of renowned leading experts in this new branch of science that
we could also name ‘Mathematical Nanoscience’ and that were presented at the
MATH/CHEM/COMP Meeting held in Dubrovnik, Croatia, in 2010.

This volume completes and expands upon the previously published title
The Mathematics and Topology of Fullerenes (Carbon Materials: Chemistry and
Physics series, Vol. 4, Springer 2011) by gathering the latest research and advances
in materials science at nanoscale. It introduces a new speculative area and novel
concepts like topochemical reactions and coloured reactive topological indices
which allow the reader to gain a better understanding of the physical–chemical
behaviours of extended systems. Moreover, a charming new family of space-filling
fullerenic crystals is here analysed for the first time.

Mathematical chemistry is an interdisciplinary area with not only numerous
theoretical developments but also countless applications to practical problems.
The basal influence exercised on chemical and physical properties by long-range
topological mechanisms links the various topics covered in the book. Carbon
nanostructures, made by three-linked nodes variously connected, appear in fact quite
sensitive to topological effects.

Nanonetworks have a spanning dimensionality. In fact, they can assume every
possible dimensionality, from 0D (finite fullerenes) to 1D (nanotubes or nanorib-
bons), 2D (graphenic layers), 3D (diamond or schwarzites) and even to fractal
dimensionality (fractal schwarzites). Such a characteristic makes them the optimal
subjects for topological investigations. Moreover, topological modelling methods
can be relied on to support the accuracy of large-scale first principles calculations,
as it is largely documented in the original theoretically and experimentally results
examined in this book.

In a way, we would like to think that this volume confirms what Prof. Harold
Kroto, 1996 Nobel Prize for Chemistry, wrote in the Foreword of our previous title:
‘Beauty Is Inherently Part of the Human Being Actions’.
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x Preface

And this could not be more true when thinking of Prof. Ante Graovac, the mind
behind this volume, who prematurely passed away leaving us all with an immense
sense of void. Words fail us to express our gratitude for this great academic, both a
mentor and a friend.

We are grateful to Springer for giving us the opportunity to publish this book and
for their top-quality professional support.

Dubrovnik, Croatia Ali Iranmanesh
Ali Reza Ashrafi

Franco Cataldo
Ottorino Ori
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Research Center for Einstein Physics, Institute of Theoretical Physics, Free Univer-
sity Berlin, Berlin, Germany

Daniel Sánchez-Portal Centro de Fı́sica de Materiales (CFM-MPC) CSIC-
UPV/EHU, San Sebastián, Spain

Donostia International Physics Center (DIPC), San Sebastián, Spain

Elton J. G. Santos Centro de Fı́sica de Materiales (CFM-MPC) CSIC-UPV/EHU,
San Sebastián, Spain

Donostia International Physics Center (DIPC), San Sebastián, Spain

Harvard School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA, USA

Cruft Laboratory, Cambridge, USA

Jelena Sedlar Faculty of Civil Engineering, Architecture and Geodesy, University
of Split, Split, Croatia

Elena F. Sheka Peoples Friendship University of Russia, Moscow, Russia

Alok Shukla Department of Physics, Indian Institute of Technology, Bombay,
Powai, Mumbai, India

Beata Szefler Department of Physical Chemistry, Collegium Medicum, Nicolaus
Copernicus University, Bydgoszcz, Poland

Jianwei Wei College of Optoelectronic Information, Chongqing Institute of
Technology, Chongqing, China

Zahra Yarahmadi Department of Mathematics, Faculty of Science, Khorramabad
Branch, Islamic Azad University, Khorramabad, Islamic Republic of Iran

Hui Zeng College of Physical Science and Technology, Yangtze University,
Jingzhou, Hubei, China

Jun Zhao College of Physical Science and Technology, Yangtze University,
Jingzhou, Hubei, China



Chapter 1
Helical Wrapping of Graphene Sheets and Their
Self-Assembly into Core-Shelled Composite
Nanostructures with Metallic Particles

Hui Li, Yunfang Li, Yezeng He, and Yanyan Jiang

Abstract A series of atomistic molecular dynamics (MD) simulations have been
conducted to explore how the carbon nanotube (CNT), metal nanowire (NW), and
C60 affect the stability of the graphene. The graphene nanoribbons (GNRs) can
helically wrap and insert the single-walled CNT spontaneously to form helical
configurations, which are quite close to the helices found in nature. The graphene
nanosheets (GNSs) can spontaneously self-scroll onto the Fe NWs irreversibly,
which results in the structural transition of the GNS from two-dimensional to
three-dimensional phase and the formation of the stable metal/carbon core-shell
nanostructure. MD simulation results also show that impact of C60 molecule would
induce nanoscale dynamic ripples on the graphene no matter whether the graphene
is plane or corrugated. This study provides possible applications for the GNS and
GNR to serve as conveyor belt for molecule delivery. And also, the discoveries of
this study are of great significance for the deeper understanding of the instability
and properties of graphene at an atomic level.

1.1 Introduction

Graphene nanosheet (GNS), a monatomic layer of carbon atoms arranged in a
honeycomb lattice with sp2-bonding, has attracted ever-increasing research inter-
est since it was first isolated by mechanical exfoliation from graphite crystals
(Novoselov et al. 2004). Recent experimental approaches involving mechanical
cleavage (Meyer et al. 2007a), top-down lithography, cutting (Fujii and Enoki
2010) and peeling (Sen et al. 2010), chemical vapor deposition (Juang et al. 2010),

H. Li (�) • Y. Li • Y. He • Y. Jiang
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials,
Ministry of Education, Shandong University, Jinan 250061, People’s Republic of China
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2 H. Li et al.

and epitaxial growth (Prakash et al. 2010) have been applied to fabricate GNSs
with desired sizes and shapes. Such synthesized two-dimensional (2-D) GNS may
very well be the promising candidate material from electronic building blocks to
reinforced composites due to its outstanding properties such as quantum electronic
transport (Novoselov et al. 2005a, b), controllable electronic structure (Kim et al.
2009), large thermal conductivity (Seol et al. 2010), and extremely high elasticity
(Savini et al. 2011). Recently, a number of researchers have also paid their attention
to the applications of GNSs in biochemical and medical realms (Yang et al. 2008;
Kalbacova et al. 2010).

The isolation of planar GNS seems to contradict the common viewpoint about
the existence of 2D crystals (Mermin 1968; Ledoussal and Radzihovsky 1992).
Experimental and theoretical studies have suggested that nanometer-scale ripples
through the free GNS membrane might be responsible for stabilizing its 2D structure
(Meyer et al. 2007b; Fasolino et al. 2007). Compared with the stable and stiff carbon
nanotube (CNT), the GNS is very instable and flexible that tends to transform into a
3D structure in order to minimize its surface energy. Buehler et al. demonstrated that
the geometrical conformation of the GNS is determined by its aspect ratio. When the
aspect ratio is large enough, the narrow graphene nanoribbon (GNR) would self-fold
from planar 2D phase to multifold or even scroll 3D phase spontaneously (Xu and
Buehler 2010). Other research work also revealed the intrinsic instability and
spontaneous twist of pristine GNRs (Bets and Yakobson 2009). Recent theoretical
study clearly showed that the water nanodroplet had great effect on the conformation
of the GNS (Patra et al. 2009), which arouses one to imagine whether other material
would affect the stability of the GNS as well.

In this chapter, systematic theoretical investigations have been carried out to
present the detailed analysis and explanation of how the carbon nanotube (CNT)
(Jiang et al. 2011; Li et al. 2011b), metal nanowire (NW) (Li et al. 2011c, 2012),
and C60 (He et al. 2011) affect the stability of the graphene.

1.2 Helical Wrapping and Insertion of Graphene
Nanoribbon to Single-Walled Carbon Nanotube

In the carbon family, nanotube and graphene with a perfect honeycomb lattice
tightly bounded by sp2 hybridization are two of the most promising nanomaterials,
which have attracted tremendous attention to the theoretical research and the
potential applications in many realms because of their ideal 1D and 2D structures
and unique properties. The cylindrical single-walled carbon nanotube (SWNT)
possesses a large specific surface area and hollow interior that provide an excellent
opportunity to integrate with other materials to fabricate composite nanostructures.
The integration of SWNTs into other materials can impact their toughness (Zhang
et al. 2003a), mechanical strength, crystalline morphology (Li et al. 2009a),
and other properties like electrical conductivity. The noncovalent “wrapping” of
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polymer chains around an SWNT is an interesting phenomenon (Numata et al.
2005; Naito et al. 2008) which can be utilized to solubilize and disperse SWNTs
(Tasis et al. 2006; Zorbas et al. 2004), drive assembled mechanisms (Baskaran
et al. 2005; Nish et al. 2007), and alter the fictionalization of the tubes (Chen
et al. 2001). Moreover, previous experimental and theoretical results have shown
that open nanotubes could act as “molecular straws” capable of absorbing dipolar
molecules by capillary action (Pederson and Broughton 1992). On the one hand,
the insertion of “foreign” materials, such as metals, liquids, fullerenes (Warner
and Wilson 2010), or even proteins (Sorin and Pande 2006) and DNAs (Gao
et al. 2003), into SWNTs can alter the properties of the tube and fillers, leading
to nanostructures with exciting new applications. On the other hand, the carbon
shell is considered as a natural protective layer of the fillers against oxidation and
shape fragmentation (Choi et al. 2003). Therefore, the “SWNT composite” has great
potential in heterogeneous catalysis, nanodevices, electromagnetic wave absorption,
magnetic data storage, and even drug and gene delivery in biological field (Svensson
et al. 2004; Gao et al. 2004).

In this section, convincing systematic theoretical results are presented to reveal
how the GNR interacts with the SWNT and what is the shape of the GNR adhering
onto the sidewall of the SWNT. In particular, the possible interacting mechanism
is examined to establish the nature of the interaction of 1D GNR and SWNT. This
study is not only helpful for the better understanding of the thermal instability and
properties of GNRs at an atomistic level but also essential to help guide exploring
new theories and fabricating functional nanoscale devices.

1.2.1 Simulation Method

In the present study, all calculations are carried out using molecular dynamics
(MD) simulation, which is an effective tool for studying material behavior on the
nanometer scale and provides detailed information at the atomic level. The force
field of condensed-phase optimized molecular potentials for atomistic simulation
studies (COMPASS) (Sun 1998) is applied to model the atomic interaction. The
COMPASS is an ab initio force field that is parametrized and validated using
condensed-phase properties in addition to various ab initio and empirical data. It
aims to achieve high accuracy in prediction of the properties of very complex
mixtures (Bunte and Sun 2000; Li et al. 2011a), and it has been proven to be
applicable in describing the mechanical properties of graphene sheets (Zheng
et al. 2010). MD simulations are performed under an NVT ensemble (i.e., the
canonical ensemble, the number of particles N, the volume V, and the temperature
T were constant) at temperature 300 K. The Andersen method in the thermostat is
applied to control the temperature and generate the correct statistical ensemble. The
thermodynamic temperature is kept constant by allowing the simulated system to
exchange energy with a “heating bath.” The initial velocities of carbon atoms follow
a temperature-dependent Maxwell-Boltzmann distribution, and the Verlet algorithm
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is adopted to integrate the motion of equations of the whole system. The time step is
set to be 1.0 fs, and data were collected every 5.0 ps to record the full-precision
trajectory for further analysis. Each of the GNR-SWNT systems was simulated
long enough to achieve an equilibrium state. The SWNTs were fixed as rigid tube
structures. The GNRs can be cut from the parallel layers in graphite bulk, and so
some of GNRs have open edges with dangling ¢-orbitals on carbon atoms, whereas
the others are not due to the  –  stacking interaction between adjacent layers.
Initially, all GNR crystals were placed at the entrances of the SWNTs along the
axial direction and overlapped 15 Å with the SWNTs to overcome the deformation
force from the GNRs themselves and ensure that the distances between them are
in the range of the cutoff distance of vdW interaction. To illustrate the interaction
process more clearly, the long sinuous GNR tails were not shown.

1.2.2 Results and Discussion

1.2.2.1 Helical Wrapping and Insertion

Direct simulations in Figs. 1.1 and 1.2 provide the representative snapshots of a
GNR helically wrapping onto the SWNT (16, 16) and inserting into the SWNT
(20, 20), respectively. Two SWNTs have the same lengths of 66.41 Å. The size of
GNR is 500.61 Å in length and 7.81 Å in width. When one end of the GNR is
captured by the SWNT (outer or inner surface) and the deformation force from the
GNR itself is overcome, the GNR adheres onto the tube wall parallel owing to the
vdW coupling and moves toward the tube. When the simulation begins, the GNR
is so thin that it tends to be thermodynamically unstable, becoming discontinuous
wrinkles or corrugations at thicknesses of several nanometers, which accords well
with Yakobson et al.’s result (Bets and Yakobson 2009). It is believed that the planar
GNR is easily twisted or bent in a free space because of edge stress. As a result,
the GNR assumes polymer-like chain conformation. Although the corrugations
and ripples are intrinsic to graphene membranes and stabilize their 2D structures
(Fasolino et al. 2007), the 1D wavy fluctuation in narrow GNR is rather than the 2D
ripples in graphene membrane. It is mainly because when an out-of-plane bending
deformation along one direction is formed, the resistance to bending along another
direction will be significantly enhanced.

As the simulations progress, the GNRs start to move forward along the sidewalls
of SWNTs gradually in a straight or helical mode after an initial correlation time, in
which the GNRs are held tightly against the sidewalls of SWNTs and the wrinkles
vanish because of the interaction between them. When the simulation time is up to
t D 8 and 4.5 ns, the GNRs display clear helical conformations on the surface and
in the hollow interior of the SWNTs with large pitch, respectively, trying to occupy
the entire tubes. Then, spirals become denser because of the vdW binding. The
GNR heads are pushed to move forward circumferentially owing to the curvature of
the tube wall, and the ribbon tails just continue to wrap or encapsulate the tubes in
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Fig. 1.1 Representative
snapshots of a GNR helically
wrapping onto the SWNT
(16, 16). The long sinuous
GNR tails are removed for
better visualization. The inset
is the top view of the
snapshot at t D 28 ns

Fig. 1.2 Representative snapshots of a GNR helically inserting into the SWNT (20, 20). The
new helix in the former one is marked blue. The long sinuous GNR tails are removed for better
visualization. The inset is the top view of the snapshot at t D 22.5 ns
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a helical way. Eventually, perfect circular GNR helices, with remarkably constant
pitches and constant value 3.5 Å of the gap between neighboring spiral, wrap around
and fill up the SWNTs at t D 28 and 18 ns, respectively. The self-assembled GNR-
SWNT systems achieve their dynamic equilibrium through spontaneous wrapping
and encapsulation. These two helix-forming processes are irreversible no matter
whether the final GNR-SWNT composite nanostructures are cooled or heated to
any point of temperature. The handedness of the GNR helix is determined by the
initial deflection of the captured end, which can be right- or left-handed with equal
probability. It can be controlled by a small initial angle between the GNR and the
tube axis.

These helical GNR structures are quite close to the helices found in nature. The
GNR helix wrapping around the SWNT is quite similar to the soft stem of the
scammony (such as morning glory) helically climbing around the trunk to make
itself strong and grow upward, whereas the GNR helix encapsulating in the SWNT
is just like a spirogyra cell in which the chloroplast ribbon grows helically over
its whole length to make the photosynthesis and the starch storage more efficient
(Ohiwa 1976). Perhaps these coincidences with the natural phenomenon can bring
some enlightenment on a broad new class of potential applications of these helical
carbon nanostructures. Moreover, helicity is one of the essential features of life and
integral to various biological functions. In biological systems, various important
substances such as polypeptides and DNA in confining cells are found to present
helical structures. It is believed that helicity is intimately associated with the living
processes even though their origin remains unclear.

It is worth noting the subsequent evolution of the inserting process in Fig. 1.2
when the interior of the SWNT is fully filled. As the simulation goes on, the GNR
tail is not stopping but continues to enter the SWNT helically. The head of the
helix in the SWNT is pushed out a bit by the tail, but it is not possibly completed
because the vdW attractive force from the tube is strong enough to trap the GNR
helix. It is very interesting that the pushed out GNR head is captured by the inner
hollow space of the GNR helix (marked blue at snapshot of t D 21 ns) instead of
forming new segment of the helix due to the attractive force from the inner space
of GNR helix, whereas the ribbon tail just keeps on encapsulating into the SWNT
helically. The captured GNR head inserted into the hollow space of the former helix
also follows the helical manner and finally produces a new helix with opposite
handedness (marked blue), becoming a double-shelled helix at the other entrance
of the SWNT at t D 22.5 ns. (The inset is the top view.) The result suggests that the
attraction between the GNR helix and the SWNT is stronger than that between GNR
helices.

1.2.2.2 Interaction Mechanism

What we are concerned with is why the GNR moves toward the SWNT and develops
a helical manner. Generally speaking, for a single GNR, as in the polymer chains,
there is a persistence length lP D DW/kBT for the width W, where D is the bending
rigidity of the GNR, kB is the Boltzmann constant, and T is the temperature.



1 Helical Wrapping of Graphene Sheets and Their Self-Assembly. . . 7

Therefore, the critical aspect ratio for a GNR is n D lP/W D D/kBT. When the aspect
ratio is smaller than n, the GNR will exhibit a worm-like chain conformation,
whereas if the aspect ratio is beyond this value of n, then the GNR will tend to fold
into 3D labyrinthic wedge, loop, or scroll nanostructures spontaneously, driven by
thermal fluctuation and the loss of orientational order. From our theoretical estimate,
the critical aspect ratio is not accessible n D 34 for GNR with width 7.81 Å at room
temperature and that of the GNR we chose (n D 64) is greatly in excess of this value.
However, when the GNR is introduced to SWNT, the GNR helix is formed on the
inner or outer surface of the SWNT.

There should be three main interaction effects that exist between the GNR and the
SWNT during the helical wrapping and insertion processes. The first effect results
from the vdW interaction between the GNR and the SWNT that drives the GNR
continuously moving toward the tube, and the well-known vdW potential well of
the SWNT traps the GNR. To reveal the energy evolution and the role of the vdW
interaction quantitatively, we give in Fig. 1.3 the evolution of the potential energies
(EP) of the above-mentioned two GNR-SWNT systems and the vdW interaction
energies (EvdW) between GNRs and SWNTs against time. During the whole helix-
forming courses, the potential energy of these two GNR-SWNT systems appears to
be in steady decline with the simulation times, indicating that the helical wrapping
and insertion of GNR to SWNT are spontaneous and the systems gradually reach
more stable states. Increase in the contact area between the GNR and SWNT
reduces the systematic potential energy and enhances the stability of the GNR-
SWNT system. Then, the two systems reach the lowest energy states; thereafter, the
systemic potential energies remain unchanged, suggesting that the whole systems
are in their equilibrium states. It is worth mentioning that in the potential energy
curve of inserting process (Fig. 1.3b), there is a “platform” after the tube is fully
filled owing to the fact that the contact area between GNR and SWNT is virtually
unchanged; then, a “rapid drop” after the ribbon head is captured by the inner space
of the former GNR helix because of the increase in the contact area between two
GNR helices, which also enhances the stability of the GNR-SWNT system.

From Fig. 1.3, the vdW interactions are negative, suggesting that the vdW
interactions between the GNRs and SWNTs are attractive. The vdW attraction
energy increases nearly linearly with the increase in the contact areas until the
GNRs fully wrap onto or insert into the SWNTs, which endows the GNRs with
kinetic energy and sustain the continuous wrapping and insertion. Moreover, the
variations of vdW attraction energies are nearly synchronous with that of potential
energies, respectively. Therefore, we suggest that the vdW interaction between the
GNR and the SWNT offers the main driving force to drive the GNR continuously
moving toward the SWNT. The vdW attraction energy reaches up to �1.70 and
�2.25 Mcal/mol, respectively, indicating that the adhesion is so strong that it is hard
to strip the GNRs off the SWNTs to recover their planar structures again.

The second effect should be the offset face-to-face  –  stacking interaction
between GNR and SWNT (Głóbwka et al. 1999; Hunter and Sanders 2009), which
is an intermolecular interaction in the paralleled six-membered rings, which causes
the GNRs to be held tightly against the sidewalls of the tubes and take a helical
shape. In the GNR-SWNT system, the offset face-to-face  –  stacking interaction
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Fig. 1.3 Potential energy (EP) of GNR-SWNT system and the vdW interaction energy (EvdW)
between the GNR and SWNT as a function of simulation time: (a) helical wrapping and (b) helical
insertion

contains two kinds of interactions: the  –  electron interaction and the  –¢
interaction. The  –  electron interaction is an important repulsive force, which
is roughly proportional to the area of  -overlap of the two six-membered rings.
Certainly, displacement of the interaction system diminishes the repulsion. The
 –¢ interaction is an attractive force between   electrons of one ring and the ¢-
framework around the inner edge of the cavity of the other one. Different from
 –  electron interaction, this attractive interaction can be maximized in displaced
stacking. Furthermore, in a stacking system, stacked structures should be exactly
parallel to reduce the repulsion and increase the attraction of the  -system. It
must be pointed out that the  –  stacking interaction along the radial direction, of
course, does not affect the GNR to move freely along the axial and circumferential
directions of SWNT. Therefore, the best way to keep the displaced stacking,
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Fig. 1.4 Concentration distribution profiles of the final GNR-SWNT configurations in the
X direction. Inserts are peak values: (a) helical wrapping and (b) helical insertion

perfect parallel, and the most contact area in the GNR-SWNT system is that the
arrangement of the GNR follows a helical mode adhering onto the sidewall of the
SWNT when increasingly longer GNR is trapped on the surface and inside the tube.
Moreover, the displacement of the carbon rings favors to minimize the repulsive
 –  interaction and maximize the attractive  –¢ interaction with the sidewall
of tube in GNR helix with paralleled arrangements of six members with SWNT.
To testify the effect of the  –  stacking interaction further, we characterize the
geometric parameters of the final GNR-SWNT configurations by the concentration
distribution profiles in the X direction, as shown in Fig. 1.4. From the peak details
marked in the insets, the distances between the helices and the SWNTs as well as
those between two GNR helices inside the tube are close to 3.5 Å, which accords
well with the parallel stacking distance of the offset face-to-face  –  stacking
interaction (Głóbwka et al. 1999; Hunter and Sanders 2009), proving that the  – 
stacking interaction plays a dominant role in the helical wrapping and insertion
processes.

The third most important effect is the dangling ¢-orbitals on carbon atoms at
the open edges of GNR, which reinforces the  –  stacking interaction in GNR-
SWNT system through the extra attraction with the   electrons in the sidewall of
the SWNT (Głóbwka et al. 1999) that ensure that the arrangement of the GNRs
follows a helical mode. In a planar sp2 graphene system, the electronic states split
into in-plane (¢) and out-of-plane ( ) states that are decoupled by symmetry. At
unsaturated zigzag edges, the hexagonal carbon network is interrupted, and both
the ¢ and the   systems form edge states. The edge states of the ¢ system are
unpaired electrons in sp2 orbital, which are dangling ¢ bonds. To reveal the effect
of the dangling ¢-orbitals, we also studied the interactions between the SWNTs and
GNRs with no dangling ¢-orbitals (NGNRs). After the NGNR head attaches onto
the tube (inner or outer wall), although the vdW attraction and the  –  stacking
interaction still work, the NGNR tends to ignore the existence of the SWNT and
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form labyrinthic stacks, just like the self-folding of a free GNR (Xu and Buehler
2010). The interaction process is uncontrollable, and the final structure is very
random. We also simulate the interactions between SWNT and NGNR when the
dangling ¢-orbitals on carbon atoms are substituted or saturated by hydrogen atoms,
but there is still no helix forming. We think it is mainly due to the fact that the drive
force is the vdW interaction between the NGNR layers rather than that between the
SWNT and NGNR because the  –  stacking interaction between the SWNT and
the NGNR is so weak that it cannot overcome that from the NGNR itself.

However, under the guidance of the GNR with dangling ¢-orbitals on carbon
atoms at the open edges, the NGNR can also form a helix, as shown in Fig. 1.5. The
lengths of the zigzag SWNTs (28, 0) and (35, 0) are 73.13 Å, and two GNRs are
both with 260.76 Å in length. In the wrapping process (Fig. 1.5a), two GNRs are
placed at one entrance of SWNT and 6 Å away from the tube wall. Two GNRs move
forward; then, the GNR with open edges starts to fold helically at t D 3.5 ns first and
guides the other one to wind. The possible cause should be that open edges reinforce
the  –  stacking interaction with the SWNT through the extra attraction between
dangling ¢-orbitals on carbon atoms of the open edges and the   electrons in the
sidewall of the SWNT. Up to t D 7 ns, helices arise to both the ribbons, and the two
tail layers contact each other because of the  –  interaction. As the MD simulation
goes on, the GNR with open edges is gradually separated from the other one because
of the extra attraction with tube wall. Finally, two GNRs form a double-helix
structure on the tube surface, which closely resembles the double-stranded DNA. In
the inserting process (Fig. 1.5b), two GNRs are separated from each other 15 Å away
at one entrance of SWNT. As the simulation begins, the GNRs adhere onto the tube
wall rapidly, whereas the parts outside the tube contact each other because of the
 –  interaction between two layers. We suggest that the  –  stacking interaction
in the GNR-SWNT system should be stronger than that between two GNR layers.
As time goes on, the GNR with open edges is gradually separated from the other
one mainly because of the extra attraction between dangling ¢-orbitals on carbon
atoms of the open edges and the   electrons in the sidewall and forms the helical
configuration earlier. Consequently, a DNA-like double helix is also constructed
inside the SWNT at t D 7.5 ns. When time progresses, two GNR tails also enter the
inner space of the double helix to produce new helices, becoming a double-shelled
helix in the tube, which accords well with the encapsulation of one GNR into the
tube (as shown in Fig. 1.2). From our calculations, two equilibrated GNRs in double
helix always have the same handedness. The results indicate that the driving force of
the formation of double helix should be the vdW interaction between the SWNT and
GNRs. Therefore, the dangling ¢-orbitals on carbon atoms at the open edges play an
important role in the helix forming of the GNRs during the interaction with SWNTs.

The cylindrical structure of the SWNT is also very important in the helix-forming
process, which provides uniform curvature to make the GNR move along the
circumferential direction of SWNT. Furthermore, the high flexibility dependent on
the perfect hexagonal honeycomb architectures and the intrinsic instability (Xu and
Buehler 2010; Bets and Yakobson 2009) of the GNR has also contributed to the
formation of the GNR helix. The rigid MoS2 inorganic nanoribbon encapsulated
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Fig. 1.5 Evolution snapshots of two GNRs interacting with SWNT. (a) Helical wrapping of GNRs
onto the SWNT (28, 0) and (b) helical insertion of GNRs into the SWNT (35, 0). The inset in part
b is the top view of configuration at t D 10 ns

in single- and double-walled carbon nanotube can only display planar conformation
(Wang et al. 2010). Experimental results of Snir and Kamien (2005) are very helpful
for better understanding this unique phenomenon. Snir and Kamien constructed the
system as a flexible, unbreakable solid tube immersed in a solution of the mixture of
hard spheres, and they found that the best shape of the short flexible tube that takes
the least amount of energy and takes up the least space is a helix with a geometry that
is close to that of the helices found in nature. Other theoretical result also revealed
that the heterogeneous nucleation of silicon occurred on carbon nanocones preferred
to follow a spiral mechanism (Li et al. 2009b). Therefore, we suggest that the helical
wrapping and encapsulation of GNR to the SWNT perhaps are because the GNR
helix takes the least amount of energy and is a natural space saver.
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Fig. 1.6 Variations of the ribbon length adhered onto the SWNTs Lt and the instantaneous
velocities Vt against time during the GNR wrapping and inserting the SWNTs (16,16) and (18,18),
respectively. (a) Ribbon length versus time and (b) instantaneous velocity versus time

1.2.2.3 Dependence of Size, Chirality, and Integrality

To exploit the effect of SWNT diameters on the interaction character between GNR
and SWNT deeper, we give in Fig. 1.6 the variations of the ribbon length Lt adhered
onto the SWNT and the instantaneous velocity Vt relative to the tube entrance
versus time t during the GNR helically wrapping and inserting SWNTs (16, 16)
and (18, 18) with lengths 73.79 Å. The GNRs are all placed 6.0 Å away from
the sidewalls of SWNTs and overlapped 15.0 Å with the SWNTs. The speed is
determined by the strength of vdW forces acting on the GNR and the rate of its
momentum dissipation due to friction with the sidewall of SWNT. As shown in
Fig. 1.6a, the changes of Lt display nonlinear dependence on time t, indicating that
the helical wrapping and insertion are not uniform motions. It should be pointed out
that because of the deformation force, the GNR pulls out a bit from the SWNT but
bounces back very soon owing to the attraction from the tube. Then, the velocity of
GNR reaches its intrinsic speed. From Fig. 1.6b, it is seen that the velocities of the
GNRs inserting into the SWNTs are obviously higher than that of those wrapping
onto the SWNTs owing to stronger vdW attraction from the interior confining space
of the tube, which accelerates GNRs to encapsulate into tubes. However, the velocity
of the GNR in wrapping or inserting the SWNT with larger diameter is only slightly
higher than that in the SWNT with smaller diameter. It is worth noting that all
velocities show an increase in their tendency with time except for some fluctuations.
In fact, the motion of GNRs is a variable accelerated motion because the attractive
force from the tubes remains virtually unchanged, while the mass of the unattached
GNR tails keeps decreasing, which can also be reflected from the change rate of the
EP and EvdW.
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To realize the control to GNR helix, a key issue crucial to know is that of the
dependence of the diameter and chirality of SWNT as well as the width of GNR
in the helix-forming process. In the helical wrapping, the GNR can wind onto any
kind of SWNTs spontaneously and form GNR helix, even the ultrathin SWNT (4, 4)
with the diameter only 5.42 Å. As shown in Fig. 1.7a, the helical wrapping of the
GNR is slightly dependent on the diameter and the chirality of SWNT. Figure 1.7b
illustrates the effect of the width of GNR on the helical wrapping. The width of the
narrowest GNR with open edges is 5.681 Å in which it contains only one string
of carbon six-membered rings. The GNRs with different widths can helically wrap
onto the SWNT (15, 15) because the exterior of the SWNT is free and the motion
of GNR is not confined.

However, the situation of the helical insertion is much more complex because of
the confinement of tube wall. The encapsulation of GNR into SWNTs with different
diameters and chiralities is simulated to deeper clarify, just as shown in Fig. 1.7c.
If the SWNT with diameter is not larger than 10.85 Å (for instance, the armchair
SWNT (8, 8)), then the GNR cannot encapsulate into the tube, even the narrowest
GNR with width of 5.681 Å. With a slight increase in the diameter of the SWNT,
although it can fill the tube, the narrowest GNR just keeps planar or twisted because
the inside space is so confined that the helix cannot form, as seen by the GNR in the
armchair SWNT (9, 9). From our calculations, if the diameter of the SWNT is in the
range from 13.31 to 14.92 Å, then the narrowest GNR with 5.681 Å in width can
form a helix with a large pitch in the tube to take up as much as space and keep the
whole system stable, as shown by the GNR in the zigzag SWNT (17, 0). Only when
the diameter reaches 14.92 Å (the armchair SWNT (11, 11)) can the GNR produce a
perfect helix inside the nanotube. Just as seen in Fig. 1.7c, the perfect GNR helix can
be formed in the SWNTs with different chiralities when the diameter of SWNT is
�14.92 Å. Our calculations indicate that the helical encapsulation of the GNR into
the SWNT is strongly dependent on the tube diameter but slightly dependent on the
tube chirality. To investigate the effect of the GNR width, as shown in Fig. 1.7d, we
found that the width of GNR W that ensures the helical insertion of the GNR into
a given SWNT should be narrower than the threshold value Winto D D � 2 � 3.5 Å,
where D is the diameter of the tube and 3.5 Å is the optimized distance of the
interaction between carbon atoms. If the GNR is a bit wider than the maximum Winto

and a little narrower than D, then the helical structure will still be formed during the
encapsulation process when the GNR can self-adjust well through slight bend or
twist, but it is much more difficult and uncertain. Therefore, for a given SWNT with
the diameter larger than 14.92 Å, to ensure a perfect GNR helical structure to be
formed in the encapsulation process, it should satisfy the fact that the width of the
GNR is in the range of 5.681 Å and the threshold value Winto. In all GNR helices, the
gap between neighboring spirals is a constant value of 3.5 Å, so the pitch of the GNR
helix P is only determined by the width of the GNR that P D W C 3.5 Å. Therefore,
we can control the GNR helix by the SWNT diameter and the GNR width.

To clarify quantitatively the influence of the chirality and diameter of SWNT
on the adhesion of GNR-SWNT system, we have further determined the saturation
interaction energies per unit area�E between a GNR and the SWNTs with different



14 H. Li et al.

Fig. 1.7 Dependence of the diameter and chirality of SWNT and the width of GNR in the helix-
forming process. (a) Helical wrapping of GNR onto the SWNT with different diameters and
chiralities, (b) helical wrapping of GNR with different widths onto the SWNT (15, 15), (c) helical
encapsulation of GNR into the SWNT with different diameters and chiralities, and (d) helical
encapsulation of GNR with different widths into the SWNT (35, 0)
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Fig. 1.8 (a) Saturation interaction energies per unit area between the GNRs and the SWNTs with
different chiralities. (b) Saturation interaction energies per unit area between the GNRs and zigzag
SWNTs with different diameters

chiralities and diameters showing in Fig. 1.8. �E reflects the adhesion intensity
between the GNR and SWNT that can be calculated from the following equation:

�E D Etotal � .EGNR C ESWNT/

AGNR-SWNT
(1.1)

where Etotal is the total potential energy of the optimized GNR-SWNT system, EGNR

is the intrinsic energy of the single GNR without SWNT, ESWNT is the minimum
energy of the isolated SWNT without GNR, and AGNR-SWNT is the contact area
between the GNR and SWNT. From Fig. 1.8a, we can observe that the�E between
the GNR and SWNTs with different chiralities remains almost constant, indicating
that the SWNT chirality has a negligible influence on the adhesion. It further verifies
the fact that the helical wrapping and insertion depend slightly on the tube chirality.
The insets are the diameters of SWNTs. However, when the GNR helix is in the
hollow interior, the�E is obviously higher than that of the GNR helix on the exterior
of the SWNTs, suggesting that the GNR helix in the hollow interior is more stable
than that on the outer surface of the SWNT. It is mainly because the vdW potential
well inside the SWNT is deeper, therefore, providing more vdW attraction than
that from the exterior of the tube. Figure 1.8b shows that the diameter of SWNT
has a great effect on the adhesion. When the GNR wraps onto the SWNT, the �E
is increased with the increase in the tube diameter linearly, proving the fact that
the more flat the SWNT wall (lower curvature), the stronger the adhesion intensity
between GNR and SWNT. However, in the case of insertion, the�E increases firstly
and then reaches to an equilibrium value with no effect of the tube curvature.

We have further simulated the dependence of the integrality of SWNT on the
helical wrapping and insertion. We make the gap on SWNT by deleting the carbon
atom chains along the axial direction to destroy the continuity of the tube wall. The
edges of gaps are marked blue. The GNRs are all 300.12 Å in length and placed
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Fig. 1.9 Effect of the gap of SWNT on the helix-forming process. The edges of gaps are marked
blue. (a) Helical wrapping of GNR onto the SWNTs (15, 15) with gaps. (b) Helical encapsulation
of GNR into the SWNT (20, 20) with gaps. Insets are the number of carbon atom chains that the
gap contains

in the same location in all initial configurations. Figure 1.9 shows configurations
of the GNR wrapping onto the SWNTs (15, 15) and inserting into the SWNTs
(20, 20) with gaps at t D 13.5 and 10 ns, respectively. The insets are the number
of carbon atom chains that the gap contains. Figure 1.9 demonstrates that the small
gaps (containing 1 chain) have no obvious effect, whereas the larger gaps on the
tube walls slow or impede the helical wrapping and insertion. It could be seen that
the gap that contains four chains stops the helical wrapping, whereas the gap that
contains five chains stops the helical insertion. It is mainly because the motion of
GNR along the circumferential direction depending on the curvature of the tube
wall is destroyed. So the integrality of SWNT is also very important for the helical
wrapping and insertion of the GNR.

1.2.2.4 Possible Application

The unique phenomenon that the GNR can helically wraps onto and encapsulates
into the SWNT spontaneously inspires our interests to utilize the GNR as nanoscale
vehicle to deliver molecules onto the surface or into the confining nanospace of tube,
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respectively. On one respect, the surface of SWNTs is often chemically modified to
reach proper dispersion and compatibility (Khan et al. 2007). However, chemical
modifications will create defects in the external wall of the SWNTs and affect their
properties (Sulong et al. 2009). The spontaneous wrapping of GNR may be the more
gentle approach to modify the SWNT, and attached molecules on the outer surface
may guide the tube to a specific target. On the other respect, the larger inner confined
volume of the SWNT can be used as the drug container and targeted delivery
capsule (Hilder and Hill 2009). The spontaneous insertion of the GNR can carry
the molecules into the confining nanospaces of tubes without any other external
force. In this simulation, we chemically attach some norepinephrine molecules to
the GNRs with length of 300.12 Å uniformly. The norepinephrine is an important
drug in biology and medicine that has a key neurotransmitter function in the human
organism to regulate motor coordination, behavior, learning and memory, sleep-
wake cycle, and stress response (Zhu et al. 2010; Nagy et al. 2003; Zhou et al. 2007).
Just as shown in Fig. 1.10, the norepinephrine-modified GNRs gradually wrap
(Fig. 1.10a) and insert (Fig. 1.10b) the SWNTs to form the helical configurations.
The attached molecules have a comparatively small impact on the helix-forming
process and the interval between the neighboring segments. Besides norepinephrine,
other drugs, catalysts, enzymes, and functional groups can also be attached to the
GNR and easily carried to the exterior or interior of SWNTs. We can easily manage
the amount of the modified and encapsulated molecules and locate them at the
specified positions for a given SWNT because it is easy to know the pitch of GNR
helix and the distance between the tube and the helix and that of the neighboring
spirals. Then, we can distribute the required molecules according to the individual
requirement and make full use of the spontaneous and helical properties of the
GNR when GNRs interact with SWNTs. Therefore, the GNR can be a promising
nanoscale vehicle to deliver substances, and the GNR-SWNT system is expected to
explore numerous prospective chemical and biological applications.

1.3 A Graphene Sheet Spontaneously Scrolling Round
an Iron Nanowire

The structures and properties of NWs are quite different from those of bulk materials
owing to the strong impact of the surface. Because of magnetic performance, iron
(Fe) NWs are studied intensively, and various techniques have been developed for
the production of long and regular Fe NWs. Highly ordered Fe NWs with diameters
of several nanometers have been fabricated by the decomposition of a suitably
chosen perovskite (Mohaddes-Ardabili et al. 2004), electrodeposition using porous
alumina templates (Zhang et al. 2003b; Borissov et al. 2009), and iron deposition on
suspended CNT substrates (Zhang and Dai 2000). Moreover, Fe NWs of atomic size
can be generated using CNTs (Demoncy et al. 1998) or polymer (Thurn-Albrecht
et al. 2000; Hong et al. 2001) and biological templates like DNA (Seidel et al. 2002).
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Fig. 1.10 Evolution snapshots of the GNR modified with norepinephrine molecules interacting
with the SWNT. (a) Helical wrapping of modified GNR onto the SWNT (15, 15); (b) helical
encapsulation of modified GNR into the SWNT (20, 20). The insets are the top views of final
configurations

Although there have been a large number of important research studies on the
stability and properties of GNS, the study of the interaction between the GNS and a
metallic NW is still limited. Understanding their interacting mechanism is of great
importance in exploring the practical applications of GNSs and fabricating new
composite functional materials (Potts et al. 2011; Goswami et al. 2011).

In this section, theoretical results are presented to reveal that GNSs can fully
self-scroll onto Fe NWs to produce magnetic core-shell nanostructures, which can
be potential candidates for use in nanodevices, in wave-absorption materials, and
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in the magnetic storage industry. In particular, the interacting mechanism and the
thermodynamic model are examined to establish the nature of the spontaneous
scrolling of GNS. This study is not only helpful for the better understanding the
thermal instability and properties of GNS at an atomic level but essential to expand
the practical application of GNS and explore new theories and functional devices.

1.3.1 Simulation Method

In this work, all calculations are also carried out by MD simulation, and the atomic
interaction is described by the force field of COMPASS. The MD simulations are
performed under an NVT ensemble at room temperature of 300 K. The Nose method
is employed in the thermostat to control the temperature and generate the correct
statistical ensemble. The thermodynamic temperature is kept constant by allowing
the simulated system to exchange energy with a “heating bath.” The Verlet algorithm
is adopted to integrate the equations of motion for the whole system. The time
step is set to be 1.0 fs, and data were collected every 0.1 ps to record the full-
precision trajectory for further analysis. The cylindrical Fe NWs are prepared in
body-centered cubic crystal structure of Fe (Sandoval and Urbassek 2009; Yan et al.
2009; Opitz et al. 2002) and the wire axes oriented in the (001) direction with radius
range from 5 to 10 Å in order to maintain their small size effect and structural
stability. It has also shown that a wire radius favors for larger than a critical radius
with cross section of about two to seven atoms, in dependence on the used metallic
element (Kondo and Takayanagi 1997; Wang et al. 2001; Gulseren et al. 1998).
Below this critical radius, the wire structure is helical (Kondo and Takayanagi 1997;
Wang et al. 2001; Gulseren et al. 1998; Kondo and Takayanagi 2000). Initially, the
width of a GNS aligns parallel to the Fe NW and with a separation distance of 8.0 Å.
Each system is simulated long enough to achieve an equilibrium state.

Because Fe is a transition metal, the spin-unrestricted density function theory
(DFT) is performed to study the interaction between Fe and carbon on the GNS. The
DFT computations are carried out through an all-electron method with a generalized
gradient approximation (GGA) for the exchange-correlation term. The double nu-
merical basis set including the d-polarization functions (DND) basis set and PW91
(Perdew and Wang 1992) functional is adopted. A convergence criterion of 10�6

au on the total energy and electron density is adopted for the self-consistent field
(SCF) calculations. The real-space global orbital cutoff radius is chosen as 4.6 Å.
The Brillouin zone is sampled with 3 � 3 � 1 k-points. The transition state is located
through the synchronous method with conjugated gradient refinements (Govind
et al. 2003). This method involves linear synchronous transit (LST) maximization,
followed by repeated conjugated gradient (CG) minimizations, and then quadratic
synchronous transit (QST) maximizations and repeated CG minimizations until a
transition state was located.
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Fig. 1.11 Snapshots of the
spontaneous self-scrolling
of a GNS onto a Fe NW

1.3.2 Results and Discussion

1.3.2.1 The Spontaneous Scrolling of GNS

Direct simulation in Fig. 1.11 provides snapshots of the spontaneous scrolling of
an armchair GNS with size of 207.36 Å (armchair direction) � 63.96 Å (zigzag
direction) (contains 5,194 carbon atoms) onto an Fe NW with radius of 8.6 Å. The
GNS is placed vertically to the axis of Fe NW and the attractive force between them
makes the GNS approach to the Fe NW rapidly. The GNS displays discontinuous
wrinkles or corrugations in several nanometers thick, showing its thermodynamic
instability. According to the so-called Mermin-Wagner theorem (Mermin 1968),
long-wavelength fluctuations destroy the long-range order of 2D crystals, and
these fluctuations can be suppressed by anharmonic coupling between bending
and stretching modes, which presents that a 2D GNS can exist but exhibit strong
fluctuations with some ripples and corrugations (Fasolino et al. 2007). After the
GNS attaching onto the Fe NW, the GNS begins to curl and quickly wrap around the
Fe NW to form a coiling with a tail just like a tadpole (at t D 15 ps). When it totally
wraps the Fe NW, the GNS begins to scroll spontaneously. At t D 25 ps, it is found
that the tadpole-like part starts to fold and slide with a lower speed. Eventually,
the self-scrolling completes and the configuration of GNS transforms from a planar
membrane to a tubular scroll. During the self-scrolling, the speed is determined by
the rate of releasing potential energy into the kinetic energy. Our simulation result
indicates that the average self-scrolling speed of the GNS reaches up to 3.16 Å/ps
(316 m/s). Interestingly, the Fe NW is also found to be deformed owing to the strong
interaction between GNS and Fe NW during the self-scrolling process.

The spontaneous self-scrolling of a GNS onto an Fe NW leads to the structural
transition of the GNS from a 2D to a 3D phase, and this process is irreversible no
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matter whether the core-shell structure is cooled or heated to any temperature. The
irreversibility of the structural transition clearly shows that the 2D structure of GNS
is not the lowest energy configuration but is a metastable state like a supercooled
liquid. We would expect a similar behavior of a GNS using metallic NWs of other
elements and hope this distinctive property of metastable 2D GNS can bring more
applications. Moreover, the multilayered scroll formed is very similar to multi-
walled CNTs encapsulating with an Fe NW. Our results also demonstrate that such
self-scrolling is a common phenomenon when the GNS adheres to other metallic
NWs such as Cu, Au, Ag, Ge, and Sn. On the one hand, it would be a lot better to
trigger the self-scrolling of a GNS onto a metallic NW in a controlled manner to
produce metal/carbon core-shell nanostructures instead of the insertion of metallic
particles into CNTs because it is extremely difficult to insert metals into the CNTs,
which requires the conditions of the high temperature, catalyst, or other external
energy (Li et al. 2007, 2006; Blank et al. 2010) due to the wetting and small size
effect. This would provide a new method to prepare future nanoscale structures with
a higher level of sophistication. The self-scrolling of GNS onto the metallic NW is
also helpful for preventing the NW from oxidation when exposed to air.

1.3.2.2 Interface Characteristics

The interaction energy reflects the adhesion intensity between the GNS and the Fe
NW which can be calculated from the following equation:

Einteraction D Etotal � .EGNS C ENW/; (1.2)

where Etotal is the potential energy of the system, EGNS is the intrinsic energy
of the single GNS without Fe NW, and ENW is the energy of the single Fe NW
without GNS.

Figure 1.12a shows the interaction energy between the GNS and the Fe NW
during the self-scrolling. As the simulation continues, the interaction energy shows
a rapid increase during the attaching process from t D 0 to 1.5 ps. From t D 1.5
to 15 ps, the interaction energy increases linearly with the increase of the contact
area until the GNS just coils around the Fe NW. In order to further study the
interaction between transitional Fe and sp2 carbon on the GNS, DFT calculation
has been performed. Figure 1.12b shows that the Fe atom is located above the
center of the carbon hexagon on GNS with hollow H-site to form six covalent-
like bonds with small adsorption energy of 0.96 eV. The bond length between Fe
and the neighboring carbon is 2.14 Å, and the distance between Fe and GNS is
1.58 Å. We also computed the energy barrier for Fe migration in GNS from one
H-site to its neighboring one. Figure 1.12c shows that some bonds break and Fe
atom locates at the bridge B-site during the migration. The rather small migration
energy barrier (0.66 eV) indicates that the H-site Fe atom can easily migrate on
pristine GNS. Because the chemical energy between GNS and Fe NW is very weak,
the covalent-like bonds do not affect the spontaneous scrolling of GNS onto Fe NW.
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Fig. 1.12 (a) The interaction energy between GNS and Fe NW with time. (b) Top and side
views of the geometric structures of Fe absorbed GNS calculated by DFT. (c) Energy profile for
Fe diffusion on GNS from one H-site to its neighboring one; the insets are the initial state (IS),
transition state (TS), and final state (FS)

From t D 15 ps, the increasing rate of interaction energy is much lower because the
distance between the unwrapped GNS and the Fe NW increases with the increase of
the scroll layer. It suggests that the interaction energy should be mainly determined
by the contact area between the GNS layer and the Fe NW. From t D 28 ps (the
sliding process), the interaction energy becomes almost unchanged until t D 65 ps
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Fig. 1.13 Concentration profiles of the final structure in the X direction (a) and the Y direction
(b). The insets are the snapshots of the core-shell structures and peak values

which indicates that the structural transition of the GNS has completed and the
system reaches the equilibrium state. Therefore, we suggest that the structural
transition of the GNS is maintained not only by the interaction between the GNS
and the Fe NW but also by the interaction between the scrolled and unwrapped
GNS layer.

The final structure can be further characterized by the concentration profile.
Figure 1.13 shows the concentration profiles of the final structure consisting of
the Fe NW and the GNS scroll in the X and Y directions. The separation of the
adjacent layers can be obtained from the distance between two neighboring peaks
in the concentration profiles. From the peak details marked in the inserts, on the
one hand, the average separation distance between the innermost layer of the scroll
and the Fe NW is 2.61 Å, bigger than that of DFT data. This difference may be
due to distinct exchange and correlation functions used. However, this value is
very close to the scale of the chemical bonding, still indicating that the interaction
between them is very strong. On the other hand, the distance between the scrolled
layers is about 3.52 Å, which is very close to the wall thickness of the multi-walled
CNTs (3.4 Å), meaning this distance is in the strong-adhesive-binding region. In
addition, the interaction energy between the GNS and the Fe NW reaches up to
�16.5 Mcal/mol, suggesting that the adhesion is so strong that it is hard to strip the
GNS off the Fe NW to recover its planar structure again.

1.3.2.3 The Mechanism

What we are concerned with is what causes the structural transition of the GNS from
2D to 3D phase. In principle, an isolated GNS can only lower its energy by bending
to form corrugation to keep its 2D flat structure. The transition of an isolated, flat
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total potential energy EP (a)
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GNS membrane into a smaller, folded package is problematic because the intrinsic
elastic energy of the GNS always tends to keep the GNS flat and generates energy
barrier for the structural transition. When the Fe NW is introduced, the transition
of GNS from a 2D planar membrane to a 3D scroll happens. It must be pointed out
that there are two interaction effects responsible for this unique phenomenon. One
interaction is the vdW interaction between GNS and Fe NW, which helps the GNS
overcome the energy barrier and provides attractive force to drive the GNS to curl;
the other one is the offset face-to-face  –  stacking interaction (Zhu et al. 2010)
between GNS layers that causes the GNS continuously to hold tightly against the
rolled surface to form scroll.

To reveal the effect of the vdW interaction between GNS and Fe NW on the struc-
tural transition of GNS, the evolutions of total potential energy EP (a) and vdW en-
ergy�EvdW (b) of the whole system versus time were tracked, as shown in Fig. 1.14.
The inserts are enlarged images of two energies from t D 0 to 4 ps. The decrease of
total potential energy of the system indicates that the spontaneous self-scrolling of
GNS is a process of energy decreasing in which the system gradually reaches to a
more stable state. During the structural transition, the evolutions of the vdW energy
and the potential energy are nearly synchronous. The vdW energy is converted into
kinetic energy partially, which sustains the structural transition. So we suggest that
the interaction between GNS and Fe NW offers the main driving force to drive
the structural transition, which keeps the GNS continuously moving toward and
scrolling onto the Fe NW. It is worthy of note that, only from t D 0 to 24 ps
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(the insets are the snapshots at t D 24 ps), both the potential energy and vdW energy
have a rapid decrease. Thereafter, the potential energy reaches a minimum and
remains almost unchanged, which indicates that the system has reached the most
stable state from the suggestion of thermodynamics. Moreover, at 24 ps later, the re-
lease of the vdW energy becomes very slow, but the structural transition of the GNS
still continues, suggesting that the vdW interaction between GNS and Fe NW only
controls the former stage rather than the later one. The subsequent structural transi-
tion of the GNS is mainly determined by another interaction: the offset face-to-face
 –  stacking interaction between GNS layers (Zhu et al. 2010; Nagy et al. 2003),
resulted from an intermolecular interaction in the paralleled six-membered rings,
which sustains the structural transition to form a multi-walled scroll in the end.

The offset face-to-face  –  stacking interaction has two sub-interactions, one
is the  –  electron interaction and the other one is the  –¢ interaction. The  – 
electron interaction is an important repulsive force, which is roughly proportional
to the area of  -overlap of the two six-membered rings. The  –¢ interaction is an
attractive force between   electrons of one ring and the ¢-framework around the
inner edge of the cavity of the other one. Different from  –  electron interaction,
 –¢ interaction can be maximized in displaced stacking. Furthermore, in a stacking
system, stacked molecules should be exactly parallel with a vdW distance of about
3.5 Å (for the carbon skeleton) and overlapping at least partially to minimize
repulsive interaction and maximize the attractive interaction of the  -system.
Therefore, the best way to keep the displaced stacking and perfect parallel in GNS is
that the arrangement of the GNS follows a scroll mode around the Fe NW when the
GNS is self-scrolling onto the Fe NW. In the scroll, the paralleled six-membered
system, displacement of the carbon rings favors minimization of repulsive  – 
interaction and maximization of attractive  –¢ interaction. To some extent, the
high flexibility dependent on the perfect hexagonal honeycomb architectures and
the intrinsic instability of the GNS has also contributed to the formation of the
GNS scroll during the structural transition. Our simulation result just illustrates that
the distances between the scrolled layers are exactly close to 3.5 Å, which accords
well with the stacking distance of the offset face-to-face  –  stacking interaction
(Głóbwka et al. 1999; Hunter and Sanders 2009; Yang et al. 2008). It indicates that
the  –  stacking interaction plays a dominant role in the latter “scroll-forming”
stage of the structural transition.

1.3.2.4 The Thermodynamic Model

To develop a thermodynamic model to further illustrate the nature of the structural
transition of the GNS, we consider a GNS with length L and width W rolled onto a
Fe NW with radius r0. Thermodynamically, the occurrence of the structural transi-
tion of GNS is determined by the competition between the GNS-Fe binding energy,
EG-F D ��G-FAG-F, and the GNS intrinsic elastic bending energy, EG D �GAG, where
� is the density of the binding energy and A is the binding area. The GNS-Fe (GNS-
GNS) binding energies EG-F (EG) are easily obtained from the difference of the total
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vdW energy of the system at two different states: One state is the distance between
GNS and Fe NW is in their normal binding length, and the other one is the Fe NW is
separated from the GNS by a very long distance. Scrolling of the GNS onto Fe NW
is driven by the decrease of the GNS-Fe binding energy, EG-F D ��G-FAG-F. In the
case as shown in Fig. 1.11, the GNS-Fe density of the binding energy is estimated
as �G-F � 2.388 kcal/(mol�Å2). When the GNS scrolls into a single-layered cylinder
(at t D 15 ps), the initial and final GNS-Fe binding areas are Aini

G�F ! 0 and

Aend
G�F D 2  .8:6C 2:6/ � 63:96 VA2, respectively. The elastic binding energy of

this GNS cylinder is EG D �GAG, where AG � Aend
G�F is the binding area. In order

to obtain the strain energy density �G of the GNS cylinder, the flexural rigidity D of
the pristine GNS is calculated firstly avoiding the effect of the Fe NW. To obtain the
value of the parameter D, a pristine GNS with the size of a � b D 51.84 � 31.98 Å2

is simulated, which is rolled into a cylinder with the radius of R0 D a/2� . The �e is
obtained by calculating the energy difference between the flat GNS and the cylinder.
We obtain the value of D D 25.6 kcal/mol using �e D (1/2)D�2, where �D 1/R0 is
valid in the linear elastic regime, which is in good agreement with ab initio result
(Kudin and Scuseria 2001) and other model studies (Patra et al. 2009; Arroyo
and Belytschko 2004), indicating that our study should be reasonable. Because
RG � RNW C 2.6 D 11.2 Å and �D 1/RG, the obtained �G � 0.102 kcal/(mol�Å2)
is far less than the calculated �G-F � 2.388 kcal/(mol�Å2), meaning �G-F >�G.
Because AG-F � AG during the wrapping process of the GNS onto the Fe NW before
t D 15 ps, we obtain the energy condition of the structural transition of the GNS
activated by the Fe NW:

EG�F C EG < 0 (1.3)

During the wrapping process, the structure would become more and more stable
since EG-F decreases rapidly due to the increase of the AG-F.

During the structural transition, the self-scrolling of GNS has the outer radius
R, the interlayer spacing h, and the fixed inner core radius r0. The scrolled part of
the GNS can be described by the polar equation r D r0 C (h/2 )� , and parameters
L, R, r0 and h meet the relation  

�
R2 � r20

� D xh approximately, where x
denotes the length of the rolled GNS and x � L. The elastic energy per unit area
of the scroll is taken to be dQ(r)/dA D (1/2)D � (1/r2). Because of that dA � Wrd�
and � D (r � r0)2�/h, the total elastic energy in the scroll can be obtained as
Q D�DW/hln(R/r0). When an infinitesimal length ıx of the GNS is rolled, the outer
radius R of the scroll would increase by 2 RıR D hıx. Then the change of the strain
energy is ıQ D . DW=h/ .ıR=R/ D DW ıx

ı�
2
�
xh= C r20

��
. The total surface

energy of the scroll is altered by ıS D W(�CC C �CF)ıx, where �CC is the interlayer
interaction energy per unit area of the GNS scroll and �CF is the interaction energy
per unit area between the rolled GNS layer and Fe NW. Sum of the elastic energy
and the surface energy is the total potential energy. Therefore, when displacement ıx
of GNS is rolled, the change of the total potential energy is ıV/ıx D ıQ/ıx C ıS/ıx.
The releasing rate of the potential energy per unit area f is written as
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Fig. 1.15 (a) The self-scrolling of GNSs with different lengths onto the Fe NW with same radius
6.4 Å and (b) the saturation interaction energies. (c) Different chirality GNSs wrapping onto Fe
NW exhibit different chiralities and (d) the saturation interaction energies

f D ıV

ıx

1

W
D �CC C �CF C D

2
�
xh= C r20

� (1.4)

which is the net driving energy of the continuous structural transition of the GNS.
Given the initial condition and corresponding net driving energy, Eqs. (1.3) and (1.4)
can be integrated to predict the structural transition of GNS activated by the Fe NW.

1.3.2.5 The Effect of Size, Chirality, and Position

We further studied the self-scrolling of nine GNSs with same width of 66.420 Å
(zigzag direction) but different lengths of 28.406, 45.449, 58.232, 83.797, 105.101,
139.188, 203.100, 249.969, and 301.100 Å (armchair direction), respectively.
Figure 1.15a illustrates that all GNSs are activated to completely self-scroll onto
Fe NWs, forming arcs and single-layered or multi-shell structures with the Fe NW
cores. Figure 1.15b shows the saturated interaction energy between the Fe NW and
the GNS with different lengths. It can be seen that the interaction energy between the



28 H. Li et al.

GNS and the Fe NW rapidly increases until the length of the GNS reaches 58.232 Å,
which corresponds to the length of the GNS that just completely wraps the NW with
one circle. The final core-shell structure can be controlled by the radius of the Fe
NW and the length of the GNS. If the length of the GNS L fit the equation

L D 2  .RNW C d/ ; (1.5)

a perfect core-shell structure with single layer will be formed, where RNW is the
radius of the Fe NW and d is the average distance between the Fe NW and the GNS
layer. When L> 2� (RNW C d), the GNS would overlap to form the multilayered
scroll. If L< 2� (RNW C d), the GNS would paste onto the Fe NW to form an arc.

It is well known that the chirality has a significant effect on properties of GNSs,
which can change their type from quasi-metallic to semiconducting (Jia et al. 2009).
So it is essential to investigate the effect of the chirality on the structural transition.
Figure 1.15c indicates that there are no obvious differences in their self-scrollings.
Different kinds of scrolls exhibit different chiralities like CNT structures. To further
clarify the effect of the chirality on the adhesion, Fig. 1.15d gives the saturation
interaction energy between the Fe NW and the GNS with different chiralities. It
shows that the chirality has a slight influence on the adhesion between the GNS and
the Fe NW. Because the physical properties of the GNSs with different chiralities
are different, we can produce different types of metal/GNS heterogeneous materials
through this simple spontaneous scrolling, which are promising candidates for
various applications including nanomechanical devices or nanocircuits.

The position of the Fe NW on GNS has a great effect on the self-scrolling. When
the GNS length L and Fe NW radius RNW meet the equation L � 2� (RNW C d),
the GNS will paste to the NW no matter where the Fe NW is located as illustrated
in Fig. 1.16a. However, when L> 2� (RNW C d), the self-scrolling of GNS would
be greatly affected by the position of the Fe NW. In order to explore the position
effect of the Fe NW, We study the self-scrolling of an armchair GNS with length
207.361 Å onto a Fe NW with radius 6.41 Å. Figure 1.16b illustrates the snapshots
of the Fe NW located in different positions i, ii, iii, and iv. For the Fe NW with
the radius of 6.41 Å, only the distance D between the Fe NW and one end of the
GNS meets D � 37.9 Å; the GNS can wrap onto the Fe NW to form multilayered
scroll. When D> 37.9 Å, though the structural transition is also activated, the GNS
does not self-scroll onto the Fe NW to form multilayered scroll but a knot structure,
as illustrated at positions iii and iv, respectively. Figure 1.16c shows snapshots of
the typical structural transition activated by the Fe NW located at the middle. At
t D 1.5 ps, the GNS starts to wrap onto the NW. After two sides of the GNS meet,
they contact each other to create more contact area and then fold tightly in opposite
directions, respectively. Two ends oscillate up and down and finally a knot structure
with double shells forms.

Next, we will further clarify how the initial angle (') between the GNS and the
Fe NW affects the self-scrolling. In Fig. 1.17a, the tip of a narrow GNR with size of
22.85 � 277.67 Å2 is initially positioned on the Fe NW at the angle of 'D 60ı with
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Fig. 1.16 (a, b) Illustration of the position effect of the Fe NW on the self-scrolling of the GNS
with different lengths and the final nanostructures. (c) A typical self-scrolling of the GNS onto the
Fe NW located at the middle

respect to the axis of the Fe NW. The tip is attracted to the Fe NW fast and then
move forward along the axial direction until the tip reaches another end of Fe NW.
At t D 30 ps, the GNR starts to scroll around the Fe NW spirally with large pitch.
Then the pitch becomes small, and GNR eventually forms a stable helix with the
distance between the neighboring edges 3.5 Å. In this process, the GNS and Fe NW
also satisfy the above-mentioned energy condition: EG-F C EG< 0, and the increase
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Fig. 1.17 Snapshots of the helical rolling of one (a) and two GNRs (b) when placed at the angle
of 'D 60ı with respect to the axis of the Fe NW. (c) The interaction energies between GNS and
Fe NW during these two structural transition processes. The inset in (c) is the parallel phase of
GNR on Fe NW

of the contact area enhances the stability of the whole system. We further study the
spontaneous wrapping of two GNRs (183.93 � 14.76 Å2) with initial angle 'D 60ı
on the Fe NW, as shown in Fig. 1.17b. As simulation begins, two GNRs start to
move forward side by side on the Fe NW. At t D 20 ps, they start to fold helically in
the same direction. Finally, they form a loose double helix with large pitch, which
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closely resembles to the double-stranded DNA. The interaction energy between the
Fe NW and GNR during the scrolling is shown in Fig. 1.17c. In two cases, the
interaction energy between them increases linearly with the increase of the contact
area until the GNRs fully wrap the Fe NWs. It verifies the fact that the interaction
energy is mainly determined by the contact area between the GNS and Fe NW. Our
simulations further reveal that if the initial angle is small, the thin GNR does not
wrap spirally but adhere on the Fe NW parallel (parallel phase), as seen the inset in
Fig. 1.17c. The above results indicate that the self-scrolling and final configuration
of GNS can be controlled by the position, initial angle, and GNS width.

In the above discussion, we mainly focused on the self-scrolling of the GNS onto
the NW that is long enough to form the core-shell structure. In order to determine
whether there exists a critical length of NW, below which the perfect self-scrolling
(as shown in Fig. 1.11) of GNS will not operable, the interaction between a GNS
(83.80 � 83.797 Å2) and a series of Fe NWs with different lengths and same radius
(8.6 Å) is further studied. From our calculations, the length of Fe NW (LNW),
ensuring the perfect self-scrolling of GNS, should be longer than the critical value
WGNS/2 (LNW � WGNS/2), where WGNS is the width of GNS parallel aligned with
the NW. Otherwise, the GNS will fold onto Fe NW to form knot or dumpling-like
structures. However, when the Fe NW is a bit shorter than the critical value, the
perfect core-shell structure will still be formed if the GNR can well self-adjust, but
it is much more difficult and uncertain.

1.3.2.6 Possible Applications

The unique self-scrolling properties of the GNS arouse our interest to utilize it
as nanoscale conveyor belt to deliver substances to the surface of Fe NW for
modification. Recent experiment showed that the NW modified by the aminothiol
molecule can be used to deliver plasmid DNA into different cells (Kuo et al. 2008).
To explore the possible application, some butyl aminothiol molecules are chemically
attached to the GNS uniformly. Just as shown in Fig. 1.18, the GNSs modified by
aminothiol molecules can spontaneously wrap the Fe NWs and form the scroll and
helix. The attached molecules have a little influence on the structural transition and
the final structure. Besides the aminothiol, other molecules such as drugs, catalysts,
and enzymes can also be attached to the GNS and easily carried onto the Fe NW.
The amount of the modified molecules can be easily managed and located at the
specified position on a given Fe NW, since the distance between the NW and the
GNS and that of the neighboring segments in GNS helix is easily known. Then
the functional molecules can be distributed according to the individual requirement.
Hence, the GNS can be a promising nanoscale conveyor belt to deliver molecules
to modify the metallic NWs to develop their probing to the biological and medical
systems.
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Fig. 1.18 Snapshots of the aminothiol-modified GNS (a) and GNR (b) gradually wrapping onto
Fe NWs

1.4 Dynamic Ripples Reduced by the Impact of a C60
Molecule in Single-Layer Graphene

Recently, it has been found that a freestanding isolated graphene layer can be intrin-
sically corrugated to produce ripples, which are expected to affect its conductivity
(Meyer et al. 2007b). Another approach to create periodic ripples into graphene has
been reported by Bao and colleagues by utilizing the negative expansion coefficient
of graphene sheet (Bao et al. 2009). The formation of ripple, which is related
to the periodic variation of electronic properties of graphene, is expected to be
used for synthesizing graphene-based electronic devices (Miranda and Vázquez de
Parga 2009).

Here, we report an MD simulation of ripple formation and propagation in a
single-layer graphene (SLG), induced by the impact of a C60 molecule. To mimic
the classical single- or double-slit experiments, we also demonstrate the diffraction
and interference of ripples in graphene.
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Fig. 1.19 Snapshots of water wave and graphene ripple. (a) Water waves are generated by means
of throwing a pebble to the static water pond (Nikon coolpix L22). (b) Graphene ripples are
generated on the graphene which is stroked by an energic C60 molecule

1.4.1 Simulation Method

In this MD simulation, the second-generation reactive empirical bond order (REBO)
potential is used to describe the C–C interaction (Brenner et al. 2002; Li et al.
2009c), and the Lennard-Jones 12-6 potential is used to calculate the long-range van
der Waals interaction. It is important to note that the ultrathin 2D graphene sheet is
the medium of ripple propagation. Graphenes of two different sizes are studied.
One graphene sheet has a size of 197 Å (zigzag direction) � 169 Å (armchair
direction) (containing 12,880 atoms). The size of another is 254 Å (armchair
direction) � 153 Å (zigzag direction) (containing 14,040 atoms). In order to observe
the wave diffraction and interference, two symmetrical slits with a width of 3 Å
are created along a centerline of the latter graphene (all C atoms on the centerline,
except those that belong to the slits, are fixed during the simulation). Initially, a
C60 molecule is placed 6.5 Å above the graphene. At time zero, the C60 starts to
impact the SLG with an initial vertical velocity of 15 Å/ps. The time step of the MD
simulation is 1 fs and each trajectory runs for 10 ps.

1.4.2 Results and Discussion

A snapshot of circular ripples propagating in the SLG during the simulation is shown
in Fig. 1.19b. It is interesting that these circular ripples are very similar to the water
waves stirred by dropping a pebble into a pond (Fig. 1.19a). Different from the water
wave in a pond, the ripple in SLG is arisen by distortion of C–C bonds. As vibration
energy is passing through the graphene from the impacting center to another place,
the ripples are formed. The ripple propagation in the SLG actually means that the
“strong” impact energy is transformed into the “soft” wave energy, illustrating that
the graphene can be used as an energy buffer to withstand shocks.
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Fig. 1.20 (a) The onset of the graphene ripple generated by striking with C60 molecule and its
propagation on the surface of the graphene. The original ripples and the reflective ripples arouse
interference pattern in the last three snapshots. (b) and (d) show the Z direction displacements
(�z) and X direction displacements (�x) of atoms along the centerline [colored black in (c)],
respectively. (c) The travelling distance of the ripples along different directions

The onset of the graphene ripple and its propagation in the SLG are demonstrated
in Fig. 1.20a. The Z direction displacements (�z) of atoms on the centerline versus
time curves Fig. 1.20b are used to illustrate the transverse waves. At 800 fs, the
displacement of the atoms at the impacting point is about 2.6 Å. The amplitude of
the nearest wave crest of the impacting point is 0.26 Å. The amplitude of the wave
decays as the following exponential function:

A.x/ D 2:59943 exp .� jxj =7:33993/ � 0:01351; (1.6)

where x (in angstrom) is the horizontal position and A(x) (in angstrom) is the
corresponding amplitude. The distances of ripple propagation at different times are
shown in Fig. 1.20c. The average propagating speed of ripples along the zigzag
direction is 78.32 Å/ps, while the propagating speed of ripples along the armchair
direction is 87.02 Å/ps. The small difference between the two displacement
lines results in a hexagonal symmetry of the ripples rather than complete circles
(as shown in Fig. 1.20a). Meyer et al. mentioned that, under the condition of
thermal equilibrium, ripples in freestanding graphene are intrinsic, random, and
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Fig. 1.21 (a) Snapshots of interference of ripples coming from two slits. (b) The Z direction dis-
placements (�z) of atoms on the centerline [colored red in (a)]. (c) The Z direction displacements
of the atom pointed by a blue arrow in (b) at different times. The red line and green line indicate
the displacement caused by the diffraction wave when the two slits are closed, respectively, while
the black line indicates the displacement caused by the diffraction wave when the two slits are
both open

uncontrollable (Meyer et al. 2007a, b). However, this study shows that, by C60
striking, the ripple forming on the surface of SLG is reproducible and controllable.
For example, the amplitude of ripple can be easily tuned by varying the impacting
speed of the C60.

The X direction displacements (�x) of atoms along the centerline are shown in
Fig. 1.20d. The atoms near the zero point do not move along the X direction. With
the increase of distance from the impacting point, �x fluctuates between positive
and negative. By comparing �x with �z, it is found that the Z direction displace-
ment of atoms is much larger than the X direction displacement. Graphene shrinks as
any other 2D membranes due to transverse bending vibrations. Muñoz et al. (2010)
discussed the ballistic heat conductivity of graphene and showed that the soft bend-
ing mode dominated the graphene thermal conductivity at low temperature. This is
in agreement with our simulation that propagation of the transverse wave is free in
the graphene, which means that the free path of bending mode phonons is very large.

When the ripples reach a narrow slit, the atoms in the slit vibrate like a
point source. Noticeable diffraction is shown in Fig. 1.21a. The diffraction wave
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resembles a circular ripple with the slit as its center. Our results indicate that this
mechanical ripple can spread out along the narrow slit (one atom distance), which
would provide a possible technique to detect defects in graphene. For example, if
there is a vacancy defect in the graphene, the shape of ripple would be different due
to the wave diffraction at the vacancy defect. When the ripple arrives at the vacancy
point, the smooth circle ripple at the defect point would form a small crater or even
be separated into two parts, which is dependent on the size and shape of the vacancy.
If lots of vacancy defects exist, the circle ripple would become quite unsmooth with
some concaves. Therefore, we can determine the existence of vacancy defect by
observing the shape of ripple.

When the two diffraction waves encounter in the double-slit interference ex-
periment, interference is generated (shown in Fig. 1.21a). Figure 1.21b shows the
displacements of a string of atoms along the centerline at 2,700 fs. The two point
sources of the diffraction waves are also bilaterally symmetrical due to two localized
bilaterally symmetrical slits. When the two slits are closed, respectively, it is found
that the two displacement curves would almost fully overlap. However, once the two
slits are both open, the resultant displacement is equal to the sum of the above two
displacements, which accords with the principle of superposition of waves. In this
way, the vibrations of all the atoms along the centerline are strengthened. Then, a
single atom is picked from the central row of atoms in order to study the change
of displacement as a function of time (shown in Fig. 1.21c). It is found that the
displacement-time curves of the single atom are also corresponded to the above
superposition principle. The above phenomena indicate that ripples propagating in
a 2D single-atom-thick media can produce interference. We can use this concept of
“superposition of waves” to design a “lens” that focuses wave energy on the SLG
sheet, which would open an exciting possibility of the fabrication of nanodevices
(e.g., signal transducer).

The above-mentioned graphenes are perfect 2D crystals which are not stable
according to both theory and experiment (Mermin 1968; Meyer et al. 2007a, b;
Novoselov et al. 2005a, b). There should be intrinsic ripples at finite temperatures
due to its thermodynamic stability. When a graphene with intrinsic ripples is
stroked by a C60 molecule, ripples also exist at the impacting point and propagate
outside as shown in Fig. 1.22. It is found that impacting ripples on the plane
graphene are different from those on the corrugated graphene. On one hand, the
intrinsic ripples would inevitably affect the impacting ripples. The bending and
stretching of the graphene layer result in the intrinsic ripples which are distributed
randomly and uncontrollably. Therefore, the graphene surface is no longer plane
and symmetric. During the propagating process, the impacting ripples vary with
the different directions. On the other hand, the impacting ripples would affect
the intrinsic ripples in turn. The propagation of impacting ripples breaks the
original stability of graphene and thus changes the intrinsic ripples. As shown in
Fig. 1.22, there are many cloudlike shades outside the impacting ripples, which
mean that the amplitudes of intrinsic ripples in these areas have decreased. When
the impacting ripples arrive at a slit, diffraction still occurs and brings cloudlike
shades. However, interference of diffraction ripples coming from the two slits is
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Fig. 1.22 The propagation, diffraction, and interference of impacting ripples in the corrugated
graphene. The inset red line of each graph is the Z direction displacements of atoms on the yellow
line. Tick labels on the left are in unit of angstrom

not as clear as that of plane graphene. Although the intrinsic ripples disturb the
impacting ripples, the signal carried by the impacting ripples does not fade away
but still propagates forward. Intrinsic ripples in graphene are expected to strongly
influence its electronic properties by introducing spatially varying potentials or
effective magnetic fields (Park et al. 2008; Castro Neto et al. 2009). Different
from intrinsic ripples, the impacting ripples made from C60 will disappear after
the system is fully relaxed. However, the impacting ripple has its own excellent
feature such as reducing local excessive deformation, transferring signals caused by
striking, and detecting cracks or defects.

1.5 Conclusion

A series of atomistic MD simulations has been conducted to explore the interaction
and the structural properties of GNR-SWNT and GNS-NW systems. The GNRs can
helically wrap and insert the SWNT spontaneously to form helical configurations,
which are quite close to the helices found in nature. The steady decline of the
potential energy in the GNR-SWNT system suggests that the helical wrapping and
insertion are spontaneous phenomena and systems are increasingly stable during
these two processes. The vdW attraction drives the GNR continuously moving
toward the tube and traps the GNR to adhere on the sidewalls of tubes, whereas the
formation of the GNR helix is attributed to the  –  stacking interaction between
GNR and SWNT as well as the dangling ¢-orbitals on carbon atoms at the open
edges of GNR. A DNA-like double helix with same handedness would be formed
with the wrapping and insertion of two GNRs. The velocity of GNR in helical
wrapping is obviously lower than that in helical insertion. The diameter and chirality
of tube have a neglect influence on the wrapping, whereas the encapsulation is
limited by the diameter greatly.
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Moreover, the GNSs can spontaneously self-scroll onto the Fe NWs irreversibly,
which results in the structural transition of the GNS from 2D to 3D phase and the
formation of the stable metal/carbon core-shell nanostructure. The planar GNS is
in metastable state, just like the supercooled liquid. The interaction between the
GNS and Fe NW as well as the  –  stacking interaction between GNS layers
may be responsible for this unique phenomenon. The decline of the potential
energy of the whole system suggests that the self-scrolling of the GNS onto Fe
NW is spontaneous, and the system is increasingly stable during this process.
A thermodynamic model has been proposed to explain and predict the structural
transition of GNS. The final core-shell nanostructure can be controlled by the
positions of GNS and Fe NW.

MD simulation results also show that impact of C60 molecule would induce
nanoscale dynamic ripples on the graphene no matter whether the graphene is plane
or corrugated, although there are lots of differences between them. A GNS may be
a well-promising material to be served as an energy buffer to withstand shocks. The
propagation orientation and amplitude of ripples can be controlled via changing the
locally insert slits and the speed of C60. The graphene ripple is a kind of surface
wave which carries a lot of surface information, and the wave energy could also be
focused due to the interference of ripples. The controlled ripples and their diffraction
and interference in graphene are of great significance to detect the cracks and defects
in the graphene sheet by receiving the wave signals.

This study provides possible applications for the GNS and GNR to serve as
conveyor belt for molecule delivery. And also, the discoveries of this study are of
great significance for the deeper understanding of the instability and properties of
graphene at an atomic level and the further exploration of the properties of the GNR-
SWNT and GNS-NW systems.

Acknowledgments The authors would like to acknowledge the support provided by the National
Basic Research Program of China (Grant No. 2012CB825702). This work is also supported by
the National Natural Science Foundation of China (Grant Nos. 51271100). The authors would
also thank the support provided by promotive research fund for excellent young and middle-aged
scientisits of Shandong Province (Grant Nos. BS2010CL027).

References

Arroyo M, Belytschko T (2004) Phys Rev B 69:115411
Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Nat Nanotechnol 4:562
Baskaran D, Mays JW, Bratcher MS (2005) Chem Mater 17:3389
Bets KV, Yakobson BI (2009) Nano Res 2:161
Blank VD, Kulnitskiy BA, Perezhogin IA, Polyakov EV, Batov DV (2010) Acta Mater 58:1293
Borissov D, Isik-Uppenkamp S, Rohwerder M (2009) J Phys Chem C 113:3133
Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) J Phys Condens

Matter 14:783
Bunte SW, Sun HJ (2000) Phys Chem B 104:2477
Castro Neto AH, Guinea F, Peres NMR, Novoselvo KS, Geim AK (2009) Rev Mod Phys 81:109



1 Helical Wrapping of Graphene Sheets and Their Self-Assembly. . . 39

Chen RJ, Zhang Y, Wang D, Dai H (2001) J Am Chem Soc 123:3838
Choi WY, Kang JW, Hwang HJ (2003) Phys Rev B 68:193405
Demoncy N, Stephan O, Brun B, Collix C, Loiseau A, Pascard H (1998) Eur Phys J B 4:147
Fasolino A, Los JH, Katsnelson MI (2007) Nat Mater 6:858
Fujii S, Enoki T (2010) J Am Chem Soc 132:10034
Gao H, Kong Y, Cui D, Ozkan CS (2003) Nano Lett 3:471
Gao XP, Zhang Y, Chen X, Pan GL, Yan J, Wu F, Yuan HT, Song DY (2004) Carbon 42:47
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Chapter 2
First-Principles Study of the Electronic
and Magnetic Properties of Defects
in Carbon Nanostructures

Elton J.G. Santos, Andrés Ayuela, and Daniel Sánchez-Portal

Abstract Understanding the magnetic properties of graphenic nanostructures is
instrumental in future spintronics applications. These magnetic properties are
known to depend crucially on the presence of defects. Here we review our recent
theoretical studies using density functional calculations on two types of defects in
carbon nanostructures: substitutional doping with transition metals, and sp3-type
defects created by covalent functionalization with organic and inorganic molecules.
We focus on such defects because they can be used to create and control magnetism
in graphene-based materials. Our main results are summarized as follows:

1. Substitutional metal impurities are fully understood using a model based on
the hybridization between the d states of the metal atom and the defect levels
associated with an unreconstructed D3h carbon vacancy. We identify three
different regimes, associated with the occupation of distinct hybridization levels,
which determine the magnetic properties obtained with this type of doping.
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2. A spin moment of 1.0	B is always induced by chemical functionalization when
a molecule chemisorbs on a graphene layer via a single C–C (or other weakly
polar) covalent bond. The magnetic coupling between adsorbates shows a key
dependence on the sublattice adsorption site. This effect is similar to that of H
adsorption, however, with universal character.

3. The spin moment of substitutional metal impurities can be controlled using
strain. In particular, we show that although Ni substitutionals are nonmagnetic
in flat and unstrained graphene, the magnetism of these defects can be activated
by applying either uniaxial strain or curvature to the graphene layer.

All these results provide key information about formation and control of defect-
induced magnetism in graphene and related materials.

2.1 Introduction

The experimental discovery of graphene, a truly two-dimensional crystal, has led to
the rapid development of a very active line of research. Graphene is not only a funda-
mental model to study other types of carbon materials, but exhibits many uncommon
electronic properties governed by a Dirac-like wave equation (Novoselov et al. 2004,
2005). Graphene, which exhibits ballistic electron transport on the submicrometer
scale, is considered a key material for the next generation of carbon-based electronic
devices (Geim and Novoselov 2007; Castro Neto et al. 2009). In particular, carbon-
based materials are quite promising for spintronics and related applications due to
their long spin relaxation and decoherence times owing to the spin-orbit interaction
and the hyperfine interaction of the electron spins with the carbon nuclei, both negli-
gible (Hueso et al. 2008; Trauzettel et al. 2007; Tombros et al. 2007; Yazyev 2008a).
In addition, the possibility to control the magnetism of edge states in nanoribbons
and nanotubes by applying external electric fields introduces an additional degree
of freedom to control the spin transport (Son et al. 2006; Mananes et al. 2008).
Nevertheless, for the design of realistic devices, the effect of defects and impurities
has to be taken into account. Indeed, a substantial amount of work has been devoted
to the study of defects and different types of impurities in these materials. The
magnetic properties of point defects, like vacancies, adatoms, or substitutionals,
have been recognized by many authors (Lehtinen et al. 2003; Palacios et al. 2008;
Kumazaki and Hirashima 2008; Santos et al. 2010a,b; Chen et al. 2010; Ugeda
et al. 2010; Yazyev and Helm 2007). It has now become clear that the presence of
defects can affect the operation of graphene-based devices and can be used to tune
their response.

In this chapter, we provide a review of several recent computational studies on the
role of some particular type of defects in determining the electronic and, in partic-
ular, the magnetic properties of graphene and carbon nanotubes (Santos et al. 2008,
2010a,b, 2011, 2012a,b,c). We will consider two types of defects: substitutional
transition metals and covalently bonded adsorbates. For the substitutional transition
metals, we first present some of the existing experimental evidence about the
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presence of such impurities in graphene and carbon nanotubes. Then, we summarize
our results for the structural, electronic, and magnetic properties of substitutional-
transition metal impurities in graphene. We show that all these properties can be
explained using a simple model based on hybridization between the d shell of
the metal atoms and the defects states of an unrelaxed carbon vacancy. We also
show that it is possible to change the local spin moment of the substitutional
impurities by applying mechanical deformations to the carbon layer. This effect
is studied in detail in the case of Ni substitutionals. Although these impurities are
nonmagnetic at a zero strain, we demonstrate that it is possible to switch on the
magnetism of Ni-doped graphene either by applying uniaxial strain or curvature
to the carbon layer. Subsequently, we explore the magnetic properties induced
by covalent functionalization of graphene and carbon nanotubes. We find that the
magnetic properties in this case are universal, in the sense that they are largely
independent of the particular adsorbate: As far as the adsorbate is attached to the
carbon layer through a single C–C covalent bond (or other weakly-polar covalent
bond), there is always a spin moment of 1	B associated with each adsorbate. We
show that this result can be understood in terms of a simple model based on the so-
called �-vacancy, that is, one pz orbital removed from a �-tight-binding description
of graphene. This model captures the main features induced by the covalent
functionalization and the physics behind. In particular, using this model, we can
easily predict the total spin moment of the system when there are several molecules
attached to the carbon layer simultaneously. Finally, we have also studied in detail
the magnetic couplings between Co substitutional impurities in graphene. Surpris-
ingly, the Co substitutional impurity is also well described in terms of a simple
�-vacancy model.

2.2 Substitutional Transition-Metal Impurities in Graphene

2.2.1 Experimental Evidences

Direct experimental evidence of the existence of substitutional impurities in
graphene, in which a single metal atom substitutes one or several carbon atoms
in the layer, has been recently provided by Gan and coworkers (2008). Using
high-resolution transmission electron microscopy (HRTEM), these authors could
visualize individual Au and Pt atoms incorporated into a very thin graphitic layer
probably consisting of one or two graphene layers. From the real-time evolution
and temperature dependence of the dynamics, they obtained information about the
diffusion of these atoms. Substantial diffusion barriers (�2.5 eV) were observed
for in-plane migration, which indicates the large stability of these defects and the
presence of strong carbon–metal bonds. These observations indicate that the atoms
occupy substitutional positions.
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In another experiment using double-walled carbon nanotubes (DWCNT)
(Rodriguez-Manzo et al. 2010), Fe atoms were trapped at vacancies likewise the
previous observations for graphene layers. In these experiments, the electron beam
was directed onto a predefined position and kept stationary for few seconds in order
to create a lattice defect. Fe atoms had been previously deposited on the nanotube
surface before the defect formation. After irradiation, a bright spot in the dark-field
image was observed. A quantitative analysis of the intensity profile showed an
increase of the scattered intensity at the irradiated position relative to the center of
the pristine DWCNT. This demonstrates that at the defect position, on the top or
bottom side of the DWCNT, an Fe atom was trapped.

Recent evidence was also reported for substitutional Ni impurities in single-
walled carbon nanotubes (SWCNT) (Ushiro et al. 2006) and graphitic parti-
cles (Banhart et al. 2000). Ushiro and coauthors (2006) showed that Ni substitutional
defects were present in SWCNT samples synthesized using Ni-containing catalysts
even after careful purification. According to their analysis of X-ray absorption data
(XANES), the most likely configuration for these defects has a Ni atom replacing a
carbon atom.

The presence of substitutional defects in the samples can have important
implications for the interpretation of some experiments. For example, substitu-
tional atoms of transition metals are expected to strongly influence the magnetic
properties of graphenic nanostructures. Interestingly, transition metals like Fe,
Ni, or Co are among the most common catalysts used for the production of
SWCNTs (Dresselhaus et al. 2001). Furthermore, the experiments by Banhart
and coworkers (Rodriguez-Manzo and Banhart 2009) have demonstrated that it is
possible to create individual vacancies at desired locations in carbon nanotubes
using electron beams. This experiment, combined with the observed stability of
substitutional impurities, opens a route to fabricate new devices incorporating
substitutional impurities at predefined locations. These devices would allow for
the experimental verification of the unusual magnetic interactions mediated by the
graphenic carbon network that have been predicted recently (Brey et al. 2007;
Kirwan et al. 2008; Santos et al. 2010b). This becomes particularly interesting
in the light of the recent finding that the spin moment of those impurities could
be easily tuned by applying uniaxial strain and/or mechanical deformations to
the carbon layer (Santos et al. 2008; Huang et al. 2011; Santos et al. 2012a). In
spite of this, the magnetic properties of substitutional transition-metal impurities in
graphenic systems were not studied in detail until very recently. Few calculations
have considered the effect of this kind of doping on the magnetic properties of the
graphenic materials, and this will be the main topic of the following sections.

2.2.2 Structure and Binding

In Fig. 2.1 we show the typical geometry found in our calculations for a graphene
layer where one carbon atom has been substituted by a metal impurity. The metal
atom appears always displaced from the carbon layer. The height over the plane
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Fig. 2.1 Typical geometry
of transition and noble
substitutional metal atoms in
graphene. The metal atom
moves upwards from the
layer and occupies, in most
cases, an almost perfectly
symmetric threefold position
with C3v symmetry

defined by its three nearest carbon neighbors is in the range 1.7–0.9 Å. These three
carbon atoms are also displaced over the average position of the graphene layer by
0.3–0.5 Å. The total height (hz) of the metal atom over the graphene plane is the
sum of these two contributions and ranges between 1.2 and 1.8 Å, as shown in panel
(c) of Fig. 2.2.

In most cases the metal atom occupies an almost perfectly symmetric configu-
ration with C3v symmetry. Exceptions are the studied noble metals that are slightly
displaced from the central position and Zn that suffers a Jahn-Teller distortion in
its most stable configuration. However, we have found that it is also possible to
stabilize a symmetric configuration for Zn with a binding energy only �150 meV
smaller. This configuration will be referred to as ZnC3v throughout this chapter.

Figure 2.2a–c presents a summary of the structural parameters of substitutional
3d transition metals, noble metals and Zn in graphene. Our calculations are in very
good agreement with the results of a similar study performed by Krasheninnikov
et al. (2009), although they overlooked the existence of the high-spin ZnC3v

configuration. Solid circles correspond to calculations using the SIESTA code (Soler
et al. 2002) with pseudopotentials (Troullier and Martins 1991) and a basis set of
atomic orbitals (LCAO), while open squares stand for VASP (Kresse and Hafner
1993; Kresse and Furthmüller 1996) calculations using plane-waves and PAW
potentials (Blöchl 1994). As we can see, the agreement between both sets of
calculations is excellent. Data in these figures correspond to calculations using a
4�4 supercell of graphene. For several metals we have also performed calculations
using a larger 8�8 supercell and find almost identical results. This is particularly
true for the total spin moments, which are less dependent on the size of the supercell
but require a sufficiently dense k-point sampling to converge. The behavior of the
metal–carbon bond length and hz reflects approximately the size of the metal atom.
For transition metals these distances decrease as we increase the atomic number,
with a small discontinuity when going from Mn to Fe. The carbon–metal bond
length reaches its minimum for Fe (dC�Fe=1.76 Å), keeping a very similar value
for Co and Ni. For Cu and Zn, the distances increase reflecting the fully occupied
3d shell and the large size of the 4s orbitals. Among the noble metals, we find
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Fig. 2.2 Structural
parameters and binding
energies of substitutional
transition and noble metals in
graphene. Bond lengths and
angles have been averaged for
the noble metals. The data
presented for Zn correspond
to the high-spin solution with
C3v symmetry and are very
close to the averaged results
for the most stable distorted
solution (Adapted from
Santos et al. 2010a)

that, as expected, the bond length largely increases for Ag with respect to Cu, but
slightly decreases when going from Ag to Au. The latter behavior is understood
from the compression of the 6s shell due to scalar relativistic effects.

As already mentioned, noble metals and Zn present a distorted configuration. In
Table 2.1 we find the corresponding structural parameters. For Cu and Ag, one of the
metal–carbon bond lengths is slightly larger than the other two, whereas for Au one
is shorter than the others. However, the distortions are rather small with variations
of the bond lengths below 2 %. The significant scalar relativistic effects in Au give
rise to slightly smaller metal–carbon bond lengths for this metal as compared to
Ag. In the case of Zn atoms, the distorted configuration presents one larger Zn–C
bond (by �3.5 %) and two shorter bonds (�5 %) compared with the bond length
(1.99 Å) of the undistorted geometry. The distorted configuration is more stable by
160 meV (with SIESTA, this energy difference is reduced to 120 meV using VASP).
This rather small energy difference between the two configurations might point to
the appearance of non-adiabatic electronic effects at room temperature.
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Table 2.1 Structural
parameters for substitutional
noble metals and Zn in
graphene

dC�M (Å) hz (Å) � (ı)

Cu 1.93, 1.90, 1.90 1.40 88.9, 88.9, 95.2
Ag 2.23, 2.19, 2.19 1.84 71.7, 71.7, 76.7
Au 2.09, 2.12, 2.12 1.71 78.0, 78.0, 81.6
Zn 2.06, 1.89, 1,89 1.54 88.3, 88.3, 103.9
ZnC3v 1.99 1.67 87.9

dC�M indicates the bond distances between the metal
atom and its three carbon neighbors, and hz is the height
of the impurity over the carbon layer (see the text). The
bond angles are also given

The binding energies of the studied substitutional metal atoms in graphene are
shown in Fig. 2.2d. In general, these energies correlate with the carbon–metal bond
length, although the former exhibits a somewhat more complicated behavior. The
binding energies for transition metals are in the range of 8–6 eV. Substitutional Ti
presents the maximum binding energy, which can be easily understood since for this
element all the metal–carbon bonding states (Santos et al. 2010a) are fully occupied.
One could expect a continuous decrease of the binding energy as we move away
from Ti along the transition metal series, and the nonbonding 3d and the metal–
carbon antibonding levels become progressively populated. However, the behavior
is non-monotonic, and the smaller binding energies among the 3d transition metals
are found for Cr and Mn, and a local maximum is observed for Co. This complex
behavior is explained by the simultaneous energy downshift and compression of
the 3d shell of the metal impurity as we increase the atomic number (Santos et al.
2010a). In summary, the binding energies of the substitutional 3d transition metals
are determined by two competing effects: (a) as the 3d shell becomes occupied
and moves to lower energies, the hybridization with the carbon vacancy states near
the Fermi energy (EF) is reduced, which decreases the binding energy; (b) the
transition from Mn to late transition metals is accompanied by a reduction of the
metal–carbon bond length by �0.1 Å, which increases the carbon–metal interaction
and, correspondingly, the binding energy.

The binding energies for noble metals are considerably smaller than for transition
metals and mirror the reverse behavior of the bond lengths: 3.69, 1.76, and 2.07 eV,
respectively, for Cu, Ag, and Au. The smallest binding energy (�1 eV) among the
metals studied here is found for Zn, with both s and d electronic shells filled.

2.2.3 Spin-Moment Formation: Hybridization Between Carbon
Vacancy and 3d Transition-Metal Levels

Our results for the spin moments of substitutional transition and noble metals
in graphene are shown in Fig. 2.3 (Santos et al. 2010a). Similar results have
been found by several authors (Krasheninnikov et al. 2009; Huang et al. 2011).
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Fig. 2.3 Spin moment of substitutional transition and noble metals in graphene as a function
of the number of valence electrons (Slater-Pauling-type plot). Black symbols correspond to the
most stable configurations using GGA. Results are almost identical using SIESTA and VASP codes.
Three main regimes are found as explained in detail in the text: (1) filling of the metal–carbon
bonding states gives rise to the nonmagnetic behavior of Ti and Sc; (2) nonbonding d states are
filled for V, Cr, and Mn giving rise to high-spin moments; and (3) for Fe all nonbonding levels
are occupied and metal–carbon antibonding states start to be filled giving rise to the observed
oscillatory behavior for Co, Ni, Cu, and Zn. Open and red symbols correspond, respectively, to
calculations of Fe using GGA+U and artificially increasing the height of the metal atom over the
graphene layer (see the text). Symbol marked as ZnC3v corresponds to a Zn impurity in a high-spin
symmetric C3v configuration (Adapted from Santos et al. 2010a)

We have developed a simple model that allows to understand the behavior of the
spin moment, as well as the main features of the electronic structure, of these
impurities (Santos et al. 2010a). Our model is based on the hybridization of the 3d -
states of the metal atom with the defect levels of a carbon vacancy in graphene. In
brief, we can distinguish three different regimes according to the filling of electronic
levels:

• Bonding regime: all the carbon–metal bonding levels are filled for Sc and Ti and,
correspondingly, their spin moments are zero.

• Nonbonding regime: nonbonding 3d levels become populated for V and Cr
giving rise to a spin moment of, respectively, 1 and 2	B with a strong localized
d character. For Mn one additional electron is added to the antibonding dz2 level
and the spin moment increases to 3	B .

• Antibonding regime: finally, for Fe and heavier atoms, all the nonbonding 3d
levels are occupied and the spin moment oscillates between 0 and 1	B as the
antibonding metal–carbon levels become occupied.

The sudden decrease of the spin moment from 3	B for Mn to 0	B for Fe is
characterized by a transition from a complete spin polarization of the nonbonding
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Table 2.2 Mulliken
population analysis of the
spin moment for different
substitutional impurities in
graphene

SM(
B ) SC (
B ) S tot (
B )

V 1.21 �0.09 1.0
Cr 2.53 �0.20 2.0
Mn 2.91 �0.10 3.0
Co 0.44 0.06 1.0
Cu 0.24 �0.03, 0.31, 0.31 1.0
Ag 0.06 �0.31, 0.54, 0.54 1.0
Au 0.16 �0.28, 0.50, 0.50 1.0
ZnC3v 0.23 0.37 2.0

S tot is the total spin moment in the supercell, SM

is the spin moment in the central metal impurity
and SC is the spin moment in the carbon nearest
neighbors

3d levels to a full occupation of those bands. However, this effect depends on
the ratio between the effective electron–electron interaction within the 3d shell
and the metal–carbon interaction (Santos et al. 2010a). If the hybridization with
the neighboring atoms is artificially reduced, for example, by increasing the Fe–
C distance, Fe impurities develop a spin moment of 2	B (see the red symbol in
Fig. 2.3). Our results also show that it is possible to switch on the spin moment
of Fe by changing the effective electron–electron interaction within the 3d shell.
These calculations were performed using the so-called GGA+U method. For a large
enough value of U (in the range 2–3 eV), Fe impurities develop a spin moment of
1	B . It is noteworthy that this behavior is unique to Fe: using similar values of U
for other impurities does not modify their spin moments.

At the level of the GGA calculations, Fe constitutes the border between two
different trends of the spin moment associated with the substitutional metal
impurities in graphene. For V, Cr, and Mn, the spin moment is mainly due to the
polarization of the 3d shell of the transition-metal atoms. The strongly localized
character of the spin moment for those impurities, particularly for V and Cr, is
corroborated by the Mulliken population analysis shown in Table 2.2. For Co,
Ni, the noble metals, and Zn, the electronic levels close to the EF have a much
stronger contribution from the carbon neighbors. Thus, for those impurities we can
talk about a “defective graphene”-like magnetism. Indeed, it is possible to draw
an analogy between the electronic structure of the late transition, noble metals
and Zn substitutional impurities and that of the isolated unreconstructed (D3h)
carbon vacancy (Santos et al. 2008, 2010a,b). The stronger carbon contribution and
delocalization in the distribution of the spin moment for Co, the noble metals, and
Zn impurities is evident in Table 2.2.

In the following we present the “hybridization” model that allows to distinguish
the three regimes of the spin-moment evolution described before, corresponding to
the filling of levels of different character. We have found that the electronic structure
of the substitutional impurities can be easily understood as a result of the interaction
of two entities: (a) the localized defect levels associated with a symmetric D3h

carbon vacancy and (b) the 3d states of the metal atom, taking also into account the
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down shift of the 3d shell as the atomic number increases. We considered explicitly
the 3d states of the metal atom since our calculations show that, at least for transition
metals, the main contribution from 4s orbitals appears well aboveEF.

To illustrate the main features of our model, in Fig. 2.4a we present a schematic
representation of the hybridization of the 3d levels of Ti with those of an
unreconstructed D3h carbon vacancy in graphene. The interested reader can see
(Santos et al. 2010a) for an extension of the model for the other metals and
technical details. The defect levels of the unreconstructed D3h vacancy can be
easily classified according to their sp or pz character and whether they transform
according to A- or E-type representations. A scheme of the different level can be
found in Fig. 2.4, while the results of a DFT calculation are depicted in Fig. 2.5b
(see also Santos et al. 2010a and Amara et al. 2007). Close to the EF, we can find
a fully symmetric A pz level (thus belonging to the A00

2 irreducible representation
of the D3h point group) and two degenerate defect levels with E symmetry and sp
character (E0 representation). Approximately 4 eV belowEF, we find another defect
level with A sp character (A0

1 representation). Due to the symmetric position of the
metal atom over the vacancy, the system has a C3v symmetry, and the electronic
levels of the substitutional defect can still be classified according to the A or E
irreducible representations of this point group. Of course, metal and carbon vacancy
states couple only when they belong to the same irreducible representation. Thus,
occupied A pz and A sp vacancy levels can only hybridize with the 3dz2 orbitals
(A1 representation), while all the other 3d metal orbitals can only couple to the
unoccupiedE sp vacancy levels.

With these simple rules in mind and taking into account the relative energy
position of carbon and metal levels that changes as we move along the transition-
metal series, we can understand the electronic structure of substitutional transition
metals in graphene as represented in Fig. 2.4a, b. Some parameters in the model can
be obtained from simple calculations. For example, a rough estimate of the position
of the 3d shell of the metal atom respect to the graphene EF is obtained from
the positions of the atomic levels. The relative strengths of the different carbon–
metal hoppings can be estimated from those of the corresponding overlaps. With
this information, it is already possible to obtain most of the features of the model
in Fig. 2.4. However, some uncertainties remain, particularly concerning the relative
position of levels with different symmetry. To solve these uncertainties, the simplest
approach is to compare with first-principles calculations. The details of the model
presented in Fig. 2.4 have been obtained from a thorough analysis of our calculated
band structures (Santos et al. 2010a). In particular, we have used the projection of
the electronic states into orbitals of different symmetry as an instrumental tool to
classify the levels and to obtain the rational that finally guided us to the proposed
model. In contrast, it is interesting to note that some features that derive from our
way to understand the electronic structure of these defects are very robust and could
actually be guessed without direct comparison with the calculated band structures.
For example, the fact that for V we start to fill the nonbonding 3d states and this
impurity, as well as Cr and Mn, develops a spin moment can be argued from simple
symmetry and electron-counting arguments.
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Fig. 2.4 (a) Scheme of the hybridization between the 3d levels of Ti and the localized impurity
levels of the D3h carbon vacancy. Only d levels of Ti are represented since our calculations
show that, at least for transition metals, the main contribution from s levels appears well
above EF. Levels with A symmetry are represented by gray (green) lines, while those with
E symmetry are marked with black lines. The region close to EF is highlighted by a square.
(b) Schematic representation of the evolution of the electronic structure near EF for several
substitutional transition metals in graphene. The spin moment (S) is also indicated. Substitutional
Sc impurities act as electron acceptors, causing the p-doping of the graphene layer (Adapted from
Santos et al. 2010a)
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Fig. 2.5 (a) Isosurface of the spin density induced by a Cosub defect. Positive and negative spin
densities correspond to light and dark surfaces with isovalues of ˙0.008 e�/Bohr3 , respectively.
Panel (b) presents the spin-unpolarized band structure of an unreconstructed D3h carbon vacancy.
Panels (c, d) show, respectively, the band structure of majority and minority spins for a Cosub defect
in a similar cell. The size of filled symbols in panel (b) indicates the contribution of the pz orbitals
of the C atoms surrounding the vacancy, whereas empty symbols correspond to the sp2 character.
In panels (c, d), the filled and empty circles denote the contribution of hybridized Co 3dz2 -C 2pz

and Co 3d -C 2sp2 characters, respectively. EF is set to zero (Adapted from Santos et al. 2010b)

According to our model for the substitutional metals, there are three local-
ized defect levels with A1 character and three twofold-degenerate levels with E
character. Two of these E levels correspond to bonding-antibonding sp-d pairs,
while the third one corresponds to 3d nonbonding states. For Sc–Mn the three A1
levels can be pictured as a low-lying bonding level with A sp-dz2 character and a
bonding-antibonding pair with A pz-dz2 character. As shown in Fig. 2.4, we have
four metal-vacancy bonding levels (two A and one doubly degenerate E levels)
that can host up to eight electrons. For instance, Ti contributes with four valence
electrons, and there are four electrons associated with the localized carbon-vacancy
levels. Ti has the bonding states completely occupied. Consequently, Ti presents
the highest binding energy among all 3d transition metals and has a zero spin
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moment. Figure 2.4b shows the situation for other impurities in the series Sc–Mn.
Substitutional Sc impurities have zero spin moment because they act as electron
acceptors. Note that all the bonding levels are also filled for Sc, causing a p-doping
of the graphene layer. As already mentioned V, Cr, and Mn present an increasing
spin moment due to the filling of the nonbonding levels, while for Fe the nonbonding
shell is completely filled.

Late transition, noble metals and Zn substitutional impurities have the filled
levels coming from an antibonding interaction between the carbon vacancy and the
metal states. The character and spatial localization of those levels are very similar
to those of the levels of the D3h vacancy close to EF.

Co substitutionals present a singly degenerate half-occupied defect level at EF.
As we will discuss in more detail in the next section, this level is reminiscent of the
state that appears atEF associated with a single carbon vacancy in a �-tight-binding
description of graphene (Palacios et al. 2008). A second electron occupies this level
for Ni impurities, and the spin polarization is lost (Santos et al. 2008).

An additional electron is added for noble metal impurities. This electron
populates a doubly degenerate level coming from the antibonding interaction of
the 2sp2 lobes in the nearest carbon neighbors, with the orbitals of dxz and dyz

symmetries in the metal impurity. This state is reminiscent of E sp level of the
D3h carbon vacancy. The occupation of this twofold-degenerate state with only one
electron explains both, the observed 1	B spin moment and the structural distortion
of the noble metal impurities (Santos et al. 2010a). As we will see in Sect. 2.3.1,
the E sp impurity levels also play a crucial role to explain the switching on of the
magnetism of Ni impurities under mechanical deformations and uniaxial strain.

For Zn two electrons occupy the twofold-degenerate E sp level. As a conse-
quence, the system suffers a Jahn–Teller distortion and has a zero spin moment.
However, it is possible to stabilize a symmetric configuration (ZnC3v) with a moment
of 2	B and only slightly higher in energy (Santos et al. 2010a).

2.2.4 Co Substitutionals in Graphene as a Realization
of Single �-Vacancies

In this section we examine in detail the analogy that can be established between
substitutional Co atoms in graphene (Cosub) and the simplest theoretical model
trying to account for the properties of a carbon vacancy in graphene. The electronic
structure and magnetic properties of a Cosub impurity are analogous to those of a
vacancy in a simple �-tight-binding description of graphene. This toy model system,
the �-vacancy, has been extensively studied in the graphene literature due to its
very interesting magnetic properties directly related to the bipartite character of the
graphene network (Castro Neto et al. 2009; Palacios et al. 2008).

We begin by looking at the spin density of the Cosub impurity as shown in
Fig. 2.5a. The spin polarization induced in the carbon atoms has a pz-like shape
and decays slowly as we move away from the impurity. The sign of the spin
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polarization follows the bipartite character of graphene: the polarization aligns
parallel (antiparallel) to the spin moment located in the Co impurity for carbon
atoms in the opposite (same) sublattice. The value of the total spin moment is 1.0	B
per defect. Using Mulliken population analysis, the moment on the Co atom has
a value of 0.44 
B , the three first carbon neighbors have 0.18 
B , and there are
0.38 
B delocalized in the rest of the layer. Therefore, the total spin moment has
contribution from both Co and carbon orbitals.

To understand the origin of this spin polarization, we now analyze in detail
the band structure. Figure 2.5c, d presents the results for a Cosub defect in a 4�4
graphene supercell. Similar results are obtained using a 8�8 cell. For comparison,
panel (b) shows the spin-compensated band structure of a single unreconstructed
D3h carbon vacancy. For theD3h vacancy, there are three defect states in a range of
�0.7 eV around EF. Two states appear above EF at 0.3 eV at � and have a large
contribution from the sp2 lobes of the C atoms surrounding the vacancy. These
levels correspond to the two degenerate E sp states appearing in Fig. 2.4. Another
state at 0.35 eV below EF shows a predominant pz contribution and corresponds to
the A pz level in Fig. 2.4. This last level represents the defect state that appears atEF

for a vacancy using a �-tight-binding description. For a Cosub, the defect states of
the vacancy described above hybridize with the Co 3d states. The two 2sp2 defect
bands, now an antibonding combination of Co 3d and the original C 2sp2 vacancy
levels, are pushed at higher energies, �1.0 eV above EF (see Fig. 2.5c, d). The
singly occupied pz state, now hybridized mainly with the Co 3dz2 orbital, remains
at EF and becomes almost fully spin-polarized. The Cosub impurity becomes thus
analogous to a vacancy in the �-tight-binding model of graphene.

This analogy is a powerful one, since it brings our results for the magnetism of
Cosub impurities into contact with Lieb’s theorem for a half-filled Hubbard model
(Lieb 1989), where the spin polarization is an intrinsic property of the defective
bipartite lattice. Applying this theorem and our analogy, we can expect that the total
spin of an array of Cosub impurities can be described according to the simple rule
S=jNA�NB j, whereNA andNB indicate the number of Co substitutions in A and B
sublattices, respectively. In Sect. 2.4.1 we will show results from first-principles cal-
culations that confirm this behavior. However, Lieb’s theorem is global, in the sense
that it refers to the total spin moment of the system and does not enter into the local
description of the magnetic interactions. This will be described in more detail in
Sect. 2.4.1, where we will compute the exchange couplings between Cosub defects.

Other realistic defects, besides Cosub impurities, can also be mapped onto the
simple �-vacancy model. In Sect. 2.4.2 we will see that complex adsorbates
chemisorbed on carbon nanotubes and graphene generate a spin polarization. The
magnetism due to such covalent functionalization displays a behavior similar to that
of the �-vacancies. Some concepts already used here will be again invoked to
explain the main features of the magnetism associated with these defects, leading
to a universal magnetic behavior independent of the particular adsorbate.
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2.3 Tuning the Magnetism of Substitutional Metals
in Graphene with Strain

In the previous section, we have considered in detail the formation of local
spin moments induced by a particular class of defects in graphene, substitutional
transition metals. Although this is an important subject, other aspects are also crucial
to understand and control the magnetism associated with this kind of doping. For
example, one needs to explore the characteristics of the couplings between local
moments, as well as the possibility to control such couplings, and the size of the
local moments, using external parameters. This kind of knowledge is instrumental in
possible applications in spintronics and quantum information devices. The subject of
the magnetic couplings will be postponed until Sect. 2.4. In this section we analyze
how the structural, electronic, and magnetic properties of substitutional defects in
carbon nanostructures can be controlled using strain. We focus on Ni substitutionals
and conclude that externally applied strain can provide a unique tool to tune the
magnetism of Ni-doped graphene.

Strain provides a frequently used strategy to modify the properties of materials.
For example, strain is intentionally applied to improve mobility in modern micro-
electronic devices. This so-called strain engineering has taken a key position over
years. Recently, strain effects have also been proposed as a route to control the
electronic properties of pristine graphene, which had a deep impact on the physics
of this material (Guinea et al. 2010; Pereira and Castro Neto 2009).

Here, we show that the application of uniaxial strain can be used to switch on the
magnetism of graphene doped with Ni substitutional impurities (Nisub) (Santos et al.
2012a). Whereas Nisub defects are nonmagnetic in flat graphene, we find that their
spin moment changes from zero when no strain in applied, up to 1.9 	B at �7.0 %
strain. This strong variation stems from the modifications of the local structure of
the defect, which cause changes in the electronic structure of the defect that can
be related to those of the unreconstructed carbon vacancy in graphene under strain.
The similarities between the electronic structure of the D3h vacancy and that of Nisub

were already stressed in the previous section.
We also show that substitutional metallic impurities in carbon nanotubes display

a different magnetic behavior from that observed in flat graphene. Using Nisub

dopants as an example, we demonstrate that the intrinsic curvature of the carbon
layer in the SWCNTs can be used to switch on the magnetism of Ni substitutionals
(Santos et al. 2008). The defect electronic structure is modified by curvature in a
similar way as by uniaxial strain. In addition, we find a strong dependence of the spin
moment on the impurity distribution, tube metallicity, and diameter of the nanotube.
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2.3.1 Switching on the Magnetism of Ni-Doped Graphene
with Uniaxial Strain

In this subsection, we study the electronic structure of Nisub defects in graphene
under uniaxial strain. According to the analysis presented in Sect. 2.2.3, at a zero
strain, Nisub defects are nonmagnetic in flat graphene (Santos et al. 2008, 2010a).
However, we find that under moderate uniaxial strain, these impurities develop a
nonzero spin moment, whose size increases with that of the applied strain. This
magnetoelastic effect might be utilized to design a strain-tunable spin device based
on defective graphene.

Figure 2.6a, b shows the spin moment of a Nisub defect as a function of the applied
strain along the .n; n/ and .n; 0/ directions, respectively. The curves with filled
squares show simulations using geometries from a non-spin-polarized calculation
with a DZ basis set (see references Soler et al. 2002 and Artacho et al. 1999 for
a description of the different basis sets). The spin moment and electronic structure
are always calculated using a more complete DZP basis. The open squares indicate
systems that were calculated using the previous procedure, that is, a DZ basis, but
the geometries have been obtained from spin-polarized calculations. The triangles
display calculations with DZP basis set for both geometry and spin moment. At
zero strain the Nisub defect is nonmagnetic. As the uniaxial tension is applied, the
system starts to deform. At �3.5 % strain, the system becomes magnetic with a
spin moment that evolves nearly linearly with the uniaxial strain up to values of
� 0.30–0.40 
B at �6.0 %. The magnetism of the system using different basis set
is very similar. At �6.8 % the spin moment increases sharply from �0.40 	B to
�1.9 	B . This transition takes place for both directions, although it is somewhat
more abrupt along the .n; n/ direction (Fig. 2.6a) where no intermediate steps are
observed. Thus, the magnetic properties depend on the local defect geometry and, to
a much lesser extent, on the defect orientation relative to the applied strain. Panels
(c) and (d) in Fig. 2.6 present the local defect geometry. When the strain is applied,
the triangle formed by the three C neighboring atoms to the Ni impurity deforms.
The C–C distances along the strain direction increase, whereas distances along the
perpendicular direction decrease in response to such elongation. The distance of the
Ni atom to the first carbon neighbors also increases, but this bond length changes
for the studied strains are less than �5.0 % (averaged over both strain directions) in
comparison with �20.0 % for the C–C distances. The analysis of distances suggests
that the carbon neighbors and the central Ni impurity interact strongly, which is also
reflected in the high stability of the defect with a binding energy �7.9 eV to the
carbon vacancy.

In order to understand the magnetic moment in Nisub defects, the density of states
(DOS) around EF under strains of 0.0, 2.2, 5.3, and 7.2 % are shown in Fig. 2.7.
The strain is along the .n; n/ direction although the qualitative behavior is similar to
other directions. Several defect levels aroundEF have Ni and C mixed character. As
pointed out before (Sect. 2.2), the metal atom over the vacancy has a C3v symmetry
at a zero strain, and the electronic levels are classified according to the A or E
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Fig. 2.6 Spin moment as a function of the applied strain along (a) the .n; n/ and (b) the .n; 0/
directions. In panels (a) and (b), filled squares indicate results obtained using geometries from
a non-spin-polarized calculation using a DZ basis. The spin moment and electronic structure are
calculated using a DZP basis using such geometry. Open squares indicate a similar calculation,
but the geometries have been obtained from a spin-polarized calculation. The triangles represent
full calculations (geometry and spin moment) with DZP basis set. Panels (c) and (d) show the
results for the structural parameters as a function of the applied strain along .n; n/ and .n; 0/,
respectively. Bond lengths between the different C atoms are denoted d12 and d22, while the bond
lengths between Ni and C atoms are dNi�C1 and dNi�C2 . The structural information was calculated
using a DZ basis (Adapted from Santos et al. 2012a)

irreducible representations of this point group. Essentially, these three defect states
and their evolution as a function of the applied strain determine all the observed
physics.

One of them with A character is occupied and appears around �0.50 eV below
EF at zero strain. This level comes from a fully symmetric linear combination of the
2pz orbitals (z-axis normal to the layer) of the nearest C neighbors interacting with
the 3dz2 orbital of Ni. The other twofold-degenerate levels withE character, coming
from the hybridization of the in-plane sp2 lobes of the carbon neighbors with the
Ni 3dxz and 3dyz orbitals, appear at 0.50 eV aboveEF at a zero strain. Because this
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Fig. 2.7 Density of states
(DOS) of the Nisub defect
under 0.0, 2.25, 5.30, and
7.26 % strain applied along
the .n; n/ direction. Symbols
A and E indicate the
character and symmetries of
the defect states, with large
weight of Ni hybridized with
C states. A corresponds to Ni
3dz2�C 2pz, and E
represents Ni 3dxz; 3dyz�C
2sp. At 5.30 and 7.26 %
strains, the open squares
(green curve) represent the
spin-up channel and filled
squares (red curve) the spin
down. For clarity, the curves
have been shifted. The Fermi
energy is marked by the
dashed (gray) line and is set
to zero (Adapted from Santos
et al. 2012a)

electronic structure has the Ni 3d states far from EF and no flat bands crossing EF,
the spin moment of the Nisub impurity in graphene is zero. Interestingly, these three
levels that appear close to EF in Fig. 2.7 are reminiscent of those found for the
unreconstructed carbon vacancy in graphene as we have already seen in Sect. 2.2.

The energy position of the three levels shifts as a function of the applied strain.
When the strain is applied, the degeneracy between Ni 3dxz�C 2sp and Ni 3dyz�C
2sp states is removed, and a gradual shift towards EF of one of them is observed.
This level becomes partially populated, and the system starts to develop a spin
moment. The Ni 3dz2�C 2pz state also changes its position approaching EF ,
although for small values of the strain, this level does not contribute to the observed
magnetization. However, around a 7 % strain, both the Ni 3dz2�C 2pz and the Ni
3dxz;yz�C 2sp levels become fully polarized and the system develops a moment
close to 2.00 
B .

Figure 2.7 also shows the resulting spin-polarized DOS at 5.3 and 7.2 % strain
(upper part of the panel). The exchange splittings of the 3dxz and 3dyz levels are,
respectively, �0.29 and �0.13 eV at 5.3 %, increasing with the applied strain and
the associated spin moment. The energy gain with respect to the spin-compensated
solutions develops from 13.9 meV at 5.3 % to 184.1 meV at 7.26 %. Thus,
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Fig. 2.8 (a, b) Spin densities
for Nisub defects at strains of
5.30 and 7.26 % along the
.n; n/ direction. The strain
direction is marked by the
arrows in both panels. The
isovalue cutoff at (a, b) panels
is ˙0.035 and ˙0.060
e�/Bohr3 (Adapted from
Santos et al. 2012a)

a moderate variation of the strain applied to the graphene layer changes the spin
state and enhances the stability of the defect-induced moment. According to these
results, if it is possible to control the strain applied to the graphene layer, as shown
in recent experiments (Mohiuddin et al. 2009; Kim et al. 2009), the magnetism
of Ni-doped graphene could be turned on and off at will, like switches used in
magnetoelastic devices, however, with no applied magnetic field. This suggests a
sensitive and effective way to control the magnetic properties of graphene, which is
interesting for its possible applications in nanoscale devices (Santos et al. 2012a).

Figure 2.8a, b shows the spin magnetization patterns induced by the presence of
a Nisub defect under two different magnitudes of uniaxial strain applied along the
.n; n/ direction. The spin polarization induced in the neighboring carbon atoms
has shape and orbital contributions that depend sensitively on strain. At 5.30 %
the spin density is mainly localized at the Ni impurity and at the C atom bonded
to Ni along the strain direction. The antibonding character of the E defect state
that originates the magnetization is clear (see the node in the bond direction). The
spin density at this C atom shows a 2sp-like shape to be contrasted with that at
7.26 % strain, in which apart from the 2sp-like shape, a 2pz component is clearly
observed. At this larger strain, farther neighboring-carbon atoms also contribute to
the spin density with mainly 2pz character. This additional contribution to the spin
polarization pattern corresponds to the Ni 3dz2�C 2pz-defect state at EF for strains
above �7 %, as explained in the previous section using the DOS.

Figure 2.9 shows a possible experimental setup that could be used to test
our predictions. This is similar to a mechanically controlled break junction setup
with an elastic substrate (Mohiuddin et al. 2009; Kim et al. 2009). Graphene is
deposited in the center of such a substrate in order to obtain a uniform strain.
Bending or stretching the substrate causes an expansion of the surface, and the
deposited graphene will follow this deformation. In principle, the modifications
on the electronic structure can be detected using a scanning tunneling microscope
(STM) since the involved defect levels are localized around the Fermi energy. For
example, Ugeda et al. were able to measure using STM the energy position and
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Fig. 2.9 Experimental setup that could be utilized to measure the effect of strain on the magnetic
properties of Ni-doped graphene. The layer is deposited on a stretchable substrate which keeps
a large length-to-width ratio in order to obtain a uniform tensile strain in the graphene film.
Spectroscopy measurements using scanning tunneling microscope (STM) would allow to identify
the shift of the different defect levels. If the magnetic anisotropy is large enough or there is an
external magnetic field, it could be also possible to measure the presence and orientation of a
magnetic moment at the defect site using a spin-polarized tip

spatial localization of the defect levels associated with a carbon vacancy in the
surface of graphite (Ugeda et al. 2010). If the magnetic anisotropy of the defect
is high enough, at sufficiently low temperatures, a preferential orientation of the
moment would be stabilized, and in principle, an STM with a spin-polarized tip
(spin-STM) could allow to monitor the evolution of the magnetic properties of the
Ni-doped graphene with strain. Instead, an external magnetic field may be used
to align the magnetic moments of the defects and define the hard/easy axis of
the system. It is noteworthy that the break junction-like setup has already been
successfully used (Standley et al. 2008).
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Fig. 2.10 (a) Relaxed geometry of a substitutional Ni (Nisub) impurity in a (5, 5) SWCNT
and (b) isosurface (˙0.002 e�/Bohr3) of the magnetization density with light (gray) and
dark (blue) surfaces corresponding, respectively, to majority and minority spin (Adapted from
Santos et al. 2008)

2.3.2 Ni Substitutionals in Carbon Nanotubes:
Curvature-Induced Magnetism

Although Nisub impurities are nonmagnetic in flat graphene, their magnetic moment
can be switched on by applying curvature to the structure. To understand why, we
will begin looking at the equilibrium structure of Nisub for a (5,5) SWCNT. The
Ni atom is displaced �0.9 Å from the carbon plane. Although both outward and
inward displacements can be stabilized, the outward configuration is always more
stable. The calculated Ni–C distances (dNi�C ) are in the range 1.77–1.85 Å in good
agreement with experiment (Ushiro et al. 2006; Banhart et al. 2000). Armchair tubes
exhibit two slightly shorter and one larger values of dNi�C ; the opposite happens for
zigzag tubes, whereas for graphene we obtain a threefold symmetric structure with
dNi�C=1.78 Å. Ni adsorption inhibits the reconstruction (Amara et al. 2007) of the
carbon vacancy. Furthermore, we have checked that for a vacancy in graphene, a
symmetric structure is obtained after Ni addition even when starting from a relaxed
vacancy.

Figure 2.10b shows the magnetization density profile for a Nisub defect in a (5, 5)
metallic nanotube at large dilution (0.3 % Ni concentration). The total spin moment
is 0.5 
B . The magnetization is on the Ni atom and its C neighbors. However, it also
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Fig. 2.11 Band structure of a (5, 5) nanotube containing a Nisub impurity in four unit cells
for (left panel) a paramagnetic calculation (PAR) and for (middle panel) majority and (right
panel) minority spins. Circles and diamonds correspond respectively to the amount of Ni 3dyz

and 3dxz character. X-axis is parallel to the tube axis and y-axis is tangential (Adapted from
Santos et al. 2008)

extents considerably along the tube, particularly in the direction perpendicular to
the tube axis. This profile indicates that the spin polarization follows some of the
delocalized electronic states in the metallic nanotube. Indeed, as we clarify below,
the magnetism in substitutionally Ni-doped SWCNTs only appears associated with
the curvature and the metallicity of the host structure.

The basic picture described in Sect. 2.2 is still valid for the electronic structure
of the Nisub impurity in SWCNTs. However, the modifications that appear due to
the curvature of the carbon layer are responsible for the appearance of a magnetic
moment. Figure 2.11a shows the band structure of a paramagnetic calculation of
a (5, 5) SWCNT with a Nisub impurity every four unit cells. Comparing the band
structure in Fig. 2.11a with the electronic structure of the Nisub impurity in flat
graphene (lower curve in Fig. 2.7), we appreciate the effects of curvature. The
degeneracy between dxz and dyz states is removed (x-axis taken along the tube axis
and y-axis along the tangential direction at the Ni site).

The dyz contribution is stabilized by several tenths of eV, and a quite flat band
with strong dyz character is found pinned atEF close to the Brillouin-zone boundary.
Under these conditions, the spin-compensated solution becomes unstable and a
magnetic moment of 0.48	B is developed. Figure 2.11b, c shows, respectively, the
band structure for majority and minority spins. The exchange splitting of the dyz

level is �0.4 eV and the energy gain with respect to the paramagnetic solution is
32 meV.
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In general, whenever a flat band with appreciable Ni 3d character becomes
partially filled, we can expect the appearance of a spin moment. The population
of such an impurity level will take place at the expense of the simultaneous
depopulation of some of the delocalized carbon 2pz levels within the host structure.
For this reason, the development of a spin moment is more likely for Nisub impurities
in metallic structures like the armchair tubes. The crucial role of the host states
also explains the delocalized character of the magnetization density depicted in
Fig. 2.10b. However, it is important to stress that the spin moment associated with a
Nisub impurity in SWCNTs forms driven by the local curvature of the carbon layer,
because the energy position of one of the impurity levels shifts downwards until it
crosses EF. A schematic representation of this phenomenon is shown in Fig. 2.12
where we also emphasize the similarities between the levels of the Nisub defect and
those of the unreconstructed carbon vacancy. Notice the similarities with the effects
of uniaxial strain described in the previous section. At large tube diameters, the limit
of flat graphene with zero spin moment (see Sect. 2.2) is recovered.

For semiconducting tubes, the situation is somewhat different. The dxz- and
dyz-like levels remain unoccupied unless their energies are shifted by a larger
amount that pushes one of them below the top of the valence band. If the tube
has a large enough gap, the spin moment is zero irrespective of the tube diameter.
We have explicitly checked that a zero spin moment is obtained for (8, 0) and
(10, 0) semiconducting tubes for Ni concentrations ranging from 1.5 to 0.5 %.
The different magnetic behavior of Nisub impurities depending on the metallic and
semiconducting character of the host structure provides a route to experimentally
identify metallic armchair tubes.

2.4 Magnetic Coupling Between Impurities

In previous sections, we have considered the formation of local moments associated
with defects in carbon nanostructures, as well as the use of mechanical deformations
to tune the sizes of such local moments. Here, we present calculations of the
exchange couplings between the local moments in neighboring defects. This is a
necessary step to elucidate whether it is possible to induce magnetic order in these
materials, which is crucial in the application of carbon-based nanostructures in
spintronics. We focus on defects that can be mapped onto the simple model provided
by the fictitious �-vacancy. According to the results presented in Sect. 2.2.4, Co
substitutional impurities belong to this class of defects. In this section we present
another type of impurities that behave according to the same analogy: molecules
attached to graphene and carbon nanotubes through weakly polar covalent bonds.

A �-vacancy corresponds to a missing pz orbital in a graphene plane described
using a �-tight-binding model. The magnetic properties of the �-vacancies have
been extensively studied (Castro Neto et al. 2009; Palacios et al. 2008). Among other
interesting properties, the magnetism of the �-vacancy model reflects faithfully the
bipartite character of the graphene lattice. For example, the total spin of the system
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Fig. 2.12 Effect of curvature (anisotropic strain) on Nisub in (n,n) tubes. Upper panel: illustration
of the dominant hoppings at the defect site in graphene. The equivalence between the electronic
structure of a Nisub impurity and a carbon vacancy is stressed here. The carbon sheet is rolled
around the .n; 0/ direction in order to form the armchair tubes. Lower panel: scheme of the main
Nisub impurity energy levels as a function of curvature. One of the impurity levels with antibonding
C 2sp–Ni 3d character is shifted downwards and, for large enough curvatures, becomes partially
populated and spin-polarized (Adapted from Santos et al. 2008)

is S=jNA � NB j, where NA and NB are the number of �-vacancies in each of the
graphene sublattices. This behavior can be traced back to Lieb’s theorem for a half-
filled Hubbard model in a bipartite lattice (Lieb 1989). In the following, we will see
that the calculated data for Co substitutionals and covalently chemisorbed molecules
indeed follow the predictions of Lieb’s theorem. In addition, we analyze in detail the
spatial decay of the exchange couplings.
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Fig. 2.13 (a) Schematic representation of the geometry used to calculate the relative stability
of ferromagnetic (FM), antiferromagnetic (AFM), and spin-compensated (PAR) solutions as a
function of the positions of two Cosub impurities. Sublattices A and B are indicated by blue and
red circles, respectively. One of the impurities is fixed at a central A-type site, whereas the other is
moved along the .n; n/ and .n; 0/ directions. Panels (b, c) show the results of the energy differences
for .n; n/ and .n; 0/ configurations, respectively. Solid squares at positive values indicate FM spin
alignments, while solid triangles at negative values correspond to AFM ones. The empty circles
represent spin-compensated solutions and the full circles for AA substitutions correspond to a fit of
a Heisenberg model (see text for details) (Adapted from Santos et al. 2010b)

2.4.1 Magnetic Couplings Between Co Substitutional
Impurities in Graphene

Here, we consider the magnetic couplings between Cosub defects. For this purpose
we perform calculations using a large 8�8 supercell with two Cosub impurities.
We calculate the energy difference between spin alignments as a function of
the relative position of the defects. Figure 2.13 shows the results along with a
schematic representation of our notation. Positive values indicate ferromagnetic
(FM) spin alignment, while negative values are antiferromagnetic (AFM) ones.
Several observations from spin couplings in Fig. 2.13 can be made: (a) when the
impurities are located in the same sublattice (AA systems), the FM configuration
is more stable than the AFM one; (b) if the Co atoms are in opposite sublattices
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(AB systems), it is very difficult to reach a FM solution,1 instead the system finds
either a spin-compensated (PAR) or an AFM solution; and (c) at short distances
(<3.0 Å), the systems always converge to spin-compensated solutions.

The FM cases of Fig. 2.13 always have total spin magnetization about 2.00	B .
The spin population on every Co atom remains almost constant �0.50	B , and it
is �0.30	B on the three C nearest-neighbors. In other cases the total spin is zero.
Thus, the total spin moment of the system follows the equation S D jNA

sub � NB
subj,

where NA.B/
sub is the number of Cosub defects in the A(B) sublattices. Our total moment

is consistent with Lieb’s theorem for bipartite lattices (Lieb 1989). This finding
supports the analogy, presented in Sect. 2.2.4, between the electronic structure of
Cosub defects and single vacancies in a simplified �-tight-binding description of
graphene.

Some selected configurations have their spin magnetization densities plotted in
Fig. 2.14. Although the spin is quite localized on the Co atom and the neighboring C
atoms, part of the magnetization density is delocalized with alternated signs in both
graphene sublattices. The triangular spin patterns reflect the threefold symmetry of
the layer with different orientations for A and B substitutions. This explains the
anisotropic AB interaction along the .n; n/ direction seen in Fig. 2.13b: the energy
difference between AFM and PAR solutions for .n; n/AB configurations strongly
depends on the relative position of the impurities, showing such a directionality.
Similar patterns have already been observed experimentally (Kelly and Halas
1998; Mizes and Foster 1989; Rutter et al. 2007; Ruffieux et al. 2000) for
point defects in graphene using STM techniques and theoretically discussed for
�-vacancies (Yazyev 2008b; Palacios et al. 2008; Pereira et al. 2008). For Cosub,
similar STM experiments should display the topology of the spin densities given in
Fig. 2.14.

We can also investigate the magnetic interactions within the framework of a
classical Heisenberg model:

H D
X

i<j

JAA=AB.rij /SiSj (2.1)

where Si is the local moment for a Cosub impurity at site i . The angular dependence
of the exchange J.rij / is taken from an analytical RKKY coupling as given in
Saremi (2008). We fit the exponent for the distance decay to our ab initio results.
The exchange interaction for AA systems can be fitted with a jrij j�2:43 distance
dependence (see the full circles in Fig. 2.13b, c). This distance dependence is in
reasonable agreement with the jrij j�3 behavior obtained with analytical models for
substitutional defects and voids (Saremi 2008; Vozmediano et al. 2005). In the

1When we could stabilize a FM solution, it lies at higher energy, around 0.2 eV above the PAR one.



2 First-Principles Study of Defects in Carbon Nanostructures 67

Fig. 2.14 (a) Spin densities for configurations (a) .1; 0/AA, (b) .�4;�4/AB , and (c) .2; 2/AB (see
Fig. 2.13a for the nomenclature). Positive and negative spin densities are indicated by light (gray)
and dark (blue) isosurfaces corresponding to ˙0.001 e�/Bohr3, respectively (Adapted from Santos
et al. 2010b)
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case of AB systems, a simple RKKY-like treatment fails to describe accurately
the interactions, at least for the short distances between defects considered in our
calculations.

We next explain how PAR solutions appear in Fig. 2.13. The PAR solutions
are stable because defect states in neighboring impurities interact strongly for AB
systems. This interaction opens an appreciable bonding–antibonding gap in the pz

defect band.2 For AA systems, however, the bipartite character of the graphene
lattice makes the interaction between the defects much smaller. This explains why
AA configurations show a local spin polarization. Even for AA configurations, when
the impurities are very close, nonmagnetic solutions are stabilized because a larger
defect–defect interaction opens a large gap. It is interesting to point out that similar
behaviors have been observed for vacancies described within a �-tight-binding
model (see Sect. 1.6.1) (Yazyev 2008b; Kumazaki and Hirashima 2007; Palacios
et al. 2008).

2.4.2 Covalent Functionalization Induces Magnetism:
Universal Properties

In this section we show that, apart from playing an increasingly important role
in technological applications, chemical functionalization can be also used to
induce spin moments in carbon nanostructures. Here, we focus on SWCNT and
demonstrate that, when a single C–C bond is established on the carbon surface by
covalent functionalization, a spin moment is induced into the system. This moment
has a universal value of 1.0 	B and is independent of the particular adsorbate. In our
recent work (Santos et al. 2011), we showed that this effect occurs for a wide class
of organic and inorganic molecules of different biological and chemical activity
(e.g., alkanes, polymers, diazonium salts, aryl and alkyl radicals, nucleobases,
amido and amino groups, acids). Furthermore, we have recently found that a similar
universal behavior is obtained for covalent functionalization of graphene (Santos
et al. 2012b). We have also found that, either for metallic and semiconducting
SWCNTs or for graphene, only when neighboring adsorbates are located at the same
sublattice, a spin moment is developed. For metallic tubes, and graphene, the local
moments align ferromagnetically, while for semiconducting tubes we have almost
degenerate FM and AFM spin solutions (Santos et al. 2011, 2012b).

To understand the origin of the spin moment induced when a covalent bond
is formed in the tube wall, we analyze the total spin-polarized density of states
(t-DOS) when different adsorbates are attached to metallic and semiconducting

2For the AB systems, we find bonding–antibonding gaps in the impurity bands ranging from 0.3 to
0.9 eV for the .1; 1/AB and the .�1;�1/AB configuration, respectively. These values are similar to
the �0.5 eV spin splitting of the Cosub defect. In fact, all those AB systems with gaps larger than
0.4 eV converge to PAR solutions.
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Fig. 2.15 Total spin-polarized density of states (t-DOS) for (a) (5, 5) and (b) (10, 0) SWCNTs
with a single adsorbate of different types chemisorbed on top of one carbon atom in the supercell.
Positive and negative t-DOS correspond to spin up and spin down, respectively. The t-DOS for
pristine (5, 5) and (10, 0) SWCNTs is also shown for comparison. For clarity, the curves in panel
(a, b) have been shifted and smoothed with a Lorentzian broadening of 0.12 eV. Fermi energy is
marked by the dashed lines and is set to zero in both panels

tubes (see Fig. 2.16 for the structure of some of these systems). Figure 2.15 presents
results for (a) (5, 5) and (b) (10, 0) SWCNTs. We consider first the well-known
case of the adsorption of atomic hydrogen. In both cases, when a single H atom
chemisorbs on top of a C atom, a defect state appears pinned at EF with full-
spin polarization. This state is mainly composed of the pz orbitals at the nearest
C neighbors of the defect site, with almost no contribution from the adsorbate.
A detailed Mulliken analysis of this pz-defect state assigns a contribution of the
adsorbate of about �1 %. Thus, the adsorbate has a primary role in creating the
bond with the nanotube and the associated defect level, but it does not appreciably
contribute to the spin moment. More complex adsorbates, notwithstanding their
biological and chemical activity (e.g., alkanes, polymers, diazonium salts, aryl
and alkyl radicals, nucleobases, amido and amino groups, acids), show a similar
behavior. This is observed in the t-DOS curves corresponding to other adsorbates
in metallic (5, 5) and semiconducting (10, 0) SWCNTs as shown in Fig. 2.15a,
b, respectively. Several common points are worth mentioning: (a) all molecules
induce a spin moment of 1.0	B localized at the carbon surface; (b) the origin of
the spin polarization corresponds to a pz-defect state with a character and a spatial
distribution similar to those of the state appearing at EF for a �-vacancy defect;
and (c) the t-DOS around EF follows the same pattern in all cases. This match
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demonstrates that the spin moment induced by covalent functionalization is largely
independent of the particular type of adsorbate. These results also demonstrate the
complete analogy between a single C–H bond and more complex adsorbates linked
to graphene through a single C–C bond (or other weakly polar covalent bonds)
(Santos et al. 2011, 2012b). Such similarity is not obvious and could not be easily
anticipated.

Next, we study the spin polarization texture induced by the adsorbates on the
carbon nanotube wall. The analysis of local spin moments for all the adsorbates
assigns general trends to both types, metallic and semiconducting, of SWCNTs.
The C atoms that participate directly in the bond formation, at either the molecule
or the surface, show a local spin moment smaller than �0:10 	B . However, the
wall carbon atoms contribute with 0.40	B in the three first C nearest-neighbors,
�0:10 	B in the next nearest-neighbors, and 0:20 	B in the thirdneighbors. The
adsorbate removes a pz electron from the adsorption site and leaves the pz states
of the nearest carbon neighbors uncoordinated. This gives rise to a defect state
localized in the carbon layer, reminiscent of that of a vacancy in a �-tight-binding
model of graphenic nanostructures. The carbon spins polarize parallel (antiparallel)
with respect to the C atom that binds to the surface when sitting in the opposite
(same) sublattice. Figure 2.16 shows the magnetization density in semiconducting
(10, 0) and metallic (5, 5) SWCNTs for several molecules: (a) Pmma polymer
chain (Haggenmueller et al. 2000), (b) adenine group nucleobase (Singh et al. 2009),
(c) C6H4F salt (Bahr et al. 2001), and (d) CH3 molecule (Saini et al. 2002). The spin
density in the metallic (5, 5) (Fig. 2.16c, d) is more spread over the whole surface
than in the semiconducting (10, 0) (Fig. 2.16a, b). Thus, the electronic character of
the nanotube wall plays a role in determining the localization of the defect states
and, as will be seen below, in mediating the interaction between adsorbates.

Now we deal with the relative stability of the different magnetic solutions when
two molecules are simultaneously adsorbed on the walls of CNTs. Due to the
universal character of the magnetism associated with covalent functionalization of
SWCNTs and in order to alleviate the computational effort, we have considered here
hydrogen atoms. However, we have explicitly checked for some configurations for
the case of SWCNTs, and for flat graphene (Santos et al. 2012b), that identical
results are obtained when using CH3 instead of H. For the metallic (5, 5) and
semiconducting (7, 0) single-walled CNTs, we calculate the variation of the total
energy for several spin alignments as a function of the distance between the
adsorbates. The relative positions of the adatoms along the tube are schematically
shown in Fig. 2.17a, c. One H is sited at the origin and the other sites in different
positions along the tube axis. Several observations can be first made on the stability
when two adsorbates are located at the same sublattice (AA configurations). In
the metallic (5, 5), the FM configuration is most stable than the nonmagnetic one
(PAR). The energy difference between these two spin solutions along the tube axis
oscillates, and no AFM solution could be stabilized at all. In the semiconducting
(7, 0), the FM and AFM solutions are almost degenerate, with a small energy
difference (exchange coupling).
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Fig. 2.16 Isosurface of the magnetization density induced by some adsorbates at the SWCNT
surface: (a) Pmma and (b) adenine derivative in a (10, 0) tube and (c) C6H4F and (d) CH3 in a (5,
5) tube. Majority and minority spin densities correspond respectively to light and dark surfaces,
which alternate on the honeycomb lattice with a long decaying order in all cases. The cutoff is at
˙0.013 e�=bohr3 (Adapted from Santos et al. 2011)

If the two molecules are now located at different sublattices (AB configurations),
we were not able to stabilize any magnetic solution for both nanotubes. Instead
the systems are more stable without magnetic polarization. This behavior for
adsorbates at opposite sublattices is related to the interaction between the defect
levels. As already pointed out for Co substitutionals, while for AA configurations the
interaction is negligible, for AB ones this interaction opens a bonding–antibonding
gap around EF in the pz defect band and, thus, contributes to the stabilization
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Fig. 2.17 Variation of total energy as a function of the relative adsorption positions of two H atoms
on (a) a (5, 5) and (c) a (7, 0) SWCNT. for different magnetic solutions. One of the adsorbates
moves parallel to the axis of the tube, while the other remains at the origin. In (b, d), the light
(yellow) and dark (blue) squares correspond to PAR spin solutions at AB and AA sublattices,
respectively; the circles and triangles indicate the FM and AFM solutions, respectively, at the
same sublattice (Adapted from Santos et al. 2011)

of PAR solutions. If the gap is larger than the spin splitting of the majority and
minority spin defect bands, the system will be nonmagnetic (see Sect. 2.4.1). In
fact, our detailed analysis of the band structure fully confirmed such an explanation.
However, it is worth noting that AB adsorption seems to be always more stable in
our calculations. This indicates that if the adsorption takes place at random sites, the
magnetic solutions will only be stable for low-density functionalization.
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2.5 Conclusions

In this chapter, we have reviewed the structural, electronic, and magnetic properties
of two types of defects, substitutional metal impurities and sp3-type covalent
functionalization, in carbon nanostructures. We have focused on their role to induce
and control magnetism in graphene and carbon nanotubes. Density functional theory
was the main tool used to compute the properties of the studied systems. We
also developed simple models to understand the observed trends. For instance,
substitutional dopants in graphene were understood in terms of the hybridization of
the d states of the metal atoms with those of an unreconstructed carbon vacancy. The
main ingredients of the model are the assumption of a threefold symmetric bonding
configuration and the approximate knowledge of the relative energy positions of
the levels of the carbon monovacancy and the d shell of the metal impurity as we
move along the transition series. With this model, we understood the variations
of the electronic structure, the size and localization of the spin moment, and
the binding energy of transition, noble metals and Zn substitutional impurities in
graphene (Santos et al. 2010a). Our model also allowed us to draw an analogy
between substitutionals of the late transition metals and the symmetric D3h carbon
vacancy.

As a result of our analysis, a particularly powerful analogy was established
between the substitutional Co impurity and the fictitious �-vacancy in graphene
(Santos et al. 2010b). The �-vacancy corresponds to a missing pz orbital in a simple
description of graphene using a �-tight-binding model. The magnetic properties of
the �-vacancies have been extensively studied. This analogy brings our results for
the magnetism of Cosub defects into contact with the predictions of Lieb’s theorem
for a half-filled Hubbard model in a bipartite lattice. We found that, according to
Lieb’s theorem, the total spin of the system is S=jNA � NB j, where NA and NB
are the number of substitutions performed in each of the graphene sublattices. Thus,
the couplings between local moments for AA substitutions are ferromagnetic and
predominantly antiferromagnetic for AB substitutions. We have also used a simple
RKKY model to extract the distance decay of the couplings.

Adsorbates attached to graphene or SWCNTs through covalent bonds, par-
ticularly if the bonds are weakly polar, constitute another example of defects
whose magnetism is analogous to that of the �-vacancy. We have analyzed the
magnetic properties induced by such a covalent functionalization using many types
of adsorbates: polymers, diazonium salts, aryl and alkyl radicals, nucleobases,
amide and amine groups, sugar, and organic acids, for SWCNTs (Santos et al.
2011) and graphene (Santos et al. 2012b). A universal spin moment of 1:00 	B
is induced on the carbon surface when a single C–C bond is formed between an
adsorbate and the graphenic layer. In metallic carbon nanotubes and graphene,
molecules chemisorbed at the same sublattice (AA adsorption) have their local
moments aligned ferromagnetically. In semiconducting nanotubes, FM and AFM
solutions are almost degenerate even for AA adsorption. For two molecules in
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different sublattices (AB adsorption), we could not stabilize any magnetic solution,
and the system is more stable without a local spin moment.

We have also explored the possibility to control the magnetism induced by
substitutional impurities using mechanical deformations. We have found that the
spin moment of substitutionally Ni-doped graphene can be controlled by applying
mechanical deformations that break the hexagonal symmetry of the layer, like
curvature or uniaxial strain. Although Nisub impurities are nonmagnetic in flat
graphene, we have observed that stretching the layer by a few percents along
different crystalline directions is enough to turn the nonmagnetic ground state of
Ni atoms embedded in graphene to a magnetic state (Santos et al. 2012a). The spin
moment slowly increases as a function of the applied strain. However, at a critical
strain value of 6.8 %, a sharp transition to high-spin (�2	B ) state is observed. This
transition is independent of the orientation of the applied strain. A detailed analysis
indicates that this strain-tunable spin moment is the result of changes of the positions
of three defect levels around Fermi energy which are antibonding combinations
of the Ni 3d states and the 2pz and 2sp2 orbitals of the neighboring C atoms.
This tunable magnetism observed in Nisub defects via strain control may play an
interesting role in flexible spintronics devices.

Our calculations show that Nisub magnetism can also be switched on by applying
curvature (Santos et al. 2008). For metallic carbon nanotubes, the curvature of the
carbon layer around the defect can drive the transition of the Nisub impurities to a
magnetic state. For semiconducting tubes, the Nisub impurities remain nonmagnetic
irrespective of the tube diameter. We have analyzed in detail the origin and
distribution of the magnetic moment. We found that the spin moment associated
with Nisub impurities forms accompanied by the simultaneous polarization of
delocalized electronic states in the carbon layer. Furthermore, the spin moment of
Nisub is a signature of the metallicity of the structure: only metallic tubes develop a
moment that depends on the tube diameter and Ni concentration.

Our work predicts a complex magnetic behavior for transition-metal impurities
in carbon nanotubes and graphene. This investigation is highly relevant in the
interpretation of experimental results since it has been proposed that appreciable
amounts of metal atoms could be incorporated into the carbon network, forming this
type of substitutional defects in the course of synthesis, and are very difficult to elim-
inate afterwards. Our results also indicate that covalent functionalization provides a
powerful route to tune the magnetism of graphene and carbon nanostructures. This
is particularly attractive due to the recent successful synthesis of different graphene
derivatives using surface chemical routes (Cai et al. 2010; Treier et al. 2010).
Thus, the synthesis of carbon nanostructures with functional groups at predefined
positions, for example, starting from previously functionalized monomers, seems
plausible nowadays. According to our results, this could be applied to synthesize
magnetic derivatives of graphene that behave according to well-studied theoretical
models like the �-vacancy.
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Chapter 3
Structural Defects on the Electronic Transport
Properties of Carbon-Based Nanostructures

Hui Zeng, Jun Zhao, Jianwei Wei, and Jean-Pierre Leburton

Abstract Carbon-based materials are expected to be used as the components of
nanodevices in the future. The fabrication and characterization of carbon-based
materials with unique electronic and transport properties in terms of atomic engi-
neering at nanoscale have been experimentally realized. However, the occurrence of
various defects is widely regarded to be inevitable during the chemically synthesized
and lithographically patterned approaches. Moreover, scientist can now make use of
electron or ion beams to tailor the atomic structure of low-dimensional material
with high precision to obtain particular characteristics. Enormous experimental
and theoretical works are dedicated to the understanding of the role of defects
on nanomaterials, with special emphasis on carbon-based nanosystems. In this
chapter, we report recent advances in the area and present multiscale modeling
to investigate the influences of structural defects, including vacancy, substitutional
doping, topological defects, Stone–Wales defects, as well as composite defects, on
the electronic transport properties of carbon-based low-dimensional materials.
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3.1 Introduction

We have made great achievements in silicon-based electronic devices that have been
widely used in computing, communications, automation, and other applications, and
the miniaturization of electronic devices is the remarkable characteristic to a large
extent. However, the approach of conventional routes realized in the silicon-based
devices will soon encounter challenges in fundamental scientific and technological
limitations (Purewal et al. 2006). It is urgent for us to make an effort to develop
alternative device technologies. Owing to the excellent electrical properties, carbon-
based nanomaterials, such as one-dimensional (1-D) carbon nanotubes (CNT)
(Iijima 1991) and two-dimensional (2-D) graphene layers (Novoselov et al. 2004),
are viewed as the most promising materials to make next-generation electronic
devices. Tremendous theoretical (Charlier et al. 2007; Castro Neto et al. 2009) and
experimental investigations (Geim and Novoselov 2007) are devoted to explore the
electronic structure, transport, as well as optoelectronic properties (Avouris 2010;
Geim 2009; Ando 2005; Dresselhaus et al. 2010) and, even more important, to
develop and design the carbon-based electronic functionalized as a key component
of nanodevices in the future (Baughman et al. 2002; Avouris et al. 2007).

Carbon is the basis of life, and the carbon-based structures are shown to have
a large number of different structures with large variety of physical properties
owing to the flexibility of its bonding (Fig. 3.1). Moreover, the physical properties
of the carbon-based system are dependent on the dimensionality of the structures
to a great extent. With the development of the nanotechnology, carbon-based
materials, in particular for the low-dimensional nanomaterials (Krasheninnikov and
Banhart 2007), have attracted fundamental and technological interests. As for the
zero-dimensional carbon material, fullerenes are molecules where carbon atoms
are arranged spherically (Kroto et al. 1985), which are recognized by the Nobel
Prize in chemistry in 1996. In 1991, Iijima has experimentally synthesized the
carbon nanotube (CNT) and characterized its structure, symbolizing the formidable
success in the synthesis and characterization of one-dimensional (1D) systems
(Iijima 1991). Further, the single-walled carbon nanotubes (SWNTs) have been
artificially fabricated in 1993 (Iijima and Ichihashi 1993), and their outstanding
physical properties make them promising candidates for the ultimate miniaturization
of electronic functions at the molecular level. Carbon nanotube can be geometrically
viewed as the rolling of honeycomb lattice into a hollow cylinder along a given
direction (Iijima and Ichihashi 1993). Interestingly, CNTs can be metallic or
semiconducting, which are determined on the chirality of their electronic structure
(Charlier et al. 2007). The novel electronic structures provide this 1-D nanomaterial
great applications to build logic devices at the nanometer scale, as illustrated in
many laboratories (Ouyang et al. 2002; Nicholas et al. 2008). Depending on the pur-
poses and interests, and potential applications, CNTs can be regarded as either single
molecules or quasi-one-dimensional crystals with translational periodicity along the
tube axis. On the other hand, graphene, appearing as the thinnest known material
in the universe, is the truly artificial two-dimensional nanomaterial, first time
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Fig. 3.1 Structures of the different allotropes of carbon materials. Graphene (top) is the building
blocks for carbon materials of all other dimensionalities. It can be wrapped up into 0-D buckyballs,
rolled into 1-D nanotubes, or stacked into 3-D graphite (Reprinted by permission from Geim and
Novoselov 2007. Copyright (2007) by Macmillan Publishers Ltd)

fabricated by means of mechanical exfoliation from graphite in 2004 (Novoselov
et al. 2004), and therefore has attracted rapidly increasing amount of literatures on
the fundamental research of various sort of applications (Geim 2009). Graphene
is composed of a hexagonal monolayer network of sp2-hybridized carbon atoms
(Geim and Novoselov 2007). Owing to the unique electronic structure, graphene is
considered as the most promising carbon-based nanomaterial on the designing and
applications of nanodevice in the future (Geim 2009; Katsnelson 2007). Moreover,
the available massive graphene body by means of large-scale synthesis routes,
such as chemical vapor deposition (CVD) (Reina et al. 2009), epitaxial growth,
bottom-up growth (Cai et al. 2010), and unzipping carbon nanotube (Kosynkin et al.
2009), allows us to synthesize large-scale counterpart for industrial manufacture and
applications.

The electronic and transport properties of carbon-based low-dimensional sam-
ples with perfect atomic lattice are intriguing based on the theoretical predictions
(Charlier et al. 2007; Castro Neto et al. 2009; Katsnelson 2007). Accordingly,
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the presence of impurities and defects in crystals is normally considered as an
undesirable phenomenon, and many routes are proposed to synthesize perfection
sample (Cai et al. 2010; Terrones 2004; Jia et al. 2009; Li et al. 2009). As is known to
all, the imperfections in lattices have great important influences on the mechanical,
optical, electronic structure, and transport properties of the nanomaterial (Du and
Smith 2011; Banhart 1999; Girit et al. 2009). Specifically, the structural defects,
which are being widely recognized to be inevitable during material production
processes, are usually thought to introduce disorder and deteriorate the performance
of carbon-based devices (Avouris et al. 2007). However, experimental measure-
ments on electron or ion irradiated carbon nanostructures explicitly demonstrate
that the presence of various defects could have beneficial effects for some device
applications (Banhart 1999), as this technology provides us the ability to tailor the
atomic structure of nanomaterial with high precision to obtain dedicated properties
(Banhart et al. 2011; Tapasztó et al. 2008; Gómez-Navarro et al. 2005).

Recently, considerable studies have confirmed the emergences of either native or
physically introduced defects in the carbon-based nanomaterial. In addition, high-
resolution transmission electron microscopy (HR-TEM) and scanning tunneling
microscopy (STM) instruments allow us to obtain images of defective sample
at atomic scale. The experimental results are presently incorporated with the
computational simulations to simplify the predications on the properties of carbon
nanomaterials, and this approach has already been convinced to achieve significant
progress on the designing and fabrication of fullerene and carbon nanotubes. This
article is concerned with the present theoretical advances in the rapidly carbon-
related materials involving the impacts of different types of defects on the electronic
transport properties (Stephan et al. 1994; Czerw et al. 2001; Wei et al. 2007a, b,
2008, 2009a; Biel et al. 2009a, b; Triozon et al. 2005; Choi et al. 2000; Zeng
et al. 2010a, 2011a; Wang et al. 2010). In particular, the reconstruction around
intrinsic defects can lead to outstanding properties and potential use for applications
(Zeng et al. 2010b, 2011b, c; Rodriguez-Manzo and Banhart 2009; Kotakoski et al.
2006; Padilha et al. 2011). Meanwhile, the extrinsic defects, such as foreign atoms,
can be artificially introduced in experiments by using irradiation of nanostructures
(Wang et al. 2009; Guo et al. 2010; Bangert et al. 2010), are of particular importance
for designing carbon-based devices with novel properties (Biel et al. 2009a; Wei
et al. 2009b; Zeng et al. 2011d; Martins et al. 2007), and have also been discussed
in this short chapter.

3.2 Types of Defects

In the absence of foreign atoms in three-dimensional crystal, the defects are referred
to as intrinsic defects when the translational symmetry is broken. Conversely,
the foreign atoms always referred to as impurity, are the extrinsic defects in the
crystalline. In macroscopic crystalline materials, intrinsic defects have different
dimensionalities. As a matter of fact, the honeycomb network of carbon-based
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materials is not as perfect as usually assumed. Various structural defects, such as
pentagons, heptagons, vacancies, substitutional impurities, and adatoms, have been
theoretically proposed and indeed experimentally characterized in carbon-based
materials, and furthermore, their existence can dramatically alter the electronic
structure and properties of the host carbon materials. Defects can also be delib-
erately introduced into these low-dimensional materials for special purposes by
means of irradiation (Banhart 1999), chemical treatments (Park and Ruoff 2009),
and so on (Geim 2009). Point defects can occur in various forms, mainly including
the vacancies and foreign impurity atoms, which are zero-dimensional defects.
The atomic vacancies are intuitively understood as the absence of one or several
carbon atoms in the hexagonal network of the nanomaterials. Removing the atoms
normally results in the rearrangement of the perfect carbon network by saturation
of highly reactive dangling bonds at undercoordinated carbon atoms because an
atomic reconstruction around the vacancy is found to be more stable energetically
as compared with the unreconstructed nanostructure. Extensive experimental efforts
have been developed to investigate the kinetics of atomic-scale defect formation
in the nanostructure, since defects play a decisive influence on their electronic,
transport, and mechanical properties. High-resolution transmission electron mi-
croscopy (HR-TEM) combined with X-ray diffraction (XRD) studies has shown
clear evidence of the presence of point defects such as monovacancy, interstitial
vacancy defects, and pentagon–heptagon defects in carbon nanotubes (CNTs) and
graphene. To date, various molecular dynamic theoretical methods, among which
density functional theory (DFT) method is the most widely used, are developed
to analyze and predict the most stable nanostructure of multiscale simulation. The
presence of foreign impurity atoms will give rise to substitutional or interstitial
defects in the nanostructure. These may be caused by thermal effects or may be
artificially introduced by energetic particle radiation. Besides, foreign atoms can
also be treated as zero-dimensional defects when they substitute individual atoms
of the hexagonal network or are located on interstitial sites. Dopant atoms not only
can dramatically modify the local electronic structure but also can inject charge
into the electron system of carbon nanomaterials. It should be noted that modern
logic devices are fundamentally based on p- or n-doped junctions. Therefore, the
issue of chemical doping is of crucial importance to the utilization of carbon-
related nanomaterial in electronic devices. A considerable number of research are
dedicated to the comprehensive understanding of chemical doping mechanism on
the electronic transport properties in order to exploit chemically functionalized
devices. Although foreign atoms can extend to more dimensions in principle,
the reduced dimensionality of the low-dimensional materials in turn effectively
decreases the possibility of types of constructed defects. Vacancies, substitutional
atoms, and interstitial atoms are all point defects. Generally, the presence of point
defects has indistinctive impacts on the deformation of the carbon-related systems.
In contrast, the dislocation is viewed as linear defects of one dimensionality.
Moreover, the dislocation in CNTs could lead to the modification of their chirality,
and such type of defects in graphene could induce remarkable reconstruction around
the defects. The research on the influences of complex defects and the relationship
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between the distribution and properties of nanomaterials are intriguing because the
experimentally characterized defects are in common composed of more than one
types. On the other hand, the structural defects in reality are not always located
stationary, and furthermore, their migration can play an important role in the
properties as well as the ultimate applications of the defective nanosystem. The
migration processes of various defects in nanomaterials are now experimentally
measured with high-resolution images by using scanning transmission electron
microscope (STEM). The migration is basically determined by an activation barrier
which is dependent on the defect types.

3.2.1 Stone–Wales Defects

The Stone–Wales (SW) defects are one of the simplest defect types that occur in
the carbon-related nanosystems, which do not relate to any vacancy or adatoms.
The creation of SW defects can be theoretically understood by the 90ı rotation
of any C–C bond in the hexagonal network. The transformation occurs via an
in-plane bond rotation by simultaneous movement of the two involved atoms. As a
result, four hexagons are transformed into two pentagons and two heptagons, and no
dangling bonds are introduced, as illustrated in Fig. 3.2. Such a topological defect
can be introduced in terms of strain and its evidence is unambiguously identified
in both the carbon nanotubes (Suenaga et al. 2007) and graphene (Hashimoto
et al. 2004) nanomaterials recently. The transformation of SW defects in CNTs
is approximately several eV, and this value is generally lower than that of the
SW defects in graphene. When the transformation occurs via an in-plane bond
rotation by simultaneous movement of the two involved atoms, the kinetic barrier
is about 10 eV. The comparatively high transformation energy of the SW defect
ensures a negligible concentration at equilibrium in nanosystems. However, SW
defects are found to be stable at room temperature once the defects are induced
under high temperature or under irradiation circumstance, which is attributed to
incomplete annealing of the nanomaterial. The SW defect can be intentionally
introduced along with heat treatment (Suenaga et al. 2007) or spatially created by
electron and ion bombardment. Moreover, the theoretical works predict distribution
as well as symmetry as an important even for the whole properties and behavior of
nanosystems.

3.2.2 Monovacancy Defects

Vacancy is the simplest and quite general defect in any material. The rise of missing
lattice atom is always accompanied with the fabrication of nanomaterial sample.
Vacancies in nanomaterial can be experimentally observed and visualized by using
TEM and STM. Generally, the presence of large vacancy cluster in nanosystem
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Fig. 3.2 Formation and characterization of the Stone–Wales (SW) defects. (a) The SW transfor-
mation leading to the 5–7–7–5 defect, generated by 90ı rotation of a C–C bond in a hexagonal
network. (b) High-resolution transmission electron microscopy image (HR-TEM) obtained for the
SW model. (c) Simulated HR-TEM image for the model shown in (b) (Reprinted with permission
from Suenaga et al. 2007. Copyright (2007) by Macmillan Publishers Ltd)

often needs comparative higher energy impact engineering on the sample. To date,
an immense amount of theoretical investigations has been concentrated on the influ-
ences of small vacancy clusters on the nanosystem. Of special interest is the study
of monovacancy and divacancy defects. As for the monovacancy, removing one
atom in the hexagonal lattices generally gives rise to a pentagon–enneagon pair as a
result of the saturation of two of the three dangling bonds (DB) toward the missing
atoms and leaves a so-called 5-1DB defects, as evidenced by the experimental image
shown in Fig. 3.3. Eventually, one dangling bond (DB) always remains after the
atomic reconstruction around the defects and due to the geometrical consideration.
The DB could provide the chemically active site for adsorption, which can be used
as catalysts for thermal dissociation of water. The orientations of the 5-1DB defect
in CNTs can be different, which is determined not only by the location of removed
atom but also by the chirality. In general, the defect orientation is defined as the
angle made by the axis of defect with the horizontal direction. Moreover, the DB
manifests as a protrusion under STM due to an increase in the local density of
states (LDOS) at the Fermi energy. Obviously, the transformation energy is high
owing to the presence of the undercoordinated carbon atom. Hence, the calculations
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Fig. 3.3 Single vacancy (5-1DB) defects (a) the image as shown in TEM (Meyer et al. 2008); (b)
the experimental image of a single vacancy, exhibiting as a protrusion due to an increase in the
local density of states at the dangling bond (Reprinted with permission from Ugeda et al. 2010.
© 2010 The American Physical Society)

reveal that the transformation of monovacancy is larger than that in the divacancy.
As for the migration of monovacancy in graphene, the calculated migration barrier
is approximately 1.3 eV (El-Barbary et al. 2003). It was worth to mention that
carbon-related nanostructures can reconstruct under electron irradiation above a
temperature of about 200–300 ıC. Electrons or ions irradiation at room temperature
could intentionally induce a continuous formation, which leads to the creation of
holes and amorphization in nanosystems. Furthermore, bond rotations can also
derive from irradiation at room temperature, such as the presence of the SW defects
in nanostructure.

3.2.3 Divacancy Defects

Divacancy defect is found to be one of the most stable vacancy defects in nanos-
tructure, which can be introduced either by the coalescence of double monovacancy
defects or directly by removing two neighboring atoms. In the latter case, four
uncoordinated carbon nanotubes around the missing carbon atoms have bonded
together, generating a pentagon–octagon–pentagon (so-called 5–8–5) defect, as
shown in Fig. 3.4. It is noted that there is no DB in the completely reconstructed
divacancy configuration. In the case of graphene, calculated results indicate that the
transformation energy of a divacancy is of the same order as for a monovacancy,
whereas the energy per missing atom is much lower than for a monovacancy.
It is worth mentioning that the 5–8–5 defect is the most stable defect in CNTs
because of its lowest transformation energy as a result of saturation of dangling
bond. In contrast to the situation in CNTs, the 5–8–5 defect is not the only
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Fig. 3.4 Ball-and-stick models of divacancy defects in SWNT. The newly formed C–C bonds
during the reconstruction are highlighted darker color. The pentagon–octagon–pentagon (5–8–5)
defects are formed in the defective area (marked by dotted line) after reconstruction. (a) Paralleled
5–8–5 defects in (12,0) SWNT and (b) tilted 5–8–5 defects in the (12,0) SWNT (Reprinted with
permission from Zeng et al. 2010b. Copyright (2010) American Chemical Society)

accessible configuration for the graphene lattice to accommodate divacancy defects.
As a matter of fact, the three pentagons and three heptagons (555–777) defects
are energetically favored divacancy configuration, and its formation is twisting
one of the bonds in the octagon of the 5–8–5 defects. The 555–777 defects are
also visualized by using electron microscopy, as illustrated in Fig. 3.5. Previous
analysis reveals that the total formation energy of this defect is about 1 eV lower
than that of 5–8–5 defects (Kotakoski et al. 2011). We could further transfer
the 555–777 defects to 5555–6–7777 defects by twisting another C–C bond. The
migration and dynamics of divacancy defects in nanostructure are an attracting
issue. The migration of a divacancy approximately needs activation energy much
higher than that for a monovacancy. This ensures that the divacancy defects are
fairly stable even at very high temperatures. More recently, SW-type transformations
are found to take responsibility for the migration and structural transformations of
divacancy, and furthermore, the SW defects manifest as an intermediate structure
in graphene.
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Fig. 3.5 Divacancy migration in graphene observed in experiment (a–d). The changes in the bond
configuration leading to the migration of a divacancy are illustrated by figure (e). Transformation
of 5–8–5 defects to 5–7–7–5 defects is initiated by the rotation of bond A, and the 5–8–5 defects
to 555–777 defects by the rotation of bond B. Rotating bonds C and D will lead to the final 5–8–5
defects (Reproduced from Kotakoski et al. 2011)

3.2.4 Vacancy Cluster

Energetic irradiation impact could be used toartificially create vacancy cluster in
reconstructed atomic nanostructure. Recently, vacancy cluster defects and their
migration in CNTs (Jin et al. 2008) and graphene nanoribbons (GNRs) (Girit et al.
2009) have been directly detected by in situ HR-TEM at elevated temperatures in
experiments. The vacancy cluster is intuitively regarded as the result of missing
more than two atoms in perfect hexagonal lattices. It is possible to a larger number
of atoms instantly and even cut the nanostructure with nanometer precision in
experiments. As a consequence, significant reconstructions deriving from the shrink
of its surface area will lead to the reduced diameter for CNT and bending of the
layer for graphene. In these cases, it becomes more likely to form hole-like vacancy
with unsaturated bonds around its circumference in the nanostructure, as shown in
Fig. 3.6. A large amount of simulations reveal that an even number of missing atoms
allow complete saturation of dangling bonds, and such configuration is energetically
more favorable, whereas dangling bonds always remain as an odd number of atoms
removed (Kotakoski et al. 2006). Generally, the presence of the large vacancy
cluster in nanostructure is not favorable, and such vacancy cluster tends to split into
pentagon–heptagon pair (5–7) defects or separated pentagon and heptagon during
atomic reconstruction. However, it does not preclude the presence of large vacancy
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Fig. 3.6 Schematic structures of defective (7,7) SWNT after the atomic reconstruction; the
vacancy defects are highlighted by blue atoms. The Arabic number indicates the number of missing
atoms in the nanostructure; tetravacancy configurations are shown in top panel and hexavacancy
configurations are shown in bottom panel, respectively. The 4Va configuration consists of two 5–7
pairs connected by each other (left panel), while the 4Vb configuration consists of the 5–5–5–9
defects manifesting as a hole in the nanostructure (right panel). The 6Va configuration consists
of two separate 5–7 pairs connected by the twisted hexagon, while the 6Vb configuration consists
of four pentagons symmetrically connected with a decagon in the center, manifesting as a larger
hole in the defective area of the tube (Reprinted from Zeng et al. 2011b. Copyright (2011), with
permission from Elsevier)

cluster in the nanostructure by the nanoelectronic lithography technique (Jin et al.
2008; Aref et al. 2008). The vacancy cluster in the nanostructure could induce
interesting electric transport properties, which can be understood from the electronic
band structure analysis. As can be seen clearly in Fig. 3.7, in the band structure of
the pristine nanotube, the highest occupied band ˛ and the lowest unoccupied band
˛0 cross at the Fermi level, away from the �-point. In the 4Va configuration, the
5–7–7–5 defect creates a defect state labeled � that is located above the Fermi level.
The � band is the lowest unoccupied band at present, and it hybridizes with the ˛
and ˛0 bands to evolve into the ˇ and ˇ0 bands that anticross at the Fermi level. As
a result, the defect state opens a direct band gap of about 0.25 eV at the �-point,
while the indirect gap of this configuration is about 0.22 eV. Correspondingly, the
electronic structure is dominated by a large-scale deformation (5–7–7–5 defects).
In the 4Vb configuration, the Fermi level is shifted downward in comparison with
the pristine CNT. This downward shift of the Fermi level makes the conductance
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Fig. 3.7 The corresponding electronic band structures of the defective (7,7) SWNT with various
vacancy clusters. The result of the pristine is also shown for comparison (Reprinted from Zeng
et al. 2011b. Copyright (2011), with permission from Elsevier)

of this configuration much larger than that in the 4Va case. The gap of the 6Va
configuration is further increased to 0.33 eV due to the split ˇ, ˇ0-bands, and the
� -bands move away from the Fermi level significantly. In the 6Vb configuration, the
� -state approaches the Fermi level with a long dispersionless tail, especially close to
the X-point. This roll-off at large k vectors effectively reduces the direct band gap
to about 0.246 eV and indirect gap to about 0.115 eV. Generally, electronic band
structure results reveal that the vacancy cluster can effectively reduce the band gap
in contrast to the comparable large band gap induced by small pieces of pentagon
and heptagon (5–7) defects. As a consequence, the hole-like defects in the CNT lead
to more prominent electronic transport compared to the situation in the defective
CNT consisting of pentagon–heptagon pair defects. The anomalous conductance
variation in the zigzag nanotubes has also shown that the transport in a defective
CNT is not a direct function of the number of missing atoms but of the chirality
and defect pattern in the nanostructure (Zeng et al. 2010b). The investigation on the
defective zigzag CNT revealed that the variety of hexavacancy defect leads to the
similar results (Zeng et al. 2011b, c). This phenomenon is attributed to the states
linked to large vacancies hybridize with the extended states of the nanotubes to
modify their band structure.

3.2.5 Substitutional Doping

Impurity atom can be incorporated into the perfect hexagonal latticesas substi-
tutional doping. In such case, the substitutional impurity atom replaces one or
two carbon atoms to form the doped configuration. Boron and nitrogen dopants
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Fig. 3.8 Model of nitrogen substitutional in the (8,0) carbon nanotube. (a) is the single substitu-
tional doping; (b–d) are different configurations for two foreign atoms doping; (e–g) are different
configurations for three foreign atoms doping. The light-gray atoms denote nitrogen atoms, and
the deep-gray atoms denote carbon atoms (Reprinted from Wei et al. 2008. Copyright (2008), with
permission from Elsevier)

in carbon nanostructures have been considerably investigated since both of them
have roughly the same atomic radius. The substitutional dopants can be expected
to be very stable due to strong covalent bonding. Replacing carbon by boron or
nitrogen atoms is a subject of great interest to researchers because the substitutional
doping not only shifts the Fermi level but also significantly alter the electronic
structure of the nanomaterial, as evidenced by the DFT simulation shown in Fig. 3.8.
As for instance, nitrogen substitutional doping has been shown to be an efficient
route to functionalize these materials owing to the introduction of reactive sites
in the nanostructures (Wei et al. 2008; Biel et al. 2009a; Wang et al. 2009; Aref
et al. 2008; López-Bezanilla et al. 2009). Compared to the case of N-doping, the
B-doped nanostructures exhibit acceptor features, which is also an issue attracting
extensive investigations (Wei et al. 2007b; Martins et al. 2007; Yu et al. 2010).
Considerable progress has been made with laser-ablation, arc-discharge, and ion
irradiation and substitution reaction methods to synthesize high-quality sample. In
addition, the Raman spectroscopy was used to monitor the process of irradiation
and in characterizing the properties of nanostructure in experiments. In principle,
the substitutional atoms in the hexagonal C lattice break the symmetry of perfect
graphite and result in the defects reflected by an increase of the D-band intensity in
Raman scattering. Further, the presence of dopant in the nanostructure can induce
a strong backscattering of the propagating wave packets at specific region, which is
similar to the case of vacancy effects. This reduction of conductance at the energy
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of the quasi bound states associated with various defects can be ascribed to the
remarkable resonant backscattering. Moreover, Son and coauthors have shown the
possibility of the position in energy of these quasi bond states effectively tuned
by the applied transverse field (Son et al. 2005). The case of a single impurity
has been the most theoretically studied; the ab initio calculation performed by
Chio et al. provides insight on the scattering potential generated by dopants or
defects through the investigation of quasi bound state influenced by isolated defect
(Choi et al. 2000). Meanwhile, some studies have been devoted to the effect of
a random distribution of substitutional dopant (Lherbier et al. 2008a, b; Terrones
et al. 2002) and the different concentrations of dopant (Pershoguba et al. 2009;
Pereira et al. 2008). Such studies regarding the mesoscopic transport allow us to
evaluate the realistic systems performed on various models and make a quantitative
estimation with experimental measurement. It has been also shown previously
that it is possible to tune the conductance of SWNTs by ion irradiation in the
Anderson localization regime provided that the transport regime remains quantum
mechanically coherent. The substitutional doping could provide the chemically
active site for adsorption, as a result, the issue of doping by physisorption of
gas molecules, and more generally, the modification of the electronic properties
of nanostructures by molecular adsorption is fascinating to design commercial
sensors (Kong et al. 2000; Schedin et al. 2007). Obviously, the key point for the
potential use of chemical sensors based on carbon nanomaterial is whether we can
distinguish measurable variation of the minimum concentration between the proto
and adsorbed sample in order to ensure the selectivity and sensitivity of such devices
for application. The sensing properties of 1-D CNT and 2-D graphene material
can be further modified by covalent functionalization or tailored by energetic ion
irradiation. Even though considerable experimental fabrications of functionalized
nanomaterials have been reported, the systematical theoretical investigation on the
modulated electronic transport is still lacking.

3.2.6 Impurity Adatom

The impact of impurity adatom on the properties of nanomaterial is mainly
determined on the bonding between the impurity and the host nanomaterial.
Only physisorption due to van der Waals interaction is needed to take into
account provided that the bond is weak. In contrast, covalent bonding between
the foreign atom and the nearest carbon atoms in the atomic structure could
lead to chemisorption when the interaction is stronger. The most stable bonding
configurations normally correspond to high-symmetry position, including on top
of a carbon atom, on top of the center of a hexagon, or the bridge position. Most
importantly, some previous studies have demonstrated that the decoration of metal
nanoparticle could substantially improve the sensitivity of nanomaterial, thereby the
decorated nanomaterials is perspective to function as a component of gas sensor in
industry and defense areas (Kauffman et al. 2010; Lin et al. 2009). The theoretical
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Fig. 3.9 Atomic structures of TM atoms adsorbed on single and double vacancies in the graphene.
Metal atom on a single vacancy: side view (a) and top view (b). Metal atom on divacancy: side
view (c) and top view (d) (Krasheninnikov et al. 2009). The bottom panel illustrates the typical
adsorption sites considered, hollow (H), bridge (B), and top (T) (Reproduced from Chan et al.
2008)

investigations of the bonding between interstitial adatom and the bare nanomaterial
have been extensively performed and have confirmed the weak bonding between
graphene and transition adatoms (Krasheninnikov et al. 2009; Chan et al. 2008)
and the formation of chemisorption in defective CNTs (Kauffman et al. 2010).
However, only a few experimental observations about the migration of foreign
adatom have been reported. Specifically, the decoration of metal cluster in the
defective nanomaterial consisting of structural defects is more intriguing as the
topological defects normally provide the trapping sites for the interstitial adatoms
(Krasheninnikov et al. 2009), as shown in Fig. 3.9. As for instance, the metal cluster
can be pinned by the dangling bond and 555–777 defects by forming strong bonds
with the defects (Lehtinen et al. 2004; Barinov et al. 2007; Cretu et al. 2010).
Moreover, ion irradiation is found to be a suitable method to detrap the adatom at
high temperature. It may be used to create the reactive site and therefore significantly
modify the electronic properties of the carbon nanostructure.
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3.3 Creation of Structural Defects

Generally, the following routes are widely adopted to deliberately introduce
nonequilibrium defects in carbon nanosystems, including energetic particle
irradiation, epitaxial growth, and chemical treat. The energetic particle irradiation
is the most promising method owing to the advance of engineering controllable
point defects in nanomaterial with high precision due to the ballistic ejection of
carbon atoms. The threshold energy is directly transferred to the atomic structure
to make carbon atoms leave its host site, and the migration of atoms can also
be simultaneously observed. The irradiated material sample can be explicitly
characterized by using electron microscopy at atomic resolution by means of in situ
measurement, and the irradiation and imaging can be accomplished with the electron
or ion energetic beam. Irradiation concentrating on preselected area of nanomaterial
sample allows us to create large hole or vacancy cluster (Banhart 2006) and, even
more, to physically cut the nanomaterial sample (Banhart et al. 2005). In comparison
to the result of highly focused irradiation, uniform irradiation of larger areas
generally produces randomly distributed vacancies in the carbon nanomaterials.
However, remarkable reconstruction owing to the uncoordinated atoms in the
defective will lead to an increased rate of defect formation. The reconstruction
of vacancies transformation and its stability have been theoretically demonstrated
(Zeng et al. 2010b, c; Kotakoski et al. 2006) and more recently convinced by
aberration-corrected electron microscopy in experiments (Rodriguez-Manzo and
Banhart 2009; Jin et al. 2008). In addition to the electron irradiation, the ion
irradiation is also implemented in common to create the vacancy defects or pattern
at highly focused areas. Similarly, the ion irradiation can be used to cut graphene
with high precision (Lemme et al. 2009). Furthermore, the defective nanomaterial
of the irradiated sample associated with structural defects can be recognized by
monitoring the evolution of so-called D peak by means of Raman spectrum analysis.
Apart from the particle irradiation, chemical treatment approach is conventionally
utilized to eliminate carbon atoms through the reaction of foreign species with host
atoms and therefore leads to the presence of various defects or complex defects in
nanomaterial. It should be noted that such approach usually allows a very limited
loss of atoms. This treatment has been incorporated with chemical functionalization
to fabricate functionalized nanocomposites with advanced and powerful functions,
which is essential to the development and application of nanomaterials. Chemical
vapor deposition (CVD) is one of the fundamentally important synthesis approaches
as it provides the controllable technique to the sample fabrication with high equality.
Generally, line defects and coalescence of defects can be generated simultaneously
at different locations on a substrate during the growth. Further, coalescence in
the nanomaterial could result in considerable modification of electronic structure,
which is particularly notable in the context of graphene because of the formation
of pentagons and octagons along with edge reconstruction (Koskinen et al. 2008,
2009; Zeng et al. 2011e).
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3.4 Properties of Defective Carbon Materials

3.4.1 Reconstruction of Defects

The Brillouin zone of CNTs is one dimensional owing to their one-dimensional
structure. Because the CNTs are subject to the restriction of periodic boundary
conditions (PBC) along the circumferential direction, the wave vectors along
circumferential direction can only have discrete values, while the wave vectors
along the axial direction remain continuous. Early theoretical calculations based on
zone-folding approximation pointed out that the chirality vectors (n,m) of CNTs
determine the length and orientation and electronic structure. One of the most
fascinating aspects of CNTs is that their electronic properties are directly and
sensitively related to their geometrical structure. It can manifests as metallic or semi-
conducting depending on whether or not n-m is a multiple of 3, respectively. Thus,
it is not surprising that the resultant production of SWNTs contains approximately
2/3 semiconducting SWNTs and 1/3 metallic SWNTs. Taken the curvature effects
into account, the planar symmetry is then broken, thereby its � and � states can
rehybrid and the mixture of � and � orbitals have sp2 and sp3 characteristics. The
zigzag metallic carbon nanotubes are known to develop a small band gap (Ouyang
et al. 2002) (semimetallic) as a result of the deviation of the kF away from the K
point, whereas the armchair metallic carbon nanotubes remain gapless around the
Fermi level. The separation of metallic and semiconducting is also of fundamental
importance to the application of CNTs in the future.

The presence of vacancies generally deteriorates the genuine properties of
nanotubes, and the electronic transport is related with the number of missing atoms
in the CNTs. However, the electronic transport property of CNTs is not a monotonic
function of the defect size and geometry but depends on the reconstruction around
the defect and its spatial symmetry, as illustrated in Fig. 3.10. The electronic
properties can be comprehensively evaluated from the electronic band calculation.
The corresponding electronic band structure of the two types of nanotubes with
various defect configurations and their pristine analogues are displayed in Fig. 3.11.
It has been shown that defect states related to the vacancies hybridize with the
extended states of the nanotubes to modify the band edge and change the energy gap.
Paradoxically, tetravacancy and hexavacancy nanotubes have higher conductance
than divacancy nanotubes, which is due to the presence of midgap states originating
from the defect, thereby enhancing the electronic transport (Zeng et al. 2010b,
2011b, c).

Further, the intramolecular junctions of SWNTs are expected to function
as basic component in nanoscale devices (Yao et al. 1999). In principle, the
connection of two segments of SWNTs with different diameters and helicities
by introducing the pentagon–heptagon or pentagon–hexagon–heptagon defect
into the ideal hexagonal network accordingly creates the metal–semiconductor
(M–S), semiconductor–semiconducor (S–S), or metal–metal (M–M) heterojunction
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Fig. 3.10 Vacancy configurations of all structural models. Ball-and-stick model for (7,7) (upper
panel) and (12,0) (lower panel) SWNT with monovacancy, divacancy, and hexavacancy, respec-
tively. The newly formed C–C bonds during the reconstruction are highlighted by yellow, and the
atoms at the far side are omitted for clarity (Reprinted with permission from Zeng et al. 2010b.
Copyright (2010) American Chemical Society)
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Fig. 3.11 Band structure of (a) (7,7) and (b) (12,0) SWNT with various vacancies. The band
structure of the pristine nanotube is also given for comparison (Reprinted with permission from
Zeng et al. 2010b. Copyright (2010) American Chemical Society)

(Saito et al. 1996; Zeng et al. 2008). Experimental and theoretical studies indicated
that intramolecular junction structures could perform as nanoscale electronic device
that is made completely from carbon atoms (Ouyang et al. 2002; Charlier 2002;
Meyer et al. 2011).

Furthermore, it is well known that the electron behavior in 2-D graphene
material is described by the Dirac equation rather than the Schrödinger equation.
Correspondingly, it will have significant effects on the electronic properties of the
nanomaterial. The challenge for the broad-range applications in nanoelectronics for
graphene is opening an energy gap between valence and conduction bands. Using
lithographically patterned technology or patterned adsorption of atomic engineering
at nanoscale, a tunable band gap opening has been experimentally realized in narrow
graphene nanoribbon (GNR), turning this nanostructure into a promising material
for circuit fabrication. Most importantly, GNR-based nanodevices are expected to
behave as molecular devices with electronic properties similar to those of carbon
nanotubes (CNTs). The electronic properties of nanoribbons are dependent on the
width and atomic geometry of their edge, namely, zigzag or armchair. One of the
most intriguing issues is the research of edge states in the electronic structure
of zigzag GNR (ZGNR) because the nanosystems are expected to have great
possibilities for novel spintronic devices. The presence of either native or physically
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introduced structural defects in GNRs has been explicitly evidenced in several
experimental studies. Recently, the investigation of the formation and annealing
of SW defects in graphene membranes reveals that the existence of SW defects is
energetically more favorable than in CNTs or fullerenes (Meyer et al. 2008). While
both symmetric and asymmetric SW defects in GNRs give rise to complete electron
backscattering region, the well-defined parity of the wave functions in symmetric
SW defects configuration is preserved. Unexpectedly, calculations predict that
the asymmetric SW defects are more favorable to electronic transport than the
symmetric defects configuration, which is caused by the different couplings around
the charge neutrality point (CNP) (Zeng et al. 2011a). The electronic structure is
strongly dependent on the atomic arrangement of the GNR’s edge, and the graphene
layer terminated free and passivated with hydrogen atoms has been extensively
investigated. The simplest atomic structures of the edge are the armchair and
the zigzag. More recently, experimental evidence confirms the anomalous edge
orientations other than pure zigzag or armchair edges by using the aberration-
corrected TEM (Koskinen et al. 2008, 2009). The rise of defective edges is derived
from local changes in the reconstruction type or sustained removal of carbon atoms
from the edges. As for instance, removing one carbon atom from a zigzag-edged
GNR will lead to one pentagon in the middle of a row of hexagons, as visualized in
Fig. 3.12. The edge reconstructions in AGNR could lead to various combinations
of pentagons and heptagons around the edge (Zeng et al. 2011e). The density
functional calculations reveal that the unpassivated (57) ZZ edge is energetically
more favorable. In contrast, the AC edge has the lowest transformation energy if
all the dangling bonds are passivated with hydrogen atoms according to theoretical
calculations. It is noted that in experimental measurement, other chemical groups
that can saturate dangling bonds at the edge substantially increase the possibility of
the emergence of anomalous edge defects.

3.4.2 Effects of Substitutional Doping in Defects

The doping of heteroatom has an important impact upon the electronic structure
and the electronic transport of SWCNTs. The deliberate introduction of defects and
impurities into CNT could offer a possible route to change and tune its electronic
properties and thus have a significant bearing on a broad range of applications. It is
well known that the CNTs with substitutional boron and nitrogen could be regarded
as the P-type- and N-type-substituted carbon nanotubes, respectively. The defective
nanomaterials with different concentration as well as distribution of substitutional
doping manifest distinct electronic transport properties. The impurity leads to the
presence of a dispersive accepter or donor-like band in the band gap compared
with the undoped tube. The electronic band modification can be attributed to the
hybridization taking place between the impurity states of boron atoms and the
existing occupied state for the boron doping and unoccupied state for nitrogen
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Fig. 3.12 Different geometric reconstruction of the graphene edges: (a) reconstructed zigzag
[zz(57)], (b) armchair (ac), (c) reconstructed armchair [ac (677)], (d) zigzag (zz), and (e)
pentagonal armchair [ac(56)]. Some bond lengths (in Å) and bond angles are denoted on the right:
The bond angles are ˛D 143ı, ˇD 126ı, � D 148ı, and ıD 147ı . The edge can be passivated
with hydrogen atoms (Reprinted with permission from Koskinen et al. 2008. © 2008 The American
Physical Society)

doping, respectively. The dopant in the semiconducting SWNT can give rise to M–S
transition with nonlinear current–voltage curve, and their structures strongly dom-
inate their electrical properties. DFT calculations indicate that transport properties
of the doped nanotubes are sensitive not only to the concentration of nitrogen atoms
but also to their distribution (Wei et al. 2007b, 2008). The effects of substitutional
doping in SW on electronic transport are shown to be different in the CNTs with
different chirality. The impurity is found to be energetically favorable for the site
of pentagon ring but not for the heptagon ring. It is found that the nitrogen in SW
produces half-filled band near the Fermi level in which the electron effective mass
varies with the changing of the position of doping, as shown in Fig. 3.13. The total
transmission coefficients nearby the Fermi level increase and the others decrease
after doping. The nitrogen doping and SW defect enhance the transport property in
semiconducting zigzag SWNT and weaken in quasimetallic zigzag SWNT.
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Fig. 3.13 Schematic description of the nitrogen substitutional doping position and the structure
of the two-probe system; two semi-infinite left and right electrodes are comprised by one unit
cell; A–E denotes the different doping positions (Reprinted with permission from Wei et al. 2007a.
Copyright (2007), American Institute of Physics)

Fig. 3.14 Schematics of the atomic structure after asymmetric SW defects introduced and
different substitutional sites in the structural model of defective 6-ZGNR with asymmetric SW
defects. (a) The asymmetric SW defects are highlighted by yellow atoms; some C–C bond lengths
(in Å) and angles (in degree) are depicted by the red numeral and green numeral, respectively. (b)
Different doping sites in the SW defects; the substitutional impurity is denoted by A, B, C, and D
(Reprinted with permission from Zeng et al. 2012. Copyright (2012) John Wiley & Sons)

Meanwhile, the functionalization of GNRs can be achieved through substi-
tutional doping. Boron substitutional doping in GNRs could induce metal to
semiconductor (M–S) transition (Martins et al. 2007). Hence, the predicted extraor-
dinary properties of nitrogen-doped nanomaterials have now been experimentally
confirmed, and they exhibit the potential applications in electronic nanodevices
(Meyer et al. 2011). The occurrence of many types of defects, especially for the
N-doped composite in GNRs (see Fig. 3.14) and their influences, is found to
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give rise to one or two resonance backscattering in the case of defective GNRs
consisting of the asymmetric SW defects, and the location of which depends on
the dopant distribution (Zeng et al. 2012). Moreover, the dopant in the asymmetry is
energetically more favorable to locate near the edge. Thus, the doped nanostructures
can be substantially modulated as a result of modifications on electronic bands
induced by substitutional dopant.

As demonstrated previously, defects are shown to be able to effectively tailor
the electronic properties of carbon-based materials. More recently, the possibility
of artificially creating individual vacancies in carbon nanostructures by using an
electron beam of 1 Å diameter has been reported. It was also shown that higher-
order defects can be formed by removing a group of atoms with high-energy impacts
or chemical etching. Structural defects related with vacancy, interstitial vacancy
defects, and pentagon–heptagon defects and their influence on electronic structure
on defective carbon nanotubes (CNTs) and graphene have been hitherto examined
by an abundant amount of publications. On the contrary, the researches regarding the
effects of composite defects on the electronic transport properties have just begun.
There is still a demand for the knowledge of theoretical predictions to be further
combined with vast amount of experimental results to enable new potential nanode-
vices and foster innovative applications. In addition, despite surface’s physics and
electronic properties of nanomaterial being currently at the center of the attention at
this stage, the associated chemistry properties of the defective nanomaterials have
remained largely veiled.

3.4.3 Chemical Properties

The dangling bonds in nanosystem provide the chemical reactive site, and many
simulations indeed have revealed that hydroxyl, carboxyl, or other groups can
easily be adsorbed by the vacancy defects. Specifically, it has been predicted
that the chemical adsorption at the edge of graphene nanoribbons could lead to
significant modification of electronic structure. Not only the edges of ZGNRs can
provide chemical reactive site but also the reconstructed vacancies and SW defects
without dangling bonds are shown to increase the local reactivity. Moreover, the
evidence of trapping of metal atoms in reconstructed vacancies has been confirmed
by experimental studies. Overall, it is possible to develop the functionalization of
carbon-based sample and design electronic transport properties of materials in terms
of various chemical treatments once the creation of defects with high selectivity can
be controlled in high precision.
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Koskinen P, Malola S, Häkkinen H (2008) Self-passivating edge reconstructions of graphene. Phys

Rev Lett 101:115502(1–4). http://link.aps.org/doi/10.1103/PhysRevLett.101.115502
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Chapter 4
Topological Versus Physical and Chemical
Properties of Negatively Curved Carbon
Surfaces

Marzio De Corato, Marco Bernasconi, Luca D’Alessio, Ottorino Ori,
Mihai V. Putz, and Giorgio Benedek

Abstract Some relevant physical and chemical properties of negatively curved
carbon surfaces like sp2-bonded schwarzites can be predicted or accounted for on
the basis of purely topological arguments. The general features of the vibrational
spectrum of complex sp2-carbon structures depend primarily on the topology of
the bond network and can be estimated, in a first approximation and for systems
with only nearest-neighbor interactions, from the diagonalization of the adjacency
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Dipartimento di Fisica, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
e-mail: m.decorato@campus.unimib.it; marzio.decorato@unimore.it

M. Bernasconi • G. Benedek
Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via R. Cozzi 53,
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matrix. Examples are discussed for three- and two-periodic carbon schwarzites,
where a direct comparison with ab initio calculations is possible. The spectral
modifications produced by the insertion of defects can also analyzed on pure
topological grounds. Two-periodic (planar) schwarzites can be viewed as regular
arrays of Y-shaped nanojunctions, which are basic ingredients of carbon-based
nano-circuits. A special class of planar schwarzites is obtained from a modification
of a graphene bilayer where the two sheets are linked by a periodic array of
hyperboloid necks with a negative Gaussian curvature. Ab initio density functional
calculations for some structures among the simplest planar schwarzites – (C18)2,
(C26)2, and (C38)2 – are presented and discussed in light of the structural stability
predictions derived from a topological graph-theory analysis based on the Wiener
index. A quantum-mechanical justification is provided for the effectiveness of
the Wiener index in ranking the structural stability of different sp2-conjugated
structures.

El universo (que otros llaman la Biblioteca)
se compone de un numero indefinido,

y tal vez infinito, de galerı́as hexagonales : : : 1

(Jorge Luis Borges, Ficciones, 1941)

4.1 Introduction

There are atomic surfaces which have no underlying bulk and are free-standing
thanks to their covalent bonding architecture. Their vibrational structure reflects,
in its general features, their topological constitution, thus playing a relevant role in
the growth mechanisms and spectroscopic characterization. The recognition to the
studies on graphene (Novoselov et al. 2004, 2005a, b; Geim and Novoselov 2007;
Castro Neto et al. 2009) has, by extension, revived the interest in the vast zoo of
curved surfaces of carbon which are made possible by sp2 hybridization. Besides
the well-known forms like fullerenes (Kroto et al. 1985), single-walled and multi-
walled nanotubes (Iijima 1991), worth mentioning are the three-dimensional forms
of sp2 carbon, random schwarzites. Figure 4.1a, c shows a transmission electron
microscope (TEM) image of a random carbon schwarzite obtained by supersonic
cluster beam deposition with a deposition energy of 0.1 eV/atom (Barborini et al.
2002; Donadio et al. 1999; Benedek et al. 2003). Raman and near-edge x-ray
absorption fine structure (NEXAFS) spectra indicate a pure sp2-bonding structure,
suggesting a single, highly connected graphene sheet with an average pore diameter
in the range of 100 nm. Although carbon schwarzites have been first synthesized and
characterized more than a decade ago (Barborini et al. 2002; Donadio et al. 1999;

1The universe (that others call the Library) is composed by an undefined, sometimes infinite
number of hexagonal tunnels.
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Fig. 4.1 Two transmission electron microscope (TEM) pictures (a, b) of a random carbon
schwarzite as grown by supersonic cluster beam deposition (Reprinted from Benedek et al. 2003,
Copyright (2003), with permission from Elsevier) and two simulations (c, d, respectively) of the
TEM images obtained from analytical approximations of three-periodic minimal surfaces (gyroids)
with a self-affine distortion (Reprinted with permission from Barborini et al. 2002. Copyright
(2002), American Institute of Physics)

Benedek et al. 2003), they did not meet the glamour of the ordered sp2 carbon forms.
Nevertheless, random schwarzites, otherwise termed spongy carbon (Donadio et al.
1999), qualify for their unique properties, such as unconventional magnetism (Rode
et al. 2004; Arčon et al. 2006), and applications in efficient super-capacitors
(Diederich et al. 1999), field emitters (Boscolo et al. 2000; Benedek et al. 2001;
Ferrari et al. 1999), and carbon-based composites (Bongiorno et al. 2005) up to the
recent demonstration of interfacing live cells with nano-carbon substrates (Agarwal
et al. 2010).

Triply periodic minimal surfaces as possible sp2 carbon structures have been
theoretically suggested already in the mid-1980s (McKay 1985) then with more
momentum in the early 1990s, following the nanotube vogue (McKay and Terrones
1991; Terrones and McKay 1993; O’Keeffe et al. 1992; Lenosky et al. 1992;
Townsend et al. 1992; Vanderbilt and Tersoff 1992).
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Fig. 4.2 The tiling with 6 (light gray) and 7 (dark gray) rings of the unit cell of a P-type (a) and
D-type (b) schwarzite, both having 216 atoms per unit cell. The 7 rings are 24 per unit cell in both
cases. The unit cell of the D-type schwarzite is made of two identical but nonequivalent elements,
containing twelve 7 rings each, joined in the staggered position as atoms are in the diamond lattice
(Reprinted from Spagnolatti et al. 2003. Copyright (2003) with kind permission from Springer
Science and Business Media)

They have since termedschwarzites after the name of the mathematician Her-
mann Schwarz (Schwarz 1990) who first investigated that class of surfaces. The
synthesis of random schwarzites was obtained by means of supersonic cluster beam
deposition (SCBD) (Barborini et al. 2002). SCBD experiments demonstrated that
spongy carbon grows in the presence of finely dispersed Mo nano-catalysts, with
porous size decreasing with increasing deposition energy and no tendency to form
triply periodic structures. These aspects, as well as the growth in the form of a
self-affine minimal random surface, have been theoretical elucidated on the basis of
pure topological arguments (Benedek et al. 2003, 2005; Bogana et al. 2001). Many
relevant properties of schwarzites can actually be derived in a first approximation
from a topological analysis. For a thorough discussion of these aspects, the reader
is referred to the previously published chapter (Benedek et al. 2011) in this series of
book. In this chapter, it is shown that also the vibrational spectra of schwarzitic
structures can be estimated from topology, more precisely from the adjacency
matrices. After assessing the method on standard cases as the fullerene C60 and
the simplest three-periodic schwarzite fcc-(C28)2, for which the vibrational spectra
are well established, the novel class of two-periodic schwarzites (Fig. 4.2) shall
be introduced and their vibrational spectra as derived with the adjacency matrix
method discussed. The interest for two-periodic schwarzites, here discussed for the
first time, is related to the possibility of growing them by means of near-to-come
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planar technologies through the direct joining of nanotubes. We will also present the
main result of the first ab initio study about the most interesting planar schwarzite.
This study gives us the opportunity to make a comparison between the stability
of atoms obtained from ab initio calculation and topological arguments involving
the Wiener index. Finally, a quantum-mechanical argument will be exposed and
discussed which justifies the success and outlines the applicability range of the
Wiener index in determining the stability scale of isomeric carbon structures.

4.2 Adjacency Matrix

For a mono-atomic network of N nodes labeled by an index i D 1,2, : : : ,N, the
simplest topological characterization is provided by its adjacency matrix (AM)
A whose elements are defined by

Aij D
�
1 if nodes i; j are linked by a bond
0 otherwise; including i D j

: (4.1)

There are elementary structural and physical properties of atomic networks which
can be qualitatively understood in terms of the AM. For example, the eigenvectors
of A lead to the definition of topological coordinates of three-coordinated carbon
structures like fullerenes (Manolopoulos and Fowler 1992) and nanotubes (Làszlò
et al. 2001). The topological coordinates may be defined as the set of atomic
positions having the highest point symmetry compatible with the adjacencies. The
topological coordinates can be defined also for D-type schwarzites, either referring
to a single element (genus 2) or to a unit cell (genus 3), and provide a straightforward
method to construct a structure with all the same adjacency matrix and point
symmetries of the real structure, which may serve as the starting configuration for a
molecular dynamics minimization procedure.

As shown in more detail elsewhere (D’Alessio, Master thesis, 2007, Unpub-
lished), isomers of a D-type schwarzite element can be enumerated with the
spiraling procedure similar to that introduced for fullerenes (Manolopoulos and
Fowler 1992). As an example, Tables 4.1, 4.2, 4.3, and 4.4 list the isomers of

Table 4.1 Isomers of the D-type schwarzite (C32)2 element classified according the
sequence of 7- and 6-membered rings determined with the spiraling procedure

C32 isomer Sequence Sym Ord N M W 

1 067777777077706770 C2 2 8 8 3,915 1.20239558
2 707767767077707770 D2d 8 3 8 3,884 1.16148325

The four 0s in each sequence represent the four terminations of the element. The other
columns indicate the point group (Sym), the number of symmetry operations (Ord),
the class sequence multiplicity (N) (D’Alessio, Master thesis, 2007, Unpublished), the
maximum topological distance of the element (M), the Wiener index (W), and the
topological efficiency index (). Here and in the following tables, isomers are listed for
increasing W
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Table 4.2 Same as Table 4.1 for the isomers of the D-type schwarzite (C34)2 element

C34 isomer Sequence Sym Ord N M W 

1 7077777770667707760 C2 2 5 8 4,370 1.19496855
2 7770777077770776660 C3 3 2 8 4,404 1.20426579
3 7776076777707770670 C2v 4 3 9 4,471 1.22258682

Table 4.3 Same as Table 4.1 for the isomers of the D-type schwarzite (C36)2 element. Note
that the spiraling procedure to enumerate isomers is unable to find the highest symmetry
isomer of Td symmetry

C36 isomer Sequence Sym Ord N M W 

1 07776767777707706760 C2v 4 6 8 4,839 1.13912429
2 07766777777076607707 C2 2 7 8 4,846 1.18079922
3 07777667670777707670 D2 4 5 9 4,848 1.17441860
4 07766777667077707770 CS 2 10 9 4,854 1.19674556
5 07767777767706760770 D2d 8 2 8 4,856 1.14962121
6 07777767670676770770 C2 2 3 9 4,875 1.20192308
7 06767777777760770760 C1 1 7 8 4,887 1.21205357
8 07777677670677670770 C1 1 9 9 4,891 1.20586785
9 06777777707670776670 C1 1 11 9 4,897 1.20734714
10 77607777767706760770 D2 4 1 9 4,906 1.21676587
11 07777677760767670770 C2 2 5 9 4,918 1.20539216
12 67777760770677707706 C1 1 7 9 4,954 1.23602794
13 60777777067776770670 C2 2 6 9 4,966 1.22435897
14 60777777067767770760 C1 1 12 9 4,993 1.23834325
15 67777670760777707706 C2 2 6 9 5,020 1.24503968
16 60777776077777670670 D2 4 6 9 5,046 1.25148810
17 60777776077777760760 S4 4 6 9 5,046 1.24408284
18 60677777770777076670 C2 2 5 10 5,049 1.26731928
19 67077077076777676770 Td 24 � 9 5,214 1.17432430
20 07667777077777707606 C2 2 7 11 5,399 1.31554581
21 66707707777777770660 D2d 8 4 11 5,868 1.32162162

the smallest D-type elements C2hC28 with h D 0,2–6. For h D 2–6 only schwarzites
within the restricted class with hexagonal necks joining adjacent elements are
considered. In this class the isolated elements have therefore a 6-membered ring
also at each of the four terminations. The spiral sequences of the 6- and 7-membered
rings and the four terminations (0) are listed for each isomer in the second column
of Tables 4.1, 4.2, 4.3, and 4.4. For each isomer the point group of the element
is also indicated. The smallest D-type schwarzite with h D 0 only contains 7-
membered rings and exists in two isomers, one with hexagonal necks (Fig. 4.3)
and one with dodecagonal necks. Both isomers are chiral and have their own
enantiomer. Examples of topologically equivalent structures constructed by means
of the topological coordinates are illustrated in Figs. 4.3 and 4.4 for the elements of
the D-type schwarzite (C28)2 and of the three isomers of (C34)2, respectively.
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Table 4.4 Same as Table 4.1 for the isomers of the D-type schwarzite (C38)2 element

C38 isomer Sequence Sym Ord N M W 

1 067677777677707706760 Cs 2 4 8 5,382 1.18285714
2 077776776707776607760 C2 2 9 9 5,382 1.20268156
3 077677777766077607706 C2 2 7 9 5,384 1.18983425
4 077667777670677077670 C1 1 5 9 5,396 1.21258427
5 076677777670776607770 C1 1 11 9 5,397 1.20603352
6 077667777760767077670 C1 1 8 9 5,402 1.20044444
7 676076767677077707770 Cs 2 5 9 5,404 1.19425414
8 607767777776707660770 C2 2 5 9 5,414 1.20983240
9 676076777776077760770 C1 1 2 9 5,422 1.23227273
10 077776677706767077670 Cs 2 3 9 5,426 1.21251397
11 707777777067670767660 C1 1 4 9 5,426 1.19911602
12 676067767767077707770 Cs 2 4 10 5,469 1.22212291
13 607777670767776770670 C2 2 9 9 5,470 1.20883978
14 766077776770677076770 C1 1 5 9 5,477 1.22391061
15 076777677067767770670 C1 1 11 9 5,482 1.24590909
16 067777777077706776660 C1 1 3 10 5,494 1.24863636
17 066667777777077706770 C1 1 10 10 5,538 1.25152542
18 067776767076777770670 C1 1 19 10 5,563 1.23622222
19 766077777760777076670 C1 1 5 10 5,603 1.25910112
20 776067707777676670770 C2 2 3 10 5,639 1.27435028
21 066777770766777770760 C1 1 10 10 5,645 1.26145251
22 767067707777766670770 C1 1 2 10 5,768 1.28893855
23 777067760677777707606 C1 1 1 11 5,988 1.31604396
24 677077066777777707606 C1 1 5 11 6,021 1.32329670

Fig. 4.3 The element of the (C28)2 isomer with hexagonal necks (a) and its topological coordinate
model (b). There are three inequivalent bond lengths labeled by a, b, and c (D’Alessio, Master
thesis, 2007, Unpublished)
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Fig. 4.4 Front and side views
of the three topological
coordinate models of (C34)2

isomers classified according
to their point symmetry
groups (see Table 4.2)
(D’Alessio, Master thesis,
2007, Unpublished)

As seen in Table 4.3, the isomer of highest (Td) symmetry (#19) is not the
most stable according to the ranking based on the Wiener index W and topological
efficiency index . In any case the stability ranking based on the global topological
indices, accounting for the conjugation long-range effects, is in clear conflict
with the ranking based on the transferability of fixed bonding energies assigned
to the three geometrically inequivalent bonds (D’Alessio, Master thesis, 2007,
Unpublished). The former proved to account quite well for the theoretical isomer
ranking of some fullerenes (Vukicevic et al. 2011), and it is suggested that it should
work equally well for schwarzites. However, both approaches agree in explaining
why more compact, though less symmetric isomers are more stable, which favors the
growth of random rather than periodic schwarzites in SCBD experiments (Barborini
et al. 2002).

4.3 Topological Electronic States

A straightforward application of the AM is the calculation of the electronic energies
of a mono-atomic network in the tight-binding (TB) approximation for a band
originated from a single atomic state, for example, the pz band in an sp2 carbon
network. By assuming the same diagonal matrix element ˛ of the Hamiltonian for
all atomic orbitals, the same overlap integral s, and the same Hamiltonian matrix
element (resonance integral) ˇ between the atomic orbitals for all nearest-neighbor
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Fig. 4.5 The topological
energy levels (in eV) of
icosahedral C60 from the
diagonalization of the
adjacency matrix
(˛D �2.60 eV, ˇD 3.01 eV,
s D 0) compared with Hückel
energy levels (in units of ˇ)
(Reprinted with permission
from Bühl and Hirsch 2001.
Copyright (2001) the
American Chemical Society).
Shadowed peaks correspond
to occupied states

pairs, the energy eigenvalues E D Ej and the eigenvectors c D cj providing
the coefficients of atomic orbital combinations are obtained by solving the TB
equation:

.I �s A/�1.ˇA C˛ I/ c D EI c (4.2)

where I is the unitary matrix. The extension of this equation to the periodic
schwarzite lattice would provide the valence band structure. In this way a qualitative
information about the size of the gap between the highest occupied (HOMO) and
the lowest unoccupied (LUMO) molecular orbitals can be obtained as a function
of the topology, here represented by the adjacency matrix, and to infer whether the
periodic schwarzite will be an insulator or a metal.

As previously shown for tetrahedral D-type schwarzites with 6-membered necks
(Gaito et al. 1998; Benedek et al. 2011), the smallest members of the series are
alternatively metallic and insulating. The link of the HOMO and LUMO states to
basic chemical properties such as site reactivity, electronegativity, and chemical
hardness in polyaromatic hydrocarbons (PAH’s) is exploited in the formulation
of the so-called colored molecular topology (Putz et al., Chap. 9). In this way
these properties, though intrinsically dependent on the electronic structure, may
receive a first estimation on purely topological grounds. Figure 4.5 displays a simple
application to the icosahedral C60 molecule, where the energy levels of the 60  -
electrons calculated by solving Eq. (4.2) with ˛D �2.60 eV, ˇD 3.01 eV, s D 0 are
compared with the Hückel energy levels reported by Bühl and Hirsch in units of ˇ
(Bühl and Hirsch 2001). In the approximation where ˇ is the same for all bonds, the
Hückel energy levels scale exactly as the topological eigenvalues.

http://dx.doi.org/10.1007/307785_1_En_9
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4.4 Topological Phonon Structure

With the same formalism, though slightly complicated by the vector nature of the
atomic displacements, one can investigate the vibrational spectra at zero wavevector
of these periodic structures, at least for the part which depends on topology. It
is indeed expected that in systems where atoms are all alike and approximately
bonded in the same way the gross features of the vibrational spectrum are first of all
determined by topology.

It is noted that the vibrational spectra extracted from the adjacency matrix of a
P-type element or a D-type schwarzite unit cell, with each of their six terminations
closed on the opposite one so as to form a three-handle torus, are topologically
equivalent to the spectra at zero wavevector (q D 0) of the corresponding three-
periodic solid with periodic boundary conditions. For a flat surface (graphene), the
vector nature of the phonon displacement field at q D 0 is factorized into a transverse
out-of-plane component, corresponding to a transverse optical mode normal to
the surface (TO? mode) having a frequency !? D 16.3 rad/s, and two orthogonal
in-plane components corresponding to the parallel optical (TOjj) and longitudinal
optical (LO) modes, having the same frequency of !jj D 29.8 rad/s. The degeneracy
of TOjj and LO modes at q D 0 is intrinsically due to the symmetry of the three sp2

bonds forming three angles in plane of 120ı and is only approximately fulfilled for a
heterocyclic nonplanar structure. In general, on curved surfaces the three angles are
distorted and no longer in plane, a fact which is however irrelevant at the topological
level. This level of approximation may be referred to as topological dynamics and
the eigensolutions as topological phonons.

The assumption that each of the orthogonal components of each atomic displace-
ment only couples with the same component of the three adjacent atoms reduces
the dynamical problem to the diagonalization of three independent combinations
of the adjacent matrix. In a simplified nearest-neighbor interaction picture, only
two nearest-neighbor force constants f? and fjj are needed. The eigenvalue equation
providing the angular frequencies ! D !˛� and the components ui D ui˛,� of the
atomic displacements for each phonon � and each polarization ’D ?,jj can be
expressed in terms of the adjacency matrix as

�M!2 ui D f˛
X

j

�
Aij � 3ıij

�
uj ; ˛ D ?; k (4.3)

where M is the carbon atom mass, and the term with the Kronecker delta is implied
by the translational invariance of the system Hamiltonian. The force constants f˛ are
fitted to the respective angular frequencies!? and !jj for graphene given above and
considered to be transferable to other sp2 carbon structures. The angular frequencies
are directly obtained from the eigenvalues �˛� of the adjacency matrix and are
given by

!˛� D
�
f˛

M
.3 � �˛�/

� 1=2
: (4.4)
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Fig. 4.6 Comparison
between the vibrational
spectrum of the icosahedral
fullerene C60 measured with
neutron inelastic scattering
(NIS) (Cappelletti et al. 1991)
(a) and the topological
phonon spectrum calculated
from the adjacency matrix
(b). In the latter spectrum, a
finite line width is attributed
to each phonon peak in order
to obtain a smooth spectrum
with a resolution comparable
to that of experiment (Image
reproduced from De Corato
and Benedek 2012. Copyright
@ 2012 World Scientific,
New York)

4.4.1 Topological Phonons of Fullerenes and Schwarzites

An example of topological phonon spectrum derived from Eq. (4.3) is shown in
Fig. 4.6 for the icosahedral isomer of the fullerene C60. There is a good correspon-
dence between the calculated topological phonon spectrum and the experimental
spectrum derived by inelastic neutron scattering (NIS) (Cappelletti et al. 1991;
Pintschovius 1996). This indicates that the gross features of the C60 vibrational
spectrum are accounted for by its topology, that is, by its bonding network.

A similar calculation has been done for the D-type schwarzite (C28)2 for which a
comparison is possible between ab initio and topological phonon spectra (De Corato
et al. 2012) (Fig. 4.7). While the ab-initio spectrum in Fig. 4.7c carries the
information about the detailed equilibrium structure of the schwarzite element as
depicted in Fig. 4.7a, the topological spectrum only depends on the structure of the
graph shown in Fig. 4.7b. Nevertheless, the comparison of the ab initio eigenvectors
to those of topological phonons permits to associate four spectral regions of the
ab initio spectrum (Fig. 4.7c) to corresponding regions (marked by segments in
Fig. 4.7d) of the topological spectrum.

The topological phonon spectrum may be conveniently used in the calculation
of integral properties such as the vibrational part of thermodynamic functions. As
an example, it is perfectly sufficient to use the topological phonon frequencies for
the calculation of the mean-square atomic displacement relative to the interatomic
distance d, given with the equation

fc 	 1

d

˝
u2
˛1=2
T

D 1

d

"
X

�

„
2NM!�

	
1

e„!�=kT � 1 C 1

2


#1=2
(4.5)
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Fig. 4.7 The element C28 of the smallest D-type schwarzite with 6-membered necks (a), the
corresponding planar graph (b) with its topological constants (gray regions represent the four
necks), and the zero-wavevector ab initio vibrational spectrum of its fcc lattice (C28)2 (c) (Reprinted
from Spagnolatti et al. 2003. Copyright (2003) with kind permission from Springer Science and
Business Media). The topological phonon spectrum is shown in (d) for comparison. The analysis
of the eigenvectors allows to associate four spectral regions of the ab initio spectrum (c) to the
marked topological spectral regions in (d). The three modes of zero frequency corresponding to
the free translations are not shown

where T is the absolute temperature. It is possible to estimate the temperature at
which the bonds start breaking, leading to melting by means of the Lindemann
criterion: For carbon materials, this occurs at fc D 0.084 (Gersten and Smith 2001).
A semi-empirical tight-binding molecular dynamics simulation of the topological
connectivity as a function of temperature for the D-type schwarzite (C36)2 (Fig. 4.8a)
(Rosato et al. 1999) shows that a graphitization transition, consequent to a rapid
break of prevalently single bonds, is predicted to occur around 4,000 K. At this
temperature, the ratio fc derived from Eq. (4.5), with the topological phonon
spectrum (Fig. 4.8b) and the graphite interatomic distance d D 1.42 Å, is equal to
0.077. Raising the temperature beyond graphitization, melting of graphite sheets
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Fig. 4.8 (a) The three-dimensional fcc lattice generated by the schwarzite (C36)2 (Image repro-
duced from Rosato et al. 1999, Copyright (1999) by the American Physical Society). (b) The
predicted topological phonon distribution at zero wavevector for a single element of the schwarzite
(C36)2 using adjacency matrix diagonalization

occurs. A simulation for graphene by Zakharchenko et al. (2011) gives a melting
temperature of 4,900 K, which would correspond, on the basis of Eq. (4.5), to
fc D 0.085, in good agreement with the Lindemann criterion for carbon materials.
In view of such a good correspondence for melting, this analysis provides therefore
a criterion for the graphitization transition of schwarzite structures, which can be
confidently fixed at fc D 0.077.

4.4.2 Topological Phonon Spectrum Versus Genus

It is interesting to compare the topological phonon spectrum for three isomeric
structures mapped on closed surfaces of different genus g, for example, a sphere
(g D 0), a one-handle torus (g D 1), and a two-handle torus (g D 2). A very simple
structure is a hypothetical fourfold coordinated molecule X20 with a single nearest-
neighbor force constant (Fig. 4.9). The topological phonon spectra for shear
displacements normal to the surface are shown in Fig. 4.10 for the three surfaces.
The observed trend is a compactification of the spectrum towards the higher
frequencies with increasing genus. Note that the three surfaces represent, in the
case of threefold coordination, the topology of fullerene, nanotubes, and the unit
cell of a squared planar schwarzite, respectively, the latter two with cyclic boundary
conditions.
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Fig. 4.9 Isomeric structures of a hypothetical fourfold coordinated molecule X20 mapped on
closed surfaces of different genus g: a sphere (g D 0), a one-handle torus (g D 1), and a two-handle
torus (g D 2)

Fig. 4.10 The topological phonon spectra for shear displacements normal to the surface for the
fourfold coordinated isomers shown in Fig. 4.9. The increasing genus of the tessellated surface
leads to a compactification of the spectrum towards higher frequencies with increasing genus

4.5 Planar Schwarzites

After the discovery of nanotubes (Iijima 1991), the prediction (Fig. 4.11, Spadoni
et al. 1997) and the experimental realization of X- and Y-shaped nanotube junctions
(Fig. 4.12b, Barborini et al. 2002; Fig. 4.12c, Satishkumar et al. 2000; Deepak et al.
2001) have been the object of an extensive investigation over a decade, with the aim
of fabricating electronic devices on the nanoscale (Bandaru et al. 2005).

A more ambitious goal is the construction of complex structures of potential
interest in nanoelectronics in one (linear schwarzites) and two dimensions (planar
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Fig. 4.11 (a) Illustration of formation of Y-shaped nanojunctions through the welding of a
nanotube at the knee of another nanotube and the replacement of two 5-membered rings
(yellow) with four (two per corner) 7-membered rings (Reproduced by Spadoni et al. 1997
doi:10.1209/epl/i1997-00346-7. Copyright (1997) by IOP Publishing). Y-shaped nanotubes have
been observed in both experiments (b) SCBD (Adapted with permission from Barborini et al.
2002. Copyright (2002), American Institute of Physics) and (c) pyrolysis; see also Satishkumar
et al. (2000) and Deepak et al. (2001)

Fig. 4.12 The plumber art of connecting elbow-shaped nanotubes (a) and T- (b) and Y-shaped (c)
nanotube junctions allows for the fabrication of complex 0-D (d), 1-D (b, e), and 2-D networks
(c) of potential use in nanoelectronics; 4-branched schwarzite elements (f) may be used for
the construction of either planar or D-type 3-D networks (Adapted from Chernozatonskii 1993.
Copyright (1993), with permission from Elsevier)

schwarzites) through the connection of nanotube segments, as envisaged in the
early works by Chernozatonskii (1993) and Spadoni et al. (1997) and following
experimental achievements by Terrones et al. (2002) and Romo-Herrera et al. (2007)
(Fig. 4.13).

On pure geometrical grounds, these architectures could in principle be obtained
also through a transformation of a graphene bilayer, where covalent bonds between
the two graphene sheets are formed so as to join them through a periodic array
of throats, in the manner illustrated in Fig. 4.14. The toll to be paid to topology

http://dx.doi.org/10.1209/epl/i1997-00346-7
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Fig. 4.13 The welding of nanotubes (a) (Adapted with permission from Romo-Herrera et al. 2007.
Copyright (2007) American Chemical Society) (From Terrones et al. 2002. © 2002 The American
Physical Society) allows in principle to engineer periodic 2-D schwarzitic networks (b) suitable
for nanoelectronics

Fig. 4.14 The transformation of a graphene bilayer into a planar schwarzite (C38)2: A ring of six
hexagons in the lower graphene sheet is transformed into a ring of six heptagons by inserting six
new (red) bonds. In this way a throat is formed with six new (red) hexagons and dangling bonds to
be saturated by the equivalent bonds of the specular upper portion. The smallest hexagonal array
of such connections has a unit cell (gray area) made of 19 � 2 atoms (green dots) (Reproduced
from De Corato et al. 2012, (https://www.novapublishers.com/catalog/product info.php?products
id=33851. Copyright (2012) by Nova Science Publishers))

is the formation of a suitable number of 7-membered rings – 12 per throat. The
smallest unit cell of this kind of planar graphite-like (G-type) schwarzites contains
just 12 heptagons with no hexagonal ring and has the formula (C14)2 (Fig. 4.15).

https://www.novapublishers.com/catalog/product_info.php?products_id=33851
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Fig. 4.15 Elements of the smallest G-type planar schwarzite (C14)2 exclusively made of 7-
membered rings. Two elements (A C B) form the unit cell of the periodic graphite-like lattice
(Reproduced from De Corato and Benedek 2012. Copyright @ 2012 World Scientific, New York)

The threefold symmetric C14 elements can be connected in various ways by nano-
tubular throats as, for example, in the planar schwarzites (C18)2 and (C26)2 depicted
in Fig. 4.16.

It should be noted that planar G-type schwarzites are all topologically equivalent,
independently of the length of the nanotube connectors, with the same number (12)
of 7-membered rings per unit cell. Due to the potential interest of planar schwarzites
in devices, the characterization of possible defective structures by means of
vibrational spectroscopies is rather important. The defect-induced modification of
the vibrational spectrum represents another convenient example of the application
of the topological phonon concept.
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Fig. 4.16 Graphs representing the planar schwarzites (C18)2 with one tubular neck per element and
(C26)2 with three necks per element. A similar planar schwarzite with two such necks per element
(not shown) has the formula (C22)2 (Reproduced from De Corato and Benedek 2012. Copyright
@ 2012 World Scientific, New York)

4.5.1 Vibrational Characterization of Perfect and Defective
Planar Schwarzites

Since infrared absorption and Raman vibrational spectroscopies only involve long-
wave phonons, the calculation of the zero-wavevector (Q D 0) topological phonons
for ideal and defective planar schwarzites should be sufficient for the characteriza-
tion of their general features. As regards the defects, the following configurations
have been considered: (a) the ideal planar schwarzite, (b) a single bond broken, (c) a
single bond stiffened, (c) the stiffening of all the three bonds of an atom, (d) a mass
defect, and (e) a vacancy. The calculated topological phonon spectra are shown in
Figs. 4.17, 4.18, and 4.19 for (C14)2, (C18)2, and (C26)2 and the five above defect
configurations.

The main vibrational spectral features of schwarzite surfaces depend on the
topological structure more than on their two-dimensional nature. In this respect the
calculation of the defect perturbation of the phonon density of states (DOS) based
on adjacency matrix approximation is sufficiently reliable as long as the general
features are concerned. A reason for this prevalence of the topological effects is
that the spectral perturbation mostly depends on the Hilbert transform of the bulk
densities projected onto the defect sites, that is, on the real parts of the projected
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Fig. 4.17 The topological vibrational spectra at zero wavevector of the smallest G-type planar
schwarzite (C14)2: (a) pure lattice, (b) one bond broken at a central atom, (c) one of the three force
constants connecting a central atom is doubled, (d) all three force constants of a central atom are
doubled, (e) the mass of a central atom is multiplied by 4, and (f) a vacancy at a central atom site
(Reproduced from De Corato and Benedek 2012. Copyright @ 2012 World Scientific, New York)
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Fig. 4.18 Same as in Fig. 4.17 for (C18)2 (Reproduced from De Corato and Benedek 2012.
Copyright @ 2012 World Scientific, New York)

Green’s functions: They are integral functions and essentially depend on the gross
features of the unperturbed spectra. In detail it appears that the stiffening of the
force constants leads to localized modes above the maximum frequency of the
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Fig. 4.19 Same as in Fig. 4.17 for (C26)2 (Reproduced from De Corato and Benedek 2012.
Copyright @ 2012 World Scientific, New York)

unperturbed spectrum (black triangles in Figs. 4.17, 4.18, and 4.19c, d), whereas
the break of bonds and the mass increase produce a general phonon softening, with
the emergence of resonances in the lower part of the spectrum (black triangles in
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Fig. 4.20 (C38)2 planar schwarzite: a top view of the lattice (a) and unit cell (b) (Reproduced from
De Corato et al. 2012, (https://www.novapublishers.com/catalog/productinfo.php?productsid=
33851. Copyright (2012) by Nova Science Publishers))

Figs. 4.17, 4.18e). In all structures there is a narrow gap around 32 THz, separating
the lower phonon band of shear vertical (ZO) modes from the upper longitudinal
(LO) and shear horizontal (SH) phonon bands. In some cases the local perturbation
causes the appearance of a gap mode, as, for example, for a vacancy in (C14)2

(Fig. 4.17f) or a mass increase perturbation in (C18)2 (Fig. 4.18e).
These few examples illustrate the optical vibrational spectra expected for this

class of graphene-like carbon nanostructures and the spectral modifications induced
by defects, or in general by any local structure which may occur, for example, in
functionalized sp2 carbon samples.

4.5.2 The Planar Schwarzite (C38)2

In addition to the proposed structure, we have fully investigated another type
of planar carbon schwarzite which has the standard nanotube connection and so
is the best candidate for experimental growth. Ab initio calculations have been
performed for this particular junction in order to investigate the geometry, the
electronic structure, and its phonon frequency distribution at gamma. The carbon
planar schwarzite like (C38)2 contains 12 hexagons and the canonical 12 heptagons
per element. As argued from the top view of the structure obtained from ab initio
calculations and of its unit cell (Fig. 4.20), there are short nanotubes made of six
hexagons connected by islands made of six heptagons each. These features reflect
in the band structure. The 2-D lattice is hexagonal within the layer group P6/mmm
(80); only five atoms are found to be independent by symmetry.

The calculations are based on Quantum ESPRESSO codes (Giannozzi et al.
2009) within the density functional theory, with a Perdew-Burke-Ernzerhof
exchange-correlation functional (Perdew et al. 1996), a ultrasoft pseudopotential

https://www.novapublishers.com/catalog/productinfo.php?productsid=33851
https://www.novapublishers.com/catalog/productinfo.php?productsid=33851
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Table 4.5 Ab initio cohesive
energy per atom of the planar
schwarzite (C38)2 with
respect to other
three-dimensional D-type
schwarzites and diamond

Structure
Cohesive energy
(eV/atom)

Conduction
properties

Planar (C38)2 7.91 Metal
D-type (C28)2 7.66 Metal
D-type (C36)2 7.71 Insulator
D-type (C40)2 7.92 Metal
D-type (C64)2 7.94 Metal
Diamond 8.36 Insulator

Gaito et al. (1998) and Spagnolatti et al. (2003)

Fig. 4.21 Electronic band structure (a) and density of states (DOS) (b) of the planar schwarzite
(C38)2. The zero energy corresponds to the Fermi level (EF)

(Vanderbilt 1990), a plane-wave expansion of Kohn-Sham orbitals up to the kinetic
cutoff of 30 Ry, and a charge-density cutoff up to 240 Ry. The integration over the
Brillouin Zone (BZ) has been performed over a 2 � 2 � 1 Monkhorst-Pack mesh
(Monkhorst and Pack 1976) corresponding to 2 k-points in the irreducible two-
dimensional wedge. The structure has been optimized by computing its equation
of state at zero temperature (energy per unit area) keeping a vacuum distance of
15 Å within the replicas in order to avoid their interaction. The optimized lattice
parameter turns out to be a D 10.82 Å. The calculated cohesive energy with respect
to that of diamond (Table 4.5) is consistent with previous calculations for three-
dimensional schwarzites (Gaito et al. 1998; Spagnolatti et al. 2003).

The planar schwarzite (C38)2, as appears from the calculated band structure along
high symmetry directions (Fig. 4.21a), is metallic. The band structure shows a
large number of flat bands due to the presence of heptagonal rings which break
conjugation. This peculiarity, similar to that of 3-D schwarzites (Spagnolatti et al.
2003), yields sharp peaks in the electronic density of states (Fig. 4.21b).
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Table 4.6 The five local
(first-order) Wiener indices
w
.1/
i of (C38)2 compared with

the respective bond lengths
from an ab initio calculation

Atom w.1/i

Average bond
length (Å) d1 (Å) d2 (Å) d3 (Å)

A 345 1.408 1.37 1.42 1.42
B 346 1.415 1.46 1.36 1.42
C 348 1.494 1.52 1.48 1.48
D 349 1.455 1.46 1.48 1.42
E 352 1.522 1.52 1.52 1.52

Topology, in particular graph theory, also allows predicting the relative stability
of isomers and single atoms. As explained in the next section, for sp2-bonded
structures, this goal can be achieved by using the Wiener index (Wiener 1947).
This topological index provides a stability hierarchy of various isomers in the sense
that, to a good approximation, the minimum value of the Wiener indices for various
isomeric structures indicates the most stable one. This topological approach has
been proven successful in the prediction, for example, of the most stable isomers of
the fullerene C66 (Vukicevic et al. 2011).

Also the stability hierarchy of single atoms can be established by the ordering
of local Wiener indices. Each independent atom has its particular local Wiener
index according to its topological position in the graph, and the best connected
atom is shown to give the minimum local Wiener index. On the contrary, the least
connected atom will provide the maximum local Wiener index. Due to symmetry,
only a limited number of independent atoms have different local Wiener indices. In
the case of (C38)2, there are only five independent atoms in the unit cell, indicated
by the letters A to E in Fig. 4.20b. The corresponding local Wiener indices are
reported in Table 4.6 and compared with the medium bond length obtained from
DFT calculations.

It appears from Table 4.6 that the most stable atom (A), having the shortest
average bond length, also has the minimum local Wiener index. Similarly the least
stable (E) atom with the longest bond lengths has the maximum local Wiener index.
The correspondence is however not so precise for the intermediate values. As seen in
the next section, the Wiener index is the simplest among various topological indices.
Better performances with respect to stability can be obtained with other indices like
higher-order Wiener and efficiency. In practice, the stability of single atoms is also
related to their chemical reactivity.

4.6 A Physical Basis for the Wiener Index

The physical meaning of the Wiener index for a conjugated sp2 carbon network
and its role in providing a stability hierarchy of isomers can be derived from a
tight-binding model for the   electron band structure. Although in the tight-binding
picture only nearest-neighbor (nn) matrix elements of the Hamiltonian and overlap
integrals between pz atomic orbitals are considered, conjugation effects are felt at
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large topological distances and contribute a long-range potential energy term which
depends on the isomer topology. The wavefunctions of the   electronic band are
written as linear combination of atomic orbitals:

 k.r/ D N�1=2
k

X

m

ekm'.r � rm/; (4.6)

where k labels the electronic states, m the atoms of the network at positions rm, and
ekm are the projections of the wavefunctions  k on the atomic orbitals '.r � rm/.
Normalization requires that

Nk 	
X

l l 0

e�

klekl 0sl l 0 D 1C
X

lnl

�
e�

kleknl slnl C e�

knl
eklsnl l

�
; (4.7)

where

smm0 	
Z
d3r '�.r � rm/'.r � rm0/ D

8
<

:

1 m0 D m

smnm m
0 D nn of m 	 nm

0 m0 ¤ m; nm

I (4.8)

index nm labels the three closest atoms of atom m. The contribution of the electron in
the state k to the expectation value of the energy Um(r) of an atom at a conventional
origin (m D 0) is written as

hU0ik D N�1
k

X

mm0

e�

kmekm0

Z
d3r '�.r � rm/U0.r/ '.r � rm0/: (4.9)

Although the matrix element in Eq. (4.9) is nonvanishing only for m0, m D 0, n0,
the above expression is a function of the atom positions at any distance rm from the
origin via the normalization factor. Its derivative with respect to rm for m ¤ 0, n0,
after some algebraic manipulation, is found to be

@hU0ik
@rm

D � N�1
k hU0ik

X

l l 0

e�

klekl 0.ıl 0m � ılm/”l l 0

C 2N�1
k Re

X

l

e�
kmekl

Z
d3r U0 .r/ � .r � rl /

@

@r
�� .r � rm/

	 Fk;m0: (4.10)

where

”ll0 D �”�

l 0l D
8
<

:

R
d3r

@'�.r � rl /
@r

'.r � rl 0/; l 0 D nl ;

0; l 0 ¤ nl ;
(4.11)
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The vectors ”l 0l are nonvanishing only when l and l0 are nearest neighbor and are
directed along the ll0 bond. Consistently with the tight-binding approximation, the
integral term in Eq. (4.10) is hereafter neglected, since m ¤ 0,n0. Equation (4.10)
defines a nonvanishing long-range force Fk,m0 between atoms 0 and m acting due to
an electron in the k-th state of the  -band. The sum over all band states, †kFk,m0,
is null due to the completeness of coefficients ekl, but the sum restricted to the
occupied states of an unfilled band, like that required by conjugation, generally
yields a nonvanishing force, which we call conjugation force. On the other hand,
it is easily seen that the sum over the conjugation forces exerted by all atoms m on
atom 0 vanishes,†mFk,m0 D 0, as required by equilibrium.

We now search a potential for the conjugation forces. After neglecting the
integral term in Eq. (4.10), the latter can be rewritten as

@

@rm
ln hU0ik D � 2N�1

k Re
X

l

e�

kl ekm ”lm

D � 2N�1
k Re

"

e�

km

X

nm

eknm ”mnm

#

	 �’kIm: (4.12)

For hU0ik a central potential, vector ’k;m, expressing the inverse of the conju-
gation potential range, points in the same direction as rm, as one can argue from a
careful inspection of Eqs. (4.10) and (4.11) when the wavefunctions '(r) refer to
pz states. However, it does not depend explicitly on the position of the atom m but
on the phase changes of the k-th wavefunction, associated to the products e�

kmeknm ,
between atom site m and its nearest neighbors nm. For a double bond between m and
one of its neighbors, e�

kmeknm is positive, whereas the other two single bonds starting
from m give a negative e�

kmeknm . Thus, the inverse-range vector ’k;m is in general
nonvanishing; it is however of order N�1, with N the number of atoms, due to the
normalization to unity of the coefficients ekm. It should be noted, however, that these
arguments are valid for threefold coordination and could fail, for example, for atoms
on the contour of the network. We assume that the contour effects are either removed
by periodic boundary conditions or neglected by considering a large number N of
atoms.

It is now convenient to consider the network of N atoms as made of s atomic
shells, each shell including the sj atoms which have the same topological distance
j from the origin atom (j D 0). Since the maximum topological distance normally
depends on the choice of the origin atom, s is defined as the maximum topological
distance in the given network. With these definitions, a sum over the atom index m
from 0 to N � 1 is replaced by a sum over the sj atoms belonging to the j-th shell
times the sum over the s C 1 shells (including the origin, j D 0, s0 D 1), that is, by a
sum over the indices (i,j):

N�1X

lD0
!

sX

jD0

sjX

iD1
: (4.13)
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With the prescription of a constant Nk referred to the equilibrium configuration, the
conjugation force Fk,m0 can be derived from the potential energy:

U
.c/

k .ri;j / DUk exp
��’kIi;j � .ri;j � ri;j�1/ � .j � 1/ˇkIi;j a

�

DUk exp
��jˇkIi;j a

�
; (4.14)

where index i has been conventionally used for the atom on each shell belonging to
the shortest topological path from atom 0 to atom m D (i,j). We have defined a as
the average interatomic distance and

ˇkI i;j 	 ’kI i;j � ri;j � ri;j�1
a

(4.15)

as the projections of the inverse-range vectors onto the bonds connecting atom
(i,j � 1) to atom (i,j). Uk is an integration constant which eventually needs to be
derived from ad hoc ab initio calculations and is expected to be negative (attractive),
similarly to tight-binding resonance integrals between nearest neighbors. A dimen-
sional argument requires Uk D o(N�2).

The total conjugation potential energy U0,N of atom 0 in an sp2 network of N
atoms is calculated by summing over all occupied electron states of the  -band and
all atoms m D (i,j):
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k
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1

A � � � � ; (4.16)

where in the third row of Eq. (4.16), the inverse-range constants have been
substituted by their average Ň

k . It is this important approximation which allows
expressing the conjugation potential energy in terms of the local Wiener index of
order 1 for site 0

w.1/0 	
sX

jD0
j sj ; (4.17)
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of the local Wiener index of order 2 for site 0,

w.2/0 	 1

2

sX

jD0
j 2sj ; (4.18)

etc. Actually, the expansion to all orders of the exponent in Eq. (4.10) involves the
local Wiener index of order n for site 0

w.n/0 	 1

nŠ

sX

jD0
j nsj : (4.19)

One may also consider the exponential local Wiener index for site 0

w.exp/
0 	

X

n

.�1/nw.n/0 D
sX

jD0
sj e

�j : (4.20)

As regards the dependence on the network size, that is, on atom number N,
the sum

P.occ/
k Uk over the occupied states k is of order N�1 and the first term

in Eq. (4.16) tends to a constant U1 for N ! 1 which is independent of the
site. The Wiener index w.1/0 for a single site grows with the number of atoms as

N3/2, so that the term in Eq. (4.10) proportional to w.1/0 is of order N�1/2. Similarly

w.n/0 � o
�
N1Cn=2=nŠ

�
and therefore the corresponding term in the expansion of Eq.

(4.16) is of order N�n/2/n!
Since Uk < 0 and Ň

k > 0, Eq. (4.10) tells that, for a sufficiently large N so
that only the Wiener index of order 1 is retained in the expansion, the network
site 0 which gives a minimum of the conjugation potential energy corresponds to a
minimum in the local Wiener indexw.1/0 . For small atom numbers N the local higher-

order Wiener indices may not be negligible and deviations from the minimum-w.1/0
rule may occur. The sum over all sites gives the total conjugation potential energy:

U tot
N D NU1 �W .1/

0

@a
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Uk Ň
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where

W .1/ D 1

2

N�1X

hD0
w.1/h ; W .2/ D 1

2

N�1X

hD0
w.2/h ; : : : : (4.22)

are the Wiener indices of order 1, 2, : : : of the network. The factor ½ is needed to
avoid double counting of the interaction terms. In the first-order approximation,
the minimum of the Wiener index of order 1 indicates the most stable isomer.
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Moreover, it is convenient to define the topological efficiency index  as follows
(Ori et al. 2009):

 D W .1/

Nw.1/min

; (4.23)

where w.1/min is the minimum of the local Wiener indices w.1/h . In case all sites are
equivalent (as, e.g., for the icosahedral isomer of C60) so as to give the same local
Wiener index, it is D 1. In any other isomer with inequivalent sites, that is, with
a lower symmetry, it is > 1, its departure from unity being a measure of a lower
topological efficiency.

Within this approach also physical properties directly related to the energy U0,N

can in principle be expanded with the respect to the Wiener indices of increasing
order, similarly to Eq. (4.16). Among these properties of fundamental importance
are the electronegativity � and chemical hardness �, which are its first- and second-
order functional derivatives of the total energy with respect to the electron density,
respectively (see Chap. 9). Actually the present approach leads with a novel way
in re-defining the so called intrinsic framework electronegativity (Genechten et al.
1987) and chemical hardness, which can be written as

�W D †kXkW
.k/; (4.24)

�W D †kHkW
.k/; (4.25)

where Xk and Hk are suitable coefficients to be determined from the functional
derivation of the conjugation energy expressed by Eq. (4.16). Similar expressions
can be obtained for the respective local quantities in terms of the local Wiener
indices of increasing order, thus providing an analytical route to the coloring
procedure (see Chap. 9). The minimal properties, illustrated for the Wiener indices
and topological indicators like the topological efficiency index , reflect also on the
derived properties, providing fruitful routes for assessing stability (e.g., minimum
topological electronegativity �W and maximum topological chemical hardness
�W ) or reactivity (max �W , min �W ). They work as abstract chemical reactivity
principles (Putz 2010, 2011) among various nano-isomers based on topo-chemical
reactivity.

4.7 Conclusions

It has been shown that sp2-bonded extended systems host an infinite-range interac-
tion associated with conjugation. This global property dominates in many respects
over local features so as to make the general topological characteristics of the struc-
ture, such as the genus of the supporting surface, the eigenvalues and eigenvectors

http://dx.doi.org/10.1007/307785_1_En_9
http://dx.doi.org/10.1007/307785_1_En_9
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of the adjacency matrix, the total and local Wiener indices, and the topological
efficiency of the corresponding graph, sufficient to estimate many general physical
properties such as global and local stability. It is shown elsewhere in this book
(Putz et al., Chap. 9) that also local chemical properties such as the chemical
potential, chemical hardness, and reactivity can be referred to local topological
properties. Topological intrinsic defects in sp2-carbon structures can as well be
characterized by topological indices as far as their stability and thermodynamic
probability are concerned. Besides establishing a stability hierarchy of isomers,
which is relevant to the configurational entropy of the structure, the topological
approach also allows to approximately determine the vibrational contribution to the
thermodynamic functions through the diagonalization of the adjacency matrix. The
discussion presented in Sect. 4.5 on physical meaning of the stability criteria based
on topological indices also warns about the limitations of these indices when applied
to small systems. Higher-order Wiener indices may be necessary for a more precise
and predictive analysis of isomer stability. Neither this convergence issue nor the
effectiveness of the local exponential Wiener index has been so far investigated in
comparison with first-principle calculation of the electronic structure. In view of
the enormous potential of the topological approach and its numerical applications
in disentangling relevant physical properties of complex structures, it is hoped that
this chapter will stimulate further studies in this direction.

Acknowledgements We thank Prof. Antonio Papagni and Dr. Gabriele Cesare Sosso (University
of Milano-Bicocca), and Dr. Fabio Petrucci (EPFL, Lausanne) for many stimulating discussions.
One of us (GB) acknowledges Ikerbasque (ABSIDES project) and the Donostia International
Physics Center (DIPC) for support. MVP thanks Romanian Ministry of Education and Research
for support through the CNCS-UEFISCDI project Code TE-16/2010-2013.

References

Agarwal S, Zhou X, Ye F, He Q, Chen GCK, Soo J, Boey F, Zhang H, Chen P (2010) Langmuir
Lett 26:2244

Arcon D, Jaglicic Z, Zorko A, Rode AV, Christy AG, Madsen NR, Gamaly EG, Luther-Davies B
(2006) Phys Rev B 74:014438

Bandaru PR, Daraio C, Jin S, Rao AM (2005) Nat Mater 4:663
Barborini E, Piseri P, Milani P, Benedek G, Ducati C, Robertson J (2002) Appl Phys Lett 81:3359;

highlighted by E Gerstner, Nature, Materials Update, 7 Nov 2002. http://wwwnaturecom/
materials/news/news/021107/portal/m021107-1html

Benedek G, Milani P, and Ralchenko VG (eds) (2001) Nanostructured carbon for advance
applications. Kluwer, Dordrecht and papers therein

Benedek G, Vahedi-Tafreshi H, Barborini E, Piseri P, Milani P, Ducati C, Robertson J (2003)
Diamond Relat Mater 12:768

Benedek G, Vahedi-Tafreshi H, Milani P, Podestà A (2005) Fractal growth of carbon schwarzites.
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Chapter 5
Topochemistry of Spatially Extended sp2

Nanocarbons: Fullerenes, Nanotubes,
and Graphene

Elena F. Sheka

Abstract This chapter presents sp2 nanocarbons as a new class of topochemical
species from the insight of the computational study of peculiar properties that
accompany the formation of different composite, at least, one member of that is
a sp2 nanocarbon. The composites, which are resulted from either the “double-
(C–C)-bond” reactions between two sp2 nanocarbons or the “atom-(C–C)-bond”
reactions, concerned with a monatomic species deposition on the nanocarbons,
manifest clearly seen properties that can be addressed to the action of either internal
or external topology. The internal topology is attributed to the inherited properties
of each nanocarbon while the external topology is related to external factors that
drastically influence the chemical reactions involving nanocarbons.

5.1 Introduction

The modern topology in chemistry covers two large valleys, namely, formal,
mathematical and empirical, chemical. The former is concerned with the description
of molecular structures on the basis of finite topological spaces. The space shows
itself as a mathematical image or instrument of theoretical study. A large collection
of comprehensive reviews, related to a topological description of fullerenes from
this viewpoint, has recently been published (Cataldo et al. 2011). The second field
covers vastly studied topochemical reactions. The space in this case is a physical
reality defining the real place where the reactions occur. If the appearance of math-
ematical topology in chemistry can be counted off the publication of the Merrifield
and Simmons monograph in 1989 (Merrifield and Simmons 1989), topochemical
reactions have been studying from the nineteenth century (see Schmidt 1971 and
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references therein). The first stage of the study was completed in the late 1920s
(de Jong 1923) and then obtained a new pulse after appearing the Woodward and
Hoffmann monograph, devoted to the conservation of orbital symmetry, in 1970
(Woodward and Hoffmann 1970). Since then, topochemical reactions have become
an inherent part of not only organic but inorganic chemistry, as well. The readers,
who are interested in this topic, are referred to a set of comprehensive reviews
(Schmidt 1971; Enkelmann 1984; Hasegawa 1986; Boldyrev 1990; MacGillivray
and Papaefstathiou 2004), but a few. The current situation in this field can be seen
by the example of a direct structural understanding of a topochemical solid-state
photopolymerization reaction (Guo et al. 2008).

Nowadays, we are witnessing the next pulse, stimulating investigations in the
field, that should be attributed to the appearance of a new class of spatially extended
molecular materials, such as sp2 nanocarbons. Obviously, the main members of
the class such as fullerenes, nanotubes, and numerous graphene-based species are
absolutely different from the formal topology viewpoint. Thus, fullerenes exist in
the form of a hollow sphere, ellipsoid, or tube consisting of differently packed
benzenoid units. Carbon nanotubes present predominantly cylindrical packing of
the units. In graphene, the benzenoid units form one-atom-thick planar honeycomb
structure. If we address the common terms of the formal topology, namely, the
connectivity and adjacency, we have to intuitively accept their different amount in
the above three species. In its turn, the connectivity and adjacency determine the
“quality” of the C–C bond structure of the species, thus, differentiating them by this
mark. Since non-saturated C–C bonds are the main target for chemical reactions of
any type, one must assume that identical reactions, involving the bonds, will occur
differently for different members of the sp2 nanocarbon family. Therefore, one may
conclude that the spatially extended sp2 nanocarbons present not only peculiarly
structural chemicals but the class of species for which the formal and empirical
topology overlap. The results presented in this chapter are aimed at revealing this
tight interconnection in terms of molecular quantum theory. Not only fullerenes but
carbon nanotubes and graphene (their fragments) are considered at the molecular
level. The obtained results are related to the computational study of the intermolec-
ular interaction (IMI) between one of the above sp2 nanocarbon molecules and one
of the other addends, among which there are both sp2 nanocarbons and monatomic
species. The intermolecular interaction lays the foundation of any reaction, so that
its topological peculiarities may evidence a topochemical character of the reaction
under study.

This chapter is organized as follows. Section 5.2 presents main concepts that
form the grounds of the IMI consideration as well as introduces terms and quantities
in use. Section 5.3 is devoted to the IMI investigation in the (C60)n composites
related to the dimerization and oligomerization of fullerene C60. The IMI pecu-
liarities, characteristic for composites fullerene-carbon nanotube (C60 C CNT) and
fullerene-nanographene (NGr) (C60 C NGr), are considered in Sects. 5.4 and 5.5, re-
spectively. Section 5.6 summarizes conclusive remarks about [2 C 2] cycloadditions
that present a typical contact zone for the three types of the studied composites.
Section 5.7 is devoted to carbon nanotube-nanographene (CNT C NGr) composites.



5 Topochemistry of Spatially Extended sp2 Nanocarbons: Fullerenes, . . . 139

Section 5.8 presents a comparative study of the topochemical behavior of the hy-
drogenation of fullerene C60 and nanographene. Topological view on the graphene
deformation is discussed in Sect. 5.9. General conclusion is presented in Sect. 5.10.

5.2 Odd Electrons and Donor–Acceptor Ability as Leitmotifs
of Intermolecular Interaction in sp2 Nanocarbons

Two cornerstones lay the foundation of the electronic properties of sp2 nanocar-
bon molecules. The first concerns odd-electron nature of their atomic system,
aggravated with the correlation of these electrons and is intramolecular by nature.
The second is provided with extremely high donor and acceptor characteristics
of these molecules and is intimately connected with intermolecular interaction
that is smoothly transformed into peculiar intramolecular properties of the species
derivatives and composites. While, on the subject of covalent bonding, which
involves any of sp2 nanocarbons, we should always proceed from the molecule
partial radicalization due to exceeding C–C bond length the critical value Rcrit

cov
1.395 Å under which the odd electrons are non-correlated and fully covalently
bound-forming classical   electron pairs and over which those become correlated
and effectively unpaired (Sheka 2011a, 2012). Thus, appeared effectively unpaired
electrons form a pool of molecular chemical susceptibility determined by the total
number of the unpaired electrons ND. Distributed over the molecule atoms by partial
number NDA, the electrons highlight the map of its chemical activity in terms of
atomic chemical susceptibility (ACS) NDA. The atom with the highest ACS first
enters the reaction.

The second fundamental property concerns IMI. In all cases, the IMI is greatly
contributed with the donor–acceptor (DA) interaction since all the sp2 nanocarbons
are simultaneously good donors and acceptors of electron (Sheka 2004, 2007a,
2011a). Within the framework of general characteristics of the DA interaction,
the IMI term configuration in the ground state depends on the difference of the
asymptotes, Egap D IA � "B, of the Eint.ACB�/ and Eint.A

0B0/ terms that
describe the interaction between molecular ions and neutral molecule, respectively.
Here, IA and "B present ionization potential and electron affinity of components
A and B. When Egap is as big as in the case of C60 dimers, the IMI term of the
ground state has a typical two-well shape (Sheka 2007a) shown in Fig. 5.1. The
formation of a stationary product AB at the point RC� is accompanied by the
creation of “intermolecular” chemical bonds between A and B partners. Oppositely,
quite widely spaced neutral moieties form a charge transfer complex A C B in the
vicinity of R00 (Sheka 2004, 2007a, 2011a). In spite of the formation of AB product
is energetically profitable, the yield of the relevant reaction, which starts from A C B
mixture at all time, is determined by a barrier that separates £ C ¥ and £¥ products.
This chapter in its main part is focused on the determination (1) how similar are
the IMI profiles for three types of composites, namely, C60 C C60, C60 C CNT, and
C60 C NGr, that include C60 as a permanent component while the other component
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Fig. 5.1 Scheme of terms
of an IMI potential of type 1
(Sheka 2011a).

�
A0B0

�
and�

ACB�

�
match the term

branches related to the IMI
between neutral molecules
and their ions, respectively

is either C60 or CNT and NGr and (2) how big is the barrier of the AB product
formation in each case. In the abbreviated form, the problem will be discussed as
regards CNT C NGr composites, as well.

It should be noted that the above-mentioned composites are similar to those
that are formed by non-saturated organic moieties, whose topochemical [2 C 2]
photocyclo-dimerization-polymerization in solid state has been the main subject of
a quite exhausted studying for many years (see Schmidt 1971; Enkelmann 1984;
Hasegawa 1986; Guo et al. 2008), but a few. However, until now these topochemical
reactions have not been considered from the position of the IMI complication caused
by the donor–acceptor interaction. Starting from the monograph of Woodward and
Hoffmann (1970), all the explanations have been concentrated on the consideration
of the formation of chemically bound AB products. As will be shown in what
follows, the consideration of the composite properties at the platform of the DA-
complicated IMI opens much larger perspectives to enter the depth of the considered
phenomenon.

This chapter presents the view of the touched problems from the insight of
quantum-chemical calculations. The main part of the results was obtained by
computations carried out by the author team when using the AM1 semiempirical
version of unrestricted broken symmetry Hartree-Fock (UBS HF) approach (Sheka
2011a, 2012).
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5.3 Fullerene C Fullerene Composites

5.3.1 Ground State Term of the C60 C C60 Dyad. Equilibrium
Structure and Mechanism of Dimerization

According to the scheme in Fig. 5.1, the reaction of the (C60)2 dimer formation can
be considered as moving the two molecules towards each other, once spaced initially
at large intermolecular distanceR, then equilibrated and coupled as A C B complex
in the R00 minimum and afterwards achieved the minimum at RC� to form tightly
bound adduct AB. The last stage implies overcoming a barrier, which is followed
by the transition from

�
A0B0

�
to
�
ACB�� branch of terms after which the Coulomb

interaction between molecular ions completes the formation of the final AB adduct
at the RC� minimum.

Concerning covalent bonding, which involves fullerene C60, we should usually
begin from the map of chemical activity of C60 in terms of atomic chemical
susceptibility (ACS) NDA (Sheka and Zayetz 2005; Sheka 2007b). Plottings of the
ACS distribution over atoms of the C60 molecule are shown in Fig. 5.2 and are
emphasized by different colors in the insert that distinguish atoms with different
ACS. Among the latter, the most active atoms are shown by light gray. Those
are the first targets involved into initial stages of any addition reaction. Following
this indication, the initial composition of a pair of the C60 molecules shown in
Fig. 5.3a becomes quite evident. The starting configuration corresponds to Rst

CC
1.7 Å that corresponds to the distances between 1–10 and 2–20 target atoms. A bound
dumbbell-like dimer is formed (Fig. 5.3b) after the structure optimization aimed at
the total energy minimization is completed. It turns out that two monomers within
the dimer are contacted via a typical [2 C 2] cycloaddition of “66” bonds that form a
cyclobutane ring (Sheka 2007a). Main electronic characteristics of the (C60)2 adduct
are presented in Table 5.1. A detailed comparison with the available computational
data is given elsewhere (Sheka 2007a). A large negative E tot

cpl value undoubtedly
evidences that (C60)2 dimer is a typical AB adduct attributed to the RC� minimum
on the IMI ground state term in Fig. 5.1.

When Rst
CC D 3:07 Å, optimization of the initial structure leads to the formation

of a weakly bound pair of molecules spaced byRfin
CC D 4:48 Å. Monomer molecules

preserve their initial configurations and, as seen from Table 5.1, form a classical
charge transfer complex. The fragment composition of the HOMO and LUMO is
cross-partitioned; the former should be attributed to Mol 2 while the latter to Mol 1,
just showing that a charge transfer from Mol 2 to Mol 1 occurs when the complex
is photoexcited.

The obtained results allow for highlighting mechanisms of C60 dimerization.
Since the IMI interaction in the C60 pair is described by two-well terms shown
in Fig. 5.1, at ambient conditions, the dimerization does not occur spontaneously
which points to the reaction barrier. According to experimental findings, the barrier
(activation energy) is 1.25 eV (Wang et al. 1994) in the case of photostimulated
dimerization and 1.40 eV (Davydov et al. 2001) when high pressure is applied.
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Fig. 5.2 Atomic chemical susceptibility of fullerene C60 (Sheka 2011a), distributed over the
molecule atoms according to either their numeration in the output file (curve with rhombs) or in
the Z ! A manner (histogram). Different colors in the insert distinguish five atomic groups shown
by the histogram

Fig. 5.3 (a) Starting
composition of the C60 C C60

dyad. (b) Equilibrium
structure of the (C60)2 dimer;
Rst

CC D 1:7 Å, Rfin
CC D 1:55 Å.

Both distances correspond to
spacings between 1–10 and
2–20 atoms
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Table 5.1 Electronic characteristics of the C60 C C60 dyad

Computed quantities, Rst
CC

UBS HF AM1 singlet state Monomer C60 1.71 Å 3.07 Å

Heat of formation1, �H, kcal/mol 955.56 1,868.49 1,910.60
Coupling energy2, E tot

cpl, kcal/mol – �42.63 �0.52
Ionization potential3, I, eV 9.86 (8.74a) 9.87 9.87
Electron affinity3, ", eV 2.66 (2.69b) 2.62 2.66
Dipole moment, Db 0.01 0.001 0.001
Squared spin, (S**2) 4.92 10.96 9.87
Total number of effectively

unpaired electrons, ND
4

9.84 21.93 19.75

Gained charge to Mol 1 – 0.0 0.0
Transferred charge from Mol 2 – 0.0 0.0
Symmetry Ci C2h Ci

HOMO, fragment compositions, � – �Mol1 D 61.8 % �Mol1 D 0 %
�Mol2 D 38.1 % �Mol2 D 100 %

LUMO, fragment compositions, � – �Mol1 D 83.9 % �Mol1 D 100 %
�Mol2 D 15.8 % �Mol2 D 0 %

Reprinted from Sheka (2007a). Copyright (2007) with permission from Elsevier
1Molecular energies are heats of formation �H determined as �H D Etot �P

A

�
EA

elec CE HEATA
�
. Here Etot D Eelec C Enuc, while Eelec and Enuc are the electron

and core energies. EA
elec and EHEATA are electron energy and heat of formation of an

isolated atom, respectively
2Coupling energy is determined by Eq. (5.1)
3Here I and " correspond to the energies of HOMO and LUMO, respectively, just inverted
by sign. Experimental data for the relevant orbitals are taken from Weaver et al. (1991)a

and Wang et al. (1999)b

4The total number of effectively unpaired electrons, ND, displays the molecular chemical
susceptibility of the species (Sheka and Zayetz 2005; Sheka 2007b)

The barrier can be overcome by different ways, which describes a large variety
of the technological schemes in use. Among the latter, there are thermal and high
pressure technologies (Yamawaki et al. 1993; Pekker et al. 1994; Iwasa et al. 1994),
field-stimulated dimer formation and decomposition (Zhao et al. 1994; Nakaya
et al. 2008), but the first place is taken by the photoexcitation technology (Ecklund
et al. 1995).

A triplet state photochemical mechanism is usually accepted, according to which
one monomer in the excited triplet state 3M* reacts with the other monomer in
the ground state M to yield the dimer D, that is, 3M* C M ! D. This view on the
mechanism of the photopolymerization has come from those topochemical reactions
that were discussed earlier. However, another mechanism seems to be more efficient.
As shown above, two C60 molecules separated by �4.5 Å form a charge transfer
complex at the point R00 (Sheka et al. 2007). In solid C60, photostimulated charge
transfer between adjacent molecules causes the appearance of charge transfer
excitons (Pac et al. 1998; Kazaoui et al. 1998). The related absorption bands, both
in molecular solutions and solids, are provided by phototransitions out of minimum
R00 belonging to the term Eint.A

0B0/ to the branch of the term Eint.A
CB�/
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(see Fig. 5.1) in due course of which the ground state of weakly interacting neutral
molecules is transformed into the charge transfer state of molecular ions. By this
means, photoexcitation of a van der Waals C60 pair by visible-UV light is followed
by the formation of the ion pair located above the barrier. Coulomb’s interaction
between the ions provides their passing towards theRC� minimum where the dimer
is formed.

This mechanism may explain a severe requirement, known for more than a
century, for solid-state photostimulated reactions: the molecular moieties should
be spaced not more than 4.2–4.7 Å for the topochemical photodimerization-
oligomerization to occur (Schmidt 1971; Enkelmann 1984; Friscicô and
MacGillivray 2005). The distance is characteristic for R00 that determines the
equilibrium spacing in charge transfer complexes. If the formation of the charge
transfer complex provides this photoreaction, the encountered molecules should be
simultaneously donors and acceptors of electrons. During the preparation of this
chapter, the author has proven the “4.2–4.7” rule for such typical representatives of
the discussed topochemical reactants as ’-cinnamic acid and n-diethynilbenzene.
As turned out, they both are good donors and acceptors of electrons, indeed.

5.3.2 The Barrier for the Formation and/or Decomposition
of (C60)2 Dimer

To get the barrier profile of the reaction under consideration, it is necessary not only
to determine equilibrium configurations A C B and AB but to trace a continuous
transition from one state to the other. Computationally, it is no difference to study
the profile by either shifting monomer molecules of the A C B complex towards
each other, thus contracting the corresponding intermolecular C–C distances and
determining the barrier of the C60 dimerization or separating the molecules of the
AB product by elongation of the relevant intermolecular C–C bonds and thus getting
the barrier of the dimer decomposition. In contrast to the equilibrium configuration
A C B, which does not critically depend on mutual orientation of the partners, a
particular combination of the partners’ atoms constructs the contact zone of the AB
product (see Fig. 5.3a). Since that, the determination of the decomposition barrier
is more structurally substantiated. The procedure involves a regular elongation of
the relevant intermolecular bonds of the equilibrium AB structure. These bonds are
kept fixed at each elongation step while C60 molecules relax in looking for the total
energy minimum. According to this, two intermolecular C–C distances, namely,
1–10 and 2–20 separations of the [2 C 2] cycloaddition in Fig. 5.3b, are gradually
elongated with a constant increment of 0.05 Å during the first stage of elongation
from 1.57 to 2.22 Å and then of 0.1 Å during the second stage. Figure 5.4 presents a
profile of thus obtained barrier for the dimer (C60)2 decomposition presented by the
total coupling energy E tot

cpl determined as

E tot
cpl.RCC/ D �Hdim.RCC/ � 2�H eq

mon; (5.1)
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Fig. 5.4 Profile of the barrier
of the dimer (C60)2

decomposition (Reproduced
from Sheka and
Shaymardanova (2011b),
with permission from the
Royal Society of Chemistry).
1. E tot

cpl.RCC/; 2. E tot
def.RCC/;

3. E tot
chem.RCC/ (see text)

where �Hdim.RCC/ and �H eq
mon are heats of formation of dimer at the current

intermolecular distance RCC and of monomer in equilibrium, respectively. This
energy is evidently complex by nature since, at least, two components contribute
into its value, namely, the energy of both monomers deformationE tot

def and the energy
of the covalent coupling E tot

cov between the monomers. The former component can
be determined as

E tot
def.RCC/ D �H

op
mon1.RCC/C�H

op
mon2.RCC/� 2�H eq

mon: (5.2)

Here, �H op
mon1.RCC/ and�H op

mon2.RCC/ present the one-point-geometry heats of
formation of the skeletons of both monomer molecules of the C60 C C60 dyad at a
given intermolecular distance RCC. The second componentE tot

cov is determined as

E tot
cov.RCC/ D E tot

cpl.RCC/ �E tot
def.RCC/: (5.3)
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The discussed distance-dependent energies are shown in Fig. 5.4. As seen in the
figure, the deformation energy is the largest in equilibrium dimer and then steadily
decreases when RCC grows, once positive, until approaching zero when monomers
are spaced by more than 3 Å. Similarly, the energy of the covalent coupling is
the largest in equilibrium dimer then steadily decreases by the absolute value
being negative and showing a clearly vivid maximum that coincides with that of
E tot

cpl.RCC/. Proceeding with further spacing, the energy falls by the absolute value,

changes sign in the vicinity of R00 �4.4 Å, once being small by the absolute value,
and then approaches zero for largely spaced monomers. Referring to schemes of
electronic terms in Fig. 5.1, one should accept that this is the energy E tot

cov that
should be attributed to the netto barrier profile. However, the energy E tot

cpl.RCC/

as a brutto barrier profile will obviously govern the formation of fullerene dimers
in practice. Obviously, the obtained barrier is identical to the dimerization barrier
that corresponds to the energy-distance dependence when going from initially large
spacing between the monomers regularly contracting the latter.

5.3.3 C60 Oligomers

The detailed study of the IMI term’s profiles, which governs C60 dimerization
discussed above, opens the way to throw light on peculiarities of the C60 oligomer-
ization. Reasonably, the oligomerization can be computationally considered as
a stepwise reaction .C60/n D .C60/n�1 C C60 for which the IMI term of the
Œ.C60/n�1CC60� dyad controls the formation of the final product .C60/n. One cannot
exclude more complex scheme, such as .C60/n D .C60/mC.C60/k where m C k D n,
.C60/n D .C60/m C .C60/k C .C60/l where m C k C l D n, and so forth. However,
all the schemes are subordinated to common regularities whose main characteristics
can be considered for the .C60/n�1 C C60 dyad as an example.

If accepting that the type of IMI terms is mainly determined by Egap D
IA � "B as discussed in Sect. 5.3.1, passing to oligomers one faces a peculiar
situation characteristic for fullerenes. The matter is that both ionization potential
and electronic affinity of .C60/n oligomer only slightly depend on n and practically
coincide with those related to monomer molecule. This can be seen in Table 5.1
for dimer and has been computationally justified for oligomers of complex structure
characterized by n varying up to 10 (Sheka et al 2006). Consequently, the IMI term
of the C60 C C60 dyad determines the general behavior of both .C60/n�1 C C60 and
.C60/m C .C60/k dyads at each successive step of oligomerization. As in the case
of dimers, two products, namely, either .C60/n�1 C C60 or .C60/m C .C60/k , charge
transfer complexes, and .C60/n oligomer will correspond to equilibrium positions
at R00 and RC� minima of the IMI term, respectively. Following this suggestion
and taking into account the main concepts of computational chemistry of fullerenes,
one can suggest a definite scheme of the expected successive oligomerization of
C60 molecules when going, say, from dimer to tetramer within the .C60/n D
.C60/n�1 C C60 oligomerization scheme, as shown in Fig. 5.5.
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Fig. 5.5 Stepwise oligomerization of C60 from dimer to tetramer. Equilibrium structures. Crossed
arrows indicate unfavorable continuations. Coupling energies constitute –42.23 kcal/mol (dimer);
�74.73 kcal/mol (trimer); �164.63 kcal/mol (tetramer 1); �13.84 kcal/mol (tetramer 2);
�117.66 kcal/mol (tetramer 3) (Reproduced from Sheka and Shaymardanova (2011b), with
permission from the Royal Society of Chemistry)

According to the ACS map of dimer .C60/2, there are four pairs of high-rank NDA

atoms that are marked by red balls in the right low corner of Fig. 5.5. The first two
pairs combine the most reactive atoms adjacent to the cycloaddition (below, contact-
adjacent or ca atoms) (see atoms 3, 4, 5, and 6 in Fig. 5.3). Next by reactivity four
atoms are located in equatorial planes of both monomers (below, equatorial or eq
atoms). In spite of high chemical reactivity of ca atoms, those are not accessible
in due course of the further oligomerization so that eq atoms of both monomers
are actual targets. Following these ACS indication, a right-angle triangle trimer
(90ı-trimer) must be produced. Therefore, not the “pearl necklace” configuration,
intuitively suggested as the most expected for C60 oligomerization (Fischer 1994),
but more complicated 2D one is favorable for trimerization.

Similarly, the high-rank NDA atoms of trimer as seen in Fig. 5.5 form an
incomplete ca pair of the highest activity and three pairs of eq atoms of comparable
activity. Three tetramer compositions, which follow from the high-rank ACS
indication related to trimer, are shown in Fig. 5.5. None of them is among the
“pearl necklace” family thus presenting 2D tetramers 1 and 2 and 3D tetramer 3.
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Among the latter, tetramer 1 possesses the least energy and is expected to continue
the oligomerization offering its high-rank NDA atoms, marked by red balls, as targets
for the next C60 addition. Those form six pairs of the most active ca atoms and four
pairs of eq atoms, position of which dictates the continuation of oligomerization as
the formation of 3D configurations of pentamers.

Before passing to comparison with experimental data, it should be noted that the
considered oligomerization is related to the addition reaction that occurs between
partners in a vacuum without any constrains on their orientation. Empirical reality
turns out to be much more complicated since the performed experiments differ
quite drastically when going from the study of C60 clusters in the gas phase (see
Hedén et al. 2005; Enders et al. 2006 and references therein) to that one in solutions
(Sun et al. 1995), solid films and powders (Ecklund et al. 1995; Pusztai et al.
1999; Nakayama et al. 1999; Kunitake et al. 2002; Nakaya et al. 2008), and solids
(Núñez-Regueiro et al. 1995; Soldatov et al. 2001; Zhang et al. 2010). All the studies
clearly evidence the formation of (C60)n clusters with n D 2, 3, 4, and more while
the information concerning the cluster’s structure is rather scarce. The best situation
concerns dimers whose dumbbell-like structure was proven by many ways (see
Sheka 2007a and references therein). Applying to trimers, there are two sources
of information related to different ways of their production that conditionally can be
denoted as “chemical” (Kunitake et al. 2002) and “physical” (Nakayama et al. 1999;
Nakaya et al. 2008). “Chemical” experiments deal with C180 species produced in due
course of solid-state mechanochemical reaction under high-speed vibration milling
conditions. The final product exhibits two fractions (A and B in the ratio of �5:4),
the former predominantly (�60 %) consisting of 90ı-trimers while 100 % of the
latter is presented by cyclic 60-trimers. “Physical” experiments deal with trimers
produced under photoillumination of either C60 films preliminarily deposited on
some substrates (Ecklund et al. 1995; Nakayama et al. 1999; Nakaya et al. 2008)
or pristine C60 crystal (Núñez-Regueiro et al. 1995). Linear three-ball chains were
observed in these studies only.

Evidently, all the above experimental procedures put additional restriction on the
space where the reactions occur. Here, we are facing a quite unique situation, once a
consequence of the simultaneous action of two topologies, one of which is inherent
to fullerene molecule while the other is provided by external conditions. From this
viewpoint, even a predominant presence of 90ı-trimers within fraction A of the
“chemical” experiment cannot be considered as a doubtless proof of compositions
predicted by the ACS-guided covalent chemistry of C60 since three other 108ı-,
120ı-, and 144ı-trimers, observed within fraction A, as well as 60ı-trimers of
fraction B (Kunitake et al. 2002) seriously contradict the scheme shown in Fig. 5.5.
Even more stronger contradiction is revealed by comparison with the “physical”
experiments that exhibit only linear “pearl necklace” trimers, the less probable in
accordance with the ACS-based analysis. At the same time, compositionally simple
“physical” findings evidently connect the trimerization events with a predetermined
molecular packing. As known, the latter is evidently the main factor for any
topochemical reaction, firstly attributed to fullerenes when explaining both the linear
trimerization and linear polymerization of C70 in solid state (Soldatov et al. 2001).
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From this viewpoint, the production of linear orthorhombic crystalline modification
of polymerized C60 (Núñez-Regueiro et al. 1995) should be considered as a result
of the relevant topochemical reaction. On the other hand, the mechanochemical
reaction, responsible for triangle trimers, evidently has a topological odor as well
thus providing formation of differently configured trimers due to obvious anisotropy
of the stress application to the pristine C60 crystal under milling.

The situation with tetramers is not simple, as well. The first suggestion con-
cerning a closed structure of (C60)4 clusters analogous to tetramer 1 in Fig. 5.5
was issued for clusters in solutions (Sun et al. 1995). Later on, the suggestion
was supported by the analysis of Raman spectra of photoilluminated C60 powders
(Pusztai et al. 1999) as well as direct STM observation of deposited (C60)n

clusters on the (111) surface of gold (Zhang et al. 2010). In spite of a seemingly
favorable fitting of the experimental data to the predicted ones, one has to take
into account that both experiments are performed under evident conditions that
favor topochemical reactions. Thus, not only (C60)4 clusters deposited on the gold
surface have 2D tetragonal shape similar to tetramer 1 but all other (C60)n clusters
with n> 4 clearly exhibit 2D configurations in contrast to the predicted 3D ones
for pentamers and higher oligomers, which follows from the high-rank NDA ACS
indication concerning the tetramer 1 structure shown in Fig. 5.5. The tendency of
(C60)n clusters to be inclined to topochemical reaction is uppermost realized in
1D orthorhombic as well as in 2D tetragonal and rhombohedral configurations of
polymerized C60 crystals, whose production is controlled by varying one-direction
contraction of the pristine C60 crystal structure at high pressures and temperatures
(Núñez-Regueiro et al. 1995).

5.4 Fullerene C60 C Carbon Nanotube Composites

5.4.1 Barrier Profile for C60-CNT Nanobuds

There have been known a few attempts to synthesize C60 C CNT complexes that
present a single structure in which the fullerenes are covalently bonded to the
tube body. A few techniques have been suggested to obtain C60 C CNT composites
in which fullerene is located either inside (see Giacalone and Martı́n 2010 and
references therein) or outside (Li et al. 2003, 2007; Nasibulin et al. 2007a, b) the
CNT wall. The terms peapod (Giacalone and Martı́n 2010) and carbon nanobud
(CNB) (Nasibulin et al. 2007a) were suggested to distinguish the two configurations.
For the first time, the C60 nanobud based on a single-wall CNT (SWCNT) was
obtained by means of solid-phase mechanochemical reactions (Lee et al. 2000). The
next time, the C60 C SWCNT nanobud was synthesized via a microwave-induced
functionalization approach (Li et al. 2003). The findings have led the foundation for
a further large investigation aimed at producing fullerene-functionalized SWNTs
(Li et al. 2007; Nasibulin et al. 2007b; Tian et al. 2008).
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Computational consideration of CNBs has been restricted so far to three publica-
tions (Li et al. 2007; Wu and Zeng 2008; Sheka and Shaymardanova 2011b). Two
former computations were performed in the framework of the density functional
theory (DFT) using periodic boundary conditions (PBCs) in the restricted closed-
shell approximation. A few different compositions of intermolecular C–C bonds
forming the contact zone on the sidewall of the tubes have been considered among
which [2 C 2] cycloaddition turned out to be the most efficient. An alternative
approach, which considers the formation of CNB in terms of molecular theory
as a result of a DA reaction whose general energetic scheme is presented in
Fig. 5.1, is given in the third publication. Broken symmetry approach, based
on unrestricted open-shell Hartree-Fock approximation, forms the computations
ground. The approach is more suitable for partially radicalized both fullerene C60

and CNTs (Sheka and Chernozatonskii 2010b; Sheka 2011a) than above-mentioned
restricted DFT one and suggests much more picturesque vision of the CNBs
formation and properties.

5.4.2 UBS HF Computational Synthesis of Carbon Nanobuds

Partial radicalization of CNTs is due to a rather strong correlation of their odd
electrons (Sheka 2012). The appearance of effectively unpaired electrons is resulted
from the exceeding of C–C bond lengths the critical value Rcrit

cov (Sheka and
Chernozatonskii 2010b), similarly to the situation with fullerenes discussed in
Sect. 5.3.1. Distributed over the tube atoms by fractional number of NDA, the
effectively unpaired electrons highlight the map of the tube chemical activity in
terms of atomic chemical susceptibility (ACS) NDA. Figure 5.6 presents the ACS
distribution over atoms of two (4, 4) SWCNTs shown in Fig. 5.7. The tubes differ
by the end atom termination only.

As seen in Fig. 5.6, there are three zones in the ACS distribution related to the
tube caps, sidewalls, and ends, respectively. Accordingly, one can choose three pairs
of target atoms on tube 1 (1, 2, and 3), which are shown by red dots on the curve, and
two pairs on tube 2 (4 and 5) shown by red bars. As was discussed in Sect. 5.3.1,
the most active atoms of fullerene C60 form particularly oriented two hexagons,
each atom of which is the target that first meets any addend. The two features,
related to chemical portraits of CNTs and fullerene molecule, make it possible to
construct five starting configurations of possible [C60 C (4,4)] CNBs that alongside
with equilibrium structures are presented in Fig. 5.8. The starting intermolecular
C–C distances were taken 1.7 Å.

Figure 5.9a, b present changing in the ACS maps of both (4, 4) SWCNT and
fullerene C60 related to CNB 5. As seen in the figure, the attachment of the fullerene
molecule to the sidewall of the tube causes only local changing that concerns atoms
participating in the formation of the [2 C 2] cycloaddition. The other part of the
atomic activity distribution of the tube retains non-perturbed. This finding evidently
favors a multiple attachment of fullerenes to the tube sidewall in a superposition
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Fig. 5.6 Distribution of the atomic chemical susceptibility NDA over atoms of (4, 4) single-
walled carbon nanotubes with empty (curve with dots) and hydrogen-terminated (histogram)
ends (Reproduced with permission from International Journal of Quantum Chemistry, Sheka and
Chernozatonskii 2010c. Copyright (2010) by John Wiley & Sons, Inc.). The atom numbering
corresponds to that one over the tubes from the tube caps to their ends. Ringed numbers denote
atom pairs subjected to further C60 addition (see text)

Fig. 5.7 Equilibrium
structures of (4, 4)
single-walled carbon
nanotube with empty (tube 1)
(a) and hydrogen-terminated
(tube 2) (b) ends

manner. Oppositely, the fullerene ACS map changes considerably indicating a
significant redistribution of the atomic chemical activity over the molecule atoms
after attachment. Red dots on plotted curve in Fig. 5.9b highlight new the most
active atoms prepared for the next reaction events.
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Fig. 5.8 Starting (left) and equilibrium (right) structures of carbon nanobuds formed by attaching
C60 to (4, 4) single-walled carbon nanotube with empty (1–3) and hydrogen-terminated (4, 5)
ends. Figures number the nanobuds (Reproduced from Sheka and Shaymardanova 2011b, with
permission from the Royal Society of Chemistry)

To check a high tolerance of the tube body to a multiple attachment of the
fullerene molecules, two and three C60 molecules were attached to an elongated
(4, 4) SWCNT (tube 3) forming CNB 6 and CNB 7 (see Fig. 5.10). As shown
(Sheka and Chernozatonskii 2010b), the tube elongation causes the elongation of
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Fig. 5.9 Evolution of the atomic chemical susceptibility distribution caused by carbon nanobuds
formation. (a) Tube 2 (CNB 5); (b) fullerene C60 (CNB 5); (c). tube 3 (CNB 7) (see text).
Histograms present data for the pristine species (Reproduced from Sheka and Shaymardanova
2011b, with permission from the Royal Society of Chemistry). Curve with dots plot data related to
the formed CNBs
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Fig. 5.10 Equilibrium structures of [C60 C (4, 4)] CNBs related to double (CNB 6) and triple
(CNB 7) attachments of C60 to the sidewall of (4, 4) single-walled carbon nanotube with hydrogen-
terminated ends (Reproduced from Sheka and Shaymardanova (2011b), with permission from the
Royal Society of Chemistry)

the sidewall zone in the ACS map only and does not touch either cap or end
atom regions. That is why the conditions for the formation of CNBs 5, 6, and 7
are practically identical. All the attached C60 molecules are joined with the tube
sidewall via [2 C 2] cycloadditions. Changing in the ACS distribution related to
tube 3 is shown in Fig. 5.9c. A clearly seen superposition of the three attachments
is perfectly exhibited by the map, indicating that practically countless number of
fullerene molecules can be attached to SWCNTs long enough.

Figure 5.11 presents a collection of typical [C60 C (4,4)] CNBs whose detail
analysis shows that the intermolecular junctions as [2 C 2] cycloadditions are
formed only in the case when fullerene is covalently coupled with the tube sidewalls.
This concerns CNBs 2, 6, and 7 while the junctions in CNBs 1 and 3 are not
[2 C 2] cycloaddition in spite of four-atom membership. Coloring most active
fullerene atoms highlights targets on the C60 body that may stimulate a further
chemical modification of the CNBs. As seen in the figure, in all the cases of
[2 C 2] cycloadducts, the evolution of chemical activity of fullerene in CNBs is
the same and practically identical to that one typical for the C60 oligomerization
(ca. Fig. 5.5). As previously, the most active atoms form pairs of contact-adjacent
ca atoms that are followed by slightly less active equatorial eq atoms. Obviously, ca
atoms are accessible only for small addends while eq atoms take the responsibility
on themselves when continuing the CNBs chemical modification via subsequent
expanded attachments to the fullerene that intend to be the best suitable for a
particular application. As for CNBs 1 and 3, the situation is somewhat different.
However, a predetermined position of ca and eq atoms makes a further modification
of CNBs via attached C60 predictable and controlled in all the cases.



5 Topochemistry of Spatially Extended sp2 Nanocarbons: Fullerenes, . . . 155

Fig. 5.11 Equilibrium structures of [C60 C (4, 4)] CNBs (Reproduced from Sheka and Shaymar-
danova (2011b), with permission from the Royal Society of Chemistry). Red balls indicate atoms
of fullerene C60 with the high-rank NDA values

Table 5.2 Energetic characteristics of equilibrium [C60 C (4,4)] CNT nanobuds, kcal/mol

Nanobudsa E tot
cpl E tot

def Edef CNT Edef C60 E tot
cov

1. (cap) �36,33 51,16 10,62 40,53 �87,48
2. (wall) �3,38 59,64 24,64 35 �63,02
3. (end) �86,65 47,65 8,25 39,4 �134,31
4. (cap) 3,09 114,38 62,76 51,62 �111,29
5. (wall) �4,26 74,33 39,26 35,07 �78,59
6. (wall) �8,21 (�4,10)b 155,62 85,33 (42,66)b 70,29 (35,15)b �163,83 (�81,92)b

7. (wall) �11,02 (�3,67)b 221,64 116,59 (38,86)b 105,05 (35,02)b �232,66 (�79,55)b

Reproduced from Sheka and Shaymardanova (2011b), with permission from the Royal Society of
Chemistry
aFigures number CNBs as in Figs. 5.8 and 5.10
bData per one attached C60 molecule

5.4.3 Energetic Parameters and Reaction Barrier
of Carbon Nanobuds

Energetic characteristics related to a set of [C60 C (4,4)] CNBs are presented in
Table 5.2. The coupling energy E tot

cpl is determined as

E tot
cpl D �HCNB ��HCNT ��HC60 : (5.4)
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Here,�HCNB,�HCNT, and�HC60 present heats of formation of the equilibrium
structures of CNB, (4,4) SWCNT, and C60, respectively.

As discussed in Sect. 5.3.2, the total coupling energy reflects two processes that
accompany the fullerene attachment to the tube, namely, the deformation of both
CNB components and their covalent coupling. The energy caused by deformation is
determined as

E tot
def D Edef CNT C Edef C60 ; (5.5)

where

Edef CNT D �H
op
CNT=CNB.RCC/��H eq

CNT and Edef C60 D �H
op
C60=CNB.RCC/��H eq

C60
:

(5.6)

Here, �H op
CNT=CNB.RCC/ and �H op

C60=CNB.RCC/ present heats of formation of the
one-point-geometry configurations of the SWCNT and fullerene components of the
CNBs equilibrium configurations corresponding to the intermolecular distanceRCC.
Accordingly, the chemical contribution into the coupling energy is determined as

E tot
cov D E tot

cpl � E tot
def: (5.7)

The data listed in Table 5.2 show two distinct features. The first concerns the
difference in the energetic characteristics of CNBs, fullerene component of which is
attached to either the cap or end atoms of the tube. The second is related to a close
similarity of the latter for CNBs with fullerene attached to the tube sidewall. As seen
in the table, the empty end of the tube, once the most active according to the ACS
map in Fig. 5.6, provides the fullerene attachment with the biggest coupling energy
and the smallest deformation energy related to the tube. It means that, at any contact
of such tube with fullerene (as well as with any other addend), the first attachment
occurs at the tube end. The next events will take place at the tube cap. The coupling
energy decreases by 2.4 times while the deformation energy slightly increases. After
these two events, there comes a turn of the tube sidewall, but the coupling energy
decreases by �26 times when the deformation energy increases three times. The
three events are quite superpositional as can be seen in Fig. 5.12. Each addition
concerns a strictly local area so that highly active attachments to the end and cap
region should not prevent from covering the main tube body by multiple attached
fullerenes.

Figure 5.13 presents the dependence of the basic energetic characteristics of the
CNBs on the C–C intermolecular distance RCC by the example of CNB 5. As in the
case of fullerene dimers discussed in Sect. 5.3.2, the barrier energy computation
follows a stepwise elongation of two C–C bonds, which provide intermolecular
contact via [2 C 2] cycloaddition, starting from the equilibrium configuration of the
bud. The first minimum of the coupling energy E tot

cpl is located at RCC D 1.57 Å and

constitutes �4.26 kcal/mol. The maximum position at 2.05 Å shows that at starting
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Fig. 5.12 Evolution of the atomic chemical susceptibility distribution over tube 1 under CNB
formation when C60 is attached to the tube empty end (a), cap (b), and sidewall (c) (Reproduced
from Sheka and Shaymardanova (2011b), with permission from the Royal Society of Chemistry).
Histograms present data for the pristine tube. Curves with dots plot the data related to the formed
CNBs 1, 2, and 3, respectively. Circled dots mark atoms, to which fullerene is attached. Atom
numbering corresponds to that one in the output files
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Fig. 5.13 Profile of the
barrier of the [C60 C (4, 4)]
CNB decomposition (CNB 5)
(Reproduced from Sheka and
Shaymardanova (2011b),
with permission from the
Royal Society of Chemistry).
1. E tot

cpl.RCC/; 2. E tot
def.RCC/;

3. E tot
chem.RCC/ (see text)

distances exceeding this value, CNT and C60 form a weakly coupled complex
with equilibrium spacing between components of 4.47 Å and coupling energy of
�0.06 kcal/mol. The complex possesses all the characteristics of the charge transfer
one, where CNT donates while C60 accepts electron under photoexcitation. Here we
meet again the confirmation of the “4.2–4.7 Å” rule that governs photodimerization
and/or oligomerization of C60 molecules discussed in Sect. 5.3.1. A deep parallelism
in the behavior of fullerene molecules, either singly bound to the tube body or in a
company with other molecules in the case of multiple attachments, provides a good
reason to expect the same parallelism between the energy dependences for these
molecules, as well.

Since the contact zone between components of (C60)2 dimer and the considered
CNB is presented by [2 C 2] cycloaddition, one could expect a deep similarity in
the barrier profiles in the two cases. However, a comparison of plottings presented
in Figs. 5.4 and 5.13 has revealed that this expectation has been realized only
partially. Actually, one can see a similarity of the profile shape related to both the
total coupling energy E tot

cpl and E tot
def, E

tot
cov components in both cases. At the same

time, the difference in numerical values of all the energies is so pronounced that
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starting at much shallower minimum ofE tot
cpl in the case of CNB, much lesser barrier

for the CNB formation and/or decomposition is achieved. So far no explanation
of the difference other than the revealing of topochemistry of the addition reactions
C60 C C60 and C60 C CNT can be suggested. A deep analysis of similar reactions for
C60 C NGr dyads, given in the next section, convincingly supports the suggestion
and exempts it from the last doubts.

5.5 Fullerene C60 C Graphene Composites

5.5.1 Barrier Profile for C60 C NGr Nanobuds

In contrast to fullerene oligomers and carbon nanobuds, the latter known now not
only for C60 but for C70 as well (Nasibulin et al. 2007b; Tian et al. 2008), no
indication of the existence of chemically bound fullerene-NGr compositions has
been so far obtained. In contrast, it is worthwhile to remind a curious observation
of intercalation of a graphite monolayer (authors’ term) on iridium substrate by C60

molecules from a thick film made of fullerene deposited over graphene at T �800 K
(Rut’kov et al. 1995), which speaks about a quite particular binding of the fullerene
molecule with graphene.

Computations performed by Wu and Zeng (2009) were first to lift the veil
above the feature. They have shown that the reaction of covalent addition of C60

to graphene basal plane is endothermic and requires a considerable amount of
energy in contrast to (C60)2 dimer and [C60 C (4,4)] CNBs discussed in Sects. 5.3
and 5.4. However, the mentioned computations have been carried out in a standard
configuration of the spin-restricted close-shell PBC DFT approach in spite of the
fact pointed by the authors themselves that local and semilocal functionals in DFT
generally give poor description of weak interaction. Similarly, insufficient is the
response of the technique to the correlated odd electrons of graphene that is why
test calculations of the authors within a spin-unrestricted DFT could not show any
difference from the spin-restricted one due to overpressing the configurational part
of the functionals. Similar test performed within the framework of the UBS HF
approach (Sheka and Shaymardanova 2011b) results in 23 % (or 641.6 kcal/mol by
the absolute value) lowering of the total energy of the (9, 9) NGr (the nomenclature
follows the suggested in Gao et al. (2008)), which was chosen as supercell in the
PCB DFT computations (Wu and Zeng 2009), when going from RHF to UBS HF
approach.

Besides what has been said above, describing possibility to arrange periodic
graphene nanobuds (GNBs), Wu and Zeng concentrated their attention on the basal
plane of (9, 9) NGr as a substrate for a single C60 leaving the sheet edges aside as
well as supposing homogeneous chemical activity of carbon atoms through over
the sheet. It is actually not the case since a high non-homogeneity in the ACS
distribution over NGr atoms divides its space into three regions, namely, zigzag
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and armchair edges and the basal plane (Sheka and Chernozatonskii 2010c, d)
similarly to cap, end, and sidewall of SWNT discussed in the previous section. This
circumstance forms the grounds for the dependence of the formed nanobuds from
the place of location of C60 and the state-of-the-art termination of both end and
edge atoms. Empirically, the extreme chemical activity of the graphene edge atoms
has been observed for various addends (Yan et al. 2012). Computationally, it has
been predicted for such addends as carbon nanotubes (Sheka and Chernozatonskii
2010a) and C60 (Sheka and Shaymardanova 2011a). Obviously, the feature is of
a particular importance for elaborating technology of producing graphene-based
nanocarbon composites.

As was shown by the example of fullerene C60 (Sheka 2011a), the best way
to eliminate features related to spatial inhomogeneity of the chemical activity of
the molecule is to perform a computational stepwise synthesis of the derivatives in
an algorithmic manner following the high-rank ACS value at each addition step.
However, when the molecule is spatially extended such as CNTs and graphene
sheets, different parts of the molecules may enter the reaction simultaneously, which
drastically complicates the computational analysis, particularly when these parts are
characterized by different chemical activity as is the case of CNT and graphene and
when their electronic systems are interconnected. This circumstance faces one the
problem of the substitution of a single-reaction approach usually used at simulations
with a multi-reaction one. So far there has not been any multiple-reaction approach
that could consider a simultaneously occurring community of reactions under so
complicated conditions. A conventional single-reaction approach, applied to either
solitary or stepwise reaction, can describe a multiple reaction only if the latter
presents a set of events, nondependent on each other. As shown in the preceding
section, such an approach was quite accessible for the description of CNBs.
A similar superpositional approach was applied in Sheka and Shaymardanova
(2011b) to the [C60 C (5, 5)] GNB to trace the dependence of the reaction product on
the place of contact of the C60 molecule with (5, 5) NGr. As previously with dimer
(C60)2 and CNBs, each of the reaction related to the formation of [C60 C (5, 5)]
GNB is considered in terms of the scheme shown in Fig. 5.1.

5.5.2 Computational Single-Reaction Synthesis
of Graphene Nanobuds

Similarly to fullerenes and CNTs, the length of C–C bonds in graphene noticeably
exceeds the critical value Rcrit

cov at which a complete covalent bonding of the relevant
odd electrons is terminated, so that odd electrons of graphene are quite strongly
correlated (Sheka 2011a, 2012) and effectively unpaired, thus providing quite
valuable molecular chemical susceptibility ND of the NGr molecule as a whole
and noticeable atomic chemical susceptibility (ACS) NDA related to each atom.
Distributed over the NGr atoms, NDA maps the chemical activity of the molecule
atoms. Figure 5.14 presents the ACS distributions over atoms of (5, 5) NGr under
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Fig. 5.14 Equilibrium structures (left) and chemical portraits (right) of (5, 5) nanographene with
empty (a) and hydrogen-terminated edge atoms by one (b) and two (c) terminators per carbon atom.
Vertical scales determine the NDA values amplitude. Distribution of the chemical susceptibility over
nanographene atoms (d) light gray histogram (a), black curve with dots (b), and dark red curve
with dots (c) (Reproduced from Sheka and Shaymardanova (2011b), with permission from the
Royal Society of Chemistry)
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conditions when the sheet edges are either non-terminated (empty) (a) or hydrogen-
terminated by one (single-H) (b) and two (double-H) (c) atoms per one carbon. The
color pictures present “chemical portraits” of the three molecules while plotting in
Fig. 5.14d discloses the ACS distributions by the absolute values.

As seen in the figure, the portraits diverge considerably exhibiting the difference
in both molecular and atomic chemical activity making the three molecules abso-
lutely different with respect to the same chemical reactions. Non-terminated sheet is
the most reactive. Then follow single-H- and double-H-terminated ones, the latter is
the least active with respect to the total molecular susceptibility. In the case of C60,
its addition to the graphene sheet will obviously occur quite differently depending
on particular-edge sample and the place of contact to the latter. Since zigzag and
armchair edges as well as basal plane are the main space marks of graphene, let
us consider possible situations concerning the C60 attachment to the (5, 5) NGr in
view of the variation of both contact places and chemical termination of edge atoms.
Each place-located reaction will be analyzed basing on the ACS distribution over the
atoms related to the chosen place configuration.

As turned out, in all the cases, the chemically bound products are formed when
the starting intermolecular C–C distances are less than 2.0 Å. At longer distances,
each pair of C60 and (5, 5) NGr forms a classical charge transfer complex where
graphene’s atoms contribute into the HOMO while C60’s atoms govern the LUMO,
which causes the charge transfer from NGr to fullerene under photoexcitation.

5.5.2.1 Deposition of C60 on (5, 5) Nanographene
with Non-terminated Edges

According to the ACS map in Fig. 5.14a, atoms of zigzag empty edges are
characterized by the highest ACS values. Approaching the edge, fullerene molecule
will orient itself in such a way to provide the closeness between its most reactive
atoms with two zigzag carbon atoms thus providing the formation of GNB 1
(see Fig. 5.15). Equilibrium structure of the formed GNB is shown next to the start
configuration alongside with the ACS maps related to the graphene constituent of
the GNB formed. Energetic parameters are presented in Table 5.3. We shall refer so
far to the total coupling energy E tot

cpl only, leaving the discussion of other quantities
to the next section. The coupling energy is determined as

E tot
cpl.RCC/ D �HGNB.RCC/��H

eq
NGr ��H eq

C60
; (5.8)

where �HGNB.RCC/, �H
eq
NGr, and �H

eq
C60

determine heats of formation of the
considered equilibrium GNB, characterized by intermolecular distance RCC as well
as equilibrated NGr and fullerene C60, respectively. As seen in the table, GNB 1
formation is accompanied by high coupling energy whose negative sign points to
the energetically favorable process.
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Fig. 5.15 [C60 C (5, 5)] graphene nanobuds formed by attaching C60 fullerene to zigzag (1) and
armchair (2) edge atoms as well as to the basal plane (3) of (5, 5) nanographene. Starting (left) and
equilibrium (right) configurations with ACS maps of the latter. Red balls on equilibrium structures
point fullerene atoms with the high-rank ACS values (Reproduced from Sheka and Shaymardanova
(2011b), with permission from the Royal Society of Chemistry)

Looking at the ACS map of GNB 1 in Fig. 5.15, one can easily trace the effect of
C60 attachment to the graphene substrate. Thus, two brightly shining zigzag atoms
in the left, upper corner of the map in Fig. 5.14a are substituted with two dark spots
in Fig. 5.15 while ACS of the remainder atoms is less altered. The quantified change
in the ACS is presented by plottings in Fig. 5.16. The behavior of the attached
fullerene seems to be quite similar to that considered in the previous sections. The
molecule remains still chemically active. Its ACS map considerably changes after
addition revealing new target atoms shown by red balls on equilibrium structures.
The fullerene activity zone is quite similar to that one related to CNB 1 in Fig. 5.11
that should be expected due to zigzag structure of the (4, 4) SWCNT open end.
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Table 5.3 Energetic characteristics of equilibrium [C60 C (5,5)]
graphene nanobuds, kcal/mol

Compositea E tot
cpl E tot

def Edefgr Edef C60 E tot
chem

1. zg �128,45 70,56 20,7 49,86 �199,01
2. ach �123 52,67 13,37 39,3 �175,67
3. bs �12,11 86,8 53,76 33,04 �98,91
4. zgH1 �52,74 109,89 69,08 40,81 �162,63
5. achH1 �70.17 91.53 58.10 33.44 �161.71
6. bsH1 �27,38 96,63 63,48 33,25 �124,11
7. bsH2 1,82 62,24 28,97 33,27 �60,42
8. bsH1b 32 88,98 55,75 33,23 �56,98

Reproduced from Sheka and Shaymardanova (2011b), with permis-
sion from the Royal Society of Chemistry
aFigures correspond to GNB’s numbers in Figs. 5.15, 5.18, and 5.19
bData for [C60 C (9, 8)] GNB

Graphene nanobuds 2 and 3 in Fig. 5.15 are formed by attaching fullerene C60

to either armchair edge of the graphene sheet or its basal plane. The intermolecular
junctions look like characteristic [2 C 2] cycloadditions in both cases. However, a
typical [2 C 2] junction, identical to that one for C60 oligomers and CNBs, takes
place in GNB 3 only. In the case of GNB 2, the four-atom contact zone is supported
by carbon atoms with two neighbors from the graphene side while the support atoms
of fullerene have three neighbors. In spite of the difference, the junctions provide
a high similarity in the construction of the fullerene active zones in the two cases.
The latter consists of pairs of contact-adjacent ac and equatorial eq atoms and is
fully identical to those discussed earlier for [2 C 2] cycloadducts related to both C60

oligomers and CNBs. Any further chemical modification of the GNBs via fullerene
will depend on the addend size and will be favorable by targeting ca atoms by small
addends while becoming preferable when targeting eq atoms by bulky addends. In
contrast to structural similarity, energetic parameters of the two GNBs are quite
different. If those for GNB 2 are similar by value to those of GNB 1, the coupling
energyE tot

cpl of GNB 3 is more than ten times fewer by the absolute value.
At first glance, the relevant ACS maps in Fig. 5.15 and their plottings in Fig. 5.16

evidence a quite local character of the C60 attachment to the graphene sheet. This
might allow for suggesting a superpositional multiple attachment of the molecule
forming multiple [(C60)n C (5, 5)] GNBs looking like one of numerous possible
examples presented in Fig. 5.17a. In its turn, attached fullerenes might serve as
centers for further chemical modification of the GBDs by the formation of branched
chains of different configurations (see Fig. 5.17b). However, in contrast to the above-
considered CNBs, the fullerene attachment to the graphene sheet causes rather
noticeable perturbations in the odd electronic state of the graphene, different in
the considered three cases, as seen in Fig. 5.16. This feature may indicate a non-
locality of the contact zones and puts a serious question concerning a superpositional
character of multiple C60 attachments similar to those shown in Fig. 5.17a.
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Fig. 5.16 Atomic chemical susceptibility distribution over graphene atoms (curves with dots)
in [C60 C (5, 5)] graphene nanobuds: GNB 1 (a), GNB 2 (b), and GNB 3 (c). Red balls
mark graphene atoms to which C60 is covalently attached. Light gray histograms present ACS
distribution for the pristine empty-edge (5, 5) nanographene (Reproduced from Sheka and
Shaymardanova (2011b), with permission from the Royal Society of Chemistry)
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Fig. 5.17 (a) A multiple [(C60)6 C (5,5)] graphene nanobud. (b). [fC60Styr4g C (5,5)] graphene
nanobud with C60-tetrastyrene

5.5.2.2 Deposition of C60 on (5, 5) Nanographene
with Hydrogen-Terminated Edges

Figure 5.18 presents single-reaction GNBs that can be formed in this case. As
seen in the figure, the [C60 C (5,5)] GNBs’ behavior is similar to that described
in the previous section concerning the character of the graphene perturbation, the
dependence on the place of contact, and the contact zone configurations. In the
case of double-H-terminated graphene, the activity of zigzag and armchair edges
is fully suppressed so that only contacts on the basal plane take place in the GNB
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Fig. 5.18 [C60 C (5, 5)] graphene nanobuds formed by attaching C60 fullerene to zigzag (4) and
armchair (5) edge atoms as well as to the basal plane (6) and (7) in the case of single-H (4–6)- and
double-H (7)-terminated (5, 5) nanographene. Starting (left) and equilibrium (right) configurations
with ACS maps of the latter. Red balls on equilibrium structures point to fullerene atoms with
the high-rank ACS values (Reproduced from Sheka and Shaymardanova (2011b), with permission
from the Royal Society of Chemistry)

formation. As previously, the contact zones of GNBs 4 and 5 are not explicitly
[2 C 2] cycloaddition junctions while those of GNBs 6 and 7 belong to the latter.

Changes in the chemical activity of the edge atoms greatly influence energetic
parameters of the covalent bonding as seen in Table 5.3. The coupling energies
E tot

cpl related to the addition to zigzag and armchair edges of single-H-terminated
graphene decrease more than twice by value. At the same time, addition to
the basal plane is accompanied by more than twice increase in the value. The
double termination of the graphene edge atoms causes the transformation of the
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endothermic reaction for GNB 6 into the exothermic one for GNB 7 that needs for
its completion �2 kcal/mol thus showing that the IMI is not described more by
the potential of type 1, presented in Fig. 5.1, but the potential of type 3 shown in
Fig. 5.19 should enter the action.

Not only the change in the edge atom single-H-double-H termination causes that
one in the IMI potential type, but a similar effect may be provided by increasing the
size of the graphene single-H-terminated sheet. This is the case of GNB 8 formed by
C60 covalently coupled with atoms on the basal plane of single-H-terminated (9, 8)
nanographene (Fig. 5.20). A typical [2 C 2] cycloaddition forms the contact zone
and the relevant coupling energy is high by value but positive. This means that in
contrast to [C60 C (5, 5)] GNB, the creation of [C60 C (9, 8)] GNB requires energy
while its stability depends on the high of the relevant barrier energy, which will be
considered in the next section.

5.5.3 Energetic Parameters and Single-Reaction Barrier
of Graphene Nanobuds

Looking for the reasons of so high changeability of GNBs forces to perform a
comparative analysis of C60-based composites, including (C60)2, CNBs, and GNBs,
at the level of energetic barriers. As was discussed in Sects. 5.3.2 and 5.4.3, it is quite
reasonable to present the total coupling energy E tot

cpl related to GNBs consisting of
two components, namely, E tot

def and E tot
chem that take the form

E tot
def D Edefgr C Edef C60 ; (5.9)
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Fig. 5.20 [C60 C (9, 8)] graphene nanobud formed by attaching C60 fullerene to the basal plane of
(9, 8) nanographene. Starting (left) and equilibrium (right) configurations with ACS maps (above)
related to initial and perturbed graphene. Red balls on equilibrium structures point to fullerene
atoms with the high-rank ACS values (Reproduced from Sheka and Shaymardanova (2011b), with
permission from the Royal Society of Chemistry)

where

Edefgr.RCC/ D �H
op
NGr=GNB.RCC/ ��H eq

NGr (5.10a)

and

Edef C60 .RCC/ D �H
op
C60=GNB.RCC/��H

eq
C60
: (5.10b)

Here, �H op
NGr=GNB.RCC/ and �H op

C60=GNB.RCC / present heats of formation of
the one-point-geometry configurations of the NGr and fullerene components of the
equilibrium configurations of the studied GNB characterized by the intermolecular
distance RCC. Accordingly, the chemical contribution into the coupling energy can
be determined following (5.7). Figure 5.21 presents the dependence of E tot

cpl.RCC/,
E tot

def.RCC/, andE tot
chem.RCC/ on the intermolecular 1–10 and 2–20 C–C distances (see

Fig. 5.3a) for GNB 8. The three plottings in the figure are generally similar to those
presented in Fig. 5.4 and Fig. 5.13 related to the (C60)2 dimer and [C60 C (4, 4)]
CNB. This is obviously resulted from the similarity of atomic structure of the con-
tact zones formed in all the considered cases by [2 C 2] cycloadditions. The coupling
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1. E tot

cpl.RCC/; 2. E tot
def.RCC/;

3. E tot
chem.RCC/ (see text)

energyE tot
cpl can be evidently divided intoE tot

def andE tot
cov components of the same type

as those related to the previous two cases. However, the difference in numerical
values of the two components at starting point results in a remarkable lifting of the
E tot

cpl.RCC/minimum for GNB 8 moving it into positive energy region. Consequently

the barrier energy EGNB
barr lowers up to 22.7 kcal/mol. Here again we are facing a

peculiar feature that cannot be explained by other things than the topochemistry
involved in the addition reaction C60 C NGr.

5.6 The Identity of [2 C 2] Cycloadditions
and Topochemistry of Addition Reactions

The discussed nanobuds, including C60 oligomers, CNBs, and GNBs, are resulted
from a single-reaction covalent pair-pair bonding between the components, where
each of the latter delegates a pair of the most chemically active atoms to form
intermolecular junctions. The formed nanobuds present a rather complicated set
of covalently bound composites that differ by both coupling energies and the
structure of intermolecular junctions. Thus, only (C60)2 dimer, sidewall CNBs,
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Table 5.4 Joint characteristics of the nanobud [2 C 2] cycloadditions

C–C bonds, Åa

Nanobuds 1 2 3 4 NDA
b, e

E tot
chem,

kcal/mol
ENB

barr,
kcal/mol

C60 C C60
c 1.548 1.515 1.515 1.596 0.271, 0.271 �112.97 65.24

1.548 1.516 1.516 1.596
CNB 3d 1.567 1.483 1.486 1.652 0.308, 0.307 �134,31 –

1.567 1.520 1.518 1.590
CNB 5d 1.566 1.484 1.486 1.652 0.305, 0.304 �78,59 36.07

1.566 1.520 1.518 1.590
GNB 3e 1.591 1.496 1.496 1.581 0.183, 0.173 �98,91 –

1.591 1.519 1.518 1.579
GNB 6e 1.589 1.493 1.494 1.578 0.216, 0.201 �124,11 –

1.589 1.519 1.517 1.580
GNB 7e 1.590 1.492 1.492 1.578 0.189, 0.165 �60,42 –

1.589 1.517 1.519 1.580
GNB 8f 1.591 1.494 1.494 1.576 0.227, 0.174 �56.98 22.70

1.592 1.519 1.518 1.580

Reproduced from Sheka and Shaymardanova (2011b), with permission from the Royal
Society of Chemistry
aThe bond numeration corresponds to the insert. Two-row presentation distinguishes the
primed bonds (the second rows) related to C60 in all cases from unprimed ones (the first
rows) related to the C60 partner
bThe data are related to the pair of atoms of C60 partners in the nanobuds. The data for
fullerene partner are presented in the first cell
cC60 dimer
d[C60 C (4,4)] CNB. CNB0 numbering corresponds to that in Figs. 5.7 and 5.9
e[C60 C (5,5)] GNB. GNB0 numbering corresponds to that in Figs. 5.14 and 5.17
f[C60 C (9,8)] GNB (see Fig. 5.18)

and basal plane GNBs can be characterized by the [2 C 2] cycloaddition as alike
intermolecular junction. Table 5.4 summarizes data covering these three cases.

As seen in the table, structural characteristics concerning the [2 C 2] cycload-
ditions are practically identical within CNB and GNB groups while the coupling
energies differ therewith quite considerably. Obviously, the observed feature is
a convincing manifestation of the topological nature of the reaction considered.
However, nowadays there is a lack of appropriate concepts and terms that could
interconnect methodologies of quantum chemistry and chemical topology at a
quantitative level so that we have to stay among habitual chemical ideas as well to try
to find among them those points that may indicate the difference in topology. Thus,
within the framework of single-reaction approach, one of the first attempts to inter-
pret topological peculiarities in the terms of usual application was made by Haddon
(1993) who suggests the dependence of chemical activity of sp2 nanocarbons on the
curvature of the carbon skeleton. However, as thoroughly shown later (Sheka and
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Fig. 5.22 E tot
cov.R/ (a) and E tot

def (b) plottings for (C60)2 dimer (1), [C60 C (4, 4)] CNB 5 (2), and
[C60 C (9, 8)] GNB 8 (3) (Reproduced from Sheka and Shaymardanova (2011b), with permission
from the Royal Society of Chemistry)

Chernozatonskii 2007), the Haddon approach is quantitatively supported in rare
cases only, that is why the approach based on simultaneous consideration of covalent
coupling and deformation suggested later (Sheka and Shaymardanova 2011b) seems
to open up much larger possibilities in describing chemical modification of sp2

nanocarbons. According to the latter, the discussed inconsistence of changeable
energetic characteristics with the identity of the intermolecular [2 C 2] cycloaddition
junctions may be addressed to a specificity of the intermolecular interaction between
the components of the nanobuds.

The specificity concerns two facets related to covalent bonding in the contact
area and to the deformation of carbon skeletons. Characterized by E tot

cov.RCC/ and
E tot

def.RCC/, respectively, a comparative presentation of the considered composites is
shown in Fig. 5.22. As mentioned earlier, E tot

cov.RCC/ curves present barrier profiles
in terms of DA-assisted intermolecular interaction schematically shown in Figs. 5.1
and 5.19. The energy gap Egap D IA � "B is of key importance for the case, so that
changing in either ionization potential or electron affinity of partners may influence
both the depth of the energy minimum at RC� and the barrier high. Table 5.5
summarizes the relevant data for the studied nanobuds. The energyEgap is different
due to decreasing ionization potential when going from C60 fullerene to graphene
(9.87, 9.19, and 8.2 eV for C60, (4, 4) SWCNT, and (9, 8) NGr, respectively). In the
latter case, the ionization potential depends on both the graphene sheet size and the
edge saturation and constitutes �8.5 ˙ 0.2 eV in the case of non-saturated edges.
Energies E tot

cov and Ebarr synchronously follow the Egap changes, decreasing by the



5 Topochemistry of Spatially Extended sp2 Nanocarbons: Fullerenes, . . . 173

Table 5.5 Parameters of donor–acceptor interaction in C60-based nanobuds

Charge, e

Nanobud Egap, eV E tot
cov, kcal/mol Ebarr, kcal/mol C60 Partner 2

(C60)2 7.21 �112.97 15.36 0 0
CNB 5 6.53 �78.59 21.22 �0.028 0.028
GNB 8 5.54 �56.99 30.62 �0.092 0.092

Reproduced from Sheka and Shaymardanova (2011b), with permission from the
Royal Society of Chemistry

absolute value in the former case thus lowering the barrier. The gap decreasing
promotes a significant charge transfer between the nanobud components in the
ground state as well. Therefore, data presented in Fig. 5.22a and Table 5.5 reveal
changes in the DA interaction in the studied nanobuds that significantly influence
the covalent bonding in the relevant [2 C 2] cycloadditions.

As for deformation energies, those presented in Fig. 5.22b show quite similar
dependence on the spacing between nanobuds components, differing only in the near
vicinity of the relevant cycloadditions. For the latter, the energies constitute 70.83,
74.33, and 88.98 kcal/mol related to (C60)2, CNB 5, and GNB 8, respectively, thus
highlighting the growth of the difficulty to adopt the structure of the carbon skeleton
to the sp2–sp3 transformation caused by the formation of [2 C 2] cycloaddition when
going from fullerene to CNT and graphene.

Still open there has been a question concerning topological effects on odd-
electron system of graphene. An obvious consequence concerns a suspected non-
locality of the contact zone of GNBs. Last examinations have revealed a clearly
seen non-superpositional character of multiple additions to a single graphene sheet
(Sheka 2012, unpublished). A triple [(C60)3 C (9, 8)] GNB with single-H-terminated
edge atoms is shown in Fig. 5.23 in two projections. The molecules are attached
to the basal plane of the sheet as well as to the armchair and zigzag edges. As
turned out, the coupling energy of this bud deviates drastically from a sum of the
coupling energies related to three single GNBs that correspond to the attachments
mentioned above. Moreover, it was shown that after decomposition of both the
triple GNB as well as of the three different single GNBs, the graphene sheet is
characterized by lower energy in comparison with that of pristine one. Therefore,
the addition of fullerene provokes a structural transition in the substrate thus
revealing a nonstability of the pristine structure. The structural nonstability seems
to be a characteristic feature of a large graphene sheet that greatly complicates the
consideration of topology effects, if not only these effects manifestation.

5.7 Graphene C Carbon Nanotube Composites

All the above-considered composites can be attributed to the composites with a
single contact that was provided by the peculiarities of the C60 fullerene. In the
case of CNT C graphene composites, we are facing the situation with multiple
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Fig. 5.23 Equilibrium
structure of a triple
[(C60)3 C (9, 8)] GNB in top
(a) and side (b) views (Sheka
2012, unpublished)

contacts in each case due to extreme specificity of both components (Sheka
and Chernozatonskii 2010a). Therefore, the composites form the platform for
elucidation the topochemical character of the interaction between spatially extended
species.

As previously, both components are good donors and acceptors of electrons
(Sheka and Chernozatonskii 2010b, c, d), so that the IMI between them is
subordinated to two-well shape of the ground state energy term shown in Figs. 5.1
and 5.19. This provides the formation of two modes of composites, one of which
consists of weakly interacting components A C B located at comparatively large
distance while the second AB is formed in the range of short interatomic distances
and corresponds to strongly coupled composition.

The next point concerns the obvious difference in the structure of contact zones
of the composites, in contrast to C60-carbon and C60-graphene nanobuds, where
the contact zones were limited to [2 C 2] cycloadditions. In view of a considerable
electron correlation in both species, the formation of contact zones between them is
subordinated to not only point high-rank ACS, as previously, but the ACS high-rank
profiles over sets of atoms from both sides.
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The third complication concerns a great variety of multi-derivative structures,
which can be formed, when both tubes and graphene serve either as main bodies
or present attached additives. The first attempt to consider properties of these
complicated structures has been undertaken in Sheka and Chernozatonskii (2010a).
Computed profiles of the atomic chemical susceptibility (ACS) along the tube and
across their body as well as over NGr sheets served as quantified pointers that
allowed localizing the most active contact zones of interacting partners.

To make the presented below more clear, let us remind peculiarities of the ACS
distributions of both partners that allow for predicting addition reactions to be
expected. While, on the subject of carbon nanotubes, we must take into account
the following (Sheka and Chernozatonskii 2010b):

• The space of chemical reactivity of SWCNTs coincides with the coordinate space
of their structures while different for the particular structure elements. This both
complicates and facilitates chemical reactions involving the tubes depending on
a particular reaction goal.

• Local additions of short-length addends (involving individual atoms, simple
radical, and so forth) to any SWCNT are the most favorable at open empty
ends, both armchair and zigzag ones, the latter more effective. Following these
places in activity are cap ends, defects in the tube sidewall, and sidewall itself.
The reactivity of the latter is comparable with the highest reactivity of fullerene
atoms.

• Chemical contacts of SWCNTs with spatially extended reagents (graphene
sheets) can occur in three ways: namely, when the tube is oriented either normally
or parallel to the surface and when graphene acts as a “cutting-blade” to the tube
sidewall.

• Addition reactions with the participation of multi-walled CNTs will proceed
depending on the target atoms involved. If empty open ends of the tubes are
main targets, the reaction will occur as if one deals with an ensemble of individual
SWCNTs. If sidewall becomes the main target of the reaction, output will depend
on the accessibility of inner tubes additionally to the outer one.

A concentrated view on the reactivity of atoms of a rectangular NGr presented in
Fig. 5.14 allows for stating that (Sheka and Chernozatonskii 2010c):

• Any chemical addend will be firstly attached to the NGr zigzag edges, both
hydrogen-terminated and empty.

• Slightly different by activity non-terminated armchair edges compete with zigzag
ones.

• Chemical reactivity of basal atoms only slightly depends on the edge termination
and is comparable with that of SWCNT sidewall and fullerenes, thus providing a
range of addition reactions at the NGr surface.

• The disclosed chemical reactivity of both edges and the main body of NGr causes
a particular two-mode pattern of the NGr attaching to any spatially extended
molecular object such as either CNT or substrate surface, namely, a normal mode
and a tangent or parallel one.
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Fig. 5.24 Equilibrium structures of CNT C NGr composites

Two SWNT fragments presenting (n, n) and (m, 0) families, namely, (4, 4,) and
(8, 0) and a set of NGrs of different size are chosen to reveal general tendencies
of the composite formation (Sheka and Chernozatonskii 2010a). Due to the fact
that the space of chemical reactivity of both CNTs and graphene coincides with the
coordinate space of their structures, even single addition reactions, which lead to
the composite formation, are not local but are largely extended in the space. This
greatly complicates the construction of starting dyads, triads, and more complex
configurations of components making their number practically endless. However, a
thorough analysis of the ACS profiles of both components made it possible selecting
two main groups of the composites, conditionally called “hammer” and “cutting-
blade” structures. The former follows from the fact that empty ends of SWCNTs
are the most chemically active so that the tubes might be willingly attached to any
NGr forming a hammer handle. The latter is a consequence of exclusive chemical
reactivity of both zigzag and armchair edges of non-terminated NGr, so that NGr
can touch a SWCNT sidewall tangentially as a blade.

Figure 5.24 briefly sums up the main features that accompany the attachment of
CNT to the basal plane of graphene in the hammer-like manner. The formation of
composites significantly disturbs the NGr plane due to sp2–sp3 transformation of its
carbon atoms involved in the contact zone, and this transformation is transferred
even to the second layer of graphene. When the tube is oriented parallel to the
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plane, the equilibrium structure occurs to depend on whether the tube open ends
are either empty or terminated (say, by hydrogens). In the first case, the tube and the
NGr attract each other willingly and seven newly formed intermolecular C–C bonds
provide the tight connection between the partners. When tracing subsequent steps
of the joining (optimization) (Sheka and Chernozatonskii 2010a), one can see that
the coupling starts at the tube ends by the formation of single bonds at first and then
a pair of the C–C bonds at each end. Afterwards, these bonds play the role of the
strops of gymnastic rings that pull the tube body to the sheet. However, when the
tube ends are hydrogen-terminated, no intermolecular C–C bonds are formed, and
the total energy coupling energy becomes repulsive.

The fragment of a double-wall CNT (DWCNT) in Fig. 5.24 consists of fragments
of (4, 4) and (9, 9) SWCNTs with the same number of benzoid units along the
vertical axis and open empty ends on both sides. Owing to the slightly different
periodicity of the Kekule-incomplete Clar-complete Clar networks (Matsuo et al.
2003) in the two tubes, the fragment lengths do not coincide exactly. In due course
of the optimization, the attachment of the joint fragment to the graphene sheet starts
from the formation of intermolecular C–C bonds with either inner or outer tube de-
pending on which is closer to the sheet. When opposite free ends of the tube are not
fixed, the remaining fragment slides outwards, transforming the composition into
a peculiar “telescope” system. When the free ends are fixed, both inner and outer
fragments are joined to the sheet as shown in the figure. The coupling energy is large
enough to provide a strong coupling between the graphene sheet and the DWCNT
that explains a high stability of recently synthesized MWCNTs-graphene composite
under conditions when one end of each MWCNT was fixed (Kondo et al. 2008).

Analyzing the presented data, it makes possible to conclude the following (Sheka
and Chernozatonskii 2010a):

1. The normal attachment of an empty-end SWCNT to graphene sheet is energeti-
cally favorable.

2. The horizontal attachment of the tube is also possible while much weaker.
3. H termination of the tube ends renders the horizontal attachment impossible and

severely weakens the normal one.
4. Both multiple normal attaching of SWCNTs and a single and multiple attaching

of a DWCNT are energetically favorable, and graphene sheets can be easily fixed
over tubes in case their open ends are empty.

5. Graphene sheets are extremely structure flexible and even a weak intermolecular
interaction causes a loss of the sheet flatness.

Cutting-blade composites are shown in Fig. 5.25. Two SWCNT fragments,
namely, (8, 0) and (4, 4), as well as (7, 7) NGr were chosen to demonstrate typical
compositions to be formed in this case (Sheka and Chernozatonskii 2010a). At start
each time, the NGr edge was oriented parallel to the cylinder axis in the vicinity of
SWCNT along a line of sidewall atoms in such a way to maximize the number
of intermolecular C–C contacts. Since ACS distribution over the cross-sectional
atoms of both tubes is well homogeneous (Sheka and Chernozatonskii 2010b),
there is no azimuthal selectivity of the line position in this case. As for NGrs,
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Fig. 5.25 Equilibrium structures of cutting-blade CNT C NGr composites

zigzag and armchair edges of NGr with empty edges are comparable (see Fig. 5.14)
while somewhat different. Due to this, two NGr orientations with respect to the
tube sidewall were examined. Basing on the coupling energy, the preference in the
cutting-blade structures should be given to armchair attachment in the case on (8, 0)
SWCNT while the zigzag attachment is preferential for (4, 4) SWNT.

Since the cutting-blade attachment disturbs the ACS distribution along the line
of atoms involved in the contact only, a multiple addition of the graphene sheets
is possible, whose number is governed by sterical constrains mainly. Figure 5.26
presents a set of such dicomposites. Obviously, for large-diameter tubes, a sequen-
tial addition of a number of NGr will result in the formation of a multi-tooth gear.
A particular attention should be drawn to a cradle-like composite shown in the
figure. It may be considered as the illustration of a possible fixation of an individual
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Fig. 5.26 Equilibrium structures of CNT C NGr dicomposites

graphene sheet under conditions of the least perturbation of the sheet. Obviously,
not (4, 4) SWCNT but much larger tubes should be taken as supporters. Since ACS
of SWCNTs depends on the tube diameter only slightly (Sheka and Chernozatonskii
2010b), the cradle composite formation can be provided by any tubes, even different
in diameter within the pair.

In spite of the doubtless exemplary of studied composites (Sheka and Chernoza-
tonskii 2010a), the performed investigations allowed making the following general
conclusions:

1. The formation of the hammer and cutting-blade composites is energetically
favorable not only as mono-addition of NGr to the tube body and vice versa
but a multi-addend attachment, as well.

2. A strong contact between the tube and NGr is provided by the formation of an
extended set of the intermolecular C–C bonds, number of which is comparable
with the number of either tube end or NGr edge atoms.

3. The contact strength is determined by both the energy of the newly formed C–C
bonds and their number. Optimization of the latter dictates a clear preference
towards zigzag or armchair edges of the attaching NGr depending on the tube
configuration. Thus, (8, 0) SWCNT (as all other members of the (m, 0) family)
prefers armchair contacts that maximize the number of point contacts. In its turn,
(4, 4) SWCNT (as well as other members of the (n, n) family) favors zigzag
contacts due to the same reason.
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4. The total coupling energy between the NGr addend and tube involves both the
energy of the C–C bond formed and the energy of deformation caused by the
reconstruction of sp2 configuration for the carbon atom valence electrons into
sp3 one. It can be thought that the latter depends on the tube diameter. However,
the data are so far rather scarce, and an extended investigation of the problem is
needed.

5. In general, the coupling energy of cutting-blade composites is much more
than that of hammer ones, which is important for practical realization of the
composites production

6. The final product will depend on whether both components of the composition
are freely accessible or one of them is rigidly fixed. Thus, in diluted solutions
where the first requirement is met, one can expect the formation of cutting-blade
composites due to significant preference in the coupling energy. Oppositely, in
gas reactors where often either CNTs or graphene sheets are fixed on some
substrates, the hammer composites will be formed as it has been shown just
recently (Kondo et al. 2008; Chen et al. 2011).

7. All the mentioned peculiarities provide an extremely large field for a detailed
study of different topological effects.

5.8 Topochemical Character of the Graphene Hydrogenation

5.8.1 General Design of the Graphene Hydrogenation

As has been revealed just recently, a significant correlation of odd electrons
of graphene strongly influences its chemical modification, the hydrogenation, in
particular (Sheka and Popova 2012a, b). The hydrogenation has been considered
in a manner of consequent single reactions subordinated to a stepwise addition
of hydrogen atoms to a double-H-terminated (5, 5) NGr membrane shown in
Fig. 5.14c, alongside with the corresponding ACS map. Two initial states of the
membrane are considered related to either fixed (fixed membrane) or unrestricted
motion (free-standing membrane) of the carbon atoms situated over the membrane
perimeter. The perimeter atom fixation implies that the relevant atoms are excluded
from the optimization procedure at further steps of a consequent hydrogenation.
The stepwise addition of hydrogen to membranes is subordinated to a particular
algorithm described in details in Sheka (2011a) that is governed by the highest ACS
of the carbon atoms, calculated at every step of the reaction.

Both the hydrogenation of graphene itself and the final hydrides formed depend
on several external factors, namely, (1) the state of the fixation of the membrane,
(2) the accessibility of the substrate sides to hydrogen, and (3) molecular or atomic
composition of the hydrogen vapor. These circumstances make both computational
consideration and technology of the graphene hydrogenation multimode with the
number of variants not fewer than eight if only molecular and atomic adsorption
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does not occur simultaneously. The study (Sheka and Popova 2012a, b) has involved
all the hydrogenation modes related to atomic adsorption and to two modes of the
molecular adsorption. Taking together, the results allow for suggesting a rather
integral picture of the events that accompany hydrogenation of graphene. It is
summed up in Table 5.6. Additionally to the general picture, the following answers
to crucial questions related to the hydrogenation of graphene were suggested.

1. Which kind of the hydrogen adsorption, namely, molecular or atomic, is the most
probable?

Following from Table 5.6, the study has convincingly shown that only atomic
adsorption is effective and energetically favorable, which is consistent with a widely
known fact of a practical absence of molecular hydrogen adsorption on graphite. It
is important to note that the reason has a direct relation to the main topic of this
chapter.

As for atomic adsorption, the formation of hydrides with practically total
covering of the basal plane occurs quite possibly. When both sides of the membrane
are accessible to hydrogen atoms, the hydrogenation of NGr is completed by
the formation of the 100 % covered regularly structured provided with chair-like
cyclohexanoid units (Fig. 5.27a). If the membrane is accessible from one side only,
the consequent attachment of hydrogen atoms to the substrate causes arching of its
carbon skeleton that takes the shape of a canopy at the final stage (Fig. 5.27b). In
both cases, C–C bonds lengthen taking l.51–1.53 Å. However, under fixation of the
membrane edges, not all the bonds are able to meet the requirement so that a part
of them should stay quite short. Under this condition, a pair of hydrogen atoms,
which had to be attached to two carbon atoms forming the bonds, is not allowed to
perform the job thus stimulating atoms to associate and to form a hydrogen molecule
outside of the basal plane. As seen in Fig. 5.27b, the last atoms 43 and 44 had such a
fate, which resulted in desorption of one hydrogen molecule and lowering the plane
covering up to 96 %.

At first glance, the final stage of the two-side adsorption of hydrogen atoms on
the free-standing membrane (Fig. 5.27c) seems to be similar to that presented in
Fig. 5.27a. However, attentive consideration reveals that the chair-like configuration
of cyclohexanoids, regularly composed in the upper side of the sample, is violated
when approaching the sample bottom so that we have to speak about the mixing of
the cyclohexanoid conformers, which causes the distortion of the regular structure
of the carbon skeleton. This circumstance does not prevent from achieving 100 %
filling of the basal plane; nevertheless, the sample itself presents a mixture of a
regular area neighboring with some elements of amorphous structure. Obviously,
the partial contribution of each component depends on the graphene sample size.

In contrast to what has been said above, the one-side adsorption of the free-
standing membrane has resulted in the formation of a peculiar basket that is formed
when two ends of a rectangular figure situated over its diagonal are closely ap-
proached each other (Fig. 5.27d). The formation of the 100 % hydride of so peculiar
shape is accompanied by the energy gain of �1 kcal/mol per each carbon atom.
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Fig. 5.27 Top and side views of the equilibrium structures of hydrides formed at the atomic
adsorption of hydrogen on the fixed (a, b) and free-standing (c, d) (5,5) nanographene membrane,
accessible to the adsorbate from both (a, c) and one (b, d) sides (Reproduced from Sheka and
Popova (2012b), with kind permission from Springer Science and Business Media)
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The reason for so dramatic difference between atomic and molecular adsorption
has an evident topochemical nature and is a consequence of the tendency of the
graphene substrate to conserve the hexagon pattern. But obviously, the pattern con-
servation can be achieved if only the substrate hydrogenation provides the creation
of the cyclohexanoid structure that corresponds to either one of the conformers
of the latter or their mixture. If non-coordinated deposition of individual atoms
can meet the requirement, a coordinated deposition of two atoms on neighboring
carbons of substrate evidently makes the formation of a cyclohexanoid-conformer
pattern much less probable thus making molecular adsorption unfavorable.

2. What is characteristic image of the hydrogen atom attachment to the substrate?

The hydrogen atom is deposited on top of the carbon ones in both up and down
configurations. In contrast to a vast number of organic molecules, the length of C–H
bonds formed under adsorption exceeds 1.10 Å, therewith differently for different
adsorption events. Thus, C–H bonds are quite constant by value of 1.122 Å in
average for framing hydrogens that saturate edge carbon atoms of the substrate.
Deposition on the basal plane causes enlarging the value up to maximum 1.152 Å
(Sheka and Popova 2012a, b). However, the formation of a regular chair-like
cyclohexanoid structure like graphane (Sofo et al. 2007; Elias et al. 2009) leads
to equalizing and shortening the bonds to 1.126 Å. The above picture, which is
characteristic for the fixed membrane, is significantly violated when going to one-
side deposited fixed membrane or two-side deposited free-standing membrane that
exhibits the difference in the strength of the hydrogen atoms coupling with the
related substrates.

1. Which carbon atom is the first target subjected to the hydrogen attachment?

And

2. How are carbon atoms selected for the next steps of the adsorption?

Similarly to fullerenes and carbon nanotubes (Sheka 2011a), the formation of
graphene polyhydrides (CH)n has been considered in the framework of single-
reaction algorithmic stepwise computational synthesis, each subsequent step of
which is controlled by the distribution of atomic chemical susceptibility in terms of
fractional numbers of effectively unpaired electrons on atom, NDA, of the preceding
derivative over the substrate atoms. The quantity is a direct consequence of the
odd-electron correlation. The high-rank NDA values definitely distinguish the atoms
that should serve as targets for a forthcoming chemical attack. Additionally, the
lowest total energy criterion has provided the choice of the most energetically stable
hydride. The successful generation of the polyderivative families of fluorides (Sheka
2010) and hydrides (Sheka 2011b) as well as other polyderivatives of fullerene
C60 (Sheka 2011a), of 100 % polyhydride (CH)n related to chair-like graphane
described above as well as �96 % of table-like cyclohexanoid hydride (CH)n of
the canopy shape, has shown a high efficacy of the approach in viewing process of
the polyderivatives formation which makes it possible to proceed with a deep insight
into the mechanism of the chemical modification.
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3. Is there any connection between the sequential adsorption pattern and cyclohex-
anoid conformers formed in due course of hydrogenation?

The performed investigations have shown that there is a direct connection
between the state of the NGr substrate and the conformer pattern of the poly-
hydride formed. The pattern is governed by the cyclohexanoid conformer whose
formation under ambient conditions is the most profitable. Thus, a regular chair-
like cyclohexanoid-conformed graphene with 100 % hydrogen covering, known
as graphane (Sofo et al. 2007; Elias et al. 2009), is formed in the case when the
NGr substrate is a perimeter-fixed membrane, both sides of which are accessible for
hydrogen atoms. When the membrane is two-side accessible, but its edges are not
fixed, the formation of a mixture of chair-like and boat-like cyclohexanoid patterns
has turned out more profitable. As shown, the polyhydride total energy involves
deformational and covalent components. That is why the difference in the conformer
energy in favor of chair-like conformer formed in free-standing membrane is
compensated by the gain in the deformation energy of the carbon carcass caused by
the formation of boat-like conformer, which simulates a significant corrugation of
the initial graphene plane. The mixture of the two conformers transforms therewith
a regular crystalline behavior of graphane into a partially amorphous-like behavior
in the latter case.

When the fixed membrane is one-side accessible, the configuration produced is
rather regular and looks like an infinite array of trans-linked table-like cyclohex-
anoid conformers. The coupling of hydrogen atoms with the carbon skeleton is the
weakest among all the considered configurations, which is particularly characterized
by the longest C–H bonds of 1.18–1.21 Å in the length. The carbon skeleton takes
a shape of a canopy exterior.

5.8.2 Energetic Characteristics Accompanying
the Nanographene Hydrogenation

Total coupling energy that may characterize the molecule hydrogenation can be
presented as

E tot
cpl.n/ D �HnHgr ��HNGr � n�Hat: (5.11)

Here �HnHgr, �HNGr, and �Hat are heats of formation of graphene hydride
with n hydrogen atoms, a pristine nanographene, and hydrogen atom, respectively.
When one is mainly interested in the adsorption on basal plane, it is worthwhile to
refer the coupling energy related to the basal adsorption to the energy of the framed
membrane in the form

E tot bs
cpl .k/ D E tot

cpl.k C 44/� E tot fr
cpl .44/; (5.12)
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where k D n � 44 numbers hydrogen atoms deposited on the basal plane and
E tot bs

cpl .k/ presents the coupling energy counted off the energy of the framed

membraneE tot fr
cpl .44/.

The tempo of hydrogenation may be characterized by the coupling energy needed
for the addition of each next hydrogen atom. Attributing the energy to the adsorption
on the basal plane, the per step energy can be determined as

E
step bs
cpl .k/ D E tot

cpl.k C 44/� E tot
cplŒ.k C 44/� 1�: (5.13)

Evidently, two main contributions, namely, the deformation of the fragment
carbon skeleton (def) and the covalent coupling of hydrogen atoms with the
substrate resulted in the formation of C–H bonds (cov), determine both total and per
step coupling energies. Supposing that the relevant contributions can be summed
up, one may evaluate them separately. Thus, the total deformation energy can be
determined as the difference

E tot
def.n/ D �H sk

nHgr ��HNGr: (5.14)

Here, �H sk
nHgr presents the heat of formation of the carbon skeleton of the

hydride at the nth step of hydrogenation, and �HNGr presents the heat of formation
of the initial graphene fragment. The value �H sk

nHgr can be obtained as a result
of one-point-structure determination applied to the nth equilibrium hydride after
removing all hydrogen atoms. Attributed to the basal plane, E tot

def.n/ has the form

E tot bs
def .k/ D E tot

def.k C 44/� E tot fr
def .44/: (5.15)

Here, E tot fr
def .44/ presents the deformation energy of the framed membrane.

The deformation energy, which accompanies each step of the hydrogenation, can
be determined as

E
step bs
def .k/ D �H sk

.kC44/Hgr ��H sk
Œ.kC44/�1�Hgr; (5.16)

where �H sk
.kC44/Hgr and �H sk

Œ.kD44/�1�Hgr match heats of formation of the carbon
skeletons of the relevant hydrides at two subsequent steps of hydrogenation.

Similarly, the total and per step chemical contributions caused by the formation
of C–H bonds on the basal plane can be determined as

E tot bs
cov .k/ D E tot bs

cpl .k/ � E tot bs
def .k/ (5.17)

and

Estep bs
cov .k/ D E tot

cov.k C 44/�E tot
cov.k C 44� 1/: (5.18)
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Figure 5.28 displays the calculated total energies for hydrides related to the fixed
(1) and free-standing (2) membranes. The relevant per step energies are shown
in Fig. 5.29. As seen in Fig. 5.28, the total energies E tot bs

cpl of both hydrides are
negative by sign and gradually increase by the absolute value when the number of
adsorbed atoms increases. Besides, the absolute value growth related to hydrides 2
is evidently slowing down starting at step 11 in contrast to the continuing growth
for hydrides 1. This retardation is characteristic for other two energies presented in
Fig. 5.28 thus quantitatively distinguishing hydrides 2 from hydrides 1. The growth
retardation of both E tot bs

cpl and E tot bs
cov energies obviously shows that the addition of

hydrogen to the fixed membrane of hydrides 2 at coverage higher than 30 % is more
difficult than in the case of hydrides 1. This conclusion is supported by the behavior
of per step energies Estep bs

cpl and Estep bs
cov plotted in Fig. 5.29a, c. If, in the case of

hydrides 1, the energy values oscillate around steady average values of �52 and
�72 kcal/mol forEstep bs

cpl andEstep bs
cov , respectively, in the case of hydrides 2, Estep bs

cpl

oscillates around average values that grow from �64 to �8 kcal/mol. SimilarEstep bs
cov

oscillations occur around a general level that starts at �88 kcal/mod and terminates
at �8 kcal/mol (see Fig. 5.29c). Therefore, the reaction of the chemical attachment
of hydrogen atoms to hydrides 1 is thermodynamically profitable through over the
covering that reaches 100 % limit. In contrast, the large coverage for hydrides 2
becomes less and less profitable so that at final steps adsorption and desorption
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become competitive thus resulting in desorption of hydrogen molecules, which was
described in the previous section.

An attention should be given to changing the deformation of the carbon skeleton
caused by sp2 ! sp3 transformation of the carbon atom electron configuration.
Gradually increased by value for both hydride families, the energy E tot bs

def shown
in Fig. 5.28 describes strengthening the deformation in due course of growing
coverage of the basal plane. Irregular dependence of Estep bs

def on covering presented
in Fig. 5.29b allows for speaking about obvious topochemical character of a
multistep attachment of hydrogen atoms to the membrane basal plane.

5.8.3 Comparative View on the Hydrogenation of Fullerene
C60 and Graphene

The topochemistry revealed above might imply, on the first glance, chemical
reactions occurred in a space subordinated to restricting conditions like reactions
on the solid surfaces (Schmidt 1971). However, one has to take into account the
inherent topology of the graphene substrate that was mentioned in Sect. 5.1. If so
and if the topology of graphene and fullerene is different, the hydrogenation seems
to be the straight way to exhibit the difference.

Figure 5.30 present a summarized view on the consequent steps of the fullerene
C60 stepwise hydrogenation, governed by the ACS algorithm, in due course of which
a complete family of the C60 hydrides has been obtained (Sheka 2011b). When
comparing the fullerene hydrides with those of graphene, one has to give the obvious
preference to the graphene hydrides 2 obtained under the one-side adsorption on the
basal plane of the fixed membrane. Energetic characteristics, which accompany the
hydrogenation of fullerene C60 and (5, 5) NGr, are shown in Fig. 5.31. As seen in
the figure, seemingly identical reactions are drastically different from the energy
viewpoint. One may think that the final irregular hydrogen covering of hydrides 2
might be the reason for the difference. However, a comparison with the data related
to hydrides 1, presented in Fig. 5.31, as well, not only does not improve the situation
but significantly worsens it. It should be concluded that the hydrogenation has turned
out a very indicative chemical procedure that has made the inherent difference in the
topology of fullerenes and graphene the most impressive.

5.9 Inherited Topology and Deformation of Graphene

In this section we will consider a particular topological effect caused by the
influence of the graphene edge termination on the inherited topology of the sheet.
As turned out, the graphene deformation under external mechanical loading is
extremely sensitive to the state of the sheet edge atoms and makes it possible to
disclose a topological nature of this sensitivity.

Within the framework of the molecular theory, the response of nanographene
sheet to external stresses is considered in terms of a mechanochemical reaction
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Fig. 5.30 Schlegel diagrams of successive steps of the C60 hydrogenation from C60H2 to C60H18

and atomic structures of C60H18, C60H36, C60H48, and C60H60 molecules (Reproduced from Sheka
2011b, with kind permission from Springer Science and Business Media)
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Fig. 5.31 Total energy (a) and per step coupling energy (b) for the families of C60-fullerene
hydrides (curves with balls), (5, 5) nanographene hydrides 1(curves with filled triangles), and
hydrides 2 (curves with open triangles)

(Sheka et al. 2011a, b). The quantum-chemical realization of the approach is
based on the coordinate-of-reaction concept for the purpose of introducing a
mechanochemical internal coordinate (MIC) that specifies a deformational mode
(Nikitina et al. 1999). In the case of tensile deformation, the benzenoid pattern
of graphene sheets and a regular packing of the units predetermined the choice
of either parallel or normal MICs orientation with respect to the chain of C–
C bonds. In the rectangular nanographene sheets and nanoribbons, the former
orientation corresponds to tensile deformation applied to the zigzag edges (zg mode)
while the latter should be attributed to the armchair edges (ach mode). The MIC
configurations of the ach and zg tensile modes of the (5,5) NGr sheet are presented
in Fig. 5.32. The deformation proceeds as a stepwise elongation of the MICs with
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the increment ıL D 0.1 Å at each step so that the current MIC length constitutes
L D L0CnıL, where L0 is the initial length of the MIC and n counts the number of
the deformation steps. Right ends of all the MICs are fixed so that these blue-colored
atoms are immobilized while atoms on the left ends of MICs move along the arrows
providing the MIC successive elongation, once excluded from the optimization as
well. The relevant force of response is calculated as the energy gradient along the
MIC, while the atomic configuration is optimized over all of the other coordinates
under the MIC constant-pitch elongation.

Thus arranged computations revealed that a high stiffness of the graphene body is
provided by the stiffness of benzenoid units. The anisotropy of the unit mechanical
behavior in combination with different packing of the units either normally or
parallel to the body C–C bond chains lays the ground for the structure-sensitive
mechanism of the mechanical behavior of the object that drastically depends on the
deformation modes. The mechanical behavior of (5, 5) NGr with empty edges under
zg and ach deformation modes is similar to that of a tricotage when either the sheet
rupture has both commenced and completed by the rupture of a single stitch row
(ach mode) or the rupture of one stitch is “tugging at thread” the other stitches
that are replaced by still elongated one-atom chain of carbon atoms (zg mode).
The final equilibrium structures corresponding to the complete rupture are shown
in Fig. 5.33a. To achieve the rupture, 18 and 250 steps of successive tension were
needed for ach and zg modes, respectively (Sheka et al. 2011a, b).

Quite unexpectedly, the character of the deformation has occurred to be strongly
dependent on chemical situation at the sheet edges (Sheka et al. 2012). As seen
in Fig. 5.33b, single-H termination slightly elongates the rupture related to the
ach mode up to the 20th step while considerably shortens the regime of the
zg deformation mode up to the 125th step. The tricotage-like behavior of the
deformation is still preserved while noticeably changes the pattern. Even more
drastic changes for this mode occur when the edge atoms are double-H-terminated
(Fig. 5.33c). Still, the ach mode is quite conservative while zg mode becomes
practically identical to the former. The tricotage-like character of the deformation is
completely lost and the rupture occurs at the 33rd step.

The observed phenomenon can be understood if suggested that (1) the defor-
mation and rupture of the sheet is a collective event that involves the electron
system of the sheet as a whole, (2) the electron system of the graphene sheet is
highly delocalized and thus topologically sensitive, and (3) chemical termination of
edge atoms so strongly influences the topological change of the whole sheet due to
extreme correlation.

5.10 Conclusion

Discussion in this chapter has been aimed at convincing readers that sp2 nanocar-
bons present a new class of topochemical objects. The novelty lies in the fact that
these species demonstrate a complicated topological behavior as regards chemical
reactions with their participation that manifests a combination of the inherent
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Fig. 5.32 Configurations of six mechanochemical internal coordinates related to two deformation
modes of (5, 5) nanographene sheet with empty (a), single-H-terminated (b), and double-H-
terminated (c) edge atoms. Atoms marked in blue are excluded from the optimization procedure
(Sheka et al. 2012)



194 E.F. Sheka

Fig. 5.33 The rupture-point final structures of (5, 5) nanographene sheet with empty (a), single-
H-terminated (b), and double-H-terminated (c) edge atoms at two deformation modes (Sheka et al.
2012)

topology of the species, or the internal topology, with that provided by the action
of external factors. The internal topology is manifested through identical reactions
that involve different members of the class. Two types of such reactions have
been considered, namely, the “double-(C–C)-bond” reactions between two sp2

class members and “atom-(C–C)-bond” reactions that concern a monatomic species
deposition on the sp2 nanocarbons. The former reaction is mainly addressed to a
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number of composites that are formed by fullerene C60 attachment to either itself or
carbon nanotube and nanographene. As turned out, in spite of structural similarity
of the “double-(C–C)-bond” contact zones, which are mainly presented by [2 C 2]
cycloaddition junctions, the energetic parameters of the composites have revealed a
deep discrepancy that manifest the different inherent topology of the species. This
conclusion finds support in case of composites formed by carbon nanotubes and
graphene, as well. But the brightest proof of the difference in the inherent topology
of fullerenes and graphene has been obtained by comparing the hydrogenation of
fullerene C60 and (5, 5) nanographene.

The external topological events have been demonstrated computationally by
differing both structural image and energetic characteristics of (5, 5) nanographene
hydrides under conditions when the pristine graphene membrane was subjected to
the action of different external factors, such as immobilization of the perimeter
carbon atoms, restrictions of the accessibility of both sides of the membrane,
and exploring either atomic or molecular hydrogen. This finding seems to be of
particular importance since it should be addressed to the chemical modification
of graphene as a methodology aimed at a controllable changing of the graphene
electronic properties. It is quite obvious that chemical behavior of graphene in the
form of free-standing and fixed membranes, deposited layers on different substrates,
in solutions and gaseous surroundings will be different. The analysis of the available
experimental data gave a large support of the conclusion demonstrating, say, a
sharp difference in the C60 fullerene oligomerization in crystalline phase, due to
mechanochemical reaction in solutions, and once deposited on different substrates.

It might be thought that the revealed peculiarities of the topological behavior of
sp2 nanocarbons do not manifest its complexity in the full extent. This conclusion
highlights the importance of the species consideration at the level of formal math-
ematical topology. It might be expected that some new faces of the phenomenon
could be visualized and explained in terms of the connectivity and adjacency
characteristic for the studied objects.

Meeting reproach, which might be caused by a restricted referring to studies
performed by other people, it should be noted that this chapter presents the author
view on the processes described. Each of the touched topics covers a large field so
that the exhausted referring to what happening in the field would unavoidably make
the manuscript too cumbersome. In case if some compensation may be suggested,
the author publications considered in the chapter covers the situation concerning the
study of each particular question quite thoroughly.
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Chapter 6
A Pariser–Parr–Pople Model Hamiltonian-Based
Approach to the Electronic Structure and
Optical Properties of Graphene Nanostructures

Kondayya Gundra and Alok Shukla

Abstract The electronic structure of graphene and related nanostructures such
as graphene nanoribbons and quantum dots is frequently described within the �-
electron approaches such as the tight-binding model, which completely ignores the
electron–electron interactions, or the Hubbard model which takes into account only
the on-site part. In theoretical chemistry, Pariser–Parr–Pople (PPP) model Hamilto-
nian, which takes into account the long-range part of the inter-electron Coulomb
interaction, has been employed extensively, and with considerable success, to
study the electronic structure and optical properties of �-conjugated molecules
and polymers. Therefore, with the aim of exploring the influence of long-range
Coulomb interactions on the electronic structure and optical properties of graphene
nanostructures, we have recently developed a numerical approach based upon the
PPP model Hamiltonian and used it to study their band structure, magnetic order,
and the linear optical absorption spectra. In this chapter, we describe our approach
in detail and present its numerous applications ranging from finite systems such as
fullerene C60 and graphene quantum dots to infinitely long quasi-one-dimensional
graphene nanoribbons. Our approach is computationally inexpensive and yields
results in good agreement with the large-scale first-principles calculations reported
by other authors. Furthermore, some of the novel predictions resulting from our
approach are also discussed.
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6.1 Introduction

The electronic structure and optical properties of �-conjugated molecules have
attracted both physicists and chemists alike for a long time (Barford 2005; Barieswyl
et al. 1992; Salem 1966), because of their potential applications in optoelectronic
devices such as light-emitting diodes, field-effect transistors, lasers, and solar cells
etc. (Malliaras and Friend 2005). This field received a further boost with the
synthesis of molecules like C60 (Kroto et al. 1985) and other fullerenes (Andreoni
2000), as also carbon nanotubes (Dresselhaus et al. 2001; Iijima 1991), all of
which have tremendous potential for device applications. However, ever since
the synthesis of graphene (Novoselov et al. 2004) and its nanostructures such as
graphene nanoribbons, and nanodisks, etc. (Geim and Novoselov 2007), interest in
the physics of �-electron systems has grown many folds (Neto et al. 2009). These
systems exhibit exotic transport and electronic properties, leading to the possibility
that in future electronic devices, graphene will be able to replace silicon as the
material of first choice (Geim and Novoselov 2007; Neto et al. 2009; Palacios et al.
2010).

For a theoretician, several possible approaches are available which can describe
the electronic structure of graphene and related nanostructures, as well as other �-
conjugated systems: (a) fully first-principles approaches based upon the mean-field
methods such as the density-functional theory (DFT) (Barone et al. 2006; Prezzi
et al. 2008; Son et al. 2006a; Yang et al. 2007a,b, 2008) or the Hartree-Fock (HF)
method (Kertesz 1982; Pisani and Dovesi 1980; Shukla et al. 1996, 1999, 1998),
(b) methods based upon effective �-electron models such as the one-particle tight-
binding (TB) theory (Ezawa 2006; Fujita et al. 1996; Nakada et al. 1996) and its
electron-correlated extensions such as the Hubbard (Jung and MacDonald 2009;
Voronov 2007; Yazyev 2008) or the extended Hubbard model (Yamashiro et al.
2003), and (c) Dirac-equation-based massless Fermion approach (Neto et al. 2009).
The first-principles methods are normally computationally quite expensive because
they treat all electrons (except the core electrons) explicitly and therefore require the
use of large basis sets to provide a reasonable description of the electronic structure
of such systems. In case of graphene nanoribbons (GNRs) of large widths, large
graphene nanoflakes, and also polymers with big unit cells, the number of degrees
of freedom involved in the problem may impose severe computational constraints
on the problems which can be tackled.

The Dirac-equation-based massless Fermion approach to the graphene and its
nanostructures is quite popular among theoreticians at present (Neto et al. 2009). It
is derived from the TB model for graphene under the effective mass approximation
and is based upon the linearity of the band structure with respect to the k vector in
the vicinity of the so-called Dirac points (Neto et al. 2009). Therefore, its validity is
restricted to a small region of the Brillouin zone (BZ) near the Dirac points, and it
is far less justified to use it for the reduced-dimensional graphene structures such as
the nanoflakes and the nanoribbons.
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Compared to the first-principles approaches, effective �-electron models offer an
attractive alternative in that they explicitly deal only with the � electrons, thereby
reducing the number of electrons to be taken into account significantly, and, thus
allowing one to simulate systems of much larger sizes. In such models, the effect
of �-electrons is included in an implicit manner in terms of various parameters of
the Hamiltonian such as the hopping matrix elements. Furthermore, they can be
used both for finite and infinite systems. In particular, for infinite periodic systems,
their range of validity extends over the entire BZ, unlike the Dirac-equation-based
approaches, which are applicable only in the neighborhood of the Dirac points.
The disadvantage of such approaches is their semiempirical nature, implying the
presence of parameters in the model which are determined by means other than the
first principles. However, when materials with a large number of atoms need to be
studied, first-principles approaches are computationally often not feasible. For such
systems model Hamiltonians are sometimes the only possible options. The fact that
such models are extremely popular in physics even for smaller systems, testifies to
the insights they offer into the electronic structure of such materials, irrespective of
their size.

Among the semiempirical methods employed most commonly in the studies of
�-conjugated systems, the TB model (called the Hückel model in the chemistry
literature) is conceptually the simplest, but it does not include the effects of
electron–electron (e–e) interactions. One can correct that deficiency by employing
the Hubbard model or its extended versions which include the on-site and the
nearest-neighbor Coulomb interactions, respectively. However, it is well known
in the chemistry literature that in �-electron systems such as aromatic molecules
and conjugated polymers, the long-range part of the e–e interactions plays a very
important role in determining their electronic structure (Barford 2005; Barieswyl
et al. 1992; Salem 1966). In the 1950s, Pariser, Parr, and Pople proposed a
conceptually simple model which incorporates the essential physics of interacting
�-electron systems in an elegant manner (Pariser and Parr 1953) and has come to
be known as the PPP model since then. This model can also be seen as an extension
of the Hubbard model in that, in addition to the on-site repulsion (Hubbard U ),
long range e–e interactions are taken into account by means of suitable Coulomb
parameters. Unlike the extended Hubbard models the PPP model imposes no
restrictions on the range of Coulomb interactions, thereby leading to the inclusion
of interactions between all the sites, irrespective of the distance between them.
Because the PPP model is also a �-electron model, the number of degrees of
freedom remains the same as in the Hubbard model and leads to no significant
increase in the computational effort in spite of inclusion of the long-range Coulomb
interactions. Because of the lack of large-scale computational facilities during the
1950s, such an approach was unavoidable even for relatively small molecules such
as benzene. However, the remarkable fact is that in spite of so many approximations
involved, PPP-model-based calculations were extremely successful in describing the
electronic structure, in general, and the optical properties of �-conjugated systems,
in particular (Salem 1966).
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During last several years, we, along with collaborators elsewhere, have exten-
sively used a PPP-model-based approach, to study the electronic structure and
optical properties of conjugated molecules and oligomers (Ghosh et al. 2000;
Shukla 2002, 2004a,b; Shukla et al. 2001, 2003, 2004; Shukla and Mazumdar
1999; Sony and Shukla 2005a,b,c, 2007, 2009). The underlying theory, along with
the computational approach and the associated computer program developed in
our group for dealing with the finite �-conjugated systems, has been published
recently (Sony and Shukla 2010). The approach developed therein can also be
applied to study graphene fragments, in addition to the aromatic hydrocarbons
and conjugated polymers (Sony and Shukla 2010). We note that numerous other
groups (Barford 2005; Barieswyl et al. 1992; Bursill and Barford 2009; Jug 1990;
Psiachos and Mazumdar 2009; Raghu et al. 2002; Salem 1966; Soos et al. 1993;
Ye et al. 2003) have also used the PPP model to study such systems. Furthermore,
very recently we extended the PPP model approach also to study infinitely long
one-dimensional (1D) periodic �-conjugated systems, with the aim of studying
the electronic structure and the optical properties of GNRs (Gundra and Shukla
2011a,b). The Fortran 90 computer program which we developed for the purpose,
along with the associated theory, has also been published recently (Gundra and
Shukla 2012).

In this work, we review our PPP-model-based electronic-structure methodology
applied to both finite and infinite �-electron systems, with particular emphasis on
systems such as C60, graphene nanodisks, and GNRs. For the finite systems, we
apply the methodology both at the mean-field HF level and at the configuration-
interaction (CI) level, including the influence of electron correlation effects, to study
the electronic structure and optical properties of buckminster fullerene and graphene
nanodisks. As far as infinite 1D systems are concerned, we study the band structure
and optical properties of various GNRs and carbon nanotubes using our mean-field
restricted HF (RHF) and the unrestricted HF (UHF) methodology. In particular,
we probe the edge magnetism, electric-field-driven half-metallicity, linear optical
absorption, and electro-absorption of various GNRs.

The remainder of this chapter is organized as follows. In Sect. 6.2 we briefly
review the theory associated with the PPP model Hamiltonian and present the RHF
equations for both the finite and 1D periodic systems. We present and discuss the
results of various calculations on various finite and infinite systems in Sect. 6.3.
Finally, in Sect. 6.4, we present our conclusions, as well as discuss possible future
directions.

6.2 Theory

In this section, we briefly discuss the PPP model Hamiltonian and its HF implemen-
tations for both the finite and the periodic systems.
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6.2.1 Pariser–Parr–Pople Hamiltonian

The underlying assumption in the PPP model (Pariser and Parr 1953) is that the
electronic structure and optical properties of �-conjugated systems such as planar
hydrocarbons can, to a very good approximation, be described strictly in terms of
the dynamics of its � electrons. In other words, the � (and the core) electrons can be
assumed to be inert as far as the low-lying excitations of such systems are concerned.
The reason behind the success of the �–� separation implicit in the PPP model is
that the energies of the � electrons are so far away from the Fermi level that they are
unaffected when these systems are exposed to external perturbations such as light.
Of course, the influence of the core and � electrons is incorporated implicitly in the
parameters of the effective Hamiltonian. It is further assumed that (a) each carbon
atom of the system contributes one � electron, represented by a pz orbital localized
on that atom (assuming that the system lies in the xy plane), and (b) the pz orbitals
form an orthonormal basis set consistent with the zero-differential overlap (ZDO)
approximation developed by Parr (1952). Thus, the PPP model Hamiltonian can be
expressed in the second-quantized form as
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where �i represents the site energy associated with the i th carbon atom, c�i� creates
an electron of spin � on the pz orbital of atom i , ni� D c

�
i� ci� is the number

of electrons with the spin � , and ni D P
� ni� is the total number of electrons

on atom i . The parameters U and Vij are the on-site and long-range Coulomb
interactions, respectively, while tij is the one-electron hopping matrix element. On
setting Vij D 0 (withU ¤ 0), the Hamiltonian reduces to the Hubbard model, while
on setting both U D 0 and Vij D 0, the TB model is obtained. Choosing for the
long-range Vij , the form

Vij D U
�
1C

�
Rij
r0

�2�1=2
(6.2)

gives the Ohno variant (Ohno 1964) of the PPP model, whereas taking

Vij D U
h
1C

�
Rij
r0

�i (6.3)

gives the Mataga–Nishimoto parametrization (Mataga and Nishimoto 1957). In the
exponential version (Schulten et al. 1975), Vij takes the form
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Vij D U exp

	
�Rij
r0



(6.4)

In Eqs. (6.2), (6.3), and (6.4), Rij D jri � rj j is the distance between sites i and j
in Å, while r0 is another parameter in the same units.

In this work, we report calculations based upon the Ohno parametrization of the
PPP model mentioned above (cf. Eq. 6.2). Moreover, to account for the interchain
screening effects, we use a slightly modified form introduced by Chandross and
Mazumdar (1997),

Vij D U=�ij .1C 0:6117R2ij /
1=2, (6.5)

where �ij depicts the dielectric constant of the system which can simulate the
effects of screening and Rij is defined above. In various calculations performed on
phenylene-based conjugated polymers including PDPAs (Ghosh et al. 2000; Shukla
2004a,b; Shukla et al. 2001, 2003, 2004; Shukla and Mazumdar 1999; Sony and
Shukla 2005a), it was noticed that “screened parameters” with U D 8:0 eV and
�i i D 1:0, and �ij D 2:0, otherwise, proposed by Chandross and Mazumdar (1997),
lead to much better agreement with the experiments, as compared to the “standard
parameters” with U D 11:13 eV and �i;j D 1:0, proposed originally by Ohno
(1964). Most of the calculations in this work will be based upon these two sets of
parameters, unless otherwise specified. In our computer programs implementing the
PPP model at the HF level for the finite (Sony and Shukla 2010) and 1D periodic
systems (Gundra and Shukla 2012), we have provided the users with the freedom
to choose these “standard,” “screened” or any other user-defined parameters for the
Coulomb interactions.

In order to calculate static dielectric polarizabilities for finite systems, or the
electronic structure of 1D periodic systems such as the GNRs under the gated
configurations, one can solve the HF equations in the presence of an external static
electric field. Thus, to deal with those situations, we simply modify Eq. (6.1) under
the electric dipole approximation by introducing the corresponding term containing
the uniform electric field E. The overall Hamiltonian of the system is then given by

H efield
PPP D HPPP � �:E D HPPP C jejE � r ; (6.6)

where HPPP is the unperturbed Hamiltonian (cf. Eq. 6.1) which describes the
system in the absence of the external electric field, e represents the electronic charge,
� D �er, is the dipole operator, and r is the position operator.

For finite systems, we can easily go beyond the mean-field approach and
perform CI on the systems concerned. For the purpose, using the Hartree-Fock
molecular orbitals (MOs), one first transforms the PPP model Hamiltonian from
the site representation of Eq. (6.1) to the MO representation, and subsequently CI
calculations of various levels are carried out by performing virtual excitations from
the occupied HF MOs to the unoccupied (virtual) MOs. If a single electron is excited
from the occupied to the unoccupied orbitals, the method is called singles-CI (SCI)
method; if two electrons are excited in this way, it is called the singles-doubles-CI
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(SDCI) method; and so forth. When up to two electrons are virtually excited
with respect to multiple reference configurations, the approach is called the multi-
reference SDCI (MRSDCI) method. The MRSDCI approach is quite powerful
when it comes to dealing with systems with strong electron correlations, as well
as in obtaining accurate representation of the excited states. In our PPP-model-
based calculations of the electronic structure and optical properties of conjugated
polymers, we have made extensive use of the MRSDCI approach (Ghosh et al. 2000;
Shukla 2002, 2004a; Shukla et al. 2001, 2003, 2004; Shukla and Mazumdar 1999;
Sony and Shukla 2005a,b,c, 2007, 2009).

Going beyond the HF approach for periodic infinite systems is more complicated,
and in future, we plan to implement the approaches aimed at achieving that goal.

6.2.2 Hartree-Fock Equations

For the sake of completeness, we present the RHF equations corresponding to
the PPP model, first for the finite systems and then for infinite periodic systems.
Details for the corresponding UHF equations can be found in our earlier publications
(Gundra and Shukla 2012; Sony and Shukla 2010).

6.2.2.1 Finite Systems

The RHF approach is applicable when the system is a closed-shell one, with an
even number of � electrons, so that each molecular orbital (MO) is doubly occupied
with an up- and a down-spin electron. We solve the RHF equations using the linear
combination of atomic orbitals (LCAO) approach, in which each MO is expressed
as a linear combination of a finite-basis set

 
 D
X

i

Ci
�i ; (6.7)

where  
 represents the 
th MO of the system, �i ’s represent the pz-orbitals
localized on various carbon atoms, and the determination of the unknown linear
coefficients Ci
 amounts to the solution of the RHF equations. As per the ZDO
approximation (Parr 1952), atomic orbitals, �i ’s, are assumed to form an orthonor-
mal basis set. Using the conjecture of Eq. (6.7) in conjunction with the Hamiltonian
above, one obtains the RHF equations in the matrix form

X

j

.Fij � "
/Cj
 D 0; (6.8)

where "
 is the RHF eigenvalue of the 
th MO; Fij is the Fock matrix defined by
the equations
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Fij D tij � 1

2
Pij Vij ; .i ¤ j / (6.9)

Fii D �i �
X

j¤i
Vij C

X

j

Pjj Vij � 1

2
PiiVi i ; .i D j / (6.10)

where �i , tij and Vij are defined above (cf. Eq. 6.1); and Pij is the density matrix
element, defined as

Pij D 2

noccX


D1
C �
i
Cj
; (6.11)

where nocc D Nel=2 denotes the number of occupied orbitals for a system in
which the number of � electrons is Nel. Once the Fock matrix is constructed, one
diagonalizes it to obtain a new set of orbitals and density matrix, and the process is
repeated until self-consistency is achieved.

6.2.2.2 Periodic Systems

The RHF method is applicable to periodic systems with an even number of electrons
per unit cell, so that each band is doubly occupied. In principle, the RHF theory
for periodic systems is identical to that for finite systems, except for the additional
complications due to the Bloch nature of the orbitals. Next, we briefly review the
RHF theory for 1D periodic systems when the PPP model is utilized. The
th doubly
occupied Bloch orbital of the system, corresponding to the crystal momentum k, is
expressed as a linear combination of m basis functions per unit cell,

 
.k/ D
mX

iD1
Ci
.k/�i .k/; (6.12)

where Ci
.k/’s represent the linear expansion coefficients, to be determined at a set
of k-points in the 1D BZ, and the ith Bloch function �i.k/ is given by

�i.k/ D 1p
N

X

l

eikRl �i .r �Rl/; (6.13)

whereN ! 1 is the total number of unit cells in the system and �i .r�Rl/ is the ith
atomic orbital (AO) (pz orbital mentioned in Sect. 6.2.1) located in the l th unit cell
defined by the lattice vector Rl . It is easy to verify that the Bloch basis functions
�i .k/ will form an orthonormal set owing to the orthonormality of the pz basis
functions �i.r �Rl/, leading to the simplified RHF equations in the matrix form

F.k/C
.k/ D "
.k/C
.k/; (6.14)
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where, for a given k value, F.k/ represents the Fock matrix, C
.k/ represents the
corresponding Ci
.k/ coefficients, arranged in the form of a column vector, and
"
.k) denotes the band eigenvalue. The Fock operator is given by

F.k/ D h.k/C .J.k/ � 1

2
K.k// (6.15)

above h.k/, J.k/, andK.k/ are obtained by Fourier transforming the one-electron,
direct, and exchange integrals corresponding to the PPP Hamiltonian (cf. Eq. 6.1),
using the general formula

Oij .k/ D
1X

lD�1
eikRlOij .Rl/; (6.16)

where Oij .Rl/ denotes the matrix elements of a general real-space one-electron
operatorO . In particular, the real-space versions of the Coulomb and the exchange
integrals Jij .Rl / and Kij .Rl / for the PPP model are given by

Jij .Rl / D
mX

pD1
Vi.o/k.Rl/Dpp.o/ıij ; (6.17)

and
Kij .Rl / D Vi.o/j.Rl /Dij .Rl/; (6.18)

where Vi.o/j.Rl / denotes the long-range part of the Coulomb interaction of the PPP
Hamiltonian assuming that the basis function i is located in the reference unit
cell, while j is located in the unit cell labeled by Rl . Therefore, Vi.o/j.Rl / can be
computed using any of the Coulomb parametrization described in Sect. 6.2.1, and
the density matrix elementsDij .Rl/ are given by

Dij .Rl/ D 2

�

Z noccX


D1
C �
i
.k/Cj
.k/e

ikRl dk; (6.19)

where the integral over k is performed over the 1D BZ of length� and nocc denotes
the number of occupied Bloch orbitals per unit cell. The total energy per unit cell
of a given system is computed using the real-space expression

Ecel l D
X

l

X

i;j

Dij .Rl/
n
hij .Rl/C Jij .Rl/ � 1

2
Kij .Rl /

o
: (6.20)

The RHF equations of the system, leading to the band structure ("
.k/) and the
corresponding Bloch orbitals, can be solved by iterative diagonalization technique
applied to Eq. (6.14) at a set of k-points, until the total energy per cell of the system
(cf. Eq. 6.20) converges. We have recently numerically implemented the approach
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outlined here to solve both the RHF and the UHF equations for 1D periodic systems,
within the PPP model (Gundra and Shukla 2012). In our program (Gundra and
Shukla 2012), during the self-consistent HF iterations, the integration over the BZ is
performed using the Gauss-Legendre quadrature technique as suggested by André
et al. (1984), with the additional flexibility that the number of points used for the
quadrature can be chosen by the user.

6.3 Applications

In this section, we demonstrate our approach by applying it first to the finite systems
and next to 1D periodic infinite systems.

6.3.1 Finite Systems

As far as finite systems are concerned, in our previous papers, we have applied our
PPP-model-based approach to study the electronic structure and the optical proper-
ties of the oligomers of a number of conjugated polymers such as poly(di)phenyl-
polyacetylene (PDPA) (Ghosh et al. 2000; Shukla 2004b; Shukla et al. 2001;
Shukla and Mazumdar 1999; Sony and Shukla 2005a,b), poly-phenylene-vinylene
(PPV) (Shukla 2002; Shukla et al. 2003, 2004), and polyacenes (Sony and Shukla
2005c, 2007, 2009). In what follows, we demonstrate our approach by applying it
to study the optical properties of two systems: (a) fullerene C60 and (b) graphene
nanodisks.

6.3.1.1 Optical Properties of Fullerene C60

Because of its curved geometry, strictly speaking, fullerene C60 is not a �-electron
system. Nevertheless, we can treat it as an approximate �-electron system given
that each carbon atom possesses an electron which can be called a � electron in a
local sense, described by a p orbital directed perpendicular to the fullerene surface
at that atom. Because of that reason, several authors have used the PPP model,
and the related Hubbard and the extended Hubbard models, to study the electronic
structure, dielectric response, and optical properties of C60, both at the SCF and the
CI levels (Harigaya and Abe 1994; Kim and Su 1994; László and Udvardi 1987,
1989; Ruiz et al. 2001, 1998). Next, we perform SCI calculations, within the PPP
model, to calculate the linear optical absorption spectrum of C60. We also calculate
the energy of the lowest triplet excited state using the same approach and compare
our results to the experiments wherever possible.

As illustrated in Fig. 6.1, we consider the soccer ball configuration of C60,
corresponding to the point group Ih, with hexagons and pentagons on its surface.
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Fig. 6.1 Soccer ball structure
of C60 considered in these
calculations

The nearest-neighbor C–C distances in C60 can be classified as “single bonds” and
“double bonds,” with the single bonds being the sides shared between a pentagon
and a hexagon, while the double bonds are those shared between two hexagons.
In these calculations we took the double bond length to be 1.39 Å, and the single
bond length as 1.45 Å, as obtained by Greer using an ab initio density-functional
theory-based approach (Greer 2000). In these calculations, we included only the
nearest-neighbor hoppings, computed using the relation tij D t0 expŒ�ˇ. rij

a
�

1/� (Kim and Su 1994), with t0 D �2:4 eV, ˇ D 3:6, a D 1:40 Å, and rij being
the distance between sites i and j . This yields the values of the hopping matrix
elements tD D �2:462 eV and tS D �2:111 eV, for the double bond and the
single bond, respectively. Using these hopping matrix elements and bond lengths,
coupled with the Ohno parametrization of the Coulomb matrix elements using both
the standard and the screened parameters, we first performed the RHF calculations
on C60 to obtain its MOs, which were subsequently used to perform the correlated
SCI calculations on the system, which provides us with a representation of not
just the ground state but also its various excited states. These SCI level excited
states for the spin-singlet states were used to compute the linear optical absorption
spectrum of C60, employing the electric-dipole approximation, and the Lorentzian
line shapes.

Before discussing the optical absorption spectrum of C60, we briefly discuss its
electronic structure. The highest occupied molecular orbital (HOMO) of C60 is five-
fold degenerate and belongs to the irreducible representation (irrep) hu of the point
group Ih. The lowest unoccupied molecular orbital (LUMO), on the other hand, is
threefold degenerate and belongs to the irrep t1u. Because the HOMO and LUMO
have the same symmetry under the inversion operator, electric dipole transitions
are forbidden between them, and no absorption takes place at the HUMO-LUMO
gap. We present our PPP-model-based SCI optical absorption spectrum in Fig. 6.2,
computed using both the standard and the screened Coulomb parameters discussed
earlier in Sect. 6.2.1. From the plots, it is obvious that quantitatively speaking the
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Fig. 6.2 Optical absorption spectra of C60, computed using the SCI approach, within the PPP
model employing the screened parameters (solid line) and the standard parameters (dashed line).
A Lorentzian line shape, along with a line width of 0.1 eV, was used to plot the spectra

standard-parameter-based spectrum is substantially blue-shifted compared to the
screened parameter spectrum. Furthermore, there are some qualitative difference
also between the two calculations in that the relative intensities of the first two peaks
are just reverse of each other. When compared to the optical absorption experiments
on C60 (Ajie et al. 1990; Gasyna et al. 1991; Leach et al. 1992; Lee et al. 1992; Ren
et al. 1991), our screened parameter-based results are in much better agreement
with it, as compared to the standard parameter ones. Therefore, henceforth, we
restrict our discussion only to our screened parameter spectrum which exhibits three
prominent absorption peaks labeled I, II, and III in Fig. 6.2. In its ground state, C60
is a closed-shell system in the 1Ag state; therefore, as per selection rules, it can make
an electric-dipole transition only to excited states belonging to 1T1u irrep. Indeed, all
the three labeled peaks in the plotted spectrum correspond to threefold degenerate
excited states, consistent with the dimension of the T1 irrep. In Fig. 6.2, peaks I, II,
and III are located at 3.67, 4.00, and 5.35 eV, respectively. Relative intensities and
general features of our screened parameter-based spectrum agree quite well with the
measured spectrum of C60 reported by Gasyna et al. (1991), who also reported three
major absorption bands of increasing intensities located at 3.81, 4.91, and 5.97 eV.
Given that our calculations have been performed using the SCI method, which does
not include the electron-correlation effects in a sophisticated manner, the agreement
between the theory and experiments is quite reasonable. At present a large-scale
MRSDCI calculation of the electric-dipole optical transitions in C60, employing the
PPP model, is under way in our group, and the results will be published in future.

Next, we discuss the lowest triplet excited state of C60, the 13T2g state. The wave
function of this state is dominated by the configuration with singly occupied HOMO
and LUMO orbitals, along with triplet spin multiplicity. Our PPP-model-based SCI
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value of 2.42 eV for the excitation energy of this state is in excellent agreement the
value 2.46 eV reported by László and Udvardi (1987), also based upon the PPP-SCI
approach, although using a different set of Coulomb parameters. Experimentally
speaking, the exact value of the excitation energy of this state appears not to be very
certain, although Leach et al. (1992) have reported the onset of triplet absorption
near 1.78 eV.

6.3.1.2 Optical Absorption Spectrum of Graphene Nanodisks

Because of the gapless nature of 2D graphene, its device applications are extremely
limited. That is one of the reasons behind the considerable amount of research
effort in the field of reduced dimensional nanostructures of graphene such as
quasi-1D GNRs (Barone et al. 2006; Palacios et al. 2010; Prezzi et al. 2008; Son
et al. 2006a; Yang et al. 2007a,b, 2008) and 0D graphene nanodisks (Ezawa 2008;
Fernández-Rossier and Palacios 2007; Güclü et al. 2009; Hod et al. 2008; Kinza
et al. 2010; Ridder and Lyding 2009; Schumacher 2011; Wang et al. 2008, 2009;
Yazyev 2010), which are also called graphene quantum dots or graphene nanoflakes.
Graphene nanodisks, which are nothing but finite-sized graphene fragments, can,
in general, be of any shape, regular or irregular. Regular-shaped nanodisks are
characterized by their shapes as well as by the nature of their edges, which can
be of the zigzag type or the armchair type. Some of the regular-shaped graphene
nanodisks which have been studied in the literature are shown in Fig. 6.3. For
example, triangular graphene nanodisks with zigzag edges shown in Fig. 6.3a have
been theoretically predicted to have magnetic ground states (Fernández-Rossier and
Palacios 2007; Güclü et al. 2009; Kinza et al. 2010; Wang et al. 2008, 2009; Yazyev
2010). Optical properties of graphene nanodisks were recently studied theoretically
by Schumacher (Schumacher 2011) using a time-dependent density functional
theory-based approach. Because of their interesting optical and magnetic properties,
graphene nanodisks have potential applications in the field of optoelectronics and
spintronics (Yazyev 2010).

In this work, we present the calculations of the linear optical absorption
spectrum of the nanodisks shown in Fig. 6.3, using our PPP-model-based approach,
employing the screened Coulomb parameters and the SCI method. The aim of this
work is to understand the optical properties of graphene nanodisks and, particularly,
to probe the influence of the shape of the nanodisks on their absorption spectra. We
note that except for the zigzag triangular nanodisk (cf. Fig. 6.3a), which has an odd
number of � electrons, and hence an open shell doublet ground state, the rest of the
nanodisks have an even number of � electrons, and a closed-shell singlet ground
state. Results of our calculations for various nanodisks are presented in Fig. 6.4. On
comparing the absorption spectra of various nanodisks, the following trends emerge:
(a) for the triangular zigzag nanodisk, the absorption starts with a very weak feature
near 4 eV, while the most intense absorption occurs at energies higher than 7 eV;
(b) for the triangular armchair nanodisk, the most intense absorption occurs for
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Fig. 6.3 Structures of a few symmetric graphene nanodisks. (a) Zigzag triangular. (b) Armchair
triangular. (c) Diamond shaped. (d) Bowtie shaped

the first peak of the spectrum located at 4.4 eV, with somewhat weaker features at
higher energies; (c) for the diamond-shaped disk, the first peak which is reasonably
strong occurs at even lower energy close 3.2 eV, with several intense peaks at higher
energies; and (d) in the bowtie-shaped disk, the optical absorption starts at the lowest
energy (�2.6 eV) of all the nanodisks described considered here, with stronger
peaks at higher energies as well. Thus, we see an obvious correlation between the
shapes of the nanodisks, and their absorption spectra. Furthermore, for the triangular
nanodisks, the nature of edges (armchair vs. zigzag) also influences the optical
absorption both qualitatively and quantitatively. Therefore, it is conceivable that one
can determine the shapes and edge structures of graphene nanodisks through optical
absorption spectroscopy.

As far as the nature of excited states contributing to the optical absorption in
various nanodisks is concerned, a common feature emerges. In all the nanodisks,
the first absorption peak is characterized by an excited state which mainly consists
of the configuration obtained by a single-electron excitation from the HOMO to
the LUMO orbital. A more detailed study of the optical absorption in graphene
nanodisks, including higher-level CI treatments and the influence of disorder, will
be published elsewhere in future.
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Fig. 6.4 Linear optical absorption spectra of various graphene nanodisks computed using the PPP-
SCI approach and screened Coulomb parameters. A uniform line width of 0.1 eV was used to plot
all the spectra. (a) Zigzag triangular. (b) Armchair triangular. (c) Diamond shaped. (d) Bowtie
shaped

6.3.2 Infinite 1D Periodic Systems

As far as infinite 1D periodic systems are concerned, we apply our approach to
study the band structure and optical properties of mono- and multilayer-GNRs, and
single-walled carbon nanotubes.

6.3.2.1 Band Structure of Graphene Nanoribbons

GNRs are quasi 1D structures which can be obtained by patterning graphene using
various techniques (Han et al. 2007). Unlike monolayer graphene, GNRs exhibit en-
ergy band gaps (Son et al. 2006a) much needed for device applications. Theoretical
works on GNRs mainly focus on ribbons with armchair edge termination known
as armchair GNRs (AGNRs) and zigzag edge termination know as zigzag GNRs
(ZGNRs). The structures of an AGNR, and a ZGNR, are shown in Figs. 6.5a and b
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Fig. 6.5 The schematic representation of (a) armchair graphene nanoribbon withNA D 9 and (b)
zigzag graphene nanoribbon withNZ D 6. The ribbons are assumed to lie in the xy plane, with the
periodicity in the x-direction. The unit cells of these ribbon are enclosed in the shaded rectangles

Fig. 6.6 The unit cell of a
general GNR with eight
dimer lines across the width

respectively. In the case of AGNRs, NA denotes the number of carbon-carbon dimer
lines across the width (cf. Fig. 6.5a), while in the case of ZGNRs, width NZ denotes
the number of zigzag lines (cf. Fig. 6.5b) across the width.

In addition to the GNRs with well-defined edge terminations such as the AGNRs
and the ZGNRs, we also present calculations on general GNRs, which possess
mixed type of edge terminations, including both the armchair and zigzag edges.
The schematic structure of such a general GNR is presented in Fig. 6.6, in which
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the atoms at the edges are represented by solid circles. An armchair edge can be
identified by a dimer line connecting two edge atoms, whereas a zigzag edge can be
identified by an edge atom which is connected only with the atoms in the bulk of
the ribbon.

In all the calculations performed on GNRs of any type, the carbon-carbon
nearest-neighbor distance was taken to be 1.42 Å, and all the bond angles were
assumed to be 120ı. In case of multilayer GNRs, the distance between the adjacent
layers was taken to be 3.35 Å. The hopping is restricted only to the nearest
neighbors within each layer, and between the adjacent layers, with the values
t D 2:7 eV (intraplane), and t? D 0:4 eV (inter-plane) respectively. As far as
the Coulomb parameters are concerned, we have used the screened parameters of
Chandross and Mazumdar (Chandross and Mazumdar 1997), with U D 8:0 eV
and �i;j D 2:0 .i ¤ j / and �i;i D 1. The band structures of AGNR-8 (AGNR-NA

denotes an AGNR with width NA), and the general GNR, obtained using the PPP-
RHF method are presented in Figs. 6.7a and b, respectively. It is evident from
Fig. 6.7 that all the GNRs exhibit finite band gaps, and their band structures depend
crucially on their geometry. A band gap of 0.5 eV was observed at k D 0 for AGNR-
8 (cf. Fig. 6.7a). It is worth mentioning that AGNR-8 is metallic at the TB level. In
fact depending on the value of NA, AGNRs are classified into three categories with
NA = 3p, 3p C 1, and 3p C 2, p being an integer. At the TB level, all the AGNRs
with NA D 3p C 2 are predicted to be gapless (Nakada et al. 1996). However,
ab initio DFT calculations predict all types of AGNRs to be gapped (Son et al.
2006a). As far as the PPP-model-based calculations are concerned, the long-range
electron–electron interactions which it incorporates play a crucial role in opening
the band gaps in 3p C 2 class AGNRs (Gundra and Shukla 2011a). In case of the
general GNR, the band gap is direct in nature, with the value 0.49 eV, located at
k D � . Furthermore, as is obvious from Fig. 6.7, band structure of the general GNR
is significantly different from those of both the AGNR and the ZGNR.
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Fig. 6.8 The spin density
distribution of ZGNR-8
obtained using PPP-UHF
method, plotted at various
atomic sites in the unit cell
across the width

In the case of ZGNRs, the ground state is predicted to be magnetic with
oppositely oriented spins localized on the zigzag edges located on the opposite
sides of the ribbons (Son et al. 2006a). The ZGNRs are gapless at the TB level,
characterized by flat bands near the Fermi energy (EF), leading to a van Hove
singularity at EF, suggesting an instability. And indeed, a symmetry broken state
with magnetic ordering mediated by Coulomb interactions (Son et al. 2006b)
stabilizes the system. We obtain this broken-symmetry ground state exhibiting edge
magnetism on performing the PPP-UHF calculations (Gundra and Shukla 2011a),
which are based upon separate mean-fields for the up- and the down-spin electrons.
On the other hand, the PPP-RHF method, by its very nature, predicts a nonmagnetic
ground state for ZGNRs which has a higher energy per unit cell as compared to that
obtained for the spin-polarized state using the PPP-UHF method. The band structure
of ZGNR-8 (ZGNR-NZ denotes an ZGNR with widthNZ) obtained using PPP-UHF
approach is presented in Fig. 6.7c. A significant band gap of 2.64 eV is opened up at
k D 2�

3
because of the magnetic ordering. The spin density distribution for ZGNR-

8, plotted for the sites across its width, presented in Fig. 6.8 clearly exhibits edge
magnetism. The electrons of different spins are localized at adjacent sites along
the width, indicating an antiferromagnetic order. However, a ferromagnetic order is
observed on a given edge, along its length (Gundra and Shukla 2012).

6.3.2.2 Band Structure of Gated Graphene Nanoribbons

GNRs display interesting electronic properties in the presence of an external gate
bias. For example, ZGNRs exhibit half-metallic behavior in the presence of a lateral
electric field (Ey), i.e., ZGNRs are conducting for the electrons of one spin and
insulating for those of the other spin (Son et al. 2006b). Therefore, gated ZGNRs
have potential device applications in the field of spintronics.

This is illustrated in Fig. 6.9 in which the band structure of ZGNR-12 in the
presence of a lateral electric field of strength 0.2 V/Å is presented. While the bands
of the up (˛) and down (ˇ) spin electrons are degenerate in the absence of the
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field with a band gap of 2.1 eV, the degeneracy is lifted in the presence of external
electric field (Ey) along y-axis, and the band gap for electrons of spin-˛ changes to
1.5 eV, while that for electrons of spin-ˇ reduces drastically to 0.3 eV, indicating the
tendency towards the half-metallic nature. The half-metallic nature of ZGNRs can
be understood from the fact that in the absence of external electric field, oppositely
oriented spin states are localized on the opposite edges of the ribbon. In the presence
of a nonzeroEy , the ZGNR develops a potential difference across its width, thereby
energies of the localized edge states are increased on one edge and decreased on
the other one, leading to different band gaps for the electrons of different spin
orientations (Son et al. 2006b). With the increasing field strength Ey , the band
gaps of spin-ˇ electrons tend to decrease, while those of ˛ electrons exhibit a
slight increase up to a certain field strength, beyond which they also decrease
monotonically. After a critical field strength, the energy gaps for electrons of both
spins attain the same value, and the half-metallic behavior exhibited by the ZGNRs
disappears. To illustrate this point, in Fig. 6.10 we present the variation of band gaps
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the y-axis, for (a) NA D 3p, (b) NA D 3p C 1, and (c) NA D 3p C 2, with p D 2

of spin-˛ and spin-ˇ electrons with Ey for ZGNR-8, calculated using the PPP-UHF
method. The half-metallic nature is observed when 0 � Ey � 0:35V/Å, with band
gaps for electron of spin-˛ and spin-ˇ being well separated, and forEy > 0:35V/Å,
the energy gaps for electrons of both the spins are again identical, with the value of
the band gap being lower than the corresponding value in the absence of Ey . Thus,
the half-metallic behavior disappears for Ey > 0:35V/Å. The first-principles DFT-
based calculations by Kan et al. (2007) also predicted a similar behavior in ZGNRs.

The external electric field has profound effect on the band gaps of AGNRs
as well. We illustrate the variation of band gaps with Ey for AGNRs of width
NA D 3p, 3p C 1 and 3p C 2, for p D 2 in Fig. 6.11. In all the ribbons the
gap decreases initially with increase in the strength of Ey . But beyond a critical
field strength (Ec

y), a reverse trend is observed, where the gap increases with
further increase in the field strength. Even though we have presented the results
corresponding to p D 2, a similar behavior is observed for p > 2 as well. We
observe that in each category of AGNRs, the value of Ec

y decreases with the
increase in their width, e.g., we have obtained Ec

y D 3V/Å for AGNR-6, whereas
the corresponding value for AGNR-9 is 2 V/Å.

6.3.2.3 Optical Properties of Graphene Nanoribbons

As discussed earlier, the geometry of GNRs plays a crucial role in determining their
electronic structure. Therefore, the optical properties of the ribbons will also be
quite sensitive to their geometry, thereby allowing the possibility of determining
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the geometry of GNRs by means of optical measurements. Next, we present results
of our calculations of the optical absorption spectra of various GNRs and CNTs,
for the incident radiation polarized in x (or longitudinal) or y (or transverse)
directions, computed in the form of �xx.!/ and �yy.!/, respectively, where �i i .!/
denotes the imaginary part of the dielectric constant tensor for the i th Cartesian
component and ! denotes the frequency of incident photons. The calculations of
various components of the �i i .!/ were performed using the standard approach
outlined in our previous publications (Gundra and Shukla 2011a,b, 2012). The
optical absorption spectrum of AGNR-8, obtained using the PPP-RHF method, is
displayed in Fig. 6.12. If †mn denotes a peak in the spectrum due to a transition
from mth valence band (counted from top) to the nth conduction band (counted
from bottom), the peak of �xx.!/ at 0.54 eV is †11, and the peak at 4.60 eV is †22.
Whereas, the peak in �yy.!/ at 2.93 eV corresponds to †31. The individual peaks in
the absorption spectrum of AGNR-8 are well separated in energy and correspond to
either x- or y-polarized photons, consistent with the dipole selection rules of D2h

point group symmetry of AGNRs.
In Fig. 6.13a we present the optical absorption spectrum of ZGNR-6 computed

using the PPP-UHF method. Even though the point group of ZGNRs is also D2h,
in contrast to AGNRs, most of the prominent peaks of ZGNR-6 exhibit mixed
polarization characteristics. This is due to the fact that the edge-polarized magnetic
ground state of ZGNRs no longer exhibits D2h symmetry, because the reflection
symmetry about the xz-plane is broken, thereby leading to mixed polarizations in
the optical absorption. Thus, by using optical probes, one can predict whether a
given ribbon is an AGNR or a ZGNR by analyzing the polarization characteristics
of the absorption peaks.

Apart from determining the geometry of GNRs, optical absorption spectra
can also be used to differentiate the monolayer GNRs from the bilayer and the
multilayer GNRs. We illustrate this by comparing the optical absorption spectrum
of monolayer ZGNR-6 with that of its bilayer counterpart. Similar to the case of
monolayer ZGNR-6, most of the prominent peaks of bilayer ZGNR-6 also exhibit
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mixed polarization characteristics (cf. Fig. 6.13b) due to edge magnetism (Castro
et al. 2007). However, it is interesting to note that in the case of monolayer ZGNRs,
the shape of the spectra corresponding to �xx.!/ and �yy.!/ remains similar, though
the magnitude of peaks of �yy.!/ is smaller when compared to those of �xx.!/. This
scenario is completely changed in the case of bilayer ZGNR-8, in which due to the
presence of second layer, many additional peaks are observed in �xx.!/ as compared
to �yy.!/. Therefore, the optical response of monolayer ZGNRs is quite different
from that of the bilayer ZGNRs and can, in principle, be used to distinguish between
them through optical measurements.

6.3.2.4 Band Structure and Optical Properties of Bilayer AGNRs

Bilayer and multilayer AGNRs exhibit interesting electronic and optical properties
which we have investigated in an earlier publication (Gundra and Shukla 2011b).
For example, the intensity of the linear optical absorption in multilayer AGNRs
increases rapidly with the increasing number of layers and depends crucially on the
relative orientation of adjacent layers (Gundra and Shukla 2011b). In this section,
we discuss the band structure and optical properties of bilayer AGNR-8 obtained
using the PPP-RHF method. We assume Bernal stacking for bilayer AGNRs and
consider two types of edge alignments, namely, ˛ alignment and ˇ alignment,
shown schematically in Fig. 6.14 (Gundra and Shukla 2011b). To illustrate the
influence of edge alignment on the electronic structure of bilayer AGNRs, we
present the band structure of bilayer AGNR-8 in ˛ and “ alignments in Figs. 6.15a
and b, respectively. The individual energy bands near Fermi energy are separated by
larger energy in ˛ alignment when compared to ˇ alignment (Gundra and Shukla
2011b). This has important implications on the optical absorption spectra which is
presented in Figs. 6.15c and d, for the two alignments. It is obvious that the optical
absorption spectra for the two alignments are substantially different from each



6 A Pariser–Parr–Pople Model Hamiltonian Based Approach. . . 221

y

x

z

a b

Fig. 6.14 Schematic structure of a bilayer AGNR in (a) ˛ alignment and (b) ˇ alignment

0 0.2 0.4 0.6 0.8 1

k(π/a)

−4

−2

0

2

4

E
k(

eV
)

0 0.2 0.4 0.6 0.8 1

k(π/a)

−4

−2

0

2

4

ω(eV)

0

10

20

30

ε x
x(

ar
b.

un
it
s)

0 2 4 6 8 10 12 0 2 4 6 8 10 12

ω(eV)

0

10

20

30

a b

c d

Fig. 6.15 Band structure of bilayer ANGR-8, obtained using the PPP-RHF method in (a) ˛
alignment and (b) ˇ alignment. Optical absorption spectra of the same ribbon in (c) ˛ alignment
and (d) ˇ alignment

other so that their experimental measurement, coupled with our theoretical results,
can possibly be used to determine the nature of alignment in multilayer ribbons.
For a comprehensive discussion of the influence of edge alignment on the optical
properties of multilayer AGNRs, we refer the reader to our recent work (Gundra
and Shukla 2011b).

6.3.2.5 Electro-Absorption in Zigzag Graphene Nanoribbons

Electro-absorption (EA), which is nothing but the optical absorption in the presence
of a static external electric field, is a commonly used probe of optical properties of
materials and has been used extensively in the field of �-conjugated polymers (Liess
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et al. 1997). Quantitatively, it is defined as the difference of the optical absorption
spectrum with, and without, an external static electric field. In a recent work (Gundra
and Shukla 2011a), we argued that the EA spectroscopy provides a natural way of
probing the electric-field-driven half-metallicity of ZGNRs. To illustrate this, we
present the EA spectrum of ZGNR-10 in Fig. 6.16, calculated in the presence of
a lateral external electric field of strength 0.2 V/Å, using our PPP-UHF approach.
The linear absorption spectrum of the ribbon without the external field, for its
spin-polarized ground state, is also presented in the same figure. The electric-field-
driven half-metallic nature of ZGNR-10 is clearly evident with the presence of two
energetically split peaks, corresponding to two different †11 transitions, among the
spin-up and spin-down electrons. Therefore, EA spectroscopy can serve as a useful
optical probe to probe both the edge magnetism and related half-metallic nature of
ZGNRs.
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6.3.2.6 Band Structure and Optical Absorption Spectrum
of Carbon Nanotubes

Single-walled carbon nanotubes (SWCNTs) exhibit excellent electronic properties
and have been studied extensively over the last few decades (Dresselhaus et al.
2001). In this work, we present the band structure and optical properties of insulating
SWCNT (8,0) obtained using PPP-RHF method. Even though the PPP model
has been used by other authors to explore the electronic and optical properties
of carbon nanotubes (Wang et al. 2006, 2007; Zhao and Mazumdar 2004, 2007;
Zhao et al. 2006), the calculations are restricted to nanotubes of finite length,
and periodic boundary conditions were not imposed. The schematic structure of
SWCNT (8,0) is presented in Fig. 6.17. In these calculations, carbon-carbon nearest-
neighbor distance was taken to be 1.42 Å, and hopping was restricted to the nearest
neighbors, with the hopping term t D 2:4 eV. Similar to the case of GNRs, we
have used the screened Coulomb parameters of Chandross and Mazumdar (1997),
with U D 8:0 eV and �i;j D 2:0 .i ¤ j / and �i;i D 1. Figure 6.18 displays the
band structure of SWCNT (8,0) obtained using our approach. We note that the band
structure of this SWCNT is similar to that of AGNRs, with a direct band gap of
2.18 eV at k D 0.

The optical absorption spectrum of SWCNT (8,0), computed using the PPP-
RHF approach, is presented in Fig. 6.19. Due to the cylindrical symmetry of CNTs,
their electric-dipole optical transitions are either through longitudinally polarized
photons with polarization direction along the axis of the tube (x-direction), or the
transversely polarized photons, with the polarization in the radial direction, in the
yz plane. In Fig. 6.19, we denote the longitudinally polarized absorption spectrum
as �k.!/ (D �xx.!/), and the transverse one as �?.!/ (D p

�yy.!/2 C �zz.!/2,
with �yy.!/ D �zz.!/). While a detailed investigation of the optical absorption of
SWCNTs will be published elsewhere, we note that the peaks corresponding to two
types of polarizations are well separated in energy, and, therefore, can be identified
in absorption experiments. The peak in �k.!/ corresponds to the †11 transition,
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located at the direct band gap (2.18 eV), while the peak in �?.!/ at 2.77 eV denotes
†12 transition. These results of ours on SWCNT (8,0) in the infinite length limit
are in good quantitative agreement with the corresponding PPP-HF results reported
by Zhao and Mazumdar (2004), based upon finite fragment calculations.

6.4 Conclusions and Future Directions

In this chapter, we have applied a PPP model Hamiltonian-based approach to study
the electronic structure and optical properties of finite, as well as 1D periodic,
graphene nanostructures such as fullerene C60, graphene nanodisks, graphene
nanoribbons, and single-wall carbon nanotubes. In case of periodic systems,
calculations were performed at the mean-field Hartree-Fock level, whereas for the
finite systems, we went beyond the mean field and included the electron-correlation
effects at the SCI level. We computed the linear optical absorption spectrum of
fullerene C60, and the results obtained with screened Coulomb parameters were
found to be in good agreement with the experiments. We also probed the optical
absorption in graphene nanodisks using our approach and found that their shape,
and the edge structure, influences their absorption spectrum considerably.

For 1D periodic systems, we computed the band structure and optical absorption
spectra of monolayer GNRs of different geometries, and bilayer GNRs in Bernal
stacking, but with different edge alignments. We found that the band structure
and optical absorption spectra of GNRs depend crucially on their geometrical
parameters, thereby allowing the possibility of an all-optical determination of the
nature of their edge termination, as well as number and alignment of different
layers for multilayer GNRs. We also demonstrated the sensitivity of the optical
absorption spectrum of the ZGNRs to the nature of their edge-magnetized ground
state and argued that their EA spectrum provides an efficient way of probing their
electric-field-driven half-metallicity. Furthermore, for the first time, we applied our
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PPP-model-based approach to compute the band structure and optical absorption
spectrum of an insulating SWCNT in the infinite periodic limit.

It is quite remarkable that the PPP model, which was originally developed to
describe the electronic structure of �-conjugated molecules and polymers, also
can be applied successfully to describe the physics of other �-electron systems
such as graphene nanostructures, as also the curved systems such as fullerenes
and carbon nanotubes, for which the �–� separation is no longer valid. In the
future we aim to extend our PPP model-based preliminary calculations on fullerene
C60, and graphene nanodisks, by performing higher-level CI calculations employing
approaches such as the MRSDCI method to study their optical properties and
low-lying excited states. For the case of 1D periodic systems such as GNRs and
CNTs, we intend to include the influence of electron correlation effects on their
band structure. Furthermore, we also plan to incorporate the excitonic effects
in the optical absorption spectra of these systems. It will also be of interest
to extend this PPP-model-based approach to study multi-wall CNTs, as well as
higher-dimensional systems such as graphene, and graphite. The work along these
directions is currently under way in our group, and the results will be presented in
future publications.
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W, Rubin Y, Shriver KE, Sensharma D, Whetten RL (1990) J Phys Chem 94:8630
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Chapter 7
Topological Invariants of Möbius-Like
Graphenic Nanostructures

Mihai V. Putz, Marzio De Corato, Giorgio Benedek, Jelena Sedlar,
Ante Graovac�, and Ottorino Ori

Abstract Topological invariants are computed for some carbon zigzag nanoribbons
in the limit of infinite carbon atoms N by applying standard and Möbius-like
periodicity. Topological modeling considerations allow then to assign to the half-
twisted molecules a certain grade of chemical stability based on the actions of
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two basic topological properties, compactness and efficiency, which represent the
influence that long-range connectivity has on lattice stability. Conclusions about
Möbius-nanoribbon topological dimensionality are also presented.

7.1 Introduction

Since its discovery made in 1858 by August Ferdinand Möbius (1858) and,
almost simultaneously, by Johann Listing, the chiral structure of the Möbius strip
attracts the continuous attentions of mathematicians, scientists, architects, and
artists (Gardner 1978; Pickover 2006). To produce this fascinating object, one
just needs to half twist a paper rectangle before gluing the opposite edges. The
resulting form, a sort of twisted belt represented in Fig. 7.1, reveals intriguing
topological properties, including chirality, never encountered before. Being the
number of rotations of the paper ribbon practically endless, this note deals with
the normal Möbius strip produced by just one half twist. The first aspect worth
of notice concerns the edge of the Möbius strip which, surprisingly, now consists
of a single line that one follows until the tour around the structure is completed.
Unlike the cylinder produced by gluing the same paper rectangle without making
the twist, the Möbius strip has a single edge and also presents a single surface. At
every lap, the landscape along this surface varies dramatically, exchanging top with
bottom, clockwise with counter clockwise. The length of each lap L coincides with
the length of the initial open rectangle. Because of this property, the Möbius strip
is defined mathematically non-orientable. More information about this influential
shape are provided in literature by a parade of scientific articles. In particular
Möbius strip surface topology can be characterized by Hilbert connectivity k D 2,
half-integer genus g D 1/2, or by its Euler–Poincaré characteristic �D 1. The tiling
properties of a closed (contourless) Möbius ring with saturated threefold carbon
atoms (e.g., the coordination implied by sp2 hybridization) require a tessellation

Fig. 7.1 The Möbius one-sided surface with a single twist in its two right- (r) and left-handed (l)
chiral forms (Reproduced from Weisstein 2012)
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with only hexagons (f6), pentagons (f5), and heptagons (f7), where f5 � f7 D 6
following Poincaré’s formula. The reader will find a systematic description of
surface polygonal tiling fundamental topological features in the extended study
(Benedek et al. 2011).

Aromatic hydrocarbons with the Möbius ring topology have been predicted long
ago (Heilbronner 1964) and synthesized more recently by Ajami and coworkers
(2003). Further examples of Möbius rings have been assembled at the micrometric
scale from ribbon-shaped NbSe3 crystals (Tanda et al. 2002, 2005) under specific
growth conditions. Moreover, this canonical one-sided surface has been recently
reproduced (Han et al. 2010; Yang et al. 2012) by joining up DNA filaments to
create Möbius structures of about 50 nm, with the final goal of developing useful
biochemical devices and drug delivery mechanisms exploiting the peculiarities of
such twisted nano-architecture.

In mechanical engineering the presence of a single surface makes the Möbius
shape the best candidate for realizing long-lasting mechanical transmission belts.

The physical properties of the Möbius structures have been subject of intense
investigations (Starostin and van der Heijden 2007) boosted by the theoretical
evidence given in (Hayashi and Ebisawa 2001) that topological effects force the
existence of new states in superconducting Möbius strip in a magnetic field.
Important qualitative changes in the behavior of a quantum particle confined on
the Möbius surface derive from the curvature of the ribbon (Gravesen and Willatzen
2005); among other effects, the twice-encircling properties of the surface produce a
peculiar split of the degenerate electronic ground state of the reference cylindrical
system.

On the Möbius strip, a 4  rotation is required to guarantee the invariance of
the eigenfunctions, offering a theoretical pathway for new discoveries in chemistry,
physics, as well as for the design of new materials and electronic devices. Quantum
properties inherently depend on geometrical and topological characteristics of
the global system. Yakubo et al. (2003) evidenced measurable differences of the
electronic behavior by comparing flux periodicity of persistent electronic currents in
a cylinder and in a Möbius strip; in their model the presence of a moderate disorder
makes experimentally observable the differences between these two systems of
noninteracting electrons. Theoretical simulations of graphene-based nanoribbons
with a variable number of twists have been intensively undertaken in the past
decade. Semiempirical calculations, based on molecular geometries optimized with
classical force field methods, feature common results like (1) lower symmetry
than the original graphenic ribbon and (2) larger HOMO–LUMO energy due to
electronic localization effects created by the twisting (Caetano et al. 2008, 2009);
worth noting is that this last property directly connects with the celebrated maximum
chemical hardness � principle (Parr and Chattaraj 1991; Chattaraj et al. 1995; Putz
2008) required by molecular structures stabilization, due to the conceptual density
functional definition rewritten in the frozen core approximation (Koopmans 1934),
�D ("LUMO � "HOMO)/2; see, for instance, Chap. 9 of the present monograph as
well as earlier and recent references (Parr and Pearson 1983; Parr and Yang 1989;
Putz 2012a, b). Twisted nanoribbons present distinct UV/visible spectra, with the

http://dx.doi.org/10.1007/307785_1_En_9
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first absorption peaks in the orange–violet wavelengths domain while strong absorp-
tion is forecasted in the ultraviolet region. Authors suggest moreover the possibility
that twisted nanoribbons could form stable crystals. Although molecules with
Möbius geometry are not found in nature, the original theoretical prediction, made
by Heilbronner in 1964, about the existence of Möbius aromaticity in [4n]annulenes
in twisted conformations having the p orbitals on the surface of a Möbius strip, has
stimulated so far the search for twisted aromatic (or antiaromatic) systems with
[4n] (or [4n C 2])  -electrons. Möbius-aromatic molecules are quite difficult to
synthesize and detect; see the recent extensive summary (Yoon et al. 2009) reporting
the generation of Möbius topologies in porphyrinic systems as the first example of
molecules with distinct Möbius aromaticity. Knot-shaped molecules have been also
synthesized, producing fantastic chiral molecules having the topology of trefoil and
pentafoil knot – see the recent paper from Ayme et al. (2012) and related literature.

At a molecular level, remarkable improvements in the theoretical description of
belt-shaped carbon allotropes have been recently provided in Estrada and Simón-
Manso (2012). Authors start from octadehydro[12]annulene building blocks to
produce belt structure of both types, for example, Hückel-like (or cylindrical) and
Möbius-like molecules, and they baptize Escherynes this new class of all-carbon
molecules in homage to the influential Dutchman artist. The stability of Möbius-like
Escherynes prevails when the size of the system reaches the threshold of 60 carbon
atoms or more according with the results of ab initio DFT calculations reported in
Estrada and Simón-Manso (2012). Those studies moreover predict for Möbius belts
an important optical activity, a topic for future experimental works.

Theoretical investigations about electronic and magnetic properties of graphenic
ribbons with zigzag edges (see, for instance, Figs. 7.2 and 7.4) under the periodic
or Möbius boundary conditions evidence that the application of the twist induces
the formation of magnetic subdomains replacing the ferrimagnetic states of the
original nanoribbons, whose extension depends on the Coulomb interaction and
spin coupling (Wakabayashi and Harigaya 2003). The growth of magnetic regions
in the lattice is a “somewhat intuitive” consequence of Möbius boundary condition
that, by connecting the similar sublattices on both sides of the cylindrical carbon
nanoribbons, induces magnetic frustration in the ferrimagnetic alignments. The
unusual topological features the of graphene Möbius strip have been enriched by
the theoretical study of Guo et al. (2009) who have predicted that such a carbon
nanostructure, again in the zigzag edge configuration, behaves like topological
insulator, whereas that is not the case for armchair nanoribbons. A topological
insulator is an electronic system characterized by an insulating bulk and a metallic
surface, and its conductive edge states are stable under perturbations. Due to
its nontrivial topology, the zigzag Möbius strip possesses such a robust metallic
surface.

In this work we investigate some details of the topological character of zigzag
Möbius carbon nanoribbons, considered in the following like pure chemical graphs
with a carbon skeleton, by computing distance-based topological invariants in the
limit of infinite lattices, for example, with the number of carbon atoms N ! 1. An
introduction to the formalisms is provided in the next paragraph.
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Fig. 7.2 Cyclacene zigzag belts are obtained by closing the molecule connecting the atoms with
the same labels (Hückel-type) or with the same colors (Möbius-type). In both cases, the minimal
vertices V correspond to the 3-connected ones. V nodes produce the maximum contribution wi

to W. Translational unit cell is made by four shaded atoms. The two opposite dotted hexagons
coincide; thus the represented molecules include seven unit cells, N D 28 atoms and B D 35 bonds

7.2 Graph Invariants

According with the topological modeling formalism, the distance dij between two
nodes i and j is in effect the chemical distance corresponding to the number of bonds
connecting the two atoms following the shortest path in the graph; clearly when
dij D k, atom j lies in the kth coordination shell of atom i and vice versa. Indicating
with M the length of the longest path of the graph (integer M corresponds to the
graph diameter) and with bik the number of k-neighbors of atom i, the effect of
lattice long-range topology on node i is summarized by the topological invariant wi:

wi D 1=2
X

k

kbik k D 1; 2; : : : ;M � 1;M (7.1)

where N � 1 D P
k bik and bi1 D 3 for any fullerene or infinite graphene node i.

Symbol w indicates the smallest among wi. Nodes featuring wi D w are the so-called
minimal vertices V of the graph. Set fbikg identifies the Wiener-weights (WW) of
vertex i. Wiener index W, the oldest among the molecular invariants (Todeschini and
Consonni 2000), is the semisum of the chemical distances dij of the graph with N
nodes:

W.N/ D 1=2
X

ij

dij D
X

i

wi i; j D 1; 2; : : : ; N � 1;N (7.2)

It measures the overall compactness of the chemical structure.
The first basic approximation of topological modeling methods is (Ori

et al. 2009):

Higher chemical stability is assigned to atoms with lower wi.

The averaged topological efficiency index

 D W

Nw
being  � 1 (7.3)
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measures the efficiency of the lattice to self-arrange around the minimal nodes,
the most efficient nodes in preserving graph compactness. Index (7.3) works quite
well in selecting chemical stable fullerene isomers (Vukicevic et al. 2011) and
plays a role in the graphenic nanocone growth (Cataldo et al. 2010). It also ranks
topological sphericality of a given chemical structures, examples of topologically
spherical graphs with D 1 being C60(Ih) fullerene, infinite lattices of graphene,
cubic lattices, and sodalite, a type of zeolite.

The second basic approximation of the topological modeling is then:

Higher chemical stability is assigned to structures with low .

Both approximations hold when similar structures are compared. However,
much caution has to be paid with index (7.3), since, usually sphericity reaches
its maximum for more stable and favorite structures when the minimum potential
condition is realized; this should be the case with definition (7.3) through involving
inverse of minfwg; yet the competition between w�1 and W minimum optimization
will lead to a fmaxg � fming pairs that should arrange the favorite structures in local
optimal configurations (Ori and Putz 2013).

Following the recent study of Xing et al. (2011) on the influence of molecular
symmetry on [18]-cyclacene molecular orbitals, the first application of our com-
putational methods considers infinite cyclacene molecules with Hückel-type and
Möbius-type closure. Figure 7.2 shows the translational building unit of such a
cyclacene system consisting in the four shaded nodes and the two possible ways of
imposing periodic conditions, Hückel (by connecting the atoms with the same label)
and Möbius (by connecting the atoms with identical color red and blue). Opposite
dotted hexagons coincide; thus, for example, the circular molecule represented in
Fig. 7.2 is made by 7 building units, for a grand total of N D 28 carbon atoms and
B D 35 chemical bonds.

The topological indices for Hückel-type cyclacenes are given in Table 7.1. The
minimal vertices V of this set of molecules, for example, the nodes embedded in the
graph in the most compact way, coincide with the internal 3-connected (triangular)
nodes; their wi values are listed in column w. As expected (Cataldo et al. 2010), also
in this case the topological distance-based invariants respect typical polynomial laws
depending from the dimensionality d of the system. The growth of the Wiener index,
for example, follows in fact the W � Ns power law where the leading exponent
s only depends from system dimensionality being s D 2 C 1/d. This formula for s
unveils the presence of deep, mutual influence between the long-range connectivity
properties of a system and its dimensionality presented in paper (Ori et al. 2010)
with some more details.

Present simulations are performed on molecular systems with dimensionality
d D 1, and therefore these elegant relationships for Hückel-type cyclacenes are
easily computable:

W.N/ D N3=16CN2=4CN=2 (7.4a)

w D N2=16CN=4 (7.4b)
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Table 7.1 Graph invariants for cyclacene zigzag belts with N atoms and B bonds

Cyclacene Hückel-type Möbius-type

N B M W w  M W w 

8 10 3 52 6 1.08333 3 48 5.5 1.09091
12 15 4 150 12 1.04167 3 144 11.5 1.04348
16 20 5 328 20 1.025 4 320 19.5 1.02564
20 25 6 610 30 1.01667 5 600 29.5 1.01695
24 30 7 1,020 42 1.01190 6 1,008 41.5 1.01205
28 35 8 1,582 56 1.00893 7 1,568 55.5 1.00901
32 40 9 2,320 72 1.00694 8 2,304 71.5 1.00699
72 90 19 24,660 342 1.00146 18 24,624 341.5 1.00146
1,000 1,250 251 62,750,500 62,750 1.00000797 251 62,750,000 62,749.5 1.00000797

M, W, w,  are, respectively, the graph diameter, the Wiener index, the lowest wi values, the
topological efficiency index and are separately listed for Hückel-type and Möbius-type systems

The limit condition on  immediately comes from definition (7.3) and formulae
(7.1, 7.2):

 ! 1 for N ! 1 (7.4c)

Other polynomial laws for Hückel-type cyclacene are M(N) D N/4 C 1 and
B(N) D 5N/4 or B(N) D 5(M � 1). Previous indices (7.4) slowly converge to their
asymptotic values, as shown by the data computed for the closed molecule made
by 250 unit cells and N D 1,000 atoms; see the last row of Table 7.1. For
completeness, cyclacene open molecules have the WO � N3/12 leading term instead
of the corresponding term WC � N3/16 given in Eq. (7.4a) for the closed structure.
This result confirms the Wiener polynomial form early introduced by Bonchev and
Mekenyan (1980); it also allows to verify, once more, the general rule for the
compression factor ˛D WC/WO which, for any monodimensional lattice, assumes
the universal value ˛D 3/4 (Cataldo et al. 2010). More features about this intriguing
topological quantity may be found in the recent investigation by Sedlar et al. (2013).

For Hückel-type cyclacenes, the WW strings divide the nodes in two classes,
the central minimal vertices V and the maximal ones V placed on the edge
(Fig. 7.2). The firsts show WW strings with a specific composition depending from
M: b1 D 3; bk D 4 for k D 2,3, : : : , M � 3,M � 2; bM � 1 D 3; bM D 1. The remaining
edge-nodes V of the molecule have b1 D 2; b2 D 4; b3 D 5; bk D 4 for k D 4,5, : : : ,
M-3,M-2; bM�1 D 3; bM D 1. For example, for N D 72, M D 19 and we have
therefore

fbV kg D f3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 1g and

fbV
k
g D f2 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 1g

for V and V , respectively. In Hückel-type cyclacenes, the general identity
w D w C 1, valid for each molecular size N, connects the contribution to the Wiener
index arising from minimal and maximal atoms.
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Table 7.1 also lists the topological indices for the Möbius belts pictured in
Fig. 7.2 which one realizes by joining the boundary nodes with the same colors. Our
calculations points out that the topological invariants that characterize Möbius-type
cyclacenes have polynomial rules very close to the forms (7.4), previously derived
for the untwisted cases:

W.N/ D N3=16CN2=4 (7.5a)

w D N2=16CN=4� 1=2 (7.5b)

Again, for N ! 1 we have ! 1. Exponent 3 in the leading term of Wiener
index (7.5a) evidences first of all that also Möbius-type cyclacenes have, from the
topological point of view, the same dimensionality d D 1 of the Hückel-type ones.

On the other hand, Table 7.1 introduces also significant differences between the
two types of cyclacenes belts. For a fixed number N of carbon atoms, Table 7.1
shows that the graph diameter M of the Möbius-type cyclacenes is shorter (for
N � 12), being M(N) D N/4. Möbius structures are therefore topologically more
compact than their isomeric Hückel counterparts. The higher compactness of
Möbius-type cyclacenes is confirmed by the calculated trends of W and w invariants.

The topological characterization of cyclacenes systems allows concluding that:

The tendency to produce compact structures confers to Möbius-type cyclacenes
a certain theoretical stability and possibility to be synthesized.

Further insights about cyclacenes stability derive from the study of the evolution
of the topological efficiency  computed, in both cases, by expanding the molecular
size N. Figure 7.3 illustrates such a competition between H and M as a function of
the number of atoms N, and it is interesting noticing that Möbius-type cyclacenes
reach the same topological efficiency typical of the Hückel structures after a certain
threshold size n0 is reached. Our approximated topological simulations fix that
threshold in the region n0 � 16 atoms, corresponding to a Möbius-cyclacenes made
of four cells, as reported in Fig. 7.3.

On the basis of these results we also predict that:

The topological stability of the Möbius-type cyclacenes increases with the size of
the molecule.

We end this introductive topological characterization of cyclacenes by analyzing
the structure of the atomic coordination shells in the infinite limit. Like in the
Hückel-type cyclacenes, atoms of a Möbius-cyclacenes are split again in two
classes, namely, the minimal V and maximal V vertices placed as shown in
Fig. 7.2 with w D w C 1 for both lattices. Depending on M, minimal nodes present
WW strings with a peculiar composition: b1 D 3; bk D 4 for k D 2,3, : : : ,M � 1,M.
Molecular edge-nodesV have instead b1 D 2; b2 D 4; b3 D 5; bk D 4 for k D 4,5, : : : ,
M � 1,M. We already know that M goes in the infinite lattice limit as N/4, thus
Möbius-cyclacenes with N D 72 nodes have, for example, M D 18 and
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Fig. 7.3 Cyclacene zigzag belts compete in terms of topological efficiency: H and M are plotted
in function of the number of atoms N showing that Hückel-type molecules are better organized till
a certain threshold size of n0 � 16 atoms is reached. Möbius-like and Hückel-like cyclacenes with
a number of N atoms larger than n0 have a comparable topological stability

fbV
�k

g D f3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4g and

fbV
k
g D f2 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4g

for V and V nodes, respectively.
After the above introduction to the topological modeling algorithms and to

the topological representation of chemical structures with Möbius-like periodic
conditions, the next section will deal with the topological characterization of some
carbon nanoribbons.

7.3 Topological Invariants in Möbius-Like Carbon
Nanoribbons

The variety of carbon nanostructures studied in literature is very large. Here
we adopt the carbon structure with zigzag edges described by Wakabayashi and
Harigaya (2003) and Guo at el. (2009) having infinite length L and finite width Y.
Figure 7.4 represents the considered system having Y D 12 atoms in the translational
unit cell (represented by shaded circles). These graphenic belts may be closed in the
standard circular way to produce a cylinder ZO or, after a half twist, to produce
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V
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V

Fig. 7.4 Closed graphenic zigzag nanoribbons are obtained by imposing cylindrical standard
periodic conditions or by connecting the atoms with the same colors (Möbius-type). Translational
unit cell is made by Y D 12 shaded atoms. The opposite dotted hexagons coincide; thus, the
represented molecules include 7 unit cells, N D 84 atoms and B D 119 bonds

a Möbius-like nanoribbons Z” with N atoms. The application of the half twist is
algorithmically achieved by connecting “upside-down” the three pairs of bridging
atoms represented in Fig. 7.4 with the same colors.

The results of our computations are summarized in Table 7.2. The number of
chemical bonds in both structures is equal to B D 17N/12, and also for this carbon
nanostructure, Möbius boundary conditions minimize the lattice diameter, being in
fact M(Z”) D M(ZO) � 3 for N � 108. The graphenic nanoribbons in Fig. 7.4 keeps,
for constant Y, a monodimensional structure which forces therefore the topological
invariants obeying the N3 polynomial relationships previously introduced for the
Wiener index of cyclacenes in Eqs. (7.4) and (7.5). Present conclusions about
d D 1 topological dimensionality of Möbius-nanoribbons contradicts somehow
other observations in literature stating that the two-dimensional nature of the Möbius
graphene strip plays a key role in ab initio simulations of the electronic properties
of this “nontrivial topological structure”; see Guo et al. (2009).

We therefore consider the monodimensional character of the Möbius-
nanoribbons within the topological modeling scope, and it has to be compared
with similar findings. For example, tubular fullerenes with N carbon atoms,
consisting in two 6-pentagon poles connected by hexagonal nanotubes, show a
similar dependence d D 1 and s D 3 with W(N) D N3/30 C 235N2/6-670 when
N � 50, a polynomial form which partially improves previously reported results by
Graovac et al. (2011), representing an exception with respect to the larger family of
fullerenic d D 2 hollow molecules having normally W � N2.5.

For both nanoribbons in Fig. 7.4, the periodic infinite lattices ZO and Z” present
these invariants:

W.ZO/ D N3=48C 35N 2=36C 35N=2 (7.6a)
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Table 7.2 Graph invariants for nanoribbons ZO and Z” with Y D 12 belts with N atoms
and B bonds

Nanoribbon Y D 12 Cylindrical ZO Y D 12 Möbius-type Z”

N B M W w  M W w 

24 34 11a 1,188a 38 1.30263 6a 844a 31.5 1.11640
36 51 11a 2,826a 62 1.26613 7a 2,349a 60.5 1.07851
48 68 11a 5,376a 92 1.21739 8a 4,872a 90.5 1.12155
60 85 11a 9,050 128 1.17839 10a 8,575a 126.5 1.12978
72 102 11 14,076 170 1.15000 11a 13,620a 168.5 1.12265
84 119 12 20,678 218 1.12920 11a 20,202a 216.5 1.11085
96 136 13 29,072 272 1.11336 11a 28,544 270.5 1.09920
108 153 14 39,474 332 1.10090 11 38,880 330.5 1.08926
120 170 15 52,100 398 1.09087 12 51,440 396.5 1.08113
132 187 16 67,166 470 1.08262 13 66,440 468.5 1.07435
144 204 17 84,888 548 1.07573 14 84,096 546.5 1.06862
156 221 18 105,482 632 1.06988 15 104,624 630.5 1.06371
168 238 19 129,164 722 1.06487 16 128,240 720.5 1.05945
180 255 20 156,150 818 1.06051 17 155,160 816.5 1.05573

M, W, w,  are, respectively, the graph diameter, the Wiener index, the lowest wi values,
the topological efficiency index and are separately listed for cylindrical and Möbius-type
systems
aValues outside the convergence range of Eqs. (7.6) and (7.7)

w
�

.ZO/ D N2=48C 3N=4C 8 (7.6b)

M.ZO/ D N=12C 5 (7.6c)

and

W.Z�/ D N3=48C 35N 2=36C 12N (7.7a)

w
�

.Z� / D N2=48C 3N=4C 13=2 (7.7b)

M.Z�/ D N=12C 2 (7.7c)

From Eqs. (7.6) and (7.7) and  definition (Eq. 7.3), the asymptotic value ! 1 for
N ! 1 also holds for both graphenic systems of Fig. 7.4.

Equations (7.6) and (7.7) show that also in this case, the presence of the half
twist reduces the graph diameter M and the values of indices W and w, increasing
the compactness of the graphenic nanoribbons with periodic Möbius conditions.

The half twist moreover induces in the Z” hexagonal mesh the remarkable effect
of equalizing atomic eccentricities. With eccentricity of an atom i, one defines
the maximum of the distances involving i, for example, ei D maxfdijg. Clearly,
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Fig. 7.5 ZO and Z” belts topological competition: topological efficiency indices O and ” vary
in function of the number of atoms N privileging the Möbius-like molecules which exhibit a
larger topological efficiency and sphericality. After the n0 � 200 limit, Möbius-like and Hückel-
like nanoribbons posses a comparable topological stability

we have M D maxfeig. To understand the importance of this topological effect,
we consider first the cylindrical nanoribbons ZO which presents a nonuniform
distribution of ei values as one may easily compute. With N D 120, for example,
topological eccentricity assumes feig D f13,14,15g values, but it promptly recovers
a lower and constant value ei D 12 when Möbius periodic conditions are in place.
Thus, Möbius-twist practically induces a sort of topological sphericalization of
the graphenic nanoribbons structure, a condition that, according to topological
modeling approach, favors the stability of the Z� system.

The topological competition between these two types of boundary condition
of the Y D 12 nanostructure is illustrated in Fig. 7.5 by plotting the  values
which, for N � n0, show the prevalence of the Möbius ring Z” over the cylindrical
nanoribbons ZO. The threshold varies with Y, and for Y D 12, it stays in the region
n0 � 200.

Based on above topological simulations, the following conclusion is derived:

Möbius-type nanoribbons stay topologically efficient at any size N of the
molecule. In particular for N � n0 � 200 atoms, the Möbius ring Z� is topologically
favored.

Topological modeling quickly indicates therefore the critical scale n0 which
characterizes the growth of the nanostructures in Fig. 7.4. This is an indubitable
merit of the present approximation which arises from the polynomial nature
generally shown by the distance-based topological invariants.
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In the cylindrical structure ZO, the two symmetric central nodes V of the Y D 12
unit cell, see Fig. 7.4, play the role of graph minimal vertices with the following
WW string: b1 D 3; bk D 3k for k D 2,3,4,5; b6 D 14; bk D 13 for k D 7,8, : : : ,M � 6;
bM�5 D 11; bM�4 D 8; bM�3 D 4; bM�2 D 1. Also the Möbius-nanoribbons Z”

admit the same minimal vertices V and the related WW set is b1 D 3; bk D 3k
for k D 2,3,4,5; b6 D 14; bk D 12 for k D 7,8, : : : ,M � 2; bM�1 D 8; bM D 4. The
difference in the contributions to the molecular Wiener index coming from the
minimal vertices of the two lattices assumes the constant value w(ZO) � w(Z� ) D 3/2
for N � 36; see Table 7.2. In both cases, edge-nodes V behave again as maximal
nodes; see Fig. 7.4.

7.4 Conclusions and Perspectives

Topological modeling methods applied in this work on topologically nontrivial
structures maintain its ability to describe suitable growing mechanism for graphenic
nanostructure made by a network of hexagons. In particular some topological
invariants have been computed for the first time for a certain class of graphenic
nanoribbons ZO and Z� with normal and Möbius-like closing conditions, respec-
tively. The polynomial behavior of the Wiener index in the limit of large N is
consistent with the d D 1 topological dimensionality of such a class of chemical
structures.

The Wiener index evidences the tendency of the nanostructure to form compact
structures when Möbius-type periodicity is imposed, providing in such a way a
certain grade of chemical stability to the Möbius-nanoribbons, especially for lattices
having the size N under the typical scale n0, a parameter which topologically drives
the system growth. Moreover, a nontrivial sphericalization effect derives from the
long-range connectivity properties of the twisted molecules, and it appears able to
influence the formation mechanisms of these structures. Future investigations are
needed in order to correlate the sphericalization mechanism with the chemical–
physical properties of the Möbius-like nanostructures.

Present findings may be further extended by a quantum mechanical perspective.
This can be done, for instance, while noticing that, under Slater–Clementi valence
atomic density (Slater 1930; Clementi and Raimondi 1963; Clementi et al. 1967),
the valence atomic radii follow the Parr–Bartolotti–Putz relationship (Parr and
Bartolotti 1982; Putz 2012c):

r

n
D 16

21� 5Nbonding
(7.8)

which would lead to negative radii over the Nbonding � 21/5 threshold, fixing in fact
the Nbonding D 4 limit that is consistent with the maximum bond order met in Nature,
being this threshold connected with golden ratio by the golden-spiral optimization
of bond order (Boeyens and Levendis 2012).
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Fig. 7.6 The 4  folded symmetry of chemical bonding superimposed on the valence normalized
atomic radii involved in covalent binding dependency by the bonding electrons. The 4  folded
symmetry of chemical bonding superimposed on the valence normalized atomic radii involved in
covalent binding dependency by the bonding electrons (Reproduced from Putz (2012c). Copyright
(2012) Putz; licensee Chemistry Central Ltd.)

The Möbius 4  symmetry, connected to the concave-to-convex radius variation
through the twist, may relate with golden ratio (�) found to drive the Pauli principle
in chemical bonding through the second to the third binding electron involved in
the chemical bond, .r=n/NbondingD3 � .r=n/NbondingD2 Š 2� (see Fig. 7.6 inset (Putz
2012c) and Chap. 4 of the present monograph).

Nevertheless, such a “spinning” also reminds the graviton symmetry (Hawking
2001) – the highest spherical symmetry in Nature, with spin equals 2 – and
justifies the recent treatments of chemical bonding by means of the quasi-particles
known as bondons (Putz 2010; Putz and Ori 2012) and may lead to important
implications about the electronic behavior in extended systems like the present
carbon nanoribbons.
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Chapter 8
Spanning Fullerenes as Units in Crystal
Networks

Mircea V. Diudea and Beata Szefler

Abstract Fullerenes are molecules consisting of tri-connected polyhedral cages of
various covering. Spanning fullerenes can be obtained by deleting some atoms or
bonds, thus resulting in open structures with di-connected atoms which can further
join to atoms of the same or different repeating units in construction of crystal- or
quasicrystal-like networks. In this chapter, a variety of spanning fullerenes, designed
either by opening cages or by sequences of map operations, are used to build more
complex nanostructures. Energetics of some spanning fullerenes has been calculated
on optimized structures at Hartree-Fock and/or DFT level of theory. The topology
of crystal networks is described in terms of Omega polynomial.

8.1 Introduction

Fullerenes are molecules consisting of tri-connected polyhedral cages of various
coverings or tessellations. When there is a single type of polygonal faces, the
covering is called Platonic; when there are two types of faces, the covering is called
Archimedean (Diudea 2010a). A molecule can be represented by a molecular graph.
A graph G.V;E/ is an ordered pair of two sets, V and E, V D V(G) being a finite
nonempty set and E D E(G) a binary relation defined on V (Harary 1969; Diudea
et al. 2002). A graph can be visualized by representing the elements of V by points
(i.e., vertices) and joining pairs of vertices (i, j) by a bond (i.e., edge) if and only if
(i, j) 2 E(G). The number of vertices in G equals the cardinality v D jVj of this set.
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A graph is said connected if any two vertices, i and j, are the endpoints of a path;
otherwise, it is disconnected. The molecular graphs are in general connected graphs.

Spanning fullerenes can be designed by deleting, from their molecular graph,
some vertices/atoms or edges/bonds, thus resulting in open structures with di-
connected atoms which can further be joined with atoms of the same or different
repeating units in designing periodic nanostructures, as those encountered in nano-
dendrimers, in crystals or quasicrystals. Note that spanning of fullerenes can be
obtained in laboratory by irradiating the closed cages by electron or ion beams,
while many of the molecular constructions to be presented in the following can
be seen as potentially real structures. Since fullerenes can be designed from the
Platonic polyhedra, tetrahedron T, cube C, octahedron Oct, dodecahedron Do, and
icosahedron Ico, by applying some operations on maps, the spanning fullerenes can
be designed by such sequences of operations, the “opening” Op operation included.

A map is a discretized (closed) surface. Among the most important map
operations we mention are the following: dual Du, medial Med, Pk-mapping,
k D 3–5, Leapfrog Le, Chamfering Q, and Capra Ca. These operations are imple-
mented in the CVNET software package (Stefu and Diudea 2005). More about map
operation the reader can find in Diudea (2010a) and Stefu et al. (2005).

Dendrimers are hyper-branched structures with a well-tailored architecture.
Their endgroups can be functionalized, thus modifying their initial properties.
Dendrimers have gained a wide range of applications in supramolecular chemistry,
particularly in host-guest reactions and self-assembly processes. Promising applica-
tions come from polyamidoamine dendrimers as gene transfer vectors and peptide
dendrimers as antipeptide antibodies and synthetic vaccines (Diudea 2010a, p. 80).

The number of edges emerging from each branching point is called the progres-
sive degree (Diudea and Katona 1999), p (i.e., the edges increasing the number of
points of a newly added generation). It equals the classical vertex degree d minus 1:
p D d � 1.

The stepwise growth of a dendrimer follows a mathematical progression. A
first problem in studying the topology of dendrimers is that of enumerating its
constitutive parts: vertices, edges, or fragments.

The number of vertices in the ith orbit (i.e., that located at distance i from the
center) of a regular dendrimer can be expressed as a function vertex degree d:

vi D .2 � z/.d C z � 1/.d � 1/.i�1/I i > 0 (8.1)

where z D 1 for a monocentric dendrimer and z D 0 for a dicentric one. By using the
progressive degree p, relation (8.1) becomes

vi D .2 � z/.p C z/p.i�1/I i > 0 (8.2)

For the core, the number of vertices is v0 D 2 � z, while the number of external
vertices (i.e., the endpoints) is obtained by

vr D .2 � z/.p C z/p.r�1/ (8.3)
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where r is the radius of the dendrimer and equals the number of its
orbits/generations.

The total number of vertices v(D), in dendrimer, is obtained by summing the
populations on all orbits:

v.D/ D .2 � z/C .2 � z/.p C z/
rX

iD1
p.i�1/ (8.4)

By developing the sum in (8.4), one obtains

v.D/ D .2 � z/C .2 � z/.p C z/

	
pr � 1

p � 1



D 2.prC1 � 1/

p � 1
� zpr (8.5)

A useful recurrence enables one to calculate v(D) from the number of vertices of
the precedent term of a dendrimer family (i.e., a homologous series of dendrimers,
having the same progressive degree, p) v.DrC1/ D pv.Dr/ C 2, irrespective of
monocentric or dicentric the dendrimer is.

The term nano-dendrimer refers here to hyper-branched structures of which
branching nodes represent nanotube junctions (i.e., spanned fullerenes), while the
bonds joining them are nanotubes of various length.

Crystals are (MacKay 1981; Hargittai and Hargittai 2010) periodic structures,
of which (one-type) unit cells, consisting of one or more atoms or other identical
components, repeat a large number of times by three noncoplanar translations.
Corresponding atoms in each unit cell have almost identical surrounding, while the
fraction of atoms near the surface is small and the effects of the surface can be
neglected.

Quasicrystals are quasiperiodic structures (Levine and Steinhardt 1984), showing
more than one type of repeating unit, or the same unit repeating quasi-regularly.
Quasicrystals can have the topology of multi-tori, particularly of those with
icosahedral symmetry. These kinds of periodic structures will be exemplified in the
following.

Multi-tori are structures of high genera, consisting of more than one tubular
ring (Diudea and Petitjean 2008). They are supposed to result by self-assembly
of some repeat units or monomers; their geometry is eventually superimposed on
surfaces of negative curvature, like FRD or P-surface, and shows a high porosity.
Multi-tori can be designed starting from small cages, for example, the Platonic
solids. Modeling of porous structures has been previously reported by Mackay and
Terrones (1991), Lenosky et al. (1992) and Terrones and Mackay (1993), etc. Such
structures appear in spongy carbon (already synthesized, Benedek et al. 2003), in
schwarzites (named in honor of mathematician Schwarz 1865, 1890), or in zeolites
(natural aluminosilicates).
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8.2 Design of Spanning Fullerenes

There are at least two ways to design a tubular nano-junction: (1) by sequences of
map operations and (2) by spanning appropriate fullerenes.

8.2.1 Junctions by Map Operations

Three basic map operations Leapfrog Le, Chamfering (Quadrupling) Q, and Capra
Ca (the reader is invited to consult: Diudea 2004, 2005; Diudea et al. 2003, 2006a;
Stefu et al. 2005), associated with the opening Op operation, are most often used
to transform small polyhedral objects (basically, the Platonic solids) into tubular
junctions (Diudea and Nagy 2007). These transforms preserve the symmetry of the
parent map. Figure 8.1 presents a realization by Leapfrog Le operation (Nagy et al.
2011).

8.2.2 Junctions by Spanning Fullerenes

Spanning a fullerene graph can be done by deleting/braking some edges (and ver-
tices), thus getting a particular patch (eventually identical to a circulene molecule).
Figure 8.2 illustrates the case of coronene-preserving opening (left) and sumanene-
preserving opening (right) of fullerene C84 20�Td (Diudea 2010b). Figure 8.3
presents three octahedral nano-junctions derived from the hypothetical fullerene
C168 that consists of eight (disjoint) sumanene patches (Szefler et al. 2012a), lying
in the corners of cube, while on cube faces having octagons, Sum CZ 192 and
Sum CA 216 are obtained by opening operations Op(1a) and Op(2a), respectively;
the third one, Sum OctS2LeX 168, results by simply deleting the alternating edges
of octagon, Op(�a). Observe that the last numbers in the name of structures
represent the number of carbon atoms. Other particular monomeric units will be
presented below.

Fig. 8.1 Design of a tetrapodal junction by Leapfrog Le map operation
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Fig. 8.2 Opening C84 20-Td :
as coronene, 4[6:66], v D 84,
e D 114, f6 D 28, g D 2 (left –
also designed by the sequence
of map operations – see
Fig. 8.1) and sumanene,
4[6:(5,6)3], v D 84, e D 114,
f5 D 12, f6 D 16, g D 2 (right)
patches, respectively;
optimized structures are
shown in the bottom row

Fig. 8.3 Sumanene motif decorating octahedral nano-junctions: Sum CZ 192 (left), Sum CA 216
(middle), and Sum OctS2LeX 168 (right)

The spanned cages can be used to build dendrimers or other periodic nanos-
tructures by joining with other units (the same or not) or by identifying common
substructures (see below).

Table 8.1 lists the energetics of these hypothetical nano-junctions, optimized at
the Hartree-Fock level of theory, as hydrogen-ended molecules. When compared to
the values for C60, the reference structure in nanoscience, one can see the spanned
fullerenes show at least (or higher) the stability of the reference. The extent of
strain, as given by POAV theory (Haddon 1987, 1990), is favorable for the opened
fullerenes (Table 8.1, last column) in comparison to that of C60, the structures
included in this table being real candidates to the status of real molecules.
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Table 8.1 Total energy Etot and HOMO-LUMO gap, at Hartree-Fock HF (HF/6-31 G(d,p)) level
of theory, for some hypothetical nano-junctions and C60 reference nanostructure

Structure Etot (au) Etot/C (au/mol) HF gap (eV) POAV/C (kcal/mol)

1 Cor T 84 �3,194.767 �38.033 7.347 1.477
2 Sum T 84 �3,155.466 �38.028 7.562 1.685
3 Sum CZ 192 �7,298.367 �38.012 6.044 1.049
4 Sum CA 216 �8,206.401 �37.993 6.442 0.550
5 Sum OctS2LeX 168 �6,389.018 �38.030 6.637 0.821
6 C60 �2,271.830 �37.864 7.418 8.256

8.3 Dendrimers

Dendrimers (Fig. 8.4) can be designed from monomers with tetrahedral symmetry,
either by joining the two-connected terminal vertices or by identification of appro-
priate (open) faces (Diudea 2010b). Dendrimers at 2nd generation are illustrated in
Fig. 8.5 (Diudea 2010c).

The corresponding dimers (Fig. 8.6, top) are “intercalated” ones. A possible
linear evolution of the above monomers is presented in Fig. 8.6, bottom (Diudea
2010b).

Other examples come from polybenzenes (Fig. 8.7), which are nanostructures
consisting of benzene ring as the main motif (O’Keeffe et al. 1992) of tessellation.

8.4 Crystal-Like Networks

When monomers have octahedral symmetry, they can embed in the P-type surface
in getting crystal-like networks which belong to the space group Pn3m. Figure 8.8
illustrates nets showing the sumanene 6:(5,6)3 motif (Szefler et al. 2012a).

Other examples of crystal-like networks are given in Fig. 8.9 (Szefler and Diudea
2013): their covering consists of motifs of hexagon triples (unit C 3HexZ 104) and
heptagon triples (unit C 3HepA 104), respectively, for which the energetic data are
given in Table 8.2.

Again the open structures (i.e., nano-junctions) appear less strained than the
reference C60 fullerene and, according to the total energy (calculated on the
optimized structures at Hartree-Fock HF and DFT levels of theory) and HOMO-
LUMO gap, are at least as stable as the reference molecule. The strain of heptagon
triple motif is one order of magnitude lower than that of hexagon triple one and two
orders of magnitude lower than that of the reference fullerene, also reflected in the
values of TE/C. In view of a possible identification among nano-materials, IR and
RAMAN spectra have been simulated (Szefler and Diudea 2013). Polybenzenes can
also be embedded in the P-type surface (Fig. 8.10).
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Fig. 8.4 Dendrimers by
monomers with coronene
(left) and sumanene (right)
motifs, at 1st generation

Fig. 8.5 Dendrimer with coronene motif at 2nd generation (two different views)

Fig. 8.6 Linear evolution of the monomers with coronene (left column) and sumanene (right
column) motifs

D-type surface can also embed a polybenzene structure (Fig. 8.11). This last net
shows the topology of D6-diamond: a face-centered cube fcc-structure, belonging
to the space group Pn3m (Szefler and Diudea 2012).

Calculations have been performed at HF/6-31 G(d, p) and B3LYP/6-311
C G(d, p) level of theory, respectively, on Gaussian 09 software package (2009).

Stability of the monomers and the corresponding dimmers with respect to the
reference C60 fullerene can be compared from data in Table 8.3. Note the three
types of dimers originating in BTA 48, function of the identified face/ring and
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Fig. 8.7 Polybenzene dendrimer (left) and its “intercalated” dimer (right)

Fig. 8.8 P-type surface embedding of monomers in Fig. 8.3: Sum CA 216 (left), Sum CZ 192
(middle), and Sum OctS2LeX 168 (right)

Fig. 8.9 Top row:
C 3HexZ 104 (v D 104;
e D 144; f6 D 36; g D 3) and
its p-type crystal-like net
(v(3,3,3) D 2,808); bottom
row: C 3HepA 104 (v D 104;
e D 132; f7 D 24; g D 3) and
its p-type crystal-like net
(junctions designed by map
operation sequences
Op2a(S2(C)) and Op(S1(C)),
respectively)
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Table 8.2 Energies (total energy per carbon atom TE/C, in Hartree H; HOMO-LUMO gap, HL
gap, in electron volts; POAV strain energy per carbon atom S/C, kcal/mol) of the optimized
structures at HF and DFT level of theory

Molecule Carbon atoms TE/C (H) HL gap (eV) POAV/C (kcal/mol)

HF
1 C 3HexZ 104 104 �37.999 5.342 2.329
2 C 3HepA 104 104 �38.127 6.942 0.240
3 C60 60 �37.864 7.418 8.256
DFT
4 C 3HexZ 104 104 �38.244 1.658 2.352
5 C 3HepA 104 104 �38.376 1.354 0.192
6 C60 60 �38.110 2.724 8.256

Fig. 8.10 Polybenzenes
embedded in the P-type
surface: p-BCZ 48 (top) and
p-BCA 96 (bottom) and the
corresponding units (right
column)

conformation: (BTA 48)2 84 dendrim (R12, intercalate, Table 8.3, entry 2, and
Fig. 8.7, right), (BTA 48)2 88 fcc (R8, Table 8.3, entry 3, and Fig. 8.11, right),
and (BTA 48)2 90 MT (R12, eclipsed, Table 8.3, entry 4, and Fig. 8.12, bottom,
left) (Szefler et al. 2012b).

One can see that the strain in polybenzenes, as calculated by POAV theory, is
far less than that in C60, and the overall stability is at least as that of the reference
fullerene. Infrared and Raman spectra have been simulated (Szefler et al. 2012b)
in view of possible use in laboratory identifying such structures, tessellated with
the simplest benzene ring motif. The high values of HOMA index of aromaticity
(Krygowski and Ciesielski 1995, 1996), in the last column of Table 8.3, suggest
that the benzene ring geometry is not too much modified in comparison to the
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Fig. 8.11 Polybenzene
embedded in the D-type
surface: fcc-BTA 48 and
its fcc-dimer (right)

Table 8.3 Total energy Etot per atom (kcal/mol) and HOMO-LUMO gap, at Hartree-Fock HF
level of theory, strain by POAV theory and HOMA index in benzene-patched units and their
dimers and C60 reference structure, as well

Structure
No.
units Etot/(au)

Etot/atom
(au)

HL gap
(eV)

POAV/C
(kcal/mol)

HOMA
(R[6])

1 BTA 48 1 �1,831.484 �38.156 11:285 0.083 0.951
2 (BTA 48)2 84 dendrim 2 �3,201.679 �38.115 10:895 0.061 0.975
3 (BTA 48)2 88 fcc 2 �3,355.431 �38.130 10:970 0.074 0.972
4 (BTA 48)2 90 MT 2 �3,428.847 �38.098 10:085 0.220 0.957
5 BCZ 48 1 �1,831.097 �38.148 8:134 3.395 0.989
6 (BCZ 48)2 96 2 �3,657.417 �38.098 7:043 2.842 0.114
7 BCA 96 1 �3,662.991 �38.156 10:253 0.124 0.939
8 (BCA 96)2 184 2 �7,013.828 �38.119 9:805 0.180 0.936
9 C60 1 �2,271.830 �37.864 7:418 8.256 0.493

free benzene molecule (HOMA value D 1), while the hexagonal rings in C60 are
much more affected (HOMA D 0.493) by the presence of pentagons (see also
Cysewski and Szefler 2010). The HOMA value is even dropped in case of dimer
(BCZ 48)2 96 (Table 8.3, entry 6) because the units bound directly at the benzene
ring. The loss in pi-electron resonance is partly compensated by the loss in strain
energy, visible when compared with the BCZ 48 unit (Table 8.3, entry 5). However,
in an infinite network, the strain will drop even more (Szefler et al. 2012b), and the
geometry approaches to that of the unit-free molecule.

8.5 Quasicrystal Nanostructures

Multi-tori are designed by using “eclipsed” dimers (Diudea and Nagy 2007), as
shown in Fig. 8.12, bottom row. The dimer BMTA2 90 was included in Table 8.3
(as (BTA 48)2 90 MT, entry 4). The unit BTZ 24, due to its simplicity, can form
only the dimer BMTZ2 48, leading to multi-tori. The multi-tori bearing the benzene
patch will have B as a prefix in their name. Next, because theopening faces show
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Fig. 8.12 Left column:
BTA 48 (top) formed by
spanning the cage
Le(P4(T)) 48 (by deleting the
blue bonds – middle) and its
multi-torus BMTA2 90 dimer
((BTA 48)2 90 MT in
Table 8.3, entry 4). Right
column: BTZ 24 (top)
originating in S2(T) 28 D C28

(the four blue points located
at the center of pentagon
triples to be deleted – middle)
and its multi-torus
BMTZ2 48 dimer

Fig. 8.13 Left column: BMTZ17 408 and its hyper-pentagon MMTZCy5 120. Right column:
BMTA34 1332 and its hyper-pentagon BMTACy5 210

either “zigzag” or “armchair” endings, “Z” or “A” will be added as a suffix to their
name. The number of repeating units and/or number of atoms will be added after
the letters.

The BMTX2 dimers, because of their “eclipsed” conformation, will form
pentagonal hyper-rings BMTXCy5 (Fig. 8.13, bottom) in a self-assembly process.
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Fig. 8.14 Top row:
multi-torus BMTA20 1 780
(left) and its core
(�f5(Le2,2(Do)), right);
bottom row: multi-torus
BMTZ20 1 480 (left) and its
core (�d5(S2(Ico), right))

These can further evolve to the multi-torus BMTX17 (X D Z, Fig. 8.3, left), of which
reduced graph is just C17, the structure proposed by Diudea (2010d) as the seed
for the diamond D5. By analogy to D5, a hyper-dimer BMTX34 can be designed
(X D A, Fig. 8.3, right). We mention that its reduced graph is C34, the repeating unit
of the triple periodic structure of D5. Recall that D5 is an mtn triple periodic 3-nodal
net, named ZSM-39 (a structure found in clathrates of type II), of point symbol net:
f55.6g12f56g5 and 2[512] C [512.64] tiling. It is also known as the f cc C34 structure
(Blase et al. 2010; Diudea et al. 2011), because of its face-centered cubic lattice that
belongs to the space group Fd3m. Thus, we can expect a 3D network derived from
these benzene-patched units, similar to D5.

A spherical multi-torus BMTX20 (Fig. 8.14, left column) can be constructed and
is a g D 21 multi-torus, with a well-defined core: Core(BMTA20) 180 D �f5(Le2,2

(Do)) while Core (BMTZ20) 120 D �d5(S2(Ico). In the above, �f5 means deletion
of all pentagonal faces in the Leapfrog (2,2) transform of the dodecahedron Do, and
�d5 is deletion of vertices of degree d D 5, in the transform of Icosahedron D Ico by
the septupling S2 operation. Also, �d5(S2(Ico)) D Op(Le(Ico)). Recall that g is the
genus of the surface that embeds a structural graph and accounts for the number of
simple tori of which consists that graph (Diudea and Szefler 2012).

A linear array BMTX20 k, k D 1,2, : : : with the repeating unit formed by two
units superimposing one pentagonal hyper-face (i.e., BMTXCy5), rotated to each
other by an angle of pi/5 as in the “dimer” BMTA20 2 (Fig. 8.15, top, left). Next,
the structure can evolve with a one-dimensional periodicity, as shown in BMTA20 4
(Fig. 8.15, top, right) or in the hyper-cycle BMTZCy20 5 (Fig. 8.15, bottom, left).
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Fig. 8.15 Top row: the repeat unit BMTA20 2 1350 (left) and a rodlike BMTA20 4 2490 (right);
bottom row: multi-tori BMTZCy20 5 1800 (left) and BMTZSp20 12 3120 (twofold symmetry)

Twelve units of BMTX20 can form a spherical array (of icosahedral symmetry), as
in case of BMTZSp20 12 (Fig. 8.15, bottom, right), of which core is just BMTZ20
(a 13th unit).

Theorem 8.1 In multi-tori built up from open tetrahedral units, the genus of
structure equals the number of its units plus one, irrespective of the unit tessellation.

Demonstration comes out from construction and is illustrated on the multi-tori
BMTXCy5 (Fig. 8.13, bottom row): there are five units open to be inserted in
exactly five simple tori and one more torus that join all the above five units, thus
demonstrating the first part of the theorem (Diudea and Szefler 2012).

For the second part, we apply the Euler’s theorem (1758):

v � e C f D ¦ D 2.1� g/ (8.6)

where v D jV.G/j is the number of vertices/atoms, e D jE.G/j is the number of
edges/bonds, and f is the number of faces of the graph/molecule. In the above, g
is the genus of the (orientable) surface S on which a molecular graph is embedded.
The genus is related to the Gaussian curvature of the surface S by means of Euler’s
characteristic � of S (Gauss-Bonnet 1853) theorem as for g D 0 (case of sphere)
� > 0 (positive curvature); for g D 1 (case of torus) � D 0, while for g> 1 (surfaces
of high genera), � < 0, S will show a negative curvature. More about surfaces of
negative curvature the reader can find in Diudea and Nagy (2007).

To complete the demonstration, we will use the data in Table 8.4 providing the
values of g in several BMTX multi-tori, tessellation differing as X D A or Z.

The number of tetrahedral units BMTX1 in the linear array of BMTX20 k
(Table 8.4, entries 3–6) is u D 20 k � 5(k � 1) D 15 k C 5, according to the
construction mode. The term �5(k � 1) accounts for the superimposed hyper-
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Table 8.4 Euler formula calculation in multi-tori BMTX

BMTX v e f6 f8 ftot 2(1�g) g u u-formula

1 BMTACy5 210 285 35 30 65 �10 6 5 f8/6
2 BMTZCy5 120 165 20 15 35 �10 6 5 f6/4
3 BMTA20 1 780 1;110 170 120 290 �40 21 20 f8/6
4 BMTZ20 1 480 690 80 90 170 �40 21 20 f6/4
5 BMTA20 5 3;060 4;410 710 480 1;190 �160 81 80 f8/6
6 BMTZ20 5 1;920 2;790 320 390 710 �160 81 80 f6/4
7 BMTZCy20 5 1;800 2;625 300 375 675 �150 76 75 f6/4
8 BMTZ20 12 4;440 6;465 740 915 1;655 �370 186 185 f6/4
9 BMTZSp20 12 3;120 4;590 520 690 1;210 �260 131 130 f6/4

rings, BMTXCy5. In case of BMTZCy20 5 (Table 8.4, entry 7), the formula is
u D 20 k � 5 k D 15 k, k D 5, the last hyper-ring unit being omitted because of the
cyclic structure. Thus, the drop in g is of 5 units for each fivefold hyper-cycle
(compare Table 8.4, entries 6 and 7).

In case of the spherical array BMTZSp20 12 (Table 8.4, entry 9), u D 20 k � 2
[5(k � 1)], k D 12. Remark the twice subtraction of the term 5(k � 1), in case of the
spherical array, which accounts for the difference in g to the linear array of k D 12
(Table 8.4, entries 8 and 9): 186 � 131 D 55 D 5(12 – 1). This drop in g, in case of the
spherical array, seems to parallel the well-known result that sphere is the minimal
surface among all known solid objects. The number u is also related to the number
of simple faces/rings as follows: u D f8=6 in case BMTA and u D f6=4 in case
BMTZ.

On the ground of Theorem 8.1, the spherical array BMTZSp20 12 seems to be
the minimum g (lower bound) while BMTZ20 k the maximum g (upper bound)
among all the studied structures (Diudea and Szefler 2012). We just demonstrated
the following:

Theorem 8.2 The genus in multi-tori shows the lower-bound value in structures of
icosahedral symmetry, while the upper-bound value is shown in linear structures
provided the same number of (open) tetrahedral units.

Note these icosahedral multi-tori represent quasicrystal nanostructures; qua-
sicrystals have been Nobel prized in 2011.

Carbon atom orbit analysis in BMTZSp20 12 revealed a 6.82 massive class
(2,580 atoms, about 83 %), located inside, of the same signature as in polybenzene,
and two smaller classes, of signature 6.8 (360 atoms), and 6 (180 atoms), disposed
outside of the spherical structure. Compare with % of 6.82 in the linear array
BMTZ20 k (about 74 % at k D 12) and in BMTA20 k (about 26 %, at k D 9). Know-
ing the (calculated by O’Keeffe et al. 1992) stability of polybenzene, consisting of
only 6.82 atoms (in the infinite triple periodic net), the orbit analysis provides a
“topological” proof of stability of the spherical array BMTZSp20 12 (Diudea and
Szefler 2012).
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8.6 Omega Polynomial in Polybenzenes

In a connected graph G(V, E), with the vertex set V(G) and edge set E(G), two
edges e D uv and f D xy of G are called codistant e co f if they obey the relation
(John et al. 2007)

d.v; x/ D d.v; y/C 1 D d.u; x/C 1 D d.u; y/ (8.7)

which is reflexive, that is, e co e holds for any edge e of G, and symmetric, if e co f,
then f co e. In general, relation co is not transitive; if “co” is also transitive, thus it
is an equivalence relation, then G is called a co-graph, and the set of edges C.e/ WD
ff 2 E.G/If co eg is called an orthogonal cut oc of G, E(G) being the union
of disjoint orthogonal cuts: E.G/ D C1 [ C2 [ : : : [ Ck; Ci \ Cj D ;; i ¤ j .
Klavžar (2008) has shown that relation co is a theta Djoković (1973)–Winkler
(1984) relation.

We say that edges e and f of a plane graph G are in relation opposite, e op f, if they
are opposite edges of an inner face of G. Note that the relation co is defined in the
whole graph while op is defined only in faces. Using the relation op, we can partition
the edge set of G into opposite edge strips, ops. An ops is a quasi-orthogonal cut
qoc, since ops is not transitive.

Let G be a connected graph and S1; S2; : : : ; Sk be the ops strips of G. Then,
the ops strips form a partition of E(G). The length of ops is taken as maximum. It
depends on the size of the maximum-fold face/ring Fmax/Rmax considered so that
any result on Omega polynomial will have this specification.

Denote by m(G,s) the number of ops of length s and define the Omega polynomial
as (Diudea 2006; Diudea et al. 2006b, 2008, 2009; Ashrafi et al. 2008; Diudea and
Klavžar 2010; Vizitiu et al. 2007)

�.G; x/ D
X

s

m.G; s/ � xs (8.8)

Its first derivative (in x D 1) equals the number of edges in the graph:

�0 .G; 1/ D
X

s

m .G; s/ � s D e D jE.G/j (8.9)

On Omega polynomial, the Cluj-Ilmenau index (John et al. 2007), CI D CI(G) was
defined:

CI.G/ D fŒ�0.G; 1/�2 � Œ�0.G; 1/C�00.G; 1/�g (8.10)

Formulas to calculate Omega polynomial and CI index in three infinite networks,
fcc-BTA 48 (Fig. 8.11), p-BCZ 48 (Fig. 8.10, top), and p-BCA 96 (Fig. 8.10,
bottom), are listed in Table 8.5. Formulas were derived from the numerical data
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Table 8.5 Omega polynomial and net parameters in polybenzene networks

Net Omega polynomial

BTA 48 Rmax(8)

�.BTA 48/ D 18k2X2 C 6k.k � 1/X2k C 6kX4k C
k�1P

sD1

12kX4s

�0.1/ D 12k2.3k C 2/ D jE.G/j D edges
CI.G/ D 8k2.162k4 C 216k3 C 61k2 C 3k � 13/

atoms D 24k2.k C 1/ D jV .G/
R6 D 4k3; R8 D 6k3 � 3k2 C 3k

Rmax(12)

�.BTA 48/ D 6X2k.2kC1/ C 3X4k2.kC1/ C
k�1P

sD1

12X2s.2kC1/

�0.1/ D 12k2.3k C 2/ D jE.G/j D edges
CI.G/ D 8k.6k2 C 2k � 1/.26k3 C 24k2 C 6k C 1/

R12 D 4k3

Examples Rmax(8)
k D 5I �.G/ D 450X2 C 60X4 C 60X8 C 120X10 C 60X12 C 60X16 C 30X20I

CI D 25;955;400I atoms D 3;600I edges D 5;100I R6 D 500I R8 D 690

k D 6I �.G/ D 648X2 C 72X4 C 72X8 C 252X12 C 72X16 C 72X20 C 36X24I
CI D 74;536;992I atoms D 6;048I edges D 8;640I R6 D 864I R8D 1;206

Rmax(12)
k D 5I 12X22 C 12X44 C 12X66 C 12X88 C 6X110 C 3X600I

CI D 246;831;60I R12 D 500

k D 6I 12X26 C 12X52 C 12X78 C 12X104 C 12X130 C 6X156 C 3X1008I
CI D 71;009;232I R12 D 864

BCZ 48 Rmax(8)

�.BCZ 48/ D 12kX C 12k.k C 1/X2 C 3k.k � 1/.2k � 1/X4 C
k�1P

sD1

24kX.2C4s/

�0.1/ D 12k2.6k � 1/ D jE.G/j D edges
CI.G/ D 4k.1; 296k5 � 432k4 C 4k3 � 24k2 C 32k � 3/

atoms D 48k3 D jV .G/j
R6 D .2k/3I R8 D 12k2.k � 1/

Rmax(12)
�.BCZ 48/ D .6k � 3/X.2k/2 C 6X.2k/3

�0.1/ D 12k2.6k � 1/ D jE.G/j D edges
CI.G/ D 96k4

�
50k2 � 19k C 2

�

R12 D 6k
�
2k2 � 2k C 1

�

Examples Rmax(8)
k D 5; 60X C 360X2 C 540X4 C 120X6 C 120X10 C 120X14 C 120X18

CI D 75,601,140; atoms D 6,000; edges D 8,700; R6 D 1,000; R8 D 1,200.
k D 6; 72X C 504X2 C 990X4 C 144X6 C 144X10 C 144X14 C 144X18 C 144X22

CI D 228,432,312; atoms D 10,368; edges D 15,120; R6 D 1,728; R8 D 2,160.

Rmax(12)
k D 5; 27X100 C 6X1000; CI D 69,420,000; R12 D 1,230.
k D 6; 33X144 C 6X1728; CI D 210,014,208; R12 D 2,196.

(continued)
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Table 8.5 (continued)

Net Omega polynomial

BCA 96 Rmax(8)
�.BCA 96/ D36kX2 C 12k.k � 1/X3 C 3.k � 1/.k2 � k C 8/X4

C24.k � 1/X8 C 12k2X4k C
k�3X

sD0

24.k � s � 2/.X10C6s CX14C6s/

�0.1/ D 12k2.9k C 1/ D jE.G/j D edges
CI.G/ D 12k.972k5 C 216k4 � 16k3 � 4k2 C 3k C 1/

atoms D 24k2.3k C 1/ D jV .G/j
R6 D 4k.5k � 3/IR8 D 12k3IR12 D 6k.k � 1/2

Examples Rmax(8)
k D 5; �(G) D 180X2 C 240X3 C 336X4 C 96X8 C 72X10 C 72X14 C 48X16

C 348X20C 24X22 C 24X26

CI D 190,224,960; atoms D 9,600; edges D 13,800; R6 D 2,200; R8 D 1,500.
k D 6; �(G) D 216X2 C 360X3 C 570X4 C 120X8 C 96X10 C 96X14 C 72X16

C 72X20C 48X22 C432X24 C 48X26 C 24X28 C 24X32

CI D 564,093,144; atoms D 16,416; edges D 23,760; R6 D 3,888; R8 D 2,592

calculated on cuboids of (k, k, k) dimensions by the Nano Studio software (Nagy
and Diudea 2009). Omega polynomial was calculated at Rmax(8) and Rmax(12),
respectively; examples are given in view of an easy verification of the general
formulas. Also, formulas for the number of atoms, edges, and rings (R6, R8 and
R12) are included in this table (Szefler and Diudea 2012).

Formulas to calculate Omega polynomial and CI index in the two infinite
networks BMTA20k and BMTZ20k, designed on the ground of BMTA1 48 and
BMTZ1 24 units, are presented in Tables 8.6 and 8.7. Formulas were derived
from the numerical data calculated on rods consisting of k units BMTX20. Omega
polynomial was calculated at Rmax D R8. Formulas for the number of atoms, edges,
and rings (R6, R8, and R15, the last one being the simple ring of the hyper-ring
BMTACy5) are included in Tables 8.6 and 8.7. Numerical examples are also given
(Diudea and Szefler 2012).

Omega polynomial description can be looked as an alternative to the crystallo-
graphic description, helping in understanding the topology of these networks.

8.7 Conclusions

Spanning fullerenes can be obtained by deleting some atoms or bonds from the
graph of closed fullerenes, thus resulting in open structures which can further join
to atoms of the same or different repeating units in construction of crystal- or
quasicrystal-like networks. A variety of spanning fullerenes, designed either by cage
opening or by sequences of map operations, has been used to build nano-dendrimers
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Table 8.6 Formulas for Omega polynomial and net parameters in linear periodic BMTA20 k
network

BMTA20 k Rmax(8);
�.BMTA20 k R8/ D10.kC 2/X3C 5.k� 1/X4C.11kC1/X5C 20.kC3/X8

C10.k�1/X10C15.k�1/X12C.11kC1/X20C10X2.3kC1/

�0.1/ D 825k C 285 D jE.G/j D edges;
CI.G/ D 15

�
45; 351k2 C 30; 715k C 5; 332

�
;

atoms D 10.57k C 21/ D jV .G/j;
R6 D 5.27k C 7/I R8 D 30.3k C 1/I R15 D 11k C 1

u48 D 20k � 5.k � 1/ D 5.3k C 1/ D R8=6;
g D 1C u48

Examples k D 5;
CI D 19,390,230; atoms D 3,060; edges D 4,410; R6 D 710; R8 D 480; R15 D 56;

u48 D 80; g D 81.
k D 6;
CI D 27,333,870; atoms D 3,630; edges D 5,235; R6 D 845; R8 D 570; R15 D 67;

u48 D 95; g D 96.

Table 8.7 Formulas for Omega polynomial and net parameters in linear periodic BMTZ20 k
network

BMTZ20 k Rmax(8)
�.BMTZ20 k R8/ D10.k C 2/X2 C 30kX3 C .11k C 1/X5 C 10.k C 5/X6

C 10.k � 1/X8 C 10.k � 1/X10 C 6kX20

�0.1/ D 525k C 165 D jE.G/j D edges
CI.G/ D 5

�
55; 125k2 C 33; 653k C 5; 392

�

atoms D 120.3k C 1/ D jV .G/j D 24u24 D 6R6
R6 D 20.3k C 1/ D jV .G/j=6I R8 D 15.5k C 1/I R15 D 11k C 1

u24 D 20k � 5.k � 1/ D 5.3k C 1/ D R6=4;
g D 1C u24

Examples k D 5; 70X2 C 150X3 C 56X5 C 100X6 C 40X8 C 40X10 C 30X20

CI D 7,758,910; atoms D 1,920; edges D 2,790; R6 D 320; R8 D 390; R15 D 56;
u24 D 80; g D 81

k D 6; 80X2 C 180X3 C 67X5 C 110X6 C 50X8 C 50X10 C 36X20

CI D 10,959,050; atoms D 2,280; edges D 3,315; R6 D 380; R8 D 465; R15 D 67;
u24 D 95; g D 96

and crystal- and quasicrystal-like structures. Energetics of some open fullerenes
has been calculated on optimized structures at Hartree-Fock and/or DFT level of
theory. All of the discussed open fullerenes have shown less strained structures in
comparison to C60 reference fullerene, while the overall stability, as suggested by the
total energy and HOMO-LUMO gap, is comparable or even better to the reference
fullerene, thus being candidates to the status of real molecules. Omega polynomial
was used to describe the topology of some periodic networks, designed by using
benzene as the simplest patch.
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Chapter 9
Introducing “Colored” Molecular Topology
by Reactivity Indices of Electronegativity
and Chemical Hardness

Mihai V. Putz, Ottorino Ori, Marzio De Corato, Ana-Maria Putz,
Giorgio Benedek, Franco Cataldo, and Ante Graovac�

Abstract Within the context of conceptual density functional theory chemical
reactivity definitions of electronegativity (EN) and chemical hardness (HD), nine
forms of their finite difference are expressed in order to consider the global
“coloring” of the molecular topology with respect to their symmetry centers (atomic
centers or bonding centers), according to the so-called Timişoara–Parma rule. The
resulting parabolic-reactive energy in terms of EN and HD is compared with the
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bond topological Wiener index for short list of PAH (poly-aromatic hydrocarbons)
selected as paradigmatic structures for validating the new reactivity descriptors
based on topological quantities.

9.1 Introduction

Nowadays, many topologicalindices have been proposed and accepted in the
chemical literature for representing relevant chemical features of an organic
molecule by means of a number derivable from its structural formula or, in
the modern interpretations, from its molecular graph, the available number of
possible descriptors exceeding 1,000 and still increasing (see the updated atlas
by Todeschini and Consonni 2000). To avoid the documented risk of dealing with
elegant but purposeless graph-based formalism (Hollas et al. 2005), many molecular
descriptors deal with Hückel  -electron energies and, in particular, with  -electron
energies of the lowest unoccupied molecular orbitals (LUMOs), revealing the
importance of the LUMO energy in quantitative structure–property relationships
(QSPR) and quantitative structure activity relationship (QSAR) studies to predict
various properties of polycyclic aromatic hydrocarbons (PAHs) (Nikolic et al.
2006; Bultinck et al. 2006; Mallion 2008). Descriptors related to the shape of
momentum-space electron density (Al-Fahemi et al. 2009) or to the count of Kekulé
structures (Vukicevic et al. 2006) are also successfully used, but probably the largest
number of topological investigations are based on graph connectivity and graph
distance matrices, as documented by the recent survey articles (Zhou and Trinajstić
2008, 2010), where an extensive use of the predictive properties of a number of
molecular invariants is made, including the celebrated Wiener and Balaban indices.
This approach is followed in this chapter, where we shall exploit the measures
of the topological molecular compactness, conveyed by the Wiener index W(N),
combined with chemical information as the atoms-in-molecules’ electronegativity
and chemical hardness emerging from semiempirical quantum computation. By
combining connectivity properties and  -electron energies, this enriched model
generates new colored forms of the reactive Wiener index, returning the topological
determinations of molecular electronegativity, chemical hardness, and  –parabolic
energy described in the following paragraph. The introduction to this original
formalism and the results of its application to a representative set of PAHs are given
in the next sections.
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9.2 Method of Reactivity-Colored Topological Indices

9.2.1 Electronegativity and Chemical Hardness Reactivity
Indices (Putz 2011a)

Density functional theory (DFT) (Hohenberg and Kohn 1964) finds its application
to open chemical systems, where the number N of electrons is subject to variations
�N , via the Fukui function (Yang et al. 1984; Parr and Yang 1989),

f .r/ 	
	
@.r/
@N




V.r/
(9.1)

representing the change of electron density .r/ due to the addition of one electron
while keeping the potential V.r/ constant and the normalization

R
.r/dr D N .

Electronegativity � and chemical hardness � acquire a central place in chemical
reactivity through their conceptual reformulation in terms of the energy functional
of the system EŒ� (Gázquez et al. 1987; Putz 2011b):
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Z
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V.r/
; (9.3)

where �.r/ and �.r/ are the local electronegativity and chemical hardness functions,
respectively (Chattaraj et al. 1995; Fuentealba 1995; Torrent-Sucarrat et al. 2007,
2008, 2010), and �.r; r0/ is the chemical hardness kernel (Fuentealba 1995).
Replacement of Eq. (9.1) into Eqs. (9.2) and (9.3) and integrations over the system
volume yield, respectively (Parr et al. 1978; Parr and Pearson 1983),
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; (9.4)

where 
 is the chemical potential. Thus, within DFT, electronegativity is identified
with the opposite of the electron chemical potential and the chemical hardness as
one half of its derivative with respect to the electron number.

The total energy change in a chemical reaction implying a change in the electron
density can then be approximately expressed as a parabolic function of the finite
charge transfer �N with coefficients � and �:

EŒC�� Š EŒ�� � �N C � .�N/2 (9.5)
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Table 9.1 Numerical parameters for the compact finite second (2C)-, fourth (4C)-, and sixth
(6C)-order central differences; standard Padé (SP) schemes; sixth (6T)- and eight (8T)-order
tridiagonal schemes; and eighth (8P)- and tenth (10P)-order pentadiagonal schemes up to spectral-
like resolution (SLR) schemes for the electronegativity

Electronegativity

Scheme a1 b1 c1 ˛1 ˇ1 e1 e2 e3

2C 1 0 0 0 0 1 0 0

4C 4/3 �1/3 0 0 0 1.167 �0.167 0

6C 3/2 �3/5 1/10 0 0 1.233 �0.267 0:033

SP 5/3 1/3 0 1/2 0 1 �0.667 0

6T 14/9 1/9 0 1/3 0 1.039 �0.463 0

8T 19/12 1/6 0 3/8 0 1.072 �0.510 0

8P 40/27 25/54 0 4/9 1/36 1.053 �0.530 �0:041
10P 17/12 101/150 1/100 1/2 1/20 1.048 �0.392 �0:068
SRL 1.303 0.994 0.038 0.577 0.090 1.061 �0.267 �0:105
Reproduced from Putz et al. (2004). Copyright (2004) by John Wiley and Sons; Putz (2010, b),
Copyright (2011) by Bentham Science Publisher; Putz (2011c) – Copyright (2011) by NOVA
Science Publishers, Inc.)

At this level of approximation, the Kohn–Sham equation can be cast into a compact
finite difference (CFD) expression (Putz et al. 2004; Putz 2010, 2011b, c) and the
coefficients � and � of the total energy expansion, Eq. (9.5), expressed in terms of
the electron eigenstates near the Fermi level. As shown by Putz et al. (2004, Putz
2010, 2011b, c) in PAH molecular systems, the energies of the first three LUMO
and HOMO (highest occupied molecular orbital) eigenstates, "LUMO.k/; "HOMO.k/

(k D 1,2,3), respectively, allow to express � and � to a very good approximation, the
convergence by addition of further LUMO and HOMO pairs being quite fast.

Ordinary topological descriptors of carbon networks are based on binary (0,1)
adjacency matrices and topological distances as sums on binary elements. Colored
molecular topology corrects binary topology for the configurational differences
locally affecting electronegativity and chemical hardness, depending on the topolog-
ical environment. As shown in Refs. Putz et al. (2004), and Putz (2010, 2011b, c),
nine topological classes of increasing complexity can be defined, including the
compact finite second (2C)-, fourth (4C)-, and sixth (6C)-order central differences,
the standard Padé (SP), the sixth (6T)- and eight (8T)-order tridiagonal schemes,
and the eighth (8P)- and tenth (10P)-order pentadiagonal schemes, up to spectral-
like resolution (SLR) schemes. As shown in Appendix 9.A, for each of these
topological classes, the CFD solution of Kohn–Sham equation, expressed through
the parameters ai, bi, ci, ˛i, ˇi, where i D 1 for � (Table 9.1) and i D 2 for �
(Table 9.2), allows to derive the corresponding CFD values �CFD and �CFD in terms
of the 1st, 2nd, and 3rd HOMO and LUMO energies:
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Table 9.2 Same as Table 9.1 for the chemical hardness

Chemical hardness

Scheme a2 b2 c2 ˛2 ˇ2 h1 h2 h3

2C 1 0 0 0 0 1 0 0

4C 4/3 �1/3 0 0 0 1.250 �0:083 0

6C 12/11 3/11 0 2/11 0 0.961 �0:130 0

SP 6/5 0 0 1/10 0 1.080 �0:120 0

6T 3/2 �3/5 1/5 0 0 1.372 �0:128 0:022

8T 147/152 51/95 �23/760 9/38 0 0.869 �0:098 �0:003
8P 320/393 310/393 0 344/1,179 23/2,358 0.790 �0:032 �0:008
10P 1,065/1,798 1,038/899 79/1,798 334/899 43/1,798 0.694 0:088 �0:009
SRL 0.216 1.723 0.177 0.502 0.056 0.582 0:354 0:008

�CFD D �
�
a1 .1 � ˛1/C 1

2
b1 C 1

3
c1

�
"HOMO .1/ C "LUMO .1/

2

�
�
b1 C 2

3
c1 � 2a1 .˛1 C ˇ1/

�
"HOMO .2/ C "LUMO .2/

4

� .c1 � 3a1ˇ1/ "HOMO .3/ C "LUMO .3/

6
(9.6)
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c2 C 2a2 .ˇ2 � ˛2/

�
"LUMO .2/ � "HOMO .2/
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C
�
1

3
c2 � 3a2ˇ2

�
"LUMO .3/ � "HOMO .3/

6
(9.7)

When Eqs. (9.6) and (9.7) are written in the condensed form

�CFD D �
3X

kD1
ek
�
"LUMO.k/ C "HOMO.k/

�
=2

�CFD D
3X

kD1
hk
�
"LUMO.k/ � "HOMO.k/

�
=2; (9.8)

it appears that the coefficients ek and hk, also listed in Table 9.1, are close to 1 for
k D 1 and <<1 for k> 1. This confirms a dominant role of the first HOMO–LUMO
pair, some contribution from the second pair, and a negligible role of the third pair,
i.e., a good convergence of the CFD method.
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Then, once the electronegativity and chemical hardness are computed up to
the third HOMOs and LUMOs, the parabolic energy Eq. (9.5) can be eventually
specialized for aromatic or  -systems under the working form

E� .�; �/ Š ��N� C �N 2
� (9.9)

Remarkably, it was recently shown to resemble the so-called  -reactive (generalized
Huckel) energy (Putz 2011d),

E�.molecule/ Š EBind.molecule/C EHeat.molecule/� ETotal.molecule/ (9.10)

with a great accuracy also for complex aromatic compounds, making this approach
most suitable for extended systems modeling; here EHeat means the subtraction of
the atomic heats of formation from the binding energy.

9.2.2 Coloring Topology by Reactivity via
Timisoara–Parma Rule

One establishes the hierarchy of the above CFD methods by assessing the best
correlation model between the two forms of energies, the  -parabolic and the
 -reactive energies of Eqs. (9.9) and (9.10), respectively. The resulting correlation
provides the hierarchy ranking of the CFD models according to their richness in
electronic frontier orbitals’ information.

The founding CFD hierarchy should be further respected when implemented to
“color” the various parts of a molecule with electronegativity and chemical hardness
information, according to the so-called reactivity coloring (Timisoara–Parma) rule:

The chemical descriptor (� or �) values are distributed over all nodes of a molecule,
grouped on sublattices, starting from the “central” most populated ones with
bonding and nodes (frontier) electrons, while considering the equivalent/equidistant
sublattice until all molecular atoms are colored, by decreasing the CFD values
of such descriptors, assigning the last CFD value to the remaining atoms in the
molecular space, if any.

Figure 9.1 gives such an example for a PAH structure, the pentacene molecule,
with the imposed CFD hierarchy (Putz et al. 2013).

From now on, any conventional topological index T is “translated” into its topo-
reactive counterpart T .�/ by coloring the nodes of the chemical graph with the
molecular electronegativity values � to comply with the (Timisoara–Parma) rule.
Then, by taking the square roots for any pair of atoms involved in a chemical bond,
the bond itself is colored after this first computational step. Successive iterations
allow the coloring of any paths connecting molecular nodes; by following the same
process for chemical hardness values, the topological-reactivity energy assigned to
invariants T .�/ and T .�/ arises from the parabolic form:
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Fig. 9.1 The chemical graph, with N D 22 vertices, associated to hydrogen-depleted pentacene
molecule. The coloring hierarchy of the CFD models is indicated by rectangles colored according
to the distance of the vertices from the central atoms 1,2 characterized by SLR data. Rectangles
respect the molecular plane of symmetry, e.g., 5,6 and 3,4 atom pairs feature 10P data, respectively
(Tables 9.4 and 9.5), and so on

EW
.�;�/ D �T .�/N� C T .�/N 2

� (9.11)

Note that the topo-reactive indices specifically adopted in this work do not need
further normalization factors; this is because the colored invariants are directly
generated on the basis of the coloring hierarchy of the CFD-like energy matrices,
see Eqs. (9.19) and (9.20).

9.2.3 Topological Invariants of Molecular Graphs

On a chemical graph G(N) with N atoms, W(N) represents an invariant of the graph
arising from the half summation of the minimum topological distances dij between
all pairs of G(N) vertices (Wiener 1947; Cataldo et al. 2010, 2011a; Iranmanesh
et al. 2012):

W.N/ D 1=2
X

ij

dij ; di i D 0; i; j D 1; 2; : : : ; N � 1;N: (9.12)

Topological distances dij compose the N � N symmetric distance matrix of the graph
_

D D Œdij �. In the present study, N corresponds not only to the number carbon atoms
but also to the number N� of available  -electrons in each PAH.

The Wiener index, Eq. (9.12), measures the average topological compactness
of the molecular graphs and, when a minimum principle is imposed on it, W(N)
promptly selects the stable systems among isomeric candidates, as demonstrated
by recent studies on fullerene isomers or defective graphenic planes. Different
applications of topological modeling (TM) methods are illustrated in Ori and
D’Mello (1992, 1993), and in the recent extended report Iranmanesh et al. (2012),
as well as in Chap. 6. Indicating with M(N) the graph diameter (e.g., the largest

http://dx.doi.org/10.1007/307785_1_En_6
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distance in the graph) and with bik the number of k-neighbors of the i-atom, the
contribution wi to (9.12) is

wi D 1=2
X

k

kbik; k D 1; 2; : : : ;M � 1;M (9.13)

with W.N/ D P
i wi and 1 �N D P

k bik for each graph vertex i.
Carbon sp2 networks such as fullerenes, nanotori and graphene, and schwarzites

with periodic boundary conditions have coordination bi1 D 3 at each node. In case
of PAH molecules, atom coordination is either bi1 D 2 or bi1 D 3, the lowest value
occurring at the molecular boundary. From Eq. (9.13), both minimal w and maximal
w contributions to W(N)

w D min fwi g i D 1; 2; : : : ; N � 1;N (9.14)

w D max fwi g i D 1; 2; : : : ; N � 1;N (9.15)

originate two new important invariants, the topological efficiency index  and the
extreme topological efficiency index E:

 D W

Nw
�

 � 1 (9.16)

E D w=w
�

E � 1 (9.17)

Descriptor  has been firstly introduced in Ref. Cataldo et al. (2011b), on graphenic
lattices, whereas E has been recently proposed by Vukicevic (2010, personal
communication) and successfully applied to schwarzitic structures (De Corato et al.
2012) being also implemented in currently nano-structures’ computational codes
(Schwerdtfeger et al. 2012). By definition these invariants shall privilege, with
some numerical differences, chemical structures growing in the most compact way
around their minimal sites. For icosahedral C60 fullerene and benzene ring, both
invariants reach the lower limits D E D 1 to signal that all atoms are equivalent
by symmetry. This result inspires the TM guiding criterion for stable systems:
the smallest is the topological efficiency index, the highest is the stability of the
chemical structure under examination. For a given vertex i of G, its eccentricity
"i is the largest distance between i and any other vertex of G, the maximum
possible eccentricity corresponding to graph diameter M D maxf"ig. The eccentric
connectivity index �(N) of a graph G is a molecular descriptor defined as (Sharma
et al. 1997; Dureja and Madan 2007)

�.N / D 1=2
X

i

bi1"i (9.18)
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where bi1 gives the number of bonds of atom vi. Clearly, bik D 0 for "i< k<M.
Recent papers (Kumar et al. 2004; Ashrafi et al. 2011; Došlić et al. 2010, 2011)
present various applications of the topological invariant (9.18) to the study of
chemical–physical properties of crystallographic materials.

The key passage of our method consists therefore in computing the colored

or reactive version
_

W � and
_

W � of the distance matrix
_

D as requested by the
above computational scheme. These operators, also called Wiener electronegativity
and Wiener chemical hardness matrices, properly carry the chemical information,
leading to the reactive forms of the Wiener index for electronegativity W(�) and
chemical hardness W(�). The extraction of the W(�) and W(�) reactive indices from

the newly defined operators
_

W � and
_

W � may follow several mathematical routes.
Here, in order to evidence the rich chemical implications of our model, a basic
formal choice for these new topological descriptors has been made:

W .�/ D det1=N�




_

W �



 ; (9.19)

W .�/ D det1=N�




_

W �



 : (9.20)

Both matrices
_

W � and
_

W � are symmetric, preserving the symmetry of the
_

D tem-
plate. Clearly both Wiener-reactive invariants W(�) and W(�) given in Eqs. (9.19)
and (9.20) are the simplest representatives of a wide class of topological invariants

obtainable from the matrices
_

W � and
_

W � with more elaborate mathematical
operations.

The final formulae for the elements of the Wiener-reactive matrices (also called
reactive members or colored members or weights) consider, for obvious dimensional
reasons, the geometric average of the 1 C dij colors of the atoms present in the path
i ! j:

wij .�/ D Œ OW��ij D
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@
Y
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�˛
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1=.1Cdij /

(9.21)

wij .�/ D Œ OW��ij D

0

B
@
Y

i�!̨j

�˛

1

C
A

1=.1Cdij /

(9.22)

In the above expressions, the index ˛ runs over the 1 C dij atoms in the minimal path
i ! j connecting i to j. The forms of the reactive members of Eqs. (9.21) and (9.22)
evidence the essential role played by molecular topological information stored in the
minimal path i ! j in predicting the chemical–physical properties of the molecule.
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9.3 Working Example: Short List of PAHs

The colored algorithm is here illustrated for a short list of PAH structures: benzene,
naphthalene, pentacene, and perylene; while for pentacene the colored recipe was
illustrated in Fig. 9.1, the same rule is applicable to the other compounds, e.g., to
perylene (Fig. 9.2).

The electro-topological coloring algorithm presented in Sect. 9.2 is unfolded for
the working PAHs following the successive steps:

• Computing the first three HOMOs and LUMOs, reported in Table 9.3.
• Evaluating the compact finite differences of electronegativity and chemical

hardness, employing the values of Table 9.3 in the Eq. (9.8) with coefficients
of Tables 9.1 and 9.2, with the results in Tables 9.3 and 9.4, respectively.

• Considering the working PAHs upon the scheme of CFD hierarchy, as deduced
by best fitting of the resulted parabolic energies with pi-energies, Eqs. (9.9) and
(9.10), for a larger set of PAH molecules (Putz et al. 2013), with the coloring
example showcased in Fig. 9.1.

Fig. 9.2 Illustration of the coloring of the perylene structure, respecting its most “dense”
symmetrical (horizontal-middle) axis, following the Timisoara–Parma rule, as described in Fig. 9.1
and Sect. 9.2.2

Table 9.3 Electronic frontier energetic (in electron volts) properties for benzene, naphthalene,
pentacene, and perylene PAH molecules as computed from semiempirical PM3 method

No.
crt. Molecule N� HOMO1 LUMO1 HOMO2 LUMO2 HOMO3 LUMO3

1. Benzene 6 �9.751329 0.396204 �9.75139 0:396271 �12.3761 2.86574
2. Naphthalene 10 �8.836945 �0.40645 �9.43547 0:064889 �10.678 1.081978
3. Perylene 20 �7.98719 �1.27454 �9.49631 0:007553 �9.54391 0.055699
4. Pentacene 22 �7.611723 �1.62693 �8.8098 �0:5153 �9.11749 �0.33304



9 Introducing “Colored” Molecular Topology by Reactivity Indices. . . 275

Table 9.4 Electronegativity values (in electron volts) for the molecules of Table 9.2 as computed upon
Eq. (9.6) and the numerical schemes of Table 9.1

No. �2C �4C �6C �SP �6T �8T �8P �10P �SLR

1. 4.677563 4.677563 4.68015 1.559189 2.945133 2.63113 2.54733 2.528442 2.783443
2. 4.621695 4.611096 4.610614 1.498169 2.880514 2.567244 2.483035 2.463587 2.716915
3. 4.630863 4.611944 4.604367 1.467943 2.863175 2.54692 2.467261 2.450888 2.711043
4. 4.619324 4.61212 4.611329 1.510958 2.888452 2.576307 2.494174 2.476 2.730185

Table 9.5 Chemical hardness values (in electron volts) for the molecules of Table 9.3 as computed upon
Eq. (9.7) and the numerical schemes of Table 9.2

No. �2C �4C �6C �SP �6T �8T �8P �10P �SLR

1. 5.073767 5.919389 4.214153 4.870808 6.483366 3.884713 3.781969 3.895765 4.808069
2. 4.21525 4.873214 3.431467 3.982449 5.307959 3.176384 3.128272 3.287641 4.180482
3. 3.356327 3.799414 2.606034 3.054601 4.105097 2.433524 2.458452 2.701619 3.67288
4. 2.992399 3.394895 2.335101 2.734121 3.673915 2.178059 2.193885 2.399796 3.243817

Table 9.6 Topological descriptors are detailed for short list of PAH’s subject of the present
investigation

No. N� W(N) W-EL W-CH W-EP �(N)  E

1. 6 27 3.413 5.458 176.022 36 1 1

2. 10 109 3.504 4.745 439.457 90 1:282 1:471

3. 20 654 3.050 3.601 1,379.215 286 1:258 1:462

4. 22 1,011 3.328 3.207 1,478.855 448 1:259 1:658

Table reports the number of  -electrons and the Wiener index W(N), along its colored reactive
forms as such electronegativity (W-EL), chemical hardness (W-HD), and parabolic reactivity
energy (W-EP); for comparison purposes also the eccentric connectivity �(N) and both topological
efficiency indices  and E were added; all these invariants are computed properly considering
Eqs. (9.12), (9.13), (9.14), (9.15), (9.16), (9.17), (9.18), (9.19), (9.20), (9.21) and (9.22)

• Coloring the topological descriptors with reactivity (frontier orbitals) contents:
the conventional or newly proposed topological index is “translated” into a topo-
reactive one by considering the topological matrix of that index and coloring it
with molecular electronegativity values for nodes according to the Timisoara–
Parma rule; then, take n-roots for any n-coupling reticules of whatever nodes
within the molecule forming bonds and paths for given molecule or extended
system.

• For a given scheme of coloring, Eqs. (9.12), (9.13), (9.14), (9.15), (9.16),
(9.17), (9.18), (9.19), (9.20), (9.21) and (9.22) are applied with the computed
electronegativity and chemical hardness values of Tables 9.4 and 9.5 to produce
the parabolic-reactive counterpart – Eq. (9.11) – of the Wiener classical index,
with the results listed in Table 9.6, along other topological indices of interest,
e.g., eccentric connectivity �(N) and both topological efficiency indices  and E

(erho).
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Table 9.7 Experimental octanol–water partition coefficients (logKOW) and the (van Den
Dool–Kratz) retention indices (RI) Van Den Dool and Kratz (1963) for the actual PAHs; the
non-available data by literature (marked with “*”) were interpolated through the correlations with
the molecular weight (MW, Da) (Putz et al. 2013)

No. Molecule CAS Formula MW (D)a logKOW
b RI

1. Benzene 71-43-2 C6H6 78.11 2.13 663c

2. Naphthalene 91-20-3 C10H8 128.17 3.33 1,208c

3. Perylene 198-55-0 C20H12 252.31 6.16* 2,795d

4. Pentacene 135-48-8 C22H14 278.35 7.19 3,125.02*

aChemical Book (2011), bDuchowicz et al. (2007), cEngel and Ratel (2007) and dBeernaert (1979)

Fig. 9.3 The linear correlation, with confidence interval emphasized, between colored parabolic
Wiener index (WienerEp) and the classical one (Wiener) for the short list of PAH values of
Table 9.6

• For further analysis purpose, the structural–experimental values of octanol–water
partition coefficients (logKOW), retention indices (RI), and molecular weight
(MW) are also considered in Table 9.7.

The main results of Table 9.6 allow the following interesting analysis and
remarks:

• The reactive-parabolic colored Wiener index (WEp) correlates satisfactory with
the classical Wiener index (W), as illustrated by Fig. 9.3.

• In general, the reactive-parabolic colored Wiener index (WEp) correlates below
the performances of the classical Wiener (W) index respecting the structural
properties as eccentric connectivity �(N) and both topological efficiency indices
 and E (erho) of Table 9.6, as reported in Table 9.8 and Fig. 9.4.
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Fig. 9.4 The linear correlations, with confidence intervals emphasized, between colored parabolic
Wiener index (WienerEp) and the topo-structural PAHs’ properties of Table 9.6 vis-à-vis with the
same type of correlations for the classical one (Wiener). Parameter “erho” corresponds to E

• Instead, the reactive-parabolic colored Wiener index (WEp) always correlates
above the performances of the classical Wiener (W) index respecting the ex-
perimental properties as octanol–water partition coefficients (logKOW), retention
indices (RI), and molecular weight (MW) of Table 9.7, as reported in Table 9.8
and Fig. 9.5.

Overall, it appears that the present scheme of parabolically coloring the
topological indices by chemical reactivity information of electronegativity and
chemical hardness, Eqs. (9.18) and (9.19), (9.20), (9.21) and (9.22), provides a
richer topo-reactive information whose reliability is proved by better correlation
with experimentally recorded (or interpolated) structural observation. However,
such promising finding has to be further tested for an enlarged set of PAH, on
other paradigmatic working analogues, and implemented for other topological
invariants.
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Fig. 9.5 The linear correlations, with confidence intervals emphasized, between colored parabolic
Wiener index (WienerEp) and the experimental–structural PAHs’ properties of Table 9.7 vis-à-vis
with the same type of correlations for the classical one (Wiener) for the values of Table 9.6

9.4 Conclusion

In order to provide more significance to the topological indices, the present
work advances the idea of “coloring” them by employing the parabolic energetic
dependency of chemical reactivity by electronegativity and chemical hardness,
as prescribed by the celebrated conceptual density functional theory applied to
quantum chemistry. The result is an original method that makes use of the nine
compact finite difference (CFD) forms of electronegativity and chemical hardness
to be considered, mutatis mutandis, like a ninth-order expansion of a single-
global reactivity index, respectively. The coloring procedure relays on the so-called
Timisoara–Parma rule, according to which, given a molecular structure, the nine
forms of electronegativity and chemical hardness are distributed on equivalent
nodes/vertices on sublattices starting from the central axis where the most dense
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population of electrons is located. The CFD hierarchy employed for coloring the
molecular structure provides the best correlations, recorded in the parabolic energy,
between chemical reactivity and the  -reactive energy. The coloring procedure
as a whole appears therefore different in respect to a “simple” weighting of the
molecular topology with different atomic chemical reactivity indices on different
nodes, depending on the chemical nature of those nodes; instead, the adopted
coloring scheme considers here the same molecular chemical reactivity index
(electronegativity and chemical hardness) distributed over all nodes of the molecule
up to the ninth CFD forms (or better, perturbation forms involving more and
more complex combinations of HOMOs and LUMOs), according to the axial
distribution of equivalent nodes in respect to the central most dense population.
It is somehow equivalent to “light dispersion” in a medium, leading to unfolding of
its spectra – from where originates the coloring name. The present application to the
Wiener index on a short list of PAHs shows that the resulted parabolically colored
counterparts give a good correlation with the experimental–structural properties in
a greater measure than the classical topological index.

Grouping molecular graph nodes into shells of atoms having the same eccentric-
ity represents another interesting ranking method based on topology that, starting
from the shell of maximum eccentricity M, scales down to the central atoms having
the minimum eccentricity M – m C 1, where m is the number of shells. Each shell
is colored with different values �j and �j (j D M � m C 1, M � m C 2, : : : , M) of
the local electronegativity and chemical hardness. This alternative method relies
on the assumption that �j and �j for increasing m converge to constant values
�SLR and �SRL and that sufficiently good convergence is reached for m >7 so that
eight colors are sufficient to characterize the chemical graph as in the Timisoara–
Parma recipe. These considerations open therefore a promising way of combining
the fruitful topological mathematical information extracted from chemical systems
(that works better as the system is more extended) with the observability character of
the chemical information encompassed in chemical reactivity modeled by parabolic
paradigm of electronegativity and chemical hardness within the density functional
theory.

Finally we want to stress that the paradigmatic choice of PAHs for illustrating
the use of colored topological indices is related to the worldwide academic
and industrial interest for PAH health impact and environmental protection. To
summarize a few relevant aspects, it is known that:

1. Mixtures of PAHs can cause skin irritation and inflammation. Anthracene,
benzo(a)pyrene, and naphthalene are direct skin irritants, while anthracene and
benzo(a)pyrene are reported to be skin sensitizers, i.e., cause an allergic skin
response in animals and humans (INCHEM 1998).

2. Benzo(a)pyrene is the most common PAH to cause cancer in animals, and this
compound is notable for being the first chemical carcinogen to be discovered.
Based on the available evidence, both the International Agency for Research on
Cancer (2005) and US EPA (1994) classified a number of PAHs as
carcinogenic to animals and some PAH-rich mixtures as carcinogenic

cancer
International
Agency
for
Research
on
Cancer
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to humans. The EPA has classified seven PAH compounds as probable
human carcinogens: benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene,
benzo(k)fluoranthene, chrysene, dibenz(ah)anthracene, and indeno(1,2,3-
cd)pyrene.

3. Most of the PAHs are not genotoxic by themselves, and they need to be
metabolized to the diol epoxides which react with DNA, thus inducing genotoxic
damage. However, genotoxicity plays important role in the carcinogenicity
process and maybe in some forms of developmental toxicity as well.

These few examples suggest that a large number of more complex and poorly
known harmful PAHs may be formed in industrial as well as in natural processes,
which require a rapid and viable assessment of their reactivity. The topological
approach, besides providing an efficient tool to predict possible complex structures
not yet identified or hard to isolate and directly test in the laboratory, also allows,
in its colored upgraded version, to predict their reactivity and their potential
hazardousness.
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Appendix 9. A Compact Finite Differences
for Electronegativity and Chemical Hardness

Given the values of a function f (n) on a set of nodes f: : : ; n�3; n� 2; n � 1; n; nC1;
nC 2; nC 3; : : :g, the finite difference approximations of the first f 0

n and second
f 00

n derivatives in the node n will spectrally depend on all the nodal values.
However, the compact finite differences, or Padé, schemes that mimic this global
dependence is written as (Lele 1992)

ˇ1f
0
n�2 C ˛1f

0
n�1 C f 0

n C ˛1f
0
iC1 C ˇ1f

0
nC2

D c1
fnC3 � fn�3
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C b1
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C a1
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(9.A.1)
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C a2 .fnC1�2fnCfn�1/:
(9.A.2)
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The involved sets of coefficients, fa1; b1; c1; ˛1; ˇ1g and fa2; b2; c2; ˛2; ˇ2g, are
derived by matching Taylor series coefficients of various orders. In this way,
their particularizations can be reached as the second (2C)-, fourth (4C)-, and
sixth (6C)-order central differences; standard Pade (SP) schemes; sixth (6T)-
and eight (8T)-order tridiagonal schemes; and eighth (8P)- and tenth (10P)-order
pentadiagonal schemes up to spectral-like resolution (SLR) ones; see Table 9.1.

Assuming that the function f (n) is the total energy E(N) in the actual node
that corresponds to the number of electrons and the compact finite difference, the
derivatives of Eqs. (9.2) and (9.5) may be accurately evaluated through considering
the states with N � 3, N � 2, N � 1, N C 1, N C 2, and N C 3 electrons, whereas the
derivatives in the neighbor states will be taken only as their most neighboring de-
pendency. This way, the working formulas for electronegativity will be (Putz 2010)
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and respectively for the chemical hardness as (Putz et al. 2004)
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where the involved parameters discriminate between various schemes of computa-
tions and the spectral-like resolution – SLR (Lele 1992).

Next, Eqs. (9.A.3) and (9.A.4) may be rewritten in terms of the observational
quantities, as the ionization energy and electronic affinity are with the aid of their
basic definitions from the involved eigen-energies of ith (i D 1,2,3) order:

Ii D EN�i �EN�iC1 (9.A.5)

Ai D ENCi�1 � ENCi (9.A.6)

As such they allow the energetic equivalents for the differences (Putz 2010)

ENC1 � EN�1 D � .I1 C A1/ (9.A.7)

ENC2 � EN�2 D � .I1 C A1/ � .I2 C A2/ (9.A.8)

ENC3 �EN�3 D � .I1 C A1/� .I2 C A2/� .I3 C A3/ (9.A.9)

and for the respective sums (Putz et al. 2004)

ENC1 C EN�1 D .I1 � A1/C 2EN (9.A.10)

ENC2 C EN�2 D .I1 � A1/C .I2 �A2/C 2EN (9.A.11)

ENC3 CEN�3 D .I1 � A1/C .I2 �A2/C .I3 � A3/C 2EN (9.A.12)
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being then implemented to provide the associate “spectral” molecular analytical
forms of electronegativity (Putz 2010)

�CFD D
�
a1 .1 � ˛1/C 1

2
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3
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C
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3
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6
(9.A.13)

and for chemical hardness (Putz et al. 2004)
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�
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(9.A.14)

It is worth remarking that when particularizing these formulas for the fashioned two-
point central finite difference, i.e., when having a1 D 1; b1 D c1 D ˛1 D ˇ1 D 0

and a2 D 1; b2 D c2 D ˛2 D ˇ2 D 0 of Table 9.1, one recovers the consecrated
Mulliken (spectral) electronegativity (Mulliken 1934)

�2C D I1 C A1

2
(9.A.15)

and the chemical hardness basic form relating with the celebrated Pearson
nucleophilic–electrophilic reactivity gap (Pearson 1997; Parr and Yang 1989)

�2C D I1 � A1

2
(9.A.16)

Finally, for computational purposes, formulas (9.A13) and (9.A14) may be once
more reconsidered within the Koopmans’ frozen core approximation (Koopmans
1934), in which various orders of ionization potentials and electronic affinities are
replaced by the corresponding frontier energies

Ii D �"HOMO .i/ (9.A.17)

Ai D �"LUMO .i/ (9.A.18)

so that the actual working compact finite difference (CFD) orbital molecular
electronegativity and chemical hardness unfold as given in Eqs. (9.6) and (9.7),
respectively.
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Note that the actual CFD electronegativity and chemical hardness expres-
sions do not distinguish for the atoms-in-molecule contributions, while providing
post-bonding information and values, i.e., for characterizing the already stabi-
lized/optimized molecular structure towards its further reactive encountering.
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Chapter 10
Nanostructures and Eigenvectors of Matrices

István László, Ante Graovac�, and Tomaž Pisanski

Abstract Very often the basic information about a nanostructure is a topological
one. Based on this topological information, we have to determine the Descartes
coordinates of the atoms. For fullerenes, nanotubes, and nanotori, the topological
coordinate method supplies the necessary information. With the help of the bi-lobal
eigenvectors of the Laplacian matrix, the position of the atoms can be generated
easily. This method fails, however, for nanotube junctions and coils and other
nanostructures. We have found recently a matrix W which could generate the
Descartes coordinates not only of fullerenes, nanotubes, and nanotori but also of
nanotube junctions and coils. Solving namely the eigenvalue problem of this matrix
W, its eigenvectors with zero eigenvalue give the Descartes coordinates. There
are nanostructures, however, whose W matrices have more eigenvectors with zero
eigenvalues than it is needed for determining the positions of the atoms in 3D space.
In such cases the geometry of nanostructure can be obtained with the help of a
projection from a higher-dimensional space in a similar way as the quasicrystals are
obtained.

In this chapter, we study the structure and geometrical properties of some
selected graphs which bring us to higher-dimensional spaces. A simple harmonic
potential is suggested for constructing the matrix W.
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10.1 Introduction

Most of the physical and chemical properties of nanostructures depend on how
the atoms are arranged in space. We need Descartes coordinates of atoms also for
detailed visualization of the structures in question. In many cases we know only the
topological arrangement of the atoms that gives only some loose information about
their positions, that is, the neighboring atoms are near each other in the 3D Euclidean
spaceR3. Our aim is to generate the geometrical structure from the topological one.
We describe the topological structure with the help of a graph, where its vertices
represent the atoms and the edges of the pairs of neighboring atoms which are
in most cases connected by chemical bonds. The recovering of geometry from
topology corresponds to embedding the graph into the Euclidean space R3 or R2.
There are many methods for geometric representation and visualization of graphs
(Di Battista et al. 1999; Godsil and Royle 2001; Kaufmann and Wagner 2001; Koren
2005; Lovász and Vesztergombi 1999; Pisanski et al. 1995; Tutte 1963). Here we
study the possibility to generate Descartes coordinates of atoms in nanostructures
by use of graph spectra and eigenvectors of selected graph matrices (Biyikoglu et al.
2007; Colin de Verdière 1998; Godsil and Royle 2001; van der Holst 1996; László
2005, 2008).

First basic notations and definitions are given, and then, algorithms for generating
eigenvectors needed to draw graph are described. Then, we generate the matrix W
based on harmonic potentials. This method is applied then for clusters cut out from
simple cubic, basis-centered cubic, face-centered cubic, and diamond lattices. In
the graph-drawing algorithms those eigenvectors of W will be used which have
zero eigenvalues. If the degeneracy of the zero eigenvalue is four, the method
is straightforward. The cases of higher degeneracy and accordingly of higher-
dimensional spaces are studied and analyzed.

10.2 Basic Notions and Definitions

The topological structure of the atomic arrangement will be represented with a
graph G .V;E/, where V is the set of vertices and E is the set of edges. Molecular
graphs are chemical graphs which represent the constitution of molecules (Trinajstić
1992) or atomic arrangements, that is, each vertex v 2 V represents an atom in the
structure under study, and each edge .u; v/ 2 E means that the atoms u and v are in
some way related to each other, that is, they are chemically bonded or they are some
kind of neighboring atoms. The value n D jV j equals the number of vertices, that
is, of atoms in the structure studied.

The matrix A D A.G/ D .auv/ is the adjacency matrix of the graph G .V;E/,
where auv D 1 if .u; v/ 2 E and auv D 0 if u is not adjacent to v or u D v. The
identity matrix and the all-1 matrix (where Jij D 1 for all i and j) will be denoted



10 Nanostructures and Eigenvectors of Matrices 289

by I and J, respectively. If the graph G is a weighted graph, the values auv equal
the corresponding weights. The Laplacian matrix Q of graph G is defined by Q D
Q.G/ D Q .A/ D D � A, where D D .dvv/ is the diagonal matrix with dvv DP

uW.u;v/2E auv. The eigenvalues of the adjacency matrix A and those of the Laplacian
matrix Q are numbered in descending and in ascending order, respectively. It can be
proved easily that Qc D 0 if the components of the eigenvector c are the same, for
example, ci D �

1=
p
n
�
, that is, c is the eigenvector with the eigenvalue equal to 0.

We now define lobality of eigenvectors. An eigenvector c is m-lobal if in
the graph G .V;E/ after deleting the vertices i 2V if ci D 0 and the edges
.i; j / 2 E if the signs of ci and cj are different, a graph with m components is
obtained. According to the corresponding sign, there are thus positive and negative
components. In our graph-drawing procedures, the bi-lobal eigenvectors (m D 2)
will be the most important. For the nodal properties of graph Laplacians, see the
reference Biyikoglu et al. (2004).

Under embedding a graph G .V;E/ into Rk, we mean a mapping

� W V.G/ ! Rk: (10.1)

In Godsil and Royle (2001) and Pisanski and Žitnik (2009), such an embedding
is called graph representation. We will denote by �i the n-dimensional vector formed
by taking the ith coordinate �.u/i of �.u/ for all u 2 V . Thus, �i is an n-dimensional
vector indexed by the vertices of the graph G .V;E/.

As an example, let X D �1, Y D �2, and X D �1, then .xu; yu; zu/ D
.�.u/1; �.u/2; �.u/3/.

10.3 Algorithms for Generating Eigenvectors in Graph
Drawing

10.3.1 Algorithms: Based on Analogy

10.3.1.1 Spherical Clusters and Fullerenes

The idea of using eigenvectors (molecular orbitals) for drawing molecular graphs
was used first in chemical setting by Fowler and Manolopoulos (Manolopoulos and
Fowler 1992; Fowler and Manolopulos 1995). Their idea is based on Stone’s tensor
surface harmonic theory (Stone 1981). Stone has found a good approximation for
eigenvectors of spherical metallic clusters by calculating the values of spherical
harmonics at the atomic positions. Fowler and Manolopoulos constructed the
coordinates from eigenvectors attributed to spherical harmonics. They have found
that the first few Hückel molecular orbitals of fullerenes invariably contain three
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bi-lobal eigenvectors which are discrete version of the continuous px , py , and pz

orbitals. Since the px , py , and pz orbitals on a sphere are proportional to the x, y,
and z coordinates, the three lowest bi-lobal eigenvectors ck1 , ck2 , and ck3 determine
the .xi ; yi ; zi / topological coordinates of the ith atom by the relations

xi D S1c
k1
i ; (10.2)

yi D S2c
k2
i ; (10.3)

zi D S3c
k3
i ; (10.4)

with the scaling factors S˛ D S0 or S˛ D S0p
�1��k˛

(Manolopoulos and Fowler

1992; Fowler and Manolopulos 1995). The most realistic picture of fullerenes
(Dresselhaus et al. 1996) can be found by the scaling factor S˛ D S0p

�1��k˛
(Manolopoulos and Fowler 1992; Fowler and Manolopulos 1995; László 2004a, b;
Pisanski and Shawe-Taylor 1993; Fowler et al. 1995; Rassat et al. 2003).

10.3.1.2 Nanotori

Graovac et al. (2000) generated the Descartes coordinates of nanotori using three
eigenvectors c2, c3, and copt of the adjacency matrix A describing a 3-valent toroidal
structure. The second and third eigenvectors are c2 and c3. The eigenvector copt

was selected in a way to obtain optimal drawing. The toroidal structures, however,
obtained from three eigenvectors usually are distorted or flattened in some way
(Graovac et al. 2000; László et al. 2001). This problem was solved using four
eigenvectors of the adjacency matrix (László et al. 2001). In this method the position
of a point on the surface of a torus is given as the sum of two vectors R and r,
where the vector R is in the xy plane and r is in the planes perpendicular to the
plane of R. These two vectors are two-dimensional planar vectors; each of them can
be described by two bi-lobal eigenvectors. If ck1 , ck2 , ck3 , and ck4 are for bi-lobal
eigenvectors of the adjacency matrix A, then using basic geometrical construction,
the .xi ; yi ; zi / topological coordinates of the ith atom on the torus are given by the
relations (László et al. 2001; László and Rassat 2003)

xi D S1c
k1
i .1C S4c

k4
i /; (10.5)

yi D S2c
k2
i .1C S4c

k4
i /; (10.6)

zi D S3c
k3
i : (10.7)
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10.3.2 Algorithms: Based on Extremal Values

10.3.2.1 Spherical Clusters and Fullerenes

Hall described a k-dimensional quadratic placement algorithm for embedding a
graph G .V;E/ to the Euclidean space Rk (Hall 1970). The optimal embedding
was defined by minimizing the following energy function:

EH .�/ D
kX

iD1
�T
i Q�i (10.8)

with the constraints jj�i jj2 D Pn
uD1 �.u/2i D 1. This optimal embedding can be

realized by the first k eigenvectors with nonzero eigenvalues of the Laplacian Q.
That is, �i D ciC1 for i D 1, : : : k.

Pisanski and Shawe-Taylor (1993, 2000) defined the optimal embedding of the
weighted graph G .V;E/ by minimizing the energy function

E .�/ D
X

.u;v/2E
auvk�.u/� �.v/k2 � ˇ

X

.u;v/…E
k�.u/� �.v/k2; (10.9)

and it was subjected to the constraints

k�ik D 1; �T
i c1 D 0 for i D 1; : : : ; k;

�T
i �j D 0 for 1 � i < j � k ˇ is a positive constant:

It was proven in Pisanski and Shawe-Taylor (1993, 2000) that the optimal embed-
ding for this problem is given by �i D ciC1 for i D 1, : : : k, and the minimal value
of E .�/ is

kC1X

lD2
�l � ˇnk: (10.10)

Here the corresponding Laplacian Q D Q .B/ for the eigenvalues and eigenvectors
was constructed from the matrix B with the matrix elements buv D auv C ˇ if
.u; v/ 2 E and buv D 0, otherwise. It was proved also that in the case where the
graph is not weighted, the optimal embedding does not depend on the parameter ˇ.

Lovász and Schrijver (1999) defined a symmetric n � n matrix M for the three-
connected planar graph G .V;E/ with the following properties:

1. M has exactly one negative eigenvalue, of multiplicity 1.
2. For all .u; v/ 2 E , muv < 0 and if u ¤ v and .u; v/ … E , muv D 0.
3. M has rank n � 3.
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They have proved that if we have a matrix M with the above-mentioned
conditions, then the null space of M (the eigenvectors c2, c3, and c4 of the eigenvalue
� D 0) gives a proper embedding of G .V;E/ in the sphere S2 as �i D ciC1 for
i D 1, : : : 3 and jj�i jj2 D 1. Thus, the relation .xu; yu; zu/ D .�.u/1; �.u/2; �.u/3/
is valid for each vertex. It was also proved that this null space contains bi-lobal
eigenvectors (van der Holst 1996). The matrix M is often called Colin de Verdière
matrix in the scientific literature.

10.3.2.2 Embedding of Any Molecular Arrangement

In the previous paragraph, we have seen that the applicability of three eigenvectors
is restricted only to spherical structures and nanotubes. In Laszlo et al. (2011), we
have shown that there exists a matrix W which can reproduce practically exactly the
.xi ; yi ; zi / Descartes coordinates with the help of three eigenvectors. This matrix
was obtained by minimizing the total energy

E.r/ D E
�
r12; r21; : : : rij; rji : : :

�
(10.11)

of the system, and it was proved that

WX D 0; WY D 0; WZ D 0: (10.12)

The matrix elements of W are calculated as

wij D �@E.r/
rij@rij

� @E.r/

rji@rji
(10.13)

for the off-diagonal elements and as

wii D
nX

j¤i

	
@E.r/

rij@rij
C @E.r/

rji@rji



D �

nX

j¤i
wij (10.14)

for the diagonal elements, and rij are the interatomic distances. We have found
further that

WU D 0 (10.15)

with ui D 1p
n

.

Other details can be found in reference Laszlo et al. (2011).
If the center of mass of the molecule is in the origin and the molecule is directed

in such a way that the eigenvectors of its tensor of inertia are showing to the
directions of the x-, y-, and z-axis, then the vectors X, Y, Z, and U are orthogonal
eigenvectors of the matrix W. That is,

X D SxCx; Y D SyCy; Z D SzCz; (10.16)
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where Cx, Cy , Cz, and U are orthogonal and normalized eigenvectors of W with
zero eigenvalue and Sx , Sy , and Sz are appropriate scaling factors.

The question arises that if we have any orthogonal and normalized eigenvectors
Ax , Ay , Az, and U of W with zero eigenvalue, are there any appropriate scaling
factors Sx, Sy , and Sz for obtaining the Descartes coordinates with a relation

X D SxAx; Y D SyAy; Z D SzAz: (10.17)

If the number of eigenvectors with zero eigenvalue is four, the answer is yes, but in
Eq. (10.17) we obtain a rotation of the molecule as the vectors Ax , Ay , and Az can
be obtained as linear combination of the vectors Cx , Cy , and Cz. If the vectors Cx ,
Cy, and Cz are mixed with the vector U, it means arbitrary translation and a rotation
of the molecule. As the vector U is known, it can be easily subtracted from the
linear combinations in the case of mixings. If the degeneracy of the zero eigenvalue
is higher than four, the Descartes coordinates of the atoms can be obtained with
the help of a projection from a higher-dimensional space. In a similar way, the
coordinates are constructed in a quasicrystal.

Usually the first-neighbor distances in a molecule do not determine the positions
of the atoms, but the full structure can be described if we know the second-neighbor
distances as well. From this follows that if the edges of a molecular graph G D
.V;E/ correspond to the first and second neighbors of a molecule, the matrix W
can be generated from a total energy E.r/ which depends only on the first and
second neighbors of the molecule. If the dimension of the null space of W is four,
then this null space contains three eigenvectors which give a proper embedding of
G D .V;E/ into R3.

10.4 Study of the Matrix W in Harmonic Potential

10.4.1 Construction of Matrix W from Harmonic Potential

In our previous publication, we tested application of the matrix W for several
structures, as nanotube junctions, nanotori, and helical nanotubes (Laszlo et al.
2011). In that work, the interatomic interactions and the matrix W were calculated
with the help of the Brenner potential (Brenner 1990) and harmonic potential as
well. From our point of view, the harmonic potential is simpler and more general
than the Brenner one; as in the case of harmonic potential, there is no limitation for
the number of first neighbors. In our preliminary calculations, we have found further
that in some cases the multiplicity of the zero eigenvectors was greater than four. In
the following, first, we calculate the matrix W for harmonic potential and then apply
it for several clusters taken out of simple cubic, face-centered cubic, body-centered
cubic, and diamond structures.
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We write the total energy of Eq. (10.11) in the form of

E.r/ D E
�
r12; r21; : : : rij; rji : : :

� D
nX

i;jD1

1

2
kij
�
rij � aij

�2
: (10.18)

Here kij D kji are the spring constants and rij D aij are parameters. The summation
goes for all the pairs .i; j / which are sufficient for determining the equilibrium
positions of the atoms. From Eqs. (10.13) and (10.18) follows that

wij D � @E.r/
rij @rij

� @E.r/

rj i@rj i
D �2kij

	
1 � aij

rij



: (10.19)

As it is stated above in Eq. (10.19), the values rij minimize the total energy E.r/
of Eq. (10.18). From this follows that the parameters aij must be different of the
corresponding interatomic distance aij . In other cases W is the zero matrix.

10.4.2 Descartes Coordinates for Cubic and Diamond Cluster
Obtained from the Eigenvectors of Matrix W Based
on Harmonic Potentials

We have studied altogether 130 clusters of Tables 10.1, 10.2, 10.3 and 10.4. These
clusters were cut out from simple cubic, basis-centered cubic, face-centered cubic,
and diamond lattice systems. The spherical clusters had a maximal number of shells
20, and each of them contained an atom in the center of the cluster. These clusters
contained all of the atoms inside the sphere given by the corresponding radius. The
first-neighbor interatomic distance was 1.54 Å for each structure. The nonspherical
structures were given by the number of unit cells nx, ny, and nz in the direction
of the axes X, Y, and Z. In the following, we shall call the clusters with the help
of the number of atoms, number of shells, and the number of unit cells. Thus, the
spherical cluster of 93 atoms and seven shells in Table 10.1a will be called cluster
C93 7. In the same way, the name of the cluster with number of atoms 336 and nx,
ny, nz unit cells 6, 7, and 8 will be C336 6 7 8 in Table 10.1. The total energy of Eq.
(10.18) was minimized with the help of the conjugate gradient method. In the graph
G .V;E/ of a cluster, the number of vertices equals to the number of atoms, and two
vertices are connected if the corresponding atoms are first neighbors in the lattice.
In Eqs. (10.18) and (10.19), we supposed that kij D 1 and the unit of kij is the same
as that of the matrix element wij . If we give values aij only for the first neighbors,
most of the matrix elements wij will be zero because the solutions rij D aij can
minimize the total energy.

Thus, in our first calculations, we used the value aij D a1 D 1:54 for the
first neighbors and the value aij D a2 D 2:7 for the second neighbors. These
parameters are not compatible with each other in any structure, and thus, the relation
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Table 10.1 Data obtained for clusters of simple cubic lattice

Number of
Radius of
cluster
(in Å)

Degeneracy
of zero
eigenvalue

Serial number of
eigenvectors for drawing

Atoms Shells Cx Cy Cz

(a)
7 1 1.54 4 3 4 5

19 2 2.18 4 9 10 11

27 3 2.67 4 13 14 15

33 4 3.08 4 18 19 20

57 5 3.44 4 34 35 36

81 6 3.77 4 45 46 47

93 7 4.36 4 59 60 61

123 8 4.62 4 67 68 69

147 9 4.87 4 93 94 95

171 10 5.11 4 109 110 111

179 11 5.34 4 110 111 112

203 12 5.55 4 133 134 135

251 13 5.76 4 166 167 168

257 14 6.16 4 172 173 174

305 15 6.35 4 188 189 190

341 16 6.54 4 222 223 224

365 17 6.72 4 241 242 243

389 18 6.89 4 263 267 265

437 19 7.06 4 298 299 300

461 20 7.23 4 306 307 308

Number of
unit cells

Serial number of
eigenvectors for drawingNumber

of atoms nx ny nz

Degeneracy of
zero eigenvalue Cx Cy Cz

(b)
8 2 2 2 4 2 3 4

27 3 3 3 4 13 14 15

64 4 4 4 4 29 30 31

125 5 5 5 4 74 75 76

216 6 6 6 4 123 124 125

343 7 7 7 4 202 213 204

512 8 8 8 4 313 314 315

394 7 7 8 4 232 233 234

448 7 8 8 4 269 270 272

336 6 7 8 4 198 199 201

288 6 6 8 4 166 168 169

200 5 5 8 4 115 117 118

128 4 4 8 4 66 67 69

72 3 3 8 4 38 40 41

32 2 2 8 4 7 9 10

The matrix W included only first- and second-neighbor interactions. (a)
Spherical clusters. (b) Nonspherical clusters
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Table 10.2 Data obtained for clusters of basis-centered cubic lattice

Number of
Radius of
cluster
(in Å)

Degeneracy
of zero
eigenvalue

Serial number of
eigenvectors for drawing

Atoms Shells Cx Cy Cz

(a)
9 1 1.54 4 6 7 8

15 2 1.78 4 7 8 9

27 3 2.52 4 18 19 20

51 4 2.95 4 31 32 33

59 5 3.08 4 41 42 43

65 6 3.56 4 45 46 47

89 7 3.88 4 63 64 65

113 8 3.98 4 79 80 81

137 9 4.36 4 102 103 104

169 10 4.62 4 123 124 125

181 11 5.03 4 132 133 134

229 12 5.26 4 172 173 174

259 13 5.34 4 196 197 198

283 14 5.63 4 212 213 214

307 15 5.83 4 231 232 233

331 16 5.90 4 255 256 257

339 17 6.16 4 259 260 261

387 18 6.35 4 294 295 296

411 19 6.41 4 313 314 315

459 20 6.66 4 357 358 359

Number of
unit cells

Serial number of
eigenvectors for drawingNumber

of atoms nx ny nz

Degeneracy of
zero eigenvalue Cx Cy Cz

(b)
16 2 2 2 4 9 10 11

54 3 3 3 4 41 42 43

128 4 4 4 4 99 100 101

250 5 5 5 4 195 197 198

432 6 6 6 4 343 345 346

686 7 7 7 4 548 549 550

672 6 7 8 4 537 539 540

576 6 6 8 4 459 461 462

400 5 5 8 4 318 319 320

256 4 4 8 4 201 202 204

144 3 3 8 4 109 111 112

64 2 2 8 4 43 45 46

The matrix W included only first- and second-neighbor interactions. (a)
Spherical clusters. (b) Nonspherical clusters
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Table 10.3 Data obtained for clusters of face-centered cubic lattice

Number of
Radius of
cluster
(in Å)

Degeneracy
of zero
eigenvalue

Serial number of
eigenvectors for drawing

Atoms Shells Cx Cy Cz

(a)
13 1 1.54 4 4 5 6

19 2 2.18 4 6 7 8

43 3 2.67 4 17 18 19

55 4 3.08 4 23 24 25

79 5 3.44 4 32 33 34

87 6 3.77 4 40 41 42

135 7 4.08 4 67 68 69

141 8 4.36 4 73 74 75

177 9 4.62 4 86 87 88

201 10 4.87 4 86 87 88

225 11 5.11 4 113 114 115

249 12 5.34 4 132 133 134

321 13 5.55 4 169 170 171

369 14 5.97 4 194 195 196

381 15 6.16 4 191 192 193

429 16 6.35 4 222 223 224

459 17 6.54 4 241 242 243

531 18 6.71 4 285 286 287

555 19 6.89 4 298 299 300

603 20 7.06 4 326 327 328

Number of
unit cells

Serial number of
eigenvectors for drawingNumber

of atoms nx ny nz

Degeneracy of
zero eigenvalue Cx Cy Cz

(b)
32 2 2 2 4 17 18 19

108 3 3 3 4 59 60 61

256 4 4 4 4 139 140 141

500 5 5 5 4 281 282 283

600 5 5 6 4 341 342 344

384 4 4 6 4 211 213 214

216 3 3 6 4 120 121 122

96 2 2 6 4 48 49 50

128 2 2 8 4 63 64 66

288 3 3 8 4 160 161 163

512 4 4 8 4 282 284 285

640 4 5 8 4 362 363 365

The matrix W included only first- and second-neighbor interactions. (a)
Spherical clusters. (b) Nonspherical clusters
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Table 10.4 Data obtained for clusters of diamond lattice

Number of Radius of
cluster

Degeneracy
of zero
eigenvalue

Serial number of
eigenvectors for drawing

Atoms Shells Cx Cy Cz

(a)
5 1 1.54 4 1 2 4

17 2 2.52 12

17* 2 2.52 4 9 10 11

29 3 2.95 4 1 2 3

35 4 3.56 4 1 2 3

47 5 3.88 4 14 15 16

71 6 4.36 4 7 8 9

87 7 4.62 4 5 6 7

99 8 5.03 4 17 18 19

123 9 5.26 4 1 2 3

147 10 5.63 4 2 3 4

159 11 5.83 4 14 15 16

167 12 6.16 4 9 10 11

191 13 6.35 4 9 10 11

239 14 6.66 4 36 37 38

275 15 6.83 4 5 6 7

281 16 7.11 4 2 3 4

293 17 7.28 4 2 3 4

329 18 7.55 4 7 8 9

357 19 7.70 4 5 6 7

381 20 7.96 4 6 7 8

Number of
unit cells

Serial number of
eigenvectors for drawingNumber

of atoms nx ny nz

Degeneracy of
zero eigenvalue Cx Cy Cz

(b)
8 1 1 1 7

8* 1 1 1 4 4 5 7

64 2 2 2 7

64* 2 2 2 4 50 51 52

216 3 3 3 7

216* 3 3 3 4 174 175 177

512 4 4 4 7

512* 4 4 4 4 436 437 438

16 1 1 2 10

16* 1 1 2 4 9 11 12

24 1 1 3 13

24* 1 1 3 4 14 15 17

32 1 1 4 16

32* 1 1 4 4 18 19 21

40 1 1 5 19

40* 1 1 5 4 22 23 25

(continued)



10 Nanostructures and Eigenvectors of Matrices 299

Table 10.4 (continued)

Number of
unit cells

Serial number of
eigenvectors for drawingNumber

of atoms nx ny nz

Degeneracy of
zero eigenvalue Cx Cy Cz

160 2 2 5 7
160* 2 2 5 4 128 129 131

360 3 3 5 7
360* 3 3 5 4 301 302 303

768 4 4 6 7
768* 4 4 6 4 662 663 665

The matrix W included the first- and second-neighbor interactions, but in
rows marked by (*), the third-neighbor interactions are included too. (a)
Spherical clusters. (b) Nonspherical clusters

rij D aij does not minimize the total energy. This is why the first- and second-
neighbor matrix element wij will be differences of zero. In Tables 10.1, 10.2, and
10.3, we can see that the degeneracy of the corresponding zero eigenvalues was four,
and we could reconstruct the clusters from the three eigenvectors. It was surprising
that the eigenvector ui D .1=

p
n/ was always separated from the other eigenvectors

of zero eigenvalue. This can be due to the numerical algorithm which we used for
diagonalization. The other three eigenvectors of zero eigenvalue could mix with
each other; thus, Eq. (10.16) produced the cluster with an affine transformation.

Table 10.4 shows that, for the spherical diamond structure C17 2, the degeneracy
of the zero eigenvalue was 12 and, for the nonspherical diamond clusters, the
degeneracy of zero eigenvalue was at least seven. Here we remark once more that in
the total energyE.r/ of Eq. (10.18), we took into account only the first- and second-
neighbor interactions. Detailed analysis revealed that in the nonspherical diamond
clusters, there were always surface atoms for which the condition rij D aj i was
fulfilled. If an atom with the vertex index krkj D ajk for each neighbor, then
there are only zero matrix elements in the row k and in the column k of matrix
W. Thus, such kind of atoms increases by one the number of degeneracy of the
zero eigenvalue of W. The case of the cluster C17 2 is a little bit different. The
matrix W determines not only the cluster C17 2 but each other clusters obtained by
relative rotations of some parts of this cluster as well. During these rotations, the
first- and second-neighbor distances are not changing, and these structures have the
same matrix W. This is why the degeneracy of the zero eigenvalue is higher than
for at this cluster. Each of the above-mentioned extra degeneracy of zero eigenvalue
can be suppressed by introducing the third-neighbor interactions as well with the
parameter aij D a3 D 3:5. Table 10.4 shows that using first-, second-, and third-
neighbor interactions, the degeneracy of the zero eigenvalue was 4. Our calculations
revealed as well that we do not need all of the third neighbors. We need only those
which are sufficient to hinder the rij D aj i solutions or the relative rotation of the
cluster parts.
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10.5 Conclusions

After revising the algorithms for generating eigenvectors in graph drawing, we
studied the problems of constructing Descartes coordinates with the help of the
matrix W. Until now only this matrix can be used for resolving this problem if the
atoms are in general position. That is, the atoms are not on a surface of spheres or tori
or on that of some related similar structures. In this work we generated it using an
energy minimalization algorithm with the help of a conjugate gradient method, and
the total energy was calculated using harmonic potentials. The studied clusters were
spherical and nonspherical clusters. With the help of the shape analysis (Graovac
et al. 2008a, b), we have found that the final structure had coefficients only for
the eigenvectors with zero eigenvalue of the matrix W. Using these coefficients, we
could reproduce the Descartes coordinates independent of the degeneracy of the zero
eigenvalue. We have found further that the space of these zero eigenvectors does not
have general meaning as the higher-dimensional space in the projection process
in constructing quasicrystals. Using third-neighbor interactions, we obtained that
the degeneracy was four at each cluster under study. The drawback of W is that at
present there is not a simple algorithm for its construction. There is a hope, however,
that using appropriate approximations for the matrix elements of W, a method
can be found for constructing topological coordinates of complicated nonspherical
structures as well. According to our present results, the harmonic potential looks to
be a promising tool for resolving these problems.
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Chapter 11
Theoretical Analysis of the Reactivity of Carbon
Nanotubes: Local Versus Topological Effects

Massimo Fusaro, Vincenzo Barone, Mauro Causa, Maddalena D’Amore,
and Carmine Garzillo

Abstract In carbon materials the mobile   electrons are situated in topologically
different circumstances at edge sites, and their   electronic states, essentially
controlled by the network structure of sp2 carbon, may be significantly affected.
In this work, we derived topological indications about the reactivity of carbon
nanotubes and fullerenes with the hydroxyl radical (OH•), the most important
oxidizing species in the troposphere. For each molecular structure, we computed
the local softness, the Mulliken charges of the reacting carbons of (n,n) and
(n,0) clusters, and their Huckel-type aromaticity rules, as an index to determine
topologically independent sites and predicting a certain grade of reactivity of the
nanotube and fullerenic carbon atoms. Using local softness, closely related to the
energy gap, it was possible to separate the periodical nanotubes in three families
according to their reactivity. A connection between the reactivity index �E and
the topology was established by means of the Fukui integrated function. It resulted
that for (n,0) clusters, odd n implies aromaticity, whereas even n, non-aromaticity;
(n,n) clusters are in any case non-aromatic. For a better understanding of some
experimental results, we also discussed how edge effects can influence topological
reactivity due to the increment of the number of benzene rings in some cluster
arrangements.
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11.1 Introduction

Fullerenes and nanotubes are very singular molecules: they are the object of a large
number of experimental works (Tasis et al. 2006). The reasons of their importance
are the following: (a) they may have interesting properties for applications and
(b) their chemical nature and structure is quite well defined, with respect to all
the sets of the carbonaceous materials like soot, coal, and polyarenes. One of the
problems that synthetic chemistry must face is the solubilization of nanotubes and
fullerenes (Arrais et al. 2004). The solubilization is obtained by the functionalization
of these materials: by oxidation polar groups are attached to the graphenic surfaces.
A necessary and relatively slow step of many oxidation processes of organic
materials is the attachment of the stable hydroxyl radical to the   electronic system
(Maranzana et al. 2005). This reaction step is always exoergonic and does not have
any energy barrier. On the other hand, following the minimum energy path (MEP),
the free energy profile shows a maximum: therefore, the generalized transition state
theory (Gonzalez-Lafont et al. 1998) can be applied here.

The most important oxidizing species in troposphere is the hydroxyl radical
(OH•). It is extremely reactive and it is able to oxidize most of the chemicals found
in the troposphere. The hydroxyl radical is therefore known as the “detergent of the
atmosphere.”

OH• governs atmospheric chemistry during the day since its formation depends
on radiation from the sun. The initial reaction involves the breakdown (photolysis)
of ozone by solar radiation with wavelengths less than 310 nm. The oxygen atom (O)
produced reacts with water to form OH•. This reaction mechanism is the reason why
a small amount of ozone is essential in the troposphere. Other sources of OH• are the
photolysis of nitrous acid (HONO), hydrogen peroxide (H2O2), or peroxy-methane
(CH3OOH); the reaction of nitrogen monoxide (NO) with the hydroperoxyl radical
(•HO2); or the reaction of alkenes with ozone.

Only a few compounds in the troposphere do not react at all or react only
very slowly with the hydroxyl radical. These include the chlorofluorocarbons
(CFCs), nitrous oxide (N2O), and carbon dioxide (CO2). The rate of methane (CH4)
oxidation by OH• is also very slow, between 100 and 1,000 times slower than
other organic compounds. This is why methane concentrations in the atmosphere
can reach around 1.7 ppm (1.7 	mol mol�1), a value significantly higher than
the concentrations of other organic trace gas which are generally below 1 ppb
(1 nmol mol�1).

The focus of this chapter is the reaction

S C OH• ! SOH• (11.1)

where S is a substrate that can be a nanotube, a fullerene, a polyaromatic molecule,
or graphite; SOH• is the “intermediate” complex, a minimum on the potential energy
surface.
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11.2 Computational Methods

All the models were calculated within the density functional approximation; the
molecular or crystalline orbitals have been expressed as a linear combination of
atomic orbitals (LCAO) using a localized Gaussian basis set. We used a hybrid
density functional B3LYP method (Becke 1996) with a split-valence basis set with
d polarization function 6–31G(d) (Francl et al. 1982). This computational model is
a reasonable compromise between accuracy and computational cost when applied
to big molecules (Johnson et al. 1993): we expect that such a computational model
gives reliable reaction energies when applied.

We used the Gaussian 03 program (Frisch et al. 2004) for molecular models and
Crystal09 and Crystal98 programs (Dovesi et al. 2010) for periodical system. We
studied (n,0) and (n,n), zigzag and armchair dissection cuts, respectively; carbon
nanotubes, both like cluster and periodical systems; and fullerenes and graphite
crystal with 2D periodicity.

11.3 Carbon Nanotube Reactivity

As test of nanotube (S) of reactivity, we chose the reaction (11.1) with OH• radical,
to produce the oxidrilated radical adduct (SOH•).

The reaction energy�E is the difference between the energy of the product SOH•

and the energy of the reactants S and OH•.

�E D E.SOH•/� E.S/� E.OH•/

�E is a negative number, do to the higher stability of the product respect to the
reactants. Figure 11.1 shows a typical geometry of a radical adduct SOH•. The
OH bond length is in the range 1.23–1.45 Å. The attack is “on top”: the carbon
center bonded to OH• gets a pyramidal geometry because of a change from a sp2 tri-
coordination to a partial sp3 tetra-coordination. Figure 11.2 shows the energy profile
for the OH• attachment to a periodic nanotube (12,0), as a function of the carbon-
oxygen d(C–O) distance. Each point is obtained via a constrained optimization,
where all the internal coordinates are relaxed, but the “reaction” C–O distance is
fixed to a desired value. The reaction profile does not show any activation barrier, as
expected for a radical attachment to a   electronic system (Table 11.1).

In Fig. 11.3 we report the reaction energy �E for the periodic nanotube models
versus the 1/n component of the rolling-up chiral vector (n,n) or (n,0). This
vector corresponds to the periodic boundary conditions and gives us the dispersion
relations of the one-dimensional bands which link wavevector to energy (Saito et al.
1992). The nanotubes (3n,0) with zigzag dissection cuts are low-gap semiconductors
(meV). The green ones (n,n) with armchair cuts are metallic, whereas light blue
carbon nanotubes (n,0), with n not multiple of 3, are semiconductors.
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Fig. 11.1 Molecular plot of the equilibrium geometry of the reaction product of the on-top
attachment of OH radical on carbon nanotube. The on-top OH attachment to the nanotube is the
only stable point of the potential energy surface (PES). The other possible geometry, the epoxy-like
bridge, is a saddle point. The pyramidalization of the carbon coordination is evident in all cases:
the (C–C(OH)–C) angle is in the range 110–120ı
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Fig. 11.2 Reaction energy profile for the reaction of OH radical with the (12,0) periodic nanotube.
Reaction energy �E in kcal/mol, bond distance d(C–O) in Angstrom. As expected for a radical
addition to an unsaturated carbon system, there is no activation barrier; therefore, the reaction
energy �E can be assumed as an unambiguous index of reactivity

The fitting linear relation is ��E D A C B/n, with a correlation coefficient
of about 0.95; the number of carbon atoms per elementary cell is 4n, n being
proportional to the nanotube radius. The graphene is the limit situation of a flat
surface that corresponds to an infinite curvature radius:

lim
r!1.��E/ D lim

n!1.��E/ Š lim
n!1AC B

n
D A (11.2)
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Table 11.1 Reaction energies �E for the OH• attachment to a variety
of carbon nanotube substrates, either cluster or periodical

Periodic models Molecular models

Chiral
vector

No. of
struct. units ��E

Chiral
vector

No. of
struct. units ��E

(9,0) 1 37.0 (9,0) 2 72:3

(9,0) 2 36.0 (9,0) 3 59:8

(9,0) 3 29.4 (9,0) 4 58:3

(8,0) 1 49.9 (8,0) 2 43:9

(8,0) 2 36.3 (8,0) 3 28:9

(8,0) 3 28.0 (8,0) 4 28:9

(5,5) 1 49.9 (5,5) 2 43:9

(5,5) 2 36.3 (5,5) 3 28:9

(5,5) 3 28.0 (5,5) 4 28:9

(7,7) 1 44.8 (7,7) 2 16:6

(7,7) 3 25:4

(7,7) 4 18:9

(11,11) 1 27.8 (11,11) 2 10:7

(11,11) 3 22:5

(13,0) 1 26.0 (13,0) 2 91:5

(19,0) 1 19.6 (19,0) 2 103:5

(15,15) 1 23.0 (15,15) 2 8:5

(18,0) 1 25.7 (18,0) 2 78:3

(12,0) 1 31.1 (12,0) 2 69:1

(26,0) 1 13.8 (26,0) 2 112:4

(24,0) 1 24.8 (24,0) 2 110:0

(10,0) 2 71:8

(6,6) 2 20:9

(11,0) 2 80:9

(14,0) 2 75:6

(15,0) 2 90:4

C60 36:6

C20 87:0

C30 62:5

C36 6:0

C50 38:3

Graphene (3, 3) 15.2

There is no way of finding a strict correlation between the reactivity
�E and some local geometrical feature, such as the diameter of the
nanotube or the radius of curvature. The impossibility of rationalizing
this table using only local geometry is the basis of our interest in the
topology indexes

so that the reaction energy for a 2-dimension periodic planar system is about
11 ˙ 2 kcal/mol; this is in good agreement with the value of �15.2 kcal/mol
obtained for a planar graphene by using a (3,3) super-cell for minimizing the
lateral interaction among adsorbed OH. The large value of the correlation coefficient
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Fig. 11.3 Plot of the reaction energy�E for the periodic models versus the reciprocal of the chiral
vector module that is proportional to the reciprocal of the curvature radius

Table 11.2 Local softness
for a selected set of periodic
models of nanotubes Chiral vector

Local softness
(1/eV)

(9,0) 0.09
(8,0) 0.02
(5,5) 0.76
(7,7) 0.71

between the reactivity �E and the nanotube curvature shows the importance of the
local chemical factors in the reactivity: the smaller is the curvature radius, the more
bent is the   bond between carbon atoms, the larger is the reaction energy ��E,
and the larger we consider the reactivity.

In the following, the considered set of the nanotubes will be divided in families
that have a common algebraic structure of the chiral vector (n,m): this quantity
does not reflect a local feature of the bonds but represents a general topological
feature of the model. Hence, we will use a topological analysis of the data
reported in Table 11.2 and in Fig. 11.3 for a better understanding of the correlation
between structure and reactivity. As a consequence, we also found a higher
correlation coefficient between the reactivity and the radius, within each nanotube
family.
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11.4 Analysis of the Reactivity of the Periodic Models

11.4.1 Hardness–Softness Fukui Functions

It is known that (Paritosh et al. 2003) hardness–softness Fukui functions are pow-
erful tools to predict the reactivity site of a molecule. These reactivity descriptors
derive from DFT theory.

Global hardness and softness represent the global reactivity of a molecule, and
Fukui’s function defines the reactivity of an atom in a molecule, being a local
property.

Fukui’s function and local softness are suited to describe reactivity of different
substrates, while Pearson’s HSAB theory suggests that hard–hard and soft–soft
acid–base interactions are favorite with respect to hard–soft interaction.

It is known that soft–soft interactions are favorite in the sites where Fukui’s
function has a maximal “frontier control,” and on the other hand, hard–hard
interactions are favorite in the site where Fukui’s function has a minimal “charge
control.”

Fukui’s function (Chandra and Nguyen 2002; Paritosh et al. 2003; Chermette
1999) is defined as a derivative of electronic density versus the electron number at a
constant external potential (fixed nuclei):
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@ni
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Global hardness (Chandra and Nguyen 2002; Paritosh et al. 2003) is defined as ½ of
the second derivative of the energy versus the electron number at a constant external
potential, that is, the derivative of the chemical potential versus the electron number:
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The global softness is equivalent to
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Similarly local softness is defined as
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In the case of periodic nanotubes, it is necessary to calculate the partial derivatives
for an infinite system: in the following, Ec is the energy per unit cell, and Nc is the
number of electrons per unit cell. If we want to compute the chemical potential for
a periodic system, we have
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with n being the number of elementary cells.
So the chemical potential for a periodic system is equal to that one calculated in

the elementary cell, or, better, the partial derivatives of the extensive quantities are
equivalent to those calculated in the elementary cell. From now on, these results will
be used omitting the c subscript.

As a further step, Fukui’s condensed function was then calculated by integrating
Fukui’s function over the ith atomic volume (Kleiner and Eggert 2001):
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The Fukui condensed function for the ith atom is equivalent to the derivative of the
charge of the ith atom with respect to the total molecular charge.

11.4.2 Fukui’s Function and Local Softness
for “Symmetrical” Substrates

Fukui’s condensed function for carbon nanotube substrates is obtained considering
“extensively” the charge of the ith atom for the cells of the same atom periodically
repeated.

If the elementary cell charge grows of a dN amount, all atom being equivalent
for symmetry and 4n being the atom number for the elementary cell in the (n,n) and
(n,0) carbon nanotubes, it follows

dni D dN

4n
(11.9)

from which
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Considering the reaction of the periodic carbon nanotubes with OH•, it follows
that reactivity is proportional to the Fukui function, having a soft–soft interaction
(easy polarizability, low charge density, B> 0):

��E � AC B

n
D �Eperiodical-planar C k fi D AC k

4n
(11.11)

B< 0 instead entailed a hard–hard interaction: low polarizability, high charge
density.

Making a detailed analysis of the different families of nanotubes, using con-
densed local softness for the ith atom,

si D
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In the case of periodic carbon nanotubes we have

si D S � fi D S � 1
4n

(11.13)

Global softness S is equal to

S D 1
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So it follows

si D 1

4n �
�
@2E
@N2

�

�. r
�

/

(11.15)

We calculated the second derivative of the energy versus the electron number using
the finite difference approximation—f (x) can be developed in Taylor’s series nearby
to x:

f .x C h/ D f .x/C h � f 0.x/C h2

2
� f 00.x/C O.2/

f .x � h/ D f .x/ � h � f 0.x/C h2

2
� f 00.x/C O.2/ (11.16)
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Adding the two equations, it results

f 00.x/ D f .x C h/C f .x � h/ � 2f .x/

h2
C O.2/ (11.17)

Letting be h D 1 the second derivative of the energy versus the electron number, we
have
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D E.N C 1/C E.N � 1/� 2E.N/C O.2/

D .E.N C 1/� E.N//C .E.N � 1/�E.N//C O.2/ (11.18)

In freezing MOs approximation, the ionization energy is I D E(N � 1) � E(N) and
the electron affinity is A D E(N) � E(N C 1). It follows

	
@2E

@N2




�. r
�

/
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According to Koopmans’s theorem (Rioux 1999), ionization energy is simply
the value of the HOMO orbital energy with the minus sign. In molecules with
coupled spins (such as nanotube substrates), electron affinity is equal to minus
LUMO energy. It follows
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(11.20)

When substituting this result in the expression of local softness, we have

si D 1

4n �
�
@2E
@N2

�

�. r
�

/

Š 1

4n � Egap
(11.21)

On the right member of the last expression, we neglected terms of order superior to
the second one (O(2)).

Going from molecular to periodic system (nanotubes), MOs go into bands, and
we use the gap for characterizing periodic nanotubes. If, for example, we consider
the (9,0) nanotube cluster saturated at the borders with H atoms, we have a gap
energy variation versus the number of sub-unities as shown in Table 11.3.

Hence, the local softness can be computed as

si Š 1

4n � Egap
(11.22)
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Table 11.3 HOMO-LUMO
gap of the (9,0) nanotube
cluster, varying the number
of structure unit

No. of struct.
units Gap (eV)

2 0.60
3 0.41
4 0.30
5 0.30
Periodic 0.30

Fig. 11.4 Reaction energy of OH• with small-gap nanotubes (3n,0). The correlation coefficient
between the reactivity �E and the radius is 0.97; we can also note that it is the same we found in
Figs. 11.5 and 11.9

11.4.3 Reactivity of Periodic Nanotubes

By means of local softness, it is possible to classify the periodical nanotubes in three
families, according to their reactivity:

Differently from the light blue family of (n,0) nanotubes (n is not a multiple
of 3) which have higher gap (Kleiner and Eggert 2001; White and Mintmire 2005;
Gülseren et al. 2002): 1.27 eV for (8,0) and local softness of 0.02 1/eV, the (3n,0)
nanotubes (Fig. 11.4) are small-gap semiconductors (0.30 eV in (9,0) with a higher
local softness of 0.09 1/eV). The electronic bands of these nanotubes are reported
in Figs. 11.6 and 11.7.
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Fig. 11.5 Reaction energy �E for semiconductor nanotubes (n,0) versus the reciprocal of the
nanotube radius

Fig. 11.6 Electronic bands structure for a (9,0) nanotube, small-gap semiconductor (0.30 eV)
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Fig. 11.7 Electronic bands for a (8,0) nanotube, high-gap semiconductor (1.27 eV)

For both families we have a correlation of about 99 %; therefore, we can conclude
that the gap separation criterion provides good results.

For the (3n,0) family, if the radium tends to infinity, the reaction energy becomes
16.4 ˙ 1.3 kcal/mol that is in good agreement with P33 2D planar periodic graphene
(15.2 kcal/mol). Noteworthy, graphenes are also small-gap systems.

11.4.4 Local Softness of Metallic Nanotubes

The local softness formula used above does not match with the (n,n) metallic
nanotubes (Chermette 1999) due to its diverging behavior, due to a zero gap.
Because we cannot neglect the O(2) terms, it follows

si D 1

4n � O.2/
(11.23)

The literature gap (Chermette 1999; Kleiner and Eggert 2001; White and
Mintmire 2005) is in agreement with our band calculation; for example, the (7,7)
nanotube is metallic: the band structure calculated in this work and reported in
Fig. 11.8 confirms this behavior.
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Fig. 11.8 Electronic bands structure for a (7,7) metallic carbon nanotube

We can calculate now the global softness for a zero-gap system (Chermette
1999). The number of electrons N can be expressed, at T D 0 K and within the
adiabatic approximation, as a functional of g."/, the density of states (DOS):

N D
Z "F

0

g."/ d" (11.24)

Then,
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It follows
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We can neglect the last term that cannot be omitted for small system (Chermette
1999); because nanotubes are periodic systems with a number of infinity of atoms,
we obtain

S Š g ."F/ (11.26)
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Fig. 11.9 Plot of the reaction energy �E versus the reciprocal of the nanotube radius for metallic
nanotubes (n,n)

We can calculate now the local softness, using the expression (11.10) for the local
Fukui function:

si D S � fi D S � 1
4n

(11.27)

It follows

si Š g ."F/

4n
Š 1

4n � O.2/
(11.28)

This expression of local softness holds true for (n,n) metallic nanotubes. We can
write

g."F/ Š 1

O.2/
(11.29)

This term is more important than the 1/Egap term in the expression of local
softness and will create a major distortion from the linear trend. The linear
regression for a (n,n) family is shown in Fig. 11.9.
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We find a good correlation (97 % ca), a little worst than the (n,0) case, and
calculating the 1/Egap’s values for (9,0) and (8,0) (3.33 1/eV and 0.79 1/eV,
respectively) and the g(Ef)’s (the DOS terms at the Fermi energy level) for (5,5)
and (7,7) (15.29 1/eV and 19.99 1/eV, respectively), it follows that in the expression
of local softness, the values for (n,n) have a higher weight when compared to the
(n,0) ones whose values are shown in Table 11.2.

It should be noted that the variation of local softness between (5,5) and (7,7) is
of the same entity as the one between (9,0) and (8,0) families.

11.5 Reactivity of Cluster Nanotubes

Figure 11.10 reports the structure of a (5,5) nanotube as a cluster of two sub-unities
after reaction with OH•. The reaction energy of different clusters with OH• as a
function of the 1/Nc number (Nc is the number of carbon atoms constituting the
cluster) is shown in Fig. 11.12. In the case of a symmetrical system, 1/Nc is the
Fukui function.

Figure 11.11 shows the reactivity (�E) versus the reciprocal of the number
of carbon atoms Nc. Like periodic nanotubes the reactivities are grouped in
three families. For the first two families (n,0) and (3n,0), we get a linear fitting:
��E D A C B/Nc with B< 0 Nc (being the number of carbon atoms of the (n,m)
cluster with formula, C6(n C m)H2(n C m)); so there is an anti-correlation between the
reaction energy and the Fukui function.

Also in the case of an armchair (n,n) cluster, a linear fitting with the Fukui
function was found, and the trend is equivalent to that of periodic nanotubes with
B> 0.

Fig. 11.10 Molecular plot of
the (5,5) nanotubes cluster
composed of two structural
units after reaction with OH•
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Fig. 11.11 Plot of reaction energy �E versus the reciprocal of the number of carbon atoms Nc

for cluster models of nanotubes, all containing two structure units. Depending on chiral vector, the
model clearly separates three families

Fig. 11.12 Structural motive
of the nanotube clusters

Comparing the geometry of (n,0) and (n,n) structures, we noticed that while the
ratio C/H D 3 is a constant value, the distance of the fourth nearest H atoms to the
reacting carbon of the substrate varies, being 3.44, 3.44, 3.92, and 4.61 Å for (n,0)
and 3.43, 3.90, 4.65, and 4.98 Å for (n,n). In the (n,0) structures, hydrogen atoms
are closer to carbon atoms than in the (n,n) cases.

Due to different electronegativity of C and H, we can predict that in the (n,0)
clusters, the reacting carbon of the substrate is more negatively charged than
in the (n,n) clusters, and in such a way, it results B> 0, both for periodical
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Table 11.4 Mulliken
charges of the carbon atom
subject to OH attachment in
some nanotube cluster

Chiral vector Mulliken charge

(5,5) C0.003
(7,7) C0.008
(8,0) �0.008
(9,0) �0.007

systems (no charge in the substrate for symmetry) and for (n,n) clusters. The
Mulliken charges of the reacting carbons in (n,n) and (n,0) clusters are reported
in Table 11.4.

11.5.1 Topological Analysis of Nanotube Clusters

The three families of nanotube clusters were analyzed from a topological point of
view. Nanotube clusters are composed of two benzene belts, having three rings like
the one shown in Fig. 11.12.

Every carbon in nanotube clusters has a sp2 tri-coordinated hybridization and
one   delocalized electron, so that the number of delocalized electron is 6n for (n,0)
clusters and 12n for (n,n) clusters. Applying the Hückel rule to a quasi-planar ring
having 2n electrons as in Fig. 11.12, it follows that for the (n,0) family, 2n D 4k C 2
(k D n/2 C 1/2) and for the (n,n) family, 4n D 4k C 2 (k D n C 1/2), k being a positive
integer.

It results that for (n,0) clusters, an odd n means aromaticity, whereas an even n
implies non-aromaticity; for each (n,n) clusters, we have non-aromaticity.

As shown in Fig. 11.12, the (n,0) family has 4k C 2   electrons (odd n) with
high reactivity in every “ring.” For a high value of n, the light blue family (n,0)
with even n “tends” to the red (n,0) family with odd n. The (n,n) family, even n, and
the (n,n) green one have 4k   electrons (not aromatic) and consequently are less
reactive.

These considerations are also in agreement with the Aufbau sequence (Bellucci
and Onorato 2005) of a carbon nanotube where 4k electrons (k as integer)
correspond to the filling of the shell, because of their atomic-like behavior where
each shell is filled by four electrons with opposite spin.

The shell model of nanotubes whose electrons are subjected to harmonic forces
implies the existence of magic numbers (Bellucci and Onorato 2005) of electrons
N D 2,6,12,20,k*(kC 1), k integer. In our clusters of nanotubes for each ring
(Fig. 11.12), we have a magic number if k*(k C 1)/2 D n for (n,0) or k*(k C 1)/4 D n
for (n,n) clusters. Considering a single ring, the (10,0), (5,5), and (15,0) clusters cor-
respond to magic numbers, and this explains the observed anomalies in Fig. 11.11
(half black quads).
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Table 11.5 Reactivity �E
for some cluster nanotube
models Chiral vector

No. of
struct. units ��E

(9,0) 2 72.3
3 59.8
4 58.3

(8,0) 2 60.2
3 58.9
4 60.3

(5,5) 2 16.6
3 25.4
4 18.9

The edge effects decrease with the
increase of the length of the cluster
represented by the number of struc-
tural units

11.5.2 Edge Effects for Nanotube Clusters

In Table 11.5, we report the variations of the reaction energy �E •, due to the
increment of the number of benzene rings for the (9,0), (8,0), and (5,5) clusters.
We concluded that the edge effect can be considered a low entity phenomenon.

11.6 Reactivity of Fullerenes

Figure 11.13 reports the reactivity energies of fullerenes with OH• as a function of
the 1/Nc values.

In these cases carbon atoms are quite equivalent, their charge being zero for
symmetry, and from the fitting of the reaction energy ��E D A C B/Nc, it results
B> 0. The set of fullerenes considered in this study seems to belong to the same
topological family.

11.7 Conclusions

The reaction of fullerenes and carbon nanotubes with hydroxyl radical (OH•) is
the initial step of many oxidation mechanisms both in liquid and in gas phases.
More in detail, such reaction is very important for the “large” chemical family
of soot, due to the fact that the addiction of the hydroxyl radical to the double
bond is the recurring motive of the oxidation processes (may be photochemically or
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Fig. 11.13 Plot of the reactivity �E versus the reciprocal of the total number of carbon atoms NC

for fullerenes

electrochemically driven) of these substances. Surprisingly the correlation between
the nanotube structure and the reactivity toward OH cannot be established taking
into account only local effects, such as the deformation of P carbon–carbon bond,
due to the curvature of nanotube. The topology factors, represented by the numerical
properties of the chiral vector (n,m), have to be taken into account, as clearly shown
by comparison of Fig. 11.3 with Figs. 11.4, 11.5, and 11.9. Further on we established
a connection between the reactivity index �E and the topology by means of the
Fukui integrated function. In the case of periodic structures, it became possible to
establish a link between the reactivity �E and the electronic properties like the
energy band gap, using the local softness index. In nanotube cluster models, the
effects of the edge saturation on the reactivity have been rationalized.
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Chapter 12
Computation of the Szeged Index of Some
Nanotubes and Dendrimers

Ali Iranmanesh

Abstract Let e be an edge of a G connecting the vertices u and v. Define two
sets N1 .ejG/ and N2 .ejG/ as N1 .ejG/ D fx 2 V.G/j d .x; u/ < d .x; v/g and
N2 .ejG/ D fx 2 V.G/j d .x; v/ < d .x; u/g. The number of elements ofN1 .ejG/
and N2 .ejG/ are denoted by n1 .ejG/ and n2 .ejG/, respectively. The Szeged
index of the graph G is defined as Sz.G/ D P

e2E.G/ n1 .ejG/n2 .ejG/.
In this chapter, we compute the Szeged index of some types of dendrimers, for

example, dendrimer nanostars, Styrylbenzene dendrimer, Triarylamine Dendrimer
of Generation 1–3, and then we compute the Szeged index of some nanotubes, for
example, TUC4C8(R) and TUC4C8(S) nanotubes, Armchair Polyhex nanotube, and
HAC5C6C7[k; p], V C5C7[p; q], and HC5C7[p; q] nanotubes.

12.1 Introduction

Dendrimers are large and complex molecules with very well-defined chemical
structures. From a polymer chemistry point of view, dendrimers are nearly perfect
monodisperse (basically meaning of a consistent size and form) macromolecules
with a regular and highly branched three-dimensional architecture. They consist of
three major architectural components: core, branches, and end groups. Dendrimers
are produced in an iterative sequence of reaction steps (Holister and Harper 2003).
In 1985, the interest in this research field started to grow exponentially:

More than 1,000 articles have been published in 2002 concerning the various
aspects of dendrimer chemistry. We can consider the figure of dendrimers as the
shape of a molecular graph.
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A graph G consists of a set of vertices V.G/ and a set of edges E.G/. In
chemical graphs, each vertex represented an atom of the molecule, and covalent
bonds between atoms are represented by edges between the corresponding vertices.
This shape derived from a chemical compound is often called its molecular graph,
and can be a path, a tree, or in general a graph.

A topological index is a single number, derived following a certain rule, which
can be used to characterize the molecule. Usage of topological indices in biology
and chemistry began in 1947 when chemist Harold Wiener (1947) introduced
Wiener index to demonstrate correlations between physicochemical properties of
organic compounds and the index of their molecular graphs. Wiener originally
defined his index (W ) on trees and studied its use for correlation of physicochemical
properties of alkenes, alcohols, amines, and their analogous compounds. A number
of successful QSAR studies have been made based in the Wiener index and its
decomposition forms (Agrawal et al. 2000).

Another topological index was introduced by Gutman and called the Szeged
index, abbreviated as Sz (Gutman 1994).

Let e be an edge of a graph G connecting the vertices u and v. Define two
sets N1 .e jG / and N2 .e jG / as N1 .e jG / D fx 2 V.G/j d.u; x/ < d.v; x/g and
N2 .e jG / D fx 2 V.G/j d.x; v/ < d.x; u/g. The number of elements of N1.e jG /
andN2.e jG / are denoted by n1.e jG / and n2.e jG /, respectively. The Szeged index
of the graph G is defined as Sz.G/ D Sz D P

e2E.G/ n1 .e jG /n2 .e jG /. The
Szeged index is a modification of Wiener index to cyclic molecules. The Szeged
index was conceived by Gutman at the Attila Jozsef University in Szeged. This
index received considerable attention. It has attractive mathematical characteristics
(Diudea et al. 2004).

In this chapter, in Sect. 12.2, we compute the Szeged index of some types
of dendrimers, for example, Naphthalene dendrimer, Styrylbenzene dendrimer,
dendrimer nanostars, and then in Sect. 12.3, we compute the Szeged index of some
nanotubes, for example, TUC4C8(R) and TUC4C8(S) nanotubes, Armchair Polyhex
nanotube, and HAC5C6C7[k; p], VC5C7[p; q], and HC5C7[p; q] nanotubes.

12.2 Computation of Szeged Index of Some Type
of Dendrimers

In this section, at first we compute the Szeged index of the first, second, third, and
fourth type of dendrimer nanostars. All of the results in the first part of this section
have been published in Iranmanesh and Gholami (2007, 2008).

In the second part, we compute the Szeged index of the Styrylbenzene den-
drimers, Triarylamine Dendrimer of Generation 1–3, and a Naphthalene dendrimer.
All of the results in the second part of this section have been published in
Iranmanesh and Gholami (2009) and Iranmanesh et al. (2010).
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Fig. 12.1 First-type nanostar

12.2.1 Computing the Szeged Index of First-Type Nanostar

Figure 12.1 shows a first-type nanostar which has grown n stages.
In Fig. 12.1, we show the graph of this nanostar. In this figure we have 1 nucleus

and a central hexagon denoted by h00. In stages 1 and 2, we denoted the hexagons
and edges by hji , where 1 � i � 2; 1 � j � 3, and in the other stages, we
denoted the hexagons and edges by hj and ej . The growth of this nanostar from
stage 3 is the same, and we have only two hexagons in each stage. Now, we start
the computing of the Szeged index of this nanostar from stage n. Suppose that e is
an edge of the hexagon hn; for all of the edges of hn, we have n1 .ejG/ D 3; also
the number of these hexagons is 2n. Suppose further that e is an edge of hn�1; for
4 of these edges we have n1 .ejG/ D 1 � 6C 3, and for the other 2 edges we have
n1 .ejG/ D 2 � 6 C 3; also the number of these hexagons is 2n�1. Now assume
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Fig. 12.2 Nucleus

that e is an edge of hk so that 3 � k � n; in this case, for 4 of the edges we have
n1 .ejG/ D �

2n�k � 1� � 6 C 3, and for the other 2 edges we have n1 .ejG/ D
2 � �

2n�k � 1� � 6 C 3; the number of these hexagons is 2k . If e is an edge of h22,
for 4 of the edges we have n1 .ejG/ D �

2n�2 � 1� � 6 C 3, and for the other 2
edges we have n1 .ejG/ D 2 � �

2n�2 � 1� � 6 C 3; the number of these hexagons
is 22. If e is an edge of h12, for all 6 edges, n1 .ejG/ D �

2n�1 � 1
� � 6 C 3; the

number of these hexagons is 22. If e is an edge of h31, for 4 of the edges we have
n1 .ejG/ D 2n�1 � 6C 3, and for the other 2 edges we have n1 .ejG/ D 2n � 6C 3;
the number of these hexagons is 2. If e is an edge of h21, for all 6 edges, n1 .ejG/ D
.2n C 1/ � 6C 3; the number of these hexagons is 2. If e is an edge of h11, for all 6
edges, n1 .ejG/ D .2n C 2/ � 6 C 3; the number of these hexagons is 2. If e is an
edge of h00, for 4 of the edges we have n1 .ejG/ D .2n C 3/�6C3, and for the other
2 edges we have n1 .ejG/ D 2� .2n C 3/� 6C 3. Now assuming that e is the edge
en, we have n1 .enjG/ D 6, and the number of these edges is 2n. For the edge en�1,
we have n1 .en�1jG/ D .2C 1/ � 6, and the number of these edges is 2n�1. For
the edge ek, in a way that 3 � k � n, we have n1 .ekjG/ D �

2n�kC1 � 1
� � 6; the

number of these edges is 2k. For the edge e22 , we have n1
�
e22jG

� D �
2n�1 � 1� � 6.

For the edge e12 , we have n1
�
e12jG

� D 2n�1 � 6; the number of these edges is 22.
For the edge e31 , we have n1

�
e31 jG

� D .2n C 1/ � 6. For the edge e21 , we have
n1
�
e21jG

� D .2n C 2/ � 6. For the edge e11 , we have n1
�
e11 jG

� D .2n C 3/ � 6;
the number of these edges in stage one is 2. For the edge between the nucleus and
central hexagon (h00), we have n1 .ejG/ D �

2nC1 C 7
� � 6.

Now we obtain n1 .ejG/ for the edges of the nucleus.
According to Fig. 12.2, we have n1 .ei jG/ D 10 for i D 1; 2; 3; 4; 5; 6; 7; 8; 9; 10;

for i D 11; 12; 13; 14; 15; 16, we have n1 .ei jG/ D 3, for i D 17; 18; 19;

n1 .ei jG/ D 5, for i D 20; 21; 22; n1 .ei jG/ D 15, and for i D 23; 24; n1 .ei jG/D17.
The number of the vertices of this nanostar is equal to r D �

2nC1 C 7
�� 6C 20.

But we know that n2 .ejG/ D r �n1 .ejG/ for any of edge e. Now the Szeged index
of the above nanostar is obtained in the following way:
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12.2.2 Computing the Szeged Index of Second-Type Nanostar

The following figure shows a second-type nanostar which has grown n stages
(Fig. 12.3).

Let hii be the hexagon between hexagons hi and hi�1. Let eji be the jth edge
between two hexagons in the stage i, 1 � i � n; 1 � j � 2. In the first step we
compute n1 .ejG/ for hi ’s. For hn, we have n1 .ejG/ D 3, which is the same for all
of its six edges; the number of these hexagons is 2n. If e is an edge of hn�1, for 2 of
the edges of the hexagon, we have n1 .ejG/ D 2 � 2 � 6 C 3, and for the other 4
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Fig. 12.3 Second-type nanostar

edges, we have n1 .ejG/ D 2 � 6C 3; the number of these hexagons is 2n�1. Now
assume that e is an edge of hk�1; 1 � k � n; for 2 of the edges we have n1 .ejG/ D
2 � �

2n�.k�1/ C 2n�k C � � � C 2
� � 6 C 3 D 2 � �

2n�kC2 � 2� � 6C 3 and for the
other 4, n1 .ejG/ D �

2n�.k�1/ C 2n�k C � � � C 2
� � 6C 3 D �

2n�kC2 � 2
� � 6C 3;

the number of these hexagons is 2.k�1/. Now we compute n1 .ejG/ for hii ’s. For all
of six edges of hnn, we have n1 .ejG/ D 9; the number of these hexagons is 2n. If e
is an edge of hn�1

n�1, for all six edges, n1 .ejG/ D �
22 C 1

� � 6 C 3, the number of
this hexagon is 2n�1. If e is an edge of hkk , 1 � k � n � 1, for all of the six edges,
n1 .ejG/ D �

2n�kC1 C 2n�k C � � � C 22 C 1
� � 6 C 3 D �

2n�kC2 � 3� � 6 C 3,

the number of these hexagons is 2k. Now n1 .ejG/ is computed for eji . For the
edge e2n, n1

�
e2njG

� D 1 � 6. For the edge e1n, n1
�
e1njG

� D 2 � 6; the number of
these edges is 2n. For the edge e2n�1, n1

�
e2n�1jG

� D �
22 C 1

� � 6. For the edge
e1n�1, n1

�
e1n�1jG

� D �
22 C 2

� � 6; the number of these edges is 2n�1. For the edge
e2k, we have n1

�
e2kjG

� D �
2n�kC2 � 3

� � 6, and n1 .ejG/ for the edges e1i is as
follows: for the edge e1k , we have n1

�
e1kjG

� D �
2n�kC2 � 2� � 6; the number of
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these edges is 2k. Therefore, we have computed n1 .ejG/ for all of the edges of this
nanostar. The number of the vertices of this nanostar is equal to r D �

2nC2 � 3��6.
But we know that n2 .ejG/ D r � n1 .ejG/ for any of edge e. Now its Szeged index
is obtained easily.
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12.2.3 Computing the Szeged Index of Three-Type Nanostar

Figure 12.4 shows a three-type nanostar which has grown n stages.
In Fig. 12.4, we show that the shape of this nanostar. In this figure we have 1

nucleus and a central hexagon denoted by h0. We denoted the hexagons and edges
by hi and ei . Now, we start the computing of the Szeged index of this nanostar from
stage n. Suppose that e is an edge of the hexagon hn; for all of edges of hn, we
have n1 .ejG/ D 3; also the number of these hexagons is 2n. Suppose further that
e is an edge of hn�1; for 4 of these edges we have n1 .ejG/ D 1 � 6 C 3 D 9,
and for the other 2 edges we have n1 .ejG/ D 2 � 6 C 3 D 15; also the number
of these hexagons is 2n�1. Suppose that e is an edge of hk ; for 4 of the edges we
have n1 .ejG/ D �

2n�k � 1�� 6C 3, and for the other 2 edges we have n1 .ejG/ D
2 � �2n�k � 1� � 6C 3; the number of these hexagons is 2k.

Now n1 .ejG/ is computed for ei . Suppose e is the edge en, we have n1 .enjG/ D
1�6 D 6; the number of these edges is 2n. For the edge en�1, we have n1 .en�1jG/ D
.2C 1/ � 6 D 18; the number of these edges is 2n�1. For the edge ek; 1 � k � n,
we have n1 .ekjG/ D �

2n�kC1 � 1
��6; the number of these edges is 2k. For the edge

between the nucleus and central hexagon (h0), we have n1 .ejG/ D �
2nC1 � 1

�� 6.
Now we obtain n1 .ejG/ for the edges of the nucleus.
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Fig. 12.4 Three-type nanostar

According to Fig. 12.2, we have computed n1 .ejG/ for all of the edges of this
nanostar. The number of the vertices of this nanostar is equal to r D �

2nC1 � 1� �
6C 20. But we know that n2 .ejG/ D r � n1 .ejG/ for any edge e. Now the Szeged
index of the above nanostar is obtained in the following way:
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Fig. 12.5 Four-type nanostar

12.2.4 Computing the Szeged Index of Four-Type Nanostar

Figure 12.5 shows a four-type nanostar which has grown four stages.
In this figure, we have 1 nucleus and a central hexagon denoted by h0. Let hji

be the ith hexagon in stage j, 1 � j � n; 1 � i � 3, and let eji be the ith
edge between two hexagons in stage j. Now, we start the computing of the Szeged
index of this nanostar from stage n. Suppose that e is an edge of the hexagon hn3 ;
for all of edges of hn3 , we have n1 .ejG/ D 3; for all of edges of hn2 , we have
n1 .ejG/ D 6C 3 D 9; for all of edges of hn1 , we have n1 .ejG/ D 2 � 6C 3 D 15;
also the number of these hexagons is 2n. Suppose that e is an edge of the hexagon
hn�1
3 ; for 4 of these edges we have n1 .ejG/ D 3 � 6 C 3 D 21, and for the other

2 edges we have n1 .ejG/ D 2 � 3 � 6 C 3 D 39; for all of edges of hn�1
2 , we

have n1 .ejG/ D 2 � 3 � 6 C 6 C 3 D 45; for all of edges of hn�1
1 , we have
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n1 .ejG/ D 2� 3� 6C 2� 6C 3 D 51; also the number of these hexagons is 2n�1.
We continue until to achieve stage 1. Suppose that e is an edge of the hexagon h13;
for 4 of these edges we have

n1 .ejG/ D 3 � �2n�2 C 2n�3 C � � � C 2C 1
� � 6C 3

D 3 � �2n�1 � 1� � 6C 3;

and for other 2 edges, we have

n1 .ejG/ D 3 � �2n�1 C 2n�2 C � � � C 2
� � 6C 3

D 3 � .2n � 2/ � 6C 3I

for all of edges of h12, we have

n1 .ejG/ D 3 � �2n�1 C 2n�2 C � � � C 2
� � 6C 6C 3

D 3 � .2n � 2/ � 6C 9I

for all of edges of h11, we have

n1 .ejG/ D 3 � �2n�1 C 2n�2 C � � � C 2
� � 6C 2 � 6C 3

D 3 � .2n � 2/ � 6C 15I

also the number of these hexagons is 2. Suppose that e is an edge of the hexagon h0;
for 4 of these edges we have

n1 .ejG/ D 3 � �2n�1 C � � � C 2C 1
� � 6C 3

D 3 � .2n � 1/ � 6C 3;

and for the other 2 edges we have

n1 .ejG/ D 3 � �2n C 2n�1 C � � � C 2
� � 6C 3

D 3 � �2nC1 � 2� � 6C 3:

Now n1 .ejG/ is computed for eij . Suppose e is the edge en3 , we have n1
�
en3 jG� D

6 D a1; for the edge en2 , we have n1
�
en2 jG� D a1 C 6; for the edge en1 , we have

n1
�
en1 jG

� D a1 C 12; the number of these edges is 2n. Suppose e is the edge en�1
3 ,

we have n1
�
en�1
3 jG� D 3 � 2 � 6 C 6 D 42 D a2; for the edge en�1

2 , we have
n1
�
en�1
2 jG� D a2 C 6; for the edge en�1

1 , we have n1
�
en�1
1 jG� D a2 C 12; the

number of these edges is 2n�1. We continue until to achieve stage 1. Suppose e is
the edge e13 , we have
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n1
�
e13jG

� D 3 � �2n�1 C 2n�2 C � � � C 2
� � 6C 6

D 3 � .2n � 2/ � 6C 6 D anI

for the edge e12 , we have n1
�
e12jG

� D an C 6; for the edge e11 , we have n1
�
e11jG

� D
an C 12; the number of these edges is 2. Now assume that e is the edge between
h0 and nucleus; we have n1 .ejG/ D 3 � �

2nC1 � 2
� � 6 C 6. In this equation, we

computed n1 .ejG/ for edges of the nucleus.
Therefore, we have computed n1 .ejG/ for all of the edges of this nanostar. The

number of the vertices of this nanostar is equal to r D 18 � �
2nC1 � 2� C 26. But

we know that n2 .ejG/ D r � n1 .ejG/ for any of edge e. Now its Szeged index is
obtained easily.
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12.2.5 Computing the Szeged Index of Styrylbenzene
Dendrimer

In this part, we bring all details of the computation of Styrylbenzene dendrimer,
which have been published in Iranmanesh and Gholami (2009). Figure 12.6 shows
a Styrylbenzene dendrimer which has grown n stages.
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Fig. 12.6 Styrylbenzene Dendrimer

Let hi be a hexagon which is in stage i. Since this dendrimer has grown in stage
1 in a different way from other stages, therefore h0 is central hexagon and h10 is the
hexagon between h0 and h1. And eii�1;j be the jth edge between hi and hi�1 such
that 1 � j � 3; 2 � i � n. Also, for the first stage the edges are denoted as shown
in Fig. 12.6.

At first we compute n1 .ejG/ for hexagons. Now assume that e is an edge of hn;
for 4 of these edges we have n1 .ejG/ D 3 C 4 D 7, and for the other 2 edges we
have n1 .ejG/ D 3C8 D 11; also the number of these hexagons is 3�2n�1. If e is an
edge of hn�1, for 4 of these edges we have n1 .ejG/ D 1�6C1�2C1�8C3 D 19,
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and for the other 2 edges we have n1 .ejG/ D 2 � 6 C 2 � 2 C 2 � 8 C 3 D 35;
also the number of these hexagons is 3� 2n�2. We continue until to achieve stage 1.
Suppose that e is an edge of h1; for 4 of these edges we have

n1 .ejG/ D �
2n�2 C 2n�3 C � � � C 1

� � 6
C �

2n�2 C 2n�3 C � � � C 1
� � 2C 2n�2 � 8C 3

D .2n � 1/ � 6C .2n � 1/ � 2C 2n�2 � 8C 3;

and for the other 2 edges we have

n1 .ejG/ D �
2n�1 C 2n�2 C � � � C 2

� � 6
C �

2n�1 C 2n�2 C � � � C 2
� � 2C 2n�1 � 8C 3

D .2n � 2/ � 6C .2n � 2/ � 2C 2n�1 � 8C 3I

also the number of these hexagons is 3. If e is an edge of the hexagon h10, for all of
the edges of h10, we have

n1 .ejG/ D �
2n�1 C 2n�2 C � � � C 2C 1

� � 6
C �

2n�1 C 2n�2 C � � � C 2C 1
� � 2C 2n�1 � 8C 3

D .2n � 1/ � 6C .2n � 1/ � 2C 2n�1 � 8C 3I

also the number of these hexagons is 3. If e is an edge of the hexagon h0, for all of
edges of h0 we have

n1 .ejG/ D �
2n�1 C 2n�2 C � � � C 2C 2

� � 6
C �

2n�1 C 2n�2 C � � � C 2C 2
� � 2C 2n�1 � 8C 3

D 2n � 6C 2n � 2C 2n�1 � 8C 3I

also the number of these hexagons is 3.
Now n1 .ejG/ is computed for eii�1;j . Suppose that e is the edge enn�1;3, we have

n1 .ejG/ D 1 � 6 C 1 � 8 D 14; for the edge enn�1;2, we have n1 .ejG/ D 15; for
the edge enn�1;1, we have n1 .ejG/ D 16; the number of these edges is 3 � 2n�1. We
continue until to achieve stage 1. Suppose that e is the edge e10;3, we have

n1 .ejG/ D �
2n�1 C 2n�2 C � � � C 2C 1

� � 6
C 2n�1 � 8C �

2n�1 C 2n�2 C � � � C 2
� � 2

D .2n � 1/ � 6C 2n�1 � 8C .2n � 2/ � 2:



338 A. Iranmanesh

Also

n1 .ejG/ D �
2n�1 C 2n�2 C � � � C 2C 1

� � 6C 2n�1 � 8
C �

2n�1 C 2n�2 C � � � C 2
� � 2C 1

D .2n � 1/ � 6C 2n�1 � 8C .2n � 2/ � 2C 1

and

n1 .ejG/ D �
2n�1 C 2n�2 C � � � C 2C 1

� � 6C 2n�1 � 8
C �

2n�1 C 2n�2 C � � � C 2
� � 2C 2

D .2n � 1/ � 6C 2n�1 � 8C .2n � 2/ � 2C 2I

the number of these edges is 3. If e is the edge e13 , we have

n1
�
e13jG

� D �
2n�1 C 2n�2 C � � � C 2C 2

� � 6C 2n�1 � 8
C �

2n�1 C 2n�2 C � � � C 2C 1
� � 2

D 2n � 6C 2n�1 � 8C .2n � 1/ � 2 D aI

if e is the edge e12 , we have n1
�
e12jG

� D a C 1; if e is the edge e11 , we have
n1 .ejG/ D a C 2; the number of these edges is 3. Suppose that e is the edge
e0, we have

n1 .e0jG/ D �
2n�1 C 2n�2 C � � � C 2C 3

� � 6C 2n�1 � 8
C �

2n�1 C 2n�2 C � � � C 2C 2
� � 2

D .2n C 1/ � 6C 2n�1 � 8C 2n � 2I

the number of these edges is 3.
Suppose that e D e1 in Fig. 12.6, then n1 .ejG/ D 4; the number of these

edges is 3 � 2n. Now, let e be one of e2, e3 or e4, then n1 .e2jG/ D n1 .e3jG/ D
n1 .e4jG/ D 1; the number of these edges is 3� 2n�1 � 6. Now the Szeged index of
this dendrimer when it grows n stages is computed:

Sz .Gn/ D
n�1X

iD0
3 � 2i

�

2

6
6
6
6
4

2 � ��2n�i � 2� � 6C �
2n�i � 2

� � 2C 2n�1�i � 8C 3
�

„ ƒ‚ …
a1

� .r � a1/

C 4 � ��2n�1�i � 1� � 6C �
2n�1�i � 1

� � 2C 2n�2�i � 8C 3
�

„ ƒ‚ …
a2

� .r � a2/

3

7
7
7
7
5
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C 3 � 6 �

2

6
4
�
.2n � 1/ � 6C .2n � 1/ � 2C 2n�1 � 8C 3

�

„ ƒ‚ …
a3

� .r � a3/

3

7
5

C 3 � 6 �

2

6
4
�
2n � 6C 2n � 2C 2n�1 � 8C 3

�

„ ƒ‚ …
a4

� .r � a4/

3

7
5

C
n�1X

iD0
3 � 2i �

2

6
6
4

��
2n�i � 1

� � 6C 2n�1�i � 8C �
2n�i � 2� � 2�

„ ƒ‚ …
a5

� .r � a5/

C .a5 C 1/ � .r � a5 � 1/C .a5 C 2/ � .r � a5 � 2/

3

7
7
5

C 3 �

2

6
6
4

�
2n � 6C 2n�1 � 8C .2n � 1/ � 2�
„ ƒ‚ …

a6

� .r � a6/

C .a6 C 1/ � .r � a6 � 1/C .a6 C 2/ � .r � a6 � 2/

3

7
7
5

C 3 �

2

6
4
�
.2n C 1/ � 6C 2n�1 � 8C 2n � 2�
„ ƒ‚ …

a7

� .r � a7/

3

7
5

C 3 � 2n � 4 � .r � 4/C 3 � 2n�1 � 6 � .r � 1/

Since r D 3� �.2n C 1/ � 6C 2n � 2C 2n�1 � 8�C1 D 3� .12 � 2n C 6/C1

is the number of vertices of this graph, we have

Sz .Gn/ D 17820� 2n C 1512 � 4n C 9324� n � 2n C 9072 � n � 4n C 4962

12.2.6 Computing the Szeged Index of Triarylamine
Dendrimer of Generation 1–3

In this part, we bring all details of the computation of Szeged index of Triary-
lamine Dendrimer, which have been published in Iranmanesh and Gholami (2009).
Figure 12.7 shows a Triarylamine Dendrimer of Generation 1– 3 which has grown
n stages.

Let hi be a hexagon which is in stage i. Also, let eii�1;j be the jth edge between
hi and hi�1 such that 1 � j � 2; 1 � i � n. At first we compute n1 .ejG/ for
hexagons. Now assume that e is an edge of hn for all 6 edges n1 .ejG/ D 3C1 D 4;
the number of these hexagons is 3 � 2n. If e is an edge of hn�1, for all 6 edges
n1 .ejG/ D 2 � 6 C 3 C 1 C 2 D 18; the number of these hexagons is 3 � 2n�1.
We continue until to achieve stage 1. If e is an edge of the hexagon h1, for all of the
edges of h1, we have
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en

h0
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e0
1
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e0
1
,2

e1
2
,1

h2

e3
2,1

e2
3
,2

h3

hn

hn−1

e
n
n−1,2

e
n
n−1,1

n−1en−2,1

n−1en−2,2

e1
2
,2

h1

Fig. 12.7 Triarylamine Dendrimer of Generation 1– 3

n1 .ejG/ D �
2n�1 C 2n�2 C � � � C 2

� � 6C 3C 1C 2C � � � C 2n�1

D .2n � 2/ � 6C 3C .2n � 1/:

Also, the number of these hexagons is 3 � 2. If e is an edge of the hexagon h0,
for all of edges of h0, we have

n1 .ejG/ D �
2n C 2n�1 C � � � C 2

� � 6C 3C 1C 2C � � � C 2n

D �
2nC1 � 2� � 6C 3C �

2nC1 � 1
�
:

Also, the number of these hexagons is 3. Suppose that e is the edge en, we have
n1 .ejG/ D 1; the number of these edges is 3 � 2n. Now n1 .ejG/ is computed
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for eii�1;j . Suppose that e is the edge enn�1;2, we have n1 .ejG/ D 6 C 1 D 7;
the number of these edges is 3 � 2n. If e is the edge enn�1;1, we have n1 .ejG/ D
2 � 6 C 1 C 2 D 15; the number of these edges is 3 � 2n�1. We continue until to
achieve stage 1. If e is the edge e10;2, we have

n1 .ejG/ D �
2n�1 C 2n�2 C � � � C 2C 1

� � 6C 1C 2C � � � C 2n�1

D .2n � 1/ � 6C .2n � 1/ :

The number of these edges is 3 � 2. If e is the edge e10;1, we have

n1 .ejG/ D �
2n C 2n�1 C � � � C 22 C 2

� � 6C 1C 2C � � � C 2n�1 C 2n

D �
2nC1 � 2

� � 6C �
2nC1 � 1� I

the number of these edges is 3. Suppose that e is the edge e0, we have

n1 .ejG/ D �
2n C 2n�1 C � � � C 22 C 2C 1

� � 6C 1C 2C � � � C 2n�1 C 2n

D �
2nC1 � 1

� � 6C �
2nC1 � 1� I

the number of these edges is 3. Now the Szeged index of this dendrimer when it
grows n stages is computed as follows:

Sz .Gn/ D
nX

iD0
3 � 2i �

2

6
46 � ��2nC1�i � 2

� � 6C 3C �
2nC1�i � 1

��

„ ƒ‚ …
a1

� .r � a1/

3

7
5

C
nX

iD0
3 � 2i �

2

6
4
��
2nC1�i � 1

� � 6C �
2nC1�i � 1��

„ ƒ‚ …
a2

� .r � a2/

3

7
5

C
nX

iD1
3 � 2i�1 �

2

6
4
��
2nC2�i � 2

� � 6C �
2nC2�i � 1��

„ ƒ‚ …
a3

� .r � a3/

3

7
5:

Since r D 21 � �2nC1 � 1
�C 1 is the number of vertices of this graph, we have

Sz .Gn/ D 14112� n � 4n � 15456� 4n C 19476� 2n � 2346:

Also, in Iranmanesh and Gholami (2010) we computed the Szeged index of
Naphthalene dendrimer.
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12.3 Computation of Szeged Index of Some Nanotubes

In this section, at first we compute the Szeged index of TUC4C8.R/ nanotube and
TUC4C8.S/ nanotube. Then we compute the Szeged index of HAC5C7Œr; p� nan-

otube, HAC5C6C7Œr; p� nanotube, HC5C7Œr; p� nanotube, and Armchair Polyhex
nanotube.

In the last part, we give an algorithm in the base of GAP program, which is faster
than the direct implementation and enables us to compute the Szeged index of any
graph.

12.3.1 Computation of the Szeged Index of TUC4C8.R/

Nanotube

In this part, we compute the Szeged index of TUC4C8.R/ nanotube.
We bring all details of the computation of the Szeged index of this nanotube,

which have been published in Iranmanesh et al. (2007).
We denote the number of rhombs on the level 1 by p and the length of tube

by q. Therefore, we have 2q rows of oblique edges and q� 1 rows of vertical edges
in TUC4C8.R/ nanotube. Throughout this part, our notation is standard. They are
appearing in the same way as in Mansoori (2005) and Cameron (1994).

Let e be an arbitrary edge of nanotube.
For computing the Szeged index of T D TUC4C8.R/, we assume two cases:

Case 1 p is even.

At first, we begin with an example.

Example 12.3.1 Let e be a horizontal edge between u and v (see Fig. 12.8). All
vertices lying among lines l1 and l2 in regionR are closer to the vertex u than to v.

Since n1 .ejG/ D 2pq, we have n1 .ejG/ n2 .ejG/ D 2pq .4pq � 2pq/ D
4p2q2.

Fig. 12.8 TUC4C8.R/
nanotube for p D 8 and
q D 4
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Fig. 12.9 TUC4C8.R/ nanotube with 3p columns and 3q rows of edges

Lemma 12.3.2 If e is a horizontal edge of T, then n1 .ejG/ n2 .ejG/ D 4p2q2.

Proof Suppose that e is a horizontal edge of T. 2pq vertices of T are closer
to one vertex of e than to the other. Thus, n1 .ejG/ D 2pq and n2 .ejG/ D
.4pq � 2pq/ D 2pq. So we have

n1 .ejG/n2 .ejG/ D 4p2q2: (*)

A sample of horizontal edge is given in Example 12.3.1. By the symmetry of the
TUC4C8.R/ nanotube for every horizontal edge, the relation (*) is hold.

Lemma 12.3.3 If e is a vertical edge in the kth row of vertical edges, then we
haven1 .ejG/ n2 .ejG/ D 16p2 Œk .q � k/�.

Proof Let us denote the vertices of TUC4C8.R/ as described in Fig. 12.9.
If e D UijUi.jC1/ is a vertical edge, all vertices lying in rows of edges equal

to or less than i are closer to Uij than to Ui.jC1/, and all vertices lying in rows of
edges equal to or greater than i C 1 are closer to Ui.jC1/ than to Uij . Thus, if e is
in the kth row of vertical edges, then n1 .ejG/ n2 .ejG/ D 4pk .4pq � 4pk/ D
16p2 Œk .q � k/�.

Before the proof of next lemma, we give some examples.

Example 12.3.4 Let ei be a vertical edge between ui and vi , 1 � i � 4. All vertices
lying among lines l and l1 are closer to vertex u1 than to v1 (Fig. 12.10). Thus,
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Fig. 12.10 A nanotube with p D 8 and q D 2

n1 .e1jG/ n2 .e1jG/ D
 

qX

iD1
2p � 4i C 3

! 

4pq �
qX

iD1
2p � 4i C 3

!

:

All vertices lying among lines l and l2 are closer to vertex u2 than to v2. Thus,

n1 .e2jG/ n2 .e2jG/ D
 

qX

iD1
2p � 4i C 5

! 

4pq �
qX

iD1
2p � 4i C 5

!

:

If we continue this method, then for e in the fourth row we have

n1 .e4jG/ n2 .e4jG/ D
 

qX

iD1
2p � 4i C 9

! 

4pq �
qX

iD1
2p � 4i C 9

!

:

Example 12.3.5 Let ei be an edge between vertices ui and vi , 1 � i � 8.
All vertices lying among lines l1 and l2 in region R are closer to vertex u1 than

to v1. Thus,

n1 .e1jG/ n2 .e1jG/ D
0

@
p=2X

iD1
2p � 4i C 3

1

A

0

@4pq �
p=2X

iD1
2p � 4i C 3

1

A :

All vertices lying among lines l3 and l4 in region R are closer to vertex u2 than
to v2. Thus,

n1 .e2jG/ n2 .e2jG/ D
0

@
p=2X

iD1
.2p � 4i C 5/C 1=2 � 2 .2 � 1/

1

A
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0

@4pq �
p=2X

iD1
.2p � 4i C 5/� 1=2 � 2 .2 � 1/

1

A :

If we continue this method, then for e8 in the eighth row we have

n1 .e8jG/ n2 .e8jG/ D
0

@
p=2X

iD1
.2p � 4i C 17/C 1=2� 8 .8 � 1/

1

A

0

@4pq �
p=2X

iD1
.2p � 4i C 17/� 1=2� 8 .8 � 1/

1

A :

Example 12.3.6 In Fig. 12.11, all vertices lying among lines l 01 and l 02 in region
R0 are closer to vertex v9 than to u9. Thus,

n1 .e9jG/ n2 .e9jG/ D
 

pX

iD1
.2p � 4i C 3/C 4p int ..9 � p/=2/

!

 

4pq �
pX

iD1
.2p � 4i C 3/� 4p int ..9 � p/=2/

!

;

where int is the greatest integer function.
All vertices lying among lines l 03 and in region R0 are closer to vertex v10 than

to u10. Thus,

n1 .e10jG/ n2 .e10jG/ D
 

pX

iD1
.2p � 4i C 1/C 4p int ..10 � p/=2/

!

 

4pq �
pX

iD1
.2p � 4i C 1/� 4p int ..10 � p/=2/

!

:

Lemma 12.3.7 If e is an oblique edge in the kth row of oblique edges in
nanotube T , then we have the following implications.

1. If 2q � p, then
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Fig. 12.11 A nanotube with p D 8 and q D 9

n1 .ejG/ n2 .ejG/ D
 

pX

iD1
.2p � 4i C 2k C 1/

!

 

4pq �
pX

iD1
.2p � 4i C 2k C 1/

!

:

2. If 2q > p, then we have the following subcases:

(i) If 2p � 1 � 2q, then

n1 .ejG/n2 .ejG/ D
8
<

:

A .4pq �A/ 1 � k � p

B .4pq � B/ p C 1 � k � 2q � p
C .4pq � C/ 2q � p C 1 � k � 2q

;
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where

A D
p=2X

iD1
.2p � 4i C 2k C 1/C 1=2� k .k � 1/

B D
pX

iD1

�
4p � 4i C 2� .�1/k

�
C 4p int ..k � p/=2/ and

C D
p=2X

iD1
.4p � 4i C 2 .2q � k C 1/C 1/C 1=2 .2q � k C 1/ .2q � k/:

(ii) If 2p � 1 > 2q, then

n1 .ejG/n2 .ejG/ D
8
<

:

D .4pq �D/ 1 � k � 2q � p C 1

E .4pq � E/ 2q � p C 2 � k � p � 1

F .4pq � F / p � k � 2q

;

where

D D
p=2X

iD1
.2p � 4i C 2k C 1/C 1=2� k .k � 1/

E D
p=2X

iD1
.2p � 4i C 2k C 1/ and

F D
p=2X

iD1
.4p � 4i C 2 .2q � k C 1/C 1/C 1=2 .2q � k C 1/ .2q � k/:

Proof Let 2q � p. By the symmetry of TUC4C8.R/ nanotube, it is sufficient that
we compute n1 .ei jG/ n2 .ei jG/, 1 � i � q. For this reason we use the method
similar to Example 12.3.4. Therefore, the result holds.

Now suppose 2q > p and 2p � 1 � 2q. Let e be an oblique edge in the kth
row, 1 � k � p. For finding n1 .ekjG/ n2 .ekjG/, 1 � k � p, we use the method
similar to Example 12.3.5. Thus, we have

n1 .ekjG/n2 .ekjG/ D
0

@
p=2X

iD1
.2p � 4i C 2k C 1/C 1=2 � k .k � 1/

1

A

�
0

@4pq �
p=2X

iD1
.2p � 4i C 2k C 1/� 1=2 � k .k � 1/

1

A :
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Now let e be an oblique edge in the kth row, p C 1 � k � 2q � p. By using a
method similar to Example 12.3.6, we can reach the result.

If e is an oblique edge in the kth row, 2q � p C 1 � k � 2q, then by symmetry
of TUC4C8.R/ nanotube, the result is hold.

Now suppose 2q > p and 2p � 1 > 2q; similar to the last case, we can obtain
the desired result.

Theorem 12.3.8 Ifpis even, then the Szeged index ofT UC4C8.R/is as follows:

Sz.G/ D
�

68=3 � p3q3 � 8=3 � p3q � 16=3 � pq5 C 4=3 � pq3 2q � p

52=3 � p3q3 � 4p3q C p4 � 13=15 � p6 C 8=3 � p5q � 2=15 � p2 2q > p

Proof At first, suppose A, B, and C are the sets of all horizontal, vertical, and
oblique edges of T, respectively. Then, we have

Sz.G/ D
X

e2A
n1 .ejG/n2 .ejG/C

X

e2B
n1 .ejG/n2 .ejG/

C
X

e2C
n1 .ejG/n2 .ejG/: (**)

The number of horizontal edges are pq. Thus, we have

X

e2A
n1 .ejG/n2 .ejG/ D 4p2q2:pq D 4p3q3: (1)

The number of vertical edges are p.q � 1/: So,

X

e2B
n1 .ejG/n2 .ejG/ D

q�1X

iD1
p:16p2i .i � 1/

D 16p3
q�1X

iD1
i .i � 1/ D 8=3 � p3q �q2 � 1

�
: (2)

Now for 2q � p, we have

X

e2C
n1 .ejG/n2 .ejG/

D 2p

"
2qX

kD1

"
qX

iD1
.2p � 4i C 2k C 1/ .4pq � 2p � 4i C 2k C 1/

##

D 16p3q3 � 16=3� pq5 C 4=3 � pq3: (3)
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Fig. 12.12 A nanotube with p D 7 and q D 2

And for 2q > p, we assume two cases:

1. 2p � 1 � 2q. In this case, we represent the set of all oblique edges in the range
1 � k � p and p C 1 � k � 2q � p with C1 and C2, respectively. Thus, we
have the following conclusion:

X

e2C

n1 .ejG/n2 .ejG/

D 2
X

e2C1

n1 .ejG/n2 .ejG/C
X

e2C2

n1 .ejG/n2 .ejG/

D 32=3 � p3q3 � 4=3 � p3q C p4 � 13=15� p6 C 8=3 � p5q � 2=15 � p2:
(4)

2. 2p � 1 > 2q. Similar to Case 1, we have

X

e2C

n1 .ejG/n2 .ejG/ D 32=3 � p3q3 � 4=3 � p3q C p4 � 13=15� p6

C 8=3 � p5q � 2=15 � p2:

So if p is even, then by using (1), (2), (3), or (4) in (**), we have

Sz.G/ D
�

68=3 � p3q3 � 8=3� p3q � 16=3 � pq5 C 4=3� pq3 2q � p

52=3� p3q3 � 4p3q C p4 � 13=15 � p6 C 8=3 � p5q � 2=15� p2 2q > p
:

Case 2 p is odd. At first, we begin with an example.

Example 12.3.9 In Fig. 12.12, all vertices lying among lines l1 and l2 in region R1
are closer to the vertex u than to v, and all vertices lying among lines l1 and l3 in
regionR2 are closer to the vertex v than to u.

So, n1 .ejG/ n2 .ejG/ D q .2p � 1/ q .2p � 1/ D 4p2q2 � 4pq2 C q2.
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Lemma 12.3.10 If eis a horizontal edge, thenn1 .ejG/ n2 .ejG/ D 4p2q2 �
4pq2 C q2.

Proof By using a method similar to Example 12.3.9, the result is hold.

Lemma 12.3.11 If eis a vertical edge in thekthrow of vertical edges, then we
haven1 .ejG/ n2 .ejG/ D 16p2 Œk .q � k/�.

Proof The proof is similar to the proof of Lemma 12.3.3.

Lemma 12.3.12 If eis an oblique edge in the kthrow of oblique edges, then we have
the following implications:

1. If 2q � p, then

n1 .ejG/n2 .ejG/

D

8
ˆ̂
<

ˆ̂
:

	
qP

iD1
2p � 4i C 2k C 1


	
4pq � q �

qP

iD1
2p � 4i C 2k C 1



k is odd

	
qP

iD1
.2p � 4i C 2k C 1/� q


	
4pq �

qP

iD1
2p � 4i C 2k C 1



k is even

:

2. If 2q > p, then we have the following cases:

(i) If 2p � 1 � 2q, then

n1 . ejG/n2 . ejG/

D

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

(
A .4pq � ..p C 1/ =2C int .k � 1/ =2/� A/ k is odd 1 � k � p

.A� ..p C 1/ =2C int .k � 1/ =2// .4pq � A/ k is even 1 � k � p(
B .4pq � p � B/ k is even p C 1 � k � 2q � p

C .4pq � p � C/ k is odd p C 1 � k � 2q � p(
D .4pq � ..p C 1/ =2C int .2q � k C 1/ =2/�D/ k is even 2q � p C 1 � k � 2q

.D � ..p C 1/ =2C int .2q � k C 1/ =2// .4pq �D/ k is odd 2q � p C 1 � k � 2q

:

(ii) If 2p � 1 � 2q, then we have

n1 . ejG/n2 . ejG/

D

8
ˆ̂̂
ˆ̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂:

(
A .4pq � ..p C 1/ =2C int .k � 1/ =2/� A/ k is odd 1 � k � 2q � p C 1

.A� ..p C 1/ =2C int .k � 1/ =2// .4pq � A/ k is even 1 � k � 2q � p C 1(
E .4pq � q �E/ k is even 2q � p C 2 � k � p � 1

.E � q/ .4pq � E/ k is odd 2q � p C 2 � k � p � 1(
D .4pq � ..p C 1/ =2C int .2q � k C 1/ =2/�D/ k is even p � k � 2q

.D � ..p C 1/ =2C int .2q � k C 1/ =2// .4pq �D/ k is odd p � k � 2q
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where

A D
.pC1/=2X

iD1
.2p � 4i C 2k C 1/C �

1=2 � k2 � 3=2 � k C 1
�

B D
pX

iD1
.4i � 3/C 4p int ..2q � k � p C 1/ =2/

C D
pX

iD1
.4i � 2/C 4p int ..2q � k � p C 1/ =2/

D D
.pC1/=2X

iD1
.2p � 4i C 2 .2q � k C 1/C 1/

C
�
1=2� .2q � k C 1/2 � 3=2 � .2q � k C 1/C 1

�
and

E D
qX

iD1
.2p � 4i C 2k C 1/:

Proof The proof is similar to the proof of Lemma 12.3.7.

Theorem 12.3.13 If p is odd, then we have

Sz.G/

D

8
ˆ̂
<

ˆ̂
:

68=3� p3q3 � 12p2q3 � 8=3� p3q C 19=3� pq3 � 16=3 � pq5 2q � p

52=3 � p3q3 C 8=3� p5q C p4 C 2p4q � 2p2q � 1=30� p6 � 15=4p5

C199=24 � p4 C 57=8p3 C 809=120 � p2 � 8p3q2 C 29=8� p � 4p2q3 C pq3 2q > p

:

Proof The proof is similar to Theorem 12.3.8.

12.3.2 Computation of the Szeged Index of TUC4C8.S /

Nanotube

In this part, we bring some details of the computation of the Szeged index of
TUC4C8.S/ nanotube, which have been published in Iranmanesh and Pakravesh
(2008).

According to Fig. 12.13, we denote the number of squares in one row by p
and the number of levels by k. Throughout this part, our notation is standard. The
notation Œf � is the greatest integer function.

For computing the Szeged index of T D TUC4C8.S/, we assume two cases:

Case 1 p is even.
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level 1

level 7

level 6

level 5

level 4

level 3

level 2

Fig. 12.13 Two-dimensional
lattice of T UC4C8.S/
nanotube, p D 4; k D 7

In this case, we need to prove some lemmas which brings all of them without the
detail of proof.

Lemma 12.3.14 If e is a horizontal edge of T , then

n1 .e jG /n2 .e jG / D 4p2.k C 1/2:

Lemma 12.3.15 If e is a vertical edge in level m, then we have

n1 .e jG /n2 .e jG / D 16p2m.k �mC 1/:

For simplicity, we define a D �
m�1
2

�
, b D �

k�mC1
2

�
, c D �

m
2

�
, d D �

k�m
2

�
, and

e D �
kC1
2

�
.

Lemma 12.3.16 Suppose p is even. If e is an oblique edge in level m, then we
have

(i) If m � p and k �m � p, then

n1 .e jG / D 2p.k C 1/C 4m � 2C .4m � 6/a � 4a2

C .4m� 4k � 2/b C 4b2: (I)

(ii) If m � p and k �m > p, then

n1 .e jG / D 2p.mC 1=2/C 4mC p2 � 2C .4m� 6/a � 4a2: (II)

(iii) If m > p and k �m � p, then

n1 .e jG / D 2p.k Cm/� p2 � 7p C .4m � 4k � 2/b C 4b2: (III)

(iv) If m > p and k �m > p, then

n1 .e jG / D 4p.m � 2/: (IV)
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Theorem 12.3.17 If p is even, then the Szeged index of TUC4C8.S/ nanotube is
given as follows:

1. k is even.

(i) If k � p, then we have

Sz.T / D p3
�
64=3k3 C 64k2 C 176=3k C 16

�

� p �4k C 34=3k3 C 6k2 C 2=3k5 C 2k4
�
:

(ii) If p < k � 2p, then we have

Sz.T / D p
�
2k2C2k3�2=15k5�28=15k�C p2

�
4=3k4 � 32=3k3 C 28k2

C8=3p2k � 32=15�C p3
�
40=3k3 C 120k2 � 144k C 16=3

�C
p4
�
32=3k2 � 56k C 508=3

�C p5 .26=3� 16=3k/C 4=5p6:

(iii) If k > 2p, then we have

Sz.T / D p3
�
56=3k3 C 56k2 � 88k C 296=3

�C p4 .556=3C 72k/

C p5 .16=3k � 230=3/� 88=15p2 � 52=15p6:

2. k is odd.

(i) If k � p, then we have

Sz.T / D p3
�
64=3k3 C 64k2 C 176=3kC 16

�

� p
�
34=3k3 C 10k2 C 2k4 C 2=3k5 � 4 � 4k

�
:

(ii) If p < k � 2p, then we have

Sz.T / D p
�
2k3C2k2�28=15k�2=15k5�2�Cp2 �8=3kC28k2�32=3k3

C4=3k4 � 632=15�C p3
�
16=3� 144k C 120k2 C 40=3k3

�

C p4
�
508=3� 56k C 32=3k2

�C p5
�
26=3� 16=3k3

�C 4=5p6:

(iii) If k > 2p, then we have

Sz.T / Dp3 �56=3k3 C 56k2 � 88k C 296=3
�C p4 .556=3C 72k/

C p5 .16=3k � 230=3/� 88=15p2 � 52=15p6:
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Proof At first, suppose A, B, and C are the sets of all horizontal, vertical, and
oblique edges of T , respectively. Then, we have

Sz.T / D
X

e2A
n1.ejG/n2.ejG/C

X

e2B
n1.ejG/n2.ejG/C

X

e2C
n1.ejG/n2.ejG/:

(*)

The number of horizontal edges are 2p.k C 1/. Thus, we have

X

e2A
n1.ejG/n2.ejG/ D 4p2.k C 1/2:2p.k C 1/ D 8p3.k C 1/3:

The number of vertical edges are 2pk. So,

X

e2B
n1.ejG/n2.ejG/ D

kX

mD1
2p:16p2m.k �mC 1/ D 32p3

kX

mD1
m.k �mC 1/

D p3
�
16=3k3 C 16k2 C 32=3k

�
:

Let k be even.
The number of oblique edges are 2p.k C 1/. Now for k � p, we have

X

e2C
n1.ejG/n2.ejG/

D 2p:

(
kX

mD1
f.I/ .4p.k C 1/� .I//g C .2p.k C 1/

�.4k C 2/e C 4e2
� �
4p.k C 1/� �

2p.k C 1/� .4k C 2/eC 4e2
���

D 2p:
�
p2
�
8k C 16k2 C 8k3

�C p3
�
8k2 C 16k C 8

� � p �2k4 C 4k3 C 2k2
�

� 22=3k3 � 4k2 � 2=3k5 � 4k
�
:

When p < k � 2p, we have

X

e2C
n1.ejG/n2.ejG/ D 2p:

8
<

:

k�p�1X

mD1
f.II/ .4p.k C 1/� .II//C

pX

mDk�p
.I/.4p.k C 1/� .I//C

kX

mDpC1
.III/.4p.k C 1/� .III//

9
=

;

C �
p C p2

� �
4p.k C 1/� �

p C p2
���
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D 2p:
�
p
�
4=3k C 14k2 � 16=3k3 C2=3k4 � 16=15�

C p2
�
40k2 � 268=3k � 4=3

�C p3
�
16=3k2 � 28k C 254=3

�

C p4 .13=3� 8=3k/C 2=5p5 � 14=15k � 1=15k5 C k3 C k2
�
:

And if k > 2p, then we have

X

e2C
n1.ejG/n2.ejG/ D 2p:

8
<

:

k�p�1X

mD1
f.II/ .4p.k C 1/� .II//C

pX

mDk�p
.IV/ .4p.k C 1/� .IV//C

kX

mDpC1
.III/ .4p.k C 1/� .III//

9
=

;

C �
p C p2

� �
4p.k C 1/� �

p C p2
���

D 2p:
�
p2
�
136=3� 184=3k C 8k2 C 8=3k3

�

C p3.278=3C 36k/C p4.8=3k � 115=3/� 44=15p � 26=15p5:

Suppose k is odd, in this case for k � p we have

X

e2C
n1.ejG/n2.ejG/ D 2p:

�
p2
�
12k C 12k2 C 4k3 C 4

�

�17=3k3 � 5k2 � 1=3k5 C 2C 2k � k4
�

When p < k � 2p, we have

X

e2C
n1.ejG/n2.ejG/

D 2p:
�
p
�
4=3k C 14k2 � 16=3k3 C 2=3k4 � 16=15�

C p2
�
40k2 � 268=3k � 4=3

�C p3
�
254=3C 16=3k2 � 28k

�

C p4 .13=3� 8=3k/� 14=15kC �1=15k5 C k3 C 2=5p5 C k2 � 1
�
:

And if k > 2p, then we have

X

e2C
n1.ejG/n2.ejG/

D 2p:
�
p2
�
136=3� 184=3k C 8k2 C 8=3k3

�

Cp3 .36k C 278=3/Cp4 .8=3k � 115=3/� 44=15p � 26=15p5� :

So if p is even, then by using the above relations in .�/, the result is hold.
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Case 2 p is odd.

Lemma 12.3.18 If e is an oblique edge in level m.1 � m � k/, then we have

(i) If m � p and k �m � p, then

n1.e jG / D 2p.k C 1/C 4m � 2k C .4m � 2/c � 4c2

C .2 � 4k C 4m/d C 4d2: (1)

(ii) If m � p and k �m > p, then

n1.e jG / D 2p.mC 1=2/C 2mC p2 C .4m � 2/c � 4c2: (2)

(iii) If m > p and k �m � p, then

n1.e jG / D 2p.k Cm/� p2 � 7p C 2m � 2k C .4m� 4k C 2/d C 4d2:

(3)

(iv) If m > p and k �m > p, then

n1.e jG / D 4p.m � 2/: (4)

Theorem 12.3.19 If p is odd, then the Szeged index of TUC4C8.S/ nanotube is
given as follows:

1. k is even.

(i) If k � p, then we have

Sz.T / D p3
�
64=3k3 C 64k2 C 176=3kC 16

�

� p �4=3k C 2=3k5 C 6k3 C 10=3k4 C 14=3k2
�
:

(ii) If p < k � 2p, then we have

Sz.T / D p
�
4=5k C 2=3k2 � 2=3k3 � 2=3k4 � 2=15k5

�

C p2
�
32=3k C 4k2 � 8k3 C 4=3k4 � 32=15�

C p3
�
40=3k3 C 120k2 � 80k�

C p4
�
32=3k2 � 176=3k C 388=3

�C p5 .8 � 16=3k/C 4=5p6:

(iii) If k > 2p, then we have

Sz.T / D p3
�
56=3k3 C 56k2 � 72k C 24

�C p4.124C 80k/

C p5.16=3k � 88/� 8=15p2 � 52=15p6:
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Fig. 12.14 HAC5C7[8,4]
nanotube

2. k is odd.

(i) If k � p, then we have

Sz.T / D p3
�
64=3k3 C 64k2 C 176=3pkC 16

�

� p
�
4=3k C 2=3k5 C pk3 C 10=3k4 C 14=3k2

�
:

(ii) If p < k � 2p, then we have

Sz.T / D p
�
4=5k C 2=3k2 � 2=3k3 � 2=3k4 � 2=15k5

�

C p2
�
32=3k C 4k2 � 8k3 C 4=3k4 � 32=15�

C p3
�
40=3k3 C 120k2 � 80k�

C p4
�
388=3� 176=3kC 32=3k2

�C p5 .8 � 16=3k/C 4=5p6:

(iii) If k > 2p, then we have

Sz.T / D p3
�
56=3k3 C 56k2 � 72k C 24

�C p4.80k C 124/

C p5.16=3k � 88/� 8=15p2 � 52=15p6:

Proof The proof is similar to the proof of Theorem 12.3.17.

12.3.3 Computation of the Szeged Index of HAC5C7Œr; p�

Nanotubes

In this part, we compute the Szeged index of HAC5C7Œr; p� nanotubes.
We bring all details of the computation of the Szeged index of this nanotube,

which have been published in Iranmanesh and Khormali (2009) (Fig. 12.14).
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Fig. 12.15 The mth period of HAC5C7[p,q] nanotube

We denote the number of heptagons in one row by p and the number of the
periods by k, and each period consists of three rows as in Fig. 12.15, which shows
the mth period, 1 � m � k.

Let e be an edge in Fig. 12.14. Denote:

E1 D fe 2 E.G/ j e is an oblique edge between two heptagonsg
E2 D fe 2 E.G/ j e is a horizontal edgeg
E3 D fe 2 E.G/ j e is a vertical edgeg
E4 D fe 2 E.G/ j e is an oblique edge between heptagon and pentagong
E5 D fe 2 E.G/ j e is an oblique edge between two pentagonsg:

Also, we can define some subsets of Eis as follows:

E20 D fe 2 E2 j e is an edge in .3m� 1/� th rowg
E200 D fe 2 E2 j e is an edge in 3m-th rowg so that E2 D E20 [E200 .
E30 D fe 2 E3 j e is an edge between .3m� 1/-th and .3m� 2/-th rowsg
E300 D fe 2 E3 j e is an edge between 3m-th and .3.mC 1/� 2/-th rowsg so that
E3 D E30 [E300 .

E40 D fe 2 E2 j e is an edge in .3m� 1/-th rowg
E400 D fe 2 E2 j e is an edge in 3m-th rowg so that E4 D E40 [E400 .

And the number of vertices in each period of this nanotube is equal to 8p.
For computing the Szeged index, we must discuss two cases:

Case 1 p is even.

If p D 2, then

Sz D 2560

3
k3 � 720k2 C 1118

3
k C 2:

If p D 4, then

Sz D

8
ˆ̂̂
<

ˆ̂
:̂

9920

3
k3 C 6556k2 C 16240

3
k k � 2

8192

3
k3 C 9312k2 C 113404

3
k � 99912 2 < k � 4

6272k3 � 7040k2 C 26276k � 18; 824 k > 4

:



12 Computation of the Szeged Index of Some Nanotubes and Dendrimers 359

Fig. 12.16 The symmetry line for HAC5C7Œ4; 2�

Now, let p � 6.
We can show all vertices in a period on a circle; let e be an arbitrary edge on this

period.
This edge is connecting two points on the circle. Consider that a line perpendic-

ular at the midpoint to this edge passed a vertex or an edge, say a, in the opposite
side of the circle. A line through the point a and parallel to the height of nanotube is
called a symmetry line of the nanotube.

For example, in Fig. 12.16, we show the symmetry line for HAC5C7Œ4; 2�:

(a) e 2 E1:
According to Fig. 12.17, the region R has the vertices that belong to

N1.e jG /, and the region R0 has vertices that belong toN2.e jG /. (The notations
n1.e jG / and n2.e jG / are indicated with ne.u/ and ne.v/, respectively.) Then,

ne.u/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

8km� 4k2 � 9k C 4pk � 1; m � p

2
; k �m � p

2
� 1

4pm � 9mC 4m2 C p2 � 9
2
p C 4; m � p

2
; k �m >

p

2
� 1

8km� 9
2
p � 6 � p2 C 4pk C 4pmC m >

p

2
; k �m � p

2
� 1

9m� 4k2 � 4m2 � 9k;

8pm� 9p � 1; m >
p

2
; k �m >

p

2
� 1

ne.v/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

�8km� 4k2 C 4pk � 1; m � p

2
; k �m � p

2
� 1

8pk � 4pmC 5m � 4m2 � p2 C 5
2
p � 2; m � p

2
; k �m >

p

2
� 1

�8kmC 5
2
p C p2 C 4pm � 5mC m >

p

2
; k �m � p

2
� 1

4k2 C 4m2 C 5k;

8pk � 8pmC 5p � 1; m >
p

2
; k �m >

p

2
� 1

(b) e 2 E2:
According to Fig. 12.18, the region R has the vertices that belong to

N1.e jG /, and in this sub-case, we have ne.u/ Dne.v/. Then,
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Fig. 12.17 The region R has
the vertices that belong to
N1.e jG /, and the region R0

has vertices that belong to
N2.e jG /
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Fig. 12.18 The region R has
the vertices that belong to
N1.e jG /
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(I) e 2 E20 :

ne.u/ D

8
ˆ̂
<̂

ˆ̂
:̂

8km� 4k2 � 7k C 4pk � 4� 8m2 C 12m; m � p

2
; k �m � p

2
� 1

4pmC 5m� 4m2 C p2 � 7
2
p � 1; m � p

2
; k �m >

p

2
� 1

8kmC 5
2
p � 4C p2 C 4pk � 4pmC m >

p

2
; k �m � p

2
� 1

7m� 4k2 � 4m2 � 7k; m >
p

2
; k �m � p

2
� 1

2p2 � p � 1; m >
p

2
; k �m >

p

2
� 1

:

(II) e 2 E200 :

ne.u/ D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

8km � 4k2 � k C 4pk C 1 � 8m2; m � p

2
; k �m � p

2
� 1

4pm �m � 4m2 C p2 � 1
2
p � 2; m � p

2
; k �m >

p

2
� 1

8km � 1
2
p C 1C p2 C 4pk � 4pmC m >

p

2
; k �m � p

2
� 1

m � 4k2 � 4m2 � k;
2p2 � p � 2; m >

p

2
; k �m >

p

2
� 1

:

(c) e 2 E3:
According to Fig. 12.19, the region R has the vertices that belong to

N1.e jG /, and the region R0 has vertices that belong to N2.e jG /. Then,

(I) e 2 E30 :

ne.u/ D 8pm� 28

ne.v/ D 8p.k �m/C 14

(II) e 2 E300 (in this sub-case,m ¤ k):

ne.u/ D 8pm� 6p C 14

ne.v/ D 8.k �m/C 6p � 2

(d) e 2 E4:
According to Fig. 12.20, the region R has the vertices that belong to

N1.e jG /, and the region of R0 has vertices that belong to N2.e jG /. Then,

(I) e 2 E40 :

ne.u/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

4pm �m � p

2
� 2C 4m2; m � p

2
; k �m � p

2
� 1

4pm �mC 4m2 � 1
2
p � 2; m � p

2
; k �m >

p

2
� 1

8pmC 1 � p2 C 7p; m >
p

2
; k �m � p

2
� 1

8pm� p2 C 7p C 1; m >
p

2
; k �m >

p

2
� 1

:
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Fig. 12.19 The region R has the vertices that belong to N1.e jG / and the region R0 has vertices
that belong to N2.e jG /
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Fig. 12.20 The region R has the vertices that belong to N1.e jG / and the region R0 has vertices
that belong to N2.e jG /
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ne.v/ D

8
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
:̂

k C 4k2 � 8kmC 4pk � 4pm �mC m � p
2 ; k �m � p

2 � 1
5p
2 C 1C 4m2;

8pk � p2 C 3p C 4 � 8pm; m � p
2 ; k �m >

p
2 � 1

k C 4k2 � 8mk C 4pk � 4pm�mC m >
p
2 ; k �m � p

2 � 1
5p
2 C 1C 4m2;

8pm � p2 C 3p C 4 � 8pm; m >
p
2 ; k �m >

p
2 � 1

:

(II) e 2 E400 :

ne.u/ D

8
ˆ̂
<

ˆ̂
:

4pm � 13m� p

2
C 11C 4m2; m � p

2
; k �m � p

2
� 1

4pm � 13mC 4m2 � 1
2
p C 11; m � p

2
; k �m >

p

2
� 1

8pmC 2 � p2 C p; m >
p

2
; k �m � p

2
� 1

8pm� p2 C p C 2; m >
p

2
; k �m >

p

2
� 1

:

ne.v/ D

8
<̂

:̂

9k C 4p.k �m/� 9mC p

2
C 4.k �m/2; m � p

2
; k �m � p

2
� 1

8pk � p2 C 7p � 6� 8pm; m � p

2
; k �m >

p

2
� 1

9k C 4p.k �m/� 9mC p

2
C 4.k �m/2; m >

p

2
; k �m � p

2
� 1

8pm� p2 C 7p � 6� 8pm; m >
p

2
; k �m >

p

2
� 1

:

(e) e 2 E5:
According to Fig. 12.21, the region R has vertices that belong to N1.e jG /,

and the region R0 has vertices that belong to N2.e jG /. Then,

ne.u/ D 8p.m� 1/C 5p � 9

ne.v/ D 8p.k �m/C 3p � 9:

For simplicity, we define:
In sub-case a:

a1 D 8km� 4k2 � 9k C 4pk � 1

b1 D 4pm � 9mC 4m2 C p2 � 9
2
p C 4

c1 D 8km� 9
2
p � 6 � p2 C 4pk C 4pmC 9m � 4k2 � 4m2 � 9k

d1 D 8pm� 9p � 1

a2 D �8km � 4k2 C 5k C 4pk � 1

b2 D 8pk � 4pmC 5m� 4m2 � p2 C 5
2
p � 2

c2 D �8kmC 5
2
p C p2 C 4pk � 4pm� 5mC 4k2 C 4m2 C 5k

d2 D 8pk � 8pmC 5p � 1

In sub-case b:

a3 D 8km� 4k2 � 7k C 4pk � 4 � 8m2 C 12m

b3 D 4pmC 5m� 4m2 C p2 � 7
2
p � 1

c3 D 8kmC 5
2
p � 4C p2 C 4pk � 4pmC 7m� 4k2 � 4m2 � 7k

d3 D 2p2 � p � 1
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Fig. 12.21 The region R has
the vertices that belong to
N1.e jG / and the region R0

has vertices that belong to
N2.e jG /
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a4 D 8km� 4k2 � k C 4pk C 1 � 8m2

b4 D 4pm �m� 4m2 C p2 � 1
2
p � 2

c4 D 8km� 1
2
p C 1C p2 C 4pk � 4pmCm � 4k2 � 4m2 � k

d4 D 2p2 � p � 2
In sub-case c:

z1 D 8pm� 28
t1 D 8p.k �m/C 14

z2 D 8pm� 6p C 14

t2 D 8.k �m/C 6p � 2
In sub-case d:

a5 D 4pm �m � p

2
� 2C 4m2

b5 D a5
c5 D 8pmC 1 � p2 C 7p

d5 D c5
a6 D k C 4k2 � 8kmC 4pk � 4pm �mC 5p

2
C 1C 4m2

b6 D 8pk � p2 C 3p C 4 � 8pm
c6 D a6
d6 D b6
a7 D 4pm � 13m� p

2
C 11C 4m2

b7 D a7
c7 D 8pmC 2 � p2 C p

d7 D c7
a8 D 9k C 4p.k �m/� 9mC p

2
C 4.k �m/2

b8 D 8pk � p2 C 7p � 6� 8pm

c8 D a8
d8 D b8

In sub-case e:

z3 D 8p.m� 1/C 5p � 9

t3 D 8p.k �m/C 3p � 9

Then:

s1 D 2pa1a2 C pa3
2 C pa4

2 C pz1t1 C 2pa5a6 C 2pa7a8 C 2pz3t3

s2 D 2pb1b2 C pb3
2 C pb4

2 C pz1t1 C 2pb5b6 C 2pb7b8 C 2pz3t3

s3 D 2pc1c2 C pc3
2 C pc4

2 C pz1t1 C 2pc5c6 C 2pc7c8 C 2pz3t3

s4 D 2pd1d2 C pd3
2 C pd4

2 C pz1t1 C 2pd5d6 C 2pd7d8 C 2pz3t3

Then, we have for p � 6,
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Sz D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

kP

mD1
s1C

k�1P
mD1

pz2t2 k � p

2

p
2P

mD1
s2C

kP

mD p
2 C1

s3C
p
2P

mD1
pz2t2 C

k�1P

mD p
2 C1

pz2t2
p

2
< k � p

p
2P

mD1
s2C

k� p
2P

mD p
2 C1

s4C
kP

mDk� p
2 C1

s3C
p
2P

mD1
pz2t2C k > p

k� p
2P

mD p
2 C1

pz2t2 C
k�1P

mDk� p
2 C1

pz2t2

Case 2 p is odd number.

If p D 1, then

Sz D 320

3
k3 � 164k2 C 342

3
k � 42:

If p D 3, then

Sz D 2880k3 � 2952k2 C 3180k � 822:

If p D 5, then

Sz D

8
ˆ̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
:̂

24310

3
k3 C 13670k2 C 40985

3
k C 240 k � 2

20000

3
k3 C 24400k2 C 13739084983828481

206158430208
k � 190820 2 < k � 4

44000

3
k3 � 24600k2 C 23552226261729281

206158430208
k � 109220 k > 4

:

For p � 7, we can compute Sz as the same case of even. There are only some
differences between odd and even numbers. For example, we must use

�p
2

�
instead

of p

2
.

(a) e 2 E1:

ne.u/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂:

8km� 4k2 � 9k C 4pk � 2Cm; m � �
p

2

�
; k �m � �

p

2

�� 1

4pm� 8mC 4m2 � 4
�
p

2

�2 C 4p
�
p

2

�

� �
p

2

�� 4p C 4; m � �
p

2

�
; k �m >

�
p

2

�� 1

8km� 4p � 6C 4
�
p

2

�2 � 4p
�
p

2

�

C4pk C 4pmC 9m� 4k2 � 4m2 � 9k; m >
�
p

2

�
; k �m � �

p

2

�� 1

8pm� 8p � �
p

2

�
; m >

�
p

2

�
; k �m >

�
p

2

�� 1
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ne.v/ D

8
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

�8kmC 4k2 C 6k C 4pk � 1; m � � p
2

�
; k �m � � p

2

�� 1

8pk � 4pmC 6m� 4m2 C 4
� p
2

�2 � 4p
� p
2

�� 2
� p
2

�C 4p � 4; m � � p
2

�
; k �m >

� p
2

�� 1

�3C 4p
� p
2

�� 4
� p
2

�2 � 2
� p
2

�C 4p.k �mC 1/

�2k C 2mC 4.k �mC 1/2; m >
� p
2

�
; k �m � � p

2

�� 1

8pk � 8pmC 8p � 2� 4
� p
2

�
; m >

� p
2

�
; k �m >

� p
2

�� 1

(b) e 2 E2:
In this sub-case ne.u/ D ne.v/,

(I) e 2 E20 :

ne.u/ D

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂:

8km� 4k2 � 7k C 4pk � 4

C12m� 8m2; m �
�
p

2

�
; k �m �

�
p

2

�
� 1

4pmC 5mC 4m2 � 4

�
p

2

�2

C4p
�
p

2

�
C
�
p

2

�
� 4p; m �

�
p

2

�
; k �m >

�
p

2

�
� 1

8kmC 1� 4

�
p

2

�2
C 4p

�
p

2

�
C 5

�
p

2

�
C 4pk

�4pmC 7m� 4k2 � 4m2 � 7k; m >

�
p

2

�
; k �m �

�
p

2

�
� 1

8p

�
p

2

�
� 4p C 6

�
p

2

�
� 8

�
p

2

�2
C 5; m >

�
p

2

�
; k �m >

�
p

2

�
� 1

(II) e 2 E200 :

ne.u/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

8km� 4k2 � k C 4pk C 1� 8m2; m �
hp
2

i
; k �m �

hp
2

i
� 1

4pm�m� 4m2 � 4
hp
2

i2 C 4p
hp
2

i

�
hp
2

i
C 1; m �

hp
2

i
; k �m >

hp
2

i
� 1

8kmC 1� 4
hp
2

i2 C 4p
hp
2

i
�
hp
2

i

C4pk � 4pmCm� 4k2 � 4m2 � k; m >
hp
2

i
; k �m �

hp
2

i
� 1

8p
hp
2

i
� 2

hp
2

i
� 8

hp
2

i2 C 1; m >
hp
2

i
; k �m >

hp
2

i
� 1

(c) e 2 E3:
(I) e 2 E30 :

ne.u/ D 8pm� 28

ne.v/ D 8p.k �m/C 14

(II) e 2 E300 :

ne.u/ D 8pm� 6p C 14

ne.v/ D 8.k �m/C 6p � 2
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(d) e 2 E4:
(I) e 2 E40 :

ne.u/ D

8
ˆ̂
<̂

ˆ̂
:̂

pm� � p
2

�C 6m
� p
2

�C 7� 7mC 4m2; m � � p
2

�
; k �m � � p

2

�� 1

pm� 7mC 4m2 C 6m
� p
2

�� � p
2

�C 7; m � � p
2

�
; k �m >

� p
2

�� 1

8pmC 10
� p
2

�2 � 7p
� p
2

�C 6
� p
2

�C p C 1; m >
� p
2

�
; k �m � � p

2

�� 1

8pmC p C 6
� p
2

�� 7p
� p
2

�C 10
� p
2

�C 1; m >
� p
2

�
; k �m >

� p
2

�� 1

ne.v/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

�
�
p

2

�
C 6

�
p

2

�
.k �mC 1/C p.k �mC 1/

C5m� 5k � p C 4.k �mC 1/2; m �
�
p

2

�
; k �m �

�
p

2

�
� 1

8pk � 8pmC 10

�
p

2

�2
� 7p

�
p

2

�
� 5

�
p

2

�

C7p C 9; m �
�
p

2

�
; k �m >

�
p

2

�
� 1

5mC 6

�
p

2

�
.k �mC 1/�

�
p

2

�

Cp.k �mC 1/C 4.k �mC 1/2 � 5k � p; m >

�
p

2

�
; k �m �

�
p

2

�
� 1

8pk � 8pmC 10

�
p

2

�2
� 7p

�
p

2

�
� 5

�
p

2

�

C7p C 9; m >

�
p

2

�
; k �m >

�
p

2

�
� 1

(II) e 2 E400 :

ne.u/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂
ˆ̂
:̂

pm�
hp
2

i
C 6m

hp
2

i
C 15� 14mC 4m2; m �

hp
2

i
; k �m �

hp
2

i
� 1

pm� 14mC 4m2 C 6m
hp
2

i
�
hp
2

i
C 15; m �

hp
2

i
; k �m >

hp
2

i
� 1

8pmC 10
hp
2

i2 � 7p
hp
2

i
�
hp
2

i
C p; m >

hp
2

i
; k �m �

hp
2

i
� 1

8pmC p �
hp
2

i
� 7p

hp
2

i
C 10

hp
2

i
; m >

hp
2

i
; k �m >

hp
2

i
� 1

ne.v/ D

8
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

� � p
2

�C 6
� p
2

�
.k �mC 1/C p.k �mC 1/

�1C 4.k �mC 1/2 � p; m � �
p

2

�
; k �m � �

p

2

�� 1

8pk � 8pmC 10
�
p

2

�2 � 7p
�
p

2

�� �
p

2

�C 7p � 4; m � �
p

2

�
; k �m >

�
p

2

�� 1

6
�
p

2

�
.k �mC 1/� �

p

2

�C p.k �mC 1/

C4.k �mC 1/2 � p � 1; m >
�
p

2

�
; k �m � �

p

2

�� 1

8pk � 8pmC 10
�
p

2

�2 � 7p
�
p

2

�� �
p

2

�C 7p � 4; m >
�
p

2

�
; k �m >

�
p

2

�� 1

(e) e 2 E5:

ne.u/ D 8p.m� 1/C 5p � 9

ne.v/ D 8p.k �m/C 3p � 9
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Fig. 12.22 HAC5C6C7Œ2; 2�

nanotube, p D 2; k D 2

Therefore, we obtain the Szeged index for odd number as follows:

Sz D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂

kP

mD1
s1C

k�1P
mD1

pz2t2 k � �
p

2

�

p
2P

mD1
s2C

kP

mD p
2 C1

s3C
p
2P

mD1
pz2t2 C

k�1P

mD p
2 C1

pz2t2
�
p

2

�
< k � p

p
2P

mD1
s2C

k� p
2P

mD p
2 C1

s4C
kP

mDk� p
2 C1

s3C
p
2P

mD1
pz2t2 C

k� p
2P

mD p
2 C1

pz2t2

C
k�1P

mDk� p
2 C1

pz2t2 k > p

12.3.4 Computation of the Szeged Index of HAC5C6C7Œr; p�

Nanotube

In this part, we compute the Szeged index of HAC5C6C7Œr; p� nanotube.
We bring all details of the computation of the Szeged index of this nanotube,

which have been published in Iranmanesh and Pakravesh (2007).
In Fig. 12.22, an HAC5C6C7Œ2; 2� lattice is illustrated.
We denote the number of pentagons in one row by p and the number of the

periods by k, and each period consists of three rows as in Fig. 12.23, which shows
the mth period, 1 � m � k.

Let e be an edge in Fig. 12.22. Denote:

E1 D fe 2 E.G/ j e is a vertical edge between hexagon and pentagong
E2 D fe 2 E.G/ j e is an oblique edge between pentagon and hexagong
E3 D fe 2 E.G/ j e is an oblique edge between heptagon and hexagong
E4 D fe 2 E.G/ j e is an oblique edge between heptagon and hexagon adjacent

with pentagong
E5 D fe 2 E.G/ j e is an oblique edge between two heptagonsg
E6 D fe 2 E.G/ j e is a horizontal edgeg
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3m − 2

3m − 1

3m

Fig. 12.23 The mth period of HAC5C6C7Œr; p� nanotube

u

v

Fig. 12.24 e D uv is an edge belonging to E1 in m D 3 rd row

E7 D fe 2 E.G/ j e is a vertical edge between two hexagonsg
E8 D fe 2 E.G/ j e is an oblique edge between two hexagonsg:

And the number of vertices in each period of this nanotube is equal to 16p. For
computing the Szeged index, we must discuss two cases:

Case 1 p is even.

Let e D uv be an edge denoted in Fig. 12.24.

(a) If e 2 E1, then,
according to Fig. 12.24, the region R has the vertices that belong to N1 .ejG/,
and the region R0 has vertices that belong to N2 .ejG/ Then,
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u
v

Fig. 12.25 e D uv is an edge belonging to E2 in m D 3 rd row

ne.v/ D 16p.k �m/C 19

2
p � 14:

If m �
h
5p�4
20

i
C 1, then

ne.u/ D 8pm� 11

2
p C 16m2 � 19mC 11:

If m >
h
5p�4
20

i
C 1, then

ne.u/ D p.16m� 11/C 25C
	
7C 5

2
p


�
5p � 4

20

�
C 5

�
5p � 4
20

�2

C
	
12 � 21

2
p


�
5p � 14

20

�
C 5

�
5p � 14
20

�2

C 16

�
3p � 10
12

�
C 6

�
3p � 10
12

�2
:

(b) If e 2 E2, then,
according to Fig. 12.25, the region R has the vertices that belong to N1 .ejG/,
and the region R0 has vertices that belong to N2 .ejG/. Then,
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(i) If m �
h
5p�2
20

i
C 1 and k �m � p, then

ne.v/ D k.8p C 5/Cm.18� 16m/� 9

C .16.k �m/� 10/

�
k �m
2

�
� 16

�
k �m
2

�2
:

(ii) If m >
h
5p�2
20

i
C 1 and k �m � p, then

ne.v/ D .8p C 5/.k �m/C 27

2
p � 16C

	
5

2
p � 6


�
5p � 2

20

�

� 5

�
5p � 2

20

�2
C
	
5

2
p � 11


�
5p � 12

20

�
� 5

�
5p � 12

20

�2

C .3p � 14/

�
3p � 8

12

�
� 6

�
3p � 8

12

�2

C .16.k �m/� 10/

�
k �m
2

�
� 16

�
k �m

2

�2
:

(iii) If m �
h
5p�2
20

i
C 1 and k �m > p, then

ne.v/ D 8p

	
2k �m � 1

2
p



� 16m2 C 23m� 9:

(iv) If m >
h
5p�2
20

i
C 1 and k �m > p, then

ne.v/ D 16p.k �m/� 4p2 C 27

2
p � 16C

	
5

2
p � 6


�
5p � 2

20

�

� 5

�
5p � 2

20

�2
C
	
5

2
p � 11


�
5p � 12

20

�
� 5

�
5p � 12

20

�2

C .3p � 14/

�
3p � 8

12

�
� 6

�
3p � 8

12

�2
:

And for ne.u/, we have

(i) If m � p, then

ne.u/ D 4p.2m � 1/C 9m� 3C .16m� 22/
�
m� 1

2

�
� 16

�
m � 1
2

�2
:
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u
v

Fig. 12.26 e D uv is an edge belonging to E3 in m D 3 rd row

(ii) If m > p, then

ne.u/ D 4p.2mC p � 1/� 2mC 3:

(c) If e 2 E3, then,
according to Fig. 12.26, the region R has the vertices that belong to N1 .ejG/,
and the region R0 has vertices that belong to N2 .ejG/.

In Figs. 12.26, 12.27, and 12.28, the symbol ı means that the vertex assigned
with this symbol has the same distance from u and v. Then,

(i) If m � p and k �m � p, then

ne.v/ D 8pk C 3k � 16mC 9C .16.k �m/� 6/

�
k �m

2

�

� 16
�
k �m

2

�2
C .26� 16m/

�
m� 1

2

�
C 16

�
m � 1

2

�2
:

(ii) If m > p and k �m � p, then

ne.v/ D .8p C 3/.k �m/C 4p2 � 1

C .16.k �m/� 6/
�
k �m
2

�
� 16

�
k �m

2

�2
:
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u
v

Fig. 12.27 e D uv is an edge belonging to E4 in m D 3 rd row

u

v

Fig. 12.28 e D uv is an edge belonging to E5 in m D 3 rd row
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(iii) If m � p and k �m > p, then

ne.v/ D 8p.2k �m/� 4p2 C 9 � 13m

C .26 � 16m/
�
m � 1
2

�
C 16

�
m � 1
2

�2
:

(iv) If m > p and k �m > p, then ne.v/ D 16p.k �m/ � 1: And for ne.u/,
we have

(i) If m � p and k �m � p, then

ne.u/ D 8pk � 6k C 18m� 11C .6 � 16.k �m//

�
k �m
2

�

C 16

�
k �m
2

�2
� 4

�
k �mC 1

2

�

C .16m� 30/
�
m � 1

2

�
� 16

�
m � 1
2

�2
:

(ii) If m > p and k �m � p, then

ne.u/ D 8p.k Cm/C 6.m� k/� 4p2 � 3p C 3

C .6 � 16.k �m//
�
k �m
2

�

� 4
�
k �mC 1

2

�
C 16

�
k �m

2

�2
:

(iii) If m � p and k �m > p, then

ne.u/ D 8pmC 4p2 � 5p � 11C 12m

C .16m� 30/
�
m� 1

2

�
� 16

�
m � 1
2

�2
:

(iv) If m > p and k �m > p, then

ne.u/ D 16pm� 8pC 3:

(d) If e 2 E4, then,
according to Fig. 12.27, the regionR has vertices that belong to N1 .ejG/, and
the region R0 has vertices that belong to N2 .ejG/. Then,

(i) If m �
h
5p�10
20

i
C 1 and k �m � p, then
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ne.v/ D 8k.p C 1/� 16m2 Cm � 1

C .16.k �m/� 6/
�
k �m
2

�
� 16

�
k �m

2

�2
:

(ii) If m �
h
5p�10
20

i
C 1 and k �m > p, then

ne.v/ D 8p.2k �m/� 4p2 C 5p C 9m � 16m2 C 7:

(iii) If m >
h
5p�10
20

i
C 1 and k �m � p, then

ne.v/ D .8p C 8/.k �m/C 8p � 8C .16.k �m/� 6/
�
k �m
2

�

� 16

�
k �m
2

�2
C
	
5

2
p � 11


�
5p � 10
20

�
� 5

�
5p � 10
20

�2

C
	
5

2
p � 5


�
5p

20

�
� 5

�
5p

20

�2

C .3p � 7/

�
3p � 1

12

�
� 6

�
3p � 1

12

�2
:

(iv) If m >
h
5p�10
20

i
C 1 and k �m > p, then

ne.v/ D 16p.k �m/C 5p � 4p2 C
	
5

2
p � 11


�
5p � 10

20

�

� 5
�
5p � 10
20

�2
C
	
5

2
p � 5


�
5p

20

�
� 5

�
5p

20

�2

C .3p � 7/
�
3p � 1

12

�
� 6

�
3p � 1

12

�2
:

For ne.u/, we have

(i) If k �m �
h
5p

20

i
and m � p, then

ne.u/ D 8k.p C 4m� 2k/� 16m2 C 14m� 6k � 7

C .16m� 22/
�
m � 1

2

�
� 16

�
m � 1
2

�2
:
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(ii) If m � p and k �m >
h
5p

20

i
, then

ne.u/ D 8pmC 8m � 7C .16m� 22/
�
m � 1

2

�
� 16

�
m � 1
2

�2

C
	
5

2
p


�
5p C 10

20

�
� 5

�
5p C 10

20

�2
C
	
5

2
p � 5


�
5p

20

�

� 5
�
5p

20

�2
C .3p � 1/

�
3p C 5

12

�
� 6

�
3p C 5

12

�2
:

(iii) If m > p and k �m �
h
5p

20

i
, then

ne.u/ D 8p.k Cm/�4p2�3p C 6.m� k/� 16
�
m2 C k2

�C 32km� 7:

(iv) If m > p and k �m >
h
5p

20

i
, then

ne.u/ D 16pm� 3p � 4p2 � 1C
	
5

2
p


�
5p C 10

20

�
� 5

�
5p C 10

20

�2

C
	
5

2
p � 5


�
5p

20

�
� 5

�
5p

20

�2
C .3p � 1/

�
3p C 5

12

�

� 6

�
3p C 5

12

�2
:

(e) If e 2 E5, then,
according to Fig. 12.28, the region R has vertices that belong to N1 .ejG/,
and the region R0 has vertices that belong to N2 .ejG/. Then, ne.v/ D 16

p.k �m/� 1:
And for ne.u/, we have

(i) If m �
h
5pC4
20

i
, then

ne.u/ D m.8pC 16m� 2/:

(ii) If m >
h
5pC4
20

i
, then

ne.u/ D 24pm� 11p C 6C .3 � 5p/

�
5p C 4

20

�
C 5

�
5p C 4

20

�2

C .7 � 11p/
�
5p � 4

20

�
C 5

�
5p � 4

20

�2

C 10

�
3p � 4

12

�
C 6

�
3p � 4

12

�2
:
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uv

Fig. 12.29 e D uv is an edge belonging to E6 in m D 3 rd row

If e 2 E6, then,
according to Fig. 12.29, the regionR has vertices that belong to N1 .ejG/, and
the region R0 has vertices that belong to N2 .ejG/. Then,

(f) (i) If m � p and k �m � p, then

ne.v/ D 8pk � 5k � 8mC 9C .10C 16.m� k//

�
k �m

2

�

C 16

�
k �m
2

�2
C .26� 16m/

�
m � 1

2

�
C 16

�
m � 1
2

�2
:

(ii) If m > p and k �m � p, then

ne.v/ D .8p � 5/.k �m/C 4p2 � 1

C .10C 16.m� k//
�
k �m
2

�
C 16

�
k �m

2

�2
:

(iii) If m � p and k �m > p, then

ne.v/ D 8pmC 4p2 C 9 � 13mC .26 � 16m/
�
m � 1
2

�
C 16

�
m � 1

2

�2
:
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u

v

Fig. 12.30 e D uv is an edge belonging to E7 in m D 3 rd row

(iv) If m > p and k �m > p, then

ne.v/ D 8p2 � 1:

And ne.u/ D ne.v/.
(g) If e 2 E7, then,

according to Fig. 12.30, the regionR has vertices that belong to N1 .ejG/, and
the region R0 has vertices that belong to N2 .ejG/. Then,

If p < 3, then

ne.v/ D 16p.k �m/C 5p � 1:

And if p � 3, then

ne.v/ D 16p.k �m/C 11p � 20:

For ne.u/, we have

(i) If m �
h
5p�8
20

i
C 1, then

ne.u/ D 32m2 � 28mC 10:
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u
v

Fig. 12.31 e D uv is an edge belonging to E8 in m D 3 rd row

(ii) If m >
h
5p�8
20

i
C 1, then

ne.u/ D 16p.m� 1/C .18 � 5p/
�
5p � 8

20

�
C 10

�
5p � 8

20

�2

C .7 � 11p/

�
5p C 4

20

�
C 10

�
5p C 4

20

�2
C 11

�
3p C 1

12

�

C 12

�
3p C 1

12

�2
:

If e 2 E8, then,
according to Fig. 12.31, the regionR has vertices that belong to N1 .ejG/, and
the region R0 has vertices that belong to N2 .ejG/. Then,

For ne.v/, we have
(h) (i) If m � p and k �m � p, then
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ne.v/ D 8pk C 6k � 18mC 11C .16.k �m/� 6/
�
k �m
2

�

� 16
�
k �m

2

�2
C .26� 16m/

�
m� 1

2

�
C 16

�
m � 1

2

�2
:

(ii) If m > p and k �m � p, then

ne.v/ D .8p C 6/.k �m/C 4p2 C p C 1

C .16.k �m/� 6/
�
k �m
2

�
� 16

�
k �m

2

�2
:

(iii) If m � p and k �m > p, then

ne.v/ D 8p.2k �m/� 4p2 C 3p C 11 � 12m

C .26 � 16m/
�
m � 1
2

�
C 16

�
m � 1
2

�2
:

(iv) If m > p and k �m > p, then

ne.v/ D 16p.k �m/C 4p C 1:

And for ne.u/, we have

(i) If m � p and k �m � p, then

ne.u/ D 8pk � 6k C 18m� 13C .4 � 16 .k �m//

�
k �m

2

�

C 16

�
k �m

2

�2
� 6

�
k �mC 1

2

�

C .16m� 32/

�
m � 1
2

�
� 16

�
m � 1

2

�2
:

(ii) If m > p and k �m � p, then

ne.u/ D 8p.k Cm/� 4p2 � 4p C 3C 6.m� k/

C .4 � 16.k �m//

�
k �m
2

�
C 16

�
k �m

2

�2
� 6

�
k �mC 1

2

�
:
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(iii) If m � p and k �m > p, then

ne.u/ D 8pmC 4p2 � 7p � 13C 12m

C .16m� 32/

�
m � 1
2

�
� 16

�
m � 1

2

�2
:

(iv) If m > p and k �m > p, then

ne.u/ D 16pm� 11p C 3:

For simplicity, we define in sub-case a:

a1 D 16p.k �m/C 19
2
p � 14:

a2 D 8pm� 11
2
p C 16m2 � 19mC 11:

a3 D p.16m� 11/C 25C
	
7C 5

2
p


�
5p � 4

20

�
C 5

�
5p � 4

20

�2

C
	
12� 21

2
p


�
5p � 14
20

�
C 5

�
5p � 14

20

�2
C 16

�
3p � 10

12

�
C 6

�
3p � 10
12

�2
:

In sub-case b:

b0 D
	
5

2
p � 6


�
5p � 2

20

�
� 5

�
5p � 2
20

�2
C
	
5

2
p � 11


�
5p � 12
20

�

� 5

�
5p � 12
20

�2
C .3p � 14/

�
3p � 8

12

�
� 6

�
3p � 8

12

�2
:

b0
0 D .16.k �m/� 10/

�
k �m

2

�
� 16

�
k �m

2

�2
:

b1 D k.8p C 5/Cm.18� 16m/� 9C b0
0:

b2 D .8p C 5/.k �m/C 27

2
p � 16C b0 C b0

0:

b3 D 8p.2k �m� 1
2
p/ � 16m2 C 23m� 9:

b4 D 16p.k �m/� 4p2 C 27

2
p � 16C b0:

b5 D 4p.2m � 1/C 9m � 3C .16m� 22/
�
m � 1

2

�
� 16

�
m � 1
2

�2
:

b6 D 4p.2mC p � 1/� 2mC 3:

In sub-case c:

c0 D .16.k �m/� 6/

�
k �m
2

�
� 16

�
k �m

2

�2
:

c0
0 D .26� 16m/

�
m � 1

2

�
C 16

�
m � 1
2

�2
:

c1 D 8pk C 3k � 16mC 9C c0 C c0
0:

c2 D .8p C 3/.k �m/C 4p2 � 1C c0:
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c3 D 8p.2k �m/� 4p2 C 9 � 13mC c0
0:

c4 D 16p.k �m/� 1:
c5 D 8pk � 6k C 18m� 11� c0 � 4

�
k �mC 1

2

�
C .16m� 30/

�
m � 1
2

�

� 16
�
m � 1

2

�2
:

c6 D 8p.k Cm/C 6.m� k/ � 4p2 � 3p C 3 � c0 � 4

�
k �mC 1

2

�
:

c7 D 8pmC 4p2 � 5p � 11C 12mC .16m� 30/

�
m � 1
2

�
� 16

�
m � 1

2

�2
:

c8 D 16pm� 8p C 3:

In sub-case d:

d0 D
	
5

2
p � 11


�
5p � 10

20

�
� 5

�
5p � 10
20

�2
C
	
5

2
p � 5


�
5p

20

�
� 5

�
5p

20

�2

C .3p � 7/

�
3p � 1

12

�
� 6

�
3p � 1
12

�2
:

d 0
0 D

	
5

2
p


�
5p C 10

20

�
� 5

�
5p C 10

20

�2
C
	
5

2
p � 5


�
5p

20

�
� 5

�
5p

20

�2

C .3p � 1/

�
3p C 5

12

�
� 6

�
3p C 5

12

�2
:

d1 D 8k.p C 1/� 16m2 Cm � 1C c0:

d2 D 8p.2k �m/� 4p2 C 5p C 9m� 16m2 C 7:

d3 D .8p C 8/.k �m/C 8p � 8C c0 C d0:

d4 D 16p.k �m/C 5p � 4p2 C d0:

d5 D 8k.p C 4m � 2k/� 16m2 C 14m� 6k � 7C .16m� 22/

�
m � 1
2

�

� 16

�
m � 1
2

�2
:

d6 D 8pmC 8m � 7C .16m� 22/

�
m � 1
2

�
� 16

�
m � 1

2

�2
C d 0

0:

d7 D 8p.k Cm/� 4p2 � 3p C 6.m� k/� 16.m2 C k2/C 32km� 7:
d8 D 16pm� 3p � 4p2 � 1C d 0

0:

In sub-case e:

e0 D .3 � 5p/
�
5p C 4

20

�
C 5

�
5p C 4

20

�2
C .7 � 11p/

�
5p � 4
20

�
C 5

�
5p � 4
20

�2

C 10

�
3p � 4

12

�
C 6

�
3p � 4
12

�2
:

e1 D 16p.k �m/� 1:
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e2 D m.8pC 16m� 2/:

e3 D 24pm� 11p C 6C e0:

In sub-case f:

f0 D .10C 16.m� k//

�
k �m
2

�
C 16

�
k �m

2

�2
:

f1 D 8pk � 5k � 8mC 9C f0 C c0
0:

f2 D .8p � 5/.k �m/C 4p2 � 1C f0:

f3 D 8pmC 4p2 C 9 � 13mC c0
0:

f4 D 8p2 � 1:

In sub-case g:

g0 D .18� 5p/

�
5p � 8

20

�
C 10

�
5p � 8
20

�2
C .7 � 11p/

�
5p C 4

20

�

C 10

�
5p C 4

20

�2
C 11

�
3p C 1

12

�
C 12

�
3p C 1

12

�2
:

g1 D 16p.k �m/C 11p � 20:
g2 D 32m2 � 28mC 10:

g3 D 16p.m � 1/C g0:

In sub-case h:

h0 D .4 � 16.k �m//
�
k �m
2

�
C 16

�
k �m

2

�2
� 6

�
k �mC 1

2

�
:

h0
0 D .16m� 32/

�
m � 1
2

�
� 16

�
m � 1

2

�2
:

h1 D 8pk C 6k � 18mC 11C c0 C c0
0:

h2 D .8pC 6/.k �m/C 4p2 C p C 1C c0:

h3 D 8p.2k �m/� 4p2 C 3p C 11� 12mC c0
0:

h4 D 16p.k �m/C 4p C 1:

h5 D 8pk � 6k C 18m� 13C h0 C h0
0:

h6 D 8p.k Cm/� 4p2 � 4p C 3C 6.m � k/C h0:

h7 D 8pmC 4p2 � 7p � 13C 12mC h0
0:

h8 D 16pm� 11p C 3:

S1 D 4p .a1a2 C b1b5 C c1c5 C d1d5/C 2p
�
f1
2 C g1g2

�
:

S2 D 2p

8
<̂

:̂

h
5pC4
20

i

P

mD1
.e1e2/C

k�1P

mD
h
5pC4
20

i
C1
.e1e3/

9
>=

>;
:

S3 D 4p .b1b5 C c1c5/C 2p
�
h1h5 C f1

2 C g1g2

�
:

S4 D 4p .b2b5 C c1c5 C d3d5/C 2p
�
h1h5 C f1

2 C g1g3

�
:

S5 D 4p .b3b5 C c3c7 C d2d6/C 2p
�
h3h7 C f3

2
�
:
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S6 D 4p .b2b6 C c2c6 C d3d7/C 2p
�
h2h6 C f2

2
�
:

S7 D 4p .b2b6 C c2c6 C d3d8/ :

S8 D 2p

8
<̂

:̂

h
5p�8
20

i
C1P

mD1
.g1g2/C

kP

mD
h
5p�8
20

i
C2
.g1g3/

9
>=

>;
:

S9 D 4pc3c7 C 2p
�
h3h7 C f3

2
�
:

S10 D 4pc2c6 C 2p
�
h2h6 C f2

2
�
:

S11 D 4pc1c5 C 2p
�
h1h5 C f1

2
�
:

S12 D 4pc4c8 C 2p
�
h4h8 C f4

2
�
:

S13 D 4p

8
<̂

:̂

k�p�1P

mD

h
5p�2
20

i
C2

.d4d6/C
h
5p�2
20

i
C1P

mD1

.d2d6/C
k�

h
5p�2
20

i
�1P

mDpC1

.d3d8/C
kP

mDk�

h
5p�2
20

i
.d3d7/

9
>=

>;
:

S14 D 4p

8
<̂

:̂

pP

mD

h
5p�2
20

i
C2

.b2b5/C
h
5p�2
20

i
C1P

mDk�p

.d1d6 C b1b5/C
k�

h
5p�2
20

i
�1P

mD

h
5p�2
20

i
C2

.d3d6/C
pP

mDk�

h
5p�2
20

i
.d3d5/

9
>=

>;
:

S15 D 4p

8
<̂

:̂

k�
h
5p�2
20

i
�1P

mD
h
5p�2
20

i
C2
.d3d8/C

kP

mDk�
h
5p�2
20

i
.d3d7/

9
>=

>;
:

If p D 2 and k > 4, then the Szeged index of HAC5C6C7Œr; p� nanotube is

Sz D 2048k3 C 45080k2 � 46136k � 57776:

The Szeged index of HAC5C6C7Œr; p� nanotube for p � 4 is given as follows:

If k �
h
5pC4
20

i
, then

SZ D
kX

mD1
S1 C

k�1X

mD1
2pe1e2:

If
h
5pC4
20

i
< k �

h
5p�2
20

i
C 1, then

SZ D
kX

mD1
.S1/C S2:

If
h
5p�2
20

i
C 1 < k � 2

�h
5p�2
20

i
C 1

�
, then
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SZ D
h
5p�2
20

i
C1

X

mD1

S3 C
kX

mD

h
5p�2
20

i
C2

S4 C 4p

8
ˆ̂
<

ˆ̂:

k�

h
5p�2
20

i
�1

X

mD1

.d1d6/C
h
5p�2
20

i
C1

X

mDk�

h
5p�2
20

i
.d1d5/

9
>>=

>>;
C S2:

If 2
�h

5p�2
20

i
C 1

�
< k � p, then

SZ D

h
5p�2
20

i
C1

X

mD1
.S3 C 4pd1d6/C

kX

mD
h
5p�2
20

i
C2
.S4 � 4pd3d5/C S15 C S2:

If k D p C 1, then

SZ D

h
5p�2
20

i
C1

X

mD1
.S3 C 4pd1d6/C

pX

mD
h
5p�2
20

i
C2
.S4 � 4pd3d5 � 2pg1g3/

C
pC1X

mD
h
5p�2
20

i
C2
.2pg1g3/C S15 C S2 C S7:

If p C 1 < k � p C
h
5p�2
20

i
C 1, then

SZ D
k�p�1X

mD1
S5 C

kX

mDpC1
S6 C

pX

mDk�p
S11 C S14 C S2 C S8:

If p C
h
5p�2
20

i
C 1 < k � 2p, then

SZ D
k�p�1X

mD1
S9 C

kX

mDpC1
S10 C

pX

mDk�p
.S11 C d3d6/C S13 C S2 C S8:

If k > 2p, then

SZ D
pX

mD1
S9 C

k�p�1X

mDpC1
S12 C

kX

mDk�p

�
S10 � 2pf2

2
�

C
pX

mDk�p

�
4pd3d6 C 2pf2

2
�

C S2 C S13 C S8:
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Case 2 p is odd.

(a) If e 2 E1, then

ne.v/ D 16p.k �m/C 19

2
p � 25

2
:

If m �
h
5p�4
20

i
C 1, then

ne.u/ D 8pm� 11

2
p C 16m2 � 19mC 23

2
:

If m >
h
5p�4
20

i
C 1, then

ne.u/ D p

	
8m � 11

2



C 17

2
C
	
15

2
� 5

2
p


�
5p � 5

20

�
C 5

�
5p � 5

20

�2

C
	
5

2
� 11

2
p


�
5p C 5

20

�
C 5

�
5p C 5

20

�2

C 4

�
3p C 2

12

�
C 6

�
3p C 2

12

�2
:

(b) If e 2 E2, then

(i) If m �
h
5p�3
20

i
C 1 and k �m � p, then

ne.v/ D k.8p C 5/Cm.18� 16m/� 9

C .16.k �m/� 10/

�
k �m
2

�
� 16

�
k �m
2

�2
:

(ii) If m >
h
5p�3
20

i
C 1 and k �m � p, then

ne.v/ D .8p C 5/.k �m/C 8p � 2C
	
5

2
p � 13

2


�
5p � 3

20

�

� 5

�
5p � 3

20

�2
C
	
5

2
p � 1

2


�
5p C 9

20

�
� 5

�
5p C 9

20

�2

C .3p � 2/

�
3p C 4

12

�
� 6

�
3pC
12

�2

C .16.k �m/� 10/

�
k �m
2

�
� 16

�
k �m

2

�2
:
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(iii) If m �
h
5p�2
20

i
C 1 and k �m > p, then

ne.v/ D 8p.2k �m � p C 1/� 16m2 C 23m� 12:

(iv) If m >
h
5p�2
20

i
C 1 and k �m > p, then

ne.v/ D 16p.k �m/� 4p2 C 8p � 1C
	
5

2
p � 13

2


�
5p � 3
20

�

� 5
�
5p � 3

20

�2
C
	
5

2
p � 1

2


�
5p C 9

20

�

� 5
�
5p C 9

20

�2
C .3p � 2/

�
3p C 4

12

�
� 6

�
3p C 4

12

�2
:

And for ne.u/, we have

(i) If m � p, then

ne.u/ D 4p.2m� 1/C 11m� 4C .16m� 22/

�
m � 1
2

�
� 16

�
m � 1

2

�2
:

(ii) If m > p, then

ne.u/ D 4p.2mC p � 1/C 3:

(c) If e 2 E3, then

(i) If m � p and k �m � p, then

ne.v/ D 8pk C 3k � 16mC 9C .16.k �m/� 6/

�
k �m

2

�

� 16
�
k �m

2

�2
C .26� 16m/

�
m� 1

2

�
C 16

�
m � 1

2

�2
:

(ii) If m > p and k �m � p, then

ne.v/ D .8p C 3/.k �m/C 4p2 � 1

C .16.k �m/� 6/
�
k �m
2

�
� 16

�
k �m

2

�2
:

(iii) If m � p and k �m > p, then
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ne.v/ D 8p.2k �m/� 4p2 C 2 � 13m

C .26 � 16m/
�
m � 1
2

�
C 16

�
m � 1
2

�2
:

(iv) If m > p and k �m > p, then

ne.v/ D 16p.k �m/� 1:

And for ne.u/, we have

(i) If m � p and k �m � p, then

ne.u/ D 8pk � 3k C 16m� 11C .6 � 16.k �m//

�
k �m

2

�

C 16

�
k �m

2

�2
� 4

�
k �mC 1

2

�
C .16m� 30/

�
m � 1
2

�

� 16

�
m � 1

2

�2
:

(ii) If m > p and k �m � p, then

ne.u/ D 8p.k Cm/C 3.m � k/ � 4p2 � 2p C 1

C .6 � 16.k �m//

�
k �m

2

�
� 4

�
k �mC 1

2

�
C 16

�
k �m

2

�2
:

(iii) If m � p and k �m > p, then

ne.u/ D 8pmC 4p2 � 3p � 5C 13m

C .16m� 30/

�
m � 1
2

�
� 16

�
m � 1

2

�2
:

(iv) Ifm > p and k �m > p, then

ne.u/ D 16pm � 5p:

(d) Ife 2 E4, then

(i) If m �
h
5p�11
20

i
C 1 and k �m � p, then

ne.v/ D 8k.p C 1/� 16m2 C 2m � 1C .16.k �m/� 6/
�
k �m
2

�

� 16

�
k �m
2

�2
:
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(ii) If m �
h
5p�11
20

i
C 1 and k �m > p, then

ne.v/ D 8p.2k �m/� 4p2 C 5p C 10m� 16m2 C 6:

(iii) If m >
h
5p�11
20

i
C 1 and k �m � p, then

ne.v/ D .8p C 8/.k �m/C 8p � 7C .16.k �m/� 6/
�
k �m
2

�

� 16

�
k �m
2

�2
C
	
5

2
p � 21

2


�
5p � 11
20

�
� 5

�
5p � 11
20

�2

C
	
5

2
p � 9

2


�
5p C 1

20

�
� 5

�
5p C 1

20

�2

C .3p � 7/

�
3p � 1

12

�
� 6

�
3p � 1
12

�2
:

(iv) If m >
h
5p�10
20

i
C 1 and k �m > p, then

ne.v/ D 8p.k �m/C 13p � 4p2 � 8C
	
5

2
p � 21

2


�
5p � 11

20

�

� 5
�
5p � 11

20

�2
C
	
5

2
p � 9

2


�
5p C 1

20

�
� 5

�
5p C 1

20

�2

C .3p � 7/
�
3p � 1
12

�
� 6

�
3p � 1

12

�2
:

For ne.u/, we have

(i) If k �m �
h
5p�1
20

i
and m � p, then

ne.u/ D 8k.p C 4m� 2k/� 16m2 C 14m� 6k � 7

C .16m� 22/
�
m � 1

2

�
� 16

�
m � 1
2

�2
:

(ii) If m � p and k �m >
h
5p�1
20

i
, then

ne.u/ D 8pmC 8m � 7C .16m� 22/

�
m � 1

2

�
� 16

�
m� 1

2

�2

C
	
5

2
p � 11

2


�
5p � 1
20

�
� 5

�
5p � 1

20

�2
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C
	
5

2
p C 1

2


�
5p C 11

20

�

� 5
�
5p C 11

20

�2
C .3p � 1/

�
3p C 5

12

�
� 6

�
3p C 5

12

�2
:

(iii) If m > p and k �m �
h
5p�1
20

i
, then

ne.u/ D 8p.k Cm/� 4p2 � 3p C 6.m � k/ � 16
�
m2 C k2

�C 32km:

(iv) If m > p and k �m >
h
5p�1
20

i
, then

ne.u/ D 16pm� 3p � 4p2 � 1C
	
5

2
p � 11

2


�
5p � 1

20

�
� 5

�
5p � 1
20

�2

C
	
5

2
p C 1

2


�
5p C 11

20

�
� 5

�
5p C 11

20

�2

C .3p � 1/
�
3p C 5

12

�
� 6

�
3p C 5

12

�2
:

(e) If e 2 E5, then ne.v/ D 16p.k �m/: And for ne.u/, we have

(i) If m �
h
5pC5
20

i
, then

ne.u/ D m.8pC 16m� 2/:

(ii) If m >
h
5pC5
20

i
, then

ne.u/ D 24pm� 11p C 6C .3 � 5p/

�
5p C 5

20

�
C 5

�
5p C 5

20

�2

C .7 � 11p/
�
5p � 5

20

�
C 5

�
5p � 5

20

�2

C 10

�
3p � 4
12

�
C 6

�
3p � 4

12

�2
:
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(f) If e 2 E6, then

(i) If m � p and k �m � p, then

ne.v/ D 8pk � 5k � 8mC 9C .10C 16.m� k//

�
k �m

2

�

C 16

�
k �m
2

�2
C .26� 16m/

�
m � 1

2

�
C 16

�
m � 1
2

�2
:

(ii) If m > p and k �m � p, then

ne.v/ D .8p � 5/.k �m/C 4p2

C .10C 16.m� k//
�
k �m
2

�
C 16

�
k �m

2

�2
:

(iii) If m � p and k �m > p, then

ne.v/ D 8pmC 4p2 C 8p � 13mC .26� 16m/

�
m � 1

2

�
C 16

�
m � 1

2

�2
:

(iv) If m > p and k �m > p, then

ne.v/ D 8p2 � 1:

And ne.u/ D ne.v/.
(g) Ife 2 E7, then

ne.v/ D 16p.k �m/C 11p � 20:

For ne.u/, we have

(i) If m �
h
5p�7
20

i
C 1, then

ne.u/ D 32m2 � 28mC 10:

(ii) If m >
h
5p�7
20

i
C 1, then

ne.u/ D 16p .m � 1/C 14C .18� 5p/

�
5p � 7

20

�
C 10

�
5p � 7
20

�2

C .7 � 11p/
�
5p C 5

20

�
C 10

�
5p C 5

20

�2
C 11

�
3p C 1

12

�

C 12

�
3p C 1

12

�2
:
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(h) If e 2 E8, then:
for ne.v/, we have

(i) If m � p and k �m � p, then

ne.v/ D 8pk C 5k � 15mC 9C .16.k �m/� 4/

�
k �m

2

�

� 16
�
k �m

2

�2
C .26� 16m/

�
m� 1

2

�
C 16

�
m � 1

2

�2
:

(ii) If m > p and k �m � p, then

ne.v/ D .8p C 5/.k �m/C 4p2 C 3p C 1

C .16.k �m/� 4/
�
k �m
2

�
� 16

�
k �m

2

�2
:

(iii) If m � p and k �m > p, then

ne.v/ D 8p.2k �m/� 4p2 C 3p C 8 � 10m

C .26 � 16m/
�
m � 1
2

�
C 16

�
m � 1
2

�2
:

(iv) If m > p and k �m > p, then

ne.v/ D 16p.k �m/C 6p � 1:

and for ne.u/, we have

(i) If m � p and k �m � p, then

ne.u/ D 8pk � 5k C 13m� 11C .4� 16.k �m//
�
k �m
2

�

C 16

�
k �m
2

�2
� 4

�
k �mC 1

2

�

C .16m� 30/
�
m � 1

2

�
� 16

�
m � 1
2

�2
:

(ii) If m > p and k �m � p, then

ne.u/ D 8p.k Cm/� 4p2 � 7p � 1C 5.m� k/

C .4 � 16.k �m//

�
k �m
2

�
C 16

�
k �m

2

�2
� 4

�
k �mC 1

2

�
:
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(iii) If m � p and k �m > p, then

ne.u/ D 8pmC 4p2 � 5p � 12C 8m

C .16m� 30/

�
m � 1
2

�
� 16

�
m � 1

2

�2
:

(iv) If m > p and k �m > p, then

ne.u/ D 16pm� 12p � 1:

For simplicity, we define in sub-case a:

a0
1 D 16p.k �m/C 19

2
p � 25

2
:

a0
2 D 8pm� 11

2
p C 16m2 � 19mC 23

2
:

a0
3 D p

	
8m � 11

2



C 17

2
C
	
15

2
� 5

2
p


�
5p � 5

20

�
C 5

�
5p � 5

20

�2

C
	
5

2
� 11

2
p


�
5p C 5

20

�
C 5

�
5p C 5

20

�2
C 4

�
3p C 2

12

�
C 6

�
3p C 2

12

�2
:

In sub-case b:

b00
0 D

	
5

2
p � 13

2


�
5p � 3
20

�
� 5

�
5p � 3

20

�2
C
	
5

2
p � 1

2


�
5p C 9

20

�

� 5
�
5p C 9

20

�2
C .3p � 2/

�
3p C 4

12

�
� 6

�
3p C 4

12

�2
:

b0
1 D k.8p C 5/Cm.18� 16m/� 9C b0

0:

b0
2 D .8p C 5/.k �m/C 8p � 2C b00

0 C b0
0:

b0
3 D 8p.2k �m � p C 1/� 16m2 C 23m� 12:

b0
4 D 16p.k �m/� 4p2 C 8p � 1C b00

0:

b0
5 D 4p.2m � 1/C 11m� 4C .16m� 22/

�
m � 1

2

�
� 16

�
m � 1
2

�2
:

b0
6 D 4p.2mC p � 1/C 3:

In sub-case c:

c0
1 D 8pk C 3k � 16mC 9C c0 C c0

0:

c0
2 D .8pC 3/.k �m/C 4p2 � 1C c0:

c0
3 D 8p.2k �m/� 4p2 C 2 � 13mC c0

0:

c0
4 D 16p.k �m/� 1:

c0
5 D 8pk � 3k C 16m� 11� c0 � 4

�
k �mC 1

2

�
C .16m� 30/

�
m � 1

2

�

� 16

�
m � 1

2

�2
:
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c0
6 D 8p.k Cm/C 3.m � k/ � 4p2 � 2p C 1 � c0 � 4

�
k �mC 1

2

�
:

c0
7 D 8pmC 4p2 � 3p � 5C 13mC .16m� 30/

�
m � 1

2

�
� 16

�
m � 1
2

�2
:

c0
8 D 16pm� 5p:
In sub-case d:

d 00
0 D

	
5

2
p � 21

2


�
5p � 11

20

�
� 5

�
5p � 11

20

�2
C
	
5

2
p � 9

2


�
5p C 1

20

�

� 5
�
5p C 1

20

�2
C .3p � 7/

�
3p � 1

12

�
� 6

�
3p � 1

12

�2
:

d 000
0 D

	
5

2
p � 11

2


�
5p � 1

20

�
� 5

�
5p � 1
20

�2
C
	
5

2
p C 1

2


�
5p C 11

20

�

� 5

�
5p C 11

20

�2
C .3p � 1/

�
3p C 5

12

�
� 6

�
3p C 5

12

�2
:

d 0
1 D 8k.p C 1/� 16m2 C 2m � 1C c0:

d 0
2 D 8p.2k �m/� 4p2 C 5p C 10m� 16m2 C 6:

d 0
3 D .8pC 8/.k �m/C 8p � 7C c0 C d 00

0:

d 0
4 D 8p.k �m/C 13p � 4p2 � 8C d 00

0:

d 0
5 D 8k.p C 4m � 2k/� 16m2 C 14m � 6k � 7C .16m� 22/

�
m � 1

2

�

� 16

�
m � 1

2

�2
:

d 0
6 D 8pmC 8m� 7C .16m� 22/

�
m � 1

2

�
� 16

�
m � 1
2

�2
C d 000

0:

d 0
7 D 8p.k Cm/� 4p2 � 3p C 6.m � k/ � 16.m2 C k2/C 32km:

d 0
8 D 16pm� 3p � 4p2 � 1C d 000

0:

In sub-case e:

e0
1 D 16p.k �m/:

e0
2 D m.8pC 16m� 2/:

e0
3 D 24pm� 11p C 6C .3 � 5p/

�
5p C 5

20

�
C 5

�
5p C 5

20

�2

C .7� 11p/

�
5p � 5

20

�
C 5

�
5p � 5

20

�2
C 10

�
3p � 4

12

�
C 6

�
3p � 4
12

�2
:

In sub-case f:

f 0
1 D 8pk � 5k � 8mC 9C f0 C c0

0:

f 0
2 D .8p � 5/.k �m/C 4p2 C f0:

f 0
3 D 8pmC 4p2 C 8p � 13mC c0

0:

f 0
4 D 8p2 � 1:
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In sub-case g:

g0
1 D 16p.k �m/C 11p � 20:

g0
2 D 32m2 � 28mC 10:

g0
3 D 16p.m � 1/C 14C .18 � 5p/

�
5p � 7

20

�
C 10

�
5p � 7

20

�2

C .7 � 11p/
�
5p C 5

20

�
C 10

�
5p C 5

20

�2
C 11

�
3p C 1

12

�
C 12

�
3p C 1

12

�2
:

In sub-case h:

h00
0 D .16.k �m/� 4/

�
k �m

2

�
� 16

�
k �m
2

�2
:

h000
0 D .16m� 30/

�
m � 1

2

�
� 16

�
m� 1

2

�2
:

h0
1 D 8pk C 5k � 15mC 9C h00

0 C c0
0:

h0
2 D .8p C 5/.k �m/C 4p2 C 3p C 1C h00

0:

h0
3 D 8p.2k �m/� 4p2 C 3p C 8 � 10mC c0

0:

h0
4 D 16p.k �m/C 6p � 1:

h0
5 D 8pk � 5k C 13m� 11C h0 C h000

0:

h0
6 D 8p.k Cm/� 4p2 � 7p � 1C 5.m� k/C h0:

h0
7 D 8pmC 4p2 � 5p � 12C 8mC h000

0:

h0
8 D 16pm� 12p � 1:

S 0
1 D 4p .a0
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0
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i
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h
5pC5
20

i
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0
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>;
:
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3 D 4p .b0

1b
0
5 C c0

1c
0
5/C 2p

�
h0
1h

0
5 C f1
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2

�
:

S 0
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5 C d 0
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�
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0
5 C f1

02 C g0
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0
3

�
:

S 0
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0
7 C d 0

2d
0
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�
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0
7 C f3

02
�
:

S 0
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�
:

S 0
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0
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i
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i
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9
>=

>;
:
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:
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�
:
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�
:
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S 0

13 D 4p

8
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:̂

k�p�1P
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h
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i
C2

.d 0

4d
0
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i
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0

6/C
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i
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3d
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i
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7/

9
>=

>;
:

S 0
14 D 4p

8
ˆ̂
<

ˆ̂
:

pX

mD
h
5p�1
20

i
C2

�
b0
2b

0
5

�C

h
5p�1
20

i
C1

X

mDk�p

�
d 0
1d

0
6 C b0

1b
0
5

�C
k�
h
5p�1
20

i
�1

X

mD
h
5p�2
20

i
C2

�
d 0
3d

0
6

�

C
pX

mDk�
h
5p�1
20

i

�
d 0
3d

0
5

�

9
>>=

>>;
:

S 0
15 D 4p

8
<̂

:̂

k�
h
5p�1
20

i
�1P

mD
h
5p�1
20

i
C2
.d 0

3d
0
8/C

kP

mDk�
h
5p�1
20

i
.d 0

3d
0
7/

9
>=

>;
:

The Szeged index of HAC5C6C7Œr; p� nanotube is given as follows:

If k �
h
5pC5
20

i
, then

SZ D
kX

mD1
S 0
1 C

k�1X

mD1
e0
1e

0
2:

If
h
5pC5
20

i
< k �

h
5p�1
20

i
C 1, then

SZ D
kX

mD1

�
S 0
1

�C S 0
2:

If
h
5p�1
20

i
C 1 < k � 2

�h
5p�1
20

i
C 1

�
, then

SZ D

h
5p�1
20

i
C1

X

mD1
S 0
3 C

kX

mD
h
5p�1
20

i
C2

� S 0
4 C 4p

8
ˆ̂
<

ˆ̂:

k�
h
5p�1
20

i
�1

X

mD1

�
d 0
1d

0
6

�C

h
5p�1
20

i
C1

X

mDk�
h
5p�1
20

i

�
d 0
1d

0
5

�

9
>>=

>>;
C S 0

2:



400 A. Iranmanesh

If 2
�h

5p�1
20

i
C 1

�
< k � p, then

SZ D

h
5p�1
20

i
C1

X

mD1

�
S 0
3 C 4pd 0

1d
0
6

�C
kX

mD
h
5p�1
20

i
C2

�
S 0
4 � 4pd 0

3d
0
5

�C S 0
15 C S 0

2:

If k D p C 1, then

Sz D

h
5p�1
20

i
C1

X

mD1

�
S 0
3 C 4pd 0

1d
0
6

�C
pX

mD
h
5p�1
20

i
C2

�
S 0
4 � 4pd 0

3d
0
5 � 2pg0

1g
0
3

�

C
pC1X

mD
h
5p�1
20

i
C2

�
2pg0

1g
0
3

�C S 0
15 C S 0

2 C S 0
7:

If p C 1 < k � p C
h
5p�1
20

i
C 1, then

SZ D
k�p�1X

mD1
S 0
5 C

kX

mDpC1
S 0
6 C

pX

mDk�p
S 0
11 C S 0

14 C S 0
2 C S 0

8:

If p C
h
5p�1
20

i
C 1 < k � 2p, then

SZ D
k�p�1X

mD1
S 0
9 C

kX

mDpC1
S 0
10 C

pX

mDk�p
.S 0

11 C d 0
3d

0
6/C S 0

13 C S 0
2 C S 0

8:

If k > 2p, then

SZ D
pX

mD1
S 0
9 C

k�p�1X

mDpC1
S 0
12 C

kX

mDk�p

�
S 0
10 � 2pf202�

C
pX

mDk�p

�
4pd 0

3d
0
6 C 2pf2

02�C S 0
2 C S 0

13 C S 0
8:

Therefore, the Szeged index of above nanotube is computed.
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Fig. 12.32 HC5C7Œ4; 8�
nanotube, p D 8; k D 4

12.3.5 Computation of the Szeged Index of HC5C7Œr; p�

Nanotube

In this part, we compute the Szeged index of HC5C7Œr; p� nanotube.
We bring all details of the computation of the Szeged index of this nanotube,

which have been published in Iranmanesh et al. (2008b).
In HC5C7Œr; p� nanotubes, we denote the number of pentagons in one row by p

and number of the rows by k. In Fig. 12.32, an HC5C7Œ4; 8� lattice is illustrated.
Let e be an edge in Fig. 12.32. Denote:

E1 D fe 2 E.G/j e is a oblique edge between heptagon and pentagon adjacent
a vertical edgeg

E2 D fe 2 E.G/j e a oblique edge between heptagon and pentagon adjacent
a horizontal edgeg

E3 D fe 2 E.G/j e is an oblique edge between two heptagonsg
E4 D fe 2 E.G/j e is an vertical edge between two pentagonsg
E5 D fe 2 E.G/j e is a horizontal edgeg :

And the number of vertices in each period of this nanotube is equal to 4p. For
computing the Szeged index of above nanotube, we have the following cases:

(e) If e 2 E1, then,
according to Fig. 12.33, the region R has vertices that belong to N1 .ejG/, and
the regionR0 has vertices that belong toN2 .ejG/. (The notations n1 .ejG/ and
n2 .ejG/ are indicated with ne.u/ and ne.v/, respectively.)

In Fig. 12.33, the vertex assigned by symbol 
 is closer to v, and the vertices
assigned by symbol ı have the same distance from u and v.

In this paper, for simplicity we define B D �
m
2

�
, C D �

m�1
2

�
,

D D �
k�m
2

�
, E D �

k�mC1
2

�
, A.j / D

h
2pCj
12

i
, A.j; i/ D

h
A.j /Ci

2

i
, where

i; j D 0;˙1;˙2; : : :.
(i) If m � p

2
, then a1 D ne.u/ D 2pk � 2m2 Cm � 1 � B � 2C C 2D:

(ii) If m >
p

2
, then a2 D ne.u/ D 2p.k �m/C 1

2
p2 � p C 2D:
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u
v

Fig. 12.33 e D uv is an edge belonging to E1 in m D 4 th row

u

v

Fig. 12.34 e D uv is an edge
belonging to E2 in m D 4 th
row

And for ne.v/, we have

(i) If k�m � p

2
, then a3 D ne.v/ D k.2p�2kC4m�1/�2m2Cm�1�B�2C:

(ii) If k �m >
p

2
, then a4 D ne.v/ D 2pmC 1

2
p2 C 3

2
p � 1 � B � 2C:

(f) If e 2 E2, then,
according to Fig. 12.34, the region R has vertices that belong to N1 .ejG/, and
the region R0 has vertices that belong to N2 .ejG/.

In Fig. 12.34, the vertices assigned by symbol ı have the same distance from
u and v. Then,

(i) If m � A.�3/ and k �m � A.3/, then

b1 D ne.u/ D k .2p C 12m � 6k � 3/ � 4m2 C 2m� 1 � 2C � 2E:
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(ii) If A.�3/ < m � p

2
and k �m � A.3/, then

b2 D ne.u/ D k.2p C 12m� 6k � 3/� 4m2 C 2m � 1� A.�3/� 2E:

(iii) If m >
p

2
and k �m � A.3/, then

b3 D ne.u/ D k.2p C 12m� 6k � 4/Cm.4 � 6mC 2p/

� 3

2
p2 � 1

2
p � 1 � A.�3/� 2E:

(iv) If m � A.�3/ and k �m > A.3/, then

b4 D ne.u/ D m.2pC 2m � 1/� 1 � 2C C .2p � 3/ �A.3/
� 6.A.3//2 � 2A.3; 1/:

(v) If A.�3/ < m � p

2
and k �m > A.3/, then

b5 D ne.u/ D m.2p C 2m � 1/� 1C .2p � 3/ � A.3/
� 6.A.3//2 � A.�3/� 2A.3; 1/:

(vi) If m >
p

2
and k �m > A.3/, then

b6 D ne.u/ D p

	
2mC 1

2
p C 1



C .2p � 3/ � A.3/

� 6.A.3//2 � A.�3/� 2A.3; 1/:

And for ne.v/, we have

(i) If m � A.�3/ and k �m � p

2
, then

b7 D ne.v/ D k.2p � 4mC 2k C 1/� 4m2 C 2m � 1:

(ii) If m > A.�3/ and k �m � p

2
, then

b8 D ne.v/ D .2p C 1/ .k �m/C k .2k � 4m/C 2m2 C 2p � 4

C .2p � 8/ � A .�3/� 6.A .�3//2 � 2A .�3; 0/ :

(iii) If m � A.�3/ and k �m >
p

2
, then

b9 D ne.v/ D 2p.2k �m/C 3m � 6m2 � 1

2
p2 C 1

2
p � 1:
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u
v

Fig. 12.35 e D uv is an edge
belonging to E3 in m D 4 th
row

(iv) If m > A.�3/ and k �m >
p

2
, then

b10 D ne.v/ D 4p.k �m/C 5

2
p � 1

2
p2 � 4C .2p � 8/ � A.�3/

� 6.A.�3//2 � 2A.�3; 0/:

(g) If e 2 E3, then according to Fig. 12.35, the region R has vertices that belong to
N1 .ejG/, and the region R0 has vertices that belong to N2 .ejG/.

In Fig. 12.35, the vertices assigned by symbol 
 is closer to u, and the vertices
assigned by symbol ı have the same distance from u and v. Then,

(i) If m � A.�5/, then

c1 D ne.u/ D m.2p C 6m� 1/� 1C B:

(ii) If m > A.�5/, then

c2 D ne.u/ D 4pm � 1C 6.A.�5//2 � .2p C 1/ � A.�5/C A.�5; 0/:

And for ne.v/, we have

(i) If k �m � A.�5/, then

c3 D ne.v/ D k.2p � 12mC 6k � 1/Cm.6m� 2p C 1/� 1 � 2E:

(ii) If k �m > A.�5/, then

c4Dne.v/D4p.k �m/� 1C6.A.�5//2�.2p C 1/�A.�5/� 2A.�5; 0/:
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u

v

Fig. 12.36 e D uv is an edge
belonging to E4 in m D 4 th
row

(h) If e 2 E4, then,
according to Fig. 12.36, the region R has vertices that belong to N1 .ejG/, and
the region R0 has vertices that belong to N2 .ejG/. Then,

(i) If m � A.0/C 1, then

d1 D ne.u/ D 12m.m� 1/C 2 � 3C:

(ii) If m > A.0/C 1, then

d2Dne.u/D4pm � 4p C 2C 12.A.0//2 C .12� 4p/ � A.0/�3A.0; 0/:

And for ne.v/, we have

(i) If k �m � A.0/, then

d3 D ne.v/ D 12.k �m/.k �mC 1/C 2 � 3D:

(ii) If k �m > A.0/C 1, then

d4Dne.v/D4p.k �m/C 2C 12.A.0//2 C .12� 4p/ �A.0/�3A.0; 0/:

(i) If e 2 E5, then according to Fig. 12.37, the region R has vertices that belong to
N1 .ejG/, and the region R0 has vertices that belong to N2 .ejG/. Then,

e0 D ne.u/ D ne.v/ D 4pk � 1 � 2.E C B/:

For simplicity, we define

S0 D
kP

mD1
˚
2p .a1a2 C b1b7/C p

2

�
d1d3 C e0

2
��
:
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uv

Fig. 12.37 e D uv is an edge
belonging to E5 in m D 4 th
row

S1 D p

(
k�A.�5/�1P

mD1
c1c4 C

A.�5/P

mDk�A.�5/
c1c3 C

k�1P
mDA.�5/C1

c2c3

)

:

S2 D p

(
A.�5/P

mD1
c1c4 C

k�A.�5/�1P

mDA.�5/C1
c2c4 C

k�1P
mDk�A.�5/

c2c3

)

:

S3 D 2p

(
k�A.3/�1P

mD1
b4b7 C

A.3/P

mDk�A.3/
b1b7 C

kP

mDA.3/C1
b2b8

)

:

S4 D 2p

(
A.�3/P

mD1
b4b7 C

k�A.3/�1P

mDA.�3/C1
b5b8 C

kP

mDk�A.3/
b2b8

)

:

S5 D 2p

8
<

:

k� p
2 �1X

iD1
b4b9 C

A.�3/X

mDk� p
2

b4b7 C
k�A.3/�1X

mDA.�3/C1
b5b8 C

p
2X

mDk�A.3/
b2b8

C
kX

mD p
2 C1

b3b8

9
=

;
:

S6 D 2p

8
<

:

A.�3/X

mD1
b4b9 C

k� p
2 �1X

mDA.�3/C1
b5b10 C

p
2X

mDk� p
2

b5b8 C
k�A.3/�1X

mD p
2 C1

b6b8

C
kX

mDk�A.3/
b3b8

9
=

;
:

S7 D p

2

(
k�A.0/�1P

mD1
d1d4 C

A.0/P

mDk�A.0/
d1d3 C

kP

mDA.0/C1
d2d3

)

:

S8 D p

2

(
A.0/P

mD1
d1d4 C

k�A.0/�1P

mDA.0/C1
d2d4 C

k�1P
mDk�A.0/

d2d3

)

:
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S9 D
kP

mD1
�
2pa1a3 C p

2
e0
2
�
:

S10 D 2p

(
k� p

2 �1P

mD1
a1a4 C

kP

mDk� p
2

a1a3

)

:

S11 D 2p

 p
2P

mD1
a1a4 C

k� p
2 �1P

mD p
2 C1

a2a4 C
kP

mDk� p
2

a2a3

!

:

The Szeged index of HC5C7Œr; p� nanotube is given as follows:

If k � A.�5/, then

SZ D S0 C
k�1X

mD1
pc1c3:

If A.�5/ < k � A.�3/, then

SZ D S1 C S0:

If A.�3/ < k � A.0/C 1, then

SZ D S9 C S3 C S1 C
kX

mD1

p

2
d1d3:

If A.0/C 1 < k � 2A.�5/, then

SZ D S9 C S7 C S1 C S3:

If 2A.�5/ < k � A.3/CA.�3/, then

SZ D S9 C S7 C S2 C S3:

If A.3/C A.�3/ < k � 2A.0/C 1, then

SZ D S9 C S7 C S4 C S2:

If 2A.0/C 1 < k � p

2
, then

SZ D S9 C S8 C S2 C S4:

If p

2
< k � p

2
C A.�3/, then

SZ D S10 C S8 C S2 C S5 C
kX

mD1
e0
2:
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level 1

level 2

level 3

Fig. 12.38 Two-dimensional
lattice of TUAC6Œ4; 14�
nanotube, p D 4; k D 14

If p

2
C A.�3/ < k � p, then

SZ D S10 C S8 C S2 C S6 C
kX

mD1
e0
2:

If k > p, then

SZ D S11 C S8 C S2 C S6 C
kX

mD1
e0
2:

Therefore, the Szeged index of above nanotube is computed.

12.3.6 Computation of the Szeged Index of Armchair
Polyhex Nanotube

In this part, we compute the Szeged index of Armchair Polyhex nanotube. This
nanotube is denoted by TUAC6Œp; k�. We bring all details of the computation of
the Szeged index of this nanotube, which have been published in Mahmiani et al.
(2008).

According to Fig. 12.38, we denote the number of horizontal lines in one row by
p, and the number of levels by k.

Let e be an arbitrary edge of nanotube. For computing the Szeged index of T , we
assume two cases:

Case 1 p is even.

Lemma 12.3.20 If e is a horizontal edge of T , then n1.e jG /n2.e jG / D p2k2:
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u v

Fig. 12.39 e D uv is a
horizontal edge in level
m D 6

Proof Suppose that e is a horizontal edge of T , for example, e D uv in Fig. 12.39.
In this figure, the region R has vertices that belong to N1 .ejG/, and the region
R0 has vertices that belong to N2 .ejG/. So we have n1.e jG / D n2.e jG / D pk;
therefore, n1.e jG /n2.e jG / D p2k2: By the symmetry of TUAC6Œp; k� nanotube
for every horizontal edge, the above relation is hold.

For simplicity, we define a D �
k�m�1

2

�
and b D �

m�1
2

�
.

Lemma 12.3.21 Suppose p is even. If e is an oblique edge in level m, then we
have

(i) If m � p and k �m � p, then

n1 .e jG / D p.k Cm � 1/C 2b.5� 2mC 3b � p/C 2a.k �m � a � 2/
C 2k � 6mC 2: (I)

(ii) If m � p and k �m > p, then

n1 .e jG / D p.2k � 1=2p � 1/C 2b.5 � p C 3b � 2m/� 4mC 4: (II)

(iii) If m > p and k �m � p, then

n1 .ejG/ D p .k �mC 1=2p/C 2a .k � a �m � 2/C 2 .k �m � 1/:
(III)

(iv) If m> p and k � m> p, then

n1 .ejG/ D 2p .k �m/C 2: (IV)

Proof Let e be an oblique edge of T , for example, e D uv in Fig. 12.40. In this
figure, the region R has vertices that belong to N1 .ejG/, and the region R0 has
vertices that belong to N2 .ejG/.
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u

v

Fig. 12.40 e D uv is an
oblique edge in level m D 6

Number of vertices that are closer to u than to v are as follows: If m � p and
k � m � p, then

n1 .ejG/ D p.k �mC 1/C
aX

iD1
.4i/

C
bX

iD1
.2p � 4i/C .k �m� 2a � 1/.2aC 2/

C .m � 2b � 1/.2p � 4b � 4/

D p.k Cm � 1/C 2b.5� 2mC 3b � p/C 2a.k �m � a � 2/

C 2k � 6mC 2:

If m � p and k � m � p, then

n1 .ejG/ D p.2k � 2m� p C 2/C
.p�2/
2X

iD1
.4i/C

bX

iD1
.2p � 4i/

C .m � 2b � 1/.2p � 4b � 4/

D p.2k � 1=2p � 1/C 2b.5� p C 3b � 2m/ � 4mC 4:

If m> p and k � m � p, then

n1 .ejG/ D p.k �mC 1/C
aX

iD1
.4i/C

p�2
2X

iD1
.2p � 4i/C .k �m � 2a � 1/

.2aC 2/C 2

D p.k �mC 1=2p/C 2a.k � a �m� 2/C 2.k �m � 1/:
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And if m> p and k � m> p, then

n1.ejG/Dp.2k � 2m � p C 2/C
.p�2/
2X

iD1
.4i/C

.p�2/
2X

iD1
.2p � 4i/C 2D2p.k-m/C2:

By the symmetry of TUAC6Œp; k� nanotube for every oblique edge, this relation
is hold.

Remark 12.3.22 According to Fig. 12.40, let e be an oblique edge in level m, then

n2.ejG/ D 2pk � n1.ejG/:

Theorem 12.3.23 If p is even, then the Szeged index of TUAC6Œp; k� nanotube is
given as follows:

1. k is even.

(i) If k � p, then we have

Sz.T / D p3.2k3 � k2 � k C 2/C p2.k2 � 2k/C p.�1=6k5 C 1=3pk4

C 1=3k3 � 1=3k2 � 2=3k/:

(ii) If p < k � 2p, then we have

Sz.T / D p5.91=12� 31=3k/C p4
�
14=3k2 � 22=3k � 10=3�

C p3
�
2k3 C 1=2k2 C 4=3k � 4=3�

C p2
�
11=3k3 � 4k2 � 2=3k4 � 4=3k C 2=15

�

C p.�1=30k5 � 7=12k4 C 7=3k3 � 5=3k2 � 4=5k/C 31=5p6:

(iii) If k > 2p, then we have

Sz.T / D p
�
1=4k4 � 1=5k5 C 2=3k3 � 22=15k

�C p2
�C1=3k4

C2=3k3 C 2=3k2 � 14=3k C 22=15
�

C p3
��2k3 C 5=2k2 � 8=3k C 8=3

�C p4
�
10k2 � 6k � 2=3�

C p5 .91=12� 31=3k/C 31=5p6:

2. k is odd.

(i) If k � p, then we have

Sz.T / D p
��1=6k5 C 1=3k4 � 2=3k3 � 4=3k2 C 5=6k C 1

�

C p2
�
2k2 � 2

�C p3
�
2k3 � k2 � k C 1

�
:
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(ii) If p < k � 2p, then we have

Sz.T / D p3
�
2k3 C 1=2k2 C 13=3k C 13=6

�C p4
�C14=3k2 � 22=3k

�7=3/C p
��1=30k5�1=12k4 C 1=3k3 C 5=6k2�3=10k � 3=4

�

C p2
��2=3k4 C 5=3k3�13=3kC 17=15

�C 91=12p5C31=5p6:

(iii) If k > 2p, then we have

Sz.T / D p3
��2k3 C 5=2k2 � 11=3kC 1=6

�C p4
�C10k2 � 6k C 1=3

�

C 31=5p6Cp ��1=5k5C1=4k4�1=3k3�1=2k2C8=15k C 1=4
�

C p2
�
1=3k4 C 2=3k3 C 5=3k2 � 8=3k C 22=15

�

C p5 .�31=3k C 91=12/ :

Case 2 p is odd.

Lemma 12.3.24 If e is an oblique edge in level m, then we have

(i) Ifm � p and k�m � p, then n1.ejG/ D p.kCm� 1/C 2b.5� 2mC 3b�
p/C 2a.k �m � a � 2/C 2k � 6mC 2.

(ii) If m � p and k �m > p, then n1.ejG/ D p.2k � 1=2p � 1/C 2b.5 � p C
3b � 2m/C �4mC 7=2.

(iii) If m > p and k �m � p, then n1.ejG/ D p.kCm� 1=2p/� 3=2C 2a.k �
m � a � 2/C 2.k �m/.

(iv) If m > p and k �m > p, then n1.ejG/ D 2p.k �m/.
Theorem 12.3.25 If p is odd, then the Szeged index of TUAC6Œp; k� nanotube is
given as follows:

1. k is even.

(i) If k � p, then we have

Sz.T / D p3
�
2k3 � k2 � k C 2

�C p
��1=6k5 C 1=3k4 C 1=3k3 � 1=3k2

�2=3k/C p2
�
k2 � 2k�:

(ii) If p < k � 2p, then we have

Sz.T / D p3
�
2k3 C 1=2k2 � 26=3k � 41=6

�C p
��1=30k5 � 7=12k4

C2=3k3 C 11=6k2 � 17=15k � 7=4
�C p2

��2=3k4 C 11=3k3

C2k2 � 10=3k � 128=15�C p4
�
14=3k2 � 22=3k C 4=3

�

C p5 .91=12� 31=3k/C 31=5p6:
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(iii) If k > 2p, then we have

Sz.T / D p3
��2k3 C 5=2k2 � 26=3k C 7=6

�C p
��1=5k5 C 1=4k4

C1=2k2 � 4=5k C 1=4
�C p2

�
1=3k4 C 2=3k3 C 8=3k2

�8=3k � 6=5/C p4
�
10k2 � 6k C 4

�

C p5 .91=12� 31=3k/C 31=5p6:

2. k is odd.

(i) If k � p, then we have

Sz.T / D p3
�
2k3 � k2 � k C 1

�C p
��1=6k5 C 1=3k4 � 2=3k3 � 4=3k2

C5=6k C 1/C 2p2
�
k2 � 1�:

(ii) If p < k � 2p, then we have

Sz.T / D p3
��2k3 � 17=3k C 1=2k2 � 10=3�C p

��1=30k5 � 1=12k4

�4=3k3 � 2=3k2 C 41=30k
�C p2

��2=3k4 C 5=3k3 C 3k2

C11=3k � 8=15/C p4
�
14=3k2 � 22=3k C 7=3

�

C p5 .91=12� 31=3k/C 31=5p6:

(iii) If k > 2p, then we have

Sz.T / D p3
��2k3 C 5=2k2 � 29=3k � 4=3

�C p
��1=5k5 C 1=4k4

�k3 C 1=5k
�C p2

�
1=3k4 C 2=3k3 C 11=3k2 � 2=3k � 1=5

�

C p4
�
10k2 � 6k C 5

�C p5 .91=12� 31=3k/C 31=5p6:

12.3.7 Computation of the Szeged Index of Nanotubes
by a Different Method

In the previous parts, we computed the Szeged index of some nanotubes by a
theoretical method. It takes a long time for computing the Szeged index of a graph
theoretically, especially when the graph has many vertices. In this part, we give
an algorithm in the base of GAP, which is faster than the direct implementation.
We bring all details of this program published in Taherkhani et al. (2009) and
Iranmanesh et al. (2008a).
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We give an algorithm that enables us to compute the Szeged index of any graph.
For this purpose, the following algorithm is presented:

1. We assign to any vertex one number.
2. We determine all of the adjacent vertices set of the vertex i, i2V (G), and this

set is denoted by N(i). The set of vertices that their distance to vertex i is equal
to t(t � 0) is denoted by Di;t and consider Di;0 D fig. Let e D ij be an edge
connecting the vertices i and j; then we have the following result:

(a) V D
[

f�0 Di:t ; i 2 V.G/:

(b) �
Di;t jDj;t

� �
�
Dj;t�1

[
Dj;tC1

�
; t � 1:

(c)
�
Di;t

\
Dj;t�1

�
� N2.ejG/ andDi;t

\
Dj;tC1 � N1.ejG/t � 1:

(d)
�
Di;1

[
fig
�.�

Dj;1

[
fj g

�
� N1 .ejG/ and

�
Dj;1

[
fj g

�

.�
Di;1

[
fig
�

� N2 .ejG/ :

According to the above relations, by determining Di:t ; t � 1, we can obtain
N1.ejG/ and N2.ejG/ for each edge e, and, therefore, the Szeged index of the
graph G is computed. By continuing we obtain the Di:t ; t � 1 for each vertex i.

3. The distance between vertex i and its adjacent vertices is equal to 1; therefore,
Di;1 D N.i/. For each j 2 Di:t ; t � 1, the distance between each vertex of set
N.j / =.Di;t

S
Di;t�1/ and the vertex i is equal to t C 1; thus, we have

Di;tC1 D
[

j2Di;t .N.j /
.�

Di;t

[
Di;t�1

�
; t � 1:

According to the above equation, we can obtainDi:t ; t � 2 for each i 2 V.G/.
4. In the start of the program, we set SZ equal to zero and T equal to an empty set.

In the end of program, the value of SZ is equal to the Szeged index of the graph
G. For each vertex i, 1 � i � n, and each vertex j in N(i), we determineN1.ejG/
and N2.ejG/ for edge e D ij , then add the values of n1.ejG/:n1.ejG/ to SZ.
Since the edge ji is equal to ij, we add the vertex i to T and continue this step for
the vertex i C 1 and for each vertex in N.i C 1/ =T .

GAP stands for Groups, Algorithms, and Programming (Schonert et al. 1992).
The name was chosen to reflect the aim of the system, which is group theoretical
software for solving computational problems in group theory. The last years have
seen a rapid spread of interest in the understanding, design, and even implementa-
tion of group theoretical algorithms. GAP software was constructed by GAP’s team
in Aachen. We encourage the reader to consult Dabirian and Iranmanesh (2005) and
Trinajstic (1992) for background materials and computational techniques related to
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Fig. 12.41 Molecular graphs of dendrimers Tk;d

applications of GAP in solving some problems in chemistry and biology. According
to the above algorithm, we prepare a GAP program to compute the Szeged index of
dendrimers Tk;d .

Example 12.3.26 The Wiener index of tree dendrimers, Tk;d ; k � 1; d � 3, is
computed in Entringer et al. (1994) and Gutman et al. (1994). Since the Wiener
and Szeged indices coincide on trees (Gutman 1994 and Karmarkar et al. 1997), the
Szeged index of Tk;d is equal to its Wiener index (Fig. 12.41).

The following results are obtained in Entringer et al. (1994) and Gutman et al.
(1994).

For every d � 3, the tree Tk;d has order

n .Tk;d / D 1C d

d � 2
�
.d � 1/k � 1�

and its Szeged index is equal to the Wiener index, that is,

Sz .Tk;d / D W .Tk;d / D 1

.d � 2/3
�
.d � 1/2k

�
kd3 � 2.k C 1/d2 C d

�

C2d2.d � 1/k � d
�
:

For computing of the Szeged index of Tk;d by the above program, at first we
assign to any vertex one number; according to this numbering, the set of adjacent
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vertices to each vertex, 1 � i � n, is obtained by the following program (part 1).
In fact, part 1 of the program is the presentation of the graph. We use part 2 for
computing the Szeged index of the graph.

The following program computes the Szeged index of the Tk;d for arbitrary
values of d and k.

d:D3; k:D3;#(For example)
n:D1C(d/(d-2) )*((d-1)ˆk - 1);
N:D[];
K1:D[2..dC1];
N[1]:DK1;
for i in K1 do
if kD1 then N[i]:D[1];
else
N[i]:D[(d-1)*iC4-d..(d-1)*iC2];

Add(N[i],1);fi;
od;
K2:D[dC2..1C(d/(d-2) )*((d-1)ˆ(k-1) - 1)];
for i in K2 do
N[i]:D[(d-1)*iC4-d..(d-1)*iC2];
Add(N[i],Int((i-4Cd)/(d-1)));

od;
K3:D[2C(d/(d-2) )*((d-1)ˆ(k-1) - 1)..n];
for i in K3 do
if kD1 then N[i]:D[1];
else

N[i]:D[Int((i-4Cd)/(d-1))]; fi;
od;
# (Part2)
D:D[];
for i in [1..n] do

D[i]:D[];
u:D[i];
D[i][1]:DN[i];
u:DUnion(u,D[i][1]);
s:D1;
t:D1;
while s<>0 do
D[i][tC1]:D[];
for j in D[i][t] do

for m in Difference(N[j],u) do
AddSet(D[i][tC1],m);

od;
od;

u:DUnion(u,D[i][tC1]);
if D[i][tC1]D[] then
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s:D0;
fi;
t:DtC1;
od;

od;
T:D[];
sz:D0;
pi:D0;
for i in [1..n-1] do
N1:D[];

for j in Difference(N[i],T) do
N2:D[];

N1[j]:DUnion(Difference(N[i],Union([j],N[j])),[i]);
N2[i]:DUnion(Difference(N[j],Union([i],N[i])),[j]);

for t in [2..Size(D[i])-1] do
for x in Difference(D[i][t],Union(D[j][t],[j])) do

if not x in D[j][t-1] then
AddSet(N1[j],x);

elif x in D[j][t-1] then
AddSet(N2[i],x);

fi;
od;

od;
sz:DszCSize(N1[j])*Size(N2[i]);
od;

Add(T,i);
od;
sz;# (The value of sz is equal to Szeged index of the graph)
Now, as an example, we compute the Szeged index of VC5C7[p,q] nanotube by

GAP program.
A C5C7 net is a trivalent decoration made by alternating C5 and C7. It can cover

either a cylinder or a torus nanotube (Fig. 12.42).
We denote the number of pentagons in the first row by p. In this nanotube, the first

four rows of vertices and edges are repeated alternatively; we denote the number of
this repetition by q. In each period, there are 16p vertices and 3p vertices which are
joined to the end of the graph, and, hence, the number of vertices in this nanotube is
equal to 16pq C 3p.

We partition the vertices of the graph to the following sets:

K1: The vertices of the first row whose number is 6p.
K2: The vertices of the first row in each period except the first one whose number is

6p(q � 1).
K3: The vertices of the second row in each period whose number is 2pq.
K4: The vertices of the third row in each period whose number is 6pq.
K5: The vertices of the fourth row in each period whose number is 2pq.
K6: The last vertices of the graph whose number is 3p.
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Fig. 12.42 VC5C7 [4, 2] nanotube

Fig. 12.43 The rows of mth period VC5C7[p,q] nanotube

Figure 12.43 shows the rows of the mth period.
We write a program to obtain the adjacent vertices set to each vertex in the sets

Ki, i D 1 : : : 6. We can obtain the adjacent vertices set to each vertex by joining these
programs. In this program, the value of x is the assigned number of vertex i in that
row.

The following program computes the Szeged index of VC5C7 Œp; q� nanotube for
arbitrary p and q.

p:D4; q:D2; # (for example)
n:D16*p*qC3*p;
N:D[];
K1:D[1..6*p];
V1:D[2..6*p -1];
for i in V1 do
if i mod 6D1 then N[i]:D[i-1,iC1,iC8*p];
elif i mod 6 in [0,2,4] then N[i]:D[i-1,iC1];
elif i mod 6D3 then N[i]:D[i-1,iC1,(1/3)*(i-3)C6*pC1];
elif i mod 6D5 then N[i]:D[i-1,iC1,(1/3)*(i-5)C6*p C2];fi;

N[1]:D[2,6*p,8*pC1];
N[6*p]:D[6*p-1,1];
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od;
K:D[6*pC1..16*p*q];
K2:DFiltered(K,i->i mod (16*p) in [1..6*p]);
for i in K2 do
x:D i mod (16*p);
if x mod 6D1 then N[i]:D[i-1,iC1,iC8*p];
elif x mod 6D2 then N[i]:D[i-1,iC1,(1/3)*(x-2)C2Ci-x-2*p];
elif x mod 6D3 then N[i]:D[i-1,iC1,(1/3)*(x-3)C1Ci-xC6*p];
elif x mod 6D4 then N[i]:D[i-1,iC1,i-8*p];
elif x mod 6D5 then N[i]:D[i-1,iC1,(1/3)*(x-5) C2Ci-xC6*p];
elif x mod 6D0 then N[i]:D[i-1,iC1,(1/3)*x C1Ci-x-2*p];fi;

if xD1 then N[i]:D[iC1,i-1C6*p,iC8*p];fi;
if xD6*p then N[i]:D[i-1,i- 6*pC1,i- 8*pC1];fi;

od;
K3:DFiltered(K,i->i mod (16*p) in [6*pC1..8*p]);
for i in K3 do
x:D(i-6*p) mod (16*p);
if x mod 2D0 then N[i]:D[i-1,3*(x-2)C5Ci-x- 6*p,3*(x-2)C5Ci-xC2*p];

else N[i]:D[iC1,2*xCi- 6*p,2*xCiC2*p];fi;
od;
K4:DFiltered(K,i->i mod (16*p) in [8*pC1..14*p]);
for i in K4 do
x:D(i- 8*p) mod (16*p);
if x mod 6D1 then N[i]:D[i-1,iC1,i- 8*p];
elif x mod 6D2 then N[i]:D[i-1,iC1,(1/3)*(x-2)C2Ci-xC6*p];
elif x mod 6D3 then N[i]:D[i-1,iC1,(1/3)*(x-3)C1Ci-x-2*p];
elif x mod 6D4 then N[i]:D[i-1,iC1,iC8*p];
elif x mod 6D5 then N[i]:D[i-1,iC1,(1/3)*(x-5)C2Ci-x- 2*p];
elif x mod 6D0 then N[i]:D[i-1,iC1,(1/3)*xC1Ci-xC6*p];fi;

if xD1 then N[i]:D[i-8*p,iC1,iC6*p-1];fi;
if xD6*p then N[i]:D[i-1,i-6*pC1,iC1];fi;

od;
K5:DFiltered(K,i->i mod (16*p) in Union([14*pC1..16*p-1],[0]));
for i in K5 do
x:D(i-14*p) mod (16*p);
if x mod 2D1 then N[i]:D[iC1,3*(x-1)Ci-x-6*p,3*(x-1)Ci-xC2*p];
else N[i]:D[i-1,3*(x-2)C2Ci-x-6*p,3*(x-2)C2Ci-xC2*p];fi;

if xD1 then N[i]:D[iC1,i-1,i-1C8*p];fi;
if xD2*p then N[i]:D[i-1,3*(x-2)C2Ci-x-6*p,3*(x-2)C2Ci-xC2*p];fi;

od;
K6:D[16*p*qC1..n];
for i in K6 do
x:Di mod (16*p);
if x mod 3D1 then y:D (2/3)*(x-1)C2Ci-x- 2*p;
elif x mod 3D2 then y:DiCx- 8*p;
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elif x mod 3D0 then y:D(2/3)*(x- 3)C3Ci-x-2*p;fi;
if xD3*p then y:Di- 5*pC1;fi;
N[i]:D[y];
N[y][3]:Di;

od;
D:D[];
for i in [1..n] do

D[i]:D[];
u:D[i];
D[i][1]:DN[i];
u:DUnion(u,D[i][1]);
s:D1;
t:D1;
while s<>0 do
D[i][tC1]:D[];
for j in D[i][t] do

for m in Difference(N[j],u) do
AddSet(D[i][tC1],m);

od;
od;

u:DUnion(u,D[i][tC1]);
if D[i][tC1]D[] then

s:D0;
fi;
t:DtC1;
od;

od;
T:D[];
sz:D0;
for i in [1..n-1] do
N1:D[];

for j in Difference(N[i],T) do
N2:D[];

N1[j]:DUnion(Difference(N[i],Union([j],N[j])),[i]);
N2[i]:DUnion(Difference(N[j],Union([i],N[i])),[j]);

for t in [2..Size(D[i])-1] do
for x in Difference(D[i][t],Union(D[j][t],[j])) do

if not x in D[j][t-1] then
AddSet(N1[j],x);

elif x in D[j][t-1] then
AddSet(N2[i],x);

fi;
od;

od;
sz:DszC Size(N1[j])*Size(N2[i]);
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Fig. 12.44 HC5C7 [4,2] nanotube

od;
Add(T,i);

od;
sz; # (The value of sz is equal to Szeged index of the graph)
Also, as another example, we compute the Szeged index of HC5C7 Œp; q�

nanotube similar to the previous section. We computed the Szeged index of this
nanotube in Sect. 12.3.5 by a theoretical method. A HC5C7 Œp; q� nanotube consists
of heptagon, pentagon nets as below (Fig. 12.44).

We denote the number of heptagons in the first row by p. In this nanotube, the
four first rows of vertices and edges are repeated alternatively; we denote the number
of this repetition by q. In each period, 16p vertices and 2p vertices are joined to the
end of the graph, and hence the number of vertices in this nanotube is equal to
16pq C 2p.

The following program is the same as the last program. In this program, value of
x is the number of vertex i in a row.

p:D6;q:D7;# (for example)
n:D16*p*qC2*p;
N:D[];
for i in [1..5*p] do
if i mod 5D1 then N[i]:D[i-1,iC1,(3/5)*(i-1)C1C5*p];
elif i mod 5 in [0,2] then N[i]:D[i-1,iC1];
elif i mod 5D3 then N[i]:D[i-1,iC1,(3/5)*(i-3)C2C5*p];
elif i mod 5D4 then N[i]:D[i-1,iC1,(3/5)*(i-4)C3C5*p];fi;

N[1]:D[2,5*p,5*pC1];
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N[5*p]:D[1,5*p-1];
od;
K:D[5*pC1..16*p*q];
K1:DFiltered(K,i->i mod (16*p) in [1..5*p]);
for i in K1 do
x:D(i) mod (16*p);
if x mod 5D1 then N[i]:D[i-1,iC1,(3/5)*(x-1)C1Ci-xC5*p];
elif x mod 5D2 then N[i]:D[i-1,iC1,(3/5)*(x-2)C1Ci-x-3*p];
elif x mod 5D3 then N[i]:D[i-1,iC1,(3/5)*(x-3)C2Ci-xC5*p];
elif x mod 5D4 then N[i]:D[i-1,iC1,(3/5)*(x-4)C3Ci-xC5*p];
elif x mod 5D0 then N[i]:D[i-1,iC1,(3/5)*xCi-x-3*p];fi;

if xD1 then N[i]:D[iC1,i-1C5*p,iC(5*p)];fi;
if xD5*p then N[i]:D[i-1,i-5*p,iC1-5*p];fi;

od;
K2:DFiltered(K,i->i mod (16*p) in[5*pC1..8*p]);
for i in K2 do
x:D(i- 5*p) mod (16*p);
if x mod 3 D1 then N[i]:D[i-1,iC1,(5/3)*(x-1)C1Ci-x- 5*p];
elif x mod 3 D2 then N[i]:D[i-1,(5/3)*(x-2)C3Ci-x- 5*p,(5/3)*(x-2)C3Ci-

xC3*p];
elif x mod 3 D0 then N[i]:D[iC1,(5/3)*x-1Ci-x- 5*p,(5/3)*x Ci-xC3*p];fi;

if xD3*p then N[i]:D[i-3*pC1,(5/3)*x-1Ci-x- 5*p,(5/3)*x Ci-xC3*p];fi;
if xD1 then N[i]:D[i-5*p,iC1,i-1C3*p];fi;

od;
K3:DFiltered(K,i->i mod (16*p) in [8*pC1..13*p]);
for i in K3 do
x:D(i- 8*p) mod (16*p);
if x mod 5D1 then N[i]:D[i-1,iC1,(3/5)*(x-1) Ci-xC5*p] ;

elif x mod 5D2 then N[i]:D[i-1,iC1,(3/5)*(x-2)C1Ci-xC5*p];
elif x mod 5D3 then N[i]:D[i-1,iC1,(3/5)*(x-3)C2Ci-x-3*p];
elif x mod 5D4 then N[i]:D[i-1,iC1,(3/5)*(x-4)C2Ci-xC5*p];
elif x mod 5D0 then N[i]:D[i-1,iC1,(3/5)*x Ci-x-3*p];fi;

if xD1 then N[i]:D[iC1,i-1C5*p,i-1C8*p];fi;
if xD5*p then N[i]:D[i-1,i-5*p,iC1-5*p];fi;

od;
K4:DFiltered(K,i->i mod (16*p) in Union([13*pC1..16*p-1],[0]));
for i in K4 do
x:D(i-13*p) mod (16*p);
if x mod 3D1 then N[i]:D[iC1,(5/3)*(x-1)C2Ci-x-5*p,(5/3)*(x-1)C2Ci-

xC3*p];
elif x mod 3D2 then N[i]:D[i-1,iC1,(5/3)*(x-2)C4Ci-x-5*p];
elif x mod 3D0 then N[i]:D[i-1,(5/3)*xC1Ci-x-5*p,(5/3)*xCi-xC3*p];fi;

if xD3*p then N[i]:D[i-1,iC1-8*p,(5/3)*xCi-xC3*p]; fi;
od;
K5:D[16*p*qC1..n];
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for i in K5 do
x:Di mod(16*p);
if x mod 2D0 then y:D(3/2)*xCi-x-3*p;
else y:D(3/2)*(x-1)C1Ci-x-3*p;fi;

N[i]:D[y];
N[y][3]:Di;

od;
D:D[];
for i in [1..n] do

D[i]:D[];
u:D[i];
D[i][1]:DN[i];
u:DUnion(u,D[i][1]);
s:D1;
t:D1;
while s<>0 do
D[i][tC1]:D[];
for j in D[i][t] do

for m in Difference(N[j],u) do
AddSet(D[i][tC1],m);

od;
od;

u:DUnion(u,D[i][tC1]);
if D[i][tC1]D[] then

s:D0;
fi;
t:DtC1;
od;

od;
T:D[];
sz:D0;
for i in [1..n-1] do
N1:D[];

for j in Difference(N[i],T) do
N2:D[];

N1[j]:DUnion(Difference(N[i],Union([j],N[j])),[i]);
N2[i]:DUnion(Difference(N[j],Union([i],N[i])),[j]);

for t in [2..Size(D[i])-1] do
for x in Difference(D[i][t],Union(D[j][t],[j])) do

if not x in D[j][t-1] then
AddSet(N1[j],x);

elif x in D[j][t-1] then
AddSet (N2[i],x);

fi;
od;
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od;
sz:DszCSize(N1[j])*Size(N2[i]);

od;
Add(T,i);

od;
sz;# (The value of sz is equal to Szeged index of the graph)
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Chapter 13
The Edge-Wiener Index and Its Computation
for Some Nanostructures

Ali Iranmanesh

Abstract The first and the second edge versions of Wiener index, which were based
on the distance between two edges in a connected graph G, were introduced by
Iranmanesh et al. in (MATCH Commun Math Comput Chem 61:663, 2009).

In this chapter, at first we obtain the explicit relation between different versions
of Wiener number and due to this relation, the edge-Wiener numbers of some graph
have been computed. Then we find the first edge-Wiener index of the composition
and sum of graphs. As an application of our results, we find the first and the second
edge-Wiener indices of some nanostructures.

13.1 Introduction

Topological indices are numerical descriptors derived from the associate graphs of
chemical compounds. Some indices based on the distances in graph are widely
used in establishing relationships between the structure of molecules and their
physico-chemical properties. Usage of topological indices in chemistry began in
1947 when the chemist Harold Wiener introduced Wiener index to demonstrate
correlations between physicochemical properties of organic compounds and the
index of their molecular graphs (Wiener 1947). Wiener originally defined his index
(W) on trees and studied its use for correlations of physicochemical properties
of alkanes, alcohols, amines and analogous compounds (Khadikar and Karmarkar
2002). Starting from the middle of the 1970s, the Wiener index gained much
popularity and, since then, new results related to it are constantly being reported.
For a review, historical details and further bibliography on the chemical applications
of the Wiener index see, Gutman et al. (1993, 1997) and Nikoli’c et al. (1995).

A. Iranmanesh (�)
Department of Mathematics, Tarbiat Modares University, P.O. Box: 14115-137, Tehran, Iran
e-mail: iranmanesh@modares.ac.ir

A.R. Ashrafi et al. (eds.), Topological Modelling of Nanostructures and Extended Systems,
Carbon Materials: Chemistry and Physics 7, DOI 10.1007/978-94-007-6413-2 13,
© Springer ScienceCBusiness Media Dordrecht 2013

425

mailto:iranmanesh@modares.ac.ir


426 A. Iranmanesh

Let G be a connected graph. The vertex set and edge set of G denoted by V(G)
and E(G), respectively. The distance between the vertices u and v, d(u, v), in a graph
is the number of edges in a shortest path connecting them. Two graph vertices are
adjacent if they are joined by a graph edge. The degree of a vertex i 2 V.G/ is the
number of vertices joining to i and denoted by ıi .

The Wiener index of G is

W.G/ D Wv.G/ D
X

fx;yg	V.G/
d.x; y/ (13.1)

The edge versions of Wiener index which were based on the distance between
edges introduced by Iranmanesh et al. (2009). These versions have been introduced
for a connected graph G as the first and second edge-Wiener, that is, the first edge-
Wiener number was introduced as follows:

We0.G/ D
X

fe;f g	E.G/
d0.e; f / (13.2)

where d0.e; f / D
�
d1.e; f /C 1 e ¤ f

0 e D f
and d1.e; f / D min fd.x; u/; d.x; v/;

d.y; u/; d.y; v/g such that e D xy and f D uv. This version satisfies in We0.G/ D
Wv.L.G///.

The second edge-Wiener index was introduced as follows:

We4.G/ D
X

fe;f g	E.G/
d4.e; f / (13.3)

where d4.e; f / D
�
d2.e; f / e ¤ f

0 e D f
and d2.e; f /D max fd.x; u/; d.x; v/; d.y; u/;

d.y; v/g such that e D xy and f D uv.
In this chapter, at first we obtain the explicit relation between different versions

of Wiener number and due to this relation, the edge-Wiener numbers of some graph
have been computed and then we compute the first and the second edge-Wiener
indices of zigzag nanotube and TUC4C8.R/ and TUC4C8.S/ nanotubes.

In Sects. 13.3 and 13.4, we find the first edge-Wiener index of the composition
and sum of graphs, respectively. As an application of our results, we find the first
and the second edge-Wiener indices of C4-nanotubes and C4-nanotori.

13.2 Explicit Relation Between Vertex and Edge-Wiener
Numbers

In this section, we restate some definitions and then we give an explicit relation
between vertex and edge-Wiener indices. All of the results in the first part of this
section have been published in Iranmanesh and Khormali (2011).
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Fig. 13.1 The edges of e and
f are not adjacent

We recall the conditions of the distances. d is the distance on set X if it satisfies
in the following conditions:

(a) 8u; v 2 X I d.u; v/ � 0

(b) 8u; v 2 X I u D v , d.u; v/ D 0

(c) 8u; v 2 X I d.u; v/ D d.v; u/
(d) 8u; v;w 2 X I d.u; v/C d.v;w/ � d.u;w/

At first, we restate the first edge-Wiener number according to the distances
between vertices.

Definition 13.2.1 Let e D uv; f D xy be the edges of connected graph G.
Then, we define d 0 .e; f / D d.u;x/Cd.u;y/Cd.v;x/Cd.v;y/

4
and d 00.e; f / D

� dd 0 .e; f /e ; fe; f g … C
d 0 .e; f /C 1; fe; f g 2 C , whereC D ffe; f g � E.G/ j if e D uv and f Dxy I

fd.u; x/ D d.u; y/ D d.v; x/ D d.v; x/g and d3.e; f / D
�
d 00.e; f / e ¤ f

0 e D f
.

Also, d 0 and d 00 do not satisfy the condition (b), hence, they are not a distance
and are like distance.

Claim d3 D d0.

Proof We have to show for any e; f 2 E.G/; d3 .e; f / D d0 .e; f /.

(i) If e D f 2 E.G/, then d3 .e; f / D d0 .e; f / D 0:

(ii) If e; f 2 E.G/ are adjacent edges, then,

d0.e; f / D d1.e; f /C 1 D 0C 1 D 1 and d3.e; f / D d2.e; f /

D
�
1C 1C 2

4

�
D 1: Therfore; d3.e; f / D d0.e; f /:

(iii) If e; f 2 E.G/ are not adjacent such as Fig. 13.1, then:

1. If fe; f g … C , then d0.e; f / D d1.e; f / C 1 D r C 1 and d3.e; f / D
d 00.e; f / D

l
rC.rC1/C.rC1/C.rC2/

4

m
D rC1. Therefore, d3.e; f / D d0.e; f /.

2. If fe; f g 2 C , then d0.e; f / D d1.e; f / C 1 D r C 1 and d3.e; f / D
d 00.e; f / D rCrCrCr

4
C 1 D r C 1. Therefore, d3.e; f / D d0.e; f /.
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Table 13.1 Examples for sets which have been defined above

Set C A1 A2 A3 A4

Example

d 0 1 2
7

4

6

4

5

4

d3 D d0 2 2 2 2 2

Corollary 13.2.2

We0.G/ D
X

fe;f g	E.G/
d3.e; f /:

Proof Since d3 D d0, we obtain the desired result.

Before stating the explicit relations, we define several sets due to the distance d3
as follow:

A1 D ˚fe; f g � E.G/
ˇ̌
d3.e; f / D d 0.e; f /

�
;

A2 D
�

fe; f g � E.G/

ˇ
ˇ
ˇ
ˇ d3.e; f / D d 0.e; f /C 1

4

�
;

A3 D
�

fe; f g � E.G/

ˇ
ˇ
ˇ
ˇ d3.e; f / D d 0.e; f /C 2

4

�
;

A4 D
�

fe; f g � E.G/

ˇ
ˇ̌
ˇ d3.e; f / D d 0.e; f /C 3

4

�
:

We denote all of the two element subsets of E.G/ with S and therefore jS j D	 jE.G/j
2



. Also, we have: S D A1 [ A2 [A3 [ A4 [ C (Table 13.1).

Due to Definition 13.2.1 and Corollary 13.2.2, the relation between vertex and
first edge versions of Wiener index has been defined.

Theorem 13.2.3 SupposeG is a graph withm edges and A1;A2; A3; A4 and C are
the sets which have been defined as above. Then, the first version of edge-Wiener
number according to the distance between vertices of graph G is
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We0.G/ D 1

8

X

x2V.G/

X

y2V.G/
deg.x/ � deg.y/ � d.x; y/ � m

4
C

X

fe;f g2A3

	
1

2



C

X

fe;f g2A2

	
1

4



C

X

fe;f g2A4

	
3

4



C jC j: (13.4)

Proof By Definition 13.2.1 and Corollary 13.2.2, we have

We0.G/ D
X

fe;f g	E.G/
d3.e; f /

D
X

fe;f g	E.G/
if eDuv;fDxy

�
d.u; x/C d.u; y/C d.v; x/C d.v; y/

4

�

D
X

fe;f g2A1
if eDuv;fDxy

d.u; x/C d.u; y/C d.v; x/C d.v; y/

4

C
X

fe;f g2A3
if eDuv;f Dxy

	
d.u; x/C d.u; y/C d.v; x/C d.v; y/

4
C 1

2




C
X

fe;f g2A2
if eDuv;f Dxy

	
d.u; x/C d.u; y/C d.v; x/C d.v; y/

4
C 1

4




C
X

fe;f g2A4
if eDuv;f Dxy

	
d.u; x/C d.u; y/C d.v; x/C d.v; y/

4
C 3

4




C
X

fe;f g2C
if eDuv;f Dxy

	
d.u; x/C d.u; y/C d.v; x/C d.v; y/

4
C 1




D
X

fe;f g	E.G/
if eDuv;fDxy

d.u; x/C d.u; y/C d.v; x/C d.v; y/

4

C
X

fe;f g2A3

	
1

2



C

X

fe;f g2A2

	
1

4



C

X

fe;f g2A4

	
3

4



C jC j

For each pair of vertices u; x 2 V.G/ such that u ¤ x which are not adjacent,
the distance d.u; x/ in like distance d 0 is repeated deg.u/ � deg.x/ times. And if
every pair of vertices u; x 2 V.G/, u ¤ x, is adjacent, distance d.u; x/ is repeated
deg.u/ � deg.x/ � 1 times. Therefore,
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We0.G/ D1

8

X

x2V.G/

X

y2V.G/
deg.x/ � deg.y/ � d.x; y/ � m

4
C

X

fe;f g2A3

	
1

2



C

X

fe;f g2A2

	
1

4



C

X

fe;f g2A4

	
3

4



C jC j:

Now, because of the fact that the first edge-Wiener number has been written
by distances between vertices, we repeat this trend for second edge version with
definition of new distance.

Definition 13.2.4 If e; f 2 E.G/, we define

d 000.e; f / D
� dd 0.e; f /e ; fe; f g … A1
d 0.e; f /C 1 ; fe; f g 2 A1 and d5.e; f / D

�
d 000.e; f / e ¤ f

0 e D f
.

The mathematical quantity d 000 is not distance because it does not satisfy the
condition (b). Then, we say d 000 is likedistance.

Claim d5 D d4.

Proof We have to show for any e; f 2 E.G/, d5.e; f / D d4.e; f /.

(i) If e D f 2 E.G/, then d5.e; f / D d4.e; f / D 0:

(ii) If e; f 2 E.G/ are adjacent edges, then:
d4 .e; f / D d2 .e; f / D 2 and since fe; f g 2 A1, d5 .e; f / D d3 .e; f /C

1 D 1C1C2
4

C 1 D 2. Therefore, d5 .e; f / D d4 .e; f / :.
(iii) If e; f 2 E.G/ are not adjacent, then we have two sub-cases:

1. If fe; f g 2 A1 such as Fig. 13.1, then
d4 .e; f / D d2 .e; f / D r C 2 and d5 .e; f / D d3 .e; f / C 1 D

rC.rC1/C.rC1/C.rC2/
4

C 1 D r C 2. Therefore, d5 .e; f / D d4 .e; f /.
2. If fe; f g … A1, then

If d4 .e; f / D d2 .e; f / D r , then max fd.x; u/; d.x; v/; d.y; u/; d.y; v/g is
r and r is repeated at least two times in d.u; x/Cd.u; y/Cd.v; x/Cd.v; y/ for
d 0. Hence,
d.i; j /; i D u; v and j D x; y; takes r or .r � 1/, then d5 .e; f / D

d3 .e; f / D
l
d.u;x/Cd.u;y/Cd.v;x/Cd.v;y/

4

m
D r . Therefore, d5 .e; f / D d4 .e; f /.

Corollary 13.2.5 We4.G/ D P

fe;f g	E.G/
d5 .e; f /.

Theorem 13.2.6 SupposeG is a graph withm edges and A1;A2; A3; A4 and C are
the sets which have been defined in Definition 13.2.1 and Corollary 13.2.2. Then,
we can repeat the second version of edge-Wiener number according to the distance
between vertices of graph G as follows:
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We4.G/ D 1

8

X

x2V.G/

X

y2V.G/
deg.x/ � deg.y/ � d.x; y/ � m

4
C

X

fe;f g2A3

	
1

2



C

X

fe;f g2A2

	
1

4



C

X

fe;f g2A4

	
3

4



C jA1j: (13.5)

Proof Due to the definition of We4.G/ and Definition 13.2.4 and Corollary 13.2.5,
we have

We4.G/ D
X

fe;f g	E.G/
d5.e; f / D

X

fe;f g	E.G/
d 000.e; f / D

X

fe;f g	E.G/
d 0.e; f /C

X

fe;f g2A2

1

4
C

X

fe;f g2A3

2

4
C

X

fe;f g2A4

3

4
C jA1j :

For each pair of vertices u and x such that u ¤ x which is not adjacent, the
distance d.u; x/ in like-distance d 0 is repeated deg.u/ � deg.x/ times. And if every
pair of vertices u and x, u ¤ x, which is adjacent, distance d.u; x/ is repeated
deg.u/ � deg.x/ � 1 times. Therefore,

We4.G/ D 1

8

X

x2V.G/

X

y2V.G/
deg.x/ � deg.y/ � d.x; y/ � m

4
C

X

fe;f g2A2

1

4
C

X

fe;f g2A3

2

4
C

X

fe;f g2A4

3

4
C jA1j :

Corollary 13.2.7 The explicit relation between edge versions of Wiener index is

We4.G/ D We0.G/C jA1j � jC j : (13.6)

Proof According to the relations 13.4 and 13.5, we can get above relation easily.

In the following table, we bring some examples for relation 13.6 (Table 13.2):
Now, we compute the first edge-Wiener number of cycles according to our

relation as follows:

Corollary 13.2.8 The first edge-Wiener index and its vertex version are equal for
cycles.
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Table 13.2 Some examples due to relation 13.6

Graph (G) We0.G/ jA1j jC j We4.G/

Pn
1

6
n.n� 1/.n� 2/

	
n�1
2



D .n�1/.n�2/

2
0

1

6
.n�1/.n�2/.nC3/

Sn
1

2
.n�1/.n�2/

	
n�1
2



D .n�1/.n�2/

2
0 .n� 1/.n� 2/

Cn; n is odd
1

8
n
�
n2 � 1

� 	
n

2



� n D n.n�3/

2
0

1

8
n
�
n2 C 4n� 13

�

Cn; n is even
1

8
n3

	
n

2



� n

2
D n.n� 2/

2
0

1

8
n
�
n2 C 4n� 8

�

Proof The relation 13.3 can be stated for cycles as follows:

We0.G/ D1

2

X

x2V.G/

X

y2V.G/
d.x; y/ � m

4
C

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

P

fe;f g2A3
ifeDuv;f Dxy

	
1

2



; if n is even

P

fe;f g2A1
ifeDuv;f Dxy

	
1

4



; if n is odd

D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Wv.G/ � m

4
C P

fe;f g2A3
ifeDuv;fDxy

	
1

2



; if n is even

Wv.G/ � m

4
C P

fe;f g2A1
ifeDuv;fDxy

	
1

4



; if n is odd

The numbers of elements of A3 in even cycles is m
2

and in odd cycles ism. Then,
the first edge-Wiener number is equal to its vertex version for cycles.

Now, we say the explicit relation of zigzag nanotube in pursue.

Theorem 13.2.9 The explicit relation between vertex Wiener number and the first
edge-Wiener number for zigzag nanotubes which have been consisted of vertices
with degrees 3 and 2 is

We0.G/ D 9

4
Wv.G/C 3

8

X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D3

d .x; y/

� 5

8

X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D2

d .x; y/ � m

4
C

X

fe;f g2A3

1

2
: (13.7)

Proof We can get this result with replacing the degree of vertices in relation 13.4
and the fact that the sets A2;A4 and C are empty.
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Fig. 13.2 .n; 0/ zigzag
polyhex SWNTs

The vertex version of Wiener number of zigzag nanotube is computed in John
and Diudea (2004). They have focused on .n; 0/ zigzag polyhex SWNTs which
have p hexagons in a row and q hexagons in column. Because of their computation
and relation (13.7), we state the first edge-Wiener number of zigzag nanotube such
that p is even integer and q is odd integer.

They have colored the vertices with two colors white and black as shown in
Fig. 13.2.

The white vertices in level 0 denote the vertices with degree 2 and the black
vertices in last level denote the vertices with degree 2.

Lemma 13.2.10 (John and Diudea 2004) The sum of distances of one white vertex
of level 0 to all vertices of level k, for k D 0; 1; : : : ; q � 1, is given as:

wk D
2pX

rD1
d .x02; xkr / D

2pX

rD1
d .x04; xkr / D

�
.p C k/2 C k o � k < p

p .4k C 1/ p � k
:

Lemma 13.2.11
P

x2V.G/
deg.x/D2

P

y2V.G/
deg.y/D2

d.x; y/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

2p

0

@2
p
2P

iD1
2i � p C 2

q�1
2P

iD1
.2q C 1/C 2

p
2 � q�3

2P

iD1
.2q C 2i � 1/

1

A ; q < p

2p

 

2

p
2P

iD1
2i � p C 2

p
2P

iD1
.2q C 1/

!

; p � q

:

Proof Due to Fig. 13.2, we can get this result easily.

Lemma 13.2.12
P

x2V.G/
deg.x/D2

P

y2V.G/
deg.y/D3

d.x; y/ is equal to
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2p �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

q�1P
kD1

wk C 2

p
2P

iD1
.2i � 1/ � 2

q�1
2P

iD1
.2q C 1/ � 2

p
2 � qC1

2P

iD1
.2q C i/; q < p

q�1P
kD1

wk C 2

p
2P

iD1
.2i � 1/ � 2

p
2P

iD1
.2q C 1/; p � q

:

Proof
q�1P
kD1

wk is the sum of distances between xo2 and all of vertices in levels

k D 1; : : : ; q � 1. Then, we must reduce the distance between xo2 and vertices in
last level with degree 2 and add the distances between vertex xo2 and vertices in
level 0 with degree 3. Then, we can obtain the above relation.

Theorem 13.2.13 (John and Diudea 2004) The vertex-Wiener number of zigzag
nanotubeG which has p hexagons in a row and q hexagons in column such that p is
even integer and q is odd integer is

Wv.G/ D

8
<̂

:̂

pq

2

�
6p2q C .4p C q/

�
q2 � 1

��
; 0 < q � p

p2

2

�
p2 .4q C p/C q

�
8q2 � 6

�C p
�
; p � q

:

Theorem 13.2.14 The edge-Wiener number of zigzag nanotube G which has p
hexagons in a row and q hexagons in column such that p is even integer and q
is odd integer is

We0.G/

D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
:

pq

	
9

4
qp2C3

4
q2p�35

8
pC3

8
q3�11

16
qC3

4
p2C3

4
pqC1

4
q2�1

4



�

p

	
29

16
p2�15

4
p�55

16



; q < p

pq

	
3

2
p3C3pq2�27

4
pC3

2
pqCq

2
C1

4



�p

	
3

8
p4 � 1

8
p2 C 11

4
p



; p � q

Proof In molecular graph of zigzag nanotube, we have two types of edges. The
first type is the oblique edges and the second type is vertical edges. The number

of pair oblique edges which belongs to A3 is 2p

	
q C 1

2



, and the number of

vertical edges which belongs to A3 is q

	
p

2



. Therefore, according to relation 13.7,

Lemmas 13.3.4 and 13.3.5, Theorem 13.3.6, and the number of elements of A1, the
above relations are computed easily.

The explicit relation between first edge version and vertex version of Wiener
number of nanotubes with vertex of degrees 3 and 2 has been declared in Theorem
13.2.9.
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Corollary 13.2.15 According to the relations13.6 and 13.7, the explicit relation
between vertex and the second edge-Wiener number for zigzag nanotubes which
consists of vertices with degrees 3 and 2 is obtained directly:

We4.G/ D 9

4
Wv.G/C 3

8

X

x2V.G/
deg.x/D2

X

y2V.G/
d.x; y/

�
X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D2

d.x; y/ � m

4
C

X

fe;f g2A3

1

2
C jA1j : (13.8)

Theorem 13.2.16 The second edge-Wiener number of zigzag nanotubeG which has
p hexagons in a row and q hexagons in column such that p is even integer and q is
odd integer is

We4.G/

D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂:

pq

	
9

4
qp2 C 3

4
q2p � 35

8
p C 3

8
q3 � 11

16
q C 3

4
p2 C 3

4
pq C 1

4
q2 � 1

4



�

p

	
29

16
p2 � 15

4
p � 55

16



C
 
3pq C 2p

2

!

� 2pq2 C qp2 C pq

2
; q < p

pq

	
3

2
p3 C 3pq2 � 27

4
p C 3

2
pq C q

2
C 1

4



� p

	
3

8
p4 � 1

8
p2 C 11

4
p



C

 
3pq C 2p

2

!

� 2pq2 C qp2 C pq

2
; p � q

Proof The number of edges of zigzag nanotube with p hexagons in a row and q
hexagons in column is 3pq C 2p. In molecular graph of this nanotube, we have

E.G/ D A1 [ A3, and jA3j D 2pq2Cqp2Cpq
2

. Therefore, according to jA1j D
	
3pq C 2p

2



� 2pq2Cqp2Cpq

2
, We4.G/ is computed easily by relation 13.6.

In this part, as the application of the above results, we compute the first edge-
Wiener indices of TUC4C8(R) nanotube which has been published in Mahmiani,
et al. (2010a).

Corollary 13.2.17 Since there are not any odd cycles in TUC4C8(R) nanotube,
A2 is empty. Hence for TUC4C8(R) nanotube, we have

We0.G/ D9

4
Wv.G/C 3

8

X

x2V.G/
deg.x/D2

X

y2V.G/
d.x; y/

�
X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D2

d.x; y/ � m

4
C

X

fe;f g2A3

1

2
(13.9)
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Fig. 13.3 A T(p,q) lattice with p D 7 and q D 4

Abbas Heydari and Bijan Taeri in (2007a) computed the vertex-Wiener index
Wv(G) and

P

x2V.G/
deg.x/D2

P

y2V.G/
d.x; y/:

We mention only the quantity of them in this part and omit details.

We denote TUC4C8(R) nanotube with T(p,q) where p is the number of squares

in a row and q is the number of squares in a column. Also, we assumed P1 D
h
pC1
2

i

and opted below coordinate label for vertices of T .p; q/ as shown in Fig. 13.3.

Lemma 13.2.18 (Heydari and Taeri 2007a)
P

x2V.G/
deg.x/D2

P

y2V.G/
d.x; y/ D 2pSx .q � 1/,

where

Sx.l/ D
lX

kD0
Tx.k/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:̂

8

3
l3 C .2p C 8/ l2 C �

3p2 C 2p
�
lC

	
19

3
C 1C .�1/p

2



l C 3p2 C 1C 1C .�1/

2

p

; l < P1

6pl2 C
	
p2 C 10p � 1 � .�1/p

2



lC

1

3
p3 C p2 C 11

3
p � C1 � .�1/p

2
; l � P1



13 The Edge-Wiener Index and Its Computation for Some Nanostructures 437

and Tx.k/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂:

3p2 C 4kp C 8k2 C 8k � 1C
3
1C .�1/p

2
; 0 � k < P1

p2 C 12kp C 4p � 1C
1C .�1/p

2
; k � P1

:

Theorem 13.2.19 (Heydari and Taeri 2007a) The Wiener index of T(p,q) is given
by the following equation:

Wv.p; q/ D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

pq

3

�
8q3 C 8pq2 C

�
18p2 � 5C 3

1C.�1/p
2

�
q � 8p

�
; q < P1

p

6

	
�p4 C 8qp3 C

	
12q2 C 1 � 1 � .�1/p

2



p2



C
p2

6

�
48q3 � .14C 3.1C .�1/p// q�C

	
1 � 1C .�1/p

2


	
3

2
� 12q2



; q � P1

Lemma 13.2.20 Summation
P

x2V.G/
deg.x/D2

P

y2V.G/
deg.y/D2

d.x; y/ is equal to in T(p,q):

If p is even:

X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D2

d.x; y/ D
�
7q2 � 7q C 4pq C p2 � 2p C 1; q < P1

3pq C p2 � 2p � 3q C 1; q � P1

If p is odd:

X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D2

d.x; y/ D
�
7q2 C q C 4pq C p2 � p � 2; q < P1
3pq C p2 � p C 3q � 2; q � P1

Proof There exist two types of vertices with degree 2. One of them is in the first
row and another is in the last row (Fig. 13.3).

Since the situation of all vertices with degree 2 is the same, we can suppose a fix
vertex x in first row. Then, we have for the first type

X

y2V .T .p;q//
y is in the first row
deg.y/D2

d.x; y/ D

8
ˆ̂
<̂

ˆ̂
:̂

2

p
2P

iD1
3i � 3p

2
; p is even

2

p�1
2P

iD1
3i ; p is odd
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And we have for the second type:

(a) p is even:

X

y2V.T .p;q//
y is in the last row
deg.y/D2

d.x; y/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

2
q�1P
iD0

.3q � 1C i/C 2

p
2 �1P
iD0

.4q � 1C i/�
�
4q C p

2
� 1

�
; q < P1

2

p
2 �1P
iD0

.3q � 1C i/ � �
3q C p

2
� 1

�
; q � P1

(b) p is odd:

X

y2V.T .p;q//
y is in the last row
deg.y/D2

d.x; y/ D

8
ˆ̂
ˆ̂
<

ˆ̂̂
:̂

2
q�1P
iD0

.3q � 1C i/C 2

pC1
2 �1P

iD0
.4q � 1C i/; q < P1

2

pC1
2 �1P

iD0
.3q � 1C i/; q � P1

Therefore, we can obtain the desired results.

Observation 13.2.21 The number of elements of A1 is equal to: .q � 1/

	
p

2



C

p

	
q

2



C 2p

	
2q

2



.

By the above lemmas, Theorem 13.2.19, Observation 13.2.21 and the fact that
the number of edges in T(p,q) are 6pq � p, the following theorem can be proved:

Theorem 13.2.22 The first version of edge-Wiener index of T(p,q) is equal to:

1. If p is even:

We0 .T .p; q// D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

� 39

2
p C 2pq3 C 6p2q4 C 9

8
pq2.�1/pC

3

8
pq.�1/p C 27

2
p3q2 C 6pq5C

81

8
pq C 15

4
p2 � 115

8
pq2 � 37

4
p2qC

9

4
p3q � 2p3 C 3

2
p2q2; q < P1

� 3

2
p � 27

2
q2 C 3

8
pq.�1/p C 9

2
p3q2C

21

8
pq C 7

2
p2 C 9

8
p2q.�1/pC1C

27

16
.�1/pC1 C 27

16
� 3

8
p5 C 1

4
p4 C 9

4
pq2�

85

8
p2q C 3

4
p3q � 29

16
p3 C 3

16
p3.�1/pC

18p2q3 C 27q2.�1/p C 9

2
p2q2; q � P1
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2. If p is odd:

We0 .T .p; q// D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

� 27

2
p C 2pq3 C 6p2q4 C 9

8
pq2.�1/pC

3

8
pq.�1/p C 27

2
p3q2 C 6pq5�

47

8
pq C 7

4
p2 � 115

8
pq2 � 37

4
p2qC

9

4
p3q � 2p3 C 3

2
p2q2; q < P1

9

2
p � 27

2
q2 C 3

8
pq.�1/p C 9

2
p3q2�

75

8
pq C 3

2
p2 C 9

8
p2q.�1/pC1C

27

16
.�1/pC1 C 27

16
� 3

8
p5 C 1

4
p4C

9

4
pq2 � 85

8
p2q C 3

4
p3q � 29

16
p3C

3

16
p3.�1/p C 18p2q3 C 27q2.�1/pC

9

2
p2q2; q � P1

:

Now, we computed the first and the second edge-Wiener indices of TUC4C8.S/
nanotube.

All of the following results have been published in Mahmiani, et al. (2010b).
Due to the fact that, there are no odd cycles in TUC4C8.S/ nanotube,A2 is empty.

Then, we have for TUC4C8.S/ nanotube, the relation 13.9.

Corollary 13.2.23 According to the relations 13.6 and 13.7, the explicit relation
between vertex and first edge-Wiener number for TUC4C8.S/ nanotubes which
consists of vertices with degrees 3 and 2 is

We4.G/ D9

4
Wv.G/C 3

8

X

x2V.G/
deg.x/D2

X

y2V.G/
d.x; y/

�
X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D2

d.x; y/ � m

4
C

X

fe;f g2A3

1

2
C jA1j : (13.10)

The explicit relation between edge versions of Wiener index is:

We4.G/ D We0.G/C jA1j � jC j (13.11)

In TUC4C8.S/ nanotube, p is the number of square in a row and q is the number
of rows which is shown in Fig. 13.4.
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Fig. 13.4 A TUC4C8(S) lattice with p D 4 and q D 6

In Heydari and Taeri (2007b), some notations are defined as follows. For all
0 � r < q and 0 � t < 2p, let art 2 fxrt ; yrt g and let dart .k/ denote the sum
of distances between art and vertices on k-th row of the graph. By symmetry of the
graph for all 0 � t < 2p, dxrt .k/ equal. So we may compute this summation for
x0p in the 0th row of the graph, which is denoted by dx.k/.

Lemma 13.2.24 (Heydari and Taeri 2007b) Let 0 � k < q, then dx.k/ D�
4p2 C 4kp C 2

�
k2 C k

�
; k � p

2p2 C 8kp C 2p; k > p
.

Therefore, according to the Lemma 13.2.24, we can obtain
P

x2V.G/
deg.x/D2

P

y2V.G/
d.x; y/.

Lemma 13.2.25
X

x2V.G/
deg.x/D2

X

y2V.G/
d.x; y/ D

8
<

:

8

3
pq
�
6p2 C 3pq � 3p C q2 � 1

�
; q � p

8p2q .p C 2q � 1/; q > p
:

Proof Due to the Lemma 13.2.24, dx0p .k/ denotes the sum of distances between
x0p and vertices on k-th row of the graph. There are 4p vertices such as x0p in the
first row. Therefore,
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X

x2V.G/
deg.x/D2

X

y2V.G/
d.x; y/ D 4p

q�1X

kD0
dx.k/ D

8
<

:

8

3
pq
�
6p2 C 3pq � 3p C q2 � 1

�
; q � p

8p2q .p C 2q � 1/; q > p
:

The vertex-Wiener index of TUC4C8.S/ is computed in Heydari and Taeri
(2007b). We state only the main result as a theorem asfollows:

Theorem 13.2.26 (Heydari and Taeri 2007b) The Wiener index of TUC4C8.S/ D
G is given by the following equation:

Wv.G/ D
8
<̂

:̂

pq

3

�
2q3 C 8pq .3p C q/ � 2q � 8p�; q � p

p2

3

��2p3 C 8qp2 C �
12q2 C 2

�
p C 16q3 � 12q

�C; q > p

Lemma 13.2.27 LetTUC4C8.S/ D G. Then,

If p is even:
X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D2

d.x; y/ D

8
<

:
q2 C 2q C 2pq C 4p2 � p � 2 � 2

�
2p � 2q C 1

4

�
; q � p

4pq C 3p2 � 2p � 1; q > p

If p is odd:
X

x2V.G/
deg.x/D2

X

y2V.G/
deg.y/D2

d.x; y/ D

8
<̂

:̂

q2 C q C 2pq C 2p2 � 3p C 8
hp
2

i
C 8

hp
2

i2 � 2
�
2p � 2q C 1

4

�
; q � p

4pq C p2 � 2p C 8
hp
2

i
C 8

hp
2

i2
; q > p

Proof There exist two groups of vertices which have degree 2. One group is vertices
in the first row and another is the vertices in the last row.

Due to the fact that the situation of all vertices with degree 2 is the same, we
suppose the fix vertex x is in first row. Then, we have for the first group:
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X

y2V .T .p;q//
y is in first row
deg.y/D2

d.x; y/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0

@
p�2
2P

kD0
.16k C 16/

1

A � .4p C 1/ ; p is even

h
p�2
2

i

P

kD0
.16k C 16/; p is odd

:

And we have for the second group:

(a) p is even:

X

y2V.T .p;q//
y is in last row
deg.y/D2

d.x; y/ D

8
ˆ̂
<̂

ˆ̂̂
:

3q�1P
iD2q

.2i/C
2pCq�1P

iD3q�1
.i/� 2

	�
2p � 2q � 3

4

�
C 1



� q; q � p

2qCp�1P

iD2q
.2i/ � p; q > p

(b) p is odd:

X

y2V.T .p;q//
y is in last row
deg.y/D2

d.x; y/ D

8
ˆ̂
<̂

ˆ̂
:̂

3q�1P

iD2q
.2i/C

2pCq�1P

iD3q�1
.i/ � 2

�
2p � 2q � 4

4

�
� 2p � 2q � 3; q � p

2qCp�1P

iD2q
.2i/ � p; q > p

Therefore, we can get results with the above summations.

Observation 13.2.28 The number of elements of A3 is equal to: 4p

	
q

2



C

.q � 1/

	
2p

2



.

Due to the fact that the number of edges in TUC4C8.S/ is 6pq� 2p, we state the
first edge-Wiener index of TUC4C8.S/.
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Theorem 13.2.29 The first version of edge-Wiener index of TUC4C8.S/ D G is
equal to:

1. If p is even:

We0 .T .p; q// D
8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

3

2
pq4 C 18p3q2 C 6p2q3 � pq2

2
� 8p2q C 6p3q C 3p2q2 � 6pq C pq3�

q2 � 2q � 5p2 C 2p C 2C 2

�
2p � 2q C 1

4

�
; q � p

15

2
p5 C 6p4q C 3p3

2
C 12p2q3 � 11p2q C 3p3q C 6p2q2 � 7pq � 4p2C

3p C pq2 C 1; q > p

2. If p is odd:

We0 .T .p; q// D
8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

3

2
pq4 C 18p3q2 C 6p2q3 � pq2

2
� 8p2q C 6p3q C 3p2q2 � 6pq C pq3�

q2 � q � 3p2 C 2

�
2p � 2q C 1

4

�
� 8

hp
2

i
� 8

hp
2

i2
; q � p

15

2
p5 C 6p4q C 3p3

2
C 12p2q3 � 11p2q C 3p3q C 6p2q2 � 7pq � 2p2C

3p C pq2 � 8
hp
2

i
� 8

hp
2

i2
; q > p

Proof According to Lemmas 13.2.25 and 13.2.27, Theorem 13.2.26 and observa-
tion 13.2.28, we can conclude these results easily.

Now, In this part, we compute the second edge-Wiener index of TUC4C8.S/.

Theorem 13.2.30 The second version of edge-Wiener index of TUC4C8.S/ D
G where p is the number of squares in a row and q is the number of rows is
equal to:

1. If p is even, then

We0 .T.p; q// D
8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂̂
:

3

2
pq4 C 18p3q2 C 6p2q3 � pq2

2
� 22p2q C 6p3q C 21p2q2 � 6pq C pq3�

2pq2 � q2 � 2q � p2 C 2p C 2C 2

�
2p � 2q C 1

4

�
; q � p

15

2
p5 C 6p4q C 3p3

2
C 12p2q3 � 25p2q C 3p3q C 24p2q2 � 7pqC

3p � pq2 C 1; q > p
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Fig. 13.5 T .6; 4/ nanotube
with 1 � j � 4 periods

2. If p is odd, then

We0 .T.p; q// D
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:̂

3

2
pq4 C 18p3q2 C 6p2q3 � pq2

2
� 22p2q C 6p3q C 21p2q2 � 6pq C pq3�

2pq2 � q2 � q C p2 C 2

�
2p � 2q C 1

4

�
� 8

hp
2

i
� 8

hp
2

i2
; q � p

15

2
p5 C 6p4q C 3p3

2
C 12p2q3 � 25p2q C 3p3q C 24p2q2 � 7pq C 2p2C

3p � pq2 � 8
hp
2

i
� 8

hp
2

i2
; q > p

Proof The number of edges of TUC4C8.S/ nanotube with p squares in a row and q
rows is 6pq � 2p. In molecular graph of this nanotube, we have E.G/ D A1 [ A3
and

jA3j D 4p

	
q

2



C .q � 1/

	
2p

2



:

Therefore, according to reference Heydari and Taeri (2007a, b) and jA1j D
18p2q2 � 14p2q C 4p2 � 2pq2, We4.G/ is computed easily.

In the above, we computed the first edge-Wiener index of TUC4C8 .S/ nanotube
by the result obtained in Iranmanesh and Khormali (2011). But, in Iranmanesh and
Kafrani (2009), we computed this index with a different method. The base of this
method is according to the definition of eight sets as follows:

Let T .p; q/ D TUC4C8 .S/ where p is denoted the number of octagonal in
rows and q is the number of octagons in columns. We consider j periods, where
1 � j � q, for this nanotube that each period has an upper row and a lower row.
For example in Fig. 13.5, we show T .6; 4/ nanotube.



13 The Edge-Wiener Index and Its Computation for Some Nanostructures 445

Suppose e 2 E.G/. Set

A u D
q[

jD1
fe 2 E.G/ j e is an edge over octagones in upper row of j � th periodg

Ad D
q[

jD1
fe 2 E.G/ j e is an edge over squares in lower row of j � th periodg

B u D
q[

jD1
fe 2 E.G/ j e is an edge under octagones in upper row of j � th periodg

Bd D
q[

jD1
fe 2 E.G/ j e is an edge under squares in lower row of j � th periodg

Cu D
q[

jD1
fe 2 E.G/ j e is an oblique edge in upper row of j � th periodg

Cd D
q[

jD1
fe 2 E.G/ j e is an oblique edge in lower row of j � th periodg

D D
q[

jD1
fe 2 E.G/ e is a vertical edge that located between upper and lower rowsg

E D
q�1[

jD1
fe 2 E.G/je is vertical edge that located between j � th period and

j C 1� th periodg
So we have

We0.G/ D We0 .Au; G/CWe0 .Ad ;G/CWe0 .Bu; G/CWe0 .Bd ;G/CWe0

.Cu; G/CWe0 .Cd ;G/CWe0 .D;G/CWe0 .E;G/

For compute the first edge index of T UC4C8.S/ nanotube, we obtained this
index in three cases: q � �

p

2

� C 1, q D �
p

2

� C 1, and q  �
p

2

� C 1 any by six
theorems we could obtain the first edge-Wiener index of T UC4C8.S/ nanotube.

13.3 Computation of the First Edge-Wiener Index
of the Composition of Graphs

In this section, we find the first edge-Wiener index of the composition of graphs. All
of the results in this section have been published in Azari et al. (2010).



446 A. Iranmanesh

We denote by Œu; v� the edge connecting the vertices u, v of G, and the degree of
a vertex u is the number of edges incident to u and denoted by deg .u jG /.

The Zagreb indices have been defined more than 30 years ago by Gutman and
Trinajestic (1972):

Definition 13.3.1 The first Zagreb index of G is defined as M1.G/ DP

u2V.G/
deg .u jG /2.

Let us recall the definition of the composition of two graphs.

Definition 13.3.2 LetG1 D .V .G1/ ; E .G1// andG2 D .V .G2/ ; E .G2// be two
connected graphs. We denote the composition of G1 and G2 by G1 ŒG2�, that is a
graph with the vertex set V .G1 ŒG2�/ D V .G1/ � V .G2/ and two vertices .u1; u2/
and .v1; v2/ of G1 ŒG2� are adjacent if and only if: Œu1 D v1 and Œu2; v2� 2 E .G2/�
or Œu1; v1� 2 E .G1/.

By definition of the composition, the distance between every pair of distinct
vertices u D .u1; u2/ and v D .v1; v2/ of G1 ŒG2� is equal to

d .u; v jG1 ŒG2� / D
8
<

:

d .u1; v1 jG1 / if u1 ¤ v1
1 if u1 D v1; Œu2; v2� 2 E .G2/
2 if u1 D v1; v2 is not adjacent to u2 in G2

Consider the sets E1 and E2 as follows:

E1 D fŒ.u1; u2/ ; .u1; v2/� 2 E .G1 ŒG2�/ W u1 2 V .G1/ ; Œu2; v2� 2 E .G2/g
E2 D fŒ.u1; u2/ ; .v1; v2/� 2 E .G1 ŒG2�/ W Œu1; v1� 2 E .G1/ ; u2; v2 2 V .G2/g

By definition of the composition, E1 [ E2 D E .G1 ŒG2�/ and obviously, E1 \
E2 D ', jE1j D jV .G1/j jE .G2/j and jE2j D jV .G2/j2 jE .G1/j.

Set

A D ffe; f g � E .G1 ŒG2�/ W e ¤ f; e; f 2 E1g
B D ffe; f g � E .G1 ŒG2�/ W e ¤ f; e; f 2 E2g
C D ffe; f g � E .G1 ŒG2�/ W e 2 E1; f 2 E2g

It is easy to see that each pair of the above sets is disjoint and the union of
them is the set of all two element subsets of E .G1 ŒG2�/. Also we have jAj D	 jE1j

2



D

	 jV .G1/j jE .G2/j
2



, jBj D

	 jE2j
2



D

	 jV .G2/j2 jE .G1/j
2



,

jC j D jE1j jE2j D jV .G1/j jV .G2/j2 jE .G1/j jE .G2/j
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Consider four subsets A1;A2; A3 and A4 of the set A as follows:

A1 D ffe; f g 2 A W e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; u2/ ; .u1; z2/� ; u1 2 V .G1/ ;
u2; v2; z2 2 V .G2/g

A2 D ffe; f g 2 A W e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; z2/ ; .u1; t2/� ; u1 2 V .G1/ ;
u2; v2; z2; t2 2 V .G2/ ; both z2 and t2 are adjacent neither to u2 nor to v2

in G2g
A3 D ffe; f g 2 A W eD Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; z2/ ; .u1; t2/� ; u1 2 V .G1/ ;

u2; v2 2 V .G2/ ; z2; t2 2 V .G2/� fu2; v2gg � A2

A4 D ffe; f g 2 A W eD Œ.u1; u2/ ; .u1; v2/� ; fD Œ.v1; z2/ ; .v1; t2/� ; u1; v12V .G1/ ;
v1 ¤ u1; u2; v2; z2; t2 2 V .G2/g

It is clear that every pair of the above sets is disjoint and A D
4S

iD1
Ai .

In the next proposition, we characterize d0 .e; f jG1 ŒG2�/ for all fe; f g 2 A.

Proposition 13.3.3 Let fe; f g 2 A.

(i) If fe; f g 2 A1, then d0 .e; f jG1 ŒG2�/ D 1

(ii) If fe; f g 2 A2, then d0 .e; f jG1 ŒG2�/ D 3

(iii) If fe; f g 2 A3, then d0 .e; f jG1 ŒG2�/ D 2

(iv) If fe; f g 2 A4, then d0 .e; f jG1 ŒG2�/ D 1C d .u1; v1 jG1 /,
where e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.v1; z2/ ; .v1; t2/�

Proof

(i) Let fe; f g 2 A1 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; u2/ ; .u1; z2/�. Due to
the distance between two vertices in G1 ŒG2� and by definition of d0 .e; f /, we
have

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; u2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .u1; z2/ jG1 ŒG2� / ;

d ..u1; v2/ ; .u1; u2/ jG1 ŒG2� / ; d ..u1; v2/ ; .u1; z2/ jG1 ŒG2� /g
D 1C min f0; 1; 1; d .v2; z2 jG2 /g D 1C 0 D 1:

(ii) Let fe; f g 2 A2 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; z2/ ; .u1; t2/�. By
definition of the set A2, z2 is adjacent neither to u2 nor to v2 in G2 and this
is also true for t2. Therefore,
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d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; z2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / ;

d ..u1; v2/ ; .u1; z2/ jG1 ŒG2� / ; d ..u1; v2/ ; .u1; t2/ jG1 ŒG2� /g
D 1C min f2; 2; 2; 2g D 3:

(iii) Let fe; f g 2 A3 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; z2/ ; .u1; t2/�. By
definition of the set A3, z2 … fu2; v2g ; t2 … fu2; v2g. On the other hand
fe; f g … A2, so at least one of the following situations occurs:

Œu2; z2� 2 E .G2/ ; Œu2; t2� 2 E .G2/ ; Œv2; z2� 2 E .G2/ or Œv2; t2� 2 E .G2/ :

This means that at least one of the distances d ..u1; u2/ ; .u1; z2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / ; d ..u1; v2/ ; .u1; z2/ jG1 ŒG2� / or d ..u1; v2/ ;
.u1; t2/ jG1 ŒG2� / is equal to 1. Therefore,

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; z2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / ;

d ..u1; v2/ ; .u1; z2/ jG1 ŒG2� / ; d ..u1; v2/ ; .u1; t2/ jG1 ŒG2� /g D 1C 1 D 2:

(iv) Let fe; f g 2 A4 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.v1; z2/ ; .v1; t2/�. Thus
v1 ¤ u1 and

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .v1; z2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .v1; t2/ jG1 ŒG2� / ;

d ..u1; v2/ ; .v1; z2/ jG1 ŒG2� / ; d ..u1; v2/ ; .v1; t2/ jG1 ŒG2� /g D
1C min fd .u1; v1 jG1 / ; d .u1; v1 jG1 / ; d .u1; v1 jG1 / ;
d .u1; v1 jG1 /g D 1C d .u1; v1 jG1 / ;

so the proof is completed.

In the following, we define five subsets B1;B2; B3; B4 and B5 of the set B .

B1 D ffe; f g 2 B W e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; u2/ ; .v1; z2/� ;

u1; v1 2 V .G1/ ; u2; v2; z2 2 V .G2/g
B2 D ffe; f g 2 B W e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; z2/ ; .v1; t2/� ;

u1; v1 2 V .G1/ ; u2; v2; z2; t2 2 V .G2/ ; z2 ¤ u2; t2 ¤ v2g
B3 D ffe; f g 2 B W e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; u2/ ; .z1; z2/� ;

u1; v1; z1 2 V .G1/ ; u2; v2; z2 2 V .G2/ ; z1 ¤ v1g
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B4 D ffe; f g 2 B W e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; t2/ ; .z1; z2/� ;

u1; v1; z1 2 V .G1/ ; u2; v2; t2; z2 2 V .G2/ ; z1 ¤ v1; t2 ¤ u2g
B5 D ffe; f g 2 B W e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.z1; z2/ ; .t1; t2/� ;

u1; v1 2 V .G1/ ; z1; t1 2 V .G1/ � fu1; v1g ; u2; v2; z2; t2 2 V .G2/g

It is clear that each pair of the above sets is disjoint and B D
5S

iD1
Bi .

The next proposition characterizes d0 .e; f jG1 ŒG2�/ for all fe; f g 2 B .

Proposition 13.3.4 Let fe; f g 2 B .

(i) If fe; f g 2 B1, then d0 .e; f jG1 ŒG2�/ D 1

(ii) If fe; f g 2 B2, then d0 .e; f jG1 ŒG2�/ D 2

(iii) If fe; f g 2 B3, then d0 .e; f jG1 ŒG2�/ D d0 .Œu1; v1� ; Œu1; z1� jG1 /,
where e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; u2/ ; .z1; z2/�

(iv) If fe; f g 2 B4, then d0 .e; f jG1 ŒG2�/ D d0 .Œu1; v1� ; Œu1; z1� jG1 /C 1,
where e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; t2/ ; .z1; z2/�

(v) If fe; f g 2 B5, then d0 .e; f jG1 ŒG2�/ D d0 .Œu1; v1� ; Œz1; t1� jG1 /,
where e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.z1; z2/ ; .t1; t2/�

Proof

(i) Let fe; f g 2 B1 and e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; u2/ ; .v1; z2/�.
Using the definition of d0 .e; f /, we have:

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; u2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .v1; z2/ jG1 ŒG2� / ;

d ..v1; v2/ ; .u1; u2/ jG1 ŒG2�/ ; d ..v1; v2/ ; .v1; z2/ jG1 ŒG2� /g
D 1C min f0; 1; 1; d ..v1; v2/ ; .v1; z2/ jG1 ŒG2� /g D 1C 0 D 1:

(ii) Let fe; f g 2 B2 and e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; z2/ ; .v1; t2/�. By
definition of B2, z2 ¤ u2; t2 ¤ v2. So due to the distance between
two vertices in G1 ŒG2�, the distances d ..u1; u2/ ; .u1; z2/ jG1 ŒG2� / and
d ..v1; v2/ ; .v1; t2/ jG1 ŒG2� / are either 1 or 2. Therefore,

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; z2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .v1; t2/ jG1 ŒG2� / ;

d ..v1; v2/ ; .u1; z2/ jG1 ŒG2� / ; d ..v1; v2/ ; .v1; t2/ jG1 ŒG2� /g D
1C min fd ..u1; u2/ ; .u1; z2/ jG1 ŒG2� / ; 1; 1; d ..v1; v2/ ; .v1; t2/ jG1 ŒG2� /g

D 1C 1 D 2:
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(iii) Let fe; f g 2 B3 and e D Œ.u1; u2/ ; .v1; v2/� ; f D ..u1; u2/ ; .z1; z2//. By
definition of B3, z1 ¤ v1. Hence,

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; u2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .z1; z2/ jG1 ŒG2� / ;

d ..v1; v2/ ; .u1; u2/ jG1 ŒG2� / ; d ..v1; v2/ ; .z1; z2/ jG1 ŒG2� /g D
1C min fd .u1; u1 jG1 / d .u1; z1 jG1 / ; d .v1; u1 jG1 / ; d .v1; z1 jG1 /g

D d0 .Œu1; v1� ; Œu1; z1� jG1 /

(iv) Let fe; f g 2 B4 and e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; t2/ ; .z1; z2/�. By
definition of B4, z1 ¤ v1, and t2 ¤ u2. So d .v1; z1 jG1 / � 1 and
d ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / � 1. Therefore,

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .z1; z2/ jG1 ŒG2� / ;

d ..v1; v2/ ; .u1; t2/ jG1 ŒG2� / ; d ..v1; v2/ ; .z1; z2/ jG1 ŒG2� /g D
1C min fd ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / ; 1; 1; d .v1; z1 jG1 /g

D 1C 1 D d0 .Œu1; v1� ; Œu1; z1� jG1 /C 1:

(v) Let fe; f g 2 B5 and e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.z1; z2/ ; .t1; t2/�. By
definition of B5, z1 ¤ u1, z1 ¤ v1, t1 ¤ u1, and t1 ¤ v1. So the edges Œu1; v1�
and Œz1; t1� of G1 are distinct. Therefore,

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .z1; z2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .t1; t2/ jG1 ŒG2� / ;

d ..v1; v2/ ; .z1; z2/ jG1 ŒG2� / ; d ..v1; v2/ ; .t1; t2/ jG1 ŒG2� /g D
1C min fd .u1; z1 jG1 / ; d .u1; t1 jG1 / ; d .v1; z1 jG1 / ; d .v1; t1 jG1 /g

D d0 .Œu1; v1� ; Œz1; t1� jG1 / ;

and the proof is completed.

Now, we consider three subsets C1; C2 and C3 of the set C as follows:

C1 D ffe; f g 2 C W e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; u2/ ; .z1; z2/� ;

u1; z1 2 V .G1/ ; u2; v2; z2 2 V .G2/g
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C2 D ffe; f g 2 C W e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; t2/ ; .z1; z2/� ;

u1; z1 2 V .G1/ ; u2; v2; t2; z2 2 V .G2/ ; t2 ¤ u2; t2 ¤ v2g
C3 D ffe; f g 2 C W e D Œ.u1; u2/ ; .u1; t2/� ; f D Œ.v1; v2/ ; .z1; z2/� ;

u1; v1; z1 2 V .G1/ ; u2; t2; v2; z2 2 V .G2/ ; v1 ¤ u1; z1 ¤ u1g

Clearly, every pair of the above sets is disjoint and C D
3S

iD1
Ci .

In the following proposition, we find d0 .e; f jG1 ŒG2� / for all fe; f g 2 C .

Proposition 13.3.5 Let fe; f g 2 C .

(i) If fe; f g 2 C1, then d0 .e; f jG1 ŒG2�/ D 1

(ii) If fe; f g 2 C2, then d0 .e; f jG1 ŒG2�/ D 2

(iii) If fe; f g 2 C3, then d0 .e; f jG1 ŒG2� / D 1 C min fd .u1; v1 jG1 / ;
d .u1; z1 jG1 /g, where e D Œ.u1; u2/ ; .u1; t2/� ; f D Œ.v1; v2/ ; .z1; z2/�

Proof

(i) Let fe; f g 2 C1 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; u2/ ; .z1; z2/�.
By definition of d0 .e; f /, we have

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; u2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .z1; z2/ jG1 ŒG2� / ;

d ..u1; v2/ ; .u1; u2/ jG1 ŒG2� / ; d ..u1; v2/ ; .z1; z2/ jG1 ŒG2� /g
D 1C min f0; 1; 1; 1g D 1C 0 D 1:

(ii) Let fe; f g 2 C2 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.u1; t2/ ; .z1; z2/�. By
definition of C2, t2 ¤ u2; t2 ¤ v2. Thus, due to the distance between
two vertices in G1 ŒG2�, the distances d ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / and
d ..u1; v2/ ; .u1; t2/ jG1 ŒG2� / are either 1 or 2. So

d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .z1; z2/ jG1 ŒG2� / ;

d ..u1; v2/ ; .u1; t2/ jG1 ŒG2� / ; d ..u1; v2/ ; .z1; z2/ jG1 ŒG2� /g D
1C min fd ..u1; u2/ ; .u1; t2/ jG1 ŒG2� / ; 1; d ..u1; v2/ ; .u1; t2/ jG1 ŒG2� / ; 1g

D 1C 1 D 2:

(iii) Let fe; f g 2 C3 and e D Œ.u1; u2/ ; .u1; t2/� ; f D Œ.v1; v2/ ; .z1; z2/�. By
definition of C3, v1 ¤ u1; z1 ¤ u1. Therefore,
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d0 .e; f jG1 ŒG2� / D 1C min fd ..u1; u2/ ; .v1; v2/ jG1 ŒG2� / ;
d ..u1; u2/ ; .z1; z2/ jG1 ŒG2� / ;

d ..u1; t2/ ; .v1; v2/ jG1 ŒG2� / ; d ..u1; t2/ ; .z1; z2/ jG1 ŒG2� /g D
1C min fd .u1; v1 jG1 / ; d .u1; z1 jG1 / ; d .u1; v1 jG1 / ; d .u1; z1 jG1 /g D
1C min fd .u1; v1 jG1 / ; d .u1; z1 jG1 /g ;

and the proof is completed.

Definition 13.3.6 Let G D .V .G/;E.G// be a graph.

(i) Let u 2 V.G/. Set �u D fz 2 V.G/ W Œz; u� 2 E.G/g. In fact, �u is the set of
all vertices of G, which are adjacent to u. Suppose that ıu is the number of all
vertices of G, which are adjacent to u. Clearly, ıu D j�uj D deg .u jG / :

(ii) For each pair of distinct vertices u; v 2 V.G/, let ı.u;v/ be the number of
all vertices of G, which are adjacent both to u and v. Obviously, ı.u;v/ D
j�u \�vj.

(iii) Let u, v, and z be three vertices of G, which every pair of them is distinct.
Assume that ı.u;v;z/ denotes the number of all vertices of G which are

adjacent to vertices u, v and z. It is easy to see that ı.u;v;z/ D j�u \�v \�zj.
(iv) Suppose that u, v and z be three vertices of graph G, which every pair of them

is distinct. Denote byN.z;Qu;Qv/ the number of all vertices of G, which are adjacent
to z, but neither to u nor to v. By the definition of N.z;Qu;Qv/, we have

N.z;Qu;Qv/ D j�z � .�u [�v/j D j�zj � j�z \ .�u [�v/j
D j�zj � j.�z \�u/ [ .�z \�v/j D

j�zj � .j�z \�uj C j�z \�vj � j�z \�u \�vj/
D ız � ı.z;u/ � ı.z;v/ C ı.z;u;v/:

Lemma 13.3.7

X

fe;f g2A
d0 .e; f jG1 ŒG2� / D jE .G2/j2

		 jV .G1/j C 1

2



CW .G1/




� 1

4
jV .G1/j .2M1 .G2/ �N .G2// ;

where, N .G2/ D P

Œu2;v2�2E.G2/
P

z22V .G2/�.�u2[�v2 /
N.z2;Qu2;Qv2/.

Proof At first, we need to find jA2j and jA2 [ A3j. It is easy to see that
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jA2j D 1

4
jV .G1/j

X

Œu2;v2�2E.G2/

X

z22V .G2/�.�u2[�v2 /

N.z2;Qu2;Qv2/ D 1

4
jV .G1/jN .G2/ ;

jA2 [ A3j D 1

2
jV .G1/j

X

Œu2;v2�2E.G2/
.jE .G2/j � .ıu2 C ıv2 � 1// D

1

2
jV .G1/j

0

@
X

Œu2;v2�2E.G2/
jE .G2/j �

X

Œu2;v2�2E.G2/
.ıu2 C ıv2/C

X

Œu2;v2�2E.G2/
1

1

A D

1

2
jV .G1/j

�
jE .G2/j2 C jE .G2/j �M1 .G2/

�
;

Recall that, each pair of the sets Ai .1 � i � 4/ is disjoint and A D
4S

iD1
Ai ,

then by
Proposition 13.3.3, we have

X

fe;f g2A
d0 .e; f jG1 ŒG2� / D

4X

iD1

X

fe;f g2Ai
d0 .e; f jG1 ŒG2�/

D jA1j C 3 jA2j C 2 jA3j C
X

f1C d .u1; v1 jG1 / W fe; f g 2 A4; e D Œ.u1; u2/ ; .u1; v2/� ;

f D Œ.v1; z2/ ; .v1; t2/�g D jA1j C 3 jA2j C 2 jA3j C jA4j C
X

fd .u1; v1 jG1 / W fe; f g 2 A4; eD Œ.u1; u2/ ; .u1; v2/� ; f D Œ.v1; z2/ ; .v1; t2/�g D
4X

iD1
jAi j C .jA2j C jA3j/C jA2j C jE .G2/j2

X

fu1;v1g	V .G1/
d .u1; v1 jG1 / D

ˇ̌
ˇ
ˇ
ˇ

4[

iD1
Ai

ˇ̌
ˇ
ˇ
ˇ
C jA2 [ A3j C jA2j C jE .G2/j2W .G1/ D jAj C jA2 [A3j C jA2j

C jE .G2/j2W .G1/ D
	 jV.G1/j jE.G2/j

2



C 1

2
jV .G1/j

�
jE.G2/j2 C jE.G2/j �M1 .G2/

�

C 1

4
jV .G1/jN .G2/C jE .G2/j2W .G1/ D

1

2

�
jV .G1/j2jE .G2/j2 � jV .G1/j jE .G2/j C jV .G1/j jE .G2/j2

C jV .G1/j jE .G2/j/�
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1

2
jV .G1/jM1 .G2/C 1

4
jV .G1/jN .G2/C jE .G2/j2W .G1/ D

jE .G2/j2
		 jV .G1/j C 1

2



CW .G1/



� 1

4
jV .G1/j .2M1 .G2/�N .G2// :

Lemma 13.3.8
P

fe;f g2B
d0 .e; f jG1 ŒG2� / D jV .G2/j2

	 jV.G2/j
2



M1 .G1/ C

jV .G2/j4We0 .G1/

Proof For the proof of this lemma, we need to obtain jB1j ; jB2j, and jB4j. It is easy
to see that:

jB1j D 2 jE .G1/j jV .G2/j
	 jV.G2/j

2



; jB2jD2 jE .G1/j

	 jV.G2/j
2


2
;

jB4j D jV .G2/j3 .jV .G2/j � 1/
X

u12V.G1/

	
ıu1

2



D jV .G2/j2

	 jV.G2/j
2




.M1 .G1/ � 2 jE .G1/j/ :
Afterwards, we find

P

fe;f g2B3[B4[B5
d0 .e; f jG1 ŒG2� /. By Proposition 13.3.3, we

have

X

fe;f g2B3
d0 .e; f jG1 ŒG2� / D

X
fd0 .Œu1; v1� ; Œu1; z1� jG1 / W

fe; f g 2 B3; e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; u2/ ; .z1; z2/�g Dg
jV .G2/j3

X

u12V .G1/

X

fŒu1;v1�;Œu1;z1�g	E.G1/
d0 .Œu1; v1� ; Œu1; z1� jG1 /

D 1

2
jV .G2/j3

X

Œu1;v1�2E.G1/

X

z12fu1;v1g;
Œz1;t1�2E.G1/

d0 .Œu1; v1� ; Œz1; t1� jG1 /;

X

fe;f g2B4
d0 .e; f jG1 ŒG2� / D

X
fd0 . Œu1; v1� ; Œu1; z1�jG1/C 1 W fe; f g 2 B4;

e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.u1; t2/ ; .z1; z2/�g D
�
jV .G2/j4�jV .G2/j3

� X

u12V .G1/

X

fŒu1;v1�;Œu1;z1�g	E.G1/
d0 .Œu1; v1� ; Œu1; z1� jG1 /C jB4jD

1

2

�
jV .G2/j4 � jV .G2/j3

� X

Œu1;v1�2E.G1/

X

z12fu1;v1g;
Œz1;t1�2E.G1/

d0 .Œu1; v1� ; Œz1; t1� jG1 /C jB4j;
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X

fe;f g2B5
d0 .e; f jG1ŒG2� / D

X
fd0 .Œu1; v1� ; Œz1; t1� jG1 / W

fe; f g 2 B5; e D Œ.u1; u2/ ; .v1; v2/� ; f D Œ.z1; z2/ ; .t1; t2/�g D
1

2
jV .G2/j4

X

Œu1;v1�2E.G1/

X

Œz1;t1�2E.G1/;
z1;t1…fu1;v1g

d0 .Œu1; v1� ; Œz1; t1� jG1 /:

Based on the above computations and since each pair of Bi.1 � i � 5/ is
disjoint, we have

X

fe;f g2B3[B4[B5
d0 .e; f jG1 ŒG2� / D

5X

iD3

X

fe;f g2Bi
d0 .e; f jG1 ŒG2� / D

1

2
jV .G2/j3

X

Œu1;v1�2E.G1/

X

z12fu1;v1g;
Œz1;t1�2E.G1/

d0 .Œu1; v1� ; Œz1; t1� jG1 /C

1

2

�
jV .G2/j4�jV .G2/j3

� X

Œu1;v1�2E.G1/

X

z12fu1;v1g;
Œz1;t1�2E.G1/

d0 .Œu1; v1� ; Œz1; t1� jG1 /C jB4j C

1

2
jV .G2/j4

X

Œu1;v1�2E.G1/

X

Œz1;t1�2E.G1/;
z1;t1…fu1;v1g

d0 .Œu1; v1� ; Œz1; t1� jG1 / D

1

2
jV .G2/j4

X

Œu1;v1�2E.G1/

X

z12fu1;v1g;
Œz1;t1�2E.G1/

d0 .Œu1; v1� ; Œz1; t1� jG1 /C jB4j C

1

2
jV .G2/j4

X

Œu1;v1�2E.G1/

X

Œz1;t1�2E.G1/;
z1;t1…fu1;v1g

d0 .Œu1; v1� ; Œz1; t1� jG1 / D

jB4j C 1

2
jV .G2/j4 .2We0 .G1// D jB4j C jV .G2/j4We0 .G1/ :

Now, since B D
5S

iD1
Bi , we have

X

fe;f g2B
d0 .e; f jG1 ŒG2� / D

X

fe;f g2B1
d0 .e; f jG1 ŒG2� /C

X

fe;f g2B2
d0 .e; f jG1 ŒG2� /C

X

fe;f g2B3[B4[B5
d0 .e; f jG1 ŒG2� / D
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jB1j C 2 jB2j C jB4j C jV.G2/j4We0 .G1/

D 2 jE .G1/j
	 jV.G2/j

2


	
jV .G2/j C 2

	 jV.G2/j
2



� jV .G2/j2



C

jV .G2/j2
	 jV.G2/j

2



M1 .G1/C jV .G2/j4We0 .G1/

D jV .G2/j2
	 jV.G2/j

2



M1 .G1/C jV .G2/j4We0 .G1/:

Lemma 13.3.9
P

fe;f g2C
d0 .e; f jG1 ŒG2� / D jE .G1/j jE .G2/j jV .G2/j .jV .G1/j

jV .G2/j C 2 jV .G2/j � 4/C jE .G2/j jV .G2/j2Min .G1/
where, Min .G1/ D P

u12V .G1/
P

Œv1;z1�2E.G1/
min fd .u1; v1jG 1/ ; d .u1; z1 jG1 /g

Proof First, we find jC2j and
P

fe;f g2C3
d0 .e; f jG1 ŒG2� /. It is easy to see that

jC2j D jV .G2/j .jV .G2/j � 2/ jE .G2/j
�

X

u12V.G1/
ıu1 D 2 jE .G1/j jE .G2/j jV .G2/j .jV .G2/j � 2/;

and by Proposition 13.3.5, we have

X

fe;f g2C3
d0 .e; f jG1 ŒG2� /

D
X

f1C min fd .u1; v1 jG1 / ; d .u1; z1 jG1 / W
� fe; f g 2 C3; e D Œ.u1; u2/ ; .u1; t2/�; f D Œ.v1; v2/ ; .z1; z2/�g

D jC3jCjE .G2/j jV .G2/j2
X

u12V .G1/

X

Œv1;z1�2E.G1/
v1¤z1;z¤1u1

min fd .u1; v1jG 1/ ; d .u1; z1 jG1 /g

DjC3jCjE .G2/j jV .G2/j2
X

u12V .G1/

X

Œv1;z1�2E.G1/
min fd .u1; v1jG 1/ ; d .u1; z1 jG1 /g

DjC3j C jE .G2/j jV .G2/j2Min .G1/:

Since each pair of the sets Ci .1 � i � 3/ is disjoint and C D
3S

iD1
Ci , we have
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X

fe;f g2C
d0 .e; f jG1ŒG2� / D

X

fe;f g2C1[C2
d0 .e; f jG1ŒG2� /

C
X

fe;f g2C3
d0 .e; f jG1ŒG2� /

D jC1j C 2 jC2j C jC3j C jE.G2/j jV .G2/j2Min .G1/

D
3X

iD1
jCi j C jC2j C jE .G2/j jV .G2/j2Min .G1/

D
ˇ
ˇ̌
ˇ
ˇ

3[

iD1
Ci

ˇ
ˇ̌
ˇ
ˇ
C jC2j C jE .G2/j jV .G2/j2Min .G1/

D jC j C jC2j C jE .G2/j jV .G2/j2Min .G1/

D jV .G1/j jV .G2/j2 jE .G1/j jE .G2/j
C 2 jE .G1/j jE .G2/j jV .G2/j .jV .G2/j�2/
C jE .G2/j jV .G2/j2Min .G1/

D jE .G1/j jE .G2/j jV .G2/j .jV .G1/j jV .G2/j C 2 jV .G2/j � 4/
C jE .G2/j jV .G2/j2Min .G1/:

Now, as the main purpose of this section, we express Theorem 13.3.10, which
characterizes the first edge Wiener index of the composition of two graphs.

Theorem 13.3.10 LetG1 D .V .G1/; E .G1// and G2 D .V .G2/; E .G2// be two
simple undirected connected finite graphs, then

We0 .G1 ŒG2�/ D jE .G2/j2
	 jV .G1/j C 1

2




C jE .G1/j jE .G2/j jV .G2/j .jV .G1/j jV .G2/j C 2 jV .G2/j � 4/

C jE .G2/j2W .G1/C jV .G2/j4We0 .G1/C jV .G2/j2
	 jV.G2/j

2




M1 .G1/C jE .G2/j jV .G2/j2Min .G1/� 1

4
jV .G1/j .2M1 .G2/�N .G2//;

where Min .G1/ D P

u12V.G1/
P

Œv1;z1�2E.G1/
min fd .u1; v1jG 1/ ; d .u1; z1 jG1 /g and

N .G2/ D P

Œu2;v2�2E.G2/
P

z22V .G2/�.�u2[�v2 /
N.z2;Qu2;Qv2/.
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Proof Remember that each pair of the sets A, B, and C is disjoint, and union of
them is the set of all two element subsets of E .G1 ŒG2�/. Now, using the definition
of the first edge-Wiener index, we obtain that

We0 .G1 ŒG2�/ D
X

fe;f g	E.G1ŒG2�/
d0 .e; f jG1 ŒG2�/ D

X

fe;f g2A
d0 .e; f jG1 ŒG2�/

C
X

fe;f g2B
d0 .e; f jG1 ŒG2�/C

X

fe;f g2C
d0 .e; f jG1 ŒG2�/:

Now, by the above lemmas, the proof is completed.

13.4 Computation of the Edge Wiener Indices
of the Sum of Graphs

In this section, we find the edge-Wiener indices of the sum of graphs. Then as
an application of our results, we find the edge-Wiener indices of graphene, C4 -
nanotubes and C4 – nanotori. All of the results in this section have been published
in Azari and Iranmanesh (2011).

At first, we give the definition of sum of two graphs.

Definition 13.4.1 Let G1 D .V .G1/ ; E .G1// and G2 D .V .G2/ ; E .G2//

be connected graphs. The sum of G1 and G2 is denoted by G1 C G2, that
is, a graph with the vertex set V.G1/ � V.G2/ and two vertices .u1; u2/ and
.v1; v2/ of G1 C G2 are adjacent if and only if Œu1 D v1 and Œu2; v2� 2 E .G2/� or
Œu2 D v2 and Œu1; v1� 2 E .G1/�.
Theorem 13.4.2 (Stevanovic 2001) Let G1D .V .G1/ ; E .G1// and G2 D
.V .G2/ , E .G2// be two connected graphs. The distance between two
vertices.u1; u2/ and .v1; v2/ of G1CG2 is equal to d ..u1; u2/ ; .v1; v2/ jG1 CG2 / D
d .u1; v1 jG1 /C d .u2; v2 jG2 /.

In order to find the edge-Wiener indices of G1 C G2, first we define the sets A
and B as follows:

A D fŒ.u1; u2/ ; .u1; v2/� 2 E .G1 CG2/ W u1 2 V .G1/ ; Œu2; v2� 2 E .G2/g
B D fŒ.u1; u2/ ; .v1; u2/� 2 E .G1 CG2/ W u2 2 V .G2/ ; Œu1; v1� 2 E .G1/g

It is easy to see that A [ B D E .G1 CG2/ ; A \ B D �; jAj D
jV .G1/j jE .G2/j and

jBj D jE .G1/j jV .G2/j :
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Set

A1 D ffe; f g � A W e ¤ f; e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; u2/ ; .a1; v2/� ;

u1; a1 2 V .G1/ ; u2; v2 2 V .G2/g
A2 D ffe; f g � A W e ¤ f; e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; a2/ ; .a1; b2/� ;

u1; a1 2 V .G1/ ; u2; v2; a2; b2 2 V .G2/ ; Œu2; v2� ¤ Œa2; b2�g
B1 D ffe; f g � B W e ¤ f; e D Œ.u1; u2/ ; .v1; u2/� ; f D Œ.u1; a2/ ; .v1; a2/� ;

u1; v1 2 V .G1/ ; u2; a2 2 V .G2/g
B2 D ffe; f g � B W e ¤ f; e D Œ.u1; u2/ ; .v1; u2/� ; f D Œ.a1; a2/ ; .b1; a2/� ;

u2; a2 2 V .G2/ ; u1; v1; a1; b1 2 V .G1/ ; Œu1; v1� ¤ Œa1; b1�g

Obviously,A1 \A2 D B1 \B2 D � and A1 [A2, B1 [B2 are the sets of all two
element subsets of A and B , respectively. Also,

jA1j D
	 jV .G1/j

2



jE .G2/j ; jB1j D

	 jV.G2/j
2



jE .G1/j :

In the first proposition, we find d0 .e; f jG1C G2/ and d4.e; f jG1C G2/ for all
fe; f g � A.

Proposition 13.4.3 Let fe; f g � A and e ¤ f .

(i) If fe; f g 2 A1 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; u2/ ; .a1; v2/�, then

d0 .e; f jG1C G2/ D d4 .e; f jG1C G2/ D d .u1; a1 jG1 /C 1

(ii) If fe; f g 2 A2 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; a2/ ; .a1; b2/�, then
for i 2 f0; 4g, di .e; f jG1C G2/ D di .Œu2; v2� ; Œa2; b2� jG2 /C d .u1; a1 jG1 /

Proof

(i) Let fe; f g 2 A1 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; u2/ ; .a1; v2/�. Using
the definition of d0 .e; f /, d4 .e; f / and the formula of the distance between
two vertices of G1 CG2, we have

d0 .e; f jG1 CG2 / D 1C min fd ..u1; u2/ ; .a1; u2/ jG1 CG2 / ;

� d ..u1; u2/ ; .a1; v2/ jG1 CG2 /

d ..u1; v2/ .a1; u2/ jG1 CG2 / ; d ..u1; v2/ ; .a1; v2/ jG1 CG2 /g
D 1C min fd .u1; a1 jG1 /C
d .u2; u2 jG2 / ; d .u1; a1 jG1 /C d .u2; v2 jG2 / ; d .u1; a1 jG1 /
C d .v2; u2 jG2 / ; d .u1; a1 jG1 /C
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d .v2; v2 jG2 /g D 1C min fd .u2; u2 jG2 / ; d .u2; v2 jG2 / ; d .v2; u2 jG2 /;
� d .v2; v2 jG2 /g C

d .u1; a1 jG1 /D1C min f0; 1; 1; 0g C d .u1; a1 jG1 /Dd .u1; a1 jG1 /C 1 and

d4 .e; f jG1 CG2 /Dmax fd ..u1; u2/ ; .a1; u2/ jG1 CG2 / ;

�d ..u1; u2/ ; .a1; v2/ jG1 CG2 / ;

d ..u1; v2/ .a1; u2/ jG1 CG2 / ; d ..u1; v2/ ; .a1; v2/ jG1 CG2 /g
D max fd .u1; a1 jG1 /C

d .u2; u2 jG2 / ; d .u1; a1 jG1 /C d .u2; v2 jG2 / ; d .u1; a1 jG1 /
C d .v2; u2 jG2 / ; d .u1; a1 jG1 /C

d .v1; v2 jG2 /g D max fd .u2; u2 jG2 / ; d .u2; v2 jG2 / ; d .v2; u2 jG2 /
�d .v2; v2 jG2 /g C

d .u1; a1 jG1 / D max f0; 1; 1; 0g C d .u1; a1 jG1 / D d .u1; a1 jG1 /C 1:

Therefore d0 .e; f jG1C G2/ D d4 .e; f jG1C G2/ D d .u1; a1 jG1 / C 1

and the equality in part (i) of Proposition 13.2.1 holds.
(ii) Let fe; f g 2 A2 and e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; a2/ ; .a1; b2/�. In this

case Œu2; v2� ¤ Œa2; b2� and we have

d0 .e; f jG1 CG2 / D 1C min fd ..u1; u2/ ; .a1; a2/ jG1 CG2 /;

�d ..u1; u2/ ; .a1; b2/ jG1 CG2 /;

d ..u1; v2/ ; .a1; a2/ jG1 CG2 / ; d ..u1; v2/ ; .a1; b2/ jG1 CG2 /g
� D 1C min fd .u1; a1 jG1 /C

d .u2; a2 jG2 / ; d .u1; a1 jG1 /C d .u2; b2 jG2 / ; d .u1; a1 jG1 /
C d .v2; a2 jG2 / ; d .u1; a1 jG1 /C

d .v2; b2 jG2 /g D 1C min fd .u2; a2 jG2 / ; d .u2; b2 jG2 / ; d .v2; a2 jG2 /;
�d .v2; b2 jG2 /g C

d .u1; a1 jG1 / D d0 .Œu2; v2� ; Œa2; b2� jG2 /C d .u1; a1 jG1 / and

d4 .e; f jG1 CG2 / D max fd ..u1; u2/ ; .a1; a2/ jG1 CG2 /;

�d ..u1; u2/ ; .a1; b2/ jG1 CG2 /;

d ..u1; v2/ ; .a1; a2/ jG1 CG2 / ; d ..u1; v2/ ; .a1; b2/ jG1 CG2 /g
D max fd .u1; a1 jG1 /C d .v2; b2 jG2 /g D
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d .u2; a2 jG2 / ; d .u1; a1 jG1 /C d .u2; b2 jG2 / ; d .u1; a1 jG1 /
C d .v2; a2 jG2 / ; d .u1; a1 jG1 /C

max fd .u2; a2 jG2 / ; d .u2; b2 jG2 / ; d .v2; a2 jG2 / ; d .v2; b2 jG2 /g
C d .u1; a1 jG1 / D d4 .Œu2; v2� ; Œa2; b2� jG2 /C d .u1; a1 jG1 / :

Therefore, for i 2 f0; 4g, di .e; f jG1C G2/ D di .Œu2; v2� ; Œa2; b2� jG2 / C
d .u1; a1 jG1 /,

which completes the proof.

In the next proposition, we find d0 .e; f jG1C G2/ and d4 .e; f jG1C G2/ for all
fe; f g � B .

Proposition 13.4.4 Let fe; f g � B and e ¤ f .

(i) If fe; f g 2 B1 and e D Œ.u1; u2/ ; .v1; u2/� ; f D Œ.u1; a2/ ; .v1; a2/�, then

d0 .e; f jG1C G2/ D d4 .e; f jG1C G2/ D d .u2; a2 jG2 /C 1

(ii) If fe; f g 2 B2 and e D Œ.u1; u2/ ; .v1; u2/� ; f D Œ.a1; a2/ ; .b1; a2/�, then for
i 2 f0; 4g;

di .e; f jG1C G2/ D di .Œu1; v1� ; Œa1; b1� jG1 / d .u2; a2 jG2 /:

Proof The proof is similar to the proof of Proposition 13.4.3.

In the next proposition, we find d0 .e; f jG1C G2/ and d4 .e; f jG1C G2/ for all
e 2 A, f 2 B .

Proposition 13.4.5 Let e 2 A and f 2 B , such that e D Œ.u1; u2/ ; .u1; v2/� and
f D Œ.a1; a2/ ; .b1; a2/�, then

(i) d0 .e; f jG1 CG2/ D 1C min fd .u1; a1 jG1 / ; d .u1; b1 jG1 /g C
min fd .u2; a2 jG2 / ; d .v2; a2 jG2 /g

(ii) d4 .e; f jG1 CG2/ D max fd .u1; a1 jG1 / ; d .u1; b1 jG1 /g C
max fd .u2; a2 jG2 / ; d .v2; a2 jG2 /g

Proof Let e 2 A and f 2 B , such that e D Œ.u1; u2/ ; .u1; v2/� and f D
Œ.a1; a2/ ; .b1; a2/�, then

(i) d0 .e; f jG1 CG2 / D 1C min fd ..u1; u2/ ; .a1; a2/ jG1 CG2 /;

�d ..u1; u2/ ; .b1; a2/ jG1 CG2 / ; d ..u1; v2/ ; .a1; a2/ jG1 CG2 /;
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d ..u1; v2/ ; .b1; a2/ jG1 CG2 /g D 1C min fd .u1; a1 jG1 /C d .u2; a2 jG2 /;
�d .u1; b1 jG1 /C

d .u2; a2 jG2 / ; d .u1; a1 jG1 /C d .v2; a2 jG2 / ; d .u1; b1 jG1 /
Cd .v2; a2 jG2 /g
D 1C min fmin fd .u1; a1 jG1 /C d .u1; b1 jG1 /g C d .u2; a2 jG2 /;

min fd .u1; a1 jG1 /C .u1; b1 jG1 /g C d .v2; a2 jG2 /g
D 1C min fd .u1; a1 jG1 / ; d .u1; b1 jG1 /g C

min fd .u2; a2 jG2 / ; d .v2; a2 jG2 /
and part (i) of Proposition 13.4.5, holds.

(ii) d4 .e; f jG1 CG2 / D max fd ..u1; u2/ ; .a1; a2/ jG1 CG2 /;

d ..u1; u2/ ; .b1; a2/ jG1 CG2 / ; d ..u1; v2/ ; .a1; a2/ jG1 CG2 /;

d..u1; v2/; .b1; a2/ jG1 CG2 /g D max fd .u1; a1 jG1 /C d .u1; a2 jG2 /;
d .u1; b1 jG1 /C d .u2; a2 jG2 / ; d .u1; a1 jG1 /

Cd .v2; a2 jG2 / ; d .u1; b1 jG1 /C d .v2; a2 jG2 /g
D max fmax fd .u1; a1 jG1 /C d .u1; b1 jG1 /g C d .u2; a2 jG2 / ;

max fd .u1; a1 jG1 /C d .u1; b1 jG1 /g C d .v2; a2 jG2 /g
D max fd .u1; a1 jG1 / ; d .u1; b1 jG1 /g

C max fd .u2; a2 jG2 / ; d .v2; a2 jG2 /g ;
so part (ii) of Proposition 13.4.5 holds.

Using Proposition 13.4.3, we conclude two following lemmas:

Lemma 13.4.6
P

fe;f g2A1
d0 .e; f jG1 CG2 / D P

fe;f g2A1
d4 .e; f jG1 CG2 /

D jE .G2/jW .G1/C
	 jV.G1/j

2



jE .G2/j

Proof By part (i) of Proposition 13.4.3, we have
X

fe;f g2A1
d0 .e; f jG1 CG2 / D

X

fe;f g2A1
d4 .e; f jG1 CG2 /

D
X

fd .u1; a1 jG1 /C 1 W fe; f g 2 A1; e D Œ.u1; u2/ ; .u1; v2/� ;

� f D Œ.a1; u2/ ; .a1; v2/�g
D
X

fd .u1; a1 jG1 / W fe; f g 2 A1; e D Œ.u1; u2/ ; .u1; v2/� ;

f D Œ.a1; u2/ ; .a1; v2/�g C jA1j
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D jE .G2/j
X

fu1;a1g	V .G1/
d .u1; a1 jG1 /C

	 jV.G1/j
2



jE .G2/j

D jE .G2/jW .G1/C
	 jV.G1/j

2



jE .G2/j :

Lemma 13.4.7 For i 2 f0; 4g, we have:
P

fe;f g2A2
di .e; f jG1 CG2 /

D jV .G1/j2Wei .G2/C 2

	 jE.G2/j
2



W .G1/.

Proof By part (ii) of Proposition 13.4.3, for i 2 f0; 4g, we have

X

fe;f g2A2
di .e; f jG1 CG2 /

D
X

fdi .Œu2; v2� ; Œa2; b2� jG2 /C d .u1; a1 jG1 / W fe; f g 2 A2;
� e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; a2/ ; .a1; b2/�g
D
X

fdi .Œu2; v2� ; Œa2; b2� jG2 / W
fe; f g 2 A2; e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; a2/ ; .a1; b2/�g

C
X

fd .u1; a1 jG1 / W fe; f g 2 A2;
e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; a2/ ; .a1; b2/�g D jV .G1/j2

X

fŒu2;v2�;Œa2;b2�g	E.G2/
.Œu2; v2� ; Œa2; b2� jG2 /C

2

	 jE.G2/j
2


 X

fu1;a1g	V .G1/
d .u1; a1 jG1 / D jV .G1/j2Wei .G2/

C 2

	 jE.G2/j
2



W .G1/:

By Lemmas 13.4.6 and 13.4.7, we have the following result:

Corollary 13.4.8 For i 2 f0; 4g, we have

X

fe;f g	A
di .e; f jG1 CG2 / D jE .G2/j2W .G1/C jV .G1/j2Wei .G2/

C
	 jV.G1/j

2



jE .G2/j
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Proof Since d0 and d4 are distances, so for every e 2 E .G1 CG2/, we have
d0 .e; e jG1 CG2 / D d4 .e; e jG1 CG2 / D 0. Now by Lemmas 13.4.6 and 4.7,

for i 2 f0; 4g, we have

X

fe;f g	A
di .e; f jG1 CG2 / D

X

fe;f g	A;e¤f
di .e; f jG1 CG2 /

D
X

fe;f g2A1
di .e; f jG1CG2 /C

X

fe;f g2A2
di .e; f jG1CG2 /D jE .G2/jW .G1/

C
	 jV.G1/j

2



jE .G2/j C jV .G1/j2Wei .G2/C 2

	 jE.G2/j
2



W .G1/

D jE .G2/j2W .G1/C jV .G1/j2Wei .G2/C
	 jV.G1/j

2



jE .G2/j :

Using Proposition 13.4.4, we conclude two next lemmas.

Lemma 13.4.9
X

fe;f g2B1
d0 .e; f jG1 CG2 / D

X

fe;f g2B1
d4 .e; f jG1 CG2 /

D jE .G1/jW .G2/C
	 jV.G2/j

2



jE .G1/j

Lemma 13.4.10 For i 2 f0; 4g, we have
P

fe;f g2B2
di .e; f jG1 CG2 /

D jV .G2/j2Wei .G1/C 2

	 jE.G1/j
2



W .G2/

Lemmas 13.4.9 and 13.4.10, indicate the following corollary:

Corollary 13.4.11 For i 2 f0; 4g, we have

X

fe;f g	B
di .e; f jG1 CG2 / D jE .G1/j2W .G2/C jV .G2/j2Wei .G1/

C
	 jV.G2/j

2



jE .G1/j

Proof Similar to the proof of Corollary 13.4.8, we can obtain the desired
result.
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Here, we introduce two topological indices of a graph G as follows:

Min.G/ D
X

u2V.G/

X

Œa;b�2E.G/
min fd .u; a jG / ; d .u; b jG /g

Max.G/ D
X

u2V.G/

X

Œa;b�2E.G/
max fd .u; a jG / ; d .u; b jG /g

Using Proposition 13.4.5, we have the following lemma:

Lemma 13.4.12

(i)
X

e2A;f 2B
d0 .e; f jG1 CG2 / D jV .G1/j jV .G2/j jE .G1/j jE .G2/j

C jV .G2/j jE .G2/j Min .G1/C jV .G1/j jE .G1/j Min .G2/;

(ii)
X

e2A;f 2B
d4 .e; f jG1 CG2 / D jV.G2/j jE .G2/j Max .G1/C jV .G1/j

jE .G1/j Max .G2/

Proof

(i) By part (i) of Proposition 13.4.5, we have

X

e2A;f 2B
d0 .e; f jG1 CG2 / D

X
f1C min fd .u1; a1 jG1 / ; d .u1; b1 jG1 /g

C min fd .u2; a2 jG2 /;
d .v2; a2 jG2 /g W e 2 A; f 2 B; e D Œ.u1; u2/ ; .u1; v2/� ;

f D Œ.a1; a2/ ; .b1; a2/�gDjAj jBj C
X

fmin fd .u2; a2 jG1 / ; d .u1; b1 jG1 /g
W e 2 A; f 2 B; e D Œ.u1; u2/ ; .u1; v2/� ;

f D Œ.a1; a2/ ; .b1; a2/�g C
X

fmin fd .u2; a2 jG2 / ; d .v2; a2 jG2 /g W
e 2 A; f 2 B;

e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; a2/ ; .b1; a2/�g D jV .G1/j jV .G2/j
jE .G1/j jE .G2/j
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C jV .G2/j jE .G2/j
X

u12V .G1/

X

Œa1;b1�2E.G1/
min fd .u1; a1 jG1 / ; d .u1; b1 jG1 /g

C jV .G1/j jE .G1/j
X

a22V .G2/

X

Œu2;v2�2E.G2/
min fd .u2; a2 jG2 / ; d .v2; a2 jG2 /g

D jV .G1/j jV .G2/j jE .G1/j jE .G2/j C jV .G2/j jE .G2/j Min .G1/

C jV .G1/j jE .G1/j Min .G2/:

(ii) By part (ii) of Proposition 13.4.5, we have

X

e2A;f 2B
d4 .e; f jG1 CG2 / D

X
fmax fd .u1; a1 jG1 / ; d .u1; b1 jG1 /g

C max fd .u2; a2 jG2 / ; d .v2; a2 jG2 /g W
e 2 A; f 2 B; e D Œ.u1; u2/ ; .u1; v2/� ; f D Œ.a1; a2/ ; .b1; a2/�g

D
X

fmax fd .u1; a1 jG1 / ; d .u1; b1 jG1 /g W
e 2 A; f 2 B; e D Œ.u1; u2/ ; .u1; v2/� ;

f D Œ.a1; a2/ ; .b1; a2/�g C
X

fmax fd .u2; a2 jG2 / ; d .v2; a2 jG2 /g W
e 2 A; f 2 B; e D Œ.u1; u2/ ; .u1; v2/� ;

f D Œ.a1; a2/ ; .b1; a2/�g D jV .G2/j jE .G2/j
X

u12V .G1/

X

Œa1;b1�2E.G1/
max fd.u1; a1 jG1 /; d.u1; b1 jG1 /g C

jV .G1/j jE .G1/j
X

a22V .G2/

X

Œu2;v2�2E.G2/
max fd .u2; a2 jG2 / ; d .v2; a2 jG2 /g

D jV .G2/j jE .G2/j Max .G1/C jV .G1/j jE .G1/j Max .G2/:

Finally, as the main purpose of this part, we express Theorem 13.4.13, which
characterizes the edge Wiener indices of the sum of two graphs.

Theorem 13.4.13 Let G1D .V .G1/ ; E .G1// and G2 D .V .G2/ ; E .G2// be two
simple undirected connected finite graphs, then

(i) We0 .G1 CG2/DjE .G2/j2W .G1/CjE .G1/j2W .G2/CjV .G2/j2We0 .G1/

C jV .G1/j2We0 .G2/C
	 jV.G1/j

2



jE .G2/j C

	 jV.G2/j
2



jE .G1/j

C jV .G1/j jV .G2/j jE .G1/j jE .G2/j C jV .G2/j jE .G2/j Min .G1/

C jV .G1/j jE .G1/j Min .G2/
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(ii) We4 .G1CG2/DjE .G2/j2W .G1/CjE .G1/j2W .G2/C jV .G2/j2We4 .G1/

C jV .G1/j2We4 .G2/C
	 jV .G1/j

2



jE .G2/j C

	 jV.G2/j
2



jE .G1/j

C jV .G2/j jE .G2/j Max .G1/C jV .G1/j jE .G1/j Max .G2/

Proof Since E .G1 CG2/ D A [ B , A\ B D �, for i 2 f0; 4g, we have

Wei .G1 CG2/D
X

fe;f g	E.G1CG2/
di .e; f jG1 CG2/D

X

fe;f g	A
di .e; f jG1 CG2/C

X

fe;f g	B
di .e; f jG1 CG2/C

X

e2A;f 2B
di .e; f jG1 CG2/:

Now by Corollaries 13.4.8 and 13.4.11 and Lemma 13.4.12, the proof is clear.

Corollary 13.4.14 For every two simple undirected connected finite graphs
G1 D .V .G1/ ; E .G1// and G2 D .V .G2/ ; E .G2//, we have

We4 .G1 CG2/ �We0 .G1 CG2/ D jV .G2/j2 .We4 .G1/�We0 .G1//

C jV .G1/j2 .We4 .G2/ �We0 .G2//C
jV.G2/j jE .G2/j .Max .G1/� Min .G1//C jV .G1/j jE .G1/j .Max .G2/

�Min .G2// � jV .G1/j jV .G2/j jE .G1/j jE .G2/j

The Wiener index and edge-Wiener indices of these graphs have been computed
previously (Iranmanesh et al. 2009; Sagan et al. 1996). So, we have the following
tables (Tables 13.3 and 13.4):

Carbon nanotubes, carbon nanotori and graphene are three important types of
carbon structures. See Figs. 13.6, 13.7 and 13.8, respectively. Carbon nanotubes
(CNTs) are allotropes of carbon with molecular structures that are tubular in shape,
having diameters on the order of a few nanometers and lengths that can be as much
as several millimeters.

Nanotubes are categorized as single-walled (SWNTs) and multi-walled
(MWNTs) nanotubes. If a nanotube is bent so that its ends meet, a nanotorus is
produced. These types of carbon structures, form the strongest and stiffest materials
yet discovered on Earth. Their novel properties make them potentially useful in
many applications in materials science, nanotechnology, electronics, optics and
architecture.

Graphene is a one-atom-thick planer sheet of carbon atoms that are densely
packed in a two-dimensional (2D) honeycomb crystal lattice and is a basic building
block for graphitic materials of all other dimensionalities. It can be wrapped up into
0D fullerenes, rolled into 1D nanotubes, or stacked into 3D graphite (Fig. 13.9).
The term graphene was coined as a combination of graphite and the suffix -ene by
Hannes-Peter Boehm, who described single-layer carbon foils in 1962.
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Table 13.3 Some topological indices of Pn and Cn

Graph .G/ Pn Cnn is odd Cnn is even

jV .G/j n n n

jE.G/j n� 1 n n

W.G/

	
nC1

3



n

8

�
n2 � 1

� n3

8

We0 .G/

	
n

3



n

8

�
n2 � 1

� n3

8

We4.G/

	
n�1

2



nC 3

3

n

8

�
n2 C 4n� 13

� n

8

�
n2 C 4n� 8

�

Table 13.4 Some
topological indices of Sn, Kn,
and Ka;b

Graph .G/ Sn Kn Ka;b

jV .G/j n n aC b

jE.G/j n� 1

	
n

2



ab

W.G/ .n� 1/2
	
n

2



.a C b/2 � ab

� a � b

We0 .G/

	
n�1

2


 	
n

2


	
n�1

2



ab
2
.2ab � a � b/

We4 .G/ 2

	
n�1

2



3

	
nC1

4



ab.ab � 1/

Fig. 13.6 A C4-nanotori

Fig. 13.7 A C4-nanotube
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Fig. 13.8 Graphene

Fig. 13.9 Graphene sheet can be rolled in to a single walled nanotube

According to the tables, Theorem 13.4.13 and Corollary 13.4.14, we can
easily obtain the edge-Wiener indices of the sum of each pair of the above-
mentioned graphs. Specially, we can obtain the edge-Wiener indices of graphene,
C4-nanotubes, and C4 -nanotori as Pn CPm, Pn CCm, and Cn CCm, respectively.

Example 13.4.15 Suppose that G D Pn C Pm, where n and m are not necessarily
equal. The edge Wiener indices of G, are as follows:

We0 .Pn C Pm/ D m3

6
.2n � 1/2 C m2

6

�
4n3 � 12n2 C 8n� 3�

� m

3

�
2n3 � 4n2 C 2n � 1

�C n

6

�
n2 � 3nC 2

�
;

We4 .Pn C Pm/Dm3

6
.2n � 1/2 C m2

6

�
4n3 � 7nC 3

� � m

6

�
4n3 C 7n2 � 2n � 2�

C n

6

�
n2 C 3nC 2

�
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Example 13.4.16 Suppose that G D Pn C Cm, where n and m are not necessarily
equal, then G D T UC4Œm; n� is a C4-nanotube (John and Diudea 2004). The edge-
Wiener indices of G are as follows:

Case 1. If m is odd, then

We0 .Pn C Cm/Dm3

8
.2n � 1/2 C m2

6

�
4n3 � 6n2 C 5n � 3�C m

8

�
4n2 � 8nC 3

�

We4 .Pn C Cm/ D m3

8
.2n � 1/2 C m2

6

�
4n3 C 6n2 � 10nC 3

� � m

8

�
16n2 � 3�

Case 2. If m is even, then

We0 .Pn C Cm/ D m3

8
.2n� 1/2 C m2

6

�
4n3 � 6n2 C 5n� 3

�C m

2
.n � 1/2

We4 .Pn C Cm/Dm3

8
.2n � 1/2 C m2

6

�
4n3 C 6n2 � 10nC 3

� � m

2

�
n2 C 2n� 1

�

Example 13.4.17 Suppose that G D Cn C Cm, where n and m are not necessarily
equal, then G D TC4 Œm; n� is a C4 -nanotorus (Diudea and John 2001). The first
edge-Wiener index of G is equal to We0 .Cn C Cm/ D m3

2
n2 C m2

2
n
�
n2 C 1

� C
m
2
n .n � 2/
The second edge-Wiener index of G is as follows:

Case 1. If m and n are odd, then

We4 .Cn C Cm/ D m3

2
n2 C m2

2
n
�
n2 C 4n � 4� �mn .2nC 1/

Case 2. If m and n are even, then

We4 .Cn C Cm/ D m3

2
n2 C m2

2
n
�
n2 C 4n � 1� � m

2
n .nC 2/

Case 3. If n is odd and m is even, then

We4 .Cn C Cm/ D m3

2
n2 C m2

2
n
�
n2 C 4n � 4� � m

2
n .nC 2/
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Chapter 14
Study of Fullerenes by Some New Topological
Index

Ali Reza Ashrafi, Mohammad Ali Iranmanesh, and Zahra Yarahmadi

Abstract A molecular graph is a graph such that its vertices correspond to the
atoms and the edges to the bonds of a given molecule. Fullerenes are molecules in
the form of polyhedral closed cages made up entirely of n three-coordinate carbon
atoms and having 12 pentagonal and (n/2–10) hexagonal faces, where n is equal or
greater than 20. The molecular graph of a fullerene is called fullerene graph. In this
chapter, the fullerene graphs under two new distance-based topological indices are
investigated. Some open questions are also presented.

14.1 Introduction

Graph theory successfully provided the chemist with a variety of tools as molec-
ular graph and topological index. Molecular graphs represent the constitution of
molecules. They are generated using the following rule: vertices stand for atoms
and edges for bonds. It is clear that the degree of each vertex in a molecular graph is
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at most four. A topological index is a numeric quantity for the molecular graph of a
molecule. This number must be invariant under topological symmetry of molecules
under consideration.

A fullerene graph is the molecular graph of a fullerene molecule. Fullerenes are
molecules in the form of polyhedral closed cages made up entirely of n carbon atoms
that are bonded in a nearly spherically symmetric configuration. The well-known
fullerene, the C60 molecule, is a closed-cage carbon molecule with carbon atoms
tiling the spherical or nearly spherical surface with a truncated icosahedral structure
formed by 20 hexagonal and 12 pentagonal rings (Kroto et al. 1985, 1993). It is
well known that C20 is the unique fullerene constructed fully from pentagons, and
by Euler’s theorem, there is no fullerene without pentagons.

Suppose p, h, n, and m are the numbers of pentagons, hexagons, carbon
atoms, and bonds between them, in a given fullerene F. Since each atom lies
in exactly three faces and each edge lies in two faces, the number of atoms is
n D (5p C 6 h)/3, the number of edges is m D 3/2n D (5p C 6 h)/2, and the number
of faces is f D p C h. By Euler’s formula n � m C f D 2, one can deduce that
(5p C 6 h)/3 � (5p C 6 h)/2 C p C h D 2, and therefore, p D 12, v D 2 h C 20, and
e D 3 h C 30. This implies that such molecules made up entirely of n carbon atoms
and having 12 pentagonal and (n/2 � 10) hexagonal faces, where n ¤ 22 is a natural
number equal or greater than 20 (Fowler and Manolopoulos 1995; Kostant 1995).

Throughout this chapter all graphs considered are finite and simple. The notation
we use is mostly standard and taken from standard graph theory textbooks such as
Trinajstić (1992). The aim of this chapter is to investigate fullerene graphs under
three new topological indices: eccentric connectivity, bipartite edge frustration, and
bipartite vertex frustration which will be studied with details in Sects. 14.2 and 14.3.

14.2 Eccentric Connectivity Index of Fullerenes

Suppose u and v are vertices of a graph G. The distance d(u, v) is defined as
the length of a shortest path connecting them. The eccentricity "(u) is the largest
distance between u and any other vertex x of G. The maximum eccentricity over all
vertices of G is called the diameter of G and denoted by D(G), and the minimum
eccentricity among the vertices of G is called radius of G and denoted by R(G).
The set of vertices whose eccentricity is equal to the radius of G is called the center
of G. It is well known that each tree has either one or two vertices in its center. The
eccentric connectivity index �(G) of G is defined as �.G/ D P

u2V.G/ deg.u/".u/
(Sharma et al. 1997). We encourage the reader to consult papers (Dureja and Madan
2007; Kumar et al. 2004; Sardana and Madan 2001; Gupta et al. 2002; Zhou and
Du 2010) for more information on mathematical properties and chemical meaning
of this topological index and (Ashrafi et al. 2011a, b; Saheli et al. 2010a, b;
Ashrafi and Saheli 2010; Saheli and Ashrafi 2010a, b) for some applications in
nanoscience.
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Fig. 14.1 The
one-pentagonal carbon
nanocone CNC5[3]

Since the molecular graph of a fullerene graph can be constructed from
nanocones, we begin by computing eccentric connectivity index of this important
class of nanostructures. One-pentagonal carbon nanocones, Fig. 14.1, was
originally discovered by Ge and Sattler (1994). These are constructed from a
graphene sheet by removing a 60ı wedge, and joining the edges produces a cone
with a single pentagonal defect at the apex.

To compute the eccentric connectivity index of one-pentagonal carbon nanocone
C[n] D CNC5[n] containing 2n C 1 layers, we have to compute the number vertices
and edges of this graph. From Fig. 14.1, it is clear that

jV .C Œn�/j D5 Œ1C 1C 2C 2C � � � C nC nC .nC 1/� D 5.nC 1/2;

jE .C Œn�/j D5 Œ1C 3C 5C � � � C .2nC 1/C 1C 2C 3C � � � C n�

D5
h
.nC 1/2 C n .nC 1/ =2

i
D 5

2
.nC 1/ .3nC 2/:

We now assume that u is a vertex of the central pentagon of C[n]. Then
from Fig. 14.1, one can see that there exists a vertex v of degree 2 such that
d(u, v) D 2n C 2 and so "(u) D 2n C 2. On the other hand, there exists another
vertex w of degree 2 such that d(u, w) D 2n. Therefore, the shortest path with
maximum length is connecting two vertices of degree 2 in C[n]. This implies that
D(G) D Maxfd(x, y) j deg(x) D deg(y) D 2g D 4n C 2 and R(G) D 2n C 2. Therefore,
the eccentricities of vertices of C[n] are varied between 2n C 2 and 4n C 2. From
Fig. 14.1, we can see that if P is the central pentagon of C[n] and a and b
are two vertices of C[n] such that d(a, P) D d(b, P), then "(a) D "(b), where
d(x, P) D Minfd(x, y) j y 2 V(P)g. Define

Ai D fx 2 C Œn� jd .x; P / D ig ; 1 � i � 2nC 1:
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Fig. 14.2 The molecular graph of the fullerene C12(2nC1)

From Fig. 14.1, it is clear that jAi j D 5 .1C Œ.i � 1/=2�/ ; where Œx� denotes
the greatest integer less than or equal to x. On the other hand, the eccentricity of
vertices in each layer is constant, and the number of vertices in the layers 2k and
2k C 1 is the same, 1 � k � n. Thus, the summation of eccentricities in the layers 2j
and 2j C 1 is

tj D Œ2nC 2C 2.j � 1/�C 2nC 2C .2.j � 1/C 1/�

D 4 .nC j /C 1; 1 � j � n:

Therefore, we prove the following theorem:

Theorem 14.2.1 The radius, diameter, and eccentric connectivity index of C[n] can
be computed by the following formulas:

R .C Œn�/ D2nC 2; D .C Œn�/ D 4nC 2;

� .C Œn�/ D5 �10n3 C 43=2n2 C 31=2nC 4
�
:

We now define the eccentric connectivity polynomial (EC polynomial) of a graph
G that is a useful polynomial for computing eccentric connectivity index. It is
defined as ECP .G; x/ D †a2V.G/degG.a/x

".a/. Then the eccentric connectivity
index is the first derivative of ECP(G, x) evaluated at x D 1. In what follows
the eccentric connectivity polynomials of two infinite classes of fullerenes are
computed. We encourage the interested readers to consult Ghorbani et al. (2009) for
more details on our calculations. Consider the fullerene molecule C12nC2 depicted
in Fig. 14.2. In Table 14.1, the EC polynomials of C12(2nC1) fullerenes are computed
for 2 � n � 7.
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Table 14.1 Some exceptional cases of C12(2nC1) fullerenes

Fullerenes EC polynomials

C60 60x9

C84 84x11

C108 84x12 C 24x13

C132 60x12 C 24x13 C 24x14 C 24x15

C156 36x12 C 24x13 C 24x14 C 24x15 C 24x16 C 24x17

C180 12x12 C 24x13 C 24x14 C 24x15 C 24x16 C 24x17 C 24x18 C 24x19

Fig. 14.3 The value of "(x) for vertices of central and outer hexagons

From Fig. 14.2, one can see that there are two types of vertices of fullerene
graph C12(2nC1). These are the vertices of the central hexagon and other vertices of
C12(2nC1). Obviously, we have the following:

Vertices "(x) No.

The Type 1 vertices n C i (6 � i � n C 5) 24
The Type 2 vertices n C 5 12

Suppose n � 8. By using these calculations, Figs. 14.2 and 14.3, one can prove
the following general formula for the EC polynomial of this class of fullerenes:

Theorem 14.2.2 The EC polynomial of C12(2nC1), n � 8, fullerenes are computed as

ECP
�
C12.2nC1/; x

� D 12xnC5 C 24xnC6 xn � 1

x � 1
:

Corollary 14.2.3 The diameter of C12(2nC1) fullerene, n � 2 is 2n C 5.

In the end of this section, we consider another class of fullerene graphs with
exactly 12n C 4 carbon atoms, Fig. 14.4. In Table 14.2, the EC polynomials of
C12nC4 fullerenes are computed for each n, 2 � n � 7. For n � 8 we will compute
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Fig. 14.4 The molecular
graph of the fullerene C12nC4

Table 14.2 Some exceptional cases of C12nC4 fullerenes

Fullerenes EC polynomials

C28 12x5 C 16x6

C40 36x7 C 4x8

C52 12x7 C 32x8 C 8x9

C64 24x8 C 24x9 C 12x10 C 4x11

C76 12x8 C 24x9 C 12x10 C 12x11 C 12x12 C 4x13

C88 24x9 C 12x10 C 12x11 C 12x12 C 12x13 C 12x14 C 4x15

u
v

Fig. 14.5 The value of "(x) for vertices of central and outer polygons

a general formula for the EC polynomial of this class of fullerenes. In Table 14.2,
the eccentric connectivity polynomial of six exceptional cases that 2 � n � 7 is
computed.

From Figs. 14.4 and 14.5, one can see that there are two types of vertices for
the fullerene graph C12nC4. These are the vertices of the central pentagons and other
vertices of C12nC4. Obviously, we have the following:
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Vertices "(x) No.

The Type 1 vertices 2n C 1 4
Other vertices n C i (1 � i � n C 1) 12

By using these calculations, we can prove the following theorem:

Theorem 14.2.4 The EC polynomial of the fullerene C12nC4 (n �8), fullerenes are
computed as follows:

ECP .C12nC4; x/ D 36xnC1 xnC1�1
x�1 C 12x2nC1:

Corollary 14.2.5 The diameter of C12nC4 fullerenes, n � 4, is 2n C 1.

14.3 Edge and Vertex Frustration Indices of Fullerenes

A graph G with the vertex set V(G) is bipartite if V(G) can be partitioned into two
subsets V1 and V2 such that all edges have one endpoint in V1 and the other in V2. The
smallest number of edges that have to be deleted from a graph to obtain a bipartite
spanning subgraph is called the bipartite edge frustration of G and denoted by '(G)
(Došlić and Vukičević 2007). It is easy to see that '(G) is a topological index and
G is bipartite if and only if '(G) D 0. It can be easily shown that '(G) � jE(G)j/2
and that the complete graph on n vertices has the maximum possible bipartite edge
frustration among all graphs on n vertices. Hence, the bipartite edge frustration
has properties that make it useful as a measure of non-bipartivity of a given
graph. Instead of looking for large bipartite subgraphs of a given graph G, it is
sometimes more convenient to look at the equivalent problem of finding a smallest
set of edges that must be deleted from G in order to make the remaining graph
bipartite. Borrowing from the terminology of the antiferromagnetic Ising model, the
cardinality of any such set is then called the bipartite edge frustration of a graph.

This topological index has important applications in computing stability of
fullerenes. Fajtlowicz and Larson (2003) claimed that the chemical stability of
fullerenes is related to the minimum number of vertices/edges that need to be deleted
to make fullerene graph bipartite. Schmalz et al. (1986) observed that the isolated
pentagon fullerenes have the best stability. Because of this success, it is natural to
study its vertex version. The bipartite vertex frustration of G,  (G), is defined as
the minimum number of vertices that have to be deleted from G to obtain a bipartite
subgraph H of G (Yarahmadi and Ashrafi 2011a). Obviously, if G is not bipartite,
then H is not a spanning subgraph of G and so, H is not in general a large bipartite
subgraph of G.

The quantity '(G) is, in general, difficult to compute; it is NP-hard for general
graphs. Hence, it makes sense to search for classes of graphs that allow its efficient
computation. Some results in this direction are reported in Došlić and Vukičević
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(2007) for fullerenes and other polyhedral graphs and in Ghojavand and Ashrafi
(2008) for some classes of nanotubes. For mathematical properties of this new
topological index, we refer to Yarahmadi and Ashrafi (2011b), Yarahmadi et al.
(2010), Yarahmadi and Ashrafi (2013) and Yarahmadi (2010).

For obtaining some results on the bipartite vertex frustration, it seems that it is
possible to find an algorithm for constructing a large bipartite spanning subgraph
from H. Suppose G is a graph. A subset A of V (G) such that G � A is bipartite is
called a vertex bipartization for G. The vertex bipartization problem for the graph G
is to find the minimum number of vertices whose removal makes the graph bipartite
which is equivalent to the problem of computing  (G).

It is clear that G is bipartite if and only if '(G) D (G) D 0. Since the quantity
 (G) is, in general, difficult to compute, it makes sense to search for classes of
fullerene graphs. Došlić and Vukičević (2007) proved the following theorem:

Theorem 14.3.1 Let G be a fullerene graph. Then '(G) � 6. If G has IP, then
'(G) � 12.

Given a graph G, a matching M in G is a set of pairwise nonadjacent edges; that
is, no two edges share a common vertex. We say that a vertex is matched if it is
incident to an edge in the matching. Otherwise, the vertex is unmatched.

Example 14.3.2 Let Kn, Cn, and Wn denote the complete cycle and wheel on
n vertices. Then  (Kn) D n � 2. If n is even, then  (Cn) D 0, and  (Cn) D 1,
otherwise. Finally, if n is even, then  (Cn) D 2, and  (Cn) D 1, otherwise.

It is an easy fact that if G is a graph with components G1, G2, : : : , Gn, then  (G)
is the summation of  (Gi)’s, 1 � i � n. The same property is satisfied by the edge
frustration index. So, to compute the bipartite vertex or edge frustration index of
graphs, it is enough to consider connected graphs and then apply above result. From
now on all graphs are assumed to be connected.

Of particular interest are the fullerene graphs without adjacent pentagons. We
call them IP fullerenes, where IP stands for “isolated pentagons.” Fullerene graphs
are not bipartite; hence, for all fullerene graphs G, we have  (G)> 0. Because in
the boundary of every odd face at least one edge must be removed and at most two
odd faces can be destroyed by a removal of one edge. In this section we compute
the bipartite vertex frustration of C12(2nC1), C12nC4, C24n, and C12nC2. The first two
classes are depicted in Figs. 14.2 and 14.4, and the last two of them are depicted in
Figs. 14.6 and 14.7.

Since fullerene graphs are not bipartite, �.G/ > 0. Because in the boundary of
every odd face at least one edge must be removed and at most two odd faces can be
destroyed by a removal of one edge, we have the following lower bounds.

Theorem 14.3.3 Let G be a simple graph, then  (G) � '(G) with equality if and
only if there exists a matching M such that G � M is bipartite.

We consider the fullerene graph C12nC4. Every fullerene has 12 cycles of length
5 and then it is not bipartite. By removing specified edges in Fig. 14.7, one can see
that the spanning bipartite subgraph of the fullerene graph C12nC4 remains. Then we
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Fig. 14.6 The molecular
graph of fullerene C24n

Fig. 14.7 The molecular
graph of fullerene C12nC2

can say that '(C12C4) � 6. Since the fullerene graph C12nC4 is not IP, by Theorem
14.3.1, '(F12 C 4) � 6. Hence, we prove the following theorem:

Theorem 14.3.4 '(C12 C 4) D 6 (Fig. 14.8).

Next we consider the molecular graph C12(2nC1). Suppose K is the subgraph of
C12(2nC1) obtained by deleting the specified edges in Fig. 14.9. It is easy to see that
K is bipartite, so '(C12(2nC1)) � 6. The fullerene graph C12(2nC1) is IP, and then by
Theorem 14.3.1, '(C12(2nC1)) � 6. Therefore, we prove the following result:

Theorem 14.3.5 '(C12(2nC1)) D 12.

Suppose C24n and C12nC2 are fullerene graphs with exactly 24n and 12n C 2
carbon atoms, respectively. These are depicted in Figs. 14.6 and 14.7. In what
follows the edge frustration index of these classes of fullerenes is computed.

From Fig. 14.10, one can see that all of the pentagonal faces in this fullerene are
isolated and so '(C24n) � 12. Moreover by removing 12 bold edges which are shown
in Fig. 14.10, a spanning bipartite subgraph of C24n is obtained. Then '(C24n) � 12,
which proves that '(C24n) D 12. On the other hand, by removing specified edges in
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Fig. 14.8 The molecular
graph of fullerene C12nC4

Fig. 14.9 The molecular
graph of fullerene C12(2nC1)

Fig. 14.11 from the fullerene C12nC2, the remaining spanning subgraph is bipartite.
Then we prove again that '(C12nC2) D 6. We record our calculations in the following
theorem:

Theorem 14.3.6 '(C24n) D 12 and '(C12nC2) D 6.

We now calculate the bipartite vertex frustration of C12nC4, C12(2nC1), C24n, and
C12nC2 fullerene graphs.

By Theorems 14.3.3 and 14.3.4, we conclude that  (C12nC4) �'(C12nC4)D6.
The fullerene graph C12nC4 has two isomorphic subgraphs. For obtaining a bipartite
subgraph of C12nC4, we must obtain bipartite subgraphs of all subgraphs of C12nC4.
From Fig. 14.11, one can see that by removing vertices u, v, and w, this subgraph
of C12nC4 becomes bipartite. Since there are two isomorphic subgraphs, such as
Fig. 14.11, for obtaining a bipartite subgraph of C12nC4, we must delete at least six
vertices. Hence,  (C12nC4) � 6. So, we prove the following theorem:
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Fig. 14.10 The molecular
graph of fullerene C24n

u

v w

Fig. 14.11 Deleted vertices
of a subgraph of C12nC4

Theorem 14.3.7  (C12nC4) D 6.

By Theorems 14.3.3 and 14.3.5, we conclude that  (C12(2nC1)) �'
(C12(2nC1)) D 12. The fullerene graph C12(2nC1) has two isomorphic subgraphs
which are shown in Fig. 14.12. For obtaining a bipartite subgraph of C12(2nC1), we
must obtain bipartite subgraphs of all subgraphs of C12(2nC1). By Fig. 14.12, one
can see that by removing vertices a, b, c, d, e, and f, this subgraph of C12(2nC1)

becomes bipartite. Since there are two isomorphic subgraph, we must delete at least
12 vertices to obtain a bipartite subgraph of C12(2nC1). Hence,  (C12(2nC1)) � 12.
We record our calculations in the following theorem:

Theorem 14.3.8  (C12(2nC1)) D 12.

We now apply Theorems 14.3.3 and 14.3.6 to conclude that  

(C24n) �'(C24n) D 12. The fullerene graph C24n has two isomorphic subgraphs
which are shown in Fig. 14.13. For obtaining a bipartite subgraph of C24n, we must
obtain bipartite subgraphs of all subgraphs of C24n. By Fig. 14.13, one can see that
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a
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c

d

e

f

Fig. 14.12 Deleted vertices
of a subgraph of C12(2nC1)

u

vw

x

y z

Fig. 14.13 Deleted vertices
of a subgraph of C24n

by removing vertices u, v, w, x, y, and z, this subgraph of C24n becomes bipartite.
Since there are two isomorphic subgraphs, such as Fig. 14.13, for obtaining a
bipartite subgraph of C24n, we must delete at least 12 vertices. Hence,  (C24n) � 12.

Consider the fullerene class C12nC2. Apply Theorem 14.3.3 to conclude that
 (C12nC2) � '(C12nC2). By Theorem 14.3.6 '(C12nC2) D 6. Hence,  (C12nC2) � 6.
The fullerene graph C12nC2 has two subgraphs H and K which are shown in
Fig. 14.14. To obtain a bipartite subgraph of C24n, we have to find bipartite
subgraphs of all subgraphs of C12nC2. By Fig. 14.14, one can see that by removing
vertices u, v, and w, the subgraph K of C12nC2 becomes bipartite, and by similar way
by removing vertices a, b, and c of subgraph H, a bipartite subgraph remains. Thus,
we must delete at least six vertices to obtain a bipartite subgraph of C12nC2. Hence,
 (C12nC2) � 6. Therefore, we have the following theorem:

Theorem 14.3.9  (C24n) D 12 and  (C12n C 2) D 6.
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H K

Fig. 14.14 Deleted vertices of two subgraphs of C12nC2
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Došlić T, Vukičević D (2007) Discrete Appl Math 155:1294
Dureja H, Madan AK (2007) Med Chem Res 16:331
Fajtlowicz S, Larson CE (2003) Chem Phys Lett 377:485
Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Oxford University Press, Oxford
Ge M, Sattler K (1994) Chem Phys Lett 220:192
Ghojavand M, Ashrafi AR (2008) Dig J Nanomat Biosci 3:209
Ghorbani M, Ashrafi AR, Hemmasi M (2009) Optoelectron Adv Mater Rapid Commun 3:1306
Gupta S, Singh M, Madan AK (2002) J Math Anal Appl 266:259
Kostant B (1995) Not Am Math Soc 9:959
Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162
Kroto HW, Fichier JE, Cox DE (1993) The fulerene. Pergamon Press, New York
Kumar V, Sardana S, Madan AK (2004) J Mol Model 10:399
Saheli M, Ashrafi AR (2010a) Maced J Chem Chem Eng 29:71
Saheli M, Ashrafi AR (2010b) J Comput Theor Nanosci 7:1900
Saheli M, Saati H, Ashrafi AR (2010a) Optoelectron Adv Mater Rapid Commun 4:896
Saheli M, Ashrafi AR, Diudea MV (2010b) Studia Univ Babes-Bolyai Chemia 55:233
Sardana S, Madan AK (2001) MATCH Commun Math Comput Chem 43:85
Schmalz TG, Seitz WA, Klein DJ, Hite GE (1986) Chem Phys Lett 130:203
Sharma V, Goswami R, Madan AK (1997) J Chem Inf Comput Sci 37:273
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Chapter 15
Topological Study of (3,6)– and (4,6)–Fullerenes

Ali Reza Ashrafi and Zeinab Mehranian

Abstract A (3,6)–fullerene is a cubic plane graph whose faces (including the
outer face) have sizes 3 or 6. (4,6)–Fullerene graphs are defined analogously
by interchanging triangles with quadrangles. (3,6)–Fullerenes have exactly four
triangles and (4,6)–fullerenes have exactly 6 quadrangles. The (4,6)–fullerenes are
also called boron fullerenes. In this chapter some infinite families of (3,6)–and
(4,6)–fullerenes are presented. The modeling of these fullerenes by considering
some topological indices is the main part of this chapter. Finally, some open
questions are presented.

15.1 Introduction and Preliminaries

A polytope P is a tessellation of a given manifold M. If M has dimension n, then it
is convenient to name P as n-polytope. A polygon is a 2-polytope and a polyhedron
is a 3-polytope. Suppose P is a d-dimensional polytope. Then a Schlegel diagram
of P is a projection of P into Rd�1. The Schlegel diagrams are an important tool for
studying combinatorial and topological properties of polytopes (Goodey 1977).

A simple graph is a graph without directed and multiple edges and without loops.
If G is such a graph, then the vertex and edge sets of G are represented by V(G) and
E(G), respectively. Let M be a molecule. The molecular graph of M is a simple
graph in which atoms of M are its vertices and two atoms are adjacent if there is a
bond between them.
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A (k,6)–fullerene is a cubic plane graph whose faces have sizes k and 6. The
only values of k for which a (k,6)–fullerene exists are 3, 4, and 5. A (5,6)–fullerene
is simply called a fullerene. They are molecules in the form of polyhedral closed
cages made up entirely of n carbon atoms that are bonded in a nearly spherically
symmetric configuration. The most important fullerene is buckyball. This is a
molecule containing 60 carbon atoms, each of which is bonded to three adjacent
carbon atoms in a sphere form that’s about 1 nm in diameter (Kroto et al. 1985,
1993). The mathematical properties of ordinary fullerenes are studied in Fowler and
Manolopoulos (1995) and Kostant (1995).

After successful history of fullerenes, it was natural to consider (3,6)– and (4,6)–
fullerenes into account. The (3,6)–fullerenes have received recent attention from
chemists due to their similarity to ordinary fullerenes (Yang and Zhang 2012; DeVos
et al. 2009). The Euler’s formula implies that an n–vertex (3,6)–fullerene has exactly
four faces of size 3 and n/2 � 2 hexagons. A (3,6)–fullerene is called ITR if its
triangles have no common edge. Recently some chemists have been attracted to the
(4,6)–fullerenes or boron fullerenes (Wang et al. 2010). If six quadrangles of these
new types of fullerenes don’t have common edge, then we will briefly name them
ISR fullerenes.

In this chapter, we will describe the mathematical properties of some families of
(3,6)– and (4,6)–fullerenes which are built from a given (3,6)– or (4,6)–fullerenes
by adding edges in such a way that the resulting graph is cubic. Here, we will show
how to construct bigger cages with similar structural characteristics to those found
in the smaller one.

Throughout this chapter all graphs considered are simple. Our notation is
standard and taken mainly from the standard graph theory textbooks such as
(Trinajstić 1992). The aim of this chapter is to investigate (3,6)– and (4,6)–
fullerenes under five topological indices, eccentric connectivity, Szeged, revised
Szeged, vertex PI, and Wiener index, which will be studied with details in Sects. 15.2
and 15.3.

15.2 Basic Definitions

Suppose u and v are vertices of a graph G. The distance d(u, v) is defined as
the length of a shortest path connecting them. The eccentricity "(u) is the largest
distance between u and any other vertex x of G. The maximum eccentricity over
all vertices of G is called the diameter of G and denoted by D(G), and the
minimum eccentricity among the vertices of G is called radius of G and denoted
by R(G).

The Wiener index is the first distance-based topological index that introduced by
chemist Harold Wiener (Wiener 1947). The Wiener defined his index as the sum of
all distances between any two carbon atoms in the molecule, in terms of carbon–
carbon bonds. The Wiener index is principally defined for trees. It was in 1972
that Hosoya (1971, 1988) described its calculation using the distance matrix and
proposed the name “Wiener index.”
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The eccentric connectivity index �c(G) of G is defined as �c(G) D†u2V(G)deg(u)
"(u), where for a given vertex u of V(G), its eccentricity, "(u), is the largest distance
between u and any other vertex v of G (Sharma et al. 1997). The maximum
eccentricity over all vertices of G is called the diameter of G and denoted by D(G).
We encourage the reader to consult papers (Dureja and Madan 2007; Kumar et al.
2004; Sardana and Madan 2001; Gupta et al. 2002; Zhou and Du 2010) for more
information on mathematical properties and chemical meaning of this topological
index and (Ashrafi et al. 2011a, b; Saheli et al. 2010a, b; Ashrafi and Saheli 2010;
Saheli and Ashrafi 2010a, b) for some applications in nanoscience.

The Szeged index is another distance-based topological index that was introduced
by Ivan Gutman (1994). It is defined as Sz(G) DP

eDuvnu(e)nv(e), where nu(e) is the
number of vertices closer to u than v and nv(e) is defined analogously. We encourage
the reader to consult paper for more information about Szeged index (Gutman and
Dobrynin 1998).

The vertex PI index is a recently proposed topological index defined as
PIv(G) DP

e D uv[nu(e) C nv(e)] (Khalifeh et al. 2008). This topological index was
introduced in an attempt to obtain exact expression for the edge version of this
index under Cartesian product of graphs. It is worth mentioning that there is an
edge version of this topological index proposed by Padmakar Khadikar (2000). In
Ashrafi and Loghman (2006a, b, c) this edge version is calculated for some classes
of nanostructures.

A graph G is called bipartite if its vertex set can be partitioned into two subsets
A and B such that each edge of G connects a vertex in A to a vertex in B. It is well
known that a graph G is bipartite if and only if it does not have odd cycle. It is
possible to characterize bipartite graphs by vertex PI index. A graph G is bipartite
if and only if its vertex PI index is equal to jV(G)j � jE(G)j. So, the vertex PI does
not have good correlation with physicochemical properties of chemical compounds,
when the molecular graph is bipartite.

The revised Szeged index Sz*(G) of G is a molecular structure descriptor equal
to the sum of products Œnu.e/C n0.e/=2�� Œnv.e/C n0.e/=2� over all edges e D uv
of the molecular graph G, where n0.e/ is the number of vertices equidistant from u
and v. This topological index was introduced by Milan Randić (2002). Nowadays the
scientists prefer the name revised Szeged index for this distance-based topological
index. It is easy to prove that a graph G is bipartite if and only if the Szeged and
revised Szeged indices of G are the same. The interested readers can consult papers
(Pisanski and Randić 2010; Pisanski and Žerovnik 2009; Xing and Zhou 2011;
Aouchiche and Hansen 2010) for mathematical properties and chemical meaning
of this new topological index.

15.3 (3,6)–Fullerenes

The (3,6)–fullerenes that sometimes called (3,6)-cages have received recent atten-
tion from chemists due to their similarity to ordinary fullerenes. With the best of
our knowledge, there is no classification of these cubic graphs. So, it is natural to
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Fig. 15.1 G[8n], n is even

construct more and more (3,6)–fullerenes to find such a classification. In this section
seven infinite classes of (3,6)–fullerenes are constructed, and then the eccentric
connectivity, Szeged, revised Szeged, vertex PI, and Wiener index of them are
computed.

Suppose F is the molecular graph of an arbitrary n–vertex (3,6)– or (4,6)–
fullerenes. The adjacency matrix of F is an n � n matrix A D [aij] defined by aij D 1,
if vertices i and j are connected by an edge and aij D 0 otherwise. It is easy to prove
the adjacency matrix will determine the fullerene graph up to isomorphism. An
n � n matrix A D [ai,j] is called symmetric if aj, i D ai ,j and centrosymmetric when
its entries satisfy ai, j D an � i C 1an � j � 1, for 1 � i, j � n. Recently it is proved that
the adjacency matrix of some classes of fullerenes is centrosymmetric. This caused
to find exact formula for the Wiener index of these fullerenes in general (Graovac
et al. 2011).

The distance matrix D D [dij] of F is another n � n matrix in which dij is the
length of a minimal path connecting vertices i and j, i ¤ j, and zero otherwise.
Clearly, the summation of all entries in distance matrix of a fullerene F is equal to
2W(F). To compute the Szeged, revised Szeged, vertex PI, eccentric connectivity, or
Wiener indices of F, we first draw F by HyperChem (2002) and then apply TopoCluj
software (Diudea et al. 2002) of Diudea and his team to compute the adjacency
and distance matrices of this fullerene graph. Finally, we provide a GAP program
(Schönert et al. 1995) to calculate these topological indices for F.

Our first class of (3,6)–fullerenes is depicted in Figs. 15.1, 15.2, and 15.3. These
fullerenes have exactly 8n vertices and their Schlegel diagrams show that they
are ITR.

Our second class of (3,6)–fullerenes is again ITR with exactly 8n C 4 vertices
depicted in Figs. 15.4 and 15.5.

The third class of (3,6)–fullerenes that is studied in this section is not ITR. The
Schlegel diagram of an arbitrary member of this class is depicted in Fig. 15.6. The
3D perception of the first member I[16] of this class, Fig. 15.7, and the algorithm
for construction of other members of the class from the first one shows that the
elements of this class are different from the first two classes of (3,6)–fullerenes.
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Fig. 15.2 G[8n], n is odd

Fig. 15.3 The 3D perception
of G[16]

Fig. 15.4 The Schlegel
diagram of H[8n C 4]

One of the pioneers of fullerene chemistry, P.W. Fowler, believed that a fullerene
has to be 3-connected and so I[16] is not a fullerene. Notice that, we don’t consider
3-connectivity in our definition for a fullerene.

Our fourth class of (3,6)–fullerenes is not ITR. The Schlegel diagram of an
arbitrary element of this class, together with the 3D perception of the first, J[24], is
depicted in Figs. 15.8 and 15.9, respectively. It is not so difficult to prove that the
members of this class are essentially different from the first three presented classes
of (3,6)–fullerenes.
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Fig. 15.5 The 3D perception
of H[20]

Fig. 15.6 The Schlegel
diagram of I[4n], n � 2

Fig. 15.7 The 3D perception
of I[16]

The molecular graph of our fifth class of (3,6)–fullerenes is depicted in
Fig. 15.10. These (3,6)–fullerenes have exactly 16n � 32 vertices and all of them are
ITR. In Fig. 15.11, the 3D perception of the first member of this class is depicted.

The sixth class of (3,6)–fullerenes is again ITR which contains 16n C 48 vertices,
n � 1. The Schlegel diagram and 3D perception of one member of this class are
depicted in Figs. 15.12 and 15.13, respectively.

The seventh and our final class of (3,6)–fullerenes has exactly 12n C 4 vertices,
and the molecular graph is ITR; see Figs. 15.14 and 15.15.

Since (3,6)–fullerenes are cubic, it is easy to see that the molecular graphs of
G[8n], H[8n C 4], I[4n], J[24n], K[16n � 32], L[16n C 48], and M[12n C 4] have
exactly 12n, 12n C 6, 6n, 36n, 24n � 48, 24n C 72, and 18n C 6 edges, respectively.
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Fig. 15.8 The Schlegel
diagram of J[24n]

Fig. 15.9 The 3D perception
of J[24]

Fig. 15.10 The Schlegel
diagram of K[16n � 32],
n � 5

15.3.1 Wiener and Eccentric Connectivity Indices
of (3,6)–Fullerenes

In this section the Wiener and eccentric connectivity indices of G[8n], H[8n C 4],
I[4n], J[24n], K[16n � 32], L[16n C 48], and M[12n C 4] are computed. By an easy
calculation, one can see that W(G[16]) D 294, �c(G[16]) D 192, �c(G[24]) D 348,
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Fig. 15.11 The 3D
perception of K[48]

Fig. 15.12 The Schlegel
diagram of L[16n C 48],
n � 1

�c(G[32]) D 600, �c(G[40]) D 888, and �c(G[48]) D 1,248. On the other hand, for
n � 7, we can partition the vertex set of G[8n] into n parts, each of which contains
eight vertices in such a way that the eccentricity of each vertex in the first part is n,
the eccentricity of each vertex in the second part is n C 1, : : : , and the eccentricity
of each vertex in the nth part is equal to 2n � 1. In Fig. 15.16, the black vertices
have the maximum eccentricity and red vertices have second maximum eccentricity
in G[8n], n � 7.

Our calculations show the following:

Result 15.1 For n � 3;W .G Œ8n�/ D .64=3/ n3 C .464=3/ n � 206; and for
n � 7; �c .G Œ8n�/ D 36n2 � 12n:
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Fig. 15.13 The 3D
perception of L[64]

Fig. 15.14 The Schlegel diagram of M[12n C 4], n � 1

Fig. 15.15 The 3D
perception of M[40]
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Fig. 15.16 The maximum
(black) and second maximum
(red) eccentricities in G[n]

Fig. 15.17 The maximum
(black) and second maximum
(red) eccentricities in
H[8n C 4]

We now consider the class H[8n C 4] of (3,6)–fullerenes. We can partition the
set of vertices of H[8n C 4] into n � 1 parts in which one of them has size 12 and
any other parts having size eight. The eccentricity of the vertices of the first part is
2n C 1, the second part is the set of vertices having eccentricity n C 2, the third part
is the set of all vertices having eccentricity n C 3, : : : , and the nth part is the set of
vertices having eccentricity 2n. In Fig. 15.17, the black vertices have the maximum
eccentricity and red vertices have the second maximum of eccentricity between
vertices of H[8n C 4]. From these calculations, we have the following result:

Result 15.2 For n � 1; W .H Œ8nC 4�/ D .64=3/ n3 C 64n2 C .152=3/ n C
2 and �c .H Œ8nC 4�/ D 36n2 C 60nC 12:

Consider the (3,6)–fullerene I[4n]. An easy calculation shows that �c(I[8]) D 72.
On the other hand, we can partition V(I[4n]) into n parts, each of which having size
four in such a way that the vertices of the first part have eccentricity n, the vertices
of the second part have eccentricity n C 1, : : : , and the vertices of the nth part have
eccentricity 2n � 1. In Fig. 15.18, the black vertices have the maximum eccentricity
and red vertices have the second maximum of eccentricity between vertices of I[4n].

From the calculations given above, one can prove the following:

Result 15.3 For n � 2; W .I Œ4n�/ D .16=3/ n3 C .20=3/ n � 6; and for
n � 3; �c .I Œ4n�/ D 18n2 � 6n:
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Fig. 15.18 The maximum
(black) and second maximum
(red) eccentricities in I[4n]

Fig. 15.19 The maximum
(black) and second maximum
(red) eccentricities in J[24n]

By an easy calculation, one can see that W(J[24]) D 864, W(J[48]) D 4,824,
�c(J[24]) D 396, �c(J[48]) D 1,140, �c(J[72]) D 2,064, �c(J[96]) D 3,420, and
�c(J[120]) D 5,256. On the other hand, for n � 6, we can partition the vertex set of
J[24n] into 2n parts, each of which contains four vertices in such a way that the
eccentricity of each vertex in the first part is 2n, the eccentricity of each vertex in
the second part is 2n C 1, : : : , and the eccentricity of each vertex in the 2nth part
is equal to 4n � 1. In Fig. 15.19, the black vertices have the maximum eccentricity
and red vertices have second maximum eccentricity in J[24n], n � 6.
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Fig. 15.20 The maximum (black) and second maximum (red) eccentricities in K[16n � 32]

The following result is a direct consequence of our calculations:

Result 15.4 For n � 3; W .J Œ24n�/ D 384n3 C 1; 656n � 1; 594; and for
n � 6; �c .J Œ24n�/ D 216n2 � 36n:

We now consider the (3,6)–fullerene K[16n � 32]. An easy calculation shows
that �c(K[48]) D 1,008 and �c(K[64]) D 1,632. On the other hand, we can partition
V(K[16n � 32]) into n � 3 parts such that one of them have size 32 and any other
parts have size 16. Also, the vertices of the part of size 32 have eccentricity 2n � 3,
and vertices of other parts have eccentricities n C 1, n C 2, : : : , 2n � 4, respectively.
In Fig. 15.20, the black vertices have the maximum eccentricity and red vertices
have the second maximum of eccentricity between vertices of K[16n � 32].

Our given calculations lead us to the following result:

Result 15.5 For n � 5; W.KŒ16n � 32�/ D .256=3/ n3 � 256n2 C .608=3/ n �
492; and for n � 7; �c .K Œ16n� 32�/ D 72n2 � 168n:

By an easy calculation by our GAP program, we can see that W(L[64]) D 9,968,
W(L[80]) D 17,432, W(L[96]) D 27,724, Ÿc(L[64]) D 1,692, �c(L[80]) D 2,340,
�c(L[96]) D 3,168, �c(L[112]) D 3,972, �c(L[128]) D 4,968, �c(L[144]) D 6,024,
�c(16n–32L[160]) D 7,260, �c(L[176]) D 8,652, �c(L[192]) D 10,224, �c(L[208])
D 11,952, �c(L[224]) D 13,824, �c(L[240]) D 15,840, �c(L[256]) D 18,048, and
�c(L[272]) D 22,896.

On the other hand, for n � 15, we can partition the vertex set of L[16n C 48] into
n C 3 parts, each of which contains 16 vertices in such a way that the eccentricity
of each vertex in the first part is n C 3, the eccentricity of each vertex in the
second part is n C 4, : : : , and the eccentricity of each vertex in the (n C 3)th part
is equal to 2n C 5. In Fig. 15.21, the black vertices have the maximum eccentricity
and red vertices have second maximum eccentricity in L[16n C 48], n � 15. These
calculations suggest the following result:

Result 15.6 For n � 4, W(L[16n C 48]) D (256/3)n3 C 768n2C(14,912/3)nC5,340,
and for n � 15, �c(L[16n C 48]) D 72n2 C 408n C 576.
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Fig. 15.21 The maximum
(black) and second maximum
(red) eccentricities in
L[16n C 48]

Fig. 15.22 The maximum (black) and second maximum (red) eccentricities in M[12n C 4]

In the end of this section, the Wiener and eccentric connectivity indices of
(3,6)–fullerene M[12n C 4] is computed. Using our GAP program, we can see
that W(M[16]) D 296, �c(M[16]) D 204, �c(M[28]) D 420, �c(M[40]) D 804, and
�c(M[52]) D 1,248. On the other hand, we can partition V(M[12n C 4]) into n parts
such that one of them has size eight, another of size 20, and any other parts
have size 12 in such a way that the elements of these classes have the same
eccentricity. The eccentricities of a representative of the first two classes are n C 2
and 2n C 1, respectively. On the other hand, the representatives of other parts have
eccentricities n C 3, n C 4, : : : , 2n, respectively. In Fig. 15.22, the black vertices
have the maximum eccentricity and red vertices have the second maximum of
eccentricity between vertices of M[12n C 4].

From these calculations, we have the following:

Result 15.7 For n � 2; W .M Œ12nC 4�/ D 48n3 C 144n2 C 192n �
126; and for n � 5; �c .M Œ12nC 4�/ D 54n2 C 90n:
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Table 15.1 The values of nu(e), nv(e), and n0(e) for a given edge
e D uv in G[8n]

Edges The values of nu(e), nv(e), and n0(e) No

1 6, 6, 8n � 12 4

2 8n � 9, 8, 1 4

3 8n � 8, 8, 0 4

4 8n � 16, 10, 6 8

5 8n � 12, 10, 2 8

6 8n � 16, 16, 0 8

7 8n � 17, 15, 2 8

8 8n � 15, 14, 1 8

9 8n � 22, 21, 1 16

10 8n � 24 � 4i, 24 C 4i, 0; n D 6 C i, i D 0, 2, 4, : : : 4

8n � 24 � 4i, 24 C 4i, 0; n D 6 C i, i D 1, 3, 5, : : : 8

11 8n � 24 � 4i, 24 C 4i, 0; n � 7 C i, i D 0, 2, 4, : : : 8

8n � 24 � 4i, 24 C 4i, 0; n � 7 C i, i D1, 3, 5, : : : 16

15.3.2 Vertex PI, Szeged, and Revised Szeged Indices
of (3,6)–Fullerenes

Consider the (3,6)–fullerene G[8n] depicted in Figs. 15.1 and 15.2. Apply our
method described in the third paragraph of this section for some small numbers of n.
Using our program we obtain four exceptional cases that n D 2, 3, 4, and 5. Then an
easy calculation shows that PI(G[16]) D 300, Sz(G[16]) D 972, Sz(G[24]) D 3,418,
Sz(G[32]) D 8,944, Sz(G[40]) D 17,840, Sz*(G[16]) D 1,533, Sz*(G[24]) D 5,010,
Sz*(G[32]) D 11,445, Sz*(G[40]) D 21,357.

From calculations given in Table 15.1 and Figs. 15.23 and 15.24, we have the
following result:

Result 15.8 For n � 6; Sz* .G Œ8n�/ D 128n3 C 64n2 C 1648n �
4; 519; Sz .G Œ8n�/ D 128n3 C 1; 216n � 4; 280; and for n � 3; PIv .G Œ8n�/ D
96n2 � 32n� 60:

We now consider our second class H[8n C 4] of (3,6)–fullerenes. An easy
calculation by our program shows that Sz(H[12]) D 34 and Sz*(H[12]) D 648.

By our calculations given in Table 15.2 and Figs. 15.25 and 15.26, we have the
following result:

Result 15.9 For n � 2; Sz* .H Œ8nC 4�/ D .448=3/ n3 C 320n2 C .656=3/ n �
42; Sz .H Œ8nC 4�/ D .448=3/ n3 C 192n2 C .188=3/ n � 66; and for
n � 1; P Iv .H Œ8nC 4�/ D 96n2 C 56nC 4:
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Type 1 Type 2 Type 3

Type 4 Type 5 Type 6

Type 7 Type 8 Type 9

Type 10 Type 11

Fig. 15.23 The 11 types of edges in G[8n]
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1 2 3

4 5 6

7 8 9

Fig. 15.24 The vertices equidistant from u to v

Table 15.2 The values of nu(e), nv(e), and n0(e) for a given edge
e D uv in H[8n C 4]

Edges The values of nu(e), nv(e), and n0(e) No

1 4n, 4, 4n 8
2 4n, 4n, 4 4
3 8n � 3, 6, 1 8
4 4n C 2, 4n C 2, 0 4
5 4n C 1, 4n C 1, 2 4n � 2
6 8n � 6 � 4i, 10 C 4i, 0; n � 3 C i, i D 0, 1, 2, : : : 8

15.4 (4,6)–Fullerenes

In this section two infinite families A[8n] and B[12n C 6] of (4,6)–fullerenes are
constructed, Figs. 15.27, 15.28, 15.29, and 15.30. Since A[8n] and B[12n C 6] are
bipartite, Sz(A[8n]) D Sz*(A[8n]), Sz(B[12n C 6]) D Sz*(B[12n C 6]), PIv(A[8n]) D
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Type 1 Type 2

Type 3 Type 4

Type 5 Type 6

Fig. 15.25 The six types of edges in H[8n C 4]

Fig. 15.26 The vertices equidistant from u to v
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Fig. 15.27 The Schlegel diagram of the (4,6)–fullerene A[8n], n � 2

Fig. 15.28 The 3D
perception of A[24]

Fig. 15.29 The Schlegel
diagram of the (4,6)–fullerene
B[12n C 6], n � 2

8n � 12n D 96n2, and PIv(B[12n C 6]) D (12n C 6)�(18n C 9) D 216n2 C 216nC54.
So, it is enough to compute the Wiener, eccentric connectivity, and Szeged indices
of these families of fullerenes. We begin by computing these quantities for (4,6)–
fullerene A[8n].
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Fig. 15.30 The 3D
perception of B[30]

Type 1 Type 2

Type 3

Fig. 15.31 The three types of edges in A[8n]

From Fig. 15.31, one can see that there are three types of edges in A[8n]. These
together with quantities nu and nv are recorded in Table 15.3.

We can partition V(A[8n]) into n parts such that each part has size eight in such
a way that the elements of each part have the same eccentricity. Also, a represen-
tative of distinct parts has eccentricities n C 2, n C 3, : : : , 2n C 1, respectively. In
Fig. 15.32, the black vertices have the maximum eccentricity and red vertices have
the second maximum of eccentricity between vertices of A[8n].
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Table 15.3 The values of
nu(e) and nv(e) for a given
edge e D uv in A[8n]

Edges The values of nu(e) and nv(e) in A[8n] No

1 4n, 4n 4n C 8
2 8n � 6, 6 8
3 8n � 4i C 4, 4i � 4, n � i, i D 3, 4, : : : 8

Fig. 15.32 The maximum (black) and second maximum (red) eccentricities in A[8n]

Fig. 15.33 The maximum
(black) and second maximum
(red) eccentricities in
B[12n C 6]

By above calculations and our calculations given in Table 15.3, we have the
following result:

Result 15.10 For n � 2; W .A Œ8n�/ D .64=3/ n3 C 32n2 C .32=3/ n �
16; Sz .A Œ8n�/ D Sz* .A Œ8n�/ D .448=3/ n3 C 64n2 C .320=3/ n �
160; and �c .A Œ8n�/ D 36n2 C 36n:

In the end of this section, we consider the (4,6)–fullerene graph B[12n C 6] into
account. It is clear that �c(B[30]) D 576. We partition again V(B[12n C 6]), n � 3,
into n C 1 parts such that one of these parts has size six and any other parts have
size 12. The vertices of each part have the same eccentricity, and a representative
of the part of size six has eccentricity n C 3. The eccentricities of a representative
of other parts are n C 4, n C 5, : : : , 2n C 3, respectively. In Fig. 15.32, the black
vertices have the maximum eccentricity and red vertices have the second maximum
of eccentricity between vertices of B[12n C 6] (Figs. 15.33 and 15.34).

From our discussion and calculations given in Table 15.4, one can prove the
following result:
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Type 1 Type 2

Type 3 Type 4

Fig. 15.34 The four types of edges in B[12n C 6]

Table 15.4 The values of
nu(e) and nv(e) for a given
edge e D uv in B[12n C 6]

Edges The values of nu(e) and nv(e) in B[12n C 6] No

1 6n C 3, 6n C 3 6n C 9
2 12n � 6, 12 12
3 12n � 8, 14 12
4 12n � 6i C 6, 6i, n � i, i D 3, 4, : : : 12

Result 15.11 For n � 2;W .B Œ12nC 6�/ D 48n3 C 180n2 C 228n �
45; Sz .B Œ12nC 6�/ D Sz* .B Œ12nC 6�/ D 504n3 C 972n2 C 1; 674n �
1; 263; and for n � 3; �c .B Œ12nC 6�/ D 54n2 C 144nC 54:

15.5 Concluding Remarks

Since there are no classification of (3,6)– and (4,6)–fullerenes, it is natural to con-
struct more and more of such molecular graphs. In this chapter, some constructions
of these fullerene graphs are presented, and our calculations suggest the following
conjectures:
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Conjecture 1: The Wiener, Szeged, and revised Szeged indices of a (k,6)–fullerene
with exactly n carbon atoms are a polynomial of degree 3.

Conjecture 2: The vertex PI and eccentric connectivity indices of a (k,6)–fullerene
with exactly n carbon atoms are a polynomial of degree 2.

Appendix 1 Some GAP Programs

Here, two GAP programs are presented which is useful for calculations presented
in this chapter. The first program is for computing Wiener index and the second is
for eccentric connectivity index. Notice that these GAP programs have to combine
with calculations by TopoCluj described in the Sect. 15.1.

A Gap Program for Computing Wiener Index of Fullerenes

f:Dfunction(M)
local l,i,j,id,k,t,max,a,s,w,d,g;
l:DLength(M);id:D0;t:D[];s:D[];w:D0;d:D[];g:D0;

for k in [1..l]do
id:D1;

for i in [1..l-1]do
for j in [iC1..l] do

if M[k][j]>M[k][id] then
id:Dj;

fi;
od;

od;
Add(t,M[k][id]);

od;
max:Dt[1];

for a in [2..Length(t)] do
if t[a] > max then

max:Dt[a];
fi;

od;
for a in [1..max] do

for i in [2..l] do
for j in [1..i-1] do

if M[i][j]Da then
g:DgC1;
fi;

od;
od;

Add(d,g);
g:D0;
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od;
for i in [2..l] do

for j in [1..i-1] do
w:DwCM[i][j];

od;
od;
Print("DistansD",d,"nn");
Print("Wiener indexD",w,"nn");
Print("****************","nn");
end;

A Gap Program for Computing Eccentric Connectivity Index of Fullerenes

f:Dfunction(M)
local l,i,j,k,t,id,ii,jj,s,a,iii,w,ww;
t:D[];l:DLength(M);id:D0;s:D0;a:D[];w:D0;ww:D0;
for k in [1..l]do

id:D1;
for i in [1..l-1]do

for j in [iC1..l] do
if M[k][j]>M[k][id] then
id:Dj;

fi;
od;

od;
Add(t,M[k][id]);
od; ####ecentricity vertices of G
for ii in [1..l]do

for jj in [1..l]do
if M[ii][jj]D1 then

s:DsC1;
fi;

od;
Add(a,s);
s:D0;

od;####degree vertices of G
for iii in [1..Length(t)] do

w:Dt[iii]*a[iii];
ww:DwwCw;
w:D0;

od;######ecentricity connectivity index of G
Print("ecentricityD",t,"nn");

Print("degreeD",a,"nn");
Print("ecentricity connectivity indexD",ww,"nn");

Print("**********************","nn");
end;
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Chapter 16
Enumeration of Hetero-molecules by Using
Pólya Theorem

Modjtaba Ghorbani

Abstract A fullerene is any molecule composed entirely of carbon, in the form of
a hollow sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs
and cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are
similar in structure to graphite, which is composed of stacked graphene sheets of
linked hexagonal rings; but they may also contain pentagonal rings. Enumeration
of chemical compounds has been accomplished by various methods. The Polya-
Redfield theorem has been a standard method for combinatorial enumerations
of graphs, polyhedra, chemical compounds, and so forth. Hetero-fullerenes are
fullerene molecules in which one or more carbon atoms are replaced by heteroatoms
such as boron or nitrogen. In this chapter, by using the Pólya’s theorem, we compute
the number of permutational isomers of some fullerene graphs.

16.1 Introduction

In this chapter, we introduce some notations which will be kept throughout. A graph
is a collection of points and lines connecting them. The points and lines of a graph
are also called vertices and edges, respectively. If e is an edge of � , connecting
the vertices u and v, then we write e D uv and say “u and v are adjacent.” A
connected graph is a graph such that there exists a path between all pairs of vertices.
A molecular graph is a simple graph such that its vertices correspond to the atoms
and the edges to the bonds. Note that hydrogen atoms are often omitted.

Group is a set of elements which satisfy the following properties (Trinajstić
1992):
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1. There is an identity element, e, so that a�e D a for any a belonging to the group.
2. The product of two elements is also member of the group, that is, if a and b

belong to the group, then a�b will also be a member of the group. It means the
group is closed under the given operation.

3. Every element has its inverse as the member of the group, that is, if a belongs to
the group, then a�1 also belongs to the group. If a�b D e, it means a is the inverse
of b and vise versa.

4. Group members obey the associative law, that is, a(b�c) D (a�b)c.

The order of a group is defined as the member of elements present in the
group. The element of a group can be several things as you define them. It can be
integers, vectors, matrices, symmetry operations (elements), etc. One has to define
the operation which goes on in the group which can be several things like addition,
multiplication, and symmetry operations. They are smaller groups present in the
group. They obey all the rules of a group. Their order must divide the order of
the group. That is, if you have a group of order seven, then you cannot have any
subgroup except a subgroup of order 1 that contains identity only. Similarly, if
you have a group of order 12, you should not waste your time in looking for a
subgroup of order 5, 7, 8, 9, 10, and 11. Remember there is always a subgroup of
order 1. An Abelian group is a group in which every element commutes with every
other element, that is, a�b D b�a for every a and b. Cyclic group is a group which
is generated by a single element called generator. In other words, if G be a cyclic
group, then there is an element g in G where, G D fg, g2, : : : , gn D 1g. The order of
this group is n.

A group can be divided in several classes, also called conjugacy classes. The
importance of classes will be clear in our later studies. It is time consuming to
find out all classes. Choose any element, and perform the so-called similarity
transformation, that is, compute x�1ax, where x and a belong to the group. For each
a, perform this computation with x being all members of the group.

Symmetry plays a central role in the analysis of the structure, bonding, and spec-
troscopy of molecules. Chemists classify molecules according to their symmetry.
The collection of symmetry elements present in a molecule forms a group, typically
called a point group. Since all the symmetry elements (points, lines, and planes) will
intersect at a single point, so we name it as point group. The symmetry properties
of objects (and molecules) may be described in terms of the presence of certain
symmetry elements and their associated symmetry operations. Symmetry elements
are properties which are related to the structure of the molecule. They include
mirror planes, axes of rotation, centers of inversion, and improper axes of rotation
(an improper axis of rotation is a rotation followed by a reflection perpendicular
to the rotational axis). Symmetry operations are actions which places the molecule
in an orientation which appears to be identical to its initial orientation. Symmetry
operations include rotation, reflection, inversion, rotation followed by reflection, and
identity. The identity operation simply leaves the molecule where it is. All molecules
have the identity operation. Certain physical properties of molecules are clearly
linked to molecular symmetry. Molecules which are symmetrically bonded to the
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same elements will not be polar, due to the canceling dipole moments. Likewise,
chirality (left or right handedness) is clearly a symmetry property. Chirality can only
be present in molecules which lack an improper axis or rotation. Molecules with a
center of inversion or a mirror plane cannot be chiral. The symmetry properties of
molecules are tabulated on character tables. A character table lists the symmetry
elements of the point group, along with characters which are consistent with the
different symmetry operations of the group. The table characterizes how various
atomic properties (the symmetry of atomic orbitals, rotations about axes, etc.) are
transformed by the symmetry operations of the group.

Character of a symmetry element will be defined as the sum of the diagonal
elements in the matrix representing the element. Mathematically, it turns out that
representations of a group can be expressed in terms of these characters.

Detecting symmetry of molecules is a well-studied problem with applications
in a large number of areas. Randić (1974, 1976) and then Balasubramanian (1980)
considered the Euclidean matrix of a chemical graph to find its symmetry. Here the
Euclidean matrix of a molecular graph � is a matrix D(�) D [dij], where for i ¤ j, dij

is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as
zero if all the nuclei are equivalent. Otherwise, one may introduce different weights
for different nuclei.

Suppose � is a permutation on n atoms of the molecule under consideration.
Then the permutation matrix P� is defined as P� D [xij], where xij D 1 if i D �(j) and
0 otherwise. It is easy to see that P�P� D P�� , for any two permutations � and �
on n objects, and so, the set of all n � n permutation matrices is a group isomorphic
to the symmetric group Sn on n symbols. It is a well-known fact that a permutation
� of the vertices of a graph � belongs to its automorphism group if it satisfies
P¢ tAP� D A, where A is the adjacency matrix of � . So, for computing the symmetry
of a molecule, it is sufficient to solve the matrix equation PtEP D E, where E is the
Euclidean matrix of the molecule under consideration and P varies on the set of all
permutation matrices with the same dimension as E.

16.2 Main Results and Discussion

Groups are often used to describe symmetries of objects. This is formalized by the
notion of a group action. Let G be a group and X a nonempty set. An action of G
on X is denoted by GX and X is called a G-set. It induces a group homomorphism '

from G into the symmetric group SX on X, where '(g)x D gx for all x 2 X. The orbit
of x will be denoted by Gx and defines as the set of all '(g)x, g 2 G. The set of all
G-orbits will be denoted by GnnX: D fGx j x 2 Xg. Suppose g is a permutation of
n symbols with exactly �1 orbits of size 1, �2 orbits of size 2, : : : , and �n orbits of
size n. Then the cycle type of g is defined as 1�12�2 ; : : : ; n�n :

A mathematician, namely, Arthur Cayley, has been studying the combinatorial
enumeration of rooted trees as models. Pólya’s theorem has been widely applied
to chemical combinatorics to enumerate objects. In this chapter we will show how
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Fig. 16.1 Two
indistinguishable colorings

Fig. 16.2 The six distinguishable colorings

Pólya theory can be used in counting objects, which is often the design basis for
statistical tests. In other words, Pólya theory determines the number of distinct
equivalence classes of objects. It can also give counts for specific types of patterns
within equivalence classes.

Example 16.1 As an example, let us consider the number of ways of assigning one
of the colors red or white to each corner of a square. Since there are two colors and
four corners, there are basically 24 D 16 possibilities. But when we take account of
the symmetry of the square, we see that some of the possibilities are essentially the
same. For example, the first coloring as in Fig. 16.1 is the same as the second one
after rotation through 180ı.

From above, we regard two colorings as being indistinguishable if one is
transformed into the other by symmetry of the square. It is easy to find the
distinguishable colorings (in this example) by trial and error: there are just six of
them, as shown in the Fig. 16.2.

Now consider an n bead necklace. Let each corner of it be colored red or blue.
How many different colorings are there? One could argue for 2n. For example, if
n D 4 and the corners are numbered 0,1,2,3 in clockwise order around the necklace,
then there are only 6 ways of coloring the necklace RRRR, BBBB, RRRB, RBBB,
RRBB, and RBRB; see Fig. 16.3.

16.2.1 Pólya’s Theorem

We now introduce the notion of cycle index. Let G be a permutation group.
The cycle index of G acting on X is the polynomial Z(G, X) over Q
in terms of indeterminates x1, x2, : : : ,xt, t D jXj, defined by Z .G; X/ D
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Fig. 16.3 Distinguish
colorings of four bead
necklace

.1=jGj/Pp2G
Qt
iD1 x

ci .p/
i in which (c1(p), : : : ,ct(p)) is the cycle type of

the permutation p 2 G. The generalized character cycle index is defined as
P
�
G .x1; x2; : : : ; xt / D .1=jGj/Pp2G

Qt
iD1 �.p/x

ci .p/
i , where �(g) is the linear

character of the irreducible representation of G. In this chapter, we use two special
cases: one is the antisymmetric representation, that is,

�.g/ D
�
1 if g is a proper rotation
�1 if g is an improper rotation

;

and the other when � is 1 for all g. Since, all elements of a conjugacy class of a
permutation group have the same cycle type, so the cycle index and the generalized
character cycle index can be rephrased in the following way:

Z .G; x1; : : : ; xt / D 1

jGj
X

C2Conj.G/

jC j
tY

iD1
x
ci .gC /

i

P
�
G .x1; : : : ; xt / D 1

jGj
X

C2Conj.G/

jC j
tY

iD1
� .gc/ x

ci .gC /

i :

Denote by Cm,n the set of all functions f : f1, 2, : : : , mg ! fx1, x2, : : : , xng. The
action of p 2 Sm induced on Cm,n is defined by Op.f / D fop�1, f 2 Cm,n. Treating
the colors x1, x2, : : : , xn that comprise the range of f 2 Cm,n as independent variables,
the weight of f is W.f / D Qm

iD1 f .i/. Evidently, W(f ) is a monomial of (total)
degree m. Suppose G is a permutation group of degree m, OG D f Op W p 2 Gg, Op is
as defined above. Let p1, p2, : : : , pt be representatives of the distinct orbits of OG.
The weight of pi is the common value of W(f ), f 2 pi. The sum of the weights of the
orbits is the pattern inventoryWG .x1; x2; : : : ; xn/ D Pt

iD1 W.pi/.
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Theorem 16.2 (Pólya’s theorem (Pólya and Read 1987)) If G is a subgroup of
Sm, the symmetry group on m symbols, then the pattern inventory for the orbits
of Cm,n modula OG is

WG .x1; x2; : : : ; xn/ D 1

jGj
X

p2G
M

C1.p/
1 M

C2.p/
2 : : :MCm.p/

m ;

where Mk D x1
k C x2

k C : : : C xn
k is the kth power sum of the x’s.

Theorem 16.3 (Generalization of Pólya’s theorem (Zhang et al. 1998)) Substitut-
ing Mi for xi and in the generalized character cycle index, i D 1, 2, : : : , t, we get the
chiral generating function CGF D P

�
G .M1; : : : ;Mk/.

16.2.2 Fullerene Graphs

In the past years, nanostructures involving carbon have been the focus of an intense
research activity which is driven to a large extent by the quest for new materials
with specific applications. Fullerene is one of the main objects of nanostructures.
A fullerene is any molecule composed entirely of carbon, in the form of a hollow
sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs and
cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are similar
in structure to graphite, which is composed of stacked graphene sheets of linked
hexagonal rings; but they may also contain pentagonal rings. The fullerene era was
started in 1985 with the discovery of a stable C60 cluster and its interpretation as a
cage structure with the familiar shape of a soccer ball, by Kroto and his coauthors
(Kroto et al. 1985, 1993). The well-known fullerene, the C60 molecule, is a closed-
cage carbon molecule with three-coordinate carbon atoms tiling the spherical
or nearly spherical surface with a truncated icosahedral structure formed by 20
hexagonal and 12 pentagonal rings. Let p, h, n, and m be the number of pentagons,
hexagons, carbon atoms, and bonds between them, in a given fullerene F. Since
each atom lies in exactly three faces and each edge lies in two faces, the number of
atoms is n D (5p C 6 h)/3, the number of edges is m D (5p C 6 h)/2 D 3/2n, and the
number of faces is f D p C h. By the Euler’s formula n � m C f D 2, one can deduce
that (5p C 6 h)/3 – (5p C 6 h)/2 C p C h D 2, and therefore, p D 12, v D 2 h C 20, and
e D 3 h C 30. This implies that such molecules made up entirely of n carbon atoms
and are having 12 pentagonal and (n/2 � 10) hexagonal faces, where n ¤ 22 is
a natural number equal or greater than 20; see Fig. 16.4. Hetero-fullerenes are
fullerene molecules in which one or more carbon atoms are replaced by heteroatoms
such as boron or nitrogen, whose formation is a kind of “on-ball” doping of the
fullerene cage; see Fig. 16.5.

To enumerate all possibilities of the hetero-fullerene structures, we have to
consider the rotation group of the fullerene and its whole automorphism group to
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Fig. 16.4 3-D graph of
fullerene C20

Fig. 16.5 3-D graph of
hetero-fullerene C16Br4

enumerate the number of chiral isomers. Fripertinger (Fripertinger 1996) computed
the symmetry of some fullerenes and then applied SYMMETRICA to calculate the
number of C60HkCl60�k molecules, and Balasubramanian computed the number of
C60H36 isomers. (Zhang et al. 1998), for calculating the possibilities of different
positional isomers, used the Pólya’s counting theorem. He also applied the general-
ization of the Pólya’s theorem to compute the number of chiral isomers.

Balasubramanian (1981, 1984, 1995a, b, 2004a, b) has done a lot of work on
methods for isomer counting of hetero-fullerenes and of poly-substituted fullerenes,
especially, using the generalized character cycle index. Mathematically the isomer
counting of poly-substituted fullerene is essentially the same as that of hetero-
fullerene. Shao and Jiang (1995) discussed hydrogenated C60. Furthermore, (Zhang
et al. 1998) also studied the fullerene cages. In Ghorbani et al. (2006a, b, 2009,
2011, 2012), Ashrafi and Ghorbani (2010) and Faghani and Ghorbani (2011), the
number of permutational isomers of some classes of hetero-fullerenes is computed.
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5 61 2 3 4Fig. 16.6 2-D graph of
zigzag nanotube Tz[6, p], for
p D 5 and its Clar structures

Fig. 16.7 Caps B

16.2.3 Construction of Infinite Classes of Fullerenes

In Ghorbani et al. (2011), a method is described to obtain a fullerene graph from
a zigzag or armchair nanotubes. Here by continuing his method, we construct an
infinite class of fullerenes. Denoted by TZ[q, p] means a zigzag nanotube with p
rows and q columns of hexagons; see Fig. 16.6. Combining a nanotube TZ[6, p]
with two copies of caps B (Fig. 16.7) as shown in Fig. 16.8, the resulted graph is a
non-IPR fullerene, which has 12p vertices and 6p – 10 hexagonal faces.

Now, combine a nanotube TZ[5, p] (Fig. 16.9) with two copies of caps C
(Fig. 16.10) as shown in Fig. 16.11. The resulted graph is a non-IPR fullerene, which
has 10p vertices and 5p – 10 hexagonal faces.

Finally, we can construct a fullerene with 12n C 30 vertices (Fig. 16.12), by
combining a TZ[6, p] nanotube and two caps E (see Fig. 16.13) added to its inside
and its outside. In this chapter, we will construct some infinite classes of fullerene
graphs and then compute the number of their chiral isomers.
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Fig. 16.8 Fullerene C12p constructed by combining two copies of caps B and the zigzag nanotube
TZ[6, p]

51 2 3 4Fig. 16.9 2-D graph of
zigzag nanotube Tz[6, p], for
p D 5 and its Clar structures

Fig. 16.10 Caps C

Fig. 16.11 Fullerene C10p constructed by combining two copies of caps C and the zigzag nanotube
TZ[5, p]
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Fig. 16.12 2-D graph of
fullerene C12nC30

Fig. 16.13 Caps E

16.2.4 Leapfrog Fullerenes

A method (Fowler et al. 1986, 1987) has been described on how to construct a
fullerene C3n from a fullerene Cn having the same or even a bigger symmetry
group as Cn. This method is called the Leapfrog principle. If one starts with a
Cn cluster with icosahedral symmetry, all the new clusters will be of the same
symmetry, since this is the biggest symmetry group in 3-dimensional space. In
the first step, an extra vertex has to be put into the center of each face of Cn.
Then, these new vertices have to be connected with all the vertices surrounding
the corresponding face. Then, the dual polyhedron is again a fullerene having 3n
vertices, 12 pentagonal, and (3n/2) – 10 hexagonal faces. From Fig. 16.14, it can be
seen that Le(C20) D C60.
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Fig. 16.14 The fullerene C20 (a) and Le(C20) (b)

16.3 Enumeration of Nanostructures

Enumeration of chemical compounds has been accomplished by various methods.
The Polya-Redfield theorem has been a standard method for combinatorial enu-
merations of graphs, polyhedra, chemical compounds, and so forth. Combinatorial
enumerations have found a wide-ranging application in chemistry, since chemical
structural formulas can be regarded as graphs or three-dimensional objects. The
aim of this section is to enumerate the number of permutational isomers of hetero-
fullerenes, see Appendix 16.B.

16.3.1 Hetero-Fullerenes with Small Number of Vertices

To demonstrate our method, we should compute the number of permutational
isomers of some well-known fullerenes. In this section, we enumerate hetero-
fullerenes Cn�kBk for n D 24, 80, 84, and 150. Consider at first the molecular graph
of the fullerene C24, shown in Fig. 16.15. In Ghorbani et al. (2006b), the symmetry
group of C24 is computed, and it is isomorphic with the group Z2 � S4. So, we have
the following theorem without proof:

Theorem 16.4

Z.C24; X/ D x241 C 16x122 C 8x83 C 12x64 C 8x46 C 3x81x
8
2

48
:

Consider now the molecular graph of the fullerene C80, Fig. 16.16. We have the
following theorem:
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Fig. 16.15 3-D graph of
fullerene C24

Fig. 16.16 3-D graph of fullerene C80

Theorem 16.5

Z.C80; X/ D x801 C 4x165 C 6x402 C 4x810 C 5x41x
38
2

20
:
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Fig. 16.17 2-D graph of fullerene C84

Proof By using concept of symmetry, one can see that the generators of fullerene
graph C80 are as follows:

X:D (2,16)(4,14)(5,18)(6,17)(7,20)(8,19)(9,36)(10,35)(11,34)(12,33)(13,49)(15,
51)(21,24)(22,23)(25,37)(26,52)(27,39)(28,50)(29,54)(30,53)(31,56)(32,55)(38,40)
(41,42)(43,44)(45,60)(46,59)(47,58)(48,57)(62,67)(63,66)(65,77)(68,80)(69,73)(70,
79)(71,78)(72,76)(74,75);

Y:D(1,65)(2,66)(3,68)(4,67)(5,48)(6,45)(7,46)(8,47)(9,42)(10,43)(11,44)(12,41)
(13,69)(14,70)(15,72)(16,71)(17,36)(18,33)(19,34)(20,35)(21,30)(22,31)(23,32)(24,
29)(25,73)(26,74)(27,76)(28,75)(37,77)(38,78)(39,80)(40,79)(49,61)(50,62)(51,64)
(52,63)(53,60)(54,57)(55,58)(56,59).

By using GAP (The GAP Team 1995) program, one can see that X2 D Y2 D (XY)10

D 1 and X�1(XY)X D (XY)�1, and so, this symmetry group is isomorphic with a
dihedral group of order 20, namely, D20. Now by using definition of the cycle index,
the proof is completed, see Appendix 16.A.

In continuing consider the molecular graph of fullerene C84, Fig. 16.17. We prove
that the symmetry group of the C84 fullerene is isomorphic to the group S4. To do
this, suppose G is the symmetry group of this fullerene. Then G D hX; Y i, where
X and Y are the following permutations:

X D (1, 2)(3, 4)(5, 8) (6,80) (7,81) (9,18) (10,19) (11,20) (12,78) (14,83) (15,82)
(17,84)(21,54)(22,77)(23,55)(24,79)(25,76)(26,27)(28,59)(29,60)(30,57)(31,58)(32,
66)(33,70)(34,72)(35,67)(36,64)(37,65)(38,74)(39,73)(40,75)(41,56)(42,51)(43,53)
(44,52)(45,48) (46,49)(47,50)(61,71)(62,63)(68,69),
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Fig. 16.18 3-D graph of fullerene C150

Y D (1,76,31,69) (2,59,30,40) (3,79,28,68) (4,58,29,39) (5,51,35,17) (6,84,49,66)
(7,83,48,65) (8,80,41,71) (9,77,42,61) (10,78,43,62) (11,81,44,63) (12,82,45,64)
(13,55,27,33) (14,20,53,36) (15,19,52,37) (16,54,26,34) (18,56,32,38) (21,72,23,70)
(22,74,46,67)(24,73,50,57)(25,75,47,60).

By using GAP software one can see that this group is isomorphic with S4. Thus,
the cycle index of G is as follows:

Theorem16. 6

Z.C84; X/ D .x841 C 3x422 C 8x283 C 6x214 C 6x21x
41
2 /

24
:

Proof By means of group action, one can see that the number of conjugacy classes
of symmetric group S4, on the set of vertices of C84, is 5. The cycle types of its
elements are 184, 242, 328, 421, and 12241, respectively. This completes the proof.

Now consider the molecular graph of the fullerene C150, Fig. 16.18. In Ghorbani
et al. (2006b), the symmetry group of C150 is computed, and it is isomorphic with
dihedral group D20. On the other hand, the 3-dimensional cycle index of C150 is
computed, and so, we have
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Fig. 16.19 The Schlegel diagram of C10n

Theorem 16.7

Z.C150; X/ D
�
x1501 C 5x752 C 4x305 C 5x81x

71
2 C 4x25x

14
10 C x101 x

70
2

�

20
:

16.3.2 Enumeration of Infinite Classes of Hetero-fullerenes

In this section, we enumerate the number of infinite families of hetero-fullerenes,
namely, C10n, C12n, C12nC6, C24n, and C40n fullerenes. Many properties of these
classes of fullerenes are studied in Fowler et al. (1995, 2007), Ashrafi et al. (2008a,
b, c, 2009), Ashrafi and Ghorbani (2010), Ghorbani (2011, 2012), Ghorbani and
Naserpour (2011) and Ghorbani and Ashrafi (2012).

16.3.2.1 C10n Fullerene

This class of fullerenes has exactly 10n carbon atoms (n � 2). That’s why we denote
this class of fullerenes by C10n; see Fig. 16.19. The first member of this class
of fullerenes can be obtained by putting n D 2, for example, C20. Our problem is
reduced to the coloring of the corresponding fullerene graph with 10n vertices. By
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considering a labeling of its vertices as we did in Fig. 16.19, it is easy to see that the
generators of this group are

� D .2; 5/.3; 4/.6; 10/.7; 9/.11; 15/.12; 14/ : : : .10n � 4; 10n/.10n � 3; 10n � 1/;

� D .1; 10n � 4; 2; 10n � 3; 3; 10n � 2; 4; 10n � 1; 5; 10n/ : : :

.7; 10n � 6; 9; 10n � 14; 11; 10n � 12; 13; 10n � 10; 15; 10n � 8/;

where � fixes elements 1, 8, 19, 30, : : : , 11i � 3, 11i C 2, : : : , 10n � 2, i D 1,2, : : : ,
n � 1 and � does not have fixed points.

Since �2 D �10 D identity and ��1�� D ��1, the symmetry group G of these
fullerenes is isomorphic to the dihedral group of order 20. In the following table
the cycle types of elements of G are computed:

Fullerene Cycle type #Permutations

C10n 110n# 1#
12n24n# 5#
52n 4#
25n 6#
10n 4

Thus, the cycle index of G is computed as

Z.G;X/ D x10n1 C 5x2n1 x
4n
2 C 42n5 C 6x5n2 C 4xn10

20
:

16.3.2.2 C12n Fullerene

Now consider the graph of fullerene C12n (n � 2), Fig. 16.20. This class of fullerenes
has exactly 12n carbon atoms, and the first member of this class of fullerenes can
be obtained by putting n D 2, for example, C24. Again our problem is reduced to
the coloring of the corresponding fullerene graph with 12n vertices. By using the
labeling of its vertices, similar to the last example, one can see that the generators
of this group are as follows:

� D .1; 12n� 5/.2; 12n� 4/.3; 12n� 3/ : : : .12n� 24; 12n� 18/

� .12n� 22; 12n� 19/.12n� 21; 12n� 20/;
� D .1; 12n� 5; 2; 12n; 3; 12n� 1; 4; 12n� 2; 5; 12n� 3; 6; 12n� 4/ : : :

� .12n� 29; 12n� 25; 12n� 26; 12n� 18; 12n� 20; 12n� 19; 12n� 22;

� 12n� 21; 12n� 24; 12n� 23; 12n� 28; 12n� 27/:
Since �2 D �10 D identity and ��1�� D ��1, the symmetry group G of these

fullerenes is isomorphic to the dihedral group of order 24. In the following table,
the cycle types of elements of G are computed:
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Fig. 16.20 The Schlegel diagram of C12n

Fullerene Cycle type #Permutations

C12n 120n 1
12n29n 5
210n 6
102n 4
54n 4

Thus, the cycle index of G is

Z.G;X/ D x1
12n C 6x1

2nx2
5n C 2x6

2n C 2x3
4n C 7x2

6n C 4x12
n C 2x4

3n

24
:
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Fig. 16.21 2-D and 3-D graphs of fullerene C12nC6, for n D 3

Fig. 16.22 Labeling of fullerene C30

16.3.2.3 C12nC6 Fullerene

In this section consider a fullerene graph C12nC6 (n � 2) with 12n C 6 carbon atoms,
Fig. 16.21. As we know from the last discussions, our problem is reduced to the
coloring of the corresponding fullerene graph with 12n C 6 vertices. Consider the
labeling of the molecular graph C12n C 6, as depicted in Fig. 16.22. The generators of
its symmetry group will be indicated by a and b, whereas a stands for a reflection.
In the first step, we consider the labeling of vertices of the fullerene C30 (the first
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member of this class) indicated in Fig. 16.12. The permutation representation of
generators of symmetry group acting on the set of vertices is given by

a WD .29; 30/ .9; 14/ .10; 13/ .6; 11/ .5; 12/ .1; 2/ .22; 15/ .21; 16/ .19; 24/ .26; 27/

.20; 23/ .3; 4/ .25; 28/ I
b WD .26; 30/ .10; 23/ .5; 22/ .6; 21/ .7; 17/ .8; 18/ .9; 24/ .11; 16/ .12; 15/ .14; 19/

.13; 20/ .27; 29/ :

The generators satisfy in the following relations:

a2 D b2 D 1 and ab D ba:

This implies that the symmetry group of fullerene C30 is isomorphic with Abelian
group Z2 � Z2. So its cycle index is as follows:

Z .C30; X/ D x301 C x61x
12
2 C x41x

13
2 C 4x152

4
:

By using GAP [37], one can see that the symmetry group of C12nC6 fullerenes
has two generators a, b of order 2, satisfying in the following relations:

a2 D b2 D 1 and ab D ba:

Further, this group is isomorphic to the Abelian group Z2 � Z2 of order 4, and the
cycle types of elements of S are as in the following table:

Fullerene Cycle type #Permutations

C12nC6 112nC6# 1#
1426nC1 1
1626n 1
26nC3 1

Thus, the cycle index of symmetry group is computed as

Z.G; S/ D x12nC6
1 C x41x

6nC1
2 C x61x

6n
2 C x6nC3

2

4
:

16.3.2.4 C24n Fullerene

In this section we enumerate the number of hetero-fullerenes C24n (n � 3),
Fig. 16.23. The first member of this family of fullerenes is C72, obtained by putting
n D 3. By considering the molecular graph of the fullerene C24n, one can see that
the generators of its symmetry group will be indicated by a and b, whereas a stands
for a reflection. In the first step, consider the labeling of vertices of the fullerene
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Fig. 16.23 2-D and 3-D graphs of fullerene C24n, for n D 3

Fig. 16.24 Labeling of
fullerene C72

C72 as is indicated in Fig. 16.24, the permutation representation of generators of
symmetry group S acting on the set of vertices is given by

a: D (1,28,31,54,43,64,50,56,39,30,13,25)(2,24,10,44,51,70,59,65,49,37,16,21)
(3,9,32,52,60,69,68,66,48,27,19,17)(4,23,42,61,62,72,67,57,38,22,14,8)(5,34,41,63,
53,71,58,47,20,26,7,18)(6,35,11,45,33,55,40,46,15,36,12,29);

b:D(1,25)(2,18)(3,8)(4,17)(5,21)(6,29)(7,24)(9,14)(10,26)(11,36)(12,35)(13,28)
(15,45)(16,34)(19,23)(20,44)(22,32)(27,42)(30,31)(33,46)(37,41)(38,52)(39,54)(40,
55)(43,56)(47,51)(48,61) (49,63)(50,64)(53,65)(57,60)(58,70)(59,71)(62,66)(67,69)
(68,72).



16 Enumeration of Hetero-molecules by Using Pólya Theorem 531

The generators satisfy in the following relations:

a12 D b2 D 1 and bab D a11 D a�1:

This implies that the symmetry group of fullerene C72 is isomorphic with dihedral
group D24. However, by using GAP, one can see that the symmetry group of this
family of fullerenes is isomorphic to the dihedral group D24 of order 24, and the
cycle types of elements of S are as in the following table:

Fullerene Cycle type #Permutations

C24n 124n# 1#
14212n�2 6
212n 7
38n 2
46n 2
64n 2
122n 4

Thus, the cycle index of symmetry group S is computed as

Z.G; S/ D x24n1 C 7x12n2 C 6x41x
12n�2
2 C 2x8n3 C 2x6n4 C 2x4n6 C 4x2n12

24
:

It is easy to see that the generators of the rotational group of fullerene C72 are

a: D (1,2,3,4,5,6)*(7,10,13,16,19,22)*(29,31,33,35,25,27)*(30,32,34,36,26,28)*
(8,11,14,17,20,23)*(62,57,52,47,42,37)*(63,58,53,48,43,38)*(12,15,18,21,24,9)*
(66,61,56,51,46,41)*(65,60,55,50,45,40)*(64,59,54,49,44,39)*(69,70,71,72,67,68);

b: D (68,69)*(47,53)*(40,65)*(39,66)*(62,38)*(41,64)*(37,63)*(9,8)*(29,28)*
(23,12)*(27,30)*(10,22)*(11,24)*(44,61)*(2,6)*(5,3)*(25,32)*(20,15)*(42,58)*(46,
59)*(45,60)*(67,70)*(13,19)*(36,33)*(21,14)*(52,48)*(17,18)*(34,35)*(57,43)*
(49,56)*(50,55)*(51,54)*(72,71)*(26,31).

By using GAP, it is not difficult to see that a6 D b2 D 1 and bab D a5 D a�1.
Hence, this group is isomorphic with dihedral group D12. In general, the cycle types
of elements of rotational group R of C24n are as in the following table:

Fullerene
Cycle type of
rotational subgroup #Permutations

C24n 124n# 1#
212n�2 6
212n 1
64n 2
38n 2
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Fig. 16.25 The Schlegel diagram of C40n

This implies that the cycle index of rotational group R is as follows:

Z.G;R/ D x24n1 C x12n2 C 6x41x
12n�2
2 C 2x8n3 C 2x4n6
12

:

16.3.2.5 C40n Fullerene

In this section, we consider an infinite class C40n (n � 2) of fullerene molecules with
40n carbon atoms as shown in Fig. 16.25. To compute the number of isomers of
these fullerenes, we first compute a permutation representation for the symmetry
group of these fullerenes. Consider the graph of fullerene C40n. The generators of
this group are

� D .2; 5/.3; 4/.7; 10/ : : : .10n� 10; 10n� 7/.10n� 4; 10n� 2/.10n� 1; 10n/;

� D .1; 10n� 4; 3; 10n� 1; 5; 10n� 3; 2; 10n; 4; 10n� 2/ : : :

� .10n� 44; 10n� 36; 10n� 41; 10n� 38; 10n� 43; 10n� 39;

� 10n� 40; 10n� 37; 10n� 42; 10n� 32/:
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Since �2 D �10 D identity and ��1�� D ��1, the symmetry group G of these
fullerenes is isomorphic to the dihedral group D20 of order 20. In the following
table, the cycle types of elements of G are computed:

Fullerene Cycle type #Permutations

C40n 140n 1
14n218n 5
220n 6
104n 4
58n 4

Thus, the cycle index of G is computed as

Z.G; X/ D x1
40n C 5x1

4nx2
18n C 6x2

20n C 4x10
4n C 4x5

8n

20
:

16.3.3 Fullerenes Constructed by Leapfrog Operation

Knowing the 3-dimensional cycle index of S(Cn) acting on the sets of vertices,
edges, and faces, it is very easy to compute the cycle index for the induced action of
S(Cn) on the set of vertices of C3n. We just have to identify the vertices of Cn with
the n new hexagonal faces of C3n.

Here, we enumerate the number of hetero-fullerenes of two series of fullerenes
constructed by Leapfrog, for example, C3n�20 and two classes of C3n�34 (n � 0).
From the above discussion our problem is reduced to the coloring of the corre-
sponding fullerene graph with 3n �m vertices (m 2 f20; 34g).

16.3.3.1 C3n�20 Fullerene

Consider the molecular graph of the fullerene C3n�20 as depicted in Fig. 16.26. The
first member of this class is C20, obtained by putting n D 0. It is well-known fact that
the symmetry group of C20 is isomorphic to the non-Abelian group Ih D Z2 � A5 of
order 120. So, according to the Leapfrog principle, the symmetry group G of these
fullerenes is again isomorphic to the group Ih, and the cycle types of elements of G
are as follows:

Fullerene Cycle type #Permutations

C3n�20 13
n
�20# 1

23
n
�10 16

13
n�1

�423
n�1

�28 15
33

n�1
�20 20

53
n
�4 24

63
n�1

�10 20
103

n
�2 24
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Fig. 16.26 The Schlegel
diagram of C3n�20, for n D 2

This implies that the cycle index of G can be computed as

Z.G;X/ D
�
x20�3n1 C 20.x20�3n�1

3 C x10�3n�1

6

�
C 24

�
x4�3n5 C x2�3n10

�

C 15x4�3n�1

1 x28�3n�1

2 C 16x10�3n2 :

But from the cycle indices, one can compute the number of possible positional
isomers, the number of chiral isomers, and the number of orbits under the whole
point group Ih. For the number of orbits under the whole point group Ih, we simply
note thatZIh �P�

Ih
D P1

Ih
. We use from this relation and then we obtain the number

of C72�kBk molecules for both symmetry group and rotational group.

16.3.3.2 C3n�34 Fullerene

In this section, we compute the number of permutational isomers of a class of
fullerenes with 3n � 34 vertices (n D 0, 1, : : : ); see Fig. 16.27. The symmetry group
of the first member of this class of fullerenes, namely, C34, is isomorphic with the
non-Abelian group S3 of order 6. From Leapfrog principle, the symmetry group G
of C3n�34 fullerene is isomorphic to S3, and so, the cycle types of elements of G are
as in the following table:

Fullerene Cycle type # Permutations

C3n�34 13
n
�34# 1

16n217�3
n
�3n 3

33
n�1

�34 2
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Fig. 16.27 3-D graph of
fullerene C3n�34, n D 1

Hence, the cycle index of G is computed as [25]

Z.G;X/ D x34�3n1 C 3x6n1 x
17�3n�3n
2 C 2x34�3n�1

3

6
:

16.3.3.3 F3n�34 Fullerene

Finally, we enumerate the number of hetero-fullerenes in a new series of fullerenes
constructed by Leapfrog. This class of fullerenes has again 3n � 34 vertices, and we
denote this class of fullerenes by F3n�34; see Figs. 16.28 and 16.29. Similar to the
last discussion, our problem is reduced to the coloring of the corresponding fullerene
graph with 3n � 34 vertices. The symmetry group of this fullerene is isomorphic with
cyclic group of order 2, namely, Z2. From Leapfrog principle, one can see that the
symmetry group G of these fullerenes is isomorphic to the group Z2 of order 2, and
the cycle types of elements of G are as in the following table:

Cycle type# Cycle type#

Fullerene n is even n is odd #Permutations

F3n�34 134�3
n# 134�3

n
# 1

16�3
n=2
234�3

n
�6�3n=2 14�3

.n�1/=2
234�3

n
�4�3.n�1/=2

1

This implies that the cycle index of G is computed as

Z.G;X/ D

8
<̂

:̂

1

2

�
x34�3n1 C x6�3n=21 x17�3n�3�3n=2

2

�
2jn

1

2

�
x34�3n1 C x4�3.n�1/=2

1 x17�3n�2�3.n�1/=2

2

�
2 6 jn

:
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Fig. 16.28 2-D and 3-D graphs of fullerene C3n�34, n D 1

Fig. 16.29 2-D and 3-D graphs of fullerene C3n�34, n D 2

We can also apply our GAP program to compute the number of hetero-fullerenes
F3n�34�kBk .

16.4 Other Structures

Carbon exists in several forms in nature. One is the so-called nanotube which was
discovered for the first time in 1991. Unlike carbon nanotubes, carbon nanohorns
can be made simply without the use of a catalyst [38, 39]. The tips of these
short nanotubes are capped with pentagonal faces; see Fig. 16.30a. Let p, h, n,
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Fig. 16.30 2-D and 3-D graphs of nanohorn H

and m be the number of pentagons, hexagons, carbon atoms, and bonds between
them, in a given nanohorn H. Then one can see that n D r2 C 22r C 41,
m D 3r2C65rC112

2
(r D 0,1, : : : ), and the number of faces is f D p C h. By the

Euler’s formula n � m C f D 2, one can deduce that p D 5 and h D r2C21rC24
2

,
r D 1, 2, : : : . From the above discussion our problem is reduced to the coloring
of the corresponding nanohorn graph with n D r2 C 22r C 41 vertices. Consider
the molecular graph of the nanohorn H; see Fig. 16.30 for the case of r D 8. By
using GAP software, one can see that the symmetry group H of these fullerenes is
isomorphic to the group C2 of order 2. Thus, the cycle index of H is computed as

Z.H;X/ D

	
xr

2C22rC41
1 C x1Cr1 x

.r2C21rC40/=2
2




2
:

But from the cycle indices, one can compute the number of possible positional
isomers and the number of chiral isomers under the symmetry group C2.

In what follows we prepare a GAP program to compute the number of possible
positional isomers for H. We mention here that our computations of symmetry
properties and cycle indices of molecules were carried out with the use of GAP.
In Table 16.14 (Appendix 16.B), we apply this program to compute the number of
possible positional isomers for the case of r D 4, Fig. 16.31.
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Fig. 16.31 Nanohorn H for
the case of r D 4

16.5 USCI Table

The concept of the table of marks of a finite group was introduced by one of the
pioneers of finite groups, William Burnside, in the second edition of his classical
book (Burnside 1897). This table describes a characterization of the permutation
representations of a group G by certain numbers of fixed points and in some detail
the partially ordered set of all conjugacy classes of subgroups of G.

Shinsaku Fujita in some of his leading papers introduced the term markaracter to
discuss marks for permutation representations and characters for linear representa-
tions in a common basis. To explain, we assume that G is a finite group and M is
the mark table of G. By considering the rows and columns of M(G) corresponding
to cyclic subgroups of G, a new table MC(G) is obtained. Fujita named this table as
markaracter table of G (Fujita 1988a, b, c, d, e, 1999a, b, c, 2000, 2001; El-Basil
2002; Ashrafi and Ghorbani 2008). So, it is a modification of the classical notion of
mark table. A dominant markaracter for a cyclic subgroup is defined as a row vector
appearing in the resulting markaracter table.

A permutation representation (PR) of a finite group G is produced when the group
G acts on a finite set X D fx1, x2, : : : , xkg. The PR(PG) is a set of permutations (Pg)
on X, each of which is associated with an element g 2 G. Let H be a subgroup of G.
The set of cosets of H in G provides a partition of G, that is, G D Hg1 CHg2 C
� � � C Hgm; where g1 D I (identity) and gi 2G. Consider the set of cosets fHg1,
Hg2, : : : , Hgmg. For any g 2 G, the set of permutations of degree m,

.G=H/g D
	
Hg1 Hg2 : : : Hgm

Hg1g Hg2g : : : Hgmg



;

constructs a permutation representation of G, which is called a coset representation
(CR) of G by H and notified as G/H. The degree of G/H is m D jGj/jHj, where jGj is
the number of elements in G. Obviously, the coset representation G/H is transitive
and, in other words, has one orbit.

The Burnside’s theorem states that any permutation representation PG of a finite
group G acting on X can be reduced into transitive CRs in accord with equation
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PG D Ps
iD1 ˛iG=Gi; wherein the multiplicity ˛i is a nonnegative integer, where ˛i

is obtained by solving


j D
sX

iD1
˛iMij .1 � j � s/ (16.1)

where 
j is the number of fixed points of Gj in PG, mark of Gj, and the symbol
Mij denotes the mark of Gj in G/Gi. Following Burnside, the matrix M(G) D [Mij] is
called the table of mark or mark table of G. If we restrict such elements within those
of Gj � G, we have a permutation representation of the subgroup Gj. We call this
permutation representation a subduced representation of G/Gi by Gj and designate
this by the symbol G/Gi#Gj. According to PG D Ps

iD1 ˛iG=Gi ; we arrive at a
definition of the subduced representation, G=Gi # Gj D f�gjg 2 Gj g. Since this
permutation representation is transitive in general, it can be reduced to a sum of CRs
of the group Gj. Then the subduced representation (Fujita 2001) is represented by

G=Gi # Gj D
vjX

kD1
ˇ
.ij /

k G=G
.j /

k ; 1 � i; j � s;

where the ˇ.ij /k multiplicity is obtained by solving 
.j /l D Pvj
kD1 “

.ij /

k m
.j /

kl 1 � l � vj

and 
.j /l is the mark of Gl
(j) in G/Gi # Gj. A unit-subduced cycle index (USCI) is

defined by

Z.G.=Gi / # Gj I sd / D Z.G=Gi # Gj I sd / D
vjY

kD1
sd jkˇk

.ij /;

for each G/Gi#Gj, where the subscript djk is expressed by djk D ˇ
ˇGj

ˇ
ˇ =
ˇ
ˇGk.j /

ˇ
ˇ :

16.5.1 Markaracter Table

In this section we obtain some results about markaracter table. We also use of these
results in the next section to compute the markaracter table of symmetry group of
icosahedral fullerenes. Suppose the set of fixed points of the subgroup U in the
action of G on X is FixX.U / D fx 2 X W x:u D xI 8u 2 U g . Then the ijth entry of
mark table of G is as follows:

Mij .G/ D jFixG=Gj .Gi /j:

Let also U and V be subgroups of G and vG .V; U / D j fUg W g 2 G;Ug � Vg j;
thus, we have
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Lemma 16.8 (Pfeiffer 1997)

ˇ
ˇFixG=V .U /

ˇ
ˇ D ŒG W V � vG.V; U /=vG.G;U /:

Theorem 16.9 Let G be a finite group and G1, G2, : : : , Gsbe all nonconjugated
subgroups of G in which jG1j � jG2j � � � � � jGsj. Then the matrix M(G) is a lower
triangular matrix and for all 1 � i, j � s, MijjM1j.

Proof For the first claim use definition of markaracter table and for the second part
use Lemma 16.8.

Lemma 16.10 Let G be a finite group and Gi � G be a subgroup. Then

Mii D .NG.Gi / W Gi/:

Proof By using definition of mark table, we have

Mii D jfgGi W 8x 2 Gi ; x:gGi D gGi gj
D jfgGi W 8x 2 Gi ; g�1xgGi D Gi gj
D jfgGi W 8x 2 Gi ; x 2 gGig�1gj
D jfgGi W Gi D gGig

�1gj:

Corollary 16.11 If Gj be a normal subgroup of G (1 � j � s), then

Mij D
� jGj=jGj j Gi � Gj

0 otherwise
:

Proof Similar to proof of Lemma 16.10, it is easy to see that Mij Dˇ
ˇ˚gGj W Gi � g�1Gjg

�ˇˇ. Since Gj is normal, then g�1Gjg D Gj. This completes
the proof.

Theorem 16.12 Table of marks of a non-Abelian group of order pq(p> q), where
p and q are prime numbers, is as follows:

Mark table G1 G2 G3 G4

G(/G1) pq 0 0 0
G(/G2) p 1 0 0
G(/G3) q 0 q 0
G(/G4) 1 1 1 1

Proof It is easy to see that all nonconjugated subgroups of G are G1 D (), G2 D Q,
G3 D P, and G4 D G, in which jQj D q and jPj D p. By Sylow theorem, one can
see that P G G. So, by using Lemma 16.10, we have M12 D p, M22 D 1, and
M32 D M42 D 0. On the other hand, Q /G G, because G is non-Abelian; hence,
M23 D M43 D 0 and M13 D M33 D 0.
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Fig. 16.32 The skeleton of
naphthalene

Table 16.1 Mark table of the
point group Z2 � Z2

Mark table G1 G2 G3 G4 G5

G(/G1) 4 0 0 0 0
G(/G2) 2 2 0 0 0
G(/G3) 2 0 2 0 0
G(/G4) 2 0 0 2 0
G(/G5) 1 1 1 1 1

Table 16.2 Markaracter
table of the point group
Z2 � Z2

Mark table G1 G2 G3 G4

G(/G1) 4 0 0 0
G(/G2) 2 2 0 0
G(/G3) 2 0 2 0
G(/G4) 2 0 0 2

16.5.2 Benzenoid Chains

Consider the skeleton of naphthalene, Fig. 16.32. Generators of its symmetry group
are � and!, where �D (1, 9)(2, 10)(3, 7)(4, 8) and!D (1, 2)(3, 4)(5, 6)(7, 8)(9, 10).
The subgroups of G are G1 D<()>, G2 D<�>, G3 D<!>, G4 D<�!>, and
G5 D G. This group is isomorphic with Z2 � Z2, where Z2 is a group of order 2.
Since every group of order 4 is Abelian and thenZ2�Z2, by using Corollary 16.11,
for any subgroup Gi of Z2 �Z2, Mij D 0 or j Z2 �Z2 j/jGij. But for pure subgroup
H of Z2 � Z2, jHj D 2. This implies that the entries of mark table are 1, 2, and 4.
By Theorem16. 9, M11 D 4 and Mi1 D 0 for 2 � i � 4. Also M4j D 1 for 1 � j � 4.
Since all subgroups in Abelian group are normal, by using Lemma 16.10, we have
M12 D M22 D 2 and M32 D M42 D 0. Using again Lemma 16.10, it is easy to see that
M13 D M33 D 2 and M23 D M43 D 0. In Tables 16.1 and 16.2, the mark table and
markaracter table of this group are computed. On the other hand, the number of (
j)
of fixed points is obtained by a geometrical examination of Eq. (16.1):

.10; 2; 0; 0; 0/ D .˛G1 ; ˛G2 ; ˛G3 ; ˛G4 ; ˛G5/ �

0

BB
B
B
B
@

4 0 0 0 0

2 2 0 0 0

2 0 2 0 0

2 0 0 2 0

1 1 1 1 1

1

CC
C
C
C
A
:



542 M. Ghorbani

Fig. 16.33 The skeleton of
anthracene

So, ˛G5 D ˛G4 D ˛G3 D 0; ˛G1 D 2;˛G2 D 1, and PG D 2G .=G1/CG .=G2/.
This implies that sub-orbits of X are

X11 D f1; 2; 9; 10g ; X21 D f5; 6g ; X12 D f3; 4; 7; 8g :

With a similar discussion, the generators of the point group of anthracene
skeleton (Fig. 16.33) are ı and � , where

� D .1; 13/.2; 14/.3; 11/.4; 12/.5; 9/.6; 10/;

� D .1; 2/.3; 4/.5; 6/.7; 8/.9; 10/.11; 12/.13; 14/:

The subgroups of G are G1 D< ./ >;G2 D< � >;G3 D< � >;G4 D< �� >,
and G5 D G. Also, the mark table and markaracter table of this group are the same
of naphthalene. The number of (
j) of fixed points is

.10; 2; 0; 0; 0/ D .˛G1 ; ˛G2; ˛G3 ; ˛G4 ; ˛G5/ �

0

B
B
BB
B
@

4 0 0 0 0

2 2 0 0 0

2 0 2 0 0

2 0 0 2 0

1 1 1 1 1

1

C
C
CC
C
A
:

Hence, ˛G5 D ˛G4 D ˛G3 D 0; ˛G2 D 1; ˛G1 D 2, and then by the similar
way, one can see that PG D 2G.=G1/ C G.=G2/. Thus, the sub-orbits of X are
X11 D f1,2,13,14g, X21 D f7,8g, X22 D f5,6,9,10g, and X12 D f3,4,11,12g.

In generally, consider the graph of benzenoid chain with exactly n hexagons,
Fig. 16.34. Its point group is isomorphic with groupZ2 �Z2 generated by ˛ and ˇ
where

˛ D.1; 3/.2; 4/ � � � .4n � 4; 4n� 2/.4n� 3; 4n� 1/;
ˇ D.1; 2/.3; 4/ � � � .4n � 1; 4n/.4nC 1; 4nC 2/:

This implies the mark table and markaracter table of a benzenoid chain with
exactly n hexagons are similar to anthracene and naphthalene; see Ghorbani et al.
(2012) for more details.
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Fig. 16.34 The skeleton of a benzenoid chain with n hexagons

Fig. 16.35 The fullerene
C3n�20 for n D 2

Now is the time to compute the markaracter table and then USCI table of
fullerenes in a series of fullerenes constructed by Leapfrog. From the above
discussion, the problem is reduced to compute the markaracter table and USCI
table of the corresponding fullerene graph with 20 vertices. Consider the molecular
graph of the fullerene C3n�20, Fig. 16.35. From the Leapfrog principle, it can be
seen that the symmetry group G of these fullerenes is isomorphic to the group
Ih D Z2 � A5 of order 120, where A5 is an alternating group on five symbols.
Consider the fullerene graph C20, depicted in Fig. 16.36, with symmetry group
Z2 � A5. By using computer algebra system GAP, one can see that this group
has exactly 22 conjugacy classes of subgroups and the generators of its symmetry
group aregap> group((2,5,8,12,11)*(4,7,10,14,1)*(18,19,20,16,17)*(6,9,13,15,3),
(6,7)*(5,14)*(6,17)*(2,15)*(13,8)*(1,3)*(9,10)*(4,18));

gap>List(ConjugacyClassesSubgroups(G),x->Elements(x)); z:DLength(aa);
Hence, this group has eight nonconjugated cyclic subgroups as follows:
G1 D<()>,
G2 D<(1,9)(2,16)(3,10)(4,13)(5,17)(6,14)(7,15)(8,18)(11,20)(12,19)>,
G3 D<(1,3)(2,18)(4,15)(5,17)(6,14)(7,13)(8,16)(9,10)(11,19)(12,20)>,
G4 D<(2,4)(5,6)(7,8)(11,19)(12,20)(13,16)(14,17)(15,18)>,
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Fig. 16.36 The fullerene C20

Table 16.3 Mark table of the symmetry group Z2 � A5

Markaracter table G1 G2 G3 G4 G5 G6 G7 G8

G(/G1) 120 0 0 0 0 0 0 0
G(/G2) 60 60 0 0 0 0 0 0
G(/G3) 60 0 4 0 0 0 0 0
G(/G4) 60 0 0 4 0 0 0 0
G(/G5) 40 0 0 0 4 0 0 0
G(/G6) 24 0 0 0 0 4 0 0
G(/G7) 20 20 0 0 2 0 2 0
G(/G8) 12 12 0 0 0 2 0 2

G5 D<(2,14,19)(3,15,18)(4,11,17)(5,13,20)(6,12,16)(7,8,10)>,
G6 D<(1,2,8,10,17)(3,5,9,16,18)(4,6,7,20,19)(11,12,13,14,15)>,
G7 D<(2,14,19)(3,15,18)(4,11,17)(5,13,20)(6,12,16)(7,8,10),(1,9)(2,16)(3,10)

(4,13)(5,17)(6,14)(7,15)(8,18)(11,20)(12,19)>,
G8 D<(1,2,8,10,17)(3,5,9,16,18)(4,6,7,20,19)(11,12,13,14,15),(1,9)(2,16)(3,10)

(4,13)(5,17)(6,14)(7,15)(8,18)(11,20)(12,19)>
By considering the rows and columns of M.Z2 � A5/ corresponding to cyclic

subgroups of Z2 � A5, the markaracter table is obtained as follows (Table 16.3).
According to Fujita’s theorem for computing the USCI table of groupG D Z2�

A5, it is enough to compute the inverse of markaracter table of every subgroup
H, and then M.G/M�1.H/ results the corresponded column of USCI table. For
example, if H D G2, then the mark table and its inverse are as follows (Table 16.4):
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Table 16.4 Mark table and
its inverse of group Z2

M(G) G1 G2 M�1(G) G1 G2

G(/G1) 2 0 ) G(/G1) 1/2 0
G(/G2) 1 1 G(/G2) �1/2 1

So, the entries of the second column of USCI table are as follows:

0

BB
B
B
B
BB
B
B
B
BB
B
B
B
B
BB
B
B
B
BB
B
B
B
BB
B
B
B
B
BB
B
B
B
BB
B
B
@

120 0

60 60

60 0

60 0

40 0

30 0

30 0

30 30

24 0

20 0

20 0

20 20

15 15

12 0

12 0

12 12

10 0

10 10

6 6

5 5

2 0

1 1

1

CC
C
C
C
CC
C
C
C
CC
C
C
C
C
CC
C
C
C
CC
C
C
C
CC
C
C
C
C
CC
C
C
C
CC
C
C
A

�
	

1 =2 0

�1 =2 1



D

0

BB
B
B
B
BB
B
B
B
B
BB
B
B
B
BB
B
B
B
BB
B
B
B
B
BB
B
B
B
BB
B
B
B
B
BB
B
B
@

S2
60

S1
0

0 60

30 0

30 0

20 0

15 0

15 0

0 30

12 0

10 0

10 0

0 20

0 15

6 0

6 0

0 12

5 0

0 10

0 6

0 5

1 0

0 1

1

CC
C
C
C
CC
C
C
C
C
CC
C
C
C
CC
C
C
C
CC
C
C
C
C
CC
C
C
C
CC
C
C
C
C
CC
C
C
A

) USCI.G/j

0

BB
B
B
B
BB
B
B
B
BB
B
B
B
B
BB
B
B
B
BB
B
B
B
BB
B
B
B
B
BB
B
B
B
BB
B
B
@

S602
S601
S302
S302
S202
S152
S152
S301
S122
S102
S102
S201
S151
S62
S62
S121
S52
S101
S61
S51
S2
S1

1

CC
C
C
C
CC
C
C
C
CC
C
C
C
C
CC
C
C
C
CC
C
C
C
CC
C
C
C
C
CC
C
C
C
CC
C
C
A

It should be noted that we use from GAP software to compute the mark table of the
groupG D Z2 � A5 by the following function:

gap> Display(TableOfMarks(DirectProduct(CyclicGroup(2),AlternatingGroup
(5)))).

By a similar method, one can compute the whole of USCI table. This table is
reported in the Appendix 16.C.
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Appendices

Appendix 16.A: GAP Programs

This software was constructed by the GAP team in Aachen. GAP is a system for
computational discrete algebra, with particular emphasis on computational group
theory. GAP provides a programming language, a library of thousands of functions
implementing algebraic algorithms written in the GAP language as well as large data
libraries of algebraic objects. GAP is used in research and teaching for studying
groups and their representations, rings, vector spaces, algebras, combinatorial
structures, and more; see The GAP Team (1995).

A GAP Program for Enumerating the Hetero-fullerenes

h:Dfunction (f,g)
local t,i,tt;

Print(“Coefficients of f are:”, “nn”);
t:DCoefficientsofLaurentPolynomial(f);
for i in t[1] do
Print(i,“nn”);
od;
Print(“Coefficients of g are:,” “nn”);

tt:DCoefficientsofLaurentPolynomial(g);
for i in tt[1] do

Print(i,“nn”);
od;
return( );
end;

A Gap Program for Counting the Number of Nanohorn H

f:Dfunction (n)
locals,i,f,x,t;

x:DIndeterminate(Rationals,"x");
f:D((1Cx)ˆ(89)C(1Cx)ˆ5*(1Cxˆ2)ˆ(42))/2;
t:D CoefficientsOfLaurentPolynomial(f);

Print("***************************************************","nn");
Print("nn");
Print("Number of Molecules for Symmetry Group D","nn");

fori in t[1] do
Print(i,"nn");

od;
Print("**************************************************","nn");

return;end;
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Appendix 16.B: Number of Permutational Isomers

Table 16.5 The number of
C20�kBk molecules k, 20 � k

Number of C20�kBk molecules
for symmetry group

0,20 1
1,19 1
2,18 12
3,17 51
4,16 265
5,15 931
6,14 2972
7,13 7365
8,12 15730
9,11 27582
10,10 41544

Table 16.6 Number of C24�kBk molecules

k, 24 � k
Number of C24�kBk molecules
for symmetry group

Number of C24�kBk molecules
for rotational group

0,24 1 1
1,23 2 2
2,22 19 30
3,21 96 170
4,20 489 924
5,19 1826 3542
6,18 5775 11350
7,17 14586 28842
8,16 31034 61578
9,15 54814 108968
10,14 82358 163900
11,13 104468 208012
12,12 113434 225898
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Table 16.7 Number of C30�kBk molecules

k, 30 � k
Number of C30�kBk molecules
for symmetry group

Number of C30�kBk molecules
for rotational group

0,30 1 1
1,29 3 3
2,28 51 33
3,27 406 226
4,26 2793 1467
5,25 14253 7287
6,24 59605 30173
7,23 203580 102468
8,22 585975 294255
9,21 1430715 717299
10,20 3006009 1506051
11,19 5462730 2735358
12,18 8651825 4331275
13,17 11975985 5994081
14,16 14545485 7279821
15,15 15511760 7762876

Table 16.8 Number of
C34�kBk molecules k, 34 � k

Number of C34�kBk molecules
for symmetry group

0,34 1
1,33 6
2,32 102
3,31 1001
4,30 7801
5,29 46376
6,28 224509
7,27 896621
8,26 3027224
9,25 8741931
10,24 21857839
11,23 47682960
12,22 91398638
13,21 154664070
14,20 232005664
15,19 309328074
16,18 367339214
17,17 388934370
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Table 16.9 The number of C60�kBk molecules

k, 60 � k

Number of C60�kBk

molecules for rotational
group

Number of C60�kBk

molecules for symmetry
group

Number of orbits under
whole point group Ih

0,60 1 1 0
1,59 1 1 0
2,58 23 37 14
3,57 303 577 274
4,56 4190 8236 4046
5,55 45718 91030 45312
6,54 418470 835476 417006
7,53 3220218 6436782 3216564
8,52 21330558 42650532 21319974
9,51 123204921 246386091 123181170
10,50 628330629 1256602779 628272150
11,49 2855893755 5711668755 2855775000
12,48 11661527055 23322797475 11661270420
13,47 43057432740 86114390460 43056957720
14,46 144549869700 289098819780 144548950080
15,45 443284859624 886568158468 443283298844
16,44 1246738569480 2493474394140 1246735824660
17,43 3226849468425 6453694644705 3226845176280
18,42 7708584971055 15417163018725 7708578047670
19,41 17040023323785 34080036632565 17040013308780
20,40 34932048763560 69864082608210 34932033844650
21,39 66537224405790 133074428781570 66537204375780
22,38 117952355252550 235904682814710 117952327562160
23,37 194877787472550 389755540347810 194877752875260
24,36 300436595453640 600873146368170 300436550914530
25,35 432628675734195 865257299572455 432628623838260
26,34 582384767014701 1164769471671687 582384704656986
27,33 733373386161407 1466746704458899 733373318297492
28,32 864332935668892 1728665795116244 864332859447352
29,31 953746664302456 1907493251046152 953746586743696
30,30 985538239868528 1971076398255692 985538158387164
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Table 16.10 The number of C72�kBk molecules

k,72 � k
Number of C72�kBk molecules
for rotational group

Number of C72�kBk molecules
for symmetry group

0,72 1 1
1,71 4 8
2,70 127 236
3,69 2522 5044
4,68 43243 86168
5,67 583576 1167152
6,66 6514407 13025244
7,65 61386116 122772232
8,64 498746918 997464358
9,63 3546427742 7092855484
10,62 22342414424 44684640352
11,61 125928884480 251857768960
12,60 640138180164 1280275386294
13,59 2954479373440 5908958746880
14,58 12451019242744 24902034311648
15,57 48143925115958 96287850231916
16,56 171512731027768 343025446924856
17,55 564983065793776 1129966131587552
18,54 1726337142727692 3452674238383744
19,53 4906431753373920 9812863506747840
20,52 13002044149467636 26004088171840416
21,51 32195537606713866 64391075213427732
22,50 74635109937400116 149270219574397584
23,49 162250238419042800 324500476838085600
24,48 331260903551195565 662521806476549181
25,47 636020933801574048 1272041867603148096
26,46 1149730149855983496 2299460298556572192
27,45 1958799512979179380 3917599025958358760
28,44 3148070646470848632 6296141291043543360
29,43 4776383047609873920 9552766095219747840
30,42 6846149035990297176 13692298069196643072
31, 41 9275427723456099744 18550855446912199488
32, 40 11884141772331102516 23768283541008261684
33, 39 14405020327110683172 28810040654221366344
34,38 16523405671536565290 33046811338774382280
35,37 17939697583328247888 35879395166656495776
36,36 18438022518784399786 36876045033031223812
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Table 16.11 The number of
C80�kBk molecules k, 80 � k

Number of C80�kBk molecules
for symmetry group

0,80 1
1,79 5
2,78 181
3,77 4147
4,76 79546
5,75 1202745
6,74 15031147
7,73 158844959
8,72 1449435558
9,71 11595097111
10,70 82325041251
11,69 523884428977
12,68 3012334769066
13,67 15756817617163
14,66 75407624568509
15,65 331793506218077
16,64 1347911111443259
17,63 5074488744913588
18,62 17760710591159316
19,61 57956002543262252
20,60 176765807739834016
21,59 505045163808913156
22,58 1354439302981356268
23,57 3415542587404475164
24,56 8111913645381087112
25,55 18170686559985988028
26,54 38437990801023264444
27,53 76875981591517458868
28,52 145515250872462217832
29,51 260923898098627253308
30,50 443570626773816168644
31,49 715436494770338700580
32,48 1095512132628624165470
33,47 1593472192879288312630
34,46 2202740972528516942390
35,45 2895030992423701444170
36,44 3618788740556990692460
37,43 4303424448183910977070
38,42 4869664507190697241610
39,41 5244254084621907482050
40,40 5375360436777969680320
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Table 16.12 The number of
C84�kBk molecules k, 84 � k

Number of C84�kBk molecules
for symmetry group

0,84 1
1,83 4
2,82 161
3,81 4000
4,80 80724
5,79 1286744
6,78 16941162
7,77 188728904
8,76 1816506426
9,75 15339084436
10,74 115043064318
11,73 773924297744
12,72 4708039172851
13,71 26075285193864
14,70 132238945055628
15,69 617115040987920
16,68 2661308609905260
17,67 10645234310343900
18,66 39623927700233625
19,65 137641011605240660
20,64 447333287699520054
21,63 1363301447106388504
22,62 3903999598530800496
23,61 10523825001987843104
24,60 26748055213518461739
25,59 64195332506438811392
26,58 145674023765218737768
27,57 312929384372799539932
28,56 637034818189367985288
29,55 1230136200620880101792
30,54 2255249701142983248018
31,53 3928499479377611057376
32,52 6506577262729079657604
33,51 10252788413950491335316
34,50 15379182620943916403538
35,49 21970260887002103927160
36,48 29903966207337904208345
37,47 38794334539178147226960
38,46 47982466403762890020840
39,45 56594703963337371170880
40,44 63669041958809577715404
41,43 68327752345967341397280
42,42 69954603592363988835420
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Table 16.13 The number of C150�kBk molecules

k, 150 � k Number of C150�kBk molecules for symmetry group

0,150 1
1,149 10
2,148 608
3,147 27762
4,146 1015132
5,145 29587626
6,144 714908767
7,143 14705679304
8,142 262861756418
9,141 4147359263564
10,140 58477733568550
11,139 744261878846444
12,138 8621033058155532
13,137 91515579793041740
14,136 895545312914462338
15,135 8119610820294861024
16,134 68509216265755052423
17,133 540013822200718017274
18,132 3990102130481989637532
19,131 27720709537206337672482
20,130 181570647467256032286270
21,129 1124008770030069888944122
22,128 6590778696986152507958223
23,127 36679116226676561530421568
24,126 194093656699453439146865712
25,125 978232029765102584306831360
26,124 4703038604639712304854528992
27,123 21599140258344705503374136608
28,122 94881937563441939987580122208
29,121 399158495956546227316507706912
30,120 1609939267024733028272418627950
31,119 6232022969127988937630220494912
32,118 23175335416444696549270781265772
33,117 82869381186074941227257032574344
34,116 285168164669728433394496223305568
35,115 945128774333956983333854159548184
36,114 3019161362455695793849475118633168
37,113 9302280954593224550068789712330120
38,112 27662045996553535806719975891990092
39,111 79439721836256307048558318405485664
40,110 220445228095611251123048465578384610
41,109 591438416841883842130309387714175824
42,108 1534923510375365207042049180063976208
43,107 3855156723733475398082512651736762064
44,106 9375040214533678803733124039197920912
45,105 22083428060901554502735720945545628656

(continued)
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Table 16.13 (continued)

k, 150 � k Number of C150�kBk molecules for symmetry group

46,104 50407824921623113527709622686290336312
47,103 111540718975506463949387235122286925152
48,102 239347792801607620535970453784351147068
49,101 498234180933958720246386671215627247400
50,100 1006433045486596614856890256732735499706
51,99 1973398128405091401582018701627687530440
52,98 3757046436771231706787858155503142213536
53,97 6946991524595862401059693903626311024424
54,96 12478855146033308386976398312593227196124
55,95 21781274436712683729716490061393340262312
56,94 36950376276566159898459691595847481631824
57,93 60935708245565246147909753636832722794208
58,92 97707256324785653305903584594286513690016
59,91 152357077658987798374692146630075734026208
60,90 231074901116131494201332210976565629621470
61,89 340930181974620237345396728498808495051488
62,88 489399777350664534253556972312070143515984
63,87 683606038204102841495979056024525881046720
64,86 929276958183702300158285743952520137280386
65,85 1229504898519975350977406221073619443220268
66,84 1583453278396937952016116475798783021139936
67,83 1985225005751384895063598575468858890976508
68,82 2423142286431837445445179468870345772615144
69,81 2879676340397256094585598969401799560569164
70,80 3332196908173967766592027941721540605994000
71,79 3754588065548132694750220759988813194524464
72,78 4119617460809756706740212819065590964482316
73,77 4401783040317274289392463027500946909902536
74,76 4580233704113920544368502750626698489294984
75,75 4641303486835439484959145718568923895458472

Table 16.14 The number of
H89�kBk molecules k,89 � k

Number of H89�kBk molecules
for symmetry group

0,89 1
1,88 47
2,87 1984
3,86 56892
4,85 1221456
5,84 20756184
6,83 290563644
7,82 3445167312
8,81 35312741949
9,80 317813975539

(continued)
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Table 16.14 (continued)

k,89 � k
Number of H89�kBk molecules
for symmetry group

10,79 2542510116752
11,78 18259840795912
12,77 118688954831096
13,76 703003784422072
14,75 3816306205549832
15,74 19081530912625424
16,73 88252080242700895
17,72 378964814703449873
18,71 1515859257963982160
19,70 5664526699240696204
20,69 19825843444588399064
21,68 65142057027473837360
22,67 201348176258905833868
23,66 586535991698093381120
24,65 1612973977150092969259
25,64 4193732340560438311493
26,63 10323033453643439331136
27,62 24087078058438832974432
28,61 53335672843599223614176
29,60 112188829084695301825888
30,59 224377658169237491264096
31,58 427041349418676753435712
32,57 774012445821111101559914
33,56 1336930588236176461627382
34,55 2202003321800426034874816
35,54 3460290934257434856293432
36,53 5190436401385740907480896
37,52 7434949439822385325514640
38,51 10174141338703878921425976
39,50 13304646365996955576915552
40,49 16630807957495803542747490
41,48 19875843656519036615151870
42,47 22715249893164345209272800
43,46 24828296394853866796169520
44,45 25956855321892585506612240
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#G
22

#G
21

#G
20

#G
19

#G
18

#G
17

#G
16

#G
15

#G
14

#G
13

#G
12

U
SC

I
ta

bl
e

S 1
20

S 6
0

2
S 2

4
5

S 1
2

10
S 1

2
10

S 1
2

10
S 1

0
12

S 1
0

12
S 1

0
12

S 8
15

S 6
20

G
/G

1

S 6
0

S 6
0

S 1
2

5
S 6

10
S 6

10
S 1

2
5

S 5
12

S 1
0

6
S 1

0
6

S 4
15

S 3
20

G
/G

2

S 2
4

S 6
0

S 2
4

2
S 6

S 1
2

4
S 6

2
S 1

2
4
S 6

2
S 1

2
5

S 1
0

6
S 1

0
4
S 5

4
S 1

0
6

S 8
6
S 4

3
S 6

10
G

/G
3

S 2
0

S 1
2

2
S 2

4
2
S 8

S 1
2

4
S 6

2
S 1

2
4
S 6

2
S 1

2
4
S 4

2
S 1

0
6

S 1
0

6
S 1

0
4
S 5

4
S 8

6
S 4

3
S 6

10
G

/G
4

S 1
2

S 1
0

2
S 2

4
S 4

2
S 1

2
3
S 4

S 1
2

3
S 4

S 1
2

2
S 3

4
S 1

0
4

S 1
0

4
S 1

0
4

S 8
5

S 6
6
S 2

2
G

/G
5

S 1
2

S 6
2

S 2
4
S 4

S 1
2
S 6

3
S 1

2
S 6

3
S 1

2
2
S 2

2
S 1

0
3

S 1
0

3
S 5

6
S 8

3
S 2

3
S 6

5
G

/G
6

S 1
0

S 1
2

S 2
4
S 3

S 1
2
S 6

S 6
2

S 1
2
S 6

S 6
2

S 1
2

2
S 4

S 1
0

3
S 1

0
S 5

4
S 1

0
2
S 5

2
S 8

3
S 2

4
S 6

5
G

/G
7

S 1
0

S 1
2

S 1
2

2
S 4

S 6
4
S 3

2
S 6

4
S 3

2
S 1

2
2
S 4

S 5
6

S 1
0

2
S 5

2
S 1

0
2
S 5

2
S 4

6
S 2

3
S 3

10
G

/G
8

S 1
0

S 5
2

S 2
4

S 1
2

2
S 1

2
2

S 1
2

2
S 1

0
2
S 2

2
S 1

0
2
S 2

2
S 1

0
2
S 5

2
S 8

3
S 6

4
G

/G
9

S 8
S 1

0
S 6

S 4
S 1

2
S 6

S 2
S 1

2
S 6

S 2
S 1

2
S 3

2
S 1

0
2

S 5
4

S 1
0

2
S 8

S 4
3

S 6
3
S 2

G
/G

10

S 6
S 4

2
S 8

S 4
S 1

2
S 6

S 2
S 1

2
S 6

S 2
S 4

2
S 3

2
S 1

0
2

S 1
0

2
S 5

4
S 8

S 4
3

S 6
3
S 2

G
/G

11

S 6
S 1

0
S 1

2
S 2

2
S 6

3
S 2

S 6
3
S 2

S 1
2
S 3

2
S 5

4
S 1

0
2

S 1
0

2
S 4

5
S 3

6
S 1

2
G

/G
12

S 6
S 6

S 1
2
S 2

S 6
S 3

3
S 6

S 3
3

S 1
2
S 2

S 5
3

S 5
3

S 5
3

S 4
3
S13

S 3
5

G
/G

13

S 5
S 3

2
S 8

S 6
2

S 6
2

S 4
2

S 1
0
S 2

S 1
0
S 2

S 5
2
S 1

2
S 4

3
S 6

2
G

/G
14

S 4
S 5

S 6
S 6

2
S 6

2
S 1

2
S 1

0
S 2

S 5
2
S 1

2
S 1

0
S 2

S 4
3

S 6
2

G
/G

15

S 4
S 5

S 1
2

S 6
2

S 6
2

S 1
2

S 5
2
S 1

2
S 1

0
S 2

S 1
0
S 2

S 4
3

S 3
4

G
/G

16

S 4
S 2

2
S 4

S 2
S 6

S 4
S 6

S 4
S 3

2
S 1

2
S 1

0
S 1

0
S 5

2
S 8

S 2
S 6

S 2
2

G
/G

17

S 3
S 4

S 2
S 4

S 2
S 6

S 3
S 1

S 6
S 3

S 1
S 4

S 3
S 5

2
S 5

2
S 5

2
S 4

S 2
3

S 3
3
S 1

G
/G

18

S 2
S 3

S 4
S 3

2
S 3

2
S 4

S 5
S 1

S 5
S 1

S 5
S 1

S 2
3

S 3
2

G
/G

19

S 2
S 2

S 2
S 1

S 3
S 2

S 3
S 2

S 3
S 1

S 5
S 5

S 5
S 4

S 1
S 3

S 1
2

G
/G

20

S 2
S 1

2
S 2

S 2
S 2

S 1
2

S 2
S 2

S 1
2

S 2
S 2

G
/G

21

S 1
S 1

S 1
S 1

S 1
S 1

S 1
S 1

S 1
S 1

S 1
G

/G
22



558 M. Ghorbani

References

Ashrafi AR, Ghorbani M (2008) A note on markaracter tables of finite groups. MATCH Commun
Math Comput Chem 59:595–603

Ashrafi AR, Ghorbani M (2010) Enumeration of a class of IPR hetero-fullerenes. J Serb Chem Soc
75:361–368

Ashrafi AR, Jalali M, Ghorbani M, Diudea MV (2008a) Computing PI and omega polynomials of
an infinite family of fullerenes. MATCH Commun Math Comput Chem 60(3):905–916

Ashrafi AR, Ghorbani M, Jalali M (2008b) Detour matrix and detour index of some nanotubes.
Dig J Nanomater Bios 3:245–250

Ashrafi AR, Ghorbani M, Jalali M (2008c) The vertex PI and Szeged indices of an infinite family
of fullerenes. J Theor Comput Chem 7:221–231

Ashrafi AR, Ghorbani M, Jalali M (2009) Study of IPR fullerenes by counting polynomials. J Theor
Comput Chem 8:451–457

Balasubramanian K (1980) The symmetry groups of non-rigid molecules as generalized wreath
products and their representations. J Chem Phys 72:665–677

Balasubramanian K (1981) Generating functions for the nuclear spin statistics of nonrigid
molecules. J Chem Phys 75:4572–4585

Balasubramanian K (1984) Recent applications of group theory to chemical physics in conceptual
quantum chemistry models and applications. Croat Chim Acta 57:1465–1492

Balasubramanian K (1995a) Combinatorics and spectroscopy in chemical group theory techniques
and applications. Gordon & Breach Publications, Amsterdam

Balasubramanian K (1995b) Graph theoretical perception of molecular symmetry. Chem Phys Lett
232:415–423

Balasubramanian K (2004a) Non rigid group theory tunneling splittings and nuclear spin statistics
of water pentamer. J Phys Chem 108:5527–5536

Balasubramanian K (2004b) Nuclear spin statistics of extended aromatic C48N12 azafullerene.
Chem Phys Lett 391:69–74

Burnside W (1897) Theory of groups of finite order. The University Press, Cambridge
El-Basil S (2002) Prolegomenon on theory and applications of tables of marks. MATCH Commun

Math Comput Chem 46:7–23
Faghani M, Ghorbani M (2011) The number of permutational isomers of CL-20 molecule. MATCH

Commun Math Comput Chem 65:21–26
Fowler PW (1986) How unusual is C60? Magic numbers for carbon clusters. Chem Phys Lett

131:444–450
Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon, Oxford, Reprinted: Dover,

New York, NY (2006)
Fowler PW, Steer JI (1987) The leapfrog principle – a rule for electron counts of carbon clusters.

J Chem Soc Chem Commun 18:1403–1405
Fowler PW, Horspool D, Myirvold W (2007) Vertex spirals in fullerenes and their implications for

nomenclature of fullerene derivatives. Chem A Eur J 13:2208–2217
Fripertinger H (1996) The cycle index of the symmetry group of the fullerene C60. MATCH

Commun Math Comput Chem 33:121–138
Fujita S (1988a) Markaracter tables and Q-conjugacy character tables for cyclic groups an

application to combinatorial enumeration. Bull Chem Soc Jpn 71:1587–1596
Fujita S (1988b) Maturity of finite groups an application to combinatorial enumeration of isomers.

Bull Chem Soc Jpn 71:2071–2080
Fujita S (1988c) Inherent automorphism and Q-conjugacy character tables of finite groups, an

application to combinatorial enumeration of isomers. Bull Chem Soc Jpn 71:2309–2321
Fujita S (1988d) Direct subduction of Q-conjugacy representations to give characteristic monomi-

als for combinatorial enumeration. Theor Chem Acc 99:404–410
Fujita S (1988e) Subduction of Q-conjugacy representations and characteristic monomials for

combinatorial enumeration. Theor Chem Acc 99:224–230



16 Enumeration of Hetero-molecules by Using Pólya Theorem 559
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A
Adjacency matrix (AM)

defined, 109
D-type schwarzite (C38)2 element, 110, 111
global topological indices, 112
(C34)2 isomers, 110, 112
isomers, D-type schwarzite (C32)2, (C34)2,

(C36)2 element, 109, 110
(C28)2 isomer with hexagonal necks, 110,

111
topological coordinates, 109

Ajami, D., 229
AM. See Adjacency matrix (AM)
André, J.M., 206
Armchair polyhex nanotubes

horizontal edge of T, 406–407
oblique edge in level m, 407–410
Szeged index, TUAC6[p, k] nanotube,

409–411
Ashrafi, A.R., 477–478, 487, 515, 523
Ayme, J.-F., 230
Azari, M., 444, 457

B
Balasubramanian, K., 511
Banhart, F., 44
Bao, W., 32
Benzenoid chains

anthracene skeleton, 540
benzenoid chain skeleton, 540–541
C3n�20 for n D 2, 541
Fujita’s theorem, 542
mark table, 542–543
point group, Z2 � Z2, 539

Bilayer and multilayer AGNRs
’ and “ alignments, 218, 219

band structure, PPP-RHF method,
218, 219

optical properties, 219
Biyikoglu, T., 287
Bonchev, D., 233
Buehler, M.J., 2
Bühl, M., 113
Burke, K., 126
Burnside’s theorem, 536–537

C
Cameron, P., 340
Carbon-based nanostructures

chemical properties, 99
creation, structural defects, 92
1-D CNTs and 2-D graphene layers, 78
dislocation, CNTs, 81
divacancy defects, 84–86
electron/ion irradiated carbon

nanostructures, 80
foreign atoms, 80
HR-TEM and STM instruments, 80
impurity adatom, 90–91
issue, chemical doping, 81
low-dimensional samples, 79
macroscopic crystalline materials, 80
massive graphene body, 79
metallic/semiconducting, 78
monovacancy defects, 82–84
reconstruction, defects (see Defects

reconstruction)
silicon-based devices, 78
sp2-hybridized carbon atoms, 79
STEM, 82
structural defects, 81
structures, different allotropes, 78, 79
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Carbon-based nanostructures (cont.)
substitutional doping (see Substitutional

doping)
SW defect (see Stone–Wales (SW) defects)
vacancy cluster, 86–88
XRD studies, 81

Carbon nanobuds (CNBs)
C60-CNT

DFT, 150
fullerene-functionalized SWNTs, 149

energetic parameters and reaction barrier
atomic chemical susceptibility

distribution over tube 1, 156, 157
chemical contribution to coupling

energy, 156
deformation energy, 156
of equilibrium, 155
photodimerization and/or

oligomerization, C60 molecules, 158
profile, barrier of [C60 C (4, 4)], 156,

157
topochemistry of reactions, 159

Cataldo, F., 270
C60 C C60 Dyad

ACS NDA, 141
atomic chemical susceptibility, fullerenes,

141, 142
Coulomb’s interaction, 144
electronic characteristics, 141, 143
fragment composition, HOMO and LUMO,

141
IMI potential, type 1 and branches, 140,

141
photoexcitation, van der Waals C60 pair,

144
photostimulated charge transfer, 143
starting composition and equilibrium

structure, 141, 142
thermal and high pressure technologies,

143
(C60)2 dimer

barrier profile, decomposition, 144–145
components, 145
covalent coupling, 146
description, 144
energy-distance dependence, 146
intermolecular C–C bonds, 144

Chandross, M., 202
Chemical hardness. See Electronegativity
Chemical reactivity

basal atoms, 175
SWCNTs, 175

Chernozatonskii, L.A., 119, 175

Choi, H., 90
Cluster nanotubes

carbon atom subject, 318
edge effects, 319
electronegativity, 317
molecular plot, 316
structural motive, 317
topological analysis, 318–319

C60 molecules. See Single-layer graphene
(SLG)

C4-nanotori, 424, 457, 466–468
C4-nanotubes, 424, 466–469
CNBs. See Carbon nanobuds (CNBs)
C60 oligomers

chemical and physical experiments, 148
chemical reactivity, ca atoms, 147
description, 146
Egap D IA– ©B, 146
empirical reality, 148
linear orthorhombic crystalline

modification, 149
stepwise, dimer to tetramer, 146, 147
tetramer compositions, 147–148
topochemical reactions, 149

“Colored” molecular topology
CFD, 279–283
electronegativity and chemical hardness

reactivity indices, 265–268
environmental protection, 278
molecular graph nodes, 278
PAH, 272–277
quantum chemistry, 277
ranking method, 278
semiempirical quantum computation,

264
Timisoara–Parma rule, 268–269
topological invariants, molecular graphs,

269–271
Compact finite differences (CFD)

global dependence, 279
ionization energy and electronic affinity,

281
Pearson nucleophilic–electrophilic

reactivity gap, 282
SLR, 280
spectral molecular analytical forms,

electronegativity, 282
stabilized/optimized molecular structure,

283
COMPASS. See Condensed-phase optimized

molecular potentials for atomistic
simulation studies (COMPASS)

Zagreb indices, 444
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Condensed-phase optimized molecular
potentials for atomistic simulation
studies (COMPASS), 3, 19

Co substitutionals (Cosub), graphene
classical Heisenberg model, 66
Lieb’s theorem, bipartite lattices, 66
PAR solutions, 68
relative stability, 65
single  -vacancies (see Single  -vacancies)
spin couplings, 65–66
spin densities, configurations, 66, 67

Covalent functionalization, magnetic coupling
Co substitutionals, 71–72
description, 68
FM and AFM spin solutions, 68
isosurface, magnetization density, 70, 71
spin polarization texture, 70
t-DOS, 68–70
variation, total energy, 70, 72

(C38)2, planar schwarzites, 126–128
Crystal-like networks

D-type surface, polybenzenes, 248, 252
energetic data, 248, 251
polybenzenes, P-type surface, 248, 251
P-type surface, 248, 250

Cycle index, 512, 515

D
Dabirian, M., 412
Defects reconstruction

band structure, (7,7) and (12,0) SWNT, 93,
95

Brillouin zone, CNTs, 93
2-D graphene material, 95
different geometric reconstruction,

graphene edges, 96, 97
GNR-based nanodevices, 95
intramolecular junctions, SWNTs, 93
SW defects, 96
vacancy configurations, structural models,

93, 94
zigzag GNR, 95

Dendrimers
coronene and sumanene motifs, 248, 249
first-type nanostar, 325–327
four-type nanostar, 331–333
hyper-branched structure, 244
mathematical progression, 244
peptide, 244
polyamidoamine, 244
polybenzene dendrimer, 248, 250
second-type nanostar, 327–329

spanned cages, 247
styrylbenzene dendrimer, 333–337
three-type nanostar, 329–331
triarylamine dendrimer of generation 1–3,

337–339
types, 324

Density functional theory (DFT), 265
Descartes coordinates

basis-centered cubic lattice, clusters, 292,
294

clusters, face-centered cubic lattice, 292,
295

conjugate gradient method, 292
data, simple cubic lattice, 292, 293
diamond lattice, data, 292, 296–297

DFT. See Density functional theory (DFT)
Distance

explicit relations, d3, 426
art and vertices, 438
vertices, 424, 425
xo2and vertices, 432
x0p and vertices, 438

Diudea, M.V., 244, 254, 255, 431
Divacancy defects

ball-and-stick models, SWNT, 84, 85
5–8–5 defect, CNTs, 84
description, 84
migration in graphene, 85, 86
SW-type transformations, 85

Djokovı́c, D.Ž., 257
D’Mello, M., 269
Došlić, T., 477–478
Drawing. See Graph drawing

E
EA. See Electro-absorption (EA)
Eccentric connectivity index, 270
Edge-Wiener index

chemical applications, 423
definition, 423
explicit relation, 424–444
first, 444–457
graph vertices, 424
sum of graphs, 457–469
topological indices, 423, 497

Eigenvectors
algorithms, graph (see Graph drawing)
conjugate gradient method, 298
definitions, 286–287
harmonic potential (see Harmonic

potential)
physical and chemical properties, 286
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Electro-absorption (EA)
 -conjugated polymers, 219–220
and linear, 220
optical probe to probe, 220

Electronegativity
aromatic compounds, 268
CFD, 266
conceptual reformulation, 265
DFT, 265
SLR, 266, 267

Embedding in 3D and higher dimensional
spaces

construction, quasicrystals, 298
molecular arrangement, 290–291

Entringer, R.C., 413
Ernzerhof, M., 126
Estrada, E., 230
Explicit relation, vertex and edge-Wiener

numbers
conditions, 425
definition, 424
number of cycles, 429–430
TUC4C8(R) nanotube, 433–437
TUC4C8(S) nanotube, 437–444
vertices of graph G, 428–429
(n, 0) zigzag polyhex SWNTs, 431–433

F
Faghani, M., 515
Fajtlowicz, S., 477
Finite systems, PPP model

description, 206
optical absorption spectrum, graphene

nanodisks, 209–211
optical properties, fullerene C60, 206–209

First edge Wiener index, composition of
graphs, 444–457

Fowler, P.W., 287, 486, 523
Fujita’s theorem, 542
Fukui functions and local softness

electron number, 309
elementary cell, 308
energy variation vs. sub-unities, 310–311
ionization energy, 310
periodic carbon nanotubes, 309

Fullerene C60

approximate  -electron system, 206
Coulomb parameters, 209
HOMO and LUMO, 207
lowest triplet excited state, 206
MRSDCI calculation, 208
nearest-neighbor hoppings, 207

optical absorption experiments, 208
optical absorption spectra, 207, 208
SCI level, 207
Soccer ball structure, 206, 207
wave function, 208–209

Fullerene C60 C CNTs composites
CNBs

C60-CNT, 149–150
energetic parameters and reaction

barrier, 155–159
UBS HF, computational synthesis (see

Unrestricted broken symmetry
Hartree-Fock (UBS HF) approach)

Fullerene C60 C graphene composites
C60 C NGr nanobuds, 159–160
GNBs (see Graphene nanobuds (GNBs))

Fullerene C fullerene composites
C60 C C60 Dyad, 141–144
C60 oligomers, 146–149
(C60)2 dimer, 144–146

Fullerenes
bipartite, 487
eccentric connectivity index, 487
(3,6)–fullerenes (see (3,6)–Fullerenes)
(4,6)–fullerenes (see (4,6)–Fullerenes)
molecular graph, 485–486
polytope, 485
Szeged index, 487
vertex PI index, 487
Wiener index, 486

(3,6)–Fullerenes
adjacency matrix, 488
arbitrary element, 489
bipartite, 487
description, 487–488
eccentric connectivity index, 487
G[8n], perception, 492
J[24n], 3D perception, 489, 491
L[16n C 48], 492
M[40], 488, 493
M[12n C 4], 488, 493
8n C 4 vertices, 488, 490
polytope, 485
revised Szeged index, 487
Wiener and eccentric connectivity

indices (see Wiener and eccentric
connectivity indices, (3,6)-
fullerenes)

Wiener index, 486
(4,6)–Fullerenes

A[24], 500, 502
B[30], 500, 503
bipartite, 487
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B[12n C 6], 500, 502, 505
eccentric connectivity index, 487
edges, A[8n], 500–503
polytope, 485
revised Szeged index, 487
Wiener index, 486

G
Gaito, S., 127
Gan, Y., 43
GAP programs

algorithm, 412–413
computation, 411
eccentric connectivity index, fullerenes,

507
hetero-fullerenes, 544
nanohorn, 544
number of vertices, 419–422
tree dendrimers, Wiener index, 413–415
VC5C7 [p,q] nanotube, 416–419
vertices of graph, 415
Wiener index, fullerenes, 506–507

Gasyna, Z., 208
Ge, M., 473
Ghojavand, M., 477–478
Gholami, N., 324, 333, 337, 339
Ghorbani, M., 474, 515, 522, 523
GNBs. See Graphene nanobuds (GNBs)
GNRs. See Graphene nanoribbons (GNRs)
GNRs vs. SWNTs

adhesion intensity calculation, 14–15
bending rigidity, 6
binding, vdW, 4
carbon shell, 3
concentration distribution profiles, 9
corrugations and ripples, 4
cylindrical structure, 10
dangling ¢-orbitals, 9
defects, chemical modifications, 17
dependence, diameter and chirality, 13–14
description, 6
1D interaction, 3
displacement, carbon rings, 9
effect of gap, helix-forming process, 16
helically inserting into, 4, 5
helically wrapping onto, 4, 5
helicity, 6
heterogeneous nucleation, silicon, 11
honeycomb lattice, sp2 hybridization, 2
interactions, 10, 11
materials, 2

MD simulation, 3–4
“molecular straws”, 3
nanoscale vehicle, 16–17
NGNRs, 9–10
noncovalent “wrapping”, polymer chains,

2–3
norepinephrine molecules, 17, 18
offset face-to-face  –  stacking

interaction, 7–8
potential energy, vdW interaction energy

(EvdW), 7, 8
ribbon length variations and instantaneous

velocities Vt, 12
rigid MoS2 inorganic nanoribbon, 10–11
saturation interaction energies per unit area,

15
self-assembled, 6
sidewalls and wrinkles, 4
spirogyra cell in chloroplast ribbon, 6
stacked structures, 8
vdW interaction, 7
worm-like chain conformation, 7

Godsil, C.D., 287
Graovac, A., 236, 288
Graph drawing

algorithms, analogy
nanotori, 288
spherical clusters and fullerenes,

287–288
extremal values, analogy

embedding, molecular arrangement,
290–291

spherical clusters and fullerenes,
289–290

Graphene C CNTs composites
ACS distribution, 175
cutting-blade CNT C NGr, 177–178
description, 173–174
donors and acceptors, electrons, 174
DWCNTs and SWCNTs, 177
equilibrium structures, 179
equilibrium structures, CNT C NGr, 175,

176
“hammer” and “cutting-blade” structures,

176
intermolecular C–C bonds, 177
investigations, 179–180
sp2-sp3 transformation, 176
structure, contact zones, 174

Graphene nanobuds (GNBs)
chemically bound products, 162
“chemical portraits”, 162
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Graphene nanobuds (GNBs) (cont.)
energetic parameters and single-reaction

barrier
[C60 C (9, 8)], GNB decomposition,

169, 170
components, total coupling energy,

168–169
topochemistry, 170

equilibrium structures and chemical
portraits, 160–161

hydrogen-terminated edges (see Hydrogen-
terminated edges, GNBs)

non-terminated edges (see Non-terminated
edges, GNBs)

odd electrons, 160
Graphene nanodisks

HOMO to LUMO orbitals, 210
linear optical absorption spectra, 209, 211
optical properties, 209
quasi-1D GNRs and 0D, 209
regular-shaped, 209
structures, 209, 210
triangular, 210

Graphene nanoribbons (GNRs)
and aminothiol-modified GNS, 32
band structure

AGNR-8, general GNR and ZGNR-8,
213

armchair and zigzag, 211–212
quasi 1D structures, 211
spin density distribution, ZGNR-8, 214
unit cell, eight dimer lines across the

width, 212–213
Fe NWs, 29
gated

device applications, spintronics field,
214

DFT-based calculations, 216
energy variation band gaps with electric

field, 215–216
half-metallic nature, ZGNRs, 215
variation, band gaps of AGNRs, 216
ZGNR-12, 214, 215

optical properties
AGNR-8, PPP-RHF method, 217
determination, electronic structure, 216
ZGNR-6 and bilayer-ZGNR-6, 217–218

vs. SWNTs (see GNRs vs. SWNTs)
Graphene nanosheets (GNSs)

in biochemical and medical realms, 2
C60 molecule, SLG (see Single-layer

graphene (SLG))
description, 1
Fe NWs (see Iron (Fe) nanowires (NWs))

GNRs vs. SWNTs (see GNRs vs. SWNTs)
isolation, planar, 2
two-dimensional, 1–2

Graph invariants
chemical structures, 232
cyclacenes stability, 234
cyclacene zigzag belts, N atoms and B

bonds, 233, 234
graphenic nanocone growth, 232
Möbius-cyclacenes, 234, 235
topological effciency index, 231
Wiener-weights (WW), 231

Graphite ribbon, 229
Guo, Z.L., 230, 235, 236
Gutman, I., 324, 413, 423, 444, 487

H
HAC5C6C7[k, p], 324
HAC5C6C7[r, p] nanotube

e 2 E1, 370–371, 387
e 2 E2, 371–373, 387–388
e 2 E3, 373–375, 388–389
e 2 E4, 375–377, 389–391
e 2 E5, 377–378, 391
e 2 E6 , 378–379, 392
e 2 E7 , 379–380, 392
e 2 E8, 380–382, 393
mth period, 369, 370
[2,2] nanotube, p D 2, k D 2,369
sub-case a, 382, 394
sub-case b, 382, 394
sub-case c, 382–383, 394–395
sub-case d, 383, 395
sub-case e, 383–384, 395
sub-case f, 384, 395
sub-case g, 384, 396
sub-case h, 384–385, 396–397
Szeged index, 385–386, 397–398

HAC5C7[r, p] nanotube
e 2 E1, 357, 366–367
e 2 E2, 357–360, 367
e 2 E3, 360, 367
e 2 E4, 360–363, 368
e 2 E5, 363, 368
mth period, 356
p D 1,366
p D 2,356
p D 3,366
p D 4,356
p D 5,366
p � 6,357
p � 7,366
sub-case a, 363
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sub-case b, 363–365
sub-case c, 365
sub-case d, 365
sub-case e, 365–366
subsets, Eis, 356
Szeged index, 355, 369

Haddon, R.C., 171
Hardness–softness Fukui function, 307–308
Harigaya, K., 235
Harmonic potential

descartes coordinates, cubic and diamond
cluster (see Descartes coordinates)

matrix construction, 291–292
Hartree-Fock equations

finite systems, 203–204
periodic systems, 204–206
RHF and UHF, 203

HC5C7[r, p] nanotube
e 2 E1, 399–400
e 2 E2, 400–402
e 2 E3, 402
e 2 E4, 403
e 2 E5, 403–405
HC5C7[4, 8] nanotube, p D 8,

k D 4,399
Szeged index, 405–406

Heilbronner, E., 230
Hetero-fullerenes

caps B and C, 516–517
carbon nanotubes, 534
C16Br4, 3-D graph, 514, 515
C20, 3-D graph, 514–515
C12nC30, 516, 518
conjugacy classes, 510
graph, 509
graphite, 514
infinite classes, 516
nanohorn, 535–536
permutation matrix, 511
Pólya’s theorem (see Pólya’s theorem)
poly-substituted fullerene, 515
symmetry group, 509–510
symmetry operations, 510–511
USCI table (see Unit-subduced cycle index

(USCI))
zigzag nanotube, 516

Heydari, A., 434, 438, 439, 442
High-resolution transmission electron

microscopy (HRTEM)
Au and Pt atoms, 43
combined with XRD studies, 81
and STM, 80

Hirsch, A., 113
Hoffmann, R., 138, 140

HRTEM. See High-resolution transmission
electron microscopy (HRTEM)

Hydrogenation, graphenes
atomic and molecular adsorption, 184
description, 180
energetic characteristics, nanographene,

185–189
equilibrium structures, 182, 183
external factors, 180
final products, (5,5) nanographene, 181,

182
fixed membrane/unrestricted motion,

carbon atoms, 180
fullerene C60 and graphene, 189–191
hydrogen atom attachment, 184
sequential adsorption pattern and

cyclohexanoid conformers, 185
Hydrogen-terminated edges, GNBs

[C60 C (9, 8)], 168, 169
[C60 C (5, 5)], C60 fullerene to zigzag and

armchair, 166, 167
coupling energies, 167
IMI potential, type 3, 168

I
IMI. See Intermolecular interaction (IMI)
Infinite 1D periodic systems

bilayer AGNRs, 218–219
EA, zigzag GNRs (see Electro-absorption

(EA))
GNRs (see Graphene nanoribbons (GNRs))
SWCNTs (see Single-walled carbon

nanotubes (SWCNTs))
Intermolecular interaction (IMI)

in C60 pair, 141
donor-acceptor (DA) interaction, 139
equilibrium positions, R00 and RC�, 146
sp2 nanocarbons and monatomic species,

138
topochemical reactions, 140

Iranmanesh, A., 269, 324, 333, 337, 339, 340,
349, 355, 369, 399, 411, 412, 424,
442, 457

Iron (Fe) nanowires (NWs)
aminothiol molecule, GNS and GNR,

31–32
at angle of ® D 60ı, axis, 30–31
concentration profiles, X and Y direction,

23
description, 17
diameters and atomic size, 17
different chirality GNSs wrapping onto,

27, 28
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Iron (Fe) nanowires (NWs) (cont.)
and GNS layers, contact area, 22–23
helical rolling of one and two GNRs, 28–30
interaction energies, 30, 31
interaction energy calculation, 21–22
magnetic core-shell nanostructures, 18–19
MD simulation, 19
offset face-to-face  –  stacking

interaction, 25
position effect, 28, 29
potential energy EP and vdW energy EvdW

vs. time, 24
saturation interaction energies, 27–28
“scroll-forming” stage, 25
self-scrolling of GNSs, different lengths

onto, 27
spontaneous self-scrolling, GNS, 20–21
stability and properties, GNS, 18
structural transition, 23–24
thermodynamic model, 25–27

J
Jiang, Y., 515
John, P.E., 431

K
Kamien, R.D., 11
Kan, E.J., 216
Khadikar, P.V., 487
Khormali, O., 355, 424, 442
Klavžar, S., 257
Koopmans, T., 282
Kostant, B., 486
Krasheninnikov, A., 45

L
Larson, C.E., 477
László, L., 209
LDOS. See Local density of states (LDOS)
Leach, S., 209
Leapfrog fullerenes

C20 and Le(C20), 518–519
principle, 518

Lenosky, T., 245
Lieb, E.H., 54, 64, 66, 73
Local density of states (LDOS), 83
Loghman, A., 487
Lovász, L., 289

M
Mackay, A.L., 245
Magnetic coupling

Cosub impurities (see Co substitutionals
(Cosub), graphene)

covalent functionalization, 68–72
covalently chemisorbed molecules, 64
mechanical deformations, 63
 -vacancy, 63–64

Mahmiani, A., 406, 433, 437
Mahmiani, O., 433
Manolopoulos, D.E., 486
Manolopulos, D.E., 287
Mansoori, G.A., 340
Markaracter table

definition, 538
naphthalene, 539
non-Abelian group, 538

Mataga, N., 201
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