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Preface 

Matroid theory has its origin in a paper by H. Whitney 

entitled "On the abstract properties of linear dependence" [35], 

which appeared in 1935. The main objective of the paper was to 

establish the essential (abstract) properties of the concepts of 

linear dependence and independence in vector spaces, and to use 

these for the axiomatic definition of a new algebraic object, 

namely the matroid. Furthermore, Whitney showed that these axioms 

are also abstractions of certain graph-theoretic concepts. This 

is very much in evidence when one considers the basic concepts 

making up the structure of a matroid: some reflect their linear

algebraic origin, while others reflect their graph-theoretic 

origin. Whitney also studied a number of important examples of 

matroids. 

The next major development was brought about in the forties 

by R. Rado's matroid generalisation of P. Hall's famous "marriage" 

theorem. This provided new impulses for transversal theory, in 

which matroids today play an essential role under the name of 

"independence structures", cf. the treatise on transversal theory 

by L. Mirsky [26J. At roughly the same time R.P. Dilworth estab

lished the connection between matroids and lattice theory. Thus 

matroids became an essential part of combinatorial mathematics. 

About ten years later W.T. Tutte [30] developed the funda

mentals of matroids in detail from a graph-theoretic point of view, 

and characterised graphic matroids as well as the larger class of 

those matroids that are representable over any field. 

More recently papers by Bondy, Brualdi, Crapo, Edmonds, 

Fulkerson, Ingleton, Lehman, Mason, Maurer, Minty, NaSh-Williams, 

Piff, Rado, Rota, de Sousa, Tutte, Welsh, Woodall, and other 

combinatorialists have led to a widespread interest in matroids 

and to a rapid growth in the volume of literature on matroids. 

As was mentioned above, matroids are defined axiomatically. 

However, their rich structure allows one to pick one of a number 

of axiomatic definitions, depending on which of the matroid pro

perties is to play the dominant role (cf. the survey papers by 

Harary and Welsh [15J and Wilson [36J). Thus in practice each 



author uses the definition most suitable for his purposes. 

Whitney considered the equivalence of several of these different 

definitions in his fundamental paper, and the recent book by 

B.B. Crapo and G.-C. Rota [7] does so as well but treats the 

subject within a lattice-theoretic framework. Apart from these 

no general introduction to the theory of matroids, giving their 

various equivalent axiomatic definitions and the most important 

examples, is readily available. 

The present monograph is an attempt to fill this gap. Its 

main objective is to provide an introduction to matroids and all 

the usual basic concepts associated with them without favouring 

any particular point of view, and to prove the equivalence of 

all the usual axiomatic definitions of matroids. Furthermore, we 

have collected together and proved all the commonly used proper

ties of matroids involving the concepts introduced. Where proofs 

were taken from the literature, the source has been indicated in 

the usual way. Next we have discussed the common types of matroids 

~ matrix-matroids, binary, graphic, cographic, uniform, matching 

and transversal matroids - in some detail, mentioning others such 

as orientable matroids and gammoids, as well as important charac

terisations of the above, in remarks. Much of the material on the 

examples can be read after the initial definition of a matroid. 

Two further chapters deal respectively with the greedy algorithm 

and its relation to matroids, and with the recent interesting 

results on exchange properties of matroid bases. 

A number of omissions will however be immediately obvious. We 

have for example not developed the geometry of matroids involving 

minors and separators. For a treatment of this topic we refer the 

reader to the paper [30] and book [31] by Tutte and to the book by 

Crapo and Rota [7]. Furthermore, no mention is made of the recent 

work by Maurer [24] and Holzmann, Norton and Tobey [16] on the 

basis-graphic representation of matroids. These and other topics 

not considered here go beyond the scope of this monograph as a 

first introduction to matroid theory. 

One of the most beautiful aspects of the matroid concept is 

its unifying nature - by specialisation it covers many apparently 

unrelated structures and thus reveals their essential nature as 

well as yielding clear and often easy proofs for results that are 
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otherwise very tedious to derive (cf. Remark (8) at the end of 

Chapter III). Matroids have however also led to decisive advances 

in theories important for practical applications, for example in 

linear programming through the greedy algorithm (cf. the papers 
by Edmonds [10], [11], and Dunstan and Welsh [9]), and in network 

theory (cf. Minty [25]). Moreover, it is felt that matroids could 

well become a new and powerful tool in the mathematical theory of 
economics, and it is with this thought in mind that the present 

monograph is addressed in particular to mathematical economists 
and operations research specialists. 

In conclusion, I wish to express my gratitude to Professor 
B. Korte for introducing me to matroid theory and encouraging me 

to write this monograph, and I extend my thanks to Professor 
M. Beckmann for accepting it for publication in the Lecture 
Notes Series. 

University of Bonn 
March 1975 

R. von Randow 
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1N 

m 

{a, b} 

Basic Notation 

the set of non-negative integers, 

the set of positive integers, 

the field of real numbers, 

the ring (field) of residue classes of integers 

modulo 2, 

the power set of the set M, i.e. the set whose 

elements are precisely all the subsets of M, 

the number of elements in the finite set M, 

the empty set, 

the set consisting of the elements a and b, 

{x €: X p(x)} the set of elements of X having property p, 

X-Y 

A 
3 

1\ 

=>, <= 

<=> 

im(q) 

the difference set {x €: X x fY}, 

the quantifier "for each", 

the quantifier "there exist(s)", 

"and" (logical conjunction), 

logical implications, 

logical equivalence, 

the image set {P(x) x EO X} c:: Y of the 

mapping 'f: X --> Y. 



Chapter I. Equivalent Axiomatic Definitions and Elementary 

Properties of Matroids. 

§1.1. The First Rank-Axiomatic Definition of a Matroid. 

Definitions. 

(a) Let E be a finite set and r a function r: ~(g) ----> m 0 

Then the pair (E,r) is a matroid M(E,r), and r(S) is the ~ 

of seE, if the following conditions hold: 

(Rl) ASCE r(S) ~ lsi, 

(R2) 1\ S,S'CE [SCS' =====> r(S) ~ r(S')] , 

(R3) I\S,S'CE the submodular inequality holds: 

r(SuS') + r(SnS') ~ r(S) + r(S') • 

(b) A matroid M(E,r) is normal if 1\ e € E r{{e}) = 1 • 

Remarks and Further Definitions. Let M(E,r) be a matroid. 

(1) The ~ of the matroid M(E,r) is r(E). 

(2) In the above definition of a matroid, axiom (Rl) can be 

replaced by the axioms: r(13) = 0, and I\ef: E r({e})€ {O,l}, 

as these are clearly implied by (Rl), and together with (R3) 

imply (Rl) by induction over lsi. 

(3) (M(E,r) is normal and axiom (R3) holds with equality) ( > 

( 1\ Sc E r( S) = I S I ) . 
Proof: (=: Follows because ISuS'1 = lSi + Is'l - Isns'l 

===>: By induction over lsi. 
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(4) The following properties follow readily from the definition 

of a matroid: 

/\ SCE /\ e e E [ r({e}) = 0 ====> 

r(Su{e}) = r(S) ] • 

1\ SCE [(l\eeS r({e}) = 0) > r(S) = 0 ] • 

On account of these properties points of rank 0 are relatively 

uninteresting, and some authors (cf. Berge [1]) exclude such 

points in their definition of a matroid. 

(5) Definition. Let X be a set, A a property of sets, and Y a 

subset of X with property A. 

( a) (Y is a maximal subset of X with property A) :<===> 
[(YCY'CX 1\ Y' has property A) ===> Y' = Y ] , 

( b) (Y is a minimal subset of X with property A) :<=> 
[(Y'CYCX 1\ Y' has property A) ===> Y' = Y ] . 

(6) A subset SCE is called independent if r(S) = lsi. We 

shall denote by F the family of independent sets of M(E,r). 

Note that fd e F. 

A ~ of M(E,r) is a maximal independent subset of E. We shall 

denote by W the family of bases of M(E,r). 

If B EO W, then E-B is called a cobasis of M(E,r). We shall denote 

by W* the family of cobases of M(E,r). This notation is motivated 

by properties of the "dual matroid" defined in §2.4. 

(7) A subset ScE is called dependent if r(S) < lsi, Le. SfF. 

Note that if M(E,r) is normal, then S dependent implies lSi ~ 2. 

A circuit of M(E,r) is a minimal dependent subset of E. We shall 

denote by Z the family of circuits of M(E,r). 

(8) If Sc::E, then M(S,rl s ) is a matroid, called the reduction 

matroid MxS of M(E,r). 
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Theorem 1. Let M(E,r) be a matroid. 

(a) 1\ e EO E A SeE (r(Su{e}) - r(S» E {O,l} , 
(b) 1\ S,S'C::E SeS' => 0 ~ r(S' ) - r(S) ~ IS'-51 ] , 
(c) A S,S'cE SeS'€F => SeF ] , 
(d) 1\5eE [(/\e€5 r(S-{e}) = 151-1 = r(S» <=> 5 € Z ] , 
(e) l\e 1 ,e2 €E ASeE 

Corollary. /\ S,S'CE 

[(l\ecS' r(Su{e}) = r(S» => r(Su5') = r(S)] , 

(f) 1\ SeE r(S) = max{IS'1 : S::>S'e F} = max{15ns'l S'E F}, 

Corollary. I\seE [SE.F <=> (AeeS r(S) - r(S-{e}) = 1)], 

[S1 and S2 are maximal independent subsets 

of S (i. e. bases of the reduction matroid M x S) => 

Is l l = Is2 1] , 
.i!! particular, BE W => r(B) = r(E) , 

(h) AB,B'eW !\e€B 3 e'EB' 

(i) /\ SeE ("") SE F <=> (/\c eZ 

( ~) s t F < = > ( 1\ S ' e W* 

(j) l\e,e'eE I\C,C'EZ 

( B-{ e} ) u { e ' } E W 

C - S t ¢) , 

sn S' t ¢) 

[(eecnc'/\ e'e C-C') => (3C"e Z : e'€ C"c::(CuC')-{e})], 

in particular, 1\ e E E A C,C' E Z 

[(c t C' 1\ eccnc') => (3C"e Z : C"c::(cuC')-{e})] , 

eli 

(k) 1\ eEE /\ SeE [(S€F A Su{e}~F) => (3 unique 

CeZ : Cc: Su{e} (clearly eEC»] 0 
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fr2.21. 

(a) e€S implies r(Su{e}) = r(S). 

Suppose eISE-S. Then by axioms (R2). (R3). and Remark (2). 

r(S) + 1 ~ r(S) + r({e}) ~ r(Su{e}) + r(!if) = r(Su{e}) ~ r(S) • 

hence 0 ~ r(Su{e}) - r(S) ~ 1 • 

(b) Trivial if S = S'. Let S'-S =: {e 1 .e2 ••••• e k }. Then by (a). 

hence 

o ~ r(Su{e 1 }) - r(S) ~ 1 

o ~ r(Su{e 1 .e 2 }) - r(Su{e 1 }) ~ 1 

o ~ r(S') - r(S'-{e k }) ~ 1 

o ~ r (S ') - r( S) ~ k = Is' -S I . 

(c) Let Sc:S'cE. Then by (b). 

r ( S) < I S I = > r (S ') ~ r (S) + Is' -S I < I S I + Is' -S I = Is' I 

===> S' is dependent. 

(d) <=: Follows from definitions and axiom (R2). 

===>: Follows from definitions and (c). 

(e) Trivial if e 1 = e 2 • If e 1 + e 2 • then 

2r(S) = r(Su{e 1}) + r(Su{e 2 }) ~ r(Su{e 1 .e 2 }) + r(S) • 

hence r(S) ~ r(Su{e 1 .e2 }) ~ r(S). i.e. r(Su{e 1 .e 2 }) = r(S) • 

Corollary: Follows by repeated application of (e). 

(f) Trivial if S€F. Suppose SEf;F. Le. r(S) < lSi. Then 

S::>S'€ F => r(S) ~ r(S') = IS'I • hence 

r(S) ~max{IS'I: S::>S'€F} =:!T. Clearly 0'< lsi. 

Let S:::>SeF with r(S) = lsi = C1'. 



5 

(~) lsi = ~ + 1 :- Let S-S =: tel. Then by definition of ~ , 

reS) = r(Sv{e}) = reS). 

(u) lsi > ~ + 1 :- By definition of ~ , "e E S-S 

r(Sv{e}) = reS). Hence by the corollary of (e), 

reS) = reS u (s-s» = r(S). 

Finally max{ls'l : S=>S'e F} = max{ISf"IS'1 : S'e F} by (c). 

Corollary: ===>: Clear by definition of F. 

<===: Let.S:::>S'€ F with reS) = Is'l. If S' f S, let eeS-S'. 

Then by (f) reS) = r(S-{e}), contradiction. 

(g) Clearly S14S2' I.e. SCS2 f fi. Furthermore" eeSCs2 

r(S2u {e}) = r(S2)' hence by the corollary of (e), 

r(S1 u S2) = r(S2 u (S1-S2» = r(S2)' Similarly r(S1u S2) = r(S1)' 

hence r(S1) = r(S2)' I.e. Is 1 1 = Is2 1. 

(h) B-{e}eF, and B-{e}C(B-{e})uB'. On the other hand, 

IB-{e}1 = IB'I - 1, hence B-{e} is not a maximal independent 

subset of (B-{e})uB', therefore 3 e'EB' such that 

(B-{ e} ) u {e ' } e W. 

(i) (~) S is independent <===> no subset of S is dependent 

<===> S does not contain a circuit. 

(~) S is dependent <===> S is not contained in a basis <===> 

every cobasis intersects S. 

(j) (~) Let ~:= r«CUC')-{e}) • We will show in <U) below 

that r«CUC')-{e,e'}) = ~. This implies that3 Sc{CUC')-{e,e'} 

with SeF and reS) = 0". Furthermore, SU{e'}4F, as 

~= r(S) ~ r{Su{e'}) ~ r«CuC')-{e}) = 0' and thus 

r{ S u { e ' }) = 0" < (H1 = Is u { e ' } I. Hence 3 C" E Z wi th 

e'e C"e::. SU{e'} C (CUC')-{e} 

(11) r«CuC')-{e,e'}) = 0":- Clearly r«CuC')-{e,e'})e {0'-1,0'}. 
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Let S be an independent subset of (CUC')-{e,e'} with C'-{e}eS 

and r(S) = 0'-1, (note use of (g». Suppose 1\ ee(CuC')-{e,e'} 

r(Su{e}) = 0'-1. Note that r(SV{e}) = 0'-1 as C'c: Su{e}4F, 

so we have that /\ e€(CUC')-{e'} r(SU{'e}) = 0'-1, hence by 

the corollary of (e), r«CUC')-{e'}) = 0'-1. This implies that 

r(C UC') € {O"'-1, O"'}; on the other hand r(C u C') ~ r( (C uC' )-{ e}) =0"', 

hence r( C u C ') = 0'. Therefore 3 sec u C' wi th C-{ e' } c: S e F 

and r(~) = ~, (note use of (g», and furthermore e'e S as other

wise SC: (CuC')-{e'} and thus r(S) ~ 0'-1. Hence CCS, contra

diction. Therefore 3 ee(CuC')-{e,e'} such that r(Su{e}) = 0', 

Le. r«CuC')-{e,e'}) = 0'. 

Short Proof of Special Case of (j): 

C n C' :/: C as C ~ C " hence C n C ' € F. Then 

r«CuC')-{e}) ~ r(CVC') ~ r(C) + r(C') - r(CnC') = 

= <lcl-t> + (lc'I-1) - Icnc'l = Icuc'l - 2 < l(cVC')-{e}1 

hence (CvC')-{e}fF. Thus 3 C"E Z with C"c: (CUC')-{e} • 

(k) Suppose 3 C,C' e Z with C :/: C' and eE C c: Su{e}, 

e E C' C S U {e}. Then by the special case of (j) 3 C" E Z wi th 

C" C (C UC' )-{ e} C S € F, contradiction. 

The following theorem contains a result similar in structure to 

that of Theorem 1(h): 

Theorem 2. !\ SeE !\ e E E !\ B € W 

[(eEB II SeF 1\ Sv{e}~}<') => (3e'€ S-B (Su{e})-{e'}G F)]. 
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.!!! particular: 

A. B,B'e W 1\ e e B-B' 3 e' e B'-B (B' U { e} ) -{ e'} e W , 

.!!!. equivalently: 

1\ 5,S'e W* l\eG5' .3 e'e 5 (5' -{ e} ) u {e' } e. w* • 

Proof: Trivial if ISle{O,1}. Let lsi ~ 2, and suppose that 

1\ e € 5-B (Su{e})-{e'}f F. Then given e'E 5-B, 3 C'e Z with 

eeC'e (5u{e})-{e'} as S-{e'}eF. Furthermore C'n(S-B) + ~ as 

otherwise C'eB. Take e"e C'n (S-B), then as above 3 C"e Z with 

eEC"e (SU{e})-{e"}. Hence by the special case of (j) 3 CEZ 

with C c: (C'u CII)-{e} C S, contradiction. 

§1.2. The Independence-Axiomatic Definition of a Matroid. 

Definitions. 

(a) Let E be a finite set and F a family of subsets of E. Then 

the pair (E,F) is a matroid M(E,F), and the elements of F are the 

independent sets of M(E,F), if the following conditions hold: 

(F1) ~eF, 

(F2) AS,SIeE [ses'eF=>SEF], 

(F3) A S,S1,S2C:E [51 and 52 are maximal independent subsets 

(b) A matroid M(E,F) is normal if A e e E {e}eI<'. 

(c) Let M(E,F) be a matroid. We define a mapping r: l' (E) --> 1N 

as follows: r( S) : = max{ I S I I : S::;) S' e F} , seE. 

r(S) is called the rank of S. Clearly 

/\ seE [Se F <=> r(S) = lsi] . • .....•..••• (*) 
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Remarks. 

(1) We note that axiom (F1) is in fact a consequence of 

axiom (F2). 

(2) It follows immediately that every matroid M(E,r) is a 

matroid M(E,F). The converse is established by the following 

theorem: 

Theorem 3. The matroid M(E,F) satisfies the axioms (R1) - (R3). 

Proof. Axioms (R1) and (R2) follow immediately. 

Proof of Axiom (R3) (Berge [1]):- Suppose S,S'CE. 

3S1 EF with S1CS(")S' and Is1l = r(S1) = r(SnS'). 

3S2 €F with SiC S2C Sand Is2 1 = r(S2) = r(S), (note use of 

Axiom (F3». 

3S3 c:F with S2C S3C SuS' and Is 3 1 = r(S3) = r(SuS'), (note 

use of axiom (F3». As S2 C S3 n S €. F and S2 is maximal independent 

in S, it follows that S2 = S3(")S, Similarly S1 = S2 n (SnS') = 

= S2(')S', hence S1 = S3nS(")S'. Thus 

r(SUS') = Is 3 1 = I(S3(')S)U(S3f"1S')1 

= Is3 (')sl + Is3 (")s'l - Is3 (")s(')s'l 

~ Is2 1 + r(S') - Is 1 l by (F2) and definition of r, 

= r(S) + r(S') r(Sf"IS'). 

Corollary 1. By Theorem 3 and the statement (*) of Definition (c) 

it follows that the first rank-axiomatic and the independence-

axiomatic definitions of a matroid are equivalent. 

Corollary 2. Let E be a finite set, FC't'(E) with /deF, and 

r: ~(E) ---) IN the mapping defined by 

r(S) := max{IS',1 : S:::JS'E:.F}, SeE. 
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Then 3 a matroid on E with family of independent sets F and rank 

function r, if and only if r satisfies the submodular inequality. 

§1.3. The Second Rank-Axiomatic Definition of a Matroid. 

Definitions. 

(a) Let E be a fini te set and r a function r: 12 (E) --> IN. 

Then the pair (E,r) is a matroid M'(E,r), and r(S) is the rank 

of SC E, if the following conditions hold: 

(R '1) r( 1!) = ° , 
(R'2) A e E E i\ Sc E (r(Su{e}) - r(S» € {O,l} , 

(R'3) A sc E 

Remarks and Further Definitions. Let M'(E,r) be a matroid. 

(1) (R'l) and (R'2) imply l\e€E r({e})e{O,l}. A matroid 

M'(E,r) is normal if 1\ e€E r({e}) = 1. 

(2) (R'2) implies Theorem l(b), Le. !\S,S'CE 

[SCS' => ° ~ r(S') - r(S) ~ Is'-sl], (cf. proof of Theorem 

l(b», in particular 

(!) (R2), Le. I\S,S'CE [SCS' => r(S) ~ r(S')], and 

(U) with (R'l) we get (Rl), Le. ASCE r(S) ~ lsi. 
A subset SCE is called independent if r(S) = I si. We shall denote 

by F the family of independent sets of M'(E,r). 

(3) The axioms (R't) - (R'3) imply 

A SeE r (S) = max{ Is' I : S::> s ' € F} , 

(cf. proof of Theorem l(f) and Remark (2». 



10 

(4) It follows immediately that every matroid M(E,r) is a 

matroid M'(E,r). The following theorem establishes that every 

matroid M'(E,r) is a matroid M(E,F): 

Theorem 4. The matroid M'(E,r) satisfies the axioms (F1) - (F3). 

Proof. Axiom (F1) follows immediately. 

Axiom (F2) is Theorem 1(c), which follows from axiom (R'2), 

(cf. proof of Theorem 1(c) and Remark (2». 

Axiom (F3) is Theorem 1(g), which follows from axioms (R'2) and 

(R'3), (cf. proof of Theorem 1(g». 

Corollary. By Theorem 4 and Remark (3) it follows that the two 

rank-axiomatic and the independence-axiomatic definitions of a 

matroid are pairwise equivalent. 

§1.4. The Circuit-Axiomatic Definition of a Matroid. 

Definitions. 

(a) Let E be a finite set and Z a family of subsets of E. Then 

the pair (E,Z) is a matroid M(E,Z), and the elements of Z are 

the circuits of M(E,Z), if the following conditions hold: 

(Z1) ~. Z , 

(Z2) 

(Z3) 

/\ C,C'e Z [CCC' => C = C'] , 

l\e€E !\C,C'€Z 

[(C"C'I\ e€ CnC') => (3c"€ Z 

(b) A matroid M(E,Z) is normal if A C € Z 

C" C (C u C ' ) -{ e} )] • 

I C I ~ 2. 
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Remarks and Further Definitions. 

(1) Let M(E,Z) be a matroid. A subset SeE is called independent 

if it contains no circuits. We shall denote by F the family of 

independent sets of M(E,Z). Clearly we have 

CE.Z <=> CfF" [(sec,.. Sf C) => SeFJ •.•••..••. (*) 

and Theorem 1(k) bolds, (cf. proof of Theorem 1(k», i.e. 

1\ e € E 

CC:Su{e} 

1\ Sc E [(SeF 1\ Su{e}fF) => (3 unique CE Z 

(clearly e e C» J • 

(2) Definition. Let S,S'c E. The symmetric difference SAS' of 

Sand S' isS A Sf: = (S-S') v (S f -S) = (8 u 8 ') - (8 () S' ). It 

follows readily that the operator ~ is commutative and associa-

tive, and if n€1N, 

n 
A. .- {x € US. : x 

1 j=1 J 

n n 
'Z-18.1 
i=l 1 

1 Cl. s·1 
i=l 1 

n>1, and 

E exactly 

[n;lJ 

U A2 · 1 
i=O 1+ 

(mod 2) • 

!\ i E 

i of 

{1,2, •.• ,n} 8.C E and 
1 

the S j} , then 

and 

(3) It follows immediately that every matroid M(E,r) is a 

matroid M(E,Z). The following theorem establishes that every 

matroid M(E,Z) is a matroid M(E,F): 

Theorem 5. The matroid M(E,Z) satisfies the axioms (Fl) - (F3). 

Proof. Axioms (Fl) and (F2) follow immediately. 

Axiom (F3):- Let Sl and 8 2 be distinct maximal independent 

subsets of S. Then Sl-S2f.0 and S2-81f.0. Let e €; S2-S1' then 

81u{e}fF, hence ]CeZ with eecc:s1 u{e}. Furthermore, 
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cn(S1-S2) f ~ as otherwise CCS2 • Let eecn(s1-S2) and 

Sa := (SC{e})u{e}. Note that ISal = Is 1 1. 

(i) Sa e F: Clearly SC{e} e F. Suppose Sa~ F, then 3 C' E Z with 

e€C' C SaC S1u{e}, and C'fC as e,C'. This contradicts 

Theorem 1(k), (cf. Remark (1». 

(ii) Sa is maximal independent in S: 8uppose S is a maximal 

independent subset of S wi th 8 a C S and I sal < I s I. e + 8 as other

wise S1CS and Is11<181. Then Sv{e}~F, hence 3 CEiZ with 

e f; C C S u {e}, and furthermore, en (8-S 1 ) f ~ as otherwise C C 8 1 • 

Let e'e Cn(8-S 1 ), then (S-{e'})U{e}E F: this follows as in (i). 

But S1C (S-{e'})u{e} and Is 1 1 < I(S-{e'})u{e}1 = lsi. contra-

diction. 

(iii) 8 a and S2 are maximal independent subsets of S, and if 

Sa = 8 2 , then Is 1 1 = 18 2 1. If Sa f S2' we note that 18a As21 < 

IS1~s21, (cf. Remark (2». Repeating the above a finite number 

of times thus gives rise to a maximal independent subset Sn of S 

with Sn = S2' hence Is 1 1 = Is 2 1. 

Corollary. By Theorem 5 and statement (*) of Remark (1) it 

follows that the circuit-axiomatic definition of a matroid is 

equivalent to the earlier axiomatic definitions. 

§1.5. The Basis-Axiomatic Definition of a Matroid. 

Defini ti ons. 

(a) Let E be a finite set and W a family of subsets of E. Then 

the pair (E,W) is a matroid M(E,W), and the elements of Ware the 

bases of M(E,W), if the following conditions hold: 

(W1) I\s,s'eE [(SCS'E W 1\ 8 f S') ====> S+W] , 

AB,B'eW l\eeB 3 e' E B' : (B-{ e} ) u { e' } € W • 
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(b) A matroid M(E,W) is normal if A e € E 3 BEW with ee.B. 

(c) Let M(E,W) be a matroid. A subset SeE is called independent 

if 3 BE: W wi th S e B. We shall denote by F the family of inde

pendent sets of M(E,W). Clearly the bases of M(E,W) are the 

maximal independent sets of M(E,W). 

Remarks. It follows immediately that every matroid M(E,r) is a 

matroid M(E,W). The following theorem establishes that every 

matroid M(E,W) is a matroid M(E,F). We first prove a lemma. 

Lemma. I\B,B'€W 

Proof. Suppose B :j: B', then B-B':j: j;f and B' -B + j;f by axiom (W1). 

Let e EO B-B'. Then by axiom (W2) 3 e'e B'-B such that 

B" := (B-{e})u{e'}6W. Note that IB"I = IBI. If B"eB', then 

B" = B' by axiom (W1). If B"¢B', we note that IB"6 B'I < IBAB'I, 

(cf. Remark (2) of §1.4). Repeating the above a finite number of 

times thus gives rise to a basis B with BeB', i.e. B = B', 

hence IBI = IB'I. 

Theorem 6. The matroid M(E,W) satisfies the axioms (F1) - (F3). 

Proof. Axioms (P1) and (F'2) follow immediately. 

Axiom (F3):- Let S1 and S2 be distinct maximal independent 

subsets of S. Then 3 B.EW such that S. = B.nS, i=1,2. Suppose 
1 1 1 

Is 1 1 < Is2 1. 
(;jJ (B 1-B 2 )-S f j;f: Suppose not, i.e. B1CSUB2 • Then 

Is 2-s 1 1 = I (B 2-B 1 )n SI ~ IB 2 - B1 1 = IB 1- B2 1 by the above lemma, 

I (B 1-B2 )(")sl = Is 1-s 2 1 

which contradicts 1 S11 < 1521. 
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(!!) We now use axiom (W2) to replace every point of (B 1-B2 )-S 

'" stepwise by a point of B2-B 1 and thus obtain a basis B with the 

properties S1csns and 'Bn(S2-S1) :j: fJ. for 

Is1 1 < Is 2 1 => I(Bc B2 )nsl = Is 1-s2 1 < Is 2-s 1 1 

= I (B2 -B 1 ) n sl => I (B1-B2 ) - sl > I (B2-B 1 ) - 81 • 
Hence 8 1 :j: B n 8. which contradicts the fact that 8 1 is maximal 

independent in 8. 

Corollary. By Theorem 6 and Remark (c) it follows that the 

basis-axiomatic definition of a matroid is equivalent to the 

earlier axiomatic definitions. 



Chapter II. Further Properties of Matroids. 

§2.1. The Span Mapping ~ • 

Definitions. Let M be a matroid on the finite set E. The span 

mapping ~: '1?(E) -> 1Z(E) 

is defined as follows: 

'3'(S) := {e6 E : r{Su{e}) r{S)} , SCE. 

Clearly (a) !\ SeE Sc <J'(s) , 

(b) ~(~) = {e€E : r({e}) = o} , 

(c) M is normal if and only if q(¢) = ¢. 

~(s), which we shall also denote by 5, is called the span of S. 

A subset Sc E is called spanning if S = E. 

Theorem 7. Let M be a matroid on the finite set E. 

(a) !\ ScE r(S) = r(S) , 

(b) !\ SeE S = S , 

(c) /I. S,S'eE [ses' => scSi] , 

in particular: !\S,S'CE 

[(SCS'" S is spanning) => S' is spanning] , 

Corollaries. (1) 1\ S,S'cE [ScSI => ScST] , 

(2) 1\ SeE = f""I s' 
ScS' E Im9' 
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(d) Let I be an index set and Sic E, i EO I. Then 

(1) 

(3) 

(lS. c: ns:
iEI 1 ieI 1 

(l\ieI S.Elm91) ===> 
1 

US. = US. 
ieI 1 i(OI 1 

n S. € Img' , 
ieI 1 

(e) 1\ S,S'CE [(SCS' " r(s) = r(S'» ===> S = Si] , 

Corollary. 1\ SCE [s is spanning <===> r(S) = r(E)] , 

(f) 1\ SeE [S€Z <===> «,'\e€S ees:rer) 1\ r(S)== ISI-1)] , 

(g) A SeE 1\ e e. E-S 

[e€S <===> (3CeZ: eECeSU{e}) or equivalently 

<===> (3S'~F: S'C:S" S'u{e},F)] ,tt 

Corollary. A S CE 1\ e e E-S 

e • S-{ e ' } ) === > S u { e} E z] • 

(h) 1\ SCE l\e,e'eE 

[(e~S 1\ eesu{e'}) => e'l: Su{e}] , 

(i) 1\ SeE [S€F <===> (J\e€S efs:reT) or equivalently 

<===> (S is minimal f in {S'eE : ST == s})] , 

t cf. Definition (5) of §1.1. 

ttThe implication <=== of the first equivalence is true for e € E. 
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(j) 1\ S,S'eE 

[(S is a maximal independent subset of S') 

<=> (S is minimal t in {S"eS' : S" = ST}) 

<===> (SeF A SCS'Cs)] • 

in particular (S' = E): 

[(S is basis) <===> (S is a minimal spanning set) 

<===> (S is independent and spanning)] 

Corollary. II SeE 

[(S is spanning) <===> (3 BE W : BeS) <===> (r(S) = r(E»] 

1\ spanning set S'eE with SCS' 3 BE W 

with SCBcS' • 

Proof. 

(a) Trivial if S = S. Suppose S :j: S. Then A e e S-S 

r(Su{e}) = r(S), hence by the corollary of Theorem 1(e), 

r(S) = r(Su ('5-S» = r(S). 

(b) Let eeS, i.e. r(Su{e}) = r(S). Then by (a) 

r(S) = r(S) = r(Su{e}) ~ r(Su{e}) ~ r(S), 

hence r(Su{e}) = r(S), i.e. eES. 

t cf. Definition (5) of §1.1. 
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(c) Let eeS, Le. r{Sv{e}) = r(S). Then by the submodular 

inequali ty 

r{S') + r{Sv{e}) ~ r(S'u {e}) + [r{Su{e}) or r(S)], 

hence r(S'u{e}) = r(S'), i.e. e6ST. 

Corollaries: (1) follows immediately from (b) and (c). 

(2): Sc:S'e Im(<;S') => SCS' by Corollary (1). On the other 

hand Se{S'CE: SCS'e Im{~)}. 

(d) ( 1) n S. C SJ.' hence A j e I ""(fS:" C 5." by (c). 
ieI 1 ieI 1 J 

(2) 

hence 

(3) 

('fS"":- enS. = 
if I 1 ieI 1 

n S. 
iEI 1 

by (1) and (b), 

/\ j € I 

n S .• 
i€I 1 

S . C US., hence by (c) A j EO I 
J iEI 1 

5." c --us.- , 
J iEI 1 

i.e. Us.c US. ,hence by Corollary (1) of (c), 
ieI 1 ieI 1 

Us. c US. . On the other hand 
iEI 1 i€I 1 

by (c) ~cUS. 
iEI 1 ieI 1 

US. c Us. , hence 
iEI 1 iEI 1 

(e) By (c) sc:ST. Let e EST, then 

r(Su{e}) ~ r(S'u{e}) = r(S') = r(S), hence 

r{Su{e}) = r(S), Le. e€S. 

(f) Follows immediately from Theorem 1(d) and the definition 

of C;P. 

(g) =>: 3 S'eF with S'cS and r(S) = r(S'). As eE-S, 

r(S) = r(S') ~ r(S'u{e}) ~ r(SU{e}) = r(S), 

Le. r(S'u{e}) = r(S') or S'v{e}fF as efS'. 

(=: r(S'v{e}) = r(S'), hence eE.STc: S by (c). 
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Corollary: By (g) 3 CeZ with eE.CC Su{e}. Suppose 

(SU{e})-C f ~ and take e'e (Su{e})-C. Then e ' f e, i.e. e'e S, 

hence eeCc (S-{e'})u{e} and thus by (g) e€ S-{e ' }, 

contradiction. 

(h) Trivial if e = e'. Suppose e + e'. Clearly we need only 

consider the case e'4S. efS as e+S, therefore e+Su{e'}, 

hence by (g) 3 C e,Z with eeC C Su{e,e ' }. Furthermore, e'c::: C 

as otherwise eeCC::Su{e} and thus by (g) ee.S. Hence, again 

by (g), e I e. S V { e} . 

(i) Follows immediately by the corollary of Theorem l(f). 

(j) The first statement is equivalent to: 

(ScS' A seF 1\ r(S) = r(S'» • 

By (a) and (e) the second statement is equivalent to: 

(SCS' 1\ r(S) = r(S') 1\ S is minimal in {SlICE : SIt = S}) 

or (SCSI 1\ r(S) = r(S') 1\ SeF) by (i). 

By (a) - (c) and (e) the third statement is equivalent to 

(S € F A S C S I A r( s) = r( S I» . 

(k) Let S" be a maximal independent subset of S' with SCS". 

Then Is"l = r(S') = r(E) by the corollary of (j), i.e. S"E.W. 
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§2.2. The Span-Axiomatic Definition of a Matroid. 

Defini tions. 

(a) Let E be a finite set and g> a mapping 11: ~(E) --) i?(E). 

Then the pair (E,g:» is a matroid M(E,g:'), and S := 9'(S) is the 

span of SeE, if the following conditions hold: 

(g>1) /\ SeE SCS, 

(s:'2) 1\ S,S'CE [scST ===> scSi] , 

(~3) /\ SeE 1\ e,e'e E 

[(et'S i\ eesu{e'}) > e'E: Su{e}] • 

(b) A matroid M(E,g» is normal if 1J = f3. 

Remarks and Further Definitions. Let M(E,P) be a matroid. 

(1) Axioms (g'1) and (~2) imply: 1\ S,S'c E 

and S = S (as seS => SCS by (g>2». 

[SCSI => seST] 

Conversely, these two properties imply axiom (12), hence they can 

be su~stituted for (f2) in the above definition. 

(2) A subset SeE is called independent if /\ e € S 

We shall denote by F the family of independent sets of M(E, P). 
Note that f3 E: f'. 

(3) The axioms (~1) - (~3) imply the following lemma: 

~. 1\ S,S'eE 

[(S is a maximal independent subset of Sf) ===> S = 81] • 



21 

Proof. Trivial if S=S'. Suppose S,S'. By Remark (1) sc::Si. 

Now let eGS'-S, then Su{e}fF. Hence by Remark (2) 3 eGSv{e} 

with e€ (Sv{e})-{e}. If e= e, then eGS. If e,e, then eGS, but 

e4S-{e} by Remark (2) as SEF. Therefore e4S-{e}, ee (su{e})-{e}, 

hence by (~3) eeS. Thus S'CS, hence by (<]'2) Sics. 

(4) The axioms (~1) - (c;P3) imply: A SeE /\ e E E-S 

[eGS <=> (3 S'E F : S'cS 1\ S'u{e}~ F)] • 

Proof. <=: Let eGE-S and S:::>S'€ F with S'v{e}$F. Then by 

Remark (2) 3 e € S'u {e} with ee(S'v {e})-{e}, and as in the 

proof of the lemma e€ ST, and SICS by Remark (1), hence ee S. 

=>: Let e e S-S and S' a maximal independent subset of S. Then 

by the lemma S' = S. If S'v{e}G F, then by Remark (2) e«tST = S, 

contradiction, hence S'u{e} f }<'. 

(5) It follows immediately that every matroid M(E,r) is a 

matroid M(E,~). The following theorem establishes that every 

matroid M(E, cjJ) is a matroid M(E,F): 

Theorem 8. The matroid M(E,<;f') satisfies the axioms (F1) - (F3). 

Proof. Axiom (F1) is clearly satisfied. 

Axiom (1<'2):- Let SCS'E F. Then by Remark (2) 1\ eE S', in 

particular 1\ eGS, e~S'-{e}. But S-{e}c: S'-{e}, hence by 

Remark (1) s:reT c S' -{ e} and thus /\ e Eo S e¢s:reT, i.e. SEF. 

Axiom (F3):- Let S1 be a maximal independent subset of Sand S' 

an independent subset of S wi th S 'et: S1' Clearly S{t: S'. Take 

e€S'-S1' then S'-{e}€F by axiom (F2), Now 3 e'€ S1-S' such 

that S":= (S'-{e})u{e'}EF, as otherwise S'-{e} is maximal 
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independent in (S'-{e})u S1' hence by the above lemma 

S'-{e} = (S'-{e})uS1 ::::> S1 = S , Le. S'-{e} = S, hence eeS'-{e}, 

i.e. S'1 F, contradiction. 

I f S "c S 1 ' then Is' I = Is" I ~ I S 1 1• If S" q: S l' we not e that 

IS"~S11 < Is'~s11, (cf. Remark (2) of §1.4). Repeating the 

above a finite number of times thus gives rise to an independent 

subset S of S with SCS1 , hence IS'I = lsi ~ Is11. 

Now if S2 is another maximal independent subset of S, then taking 

S' = S2 gives I s 2 1 ~ Is 1 1. Similarly Is 1 1 ~ Is2 1, hence 

Is 1 1 = Is2 1. 

Corollary. By Theorem 8 and Remark (4) it follows that the 

span-axiomatic definition of a matroid is equivalent to the 

earlier axiomatic definitions. 

§2.3. Hyperplanes and Cocircuits. 

Definitions. Let M be a matroid on the finite set E. 

(1) A subset Se E is a hyperplane of M if S = Sand 

r(S) = dE) - 1. 

(2) A subset SeE is a cocircuit of M if E-S is a hyperplane 

of M. We sball denote by Z* the family of cocircuits of M. 

Clearly ¢ f Z*. This notation is motivated by properties of the 

"dual matroid" defined in §2.4. 
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Theorem 9. Let M be a matroid on the finite set E. 

(a) /\ SeE 

[(s is hyperplane) 

(====> (A e e E-S r(Su {e}) = r(S)+1 = r(E» 

(====> (S is not spanning but 1\ eeE-S Su{e} is spanning) 

(====> (S is maximal t in {S'eE : S' = 8' + E})] , 

Corollaries. (1) 1\ S,S'€ Z* [SCS' => S = S'] , 

(2) A SCE [(8 is hyperplane) <===> (S is not spanning but 

3 eeE-S : Su{e} is spanning)] , 

/\ e E E 

[e~S = 8 ===> (3 hyperplane S' with se S'C E-{e})] , 

Corollary. A S,S'CE 

[(S=81\ S'=8' 1\ S'eS 1\ r(S)-r(S') = 1) ===> 

(3 hyperplane S" with S' = sns")] , 

(c) /\ SeE 

[(S = 8 + E) 

<===> (3 n e IN+ and 3 hyperplanes S1 ,S2' ••• ,Sn with 

in particular: 

<===> (3 distinct hyperplanes S1,82 , .•• ,Sm' where 

m := r(E)-r(S), with 8 = s1ns2n ... nSm)] , 

(d) /\ SCE [(S is spanning) <===> (A S' € Z* sns' +¢)], 

t cf. Definition (5) of §1.1. 
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(e) /\ seE [( 3 S'e Z* with s'cs) <-> (A BeW Bns+~)] , 

(f) AseE [S=8 <-> (/\ CEZ Ic-si f 1)] , 

Corollary. /\ SeE [( 3 nE1N+ and 3 S1,52'''.'SnEZ* with 

S = S1US2U ••• USn) <=> (S,~" ACE.Z Isnci + 1)] , 

(g) 1\ SeE 

[S E Z* 

<=> (S+~" (/\cez Isncl,1) 1\ (/\e,e'es with 

e,e' 3 csZ: snc = {e,e'}» 

t <-> (s is minimal in {S'c E : 5' + ~ 1\ /\ C E Z I s'{'\ ci f 1}) 

< > « /\ Be W B n 5 +~) 1\ (/\ e e S 3 Be W : B n S = {e} ) ) 

<=> (S is minimal t in {SleE : /\ BeW BnS ' + ~})] , 

(h) 1\ SeE 1\ e E S 

[(s is spanning and S-{e} is not spanning) -> 

(3 unique S'E Z* : (S-{e})nsl = ~ (clearlyeeS'»] 

(i) (ac.) /\ BeW /\eEE-B 3 uniqueCEZ CCBu{e}, 

(clearly eeC). Then 1\ beB 

[(B-{b})v{e}e W <=> beC] I 

(~) A Bew 1\ beB 3 unique SeZ* (B-{b})nS =~, 

(clearly b IS S). Then A e e E-B 

[ (B-{ b} ) U { e} E W < === > e E s] , 

t cf. Definition (5) of §1.1. 
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(j) Axiom (G-I1) of Minty [25]: 1\ SeE 

either 3 CE Z with eE: C c: Su{e} , 

/\ e € E-S 

or 3 S' E Z* wi th e € S' and S n s' = ~ • 

Proof. 

(a) The first equivalence is clear. The second and third state

ments are equivalent by the corollary of Theorem 7(e). 

Fourth statement: let A := {S'eE : S' = S' + E} and take S'e A 

and e e: E-S'. Then by the corollary of Theorem 7(e) r(S') ~ r(E)-l, 

and r(S'u{e}) = r(S')+l ~ r(E), hence S'u{e}€A if 

r(S') ( r(E)-l, and S' is maximal in A if r(S') = r(E)-1. Thus 

(S is maximal in A) (===) (S is hyperplane). 

Corollaries: (1) Clear. 

(2) ===): Follows by (a) and Theorem 7(b), (d(3». 

(===: By the corollary of Theorem 7(e) r(S) ( r(E) and 

r(Sv{e}) = r(E) = r(S)+1, hence by Theorem 7(a) 

r(S) = r(S) = r(E)-l. 

(b) Let S' be maximal in B := {S"C:E-{e} SIt = SIll. Note that 

B f ~ as SEB. Then S' is also maximal in {S"cE SlIfE 1\ S"=S"}. 

i.e. S' is a hyperplane by (a), for (S' maximal in B) ===> 

( 1\ e'e E-(S'u{e}) e€ S'u{e'}) ===> with Theorem 7(h) 

(1\ e'€ E-(S'v{e}) e'e S'u{e}), Le. S'u{e} = E, hence 

/\ e'E E-S' S'v{e'} = E (because 1\ e'e E-(S'u {e}) 

eeS'u{e'}. hence E = S'u{e}C:: S'u{e'}). 

Corollary: Clearly S' + Sand 3 eES-S' such that 

r(S'u{e}) = r(S). Then by (b) 3 hyperplane SIt with 

S' c S" c:: E-{e}. Clearly S' c S()S". By the submodular inequality 
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reS) + (r(E)-1) = reS) + reS") ~ r(E) + r(S()S"). i.e. 

r(sns"), reS'). hence r(Sf'lS") = reS'). and thus by Theorem 7 

(d(2». (e) S' = S()S". 

(c) <==-: Follows immediately by Theorem 7(d(2». 

>: Let E-S =: {e 1 .e2 ••••• e n }. By (b) /\ ie {1 •••.• n} 3 hyper-

plane Si with Sc SiC E-{e i }. Then S = S1 n ... (""ISn' 

Special Case: (Welsh [33]) 3 S'e: F with S'CS and r(S') = reS). 

and 3 BeW with S'c:: B. Let B-S' =: {e 1 .e2 ••••• e m}, A1 := S. 

and 1\ it {1 ..... m-1} Ai +1 := S·u{e1 ..... e i }. Clearly 

Am = B-{em} is a hyperplane Sm. By the corollary to (b) 

1\ i€ {1 ••..• m-1} 3 hyperplane Si with Ai = Ai +1r'1S i • Thus 

m 
A1 = nS . . and the Si are distinct as 1\ ie{1 ••..• m-1} ei4 Si 

i=1 1 

(d) S is spanning (===> by (b) no hyperplane contains S (===> 

every cocircuit intersects S. 

(e) E-S contains a basis (===> E-S is spanning by the corollary 

of Theorem 7(j) <===> by (d) every cocircuit intersects E-S 

<===> S contains no cocircllits. 

(f) Follows immediately by Theorem 7(g). 

Corollary: Follows immediately by (c) and (f). 

(g) By the corollary of (f) and Corollary (1) of (a) the first 

and third statements are equivalent. 

By (e) and Corollary (1) of (a) the first and fifth statements 

are equivalent. 
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The fourth statement <=> « 1\ B € W Bn S + fJ) 1\ (1\ e € S 3 BE W 

Bn(S-{e}) = fJ» <=> the fifth statement. 

If lsi = 1, the second and third statements are trivially equiva

lent. Suppose now that lsi ~ 2. 

The second statement ===> 

which is equivalent to the third statement. It remains to prove 

the reverse implication. 

Let S be minimal in {S' c E S'+~ 1\ Ace.z IS'ncl f1} and let 

TeE be maximal in 

D .- {S'c S : !\e,e'e S' with ef e ' 3 C E Z : snC = {e,e'}}. 

D+ j3' as for ee S 
~ 

3 C G Z and 3 e"e E such that (s-{e'})n C = 

IV {'" ",,}. {IV ~,} by the minimality of S, hence SnC = e,e , l.e. e,e ED. 

Suppose S-T f j3'. As S-T f S, 3 C e Z and 3 e e E such that 

(S-T)nC = {e} by the rninimality of S, but SnC f {e}, thus 

3 e 1 ,e2 , ••• ,ek ET, k~1, with Snc = {e,e 1 , ••• ,ek }. 

Let ie{1, •.• ,k-1}, then as TED 3 ciez: snc i = {ei,ek }, 

hence by Theorem 1(j) applied to C and Ci ' 3 ci E Z 

{e" } 

ee.snci c: {e,e1 , •.. ,ek _ 1 }, and Isn2'i l ~ 2. We repeat this step 

with Ci instead of C and continue in this way until we have a 

C E Z and a j E. { 1, ... , k-1} wi th S n C = {e, e j} • 

Now let e'e T-{e j }, then as TeD 3 C'e. Z SnC' = {e',e j }, 
,.., 

hence by Theorem 1(j) applied to C and C' 3 C"e Z : 

eeSnC"C{e,e'}, i.e. snC" = {e,e'}. Thus TU{e}e.D, contra-

dicting the maximality of T in D. 

(h) By Corollary (2) of (a) S-{e} is a hyperplane. Let 
IV 

S' := E - s:reT, then S'e Z* and (S-{e})n S' = j3'. Suppose S is a 

hyperplane containing S-{ e}, then s:reT c S, hence S = s:reT 
by (a). 
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(i) (~): The initial statement follows by Theorem 1(k) applied 

to Band e. 

===): (B-{b})u{e}e F but Bv{e} = «B-{b})u{e})u{b}4F, 

hence 3 C'c:: Z : beC'c Bv{e}. By the initial statement C' = C, 

Le. beC. 

(=: (B-{b})v{e}€F (and hence €W as I(B-{b})v{e}1 = IBI), 

as otherwise 3 C'€ Z : C' c= (B-{b})v{e} C Bu{e} and C'=\: C as 

b ~ C', which contradicts the uniqueness of C. 

(~): The initial statement follows by the special case of 

Theorem 7(j) and by (h) applied to Band b. 

=): (B-{b})u{e} is spanning but B-{b} = «B-{b})U{e})-{e} 

is not, hence by (d) 3 S'€ Z* : (B-{b})nS' = f.f and e€S'. By the 

ini tial statement S' = S, 1. e. e € S. 

(=: (B-{b})v{e} is spanning ( and hence contains a basis by 

the corollary of Theorem 7(j), and is thus itself a basis as 

I(B-{b})u{e}1 = IBI), as otherwise by (d) 3 S'€Z*: 

«B-{b})u{e})nS' = f.f, hence (B-{b})flS' = f.f. and S' =\:S as e+S', 

which contradicts the uniqueness of S. 

(j) Either e€S or efS. The result then follows by Theorem 7(g) 

and Theorem 9(b). 

§2.4. The Dual Matroid. 

Theorem 10. Let M be a matroid on the finite set E. Then the 

pair (E,W*) satisfies the axioms (W1) and (W2) and is thus a 

matroid M* := M(E,W*). the dual matroid of M. The bases of M* 

are the elements of W*, i.e. the cobases of M. 
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f!::.2.2!. Axiom (Wi): We have for Ii 1\ SeE /\ Be W 

[(Be S 1\ B + S) ===> S + W]. or equivalently: A S'c E A S"e w* 

[(S'CS" 1\ S' + S") ===> S'f w*J, i.e. (E,W*) satisfies axiom (Wi). 

Axiom (W2): Follows from Theorem 2. 

Theorem 11. Let M be a matroid on the finite set E and M* its 

dual matroid. 

(a) /\ SeE 

[S is an independent set of M* 

<===> E-S is spanning in M] , 

The family of independent sets of M* is 

F* = {SCE 

= {SeE 

= {ScE 

E-S is spanning in M} 

3 Be W : BeE-S} 

dE-S) = r(E)} , 

(b) The rank function r* of M* is: /\ SeE 

r*(S) = lsi - r(E) + r(E-S) , 

in particular, r(E) + r*(E) = lEI 

(c) 1\ SeE [S is a circuit of M* <=> S € z*] • 

(d) The span mapping '3'* of M* is: 1\ seE 

tjJ*(S) = Su{ee.E-S dE-S) = r«E-S)-{e}) + 1} 

= Su{ee. E-S e" (E-S)-{e} } 

in particular, /\ SeE [S is spanning in M* <===> E-S Eo F) , 

(e) M** = M , 



30 

(f) 1\ eeE 1\ S,S'e: E-{e} with SuS' = E-{e} and Sns' = ~, 

e € P(S)Cl cj*(S') (cf. Remark (2) of §1.4). 

Proof. 

(a) (S independent in M*) <===> (S is contained in a basis of M*) 

< > (E-S contains a basis of M) <=> (E-S is spanning in M) 

<===> (r(E-S) = r(E». 

(b) /\ SeE r*(S) = max{ISnS'1 : S'e F*}. Take S'e F*, then 

by (a) 3 BEW : BeE-S', i.e. S'e:E-B, thus 

Isns'l ~ Isn(E-B)1 = lsi - IsnBI. But 

dE-S) ~ r«E-S)n B) I (E-s)nBI = IBI - IsnBI. Hence 

Isns'l ~ lsi - IBI + dE-S) = lsi - r(E) + r(E-S). Thus 

r*(S) ~ lsi - r(E) + r(E-S). 

On the other hand 3 B'E W : r(E-S) = I (E-S)nB' I = IB'-sl, 

and clearly E-B'€ F*. Hence r*(S) ~ Isn(E-B')1 = lsi - IsnB'1 = 
= lsi - (IB'I - IB'-SI) = lsi - r(E) + r(E-S). 

(c) By Theorem 9(a) we have /\ SeE: 

(SEZ*) <===> (!\e€S r«E-S)u{e}) r(E-S) + 1 = r(E» 

<=> (l\e€S r*(S-{e}) = lsi - 1 = r*(S» <=> (s is a circuit 

of M*) by Theorem 1(d). 

( d) 1\ S e: E P* (S ) : = {e IS E : r* (S u { e}) = r* (S)} = 

S u {e EO E-S r( E-S) = r « E-S) -{ e}) + 1} = 

= Su{eEE-S e. (E-S}-{e} }. 

Special Case: Follows by Theorem 7(i). 

(e) Follows immediately from the definition of M**. 
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(f) By Theorem 7(g) we have: e € ~(S) () cj>*(S') ===> 

( 3 e € Z : e € e c: S u { e}) 1\ (3 S e z* : e ESe S· u { e}) === > 

lellsl = 1, which contradicts Theorem 9(g). 

e, g'*(S') => e E (E-S')-{e} = S = fP(S). 

Theorem 12. Let M be a matroid on the finite set E and M* its 

dual matroid. Then 

(M* is normal) <=> (/\eeE 3 HEW e $ H) 

<===> (/\eeE 3 eeZ : e E C) 

<=> (Ae€E { e} ~ z*) 

<=> (l\eeE E-{e} is spanning in M) , 

i.e. M* is normal if and only if M has one of these four 

equivalent properties. 

Proof. (M* is normal) <===> (1\ e e E 3 S e W* 

(first property), and 

e e S) <=> 

(first property) => (/\ e€ E :3 HEW: Hu{e}¢F) => 

(second property) => (third property by Theorem 9(g» => 

(fourth property by Theorem 9(d» => (first property by the 

corollary of Theorem 7(j». 

Remarks. The following relations: 

S is independent in M* <=> E-S is spanning in M, 

S is a basis in M* <=> S is a cobasis in 1.1, 

S is a circuit in 1.1* <=> S is a cocircuit in M, 
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together with the formula for r*, enable us to dualise every 

statement about M, e.g. 

the special case of Theorem 7(c) is dual to Theorem 1(c), 

the special case 

the corollary of 

Theorem 9(d) 

the corollary of 

and Theorem 9(e) 

Theorem 9(h) 

Theorem 9(i(oG» 

of Theorem 2 

Theorem 7(e) 

Theorem 7(j)} 

is dual to Theorem 1(h), 

is dual to the definition of 

an independent set, 

is dual to Theorem 1 (i (0(,» , 

are dual to Theorem 1(i(~» , 

is dual to Theorem 1(k), 

is dual to Theorem 9(i(~», 

while the special case of Theorem 7(j) and Theorem 7(k) are 

self-dual. 



Chapter III. Examples. 

§3.1. Linear Algebraic Examples (Whitney [35]). 

Let IF be a field, e.g. the real numbers m or the ring Z2 of 

residue classes of integers modulo 2. 

Example 1. Let A be an (m x n)-matrix wi th coefficients in IF 

and columns ai' i.e. A = (a1 a 2 ••• an)' If we put 

E : = {at' a 2 ' ••• ,an} and /\ SeE 

r(S) .- IF-rank of the corresponding submatrix of A, 

we have a matroid by the second rank-axiomatic definition, 

namely the matrix-matroid MnAA) associated with A. 

MF(A) is normal if and only if 1\ . {1 } a . .lO€""m. 1E , ••• ,n T .... 
1 

Example 2. Let X be a vector space over IF. If we put 

E := fini te non-empty set of not necessari ly distinct vectors E. X, 

and A seE 

we have a matroid by the second rank-axiomatic definition, which 

is normal if and only if 0 ¢ E. 

If X = Fin and !E!=:n, In,nEIN+ , we can take E to be the set 

of columns of an (m X n)-matrix and thus obtain Example 1. 

Example 3. Let nEIN+ ,and let e 1 ,e 2 , .•. ,e n be the canonical 

basis of the vector space IF nand y:j: {O} a vector subspace 

of lFn. If we put 

E := {1,2, ••. ,n} and /\ SeE 

r(S) .- dilD/F(projection of Y onto span/F({e i : iE S}», 

we have a matroid, namely the matroid My associated ~ Y. 

My is normal if and only if Y has the following property: 

Ai€{1, ... ,n} dilng=(projection of Y onto span/F({e i }» = 1 

i.e. Y is not contained in a canonical vector subspace W q , q<n, 
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and we consider the (m x n)-matrix 

Example 1. 

i€{1, •.• ,m} biEpn, 

• then we obtain 

Theorem 13. Let n E IN+ and X, Y be vector subs paces of P n wi th 

diml"X =: pE{1,2, ••. ,n-1} and dimlFY = n-p. If Y = X.J.., then 

the matroids associated with X and Yare dual. 

Proof. 

Let a 1 ,a2 ••.• ,ap be a basis of the vector space X, 

and b 1 ,b2 , ••• ,bn_ p be a basis of the vector space Y, 

i.e. a1, ••• ,ap.b1, ••• ,bn_p is a basis of the vector space 

X e Y = pn. We can suppose without loss of generality (we need 

only renumber the e i ) that {1,2, •.• ,p}C:E is a matroid basis of 

the matroid MX associated with X. i.e. 

p = rx({t, ••• ,p}) = rx(E) = dimX. . .................... ( * ) 

We need to show that {p+1,p+2, ••• ,n}C:E is a matroid basis of My. 

Let A .- ( A I A ) 
pxp px(n-p) 

and B .- ; ) 
(n-p)x(n-p) 

+ 
""'T AB , 
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i. e. 
T "''''T AD = - AB • By (*) it follows that A is nonsingular, 

r B ~BC wh C .'= _ A~T(A~T)-1 , o = , ere 

i.e. the columns of B are linear combinations of the columns of 

'" ... B , hence B is nonsingular as rank(B) = n-p. 

Example 4. Let A be an (mxn)-matrix with coefficients in Wand 

columns ai' i.e. A = (a1 

matrix-matroid. Let S := 

readily that: 

a 2 •.• an)' and M~A) be the associated 

{a. ,a. , ••• ,a. } c: E. Then it follows 
11 12 Ip 

S € Z:W<A) (1. e. S is a circuit in MJA» 

<=> 3 bE IF n which is uniquely determined up to a factor 

B .- bT 
1 

bT 
2 

. 
bT 

q 

(H!) 
n 

Z,b.a. = OeIF m • 
i=1 1 1 

is called the circuit-matrix of M~A). 

Theorem 14. Let A and B be as in Example 4. If we identify the 

columns of A canonically with the columns of B (i.e. E is essen

tially the index set {1,2, ..• ,n}), then the associated matrix-

matroids MJA) and MlF(B) are dual. 
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~. We shall make use of Theorem 13: let X:= span of the 

rows of A in IF n. and Y := span of the rows of B in IF n. i.e. 

y = s pan({b1 ····.bq}). Thus M:n:(A) =Mx and M"<B) = My. The 

.th ABT 
n 

J column of is z.. b ·iai = OElF m by definition of B, 
i=1 J 

hence BAT = 0 or 1\ i.j <ai.bj > = O. i.e. X.LY. It remains to 

show that rank(B) = n - rank(A). Let p := rank(A). We can suppose 

without loss of generality that the pth leading principal sub-

matrix i of A is nonsingular. and we shall write 

A := (~) . ~ '" B := ( BIB ) 

qxp qx(n-p) 

Then as ABT = o we have o = A-B-T "''''T + AB , 

'""T "'-1"'''T '""'"'" "'T(~T -1 . or B = - A AB • or B = BC • where C := - A A) , I.e. 

the columns of B are linear combinations of the columns of W. 
hence rank(B) '" = rankeD) ~ n-p. 

On the other hand we have, as {a1 .a2 ••••• a p } is a matroid basis 

in M:n;CA) .1\ ie{p+1.p+2 ••••• n} 3 circuit C(o in MJA) with 

a i e C(i) C {a1 , •••• ap.ai }. Hence for the associated vector b(i) 

b(i)j = 0 for j e {p+1 ••••• n}-{t}. Thus the 

T 
n-p rows b(i) of B are linearly independent, i.e. rank(B) ~ n-p. 
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§3.2. Binary Matroids. 

Definitions (Crapo and Rota [7J). Let E be a finite set and 

1\ S,S'CE S~S' the symmetric difference of Sand S' 

(cf. Remark (2) of §1.4). Then (f(E), A) is an abelian group. 

Let G be a subgroup of ("?(E), A) and fPG: "f(E) -> f(E) the 

mapping defined by 

n (E-S") 
S"€ G 

SCE-S" 

= E I....J S" 
S"e G 

sns"=!if 

Remark. We note that S € G => g'G(E-S) = E-S. 

SeE. 

Theorem 15. The pair (E, C;PG) satisfies the axioms (ef1) - (cp3) 

and is thus a matroid, namely the binary matroid M(E,G). 

M(E,G) is normal if and only if G has the property 

Proof. Axiom (9)1) is trivial. 

Us 
SEG 

= 

Axiom (9'2): As before we shall write S instead of g'G(S), 

Let e€S and S"EG with S'CE-S". As ScSI, we have Sc::E-S", 

hence eeE-S" as eeS. Thus eeSl. 

E • 

Axiom Uf3): Let S"e G with Su{e} C E-S". As e~S, 3 S'E: G 

with eeS'cE-S. As eeSu{e'}, it follows that e'eS', because 

e'4S' => (Su{e'})nS' = !if => eeE-S', contradiction. 

It then follows that e'e E-S", because 

e'E S" => e'f S'6S" => Su{e'}c E-(S'b.S") => 

e€E-(S'.6S") as eeSu{e'}, contradiction, as e€S'b.S". 

Lemma. Let M(E ,G) be a binary matroid. Then Z*c G • 
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E-S = E-S = E - l-J S" 
S" E G 
SItes 
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i. e. S = ~S" f ~, 
SIt E G 
S"eS 

hence {SIt E (G-{~}) : sIteS} f ~ • However, 

{S" E (G-{~}) : S"~ S} = ~, Le. S 6 G, because 

(3S"6 (G-{~}) with S"~S) =) (E-S = E-S~E-S" = E-S") , 

contradicting the maximality of E-S in {SIeE : S' = 57 f E} 

by Theorem 9( a). 

Theorem 16. A matroid is binary if and only if the symmetric 

difference of any family of cocircuits is the union of a family 

of pairwise disjoint cocircuits. 

Proof (Crapo and Rota [7]). 

===): Let M(E,G) be a binary matroid and suppose that the 

theorem does not hold for M(E,G). Let S be minimal in 

{S'eE : S' is the symmetric difference of cocircuits but not 

the union of pairwise disjoint cocircuits}. Note that this family 

of sets does not contain ~, hence S f tJ. By the above lemma S E G, 

hence by the remark before Theorem 15, E-S = E-S f E and thus 

by Theorem 9( a) 3 cocircui t S wi th SC S. By the definition of S, 

Sf S. Then SaS = S-S~S and SaS f ~ and S68 is the 

union of pairwise disjoint cocircuits by the minimality of S. 

But S = (S~S)US and (S6S){)S = ~, hence S is the union of 

pairwise disjoint cocircuits, contradiction. 

(=: Let M be a matroid on E with the property that any 

symmetric difference of cocircuits is the union of pairwise 

disjoint cocircuits. Let G be the subgroup of (1?(E),~) generated 

by the family Z* of cocircuits of M. Then M = M(E,G):-

S E Z* =) S 6 G =) fG(E-S) = E-S + E ===) S contains a cocir

cuit of M(E,G) by Theorem 9(a). 
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On the other hand: S e Z* ===> by the lemma S e G => S is the 
"... 

symmetric difference of cocircuits of M > by the definition - ~ of M that S is the union of pairwise disjoint cocircuits of M ===> 

S contains a cocircuit of M. 

Then by Corollary 1 of Theorem 9(a) Z* = Z*, hence M* = (M(E,G»* 

and thus M = M(E,G) (or without duality: M and M(E,G) have the 

same hyperplanes and thus p = ~G by Theorem 9(c) and Corollary 2 

of Theorem 7(c». 

"" Corollary. Let M be a binary matroid on E and G the subgroup of 
~ 

generated by the family Z* of cocircuits of M. Then 

M = M(E,G). In fact, if M = M(E,G'), then G' = G • 

Proof. The first part follows because M has the property given 

in Theorem 16 and ~ = ~G by the second half of the proof of the 

theorem. 

Second part: By the lemma G c G'. Let S € (G' -{ ¢} ). Then as 

~ = 'fG = 'J'G' , E-S = E-S = E - US", 
SItE G 
StIeS 

i.e. S = I...J s" ~ ¢, and as in the lemma S e G. 

Definitions. 

S"6 G 
StIeS 

(1) Let M be a matroid on the finite set E and M' a matroid on 

the finite set E'. Then M and M' are isomorphic if there exists 

a bijection E --) E' preserving the matroid structure in both 

directions. 
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(2) Let M be a matroid and F a field. M is representable over IF 

if there exists a vector space X over F such that M is isomorphic 

to the matroid associated with a finite subset of X. cf. Example 2 

of 13.1. Note that we do not require the elements of this finite 

subset of X to be distinct. i.e. in the matrix representation of 

this matroid there may be vanishing columns and equal columns. 

Theorem 17. A matroid on E is binary if and only if it is 

representable over the field ~2. 

Proof. If n := lEI. we identify E with the canonical basis of 

the vector space (Z2)n over Z2. This generates a bijection 

"f(E) --> (Z2)n under which a subgroup G of ('f(E). A) corres-

ponds to a vector subspace V of (z )n and vice versa. Then 
2 

M(E.G) is isomorphic to the matroid My associated with V. cf. 

Example 3 of §3.1 .-

Let V =: spanzz (b 1 .b2 •••.• bm). m elN+ • where 1\ iE {1 ••..• m} 

biE (Z2)n. (e.g. V = spanZz.(Z*), cf. corollary of Theorem 16). 

and B := Then clearly (cf. Example 1 of 

§3.1). 

Let SeE and S =: {e .• e ...... e. }. Then: 
1.1 1.2 1.k 

(S is independent in M(E.G» 

<=> by Theorem 7(i) (l\jE{l •••.• k} e i . tf q> G (S-{ e i ) » 
J J 

<=> (/\j € {1 •••• ,k} 3 row (c 1 ••• cn ) in the row-space of B 

over Z2 with 
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<===> (1\ j e {1, •.. ,k} 3 row (0, ... ,0,1,0, .•. ,0) in the row-space 
t 
j th 
y .... ----/ 

k 

over Z'2 of the submatrix of B corresponding to S) 

<=> (the Z2-rank of the submatrix of B corresponding to S is 

<=> (S is independent in MZ (B». 
z 

Theorem 18. Let M be a matroid. Then: 

M is binary <=> (/\ S€ Z As' E Z* 

Proof. 

k = I S I) 

I S () S 'I - ° (mod 2» • 

=>: Let G be the subgroup of ('t'(E),.6) generated by Z*. By 

the corollary of Theorem 16 M = M(E,G), and by Theorem 17 and 

the bijection introduced in the proof of Theorem 17, M(E,G) = My, 

where V = span(Z*). Let B be as defined in the proof of Theorem 17, 

i.e. the rows of B are the cocircuits of My, and let C be the 

circuit-matrix of Mz(B) (cf. Example 4 of §3.1). Then we have 
z 

by the definition of C: if S is a circuit of My, then the row of 

C corresponding to S is the vector E (Z2)n giving S, and clearly 

BC T :: 0 (mod 2). 

<=: (Lehman [21J). We will use the characterisation of binary 

matroids given in Theorem 16. Suppose M is not binary. Let S (f~, 

cf. proof of Theorem 16) be minimal in {S'cE: S' is the sym-

metric difference of cocircuits but not the union of pairwise 
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n 
S:= ..6.S .• where A ie{1 ••..• n} 

i=1 1 

Si € Z*. Let C € Z. Then A i € {t •...• n} len s. I :: 0 (mod 2). 
1 

n n 
hence lensl = 1.6. (ens·)1 :: Llcns.1 :: 0 (mod 2) by Remark(2) 

i=1 1 i=1 1 

of § 1.4. Thus A e IS Z Ie () S I =1= 1. hence by the corollary of 

Theorem 9(f) S is the union of cocircuits. so 3 SeZ* with SeS. 

We can now deduce a contradiction as in the first part of the 

proof of Theorem 16. 

Theorem 19. For a matroid M the following seven properties are 

equivalent: 

(a) M is binary, 

(b) M* is binary. 

(c) 1\ S€Z 1\ S' E Z* Isns'l :: 0 (mod 2) , 

(d) the symmetric difference of any family of cocircuits is the 

union of a family of pairwise disjoint cocircuits, 

(e) the symmetric difference of any family of circuits is the 

union of a family of pairwise disjoint circuits, 

(f) M is representable over the field Z2 ' 

(g) M* is representable over the field Z2 . 

Corollary. Let M be a binary matroid. Then: 

1\ SeE [SIS Z <=> (S is minimal in {S'eE : S' =I=~ 1\ S' is 

the symmetric difference of a family of circuits})], and dually: 

1\ SeE [S€Z* <=> (S is minimal in {S'eE: S'+~ A S' is 

the symmetric difference of a family of cocircuits})]. 
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Proof. The theorem follows by Theorems 16 - 18 and the symmetry 

of (c). The corollary follows by (d) and (e) of Theorem 19. 

Definitions. Let M be a matroid on the finite set E. 

(1) Let Be: W. 1\ ee: E-B the unique Ce: Z with e eC c: Bu{e} 

which exists by Theorem 1(k) is called the fundamental circuit 

corresponding to e with respect to B. 

(2) Let S€W*, i.e. B := E-SeW. 1\ eeB the unique S'E Z* with 

eES'C Su{e} (Le. eES' and (B-{e})f")S' =~) which exists 

by Theorem 9(h) is called the fundamental cocircuit corresponding 

to e with respect to S. 

Theorem 20. Let M be a matroid and BE W. Then: 

M is binary 

<=> (1\ C e: Z C = ~ C , where Ce is the fundamental 
ee.C-B e 

circuit corresponding to e with respect to B) , 

<=> (/\ S E Z* S = ee~BSe • where Se is the fundamental 

cocircuit corresponding to e with respect to E-B) . 

Proof. The third statement is just the dual of the second, 

hence the first equivalence implies the second by Theorem 19. 

The second statement => M is binary:- We will use the charac-

terisation of binary matroids given in Theorem 18. Let C e Z and 

SGZ*. Take eES. By Theorem 9(g) :3 BeW such that Bf")S = {'e}. 

Then C = DC, and 1\ e E C-B 
eEOC-B e 

Sf") C 
e 

{
{e,;;'} if ee.s} 

~ if eEfS 
as 
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Isncel f 1 by Theorem 9(g). Hence Isncl = I 6 (snc ) I = 
eeC-B e 

= I D (snc)1 
ee(SnC)-B e 

2- Isnc 1 
ee(SflC)-B e 

= 21 (sn C )-B 1 

o (mod 2) by Remark (2) df §1.4. 

M is binary ===> the second statement: (Minty [25J). 

(a) Let BEW and CEZ with C-B =: {e 1 ,e 2 }. We will use the 

characterisation of binary matroids given in Theorem 18. Let Ci 

be the fundamental circuit corresponding to e i with respect to 

B, i=1,2. 

<.!J Cc C1 ..6.C 2 : We need to show Cc:: C1UC 2 and Cn(C 1 f1C 2 ) = 53. 

Cc:: C1 UC 2 : Clearly C-B = {e 1 ,e2 } C C1 UC 2 . Suppose 3 eE cnB 

wi th e f C1 UC 2 . Let S EO Z* be the fundamental cocircui t corres-

ponding to e with respect to E-B. By Theorem 9(g) Isnci f 1, 

contradiction. 

Let S € Z* be the fundamental cocircni t corresponding to e with 

respect to E-B. By Theorem 9(g) Isncil f 1, i=1,2, hence 

{e 1 ,e 2 } C S. But then snc = {e,e 1 ,e 2 }, Le. Isnci = 3 " O(mod 2), 

contradiction. 

(~~) C1 ..6.C 2 C C: By Theorem 19 C1AC 2 is the union of pairwise 

disjoint circuits, and this union representation can be chosen 

and this set is again the union of pairwise disjoint circuits by 

Theorem 19. Hence it follows that if there is another circuit C" 
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in the union representation of C1.o.C2 • then C"CB. contradiction. 

therefore C1.o. C2 = c. 

(b) We will prove the theorem by induction over m := IC-BI. 

The case m=l is trivial and the case m=2 follows by (a). Suppose 

the theorem holds for m-1. Let B € Wand C e Z wi th 

C-B =: {e1 .e2 ••••• e m}. and let Ci be the fundamental circuit 

corresponding to e i with respect to B. i6 {1 •.•.• m}. Clearly 

C A-C. Take e E C -C. Then by Theorem 9(i(ot» m'T m 

B' := (B-{e})u{em}ew, and C-B' = {e 1 , •.. ,em_ 1 }, hence by the 

induction hypothesis 

m-l 
C = ,6.C! 

i=l 1 
•.........•.•.•...• (*) 

where C1 is the fundamental circuit corresponding to e i with 

respect to B', i6{1 ••.. ,m-l}. Clearly A ie{t, ••. ,m-l} 

latter C! = C . .o.C by (a). Substituting in (*) and simplifying 
11m 

using the formulae S.o.S= ~ and ~6S = S clearly leads to 

m 
C = f:1 C .• because C must appear on the right as emE C. 

i=l 1 m 

Theorem 21. (Whitney [35]). 

(!) Let M be a binary matroid. 

(a) I{S'eE: Sf is the symmetric difference of a family 

of circuits}1 = These sets can be obtained 

by taking all possible symmetric differences of the funda-

mental circuits with respect to a basis of M. 

(b) The family of fundamental circuits with respect to a basis 

of M determines M. 
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(11) Let E =: {e1 .e2 •• •• .en } be a set and let P1 .P2 •••• 'Pm' 

where m€{1.2 ••••• n}, be subsets of E such that 

/\ i € { 1 .2 ••••• m} e n _m+i € Pi c:: {e1 .e2 •••• .en_m.en_m+i}· 

Then there is a unique binary matroid M having Pl.··· 'Pm 

as fundamental circuits with respect to the basis 

(!!!) A matroid is binary if and only if it is determined by the 

family of fundamental circuits with respect to a basis. 

(!x) The duals of the above statements hold as well. 

Proof. 

(!) (a) Clearly there are exactly 2 IEI - r (E) distinct symmetric 

differences of the fundamental circuits with respect to B € W. 

Let Sc: E be the symmetric difference of a fami ly of circuits and 

let S-B := {e 1 .e2 ••••• e m}. If Ci is the fundamental circuit 

corresponding to e i with respect to B. i € {1 •••.• m}. then 

By Theorem 19 

m 
SA(b"C.) C B. 

i=l 1 

m 

• ..•..•.......•.. (*) 

SA( ,6C.) 
i=l 1 

is the union of a family of pairwise 

disjoint circuits. which contradicts (*) unless this family is 

m 
empty. i.e. S.6( 6C.) 

i=l 1 
= 13 or 

m 
S = ,6C .• 

i=l 1 

(!) (b) This follows by (a) and the corollary of Theorem 19. or 

directly by Theorem 20. 
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(!!) We form the family of 2m_l possible distinct non-empty 

symmetric differences of P1 , ••• ,Pm and call the minimal among 

these, in particular P1 , ••• 'Pm' circuits. These define a matroid 

M, in which {e 1 , ••• ,e } is clearly a basis and P1 , ••• ,P are n-m m 

the fundamental circuits with respect to this basis. M is binary 

by Theorem 20, and the uniqueness follows by <'~J(b). 

(!H) This follows by (;!>(b) and (H) . 

(!~) This follows by Theorem 19. 

Definitions. Let M be a binary matroid, E .- {e 1 ,e 2 , •.. ,en}' 

m . - n-r(E), 

( 1) Let C. 
1 

with respect 

defined by 

and B . - {e 1 ,e2 , •.. ,e }eW. n-m 

be 

to 

the fundamental circuit 

B, i€ {l, •.. ,m}. Then 

.- {01 cij 

corresponding to 

the (m x n)-matrix 

is called the 

e n-m+i 

C 

fundamental circuit matrix of M with respect to B. We note that 

Cis 0 f the form (p I I ) 
m 

(2) Let Si be the fundamental cocircuit corresponding to e i 

with respect to E-B, iE {1, ... ,n-m}. Then the «n-m)x n)-matrix S 

defined by is called the 

fundamental cocircuit matrix of M with respect to E-B. We note 

that S is of the form (I I n) n-m '.: • 



48 

Remarks. By Theorem 9(g) CST == 0 (mod 2) 

Theorem 20 and the proof of Theorem 17, 

and M* = ME (C) 
:l 

in fact, by 

under the identification e ~> J.th column of the matrix, and 
j 

C is part of the circuit-matrix of MZz (8). 

Thus 0 = CST = (p I 1.)( I::" ) - p + QT (mod 2) , 

i.e. Q == pT. 

A graph-theoretic example is given in §5.2. 

Theorem 22. (Whitney [35]). Let M be a binary matroid, 

m := n-r(E), and B := {e 1 ,e 2 , ••• ,e } e W. n-m 

(a) If A is a matrix with coefficients in Z2 and n-m columns 

and Z2-rank n-m, then there is a unique set K of m columns which 

when adjoined to A gives a matrix A' .- (A I K) such that 

MZz(A I ) = M under the identification e j 1--> jth column of A'. 

If in particular A is taken to be ST, i.e. (I::m) 
then 

(b) If A is a matrix with coefficients in Z2 and m columns and 

~2-rank m, then there is a unique set K of n-m columns which 

when adjoined to A gives a matrix A' .- (K I A) such that 

MZz(A I ) = M* under the identification e j ~> jth column of A'. 

If in particular A is taken to be CT , i.e. C] 
then A' = (*.) = (*c*) 
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~. 

(a) th () Let a. be the j column of A, i.e. A = a 1 a 2 ••• a n _m ' 
J 

and let Ci be the fundamental circuit corresponding to e n _m+i 

with respect to B, ieo {l, ... ,m}. If CinB = 13, we put a n _m+i := 0, 

andifCinB _. {e. ,e. , ••• ,e1. }, k~n-m, 
It 12 k 

we take a n _m+i to be the 

vector with coefficients in ~2 satisfying a . n-m+l 

k - z.. a. (mod 2). 
j=l Ij 

This representation of a n _m+i as a ~2-linear combination of the 

Z2-linearly independent vectors a 1 , ••. ,an _m is unique, hence by 

Example 4 of §3.1 {a. ,a. , ••• ,a.,a .} is a circuit in 
11 12 lk n-m+l 

the circuits {a. ,a. , ••• ,a.,a .} are the fundamental circuits 
11 12 lk n-m+l 

in M~(A') with respect to this basis, and M~2(A') is binary by 

Theorem 17. lIence by (~~) of Theorem 21 M and Mzz(A') are iso

morphic under the identification e j 1---) jth column of A'. 

Suppose now that A 
T = S . By Theorem 18 we have that 

<=) 

hence for 1 ~ j ~ n-m , 

{ 
1 if e. E C. n B} 

a. . = J 1 
n-m+l . J, 0 otherWIse 

if e . E n-m+l 

otherwise 
:: S. . 

J,n-m+l 

(b) This follows by dualising (a) and using the relation 

r(E) + r*(E) = n . 

Remark. 

A further characterisation of binary matroids related to the one 

given in Theorem 19(e) was established by Bixby [38J using 

.i-matrices. 
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§3.3. Elementary Definitions and Results from Graph Theory. 

(Berge and Ghouila-Houri [2]). 

A (directed) ~ G is defined to be a triple (X,E,f), where X 

is a finite non-empty set of elements called the vertices of G, 

E is a finite set of elements called the edges of G, and 

f: E ---) X2 is the incidence-mapping: if f(e) (a,b), then we 

say that the edge e is directed from the vertex a to the vertex b. 

We note that there may be more than one edge joining two vertices 

these form a multiple edge, and that an edge can start and end 

in the same vertex it is then called a loop. A graph with 

neither multiple edges nor loops is called simple. We shall drop 

explicit reference to f below and write G = (X,E). 

If YcX and E' := {e e E : f(e) 6 y2}, then the graph (Y,E') is 

called the subgraph of G generated !!x. Y. If Ene E, the graph 

(x,En) is called a partial .&.r.!ll!.h of G. 

A simple chaiQ k is a finite sequence (e 1 ,e 2 , •.. ,e p ) of distinct 

edges such that 1\ i€{2,3, •.. ,p-1} e i has one end in common 

with e i _ 1 and the other with e i + 1 • 

A graph G = (X,E) is called connected if any two distinct vertices 

can be connected by a simple chain. A subset Y of X is called a 

connected component of G if the subgraph generated by Y is a 

maximal connected subgraph of G. 

A simple chain is clos~ if it begins and ends in the same vertex. 

Let k be a simple closed chain. Then we define 

~+(k) := the set of edges in k whose orientation agrees with that 

of k, including any loops in k, and 
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f-(k) .- the set of edges in k whose orientation is opposite to 

that of k. 

Let f-' ,.,.+ fA- C E with fAt: 13, fA= f+ur-' r+r.r-- = 13. Then f
is called a cycle of G if 3 a simple closed chain k with 

r +(k) = r+ , r--(k) = r- . A cycle fA is elementary if k 

traverses each of its vertices exactly once, and is minimal if no 

proper subset of f- is a cycle. It can be shown that a cycle is 

minimal if and only if it is elementary. 

Let Yc:X, Y + 13. Then we define 

Let + w, w 

f(e) (a, b) 1\ a c Y 1\ b f Y} 

f(e) = (a,b) 1\ aqY 1\ bEY} • 

and 

is called a cocycle of G if :3 Yc:X wi th Y + 13 and c,t(y) = w+, 

w-(Y) = W-, in brief w(Y) = tV • A cocycle Cd is elementary if 

.3 Yc:X such that w(Y) = Wand the subgraph generated by Y is 

connected and, letting C denote the connected component of G 

containing Y, C-Y t: 13 and the subgraph generated by C-Y is 

connected. A cocycle w is minimal if no proper subset of W is 

a cocycle. It can be shown that a cocycle is minimal if and only 

if it is elementary. 

We note that if r- is a cycle in a partial or subgraph of G, then 

fA.. is a cycle of G, and if w is a cocycle of G, then W induces 

a cocycle in a partial or subgraph of G. 
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cycle fA and a cocycle w can be represented uniquely as 

vectors IS m n 

,,{ -; if 
+ 

C 
if + 

e i € f ' eiE w, 

fi 
if W. if -

e i € f , 
1 

.- e i € W , 

if e i 1-f- ' if e i if w. 

n 
It is easy to see that <r-,w> Z. r· w. = 0 (If 

i=1 1 1 
w=w(Y), 

then W = Z,w({y}) and for each yEY <f',W({y}» 0.) 
YIOY 

If fA is a cycle of G and k =: (e 1 ,e2 , ..• ,e p ) an associated 

simple closed chain, then the chain -k.- (ep,ep_1, •.• ,e2,e1) 

obtained by changing the orientation of k, uniquely determines a 

cycle which we denote -fL' as we have (-r)+ =r-' (-r)- =r+· 

Furthermore, if r is elementary, so is -r. 

If w is a cocycle of G and YcX such that w = w (Y), and if 

C1 'C 2 ' •.. ,C q are those connected components of G that intersect Y, 

then the set 
q 
U (C.-y) C X uniquely determines a cocycle which 

i=1 1 

we denote -w, as we have (-w)+ =w-, (-w)- =w+. (Note that 

X-Y also determines -w.) }<'urthermore, if W is elementary, so 

is - w. 

It can be shown that every cycle is the sum of pairwise disjoint 

elementary cycles, and similarly for cocycles. 

The cyclomatic number k(G) of G is the dimension of the vector 

subspace P of m n generated by the cycles of G. The cocyclomatic 

number £.(G) of G is the dimension of the vector subspace @ of m n 
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generated by the cocycles of G. It can be shown that 

k( G) = n - m + p , i(G) = m-p 

where p is the number of connected components of G. Clearly the 

two subspaces P and ([j) are orthogonal complements of one another. 

A graph which contains no cycles is called a forest, and a connec~ 

ted forest is called a~. Thus forests and trees are simple 

graphs, and for a tree (X ,E), n = m-l • A spanning tree of a 

connected graph G = (X,E) is a partial graph G' .- (X.E') of G 

such that G' is a tree. Equivalently, a spanning tree of G is a 

minimal connected partial graph. or a maximal partial graph con

taining no cycles of G. Furthermore. a partial graph (X.E') of a 

connected graph G = (X.E) is connected if and only if (X.E-E·) 

contains no cocycles of G. and is a spanning tree if and only if 

(X.E-E') is a maximal partial graph containing no cocycles of G. 

We now have the following important results: let G = (X,E) be a 

connected graph. E =: {e l •••.• e n }. and G' = (X.E') a spanning 

tree of G. 

(a) If e i fE'. then the addition of e i to G' gives rise to an 

i elementary cycle r- of G in G'. which is uniquely determined up 

to sign. The k(G) elementary cycles obtained in this way form a 

cycle-basis of G. 

(b) If e i € E'. then the addition of e i to Gil := (X.E-E') gives 

rise to an elementary cocycle wi of G in Gil, which is uniquely 

determined up to sign. The .£(G) elementary cocycles obtained in 

this way form a cocycle-basis of G. 

Let G = (X,E) be a connected graph and E =: {e 1 .e 2 ••..• e n }. We 

now define the concepts of flow and tension on G. A vector PE 1R n 

is a flow on G and Pi is the flow in e i , if for all cocycles W 
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of G <P,w> = 0, or equivalently if for all xe:X 

= ~ q' .• Clearly every cycle of G is 
eiEw({x}) 1 

a flow on G, and it can be shown that if 9P is a flow on G and 

(X,{e 1 ,e 2 , ••. ,em_ 1}) is a spanning tree of G and 

( 1 2 n-m+1) 
~ , ~ •••. ,~ is the corresponding cycle-basis of G such 

1 ~ i ~ n-m+1, then 
n-m+1 . 

l' = ? Pm_1+ir1 
• 

1=1 

Thus the vector subspace in TIl n of all flows on G is precisely if' 

A vector e E TIl n is a tension or I!otential difference on G and Bi 

is the tension in e i , if for all cycles r of G <B,f"> = 0, or 

alternatively, if 3 function t: X -> m such that A e.E E 
1 

Bi = t(b i ) - t(a i ), where (ai,b i ) := f(e i ). The function t is 

called a I!otential function of the tension B. and (as G is connec

ted) t is uniquely determined up to addition of a constant. Clearly 

every cocycle of G is a tension on G, and it can be shown that if 

( 1 2 m-1) eisatensiononGand (.c).w, ••• ,w is the cocycle-basis 

of G determined by the above 

1 ~ i ~ m-1. then 

spanning tree of G such that 

m-1 
e = z.. e. wi Thus the vector 

i=1 1 

subspace in :rn n of all tensions on G is precisely 8 

A matrix A with coefficients in ill is called a c:l;:clomatic matrix 

of the connected graph G if: 

( 1) A has n columns, 

(2) the rows of A are E P , 

(3) the TIl-rank of A is k(G) = n-m+1. 

1 2 n-m+1 
Taking fA"' f" , •••• r as above, the matrix 

'"'c ._ (jA.1 2 J...I..n-m+1)T 
.- I fA-'" I 

is a cyclomatic matrix of G and is 

called a fundamental c:l;:cle matrix of G. We note that C is of the 

form (p I I 1)' n-m+ 
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A matrix B with coefficients in m is called a cocyclomatic matrix 

of the connected graph G if: 

( 1) 

(2) 

B has n columns, 

the rows of Bare € 8 , 
(3) the m -rank of B is .l(G) = m-1. 

Clearly if A is a cyclomatic and B a cocyclomatic matrix of G, 

then ABT = O. 

If X =: {x1 ,x2 , ••. ,xm}, the incidence matrix 

(w({x1}),W({x2}), ... ,w({xm}»T is a cocyclomatic matrix of G. 

Furthermore, taking 1 2 m-1 
W , W , ••• , W as above, the matrix 

S := (w 1 l.J 2 • •• l.Jm-1) T is a cocyclomatic matrix of G and is 

called a fundamental cocycle matrix of G. We note that S is of 

the form (Im_1 

o = CST = (p I 

I Q), and that 

T = P + Q , 

§3.4. Graph-Theoretic Examples. 

i. e. 

Example 1. Let G = (X,E) be a connected graph, m:= lxi, 

n := lEI. The graphic matroid M(G) on E is defined by taking 

z .- {seE: s is the set of edges of an elementary cycle of G}. 

Clearly the pair (E,Z) satisfies the circuit axioms (Z1) - (Z3), 

cf. §1.4, and is thus a matroid. We then have: 

(a) M(G) is normal if and only if G contains no loops. 
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(b) SeF <=> (the partial graph (X,S) contains no cycles) 

<=> (for every connected S 
component Xi of (X,S) we 

have: the subgraph (X~,Si) of (X,S) generated by 

X~ is a tree) 
1 

<=> (the partial graph (X,S) is a forest). 

(c) 1\ S'c:: Sc::E [(S' is a maximal independent subset of S) 

s <===> (for every connected component Xi of (X,S) we 

have: the subgraph (X~,Si) of (X,S') generated by 

a tree)], 

in particular: S is a basis <=> (X,S) is a spanning tree. 

(d) A Sc::E r(S) = m - Ps = the cocyclomatic number 1S of the 

partial graph (X,S), where PS is the number of connected compo-

nents of (X,S), for: if S' is a maximal independent subset of S, 

then A i€{1,2, ••• ,Ps} I x~1 - 1 h 1 ,ence 

= = - PS = IXI - PS = m - PS . 

(e) /\ Sc::E S = the union U E. of the sets of edges occurring 
i 1 

in the subgraphs (X~,Ei) of G generated by the connected compo-

nents X~ of (X,S), 

in particular: S is spanning <===> (X,S) is connected. 

(f) SeZ* <===> S is the set of edges of an elementary cocycle 

of G. 
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(g) S € w* < > (X.E-S) is a spanning tree 

< > (X.S) is a maximal partial graph containing no 

cocycles of G. 

(h) As for every cycle,.... and cocycle w of G <I".W> = O. it 

follows that 1\ e e Z /\ S € Z* lensl == 0 (mod 2). Hence 

M(G) is binary. See Remark (8) at the end of §3.4. 

(i) Let B be a cocyclomatic matrix of G and E =: {e 1 .e2 ••••• e n }. 

Then M(G) = Mm (B) under the identification e j 1--> jth column 

of B. Le. M(G) is representable over m. 

~. Let seE. (8 dependent in Mm (B» <=> 

<=> (the columns of B corresponding to 8 are linearly dependent) 

<=> ( 3 vector :Fe lR n with P + 0 and /\ e. € E-8 <;p. = 0 and 
1 1 

BP = 0) 

<===> ( 3 nonvanishing flow 'f on G with 1\ e i € E-8 efi = 0 • 

Le. 3 nonvanishing flow on (x.s» 

<=> «X.8) contains cycles) <===> Sf F • 

Example 2. Let G = (X.E) be a connected graph. m:= Ixl. 

n := lEI. The cographic matroid M*(G) on E is defined to be the 

dual matroid of M(G). In particular. we then have: 

(a) (SeE is a circuit of M*(G» <=> 

<===> (8 is the set of edges of an elementary cocycle of G) 

<=>SE:Z*. 
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(b) (seE is an independent set of M*(G), i.e. S€F*) <=> 

<=> (the partial graph (X,S) contains no cocycles of G) 

<=> (the partial graph (X,E-S) is connected). 

(c) M*(G) is normal if and only if for every edge e € E there is 

a cycle containing e, or equivalently, no edge is a cocycle of G. 

(d) (S is a basis in M*(G» <===> 

<===> ({X, S) is a maximal partial graph containing no cocycles 
~G) 

<===> «X,E-S) is a spanning tree of G) <=> SEW*. 

(e) 1\ SeE r*(S) = lsi - PE-S + 1 , where PE-S is the number 

of connected components of (X,E-S), in particular: 

r*(E) = lEI - Ixi + 1 = n-m+l = the cyclomatic number k(G) of G, 

for: if S' is a maximal independent subset of S, then (X,E-S') 

is connected, but 1\ e E S-S' (X,E-(S'U {e}» is not connected. 

This implies that the number of edges that the graphs (X,E-SI) 

and (X,S) have in common is the least number necessary to connect 

all the components of (X,E-S), i.e. Is n (E-S I) I = 

Hence r*(S) = Is'l = lsi - Isn(E-s')1 = lsi - PE-S + 1. 

(f) /\ SeE 1'*(S) - S = {e €: E-S : PE-(SU{ e}) = PE-S + 1} 

in particular: S is spanning in M*(G) <===> the partial graph 

(X,E-S) contains no cycles. 

(g) (seE is a cocircuit of M*(G» <=> 

<===> (S is the set of edges of an elementary cycle of G) 

<=> SEZ • 
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(h) M*(G) is binary. See Remark (8) at the end of §3.4. 

(i) Let A be a cyclomatic matrix of G and E -. {e 1 ,e2 , ••. ,en}. 

Then M*(G) = MJR (.A) under the identification e j 1--> j th column 

of A, i.e. M*(G) is representable over B . 

Proof. Let SeE. (S dependent in Mm (A» <=> 

<===> (the columns of A corresponding to S are linearly dependent) 

<=> (3 vector e € m n with e + 0 and A 

AS = 0) 

E-S 8. = 
1. 

o and 

<=> ( .3 nonvanishing tension e on G wi th A e i E E-S Si = 0) 

<=> «X,E-S) is not connected, see below) <=> St\:l<'*. 

If :3 nonvani shing tension e on G with 1\ e i EO E-S 9 i = 0, and 

(X,E-S) is connected, then 3 e j € S such that B j + 0, hence e j 

is not a loop. Suppose f(e.) = (a,b). Then 3 a simple chain k in 
J 

(X,E-S) from a to b. But B vanishes on all the edges of k, hence 

Bj = 0 as k and e j together form a cycle, contradiction. 

If (X,E-S) is not connected, define a function t: X ---> m by 

taking t to be constant on each connected component of (X,E-S) 

but not constant on all of X. It follows immediately that t is 

the potential function of a nonvanishing tension e on G with 

Example 3. A graph G = (X,E) is called planar if it can be 

represented on a plane in such a way that its vertices are dist-

inct points and its edges are simple curves that do not cross one 

another. The regions into which the edges of a planar graph G 

divide the plane are called the fac~ of G. For a connected planar 

graph G the dual graph G* = (X*,E*) is the connected planar graph 
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defined as follows: to every face of G there corresponds a vertex 

of G*, and to every edge e of G there corresponds an edge of G* 

joining the vertices of G* corresponding to the faces of G that 

e bounds - if e bounds only one face, then the corresponding edge 

in G* is a loop, and vice versa. The edges of G* are oriented in 

the following way: we represent G on a plane and place each 

vertex of G* inside the corresponding face of G and draw each 

edge e* of G* so that it crosses the corresponding edge e of G, 

and no other edge of G, exactly once, and orient e* in such a way 

that the directed angle ~(e,e*) satisfies 0 < <l(e,e*) < 11: • 

Furthermore, G** = - G , i.e. G with all its edge-orientations 

reversed. 

It follows readily that under the bijection E ---> E* elementary 
e 1--> e* 

cycles in G correspond to elementary cocycles in G*, and vice 

versa. Hence defining a matroid to be planar if it is isomorphic 

to a graphic and also to a cographic matroid, we have that if G 

is a connected planar graph, then M(G) and M(G*) are planar 

matroids, because under the identification E ---> E* we have 
e 1--> e* 

M(G) = M*(G*) and M(G*) = M*(G) • Clearly the dual of a planar 

matroid is again planar. 

Remarks. 

(1) Let M be a matroid on E and seE. Clearly the reduction 

matroid MXS (cf. §1.1, Remark (8» of M is the matroid on S 

whose circuits are precisely those circuits of M which are con-

tained in S. Analogously we define the contraction matroid M'S 

of M to be the matroid on S whose cocircuits are precisely those 

cocircuits of M which are contained in S. Clearly we then have: 

M • S = ( M* x S) * 
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rctr(S') = Is'l - r*(S) + r*(S-S') 

= r(s' u (E-S» - r(E-S) • 

The operations of reduction and contraction of a matroid general-

ise the operations on a graph of deleting and contracting edges. 

In fact, if G = (X,E) is a connected graph and SCE, and we put 

G xS := partial graph (X,S) of G, and 

G·S .- graph obtained by contracting all edges not in S, 

then M( G X S) = M( G) X S and M(G·S) = M(G)· S 

A minor of M is a matroid on ScE obtained by a succession of 

reductions and/or contractions of M. This topic has been exten

sively developed by Tutte [31], and is also covered in the book 

by Crapo and Rota [7]. See also Remark (12) of §3.5. 

(2) In analogy to the fundamental circuit matrix of a binary 

matroid we can define the circuit matrix of a general matroid. 

Let M be a matroid on E and E =: {e 1 ,e 2 , ••• ,en }. If C1 ,C 2 , ••• 

• "Cm are the circuits of M, then the circuit matrix C(M) of M 

is defined as follows: 

(C(M»ij := { 01 if e j EO C i } 

otherwise 

The cocircuit matrix S(M) is defined similarly. 

We then call M orientable if one can assign positive and negative 

signs to the non-zero entries of C(M) and S(M) such that for the 

resultant matrices C (M), S (M), C (M) (S (M» T = 0 • 
o 0 0 0 

Clearly graphic and cographic matroids are orientable. 
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(3) The Fano matroid F is defined as follows: 

E {1,2, ••. ,7} , 

W:= {sCE:ISI=3} {{ 1,2,6} ,{ i,4,7} ,{ 1,3,S} ,{2,3,4}, 

{2,S,7} ,{3,6,7} ,{4,S,6}} • 

The exceptional triples are those that are collinear in the 

Fano configuration 

2. 

F can be shown to be representable over any field of character-

istic 2, but not over any other field (cf. Whitney [3S], Wilson 

[36]). In particular F is binary. 

(4) Minty [2S] has proved: 

A matroid is representable over any field if and only if it is 

orientable. 

In particular, the matroid F is not orientable, hence neither 

graphic nor cographic. 

Tutte [30] has proved: 

A matroid is representable over any field (or equivalently, 

orientable) if and only if it is binary and contains no minor 

isomorphic to F or F*. 

(S) The classic characterisation of planar graphs proved by 

Kuratowski [20] is: 
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A connected graph is planar if and only if it cannot be reduced 

to the graphs K5 or K3 3 (shown below) by a succession of the , 
operations of deleting or contracting edges (cf. Remark (1». 

Tutte [30] has proved the following generalisation for matroids: 

A matroid is graphic if and only if it is orientable and contains 

no minor isomorphic to M*(K5 ) 

As corollaries we have: 

(a) A matroid is cographic if and only if it is orientable and 

contains no minor isomorphic to M(K5 ) or M(K3 3)' , 
(b) A matroid is planar if and only if it is orientable and 

contains no minor isomorphic to M(K5 ) or M(K3 3) or their duals. , 

(6) Similarly the characterisation of planar graphs given by 

MacLane [22] has been generalised to matroids by Welsh [33]. 

(7) A detailed discussion of the representability of matroids is 

contained in the paper by Ingleton [17]. 

(8) Let G be a connected graph, X the incidence matrix of G, 
~ 

and S a fundamental cocycle matrix of G (cf. §3.3). Let X be 
o 

the matrix obtained from X by reducing mod 2, i.e. Xo is the 

(O,1)-matrix with X = X (mod 2). Doing the same with S yields o 

a fundamental cocircuit matrix S of M(G) (cf. §3.2). By (i) of 
o 

Example 1 above, M(G) = Mm (X) = Mm (8). 
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If w is an elementary cocycle of G and W = w(y) (cf. §3.3), 

then W = Lw({y}), 
yeY 

hence Wo where the sub-

scripts 0 denote that we ignore the directions of the edges. On 

th~ other hand, every cocycle is the sum of pairwise disjoint 

elementary cocycles. Thus spanZ.z.(rows of Xo) = span./l!2.(Z*) 

(cf. Proof of Theorem 17). Hence M( G) = M Z2(Xo ). 

Furthermore, by the Remark after Theorem 21, M(G) = MZ2.(So). 

Clearly rankm (X) = rankm (5) = rankZ1(XO ) = rankz}So) = 

= r(M(G» = m-1. 

Similar considerations hold for M*(G) and a fundamental cycle 

matrix of G. 

§3.5. Combinatorial Examples. 

Example 1. Let E be a finite set and k E IN. The k-uniform matroid 

on E is defined by taking the family W of bases to be 

{SeE: lsi = k}. It then follows that r(S) = min{\SI,k}, seE. 

Special cases are the O-uniform matroid which is called the 

trivial matroid, and the lEI-uniform matroid called the discrete 

matroid. The k-uniform matroid on a set of 2k elements is readily 

seen to be self-dual and non-binary. 

Example 2. Let G = (X,U) be a graph without loops (cf. §3.3, 

we denote the edge set by U here) and AeU, A f fi. (The orien-

tation of the edges of G does not playa role here.) Then A is 

called a matching in G if no two edges of A meet in the same 

vertex of G. 



65 

Clearly: (~~ A'cA and A is a matching in G) ===) (A' is a 

matching in G). 

If A is a matching in G, let 

V(A):= {xe.X : 3 e€A with e E. cocycle w({x})} , cf. §3.3. 

Lemma. Let Ai' A2 be matchings in G. Then the subgraphs of the 

partial graph (X,Ai 6A2 ) generated by the connected components of 

(X,Ai 6A2 ) are of the following three types: 

(a) an isolated vertex, 

(b) a simple closed chain k traversing each of its vertices 

exactly once (i.e. the edge set of k is an elementary cycle), 

with an even number of edges and such that alternate edges of k 

belong to Ai and A2 respectively, 

(c) a simple non-closed chain traversing each of its vertices 

exactly once and such that alternate edges belong to Ai and A2 

respectively, and whose ends are not both in V(A i ) or both 

Proof. (Berge [1J). Let xe.X. 

(a) If x~ V(A1-A2 ) and x fV(A2-A1), then x is an isolated vertex 

of the partial graph (X,A1.6.A2 ). 

(b) Let xcV(A1-A2 ) and xfV(A2-A1). Then exactly one edge 

eEA1-A2 meets x, and no edge of A2-A1 meets x. Hence x4V(A2), 

for if XEV(A2 ), then an edge e'EA2 meets x. Clearly e' ~ e, 

hence e'e A2 -A 1 for otherwise there would be two distinct edaes 

e,e'E A1 meeting x. But this contradicts Lh~ fact that no edge of 

A2-A1 meets x. 

(c) Let XE V(A1-A2 ) an", ;. " ,. '2-A1)' Then exactly one edge of 

A1-A2 meets x and exactly one edge of A2-A 1 meets x. 
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Defini tion. Let G be as above and ECX. Then the matching 

matroid M(G,E) is the matroid on E obtained by taking the family 

F of independent sets to be 

F .- {SC:E : 3 matching A in G with Sc:V(A)}. 

Axioms (F1) and (F2) are clearly satisfied. 

Axiom (F3) (Edmonds and Fulkerson [12]): Let S1 and S2 be maximal 

independent subsets of ScE, and suppose that Is1l < Is2 1, i.e. 

o f Isc s 2 1 < Is2-s1 1. • ................ (*) 

By the maximality of s1 and S2 3 matchings Ai' A2 in G such that 

S1 = SnV(A1 ) and S2 = SnV(A2 ). 

The subgraphs of the partial graph (X,A1 AA2 ) generated by the 

connected components of (X,A1~A2) are of types (a) - (c) given 

in the above lemma, and by the assumption (*) there is one of 

type (c), which moreover must have the property that one end is a 

vertex e EO S2-S1 and the other end a vertex f S1-S2' Let A I be the 

edge set of this chain. Then A:= A1~A' is clearly a matching 

in G, and S1 u {e} C V(A), contradicting the maximali ty of S1' 

Remarks. 

(1) M(G,E) is normal if and only if E contains no isolated 

vertices of G. 

(2) If SCE, the reduction matroid M(G,E)X S is the matching 

matroid M(G,S). 
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Example 3. Let All A2' "'1 Am be non-empty subsets of a finite 

set E. A subset Te E with ITI =: k ~ 1 and T =: {e. Ie. ""ei } 
11 12 k 

is called a partial transversal of E if 3 injection 

j: {1 , 2 , ... , k} --) {1 , 2 , ... , m} such that /\ qG{1 , 2 , ... , k} 

e i € Aj(q)' T is called a transversal or a system of distinct 
q 

representatives of E if k = m. 

The transversal matroid of the family {A11 A21 .•• ,Am} is the 

matroid on E obtained by taking the family F of independent sets 

as follows: 

F - {~} := the set of partial transversals of E. 

To show that this is a matroid, we proceed as follows (Berge [1]): 

Let 1:= {1 , 2 , ••• ,m} and G be the graph (X,U) with vertex set 

X := E u I anrt edge set U:= {(e,i)e:EXI: eeA.}. Then the set 
1 

of partial transversals of E is equal to the set of nonvanishing 

independent subsets of the matching matroid M(G,E), in other words, 

every transversal matroid is a matching matroid. 

Remarks. 

(1) The maximum number of edges comprising a matching in the 

above graph (X,U) is given by the Theorem of Konig (cf. Berge [1]) 

to be min{jI-Jj + jcocycle W(J)I} I and clearly W(J) 
JcI 

= UA. 
jfJ J 

Hence the rank function r of the above transversal matroid is 

given by r(S) min{II-Jj + I( UA.)nsl} 
JcI je J J 

seE. 
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(2) The above transversal matroid is normal if and only if 

m 
U Ai = E. 

i=1 

(3) We saw above that every transversal matroid is a matching 

matroid. The converse was proved by Edmonds and Fulkerson [12]. 

Thus the two classes of matroids are abstractly the same. 

(4) The k-uniform matroid on E (cf. Example 1) is seen to be 

transversal by taking k = m and Ai = E for all i € {1, ••• ,k} • 

(5) The following result was proved by de Sousa and Welsh [29]: 

A transversal matroid is binary if and only if it is graphic. 

Hence in particular the Fano matroid F (cf. §3.4, Remark (3» is 

not transversal. 

(6) A related result was proved by Bondy [3]: 

The graphic matroid M(G) of a connected graph G is transversal 

if and only if M(G) contains no minor isomorphic to M(K4 ) or 

M(C!), n)2, where K4 is the graph shown below and C! is the graph 

obtained by doubling up the edges of an n-gon: 



(7) An algorithm for determining whether or not a matroid is 

transversal is given by Brualdi and Dinolt [4]. The paper also 

establishes necessary and sufficient conditions for a matroid to 

be transversal. 

(8) Matroids playa very important role in transversal theory, 

cf. the treatise by Mirsky [26], where they are called "indepen

dence structures". In fact, Rado's matroid generalisation of 

Hall's "marriage" theorem can be considered the central result 

of transversal theory. 

On the other hand, transversal theory has enriched general matroid 

theory: Welsh [34] has shown how very general and powerful 

results on the union and intersection of matroids due to Edmonds 

[10] can be deduced from Rado's theorem mentioned above, and that 

the application of these results to particular matroids yields 

many deep and apparently unrelated combinatorial results, some of 

which are very difficult to prove directly. 

t9) A matroid generalisation of a transversal matroid, called 

a gammoid, was introduced and investigated by Mason [23]. A 

gammoid is the reduction of a strict gammoid, and Ingleton and 

Piff [1S] showed that the class of strict gammoids is identical 

with the class of duals of transversal matroids, and that the 

class of gammoids is identical with the class of contractions of 

transversal matroids. Moreover, the dual of a gammoid is again 

a gammoid. 

(10) Duals of transversal matroids were also characterised by 

Brown [39] using F-products. 
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(11) Another type of matroid motivated by a theorem of Gallai 

that was first conjectured by Sylvester for the plane, was 

studied by Murty ([47], [49]). The theorem is: 

Let n given points in mm have the property that the line joining 

any two of them passes through a third point of the set. Then the 

n points are collinear. 

An obviously equivalent formulation is: if a set S of non-collin-

ear points in real projective m-space has the above property, 

then lsi = 00 0 This leads directly to a convenient matrix 

formulation. 

A matroid on a finite set E is called a Sylvester matroid if 

1\ e,e'e E with e+ e' 3 a circuit C with e,e'e. C and Ici = 3. 

Gallai's theorem then asserts the non-existence of Sylvester 

matrix-matroids Mm(A) of rank ~ 3 (cf. Example 1 of §3.1). 

Murty proved that for a Sylvester matroid of rank In ~ 2 the 

inequality lEI ~ 2m_ 1 holds, and that in the case of equality 

it is isomorphic to the matrix-matroid M_ (A) (cf. Example 1 of 
'"".I. 

§3.1). where A is the m x (2 m_ 1) matrix whose columns are the 

2m_ 1 distinct non-null elements of Z~. 

(12) Let M be a matroid on E and S c: E. Then the circuits of the 

contraction matroid M·g of M (cf. Remark (1) of §3.4) can be 

characterised as follows: 

Theorem. 1\ S'c: S [(S' is a circuit in MoS) <=> (S' is minimal 

in A:= {Sites: SlIft31\ 3 ce:z such that slI=cns})]. 

Proof. 

(a) SitE A => ( 3 hyperplane If (= E-C) in M* with S-S" = HnS) 

=> (r*(E) + r*(S-SII) = r*(HuS) + r*(HnS) ~ r*(H) + r(S) = 

r*(E) - 1 + r*(S) or r*(S-SII) < r*(S» -> r ctr(SII) < I sill 
=> (SII is dependent in MoS). 
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(b) (S' is a circuit in M'S) ==> by Theorem 1(d) (/\ e EO S' 

rctr(SI- {ell = 15 1 1 - 1 = rctr(SI» ==> (/\ eE-S' 

r* ( s) = r* « s-s I ) U { e}) = r* (S-S I) + 1) = > (s:8T () S = S-S I , 

where the bar denotes the span mapping in M*, and 3 hyperplane 

SIt in M* with S-S' = 8f"'1S" by the Corollary of Theorem 9(b» 

==> ( 3 CeZ with S' = cns, ioe. S'e A) because 

5' = S - S-S' = S - 8ns" = (E-S") f"'I S and we take C .- E-S" . 

The minimality folillws from (a). This proves the direction ===>. 

(c) The direction <=== now follows immediately from (a) and (b). 

(13) Let M be a matroid on E. A subset Sc E is called a 

separator of M if 1\ c € Z CcS or CeE-S. If the only 

separators of Mare ¢ and E, then M is said to be connected. 

We then have the following corollaries of the theorem of 

Remark (12): 

Corollaries. (Tutte [30]). 

(1) 1\ seE [(S is a separator of M) <=> MXS = M·S]. 

(2) The separators of M* are the separators of M. 

Proof. (1) follows trivially from the above theorem and Remark 

(1) of §3.4. 

(2) follows trivially from (1) and Remark (1) of §3.4. 

For further results on separators and connectedness cf. Tutte [30]. 

(14) The following type of matroid was also studied by Murty 

([48], [50]). A matroid is called k-eguicardinal if all its 

circuits have the same number k of elements. Murty characterised 

connected binary k-equicardinal matroids, k € 1N + , giving a 

complete list of the possible types. 
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(15) For further interesting combinatorial examples of matroids, 

in particular geometric and lattice-theoretic ones, and a treat

ment of the critical problem, we refer the reader to the book by 

Crapo and Rota [7] and to Rota [51]. 



Chapter IV. Matroids and the Greedy Algorithm. 

§4.1. Matroids and the Greedy Algorithm. 

Definitions, Let E be a finite set. 

(1) Let w: E--""+m. be a function with w(e) ~ 0 for all eeE. 

We extend w to a function w: f (E) --> m by setting 

w(S) := z.. w(e) , seE. The function w is called a 
eeS 

weighting of E. 

(2) A family F(E) of subsets of E with the property 

[S'c S E F(E) => s' E F(E)] is called an independence 

system on E. 

(3) If P is a family of subsets of E, then the family 

{seE: 3 S'e P such that SCSI} of subsets of E is the 

independence system F(P) on E generated by p. 

Let P be a family of subsets of a finite set E and w a weighting 

of E. Then one can consider the following problem: 

determine a set in P of maximum weight. 

In an attempt to solve this problem, one is naturally led to 

consider the following algorithm: 

The Greedy Algorithm: Choose e 1 E E such that S1 := {e 1} E F(P) 

and w(e 1 ) = max{w(e) : {e}E F(P)}. Choose e 2 E. E-S 1 such that 

S2 := S1 u {e 2} = {e 1 ,e 2 } € F(P) and 

w(e 2 ) = max{w(e) : eE E-S 1 1\ S1u {e}e F(P)}. 

Continue in this way until the process terminates. 
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Clearly the greedy algorithm yields a maximal set in F(P) (which 

is thus in p), but this set will not in general be of maximum 

weight in P as the following counterexample shows. 

Counterexample. E:= {a,b,c}, w(a):= 3, w(b) = w(c) := 2, 

P := {{a},{b,c}}. Then F(P) = {{a},{b},{c},{b,c}} and the 

greedy algorithm yields {a} e P whereas {b,c} is the set of 

maximum weight in P. 

Definition. Let P be a family of subsets of a finite set E and 

w a weighting of E. Let the elements of each set in P be written 

in order of non-increasing weight, i.e. 

SEP, 5 = {e 1 ,e2 , ••. ,ek}, w(e 1 ) ~w(e2) ~ ••• ~w(ek)' 

Then we call Sep optimal in P if 1\ SeP lsi ~ lsi and 

A iE{1,2, ••• ,lsl} 
Clearly this condition implies that S is maximal in P and also 

that S is a set in P of maximum weight. Furthermore, if the 

weighting w of E has the property 

/\ e,e'E E w( e) = w( e') ===> e = e' , 

then clearly if an optimal set in P eXists, it is unique. 

(* ) 

The greedy algorithm does not however always yield an optimal set 

in P, as the above counterexample (first condition violated) and 

the following counterexample (second condition violated) show. 

Counterexample. E:= {a,b,c,d}, w(a) := 4, w(b) = w(c) := 3, 

w(d) := 1, P:= {{a,d},{b,c}}. Then the greedy algorithm yields 

{a,d} which is neither optimal in P nor a set of maximum weight 

in p. 
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~. (Berge [1], Edmonds [11]). Let M be a matroid on E and 

w a weighting of E. Then the following properties of a basis B 

of M are equivalent: 

( a) B is optimal in the family F of independent sets of M, 

(b) B is a basis of maximum weight, 

(c) B is a lexicographic maximum of the family W of bases of M, 

(d) 1\ eeB {e'e: B : w(e ' ) > w(e)} is a maximal independent 

subset of {e 'EE : w(e') > w(e)}. 

Proof. We saw above that (a) ===> (b). 

(c) ===> (a); Let B be lexicographically maximal in Wand 

suppose that B is not optimal in F, i.e. 3 Se F and 3 

kE{l, ••• ,r(E)} with w(e;) > w(e~) ,where the elements of Band 

of S are written in order of non-increasing weight. Let 

r(SI) ~ k, hence 3 

. {1 k} h th t S".- { B B B S} F J€ , ... , suc a .- el,e2, ••. ,ek_l,ej E (note use 

of axiom (F3», and furthermore 3 B' € W with S"c B'. But then 

B' is clearly lex~cographically greater than B because 

w(e~) ) w(e:) > w(e~), which contradicts the lexicographic 

maximality of B. 

(b) ===> (c): Let B be lexicographically maximal in W, and B' 

a basis of maximum weight. As (c) ===> (a), B is optimal in F, 

hence 1\ iE{l,oo.,r(E)} 
B H' w(e i ) ) w(e i ), where the elements of 

B and of B' are written in order of non-increasing weight. As B' 

is a basis of maximum weight, /\ iE {l, ... ,r(E)} 
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Hence B' is also lexicographically maximal in W. 

(d) follows readily from either (a) or (c). 

(d) > (b): Let B' be a basis of maximum weight and B a basis 

satisfying (d). Suppose that 3 k€{1, ••• ,r(E)} such that 

B B' w(e k ) < w(ek ), where the elements of B and of B' are written in 

order of non-increasing weight. Then A:= {e E B : w(e) > w(e:)} 

is not a maximal independent subset of 

S := {eeE : w(e) > w(e:)} , for IAI < k and 

is an independent subset of S containing k elements. Hence B 

does not satisfy (d), contradiction. Thus 1\ i € {1, ••. ,dE)} 

w(e~) ~ w(e~'), i.e. w(e~) = w(e~') as B' is a basis of maximum 

weight, hence B is also a basis of maximum weight. 

Remark. Given a particular weighting w of E and a particular 

application of the greedy algorithm, we can always perturb w 

slightly so as to obtain a weighting having property (*) while 

preserving the linear order in E in such a way that the greedy 

solution found for w remains a greedy solution, and in fact 

becomes the unique greedy solution. We observe that for weightings 

of E having property (*) the greedy algorithm undertakes the 

stepwise construction of the lexicographic maximum of the family 

of maximal sets in P - these sets, however, do not in general 

have the same cardinality. That the greedy algorithm does not in 

general do this for a weighting without property (*) is shown by 

the following counterexample. 

Counterexample. E:= {a,b,c,d}, w(a) = w(b) := 4, w(c) := 3, 

w(d) := 1, P:= {{a,c},{b,d}}. Then {b,d} is a greedy solution 

but is neither the lexicographic maximum of P nor the set of 
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maximum weight in p. If however we take w(b) = 5, then {b,d} is 

the greedy solution and the lexicographic maximum of P, but not 

the set of maximum weight in P. 

Theorem 23. Let P be a family of subsets of a finite set E. 

(a) (Gale [13]). P contains an optimal set for every weighting 

of E if and only if F(P) is the family of independent sets of a 

matroid M on E. 

(b) The greedy algorithm yields a set of maximum weight in P for 

every weighting of E if and only if F(P) is the family of inde-

pendent sets of a matroid M on E. 

Proof. 

(a) <=: Let w be a weighting of E and let B be the lexico-

graphic maximum of the family W of bases of M. Then B is optimal 

in P by the Lemma. 

===>: If F(P) is not the family of independent sets of a matroid 

on E, then 3 subsets S,S'E F(P) such that lsi < Is'l and S is 

maximal in SVS'. Take a weighting w of E := {e 1 ,e2 , ••. ,en} such 

that w(e 1 ) >w(e 2 ) > ... >w(en ), and SfiS' = {e1,e2, ••• ,erl. 

S-S'= {e e e} and S'-S = {e e e} r+1' r+2"'" r+s ' r+s+1' r+s+2"'" r+s+t • 

We note that s < t. If S is optimal in P, then S must clearly be of 

N 

the form S = S v T 

.• ,e r +s +t } shows that i cannot be optimal as A e~T w(e t) > w(e). r+s+ 

(b) <===: This follows by the Remark and Lemma. 

===>: By (a) we need only show: if for every weighting of E 

greedy solutions are sets of maximum weight in P, then they are 

optimal in P. Suppose that for a particular weighting a greedy 
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solution i is not optimal. Now i will remain a greedy solu-

tion under weight changes which preserve the linear order of the 

elements. This allows us to construct new weightings of E for 
~ 

which S is not of maximum weight: 

(1) Suppose S is maximal in P with lsi> 181. Move all weights 

into the interval [1-f, 1+E], preserving the linear order. Then 

S weighs more than S. 

(11) Suppose S is maximal in P and 3 k€ {1,2, ••• ,lsi} with 

w(e k ) > wCek)' Move all weights ~ w(e k ) into a neighbourhood of 

w(e k ) and all weights < w(e k ) into a neighbourhood of w(ek ), 

preserving the linear order. Then the first neighbourhood contains 

at least one element more of S than of S. Now widen the gap between 
rv 

than S. 

Remarks. 

(1) Proofs of the "if" part of Theorem 23(b) were also given by 

Rado [27], and Welsh [32]. 

(2) The application of the greedy algorithm to a particular 

matroid presupposes a subroutine for determining whether or not 

a set is independent. 

If the matroid in question is a matrix-matroid MlF(A), this can 

be achieved automatically by using the following method based on 

Gaussian elimination: renumber the columns of A so that they are 

in order of non-increasing weight, let 

the first nonvanishing column ak of A. 
1 

nonvanishing element of a k • Let 
1 

k < j / d At .- (at at 1 ~ n, an .- kl+1 k1+2'" 

A =: ( a 1 

Let a· k 
1 1 

a~ .- a. 
J J 

a I) n • Now 

a 2 an) . 

be the first 

a .. 
- -LL a k a· k 

, 
1 1 1 

repeat this 

on A'. Continue this process until only vanishing columns are 

left, i.e. after r steps, where r:= IF-rank (A). Then 

{ak ,ak , ••• ,ak } is a basis of M of maximum weight. 
1 2 r 

Go to 

step 



79 

If the matroid in question is a graphic matroid, then the greedy 

algorithm is the well-known algorithm of Kruskal [19]. However, 

the proof of the containing of no cycles at each step becomes 

increasingly tedious, and it is more efficient to use other algo

rithms, e.g. the ones given by Dijkstra [8], 8011in ([1] and [2]), 

or Rosenstiehl [28]. 

(3) For applications of the greedy algorithm to non-matroidal 

problems see Edmonds [10], [11], Dunstan and Welsh [9], and 

Magazine, Nemhauser and Trotter,Jr. [46]. 



Chapter V. Exchange Properties for Bases of Matroids. 

§5.1. Symmetric Point Exchange. 

Definitions. Let M be a matroid on the finite set E. 

(1) Let Be W, e€ B, and e'E E. Then we say that 

eE B can be replaced bye' if (B-{e})u{e'}€ W. 

Clearly, if e EO B can be replaced bye', then e'G B => e' = e, 

or equivalently, e t e' => e'€ E-B. 

(2) Let B,B' EO W, e IS B, and e' G B'. Then we say that 

e E Band e ' € B' can be exchanged symmetrically if 

(B-{e})u{e'}, (B'-{e'})u{e}E.W, i.e. if eEB can be replaced 

by e ' , and e'G B' bye. 

Again, there are only two possibilities: the non-trivial one 

e € B-B I and e I € B' -B, and the tri vial one e = e' E. B n B I. Further

more, we note that (e e- B can be replaced bye') => 

(e'E (B-{e})u{e'} can be replaced bye) => (e€B and 

e'c (B-{e})u{e'} can be exchanged symmetrically). 

Lemma. (Gabow, Glover and Klingman [43]). Let M be a matroid 

on E and B,B'E. W. 

(a) Let e€ Band e'c E-B. Then 

e E B can be replaced by e I 

<=> e € C(e' ,B), the fundamental circuit corresponding to e' 

with respect to B, 

<=> e' ~ j'j':feT. 

(b) Let e E B-B' and e' E B'-B. Then 

e E Band e' € B' can be exchanged symmetrically 

<=> e E C(el,B) - B'-{e'} 

<= > e ' €. C(e,B') - B-TeT . 
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!!!:2.2!. 
(a) The first equivalence is clear by Theorem 9(i(~». Further-

more, the first and last statements are equivalent because both 

are equivalent to r«B-{e})u{e'}) > r(B-{e}). 

(b) The first statement <====> (e e B can be replaced bye', and 

e'€ B' bye) <====> (ee C(e' ,B) and e~ B'-{e'}) by (a). 

Theorem 24. Let M be a matroid and B,B' E W. Then A e E B 

3 e'e B' such that e and e' can be exchanged symmetrically. 

Proof. (Gabow, Glover and Klingman [43]). 

If eEB', then take e' := e. Suppose that e4B'. Then B'-B:I= 13, 
for otherwise B'eB, i.e. B' = B. As B is a minimal spanning set 

by Theorem 7(j), e$B=\eT. Hence C(e,B') - {e} c\= B=\eT' as 

otherwise eeC(e,B')C: a:reTu{e} , hence eE:a:reT by Theorem 7(g), 

contradiction. Thus f3:j: [C(e,B')-B:r;;TJ-{e} C B'-B and the 

result follows by (b) of the Lemma. 

Di rect Proof. (Brualdi [40]). 

If eeB', then take e' := e. Suppose that e4B'. Then as above, 

B'-B :1= 13. Furthermore, C(e,B')n (B'-B) :1= 13, for otherwise 

C(e,B')c B. Suppose xeC(e,B')n(B'-B). If e<fC(x,B), then by 

Theorem 1 (j) 3 ci rcui t C' such that 

eEC'e (C(x,B)UC(e,B'» - {x}, and C'n(B'-B)~ C(e,B')()(B'-B), 

hence I C' n (B' -B) I < Ie (e, B' ) n (B' -B) I . 
If 1\ x€ C(e,B')n (B'-B) ect C(x,B), then by repeating this step 

(with C' instead of C(e,B') and so on) a finite number of times, 

,.., -
we obtain a circuit C with e IS C e B, contradiction. Hence 

3 e'e C(e,B')n(B'-B) with eEC(e',B), i.e. by (a) of the Lemma 

e€ B can be replaced bye', and e'E B' bye. 
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§5.2. Bijective Point Replacement. 

Theorem 25. Let M be a matroid on E and B, B'e W. 

(a) 3 bijection f: B --> B' such that each e e B can be 

replaced by f(e), i.e. 1\ e€ B (B-{e})U{f(e)}e W. 

More generally: 

(b) (Gabow, Glover and Klingman [43]). If B' =: {ej,e2 , ••. ,e~}, 

where m := r(E), then 3 an ordering B = {e 1 ,e 2 , ... ,em} of B 

such that /\ iE{l, •.. ,m} eiE B can be replaced by ei and 

Bi := {el,e2, ... ,ei,ei+l,ei+2, ••• ,e~} E W, 

(thus 1\ i E {1, •.. ,m} e i € Band ei € Bi _ 1 can be exchanged 

symmetrically, where B := B'), and in 
o 

particular f: B --> B' defined by f(e i ) := ei provides a serial 

replacement from B to B', and from B' to B (namely Bo ,B1 , •• ,Bm). 

Note that f does not provide a serial symmetric exchange between 

Band B', as the sets Bi := {ej,e2, ... ,ei,ei+l,ei+2, ... ,em} , 

ie{2, ... ,m-l}, are in general not bases (cf. Counterexample 1 

below). We also note that reversal of the order in Band B' gives 

Bi in place of Bi in the theorem. 

Similarly: 

(c) If B := {e 1 ,e2 , ... ,em}, then 3 an ordering 

B' = {ej,e2 , ... ,e~} of B' such that /\ ie {1, ... ,m} e. E B can 
1 

be replaced by ei and BiE W, in particular f: B ---) B' defined by 

f(e i ) .- ei provides a serial replacement from B to B', and from 

B' to B. Again, f does not in general provide a serial symmetric 

exchange between Band B' (cf. Counterexample 1 below), and 

reversal of the order in Band 8' gives Bi in place of Bi in 

the theorem. 
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f!:QQ!. 

(b) (Gabow, Glover and Klingman [43]). By induction over i. 

The point e 1 is given by Theorem 24, and (B'-{ei})v {e1 } = B1 6 W. 

Suppose the theorem holds for all i< j. Then by Theorem 24 

e' € B can be exchanged symmetrically for some point e 6 B, and 
j j-l 

clearly e4i{e1 ,e2 ,oo. ,e j _ 1} C Bj _ 1 , Hence taking e j := e we have 

that (B-{e.})u{e'.}€.W and (B. 1- {e'.})u{e.} = BJ.e:W. 
J J J- J J 

(c) By induction over i. The point ei is given by Theorem 24, 

and (B'-{ei})u {e 1 } = Bl E W. Suppose the theorem holds for all 

i< j. Then by Theorem 24 

for some point e'€. B. l' 
J-

Hence taking e~ := 
J 

(B. 1- {e'.})u{e.} 
J- J J 

e . 6 B can be exchanged symmetrically 
J 

and clearly e'~ {e 1 , ... ,e j _ 1 } C B. 

have that (B-{ e .} ) u {e '.} 6 Wand 
J J 

A second proof of (b) and (c) based on a proof of (a) given by 

Brylawski [42] follows the discussion of certain special minors 

of M in the next section. 

Remark. 

Let M be a matroid and B,B' e W. It is natural to ask firstly 

whether a bijection f: B --> B' exists such that 1\ e c B e 

and f(e) can be exchanged symmetrically, and secondly whether, 

given a fixed ordering of B' (or B), a bijection f exists 

giving a serial symmetric exchange between Band B'. These 

questions are answered in the negative by the following two 

counterexamples. 
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Counterexam~le 1. (Brualdi [40]). 

Consider the matrix-matroid MZ2. (A) ( cf. Example 1 of §3.1) 

associated with A .-

(~ 
0 0 0 1 

~r 
(a1 a 2 ... a 6 )· 

1 0 1 0 

0 1 1 1 

It is easily checked that every triple of columns of A is a 

basis of M~.z.(A) except {a1 ,a2 ,a6}. {a1 ,a3 ,a5}. {a2 ,a3 ,a4 }, and 

{a4 ,a5 ,a6 }· 

Let B := {a1 ,a4 ,a5 } and B' := {a2 ,a3 ,a6 }. Suppose f: B ---> B' is 

a bijection such that 1\ e E B e and f(e) can be exchanged 

symmetrically. Now 

(B-{a1})u{e'}ts W for e'€. {a2 .a3 } but not for e' = a 6 , 

(B'-{e'})u{a1 } E W for e'€. {a2 ,a6 } but not for e' = a3 , 

therefore f(a1 ) can only be a 2 • Similarly f(a4 ) can only be a 2 , 

i.e. f is not bijective, contradiction. This answers the first 

question in the negative. 

The only bijections answering Theorem 25(a) are 

a 1 a 4 a 5 , a 1 a4 a 5 , a 1 a 4 a 5 . 
~ ~ ~ ~ ~ ~ -1, J, J, 
a 2 a 6 a 3 a3 a 2 a 6 a 3 a 6 a 2 

If we fix the order in B' as {a3 , a 2 ' a 6 } , the only ordering of B 

answering Theorem 25(b) is {a5 ,a1 ,a4 } , and this bijection does 

not provide a serial symmetric exchange between Band B'. 

If we fix the order in B as {a4 ,a5 ,a1 } , the only ordering of B' 

answering Theorem 25(c) is {a2 , a 6 ' a 3 } , and this bijection does 

not provide a serial symmetric exchange between Band B'. 

Counterexample 2. (Gabow, Glover and Klingman [43]). 

Consider the graphic matroid M(G) (cf. Example 1 of §3.4), 
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where G is the graph shown, and let B := {1,4,S} and B':= {2,3,6}. 

5 

8' 
G 

The rest of this counterexample is the same as Counterexample 1 

above, in fact A =: (13 I Q) is the fundamental cocircuit matrix 

of M(G) with respect to the cobasis {4,S,6} of M(G) (cf, Defini

tions and Remarks after Theorem 21), and M(G) = Mzz(A). We 

summarise the relevant details: 

The fundamental cocircuits of M(G) with respect to {4,S,6} are 

Sl = {1,S,6}, S3 = {3,4,S}. 

The family of cocircuits of M(G) is 

{1,S,6} = Sl' {1,2,4,S} = Sl£. S2' 

{2,4,6} = S2' {2,3,S,6} = S2 A S3' 

{3,4,S} = S3' {1,3,4,6} = S3 AS1' 

{1,2,3} = SlAS2 AS3' 

The fundamental circuits of M(G) with respect to the basis {1,2,3} 

are Cl = {2,3,4}, C2 = {1,3,S}, C3 = {1,2,6}, 

The family of circuits of M(G) is 

{2,3,4} Cl , {1,2,4,S} = Cl .AC 2 , 

{ 1,3,S} = C2 , {2,3,S,6} = C2 DC 3 , 

{1,2,6} = C3 , {t,3,4,6} = C3 DC 1 , 

{4,5,6} C1 AC 2 AC 3 , 

The fundamental circuit matrix C of M(G) with respect to {1,2,3} 

is C = 

(: 
1 1 1 00) - . (p I 13 ) , 
0 1 0 1 0 

1 0 0 o 1 

and clearly P T :: Q :: Q. 
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We also note that G is a connected planar graph, hence the dual 

graph G* of G exists: 

and M(G) g M*(G*) and M(G*) g M*(G) under the edge identi-

fication d given by the edge numberings (cf. Example 3 of §3.4). 

Furthermore, G and G* are the same and can be identified by the 

bijection g: G ---) G* given by 1 2 3 4 5 6 

~ ~ ~ ~ ~ ~ 
4 5 6 1 2 3 

whence M(G) 
g 

M(G*) g M*(G) M(G) h M*(G) under the = or = 
bijection h: G ---) G given by 1 2 3 4 5 6 

~ ~ ~ ~ ~ ~ 
4 5 6 1 2 3 

Under this isomorphism Si corresponds to Ci , i€ {1,2,3}, and 

vice versa. 

§5.3. More on Minors of a Matroid. 

Let M be a matroid on E. 

(1) Let Sc:E and suppose that SeF* (cf. Theorem 11). By 

Remark (1) of §3.4 the reduction matroid MX(E-S) is the matroid 

on E-S having basis set {BE. W : BnS = ~}. 

(2) Let Sc:E and suppose that Se F, and let M1 be the matroid 

on E-S with basis set {B-S : seBE.W}. Then the dual matroid Mi 

has basis set {E-B : SeBE.W} = {SIE W* : SIn S = ~}, Le. by (1) 

Mi is the reduction matroid M* x (E-S), and hence by Remark (1) 

of §3.4 Ml = (M*X (E-S»* = M·(E-S). 



87 

Thus the contraction matroid M'(E-S) is the matroid on E-S having 

basis set {B-S : se Be W}, and by Remark (1) of 93.4 the rank 

function rctr of M'(E-S) is given by 

rctr(S') = r(S'uS) - r(S):a r(S'uS) -lsi, SIC E-S. 

In particular the rank of M'(E-S) is rctr(E-S) = r(E) lsi. 

(3) Let S1,S2CE and suppose that S1('\S2 = frI, S1EF, S2€F*. 

Then (E-S1 ) - (E - (S1 US2» = S2' and (M'(E-S1 »X (E-(S1US2» 

is the matroid on E-(S1US2) having basis set 

{B basis of M'(E-S 1 ) : BnS2 = frI} = {B-S1 : S1CBESW 1\ BflS2 =frI}. 

On the other hand, (E-S2 ) - (E-(S1 u S2» = S1' and 

(MX (E-S2»'(E-(S1u S2» is the matroid on E-(S1 u S2) having 

basis set {B-S1 : S1C B basis of M X (E-S2 )} = 
= {B-S1 : S1 CB €W 1\ BnS2 = frI}, i.e. 

with rank function r(SI) = r(s l uS1 ) - Is1 1, SICE-(S1uS2)' 

and rank r(E-(S1 US2» = r(E-S2 ) - Is11 = r(E) - Is1 1. 

We shall denote this matroid by M(S1,S2)' 

Proof of Theorem 25(b). (based on Brylawski [42]). 

By induction over the rank of M. Clearly the theorem is trivial 

if the rank of M is 1. Assume that the theorem holds for matroids 

of rank m-1, where m is the rank of M. Let B,Ble Wand 

BI =: {ei,e2, ... ,e~}o Then by Theorem 24 ei can be exchanged 

symmetrically for some point e 1 € B. Thus B-{e 1} and BI-{ei} are 

both in the basis set W := {B-{e 1} : e 1 E: HEW} of the matroid 

M({e 1},frI) of rank m-1. Hence by the induction hypothesis 3 an 
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ordering B-{e t } = {e2 ,e3 , .•• ,em} of B-{e t } such that 

/\ i€{2, ••. ,m} (B-{et,ei})u{ej)€W and 

definition of e t • 

The proof of Theorem 25(c) follows analogously. 

Remark. Brylawski [42J also proved Theorem 24 and Theorem 26 

below using the concepts introduced in this section. 

95.4. Symmetric Set Exchange. 

Let A be an (m x n)-matrix with coefficients in the field 1F and 

IF-rank m, and let MlF(A) be the associated matrix-matroid 

(cf. Example t of §3.t). If seE, let M(S) denote the correspon

ding submatrix of A. Now let B,B'e W, i.e. M(B) and M(B') are 

non-singular (m x m)-submatrices of A. By taking the columns of 

M(B') as basis of lF m we can without loss of generality assume 

that M(B') = I • Let SeB, Then the classical Laplace expansion m 

of det M(B) with respect to S gives 

det M(B) = ;> + det M«B-S)uS') • det M«B'-S')uS) • 
S'c B' 

As det M(B) f 0, some term on the right must be f 0, which 

proves the following generalisation of Theorem 24 for matrix-

matroids: 
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Theorem 26. Let M be a matroid on E and B,B'E W. Then 

/\ SeB 3 S'eB' such that 

(B-S) V S' e W and ( B ' -S ' ) use W. 

Remark. If Sand S' have the properties given in the theorem, 

then it follows readily that snB' = S'nB and lsi = Is'l. 

Proof (1). (Woodall [37]). 

Let m := r(E) = IBI = IB'I = rank of M, and k := lsi. We will 

prove the theorem for the case B II B I = 13. Then the theorem 

follows by considering instead of M the contraction matroid 

M'(E-(Bn B'» with basis set {B-(BnB') BnB'eBEW} and 

rank function rctr(S") = r(S"u(BnB'» -IB"B'I, S"cE-(BnB'), 

and rank m - IBnB' I, and taking S-B' instead of S. 

By the submodlliar ineqllali ty we have that A S"C E 

r(SUS") + r«B-S)uS") ~ r(BUS") + r«Sf"I(B-S»US") 

= m + r(S"). 

Let M1 := (M-(E-(B-S»)XB' then /\ S"e B' 

r 1 (S") = r(S"u(B-S» - m + k and the rank of M1 is k. 

Let M2 := (M*X (E-S».B' , then A S"CB' 

r 2 (S") = r*(S"U(E-(SUB'» - r*(E-(SUB'» 

= Is"l + r(SU(B'-S"» - m by Theorem 11(b), 

and the rank of M2 is k. 

Now Edmonds' Matroid Intersection Theorem (cf. Theorem 69 of 

Edmonds [10] and Theorem 4 of Welsh [34]) states: 

Two matroids M(E,r 1 ), M(E,r2 ) have a common independent set of 

k elements if and only if 

/\ SeE r 1 (S) + r 2 (E-S) ~ k. 

For M1 and M2 we have: A S"e B' 

r 1 (S") + r 2 (B'-S") (r(S"U(B-S» - m + k) + (r(SUS") - Is"l) 

~ k by (*). 

Hence 3 s' c B' wi th r 1 (S') = r 2 (S') = Is' I = k, i. e. 

r(S'U(B-S» = r(SU(B'-S'» = m. 
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Proof (2). (Greene and Magnanti [45]). 

Let m and k be as in Proof (1), and again we can without loss of 

generality assume that BIIB' == ~. Furthermore, let M1 be as in 

Proof (1). 

Let M3 :== (M'(E-S» X B' , then 1\ s"e B' 

r 3 (S") == r(S" US) - k, and the rank of M3 is m-k. We note that 

M~ == M2 of Proof (1). 

Now the Matroid Partition Theorem of Edmonds and Fulkerson ([12]) 

states: 

Let nEIN+ and M(E,r i ), iE{1, ••. ,n}, be matroids on E. Then E 

can be partitioned into a family of subsets S1' S2' ••• , Sn' 

such that /\ iE{1, ••• ,n} Si€F i , if and only if 

1\ SeE 
..... z.. r.(S) ?- lsi. 

i==1 1 

For M1 and M3 we have: 1\ S"CB' 

r 1 (S") + r (S") 3 == ( r( S" U (B-S) ) - m + k) 

?- I s"l by (*) of Proof 

Hence 3 S'CB' with r 1 (S') == Is'l and 

r 3 (B'-S') == IB'-S'I == m - Is'l, 

Le. r(S'u (B-S» == IS'I + m - k and 

r(SU(B'-S'» == m + k - Is'l. 

+ (r(S"uS) - k) 

( 1) • 

As r(SU(B'-S'» ~ m, it follows that Is'l ~ k, and as 

r(S'u (B-S» ~ m, it follows that Is'l ~ k, hence Is'l == k, and 

r(SU(B'-S'» == r(S'U (B-S» == m. 

Remark. 

A lengthy but direct proof of Theorem 26 was given by Greene [14]. 

See also the Remark at the end of the previous section. 
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§5.5, Bijective Set Replacement. 

Theorem 26 gives rise naturally to the following generalisation 

of Theorem 25. 

Theorem 27. Let M be a matroid and B,B'e W. 

(a) (Greene and Magnanti [45]). Suppose that B has been parti-

tioned into a family of subsets S1' S2' ••• , Sn. Then B' can be 

partitioned into a family of subsets Si, S2' ••• , S~ such that 

i n 
1\ i€{1, ••• ,n} (B-Si)USiEW and Bi := (US.)U( U S'.)€W. 

j=1 J j=i+1 J 

(b) Suppose that B' has been partitioned into a family of 

subsets Si, S2' ••• , S~. Then B can be partitioned into a family 

of subsets S1' S2' ••• , Sn such that A i E {1, ••• ,n} 

(B-Si)USi€W and BiEW. 

Proof. The earlier proofs by induction over i generalise readily 

to yield proofs of the above. 

Remark. 

Greene and Magnanti [45] gave a proof of all of (a) except B. e W, 
1 

using the Matroid Partition Theorem of Edmonds and Fulkerson 

(cf. Proof (2) of Theorem 26) and a generalised submodular 

inequali ty. 
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§5.6. A Further Symmetric Set Exchange Property. 

Theorem 28. (Greene [44]). Let M be a matroid on E and B,B'E W. 

If ScB-B' and S'cB'-B with jsj + jS'j > r(E), then 3 

non-empty subsets S C Sand S' c S ' o 0 
such that 

(B-S ) US' E Wand (B ' -S' ) USE W. o 0 0 0 

Remarks. The theorem is trivial if SI'IS' t13: take S = S' = S()S'. o 0 

Furthermore, if SAS' =13 and So and S~ have the properties given 

in the theorem, then So("'\ B' = 13 and S~f\B =13 by the Remark after 

Theorem 26. 

Proof. t Let m := r(E). We can wi thout loss of generality 

assume that S = {e 1 ,e2 ,oo.,ek }, where ke{1,oo.,m}, and 

jS'j = m-k+1. Let Ci be the fundamental circuit corresponding to 

eieS with respect to B', and Si := cins', Ti := Ci("'\(B'-S'), 

i.e. Ci = SiUTiu{ei}, iE{1, ... ,k}. 

(a) K:= {SCS : S+13 J\ 1\ e.E S S.cj:B-S} t 13 :-
1 1 

Suppose K =13. Then by renumbering the eiE S, we have: 

S ~ K because S1C B-S, 

S-{e1}~K because S2C(B-S)u{e1}, 

Let V:= (B-S)U(B'-S'). As S1CB-SCV and T1CB'-S'CV, we 

have e 1 E C1cVu{e 1 } and thus e 1 E V = V by Theorem 7(g) (cf. 

footnote on p.16). 

t The above proof is an extended version of the proof given by 

Greene which applies only to combinatorial geometries (normal 

matroids all of whose elements are closed) and uses lattice

theoretic operators. 
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As S2C:(B-S)u{e 1}cV and T2CV, we have e 2 EC 2 cVU{e2 } and 

thus e 2 E V = V by Theorem 7(g). 

Continuing in this way, we see that SeV and thus BeV which is 

a contradiction as r(B) = m and 

r(V) ~ r(B-S) + r(B'-S') by the submodular inequality and 

hence 

§5.1 

S' := 
o 

(ii ) 

hence 

= (m-k) + (k-1) = m-1. 
Theorem 7(a), 

(s is minimal in K) ===> (S can be exchanged symmetrically): o 0 

ISol = 1. Suppose So = {e 1}. As SocK, we have S1cf B-{e 1}, 

3 e'ES C B-{e 1}cCC B-{e 1 }. Then by (b) of the Lemma in 

e 1 and e' can be exchanged symmetrically. Hence we take 

{ e ' } • 

I S I > 1. If e. E S , then S -{ e.} J: K by minimali ty of So' 
010 0 1 ~ 

::I e.ES -{e.} such that S.C:(B-S }u{e.}. Put f(i) .- j, 
J 0 1 J 0 1 

then f: So ---> So is injective, hence bijective: suppose i + i' 
and f(i) = f(i') =: j, and let X := (B-S )u{e.}, 

o 1 

Y:= (B-S )V{e.,}. Then S.CXf'lY:::>ii=S by Theorem 7(d{t», and 
o 1 J 0 

m -Isol = r(B-So) ~ r(Xf'lY) 

~ r(X) + r(Y) - r(XuY) (cf. Theorem 7(d(3» 

Hence by Theorem 7(e) and (d(2» 

S .cB=S contradicting Soc K. 
J 0 

(m-IS 1+2) = m-IS I. o 0 

B-S = Xf'lY = XnY. Thus 
o 

Suppose eiESo ' Then by the above Sf(i)C(B-So}u{e i }, but 

Sf(i)¢B-So as SoEK. Hence 3 eiE.Sf(i)- B-S o ' and by Theorem 

e 1.E (B-S Jute!}, i.e. (B-S )u{e.} = (B-S )u{e!}. 
o 1 0 1 0 1 
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iE I. are pairwise disjoint: as f is bijective we need only show 

(Sf(i)- B-So)()(Sf(i')- B-S o ) = fJ for i:\= i'. Now 

e'E (Sf(i)- ~)("'\(Sf(i')- ~) => ei.ei,E (B-So)u{e'} => 

(B-S )v{e .• e.,} = (B-S Jute'}. contradiction. as 
011 0 

Hence the ei. i e I. are distinct. Now 1\ i E I 

e.€ (B-S Jute! : iel}. hence (B-S )u{e! : iel}eW by 
1 0 1 0 1 

Theorem 7(j). 

As each ei. i € I. lies in exactly one of the C .• j 6 I. namely 
J 

ei€Cf(i)' it follows. letting I =: {i1. i 2.· ... i ls I}, that 
o 

/\ je{2 ..... ls o l} 

Cf (· ) C (B'- {e! •••.• e! })v{ef (· ) •.•.• e f (. )} • 
Ij 11 I j _ 1 11 Ij 

hence it follows from (a) of the Lemma in §5.1 by induction that 

(B'- {e! ••••• e! })u{ef (. ) •.••• e f (. )} E W. 
11 Ij 11 Ij 

Thus we take S' .- {e! o 1 
i € I} . 
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Remarks. 

It is natural to ask whether So and S~ can be so chosen in 

Theorem 28, that the symmetric set exchange can be effected in a 

serial symmetric point exchange of ISol steps. The matrix-matroid 

example considered in §5.2 yields the following counterexample. 

Take B := {a1 ,a4 ,a5}, B' := {a2 ,a3 ,a6 }, S:= {a1 ,a4 }, 

S' := {a3 ,a6 }. Then one easily checks that there is just one 

possibility: So'- S and S~:= S', and no serial symmetric 

point exchange of two steps will effect this symmetric set 

exchange. 

If however it is a question of finding ~ S~CB' not necessarily 

with S~CSI, such that S~ and a given SoCB can be exchanged 

symmetrically and a serial symmetric point exchange of ISol 

steps exists, then the answer is yes if ISol = 2, as was proved 

by Greene and Magnanti [45J. In the above example S~ := {a2 ,a3 } 

or {a2 ,a6 } would yield the required properties. 
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