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Preface

This volume of Topics in Heterocyclic Chemistry is focused on new and innovative

metal-catalyzed reactions that effect formation of a carbon–heteroatom bond. The

volume is composed of seven chapters, which have been written by a talented group

of young scientists who have all made significant contributions to this field.

The first five chapters of this volume are centered on the construction of

saturated heterocycles from alkenes bearing appended nitrogen or oxygen

nucleophiles. The first chapter, entitled “Synthesis of Saturated Heterocycles via

Metal-Catalyzed Alkene Carboamination or Carboalkoxylation Reactions,” which I

have written, is focused on reactions of these substrates with various carbon

electrophiles. These transformations generate both a carbon–carbon bond and a

carbon–heteroatom bond and provide stereocontrolled access to a broad range of

heterocycles.

In the second chapter, entitled “Synthesis of Saturated Heterocycles via Metal-

Catalyzed Alkene Diamination, Aminoalkoxylation, or Dialkoxylation Reactions,”

Chemler and Copeland outline reactions that generate two carbon–heteroatom

bonds.

In the third chapter, entitled “Synthesis of Heterocycles via Palladium-Catalyzed

Wacker-Type Oxidative Cyclization Reactions of Hydroxy- and Amino-Alkenes,”

Zhang and Butt describe the synthesis and highlight the progress that has been made

in this field in recent years.

In the fourth chapter, entitled “Synthesis of Saturated Heterocycles via Metal-

Catalyzed Hydroamination or Hydroalkoxylation Reactions,” Julian provides a

highly comprehensive look and includes a considerable amount of useful informa-

tion about the mechanism of these transformations.

In the fifth chapter, entitled “Synthesis of Saturated Heterocycles via Metal-

Catalyzed Allylic Alkylation Reactions,” Aponick and Ketcham outline recent

progress made and illustrate the utility of these transformations for the construction

of complex molecules.

The final two chapters in this volume are also largely centered on the reactivity

of alkenes and alkynes in heterocycle-forming processes, but focus on different

types of substrates as compared to the first five chapters. In the sixth chapter,
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entitled “Synthesis of Saturated Heterocycles via Metal-Catalyzed Domino/One-

Pot Reactions that Generate a C–N or C–O Bond,” Lautens, Keilitz, and Malik

provide an update on recent developments in the synthesis.

In the seventh chapter, entitled “Synthesis of Saturated Heterocycles via Metal-

Catalyzed Formal Cycloaddition Reactions that Generate a C–N or C–O Bond,”

Waser rounds out the volume with a new look at the synthesis, which nicely

illustrates the utility of strained molecules in heterocycle synthesis.

I would like to thank all of the contributing authors for providing interesting and

insightful chapters, and I also appreciate the hard work of the staff at Springer

(especially Anette Lindqvist and Tanja Jaeger). Finally, I am particularly grateful to

series editor Bert Maes for the opportunity to organize this volume.

Ann Arbor, MI John P. Wolfe
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or Carboalkoxylation Reactions

John P. Wolfe

Abstract This review describes recent advances over the past decade in the

field of heterocycle synthesis via Pd-catalyzed alkene carboamination or carboalk-

oxylation reactions. These transformations effect the coupling of a carbon electro-

phile with an unsaturated alcohol or amine and provide heterocyclic products via

difunctionalization of the substrate alkene. These reactions provide stereoselective

access to a broad array of oxygen and nitrogen heterocycles, including compounds

that contain more than one heteroatom. The current scope and limitations of these

transformations are discussed, along with relevant mechanistic details.

Keywords Alkene difunctionalization � Catalysis � Copper � Cross-coupling �
Gold � Heterocycles � Palladium � Stereoselective synthesis
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1 Introduction

Saturated five-, six-, and seven-membered heterocycles are common subunits

displayed in a broad array of interesting and useful molecules. These types of

compounds are found in biologically active natural products and have historically

been of considerable importance in the development of pharmaceuticals and

agrochemicals. As such, there has been a longstanding interest in the invention of

new strategies and tactics for the synthesis of saturated heterocycles.

Over the past decade considerable efforts have been dedicated towards the

development of new approaches to the construction of saturated heterocycles via

metal-catalyzed alkene carboalkoxylation or carboamination reactions. These

transformations typically involve the coupling of a carbon electrophile (such as

an aryl halide) with an alkene bearing a pendant nucleophilic heteroatom functional

group (such as an alcohol or amine). The reactions effect difunctionalization of the

alkene unit with the formation of one C–C bond and one carbon-heteroatom bond,

along with 1–2 stereocenters. In addition, many alkene substrates that contain

stereocenters are transformed to products with high diastereoselectivity. These

methods are highly convergent and are also generally amenable to the rapid

construction of analogs of a particular compound, as a wide array of suitable carbon

electrophiles can be readily obtained from commercial sources.

This review covers the most significant developments in this field over the

past 10 years and illustrates the broad array of different heterocyclic structures

that can be accessed using these methods. The primary focus of this chapter is on

aryl, alkenyl, and alkynyl-derived electrophiles. However, reactions that employ

CO and related electrophiles are briefly noted.

2 Metal-Catalyzed Alkene Carboalkoxylation Reactions

2.1 Metal-Catalyzed Alkene Alkoxyarylation, Alkoxyalkenylation,
and Alkoxyalknylation

2.1.1 Palladium-Catalyzed Reactions of Alkene-Appended Alcohols
with Halogenated Carbon Electrophiles

Palladium-catalyzed carboalkoxylation reactions between γ-hydroxy terminal

alkenes and aryl bromides provide an efficient and stereoselective means for the

generation of substituted tetrahydrofurans. These transformations generate 2,5-cis-
and 2,3-trans-disubstuted products with good to excellent diastereoselectivity

(Scheme 1) [1–3]. The reactions are effective with a number of different primary,

secondary, and tertiary alcohol substrates. Alkenyl bromides can be used as

electrophiles in some instances, although chemical yields are not as high as those
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obtained with aryl bromides. Aryl chlorides have occasionally been employed as

coupling partners, although the scope of these reactions is currently limited to tertiary

alcohols [4].

Tertiary alcohol substrates bearing pendant internal alkenes are converted to

tetrahydrofuran products with stereocenters adjacent to the thf ring (Scheme 2) [5].

The major diastereomers in these reactions result from syn-addition of the oxygen

atom and the aryl or alkenyl group across the double bond. The use of a catalyst

composed of Pd2(dba)3/P(o-tol)3 for reactions of acyclic internal alkene substrates
provides products 1 in moderate diastereoselectivity (ca. 2–5:1). However, tertiary

alcohols bearing pendant cycloalkenes are converted to bicyclic products 2 with

excellent stereocontrol (>20:1 dr).

The mechanism of these transformations (and the other Pd-catalyzed alkene

carboalkoxylations described in this section) involves initial oxidative addition

of the aryl or alkenyl halide to the Pd(0) complex 3 to provide intermediate 4
(Scheme 3). Deprotonation of the alcohol substrate 5 followed by reaction with 4
affords 6. Intramolecular syn-migratory insertion of the alkene into the Pd–O bond

of 6 provides 7, which undergoes C–C bond-forming reductive elimination to

yield the tetrahydrofuran product 8. The migratory insertion step (6–7) appears
to proceed through a highly organized chairlike transition state in which the

substituents on the tether between the alkene and the oxygen atom are oriented

to minimize nonbonding interactions. This leads to stereoselective formation of

2,5-trans- and 2,3-trans-disubstituted products. The relative stereochemistry of

the C2 and C10 stereocenters is controlled by the syn-insertion, which ultimately

leads to net syn-addition of the oxygen atom and the aryl/alkenyl group across

the double bond.

OH

R
+

1 mol % Pd2(dba)3
2 mol % DPE-Phos

NaOtBu, THF, 65 C

OR
OR

7 examples
66 88% yield
1:1 to 2:1 dr

6 examples
51 78% yield
3:1 to >20:1 dr

37 examples
19 84% yield
4:1 to >20:1 dr

R1
O

R1

R

O
R1

R

ORR1 Br

R1 = aryl, alkenyl

Scheme 1 Pd-catalyzed coupling of γ-hydroxy terminal alkenes with aryl or alkenyl bromides

Scheme 2 Pd/P(o-tol)3-catalyzed coupling of γ-hydroxy internal alkenes with aryl or alkenyl

bromides
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The modest diastereoselectivity obtained in Pd/P(o-tol)3-catalyzed reactions of

acyclic internal alkene substrates (Scheme 2) results from competing β-hydride
elimination side reactions that occur prior to the reductive elimination step (7–8)
[5]. As shown in Scheme 4, if the reductive elimination from 7 is relatively slow,

the metal can migrate from C10 to C2 via β-hydride elimination to generate

9 and then hydridopalladation to yield 10. Rotation around the C10–C2 σ-bond
of 10–100 followed by another β-hydride elimination/hydridopalladation sequence

provides 12. Reductive elimination from this latter intermediate then affords the

minor diastereomer 13.
The diastereoselectivity in Pd-catalyzed carboalkoxylation reactions of acyclic

internal alkene substrates can be greatly improved by using a catalyst composed of

Pd2(dba)3/S-Phos (Scheme 5) [6]. This catalyst facilitates the reductive elimination

step (7–8), and thereby minimizes competing β-hydride elimination that leads to

the minor diastereomer. Diastereoselectivities in reactions of E-alkenes usually

exceed 20:1 dr, although reactions of Z-alkene substrates proceed with lower levels
of selectivity. Model studies illustrate this transformation may provide a practical

approach to the natural product simplakidine A.

Scheme 3 Mechanism of Pd-catalyzed alkene carboalkoxylation reactions

Scheme 4 Mechanistic origin of minor diastereomer
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Alcohols bearing pendant conjugated dienes are also viable substrates in

Pd-catalyzed alkene carboalkoxylation reactions (Scheme 6) [7]. Acyclic diene

substrates provide the expected products of 1,2-addition to C-4 alkene (15), whereas
cyclic dienes undergo 1,4-addition byway of intermediate π-allylpalladium complexes

to provide products 14.
The synthesis of fused-ring or attached-ring bis-tetrahydrofurans has been accom-

plished by a three-step reaction sequence involving initial Pd-catalyzed carboalk-

oxylation of monoprotected 1,2-diols bearing pendant alkenes 16 (Scheme 7) [8].

Deprotection of the resulting tetrahydrofuran products followed by a second

Pd-catalyzed carboalkoxylation affords products such as 17 and 18 in good yield

and excellent diastereoselectivity over the three-step sequence.

The intramolecular Pd-catalyzed carboalkoxylation of alkene substrates such as 19
provides access to tetrahydrofurans bearing attached carbocyclic rings (Scheme 8) [9].

The stereochemical outcome of these reactions is dependent on the structure of the

phosphine ligand. The use of electron-rich monodentate ligands such as PCy3 leads to

products 20 resulting from syn-addition of the alcohol and the aryl group across the

double bond. In contrast, the use of chelating bis-phosphine ligands with small bite

angles, such as BINAP or 1,2-bis(diphenylphosphino)benzene results in anti-addition
to the double bond to yield 21. The change in product stereochemistry appears to

Scheme 5 Pd/S-Phos-catalyzed coupling of γ-hydroxy internal alkenes with aryl or alkenyl

bromides

Scheme 6 Pd-catalyzed coupling of 7-hydroxy-1,3-dienes with aryl halides

Scheme 7 Synthesis of fused-ring or attached-ring bis-tetrahydrofurans

Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene. . . 5



result from a ligand-dependent change in reaction mechanism. The monodentate

ligands favor a syn-oxypalladation pathway whereas reactions involving chelating

bis-phosphines proceed via anti-oxypalladation.
Palladium-catalyzed alkene carboalkoxylation reactions have also been employed

for the construction of dihydrofuran derivatives. The coupling of 2-allyl-β-ketoesters
22 with aryl halides or nonaflates affords the 4-(arylmethyl)dihydrofurans 23 in

moderate to good yields (Scheme 9) [10]. The transformations proceed via deproto-

nation of the substrate followed by Pd-catalyzed carboalkoxylation of the alkene

with the resulting enolate. Intramolecular variants of these reactions have been

used for the conversion of 24 to substituted dihydroindenofuran products 25 [11].

The synthesis of isoxazolidines has been accomplished by Pd-catalyzed alkene

carboalkoxylation reactions between aryl bromides and N-butenyl hydroxylamine

derivatives (Scheme 10) [12]. Stereocontrol is modest in reactions that afford

monocyclic heterocycles. However, transformations that generate bicyclic products

proceed with good diastereoselectivity and provide access to isoxazolidines that

cannot easily be generated via nitrone dipolar cycloaddition reactions. A related

strategy has been employed for the construction of 2-substituted isoxazolines from

2-alkenyl oximes (Scheme 11) [13].

Pd-catalyzed carboalkoxylation reactions between unsaturated alcohols and

aryl or alkenyl halides have most frequently been employed for the construction of

five-membered heterocycles. However, these transformations have also shown some

Scheme 8 Intramolecular Pd-catalyzed alkene carboalkoxylation

Scheme 9 Pd-catalyzed coupling of β-ketoesters with aryl or alkenyl halides
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utility for the formation of other ring sizes. Oshima has illustrated that tertiary allylic

alcohols can be converted to epoxides via Pd-catalyzed alkene carboalkoxylation

(Scheme 12) [14]. Reactions of chiral tertiary allylic alcohols proceed with moderate

to good diastereoselectivity and without loss of enantiopurity. Currently the scope

of this method appears to be limited to tertiary alcohol substrates, as the use of

analogous primary or secondary alcohols has not yet been described. Nonetheless,

this represents a fundamentally new approach to epoxide synthesis.

The generation of six-membered oxygen heterocycles via Pd-catalyzed

carboalkoxylation of alkenes has proven to be considerably more challenging

than the formation of five-membered ring products. However, recent work has

illustrated that a catalyst composed of Pd2(dba)3 and S-Phos is effective for the

coupling of 2-(but-3-enyl)phenols with aryl or alkenyl bromides to provide

substituted chroman derivatives (Scheme 13) [15]. The transformations proceed

with excellent diastereoselectivity in cases where fused tricyclic products are

generated. The influence of alkoxide nucleophilicity/basicity on the facility of

alkene carboalkoxylation reactions appears to be dependent on ring size, as the

preparation of fully saturated tetrahydropyrans from 5-hexen-1-ol derivatives via

this method has not yet been achieved, and the Pd/S-Phos catalyzed conversion of

2-allylphenol to a substituted dihydrobenzofuran proceeded in only 37% yield.

Most studies on Pd-catalyzed alkene carboalkoxylation reactions have been

focused on the use of aryl or alkenyl halides as the electrophilic component. How-

ever, Waser has recently described Pd-catalyzed carboalkoxylation reactions between

γ-hydroxyalkenes and the alkynyl halide triisopropylsilyl ethynyl bromide. These

transformations generate substituted tetrahydrofuran derivatives with good to excel-

lent levels of diastereoselectivity (Scheme 14) [16]. The stereochemical outcome of

Scheme 10 Pd-catalyzed carboalkoxylation of N-butenyl hydroxylamines

Scheme 11 Pd-catalyzed carboalkoxylation of unsaturated oximes

Scheme 12 Pd-catalyzed coupling of tertiary allylic alcohols with aryl or alkenyl bromides

Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene. . . 7



these transformations is analogous to that for reactions of aryl and alkenyl halides

described above (Scheme 1). Highest diastereoselectivities are obtained in the

formation of trans-2,5-disubstituted products (up to >95:5 dr). Currently the scope

of this transformation is limited to a single alkynyl bromide substrate. The use

of other alkynyl bromides such as phenyl ethynyl bromide leads to formation of

complex product mixtures.

Hypervalent iodine reagents have been used as alternative sources of carbon

electrophiles in Pd-catalyzed alkene carboalkoxylation reactions. For example,

Pd-catalyzed reactions between the hypervalent iodoalkyne reagent 26 and unsatu-

rated phenols or carboxylic acids provide 2-alkynylmethyl benzofurans, benzopyrans,

and γ-lactones 27–28 in moderate to good chemical yield (Scheme 15) [17]. The

mechanism of reactions that employ reagent 26 are believed to differ from those of

the reactions shown above in Schemes 1–14. These latter transformations may

proceed via a Pd(II)/Pd(IV) catalytic cycle that is initiated by oxypalladation of the

alkene by the PdII(hfacac)2 complex to generate an alkylpalladium(II) intermediate.

Oxidative addition of 26 to this intermediate would generate a Pd(IV) complex that

could undergo reductive elimination to yield the observed products.

A related hypervalent iodine reagent 29 has been used as an electrophilic

trifluoromethyl group source in Cu-catalyzed carboalkoxylation reactions of unsat-

urated alcohols and carboxylic acids (Scheme 16) [18]. The transformations are

effective for the generation of three-, four-, five-, and six-membered ring products

with moderate to excellent diastereoselectivity. The mechanism of these reactions

is not yet clear, but may involve either addition of a trifluoromethyl radical to

the alkene followed by oxidation and cyclization, or trifluoromethylcupration of

the alkene followed by C–O bond forming reductive elimination of the resulting

alkylcopper intermediate. These transformations constitute rare examples of metal-

catalyzed processes that generate C–CF3 bonds.

OH
R1

R2

+

2 mol % Pd2(dba)3
4 mol % S-Phos

NaOtBu, Toluene, 110 C
R3 Br

R3 = aryl, alkenyl

O

R1

R2
R3 13 examples

47 83% yield
2:1 to >20:1 dr

Scheme 13 Pd-catalyzed coupling of 2-(but-3-enyl)phenols with aryl or alkenyl bromides

OH

R
+

TIPS

Br 2 mol % Pd2(dba)3
4 mol % DPE-Phos
NaOtBu, toluene

65 70 C

OR
OR

1 example
88% yield

2:1 dr

1 example
80% yield

6:1 dr

7 examples
57 82% yield
7:1 to >19:1 dr

TIPS

O

TIPS

R

O

TIPS

R

OR

Scheme 14 Pd-catalyzed coupling of γ-hydroxyalkenes with triisopropylsilyl ethynyl bromide
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2.1.2 Metal-Catalyzed Reactions of Alkene-Appended Alcohols
with Arylboronic Acids and Arylsilanes

Zhang and Lloyd-Jones have independently developed Au-catalyzed alkoxyary-

lation reactions between phenylboronic acid [19] or phenyltrimethylsilane [20] and

γ- or δ-hydroxyalkenes (Scheme 17). The mechanism of these reactions appears to

involve initial oxidation of the Au(I) complex 30 to Au(III) complex 31 by selectfluor
(Scheme 18) [19, 21]. The Au(III) complex then binds to the alkene to afford 32,
which then undergoes anti-oxyauration to yield 33. Complex 33 is then intercepted

by phenylboronic acid or phenyltrimethylsilane to afford the observed tetrahy-

drofuran product. The Au-catalyzed alkene carboalkoxylation reactions proceed

in moderate to good chemical yield, but in contrast to most of the Pd-catalyzed

transformations described above (Sect. 2.1.1) the diastereoselectivities obtained in

Au-catalyzed reactions are quite low (ca. 1:1 dr). These low stereoselectivities

may be due to the outer-sphere alkene anti-oxyauration mechanism, which appears

to proceed through a less constrained transition state than the corresponding inner-

sphere syn-oxypalladation pathway for the Pd-catalyzed reactions (Scheme 3, above).

As a result, the differences in transition state energies leading to the two diaster-

eomers are relatively small in the Au-catalyzed reactions as compared to the

Pd-catalyzed transformations.

Falck has developed a Pd-catalyzed carboalkoxylation reaction between

arylboronic acids and β-hydroxyalkenes that generates 2-aryltetrahydrofuran products
(Scheme 19) [22]. The diastereoselectivity of these reactions is modest (ca. 1:1) in

most cases with the exception of those that generate 2,3-trans-disubstituted products

Scheme 15 Pd-catalyzed coupling of unsaturated alcohols and acids with hypervalent iodine

reagent 26

Scheme 16 Pd-catalyzed alkene alkoxytrifluoromethylation

Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene. . . 9



(16:1 dr). The mechanism of these reactions is believed to involve initial oxidative

heck arylation of the substrate alkene to afford a 4-arylbut-3-en-1-ol intermediate 34.
The conversion of this intermediate to the observed product is proposed to involve

oxidative addition of the O–H bond of 34 to provide 35 followed by 6-endo-
hydridopalladation to give 36 and then reductive elimination to yield the product.

This method complements the Pd- and Au-catalyzed carboalkoxylation reactions

described above, which all effect 1,2-addition of the O-atom and aryl/alkenyl/

alkynyl group to the alkene to afford 2-benzyltetrahydrofuran derivatives.

OH

R
+

2 mol % Ph3PAuCl
Selectfluor

CH3CN, 60 70 C

O
Ph

( )n

n = 1 2

Y

R

Y = B(OH)2 or TMS Y = B(OH)2: 6 examples, 35 75% yield, 1:1 dr
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Scheme 17 Au-catalyzed coupling of alkene-appended alcohols and acids with phenylboronic

acid or phenyltrimethylsilane
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Scheme 18 Mechanism of Au-catalyzed carboalkoxylation reactions

Scheme 19 Synthesis of 2-aryltetrahydrofurans via 1,1-carboalkoxylation of alkenes
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2.1.3 Metal-Catalyzed Reactions of Unsaturated Alcohols or Carboxylic
Acids Bearing Pendant Aryl Groups

A number of interesting transformations have been developed that involve

arene C–H functionalization as a key component of alkene carboalkoxylation.

These transformations alleviate the need for a halogenated arene electrophile,

although transformations reported thus far have described only the generation of

polycyclic products (as opposed to substituted monocyclic tetrahydrofurans). For

example, Buchwald has devised intramolecular alkene carboalkoxylation reactions

of 4-pentene-1-ol derivatives 37 bearing aryl groups at C3 (Scheme 20) [23].

These transformations provide tricyclic products 38 in good chemical yield with

perfect diastereoselectivity favoring generation of cis-fused tricyclic products. The

reactions appear to proceed via Pd(II)-mediated anti-oxypalladation followed by

C–H functionalization of the arene by the resulting alkylpalladium intermediate.

Stephenson has reported a closely related approach to the construction of

fused polycyclic tetrahydrofurans (Scheme 21) [24]. A variety of ring sizes

can be generated with moderate to excellent diastereoselectivity. Stephenson’s

reaction conditions are similar to those employed by Buchwald, except that in

the Stephenson system PhI(OAc)2 is employed as an oxidant as opposed to the

use of O2 by Buchwald. Interestingly, this change in reaction conditions appears

to lead to a change in mechanism, as Pd(IV) complexes are believed to be

intermediates along the catalytic cycle in the Stephenson reactions.

Chemler has developed Cu-catalyzed intramolecular alkene alkoxyarylation

reactions of substrates 39 and 41 that afford fused- or bridged polycyclic

tetrahydrofurans 40 and 42 in good yields with excellent diastereoselectivities

(Scheme 22) [25]. The transformations are believed to proceed via initial syn-
oxycupration of the alkene to give 43, which undergoes homolytic C–Cu bond

cleavage to provide an intermediate alkyl radical 44. This transient radical is then
captured by the pendant arene to generate the observed products. The use of

substrates bearing halogen “leaving groups” is not necessary, as the radical capture

step leads to the net substitution of an alkyl group for an aromatic H-atom.

Scheme 20 Buchwald’s Pd-catalyzed intramolecular alkene alkoxyarylation

Scheme 21 Stephenson’s Pd-catalyzed intramolecular alkene alkoxyarylation
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2.1.4 Cobalt-Catalyzed Reactions Between Alkene-Appended Alcohols
and Activated Alkenes or Alkynes

Hartung has illustrated that cobalt-catalyzed reactions between 4-penten-1-ol

derivatives and activated alkenes or alkynes provide a concise approach to the

construction of mono- and bicyclic substituted tetrahydrofurans (Scheme 23) [26].

These transformations proceed via a mechanism similar to that of the Chemler work

noted above (oxymetallation followed by free-radical formation). However, in

these cases the intermediate alkyl radical is captured in an intermolecular reaction

with the activated alkene or alkyne electrophile. The reactions proceed with good

control of stereochemistry around the tetrahydrofuran ring. However, most

products are generated as ca. 1:1 mixtures of diastereomers epimeric at the carbon

bearing the Z2 group. The presence of two activating groups on the alkene is

required in order to obtain satisfactory yields.

Scheme 22 Cu-catalyzed intramolecular alkene alkoxyarylation

Scheme 23 Co-catalyzed alkene alkoxyalkylation
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2.2 Metal-Catalyzed Alkene Alkoxycarboalkoxylation,
Alkoxyacylation, and Alkoxycyanation

The Pd-catalyzed alkoxycarboalkoxylation of 4-penten-1-ol derivatives with car-

bon monoxide and methanol was initially reported by Semmelhack in 1984 and has

been extensively studied by several groups (Scheme 24) [27–32]. These reactions

effect the net anti-addition of the substrate oxygen atom and a methoxycarbonyl

functional group across the double bond to provide tetrahydrofuran products bear-

ing a methyl ester at C10. High diastereoselectivity is obtained for the product of

anti-addition. However, modest stereocontrol is occasionally observed in reactions

of terminal alkene substrates bearing substituents on the tether between the alcohol

and alkene moieties. Nonetheless, many reactions are highly efficient, and this

methodology has been applied to the synthesis of several complex molecules

including natural products such as tetronomycin and goniothalesidol [33–40].

Further details on these types of reactions are described in a recent review [41].

In contrast to reactions of related substrates with halogenated carbon electrophiles

that involve syn-oxypalladation of a palladium alkoxide intermediate (Scheme 3), the

alkoxycarboalkoxylation reactions proceed via complexation of the Pd(II) catalyst to

the alkene to provide 45 followed by anti-oxypalladation to give 46 (Scheme 25).

Insertion of CO into the C–Pd bond of 46 provides 47, which is captured by methanol

to afford the ester product with concomitant generation of a Pd(0) complex. This

complex is then oxidized to Pd(II) by CuCl2 to complete the catalytic cycle.

Douglas has recently described Rh-catalyzed intramolecular alkoxyacylation

reactions of 2-allylphenol derived esters that afford dihydrobenzofuran or chroman

Scheme 24 Pd-catalyzed alkene alkoxycarboalkoxylation

Scheme 25 Mechanism of Pd-catalyzed alkoxycarboalkoxylation reactions
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products [42] (Scheme 26). The scope of this method is currently limited to

8-acylquinoline ester substrates, as the quinoline group is required to prevent

competing decarbonylation of intermediate rhodium complexes along the catalytic

cycle. In addition, the presence of an alkyl group at the internal alkene carbon

center (R1 6¼ H) is also needed to avoid competing β-hydride elimination side

reactions. However, the substrates are readily available and the transformations

proceed in good to excellent yield.

The intramolecular alkoxycyanation of 2-allylphenol-derived cyanates was

recently reported by Nakao [43] (Scheme 27). A dual catalyst system composed

of Pd2(dba)3/Xantphos and BPh3 was used to effect these transformations.

The BPh3 acts as a Lewis acid to activate the nitrile towards oxidative addition to

the Pd(0) catalyst, which then facilitates the formation of the C–N and C–C bonds.

Functional groups such as esters, ethers, and halogens are tolerated under these

reaction conditions. The transformation is effective for the generation of either

five- or six-membered heterocyclic products.

The mechanisms of the Rh-catalyzed alkoxyacylation and the Pd-catalyzed

alkoxycyanation reactions are similar, and both are initiated by oxidative addition

of the O–FG bond to the metal catalyst (Scheme 28). The resulting intermediate 48

Scheme 26 Rh-catalyzed intramolecular alkoxyacylation of 2-allylphenol-derived esters

O

R1( )n

n = 1 2

CN 10 mol % Pd2(dba)3
10 mol % Xantphos

20 mol % BPh3R

THF, 60 C

O

CN
R

13 examples
43 90% yield

( )n
R1

Scheme 27 Pd-catalyzed intramolecular alkoxycyanation of 2-allylphenol-derived cyanates

Scheme 28 Mechanism of metal-catalyzed alkoxyacylation and alkoxycyanation
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undergoes syn-migratory insertion of the alkene into the M–O bond to yield a new

complex 49. Reductive elimination from 49 then provides the heterocyclic product

with concomitant regeneration of the catalyst.

3 Metal-Catalyzed Alkene Carboamination Reactions

3.1 Metal-Catalyzed Alkene Aminoarylation, Aminoalkenylation,
and Aminoalknylation

3.1.1 Palladium-Catalyzed Reactions of Alkene-Appended Amines and
Related Nucleophiles with Halogenated Carbon Electrophiles

Synthesis of Pyrrolidines and Indolines

Palladium-catalyzed carboamination reactions between N-aryl-pent-4-enylamine

derivatives provide a concise and convergent approach to the stereoselective con-

struction of substituted pyrrolidines (Scheme 29) [44, 45]. The reactions proceed

through a mechanism analogous to that described above for Pd-catalyzed carboalk-

oxylation reactions between unsaturated alcohols and aryl/alkenyl halides (Scheme 3)

[46–50]. These transformations provide access to cis-2,5- and trans-2,3-disubstituted
pyrrolidines with good to excellent diastereoselectivity (usually 10:1 to >20:1 dr).

However, stereocontrol is modest in transformations that generate 2,4-disubtituted

products (ca. 2:1 dr). The reactions are effective with a range of aryl and alkenyl

bromide coupling partners. Aryl chlorides have also been employed as electrophiles,

although the scope is not as broad as with the corresponding aryl bromides [4]. Both

electron-rich and electron-poor N-aryl groups are tolerated on the substrate, although
in many instances the use of electron-rich N-aryl groups results in the formation of

small amounts of regioisomeric side products. Reactions of substrates bearing acyclic

internal alkenes provide complex mixtures of regioisomeric products that result from

competing β-hydride elimination side reactions. However, related transformations of

cyclic internal alkenes such as 50 proceed in good yield, and the selective synthesis of
different regioisomeric products such as 51 and 52 from the same substrate can be

accomplished by the use of an appropriate phosphine ligand [51].

Intramolecular Pd-catalyzed carboamination reactions of alkenes bearing both

a tethered aryl or alkenyl bromide and a pendant amine proceed in good yield

with good to excellent diastereoselectivity (Scheme 30) [9, 52]. Transformations of

substrates such as 53 provide pyrrolidine derivates 54 that bear attached carbocyclic
rings. In contrast, intramolecular reactions of 55 provide arene- or cycloalkene-

fused tropane derivatives 56. The cyclizations occur with no loss of optical activity
when enantiomerically enriched substrates are employed. The utility of the tropane-

forming reactions was demonstrated through a short synthesis of an NMDA antag-

onist related to the pharmaceutical lead compound MK-801 [52].
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Primary amines and anilines have not yet successfully been employed as

substrates in Pd-catalyzed carboamination reactions (to provide NH heterocycles),

as the rate of Pd-catalyzedN-arylation of these derivatives appears to be considerably
faster than the carboamination. However, this reactivity trend has been exploited

in one-pot tandem N-arylation/carboamination reactions (Scheme 31). The coupling

of two different aryl/alkenyl bromides with either 2-allylaniline or pent-4-enylamine

derivatives has been used for the generation of N-aryl-2-benzylindolines and

N-aryl-2-benzylpyrrolidines [53, 54]. High chemoselectivity was achieved through

an in-situ ligand exchange protocol that allows for modification of catalyst structure

and reactivity without the need for isolation of intermediates. Cascade intramolecular

N-arylation/intermolecular carboamination reactions between substrates such as 57 and
aryl chlorides provide a stereoselective route to benzo-fused pyrrolizidine derivatives

58 [55]. The ligand exchange procedure was not needed to obtain high selectivity in

reactions of 57 due to the inherent differences in reactivity between aryl bromides and

aryl chlorides.

Palladium-catalyzed carboamination reactions between aryl or alkenyl bromides

and N-boc, N-acetyl, or N-Cbz-protected pent-4-enylamine derivatives provide

Scheme 29 Synthesis of N-aryl pyrrolidines

Scheme 30 Intramolecular Pd-catalyzed carboamination of unsaturated N-aryl amines
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N-protected pyrrolidine derivatives in good yield with high stereocontrol

(Scheme 32) [56–59]. Diastereoselectivity trends in these reactions mirror those

described above for related N-aryl-pent-4-enylamine substrates; cis-2,5-disubsti-
tuted products are generated with >20:1 dr. In many instances Cs2CO3 can be

employed as the base in place of NaOtBu [58, 59]; this modification of reaction

conditions leads to dramatically enhanced substrate scope. Under these conditions,

a variety of functional groups are tolerated, and reactions of internal alkene

substrates can also be effected. These transformations have been applied

to the stereoselective synthesis of the natural products (+)-preussin [60] and

(�)-tylophorine [61].

A catalyst composed of Pd2(dba)3 and (R)-Siphos-PE has been used to effect

enantioselective carboamination reactions of N-boc-pent-4-enylamines (Scheme 33)

[62]. The reactions proceed in good chemical yield and provide products with

up to 94% ee. This catalyst has been used to achieve the key step in asymmetric

total syntheses of the natural products (+)-tylophorine and (+)-aphanorphine [63].

Scheme 31 Tandem N-arylation/carboamination reactions

Scheme 32 Synthesis of N-protected pyrrolidines

Scheme 33 Asymmetric synthesis of 2-(arylmethyl)pyrrolidines
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The Pd/Siphos-PE catalyst functions well in transformations of terminal alkene

substrates, but efforts to employ these conditions for reactions of internal alkene

derivatives have thus far been unsuccessful.

Pd-catalyzed carboamination reactions of oxazolidin-2-ones 59 bearing pendant

alkenes afford bicyclic carbamate products 60 that contain a 2,5-trans relationship

between the substituents on the pyrrolidine ring moiety (Scheme 34) [64]. These

reactions proceed through highly organized transition states in which ring strain is

minimized. The carbamate group can be hydrolyzed or reduced under standard

reaction conditions to afford 2,5-trans-disubstituted pyrrolidine products. The

starting materials can be prepared in enantiopure form in a few steps from readily

available amino alcohol precursors, and the carboaminations proceed with no loss

of optical purity. A related synthesis of bicyclic lactams 62 has also been achieved

by Pd-catalyzed carboamination reactions between aryl halides and 4-(but-3-enyl)

pyrrolidin-2-ones 61 (Scheme 35) [65]. The stereochemical outcome of these

transformations is analogous to that of the related oxazolidin-2-one substrates, and

stereoselectivities were uniformly high for all substrate combinations that were

examined.

Zhu has developed intramolecular carboamination reactions of unsaturated

carbamates and sulfonamides bearing pendant aryl iodides (Scheme 36) [66].

These transformations afford spirocyclic oxindole derivatives in good yield with

Scheme 34 Synthesis of bicyclic carbamates

Scheme 35 Synthesis of bicyclic lactams

Scheme 36 Synthesis of spirooxindoles
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up to >20:1 dr. The structure of the phosphine ligand has a significant influence on

the outcome of these reactions. The use of tBuMePhos provides satisfactory results.

However, many other ligands lead to formation of undesired side products resulting

from competing carbopalladation of the alkene. In contrast to most of the reactions

described above, which proceed through syn-aminopalladation pathways, these

transformations appear to result from anti-aminopalladation of the alkene.

Synthesis of Five-Membered Nitrogen Heterocycles That Contain

Two Heteroatoms

Palladium-catalyzed alkene carboamination reactions have also shown considerable

utility for the synthesis of a wide variety of five-membered nitrogen heterocycles that

contain two heteroatoms. For example,O-vinyl-N-boc-1,2-amino alcohols have been

coupled with aryl and alkenyl bromides to afford 1,3-oxazolidines in moderate to

good yield (Scheme 37) [67]. The products are obtained with good to excellent

diastereoselectivity, and the reactions occur with no loss of enantiopurity. These

transformations provide a new means of accessing cyclic N,O-acetals in which one

C–N bond and one C–C bond are generated (in contrast to classical condensation

routes to these molecules in which two carbon-heteroatom bonds are formed).

Palladium-catalyzed carboamination reactions between N-allylureas and aryl/

alkenyl bromides have been used for the stereoselective construction of substituted

imidazolidin-2-ones (Scheme 38) [68, 69]. The substrates are easily prepared in one

step from allylic amines and isocyanates. The reactions of internal alkene substrates

proceed stereospecifically with net syn-addition, and substrates that contain allylic

substituents are transformed to trans-4,5-disubstituted products with good to excel-

lent diastereoselectivity. A few examples of the synthesis of six-membered cyclic

ureas via this method have also been described, and this transformation was used as a

key step in the synthesis of the alkaloid natural product (+)-merobatzelladine b [70].

The asymmetric synthesis of imidazolidin-2-ones has been accomplished via

enantioselective Pd-catalyzed reactions of N-allylureas with aryl or alkenyl

bromides (Scheme 39) [71]. The enantioselectivity is dependent on the nature of

the aryl group on the cyclizing nitrogen atom, with highest selectivities obtained

using substrates bearing p-nitrophenyl groups. These transformations are mecha-

nistically related to the enantioselective pyrrolidine-forming reactions described

above (Scheme 33). However, the two reactions appear to proceed through different

enantiodetermining steps. The alkene aminopalladation step appears to be

enantiodetermining in the pyrrolidine-forming reactions, whereas the urea-forming

transformations likely involve enantiodetermining C–C bond-forming reductive

elimination.

Palladium-catalyzed carboamination reactions have shown considerable utility

for the formation of five-membered heterocycles bearing a heteroatom-heteroatom

bond. For example, Pd-catalyzed reactions between aryl/alkenyl bromides and

N-but-3-enyl hydrazine derivatives provide stereocontrolled access to 3,5-disubstituted
pyrazolidines (Scheme 40) [72]. The product stereochemistry can be controlled by
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either inclusion or omission of a protecting group on the internal (non-cyclizing,

N2) nitrogen atom. Substrates bearing N2-aryl or –boc groups are transformed

to trans-3,5-disubstituted products, whereas substrates bearing an unprotected

N2 atom (R ¼ H) are converted to cis-3,5-disubstituted pyrazolidines. The former

transformations proceed through transition states in which the R-group is

pseudoaxial to minimize allylic strain interactions between the R-group and the

N2-substituent. In contrast, the latter processes proceed with pseudoequatorial

orientation of the R-group to avoid developing 1,3-diaxial interactions.

A conceptually related synthesis of isoxazolidines has been achieved by Pd-

catalyzed carboamination reactions of O-but-3-enylhydroxylamines (Scheme 41)

[73]. These transformations generate 3,5-trans- and 3,4-trans-disubstituted isoxa-

zolidines with generally high diastereoselectivities (>20:1 in many cases). The

stereoselectivities obtained in these reactions are frequently superior to those obtained

N N

O

R R1

R4

R5

R3
N N

H

R2

O

R1R

R2R3

R4

+ R5 Br
32 examples
30 97% yield
2:1 to 20:1 dr

1 mol % Pd2(dba)3
2 mol % Xantphos

NaOt Bu, Toluene,110 C >

Scheme 38 Synthesis of imidazolidin-2-ones

Scheme 39 Asymmetric synthesis of imidazolidin-2-ones

Scheme 37 Asymmetric synthesis of 1,3-oxazolidines

Scheme 40 Synthesis of disubstituted pyrazolidines

20 J.P. Wolfe



using dipolar cycloaddition methods for isoxazolidine synthesis. Interestingly,

diastereoselectivities in these reactions are considerably higher than for related

carboalkoxylation reactions of N-but-3-enyl hydroxylamines described above

(Scheme 10). This effect appears to be due to the conformation of the N-boc-
hydroxylamines and the positioning of the boc-group in the transition state [73]. A

tandem N-arylation/carboamination sequence has been employed for the synthesis of

N-aryl-3-benzyl isoxazolidines. However, thus far the scope of these reactions is

limited to incorporation of two equivalents of the same aryl group (Scheme 42) [74].

Synthesis of Three-, Six-, and Seven-Membered Nitrogen Heterocycles

Although most Pd-catalyzed alkene carboamination reactions that have thus far been

developed lead to the formation of five-membered heterocyclic products, the synthe-

sis of smaller and larger-ring compounds has also been accomplished in a few cases.

For example, Oshima has employed Pd-catalyzed carboamination reactions between

allylic amines and aryl/alkenyl bromides for the generation of substituted aziridines

(Scheme 43) [75]. The scope of this method is currently limited to substrates bearing

two substituents adjacent to the N-atom of the substrates (R1, R2 6¼ H). Despite this

limitation, substrates that contain two different substituents at this position are

converted to trisubstituted aziridines with generally good levels of stereocontrol.

Palladium-catalyzed alkene carboamination reactions have been employed for the

stereoselective construction of two classes of six-membered heterocycles, both of

which contain two heteroatoms. The synthesis of cis-2,6-disubstituted piperazines 64
has been achieved via Pd-catalyzed coupling reactions of N-allyl-1,2-diamines 63
with aryl and alkenyl bromides (Scheme 44) [76, 77]. Substrates bearing an aryl

group on the cyclizing nitrogen-atom are transformed with high levels of diastereos-

electivity. However, analogous cyclizations of boc-protected substrates proceed with

low dr. A conceptually related synthesis of cis-3,5-disubstituted morpholines 66 from
O-allyl 1,2-amino alcohols 65 has also been described (Scheme 45) [78]. Both

substrates 63 and 65 can be prepared in a few steps from readily available enantiopure

Scheme 41 Synthesis of substituted isoxazolidines

Scheme 42 Synthesis of substituted isoxazolidines via tandem N-arylation/carboamination
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amino alcohols, and the cyclizations proceed without erosion of enantiopurity. The

generation of benzo-fused or cycloalkyl-fused derivatives is also feasible. Efforts to

extend these transformations to the generation of 2,3- or 2,5-disubstituted products

resulted in modest diastereoselectivity.

The preparation of one class of seven-membered heterocycles, saturated

1,4-benzodiazepines 68, has been achieved by Pd-catalyzed carboamination of

substrates 67 which are derived from 2-aminobenzylamine (Scheme 46) [79]. In

most instances the reactions proceed in good chemical yield, and 2,3-disubstituted

products are generated with excellent diastereoselectivity. In contrast with analogous

five-membered ring-forming transformations, which proceed through chair-like

transition states, the six- and seven-membered ring-forming reactions shown in

Schemes 44, 45, and 46 appear to proceed through boat-like transition states.

Synthesis of Nitrogen Heterocycles Bearing 2-Alkynylmethyl Groups

The synthesis of nitrogen heterocycles such as pyrrolidines, lactams, cyclic ureas,

and cyclic carbamates bearing 2-alkynylmethyl groups has been achieved by

Scheme 43 Synthesis of substituted aziridines

Scheme 44 Synthesis of disubstituted piperazines

Scheme 45 Synthesis of disubstituted morpholines

Scheme 46 Synthesis of saturated 1,4-benzodiazepines
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Pd-catalyzed carboamination reactions between N-boc-pentenylamine derivatives

and either triisopropylsily ethynyl bromide or hypervalent iodine reagent 26
(Schemes 47 and 48) [16, 80]. The mechanisms of these reactions are analogous

to those described above for related syntheses of 2-alkynylmethyl tetrahydrofurans

and lactones (Scheme 15). This method was employed as a key step in the synthesis

of the pyrrolizidine natural product trachelanthamidine [80].

3.1.2 Metal-Catalyzed Reactions of Alkene-Appended Amines and Related
Nucleophiles with Arylboronic Acids

Zhang and Toste have independently developed Au-catalyzed cross-coupling

reactions between aryl boronic acids and sulfonamides bearing pendant alkenes.

These transformations afford five- and six-membered nitrogen heterocycles in good

yield, although diastereoselectivities are modest in reactions of substrates that

contain substituents on the alkyl tether between the sulfonamide and the alkene

(Scheme 49) [19, 21, 81]. The reactions appear to proceed through a mechanism

that is similar to the one described above for related Au-catalyzed alkene carboalk-

oxylations between unsaturated alcohols and boronic acids (Scheme 18). However,

mechanistic studies performed by Toste indicate that in the carboamination

reactions the C–N bond is formed through syn-aminoauration rather than anti-
addition of the sulfonamide and the gold complex to the alkene. Moreover, the

reductive elimination step in the reaction of sulfonamide derivatives likely involves

a dinuclear gold complex [81].

Scheme 47 Pd-catalyzed coupling of γ-(N-boc)aminoalkenes with triisopropylsilyl ethynyl

bromide

Scheme 48 Pd-catalyzed coupling of unsaturated amides, ureas, and carbamates with hypervalent

iodine reagent 26
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3.1.3 Metal-Catalyzed Reactions of Unsaturated Amines and Related
Nucleophiles with Arenes or Alkenes Via Formal C–H Bond
Functionalization

Copper-Catalyzed Reactions

Chemler has developed a new approach to the carboamination of alkenes that effects

formal C–H functionalization of an arylsulfonamide in a C–C bond-forming event

[82, 83]. This method results in the conversion of alkene-tethered arylsulfonamide

substrates 69 to tricyclic sulfonamide products 70 in good yield (Scheme 50).

Substrates bearing substituents adjacent to the amino group are converted to

cis-2,5-disubstituted pyrrolidine derivatives with excellent diastereoselectivity

(�20:1 dr). However stereoselectivities are lower in reactions that provide 2,3- or

2,4-disubstituted products. The reactions are effective with terminal alkenes or

alkenes bearing a substituent at the internal carbon (1,1-disubstituted). However,

1,2-disubstitued alkenes do not undergo effective cyclization. The polycyclic

products of the carboamination reactions can be transformed to 2-benzylpyrrolidine

or -indoline derivatives via reductive cleavage of the sulfonyl group.

The carboamination reactions can also be conducted using catalytic amounts

(20 mol%) of Cu(OTf)2 and bipy in place of the copper carboxylate complex [84].

In these cases stoichiometric amounts of MnO2 are added to the reaction mixture to

re-oxidize the copper complex and complete the catalytic cycle. The mechanism

of the Cu-mediated or -catalyzed carboamination is similar to that of the related

Cu-catalyzed carboalkoxylation reactions described above (Scheme 22) and

involves syn-heterocupration (aminocupration in this case) to afford an intermedi-

ate alkylcopper species. This intermediate undergoes C–Cu bond homolysis to

generate an alkyl radical, which is then captured by the pendant aryl group of the

sulfonamide moiety. The use of amides or imides as substrates in the stoichiometric

Cu-mediated carboamination reactions is also feasible (Scheme 51) [85].

The use of a catalyst composed of Cu(OTf)2 and (R,R)-Ph-Box allows for the

enantioselective intramolecular carboamination ofN-(arylsulfonyl)-pent-4-enylamines

(Scheme 52) [86]. The transformations provide tricyclic products 71 with enantioselec-

tivities of up to 94% ee. The use of N-tosyl-2-allylaniline or N-tosyl-2-allylbenzylamine

Scheme 49 Au-catalyzed coupling of unsaturated sulfonamides with arylboronic acids
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as substrates leads to polycyclic indoline or tetrahydroisoquinoline products,

although enantioselectivities are diminished in these cases. The sulfonamide

products 71 can be converted to 2-benzylpyrrolidine derivatives with no loss of

enantiopurity via dissolving-metal reductive cleavage of the SO2 group. This

method has been applied to the asymmetric total synthesis of the alkaloid natural

product (S)-tylophorine [87].
The Cu-catalyzed alkene carboamination methodology developed by Chemler has

also been used to effect asymmetric desymmetrization of sulfonamide substrates 72
(Scheme 53) [88]. These reactions lead to the formation of benzo-fused indolizidines

NH

S
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N
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24 examples
20 73% yield

1:1 to >20:1 dr
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O
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O

20 mol % Cu(OTf)2
25 mol % bipy
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Scheme 50 Cu-catalyzed or Cu-mediated intramolecular carboamination reactions of unsaturated

sulfonamides

Scheme 51 Cu-catalyzed C–H activation/aminoarylation of unsaturated imides and amides
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Scheme 52 Cu-catalyzed asymmetric intramolecular carboamination reactions of unsaturated
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73 that bear quaternary carbon stereocenters. The products are generated with good to
excellent levels of asymmetric induction and essentially complete diastereoselectivity.

Chemler has recently developed a new asymmetric cross-coupling reaction

between styrene derivatives and sulfonamides bearing pendant alkenes that afford

2-allypyrolidines or 2-allylindolines in good yield with good to excellent enantios-

electivity (Scheme 54) [89]. The mechanism of these reactions is similar to other

Cu-catalyzed carboaminations and involves syn-aminocupration followed by

homolysis of the resulting Cu–C bond to generate an alkyl radical. This intermedi-

ate is captured by the styrene derivative, and the resulting radical then undergoes

oxidative loss of a hydrogen atom to provide the alkene product. The utility of this

method was illustrated through a concise synthesis of a 5-HT7 receptor antagonist.

Palladium-Catalyzed Reactions

Palladium catalysts have also shown good utility in alkene carboamination

reactions that involve C–H functionalization. For example, Yang (Scheme 55)

[90] and Zhu (Scheme 56) [91] have independently described Pd-catalyzed oxida-

tive intramolecular alkene aminoarylation reactions of N-aryl amide substrates

that effect C–H functionalization of the N-aryl moiety. The former transformations

lead to the generation of benzo-fused pyrrolizidine derivatives 74 in good yield

with excellent diastereoselectivity and a broad substrate scope. Mechanistic studies

by the Yang group suggest the reactions illustrated in Scheme 55 proceed via

syn-aminopalladation of the alkene followed by a subsequent C–H functiona-

lization reaction of the resulting Pd(II) complex. The transformations developed

by Zhu (Scheme 56) lead to the formation of spirooxindole products 75 in moderate

to good yield, although diastereoselectivities are low. In contrast to Yang’s

transformations, the mechanism of Zhu’s reaction is not entirely clear, but the use

of the relatively strong oxidant PhI(OAc)2 may facilitate the generation of reactive

intermediate Pd(IV) complexes.

Michael has reported the cross-coupling of unsaturated carbamates with aromatic

solvents such as benzene or toluene to afford 2-benzylpyrrolidines and related six- and

seven-membered heterocyclic products (Scheme 57) [92, 93]. These reactions pro-

ceed via an interesting mechanism involving initial anti-aminopalladation to generate

an alkylpalladium(II) complex 76, which is then oxidized to the analogous Pd(IV)

complex 77 by NFBS (N-flurobenzenesulfonamide). The highly reactive Pd(IV)

species effects the C–H activation of the arene solvent to provide 78, which undergoes

Scheme 54 Cu-catalyzed asymmetric carboamination reactions between unsaturated sulfonamides

and alkenes
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reductive elimination to generate the observed product. The transformations proceed

with generally good chemical yields, but diastereoselectivities are modest in reactions

of starting materials bearing substituents on the tether between the heteroatom and

the alkene.

Sigman has reported mechanistically distinct alkene carboamination reactions

between substrates 79 and nucleophilic heteroarenes such as indoles, indolizines,

and furans (Scheme 58) [94]. The reactions proceed via initial anti-aminopal-

ladation of the alkene to afford an intermediate benzylpalladium complex 81,
which then undergoes elimination to provide reactive quinone methide intermediate

82. The quinone methide is then captured by the nucleophilic arene component to

afford the observed product. These transformations provide substituted pyrrolidine

derivatives 80 in good yield with excellent diastereoselectivity and high enantios-

electivity. However, due to the mechanistic requirement for the formation of a

reactive quinone methide intermediate, these transformations appear to be limited

to phenol-derived substrates.
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Gold-Catalyzed Reactions

An intramolecular alkene aminoarylation sequence of N-allylureas that effects C-H
functionalization in the C–C bond-forming event has been described by Zhang and

coworkers (Scheme 59) [95]. The combination of an Au(I) phosphine complex and

the oxidant selectfluor is utilized to effect these transformations, which provide

tricyclic products 83 in good yield with moderate diastereoselectivity. Although the

reactions employ a gold catalyst system, their mechanism is quite similar to that of

Michael’s reactions that are described above (Scheme 57) and appears to involve

sequential anti-aminoauration, oxidation, and C–H functionalization.

3.1.4 Metal-Catalyzed Cascade Cyclization Reactions of Polyunsaturated
Amines and Related Nucleophiles

Cascade cyclization reactions of amines bearing two alkenes provide a concise

approach to the construction of polycyclic heterocycles. For example, the Pd-

catalyzed reaction of aryl bromides with N-allyl-2-allylaniline and related

substrates 84 provides benzo-fused heterocycles 85 in moderate to good yield

(Scheme 60) [96]. Reactions that generate pyrrolizidine derivatives proceed with

good diastereoselectivity, although stereocontrol is less efficient in transformations

that yield indolizidine derivatives. These reactions proceed via aminopalladation

of the o-allyl group to provide 86 followed by subsequent carbopalladation of the

N-allyl group to yield 87. Reductive elimination from this latter intermediate then

generates the aryl-carbon bond and affords the product 85. The nature of the
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Scheme 58 Alkene carboamination via Pd-catalyzed aminoarylation/quinone methide capture
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phosphine ligand is extremely important, as many other catalysts lead to formation

of N-allyl-2-benzylindoline side products that result from competing reductive

elimination from intermediate 86 prior to the carbopalladation of 86–87.
A cascade oxidative cyclization reaction of N-(2-allylphenyl)acrylamide

derivatives 88 has been developed by Yang that provides benzo-fused pyrrolizidine

derivatives 89 via intramolecular alkene carboamination (Scheme 61) [97]. The key

alkene insertion steps of these reactions are related to those of the transformations

illustrated above in Scheme 60, although oxidative addition and reductive elimination

steps are not involved in the conversion of 88–89. Instead, this process is initiated
by syn-aminopalladation of one alkene to generate 90 followed by carbopalladation

of the second alkene to yield 91. The alkylpalladium intermediate 91 then undergoes
β-hydride elimination to afford the product 89. Substitution is tolerated on both

alkenes as well as at the allylic position of the substrate. High levels of asymmetric

induction can be obtained in these transformations when tBuQUOX is employed as a

chiral ligand for the palladium catalyst. Under these conditions products are formed

as single diastereomers with 80–98% ee (Scheme 61 and 62) [98]. Substitution on the
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allyl group is well tolerated in the Pd/tBuQUOX-catalyzed reactions. However,

asymmetric reactions of substrates bearing substitution on the acrylamide moiety

(R2 6¼ H) proceed in modest yield (45–55%).

3.1.5 Palladium-Catalyzed Oxidative Carboamination Reactions of Alkenes
with Allylic Sulfonamides

Stahl has developed an interesting carboamination reaction between alkenes and

allylic sulfonamides that affords substituted pyrrolidine derivatives (Scheme 63)

[99]. These reactions proceed via initial intermolecular aminopalladation of the

alkene with the sulfonamide to provide 92 followed by intramolecular carbopal-

ladation to give 93. A subsequent β-hydride elimination from intermediate 93 then

affords the pyrrolidine product. The reactions are effective either with styrene

derivatives or with butyl vinyl ether as the alkene component. Chemical yields in

these transformations are good, although diastereoselectivities are modest.

3.2 Palladium-Catalyzed Alkene Aminocarboalkoxylation
and Aminocarboamidation

The first efficient and chemoselective Pd-catalyzed alkene aminocarbonylation

reactions were reported by Tamaru in 1985 [100] and have been employed for the

construction of a variety of nitrogen heterocycles bearing pendant carbonyl-

containing functional groups (Scheme 64) [101–106]. Reactions of O-allyltosyl-
carbamates and related substrates 94 that contain a single nucleophilic heteroatom

lead to the formation of monocyclic five- or six-membered ring products such as 95
that contain an ester functional groups. In contrast, substrates bearing two nucleo-

philic components, such as ureas 96, are transformed to bicyclic products such as

97. Most reactions proceed with good chemical yield and provide products resulting
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from anti-addition to internal alkenes with high diastereoselectivity. The mecha-

nism of these reactions is similar to the related Pd-catalyzed alkene alkoxycarboalk-

oxylations described above (Scheme 25). Enantioselective variants of these

reactions have also been described, although enantioselectivities in most cases are

modest [107–109]. This method has been applied to the synthesis of a number of

natural products, including anatoxin-A [110], calvine [111], pinidinone [112], and

C6 homologues of 1-deoxynojirimycin [113]. Further details on these types of

reactions are described in a recent review [41].

4 Conclusion and Future Outlook

Over the past 10 years great advances have been made in the field of heterocycle

synthesis via metal-catalyzed alkene carboamination and carboalkoxylation

reactions. The scope of these transformations has expanded considerably since

initial reports of these reactions, and good progress has been made in the develop-

ment of enantioselective variants. Nonetheless, there remain many challenges for

the future, including the development of improved methods to access small (three to

four membered) or large (six to eight membered) rings, and the invention of

improved chiral catalysts with broad substrate scope. Additional development of

methods that involve cascade reactions or C–H bond functionalization processes

are also likely to continue to attract interest and research efforts, as are applications

of these transformations to complex molecule synthesis.
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Abstract The development of metal-catalyzed additions of nitrogen and oxygen

moieties across alkenes to form saturated nitrogen and oxygen heterocycles is

described herein. This chapter covers the most recent advances in osmium and

palladium-catalyzed alkene oxidation and amination reactions and also summarizes

the emerging areas of copper, iron, and gold-catalyzed alkene oxidations and

aminations. In most examples, moderate to excellent levels of diastereoselectivity,

either by stereospecific addition across the alkene or substrate-directed

diastereocontrol, have been achieved. This enables the synthesis of nitrogen and

oxygen-containing heterocycles with predictable control of stereogenic centers. In a

few cases, asymmetric catalysis has been achieved, allowing for the synthesis of

chiral nitrogen and oxygen-containing heterocycles from achiral substrates. In

many of these oxidation reactions, use of pre-oxidized substrates or stoichiometric

amounts of added oxidants are required to achieve the catalytic cycles, which

frequently involve higher oxidation states of the metal catalysts.
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1 Alkene Diamination

The synthesis of a saturated nitrogen heterocycle and concomitant introduction of

two nitrogen functionalities across an alkene can be enabled in a very direct and

efficient manner using transition metal catalysis. Alkene diamination, initially

explored in the 1970s with stoichiometric metal promoters, has experienced a

resurgence of effort in the last decade [1–4]. Transition metals employed to catalyze

olefin diamination reactions for the synthesis of saturated heterocyclic compounds

include palladium, copper, nickel, and gold (vide infra). Methods for alkene

diamination that do not use metals have also been recently developed [5–13], but

these reactions fall out of the scope of which will be covered in this chapter. This

review will focus on contributions made in the last decade, with emphasis on

stereoselective metal-catalyzed alkene diamination protocols.

1.1 Palladium-Catalyzed Alkene Diaminations

The first Pd-catalyzed alkene diamination was reported in 2005 and enabled the

regio- and diasteroselective synthesis of cyclic ureas from conjugated dienes

(Scheme 1) [14]. The regioselectivity is thought to result from the required forma-

tion of a π-allyl palladium intermediate (Scheme 1). Displacement of [Pd(0)] with

the second amine generates the product and oxidation of [Pd(0)] with benzoquinone

regenerates the [Pd(II)] catalyst.

That same year, a Pd-catalyzed intramolecular diamination of unactivated,

isolated alkenes was reported to occur in the presence of stoichiometric PhI(OAc)2
(2.2 equiv.) [15]. This reaction generated fused 5,5-, 6,5-, and 7,5-bicyclic ureas

in high yields from unsaturated N-tosylureas (Scheme 2).

Amechanism involving a [Pd(II)]/[Pd(IV)] catalytic cyclewas proposed (Scheme 3)

[15, 16]. The authors proposed a sequence involving syn-aminopalladation, oxida-

tion of [Pd(II)] to [Pd(IV)], N–Pd disassociation and C–N bond formation via

SN2 substitution at carbon. An alternative mechanism that would give the same
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stereochemical result has been supported by density functional theory (DFT)

calculations and entails anti-aminopalladation, N–Pd association, oxidation to

Pd(IV) and reductive elimination to give the N–C bond [17].

Scheme 1 Pd-catalyzed diamination of conjugated dienes [14]
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Scheme 2 Pd-catalyzed diamination of isolated alkenes [15]
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Using a similar protocol, bis-amination of internal alkenes for the synthesis of

bisindoles was also achieved (Scheme 4) [18]. It is noteworthy that a metal-free

alkene diamination has been reported to occur with similar substrates and reagents

to give largely identical products, but in the absence of a palladium catalyst [8].

Other oxidants were subsequently explored to enable the intramolecular

Pd-catalyzed alkene diamination. In 2009, a Pd-catalyzed intra/intermolecular

diamination that used N-fluorobenzenesulfonamide (NFBS) as both the oxidant

and external amine source was reported [19]. Both γ-unsaturated amides and

carbamates underwent the exo-selective reaction in good to excellent yield. A

Pd(II)/Pd(IV) catalytic cycle involving trans-aminopalladation and C–N formation

via SN2 substitution was also proposed for this alkene diamination sequence

(Scheme 5) [19, 20].

Copper(II) bromide has also been used as the stoichiometric oxidant for the

Pd-catalyzed diamination of internal acrylates (Scheme 6) [21–23]. Complemen-

tary diastereoselectivities were obtained based upon the substrate structure: ureas

gave cis-substituted cyclic urea products from trans-acrylates [23] and sulfamides

gave trans-substituted cyclic sulfamide products from trans-acrylates [22]. In the

urea substrate case, the proposed mechanism is cis-aminopalladation followed by

SN2 displacement of [Pd], activated by CuBr2. In the sulfamide case, the proposed

Scheme 4 Diamination of internal alkenes [18]

Scheme 3 Proposed Pd-catalyzed diamination mechanism [15, 16]

42 S.R. Chemler and D.A. Copeland



mechanism is cis-aminopalladation, displacement of [Pd] with bromide and

subsequent C–N bond formation via bromide displacement.

The catalytic asymmetric alkene diamination has been a long sought-after goal

in asymmetric catalysis. The first catalytic enantioselective diamination was

reported in 2007. This reaction forms cyclic ureas via Pd-catalyzed intermolecular

diamination of conjugated dienes using di-tert-butyldiaziridinone as a pre-oxidized
diamine source [24]. The reaction is general for alkyl and aryl-substituted dienes

and was regioselective for diamination at the more substituted, internal alkene of

the diene (Scheme 7). Yields were good to excellent and enantioselectivity levels

were generally high. Chiral phosphoramidite ligands proved superior in imparting

enantioselectivity to the products. The mechanism involves oxidative addition of

Scheme 5 Pd-catalyzed diamination with NFBS as oxidant [19, 20]
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Pd(0) into the N–N bond of the diaziridinone, addition of the N–Pd(II) complex to

the internal alkene of the diene and concomitant π-allyl Pd formation and finally

C–N bond formation via Pd(0) displacement (Scheme 7) [25].

This method was further advanced by the demonstration that the diene could be

formed in situ from terminal alkenes (Scheme 8) [26]. This C–H diamination

reaction could be performed neat and provided similar products to those shown in

Scheme 7 (vide supra).

1.2 Copper-Catalyzed Alkene Diaminations

Since 2005, the diamination of alkenes has been similarly pursued using less expen-

sive copper complexes as reaction promoters and catalysts [27]. Highly diastereo-

selective intra/intramolecular and intra/intermolecular copper(II)-promoted alkene

diaminations have enabled the synthesis of pyrrolidines and indolines from

Scheme 7 Pd-catalyzed enantioselective diamination of dienes [24, 25]

Scheme 8 Catalytic enantioselective C–H diamination [26]
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unsaturated sulfamides, sulfonamides, amides, and ureas (Scheme 9) [27–29]. Some

examples of tetrahydroisoquinoline-forming diaminations have also been reported

(Scheme 9). The reactions were performed with Cu(OAc)2 [27], Cu(neodecanoate)2
[28], and Cu(2-ethylhexanoate)2 [29] as reaction promoter. Reactions with

Cu(2-ethylhexanoate)2 in PhCF3 generally proved most efficient [29].

The intra/intermolecular alkene diamination was rendered catalytic in [Cu(II)]

with sulfonamides as the intermolecular amine component and MnO2 (3 equiv.) as

the stoichiometric oxidant (Scheme 10) [29]. A promising catalytic enantioselective

intra/intermolecular alkene diamination using [Cu((R,R)-Ph-box)](OTf)2 as the

catalyst was also reported (Scheme 10).

The reaction mechanism, based on reaction diastereoselectivity and isotopic

labeling studies [29], is thought to involve cis-aminocupration, homolysis of the

resulting C–[Cu(II)] bond, addition of the resulting carbon radical to [Cu(II)],

amine coordination and reductive elimination of the [Cu(III)] intermediate to

form the new C–N bond and [Cu(I)] (Scheme 11). In the catalytic reactions,

MnO2 is thought to oxidize the extruded [Cu(I)] back to [Cu(II)] [29].

In 2012, more electron-rich unsaturated amidine substrates were shown to

undergo copper-catalyzed intramolecular alkene diamination to form bi- and

Scheme 9 Copper(II)-promoted alkene diaminations [27–29]
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tricyclic amidines (Scheme 12) [30]. Both terminal and internal alkenes underwent

the reaction efficiently.

The proposed mechanism, consistent with product diastereoselectivity, involves

two-electron oxidation of the amidine followed by a concerted [3+2]-type annula-

tion (Scheme 13) [30].

The copper-catalyzed intermolecular diamination of terminal alkenes and con-

jugated dienes has been reported for the synthesis of cyclic ureas, sulfamides, and

guanidines, where diaziridinones, thiadiaziridines, and (cyanimino)-diaziridines,

respectively, were used as both diamine source and oxidant (Scheme 14) [31–34].

A catalytic, enantioselective diamination (up to 74% ee) of the terminal alkene of

conjugated dienes was achieved [35, 36], making the method complementary to

analogous Pd-catalyzed diene diaminations (vide supra, Sect. 1.1).

It was further found that depending upon the substrate and catalyst structure, the

regioselectivity in the diamination of conjugated dienes can be tuned for either the

internal or terminal alkene of the diene (compare Schemes 14 and 15) [33, 38].

Mechanistically, it was determined that the diamination can occur via a more

Scheme 10 Cu(II)-catalyzed intra/intermolecular diamination [29]

NH

N
Ts

NHPh

Cu(OR)2

R = 2-ethylhexanoate
N
Ts

[Cu(II)] N
Ts

[Cu(II)]

N
Ts

N
Ts

[Cu(III)]

NHPh
-[Cu(I)][Cu(II)]

PhNH2

Ts
N
Ts

[Cu(II)]

-[Cu(I)]

Scheme 11 Proposed mechanism of the Cu(II)-promoted alkene diamination [29]
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radical-type mechanism, selective for the terminal alkene, or via a more electro-

philic, Cu(III)-type mechanism, selective for the internal alkene (Scheme 15) [33].

1.3 Nickel-Catalyzed Alkene Diaminations

Nickel complexes have been used to catalyze the intramolecular diamination of

unsaturated sulfamides, ureas, and guanidines (Scheme 16) [4, 39]. Terminal and

1,1-disubstituted alkenes underwent the reaction with good efficiency, and PhI(OAc)2
was used as the stoichiometric oxidant.

Scheme 12 Cu-catalyzed diamination of unsaturated amidines [30]
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DMF, 60 °C, O2 (1 atm), 23 h
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Scheme 13 Proposed mechanism for the unsaturated amidine diamination [30]
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Scheme 14 Copper-catalyzed diamination of alkenes and dienes [31, 32, 34, 35, 37]
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Scheme 15 Regioselectivity and mechanism of the copper-catalyzed diamination of dienes

[33, 38]
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1.4 Gold-Catalyzed Alkene Diaminations

Gold-catalyzed alkene diamination was first reported in 2009 [40]. This exo-selective
reaction provided 5,5-fused bicyclic ureas from terminal and 1,1-disubstituted

γ-alkenyl-N-tosylureas in high yields (Scheme 17).

One example of a net cis-diamination of an internal alkene was also presented

(Scheme 18). These reactions require PhI(OAc)2 (1.2 equiv.) as stoichiometric

oxidant and an Au(I)/Au(III) catalytic cycle was proposed (Scheme 18). The

product stereochemistry is consistent with trans-aminoauration followed by SN2

displacement of [Au(III)] by the second amine moiety.

NH
O2S NHCO2Bn

Ph

Ph

R
[Ni(acac)2] or NiCl2 (10 mol%)

PhI(OAc)2 (2 equiv)

NaOAc (2 equiv)
DMF, 40 °C, 18 h

N
S
O2

NCO2Bn

R
Ph

Ph

R = H, 92% (with [Ni(acac)2])
R = Me, 89% (with [Ni(acac)2])
R = Ph, 72% (with [NiCl2 ])

NH

TBSO

O2S NHCO2Bn

as above with [Ni(acac)2]

74%
N

S
O2

NCO2Bn

TBSO

dr > 20:1

NH

NHTs

as above with [Ni(acac)2]

at rt
N

NTs

X X
X = O, 81%
X = NtBu, 70%

Scheme 16 Nickel-catalyzed intramolecular alkene diamination [4, 39]

Scheme 17 First Au-catalyzed alkene diamination [40]
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A complementary, largely endo-selective Au-catalyzed alkene diamination reac-

tion was reported in 2011 (Scheme 19) [41]. In this reaction, Selectfluor (2 equiv.)

was used as the stoichiometric oxidant to enable the Au(I)/Au(III) catalytic cycle.

Nitriles served as the source of the second (external) amine nucleophile, providing

amide-functionalized piperidine products.

Two possible mechanistic scenarios were proposed (Scheme 20). In the first,

endo-selective trans-aminoauration followed by Au(I)/Au(III) oxidation, nitrile

complexation, hydration and reductive elimination provide the piperidine product.

In the second, exo-selective (or possible endo-selective) trans-aminoauration

followed by Au(I)/Au(III) oxidation and intramolecular SN2 displacement provide

Scheme 18 Proposed Au-catalyzed diamination mechanism [40]
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[(PPh3)AuSbF6] (5 mol%)
NaHCO3 (1 equiv)

R2CN, H2O (2 equiv)
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Scheme 19 Endo-selective Au-catalyzed diamination [41]
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an aziridinium ion intermediate that can undergo SN2 attack by the nitrile via a

Ritter-type mechanism [41].

2 Alkene Aminoalkoxylation

Metal-catalyzed alkene aminoalkoxylation reactions furnish various nitrogen and

oxygen-containing heterocycles directly and oftentimes stereoselectively. The

development of a number of aminoalkoxylation methods has been reviewed

[42–45]. While numerous diastereoselective metal-catalyzed ring-forming alkene

aminoalkoxylations have been reported (vide infra), catalytic enantioselective

alkene aminoalkoxylations are more rare. The synthesis of chiral nitrogen

heterocycles with good to excellent levels of enantiomeric excess from achiral

alkene substrates is an active and growing topic of asymmetric catalysis (vide

infra). It should be noted that a number of aminoalkoxylation reactions promoted

by hypervalent iodine species and other non-metal containing compounds have also

been reported recently but are outside the scope of this review [6, 46–52].

2.1 Osmium-Catalyzed Alkene Aminoalkoxylation

Perhaps the most developed diastereoselective ring-forming alkene aminoalk-

oxylation method is the osmium-catalyzed tethered aminohydroxylation [43, 53].

In these reactions, both high cyclic and acyclic diastereocontrol has been achieved

(vide infra). The tethered alkene aminohydroxylation reaction was introduced in

response to a perceived need to better control the regioselectivity of an intermolec-

ular Os-catalyzed alkene aminohydroxylation process (Scheme 21) [44, 54].

The tethered aminohydroxylation reaction involves regiospecific, diastereo-

selective intramolecular addition of an amine to a pendant olefin and concomitant

introduction of an alcohol from an exogenous hydroxyl source, e.g. H2O. It was

initially introduced in 2001 and involved the cyclization/aminohydroxylation of

Scheme 20 Mechanistic alternatives for the endo-selective Au-catalyzed diamination [41]
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allylic carbamates (Scheme 22) [55, 56]. The use of a chiral (DHQ)2PHAL ligand

improved the reaction yield with some substrates but, unlike in the intermolecular

aminohydroxylation shown in Scheme 21, did not render the reactions

enantioselective. The reoxidant for this reaction is the N-chlorocarbamate salt,

formed in situ from reaction of t-BuOCl and the primary carbamate in the presence

of NaOH. The mechanism is thought to involve formation of Os(VIII) from Os(VI)

and intramolecular [3+2] cycloaddition followed by osmate ester hydrolysis

(Scheme 22). Under these reaction conditions, chlorination of the alkene could

become a competing process and the lifetime of the chlorocarbamate could be short,

requiring excess of the carbamate and reagents to be used at times [57].

To address the drawbacks presented by the chlorocarbamate intermediate,

improvements were made to the reaction. The first improvement involved the use

of hydroxycarbamate derivatives that eliminated the need for additional oxidant

(Scheme 23) [57, 59]. External ligand was also no longer required in these

Scheme 21 Intermolecular catalytic enantioselective aminohydroxylation [54]

Scheme 22 Tethered aminohydroxylation range and mechanism [55, 56, 58]
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reactions, and different hydroxylamine groups were optimal for different kinds of

substrates, e.g. carbamates vs amides (Scheme 23).

Subsequently, an experiment using stoichiometric Os(VI) in a tethered alkene

aminohydroxylation revealed that the Os(VI) oxidation state is capable of promoting

the reaction (Scheme 24) [61]. This enabled the development of a second process

improvement involving the use of vicinal hydroxyl-functionalized secondary carba-

mate and sulfonamide substrates that could employ dual chelation to Os(VI) and the

use of more mild oxidants, trimethylamine N-oxide (TMO), pyridine N-oxide (PNO),
and p-nitropyridineN-oxide (NPNO), used in the presence of Bronsted and Lewis acid
catalysts, to enable the reoxidation of Os(IV) to Os(VI) [61–63].

2.2 Palladium-Catalyzed Alkene Aminoalkoxylation

A number of Pd-catalyzed alkene aminoalkoxylation reactions that result in the

formation of nitrogen and oxygen heterocycles, e.g., pyrrolidines and

tetrahydrofurans, were reported from 2005 to 2010 [64–67]. Higher oxidation state

organopalladium intermediates were invoked in the majority of the proposed reaction

mechanisms (vide infra). In these examples added oxidant was essential to enabling

cycles catalytic in Pd(II), and ones that avoided potentially competing β-hydride
elimination pathways.

Two novel methods for intramolecular palladium-catalyzed alkene aminoalk-

oxylation were independently reported in 2005 [64, 65]. The first method involved

Scheme 23 Pre-oxidized substrates in the tethered aminohydroxylation [57, 59, 60]

Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Diamination. . . 53



the use of PhI(OAc)2 (2 equiv.) as the stoichiometric oxidant and the reaction was

performed at rt in CH3CN using catalytic Pd(OAc)2 [64]. Regioselectivity (exo vs

endo) in the cyclization reaction was largely dependent upon the substrate’s

structure; N-tosylamides and N-tosylcarbamates cyclized onto pendant alkenes

with high exo-selectivity, while an N-sulfonylalkyl-enes cyclized with poor

regioselectivity in the case of monosubstituted alkenes and with endo selectivity

in the case of 1,1-disubstituted alkenes (Scheme 25).

Scheme 25 Regioselectivity of Pd-catalyzed aminoacetoxylation [64]
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Scheme 24 Diastereoselective pyrrolidine synthesis [61–63]
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E- and Z-phenyl-substituted internal alkenes underwent highly exo-selective
Pd-catalyzed aminoacetoxylations; these reactions also occurred with high stereo-

specificity (Scheme 26). Based on the observed diastereoselectivity, a catalytic cycle

involving trans-aminopalladation, oxidation of Pd(II) to Pd(IV) with PhI(OAc)2
and subsequent reductive elimination was proposed (Scheme 26). In 2006, an

entirely intermolecular alkene aminoacetoxylation was subsequently reported to

occur under similar reaction conditions [68].

A second Pd-catalyzed aminoalkoxylation published in 2005 involved exo cycliza-
tion of a 3-hydroxy-5-hexenylcarbamate at 35�C in CH2Cl2 in the presence of catalytic

PdCl2 and CuCl2 (2 equiv.) as the stoichiometric oxidant (Scheme 27) [65]. This

aminoalkoxylation is doubly intramolecular since the substrate’s hydroxyl group serves

as the oxygen source for the terminal alkene carbon. The mechanism is thought to

involve aminopalladation followed by CuCl2-assisted oxidative C–O bond formation.

An intra/intermolecular Pd-catalyzed alkene aminoalkoxylation using alcohol

solvents as the oxygen source andN-fluorobenzenesulfonamide (NFBS) as the oxidant
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O Ph
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Scheme 26 Diastereoselectivity and mechanism [64]

Scheme 27 Doubly intramolecular aminoalkoxylation [65]
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(2 equiv.) was reported in 2010 [66]. This reaction gave excellent exo-selectivity and
moderate yields of ether-substituted pyrrolidines using Pd(TFA)2 or PdCl2(MeCN)2
as catalyst, depending upon the nucleophilic alcohol (Scheme 28). Interestingly, the

selectivity could be switched in favor of the endo regioisomer when the reaction was

performed with PdCl2(MeCN)2 as catalyst in the polar solvent DMF (Scheme 28).

The authors proposed exo-selective aminopalladation, oxidation of the resulting

organopalladium(II) intermediate to a Pd(IV) species and subsequent nucleophilic

displacement with external alcohol to be the operating mechanism [66]. In the case

of the endo-selective reactions, the authors speculated an intermediate aziridinium

ion is formed by intramolecular displacement (neighboring group participation) of

Pd(IV). Preferential attack at the more substituted carbon then provides the piperi-

dine product [66].

A more unusual, tetrahydrofuran-forming inter/intramolecular Pd-catalyzed

aminoalkoxylation of homoallylic alcohols was reported in 2007 [67]. In this

reaction, Pd(OAc)2 (10 mol%) served as catalyst, PhI(OAc)2 (3 equiv.) was the

oxidant and AgBF4 (20 mol%) as additive improved the reaction efficiency. The

reaction was generally diastereoselective, favoring formation of 3,4-anti-disubsti-

tuted tetrahydrofurans (Scheme 29). The reaction was more efficient with aryl

rather than alkyl substituents at the substrate’s allylic position.

The proposed reaction mechanism, based upon observed product stereochemis-

try, involves cis-aminopalladation to give a tethered organopalladium(II) interme-

diate, Pd(II) to Pd(IV) oxidation with PhI(OAc)2, and subsequent reductive

elimination to form the C–O bond (Scheme 30).

2.3 Gold-Catalyzed Aminoalkoxylation

The regioselective synthesis of piperidines from 4-pentenylsulfonamides via gold-

catalyzed aminoalkoxylation in the presence of Selectfluor as stoichiometric oxidant

was reported in 2011 [41]. The reaction occurred with high endo regioselectivity

and was most efficient for terminal alkenes. Both alcohols and ethers were formed,

depending on the reaction solvent (Scheme 31).

Scheme 28 Complementary regioselective aminoalkoxylations [66]
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The mechanism, supported by isotopic labeling studies, is thought to involve

endo-selective anti-aminoauration followed by oxidation of the organo-Au(I) inter-

mediate to an organo-Au(III) intermediate and reductive elimination to secure the

C–O bond (Scheme 32).

2.4 Copper-Catalyzed Ring-Forming Alkene Aminoalkoxylation

A number of copper-catalyzed alkene aminoalkoxylations have been reported. A

range of reaction mechanisms and copper oxidation states have been invoked in

these diverse transformations where the substrate structure, reagents, and copper

catalysts largely dictate the reaction pathway.
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Pd(OAc)2, cis-Aminopalladation

PhI(OAc)2

oxidation

O
LnPdIV

Ph

NPhth

reductive elimination

Scheme 30 Proposed mechanism of the Pd-catalyzed aminoalkoxylation [67]
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Scheme 31 Au-catalyzed aminoalkoxylation scope [41]

Scheme 29 Tetrahydrofuran-forming aminoalkoxylation [67]
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The first copper-catalyzed alkene aminoalkoxylation for the synthesis of

pyrrolidines from 4-pentenyl-O-benzoyl-hydroxylamines was reported in 2002

(Scheme 33) [69]. The reaction was largely regioselective (endo vs exo cyclization)
and diastereoselective. A mechanism involving Cu(I)-catalyzed nitrogen radical

formation, addition to the alkene and subsequent Cu(II)-assisted benzoylation of the

resulting carbon radical was proposed.

The first catalytic enantioselective intramolecular alkene aminoalkoxylation was

reported in 2008 [70]. Chiral indolines and pyrrolidines were synthesized from

γ-alkenylsulfonamides using catalytic [Cu((4R,5S)-di-Ph-Box)](OTf)2 in the presence
of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as alkoxyl source and O2

(1 atm, balloon) as oxidant (Scheme 34) [70]. Removal of the N-sulfonyl group

NHTs
Ph

Ph

[(PPh3)AuSbF6] (5 mol%)
Selectfluor (2 equiv)
NaHCO3 (1 equiv)

CH3CN/H2O (20:1)
80 °C, 2 h
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trans
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Ph

[AuIII]

D

OH

Scheme 32 Proposed mechanism involves an Au(I)/Au(III) cycle [41]

Scheme 33 Regioselective and diastereoselective alkene oxyamination [69]

58 S.R. Chemler and D.A. Copeland



and either N–O reduction to the corresponding alcohol or N–O oxidation to

the corresponding aldehyde was demonstrated. A mechanism involving cis-
aminocupration [Cu(II) oxidation state] across the alkene via a chair-like transition

state, subsequent C–[Cu(II)] homolysis and direct quenching of the resulting carbon

radical with TEMPO was proposed [70, 71].

The copper-catalyzed enantioselective aminooxygenation reaction mechanism

was further probed using kinetics and isotope effect studies [71]. The reaction was

found to be first order in [Cu], first order in amine substrate and zero order in TEMPO.

These data, along with an inverse secondary kinetic isotope effect (see Scheme 35),

supported the alkene addition as the rate-determining step of the reaction.

The enantioselective aminoalkoxylation was subsequently optimized for catalyst

loading, time and enantioselectivity, and was demonstrated on a multigram scale

(Scheme 36) [71, 72].

The copper(II) 2-ethylhexanoate-catalyzed and promoted diastereoselective

synthesis of disubstituted pyrrolidines [73], cyclic ureas [74], and isoxazolidines

Scheme 35 Kinetic analysis of the enantioselective aminoalkoxylation [71]
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Scheme 34 Enantioselective copper(II)-catalyzed aminoalkoxylation [70]
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[75] via alkene aminoalkoxylation has also been reported. The copper(II) acetate-

promoted aminoxygenation of alkenylimines and amidines has also been described

[76]. Representative examples are shown in Scheme 37.

An in-depth mechanistic analysis of the indoline-forming copper(II)

2-ethylhexanoate-promoted aminooxygenation revealed the reaction is 1/2 order

in [Cu], 1/2 order in sulfonamide substrate, and zero order in TEMPO (Scheme 38)

[77]. The kinetics are consistent with involvement of a pre-equilibrium step

wherein the copper(II) carboxylate dimer is converted to a monomeric species

upon complexation with the sulfonamide. An inverse secondary KIE was observed

in the alkene addition step, supporting its role as the rate-determining step of the

reaction. The existence and viability of an R2N–[Cu(II)] intermediate along the

reaction pathway was supported by reaction kinetics and EPR spectroscopy.
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Scheme 37 Diastereoselective copper(II)-catalyzed aminoalkoxylations [73–75]

Scheme 36 Multigram scale optimized aminooxygenation reactions [71, 72]
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The diastereoselective synthesis of morpholines via a copper(2-ethylhexanoate)2-

promoted alkene oxyamination was reported in 2012 (Scheme 39) [78].

The oxyamination is a less common transformation; it is thought to initiate with

cis-oxycupration across the alkene in analogy with a recently reported alkene

carboetherication reaction [78, 79]. Homolysis of the carbon–copper(II) bond followed

by recombination of the carbon radical with copper(II) in the presence of a primary

sulfonamide provides a transient organocopper(III) intermediate that, upon reductive

elimination, provides the C–N bond. The reaction was general for a number of

alkenol substrates and external amine sources [TsNH2,MsNH2, 2-trimethylsilylethyl-

sulfonamide (SESNH2), benzamide and NaN3].

Copper-catalyzed intramolecular alkene aminoalkoxylation reactions can also

be conducted if PhI(OAc)2 is used as the stoichiometric oxidant [80, 81]. These

reactions tend to occur at room temperature and oxidation of copper(I)/copper(II) to

copper(III) is thought to occur prior to alkene aminocupration. In 2010, 4-pentenyl-

sulfonamides were shown to undergo both endo and exo cyclization pathways

where terminal alkenes favored the former and internal alkenes favored the latter

pathway (Scheme 40) [80]. Carbocation formation and hydride shift appeared to

have occurred in one instance (Scheme 40, Eq. d).
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98%
dr > 20:1

TsN
O

NHSES

72%
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Scheme 39 Morpholine-forming aminoalkoxylation mechanism and scope [78]

Scheme 38 Kinetic analysis of the copper(II)-promoted aminoalkoxylation [77]
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N-Allylamidines also undergo intramolecular copper-catalyzed aminoace-

toxylation in the presence of PhI(OAc)2 as oxidant [81]. Terminal and 1,1-disubsti-

tuted alkenes underwent the aminoacetoxylation reaction efficiently (Scheme 41).

NH
Ns

Cu(CH3CN)4PF6 (10 mol%)
PhI(OAc)2 (1.5 equiv)

K2CO3 (1 equiv), CH2Cl2, rt
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Scheme 40 Aminooxygenation via Cu(III) [80]

N

NH
Ph

Ph

Cu(OAc)2 (15 mol%)
1,10-phenanthroline (15 mol%)

K3PO4 (1 equiv)

PhI(OAc)2 (1.2 equiv)
DMF, rt, 20 h

86%

N

N
Ph

Ph
with 2,2'-methylene

-bis[(4R,5S)-4,5-
diphenyl-2-oxazoline
as ligand: 40% yield,

48% ee

N

N
Ph

Ph

CuIII

OAc
OAc

N

N CuIII

Ph

Ph AcO OAc

OAc

Cu(OAc)2
PhI(OAc)2

N

N
Ph

Ph
OAc

Me

72%

N

N

Ph
OAc

Br
76%

N

N
Ph

OAc

71%

N

N

Ph
OAc

S 83%

Scope

Scheme 41 Aminoacetoxylation of N-allylamidines [81]
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Conversion of the cyclic adducts to acyclic diaminoalcohols was demonstrated. The

proposed mechanism (Scheme 41) involves copper-amine complexation and cop-

per oxidation with PhI(OAc)2 to give an R2N–copper(III) intermediate.
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Scheme 42 Copper(II)-catalyzed aminoalkoxylations using oxaziridines [82–84, 86]
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Aminocupration and subsequent reductive elimination then secures the C–O bond.

When a chiral bis(oxazoline) ligand was used, a promising 48% ee was obtained.

The ligand-based asymmetric induction is a strong indication that an

aminocupration step is involved in the reaction mechanism.

The intermolecular copper(II)-catalyzed aminoalkoxylation of alkenes via activa-

tion of N-sulfonyl oxaziridines was first reported in 2006 (Scheme 42) [82]. Styrenes

had the highest reactivity and a range of cyclic aminals were synthesized in good yields

[82–85]. Hydrolysis of the aminal and removal of the sulfonyl group could be achieved

to reveal the respective aminoalcohols with amine-bearing stereocenters. The catalytic

enantioselective aminoalkoxylation of styrenes was achieved with moderate enantios-

electivities [86].Anon-concertedmechanism involving generation of a benzylic radical

was proposed based on stereochemical trends and radical trapping experiments [83].

2.5 Iron-Catalyzed Alkene Aminoalkoxylation

An Fe-catalyzed oxyamination of alkenes withN-sulfonyloxaziridine was reported in
2010 [87]. This reaction gives complementary regioselectivity to the analogous

copper-catalyzed aminooxygenation reaction summarized above in that the reaction

generates an oxygen-bearing stereocenter. Both terminal and internal styrenes were

reactive and dienes and alkyl-substituted terminal alkenes also underwent

oxyamination (Scheme 43). As in the analogous copper-catalyzed reaction (vide

supra), mixtures of diastereomers epimeric at the aminal carbon were obtained.

The Fe-catalyzed reaction was rendered enantioselective in 2012 (Scheme 44)

[88]. For the enantioselective reaction, styrenes and 1,1-disubstituted styrenes and

1-substituted dienes were the best substrates while internal alkenes proved unreactive.

These reactions occurred with excellent enantioselectivity and significant preference

Scheme 43 Iron-catalyzed alkene aminoalkoxylation [87]
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for the cis aminal diastereomer was observed. A mechanism for the oxyamination

reaction has not yet been proposed.

3 Alkene Dialkoxylation

Metal-catalyzed alkene dialkoxylation has been used in the synthesis of

tetrahydrofurans, lactones, tetrahydropyrans, dioxanes, and morpholines. Some of

these methods have been reviewed previously [89, 90].

3.1 Palladium and Copper-Catalyzed Alkene Dialkoxylation
Reactions

The palladium(II)-catalyzed intramolecular 1,4-alkoxyacetoxylation of dienes for

the synthesis of spirocyclic tetrahydrofurans and tetrahydropyrans was first

reported in 1991 (Scheme 45) [91, 92]. The mechanism is thought to involve

trans-oxypalladation to form a π-allyl intermediate. In the absence of excess

nucleophiles, the intermediate palladium(II) acetoxy complex is thought to undergo

a cis migration (reductive elimination) to yield the major 1,4-trans diastereomer.

The analogous synthesis of fused-ring tetrahydropyrans was reported in 2004

[93]. Both the 1,4-trans and 1,4-cis diastereomers can be obtained selectively in

several cases (Scheme 46). While the 1,4-trans diastereomer forms in the absence

of external nucleophile, in the presence of LiOAc and catalytic LiCl, the 1,4-cis
diastereomer is favored, presumably due to SN2-type attack of the π-allylpalladium
intermediate with acetate ion.

The synthesis of chiral tetrahydrofurans and a tetrahydropyran via an

enantioselective palladium(II)-catalyzed intramolecular alkene dioxygenation

Scheme 44 Enantioselective iron-catalyzed aminoalkoxylation [88]
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using molecular O2 as the terminal oxidant was reported in 2009 (Scheme 47) [94].

The reaction mechanism is thought to involve in situ formation of an ortho-quinone
methide followed by subsequent addition of an exogenous nucleophile, e.g., MeOH

[95]. In this reaction, CuCl was included as a rate-accelerating additive but is not

thought to be the primary catalyst.

Scheme 46 Cis- and trans-selective diene 1,4-alkoxyacetoxylation [93]

[Pd]

OH

Pd(OAc)2 (5 mol%)
benzoquinone (2 equiv)

Li2CO3 (3 equiv)

acetone:HOAc (4:1)
20 °C, 24 h (86%)

O

AcO

>98% trans

O

AcO

"cis migration"

OH as above

82%

O

AcO
>98% trans

[Pd(II)]

Scheme 45 Palladium-catalyzed 1,4-alkoxyacetoxylation of dienes [91, 92]
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In 2008 and 2010, two independent research groups reported Pd(II)-catalyzed

intramolecular alkene dialkoxylation reactions for the synthesis of tetrahydrofurans

and lactones using PhI(OAc)2 as the terminal oxidant in the presence of HOAc

(Table 1, entries 1 and 2) [96, 97]. Both groups hypothesized that the Pd(II)/Pd(IV)

catalytic cycle was involved in the reaction mechanism. An analogous, copper(II)-

catalyzed intramolecular alkene dialkoxylation using PhI(OAc)2 was also reported

in 2010, where a Cu(III) intermediate was invoked in the catalytic mechanism

(Table 1, entry 3) [98]. A subsequent report in 2011 indicated that PhI(OAc)2 under

acidic conditions can provide similar product distributions (Table 1, entry 4),

thereby calling into question the role of the Pd(II) and Cu(II) species in reactions

that employ PhI(OAc)2 under acidic conditions [99].

A copper(II) 2-ethylhexanoate-promoted alkene dialkoxylation was subse-

quently reported to occur under basic conditions (Scheme 48) [78]. The role of

the copper species in promoting this reaction is less ambiguous given the absence of

OH OH

N
N

O

Pd(MeCN)2Cl2 (4 mol%)
CuCl (8 mol%)

(S)-iPrQuinox (14 mol %)

KHCO3, MeOH (5 equiv)
THF/toluene, O2 (1 atm, balloon)

rt, 3 h (72%)

i-Pr

(S)-i-PrQuinox =

HO
O

OMe

98:2 er
10:1 dr

OH OH
as above, 24 h

50%

OMe

94:6 er
6:1 dr

OHO

O

O

via MeOH

[Pd(II)]
[Pd]

Scheme 47 Enantioselective Pd-catalyzed dialkoxylation [94]

Table 1 Intramolecular endo-selective alkene dialkoxylations [96–99]

Entry Catalyst Conditions Yield (%) dr

1 [Pd(dppp)(H2O)2](OTf)2 (2 mol%) H2O, rt, 72 h 78 1.1:1

2 [Bis(NHC)Pd(H2O)2](OTf)2 (4 mol%) H2O, rt, 60 h 60 1.5:1

3 Cu(OTf)2 (10 mol%) 80�C, 16 h 80 1.3:1

4 HOTf (5 mol%) 50�C, 72 h 72 1.2:1
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additional reactive species [78]. The reaction was highly diastereoselective, and

alkene addition was proposed to occur via a cis-oxycupration mechanism in

analogy with an alkene carboetherification reaction proposed to occur via a similar

reaction mechanism under related reaction conditions [79].

3.2 Cobalt-Catalyzed Alkene Dialkoxylation Reactions

2,5-Trans-disubstituted tetrahydrofurans can be synthesized from 4-pentenols using

catalytic amounts of Co(II) complexes in the presence of t-butyl peroxide in the

presence of O2 (1 atm) [100, 101]. The method has been optimized for ease of

catalyst/ligand removal by use of the water soluble N-methylpiperazine (3,5,5-

dimethyl-1-(4-methylpiperazine-1-yl)hexane-1,2,4-trione (nmp) ligand (Scheme 49)

[101]. The reaction mechanism is thought to involve a carbon radical intermediate

which adds to O2 to form the final C–O bond [102].

3.3 Osmium-Catalyzed Alkene and Diene Dialkoxylations

Variants of osmium-catalyzed alkene dihydroxylation [103] have been reported for

the synthesis of lactones [104–106]. Examples of lactone synthesis proceeding via

enantioselective alkene dihydroxylation and in situ lactonization are shown below

(Scheme 50) [105, 106].

Osmium has also been used to catalyze the stereoselective synthesis of

2,5-cis-tetrahydrofurans from 1,5-dienes (Scheme 51) [107]. Initial intermolecular

alkene dihydroxylation then facilitates a tethered, intramolecular dihydroxylation

process [63].

Scheme 48 Copper(II)-promoted alkene dialkoxylation [78]
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3.4 Ruthenium-Catalyzed Diene Dialkoxylations

RuO4 (derived from RuCl3) has been used to promote and catalyze the oxidation of

1,5-, 1,6-, and 1,7-dienes to the corresponding tetrahydrofurans, tetrahydropyrans,

and oxepanes [108]. Some examples are shown below (Scheme 52).
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Scheme 50 Lactones via enantioselective Os-catalyzed dihydroxylation [105, 106]

Scheme 49 Mukaiyama aerobic oxidative cyclization [101]
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Abstract Oxygen and nitrogen containing heterocyclic compounds are some of the

most important and prominent structures found in biologically active natural and

synthetic products, thus their synthesis is of paramount importance to the chemical

community. One particularly important route to the synthesis of these structures is that

of Wacker-type oxidative cyclizations. Palladium-catalyzed oxidative cyclizations

represent an efficient and simple procedure for the synthesis of a variety of heterocy-

clic structures. The catalytic system can be fine-tuned to promote different oxidative

transformations and to induce asymmetry in to the cyclized products, either via the use

of chiral ligands or by manipulating chirality present in the starting substrate.
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Ac Acetyl

Ar Aryl

Bn Benzyl

Boxax Binaphthyl-2,20-bis(oxazoline)
Bu Butyl

dba Dibenzylideneacetone

DIPEA Diisopropylethylamine

DME Dimethoxyethane

DMF Dimethylformamide

DMSO Dimethyl sulfoxide

equiv Equivalent

Et Ethyl

h Hour(s)

i-Pr Isopropyl

Me Methyl
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MOA Trimethyl orthoacetate

Mol Mole

MS Molecular sieves

NHC N-heterocyclic carbene
Ns Nosyl

OAc Acetoxy

Ph Phenyl

p-Tol para-Tolyl
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pyrox Pyridine-oxazoline

quinox 2-(4,5-Dihydro-2-oxazolyl)quinoline

rt Room temperature

s Second(s)
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78 N.A. Butt and W. Zhang



1 Introduction

The selective Pd(II)-catalyzed oxidation of molecules in organic chemistry is of

significant importance to the chemical community [1–4]. Asymmetric oxidation

chemistry utilizing palladium catalysts has had an enormous impact on organic

chemistry, simplifying reaction procedures for the synthesis of a range of

compounds, particularly for the preparation of heterocycles.

Heterocycles are an integral part of many biologically active natural and syn-

thetic products. A number of methodologies and protocols exist for the synthesis of

such systems. There has been considerable interest in aerobic oxidation catalysts to

prepare heterocycles via oxidative bond forming chemistry; one of the most

prominent protocols beingWacker-type cyclization processes [5, 6]. The traditional

Wacker process was developed by Wacker-Chemie for the oxidative coupling of

ethylene and water to produce acetaldehyde (Scheme 1). The process typically

involves a catalyst (usually Pd(II)), an olefin (ethylene), a nucleophile (H2O), and

an oxidant (Cu(II)/O2) [1].

The Wacker process has been successfully applied to the synthesis of a variety of

heterocyclic structures via the use of palladium-catalyzed reactions. Originally,

stoichiometric quantities of palladium salts were required for the cyclization of

alkenyl nucleophiles. More recently Wacker-type catalytic systems have been devel-

oped utilizing direct dioxygen catalysis in the presence/absence of other co-oxidants

and ligands [1, 2]. In particular, coordinating nitrogen ligands are often used to

promote Wacker-type oxidative cyclizations. Types of ligand range from simple

heterocycles such as pyridine and sparteine to more complicated structures such as

N-heterocyclic carbene (NHC) ligands. Different catalytic systems show great ver-

satility, in that they can be tuned to promote different oxidative transformations

(Scheme 2) [1]. In addition, asymmetric Wacker-type reactions have been developed

to synthesize otherwise difficult to obtain chiral heterocycles. The cyclization

products usually generate a new stereogenic center; the stereochemical outcome of

which can be controlled by varying the catalytic system [3].

In this chapter we will focus on the Pd-catalyzed Wacker-type oxidative cycli-

zation reactions of hydroxy- and amino-alkenes for the synthesis of oxygen and

nitrogen containing heterocycles. Discussions will include C–O and C–N bond

formation for the preparation of achiral and chiral heterocycles via aliphatic and

aromatic oxygen and nitrogen nucleophiles. The mechanistic details of these

reactions will be discussed in the final section of this chapter.

2 C–O Bond Formation

Cyclic ethers and lactones are prevalent in biologically active and medicinally

important compounds. The synthesis of such systems has attracted considerable

attention. These heterocyclic rings can be readily prepared via Wacker-type
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cyclization processes and have been utilized in the synthesis of many natural

products for 5- and 6-membered ring O-heterocycle formation [7–9].

2.1 Achiral Heterocycles

2.1.1 Alcohol Nucleophiles

In 1976, γ,δ-unsaturated alcohols were cyclized to a diastereoisomeric mixture of

2-vinyltetrahydrofurans with a Pd(OAc)2–Cu(OAc)2 catalyst system under an O2

atmosphere [8]. En route to the synthesis of homoallylic amine 3 from allylic

carbamate 1, Hiemstra et al. utilized a Pd(II)-catalyzed oxidative cyclization to

NuH

Nu

PdII

Nu

Nu

OMeO

R

Nu
R

CO2Et
b -H

elimination CO2Et

CO,
MeOH

R R

R

Scheme 2 Typical uses for Pd-catalyzed oxidative cyclizations [1]

H C CH2 2

CH2

CH2

PdII

PdII

OH

H2O

H+

Pd0

PdII

2 Cu+

2 Cu2+

1/2 O2
+2 H+

H2O

O

H Me
H+

Scheme 1 The original Wacker process developed by Wacker-Chemie [1]
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generate vinyl substituted oxazolidines 2 [10]. The cyclization has preference for

the 5-exo cyclization mode with no double bond isomers being formed (Scheme 3).

The use of DMSO enhances the regioselectivity of alkene formation. Similar

procedures for cyclizations involve replacing stoichiometric Cu(OAc)2 with other

oxidative additives and reducing catalyst loadings [11, 12].

Palladium-catalyzed Wacker-type cyclizations can be utilized on a variety of

different substrates. α-Alkenyl/α-allyl-β-diketones undergo a PdCl2(MeCN)2 oxi-

dative alkoxylation (via attack of the enolic oxygen on the Palladium complexed

olefin) to form 2,3,5-substituted furans [13]. A stoichiometric amount of oxidant

(CuCl2 or quinone) is required for the cyclization to proceed. Less reactive α-allyl-
β-ketoesters fail to undergo cyclization.

Wacker-type cyclizations can be applied to the synthesis of carbohydrates and

indolizinone-based compounds [14, 15]. C-vinyl furanosides have been prepared

from γ,δ-olefinic alcohols via a Pd(OAc)2–NaOAc–O2/DMSO system [15]. Five-

membered rings are preferentially formed using this catalytic system with the

β-hydride of the side chain usually being eliminated.

Stoltz’s pioneering work on Wacker-type cyclizations has allowed for the meth-

odology to be performed in nonpolar solvents such as toluene [16]. This enabled

ligands to be used for direct dioxygen-coupled palladium-catalyzed cyclizations.

The conditions are applicable to primary alcohols, phenols, and carboxylic acids

(Table 1) [17]. Pd(TFA)2 was used because of its strong counterion effect.

2.1.2 Phenol Nucleophiles

Palladium(II)-induced intramolecular cyclizations of alkenyl phenols have been

extensively reported. The first example of the oxidative cyclization of ortho-allyl
phenols using stoichiometric Pd was reported in 1973 [18]. After 2 years, the first

catalytic example of the cyclization of 2-allyphenols into 2-substituted benzofurans

via the use of Pd(OAc)2 and Wacker conditions (i.e., using a cuprate salt and

molecular oxygen) was reported [19]. The regiochemical outcome of the cycliza-

tion (5-membered versus 6-membered ring formation) is affected by the electron

density of the palladium species and the type of palladium catalyst [20–22]. For

example, 2H-1-benzopyran derivatives have been prepared from O-allylic phenols
using Pd(dba)2 and Pd(OAc)2 catalysts in DMSO and air as the only reoxidant [22].

The oxidative cyclization of 2-allylphenols has been thoroughly investigated by

Bumagin and Stoltz. Bumagin synthesized a number of benzofuran derivatives

using a catalytic system of Pd(OAc)2 and Cu(OAc)2 in moist DMF [23]. En route

N

Me

Boc

MeO2C OH

N

OMeO2C

Boc

Pd(OAc)2 (0.1 eq)
Cu(OAc)2 (3 eq)

DMSO, 70 oC, 2 h
OH

NHBoc
1. LiOH (1.5 eq)

MeOH
2. -2e, MeOH

3. HCl, H2O
4. NaOH, H2O

1 2 3

Scheme 3 Hiemstra synthesis of homoallylic amine via a Wacker-type cyclization [10]
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to investigating the feasibility of enantioselective Wacker cyclizations using phenol

derivatives, Stoltz performed an aerobic palladium-catalyzed cyclization of

2-allylphenol derivatives using the nonpolar solvent toluene [16, 17]. The use of

DMSO, commonly used in Wacker cyclizations, precludes the use of ligands for

enantioselective syntheses because of its highly donating nature as a ligand for

palladium. The use of the electron deficient Pd(TFA)2 and pyridine ligand with

Na2CO3 as a stoichiometric base provided benzofurans in good yields [16, 17].

Electron-rich and deficient phenols are both excellent substrates for this reaction

with the former undergoing rapid cyclization under the aforementioned conditions

(Table 2).

2.1.3 Carboxylic Acid Nucleophiles

The palladium-catalyzed cyclization of alkenioic acids represents a useful and

efficient procedure for the synthesis of lactone-containing molecules. Hayasaka

first reported the synthesis of simple alkenyl lactones via the cyclization of alkenoic

acids with palladium(II) salts [24]. A catalytic cyclization of alkenoic acids using Pd

(OAc)2 and a reoxidant (Cu(OAc)2 or only O2) was successfully developed by

Larock whereby disubstituted alkenes react most rapidly [25]. The reaction

conditions are applicable to a range of simple substrates with some cyclized products

being obtained in greater than 90% yields (Table 3). This particular methodology is

useful for the synthesis of isocoumarin-based products (Table 3, entry 5), of which in

previous syntheses using a palladium chloride-based methodology cyclized to a 3:1

mixture of isocoumarin and 3-methylene phthalide [25]. The methodology

Table 1 Stoltz’s cyclization of alcohol nucleophiles using a catalyst system consisting of 5 mol%

Pd(TFA)2, 20 mol% of pyridine, 2 equiv. of Na2CO3, 500 mg/mmol of 3 Å MS, 1 atm O2, in

toluene (0.1 M) at 80 �C [17]

OH
O

OH
O

OH

O

OH

O

substrate product time yield

3 h

10 h

7.5 h

20 h

87%

93%

69%

60%
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developed by Stoltz utilizing a pyridine ligand and Pd(TFA)2 catalyst can reduce

reaction times of cyclizations involving carboxylic acids [17].

As mentioned above, carboxylic acid-bearing alkenes can be cyclized to a number

of 6-membered ring systems [26–30]. Yudin developed a palladium-catalyzed oxida-

tive activation of arylcyclopropanes to prepare chromene substances [30]. The elec-

tronic character of cyclopropane is close to that of olefins with the orbitals of C–H

bonds having approximately 33% s-character, and the C–C bonds 17% s-character

[30]. This alkene-like character allows for the facile bonding of a Pd species to the

cyclopropane ring system. Products such as 7 and 9 can be obtained in moderate yield

via ring opening of 4 with a PdCl2 catalyst (Scheme 4). A Wacker-type cyclization

using a reoxidant such as CuCl2 in dioxane gives the desired products [30].

Table 2 Stoltz’s oxidative cyclization of alkenyl phenols with 5 mol% of Pd(TFA)2, 20 mol% of

pyridine, 2 equiv. of Na2CO3, 500 mg/mmol of 3 Å MS, 1 atm O2, 80
�C in toluene (0.1 M) [17]

R

OH O

R

OMe
MeO

MeO OH O

OMe
MeO

MeO

MeO

OH O

OMe
MeO

OH O

OH O

OH
O

R

OH O

R

R

R = t-Bu 25 min, 90%

R = OMe 15 min, 89%

R = COMe 25 h, 93%

R = Br 24 h, 33%

R = Me 20 min, 85%

R = OMe 40 min, 80%

10 min, 86%

2 h, 93%

25 min, 80%

3 h, 74%

75 min, 85%

Substrate Product Substate Product

R = Me 20 min, 99%

R = H 20 min, 95%

R
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Table 3 Larock’s conditions for alkenoic acid Wacker-type cyclizations: 0.5 mmol of alkenoic

acid, 1.0 mmol of NaOAc, and 5 mol% of Pd(OAc)2 in 10 mL of DMSO under 1 atm of

oxygen [25]

CO2H

O
O 24 h, 25 86%

CO2H

O
O 24 h, 25 90%

CO2H
O

O 24 h, 80 91%

CO2H
O

O

72 h, 80 71%

CO2H
O

O

48 h, 80 78%

Substrate Product time, temp (°C) yield

1.

2.

3.

4.

5.

CO2H

PdCl2

CO2H

PdCl2

OH

O

O

O

O

O

PdClLn

O

O

Wacker
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Scheme 4 Cyclopropane ring opening of 4 followed by a Wacker-type cyclization [30]
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2.2 Chiral Heterocycles

2.2.1 Alcohol Nucleophiles

A commonly used method to induce asymmetry in a catalytic reaction is to use

chiral ligands. Some of the most commonly used ligands for asymmetric Wacker-

type reactions are spiro-bis(isoxazoline) (SPRIX) ligands [31–33]. The Sasai group

designed and synthesized novel spiro bis(isoxazoline) (SPRIX) ligands possessing a

chiral spiro skeleton and two isoxazoline rings for enantioselective Wacker-type

cyclizations of alkenyl alcohols [31]. The oxidative cyclization of alkene alcohol 10
using the catalytic system shown in Scheme 5 gave cyclized product 11 in up to

99% ee using the optimized conditions [31], and some minor dihydropyran by-

products resulting from β-elimination of the Pd complex. SPRIX ligands have also

been applied to the catalytic cyclization of 2-alkenyl-1,3-diketones, with the

6-endo-trig cyclization giving rise to chromene derivatives [33].

Gouverneur used substrate chirality to synthesize 2,3-dihydro-4H-pyran-4-one

derivatives from chiral β-hydroxyenone with no detectable racemization [34]. Using

the optimized conditions shown in Scheme 6 [34], reactions occurred with up to

97% ee. Interestingly, no reaction occurred when a substituent was present on the

vinyl carbon adjacent to the carbonyl group. A similar procedure to synthesize a

series of multisubstituted chiral dihydropyranones and furanones from syn/anti-
α0,β0-dialkyl-β0-hydroxyenones via a palladium(II) catalyzed diastereoselective syn-

thesis was also developed [35]. The use of a biphasic solvent system (PBS/toluene)

can help improve chemical yield and prevent epimerization of the stereocenters [35].

2.2.2 Phenol Nucleophiles

Asymmetric Wacker-type cyclizations of 2-allyl phenols have been well studied. In

1978 Hosokawa and Murahashi demonstrated the first catalytic, asymmetric oxida-

tive cyclization of phenol olefins [36] and used these findings to further probe the

catalytic mechanism of oxidative cyclization reactions [37–39]. Z-(But-2-enyl)
phenol was converted to optically active 2,3-dihydro-2-vinylbenzofuran with

12% optical yield using a catalytic amount of (�)-β-pinene. An excess of β-pinene
inhibited the cyclization because of its ready ability to coordinate with the Pd

species, thus preventing coordination of the substrate [37, 38].

HO OBz

Pd(OCOCF3)2, 12

4 equiv. p-benzoquinone
CH2Cl2; MeOH (1:1), 0 oC

O OBz

H

O N N O

H H
i-Pr

i-Pr

i-Pr

i-Pr

(M,S,S )-i-Pr-SPRIX 12
10 11

Scheme 5 Oxidative cyclization of alkene alcohol 10 using a SPRIX ligand [31]
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Several chiral ligands (17–20) have been developed for the asymmetric oxida-

tive cyclization of phenol alkenes (Fig. 1). Hayashi developed chiral bis(oxazoline)

ligands (boxax) 17 consisting of a 1,10-binaphthyl backbone, which when used in

conjunction with palladium bis(triflouroacetate) and p-benzoquinone gave

dihydrobenzofurans and benzodihydropyrans in up to 97% ee [40–42]. The trifluor-

oacetate palladium catalyst is required for the reaction to proceed in a facile manner

as the trifluoroacetate plays a prominent role in the activation of the coordinated

olefin [40]. The catalytic palladium/boxax complex adopts a square-planar config-

uration with the nitrogen atoms of the oxazoline rings and oxygen atoms of the

trifluoroacetate groups being attached to the palladium [41]. A number of boxax

ligands have been designed in order to try and increase the reactivity and enantios-

electivity [42].

N

O

R1 N

O

R1 N

O

O

N
N

O

O

N
R
R R

R

R = t-Bu
R = i-Pr
R = Ph

boxax 17
18

N

O

O

N
R
R

R = t-Bu
R = i-Pr
R = Ph

19

N

O

O

N
R
R

O

O

(CH2)n

R = t-Bu
R = i-Pr
R = Ph

20

R1 = Pr, R2 = H
R1 = H, R2 = i-Pr
R1 = Ph, R2 = H
R1 = CH2Ph, R2 = H

R2

R2

Fig. 1 Commonly used

chiral ligands for asymmetric

Wacker-type cyclizations

[40–47]

R' R

OOH
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RR'

R' R
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PdCl2, CuCl
Na2HPO4 (10 mol%)

DME, O2
50 oC, 12 h

PdCl2, CuCl
Na2HPO4 (10 mol%)
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50 oC, 12 h
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Scheme 6 Gouverneur’s

synthesis of chiral

dihydropyranones [34]
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The Stoltz group has performed a number of reactions to synthesize dihydroben-

zofurans using a simple sparteine ligand [17]. Similar enantioselective oxidative

cyclizations of alkenyl phenols can be performed using molecular O2 to reoxidize

the palladium species in the absence of other external oxidants. This procedure

represented the first extension of a direct dioxygen-coupled racemic reaction to

aerobic asymmetric catalysis (Table 4).

Zhang developed axially chiral palladium complexes utilizing tetraoxazoline

ligands 18 to give cyclized products 22 from phenol 21 in up to 99% ee with a 1:1

mixture of Pd(TFA)2 and ligand (Scheme 7 above) [43, 44]. Benzodihydropyrans

were also obtained in good ee with ligands 18 [45]. Axial chirality in the

metal–ligand complex is induced when the ligands coordinate with the palladium

metal center. Tropisomeric bisoxazoline ligands 19 and atropisomeric bridged

bisoxazoline ligands 20 have also been developed and show similar enantios-

electivties to the aforementioned ligands [46, 47].

2.3 Domino Reactions

Wacker-type cyclizations have found use in domino reactions to simplify the

process of developing complex molecules. Such reactions are commonly used for

the synthesis of chroman derivatives and the furan/pyran containing ionospheres of

various antibiotics [48–50]. The domino syntheses often involve a carbonylation

reaction with CO insertion proceeding the initial palladium-induced cyclization

Table 4 Stoltz’s aerobic cyclization: reactions performed with 10 mol% of (sp)Pd(TFA)2,

100 mol% of (�)-sparteine, 2 equiv. of Ca(OH)2, 500 mg/mmol of 3 Å MS, 1 atm O2, in toluene

(0.1 M) at 80 �C [17]

OH O

OH O

MeO MeO

OH

t-Bu

O

t-Bu

OH

Me

O

Me

OH

O

O

O

substrate product time yield ee

36 h 87% 81%

24 h 64% 88%
60 h, 55 oC 57% 90%

36 h 47% 83%

36 h 47% 86%

24 h 60% 20%
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process. One of the first instances of using Wacker cyclizations in domino reactions

was pioneered by Semmelhack et al. who utilized an alkoxycarbonylation sequence

to prepare the pyran section 25 of the antibiotic frenocilin, from alkene 23
(Scheme 8) [51].

Wacker-type domino reactions represent an efficient synthetic route towards the

synthesis of cyclic lactones via a palladium carbonylation process. Palladium(II)-

catalyzed oxidative carbonylation of 3-buten-1-ols and 3-buytn-1-ols can undergo

dicarbonylation to give butyrolactones stereospecifically [52]. Of particular use is

the applicability of Wacker-type conditions to tandem intramolecular alkoxycarbo-

nylation-lactonizations of 1,3-diols to give bicyclic lactone structures [53, 54].

Unsaturated polyols undergo intramolecular oxycarbonylation reactions with high

chemo-, regio-, and diastereoselectivity [55]. In poly alcohol systems (1,2,3-

pentenetriols) the diastereoselective course of the cyclization can be controlled by

α-O-silyl protection [55].

In 2005 Yang utilized a thiourea ligand 26 for a Pd-catalyzed carbonylative

annulation of 27 to prepare an important intermediate 28 (with correct stereochem-

istry) for the synthesis of micrandilactone A (Scheme 9) [56]. The domino Wacker-

type process resulted in a 95% yield of product.

Tietze employed boxax ligands for the enantioselective Pd-catalyzed total syn-

thesis of vitamin E [57, 58]. The key Wacker–Heck domino reaction occurs

between palladium species 31 and methyl acrylate in the presence of Pd(TFA)2
and a boxax ligand to give the important vitamin E intermediate 33, in 96% ee

(Scheme 10). In addition to synthesizing chroman-derived intermediates [59],

chiral bis(oxazoline) ligands have been used in the intramolecular Pd(II)-catalyzed

oxycarbonylation of alkene-1,3-diols to give bicyclic lactones, albeit in relatively

low yields and ee [60].

OH

X
O

X
Pd(II)-18 (cat)

benzoquinone
MeOH

up to 99% eeX = H
X = 4-F
X = 4-Me

X = 6-Me
X = 4-Ph

21 22

Scheme 7 Cyclization of alkenyl phenol 21–22 [43, 44]

O

OH
Pr

H

H

O

O

Pr

PdCl O

O

Pr

CO2Me

CuCl2
MeOH HH

PdCl2 CO

97%

23 24 25

Scheme 8 Oxidative cyclization/CO insertion en route to the synthesis of frenocilin [51]
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Several intermolecular variations on domino Wacker-type processes have also

been developed [61–64]. Hosokawa et al. have developed procedures for the syn-

thesis of 2-alkoxytetrahydrofurans from allylic alcohols and vinyl ethers [62, 63].

A catalytic system of Pd(OAc)2, catechol, and CuCl2 in the presence of O2 results in

nucleophilic attack of the alcohol on the vinyl ether followed by an intramolecular

5-exocyclization to give (Z)-tetrahydrofuran derivatives 34 (Scheme 11). The reac-

tion appears to be stereospecific with (E)- and (Z)-allyl alcohols giving the

corresponding (E)- and (Z)-products [63]. It is believed the catechol enhances

the stability of the catalyst by constructing a Pd–Cu species bearing catechol as the

ligand of Cu and allowing the efficient capture of O2 and its subsequent activation by

the Cu-catechol complex [62]. A Pd-catalyzed stereoselective Oshima–Utimoto

reaction has also been developed to synthesis chiral furan derivatives [61].

An intermolecular asymmetric Wacker-type reaction of cinnamyl alcohols and

vinyl ethers was also developed utilizing boxax ligands [64]. The catalysis proceeds

via a Pd–Cu bimetallic structure and anionic bridging ligands, with the anionic

OTBSTPSO

OH

OH

O

OTBSTPSO

O

O
O

H O

Pd(OAc)2
Thiourea A 26

CuCl2

CO, THF
70 oC, 8 hr

95%

N N

S

26 Thiourea A27 28

Scheme 9 Synthesis of micrandilactone intermediate 28 via a carbonylative annulation [56]
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Scheme 10 Synthesis of vitamin E via a Pd(II)-catalyzed domino reaction [57]
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Scheme 11 Intramolecular 5-exo cyclization to give 2-alkyloxytetrahydrofurans [62]
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ligands being interchangeable between each metal. The enantioselectivity of the

reaction is dependent upon the Pd catalyst and chiral ligand, whereas reaction

activity depends on the copper salt and catechol.

2.4 Mechanistic Studies

The mechanistic principles underlying the Wacker reaction have been extensively

investigated [65–77]. The formation of the olefin palladium complex is understood

to be correct (Scheme 12); however, ambiguity in the reaction mechanism arises at

the alkoxy/nucleophilic palladation step [67]. Water can attack the palladium-

ethene complex either via an inner sphere mechanism, i.e., attack from water

already attached to the Pd (syn-addition), or via an outer sphere mechanism, i.e.,

attack from an external water molecule (anti-addition).
Henry proposed the rate law shown in Scheme 13, Eq. (1). The original Wacker

reaction of ethylene was determined to be first order with respect to ethene and to

exhibit first order proton inhibition and a second order chloride inhibition [65, 66].

Using isotopic labeling experiments Henry discarded the original proposal involv-

ing the anti-addition pathway, giving rise to a new rate term [Scheme 13, Eq. (2)]

[72, 73]. Henry proposed the reaction proceeds through a syn-addition mechanism

at low concentrations of [Cl�] and through an anti-addition mechanism at high

[Cl�] concentrations [74]. Further isotopic labeling experiments performed by the

Hayashi group involving the Wacker-type oxidative cyclization of o-allylyphenol
derivatives appear to corroborate this observation, with the reaction taking place

with syn stereochemistry in the absence of chloride, and the reaction being anti in
the presence of chloride [75].
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Scheme 12 The catalytic cycle of the Wacker process [67]

90 N.A. Butt and W. Zhang



The group of Hayashi probed the stereochemistry at the oxypalladation step

of Wacker-type processes using stereospecifically deuterated racemic 6-(2-

hydroxyphenyl)-3-deuteriocyclohexene, cis-3-d-35 (Scheme 14) [75].Using reactions

with defined stereochemical outcomes the stereochemistry at the oxypalladation step

k [PdCl4
2-][olefin]

[H+][Cl-]2
(eq. 1)rate =

k [PdCl4
2-][olefin]

[Cl-]2
rate = (eq. 2)

Scheme 13 Rate expression for theWacker oxidation of ethylene with chloride inhibition terms [72]
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could be determined using the Wacker-type system shown in Scheme 14. Several

observations were noted for the reaction: all isomers contained cis-fused five- and six-
membered ring systems; no deuteriumwas found in compound 36; isomers cis-2-d-37
and cis-2-d-38 had over 95% deuterium incorporation at the 2-position cis to the

oxygen in isomers 37 and 38; and finally 2-d-39 contains over 90% deuterium at the

2-position and 5–10% deuterium at the 3- and 4-positions. The stereochemistry of

the oxpalladation step was therefore found to be syn because of these results [75].
Using the above experiment, Hayashi et al. were able to observe the transfer of

deuterium during the course of the reaction (Scheme 14a) [75]. Oxypalladation of

cis-3-d-35 with phenol oxygen and palladium gives A, with Pd being on the same

face as the deuterium (syn addition). syn β-Hydrogen elimination provides interme-

diate B. Dissociation of palladium from the double bond gives isomer 36. Forma-

tion of intermediate D via the addition of palladium-deuteride to C-3 (C) and

subsequent 4-H β-hydrogen elimination gives the cis-2-d-37 isomer. In an analo-

gous manner, hydropalladation of D gives E, and following β-hydrogen elimination

isomer cis-2-d-38 is obtained. Thermodynamically stable benzofuran 39 is formed

via the isomerization of 36, 37, and 38 (Scheme 14b, example isomerization of 38).
syn-Oxypalladation was further confirmed using similar experiments involving the

trans isomer of cis-3-d-35 [75].

In the presence of chloride ions anti-oxypalladation was found to occur giving

isomer 3-d-39 as the predominant product (Scheme 15). Deuterium at the 3-position

can only be explained by the increased propensity of the substrate to undergo anti-
oxypalladation [75].

The type of catalysts and ligands used in Wacker-type processes has also been

shown to alter the reaction mechanism. Isotopic labeling experiments involving

oxidation of simple styrene derivatives using a palladium 2,6-diisopropylphenyl

complex in a tert-butylhydroperoxide (THP) solvent showed THP acting as the

oxygen source for addition into the olefin bond [76]. Sigman discovered that a

variation of the Wacker reaction involving the bidentate ligand sparteine complex

Pd[(�)-sparteine]Cl2, and the direct O2 coupled oxidation of decene, occurs via a

mechanism involving a three-water hydrogen-bond bridged chain and subsequent

oxypalladation [77]. Stoltz used deuterium labeling experiments to examine the

effect monodentate and bidentate ligands had on oxidative cyclizations of primary

alkenyl alcohols and alkenyl carboxylic acids [17]. Cyclization of primary alcohols

appeared to occur via a syn-oxypalladation process – the opposite of the traditional

OH

D PdCl2(MeCN)2 (10 mol%)
Na2CO3 (2 equiv), LiCl (2 eqiv)

benzoquinone (1 equiv)
THF, reflux, 24 h

59%

O

D

3-d-39

Ratio of 36/37/38/39 = 6/5/7/82%
anti-oxypalladation

cis-3-d-35

Scheme 15 Predominant formation of anti-oxypalladation product 3-d-39 at high Cl�

concentrations [75]
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Wacker reaction, whereas carboxylic acids cyclized in an anti-fashion. The use of
monondentate and bidentate ligands did not change the stereochemical outcome of

the reaction [17].

3 C–N Bond Formation

Nitrogen containing heterocycles are important components of natural products and

medicinal compounds, thus methodologies towards their synthesis are constantly

evolving. The palladium-catalyzed amination of alkenes represents one significant

route toward the synthesis of such systems. As mentioned previously, the

conditions required for Wacker-type cyclizations are mild and highly tolerable to

various functional groups. The mild conditions can thus be used in the final stages

of natural product synthesis whereby many different functional groups are present.

3.1 Achiral Heterocycles

3.1.1 Nonaromatic Nitrogen Nucleophiles

Alkenyl amines are often subjected to Wacker-cyclizations to produce a range of

5- and 6-membered nitrogen heterocycles. In order for cyclic amination to proceed,

protection of the amine nitrogen is often required to prevent deactivation of the

palladium species via coordination to the metal center. This problem is commonly

overcome by using tosyl, acetate, and methyl protected amines; the tosyl variants

being particularly useful for their ability to be easily removed. The cyclizations can

occur in the presence of reoxidants such as benzoquinone and CuCl2, or in their

absence, for example using O2 as the only reoxidant. External additives and ligands

can also have a significant impact on reaction yields and activity.

Hegedus synthesized nonaromatic nitrogen hetereocycles from ω-olefinic
tosamides via palladium catalysis [78]. Tosyl amine 40 readily cyclized using a

PdCl2(MeCN)2 catalytic system, benzoquinone as a reoxidant and basic additives to

produce enamine product 41 (Scheme 16) [78]. The tosyl group was used to prevent

the coordination of the amine to, and henceforth inactivation of, the Pd catalyst. The

cyclization is mechanistically related to the Wacker cyclization; the Pd species first

coordinates with the olefin, with the Pd-olefin complex subsequently being attacked

by an internal nucleophile. Venanzi reported the oxidative cyclization of amino

alkenes with a secondary amino group to yield the corresponding cyclic enamines

[79]. Similar systems using a PdCl2 catalyst and benzoquinone reoxidant have been

used to cyclize unsaturated amines as a key synthetic step in natural product

synthesis [80].

Amino alkenes can also be subjected to Wacker-type cyclizations in the absence

of any reoxidants such as benzoquinone and CuCl2. Five- and six-membered

heterocyclic systems have been obtained using only an O2 atmosphere and

Pd(OAc)2 catalyst in DMSO solvent [12, 81]. Stahl et al. expanded the use of direct
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dioxygen palladium catalysis for use in nonpolar solvents such as toluene by using

pyridine as a ligand [82]. The amination of olefin substrates proceeded with low

catalyst loadings (0.2 mol% of Pd(OAc)2) and short reaction times using a

Pd(OAc)2/pyridine stoichiometry of 1:2 (Table 5). The use of pyridine as a ligand

greatly enhances catalyst activity in nonpolar solvents. The 5-exo cyclization gives

rise to either tosyl enamides or allylic tosylamides depending on the ability of the

molecule to undergo a β-hydride elimination.

A Pd(OAc)2/pyridine catalyst system has also been used to synthesis a series of

pyridone derivatives from isoxazolidine-5-spirocyclopropanes [83]. Reduction of

the isoxazolidine N–O bond followed by a Wacker-like process gives the pyridone

containing compounds [83].

The Stahl group developed a procedure for the regioselective synthesis of six-

membered heterocycles (Table 6) [84]. Tethered sulfonamides were oxidatively

cyclized using a Pd(DMSO)2(TFA)2 catalyst and an O2 atmosphere. The procedure

is suitable for the synthesis of a range of six-membered heterocycles such as

morpholines, piperazines, piperidines, and piperazinones; all of which can be

prepared in good yields.

NHTs N
Ts

1-10 mol% PdCl2(MeCN)2
Na2CO3

LiCl, benzoquinone
THF, reflux

85%40 41

Scheme 16 Oxidative

cyclization of an alkenyl tosyl

amines utilizing Hegedus’

conditions [78]

Table 5 Amination of olefin substrates reaction conditions: substrate (0.1 mmol), [Pd(OAc)2]

(5 μmol), pyridine (10 μmol), O2 (1 atm), xylene (1 mL), 80 oC [82]

NHR

R
N

R = Ts
R = Ns
R = CBz

NHTs

R
N

Ts
N

NHTs Ts
N

Ts
N

NHTs
Ts
N

time (h) Product yield

2
8
48

1.5

2

2

87
87
76

81 (7:3)

94 (1:1)
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3.1.2 Aromatic Nitrogen Nucleophiles

Indoles and quinolines can be readily prepared from 2-allylaniline derivatives

utilizing palladium catalysis. The pioneering work of Hegedus et al. allowed for

an efficient and simple synthesis of 2-methlyindoles and quinoline using a PdCl2
catalyst and benzoquinone reoxidant [85, 86]. As expected, amination occurs at the

most substituted end of the alkene. The methodology is amenable to a range of

electron-rich and poor substituted aniline derivatives and can be applied to carbon-

ylation reactions and domino-type syntheses [86]. The Pd-catalyzed cyclization of

2-allyanilines is particularly useful for the synthesis of substituted indoles such as

44. N-tosyl-3-bromo-2-allylaniline 42 was cyclized to 4-bromo-1-tosylindole 43
using the aforementioned conditions in 77% yield (Scheme 17) [87].

As with other palladium-catalyzed reactions, the reoxidants benzoquinone and

CuCl2 can be replaced with O2/air allowing for easier purification of the products

[81, 88, 89]. The pioneering work of Hegedus et al. has been further improved upon

by Larock and coworkers who prepared a number of indole and quinoline

compounds from 2-allylanilines utilizing a Pd(OAc)2/O2 catalyst. Olefinic

tosylamides could be cyclized to 5- or 6-membered ring products containing an

allylic nitrogen system [81]. O-allylic N-tosylanilides exclusively cyclized to their

corresponding 6-membered ring products (up to 86% yield) in contrast to previous

syntheses using a PdCl2/benzoquinone catalyst system [81]. Additionally, similar

catalytic systems can be used to control the regioselectivity of the palladium(II)-

catalyzed cyclization of N-allyl-anthranilamides 45 to prepare allylic oxidation

Table 6 Stahl’s synthesis of six-membered heterocycles [84]

NHZ

O

N
Z

O

NHTs

O

N
Z

O

O

R NHTs

O

R N
Ts

N
Ts

NHTs

Z = Ts
Z = 2-Ns
cis Z = Ts

R = H
R = OMe

76%
86%
86%

73%

96%
96%

92%

substrate product yield

R2

XTsHN

R1

R3

R5

R6

R4

5 mol %
Pd(DMSO)2(TFA)2

O2 (60 psi), 3AMS
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products quinazolin-4-ones 46, and Wacker cyclization products 1,4-

benzodiazepin-5-ones 47 (Scheme 18) [88].

Appropriate ligands can be used to increase the efficiency and yield of the

intramolecular oxidative amination of alkenes. The group of Wang used a 1,10-

phenanthroline ligand with Pd(OAc)2 to synthesize a series of 2-methylquinoline

substrates [89]. In 2006 Stahl and coworkers developed novel NHC ligands for use

with molecular oxygen as the stoichiometric oxidant [90]. The NHC–palladium

catalyst complex (NHC)Pd(TFA)2(OH2) 48, in conjunction with an acid co-catalyst,

can facilitate the cyclization of a number of substituted anilines of the type 49
(Scheme 19) [90].

The Zhang group was able to control the regioselectivity of an aza-Wacker

cyclization to preferentially synthesize isoindolinones or isoquinolin-1(2H)-ones

from the same substrate (Scheme 20) [91]. Substrate 51 was cyclized to isoindoline
52 in good yield when using Phen as a ligand and Pd(OAc)2 in methanol solvent.

Isoqiuinolinone 53 was obtained when the ligand and metal source were exchanged

for Et3N and Pd(MeCN)2Cl2/CuCl2. The reaction conditions are amenable to a

number of substrates; however, attack at the desired vinyl carbon atom is some-

times not possible due to steric reasons (i.e., bulky protecting groups or substituents

on the nitrogen atom or on the olefin).

Br

NHTs

Br

N
Ts

Br

N
H

42 43 44

PdCl2(MeCN)2

p-benzoquinone
LiCl, THF, 125 oC

77%

NaOH, MeOH

reflux
99%

Scheme 17 Oxidative cyclization of N-tosyl-3-bromo-2-ethylaniline 42 [87]
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Scheme 18 Oxidative cyclization of N-allyl-anthranilamides. R ¼ allyl, Me, Ph [88]
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Scheme 19 Oxidative cyclization ofN-tosylanilide using an NHC coordinated Pd(II) catalyst [90]
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3.2 Chiral Heterocycles

The asymmetric catalysis of alkenyl amines to form nitrogen heterocycles remains

challenging. Although some ligands can induce asymmetry, catalytic asymmetric

Wacker-type reactions remain limited in scope.

3.2.1 Nonaromatic Nitrogen Heterocycles

Asymmetric Wacker-type reactions can be performed using chiral ligands or by

manipulating chirality in the starting products. Stahl and Sasai have used chiral

ligands for the Wacker-type cyclizations of alkenyl amines [92, 93]. Spiro bis

(isoxazoline) (SPRIX) ligands 54 were used in the palladium-mediated enantio-

selective intramolecular oxidative aminocarbonylation of alkenylureas 55, with
enantioselectivities of cyclized products 56 up to 89% ee (Scheme 21) [92]. The

substituents R on the substrate contribute significantly to the chemical yield.

The Stahl group developed an asymmetric Wacker-type protocol using pyridine-

oxazoline (pyrox) ligands [93] to synthesize chiral pyrrolidine compounds 58. The
greatest enantioselectivity was observed using Bn-quinox ligand 59 (7.5 mol%) with

a Pd(TFA)2 catalyst and the conditions shown in Scheme 22, to give pyrrolidine

products in up to 98% ee and 68% yield. The reaction conditions are effective with a

number of cis-alkenes such as ethyl- and benzyl substituted alkenes, as well as gem-

dimethyl substituents; all giving rise to products with high ee (>90%) [93].

Stahl also developed a synthesis of enantiopure cis-2,5-disubstituted pyrrolidines
61 via tert-butanesulfinamide nucleophiles 60 [94]. Chiral γ-aminoalkenes bearing a
tBu-sulfinyl auxiliary underwent Pd(II)-catalyzed oxidative cyclization to give the

desired products with excellent diastereoselectivity (Scheme 23).

NPh

O

R'
R

NHPh

O

R'
R

(MeCN)2PdCl2 (10 mol %)
CuCl2 (10 mol %)
NEt3 (20 mol %)

O2 (balloon) / MeOH
60 oC

Pd(OAc)2 (10 mol %)
Phen (20 mol %)
NEt3 (20 mol %)

O2 (balloon) / MeOH
60 oC

NPh

O

R'

R

5152 53

Scheme 20 Selective aza-Wacker cyclization to isoindolinones and isoquinolin-1(2H)-ones [91]
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Scheme 21 Oxidative cyclization of alkenyl ureas [92]
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3.2.2 Aromatic Nitrogen Heterocycles

A recent method for the synthesis of aromatic nitrogen heterocycles via Wacker-

type cyclizations involves the use of NHC ligands [95]. Stahl et al. synthesized

seven-membered-ring amidinium salts from enantiomerically pure 2,20-diamino-

6,60-dimethylbiphenyl, which were subsequently used to prepare chiral NHC–Pd

catalysts for intramolecular Pd-catalyzed aminations of substrate 62 (Scheme 24).

However enantioselectivity was very poor with only 9% ee [95]. The Zhang group

reported the asymmetric aza-Wacker-type cyclization using quinolineoxazoline

ligand 64 and Pd(OAc)2 under an O2 atmosphere, to give compound 63 with up

to 74% ee (Scheme 24) [96].

Using a ligand closely related to 64, tBu-Pyrox 65, isoindolinones 67 bearing

chiral tetrasubstituted centers could be prepared from substrates 66 in high yields

and up to 99% ee (Scheme 25) [97]. A variety of substituted alkenes could be

cyclized using the conditions shown, with only a small drop in enantioselectivity as

the size of the internal alkene substituent R0 increases.

NHTs Ts
N

Pd(TFA)2 (5 mol %)
L-60 (7.5 mol %)

MS 3 A, toluene
50 oC, 12 h
O2 (1 atm)

N

N

O

Bn5957 58

Me

Scheme 22 Enantioselective cyclization of an alkenyl N-tosylamide [93]
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Scheme 23 Oxidative cyclization of alkenes possessing tethered α-substituted tBu-sulfinamide

nucleophiles [94]
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Scheme 24 Zhang’s conditions for the cyclization of substrate 62 [96]
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3.3 Domino Reactions

Oxidative palladium(II)-catalyzed cyclizations of alkenyl-amines provide an effi-

cient procedure for synthesizing heterocyclic compounds. Following oxidative

cyclization, the resulting palladium complexed intermediate can be exploited to

undergo further reactions such as CO insertion and other carbon chain elongation

processes. Tandem reactions are particularly useful for natural product synthesis as

many new carbon–carbon bonds can be created in one step [98–101].

The Hegedus group was one of the first to pioneer these types of reactions by

utilizing N-substituted o-allyanilines to synthesize dihydroindolacetic acid esters

[86]. The conditions must be mild enough to prevent β-hydride elimination and the

nitrogen must be protected in order to facilitate a successful reaction and prevent

carbonylation of the nucleophilic center. A PdCl2/CuCl2 catalytic system has been

used for the aminocarbonylation of unsaturated amines using urea nucleophiles

[102–104] and for the intramolecular aminocarbonylation of 3-hydroxy-

4-pentenylamines 68 (Scheme 26) [105]. The conditions were found to be amenable

to a range of substrates and have more recently been used in conjunction with chiral

ligands to develop enantioselective procedures [105, 106].

The Tamaru group investigated the intramolecular amino carbonylation of endo-
carbamates and their ability to undergo oxidative cyclizations by subjecting olefin

bearing substrates to acidic and buffered Wacker-type conditions (Scheme 27)

[102, 103, 107]. Endo-carbamates 77 were unable to undergo oxidative cyclization

using reactions conditions involving methanol solvent. Slightly modified conditions

using trimethyl orthoacetate (MOA) as a solvent were required. MOA can act as a

base to generate the conjugate base of 77 (increasing its nucleophilicity) as well as

act as a scavenger of HCl, keeping the mixture weakly acidic thus helping the

production of the conjugate base of 77. In 77 the nitrogen lone pair is not

NHOMe

O

R'

R

NOMe

O

R'
R

5 mol % Pd(tfa)2
ligand 65, MS

MeCN, O2,
60 oC

57 to 99% ee

R'' R''
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67

N

N

O

t-Bu
tBu-Pyrox 65

Scheme 25 Enantioselective synthesis of isoindolinones [97]
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Scheme 26 Oxidative cyclization and carbonylation of 3-hydroxy-4-pentenylamines [105]
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sufficiently nucleophilic enough to efficiently overlap with the π* orbital of the

olefin, thus requiring deprotonation to its conjugate base to increase its nucleophi-

licity [102, 103, 107].

The group of Yang developed a series of stereoselective aza-Wacker-type

tandem reactions [108–110]. The first enantioselective oxidative tandem cycliza-

tion using only molecular oxygen as the oxidant was achieved using the catalyst

system shown in Table 7 [108]. Using sparteine as a ligand, enantioselectivities of

up to 91% were obtained [108]. A tBu-QUINOX ligand has since been used to

improve the enantioselectivity of oxidative tandem reactions using related

substrates [110].

3.4 Mechanistic Studies

The mechanism of aminopalladation reactions have been thoroughly investigated

[111–125]. Early studies by Backvall et al. were based on stoichiometric quantities

of reagents and showed that oxyamination of alkenes occurred via an aminopal-

ladation-oxidation sequence in overall cis-stereochemistry but with a trans-
aminopalladation step [112, 114]. Taniguchi later reported that the intramolecular

aminopalladation step occurs via a cis-process [116]. cis-Addition of Pd and

nitrogen to the propenyl group of enamine 79 would result in the formation of the

Pd-σ-complex 80, which has a cis-configuration (Scheme 28). β-Hydride elimina-

tion cannot occur because of the anti relationship between the Pd and the

NH
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O
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Scheme 27 Oxidative cyclization of carbamates [102, 103, 107]
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Table 7 Wacker-type domino synthesis of indolines [108]

Pd(TFA)2, (-)-sparteine

DIPEA (2 equiv), MS 3Å
toluene, O2 (1 atm), 80 oC

NH

O

R

X
N

O
R

X

Substrate Product

X

NH

O

X

N

O

substrate product
Pd(TFA)2
(mol%)

time

(h)

yield

(%)

ee

(%)

20 24 75 83
10 26 78 86
5 35 70 86

R = H, X = Cl 20 48 61 75

20 48 60 80

R
R

R = m-ClPh, X = H

R = Me, X = H
X

N

O

X

N

O

20 48 15 82

H

H

63 80

(dr 8:1) (86)

NH

O

R

N

O R

10 26 63 91

R = H

R = m-ClPh 10 26 64 87

20 48

R = H, X = H

O
CO2Me

NHAc

O

NAc

CO2Me

ClPd H Me
H

Pd(PhCN)2Cl2

79 80

Scheme 28 Taniguchi oxidative cyclization of enamine 79 [116]
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β-hydrogen atom, allowing compound 80 to be isolated [116]. Following the work

of Taniguchi, it is now generally accepted that oxidative amination (Wacker-type)

reactions occur predominantly through a cis-aminopalladation route [117–119].

Stahl performed intermolecular Wacker-type reactions using a para-toluene sulfon-
amide nucleophile and norbornene to form C2-symmetric pyrrolidine product 81
(Scheme 29). The norbornene undergoes cis-difunctionalization on the exo face of the
alkene [120]. It is thought this process occurs via cis-aminopalladation of norbornene,

alkene insertion into the Pd–C bond, and C–N bond formation by reductive elimination

[120]. Mechanistic insights into the intermolecular Wacker-type reactions were further

carried out by Hartwig [121]. The mechanistic pathway of the intermolecular insertion

of ethylene and octene into a palladium diarylamido complex N–C bond was

investigated. Complexes of electron-rich amides were found to react more

rapidly than electron poor amides with the insertion occurring even at low temperature

(�40 �C). Enamine products resulted from cis-aminopalladation [121].

Stahl et al. performed a number of mechanistic studies using a series of different

palladium(II) catalyst systems and investigated the stereochemistry of amino-

palladation using isotopically labeled alkenyl amine substrates [122]. Products obtained

via cis-aminopalladation were formed with all the catalyst systems apart from the

system involving an NHC ligand and benzoic acid additive, in which a mixture of

trans- and cis-products were isolated. Exchanging benzoic acid with basic additives

such as Na2CO3 allowed for the exclusive formation of the cis-aminopalladation

product. In addition, Stahl also discovered that the type of nucleophile plays an

important role in determining the stereochemical outcome of the reaction, with more

acidic nucleophiles favoring the trans-aminopalladation process [122]. Stahl also

investigated the mechanism of the Wacker-type intramolecular oxidative amination

of alkenes using aerobic conditions [123, 124]. The catalytic mechanism of oxidative

cyclization using a Pd(OAc)2/pyridine catalyst system involves steady-state formation

of a Pd(II)–amidate–alkene intermediate (A), alkene insertion into a Pd–N bond (via a

pyridine–palladium dissociated pathway or a pyridine–palladium ligated pathway (B)),
reversible β-hydride elimination (C), irreversible AcOH reductive elimination (D), and
aerobic oxidation of Pd(0) to regenerate the active catalyst (E) (Scheme 30) [124].
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Scheme 29 cis-Aminopalladation of norbornene [120]
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In continuing mechanistic studies, the Stahl group prepared deuterated substrate

6-d-82 to probe the effect neutral-donor ligands and anionic ligands had on the

aminopalladation step (Scheme 31) [125]. Using the reaction conditions shown in

Scheme 31 (PdX2 ¼ Pd(TFA)2), the major product resulting from cyclization was

found to be product A, implying the trans-aminopalladation pathway was favored
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Scheme 30 Catalytic mechanism of Pd(OAc)2/py-catalyzed aerobic oxidative intramolecular

amination. py pyridine [124]
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over the cis route. Analysis of the major enantiomers confirmed the trans-pathway
was favored (trans/cis ¼ 91:9). However when the palladium source was replaced

with Pd(OAc)2, cis-aminopalladation was preferred (trans/cis ¼ 10:90), with a

9:1:51:39 product ratio for A/B/C/D (in overall low enantioselectivity and yield).

Analysis of the trans-aminopalladation minor products A and B showed the trans-
pathway to be relatively enantioselective (e.r. ¼ 9:1), whereas the cis pathway

exhibits low enantioselectivity. Removing the ligand 83 from the reaction mixture

for both palladium sources resulted in the formation of predominantly cis-
aminopalladation products, thus implying a neutral ligand and the type of anionic

ligand can play an important role in determining the most likely reaction pathway

[125].

4 Conclusions

Wacker-type reactions represent an important methodology for the synthesis of

heterocyclic systems. The past decade has seen great advances in the use of this

methodology because of its ease of use, mild reaction conditions, and its applica-

bility to a large number of substrates. The mechanistic principles underlying

Wacker-type reactions have also been extensively investigated, with new insights

into the understanding of the process being continuously developed.

Of increasing interest is the use of chiral ligands for the synthesis of enantiopure

oxygen and nitrogen heterocycles. Several steps have already been taken in order to

achieve this goal, with a number of ligands (SPRIX, BOXAX, PYROX, etc.)

showing promising enantioselectivtiy for particular substrates. At present, the

enantioselective synthesis of nitrogen heterocycles with chiral ligands remains

limited in scope; however, this is expected to change with increasing mechanistic

understanding of the Wacker-type process.

Wacker-type reactions have also shown their use in the synthesis of complex

molecules and domino processes, greatly simplifying reaction procedures. The process

can be modified to allow for the relatively simple functionalization of molecules via

CO insertion and other carbon chain extension reactions. The continual development

of Wacker-type methodology, for example by reducing the need for co-catalysts

(CuCl2, benzoquinone, etc.) and developing new chiral ligands will widen the scope

for these types of reactions for use by the wider chemical community.
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111. Åkermark B, Bäckvall JE, Siiralah K, Sjoberg K, Zetterberg (1974) Tetrahedron Lett 15:1363

112. Backvall J, Bjorkman EE (1980) J Org Chem 45:2893

113. Akermark B, Zetterberg K (1984) J Am Chem Soc 106:5560

114. Backvall J, Bjorkman EE (1984) Acta Chem Scand 8:91

115. Hegedus LS, Akermark B, Zetterberg K, Olsson LF (1984) J Am Chem Soc 106:7122

116. Isomura K, Okada N, Saruwatari M, Yamasaki H, Taniguchi H (1985) Chem Lett 385

117. Desai LV, Sanford MS (2007) Angew Chem Int Ed 46:5737

118. Liu G, Stahl SS (2006) J Am Chem Soc 128:7179

119. Mai DN, Wolfe JP (2010) J Am Chem Soc 132:12157

120. Brice JL, Harang JE, Timokhin VI, Anastasi NR, Stahl SS (2005) J Am Chem Soc 127:2868

121. Hanley PS, Markovic D, Hartwig JF (2010) J Am Chem Soc 132:6302

122. Liu G, Stahl SS (2007) J Am Chem Soc 129:6328

123. White PB, Stahl SS (2011) J Am Chem Soc 133:18594

124. Ye X, Liu G, Popp BV, Stahl SS (2011) J Org Chem 76:1031

125. Weinstein AB, Stahl SS (2012) Angew Chem Int Ed 51:11505

Synthesis of Heterocycles via Palladium-Catalyzed Wacker-Type Oxidative. . . 107



Top Heterocycl Chem (2013) 32: 109–156
DOI: 10.1007/7081_2013_105
# Springer-Verlag Berlin Heidelberg 2013
Published online: 30 March 2013

Synthesis of Saturated Heterocycles via
Metal-Catalyzed Alkene Hydroamination
or Hydroalkoxylation Reactions

Lisa D. Julian

Abstract The intramolecular hydrofunctionalization of carbon–carbon multiple

bonds has emerged as a powerful way to form cyclic structures. A particularly

important class of reactions involves the use of amine or alcohol nucleophiles, and

alkenes or allenes as electrophiles, to form pyrrolidine, piperidine, tetrahydrofuran,

and tetrahydropyran heterocycles in a highly efficient manner using late transition

metal catalysts. Asymmetric methods for hydroamination and hydroalkoxylation

reactions have recently emerged, allowing for the enantioselective synthesis of such

saturated heterocycles. This review covers recent developments (over the last

5–10 years) in late transition metal-catalyzed hydroamination and hydroalk-

oxylation reactions that generate saturated heterocycles.
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1 Introduction

The synthesis of nitrogen and oxygen heterocycles via hydroamination or hydroalk-

oxylation, respectively, is perhaps the most conceptually simple approach to form

this class of cyclized structures from readily available amino- and hydroxyalkenes

and allenes (Scheme 1). Such heterocycles are highly prevalent in biologically

active molecules; therefore, much effort has been spent on developing catalysts to

effect this transformation. Complexes based on rare-earth, alkaline-earth, and group

IV metals are known to catalyze the hydrofunctionalization of unsaturated

carbon–carbon bonds; however, their lack of stability and functional group toler-

ance can render these systems impractical for applications toward academic and

industrial synthetic targets [1–3]. On the other hand, late transition metal catalysts

appear to have a much broader scope and applicability and recent efforts have

focused on the development of new late metal complexes for hydrofunctiona-

lizations [4].

Complexes of late transition metals are more stable toward air and moisture and

are more tolerant of polar functional groups than early transition metal and lantha-

nide catalysts. However, until recently, the substrate scope of reactions catalyzed by

late transition metals was relatively narrow. This was likely due to the propensity of

the heteroatom to unproductively bind to the metal center and due to the lower

reactivity of late metal catalysts to promote cyclization, which required most

substrates to contain gem-disubstitution on the alkyl linker to accelerate the reac-

tion via the Thorpe–Ingold effect. A number of highly active late transition metal

catalysts have now been developed that overcome these limitations, and will be the

focus of this review.

One common limitation for hydrofunctionalization is the need for an activating

group on the olefin in the form of conjugation (styrenes, dienes) or inclusion of

electron-withdrawing groups (Michael acceptors). As such, hydrofunctionalization

of unactivated olefins remains a challenge and much effort is ongoing to identify

catalysts for this class of substrates. The development of catalysts to control both

regioselectivity and enantioselectivity is also of particular importance.

1.1 General Mechanistic Considerations

The intrinsic barrier toward cyclization of amino- and hydroxyalkenes and allenes

in the absence of a catalyst is recognized by the presence of two nucleophiles in the

substrate, the heteroatom (N or O) and the π-system (alkene, allene, alkyne).
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However, the use of a late transition metal catalyst can overcome this barrier, by

either activating the heteroatom, allowing for a migratory insertion of the olefin into

the M–X bond (Path A, Scheme 2), or by reversing the polarity of the double bond

through complexation to form a π-adduct (Path B). Both mechanisms typically

favor formation of the Markovnikov product.

Typically, electron-deficient late metal catalysts have been shown to react by

outer-sphere nucleophilic attack of the heteroatom onto the coordinated, and there-

fore activated olefin, allene, or alkyne. Key to the success of this reaction pathway is

a favorable equilibrium toward the π-complex (i.e., II, Scheme 3) over the hetero-

atom-bound complex (i.e., I). While hydroxyalkenes typically favor the olefin

π-complex, amine substrates often favor the heteroatom-bound amine complex,

which can deactivate the catalyst. This observation has often led to the use of election

deficient N–H donors, such as sulfonamides and carbamates, in late metal-catalyzed

hydroamination reactions. The activated olefin undergoes nucleophilic attack by the

tethered heteroatom in an anti fashion to afford the cyclized adduct III, which then

undergoes metal–carbon bond cleavage to release the product, upon ligand substitu-

tion with aminoalkene [5]. Favorable rates for protonolysis of the M–C bond

(III!IV) over reversion of the cyclized intermediate III back to the olefin complex

II have been shown to be a key factor for achieving efficient catalysis, especially

with highly electron-deficient metal complexes [6]. The mechanism for

metal–carbon bond cleavage can be envisioned to occur by several different

pathways, including direct protonolysis of the M–C bond and C–H reductive

Scheme 2 Proposed limiting mechanisms for late transition metal-catalyzed hydrofunctiona-

lization of unsaturated carbon–carbon bonds

Scheme 1 Hydroamination and hydroalkoxylation of alkenes and allenes to form saturated five-

and six-membered heterocycles
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elimination through an intermediate high oxidation state metal–hydride species,

although empirical evidence supporting any of the possible mechanisms is lacking.

Although not as common, an olefin insertion mechanism has been proposed for

some late transition metal catalysts (Scheme 4). The metal-amido or metal-alkoxo

intermediate V can be formed either by direct X–H oxidative addition [7], which is

more facile for electron-rich metal complexes, or via a base-assisted reaction.

Insertion of the olefin into the M–X bond occurs in a syn fashion to afford the

neutral alkylmetal intermediate VI. Finally, metal–carbon bond cleavage, followed

Scheme 3 Catalytic cycle for late metal-catalyzed hydrofunctionalization: nucleophilic attack of

heteroatom onto a metal-bound activated olefin

Scheme 4 Catalytic cycle for late metal-catalyzed hydrofunctionalization: olefin insertion into a

metal alkoxo- or metal-amido bond
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by ligand substitution of the product with another equivalent of substrate, completes

the catalytic cycle.

There has been some debate as to whether Bronsted acids (i.e., TfOH) are

responsible for catalyzing reactions involving some transition metal complexes

[8]. Mechanistic studies have provided evidence for a catalytic cycle for

hydroamination shown in Scheme 5, whereby TfOH is generated from a reaction

of the metal triflate and amine [9, 10]. While the possibility of Bronsted acid

catalysis remains ambiguous in some systems, evidence for active participation of

the metal has been provided in many other cases. It should be noted that alternative

mechanistic pathways have been proposed, especially in cases involving

metal–hydride catalyst precursors (Sect. 3.1) [11].

2 Hydroamination of Aminoalkenes

Until recently, the late transition metal-catalyzed addition of N–H groups across

unactivated alkenes (hydroamination) to form pyrrolidines and piperidines was

rare. However, over the last 10 years, researchers have been able to overcome

many challenges associated with this process, including low reactivity due to

unproductive binding of the amine to the metal center and β-hydride elimination

of the intermediate alkylmetal species, through careful ligand design and tuning of

the electronic properties of the substrate and metal center. The advances made in

developing more active and selective catalysts, along with a current standing of

substrate scope, will be reviewed in the following section.

Scheme 5 Bronsted acid-catalyzed hydroamination
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2.1 Substrates Bearing an Electron-Deficient N–H Donor

Amines are often used as ligands for late transition metals as they readily bind to

metal centers to form stable complexes. However, in the context of hydroamination,

binding of the amine substrate can lead to poisoning of the catalyst, which can

inhibit the desired reaction pathway. One strategy that has been successfully

employed involves protection of the amine as a sulfonamide, carbamate, or amide

group. Cationic palladium and gold complexes have been primarily developed as

catalysts for hydroamination of this substrate class. Iron complexes have also been

shown to catalyze reactions containing electron-deficient N–H donors, but the

scope and limitations are less established [12, 13].

2.1.1 Palladium-Catalyzed Reactions

Olefin complexes of cationic palladium centers and their reactivity toward amine

nucleophiles to subsequently form alkylpalladium products have been known since

the 1960s [14–16]. However, a palladium catalyst for intramolecular

hydroamination of unactivated aminoalkenes was not developed until many years

later. In 2006, Michael and coworkers reported that a dicationic palladium pincer

complex, generated from the chloride precursor 2 and AgBF4, catalyzed the

hydroamination of protected aminoalkenes at room temperature (Scheme 6) [17].

The catalyst was shown to be highly active, as substrates lacking substituents on the

alkyl chain that would bias the reaction toward cyclization were readily cyclized to

form five- or six-membered rings (3a–3e). Various protecting groups on nitrogen

were tolerated as well as an unprotected alcohol on the alkyl chain (3h), which
notably, would not be compatible with lanthanide or group IV catalysts. Substrates

containing a stereocenter in the alkyl tether were cyclized with moderate levels

of diastereoselectivity. Finally, this methodology was applied to the synthesis of

2,6-disubstituted piperazines 5, which gave products with high levels of diastereos-
electivity (Scheme 7) [18].

Scheme 6 PNP palladium-catalyzed hydroamination to form pyrrolidines and piperidines
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Key to the success of this reaction was the use of a tridentate pincer ligand,

which blocks a coordination site on the metal and inhibits β-hydride elimination

(Scheme 8). Protonolysis of the alkylpalladium bond of 6 to give 7 is then favored

and leads to formation of the desired heterocycle. Detailed mechanistic studies

carried out using stoichiometric amount of the dicationic palladium catalyst pre-

cursor and substrate provided support for a mechanism involving reversible nucle-

ophilic attack of the amine on the tethered olefin, followed by rate-limiting

protonolysis of the palladium–carbon bond [6]. The alkylpalladium complex 6
was shown to be the catalyst resting state, and undesired β-hydride elimination

from complex 6 was not observed. In contrast, complexes bearing bidentate ligands

(i.e., 11) would be expected to undergo relatively facile β-hydride elimination.

More recently, Liu and coworkers reported a new catalyst system for intramo-

lecular hydroamination of styrene substrates 13 to form 2-arylpyrrolidines 14
(Scheme 9) [19]. Both electron-rich and electron-poor arenes were tolerated. The

authors employed a palladium(II) catalyst precursor in combination with a bulky

bipyridine ligand and a stoichiometric amount of N-fluorobenzenesulfonamide as a

terminal oxidant. The aminoalkene cyclizations are proposed to occur via a mecha-

nism involving olefin insertion into a Pd(II)–H intermediate followed by oxidation

to a Pd(IV) species. This catalyst system appears to be limited to styrene-containing

substrates as the unactivated alkene N-tosyl-Z-pentenylamine failed to react under

Scheme 7 PNP palladium-catalyzed hydroamination to form piperazines

Scheme 8 Inhibition of β-hydride elimination through use of a tridentate pincer ligand
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these conditions. Abbiati and coworkers have also reported a palladium-catalyzed

hydroamination reaction of 1-allyl-2-indolecarboxamide 15 to afford polycyclic

products 16 (Scheme 10) [20].

2.1.2 Gold-Catalyzed Reactions

Gold complexes have emerged as highly active catalysts for the hydroamination of

unsaturated carbon–carbon bonds [21–23]. While reactions involving nucleophilic

additions to more reactive alkynes and allenes are well established, only more

recently have unactivated alkenes participated in gold-catalyzed hydroamination

reactions [24]. An electron-withdrawing group on the nitrogen atom is required for

efficient reactivity when cationic gold complexes are employed as catalysts.

In 2010, Toste reported studies on the mechanism of gold-catalyzed

hydroaminations of unactivated alkenes [25]. Alkylgold intermediates resulting

from anti-aminoauration of unactivated olefins in the presence of a base were

isolated and characterized, providing direct experimental evidence for the first

elementary step of the catalytic cycle (Scheme 11). Alkylgold species are inert

toward β-hydride elimination and therefore have a different reactivity compared to

the alkylpalladium complexes described above. Interestingly, an aminoalkene

containing a basic amine (17b, R ¼ Bn) readily cyclized but the resulting alkylgold

intermediate (18; R ¼ Bn) was highly unstable and not isolable. These results

suggest that basic amines fail in hydroamination reactions catalyzed by gold, not

due to strong binding of the amine to the gold center, but rather by the inability to

Scheme 9 Palladium-catalyzed intramolecular hydroamination of sulfonamides

Scheme 10 Palladium-catalyzed hydroamination of N-allylindoles

Scheme 11 Mechanistic studies of a gold-catalyzed hydroamination
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protonate the carbon–gold bond under the reaction conditions. Attempts to

protodeaureate the isolable alkylgold complexes (18, R ¼ Ts) to form product 19
(R ¼ Ts) by treatment with TsOH resulted only in reversion to aminoalkene 17c.
These results are consistent with a mechanism characterized by reversible nucleo-

philic attack and rate-limiting protonation of the carbon–gold bond. Computational

results corroborate the high barrier for protonolysis. The authors comment that

these studies, however, do not rule out a Bronsted acid-catalyzed process, resulting

from release of a proton generated in situ.

In 2006, He and coworkers reported the first hydroamination of unactivated

aminoalkenes to form pyrrolidines using a cationic gold catalyst PPh3AuOTf

(generated in situ from PPh3AuCl and AgOTf) at 85�C (Scheme 12) [24]. Only

substrates containing a sulfonamide group on the nitrogen were successfully

cyclized; those bearing basic amines failed to react. Both terminal and 1,1-disub-

stituted olefins were cyclized in excellent yields.

The gold-catalyzed cyclization of deuterated substrate 22 was performed to

probe reaction mechanism (Scheme 13), and led to exclusive formation of the

bicyclic product 23 [24]. This result suggests that the nitrogen atom attacks from

the opposite face of a gold(I)-bound olefin to give the trans-addition product after

protonolysis of the resulting gold(I)–carbon bond.

Widenhoefer has reported the use of a modified cationic gold complex

containing a bulky monophosphine ligand (S-Phos) for the hydroamination of

aminoalkenes bearing carbamate protecting groups [26]. The high catalytic activity

of this complex is attributed to steric rather than electronic factors. A wide range of

substrates were cyclized to form five- and six-membered rings, and alcohol and

ester functional groups were tolerated. The Widenhoefer group subsequently

demonstrated that ammonium salts such as 24 and 26 could also be employed as

electron-deficient nitrogen nucleophiles, further exemplifying the utility of this

catalyst (Scheme 14) [27]. The biologically relevant tetrahydroisoquinoline hetero-

cycle 27 was synthesized using this method, albeit with a higher catalyst loading

and lower yield.

Scheme 12 Gold-catalyzed intramolecular hydroamination of unactivated alkenes

Scheme 13 Deuterium-labeling study
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Widenhoefer also reported the use of either a bulky monophosphine complex

(JohnphosAuOTf) or a cationic N-heterocyclic carbene–gold(I) complex [(iPr)

AuOTf] to cyclize unactivated alkenes with a tethered urea nucleophile

(Scheme 15) [28]. Pyrrolidines and piperidines could be synthesized from

substrates containing an external urea (i.e., 28) as a protecting group. On the

other hand, substrates such as 30 containing the urea group within the tether

cyclized to form imidazolidin-2-ones 31. Diastereoselectivities of >50:1 31-
trans:31-cis were obtained for substrates bearing an alkyl group on the carbon

linker [29]. Interestingly, the unprotected alcohol substrate 30e gave the cis product
31e as the major product in a 3.7:1 ratio.

The gold-catalyzed intramolecular hydroamination of dienes 32 bearing

arylsulfonamide groups was reported by Yeh and coworkers in 2009 to afford the

hexahydroindole products 33 (Scheme 16) [30]. Various electron-rich and electron-

poor sulfonamides were tolerated, and reactions typically proceeded at 85�C to

provide the heterocycles in excellent yields (80–88%). The relative syn stereochem-

istry was observed, which is consistent with a mechanism involving outer-sphere

attack of the sulfonamide on the opposite face of the coordinated olefin.

Scheme 14 Hydroamination of ammonium salts

Scheme 15 Hydroamination of urea nucleophiles
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In 2011, Najera and Beaza reported the use of either a Lewis or a Bronsted acid

catalyst for the cyclization of aminodienes 34 to afford 2-propenyl substituted

pyrrolidines 35 with moderate to good E/Z ratios (Scheme 17) [31, 32]. Notably,

substrates lacking substituents at C2 also readily cyclized (34; R ¼ H). The gold

complex [(PhO)3P]AuOTf and the Bronsted acid TfOH were found to be the most

efficient catalysts for cyclization. However, AgOTf, FeCl3·6H2O, and [(�)-

BINAP]Cu(OTf)2 were also found to be competent catalysts. The parallel reactivity

of these electron-deficient metal catalysts to TfOH in this report calls into question

the role of the metal under these reaction conditions [8].

2.2 Substrates Bearing a Basic N–H Donor

Late transition metal-catalyzed intramolecular hydroamination of substrates

containing a basic amine was not realized until 2005 [33], and still remains

problematic for certain classes of substrates. For example, cyclization of amines

onto 1,2-disubstituted amines is rare, as are reactions of aminoalkenes bearing a

primary amine nucleophile. The development of new catalysts over the past 7 years

has led to significant improvements in reactivity with substrates bearing a basic

N–H donor. This section will highlight the discovery of new catalysts that have

been designed to overcome challenges associated with basic aminoalkenes.

2.2.1 Platinum-Catalyzed Reactions

Platinum-coordinated olefin complexes have been known to undergo nucleophilic

attack by amines for decades [14]. However, a catalytic intramolecular

hydroamination process was not realized until relatively recently. Cleavage of the

metal–carbon bond to release the product and regenerate the catalyst is the key step

Scheme 16 Hydroamination of dienes to form bicyclic heterocycles

Scheme 17 Gold- and Bronsted acid-catalyzed hydroamination of dienes
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in the catalytic cycle, and is significantly influenced by the electron density at the

metal center. In 2002, further mechanistic studies on nucleophilic additions to

isolated dicationic platinum-coordinated olefin complexes showed that although

nucleophilic addition is facilitated by an electron-deficient platinum center,

protonolysis of the Pt–C bond is disfavored due to the decreased basicity and

increased stability of the electron-poor alkylmetal species. These studies provided

new insight into the reactivity of platinum–carbon bonds and helped lay the

foundation for the logical development of effective hydroamination catalysts [34].

The first late transition metal-catalyzed intramolecular hydroamination of an

unactivated alkene with a basic amine was reported in 2005 by Widenhoefer, using

a neutral platinum catalyst [PtCl2(PPh3)]2 [33]. Aminoalkenes containing second-

ary alkyl amines with gem-disubstitution on the alkyl linker were readily cyclized

to form five- and six-membered rings. The less reactive substrates 36a–b containing

a single substituent on the alkyl chain also reacted to form products 37a–b in

moderate yields and low diastereoselectivity (Scheme 18). Terminal olefins and

1,1-disubstituted olefins were shown to react with amines under these conditions;

however, internal olefins were unreactive.

To gain mechanistic information, a stoichiometric reaction of aminoalkene 38
and platinum dimer [PtCl2(PPh3)]2 was performed (Scheme 19). The cyclized

zwitterionic alkylplatinum intermediate 39 was formed readily and underwent

platinum–carbon bond cleavage upon heating to 120�C in the presence of excess

amine via the neutral heterobicyclic intermediate 40. This is proposed to occur by

way of intermediate Pt(IV) hydride complex 41 that undergoes C–H bond-forming

reductive elimination to release the organic product 42 [33].

Scheme 18 First platinum-catalyzed hydroamination of basic aminoalkenes

Scheme 19 Proposed mechanism for platinum-catalyzed hydroamination
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This mechanistic hypothesis suggested that a bulky phosphine ligand could

facilitate C–H reductive elimination, and use of an o-biphenyl phosphine ligand

(tBu Davephos, Scheme 20) allowed for reactions to be conducted at lower

temperatures (60–80�C versus 120�C) and displayed improved substrate scope

[35]. For example, even N-benzyl-4-pentenyl-1-amine 43a and N-benzyl-5-
hexenyl-1-amine 43b cyclized to form the corresponding pyrrolidine and piperidine

products 44a–b, which failed using the initially reported Pt/PPh3-based catalyst

system (Scheme 20).

Other ligands, including N-heterocyclic carbenes, have since been investigated

in platinum-catalyzed hydroaminations [36, 37]. For example, Shi’s cationic

NHC–Pt(II) complex 47 catalyzed the cyclization of a range of substrates including
both basic and electron-deficient N-donors (Scheme 21) [36].

Michael and coworkers recently reported a platinum-catalyzed hydrohydra-

zination of alkenyl hydrazides 48 to form N-aminoheterocycles 49 using a cationic

platinum catalyst with a bipyridine ligand generated from (bpy)PtCl2 and two

equivalents of AgOTf (Scheme 22) [38]. Detailed mechanistic studies support a

mechanism involving insertion of the olefin into a platinum-amido bond following

initial N–H activation.

Scheme 20 Platinum-catalyzed hydroamination of N-benzyl aminoalkenes

Scheme 21 Pt–NHC-catalyzed hydroamination

Scheme 22 Platinum-catalyzed hydrohydrazination
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2.2.2 Rhodium-Catalyzed Reactions

The first Rh-catalyzed hydroamination (of ethylene with secondary amines) was

reported by Coulson in 1971 [39]. Since then, ligated rhodium complexes have been

developed as catalysts for the intramolecular hydroamination of unactivated

aminoalkenes containing a basic amine functionality [40]. In particular, rhodium

complexes have been the first class of catalysts to demonstrate reactivity with

substrates that contain a primary amine donor [41], and also tolerate a wide range

of polar functionality. The most effective catalysts to date are monocationic at the

rhodium center and are proposed to react via the nucleophilic addition pathway

(Scheme 3). Although primary amines readily bind to rhodium, these substrates still

undergo effective catalysis [42].

The intermolecular hydroamination of styrenes to afford anti-Markovnikov

products using a rhodium catalyst was reported by Beller in 1997 using the cationic

catalyst precursor [Rh(COD)2]BF4 [43, 44]. In 2006, Hartwig and coworkers

reported an intramolecular hydroamination of secondary amines onto styrenes to

afford piperidine products resulting from anti-Markovnikov addition via an uncom-

mon 6-endo-trig cyclization (Scheme 23) [45–47]. The cationic rhodium complex

[Rh(DPPB)(COD)]BF4 was identified as the optimal catalyst precursor for efficient

cyclization of aminostyrenes 50 to piperidines 51, with minimal formation of

oxidative amination byproducts 52, which presumably results from β-hydride
elimination of an alkylrhodium intermediate. Substrates with a β-substituent on
the alkyl chain (R ¼ Me, OCH2OMe) afforded products 51 with high cis selectiv-
ity, which was rationalized by invoking a chair-like transition state in which the aryl

and alkyl substituents occupy equatorial positions. Participation of an η6-Rh–arene
complex, formed from coordination of the catalyst with the styrene substrate, may

explain the unusual anti-Markovnikov selectivity observed. As such, the develop-

ment of catalyst systems for the anti-Markovnikov addition of amine to unactivated

olefins still remains a significant challenge.

Hartwig and Liu subsequently reported a rhodium catalyst bearing the Davephos

ligand that exhibits excellent activity for hydroamination of unactivated alkenes

containing both primary and secondary amines (Scheme 24) [41]. Substituted

aminoalkenes containing a wide range of functionality, such as aryl nitriles, esters,

and alcohols (53, Ar ¼ 4-ClC6H4, 4-CNC6H4, 4-CO2MeC6H4), were cyclized at

relatively mild temperatures to form pyrrolidines and piperidines selectively.

Byproducts resulting from oxidative amination or alkene isomerization were not

formed when the Davephos ligand was employed, but were observed when

Scheme 23 Anti-Markovnikov hydroamination of styrenes
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bidentate phosphine ligands such as DPPB were used. Notably, this was the first late

transition metal catalyst to cyclize primary aminoalkenes (53; R0 ¼ H); however,

higher temperatures and gem-disubstitution (R ¼ Ph) on the alkyl chain were

required to facilitate cyclization. Detailed mechanistic studies revealed the active

catalyst to be an η6, κ1 complex that readily binds olefin to allow for intramolecular

nucleophilic attack of the pendant amine [48]. Protonolysis of the Rh–C bond was

found to be the rate-limiting step in the catalytic cycle.

In 2010, a rhodium catalyst ligated with an unusual tridentate POP-pincer ligand

bearing aminophosphine groups was shown to significantly improve reactivity for

primary amine substrates (Scheme 25) [42]. For the first time using a late transition

metal catalyst, primary amine substrates that were unbiased toward cyclization and

that possessed auxiliary functional groups were cyclized to form five- and six-

membered rings. Cyclization of tethered primary amines onto dienes and internal

olefins was possible, although these reactions required higher temperatures (100�C)
and catalyst loadings, and gave only moderate yields of the cyclized products. In

addition, tetrahydroisoquinolines (e.g., 56h–i), a common structural motif in

biologically active molecules, were readily synthesized by hydroamination of

2-allylbenzylamines. Secondary aminoalkenes also readily cyclized under the

same conditions. Mechanistic studies indicate that the tridentate “pincer” coordina-

tion mode of the ligand is likely involved in inhibiting competing β-hydride
elimination reactions that would form imine byproducts. The aminophosphine

groups on the ligand are also of key importance, as analogous alkyl- and

arylphosphine derivatives lead to inferior results.

The authors provided additional evidence to support a mechanism involving

nucleophilic attack of the amine on a coordinated olefin by investigating the

Scheme 24 Rhodium-catalyzed hydroamination of unactivated alkenes using a bidentate

η6-Rh–arene–phosphine complex

Scheme 25 Rhodium-catalyzed hydroamination of primary aminoalkenes
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catalyst resting state and reaction intermediates. However, data imply that these

reactions occur with a turnover-limiting step that is different from that of reactions

catalyzed by late transition metal complexes of Rh [48], Pd [6], Pt [33], and Ir [49].

This change in the turnover-limiting step and resulting high catalyst activity stem

from favorable rates for protonolysis of the Rh–C bond. Probes for the origin of the

reactivity of the rhodium complex of L1 implied that the aminophosphine groups

may facilitate proton transfer to the Rh–C bond (e.g., Scheme 26). To date, this

cationic P,O,P rhodium catalyst is the most active late transition metal catalyst for

the intramolecular cyclization of primary amines.

Rhodium catalysts described in this section demonstrate high reactivity across a

broad range of basic aminoalkene substrates and reports of new rhodium catalysts

for hydroaminations of unactivated alkenes continue to emerge (Scheme 27)

[50–52].

2.2.3 Iridium-Catalyzed Reactions

In 1988, Casalnuovo and coworkers reported the use of an electron-rich iridium

complex (Ir(PEt3)2(C2H4)Cl) for the intermolecular hydroamination of aniline and

norbornene [53]. This seminal work, along with more recent reports describing Ir-

catalyzed hydroamination of aminoalkynes [54], laid the foundation for the devel-

opment of new iridium catalysts for intramolecular hydroamination of unactivated

alkenes [40]. Recently iridium complexes have emerged as highly active catalysts

for intramolecular hydroamination of alkenes with either primary or secondary

amines. Valuable mechanistic insight has emerged from these recent reports that

will guide the development of new catalysts.

Scheme 26 Possible ligand-assisted Rh–C bond cleavage

Scheme 27 Rhodium catalysts for hydroamination of aminoalkenes
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In 2009, Stradiotto and coworkers reported that a simple iridium catalyst, [Ir

(COD)Cl]2, is effective for the hydroamination secondary alkyl- and arylamines.

Interestingly, the addition of added phosphine ligands or salts did not provide any

beneficial effect on reactivity [55]. Under typical conditions a variety of substrates

62 were cyclized to afford pyrrolidines and piperidines 63 in excellent yields

(Scheme 28). Functional groups such as an aryl chloride, ester, and methoxy

ether were tolerated (R ¼ CH2(4-Cl)C6H4, CH2(4-OMe)C6H4, CH2(4-CO2Me)

C6H4). Unlike the currently available Rh-based catalysts, the [Ir(COD)Cl]2 catalyst

is also effective for cyclizing substrates containing N-arylamines (62; R ¼ Ar). In

addition, substrates containing 1,2-disubstituted olefins that are typically more

challenging to cyclize underwent hydroaminations, albeit with higher catalyst

loadings (5–10%) and longer reaction times (48 h). With the exception of a single

example, all substrates required gem-disubstitution on the alkyl chain to bias the

substrate toward cyclization.

While [Ir(COD)Cl]2 alone was not effective for substrates bearing primary

amines, the addition of a catalytic amount of a proton source (i.e., HNEt3Cl)

allowed for successful cyclization of primary aminoalkenes (Scheme 29) [49].

Gem-disubstitution on the alkyl chain was required to bias these substrates toward

cyclization.

The authors propose a mechanism involving nucleophilic attack of amine onto a

coordinated Ir–olefin, which contrasts with the mechanism of Ir(PEt3)2(C2H4)Cl-

catalyzed reactions that operate via the N–H activation pathway [53]. Computa-

tional studies revealed that an N–H oxidative addition step with [Ir(COD)Cl]2

Scheme 28 Intramolecular hydroamination of N-alkyl and N-aryl aminoalkenes catalyzed by

[Ir(COD)Cl]2

Scheme 29 Intramolecular Ir-catalyzed hydroamination of primary aminoalkenes

Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene. . . 125



would be energetically prohibitive in the presence of a lower energy olefin activa-

tion pathway. The mechanism for metal–carbon bond cleavage in the [Ir(COD)

Cl]2-catalyzed reactions was also interrogated computationally [49], and could

occur either through a direct proton transfer from an ammonium salt (67 ! 66)
or via initial formation of an Ir(III)–H species 68 followed by C–H reductive

elimination to release the product (Scheme 30). DFT calculations supported the

two step process involving initial protonation of the iridium center, followed by a

turnover-limiting C–H reductive elimination step from a highly reactive Ir(III)-

hydrido intermediate 68. This is also consistent with the empirically measured

primary kinetic isotope effect (KIE ¼ 3.4).

In 2010, Ikariya and coworkers reported the use of a neutral Ir–pyrazolato

complex 70 in combination with a strong base (KOt-Bu) to catalyze the

hydroamination of substrate 64a [56]. It is proposed that the base serves to

deprotonate the pyrazole ligand from the chloride complex to afford an

Ir–pyrazolato complex in which the ligand assists nucleophilic attack of amine

onto a coordinated olefin (Scheme 31). Following this report, Tobisch published a

detailed DFT computational investigation that suggested that a more complex

pathway is operative, involving a pyrazolato hydrogen-bonding network that

facilitates the Ir–C bond cleavage step rather than nucleophilic addition step [57].

Other iridium complexes, such as the neutral P,O-phosphino–phenolate complex

71 [58], the cationic P,N-ferrocenyl iridium complex 72 [59], and the bidentate N-
heterocyclic carbene complex 73 [60], demonstrated reactivity for intramolecular

hydroamination of secondary aminoalkenes, but these more complex catalysts have

not yet shown to be advantageous over the simple [Ir(COD)Cl]2 system in initial

reports (Scheme 32).

Scheme 30 Proposed mechanisms for iridium–carbon bond cleavage

Scheme 31 Iridium-catalyzed hydroamination: metal–ligand cooperation
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2.2.4 Copper-Catalyzed Reactions

The development of copper complexes as catalysts for hydroamination is desirable

due to their significantly lower cost relative to platinum, palladium, rhodium, and

iridium catalysts. While reports have begun to emerge over the last 10 years for

copper-catalyzed inter- and intramolecular hydroaminations, typically either

activated olefins or electron-deficient N-protected amines are required for reactions

to proceed [61, 62]. Furthermore, Bronsted acid-catalyzed mechanisms have been

typically invoked for processes employing Cu(II) salts [9, 63]. To date, there are

only two reports of copper-catalyzed intramolecular hydroaminations of basic

amines onto tethered unactivated olefins [63, 64].

In 2009, Sawamura and coworkers reported the use of a Cu(Ot-Bu)–xantphos
complex as an efficient catalyst for the hydroamination of both primary and

secondary aminoalkene substrates 74 to afford five- and six-membered ring

products 75 (Scheme 33) [64]. Interestingly, electron-deficient N-donors, such as

amide substrates, also reacted to give protected pyrrolidine products in excellent

yields. In addition, a variety of N-alkyl groups were tolerated, including

functionalized benzyl groups containing methoxy, fluoro, cyano, or ester moieties.

Unfortunately, gem-disubstitution on the alkyl linker is required to facilitate cycli-

zation, and while substrates containing 1,1-disubstituted olefins participated in the

reaction, cyclization of a pendant amine onto a 1,2-disubstituted olefin failed under

these conditions.

Scheme 32 Bidentate P,X-ligated iridium catalysts for hydroamination of secondary aminoalkenes

Scheme 33 Cu(Ot-Bu)–xantphos catalyzed hydroamination
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The authors propose a mechanism involving initial formation of a copper amido

complex 77 (Scheme 34). The amido complex 77 undergoes cyclometalation to

afford the copper alkyl species 78, followed by protonolysis to regenerate the

copper–alkoxo complex 76 and release the hydroamination product. Enamine

products were not observed under these protic conditions, presumably due to the

increased rate of protonolysis versus β-hydride elimination in methanol.

A cationic copper complex generated from CuBr2, dppe (diphenylphosphi-

noethane), and AgBF4 catalyzes the hydroamination of secondary alkylamines 79
onto unactivated olefins (Scheme 35) [63]. The substrate scope is limited to

secondary amine substrates containing gem-disubstitution on the alkyl linker. The

Bronsted acid (HBF4–OMe2) was also found to catalyze hydroaminations under

similar conditions (and as such the authors propose a mechanism involving the

generation of an equivalent of Bronsted acid upon complexation of the amine

substrate to the cationic copper center). The resulting Bronsted acid would serve

as the catalyst for cyclohydroamination under these conditions.

2.2.5 Zinc-Catalyzed Reactions

In 2005, Blechert and Roesky reported the first homogeneous zinc catalyst (83) for
hydroamination of aminoalkynes and aminoalkenes [65]. The zinc(II) center is

ligated with an anionic troponiminato group that renders the complex stable toward

Scheme 34 Proposed mechanism for Cu(I)-catalyzed hydroamination

Scheme 35 Cationic copper-catalyzed hydroamination
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air and moisture. In a subsequent report the following year, a modified catalyst (84)
was found to cyclize secondary aminoalkenes containing various Lewis basic

functionalities with improved efficiency (Scheme 36) [66]. Although the catalyst

was tolerant of several functional groups, reaction times were often slow and

the catalyst showed little reactivity toward substrates lacking backbone

substituents. A single example of a substrate without gem-disubstitution on the

alkyl chain was reported to cyclize in only 19% conversion after 36 h in the

presence of 10 mol% catalyst 83. Although the mechanism of these reactions is

not clear, it is proposed that a cationic zinc complex is the active catalyst, which is

generated upon protonation of the alkyl group with a cocatalytic amount of the

Bronsted acid [PhNMe2H)B(C6F5)4 [67]. Numerous related aminotroponiminate

zinc complexes have also been evaluated in hydroaminations of aminoalkenes

[68–72]. However, thus far none have proven superior to 84, and chiral

aminotroponiminate zinc complexes have failed to induce enantioselectivity in

hydroamination reactions [72].

In 2009, Roesky and Blechert reported that a combination of Et2Zn and the

Bronsted acid activator (PhNMe2H)B(C6F5)4 catalyzed the hydroamination of

unactivated secondary aminoalkenes to form pyrrolidines containing various

functional groups [73]. Diethylzinc alone displays higher reactivity than the

ligated aminotroponiminate zinc complexes 83 and 84 and was able to cyclize

substrate 85 lacking gem-disubstitution on the alkyl chain, albeit with high

temperature (180�) and a long reaction time (21 days) to afford pyrrolidine 86
(Scheme 37). All other substrates reported to undergo intramolecular

hydroamination in the presence of Et2Zn had gem-disubstitution on the alkyl

chain to facilitate cyclization.

Scheme 36 Zinc-aminotroponiminate-catalyzed hydroamination

Scheme 37 Et2Zn-catalyzed hydroamination
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2.3 Asymmetric Hydroaminations of Aminoalkenes

Although asymmetric hydroaminations to form chiral pyrrolidines and piperidines

with lanthanide catalysts have been known since 1992 [74], there are only a few

reports describing asymmetric intramolecular hydroaminations to form chiral,

non-racemic heterocycles using late transition metal catalysts. This advance is

recognized as being especially important for drug discovery programs that require

the use of enantiomerically pure heterocyclic compounds for biological studies.

In 2010, Buchwald and Shen reported the use of a chiral rhodium catalyst for the

asymmetric hydroamination of secondary aminoalkenes [75]. This work represents

the first thorough investigation of chiral ligands and substrates for asymmetric

hydroamination of unactivated olefins. They discovered that [Rh(COD)2]BF4, in

combination with an axially chiral MOP ligand (L), gave benzylated pyrrolidines

88 in good yields and enantioselectivities (Scheme 38). It was found that a bulky

dialkylphosphine group (i.e., PCy2) was critical for achieving high enantioselec-

tivities. A variety of secondary aminoalkenes were cyclized. Notably, substrates

unbiased by the Thorpe–Ingold effect also reacted to give enantioenriched 2-

methylpyrrolidines, albeit in modest yields. Although primary aminoalkene

substrates exhibited low reactivity with this catalyst system, one example, 2-

allylaniline reacted to give 2-methylindoline in good yield, but with only moderate

enantioselectivity (64% ee). This represents the first and only reported example of

an asymmetric intramolecular hydroamination of a primary amine substrate using a

late transition metal catalyst.

More recently in 2012, Chemler and coworkers reported a copper-catalyzed

enantioselective hydroamination to form chiral 2-methylindolines [76]. The ability

to form hydroamination products using this catalyst system was initially observed

during studies on alkene carboamination reactions [77]. Following elegant mecha-

nistic work, the authors proposed a mechanism that proceeds via a radical pathway

involving initial cis-aminocupration of the substrate 89 to afford 91, followed by

Cu–C bond homolysis to afford a carbon radical 92 that undergoes either H-atom

abstraction to form a hydroamination product 93 or intramolecular coupling with

the arylsulfonyl group to form the carboamination product 94 (Scheme 39).

Scheme 38 Rhodium-catalyzed asymmetric hydroamination
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In order to favor hydroamination over carboamination, an H-atom donor, 1,4-

cylohexadiene, was added to the reaction mixture (Scheme 40). In addition, use of a

mesylate or 3,5-di-t-butyl-4-methoxybenzenesulfonate protecting group eliminated

or reduced formation of the carboamination product. Asymmetric induction was

achieved through the addition of the chiral (R,R)-Ph-box ligand to afford chiral

N-sulfonylindolines 93a–d with good enantioselectivities.

3 Hydroamination of Aminoallenes

Late transition metal-catalyzed additions of amines to allenes have been known

for decades [78]. Unsaturated carbon–carbon bonds in the form of allenes and

alkynes are generally more reactive toward late transition metal-catalyzed

Scheme 39 Proposed mechanism for Cu(II)-catalyzed hydroamination and carboamination

Scheme 40 Asymmetric hydroamination using a chiral copper catalyst
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hydrofunctionalization reactions, in part due to their higher energy π-electrons. The
allene C═C π-bond is known to be ~10 kcal/mol less stable than that of an alkene,

leading to increased reactivity [79, 80]. Intramolecular cyclizations of

aminoalkynes and endo-cyclizations of allenes produce unsaturated heterocycles,

whereas exo-cyclizations onto allenes in the presence of Lewis acidic metal

complexes produce saturated 2-alkenyl-substituted heterocycles.

The 5-exo-cyclization pathway is usually favored over the 6-endo-cyclization
pathway for intramolecular hydroaminations of allenes catalyzed by late transition

metal complexes. However, selective 5-endo-cyclizations are possible if no other

pathways for cyclization are available, such as in the case of α-aminoallenes [81,

82]. Various electron-deficient metal complexes, such as metal triflates or cationic

species, have been shown to catalyze the addition of nucleophiles to allenes, which

are typically proposed to proceed via the olefin activation pathway (Scheme 3).

Alternatively metal–hydride complexes have also been shown to be effective

catalyst precursors, which proceed by a different mechanism (vide infra) [83].

Gold and palladium catalysts are the most studied. However, reports of other late

transition metal catalysts for intramolecular allene hydroamination have also been

published [84]. Recent advances in the hydroamination of allenes will be

highlighted in the following sections.

3.1 Palladium- and Platinum-Catalyzed Reactions

In 1998, Yamamoto reported the first intramolecular hydroamination of allenes

with a palladium catalyst [83]. They proposed an alternative mechanism for

hydroamination involving insertion of allene 96 into a palladium–hydride bond to

give a π-allylpalladium intermediate 97 (Scheme 41). Addition of one equivalent of

acetic acid significantly improved reaction rates and efficiency, perhaps facilitating

the formation of the Pd–H species [85].

Both five- and six-membered rings could be readily formed using [(η3-C3H5)

PdCl2]2 as the starting complex and dppf as ligand (Scheme 42). Interestingly, both

Scheme 41 Palladium–hydride mechanism for allene hydroamination
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electron-deficient N-donors, such as amides and tosylamides, and electron-rich

primary and secondary amine N-donors participated in the cyclization to afford

hydroamination products, although electron-deficient amines generally gave better

yields. The catalyst was shown to be highly active as substrates lacking the

Thorpe–Ingold bias readily cyclized under these conditions.

More than a decade later, Liu and coworkers reported a catalyst system

comprised of PdCl2 and the nitrogen-based bathocuprine (BC) ligand, so as to

couple the hydroamination process to an aerobic alcohol oxidation process, which

would not be compatible with phosphine-based ligands [86]. They also invoked a

mechanism involving insertion of the allene into a palladium–hydride bond,

followed by nucleophilic attack of the pendant amine on the π-allyl intermediate.

Deuterium-labeling studies indicated that the proton that adds across the allenic

double bond originates from the α-position of the alcohol co-oxidant (Scheme 43).

The substrate scope was expanded to include internal allenes 103, which produce

2-trans-alkenyl and -styrenyl products 104 (Scheme 44). The trans olefin geometry

was exclusively formed in reactions of 1,3-substituted allenes.

In 1999, Yamamoto discovered that the intramolecular hydroamination of

allenes could be accomplished from aminoalkyne starting materials, through in

situ formation of the allene 107 (Scheme 45) [87]. Further investigations of this

system have since been reported [88], including expansions of scope to generate

lactams [89] and tetrahydroisoquinolines [90] (Scheme 45), as well as asymmetric

variants discussed in Sect. 3.3. The catalyst system was demonstrated to be

Scheme 42 First palladium-catalyzed intramolecular hydroamination of allenes

Scheme 43 Palladium-catalyzed allene hydroamination – deuterium-labeling study
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tolerant of a wide range of functional groups (e.g., aryl halides, esters

trifluoromethyl), and primary amine nucleophiles were also shown to participate

in the hydroamination.

In 2010, Toste demonstrated that platinum nanoparticles could be used as

catalysts for the hydroamination of aminoallenes [91]. Although the scope of

this reaction has not yet been established, this work represents the first example

of a heterogeneous catalyst for hydroamination and serves as a starting point for

the development of new heterogeneous catalysts (Scheme 46). Two different types

of nanoparticles (Pt40/G4OH and Pt/PVP) were prepared in a range of sizes, and

adhered to a solid support SBA-15. Reactions required the presence of the oxidant

PhICl2 and under these conditions it was found that the smaller nanoparticles gave

superior results, in part due to their increased stability compared to larger

nanoparticles. The heterogeneous platinum nanoparticle catalysts were compared

to the homogenous catalyst PtCl2 and shown to afford the pyrrolidine product

109 in comparable yields. A π-activation pathway was proposed for this

transformation.

Scheme 46 Platinum nanoparticle-catalyzed hydroamination of aminoallenes

Scheme 44 Palladium-catalyzed hydroamination of allenes under aerobic conditions

Scheme 45 Palladium-catalyzed isomerization/hydroamination of aminoalkynes
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3.2 Gold- and Copper-Catalyzed Reactions

Electron-deficient gold complexes have emerged as efficient catalysts for the

hydroamination reactions of aminoallenes [92]. Cationic gold complexes are

soft Lewis acids that tend to be more carbophilic than oxophilic, which results

in increased reactivity for π-activation processes and high functional group

tolerance. The development of gold complexes as catalysts for intramolecular

hydroaminations of aminoallenes with broad substrate scope was established in

2006 by Widenhoefer and coworkers [93]. This group illustrated that the bulky

monophosphine gold catalyst Au[P(t-Bu)2(o-biphenyl)]Cl and a cocatalytic amount

of AgOTf were highly active for the hydroamination of aminoallenes containing

electron-deficient N-donors (i.e., NCbz) (Scheme 47) [93]. The cocatalytic AgOTf

serves to generate a cationic gold complex as the active catalyst, which activates the

allene moiety allowing for anti-nucleophilic attack from the pendant carbamate. A

possible Bronsted acid-catalyzed process (via in situ generation of HOTf) was ruled

out by conducting control experiments in the presence of HOTf, which showed that

aminoallenes failed to cyclize in the absence of a metal catalyst. Reactions were

carried out at room temperature to afford 2-alkenyl-pyrrolidines and piperidines

111. The Thorpe–Ingold effect was not required to bias substrates toward cycliza-

tion and axially chiral allenes underwent cyclization to form the (E)-isomers

exclusively. Widenhoefer’s catalyst is also active for hydroalkoxylation of allenyl

alcohols (see Sect. 4.2) and hydroarylation with carbon nucleophiles.

In 2006, Yamamoto also reported the use of gold(I) or gold(III) salts to catalyze

both inter- and intramolecular hydroamination reactions [94, 95]. It was found that

AuCl was the optimal catalyst for the synthesis of pyrrolidines and piperidines via

cyclization of 1,3-aminoallenes 112 at room temperature in THF (Scheme 48). The

products 113 were formed exclusively as the (E)-alkene isomer. The gold(III)

complex AuCl3 also catalyzed the reaction with similar efficiency, but AuCl is

more air stable and thus more practical for use in the laboratory. Nitrogen donors

protected with a tosylate or a carbamate group reacted at a faster rate than more

basic amines. However, it was still possible to cyclize a secondary benzyl amine

Scheme 47 Hydroamination of aminoallenes with a cationic gold monophosphine complex

Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene. . . 135



(112b) in 76% yield with a longer reaction time (24 h versus 3 h for electron-

deficient amines). Primary amines failed to react under these conditions, likely due

to deactivation of the catalyst by the amine. Gem-disubstitution on the alkyl chain

was not required to bias the substrate toward cyclization, which highlights the

increased reactivity of allenes compared to isolated unactivated alkenes. Finally,

it was found that chirality could be transferred from enantioenriched allenes as a

method for synthesizing chiral non-racemic pyrrolidines and piperidines

(Scheme 49).

Motivated by the biological activity of quinazolin-4-ones, such as piriqualone

and CP-465,022, Broggini and coworkers reported the hydroamination of

aminoallenes 114 catalyzed by AuCl3 to afford the heterocyclic cores 115 in

good yields (41–71%, Scheme 50) [96]. Platinum and palladium complexes also

catalyzed the reaction, albeit in low yields. With the recent development of

Scheme 48 AuCl-catalyzed hydroamination of aminoallenes

Scheme 49 Chirality transfer from enantioenriched allenes

Scheme 50 Synthesis of quinazilones via hydroamination
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improved methods, late transition metal-catalyzed hydroamination is beginning to

emerge as an option for the synthesis of complex, biologically active molecules.

There are reports of other Lewis acidic metal complexes that catalyze the 5-exo-
cyclohydroamination of aminoallenes. For example, aminoallenes such as 116
containing a basic amine readily cyclized to form 2-vinyl-pyrrolidines in the

presence of copper or silver salts (Scheme 51) [97]. Copper(II) triflate catalyzes

the cyclization of primary aminoallenes (e.g., 118!119) as well as 5-endo-
cyclizations of α-aminoallenes such as 120. A mechanism involving anti-
aminometallation of the intermediate π-complex, similar to the mechanism of

gold-catalyzed processes, is proposed for electron-deficient Cu and Ag salts.

3.3 Asymmetric Hydroaminations of Aminoallenes

The late transition metal-catalyzed asymmetric intramolecular hydroamination of

allenes is more developed than the analogous reactions with unactivated alkenes, in

part due to the higher reactivity of allenes in hydroamination reactions [98–100].

One challenge in developing effective chiral gold catalysts stems from the preferred

linear geometry of gold(I) complexes, which orients the chiral ligand distant from

the substrate. To overcome this limitation, Toste developed a monocationic

dinuclear gold(I)–bisphosphine complex using the BINAP ligand which was

found to catalyze the asymmetric hydroamination of aminoallenes [101]. The (R)-
xylyl-BINAP(AuOPNB)2 catalyst is effective for cyclizations of tosyl-protected

aminoallenes 122 to chiral vinyl-substituted pyrrolidines 123 (Scheme 52). Chiral

piperidines could also be synthesized with good enantioselectivities; however, it

was found that a related biphenyl bisphosphine complex (R)-ClMeO-BIPHEP

(AuOPNB)2 gave superior selectivities. The substrate scope was later expanded

to include protected hydrazines and hydroxylamines to form chiral pyrazolidines

and isoxazolidines [102].

In 2007, Toste subsequently reported a unique strategy that utilized a chiral

anion instead of a chiral ligand for asymmetric hydroamination of aminoallenes and

hydroalkoxylation of hydroxyallenes (see Sect. 4.3) [103]. An achiral

Scheme 51 Copper- and silver-catalyzed hydroaminations of aminoallenes
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gold–phosphine cation [Ph(CH3)2PAu
+] complexed to a phosphate counterion 126

derived from readily available binaphthol was found to catalyze the hydroamination

of sulfonyl-protected aminoallenes 124 to form 2-alkenyl-pyrrolidines 125 in

excellent enantioselectivities (Scheme 53).

In 2007, Widenhoefer reported the asymmetric hydroamination of N-allenyl
carbamates, which had previously failed to react under conditions that were suc-

cessful for N-allenyl sulfonamides [104]. The chiral biaryl complex [(S)-129]
Au2Cl2] in combination with AgClO4 catalyzed the hydroamination of N-allenly
carbamates and N-allenyl carboxamides to form 2-alkenyl-pyrrolidines 128 with

fast rates and moderate to excellent enantioselectivities (Scheme 54). There was a

pronounced effect on the counterion as the use of AgOTs led to a 1000-fold

decrease in reaction rate compared to AgClO4. This enhanced rate was important

for achieving high selectivities since reactions could be run at low temperatures.

Enantioselectivities were sensitive to the substitution pattern on the alkyl chain

linking the nitrogen and allene moieties. For example, aminoallenes containing

gem-diphenyl substituents typically reacted with high selectivities; however,

cyclohexyl- or unsubstituted derivatives reacted to give lower selectivities.

Subsequent work demonstrated that N-allenyl ureas were also viable substrates

for asymmetric hydroamination employing a similar catalyst system [105].

Scheme 53 Asymmetric gold-catalyzed hydroamination mediated by a chiral counterion

Scheme 52 Dinuclear gold-catalyzed enantioselective hydroamination of aminoallenes
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Use of the chiral gold complex [(S)-129]Au2Cl2] in reactions of axially chiral

1,3-disubstituted allene substrates such as 130a led to products 131a with low

enantioselectivity; however, trisubstituted allenes 130b underwent dynamic kinetic

enantioselective hydroamination to afford predominately one of the four possible

stereoisomers, due to the ability of such allenes to rapidly racemize in the presence

of the gold catalyst (Scheme 55) [106, 107]. These results are in contrast to

analogous hydroalkoxylation reactions, where axially chiral hydroxyallenes reacted

to give products with high enantioselectivity without prior racemization (see

Sect. 4.3). This suggests that the enantiodetermining step is due to an irreversible

and selective nucleophilic attack of the amine onto the gold-π-complex, with

matched or mismatched reactivity depending on the stereochemistry of the sub-

strate and catalyst, and not as a result of selective formation of the gold allene π
complex.

Scheme 54 Asymmetric Au-catalyzed hydroamination of N-allenyl carbamates and amides

Scheme 55 Dynamic kinetic enantioselective hydroamination of trisubstituted aminoallenes

Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene. . . 139



Yamamoto developed an asymmetric palladium-catalyzed alkyne isomerization/

hydroamination by utilizing a chiral bisphosphine ligand (R,R)-RENORPHOS in

combination with catalytic Pd2(dba)3 to afford enantioenriched 2-alkenyl-

pyrrolidines 135 and -piperidines 137 in moderate to excellent enantioselectivities

(Scheme 56) [90, 108, 109]. Although the triflate protecting group was suitable, the

use of the nonafluorobutanesulfonyl (Nf) group gave better results by allowing for

reduced catalyst loadings.

4 Hydroalkoxylation of Unsaturated C–C Bonds

The intramolecular hydroalkoxylation of alkenes is of fundamental importance for

the synthesis of oxygen-containing heterocycles [4]. With few exceptions [110],

late transition metal-catalyzed hydroalkoxylation reactions proceed through the

olefin activation pathway. The reduced nucleophilicity of the oxygen nucleophile

compared to amine nucleophiles requires the use of highly Lewis acidic late

transition metals, such as metal triflates, tosylates, and halides, as catalysts for

hydroalkoxylation. Numerous late transition metals, such as those based on gold,

silver, copper, ruthenium, iron, palladium, and platinum, have been developed as

catalysts for hydroalkoxylation. It is recognized that the well-studied palladium-

catalyzed Wacker oxidation proceeds by initial complexation of an olefin to the

electrophilic palladium center followed by nucleophilic attack of an oxygen nucle-

ophile, similar to the first step in hydroalkoxylation [111]. If β-hydride elimination

is slowed relative to protonolysis of the metal–carbon bond, then saturated

hydroalkoxylation products will be formed instead of Wacker oxidation products.

Recent developments in the reactions of hydroxyallenes and hydroxyalkenes for the

synthesis of saturated tetrahydrofurans and tetrahydropyrans, as well as asymmetric

hydroalkoxylations, will be reviewed in this section.

Scheme 56 Asymmetric palladium-catalyzed alkyne isomerization/hydroamination
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4.1 Reactions of Hydroxyalkenes

Similar to hydroamination, hydroalkoxylations of unactivated alkenes are more

challenging than analogous reactions with alkynes or allenes and much effort has

been spent developing more active and selective catalysts for this class of

substrates. In 2004, Widenhoefer and coworkers reported the first late transition

metal-catalyzed hydroalkoxylation of unactivated olefins 138 to form five- and six-

membered rings 139 [112]. The use of an electron-deficient phosphine (2 mol%

P(C6H4CF3)3) in combination with 1 mol% [PtCl2(CH2═CH2)]2 allowed for the

efficient cyclization of hydroxyalkenes bearing various functional groups

(Scheme 57). Notably, the Thorpe–Ingold effect was not required for cyclization.

Hydroalkoxylation of higher substituted olefins is more facile than for

corresponding hydroaminations reactions. Substrates with terminal, 1,1-disubsti-

tuted, 1,2-disubstituted, and trisubstituted olefins all participated in the hydroalk-

oxylation reaction. However, for the substrate 140 bearing a trans-disubstituted
olefin, a 3.6:1 mixture of products was obtained as a result of competing 5-exo (141)
and 6-endo-cyclizations (142) (Scheme 58). In general, regioselectivity for

hydroalkoxylations is strongly governed by the stability of the analogous

carbocation that would result from alkene protonation, indicating a late transition

state for nucleophilic attack of the heteroatom onto the coordinated olefin. This can

often lead to mixtures of 5-exo and 6-endo-cyclization products, or exclusive

Scheme 57 Platinum-catalyzed hydroalkoxylation of hydroxyalkenes

Scheme 58 Competing 5-exo and 6-endo hydroalkoxylation
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formation of 6-endo tetrahydropyran products depending on the substitution of the

olefin.

In 1998, Furukawa reported the first intramolecular hydroalkoxylation catalyzed

by a mixture of RuCl3·nH2O, AgOTf, PPh3, and Cu(OTf)2 to afford dihydro-2-

methyl-benzofuran 146, without competing β-hydride elimination [113]. Later in

2007, the authors expanded the scope of this reaction (Scheme 59) [114, 115], and

also illustrated that (RuCp*Cl2)2 in combination with AgOTf was an effective

catalyst for the hydroalkoxylation of hydroxyalkenes. The Ru-catalysts gave simi-

lar regioselectivities for cyclization as were observed for the Pt-catalysts above.

The ruthenium catalyst systems were extremely sensitive to the choice of solvent,

silver salt and copper salt. For example, no catalytic activity was observed if AgBF4
was used instead of AgOTf. Although mechanistic data were not obtained, the

authors propose the formation of a cationic ruthenium(III) complex that catalyzed

hydroalkoxylation via the olefin activation pathway. No explanation for the role of

copper triflate was given; however, it alone did not catalyze the reaction in

acetonitrile. Hydrocarboxylation was also demonstrated with the RuCl3 catalyst

system [114].

Furukawa and Ito later reported that copper(II) triflate alone effectively

catalyzed the hydroalkoxylation of unactivated alkenes in nonpolar solvents

(Scheme 60) [116]. 2-Allylphenols containing electron-withdrawing groups were

poor substrates for hydroalkoxylation, suggesting that the nucleophilicity of the

phenol group influences the overall reaction rate. They also demonstrated that

efficient cyclization to form a seven-membered ring could be accomplished in

good yield (177–178; 85%).

In 2009, Hii and coworkers expanded the substrate scope for the Cu(OTf)2-

catalyzed hydroalkoxylation (Scheme 61) [117]. They also found that use of triflic

acid as catalyst yielded comparable results to the copper-catalyzed process under

Scheme 60 Copper-catalyzed hydroalkoxylation

Scheme 59 Ruthenium-catalyzed hydroalkoxylation of unactivated alkenes
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otherwise identical conditions (152e); however, it was argued that the use of copper
is advantageous due to its ease of handling and mild nature.

Simple Lewis acidic silver salts have also been shown to catalyze hydroalkox-

ylations of unactivated hydroxyalkenes. In 2005, He and coworkers described that

the first intramolecular silver-catalyzed hydroalkoxylation of hydroxyalkenes 153
affords tetrahydrofurans and tetrahydropyrans 154 in excellent yields (Scheme 62)

[118]. In the initial catalyst screening, the authors found that AgOTf alone gave the

best results. Addition of the electron-rich phosphine PPh3 completely inhibited

the reaction. The regioselectivity for exo- versus endo-cyclizations parallels that of
the copper and platinum catalysts described above, suggesting a similar mechanism

that likely involves activation of the olefin by the Lewis acid or in situ-generated

Bronsted acid followed by nucleophilic attack.

Iron-based Lewis acids have been shown to catalyze hydroalkoxylation of

alkenes [119]. For example, the combination of 10 mol% FeCl3 and 30 mol%

AgOTf catalyzed the cyclization of hydroxylalkene 155 to tetrahydrofuran product

156 in quantitative yield after 30 min (Scheme 63) [120]. Interestingly, the reaction

catalyzed by AgOTf alone afforded the product in only 8% yield after 30 min,

suggesting that the iron cocatalyst does indeed accelerate the rate for hydroalk-

oxylation. Additional control experiments suggest that the iron metal participates in

catalysis, and is not merely a source of Bronsted acid.

In 2005 He and coworkers reported the first gold-catalyzed intramolecular

hydroalkoxylation of alkenes (Scheme 64) [121]. Heating a mixture of 157 in the

Scheme 62 Silver-catalyzed hydroalkoxylation

Scheme 61 Copper-catalyzed hydroalkoxylation
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presence of cationic gold complex PPh3AuOTf in toluene afforded a 15:1 mixture

of products 158 and 159. It was observed that olefin isomerization could occur

under these reaction conditions; therefore, the minor tetrahydropyran product 159
may result from 6-exo-cyclization after olefin isomerization to the terminal olefin

(versus 6-endo-cyclization of substrate 157). Notably, this catalyst was also highly

active for more challenging intermolecular reactions of unactivated olefins. In 2012
dienes were also reported to undergo intramolecular hydroalkoxylation in the

presence of PPh3AuOTf [122]. The development of gold nanoclusters stabilized

by the hydrophilic polymer poly(N-vinyl-2-pyrrolidone) was also reported to cata-

lyze alkene hydroalkoxylation [123].

4.2 Reactions of Hydroxyallenes

Since the discovery of the silver-catalyzed hydroalkoxylation of allenes in 1979,

numerous late transition metal catalysts have been developed for hydrofunctiona-

lization of allenes [124–126]. Many processes have focused on the synthesis

of unsaturated 2,5-dihydrofurans as a result of 5-endo-cyclizations from

α-hydroxyallenes [127]; however, recent research in the area of gold-catalysis has

led to the development of exo-hydroalkoxylations of allenes to form saturated

2-alkenyl-tetrahydrofurans and -tetrahydropyrans.

In 2006, Widenhoefer and coworkers reported the use of a Johnphos-gold

complex as a catalyst for intramolecular allene hydroalkoxylation which had

previously shown efficacy as a catalyst for hydroamination and hydroalkoxylation

of alkenes (Scheme 65) [26, 93]. It was found that the regioselectivity for hydroalk-

oxylation of allene 160 was highly dependent on the counterion. For example, the

use of AgOTf in combination with (Johnphos) AuCl afforded a 1.3:1 mixture of

5-exo and 6-exo products 161 and 162, but employing AgOTs instead resulted in

selective formation of the five-membered ring tetrahydrofuran 161. Of note, no
reaction was observed in the presence of AgOTs alone.

Scheme 63 Iron-catalyzed hydroalkoxylation of an allenyl alcohol

Scheme 64 First gold-catalyzed intramolecular hydroalkoxylation
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This optimized gold catalyst system was evaluated on substrates with various

substitution patterns on the alkyl linker and allene (Scheme 66). The catalyst was

shown to be highly active as gem-disubstitution on the alkyl linker was not required

for cyclization. Both five- and six-membered ring products could be synthesized by

this method. Axially chiral allenes containing 1,3-disubstitution cyclized to form

E-alkenyl products with good selectivity (e.g., 164b; 5.3:1 E:Z). Enantioenriched
allenes underwent intramolecular hydroalkoxylation with transfer of chirality to

afford enantioenriched products.

In 2010, an N-heterocyclic carbene-gold complex 167 was shown to catalyze

the intramolecular hydroalkoxylation of an allenyl alcohol 165 to 2-vinyltetra-

hyrofuran 166 (Scheme 67) [128]. Although the scope of the reaction was not

investigated, this type of NHC ligand has rarely been used in catalysis. Nonetheless,

this complex has proven to be a useful catalyst in other alkene hydrofunctiona-

lizations reactions. A gold complex encapsulated in a supramolecular host has also

shown catalytic activity in hydroalkoxylation reactions of allenyl alcohols [129].

The palladium-catalyzed isomerization/hydroamination reaction developed by

Yamamoto (described in Sect. 3.1) was also applied to reactions involving oxygen

nucleophiles [130, 131]. Hydroxyalkynes 168were transformed to tetrahydrofurans

and tetrahydropyrans 169 via allene 170 in the presence of 10% Pd(PPh3)4 and

10% benzoic acid in moderate to good yields (Scheme 68). Reactions forming

Scheme 66 Gold-catalyzed intramolecular hydroalkoxylation of allenes

Scheme 67 NHC–gold-catalyzed hydroalkoxylation

Scheme 65 Counterion effect in gold-catalyzed allene hydroalkoxylation
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five-membered rings were higher yielding than reactions forming six-membered

rings. In the presence of a chiral phosphine, enantioenriched products were formed

(see Sect. 4.3).

4.3 Asymmetric Hydroalkoxylation Reactions

The use of a chiral late transition metal catalyst for the enantioselective synthesis of

oxygen-containing heterocycles is an attractive approach toward this class of

molecules. Although synthetically useful methods for asymmetric intramolecular

hydroalkoxylations of unactivated olefins have not yet been reported,

hydroxylallenes can be converted to chiral tetrahydrofurans and tetrahydropyrans

with good enantioselectivities.

Widenhoefer’s chiral dinuclear gold catalyst [(S)-(129)-Au2Cl2] that was used
for asymmetric allene hydroamination was also successfully applied to asymmetric

allene hydroalkoxylation to afford both tetrahydrofuran (172a) and tetrahydropyran
(172b) products (Scheme 69) [100, 132]. In order to achieve high enantioselec-

tivities, gem-disubstitution on the alkyl chain was required. For example,

hydroxyallene 173 was cyclized to give a 1.5:1 mixture of E:Z products in excellent

yield, but poor enantioselectivity. Notably, both isomeric products 174a-b were of

Scheme 69 Asymmetric gold-catalyzed allene hydroalkoxylation

Scheme 68 Palladium-catalyzed isomerization/hydroalkoxylation of hydroxyalkynes
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the same absolute configuration. While enantioselectivities were low for the 1,3-

disubstituted allene substrate 173 lacking substituents on the alkyl linker, high

enantioselectivities (>95% ee) were obtained for substrates of type 175, bearing
an internal allene and gem-disubstitution on the alkyl linker. A 1:1 mixture of E:Z
products (E)-176a and (Z)-176b was formed and hydrogenation of this mixture

generated the analogous saturated tetrahydrofuran in 90% ee, confirming that the

chiral center in both geometric isomers were formed with the same sense on chiral

induction.

Yamamoto reported an asymmetric version of the palladium-catalyzed alkyne

isomerization/hydroalkoxylation by utilizing a chiral bisphosphine ligand (R,R)-
RENORPHOS in combination with catalytic Pd2(dba)3 to afford enantioenriched

2-alkenyl heterocycles (Scheme 70) [109].

Toste utilized a chiral counterion strategy to render hydroalkoxylation of allenyl

alcohols enantioselective [103]. The conditions employed were similar to those

described above in analogous asymmetric allene hydroamination reactions

(Scheme 71). However, the authors found that the bidentate ligand dppm (diphenyl-

phosphinomethane) gave higher enantioselectivities for hydroalkoxylation than the

monodentate dimethylphenyl phosphine ligand (PPhMe2), which was optimal for

hydroamination. Reactions conducted in more polar solvents such as acetone led to

significantly reduced enantioselectivities, which highlights the importance for the

formation of a tight ion pair in this methodology.

Scheme 70 Palladium-catalyzed asymmetric isomerization/hydroalkoxylation of hydroxyalkynes

Scheme 71 Chiral counterion-mediated asymmetric hydroalkoxylation
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Toste also found that the combination of a chiral phosphine ligand with the

chiral counterion could lead to enhanced enantioselectivities. For example, 2-vinyl-

tetrahydropyran 182e was formed in only 80% ee under the standard conditions

employing the achiral dppm ligand. However, the same product could be formed

in 92% ee if instead the chiral (S,S)-DIPAMP ligand was used (Scheme 72).

The combination of the (S,S) ligand with the (R)-126 counterion represented the

“matched” case, since pairing of the (S,S) ligand with the (S)-enantiomer of the

chiral counterion led to reduced enantioselectivity. Mikami and coworkers also

observed a similar synergistic effect [133].

5 Conclusion and Outlook

Over the last decade, significant progress has been made toward the development of

chemoselective and stereoselective late transition metal catalysts for hydrofunctio-

nalization of unsaturated C═C bonds to form saturated heterocycles. Advances

have been achieved for hydroamination and hydroalkoxylation reactions of chal-

lenging substrates bearing unactivated olefins, especially through the use of highly

active platinum, rhodium, palladium, and gold catalysts. In addition, investigations

into reaction mechanism have revealed valuable insight that has driven the struc-

ture-based design of new ligands. The use of late transition metal catalysts has led

to methods that tolerate numerous functional groups (e.g., alcohols, esters, nitriles,

ketones) that would otherwise not be compatible with early transition metals or

lanthanide catalysts. Although much progress has been achieved, many challenges

still remain, including limited substrate scope for asymmetric cyclizations with

unactivated olefins, and cyclizations of substrates bearing di- and trisubstituted

olefins. In addition, the development of new catalysts for enantioselective

transformations will undoubtedly be the focus of continued research.
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1 Introduction

The ubiquity of heterocycles in biologically active natural products has led to an

ever-growing arsenal of methodologies aimed at the production of these cyclic

structures. Among cyclization strategies, metal-catalyzed intramolecular allylic

alkylation reactions have been particularly fruitful. These facile processes accom-

modate a broad range of substrates and generally effect ring formation under

relatively mild conditions with low catalyst loadings. Mechanistically, metal-

catalyzed allylic alkylation reactions can be placed into three distinct categories:

formation of π-allyl metal intermediates, direct cyclization by formal SN2
0

reactions, and cyclization of cationic systems (Scheme 1). Although these different

pathways can in principle give identical products, their mechanistic course varies

greatly and is dependent on many factors including: solvent, metal catalyst, leaving

group, additives, and ligands. This chapter attempts to categorize the general area

by mechanistic class as is dictated by the factors outlined in the ensuing paragraphs.

Reaction conditions for the formation of π-allylmetals (1) generally contain

nucleophilic/electron-rich metal-catalysts, which act upon allylic systems

containing highly reactive leaving groups such as carbonates and halides. During

the catalytic cycle, the metal undergoes a redox sequence wherein two electrons are

lost and regained during the reaction course. This method has proven to be highly

successful and extremely versatile. Recent developments involve an increased

number of methods utilizing metals other than palladium and alternative allylic

leaving groups.

Formal SN2
0 reactions are typically effected by an electrophilic, π-acidic, metal-

complex that prefers the formation of a π-complex without undergoing

redox during the reaction course. Metal-catalyzed intramolecular formal SN2
0

reactions constitute a relatively new class of reaction pathway when compared to

Scheme 1 Activation modes for catalytic π-allyl, formal SN2
0, and cationic cyclization reactions
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the well-known π-allylmetal systems. New methodologies and mechanistic insights

are continually being reported and may be beginning a paradigm shift in this area.

Ionization of allylic systems to form cations (4) generally employs highly

electrophilic metal catalysts that readily ionize the allylic system by abstracting

the leaving group. The metal-complex is usually comprised of a hard metal capable

of coordinating directly to the leaving group. The cationic nature of these systems

adds a significant challenge when enantioenriched products are desired.

Over the past decade, a variety of groups have reported on heterocycle synthesis

using cyclization reactions with a diverse set of substrates and catalyst systems. The

following chapter is organized first by mechanism and chronologically within each

section. Instead of a comprehensive review, this chapter presents selected examples

that focus specifically on the formation of a carbon–heteroatom bond via a metal-

catalyzed allylic alkylation reaction to form saturated heterocycles.

2 Formation of Saturated Heterocycles via π-Allyl Metal
Complexes

The following section covers select examples of π-allyl metal intermediates in the

formation of heterocycles over the past 10 years. These processes generally proceed

through the classical mechanistic steps: coordination of the catalyst to the allylic

olefin, ionization to form a π-allylmetal species, and nucleophilic attack on the

complex regenerating the catalyst.

2.1 Heterocycle Synthesis via π-Allyl Palladium Intermediates

Since the initial discoveries of Tsuji [1], Trost [2], and coworkers, the Tsuji–Trost

reaction has stood as one of the most versatile synthetic transformations [3–5]

for forming both carbon–carbon and carbon–heteroatom bonds. During their

syntheses of (�)-desethylibogamine and (+)-ibogamine in the late 1970s, Trost

et al. reported some of the earliest examples utilizing this methodology to form a

carbon–heteroatom bond in an intramolecular fashion [6, 7]. Over the past 40 years,

intramolecular Tsuji–Trost type cyclizations have become commonplace in the

synthesis of heterocycles, and this strategy has been used in a myriad of natural

product syntheses [8–11].

Driven by their initial studies toward the construction of the core ring structure

of vitamin E [12], Trost and coworkers extensively studied a palladium-catalyzed

intramolecular asymmetric allylic alkylation (AAA) of phenol-tethered allyl

carbonates 5 to form chromans 6 (Scheme 2) [13–15]. These highly useful synthons

could be formed in high yield and good enantioselectivities with the use of Pd2dba3
and ligand (R,R)-L1 under mild conditions. Generally, the E-allylic carbonates give

160 J.M. Ketcham and A. Aponick



the (R)-chromans while Z-allylic carbonates give the (S)-chroman products with

(R,R)-L1. Interestingly, in most cases the Z-allylic systems give higher enantios-

electivities. The work culminates in the utilization of these Pd-catalyzed

cyclizations in the total syntheses of (+)-clusifoliol [14] and (�)-siccanin [15].

In 2006, the same group found that similar conditions could be used to achieve

a one-pot cascade reaction [16, 17], forming piperazinone 9 by a palladium-

catalyzed asymmetric allylic alkylation (AAA) reaction between dicarbonate 7
and pyrrole 8 (Scheme 7). This reaction was further used in the formal total

synthesis of (�)-agelastatin A (Scheme 3). Additional studies revealed that the

regioisomer 10 could be prepared by a sequential palladium-catalyzed process,

which was further used in the synthesis of the opposite enantiomer, (+)-agelastatin

A (11).
In addition to examples using chiral catalysts with achiral substrates, achiral

catalyst in combination with chiral substrates can be utilized. Spilling has reported

an interesting system using chiral allylic phosphonates [18]. The method was

used to synthesize vinyl tetrahydropyran and tetrahydrofuranyl phosphonates and

is an extension of their previously reported process for generation of vinyl

N-heterocyclic phosphonates (Scheme 4) [19]. Although 7- and 8-membered

rings could not be formed under the reaction conditions, the 5- and 6-membered

ring products 13 were obtained with complete transfer of chirality from carbonate

substrates 12 [20]. These vinyl phosphonates are easily transformed into the

corresponding β-ketophosphonates via a regioselective Wacker oxidation and can

subsequently be used in Horner–Wadsworth–Emmons (HWE) reactions to easily

prepare more complex structures. The authors have nicely demonstrated the utility

of this method in the formal synthesis of (+)-centrolobine [20], the synthesis

of an Amphidinolide F fragment [21], and more recently the synthesis of both

diastereomeric nematocidal oxylipids isolated from the Australian sea sponge

Notheia anomala [22].

As a final example of the versatility of the palladium-catalyzed intramolecular

Tsuji–Trost reaction, Comins and coworkers demonstrated the use of a vinylogous

amide nucleophile in the synthesis of alkaloid (�)-205B [23]. Isolated in 1987 by

O
R2

R1R1

OH R2

Pd2dba3
. CHCl3 (2 mol%)

(R, R)-L1 (6 mol%)
HOAc (1-1.2 eq.)

CH2Cl2,
r.t., 1-5 hrs.

62-97%
R1 = H, F, Me, OMe
R2 = Me, H

OCO2Me

(E) (R)

up to 97% ee

(Z) (S)

5 6

HNNH
OO

PPh2 Ph2P

(R, R)-L1

Scheme 2 Pd-catalyzed synthesis of chromans from phenol-tethered allyl carbonates
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Daly et al. [24, 25], alkaloid (�)-205B is structurally unique when compared to

other indolizidine alkaloids and its enantiomer has shown selective inhibition for a

receptor that is linked with various neurological diseases [26]. Comins’ synthesis

provides a concise and efficient pathway to 16 in eleven steps [23]. An intramolec-

ular Tsuji–Trost reaction using a vinylogous amide nucleophile 14 gives the

product 15 in high diastereoselectivity with the bulky P(tBu)3 ligand (Scheme 5).

The use of Cs2CO3 was crucial as other bases led to significant decomposition of the

substrate. After this key-step, the total synthesis of the natural product was easily

completed from 15 in seven steps.

MeO P

O

MeO
MeO2CO

(PPh3)4Pd or
dppe, Pd2(dba)3

(cat.)
iPr2NEt, THF

40 °C
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MeO P

O

MeO
OH
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n = 1, 2
R1, R2 = H, Me

HO R2
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12 13

( )
n

( )
n

Scheme 4 Pd-catalyzed synthesis of vinyl tetrahydropyran and tetrahydrofuran phosphonates
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O
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Scheme 3 Synthesis of piperazinone 8 via Pd-catalyzed intramolecular Tsuji–Trost allylation
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2.2 Heterocycle Synthesis via π-Allyl Iridium Intermediates

Approximately 40 years after the discovery of the Tsuji–Trost reaction Takeuchi

et al. [27, 28] and Helmchen and coworkers [29, 30] reported that iridium

complexes were effective catalysts for allylic alkylation reactions. Their pioneering

work demonstrated that nucleophilic addition to π-allyl iridium complexes prefer-

entially forms the branched alkylation products, which is in contrast to the linear

alkylation products formed by palladium catalysis. Since these initial reports

numerous advances have demonstrated the advantages of iridium complexes in

allylic alkylation reactions [31, 32]. Given that these iridium-catalyzed processes

were developed much more recently than the palladium-catalyzed systems, it is not

surprising that intramolecular variants to form heterocycles were not reported until

the early 2000s.

In 2003, Takemoto et al. reported the iridium-catalyzed diallylic amination of

bis(allylic carbonates) 17 to form various azacycles 19 [33] (Scheme 6). Although

the diastereoselectivities were low, the yields and regioselectivities were high.

More significantly, this report details the first synthesis of heterocycles via an

iridium-catalyzed intramolecular allylic amination strategy.

Soon after this report, Helmchen and coworkers demonstrated the first

enantioselective iridium-catalyzed intramolecular allylic amination [34, 35]. After

testing various solvents, ligands, additives, etc., it was found that iridium

complexes containing phosphoramidite ligands of the general structure L2 [36]

have a dramatic impact on both the reactivity and selectivity of the process

(Scheme 7).

Using these conditions, allylic carbonates 20 undergo smooth cyclization to their

corresponding azacycles 21 in up to 99% yield and 97% ee. Employing similar

reaction conditions, they were able to extend this methodology and design systems

for the enantioselective formation of chromans and an enantioselective sequential

inter-/intramolecular allylic amination reaction [35].

Further exploration of these allylic aminations revealed that the reactions are

catalyst controlled and both 2,6-cis or 2,6-trans piperidines could be formed from

the same substrate [37, 38]. For example, the isomeric mixture 22 can be subjected

to similar reaction conditions to generate either the cis-23 or trans-24 diastereo-

meric products depending on which enantiomer of the ligand L3 is used (Scheme 8).

N
H

O
OAc Pd2(dba)3  (5 mol%)

P(tBu)3  (20 mol%)
Cs2CO3  (2.0 eq.)

dioxane, 75 C
80%, 95% de

N

O

H

Frog Alkaloid 
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N

Me Me

H

H
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Scheme 5 Comins et al. Total synthesis of alkaloid (�)-205B
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Although only primary amines were used in these cyclization reactions, the yields

and selectivities were excellent, and this methodology has been utilized in the total

syntheses of prosopis, dendrobate, and spruce alkaloids [38].

More recently, Feringa and coworkers have demonstrated a similar method for

constructing tetrahydroisoquinolines [39]. Trifluoroacetylamides 25 readily

underwent cyclization to form the corresponding tetrahydroisoquinolines 26
in high yield and enantioselectivity (Scheme 9). This strategy was used to synthe-

size saturated pyrrolidines and piperidines; however, competing β-hydride elimina-

tion was encountered and rendered the formation of azepane derivatives quite

challenging. The resulting products could be easily deprotected using K2CO3 in

MeOH/H2O without a reduction in ee.

2.3 Heterocycle Synthesis via π-Allyl Nickel Intermediates

Heterocyclic formation via π-allyl nickel intermediates are sparse; however,

Berkowitz and coworkers undertook an exhaustive study in 2004 [40, 41]. In this

report, combinatorial catalysis using an in situ enzymatic screening (ISES) process

indicated that nickel complexes could be used to form oxazolidinones via an

asymmetric allylic amination reaction.

The report details a screen of more than 25 different bis(phosphine) [40]

and P,N-ligands [41] that identify the complex produced from Ni(cod)2 and

(R)-MeO-BIPHEP as the best catalyst system providing the desired oxazolidinone

28 in 88% yield and 75% ee (97% ee after one recrystallization) (Scheme 10).

The oxazolidinone product 28 was converted to TFA salt of L-glycine 29 in

21% overall yield in five subsequent steps.

N

[Ir(cod)Cl]2 (2.5 mol%)
L3 (5 mol%)

DBU (1.0 eq.)

NH

OCO2Me

THF, r.t.

CF3O O CF3

R1

R1 = H, 3-Me, 3,4-dimethoxy, 3,4-OCH2O

R1

up to 97%,
95% ee

O
O

P N
Me

Me

(S, S, aS)-L3

OMe

OMe

25 26

Scheme 9 Iridium-catalyzed formation of tetrahydroisoquinolines
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2.4 Heterocycle Synthesis via π-Allyl Ruthenium Intermediates

Pioneering studies by the Tsuji [42], Watanabe [43], and Trost [44] research groups

demonstrated the practicality of ruthenium-complexes for allylic alkylation

reactions; however, their application to heterocycle synthesis by intramolecular

allylic alkylation has only recently gained popularity.

After their reports detailing the intermolecular dehydrative allylation of alcohols

[45, 46] in 2009 Kitamura et al. reported an efficient ruthenium-catalyzed

dehydrative cyclization to form cyclic ethers [47]. Reactions were performed in

various solvents with very low catalyst loadings (as low as 0.0001 mol%) to provide

the products in high yields and enantioselectivities (Scheme 11). Tetrahydropyrans

and tetrahydrofurans 31 (as well as chromans) could be efficiently formed from the

appropriate diols 30. However, the preparation of seven-membered cyclic ethers

posed a significant challenge, presumably due to the formation of oligomeric side

products.

Studies indicate that the chlorine atom in ligand L4 has a pronounced influence

on the reactivity of the complex. The authors suggest that the chlorine atom in L4
could be playing two distinct roles in obtaining a more energetically favorable

transition state. The electronics of the system may be modulated by the chlorine,

thereby lowering the LUMO to enable a more facile redox cycle. Additionally, it is

proposed that a Cp-H���Cl-R hydrogen bond could further stabilize the transition

state. Experimental evidence indicates that the reaction proceeds through an inter-

mediate π-allylruthenium species formed by direct ionization of the allylic alcohol

system.

Kitamura has also demonstrated that the same ruthenium-complex could be used

in an intramolecular dehydrative cyclization to form azacycles [48]. Various

nitrogen heterocycles 33 were synthesized from the corresponding allylic alcohols

32 with catalyst loadings as low as 0.05 mol% (Scheme 12). A variety of protecting

groups on the nitrogen were tolerated, and the yields and enantiomeric ratios were

excellent. Interestingly, arene-fused azapane 35 could be easily produced under the
reaction conditions from allylic alcohol 34. Conversely, when sulfonamide 36 was

subjected to the optimized conditions a competing β-hydride elimination process

dominated, producing diene 37 instead of the expected product. In the case of the
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Scheme 10 Nickel-catalyzed formation of oxazolidinones
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arene-fused azepanes, the authors suggest that the sp2-carbons of the aniline may

permit a better HOMO/LUMO interaction allowing for a higher propensity toward

cyclization. However, the conformational effects of these arene-fused sulfonamides

may also facilitate a faster cyclization. The aforementioned reactions demonstrate

an exceptional methodology for the production of saturated heterocycles and can be

carried out on a gram-scale.

[CpRu(CH3CN)3]PF6/L4
 (0.05 -1 mol%)
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C, 3-24 hrs.
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X
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3 Formation of Saturated Heterocycles via Formal SN2
0

Reactions

Metal-catalyzed formal SN2
0 sequences encompass a relatively new strategy for the

formation of heterocycles. The reactions are mechanistically distinguished from

π-allylmetal chemistry and metal-catalyzed carbocation formation by the fact that a

cation (or metal-bound cation) is not generally formed.

3.1 Formal SN2
0 Reactions Catalyzed by Palladium Complexes

Given the extensive history of palladium catalysts in the activation of allylic

systems it is not surprising that some of the earliest examples of metal-catalyzed

formal SN2
0 cyclizations to form heterocycles were performed with palladium

complexes [49, 50]. To the best of our knowledge, Hirai and coworkers were the

first to demonstrate the effectiveness of a palladium(II)-catalyzed formal SN2
0

heterocyclization in an enantioselective fashion using allylic ethers and allylic

alcohols [49, 50]. The latter report illustrates the successful chirality transfer

from the allylic alcohol; substrate 38 was converted to piperidine 39 with complete

transfer of chirality. This compound was subsequently transformed to the alkaloid

natural product 40-(+)-coniine (Scheme 13) [50]. Throughout the late nineties, the

Hirai group applied these methods to the total synthesis of numerous natural

products including: (+)-prosopinine, (+)-palustrine, SS20846A, and 1-deoxyman-

nojirimycin [51–53].

More recently, Uenishi and coworkers have advanced this catalytic methodology

to the formation of tetrahydro- and dihydropyrans [54]. These methods were

applied directly to the total synthesis of the natural product (�)-laulimalide [55].

During these studies a comparison between the Pd(0)- and Pd(II)-catalyzed

cyclizations to form tetrahydropyran 42 and 3,6-dihydropyran 44 indicated that

Pd(II) was superior (Scheme 14). For both cyclizations complete chirality transfer

was observed; however, in the case of 41 the process was much higher yielding with

the Pd(II) source because the use of a Pd(0) catalyst resulted in competing triene

formation via β-hydride elimination. Additionally, cyclization of 43 to form pyran

44 did not occur under standard Pd(0) conditions. Mechanistically, the cyclization

is assumed to go through a syn-addition/syn-elimination sequence with respect to

the palladium complex [55, 56]. Finally, fragments 42 and 44 were advanced to

complete the asymmetric total synthesis of (�)-laulimalide. Uenishi and coworkers

have since applied these oxypalladation cyclizations to the construction of several

intricate compounds including tetrasubstituted chiral carbon centers [56], and more

recently in the total synthesis of (�)-apicularen A and its analogs [57].

In addition to oxygen heterocycles, this synthetic strategy was also applied to the

formation of nitrogen heterocycles [58]. Various nitrogen protecting groups (Cbz,

Boc, Ts, Fmoc, etc.) were tolerated, but SN2
0-cyclizations of –Cbz protected amines
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gave the best results. Efficient transfer of chirality was also observed for these

transformations. When the enantioenriched allylic alcohols (R)- and (S)-45 were

treated with 10 mol% of (CH3CN)PdCl2 the 2-vinylpiperidines were produced in

93% and 92% enantiomeric excess, respectively (Scheme 15). The products (R)-46
and (S)-46 were further used to synthesize the hydrochloride salts of (S)-(+)- and
(R)-(�)-coniine, respectively. These conditions were also found to be highly

diastereoselective as demonstrated in the cyclization of the two epimers of 47.
Each substrate epimer was transformed to a different stereoisomer of product 48 in
a high diastereomeric ratio for both cases.

Recently, the same group demonstrated a cascade epoxide ring opening to form

bis- and tris-tetrahydrofuran rings [59]. Both epimers of epoxide 49 undergo

cyclization in under an hour to form the corresponding bis-tetrahydrofuran 50
with good diastereoselectivity (Scheme 16). This method can also accommodate

both epimers of diepoxide 51 to give the desired tris-tetrahydrofuran compound 52
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with good selectivities. Preliminary mechanistic studies suggest that the sequence

most likely occurs with concerted formation of all C–O bonds rather than a series of

stepwise addition reactions.

Recent studies by Aponick and coworkers have revealed a facile spiroketa-

lization methodology utilizing a palladium(II)-catalyzed SN2
0 cyclization [60]

(Scheme 17). Most notably this method was utilized as the key-step in the total

synthesis of acortatarin A [61]. Treatment of allylic ether 55 with 10 mol% of

(CH3CN)2PdCl2 produced the desired spiroketal 56 in an 87% yield as a 1:1

mixture of epimers which were further elaborated to obtain the desired natural
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product. It should be noted that for the synthesis of spiro C-arylglycoribisides a

similar spiroketalization strategy was employed by Hirai and coworkers using a

hemiacetal nucleophile [62].

3.2 Formal SN2
0 Reactions Catalyzed by Gold Complexes

Gold catalysis is a relatively new and ever-expanding field that has provided a wide

variety of interesting new methods to the synthetic community [63–66]. With low

catalyst loadings and high functional group tolerance, the use of gold complexes as

catalysts has become a competitive alternative to some of the traditionally used

transition metals. In 2008, Aponick and coworkers were the first to demonstrate a

gold-catalyzed dehydrative formal SN2
0 cyclization to form tetrahydropyrans and

tetrahydrofurans [67, 68]. The process is selective for the formation of cis-disubsti-
tuted cyclic ethers 58 from monoallylic diols 57with high diastereoselectivities and
yields using very low catalyst loadings (Scheme 18). With the ease of substrate

syntheses and catalyst loadings as low as 0.1 mol%, the production of gram-scale

quantities of these tetrahydropyrans and furans was readily achieved [68]. Further

experimentation demonstrated that the cyclizations did not proceed through a

cationic mechanism but rather through a formal SN2
0 process.

With respect to heterocycle formation, Aponick [69–71] and others [72, 73] have

made significant extensions to these methods including the synthesis of substituted

chromenes [71], a stereoselective preparation of 2-vinyl-morpholines [72] and

applications to the total synthesis of (+)-isoaltholactone [73], to name a few.

In 2011, the Aponick group reported an efficient transfer of chirality in the

cyclization of monoallylic diols 59 to form tetrahydropyrans and morpholines 60
and 61 (Scheme 19) [74]. Selective access to either enantiomer can be achieved

from substrates that differ only by the geometry of the olefin, allowing for selective

CH2Cl2,
4A MS, r.t.
87% (1:1)

(CH3CN)2PdCl2
(10 mol%)

O

N

O

BnO

NO Me

OMe

N

OH
BnO

N
O Me

MeO

O

OMe

55 56

CH2Cl2, r.t.
53% (10:1:0.8 dr)

O O
Bu

(CH3CN)2PdCl2OH O

Bu

OMe

53
54

Scheme 17 Pd(II)-catalyzed spiroketalization
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access to either stereoisomer. This synthetically practical process provides the

desired products in high yields with excellent diastereo- and enantioselectivities.

Later that year, a comparative study showed that allylic ethers could be used in

place of allylic alcohols to furnish 2-vinyltetrahydropyran products [75].

In 2011, Widenhoefer and coworkers reported a gold-catalyzed intramolecular

amination to form azacycles [76]. Secondary amine substrates 62 were

demonstrated to undergo cyclization in a high yielding process and, in some

examples, with high diastereoselectivity. These basic amines require much higher

temperatures (60–100�C) than the corresponding alcohols (Scheme 20). Addition-

ally, subjection of amine 64 under optimized conditions produced the desired

piperidine 65 with a complete transfer of chirality. The enantiopurity and absolute

configuration of 65 was confirmed by conversion to the hydrochloric acid salt of

(S)-(+)-coniine.
A highly effective enantioselective intramolecular amination reaction catalyzed

by a bis(gold)phosphine complex has also been reported [77]. The new method

accommodates a wide range of carbamates 66 to give the desired piperidines and

piperazines 67 in high yields and enantioselectivities with the use of a bis(gold)

phosphine complex prepared from the bisphosphine ligand L5 (Scheme 21). Fur-

ther experiments demonstrated a net syn-displacement of the allylic alcohol by the

incoming nucleophile.

X

OH

PPh3AuCl/AgOTf (1 mol%)

X

O

4A MS, CH2Cl2, r.t.

R2H

R1
R2

OH

R1

X = CH2, NTs

(E)-isomer

PPh3AuCl/AgOTf (1 mol%)

4A MS, CH2Cl2, r.t.

(Z)-isomer X

O R2H

R1

74-94% yields
up to 99% ee

59

60

61

Scheme 19 Gold-catalyzed chirality transfer process for the synthesis of 6-membered

heterocycles

OHR1

HO R2
PPh3AuCl/AgOTf

(1 mol%) O

CH2Cl2
4A MS

R1 R2H H

77-99%
up to >25:1 dr

n = 0,1
57 58

( )
n

( )
n

Scheme 18 Gold-catalyzed dehydrative cyclization to form cyclic ethers
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Collaborative mechanistic studies by the Aponick and Ess groups have

given unequivocal insight into the mechanism of these gold-catalyzed dehydrative

cyclization reactions [78]. The experimental and computational studies illustrate

the importance of hydrogen bonding with respect to both reactivity and stereo-

selectivity. Between the three transition states TS-anti, TS-syn, and TS-concerted
the lowest calculated energy state is TS-anti (Fig. 1). The results suggest that

these cyclization reactions must go through a stepwise anti-alkoxyauration/
anti-elimination mechanism in which intramolecular hydrogen bonding between

the allylic alcohol and the incoming hydroxyl nucleophile is responsible for both

rate acceleration and stereochemical control.

Experimentally, this concept was demonstrated in the gold-catalyzed

cyclizations of bicyclic diols 70–72. The requisite distance for these intramolecular

hydrogen bonding interactions cannot be achieved with substrate 70 and

NH

R2
R3

OH

n = 0, 1
R1 = H, alkyl, Bn, Cbz
R2 = alkyl, Ph, dithiane
R3 = H, Me

Au[P(t-Bu)2(o-bi-
phenyl)]Cl/AgSbF6

(5 mol%)

dioxane
86-99%

N R3

R2

86-99%
up to 25:1 dr

NH Me

OH

Au[P(t-Bu)2(o-bi-
phenyl)]Cl/AgSbF6

(5 mol%)

dioxane,100 °C
14 h

N Me

99%, 96% ee

H

R1

62 63

BnBn

64 65
96% ee

R1

( )
n

( )
n

Scheme 20 Gold-catalyzed formation of azacycles

X

NH

R2
R3

OH

R1 = Bn, Cbz, Boc, Troc,
CO2Me, Ts, Fmoc

R2 = alkyl, Ph, dithiane
R3 = H, Me
X = NBoc, NTs, NFmoc

L5-(AuCl)2
(2.5 mol%)

AgClO4 (5 mol%)

dioxane, r.t.
48 hrs. X

N R3

R2

67, 69-99%,
64-94% ee

MeO
MeO PAr2

PAr2

(S )-L5

Ar =

t-Bu

OMe

t-Bu

66

R1R1

Scheme 21 Formation of azacycles via bis(phosphine)gold complex
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consequently no desired cyclization was observed under the optimized conditions.

In contrast, as this interaction and the ability of the catalyst to effect an anti-
addition become more accessible, the desired cyclization reactions become more

facile. This was demonstrated in reactions of endo- and exo-allylic substrates 71
and 72; 71 undergoes slow reaction whereas 72 is completely converted to cyclized

product in only 2 min.

3.3 Formal SN2
0 Reactions Catalyzed by Mercury Complexes

In 2008, Nishizawa and coworkers reported an efficient mercury-catalyzed

dehydrative cyclization to form various saturated azacycles and indolines [79].

Sulfonamides 73 underwent facile ring closure to form the desired 2-vinylazacycles

74 in high yields with very low catalyst loadings (Scheme 22). Allylic alcohols and

ethers also underwent the desired cyclization; however, allylic esters did not cyclize

under the optimized conditions.

The same group later established an enantioselective version of these

cyclizations using the chiral (R)-BINAPHANE ligand with Hg(OTf)2 [80]

(Scheme 23). After screening various ligands and nitrogen protecting groups it

was determined that the highest enantioselectivities were achieved with tert-butyl
substituted sulfonamides. Treating sulfonamides 75 with the chiral mercury-

complex at low temperatures gave the desired indolines 76 in high yields with

HO H O
Me
Me3PAu

HO H O
Me

Me3PAu

HO H O
Me

AuPMe3

HΔ Δ Δ Δ Δ Δrel( Grel) = 0.0 (0.0)
TS-anti

Hrel( Grel) = 6.0 (5.5)
TS-syn

Hrel( Grel) = 16.6 (14.8)
TS-concerted

OH
Me3PAuCl/AgOTf O Me

H
MeHO

HO

OH

OH

OH

OH
HO

no reaction 24 hrs. 2 mins.

68 69

70 71 72

Fig. 1 Pivotal role of hydrogen bonding in gold-catalyzed dehydrative cyclizations of

monoallylic diols
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moderate to good enantioselectivities. Sulfonamide products 76 could be easily

deprotected with anisole in a solution of TFA/CH2Cl2, without epimerization of the

chiral center.

3.4 Formal SN2
0 Reactions Catalyzed by Bismuth Complexes

During their investigations of chirality transfer in metal-catalyzed intramolecular

allylic aminations Kawai, Uenishi, and coworkers screened more than ten different

metals to find that bismuth(III) triflate gave the best results [81]. Under the

optimized, relatively mild bismuth-catalyzed conditions, enantiopure allylic

alcohols 77 were transformed to the desired tetrahydroisoquinolines 78 in good

yield (Scheme 24). Boc-protected amines provided the highest selectivities, while

substituted olefins (R1 ¼ Me) were converted to cyclic products with significantly

lower the enantiomeric ratios. Interestingly, using the conditions optimized for

palladium catalysis (Sect. 3.1), high enantioselectivities were observed at �20�C,
but the product was produced only in a 20% chemical yield.

To explain these findings a chelated intermediate, 79, was proposed to rational-

ize why higher selectivities were obtained using carbamate starting materials

(Fig. 2).

In 2011, an extension of the bismuth methodology was reported that expanded

the scope to include substituted tetrahydroisoquinolines and gave further insight

into the reaction mechanism [82]. The same year a variety of tetrahydroiso-

quinoline alkaloid natural products (Fig. 3) were prepared to showcase the method-

ology [83].

Hg(OTf)2/
(R)-BINAPHANE

(1 mol%)

mesitylene
-30 °C, 30 hrs.

R1 = H, Me, OMe, Br, Ar

N

91-99%
72-99% ee

SO2
tBu

HNH

SO2
tBu

R1

OH

R1

75 76

Scheme 23 Mercury-catalyzed enantioselective formation of indolines

NH
Hg(OTf)2
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N R1

25-99%
73 74

( )
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Scheme 22 Mercury-catalyzed dehydrative cyclization to form azacycles
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4 Formation of Saturated Heterocycles via Cationic
Intermediates

Cationic intermediates in the syntheses of heterocycles have becomemore prevalent

over the past 10 years. Much like π-allylmetal intermediates, an allyl electrophile is

produced in these systems. However, the catalyst is not covalently associated with

the allyl electrophile, which instead is generated as a free carbocation. This change

in mechanism necessitates different types of catalysts to associate with the substrate

and remove the allylic leaving group in a different manner.

4.1 Ionization Using Magnesium Complexes

During a total synthesis of (�)-cis-clavicipitic acid Jia and coworkers made a seren-

dipitous discovery [84]. Deprotection of the bis(carbamate) 80 using Mg(ClO4)2
provided the desired azapane 81 instead of the expected deprotection product.

Bi(OTf)2
(10 mol%)

CH2Cl2, 4A MS
-15 °C, 0.5-1 hr.

R1 = H, Me
R2 = Boc, CO2Me, Ns

65-91%
40-96% ee

NR2

NHR2

OH

R1

Me

R1

77 78

Scheme 24 Bismuth-catalyzed chirality transfer to form tetrahydroisoquinolines

H
N

O

O

O

H
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(OTf)3
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Fig. 2 Proposed bismuth chelation intermediate

N

HO

HO O
N

MeO

MeO
N

HO

HO O
H H H

(S)-(–)-Trolline (R)-(+)-Crispine A (R)-(+)-Oleracein

Fig. 3 Tetrahydroisoquinoline natural products prepared via bismuth-catalyzed SN2
0 cyclizations
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The azapane 81 was obtained with good diastereoselectivity resulting from

deprotection followed by magnesium-promoted ionization of the allylic/benzylic

system and subsequent cyclization (Scheme 25). This process provided straightfor-

ward access to the desired natural product after several steps. The magnesium-

promoted process was later used in a one-pot tandem palladium-catalyzed Heck

reaction/magnesium promoted dehydrative cyclization in the total syntheses of

aurantioclavine and clavicipitic acid [85].

In 2012, the conditions were optimized to allow for a process that is catalytic

in magnesium [86]. Treating sulfonamides or carbamates 82 with 10 mol% of

Mg(ClO4)2 at 80�C in acetonitrile gave the desired tetrahydroisoquinolines 83 in

reasonable yields for secondary and tertiary allylic alcohols as well as primary allylic

acetates (Scheme 26). Piperidines and pyrrolidines could also be prepared; however,

substrates containing primary alcohols were shown to be sluggish even with a full

equivalent of magnesium. After further optimization, this methodology was then

applied to the total synthesis of a known fungal inhibitor demethoxyfumitremorgin C.

N
Boc

N(Boc)2

CO2Me

OH

N
Boc

N
CO2MeBoc

MeCN, reflux, 2h
98%

(cis :trans = 5:1)

Mg(ClO4)2
(0.6 eq.)

N
H

H
N

CO2H

(–)-cis-Clavicipitic acid

80 81

steps

Scheme 25 Magnesium-promoted formation of azapane 81
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Scheme 26 Formation of azacycles by magnesium-catalyzed dehydrative cyclization
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4.2 Ionization Using Gold Complexes

In 2009, Chan et al. described an efficient gold-catalyzed dehydrative cyclization

to form 1,2-dihydroquinolines [87]. Under very mild conditions arylsulfonamides

84 were transformed into the desired dihydroquinolines 85 in good yields

(Scheme 27). The authors speculate that the process proceeds via a cationic

mechanism. Interestingly, this is in contrast to Aponick’s chromene synthesis

[71], which utilized gold-catalysis but likely does not form a cationic intermediate

in many cases. Furthermore, they were able to use this methodology for the total

synthesis of the tetrahydroquinoline alkaloid (�)-angustureine.

4.3 Ionization Using Iron Complexes

An attractive method for the diastereoselective formation of cis-piperidines
and tetrahydropyrans was recently reported by Cossy and coworkers [88, 89].

This iron-catalyzed process provides the desired products 87 from allylic alcohols

86 in high yields and with high diastereoselectivity for the cis-products under

mild conditions (Scheme 28). Given the cationic nature of the reaction, transposed

allylic alcohols were also readily cyclized under the reaction conditions.

Interestingly, this catalyst system can also be applied to the cyclization of

ketoalcohol 88 to form the desired spiroketal 89 in a diastereomeric ratio of

>99:1. The high stereoselectivity is believed to derive from the epimerization/

equilibration of product stereoisomer trans-90 to the more stable cis-90 through an

allyl cation intermediate 91 (Scheme 29). Although this iron-catalyzed methodol-

ogy demonstrates broad functional group tolerance and high diastereoselectivities,

the stereochemistry of the allylic system cannot be transferred from the starting

material to the product as it can be using Au- and Pd-catalysts as described above in

Sect. 3.

R2 OH

R4

NH

AuCl3 (5 mol%)
AgSbF6 (15 mol%)

toluene, r.t.
1 hr.

R1
R1

N
Ts

R2

R4

R1 = H, Me, Cl, NO2

R2 = H, Me, Ph
R3 = H, Me
R4 = H, Ar, alkenyl

42-91%

R3

Ts

R3

84 85

Scheme 27 Gold-catalyzed formation of 1,2-dihydroquinolines
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Sun et al. later used this catalyst system for the formation of substituted

dihydroquinolines and quinolines [90]. The process effects the cyclizations of

anilines 92 to form dihydroquinolines 93 with low catalysts loadings and good

yields in most cases (Scheme 30). When enantiopure allylic alcohols were used

they exhibited no transfer of chirality, instead producing a racemic mixture of

dihydroquinoline products. Treatment of the products 93 with sodium hydroxide

in ethanol at reflux furnished the corresponding quinoline products.

FeCl3
. 6H2O

(5 mol%)

CH2Cl2, r.t.
1.25 hrs.

OH O

O

OAc O

Ph

Ph

76%, >99:1 dr

XHR1
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R1 R2H H

77-99%
up to >99:1 dr

X = NPG, O
R1, R2 = H, alkyl, Ar
R3 = H, Ac; PG = Boc, Cbz, Ts, Ns
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Scheme 28 Iron-catalyzed formation of saturated heterocycles
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Scheme 29 Rationale for high diastereoselectivity
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Scheme 30 Iron-catalyzed formation of dihydroquinolines
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4.4 Ionization Using Palladium Complexes

During their studies of the total synthesis of jerangolid A, Hanessian and coworkers

discovered a highly diastereoselective cyclization of monoallylic diols 94 to form

2,6-cis-dihydropyrans 95 with very high diastereoselectivity [91, 92] (Scheme 31).

The cyclizations are facile using either the cationic palladium complex

(CH3CN)4Pd(BF4)2 or BF3
•OEt2 with 10 mol% catalyst loadings. The reaction is

similar to those of Uenishi (see Sect. 3.1) but likely proceeds via a cationic

intermediate. Regardless of the stereochemical configuration of the alkene and/or

the allylic alcohol, the cyclization reactions selectively provided the cis-products.
This stereochemical outcome likely results from a cationic mechanism. This

cycloetherification protocol was used to complete the first total synthesis of

jerangolid A in sixteen linear steps from an enantiopure glycidol.

5 Miscellaneous Cases

The following section encompasses selected examples that would not necessarily fit

in the previous sections but demonstrate interesting cases for metal-catalyzed

formation of saturated heterocycles from allylic systems.

5.1 Formation of Heterocycles via a Sequential Ruthenium
Enyne/Palladium Allylation Process

In 2006, Trost and coworkers demonstrated a sequential one-pot ruthenium enyne

coupling followed by a palladium-catalyzed allylation to form nitrogen and oxygen

heterocycles [93]. Allylic p-nitrophenyl ethers 99 generated after the ruthenium

enyne coupling of 96 and 97 give the desired heterocycles 98 in moderate to good

enantioselectivities (Scheme 32). The process can also be used to form oxygen

heterocycles 101 from sequential coupling and cyclization with substrates 96
and 100.

OH
H

R1

BnO

OH

O
H

R1

H

BnO
CH2Cl2, r.t.

94 95
R1= H, CH3

(CH3CN)4Pd(BF4)2
or BF3

.OEt2
(10 mol%)

40-82%
up to >99:1 dr

Scheme 31 Stereoselective formation of 2,6-cis-dihydropyrans
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Diastereoselective syntheses of piperidines, tetrahydrofurans, and

tetrahydropyrans were also possible through this methodology, generally providing

excellent stereoselectivity with the use of chiral ligands. Interestingly, diastereomers

that are predominantly thermodynamically disfavored can be obtained through this

protocol. Additionally, the stereochemistry seems to be determined by the hard/soft

nature of the incoming nucleophiles. For sulfonamides (soft) the initial π-allyl system
formed is kinetically trapped, whereas alcohols (hard) go through a slow trapping

mechanism allowing for the equilibration/interconversion of the π-allyl
diastereomers. Lastly, these methods were applied to the synthesis of the B-ring of

the chemotherapeutic natural product bryostatin.

5.2 Formation of Heterocycles via a Tandem Iridium-Catalyzed
Vinylation/Allylic Amination Reaction

A short time later, You and coworkers reported an efficient enantioselective

iridium-catalyzed tandem allylic vinylation/amination method to form 2,3-

dihydro-1H-benzo[b]azepines [94]. The reaction sequence starts with an allylic

O

NO2

TMS
NHPG

i. [CpRu(CH3CN)3]PF6
(2-5 mol%)
acetone, r.t.
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Scheme 32 Sequential Ru/Pd catalysis to form N- and O-heterocycles
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vinylation of 102 with 103 thereby creating a monoallylic carbonate intermediate

that further undergoes intramolecular allylic amination to give the desired azepines

104 (Scheme 33). In most cases yields were high, and enantioselectivities were

consistently good.

Evidence for the proposed pathway was found through experiments that verified

the monoallylic carbonate intermediates 105 could both be isolated and cyclized,

under optimized conditions (Fig. 4). Moreover, it is interesting to note that this

method is one of the few processes in this chapter that gives dependable

enantioselective access to 7-membered nitrogen heterocycles.

5.3 Formation of Heterocycles via C–H Activation of Allylic
Systems

Metal-catalyzed C–H functionalization has recently become a prominent strategy

for the formation of complex structures [95, 96]. The White group has developed

various methodologies for the formation of saturated heterocycles via C–H
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OCO2Me

OCO2Me

N
H
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87-94% ee
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Scheme 33 Enantioselective tandem iridium-catalyzed allylic vinylation/amination reaction to

form azepines
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activation of allylic systems and has applied this approach to the syntheses of

biologically relevant compounds [97–103]. While most of the heterocycles formed

are intermediates toward 1,2- and 1,3-aminoalcohols or diols these methods can

also be used to synthesize heterocycles. For instance, during the total synthesis of

6-deoxyerythronolide B, an efficient macrolactonization was achieved using a

palladium-catalyzed C–H oxidation [99, 102] (Scheme 34). Treating compounds

106 and 108 gave the 14-membered macrolides 107 and 109, respectively. While

Yamaguchi macrolactonizations were also performed, the C–H oxidation

macrolactonization provides a complementary route without the need for oxidation

at the C13 center.

6 Conclusions and Outlook

Over the past 10 years, numerous research groups have demonstrated that a

variety of catalysts and reaction pathways can be used to produce structurally

unique heterocycles of all varieties. The formation of these compounds through

O
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OMe

OMe

OMe
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Scheme 34 Studies of the C–H oxidative macrolactonization of erythromycin cores
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carbon–heteroatom bond forming metal-catalyzed allylic alkylation reactions is an

important synthetic strategy that is continually evolving. From the reports discussed

in this chapter, one must appreciate the role that these reactions play in the synthesis

of various natural products and biologically active compounds. Given that a vast

array of structurally diverse heterocycles are found in natural products and biologi-

cally important structures, it is likely that these compounds will dictate the need for

new methods and that catalytic allylic alkylation will continue to develop and

expand in new directions.
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Synthesis of Heterocycles via Metal-Catalyzed
Domino/One-Pot Reactions That Generate
a C�N or C�O Bond

Juliane Keilitz, Hasnain A. Malik, and Mark Lautens

Abstract This chapter focuses on transition metal-catalyzed domino (cascade) or

one-pot syntheses of heterocycles via the formation of a carbon–nitrogen, –oxygen,

or –sulfur bond. A precise classification of domino, one-pot, and tandem reactions

is given. However, despite that rather strict definition, the chapter includes a variety

of processes that are important from a mechanistic and synthetic point of view.

These are methods which showcase both ingenious and efficient reaction design

while simultaneously aiming to minimize deleterious byproduct formation as well

as uneconomical workup and purification steps. While there are several types of

protocols highlighted within this section, there is a larger emphasis on transition

metal-catalyzed cycloisomerization methods, the utility of gem-dihaloolefins, and
C�H functionalization protocols within the framework of domino catalysis.

Keywords C�H functionalization � Cycloisomerization � gem-Dihaloolefins �
Green chemistry � Heterocycles � Transition metal catalysis
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1 Introduction

Transition metal-catalyzed reactions have gained increasing importance in syn-

thetic organic chemistry over the past few decades. There has been a heightened

focus on the ability to perform multiple chemical transformations utilizing one or

more catalysts in a single reaction vessel. While the ability to achieve several

chemical reactions in a one-pot fashion is obviously attractive from the perspective

of synthetic efficiency, the potential for cost-savings and positive environmental

impact that result from the elimination of time-consuming workup and purification

protocols cannot be understated. Indeed, it is highly advantageous for the continued

development of chemical processes to be even more effective and robust while

resulting in an overall low environmental footprint.

It should be noted that while there has been an effort by some to rigorously

classify and define the many types of cascade/domino/tandem transformations

[1–4], there remains a lack of consensus in literature. As a consequence, the terms

“cascade,” “domino,” “tandem,” “one-pot,” “sequential,” among many others, are

at times routinely and casually interchanged. For the purposes of this review we

will take an inclusive view to highlight and illustrate processes that we believe to

be important from a mechanistic and synthetic point of view. As a result, while

some processes we may describe will not fall within the strictest definition of

cascade, domino, or tandem reactions, we did not exclude any processes that

display creative reaction design.

There have been early efforts to put forth a clear and unified means to define the

variety of reactions that involve multiple sequential chemical transformations that

occur in a single vessel. One effective descriptor has been developed by Fogg and

dos Santos (Fig. 1) [3].

The content of this chapter will be organized in the following manner:

Section 2: Metal-Catalyzed Cascade Reactions That Result in the Generation of a

C�N or C�O Bond

Section 2.1: Synthesis of Heterocycles via Domino/One-Pot Cycloisomerization

Sequences

Section 2.2: Synthesis of Heterocycles via Use of gem-Dihaloolefins
Section 2.3: Synthesis of Heterocycles via C�H Functionalization

Section 2.4: Miscellaneous Domino Methods for the Synthesis of Heterocycles
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2 Metal-Catalyzed Cascade Reactions That Result
in the Generation of a C�N or C�O Bond

2.1 Synthesis of Heterocycles via Domino/One-Pot
Cycloisomerization Sequences

The importance of indole and benzofuran scaffolds as intermediates, natural products,

and pharmaceuticals cannot be understated [5–14]. While benzofurans are a common

motif in many natural and pharmaceutically relevant compounds, indoles are even

more ubiquitous. The most common synthetic approach to these types of structures is

illustrated below – usually involving the cycloisomerization of an ortho-alkynyl
phenol or aniline starting material to the corresponding benzofuran or indole, respec-

tively (Scheme 1). In this section, we will attempt to highlight a variety of approaches

to this cycloisomerization in a domino (cascade) or one-pot fashion.

Fürstner and coworkers reported a platinum-catalyzed cycloisomerization/formal

allyl transfer method of the synthesis of benzofurans, indoles, and isochromene-1-ones

(Scheme 2) [12]. Reaction times vary from 1 to 12 h for complete conversion of starting

Are all precatalysts present at the outset?
One-pot reaction

(Multicatalytic)

no

Is >1 catalytic cycle required?

yes

no Domino catalysis
(Cascade)

yes

TANDEM CATALYSIS

Is a single catalyst/precatalyst used?
no Orthogonal

catalysis

yes

Is a chemical trigger used to transform
the catalyst/change mechanism?

yes

no Auto-tandem
catalysis

Assisted tandem
catalysis

Reaction ClassReaction Conditions

Fig. 1 Flowchart for classification of one-pot processes involving sequential elaboration of an

organic substrate via multiple catalytic transformations
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materials. The reaction undergoes a domino sequence and is completely atom-

economical, save the requirement of carbon monoxide gas, which is necessary and has

been empirically found to accelerate Pt-catalyzed rearrangement reactions. It is note-

worthy that vinyl halides are tolerated under the reaction conditions. A closely related

transformation was independently discovered and reported by Yamamoto and coworkers

whereby the use of cyclooctadiene as a ligand offsets the requirement of CO gas [15].

Zhang and coworkers later expanded and diversified the utility of this type of

platinum-catalyzed strategy by employing N-(2-alkynylphenyl)lactams as substrates for

the synthesis of fused indole products (Scheme 3) [16]. The putative mechanism involves

cycloisomerization, ring-expansion/rearrangement, and a 1,2-shift. Levels of selectivity

range from good to excellent for the rearrangement product.

Venkataraman and coworkers reported the copper-catalyzed domino Sonogashira/

cycloisomerization reaction for the synthesis of a variety of benzofurans (Scheme 4)

[17]. Yields are generally good to excellent and the method displays high functional

group tolerance. It is worth mentioning that aryl bromides and chlorides remain

untouched throughout the catalytic cycle. The reaction also has the added benefit of

XR2

R1

PtCl2 (5 mol %), CO (1 atm)

toluene, 80 °C, 1-12 h
X

R2

R1

O
nPr

88%

O

94%

CF3
O

nPent

54%

Br

O

O

BnO

77%

N
Ms

59%

Ph

Scheme 2 Platinum-catalyzed domino synthesis of heteroaromatic compounds through a cycli-

zation/allyl transfer pathway

R

XH

Hal

XH

M1Ln M1Ln or M2Ln

X
R

MLn
"E+"

X
R

E

Domino or One-Pot Sequence:

Scheme 1 The general synthetic approach to the domino or one-pot synthesis of benzofuran and

indole heteroaromatics
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being palladium-free which renders the method more attractive for scale-up with

respect to cost.

The iron-catalyzed Sonogashira reaction of 2-iodophenol with terminal aromatic

alkynes results in the formation of benzofuran products (Scheme 5) [18–20].1

Interestingly, the simple Sonogashira product, namely the newly formed internal

alkyne, is obtained when N-benzyl 2-substituted iodoanilines are employed. The

use of an inexpensive and environmentally benign iron catalyst is noteworthy.

N

R1

O

PtCl4 (10 mol %), O2 (1 atm)

ClCH2CH2Cl, reflux

N

O

R1

+ N
R1

O

N

O

Me

83% (28:1)

N

O

75% (18:1)

N

O

88% (29:1)

Br

N

O

77% (10:1)
H

O

Scheme 3 Platinum-catalyzed domino cycloisomerization/ring-expansion/alkyl transfer reactions

to form cyclic-ketone-fused indoles

I

OH

Ar+
[Cu(phen)(PPh3)2]NO3 (10 mol %)

Cs2CO3 (2 equiv), toluene, 110 °C, 24 h O
Ar

O

92%

O

77%

MeO

O

69%

O

Me

O

86%

Br

O

90%

Cl

O

96%

NC

Scheme 4 Copper-catalyzed domino Sonogashira/cycloisomerization sequence for the synthesis

of 2-substituted benzofurans

1 There have been recorded instances in literature by Bolm, Buchwald, and others where it has

been determined that trace metal impurities are the catalytically active species in transition metal-

catalyzed reactions. This is especially relevant in many iron-catalyzed methods.
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Sakamoto and coworkers reported a palladium-catalyzed domino carbonylative

cyclization for the synthesis of a variety of heteroaromatic compounds (Scheme 6)

[21]. Under an atmosphere of carbon monoxide gas in methanol, 2,3-disubstituted

indoles and benzofurans could be furnished. Unprotected aniline starting materials

were poor substrates and yields were considerably lower than the mesyl-protected

variants.

Lu and coworkers disclosed a useful means to synthesize unprotected 2,3-

disubstituted indoles in one-pot reaction sequence (Scheme 7) [22]. This

palladium-catalyzed reaction incorporates a sequential Sonogashira reaction

followed by cycloisomerization and deprotection to afford a variety of 2,3-

disubstituted indole scaffolds. While there are currently a limited number of

examples that could be carried out in a domino fashion (where all starting

materials are present at the beginning of the reaction), high yields can be

obtained when the aryl halide is added portionwise at the completion of the

Sonogashira coupling step.

I

OH

+
FeCl3 (15 mol %), dmeda (30 mol %)

Cs2CO3 (3 equiv), toluene, 135 °C, 72 h
O

R1 R1

R1 = H: 51%

R1 = Me: 55%

Scheme 5 Iron-catalyzed domino Sonogashira/cycloisomerization for the synthesis of 2-substituted

benzofurans

XH

R1

PdCl2 (6.7 mol %), CuCl2·H2O (3 equiv)

NaOAc (2 equiv), K2CO3 (2 equiv)
CO (1 atm), MeOH, rt, 3 h X

R1

O
OMe

N
Ms

Ph

O
OMe

76%

N
Ms

n-Bu

O
OMe

67%

N
H

n-Bu

O
OMe

30%

O
Ph

O
OMe

79%

O
n-Bu

O
OMe

66%

Scheme 6 Palladium-catalyzed domino carbonylative cycloisomerization for the synthesis of

heteroaromatics
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Nakamura and coworkers have reported a one-pot method for the synthesis of a

diverse array of 2,3-disubstituted indoles and benzofurans (Scheme 8) [23]. Although

the reaction is not catalytic in nature, it has several advantages over similar catalytic

methods. Specifically, this method represents one of the rare examples of this type of

transformation where allyl halides, acyl chlorides, aldehydes, α,β-unsaturated
carbonyls, and vinyl halides are all shown to be competent electrophile partners

and yields range from moderate to excellent in all the cases described.

I

NH

CF3O

+ Ar

1. Pd(OAc) (5 mol %), PPh3 (20 mol %)
K2CO3 (4 equiv), DMF, 60 °C

2. R1X, 60 °C, 2 h N
H

Ar

R1

N
H

Ph

86%

N
H

Ph

60%

OMe

N
H

Ph

85%

CO2Me

N
H

Ph

98%

NO2

Scheme 7 One-pot palladium-catalyzed Sonogashira/cyclization sequence for the synthesis of

2,3-disubstituted indoles

XH

R1 1. nBuLi (1 equiv), 0 °C to rt
2. ZnCl2 (1 equiv), toluene, 120 °C

3. CuCN·LiCl (1 equiv), electrophile
toluene/THF, -78 to 0 °C, 12 h

X
R1

E

X
Ph

X = O: 97%
X = NBn: 97%

O
n-Bu

81%

X
Ph

O
Ph

X = O: 91%
X = NBn: 72%

O
Ph

HO
Ph

68%

X
Ph

O

X = O: 77%
X = NBn: 65%

O
Ph

O

90%

Scheme 8 One-pot synthesis of 2,3-disubstituted indoles and benzofurans
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Our own group’s interest in tandem and domino processes has led us to develop

the rhodium-catalyzed cycloisomerization of ortho-alkynyl phenols and anilines

followed by electrophile trapping to afford benzofuran and indole products

(Scheme 9) [24]. We were able to capitalize on the stability of a rhodium(I)-

intermediate that could undergo facile migratory insertion reactions with a variety

of π-electrophiles. Deleterious β-hydride elimination by-product formation (usu-

ally a minor by-product in this transformation) can be minimized and in many

cases completely eliminated through the use of BINAP as a ligand. This method

provides an efficient and expedient route to a variety of heteroaromatic

compounds under relatively mild conditions. If this domino process is engineered

to undergo two intramolecular steps (cycloisomerization followed by intra-

molecular 1,4-addition), tricyclic compounds can be synthesized in synthetically

useful yields.

The scope of this rhodium-catalyzed domino process was later expanded to

include reactions with internal alkynes as electrophiles (Scheme 10) [25]. The

regioselectivity for alkyne insertion varies from low to high, where the highest

levels of regiocontrol are hypothesized to be dependent on a putative heteroatom

chelation to the rhodium(I) intermediate (see Scheme 10). Indeed, there seems to be

some experimental support for this phenomenon as ortho-alkynyl phenols provide a
ca. 80:20 mixture of regioisomers and protected ortho-alkynyl phenols result in a

complete loss of regioselectivity.

XH

R1

EWG
[Rh(cod)OH]2 (3 mol %)

dioxane/H2O (20:1), 90 °C, 6 h

X

EWG

R1

X = N, O

O
nBu

CN

83%

O

CN

F

92%

O

COEt

75%

O

66%

COEt

N
Ms

91%

nBu

CO2Et

N
Ms

94%

nBu

COEt

N
Ms

91%

nBu

CN

Scheme 9 Rhodium-catalyzed domino cycloisomerization/1-4-addition to afford 2,3-disubstituted

benzofurans and indoles
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2.2 Synthesis of Benzofurans and Indoles via Use
of gem-Dihaloolefins

In recent years, gem-dihaloolefins have attracted attention as versatile substrates for
the synthesis of heterocycles via tandem sequences [26–33]. They can be readily

obtained through a Ramirez olefination [34–37] of a suitably ortho-substituted
aniline, phenol, or thiophenol which allows for modular syntheses of indoles,

benzofurans, or benzothiophenes, respectively. Our group was the first to employ

ortho-gem-dihalo vinyl substrates in transition metal-catalyzed tandem reactions

[37–44]. While there is uncertainty as to which step occurs first as the substrate is

varied, it is generally the case that an initial C–N, C–O, or C–S coupling leads to a

2-bromoindole, -benzofuran, or -benzothiophene [45] moiety which can further

react in a separate but tandem transition metal-catalyzed coupling reaction

(Scheme 11).

The palladium-catalyzed intramolecular C–N bond formation and intermolecular

Suzuki–Miyaura cross-coupling of ortho-gem-dibromoolefins with organoboron

reagentswas first reported byBisseret with limited substrates [46] and fully developed

by our group (Scheme 12) [38]. Specifically, we showed that Pd(OAc)2, with the use

OH

R1

+
[Rh(cod)OH]2 (3 mol %)

TDMPP (6 mol %), LiCl (5 equiv)
Dioxane/H2O (20:1), 90 °C, 24 h O

Ar

R1

Ar

R2

R2

+

O

R2

R1

Ar

P
ArAr

Ar

Ar = 2,6-dimethoxybenzene
TDMPP = tris(2,6-dimethoxyphenyl) phosphine

O
n-Bu

n-Bu
N

83% (>19:1 rs)

O
n-Bu

n-Bu

80% (4:1 rs)

OH

O
n-Bu

n-Bu

43% (1:1 rs)

OSiEt3

O
Ph

n-Bu
N

77% (>19:1 rs)

O
R1

LnRhI N

R2

high levels of regiocontrol
v ia heteroatom-Rh(I) chelation:
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of Buchwald’s SPhos ligand, provides access to a variety of 2- and 2,3-substituted

indoles [38, 39]. Substitution at a variety of positions on the indole heterocycle is

tolerated and the products are obtained in good to excellent yields (72–96%)

within 1–14 h. Interestingly, the use of ortho-gem-dichlorovinylanilines provides

almost quantitative yields, which is hypothesized to occur due to a higher level of

chemoselectivity.

Mechanistic investigations revealed that, in the parent substrate, the

Buchwald–Hartwig coupling occurs first. What is not known is if selective insertion

into the (Z)-C–X bond is responsible or if isomerization of the (E)-inserted product to
the more reactive (Z)-isomer can occur [39]. The generality and practicality of this

tandem Buchwald–Hartwig amination/Suzuki–Miyaura cross-coupling sequence

were demonstrated through the synthesis of four different KDR kinase inhibitors

which are potential therapeutics (Fig. 2) [37] and with the synthesis of various

azaindoles and thienopyrroleswhichwere previously not accessible by such amodular

and general approach [41].

Alper and coworkers extended the reaction by developing a tandem C–N

coupling followed by a carbonylation (Scheme 13) [47]. The reaction is performed

Y
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Scheme 11 General approach toward the synthesis of indoles, benzofurans, or benzothiophenes

using ortho-gem-dihaloolefins
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Scheme 12 Tandem Buchwald–Hartwig amination/Suzuki–Miyaura cross-coupling of ortho-gem-
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under a CO atmosphere (10 atm) in a THF/MeOH mixture. Various functional

groups are tolerated both at the amine moiety and on the aryl ring, including

halogens such as chlorine or fluorine. However, when bromine atoms are present

on the aromatic ring, a second carbonylation reaction takes place at this position.

In 2009, the group of Pontikis and Florent reported a tandem C–N coupling/

carbonylation/C–C coupling sequence employing gem-dibromoolefins that furnish

the synthesis of 2-aroyl- or 2-heteroaroyl indoles, respectively (Scheme 14) [48]. A

range of substituents is tolerated on the aromatic ring of the gem-dibromovinyl

substrates, but no substitution in the 3-position of the indole has been reported.

Sterically demanding substituents at the boronic acid reduce overall reactivity; the

use of 2-methoxyphenylboronic acid delivers the corresponding product in a mod-

est yield of 40%, while 2,6-di-methylphenylboronic acid provides no observable

product formation.

2-Vinylic indoles and their tricyclic derivatives can be obtained through a tandem

Buchwald–Hartwig coupling followed by a Heck–Mizoroki cross-coupling sequence

(Scheme 15) [40]. The only limitation of this reaction is in the formation of

3-substituted derivatives, where poor yields were observed when the corresponding
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Fig. 2 Targets synthesized via tandem Buchwald–Hartwig amination/Suzuki–Miyaura cross-

coupling sequence
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Scheme 13 Palladium-catalyzed tandem intramolecular amination/carbonylation sequence
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substituted dibromovinylanilines are utilized. An intramolecular variant of this

method was realized by tethering the alkene moiety to the nitrogen atom of ortho-
gem-dibromovinylaniline. The tandem reaction yields the corresponding tricyclic

adducts as mixtures of two easily separable isomers and even a non-activated alkene

could be employed.

For the synthesis of 2-alkynyl indoles and benzofurans, a tandem copper- and

palladium-catalyzed cross-coupling reaction was developed involving an Ullmann-

type reaction and a Sonogashira cross-coupling tandem reaction [43]. Interestingly,

heterogeneous Pd/C (2 mol%) in conjunction with 4 mol% CuI was found to be the
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(1.1 eq.)

Pd(PPh3)4 (5 mol %)
K2CO3 (5 equiv)

CO (12 bar)

dioxane, 85-100 °C
16-24 h

N
H

O

Ar/HetAr
R

N
H

O

Ph

Cl

68%

N
H

O

Ph

OMe

65%

MeO

MeO

N
H

O

R =
4-OMe
2-OMe
4-CF3
4-CONHMe

Yield [%]
61
40
73
29

RN
H

O

S

67%

N
H

O

O

58%

N
H

O

71%
O

N
H

O

21%

N

Scheme 14 Palladium-catalyzed C–N coupling/carbonylation/C–C coupling sequence

N

CO2tBu

76% (endo:exo = 3 : 1)

N

72%

R1

N

R1

R2

NH

Br

Br

R1

R2
Pd2dba3 (4 mol %), nBu4NCl (1 equiv)

K3PO4·H2O (2 equiv), NEt3 (2 equiv)
toluene, reflux

N
Bn

Ph

N
R

CO2tBu

R =
2-Br-Bn
4-F-C6H4
iPr
nBu
H

Yield [%]
62
60
69
67
50

N
Bn

CO2tBu

R =
6-F
6-CO2Me
5-OBn

Yield [%]
70
71
64

R

65%

N
Bn

CN

70%
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best co-catalyst combination (Scheme 16). However, since the solid support did not

negatively affect the efficacy of the catalytic system, it was assumed that the

reaction itself occurs in the homogeneous organic phase with trace amounts of

leached palladium(0). Different aromatic and aliphatic alkynes as well as a variety

of substituted ortho-gem-dibromovinyl derivatives could be utilized and the

corresponding anilines and benzofurans were obtained in moderate to good yields

(40–98%). Substitution on the aniline nitrogen atom generally lowers the yield and

the synthesis of 3-substituted indoles has not been reported.

ortho-gem-Dibromoolefins tethered to amino acids were utilized for the synthe-

sis of imidazoindolones via a double amidation reaction (Scheme 17) [42]. The

reactions require 12–49 h for completion and a range of substituents is tolerated.

However, in case of the 3-substituted gem-dibromoolefin, the catalyst loading had

to be increased to obtain the corresponding imidazoindolone in a reasonable yield.

The preservation of the chiral center originating from the amino acid was highly

variable and the extent of epimerization was assumed to depend on a variety of

factors. The rate of conversion of the 2-bromoindole intermediate to the product is

vital as the proton at the stereocenter is much more acidic than in the starting gem-
dibromoolefin and therefore much more susceptible to epimerization under the

reaction conditions. Thus the extent of epimerization is highly dependent on the

rate of the second amidation step.

In 2012, Wang, Lv, and coworkers reported a Cu2O-catalyzed C–N/C–X (X ¼ N,

O, S) coupling for the formation of oxazino[3,2-a]indole, thiazino[3,2-a]indole, and
indolo[2,1-b]quinazoline derivatives (Scheme 18) [49]. This transformation operates

under ambient conditions and it was shown that the copper catalyst is necessary for

both steps to occur. Although substitution is possible at most positions, when strongly
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Scheme 16 Sequence of Ullmann-type reaction and Sonogashira cross-coupling for the synthesis

of 2-alkynyl indoles and benzofurans
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electron-withdrawing substituents are present on the aromatic ring of the gem-
dibromovinyl aniline moiety, only trace amounts of product formation are observed.

In order to obtain the corresponding indolo[2,1-b]quinazolines, a change of base

selection from K2CO3 to Cs2CO3 was required.

Our group was also able to combine a tandem Buchwald–Hartwig cross-

coupling followed by a direct arylation reaction yielding tetracyclic and pentacyclic

indole derivatives (Scheme 19) [44]. A variety of indoles with substituents of

different electron character are easily accessible and by using a higher catalyst

loading even seven-membered rings can be obtained. An apparent limitation is

found to be substitution in the 3-position of the indole, which completely inhibits

product formation.

Bao and coworkers employed isocyanates as nucleophilic acceptors by

introducing them ortho on gem-dibromovinylbenzene (Scheme 20) [30]. Those

ortho-gem-dibromovinyl isocyanates were reacted with N-alkylanilines to provide

pyrimido[1,2-a]indol-1(2H)-one derivatives through a sequence of nucleophilic

addition of the aniline group to the isocyanate moiety, copper-catalyzedN-arylation,
and palladium-catalyzed C–H functionalization. Although this sequence is only a

one-pot process (requiring sequential addition of transition metal catalysts) it is a

rare example of this type of sequences involving a C–H functionalization step. The

scope with regard to substitution is broad and even 3-substituted indoles could be

obtained from the corresponding isocyanate substrates. A limitation of the method is

that anilines with strongly electron-withdrawing groups on the phenyl ring fail to

display reactivity. Additionally, high steric hindrance on the amine prevents addition

onto the isocyanate and unprotected amines only furnish urea intermediates where

the subsequent Cu-catalyzed N-arylation step does not occur.
Bao and coworkers then applied the samemethod to the synthesis of unsymmetrical

1,10-carbonyl-2,20-biindolyls, but their initial experiments proved unsuccessful.
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Scheme 19 Palladium-catalyzed Buchwald–Hartwig amination/direct arylation sequence toward

tetra- and pentacyclic indole derivatives
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Therefore, indole-1-carboxylic acid and ortho-gem-dibromovinyl aniline were cou-

pled and under the established reaction conditions led to the formation of the desired

products (Scheme 21) [50]. The method efficiently provides moderate to good yields.

A limitation was found to be that the synthesis of unsymmetrical products bearing

electron-deficient groups on both indole rings was unsuccessful. Attempts to employ

only one metal catalyst and one base failed.

Bao’s most recent contribution in this area is a two component sequence where an

aromatic acid chloride and the well-studied ortho-gem-dibromovinyl aniline react

via amide formation/Cu-catalyzed intramolecular C–N coupling/C–H activation to

form 6H-isoindolo[2,1-a]indol-6-ones [51].
In 2009, our group published a tandem process for the synthesis of benzothio-

phenes consisting of an intramolecular S-vinylation followed by intermolecular

carbon–carbon bond formation either through a Suzuki–Miyaura, Heck, or

Sonogashira reaction (Scheme 22) [52]. Although sulfur has a long-standing
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reputation as a catalyst poison, various substituted benzothiophenes can be obtained

in good to excellent yields via the S-vinylation/Suzuki–Miyaura sequence. A variety

of boronic acids and different boron nucleophiles (e.g., boronic esters, trifluoro-

borate salts, and trialkylboranes) are compatible with this process. In contrast, the

nature of the thiophenol fragment has significant influence and the presence of

strongly electron-withdrawing substituents provides low yields or the failure of the

tandem reaction. The method was also extended to Heck- and Sonogashira-coupling

reactions. It is noteworthy that the Sonogashira sequence can be catalyzed by Pd/C.

In 2010, Chen and coworkers utilized aryl- and alkyl-substituted gem-
dibromovinyl derivatives for the preparation of imidazo[2,1-b]-thiazoles and related

N-fused heterocycles via copper-catalyzed 1,2-aminothiolation (Scheme 23) [31].

For aryl-substituted gem-dibromovinyl compounds the 3-substituted imidazo[2,1-b]-
thiazoles are obtained exclusively while for alkyl-substituted gem-dibromovinyl

compounds a mixture of the 2- and 3-substituted products are obtained of which

the 2-substituted one is the major isomer. The method was also applicable to the

aminothiolation of unsubstituted and substituted 2-mercaptoimidazole, perimidine,

and pyrimidine derivatives.

Alper and coworkers reported the synthesis of 2-carbonylbenzo[b]thiophene
derivatives via a selective palladium-catalyzed tandem procedure (Scheme 24)

[33]. An intramolecular C–S coupling/intermolecular carbonylation sequence

yields various highly functionalized benzo[b]thiophenes in moderate yields. The

strategy was also applicable for gem-dichlorovinyl derivatives, although the desired
product was obtained in a lower yield.
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Scheme 22 Synthesis of substituted benzothiophenes via intramolecular S-vinylation and inter-

molecular carbon–carbon cross-coupling
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2.3 Synthesis of Heterocycles via C�H Functionalization

Direct arylation (or C–H functionalization) offers several advantages such as the

use of simplified/unfunctionalized starting materials and a higher degree of atom

economy when compared to “traditional” cross-coupling methods [53, 54].

In 2003, Zhu and coworkers reported the synthesis of polyheterocycles by a

palladium-catalyzed intramolecular N-arylation/C–H functionalization/aryl–aryl

bond forming tandem process (Scheme 25) [55, 56]. Interestingly, the authors

were able to access medium-sized and even macrocyclic ring systems by their

method which was applied to the synthesis of azaphenanthrenes fused with an 8-,

10-, 11-, and 13-membered lactam. The reaction temperature was found to be

important, with higher temperatures providing higher yields. It was assumed that
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a template effect, due to chelation of the transition metal to the two amido groups,

leads to conformational pre-orientation which might be the reason for the high

efficiency of this method.

The approach of Ackermann and coworkers for the synthesis of annulated

heterocycles involves an amination step and a direct arylation sequence by using

anilines and 1,2-dihalo-(hetero)aryls (Scheme 26) [57]. It is noteworthy that easily

available and inexpensive chloro-substituted starting materials can be employed.

Additionally, primary anilines are applicable for the synthesis of carbazoles which

avoids complex protection/deprotection procedures. The authors also demonstrated

the efficiency of their approach to the synthesis of naturally occurring murrayafoline

A [58].

A route to 3-substituted indoles from ortho-dihalobenzenes and allylic amines via

intermolecular aryl amination and Heck cyclization was reported by Jørgensen and

coworkers in 2008 (Scheme 27) [59]. In consideration of previous results, it was

postulated that aryl amination is the first step in the sequence. The regiochemistry of

the final product is controlled by the chemoselective amination of the aryl iodide

position, and therefore the preparation of functionalized products is limited by the

availability of the corresponding 1,2-dihaloarene startingmaterials. Substituents other

than amethyl or benzyl at the 3-position have not been yet reported. Conveniently, the

addition of an aryl bromide or aryl iodide after completion of the first two steps

generates the corresponding N-arylated indole product.
An intermolecular N-arylation/intermolecular carbopalladation/C–H functiona-

lization/C–C bond formation sequence was realized by Neuville, Zhu, and coworkers

for the synthesis of 3-(diarylmethylene)oxindoles (Scheme 28) [60]. This procedure

allows for the formation of one C–N and two C–C bonds by way of three different

catalytic cycles in a one-pot fashion. The procedure requires addition of the aryl iodide

after the N-arylation step is completed, and it is important to use an excess quantity of
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palladium relative to the ligand, as Xantphos is necessary for the initial step while it

serves to later inhibit the carbopalladation sequence. The scope of this transformation

is somewhat limited since the N-arylating agent requires an electron-withdrawing

group in the para-position (ortho- ormeta-substituted aryl bromides were unsuitable)

and yields are reduced when the aryl iodide bears an electron-donating group.
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A powerful example of C–H functionalization in a domino process was reported

by Catellani and coworkers who used norbornene as an organic co-catalyst and

accomplished a sequence of domino ortho-functionalization terminated by cross-

coupling [61–64]. Our group successfully implemented this norbornene-mediated

C–H functionalization process in domino reactions for the synthesis of various

substituted heterocycles [65–69].

The efficiency of thismethodology is illustrated by a domino reaction developed by

our group in 2007 (Scheme 29) [65].An intermolecular alkylation at the ortho-position
of an aryl iodide is followed by an intramolecular amination to afford functionalized

indolines and tetrahydroquinolines from simple precursors. The protecting group on

nitrogen proved to be important since Boc, Bz, and Ts functional groups only led to

decomposition of the starting material. Ethyl carbamate, phenyl, or 4-nitrophenyl

protected anilines provided the corresponding functionalized indolines in moderate

to good yields. Strongly electron-donating groups at the 2-position are not generally

tolerated. However, the use of 2-chloroiodobenzene is possible and the Cl-substituent

can be easily converted into electron-rich alcohols, amines, or thiols. Extension of this

methodology to the synthesis of tetrahydroquinolines was also shown.

A major drawback of this norbornene-mediated methodology is the requirement

of a substituent in the second ortho-position of the starting aryl halide, which is

necessary to exert regiocontrol over the C–H functionalization step and to avoid

double alkylation.

For the synthesis of indoles, our group utilized azirines as the coupling partner in a

domino C–H activation/N-arylation reaction [66]. Initially, the use of α-haloimines

as coupling partners was intended, but during our studies it became apparent that
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their synthesis is low yielding and often accompanied by decomposition. Therefore,

we turned to strained 2H-azirines as the 1,3-dipole (Scheme 30). Most substituted

indoles are obtained in moderate to excellent yields, except when substituents

are placed at the 2-position or when an alkyl or carbonyl group is present at the

3-position of the azirine ring system, which leads to azirine decomposition. During

optimization, an unusual tetracyclic by-product was observed that contains two

equivalents of the azirine and can be avoided or produced selectively by adjusting

the reaction conditions (see Scheme 30).

A similar methodology was used for the synthesis of phenanthridines from aryl

iodides and N-unsubstituted or N-silylimines (Scheme 31) [67]. The key step in this

transformation is the cleavage of the N–H or N–Si bond in the catalytic cycle which

is necessary for the formation of a palladium–imido intermediate which releases the

product upon reductive elimination. A mechanistic constraint is that the imine

derivative must carry a group on the nitrogen atom which can be cleaved in the

catalytic cycle. Another requirement is the presence of an ortho-substituent on the

aryl iodide. The reaction tolerates a number of substituents on aryl iodide and

the azirine, and our group later also showed that instead of aryl iodides the

corresponding aryl triflates can be used which are more easily accessible [68].

We were able to demonstrate the applicability of this methodology in the formal

syntheses of nitidine and NK190 starting from the corresponding aryl triflates.
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2.4 Miscellaneous Domino Methods for the Synthesis
of Heterocycles

A recent example of a domino indole synthesis is a three-component palladium-

catalyzed process reported by Kurth and coworkers (Scheme 32) [70]. This three-

step process involves a Buchwald–Hartwig reaction, a condensation, and an

arene–alkene coupling. A variety of primary amines, carbocycles, an anisole, or a

pyridine can be used as the aryl compound, and the carbonyl compounds can be cyclic

and acyclic ketones as well as aldehydes. Several experiments were undertaken to

determine the sequence of events, and it was concluded that Buchwald–Hartwig

coupling initiates the catalytic cycle. The postulated mechanism was supported by

quantum chemical calculations.

An example of an orthogonal tandem catalysis is the rhodium-catalyzed alkyne

arylation/palladium-catalyzed N-arylation that was presented by our group in 2011

(Scheme 33) [71]. We reported the successful implementation of a catalyst system

consisting of two different metals with two different phosphine ligands in which

both catalysts coexist and preferentially promote two out of three possible reactions

to produce 1,2-dihydroquinoline derivatives in moderate to good yields. An initial

optimization of the individual steps led to conditions that yielded the final product

in 69% yield (versus 71% yield over two steps) by using preformed catalysts. An

extensive investigation of the reactivity of the possible metal–ligand combinations

showed that [Rh(BINAP)] does not reversibly bind XPhos, while palladium can

reversibly bind to both ligands. Since [Pd(BINAP)] is catalytically inactive in the
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C–N coupling, the amount of BINAP or [Rh(BINAP)], which is a source of trace

amounts of free BINAP, had to be carefully adjusted in order to avoid inhibition of

the C–N coupling step.

Barluenga and coworkers utilized the bidentate nature of the azaallylic anion as a

synthon for palladium-catalyzed construction of various substituted indoles

(Scheme 34) [72]. An azaallylic anion can be easily generated in situ through the

deprotonation of an imine with α-hydrogen atoms which can then participate in an

intermolecularα-arylation reaction. The authors developed a sequencewhich includes
the imine formation, thereby achieving a three-component reaction where the same

palladium catalyst promotes three different and independent reactions: (1) the forma-

tion of the imine by alkenyl amination, (2)α-arylation of the (deprotonated) imine, and

(3) intramolecularN-arylation. The reaction conditions of the imine formation are very

similar to those of the tandem C-arylation/N-arylation process, and a couple of

successful examples with moderate to good yields were reported. While two different

regioisomeric indoles can theoretically be obtained when unsymmetrical 1-bromo-2-

chlorobenzene derivatives are employed, only one isomer is ever observed. This

regioselectivity may be explained through the different rates of oxidative addition of

the palladium catalyst into aryl bromides versus aryl chlorides.

The group of Willis combined the palladium-catalyzed urea arylation with a

base-promoted ester amidation to synthesize 3-alkylated 2,4-quinazolinediones

(Scheme 35) [73]. This transformation requires relatively high amounts of catalyst

loading and long reaction times. An interesting aspect is the fact that for all

unsymmetrical urea derivatives studied, the 3-alkyl regioisomer was obtained

selectively. This regioselectivity is assumed to arise from the fact that the initial
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arylation reaction occurs on the least hindered, unsubstituted N-atom of the urea

and is then followed by the ring-closing amidation.

In 2008, Fujii, Ohno, and coworkers reported a ligand-free copper-catalyzed

three-component coupling sequence during which four bonds and two rings are

formed (Scheme 36) [74]. The sequence is initiated by a Mannich-type reaction

followed by intramolecular indole formation. After indole formation is complete,

addition of base initiates amine deprotection and the final N-arylation can proceed

to form indole-fused 1,4-diazepines. The addition of base at a later stage is

necessary to avoid decomposition of the starting material. Various N-substituted
ortho-bromobenzylamines and 2-ethynylanilines (with electron-donating or

electron-withdrawing groups) as well as heterocyclic secondary amines can be

employed to produce the corresponding products in moderate to good yields.

Barluenga, Valdés, and coworkers utilized N-tosylhydrazones in a new type of

cross-coupling process (Scheme 37) [75]. An intermolecular arylation between

tosylhydrazone and a 1-bromo-2-chlorobenzene derivative followed by an intra-

molecular amination yields substituted tetrahydroquinolines in moderate to good

yields. Microwave heating promoted the reaction in one pot, and the tosylhydrazone

can be generated in situ from the corresponding carbonyl compound and

tosylhydrazine, making the overall process an efficient three-component coupling

sequence. A limitation is the failure of the cyclization stepwhen electron-withdrawing

substituents are present on the nitrogen atom. The authors were also able to show that

chiral substrates can be transformed without loss of enantiomeric excess.
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Jiang,Ma, and coworkers developed aCuI/L-proline-catalyzed tandem process that

generates 3-methyleneisoindolin-1-ones from readily available 2-bromobenzamides

and terminal alkynes (Scheme 38) [76]. A variety of functionalized arylacetylenes,

aliphatic alkynes, substituted aryl bromides, and a wide range of N-substituents were
tolerated. Inmost cases, only the Z-isomer was observed. The authors hypothesize that

the Sonogashira coupling of aryl bromides with 1-alkynes occurs first. After

deprotonation of the amide moiety, the CuI-mediated additive cyclization takes

place in a 5-exo manner exclusively, which is different for base- or Lewis acid-

mediated cyclizations.

Very recently, Nakamura and coworkers utilized in situ generated N-
allenylimines for the construction of azepine derivatives (Scheme 39) [77]. Starting

from ortho-propargylic cyclopropylcarbaldoximes, a rhodium catalyst, and TPPMS

(sodium diphenylphosphinobenzene-3-sulfonate) the corresponding azepine oxide

derivatives are obtained in good yields through a tandem 2,3-rearrangement/

heterocyclization reaction. The rhodium catalyst serves a dual role as both π-acidic
and redox catalyst. All products are obtained with a Z-configuration at the

alkylidene moiety, regardless of the configuration of the starting material. For the
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(E)-isomer of the starting material, reaction conditions had to be re-optimized.

In some cases the four-membered cyclic nitrone was obtained as a by-product (see

Scheme 39). It was shown to be stable under the reaction conditions and is not

converted to the product.
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In 2011, Liu, Xu, and coworkers reported a novel synthesis of fluorinated

pyrazoles via a gold-catalyzed tandem aminofluorination of alkynes in the presence

of Selectfluor [78]. This methodology was designed to overcome limitations of

known approaches to fluoropyrazoles among which are low yields, multiple steps,

harsh reaction conditions, or the use of dangerous reagents. The method works at

room temperature and has broad scope (Scheme 40). The authors proposed the

coordination of an AuI or AuIII salt to the alkyne as the key mechanistic step. It is

unclear at which step Selectfluor participates in transferring a fluorine atom to the

final product. Under the reaction conditions, when a non-fluorinated analogue is

obtained as a by-product of the reaction, it can be readily converted to the final

fluorine-containing product.

Buchwald and coworkers reported the tandem synthesis of pyrroles and

pyrazoles from haloenynes by reaction of either a Boc-protected amine or a

bis(Boc)hydrazide (Scheme 41) [79]. The sequence of copper-catalyzed amidation

and hydroamidation yields various substituted pyrroles and pyrazoles in good

yields. Mechanistic investigations showed that the reaction most likely proceeds

via an initial C–N coupling followed by hydroamidation.

Tang, Fan, and coworkers developed a copper-catalyzed tandem reaction for the

synthesis ofN-heteroarylated indoles and benzimidazoles which involves a conjugate

addition, two cyclizations, and an aromatization (Scheme 42) [80].

Willis and coworkers reported the synthesis of 2-quinolones via a palladium-

catalyzed alkenyl aminocarbonylation followed by intramolecular amidation

(Scheme 43) [81]. For the 2-quinolone synthesis it is important at which site the

initial reaction takes place (aryl halide versus alkenyl halide, see Scheme 43)

and which of the two catalytic reactions occurs first (amination or carbonylation).

It is postulated that the alkenyl halide is the first site of reaction and carbonylation is
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the faster of the two processes. In some cases it was beneficial to remove the CO

atmosphere after 3 h. In order to obtain the corresponding isoquinolone, it was

necessary to change the order of reagent addition which was done by applying the

CO atmosphere at a later stage in the reaction. A limitation of this approach is the

R2

R1 X

R3
R2

R1
Boc
N

R3

HN

Boc

R4

C-N coupling

hydro-R4

Boc
NR1

R2

R3

or

NBoc

Boc
NR1

R2

R3

R4 = NHBoc

R4 = H

TFA N

Boc
NR1

R2

R3

Boc
N

Ph

52%

S

Boc
N

R

R = nBu : 83%
R = 3-thiophene : 74%

N Boc
N

nPent

71%

N

Boc
N

86%

Bn

amination

Reaction conditions: amine (1.2 equiv), CuI (5 mol %),
N ,N'-dimethylethylenediamine (20 mol %),
Cs2CO3 (1.5-2 equiv), THF (0.5 M)

Boc
N

nPr

nPr

74%

Boc
N

nPr

84%

Boc
NMeO2C

81%

N

Boc
N

Hex
92%

N

Boc
N

nBu
83%

nPr

N

Boc
NnBu

CO2Et

81%

Scheme 41 Tandem synthesis of pyrroles and pyrazoles by copper-catalyzed amidation/

hydroamidation of haloenynes

X

OMeR2

R1 NH2

R4

R3

N

R4

R3

X

R1

R2

Cu(OTf)2 (10 mol %)

R4

N
H

R3

R2

MeO

X

R1
N

R4

R3

X

R1

R2

MeO

cat.

cat.

cat.

X = NTs, NNs, NMs, O; R1 = alkyl, aryl, cyclopropyl;

R2 = Me; R3 = H, alkyl, aryl, cyclopropyl ; R4 = H, Me, iPr, F, Cl

rt, 4-24 h

Scheme 42 Copper-catalyzed tandem reaction for the synthesis of N-heteroarylated indoles and

benzimidazoles

Synthesis of Heterocycles via Metal-Catalyzed Domino/One-Pot Reactions That. . . 217



requirement for a sterically demanding N-nucleophile since less hindered amines

lead to competing indole formation.

In 2008, Shin and coworkers reported a gold-catalyzed generation of an

azomethine ylide via an internal redox reaction between a tethered nitrone and an

alkyne. The ylide then undergoes an efficient diastereoselective cycloaddition

cascade (Scheme 44) [82]. Various platinum(II), silver(I), and gold(III) salts were

found to be effective catalysts, while AuCl3 provided the best results. This meth-

odology is particularly attractive because it avoids the use of explosive diazo

derivatives and is 100% atom economic. Metal-catalyzed cycloaddition reactions

that result in the generation of a C�N or C�O bond will be discussed in length in

another chapter of this book and consequently will not be visited further in this

section.

The versatility of incorporating the Sonogashira reaction has been exploited by

Ohe and coworkers for the synthesis of hetero α,α0-dimers of heteroaromatic

compounds (Scheme 45) [83]. By utilizing bimetallic palladium/copper catalysis,

a tandem process can be achieved for the synthesis of a variety of dimeric

compounds. Due to the fact that this is a three-component coupling process,

chemical diversity can be established very quickly under mild reaction conditions.

Wang and coworkers recently reported an elegant illustration of a copper-

catalyzed domino coupling of a diverse array of N-tosylhydrazones and a series

of terminal alkynes for the synthesis of 2-substituted benzofurans and indole

heterocycles (Scheme 46) [84].

Glorius and coworkers published a report that describes the copper-catalyzed

domino reaction of 1,2-dihalo carbo- and heterocycles with primary amides for the
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synthesis of benzoxazole products (Scheme 47) [85]. A variety of chloro-, bromo-,

and iodo-containing 1,2-dihaloarene starting materials are shown to be competent

coupling partners in this methodology.

The Tsuji�Trost reaction has been utilized in a variety of transformations to

achieve complex target structures and intermediates [86]. To this end, the
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Tsuji�Trost reaction has been successfully coupled in tandem or domino processes

for the synthesis of heterocycles [87]. Menche and coworkers reported in 2010 the

concise Pd-catalyzed diastereoselective domino synthesis of tetrahydropyran

heterocycles via an oxa-Michael addition/Tsuji�Trost reaction (Scheme 48) [88].

By employing a chiral alcohol with a pendant allyl carbonate moiety,

tetrahydropyrans could be constructed with up to four non-contiguous

stereocenters. Yields were generally moderate and level of diastereoselectivity

ranged from low to high, dependent on the substrate combination.

Menche and coworkers recently disclosed an expansion of their previous method

for the synthesis of masked 1,3-diols via a domino Pd-catalyzed diastereoselective

hemiacetal formation/Tsuji�Trost reaction sequence (Scheme 49) [89]. The scope
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of the transformation is quite broad and yields range from moderate to excellent

with generally high levels of diastereoselectivity.

3 Conclusion

While this particular chapter was specifically focused on the synthesis of heterocycles

via metal-catalyzed domino reactions that result in the generation of a C�N or C�O

bond, the general field of these types of “domino” transformations represents one of

the most efficient, elegant, and atom-economical means to construct complex target

structures. It can be expected that efficiencies in these transformations will only

increase in the coming years. The ability to reduce the environmental impact

represents a potential advantage of this approach. Indeed, the reduction of numerous

workup steps such as extractions, purifications (chromatography, recrystallization,

distillation, etc.), and the lessening/elimination of the requirement of toxic reagents is

an attractive and important goal. It is to be expected that research groups will continue

to pursue advances in the field of domino catalysis.
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9. Kadieva MG, Oganesyan ÉT (1997) Chem Heterocycl Compd 33:1245
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Synthesis of Saturated Heterocycles via
Metal-Catalyzed Formal Cycloaddition
Reactions That Generate a C–N or C–O Bond

Jerome Waser

Abstract In this section, the synthesis of saturated N- and O-heterocycles via

formal cycloaddition is presented. The main focus is on metal-catalyzed reactions

involving C–C or C–X σ bond cleavage in three- or four-membered rings. After a

fast presentation of pioneering works, the important breakthroughs of the last two

decades are presented. The section starts with reactions involving three-membered

rings. Formal [3+2] cycloadditions of donor–acceptor-substituted cyclopropanes

and methylenecyclopropanes with carbonyls and imines are important methods to

access tetrahydrofuran and pyrrolidine heterocycles. Formal [3+3] cycloadditions

have emerged more recently. On the other hand, reactions of epoxides and

aziridines with carbon monoxide or cumulenes are now well-established methods

to access heterocycles. These processes have been completed more recently with

cycloaddition with olefins, carbonyls, and imines. The section ends with the

emerging field of four-membered ring activation for cycloaddition with π systems.

Keywords Aziridines � Cycloaddition � Cyclobutanes � Cyclopropanes � Epoxides �
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1 Introduction: Definitions and Scope of the Section

The discovery of classical cycloaddition reactions, such as the (hetero) Diels–Alder

and 1,3-dipolar cycloadditions, has contributed tremendously to a more efficient

access toward both carbocycles and heterocycles. The introduction of the term

cycloaddition was necessary to distinguish these new types of reactions from

previously discovered processes leading to cyclic structures, such as the famous

Robinson annulation. In principle, each cycloaddition can be considered as a

special case of the more general annulation process, but from which point on an

annulation can be called a cycloaddition has been the topic of intensive discussions

for decades, and is still not settled today. In 1968, Huisgen proposed a set of rules

for the definition of cycloaddition, and the two first are still largely recognized as

prerequisite [1]:

– Huisgen Rule 1: “Cycloadditions are ring closures in which the number of σ
bonds increases.”

– Huisgen Rule 2: “Cycloadditions are not associated with the elimination of small

molecules or ions. The cycloadduct corresponds to the sum of the components.”

The current official definition of cycloaddition by IUPAC is very close to these

first two rules of Huisgen:

A reaction in which two or more unsaturated molecules (or parts of the same molecule)

combine with the formation of a cyclic adduct in which there is a net reduction of the bond

multiplicity.

Although the rule that all the atoms of the starting materials have to be included

in the product is not explicitly included in the definition, this requirement is usually

recognized by most organic chemists. Even if electrocyclic cyclization processes

were included in the original definition of Huisgen, the term cycloaddition is mostly

used today for those reactions proceeding via the formation of at least two new

bonds. Nevertheless, several researchers think that the term cycloaddition should be

more strictly limited to reactions involving a continuous overlap of π electrons, and
consequently allowing a concerted process. In fact, in his seminal publication,

Huisgen already introduced further rules, in particular rule number 3, which explicitly

stated that cycloadditions should not involve the cleavage of sigma bonds:

– Huisgen Rule 3: “Cycloadditions do not involve the cleavage of σ bonds.”

Unfortunately, in the same publication, Huisgen also described several reactions

proceeding via σ-bond cleavage as cycloaddition.

To solve this definition dilemma, several researchers have used the term “formal

cycloaddition.” Although this term has not yet been strongly defined, we propose to

use it here for those reactions following the rules 1 and 2 of Huisgen and the IUPAC

definition, but not the more strict criteria of rule 3 and the non-interrupted π system
of electrons (Scheme 1). In contrast to annulation reactions, the formation of small

molecules or changes in the connectivity of atoms not involved in the formation of

the new bonds in the ring are not allowed in this case. For example, even if the
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alcohol intermediate formed first in the Robinson annulation formally contains all

the atoms of the starting materials, the position of the indicated hydrogen has

changed. Although also highly useful, such processes will not be included in this

section. Furthermore, we will limit ourselves to reactions for which the definition is

valid for the used starting materials, and not on transiently generated reactive

intermediates:

Definition of “formal cycloaddition” in this section: “A reaction in which two or

more molecules (or parts of the same molecule) combine with the formation of a

cyclic adduct, involving the formation of at least two new σ bonds and the cleavage

of at least one σ bond, but not associated with the elimination of small molecules or

changes in the connectivity of atoms except for ring formation.”

This type of reaction is highly useful for the synthesis of heterocycles, as it gives

a direct access to more saturated derivatives, in contrast to classical cycloadditions

involving only π systems, but still conserves the perfect atom-economy of the

process. On the other hand, the cleavage of σ bonds is much more difficult than

the rearrangement of π electrons. To increase the reactivity of the substrates, the use
of ring strain often together with the further polarization of σ bonds with functional

groups has been the most successful, and this section will be limited to this

approach. In order especially to highlight the synthetic complementarity with

cycloadditions of conjugated systems, we will limit the discussion to reactions

giving access to heterocycles with no more than one unsaturated center and leading

to O- or N-containing heterocycles.

In order to give a better systematic overview of this fast growing field, the

section has been organized according to the following criteria (Scheme 2):

(a) Ring size of the formal cycloaddition substrate (three, four or larger).

(b) Structure of the ring: all carbons, with one oxygen or one nitrogen and with

more than one heteroatom.
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Scheme 1 Examples of cycloaddition, formal cycloaddition, and annulation as defined in this

section
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(c) Number of added atoms during the cycloaddition process: one, two (divided in

isolated π systems and cumulenes), and larger.

(d) Structure of the reacting partner: all carbon, with one oxygen or one nitrogen

and with more than one heteroatom.

2 Reactions Involving Three-Membered Rings

Three-membered rings have been by far most often used in formal cycloaddition

reactions. This is probably due first to the activation of the σ-bond originating from
ring strain, which is essential to allow cycloaddition under mild conditions.

Secondly, there are numerous synthetic methods to access three-membered rings,

especially cyclopropanes, epoxides, and aziridines. This has led to a widespread use

of these substrates in cycloaddition and annulation reactions.

2.1 Reactions with Cyclopropanes

Cyclopropanes are very important in organic chemistry, both as structural elements

of synthetic and bioactive compounds and as platforms for further functiona-

lization. They are also interesting from the theoretical point of view and are best

described by the use of Walsh orbitals, which explain their partial π character. For

these reasons, they can be considered as one-carbon homologues of olefins. Despite

their high strain energy (26 Kcal/mol), cyclopropanes are still stable compounds,

and most useful formal cycloadditions of cyclopropanes have relied on further

activation of the C–C bond via polarization, especially through the introduction

of vicinal donor and acceptor groups (donor–acceptor-substituted cyclopropanes)

[2–8]. A second possibility for further activation is the introduction of unsaturation,

which further increases ring strain and stabilizes potential reactive intermediate,

as exemplified by the rich chemistry of alkylidenecyclopropanes [9].
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2.1.1 Formal [3+2] Cycloadditions with Isolated π Systems

C–O Bond Formation

The formal cycloaddition of cyclopropanes with carbonyl compounds gives a fast

and atom-economical access to important tetrahydrofuran derivatives. Pioneering

works of Reissig and co-workers in the 1980s have already shown the potential of

oxygen-substituted cyclopropanes to access either tetrahydrofurans or lactones

(Scheme 3A, B) [10–15]. Oshima and co-workers later showed that unsubstituted

cyclopropanes could also be used for the cycloaddition (Scheme 3C) [16], and
Yadav introduced in 2006 silyl activated cyclopropanes as another alternative

(Scheme 3D) [17]. In 2011, Dobbs and co-workers demonstrated that cycloaddition

of silylmethyl-substituted cyclopropanes was also possible in the absence of the

diester activating group [18].

Nevertheless, despite these promising studies, the interest in [3+2] cycloadditions

remained limited for several decades, probably because the factors controlling the

stereoselectivity of the reaction were poorly understood. The situation changed

dramatically when Johnson and co-workers demonstrated in 2005 that the Lewis

acid-catalyzed [3+2] cycloaddition of aryl-diester-substituted cyclopropanes with

carbonyl compounds was not only diastereoselective, but also highly enantiospecific

(Scheme 4) [19, 20]. The reaction was successfully extended to alkenyl- and alkyl-

substituted cyclopropanes. To rationalize the observed enantiospeficity, Johnson and

co-workers proposed that the reaction proceeded via a tight ion pair II [21, 22]. The
existence of such “intimate ion pairs” has also been proposed by other authors

[23–25]. A stereoselective anti-attack of the aldehyde followed by a fast bond rotation
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of 120�C would lead to the favored envelope conformation IV, in which all groups

are in favorable pseudo-equatorial positions. Finally, C–C bond formation would

give the observed tetrahydrofuran. The proposed mechanism was further confirmed

by the stereospecificity observed when a deuterium label was introduced on one of

the two ester groups of the cyclopropane.

With electron-rich aryl substituents, racemization of the starting material was

observed. This result opened the way for the development of the first dynamic

kinetic asymmetric formal [3+2] cycloaddition of aldehydes and cyclopropanes,

using a magnesium PYBOX catalyst (Eq. 1) [26].

Equation 1. Dynamic kinetic asymmetric [3+2] formal cycloaddition

CO2Me

CO2Me

R1

O

R2

H 48-92%
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O
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Further recent extensions of this reaction include highly diastereoselective formal

cycloadditions catalyzed by AlCl3 [27] and the use of cyclopropanes bearing a quater-

nary donor site [28]. In the case of vinyl-substituted cyclopropanes, activation with a

palladium catalyst became possible due to the formation of a stable π-allyl intermediate

[29]. The broad applicability of the method was further demonstrated in the total

synthesis of natural products, including (+)-virgatusin [30], (+)-polyanthellin A [31,

32], and (+)-isatisine A [33, 34] (Fig. 1). Finally, Wang and co-workers developed

intramolecular variations of this reaction to give both fused and bridged polycyclic

systems and applied the method to a formal synthesis of platensimycin [35].

The seminal work of Johnson and co-workers had enhanced tremendously the

range of applications of formal [3+2] cycloadditions to access tetrahydrofurans.

Nevertheless, it remains limited to the use of donor–acceptor cyclopropanes bearing

an alkyl (aryl/alkenyl) group and diester substituents. Recently,Wang and co-workers

reported two intramolecular approaches with other types of cyclopropanes: the first

one involves oxycyclopropanes used in intramolecular cycloadditions to access

bridged cyclopropanes (Scheme 5A) [36], whereas the other made use of ketone-

substituted alkynyl cyclopropanes (Scheme 5B) [37]. In the latter case, more saturated

furan derivatives could also be accessed via an alternative [4+2] annulation process if

a gold catalyst was used.
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In 2012, Waser and co-workers reported the first use of amino-substituted

cyclopropanes in the formal [3+2] cycloaddition with both aldehydes and ketones

(Scheme 6). The reaction with aldehydes proceeded at room temperature with an

iron catalyst and gave racemic products when starting from enantiopure

cyclopropanes (A) [38]. In contrast, the tin-catalyzed annulation with ketones was

enantiospecific (B) [39]. The obtained amino-substituted tetrahydrofurans are

important heterocycles, as they constitute the core of natural DNA and RNA,

as well as numerous synthetic drugs.

Apart from the introduction of polarizing group, the introduction of an exo double

bond is another important approach to increase the reactivity of cyclopropanes [9]. In

fact Nakamura and Yamago already demonstrated in 1990 that the formal cycloaddi-

tion of methylene cyclopropane acetal with aldehydes and ketones occurred sponta-

neously upon heating to 80�C (Eq. 2) [40]. A trimethylenemethane intermediate can

be proposed for this reaction, leading to a true cycloaddition after ring opening has

occurred.

Equation 2. Thermal formal [3+2] cycloaddition of methylenecyclopropane

+
O

R1

R2 O R2

R1

O

O

Me

MeOO

Me Me

benzene

80 °C
56-84%

The use of a palladium catalyst allowed Yamamoto and co-workers to extend the

scope of cycloaddition reactions between alkylidene cyclopropanes and aldehydes

(Scheme 7) [41]. The reaction has been proposed to proceed via oxidative addition of

Pd(0) onto the C–C bond of the cyclopropane to form a palladium-stabilized

trimethylenemethane intermediate II. Nucleophilic addition onto the aldehyde to

give a π-allyl intermediate III followed by reductive elimination then regenerates

the catalyst. When compared to other precursors of trimethylenemethane in catalysis

[42], alkylidene cyclopropanes are perfectly atom economical, but still require

relatively high temperature to react.
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Finally, the use of Lewis acid to promote the cycloaddition between alkylide-

necyclopropanes and carbonyl compounds has also been reported, but most

reactions remain limited in scope or lead to mixture of products [43–46].

C–N Bond Formation

In a similar way as tetrahydrofurans are obtained via the [3+2] cycloaddition of

cyclopropanes and carbonyls, pyrrolidines are generated from cyclopropanes and

imines. It is consequently not surprising that many methods established in the case

of carbonyls were later extended to imines.

Nevertheless, one of the first examples of the synthesis of pyrrolidines derived

from oxindoles was developed by Carreira and co-workers based on a unique

stepwise mechanism (Scheme 8) [47]. In this reaction catalyzed by MgI2, nucleo-

philic attack by iodide was proposed as the first step. The generated enolate I would
then add onto the imine, followed by cyclization via an SN2 process. The broad

potential of the method was further demonstrated in the total synthesis of

spiroxindole alkaloids, including horsfiline [48], strychnofoline [49, 50], and

spyrotryprostatin B [51, 52], as well as in the production of small molecule libraries

with a pyrrolidine core [53–60].

Kerr and co-workers were the first to apply the principle of diester activation

for the intramolecular annulation between imines and cyclopropanes (Scheme 9)

[61]. The reaction proceeded in one-pot from the hydroxylamine derivatives and

was catalyzed by Yb(OTf)3. Interestingly, the formation of the cis or trans
diastereoisomer depended on the order of addition of catalyst or aldehyde. Kerr

and co-workers proposed that in the absence of aldehyde, nucleophilic attack of the

nitrogen on the cyclopropane was the first step, followed by condensation with the
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O
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aldehyde and ring closing. When the aldehyde was added first, the formation of the

oxime would occur initially, followed by attack on the cyclopropane, resulting in an

inversion of the diastereoselectivity.

More recently, the methodology was also extended to the synthesis of bridged

systems [62] and of bicyclopyrazolidines starting from hydrazines [63]. As the N–O

or N–N bond is easily cleaved in the obtained products, they are easily further

functionalized, as has been demonstrated by Kerr and co-workers in the total

synthesis of (+)-allosecurinine [64] and FR901483 [65]. In 2010, Tomilov and

co-workers have also reported a first example of intermolecular reaction between

aryl-diester-substituted cyclopropanes and pyrazolines [66].
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In 2010, Johnson and co-workers reported that the dynamic kinetic asymmetric

formal cycloaddition they have developed for aldehydes could also be used in the

case of imines (Eq. 3) [67]. In this case, the choice of protecting group was key to

obtain good asymmetric induction, diastereoselectivity, and yield in the reaction.

Equation 3. Dynamic kinetic asymmetric [3+2] formal cycloaddition

CO2Me

CO2Me

R1

N

R2

H 66-86%
>92:8 dr

86-96% ee

R1 = p-metoxyphenyl, thiophenyl, styryl

MgI2 (10 mol %)

N

Br

N

OO

N

tBu tBu11 mol %

CCl4, 23 °C

NR1

MeO2C
CO2Me

R2
OMe

MeO

Like in the case of cycloadditions with carbonyls, alkylidenecyclopropanes have

also been used for the reaction with imines. Nakamura and co-workers were again

able to use alkylidenecyclopropane acetals for a thermal cycloaddition with oximes

(Scheme 10) [68]. The reaction was proposed to proceed via a concerted cycloaddi-

tion of a trimethylenemethane singlet intermediate after cyclopropane opening.

Interestingly, cycloaddition occurred on the two less substituted carbon atoms of

the trimethylenemethane in contrast to the result with carbonyl compounds. The

obtained keteneacetal can be easily hydrolyzed to the corresponding ester to give

trisubstituted pyrrolidines. Later, the method could also be extended to sulfonyl and

acyl imines as substrates [69]. As in the case of furans, the use of a palladium catalyst

allowed Yamamoto and co-workers to significantly expand the scope of alkylidene-

cyclopropanes used in cycloaddition reactions with imines [70, 71]. More recently,
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Shi and co-workers have reported that non-activated alkylidenecyclopropanes could

react thermally with imines in an intramolecular reaction [72].

An important progress in the use of alkylidenecyclopropanes activated by an

electron-withdrawing group was realized by Lautens and co-workers using coopera-

tive iodide–Lewis acid catalysis (Scheme 11) [73]. The use of MgI2 led to the

formation of the formal [3+2] cycloaddition products. The reaction probably proceeds

via ring opening of the Lewis acid-activated cyclopropane by the iodide, followed by

addition of the formed enolate I to the imine to give II and finally intramolecular SN2

reaction leading to the pyrrolidine. Interestingly, the use of the bulkyMADLewis acid

led to the attack of the γ position instead and the formation of a different product via

III [74].
In order to access enantiopure products, Lautens and co-workers subsequently

introduced a chiral sulfoxide auxiliary on the imine and obtained excellent

diastereoselectivity (Scheme 12A) [75, 76]. In 2007, they finally reported the first

example of catalytic asymmetric formal cycloaddition using a chiral BOX ligand on

the magnesium catalyst (Scheme 12B) [77].

Formal [3+2] Cycloadditions with Cumulenes

Formal cycloadditions with cumulenes, especially CO2, are very important reactions

with small heterocyclic substrates like epoxides or aziridines (vide infra). In

contrast, these reactions have been only rarely studied with cyclopropanes, although

the palladium-catalyzed reaction of alkylidenecyclopropanes with CO2 was

reported initially in 1979 by Inoue and co-workers (Eq. 4) [78]. In 2011, Shi and

co-workers studied this transformation in greater detail and were able to signifi-

cantly increase its scope [79]. Nevertheless, controlling the regiochemistry of the

addition still remains a major challenge for this transformation.
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Equation 4. Formal [3+2] cycloaddition of alkylidenecyclopropanes with CO2

+

O

1-69%

R1

R2
R1

R2

[Pd(dba)2] (2 mol %)
phosphine

benzene, 25 °C
CO2

40 atm

O O

Me

O
R1

R2

5-48%

Until 2012, examples of cycloadditions of cyclopropanes with other hetero-

cumulenes were rare, with single examples reported with carbon disulfide [80],

phenylisocyanate [81], phenylisothiocyanate [82], diazenes [83, 84], and a special [3

+1+1] process involving isonitriles [85]. In 2012, Li and co-workers reported first the

iron-mediated formal cycloaddition of aryl- and vinyl-cyclopropane diesters with

isothiocyanates (Scheme 13A) [86]. In this work, the products were suggested to be

thiolactams. However, Stoltz and co-workers reported shortly afterwards that the

obtained product were more probably thioimidates, which were in their case obtained

via the same transformation, but using a tin(II) catalyst (Scheme 13B) [87]. Stoltz and
co-workers also reported the first cycloaddition reactions of carbodiimides and

isocyanates to give amidines and imidates respectively.

2.1.2 Formal [3+n] Cycloadditions

Formal cycloaddition of cyclopropanes with larger partners have been much

less investigated. Most research has focused on the [3+3] cycloaddition of

donor–acceptor-substituted cyclopropanes with nitrones. The seminal studies on this

reaction were reported by Kerr and co-workers in 2003, and the reaction was first

called a homo [3+2] cycloaddition reaction (Scheme 14) [88–94]. The reaction

proceeded with good yield and stereoselectivity to give 1,2-tetrahydrooxazines. The

obtained heterocycles are interesting, as they are found at the core of natural products,
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Scheme 12 Asymmetric approaches for the formal cycloaddition between methylidenecyclo-

propanes and imines
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such as phyllantidine, which was synthesized by Kerr using this methodology in 2006

[95]. Furthermore, the N–O bond can be easily reduced with samarium iodide. After

activation of the alcohol and intramolecular nucleophilic substitution, ring-contracted

pyrrolidines are obtained, which led to an alternative strategy to the direct [3+2]

formal cycloaddition between cyclopropanes and imines discussed previously. This

approach was successfully applied in an impressive synthesis of the alkaloid

nakadomarin A [96, 97] and the core of the natural product yuremamine [98].

Interesting further extensions of the methodology include the use of cobalt complexes

of alkynyl cyclopropanes diesters as a new approach for donor–acceptor activation of

the three-membered ring [99], the use of nitrones derived from isatin to obtain

important spiroxindole products [100], and the use of cyclic nitrones as substrates [101].
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An important breakthrough for the further development of formal [3+3] cyclo-

addition of cyclopropanes and nitrones was the discovery of a catalytic asymmetric

variation of the reaction (Scheme 15). Using a Nickel-DBFOX catalyst, Sibi and

co-workers were able to develop in 2005 an enantioselective cycloaddition using

unsubstituted cyclopropanes (A) [102]. In 2007, Tang and co-workers reported a

kinetic resolution of substituted cyclopropanes using a C1-symmetric modified

BOX ligand on the nickel catalyst (B) [103].
In 2008, Charette and co-workers further demonstrated that the [3+3] cycloaddition

between azomethine imines and donor–acceptor cyclopropanes was also possible

(Eq. 5) [104]. In 2013, Tang and co-workers developed a highly enantioselective

variation of this reaction using a C1-symmetric modified BOX ligand on the nickel

[105]. Wu and co-workers developed domino reactions in which the nitrone [106] or

the azomethine imine [107] is generated in situ by addition of a nucleophile on a triple

bond (Scheme 16A, B). In the case of the azomethine imine, a three component

reaction starting directly from an alkynyl aldehyde, a hydrazine, and the cyclopropane

was possible.
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Equation 5. Formal [3+3] cycloadditions of cyclopropanes and azomethine imines

4Å MS, THF

Ni(ClO4)2 (10 mol %)

N
BzN

CO2Me

CO2Me

R

N
N

CO2Me

CO2Me
R

Bz
H

2.6:1-6.6:1 dr
11-87%

Finally, two recent examples make use of cyclopropanes bearing a further exo

double bond (Scheme 17): Wang and co-workers reported the first use of alkylide-

necyclopropane diesters in the formal cycloaddition with nitrones in 2009 (A)
[108]. In 2010, Wu and Shi reported that the reaction with vinylidenecyclopropane

diesters proceeded with different regiochemistry (B) [109]. The obtained allenes

were unstable and rearranged to form the ketones.

In addition to [3+3] formal cycloadditions, there are few examples of reactions

with larger partners, but they usually lead to more saturated heterocycles [110].

2.2 Reactions with Epoxides

In contrast to cyclopropanes, for which the most frequent reactions have been with

isolated π systems such as carbonyls and imines, the chemistry of epoxides and

aziridines is dominated by formal cycloadditions with CO and CO2. These reactions

are very important for the synthesis of heterocycles, and they would require a

dedicated chapter to be described in detail. As this chemistry has already been

Yb(OTf)3 (20 mol %)

Yb(OTf)3 (10 mol %)

THF, 50 °C
55-98%
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CO2R1
CO2R1

CO2R1

CO2R1

CO2R1

CO2R1

CO2R1

CO2R1

CO2R1

N

R4

R4

H
R3

R3

O
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O
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O
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Scheme 17 [3+3] Cycloaddition with alkylidene- and vinylidenecyclopropanes
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described in several reviews [111–115], we will present only a few seminal studies

and concentrate more on other transformations, which have been less in the focus of

attention.

2.2.1 Formal [3+1] Cycloadditions

The formal cycloaddition of epoxides with carbon monoxide is an important

reaction for the synthesis of β-lactones. One of the major challenges associated

with this process is to prevent subsequent polymerization of the formed lactones.

Except for scattered publications and patents describing this transformation in low

yield, the first truly efficient protocol was reported by Alper and co-workers in 2001

(Scheme 18A) [116]. Key for success was the use of a zwitterionic cobalt catalyst

and a Lewis acid as a co-catalyst. Coates and co-workers later developed a more

efficient catalyst, in which the cation of the zwitterionic cobalt catalyst is itself a

Lewis acid (Scheme 18B) [117, 118]. Best results were initially obtained with an

aluminum salen complex, but later other Lewis acids were found to be even more

efficient [119–121].

Following the discovery of the carbonylation reaction, intensive mechanistic

studies have given a deeper insight in the catalytic cycle (Scheme 19) [122,

123]. The reaction is initiated by dissociation of a weakly bound ligand from

aluminum to generate Lewis acidic complex I. Activation of the epoxide (II) is
followed by nucleophilic attack of cobalt to give five-coordinated aluminum alkoxide

complex III. Insertion of CO into the C–Co bond then gives intermediate IV, which
reacts with CO to give complex V. The subsequent four-membered ring formation

from V to give VI has been proposed to be rate limiting, and the intermediacy of V
was supported by IR spectroscopy and kinetic studies. Finally, release of the product

regenerates the active catalyst I. In accordance with the proposed mechanism, the

reaction proceeded with high stereocontrol, and cis lactones were obtained starting

from trans epoxides.

N N

O O
Al

tBu

tBu

tBu

tBu
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(2 mol %)
N PPh3Ph3P

Co(CO)4

O

R 61 atm CO, DME, 80 °C

61 atm CO, neat, 50 °C
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O
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A 57-87%

THF
Co(CO)4
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B 73-93%
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Scheme 18 Formal [3+1] cycloaddition of epoxides and carbon monoxide
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Interesting recent extensions of the reaction are the use of alkylidenecyclo-

propanes as substrates [124], the synthesis of anhydrides via a double carbonyl

insertion process [125], and the first example of carbonylative desymmetrization of

meso-epoxides using a chiral chromium Lewis acid [126].

2.2.2 Formal [3+2] Cycloadditions with Isolated π Systems

In principle, the reaction of epoxides with two-carbon π systems can occur either via

C–C bond cleavage or via C–Obond cleavage. In contrast to cyclopropanes, a lone pair

is available on the oxygen of the epoxide and allows a concerted ring opening to give a

carbonyl ylide intermediate, which can then undergo a concerted [3+2] cycloaddition

with olefins or carbonyl compounds. In fact, the thermal or photochemical ring opening

of epoxides was one of the first methods used to generate carbonyl ylides for cyclo-

addition reactions [127]. Nevertheless, ring opening occurs under relatively mild

conditions only with specific substituents, especially cyano and aryl groups. Probably
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Scheme 19 Proposed catalytic cycle for the carbonylation of epoxides
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for this reason, other methods to generate carbonyl ylides are nowadays favored.

As these reactions can be considered as “true cycloadditions,” they will not be

discussed here.

Surprisingly, Lewis acid activation of epoxides for (formal) cycloaddition

reactions has not been investigated in detail until the work of Zhang and

co-workers in 2011 (Scheme 20) [128]. Inspired by the successful design in the

field of donor–acceptor cyclopropanes, they discovered that Lewis acid activation

of diester-substituted epoxides was possible to give dioxolanes with excellent

diastereoselectivity after cycloaddition with aldehydes. In contrast to what has

been observed with cyclopropanes, racemization of the starting material was

observed, indicating a probable carbonyl ylide intermediate II. As the reaction

was accelerated with electron-rich aldehydes, Zhang and co-workers then proposed

a stepwise process via intermediates III and IV to finally give the dioxolane. Using

the same activation principles, Zhang and co-workers also developed a [3+2]

formal cycloaddition with alkynes [129] and a [4+3] annulation between nitrones

and alkynyl-substituted epoxides [130], but these reactions gave access to more

saturated heterocycles. Finally, they reported in 2012 the formal [3+2] cyclo-

addition of cyclopropanes with indoles (Eq. 6) [131].
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Scheme 20 Formal [3+2] cycloaddition of epoxides and aldehydes and proposed reaction

mechanism
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Equation 6. Formal [3+2] cycloaddition of epoxides and indoles

Yb(OTf)3 (5 mol %)

O
COR1

COR1
4Å MS, CH2Cl2

48-81%

O
R1OC

COR1

Ar

Ar

R1 = alkyl, aryl, OR3

NR4

H

R5

NR4

R5

4:1-20:1 dr

In principle, reactions proceeding via C–C cleavage and carbonyl ylides can be

concerted cycloadditions. On the other hand, reactions involving C–O cleavage

does not allow a continuous overlap of orbitals and are thus clearly formal

cycloadditions. A first approach was developed in the special case of vinyl

epoxides: based on the well-established access to palladium-π-allyl complex from

vinyl epoxides (vide infra), Shim and Yamamoto reported in 1998 the formal [3+2]

cycloaddition of this class of substrates with electron-poor olefins (Scheme 21)

[132]. The reaction proceeded in good yield, but with low diastereoselectivity. The

first step in the catalytic cycle was proposed to be the formation of the palladium

π-allyl intermediate II. Michael addition of the alkoxide to give III followed by

reductive elimination will then give the observed product and regenerate the Pd(0)

catalyst I. In 1999, they then extended the methodology to the synthesis of

oxazolidine by formal cycloaddition of vinyl epoxides and tosyl imines (Eq. 7)

[133, 134].

Pd(PPh3)4 (5 mol %)
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O
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O
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O
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O
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Scheme 21 Palladium-catalyzed formal [3+2] cycloaddition of vinyl epoxides and electron-poor

olefins and proposed reaction mechanism
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Equation 7. Palladium-catalyzed formal [3+2] cycloaddition of vinyl epoxides

and imines

Pd(dba)2 (1 mol %)

THF, 23 °C

R2
O N

R1

N

R3 R3

R1

O
74-99%

50:50-90: 10 dr

R2Ts

Ts
DPPE (2 mol %)

In 2009, Jarvo and co-workers developed the first asymmetric version of the rea-

ction between vinyl epoxides and imines (Scheme 22) [135]. When using a rhodium

catalyst, the reaction was enantiospecific. The retention of the stereochemistry

indicated amechanism involving double inversion. In contrast, when using a palladium

catalyst, a dynamic kinetic asymmetric transformation (DYKAT) was possible, and

enantioenriched products could be obtained from a racemic mixture. Both methods

gave the oxazolidine in good enantiopurity, but only moderate diastereoselectivity.

In 2011, Matsubara and co-workers reported that a nickel catalyst could also be used

for the formal cycloaddition of vinyl epoxides and unsaturated ketones [136]. Finally,

Hou and co-workers reported the first examples of palladium-catalyzed cycloaddition

of nitro olefins and vinyl epoxides, which proceeded with up to 72% ee [137].

The main limitation of the palladium-based methods is the requirement for a

π-allyl intermediate. In principle, a simple Lewis acid activation would have less

limitation. Nevertheless, there are only two reports of Lewis acid-catalyzed formal

[3+2] cycloaddition of epoxides with two-carbon π systems: Su and co-workers first

reported the ytterbium-catalyzed cycloaddition of imines and epoxides to give

oxazolidines in 2007 (Scheme 23A) [138]. In 2012, Zhang and co-workers studies

the ring opening of diester-substituted epoxides more in detail and found out that

the reaction could proceed either via C–C or C–O cleavage depending on the

catalyst (Scheme 23B) [139]. With a nickel catalyst, C–C cleavage was observed,

and the products were obtained in good yield and cis stereoselectivity. In contrast,

C–O cleavage was favored in the presence of a tin(II) catalyst and the reaction

proceeded with lower diastereoselectivity. The origin of the regioselectivity was

rationalized based on calculation: the nickel catalyst favored chelation of the two

ester carbonyl group, leading to C–C bond activation. In contrast, the tin catalyst is

Rh(cod)2OTf (5 mol %)

CH2Cl2, 23 °C
O NN

Ar Ar
O 60-88%

3:1-6:1 dr

PMP

PMP

Pd(dba)2·CHCl3 (2.5 mol %)

Diglyme, 23 °C

O NN

Ar Ar
O

Ms

Ms
Josiphos (6 mol %)

A

B

99% ee
99% ee

67-99%
2:1-3:1 dr
86-94% ee

Scheme 22 Enantiospecific and enantioselective formal [3+2] cycloaddition of vinyl epoxides

and imines
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bound preferentially to the oxygens of one carbonyl group and the epoxide, leading

to C–O bond cleavage. Finally, a last approach was reported by Liu and co-workers

in 2004 based on the oxidation of chalcone epoxides with aminium cations [140].

The obtained radical cation intermediate is very reactive and can be used in

cycloaddition reactions with non-activated or electron-rich olefins.

2.2.3 Formal [3+2] Cycloadditions with Cumulenes

The most important cycloaddition of epoxide with cumulenes is by far the reaction

with carbon dioxide (Eq. 8). The obtained carbonates can be easily polymerized to

give polycarbonates, which are an important class of polymer. With the right

catalyst, the polymer can also be obtained directly. More than 100 publications

have been focused on this reaction, and a full description of this work goes far

beyond the scope of this section. Fortunately, several recent reviews have been

dedicated to this transformation [141–144]. One of the most successful classes of

catalysts are cobalt, chromium, and aluminum salen complexes, which have also

allowed the development of asymmetric variations of the reaction [145].

Equation 8. Formal [3+2] cycloaddition of epoxides and carbon dioxide

O

R1 R2
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O

R1 R2

O
R1

R2 O

OCO2

The reaction with cumulenes is not limited to CO2. In particular, isocyanates,

isothiocyanates, and carbodiimides react with epoxides to give the corresponding

five-membered heterocycles. One of the main challenges in this transformation is to

control the regioselectivity of the formal cycloaddition. Earlier work in this field
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Scheme 23 Lewis acid-catalyzed formal [3+2] cycloaddition of vinyl epoxides with imines and

aldehydes

246 J. Waser



focused on the use of halide salts, such as tetrabutylammonium iodide [146],

lithium bromide [147], tetraphenylstibonium iodide [148–150], or tributyltin

iodide–Lewis base complexes [151, 152]. The halide has been proposed to play a

key role for nucleophilic ring opening of the epoxide (Scheme 24). The formed

alkoxide can then add on the cumulene and a SN2 ring closure finally gives the

heterocycles. More recently, the methodology has been used in the synthesis of

libraries of bioactive compounds [153, 154], and the first example involving

isoselenocyanates has been reported [155].

The only attempt of asymmetric induction using a ytterbium-Pybox catalyst was

reported by Barros and Phillips in 2010 (Eq. 9) [156]. However, only moderate

enantioselectivity was obtained and the yield was low due to the formation of

regioisomers and chlorohydrin side products.

Equation 9. Enantioselective [3+2] cycloaddition of epoxides and isocyanates

O

(EtO)2OP

NO

O

(EtO)2OP
Ar

NCO
Ar

N
N

OO

N

Ph Ph
YbCl3·H2O (20 mol %)

(20 mol %)
7-75%

0-73% ee

Like in the case of formal cycloaddition with two-carbon π systems, a successful

solution to the challenge of regio- and stereoselectivity was found in the use of

palladium catalysts with vinyl epoxides. In fact, the first reaction of this type was

reported by Trost and Sudhakar with isocyanates in 1987 (Scheme 25A) [157]. Inter-
estingly, the reaction was stereospecific when tosyl isocyanate was used, but became

stereoconvergent with the use of isocyanates bearing a bulky aryl group [158, 159]. In

this case, high cis stereoselectivity was observed regardless of the configuration of the
epoxide. Isomerization of the π-allyl intermediate was proposed to rationalize this

result. In 1997, Larksarp and Alper reported the first enantioselective variation of the
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Scheme 24 Halide salt-catalyzed formal cycloaddition of epoxides and cumulenes
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method using TolBINAP as a ligand (Scheme 25B) [160, 161]. This reaction gave

high enantioselectivity for both isocyanates and carbodiimides as substrates.

In addition to formal cycloadditions involving cumulenes with two heteroatoms,

Baba and co-workers have reported a single example of cycloaddition of ketenes

with epoxides (Eq. 10) [162]. Depending on substrate structure and solvent, the

tetraphenylstibonium iodide-catalyzed reaction proceeded in high yield for the

formation of either the γ-lactone or the ketene acetal product.

Equation 10. Formal [3+2] cycloaddition of epoxides and ketenes

O

R2
O

O

R2
R4

CO
R3

42-100%

Ph4SbI (10 mol %)

40-80 °C

R1

R1

R3

R4
OO

R2

R1

R3 R4

benzene or CH3CN

2.3 Reactions with Other Three-Membered Rings

Apart from epoxides and cyclopropanes, most investigations have focused on

the use of aziridines, oxaziridines, and diaziridines substrates. As the use of the last

two for the functionalization of olefins has been already discussed in Chap. 2

(Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Diamination,

Aminoalkoxylation, or Dialkoxylation Reactions) of this volume, the discussion will

be here limited to aziridines. Not surprisingly, many parallels can be drawn with the

reactions involving epoxides, and depending on the transformation, reports involving

aziridines either inspired or take inspiration from similar work with epoxides.

2.3.1 Formal [3+1] Cycloadditions

The carbonylation of aziridines is an important method for the synthesis of

β-lactams. The main research in this field was conducted by Alper and

co-workers (Scheme 26). They first reported the rhodium-catalyzed carbonylation
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Scheme 25 Pd-catalyzed formal [3+2] cycloaddition of vinyl epoxides and cumulenes
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of aziridines (Scheme 26A) [163–165]. The reaction was limited to aryl-substituted

aziridines. High regioselectivity was observed for insertion in the benzylic C–N bond.

Furthermore, the reaction proceeded with retention of the stereochemistry at

the benzylic center. In 1996, they reported a cobalt-catalyzed carbonylation

(Scheme 26B) [166]. The reaction was more general and proceeded this time

with inversion of the stereochemistry and insertion in the less substituted double

bond. This striking result can be explained by the different mechanism of the two

reactions. Like for the carbonylation of epoxides (vide supra, Scheme 19), the

reaction with cobalt most probably proceeds via nucleophilic attack of a cobaltate

intermediate [167]. In the case of rhodium, oxidative insertion of I into the C–N

bond occurs first to give II (Scheme 27). Hyperconjugation with an aromatic ring is

essential for this step [168]. Carbonyl insertion followed by addition of carbon

monoxide and reductive elimination then gives the lactam. Subsequently, the scope

of the cobalt-catalyzed reaction was studied more in detail [169, 170]. Coates and

co-workers also demonstrated that the Lewis acid cobaltate complex developed for

epoxide carbonylation is also more efficient for aziridine carbonylation [118].

In addition to the most successful rhodium and cobalt catalysts, examples of

carbonylation with stoichiometric nickel complexes were also reported [171,

172]. Finally, the use of palladium catalysis remains limited to methylene- [173]

and vinyl- [174, 175, 223] substituted aziridines.
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2.3.2 Formal [3+2] Cycloadditions with Isolated π Systems

As for epoxides, the lone pair on nitrogen allows the thermal or photolytic opening

of aziridines to generate an azomethine ylide. Again, this process is often limited to

specific substituents on the aziridines and requires harsh reaction conditions. It can

also be considered as a “true” cycloaddition and will therefore not be discussed in

this section.

As in the case of cyclopropanes, the use of aziridines in formal [3+2]

cycloadditions has increased tremendously during the last 15 years [176, 177]. The

first breakthroughs were reported in 1999. Bergmeier and co-workers demonstrated

that the intramolecular cycloaddition of tosyl aziridines and allyl silanes could be

catalyzed by boron-trifluoride etherate (Scheme 28A) [178]. Also in 1999, Mann and

co-workers used the same catalyst for the intermolecular cycloaddition of aryl-

substituted aziridines with enol ethers [179], and later demonstrated that this system

could also be applied to non-activated alkenes (Scheme 28B) [180]. In these early

works, high diastereoselectivity could be achieved only in the case of the formation of

bicyclic five–five ring systems. In 2000, Nakagawa and Kawahara then reported the

scandium-catalyzed cycloaddition of unsubstituted Cbz protected aziridines with

skatole and used the method in a formal synthesis of physostigmine (Scheme 28C)
[181]. In 2001, Yadav and co-workers finally reported that scandium triflate was also

an efficient catalyst for the reaction of aryl-substituted tosyl aziridines with enol

ethers and allyl silanes [182].

In 2004, Johnson and co-workers then reported that diester-substituted N-aryl
aziridines could be activated by Lewis acid for reaction with enol ethers

(Scheme 29A) [183]. Due to the diester activation, the reaction now proceeds via

C–C instead of C–N cleavage. For cyclic enol ethers, a [4+2] annulation process

was observed, proceeding probably via a Friedel–Crafts reaction on the aryl ring.
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The reaction could also be extended to norbornene as substrate. In the case of

acyclic enol ethers, the formal [3+2] cycloaddition product was obtained with low

diastereoselectivity. Although the reaction was usually performed with stoichio-

metric amount of zinc chloride as Lewis acid, two examples of reactions catalytic in

zinc were also reported. In 2011, Zhang and co-workers demonstrated that the [3+2]

cycloaddition product could be obtained for both cyclic and acyclic enol ethers

when using tosyl aziridines and yttrium triflate as catalyst [184].

As has been seen for epoxide and cyclopropanes, the use of vinyl aziridines

opened the way for π-allyl palladium chemistry. The first example of [3+2] cyclo-

addition with an isolated two-carbon π system was reported by Aggarwal and

co-workers in 2011 (Scheme 29B) [185]. Depending on the reaction conditions

and substrate structure, pyrrolidine products could be obtained with high diastereo-

selectivity. The synthetic utility of the method was further demonstrated in a formal

total synthesis of the natural product (�)-α-kainic acid. Furthermore, Shipman and

co-workers reported in 2012 the first example of intramolecular formal cycloaddi-

tion of methylene aziridines with alkenes [186].

The formal [3+2] cycloaddition of aziridines is not limited to olefins as partners.

The reaction of aziridines with aldehydes and ketones was reported by Yadav and

co-workers in 2004 using a silyl group to stabilize the carbocation obtained after C–N

bond cleavage (Scheme 30A) [187]. Oxazolidine products were obtained in excellent
yield, but moderate diastereoselectivity. In 2007, Singh and co-workers then studied

the reaction of aryl-substituted tosyl aziridines with both carbonyls and imines

(Scheme 30B) [188]. This reaction was possible using zinc triflate as catalyst and

also proceeded via C–N bond cleavage. In 2011, Hanamoto and co-workers finally

reported the formal [3+2] cycloaddition of trifluoromethyl-substituted tosyl aziridines

with aldehydes (Scheme 30C) [189]. This reaction proceeded also with C–N

cleavage, but with opposite regioselectivity and high diastereoselectivity. As the

trifluoromethyl group is not able to stabilize a carbocation intermediate, the reaction

starts most probably by a nucleophilic SN2-like attack of the carbonyl on the less

substituted carbon of the aziridine.
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The use of diester-substituted aziridines allowed again cycloadditions involving

C–C instead of C–N cleavage. Using different Lewis acids as catalysts, the groups

of Zhang [190, 191] and Wang [192] reported the cycloadditions with both

carbonyls and imines (Scheme 30D). Interestingly, good diastereoselectivity was

observed for the formation of cis-oxazolidines and trans-imidazolidines.

2.3.3 Formal [3+2] Cycloadditions with Cumulenes

As in the case of epoxides, carbon dioxide is again the most attractive cumulene for

reaction with aziridines. This reaction gives important oxazolidinones as products

and constitutes an alternative to the reaction of epoxides with isocyanates. Even if

early work demonstrated already in the 1970s and the 1980s that the cycloaddition of

aziridines and CO2 could be accelerated with halide salts [193, 194], progress has

been much slower than in the case of epoxides, focusing mostly on technical

improvements. Interesting recent results include the use of a chromium salen catalyst

byMiller and Nguyen [195] and a palladium catalyst together with vinyl aziridines by

Aggarwal and co-workers [196] (Scheme 31A, B). The former reaction gave excel-

lent regioselectivity, whereas the latter reaction already proceeded at atmospheric

pressure of carbon dioxide.

The reaction of aziridines with other cumulenes can also be catalyzed by halide

salts [194]. In 1992, Baeg and Alper reported the first palladium-catalyzed formal

cycloaddition of aziridines with carbodiimides [197] and later extended the protocol
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to isocyanates and isothiocyanates (Scheme 32A) [198]. The regiochemistry of

the cycloaddition was dependent of the cumulene structure. The reaction was

enantiospecific. When sulfurdiimides were used, a thiourea was obtained instead of

the expected product (Scheme 32B) [199]. Although the mechanism of this transfor-

mation was not yet fully elucidated, a labeling experiment showed that the extra

carbon atom originated from the methylene group of the aziridine.

The use of vinyl aziridines together with a palladium catalyst allowed cyclo-

addition with cumulenes under milder conditions. Such a process was first reported

by Alper and co-workers in 2000 [200]. In 2003, Trost and Fandrick reported an

asymmetric variation of the cycloaddition of vinyl aziridines and isocyanates using

the bis(phosphine) ligands developed in their laboratory (Eq. 11) [201]. As the

reaction proceeded via a π-allyl palladium intermediate, a dynamic kinetic asym-

metric cycloaddition became possible. In 2004, Dong and Alper reported a second

asymmetric cycloaddition, but the enantioselectivity was moderate [202].
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Equation 11. Pd-catalyzed dynamic kinetic asymmetric cycloaddition of vinyl

aziridines and isocyanates

N
R2

NN

O

R2

[Pd(C3H5)Cl]2 (2 mol %)
AcOH (10 mol %), CH2Cl2

13-95%
60-99% ee

R1
R3NCO

R3

R1

HNNH

Ph2P

O

PPh2

O

(6 mol %)

Recently, progress using other catalysts than palladium has also emerged.

In 2008, Hou and co-workers reported the use of tributylphosphine as a catalyst

for the cycloaddition of aziridines with carbon disulfide and isothiocyanates

[203]. Finally, Sengoden and Punniyamurthy developed in 2013 the iron-catalyzed

cycloaddition of aziridines with isoselenocyanates [204]. Interestingly, this reaction

could be performed “on water” under air, without the care required for more

sensitive catalysts.

3 Reactions Involving Four-Membered Rings

In comparison with the use of three-membered ring, the field of formal cycloaddition

involving four-membered ring is still in its infancy. This is probably due to the

smaller strain energy per bond, but also to the less developed synthetic methods used

to access four-membered rings.

3.1 Reactions with Cyclobutanes

Neglected for a long time, the catalytic activation of cyclobutanes has come recently

at the center of attention of the organic chemistry community [205]. Prior to 2008,

only one example of cycloaddition involving a 1,2-donor–acceptor-substituted

aminocyclobutane had been reported by Saigo and co-workers in 1991 (Eq. 12)

[206]. A mixture of half aminal and acetal was obtained, which was subsequently

completely hydrolyzed to the acetal. In this pioneering work, the diastereoselectivity

was low and the scope of the reaction was limited. In 1993, Saigo and co-workers

then reported a multi-step [4+2] annulation procedure for the synthesis of δ-lactones
starting from acetal-ester-substituted cyclobutanes [207].

254 J. Waser



Equation 12. First example of formal [4+2] cycloaddition of cyclobutanes and

carbonyls

O

R2 R3

NMe2

CO2R
1

Me

Me 1) TiCl4, CH2Cl2

2) MeOH, then NaHCO3 aq.

3) MeOH, HCl aq.

O

R2
R3

CO2R
1

OH
Me

Me 47-72%
1:1-4:1 dr

Surprisingly, it is only in 2009 that this type of transformation was studied more

in detail. In this year, Parsons and Johnson reported an important breakthrough by

using diester-aryl/alkenyl-substituted cyclobutanes in the reaction with aldehydes

(Scheme 33A) [208]. The reaction was catalyzed by scandium triflate and gave

tetrahydropyran products with good yield and excellent diastereoselectivity. In

contrast to the similar reaction developed for cyclopropanes, racemization of the

stereocenter was observed during the reaction. The required cyclobutanes were

themselves synthesized by scandium-catalyzed [2+2] formal cycloaddition of

olefins and methylidenemalonates, which allowed the development of a one-pot

formal [2+2+2] process to access tetrahydropyrans. The same year, Pritschard,

Christie, and co-workers used cobalt octacarbonyl complexes of acetylenes as

cation-stabilizing groups on the cyclobutane (Scheme 33B) [209]. Using again

scandium triflate as catalyst, cis-substituted tetrahydropyrans were obtained in

good yield.

To further extend the scope of formal [4+2] cycloadditions, Pagenkopf and co-

workers then studied oxygen-diester-substituted cyclopropanes as substrates (Scheme 34)

[210–212]. The reaction was especially successful with bicyclic cyclobutanes. They first

reported the cycloaddition with imines, which gave enamine products after elimination

of the alcohol (A) [210]. In this case, the reaction of aryl-diester-substituted cyclobutanes
gave stable piperidines as products. In a second work, they extended the reaction to

aldehydes (B) [211]. In this case, stable acetal products were obtained with high

O

R2 H
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CO2Me

R1
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77:23-99:1 drCO2Me
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Scheme 33 Formal [4+2] cycloaddition of 1,2-donor–acceptor-substituted cyclobutanes with

aldehydes
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diastereoselectivity. Finally, they developed in 2011 the formal [4+3] cycloaddition with

nitrones (C) [212]. The reactions proceeded in good yield, but only with moderate

diastereoselectivity. In 2012, Matsuo and co-workers further reported a one-pot reaction

of 1,2-oxygen-diester-substituted cyclopropanes involving cycloaddition and intramolec-

ular lactonization [213].

Three-donor-substituted cyclobutanones were introduced by Matsuo and

co-workers for their use in formal [4+2] cycloaddition in 2008 (Scheme 35)

[214]. In the case of bicyclic cyclobutanones, cleavage of the less substituted

C–C bond was observed, leading to stable bicyclic acetals as products (A). For
acyclic cyclobutanones, the regioselectivity of the reaction was dependent from the

temperature (B). At �45�C, cleavage of the less substituted C–C bond was

observed. In contrast, if the temperature was raised to room temperature, the
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reversed regiochemistry and elimination of ethanol was observed. This is probably

due to the higher stability of the more substituted zwitterion intermediate. In 2012,

Matsuo and co-workers also reported the use of cobalt octacarbonyl alkyne

complexes as donor on cyclobutanones [215].

3.2 Reactions with Other Four-Membered Rings

Most of the cycloadditions involving other four-membered rings are based on

reactions between oxetanes and azetidines and carbon monoxide or cumulenes.

Baba and co-workers first reported that tetraphenylstibonium iodide was also a good

catalyst for the cycloaddition of oxetanes and cumulenes [162, 216]. Alper and

co-workers then studied the activation of both oxetanes and azetidines with cobalt

and palladium catalysts (Scheme 36). Cobalt octacarbonyl was a good catalyst for the

carbonylation of azetidines with carbon monoxide (A) [217]. Cleavage of the more

substituted C–N bond was observed in the case of aryl substituents on the azetidine.

For alkyl substituents, the other regioselectivity was observed. Reaction under milder

conditions could be achieved using a palladium catalyst and vinyl azetidines or

oxetanes [218–220]. This reaction proceeds via π-allyl palladium intermediates and

was successful in the case of isocyanates, isothiocyanates, carbodiimides, ketenes, and

ketimines as cumulenes. Finally, Mann and co-workers reported the reaction of tosyl

azetidines and electron-rich olefins promoted by boron-trifluoride etherate [221]. In

this case, a mixture of [4+2] cycloaddition and further elimination products was

obtained.

4 Reactions with Larger Rings

Up to now, there are only very few studies on formal cycloaddition reactions

involving C–C bond cleavage of larger rings which gives saturated heterocycles.

This is probably due to the lack of ring strain, which makes these reactions less
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Scheme 36 Formal [4+2] cycloaddition of azetidines and oxetanes with carbon monoxides and
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favorable. An interesting example has nevertheless been reported by Zhou and

Alper, who developed the palladium-catalyzed formal [5+2] cycloaddition of vinyl

pyrrolidines and isocyanates to give diazepin-2-ones (Eq. 13) [222].

Equation 13. Formal [5+2] cycloaddition of vinylpyrrolidines with isocyanates

N
R1

R2

N
Ar

C O

N

N
R1Ar

O
R2

Pd2(dba)3·CHCl3 (5 mol %)

dppp (10 mol %), THF
11-80%

5 Conclusions

Formal cycloadditions proceeding byC–Cbond cleavage are important synthetic tools,

as they give access to more saturated heterocycles than “classical” cycloadditions

involving π-systems. However, the activation of C–C bond is difficult, and the use of

ring strain or strong polarized bonds has been necessary to develop efficient processes.

During the last two decades, broadly applicable methods have appeared that build on

the earlier pioneering work in this area. Cycloaddition of donor–acceptor

cyclopropanes and two or three-atom π systems, as well as reactions of epoxides and

aziridineswith carbonmonoxide or cumulenes are nowburgeoning fields of research in

organic chemistry. They have found important applications both in the synthesis of

natural products and in the large-scale synthesis of commodity chemicals. Neverthe-

less, the field is still in its infancy when considering the nearly endless possible

combinations of partners for formal cycloaddition reactions. Furthermore, only few

successes have been reported for the simultaneous control of diastereo- and enantios-

electivity. There is consequently a huge potential for both applications and further

methodological developments in the field of formal cycloaddition reactions for

saturated heterocycle synthesis.
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