


Advances in Computational Vision 
and Medical Image Processing



Computational Methods in Applied Sciences

Series Editor

E. Oñate
International Center for Numerical Methods in Engineering (CIMNE)
Technical University of Catalunya (UPC)
Edificio C-1, Campus Norte UPC
Gran Capitán, s/n

onate@cimne.upc.edu
www.cimne.com

08034 Barcelona, Spain

Volume 13

For other titles published in this series, go to
www.springer.com/series/6899



Methods and Applications

123

João Manuel R.S. Tavares R.M. Natal Jorge.

Advances in Computational
Vision and Medical Image
Processing

Editors



c© 2009  Springer Science +Business Media B.V.
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

springer.com

ISBN: 978-1-4020-9085-1 e-ISBN: 978-1-4020-9086-8

Printed on acid-free paper

Library of Congress Control Number: 2008

Editors

934777

João Manuel R.S. Tavares R.M. Natal Jorge

University of Porto (UP)
Faculty of  Engineering (FEUP)

Rua Dr. Roberto  Frias, s/n
4200-465 Porto
Portugal
tavares@fe.up.pt

University of Porto (UP)
Fac  Engineering (FEUP)

rnatal@fe.up.pt

  Institute of Mechanical Engineering
and Industrial Management (INEGI)

ulty of
Institute of Mechanical

 Engineering (IDMEC)
Rua Dr. Roberto  Frias, s/n
4200-465 Porto
Portugal



Preface

Computational methodologies of signal processing and imaging analysis, namely
considering 2D and 3D images, are commonly used in different applications of
the human society. For example, Computational Vision systems are progressively
used for surveillance tasks, traffic analysis, recognition process, inspection pur-
poses, human-machine interfaces, 3D vision and deformation analysis.

One of the main characteristics of the Computational Vision domain is its inter-
multidisciplinary. In fact, in this domain, methodologies of several more fundamen-
tal sciences, such as Informatics, Mathematics, Statistics, Psychology, Mechanics
and Physics are usually used. Besides this inter-multidisciplinary characteristic, one
of the main reasons that contributes for the continually effort done in this domain
of the human knowledge is the number of applications in the medical area. For
instance, it is possible to consider the use of statistical or physical procedures on
medical images in order to model the represented structures. This modeling can
have different goals, for example: shape reconstruction, segmentation, registration,
behavior interpretation and simulation, motion and deformation analysis, virtual
reality, computer-assisted therapy or tissue characterization.

The main objective of the ECCOMAS Thematic Conferences on Computational
Vision and Medical Image Processing (VIPimage) is to promote a comprehensive
forum for discussion on the recent advances in the related fields trying to iden-
tify widespread areas of potential collaboration between researchers of different
sciences.

The present book contains the extended versions of sixteen papers selected from
the works presented in the first ECCOMAS thematic conference on Computational
Vision and Medical Image processing (VIPimage 2007), held in Faculty of Engi-
neering of University of Porto, Portugal. It collects the state-of-the-art on the sub-
ject of Computational Vision and Medical Image processing contributing for the
development of these areas of knowledge.

The Editors would like to take this opportunity to thank to the European Com-
munity on Computational Methods in Applied Sciences, the Portuguese Association

v



vi Preface

of Theoretical, Applied and Computational Mechanics, the University of Porto, all
sponsors, all members of the International Scientific Committee, and to all Invited
Lecturers and Authors.

Faculty of Engineering, João Manuel R.S. Tavares
University of Porto, Portugal R. M. Natal Jorge
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Chapter 3
Robust Shape Estimation with Deformable
Models

Jorge S. Marques, Jacinto C. Nascimento, Arnaldo J. Abrantes,
and Margarida Silveira

Abstract This paper addresses the estimation of 2D object boundary from noisy
data, using deformable contours. First, it discusses the relationship between
deformable contours and other Pattern Recognition algorithms (e.g., Kohonen
maps, mean shift, fuzzy c-means) and derives a unified framework which allows
a joint formulation for a wide set of methods. Afterwords, the paper addresses the
estimation of deformable curves in cluttered images, assuming that there is a large
number of outlier features detected in the image. The paper presents two robust
algorithms: the adaptive snake for static objects and a robust tracker (S-PDAF) for
moving objects in video sequences. The advantages of both algorithms with respect
to classic methods are illustrated by examples.

3.1 Introduction

Object segmentation has been thoroughly investigated in the last two decades. Many
algorithms have been proposed based on different assumptions (e.g., homogeneity
criteria, edge linking, topographic maps, etc.). Deformable models are amongst the
most popular techniques [1–11]. They approximate the object boundary using a
deformable curve and estimate the curve configuration by the minimization of an
energy function.

The energy function may include different types of information about the prob-
lem e.g., image cues (edge points, color and texture features), prior knowledge about
the object shape and motion models. This information is either provided by the user
or learned from the data. It depends on the application.

J.S. Marques, J.C. Nascimento, and M. Silveira
ISR, Instituto Superior Técnico, Lisboa

A.J. Abrantes
Instituto Superior de Engenharia de Lisboa
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Fig. 3.1 Difficulties in elastic contour estimation: initialization (left) and outlier features (right).
Each figure shows the initial contour (circle) and the final contour after adaptation

Despite their ability to fuse different sources of information in a sound frame-
work, deformable models have a couple of drawbacks:

• Initialization: the final estimate of the contour is strongly dependent on the con-
tour initialization.

• Robustness: the elastic contour is attracted by outlier features detected in the
image (e.g., inner edges or edges associated to other objects in the scene).

These drawbacks have prevented a widespread use of deformable contours since
the model has to be manually initialized close to the object boundary and no outlier
features should be present in the vicinity of the object boundary. Figure 3.1 illus-
trates both difficulties.

We will address the robustness issue in this paper as well as a more fundamen-
tal question concerning the relationship between deformable models (Snakes) and
other well known algorithms (e.g., clustering methods, mean shift, neural networks).
All these methods approximate data points by a set of prototypes (model points) and
it is useful to understand what are the similarities and differences among them. We
will propose a unified framework which allows a joint formulation of several Pat-
tern Recognition algorithms together with Snakes (see Section 3.3). We will show
that they all share a common structure and can be studied together. Then we address
the robustness issue and describe two new algorithms for robust shape estimation
with deformable models. Both of them assign probabilistic weights to the detected
data. The first algorithm uses an adaptive potential function to estimate static objects
(Section 3.4) while the second uses a robust tracker based on data association filter-
ing (Section 3.5). The work reviewed in this paper was published before in [12–22].

3.2 Snake Algorithm

This section describes object boundary extraction using the classic Snake algorithm
[1]. We will assume that the deformable curve (Snake) is defined by a sequence of
2D points and the image features are edge points.
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Let I be an image and let y = (y1, ...,ym) be a set of edge points detected in the
image. We want to approximate a subset of y by a curve x = (x1, . . . ,xn) where xi
are 2D points. This problem has two main difficulties: (1) which subset of y should
be approximated? and (2) how do we associate data points to model points?

The snake algorithm addresses both difficulties by minimizing an energy function
ET with two terms: an image dependent term and a regularization term

ET (x) = E(x)+Er(x) (3.1)

The first term is given by a sum of samples of a potential function P along the curve

E = ∑
i

P(xi) (3.2)

The curve will tend to follow the valleys of the potential function in order to obtain
small energy values. The second term Er is a regularization energy which assigns a
high cost to long contours and contours with unusual shapes. The minimization of
(3.1) tries to achieve both goals. This operation is often done by using a gradient
descent algorithm starting from an initial curve configuration, provided by the user.

The potential function depends on the image and can be defined in several ways.
The main idea is to guarantee that the valleys of the potential function follow the
object boundary. The potential function can be obtained by filtering the gradient
magnitude or by anisotropic diffusion [7].

The potential function can also be obtained by filtering the edge points detected
in the image with a lowpass filter (Cohen potential [2])

P(x) =−∑
j

G(x− y j) (3.3)

where G is a Gaussian kernel

G(x) = Ce−
1

2σ2 ‖x‖2 (3.4)

3.3 Unified Framework

Snakes and several other Pattern Recognition methods try to represent a set of obser-
vations y = (y1, ...,ym) by a smaller set of prototypes x = (x1, . . . ,xn). The key ques-
tion is: what is the relationship between all these methods? We will show that many
of these methods share a common structure. They minimize the same type of energy
and can be implemented using the same recursion.

To approximate the data y by a set of prototypes x we need to associate the data
points y j to model units xi. The difficult question is: which model unit xi corresponds
to each data point y j? We will answer this question by assuming that all model units
are associated to all data points ... but with different weights (see Fig. 3.2).



60 J.S. Marques et al.

xi

yj

Fig. 3.2 Association of data points to model points

Table 3.1 Unified framework: weights and influence functions

Method w ji v ji

Snakes/Mean Shift −G(y j−xi)
d ji

G(y j− xi)

c-means δ (i− i∗) δ (i− i∗)

Kohonen maps ∑i∗+p
k=i∗−p δ (i− k) ∑i∗+p

k=i∗−p δ (i− k)

Fuzzy c-means
[

∑k

(
d ji
dki

)1/(q−1)
]−q [

∑k

(
d ji
dki

)1/(q−1)
]−q

Elastic nets − log∑k G(y j−xk)
d ji

G(y j−xi)
∑k G(y j−xk)

We will assume that the model x minimizes a weighted squared error criterion

E = ∑
i, j

w ji(d) ‖y j− xi‖2 (3.5)

where w ji(d) depends on the set of distances from the data points to the model
prototypes d = {d ji = ‖y j− xi‖2}. The weight w ji associated to a tentative match
(y j,xi) depends on the distance between these two points but it may also depend
on the distances from other data points to xi. This creates competition among the
model points. For example we can implement a winner-takes-all strategy by defining
w ji = 1 if xi is the closest prototype to y j and wi j = 0 otherwise. Only the closest
prototype is attracted by the data point.

The Snake algorithm with the Cohen potential can be written in this way. The
Cohen energy

E =−∑
i j

G(y j− xi) (3.6)

is equal to the squared error criterion (3.5) if the weights are defined by

w ji(d) =−G(y j− xi)
‖y j− xi‖2 (3.7)

In this case, the weight w ji depends only on the distance ‖y j− xi‖.
Many other algorithms try to minimize the energy (3.5). That is the case of the

following algorithms: Kohonen nets, elastic nets, c-means, fuzzy c-means and mean
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shift. The weights associated to each of these algorithms are shown in Table 3.1
(see [12, 15] for a proof) where i∗ is the index of the model unit closest to y j, δ (i)
is the Kronecker symbol, p is the neighborhood radius of the Kohonen maps and q
is the fuzziness parameter in fuzzy c-means. It is interesting to notice that most of
these algorithms are based on competitive learning since each weight w ji depends
on all the distances ‖yp−xi‖,∀p. The only exceptions are Snakes and the mean shift
algorithm.

To estimate the model x = (x1, . . . ,xn) we have to minimize the energy function.
This can be done using a gradient descent algorithm. Again the minimization of all
these cases can be done in the same way. It can be shown that the gradient algorithm
for the energy (3.5) is given by

xt+1
i = xt

i +mi(ξ t
i − xt

i) (3.8)

ξ t
i =

∑ j v jiy j

∑ j v ji
(3.9)

where the ξ t
i is a centroid of the data and v ji measures the influence of data point

y j on the model point xi. The coefficients v ji can be derived from the weights w ji
by [12]

v ji = w ji +∑
k

d jk
∂w jk

∂d ji
(3.10)

and they are shown in Table 3.1.
Equation (3.8) has a simple interpretation. The model configuration x is recur-

sively updated. In each iteration, each model point xi is attracted toward a centroid
of the data ξi in the vicinity of the model point. The algorithm stops when the model
points converge to the centroids. When we consider the regularization energy in
(3.1), Eq. (3.8) also includes a regularization force.

All the above algorithms can be implemented in this way. The only difference
between them is related with the influence functions v ji which measure the contri-
bution of each data point y j to the centroid ξi. It is enlightening to see the attraction
regions associated to each model point xi i.e., the regions such that v ji > T when
we vary the feature position, y j. This is shown in Fig. 3.3. The Snake algorithm
has omni directional attraction regions while the attraction regions of competitive
learning methods are shape dependent and they are often unbounded.

All these algorithms can be used for shape estimation but they behave in different
ways. Figure 3.4 (left) shows the performance of Snakes when it is initialized with
a circle outside the object. The elastic curve converges to the object boundary but it
fails to represent the concavities. The reason is simple. Since the attraction regions
of Snakes are omni directional the contour is never attracted by points inside the
concavity. The fuzzy c-means algorithm solves this problem and is able to represent
the concavities (Fig. 3.4 (right)). This improvement is due to competitive learning.

Competitive learning brings several advantages. First, the model tries to represent
all the data. This is important if the contour initialization is poor and all the data
points detected in the image are relevant. However, it is a major difficulty if we
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Fig. 3.3 Attraction regions of snakes/mean shift, elastic nets, Kohonen maps, c-means and fuzzy
c-means (starting on the upper left image) in the feature space

Fig. 3.4 Results obtained with snakes (left) and fuzzy c-means (right)

have edge points outside the boundary. To avoid this drawback we should bound
the attraction regions. This can easily be done by creating an additional unit (noise
model) with special properties, keeping the same type of energy. In addition, the
snake points tend to collapse if they are in a region of high concentration of data.
This effect is not observed in competitive learning methods since different units are
attracted by different data points.

The unified framework described in this section can be extended in several ways.
For example, it can be used with extended features containing color, texture of gra-
dient information. Figure 3.5 shows an image of a ceramic material obtained with an
electronic microscope. This image cannot be segmented using edge points only. The
contour model is attracted by several grains. This problem can be overcome by using
extended features y j containing the edge coordinates and the gradient direction as
well. The energy and the model update equations remain the same. The new model
behaves as a directional active contour which is attracted by data points which are
near and have similar gradient directions [13].
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Fig. 3.5 Electronic microscopy: contour estimation using edge points and gradient direction: initial
contours (left) and final contours (right)

3.4 Robust Shape Estimation

Most images have clutter (uninteresting objects and features). Only a subset of the
features detected in the image belong to the object boundary and should attract the
elastic contour. The other features should be considered as outliers and ignored.
This segmentation problem is not addressed by the previous algorithms and that is
the reason why they are not robust in the presence of outliers (see Fig. 3.1 and 3.6).

This problem is addressed in this section for static objects and in the next section
for the case of object tracking in video sequences. We explore two ideas. First, we
use middle level features (curve segments) instead of low level ones (edge points).
Curve segments, also called strokes, are more robust and in smaller number. Second,
we explicitly assume that each stroke is either valid or invalid (outlier). We therefore
assign confidence degrees to the strokes and the estimation algorithms take into
account the confidence degrees.

First, we apply an edge detection algorithm to the image and then link neighbor-
ing edges in order to obtain the curve segments. Let

yk = (yk
1, . . . ,y

k
mk) (3.11)

be the k-th stroke (where mk is the number of edge points of the k-th segment) and
let y be the set of all the strokes detected in the image. We will assign a binary
label vk ∈ {0,1} to each stroke. We assume that vk = 1 if the stroke belongs to
the object boundary and vk = 0 otherwise. The stroke labels v = (v1, ...,vm) are not
observed.

3.4.1 Known Labels

Let us first assume that the labels are known. This is not true of course. In this case,
we can define an image potential
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Fig. 3.6 Lip estimation with classic snakes: initial (red) and final (green) contours. Observed image
(left) and potential function (right)

P(x;y,v) = ∑
k

vkPk(x;yk)+(1− vk)K (3.12)

where Pk(x;yk) is the potential created by the k-th stroke assuming that it is a valid
one and K is a constant potential created by an invalid stroke. Adopting the Cohen
potential we obtain

Pk(x;yk) =−
mk

∑
j=1

G(yk
j − x) (3.13)

The data energy is given by

E(x;y,v) = ∑
i

P(xi;y,v) (3.14)

Shape estimation is achieved by minimizing the energy

ET (x;y,v) = E(x;y,v)+Er(x) (3.15)

This problem can also be addressed in a probabilistic framework by defining a Gibbs
distribution

p(y,v,x) =
1
Z

e−E(x;v)−Er(x) (3.16)

and estimate x as the most probable shape i.e. optimizing p(y,v,x) with respect to x
assuming that the other variables are known. This approach is equivalent to the
minimization of the energy ET = E +Er.

3.4.2 Unknown Labels

In practice, the stroke labels v are not known. We therefore have to estimate x in the
presence of incomplete observations. This could be done by using the joint proba-
bility p(y,x) and computing the most probable configuration of x. We do not have an
analytic expression for p(y,x) since the marginalization of p(y,v,x) defined in (3.16)
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is not feasible. However, we can circumvent this difficulty by using the Expectation-
Maximization (EM) method which allows the estimation of unknown variables in
the presence of missing data [23, 24].

The EM method is an iterative procedure with two steps. The first step (E-step)
computes an auxiliary function

U(x, x̂) = Ev {log p(y,v,x)|y, x̂} (3.17)

where x̂ is the most recent estimate of the contour. Function U(x, x̂) has an intuitive
meaning. Since we do not know log p(y,v,x) (v is not observed) we replace it by its
expected value with respect to v. The second step (M-step) maximizes U(x, x̂) with
respect to x and replaces x̂ by this estimate. The sequence of estimates produced by
the EM method converges to a local maximum of the function p(x,y).

The auxiliary function for our problem can be easily computed (see Appendix)
and it is a sum of two terms: a data dependent energy as before and a regularization
energy

U(x, x̂) = E(x, x̂)+Er(x) (3.18)

The data dependent term is obtained by sampling a potential function along the
curve as before

E(x, x̂) = ∑
i

Pa(xi;y) (3.19)

but the potential function has changed. The new potential function is a weighted
sum of the potentials of all the strokes.

Pa(x) = ∑
k

wkPk(x;yk) (3.20)

the weights being the label probabilities

wk = P(vk = 1|yk, x̂) (3.21)

This is a very interesting result since all the strokes detected in the image contribute
to the image potential but with different weights. The weights can also be interpreted
as confidence degrees associated to the strokes. They change at each new iteration
since they depend on the best shape estimate available. That is why Pa(x) will be
denoted as an adaptive potential.

Figure 3.7 shows an example of lip contour estimation starting with a very poor
initialization. The Snake algorithm provides meaningless results (see Fig. 3.6) while
the use of robust estimation method solves the problem well. The adaptive potential
changes during the estimation process and at the end the outlier strokes (teeth, nose,
cheek) receive negligeable weights while the lip stroke has a high weight. The same
can be observed in Fig. 3.8 for another challenging example. These examples show
the ability of the adaptive Snake to discard the influence of outliers.

Additional information about this algorithm can be found in [17].
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Fig. 3.7 Lip segmentation with adaptive potential: initial contour (left), intermediate contour (mid-
dle) and final contour (right). The top row shows the image and the bottom row shows the adaptive
potential (From [17], 2005 IEEE)

Fig. 3.8 Contour estimation using adaptive potential (From [17], 2005 IEEE)

3.5 Robust Shape Tracking

Elastic models are often used to track moving objects in video sequences and have
been used in a wide variety of applications [8, 28–33]. Robustness is again a key
issue since many features detected in the image are outliers and jeopardize the per-
formance of classic trackers. Classic trackers are often based on Kalman filtering
and they break after a few seconds since the curve becomes attracted by the outliers.
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For the sake of simplicity, we will first assume that all the features are valid. The
tracking algorithm derived in this way is not robust. We will then describe a robust
algorithm to track moving objects in video sequences.

3.5.1 Tracking with Valid Features

We assume that the object boundary moves slowly during the tracking interval. In
every new frame we should update the previous estimate using the new set of strokes
detected in the image.

Suppose we detect a set of strokes in the vicinity of the object boundary and let
us assume that all strokes are valid. Let yk

j (t) denote the j-th point of stroke k and
let y(t) be the set of all edge points detected at frame t.

The object shape changes during the tracking operation. We will assume that the
boundary parameters x(t) are described by a linear dynamical model1

x(t) = Ax(t−1)+w(t)
y(t) = Cx(t)+ v(t) (3.22)

where A,C are known matrices w(t) ∼ N(0,Q) is white Gaussian noise which
accounts for the random evolution of shape and v(t)∼N(0,R) is white measurement
noise. We assume that shape evolution is described by a linear stochastic equation
and the observation vector y(t) containing the coordinates of the edge points is lin-
early related to the shape parameters. Vector x(t) is denoted as state vector in this
context.

We wish to estimate x(t) given all the features detected in past and current frames
Y (t) = (y(1), . . . ,y(t)). Under these hypothesis, the a posteriori distribution of the
state vector p(x(t)|Y (t)) is a normal distribution N(x̂(t),P(t)) with mean vector x̂(t)
and covariance matrix P(t). The mean and covariance are updated by the Kalman
filter equations

x̂(t) = x̂−(t)+K(t) [y(t)−Cx̂−(t)]

P(t) = (I−K(t)C)P−(t)
(3.23)

where x̂−(t) = Ax̂(t−1),P−(t) = AP(t−1)AT +Q and K(t) is the Kalman gain [8].
The shape estimates computed by Kalman filtering are optimal provided that model
(3.22) holds and all the image features are valid. This algorithm is known as Kalman
Snakes [27].

1 The contour model is often represented using a reference shape which changes according to a
global motion model (e.g., rigid or affine transformation) plus an elastic deformation (see [8] for
details).
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3.5.2 Tracking with Invalid Data

The previous algorithm usually fails after a few seconds since the elastic contour
is attracted towards invalid data. Figure 3.9 illustrates this problem for a synthetic
example. Suppose we detect a set of strokes yk in the vicinity of the object. How
can we distinguish valid strokes from the invalid ones?

We do not know which strokes are valid. Therefore we will associate a binary
label vk to each stroke and we will consider all possible combinations of valid and
invalid strokes v = (v1, . . . ,vm). We denote this binary sequence by a data interpre-
tation. For the sake of simplicity the binary sequence v will be represented by an
integer number I in the range {0, ...,M−1} where M = 2m. Figure 3.10 shows eight
interpretations for the synthetic problem of Fig. 3.9.

If we discard invalid data, we have a different set of valid observations for each
interpretation I which we denote by yI(t). The state model is now given by

x(t) = Ax(t−1)+w(t)
yI(t) = CIx(t)+ v(t) (interpretation I) (3.24)

where matrix CI depends on the interpretation I and it is obtained from matrix C by
removing the rows associated to invalid data.

The tracking problem is now modeled by a set of dynamical models which com-
pete to represent the data. Only one model is active at each instant of time and we do
not know which. The main question is: how do we extend Kalman filtering when we
have multiple dynamic models and we do not know the sequence of active models?

This problem was studied in Control theory e.g., in the context of abrupt changes
in dynamical systems and target tracking in radar systems [25,26]. The a posteriori
distribution p(x(t)|Y (t)) is known. It is a mixture of Gaussians but the number of

Fig. 3.9 Feature detection: valid and invalid data

Fig. 3.10 Data interpretations. Valid strokes are represented in bold
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modes grows exponentially with t. Therefore, the optimal solution is analytically
defined but it is unfeasible: we cannot compute the parameters of all the modes.

Suboptimal methods have been proposed to overcome this difficulty. A robust
algorithm which has been successfully used in practice is the probability data asso-
ciation filter (PDAF) proposed by Bar-Shalom [25]. This method assumes that the
predictive distribution of the state vector is Gaussian

p(x(t)|Y (t−1)) = N(x̂−(t),P−(t)) (3.25)

where x−(t) is the expected value of the state at time t given the observations until
time t−1 and P−(t) is the corresponding covariance matrix.

Under this hypothesis, the a posteriori distribution of the state p(x(t)|Y (t)) is
also Gaussian N(x̂(t),P(t)). Furthermore, the mean and the covariance matrix are
obtained by combining the outputs of the Kalman filters associated to each of the
models as follows [25]

x̂(t) = x̂−(t)+
M(t)−1

∑
I=0

αIKI(t) [yI(t)−CIx̂−(t)]

P(t) = [I−
M(t)−1

∑
I=0

αI(t)KI(t)CI ]P−(t)+
M(t)−1

∑
I=0

αI(t)x̂I(t)x̂I(t)T − x̂(t)x̂(t)T

(3.26)

where αI = P(I|y(t), x̂(t)) is the probability of the I-th interpretation also called
data association probability and KI(t) is the Kalman gain associated to model I.
This algorithm has a simple meaning. All data interpretations are used to update the
a posteriori distribution of the state variable (contour parameters), but with different
weights.

The data association probabilities αI(t) play an important role. Since they depend
on the contour estimates, we repeat the update step several times and compute the
association probabilities in each iteration. The process is stopped after a prespecified
number of iterations.

The computation of the association probabilities is based on a simple model
for the invalid data which is described in [16]. The robust shape tracker we have
described is called Shape Probabilistic Data Association Filter (S-PDAF) tracker
and the main steps are summarized in Table 3.2

A comparison between the Kalman Snakes and the S-PDAF tracker in lip reading
is shown in Fig. 3.11. Kalman snakes are attracted by outliers and provide meaning-
less estimates after a few seconds while the S-PDAF tracker is able to track the lips
in a robust way.

Figure 3.12 shows face tracking with three independent contours for the lips
and eyebrows. This is useful for the recognition of facial expressions. The tracker
manages to track face features well despite the large number of outliers detected in
the face e.g., in the nostrils, in the eyes and inside the mouth. A correct evaluation of
the data interpretations is automatically performed by the algorithm and the outlier
strokes do not influence the shape estimates.
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Table 3.2 S-PDAF tracker

The following steps are performed for every new frame.

1. Contour Prediction:
Compute p(x(t)|Y (t−1)) = N(x̂−(t),P−(t))

x̂−(t) = Ax(t−1) P−(t) = AP(t−1)AT +Q (3.27)

2. Feature extraction:
Detect edge points by directional search along lines orthogonal to the predicted contour
y−(t) = Cx̂−(t) and link them to obtain image strokes.

3. Contour update:
Compute p(x(t)|Y (t)) = N(x̂(t),P(t)) combining multiple Kalman filters.

Repeat the following steps N times (typically N = 3)

(a) compute data association probabilities [16]: αI(t) = P(I|y(t), x̂−(t))

(b) PDAF filter

x̂(t) = x̂−(t)+∑M(t)−1
I=0 αIKI(t) [yI(t)−CIx̂−(t)]

P(t) = [I−∑M(t)−1
I=0 αI(t)KI(t)CI ]P−(t)+
+∑M(t)−1

I=0 αI(t)x̂I(t)x̂I(t)T − x̂(t)x̂(t)T

(3.28)

Fig. 3.11 Tracking results with Kalman snakes (top row) and S-PDAF (bottom row) (From [16],
2004 IEEE)
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Fig. 3.12 Face tracking with S-PDAF tracker (From [16], 2004 IEEE)

Fig. 3.13 Heart tracking with S-PDAF tracker: ultrasound sequence (top) and tracking results
(bottom)

A third example is shown in Fig. 3.13 which displays images extracted from a
long ultrasound sequence of the heart. The tracker tries to estimate the boundary of
the left ventricle (endocardium) in several cardiac cycles. This is a difficult task due
to the low signal to noise ratio and the presence of multiplicative noise. Furthermore,
the ultrasound images of the heart often show an edge drop-out effect i.e., some
regions of the ventricle boundary may not be seen. The S-PDAF tracker manages to
solve this problem well in a robust way despite the presence of outliers.

A detailed description of the S-PDAF tracker can be found in [16].
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3.6 Multiple Competing Contours

The previous algorithms are focused on the estimation of single objects in the pres-
ence of clutter (outlier features). They can also be used to estimate multiple objects
with independent active contours. This approach performs well if the objects are
well separated in the image domain (see Fig. 3.12). In more complex situations we
need to perform a joint estimation of all the contours using competitive learning
techniques [19]. This extension is discussed in this section.

We wish to jointly estimate N deformable contours

xq = (xq
1, . . . ,x

q
n) q = 1, . . . ,N (3.29)

where xq denotes the q-th elastic curve. We assume that the image features are curve
segments (strokes) obtained by edge linking as before. Furthermore, we assume that
each stroke belongs to the boundary of a single object or it is an invalid stroke. This
means that shared strokes, belonging to multiple objects are not allowed. To account
for these multiple hypotheses we associate to each stroke yk, N +1 binary variables
vk

q such that vk
q = 1,(q > 0) iif stroke k is associated with model xq and vk

0 = 1 iif
stroke k is an outlier.

The contour energy E is now defined as a sum of the energies of the N contours

E(x) =
N

∑
q=1

Eq(xq,y,vq) (3.30)

where Eq has an expression similar to (3.14,3.12) (Section 3.4) with the flags vk

replaced by vk
q.

Since the labels v are unknown, the EM method is again used to estimate the
contour parameters xq with incomplete observations, leading to a recursive estima-
tion algorithm similar to the one described in Section 3.4. The auxiliary function
associated to contour q is given by

Uq(xq, x̂) = ∑
i

Pq
a (xq

i ;y) (3.31)

where Pq
a (x;y) is the adaptive potential associated to the q-th contour, given by

Pq
a (x) = ∑

k
wk

qPk(x;yk) (3.32)

and wk
q = P(vk

q = 1|x̂,y) is the probability of assigning stroke k to the deformable
contour xq.

Each contour model is estimated by minimizing the total energy

ET (xq) = U(xq, x̂)+Er(xq) (3.33)

where Er(xq) is a regularization energy.
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Fig. 3.14 Object estimation with multiple contours and model elimination: initialization (left) and
final contour (right)

Comparing with the algorithm described in Section 3.4 the only difference con-
cerns the estimation of the weights wk

q = P(vk
q = 1|x̂,y) which are now defined by

wk
q ∝ p(yk|x̂q)αq (3.34)

where αq = P(vk
q = 1|x̂) is the probability of the q-th model being active. The assign-

ment of the k-th stroke to model q takes into account all the deformable models
which compete to represent the data.

If we do not know the number of objects to be estimated or if we do not know
where they are located (initialization problem) we can still use this algorithm. We
initialize a large number of contours and eliminate the ones which have low prob-
ability αq (see [19]). An example of the estimation of multiple objects at unknown
locations is shown in Fig. 3.14.

3.7 Conclusions

Deformable contours are usually considered as non-robust techniques since the elas-
tic curve must be initialized close to the object boundary and can be disturbed by
outlier features outside the boundary. We have described two robust algorithms for
shape estimation which allow a correct estimation of the object contour in the pres-
ence of outliers both in the case of static and moving objects. The proposed algo-
rithms are able to distinguish valid strokes (curve segments) belonging to the object
boundary from invalid ones. This is done by associating a confidence degree to each
stroke, recursively updated using the EM method. A set of experiments is provided
from different application areas ranging from surveillance tasks to heart tracking in
ultrasound images. All these experiments show the ability of the proposed methods
to discard the influence of outliers.

These ideas can be extended in several directions and we believe that interesting
research opportunities can be formulated. We presented here one useful extension to
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account for the estimation of multiple objects using multiple contours. The proposed
algorithm is robust with respect to model initialization and it is able to estimate
the number of models contained in the image. Another direction which has been
followed concerns the tracking of moving objects with multiple dynamical models
to account for abrupt motion and shape changes. This can be done in a robust way
as well using an extension of the S-PDAF tracker. Additional information about
multiple dynamical models can be found in [20–22].
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Appendix

EM Algorithm for Shape Estimation

The EM method performs curve estimation using the auxiliary function

U(x, x̂) = Ev {log p(y,v,x)|y, x̂} (3.35)

Using the probabilistic model of the data we obtain (see Section 3.4)

Uv(x, x̂) = E {− logZ−E(x;y,v)−Er(x)|y, x̂)}

Uv(x, x̂) = C′ −E

{
∑

i
∑
k

vkPk(xi;yk)+(1− vk)K

∣∣∣∣∣y, x̂

}
−Er(x)

Uv(x, x̂) = C′ −∑
i

∑
k

wkPk(xi;yk)+(1−wk)K−Er(x)

(3.36)

where
wk = P(vk = 1|yk, x̂) (3.37)

Therefore,
Uv(x, x̂) = C−∑

i
Pa(xi;y)−Er(x) (3.38)

The degrees of confidence can be computed by the Bayes law

wk = α p(yk|vk = 1, x̂)P1 (3.39)

where P1 is the probability of a valid label and

p(yk|vk = 1,x) = Aexp

{
−∑

i
Pk(xi)

}
(3.40)
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Chapter 1
Modeling Cardiovascular Anatomy
from Patient-Specific Imaging

Chandrajit Bajaj and Samrat Goswami

1.1 Introduction

The importance of modern imaging techniques for capturing detailed structural
information of a biological system cannot be understated. Unfortunately images
do not reveal the “full functional story” and a spatially realistic computer model
is often necessary for a comprehensive understanding of the complicated struc-
tural and physiological properties of the biological system’s entities under investiga-
tion [1]. Deeper insights into structure-to-function relationships of different entities
is achieved via finite element simulations of the modeled biomedical process. A 3D
(three dimensional) finite element meshed computer model of the biological system
is therefore a first step to perform such simulations.

The behavioral attributes of a biological entity or the physiological interaction
between different participating components of a biological system are often mod-
eled mathematically via a coupled set of differential and integral equations, and
quite often numerically evaluated using finite element (or boundary element) simu-
lations. To further emphasize the premise of cardiac modeling from imaging data,
we state a few computational biomedical modeling and simulation examples: 3D
computational modeling of the human heart for a quantitative analysis of cyclical
electrical conductance on the heart membrane [2–6]; the biomechanical properties
(stress-strain, elasticity) of the heart ventricular walls [7–12]; 3D modeling and sim-
ulation of pulsatile blood flow through human arteries/veins for vascular by-pass
surgery pre-planning on a patient specific basis [13–18]. A finite element decom-
position of the geometric domain, capturing the detailed spatial features that can be
gleaned from the imaging, is therefore the essential first step toward performing the
necessary numerical simulations [19–22].

C. Bajaj and S. Goswami
Computational Visualization Center, Institute of Computational Engineering and Sciences,
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Fig. 1.1 Cardiovascular Modeling from Imaging Data. Top row illustrates the modeling of patient
heart from imaging data. From left to right: an illustration of internal structure of human heart
(Courtesy [23]), volume visualization of a typical Computed Tomography (CT) reconstructed
imaging volume, the extracted geometric model of a patient heart from the rest of the thoracic bone
and tissue and the annotated (multi-colored) segmentation of the same into biologically meaningful
components, namely Aorta, Pulmonary Artery, Left and Right Ventricle and Atrium (colored dif-
ferently). Bottom row illustrates the modeling of coronary artery. From left to right: an illustration
of annotated coronary arterial tree (Courtesy http://en.wikipedia.org/wiki/Coronary circulation),
a geometric model extracted from CT volumetric imaging, segmentation into left and right subtree
(colored red and blue), and the NURBS model of a small portion that was used for Isogeometric
analysis of blood flow in [24]

Modeling of human vasculature from three-dimensional (3D) Computed Tomo-
graphy (CT) images of the thorax is a critical step for computer-aided diagno-
sis (CAD) in disease domains such as lung nodules [25], coronary artery disease
[26], and pulmonary embolism (PE) [27]. Even though there are many published
approaches, the problem is still unsolved. Survey of various techniques on this topic
can be found in [28,29] (Fig. 1.1). Thoracic CT angiography (CTA) imaging is often
performed for patients suspected of having a PE that is defined as a thrombus (or
a clot of blood) [30]. Therefore, in order to detect pulmonary embolism, a suitable
model of vasculature distnguishing between arterial and venous blood vessel trees
is a crucial step.

In subsequent subsections we highlight the computational pipeline, the main
algorithmic components and a few descriptive results of our Cardio Vascular Mod-
eling from Imaging software.

1.2 Data Processing

The Imaging-to-Modeling software system for cardiovascular data employs both
Image Processing and Geometry processing functionalities to produce a suitable lin-
ear or higher order meshed model of the anatomy. Figure 1.2 describes the data-flow
layout. We describe the major algorithmic components of each of the processing
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Fig. 1.2 Data Flow of Cardio-Vascular Modeling from 3D Imaging Data: There are two major data
processing algorithmic modules – Image Processing and Geometry Processing. The Image Pro-
cessing module consists of sub-modules for Contrast Enhancement, Classification/Segmentation,
Filtering, Skeletonization and Alignment. The Geometry Processing module consists of Surface
Extraction, Curation, Segmentation, Skeletonization, Alignment and Meshing, which itself is fur-
ther subdivided into linear and higher order boundary and finite element mesh generation compo-
nents. The 3D CT Imaging data is first passed through the Image Processing module for improve-
ment of image quality which is then processed by the Geometry Processing module for extraction
of a clean geometry annotated with the present features. Finally the clean geometry is converted to
a linear or higher-order mesh. Occasionally, to deal with incomplete or low quality imaging data, a
twin data processing pipeline is employed where a template geometry is processed to extract vital
geometric information which is then passed to robustly model patient specific anatomical model
from low-quality imaging data

modules in Sections 1.2.1 and 1.2.2. The reader must note that, the modules are
selectively used depending on the nature and quality of the input imaging data
(Section 1.3).

1.2.1 Image Processing

(A) Contrast Enhancement:
The three dimensional intensity data often possesses a low contrast between
structural features and the background, thereby making further processing all
the more difficult. Image contrast enhancement is a process used to improve
the image quality for better visual appearance for subsequent operations. The
most commonly used methods utilize global contrast manipulation based on
global [31, 32] or local histogram equalization [31–34], retinex model [35, 36]
and wavelet decomposition [37, 38].
We have developed a fast method for image contrast enhancement [39] based
on a localized version of the classical contrast manipulation [31, 32]. In this
method, we design an adaptive transfer function for each individual voxel,
based on the intensities in a suitable local neighborhood. First, we compute the
local statistics (local average, local minimum, and local maximum) for each
voxel using a fast propagation scheme [40, 41]. Then a transfer function is
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Fig. 1.3 The performance of the contrast enhancement algorithm is shown for one slice of the CTA
data

designed based upon the calculated local statistics. Various linear or nonlinear
functions can be used here to stretch the contrast profile. We build a transfer
function which consists of two pieces: a convex curve in the dark-intensity
range and a concave curve in the bright-intensity range. The overall function is
C1 continuous. Finally, we map the intensity of each voxel to a new one using
the calculated transfer function. The performance of this algorithm is shown in
Fig. 1.3.

(B) Filtering:
The input images are often contaminated with noise and are therefore need
to be filtered. Traditional image filters include Gaussian filtering, median fil-
tering, and frequency domain filtering [31]. Compared to these, anisotropic
filters are preferred as they tend to preserve the features better. Bilateral fil-
tering [42–45] is a straightforward extension of Gaussian filtering by simply
multiplying an additional term in the weighting function. Partial differential
equation (PDE) based techniques, known as anisotropic geometric diffusion,
have also been studied [46, 47]. Another popular technique for anisotropic
filtering is by wavelet transformation [48]. By carefully designing the filter,
one can smooth image noise while maintaining the sharpness of the edges
in an image [49]. Finally, the development of nonlinear median-based fil-
ters in recent years has also produced promising results [50, 51]. Among the
aforementioned techniques, two methods for noise reduction have been sug-
gested for tomographic data sets, namely wavelet filtering [52] and non-linear
anisotropic diffusion [53] (Fig. 1.4).
Our approach, utilizing a bilateral pre-filtering coupled with an evolution
driven anisotropic geometric diffusion PDE (partial differential equation), has
shown significant results in enhancing the features of intensity maps. The PDE
model is :

∂tφ −‖∇φ‖div
(

Dσ ∇φ
‖∇φ‖

)
= 0
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Fig. 1.4 The performance of the bilaterally pre-filtered (left) and anistropic diffusion filtered
(right) algorithm is shown for one slice of the CTA data

The efficacy of our method is based on a careful selection of the anisotropic
diffusion tensor Dσ based on estimates of the normal and two principal curva-
tures and curvature directions of a feature isosurface (level-set) in three dimen-
sions [54–56]. The diffusivities along the three independent directions of the
feature isosurface are determined by the local second order variation of the
intensity function at each voxel. In order to estimate continuous first and sec-
ond order partial derivatives, a tricubic B-spline basis is used to locally approx-
imate the original intensity.

(C) Classification/Segmentation:

Voxel Classification:

The Fuzzy C-Means (FCM) algorithm [57] and the Expectation Maximiza-
tion (EM) algorithm [58] have been used for soft clustering in data-mining
and image classification. Pham et al. proposed an Adaptive Fuzzy C-Means
(AFCM) algorithm to classify inhomogeneous medical images and volume
datasets [59, 60]. Ahmed et al. proposed a bias corrected FCM algorithm to
compensate inhomogeneities of images of volume datasets [61, 62]. Each of
these algorithms minimizes an objective function through iterative methods.
Gopal et al. proposed a maximum likelihood estimate algorithm with a Spa-
tially Variant Finite Mixture model (SVFMM) for image classification [63].
Laidlaw suggested a partial-volume Bayesian classification algorithm based
on Bayes theorem [64].
Our goal of 3D map segmentation is to partition the map into a number of
connected regions of interest. We have compared and implemented several
classification algorithms [64–67]. We first locate the seed points by gradi-
ent vector diffusion [68]. We then compute the min-max range of every seed
point’s neighbors and cluster the seed points to belong to the same region
if the min-max ranges overlap. We then apply GVF snake [69, 70] to clus-
ter the voxels falling into separate regions. In addition, the contour spectrum
is used to identify the number of materials in the image and is also used to
select critical isovalues based on volume fraction of the material [71]. We
have also developed a multi-dimensional signature based voxel classification
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(a) (b) (c)

Fig. 1.5 Voxel Classification: a single slice of CTA image of a patient (a) is classified to tag voxels
belonging to different anatomical regions (b). The intensity values are also marked (b). The final
classified voxelized image is shown with most important regions (c)

scheme [72] appropriate for medical imaging data. Figure 1.5 shows the results
of the classification on a single slice of the patient scan where the voxels have
been classified into the background, lungs and vasculature.

Segmentation via Fast Marching Method:

Segmentation is a way to electronically dissect the significant biological
components, and thereby obtain a clear view into the machinery’s architec-
tural organization [73]. Segmentation is usually carried out either manually
[74–78] or semi-automatically [79, 80]. Current efforts on the decomposition

still largely rely on manual work with an assistance of a graphical user inter-
face [81,82]. Manual segmentation can be tedious and often subjective [76,83].
Automated segmentation is still recognized as one of the hardest tasks in the
field of image processing although various techniques have been proposed for
automated or semi-automated segmentation. Commonly used methods include
segmentation based on edge detection, region growing and/or region merging,
active curve/surface motion and model based segmentation. In particular, two
techniques were discussed in details in the electron tomography community.
One is called water-shed immersion method [79] and the other is based on
normalized graph cut and eigenvector analysis [80].
In [84–86] we adopted a variant of the fast marching method [87–89]. In this
method a contour is initialized from a pre-chosen seed point, and the contour is
allowed to grow until a certain stopping condition is reached. Traditionally this
method is designed for a single object segmentation. We present an approach
based on an idea of “re-initialization” by simply regarding and classifying the
critical points as seeds. Every seed initiates one contour and all contours start to
grow simultaneously and independently. We further classify the critical points
into clusters and merge the growing contours which are initiated by the criti-
cal points in the same cluster. This multi-label idea has been used elsewhere
(e.g. [90]), but the detection and classification of seeds are different in our
approach. Figure 1.6 shows the process of segmentation, namely the seed point
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Fig. 1.6 Segmentation via Fast Marching Method: leftmost subfigure shows a single slice of the
CTA image of a patient along with manually placed seeds for each of the main compartments of
the human heart to be identified. The middle subfigure shows the segmentation on a single slice
colored by segmented regions. The rightmost subfigure shows the three dimensional segmented
model of heart via isosurface rendering. The different colors represent left and right ventricle and
aorta

classification and region growing on a single slice of the image followed by the
final segmented three dimensional model of human heart from patient imaging
data.

(D) Skeleton Extraction:
Extraction of skeletal description often leads to a complexity-reducing bet-
ter understanding of the image as it amplifies lower dimensional key features
present in the data. Image based skeletonization algorithms are abound in the
field of image processing. The previous efforts on this topic by other authors
can be categorized into three approaches – one based on isotropic diffusion,
governed by a set of linear PDEs [91,92], one using scale-space theory [93–95]
and one based on pseudo-distance map [96].
We have developed two distinct approaches to extract skeletons from imaging
data which offer robustness and efficiency. First approach is based on the crit-
ical point structure of the imaging data. We first compute the gradient vector
field at every voxel of the imaging data. Because of the noise, the vector field
is somewhat arbitrary and do not carry much useful information. To bring out
the underlying structure, we then apply gradient vector diffusion (GVF). The
resulting vector field is then analyzed to detect the critical points and these
critical points are joined to form a skeletal structure of the foreground of the
image. The details of the process is given in [56].
The second approach for skeletonization starts with an isosurface and the dis-
tance function induced by it [28]. It then places a sequence of inner medial balls
in a greedy fashion, capturing as much inner volume as possible. A neighbor-
hood graph, based on the intersection pattern of these inner medial balls, is then
constructed which provides the one dimensional skeletal structure. Figure 1.7
shows an example result of this algorithm applied on the CTA data of human
heart.

(E) Flexible Alignment:
Image registration is a commonly employed to flexibly match two different
instances of a biological structure. In the context of cardiovascular modeling,
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A.1 A.2 A.3 A.4

Fig. 1.7 Skeletonization: a slice of the imaging data, its distance map and the extracted skeletal
graph using the algorithm in [28] are shown

the problem is to fit one image of the anatomy in question with its counter-
part observed at a different time, or imaged from a different patient. Based on
the transformation model that is to be applied on one instance (source) to fit
the other (target), image resgistration is primarily of two types – Affine and
Elastic/Deformable.
In case of affine registration, the relationship between the source and target
image is established via a set of transformation parameters, and then those
parameters are estimated by minimizing a quadratic error function. Algoithms
under such approaches can be found in [97–99]. We have developed an algo-
rithm in [100] which exploits the non-equispaced Fourier transformation tech-
niques [101, 102] to speed up the affine image registration process.
The task is far more challenging when deformation of one image needs to be
taken into account to properly fit it into the other image. For a nice survey
on affine and deformable image registration algorithms, see [103]. However
this survey is old, and since its publication many other algorithms have been
published. Bajcsy and Kovacic modeled the elastic image registration problem
by the deformation of elastic plates [104]. Christensen et al. considered the
deforming image to be embedded in a viscous fluid whose motion is governed
by Navier-Stokes equation [105]. Based on a similar viscous fluid registration
scheme, Yanovsky et al. designed a new energy function introducing Jacobian
maps [106] and this method was shown to perform better than [105] in terms
of converegence and stability. There are other level-set based methods, e.g.
by Clarenz et al. [107], and via edge matching technique by Mumford and
Shah [108].

1.2.2 Geometry Processing

(A) Surface Extraction:
Geometry extraction from three dimensional volumetric data is a primary step
toward further analysis. There are several approaches for accomplishing this
task.
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Contouring:

Isosurfacing is a popular method to extract surface geometry from scalar vol-
ume containing intensity values of the scanned anatomy. There are typically
two types of contouring method frequently used in the literature – Primal Con-
touring and Dual Contouring. The most widely used primal contouring tech-
nique is the Marching Cubes Method [109] which extracts the geometry in a
piecewise fashion by visiting every voxel of the volume data. There are several
improvements of this technique that has been reported since the first appear-
ance of the algorithm [110]. Dual contouring technique is similar to primal
contouring in a sense that it also extracts the isosurface in a piecewise fashion.
However it samples every voxel, instead of every edge of the voxel, to better
approximate possible sharp features in the extracted geometry. We have exper-
imented with both techniques for extracting a geometry from Cardiac CT data
and we have seen that they perform similarly without rendering any significant
advantage of any technique over the other. Figure 1.8 shows sample isocontours
extracted from CTA imaging data of human heart.
Other than isocontouring, one can also apply level set based methods where
a seed is grown to capture the boundary of a region in the image based on
the intensity values. In literature, such technique is commonly known as snake
[69, 70]. Note, this is similar to the image segmentation technique described
earlier.

Point Cloud Reconstruction:

Both of these approaches are very sensitive to the noise present in the data
and especially isosurfacing techniques suffer when the imaging data is inho-
mogeneous. To circumvent these problems we adopt a third approach which is
based on scattered data interpolation. After performing image segmentation on

(a) (b) (c)

Fig. 1.8 Contouring: a single annotated slice of human cardio-vasculature and the geometry
extracted from the imaging data via contouring (isosurfacing) are shown from left to right. In
the rightmost subfigure, the heart of the patient is shown in green while the blood vessel tree is
color coded by red and blue depending on if a branch is an artery or a vein
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the CT image, we obtain a set of voxels belonging to every region of interest.
We then apply the point based reconstruction technique to extract the geometry
from the cloud of boundary voxels.
The point based reconstruction technique has been researched extensively in
the last decade. We refer the readers to some recent surveys for prior work in
this area, e.g. [111]. We have adopted two recent techniques for our purpose of
reconstruction – TightCocone and RobustCocone. TightCocone algorithm by
Dey and Goswami [112] reconstructs a watertight triangulated surface from
possibly undersampled input point cloud. A variant of this algorithm, called
RobustCocone, was also developed in 2004. This algorithm is particularly suit-
able for noisy data. In our case, we often encounter noise in the segmented
image even after applying image segmentation techniques, and to tackle such
cases, we use RobustCocone for a reconstruction of the geometry. Figure 1.9
shows the results of surface reconstruction on the pointsets sampling compart-
ments of human heart.
Surface reconstruction from scattered data has also been approached using
variational approach. These techniques typically formulate an energy function
based on the input data points and try to extract a surface that minimizes that
energy. Such approach was first advocated by Zhao et al. in [113] who formu-
lated the energy function as the integral of the distance function weighted by
the area element of the input set of primitives for which a surface needs to be
fit. Then they evolved an initial guess using a convection based approach.
We adopt an approach based on higher order level set spline (HLS) method.
Given a non-negative energy function g(x), the surface Γ is defined to be the
one that minimizes the energy function E(Γ ) =

∫
Γ g(x)dx + ε

∫
Γ h(x,n)dx.

Given a input set of points, one then formulates this energy using the distance
function and evolves an initial approximation to guide the evolution so that
the resulting deformation minimizes the energy. Details of this method can be
found in [114].

(B) Curation/Filtering:
The cardiovascular geometry extracted from imaging data typically has topo-
logical anomalies, namely small components, spurious noisy features etc.
Therefore a careful investigation and subsequent removal of the spurious fea-
tures present in the data is essential. Following are different scenarios.

Fig. 1.9 Surface Reconstruction from Point Cloud Data: major components of the human heart are
reconstructed using the voxels surrounding the boundaries of the individual regions
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Regularization:

Geometry from volume data is often reconstructed via image segmentation.
However the set of voxels segregated from the imaging data does not always
conform with the true surface topology. As a result, we encounter subsets of
voxels which do not sample a two dimensional manifold. Therefore it is impor-
tant to recognize the dimension of the underlying space of the voxels marked by
the segmentation process and remove the spurious ones. To perform this task,
we use the technique described in [115]. A similar Voronoi-based approach was
also reported in [116]. Following [115] we first construct a k-neighborhood
graph. Then for every point we collect the neighboring points and perform
Principal Component Analysis (PCA) on that subset. The eigenvalues of the
covariance matrix determines the underlying dimension of the manifold. More
precisely if all the eigenvalues are almost equal, the voxel is inside the seg-
mented region and the point samples a three dimensional manifold. If two
eigenvalues are almost equal and one is much smaller than the other two, the
voxel lies on the boundary surface of the segmented region and is a true candi-
date for subsequent geometry reconstruction. Finally if two of the eigenvalues
are much smaller than the third one, then the voxel samples a dangling one
dimensional strand and such voxels must be removed.

Volumetric Feature Quantification:

Given a set of points P sampling the entire shape, possibly contaminated with
topological artifacts like small connected components and thin tunnels, we syn-
thesize a distance function hP which assigns every point in R

3 the distance to
the nearest sample point in P. There are four types of critical points of hP,
namely maxima, index 2 saddles, index 1 saddles and minima. It was shown
that these critical points can be detected efficiently using the duality of Voronoi
and Delaunay diagram of the original pointset P [117]. It was further shown
that the stable manifolds of the maxima interior and exterior to the shape con-
tains useful information connecting to the primal and complementary feature
space of the shape [118, 119]. Figure 1.10 shows how the bone, ribs and thin
blood vessels are removed via volumetric feature quantification process since
they are not essential for creating a suitable model of human heart.

(C) Segmentation:
Based on the critical points of the distance function induced by the input geom-
etry, we perform the geometry segmentation as follows. The detail of the algo-
rithm is given in [118].
The geometric shape is given by a set of points P sampling the shape. The
feature of the shape is then defined in terms of the stable manifold of the
maxima of the distance function hP. The maxima are first computed by iden-
tifying the Voronoi vertices which lie inside their dual tetrahedra. Applying a
Delaunay-based reconstruction technique on the pointset, one can further clas-
sify the tetrahedra holding the maxima into inside or outside. For our purpose
we use only the interior maxima. We compute the stable manifold of these
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Fig. 1.10 Geometry Curation: geometry of human heart extracted from the imaging data, which is
cluttered with bone and other unnecessary parts, is cleaned up using the curation process

Fig. 1.11 Geometry Segmentation: different components – Aorta (A.1), Pulmonary Artery (A.2),
Left Atrium (A.3), Right Atrium (A.4), Left Ventricle (A.5) and Right Ventricle (A.6) are extracted
from the point sample of the whole heart

maxima using the algorithm in [118]. The adjacent stable manifolds are then
merged if the generating maxima have almost same value of hP as measured
by a parameter δ . Figure 1.11 shows the performance of this algorithm on the
cardiovascular geometries. In this figure, the six main components of a human
heart, namely aorta, pulmonary artery, left and right atrium and ventricle are
segmented out from a set of points sampling the boundary of heart.

(D) Skeletonization:
Computing skeletons of a geometric shape is a research issue that has been
around for a long time. Medial axis cite (Blum) is considered a standard
skeletal description of a shape and there are algorithms [120, 121] and pub-
licly available software to compute the Medial Axis Transform (MAT) of a
shape from its pointsample [122]. However, medial axis is composed of pla-
nar (two dimensional) and linear (one dimensional) parts. In order to com-
pute such dimension-dependent decomposition of the medial axis, as well as
pruning away hairy branches from the medial axis one requires some extra
gadgets which we describe in the next paragraph. There are some previous
works which focussed on computing a linear skeleton of an arbitrary shape.
Some of these are topological thinning [123], distance field based methods
[124–127], potential field based methods [128], thinning via medial geodesic
function [129] and others [130–132]. Cornea et al. [133] give a comprehensive
survey of these techniques.
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Fig. 1.12 Skeletonization: (A). Skeleton of the template geometry is extracted. (B). The skeletal
structure of the abdominal aorta is extracted. Note, compared to the medial axis (B.1), the unstable
manifold of index 2 saddles is a much cleaner one dimensional skeletal structure

Once a suitable description of the geometry is obtained either by reconstruction
or by contouring, the distance function based approach is used to compute a
skeletal structure of the shape. As for segmentation, the critical points of the
function hP is computed for a set P of input points sampling the shape. The
index 1 and index 2 saddle points are then detected using the Voronoi-Delaunay
duality [117]. To generate the skeletal structure, we then compute the unstable
manifold of these critical points. The unstable manifold of an index 2 saddle
point (U2) is one dimensional and the unstable manifold of an index 1 saddle
point (U1) is two dimensional. Moreover, every U1 is bounded by some U2’s.
The details of the computation of U1 and U2 are given in [134]. Figure 1.12
shows two instances where the skeletal structures have been constructed using
this method.

(E) Alignment:
Alignment of two similar but not identical geometric objects is a difficult prob-
lem. There are relatively few papers in the geometric modeling community
that address this problem. Recently, an interesting technique was reported by
Eckstein et al. [135] where generalized surface flow was used for non-rigid
alignment of a template geometry into the patient data. The authors design an
energy function based on pseudo-Hausdorff distance between the two geome-
tries and evolve the template geometry to fit the patient geometry following the
gradient of the energy function.
We experimented with a different approach for non-rigid fitting of the segments
of the template heart into the patient data in order to inherit the correct topo-
logical structure from the template geometry as well as retrieve the missing
information in the patient data. We construct a skeletal description of differ-
ent parts of the template geometry as described earlier. Every segment is then
described as a union of balls centered at the one dimensional skeleton following
a popular approach due to [136]. A mass-spring network is then built where
each ball’s mass is proportional to its radius and the spring constant is taken
to be constant. The normal mode analysis (NMA), which is a popular way to



14 C. Bajaj and S. Goswami

depict the vibrational nature of a molecule [137], is then applied to the net-
work which produces a spectrum of possible deformed shapes. We choose one
deformed shape from the spectrum that best fits the patient geometry.

(F) Quality Meshing:
The final goal of this Imaging to Modeling software system is to produce suit-
ably discretized meshed model of the imaged biological entity. The task of
meshing is primarily divided into two parts – Boundary Element and Finite
Element. Each of Boundary Element and Finite Element meshing again has
three sub-parts.

Boundary Elements:

Boundary Element meshing refers to the meshing of the surface geometry.
Depending on the smoothness and shape of every patch forming the surface
mesh.

(a) Triangle/Quadrilateral Elements: Given a CT image, the task is to com-
pute a triangulated or quadrangulated discretization of the boundary of the
cardio-vascular anatomy. In a sense the task is similar to contouring the
zero-set of the original intensity function or a distance function induced by
the reconstructed geometry. There are numerous algorithms to accomplish
such tasks as mentioned in the previous subsection. However in this step
our goal is to build a boundary element mesh of superior quality than what
is typically output by the contouring routines. The mesh quality metrics are
described in [138].
We approach the problem in two steps. First we apply the dual contouring
method proposed by Ju et al. [139] and apply geometric flow to improve
the quality of the surface mesh. Figure 1.13 shows the performance of the
boundary element meshing algorithm.

(b) B-Spline Elements: Building B-Spline model for free-form geometric
objects has been an active area of research in the past. Given a triangu-
lated or quadrilateral surface mesh, there have been numerous approaches

Fig. 1.13 Meshing: triangle-tetrahedral, A-patch, NURBS meshes
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to build a smooth network of B-Spline patches to model the underlying sur-
face [140]. Subdivision based methods, namely Catmull-Clark [141], Doo-
Sabin [142, 143] and Loop subdivision [144] for producing quadratic and
cubic B-Spline models from triangulated and quadrilateral control meshes
have also gained popularity due to their simplicity. However in most of the
cases, it is not straight-forward how to generate the initial control mesh for
free-form shapes especially when the input is a set of scattered set of points
or a set of voxels representing the boundary of a segmented region inside a
three dimensional volume.
Until recently there were very works that dealt with the problem of build-
ing a control quadrilateral mesh from a free-form geometry of arbitrary
topology [145, 146]. Recently there have been substantial research works
in the computer graphics community that tackled the problem of quadran-
gulating a surface mesh following the intrinsic anisotropy of the geome-
try [147–149]. Following these approaches, one can build a quadrilateral
base surface mesh on which any of the standard subdivision scheme can be
applied to build the desired B-Spline model.

(c) A-Patch Elements: The linear meshes do not always provide the ade-
quate smoothness for them to be effectively used further. This is the reason
a higher order meshed description of the geometry is often desired. Bajaj
et al. presented a solution for this problem in 1995 where they devised a
scheme that takes a triangulated surface mesh and builds a higher order
(cubic) patch complex to describe the same surface. Under certain condi-
tions, they also showed that these patches meet in a C1 continuous manner.
They called this patched description of a two dimensional geometry an
algebraic surface patch or an A-patch [150].
The construction of A-patches proceeds as follows. First a triangle mesh is
created that linearly approximates the given geometry. A tetrahedral scaf-
folding is then built around it so that the triangle mesh lies inside it. By
assigning a suitable weight at every node of the scaffold, a polynomial
inside each tetrahedron is constructed in such a way that its zero set satisfies
certain properties that makes the higher order patch inside the tetrahedron
free of singularity. Moreover the pacthes are derivative-continuous across
the tetrahedra. The patch complex then provides a higher order smooth
description of the geometry. Details of this method can be found in [150].
This method of construction of surface A-patches has also been general-
ized to hexahedral elements, as well as to the multi-resolution construction
of shell finite elements [151, 152]. Figure 1.13 shows a higher order geo-
metric model of human heart.

3D Finite Elements:

Finite Element meshing refers to the techniques of producing the discretization
of the volume enclosed by the surface geometry.
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(a) Tetrahedral/Hexahedral Elements: There have been prior works done
on building volumetric (finite element) tetrahedral and hexahedral meshes
from imaging data. For a detailed survey on the prior works see [153].
We have developed two algorithms for such purposes – TetMesh and
HexMesh. The approach is as follows. First we extract a correct boundary
using the boundary element meshing. For tetrahedral mesh generation we
use the triangulated boundary and for hexahedral mesh generation we use
the quadrangulated boundary meshing scheme as described above. Next,
we design a series of templates to build a solid tetrahedral or hexahedral
mesh from that conforms with the boundary mesh. The details about the
templates are given in [138, 154]. As with the boundary element mesh, we
further improve the quality of the finite element mesh by applying geo-
metric flow [155]. Figure 1.13 shows the tetrahedral mesh cut-away for a
template human heart.

(b) B-Spline Elements: As the most highly developed and widely utilized
technique, NURBS (Non Uniform Rational B-Splines) [156–158] has
evolved into an essential tool for a semi-analytical representation of geo-
metric entities. Sometimes NURBS solid models are taken as input for
finite element mesh generation [159]. Anderson et al. proposed a fast
generation of NURBS surfaces from polygonal mesh models of human
anatomy [160]. An enhanced algorithm was developed for NURBS evalua-
tion and utilization in grid generation [161]. In isogeometric analysis [162],
NURBS basis functions are used to construct the exact geometry, as well
as the corresponding solution space.
We have developed a skeleton-based approach for building NURBS model
of vasculature. Using the skeletonization approach described in the earlier
paragraph, a one dimensional polylinear skeletal structure is first extracted
from the tubular geometry of vasculature. Then we design a set of tem-
plates that builds a hexahedral mesh around the skeleton. The details about
the templates can be found in [24]. The hexahedral mesh is used as the
control mesh for further NURBS mesh generation. Figure 1.13 shows the
NURBS model of the inner blood volume of human heart.

(c) Shell A-Patch Elements: Shell structures appear frequently in biological
entities. The muscle wall of heart and blood vessels are perfect examples of
such surfaces. It is desired to model such fat surfaces with desired smooth-
ness. Bajaj et al. presented algorithms that model smooth shell structures
using shell A-patch finite elements [151, 152].
The algorithm takes a pair of triangle mesh as input where the correspon-
dence between the triangle meshes is implicit. It then decimates both the
meshes simultaneously to build a coarser representation and occasionally
merges the adjacent triangles to form quadrilaterals wherever possible.
Using the correspondence between the triangles and quadrilaterals in the
two-sheeted surface, the interval volume is then filled with 3-sided (trian-
gular) and 4-sided (quadrilateral) prisms. A C1 piecewise trivariate func-
tion is then constructed over this collection of prisms. The range of the
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function varies from −1 to 1. For any scalar α ∈ [−1,1], the 0-set thus
gives the higher order approximation of the intermediate surface within the
shell element. When α equals −1 or 1, the resulting patch gives a higher
order approximation of the inner and outer boundaries of the shell.

1.3 Implementation Results

We exhibit the implementation results of our image and geometry processing algo-
rithms on modeling the Heart and Vasculature (Coronary Artery, Pulmonary Arterry,
Abdominal Aorta and Thoracic Aorta).

1.3.1 Heart

We have experimented with images of patient hearts. For illustration of the perfor-
mance of the algorithms, we have selected two datasets one of which is a low quality
image whereas the other is of relatively better quality.

The first heart dataset is of dimension 512× 512× 432 and the spacing in x,y,z
directions are respectively 0.390625, 0.390625, 0.3 mm. We first applied the con-
trast enhancement to the original image and then applied the fast marching based
segmentation on the contrast-enhanced image to separate the subvolumes corre-
sponding to the aorta, pulmonary artery, right atrium and left atrium. Because of
the poor quality of the image, the ventricles could not be recovered well. The result
of the image processing on this dataset is shown in Fig. 1.14B. After the four com-
ponents of the patient heart are segmented from the volume, we took the bound-
ary voxels of each of these four regions and applied surface reconstruction from
scattered points to build the initial triangulated geometric models. As one can see
these models have a reasonable amount of spurious parts as well as some missing
information that could not be retrieved from the patient data. We analyzed each of
the recovered geometries using the critical point structure of the distance function
described in Section 1.2.2. Using curation and geometry segmentation, we identified
the portions which most prominently correspond to the portions of a template heart
model while pruning away the undesired portions. Figure 1.14C shows the relevant
portions that have high correlation with the corresponding portions of the template
geometry. Parallel to the processing of the patient heart, we also performed geomet-
ric analysis of the template heart model. We construct the one dimensional skeletal
structure of all the six components of the template, as well as we segmented the tem-
plate into aorta, pulmonary artery, right and left ventricle and atrium (Fig. 1.14D).
From there we could draw a correspondence between the segmented portions of the
patient heart with the template heart (Fig. 1.14E).

The second dataset was of better quality in terms of contrast and noise present.
We first extracted the geometry via isocontouring. However using a single isovalue
could not entirely serve the purpose as it also extracts the surrounding vasculature
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Fig. 1.14 Result: heart I. (A) One slice of the original data and isocontour-enhanced volume ren-
dering of the input. (B) Due to relatively poor quality, the imaging data is first passed through the
image processing unit that enhances the contrast and segments the volume into major components
using fast marching based image segmentation. (C) The extracted geometry from the segmented
image is then curated to keep only the (green) portions which can be matched with the correspond-
ing portions from the template heart model (D, E)

as shown in Fig. 1.15A. We therefore resorted on curation to extract just the geom-
etry of heart by pruning away the surrounding thin blood vessels using curation
(Fig. 1.15B). After this step we were left with the geometry of heart which we
further segmented using the stable manifold of the maxima of the distance function
induced by the geometry. The segmentation step was crucial as it was able to sepa-
rate the six main components of the patient heart, namely aorta, pulmonary artery,
right and left ventricle and atrium as shown in Fig. 1.15C. We were then able to
draw the correspondence between each of the segmented parts with the correspond-
ing ones from the template geometry as shown in Fig. 1.15D.

1.3.2 Vasculature

1.3.2.1 Pulmonary Artery

The primary objective behind modeling pulmonary artery was to detect pulmonary
embolism (PE) automatically [29]. This required an initial artery-vein separation
from the CT scans of the vasculature which was performed directly from the input
imaging data by the image skeletonization technique described in Section 1.2.1.
The skeletons are traced from the end of the branches and traversed upward toward
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Fig. 1.15 Result: heart II. Starting with an isocontour extracted from the raw imaging data (A),
the model is first curated to extract a clean geometry without the nearby bone structure or the thin
blood vessels which are otherwise irrelevant for the specific task of modeling heart (B). This initial
model is then geometrically segmented into six main components (C) and further a correspon-
dence is drawn with the segmented template. The processing of the template heart model, namely,
skeletonization and annotated segmentation is shown in (D)

the heart. Once the trace reached the patient heart through a series of disambigua-
tion, as needed because of the poor image quality, one of the branches was tagged
arterial while the other is tagged venous. At the same time, the rest of the volume
was classified using the voxel classification technique as described in Section 1.2.1
(Fig. 1.16b, c). This led to a complete characterization of the CT data into the major
components along with the artery and vein separated (Fig. 1.16d–f).

1.3.2.2 Abdominal Aorta

Starting with the CT scan of the abdominal section of the patient, we first extracted
the geometry using an isovalue that best captures the geometry of the abdominal
aorta along with the surrounding bone structure and other anatomical parts which
are however irrelevant for the modeling of the aorta itself. To separate the aorta, we
performed geometry segmentation, using the stable manifold of the maxima of the
distance function. The segmented aorta is shown in green in Fig. 1.17a, b. We then
performed geometry skeletonization on this segmented geometry and as a result a
one-dimensional skeletal structure was produced (Fig. 1.17c, d). This skeleton was
then used for building a swept hexahedral volume that best represented the geometry
of the aorta, as well as served the purpose of a control mesh which was then used to
build a solid NURBS model of the abdominal aorta (Fig. 1.17e, f).
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(a) (b) (c)

(d) (e) (f)

Fig. 1.16 Result: pulmonary artery. The imaging data (one slice is shown in (a)), is first classified
to identify the voxels belonging to lungs and the vasculature (b, c). Using the skeletonization
technique from Section 1.2.1, the arterial (red) and venous (blue) trees are detected. The vasculature
and heart (green) are shown in (d–f) superimposed with the volume rendering of the CTA image

Fig. 1.17 Result: abdominal aorta. Volume rendering of the original imaging data is shown in
(a). An isocontour is extracted from the imaging data from which the abdominal aorta (green) is
segmented (b). The medial axis and the linear skeleton extracted from it are shown in (c, d) from
which an initial control polyhedron (e) and the final NURBS model (f) are created

1.3.2.3 Thoracic Aorta

Starting with the scan of the patient heart, we first segmented out and extracted
the geometry of the thoracic aorta via isocontouring. We then performed the
skeletonization of this geometry in order to obtain an one-dimensional polylin-
ear skeletal (Fig. 1.18 A.1). An external pathway is added to the skeletal structure in
order to simulate the LVAD used in time of open-heart surgery. Using the skeleton
as a sweeping path, we then built a hexahedral control mesh that best represented the
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A.1 A.2 A.3
B.1 B.2 B.3 B.4 B.5

Fig. 1.18 Result: (A) Thoracic aorta. Skeleton is extracted from the geometric model (A.1). An
artificial pathway is added to simulate the LVAD. The hexahedral control mesh and the resulting
NURBS model are shown in (A.2, 3). (B) Coronary artery. The coronary artery is segmented into
left and right subtrees (B.1, 2). NURBS mesh of a small portion of the tree is then built using the
extracted skeleton (B.3–5)

aorta along with its inner volume (Fig. 1.18 A.2). This control mesh was then used
to construct a solid NURBS mesh of the thoracic aorta as shown in Fig. 1.18 A.3.

1.3.2.4 Coronary Artery

Starting with a CT scan of the patient heart, first the coronary artery was extracted
as shown in Fig. 1.18B.1. The coronary artery has two main branches – right
and left, which were then geometrically segmented from the whole vascular struc-
ture. Figure 1.18B.2 shows both the vasculature trees colored in red and blue.
We then computed the skeletal structure for each of these substructures using the
skeletonization method described earlier (Fig. 1.18B.3) and subsequently a NURBS
mesh model was constructed using the swept volume technique as described in the
meshing subsection earlier (Fig. 1.18B.4, B.5).

1.4 Conclusions

We have developed a comprehensive software collection (http://cvcweb.ices.utexas.
edu/software/) of data processing tools (http://cvcweb.ices.utexas.edu/cvc/projects/
medx/pipeline.php) that can be utilized in producing patient specific, and spa-
tially realistic, linear and curved, boundary and finite element models of human
cardio-vasculature. Such a combination of geometry extraction and geometric mod-
eling are the necessary enablers for quantitative and interrogative querying, anal-
ysis and visualization. These boundary and finite elements are additionally useful
for a variety of physiological, bio-chemical modeling and simulation of normal or
diseased conditions. They are also useful for virtual surgical training, treatment
planning and drug or dosage delivery. Current imaging modalities we have suc-
cessfully processed through our software include Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI), and their blood perfused variations for cardio-
vasculature modeling and micro-CT for osteoporotic bone modeling.
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Chapter 2
Geodesic Methods for Shape and Surface
Processing

Gabriel Peyré and Laurent D. Cohen

Abstract This paper reviews both the theory and practice of the numerical compu-
tation of geodesic distances on Riemannian manifolds. The notion of Riemannian
manifold allows to define a local metric (a symmetric positive tensor field) that
encodes the information about the problem one wishes to solve. This takes into
account a local isotropic cost (whether some point should be avoided or not) and a
local anisotropy (which direction should be preferred). Using this local tensor field,
the geodesic distance is used to solve many problems of practical interest such as
segmentation using geodesic balls and Voronoi regions, sampling points at regular
geodesic distance or meshing a domain with geodesic Delaunay triangles. The short-
est path for this Riemannian distance, the so-called geodesics, are also important
because they follow salient curvilinear structures in the domain. We show several
applications of the numerical computation of geodesic distances and shortest paths
to problems in surface and shape processing, in particular segmentation, sampling,
meshing and comparison of shapes.

2.1 Manifold Geometry of Surfaces

In [1], it was shown that finding the weighted distance and geodesic paths to a point
leads to fast algorithms for image segmentation. In this chapter, we give a more
general framework that is illustrated by different important applications.

This section introduces some basic definitions about local metric (a tensor field)
on a Riemannian manifold and the associated notion of geodesic distance and mini-
mal paths. The important point is that the geodesic distance to a set of starting points
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satisfies a non-linear differential equation, the Eikonal equation, which is solved to
compute numerically the geodesic distance.

2.1.1 Riemannian Manifold

Parametric surface. A parameterized surface embedded in Euclidean spaceM⊂
R

k is a mapping
u ∈ D ⊂ R

2 �→ φ(u) ∈M.

This definition can be extended to include surfaces not topologically equivalent to a
disk, by considering a set of charts {Di}i that overlap in a smooth manner.

A curve is defined in parameter domain as a 1D mapping t ∈ [0,1] �→ γ(t) ∈ D.
This curve can be traced over the surface and its geometric realization is γ̄(t) def.=
φ(γ(t))∈M. The computation of the length of γ in ambient k-dimensional space R

k

follows the usual definition, but to do the computation over the parametric domain,
one needs to use a local metric (the first fundamental form) defined as follow.

Definition 1 (First fundamental form). For a parametric surface φ , one defines

Iφ =
(
〈 ∂φ

∂ui
,

∂φ
∂u j
〉
)

i, j=1,2
.

This local metric Iφ defines at each point the infinitesimal length of a curve

L(γ) def.=
∫ 1

0
||γ̄ ′(t)||dt =

∫ 1

0

√
γ ′(t)TIφ (γ(t))γ ′(t)dt.

This fundamental form is an intrinsic invariant that does not depend on how the
surface is isometrically embedded in space (since the lengths depend only on this
tensor field Iφ ). In contrast, higher order differential quantities such as curvature
might depend on the bending of the surface and are thus usually not intrinsic (with
the notable exception of invariants such as the gaussian curvature).

Riemannian manifold. A parameterized surface is embedded into some Euclidean
domain R

k, which allows to define a local metric thanks to the first fundamental
form Iφ . It is however possible to consider directly a field of positive definite tensors
on a parametric domain D = R

s (in practice here s = 2 for surfaces or s = 3 for vol-
umes). With a slight abuse in notations, we assimilate the resulting abstract surface
M with D. Once again, we consider only surfaces globally parameterized by some
Euclidean domain D and handling generic surfaces requires to split the manifold
into overlapping charts.

Definition 2 (Riemannian manifold). A Riemannian manifold is an abstract para-
metric space M ⊂ R

s equipped with a metric x ∈ M �→ H(x) ∈ R
s×s positive

definite.
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Using the Riemannian metric, one can compute the length of a piecewise smooth
curve γ : [0,1]→M

L(γ) def.=
∫ 1

0

√
γ ′(t)TH(γ(t))γ ′(t)dt.

At each location x, the Riemannian tensor can be diagonalized as follow

H(x) = λ1(x)e1(x)e1(x)
T +λ2(x)e2(x)e2(x)

T with 0≤ λ1 ≤ λ2, (2.1)

and e1,e2 are two orthogonal eigenvector fields. In fact, ei should be understood
as direction (un-oriented) field since both ei and −ei are eigenvectors of the tensor.
A curve γ passing at location γ(t) = x with speed γ ′(t) has a shorter local length if
γ ′(t) is colinear to e1(x) rather than any another direction. Hence shortest paths (to
be defined in the next section) tend to be tangent to the direction field e1.

In practice, the Riemannian metric H is given by the problem one wishes to solve.
In image processing, the manifold is the image domainM = [0,1]2 equipped with
a metric derived from the image (for instance its gradient). Figure 2.1 shows some
some frequently used geodesic metric spaces:

– Euclidean space:M= R
s and H(x) = Ids.

– 2D shape:M⊂ R
2 and H(x) = Id2.

– Isotropic metric: H(x) = W (x)Ids, W (x) > 0 being some weight function.
– Parametric surface: H(x) = Iφ (x) is the first fundamental form.
– Image processing: given an image I : [0,1]2→ R, one can use an edge-stopping

weight W (x) = (ε + ||∇xI||)−1. This way, geodesic curves can be used to perform
segmentation since they will not cross boundaries of the objects.

Euclidean Shape Isotropic Anisotropic Surface

Fig. 2.1 Examples of Riemannian metrics (top row) and geodesic distances and curves (bottom
row). The blue/red colormap indicates the geodesic distance to the starting point. From left to right:
euclidean (H(x) = Id2 restricted to M = [0,1]2), planar domain (H(x) = Id2 restricted to M �=
[0,1]2), isotropic (H(x) = W (x)2Id2 with W computed from the image using (3.6)), Riemannian
manifold metric (H(x) is the structure tensor of the image, see Eq. (2.8)) and 3D surface (H(x)
corresponds to the first fundamental form)
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– DTI imaging:M= [0,1]3, and H(x) is a field of diffusion tensors acquired dur-
ing a scanning experiment. For DTI imaging, the direction field e1 indicates the
direction of elongated fibers of the white matter (see [2]).

The anisotropy of a metric H(x) is defined as

α(x) =
λ2−λ1

λ1 +λ2
= 2

√
ab− c2

a+b
∈ [0,1], for H(x) =

(
a c
c b

)
. (2.2)

A metric with α(x) close to 1 is highly directional near x, whereas a metric with
α(x) = 0 is locally isotropic near x.

2.1.2 Geodesic Distances

The local Riemannian metric H(x) allows to define a global metric on the spaceM
using shortest paths. This corresponds to the notion of geodesic curves.

Definition 3 (Geodesic distance). Given some Riemannian space (M,H) with
M⊂ R

s, the geodesic distance is defined as

∀(x,y) ∈M2, dM(x,y) def.= min
γ∈P(x,y)

L(γ)

where P(x,y) denotes the set of piecewise smooth curves joining x and y

P(x,y) def.= {γ \ γ(0) = x and γ(1) = y} .

The shortest path between two points according to the Riemannian metric is
called a geodesic. If the metric H is well chosen, then geodesic curves can be used
to follow salient features on images and surfaces.

Definition 4 (Geodesic curve). A geodesic curve γ ∈ P(x,y) is such that L(γ) =
dM(x,y).

A geodesic curve between two points might not be unique, think for instance
about two anti-podal points on a sphere. In order to perform the numerical com-
putation of geodesic distances, we fix a set of starting points S = (xk)k ⊂M and
consider only distance and geodesic curves from this set of points.

Definition 5 (Distance map). The distance map to a set of starting points S =
(xk)k ⊂M is defined as

∀x ∈M, US(x) def.= min
k

d(x,xk).

The main theorem that characterizes the geodesic distance is the following, that
replaces the optimization problem of finding the minimum distance by a non-linear
partial differential equation.



2 Geodesic Methods for Shape and Surface Processing 33

Theorem 1 (Eikonal equation). If the metric H is continuous, then for any S ⊂M,
the map US is the unique viscosity solution of the Hamilton-Jacobi equation

||∇xUS ||H(x)−1 = 1 with ∀k, US(xk) = 0, (2.3)

where ||v||A =
√

vTAv.

It is important to notice that, even if the metric x �→ H(x) is a smooth function,
the distance function US might not be smooth (it exhibit gradient discontinuities).
This is why the machinery of viscosity solution is needed to give a sense to the
solution of the Hamilton-Jacobi equation. See for instance [3] for an introduction to
viscosity solutions.

Once the distance map US has been computed by solving the Eikonal Eq. (2.3),
one can extract a geodesic joining any point x to its closest point xk ∈ S using a
gradient descent on the function US .

Theorem 2 (Gradient descent). The geodesic curve γ between x and its closest point
in S solves

γ ′(t) =−
H(γ(t))−1∇γ(t)US

||H(γ(t))−1∇γ(t)US ||
with γ(0) = x.

The geodesic curve γ extracted using this gradient descent is parameterized with
unit speed since ||γ ′||= 1, so that γ : [0,T ]→M where T = dM(x,xk).

Figure 2.2 shows examples of geodesic curves computed from a single starting
point S = {x1} in the center of the image M = [0,1]2 and a set of points on the
boundary ofM. The geodesics are computed for a metric H(x) whose anisotropy
α(x) (defined in Eq. (2.2)) is decreasing, thus making the Riemannian space pro-
gressively closer to the Euclidean space.

For the particular case of an isotropic metric H(x) = W (x)2Id2, the geodesic
distance and the shortest path satisfies

||∇xUS ||= W (x) and γ ′(t) =− ∇xUS
||∇xUS ||

. (2.4)

This corresponds to the Eikonal equation, that has been used to compute minimal
paths weighted by W [4].

Image f α = .5 α = 0α = 1 α = .1

Fig. 2.2 Examples of geodesics for a tensor metric with an decreasing anisotropy α (see Eq. (2.2)
for a definition of this parameter). The tensor field H(x) is computed from the structure tensor of f
as defined in Eq. (2.8), its eigenvalues fields λi(x) are then modified to impose the anisotropy α
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2.2 Numerical Computations of Geodesic Distances

In order to make all the previous definitions effective in practical situations, one
needs a fast algorithm to compute the geodesic distance map US . This section details
Fast Marching algorithms based on front propagation that enable to compute the
distance map by propagating the distance information from the starting points in S.

The basic Fast Marching algorithm and several extensions are exposed in the
book on Fast Marching methods [5]. For other applications to computer graphics and
image processing one can see [6] and [7]. The recent book [8] treats all the details
of the geometry of non-rigid surfaces, including geodesic distance computation and
shape comparison. One can also see the two books [9,10] that contain review articles
with some applications of Fast Marching and geodesic methods and in particular [1].

2.2.1 Front Propagation Algorithms

Depending on the properties of the metric, one needs to consider several algorithms,
that all rely on the idea of front propagation. This family of algorithms allows to sort
the computations in such a way that each point of the discretization grid is visited
only once. This ordering is feasible for distance computation because the distance
value of a grid point only depends (and can be computed) from a small number of
points having only smaller distances. If one can sort the grid points with increasing
distance, then one gets a coherent ordering of the computations. Of course, this is not
that easy since this distance ordering would require the knowledge of the solution
of the problem (the distance itself). But depending on the application, it is possible
to devise a selection rule that actually select at each step the correct grid point.

A front propagation labels the points of the grid according to a state

S(x) ∈ {Computed,Front,Far}.

During the iterations of the algorithm, a point can change of label according to

Far �→ Front �→Computed.

Computed points S(x) = Computed are those that the algorithm will not consider
any more (the computation of US(x) is done for these points). Front points S(x) =
Front are the points being processed (the value of U(x)≈US(x) is well defined but
might change in future iterations). Far points S(x) = Far are points that have not
been processed yet.

In practice, a front propagation algorithm requires three key ingredients:

– Given a point x in the grid, a local set of neighbors Neigh(x) connected to x.
– A priority P(x) among points x in the front, that allows to select the point to

process at a given iteration. In most application, this priority is computed as the
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Table 2.1 Front propagation algorithm

1. Initialization: ∀x ∈ S,U(S)← 0, S(x)← Front,
∀y /∈ S, S(y)← Far.

2. Select point: x←− argmin
S(z)=Front

P(z).

3. Tag: S(x)←Computed.
4. Update neighbors: for all y ∈ Neigh(x),

– If S(y) = Far, then S(y)← Front and U(y)←U pdate(y).
– If S(y) = Front, then U(y)←min(U(y),U pdate(y)).
– Recompute the priority P(y).

5. Stop: If x �= x1, go back to 2.

current value of the distance P(x) def.= U(x). Section 2.3.2 shows how to change
this priority in order to speed up computations.

– A procedure x �→ Update(x) ∈ R that computes the distance value U(x) approx-
imating US(x) knowing the value U(x) for computed point and an approximate
value for points in the front. This procedure usually solves some kind of equation
that discretizes the Eikonal Eq. (2.3) one wishes to solve.

Table 2.1 gives the details of the front propagation algorithm that computes a
distance map U approximating US(x) on a discrete grid. The following section
details for actual implementations of the U pdate procedure for different metrics
(Table 2.1).

The numerical complexity of this scheme is O(n log(n)) for a discrete set of
n points. This is because all the points are visited (tagged Computed) once, and
the selection of minP from the front points takes at most log(n) operations with a
special heap data structure (although in practice it takes much less and the algorithm
is nearly linear in time).

2.2.2 Eikonal Equation Discretization

On a square grid. The classical Fast Marching algorithm, introduced by Sethian
[5], is a fast procedure to solve the Eikonal Eq. (2.3) for an isotropic metric H(x) =
W (x)2Ids for a uniform regular grid that discretizes [0,1]s. We recall this procedure
for a planar domain s = 2 although it can be extended to any dimension.

In order to capture the viscosity solution of an Hamilton Jabobi equation, one
cannot use standard finite differences because of the apparition of shocks and singu-
larities in the solution of the equation. One needs to choose, at each grid point, the
optimal finite difference scheme (differentiation on the left or on the right to approx-
imate d/dx for instance). This optimal differentiation should be chosen in the direc-
tion where the solution of the equation decreases. This is called an upwind finite
difference scheme, and on a 2D grid with spacing h it leads to find u = U pdate(x)
at a grid point x = xi, j that is the smallest solution of
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max(u−U(xi−1, j), u−U(xi+1, j),0)2 +
max(u−U(xi, j−1), u−U(xi, j+1),0)2 = h2W (xi, j)2.

(2.5)

The smallest solution of this equation leads to a stable and convergent scheme that
can be used in the front propagation algorithm listing 2.1.

On a triangulation. The classical Fast Marching algorithm is restricted to isotropic
metrics on a regular grid. This setting is useful for image and volumetric data pro-
cessing, but in order to deal with arbitrary Riemmanian surfaces embedded in R

k,
one needs to modify Eq. (2.5).

Kimmel and Sethian [11] have developed a version of the Fast Marching algo-
rithm for a surfaceM⊂ R

k with metric W (x) for x in embedding space R
k. In the

continuous setting, a parametric surface (M,φ) embedded with a metric W (x) in
ambient space corresponds to a Riemannian manifold with a metric Iφ (x̄)W (φ(x̄))
in parameter space x̄ ∈ R

2.
The algorithm of Kimmel and Sethian works on a triangulated mesh and treats

the triangles of this mesh as locally flat and equipped with an isotropic metric W (x)2.
The same algorithm can be used to process an anisotropic metric H(x) ∈ R

2×2

defined on a square lattice (an image), by locally connecting a pixel x to its four
direct neighbors in order to create four adjacent triangles (that are flat). In order to
describe the algorithm for these two settings (curved triangulated surface embedded
in R

k and Riemannian manifold with arbitrary metric H(x) for x ∈ R
2), we solve

the Eikonal equation
||∇xU ||H−1(x) = W (x)

locally on the triangle faces f ∈ Fx adjacent to x in order to compute U pdate(x) ≈
U(x).

In order to compute the update value at a given vertex x, the algorithm computes
an update value U pdate f (x) for each triangle f ∈ Fx in the face 1-ring around x,
Fx = { f1, . . . , fk}. The resulting Fast Marching update step is defined as

U pdate(x) = min
f∈Fx

U pdate f (x).

In order to derive the expression for U pdate f (x), one considers a planar triangle
f = (x,x1,x2) and denotes X = (x1− x,x2− x) ∈ R

2×2. The known distances are
u = (U(x1),U(x2))

T ∈ R
2 and one wishes to solve for U pdate f (x) = p = U(x).
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The linear interpolation of US can be written at the point x1 and x2 as

for i ∈ {1,2}, US(xi)≈ 〈g, xi− x〉+ p where g≈ ∇xUS .

With this approximation, Eq. (2.3) leads to a quadratic equation
{

U = XTg+ pI

||g||2H−1(x) = W (x)2 =⇒ I
TQIp2 +2(ITQu)p+(uTQu−W (x)2) = 0.

where I = (1,1)T ∈R
2 and Q = (XH(x)−1XT)−1 ∈R

2×2. The only admissible solu-
tion to this problem is

U pdate f (x) = p =
I

TQu+
√

(ITQd)2 + ITQI(uTQu−W (x)2)
ITQI

There is some technical difficulties with this scheme on triangulations that contain
obtuse angles or with metric H(x) with a large anisotropy, because the update proce-
dure might not be monotone anymore. More accurate monotone schemes have been
developped, see for instance [2, 12, 13]. We shall ignore these difficulties here and
focus on the application of the numerical computation of geodesic distances.

2.2.3 Examples of propagations

2D isotropic propagation on a square grid. Figure 2.3 shows some examples of
front propagation with the Fast Marching, for an isotropic H(x) = W (x)2Id2. The
colored area shows, at some given step of the algorithm, the set of computed points
(its boundary being the set of front points). During the iterations, the front propa-
gates outwards until all the grid points are visited. The numerical complexity of this
scheme is O(n log(n)) for a grid of n points.

Figure 2.4 shows examples of distance functions to a starting point x0 with the
corresponding geodesics γ(t) extracted from some ending point x1. The front prop-
agation is stopped when S(x1) = Computed to avoid performing useless computa-
tions. The idea of using geodesics in order to extract salient curves in images as
been introduced in [14].

In practice, the difficult task is to design a metric W in order have meaningful
geodesics. Here are some examples of possible choices, for image processing with
an input image f :

Pixel value based potential: in many applications, one simply wishes to extract
curves with a constant value c. In this case, one can use a potential like

W (x) =
1

ε + | f (x)− c| . (2.6)
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Fig. 2.3 Examples of isotropic front propagation. The colormap indicates the values of the distance
functions at a given iteration of the algorithm. On rows 1 and 2, the potential W is computed using
W (x) = f (x) so that geodesics tend to follow bright regions. On row 3, the potential W is computed
using (2.6) where c is chosen to match the intensity of the road to extract

Fig. 2.4 Example of distance functions (top row) and geodesics (bottom row)

Figure 2.4, left and middle, shows examples of such curves extractions. Also in
many applications related to segmentation of tubular shapes, like vessels, we are
looking for curves that are located in brighter or darker regions. In this case the
potential can be chosen respectively as
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Fig. 2.5 Example of semi-transparent display of volumetric data

W (x) = f (x) or W (x) =− f (x) (2.7)

and W should be rescaled to fill the range [ε,1].
Gradient-based potential: for application such as edge detection one would like
the geodesics to follow regions with high gradients. One can choose a potential
such as

W (x) = ε +Gσ ∗ ||∇x f ||,
where Gσ is a smoothing kernel.

3D isotropic propagation on a square grid. The Fast Marching works the same
way in any spacial dimension k and in particular can be used to extract shortest
paths in 3D volumetric medical data. Such a volume is a discretization of a mapping
f : [0,1]3 �→R. Figure 2.5 shows a 3D display with a semi-transparent mapping that
removes more or less parts of the data. The transparency at point (x,y,z) is defined
as ρ( f (x,y,z)) where ρ : [ fmin, fmax]→ [0,1] is the α-mapping. Figure 2.6 shows in
red the front of the Fast Marching propagation, displayed as an isosurface of US .

Figure 2.6 shows some examples of geodesic extraction on a medical image that
represents tubular structures (blood vessels) around the heart. The potential W (x)
is chosen as W (x) = (| f (x)− f (x0)|+ ε)−1 where x0 is a point given by the user
and supposed to lie inside some vessel. A geodesic follows nicely a vessel since its
density is constant and thus the value of f is approximately equal to f (x0) inside
the vessel. Figure 2.7 shows other application of shortest path to extract tubular
structures and centerlines in 3D medical data [15].

Isotropic propagation on a triangulated mesh. Figure 2.8 shows an example of
propagation on a triangulated surface. The colored region corresponds to the points
that are computed (its boundary being the front).

The propagation can be started from several starting points S = (xk)k in order
to compute the geodesic distance map US . Figure 2.9 shows examples of such dis-
tances to several points together with geodesics. A geodesic γ links a point x to its
closest point in S.

Anisotropic propagation on a square grid. In order to better follow the salient struc-
tures of an image f , one can replace the isotropic metric H(x) =W (x)2Ids (examples
are given here in s = 2 dimensions) by a fully anisotropic metric H(x)∈R

2×2 which
is a symmetric tensor field. This field might be given by the physical problem, such
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Fig. 2.6 Example of volumetric Fast Marching evolution (top row) and geodesic extractions (bot-
tom row)

Fig. 2.7 Left: vessel extraction. Right: tubular structure extraction

Fig. 2.8 Example of Fast Marching propagation on a triangulated mesh
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Fig. 2.9 Examples of geodesic extraction on a mesh with an increasing number of starting points

as the tensor field of DTI imaging [2]. Another option is to infer this field from some
input image f .

The local orientation of a feature around a pixel x is given by the vector orthog-
onal to the gradient v(x) = (∇x f )⊥, which is computed numerically with finite dif-
ferences (using maybe some little smoothing to cancel noise). This local direction
information can be stored in a rank-1 tensor T0(x) = v(x)v(x)T. In order to evaluate
the local anisotropy of the image, one needs to average this tensor

T (x) = T0 ∗Gσ (x) (2.8)

where the four entries of the tensor are smoothed against a gaussian kernel Gσ of
width σ > 0. The metric H corresponds to the so-called structure tensor, see for
instance [16]. This local tensor T is able to extract both the local direction of edges
and the local direction of textural patterns (see Fig. 2.11, left). Another option, that
we do not pursue here, is to use the square of the Hessian matrix of f instead of the
structure tensor.

In order to turn the structure tensor into a Riemannian metric, one can apply a
non-linear mapping to the eigenvalues,

T (x) = μ1e1e1
T + μ2e2e2

T =⇒ H(x) = ψ1(μ1)e1e2
T +ψ2(μ2)e2e2

T. (2.9)

where ψi is a decreasing function, for instance ψi(x) = (ε + |x|)−1 for a small value
of ε .

Figure 2.10 shows an example of Fast Marching propagation using an anisotropic
metric H(x). The front propagates faster in the direction of the main eigenvector
field e1(x). Figure 2.11 shows distance map for a tensor field H(x) whose anisotropy
α is progressively decreased, so that the geodesic distance becomes progressively
Euclidean.
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Fig. 2.10 Examples of anisotropic front propagation (from 9 starting points). The colormap indi-
cates the values of the distance functions at a given iteration of the algorithm. The metric is com-
puted using the structure tensor, Eq. (2.8), of the texture f shown in the background

α = .9 α = .5 α = .2 α = 0

Fig. 2.11 Left image: example of texture together with the structure tensor field, computed using
Eq. (2.9). Right: examples of anisotropic distances (top row) and Voronoi diagrams (bottom row)
with a decreasing anisotropy α (see Eq. (2.2) for a definition of this parameter)

2.3 Applications and Extensions of Geodesic Distances

2.3.1 Shape Analysis

In order to analyze the shape of planar objects, one can consider the metric space
obtained by restricting the plane to the inside of a planar domain.

Definition 6 (2D shape). A 2D shape S is a connected, closed compact set S ⊂ R
2,

with a piecewise-smooth boundary ∂S.

The geodesic distance inside such a shape is obtained by constraining the curve
to lie inside S.

Definition 7 (Geodesic distance in S). The geodesic distance in S for the uniform
metric is

dS(x,y)
def.= min

γ∈P(x,y)
L(γ) where L(γ) def.=

∫ 1

0
|γ ′(t)|dt.

where P(x,y)⊂ S are the paths with starting point x and ending point y.
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Fig. 2.12 Geodesics inside a 2D shape

Fig. 2.13 Example of eccentricity ES and corresponding histograms hS

Figure 2.12 shows examples of shapes together with the geodesic distance to a
starting point. The geodesic curve is the union of segments inside S and pieces of
the boundary ∂S.

The geodesic distance can be used to define several functions on the 2D shape.
This section studies the eccentricity of a shape, as introduced by [17] to perform
shape recognition.

Definition 8 (Eccentricity). The eccentricity ES :M �→ R is

ES(x)
def.= max

y∈S
dS(x,y) = max

y∈∂S
dS(x,y).

Figure 2.13 (top row) shows several examples of eccentricity. The colormap indi-
cates in blue points with small eccentricity.

The points for which the minimum in the definition of ES is obtained are called
eccentric. The set of eccentric point is denoted as E(S).

Definition 9 (Eccentric points). An eccentric point x ∈ E(S) satisfies ∃y ∈
S, ES(y) = d(x,y).

These eccentric points define regions of influence which perform a segmentation
of the shape as follow
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S =
⋃

x∈E(S)

{y ∈ S \ ES(y) = d(x,y)} .

These eccentric points are in fact located along the boundary.

Theorem 3 (Location of eccentric points). One has E(S)⊂ ∂S.

A more general definition of eccentricity allows to replace the maximum by a
weighted average of geodesic distances.

Definition 10 (α-eccentricity). The α eccentricity of some shape S is defined as

Eα
S (x) def.=

(∫
S

dS(x,y)α dy
)1/α

.

This eccentricity allows to generalize the notion of gravity center to the geodesic
setting.

Definition 11 (Euclidean gravity center). The Euclidean gravity center is

argmin
x

∫
S
||x− y||2dy.

The α-eccentric center is
argmin

x
Eα

S (x).

Remark 1. For α = 2, the eccentric center is called geodesic gravity center (and
equivalent to the Euclidean center in the case of an uniform metric).

Having defined a function such as ES inside a shape S, one can collect informa-
tion about the shape using the histogram of that function.

Definition 12 (Descriptors). The eccentricity histogram descriptor hS ∈ R
m of a

shape is

Fig. 2.14 Example of eccentricity and corresponding histograms for 3D surfaces
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∀ i = 1, . . . ,m, hS(i) =
1
|S|#

{
x ∈ S \ i−1

m
≤ ES(x)−min(ES)

max(ES)−min(ES)
<

i
m

}
.

In particular, one can compare shapes by measuring the distance between the
histograms

δ (h, h̃)2 def.=
m

∑
i=1

(h(i)− h̃(i))2.

These histograms are invariant if one modifies a shape isometrically. In the plane,
geodesic isometry of shapes are not interesting since they are rotations and transla-
tions. One can however consider approximate isometries such as articulations, that
are useful to model deformations of planar shapes, as defined in [18].

Definition 13 (ε-articulated object). An articulated object S can be split as

S =
m⋃

i=1

Si
⋃
i �= j

Ji j,

(a disjoint union) with diam(Ji j)≤ ε .

Definition 14 (Articulation). An articulation is a mapping between two articulated
shapes S,S′ such that

f : S→ S′ =
m⋃

i=1

S′i
⋃
i �= j

J′i j

is rigid on Si �→ S′i.

The eccentricity is approximately invariant for shapes that are modified by artic-
ulation.

Theorem 4 (Articulation and isometry). If f is an articulation, then

|dS(x,y)−dS′(x,y)| ≤ mε and |ES(x)−ES′(x)| ≤ mε.

Starting from a shape library {S1, . . . ,Sp}, one can use the shape signature hS
to do shape retrieval using for instance a nearest neighbor classifier, as shown in
Table 2.2. Figure 2.15 shows examples of typical shape retrievals. More complex
signatures can be constructed out of geodesic distances and un-supervised recogni-
tion can also be considered. We refer to [17] for a detailed study of the performance
of shape recognition with eccentricity histograms. In a similar way, the eccentric-
ity can be used to perform 3D surface retrieval, using the histograms displayed in
Fig. 2.14.

Table 2.2 Shape retrieval process

1. Dataset: shapes {S1, . . . ,Sp} (binary images).
2. Preprocessing: compute eccentricity descriptors hSi .
3. Input: shape S.
4. Retrival: return i� = argmin

i
δ (hS,hSi ).
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Fig. 2.15 Examples of shape recognitions. The shape on the left is the input S and the second
shape in each raw is Si�

2.3.2 Heuristically Driven Propagation

The various implementations of the front propagation algorithm, pseudo-code 2.1,
use a simple priority P(x) = Ux0(x), where U(x) ≈ dM(x0,x) is the current value
of the distance to the starting point. This strategy leads to an isotropic grow of the
front which enforces the exploration of a large area of the computational grid. The
advantage of using this priority is that it does not favor any points and thus produces
provable valid approximations of geodesic distance (both on a graph with Dijkstra
and on a square/triangular grid with Fast Marching).

In order to reduce the computational burden, one could think about using more
aggressive ordering of the front that favors some specific direction in the front.
The hope is that the front would advance faster in the direction of the goal x1 one
wishes to reach. Ultimately, one would like the front to explore only points along
the geodesic γ ∈ P(x0,x1) joining the starting point to the ending point.

If one has an oracle: V (x) ≈ d(x1,x) that estimates the remaining geodesic dis-
tance from the current point x to the end x1, one can use as priority map

P(x) = U(x)+V (x).

The map V is called a heuristic since the exact distance d(x1,x) is not available in
practice. The value of a good heuristic close to the real distance is revealed by the
following theorem.

Theorem 5 (Geodesic segment). The function ψ(x) = d(x0,x)+d(x1,x) is minimal
and constant ψ(x) = d(x0,x1) along the geodesic path joining x0 and x1.

In the setting of graph theory, the Dijkstra algorithm can be replaced by the A∗

(A-star), [19], which uses a heuristic to speed up computations. The following the-
orem proves the validity of this approach.

Theorem 6 (A∗ validity). If the heuristic satisfies V (x) ≤ d(x1,x), then the curve
γ ∈ P(x0,x1) extracted from the front propagation, algorithm 2.1, is a geodesic
between x0 and x1.

Over a continuous domain, one can invoke a similar (but weaker) theorem.
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Fig. 2.16 Example of propagations with a priority P(x) = U(x)+λV (x) for λ = 0,0.5,0.9

Theorem 7 (Explored area). If the heuristic satisfies V (x) ≤ d(x1,x), then the
geodesic γ ∈ P1(x0,x1) between x0 and x1 satisfies

{γ(t) \ t ∈ [0,1]} ⊂ {x \ P(x) = U(x)+V (x)≤ P(x1)} .

This theorem shows why it is important to estimate the geodesic distance by
below, since otherwise the region explored by the algorithm might not contain the
true geodesic.

Figure 2.16 shows examples of heuristics that approximate the true remaining
distance by bellow. One can see how the explored area of the propagation pro-
gressively shrinks while containing the true geodesic. Such a heuristic is however
impossible to use in practice since one does not have direct access to the remaining
distance during the propagation.

Many strategies can be used to estimate a heuristic. For instance, on a Rieman-
nian metric (M,H(x)), one could use

V (x) = ρ||x− x1|| where ρ = min
x �=0,v �=0

||v||H(x).

In this case, ρ is the minimum eigenvalue of all the tensors H(x). This heuristic esti-
mates the geodesic distance with a Euclidean distance and satisfies V (x)≤ d(x1,x).

For a propagation on a graph (A∗ algorithm) that is embedded in Euclidean space
according to i ∈V �→ xi ∈ R

k, one could also define

∀ i ∈V, V (i) = ||xi1 − xi||,

where i1 is the index of the ending point. This heuristic also satisfies V (i)≤ d(i1, i).
These Euclidean heuristics performs poorly on spaces that are not relatively flat.

In order to compute more accurate heuristic, we use an expression of the geodesic
distance as a minimization.

Theorem 8 (Reversed triangular inequality). For all (x,y) ∈M, one has

d(x,y) = sup
z

(
|d(x,z)−d(z,y)|

)
.
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If one restricts the minimum to a small subset of landmark points {z1, . . . ,zn} ⊂
M, one can define the following approximate distance

d̃z1...zn(x,y) = sup
k=1...n

(
|dk(x)−dk(y)|

)
,

This kind of approximation has been used first in graph theory [20] and it is defined
in a continuous setting in [21]. This leads to a heuristic V (x) = d̃(x,x1) that has the
following properties.

Theorem 9 (Convergence of heuristic). One has d̃ ≤ d and d̃ n→+∞−→ d.

In a numerical application that requires the extraction of many geodesics in real
time over a large domain, one can pre-compute (off-line) the set of distance maps
to the landmarks {d(x,zi)}m

i=1. At run time, this set of distances is used to compute
the heuristic and speed up the propagation. Figure 2.17 shows how the quality of the
heuristic increases with the number of landmarks. Figure 2.18 shows an application
to geodesic extraction on 3D meshes.

Fig. 2.17 Heuristically driven propagation in 2D with an increasing number of landmark points

Fig. 2.18 Heuristically driven propagation on a 3D mesh with landmark points
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2.4 Surface Sampling

In order to acquire discrete samples from a continuous surface, or to reduce the num-
ber of samples of an already acquired mesh, it is important to be able to seed evenly
a set of points on a surface. This is relevant in numerical analysis to have a good
accuracy in computational simulations, or in computer graphics to display 3D mod-
els with a low number of polygons. In practice, one typically wants to enforce that
the samples are approximately at the same distance from each other. The numerical
computation of geodesic distances is thus a central tool, that we are going to use
both to produce the sampling and to estimate the connectivity of a triangular mesh.

2.4.1 Farthest Point Sampling

A sampling of a Riemannian surfaceM is a set of points {x1, . . . ,xn} ⊂M. If the
surface is parameterized by φ : [0,1]2 �→M, the easiest way to compute a sampling
is to seed points regularly over the parametric domain

∀(i, j) ∈ {1, . . . ,
√

n}2, xi, j = φ(i/
√

n, j/
√

n).

This strategy performs poorly if the mapping φ introduces heavy geodesic distortion
and the sampling might not be regular any more for the geodesic metric on the
surface. In order to ensure the quality of a sampling, one can use the notion of a
well separated covering.

Definition 15 (ε-covering). A sampling {x1, . . . ,xn} ⊂M is an ε-covering if
⋃

i

Bε(xi) =M where Bε(x)
def.= {y \ dM(x,y)≤ ε} .

Definition 16 (ε-separated). A sampling {x1, . . . ,xn} ⊂M is ε-separated if

max(dM(xi,x j))≤ ε.

The farthest point sampling algorithm is a simple greedy strategy able to produce
quickly a good sampling. This algorithm has been introduced in image processing to
perform image approximation [22]. It is used in [23] together with geodesic Delau-
nay triangulation (to be defined in the next section) to do surface remeshing. The
detection of saddle points (local maxima of the geodesic distance) is used in [24] to
perform perceptual grouping.

Table 2.3 gives the details of this iterative algorithm. In particular, note that the
update of the distance d(x) to the set of already seeded points goes faster at each
iteration since the domain of update is smaller when the number of points increases.

The output sampling of the algorithm enjoys the property of being a well sepa-
rated covering of the manifold.
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Table 2.3 Farthest point sampling algorithm.

1. Initialization: x1←random, d(x)← dM(x1,x), set i = 1.
2. Select point: xi+1 = argmax

x
d(x), ε = d(xi+1).

3. Local update of the distance: d(x)←min(d(x),dM(xi+1,x)).
This update is restricted to the set of points {x \ dM(xi+1,x) < d(x)}.

4. Stop: If i < n or ε > ε0, set i← i+1 and go back to 2.

Fig. 2.19 Examples of farthest point sampling (the colormap indicates the distance function to the
seeds)

Theorem 10 (Farthest seeding properties). The farthest point sampling {x1, . . . ,xn}
is an ε-covering that is ε-separated for

ε = max
i=1,...,n

min
j=1,...,n

dM(xi,x j).

Note however that there is no simple control on the actual number of samples n
required to achive a given accuracy ε . We refer to [25] for an in-depth study of the
approximation power of this greedy sampling scheme.

Figure 2.19 shows examples of farthest point sampling with a uniform (top row)
and a spatially varying isotropic metric W (x) (bottom row). One can see that this
scheme seeds more points in areas where the metric W is large. One can thus control
the sampling density by modifying the metric W .

2.4.2 Triangulations

Having computed, for instance with farthest points, a sampling {xi}i∈V ⊂M, the
next step is to compute some connectivity between the samples in order to build a
graph, or even better, a triangulation. The problem of surface remeshing has been
studied extensively in computer graphics, see the survey [26]. This section explains
a solution based on the geodesic Delaunay triangulation.
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The following definition generalizes the notion of an Euclidean Voronoi diagram,
to an arbitrary surface.

Definition 17 (Voronoi segmentation). The Voronoi segmentation of a sampling
{xi}i∈V ⊂M is

M=
⋃

i

Vi with (Vi)m
i=1

def.= VoronoiM({xi}i)

where
Vi

def.=
{

x \ ∀ j �= i, dM(x,xi)≤ dM(x,x j).
}

Each Voronoi cell Vi is thus composed of points that are closer to xi than to any
other sampling point. The boundary between two adjacent cells Vi and Vj is thus a
piece of curve at equal distance between xi and x j. One can then compute the graph
dual to a given partition, which joins together pair of adjacent cells. This leads to
the notion of Delaunay graph.

Definition 18 (Geodesic Delaunay graph). The Delaunay graph (V,E) of a sam-
pling {xi}i∈V ⊂M is defined for V = {1, . . . ,n} as

E =
{
(i, j) ∈V \ ∂Vi∩∂Vj �= 0

}
.

The main interest of this Delaunay graph is that, if the number of points is large
enough to capture the topology of the surface (for instance at least four points are
needed on a sphere), then one gets a valid triangulation.

Theorem 11. For a large enough number of points, the Delaunay graph is a valid
triangulation.

This theorem means that one can find a set of faces F such that (V,E,F) is a
triangulated mesh. One can see [27] for a theoretical study of geodesic Delaunay
triangulations.

2.4.3 Examples of Meshing and Remeshing

This Delaunay triangulation can thus be used to perform a geodesic meshing or
re-meshing of any Riemannian surface, as explained in [23].

Figure 2.20 shows examples of Voronoi segmentations on the plane for various
isotropic Riemannian metrics W (x). The Delaunay graph allows to define a planar
mesh of points evenly sampled according to the metric. Figure 2.21 shows examples
of Voronoi cells on a surface embedded in R

3.
Instead of using a constant or an isotropic metric W (x), one can use a fully

anisotropic metric H(x) ∈ R
2×2. The local dominant eigenvector e1(x) given in the

decomposition (2.1) of the tensor gives the local preferred direction of the trian-
gles and the anisotropy λ1(x)/λ2(x) describe how much the triangles should be
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Fig. 2.20 Examples of sampling and triangulations with an isotropic metric H(x) =W (x)2Id2. The
sampling is denser in the regions where the metric is small (dark)

Fig. 2.21 Example of Voronoi segmentations for an increasing number of seeding points

stretched in this direction. Figure 2.22 shows an example of meshing with a metric
of decreasing anisotropy. Figure 2.23 shows an anisotropic farthest point meshing
with an increasing number of sampling points.

In order to mesh the interior of a planar shape S⊂R
2, one can use the Euclidean

metric inside the shape and compute a geodesic Delaunay triangulation. Some care
should be made during the algorithm so that the boundary of the domain is included
in the delaunay triangulation. This requires splitting boundary edges if they disap-
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Fig. 2.22 Meshing of a square with a metric of decreasing anisotropy of a same synthetic tensor
field. Top: Voronoi diagrams, tensor fields and points added by the algorithm (last image is the
Euclidean case). Bottom: resulting meshes

Fig. 2.23 Anisotropic meshing of a square with an increasing number of points

pear from the Delaunay graph during the algorithm. Figure 2.24 shows some exam-
ples of shape meshing with this uniform metric. This triangulation is however very
close to the usual definition of a planar Euclidean Delaunay triangulation. In con-
trast, one can use a non-uniform metric W (x) and compute a sampling inside the
shape that conforms itself to this density. Figure 2.24 shows a sampling and mesh-
ing that uses a metric W (x) = (ε +d(x,∂S))−1 that tends to seed more points on the
boundary of the shape S.
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Fig. 2.24 Shape meshing with an increasing number of points. Left and center: uniform meshing,
right: adaptive meshing

Fig. 2.25 Geodesic remeshing with an increasing number of points

Fig. 2.26 Adaptive remeshing with a linearly increasing density

Figure 2.25 shows an example of uniform remeshing of a 3D surface acquired
from medical imaging with an increasing number of points. Figure 2.26 shows how
one can adapt the density by defining a non-constant isotropic metric on the surface.

An option to compute this metric is to use a texture mapped on the surface. Start-
ing from some parametric surface: φ : D ⊂ [0,1]2 →M, a texture T is a mapping
T : [0,1]2 → R. It allows to define an isotropic metric using for instance an edge
adaptive function

∀x ∈ D, H(x) = ψT (x)Id2.
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Fig. 2.27 Adaptive remeshing with a density given by a texture

where the edge-based stopping function is ψT (x) = (||∇xT ||+ ε)−1. Figure 2.27
shows examples of remeshing with a texture-adapted metric with a decreasing value
of ε (increasing adaptivity).

2.5 Conclusion

This chapter has reviewed several applications of Riemannian metrics in computer
vision and graphics. In particular, the use of geodesic distances and shortest paths is
useful in many areas of these fields. The design of adapted isotropic or anisotropic
metrics allows to solve efficiently segmentation, sampling, meshing and recognition
problems with fast algorithms.
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Chapter 4
Digital Geometry and Its Applications
to Medical Imaging

Reneta P. Barneva and Valentin E. Brimkov

Abstract Digital geometry is a modern discipline dealing with geometric proper-
ties of digital objects (also called digital pictures). These are usually modeled as
sets of points with integer coordinates representing the pixels/voxels of the con-
sidered objects. Digital geometry is developed with the expectation that it would
provide an adequate mathematical background for new advanced approaches and
algorithms for various problems arising in image analysis and processing, computer
graphics, medical imaging, and other areas of visual computing. In this chapter we
first provide a brief discussion on the motivation, basic directions, and achievements
of digital geometry. Then we consider typical examples of research problems and
their solutions. We focus our attention on problems related to digital manifolds.
The latter play an important role in computer graphics, 3D image analysis, volume
modeling, process visualization, and so forth — in short, in all areas where discrete
multidimensional data need to be represented, visualized, processed, or analyzed.
The objects in these areas often represent surfaces and volumes of real objects. We
discuss some applications of digital curves and surfaces to medical imaging, implied
by theoretical results on digital manifolds.

4.1 Introduction

In this introductory section we briefly discuss about the motivation, basic directions,
and goals of digital geometry.
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4.1.1 What is Digital Geometry?

Digital geometry deals with geometric properties of digital objects (also called dig-
ital pictures). These are usually modeled as sets of points with integer coordinates
representing the pixels/voxels of the considered digital objects. Digital geometry
has established itself as an independent discipline comparatively recently, in the
second half of the 20th century, with the initiation of research in visual computing.
The latter includes various applied areas such as image analysis and processing,
computer vision, computer graphics, medical imaging and, more recently, multi-
media technologies. The nature of the used research approaches and the obtained
results put digital geometry on the border of applied mathematics and theoretical
computer science, as the framework of the performed research is determined by
practical applications in mind.

Digital geometry is developed with the expectation to provide an adequate theo-
retical (mathematical) background for new advanced approaches to and algorithms
for solving various problems arising in visual computing.

4.1.2 Why Digital Geometry?

In general, the development of digital geometry follows the one of classical geom-
etry. The latter has appeared in the remote past as a collection of practical compu-
tation rules helpful for resolving certain everyday problems. Only much later, since
Euclid, it starts turning to a rigorous mathematical subject. Over the centuries, new
practical tasks motivate the rise of new geometries, such as analytical geometry,
differential geometry, and, more recently, computational geometry, to mention just
a few. Most of these belong to the continuous domain of mathematics, with a few
exceptions led by specific applications (e.g., combinatorial geometry and certain
finite geometries).

In recent decades, the development of various branches of visual computing
poses new challenges to the researchers. The objects operated in computer graph-
ics, image analysis and processing are discrete sets of points. However, as a rule,
continuous mathematics (in particular, classical geometry) is used for modeling and
problem solving (for instance, in most works available in the SIGGRAPH volumes).
Comparatively more rarely, ad-hoc algorithms are used for direct processing of dis-
crete data.

As the computer images are discrete, it is quite natural the geometry involved
to be discrete as well. Despite the presence of a lot of results, one should admit
that a theory that could perfectly serve as a discrete analog of Euclidean geometry,
is not completely developed yet. There is a simple reason for that: development of
such a theory is hard, due to the discrete nature of the objects involved. In partic-
ular, this may cause ambiguity when one looks for the most reasonable definitions
of even very basic discrete primitives, such as straight lines, circles, planes, etc. For
instance, several definitions of a digital straight line are available in the literature
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(see, e.g., [48]), each of which has advantages and disadvantages to the others. Cer-
tain paradoxes that do not exist in continuous spaces are also possible. See, e.g.,
examples in Section 1.1.4 of [28].

It should also be mentioned that, as far as a theory of digital geometry exists, it is
not very well-known and is rarely used by software developers. This is conditioned
by a number of reasons. Pretty often, the insufficient mathematical background of
the programmers does not allow them understand and apply advanced approaches
involving more sophisticated technical machinery. It is surprising that the above
can sometimes be observed even in computing laboratories of some very reputable
organizations. Moreover, the industry usually requires to produce software in very
short periods of time without serious theoretical research. Unfortunately, in many
cases this leads to lowering the quality in terms of time and memory efficiency of
the developed algorithms and of the accuracy and reliability of the obtained solu-
tions. Sometimes this may indeed be an important shortcoming (e.g., in medical
applications).

In view of the preceding discussion, digital geometry is aimed at becoming a
rigorous theory that serves as a universal tool for modeling and resolving various
problems. The theory should be easily applicable. It is also clear that digital geome-
try would be of little use if it remains unknown to those for whom it is created. Thus
an important task is to make it more popular by means of systematic education.

4.1.3 Mathematics of Digital Geometry

As already mentioned, digital geometry is a modern discipline that sets up itself as
such in relation to its contemporary applications. However, it has its roots in a num-
ber of classical mathematical disciplines, such as number theory (since C.F. Gauss),
geometry of numbers (since H. Minkowski), graph theory (since L. Euler), and
combinatorial topology (since the middle of the 19th century). At present, research
in digital geometry resorts to the above and some other mathematical disciplines.
A more complete (although not exhaustive) list is given next.

– Number theory, geometry of numbers
– Classical Euclidean geometry, analytical geometry, affine geometry, projective

geometry
– Algebraic geometry
– Vector spaces, metric spaces
– Combinatorial geometry, discrete geometry, tilings and patterns
– Computational geometry
– General topology, combinatorial topology
– Graph theory
– Linear programming, integer programming, Diophantine equations, polyhedral

combinatorics, lattice polytopes
– Mathematical morphology
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– Discrete dynamical systems, fractal theory
– Combinatorics on words
– Approximation theory, Diophantine approximations, continued fractions
– Probability theory and mathematical statistics
– Design and analysis of algorithms, complexity theory

Knowledge and approaches from the above-listed subjects are used to obtain the-
oretical results and design algorithms for solving various specific problems. Occa-
sionally, results of digital geometry turn out to be known in different terms in the
framework of earlier studies. Overall, however, digital geometry has provided a lot
of new results, some of which are not only useful regarding practical applications,
but also technically sound and deep from mathematical point of view.

4.1.4 Main Directions of Digital Geometry

Digital geometry is germane with discrete geometry that deals with similar and
some other related matters from a bit more general perspective (see the topics of
Mathematical Subject Classification number 52Cxx). In particular, discrete geom-
etry includes a number of subjects (e.g., the ones related to matroid theory) that
are not directly related to computer imagery, and tackles them from a more abstract
point of view. Instead, digital geometry is closely focused on problems arising from
image analysis and processing, computer graphics, and related disciplines. Below
we list some basic subjects of digital geometry, among others.

Digital topology
Digital topologies (classification), topology of digital objects (basic topological
invariants of curves and surfaces, topology of digital curves and surfaces, topology
of linear digital objects)
Geometry of digital manifolds
Geometry of digital curves and surfaces, digital straightness in 2D and 3D, digital
planarity, length and curvature of digital arcs, area and curvature of digital surfaces,
digital convexity
Transformations
Axiomatic digital geometry, transformation groups and symmetries, neighborhood-
preserving transformations, magnification and demagnification
Discrete tomography
Morphologic operations
Dilation, erosion, simplification, segmentation, decomposition
Deformations
Topology-preserving deformations, shrinking, thinning, deformations of curves, 3D
pictures, and multivalued pictures
Picture properties
Moments, operations on pictures, invariant properties, spatial relations
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For detailed presentation of these and other areas of digital geometry the reader
is referred to the recent monograph [28]. In the rest of this chapter we review some
actual or possible applications in medical imaging implied by theoretical results on
digital manifolds. These applications include visualization of a digitized real object,
identification of its topological or geometric properties (such as its tunnels, gaps,
skeleton, or boundary), as well as certain metric properties. In Section 4.2 we refer
to works providing a theoretical basis for the above-mentioned applications that
are discussed in Section 4.3. We conclude with some remarks in Section 4.4. An
extensive bibliography is provided to facilitate interested readers.

4.2 Digital Manifolds

Digital manifolds play an important role in various facets of the modern information
society. By becoming a “digital society,” the complexity of synthetic digital worlds
is increasing. They often represent surfaces and volumes of real objects. This is for
example the case in such fields as medicine (e.g., organ and tumor measurements in
CT images, beating heart, or lung simulations), bioinformatics (e.g., protein bind-
ing simulations), robotics (e.g., motion planning), engineering (e.g., finite elements
stress simulations), and security (biometrics). With the rapidly growing variety of
synthetic surfaces and volumes, it is becoming critical to develop a relevant theory
of digital manifolds and based on it methods for resolving a wide range of problems.

Theory of digital manifolds is a vivid topic of research. In this section we first
briefly list and comment some literature sources containing recent developments on
the subject. Then we introduce several notions playing an important role in research
and related to applications presented in the subsequent sections.

4.2.1 Research on Digital Curves and Surfaces

Before providing a brief overview of results on digital curves and surfaces, we recall
a few basic notions. Two 3-cells (voxels) c1 and c2 are called α-adjacent iff their
intersection c1 ∩ c2 contains an α-cell, where α ∈ {0,1,2}. Alternatively, two grid
points p1, p2 ∈ Z

3 are called 6-adjacent iff 0 < de(p1, p2)≤ 1, 18-adjacent iff 0 <
de(p1, p2)≤

√
2, and 26-adjacent iff 0 < de(p1, p2)≤

√
3, where de is the Euclidean

distance.
Digital surfaces have been studied frequently over the years. For example, [30]

defines digital surfaces in Z
3 based on adjacencies of 3-cells. A mathematical frame-

work (based on a notion of “moves”) for defining and processing digital manifolds
is proposed in [12]. For obtaining α-surfaces by digitization of surfaces in R

3,
see [15]. It is proved in [40] that there is no local characterization of a 26-connected
subset S of Z

3 such that its complement S consists of two 6-components and every
voxel of S is adjacent to both of these components. Reference [40] defines a class of
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18-connected surfaces in Z
3, proves a surface separation theorem for those surfaces,

and studies their relationship to the surfaces defined in [41]. Reference [3] intro-
duces a class of “strong” surfaces and proves that both the 26-connected surfaces
of [41] and the 18-connected surfaces of [40] are strong. For further studies on
6-surfaces, see [11]. Digital surfaces in the context of arithmetic geometry are stud-
ied in [5]. For various other topics related to digital manifolds we also refer to [9,10].

A recent paper [7] provided the first definition of digital manifolds involving
the notion of dimension in discrete spaces [42]. Accordingly, a digital curve is one
dimensional while a digital surface is (n−1)-dimensional set of voxels, where n is
the dimension of the considered discrete space. The definition allows classification
of all digital manifolds with respect to the type of their “gaps.” The concepts of
tunnels and gaps and their relevance to certain practical problems is discussed next.

4.2.2 Tunnels, Gaps, and Skeletons

A gap is an important notion in discrete geometry and topology. Usually, gaps are
defined through separability as follows: Let a digital object M be m-separating but
not (m−1)-separating in a digital object D. Then M is said to have k-gaps for any
k < m. A digital object without m-gaps is called m-gapfree. See Fig. 4.1.

Homology groups in topology define tunnels, and 2-gaps are sometimes also
discussed as being tunnels. Information about the number of gaps or tunnels has
been a subject of interest in various disciplines, such as digital topology [19, 39, 43,
51], image analysis [32, 37, 49], graph theory [52], and computational modeling of
3D forms [17]. Gaps or tunnels are related to important topological concepts such
as Euler characteristic and Betti numbers. See [28] for more details.

Fig. 4.1 Left: From top to bottom: portions of digital lines defined by 0 ≤ 3x− 5y < 3, 0 ≤ 3x−
5y < 5, and 0≤ 3x−5y < 8. The first one has 1-gaps (and, therefore, also 0-gaps; a 1-gap is pointed
out by an arrow), the second one has 0-gaps (one of them pointed out by an arrow) but no 1-gaps,
and the third one is gap-free. Middle: Portion of a digital plane defined by 0 ≤ 2x + 5y + 9z < 7.
It has 2-gaps (and, therefore, also 1- and 0-gaps). A 2-gap and a 1-gap are pointed out by arrows.
Right: Configuration of voxels (in two different orientations) that features a 0-gap (pointed out by
an arrow)
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For various applications it is useful to obtain the skeleton of a digital set. Skele-
tons represent the basic topological features of the considered object while being
easier to study. They are obtained by thinning algorithms. For more details refer,
e.g., to [25–27, 31, 44–46].

4.3 Applications to Visualization, Processing, and Structural
Analysis of Digitized Objects

In this section we briefly discuss possible applications of digital manifolds, mainly
in the area of medical imaging.

4.3.1 Finding and Counting Gaps

Knowledge about gaps is important for ray tracing or understanding of the topology
of digitized 3D sets (see [21–24]). Assume, for example, that an unknown closed
continuous surface Γ has been digitized, e.g., by a tomography scanner. Let M be
the resulting digital set of voxels. Let the border ∂ (M) of M be determined in a
way to constitute a digital surface. The requirement for gap-freeness of ∂ (M) is
important when a discrete model of a surface is traced through digital rays (e.g.,
for visualization or illumination purposes), since the penetration of a ray through
the surface causes a false hole in it. Knowledge about the type of gaps of ∂ (M) may
predetermine the usage of an appropriate type of digital rays for tracing the border in
order to avoid wrong conclusions about the topology of the original continuous 3D
set having the frontier Γ . Then, for the purposes of surface reconstruction, one will
be able to faithfully model the geometry of the original 3D set. This is of importance
for 3D imaging, e.g., in medicine.

Information about gaps is also important for ensuring correctness of representa-
tion for simulation purposes. For example, a small hole in a heart surface created by
imperfections of the synthetic representation, while possibly insignificant (or simply
unnoticeable) for visualization, renders the synthetic surface useless for blood flow
simulation. Further, finite element simulations may yield incorrect results if surfaces
have singularities. Therefore, it is of primary importance to have sound mathemat-
ical methods that can assure correctness of key topological, geometric, and metric
properties of synthetic surfaces and volumes.

In [8] Brimkov et al. generalize the notion of gap to higher dimensions. The
following formula for the number of (n−2)-dimensional gaps in a digital object S
has been obtained. Let Sk be the set of k-cells of S and si = |Si|, 0≤ k ≤ n. Then

gn−2 =−2n(n−1)sn +2(n−1)sn−1− sn−2 +b,

where b is the number of 221n−2-blocks of S (see [8] for denotations, definitions,
and other details). In particular, the above formula counts the number of 0-gaps and



84 R.P. Barneva and V.E. Brimkov

1-gaps in digital 2D/3D digital objects. A computer program (based on simple linear
time algorithm) has been designed to compute the number of 0- and 1-gaps as well
as other object parameters. The program also allows to visualize the digital picture S
and interactively rotate it along the Ox-, Oy-, and Oz- axes so that the object can be
seen from different viewpoints.

4.3.2 Number of Tunnels

Several works address the more difficult and equally important problem of com-
puting the number of tunnels in a digital object. An algorithm from [49] computes
the number of tunnels in a 3×3×3 neighborhood of a point but not for the whole
region. Several other works [1,2,13,18,20,47] provide algorithms for the problem,
however, with no estimation of the computational complexity.

Using a graph-theoretical approach, in [36] the authors present a computationally
efficient algorithm with a guaranteed polynomial worst case running time. There is
an evidence that the same approach could provide an algorithm to compute homol-
ogy for digitized sets in arbitrary dimension.

4.3.3 Visualization, Skeletonization, and Measurements

Some theoretical developments related to digital manifolds are particularly relevant
to the analysis of curve-like structures in biomedical images. An ongoing research
project [25] at the University of Auckland aims at analyzing confocal microscope
images of human brain tissue (which contain cells called astrocytes, see Fig. 4.2).
These images have been taken layer by layer and constitute a volume defined on a
3D regular orthogonal grid. The curve-like structures have been obtained by apply-
ing a thinning algorithm (see Fig. 4.3). Reference [25] proposes a classification of
voxels in 3D skeletons of binarized volumes for subsequent structural analysis and
length measurements of digital arcs. For the former, a specific graph is associated
with the skeleton (Fig. 4.4). The nodes of the graph, called junctions, exhibit cer-
tain interesting properties. However, within the proposed model they are considered
as singletons that constitute the set of graph vertices. For the purposes of length
measurements, the digital curves are segmented into subsequent maximum-length
digital straight-line segments, and the total length of those is used to evaluate the
length of the curves. For more details we refer to [25].

Note that the arcs of the skeleton form one-dimensional digital curves and as
a whole the skeleton is a digital curve satisfying definitions recently proposed by
Brimkov and Klette [7]. These properties support the segmentation process through
a number of available efficient algorithms and, in turn, the curve length measure-
ments. Note that curve-like structures appear also in other biomedical images, for
example in 3D scans of blood vessels or in 3D ultrasound images.
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Fig. 4.2 Example of an input data set composed of 42 slices of 256× 256 density images generated
by confocal microscopy from a sample of human brain tissue (Courtesy of Gisela Klette)

Fig. 4.3 A skeleton of the binarized volume shown in Fig. 4.2 (Courtesy of Gisela Klette)
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Fig. 4.4 Left: Portion of the skeleton from Fig. 4.2 (junctions are shown as small black squares).
Right: a graph associated with the skeleton from the left. Nodes are labeled by positive integers
(Courtesy of Gisela Klette)

4.3.4 Determination of Object Boundary

Another possible application of the theory of digital manifolds is seen in designing
algorithms for determining the border of a digital object. Because of its importance,
this problem has attracted considerable attention (see, e.g. [16,33,35] and the bibli-
ographies therein).

Our hypothesis is that one would benefit from an algorithm that constructs the
border as a digital surface as defined in [7]. As already discussed earlier, the reason
for this is the knowledge about the gaps in the surface.

If a digital object has been obtained by digitizing a set with a “regular” shape (e.g.
featuring convexity), then, in practice, the border voxels indeed constitute a digital
surface satisfying those definitions. Moreover, for data compression purposes the
obtained digital surface can be “linearized” by partitioning it into polygonal portions
of digital planes. The fact that any digital plane is a digital surface explains why in
practice the requirement for two-dimensionality supports the minimization of the
number of digital plane patches. This problem is considered in more detail in the
next section.

In some cases however it is possible that the border voxels of a digital set do
not constitute a digital surface. This usually happens when the digital object has a
very complex and irregular structure. An illustration of such a complexity is pro-
vided in Figs. 4.5 and 4.6. They present digitized images of a human brain tissues,
studied within the previously mentioned astrocyte project. In such cases, one pos-
sibility is to algorithmically “repair” the set of border voxels in order to make it
two-dimensional. Some theoretical results from [7] suggest that such a digitization
always exists. Repairing digital objects in order to achieve desired properties has
been already used by some researchers (e.g. [35, 50]).
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Fig. 4.5 Left: Large view of a sample of human brain tissue, studied within the astrocyte project.
The data have been obtained by confocal microscopy and visualized in voxel view mode. Right:
Enlarged view of a detail of the volume on the left

Fig. 4.6 Further enlargements of subvolumes of the digital image of Fig. 4.2

4.3.5 Digital Surface Segmentation

Digital surface segmentation is a fundamental problem in image analysis. The main
motivation for it comes from medical imaging and other visualization problems
where discrete volumes of voxels result from scanning and MRI techniques. Since
digital medical images involve a huge number of points, it is quite problematic
to apply traditional rendering or texture algorithms to obtain satisfactory visual-
ization. Moreover, one can face difficulties in storing or transmitting data of that
size. There are multiple sources of data being transmitted for many diverse uses,
such as telemedicine, mine detection, tele-maintenance, ATR, visual display, cue-
ing, and others. In all these applications the coding compression methodology used
is paramount. For this, one can try to transform a discrete data set to a polyhedron,
such that the number of its 2-facets is as small as possible. Such polyhedrizations
are also searched for the purposes of geometric approximation of surfaces as well
as for surface area and volume estimation. Note that the optimization version of this
last problem is NP-hard [4].
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Fig. 4.7 Illustration of a subset of a digital plane D7,17,57,0,57 with its lower and upper convex hulls
on the supporting planes

A detailed accounting of works devoted to digital surface segmentation is avail-
able in a recent survey by Brimkov et al. [6]. Here we briefly comment the incre-
mental algorithm from [29] that appears to be a very efficient one. In order to let
ourselves be more specific, we recall some well-known definitions.

A set Da,b,c,μ,ω = {(i, j,k) ∈ Z
3 : μ ≤ ai + b j + ck < μ + ω} is called a

digital plane with normal n = (a,b,c), intercept μ , and thickness ω . If ω =
max{|a|, |b|, |c|}, then Da,b,c,μ,ω is called a naive plane, that is the thinnest hole-free
digital plane. A digital plane with ω = |a|+ |b|+ |c| is called standard. A digital
plane segment (DPS) is a connected portion of a digital plane. One can define lower
(resp. upper) supporting points that determine the lower (resp. upper) supporting
continuous planes defining a digital plane (see Fig. 4.7). The preimage of a DPS,
S, is the set of planes whose digitizations contain S. It appears to be the solution
of a system of linear inequalities with unknowns a, b, and c. Thus, it is a convex
polyhedron (possibly empty).

The algorithm from [29] takes advantage of certain geometric properties of dig-
ital planes and repeatedly updates a list of supporting planes. The set of points is
accepted as a DPS iff the final list of planes is non-empty. The updating step is
time-efficient.

One can perform a breadth-first search of the face graph to agglomerate the faces
into DPSs. Figure 4.8 illustrates results of the agglomeration process for a digitized
sphere and for an ellipsoid with semi-axes 20, 16, and 12. Faces that have the same
gray level belong to the same DPS. The respective numbers of faces of the digital
surfaces of the sphere and ellipsoid are 7,584 and 4,744. The numbers of DPSs are
285 and 197; the average sizes of these DPSs are 27 and 24 faces.

To complete the polyhedrization process, one sets all the face vertices that are
incident to at least three of the DPSs to be vertices of the polyhedron. Fig. 4.9 (left)
shows the final polyhedra for the sphere and ellipsoid. Note that these polyhedra are
not simple; their surfaces are not hole-free.
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Fig. 4.8 Agglomeration into DPSs of the faces of a sphere and an ellipsoid (grid resolution h = 40)

Fig. 4.9 Two on the left: polyhedrized sphere and ellipsoid. Two on the right: the polyhedrized
sphere and ellipsoid when the breadth-first search depth is restricted to 7

Restricting the depth of the breadth-first search changes the polyhedrization from
global to local and results in “more uniform” polyhedra. Figure 4.9 (right) shows
results when the depth is restricted to 7. The number of small DPSs is reduced and
the sizes of the DPSs are more evenly distributed. The respective numbers of DPSs
are 282 and 180 and their average sizes are 27 and 26; note that these are nearly the
same as in the unrestricted case.

The output of Klette-Sun’s algorithm is not, in general, a valid polyhedron but
like a patchwork of planar segments. It is also desirable to obtain a polyhedron with
the following reversibility property: the polyhedron digitization coincides with the
originally given set of grid points. An algorithm from [14] addresses the problem of
such a reversible polyhedrization.

The main idea is to simplify the polyhedron obtained by a Marching-Cubes (MC)
algorithm [38], using information about the digital surface segmentation. The MC
algorithm is a widely used isosurface generation algorithm in 3D volume data. This
method considers local grid point configurations to replace them by small triangles
composing the global isosurface. With a reference to [34], the triangulated surface
obtained by the MC algorithm is a combinatorial manifold. In other words, the sur-
face is closed, hole-free and without self-crossing. Furthermore, the object boundary
quantization of this polyhedron is exactly the input binary object. See Fig. 4.10.

The output of the algorithm is a digital polyhedron such that a large facet is asso-
ciated to each recognized DPS. The facets of the polyhedron are stitched together
by strips of triangles. These triangles are called non-homogeneous in [14] because
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Fig. 4.10 A {0,1}-binary object and a Marching-Cubes surface obtained with an iso-level in ]0,1[

Fig. 4.11 Left: Final result on the object of Fig. 4.10. Right: Result on a sphere of radius 25

their three vertices do not belong to the same digital plane. The obtained polyhedron
is a combinatorial manifold and possesses the reversibility property. See Fig. 4.11.

For more details on the presented problems and algorithms we refer to the recent
survey on digital planarity [6].

4.4 Concluding Remarks

One of the purposes of this chapter was to introduce the reader to the subject of digi-
tal geometry. In the last two decades the interest to the latter in the scientific commu-
nity is constantly increasing. A number of related conferences provide researchers
in the field with opportunities for regular meetings. Industrial interest to the subject
is increasing, as well. The authors believe that digital geometry is setting itself as a
valuable theoretical foundation for research and software development in all areas
of visual computing, in particular in medical imaging.

Another our goal was to present some directions of ongoing research on digi-
tal manifolds. This appears to be an important direction of digital geometry with
various applications in medical imaging. Mathematically sound foundations may
guarantee high quality rendering of objects, faultless simulations (e.g., of organ
functions), and computational efficiency of the image analysis and processing. In
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order to achieve optimal effect, theoretical research should go in parallel with
applied work. Close collaboration between specialist with diverse expertise will
become increasingly important.
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Chapter 5
Multimodality in Brain Imaging: Methodologic
Aspects and Applications

Sónia I. Gonçalves

5.1 Introduction

The human brain is probably the most sophisticated result of evolution and its exis-
tence has allowed the human species to shape its environment in a definitive way.
Though the structure and function of the brain are very complex, together they make
the brain attain a remarkable degree of effectiveness.

The human brain controls the central nervous system (CNS), the peripheral ner-
vous system (PNS) and it regulates virtually all human activity [1, 24]. Different
types of activity are controlled by different elements of the central-peripheral ner-
vous systems. Involuntary functions such as heart rate control, respiration or diges-
tion are unconsciously controlled through a part of the peripheral nervous system
which is the autonomic nervous system [1, 24] whereas complex mental activities
such as thought, reason or abstraction are consciously controlled.

From an anatomical point of view, the brain can be divided into three parts: the
forebrain, the midbrain and the hindbrain. The forebrain includes the cerebral cortex
which is organized in lobes and it controls higher functions. The human cerebral
cortex is 2–4 mm thick and it plays a central role in many complex brain functions
including memory, attention, perceptual awareness, language and consciousness.
From an evolutionary point of view, what distinguishes humans from other less
developed species is the fact that the mass of the cerebral cortex, specifically that
of the neocortex, which is involved in language and consciousness, increased much
more in the course of time. This evolutionary difference gave humans unique mental
capacities despite having a neuroarchitecture which is very similar to that of more
primitive species.

The working of the human brain has since long been a source of many questions
and hypothesis. For example, Aristotle thought that mental activity was located in
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the heart whereas ancient Greek scholars assumed correctly that the brain had a
role in cooling the body but incorrectly presumed the brain to have radiating func-
tions. The Alexandrian biologists Herophilos and Erasistratus were among the first
to conclude that intelligence was “located” in the brain.

In our days, the study of the brain and its functions is the central role of mod-
ern Neuroscience. It combines disciplines such as Neurophysiology, which aims at
studying the normal healthy brain as well as neurology or psychiatry which focus on
pathology. In parallel, technical developments have allowed the use of new method-
ologies to quantitatively investigate the brain, both from a structural and functional
point of view.

In particular, Neuroimaging has allowed the function of the living brain to be
studied in detail without damaging it.

One of the first techniques to be used in Neuroimaging was Electroencephalog-
raphy (EEG) [20] which consists of measuring the electric activity of the brain from
electrodes placed on the scalp. Two of the main advantages of the EEG, when com-
pared to other techniques is that it measures the electric activity of the brain directly
with a high time resolution (on the level of a single millisecond). It has however
several limitations: the high electric resistivity of the skull smears the EEG signal,
degrading the spatial resolution, and deep sources of activity contribute negligi-
bly to the EEG. A closely related technique to EEG is Magnetoencephalography
(MEG) [21] which measures the magnetic activity produced by the brain with sen-
sors that are placed above the scalp. Similar to EEG, MEG has a high temporal
resolution. However, contrary to the EEG, magnetic fields are much less distorted
by the skull and as a consequence, the spatial resolution of the MEG is better than
that of the EEG. However, MEG is almost insensitive to activity which is radial
to surface of the scalp whereas EEG can detect activity that is both tangential and
radial to the surface of the scalp.

In order to localize the sources of brain activity, several advanced signal process-
ing techniques have been applied to both EEG and MEG data. In formal terms, the
problem is often formulated as finding the sources of the electric/magnetic activity
which is measured on the surface of the scalp, i.e. finding a solution to the Inverse
Problem [15, 27]. The primary technical difficulty is that the Inverse Problem does
not a have a unique solution and therefore strategies to constrain the solution have to
be found. One of the ways to constrain the solution is to specify a model to describe
the source. Source models can be either overdetermined or underdetermined. An
overdetermined model may consist of a few point-like dipolar sources whose loca-
tions and orientations are then estimated from the data. The underdetermined models
may be used in cases where many different distributed areas are activated. In this
situation, because several distributions are possible, the most likely is chosen under
a given criteria [16, 22, 26].

Magnetic resonance imaging (MRI) is a technique which allows the study of
brain structure. It uses the variation in signals produced by water protons in the
body when the head is placed in a strong magnetic field [23] to produce highly
detailed images of the brain anatomy. In the beginning of the 1990s, the understand-
ing that blood flow changes induced by brain activity could be imaged using MRI
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culminated in the development of functional MRI (fMRI). FMRI-BOLD (blood
oxygenation level-dependent) is able to measure small changes in blood oxygena-
tion level associated with brain activity (e.g. due to the activation of a certain brain
involved in some task performed by the subject), which cause slight variations in the
MR signal. By comparing the signal in MR images acquired during the period when
the subject is performing some task (task period) to that acquired during the period
when the subject is at rest (rest period), it is possible to determine which brain areas
were involved in processing a given task. The high spatial resolution of fMRI, of the
order of millimeters makes it the preferred technique to localize a given brain pro-
cess. Contrary to EEG or MEG however, the temporal resolution of fMRI is much
lower (of the order of the second) and it measures electric brain activity indirectly
through the variations in blood oxygenation and blood volume.

Multimodal imaging is a concept which consists of combining existing brain
imaging techniques in order to allow a better interpretation of the data and a bet-
ter understanding of brain functions. The simultaneous measurement of MEG and
EEG is an example of such multimodal approach where advantage is taken of the
different sensitivities of EEG and MEG to radial and tangential sources as well as of
the higher spatial resolution of MEG when compared to EEG alone. Another exam-
ple multimodal imaging is the combination of (f)MRI with EEG or MEG. This
combination of techniques took initially the form of fusion through constraint [14]
where information derived from (f)MRI was used to constrain the solutions of the
EEG/MEG inverse problem. Recently, the possibility of recording EEG and fMRI
simultaneously [6,19] has originated a new approach where the EEG is used to pre-
dict the variations in MR signal, i.e. fusion through prediction [14]. This approach
relates the information derived directly from the electric brain activity to the hemo-
dynamic phenomena which can be localized with a high spatial resolution. It has
therefore the possibility to give new perspectives into neuronal sources.

In this paper, the concept of multimodality is illustrated with two applications.
The first one is a method that combines EEG and MEG to estimate in-vivo the
electric resistivities of brain and skull as way of optimizing the solution to the
EEG/MEG inverse problem. The second application makes use of the co-registration
of EEG and fMRI to study the spontaneous variations of the alpha rhythm [4, 7, 11,
17, 18, 25] during the resting state.

5.2 Materials and Methods

5.2.1 In-vivo Measurement of Brain and Skull Resistivities

5.2.1.1 Data Acquisition

Data from six normal young subjects were acquired using the Omega MEG/EEG
system (CTF Systems Inc.) with 151 MEG channels and 64 EEG channels. Details
can be found in [9, 10]. For the EIT, a sinusoidal current of 60 Hz and 10μV rms.
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Data were acquired at a rate of 1,250 Hz and epochs of 103 s were recorded for each
injecting pair, each epoch consisting of 32 trials of 3.28 s which were recorded in
sequence. For the SEF/SEP data, the median nerve was stimulated with an elec-
tric current having a frequency of 2 Hz and 0.2 ms duration. The current intensity
depended on the subject’s sensitivity and it varied between 2.5 and 12 mA. After
stimulus onset, MEG and EEG were simultaneously recorded at a rate of 1,250 Hz.
A total of 500 to 700 epochs of 0.44 s were recorded in order to improve the SNR
of both EEG and MEG.

5.2.1.2 EIT Method

The application of the principles of EIT (Electric Impedance Tomography) in com-
bination with EEG to estimate in-vivo the resistivities of brain and skull has been
demonstrated in [8–10]. The principles are illustrated in Fig. 5.1.

A known current I is injected into the scalp and the resulting potential distri-
bution V is measured. The head geometry is assumed to be known and it can be
described using a spherical model (Fig. 5.1) consisting of three concentric spheres
representing brain, skull and scalp respectively. Alternatively, a realistic model for
the head can be used and in this case, the contours corresponding to the three head
compartments are derived from the individual MR scans. In both cases, the mod-
els are considered to be homogeneous and isotropic. Since injected current, poten-
tial distribution and head model are known, the only unknowns that remain are the
resistivities of brain (ρbrain) and skull (ρskull) where it is assumed that ρscalp = ρbrain.

In the case of the spherical head model, an analytic solution is available and it can
be found in [8]. For the realistic head model only a numerical solution is available
and it is found using the BEM (Boundary element method) according to what is
described in [9] (Fig. 5.2). Briefly, each surface is discretized into a set of triangles
(Fig. 5.2b) and a solution to a system of equations in matrix form is found.

scalp

skull

brain

Fig. 5.1 Schematic representation of the principles of EIT when applied to estimate the resistivities
of brain and skull
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(a) (b)

Fig. 5.2 Realistic model for the head. (a) Schematic representation of the head compartments with
boundaries S0 (scalp), S1 (skull) and S2 (brain) and corresponding electric resistivities The “+”
and “−” subscripts refers to inner and outer resistivities respectively. (b) Example of discretized
surface to be used with BEM

Fig. 5.3 Schematic representation of the combined analysis of SEF/SEP data to estimate the elec-
tric resistivities of brain and skull

5.2.1.3 Combined Analysis of Somatosensory Evoked Fields (SEF)
and Somatosensory Evoked Potentials (SEP)

In this approach, the combined analysis of SEF/SEP data, for which it is well known
that both for MEG and EEG a single dipole model is adequate, is used in order to
estimate the electric resistivities of brain and skull. The formal description of the
method can be found in [10] and it is schematically represented in Fig. 5.3. Briefly,
the method can be resumed to the following steps:
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(a) The sources that best explain the MEG data at time instants around the N20
response are determined. The positions and the tangential components (MT) of
the sources are then known.

(b) The EEG data is used to fit the remaining unknowns: the radial components
(MR) of the dipoles, ρbrain, and ρskull/ρbrain.

5.2.2 The Study of the Spontaneous Variations of the Alpha
Rhythm Using Co-registered EEG-fMRI

5.2.2.1 Data Acquisition

EEG and fMRI data was acquired from eight healthy subjects while the subjects
lied still inside the scanner. The subjects were instructed to keep their eyes closed,
remain rested but without falling asleep. The goal was to optimize the conditions
to record the spontaneous variations of the alpha rhythm. The EEG was acquired
using an MR-compatible EEG amplifier (SD-MRI, Micromed, Treviso, Italy) at an
acquisition rate of 1,024 Hz. Functional images were acquired on a 1.5 T MR scan-
ner (Magnetom Sonata, Siemens, Erlangen, Germany) using a T2∗-weighed EPI
sequence, with a TR equal to 3 s and 24 transversal slices covering the complete
occipital lobe and most of the parietal and frontal lobes. A total of 400 volumes,
i.e. 20 min of data, was recorded for each subject. In addition, a high resolution
MPRAGE sequence was also acquired in order to provide the anatomical refer-
ence to the functional scans. Further details regarding data acquisition can be found
in [11].

5.2.2.2 Data Processing

The EEG data was first corrected for gradient and pulse artefacts caused by the
MR sequence according to the method described in [12]. Subsequently, the data
was processed in order to derive the average temporal power variation of the alpha
rhythm corresponding to several bipolar derivations of interest located in the central
and occipital regions. The functional MR data was motion corrected and spatially
smoothed with a spatial filter of 4 mm radius.

The BOLD signal in each voxel was correlated to the average alpha power time
series using the General Linear Model (GLM) (Cox et al. 1995; Kherif et al. 2002;
Worsley et al. 2002). Furthermore, the average alpha power time series was con-
volved with a canonical hemodynamic response function (HRF) [5]. The correction
for multiple comparisons was made by means of controlling the false-discovery rate
(FDR) (Benjamin and Hochberg, 1995). Further details can be found in [11].
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5.3 Results

5.3.1 In-Vivo Measurement of Brain and Skull Resistivities

The results obtained for the spherical model using both the EIT method and the
combined analysis of SEF/SEP data are presented in Table 5.1 and Fig. 5.4. Results
show that there is an agreement between both methods, especially regarding the
values of ρskull/ρbrain. Only for subjects one and six the agreement is not so good.
But for this subjects the absolute values of ρskull and ρbrain differ also more amongst
the two methods. It is also observed that most of the inter-subject variability in the
values of ρskull/ρbrain results from the variability associated with ρskull.

The results obtained for the realistic head model are presented in Table 5.2 for
the EIT method.

Table 5.1 Results obtained for the spherical model using both the EIT method and the combined
analysis of SEF/SEP data. The entry identified with SD refers to the standard deviation associated
with the computed average

Subject ρbrain ρskull ρskull/ρbrain ρbrain ρskull ρskull/ρbrain
(Ω cm) (Ω cm) (Ω cm) (Ω cm)

1 440 13,300 30 175 7,441 43
2 245 30,800 127 – – –
3 280 26,900 96 280 24,000 86
4 295 20,000 68 250 16,300 65
5 245 16,100 66 250 18,600 74
6 330 15,000 45 215 14,600 68
Average 305 20,355 – 234 16,185 –
SD (%) 24 35 – 17 37 –

Fig. 5.4 Plot of ρskull/ρbrain computed using the EIT method against the same parameter obtained
with the combined analysis of SEF/SEP data. The identity line is also plotted for comparison
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Table 5.2 Results obtained for the spherical and realistic models for the EIT method

Subject Spherical Realistic
ρbrain ρskull ρskull/ρbrain ρbrain ρskull ρskull/ρbrain

(Ω cm) (Ω cm) (Ω cm) (Ω cm)

1 435 13,272 30 333 11,928 36
2 243 30,799 127 292 12,344 42
3 279 26,898 96 292 14,217 49
4 295 20,057 68 311 13,598 44
5 245 16,072 66 234 13,174 56
6 332 15,031 45 346 8,119 23

Fig. 5.5 Typical example of a spectrogram obtained during rest. The yellow profile shows the
temporal variations of the alpha rhythm

From Table 5.2 it can be seen that the inter-subject variability of ρskull/ρbrain
decreases considerably when using realistic models, being that this decrease is
mainly do the lower inter-subject variability associated with ρskull.

5.3.2 The Study of the Spontaneous Variations of the Alpha
Rhythm Using Co-registered EEG-fMRI

A typical example of a spectrogram obtained during rest is shown in Fig. 5.5. The
superimposed yellow profile shows the temporal variations of the alpha rhythm
power. In the figure, brighter colors correspond to larger power values whereas
darker colors correspond to lower power values. In Fig. 5.6, samples of EEG signals
recorded with eyes open and eyes closed are shown. These signals were corrected
for gradient artefacts and the absence/presence of the alpha rhythm is well visible.
Also visible is the pulse artefact which is identified with a circle. As mentioned
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Fig. 5.6 Samples of EEG signals obtained in eyes open and eyes closed conditions. The circle
shows the pulse artefact

Fig. 5.7 Individual correlation maps corresponding to three representative subjects

before, this type of artefact was corrected using the method presented in [12]. In
Fig. 5.7, typical examples of the correlation distribution between the spontaneous
variations of the alpha rhythm is shown for three different subjects. It can be seen
that in general the alpha rhythm is negatively correlated to BOLD is cortical regions,
although for one of the subjects the correlations are positive. Furthermore, as shown
in more detail in [11] positive correlations between alpha and BOLD are also found
in the thalamus, thus confirming previous studies [7,17,18,25]. Contrary to previous
studies however, remarkable inter-subject variability was observed.
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5.4 Discussion and Conclusions

The results obtained for the in vivo computation of brain and skull resistivities show
that the variability of the resistivity among subjects, using spherical models, was
confirmed by two independent methods. Furthermore, it was shown that the realistic
models corrects for the true skull thickness for each subject. This eliminates the
compensation effect resulting from using the same skull thickness for all subjects,
when using the spherical model. This corrects then for an over- or underestimation
of the resistivities as explained in detail in [8]. However, even with realistic models,
the average of ρskull/ρbrain amongst subjects is approximately half the value that
is commonly accepted, i.e. 80. Furthermore, even with realistic models, some inter-
subject variability can still be observed which might eventually explained by natural
causes.

The results regarding the spontaneous variations of the alpha rhythm suggest that
the resting state is not comparable amongst subjects and sometimes, not even within
one subject. In addition, a recent study [4] about the HRF of the alpha rhythm shows
that although the its shape appears to be very constant over subjects, the delay in
peak response tends to vary systematically over different brain regions.

As the resting state plays an important role in fMRI analysis where the paradigms
are of the type “rest-task”, the abovementioned inter-subject variability should
be considered when questioning how comparable are fMRI results from different
subjects.

The advantage of using multimodality to study the brain function has been
demonstrated using two examples of significant importance in the field of brain
imaging. Multimodality implies a deep insight into each of the techniques being
used in order to overcome problems of technical nature. This usually requires
a multidisciplinary collaboration. Furthermore, multimodality also poses new
methodological questions that require a deep and fundamental understanding of
each technique. Nevertheless, the future research of the brain lies in the use of
multimodality as this is the best way to gather complementary information about
the brain processes.

References

1. Afifi AK, Bergman RA (2005) Functional neuroanatomy: text and atlas. McGraw-Hill,
New York.

2. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and power-
ful approach to multiple testing. JR Statist Soc B 57(1): 289–300.

3. Cox RW, Jesmanowicz A, Hyde JS (1995) Real-Time functional magnetic resonance imaging,
MRM 33: 230–236.
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Chapter 6
Research Steps Towards Human Sequence
Evaluation

Jordi Gonzàlez, F. Xavier Roca, and Juan J. Villanueva

Abstract Human Sequence Evaluation (HSE) concentrates on how to extract
descriptions of human behaviour from videos in a restricted discourse domain, such
as (i) pedestrians crossing inner-city roads where pedestrians appear approaching
or waiting at stops of busses or trams, and (ii) humans in indoor worlds like an
airport hall, a train station, or a lobby. These discourse domains allow exploring a
coherent evaluation of human movements and facial expressions across a wide vari-
ation of scale. This general approach lends itself to various cognitive surveillance
scenarios at varying degrees of resolution: from wide-field-of-view multiple-agent
scenes, through to more specific inferences of emotional state that could be elicited
from high resolution imagery of faces. The true challenge of HSE will consist
of the development of a system facility which starts with basic knowledge about
pedestrian behaviour in the chosen discourse domain, but could cluster evaluation
results into semantically meaningful subsets of behaviours. The envisaged system
will comprise an internal logic-based representation which enables it to comment
each individual subset, giving natural language explanations of why the system has
created the subset in question.

6.1 Introduction

Hermeneutics, according to Wilhelm Dilthey, is the art of interpretation of hidden
meanings. The name comes from HERMES, the God known as the messenger of the
intentions of the Gods to the human beings. In particular, interpretation in cultural
sciences requires to know its object, a human being, from the inside. That means,
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we can infer the intentions of a person because we also are persons. Towards this
end, we will address basic methods for the extraction, description and animation of
human motion in the same scenario (indoor or outdoor), and new methods for the
interpretation of dynamic scenes.

The design and implementation of such a cognitive system still constitutes a chal-
lenge, even if the discourse domain will be drastically constrained within which it
is expected to operate. An algorithmic system with analogous capabilities can be
considered an instantiation of a ‘cognitive system’. In particular, the term Human
Sequence Evaluation (HSE) denotes the design, implementation and evaluation of
such a cognitive system [11]. In general terms, we proposed to develop towards
weakly embodied cognition within a system for understanding an environment con-
taining autonomous agents. By understanding, we mean that the system must move
beyond merely describing the scene: in addition it must be able to reason about the
scene and give suitable explanations for various events and behaviours.

Thus, the generation of semantic descriptions conveys the meaning of motion,
i.e. where, when, what, how and also why the motion is being detected. As a result,
this high-level understanding provide a richer, broader and even more challenging
domains of research, which will encompass not only research in Computer Vision,
but also in Pattern Recognition, Artificial Intelligence and Computer Animation, to
cite few.

At present, few video surveillance systems exploits all these aspects of cogni-
tion: we restrict cognition to assure HSE, that means, on the one hand, to develop
transformation processes to perform human motion understanding and, on the other
hand, to convey inferred interpretations to human operators by means of natural
language texts or synthesized agents in virtual environments.

This paper presents how HSE considers the interpretation of human motion
as a transformation process between raw video signals and high-level, qualitative
descriptions. At least, this process will involve (i) the extraction of relevant visual
information from a video sequence, (ii) the representation of that information in a
suitable form, and (iii) the interpretation of visual information for the purpose of
recognition and learning about human behaviour.

6.2 State of the Art

During the past three decades, important efforts in Computer Vision research
have been focused on developing theories, methods and systems applied to video
sequences [22]. Broadly speaking, research is focused on describing where and
when motion is being detected by camera sensors. For this purpose, the goal is set
to describe motion using quantitative values, such as the spatial position of a given
agent over time, for example.

Suitable discourse domains are, e.g., well-frequented streets, pedestrian-
crossings, bus-stops, reception desks of public buildings, railway platforms. This
demand in surveillance systems is due to the huge amount of video which should be
selected, watched, and analyzed by a small number of operators in real time. Current
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textual descriptions generated automatically from surveillance sequences helps to
detect abnormal and dangerous situations on-line. As a long-term result of HSE,
surveillance systems will not only recognize and describe, but also predict abnormal
or dangerous behaviours on-line, instead of merely record video sequences.

The basis of current research in any of the aforementioned domains is the detec-
tion of agents within the scene. Two different approaches are found in the litera-
ture, namely, background modeling/substraction and motion detection. The former
necessitates implementing a suitable background model of the scene to determine
foreground regions. Most referred publications use a background modeling-based
approach [12, 18, 35]. On the other hand, motion detection computes motion infor-
mation from consecutive frames. Consequently, an action can be described in terms
of a proper motion characterization [19, 21, 30].

Additionally, tracking procedures are usually incorporated in order to reduce seg-
mentation errors [32]. In recent years, new tracking techniques are defined based on
a hypothesis/validation principle [5]. Thus, the tracking process is modeled using a
probabilistic scheme, which is based on the Bayes’ rule [3, 14, 28, 34].

Tracking techniques should embed knowledge about the human agent, such as
its observed motion, appearance, or shape. This knowledge can be based on image
features or predefined body models. On the one hand, the spatial information of the
agent state in video surveillance systems is often represented using simple image
features, such as points, lines, or regions.

Most popular representations are blobs [17] or blob attributes, such as the cen-
troid, median or bounding box. On the other hand, model-driven approaches incor-
porate known physical constraints of limbs and extremities of the body to help both
localisation and tracking. By providing a synthetic body model, anatomical infor-
mation and kinematic constraints are incorporated into the action model, thus allow-
ing tracking of limbs, synthesis of motion, and performance analysis. Most referred
models are those based on stick figures [6, 7, 15], 2-D contours [38, 40] and volu-
metric models [2, 10, 27].

Once the body model is properly tracked over time, it is possible to recognize
predefined motion patterns and to produce high-level descriptions. In fact, the basis
of motion understanding is action recognition. In order to deal with the inherent
temporal and spatial variability of human performances, suitable analytical meth-
ods have been used in the literature for matching time-varying data. Most referred
algorithms are Dynamic Time Warping (DTW), Hidden Markov Models (HMM)
and Neural Networks (NN) [9, 39].

Subsequently, human motion information is then combined with the known infor-
mation about the environment in order to derive complex semantic descriptions [11].
From a semantic perspective, conceptual predicates extracted from video sequences
are classified according to different criteria, such as specialization relationship [15],
semantic nature [29] or temporal ordering [13]. Likewise, suitable behaviour mod-
els explicitly represent and combine the specialization, semantic and temporal rela-
tionships of their constituent semantic predicates [24]. For this purpose, semantic
primitives involved in a particular behaviour are organized into hierarchical struc-
tures, such as networks [31] or trees [16, 37] which allow motion understanding.
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On the one hand, semantic interpretation is still mostly restricted to express the
relationships of an agent with respect to its environment. However, the internal state
of the agent has traditionally received little (or none) attention in human motion
understanding. But human agents have inner states (based on emotions, personality,
feelings, goals and beliefs) which may determine and modify the execution of their
movement. These inner states are hard to be derived from a single picture. Instead,
we need image sequences to evaluate emotions, like sad, happy or angry, in a tem-
poral context.

Emotion descriptions will require high-detailed images which will be obtained
by means of active cameras. In fact, camera’s zoom are controlled to supply imagery
at the appropriate resolution for motion analysis of the human face, thus facilitating
emotion analysis [4, 41]. Current state-of-the-art is mainly concerned with posed
facial expression recognition. In the proposed scenario, we would encounter spon-
taneous expressions that are considerably more difficult to handle. Only few publi-
cations can be found on spontaneous facial expression recognition and are mostly
limited to very specific facial motions such as eye blinking.

On the other hand, semantic interpretation also leads to uncertainty, due to the
vagueness of the semantic concepts utilized, and the incompleteness, errors and
noise in the agent state’s parameters [20]. In order to cope with the uncertainty
aspects, integration and fusion methods can be learnt using a probabilistic frame-
work: PCA, Mixtures of Gaussians (MoG) [8,23] and Belief Networks (BN) [13,29]
provide examples. Alternatively, Fuzzy Metric Temporal Logic (FMTL) can also
cope with the temporal and uncertainty aspects of integration in a goal-oriented
manner [33].

6.3 Approach to Research

The main objective of HSE is to develop a cognitive artificial system based in a
framework model which allows both recognition and description of a particular set
of human behaviours arising from real-world events. Specifically, we propose to
model the knowledge about the environment in order to make or suggest interpreta-
tions from motion events, and to communicate with people using natural language
texts, audio or synthetic films. These events will be detected in image data-streams
obtained from arrays of multiple active cameras (including zoom, pan and tilt).

HSE thus aims to design a Cognitive Vision System for human motion and
behaviour understanding, followed by communication of the system results to end-
users, based on two main goals. We assume that three different types of descriptions
can be obtained, which depend on the resolution of the acquisition process: facial
expressions, body postures and agent trajectories, where each topic demands its own
specific requirements and computational models for a proper representation.

So the first goal is to determine which interpretations are feasible to be derived
in each category of human motion, see Fig. 6.1. Consequently, for each category,
suitable human-expressive representations of motion will be developed and tested.
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Fig. 6.1 Human-expressive representations of motion

In particular, HSE will interpret and combine the knowledge inferred from three
different categories of human motion, namely the motion of agent, body and face,
in the same discourse domain.

The distinction between these motion categories is due to the fact that knowledge
of different nature is required to interpret agent trajectories, body poses and facial
expressions, since these types of interpretations strongly depend on the details of
motion which can be inferred from active video cameras. The strategy is to obtain
the available information at a particular level (i.e., agent), thereby providing this
incomplete knowledge to higher levels (i.e., body and face) which can update their
representations as more information becomes available, and which can feedback the
new information to the lower level.

The second objective of HSE is set to establish how these three types of interpre-
tations can be linked together in order to coherently evaluate the human motion as a
whole in image sequences. Such evaluation will require, at the very least, to acquire
human motion from video cameras, to represent the recorded human motion using
computational models, to understand the developments observed within a scene
using high-level descriptions, and to communicate the inferred interpretations to
a human operator by means of natural language texts or synthesized virtual agents
as a visual language.

Thus, the main procedure of HSE will be the combination of:

• Detection and tracking of agents while they are still some distance away from a
particular location (for example a bus station, a pedestrian crossing, or a passen-
ger in an airport, or a guest in a lobby).
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• When these agents come closer to the camera, or when the active camera zooms
in on these agents, their body posture will be evaluated to check for compatibility
with behaviour hypotheses generated so far.

• If they are even closer and their face can be resolved sufficiently well, facial
emotions will be checked in order to see whether these again are compatible
with what one expects from their movements and posture in the observational
and locational context which has been accumulated so far by the system.

Naturally, the interest is greater to integrate the three different components of human
motion for someone approaching than someone leaving the camera. In addition, the
most complex task (emotion evaluation) will come last, when the most is known
already about the person in question from the preceding observations. Moreover,
emotion recognition will become more specific because it can be embedded into
the context of the preceding observations and it can exploit the rigid and non-rigid
motion of the face.

A suitable discourse domain comprises two types of scenarios: (i) open worlds
(such as well-frequented streets, pedestrian-crossings and bus-stops), and (ii) indoor
worlds (airports, train stations or lobbies, for example). Multiple active cameras
will record people to infer what the humans intend to do. The main objective is the
characterisation of humans to study the behaviour of people in these domains. It
will be interesting whether the abilities to detect, track and characterize pedestrians
would already be sufficiently advanced to reliably detect regional differences within
the EU.

By implementing the aforementioned tasks, HSE will fulfill two main objectives,
see Fig. 6.2: on the one hand, the goal will be description, or the generation of
conceptual descriptions based on acquired and analysed motion patterns. On the

Fig. 6.2 Evaluation of human behaviours in image sequences
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other hand, the aim will be communication using visualization, or the generation of
synthetic motion patterns based on textual descriptions.

Firstly, natural language text generation will be accommodated within HSE based
on the following considerations:

• Semantic descriptions will enable researchers to check details of the conceptual
knowledge base.

• Semantic descriptions will allow communication with end-users of HSE in a
most natural manner.

• Semantic descriptions will support conceptual abstraction, thereby facilitating
the communication of short messages or essential details, possibly in response
to inquiries communicated by a microphone near the recording camera or by an
UMTS mobile phone, for example for blind people.

Descriptive texts will be applied to outdoor or indoor scenes from different parts
of the EU. The inclusion of videos from different parts of Europe will also consti-
tute a means to prevent over adaptation of HSE to a small set of learning videos.
In addition, once a system-internal conceptual representation has been built, it will
be possible to enlarge this for natural language text generation in the languages
of all groups cooperating within HSE. Also, we will test whether the same video
recordings are interpreted in different manners in different parts of Europe (or sim-
ilar situations just happen in a different manner, for example people nicely queuing
up at a bus station in one country and habitually cluster around the bus doors in
another). Thus, on the one hand, HSE will achieve automatic translation of visual
information and, on the other hand, it will be able to investigate how and why human
motion may produce different descriptions, due to the cultural characteristics of the
areas where a given language is spoken.

Secondly, animation will be accommodated within HSE based on the following
considerations:

• Analysis-by-synthesis at the three stages of human behaviour, i.e. motion of peo-
ple, their posture analysis, and their face characterisation.

• Animated computer graphics as a visual language to quickly communicate essen-
tial aspects to involved people like bus-drivers, policemen for helping people at
pedestrian crossings, waiters in a lobby, etc.

• Animated computer graphics, again at three motion categories, for checking the
conceptual knowledge base underlying the entire approach. Since this knowledge
base is expected to grow or need adaptation throughout the project, animated
computer graphics will provide the means to quickly check larger parts.

Using both natural language text generation and animation, quantitative measures
and qualitative descriptions will be developed to analyze the robustness and the
efficiency of the proposed cognitive system. In fact, the performance of the system
will be studied by considering the following strategy [1,25]: let the system generate
a synthetic image sequence using the textual descriptions obtained from a previously
recorded image sequence. Both synthetic and original sequences can be compared
to evaluate the suitability and correctness of the knowledge being considered so far.



112 J. Gonzàlez et al.

Additionally, it will be possible to assess the results of the system by controlling
the inference processes which are applied. The objectives will be:

• To trace the computational process which generates the result
• To determine the internal information requested by the system and
• To assess the selection of a particular interpretation

As a result, it will become easier to debug the system. Therefore, the designer can
decide to incorporate extra knowledge (by means of models, restrictions, and default
options) for improving the performance of the system in terms of reliability. Also,
there will be an increase of confidence of end-users in the results reported by the
system: evaluation, in the sense of explanation, will ease the understanding of the
results by non-expert users.

6.4 Innovation Brought by HSE Research

As an innovation, HSE proposes to develop an unified framework for human motion
analysis which will be applied to confront both animation and description. Our basis
is that procedures for synthetic video generation should rely on knowledge very
similar to the knowledge required for textual description.

Image-sequence evaluation will be driven to incorporate assessment strategies to
guide and validate the system results by:

• Presenting the results of cognition using natural language texts or virtual anima-
tions and

• Arguing about inferred interpretations in order to assist and validate the system
processes

Using this know-how, we will be able to look for characterizing the behaviour of
pedestrians approaching to a traffic-light-controlled pedestrian-crossing of a well-
frequented inner-city street, for example. In this particular domain, a pedestrian-
crossing could switch to green without grossly interfering with vehicle traffic by
preparing the transition phase (green-yellow-red for vehicles) while vehicles are
still some distance away. Also, switching back to green earlier, even saving gas,
thus helping the environment, compared with stopping a cavalcade of vehicles in
full drive after having had the pedestrians waiting for several minutes. A similar
idea could survey the environment around bus-stops with an associated gain in effi-
ciency and comfort for all involved agents. Furthermore, provided one can extend
this characterization of pedestrians reliably enough, it might become possible to
design special help for handicapped people.

The basic procedure of HSE will be the combination of detection and tracking of
agents while they are still some distance away from a particular location. Detecting
and tracking people in crowded scenes is a challenging problem as people differ
in their appearance caused by various types and styles of clothing and occluding
accessories, undergo a large range of movements and moreover occlude each other.
Previous approaches have either used appearance-based models or local features to
detect people while a majority of trackers is still based on interactive initialization.
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In HSE, cooperating pan-tilt-zoom sensors will also enhance this process of cog-
nition via controlled responses to uncertain or ambiguous interpretations. Therefore,
the challenge will be to provide sensor data for each of the modules by coupling the
modules together in a sensor perception/action cycle [26, 36]. These cooperating
pan-tilt-zoom sensors involved in acquisition will also serve the purpose of pro-
viding sensor data for each of the modules, but more importantly couple the other
workpackages together in a sensor perception/action cycle. The use of zoom will
provide an unification for interpretations of different resolution imagery, and will
bestow the ability to switch the sensing process between different streams in a con-
trolled fashion.

6.5 Conclusions

Multiple issues will be contemplated to perform HSE, such as detection and local-
ization; tracking; classification; prediction; concept formation and visualization;
communication and expression, etc. And this is reflected in the literature: a huge
number of papers confront some of the levels, but rarely all of them. Summarizing,
agent motion will allow HSE to infer behaviour descriptions. The term behaviour
will refer to one or several actions which acquire a meaning in a particular context.

Body motion will allow HSE to describe action descriptions. We define an action
as a motion pattern which represents the style of variation of a body posture during
a predefined interval of time. Therefore, body motion will be used to recognize style
parameters (such as age, gender, handicapped, identification, etc.).

Lastly, face motion will lead to emotion descriptions. The emotional character-
istics of facial expressions will allow HSE to confront personality modeling, which
would enable us to carry out multiple studies and researches on advanced human-
computer interfaces.

So these issues will require, additionally, assessing how, and by which means,
the knowledge of context and a plausible hypothesis about he internal state of the
agent may influence and support the interpretation processes.
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Chapter 7
3D Object Reconstruction from Uncalibrated
Images Using an Off-the-Shelf Camera

Teresa C.S. Azevedo, João Manuel R.S. Tavares, and Mário A.P. Vaz

Abstract Three-dimensional (3D) objects reconstruction using just bi-dimensional
(2D) images has been a major research topic in Computer Vision. However, it is
still a hard problem to address, when automation, speed and precision are required
and/or the objects have complex shapes or image properties. In this paper, we com-
pare two Active Computer Vision methods frequently used for the 3D reconstruction
of objects from image sequences, acquired with a single off-the-shelf CCD camera:
Structure From Motion (SFM) and Generalized Voxel Coloring (GVC). SFM recov-
ers the 3D shape of an object based on the relative motion involved, while VC is a
volumetric method that uses photo-consistency measures to build the required 3D
model. Both methods considered do not impose any kind of restrictions on the rela-
tive motion involved.

7.1 Introduction

Three-dimensional (3D) models built by computational systems are an intensive
and long-lasting research problem for the Graphic and Computer Vision research
communities. Since Computer Vision is concerned with the development of com-
putational theories and methods for the automatic extraction of useful information
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from images, it offers the opportunity to build 3D models directly from real-world
scenes with high accuracy and visual realism.

The main goal of this work was to compare two Computer Vision image-based
methods commonly used for 3D objects reconstruction: Structure From Motion
(SFM) and Generalized Voxel Coloring (GVC). This paper starts with an intro-
duction to the state-of-art in 3D reconstruction, describing some commonly used
reconstruction methods. After, some emphasis on SFM and GVC reconstruction
methods is given. Then, the followed methodologies are described. After, some
of the obtained experimental results are presented. Finally, some conclusions and
guidelines for future work are given.

7.2 3D Reconstruction

Since most 3D reconstruction methods require considerable computational and
imaging resources, there is always a trade-off between used hardware and software,
computational complexity and results accuracy, realism and processing speed. In
the last decades, the explosive growth in computers processing power and memory
storage and their continuous reducing price, has enabled the common use of 3D
reconstruction solutions in a variety of application fields, such as:

• Industry, for instance, in clothing industry (e.g. [1,2]), on-line measurements and
production line control (e.g. [3, 4])

• Navigation systems, for example, in autonomous vehicle guidance (e.g. [5, 6])
and pose estimation (e.g. [7, 8])

• Virtual reality, such as to build virtual actors, objects or environments (e.g. [9,
10]) and augmented/mixed reality (e.g. [11, 12])

• Biomedicine, in anthropometric studies (e.g. [13, 14]), detection of tumors or
other deformations (e.g. [15, 16]), manufacturing of prosthetic devices (e.g. [17,
18]) and surgery planning (e.g. [19, 20]), for example

• Architecture/archaeology, for instance, in 3D architectural site reconstruction
(e.g. [21, 22]) or archeological documentation (e.g. [23, 24])

• Security systems, like in visual surveillance (e.g. [25,26]) and biometric or mor-
phologic information retrieval (e.g. [27, 28])

7.3 Methods for 3D Reconstruction

The usually available methods for 3D reconstruction of objects are typically classi-
fied into contact or non-contact, Fig. 7.1.

Contact-based methods can achieve high accuracy levels and are suitable for a
wide range of applications. However, these methods involve mechanical movement
of a probe device from one measurement point to the next. Consequently, the data
acquisition can be very time consuming. Moreover, since the probes collect only a
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Fig. 7.1 Common division of usual 3D reconstruction methods

sparse data set from the object to be reconstructed, some of its critical areas might
stay unmeasured. Also, the act of scanning the object by touching it can modify
or even damage it, in particular if the object involved is very soft. CMMs (Coor-
dinate Measuring Machine) capable of measuring objects of large dimensions are
very large in size and so somewhat cumbersome to be used in usual production envi-
ronments. Furthermore, frequently they need to be placed in controlled-environment
rooms, for their protection against temperature variation and vibrations [29].

Nowadays, the generation of a 3D model is mainly achieved by using non-contact
image-based methods. These are usually divided into two main groups [30]:

1. Active: methods that require some sort of energy projection (such as, lasers or
structured light) or use the relative motion between camera(s) and objects, to
obtain 3D information on the objects shape

2. Passive: methods that do not require energy projection or relative motion, and
work under ambient illumination

Most common non-contact methods use image data, range sensors, or a combination
of both. Image-based methods are widely used, in particular for industrial applica-
tions (e.g. [4, 31]), or for precise terrain and city modeling (e.g. [21, 32]).

Range sensors acquire distance measurements from a well known 3D reference
coordinate system to the surface points on the object to be reconstructed. They are
very common when highly detailed models are required and are already used in
industry (e.g. [33,34]), for documentation of buildings and landscapes (e.g. [35,36])
or for the recording of objects in archaeology and cultural heritage (e.g. [37, 38]).
However, they are costly (at least for now), spatially limited, most of the systems
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available do not provide color information about the reconstructed object and the
quality of the obtained 3D models can be affected by the reflective characteristics of
the objects surfaces [39].

The main difference between image- and range-based methods is that, when
using image data, it is necessary to have a mathematical model to derive the objects
3D coordinates, which can be sometimes a complex problem to solve [40]. Building
3D models using range methods is simpler, because the range data acquired already
contains the 3D coordinates necessary for the 3D reconstruction.

The next two subsections will focus on two commonly used image-based recon-
struction methods: Structure From Motion (SFM), that belongs to the standard
stereo-based methods, and Generalized Voxel Coloring (GVC), that belongs to the
more recent volumetric reconstruction methods.

7.3.1 Structure from Motion

Proposed in [41], SFM is a stereo-based method, Fig. 7.2. It uses the relative motion
between the camera(s) used and the objects to be reconstructed, to make assump-
tions about the 3D objects shape. Thus, by knowing the trajectories of objects fea-
ture points in the image plane, this method determines the 3D shape and motion that
better describes most of the trajectories of the referred points.

This method has received several contributions and diverse approaches: for
example, in [42] the use of an extended Kalman filter was investigated for esti-
mating the motion and structure from a sequence of monocular images; in [43]
an algorithm was developed for shape and motion estimation under orthographic
projection using the factorization projection; in [44] a method was proposed that
computes the final reconstruction from intermediate reconstructions by analyzing
the uncertainties in them, rather than from image data directly; in [45] the problem

Fig. 7.2 Stereo vision principle: 3D coordinates of point P are determined through the intersection
of the two lines defined by the optical centers O and O′ and the matched 2D image points p and p′
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of solving the SFM issue without prior knowledge of point correspondence was
addressed; more recently, in [46], an holistic approach was used to compute SFM
in stages by gradually computing 3D scene information of increasing complexity
through processes which operate on increasingly large spatial image areas; among
many others. However, SFM may suffer from difficulties on finding interest points
and/or matching them along the input image sequence [47]. First, if the object to
reconstruct has a smooth surface and low texture, the extraction of interest features
may be difficult or even incorrect since the local appearance is uniform within the
neighborhood of each candidate feature. Secondly, matching correspondence can-
not be established by just comparing local image measurements, unless the object
has a lambertian surface; that is, its appearance does not change with the viewpoint.
Finally, occlusions in the scene make the correspondence between images difficult
or even impossible to obtain.

7.3.2 Generalized Voxel Coloring

As referred earlier, stereo-based methods, like SFM, fail to capture objects with
complex shapes, smooth surfaces with lack of texture or when occlusion phenom-
ena occur.

For smooth objects, 3D reconstruction using volumetric methods have been quite
popular for some time [48]. These methods are silhouette-based reconstruction
methods: intersecting the visual cones generated by the silhouettes and the pro-
jection centers of each image, a 3D model can be determined, Fig. 7.3. This 3D
model is denominated as visual hull [49], a locally convex over-approximation of
the volume occupied by an object.

Fig. 7.3 Visual hull obtained from two different viewpoints (C1, C2)
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Volumetric methods represent the 3D space model by using voxels (regular vol-
umetric structures also known as 3D pixels). The space of interest is divided into
discrete voxels which are then classified into two categories: inside and outside. The
union of all the inside voxels is an approximation of the visual hull. The accuracy
of the reconstruction obtained depends on the number of images used, the positions
of each viewpoint considered, the precision of the camera calibration and the com-
plexity of the objects shape.

Generalized Voxel Coloring (GVC) is a volumetric method that uses photo-
consistency criterion, Fig. 7.4, to determine if a certain voxel belongs or not to the
object being reconstructed. With this method, the resulting 3D model is the photo
hull, Fig. 7.5, defined as the largest volume of voxels that are photo-consistent with
all viewpoints considered in the reconstruction. Photo-consistency is checked sta-
tistically: a voxel is considered consistent if the mean deviation of the pixels color,
which results from the voxel image projection, is under a predefined threshold. Thus,
GVC simultaneously builds and colors the obtained 3D model.

Fig. 7.4 Color consistency: if the voxel is inside the object surface it will reproject the same color
onto all viewpoints where it is visible (left); otherwise, if the voxel is outside the object surface it
will most likely reproject distinct colors

Fig. 7.5 Relation between photo and visual hull: the real object is contained inside the photo hull
which is in turn inside the visual hull
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7.4 Methodologies Followed

In this work, SFM and GVC methods were tested on two objects with different shape
properties: a simple parallelepiped and a human hand model.

The parallelepiped has a straightforward topology, with flat orthogonal surfaces,
whose vertices are easily detected in each image and simply matched along the
acquired image sequence. On the contrary, the hand model has a smooth surface
and a more complicated shape.

7.4.1 SFM Methodology

To test the SFM method, we follow the methodology proposed in [50], and resumed
in Fig. 7.6:

1. The first step is to acquire two uncalibrated images, of the object to be recon-
structed, using a single off-the-shelf digital camera.

2. Then, image feature points of the considered object are extracted. Feature or
interesting points are those who reflect the relevant discrepancies between their
intensity values and those of their neighbors. Usually, these points represent
vertices, and their correct detection allows posterior matching along the image
sequences acquired. Many algorithms for interest points detection are available,
but the point features detectors based on the Harris’s principles [51], are the most
commonly used.

Fig. 7.6 SFM methodology followed for the 3D reconstruction of objects
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3. After being extracted, feature points must be matched. The matching process is
a 2D points association between sequential images that are the projection of the
same 3D object point. Automatic detection of matching points between images
can be achieved using several cross-correlation processes. They all use small
image windows from a first image as templates for matching in the subsequent
images [52]. The most common matching methods include Normalized Cross-
Correlation [53, 54], and Sum-of-Squared-Differences [50, 55].

4. Then the epipolar geometry is estimated. Epipolar geometry determines a pair-
wise relative orientation and allows for rejection of previous false matches (or
outliers). When the interior orientation parameters of both images are the same,
it mathematically expresses itself by the fundamental matrix, a projective sin-
gular correlation between two images [56]. At least seven matches are required
to compute the fundamental matrix, but to cope with possible outliers, robust
methods of estimation are required. In general, the RANSAC – RANdom Sam-
pling Consensus – algorithm [57], achieves a robust estimation of the epipolar
geometry.

5. Next step is image rectification. It is the act of projecting two stereo images
onto a common plane, such that pairs of conjugate epipolar lines (derived from
the fundamental matrix) become collinear and parallel to one of the image axes.
Performing this step simplifies the posterior process of dense matching, because
the search problem is reduced to 1D.

6. Finally, dense matching is performed, where a disparity map is obtained. A dis-
parity map codifies the distance between the object and the camera(s): closer
points will have maximal disparity and farther points will get zero disparity. For
short, a disparity map gives some perception of discontinuity in terms of depth
(2.5D reconstruction).

If the camera were calibrated, the obtained 2.5D reconstruction could be upgraded
to 3D, using the triangulation concept, described in Fig. 7.2.

7.4.2 GVC Methodology

To test the GVC method we follow the methodology proposed in [58], and repre-
sented in Fig. 7.7.

In this methodology, it is necessary to acquire two image sequences:

• A first one, acquired moving a planar chessboard calibration pattern freely in
3D space.

• For the second sequence, the object to reconstruct is placed on a simple turn-
table device, with the same chessboard pattern beneath it; keeping the camera
untouched, the second sequence of images is acquired, spinning the turntable
device until a full rotation is performed.
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Fig. 7.7 GVC methodology followed for the 3D reconstruction of objects

No restrictions are made on the number of images acquired, nor the rotation angle
between two consecutive images of the second image sequence needs to be known.

Then, the used camera is calibrated, in order to find the transformation that maps
the 3D world in the associated 2D image space. The calibration procedure is based
on Zhang’s algorithm [59]. Intrinsic parameters (focal length and principal point)
and distortion parameters (radial and tangential) are obtained from the first image
sequence; using the second image sequence, the extrinsic parameters (rotation and
translation) associated with each viewpoint considered in the reconstruction process
are determined.

Then, to obtain the object silhouettes from the input images, image segmenta-
tion is performed. This step is required, because, even when the scene background
has low color variation, the photo-consistency criterion may not be sufficient for
accurate 3D reconstructions [60]. Also, since the used calibration pattern will rotate
along with the object to be reconstructed, it will not be considered has background
and, consequently, will be reconstructed as if it was part of the object of interest.
Images are here segmented by first removing the red and green channels from the
original RGB images and, finally, by image binarization using a user-defined thresh-
old value.

Combining the original image sequence and associated silhouette images, and
considering the previously obtained camera calibration parameters, the 3D models
are built using the GVC volumetric method implemented in [61].

Finally, the volumetric model obtained is polygonized and smoothed using the
Marching Cubes algorithm [62]. Basically, this algorithm extracts a polygonal sur-
face from the volumetrical data. Thus, it proceeds through the voxelized model,
and, for each voxel, it determines the polygon(s) needed to represent the patch of
the isosurface that passes through the referred voxel.
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7.5 Experimental Results

In this section, some of the obtained experimental results for both followed method-
ologies and both considered objects will be presented and analyzed.

7.5.1 SFM Method

Figure 7.8 shows the acquired stereo image pairs of both objects used in this work.
For both objects, 200 image features were extracted using the Harris’s corner

detector [51], imposing a minimum distance between each detected feature. Robust
matching of features between the stereo images was made using the RANSAC algo-
rithm [57]. The results obtained can be observed in Fig. 7.9. Since the hand model
presents a smooth surface, obviously many wrong matches were detected and, con-
sequently, the determined epipolar geometry will be incorrectly estimated.

After, both stereo pairs were rectified using the algorithm presented in [63]. As
observed in Figs. 7.10 and 7.11, the results were much less accurate for the hand

Fig. 7.8 Stereo image pairs of the objects used to test the SFM reconstruction method

Fig. 7.9 Results of the (robust) feature points matching for both objects considered: green crosses
represent the matched feature points of the first image and the red crosses represent the correspon-
dent matched feature points of the second image
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Fig. 7.10 Rectification results for the stereo images of the parallelepiped object

Fig. 7.11 Rectification results for the stereo images of the hand model object

model, due to the wrong matches from the previous step. This caused a strong image
distortion during the rectification step for this object.

Then, dense matching was performed using Stan Birchfield’s algorithm [64].
The results obtained for both objects considered in this work can be observed in
Figs. 7.12 and 7.13. Again, from the incorrect results obtained in the previous steps,
the dense matching for the hand model was, consequently, of low quality. For the
parallelepiped object case, the generated disparity map matches reality better.

7.5.2 GVC Method

Figure 7.14 shows some examples of the second image sequence acquired for the
3D reconstruction of both objects using the GVC method.
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Fig. 7.12 Disparity map obtained for the parallelepiped object

Fig. 7.13 Disparity map obtained for the hand model object

For both objects considered, the results of the extrinsic calibration procedure
are represented in Fig. 7.15. The 3D graphics shown represent the viewpoints
considered in the second image acquisition process, considering the world coordi-
nate system fixed on the lower-left corner of the chessboard pattern and the camera
rotating around the object.

Another way to verify the accuracy of the calibration results obtained is to repro-
ject the 3D points from the chessboard pattern in all images of the second sequence
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Fig. 7.14 Three images used for the 3D reconstruction of the parallelepiped (top) and the hand
model (bottom)

Fig. 7.15 Three-dimensional graphical representation of the extrinsic parameters obtained from
the camera calibration process for the parallelepiped object case, on the left, and for the hand
model case, on the right

Table 7.1 Error of the reprojection of the pattern points into all images of the second image
sequence

Reprojection error (in pixels)
Object Average Standard deviation

X Y X y

Parallelepiped −1.24e-04 −2.67e-05 0.545 0.594
Hand model −7.31e-05 −2.61e-05 0.673 0.840

considered. The standard deviations of the reprojection errors (in pixels) for the
hand and torso models cases are indicated in Table 7.1. The results obtained from
the camera calibration were very accurate for both cases.

The efficacy of our segmentation method enabled us to obtain good silhouette
images for both considered objects, Fig. 7.16.

Figures 7.17 and 7.18 show the results of the 3D reconstruction obtained for both
objects using the GVC method. Both reconstructed models are very similar to the
real 3D object, even in the case of the hand model. Comparing these results with
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Fig. 7.16 One example of image segmentation for the parallelepiped (top) and the hand model
(bottom): on the left, the blue channel of the original image; on the right, the binary image obtained

Fig. 7.17 Two different viewpoints (by row) of the 3D model obtained for the parallelepiped
case: on the left, original image; in the centre, voxelized 3D model; on the right, polygonized
and smoothed 3D model

the previous obtained by the SFM methodology, GVC has no problem to reconstruct
objects with smooth and complex shapes. On the other hand, the accuracy of the
3D models built by this last methodology is highly dependent on the calibration and
segmentation steps. Thus, GVC puts some restrictions, such as a background with
low color variation and suitable calibration apparatus, making it less appropriated
for unconstrained real-world reconstructions.

GVC methodology was also tested on another object to verify its accuracy: a torso
model. Comparing with the previous used objects, the torso has considerably higher
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Fig. 7.18 Two different viewpoints (by row) of the 3D model obtained for the hand model case: on
the left, original image; in the centre, voxelized 3D model; on the right, polygonized and smoothed
3D model

dimensions. Thus, a different calibration pattern was required. Some of the results
obtained after the reconstruction process can be seen on Fig. 7.19, where it can be
noticed that the torso reflects the calibration pattern on its surface. As consequence,
the inferior zone of the reconstructed 3D model is not very accurate, both in terms
of shape and color.

From the voxelized 3D model obtained, some geometrical measures can be deter-
mined, such as height, length and width. Figure 7.20 compares these values with the
real ones, obtained using an usual ruler, for all reconstructed objects. This com-
parison confirms the approximated reconstruction results of the considered objects,
using the GVC methodology.

7.6 Conclusions

The main goal of this paper was to compare experimentally two commonly used
image-based methods for 3D object reconstruction: Structure From Motion (SFM)
and Generalized Voxel Coloring (GVC).

To test and compare both methods, two objects with different shape properties
were used: a parallelepiped and a hand model.

Our adopted SFM methodology produced fine results when the objects present
strong feature points, and so, are easy to detect and match along the input images.
However, we can conclude that even small errors in the matching or in the epipolar
geometry estimation can seriously compromise the success of the remaining steps.

The models built using the GVC methodology were quite similar to the real
objects, be it in terms of shape or in color. Nevertheless, the reconstruction accu-
racy was highly dependent on the quality of the results from camera calibration and
image segmentation steps. These can be two major drawbacks in real-world scenes,
because they can limit the application of the GVC method. Moreover, the reflectance
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Fig. 7.19 Three different viewpoints (by row) of the 3D model obtained for the torso model
case: on the left, original image; in the centre, voxelized 3D model; on the right, polygonized
and smoothed 3D model
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Fig. 7.20 Comparison of the obtained measurements from the reconstructed 3D models with the
real objects measures

of their surfaces is an aspect that must be considered for more accurate 3D recon-
structions. In resume, we can conclude that in controlled environments the GVC
methodology is capable to obtain adequate 3D static reconstructions of objects from
images. In addition, its major contribution may be the fact that it is fully automatic
and suitable for many real applications.

Thus, when comparing the two methods, we can conclude that, on one hand,
GVC performs better in 3D reconstruction of objects with complex shapes and, on
the other hand, SFM is better for unconstrained real-world objects reconstruction.
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Chapter 8
Edge-Images Using a Uninorm-Based
Fuzzy Mathematical Morphology:
Opening and Closing

Manuel González-Hidalgo, Arnau Mir Torres, Daniel Ruiz-Aguilera,
and Joan Torrens Sastre

Abstract In this paper a fuzzy mathematical morphology based on fuzzy log-
ical operators is proposed and the Generalized Idempotence (GI) property for
fuzzy opening and fuzzy closing operators is studied. It is proved that GI holds
in fuzzy mathematical morphology when the selected fuzzy logical operators are
left-continuous uninorms (including left-continuous t-norms) and their correspond-
ing residual implications, generalizing known results on continuous t-norms. Two
classes of left-continuous uninorms are emphasized as the only ones for which dual-
ity between fuzzy opening and fuzzy closing holds. Implementation results for these
two kinds of left-continuous uninorms are included. They are compared with the
classical umbra approach and the fuzzy approach using t-norms, proving that they
are specially adequate for edge detection.

8.1 Introduction

The identification of objects, object feature extraction and anomalies detection in
automated industrial processes are closely connected with the recognition of shapes
and therefore with the recognition or vision systems. In this context the mathemati-
cal morphology is an useful tool for extracting image components that are useful in
the representation and description of region shapes, such as boundaries, skeletons,
and convex hull.
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The basic tools of mathematical morphology are the morphological operators. A
morphological operator P transforms the structure that we want to analyze A (an
image) by means of a small object B, called structuring element, with which we
want to probe the structure of A, into a new object P(A,B) (a new image). The size
and shape of B can be chosen by the morphologist in order to analize the structure of
A. The basic morphological operators are the dilation and erosion. These operators
are based on set theory and were originally developed for binary images (black and
white) and afterwards successfully extended to gray-scale images ( [22]).

Nevertheless, the shapes in an image are not always crisply defined, and uncer-
tainty can arise within each level of image analysis and pattern recognition. It can
occur at the low-level in the raw sensor output, and it can be extended all the way
through intermediate and higher levels. A recognition or computer vision system
must have sufficient flexibility for processing the uncertainty in any of these levels,
so that the system could retain as much of the information content of the data as
possible, at each level. As the first essential step of a recognition or vision system is
the feature extraction, the method used should have a provision for representing and
manipulating the uncertainties. Fuzzy set theory provides a mechanism to represent
and manipulate uncertainty and ambiguity. Fuzzy operators and their properties as
well as fuzzy inference rules have found considerable applications in image analysis
and pattern recognition, see by example [9, 15] and [17] and references therein.

In order to do that, the fuzzy mathematical morphology is an alternative extension
of binary morphology to gray-scale morphology [22] using concepts and techniques
from fuzzy set theory. Several researchers have introduced alternative morpholog-
ical operators (see for example [4, 7, 10] and [5]). Bloch and Maı̂tre [7] follow an
approach using t-norms and the associated model implication, with an involutive
negation. Fuzzy set inclusion was used by Zadeh, Sinha and Dougherty, Kitainik
and Bandler and Kohout in order to define fuzzy morphological operators. The
Minkowsky addition was initially used by De Baets et al. in [4,5]. A detailed account
can be found in [9, 15] and references therein. In this work we focus our attention
in the general framework for fuzzy mathematical morphology constructed by De
Baets in [10] where he uses conjunctions and implications in order to define fuzzy
erosion and fuzzy dilation, without forcing duality relationships between these oper-
ators, and obtaining good properties for the corresponding fuzzy closing and fuzzy
opening operators.

The most usual conjunctions used in order to define the fuzzy mathematical oper-
ators are t-norms and their residual implications. Recently, conjunctive uninorms (as
another particular case of conjunctions) have also been used for the same purpose,
see [6] and [12]. In particular, it is studied in [12] which conjunctive uninorms need
to be chosen in order to preserve the algebraic and morphological properties needed
to obtain a good mathematical morphology, going so far than De Baets in [6] includ-
ing the representable and the idempotent uninorms.

Our goal is to extend the results presented in [12], in two directions. On one hand,
we want to study some properties of fuzzy opening and fuzzy closing as well as open
and closed fuzzy objects, when left-conjunctive uninorms are used. In particular,
we mainly deal with the generalized idempotence property. On the other hand, we
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present some experimental results based on these morphological operators, using
two particular classes of left-continuous conjunctive uninorms.

The chapter1 is organized as follows. In the next section we review the basic
definitions and properties of fuzzy logical operators needed in the subsequent sec-
tions. In Section 8.3, we recall briefly some algebraic and morphological properties
(see [12]), satisfied by the fuzzy morphological operators based on left-continuous
conjunctive uninorms, to be used in the next section. In particular, we recall two
classes of left-continuous conjunctive uninorms as the only ones (among repre-
sentable and idempotent uninorms) for which duality between fuzzy morphological
operators is satisfied. In Section 8.4, our goal is to study algebraic and morpholog-
ical properties of fuzzy closing and fuzzy opening, closed and open fuzzy objects,
when we use left-continuous conjunctive uninorms. Similar properties are obtained
to those described by De Baets in [2] for some particular conjunctions and, in a
most general context by Bodenhofer in [8]. In particular, in Section 8.5, we prove
that when we take a left-continuous uninorm we obtain the so-called generalized
idempotence law for the fuzzy closing and fuzzy opening. The results presented
in this section generalize our results of [13] where we gave a generalized idempo-
tence law using conjunctive representable uninorms, and also those presented by
De Baets in [2] where he use continuous t-norms. Finally, in Section 8.6 we dis-
play some comparative experimental results using several left-continuous conjunc-
tive uninorms in the two classes for with duality holds. The chapter ends with some
conclusions and future work.

8.2 Fuzzy Logical Operators

Let us recall the fuzzy logical operators that we will use throughout the paper. More
details on these operators can be found for instance in [16] and [19].

Definition 1. A decreasing and involutive unary operatorN on [0,1] withN (0) = 1
and N (1) = 0 is called a strong negation.

Definition 2. An increasing binary operator C on [0,1] is called a conjunction if it
satisfies

C(0,1) = C(1,0) = 0 and C(1,1) = 1.

Definition 3. A binary operator I on [0,1] is called an implication if it is decreasing
with the first partial map, increasing with the second one, and it satisfies

I(0,0) = I(1,1) = 1 and I(1,0) = 0.

1 This work is an extended version of [14] presented in VipIMAGE 2007 Conference, held in Porto,
Portugal, during the period 17–19 October 2007.
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One can construct conjunctions and implications from each other. On one hand,
given an implication I and a strong negation N the binary operator defined by

CI,N (a,b) =N (I(a,N (b)))

is a conjunction. On the other hand, given a conjunction C and a strong negation N
the binary operator defined by

IC,N (a,b) =N (C(a,N (b)))

is an implication. Another way to construct implications from conjunctions is by
residuation. Given a conjunction C the binary operator

IC(a,b) = sup{c ∈ [0,1] | C(a,c)≤ b}

is an implication called the residual implication of C.
A special kind of conjunctions are the well known t-norms. In fact, fuzzy mor-

phological operators are usually constructed from t-norms and, a special kind of
them, the nilpotent ones, has been proved to be the most useful in this framework,
see for instance [18]. However, a generalization of t-norms appeared in [11], the
uninorms.

Definition 4. A binary operator U on [0,1] is called a uninorm if it is associative,
commutative, increasing in each place and such that there exists some e ∈ [0,1],
called the neutral element, such that U(e,x) = x for all x ∈ [0,1].

It is clear that function U becomes a t-norm when e = 1 and a t-conorm when
e = 0. For any uninorm we have U(0,1) ∈ {0,1}, if U(1,0) = 0, U is called con-
junctive and if U(1,0) = 1 it is called disjunctive. Moreover, a uninorm U is called
idempotent whenever U(x,x) = x for all x ∈ [0,1].

This kind of operators is specially interesting because of their behaviour: like
a t-norm in [0,e]2, and like a t-conorm in [e,1]2. Note that conjunctive uninorms
are particular cases of conjunctions and consequently they can be used in fuzzy
mathematical morphology.

There are several known classes of conjunctive uninorms (see [1] and [11]). Some
of them have been already used in fuzzy morphology in [6]. Since left-continuity
is essential in order to have good properties, we will only use here representable
(see Definition 5 below) and idempotent left-continuous, conjunctive uninorms. Of
course, a fuzzy morphology can be done using also other kind of uninorms, not
necessarily left-continuous, but all properties stated and proved in this paper where
left-continuity is required can fail, for this kind of logical operators. Let us recall
here the definitions and characterizations of representable and idempotent uninorms,
but more details of these classes can be found in [11] and [1] respectively.

Definition 5. Let e ∈ (0,1) and let h : [0,1]→ [−∞,+∞] be a strictly increasing,
continuous function with h(0) =−∞, h(e) = 0 and h(1) = +∞. The binary operator
U defined by
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U(a,b) = h−1(h(a)+h(b))

for all (a,b)∈ [0,1]2 \{(0,1),(1,0)} and U(0,1) =U(1,0) = 0 is a conjunctive uni-
norm with neutral element e. This kind of uninorms are usually called representable
uninorms and h is called its aditive generator.

The set of representable uninorms will be denoted by Urep and a representable
uninorm U , with additive generator h, and neutral element e, will be denoted by
U ≡ 〈h,e〉rep.

Theorem 1. (See [21]) A uninorm U with neutral element e∈ (0,1) is representable
if and only if it is continuous on [0,1]2 \{(0,1),(1,0)}.

Observed that, since any conjunctive representable uninorm satisfies U(x,0) = 0
for all x ∈ [0,1], from the thorem above it must be left-continuous.

Theorem 2. (See [11]) A conjunctive uninorm U with neutral element e ∈ (0,1) is
representable if and only if it is strictly increasing and continuous on (0,1)2 and
there is a strong negation N with N (e) = e, such that for any (a,b) ∈ [0,1]2 \
{(0,1),(1,0)}

U(a,b) =N (U(N (a),N (b))).

Theorem 3. (See [3]) Let U be a representable uninorm with additive generator h,
then its residual implication IU is given by

IU (x,y) =

{
h−1(h(y)−h(x)) if (x,y) ∈ [0,1]2 \{(0,0),(1,1)}
1 otherwise

Following with the idea to have the good properties derived from left-continuity,
we will only use in this paper left-continuous, conjunctive, idempotent uninorms.
However, note again that any other kind of conjunctive, idempotent uninorms (see
[20]) can also be used in the same way.

Theorem 4. (See [1]) A binary operator U is a left-continuous idempotent uninorm
with neutral element e ∈ (0,1) if and only if there exists a decreasing function g :
[0,1]→ [0,1] with fix point e, satisfying g2(x) = g(g(x)) ≥ x for all x ≤ g(0) and
g(x) = 0 for all x > g(0) such that, for all x,y ∈ [0,1], U is given by

U(x,y) =

{
min(x,y) if y≤ g(x) and x≤ g(0)
max(x,y) elsewhere

In view of the theorem above, any left-continuous idempotent uninorm U is
uniquely determined by a decreasing function g, with we will call from now on
the associated function of U . Moreover, any left-continuous idempotent uninorm U
with neutral element e and associated function g will be denoted by U ≡ 〈g,e〉ide.

Note that given any strong negation N we obtain a left-continuous idempotent
uninorm just taking g =N , that will be denoted by UN ≡ 〈N ,e〉ide.
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On the other hand, a left-continuous idempotent uninorm U ≡ 〈g,e〉ide is con-
junctive if and only if g(0) = 1 and this is also a necessary and sufficient condition
for deriving residual implications from it. The residual implication of an idempotent
uninorm is given by

Theorem 5. (See [20]) Let U be any idempotent uninorm with g(0) = 1. The resid-
ual implication IU is given by:

IU (x,y) =

{
min(g(x),y) if y < x
max(g(x),y) if y≥ x

Proposition 1. (See [3]) Let U be a conjunctive uninorm and IU its residual impli-
cation.

• The second partial map of IU is right-continuous and for all x,y ∈ [0,1],

y≤ IU (x,U(x,y)).

• If U is left-continuous then so is the first partial map of IU , IU satisfies the
exchange principle:

IU (x, IU (y,z)) = IU (y, IU (x,z)),

and also the following properties:

U(x, IU (x,y))≤ y, IU (U(x,y),z) = IU (x, IU (y,z))

for all x,y,z ∈ [0,1].

8.3 Fuzzy Morphological Operators

In the following sections, I will denote an implication, C a conjunction,N a strong
negation, U a conjunctive uninorm with neutral element e, IU its residual implica-
tion, A a gray-scale image, and B a gray-scale structuring element.

From the definition of classical erosion and dilation [22] it is clear that the inter-
section and inclusion of sets play a major role. The idea of De Baets [10] was
to fuzzify the underlying logical operations, i.e. the Boolean conjunction and the
Boolean implication, to obtain a successful fuzzification. An n-dimensional gray-
scale image is modeled as an IRn→ [0,1] function. It is required that the gray values
of the image belong to the real unit interval in order to consider an image as a fuzzy
object. Thus, we have the following definitions.

Definition 6. The fuzzy dilation DC(A,B) and fuzzy erosion EI(A,B) of A by B are
the gray-scale images defined by
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DC(A,B)(y) = sup
x
C(B(x− y),A(x))

EI(A,B)(y) = inf
x
I(B(x− y),A(x)).

As in classical morphology, the difference between the fuzzy dilation and the
fuzzy erosion of a gray-scale image, DU (A,B)\EIU (A,B), called the fuzzy gradient
operator, can be used in edge detection.

Definition 7. The fuzzy closing CC,I(A,B) and fuzzy opening OC,I(A,B) of A by B
are the gray-scale images defined by

CC,I(A,B)(y) = EI(DC(A,B),−B)(y) = inf
x

I(B(y− x),sup
z

C(B(z− x),A(z)))

OC,I(A,B)(y) = DC(EI(A,B),−B)(y) = sup
x

C(B(y− x), inf
z

I(B(z− x),A(z))).

Note that the reflection−B of a n-dimensional fuzzy set B is defined by−B(x) =
B(−x), for all x ∈ IRn.

Obviously, we can use conjunctive uninorms and related implications to define
fuzzy morphological operators following the previous definitions. We investigate
in [12] which conjunctive uninorms need to be chosen in order to preserve the alge-
braic and morphological properties satisfied by the classical morphological oper-
ators. Moreover, going farther than De Baets in [6], it is given in [12] sufficient
and/or necessary conditions on the conjunctive uninorms in order to guarantee these
properties.

Given a strong negation N , we define by (coN A)(x) = N (A(x)) the N -
complement coN A of a fuzzy set A. Two fuzzy morphological operations P
and Q are called N -dual if for any two gray-scale objects A and B it holds that
P(A,B) = coN Q(coN A,B).

All results in this paper are concerning to a left-continuous conjunctive uninorm
and its residual implication IU . However, it is known that the fuzzy dilation and
fuzzy erosion areN -dual if and only if I = IC,N (or equivalently C = CI,N ). More-
over, if the fuzzy dilation and fuzzy erosion are N -dual, then also the fuzzy closing
and fuzzy opening are N -dual [10]. Hence, to have duality between our fuzzy mor-
phological operators, we need to use conjunctive uninorms satisfying

IU = IU,N .

Two special kinds of uninorms are the only ones, among representable and idem-
potent uninorms, that satisfy the previous property (see [3] and [20]).

Proposition 2. The identity
IU = IU,N

is satisfied in each one of the following situations

(i) When U ≡ 〈h,e〉rep is a conjunctive representable uninorm and N is the strong
negation obtained from the additive generator h of U by

N (a) = h−1(−h(a)).
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(ii) When N is any strong negation and U is the corresponding conjunctive, left-
continuous, idempotent uninorm UN ≡ 〈N ,e〉ide.

Thus, these two kinds of conjunctive uninorms guarantee duality between fuzzy
morphological operators. Consequently, they are the most suitable in our frame-
work.

The algebraic properties of the fuzzy morphological operators defined from uni-
norms are studied in [18], and in [12]. We summarized in the following the algebraic
properties of the fuzzy morphological operators needed in the next section. Recall
that given two fuzzy objects A, B, the fuzzy inclusion A⊆ B means that A(x)≤ B(x)
for all x.

Proposition 3. Let U be a left-continuous, conjunctive uninorm and IU its residual
implication. Let A1 and A2 be two gray-scale images and let B be a gray-scale
structuring element. Then it holds:

(a) EIU , DU , CU,IU and OU,IU are increasing in the first place.
(b) Moreover, they satisfy:

EIU (A1∩A2,B) = EIU (A1,B)∩EIU (A2,B)
EIU (A1∪A2,B)⊇ EIU (A1,B)∪EIU (A2,B)
DU (A1∪A2,B) = DU (A1,B)∪DU (A2,B)
DU (A1∩A2,B)⊆ DU (A1,B)∩DU (A2,B).

The extensivity of the fuzzy dilation and the anti-extensivity of the fuzzy mor-
phological operators are ensured by next propositions.

Proposition 4. Let U be a conjunctive uninorm with neutral element e ∈ (0,1), let
IU be its residual implication and let B be a gray-scale structuring element such that
B(0) = e. Then the following inclusions hold:

EIU (A,B)⊆ A⊆ DU (A,B).

Proposition 5. Let U be a left-continuous conjunctive uninorm and IU its residual
implication, let A be a gray-scale image and let B be a gray-scale structuring ele-
ment, then it holds

1. The fuzzy closing CU,IU is extensive and the fuzzy opening is anti-extensive:

OU,IU (A,B)⊆ A⊆CU,IU (A,B).

2. The fuzzy closing and the fuzzy opening are idempotent, i.e.:

CU,IU (CU,IU (A,B),B) = CU,IU (A,B),
OU,IU (OU,IU (A,B),B) = OU,IU (A,B).
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8.4 Closed and Open Fuzzy Objects

The idempotence of the fuzzy closing and opening, when we get U a left-continuous
conjunctive uninorm and IU its residual implication, motivates as in the classical
mathematical morphology, the following definitions.

Definition 8. Let A and B be two gray-scale images. We say that A is B-closed (resp.
B-open) if CU,IU (A,B) = A (resp. OU,IU (A,B) = A).

Observe that, using Prop. 5, it is clear that CU,IU (A,B) is B-closed and
OU,IU (A,B) is B-open. Moreover, all B-open and B-closed objects are the open-
ing and the closing of some image, respectively, as we can see in the following
proposition that was advanced in [2], without proof. We include it for the sake of
clarity.

Proposition 6. If U is left-continuous, then it holds:

(a) A is B-open if and only if there exists a fuzzy object F such that A = DU (F,−B).
(b) A is B-closed if and only if there exists a fuzzy object F such that A =

EIU (F,−B).

Proof. Let us assume that A is B-open. By definition of fuzzy opening, choosing
F = EIU (A,B) we have a fuzzy object satisfying that DU (F,−B) = A. Now suppose
that A can be represented as A = DU (F,−B) for some fuzzy object F . From Prop. 5
we know that OU,IU (A,B)⊆ A. In order to prove the other inclusion, using Prop. 1
and that IU is increasing in the second partial map, we have:

EIU (A,B)(y) = inf
x

IU (B(x− y),A(x)) = inf
x

IU (B(x− y),DU (F,−B)(x))

= inf
x

IU (B(x− y),sup
z

U(B(x− z),F(z)))≥ inf
x

IU (B(x− y),U(B(x− y),F(y)))

≥ F(y).

So, we have shown that F ⊆ EIU (A,B). Then, by Prop. 3 we have that A ⊆
OU,IU (A,B). A similar argument proves b). ��

As it was pointed out in [8] opening and closing operators only make sense if
the opening always gives an open result, and the closing operator gives a closed
result. Moreover, it is desirable to have extremal properties. We see now that this
last requirement is also satisfied by our opening and closing fuzzy operators.

Proposition 7. If U is left-continuous, then it holds:

(a) OU,IU (A,B) is the largest B-open fuzzy subset of A.
(b) CU,IU (A,B) is the smallest B-closed fuzzy superset of A.

Proof. We only proof (a) since (b) follows similarly.
We know that OU,IU (A,B) is B-open and that OU,IU (A,B) ⊆ A from Prop. 5.

Now let us assume that E ⊆ A and E is B-open. Then, as E is B-open, we have
E = OU,IU (E,B). By Prop. 3 OU,IU is increasing in the first argument, then E =
OU,IU (E,B)⊆ OU,IU (A,B). ��
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Now let us consider the preservation of B-openness and B-closedness by inter-
sections and unions, respectively.

Proposition 8. Consider U a left-continuous uninorm, and A1 and A2 two gray-
levels images. Then, it holds:

(a) If A1 and A2 are both B-open then, A1∪A2 is B-open.
(b) If A1 and A2 are both B-closed then, A1∩A2 is B-closed.

Proof. (a) If A1 and A2 are B-open then, OU,IU (A1,B) = A1 and OU,IU (A2,B) = A2.
By Prop. 3 we have that

A1∪A2 = OU,IU (A1,B)∪OU,IU (A2,B)
= DU (EIU (A1,B),−B)∪DU(EIU (A2,B),−B)
= DU (EIU (A1,B)∪EIU (A2,B),−B)
⊆ DU (EIU (A1∪A2,B),−B) = OU,IU (A1∪A2,B),

thus A1∪A2 ⊆ OU,IU (A1∪A2,B). The other inclusion is a consequence of Prop. 5.
Therefore, A1∪A2 = OU,IU (A1∪A2,B) and A1∪A2 is a B-open fuzzy set.
(b) The proof is similar. ��

Previous propositions are valid for any left-continuous conjunctive uninorm.
However, if we want to have duality between closed and open fuzzy objects we
need again the two kinds of uninorms stated in Prop. 2.

Proposition 9. Consider U satisfying the condition (i) or (ii) from Prop. 2. Then, A
is B-open if and only if coN A is B-closed.

Proof. We will prove the implication from right to left. Assume that coN A is
B-closed, CU,IU (coN A,B) = coN A. Complementing both sides, sinceN is an invo-
lutive operator, and closing and opening are N -dual, then we obtain

OU,IU (A,B) = coNCU,IU (coN A,B) = A

thus A is B-open. The converse holds similarly ��

8.5 Generalized Idempotence Law for Fuzzy Closing
and Opening Using Left-Continuous Uninorms

Following with the study of the properties that meet the morphological operators,
one of the important properties is the so-called generalized idempotence, which is
satisfied by the opening and closing in the classical case. This section will show
that, using left-continuous uninorms like in Prop. 2, the generalized idempotence is
also satisfied by the fuzzy closing and fuzzy opening. First we need several previous
results.
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Proposition 10. Let U be a uninorm with neutral element e ∈ [0,1]. The following
statements are equivalent

(i) U is left-continuous;
(ii) For all (a,b) ∈ [0,1]2, U(a,IU (a,b))≤ b;
(iii) For all (a,b,c) ∈ [0,1]3, U(IU (a,b),IU (b,c))≤ IU (a,c).

Proof. The equivalence (i)⇔ (ii) is similar to a well known result for t-norms, see
for instance [3].

To prove (iii)⇒ (ii), put (e,a,b) in (iii).
To show (ii)⇒ (iii), by definition of IU , we only need to prove that for all a,b,

c∈ [0,1]
U(a,U(IU (a,b),IU (b,c)))≤ c.

Now, using the associativity and the monotonicity of U and (ii), we have:

U(a,U(IU (a,b),IU (b,c))) = U(U(a,IU (a,b)),IU (b,c)))≤U(b,IU (b,c))≤ c.

��

Proposition 11. Let U be a left-continuous uninorm. Then U and IU satisfy

IU (x,U(y,z))≥U(IU (x,y),z)

for all x,y,z ∈ [0,1].

Proof. If we prove
U(x,U(IU (x,y),z))≤U(y,z)

for all x,y,z ∈ [0,1], then the result follows.
Using (ii) from the previous proposition, we have that for all x,y,z ∈ [0,1]

U(x,U(IU (x,y),z)) = U(U(x,IU (x,y)),z)≤U(y,z)

��

Proposition 12. Let U be a left-continuous uninorm. For any a,b,c,d,e, f ∈ [0,1],
if U(a,IU (b,c))≥ d, and U(e,IU ( f ,b))≥ a then

U(e,IU ( f ,c))≥ d.

Proof. Using Prop. 10, we have for all a,b,c,d,e, f ∈ [0,1]:

d ≤U(a,IU (b,c))≤U(U(e,IU ( f ,b)),IU (b,c))
= U(e,U(IU ( f ,b),IU (b,c)))≤U(e,IU ( f ,c)).

��
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Proposition 13. Let U be a left-continuous uninorm, and IU its residual implica-
tion. If for any real numbers a,b,c,d,e, f ,g,h∈ [0,1], it is satisfied U(a,IU (b,c))≥
d, U(c,IU (e, f ))≤ g and U(d,IU (e, f ))≥ h, then

U(a,IU (b,g))≥ h.

Proof. Using Prop. 10 and 11, we have for all a,b,c,d,e, f ,g,h ∈ [0,1]:

h≤U(d,IU (e, f ))≤U(U(a,IU (b,c)),IU (e, f )) = U(a,U(IU (b,c),IU (e, f )))
≤U(a,IU (b,U(c,IU (e, f ))))≤U(a,IU (b,g)).

��

Now, using left-continuous uninorms like in Prop. 2, and taking into account the
inequalities satisfied by uninorms and their residual implications, we obtain the so-
called generalized idempotence laws for fuzzy closing and fuzzy opening. The proof
of inclusions concerning fuzzy opening are quite similar to those given by De Baets
in [2] for continuous t-norms, using in our case Props. 12 and 13. With respect to
inclusions concerning fuzzy closing, their proofs follow from duality, guaranteed by
Prop. 2.

Proposition 14. Consider U satisfying the condition (i) or (ii) from Prop. 2. If A is
B-open and rang(A) and rang(B) are finite sets, then for any fuzzy object F it holds:

OU,IU (F,A)⊆ OU,IU (F,B)⊆ F

and dually, F ⊆CU,IU (F,B)⊆CU,IU (F,A).

Proposition 15. (Generalized Idempotence) Consider U satisfying the condition (i)
or (ii) from Prop. 2 and IU its residual implication. If A is B-open and rang(A) and
rang(B) are finite sets, then for any fuzzy object F it holds:

OU,IU (OU,IU (F,B),A) = OU,IU (OU,IU (F,A),B) = OU,IU (F,A)

and dually for the fuzzy closing.

Remark 1. The previous propositions are valid for any left-continuous uninorm, and
in particular, for any left-continuous t-norm, improving the results in [2].

In the next we try to omit, in the previous propositions (see Prop. 14), the con-
dition of finite rang for the sets A and B when we work with continuous t-norms.
Following a procedure similar to that used by De Baets in [2], but different in sub-
stance, we can generalize the results by eliminating this condition.

Proposition 16. Let U be a continuous t-norm and let IU be its residual implication.
If A is B-open, for any fuzzy object F it holds:

OU,IU (F,A)⊆ OU,IU (F,B)⊆ F

and dually F ⊆CU,IU (F,B)⊆CU,IU (F,A).
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Proof. Since A is B-open then for all y ∈ [0,1] we have that

A(y) = OU,IU (A,B)(y) = sup
x

U
(

B(y− x), inf
z
IU (B(z− x),A(z))

)

= sup
x

inf
z

U (B(y− x),IU (B(z− x),A(z))) .

This implies that given ε > 0, there exists xε such that

inf
z

U (B(y− xε),IU (B(z− xε),A(z))) > A(y)− ε.

Therefore, there exists xε satisfying

U (B(y− xε),IU (B(z− xε),A(z))) > A(y)− ε for all z. (8.1)

We want to see that OU,IU (F,A)⊆ OU,IU (F,B), it will be enough to see that

“for all α ∈]0,1], if OU,IU (F,A)(y) = α then OU,IU (F,B)(y)≥ α”

Let α ∈]0,1], arbitrary but fixed and let y be such that

OU,IU (F,A)(y) = α.

In a similar way as we obtained (8.1) we have that there exists x
′
ε such that

U
(

A(y− x
′
ε),IU (A(z− x

′
ε),F(z))

)
> α− ε for all z. (8.2)

We will now show that

OU,IU (F,B)(y) = sup
x

U
(

B(y− x), inf
z
IU (B(z− x),F(z))

)
≥ α− ε.

In order to do it, it suffices to show that there exists an x such that

U
(

B(y− x), inf
z
IU (B(z− x),F(z))

)
≥ α− ε

or simply,
U (B(y− x),IU (B(z− x),F(z))) > α− ε for all z.

Applying (8.2) and taking into account that U is left-continuous, given ε > 0, there
exists δ > 0 such that

U
(

A(y− x
′
ε)−δ ,IU(A(z− x

′
ε),F(z))

)
≥ α− ε for all z. (8.3)

Now, applying (8.1) to y− x
′
ε and δ > 0 we obtain an xδ such that

U
(

B(y− x
′
ε − xδ ),IU (B(z− xδ ),A(z))

)
> A(y− x

′
ε)−δ for all z. (8.4)
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Applying (8.4) to z− x
′
ε , we obtain

U
(

B(y− x
′
ε − xδ ),IU (B(z− x

′
ε − xδ ),A(z− x

′
ε))

)
> A(y− x

′
ε)−δ . (8.5)

Proposition 12 applied to (8.3) and (8.5) implies

U
(

B(y− x
′
ε − xδ ),IU (B(z− x

′
ε − xδ ),F(z))

)
≥ α− ε for all z. (8.6)

Note that (8.6) is verfied for all z and then it ensures the existence of an x such that

U (B(y− x),IU (B(z− x),F(z)))≥ α− ε for all z

from which we obtain

U
(

B(y− x), inf
z
IU (B(z− x),F(z))

)
≥ α− ε

and
sup

x
U
(

B(y− x), inf
z
IU (B(z− x),F(z))

)
≥ α− ε.

That is
OU,IU (F,B)(y)≥ α− ε (for all ε > 0)

or equivalently
OU,IU (F,B)(y)≥ α.

This concludes the proof for the opening part. The closing part follows by duality.
��

Thanks to the above proposition we can enunciate the generalized idempotence
for continuos t-norms avoiding the restrictive condition of finite rang, that doesn’t
appear in the crisp case.

Theorem 6. Let U be a continuous t-norm and let IU be its residual implication.
If A is B-open, for any fuzzy object F it holds:

OU,IU (OU,IU (F,B),A) = OU,IU (OU,IU (F,A),B) = OU,IU (F,A)

and dually

CU,IU (CU,IU (F,B),A) = CU,IU (CU,IU (F,A),B) = CU,IU (F,A).

Proof. The proof of this theorem is identical to that carried out in the crisp case,
but we include it for the sake of clarity. Let F be a fuzzy object, Prop. 5 ensures
that OU,IU (F,B) ⊆ F . Taking into account that the opening is increasing in its first
argument (see Prop. 3), we have

OU,IU (OU,IU (F,B),A)⊆ OU,IU (F,A).
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As A is B-open, Prop. 16 yields OU,IU (F,A)⊆OU,IU (F,B). The idempotence of the
fuzzy opening, done by the Prop. 5, ensures that

OU,IU (F,A) = OU,IU (OU,IU (F,A),A)⊆ OU,IU (OU,IU (F,B),A).

From both inclusions we obtain the equality. This concludes the proof. ��

8.6 Experimental Results

In this section we present some experiments showing the differences between basic
fuzzy morphological operators using different uninorms. The examples presented
in this section illustrate the influence of the choice of the pair (U,IU ) using both,
idempotent and representable conjunctive uninorms as in Prop. 2.

One of the first applications that we have implemented is the fuzzy morphological
gradient

DU (A,B)\EIU (A,B)

which is a useful tool for edge detection. Indeed, from Prop. 4 if B(0) = e, then
it holds EIU (A,B) ⊆ A ⊆ DU (A,B) and therefore the fuzzy morphological gradient
will serve as edge-image of the fuzzy object A.

Some of our input images, A, are depicted in Fig. 8.1. We will present the results
following the approach of Nachtegael and Kerre in [18]. The structuring element B
used for the fuzzy operators is represented by the matrix

Fig. 8.1 Input images used in the experiments
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B = e ·

⎛
⎝0.86 0.86 0.86

0.86 1.00 0.86
0.86 0.86 0.86

⎞
⎠ (8.7)

where e is the neutral element of the uninorm. Following the definitions given in
[18], we compare the edge images with those obtained using the classical gray-
scale morphology based on the umbra approach, and those obtained by the fuzzy
approach based on the Łuckasiewicz t-norm, TL(x,y) = max{0,x + y− 1} for all
x,y ∈ [0,1].

In the next figures, Figs. 8.2–8.5, we show the fuzzy gradient operator cor-
responding to each one of the input images displayed in Fig. 8.1, using several
left-continuous representable and idempotent uninorms, compared with the fuzzy
gradient using the pair (TL,ITL), the Łuckasiewicz t-norm and its residual implica-
tion, and the umbra approach, with the same structuring element but taking e = 1 in
(8.7). Recall that the pair (TL,ITL) is the representative of the only class of t-norms
(nilpotent ones) that guarantees the fulfillment of all the properties in order to have
a good fuzzy mathematical morphology, including duality [18].

In Fig. 8.2 we display some of the results obtained using the classical cameraman
image. While the hard edges (see the person in the foreground and some buildings
in the background) are detected very well in all the cases, it can be observed that
the gradient obtained using conjunctive uninorms (top) detect some soft edges better
than the gradient obtained with (TL,ITL) and the umbra approach (bottom) (see some
of the buildings in the background).

Fig. 8.2 Top left: using UN ≡ 〈
√

1− x2,
√

2
2 〉ide. Top right: using U ≡ 〈ln

( x
1−x

)
,0.5〉rep. Down

left: using (TL,ITL ). Down right: umbra approach
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Fig. 8.3 Top left: using UN ≡ 〈
√

1− x2,
√

2
2 〉ide. Top right: using U ≡ 〈ln

( x
1−x

)
,0.5〉rep. Down

left: using (TL,ITL ). Down right: umbra approach

Fig. 8.4 Top left: using UN ≡ 〈1− x,0.5〉ide. Top right: using U ≡ 〈ln
( x

1−x

)
,0.5〉rep. Down left:

using (TL,ITL ). Down right: umbra approach
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Fig. 8.5 Top left: using UN ≡ 〈1− x,0.5〉ide. Top right: using U ≡ 〈ln
( x

1−x

)
,0.5〉rep Down left:

using (TL,ITL ). Down right: umbra approach

Fig. 8.6 MR images used as input images in the experiments

Figure 8.3 shows the edges obtained for the hip image displayed in Fig. 8.1 (top-
right). In case of uninorms (top), we can observe how the bone structure and a
little fracture is preserved. Otherwise, in the umbra and t-norms approaches, these
structures are lost. So, we cannot use umbra approach and t-norms if we want to
make a subsequent analysis.

The edge-images displayed in Fig. 8.4 correspond to the red bloods cells image
shown in Fig. 8.1, also known as erythrocytes image. The edge-images obtained
using idempotent and representable uninorms (top) improve the results correspond-
ing to t-norms and are quite similar to umbra approach results (bottom). Observe
that the boundary and structure of some cells disappear when we use t-norms, but
in the boundary images obtained with uninorms these structures are preserved.

Figure 8.5 is an artificial image. We can observe, again, that the results based on
uninorms improve the results based on t-norms. In the last case, we can observe a
very soft boundary, although it is darker in the umbra approach.

In Fig. 8.6 we show two slices of different MRI images. On the left we display
a saggital slice of an MRI and, on the right, we display an axial slice. In this last
image the existence of a pathology can be observed. The gradients obtained from
these two images are displayed in Figs. 8.7 and 8.8 respectively. As we can see,
using uninorms (top) we obtain better results than using the Łuckasiewicz t-norm
(bottom left). Note also that, in the case of idempotent uninorm (top left) the shape
of the pathology and the brain are better delimited than in the umbra approach case.
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Fig. 8.7 Top left: using UN ≡ 〈1− x,0.5〉ide. Top right: using U ≡ 〈ln
(
− 1

ln2 · ln(1− x)
)
,0.5〉rep.

Down left: using (TL,ITL ). Down right: umbra approach

Fig. 8.8 Top left: using UN ≡ 〈1− x,0.5〉ide. Top right: using U ≡ 〈ln
( x

1−x

)
,0.5〉rep. Down left:

using (TL,ITL ). Down right: umbra approach
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8.7 Conclusions and Future Work

We have proposed a fuzzy mathematical morphology based on left-continuous con-
junctive uninorms, that fulfills the same good morphological properties that the one
based on nilpotent t-norms. Some of this properties, known for continuous t-norms
are generalized to left-continuous uninorms.

Respect to the experimental results, it is important to note that, in all cases, the
results obtained in edge-detection with the approach presented here, are equal to
or better than the ones obtained with the umbra approach and the nilpotent t-norm
fuzzy approach, because they detect some soft edges more accurately. Depending
of the application, this feature can be either an advantage or a drawback. On the
other hand, note that in general, the edge-image with uninorms contains the same
(or more) information as the edge image derived from the umbra approach. Note
also that, from a practical point of view, the choice of the uninorm and its residual
implication will also depend upon the specific problem or application. The same
remark holds for the choice of the structuring element. The size and the isotropy of
the structuring element is another think to take into account in practical applications.
We are adressing currently some experiments in this aspect. We are also implement-
ing the opening and closing operators, and it is our intention to use them for defining
top-hat transformations and fuzzy morphological filters, in order to follow with our
comparative study with the umbra and t-norms approaches.

Acknowledgements This work has been supported by the project MTM2006-05540, of the Span-
ish Government.
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12. M. González, D. Ruiz-Aguilera, and J. Torrens. Algebraic properties of fuzzy morphological
operators based on uninorms. In Artificial Intelligence Research and Development, volume
100 of Frontiers in Artificial Intelligence and Applications, pages 27–38, IOS Press. Amster-
dam, 2003.
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Chapter 9
A Tissue Relevance and Meshing Method
for Computing Patient-Specific Anatomical
Models in Endoscopic Sinus Surgery Simulation

M.A. Audette, I. Hertel, O. Burgert, and G. Strauss

Abstract This paper presents on-going work on a method for determining which
subvolumes of a patient-specific tissue map, extracted from CT data of the head, are
relevant to simulating endoscopic sinus surgery of that individual, and for decom-
posing these relevant tissues into triangles and tetrahedra whose mesh size is well
controlled. The overall goal is to limit the complexity of the real-time biomechanical
interaction while ensuring the clinical relevance of the simulation. Relevant tissues
are determined as the union of the pathology present in the patient, of critical tis-
sues deemed to be near the intended surgical path or pathology, and of bone and
soft tissue near the intended path, pathology or critical tissues. The processing of
tissues, prior to meshing, is based on the Fast Marching method applied under vari-
ous guises, in a conditional manner that is related to tissue classes. The meshing is
based on an adaptation of a meshing method of ours, which combines the March-
ing Tetrahedra method and the discrete Simplex mesh surface model to produce a
topologically faithful surface mesh with well controlled edge and face size as a first
stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a
last stage.

9.1 Introduction

Endoscopic sinus surgery is an intervention whereby the surgeon inserts a surgi-
cal instrument in one of the patients nasal passages, in a manner guided by an
endoscopic view, to get to as well as resect a pathology that occupies one or more
sinuses in that patients cranium. This procedure, illustrated in Fig. 9.1, also entails
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Fig. 9.1 Illustration of transnasal sinus surgery (Reproduced with permission from AAO-HNS [1])

the avoidance of critical tissues, such as the optic nerve(s) and eyeball(s) near the
pathology at hand. In order to train future ENT surgeons on this procedure, we are
developing methods for computing patient-specific models from routine Computed
Tomography data. These models express the tissues relevant to biomechanical inter-
action in terms of simple shapes, or elements, typically triangles and tetrahedra, in
order to make computationally tractable the numerical simulation of this interaction.

Currently, the anatomical models used in our simulation are obtained from man-
ually labeled Tissue Maps, i.e.: an ENT surgeon manually identifies in CT rele-
vant anatomical structures, namely the tumor, eyeball(s), optical nerve(s), and bone.
Other, non-critical, soft tissues can be obtained by complementarity from CT, within
a HU range of 500–1,500. Together, these tissues comprise a Tissue Map, which is
the starting point of the methods described herein. The objective of this paper is
to propose a method for selecting the tissue subvolumes relevant to the procedure,
and therefore to the simulation, and for tesselating these tissues so as to express
them in terms of triangular and tetrahedral elements for subsequent real-time inter-
action. The method proposed here does not preclude a Tissue Map obtained through
minimally supervised methods, the development of which is underway [6].

Tissues deemed relevant to the simulation, to be modeled as elastic and therefore
updated in real-time, are determined as the union
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• Of the pathology present in the patient
• Of critical tissues deemed to be near the planned surgical path or pathology
• Of soft tissue near these critical structures, or near a linearized, planned surgical

path

The relevant tissues must be tesselated and biomechanically modeled to allow a
simulated interaction, where structures whose modeling is necessarily volumetric,
such as the pathology to be resected, are decomposed into tetrahedral elements,
while other structures are described in terms of triangular shell elements.

9.2 Materials and Methods

9.2.1 Distance-Based Biomechanical Relevance

The first stage is the elaboration of a Biomechanically Relevant Tissue Map, which
makes explicit those subvolumes of the Tissue Map that will be modeled for real-
time interaction, with a view to excluding from consideration as much tissue as
possible, for computational considerations, while keeping the simulation clinically
meaningful. We make the assumption that non-pathological non-critical soft tissues
that are relevant are relatively stiff and imbedded in bone, so that restricting our
attention to a subvolume and modeling the rest as rigid is close to constitutive reality.

The first step in producing the Biomechanically Relevant Tissue Map is a pre-
processing of the CT data, as shown in Fig. 9.2a, to ensure that the image on which
the Tissue Map is based is free of artefacts, namely blackout artefacts caused by
tooth fillings [18]. Currently, this is a simple cropping of the image volume: restrict-
ing the visible anatomical skin surface is viewed as preferable, from a simulation
standpoint, to a slightly larger surface that is distorted by such an artefact. Further-
more, to make isosurface extraction well behaved, this stage in turn benefits from
zero-padding the Tissue Map at the boundaries coinciding with tissue, as shown in
Fig. 9.2b. Critical tissues not relevant to the procedure, such as those in the orbital
region opposite to the pathology, are not considered further.

In order to produce a final Biomechanically Relevant Tissue Volume, the pro-
cessing of tissues, prior to meshing volumetric processing is achieved with a com-
bination of two approaches: MINC-based 3D image processing software from the
Montreal Neurological Institute [11], and the well-known Fast Marching (FM) [15]
method applied under various guises. First, mincresample and mincreshape are used
to crop, zero-pad as well as orient a the sampling of a volume along xyz. Second,
the FM method is used to restrict tissues under consideration, based on a flexible
notion of distance, as idealized in Fig. 9.3. The basic idea here is that useful notions
of proximity include distances to a linearized path and to a blob, and that FM can
implement all of these, even with anisotropically spaced data.

The Fast Marching method numerically simulates the Eikonal equation in an
efficient manner:

F(x)‖�T (x)‖= 1 x ∈Ω (9.1)
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Fig. 9.2 Preprocessing of CT data prior to determining biomechanically relevant tissues. (a) Elim-
ination of blackout artefacts. Top: blackout artefact and distortive effect on soft tissue segmenta-
tion; bottom: sagittal illustration of cropping. (b) Tissue Map prior to determining biomechanically
relevant subvolumes
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Fig. 9.3 Illustration of flexible distance, as defined from relevant primitives: (a) linearized path
and (b) blob

which in turn estimates the time T of arrival of a monotonic front ∂Ω over a domain
Ω , whose speed of propagation is F(x). When F(x) is unity, this method computes
a distance map. In our case, this front ∂Ω can be initialized (at T = 0) as either the
boundary of a given tissue (identification of the boundary is based on a non-zero
gradient of a binarization of the tissue class vs all other tissues), or as the raster-
ization of a linearized path through user-provided points. Moreover, the method
can deal with anisotropic spacing, as the upwind discretization of the gradient in
Eq. (9.1) [13],

Fi, j,k

⎡
⎢⎢⎣

max(D−x
i, j,kT,−D+x

i, j,k,0)2+

max(D−y
i, j,kT,−D+y

i, j,k,0)2+

max(D−z
i, j,kT,−D+z

i, j,k,0)2

⎤
⎥⎥⎦ = 1 , (9.2)

makes use of voxel spacing hx, in computing D−x
i, j,k = Ti, j,k−Ti−1, j,k

hx
, D+x

i, j,k =
Ti+1, j,k−Ti, j,k

hx
, as well as hy and hz respectively for the other difference operators.

Furthermore, we can place tissue-based constraints on the motion of the front.
For example, if we are interested only in the subset of non-critical non-pathological
(“generic”) soft tissue that is within a distance εcsp of critical structures and pathol-
ogy, but not beyond bone tissue modeled as rigid, we binarize and combine (“OR”)
together critical structures and pathology, determine their joint boundary, and use
this boundary to initialize a front enabled strictly on non-critical soft tissue. In other
words, we constrain the front to halt at bone or air tissue, under the assumption that
most bone tissue will be modeled as rigid, and that therefore soft tissue on the other
side of it is unlikely to be biomechanically relevant. Similarly, if we are interested
in soft tissue near the planned surgical path, in order to model it as elastic, in con-
trast with the rest of the soft-tissue boundary, we can consider a linearized intended
surgical path S determined by user points P = {pi}: S = {Ei(pi,pi+1)}, where Ei is
an edge linking successive points. The distance of voxel x, dSP(x), to this surgical
path is given by:

dSP(x) = minEi∈Sdedge(x,Ei) where
dedge(x,Ei) = minu+v=1 ‖(upi + vpi+1−x‖ . (9.3)

In practice, this distance is just a FM-based computation using an initial front coin-
ciding with the voxels overlapping the edges Ei.
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The end result is a refinement of the Tissue Map that discriminates between
biomechanically relevant generic soft tissue, based on proximity to the planned sur-
gical path or to critical or pathological tissue, and the rest of the generic soft tissue,
which along with bone can be modeled as rigid in the simulation.

9.2.2 Tissue-Guided Surface Meshing of Controlled
Mesh Resolution

Once we have our Biomechanically Relevant Tissue Map, featuring critical, patho-
logical, as well as generic elastic and rigid tissues, our next step is to express them in
terms of simple shapes, or elements, for biomechanical simulation. Our philosophy
is to use as few and as simple elements as required by the simulation.

• In particular, the rigid tissue subvolume can be modeled exclusively as a collec-
tion of surface elements, since by definition no force will modify its interior.

• Likewise, we are not interested in how critical tissues, like the optic nerve,
interact volumetrically with a surgical tool: we merely want the simulation to
appropriately penalize a gesture that compromises its boundary, whereby surface
meshing is once again sufficient.

• Last, the tumor that must be resected as well as elastic soft tissue surrounding
the tumor and critical structures, whose interaction with a surgical tool should be
inherently volumetric, are modeled as tetrahedral meshes.

As a result of the requirement for flexibility of choosing between surface and
volumetric elements, the meshing is a topologically faithful surface meshing stage
followed by a tetrahedralization stage, based on our prior work [2], as opposed
to a method that tetrahedralizes a volume directly [8]. The surface meshing stage
combines Marching Tetrahedra-based [3,12] anatomical boundary identification (or
contouring) and an iterative Simplex mesh-based decimation [5]. The former pro-
vides our triangular surface mesh with fidelity to boundary and to topology, while
the latter affords explicit control over triangular face area and edge size through the
action of edge deletion and insertion. Equally important, the decimation preserves
the topology (or genus) of the surface throughout each iteration.

In the past, we used the Marching Cubes (MCub) method [10] as our tissue
boundary meshing method. However, Marching Cubes has been shown to exhibit
limitations in topological fidelity and in regularity, which we can corroborate and
which motivated us to opt for Marching Tetrahedra (MTet). The basic idea of these
isosurface extraction methods is to proceed as follows.

1. First, tile the volume spanned by a scalar function, with regularly shaped cells
such as cubes or tetrahedra.

2. Detect the nature of the intersection of an n-valued isosurface with each cell on
the basis of the combination of relative values of vertices in relation to n (if n = 0
this equates with determining the + and − signs of the scalar function at the cell
vertices) to ascertain which cell edges are split by this isosurface.
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3. Next, express the intersection of the cell as a polygon, composed of 1–5 triangles
depending on the combination of + and − vertices.

4. Finally, stitch together the faces of these cell traversals into a polygonal surface.

We might have opted for Regularized Marching Tetrahedra [20], which produces
smoother surface boundaries, were it not for the fact that the Simplex model gives
us control over surface continuity.

In [2], we showed that such an surface meshing method could be applied to bina-
rized tissues volumes in a topologically faithful manner, preserving the ventricles
within the brain boundary mesh, prior to controlled-resolution decimation. How-
ever, we then applied an image blurring stage to a binary image to produce a scalar
function describing tissue occupancy, to stabilize MCub-based isosurface extrac-
tion. However, tight regions such as a nasal passage preclude blurring prior to sur-
face meshing, so we have replaced this blurring stage by a Signed Distance Map
computed from the tissue boundary, where voxels inside the boundary are assigned
a negative sign, the boundary is at a 0-distance, and points outside are given a
positive distance. This Signed Distance Map also makes use of the Fast Marching
method described above: the sign is attributed through an appropriate test of the
input tissue binary image at each voxel.

In general, these surface meshing methods produces dense results that need to
be decimated, or simplified, in a manner that leads larger triangles still coincident
with tissue boundaries, to support practical real-time applications such as surgery
simulation. A survey of mesh decimation methods is given in [4], and the authors
discriminate between coplanar facets merging, controlled vertex/edge/face decima-
tion, which includes [14], re-tiling, energy function optimization, vertex clustering,
wavelet-based methods and methods based on intermediate hierarchical represen-
tation. Many of the methods surveyed do not preserve topology (i.e.: can inappro-
priately introduce holes or plug existing holes in the surface), which makes them
unusable in our application.

Our approach to decimation is of the edge-decimation type (and edge insertion
if needed), through explicit logic based on local edge and face characteristics of the
Simplex mesh at any given iteration. The Simplex is a discrete active surface model,
characterized by each vertex being linked to each of 3 neighbours by an edge, and
it is the dual of a triangulated surface, as shown in Fig. 9.4a. An image force can
bind the model to the boundary of interest, even halting a model subject to a balloon
inflation force, while other internal forces that improve face quality and continuity.
Prior to decimation, the initialization of the Simplex from the MTet-based triangular
surface is achieved through the geometric duality between triangular and Simplex
meshes:

• Each triangular vertex is converted to a Simplex face
• Each triangular face leads to a Simplex vertex and
• Three Simplex edges link each Simplex vertex to its neighbours

We decimate the Simplex mesh with the T1 and T2 operators [5] that act on each
face, where the former deletes an edge in order to fuse two faces into one, while the
latter adds an edge to a face, subdividing it into two faces, as illustrated in Fig. 9.4b.
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Fig. 9.4 Illustration of Simplex mesh: (a) close-up of Simplex, shown in black with solid line, with
dual triangular mesh shown as broken line with blue vertices; (b) illustration of T1 and T2 operators

This logic allows us to specify when to remove an edge, given a face that is too small
in relation to a size objective, and in particular which choice of edge is best for that
given face, in a manner to is conducive to biomechanical simulations, whereas exist-
ing decimation methods tend to be optimal for surface rendering (i.e.: a mechani-
cally static scene), producing dense results at high curvature points. Meshing that is
dense at high-curvature points typically leads to an ill-conditioned finite elements
stiffness matrix [16]. Moreover, the Simplex model is endowed with internal forces
that enforce face quality and surface continuity characteristics, and external image
forces that allows the surface to adhere to the tissue boundary, at each decimation
iteration.

Our decimation strategy involves a penalty function computed for every face,
as well as the sorting of all these faces by minheap or maxheap according to this
penalty value, in order to “fix” the worst faces first. T1 is applied to faces that are
considerably smaller than desired and have a small (<6) number of edges, while we
subdivide with T2 those faces with a large number of edges (>7) and whose size is
in excess of the desired resolution. The final Simplex boundaries can be converted
to triangulated surfaces by duality.

9.2.3 Almost-Regular Volumetric Meshing with Resolution Control

The last stage in our procedure partitions each volume bounded by a triangulated
mesh, coinciding with a tissue class or contiguous subset of tissue classes, into tetra-
hedral elements consistent with the FE method. The volumetric meshing stage is
based on a technique published by Fuchs [7] that automatically produces an optimal
tetrahedralization from a given polygonal boundary, such as a triangulated surface.
In this case, optimality is defined as near-equal length of the tetrahedral edges,
along with a sharing of each inner vertex by a nearly consistent number of edges
and tetrahedra.
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This method features the optimal positioning of inner vertices followed by a
Delaunay tetrahedralization. The resulting near-regularity is important for FE sta-
bility and efficiency [16]. More importantly, and in keeping with the philosophy of
our method, vertex positioning is governed by a prescribed density function ρ(x),
which can be spatially varying and correlates with the edge length objective pursued
so far.

The positioning of vertices is divided into two stages:

• Construction of an initial configuration of vertices, based on the notion of a
canonical tetrahedron, and in accordance the specified density function ρ(x)

• Adjustment of vertex positions by minimization of a penalty functional

A canonical tetrahedron leads to a partioning of R3 with congruent tetrahedra,
whose intersection is either empty, or a vertex, an edge or a face. In addition, it
is invariant under subdivision.

Based on the relationship between the number of simplex and triangle vertices
Vt ≈Vsm/2 [5] and a corresponding target simplex mesh size of Lsm(x) works out to
a triangle or a tetrahedral mesh size of Lt(x)≈

√
2Lsm(x). In summary, we modify

the Fuchs tetrahedralization technique by specifying the target edge length ρ(x) =
Lt(x).

9.3 Results and Discussion

Figure 9.5 illustrates the results of distance-based tissue relevance strategy. First,
Fig. 9.5a illustrates the consideration of a path-based distance to identify air voxels
within εSP = 10 mm of the linearized path S.

Our tissue-discriminating FM-based approach offers advantages over a combi-
nation of logical and traditional morphological operators acting only on soft tissue,
which could include soft tissues within a zone of influence based on the morpho-
logical structuring element’s size, but on the other side of a thin bone or air duct.
Our approach is also more useful than a generic region of influence approach, being
more restrictive of the volume considered elastic. Proceeding this way gives us the
flexibility to eventually model curviplanar tissues, such as membranes in the nasal
passage, as relatively sparse “thick shell” elements.

In an earlier implementation, shown in Fig. 9.5b, we simply considered soft tis-
sue voxels within εSP−air = 4 mm of this subset of air voxels in the nasal passage, as
well as close to tumor (shown) and critical tissues (εcsp = 8 mm in this case), with
the subvolume of non-critical soft tissues modeled as elastic shown in light green.
This approach resulted in a partition of tissue subvolumes, elastic and rigid respec-
tively, that had a discontinuous outward appearance in the meshing, in the area of
the eye socket and part of the nasal passage. We now endorse a slightly more subtle
approach: we want to model volumetrically the non-critical soft tissues surrounding
the tumor, eye ball and optic nerve, while at the same time not contained in some
dilation band around air voxels (Figs. 9.5c, d). The nasal passage is handled as in the
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Fig. 9.5 Use of Fast Marching method for restricting tissues. (a) Identification of air voxels near
linearized surgical path, dSP < 10 mm, displayed as hot colour map. (b) Early implementation.
Top left- axial plane images of idenfication of soft tissues near surgical path (close to air voxels in
(a)), critical tissues and tumor, based on air- and bone-inhibited distance. Top right-soft tissue and
bone modeled as rigid. Bottom: resulting surface meshing of (left) rigid tissue, (middle) elastic
tissue, (right) with the two shown together. (c) Use of soft-tissue-enabled dilation of air voxels
(dark green), to (d) restrict non-critical elastic volume to maintain integrity of rigid tissue, for
continuous outer skin surface. (e) Elastic tissue in nasal passage

earlier implementation, albeit with a somewhat shorter path that models elastically
only tissues inside. At all times, the algorithm processes information in 3D, not on
a slice-by-slice basis.

Typical meshing results are presented in Figs. 9.6 and 9.7. Figure 9.6 provides a
contrast between the decimation method of [14], which is optimized for static scenes
as well as produces dense results in high curvature areas, and ours which produces
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Fig. 9.6 Illustration of surface meshing strategy. (a) Original Marching Tetrahedra result of rigid
tissue, featuring 3637412 triangles (too dense to discriminate between them visually); (b) typi-
cal decimation results with method [14]. Rigid tissue mesh, after simplex mesh decimation: (c)
shown with wireframe and opaque surface rendering, and (d) semi-transparent rendering, and with
wireframe-surface renderings of tumor (grey), optic nerve (green) and eyeball (blue). Elastic tis-
sue surrounding critical tissues not shown, and some sinuses are also visible. Final triangulated
surfaces, duals of (c) and (d) respectively

more regular shapes. Figure 9.7 illustrates tetrahedral meshing results, and their
integration on the SPRING platform [17], along with haptic interaction provided by
the IOMaster-7D device [19]. The mesh size currently is chosen arbitrarily, 8 mm
for rigid surface, and 4 mm for other surface and tetrahedral meshing.

The combination of Marching Tetrahedra, Simplex and Almost-regular tetrahe-
dralization provides topologically faithful meshing with controlled mesh size. The
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Fig. 9.7 Tetrahedral mesh, capable of real-time interaction: (a) 2-handed haptic device; (b) non-
critical elastic and tumor tissues, with non-critical tissue stretched haptically

parameters, such as distances and edge lengths, are currently set arbitrarily, but
are being optimized based on on-going simulations and clinical interaction. This
research also includes a method for simulating the bite of the Blakesley forceps [9],
based on the 7 degrees of freedom of the dominant hand of the IOMaster-7D, whose
prelinary results are illustrated in Fig. 9.8.

9.4 Conclusions

This paper presents a new method for selecting and meshing subvolumes of inter-
est for ENT surgery simulation. It emphasizes the usefulness of surface models in
particular, as Fast Marching and Simplex models are applied in tissue subvolume
refinement and in meshing respectively. The tissue preprocessing uses the Fast
Marching method under various guises to exploit distance to the surgical path and
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Fig. 9.8 On-going work on forceps bite simulation, in conjunction with a tetrahedral mesh. From
top to bottom: initial configuration; tetrahedral mesh contained in bite illustrated in red; removal
of contained mesh with subtetrahedral precision

to highly relevant tissues, to exclude from consideration irrelevant soft tissues. The
meshing also features Almost-regular Tetrahedralization, and both surface and vol-
ume meshing afford explicit control over mesh size.
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Chapter 10
A Robust Eye Tracking Procedure for Medical
and Industrial Applications

Alberto De Santis and Daniela Iacoviello

Abstract An efficient eye tracking procedure is presented providing a non-invasive
method for real time detection of a subject pupils in a sequence of frames captured
by low cost equipment. The procedure can be easily adapted to any application
relying on eye tracking. The eye pupil identification is performed by a hierarchical
optimal segmentation procedure: a contextual picture zoning yielding the eyes posi-
tion, and a further binarization extracting the pupils coordinates. No eye movement
model is required to predict the future eyes position to restrict the image searching
area, since the procedure first step is fast enough to obtain a frame to frame eyes
position update.

10.1 Introduction

The process of visual search has a close relation to attentional mechanisms, provid-
ing insight into cognitive processes including memory, decision making, language
comprehension [20, 21]. Recording and analyzing eye movements allow researchers
to investigate how individuals make use of visual information. This is important in
fields such as neuro-physiology [3], ergonomics [12], advertising and web design
[1], education [23], disabled people technology [24], etc.

Dyslexic children phonological impairments are revealed by eye tracking during
an auditory word recognition task [6]. The children were asked to look to a tar-
get item between distractor pictures; the experiment showed that although dyslexic
children showed clear cohort competitor effects, they did not demonstrate delayed
eye movements due to the presence of rhyme competitors. Eye position monitoring
techniques are evaluated in [15] to test the perception/decision making process in
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radiology. In this study, visual search parameters such as the time to hit the location
of the lesion for the first time, the amount of dwell time in the location, the total
time analyzing the image were measured. The general characteristics of eye move-
ments have been also studied in great depth during the process of reading. In [7]
an eye tracking method is used to find a similarity based interference during lan-
guage comprehension. On line measures of processing of critical regions of the sen-
tences are reported, such as gaze durations, right-bounded reading times, rereading
times, first-pass regression ratios and regression path reading times. An applica-
tion of eye tracking technology (ETT) in the study of autism is presented in [2].
Normal adults show specific patterns when gazing at faces, fixating mainly on the
eyes, nose and mouth, whereas subjects with autism spend shorter time in exam-
ining these core features. Eye tracking deficits are validated behavioural markers
of risk of schizophrenia; in [18] eyes movements were monitored using an infrared
limbus tracker during smooth pursuit and antisaccade tasks, determining a positive
correlation between deficits on oculomotor task and latent liability to schizophrenia.

Meaningful indications on ergonomic criteria in user computer interface design
can be obtained by the objective measurement of direction and time profile of gaze,
duration of fixation on specific lookzones. The success of modern graphic user inter-
faces (GUI) relies on the performance and comfort of pointing devices. In [31] an
evaluation of simple point-and-select techniques, as compared to standard mouse
operation, is performed, measuring pupil and corneal reflection to compensate for
head movement. Ergonomic design improvement can take advantage of the relation
between eye movements and cognitive processing; explication of the role of atten-
tional and memory processes in oculomotor control is discussed and suggestions
on how to use these findings in display design, workload assessment, training and
selection, is provided in [12].

The spread of internet has brought the attention on how users read through the
web pages to get the information they need. The interesting articles in [1, 23] point
out the importance of ETT to obtain suggestion on how to design an on line article
to make the news easily accessible, or how to design a web page to label clearly
the main information to direct the users to it. A well designed multimedia presenta-
tion can dramatically improve the class audience active learning. ETT again plays a
prominent role to investigate the viewing of text and graphics [27]. Intelligent learn-
ing environments are designed to provide the students a tailored support to enforce
learning from free exploration and capability to self-explain instructional material
[16]. A vast area of eye tracking application is relevant to the design of human com-
puter interfaces (HCI) for disabled people. The purpose consists in determining with
sufficient accuracy the point of gaze of a subject exploring a PC screen to provide
a smart tool improving the subject autonomy both in terms of communication and
environment interaction [14, 24].

An eye tracking facility is a complex system composed of physical devices (such
as video cameras, brain activity sensors, head movement sensors, special contact
lenses etc.) and signal analysis algorithms. In [29] high-tech solutions are proposed;
they have different degree of invasiveness and, depending on the user application,
may result in the user stress and fatigue. Nevertheless the use of sophisticated
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Fig. 10.1 General eye tracking set up and coordinate references

Pupils position and  
shape estimates

Projection to eye balls
system coordinates 

Visual feedback
Mapping to screen 
system coordinates 

Fig. 10.2 Flow chart of the eye tracking system

technology considerably simplifies the signal analysis. As opposite, the use of
non-invasive low cost technology demands complex algorithms able to deal with the
real time constraint. Our work refers to the latter situation: the subject is positioned
in front of the screen of a general purpose PC endowed with a low cost video cam-
era. Generally three main reference systems can be identified [26]: the eye reference
system, the camera reference system and the screen reference system, Fig. 10.1.

The tracking system analyzes the image captured by the camera, determines the
line of gaze of the subject watching the screen and identifies the point of the screen
the subject is looking at. The position of the pupil centre and the pupil shape on
the image plane depend on the point on the screen the pupil is directed to, on the
location of the user head, on the parameters of the eye model, on the position of
the screen with the respect to the camera and on the camera intrinsic parameters.
In Fig. 10.2 a general eye tracking functional flow chart is displayed. In this paper
the focus is on the first block, presenting a robust and efficient procedure of image
analysis to identify the pupils in a video sequence; the other blocks are just standard
and a possible implementation can be found in [26].

Eye detection procedures usually exploit the pupil reflectance power to per-
form image zoning to separate the subject head from the environment and therefore
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identify the pupil shape and center by template matching. In [13, 30], a deformable
template is designed to fit at best the eye shape in the image; the eye identification
procedure is usually accurate once properly initialized. Images with good contrast
are required for better performances, whereas the computational load may be high.
Papers [9, 10] present supervised learning algorithms to train a classifier with eye
photometric appearance in different subjects under different face orientations. The
quality of the performance depends on the completeness of the training set, there-
fore a large amount of data is required. Other methods rely on some eye character-
istics such as dark pupil, white sclera, circular iris, eye corners, etc, to distinguish
the human eye from the context. In [17], the eye tracking is performed by means
of the Lucas Kanade feature tracker [28]; this method requires the initial location
of the eye features points that are provided by picture zoning (Turk method [25])
and blink detection; all these steps require a high contrast image to detect and track
eye corners. In [8], after a picture zoning is performed, the iris lower semi circle is
detected as the curve that maximizes the normalized flow of the luminance gradi-
ent. In [32] eye detection and tracking make use of active remote IR illumination
to generate bright/dark pupil images and therefore obtain the pupil identification by
simple thresholding. The usual drawbacks due to non-perfect illumination, occlu-
sion and eye closure are avoided by using a support vector machine; consequently
eye tracking is performed by a Kalman filtering approach reinforced by a mean shift
tracking algorithm. In [22] gaze direction and blinking are determined by track-
ing and motion analysis of eye corners, eyelids and irises. Template matching is
exploited to identify the eye elements whereas their motion is determined by the
optical flow associated with their edge segments; head motion is estimated to detect
head-independent eye movements such as saccades or smooth pursuit. In [11], the
between-the-eyes pattern is considered for feature tracking, and head movement can-
cellation is performed for easier eyelids movement detection.

In this paper a new method for pupils identification in video sequences is
proposed; it relies on appearance and shape features of the eyes. The method is
composed of two steps: a contextual frame zoning and a region growing image seg-
mentation process, based on a discrete level set formulation, first presented in a more
general setting in [4, 5] for still images. In the general set up we refer to, the pupils
occupy a very small portion of the frame, making their detection hard to accomplish
since no additional IR illumination is considered. This problem is usually avoided
by frame zoning, obtained by cropping the frame around the estimated eye posi-
tion. Nevertheless the eye elements and the other face elements (browses, nostrils,
lips) still need to be separated for the detection of the pupils positions; moreover
an eye motion predictor is required to update the area to be cropped from frame
to frame. In this work the contextual frame zoning proposed performs a fast four
levels segmentation by Otsu method [19], and therefore the eye can be easily sepa-
rated by Boolean operations. This results in a binary image where the eyes are well
separated from the other elements, and constitutes a mask that contextually selects
the “zones” of the frame to be further analyzed. This solution does not require the
motion predictor.

On the selected areas a further segmentation is performed obtaining a reliable
pupils position estimation. This is accomplished by a level set procedure that is
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proved to be accurate and robust especially in case of low contrast [4, 5]. The seg-
mentation method presented in [5] is here adapted to the case of video sequences
by considering a simpler cost functional consisting just in the error between data
and their piece-wise constant approximation; moreover the interconnection between
frames is obtained by updating the current frame segmentation starting from the seg-
mentation of the previous frame.

The paper is organized as follows. The contextual zoning procedure is presented
in Section 10.2, whereas in Section 10.3 the optimal discrete level set segmentation
procedure is outlined. The features extraction and pupils tracking method is pre-
sented in Section 10.4 and the application of the proposed procedure to a real video
sequence is performed in Section 10.5. Conclusions can be found in the last section.

10.2 Contextual Zoning

The general set up we refer to considers a user sitting in front of a PC screen
endowed with a videocamera. In Fig. 10.3a, a typical subject snapshot is displayed.
Compared to the picture size, the pupils extent over very small area regions with
very low contrast, so to be hardly distinguishable from the other eye elements. In this
situation any histogram based method would fail since the pupils poorly contribute
to the global signal statistics. Picture zoning may solve this problem by cropping
the image around the estimated eye position, thus making the pupil pixels to con-
tribute more to the signal statistics. Nevertheless, depending on the signal quality
in the selected image area, there can still be problems in a reliable pupil detection.
Moreover, in the relevant literature, all methods presented propose the use of an eye
movement predictor to basically estimate the next frame cropping zone.

In this work a more efficient zoning procedure is proposed; instead of an esti-
mated region of interest, it selects elements of interest to be further segmented.
These elements can be characterized by signal as well as shape features. Since in
video sequence analysis the real time is important, only the gray level information
is exploited in a fast four-levels segmentation based on a hierarchical thresholding
procedure. The image is first binarized by Otsu method [19], and then the regions
obtained are again binarized, thus obtaining a four level segmentation, Fig. 10.3b. In
this simpler image representation the eyes are well separated objects among those
with the lowest gray level; therefore they can be easily identified, with some other
distinct elements, by a Boolean operation, Fig. 10.3c.

The result provides a mask selecting elements where the pupils can be more
easily identified. Nevertheless, depending on the subject and/or on the illumination
conditions, in the segmented image the eyes need not be completely separated in the
ocular zone, Fig. 10.4a–c. In these cases a further Otsu binarization is required to
obtain in an obvious way a mask as in Fig. 10.3c, see Figs. 10.4d–e.

Note that no eyes motion prediction is required since the Otsu thresholding is
extremely efficient and therefore can be applied to the full size frame with negligible
cpu time consumption.
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Fig. 10.3 Contextual zoning; (a) original; (b) Otsu 4 levels segmentation; (c) mask of darkest
elements

Fig. 10.4 Contextual zoning; (a) original; (b) Otsu 4 levels segmentation; (c) early mask; (d)
binarization of the original on the domain selected by the early mask; (e) mask of darkest elements

10.3 The Optimal Segmentation Procedure

In this section a brief outline of a simplified version of the discrete level set seg-
mentation procedure proposed in [5] is presented. Consider a simple 2D monochro-
matic image I with just one object over the background; the object boundary can
be represented by the boundary set φ0 of a function φ : D→ R, where D⊂ N2 is a
grid of points (pixels) representing the image domain. The boundary set is defined
as follows

φ0 =
{
(i, j) : sign

(
φh,k

)
�= sign(φi, j)

f or at least one (h,k) ∈ [i±1, j±1]}
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Let us assume that the region
{
(i, j) : φi, j ≥ 0

}
coincides with the object; the pix-

els not belonging to φ0 are either in the interior of the object or in the background.
In this case it is easy to obtain a binary representation Is of the original picture

Is = c1 χ(φ≥0) + c2 χ(φ<0) (10.1)

where

χ(φ≥0) =

{
1 φi, j ≥ 0
0 otherwise

, χ(φ<0) =

{
1 φi, j < 0
0 otherwise

(10.2)

and c1, c2 are two different positive constant gray level values. Function φ is called
the level set function and, according to (10.1), operates the image segmentation.
Segmentation (10.1) can be obtained by solving an optimal approximation problem
defined as follows:

min
(c1,c2,φ)

E (c1,c2,φ) = min
(c1,c2,φ)

[
λ ‖I− Is‖2 +α ‖φ‖2

]

= min
(c1,c2,φ)

[
λ ∑

i, j
(Ii, j− c1)

2H (φi, j)

+ λ ∑
i, j

(Ii, j− c2)
2 (1−H (φi, j))+α ∑

i, j
φ 2

i, j

]
(10.3)

where H is the Heaviside function, λ and α are two positive parameters. The first
two terms represent the fit error between the original data and the piece-wise con-
stant approximation; the third term is a regularity term that makes the cost function
convex [5].

Following the argument in [5], a smooth version of the cost function is advis-
able and it is obtained by substituting the Heaviside function in (10.3) by a smooth
approximant

Hε (φ) =
1

1+ exp(−φ/ε)
(10.4)

It can be proved that the smooth version of problem (10.3) admits necessary and
sufficient conditions for a unique global minimum that, by standard calculus, can be
obtained by the following numerical scheme

cn
1 =

∑
i, j

Hε

(
φ n

i, j

)
Ii, j

∑
i, j

Hε

(
φ n

i, j

) , cn
2 =

∑
i, j

[
1−Hε

(
φ n

i, j

)]
Ii, j

∑
i, j

[
1−Hε

(
φ n

i, j

)] (10.5)

αφ n+1
i, j +λ

[
(Ii, j− cn

1)
2− (Ii, j− cn

2)
2
]

δε

(
φ n

i, j

)
= 0 (10.6)

where δε is the derivative of function Hε .
The level set method has the amenable property that, during the level set evolu-

tion (10.6), the boundary set φ n
0 , starting from any initial shape φ 0

0 , can merge and
split in order to easily deal with the complex topology of the real world images.
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Fig. 10.5 Pupils identification; (a) mask from contextual zoning; (b) level set binarization; (c)
darkest elements of (b); (d) morphological processing; (e) identified pupils marked on the original
subject picture

In this work, the level set segmentation is applied to the frame regions selected
by the zoning presented in Section 10.2. The result is shown in Fig. 10.5

A better centering of the pupil in the iris may be obtained after a morphological
erosion of the level set binarization result.

10.4 Features Extraction and Pupil Tracking

The contextual zoning along with the level set binarization allows the selection of
a set of eye features that can be reliably tracked in a video sequence: the principal
elements of a human face are preserved and well separated one to another and from
the rest of the scene. The eye browses, the eyelids, the irises, the pupils, the nostrils,
the mouth and so for, can be individually analysed and their shape characterized
by a proper set of quantities. The eye tracking system of Fig. 10.1 requires the
measure of the pupil position and deformation to correctly determine the line-of-
gaze of the subject and therefore the point of the screen the subject is looking at.
Among the parameters that can be used to describe the position and deformation of
the pupil we can consider: the centroid coordinates, the area, the major and minor
axes and the inclination of the ellipse that best fits the pupil, the distance between
the centroids of the right and left pupil. These quantities can be accurately estimated
and stacked in two features vectors that represent the eyes signature, Fig. 10.6. Since
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Fig. 10.6 Pupils signature vectors: shape and position parameters values

even in low cost video cameras the acquisition rate is at least 15 f/s, the scenes
captured in adjacent frames do not differ significantly; therefore, moving from one
frame to another, false detections can be avoided by simply matching the current
frame features vectors to those of the eyes signatures of the previous frame. This
matching procedure allows also to resolve the pupils occlusion due to either wide
head motion or blinking: the last pupils position recorded is updated only if a pair
of objects with matched characteristics are found in the current frame.

The eye-tracking algorithm requires that the current frame be segmented quickly
so to obtain in real time the features vectors to be matched to the eyes signature
of the previous frame. This can be accomplished if the segmentation is suitably
fast. This is indeed the case since the early four levels segmentation is performed
by the very fast Otsu thresholding procedure, whereas the successive step is just a
binarization, accurately obtained by very few runs of algorithm (10.5), (10.6).

10.5 Experiments

The videotaping occurs in a regular room illumination; no additional light sources
are considered, like IR lamps. The tracking procedure is composed of the following
steps:

• Video acquisition and signal preprocessing; conditioning may be required for
signal equalization, like gamma correction or histogram equalization.

• Otsu four levels segmentation; it is performed according to the hierarchical
thresholding described in Section 2. It provides a cartoon image of the origi-
nal data where the eyes always belong to the darkest part, whatever the colour of
the eyes and the race of the subject. A simple boolean operation provides a mask,
highlighting the dark elements (and therefore the eyes) and leaving the rest of the
picture in the black background.

• Contextual zoning and binarization; the mask obtained in the previous step
selects the frame zones where a binarization is performed according to the algo-
rithm presented in Section 10.3.
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• Features extraction; once the pupils are well separated their signatures vectors
are built by collecting the following shape parameters: centroid coordinates, area,
major and minor axes of the best fitting ellipse, orientation as the angle formed
by the major axis and the horizontal axis, the distance between the pupils.

In the sequence analysed, the subject performs a wide head movement: saccades
and partial/total eye occlusion occur. On each frame gaussian filtering with σ = 1
and gamma correction with γ = 0.5 are used. The Otsu method is then applied
for the early four levels segmentation; this step does not require any parameter
choice. After the contextual zoning the level set binarization is performed with
λ = 103, α = 1, ε = 1. The high value of λensures the segmentation accuracy and a
fast convergence of Eq. (10.6). The difference in magnitude between λ and α makes
the two terms of the cost functional E comparable; indeed, the value of the level set
function φ are of two orders greater than those of the fit error.

In Fig. 10.7 nine snapshots of the analysed video sequence are displayed. In the
first row the subject performs a smooth pursuit (like during the reading of a text

Fig. 10.7 Samples of the sequence analysed; (a)–(c) smooth pursuit; (d)–(e) saccade; (g)–(i)
occlusion
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line) and the pupils are well detected. In the second row an instance of a saccade
is represented (the eyes are suddenly pointed in a direction different from the head
orientation); also in this case the proposed procedure denotes a good performance.
Finally, the third row of Fig. 10.7 shows the ability of the tracking method in resolv-
ing the occlusions: in the sequence samples the subject closes the eyes; the tracker
records the last pupils signatures and does not update them until a couple of objects
with similar signatures are found in the successive frames. The similarity is of course
measured by the Euclidean norm of the difference between the signature vectors.

10.6 Conclusions

Eye tracking systems should have some key characteristics: non-invasive low cost
equipment, extremely simple calibration and robustness with respect to changes in
illumination conditions. The authors refer to a standard set up in which the subject
sits in front of a workstation endowed with a regular video camera, with no spe-
cific source of illumination. The proposed eye tracking procedure first uses the Otsu
method to build a mask separating the eyes from the other face elements. Then a
further optimal level set binarization identifies the pupils so that some of their shape
parameters can be recorded in two signatures vectors. These are used to track the
pupils motion throughout the video sequence. This procedure is reliable: it enjoys
the accuracy and robustness of the region based segmentation procedures, whereas
high numerical efficiency is obtained due to the discrete formulation.
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Chapter 11
3D Reconstruction of the Retinal Arterial Tree
Using Subject-Specific Fundus Images

D. Liu, N.B. Wood, X.Y. Xu, N. Witt, A.D. Hughes, and Thom SAMcG

Abstract Systemic diseases, such as hypertension and diabetes, are associated with
changes in the retinal microvasculature. Although a number of studies have been
performed on the quantitative assessment of the geometrical patterns of the retinal
vasculature, previous work has been confined to 2 dimensional (2D) analyses. In
this paper, we present an approach to obtain a 3D reconstruction of the retinal arter-
ies from a pair of 2D retinal images acquired in vivo. A simple essential matrix
based self-calibration approach was employed for the “fundus camera-eye” system.
Vessel segmentation was performed using a semi-automatic approach and corre-
spondence between points from different images was calculated. The results of 3D
reconstruction show the centreline of retinal vessels and their 3D curvature clearly.
Three-dimensional reconstruction of the retinal vessels is feasible and may be useful
in future studies of the retinal vasculature in disease.

11.1 Introduction

The retina, which lies at the posterior fundal surface of the eye, has the highest
oxygen requirement per unit weight of any tissue in the body [10] and this makes it
particularly vulnerable to vascular insults impairing oxygen and nutrient supply.
Retinal vascular anatomy and net-work structure are adversely affected by high
blood pressure, diabetes mellitus, ageing and atherosclerosis. Diabetic eye disease is
one of the commonest causes of blindness in UK. A number of studies have shown
that generalized arteriolar narrowing and retinopathy are associated with in-creased
risk of stroke, ischaemic heart disease, heart failure, renal dysfunction and cardio-
vascular mortality [13]. Therefore, quantitative assessment of the retinal vascular
network is very important.
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The geometric patterns of the retinal microvascular network are readily observed
in vivo using fundal photography [12]. However, quantitative analysis of the geo-
metrical patterns requires vessel segmentation and reconstruction. The reconstruc-
tion of the retina, especially the area of optic disc, has been performed by several
researchers [6, 15], but most pathological changes in the microvasculature occur
away from this region.

3D reconstruction of the retinal vascular tree from fundal images is a consid-
erable challenge and only a few such attempts have been made so far [9]. When
subject-specific retinal images are obtained with a fundus camera, the intrinsic
parameters of the fundus camera-eye system will be altered by the relative displace-
ment between the camera and the eye of the subject. These changes can be reduced
by acquiring retinal images with relatively small displacements of the camera in a
plane which may be assumed parallel with the surface of the lens. Consequently
the intrinsic parameters may be assumed to be fixed. The retinal vessels of interest
can be segmented using a semi-automatic approach [8] and the point-by-point cor-
respondence between different images can also be calculated. In order to acquire a
metric reconstruction result, an essential matrix based self-calibration approach was
performed to estimate the intrinsic parameters of the “fundus camera-eye” optical
system. For this the pixels of the camera-eye system are assumed to be nearly per-
fectly rectangular (which means that the aspect ratio is considered to be one and
there is no skew) and the principal point of the camera-eye system is assumed to lie
at the centre of the final retinal image. With these assumptions the self-calibration
approach can be reduced to a simple system and a final metric 3D reconstruction
can be recovered after retrieving the projection matrix from the essential matrix.

11.2 Methodology

11.2.1 Image Acquisition

The retinal images for reconstruction were obtained in a normal subject following
mydriasis with tropicamide (1% eye drops) using a commercial retinal fundus cam-
era (Zeiss FF 450+ with a 30◦ field of view (Fig. 11.1). The fundus camera is a
specialized low power microscope with an attached camera designed to photograph
the interior surface of the eye, including the retina, optic disc, macula, and other
structures. Digitized images were captured using a CCD camera and transferred to
a PC for analysis. The principle of the paired image acquisition is illustrated in
Fig. 11.2 and a stereo (approximate) pair of retinal images is shown in Fig. 11.3.

Although the eye and fundus camera are very complex, they are combined and
simplified as one single lens in the analysis described here. Because this special
system combines the eye and the fundus camera, the displacement between them,
such as the change in relative distance and rotation, will alter the intrinsic parameters
of the combined eye-camera system (Fig. 11.2). In order to minimize these changes,
the distance between the camera and eye was held approximately constant and only a
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Fig. 11.1 Retinal imaging
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Fig. 11.2 Schematic diagram illustrating the approach to retinal imaging

Fig. 11.3 A stereo pair of retinal images for reconstruction
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small relative displacement of the fundus camera was made when the retinal images
were acquired. Retinal images were acquired with a resolution of 1,280× 1,030
pixels but were reduced to 499×402 pixels prior to analysis in order to reduce the
computational time.

11.2.2 Feature Points Extraction and Vessel Segmentation

Depending on the theory of 3D reconstruction from 2D images, two images of a sin-
gle scene are related by the epipolar geometry, which may be represented by a 3×3
singular matrix called the fundamental matrix F . It captures all geometric informa-
tion contained in the two images, and must first be estimated for the reconstruction.
A standard linear camera calibration matrix K has the following entries:

K =

⎡
⎣ f s u0

0 δ f v0
0 0 1

⎤
⎦

where f is the focal length in pixels and δ is the aspect ratio. (u0, v0) are the coor-
dinates of the principal points, and s is the skew factor which is zero for rectangular
pixels.

Generally in order to obtain the fundamental matrix F , at least 7 correspond-
ing fiducial points (i.e. at bifurcations) should be obtained. In fact, more than
seven matches are required for an accurate estimation. Therefore a semi-automatic
method [8] was used to perform the feature points extraction and vessel segmen-
tation by scale-space analysis of the 1st and 2nd derivatives of the image intensity
profiles (Fig. 11.4). The coordinates of the individual pixels corresponding to the
centrelines of the segmented vessels are recorded. Because of the limited resolu-
tion of the fundus camera, only trunk branches of retinal vessels such as the 1st
to 4th generations were clear enough to be analyzed (Fig. 11.5). Matching points
were selected by an operator and are marked out in Fig. 11.6. If the same vessel
were segmented from different images, the correspondence between them could be
obtained.

Terminal

Bifurcation
Crossing

Fig. 11.4 Feature points extraction. Left: original retinal image; right: analyzed vessels
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Fig. 11.5 Vessel segmentation. Middle: original retinal images; left: the segmentation result of the
red marked vessels; right: the recorded vascular centreline points showing the vessel sect in the
white rectangle area

Fig. 11.6 Retinal images with marked corresponding points

11.2.3 Estimation of Epipolar Geometry

Based on the marked corresponding points (crossing and bifurcation points), the
fundamental matrix F was recovered by applying the gold standard algorithm devel-
oped by Hartley and Zisserman [5] by minimizing the re-projection geometric error:

∑
i

d(xi, x̂i)
2 +d(x′i, x̂

′
i)

2 (11.1)

where xi(ui, vi)↔ x′i(u
′
i,v
′
i) are the marked correspondences, and x̂i ↔ x̂′i are the

estimated correspondences that satisfy x̂iFx̂′i = 0 exactly for rank-2 estimated fun-
damental matrix F .

The gold standard algorithm was implemented by taking the following steps:

1. Obtain the initial estimated rank 2 fundamental matrix F̂ using the normalized
8-points algorithm [3]:

– Normalization: transform the corresponding points according to x̂i = T xi and
x̂′i = T ′x′i, where T and T ′ are normalized transforms consisting of a translation
and scaling.
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– Find the fundamental matrix F̂ corresponding to the matches x̂i ↔ x̂′i with
a linear solution and enforce the rank 2 constraint to it by Singular Value
Decomposition (SVD).

– Set final fundamental matrix F = T ′TF̂T , where superscript T represents the
transpose of the vector.

2. Compute an initial estimated subsidiary variables {x̂i↔ x̂′i} as follows:

– Define two projection matrices as P = [I |0 ] and P′ = [[e′]×F |e′ ], where e′,
the epipole of the second image, could be obtained from F .

– From the correspondence xi↔ x′i, the 3D points X̂i are obtained by an iterative
linear-eigen triangulation method [4] in order to save computational cost.

– The projective correspondence consistent with F is obtained by x̂i = PX̂i, x̂′i =
P′X̂i.

3. Minimize the cost function in Eq. (11.1) by varying P′ = [M|t] and X̂i with the
Levenberg-Marquardt algorithm.

4. Compute the fundamental matrix F as F = [t]×M.

This process of estimating the fundamental matrix is effectively equivalent to a pro-
jective reconstruction. Epipolar lines of the two retinal images calculated by the
above algorithm are shown in Fig. 11.7.

11.2.4 Self-Calibration

In principle, a projective reconstruction can be obtained without the calibration
matrix based on the fundamental matrix, F , but, in practice, due to the ambigu-
ity of projective reconstruction, results may not be sufficiently accurate. Therefore
the 3D reconstruction was made on the basis of a metric projection. It is known that
a metric reconstruction of a scene may be computed by using the essential matrix E
which could be derived from the calibration matrix K [5]:
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Fig. 11.7 The epipolar lines of the two retinal images
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E = KT FK (11.2)

For the special fundus camera-eye system, a general photogrammetric calibration
method, which depends on a calibration object with a known 3-D geometry [14,16],
is not available. Instead a self-calibration method was employed. Since the image
acquisition process was specially designed to minimize alteration of the camera-
eye system, we can assume that the intrinsic parameters of the camera-eye system
remained constant, and the pixels could be considered as nearly perfectly rectan-
gular with an aspect ratio of 1 and no skew. The principal point of the camera-eye
system is assumed to be at the centre of the final retinal image. Therefore the only
unknown parameter of the calibration matrix is the focal length.

It has been recognized that if nk is the number of intrinsic parameters known
in all views and n f is the unknown but constant intrinsic parameter, the number of
views, m, required for self-calibration will be:

mnk +(m−1)n f ≥ 8 (11.3)

Therefore, a minimum of two views is required in this case [11].
A self-calibration method, based on the characteristics of the essential matrix E,

was used to recover the unknown focal length: two of the three singular values of E
should be identical and the other should be zero [11]. The cost function:

C = ω12
σ1−σ2

σ2
(11.4)

was minimized by a direct search algorithm. σ1 > σ2 are the non-zero singular
values of E = KT FK, and ω12 is a weighting factor which represents the degree of
confidence in the estimation of the fundamental matrix F . There are several possible
choices for ω12: (i) the residual of the estimation of F – the inverse of the mean
geometric distance between the image points and their corresponding epipolar lines,
(ii) the number of points used in the computation of F , and (iii) simply set it to
one [1]. After obtaining the focal length by this self-calibration method, the essential
matrix E could be calculated from Eq. (11.2).

Apart from sensitivity to the noise of images, the application of self-calibration
is always dependent on the issue of initialization. Since the nonlinear minimization
is used for self-calibration, convergence to the global minimum can be guaranteed
only if the algorithm is initialized properly. Although this algorithm has a good
global convergence according to Fusiello [2], we still employed a planar chessboard
based photogrammetric calibration approach [7] to generate initial values for self-
calibration. A series of images of a 2-D chessboard plane were acquired by moving
and rotating the fundus camera (Fig. 11.8). The chessboard should not be exactly
parallel to the image plane, because the calibration method applied here depends on
the vanishing points. Otherwise, the vanishing points for the horizontal and vertical
lines of the planar chessboard would both be at infinity, and no solution would exist
(Fig. 11.9). The guessed values for K here are based only on the optics of the fundus
camera. Therefore, it does not include the optics of eye, but should be close enough
to the values for the whole optical system.
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Fig. 11.8 Planar chessboard used for calibration

Vanishing point 1

Vanishing point 2

Fig. 11.9 Vanishing points of a perspective chessboard

11.2.5 Recovery of the Projection Matrix

The corresponding points xi↔ x′i in the 2D images and the unknown 3D points, Xi,
on the object have the relationship:

xi = PXi, x′i = P′Xi (11.5)

here P and P′ are the two projective matrices. If the essential matrix E of the
camera-eye system was obtained, the matrices P and P′ could be retrieved from
E as follows [5]:
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1. Suppose the origin of the coordinate system is at the first camera centre, then
the two projection matrices could be factorized as P = K[I |0 ] and P′ = K[R |t ],
where R and t are the 3D displacements (rotation and translation) from the global
coordinate system to the camera coordinate system. If the calibration matrix K
was known, its inverse can be applied to the points xi and x′i to obtain their nor-
malized coordinates:

x̄i = K−1xi = [I | 0 ]Xi, x̄′i = K−1x′i = [R | t ]Xi

Thus the corresponding normalized projection matrices are

P̄ = [I | 0 ], P̄′ = [R | t ]

2. The essential matrix can be calculated from Eq. (11.2), or

expressed as E = [t]×R = SR

where S is the skew-symmetric matrix of t.
Let the SVD of E be UDV T where D = diag(k, k, 0), then the possible factor-
ization of E = SR is one of the following:

S = UZUT ; R = UWV T or UW TV T

where

Z =

⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦ , W =

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦

Hence the normalized projection matrix P̄′ has four possible choices based on
SVD of E as follows:

P̄′ = [UWV T |+u3 ] or [UWV T |−u3 ] or

[UW TV T |+u3 ] or [UW TV T |−u3 ]

here u3 = U(0,0,1)T, the last column of U .
3. Finally the P and P′ can be calculated by

P = KP̄ and P′ = KP̄′.

Based on the fact that reconstructed points should be in front of both cameras,
the correct solution may be determined by testing a single point if it is in front of
both cameras.
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At the same time the extrinsic parameters, the rotation axis l and the angle of
rotation λ may be obtained as:

l = (R32−R23,R13−R31,R21−R12)T (11.6)

λ = arccos
(

trace(R)−1
2

)
(11.7)

The projection matrix P and P′ are computed according to the essential matrix E
obtained above.

11.2.6 Parameter Refinement

Based on the corresponding points obtained from vessel segmentation, the extrinsic
parameters R and t, and the intrinsic parameter f were refined by minimizing the
first-order geometric error cost function using the Levenberg-Marquardt algorithm.

Cr = ∑
i

(x′iF̃xi)2

(F̃xi)2
1 +(F̃xi)2

2 +(F̃T x′i)
2
1 +(F̃T x′i)

2
2

(11.8)

Here the fundamental matrix F̃ was calculated as

F̃ = K−T [t]×R′K−1 (11.9)

where R′ is the rotation matrix calculated from Rodrigues’ formula [5]

R′ = I + sinλ [
l
‖l‖ ]×+(1− cosλ )[

l
‖l‖ ]

2
×. (11.10)

After this refinement, the final projection matrix could be obtained from R, t and K.
The corresponding epipolar lines are displayed in Fig. 11.10.
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Fig. 11.10 The epipolar lines after parameter refinement
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11.2.7 Reconstruction of 3D Points

Knowing the projection matrices for two images separately, the 3D coordinates of
each point, Xi, can be calculated. In order to obtain a smooth reconstruction, the cor-
responding points from vessel segmentation were smoothed and interpolated using
cubic splines.

An iterative linear method (Iterative-Eigen) [4] was used to perform the triangu-
lation of 3D points. Equation (11.5) can be written as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
wi, j

(ui p3T Xi, j− p1T Xi, j) = 0
1

wi, j
(vi p3T Xi, j− p2T Xi, j) = 0

1
w′i, j

(u′i p
′3T Xi, j− p′1T Xi, j) = 0

1
w′i, j

(v′i p
′3T Xi, j− p′2T Xi, j) = 0

(11.11)

where piT and p′iT are the ith rows of P and P′ respectively. wi, j and w′i, j are the
weight factors at the jth step of iteration which have the form:

wi, j = p3T Xi, j−1, w′i, j = p′3T Xi, j−1 (11.12)

At the beginning of the iteration wi,0 and w′i,0 were set to be 1 in order to find the
initial solution of Xi,0.

All calculations were performed using Matlab (The Mathworks). The param-
eter refinement was based on the codes from the Oxford Brookes toolbox
(http://cms.brookes.ac.uk/staff/PhilipTorr/). The flowchart of a complete recon-
struction process is shown in Fig. 11.11.

11.3 Experiment and Results

A cylinder with a chessboard attached to its external surface was adopted to under-
stand and obtain a preliminary validation of the metric projective reconstruction
procedure. The focal length and aperture of the camera (Nikon D50) were fixed
when pictures of the chessboard were taken, which means that the intrinsic param-
eters of the camera optical system were kept constant. Four images were acquired
and used (Fig. 11.12 left) for self-calibration. The corners of the chessboard were
extracted automatically for reconstruction (Fig. 11.12 right). The epipolar geometry
between the image pairs was calculated by the normalized 8-points algorithm. After
self-calibration, the 3D coordinates of the corners of the chessboard were calculated
by the Iterative-Eigen triangulation (Fig. 11.13). Although the final triangulation
of the 3D object coordinates was only based on two images, the self-calibration
could utilize more images to improve the accuracy of the estimated camera intrinsic
parameters. Quantitative comparison between the measurements and reconstruction
results is summarized in Table 11.1. It is clear that with good estimation of the
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Acquire retina 
images

Reduce the size 
of image file 

Estimate epipolar
geometry

Self-calibration

Recover projection 
matrix

Refine parameters

Triangulation of 
3D points

Vessel extraction

Fig. 11.11 The reconstruction process

O

dX

dY

Fig. 11.12 Object image (left) and image with extracted corners (right)

epipolar geometry and self-calibration, the reconstruction procedure implemented
here is capable of recovering very well most of the geometric features such as height
to length ratio (a/b), angles (α and β) and curvature (r/b). The percentage error in
curvature (r/b) seems to be larger than that in the other parameters, possibly due to
the uncorrected distortion in the images and the smaller value for r making it more
sensitive to errors.

Figure 11.14 shows the reconstruction results of the segmented vessels in the
central region of the image presented in Fig. 11.5. Figure 11.14a is the 2-D view of
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Fig. 11.13 Three-dimensional view of the reconstruction result (top left) and its side view (top
right). Geometry model of the cylindrical chessboard (bottom left) and reconstruction result with
angle measurements in ICEM (bottom right)

Table 11.1 Quantitative comparison of the reconstructed results and measurements. See Fig. 11.13
for definition of geometric parameters

Measured (M) Reconstructed (R) Error = |(M−R)/M|∗100%

a/b 1.1951 1.1778 1.45%
r/b 0.8415 0.7771 7.66%
α 90 89.7 0.3%
β 90 88.575 1.58%

the recovered centreline points of the marked 3-D vessels. The numbers (accord-
ing to Fig. 11.5) indicate which segments of the marked vessels are retrieved.
Figure 11.14b is the 3-D view of the reconstructed vessel centrelines. Figure 11.14c
and d show the side projections of the centrelines of the reconstructed vessels. These
preliminary results demonstrate that 3D reconstruction of the retinal vessels is fea-
sible and may be useful in future studies of the retinal microvasculature in health
and disease. Future studies will attempt to validate the 3-D reconstruction ex vivo
using a model eye with known geometry and in vivo using ultrasound to measure
geometric features.
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Fig. 11.14 Three-dimensional reconstruction results of the centre-lines of the marked retinal ves-
sels: (a) top view of the reconstructed vessels; (b) 3D view; (c), (d) side projections
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Chapter 12
Microscale Flow Dynamics of Red Blood Cells
in Microchannels: An Experimental
and Numerical Analysis

R. Lima, M. Nakamura, T. Omori, T. Ishikawa, S. Wada, and T. Yamaguchi

Abstract The blood flow dynamics in microcirculation depends strongly on the
motion, deformation and interaction of red blood cells (RBCs) within the microves-
sel. We present confocal micro-PTV measurements on the motion of individual
RBCs through a circular polydimethysiloxane (PDMS) microchannel. The RBC
radial displacement and dispersion calculated from these measurements show that
the RBC paths are strongly dependent on the both Hct and plasma layer. In order to
obtain more detailed information of the non-Newtonian property of blood a novel
computational scheme is also described. The simulated flow dynamics were in good
agreement with the Casson flow model and in vivo observations. In the near future
by comparing both results we hope to clarify a variety of complex phenomena occur-
ring at the microscale level.

12.1 Introduction

Approximately, the half volume of the blood is composed of red blood cells (RBCs)
which is believed to strongly influence its flow properties. Blood flow in microves-
sels depends strongly on the motion, deformation and interaction of RBCs. Several
experimental studies on both individual and concentrated RBCs have already been
performed in the past [3, 6–8]. However, all studies used conventional microscopes
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and also ghost cells to obtain visible trace RBCs through the microchannel.
Recently, considerable progress in the development of confocal microscopy and
consequent advantages of this microscope over the conventional microscopes have
led to a new technique known as confocal micro-PIV [13,15,18,21]. This technique
combines the conventional PIV system with a spinning disk confocal microscope
(SDCM). Due to its outstanding spatial filtering technique together with the multi-
ple point light illumination system, this technique has the ability to obtain in-focus
images with optical thickness less than 1μm.

In a numerical context, blood flow in large arteries is usually modeled as a con-
tinuum however this assumption is not valid in small vessels such as arterioles and
capillaries. In this way, we are developing an integrative multi-scale model to simu-
late the blood flow at mesoscopic level. This computational approach may provide
important information on the rheology of blood in small vasculatures where non-
Newtonian property of blood is not negligible.

The main purpose of this paper is to measure flow behavior of individual RBCs at
different haematocrits (Hct) through a 75μm circular polydimethysiloxane (PDMS)
microchannel by means of confocal micro-PTV system. Moreover we introduce an
integrative multi-scale model to simulate the blood flow behavior through microves-
sels in order to obtain more detailed insights about the blood rhelogical properties
at cellular level.

12.2 Confocal Micro-PTV Measurements of RBCs

12.2.1 Materials and Methods

12.2.1.1 Working Fluids and Microchannel

Four working fluids were used in this study: dextran 40 (Dx40) containing about 3%
(3 Hct), 13% (13 Hct), 23% (23 Hct) and 37% (37 Hct) of human RBCs. The blood
was collected from a healthy adult volunteer, where ethylenediaminetetraacetic acid
(EDTA) was added to prevent coagulation. The RBCs where separated from the
bulk blood by centrifugation (1,500 RPM for 5 min) and aspiration of the plasma
and buffy coat and then washed twice with physiological saline (PS). The washed
RBCs were labeled with a fluorescent cell tracker (CM-Dil, C-7000, Molecular
Probes) and then diluted with Dx40 to make up the required RBCs concentration by
volume [10, 12]. All blood samples were stored hermetical at 4 ◦C until the experi-
ment was performed at controlled temperature of about 37◦C. All procedures in this
experiment were carried out in compliance with the Ethics Committee on Clinical
Investigation of Tohoku University.

By using a soft lithography technique it is possible to fabricate easily precise and
reproducible rectangular microchannels at low cost. Rectangular PDMS microchan-
nel with a low aspect ratio seems to be appropriate to perform confocal micro-PIV
measurements of in vitro blood [14]. However, this geometry may not reflect the
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Fig. 12.1 Cross section of the PDMS microchannel

actual physiology of the microcirculation. Hence, very recently we have success-
fully fabricated straight circular PDMS microchannels by using a wire casting tech-
nique [12]. The microchannel used in this study was a PDMS circular microchannel
with a diameter of 75μm (Fig. 12.1).

12.2.1.2 Confocal Micro-PTV Experimental Set-Up

The confocal micro-PIV system used in our experiment consists of an inverted
microscope (IX71, Olympus, Japan) combined with a confocal scanning unit
(CSU22, Yokogawa, Japan) and a diode-pumped solid state (DPSS) laser (Laser
Quantum Ltd, UK) with an excitation wavelength of 532 nm. Moreover, a high-
speed camera (Phantom v7.1, Vision Research, USA) was connected into the outlet
port of the CSU22 (see Fig. 12.2). The PDMS microchannel was placed on the
stage of the inverted microscope where the flow rate of the working fluids was kept
constant (Re ∼ 0.004) by means of a syringe pump (KD Scientific Inc., USA).
A thermo plate controller was set to 37◦C. All the confocal images were captured
in the middle of the microchannels with a resolution of 640×480 pixels, at a rate of
100 frames/s with an exposure time of 9.4 ms. The recorded images were transferred
to the computer and then evaluated in Image J (NIH) [1] by using a manual tracking
MTrackJ [16] plugin. As a result it was possible to track single RBCs through the
middle plane of the PDMS microchannel.

12.2.1.3 RBC Radial Displacement and Radial Dispersion Coefficient

The radial displacements (ΔR) of the tracked RBCs were determined by using the
following equation:

ΔR(t) = |R(t0 + t)−R(t0)| (12.1)
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Fig. 12.2 Experimental set-up

where R(t) is the radial position at time t, t0 is the initial time, and ΔR(t) is the radial
displacement at time interval t.

Besides the calculation of the radial displacement (ΔR), we have also analyzed
the motions of RBCs by using a radial dispersion coefficient (Dyy) [8, 9], given by:

Dyy(t) =
1
N

N

∑
i=1

〈
(Ri,y(t)−Ri,y(0))2

〉
2t

(12.2)

where R, t, N are the radial displacement, time interval and number of RBCs
respectively.

12.2.2 Results and Discussion

12.2.2.1 Blood Flow Visualization at Several Hcts

Figure 12.3 shows images with both non-labeled RBCs (halogen illumination)
and labeled RBCs (laser-emitted light) measured in centre plane of 75μm circular
PDMS microchannel at several Hcts (from 3% to 37%) with Re from 0.004 to 0.005.
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Fig. 12.3 Both normal and labeled rbcs (bright spots) with 3% Hct, 13% Hct, 23% Hct, 37% Hct
(20×, 1.6 zoom)

Fig. 12.4 The effect of the Hct on the plasma layer

From Fig. 12.3 it is possible to observe that the Hct decreases with the microchan-
nel diameter which corroborates with the well known Faharaeus effect [3]. More-
over, it is also evident that the plasma layer tends to increase by decreasing the
Hct (see Figs. 12.4 and 12.5). This latter phenomenon is related to the Fahareues-
Lindqvist effect [5]. Although this phenomenon is still not completely understood
[2], the most acceptable explanation is related to the tendency of the RBCs to
migrate toward the microtube axis enhanced by the RBCs deformation and inter-
ations [6, 19]. A further consequence is that the apparent blood viscosity is reduced
so that the flow resistance through the capillary also decreases.
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Fig. 12.5 Average thickness of the plasma layer at several Hcts

12.2.2.2 Radial Displacement in a 75μm PDMS Microchannel

Figure 12.6a shows the effect of the radial position on the motion of labeled RBCs
flowing through a 75μm PDMS capillary, for a feed Hct of about 13%. In addition
Fig. 12.6b shows the radial displacement of a RBC flowing through microchannel
with Hct of about 3%. The correspondent radial displacements (ΔR) are shown in
Fig. 12.7.

From Fig. 12.7 it is clear that the RBCs radial displacement (ΔR) for 13% Hct
is higher than a RBC flowing within an Hct of 3%. In addition it is also possible to
observe that the radial displacement (ΔR) of the RBC flowing close to the plasma
layer (12μm from the wall) is around three times higher than the RBC (36μm from
the wall) traveling around the middle of the microchannel. These results suggest
that RBCs flowing within the boundary region of RBC core appear to undergo the
largest radial displacements. We believe that the random like transverse motions
happening in this region are mainly due to multiple hydrodynamic interactions with
neighboring RBCs which flow with lower velocity adjacent to the wall or tend to
migrate away from the microtube wall towards the RBC core region.

12.2.2.3 Radial Dispersion in 75μm PDMS Microchannel at Several Hcts

By measuring the radial displacement of labeled RBCs flowing through the
microchannel for a known time interval, it was possible to calculate the correspon-
dent dispersion coefficient (Dyy). Figure 12.8 shows the RBC averaged dispersion
coefficient at the middle plane (Dyy) for several Hcts (3% Hct, 13% Hct, 23% Hct
and 37% Hct).

Figure 12.8 shows that the radial dispersion coefficient (Dyy) increases with the
Hct. The RBC Dyy for Hcts from 23% to 37% have almost one order of magni-
tude greater than the Dyy with 3% Hct. These results clearly reflect the RBCs radial
displacement obtained in Fig. 12.7.
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Fig. 12.6 Rbcs streamlines at several haematocrits: (a) 13% Hct, (b) 3% Hct

Generally, our results demonstrate that the RBCs at dense concentrations exhibit
higher erratic radial displacement when compared with diluted suspensions of
RBCs. Although it is evident that the RBC radial dispersion rises with the increase
of Hct at Hcts of about 24% it tends to level off (see Fig. 12.9). Note that, these
observations are consistent with several other measurements performed in glass
microchannels [8, 11].

The results from Fig. 12.10 reinforce our previous measurements obtained from
glass capillaries [11]. These data clearly demonstrate that RBC radial dispersion
tend to decrease with the diameter. We believe that the main reason is due not only
to Hct reduction with the diameter (Faharaeus effect) but also to the geometry con-
striction which limits the amplitude of the RBCs radial displacements.
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Fig. 12.7 Radial displacement (ΔR) of labeled rbcs at several haematocrits (3% Hct and 13% Hct)
and at different radial positions

Fig. 12.8 RBC averaged dispersion coefficient at the middle plane (Dyy) for several Hcts: 3% Hct,
13% Hct, 23% Hct and 37% Hct
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Fig. 12.9 Effect of the Hct on the RBC Dyy at 75μm PDMS microchannel and 100μm, 50μm
glass capillary [11]

Fig. 12.10 The effect of the microchannel diameter on the RBC Dyy

12.3 Numerical Flow Model of Multiple RBCs

A simulation method for multiple RBCs in a micro-vasculature was proposed for
understanding the rheological properties of blood from a viewpoint of multiscale
mechanics. In the following context, blood flow is modeled at two different scales.
A micro-scale flow is modeled as a particulate flow of RBCs. On the other hand, flow
at a macro-scale is modeled as a continum expressed by the equations of continuity
and Navier-Stokes. Then, a coupling method between those differently-scaled blood
flow models is described. Finally, the simulation results are presented.
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12.3.1 Materials and Methods

12.3.1.1 Microscale Blood Flow Model (RBC Flow Model)

An RBC model developed by Wada and Kobayashi [22] was adopted. This model
is capable of expressing a biconcave shape of the RBC at rest as well as its elastic
deformation while in motion. As shown in Fig. 12.11, the model was constructed by
surrounding the internal liquid of RBC with RBC membrane consisting of N nodal
points linked by a spring element.

Owing to deformation, elastic energies are generated and stored in RBC. The
stretching energy Ws and bending energy Wb are modeled as

Ws =
1
2

ks

N

∑
l=1

(Ll−Ll0)
2 (12.3)

Wb =
1
2

kb

Nl

∑
l=1

Ll tan2
(

θl

2

)
(12.4)

where ks and kb are spring constants, N, N1 are the number of nodes and lines, Ll0,Ll
are length of spring at the natural state and after deformation, θl is the contacting
angle between neighboring elements. To maintain the total area of RBC (actually
it is volume in 3D), a penalty functions WA was introduced. Mathematically, it was
defined by

WA =
1
2

kA

(
A−A0

A0

)2

A0, (12.5)

where subscript 0 denotes the natural state, Ne is the number of bending springs, ka
is a coefficient for the area constraint.

An interactive force working between two RBCs which come closer are
expressed by a potential function Ψ assigned at each nodal point on the RBC
membrane. The potential function Ψ for nodal point i is a summation of interactive
forces from all neighboring nodal points as formulated by

Fig. 12.11 Red blood cell model. Nodal points on the membrane were connected by a mechanical
spring. The neighboring springs were also linked by a bending spring
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Ψ =
N

∑
j=1

Ψi j (12.6)

whereΨi j is the potential function on nodal point i from nodal point j on neighboring
RBC. It is given by

Ψi j =

{
kr

(
πzi j

2 − tan
(

πzi j
2

))
f or −1≤ zi j ≤ 0

0 f or 0≤ zi j
(12.7)

where zi j = di j/δ − 1, di j is a distance between nodal points i and j, and δ is
equilibrium distance. According to this function, a repulsive force acts when they
are come much closer. In the present simulation, the equilibrium distance δ is set to
L0 which is natural length of a spring.

An interactive force working between an RBC and a vessel wall is modeled in a
way similar to the interactive force between two RBCs. The potential function Z for
nodal point i is expressed by a summation of interactive forces from all neighboring
nodal points as formulated by

Z =
N

∑
i=1

Zi (12.8)

where Zi is the potential function on nodal point i from nodal point j on neighboring
RBC, which is given by

Zi =

{
kw

(πzi
2 − tan

(πzi
2

))
f or−1≤ zi ≤ 0

0 f or 0≤ zi
(12.9)

where zi = Di/δw− 1, Di is the distance between nodal point i and the wall, kw is
a parameter to express the magnitude of a repulsive force, and δw is an equilibrium
distance. Here, δw was set to the same as δ .

Modeling of a fluid force fi working on an RBC is made separately for forces fni
and fti which respectively work in normal and tangential directions to a line element
i of an RBC membrane. On the basis of the conservation of momentum, the normal
force, fni working on a line element i of the RBC membrane is modeled as

fni = ρLiv2
ni (12.10)

where ρ is a density of plasma, and vni is a normal component of the velocity differ-
ence between an RBC and a plasma flow. The tangential force ft is modeled based on
Newton’s law of viscosity. If we assume that a flow velocity at a distance Δ from an
RBC membrane is the same as a flow velocity at the RBC membrane, the tangential
force fti that works on a line element i can be approximated as

fti = μpLi vti
/

Δ (12.11)

where μp is a viscosity of plasma, vti is a tangential component of vi. The equiv-
alent distance Δ in Eq. (12.11) was estimated from Oseen flow theory where a



214 R. Lima et al.

two-dimensional cylinder with a radius of a falls down in a viscous fluid. The dis-
tance Δ is therefore

Δ =
(

2.0
(

ln
8.0
Re
− γ

)
+1.0

)
a

8.0
(12.12)

where Re is the Reynolds number determined from a relative velocity of the cylinder
to a fluid and a diameter of the cylinder and γ is Euler constant (= 0.57721). In the
present study, a is set to be comparable to the size of an RBC. Note that the fluid
force is assumed not to work when a distance between two RBCs is less than δ for
presuming the situation that they are in touch.

Given elastic energies and fluid forces, the motion of nodal point i placed on
RBC membrane was determined from

mr̈i + γ (ṙi− ṙg) = Fi + fi (12.13)

where a dot means a time derivative, ri is the position vector of nodal point i, m is
mass of the nodal point, and fi is a fluid force (= fti + fni). Based on the virtual work
theory, an elastic force Fi is given by

Fi =
∂W
∂ ri

(12.14)

W = Ws +Wb +Wa +Ψ+Z. (12.15)

12.3.1.2 Macroscale Blood Flow Model (Continuum Flow Model)

A macroscale blood flow at a steady state is modeled as a continuum expressed by
the Navier-Stokes and continuity equations;

u j
∂ui

∂x j
= − ∂ p

∂xi
+

∂
∂x j

[
1

Re

(
∂ui

∂x j
+

∂u j

∂xi

)]
(12.16)

∂ui

∂xi
= 0 (12.17)

where ui is a flow velocity component and p is a pressure. In general, fluid viscosity
is assumed to be spatially constant for the analysis of arterial blood flow. However,
it is not true in small arteries due to spatial variation of RBC concentration. We here
introduce a Hematocrit function F(Hct) to the viscous term of the Navier-Stokes
equation in order to express a local viscosity dependent on a local hematocrit.

Blood flow is often represented by Casson model. Shiga et al. [20] obtained an
empirical formula of the relationship between Casson viscosity ηc and hematocrit
Hct as

ln
(

ηc

ηp

)
= k ·Hct (12.18)
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where ηp is a plasma viscosity and k is a constant. Based on this equation, we
express the hematocrit function F as

F =
ηc

ηp
= exp [k ·Hct] , (12.19)

whereby the Navier-Stokes equation is rewritten as

u j
∂ui

∂x j
=− ∂ p

∂xi
+

∂
∂x j

[
exp [k ·Hct]

Re

(
∂ui

∂x j
+

∂u j

∂xi

)]
(12.20)

In the actual simulation of a macroscale flow, we solve Eqs. (12.17) and (12.20) by
a finite element method.

12.3.1.3 Geometry Model of a Small Vasculature

The present study solved blood flowing between a two-dimensional parallel plate
flow channel. The x-axis and y-axis were respectively set in axial and radial direc-
tions of the channel. For the microscale simulation, 108 RBCs were put in the chan-
nel with height of 96μm and length of 44μm. In this case, Hct is 0.31. A periodic
boundary condition was assumed for both x-ends of the channel. For the macroscale
flow analysis, the channel is extended to 480 mm. The flow region was divided into
triangular finite elements. The total numbers of nodal points and elements were
2,500 and 4,752, respectively.

12.3.1.4 Simulation Condition

Table 12.1 encapsulates the parameter of the microscale flow. The Reynolds number
was 0.6. Parameter k in Eq. (12.19) was set to 2.85 based on the viscosity of the
whole blood of 4.55mPa · s and that of the plasma of 1.33mPa · s at Hct of 0.44, a
shear rate of 230s−1, and temperature of 37◦C.

Table 12.1 Parameters used for the simulation

Number of nodes, N 60
Mass, m 1.0×10−15 kg
Spring constant for stretching, ks 1.0×10−17 J
Spring constant for bending, kb 1.0×10−18 J
Spring constant for the area constraint, ka 1.0×10−16 J
Viscosity of the red blood cell membrane, γ 1.0×10−10 kg/s
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Calculate the local fluid viscosity

Calculate the local Hct

Start

Calculate RBC behavior

Calculate the fluid flow

Poiseuille flow

End

Is the velocity profile
stable?

yes

no

Fig. 12.12 Flowchart of the present simulation

12.3.1.5 Simulation Procedure

A flowchart of the simulation is shown in Fig. 12.12. Assuming with Poiseuille flow
as an initial axial flow, the microscale flow is calculated. When the radial distri-
bution of RBCs becomes stable, the calculation is stopped, and the Hct functions
are obtained for flow segments defined by radially subdividing the flow channel by
N to incorporate the influence of the local variation of an RBC distribution into
the macroscale flow analysis. The macroscale flow simulation is performed until a
fully-developed axial velocity profile is obtained. With this velocity profile, the sim-
ulation is back to the microscale simulation. This process is repeated until a change
in the axial velocity profile after the microscale flow simulation is negligible. In the
present simulation, N = 8.

12.3.2 Result

The results showed a drastic change in the distribution of RBCs with progress of the
simulation. The spatial distributions of RBCs at the initial state and the converged
state are shown in Fig. 12.13. On the right of each figure, the percentage of RBCs in
each flow segment at each state is plotted. At the initial state, RBCs were distributed
almost uniformly in a radial direction and were found near the wall the initial state.
As RBCs were carried downstream by a fluid flow, they inclined and migrated to the
center of the flow channel. As a result, RBCs were concentrated around the center
and barely found near the wall, forming a plasma layer.
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Fig. 12.13 Comparison of RBC distribution between the initial state (a) and the converged state (b)

Fig. 12.14 Comparison of the axial velocity profile between the initial and converged states

The axial velocity profiles at the initial and converged states are depicted in
Fig. 12.14. At the initial state, the velocity profile was parabolic as given. With
progress of the simulation, there was a tendency that velocity at the center of the
flow channel decreased while that near the wall increased. At the converged state,
the axial flow took a rather flat velocity profile as seen in Fig. 12.14. The max-
imal velocity at the converged state decreased by 13.7% compared to that of the
Poiseuille flow.



218 R. Lima et al.

12.3.3 Discussion

A blood flow property in a small vasculature was analyzed by interactively simu-
lating macro- and micro-scale blood dynamics. The results of the microscale flow
simulation showed that RBCs gathered around the center of the flow channel and a
plasma layer near the wall at the converged state. On the other hand, the macroscale
flow showed a flat velocity profile. These flow features are quite similar to the in
vivo observations [4,17]. It is therefore considered that the simulation results repre-
sent the process of how the microscopic flow influences the macroscopic flow.

It is quite obvious that RBC behavior induced a flat velocity profile of the
macroscale flow and vice versa. With an axial migration of RBCs, the RBC con-
centration became higher around the center of the channel while that near the wall
became less, bringing about an increase in blood viscosity around the center and the
decrease near the wall, respectively. As a consequence, the flow velocity around the
center of the channel decreased and that near the wall increased, developing into a
flat velocity profile.

12.4 Conclusions

Quantitative description of the flow behavior of labeled RBCs in both diluted and
concentrated suspensions were studied under a confocal micro-PTV system. The
experiments were performed in the middle plane of 75μm circular PDMS microde-
vice at low Reynolds numbers (Re∼ 0.004) by using Hcts from 3% up to 37%. Our
experimental results suggest that the RBC paths are strongly dependent on the Hct
and as a result both RBC radial displacement and RBC radial dispersion increase
with the heamatocrict. Moreover, our results also indicate that RBCs flowing around
the plasma layer appear to undergo the largest radial displacements. The confocal
micro-PTV system used in the present work is proved to be a powerful technique
to measure the motion of labeled RBCs at different Hcts through a circular PDMS
microchannel.

A novel computational scheme for the analysis of the mesoscopic blood rheology
was proposed. The scheme was applied for the analysis of blood flow in a small
vasculature. The simulated flow dynamics were in good agreement with the Casson
flow model and in vivo observations. These results addressed the potential of the
present computational approach to the analysis of the rheology of blood in small
vasculatures where non-Newtonian property of blood is significant.

By comparing both results we hope in the near future to clarify a variety of com-
plex phenomena occurring at the microscale level.
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Chapter 13
Efficiency of Spherical Filters on Detection
of Isotropic Defects in Textured Backgrounds

Céline Gouttière and Joël De Coninck

This paper concerns the detection of small defects inserted in various textured back-
grounds with more or less spherical filters and wavelets. We have evaluated the
detection efficiency of the filters when the controlled isotropic defects are first added
in synthetic textured images, then in real reference textured images, the Brodatz tex-
tures, and finally in medical images, parts of digital mammographies. Three fami-
lies of filters are involved: the less spherical family is the Gabor filters, the nearly
isotropic wavelets φ and ψ , and the Mexican hat filters, which are totally spherical.
We have also studied the influence of the defect amplitude by considering various
truncations. To achieve this, the defect height was truncated at different percentages.

13.1 Introduction

Many studies have been carried out about texture analysis, like texture classifica-
tion [1,2], feature extraction [3,4] or defect segmentation [5,6]. The work presented
in this paper belongs to the defect detection field, particularly singularity detection
in textured images.

It is not obvious to detect singularities in images because they are very small
defects in size and in amplitude, sometimes they are not visible to the human eye.
This kind of defects can be interesting to detect for various image processing appli-
cations, that it is in the medical world or in the industrial sector.

In the past few years, singularity detection has been addressed, notably for the
development of a detection algorithm of particle contamination in reticle images [7],
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to detect the characteristic positions in images in automatic inspection system [8],
for automatic fingerprint identification system [9] or for image denoising [10], just
to quote a few.

We have also contributed to the improvement of the singularity detection in com-
paring different families of filters and wavelets about conic defect detection in tex-
tured images. Our aim was to establish a link between the sphericity of the filters
and wavelets and their efficiency to detect singularities, since we can assume that a
singularity is a conic defect. We had to measure the sphericity of the filters, to create
tunable singularities and to evaluate their detection efficiency.

In our first experiments, the families of filters and wavelets were investigated
on the detection of conic defects in synthetic images, which have a tunable textured
background [11,12]. Then we have tested other textured backgrounds, real reference
textures and parts of mammographies, and the defects were slightly modified [13].
One of the focused applications is the detection of microcalcifications in digital
mammographies. This work is in fact an overview of our studies about singularity
detection in textured images.

This paper is organized as follows: we begin to describe the tested filters and
wavelets in Section 13.2, and we compute their sphericity level. Then three sets of
textured images, which are used as background for the experiments, are presented in
Section 13.3. Section 13.4 present the two kinds of defects to detect with the tested
filters and wavelets. These defects are inserted in the textured images. The method-
ology of detection is then explained in Section 13.5 and the detection efficiency of
the filters and wavelets is evaluated in Section 13.6. Finally, the conclusions of the
observations are drawn in Section 13.7.

13.2 Tested Filters and Wavelets

Three families of filters and wavelets were chosen in order to evaluate their capabil-
ity to detect isotropic defects in textured images. Since we want to establish a link
between the sphericity and the detection efficiency of the filters, these were selected
on the basis of their sphericity: one filter family with a low sphericity level, which is
the Gabor filter, another nearly spherical, the φ and ψ wavelets, and a last isotropic
one, the Mexican hat filter. Each family is described in the following sections, but
let us start with the sphericity measure.

13.2.1 Sphericity Measure

Let us recall the definition of the sphericity. A separable wavelet is said to be spher-
ical if its 2D shape is isotropic, i.e.:

∀x1,x2,y1,y2 ∈ R :
x2

1 + y2
1 = x2

2 + y2
2 =⇒ G(x1)G(y1) = G(x2)G(y2) (13.1)
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The sphericity measure used in this paper was established beforehand for sepa-
rable wavelets and filters in [14, 15]. It is based on the comparison of the function
f with the Gaussian function. This last Gaussian function is chosen because it is
the only multidimensional and separable function which is isotropic. We want to
measure the closeness of the separable function to the Gaussian with σ specific
for the investigated function. This leads us to find the maximum of the peak of the
convolution of the wavelet with the Gaussian:

S f = max
σ∈R+

0

∣∣∣∣ 〈 f ,gσ 〉
‖ f ‖‖ gσ ‖

∣∣∣∣ , (13.2)

where gσ = e−
x2
σ .

13.2.2 Mexican Hat Filters

The first family of filters is based on the Mexican hat function, which is expressed
as:

ψ(x,y) =
(

1− x2 + y2

2σ2

)
e
−

x2 + y2

2σ2 . (13.3)

The Mexican hat filters are interesting for our study because they are isotropic.
They were already studied in various applications where the sphericity was an
important factor [16, 17].

The sphericity value of this function is the highest. But we know that this filter is
non-separable and the sphericity measure is adapted for separable filters. We com-
pute nevertheless S f for the Mexican hat function and obtain 0.919. This value is
very close to 1 and confirms the validity of the evaluation method of the sphericity.

13.2.3 Nearly Isotropic Wavelets

The nearly isotropic wavelets φ and ψ are also investigated in this paper. They were
created in [14] in improving the sphericity factor of the scaling function for the φ
wavelet and in optimizing the sphericity of the wavelet function for the ψ wavelet.
The length of these wavelets are 8. Figure 13.1 represents the scaling functions of
these two wavelet filters. More details about their construction can be found else-
where [15].

We compute the sphericity measure S f for the φ and ψ wavelets and obtain
respectively the values 0.802 and 0.840. They are thus nearly isotropic.
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Fig. 13.1 Scaling function of wavelet filter φ (a) and ψ (b)

13.2.4 Gabor Filters

The Gabor filters are chosen because of their tuning properties. Indeed, they are tun-
able in scale and in orientation. The Gabor function is a sinusoid function modulated
by a Gaussian envelope in the space domain. The bank of filters can be obtained by
dilation and rotation of a mother function which has the following form :

ψ(x,y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
cos(2πWx) . (13.4)

where W is the modulation frequency of the filter and σx,σy define the Gaussian
envelope size.

The Gabor filters are often used in various applications of image processing like
defect detection [18, 19] or texture analysis [20, 21].

These filters have the least spherical form in comparison to the two other families.
The value of the sphericity S f found is equal to 0.354 and is well the smallest.

13.3 Textured Backgrounds

We have tested three sets of textured images in our defect detection experi-
ments. A first set was created by us in order to tune the level of roughness of
the images [22], and thus its texture. The second set is composed of real textures
from the well-known Brodatz database.1 As a third set, we have chosen to test
medical images, which have a textured background, i.e. parts of mammographies.
The size of all images is 256× 256 pixels. Examples of these three sets of images
are shown in the following sections.

1 http://www.ux.uis.no/∼tranden/brodatz.html
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13.3.1 Synthetic Textured Images

The advantage of working with synthetic images is the possibility to tune their
parameters. In our case, we would like to vary the image background to obtain
a textured image. The aim is to create synthetic images which are similar to real
images like mammographies. To do this, we use the “Diamond-Square” algorithm
which needs only one parameter related to the level of roughness we want. This
parameter is called h and can vary between 0 and 1. A close value to 1 corresponds
to an image with a high roughness. So, in our experiments, we use synthetic images
with h equal to 0.8. The set is composed by 100 synthetic images and four of them
are shown in Fig. 13.2.

13.3.2 Reference Brodatz Textures

As this paper is focused on textured images, we have naturally tested real textures
of Brodatz. These images are often used for experiments in texture analysis like
browsing and retrieval [23], classification [24] or feature extraction [25]. We have
chosen the 110 first images available on the web site, four of them are presented in
Fig. 13.3.

( ) ( ) ( ) ( )

Fig. 13.2 Examples of synthetic textured images

( ) ( ) ( ) ( )

Fig. 13.3 Examples of Brodatz textures
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( ) ( ) ( ) ( )

Fig. 13.4 Examples of digital mammography parts

13.3.3 Medical Images: Mammographies

As a last set of tested images, we have selected 100 mammography parts. So we
have applied our defect detection methodology on real cases, which can be similar
to detect microcalcifications. We present in Fig. 13.4 four mammography parts from
the test set.

13.4 Designing Spherical Defects

Two shapes of spherical defects were investigated for the defect detection: the conic
defect and the truncated conic defect. Their construction and the parameters used
are explained in the following sections.

13.4.1 Cone-Shaped Defects

The conic defect have white pixels at its center and dark pixels at its rim. The pixels
between the rim and the center are variations in grey levels. This kind of defect can
be formulate as:

D(x,y) = max
{

0,1− ‖
(

x
y

)
−
(

cx
cy

)
‖ R−1

}
, (13.5)

where R is the radius of the base of the cone and (cx,cy) the position of its center.
In our experiments, we have varied the radius R of the cone from 1 to 10 pixels in

order to evaluate the influence of the defect size on the filter efficiency. An example
of a such defect is shown in Fig. 13.5. In this case, R is equal to 50 pixels.

13.4.2 Truncated Cone-Shaped Defects

The truncated conic defects are created similarly to the conic defect, but the top of
the cone is truncated at some height. An example of a such defect is presented in
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Fig. 13.5 Example of a conic defect with a radius of 50 pixels (a) and its profile (b)
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Fig. 13.6 Example of a conic defect with a radius of 50 pixels truncated at 60% (a) and its
profile (b)

Fig. 13.6. This defect has a radius of 50 pixels and is truncated at 60% of its height.
In our tests, the defects are truncated from 10% to 100% (the cone is thus complete)
and the radius of the defects is 10 pixels to keep the shape. Indeed, a small defect
truncated at 10% of its height do not look like a small defect anymore.

13.5 Defect Detection Methodology

The created defects in Section 13.4 are inserted in each image of the three sets
described in Section 13.3. We insert ten defects per image. In fact, we add the image
containing only the defects D to the textured image I and we obtain the image I +D
which is processed by the filters.
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Our method determines the detection efficiency of the filters by decreasing the
intensity of the defects until a given fraction of the defects are not detected anymore
by the filters. The parameter Ω is thus introduced to vary the intensity of the defects,
and the image to be filtered is I + ΩD. Ω takes values between 0 and 1. At the
beginning of the detection test, Ω is fixed to 1. Ω is then decreased until nine out
of ten defects are correctly detected. In our experiments, we tolerate both a false-
negative and a false-positive rate of 0.1%. The measure of the detection efficiency
is the limiting value of Ω .

13.6 Filters and Wavelets Efficiency About Defect Detection

We present in this section the results obtained by the families of filters and wavelets
for the detection of the conic defects and the truncated defects. For each type of
defects, we analyze the results for each set of images. The results are presented in
a graph a graph wherein the Mexican hat filter, the ψ wavelet and the Gabor filter
are compared to the φ wavelet. In fact, for each image we consider the difference
ΔΩ between the best results, i.e. Ω , of the φ wavelet and the other filters, and we
compute the mean and the standard deviation of the values for all images of the set.
In the case of the conic defect, the mean and the standard deviation are computed
for each radius (from 1 to 10 pixels), and in the case of the truncated defects, it is
done for each fraction of truncation (from 10% to 100%). In these graphs, a negative
value means that the reference wavelet φ gives better results for detection than the
considered filter and inversely when positive.

13.6.1 Cone-Shaped Defects

We first present the results of the conic defect detection in the synthetic images. The
corresponding graph is shown in Fig. 13.7. We can see that the Gabor filters perform
less well than the nearly isotropic wavelets φ and ψ for all the considered reduce.
For defects with a radius larger or equal to 2 pixels, the Mexican hat filters give
better results than the φ and ψ wavelets. It is the contrary for the very small defects
(radius of 1 pixel). This is probably due to the ability of the wavelets to eliminate
the regular part of the signal with great efficiency.

We can observe the same trends for the second set of images, the Brodatz textures
in Fig. 13.8. The efficiency of the Gabor filters is however closer to the efficiency of
the φ wavelet than for the synthetic images. This can be explained by the fact that
some Brodatz textures contain directional patterns. As the Gabor filters are oriented
filters they would be more appropriate than non-oriented filters to process directional
backgrounds.
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Fig. 13.7 Filters efficiency comparison about conic defect detection with φ on synthetic images:
(∗) Mexican hat; (!) ψ; (◦) Gabor
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Fig. 13.8 Filters efficiency comparison about conic defect detection with φ on Brodatz textures:
(∗) Mexican hat; (!) ψ; (◦) Gabor

The observations for the mammography parts are less pronounced than the two
other sets of images, the related results are presented in Fig. 13.9. All filters and
wavelets seem to have the same efficiency to detect defects with a radius larger or
equal than 5 pixels. For the detection of defects with a radius between 2 and 4 pixels,
the Gabor filters give worse results than the nearly isotropic wavelets and than the
Mexican hat filters, which provides equivalent results. As it was the case for the
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Fig. 13.9 Filters efficiency comparison about conic defect detection with φ on parts of mammo-
graphies: (∗) Mexican hat; (!) ψ; (◦) Gabor

synthetic images and for the Brodatz textures, the φ and ψ wavelets are the most
efficient and the Gabor filters are the less efficient to detect conic defects with a
radius of 1 pixel.

From all the observations, we can see that the Mexican hat filters give the best
results or equivalent results than the φ and ψ wavelets, except for very small defects
(then it is the contrary). These two families are also the most spherical, as it was
explained in Section 13.2. In addition, it has been shown that the Gabor filters detect
with less efficiency conic defects than the φ and ψ wavelets and than the Mexican
hat filters. The sphericity measure of this filter was the weakest, as evaluated in
Section 13.2. A link can thus be established between the detection efficiency and
the sphericity of the filters and wavelets, for the conic defects. In the following
section, the shape of the defects is not modified but the top of the cone is truncated
in order to verify if the filters and the wavelets locate the top of the cone for the
detection of the defects.

13.6.2 Truncated Cone-Shaped Defects

In this section, the defects have still a conic shape but the top of the cone has been
truncated at 10–100% of its maximal height. The radius of the defects studied is
fixed to 10 pixels. In order to evaluate the effect of the top of the cone on the detec-
tion efficiency of the filters, we have to compare the results for the different fractions
of truncation with the results for the truncation at 100%, i.e. when all the cone is
considered.
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In Fig. 13.10, the results and the order between the filters remain stable from
100% to 50%. Below this fraction, we observe a little detection improvement for
the Mexican hat filters. The φ and ψ wavelets remain almost unchanged, and the
Gabor filters present a slight lowering when the truncation is made at 10%.

Same observations can be seen in the Fig. 13.11 for the Brodatz textures and in
the Fig. 13.12 for the mammography parts: for defects truncated at 50% or higher
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Fig. 13.10 Filters efficiency comparison about truncated defect detection with φ on synthetic
images: (∗) Mexican hat; (!) ψ; (◦) Gabor
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Fig. 13.11 Filters efficiency comparison about truncated defect detection with φ on Brodatz tex-
tures: (∗) Mexican hat; (!) ψ; (◦) Gabor
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Fig. 13.12 Filters efficiency comparison about truncated defect detection with φ on parts of mam-
mographies: (∗) Mexican hat; (!) ψ; (◦) Gabor

than this fraction, the detection results of the filters remain unchanged. Below 50%
of truncation, small variations can appear in the results.

In summary, the order of detection efficiency between the filters is slightly dis-
turbed when the top of the cone is truncated. It means that the top of the cone do not
play an important role in the detection procedure, it contributes to slightly improve
the location of the defects.

13.7 Conclusions

This paper concerns the detection of isotropic defects in textured backgrounds with
more or less spherical filters and wavelets. The Gabor filters, the least spherical
filters, perform less well than the nearly isotropic wavelets φ and ψ for the detection
of conic defects, and the Mexican hat filters, which are isotropic filters, provide the
best results, almost equivalent to the results obtained with the φ and ψ wavelets.

In the second part of the work, the top of the cone has been truncated in order to
determine its effects on the detection by the filters. When the truncation is performed
at a height larger or equal than 50%, the results of detection remain unchanged.
Below this fraction, the variations are very small but the Mexican hat filters are still
the most efficient to detect this type of defects.

All observations remain correct whatever the textured background: synthetic tex-
tured images, Brodatz textures and parts of mammographies were tested in this
work. We can conclude that the sphericity of the filters and the wavelets can be an
important key when isotropic or nearly isotropic defects must be detected in various
textured images.
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pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture in Belgium. They also
acknowledge the partial financial support of the Fonds National de la Recherche Scientifique.

References

1. Soo Chang Kim and Tae Jin Kang. Texture classification and segmentation using wavelet
packet frame and gaussian mixture model. Pattern Recognition, 40(4):1207–1221, April 2007.

2. K. Muneeswaran, L. Ganesan, S. Arumugam, and K. R. Soundar. Texture classification with
combined rotation and scale invariant wavelet features. Pattern Recognition, 38(10):1495–
1506, October 2005.

3. O. Pichler, A. Teuner, and B.J. Hosticka. A comparison of texture feature extraction using
adaptive gabor filtering, pyramidal and tree structured wavelet transforms. Pattern Recogni-
tion, 29(5):733–742, 1996.

4. Jacques Brochard, Majdi Khoudeir, and Bertrand Augereau. Invariant feature extraction for 3d
texture analysis using the autocorrelation function. Pattern Recognition Letters, 22(6–7):759–
768, May 2001.

5. D. Chetverikov and A. Hanbury. Finding defects in texture using regularity and local orienta-
tion. Pattern Recognition, 35:203–218, 2002.

6. D.-M. Tsai and C.-P. Lin. Fast defect detection in textured surfaces using 1d gabor filters.
Advanced Manufacturing Technology, 20:664–675, 2002.

7. Chaoquan Chen and Guoping Qiu. Detection algorithm of particle contamination in reticle
images with continuous wavelet transform. In Proceedings of the British Machine Vision
Conference, 2001.

8. H. Q. Jiang, L. Ma, H. Y. Jiang, and A. Rinoshika. Application of wavelet-based singularity
detection technique in automatic inspection system. International Journal of Wavelets Mul-
tiresolution and Information Processing, 4(2):285–295, June 2006.

9. H. W. Zhang, Y. L. Yin, and G. Z. Ren. An improved method for singularity detection of
fingerprint images. Advances in Biometric Person Authentification, Proceedings, 3338:516–
524, 2004.

10. J. M. Zhong and R. L. Ning. Image denoising based on wavelets and multifractals for singu-
larity detection. IEEE Transactions on Image Processing, 14(10):1435–1447, October 2005.

11. C. Gouttière, G. Lemaur, and J. De Coninck. Influence of filter sphericity on the detection of
singularities in synthetic images. Signal Processing, 87(3):552–561, March 2007.

12. C. Gouttière, G. Lemaur, and J. De Coninck. Influence of sphericity parameter on the detection
of singularities in synthetic images. In Joao Manuel RS Tavares and Jorge R. M. Natal, editors,
Computational Modelling of Objects Represented in Images: Fundamentals, Methods and
Applications, volume 1, pages 211–214, London, July 2007. Taylor & Francis.

13. C. Gouttière and J. De Coninck. Detection of synthetic singularities in digital mammographies
using spherical filters. In Joao Manuel RS Tavares and Jorge R. M. Natal, editors, Computa-
tional Vision and Medical Image Processing, pages 97–100, London, 2008. Taylor & Francis.

14. G. Lemaur. On the Choice of the Wavelet Basis Function for Image Processing. PhD thesis,
University of Mons-Hainaut, Belgium, 2003.

15. G. Lemaur and J. De Coninck. Sphericity of wavelets may improve the detection of singu-
larities in images. In Proceedings of Computing Engineering in Systems Applications, Lille,
France, July 2003.

16. L. Cayon, J. L. Sanz, E. Martinez-Gonzalez, A. J. Banday, F. Argueso, J. E. Gallegos,
K. M. Gorski, and G. Hinshaw. Spherical mexican hat wavelet: an application to detect
non-gaussianity in the cobe-dmr maps. Monthly Notices of the Royal Astronomical Society,
326(4):1243–1248, October 2001.



234 C. Gouttière and J.De Coninck

17. J. Gonzalez-Nuevo, F. Argueso, M. Lopez-Caniego, L. Toffolatti, J. L. Sanz, P. Vielva, and
D. Herranz. The mexican hat wavelet family: application to point-source detection in cos-
mic microwave background maps. Monthly Notices of the Royal Astronomical Society,
369(4):1603–1610, July 2006.

18. S. Arivazhagan, L. Ganesan, and S. Bama. Fault segmentation in fabric images using gabor
wavelet transform. Machine Vision and Applications, V16(6):356–363, February 2006.

19. A. Bodnarova, M. Bennamoun, and S. Latham. Optimal gabor filters for textile flaw detection.
Pattern Recognition, 35(12):2973–2991, December 2002.

20. S.E. Grigorescu, N. Petkov, and P. Kruizinga. Comparison of texture features based on gabor
filters. IEEE Transactions on Image Processing, 11(10):1160–1167, 2002.

21. D. M. Tsai, S. K. Wu, and M. C. Chen. Optimal gabor filter design for texture segmentation
using stochastic optimization. Image and Vision Computing, 19(5):299–316, April 2001.

22. Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering of stochastic models.
Communication of the ACM, 25(6):371–384, 1982.

23. B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of image data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(8):837–842, August 1996.

24. R. Manthalkar, P. K. Biswas, and B. N. Chatterji. Rotation invariant texture classification
using even symmetric gabor filters. Pattern Recognition Letters, 24(12):2061–2068, August
2003.

25. D. R. Rohrmus. Invariant and adaptive geometrical texture features for defect detection and
classification. Pattern Recognition, 38(10):1546–1559, October 2005.



Chapter 14
Spontaneous Intracerebral Hemorrhage Image
Analysis Methods: A Survey

Noel Pérez, Jose Valdés, Miguel Guevara, and Augusto Silva

14.1 Introduction

Spontaneous intracerebral hemorrhages (ICH) account for 10–30% of all strokes
and are a result of acute bleeding into the brain due to ruptures of small penetrating
arteries. Despite major advancements in the management of ischemic strokes and
other causes of hemorrhagic strokes, such as ruptured aneurysm, arteriovenous mal-
formations (AVMs), or cavernous angioma, during the past several decades, limited
progress has been made in the treatment of ICH, and the prognosis for patients who
suffer them remains poor. The societal impact of these hemorrhagic strokes is mag-
nified by the fact that affected patients typically are a decade younger than those
afflicted with ischemic strokes. The ICH continues to kill or disable most of their
victims. Some studies show that those who suffer ICH have a 30-day mortality rate
of 35–44% and a 6-month mortality rate approaching 50%. Approximately 700,000
new strokes occur in the United States annually and approximately 15% are hem-
orrhagic strokes related to ICH. The poor outcome associated with ICH is related
to the extent of brain damage. ICH produces direct destruction and compression
of surrounding brain tissue. Direct compression causes poor perfusion and venous
drainage to surrounding penumbra at risk, resulting in ischemia to the tissues that
most need perfusion [16].

Diagnosis of ICH is based largely on clinical history and corroborative Com-
puter Tomography (CT) scanning of the brain. The head CT scan has a sensitivity
and specificity that approach 100% for acute ICH. The hemorrhage volume is the
most important predictor of clinical outcome after ICH [20]. The volume of ICH
can be estimated rapidly with a head CT. It is an important prognostic indicator
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236 N. Pérez et al.

and criterion for therapeutic intervention and its expansion can be associated with
neurological deterioration. Contrast-enhanced CT scan and newer CT angiographic
(CTA) acquisitions can now be performed quickly with the latest-generation scan-
ners. These images can exclude most gross vascular and tumor causes of hemor-
rhage rapidly and can have an impact on the therapeutic plan [16].

This paper surveys ICH image analysis methods and computer-aided diagnosis
(CAD) systems developed to assist medical personnel in diagnosing and planning
the ICH therapeutic treatment. We briefly describe processing techniques such as:
segmentation, shape representation, matching, and motion tracking that are often at
the algorithmic core of ICH image analysis methods.

The paper is organized in two major sections. Section 14.2 outlines the basic
details of selected methods and in Section 14.3 we conclude with a summary of the
main contributions and ideas for future work.

14.2 Available Methods

14.2.1 CAD Systems

Several computer-based diagnosis systems (CAD) devoted to intracranial illness
have been reported in the literature. These CAD systems have played an important
role in quantitative analysis of medical images aiding medical personnel in selecting
the appropriated treatment of ICH and others intracranial disorders [5].

Ratajewicz-Mokolajczak and Sikora [22] proposed an intraventricular hemor-
rhage identification technique based on the combination of electrical impedance
tomography (EIT) and artificial neural network (ANN) techniques. This identifica-
tion method uses a 16-electrode EIT system (see Fig. 14.1). Due to different con-
ductivity values of human tissues, the measured potential on the scalp electrodes
depends on the dimensions and the position of the hemorrhage. To simulate the
electric potential on the electrodes a variant of the finite element method (FEM)
proposed by Ratajewicz-Mikolajczak and Sikora [21] is used. The set of simulated

Fig. 14.1 System of elec-
trodes and voltages between
them
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measurements is generated for different sizes of the identified object. This set is
used as a training database for an ANN simulator named NETTEACH [14], then
the trained ANN is used to recognize the size and even the position of the object
inside the region.

These authors also tried other methods as the “Bell function method” [24], but
results were not promising and the ANN approach was them considered more
advantageous. It is fast enough, allowing the monitoring of the patients state in
real time. Training ANN can be very time consuming and data preparation is not
an easy task, but when the neural network is trained, the solution for object’s radius
identification and the identification of object position is almost instantaneous.

Akter et al. [1] described various Magnetic Resonance (MR) imaging tech-
niques for depicting intracranial microhemorrhage, such as: the gradient-recalled
echo imaging (GREI) to detect small hemorrhagic foci in the supratentorial white
matter, the GRE-type single-shot echo-planar imaging (GRE-EPI), which is more
sensitive than GREI, and the susceptibility-weighted imaging (SWI) method, which
is considered by these authors a novel superior technique than the other methods
(GREI and GREI – EPI), since it maximizes the lesion visibility and image qual-
ity in routine clinical practice. This technique was originally designed for magnetic
resonance images MRI venography to depict cerebral venous deoxyhemoglobin,
because it is extremely sensitive to susceptibility changes, and is now regarded as
rather promising for detecting cerebral hemorrhages reflected by the presence of
extravascular blood. The SWI technique consisted of a low-bandwidth (78 Hz/pixel)
three-dimensional fast low-angle shot sequence (56/40, 25◦ flip angle) that was first-
order flow compensated in all three orthogonal directions.

To test the methods performance an implementation of these was included in
the software of the same MRI console. After applying the methods to the same
MRI dataset a quantitative analysis was carried out to measure the signal intensity
in hypointense lesions in a circular region of interest (ROI). Three lesions were
randomly selected for the measurement of signal. Results showed that the SWI was
the best for detecting small hemorrhagic hypointense foci, even in the near-skull-
base and infratentorial regions (see Fig. 14.2).

Fig. 14.2 Detection of small hemorrhagic hypointense foci by three techniques
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14.2.2 Histogram and Statistical Approaches

Dhawan et al. [2] proposed a method for ICH volume quantification. In this method,
three sets of scans were used: within 3 h after first symptoms, 1 h later, and within
20 h after first symptoms. These sets of scans provide the information about the ICH
development course. The proposed technique is formed by the following steps: slice
interpolation, k-means histogram-based clustering, ICH primary region segmenta-
tion and morphological ICH edema region segmentation.

Slice interpolation was carried out using the Catmull-Rom cubic interpolation
method [3]. Segmentation of the image in two regions: background and foreground
(to obtain the ICH primary region) was accomplished by the k-means histogram-
based clustering technique (see Algorithm 1). This was based on the fact that ICH
region is brighter than the surrounding background).

Algorithm 1. k-means clustering

1. let v(x) ,x ∈ℜ3 be the 3D
2. thr← initial threshold guess
3. do

(a) B =
{

x ∈ℜ3|v(x) < thr
}

(background)
(b) F =

{
x ∈ℜ3|v(x)≥ thr

}
(foreground)

(c) average background value = 1
|R| ∑x∈B v(x)

(d) average f oreground value = 1
|F | ∑x∈F v(x)

(e) oldthr← thr

(f)
thr← (average barckground value+ . . .

average f oreground value)/2

4. while |thr−oldthr|< ε

After this initial segmentation step many disconnected regions may appear, but only
one of these binary regions corresponds to the primary region. The idea followed in
this approach was to grow with thin layers on the top of ICH primary region and
to examine pixel values to determine if they belong to the edema region. The layer
growing is based on the 3D morphological binary dilation technique using a ball
shaped structuring element. An example of resulting ICH primary and edema vol-
umes is shown in Table 14.1 and the 3D visualization for the resulting ICH primary
region is shown in Fig. 14.3.

Table 14.1 ICH primary and edema region volumes

Baseline 1 h 24 h

ICH primary volume 8.76 9.37 10.05
ICH edema volume 10.03 11.17 15.61



14 Spontaneous Intracerebral Hemorrhage Image Analysis Methods: A Survey 239

Fig. 14.3 Three-dimensional visualization of ICH primary region

Majcenic and Loncaric [13] described a stochastic method for segmentation of
CT head images based on simulated annealing (SA). In the proposed method the
segmentation problem is defined a pixel labeling problem with labels for this par-
ticular application set to: background, skull, ICH, and brain tissue. The proposed
method is based on the Maximum A-Posteriori (MAP) estimation of the unknown
pixel labels. A Markov random field (MRF) model has been used for the posterior
distribution. The process of segmenting individual pixels is viewed as the process of
assigning labels to individual pixels. The label set L = (l1, l2 . . . , .lG) where G is the
number of labels represents the pattern classes in the image. The object set is defined
as P = (p1, p2 . . . , .pM) where M is the number of objects. The labeling problem
is constrained by a number of rules describing the possible labeling of neighboring
objects and/or possible labels for certain objects. The segmentation algorithm tries
to estimate the true pixel labeling denoted by x = (x1,x2 . . . , .xM) and the random
field denoted as Y = (Y1,Y2 . . . , .YM) where Yt is the feature vector associated with
the t-th pixel. The pixel neighborhood influence is described using a MRF model of
statistical dependence among the neighboring pixels. Given a set of observed feature
vectors (current image), Y = y, and contextual information as an MRF, P(X = x),
the problem lies in finding the optimal estimate of the true labeling x. The MAP
method estimates �x that maximizes the posterior probability of X = �x , given Y = y.
The SA algorithm has been altered in a way to become faster (see Algorithm 2).

Algorithm 2. Simulated annealing

1. Choose an initial temperature T.
2. Initialize �x by choosing xt as the color �xt that maximizes P(Yt = yt |Xt = xt) for

each pixel t.

P is the conditional probability density function of the gray levels in the image for
a specified label.

3. Perturb x into z by randomly choosing site t and setting its label to the random
value in the interval (0,1, . . . ,G−1). Let

Δ = U(
�

Xt = �xt |Yt = yt)−U(
�

Xt = z|Yt = yt)

U is the energy function of a single pixel.
If Δ > 0 then replace

�

Xt by z else replace
�

Xt by z with probability eΔ/T .
4. Repeat step (3) Niter times.
5. Replace T by f (T ) where f is the monotonically decreasing function.
6. Repeat steps (3)–(5) until frozen.
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a              b               c d

Fig. 14.4 Two examples of original (a–c) and segmented (b–d) images

The authors assume distribution of gray values in the image to be normal and image
regions of different brightness correspond to different modes of histogram (mean
values μl and variance values σl).

The automatic procedure to determine histogram mean and variance values is the
following:

• Smooth the histogram with a Gaussian function (extracts peaks and determine
means μl)

• Calculate cross-correlation factor between histogram at site μl and a Gaussian
function with increasing variance σl

The experimental results after applying this SA algorithm for two examples are
shown in Fig. 14.4.

Imielinska et al. [9] proposed an algorithm for analyzing post-processed
perfusion-weighted computed tomography (CTP) images. The CTP estimate a
value for cerebral blood flow (CBF) using a series of axial head CT images tracking
the time course of a signal from an intravenous contrast bolus [15]. This method
converts CBF values, which must be viewed as meaningless outside of the context,
to relative “difference,” which represents side-to-side asymmetry and is a mean-
ingful value. This conversion is performed by comparing a small region of the
scan to the corresponding region in the contra-lateral hemisphere, quantifying the
degree of relative difference, and representing this quantity of relative difference in
2D and 3D in a construct termed relative difference map (RDM). The quantitative
analysis of the “relative difference” in both brain hemispheres and the six major
vascular territories (see Fig. 14.5) contributes to the assessment of the degree of
hypoperfusion in the regions. The authors considered two assumptions for the anal-
ysis: (1) in normal cases, the axial CT images of the left and right hemispheres are
structurally symmetric and comparable, and there should be no more than minor
side to side differences in relative blood flow between the two hemispheres; (2) in
abnormal cases, the left and right hemispheres are still structurally symmetric and
comparable, but there is a significant relative blood flow difference between the
two hemispheres. The quantification of symmetry is performed by applying a 9×9
window in both brain hemispheres that visits the opposite regions pixel-by-pixel in
a scan-line fashion.

The Kolmogorov-Smirnov test [4] is applied to find the greatest statistical dis-
crepancy between the observed and expected cumulative frequencies between two
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Fig. 14.5 Patient with ischemic stroke: histograms for left and right hemispheres, and six vascular
territories

populations. The methodology to develop the proposed Automated System for
Quantification of CTP can then be summarized in four key steps:

• Computation of the axis of symmetry of an input CBF image and re-orientation of
the image in upright position, if necessary. (Computing the convex hull, centroids
and the axis of symmetry by applying Fourier shape descriptors (FSD)).

• Computation of the unwrapped image. (Using FSD of the shape).
• Computation of RDM using the assigned axis of symmetry and 9× 9 window

difference calculation on the unwrapped image.
• Registration of six vascular territories using generic angles and computation of a

histogram for each territory.

The RDMs are calculated based on a method proposed by Imielinska et al. [10].
This method corrects the inherent variability of the CTP methodology seen in the
subarachnoid hemorrhage and it is potentially an aid in the diagnosis of cerebral
vasospasm (see Fig. 14.6).

Phan et al. [19] describe the creation of a digital atlas (DA) of middle cerebral
artery (MCA) infarction associated with MCA branch and trunk occlusion using
MRI techniques. Hemispheric infarcts, with evidence of MCA trunk or branch
occlusion, were manually segmented into binary images, linearly registered into
a common stereotaxic coordinate space, and averaged to yield the probability of
involvement by infarction at each voxel. Comparisons were made with existingmaps
of the MCA territory. Twenty-eight patients (see Table 14.2) with median age of 74
years (range, 26 to 87 years) were studied. On the DA-MCA, the highest frequency
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Fig. 14.6 Results with automated RDM/histogram generation: same patient as shown in Fig. 14.5.
The automated system provides similar results as those generated by hand drawing

Table 14.2 Patient characteristics, ASPECTS ratings and infarct volume

Patient Age
(years)

ASPECTS Infarct vol-
ume (ml)

Stroke mechanisms

Rater 1 Rater 2 Rater 3 Rater 4

1 74 2 3 2 1 147.6 Cardioembolic
2 88 6 7 5 7 96.6 Cardioembolic
3 79 8 8 7 9 7.4 Large artery
4 68 8 9 7 9 15.9 Unknown mechanisms
5 76 4 6 5 5 88.2 Large artery
6 63 4 3 3 3 99.7 Unknown mechanisms
7 77 6 7 9 5 1 Unknown mechanisms
8 70 5 6 4 5 72.8 Large artery
9 56 5 5 4 5 65.9 Large artery
10 77 6 4 6 4 94.4 Unknown mechanisms
11 78 3 5 5 5 87.8 Cardioembolic
12 78 2 3 2 3 139.9 Unknown mechanisms
13 76 1 1 0 2 195.6 Cardioembolic
14 79 5 5 5 5 64.6 Large artery
15 61 5 7 5 5 80.1 Cardioembolic
16 85 3 4 2 3 112.4 Large artery
17 73 6 8 7 7 10.7 Cardioembolic
18 88 0 0 0 0 204.1 Cardioembolic
19 65 9 9 8 9 4.7 Cardioembolic
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of infarction was within the striatocapsular region, centrum semiovale, and the
insula. The mean and maximal MCA infarct volumes were 195.5 and 366.3cm3,
respectively. Comparison with published maps showed that the most common differ-
ence from the DA-MCA was in the supermedial extent of the MCA territory. Some
maps showed the MCA territory reaching the interhemispheric fissure, whereas in
the DA-MCA it did not. There was a lower variability in the anterior boundary of
the MCA territory compared with its posterior counterpart. This technique demon-
strated its usefulness to establish the distribution of the MCA and other arterial
territories and the border zones between them with greater certainty.

14.2.3 Knowledge-Based Methods

Cosic [5] proposed an automatic computer-based system to observe and quantita-
tively analyze 3-D changes in ICH volume and structure. The segmentation of CT
images with ICH is performed using an automatic hybrid method, which has an
hierarchical structure and it is based on unsupervised fuzzy clustering and expert
system-based labeling techniques. The algorithm steps followed were:

1. Digitization of CT films.
2. Alignment of digitized images.
3. Image segmentation (two levels: global and local).
4. Interpolation of segmented images (shape-based interpolation algorithm) [23].
5. Quantitative analysis of interpolated images.

The alignment process of digitized images was performed by means of a cross-
correlation between a template (a pattern of the image that is present in all images)
from a reference image and the others images.

The Segmentation method has an hierarchical structure and is based on unsu-
pervised fuzzy clustering algorithm, specifically a combination of the fuzzy c-
means algorithm and the fuzzy maximum likelihood estimation (FMLE) [8] to
break the original image into three number of spatially localized image regions
having uniform brightness (global level: bright, dark, and gray regions) and expert
system-based labeling to assign one of the following labels to each region: back-
ground, skull, brain, calcifications, and ICH local level (see Fig. 14.7) [5].

An expert system was employed for the edema segmentation and the ICH refine-
ment. Every pixel is a single object represented by a fact, which becomes a part of
the expert system knowledge. The facts contain the features and the properties of
the object. The expert system rules use the pixel distance to ICH and the neighbor-
hood relationships between pixels to decide how to classify a particular pixel. The
features used to characterize a pixel are the pixel’s coordinates, the intensity, and the
ratio between the pixel intensity and the average pixel intensity in a neighborhood
of the pixel. The dimensions of the segmented images are 128×128 with 256 gray
levels and the results of the algorithm for one slice are presented in Fig. 14.8.
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Fig. 14.7 Hierarchical struc-
ture of the method for auto-
matic segmentation of CT
head images

Input CT head Image

Unsupervised clustering
algorithm

Labeling by expert system

Expert system for edema 
and ICH segmentation

Global segmentation

Local segmentation

Fig. 14.8 Segmentation results: first row: original image, skull, hemorrhage, brain, background,
and calcifications; second row: hemorrhage after refinement, edema segmentation results

14.2.4 Mathematical Morphology Techniques

Perez et al. [17] proposed a 3D mathematical morphology based semiautomatic
method. This method relies on the application of 3D mathematical morphology, his-
togram analysis, optimal thresholding, and prior geometric information techniques.
Each patient image study is considered as an anisotropic volume restricted manually
to be in the interval formed by the first ICH occurrence and the most outer neighbor
ICH slices. The authors recognize that CT head brain images have common inten-
sity histograms, in that way, it is possible to perform some important correlations
between image objects of interest and the characteristic intensity levels of skull,
grey matter and white matter. The ICH regions are related to higher intensities val-
ues. This approach has two main steps: preprocessing and ICH auto detection.

Preprocessing is carried out to remove narrow impulsive spots and lightly smooth
the image edges by applying a median filter slice by slice, in axial form, with a
windows of 3×3 pixels.
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The ICH auto detection consists in computing the global maximum, which is
used as the threshold value for the ICH segmentation (to produce a binary mask).
Hereafter 3D mathematical morphology operations are applied to auto detect the
ICH (see Algorithm 3).

Algorithm 3. 3D mathematical morphology operations

1. Define ICH neighbor slices interval.
2. Create an anisotropic volume of interest (VOI) containing the ICH slices.

St = {(x,y,z) ∈ N3 : 0 < x < x f ,0 < y < y f ,z0 < z < z f };
i = {i1, i2, i3. . . in} n = 255

x f and y f means row and column image size, z0 and z f are the most outer neigh-
bor slices. The studies intensities are defined as one-dimensional array i with n
intensity levels.

3. Compute gm = max(St); gm is the maximum intensity value of St.
4. Obtain ICH binary mask using gm as threshold value.

ICHBM(x,y,z) =

{
0 ∀ St(x,y,z) < gm∗0.90

1 ∀ St(x,y,z) ≥ gm∗0.90

}

5. ICHerode = ICHBM(x,y,z)"se: where" represent the morphological erosion oper-
ation and se is an spherical structuring element (se diameter is set to 5 voxels and
it was heuristically determined).

6. Select the ICHf a (biggest foreground connected object in ICHerode), which is a
first approach of the ICH segmentation.

7. ICHmask = ICHf a⊕ se: 3D ICH binary mask resultant.
8. Apply a flood fill operation to avoid holes inside the ICHmask.
9. Multiply the new ICHmask by the original VOI and ICH segmentation is car-

ried out.

This method was used experimentally by qualified medical personnel to evaluate
the behavior and changes of spontaneous ICH (shape, size, etc.) during the disease
course. The performance achieved in a representative ICH data set was 83.3% (see
Fig. 14.9).

14.2.5 Similarity-Based Algorithms

Perez et al. [18] proposed a semiautomatic technique for ICH CT head images
segmentation and tracking. The segmentation and tracking processes involve two
main steps: selection of a query object and object retrieval throughout the selected
patient study.
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Fig. 14.9 Semiautomatic 3D mathematical morphology results. First row: original images. Second
row: segmented ICH

The proposed method includes the following steps:

(a) Image preprocessing
(b) Query object selection
(c) Object retrieval

In order to reduce the computational cost and to improve ICH contrast with respect
to background a simple contrast enhancement procedure was introduced in order to
emphasize the object’s (ICH) edge intensities. A linear contrast stretching function
was used to map the gray scale values to new values such that 1% of data is saturated
at both intensity extremes.

Query object elements are formed by the reference points and their associated
similarity vectors. The quantity of reference points and their associated similarity
vectors is variable and depend on the specific problem domain knowledge (e.g. for
the ICH problem solution successful results were obtained using only eight refer-
ence points).

The selection of query object (In) involved several different tasks:

• Extract the object (ICH) contour (CTn), using livewire techniques [6, 11]
• Extract the reference points (set of points that belong to the query object contour)
• Create similarity vectors from reference points

The reference points are formed by a set of points that are located close or in the
object’s contour (resultant curve after life wire application) with direction iθ , where
i : 0..α−1, α = int(360/θ ) , 0 < θ ≤ 180◦ where θ is the user selected displace-
ment angle, taking the object center of mass as the center of the coordinates system
(see Fig. 14.10). Initial reference points are determined by the following algorithm:
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Fig. 14.10 Reference points obtained with θ = 45◦,ε = 0.5

Algorithm 4. Generate initial reference points

1. Select initial slice I(n)
2. Select θ , 0 < θ ≤ 180◦

3. Select: admissible (small) distance between Pi(x,y) and CT n
4. Compute Pi(X ,Y ): reference points

Pi(X ,Y ) = Cx + r∗ cos(i),Cy + r∗ sin(i)

Coordinates (X ,Y ) of Pi are obtained by the expression:
where r ∈ Z+,1 ≤ r ≤ R and r increase in 1 on each iteration until r = R and R
is the value in which dPi(Pi(X ,Y ),CTn)≤ ε , d is the euclidian distance between
Pi(X ,Y ) and CTn
Cx and Cy are the (X,Y) centroid coordinates

5. Store new calculated reference points in the Pi(X ,Y ) array

Similarity vectors (Si) are the basic elements that allow to track the ICH regions
on the rest of slices (images) belonging to a selected patient study. The reference
points represent the centroid (Cx,y) of the similarity matrices(Qi). Similarity matri-
ces are MxM windows, where M = 2∗δ +1, δ is a positive integer scalar provided
by the user. The similarity vectors are obtained from the similarity matrices using
the following mathematic formulation:
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Qi =

a11 a12 a13 · · · a1m
a21 a22 a23 · · · a2m
a31 a32 a33 · · · a3m

...
...

...
...

am1 am2 am3 · · · amm

Si = {a1,1 . . .am,1, a1,2 . . .am,2, a1,m . . .am,m, a1,m+1 . . .am,m+1} where Si repre-
sent the set of similarity vectors corresponding to Pi and Qi.

The object retrieval process in this case aims to track the ICH regions on a set
of selected slices. To carry out this process the authors evaluated several similarity
descriptors, but the best results were achieved with the similarity descriptor pro-
posed by Fuertes [7,12] (see Eq. (14.1)), which was used to select the new reference
points belonging to the slice under analysis:

d(Pi(n),Pi(n+1)) =
√

(Si(n)−Si(n+1))t ∗(Si(n)−Si(n+1)) (14.1)

Si(n) is a similarity vector associated to reference point Pi(n) in the In image, Si(n+1) is
a vector associated to the point Pi(n+1) in the In+1 slice, t denote a transpose matrix.
The new reference points will be those Pi(n+1) where d(Pi(n), Pi(n+1)) is minimum.

The object retrieval algorithm developed is outline below:

Algorithm 5. Retrieval

1. Select new slice (I(n+1))
2. Compute Pik points

for each i angle
where k : 1..D+σ , σ is a value selected by the user, D is the Euclidean distance
between Cn and Pi(n)
Build vector Sik from Pik
Compute Rik Rik = s(Sik,Sin) : s similarity function

3. Select m = k where Rik is minimum

Pik(X ,Y ) = Cnx + k∗ cos(i), Cny + k∗ sin(i)

4. Created and store Pi(n+1) and Si(n+1)

Pi(n+1) = Pim(X ,Y ), Si(n+1) = Sim

5. Build the contour CT(n+1) based on the Pi(n+1) array
6. Compute the centroid from of CT(n+1)
7. If (slice set selected is empty) then end else go to 1

The proposed method was tested on three different set of parameter settings,
for θ , the displacement angle, δ , the window size for the similarity matrix and ε ,
the admissible euclidean distance from CTn and selected reference points):
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Case 1: θ = 45◦, δ = 20 and ε = 0.5
Case 2: θ = 72◦, δ = 20 and ε = 0.5
Case 3: θ = 90◦, δ = 20 and ε = 0.5

The system answered successfully in 30 cases of 36 patient studies that represent
the 83.3% of the total analyzed patient studies and the better segmentation results
were obtained with the parameter set 1 (see Fig 14.11).

Fig. 14.11 Patient number 138-06 (a) selected image, (b) query object, (c–g) retrieval images
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14.3 Summary

Spontaneous intracerebral hemorrhages (ICH) account for 10–30% all strokes and
are a result of acute bleeding into the brain by rupturing of small penetrating arteries.
The societal impact of hemorrhage strokes are magnified by the fact that affected
patients typically are a decade younger than those afflicted with ischemic strokes.
The ICH continue to kill or disable most of their victims some studies show that
those who suffer ICH have a 30-day mortality rate of 35–44% and a 6-month mor-
tality rate approaching 50%. Diagnosis of ICH is based largely on clinical history
and corroborative Computer Tomography (CT) scanning of the brain. The heat CT
scan has a sensitivity and specificity that approach 100% for acute ICH. The hem-
orrhage volume is the most important predictor of clinical outcome after ICH and it
can be approximated rapidly with a head CT. Contrast-enhanced CT scan that may
now be readily accomplished on the latest-generation scanners. These images can
exclude most gross vascular and tumor causes of hemorrhage rapidly and can have
an impact on the therapeutic plan.

We survey several available medical image analysis methods, which have been
used in CAD systems for segmentation and tracking of ICH.

These methods including diverse algorithms and techniques such as:

• MRI based techniques: susceptibility-weighted imaging (SWI), gradient-recalled
echo imaging (GREI) and GRE-type single-shot echo-planar imaging (GRE-EPI)

• Artificial neural networks training based on the electrical impedance tomography
signals

• Statistical techniques as frequency histograms and k-means clustering
• Labeling approaches based on the combination of maximum a-posteriori (MAP)

estimation and Markov random fields (MRF) models
• Quantitative measure of side to side of cerebral blood flow (CBF) asymmetry

algorithm
• Volume region extraction based on digital atlas
• Hybrid approaches including the suitable combination of two or more methods

such as:

– Unsupervised fuzzy clustering and expert system-based labeling
– Mathematical morphology and histogram based intensity analysis
– Deformable models and similarity measures

Spontaneous ICH segmentation, at present, is not a solved problem. Future work
will be focused on the development of better automatic segmentation and tracking
methods to gain in accuracy and precision in the ICH volume determination.
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Chapter 15
Fluid-Structure Interaction Applied to Blood
Flow Simulations
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Elvio Heindenreich, José Félix Rodrı́guez, Miguel Angel Martı́nez,
and Manuel Doblaré

Abstract A coupled fluid-structure interaction model has been developed in order
to study the vessel deformation and blood flow. This paper presents a methodology
from which a smooth surface is obtained directly form segmented data obtained
from DICOM images. An integrated solution for segmentation-meshing-analysis is
also implemented based on the GiD platform.

15.1 Introduction

Integration of different disciplines is an important aspects in the current develop-
ment of computer applications in biomedical engineering in order to go from imag-
ing to computer simulations of tissue, organs, or biological systems. Computed
Tomography (CT), and Magnetic Resonance Imaging (MRI for short) use special
equipment to obtain image data from different angles around the body. Using this
information, radiologists can diagnose problems such as cancers, cardiovascular dis-
ease, infectious disease, trauma and musculoskeletal disorders more easily [1, 2].
Due to their detailed information, these tools have become an essential tool in pre-
ventive medicine.

These images, on the other hand, can also be used to extract the geometry
of the organs and tissues for computer analysis via segmentation of the DICOM
images (Digital Imaging and Communications in Medicine). After performing the
segmentation, a discretization of the domain is required for computer simulation.
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Generating a mesh for Finite Element simulations from a segmented image can be
cumbersome due to the usually complicated geometry. To overcome this problem,
methodologies which make direct use of the segmented data (voxel geometry) have
been proposed [3]. Even though they result useful for electrophysiologic simula-
tions, the non-smooth nature of the surface pose serious problems in solid mechanics
and fluid-structure interaction simulations. Therefore, methodologies which provide
smooth surfaces of the organs and tissues from biomedical images are desirable for
computer simulations.

This paper presents a methodology for performing patient-specific computer sim-
ulations of cardiovascular systems, in particular fluid-structure interaction in an arte-
rial bifurcation implemented within the Decision Support System DSS-DISHEART.
The system incorporates a database for managing patient specific data (i.e., images,
cardiovascular data, velocity and pressure profiles, etc.), as well as a number of tools
for performing image analysis and segmentation, meshing and finite element tools,
with fluid, structure, and fluid-structure interaction capabilities. It also incorporates
a Neural-Network for medical decision support. In the example presented in the
paper, the image of a femoral bifurcation is initially segmented and voxelized to
defined the geometry. The voxel data is then used to produce meshes for the fluid
and solid domains. Biomechanical data from each specific patient are then used
for the simulations, providing more realistic information regarding the performance
of the particular cardiovascular system. The remaining of the paper is organized
as follows. Section 15.2 describes the DSS-DISHEART environment. Section 15.3
describes the Methods used for image processing, segmentation, image voxelization
and meshing. Section 15.4, Section 15.5 and Section 15.6 detail the fluid and solid
solvers and their interaction in FSI simulations. Section 15.7 presents an application
to a femoral artery of a patient and Section 15.8 includes some conclusions.

15.2 DSS-Disheart Environment

Five separate programs were required to create patient-specific geometric models
from medical imaging data and perform fluid-structure interactions in blood flow
simulations. A modular software architecture was then developed (see Fig. 15.1) to
allow the use of best-inclass component technology and create a single application
capable of making a patient-specific simulation. Figure 15.1 shows the integration
environment, a data repository for an abstract data exchange between modules and
user, and those modules roughly corresponding to the major tasks in the process. An
integrated system was developed utilizing the architecture shown in Fig. 15.1 that
enables a professional to go from medical imaging data to analysis results.

In Fig. 15.2, the flowchart of the DSS-DISHEART shows the process to obtain
the results of a specific case and how the DSS is created. Figure 15.2 shows five
distinctive parts: definition of the cardiovascular problem, definition of the data
analysis, results, creation and training of the ANN and Decision Support System.
Each of these parts will be explain in the following lines. About the creation and
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Fig. 15.1 Block diagram depicting the whole process for a fluid-structure interaction problem of
a specific patient. The DICOM file of the patient is read to the DSS-DISHEART Data Base. To
extract the geometry of the analysis VISUAL DICOM is used, after performing the segmentation
of the specific domain for the computer simulation. Subsequently, a new Gid Problem-Type able to
visualize, manipulate, generate the mesh and impose the specific boundary conditions for the fluid
and the structure problem over 3D medical-geometries is developed. After the simulation, the new
problem-type will read the results so the user can analyze them for this specific case

Fig. 15.2 Modular software architecture
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Fig. 15.3 DSS-DISHEART Wizard

training of the ANN and the DSS, more information may be found in [4]. The main
function of the Database is to store a great amount of medical and material images,
to later analyze them and train the neural network. The Wizard (Fig. 15.3) guides
the user through the whole process of introducing and analyzing a specific case of
the database. The different stages are thus followed in an ordered and synchronized
way. The stages that have been successfully finished are depicted in green, and the
still pending steps are depicted in red.

Step 0: Test name and description. The name of the test to be analized is intro-
duced, together with a brief description.

Step 1: Upload the test image. At this stage the user selects the image in DICOM
format corresponding to the patient. To assign this DICOM, a browser is automati-
cally opened.

Step 2: Perform the segmentation of the image. At this stage, the image is seg-
mented by using the software VISUAL DICOM. By pressing the button “Segmen-
tation Program”, a window is automatically opened with the loaded image, and it is
segmented using several tools available.

Step 3: Upload the segmentation image. The new file, in format STL or VTK, is
stored in the Database.

Step 4: Fluid Simulation. The new 3D geometry file is read and meshed in GiD.
In this stage the specific boundary conditions for the fluid are imposed and the Fluid
calculation file is created. Additional information may be found in [4].

Step 5: Solid Simulation. The new 3D geometry file is read and meshed using
GiD. In this stage the specific boundary conditions for the solid are imposed and the
Solid calculation file is created. Additional information may be found in [4].
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Step 6: Three different simulations(fluid problem, solid problem and fluid-
structure interaction problem) have been implemented. This option gives the user
the possibility of studying three different problems, fluid simulation, solid simula-
tion and fluid-structure interaction simulation depending of the specific-case.

In this paper the Interaction simulation based on the FEM is explained in detail.
When the calculation has finished, the results are stored in the Database and can be
consulted and post-processed.

The system is able to integrate other input files, so the Steps 2, 4 and 5 are
optional. This gives more flexibility to the system, since, for example, the user can
upload a VTK file without the necessity of using VisualDicom. The segmentation
file will be automatically saved in the database. The same happens with the fluid
and solid calculation files in Step 4 and Step 5.

15.3 Methods

15.3.1 Medical Images: CT Image Segmentation

The objective of the image segmentation is to find and to identify the boundaries
of objects with certain characteristics from the rest of the image. This segmentation
allows visualizing and extracting the volume of interest. One of most widely used
techniques is the grey thresholding segmentation. It is possibly the simplest and
most direct method. The selection of grey thresholds able to identify the object of
interest is usually interactive, even though some alternative techniques have been
proposed to determine it in a more automatic way. These threshold can be defined
in either a local or global data set, and sometimes, over a three-dimensional data set.

In most applications, threshold segmentation is accompanied by manual segmen-
tation which requires the physician expertise. Figure 15.4 shows the resulting seg-
mentation of a human heart.

15.3.2 Meshing Algorithm

The development of finite element simulations in medicine, molecular biology and
engineering has increased the need for quality finite element meshes. After seg-
menting the medical image, a file with the image data and the value of the iso-
surface value defining the boundary of the volumen of interest is available. The
imaging data V is given in the form of sampled function values on rectilinear grids,
V = F(xi,y j,zk)|0≤ i≤ nx,0≤ j ≤ ny,0≤ k ≤ nz. We assume a continuous func-
tion F is constructed through the trilinear interpolation of sampled values for each
cubic cell in the volume. The format used to read the medical data is VTK struc-
tured point [7]. The description of this format can be found in [7]. The image in
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Fig. 15.4 Segmented image
of a human heart

this format can also be rendered as a volume and manipulated with the Itk library.
Given an isosurface value defining the boundary of the volume of interest we can
extract a geometric model of it. We are interested in creating a distcretization of the
volume suitable for finite element computation. In this work we have implemented
the following methods to generate the finite element mesh to be used in the analysis
stage: (i) dual contouring, (ii) marching cubes, (iii) advancing front, (iv) volume pre-
serving Laplacian smooth. All these methods have been integrated into the general
Pre/Post-processor GiD [6].

15.3.2.1 Tetrahedral Mesh Generation

In order to generate a tetrahedral mesh from voxels we combine the Marching Cubes
method to generate the boundary mesh first and then, after smoothing, an Advanc-
ing Front [5] method to fill the interior with tetrahedras. The Marching Cubes [10]
algorithm visits each cell in the volume and performs local triangulation based on
the sign configuration of the eight vertices. If one or more vertex of a cube have val-
ues less than the user-specified isovalue, and one or more have values greater than
this value, the voxel must contribute some component of the isosurface. By deter-
mining which edges of the cube are intersected by the isosurface, we can create
triangular patches which divide the cube between regions within the isosurface. By
connecting the patches from all cubes on the isosurface boundary, we get a surface
representation.

Some of the triangles generated by the Marching Cubes method do not exhibit
good quality to be used in a finite element computation, so in order to improve the
quality of those elements we apply a laplacian smoothing with volume preserva-
tion. The smoothing algorithm implemented is simple: it preserves the volume after
each application of the laplace operator by doing an offset of the vertices along the
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(a) Mesh generated by marching cubes (b) Advancing front

Fig. 15.5 Detail of the mesh process

normals. Figure 15.5a shows the boundary mesh generated by Marching Cubes and
this smoothing algorithm.

The Advancing Front [5] is an unstructured grid generation method. Grids are
generated by marching from the boundaries (front) towards the interior. Tetrahedral
elements are generated based on the initial front. As tetrahedral elements are gener-
ated, the “initial front” is updated until the entire domain is covered with tetrahedral
elements, and the front is emptied. Figure 15.5b shows a cut of the tetrahedral mesh
generated by the Advancing Front method.

15.3.2.2 Hexahedral Mesh Generation

The dual countour method [8] generates a quadrilateral mesh aproximating the
boundary of the body. Here we implement a variation [9] of the original method
to generate hexahedral mesh for which the boundary is a quadrilateral mesh sim-
ilar to the one generated by the dual contour method. Dual contouring analyzes
those edges that have endpoints lying on different sides of the isosurface, called
sign change edge. Each sign change edge is shared by four cells, and one minimizer
is calculated for each of them by minimizing a predefined Quadratic Error Function
(QEF). The QEF is defined as follows:

QEF [x] = ∑(ni(x− pi))2

where pi, ni represent the position and unit normal vector of the intersection point
respectively. For each sign change edge, a quad is constructed by connecting the
minimizers. These quads provide an approximation of the isosurface. Figure 15.6
shows an example of the dual contour method in 2D.
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Fig. 15.6 2D example of a
dual countour

(a) Hexahedral mesh generated by dual
contour method

(b) Finite difference mesh

Fig. 15.7 Finite element and finite difference meshes

The uniform hexahedral mesh extraction algorithm is simple. Each interior vertex
(a grid point inside the volume), which is shared by eight cells, is analyzed. One
minimizer is calculated for each of the shared cells, and those eight minimizers
construct a hexahedron. An example of a mesh generated by dual contour is shown
in Fig. 15.7a.

Also a finite difference mesh can also be obtained. This consist of aligned orthog-
onal hexahedra. Each pair of neighbor voxels on the boundary of the body generated
shares a common face. Figure 15.7b shows and example of such a mesh.



15 Fluid-Structure Interaction Applied to Blood Flow Simulations 261

15.4 Computational Fluid Mechanics Solver

Blood is a suspension of red and white cells, platelets, proteins and other elements in
plasma and exhibits an anomalous non-Newtonian viscous behavior when exposed
to low shear rates or flows in tubes of less than 1mm in diameter. However, in large
arteries, vases of medium calibre as well as capillaries, blood may be considered a
homogeneous fluid, with “standard” behaviour (Newtonian fluid) [26].

The governing equations for blood flow used in this work are the Navier-Stokes
equations, with the assumptions of incompressible and Newtonian flow (90% of the
blood is water). For the representation of the Navier-Stokes equations of a deforming
fluid domain based on the arbitrary Lagrangian-Eulerian (ALE) method [25], we
adopt the following notation: Ω is a three-dimensional region denoting the portion
of the space on which we focus our attention, and x = (x1,x2,x3) is an arbitrary point
of Ω ; u = u(x, t) denotes the blood velocity. For x ε Ω and t > 0 the conservation
of momentum and continuity in the compact form are described by the following
Eq. (15.1):

ρ ·
(

∂u
∂ t

+(u ·�u)
)

+∇ p−∇ · (μ!u) = ρ · f in Ω(0, t)

∇u = 0 in Ω(0, t)
(15.1)

where u = u (x, t) denotes the velocity vector, p = p (x, t) the pressure field, ρ density,
μ the dynamic viscosity of the fluid and f the volumetric acceleration. Blood flow
is simulated for average blood properties: molecular viscosity μ =0.0035 Pa.s and
density ρ = 1050 kg/m3. The volumetric forces(ρ · f) are not taken in to account in
the present analysis.

The boundary conditions for the pulsatile flow, the inflow mean velocity is time-
dependent and the volumetric flow rate is oscillatory, as shown in Fig. 15.8a. The
pulsatile velocity waveform is represented by a polynomial equation based on the
in-vivo measurement by magnetic resonance imaging. This pulse is appropriate for
normal hemodynamic conditions at the end of an abdominal segment of the human
aorta (inflow of study case).

For the outflow the pressure is also time-dependent and oscillatory, as shown in
Fig. 15.8b. The pulsatile pressure waveform was calculated using a 1D model [27]
and validated con with different analyse.

For solving the fluid problem, Tdyn [21, 22] has been integrated within DSS-
DISHEART. Tdyn is a fluid dynamics and multi-physics simulation environment
based on the stabilized Finite Element Method. Tdyn’s Navier-Stokes solver is based
on an iterative monolithic predictor-corrector algorithm, where the correction step
is based on imposing the divergence free condition in the velocity field by means of
the solution of a scalar equation for the pressure. It uses an innovative stabilization
method based on the Finite Increment Calculus (FIC) concept [20, 23, 24]. In this
methodology, and that by considering the balance of flux over a finite sized domain,
higher order terms naturally appear in the governing equations, which supply the
necessary stability conditions for a classical Galerkin finite element discretisation
with velocity and pressure interpolations of equal order.
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(a) Velocity Waveform

(b) Pressure wafeform

Fig. 15.8 Velocity and pressure profile

15.5 Solid Finite Element Solver

Biological soft tissues sustain large deformations, rotations and displacements,
have a highly non-linear behaviour and anisotropic mechanical properties and show
a clear time and strain-rate dependency [11]. Their typical anisotropic behaviour
is caused by several collagen fibre families (usually one or two fibres coincide
at each point) that are arranged in a matrix of soft material named ground sub-
stance [11]. Typical examples of fibred soft biological tissues are blood vessels,
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tendons, ligaments, cornea and cartilage. Therefore, to capture the nonlinear
anisotropic hyperelastic behavior, it is necessary to consider the formulation
of finite strain hyperelasticity in terms of invariants with uncoupled volumetric-
deviatoric responses, first suggested in [12, 13], generalized in [14], and employed
for anisotropic soft biological tissues in [15, 16].

Let F = ∂x/∂X be the deformation gradient mapping a point X in the reference
configuration to a point x in the current configuration. Further, let J = det(F) be the
jacobian of the motion. Proper volumetric and deviatoric uncoupled responses can
be defined following the kinematic decomposition

F̄ = J1/3F, C̄ = F̄T F̄, (15.2)

where F̄ is deviatoric deformation gradient, and C̄ is the right Cauchy-Green ten-
sor associated to F̄. Let a0 and b0 be the directions of collagen fibers within the
tissue defining the transverse anisotropic behavior of the tissue [16]. For isother-
mal processes, we can postulate the existence of a unique decoupled representation
of a strain-energy density function Φ [17]. Based on the kinematic decomposition
(15.2), and following [12, 16] the free energy for an anisotropic hyperelastic soft
tissue can be written in a decoupled form as

Φ(C,a0,b0) = U(J)+ Φ̄(Ī1, Ī2, Ī4, Ī6), (15.3)

with
Ī1 = trC̄, Ī2 = 1/2(tr(C̄)2− trC̄2),

Ī4 = a0 · C̄ ·a0, Ī6 = b0 · C̄ ·b0,
(15.4)

Ī1 and Ī2 are invariants of C̄, and Ī4 and Ī6 are the square of the stretches along
a0 and b0 respectively. For a hyperelastic material, the 2nd Piola-Kirchoff stress is
derived from the strain energy as S = 2∂Φ/∂C. For the form of the strain energy
given in Eq. (15.3), the 2nd Piola-Kirchoff and the Cauchy stress, σ, tensors, with
the later obtained as the weighted push forward of S, can be written as

S = U ′JC−1 +2J−2/3DEV
[

∂Φ̄
∂ C̄

]
, σ = U ′1+ 2

J dev
[
F̄ ∂Φ̄

∂ C̄ F̄T
]
, (15.5)

where DEV[·] = [·]− 1
3 ([·] : C̄)C̄−1, and dev[·] = [·]− 1

3 ([·] : 1)1.
The total energy of the system is then given by the functional

Π(u) =
∫

Ω
Φ(X,Ca0,b0)dV +Πext(u), (15.6)

where the explicit dependence on X accounts for the heterogeneity, and Πext is the
potential energy associated to the external load. The finite element formulation is
based in the minimization of Eq. (15.6), which first variation with respect to u along
the direction η is given by

DuΠ(u) ·η =
∫

Ω
[σ : ∇η−gext(η)]dV, (15.7)
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where σ is de Cauchy stress and gext is the virtual work of the external loading.
Introducing the standard finite element approximation, u = ∑Nnod

k=1 = Nkuk, with
uk ∈ R

3, and N the isoparametric interpolation functions, into Eq. (15.7) leads to a
nonlinear system of equations. Restricting Eq. (15.7) to a single element

Ge(u,η)|ωe =
∫

�

[σ e : ∇sη ]Je jξ dξ ]dV −gext(η)|ωe = 0, (15.8)

where jξ is the jacobian of the isoparametric mapping, and the integral is carried on
the unit cube [15]. The solution of this system of equations for a given increment Δu
is performed iteratively by means of Newtons method, by consistent linearization of
Eq. (15.8) about the displacement in the current iteration. The linearization of Eq.
(15.8) at iteration k is given by

Luk Ge(u) = Ge(uk)+DGe(uk) ·Δ(u). (15.9)

This linearization leads to a linear system of equations at the element level of the
form

Ke(uk)Δuk+1 = Fext−Fint (15.10)

where Ke stands for the element stiffness matrix. After imposing proper boundary
conditions to the global system of equations, solving for Δu, allows computing an
approximation to the displacement field at iteration k +1 as uk+1 = uk +Δuk.

15.6 Numerical Study of the Coupled Fluid-Structure Problem

A distinctive feature of the fluid-structure problem is the coupling of two different
sub-problems, the first referring to the fluid (whose solution is characterized by the
pressure and turbulence fields of the blood) and the second to the structure (whose
unknown variable is the displacement field of the vascular wall). To match the two
solvers, we can proceed in many different ways. Similarly, different strategies can
be considered for the computation of the grid velocity in the ALE perspective. In
this section, we illustrate, in particular, an explicit algorithm for the coupling of fluid
and structure.

To consider the problem arising when coupling fluid and structure models, let us
restrict our analysis to a domain Ω . The boundary Γ is composed of a portion ΓC,
which is assumed to be compliant, and a part ΓF , which is assumed to be fixed.

Let us consider the interface conditions between the fluid and the structure. The
first condition ensures the continuity of the velocity field, and reads:

v = u̇ x ∈ ΓC (15.11)

where u̇ is the velocity field of the vessel and v the one of the fluid.
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The fluid exerts a surface force field over the vessel (we will neglect the possible
stresses related to the surrounding organs in our analysis). These forces must be
treated as a (Neumann) boundary data for the structure problem:

Φ =−Pn+nS x ∈ ΓC (15.12)

where Φ is the force field vector applied in the vessel due to the blood flow, n is the
normal to the surface, P is the pressure and S is the extra-stress tensor.

The fluid-structure interaction problem is therefore specified by (15.1), (15.11),
(15.12) and the governing equations of the vessel model. In view of its numer-
ical solution, the coupled problem ought to be split at each time step into two
sub-problems, one in Ω , the other on Ωs (the vessel domain), communicating to
one another through the matching conditions (15.11) and (15.12). In particular, the
structural problem provides the boundary data for the fluid problem while the fluid
problem provides the forcing term for the structure.

15.6.1 Numerical Solution

The coupled problem is split at each time into a structure and a fluid problem, com-
municating each other through boundary terms: a forces field boundary term in the
vessel due to the fluid and a velocity restriction of the boundary ΓC of the fluid. Fig-
ure 15.9 shows the basic steps of the algorithm to illustrate the evolution from time
level n to time level n+1.

The algorithm iteration process for each time step can be resumed as follows:
(a) Solving the structure problem (vessel wall) with the boundary terms due to

the blood flow. At the first time level, the scheme is suitable modified, taking into
account the initial data on the position and the velocity at time t = 0.

(b) Updating domain configuration (Fig. 15.10) and boundary conditions for the
fluid solver: Once they are known, we can compute the domain deformations and the
movement of the nodes of the grid for the fluid. The new position of the boundary
ΓC is computed through the relation:

xn+1
i = x0

i +un+1
i (15.13)

Vessel Wall Structure Solver

New Domain Configuration
Grid velocity(ww)
Boundary Velocity

Blood Fluid Solver(Tdyn)

Boundary Conditions on

n = u̇ on GC

on GC

Fig. 15.9 Representation of the splitting in two sub-problem for our approach (coupled solver)
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The displacement of the nodes of the grid for the fluid is obtained as a diffusion
problem of the boundary displacement into the fluid domain. Diffusion process is
based on an arrangement by levels of the mesh nodes, where level 0 corresponds to
the mesh nodes on the surface, level 1 to the nodes connected to level 0 nodes, and
so on.

The velocity mesh, w, is then computed by the equation:

wn+1 =
1

Δ t
· (xn+1−xn) (15.14)

The idea underlying this approach is to take advantage of the regularization due
to the inversion of the Laplace operator in order to have an acceptable mesh. From
time to time, however, it could be necessary to remesh the whole domain, if the grid
is too distorted after a certain number of steps.

Another strategy consists of computing the velocity mesh as the solution of the
problem:

−Δwn+1 = 0 in Ω(0, t)
wn+1 = u̇n+1 on ΓC(0, t)
wn+1 = 0 on ΓF(0, t)

(15.15)

Finally, the mesh update is obtained by:

xn+1 = xn +Δ t ·wn+1 (15.16)

For a comparison of the two strategies, see [19].
(c) Solving the blood flow problem. The ALE formulation of the Navier-Stockes

equations (15.1) is solved by using an implicit 2nd order accurate projection scheme.
The choice of the time-advancing method satisfies the Geometric Conservation
Laws.

(d) Computing the force field applied as a boundary condition on the structural
problem due to the fluid. When the boundary nodes of the structure and the fluid are
not coincident it is necessary to make an interpolation of the nodal quantities during
the interaction algorithm. The methodology used for this interpolation is based on
an octtree search algorithm of elements and standard finite element techniques.

This algorithm performs a staggered coupling between the fluid and the structure
problems; therefore, it should generally undergo stability limitations on the time
step. These limitations could turn out to be restrictive in practical computations.

Fig. 15.10 Updating of the mesh
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15.7 Results

15.7.1 Femoral Artery

An example of a human femoral bifurcation is considered in this section to demon-
strate de methodology. The patient was injected with XXX mL of contrast agent into
a peripheral vein. Images of the femoral bifurcation were captured in a 16 Detec-
tor/16 Slice Toshiba Multidetector CT Scanner using a slice thickness of 3.2 mm
with slices reconstructed every 1.6 mm to maximize the longitudinal resolution.
Images were reconstructed using Maximum-Intensity-Projection (MIP) algorithm
in the frontal and sagittal views.

Arterial segmentation was automatically performed by means of threshold seg-
mentation using the Visual DICOM software within DSS-DISHEART. Figure 15.7b
shows the voxel representation of the geometry of the bifurcation. From this voxel
representation, the mesh was generated by the Marching Cubes method and then
smoothed as illustrated in Fig. 5.11b.

From the voxel image given in Fig. 5.11a, surface and solid meshes were created
for the fluid and solid domains using the software GiD within the DSS-DISHEART.
The resulting meshes were composed of 3,003 hexahedral finite elements for
the solid wall and 74,125 tetrahedral elements for the fluid. Figure 15.5a shows the
meshes for the solid (arterial wall) and the fluid respectively. The solid mesh for the
arterial wall was generated by extruding the surface mesh a uniform thickness of
1.5 mm.

Fig. 15.11 Finite element meshes obtained from the VTK file for the femoral artery. (a) Volume
mesh for the arterial wall, (b) Volume mesh for the fluid
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For the solid simulations, the femoral artery was considered as an isotropic mate-
rial with an strain energy function given by

Φ(C) = c10(Ī1−3.0)+ c20(Ī1−3.0)2 +U(J) (15.17)

with c10 = 174.0 kPa, and c20 = 1,880 kPa [18]. The material was treated as incom-
pressible with the incompressibility constrain treated by means of the three varia-
tional principle introduced in [14, 15]. Solid finite element calculations were car-
ried with the software MYDAS and the fluid element calculations with the software
TDYN, both integrated within the DSS-DISHEART program. All displacements
were restricted at both ends of the femoral artery in the solid domain. For the fluid
domain, velocity boundary conditions were imposed at the main branch of the artery,
while pressure boundary conditions were applied at both bifurcations ends. Figure
15.12 shows the wave form of both boundary conditions for the fluid used in the
calculations.

Figure 15.13 shows the displacement filed of the solid wall and of the ALE-
mesh at the instant of maximum pressure. This demonstrates the effective coupling
achieved between the solid and the fluid solvers.

Figure 15.14 shows the stress field in the arterial wall and the velocity field in
the artery mid-plane. As expected with incompressible fluids, the maximum stress
in the arterial wall occurs at the section were fluid velocity reduces since it implies
an increment in the local pressure.

(a) Velocity waveform at the inlet (main
branch of the bifurcation)
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(b) Pressure waveform at the outlet of the
bifurcation

Fig. 15.12 Boundary conditions used in the simulations
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(a) Magnitude of the displacement of the solid
wall in (mm)

(b) Displacement of the ALE-mesh in (mm)

Fig. 15.13 Displacement field for the coupled problem

(a) Stress field in (kPa) (b) Velocity field in (mm/sec)

Fig. 15.14 Stress and velocity fields in the artery at the time of maximum pressure

15.8 Conclusions

The results show the viability of applying the presented methodology to generate
computational finite element meshes from segmentation files obtained from med-
ical images. This tool opens new possibilities for patient specific biomechanical
applications.
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Chapter 16
Validity of Paranasal CT Image
Reconstruction for Finite Element Models
in Otorhinolaryngology

Maria Elizete Kunkel, Analia I. Moral, Kathrin Tingelhoff, Friedrich Bootz,
and Friedrich Wahl

Abstract The purpose was to evaluate an approach for use of segmented computed
tomography images in volumetric estimation of the paranasal sinuses cavities. Four
hundred and fifty-two CT images were processed with the software Amira

TM
4.1.

The images were obtained from a dummy human head, which is used to rehearse
the movements of the surgeon during endoscope nasal surgery. The volumes of the
frontal, maxillar, sphenoidal and ethmoidal sinuses were examined both by mate-
rial injection and by 3D-reconstruction of CT images. The volumes of the paranasal
cavities were all in the respective ranges compared with previous reports. The pre-
cise knowledge of the geometric configuration of the paranasal regions is necessary
because reconstruction on the paranasal sinuses will be used for the creation of finite
element models for Endonasal surgery simulations.

16.1 Introduction

16.1.1 Paranasal Sinuses Anatomy

The nasal cavity is a large air-filled space above and behind the nose in the middle
of the face. It is divided into right and left halves by the nasal septum. The paranasal
sinuses are four pairs of hollow structures within the bones surrounding the nasal
cavity (Fig. 16.1). The sinuses are divided into subgroups named according to the
bones they lie under. The frontal sinus is located over the eyes, in the forehead bone;
the maxillary sinuses, under the eyes, in the upper jawbone; the ethmoidal sinuses
are comprised of a variable number of air cells, ranging from 3 to 18 on each side,
and they are between the nose and the eyes, backwards into the skull; and finally, the
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Fig. 16.1 Frontal and lateral view of the human paranasal sinuses: frontal (1), ethmoidal (2) max-
illary (3), and sphenoidal (4) sinuses

sphenoidal sinuses, are located in the centre of the skull base [11]. The shape, size
and position of each sinus differ between individuals and variation may even occur
on either side of the head [17].

All paranasal sinuses have their origin in the ethmoidal portion of the nasal cavity
and communicate with this above the inferior nasal concha via small orifices called
ostia [15].

16.1.2 Functional Endoscopic Sinus Surgery

Endonasal surgery has become standard for the treatment of pathologies that can
be reached via the nasal cavity. Functional endoscopic sinus surgery (FESS) is
a minimal invasive approach adopted in case of chronic sinusitis (inflammation
of the paranasal sinuses) and is aimed to restore normal physiology by reestab-
lishing normal mucociliary drainage and ventilation of the sinuses [6, 19]. During
FESS the surgeon needs to remove the localized mucosal disease obstructing the
nasal pathways, for that it is necessary to move the endoscope and other surgical
instruments within the nasal cavity and through the ostia to reach the paranasal
sinuses [27]. Although most of the otolaryngologists accept FESS as the best treat-
ment for chronic sinusitis [3, 8], the technique has its clear limitations as well as its
specific problems. The major drawback in this surgery is regarding the surgeons to
be subject to fatigue due to handling of surgical instruments with one hand for long
time periods while the other hand is guiding the endoscope.

Surgical workflows demonstrate the need and the feasibility of automatic assis-
tance in guiding the endoscope in FESS [20].
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16.1.3 Purpose

A project for robotic endoscope guidance in endonasal surgery is being devel-
oped for the Robotic Surgery Group at the Institute for Robotics and Process
Control (Technical University of Braunschweig, Germany) in cooperation with
the Clinic and Policlinic for Ear, Nose and Throat/Surgery (University of Bonn,
Germany) [4, 9, 10, 13, 21, 22, 25]. In that context, models of the nasal cavity and
paranasal sinus, based on Finite Element Method (FEM), are being created to per-
form simulation of the mechanical behaviour of the inner nasal structures under
endoscope loading during endonasal surgery. Finite Element Analysis (FEA) will
provide important information for the safe control strategy of the robotic endoscope
guidance system.

Some characteristics of the paranasal structures as inhomogeneity, anisotropy,
viscoelasticity and nonlinearity make difficult the task of producing its biomechan-
ical model. Therefore, to produce an initial model, it is necessary to use simplified
concepts, to gain more insight into the mechanical behaviour of this structure during
endoscope interaction. Despite of the structures that form the human nasal structures
present inhomogeneities due to the diversity of the biological tissues (bone, carti-
lage, mucosa and others), it is possible consider the hypothesis that a homogeneous
model represents the deformation of the nasal structures under endoscopic loading.
This is acceptable just if it is assumed that the inner nasal structures function as a lin-
ear system submitted to small deformation due to endoscopic mechanical contacts
during FESS.

In this paper, we present results concerning to obtaining of the geometric con-
figuration of the human paranasal sinuses for FE modelling. Our purpose was to
perform segmentation of the paranasal sinuses regions for three-dimensional (3D-)
reconstruction, visualization and volumetry. To evaluate the approach, the volume
of the paranasal sinuses was examined both by material injection and by 3D recon-
struction of CT images.

16.2 Materials and Methods

16.2.1 Dummy Human Head

The anatomical model of the nose and paranasal sinuses is a dummy human head
from silicone (Axel LANG, Zurich, Switzerland), based on a cadaver specimen with
normal anatomy that was designed to reproduces the human nasal structures and to
provide a realistic training environment for endoscopy for endonasal sinus surgery,
allowing the implementation of the robotic endoscope guidance, reproducing de
movements of the endoscope as a real sinus surgery (Fig. 16.2) [12]. The dummy
human head is for didactic purposes divided into five parts showing different level
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Fig. 16.2 Three-dimensional-model of the nose and paranasal sinuses (Axel LANG, Zurich,
Switzerland) to be used for the homogeneous model of the nasal cavity and paranasal sinuses

of the nasal structures. A total of 452 CT images from the dummy human head were
acquired by a spiral CT from Philips. The images have high resolution (0.0390625×
0.0390625×0.04) and a slice thickness of 0.625 mm.

16.2.2 Segmentation and Reconstructions

A semi-automatic segmentation of the CT images of the nasal cavity and paranasal
sinuses was performed using Amira

TM
4.1 software for medical images (Mercury

Computer System Inc., USA). The same software was also used to perform the
3D-reconstruction and volumetry. Since the material of the anatomical head is
homogeneous only one type of material was used. The semi-automatic segmenta-
tion was performed, using different tools that segment the image following an image
gradient or a growing region based on the grey level of the object (head), the back-
ground or the nasal cavities. These regions could be clearly differentiated in all CT
images (Fig. 16.3). The regions identified in the segmentation were the model of the
dummy human head and the nasal cavity and paranasal sinuses that were separately
segmented (Fig. 16.4).

To verify the correspondence between the model and the segmented head, a
3D-reconstruction of surface of the nasal cavity and paranasal sinuses was per-
formed (Fig. 16.5). The 3D volume was generated after the segmentation results
were post processed.
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a

b

c

Fig. 16.3 Histogram of CT images from the dummy human head showing the grey level of the
black background, of the cavities, and the structures of the head

Fig. 16.4 Dummy head (a), segmentation in frontal (b), lateral (c) and transversal view (d). Frontal
(1), ethmoidal (2), maxillary (3) and sphenoidal sinuses (4) and nasal cavity (5)

16.2.3 Paranasal Sinuses Volume Measurements

The measurement of paranasal sinuses volume using the 3D reconstructions of CT
images was performed using the tool tissue statistics from Amira

TM
4.1. For each

sinus the number of voxels which belongs to this sinus is counted and the numbers
of voxels are multiplied by the volume of one voxel in cubic millimeters.

To perform the direct measurement of paranasal sinuses volume we have used
a method considered to be reliable and accurate described for Uchida et al. [24].
The dummy human head, that is divided in five layers, was maintained closed
in a box, than the nasal cavities and the sinuses were filled with molding plaster
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Fig. 16.5 Frontal view of one layer of the dummy human head (left) and the partial 3D surface
reconstructions of the nasal cavity and paranasal sinuses (right). The numbered structures are:
frontal (1), ethmoidal (2), maxillary (3) and sphenoidal sinuses (4) and nasal cavity (5)

Fig. 16.6 Left side: solid casts of right (1) and left (2) maxillary and right (3) sphenoid sinuses
of a human dummy head. Right side: graduated cup filled with water used to perform volume
measurement of the casts of the sinuses through immersion in water

(Model Gips Krone, Osterode, Germany) using a syringe positioned in the left nos-
tril. After 1 h, the impression material had hardened, the dummy human head was
opened, and the solid cast of the sinuses were easily removed (Fig. 16.6). To mea-
sure the volume, the casts were immersed in a graduated cup filled with water
(Fig. 16.6). The reproducibility of this method was assessed by repeating mea-
surements. The cast of the ethmoidal sinuses as well as, the left sphenoid were
despised.
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16.3 Results

16.3.1 3D Paranasal Sinuses Reconstruction

The 3D-reconstruction of paranasal sinus CT images of the dummy human head is
shown in Fig. 16.7 in frontal (a), lateral (b) and transversal (c) view.

Ostia are small orifices that connect the sinuses to the nasal cavity. If the sinus
ostium is blocked, the entire sinus thus becomes the pathologic cavity (sinusitis).
Figure 16.8 shows the maxillary and sphenoidal ostium.

16.3.2 Estimated Paranasal Sinuses Volume

The volume of paranasal sinuses measured by both 3D-reconstruction from CT
images and direct measurements are given in Table 16.1 and Fig. 16.9.

Fig. 16.7a Three-dimensional-reconstructions of paranasal sinus from CT images using Amira
software. Frontal (1), ethmoidal (2), maxillary (3) and sphenoidal sinuses (4)
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Fig. 16.7b Three-dimensional-reconstructions of paranasal sinus from CT images using Amira
software. Frontal (1), ethmoidal (2), maxillary (3) and sphenoidal sinuses (4)
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Fig. 16.8 The numbered sinuses are: frontal (1), ethmoidal (2), maxillary (3) and sphenoidal
sinuses (4)
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Table 16.1 Estimated volumes of the paranasal sinuses by both 3D-reconstruction from CT images
and direct measurements

Paranasal sinuses Estimated volume (ml)

3D-reconstruction Direct measurement

Maxillary Right 12.85 12.2
Left 5.46 5.8
Total 18.32 18

Sphenoidal Right 10.96 11.6
Left 0.80 N/A
Total 11.76 11.6

Ethmoidal Right 3.02 N/A
Left 3.00 N/A
Total 6.02 N/A

Frontal Total 12.04 11.8

N/A: not available

3D reconstruction Direct measurement
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Fig. 16.9 Estimated total paranasal sinuses volume

16.3.3 Paranasal Sinuses Cavities Mesh Generation

Figure 16.10 shows the 3D mesh generated from the dummy human head without
the paranasal sinuses volume.
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Fig. 16.10 Transversal (top) and lateral (bottom) view of the 3D mesh from the dummy human
head without the paranasal sinuses volume

16.4 Discussion

Through this work we have evaluated an approach to obtain the geometric anatomy
of the paranasal sinuses from CT images. Three-dimensional-representation of the
head without these structures was transformed into tetrahedral meshes and will be
used for the FE model that will allow robotic assisted endonasal surgery simulations.
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Our modelling hypothesis was to consider the paranasal sinuses as a homogeneous,
linear, isotropic and elastostatic material. For FE modeling it is very important the
accurate estimation of the volume sinuses regions, because of the anatomical vari-
ation among individuals. Our results show the great asymmetry between left and
right sides. For example, for the sphenoid and maxillary sinuses, a huge variation
was seen between the right and left cavities (Table 16.1 and Fig. 16.9).

The results obtained from segmentation and 3D-reconstruction from paranasal
sinuses CT images allow us to show the 3D morphologies of the sinuses from any
viewpoint (Fig. 16.7). Moreover, we could also identify the ostia that communi-
cate nasal cavity and paranasal sinuses, as the maxillary and sphenoidal ostiums
(Fig. 16.8).

The cavity volume of paranasal sinuses is an important index for the paranasal
sinuses evaluation [5]. Paranasal sinuses volumes have conventionally been mea-
sured using cadavers by directly injecting a variety of material [1, 24], while oth-
ers employed CT images [2, 5, 18]. In the current study paranasal sinuses volumes
were estimated using commercial software (Amira). The accuracy of the 3D-
recosntruction is an important prerequisite for a precise FE model of the nasal struc-
tures and it depends of the segmentation approach when the inner boundary of the
paranasal cavity is semi-automatically traced. To validate the accuracy of the 3D
reconstructions it was performed a comparison of these measurements with the real
size of dummy human head sinuses (Table 16.1).

It was very difficult to guarantee full injection of the impression material in
the ethmoidal sinuses, due to their anatomical complexity (Fig. 16.7). Moreover,
the frontal sinus was damaged when attempting to remove it. For this reason, these
casts were not used for the comparison. The morphology and the values of the calcu-
lated sinuses volumes did not significantly differ from those obtained by other stud-
ies. The volumes were all in the respective ranges compared with previous reports
(Table 16.2 and Fig. 16.9).

The generation of a FE mesh is critical since it affects both the accuracy and cost
of subsequent numerical simulations. As shown in Fig. 16.9, the paranasal sinuses
geometry created with Amira software is simple enough to allow conversion into a
mesh of finite elements that could be then later loaded by external forces. However,
a refinement of the FE mesh to more accurately capture original anatomical detail is
desirable. Currently, we have applied with success this approach for segmentation
and 3D-reconstruction of sinuses cavities of ex vivo [21] and in vivo [13] CT images.

16.5 Conclusion

In this study, the approach proposed to obtain a precise geometric reconstruc-
tion of the human paranasal sinuses from CT images was evaluated. The results
show accurate comparisons between volume estimation of the paranasal sinuses
from an anatomical model by material injection and by 3D CT images. From the
3D-reconstruction of the sinuses regions, was obtained a simplified homogeneous
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Table 16.2 Previous reports about the human paranasal sinuses volume

Paranasal sinuses Reference Average∗ (ml)

Maxillary [7] 10.1
[24] 11.3±4.60
[16] 12.5
[2] 14.7±6.33
[26] 15.1
[23] 15.6
[1] 23.5
[18] 24.76
[5] 44.2±6.6

Sphenoidal [26] 4.1
[23] 4.1
[7] 4.4
[16] 4.5
[5] 15.4±6.9

Ethmoidal [14] 4.9
[7] 5.3
[5] 12.5±1.6

Frontal [7] 2.8
[16] 3.5
[5] 8.1±5.1

∗ Right + left sinuses

model that resembled the general complex geometry of the paranasal sinuses cav-
ities for FE models. It will to be used as a background for the creation of further
FEM models that should incorporate more structural features, such as inhomogene-
ity, different anatomical variations or pathological conditions.
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