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Preface

Matroid theory has its origin in a paper by H. Whitney
entitled "On the abstract properties of linear dependence" [35],
which appeared in 1935. The main objective of the paper was to
establish the essential (abstract) properties of the concepts of
linear dependence and independence in vector spaces, and to use
these for the axiomatic definition of a new algebraic object,
namely the matroid. Furthermore, Whitney showed that these axioms
are also abstractions of certain graph-theoretic concepts. This
is very much in evidence when one considers the basic concepts
making up the structure of a matroid: some reflect their linear-
algebraic origin, while others reflect their graph-theoretic
origin. Whitney also studied a number of important examples of

matroids.

The next major development was brought about in the forties
by R. Rado's matroid generalisation of P, Hall's famous "marriage"
theorem. This provided new impulses for transversal theory, in
which matroids today play an essential role under the name of
"independence structures", cf, the treatise on transversal theory
by L. Mirsky [26]. At roughly the same time R.P. Dilworth estab-
lished the connection between matroids and lattice theory. Thus

matroids became an essential part of combinatorial mathematics,

About ten years later W.T. Tutte [30] developed the funda-
mentals of matroids in detail from a graph-theoretic point of view,
and characterised graphic matroids as well as the larger class of

those matroids that are representable over any field.

More recently papers by Bondy, Brualdi, Crapo, Edmonds,
Fulkerson, Ingleton, Lehman, Mason, Maurer, Minty, Nash-Williams,
Piff, Rado, Rota, de Sousa, Tutte, Welsh, Woodall, and other

combinatorialists have led to a widespread interest in matroids

and to a rapid growth in the volume of literature on matroids.

As was mentioned above, matroids are defined axiomatically.
However, their rich structure allows one to pick one of a number
of axiomatic definitions, depending on which of the matroid pro-~
perties is to play the dominant role (cf. the survey papers by
Harary and Welsh [15] and Wilson [36]). Thus in practice each
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author uses the definition most suitable for his purposes.
Whitney considered the equivalence of several of these different
definitions in his fundamental paper, and the recent book by
H.H. Crapo and G.-C. Rota [7] does so as well but treats the
subject within a lattice-theoretic framework. Apart from these
no general introduction to the theory of matroids, giving their
various equivalent axiomatic definitions and the most important

examples, is readily available.

The present monograph is an attempt to fill this gap. Its
main objective is to provide an introduction to matroids and all
the usual basic concepts associated with them without favouring
any particular point of view, and to prove the equivalence of
all the usual axiomatic definitions of matroids. Furthermore, we
have collected together and proved all the commonly used proper-
ties of matroids involving the concepts introduced. Where proofs
were taken from the literature, the source has been indicated in
the usual way. Next we have discussed the common types of matroids

- matrix-matroids, binary, graphic, cographic, uniform, matching
and transversal matroids - in some detail, mentioning others such
as orientable matroids and gammoids, as well as important charac-
terisations of the above, in remarks. Much of the material on the
examples can be read after the initial definition of a matroid.
Two further chapters deal respectively with the greedy algorithm
and its relation to matroids, and with the recent interesting

results on exchange properties of matroid bases.,

A number of omissions will however be immediately obvious, We
have for example not developed the geometry of matroids involving
minors and separators., For a treatment of this topic we refer the

reader to the paper [30] and book [31] by Tutte and to the book by
Crapo and Rota [7]. Furthermore, no mention is made of the recent
work by Maurer [24] and Holzmann, Norton and Tobey [16] on the
basis-graphic representation of matroids. These and other topics
not considered here go beyond the scope of this monograph as a

first introduction to matroid theory.

One of the most beautiful aspects of the matroid concept is
its unifying nature - by specialisation it covers many apparently
unrelated structures and thus reveals their essential nature as

well as yielding clear and often easy proofs for results that are



otherwise very tedious to derive (cf. Remark (8) at the end of
Chapter III). Matroids have however also led to decisive advances

in theories important for practical applications, for example in
linear programming through the greedy algorithm (cf. the papers
by Edmonds [10], [11], and Dunstan and Welsh [9]), and in network
theory (cf. Minty [25]). Moreover, it is felt that matroids could
well become a new and powerful tool in the mathematical theory of
economics, and it is with this thought in mind that the present
monograph is addressed in particular to mathematical economists

and operations research specialists,

In conclusion, I wish to express my gratitude to Professor
B. Korte for introducing me to matroid theory and encouraging me
to write this monograph, and I extend my thanks to Professor
M. Beckmann for accepting it for publication in the Lecture
Notes Series,

University of Bonn R. von Randow
March 1975 ‘



Contents

Basic Notation

Chapter 1. Equivalent Axiomatic Definitions and

§1.1.

§1.2.

§1.3.

§1.4.
§1.5.

Elementary Properties of Matroids.

The first rank-axiomatic definition of

a matroid

The independence-axiomatic definition of

a matroid

The second rank-axiomatic definition of

a matroid

The circuit-axiomatic definition of a matroid
The basis-axiomatic definition of a matroid

Chapter I1I. Further Properties of Matroids.

§2.1,
§2.2.
§2.3.
§2.4.

The span mapping &
The span-axiomatic definition of a matroid
Hyperplanes and cocircuits

The dual matroid

Chapter III., Examples.

§3.1.
§3.2.
§3.3.

§3.4.
§3.5.

Linear algebraic examples

Binary matroids

Elementary definitions and results from
graph theory

Graph-theoretic examples

Combinatorial examples

Chapter IV, Matroids and the Greedy Algorithm.

§4.1,

Matroids and the greedy algorithm

10
12

15
20
22

28

33
37

50
55

73



vl

Chapter V. Exchange Properties for Bases of Matroids.

§5.1. Symmetric point exchange 80
§5.2. Bijective point replacement 82
§5.3. More on minors of a matroid 86
§5.4. Symmetric set exchange 88
§5.5. Bijective set replacement 91
§5.6. A further symmetric set exchange property 92
Bibliography 96

Index 101



the

the

the

the

Basic Notation

set of non-negative integers,
set of positive integers,
field of real numbers,

ring (field) of residue classes of integers

modulo 2,

the

power set of the set M, i.e. the set whose

elements are precisely all the subsets of M,

the

the

the

the

the

the

the

number of elements in the finite set M,
empty set,

set consisting of the elements a and b,
set of elements of X having property p,
difference set {xeX : x &Y},
quantifier "for each",

quantifier "there exist(s)",

"and" (logical conjunction),

logical implications,

logical equivalence,

the

image set { P(x) : xeX} Y of the

mapping F: X —> Y,



Chapter I. Equivalent Axiomatic Definitions and Elementary

Properties of Matroids.

§1.1. The First Rank-Axiomatic Definition of a Matroid.

Definitions.
(a) Let E be a finite set and r a function r: ‘?(E) —> IN,
Then the pair (E,r) is a matroid M(E,r), and r(S) is the rank

of SCE, if the following conditions hold:

(R1) A ScEk r(s) < |s] ,

(R2) A s,s'cE [ scs! >r(s) ¢ r(s")] ,

(R3) /\S,S'CE the submodular inequality holds:

r(Sus') + r(sns') ¢ r(s) + r(s') .,

(b) A matroid M(E,r) is normal if AeckE r({e}) = 1.

Remarks and Further Definitions. Let M(E,r) be a matroid.

(1) The rank of the matroid M(E,r) is r(E).

(2) In the above definition of a matroid, axiom (R1) can be
replaced by the axioms: r(gd) =0, ana AecE r({e})e{o,1},
as these are clearly implied by (R1), and together with (R3)

imply (R1) by induction over |S|.

(3) (M(E,r) is normal and axiom (R3) holds with equality) <===>
(A scE r(s) = |s] ) .

Proof: <==: Follows because IS‘JS'I = |s] + |st] - le\S'l .

==>: By induction over lSl.
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(4) The following properties follow readily from the definition
of a matroid:
(i) ASscE NeeE [ r({e}) = 0 =
r(suie}) = r(s) ],
(ii) A sck [ (Aees r({e}) = 0) >r(s) =0 7.

On account of these properties points of rank O are relatively

uninteresting, and some authors (cf. Berge [1]) exclude such

points in their definition of a matroid.

(5) Definition., Let X be a set, A a property of sets, and Y a
subset of X with property A,
(a) (Y is a maximal subset of X with property A) :<{==>
[(YSY'©X A Y' has property A) ==> Y' =Y ] ,

(b) (Y is a minimal subset of X with property A) :<===>

[(Y'cYcX , Y' has property A) ==> Y' =Y ],
(6) A subset SCE is called independent if r(S) = [S|. We

shall denote by F the family of independent sets of M(E,r).

Note that @eF,

A basis of M(E,r) is a maximal independent subset of E, We shall

denote by W the family of bases of M(E,r).

If Be W, then E-B is called a cobasis of M(E,r). We shall denote

by W* the family of cobases of M(E,r). This notation is motivated

by properties of the "dual matroid" defined in §2.4.

(7) A subset ScE is called dependent if r(S) < |S| , i.e. S¢F.
Note that if M(E,r) is normal, then S dependent implies |S| 3} 2.
A circuit of M(E,r) is a minimal dependent subset of E, We shall

denote by Z the family of circuits of M(E,r).

(8) If ScE, then M(S,rls) is a matroid, called the reduction

matroid MxS of M(E,r).



Theorem 1. Let M(E,r) be a matroid.

(a) AecE A scE (r(su{e}) - r(s)) € {o0,1} ,
(b) AsS,s'cE [ Scs' ==> 0 ¢ r(s') - r(s) ¢ |s'-s| ],
(¢) As,s'cE [ Scs'eF ===> SeF ],
(a) AscE [(AeeS r(s-{e}) = |S|-1 = r(S)) <==>s€2 ],
(e) Nej,e eE A scE
[r(SU{el}) = r(3u{e2}) = r(S) ==> r(5u{e1,e2}) =r(s)] ,
Corollary. A s,S'cE
[(Aees' r(sufe}) = r(s)) ==> r(sus') = r(s)] ,
(f£) NscE r(8) = max{|S'| : SO>S'e F} = max{|SNsS'| : S'e F},

Corollary. /\ ScE [seF <==> (ANees r(s) - r(s-{e}) =1)],

(g) /\S’S1’52CE [51 and S, are maximal independent subsets
of S (i.e. bases of the reduction matroid MxS) =—=>
s, = 15,11 »
in particular, BeW ==> r(B) = r(E) ,

(h) A B,B'eW NeeB 3 e'eB' : (B-{e})uie'lew,

(i) /N ScE (¢) seF <==> (Acez cC-Ss4+46),

(B) S§F <=> (As'ews sns' £ 4) ,

(j) Ne,e'eE Ac,Clel
[(eeCnC', e'e C-C') ==> (Jcrez : e'e C"c(CucC')-{e})],
in particular, AeeE N ccrez
[(c $£C' , eeCnC') => (Fc"ez : c"a(cuc')-{e})] ,

(x) N ecE A\ ScE [(seF , Su{e}&F) ==> ( I unique

CeZ : Cc Su{e} (clearly eeC))] .



Proof.

(a) eeS implies r(Suf{e}) = r(s).
Suppose e € E-S, Then by axioms (R2), (R3), and Remark (2),
r(s) + 1 3 r(s) + r({e}) » r(su{e}) + r(g) = r(suie}) » r(s) ,

hence 0 € r(Sui{e}) - r(s) ¢ 1.

(b) Trivial if S = S', Let S'-S =: {e ,e,,...,e,}. Then by (a),

0

I\

r(Su{ei}) -r(s) ¢ 1
0 < r(S\J{ei,ez}) - r(SLJ{ei}) $ 1
0¢r(s') - r(s'-{e}) <1,

hence 0 < r(s') -r(s) ¢ k=|s'-s| .

(¢) Let ScS'c—E, Then by (b),
r(s) < |s| ==> r(s') ¢ r(s) + |s'-s| < |s| + |s'-s| = |s"|

==> S8' is dependent.

(d) <==: Follows from definitions and axiom (R2).
==>: Follows from definitions and (c).

(e) Trivial if e, = e,. If e, ¥ e,, then

1 2
2r(s) = r(sufe,}) + r(sufe,}) » r(sufe ,e,}) + r(s)
hence r(S) ¢ r(Su{ei,ez}) g r(s), i.e. r(Su{ei,ez}) = r(s) .

Corollary: Follows by repeated application of (e).

(f) fTrivial if SeF. Suppose S¢F, i.e., r(S) < |S|. Then
$SDS8'e¢ F ==> r(s) » r(s') = [8'] , hence
r(s) » max{|S'| : SDS'e F} =: o . Clearly o < |S|.

Let SOSeF with r(S) = Igl = o .



(1) S| = 00+ 1 :— Let S-§ =: {e}. Then by definition of o ,
r(8) = r(Sufe}) = r(s).

(i) |S| > o+ 1 :- By definition of @ , A ees-§
r(Su{e}) = r(S). Hence by the corollary of (e),

r(s) = r(Su(s-8)) = r(3).

Finally max{|S'| : §DS'e F} = max{|SNnS'| : S'e F} by (ec).
Corollary: ===>: Clear by definition of F,

(==: Let.SDS'€F with r(S) = |S'|. If S* ¥ S, let ee S-S',
Then by (£) r(S) = r(S~{e}), contradiction.

(g) Clearly S1¢ Sy, i.e. 8, -8, $ @#. Furthermore A ecS, -8,
r(SzL;{e}) = r(Sz), hence by the corollary of (e),

r(Siu 52) = r(szu(si_sz)) = r(Sz). Similarly r(Slu 52) = r(Si),

hence r(S,) = r(s,), i.e. is1| = Isgl'

(h) B-{e}eF, and B-{e}c (B-{e})UB'. On the other hand,
|B-{e}] = |B'| - 1, hence B-{e} is not a maximal independent
subset of (B-{e})uB', therefore J e'e B' such that

(B-{e})uie'}ew.

(i) (=) S is independent <===> no subset of S is dependent
¢==> S does not contain a circuit.
(P) S is dependent <==> S is not contained in a basis <{(==>

every cobasis intersects S.

(j) (i) Let o := r((cuc')-{e}) . We will show in (ii) below
that r((CucC')-{e,e'}) = 0. This implies thatd Sc(cucC')-{e,e'}
with SE€F and r(S) = 0. Furthermore, SU{e'}& F, as

o=r(8) ¢ r(su{e'}) ¢ r((cuc')-{e}) = & and thus

r(sufe'}) = 0°< o+1 = [Su{e'}lo Hence 4 C"€ Z with

etecChc suf{e'} < (cuct)-{e} .

(ii) r((cuct)-{e,e'}) = o :~ Clearly r((CucC')-{e,e'})e {0~1,0}.



Let S be an independent subset of (CVC')-{e,e'} with C'-{e}c s
and r(S) = o-1, (note use of (g)). Suppose A Te(CucC')-{e,e'}
r(su{e}) = o-1. Note that r(SuUf{e}) = 0-1 as C'c su{e}dF,

so we have that A Se(cuc')-{e'} r(Swi{e}) = o-1, hence by
the corollary of (e), r((cuwcC')-{e'}) = 0~1. This implies that
r(cuc')e {o-1,0}; on the other hand r(Cuc') 3 r((Cuc')-{e})=c,
hence r(CUC') = o, Therefore 4 SCCuUC' with C—{e'}CgeF
and r(S) = o, (note use of (g)), and furthermore e'e S as other—
wise S < (cuc')~{e'} and thus r(S) ¢ o0-1. Hence c<S, contra-
diction. Therefore J €e(CucC')-{e,e'} such that r(su{e}) = o,

i.e. r((cuc')~{e,e'}) = o .

Short Proof of Special Case of (j):

CNC' £ C as C4C', hence CNC'e F. Then
r((cuc')-{e}) ¢ r(cuc') ¢ r(c) + r(c') - r(cnc') =
= (Jel-1) + (Je'|-1) - |cnc'] = Jeue'] - 2 < |(cuc')-{e}] ,

hence (CUC')-{e}¢ F, Thus I C"e Z with C" < (Ccuc')-{e} .

(k) Suppose I C,C'eZ with C £ C' and ec C < Sufe},
ecC'< Su{e}. Then by the special case of (j) 3 C"e¢ Z with

c" = (cuc')-{e} < sSePF, contradiction.
The following theorem contains a result similar in structure to
that of Theorem 1(h):

Theorem 2. /\ ScE A ecE N Bew

((eeB , SeF , su{e}¢F) ==> (Je'es-B : (Sufe})-{e'}ecF)].



In particular:

AB,B'ew A\ ee B-B' d e'eB'-B : (B'Uf{e})-{e'}ew,

or equivalently:

NAs,s'e w* A ees' J etes : (s'-{e})ufe'lewr,

Proof: Trivial if |Sle{0,1}. Let |S| ) 2, and suppose that

A Ses-B (Su{e})-{€}¢ F. Then given e'e S-B, I C'e Z with

eeC'c (sufe}l)-{e'} as S-{e'}e F. Furthermore C'N (S-B) % & as
otherwise C'c B. Take e"ec C'n (S-B), then as above J C"& Z with
eeC"< (su{e})-{e"}. Hence by the special case of (j) J CeZ

with C < (C'ucC")-{e} = S, contradiction.

§1.2. The Independence-Axiomatic Definition of a Matroid.

Definitions.
(a) Let E be a finite set and F a family of subsets of E, Then
the pair (E,F) is a matroid M(E,F), and the elements of F are the

independent sets of M(E,F), if the following conditions hold:

(F1) geF ,

(r2) A s,s'cE (scS'e F ==> SeF] ,

(F3) A S’S1’52C:E [31 and 82 are maximal independent subsets
of 8§ ==> |31| = lszlj .

(b) A matroid M(E,F) is normal if AeckE {e} e F,

(¢) Let M(E,F) be a matroid., We define a mapping r: ??(E) —> IN

as follows: r(S) := max{|S'| : SDS'eF} , ScE

r(S) is called the rank of S. Clearly
A scE [seF <==> r(S) =]|s|)l. .......... oo (*)



Remarks.

(1) We note that axiom (F1) is in fact a consequence of

axiom (F2),

(2) It follows immediately that every matroid M(E,r) is a
matroid M(E,F). The converse is established by the following

theorem:
Theorem 3. The matroid M(E,F) satisfies the axioms (R1) - (R3).

Proof. Axioms (R1) and (R2) follow immediately.

Proof of Axiom (R3) (Berge [1]):- Suppose S,S'CE.

HSieF‘ with S, < SNS' and 1511 = r(s,) = r(snst').

3Sze:F with S, < S, < S and lSzl = r(Sz) = r(S), (note use of
Axiom (F3)).

3836F with S, S, SUS' and ls3| = r(SS) = r(sus'), (note

use of axiom (F3)). As S, < S;nSeF and S, is maximal independent

in S, it follows that 82 = S3r\S° Similarly S1 = SZF\(SF\S') =

= ' = S '
= Szr\S , hence S1 = bsr\SrﬁS . Thus

Msus')=|s3|= Hssnsthsns'H =
=|ssns|+lssns'|_|s3nsnsw
Y lSzl + r(s') - ISil by (F2) and definition of r,

r(s) + r(s') - r(sns') .

Corollary i. By Theorem 3 and the statement (*) of Definition (c)
it follows that the first rank-axiomatic and the independence-

axiomatic definitions of a matroid are equivalent,

Corollary 2. Let E be a finite set, FC ‘@(E) with feF, and
r: ‘?(E) ——> IN the mapping defined by

r(S) := max{|S'| : $SDS'eF}, ScE .
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Then 1 a matroid on E with family of independent sets F and rank

function r, if and only if r satisfies the submodular inequality.

§1.3, The Second Rank-Axiomatic Definition of a Matroid.

Definitions.
(a) Let E be a finite set and r a function r: P (E) —> IN,
Then the pair (E,r) is a matroid M'(E,r), and r(S) is the rank

of ScE, if the following conditions hold:

(R'1) r(f) =0,

(R'2) A e€E A ScE (r(sufe}) - r(s)) e {o0,1} ,
(r'3) A e ,e,€E N\ ScE
[r(SLJ{ei}) = r(SLJ{ez}) = r(S) ==> r(SLJ{ei,ez}) = r(s)].

Remarks and Further Definitions. Let M'(E,r) be a matroid.

(1) (R'1) and (R'2) imply Ae€E r({e})e{0,1}. A matroid

M'(E,r) is normal if A ecE r({e}) = 1.

(2) (R'2) implies Theorem 1(b), i.e. /AS,S'CE
[scs' ==> 0¢ r(s') - r(s) < |s'-s|], (cf. proof of Theorem

1(b)), in particular

(1) (r2), i.e. AS,S'<E [scs' ==> r(s) ¢ r(s')], and
(i) with (R'1) we get (R1), i.e. /\SCE r(s) < |s].
A subset SCE is called independent if r(S) = |S|. We shall denote

by F the family of independent sets of M'(E,r).

(3) The axioms (R'1) - (R'3) imply
A ScE r(s) = max{|S'| : s>S'eF} ,

(cf. proof of Theorem 1(f) and Remark (2)).
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(4) It follows immediately that every matroid M(E,r) is a
matroid M'(E,r). The following theorem establishes that every

matroid M'(E,r) is a matroid M(E,F):

Theorem 4. The matroid M'(E,r) satisfies the axioms (F1) - (F3),

Proof. Axiom (F1) follows immediately.

Axiom (F2) is Theorem 1(c), which follows from axiom (R'2),
(cf. proof of Theorem 1{(c) and Remark (2)).

Axiom (F3) is Theorem 1(g), which follows from axioms (R'2) and

(R'3), (cf. proof of Theorem 1(g)).

Corollary. By Theorem 4 and Remark (3) it follows that the two
rank-axiomatic and the independence-axiomatic definitions of a

matroid are pairwise equivalent.

§1.4. The Circuit-Axiomatic Definition of a Matroid.

Definitions.
(a) Let E be a finite set and Z a family of subsets of E. Then
the pair (E,Z) is a matroid M(E,Z), and the elements of Z are

the circuits of M(E,Z), if the following conditions hold:

(z1) g4z,
(z2) Ac,clez [ccct =>c=c'],
(23) AecE Ac,ctez

[(cfcC' A, eeCnC') ==> (dcrez : c"c (cuc')-{e})] .

(b) A matroid M(E,Z) is normal if ACeZ fc] » 2.



1

Remarks and Further Definitions,

(1) Let M(E,Z) be a matroid. A subset ScE is called independent
if it contains no circuits. We shall denote by F the family of
independent sets of M(E,Z)., Clearly we have

CeZ <==> C¢F , [(SCC A S$C) ==> S€F] ..uvouuu...(¥)
and Theorem 1(k) holds, (cf. proof of Theorem 1(k)), i.e.
AecE A ScE ((seF A su{e}¢F) => (3 unique Ce 2 :
Ccsu{e} (clearly eecC))] .

(2) Definition. Let S,S'C E, The symmetric difference SAS' of

S and S8' is SAS' := (S-8')u(S'-S) = (SUS') - (SNS'). It
follows readily that the operator A is commutative and associa-

tive, and if n€IN, n>1, and Aie {1,2,.,..,n} SiCE and

n
Ai i= {x e L)SJ : X € exactly i of the SJ}’ then
=1

(24

2
S,88,4...48 = 1L=Jo Agivqg and
_{l. n

pa |si| = | A si] (mod 2) .

i=1 i=1

(3) It follows immediately that every matroid M(E,r) is a
matroid M(E,Z). The following theorem establishes that every

matroid M(E,Z) is a matroid M(E,F):
Theorem 5. The matroid M(E,Z) satisfies the axioms (F1) - (F3).

Proof. Axioms (F1) and (F2) follow immediately.
Axiom (F3):- Let S1 and S2 be distinct maximal independent

subsets of S. Then S, -S,#f and sz_sl#ﬂ . Let eeS_-S,, then

2 71
SlLJ{e}¢ F, hence 1 CeZ with ecC < SlL){e}. Furthermore,
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cn(s,-s,) $ 4 as otherwise CcS,. Let §eCn(s,-S,) and

g
Sg = (Si—{g})Ll{e}. Note that |S3] = lSll.
(1) szeF : Clearly sl-{z}ep. Suppose S;¢ F, then dC'e Z with

ecC'c S, C Siu{e}, and C'4#C as §4C'. This contradicts

3
Theorem 1(k), (cf. Remark (1)).

(1;) S3 is maximal independent in S: Suppose S is a maximal

independent subset of S with SBC:§ and |S3I<I§[. g¢;§ as other-
wise Sic:§ and |51|<l§l., Then SU{S}& F, hence 3 Ce Z with

~

e Cc Su{%}, and furthermore, '50('§-sl) $ ¢ as otherwise Ec:Sl.
Let e'e Efﬁ(g—sl), then (g—{e'})LJ{E}e F: this follows as in (i).
But S, < (§-{e'})U {8} and |s,| < [(B-{e'})U {8} = |5], contra-
diction.

(iii) S, and S, are maximal independent subsets of S, and if

=== 3 2

S;=5,, then |S | = |S,|. If S;%S,,

]slzssgl, (cf. Remark (2)). Repeating the above a finite number

we note that ISSAszl <

of times thus gives rise to a maximal independent subset Sn of S

with Sn= S hence ISll = |Szl.

2’
Corollary. By Theorem 5 and statement (*) of Remark (1) it
follows that the circuit-axiomatic definition of a matroid is

equivalent to the earlier axiomatic definitions.

§1.5. The Basis—-Axiomatic Definition of a Matroid.

Definitions.
(a) Let E be a finite set and W a family of subsets of E. Then
the pair (E,W) is a matroid M(E,W), and the elements of W are the

bases of M(E,W), if the following conditions hold:
(w1) A s,s'CE [(ScS'eW , S £ S') ==> S¢W] ,

(w2) AB,B'eWw AeeB J ete Bt : (B-{e})ule'lew.
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(b) A matroid M(E,W) is normal if Aee¢E 3 BeW with eeB.

(¢) Let M(E,W) be a matroid. A subset SCE is called independent
if 3 BeW with SCB, We shall denote by F the family of inde-
pendent sets of M(E,W), Clearly the bases of M(E,W) are the

maximal independent sets of M(E,W).

Remarks., It follows immediately that every matroid M(E,r) is a
matroid M(E,W). The following theorem establishes that every

matroid M(E,W) is a matroid M(E,F). We first prove a lemma.
Lemma. AB,B'eW |B] = |B'].

Proof. Suppose B # B', then B~B'¥ ¢ and B'—B# # by axiom (W1),
Let e ¢ B-B'. Then by axiom (W2) 3 e'e B'-B such that

B" := (B-{e})u{e'}e W. Note that |B"| = |B|. If B"<B', then

B" = B' by axiom (W1), If B"¢B', we note that lB"AB'l < {BAB' ,
(cf. Remark (2) of §1.4). Repeating the above a finite number of

~ ~
times thus gives rise to a basis B with BcB', i,e, B = B',

hence |B| = [B'].
Theorem 6. The matroid M(E,W) satisfies the axioms (F1) - (F3).

Proof. Axioms (F1) and (F2) follow immediately.

Axiom (F3):- Let 81 and S, be distinct maximal independent

2
subsets of S. Then 3 B, € W such that S; = B,n S, i=1,2. Suppose

s, < Is,l.
(i) (Bl—Bq)—S £ g4 : Suppose not, i.e. B,c SUB,. Then

152-511 = [ (B,-B )N s| ¢ [B,-B| = |B,-B,| by the above lemma,

H

I(Bi”Bz)r‘sl = 181—821 ’

which contradicts iSli < lsgl.
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(;;) We now use axiom (W2) to replace every point of (B1—B2)—S
stepwise by a point of Bz-B1 and thus obtain a basis B with the
properties Sic:ﬁrﬁs and 5!\(82—81) £ &, for

|s

< |sz| =) |(Bi_132)ns| = ]sl-s < isz‘sﬂ =

1 5l
= I(B2—B1)r\S| =D [(Bl—Bz) -S| > |(B2—B1) -s| .
Hence S1 + §r1S, which contradicts the fact that 81 is maximal

independent in S,

Corollary. By Theorem 6 and Remark (c) it follows that the
basis-axiomatic definition of a matroid is equivalent to the

earlier axiomatic definitions,



Chapter II, Further Properties of Matroids.

§2.1, The Span Mapping @ .

Definitions. Let M be a matroid on the finite set E. The span
mappin $: QE) —> P(E)
is defined as follows:
P(s) := {ecE : r(Sufe}) = r(s)} , ScE,
Clearly (a) A ScE Sc P(s)
(b) P(F) = {eecE : r({e}) = 0} ,
(¢) M is normal if and only if %(¢) = 4.

#(s), which we shall also denote by S, is called the span of S.

A subset SCE is called spanning if S=E,

Theorem 7. Let M be a matroid on the finite set E.
(a) AScE r(S8) = r(s) ,

(b)) Asce s=%,

(¢) As,s'cE [scs' ==> Sc=57] ,

in particular: As,s'cE

[(scs' , S is spanning) ==> S' is spanning] ,
Corollaries. (1) A s,S'cE [s€§7 ==> §5c37],
(2) A sck 5 = Y s

ScS'e Im?
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(d) Let I be an index set and S;E, iel. Then

iel iel

(2) (Aie1 s,eIn®) = ﬂsielm‘f,
iel

(2) T 1LeJ1§: ’
(e) Ns,s'ck [(scs' 5 r(S) = r(s')) =>5=5] ,
Corollary. /\ SCE [S is spanning <==> r(S) = r(E)] ,
(£) A scE [SeZ <==> ((Aees eeSTef) , r(s)=]|s|-1)],
(g) A scE A eec E-S
[e€S <===> (I CeZ : eeCc=Su{e}) or equivalently
¢==> (Is'eF : s'cs , s'uie}dr)] , It
Corollary. /N ScE A eeE-S
[(eeS , Ne'es eéSTe']) ==> sufelez],
(n) A scE Ae,e'eE
[(e¢S . eeSU{e’]) ==> e'e SU{el] ,
(i) /A scE [SeF <==> (Aeecs e¢S5{e]) or equivalently

(==)> (S is minimalf in {S'—E : 57" =§8})] ,

t cf. Definition (5) of §1.1.

t The implication (== of the first equivalence is true for ecE.



(j) A s,s'cE

[(s is a maximal independent subset of S')

<==> (S is minimal’r in {S"cs' : S" = §7})

(<=> (SeF , S=s'<8§)] ,
in particular (S8' = E):

[(S is basis) <===> (S is a minimal spanning set)

<==> (S is independent and spanning)] ,

Corollary. A ScE

[(s is spanning ) <==> (I BeW : BCS) <==> (r(S)=r(E))] ,
(k) A serF /A spanning set S'CE with ScS' d Bew

with S<BcS!

Proof.

(a) Trivial if S = S, Suppose S £ S. Then Aee S-S
r(Su{e}) = r(S), hence by the corollary of Theorem 1(e),

r(5) = r(su(S-s)) = r(s).

(b) Let e€S, i.e. r(Suie}) = r(S). Then by (a)
r(S) = r(S) = r(Su{e}) » r(suf{e}) » r(s),

hence r(Su{e}) = r(S), i.e. eeS.

t cf. Definition (5) of §1.1.
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(c) Let eeS, i.e. r(Su{e}) = r(S). Then by the submodular
inequality
r(s') + r(sufe}) » r(s'u{e}) + [r(sufe}) or r(s)],
hence r(S'uv{e}) = r(s'), i.e. eeS"',
Corollaries: (1) follows immediately from (b) and (c).
(2): ScS'e Im(¥®) ===> ScS' by Corollary (1). On the other

hand Se{S'CE : Scs'e In(¥?)}.

(4) (1) A je1 ﬂsicsj, hence Ajel TyS <§. by (c).

iel iel J
(2) NS, NS = Ns. by (1) and (b),
iel iel iel

hence NS, = N S,
iel iel

(3) Njer S.CUSi,hence by (¢) Nje1 §.c UsS; .
iel J o der

, hence by Corollary (1) of (c¢),

Uus, USi . On the other hand USiC L)-S—1 , hence
iel iel iel

(e) By (¢) S=S7. Let eeS', then
r(sui{e}) ¢ r(stu{e}) = r(8') = r(sS), hence

r(suf{el}) r(s), i.e. e€S.

(f) Follows immediately from Theorem 1(d) and the definition
of ¥.

(g) ==>: 4 S'eF with S'CS and r(S) = r(S'). As ec§S,
r(s) = r(s') < r(s'ufe}) ¢ r(sufe}) = r(s),

ice. T(S'v{e}) = r(8') or S'U{e}¢F as e S'.

(==: r(s'u{e}) = r(S'), hence ecS' S by (c).



19

Corollary: By (g) 3 CeZ with e€C < Su{e}. Suppose
(suf{e})~-C ¥ & and take e'e (Suf{e})-C. Then e'fe, i.e. e'e S,
hence eeCc (S-{e'})u{e} and thus by (g) ee S={e'J,

contradiction.

(h) Trivial if e =e'. Suppose efe', Clearly we need only
consider the case e'¢S, e¢S as e¢ S, therefore e¢ Sufe'},
hence by (g) 3 CeZ with eeC < Su{e,e'}, Furthermore, e'e C

as otherwise ee C < Su{e} and thus by (g) eeS. Hence, again

by (g), e'e SU{el.

(i) Follows immediately by the corollary of Theorem 1(f).

(j) The first statement is equivalent to:

(se=s' , seF , r(s) = r(s")) .

By (a) and (e) the second statement is equivalent to:
(scs' , r(s) = r(s') , S is minimal in {S"<E : S" = §})
or (S=s' , r(s) = r(s') , seF) by (i).

By (a) - (c¢) and (e) the third statement is equivalent to

(SeF , Sc=8' 4, r(s) = r(s')).

(k) Let S" be a maximal independent subset of S' with ScS",

Then |S"| = r(S') = r(E) by the corollary of (j), i.e. S"e W,
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§2,2. The Span-Axiomatic Definition of a Matroid.

Definitions.
(a) Let E be a finite set and ¥ a mapping g '42(13) —_— ‘?(E),
Then the pair (E,<) is a matroid M(E, %), and S := P(S) is the

span of SCE, if the following conditions hold:
(#1) A sce sc§,

(#2) As,s'E  [SCSST => 5c§7] ,

(#3) N\ ScE /\ e,e'c E

[(e¢§ A ecSule']) ==> e'e SUtel] .

(b) A matroid M(E,¥) is normal if § = .

Remarks and Further Definitions. Let M(E,$) be a matroid.

(1) Axioms (¥1) and (92) imply: A sS,s'cE [ScS' ==> Sc87]
and S = S (as Sc§ ==> Sc<S by (92)).
Conversely, these two properties imply axiom (£2), hence they can

be substituted for (#2) in the above definition.
(2) A subset SCE is called independent if AecS ed S-{e}.

We shall denote by F the family of independent sets of M(E, ).

Note that @geF,

(3) The axioms (1) - (£3) imply the following lemma:

Lemma. /\ S,S'CE

[(S is a maximal independent subset of S') ==> S = S'] ,
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Proof. Trivial if S=S', Suppose S$S'., By Remark (1) Sc§ST,

Now let eeS'-S, then Su{e} ¢ F. Hence by Remark (2) 3 eesuf{e}
with 'Eem. If @=e, then e€S. If e4e, then eeS, but
3¢ ST2T by Remark (2) as SeF, Therefore &4 S5-{8}], & (Sule])-18],

hence by (3) eeS. Thus S'= S, hence by (¥2) S'CS.

(4) The axioms (#1) - ($3) imply: A ScE /\ eeE-S

[eeS <==> (Is'eF : S'cS 4, S'UieldF)] .

Proof. <==: Let e€E-S and SDOS'e F with S'U{e}4F. Then by
Remark (2) 3 8eS'uU{e} with €e{8"\={e])-18}, and as in the
proof of the lemma ee_S_', and STcS by Remark (1), hence ecS,
==5>: Let e€ S-S and S' a maximal independent subset of S. Then
by the lemma ST = S. If S'Uf{e}e F, then by Remark (2) e¢S" = 5,

contradiction, hence S'U{e}¢F.

(5) It follows immediately that every matroid M(E,r) is a
matroid M(E,y). The following theorem establishes that every

matroid M(E, ) is a matroid M(E,F):
Theorem 8. The matroid M(E,<) satisfies the axioms (F1) - (F3).

Proof. Axiom (F1) is clearly satisfied,

Axiom (F2):- Let SCS'e F, Then by Remark (2) /A eecS', in
particular AeesS, e¢S'——{_e_}-. But S-{e} S*-{e}, hence by
Remark (1) S_—{_ETC_S'——{?}- and thus A ecS eéfm, i.e. SeF,
Axiom (F3):- Let 51 be a maximal independent subset of S and S'
an independent subset of S with S'dr S;. Clearly Slq:S'. Take
eGS'—Si, then S'-{e} € F by axiom (F2). Now Jde'e Si—S' such

that S" := (S'-{e})u{e'}eF, as otherwise st'-{e} is maximal
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independent in (S'—{e})ulsi, hence by the above lemma
St-{e} = (s'-{e})u512>§1‘ =S, i.e. S'<{e}] = S, hence eeS'-{eJ,

i.e. S'¢ F, contradiction.

If S"<S,, then |S'| = |s"]| < [s,|. If S"¢S,, we note that
]S"ASll <|sta Sll’ (cf. Remark (2) of §1.4). Repeating the
above a finite number of times thus gives rise to an independent
subset S of S with §§:Si, hence |S'|= |S] ¢ ISI[.

Now if 82 is another maximal independent subset of S, then taking
S' =S, gives 152| ¢ |syl. similariy Is | € lszl, hence

Isll = lsgl°

Corollary. By Theorem 8 and Remark (4) it follows that the
span—-axiomatic definition of a matroid is equivalent to the

earlier axiomatic definitions.

§2.3., Hyperplanes and Cocircuits.

Definitions. Let M be a matroid on the finite set E.

(1) A subset SCE is a hyperplane of M if S = S and
r(s) = r(E) - 1.

(2) A subset SCE is a cocircuit of M if E-S is a hyperplane
of M. We shall denote by Z*¥ the family of cocircuits of M,
Clearly ¢ Z*. This notation is motivated by properties of the

"dual matroid" defined in §2.4.



23

Theorem 9, Let M be a matroid on the finite set E.
(a) A scE
[(S is hyperplane)
<==> (ANeecE-S r(suie}) = r(s)+t = r(E))
===> (S is not spanning but A ec E-S Su{e} is spanning)

(==> (S is maximal' in {S'—E : S* =S" £ E})] ,

Corollaries. (1) /\ s8,8'e¢ z* [ScCS' ==>S =8'],
(2) A scE [(S is hyperplane) <===> (S is not spanning but

3 eeE-S : Su{e} is spanning)] ,

(b) NsciE A ee€E

(e¢S = S ==> (I hyperplane S' with S< S'< E-{e})] ,

Corollary. N\ S,S'—E

((s=S 5, 8'=87 , s'cs , r(S)-r(s') =1) ==>
(3 nyperplane S" with S' = SNs")]
(¢) A ScE
[((s =5 % E)
<==> (3 ne IN_ and 39 hyperplanes $,185,..+,8, with
S =8N Szﬁa.oﬁsn) , in particular:
<===> (3 distinct hyperplanes S,;+85,.++,8,, where
m := r(E)-r(S), with S = sins2m..,nsm)] ,

(a) A scE [(S is spanning) <==> (/\ Ste Z* sns' £ #)] ,

T cf. Definition (5) of §1.1.
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(1)

Corollary. Asce [(InelN, and J S
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AsciE [(3s'ez* with S'cs) <==> (ABeWw Bns{g)] ,

AsciE [s=S<=> (Acez |c-s| $£1)],

(1Sgy+++,S € 2% with

s = 8,US,U...Us ) <==> (s4f , Acez [snc| $1)],

(g) Asce

[sez*

<==> (s4+g , (Acez |snc|41) , (Ae,e'eS with

ete’ 3 Ccez : snc = {e,e'}))

<=> (S is minimall in {s'cE :s'44 ., Ncez |s'nc|tt})
<==> ((ABeWw BnsS$g) , (ANees I Bew : BnS={e}))

<==> (8 is minimalf in {S'cE : A Bew BNns'{¢})],

(n) A scE Nees

(i)

[(s is spanning and S-{e} is not spanning) ==>

(3 unique S'e z* : (S-{e})NS' = @ (clearly e€S'))] ,

() A Bew A eecE-B 3 unique CeZ : CC Bufe},
(clearly eeC). Then A beB

[(B-{p})u{e}e W <==> bec] ,

(p) A Bew A beB 3 unique Sez* : (B-{b})nS = 4,
(clearly beS). Then A ecE-B

[(B-{b})ufele W <==> eesS],

ch.

Definition (5) of §1.1.
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(j) Axiom (G-II) of Minty [25): AScE A ecE-S
either d Ce€Z with eeCc Suf{e} ,

or 1 S'e Z*¥ with e€S' and SNS' =d .
Proof.

(a) The first equivalence is clear. The second and third state-

ments are equivalent by the corollary of Theorem T(e).

Fourth statement: let A := {S'E : S' = S' ¢ E} and take S'e A
and e € E-S', Then by the corollary of Theorem 7(e) r(s') ¢ r(E)-t,

and r(S'u{e}) = r(s')+1 ¢ r(E), hence STU {e] €A if
r(S') < r(E)-1, and S' is maximal in A if r(S') = r(E)-1. Thus
(S is maximal in A) <===> (S is hyperplane).

Corollaries: (1) Clear.

(2) ===>: Follows by (a) and Theorem 7(b), (d(3)).
==: By the corollary of Theorem 7(e) r(S) < r(E) and
r(su{e}) = r(E) = r(S)+1, hence by Theorem 7(a)

r(S) = r(s) = r(E)-1.

(b) Let S' be maximal in B := {S"<E-{e} : S" = S"}, Note that

B 4+ @ as Se€B. Then S' is also maximal in {S"cE : S"$E , S"=S"},
i.e. S' is a hyperplane by (a), for (S' maximal in B) ==>

(A ete E-(stu{e}) eeS'Ule']) ===> with Theorem 7(h)

(A e'e E-(S'ufe}) e'eS'wle]), i.e. S'U{e] = E, hence

A e'e E-=S' S7Ule'] = E (because N e'e E-(S'u{e})

STU{efc S'ul{e'}).

ecS'uie'}, hence E
Corollary: Clearly S' # S and J ee S-S' such that

r(s'u{e}) = r(s). Then by (b) I hyperplane S" with

S'c— S" < E-{e}. Clearly S' < SNS". By the submodular inequality
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r(8) + (r(E)-1) = r(8) + r(s") » r(E) + r(sns"), i.e.
r(sns") ¢ r(s'), hence r(SNS") = r(s'), and thus by Theorem 7

(d(2)), (e) S' = sns",

(¢) <==: Follows immediately by Theorem 7(d(2)).

===>: Let E-S =: {el,ez,...,en}o By (b) A ie{1,...,n} 3 hyper-

plane S; with S< S, < E-{ei}. Then S = S,n ... NS .
Special Case: (Welsh [33]) 3 S'e F with S'C S and r(S') = r(S),
and J BeW with S'— B. Let B-S' =: {el,ez,...,em}, A 3= S,

and A ie{1,...,m-1} Aj,q i=S5"0Te , ... e;T. Clearly

Am = B-{emf is a hyperplane Sm. By the corollary to (b)

A ief{1,...,m-1} 3 nyperplane S, with A, = A ,4NS;. Thus

m
A, = [1s, , and the S; are distinct as Nie{t,...,mn-1} ei¢ S,

but e € Si+1,Si+2,...,Sm.
(d) S is spanning <==> by (b) no hyperplane contains § <==>

every cocircuit intersects S,

(e) E-S contains a basis <==> E-S is spanning by the corollary
of Theorem 7(j) <==> by (d) every cocircuit intersects E-S

{==> S contains no cocircuits.

(f) Follows immediately by Theorem 7(g).

Corollary: Follows immediately by (c) and (f).

(g) By the corollary of (f) and Corollary (1) of (a) the first
and third statements are equivalent.

By (e) and Corollary (1) of (a) the first and fifth statements

are equivalent.
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The fourth statement <==> (( A BeW BNS#$§) A (A ees 3 Bew
BN(S-{e}) = #)) <==> the fifth statement.
If |S|= 1, the second and third statements are trivially equiva-

lent. Suppose now that lSl > 2.

The second statement ==>

(st+g , (Acez |sncl41) , (Aees 3 cez : [(s-{e})ncC|=1)),

which is equivalent to the third statement, It remains to prove

the reverse implication,

Let S be minimal in {S'cE : s'$ 8 , ACeZ |[S'AC| $1} and let
T<E be maximal in

D := {S'cS : ANe,e'e S' with efe' I CeZ : SNC = {e,e'}}.
D3 # as for €eS 3 €CeZ and 3 e'e E such that (S—{'é’})r\ﬁ’ = {e'}
by the minimality of S, hence SNC = {8,8'}, i.e. {€,6'} eD.
Suppose S-T £+ @, As S-T4+S, I CeZ and F ee E such that
(S-T)NC = {e} by the minimality of S, but SNC % {e}, thus

3 e, 89,06, €T, k31, with SNC = {e,ei,,.o,ek}.

Let ie{1,...,k-1}, then as TeD 3 C, €2 : SNC, = {ej et
hence by Theorem 1(j) applied to C and C,» 4 Eiez

ee.Sr\EiC: {e,el,...,ek_l}, and le\G;l > 2. We repeat this step
with Ei instead of C and continue in this way until we have a

Cez and a je{1,...,k-1} with SNC = {e,e }.

Now let e'e T-{ej}, then as TeD 3 C'e Z : SNC' = {e',ej},
hence by Theorem 1(j) applied to CandC' 3 Cre 2z :

eeSNC" < {e,e'}, i.e. SNC" = {e,e'}. Thus TU{e}e D, contra-
dicting the maximality of T in D,

(n) By Corollary (2) of (a) S-{eJ is a hyperplane. Let

S' := E - S—{e}, then S'e Z* and (S-{e})NnS' = 4. Suppose S is a

hyperplane containing S-{e}, then S-{e}] — S, hence S = S-{e]

by (a).

.
.
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(i) (e¢): The initial statement follows by Theorem 1(k) applied
to B and e.

==>: (B-{b})u{e}le F but Bu{e} = ((B-{b})u{e})Ui{bldF,

hence 3 C'e Z : beC'c Bu{e}. By the initial statement C' = C,

i.e. beC,
<==: (B-{b})u{e}eF (and hence €W as |(B-{b})u{e}| = |B]|),

as otherwise 4 C'€ 2 : C' < (B-{b})u{e} = Bu{e} and C'4% C as
b#:C', which contradicts the uniqueness of C,

(F): The initial statement follows by the special case of
Theorem 7(j) and by (h) applied to B and b.

==>: (B-{b})u{e} is spanning but B-{b} = ((B-{b})u{e}) -{e}

is not, hence by (d) 3 S'e z*¥ : (B-{b})nS' = # and e€ S'., By the
initial statement S'=S, i.e. e€S,

¢(==: (B-{b})u{e} is spanning ( and hence contains a basis by
the corollary of Theorem 7(j), and is thus itself a basis as

| (B-{b})u{e}| = |B|), as otherwise by (d) 3 s'e z*
((B={b})u{e})Nns' = &4, hence (B-{b})NS' = @, and S'+S as e¢S',

which contradicts the uniqueness of S,

(j) Either eeS or e¢§. The result then follows by Theorem 7(g)

and Theorem 9(b),

§2.4. The Dual Matroid.

Theorem 10. Let M be a matroid on the finite set E. Then the
pair (E,W*) satisfies the axioms (W1) and (W2) and is thus a
matroid M* := M(E,W*), the dual matroid of M. The bases of M¥*

are the elements of W¥, i.e. the cobases of M.
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Proof. Axiom (Wi1): We have for M : /\ SCE A Bew
[(Bcs , B$S) ==> S¢ W], or equivalently: A S'cE A sve w*
[(stcs" , S'4$8") ==> S'¢ W*], i.e. (E,W*) satisfies axiom (W1),.

Axiom (W2): Follows from Theorem 2,

Theorem 11, Let M be a matroid on the finite set E and M¥ its

dual matroid.
(a) AScE
[S is an independent set of M¥
(==> E-S is spanning in M] ,
The family of independent sets of M¥* is

F*¥ = {SCE : E-S is spanning in M}

{ScE : d BeW : BCE-S}

1]

{scE : r(E-S) = r(E)},

(b) The rank function r* of M* is: A ScE
r*(s) = |S| - r(E) + r(E-S)

in particular, r(E) + r*(E) = |E| ,
(¢) N\ ScE [S is a circuit of M¥ <(==> Sez*] ,

(d) The span mapping P* of M*¥ is: /N SCE
P*(s) = su{eeE-S : r(E-S) = r((E-S)-{e}) + 1}

= Su{eeE-S : e ¢ (E-S)-{e] } ,

in particular, A ScE [S is spanning in M¥ <==> E-SeF] ,

(e) M*% = M

*
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(f) A eeE N s,s'cE-{e} with SuS' = E-{e} and SNS' = ¢,

eec P(S)AP*(S') (cf. Remark (2) of §1.4).

Proof.

(a) (S independent in M*) <(===> (S is contained in a basis of M¥)
¢==> (E-S contains a basis of M) <(==> (E-S is spanning in M)

<==> (r(E-S) = r(E)).

(b) N\ ScE r*(s) = max{|SnS'| : S'e F*¥}. Take S'e F*, then

by (a) 3 BeW : BCE-S', i.e. S'E-B, thus

|sns'| ¢ |sN(E-B)| = |S| - |SNB|. But

r(E-s)  r((E-S)nB) = |(E-S)NB| = |B| - |SNB|. Hence

|sns'| < |s| - |B] + r(E-8) = |S| - r(E) + r(E-S). Thus

r*(s) < |s}| - r(E) + r(E-8).

On the other hand 3 B'e W : r(E-S) = |(E-S)nB'| = |B'-S]|,

and clearly E-B'€ F*, Hence r*(S) » |Sn(E-B')| = |S|] - |SnB'| =

= |s| - (|B'] - |B'-8|) = |s| - r(E) + r(E-8).

(¢) By Theorem 9(a) we have A ScCE:
(sez*) <==> (ANees r((E-s)uie}) = r(E-S) + 1 = r(E))
<=> (Aees r*(s-{e}) = 8] - 1 = r*(8)) <==> (S is a circuit

of M*) by Theorem 1(d).

() A ScE  @*(S) := {eeE : r*(sufe}) = r*(s)} =
Su{eec E-S : r(E-8) = r((E-8)-{e}) + 1} =
su{ecE-S : e ¢ (E-S)-{e] }.

Special Case: Follows by Theorem 7(i).

(e) Follows immediately from the definition of M¥*¥,
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(£f) By Theorem 7(g) we have: e € P(8) NP*(s') ==>

~ ~
(dcez : ecCc sSuiel) A (JSGZ* : eeSCS'u{e}) ==>
ICf\gl = 1, which contradicts Theorem 9(g).

e ¢ P¥(s') ==> e € (E-S")-lef = § = P(s).

Theorem 12. Let M be a matroid on the finite set E and M¥* its

dual matroid. Then

(M* is normal) <==> (AecE I BeW : e¢B)
(==> (AecE J CeZ : ecC)
<==> (AeecE {e}4§z¥)
<==> (ANeeBE E-{e} is spanning in M) ,

i.e. M¥ is normal if and only if M has one of these four

equivalent properties.

Proof. (M* is normal) <==> (NeecE I SeW* : ecS) <==>
(first property), and

(first property) ==> (AeeE I BeW : Bu{e}¢F) ==>
(second property) ===> (third property by Theorem 9(g)) =>
(fourth property by Theorem 9(d)) ==> (first property by the

corollary of Theorem 7(j)).

Remarks. The following relations:
S is independent in M¥ <(==> E-S is spanning in M,
S is a basis in M¥* {(==> S is a cobasis in M,

S is a circuit in M¥ {==> 8 is a cocircuit in M,
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together with the formula for r*, enable

statement about M, e.g.

the special case

the special case

the corollary of

Theorem 9(d)

the corollary of
and Theorem 9(e)

Theorem 9(h)

Theorem 9(i(e))

of Theorem 7(c) is

of Theorem 2 is
Theorem 7(e) is
is

Theorem 7(3)}
are

is

dual

dual

dual

dual

dual

dual

us

to

to

to

to

to

to

to dualise every

Theorem 1(c),

Theorem 1(h),

the definition of

an independent set,

Theorem 1(i(e)),
Theorem 1(i(F)),

Theorem 1(k),

is dual to Theorem 9(1(P)),

while the special case of Theorem 7(j) and Theorem 7(k) are

self-dual,.



Chapter III, Examples.

§3.1, Linear Algebraic Examples (Whitney [35]).

Let IF be a field, e.g. the real numbers IR or the ring Zz of

residue classes of integers modulo 2.

Example 1. Let A be an (m xn)-matrix with coefficients in IF
and columns a;, i.e. A = (a1 ay ... an). If we put

E := {ai,az,...,an} and /\ ScCE

r(8) := IF -rank of the corresponding submatrix of A,

we have a matroid by the second rank-axiomatic definition,

namely the matrix-matroid MBJA) associated with A.

Mp{A) is normal if and only if Aie{1,...,n} a;40eF".

Example 2. Let X be a vector space over IF. If we put

E := finite non-empty set of not necessarily distinct vectors €X,
and A\ SCE r(s) := dimg(spang(s)),

we have a matroid by fhe second rank-axiomatic definition, which
is normal if and only if O ¢E.

If X = F™ ana |E|=:n, m,ne IN, , we can take E to be the set

of columns of an (mxn)-matrix and thus obtain Example 1,

Example 3. Let ne IN, , and let €185 €, be the canonical

basis of the vector space F" and Y# {0} a vector subspace

of F™. If we put
E := {1,2,...,n} and A ScE
r(S) := dimg(projection of Y onto span,F({ei : ie s})),

we have a matroid, namely the matroid MY associated with Y.

MY is normal if and only if Y has the following property:

Nie{1,...,n} dimF(projection of Y onto spanF({ei})) =1,
i.,e. Y is not contained in a canonical vector subspace E‘q, q<n,

of ",
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If Y =: span.({b ,b,,...,b }), melN,, Aie{1,...,m} b eF",
and we consider the (m)(n)—matrix bT , then we obtain
Example 1. §

b,

Theorem 13. Let ne IN, and X, Y be vector subspaces of F" with

dim.X =: pe{1,2,...,n-1} and dim.Y = n-p. If Y = X*

, then

the matroids associated with X and Y are dual,

Proof.

Let 8,,85,00.,2 be a basis of the vector space X,

p

and bi’b2’°"’bn—p be a basis of the vector space Y,

i.e. 500042 ’bi""’b is a basis of the vector space

p n-p

X@®@Y="F" We can suppose without loss of generality (we need
only renumber the ei) that {1,2,,..,p}C:E is a matroid basis of

the matroid MX associated with X, i,e,

P = rx({l,...,p}) = rX(E) = dimX . S €. |
We need to show that {p+1,p+2,...,n}CE is a matroid basis of My.
~ 7~
Let A := af =: (K] &) ,
: pxp px(n-p)
K
a
P pxn
T ~ x
and B := by =: (B]| B) .
: (n-p)xp (n-p)x(n-p)
bT

We have A i,J a.J_bJ or <ai’bj> = 0, hence

1

~ s ~ ~ i)
0=aBT = (A| X )< 8T\ = ABT + ABT



~o =T . ~ . .
i.e. AB" = - AB" . By (*) it follows that A is nonsingular,
~ ~ ~ as ~T\ -
hence B = - A -128T or B = Be , where C := - XT(AT) 1

i.e. the columns of ﬁ are linear combinations of the columns of

RS ~
B , hence B is nonsingular as rank(B) = n-p.

Example 4. Let A be an (mxn)-matrix with coefficients in IF and

columns a;, i.e. A = (a ce & ), and MniA) be the associated

1 82 -
matrix-matroid. Let S := {a ,a. N } < E. Then it follows
t2 'p
readily that:
SeZ]F(A) (i.e. S is a circuit in Mn_.(A))

¢==> 3 beF" which is uniquely determined up to a factor

€ F -{0}, such that: (i) A 16{11,12,...,110} by £0,

(i) A ie{1,...,n}-{11,,..,ip} b, =0,

n
(1i1) Zbja;, = 0eF™.
Let Zp{A) = 2,,..,sq}° Then the (q xn)-matrix
B := brf is called the circuit-matrix of Mj(A).
T
by
X
b
q

Theorem 14. Let A and B be as in Example 4. If we identify the
columns of A canonically with the columns of B (i.e. E is essen-
tially the index set {1,2,...,n}), then the associated matrix-

matroids MIF(A) and M]F(B) are dual.
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Proof. We shall make use of Theorem 13: 1let X := span of the
rows of A in F‘n, and Y := span of the rows of B in F‘n, i.e.

Y = span({bi,,..,b }). Thus Mp(A) = My and Mpg(B) = My. The

q

n
jth column of ABT is Z, b..a;, = OeF™ by definition of B,

i=q 911
hence BAT =0or A i,j <ai’bj> =0, i,e, X1Y, It remains to
show that rank(B) = n - rank(A). Let p := rank(A). We can suppose

without loss of generality that the pth leading principal sub-

matrix A of A is nonsingular, and we shall write

A= <'K l i:) , B:=(B|B) .

ceeeo qxp qx(n-p)
Then as ABT = 0 we have 0 = ( A | i ) ET = KET + XﬁT y
5
or BT = - A1%BT , or B = Be , where C := - ET(KT)'i, i.e.

the columns of B are linear combinations of the columns of g,

~
rank(B) ¢ n-p.

hence rank(B)
On the other hand we have, as {ai,az,o..,ap} is a matroid basis
in MDJA) , \ ie{p+1,p+2,...,n} 3 circuit C(i) in MBJA) with
a; € C(i)c: {ai,,..,ap,ai}° Hence for the associated vector b(i)
we have b(i)i # o, b(i)j = 0 for j e{p+1,...,n}-{i}. Thus the

n-p rows b{i) of B are linearly independent, i.e. rank(B) n-p.
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§3.2., Binary Matroids.

Definitions (Crapo and Rota [7]). Let E be a finite set and
A S,S'CE SAS' the symmetric difference of S and S'

(cf. Remark (2) of §1.4). Then (“?(E),A) is an abelian group.
Let G be a subgroup of (‘P(E),A) and P '42(13) —_ ?(E) the

mapping defined by

500(3) 1= (M (E-s") = E - \J s" , SCE .
S"e G S"e G
ScCE-S" SNns"=g

Remark. We note that Se& G == SPG(E-s) = E-S.

Theorem 15. The pair (E, ?FG) satisfies the axioms (1) - (F3)

and is thus a matroid, namely the binary matroid M(E,G).

M(E,G) is normal if and only if G has the property Us = E.
SeG

Proof. Axiom ( ¥1) is trivial.

Axiom (P2): As before we shall write S instead of %,(S).

Let e€S and S"e¢ G with S'C E-S". As SC‘.§T, we have SCE-S",
hence e ¢ E-S" as eeS. Thus ee S'.

Axiom (¥3): Let S"e G with Su{e} C E-S", As e4¢S, 3 S'€G
with ee S' C E-S, As ee SU{e'], it follows that e'e S', because
e'd 8! ==> (su{e'})nsS' = g ==> eec E-S', contradiction.

It then follows that e'€ E-S", because

e'e S" ==> e'¢ S'AS" ==> Su{e'}C E-(S'AS") =>

ec E-(S'AS") as ec SUJe'], contradiction, as e€ S'A S",

Lemma. Let M(E,G) be a binary matroid. Then Z*CG .
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Proof. Let S € Z¥, then

E-S =E-S=E - LJS", i.e. § = \Js" L ¢,
S"e G Shte G
s"cs S"cS

hence {S"€ (G-{d}) : s"cs} £ & . However,

{s"e (6-{d}) : s"gs} =@, i.e. S€ G, hecause
(dsre (6-{F}) with s"gs) ==> (E-S = E-s‘iE-s" = E-S") ,
contradicting the maximality of E-S in {S'—E : S' = S'  E}

by Theorem 9(a).

Theorem 16. A matroid is binary if and only if the symmetric
difference of any family of cocircuits is the union of a family

of pairwise disjoint cocircuits.

Proof (Crapo and Rota [7]).

==>: Let M(E,G) be a binary matroid and suppose that the
theorem does not hold for M(E,G). Let S be minimal in

{S'CE : S' is the symmetric difference of cocircuits but not

the union of pairwise disjoint cocircuits}. Note that this family
of sets does not contain @, hence S $ ¢, By the above lemma S € G,
hence by the remark before Theorem 15, E~S = E-S # E and thus

by Theorem 9(a) 3 cocircuit S with Scs. By the definition of S,
S £ S. Then saf§ = s-§§s and SAS £ @ and SAS is the

union of pairwise disjoint cocircuits by the minimality of S.

But S = (SAS)US and (SAS)NS = @, hence S is the union of

pairwise disjoint cocircuits, contradiction,

{==: Let ﬁ be a matroid on E with the property that any
symmetric difference of cocircuits is the union of pairwise
disjoint cocircuits. Let G be the subgroup of ( 1?(E),Z&) generated
by the family Z* of cocircuits of M. Then M = M(E,G):-

SeZ¥ ==> SeG ==> ?E(E—S) = E-S $# E ===)> S contains a cocir-

cuit of M(E,G) by Theorem 9(a).
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On the other hand: S € Z*¥ ==> by the lemma S€ G ==)> S is the

symmetric difference of cocircuits of ﬁ ===)> by the definition

of M that S is the union of pairwise disjoint cocircuits of ﬁ ===

S contains a cocircuit of ﬁ.

Then by Corollary 1 of Theorem 9(a) Z* = Z*, hence M* = (M(E,G))*

and thus M = M(E,G) (or without duality: M and M(E,G) have the
~

same hyperplanes and thus ¢ = ?G by Theorem 9(c) and Corollary 2

of Theorem 7(0)).

Corollary. Let M be a binary matroid on E and G the subgroup of
(“P(E),A) generated by the family Z* of cocircuits of ﬁ Then

M = M(E,G). In fact, if M = M(E,G'), then G' = G

Proof. The first part follows because M has the property given
~

in Theorem 16 and & = ﬁh by the second half of the proof of the

theorem,

Second part: By the lemma GoG'. Let Se€ (G'-{#}). Then as

~
= = E~S = E-S = E - U/ 8"
? SDG C.PGV s Sve G
s"c S
i,e. S = \Js" % @, and as in the lemma S €G,
S"e G
S"c<S

Definitions.

(1) Let M be a matroid on the finite set E and M' a matroid on
the finite set E'. Then M and M' are isomorphic if there exists
a bijection E ——> E' preserving the matroid structure in both

directions.
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(2) Let M be a matroid and IF a field. M is representable over IF

if there exists a vector space X over F such that M is isomorphic
to the matroid associated with a finite subset of X, cf. Example 2
of §3.1. Note that we do not require the elements of this finite
subset of X to be distinct, i.e. in the matrix representation of

this matroid there may be vanishing columns and equal columns.

Theorem 17. A matroid on E is binary if and only if it is

representable over the field Zz.

Proof. If n := |E|, we identify E with the canonical basis of
the vector space (Zz)n over Zz. This generates a bijection
‘?(E) —_ (Zz)n under which a subgroup G of (?(E),A) corres—
ponds to a vector subspace V of (Zz)n and vice versa., Then
M(E,G) is isomorphic to the matroid M, associated with V, cf,

Example 3 of §3.1 :-

Let V =: spanzz(bi,bz,...,b ), meIN, , where A\ ic{1,...,m}

m

b, e (Zz)n, (e.g. V = spanZL(Z*), cf. corollary of Theorem 16),

and B := b, . Then clearly M, = Mzz(B) (cf. Example 1 of
: §3.1).
K
by
Let SCE and S =: {ei 1@ sees sy }. Then:
1 2 k

(S is independent in M(E,G))

(==> by Theorem 7(i) (Aje{1,...,k} ei_e‘a QPG(S—{ei 1))
J J

<==> (Aje{t1,...,x} I row (01 . cn) in the row-space of B

O .f Ze{. /.\ .}

1 1 eeegl  yeeo,1

over Z2 with cy :={ 1°? 1 s 1y
1 if £= iJ
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<==> (Aje{1,...,x} d row (0,...,0,1,0,...,0) in the row-space
ten

\\______*l_______J
k

over 222 of the submatrix of B corresponding to S)

<==> (the ZZz—rank of the submatrix of B corresponding to S is

k = [s])
<==> (S is independent in MZQ(B)).
Theorem 18, Let M be a matroid. Then:
M is binary <==> (Asez Asrez* SNS'| = 0 (mod 2)) .

Proof.
==>: Let G be the subgroup of (qZ(E),AS) generated by Z%, By

the corollary of Theorem 16 M = M(E,G), and by Theorem 17 and

the bijection introduced in the proof of Theorem 17, M(E,G) = MV’
where V = span(Z*). Let B be as defined in the proof of Theorem 17,
i.e, the rows of B are the cocircuits of MV’ and let C be the
circuit-matrix of Mz&(B) (cf. Example 4 of §3.1). Then we have

by the definition of C: if S is a circuit of MV, then the row of
C corresponding to S is the vector e (IZz)n giving S, and clearly

BcT = o (mod 2).

<==: (Lehman [21])° We will use the characterisation of binary
matroids given in Theorem 16. Suppose M is not binary. Let S (4,
cf. proof of Theorem 16) be minimal in {S'CE : S' is the sym-

metric difference of cocircuits but not the union of pairwise
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n
disjoint cocircuits}, and S := zﬁ.Si , where A ief{1,...,n}
i=1

S; € Z*. Let C€ 2. Then Nief{1,...,n} ICnsil 2 0 (mod 2),

n n

hence |CNS| = | A(cns,)| = Z |cns;| = 0 (mod 2) by Remark(2)
i=1 i=1

of §1.4. Thus A CeZ |CNS| $ 1, hence by the corollary of

Theorem 9(f) S is the union of cocircuits, so 3 Sez* with Scs.

We can now deduce a contradiction as in the first part of the

proof of Theorem 16.

Theorem 19. For a matroid M the following seven properties are

equivalent:

(a) M is binary,

(b) M* is binary,

(¢) N sez A stez* |sns'| = 0 (mod 2) ,

(d) the symmetric difference of any family of cocircuits is the

union of a family of pairwise disjoint cocircuits,

(e) the symmetric difference of any family of circuits is the

union of a family of pairwise disjoint circuits,
is representable over e fie
(£) M i tabl the field Z2 ,

(g) M* is representable over the field Z, .

Corollary. Let M be a binary matroid. Then:

A ScE [SeZ <==> (S is minimal in {S'cE : S'# , S' is
the symmetric difference of a family of circuits})], and dually:
A\ ScE [S€ 2% <===> (S is minimal in {S'CE : S'$# , S' is

the symmetric difference of a family of cocircuits})].
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Proof. The theorem follows by Theorems 16 - 18 and the symmetry

of (c). The corollary follows by (d) and (e) of Theorem 19,

Definitions. Let M be a matroid on the finite set E.

(1) Let BeW. A ec E-B the unique Ce Z with e e C < Bu{e}

which exists by Theorem 1(k) is called the fundamental circuit

corresponding to e with respect to B.

(2) Let SeW*, i.e. B := E-SeW. /\ eeB the unique S'€ Z* with
ecS'c Sufe} (i.e. ees' and (B-{e})nS' = #) which exists

by Theorem 9(h) is called the fundamental cocircuit corresponding

to e with respect to S,

Theorem 20. Let M be a matroid and B€ W, Then:

M is binary
<==> (A cez c= A C, , where C_ is the fundamental
eeC-B
circuit corresponding to e with respect to B) ,
(====) (/W Se z* s= A S , where S is the fundamental
eeSNB €

cocircuit corresponding to e with respect to E-B)

Proof, The third statement is just the dual of the second,
hence the first equivalence implies the second by Theorem 19,
The second statement ===)> M is binary:- We will use the charac-
terisation of binary matroids given in Theorem 18, Let C€ Z and

Se Z*, Take 6 €S. By Theorem 9(g) 3 Be& W such that BNS = {T}.

e,8} if ee S
Then C = A\ C , and /\ ee C-B {-ﬁ } as

eeC-B if e¢ S



|snc_ | ¥ 1 by Theorem 9(g). Hence |[SncC| = | D (snc )| o=
e eeC-B €

= N\ (snc))| = 2 |snc| = z|(snc)-B| =
ee(SNC)-B € ec(SnC)-B €

£ 0 (mod 2) by Remark (2) of §1.4.

M is binary ==> the second statement: (Minty [25]).

(a) Let BeW and Ce Z with C-B =: {el,ez}. We will use the
characterisation of binary matroids given in Theorem 18. Let Ci

be the fundamental circuit corresponding to e, with respect to

B, i=1,2.

(i) cc=cC,AC,: We need to show C= C,uUC, and CNn(C,NC,) = 4.
2 172 1772 172

c< CiL)sz Clearly C-B = {ei,ez}C: ClLJCz. Suppose d eecnB

with e<¢CiLJ02. Let S € Z* be the fundamental cocircuit corres-—
ponding to e with respect to E-B. By Theorem 9(g) |SncC| % 1,

hence e, or e, € S. But then Sr\01| =1 or le\Czl =1,

2
contradiction.

NC_,. Then clearly e € B.

Cﬂ(ClﬁCz) = ¢#: Suppose o eeCNC, 9

Let S € Z* be the fundamental cocircuit corresponding to e with
respect to E-B. By Theorem 9(g) ISf\Cil £ 1, i=1,2, hence
{e;re5} = S. But then SNC = {e,e e}, i.e, |[snc] = 3 £ 0(mod 2),
contradiction.

(ii) 011502 < C: By Theorem 19 014302 is the union of pairwise

=

disjoint circuits, and this union representation can be chosen

to contain C: by (i) C < C,aC,, hence (C1A02) -C = cAciAcz,

and this set is again the union of pairwise disjoint circuits by

Theorem 19. Hence it follows that if there is another circuit C"
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in the union representation of cizxcz, then C"C B, contradiction,
therefore CiA C2 = C,
(b) We will prove the theorem by induction over m := lC—Bl.
The case m=1 is trivial and the case m=2 follows by (a). Suppose
the theorem holds for m-1, Let BE W and C€ Z with
C-B =: {el,ez,,..,em}, and let C, be the fundamental circuit
corresponding to ey with respect to B, ie {1,...,m}. Clearly
C,FC. Take &€ C —-C. Then by Theorem 9(i(«))
B' := (B—{E})L}{em}e W, and C-B' = {ei,...,em_l}, hence by the
induction hypothesis

m-1
C = AC; s it aes e ceaa e (*)
i=1

where C{ is the fundamental circuit corresponding to e, with
respect to B', ie {1,...,m-1}, Clearly A ie{1,...,m-1}

1 - ] - 1
Ci—B = {ei} or {ei,em}. In the former case Ci = Ci’ and in the

latter C{ = C,AC by (a). Substituting in (*) and simplifying

using the formulae SAS=@ and FAS=S clearly leads to

m
C = Ci , because Cm must appear on the right as en€ C.
i=1

Theorem 21. (Whitney [35]).

(;) Let M be a binary matroid.

(a) ]{S'C:E : S' is the symmetric difference of a family
of circuits}| = 2[El—r(E) . These sets can be obtained
by taking all possible symmetric differences of the funda-
mental circuits with respect to a basis of M,

(b) The family of fundamental circuits with respect to a basis

of M determines M,
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(ii) Let E =: {el,e ,en} be a set and let P, ,P,,...,P

gre m’

where me¢ {1,2,...,n}, be subsets of E such that

Nief{1,2,...,m}

eP, < {ei,ez,...,en_m,en_m+i}.

e .
n-m+1l

Then there is a unique binary matroid M having Pl""’Pm

as fundamental circuits with respect to the basis

{ei""’en—m}°

(iii) A matroid is binary if and only if it is determined by the

[

family of fundamental circuits with respect to a basis.

(iv) The duals of the above statements hold as well,.

Proof.

(i) (a) Clearly there are exactly ZiEI_r(E)

distinct symmetric
differences of the fundamental circuits with respect to Be W,
Let ScCE be the symmetric difference of a family of circuits and

let S-B := {ei,ez,.,.,em}. If Ci is the fundamental circuit

corresponding to e; with respect to B, ie¢ {1,,..,m}, then

m
SA(ACi)CB. ettt e, (*)
i=1

m
By Theorem 19 S ( [&Ci) is the union of a family of pairwise
i=1

disjoint circuits, which contradicts (*) unless this family is
m ]
empty, i.e. SA(ACi) = f# or S = ACi .
i=1 i=1
(i) (b) This follows by (a) and the corollary of Theorem 19, or

directly by Theorem 20,
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(;;) We form the family of 2m—1 possible distinct non-empty
symmetric differences of P1""’Pm and call the minimal among

these, in particular Pi""’P circuits., These define a matroid

m’
M, in which {e1’°"’en—m} is clearly a basis and Pi’“"’Pm are
the fundamental circuits with respect to this basis. M is binary

by Theorem 20, and the uniqueness follows by (;‘.)(b)°

(';;) This follows by (;)(b) and (ii).

Hip

('g) This follows by Theorem 19.

(15

Definitions. Let M be a binary matroid, E := {el,ez,...,en},

m := n-r(E), and B := {el,ez,...,e e w,

n-m
(1) Let C, be the fundamental circuit corresponding to e ..

with respect to B, ie {1,...,m}. Then the (mx n)-matrix C

1 if e_.e€ Ci
defined by c;i 3= {' is called the
J 0 otherwise

fundamental circuit matrix of M with respect to B. We note that

C is of the form (P | ).

(2) Let S; be the fundamental cocircuit corresponding to e

with respect to E-B, ie {1,...,n-m}. Then the ((n-m)x n)-matrix S

1 if e.c¢ Si
defined by sy i= J is called the
J 0 otherwise

fundamental cocircuit matrix of M with respect to E-B. We note

that S is of the form (I _ | Q) .
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Remarks. By Theorem 9(g) csT = 0 (mod 2) ; in fact, by

Theorem 20 and the proof of Theorem 17,

. M = Mza(S) and M¥ = MZQ(C)

h

under the identification eJ _> jt column of the matrix, and

C is part of the circuit-matrix of MZQ(S)‘

Thus O = CST

(Pl 1)/1, \ = P+ QT (mod 2) ,

QT

i.e. Q = PT_

A graph-theoretic example is given in §5.2,

Theorem 22. (Whitney [35]). Let M be a binary matroid,

E =: {el’eZ""’en}’ m := n-r(E), and B := {e ,e ,e. lew,

2'°°°"“n-m

(a) If A is a matrix with coefficients in 22 and n-m columns
and Zz—rank n-m, then there is a unique set K of m columns which
when adjoined to A gives a matrix A' := (A l K) such that

MZQ(A') = M under the identification e —_ jth column of A'.

If in particular A is taken to be ST, i.e. A = ST = I ,

then A

(b) If A is a matrix with coefficients in ‘22 and m columns and
Zzz—rank m, then there is a unique set K of n-m columns which
when adjoined to A gives a matrix A' := (K | A) such that

MZQ(A')= M* under the identification e —> jth column of A',

If in particular A is taken to be CT, i.e. A = CT = PT ,
T I
then A' = * | P = [ * %\ n
P I C

m
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Proof.

(a) Let aj be the jth column of A, i.e. A = (a; ay ..o an—m)’

and let Ci be the fundamental circuit corresponding to € -m+i

with respect to B, ie{1,...,m}. If C,NB = g, we put a . =0,

and if C;NB =: {e N }, k¢n-m, we take a . to be the

i n-m+i

e 1a k

vector with coefficients in Z, satisfying a .. = ;; aij (mod 2).

This representation of a _m+j 25 2 Zzz-linear combination of the

Z _,-linearly independent vectors a

2 ) a

is unique, hence by

TR n—-m

Example 4 of §3.1 {ail’aiz""’aik’an—m+i} is a circuit in

MZQ(A')- Furthermore, {al,a2,...,a } is a basis in MZQ(A') and

n-m

the circuits {ai 35 } are the fundamental circuits

1 2

a. ,a
Yooy , .

i n-m+i
k

in MZQ(A') with respect to this basis, and MZQ(A') is binary by
Theorem 17. Hence by (ii) of Theorem 21 M and MZQ(A') are iso-

morphic under the identification ej —> jth column of A',

Suppose now that A = ST. By Theorem 18 we have that

eje Ciﬂ B {m=== en-m+i€ SJ_B ,

hence for 1 ¢ j ¢ n-m ,

1 if e € C N B 1 if e . € S
a. . ={ } n-mei® Gl g .
J,n-m+1 0 otherwise 0 otherwise J J,n-m+1

(b) This follows by dualising (a) and using the relation

r(E) + r*(E) = n .

Remark.
A further characterisation of binary matroids related to the one
given in Theorem 19(e) was established by Bixby [38] using

£-matrices.,
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§3.3. Elementary Definitions and Results from Graph Theory.

(Berge and Ghouila-Houri [2]).

A (directed) graph G is defined to be a triple (X,E,f), where X

is a finite non-empty set of elements called the vertices of G,
E is a finite set of elements called the edges of G, and

£: E —> X% is the incidence-mapping: if f(e) = (a,b), then we

say that the edge e is directed from the vertex a to the vertex b.
We note that there may be more than one edge joining two vertices

- these form a multiple edge, and that an edge can start and end

in the same vertex - it is then called a loop. A graph with
neither multiple edges nor loops is called simple. We shall drop

explicit reference to f below and write G = (X,E).

If YeX and E' := {e€E : f(e)e'Y2}, then the graph (Y,E') is
called the subgraph of G generated by Y. If E"CTE, the graph

(X,E") is called a partial graph of G,

A simple chain k is a finite sequence (ei,ez,...,ep) of distinct
edges such that N ie {2,3,...,p—1} e; has one end in common
with €i 1 and the other with €iv1°
A graph G = (X,E) is called connected if any two distinct vertices
can be connected by a simple chain. A subset Y of X is called a

connected component of G if the subgraph generated by Y is a

maximal connected subgraph of G.

A simple chain is closed if it begins and ends in the same vertex.

Let k be a simple closed chain, Then we define

}A+(k) := the set of edges in k whose orientation agrees with that

of k, including any loops in k, and
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}4-(k) := the set of edges in k whose orientation is opposite to

that of k.

Let Mo },L+,/A-C E with ,,L+ 4, p= ’.L+U,A_, ,.4*/1’;' =4 . Then,,;
is called a cycle of G if I a simple closed chain k with

,A+(k) =/&+ , fL-(k) =}1_ . A cycle fL is elementary if k
traverses each of its vertices exactly once, and is minimal if no
proper subset of fL is a cycle. It can be shown that a cycle is

minimal if and only if it is elementary.

Let Y&=X, Y % #. Then we define

w*(Y) := {e€E : f(e) = (a,b) , aeY , béY} , and

w (YY) := {eeE : f(e) (a,b) , adY , beY} .

Let w, w', wW< E with wt #, w=w'Uw™, wW'NW™ =g . Then w
is called a cocycle of G if I YCX with Y £ @ and «'(Y) = w',
w (Y) =w”, in brief w(Y) =w . A cocycle ¢t is elementary if
J YcX such that «(Y) = ¢« and the subgraph generated by Y is
connected and, letting C denote the connected component of G
containing Y, C-Y # ¢ and the subgraph generated by C-Y is
connected. A cocycle w is minimal if no proper subset of w 1is
a cocycle. It can be shown that a cocycle is minimal if and only

if it is elementary.

We note that if is a cycle in a partial or subgraph of G, then
M ’
I is a cycle of G, and if « 1is a cocycle of G, then «w induces

a cocycle in a partial or subgraph of G.
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Let |X| =: m and |E| =: n. If E =: {e ,e,,...,e }, then a
cycle f* and a cocycle w can be represented uniquely as

vectors € RrR"

1if e;e lu+, 1if eew,
fLi t=d -1 if ejEH wi = (-1 1if ej€w ,
Oifei¢/u_, 0 if e . ¢ w.
h
It is easy to see that <r;.,w> = 2 ’.Aiwi = 0 (If w=uw(Y),
i=1
then W = Zw({y}) and for each yeY </Ul,u)({y})> = 0,)
yeY

If /4 is a cycle of G and k =: (el,ez,...,ep) an associated
simple closed chain, then the chain -k := (ep,ep_l,...,ez,el),

obtained by changing the orientation of k, uniquely determines a

/,C, (—,4.)' =/4+.

cycle which we denote -/L, as we have (—’4)+

Furthermore, if is elementary, so is - .
8 5

If w is a cocycle of G and Yc X such that w = w(Y), and if

Ci,C Cq are those connected components of G that intersect Y,

PR

q
then the set L}(Ci—Y)(: X uniquely determines a cocycle which
i=1

we denote ~w, as we have (-w)" =w™, (-w)” = w"'. (Note that
X-Y also determines - w.) Furthermore, if ¢« is elementary, so

is -W.

It can be shown that every cycle is the sum of pairwise disjoint

elementary cycles, and similarly for cocycles.

The cyclomatic number k(G) of G is the dimension of the vector

n
subspace & of R generated by the cycles of G. The cocyclomatic

number G) of G is the dimension of the vector subspace ® of ™
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generated by the cocycles of G, It can be shown that
k(6) = n-m+p , £G) =m-p ,
where p is the number of connected components of G. Clearly the

two subspaces ® and @ are orthogonal complements of one another,

A graph which contains no cycles is called a forest, and a connec-
ted forest is called a tree. Thus forests and trees are simple

graphs, and for a tree (X,E), n=m-1 . A spanning tree of a

connected graph G = (X,E) is a partial graph G' := (X,E') of G
such that G' is a tree. Equivalently, a spanning tree of G is a
minimal connected partial graph, or a maximal partial graph con-
taining no cycles of G. Furthermore, a partial graph (X,E') of a
connected graph G = (X,E) is connected if and only if (X,E-E')
contains no cocycles of G, and is a spanning tree if and only if

(X,E-E') is a maximal partial graph containing no cocycles of G.

We now have the following important results: 1let G = (X,E) be a.
connected graph, E =: {ei,...,en}, and G' = (X,E') a spanning
tree of G.

(a) 1If ei¢-E', then the addition of e, to G' gives rise to an
elementary cycle /Li of G in G', which is uniquely determined up
to sign. The k(G) elementary cycles obtained in this way form a

cycle-basis of G.

(b) 1If e; € E', then the addition of e, to G" := (X,E-E') gives
rise to an elementary cocycle w! of G in G", which is uniquely
determined up to sign. The X£(G) elementary cocycles obtained in

this way form a cocycle-basis of G,

Let G = (X,E) be a connected graph and E =: {ei,ez,...,en}. We
now define the concepts of flow and tension on G. A vector Ye Rr"

is a flow on G and ?i is the flow in e, if for all cocycles w
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of 6 <P ,w> = 0, or equivalently if for all xeX

?i = 4f;,d ?i . Clearly every cycle of G is
) e;ew ({x})

e € w- ({x}
a flow on G, and it can be shown that if 9 is a flow on G and

(X,{ei,ez,...,em_i}) is a spanning tree of G and

(,*1’/42’...’,Ln—m+1) is the corresponding cycle-basis of G such

n-m+1

that em_1+ié(/¢1)+, 1¢i¢n-m+t, then ¢ = > 60m—1+il"'1 .

i=1

Thus the vector subspace 1in m™ of all flows on G is precisely %’.

A vector 8eR" is a tension or potential difference on G and 91
is the tension in e if for all cycles fx of G (< 9,};) = 0, or
alternatively, if 3 function t: X —> IR such that /\ eie E

ei = t(bi) - t(ai), where (ai,bi) 1= f(ei). The function t is

called a potential function of the tension 6, and (as G is connec-

ted) t is uniquely determined up to addition of a constant. Clearly
every cocycle of G is a tension on G, and it can be shown that if
6 is a tension on G and (cul,cuz,...,cum_i) is the cocycle-~basis

of G determined by the above spanning tree of G such that

. m:_l .
e; € (wl)*, 1<ig¢m-1, then 6 = ~Z 91 w' . Thus the vector
i=1

subspace in R"™ of all tensions on G is precisely e .

A matrix A with coefficients in IR is called a cyclomatic matrix

of the connected graph G if:
(1) A has n columns,
(2) the rows of A are € P ,
(3) the IR-rank of A is k(G) = n-m+1,

Taking r&g fg’...’)4n—m+1 as abhove, the matrix

T := (/.41/,‘.2,../»L

called a fundamental cycle matrix of G. We note that 6 is of the

) .

n—m+1)T is a cyclomatic matrix of G and is

form (P | S
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A matrix B with coefficients in IR is called a cocyclomatic matrix
of the connected graph G if:

(1) B has n columns,

(2) the rows of B are e©® .

(3) the R-rank of B is X£(G) = m-1.
Clearly if A is a cyclomatic and B a cocyclomatic matrix of G,

then ABT = 0,

If X =: {xl,xz,...,xm}, the incidence matrix

(tu({xl}),60({x2}),...,cu({xm}))T is a cocyclomatic matrix of G,

Furthermore, taking Lui,(uz,...,cum_l as above, the matrix

14,2 @n1)T

S := (w” we... is a cocyclomatic matrix of G and is

called a fundamental cocycle matrix of G. We note that § is of

the form (I, _, | Q), and that

0=08T =(p| 1 ) /1 =P +Q , di.e. Q=-P

n-m+1 m-1

Q

§3.4, Graph-Theoretic Examples.

Example 1. Let G = (X,E) be a connected graph, m := |X]|,

n := |E|. The graphic matroid M(G) on E is defined by taking

Z := {ScE : S is the set of edges of an elementary cycle of G}.
Clearly the pair (E,Z) satisfies the circuit axioms (Z1) - (Z3),

cf. §1.4, and is thus a matroid. We then have:

(a) M(G) is normal if and only if G contains no loops.
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(b) SeF <==> (the partial graph (X,S) contains no cycles)
<==)> (for every connected component X? of (X,S) we
have: the subgraph (X?,Si) of (X,S) generated by
S

X] is a tree)

(===> (the partial graph (X,S) is a forest).

(¢) A s'csScE [(S' is a maximal independent subset of S)
(===> (for every connected component X? of (X,S) we
have: the subgraph (X?,S{) of (X,S') generated by
S |
X is a tree)],

in particular: S is a basis <==> (X,S) is a spanning tree,

(a) A scE r(s) = m-pg = the cocyclomatic number is of the
partial graph (X,S), where Pg is the number of connected compo-

nents of (X,S), for: if S' is a maximal independent subset of S,

then A ie {1,2,...,ps} [S{| = lel - 1 , hence
Pg Pg

ENEERPATHE ,Zillfl -pg = |X| -pg = m-pg.
i= i=

(e) A ScE S the union U E;, of the sets of edges occurring

1

in the subgraphs (X?,Ei) of G generated by the connected compo-
S -
nents X; of (x,s),

in particular: S is spanning <==> (X,S) is connected.

(f) Sez* <==> S is the set of edges of an elementary cocycle

of G,
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(g) SewWs (=D (X,E-—S) is a spanning tree
g
(z===) (X,S) is a maximal partial graph containing no

cocycles of G.

(h) As for every cycle ’L and cocycle w of G ()L,u)} =0, it
follows that N\ CezZ A sez* |cns| = 0 (mod 2). Hence

M(G) is binary. See Remark (8) at the end of §3.4.

B

(i) Let B be a cocyclomatic matrix of G and E =: {e1’92’°"’en

h

Then M(G) = M B) wunder the identification eJ —_> jt column

]R(

of B, i.e, M(G) 1is representable over IR,

Proof, Let SCE, (s dependent in MHI(B)) (==>
<===> (the columns of B corresponding to S are linearly dependent)
<==> (3 vector PcR"™ with @% 0 and A e;eE~S P, = 0 and
B = 0)
<==> ( 3 nonvanishing flow ¥ on G with A e;€ E-S ‘fi =0 ,
i.e. 3 nonvanishing flow on (X,S))

<==> ((X,S) contains cycles) <(==> S¢F .

Example 2. Let G = (X,E) be a connected graph, m := |X|,

n := |E|. The cographic matroid M*¥(G) on E is defined to be the

dual matroid of M(G). In particular, we then have:

(a) (SCE is a circuit of M¥(G)) <==>
<==> (S is the set of edges of an elementary cocycle of G)

(==> S eZ*,
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(b) (SCE is an independent set of M*(G), i.e. S€ F¥) <(==>
<===> (the partial graph (X,S) contains no cocycles of G)

==> (the partial graph (X,E-S) is connected).

{(c) M*(G) is normal if and only if for every edge e € E there is

a cycle containing e, or equivalently, no edge is a cocycle of G,

(d) (S is a basis in M*(G)) <==>

<===> ((X,S) is a maximal partial graph containing no cocycles
e 6)

{(==> ((X,E-S) is a spanning tree of G) <(==> SeW*,

(e) A ScE r*(s) = |s| - Pg_g *+ 1 , where pyp o is the number

of connected components of (X,E-S), in particular:

r*(E) = |E| - |X| + 1 = n-m+1 = the cyclomatic number k(G) of G,

for: if S' is a maximal independent subset of S, then (X,E-S')

is connected, but A ee S-S' (X,E-(S*uU {e})) is not connected.

This implies that the number of edges that the graphs (X,E-S')

and (X,S) have in common is the least number necessary to connect

all the components of (X,E-S), i.e. |SN(E-S')| = Pgg - 1 -
Bence ©*(S) = [s'] = ISl - [SA(B-5")] = S| — ppg + 1 .
(£) A scE P*(S) - = {e€B-S : Py (gu(e)) = Prs * 1) o

in particular: S is spanning in M*(G) <==> the partial graph

(X,E-S) contains no cycles,

(g) (S<E is a cocircuit of M*(G)) <(===>
<{==> (S is the set of edges of an elementary cycle of G)

K==> S€Z .
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(h) M*(G) is binary. See Remark (8) at the end of §3.4.

}.

(i) Let A be a cyclomatic matrix of G and E =: {el,ez,...,en

Then M*(G) = MIRGA) under the identification e — jth column

of A, i.e, M¥*(G) is representable over R .

Proof. Let ScE. (S dependent in Mp(A)) <==>
(===> (the columns of A corresponding to S are linearly dependent)
<===> (3 vector BeR"™ with 6% 0 and A e € E-S ei = 0 and
A® = 0)
<==> ( 3 nonvanishing tension 8 on G with A e;€ E-S 91 = 0)

(=== ((X,E—S) is not connected, see below) <(==> SQEF*.

If 3 nonvanishing tension 6 on G with A e, € E-S ei 0, and
(X,E-S) is connected, then A eje S such that ej % 0, hence e
is not a loop. Suppose f(ej) = (a,b). Then 3 a simple chain k in
(X,E-S) from a to b. But O vanishes on all the edges of k, hence

GJ = 0 as k and ej together form a cycle, contradiction.

If (X,E-S) is not connected, define a function t: X —> IR by
taking t to be constant on each connected component of (X,E-S)
but not ponstant on all of X. It follows immediately that t is
the potential function of a nonvanishing tension © on G with

A e e E-S ei = 0,

Example 3. A graph G = (X,E) 1is called planar if it can be
represented on a plane in such a way that its vertices are dist-
inct points and its edges are simple curves that do not cross one

another, The regions into which the edges of a planar graph G

divide the plane are called the faces of G. For a connected planar

graph G the dual graph G* = (X* E*) is the connected planar graph
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defined as follows: to every face of G there corresponds a vertex
of G*, and to every edge e of G there corresponds an edge of G*

Jjoining the vertices of G¥ corresponding to the faces of G that

e bounds - if e bounds only one face, then the corresponding edge
in G* is a loop, and vice versa., The edges of G¥ are oriented in
the following way: we represent G on a plane and place each
vertex of G* inside the corresponding face of G and draw each
edge e* of G*¥ so that it crosses the corresponding edge e of G,
and no other edge of G, exactly once, and orient e* in such a way
that the directed angle < (e,e*) satisfies 0 < J(e,e*) < T ,
Furthermore, G** = - G , i.e. G with all its edge-orientations

reversed.

It follows readily that under the bijection E ~——> E¥ elementary
e ——> e*

cycles in G correspond to elementary cocycles in G¥, and vice
versa, Hence defining a matroid to be planar if it is isomorphic
to a graphic and also to a cographic matroid, we have that if G
is a connected planar graph, then M(G) and M(G*) are planar

matroids, because under the identification E ——> E* we have
e —> e¥*

M(G) = M*¥(G*) and M(G*) = M*¥(G) , Clearly the dual of a planar

matroid is again planar,

Remarks.

(1) Let M be a matroid on E and ScE. Clearly the reduction
matroid MxS (cf. §1.1, Remark (8)) of M is the matroid on S
whose circuits are precisely those circuits of M which are con-

tained in S. Analogously we define the contraction matroid M-S

of M to be the matroid on S whose cocircuits are precisely those
cocircuits of M which are contained in S, Clearly we then have:

M-S = (M*xS)* |
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and A S'cs r o (5') |st| - r*(s) + r*(s-s')

r(s*u(E-S)) - r(E-S) .

The operations of reduction and contraction of a matroid general-
ise the operations on a graph of deleting and contracting edges.
In fact, if G = (X,E) is a connected graph and ScE, and we put
G xS := partial graph (X,S) of G, and

G+S := graph obtained by contracting all edges not in S,

then M(GXS) = M(6)x S and M(G*S) = M(G)+S .

A minor of M is a matroid on ScE obtained by a succession of
reductions and/or contractions of M. This topic has been exten-
sively developed by Tutte [31], and is also covered in the book

by Crapo and Rota [7]. See also Remark (12) of §3.5,

(2) In analogy to the fundamental circuit matrix of a binary
matroid we can define the circuit matrix of a general matroid.

Let M be a matroid on E and E =: {61’62""’en}' If 01,02,...

.+.,C_ are the circuits of M, then the circuit matrix C(M) of M

m

is defined as follows:
1 if eje Ci
(CO); == :
J 0 otherwise

The cocircuit matrix S(M) is defined similarly.

We then call M orientable if one can assign positive and negative
signs to the non-zero entries of C(M) and S(M) such that for the
resultant matrices CO(M), SO(M), CO(M)(SO(M))T =0 .

Clearly graphic and cographic matroids are orientable.
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(3) The Fano matroid F is defined as follows:
W := {ScE : |s|=3} - {{1,2.6},{1,4,7},{1,8,5},{2,3,4},
{2,5,7},{3,6,7},{4,5,6}} .

The exceptional triples are those that are collinear in the

Fano configuration

2 + 3

F can be shown to be representable over any field of character-
istic 2, but not over any other field (cf. Whitney [35], Wilson

[36]). In particular F is binary.

(4) Minty [25] has proved:

A matroid is representable over any field if and only if it is
orientable.

In particular, the matroid F is not orientable, hence neither
graphic nor cographic.

Tutte [30] has proved:

A matroid is representable over any field (or equivalently,
orientable) if and only if it is binary and contains no minor

isomorphic to F or F¥,

(5) The classic characterisation of planar graphs proved by

Kuratowski [20] is:
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A connected graph is planar if and only if it cannot be reduced
to the graphs K, or K, (shown below) by a succession of the
’

operations of deleting or contracting edges (cf. Remark (1)).

Tutte [30] has proved the following generalisation for matroids:
A matroid is graphic if and only if it is orientable and contains
no minor isomorphic to M*(Ks) or M*(K3,3)o

As corollaries we have:

(a) A matroid is cographic if and only if it is orientable and
contains no minor isomorphic to M(KS) or M(K3’3).

(b) A matroid is planar if and only if it is orientable and

contains no minor isomorphic to M(Ks) or M(K3 3) or their duals.
’

(6) Similarly the characterisation of planar graphs given by

MacLane [22] has been generalised to matroids by Welsh [33].

(7) A detailed discussion of the representability of matroids is

contained in the paper by Ingleton [17].

(8) Let G be a connected graph, X the incidence matrix of G,
and S a fundamental cocycle matrix of G (cf. §3.3). Let X, be
the matrix obtained from X by reducing mod 2, i.e. X0 is the
(0,1)-matrix with X, =X (mod 2). Doing the same with S yields
a fundamental cocircuit matrix go of M(G) (cf. §3.2)., By (i) of

Example 1 above, M(G) = Mm(X) = M]R(S),
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If w is an elementary cocycle of G and w = &w(Y) (cf. §3.3),

then w = 2. w({y}), hence w, = A w ({y}), where the sub-
yeY yeY °

scripts o denote that we ignore the directions of the edges, On
the other hand, every cocycle is the sum of pairwise disjoint

- *
elementary cocycles. Thus spanzz(rows of Xo) = spanZQ(Z )
(cf. Proof of Theorem 17). Hence M(G) = MZZ(XO).
Furthermore, by the Remark after Theorem 21, M(G) = MZQ(go)’
Clearly ranknl(X) = ranknl(S) = rankza(xo) = rankzb(so) =
= r(M(G)) = m-1.
Similar considerations hold for M¥(G) and a fundamental cycle

matrix of G.

§3.5. Combinatorial Examples.

Example 1., Let E be a finite set and ke IN, The k—uniform matroid

on E is defined by taking the family W of hases to be
{scE : |S| =k}. It then follows that r(S) = min{|S|,k}, ScE.
Special cases are the O-uniform matroid which is called the

trivial matroid, and the lEI—uniform matroid called the discrete

matroid. The k-uniform matroid on a set of 2k elements is readily

seen to be self-dual and non-binary.

Example 2. Let G = (X,U) be a graph without loops (cf. §3.3,
we denote the edge set by U here) and AcU, A % ﬁ. (The orien-
tation of the edges of G does not play a role here,) Then A is
called a matching in G if no two edges of A meet in the same

vertex of G.
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Clearly: (@ + A'C A and A is a matching in G) ==> (A' is a
matching in G),
If A is a matching in G, let
V(A):= {xeX : 3 ecA with e € cocycle w({x})} , ef, .§3.3.
Lemma. Let A1, A2 be matchings in G, Then the subgraphs of the
partial graph (X,A1£§A2) generated by the connected components of
(X,AlzkAa) are of the following three types:
(a) an isolated vertex,
(b) a simple closed chain k traversing each of its vertices
exactly once (i.e. the edge set of k is an elementary cycle),
with an even number of edges and such that alternate edges of k
belong to A1 and A2 respectively,
(c) a simple non-closed chain traversing each of its vertices
exactly once and such that alternate edges helong to A1 and A2

respectively, and whose ends are not both in V(Ai) or both

in V(A2).

Proof. (Berge [1]). Let xeX.

(a) 1If szV(Ai-Az) and xeﬁV(Az-Ai), then x is an isolated vertex
of the partial graph (X,A1£3A2).

(b) Let x:eV(Al-Az) and x{EV(Az—AI). Then exactly one edge

e€ A -A, meets x, and no edge of A,-A, mects x. Hence xc#V(Az),

2 21
for if X(EV(AZ), then an edge e'e A2 meets x., Clearly e # e,

hence e'e.Az—A1 for otherwise there would be two distinct edges

e,e'e A1 meeting x. But this contradicts th>» fact that no edge of
A2—A1 meets X.
(¢) Let xe:V(Al—Az) anu - Vi .,~A ). Then exactly one edge of

Ai—A2 meets X and exactly one eage of A2—A1 meets x.
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Definition., Let G be as above and ECX. Then the matching
matroid M(G,E) is the matroid on E obtained by taking the family
F of independent sets to be

F := {ScE : 3 matching A in G with ScV(A)}.

Axioms (F1) and (F2) are clearly satisfied.

Axiom (F3) (Edmonds and Fulkerson [ 12]): Let S, and S, be maximal

independent subsets of SCE, and suppose that |51| < 1521, i.e.
0 [s,-S,] < [s,-s,]. e ceeeeeeaa(®)
By the maximality of S1 and 82 3 matchings Al’ A2 in G such that

S, = Sf\V(Al) and S, = srwv(Az).
The subgraphs of the partial graph (X,A1£>A2) generated by the
connected components of (X,AizkAz) are of types (a) - (c) given
in the above lemma, and by the assumption (*) there is one of
type (c), which moreover must have the property that one end is a
vertex e€¢ S,-S, and the other end a vertex ¢,Sl-82. Let A' be the

edge set of this chain. Then A := AlésA' is clearly a matching

in G, and SiLJ{e}C: V(A), contradicting the maximality of S,.

Remarks.

(1) M(G,E) is normal if and only if E contains no isolated
vertices of G,
(2) I1f SCE, the reduction matroid M(G,E)x S is the matching

matroid M(G,S).
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Example 3. Let Ai’ Az, seey Am be non-empty subsets of a finite

yeoses }

set E, A subset TcE with |T| =: k > 1 and T =: {e .
‘2 ‘k

. ,e
14

is called a partial transversal of E if I injection

j: {1,2,...,k} —> {1,2,...,m} such that A qe{1,2,...,k}

e; € Aj(q)' T is called a transversal or a system of distinct
q
representatives of E if k = m,

The transversal matroid of the family {A1’A2""’Am} is the
matroid on E obtained by taking the family F of independent sets
as follows:

F - {#} := the set of partial transversals of E,

To show that this is a matroid, we proceed as follows (Berge [1]):
Let I := {1,2,...,m} and G be the graph (X,U) with vertex set

X := EUI and edge set t= {(e,i)e ExI : ee Ai}. Then the set
of partial transversals of E is equal to the set of nonvanishing

independent subsets of the matching matroid M(G,E), in other words,

every transversal matroid is a matching matroid.

Remarks.

(1) The maximum number of edges comprising a matching in the
above graph (X,U) is given by the Theorem of Konig (cf. Berge [1])

to be min{lI—J] + \cocycle LU(J)i} , and clearly w(J) = Ua, .
Jel jed d

Hence the rank function r of the above transversal matroid is

given by r(s) = min{|I-d] + |[(UA,)Nns]} , SCE.
Jcl jed J
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(2) The above transversal matroid is normal if and only if

m
UAi = E .
i=1

(3) We saw above that every transversal matroid is a matching
matroid. The converse was proved by Edmonds and Fulkerson [12].

Thus the two classes of matroids are ahstractly the same.

(4) The k-uniform matroid on E (cf. Example 1) is seen to be

transversal by taking k=m and A, = E for all ie{1,...,k}.

(5) The following result was proved by de Sousa and Welsh [29]:
A transversal matroid is binary if and only if it is graphic.
Hence in particular the Fano matroid F (cf. §3.4, Remark (3)) is

not transversal,

(6) A related result was proved by Bondy [3]:
The graphic matroid M(G) of a connected graph G is transversal
if and only if M(G) contains no minor isomorphic to M(K4) or

M(Ci), n>2, where K, is the graph shown below and Ci is the graph

4
obtained by doubling up the edges of an n-gon:
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(7) An algorithm for determining whether or not a matroid is
transversal is given by Brualdi and Dinolt [4]. The paper also
establishes necessary and sufficient conditions for a matroid to

be transversal,

(8) Matroids play a very important role in transversal theory,
cf. the treatise by Mirsky [26], where they are called "indepen-
dence structures", In fact, Rado's matroid generalisation of
Hall's "marriage" theorem can be considered the central result

of transversal theory.

On the other hand, transversal theory has enriched general matroid
theory: Welsh [34] has shown how very general and powerful
results on the union and intersection of matroids due to Edmonds
[10] can be deduced from Rado's theorem mentioned above, and that
the application of these results to particular matroids yields
many deep and apparently unrelated combinatorial results, some of

which are very difficult to prove directly.

(9) A matroid generalisation of a transversal matroid, called
a gammoid, was introduced and investigated by Mason [23]. A

gammoid is the reduction of a strict gammoid, and Ingleton and

Piff [18] showed that the class of strict gammoids is identical
with the class of duals of transversal matroids, and that the
class of gammoids is identical with the class of contractions of
transversal matroids, Moreover, the dual of a gammoid is again

a gammoid,

(10) Duals of transversal matroids were also characterised by

Brown [39] using F-products,
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(11) Another type of matroid motivated by a theorem of Gallai
that was first conjectured by Sylvester for the plane, was
studied by Murty ([47], [49]). The theorem is:
Let n given points in IR™ have the property that the line joining
any two of them passes through a third point of the set. Then the
n points are collinear.
An obviously equivalent formulation is: if a set S of non-collin-
ear points in real projective m-space has the above property,
then lSl =00, This leads directly to a convenient matrix
formulation.

A matroid on a finite set E is called a Sylvester matroid if

/\ e,e'e E with e+ e' J a circuit C with e,e'e C and |C| = 3.
Gallai's theorem then asserts the non-existence of Sylvester

matrix-matroids MIR(A) of rank » 3 (cf. Example 1 of §3.1).

Murty proved that for a Sylvester matroid of rank m)» 2 the
inequality IEI > 2™ 1 holds, and that in the case of equality
it is isomorphic to the matrix-matroid MZ;(A) (cf. Example 1 of
§3.1), where A is the mx (2™- 1) matrix whose columns are the

2™_ 1 distinct non-null elements of Zg.

(12) Let M be a matroid on E and SCE, Then the circuits of the
contraction matroid M-S of M (cf. Remark (1) of §3.4) can be

characterised as follows:

Theorem. /A S'cS [(S' is a circuit in M+S) <==> (S' is minimal

in A := {S"<=S : s"t@d . I CeZ such that S"=CnS})].

Proof.
(a) S"¢ A ==> ( 3 hyperplane H (= E-C) in M* with S-S" = HNS)
===> (r*(E) + r*(S-8") = r*(HuS) + r*(HNS) ¢ r*(H) + r(8) =

r*(E) - 1 + r*(S8) or r*(S-S") < r¥(S)) ==>r s") < |sv|

ctr(
==> (S" is dependent in M-S),
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(b) (S' is a circuit in M:S) ==> by Theorem 1(d) (/A ees'

r (8= {e}) = |s'| -1 =r (5)) => (N ees’

r*(S) = r*((s-s')u{e}) = r*(s-s') + 1) ==> (S=S'NnsS = s-8',
where the bar denotes the span mapping in M*, and 3 hyperplane
8" in M* with S-S' = SNS" by the Corollary of Theorem 9(b))
==> (J CeZ with S'=CNS, i.e. S'€ A) because

S* =S -S-S" =8 - SNns" = (E-S")NS and we take C := E-S",

The minimality follows from (a). This proves the direction ===>.

(¢) The direction <=== now follows immediately from (a) and (b).

(13) Let M be a matroid on E. A subset SCE is called a
separator of M if A Ce 2 CcS or CcE-S. If the only
separators of M are @ and E, then M is said to be connected.
We then have the following corollaries of the theorem of
Remark (12):

Corollaries. (Tutte [30]).

(1) A ScE [(s is a separator of M) <==> MXS = M-S],

(2) The separators of M¥ are the separators of M,

Proof., (1) follows trivially from the above theorem and Remark
(1) of §3.4,

(2) follows trivially from (1) and Remark (1) of §3.4.

For further results on separators and connectedness cf, Tutte [30],

(14) The following type of matroid was also studied by Murty

([48], [50]). A matroid is called k-equicardinal if all its

circuits have the same number k of elements. Murty characterised
connected binary k-equicardinal matroids, k€ N , giving a

complete list of the possible types.
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(15) For further interesting combinatorial examples of matroids,
in particular geometric and lattice-theoretic ones, and a treat-

ment of the critical problem, we refer the reader to the book by

Crapo and Rota [7] and to Rota [51].



Chapter IV, Matroids and the Greedy Algorithm.

§4.1., Matroids and the Greedy Algorithm.

Definitions, Let E be a finite set.
(1) Let w: E—> IR be a function with w(e) ) O for all eeE.
We extend w to a function w: 1?(E) ——> IR by setting

w(s) := Z.w(e) , ScE, The function w is called a
eeS

weighting of E.

(2) A family F(E) of subsets of E with the property

[steseF(E) ==> S'e F(E)] is called an independence

system on E.

(3) If P is a family of subsets of E, then the family
{ScE : 3 S'€ P such that SCS'} of subsets of E is the

independence system F(P) on E generated by P.
Let P be a family of subsets of a finite set E and w a weighting
of E. Then one can consider the following problem:

determine a set in P of maximum weight.

In an attempt to solve this problem, one is naturally led to

consider the following algorithm:

The Greedy Algorithm: Choose e, e E such that S, := {el}e F(P)

and w(ei) = max{w(e) : {e}e F(P)}. Choose e, e E-S, such that
S, := Siu){ez} = {ei,ez}e F(P) and
w(e2) = max{w(e) : ee E-S, A Sig;{e}e F(P)}.

Continue in this way until the process terminates,
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Clearly the greedy algorithm yields a maximal set in F(P) (which
is thus in P), but this set will not in general be of maximum

weight in P as the following counterexample shows.

.
[}
n

Counterexample. E := {a,b,c}, w(a) := 3, w(b) = w(c)

P o:= {{a}’{b’c}}~ Then F(P) = {{a},{b}r{c},{b)c}} and the

greedy algorithm yields {a} € P whereas {b,c} is the set of

maximum weight in P,

Definition. Let P be a family of subsets of a finite set E and
w a weighting of E, Let the elements of each set in P be written

in order of non-increasing weight, i.e.

SeP, 5 = {eirezy-'-’ek}’ W(e1)>w(92)>oo. }W(ek).
Then we call SeP optimal in P if /\ SeP Is| < |S| ana

A ief{1,2,...,|s]|} w(ei)éw(gi).

Clearly this condition implies that S is maximal in P and also
that S is a set in P of maximum weight. Furthermore, if the
weighting w of E has the property

N e,e'e E w(e)=w(e') ===> e=e"', S €8 |

then clearly if an optimal set in P exists, it is unique.

The greedy algorithm does not however always yield an optimal set
in P, as the above counterexample (first condition violated) and

the following counterexample (second condition violated) show,

Counterexample., E := {a,b,c,d}, w(a) := 4, w(b) = w(c) := 3,
w(d) := 1, P := {{a,d},{b,c}}. Then the greedy algorithm yields
{a,d} which is neither optimal in P nor a set of maximum weight

in P,
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Lemma. (Berge [1], Edmonds [11]). Let M be a matroid on E and
w a weighting of E. Then the following properties of a basis B
of M are equivalent:

(a) B is optimal in the family F of independent sets of M,

(b) B is a basis of maximum weight,

(c) B is a lexicographic maximum of the family W of bases of M,
(d) A eeB {e'eB : w(e') > w(e)} is a maximal independent

subset of {e'e E : w(e') > w(e)}.

Proof. We saw above that (a) ==> (b).

(¢) ==> (a): Let B be lexicographically maximal in W and
suppose that B is not optimal in F, i.e. 3 seF and 3
ke{l,...,r(E)} with w(ei) > w(eﬁ) , where the elements of B and

of S are written in order of non-increasing weight. Let

B B B S &S S}. Then r{(S') » k, hence 3

St's:= {ei,ez,,..,ek_i,ei,ez,...,ek

B

je{1,...,k} such that S":= {e?,eg,...,ek

_1,e§}€ F (note use
of axiom (F3)), and furthermore 1 B'e W with S"<B'. But then
B' is clearly lexicographically greater than B because

s s B . . . o
W(ej) > w(ek) > w(ek), which contradicts the lexicographic
maximality of B.
(b) ==> (c): Let B be lexicographically maximal in W, and B'
a basis of maximum weight. As (c) ==> (a), B is optimal in F,

. - B B!

hence /A ie{1,...,r(E)} w(ei) > w(ei ), where the elements of
B and of B' are written in order of non-increasing weight. As B'

BT

B
is a basis of maximum weight, /\ ie {1,...,r(E)} w(ei) = w(e1



76

Hence B' is also lexicographically maximal in W.
(d) follows readily from either (a) or (c).
(d) ==> (b): Let B' be a basis of maximum weight and B a basis
satisfying (d). Suppose that 3 ke{1,...,r(E)} such that

]
w(eﬁ) < w(eﬁ ), where the elements of B and of B' are written in

. . . B

order of non-increasing weight. Then A := {ee B : w(e) > w(ek)}

is not a maximal independent subset of

S := {eeE : w(e) > w(eﬁ)}, for |A| <k and {e?',eg',...,eg'}

is an independent subset of S containing k elements. Hence B
does not satisfy (d), contradiction. Thus A ie{1,...,r(E)}

L] 1]
w(e?) > w(e? ), i.e. w(e?) = w(e? ) as B' is a basis of maximum

weight, hence B is also a basis of maximum weight.

Remark. Given a particular weighting w of E and a particular
application of the greedy algorithm, we can always perturb w
slightly so as to obtain a weighting having property (*) while
preserving the linear order in E in such a way that the greedy
solution found for w remains a greedy solution, and in fact
becomes the unique greedy solution. We observe that for weightings
of E having property (*) the greedy algorithm undertakes the
stepwise construction of the lexicographic maximum of the family
of maximal sets in P - these sets, however, do not in general
have the same cardinality. That the greedy algorithm does not in
general do this for a weighting without property (*) is shown by

the following counterexample,

=4, w(c) := 3,

Counterexample, E := {a,b,c,d}, w(a) = w(b)

w(d) := 1, P := {{a,c},{b,d}}. Then {b,d} is a greedy solution

but is neither the lexicographic maximum of P nor the set of
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maximum weight in P. If however we take w(b) = 5, then {b,d} is
the greedy solution and the lexicographic maximum of P, but not

the set of maximum weight in P,

Theorem 23. Let P be a family of subsets of a finite set E,

(a) (Gale [13]). P contains an optimal set for every weighting
of E if and only if F(P) is the family of independent sets of a
matroid M on E,

(b) The greedy algorithm yields a set of maximum weight in P for
every weighting of E if and only if F(P) is the family of inde-

pendent sets of a matroid M on E.

Proof.

(a) <==: Let w be a weighting of E and let B be the lexico-
graphic maximum of the family W of bases of M. Then B is optimal
in P by the Lemma.

===>: If F(P) is not the family of independent sets of a matroid
on E, then 3 subsets $,S'e F(P) such that |[S| < |S'| and S is

maximal in SuUS', Take a weighting w of E := {e1’82’°°"en} such
that w(ei) >w(e2) e >w(en), and SNS' = {ei,ez,aa.,er},

S-S'= and S'-S = {e

e . oo .
{er+1’ r+2’°° ’er+s}’ r+s+1°’%res+2? ’er+s+t}
~

We note that s<t, If S is optimal in P, then S must clearly be of

the form S = SUT }UT, where TCE - (SUS'),

i

{el,ez,“.,er+s

oo

: 3 i [
However, comparing S with S'= {el’ez"°"er’er+s+1’er+s+2"

ve,€ } shows that S cannot be optimal as \ eeT w(e )> w(e).

r+s+t r+s+t

(b) <===: This follows by the Remark and Lemma.,
==5>: By (a) we need only show: if for every weighting of E
greedy solutions are sets of maximum weight in P, then they are

optimal in P. Suppose that for a particular weighting a greedy
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solution § is not optimal. Now S will remain a greedy solu-
tion under weight changes which preserve the linear order of the
elements., This allows us to construct new weightings of E for
which S is not of maximum weight:

(i) Suppose S is maximal in P with |S| > Igl. Move all ‘weights
into the interval [1—&, 1+€], preserving the linear order. Then

S weighs more than S,

(ii) Suppose S is maximal in P and J ke {1,2,...,|S|} with
w(ek)> w(gk). Move all weights Z-W(ek) into a neighbourhood of

w(ek) and all weights < w(ek) into a neighbourhood of w(gk),

preserving the linear order. Then the first neighbourhood contains
at least one element more of S than of g. Now widen the gap between

~

w(ek) and w(gk) until S weighs more than S,

Remarks.

(1) Proofs of the "if" part of Theorem 23(b) were also given by
Rado [27], and Welsh [32].

(2) The application of the greedy algorithm to a particular
matroid presupposes a subroutine for determining whether or not

a set is independent,

If the matroid in question is a matrix-matroid MIF(A)’ this can

be achieved automatically by using the following method based on
Gaussian elimination: renumber the columns of A so that they are
in order of non-increasing weight, let A =: (a1 85 oo an). Go to

the first nonvanishing column a of A, Let a, be the first

k1 1k1 .
nonvanishing element of a, . Let a' 1= a, - —d— 5 ,
k J J a. k
1 1k1 1

) * - ] L} L} i
k, < j<n, and A' := (ak1+1 ak1+2 oue an). Now repeat this step
on A', Continue this process until only vanishing columns are
left, i.e. after r steps, where r := -rank (A). Then

{ak ,ak ,...,ak } is a basis of M of maximum weight.
1 2 r
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If the matroid in question is a graphic matroid, then the greedy
algorithm is the well-known algorithm of Kruskal [19]. However,
the proof of the containing of no cycles at each step becomes
increasingly tedious, and it is more efficient to use other algo-
rithms, e.g. the ones given by Dijkstra [8], Sollin ([1] and [2]),
or Rosenstiehl [28}.

(3) For applications of the greedy algorithm to non-matroidal
problems see Edmonds [10], [11], Dunstan and Welsh [9], and

Magazine, Nemhauser and Trotter,dJr. [46].



Chapter V. Exchange Properties for Bases of Matroids.

§5.1. Symmetric Point Exchange.

Definitions., Let M be a matroid on the finite set E,
(1) Let BeW, eeB, and e'e E. Then we say that

e € B can _be replaced by e' if (B-{e})u{e'}e W.

Clearly, if e€ B can be replaced by e', then e'€ B ==> e' = e,

or equivalently, e +- e' ==> e'e E-B.

(2) Let B,B'e W, ecB, and e'e B'. Then we say that

ecB and e'e B' can be exchanged symmetrically if

(B-{e})u{e'}, (B'-{e'})u{e}leW, i.e. if ee B can be replaced
by e', and e'€ B' by e.

Again, there are only two possibilities: the non-trivial one

e € B-B' and e'e€ B'-B, and the trivial one e = e'e¢ BNB', Further-
more, we note that (eée B can be replaced by e') ===>

(e'e (B-{e})u{e'} can be replaced by e) ==> (e € B and

e'e (B-{e})u{e'} can be exchanged symmetrically).

Lemma. (Gabow, Glover and Klingman [43]). Let M be a matroid
on E and B,B'e W,

(a) Let ee¢ B and e'c E-B. Then

e € B can be replaced by e'

<==> ee€C(e',B), the fundamental circuit corresponding to e'

with respect to B,

Cm===) e'égm.

(b) Let ee B-B' and e'e B'-B. Then

e€ B and e'e B' can be exchanged symmetrically
<(==> e € C(e',B) - B -{e'}

<=> e'e C(e,B') - B{e} .
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Proof.

(a) The first equivalence is clear by Theorem 9(i(e)). Further-
more, the first and last statements are equivalent because both
are equivalent to r((B-{e})u{e'}) > r(B-{e}).

(b) The first statement <{==> (e€ B can be replaced by e', and

e'e B' by e) <==> (eeC(e',B) and e¢B'-{e']) by (a).

Theorem 24. Let M be a matroid and B,B'e€ W, Then A ecB

d e'e B' such that e and e' can be exchanged symmetrically.

Proof. (Gabow, Glover and Klingman [43]).

If e B', then take e' := e. Suppose that e¢ B'. Then B'-B + d,
for otherwise B' B, i,e. B' = B, As B is a minimal spanning set
by Theorem 7(j), e¢B—-{_€_;}_, Hence C(e,B') - {e} ¢ B-{e}, as
otherwise ec C(e,B') < B——{_e}-u{e}, hence eem by Theorem 7(g),
contradiction. Thus @ # [C(e,B') -B-{eJ] -{e} < B'-B and the

result follows by (b) of the Lemma,

Direct Proof. (Brualdi [40]).
If ee€B', then take e' := e. Suppose that ed4 B', Then as above,

B'-B % ¢, Furthermore, C(e,B')N (B'-B) £ ¥, for otherwise

C(e,B') c B. Suppose xeC(e,B')n(B'-B). If eq¢ C(x,B), then by
Theorem 1(j) 3 circuit C' such that
eeC'c (C(x,B)uc(e,B')) - {x}, and c'r\(B'-B)<§ C(e,B*)N (B'-B),

hence |C'N (B'-B)| < [C(e,B')N (B'-B)

It A xeC(e,B'")Nn(B'-B) ed4C(x,B), then by repeating this step
(with C' instead of C(e,B') and so on) a finite number of times,
we obtain a circuit 5 with eé€ EC B, contradiction. Hence

J e'e C(e,B')N(B'-B) with ee C(e',B), i.e. by (a) of the Lemma

e€ B can be replaced by e', and e'& B' by e.
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§5.2. Bijective Point Replacement.

Theorem 25. Let M be a matroid on E and B, B'e W,
(a) 3 bijection f: B —> B' such that each ee B can be
replaced by f{e), i.e. A\ eeB (B-{e})u{f(e)}eW.

More generally:

(b) (Gabow, Glover and Klingman [43]). If B' =: {ei,eé,...,eé},
where m := r(E), then d an ordering B = {ei,ez,.. m
such that A i€ {1,...,n} e;€ B can be replaced by e! and
Bi:= {ei,ez,...,ei,ei+1,ei+2,...,e&} € W,

(thus A ie{1,...,m} e;€B and eleB, , can be exchanged

1
symmetrically, where B := B'), and in
particular f: B —> B' defined by f(ei) s= ei provides a serial
replacement from B to B', and from B' to B (namely Bo’Bl”°’Bm)'
Note that f does not provide a serial symmetric exchange between
B and B', as the sets B} := {ei,eé,..,,e{,ei+1,ei+2,...,em} ,
ie{2,...,m-1}, are in general not bases (cf. Counterexample 1
below). We also note that reversal of the order in B and B' gives
B{ in place of Bi in the theorem.

Similarly:

(e) If B := {el,ez,..u,em}, then 3 an ordering

B' = {ei,eé,,.u,eé} of B' such that A ie{1,...,m} e;e B can

be replaced by ei and Bie W, in particular f: B —> B' defined by

f(ei) ‘= e{ provides a serial replacement from B to B', and from

B' to B. Again, f does not in general provide a serial symmetric

exchange between B and B' (cf. Counterexample 1 below), and
reversal of the order in B and B' gives B{ in place of Bi in

the theorem.
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Proof.
(b) (Gabow, Glover and Klingman [43]). By induction over i.
The point e, is given by Theorem 24, and (B'—{ei})u {el} = Bié Ww.

Suppose the theorem holds for all i< j. Then by Theorem 24

ejeBJ._1 can be exchanged symmetrically for some point eeB, and
clearly g4§{e1,e2,,..,ej_1}c: Bj—i' Hence taking ey = € we have
that (B-{e.})ute'l; €W and B, .- '})uie;; = B.eW,

(B-{e })u{el) (8,4~ {es)ule) = B,

(c) By induction over i. The point ej is given by Theorem 24,
and (B'—{ei})L}{el} = B e W. Suppose the theorem holds for all
i< j. Then by Theorem 24 eje B can be exchanged symmetrically

. ~y ~y
for some point e'e Bj—i’ and clearly &'é¢ {el""’ej—i} < B.
Hence taking e3 := &' we have that (B-{ej})LJ{ej}e W and

(Bj—l- {95})U{8J} = BJEW.

A second proof of (b) and (c) based on a proof of (a) given by
Brylawski [42} follows the discussion of certain special minors

of M in the next section,

Remark.

Let M be a matroid and B,B'€ W, It is natural to ask firstly
whether a bijection f: B —)> B' exists such that A eecB e
and f(e) can be exchanged symmetrically, and secondly whether,
given a fixed ordering of B' (or B), a bijection f exists
giving a serial symmetric exchange between B and B'. These
questions are answered in the negative by the following two

counterexamples,
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Counterexample 1. (Brualdi [40]).

Consider the matrix-matroid Mz (A) (cf. Example 1 of §3.1)

associated with A := 100011 = (a1 8y ous a6).
10101
001110

o

It is easily checked that every triple of columns of A is a

basis of MZQ(A) except {al,az,aﬁ}, {ai,a3,a5}, {a2,a3,a4}, and
{a4,a5,aﬁ}.

Let B := {ai,a4,a5} and B' := {az,a3,a6}. Suppose f: B —> B' is
a bijection such that /\ e€B e and f(e) can be exchanged
symmetrically. Now

(B—{ai})LJ{e'}e W for e'e {az,as} but not for e' = ag,
(B'—{e'})LJ{ai}e W for e'e {az,as} but not for e' = ag,
therefore f(ai) can only be a,. Similarly f(a4) can only be a,,
i.e, f is not bijective, contradiction. This answers the first

question in the negative.

The only bijections answering Theorem 25(a) are

a1 a4 35 , a1 a4 5 81 84 85 °
Voo vod Vool
a2 36 83 83 az 86 83 36 a2

If we fix the order in B' as {a3,a2,a6}, the only ordering of B
answering Theorem 25(b) is {as,al,a4}, and this bijection does

not provide a serial symmetric exchange between B and B',

If we fix the order in B as {a4,a5,a1}, the only ordering of B'

answering Theorem 25(c) is {az,as,as}, and this bijection does

not provide a serial symmetric exchange between B and B',

Counterexample 2. (Gabow, Glover and Klingman [43])°

Consider the graphic matroid M(G) (cf. Example 1 of §3.4),



where G is the graph shown, and let B := {1,4,5} ana B':= {2,3,6}.

VAN

BI

G

The rest of this counterexample is the same as Counterexample 1
above, in fact A =: (I3 | Q) is the fundamental cocircuit matrix
of M(G) with respect to the cobasis {4,5,6} of M(G) (cf., Defini-
tions and Remarks after Theorem 21), and M(G) = MZ;(A)° We
summarise the relevant details:

The fundamental cocircuits of M(G) with respect to {4,5,6} are

sl = {1)5)6}) 52 = {2)4)6}1 s3 = {3;4;5}-
The family of cocircuits of M(G) is

{1,5,6} = s, {1,2,4,5} = s,a8,,

{2,4,6} = s,, {2,3,5,6} = s,A8,,

{3,4,5} = Sq, {1,3,4,6} = S;AS,.

{1,2,3} = s, as,a8,,

2
The fundamental circuits of M(G) with respect to the basis {1,2,3}
are 01 = {2’3’4}’ 02 = {1)3’5}’ C3 = {1)2)6}0

The family of circuits of M(G) is

{2,3,4} = c,, {1,2,4,5} = c,ac,,
{1,3,5} = ¢c,, {2,3,5,6}) = c,AacC,,
{1,2,6} = Cy, {1,3,4,6} = C,ac,.
{4,5,6} = C,aC,AC,,

The fundamental circuit matrix C of M(G) with respect to {1,2,3}

is C= ,011100 =:(P113),
101010
110001

and clearly P=¢QF =gq
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We also note that G is a connected planar graph, hence the dual

graph G* of G exists:

and M(G) 9 M*(6*) anda M(G*) 9 M*(G) under the edge identi-

fication d given by the edge numberings (cf. Example 3 of §3.4).

Furthermore, G and G*¥ are the same and can be identified by the

v

4

bijection g: G —> G¥ given by 1 2 3 4 5 6 ,
4 5 6 1 2 3
whence M(G) & M(6*) & M*(G) or M(G) & M*(G¢) under the
bijection h: G —> G given by 1 2 3 4 5 .
5

Under this isomorphism Si corresponds to Ci’ ief{1,2,3

vice versa.

§5.3. More on Minors of a Matroid.

Let M be a matroid on E,
(1) Let ScE and suppose that Se F¥ (cf. Theorem 11). By
Remark (1) of §3.4 the reduction matroid Mx (E-S) is the matroid

on E-S having basis set {BeW : BnS = 4},

(2) Let ScE and suppose that Se F, and let M, be the matroid
on E-S with basis set {B-S : SCBeW}. Then the dual matroid My
has basis set {E-B : SCBeW} = {S'e W* : S'nsS = g}, i.e. by (1)
M} is the reduction matroid M¥*x (E-S), and hence by Remark (1)

of §3.4 M, = (M¥x (E-S))* = M-(E-S).
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Thus the contraction matroid M-(E-S) is the matroid on E-S having
pbasis set {B~S : SCBe W}, and by Remark (1) of §3.4 the rank

function r of M+(E-S) is given by

ctr
r e (8') = r(stus) - r(s) = r(s'us) - |s| , S'C E-S.
In particular the rank of M-(E-S) is retr(E-—S) = r(E) - |s].

(3) Let s ,S,CE and suppose that s,Ns, = g, s,e F, S,eF*.

2
Then (E—Sl) - (E - (S1usz)) = S,, and (M-(E-Sl))x (E-(Slusz))
is the matroid on E-(SlL/SZ) having basis set

{B pasis of M-(E-S,) : BNS, = g} = {B-s; : S,CBeW , Bn52=¢},

On the other hand, (E—Sz) - (E-(Siusz)) = S,, and
(hlx(E—Sz))'(E—(Slu 32)) is the matroid on E—(31U Sz) having
basis set {B-s1 : S,C B basis of Mx(E—Sz)} =

= {3-51 : S,CBeW 5, BNS, = g}, i.e.

(- (B-8,)) x (B-(5,U8,)) = (0x(ES,))- (B=(5,05,)),
with rank function r(S8') = r(s'v Si) - lSil, sS'c E—(Slulsz),
and rank T(E-(S,US,)) = r(E-S,) - [s,| = r(E) - Is |-

We shall denote this matroid by M(S1’sz)°

Proof of Theorem 25{(b). (based on Brylawski [42]).

By induction over the rank of M. Clearly the theorem is trivial
if the rank of M is 1, Assume that the theorem holds for matroids
of rank m-1, where m is the rank of M. Let B,B'e W and

B' =: {ei,eé,.,.,eé}o Then by Theorem 24 ei can be exchanged
symmetrically for some point eie B. Thus B—{el} and B'—{ei} are
both in the basis set W := {B-{e,} : e e BeW} of the matroid

M({ei},ﬁ) of rank m-1. Hence by the induction hypothesis 3 an
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ordering B-{ei} = {ez,e3,...,e } of B'{ei} such that

m
N ief{2,...,m} (B—{ei,ei})u{ei}eﬁ and
{ez,...,ei,e{+1,...,e';}€-ﬁ, i.e. A ie{2,...,m}

(B—{ei})Ll{ei}e W and {el,...,e ,eé}e:W. Finally

17854100
(B-{e;})ufejle W and {e;,ej,...,ep} = (B'~{ej})ufe;}eW by

definition of ey-

The proof of Theorem 25(c) follows analogously.

Remark. Brylawski [42] also proved Theorem 24 and Theorem 26

below using the concepts introduced in this section.

§5.4. Symmetric Set Exchange.

Let A be an {(mx n)-matrix with coefficients in the field IF and
IF -rank m, and let MHF(A) be the associated matrix-matroid

(cf. Example 1 of §3.1). If ScE, let M(S) denote the correspon-
ding submatrix of A, Now let B,B'€ W, i.e. M(B) and M(B') are
non-singular (m xm)-submatrices of A. By taking the columns of
M(B') as basis of IF™ we can without loss of generality assume
that M(B') = I . Let SCB. Then the classical Laplace expansion

of det M(B) with respect to S gives

det M(B) = Z_ + det M((B-S)usS') . det M((B'-S')uUS) .
S'c B!

As det M(B) # 0, some term on the right must be + 0, which
proves the following generalisation of Theorem 24 for matrix-

matroids:
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Theorem 26. Let M be a matroid on E and B,B'€ W, Then
/A scB 3 S'<B' such that
(B-S)usS'e w and (B'-S')UuSeW,

Remark. If S and S' have the properties given in the theorem,

then it follows readily that SAB' = S'NB and |[S| = [S'].

Proof (1). (Woodall [37]).

Let m := r(E) = |B| = |[B'| = rank of M, and k := |[S|. We will
prove the theorem for the case BNB' = #. Then the theorem

follows by considering instead of M the contraction matroid
M-(E-(BAB')) with basis set {B-(BAB') : BAB'c Be W} and

rank function rctr(S") = r(s"u(BnB')) - |BAB'|, S"cE-(BNB'),
and rank m - lBr\B'[, and taking S-B' instead of S,

By the submodular inequality we have that A sS"cE

r(sus") + r((B-s)usm") » r(Bus") + r((sn(B-s))us")

= m+ r(s"). T . |
Let M, := (M-(E-(B-S)))xB' , then A\ src B!
rl(S") = r(S$"u(B-8)) - m + k , and the rank of M, is k.
Let M, := (M* x (E-S))-B' , then /A S"cCB'

ry,(s") = r*(s"U(E-(SuB')) - r*(E-(suB'))
= |s"| + r(SuU(B'-8")) - m by Theorem 11(b),
and the rank of M2 is k.
Now Edmonds' Matroid Intersection Theorem (cf. Theorem 69 of

Edmonds [10] and Theorem 4 of Welsh [34]) states:
Two matroids M(E,ri), M(E,rz) have a common independent set of

k elements if and only if

N\ scE r (s) + r,(E-S) » k.
For M1 and M2 we have: /\ sS*'c B!
ri(S") + rz(B'-S") = (r(s"uU(B=S)) - m + k) + (r(sus") - |s"|)

» k by (*).
[s'] = k, i.e.

Hence 31 S'CB' with rl(S') = rz(S')

r(s'u(B-8)) = r(SU(B'-S')) = m.
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Proof (2). (Greene and Magnanti [45]).

Let m and k be as in Proof (1), and again we can without loss of
generality assume that BNB' = ¢. Furthermore, let M1 be as in
Proof (1).

Let M, := (M:(E-S)) X B' , then A S"CB!

3

r3(S”) = r(S"uUS) - k, and the rank of M, is m-k. We note that

3

* =
M% = M, of Proof (1).

Now the Matroid Partition Theorem of Edmonds and Fulkerson ([12])

states:

Let ne IN, and M(E,ri), ie{1,...,n}, be matroids on E, Then E

can be partitioned into a family of subsets Sl’ Sz, ceey Sn,
such that A\ ie {1,...,n} Sie Fi’ if and only if
n
N\ scEk Zri(s) » |s|.
i=1

For M1 and M3 we have: /\ S"C B!

r1(S") + rS(S") = (r(s"u(B-S)) - m + k) + (r(s"us) - k)

¥ |s"] by (*) of Proof (1).
Hence 1 S'CB' with r,(s') = |s*| and
ry(B'-S') = |B'-8'| = m - [S'],
i.e. r(s'u(B-s)) = |S'| +m - k and

r(SU(B'-S')) =m + k - |S'].
As r(SU(B'-8')) { m, it follows that |S'| ) k, and as
r(s'u (B-s)) ¢ m, it follows that |S'| ¢ k, hence |S'| = k, and

r(SU(B'-s')) = r(s'u (B-S)) = m.

Remark.
A lengthy but direct proof of Theorem 26 was given by Greene [14].

See also the Remark at the end of the previous section.
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§5.5. Bijective Set Replacement.

Theorem 26 gives rise naturally to the following generalisation

of Theorem 25,

Theorem 27. Let M be a matroid and B,B'e W,
(a) (Greene and Magnanti [45]). Suppose that B has been parti-

tioned into a family of subsets Sl, S ceoy Sn. Then B' can be

2’
partitioned into a family of subsets S!, Sé, ooy Sé such that

i n
AN ie{1,,..,n} (B-S,)usS'eW and B, := (Us,)u( U s\ew,
i i i R | L3 J
j=1 J=i+1
(b) Suppose that B' has been partitioned into a family of
subsets Si, Sé, ceny Sﬁ. Then B can be partitioned into a family

of subsets S , S S, such that Aie{1,...,n}

g1 eees
- ' e
(B si)usiew and B €W,

Proof. The earlier proofs by induction over i generalise readily

to yield proofs of the above.

Remark.

Greene and Magnanti [45] gave a proof of all of (a) except B eV,
using the Matroid Partition Theorem of Edmonds and Fulkerson

(cf. Proof (2) of Theorem 26) and a generalised submodular

inequality.
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§5.6. A Further Symmetric Set Exchange Property.

Theorem 28. (Greene [44]). Let M be a matroid on E and B,B'e W.
If ScB-B' and S'<B'-B with |S| + [S'| > r(E), then 3
non-empty subsets Soc:S and Séc:S' such that
(B-S JuS'eW and (B'-S')uS eW.

o o o o
Remarks. The theorem is trivial if SNS'{ @: take SO=S(')=S(\S'.
Furthermore, if SNS'=¢ and S0 and Sé have the properties given
in the theorem, then SOF\B'= g and SénB::ﬂ by the Remark after

Theorem 26,

Proof.,T Let m := r(E), We can without loss of generality

assume that S = {el,ez,..,,ek}, where ke{i,...,m}, and

IS'I = m-k+1, Let Ci be the fundamental circuit corresponding to
e;€ S with respect to B', and S, := c,ns', T, := CirN(B'-S'),
ice. € =S, UuT U{e}, ief1,...,x.

(a) K:={Scs :544, N eeS 5.¢B5}g:-
Suppose K = (. Then by renumbering the e;€ S, we have:

S4¢ K because Sch-S,

S—{e1}¢K because 82C lB—Siu{eif,

© e s e00000000c0000Co0

{ek}¢ K Dbecause Skc:B—{ekf.

Let V := (B-SJU(B"-8"). 4s S,cBScV and T,CB'-S'CV, we

1

have e e 01C2VlJ{e1} and thus e € V =V by Theorem 7(g) (ecf.

footnote on p.16),

t The above proof is an extended version of the proof given by
Greene which applies only to combinatorial geometries (normal
matroids all of whose elements are closed) and uses lattice-

theoretic operators.



93

As SzczB—S)u{eifCV and Tzc:V, we have eze czcvu{ez} and

thus e

zev = V by Theorem 7(g).

Continuing in this way, we see that SV and thus BCV which is
a contradiction as r(B) = m and
r(V) ¢ r(B-S) + r(B'-S') by the submodular inequality and

Theorem 7(a),
= (m-kx) + (k-1) = m-1,

(b) (S0 is minimal in K) ==> (S0 can be exchanged symmetrically):

(i) ISO| = 1. Suppose S = {e1}° As S €K, we have Siq:B—{el{,

hence 1 e'e s, - B-—{eticl— B—{eif. Then by (b) of the Lemma in

§5.1 ey and e' can be exchanged symmetrically. Hence we take

S(!’ t= {e'}.

(11) |s_| > 1. If e;e S, then so-{ei}¢ K by minimality of S_,
hence 4 eJ.eSo-{ei} such that SJCQB—Soiu{eiL Put f(i) := j,
then f: So > S0 is injective, hence bijective: suppose i # i!

and (i) = £(i') =: j, and let X := (B—SO)LJ{ei},
Y := (B-S )U{ei.}. Then SJCKH?DB-SO by Theorem 7(d{(1)), and
m—lSOI = r(B-SO) £ r(XnY)

€ r(X) + r(Y) - r(XuY) (cf. Theorem 7(d(3))

2(m—|SOI +1) - (m—lSo[ +2) = m-—[Sot.

Hence by Theorem 7(e) and (d(2)) B-S = XNY = XnY. Thus
S.CB-S contradicting S € K.

J o o

Suppose eie So” Then by the above Sf(i)ClB—Soiu{eif, but

T ' e
Sf(i)d:B-bo as Soe K. Hence 3 eieS ) B So’ and by Theorem

(i

7(h) e;€ (B-S Julel], i.e. W—So)u{ei} = (B-S JulelT.
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Let I := {ie{1,...,k} : e;€S_}, then the sets Se(i)~ B-S,,

i€ I, are pairwise disjoint: as f is bijective we need only show

(sf(i)_ E)n(sf(i,)- B—_SO) =4 for i # i'. Now

e'e (sf(i)- B-So)m(Sf(i,)— B-S ) ===> ejrej1 € (B-soiu{e'f ==>

o]

(B-So)u{ei,ei,} = (B—Sofu{e'}, contradiction, as
r((B-So)U{ei,ei,}) = m—lsol +2 and r((B—So)u{e'}) < m—lSol +1.

Hence the e!, i€ I, are distinct. Now Niel

e.ec (B-S Jule! ¢ iel}, hence (B-S )u{e! : ieI}e W by

i o i o i

Theorem 7(j).

As each ei, ielI, lies in exactly one of the CJ., jel, namely

. . ) e (s )
ej€Cp(y), it follows, letting I =: {11’12’““’1150[}’ that
Njelz,....Is |}

C.. yC(B'- {e! ,...,e! Nufe,,, vers€pfs V)

f(1J.) iy ! 1J—1 f(11)’ ’ f(1J.) ’

hence it follows from (a) of the Lemma in §5.1 by induction that

N geft, .., [s |}

o)

(B'- {eil’,“,eij})u{ef(il),...,ef(ij)} € W,

Thus we take S} := {ei : ie I},
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Remarks.,

It is natural to ask whether So and Sé can be so chosen in
Theorem 28, that the symmetric set exchange can be effected in a
serial symmetric point exchange of ISOI steps, The matrix-matroid

example considered in §5.2 yields the following counterexample,

Take B := {al,a4,a5}, B' := {az,as,as}, s := {a,,a,},

S' := {a3,a6}. Then one easily checks that there is just one
possibility: So = and Sé t= S', and no serial symmetric
point exchange of two steps will effect this symmetric set

exchange,

If however it is a question of finding some SéC:B' not necessarily
with Séc:S', such that S| and a given S CB can be exchanged
symmetrically and a serial symmetric point exchange of ISOI

steps exists, then the answer is yes if ]So[ = 2, as was proved

by Greene and Magnanti [45]. In the above example Sé i= {az,a3}

or {az,aﬁ} would yield the required properties,
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Axiomatic definitions of
a matroid
basis axioms, 12
circuit axioms, 10
independence axioms, 7
rank axioms, 1,9
span axioms, 20

Basis, 2,12

Chain
simple, 50
closed, 50
Circuit, 2,10, 85
fundamental, 43ff, 80, 85
Cobasis, 2
Cocircuit, 22, 85
fundamental, 43, 85
Cocycle, 51
elementary, 51ff
minimal, 51
Cocycle-basis, 53
Cocyclomatic number £(G), 52
Connected component of
a graph, 50, 56
Critical problem, 72
Cycle, 51, 56
el ementary, 51ff, 55
minimal, 51
Cycle-basis, 53
Cyclomatic number k(G), 52

Dependent set, 2
a,ll

Edge of a graph, 50
multiple, 50
Exchange
symmetric point, 80
symmetric set, 88, 92

¥,2,7,9,11,13,20
F*,29

Face of a graph, 59
Flow, 53

Forest, 53, 56

Gallai, theorem of, 70
Gammoid, 69
strict, 69
Graph, 50
dual, 59
connected, 50, 86
K5 s K3, 3., 63
2
K4 s Cn ,68
partial, 50
planar, 59, 86
simple, 50
Greedy algorithm, 73ff

Hyperplane, 22

Incidence-mapping of a graph, 50
Independent set,2,7,9,11,13, 20
Independence system, 73

k(G), 52

L(G), 52
Loop, 50, 55

Matching, 64

Matrix
circuit, 35,61
cocircuit, 61
cocyclomatic, 55, 57, 63
cyclomatic, 55, 58, 63
fundamental circuit, 43, 85
fundamental cocircuit, 43,63, 85
fundamental cocycle, 55, 63
fundamental cycle, 54, 64
incidence, 55

Matroid, 1,7,9,10,12, 20
binary, 37{f, 57, 59,68, 71
cographic, 57
connected, 71
contraction, 60, 70, 87
discrete, 64
dual, 28, 34,35, 57
equicardinal, 71
Fano, 62,68



Matroid, ctd.
graphic, 55,68, 79, 84
isomorphic, 39
matching, 66
matrix-, 33, 57, 59,63,78,84
My associated with Y, 33

normal,1,7,9,10,13, 20,31,

33,317,55,58,66,68
orientable, 61
planar, 60
reduction, 2,60, 71, 86
representable, 40
Sylvester, 70
transversal, 67
trivial, 64
uniform, 64, 68
Matroid intersection
theorem, 89
Matroid partition
theorem, 90
Maximal subset, 2
Minimal subset, 2
Minor, 61, 86

Notation, basic,IX
Optimal set, 74

?,15,20

£* ,29

& ,52

Potential difference, 54
Potential function, 54

Rank r,1,7,9

Rank r*, 29

Rank of a matroid, 1

Replacement, 80
bijective point, 82
bijective set, 91

Separator, 71

Span mapping ¥, 15, 20

Span mapping, £*, 29

Spanning set, 15ff, 29

Subgraph, 50

Submodular inequality, 1

Symmetric difference A ,11

System of distinct
representatives, 67

Tension, 54

® .53

Transversal, 67
partial, 67

Tree, 53, 56
spanning, 53, 56

Vertex of a graph, 50
W,2,12

W*,2,28

Weighting, 73

Z,2,10
z* ,22,29
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