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Preface

Allan Sandage used the term “Practical cosmology” to denote the study of the large-
scale universe and the search for the world model which best describes it. In our
book we, as students of practical cosmology, guide the reader through modern cos-
mology, with emphasis on cosmological physics within our gradually deepening
sample of the universe. We have restricted this treatise to the realm of galaxies where
we can measure distances to individual objects, which in itself is a classical and
fundamental problem in astronomy. Therefore, our discussion of the problems of
the early universe and the cosmic background radiation and its angular fluctuations,
so central in modern cosmology in general, is relatively limited.

This book presents cosmology as a physical science based on observations, ex-
periments and theoretical interpretations. We remind the reader that fundamental
physics as understanding of natural phenomena, including the whole universe, is
the modern Philosophiae Naturalis started by Galileo and Newton. We do not pre-
suppose advanced knowledge of astronomy and do not go into detailed descriptions
of observing techniques. Basic mathematical concepts used in modern cosmologi-
cal models are presented in a simple way. We hope that all this will make the book
useful for both astronomers and general physicists, and also for university students
of physical sciences. If needed, suitable background reading on astronomy may be
found in the book by Karttunen et al.: “Fundamental Astronomy” (Springer 2006),
and on history of astronomy and cosmology in Teerikorpi et al.: “The Evolving Uni-
verse and the Origin of Life—The Search for Our Cosmic Roots” (Springer 2009).
The development of the Cosmological Principle has been discussed by Baryshev
and Teerikorpi: “Discovery of Cosmic Fractals” (World Scientific 2002).

The following subjects are close to our own experience in the study of the galaxy
universe and form the main contents of the book: The cosmic distance scale and
the Malmquist bias. Gravitation and world models. Observational tests of cosmo-
logical models. The large-scale structure of the universe. Conceptual problems of
cosmological physics.

We emphasize those aspects which give practical cosmology its special charac-
ter, due to a subtle interplay between observations, data analysis, and fundamental
physics. We hope that our book will help the reader to achieve useful conceptual
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vi Preface

understanding of some central but not so often emphasized problems in modern
cosmology (such as selection effects and methods of analysis of the large-scale
structure).

We underline throughout the book the essential fact that to obtain the correct pic-
ture of cosmological physics one should be aware that cosmology is—in a sense—
“a science of cosmic selection effects”. The interpretations from directly observed
astronomical quantities and from astronomical data in general, may be in a sub-
tle manner distorted by physical and technical limitations of observations and by
inadequate methods of data analysis.

Cosmology has not been finished yet, and many fundamental questions are still
open problems. The late Edward Harrison wrote to us in a letter: “Cosmology is
always in the state of triumph and crisis. It is the natural state of the art.” And this
is because the initial assumptions and physical consequences are often difficult or
impossible to test directly. There is the need for continuous testing of the accepted
cosmological framework, which is, in the terminology of Thomas Kuhn, the work-
ing paradigm which rules and inspires contemporary cosmologists. Assumptions
made by cosmologists determine the theory, its predictions and the inferred prop-
erties of deep space phenomena. At the same time the assumptions themselves are
open for investigation—a constructive duality. Therefore we also wish to point out
the positive role of alternative cosmological ideas which serve as a test-bench on the
way towards a true world model.1

In principle, one would like to see practical cosmology as wider based than any
specific cosmological model. This is because its methods are especially aimed at
testing the initial assumptions and basic predictions of different world models. It
should guide cosmologists between the Scyllas of empirism and the Charybdises of
pure thinking ever tempting us away from the correct route towards progressively
closer approximations to the true world model and to a deeper understanding of
Reality.

We wish to mention with gratitude several people whose collaboration with us or
whose own work have made this book possible. Some of them have also read parts
of the manuscript.

Andrej Berdyugin, Lucette Bottinelli, Alexander Butkevich, Gene Byrd, Arthur
Chernin, Timo Ekholm, Chris Flynn, Andrea Gabrielli, Lucienne Gouguenheim,
Alik Gromov (†), Mikko Hanski, Toivo Jaakkola (†), Michael Joyce, Igor Karachent-
sev, Boris Komberg, Francesco Sylos Labini, Ari Lehto, Benoit Mandelbrot (†),
Georges Paturel, Luciano Pietronero, Fred Rost, Allan Sandage (†), Vladimir
Sokolov, Gilles Theureau, Mauri Valtonen.

We dedicate our book to the memories of Allan Sandage (1926–2010), Geoffrey
Burbidge (1925–2010), and Benoit Mandelbrot (1924–2010). In the 20th century,
Sandage represented the classical approach to observational cosmology, Burbidge

1During the preparation of the book we organized the conference Problems of Practical Cosmol-
ogy held in St.Petersburg in June 2008. The meeting offered examples of mainstream and critical
views, both of which are fruitful for the advancement of cosmological physics (Proceedings at
http://ppc08.astro.spbu.ru).

http://ppc08.astro.spbu.ru
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defended alternative cosmological views, and Mandelbrot introduced novel mathe-
matical concepts for describing cosmologically distributed matter. We hope that we
have been able to convey, not only their specific contributions to cosmology, but
also some of their spirit of approach to science.

Yurij Baryshev
Pekka Teerikorpi

St.Petersburg, Russia
Paimio, Finland
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x About the Authors and the Book

The book guides the reader (astronomer, physicist, university student) through
central questions of Practical Cosmology, a term used by the late Allan Sandage
to denote the modern scientific enterprise to find out the cosmological model best
describing the universe of galaxies, its geometry, size, age, and material contents.
The authors draw from their personal experience in astrophysics and cosmology
to explain key concepts of cosmology, both observational and theoretical, and to
highlight several items which give cosmology its special character:

– idiosyncratic features of the “cosmic laboratory”
– Malmquist bias in determination of cosmic distances
– theory of gravitation as a cornerstone of cosmological models
– crucial tests checking the reality of space expansion
– methods of analyzing the structures of the universe as mapped by galaxies
– usefulness of fractal as a model to describe the large-scale structure
– new cosmological physics inherent in the Friedmann world model



Contents

1 The Golden Age of Cosmological Physics . . . . . . . . . . . . . . . . 1
1.1 Our Sample of the Universe . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The New Building Blocks . . . . . . . . . . . . . . . . . . 2
1.1.2 Observational Cosmology in Our Sample of the World . . . 4
1.1.3 Empirical Cosmological Laws . . . . . . . . . . . . . . . . 5
1.1.4 The Standard Cosmological Model: Modern Paradigm . . . 8

1.2 Idiosyncratic Features of the Cosmological Laboratory . . . . . . . 9
1.2.1 Fundamental Limitations . . . . . . . . . . . . . . . . . . 9
1.2.2 Physical Laws on the Largest Scales . . . . . . . . . . . . 11

1.3 Important Questions of Cosmology . . . . . . . . . . . . . . . . . 12
1.3.1 Astronomical Tests of Fundamental Physics . . . . . . . . 13
1.3.2 Central Subjects of Cosmological Research . . . . . . . . . 14

2 Distance Measurement and Cosmography . . . . . . . . . . . . . . . 19
2.1 Cosmic Distance Indicators . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Geometry and Photometry in Euclidean Space . . . . . . . 20
2.1.2 Relative and Absolute/Physical Methods . . . . . . . . . . 22

2.2 Lower Rungs in the Distance Ladder . . . . . . . . . . . . . . . . 24
2.2.1 The Brightest Giant Stars in Galaxies . . . . . . . . . . . . 24
2.2.2 Cepheid Pulsating Stars . . . . . . . . . . . . . . . . . . . 25

2.3 Long-Range Indicators . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 The Tully–Fisher Relation: The Method of Rotating Galaxies 28
2.3.2 The Peak Luminosity for Ia Supernovae . . . . . . . . . . 30
2.3.3 Morphological Galaxy Classes . . . . . . . . . . . . . . . 30

2.4 The Concept of Metric Distance in Curved Space . . . . . . . . . . 31
2.4.1 Universes of Constant Curvature Within E3 . . . . . . . . 31
2.4.2 Metric Tensor and Distance Element in S2 . . . . . . . . . 35
2.4.3 Basic Geometrical Properties of S2 . . . . . . . . . . . . . 37

2.5 Physical Measurements in Spherical and Lobachevskij Spaces . . . 38
2.5.1 Angular Sizes, Fluxes, and Number Counts in S2 . . . . . 38
2.5.2 Measurements in 2D Lobachevskij Space . . . . . . . . . . 40

xi



xii Contents

2.5.3 The Step to Three-Dimensional Curved Spaces . . . . . . . 41
2.6 Practical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 Geometry and Physics . . . . . . . . . . . . . . . . . . . . 43
2.6.2 Measuring the Curvature . . . . . . . . . . . . . . . . . . 44
2.6.3 The Deeper Value of Practical Geometry . . . . . . . . . . 45

3 Cosmic Distances and Selection Biases . . . . . . . . . . . . . . . . . 47
3.1 Errors and Biases . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 The Concept of Bias . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Observational Samples . . . . . . . . . . . . . . . . . . . 49

3.2 The Classical Malmquist Bias . . . . . . . . . . . . . . . . . . . . 51
3.2.1 A Unified Treatment of the Malmquist Bias . . . . . . . . 52
3.2.2 Two Kinds of Biases in Distance Determination . . . . . . 54
3.2.3 The Behaviour of Biases for a Standard Candle . . . . . . . 56

3.3 The Bias for a Distance Indicator M = ap+ b . . . . . . . . . . . 58
3.3.1 The Direct and Inverse Relations . . . . . . . . . . . . . . 58
3.3.2 The Classical Bias . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3 Type 2 Bias when M = ap+ b . . . . . . . . . . . . . . . 60

3.4 Some Other Finesses and Biases . . . . . . . . . . . . . . . . . . . 63
3.4.1 The Gould Effect: Original and Re-measured Samples . . . 63
3.4.2 Effects Caused by Dusty Medium . . . . . . . . . . . . . . 64
3.4.3 A Selection Bias in the Cepheid Method? . . . . . . . . . . 66
3.4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . 67

4 Cosmological Redshift and the Distance Scale . . . . . . . . . . . . . 69
4.1 The Distance–Redshift Law . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Empirical Properties of Cosmological Redshift . . . . . . . 70
4.1.2 The Linearity of the Redshift Law . . . . . . . . . . . . . . 73

4.2 The Value of the Hubble Constant . . . . . . . . . . . . . . . . . . 77
4.2.1 The Start at 625 km s−1/Mpc . . . . . . . . . . . . . . . . 77
4.2.2 Towards the Unbiased Value of H0 . . . . . . . . . . . . . 78
4.2.3 Results on H0 in the Local Galaxy Universe z < 0.1 . . . . 82

4.3 On Physical Methods in the Galaxy Universe . . . . . . . . . . . . 83
4.3.1 The Sunyaev-Zeldovich Effect . . . . . . . . . . . . . . . 84
4.3.2 The Time Delay in Gravitational Lensing . . . . . . . . . . 85
4.3.3 The Distance Scale and the Eddington Luminosity . . . . . 86
4.3.4 Precision Cosmology from the Background Radiation . . . 88

5 Gravitational Physics for Cosmic Scales . . . . . . . . . . . . . . . . 91
5.1 The Nature of the Gravitational Interaction . . . . . . . . . . . . . 91

5.1.1 Newton’s Gravity Theory . . . . . . . . . . . . . . . . . . 92
5.1.2 Modern Physics of Fundamental Interactions . . . . . . . . 93
5.1.3 Geometrical and Field Approaches to Gravitation . . . . . 94

5.2 Einstein’s General Relativity . . . . . . . . . . . . . . . . . . . . 95
5.2.1 Initial Principles and Basic Equations . . . . . . . . . . . . 95
5.2.2 The Weak Field Approximation . . . . . . . . . . . . . . . 97
5.2.3 The Problem of Energy-Momentum of a Gravity Field . . . 98



Contents xiii

5.3 Poincaré-Feynman’s Field Approach to Gravity Theory . . . . . . 101
5.3.1 Initial Principles . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.2 Basic Equations of the Field Gravity . . . . . . . . . . . . 104
5.3.3 Post-Newtonian Approximations . . . . . . . . . . . . . . 108

6 Predictions of Gravity Theories . . . . . . . . . . . . . . . . . . . . . 111
6.1 Gravitation at Different Scales and in Diverse Conditions . . . . . 111
6.2 Einstein’s General Relativity: Predictions . . . . . . . . . . . . . . 113

6.2.1 Major Predictions for Observations . . . . . . . . . . . . . 113
6.2.2 Strong Gravity, Black Holes, Quantum Gravity . . . . . . . 116

6.3 Poincaré-Feynman Field Approach to Gravitation: Predictions . . . 117
6.3.1 Newtonian Force . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Post-Newtonian Predictions for Observations . . . . . . . . 118

6.4 Astrophysical Tests of Gravity Theories . . . . . . . . . . . . . . . 119
6.4.1 Rotating Bodies and Binary Systems . . . . . . . . . . . . 119
6.4.2 Strong Gravity and Compact Objects . . . . . . . . . . . . 123
6.4.3 Relativistic Compact Objects . . . . . . . . . . . . . . . . 126
6.4.4 The Hubble Law of Redshifts as a Key Observation . . . . 128

7 The Friedmann Model . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.1 Newtonian Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1.1 Newtonian Cosmological Model . . . . . . . . . . . . . . 131
7.1.2 Paradoxes of the Newtonian Cosmology . . . . . . . . . . 133
7.1.3 Suggestions to Resolve the Paradoxes . . . . . . . . . . . . 134

7.2 The Friedmann Cosmological Model . . . . . . . . . . . . . . . . 136
7.2.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.2 Einstein’s Cosmological Principle . . . . . . . . . . . . . . 136
7.2.3 Space Expansion Paradigm . . . . . . . . . . . . . . . . . 138
7.2.4 Friedmann’s Equations . . . . . . . . . . . . . . . . . . . 139

7.3 Redshift, Distance, and Recession Velocity . . . . . . . . . . . . . 142
7.3.1 Scale-Factor and Redshift . . . . . . . . . . . . . . . . . . 142
7.3.2 Measuring Distance and Time in Friedmann Cosmology . . 145
7.3.3 Ages and Horizons . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Basic Observable Quantities: Angle, Flux, Surface Brightness . . . 148
7.4.1 Mattig’s Relations . . . . . . . . . . . . . . . . . . . . . . 148
7.4.2 The Angular Size-Redshift Relation . . . . . . . . . . . . . 149
7.4.3 The Magnitude-Redshift Relation . . . . . . . . . . . . . . 151
7.4.4 Surface Brightness . . . . . . . . . . . . . . . . . . . . . . 151
7.4.5 Spatial Volumes and Cosmological Malmquist Bias . . . . 152

7.5 The Hot Big Bang Scenario . . . . . . . . . . . . . . . . . . . . . 154

8 Classical Cosmological Tests . . . . . . . . . . . . . . . . . . . . . . . 157
8.1 Cosmological Tests . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.1.1 From Low to High Redshifts . . . . . . . . . . . . . . . . 157
8.1.2 Classical and Crucial Cosmological Tests . . . . . . . . . . 158

8.2 A Résumé of Selection and Distortion Effects . . . . . . . . . . . 159
8.2.1 K-Correction, Absorption and Evolution Effects . . . . . . 159



xiv Contents

8.2.2 Other Distortion Effects . . . . . . . . . . . . . . . . . . . 160
8.3 The Angular Size-Redshift Relation . . . . . . . . . . . . . . . . . 161

8.3.1 Angular Size in the Friedmann Model . . . . . . . . . . . . 162
8.3.2 Notes on Other Models . . . . . . . . . . . . . . . . . . . 162
8.3.3 Optical and Radio Angular Size Test . . . . . . . . . . . . 164

8.4 The Magnitude-Redshift Test . . . . . . . . . . . . . . . . . . . . 166
8.4.1 The Magnitude in the Friedmann Model . . . . . . . . . . 166
8.4.2 Notes on Other Models . . . . . . . . . . . . . . . . . . . 166
8.4.3 Modern Renaissance of the m–z Test . . . . . . . . . . . . 168
8.4.4 Other Attempts to Interpret the SNIa Data . . . . . . . . . 168

8.5 Galaxy Counts and the Background Radiation . . . . . . . . . . . 170
8.5.1 The Number-Redshift Relation . . . . . . . . . . . . . . . 171
8.5.2 The Number-Magnitude Test . . . . . . . . . . . . . . . . 171
8.5.3 The Total Background Radiation Due to Galaxies . . . . . 173

8.6 Classical Crucial Tests for the Friedmann Model . . . . . . . . . . 174
8.6.1 The Tolman-Hubble Surface Brightness-Redshift Test . . . 174
8.6.2 Maximum Age–Redshift Test . . . . . . . . . . . . . . . . 175
8.6.3 Sandage’s Redshift-Time Dependence Test . . . . . . . . . 176
8.6.4 Wilson’s Supernova Time Dilation Test . . . . . . . . . . . 177
8.6.5 Background Radiation Temperature vs. Redshift . . . . . . 178

9 Constructing Universes: A Gallery of Ideas . . . . . . . . . . . . . . 181
9.1 Territories of Cosmological Ideas: Classifying World Models . . . 181
9.2 Cosmological Principles . . . . . . . . . . . . . . . . . . . . . . . 183

9.2.1 The Perfect Cosmological Principle: Steady State . . . . . 183
9.2.2 Einstein’s Cosmological Principle . . . . . . . . . . . . . . 184
9.2.3 Mandelbrot’s Cosmological Principle . . . . . . . . . . . . 185

9.3 Fractality in Cosmological Physics . . . . . . . . . . . . . . . . . 187
9.3.1 The Einstein–Selety Correspondence . . . . . . . . . . . . 187
9.3.2 Fractal Sources for Gravity Field . . . . . . . . . . . . . . 190
9.3.3 Field Gravity and Fractality . . . . . . . . . . . . . . . . . 193

9.4 Physical Laws, Fundamental Constants and Large Numbers . . . . 194
9.4.1 Fundamental Constants in Cosmology . . . . . . . . . . . 194
9.4.2 The Puzzle of Large Numbers in Cosmological Physics . . 196
9.4.3 Possible Explanations of the Coincidencies . . . . . . . . . 197
9.4.4 Other Cosmological Coincidencies . . . . . . . . . . . . . 199

9.5 The Nature of Cosmological Redshift . . . . . . . . . . . . . . . . 201
9.5.1 Cosmological Gravitational Redshift . . . . . . . . . . . . 202
9.5.2 Anomalous Redshifts . . . . . . . . . . . . . . . . . . . . 205

10 Large-Scale Structure: Methods of Analysis . . . . . . . . . . . . . . 213
10.1 From Simple Hierarchies to Stochastic Fractals . . . . . . . . . . . 213

10.1.1 Protofractal Worlds of Fournier d’Albe and Charlier . . . . 214
10.1.2 Genuine Fractal Structures . . . . . . . . . . . . . . . . . 215

10.2 The Concept of a Fractal Density Field . . . . . . . . . . . . . . . 217
10.2.1 Ordinary Fluid-Like Density Fields . . . . . . . . . . . . . 218



Contents xv

10.2.2 Fractal Density Fields . . . . . . . . . . . . . . . . . . . . 219
10.2.3 Exclusive Properties of Fractal Density Fields . . . . . . . 221

10.3 Methods to Detect Structures in Galaxy Distribution . . . . . . . . 223
10.3.1 Conditions for the Validity of Statistical Analysis . . . . . 224
10.3.2 The Scale-Length Analysis . . . . . . . . . . . . . . . . . 225
10.3.3 Definitions for Correlation Functions . . . . . . . . . . . . 227
10.3.4 The Method of the Reduced Correlation Function ξ . . . . 228
10.3.5 The Method of the Conditional Density � . . . . . . . . . 231
10.3.6 Comparison of the ξ and � Correlation Functions . . . . . 234

10.4 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.4.1 The Distribution of the Nearest Neighbour . . . . . . . . . 237
10.4.2 The Bi-conditional Column Density . . . . . . . . . . . . . 238
10.4.3 The Radial Distribution N(z) and Its Fluctuations . . . . . 240
10.4.4 Fourier Analysis of the Galaxy Distribution . . . . . . . . . 242
10.4.5 Redshift-Space and the Peculiar-Velocity Field . . . . . . . 243

10.5 A Summary: Requirements for Reliable Correlation Analysis . . . 245

11 The Inhomogeneous Galaxy Universe: Observational Results . . . . 247
11.1 From the 2D Sky to the 3D Map . . . . . . . . . . . . . . . . . . . 247
11.2 Analysis of the Angular-Position Galaxy Catalogues . . . . . . . . 248

11.2.1 Early Arguments for Galaxy Clustering . . . . . . . . . . . 249
11.2.2 Early Arguments for Homogeneity . . . . . . . . . . . . . 252
11.2.3 Results from Galaxy Angular Catalogues . . . . . . . . . . 255

11.3 Redshift and Photometric Distance Surveys . . . . . . . . . . . . . 258
11.3.1 Large Redshift Surveys . . . . . . . . . . . . . . . . . . . 259
11.3.2 Galaxy Catalogues with Photometric Distances . . . . . . . 260

11.4 Analysis of the 3D Distribution of Galaxies . . . . . . . . . . . . . 260
11.4.1 The Fractal Breakthrough in the 1980s . . . . . . . . . . . 261
11.4.2 Further Steps in the Debate . . . . . . . . . . . . . . . . . 264
11.4.3 Sky Projection of Fractals: The Angular �-Function . . . . 266

11.5 Results from the 2dF and Sloan Digital Sky Surveys . . . . . . . . 267
11.5.1 The 2dF Galaxy Survey . . . . . . . . . . . . . . . . . . . 267
11.5.2 Results from the SDSS Survey . . . . . . . . . . . . . . . 268
11.5.3 Power Spectrum and Intersection of Fractals . . . . . . . . 269

11.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 270

12 Some Outstanding Problems of Cosmological Physics . . . . . . . . . 271
12.1 Homogeneity Scale and Superlarge Structures . . . . . . . . . . . 271

12.1.1 How to Establish the Homogeneity Scale? . . . . . . . . . 272
12.1.2 Fluctuations in Very Deep Fields—Gigastructures? . . . . . 274

12.2 Detecting Baryonic Acoustic Oscillations . . . . . . . . . . . . . . 277
12.2.1 Baryonic Oscillations as a Crucial Test . . . . . . . . . . . 277

12.3 Dark Energy in the Neighbourhood of the Local Group . . . . . . 279
12.3.1 Towards a Local Measurement of Dark Energy . . . . . . . 279
12.3.2 The Hubble Law and Dark Energy . . . . . . . . . . . . . 282

12.4 Conceptual Problems of the Expanding Space Physics . . . . . . . 285



xvi Contents

12.4.1 The Physical Meaning of Space Expansion . . . . . . . . . 285
12.4.2 Violation of the Limiting Velocity . . . . . . . . . . . . . . 286
12.4.3 Newtonian Form of the Relativistic Friedmann Equation . . 288
12.4.4 Problems of Energy Conservation . . . . . . . . . . . . . . 289

Appendix A Useful Astronomical and Physical Constants . . . . . . . . 293

Appendix B Why General Relativity Is Principally Different from
Field Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Appendix C The Gravitational Potential of a Fractal Matter Ball with
Finite Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327



Chapter 1
The Golden Age of Cosmological Physics

The tremendous growth of observational efforts devoted to cosmological questions
shows that cosmology is becoming a mature physical science with its own subject
and methods. This is a novel situation for a field which up to recent times has been
characterized by a respectable collection of theoretical ideas, but a small number of
crucial observations to constrain them. Only six decades ago Hermann Bondi (1952)
expressed the state of cosmology at the time so that “. . . the checking of a prediction,
which usually forms such a vital link in the formulation of physical theories, does
not occur in this field, and we have to rely on less objective and certain criteria, such
as how satisfying and how simple a theory is”.

In 1914 Vesto Slipher had a total of 15 nebulae in his list of measured spectra.
Today the surveys of galaxy redshifts contain millions of objects and allow one to
study the large-scale structure of the universe. The deep pencil-beam surveys in
many colours extend up to redshifts z of 6, and one can study how galaxies and their
clustering evolve. The gamma-ray bursts (z up to 9), the distant Ia supernovae, the
gravitational lensing by galaxies and clusters, the observations at radio to gamma
frequencies by space observatories—all these characterize the new era where “the
checking of a prediction” is an intimate part of cosmology.

1.1 Our Sample of the Universe

Albert Einstein introduced the term practical geometry for the empirical determi-
nation of the geometry of physical space. Practical cosmology (the term used by
Allan Sandage) is a science on large-scale physics, where the scales of distances,
times, and masses are the largest ones available for us. It deals with world models
and observations performed for testing them, and is, in certain sense, the modern
inheritor of natural philosophy at such a deep level that allows one to regard the
whole observable universe as an immense test ground of fundamental physics. It
has an ambitious goal to build a trustworthy world model, in itself a major goal of
science. The model is also a necessary instrument for interpreting deep-space phe-
nomena and celestial bodies whose distances, sizes and luminosities we otherwise
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cannot infer—in fact, nothing, it has been said, is more practical than a good theory.
Obviously the problem is that the theory must be good.

Cosmology is based on theory (cosmological principles and theories of physical
interactions) and observation (detection of photons and other cosmic particles). Thus
its advancement is linked to the development of fundamental physical theories and
the growth of observational data.

1.1.1 The New Building Blocks

During the 1920s, in a fine phase of the history of science, it became clear that a
majority of the faint nebulae in the sky are distant galaxies far beyond the borders
of our Milky Way system. This gave impetus for new classification systems after
the older ones had mixed objects from inside and outside of the Milky Way galaxy.
The basic pattern among the different kinds of galaxies was identified remarkably
quickly and became iconized by Hubble’s “tuning fork”.

Hubble & Lundmark In 1926 two systems were proposed by Edwin Hubble and
Knut Lundmark. Hubble’s system remained in use and has almost unchanged stood
the test of time. His “extragalactic nebulae” included

A. Regular
1. Elliptical (En) (n= 0,1, . . . ,7 indicates the ellipticity of the image)
2. Spirals: Normal spirals (Sa – Sb – Sc); Barred spirals (SBa – SBb – SBc)

B. Irregular (Irr)

Lundmark’s “anagalactic nebulae” were
1. Elliptical, elongated or lenticular nebulae (Ae) (different degrees of concentration)
2. Spiral nebulae a. spiral structure barely seen (As0); b. different degrees of concentration (As1-
As5); c.-f. certain special types of spirals

3. Magellanic clouds (Am) (different degrees of concentration)

Both systems contain elliptical, spiral and irregular (Magellanic) types. Finer di-
visions differ. Lundmark (1926) used the concentration of light as a basic index.1

Hubble (1926) grouped ellipticals in terms of the ellipticity of their images. The
division into a, b, c spirals was based on three criteria: (1) relative size of the central
bulge, (2) extent to which the spiral arms are unwound, and (3) resolution in the
arms, from Sa “with closely coiled arms of unresolved nebulosity” to Sc with its
arms “wide open and the nuclei inconspicuous”.

Hubble’s way of arranging the spiral galaxies has proven successful in its sim-
plicity and physical relevance: many properties not seen “by eye” have been found
to change systematically along the spiral sequence. Instead of the gradual shift from

1Over thirty years later, in Morgan’s system the classes (a, af, f, fg, g, gk, k) change in the sense
of increasing domination of the nuclear component, together with a simultaneous change in the
spectral type. Lundmark’s and Morgan’s classes are rather well correlated.
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Fig. 1.1 Hubble’s tuning
fork diagram. A modern
presentation (NASA)

“early” to “later” types, Lundmark’s eyes were caught by physically interesting sub-
classes now studied by numerical N -body simulations of spiral arms and interacting
galaxies. His spiral classes c.–f. included descriptions: one-branched spirals, spiral
arms form a bright ring, doubtful connection of the ring with the centre, ring or arms
connected with center through a bar. Later Lundmark added the category g. “spiral
arms have an appendix” (interacting companion galaxies—an example: M51).

Already in 1922 Lundmark, during his visit to the Lick Observatory, had worked
on nebula classes and used e.g. the term Magellanic type. His catalog and other
evidence suggest that Hubble’s concern of plagiarism (Berendzen et al. 1976;
Smith 1982) was unfounded (Teerikorpi 1989). In fact, the two systems are rather
different, in spite of similarities in the outline. Furthermore, Lundmark’s Magellanic
nebulae are not fully irregular, but may contain rudimentary spirals. In the modern
classification the galaxies called Magellanic by Lundmark, range from Sd to I0.

Modern Galaxy Classes Hubble (1936a) put the S0 or lenticular galaxies be-
tween ellipticals and spirals in his “tuning fork” diagram (Fig. 1.1). These hypo-
thetical entities were later found in nature, as systems flatter than E7, but without
any spiral structure, though some show dust features. It is of interest to note that
Lundmark’s “lenticulars” and “As0” may be related to S0 (zero 0 in both refer to the
absence of spiral structure).

Sandage’s Carnegie Atlas (Sandage and Bedke 1994) describes well develop-
ments in galaxy classification. De Vaucouleurs extended Hubble’s system in several
ways, making a transition from Sc to irregulars via the classes Sc, Scd, Sd, Sdm,
Sm, and Im (m means “Magellanic”). He emphasized the presence of a ring, out of
which spirals start tangentially at the points where the bar ends, by the symbol (r),
while in (s) the spirals start from the ends of a bar. Though the r, s distinction in
its purest refers to barred galaxies in this system (with intermediate cases SAB be-
tween ordinary SA and barred SB spirals) it is smoothly extended to all lenticulars
and spirals.
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A T -index denotes the main types of de Vaucouleurs’s system, used, e.g., in the
extragalactic LEDA database: Ellipticals:−6 to−4. Lenticulars:−3 to−1. Spirals:
0 to 9 (0/a a ab b bc c cd d dm m). Irregulars (Im): 10.

A way to realize the value of galaxy classes is to consider similar galaxies widely
separated in space. If galaxies may be divided into a small number of classes, we
can reason that there are not so many distinct processes producing galaxies and these
occur everywhere in the universe. Also, the appearance of a galaxy may tell about
its luminosity or size, providing a (very) rough estimate of its distance (Chap. 2).

From Aristotle to Hubble Classification has been a part of natural sciences since
Aristotle who looked at Nature as a field naturalist, and recognized as a philosopher
that essential properties of individuals define classes which they belong to (Grene
1963). We might see only a small finite part of the huge, possibly infinite-sized class,
but this may be sufficient to characterize it, if we are lucky to have a representative
sample and if we are perceptive enough. For Aristotelian method of science it was
important to get things under the right headings and grouping them in the right way.
Clearly Hubble succeeded very well in grouping the nebulae as he did.

Hubble himself told that his system was “descriptive and entirely independent
of any theory”, even though “the results are almost identical with the path of de-
velopment derived by Jeans”. Evidently Hubble “saw” in the sky what he thought
to be a sequence of evolution. In a new physical realm and just from inspection of
a “snapshot”, it is difficult to decide between an evolutionary sequence (with spec-
imen of old and young) and a sequence of grown-ups whose appearances reflect
different pristine states (“initial conditions”). But a perceptive eye may discern a
pattern, nevertheless, which carries a clue to the origins of those strange bodies,
even though its correct interpretation is left for later students of the subject.2

1.1.2 Observational Cosmology in Our Sample of the World

In his Rhodes Memorial Lectures at Oxford (where he studied in 1910–13), pub-
lished as the book The Observational Approach to Cosmology, Edwin Hubble
(1937) stated the gist of practical cosmology: “The observable region of space, the
region that can be explored with existing instruments, is a sample of the universe. If
the sample is fair, its observed characteristics should furnish important information
concerning the universe at large.”

2Sandage devoted much thought to the birth and meaning of Hubble’s classification (Sandage and
Bedke 1994; Sandage 1995b, 2005). He suggested that this faculty helping one to go directly to
the useful, physically relevant classification system is “imagination” or “intuition”. For Aristotle,
scientific knowledge was essentially demonstrations from better known premises. Then how to find
the very first axioms, the starting-points of demonstration? His solution was to argue, in Posterior
Analytics, that all begins from the intuition of the thinker observing and contemplating Nature. This
seems to fit well with what Allan Sandage proposed to be the secret of Hubble and his classification.
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“Our sample of the universe” within about 1000 Mpc, where observational data
are the most accurate, gives the bulk of information on the galaxy universe (in com-
parison, the distance of the nearby Andromeda galaxy is about 0.77 Mpc). This re-
gion, where reality is in contact with theory, is the starting point for building world
models that attempt to extend our cosmic picture far beyond the observable limits.

In the classical paper The ability of the 200-inch telescope to discriminate be-
tween selected world models Sandage (1961) formulated several cosmological tests
(among them the magnitude-redshift m(z) relation), which, together with a large
telescope, hopefully might be used to decide between different Friedmann models
(which Alexander Friedmann had introduced in the 1920s and which are used to
describe the expanding universe). At that time the first task of cosmology was to
derive two numbers: the present expansion rate (the Hubble constant) H0 and the
cosmic matter density ρ0.

It was gradually realized that severe problems complicate the use of real celestial
bodies in the tests. Selection effects and poorly known cosmic evolution easily hide
from view true model parameters and may even deceive the analyst of the observa-
tions into interesting, but erroneous conclusions.

Only on the verge of the 21st century it became possible to detect stellar stan-
dard candles at large distances and to make a new step in the Hubble-Sandage
programme. In 1979 Gustav Tammann had proposed type Ia supernovae occur-
ring in very distant galaxies as a way to test whether Einstein’s cosmological con-
stant � is non-zero. Finally the redshift-distance relation for high-redshift SNe Ia
led to the conclusion that the Friedmann model should include � > 0, or exotic
dark energy causing the observed acceleration of the universe (Riess et al. 1998;
Perlmutter et al. 1999). “The search for two numbers” in a simple universe contain-
ing ordinary matter and radiation, had to be extended to include the densities of dark
matter and dark energy, and the equation of state. About 15 parameters characterize
the different components in the modern version of the standard cosmological model
(Spergel et al. 2007).

1.1.3 Empirical Cosmological Laws

The major empirical steps in modern cosmology are connected with advances in
instrumentation. Thanks to astrophotography and large optical telescopes, the realm
of galaxies was accessed during the first decades of the 20th century. Three cosmo-
logical key laws were then unveiled:

• the cosmological redshift-distance law
• the thermal law of isotropic cosmic background radiation
• the power-law correlation of galaxy clustering

Astronomical spectroscopy made possible the discovery of the cosmological red-
shift in the 1910s and then the redshift-distance (Hubble) law. The developing radio
techniques led to the serendipitous detection of the thermal ocean of 3 K photons.
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Fig. 1.2 Hubble’s redshift
law for local galaxies
expressed as apparent
recession velocity cz vs.
distance. The upper panel is
based on Hubble’s 1929
work. Below we give an
updated version of the Hubble
diagram for about the same
distance interval. The modern
distances are almost ten times
longer than those used by
Hubble; his measurements
had a large systematic error.
The new Hubble relation is
also less scattered than the
original one. The straigth line
represents the Hubble law for
the Hubble constant H0 = 65.
Actually one determines the
value of H0 from a distance
interval at least ten times
longer

Finally, thousands of galaxy spectra obtained with telescopes using state-of-the-
art multi-fibre spectrographs have revealed the filamentary galaxy distribution with
fractal power-law behaviour.

The Hubble Law The cosmological redshift was the first major discovery of
extragalactic astronomy (Slipher 1915), a genuine new phenomenon of cosmologi-
cal physics. Then Hubble (1929) found in the local universe, mainly using brightest
stars in a galaxy as standard candles (and Hubble and Humason in 1931 using bright-
est cluster galaxies) a relation between apparent magnitude and line shift which, us-
ing the inverse square law for light flux, can be written as a linear law between the
redshift and the distance:

cz=H0r (1.1)

In this empirical law z= (λobs−λ0)/λ0 is the redshift (λobs and λ0 are the observed
and emitted photon wavelengths), c is the speed of light, and r is the distance to a
galaxy. Hubble’s estimate for H0 was 526 km s−1/Mpc. To-day the value of this
important cosmological quantity is measured to be in the range 60–75 (cf. Fig. 1.2).

The Thermal 3 K Cosmic Radiation The cosmic thermal background radia-
tion was the next step. Working at 7.35 cm, Arno Penzias and Robert Wilson (1965)
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made the discovery. This brought them the Nobel prize in 1978 and is of great impor-
tance for cosmological physics, as recognized again in 2006, when the Nobel prize
was handed to Mather and Smoot for their high-accuracy measurements of the spec-
trum of the CMBR and the tiny angular fluctuations of its intensity (10−5 K).3 A vi-
able cosmological model must be able to explain its thermal character and isotropy.

The COBE space observatory made the thus far most accurate measurement in
cosmology, that of the temperature of the cosmic radiation T = 2.725 ± 0.002 K
(Mather et al. 1999). Its observed intensity as a function of the frequency ν was
almost perfect blackbody radiation Bν , containing the temperature of radiation T as
the only parameter:

Bν(T )= 2hν3

c2

1

exp(hν/kT )− 1
(1.2)

Small anisotropies of the smooth background have been measured by balloon and
satellite experiments (de Bernardis et al. 2000; Spergel et al. 2007). Besides a dipole
component due to our motion, tiny �T/T (θ) fluctuations at the micro-Kelvin level
were detected. From these, estimates of the main parameters of the standard cosmo-
logical model have been derived, especially that the spatial geometry of the Fried-
mann universe is close to Euclidean.

The Power-Law of Galaxy Clustering The third unexpected discovery was the
very inhomogeneous, even fractal-like, spatial distribution of galaxies, revealed by
means of the first discovery. The small-dispersion Hubble law is a distance indicator
and gave the possibility to study directly 3D maps of the galaxy universe.

Indications for a continuous hierarchy of galaxy clustering were found, e.g., by
Kiang (1967), Totsuji and Kihara (1969), and de Vaucouleurs (1970). But only after
the work of the Rome University team (Sylos Labini et al. 1998) who analysed all
major catalogues of galaxy redshifts using adequate statistical methods (Pietronero
1987), it was accepted that the galaxy distribution is “essentially fractal” (Wu et al.
1999). This history is described by Baryshev and Teerikorpi (2002, 2006).

The strong large-scale non-uniformities have gathered storms over the simple
picture where smoothly scattered matter fills the universe according to the Cosmo-
logical Principle. The galaxies are clustered on a wide range of scales, and the lumps
reveal self-similarity, which calls for the mathematics of fractal geometry (Mandel-
brot 1977, 1982). The fundamental relation between mass density ρ and scale r is
given by Mandelbrot’s law:

ρ(r)∝ rD−3 (1.3)

where D is the fractal dimension of the structure.

3Already in 1941 a residual radiation corresponding to a black body temperature of 2.3 K
was found by A. McKellar (1941) who investigated spectral lines of interstellar CN molecules.
T. Shmaonov (1957) detected with the Large Pulkovo Radio Telescope at a wavelength of 3.2 cm
an isotropic radiation with an effective temperature of 4± 3 K. These results were published, but
they did not yet attract the attention of cosmologists.
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When discussing the fractal model for the galaxy distribution, two numbers are
in focus: the fractal dimension D and the maximum scale of fractality Rhom where
one may expect the crossover to homogeneity (from 100 Mpc up to the size of the
Sloan Great Wall, 500 Mpc; Gott et al. 2005).

There is also the problem of dark substances. What about their spatial distribu-
tion? Observations unveal a clumpy dark matter, which seems to repeat the distri-
bution of visible galaxies (Massey et al. 2007a). Dark energy might serve as a truly
homogeneous background for the Friedmann universe.

Important Astrophysics In addition to the cosmological redshift, the back-
ground radiation and the complex structure of the galaxy universe, many other
phenomena have cosmological relevance. Neutron stars, X-ray binaries, gamma-ray
bursts and active galactic nuclei are extraordinary objects with strong gravitational
fields, where accretion phenomena lead to a liberation of super-high energies. Es-
pecially quasars and gamma-ray bursts are very luminous lighthouses, visible from
large distances.

Among other subjects of astrophysics relevant for cosmology are the chemi-
cal composition of stars and interstellar medium, the morphology and contents of
galaxies, the dependence of galaxy properties on redshift, collisions and merging of
galaxies, and the properties and evolution of active galactic nuclei. At a first sight
secondary or local observations can become crucial for cosmology, such as calcula-
tions of the ages of globular clusters and studies of formation processes of dust and
molecules.

1.1.4 The Standard Cosmological Model: Modern Paradigm

The standard cosmological model is based on Friedmann’s (1922) model of expand-
ing space—a solution of Einstein’s equations of general relativity, presupposing ho-
mogeneity. It explains the linear Hubble law of redshifts as due to space expansion
and the Planck law of the cosmic background radiation as the relict from the recom-
bination epoch in the hot early universe.

The standard model as a whole includes the hot big bang scenario and in par-
ticular the process of growth of local inhomogeneities as the origin of galaxies and
the large-scale structure. Here the cold dark matter has played the major role, while
at the present epoch the global dynamics of the expansion of the universe is ruled
by the antigravity of the dark energy. While the first variants of the big bang model
were concerned with the “ordinary” matter (stars, gas, dust) only, now this luminous
matter makes mere 0.5 percent of the mass of the universe.

Dark energy is postulated to explain an accelerating universe. It is a kind of
exotic substance with negative pressure. A particular case is Einstein’s cosmological
constant �, which may be interpreted as cosmological vacuum.
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1.2 Idiosyncratic Features of the Cosmological Laboratory

Galileo Galilei started modern physics with laboratory experiments. Remarkably
enough, this same man, a mathematics professor at Padua, four centuries ago also
opened the gate to the “cosmological laboratory”, by making a telescope and ob-
serving the structures of the universe much better than was possible by the naked
eyes of all previous philosophers.

1.2.1 Fundamental Limitations

Modern observers with their 10 metre telescopes see much deeper in space than
Galileo could with his 2 cm magnifying tube. However, fundamental astronomical
and physical limitations will always cause difficulties, many of which are typical for
astronomy in general. Two main features are that

• the observer is attached to one dot in space–time, and
• measures processes within cosmologically large distances and times.

We have learned to believe that the Earth, the Sun, the Milky Way . . . occupy an or-
dinary place in the universe. If so, then observations here are representative of what
one would see at other places, too—for example, every observer would measure
the linear Hubble law and saw a rather isotropic cosmic landscape. This Coperni-
can principle, if valid, allows us to a certain extent as if to free ourselves from our
permanent position.

Non-locality of Observations In museums “you may look, but not touch!”. This
is also a handicap for the Earth-bound cosmologist: our restricted location in the
universe. We cannot exert influence on the studied objects. Furthermore, when we
compare a photon from an atomic process in a laboratory and another photon gen-
erated by the same phenomenon but in a very distant galaxy, the time that a photon
is travelling in space is an inevitable part of a cosmological experiment.

Practical Necessity of a Cosmological Model Our inability to move freely in
the universe means that an adequate cosmological model is needed for the study
of celestial bodies at high redshifts, where derived sizes, luminosities, energies and
time scales much depend on the model used. At the same time, cosmologists use
these objects to test the model itself; hence there is a complex interplay between the
theory and the practical work.

The Past Light Cone and Evolution Astronomical observations are time-limited
and confined to radially moving photons in our past light cone. Thus observations
made during, say, one century can even in principle detect only a small fraction of
the events within 1010 light years (“Hubble radius”) producing isotropically moving
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photons. On the other hand, one should note the remarkable transparency of space
along the long lines of sight between us and distant galaxies.4

Because of the light travel time, astronomers, like archeologists, probe different
past time layers at different distances, and thus can study evolution and its time scale
in some cases. Among the various types of evolution (for individual celestial bodies,
their classes, and the universe), the evolution of the classes of cosmic test objects
severely complicates cosmological tests.

Making the Distance Ladder The usual methods of measuring distances on the
Earth fail on cosmological scales. Astronomers have built an elaborate cosmic dis-
tance ladder, which starts from the Solar System and is extended by different meth-
ods deep into extragalactic space. In this enterpise an important role is played by
standard candles, classes of stars and galaxies having a known average luminos-
ity with a small dispersion. One may also use objects with constant sizes, standard
rods. It is presupposed that the standards are the same all over the universe. This may
seem plausible in principle, but is hard to check from the observations themselves.

Selection Effects Today there are tremendous amounts of data obtained at differ-
ent wavelength bands. One might think that the more there are objects, the easier it
is to test world models. Unfortunately this is not exactly so, because collected data
are influenced by various selection, distortion, and evolution effects. They distort
the original physical relations between observed quantities, and may make observed
relations imitate laws, which actually are not true and just originate from the ob-
serving procedure. To perform cosmological tests properly, we should know how to
detect and treat systematic errors and biases which are hidden in astronomical data
on distant objects and may affect seemingly secure methods of data analysis.

A classical case is the K-effect. Because of the cosmological redshift and fixed
wavelength bands of detectors, different parts of the spectra are seen from different
distances (redshifts). Another kind of classic is the Malmquist bias. When probing
the deep universe, one cannot measure arbitrarily faint fluxes, hence one necessarily
observes exceptionally powerful objects not representative of the typical population
at such large distances. This “iceberg effect” is one aspect of selection effects often
collectively termed “Malmquist bias”.

The One-Sided View Sometimes our one-point position leads to especially
bizarre problems. For instance, the unification scheme tells that an active galaxy
is seen as a radio galaxy, or as a quasar, or as a blazar, depending on the viewing di-
rection. If one has a “face-on” view of the accretion disc in the centre of the galaxy,
one sees the active nucleus in all its lustre—this is a quasar or, in the extreme case,
a blazar. If one looks at the same galaxy more from the side, the active nucleus
is shadowed behind thick dust and there is a radio galaxy before one’s eyes. One

4For instance, if there were obscuring dust in the extragalactic space between us and the nearest
galaxy M31, just one fifth of the density typical within the Milky Way, M31 (faintly visible by
plain eye) were blocked out of the sight of even the largest optical telescopes.
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cannot move around a quasar, so one has to device indirect tests of the unification
theory.

Astronomical data contain, along with the searched-for phenomenon, a blend
of selection effects, effects of intervening space, and evolution. We would like to
extract the true cosmological signal from this mixture.

1.2.2 Physical Laws on the Largest Scales

Astronomy pushes the frontiers of our cosmic sample deeper in space, and cosmol-
ogy tries to extend the picture even over the visible borders. On this road one expects
to encounter new global physical laws.

Empirical and Theoretical Cosmological Laws The subject of cosmology is
exceptional, the entire physical universe that we can never see as a whole. Never-
theless, it begins modestly—as any physical science—with a number of empirical
facts among which one hopes to find fundamental laws. This process is complicated
by great limitations and even under the paradigmatic grip of any current standard
cosmology one should be careful to distinguish between two kinds of cosmological
laws:

• experimentally measured empirical laws,
• logically inferred theoretical laws.

The empirical laws, being based on repeatable observations, are independent of ex-
isting or future cosmological models. The theoretical laws are valid only in the frame
of a specific model. Good examples are the empirical magnitude-redshift (m–z)
Hubble law and the corresponding theoretical linear velocity-distance (V –R) law
within the Friedmann model.

Local and Global Laws In our laboratories physical laws are studied at the very
position of the experimenter. In astronomy, new laws specific for very large scales
may appear. When one deals with spatial scales of ∼ 1000 Mpc, times ∼ 1010 yrs,
and masses ∼ 1056 g, the validity of the local physical laws cannot be taken for
granted, but should be tested by observations.

A local observation may be cosmologically relevant, if one may assume that it
is valid for every observer and then use it as an ingredient of a (reasonable) world
model. What locally may seem very important is not necessarily so globally. A his-
torical example is the rotation of the sky! On the other hand, the local gravitation
has proven to be relevant.

Theoretically Inferred Laws The theoretical laws require a jump from observa-
tion to interpretation. One may introduce a new essence into a cosmological model
for explaining some observed effect, but it may take years to test its reality and
physics by independent ways. Fortunately, theoretical inferences may be so unusual
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that they stimulate intensive study (like dark energy). An inferred law emerges via
the machinery of a cosmological model. Different models may have different views
of empirical laws, depending on their initial principles, fundamental theories, and
inferred laws.

Every world model has its beginnings in cosmological principles which are re-
garded as valid for the whole, perhaps infinite universe, even though observations
can be made only from a finite part of it. For instance, the statement that matter has
a homogeneous and isotropic distribution (the cosmological principle of Einstein)
is at the basis of the standard cosmological model.

All four fundamental interactions—the strong, the weak, the electromagnetic,
and the gravitational—are used for modelling and understanding cosmological phe-
nomena and for predicting observed astrophysical effects. A special role in cosmol-
ogy is played by the theory of gravitation.

Examples of Inferred Cosmological Laws A cosmological model should have
consequencies that may be compared with observations. Some of these explain the
key empirical cosmological laws, giving the initial feasibility for the model. Other
inferred laws gives predictive power to the model, relationships between quantities
that may be observed.

For example, the Friedmann model predicts that the temperature of the thermal
background radiation increases proportionally to 1 + z (where z is the redshift),
whereas in the Steady State model it remains constant. Hence, the measurement of
the temperature at different redshifts (distances) is an important, albeit difficult task.

Together with a cosmological model appear theoretical concepts, laws, processes,
and substances. The standard model concludes from the Hubble law and the back-
ground radiation that the universe is expanding and cooling, hence has begun from
a hot state. The laws of expanding space and decreasing density and temperature are
fundamental for this model.

From the lumpy distribution of galaxies and the smooth background radiation
one may infer another process: the large-scale structure has its origin in the gravi-
tational growth of tiny initial density fluctuations of dark matter. New dominating
substances, dark matter and dark energy, were deduced from the observations of
distant supernovae and the background radiation.

1.3 Important Questions of Cosmology

Modern cosmologists share with their old predecessors the passion to find out fun-
damental properties of our physical universe, such as its size and geometry, age,
material contents, and evolution.
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Fig. 1.3 The observed Hubble relation for high-redshift Ia supernovae. The three curves from
top to bottom correspond to the Friedmann models with different density parameters (
m, 
�) =
(0.25, 0.75), (0.25, 0.0), (1.0, 0.0). The observations show a deflection upwards from the prediction
of the model with a critical matter density (the bottom curve) leading to the view of dominating
dark energy. A typical task of practical cosmology is to find if this observed deflection in measured
magnitudes is really cosmological in origin and not caused by, e.g., subtle observational selection
effects or imperfect standard candles (credit: Supernova Cosmology Project)

1.3.1 Astronomical Tests of Fundamental Physics

Today’s cosmology is deeply influenced by the close interaction between astrophys-
ical research and theoretical physics at the level of the study of fundamental laws
of Nature. This includes questions about the universality of local physical laws and
about new fundamental laws on large scales.

Fundamental Constants and Laws One test of cosmological principles is the
search for possible changes in physical constants (Uzan 2003). Here astronomical
observations take the role of experiments attempting to decide between concurrent
fundamental theories of physics.

Different extensions of the standard model and their possible cosmological con-
sequences have been intensively discussed (e.g., Peacock 1999; Uzan 2003). Multi-
dimensional theories predict changes of fundamental constants over cosmological
time scales (e.g., the electron charge e, the speed of light c, and the fine structure
constant α; Magueijo et al. 2002).

Special relativity and quantum mechanics are both being tested astronomically
(Bertolami et al. 2006b). String theory predicts that the Lorentz invariance may be
violated inside “quantum foam”; this might be observed on long paths of photons
and other particles (Amelino-Camelia et al. 2005).
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Gravitation A cosmological model is actually a solution of the equations of the
gravitational field for matter filling all space. Therefore cosmology may be said to
form the greatest test of gravity theories.

One point is that general relativity is not a quantum theory. Its successes in ex-
plaining relativistic effects in the Solar System and in binaries with neutron stars, do
not mean that general relativity may be safely applied to all celestial bodies, includ-
ing the whole universe. When gravity physics is studied on local and cosmological
scales, new effects may appear.

In fact, there is a continuous interest to test general relativity with increasing ac-
curacy (Bertolami et al. 2006a; Haugan and Lämmerzahl 2001) and to develop a
more adequate quantum gravity theory. New possibilities have opened for tests of
the gravity field equations by observations of celestial bodies with strong gravita-
tional fields and by detecting gravity waves with interferometric and bar detectors,
or gravitational observatories.

From Precision Cosmology to New Physics The redshift–distance relation for
Ia supernovae (Fig. 1.3) requires the addition of the cosmological � term to the
equations of general relativity. The anisotropies of the thermal background radia-
tion detected by the WMAP satellite confirmed that a dominating dark energy is
needed for Friedmann models. The anisotropy measurements have also led to so-
called precision cosmology: the data can give precise values of the main cosmolog-
ical parameters within the Big Bang model.

These findings shattered the hope that the universe consists of some ordinary
(gravitating) matter having the critical density ρcrit. Now we have a world where
the negative-pressure dark energy is the major component (about 70%) and to-
gether with dark matter (about 30%) makes the density critical and space Euclidean.
Thus the dream of precision cosmology has shifted to a vision of new cosmological
physics (Peebles 2002) meaning that cosmologists now think they know the values
of the main cosmological parameters of the standard model, but they do not know
the physical sense of the exotic substances which the parameters refer to (Turner
2002).5

1.3.2 Central Subjects of Cosmological Research

The breakthrough into the dark has brought into light new puzzling aspects of mod-
ern cosmology (Turner 2002; Baryshev 2006) and makes one ask: Is this strange
world true, or perhaps rather a construction necessiated by the pressure of new ob-
servations and made possible by the relative flexibility of the Friedmann model?
Both possibilities are quite inspiring.

5According to Webster’s dictionary “exotic” means “striking or unusual in effect or appearance;
strange; exciting; glamorous”. All this applies to the new cosmological physics which differs from
what is known from laboratory studies. It is even as if “introduced from abroad, but not fully
naturalized or acclimatized”.
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The Distance Scale Accurate extragalactic distances, the classical goal of as-
tronomy, have become increasingly important in the era when the fluctuations of the
cosmic background radiation give (model-dependent) information on global cos-
mological parameters, including the Hubble constant (i.e. the distance scale). The
directly measured distance–redshift relation of the galaxy universe at large distances
is an important constraint on global models and cosmological physics involved. Pre-
cise local distances are also needed for new tests of dark matter and dark energy.

The Physics of Dark Matter Ever since Zwicky (1933, 1937) reported a surpris-
ingly high mass-to-luminosity ratio for the Coma cluster of galaxies, dark matter
has been with us. Its reality has often been cast in doubt, but its presence is now
demonstrated by surveys of gravitational lensing, independently of a particular cos-
mological model. For instance, observations of weak gravitational lensing in deep
space have revealed large amounts of filamentarily distributed dark matter (Massey
et al. 2007a).

The dark substance is not expected to be ordinary, baryonic matter. This follows
from the primordial nucleosynthesis theory that yields for the baryonic component
a low density of about 5% of the critical density ρcrit. Furthermore, models of struc-
ture formation, together with the observed smoothness of the background radiation,
suggest that the non-baryonic dark matter is cold, i.e. its thermal energy and pressure
are negligible in comparison with the rest mass energy.

The problem of dark matter is chiefly the problem of its carriers (Feng 2010).
The list of well-motivated candidate particles is rather long. For instance, axions are
predicted by the quantum chromodynamics, while the much heavier neutralinos ap-
pear in supersymmetry theories which unite fermions and bosons and are extensions
of the Standard Model of elementary particles. Facilities exist and new projects are
planned with the aim to detect particles of dark matter. Up to now their existence
has not been directly confirmed.

Existence and Nature of Dark Energy In his first cosmology paper Einstein
(1917) showed that his gravitational field equations allow an extra term �gik . Cur-
rently the cosmological constant � is put into the right side of the equation, into the
energy-momentum tensor. Interpreted as an additional source of gravitation, it may
represent some vacuum-like substance (as reviewed by Chernin 2001). Dark energy
generalizes the cosmological constant (Caldwell et al. 1998); the term, coined by
Turner, reminds us that this sort of thing emerges “from the dark” in expanding
space and the pressure of such a fluid is comparable (in absolute value) to its energy
density. In Einstein’s equations, the negative pressure leads to antigravitation.

It would be desirable to have more observational evidence for dark energy (and its
possible evolution) from the Hubble relation at all redshifts up to z∼ 1 and beyond.
At the same time, studies of the local Hubble law promise independent evidence
on dark energy possibly influencing the properties of the outflow which is strangely
quiescent (Sandage 1999) even in the lumpy environment close to the Local Galaxy
Group (Chap. 12).
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Power-Law Correlations on Large Scales Studies of the spatial distribution of
galaxies, using large redshift surveys, probe the space within about 1000 Mpc and
may essentially constrain world models. But it is not easy to extract reliable infor-
mation on the distribution of galaxies from the 3D maps, and one needs appropriate
methods of data analysis (Chap. 10).

The data from redshift surveys, combined with the anisotropies of the cosmic
background radiation, can be used to check the crucial prediction about the existence
of baryon acoustic oscillations having a spatial scale of about 100 Mpc. Observa-
tions also allow a check of the Cosmological Principle for the luminous matter. On
how large scales is the distribution still inhomogeneous? We discuss these questions
in Chaps. 11 and 12.

Numerical simulations of gravitating particle systems are the basic way to study
how large-scale structures are formed within the cold dark matter models. Among
the major problems in N-body simulations are the choice of the initial conditions and
the representation of the cosmological fluid by a discrete particle set (Baertschiger
et al. 2002; Gabrielli et al. 2005). On small scales, if there is an additional self-
interaction of the CDM particles, simulations lead to a different density profile for
the forming condensations (Spergel and Steinhardt 2000). On large scales, it is still
an open question how the observed power-law correlations (“megafractality”) have
emerged from the tiny initial fluctuations.

The hypothetical dark matter with unknown properties makes it difficult to build
a reliable model of the large-scale structure formation. Peebles (2002) made here
the illuminating comment that the main unknown element in the standard model is
the physics in the dark sector and therefore tests of fundamental physics have a high
priority, as they may clear up the nature of the dark substance. Until this is done
structure formation is a hazardous basis for testing cosmological models.

Physics of High-Redshift Phenomena At high redshifts one tries to observe a
very remote past in the history of the universe. According to the standard cosmology,
around the redshift z≈ 1000 the cooling temperature reached 3000 K and electrons
and protons could unite (“recombine”) and form neutral atoms. The radiation de-
coupled from matter. After this, though before the epoch when we already can see
galaxies (z≈ 9), denser regions of the primordial gas started condensing into young
galaxies forming stars. This long period (about 109 years) before the “first light” ap-
peared is the “Dark Age”, where the origin and dynamical and chemical evolution
of the first generations of stars, galaxies, and quasars are still poorly known.

The cosmic background radiation is usually regarded as a relic from the recom-
bination epoch. In view of possible other explanations (e.g., Hoyle et al. 2000), this
crucial element of standard cosmology deserves to be tested as carefully as the real-
ity of expansion has been tested by Sandage.

Geometry and Expansion of Space The analysis of the anisotropies of the back-
ground radiation gives zero curvature of space. From the times of Gauss, there
has been a dream of seeing differences from “Euclidean predictions” that could be
without doubt ascribed to intrinsic non-Euclidean properties of our space. Starting
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from the opposite points of view on the geometry of physical space as expressed
by Poincaré (1902) and Einstein (1921), the traditional question, whether space is
finite or infinite and what its curvature is (Sandage 1992), has been extended into
inquiries about the topological structure of space and the number of possible extra
dimensions.

The scale factor S(t) gives a mathematical description of space expansion in
Friedmann models. All distances between uniformly scattered particles are changing
with time as r(t) = S(t)χ . As the real world is highly inhomogeneous, one has
to ask what expands and what does not. One useful way to view the expansion
of space is as creation of space together with the cosmological vacuum. In fact,
the physics of space expansion is a subtle subject of few observational facts and
somewhat nebulous theoretical concepts (Chap. 12).

The standard cosmology suggests that behind the observed Hubble law there is a
not-directly-observable linear velocity–distance law. “Velocity” refers to space ex-
pansion which causes the redshift by the Lemaître effect. As space expansion is
not yet directly measurable, it is important to make tests confirming its reality as
Sandage has done using the surface brightness. In future, it might be possible to
perform Sandage’s changing redshift (dz/dt) test using the very large new genera-
tion telescopes.



Chapter 2
Distance Measurement and Cosmography

Combining observation with mathematics can result in unexpected ways of probing
the world—small and large. Examples start in Antiquity when Thales measured the
height of a pyramid, using the length of its shadow at the very moment when the
shadow cast by a vertical rod was as long as the rod itself. It is also told that he
inferred the distance of a boat from the shore, without stretching any tape measure
between them. Astronomers have made analogous things throughout history when
constructing the cosmic distance ladder.

2.1 Cosmic Distance Indicators

It is common knowledge in our neighbourhood that of two similar shining objects
the more distant one looks fainter and smaller, and has a smaller parallax shift. In
Euclidean space, an object’s luminosity distance, angular size distance and parallax
distance have the same value when the same unit of length is used. These familiar
kinds of distances are also used to construct the distance ladder beyond the Solar
System, inside and even outside of our Galaxy, finally reaching the realm where a
novel kind of distance measure appears: the redshift of light. The empirical Hubble
law indicates that a higher redshift corresponds to a larger distance. Here “distance”
is still a somewhat misty concept of remoteness.

With a cosmological model, the redshift and other distances are linked to the
metric distance contained in the theoretical framework of Riemannian space. It can
be said to correspond to the distance obtained with metersticks put one after the
other between the observer and an object. In non-Euclidean spaces, as considered
in large-scale physics, different distances have different values, giving a way to find
out the geometry of space.

The Distance Ladder This concept refers to the steps making possible the mea-
surement of progressively larger distances (see, e.g., Webb 1999).

One may say that a distance indicator is a method where an astronomical object
is placed in 3D space so that its properties observed through space agree with what
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we know about such objects, their constituents, and the propagation of light. A good
distance indicator would restrict the object’s position in a narrow range around the
true distance. For finding good distance indicators the diversity of cosmic phenom-
ena and the knowledge and imagination of the cosmographer should meet. Thus
numerous methods for “placing an object in space” have been invented, each requir-
ing different kinds of measurements at the telescope. The most basic is to measure
angles. Then there is the flux of light, and one may also measure its time variation
and spectrum at different wavelengths.

2.1.1 Geometry and Photometry in Euclidean Space

In Antiquity, the term “parallax” meant the shift in the direction of a celestial body
as looked from two places on Earth. In his Almagest Ptolemy (ca AD 150) stated
that “none of the stars has a noticeable parallax (which is the only phenomenon from
which distances can be derived)”. One sees a sound method, but the observational
means are insufficient. In fact, only after Copernicus was there strong motivation to
search for stellar parallaxes, as a crucial test for proving the Earth’s motion and as a
distance indicator.

The Triangulation If the length of the baseline d is known in needed units and
the measured peak angle in the triangle is θ , then the distance r is

r = d

2 tan(θ/2)
≈ d

θ
. (2.1)

One may use two kinds of baselines. The baseline may be either “here” like the
astronomical unit AU (the Earth–Sun distance) in the annual parallax method or
“out there”, like the radius of a galaxy or some other object.

The local baseline (2×AU) is obtained in physical units using Kepler’s Third
Law together with distances to nearby planets and asteroids, measured with radar
techniques nowadays. So a stellar parallax angle can be expressed as a distance in
cm (see Appendix A for useful numerical data).

In the stellar realm in our Galaxy, the triangulation appears in various forms. The
Solar System moves relative to the local standard of rest (about 13 km/s or 2.8 AU
per year), so one can expand the local baseline much beyond the 2 AU of the annual
parallax method and derive “secular parallaxes” (leading to a mean distance to a
class of stars). Another related method derives “statistical parallaxes”.

However, when the baseline is “out there”, we have a problem: how to know its
actual length? This critical question arises often in astronomy. Ideally, one should
have a standard rod, a class of objects whose linear size has a small scatter around
an average value. From the measured angular size of a standard rod, one can derive
its angular size distance using Eq. (2.1).
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The expanding nebula method, a special kind of triangulation, was suggested and first ap-
plied by Lundmark in the 1920s for the Crab nebula (Trimble 1973). Knowing the expan-
sion velocity of the nebula in km/s (from the Doppler shift), one can calculate its distance
from its transversal proper motion μ in arc seconds per year derived from the angular size
and the date of explosion:

Vr = 4.74μr, (2.2)

where the expansion velocity Vr is in km/s and the distance r is in parsecs.

For the Milky Way, our distance from the Galactic centre, R0, is fundamental. It is
also important for extragalactic distances through its impact on the calibration of
stellar standard candles. Earlier, the round number R0 ≈ 10 kpc was often used, but
for years it has been known that the distance is shorter, around 8 kpc. In a summary
of the results, Eisenhauer et al. (2003) reported a geometric measurement to the cen-
tre with an uncertainty of about 5%. They combined astrometric and spectroscopic
measurements of the star S2 orbiting the massive black hole candidate in the Galac-
tic centre. The solution for the best-fit Kepler orbit gave the needed parameters to
calculate the distance R0 = 7.94± 0.38 kpc (the black hole mass turned out to be
about 3.6× 106 solar masses).

Triangulation in Nearby Extragalactic Space Water masers, observed in inter-
stellar clouds, are strong and compact radio sources. Their positions can be mea-
sured accurately with Very Long Baseline Interferometry (VLBI) techniques. A few
nearby galaxies have known water maser sources.

Brunthaler et al. (2005) made true the dream of van Maanen in the days of the
Great Debate: to detect the angular rotation of M33, in order to infer its distance.
Comparing the angular rotation rate, as measured with VLBI from water masers on
opposite sides of the galaxy, with the rotation speed and inclination, they derived
a distance of 730 ± 168 kpc. This comes from the measured angular motion of
30.8± 4 µarcsec/year (in RA) and the velocity of 106± 20 km/s from the rotation
model, together with Eq. (2.2).

Miyoshi et al. (1995) observed megamasers close to the centre of the spiral
galaxy NGC 4258. They could deduce the radius (0.13 pc) of the disk rotating
around the massive black hole candidate from the rotational speed (1080 km/s) and
centripetal acceleration (9.5 km/s/yr) of its edge. Then the angular radius (4.1 mas)
gave the distance of 6.4 Mpc (revised to 7.2± 0.3 Mpc by Herrnstein et al. 1999).1

The Photometric Method: Standard Candles Before annual parallaxes were
measured by Bessel and others in the 1830s, brightness had been recognized as a
possible distance indicator. James Gregory (1638–1675) assumed that stars are other
suns observed through transparent space where the inverse square law of light flux
from a point source works (introduced in Kepler’s Optics). Newton applied it to
Sirius, using the Sun as the calibrator. He inferred a distance of one million solar
distances (twice the true one) and was thus well aware of the remoteness of stars.

1A variant of this method applied to M33 (Argon et al. 2004) resulted in the distance 800±180 kpc.
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Consider an object radiating isotropically with the power output (luminosity in
erg/sec) L. Then at the distance r it produces a flux f (erg/sec/cm2) through the
surface of the sphere having the total area 4πr2:

f = L

4πr2
L

. (2.3)

If one knows the luminosity L and measures the flux f , one can thus derive the
luminosity distance rL. It is good to underline that the photometric method is also
geometric in nature. One essentially measures—in a special way—the solid angle
made by the cone whose 1 cm2 bottom is at the Earth and the peak is at the centre
of the object in question.

Though we indicated above the units erg, sec, and cm, the method of standard
candles is usually relative, i.e. one obtains the distance to an object relative a nearby
calibrator. The distance modulus m −M often appears in such calculations. It is
related to the luminosity distance rL as

m−M = 5 log rL/10 pc. (2.4)

This formula has its origin in the 1/r2 law in Euclidean space. We remind the non-
astronomer reader that the apparent magnitude is connected to the observed flux f

as m=−2.5 logf + const. (e.g., Karttunen et al. 2006).
Some history: The familiar unit light-year was used before parsec which was suggested by
Herbert H. Turner (1861–1930) and apparently first mentioned in text by Frank W. Dyson
in 1913. The concept of absolute magnitude M was defined by the Dutch astronomer
Jacobus C. Kapteyn (1851–1922) in 1902, as the apparent magnitude m which a star would
have if moved to a distance corresponding to a parallax of 0.1′′, i.e. the distance of 10 pc
(Hughes 2006).

2.1.2 Relative and Absolute/Physical Methods

When using a “standard rod” or a “standard candle” as a distance indicator, in both
cases one must ascribe a value to the object whose distance is measured (length or
luminosity). For this there are two possibilities:

• Calibration based on nearby objects of the same kind, whose distances are known
using other distance indicators.

• Derivation of the linear size or luminosity for the object directly from observation
and physical theory, with no information about its distance.

The first variant requiring nearby counterparts is “relative”. The latter type of
methods bypasses the local distance ladder, and may be described as “physical”
(e.g., Sandage et al. 2006) or “absolute” (Nikiforov 2004) or “one-step distance
method” (Jackson 2007).
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Relative Methods The very first application of the standard candle method used
the calibrator “here”, the Sun. Hence, Gregory’s method had 1 AU as a natural dis-
tance unit. For several distance indicators of this kind, the size or the luminosity are
inferred from a relation X = ap + b, where p is an observable parameter whose
value can be measured without knowing the distance. Examples are the period–
luminosity relation of Cepheid stars, the rotational velocity—luminosity (TF) re-
lation for spiral galaxies, and the decay time—maximum luminosity relation for
Supernovae Ia.2

The parameter p can refer to quite different observations and time-scales. A spi-
ral galaxy remains in its position in the TF-relation for uncounted generations of
astronomers, and observations of its maximum rotation velocity and magnitude may
be repeated at will. Cepheid observations are limited to relatively nearby galaxies
and require a sufficient time interval, so that different pulsational periods can be ob-
served. Supernova explosions cannot be predicted, and when they occur, one should
start following the process before the peak luminosity is reached.

Absolute/Physical Methods Relative methods rely on the calibrator distances.
Physical methods result in distances directly expressed in physical units (cm). Such
methods are rare at large extragalactic distances. One example is the Sunyaev-
Zeldovich method for distant rich galaxy clusters which utilizes the interaction of
the hot cluster gas and the cosmic background radiation (Sect. 4.3.1).

Redshifts and Distances Thanks to the regular universe, the measured redshift
provides an estimate of relative distances (the Hubble law). It is quite different from
the indicators mentioned above. In the assumed Friedmann model, (or any other
sufficiently developed cosmological model) the redshift links other kinds of dis-
tances to the fundamental metric distance. For instance, locally calibrated standard
candles lead to luminosity distances dL, which can be measured independent of the
cosmological model. Then, if one assumes that a flat Friedmann model describes
the universe, one gets from the luminosity distance (in Mpc) the metric distance (in
Mpc) just by dividing it by the redshift factor 1+ z.

The procedure of distance measurement may explicitly involve a cosmological
model. For instance, if one needs a time interval occurring at the object, one trans-
forms it to the rest-frame by dividing the observed time by 1+ z, when the Fried-
mann model is assumed. This happens, e.g., when the decline rate is used to correct
the peak luminosity of a supernova of type Ia.

2Also the Faber-Jackson and Fundamental Plane (Davis–Djorkovski) methods for elliptical galax-
ies, utilizing relations between the luminosity and stellar velocity dispersion (FJ), and the effective
size, surface brightness and velocity dispersion (DD) and a modification by Dressler et al. (1987)
belong to this category.
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Table 2.1 Some stellar
distance indicators Type of star Pop Absolute V mag Range for V = 27

RR Lyrae variables II 0.8 2 Mpc

TRGB (Red Giants) II −2.5 5 Mpc

Cepheid variables I −5 (for P ≈ 20 d) 25 Mpc

Supernovae type Ia I, II ≈−19.5 z < ∼2, (∼ 10 Gpc)

2.2 Lower Rungs in the Distance Ladder

Lundmark (1919, 1920) made an early determination of the distance to the An-
dromeda galaxy using novae (the result was 175 000 pc). He also suggested the use
of the brightest stars in galaxies: “If it were possible to determine the apparent mag-
nitude at which the main body of giants in a spiral nebula begin to appear separated,
it would give us an additional means of estimating its distance”.

In his 1929 classic Hubble introduced the brightest blue stars as distance indica-
tors. He identified these from the photographs of galaxies up to about half distance to
the Virgo cluster. They usefully indicated relative distances, though Sandage (1958)
showed that these objects actually were HII regions, bright ionized hydrogen clouds
around blue stars. Calibrated by Hubble using true stars in nearby galaxies, those
indicators gave too short distances.

2.2.1 The Brightest Giant Stars in Galaxies

But is there a sharp upper limit in the luminosities of normal stars? From the HR
diagram for the solar neighbourhood, Sandage and Tammann (1974) concluded that
the brightest blue stars surpass MB =−9 mag. In other galaxies M(1) depends on
the galaxy luminosity (the number of stars), roughly as expected if the stellar lumi-
nosity function is exponential at the bright end. Indeed, if the luminosity function
of a class of stars does not go abruptly to zero at a high luminosity, it is clear that
in a large sample of those stars the extreme one is usually more luminous than in a
small sample. This makes blue supergiants problematic as distance indicators.

The trend between M(1) and the host galaxy magnitude Mgal depends on the steepness
of the bright end of the luminosity function. In some cases the apparent magnitude m(1)
of the brightest star and the host magnitude mgal can be used to make a distance estimate.
If we know the dependency M(1) = aMgal + b, then (1− a)μ = −(amgal + b), where
μ=m(1)−M(1) is the unknown distance modulus. If the slope a ≈ 1, one cannot solve
for the distance.

The brightest red supergiants (〈M(1)〉 ≈ −8.0 mag) also show a trend with the host
galaxy luminosity, though weaker than the blue stars (Sandage 1984). They have
been used to derive distances to a number of nearby galaxies with an accuracy of
≈ 0.3 mag in the distance modulus.
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Instead of extremal stars within a broad class, one may consider inherent features
in the luminosity function, such as a maximum or a discontinuity. These maintain
their location (absolute magnitude) in samples of different sizes, when there is no
selection depending on the absolute magnitude.

The TRGB Method The Hubble Space Telescope could measure the luminosity
distribution of bright red stars in many galaxies (earlier studied, e.g., by Sandage
1971), making a new way of using red giants possible: the Tip of the Red Giant
Branch. The modern TRGB method was developed especially by Madore, Freed-
man and associates (e.g., Lee et al. 1993; Sakai et al. 1997) and is now an important
way to measure distances in the local volume within about 10 Mpc (e.g., Karachent-
sev et al. 2007), where the Population I Cepheid method is not applicable to ellip-
tical galaxies (cf. Table 2.1). The TRGB method is also efficient in using the HST
telescope time, as one can measure distances out to 7 Mpc with a single orbit (a
single-epoch observation at two wavelengths is enough).

The “tip” refers to a sudden discontinuity in the luminosity function of the stars in
the red giant branch of the HR diagram and it is observed at the absolute magnitude
MI ≈ −4 in the I photometric band (around 8200 Å). This feature is understood
as marking the core helium flash of old, low-mass stars (less than ∼ 1 solar mass)
which evolve up the red giant branch, but very quickly change their physical char-
acteristics upon ignition of helium.

The TRGB I-magnitude has been shown to be quite stable, only slightly sensitive
(∼ 0.1 mag) to age 2–15 Gyr and metallicity between −2.2 < [Fe/H ]<−0.7 dex
(the range for the Galactic globular clusters). The statistical problem affecting the
use of extremes in a population is reduced and it is regarded that with the TRGB
method one reaches an accuracy of 0.1–0.2 mag for the distance modulus, requiring
more than ∼ 100 red giants detected in the one-magnitude bin below the tip.

The calibration in the I-band is based on Galactic globular clusters whose dis-
tances have been determined using the RR Lyrae variable stars. Tabur et al. (2009)
have made a direct geometrical calibration of the TRGB K-band magnitude in the
solar neighbourhood using parallaxes measured by the HIPPARCOS satellite.

2.2.2 Cepheid Pulsating Stars

On the cosmic distance ladder the classical Cepheid variables continue to have a
special role. They are young objects of Population I found in spiral and irregular
galaxies. Their predecessors in the Main Sequence are stars two times heavier than
the Sun. With their (V) absolute magnitudes in the range centered around −4 (for
P = 10 d), they can be used up to mlim −M ≈ 28.5 (r ≈ 5 Mpc) with earth-bound
telescopes (mlim ≈ 24.5) and mlim −M ≈ 31 (≈ 25 Mpc) from space (mlim ≈ 27).

Some Physics A simple argument concerning the physics of the PL relation was
outlined by Sandage (1958; also Madore and Freedman 1991)—such understanding
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helps one to formulate the law, to add relevant parameters, and perhaps to recognize
a reason for possible discrepant results.

The Stefan’s law connects the luminosity, radius, and effective surface tempera-
ture of a star: L= 4πR2σT 4

eff, thus mapping all stars on the magnitude-temperature
diagram, with stars of a constant radius defining a straight line. Such a line is also
one of constant volume, so moving along it the average density of stars changes, as
there is a luminosity–mass relation. A result from classical mechanics states that the
radial pulsational period of a star P ∝ 1/

√
ρ. Here ρ is the average density of the

star, hence the pulsational period of a star tells us about its density, and, at the end,
about its luminosity. For the bolometric (total luminosity) absolute magnitude, we
may write the PL relation as:

〈Mbol〉 =A logP +B〈logTeff〉 + const. (2.5)

In practice, instead of the total flux one observes a Cepheid through different wave-
lenght bands. Each has its own PL slope and zero-point. A major advance has been
the near-infrared photometry, complementing the measurements in the B and V sys-
tems. In longer wavelengths (1) the extinction and reddening of the light by the dust
are reduced, (2) the scatter of the PL relation is smaller, and (3) the amplitude of
magnitude variation is smaller.

The PL Relation As the colour is the natural third parameter in the PL relation,
reflecting the surface temperature, the precept behind the use of a simple PL relation
is as follows: If one assumes that the calibrating sample of Cepheids has the same
properties as the distant sample on which one applies the relation, the colour term
may be considered as the same for all galaxies. The PLC relation is thus transformed
into a simpler PL relation.

Soon after the discovery of the PL relation by Henrietta S. Leavitt (Leavitt and
Pickering 1912), Hertzsprung applied it to distance determination. He and then
Shapley used statistical parallaxes for stars in our Galaxy to derive the zero-point of
the relation. In the modern situation there are several routes to the calibration. As-
suming a universal PL relation, the slope of the PL relation has been usually taken
from observations in the Large Magellanic Cloud, while the zero-point comes from
our Galaxy, together with independent distance measurements of the LMC (see e.g.
Fouqué et al. 2007). For example, the PL relation for the LMC adopted by the HST
Key Project (for the distance modulus μLMC = 18.5) was MV =−2.76 logP −1.46
(Freedman et al. 2001).

The HIPPARCOS astrometric satellite measured many parallaxes for Cepheids in
our Galaxy. However, the large distances cause large parallax errors, which make it
difficult to derive the PL zero-point in a proper statistical manner. The future GAIA
astrometric space observatory will open here new possibilities.

The PL relations may be systematically different in different galaxies. It is known
that later galaxy types (like the Large Magellanic Cloud) have a lower metallicity
than earlier types (like our Galaxy) (Paturel et al. 2002), and the relations in the
Galaxy and in the LMC may be different (Tammann et al. 2003). Hence, the Cepheid
properties could be different due to metallicity of the interstellar gas from which
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Fig. 2.1 Parts of the cosmic distance ladder involving Cepheids, the TF method, and supernovae
Ia. The PL relation is calibrated in the Galaxy and in the Magellanic Clouds and checked in nearby
galaxies. It is used to measure distances to galaxies and groups within about 20 Mpc, where the
TF-relation and the SNe Ia luminosities are calibrated

these stars were initially formed. Such differences could influence the determination
of the distance scale and the value of the Hubble constant (we return to this point in
Chap. 4).

The absolute magnitude being predicted by the PL relation, the distance modulus
can be derived from the mean apparent magnitude. It should be corrected for the sum
of the extinctions in our own Galaxy and in the host galaxy. This is possible by using
two different photometric bands (V and I ; Madore and Freedman 1991). Then the
corrected distance modulus μ0 is derived from the separate moduli μV and μI as

μ0 = RV

RV −RI

μI − RI

RV −RI

μV . (2.6)

The factors RV and RI give the ratio of the total extinction to the reddening EB−V
for the photometric band (V or I ). They depend on the extinction law. For instance,
if in round numbers RV ≈ 3 and RI ≈ 2, one has μ0 ≈ 3μI − 2μV .

2.3 Long-Range Indicators

A common route to large extragalactic distances (as outlined in Fig. 2.1) is to use
the PL relation for Cepheids to derive distances for a set of galaxies that serve to
calibrate the luminosity of a long-range distance indicator. Such indicators can ex-
tend the distance ladder from the local scales of ∼ 10 Mpc to scales of ∼ 100 Mpc
(e.g., the TF relation) or even 1000 Mpc or more (Type Ia supernovae).
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2.3.1 The Tully–Fisher Relation: The Method of Rotating Galaxies

The Tully-Fisher (TF) relation is a widely applied distance indicator, with samples
of thousands of spiral galaxies. Tully and Fisher (1977) discussed the relation be-
tween the 21 cm emission line of the neutral hydrogen HI, widened by the rotation of
a galaxy, and the absolute magnitude.3 The width of the HI line serves as a measure
of the maximum rotational velocity Vmax. It is related to the mass of the galaxy and,
hence, to its luminosity. One may get an idea of the expected relation between Vmax
and the absolute magnitude by assuming that the mass-to-luminosity ratio M/L and
the surface mass density M/r2 are constant. Then from GM/r2 = V 2

max/r one can
derive L∝ V 4

max and in terms of magnitudes logVmax =−0.1M+ constant, roughly
as observed.

The rotation curves of spiral galaxies usually show a flat part at large distances
from the centre. This is generally interpreted as indicating a dark matter halo. To
understand well the TF method, we should know how the luminous and dark matter
are distributed inside galaxies (Theureau et al. 1997a) and how far away from the
centre the horizontal rotation is reached for different galaxy types etc. The result
about the universality of galactic surface densities (Donato et al. 2009; Gentile et al.
2009), both baryonic and dark matter, within one dark halo scale-length may bring
more order to this complex field.

The Slope Different TF relations appear in the literature, depending on the pho-
tometric band, but also on how they were derived and from what data. The zero-
point b poses a separate problem, requiring a sample of calibrating galaxies with
known distances (the zero-point may also be normalized to a value of the Hub-
ble constant, if derived from field galaxies or galaxy clusters with known (cos-
mological) recession velocity). We give a few examples of the slope a in some
bands (M = a logVmax + b). The B-band: −5.82, −7.97 (Theureau et al. 1997b;
Sakai et al. 2000); the I-band: −7.6, −9.24 (Giovanelli et al. 1997; Sakai et al.
2000); the H-band: −11.03 (Sakai et al. 2000).

In the first B-magnitude slope field galaxies (with distances from the Hubble
law) were used and the linear fit is made with keeping all errors in the calculated
absolute magnitude M . In the second one (the HST Key Project), the fit was made
on cluster galaxies and takes into account errors in both M and logVmax. Because
of the fairly large scatter in the B relation (≈ 0.5 mag), the two kinds of fits result
in rather different slopes (cf. Fig. 2.2).

The slope of the inverse relation (logVmax = a′M + b′) is derived assuming that
all errors are in logVmax. For the B magnitude Ekholm et al. (1999b) and Tully
and Pierce (2000) derive the slopes −1/10 and −1/7.3, respectively, while for the I
magnitude Tully and Pierce give −1/8.14.

When one uses the TF relation for distance determination, different kinds of sys-
tematic errors appear depending on the chosen slope (direct, inverse), the nature of

3Even earlier Gouguenheim (1969) had inferred distances to six galaxies, using angular sizes and
21-cm line observations made with the Nancay radiotelescope.
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Fig. 2.2 Tully-Fisher (B
magnitude) relation for
nearby (cz < 1000 km/s)
galaxies. The scatter is partly
caused by distance errors.
Based on calibration data in
Theureau et al. (1997b)

the sample, and the situation (Chaps. 3 and 4). The systematic errors depend espe-
cially on the scatter in the relation. When one goes from shorter to longer wave-
lengths, the scatter decreases and may be quite small in the mid-IR range at 3.6 µm
(±0.12 mag as tentatively given by Freedman and Madore 2010).

Corrections When working with the TF relation, one has to apply several correc-
tions, most importantly the inclination correction, the Hubble type dependence of
the zero-point, and the galactic extinction correction.

Disc galaxies are viewed from different directions. One needs the inclination
angle i (between the line of sight and the polar axis of the galaxy) to correct two
quantities: (1) the width of the HI line (as it would be seen for i = 90°), and (2) the
magnitude (or diameter) of the galaxy (as seen for i = 0° or “face-on”). The angle
i is inferred from the axis ratio R =D/d of the galaxy image, where D and d are
the lengths of the major and minor axes, respectively, defined up to a fixed surface
brightness (isophotal sizes). The influence of inclination on the magnitude is a topic
with decades of history. It is interestingly connected to the degree of transparency
of galaxy discs (the greater the opacity, the larger is the change in the magnitude
when the disk is viewed from different directions; e.g., Kankare et al. 2009).

Bottinelli et al. (1995) derived the following correction for B-magnitude:

mi =m0 + aincl(R)=−2.5 log(k+ (1− k)R2C(1+0.2/K)−1). (2.7)

Here R is the axis ratio and k may be expressed as a function of the Hubble type t as
k = 0.754 · 10−0.2t . The parameter K expresses how the apparent diameter changes with
the surface brightness: K = ∂ logD/∂ logμ. The constant value K = 0.094 is used for
disk galaxies. C is defined as C = ∂ logD/∂ logR. The value C = 0.04 has been adopted
in the LEDA extragalactic data base.

The type dependence is such that for a fixed Vmax early type galaxies (Sa) are
fainter than late type galaxies (or for a fixed absolute magnitude early types rotate
more quickly than later types). This may be understood as due to the higher M/L

ratio of the latter, as was modelled by Theureau et al. (1997a). The effect may be
put into the zero-point of the TF relation.

The galactic extinction correction agal is usually taken (e.g., in the LEDA
database) from Schlegel et al. (1998), based on infrared dust emission. This mea-
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sure of extinction gives an average value in the direction of a galaxy and one
should not forget possible deviations. There is evidence for high dust extinc-
tion in some directions even at high Galactic latitudes (e.g., Teerikorpi 1981a;
Teerikorpi and Kotilainen 1989; Berdyugin and Teerikorpi 2002).

2.3.2 The Peak Luminosity for Ia Supernovae

Lundmark (1946) envisioned, on the basis of five supernovae observed in five galax-
ies, that supernovae seem to have a small scatter in their maximum luminosity so that
they “seem to furnish an excellent distance indicator” and “will enable us to reach
rather far out in the Metagalaxy”. In fact, supernovae as a whole form a heteroge-
nous blend of different origins and absolute magnitudes at their maxima. However,
on the basis of their spectra one may group them into a few classes. Zwicky and
Minkowski classified supernovae into Types I and II. Later Type I was divided into
Ia, Ib, and Ic (all these originating from quite different processes).

Type Ia Luminosity The Ia supernovae are the most luminous of all supernovae,
and they can be identified from the lack of hydrogen lines in their spectra. They
form a rather uniform class of stellar explosions, in that more luminous objects have
slower decline-rates (as was noticed by Pskovskii 1977). This simple behaviour al-
lows them to be calibrated as standard candles. The peak luminosity is about −19.5
in both B and V magnitude bands, depending on the decline rate of the light curve.

The SNIa events that occur both in spiral and elliptical galaxies, have provided
the sharpest Hubble relation along a wide range of distances (cf. Fig. 1.3). A draw-
back in supernova explosions is their unpredictability and even rareness in galaxies.
Systematic search programmes are necessary so that one may catch a supernova be-
fore it reaches the maximum luminosity. We will discuss their use for cosmological
purposes in later chapters (the Hubble constant in Chap. 4, the magnitude–redshift
test in Chap. 8).

Lundmark (1919, 1920) had been the first to realize that there are novae and much more
luminous supernovae in connection with his study of the distance of M31, with an “incred-
ible foresight and imagination” as praised by Fritz Zwicky (Johnson 1961), who in 1934
together with Walter Baade connected supernovae with the death of massive stars. In 1925
Lundmark termed the giants and dwarfs among novae as “upper and lower class”, with an
upper class nova reaching a luminosity comparable to that of the whole host nebula).

2.3.3 Morphological Galaxy Classes

It would be fine if just by looking at the photo of a galaxy one could tell how big it is.
Is the luminosity of a galaxy written on its appearance? This was asked by Van den
Bergh (1960), after he noted that galaxies may differ in luminosity by a factor of
about 10 000. He indeed found a correlation: the stronger its spiral structure is, the
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more luminous is a spiral galaxy. His luminosity classes range from I (supergiant) to
V (dwarf galaxies), with intermediate cases (such as II–III). In the program “Steps
toward the Hubble constant” by Sandage and Tammann in the 1970s, one goal was
to calibrate the luminosity of the giant ScI galaxies, then use it as a standard candle.
They found that the scatter within a luminosity class leads to rather inaccurate in-
dividual distances, and easily leads to a systematic error in distance determinations
for a galaxy sample.

In connection with the morphology of galaxies it is interesting to mention that
a half of S0 and S galaxies possess an inner ring structure (r), which is easy to
observe. This finding led Buta and de Vaucouleurs (1983) to propose a distance
indicator based on the size of the ring. The potentials of this method may not yet
have been fully exploited (Teerikorpi 1986).

The Sosies Georges Paturel (1984) introduced the method of sosies into the dis-
tance ladder, whereby distant “clones” of nearby calibrators are searched for.4 The
idea is: if the absolute magnitude M depends on a measurable parameter p, but one
does not know reliably the relation, one may restrict the study to such distant galax-
ies that have their values of p close to those of some nearby calibrators. The number
of parameters p is in practice larger than one, including the morphological type and
other more objectively measurable parameters. Van den Bergh’s luminosity classes
also define a kind of sosies, involving the Hubble type and the luminosity class in-
dex (labeled beauty index by Sandage). De Vaucouleurs’s luminosity index �c was
calculated as (T + Lc)/10, where T is the morphological type code and Lc is van
den Bergh’s luminosity class number.

2.4 The Concept of Metric Distance in Curved Space

We described above some examples of practical ways to estimate cosmic distances,
leaving a few other ones to later chapters. The physical concept of distance is deep-
seated in the steps farther and farther in space, where one is compelled to take into
account geometries more general than Euclidean. In cosmology, world models de-
scribe how distance and its measurement appear in the physical geometry of the
large-scale universe. In order to facilitate understanding the meanings of different
coordinates, forms of metric, and distances, we take advantage of analogies with
more easily visualized spaces.

2.4.1 Universes of Constant Curvature Within E3

We introduce main geometrical concepts in curved space so that the reader will
see how Riemannian geometry enters cosmology and permits one to interpret astro-

4From Larousse Classique: Sosie—Personne avant une ressemblance parfaite avec une autre. Or—
“Sosie—A person with a perfect resemblance to another.”
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nomical observations in terms of the geometry of the universe. For this purpose we
first study the mathematics of two-dimensional homogeneous and isotropic spaces
embedded in 3D Euclidean space E3. Usually this subject is presented by differ-
ential geometry without referring to any external higher-dimensional embedding
space. However, besides helping one to imagine and learn geometrical concepts, the
embedding space may actually be essential for the physical concepts of distance,
surface, and volume.

Systems of Coordinates for a 2D Sphere in E3 Consider a spherical surface
S2 in the 3D Euclidean space E3 and suppose that a 2D inhabitant, surveyor by
profession, lives in this space. He cannot feel the third dimension, similarly as the
fourth spatial dimension is not present for us. The surveyor is able to study his 2D
universe by measuring distances with sticks and ropes or observing light sources
scattered all around space. The light travels along the geodesics (“straight lines”)
of this spherical universe. The external 3D observer in E3 sees that the trajectory
of light is a great circle representing the shortest distance between two points as
measured on the sphere.

To see what it means to measure lengths, angles, and fluxes in the 2D spherical
space, we introduce four coordinate systems (Fig. 2.3). Three of these are defined
in the embedding space E3 and one in the space S2 itself. The first three directly
relate to the embedding space:

KCart = {x, y, z}, Kcyl = {ρ,φ, z}, Ksph = {R,θ,φ}. (2.8)

KCart is the Cartesian coordinate system, and x, y, z are its ordinary coordinates.
These can be employed only in flat Euclidean space where it is possible to extend
the local orthogonality over the whole space (for instance, any two parallel lines
have everywhere the same distance between them).

Kcyl is the cylindrical coordinate system, where ρ is the polar radius on the XY

plane, φ is the azimuthal angle, and z is the Cartesian coordinate orthogonal to the
XY plane. Ksph is the familiar spherical system in E3, so that R is the radial dis-
tance, θ is the polar angle, and φ is the azimuthal angle. These external coordinate
systems are of course related by

x =R sin θ cosφ = ρ cosφ; y =R sin θ sinφ = ρ sinφ; z=R cos θ.
(2.9)

Let us suppose that in the spherical space S2 the 2D observer at the point P can
measure the angle between the light rays coming from the points A and B and also
the distances to these light sources. Such a being would use a rope to measure the
metric distance u from the stake pounded into the “ground” at point P . To measure
the angle � he fixes a “zero-meridian” and the direction of increasing angle. In
this manner the fourth coordinate system is generated, internal for the 2D spherical
space:

Kint = {u,�}. (2.10)
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Fig. 2.3 Coordinates for 2D
spherical space embedded in
3D Euclidean space

The coordinate u is the length of the arc PA of the great circle of the sphere and �

is the angle which has the same value as the azimuthal angle φ in the embedding 3D
Euclidean space. In his world the surveyor might, we guess, term u the polar radius
and � the azimuthal angle.

Our one goal is to derive expressions that link the internal measurements by the
2D surveyor to the measurements made in the embedding E3 space.

Metric Tensor and Metric Distance in E3 The element of spatial distance dl in
n-dimensional Riemannian space has the form

dl2 = γαβdx
αdxβ, (2.11)

where γαβ is the metric tensor of the space and (the vector) dxα gives the differen-
tials of the coordinates {xα} = {x1, x2, . . . , xn}.

What is the practical importance of the metric tensor? The n-dimensional ob-
server, who knows the mathematical expression for this tensor (i.e. how it depends
on the chosen coordinate system), immediately knows all geometrical properties of
his space. In particular, the metric tensor γαβ defines the fundamental metric dis-
tance between any two points in that space: it is the integral of the distance element
along the geodesic line connecting these points. One may identify the distance el-
ement dl with a local, very small standard rod, and the metric distance essentially
means the length measured with such an unchangable “cm”. When one applies this
geometry to the real world, one must assume the existence of rigid rods.

In Euclidean 3D space the metric tensor assumes the simplest form when the
Cartesian coordinates {xα} = {x1, x2, x3} = {x, y, z} are used:

γαβ = diag(1,1,1). (2.12)

Here we employ the convenient expression diag(1,1,1) for the 3× 3 matrice where
the diagonal components γ11, γ22, γ33 are equal to 1 and all other components are
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zero. For such a metric tensor the distance element in the embedding space E3 has
the Pythagorean form

dl2 = dx2 + dy2 + dz2. (2.13)

In another coordinate system the metric tensor and the distance element will have
a different form. For example, in the spherical coordinates of the system Ksph with
{xα} = {R,θ,φ} the metric tensor is

γαβ = diag(1,R2,R2 sin2 θ). (2.14)

Hence the distance element will be

dl2 = dR2 +R2dθ2 +R2 sin2 θdφ2. (2.15)

Basic Geometrical Measurements in E3 From the metric tensor one can cal-
culate the metric distance between two fixed points in 3D space, and the result is
independent of the choice of the coordinate system. For instance, the distance be-
tween the origin O and the point A is derived to be

lOA =
∫ A

O

dl =
∫ RA

0
dR =RA =

√
x2
A + y2

A + z2
A. (2.16)

Though the end result is trivial, this calculation illustrates how in the step from
the integral of dl (valid in any coordinate system) to the integral of dR one has
chosen the spherical system and hence the distance element (2.15). This coordinate
system is convenient, because R varies along the straight line connecting the points
O and A, and the other coordinates θ and φ remain constant, hence the differentials
dθ = dφ = 0. The metric distance lOA thus calculated is indeed the shortest distance
between O and A, because the geodesic curve in Euclidean space is a straight line.

We intentionally describe applications of the metric tensor for the simple Eu-
clidean space. This helps one to grasp the role that the metric tensor has in curved
spaces. Also, Euclidean geometry is the basis for the study of the local universe
and the standard with which to compare observations from the deep universe where
curved space may become measurable.

Several other familiar geometrical properties of E3 can be rigorously derived
from the fundamental metric tensor γαβ . The sum � of the angles a, b, c of a trian-
gle, the length lcirc of the circumference of a circle of radius R, and the surface area
Asph of a sphere of radius R are, respectively,

� = a + b+ c= π, lcirc = 2πR, Asph = 4πR2. (2.17)

The volume element for the metric tensor γαβ having the determinant γ is

dV =√γ dx1dx2dx3 = dxdydz=R2 sin θdRdθdφ. (2.18)

It gives the volume Vsph of a sphere of radius R as Vsph = (4π/3)R3.
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2.4.2 Metric Tensor and Distance Element in S2

Assume that the surveyor within his 2D spherical space is located at the “North
Pole” P of the sphere that also belongs to the 3D embedding Euclidean space. P is
the point where the Z-axis intersects the sphere, and it is the origin of the internal
coordinate system Kint.

Distance in Spherical (External) Coordinates A sphere is defined in the spheri-
cal coordinates Ksph simply by the equation R = constant. In Cartesian coordinates
Kcart this becomes

x2 + y2 + z2 =R2, (2.19)

where x, y, z are the orthogonal coordinates, or the lengths of the projections of the
radius vector 	R = {xα} = {x, y, z}.

Because the sphere is a 2D manifold, any position P on it is given by two inde-
pendent variables. The metric tensor and the distance element of this sphere can be
expressed by these very coordinates.

By differentiating (2.19) we express the differential of z as dz = −(xdx +
ydy)/

√
R2 − x2 − y2. This allows us to eliminate z from the distance element of

the embedding space dl2 = dx2+dy2+dz2, and we may write the distance element
on the sphere in the Cartesian coordinates of E3 as

dl2 = dx2 + dy2 + (xdx + ydy)2

R2 − (x2 + y2)
. (2.20)

This form utilizes external Cartesian coordinates only. The following step is to ex-
press dl in the other two coordinate systems in E3, and then to link these “external
forms” to the internal coordinate system.

Distance in Cylindrical (External) Coordinates Recognizing that x2 + y2 =
ρ2 and using the azimuthal angle φ one may transform the distance element in
Cartesian coordinates (2.13) into another form in cylindrical coordinates Kcyl:

dl2 = dρ2

1− ρ2

R2

+ ρ2dφ2. (2.21)

Here R is the radius of the sphere in the embedding space E3. For these coordinates
xα = (ρ,φ) the metric tensor is

γαβ = diag

(
1

1− ρ2

R2

, ρ2
)
. (2.22)

In the spherical coordinate system Ksph one may express ρ using R and θ as ρ =
R sin θ . Then the distance element is

dl2 =R2dθ2 +R2 sin2 θdφ2, (2.23)
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where the range of θ is [0,π] and that of φ is [0,2π]. In this case

γαβ = diag(R2,R2 sin2 θ). (2.24)

Distance in Internal Coordinates These expressions for the distance element dl
(2.20, (2.21), (2.23) and the metric tensor γαβ (2.22), (2.24) employ the embedding
Euclidean space and are quite inconvenient for the practical 2D surveyor. There-
fore, it is time to show how these geometrical quantities are related to the internal
coordinate system Kint. The internal system is simply related to the spherical and
cylindrical systems:

u=Rθ =R arcsin
ρ

R
�= φ. (2.25)

The surveyor, who naturally uses the internal (u,�) system, will find that the dis-
tance element has the following form:

dl2 = du2 +R2 sin2 u

R
d�2 (2.26)

hence the fundamental metric tensor of the 2D spherical space is expressed in the
surveyor’s (u,�) coordinates as

γαβ = diag

(
1,R2 sin2 u

R

)
. (2.27)

These expressions written in internal coordinates contain the external radius R.
This is interesting: in principle, the surveyor can recognize that the world has a non-
Euclidean geometry and a finite area (2D volume). The radius R can be found from
measurements of a circle (see below).

From our external viewpoint the rope that the surveyor uses for distance measure-
ments is an inseparable part of his universe and cannot be straightened through the
external space. In mathematical language this means that in order to find the metric
distance on the sphere we must use the distance element in some of its “external”
forms (Eqs. (2.20), (2.21), (2.23)).

A simple example is the metric distance uA between the pole P , which is the origin of the
internal coordinate system, and the point A:

uA =
∫ A

P
dl =

∫ ρA

0

dρ√
1− (ρ/R)2︸ ︷︷ ︸
Kcyl

=R arcsin
ρA

R
=
∫ θA

0
Rdθ

︸ ︷︷ ︸
Ksph

=R�A. (2.28)

This calculation shows that the metric distance does not depend on the chosen coordinate
system (Kcyl or Ksph). The internal surveyor uses his rope to determine the metric distance
uA, the length along a great circle of the sphere.
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2.4.3 Basic Geometrical Properties of S2

The Gaussian curvature K of the spherical space is determined by the radius R of
the sphere in E3. A celebrated formula derived by Carl Friedrich Gauss expresses
the (scalar) curvature K via the fundamental metric tensor. It yields in the present
case the constant value

K = 1/R2. (2.29)

Hence, S2 is a Riemannian space of constant positive curvature.

Geometrical Measurements in S2 In a triangle ABC, whose sides are parts of
three great circles, the sum of the angles a, b, c was found by Gauss to be

� = a + b+ c= π +K × σ, (2.30)

where K is the curvature of the sphere and σ is the area of the triangle.
The length lcirc of the circumference of a circle of radius u is

lcirc =
∫ 2π

0
R sin θdφ = 2πR sin

u

R
. (2.31)

In this calculation we use external spherical coordinates and consider the circle with
its centre in the polar point P. The needed distance element is given by (2.23). For
the chosen circle the coordinate θ is constant, i.e. dθ = 0, and the integration over
φ yields 2π . For the last step we recall that u= θR. Note that here we compare the
internal length u in cm with the external length R in the same centimetres.

It is useful to write out the first two terms of the Taylor series of sinus, in order
to see how the length lcirc differs from the Euclidean circumference:

lcirc = 2πu

[
1− 1

6

(
u

R

)2

+ · · ·
]
. (2.32)

When u
R, the small relative deflection from Euclidean is �l
l
≈− 1

6
u2

R2 .

The 2D volume element dA of the spherical space S2 with the determinant γ of
the metric tensor (2.27) is

dA=√γ dx1dx2 =R sin
u

R
dudφ. (2.33)

Then the 2D volume Acirc of the circle of radius u is obtained as

Acirc =
∫ 2π

0

∫ u

0
dA= 2πR2

(
1− cos

u

R

)
= πu2

[
1− 1

12

(
u

R

)2

+ · · ·
]
. (2.34)

The 2D volume as measured by the internal surveyor is the area of the polar cap as
seen by the external observer. When the surveyor makes only local measurements
(u
 R), the volume is close to the area of a circle of the same radius in Euclidean
plane. The total volume of space is finite, in fact (2.34) tells that it equals 4πR2,
simply the area of a sphere in E3.
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2.5 Physical Measurements in Spherical and Lobachevskij
Spaces

Before going to the 3D curved spaces on which the expanding Friedmann models
are based in Chap. 7, we inspect how the imagined surveyor will make observations
from his fixed position at the point P .

2.5.1 Angular Sizes, Fluxes, and Number Counts in S2

Consider a small rigid rod at the metric distance u from the surveyor. During its
motion in S2, the length of the rod does not change (“rigidity”).

Angular Size and Metric Distance Then what is the angular size of the rod, if
its length is dl = d and it lies perpendicularly to the line of sight?

The expression (2.26) for the distance element dl with du = 0, gives dl =
R sin u

R
d�. Note that d� is the difference of the �-coordinates of the ends of the

rod of length l = dl. It is the desired angular size α = d�:

α = d

R sin u
R

= d

uang
, (2.35)

where the angular size distance is denoted by uang and equals

uang =R sin
u

R
. (2.36)

When the metric distance u grows from 0 to its maximum value πR, the angular size
distance uang first increases from 0 to R, and then starts to decrease and becomes
0 when the metric distance is at its maximum (Fig. 2.4). This fictive construction
is made in order to have an analogy of the ordinary relation between angle and
distance. Simply, the angular size distance is by definition equal to the Euclidean
distance at which a rod in Euclidean plane would have the angular size that it actu-
ally is observed to have in S2.

Flux and Distance Suppose a distant “galaxy” at the point A in the spherical uni-
verse S2 (Fig. 2.3) emits “light” isotropically around it with the rate L [energy/time]
(its luminosity). In this 2D world the circle centered about A plays the role of a
sphere in E3. Define the flux of the light flowing through the circle with radius u

as the energy per time unit per length unit (cf. unit of area in E3). Then the flux
observed at the point A is

F = L

lcirc
= L

2πR sin u
R

= L

2πulum
. (2.37)
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Fig. 2.4 Angular size–metric
distance relation in different
2D spaces

Here appears the luminosity distance ulum. It is such Euclidean metric distance at
which the galaxy in Euclidean plane would produce the flux that is actually mea-
sured at P in S2. Note that in the 2D spherical universe the angular size distance =
the luminosity distance. This is valid also in other regular static spaces, both 2D and
3D, but not in expanding spaces such as used in the Friedmann model (Chap. 7).5

Counts of Galaxies in S2 Suppose that S2 is filled by some objects and their
number density around the observer is n(u). Then the total number N(u) of these
objects within the radius u (metric distance) grows according to a definite number-
radius relation. To calculate N(u), one must integrate the number density over the
volume element dA of S2 (Eq. (2.33)):

N(u)=
∫ 2π

0

∫ u

0
n(u)dA. (2.38)

If the objects are uniformly distributed, i.e. n(u)= n0, then:

N(u)= 2πR2
(

1− cos
u

R

)
no.

As the spherical space has a finite “volume”, the total number of these objects is
finite, too, and is equal to 4πR2n0.

5Traditionally cosmologists speak about “luminosity distance”. It might be more logical to term it
“flux distance”, emphasizing the observed quantity flux instead of the not directly observed lumi-
nosity. On the other hand, “luminosity” refers to the essential assumption that the object radiates
isotropically with the rate L. With the angular size distance the analogous assumption is that the
rod is always viewed perpendicularly.
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2.5.2 Measurements in 2D Lobachevskij Space

We have devoted much attention to the simple 2D space with positive constant cur-
vature S2. The other homogeneous and isotropic 2D space is the Lobachevskij space
L2 (or the hyperbolic space). It is an infinite surface with negative constant curva-
ture. However, this surface cannot be embedded as a whole in 3D Euclidean space.
One could actually “see” only small local regions of L2 which remind one of a
saddle. The negative curvature can be expressed in terms of the curvature radius as

K =−1/R2.

This and other basic geometrical properties of L2 are obtained from the correspond-
ing formulae of S2 by making everywhere the replacements6

R =⇒ iR, sin θ =⇒ sinhχ.

That is why it is sometimes said that the Lobachevskij space is a pseudospherical
space with imaginary radius. Certainly, it is difficult to imagine. Fortunately, its
mathematics is as simple as in S2. For example, the distance element for L2 in
cylindrical coordinates is

dl2 = dρ2

1+ ρ2

R2

+ ρ2dφ2, (2.39)

where the polar radius ρ can have values from zero to infinity. Another form of dl
is obtained by substituting ρ =R sinhχ into Eq. (2.39). Then

dl2 =R2dχ2 +R2 sinh2 χdφ2. (2.40)

In the internal coordinates (u,�) of a surveyer in L2 the line element is

dl2 = du2 +R2 sinh2 u

R
d�2, (2.41)

where u= Rχ , hence the fundamental metric tensor of the Lobachevskij 2D space
is expressed in internal polar coordinates as

γαβ = diag

(
1,R2 sinh2 u

R

)
. (2.42)

The radius R refers to the pseudosphere in the external Euclidean space.
The sum of the angles of a triangle in L2 always fall shy of the Euclidean value

π and the larger the triangle, the smaller the sum:

� = a + b+ c= π −K × area. (2.43)

6We recall the hyperbolic functions: sinhx = (ex − e−x)/2, coshx = (ex + e−x)/2.
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The length of the circumsphere of a circle with radius u is given by

lcirc = 2πR sinh
u

R
.

The angular size–distance relation for the observer in L2 is

α = d

R sinh u
R

= d

uang
.

This formula shows that the angular size of a “galaxy” in L2 monotonously de-
creases with increasing metric distance. Hence, different spaces E2, S2, and L2 are
characterized by clear differences in the behaviour of the angular size of a standard
rod viewed at different metric distances (Fig. 2.3).

The volume of L2 is infinite, as may be seen from the volume up to u:

V (u)= 2πR2
(

cosh
u

R

)
− 1.

The fact that the volume (area) increases quicker than in the Euclidean plane may
help one to understand why L2 cannot be embedded as a whole in E3—there is not
enough space!

2.5.3 The Step to Three-Dimensional Curved Spaces

Before going to 3D spaces, we fix a convenient unified notation for the 2D spaces
with constant curvature. This notation is easily transferred to the regular 3D spaces
of modern cosmology.

Unified Notation for E2, S2, and L2 First, the curvature K is simply

K = k

R2
. (2.44)

The curvature constant k is 1, 0, or −1 (for S2, E2, and L2, respectively). R is
the radius of curvature of the space in question. Now consider the dimensionless
variable χ expressing the internal coordinate u relative to R:

χ = u

R
.

Then the polar radius is

ρ =Ra(χ),
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where a(χ) is a new variable:

a(χ)=
⎧⎨
⎩

sinχ, for k =+1, χ ∈ [0,π],
χ, for k = 0, χ ∈ [0,∞],
sinhχ, for k =−1, χ ∈ [0,∞].

(2.45)

The differential of a(χ) is then given by the simple formula da(χ) =√
1− ka2(χ)dχ . The distance element for all three spaces now becomes

dl2 =R2(dχ2 + a2(χ)dφ2) (2.46)

and the fundamental metric tensor and the volume element are

γαβ = diag(R2,R2a2(χ)), dA=Ra(χ)dχdφ.

Spaces E3, S3, and L3 The line element of homogeneous and isotropic 3D
spaces is often written as follows:

ds2 =R2(dχ2 + Ik(χ)
2(dθ2 + sin2 θdφ2)). (2.47)

χ, θ,φ are the spherical coordinates and Ik(χ)= sin(χ),χ, sinh(χ) correspond to
the curvature constants k =+1,0,−1, respectively. The fundamental metric tensor
is

γαβ = diag(R2,R2I 2
k (χ),R

2I 2
k (χ) sin2 θ). (2.48)

Note the similarity of this 3D line element to the internal line element of the 2D
regular spaces, Eq. (2.46). It is also internal in the sense that all three coordinates
( χ, θ,φ) are measured entirely within the 3D space.

Another form of the metric can be written in “cylindrical coordinates”:

ds2 =R2
(

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
. (2.49)

Now the coordinate r is not internal—Rr may be interpreted as the angular size
distance. Integrating over ds from the observer to the point in question at r , the
metric distance u and this coordinate distance r become related as u = R sin−1 r ,
Rr , and R sinh−1 r , for k = 1, 0, and −1, respectively.

2.6 Practical Geometry

If one asks a mathematician: what is geometry?, the reply may be unexpected, but
instructive. So Veblen and Whitehead (1932) wrote: a part of mathematics is called
geometry because a sufficient number of competent people think “on emotional and
traditional grounds” that it is a good name.
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This simply means that for mathematics itself it is not interesting how geometri-
cal concepts relate to real space. However, for physics this is central. Working with
abstract things, mathematical space cannot be a fully adequate picture of real physi-
cal space. Mathematical concepts coordinate, distance, and curvature are not equiv-
alent to their physical counterparts. A “singularity” and the break-down of physical
laws in it may only mean the inadequacy of the mathematical scheme leading to the
singularity.

2.6.1 Geometry and Physics

Two opposite views on geometry and physics were put forward by Poincaré (1902)
and Einstein (1921) when writing about the philosophy of science.

Poincaré vs. Einstein For Poincaré, geometry does not deal with real things:
its notions belong to an ideal world. Only geometry together with physics, the
geometry-physics unity, is open to empirical study. One may first choose geome-
try arbitrarily and then find the rest of the unity, physical laws, so that these will not
contradict experiments. Or one may go other way round, to start from physical laws
and find the geometry. Poincaré thought that it is preferable to leave the simplest
Euclidean geometry intact and to change the physical laws. Modern physics gives
another good reason not to forget flat geometry: the energy-momentum conserva-
tion laws directly follow from the maximal symmetry of Euclidean and Minkowski
spaces (Noether’s theorem).

Einstein’s practical geometry assumes that geometry can be the subject of em-
pirical study. The question whether the geometry of the universe is Euclidean or
not has a clear meaning and may be answered by experience. Hence it is natural
to formulate physical laws within Riemann’s geometry. This is the way of general
relativity.

Experiment is the final court in physics, and if the predictions for all experi-
ments are identical, then both ways finally lead to the same geometry-physics unity.
However, if predictions differ, crucial tests are required. General relativity and field
gravity are modern examples (Chaps. 5 and 6).

Embedding Space In mathematics, a geometry of space may be built without
assuming any embedding high-dimensional space (that is why one speaks about the
internal geometry of curved spaces). In physics the concept of embedding space
makes sense and deserves to be studied. In fact, the expression of the distance el-
ement requires that the internal distance u and the external radius R be measured
in the same units. Thus the external standard of length in E3 as if induces the unit
in spherical space.7 For instance, local lengths may be expressed in terms of the ra-
dius of curvature. Apparently having this in mind, in a 1824 letter to German scholar

7How numbers and physical quantities with units differ was extensively discussed by physicist
Bridgman (1936) and mathematicians Menger (1959) and Whitney (1968).
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Taurinus, Gauss wrote I sometimes joke that it would be good, if Euclidean geometry
were not true, because then we would have a priori absolute measure of length. . .

In flat (Euclidean) space the radius of curvature is infinite and does not determine
any absolute unit common with that of the embedding space. But another property
is now related to the definition of the rigid length unit: Euclidean space is self-
similar on all scales (congruency), and there is no preferred length which could be
chosen as the unit. So, in S2 one may determine the absolute size of a triangle by
measuring the sum of its angles, but in E2 all triangles have a + b + c = π—by
looking at a triangle you cannot tell its size. One might surmise that a true scale-
invariant fractal could exist only in Euclidean space, if one requires that the scale
cannot be determined from the geometrical appearance of the fractal.

2.6.2 Measuring the Curvature

Non-Euclidean geometries—as mathematical models—do not contain internal con-
tradictions. Hence, real space might be non-Euclidean (already Lobachevskij and
Gauss made attempts to measure space curvature). Such an experimental approach
probes the link between physics and geometry: is the curvature measurable, when
one uses real units and procedures of length measurement? “If space curvature is
real, it must make a difference in something we can measure” (Sandage 1992).

Rigid Sticks and Curvature The 2D beings of a spherical universe could walk
around their world with a number of steps and establish its finite size. Locally, they
could also measure the curvature R, e.g., using the angular excess formula. In anal-
ogy, such a measurement could be made also in our 3D world. However, the pos-
sibility to measure the curvature depends on a crucial assumption: There should be
in curved space a length unit that can in principle be transferred from one place to
another without changing it.

How to define a rigid rod in curved space is not obvious. In Euclidean space the
ends of a free rigid rod draw parallel straight lines (geodesic curves of E3), and there
are no tensions between the internal parts of the rod, all moving along geodesics.
So it is possible to imagine the rod made from independent, freely moving material
points. In fact, one can also understand the unit length as the distance between two
freely moving particles that were put into motion with equal velocities, e.g., perpen-
dicularly to the line through them. In this way the length unit may be transferred
into any point in space. Such a “soft” (free motion) standard gives the same results
of measurement as an “absolutely hard” (rigid) stick. Indeed, the rigid stick is some-
thing that resists all forces trying to change the distance between its end points when
it moves in space.

Things are different in curved space. There the Euclidean straight lines are re-
placed by geodesics, the shortest routes connecting two points. Then the two pro-
cedures (rigid stick, free motion) give different results. If one has the intuitively
appealing rigid meter, its end points do not move along geodesic curves. Then the
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measurement of curvature is possible and its radius may be expressed in terms of
the rigid meter. Or vice versa, lengths may be given with the fundamental radius of
curvature as a unit.

2.6.3 The Deeper Value of Practical Geometry

The usual approach to curved space in physics has adopted the procedure, where
the rigid meterstick ignores the geodesics of physical space. Thus distance measure-
ment in astronomy has special significance beyond just knowing “how far away” a
star or a galaxy is (needed for all that complicated astrophysics): it also probes our
fundamental concepts of practical geometry and tests the validity of the rigid body
hypothesis in our attempts to infer the curvature of space via non-local observations.

In this chapter we have briefly discussed some cosmic distance indicators and
different kinds of distances which naturally arise in practice, notably angular size
and luminosity distances. When one makes first steps in Euclidean space, indicators
of different distance types are expected to give identical results. This is what hap-
pens, say, in the local galaxy universe within 100–200 Mpc where the Tully-Fisher
relation both in the size and magnitude mode gives similar values for the Hubble
constant.

In deep space, which means distances of the order of ∼ 1000 Mpc and more, it
is expected that different distance types start to diverge and only a good cosmolog-
ical model will correctly link the distances to the underlying metric distance. We
will see in later chapters how this happens with the Friedmann model. Above we
have illustrated theoretical counterparts of practical distances in metric spaces using
simple 2D spaces.



Chapter 3
Cosmic Distances and Selection Biases

Our ability to travel in space is badly limited. This is much felt in the process of
extending distance measurements into deep space. Paul Hodge (1981) once began
his review: “The determination of the extragalactic distance scale, like so many
problems that occupy astronomers’ attention, is essentially an impossible task”. In
fact, he was quite optimistic, and how else, the life is full of impossible things that
nevertheless have been done.

Various types of Gregory’s standard candles are still the main method to measure
extragalactic distances, and also used in cosmological tests. One should be aware
of fundamental difficulties accompanying this method. Here we give an overview
of problems appearing in distance determination, when the astronomer works, as
usually, with samples gathered from the sky (magnitude-limited), instead of samples
obtained unrestricted from space.

3.1 Errors and Biases

All determinations of a physical quantity, including a cosmic distance, contain some
error. In fact, one may speak about (1) random errors, (2) systematic errors, and
(3) crude errors. A supposed distance indicator may be simply erroneous, leading
to crude errors, an example being Hubble’s brightest stars in galaxies, which were
actually HII regions. Evolution of standard candles or their classes may cause sys-
tematic errors. And even if there were no inherent differences in the objects in dif-
ferent places and epochs, a sample of the observed objects may be much deformed
by selection effects, leading to systematic errors in the inferred average distances.

Random peculiar velocities change the redshift from its ideal cosmological value,
and generally these motions are not known for any individual galaxy. This adds
always some error to the redshift distance.

Sometimes the method is sensitive to a factor whose effect must be modelled.
Thus when using the time delay in gravitational lenses to derive the Hubble constant,
one has to use a model for the mass distribution of the lensing galaxy. It also happens
that a distance indicator may be made better when one notes the influence of an extra
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factor. For instance, the peak luminosity of the supernovae SN Ia is correlated with
the decay rate of their light curves. Before such effects are known, they may give
rise to errors that are not simply random, but systematic and distance-dependent.

Naturally, astronomer wants to see some measurable effect indicating the dis-
tance. Even if the observations are too inaccurate something is often seen and this is
taken as a distance effect—usually leading to an underestimate.

An early example is the derivation of the Sun’s distance by Aristarchus (310–230 B.C.).
He knew that when the Moon appears exactly half full, then the Earth, the Moon and the
Sun form a right-angled triangle with 90° at the Moon. He took the Moon–Sun angle to
be 87 degrees and proved from the triangle that the ratio of the Sun’s and the Moon’s
distances is between 18 and 20. In fact, the Moon–Sun angle in the half moon triangle
is so close to 90 degrees (89.85°) that it was impossible to measure it and Aristarchus
actually derived a lower limit to the Sun’s distance. The use of standard candles can also
be seen as a search for a measurable effect at a large distance. Something is seen, thought
to be an “average standard candle”, but which actually is an overluminous object.

3.1.1 The Concept of Bias

In mathematical statistics an estimator is some function of the sample, and in prac-
tice it is often the mean value of some parameters related to the members of the
sample. An unbiased estimator μ̂ is such whose expected (mean) value is equal to
the true value μ of the variable estimated: E(μ̂ | μ)= μ. Then the bias B(μ) is the
estimated minus the true value B(μ)=E(μ̂ | μ)−μ. In astronomy “bias” refers in
a wider sense to situations resulting in a systematic error when one is working with
observational data.

Different Ways of Speaking About Bias Sometimes the emphasis is how a sam-
ple is used for estimating something, sometimes one has in mind a selection effect
deforming the sample. So, Smith (2003) speaks about (1) the truncation bias, (2) the
modelling bias, and (3) the transformation bias. Of these the truncation bias “results
from truncation of a sample according to a limit or limits on the observables when
the latter are subject to random errors of measurement”. The modelling bias arises
from an incorrect model fitted to the data and the transformation bias results from a
non-linearity, when one goes from a directly measured quantity with its associated
error to some other quantity (say, from the distance modulus to the distance).

An example of the transformation bias appears with the log Hubble ratio. If the error in
logH has a Gaussian distribution with the dispersion σ , (as may be expected if the error
in the distance modulus is Gaussian), the calculated mean 〈logH 〉 gives the expectation
of logH . But the expectation of the usually desired quantity H is not H1 = 10〈logH 〉, but

H1e
(ln 10σ)2/2.

Lutz and Kelker (1973) discussed distances derived from trigonometric parallaxes.
Assume that the parallaxes have been measured for a sample of stars and the mea-
suring accuracy can be described as a Gaussian error law with dispersion σπ . If
one considers those stars for which the measured parallax is πo, some of these have
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larger true parallaxes and some have smaller true parallaxes. Roughly speaking,
there are more true parallaxes π available with π < πo than with π > πo, so that the
average true parallax for stars with observed parallax πo is smaller than πo. In other
words, the average distance becomes underestimated due to this truncation bias.

Pfleiderer (1983) links the bias to the incompleteness of a sample, as “a data set
has no bias or selection per se. It comes in only if it is compared to a hypothetical
set filling some parameter domain completely, or if it is used as input for statistics
or some other kind of conclusion”. That is why one often speaks about a selection
bias, which has affected the constitution of a sample—its properties and the wishes
of the analyst do not always meet.

3.1.2 Observational Samples

The raw material of astronomy is often a magnitude-limited (ml) sample collected
from an area in the sky, and containing all objects of the desired type brighter than
a limiting magnitude ml (in a certain wavelength band).

Magnitude- and Volume-Limited Samples The apparent magnitudes in the
original ml-sample may have to be corrected for various effects and the resulting
sample is generally no longer strictly ml-limited. This is relevant when it is good
to have a sharp magnitude limit, e.g., for making volume-limited (vl) samples. Ide-
ally, a vl-sample contains all objects within a given (corrected) absolute magnitude
interval and within a distance range.

We define an effective limiting magnitude meff
lim for a subsample with a correction

A as meff
lim =mlim−A. Consider an extinction correction A. For unobscured objects

with absolute magnitude M , a sample with the magnitude limit mlim is complete up
to the true distance modulus mlim −M . However, for objects needing the correc-
tion A, the sample is complete only up to meff

lim −M . So, be careful with corrected
samples—each fixed correction A defines subsamples having their own effective
magnitude limit.

Fundamental Equation of Stellar Statistics When looking at the sky, we at first
see nothing but a distribution of apparent magnitudes a(m), giving the number of
stars within a narrow “magnitude window” m± 1

2dm. With further information, this
distribution may be determined separately for different kinds of stars, for instance
according to the spectral type. How is this fundamental observation related to the
distribution of stars in space? Obviously important is the number density ρ(r) at
distance r from us. Also, a(m) depends on the luminosity function φ(M), which
gives the probability of finding a star with absolute magnitude M ± 1

2dM , in a
volume of space.

The number of objects with apparent magnitudes between m and m + dm and
lying in a spherical layer (r , r + dr) within a solid angle ω is

N (m, r) dmdr = ωφ (M)ρr2dmdr. (3.1)
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As M(m, r)=m− 5 lg r/10 pc, averaging over r yields the distribution

a (m)= ω

∫ ∞

0
φ (M)ρr2dr. (3.2)

This fundamental equation of stellar statistics for Euclidean transparent space was
derived by Hugo von Seeliger (1849–1924) (von der Pahlen 1937).

A simple, but important case is when the radial distribution ρ(r) is a power-
law ρ(r)= krα . When α = 0, this represents the uniform spatial distribution, while
various fractal distributions would be given with −3 < α < 0 (the fractal dimension
D = α + 3). Substituting ρ(r) into (3.2) gives

a(m)= const× 100.2(3+α)m. (3.3)

The functional form of a(m) does not depend on the luminosity function φ(M), at
least in the ideal case where φ(M) contributes to the integral at each r (from 0 to
∞).

Number of Objects at Different Distances It may be useful to know how the
objects in a magnitude limited sample are distributed at different distances. By inte-
grating Eq. (3.1) the desired number for each r becomes

N (r)= ω

∫ ml

−∞
φ (M)ρ(r)r2dm. (3.4)

The distribution N(r) depends essentially on the luminosity function φ(M) of
the objects considered. For the overall description of galaxies (all types together),
Schechter (1976) proposed the function which is now often used:

�(M)dM = const× 10−0.4(α+1)Me−100.4(M∗−M)

dM. (3.5)

The standard values of the parameters are α = 1.25, M∗ = −19.5+ 5 logh.

The Eddington Bias At this point it is good to discuss a bias named after Ed-
dington (1913, 1940). He posed the question: if the observed distribution function
of quantities X with measured values x is E(x), what is the true distribution of
errorless quantities T (x), when the errors of measurement ε have a Gaussian dis-
tribution with dispersion σ ? He derived the following general relation between the
two distributions:

T (x)=E(x)− 1

2
σ 2d2E(x)/dx2 + 1

2

(
1

2
σ 2
)2

d4E(x)/dx4 − · · · . (3.6)

Such an inverse problem, inferring the true distribution from the observed one, has
in its general form special mathematical difficulties. In practice, when we con-
sider number counts of magnitudes, it is convenient to inspect the case E(m) =



3.2 The Classical Malmquist Bias 51

Nobs(m)= keβm. Then the errorless count is N(m)≈Nobs(m)e− 1
2σ

2β2
. Transform-

ing to the usual presentation Nobs(m)= k′10αm one obtains a link between the ob-
served and the true counts:

logN(m)= logNobs(m)− 1

2
σ 2α2/ log e. (3.7)

When the dispersion σ is constant, this formula shows that on a logN(m) vs. m
diagram a linear counts curve with α > 0 will shift upwards, preserving its slope.
Then the slope α can be directly obtained from the counts. Vice versa, one may pre-
dict the observed counts from a theoretical law. This approach is especially useful
in the realistic case when the accuracy of the measured magnitude depends on m. If
σ increases with m, the slope of the number counts becomes steeper than the true
one (Teerikorpi 2004).

One sometimes reads that the Eddington bias is important only close to the
magnitude limit. Actually it operates at all magnitudes. Its cousin, the classical
Malmquist bias, also works at all magnitudes. And a main result of Lutz and Kelker
(1973) was that the bias in stellar parallaxes occurs at all parallaxes. Sometimes
it is also said that the Eddington bias is due to the increase of the distribution to-
wards faint magnitudes. Indeed, the bias vanishes when the measured distribution
is constant (Eq. (3.6)). But it also vanishes for a linearly increasing (or decreas-
ing) distribution, because then the second (and further) derivatives are zero (i.e. the
convolution of a linear function with a symmetric Gaussian does not change the
function).

The galaxies at a fixed measured magnitude originate either from brighter or fainter true
magnitudes, due to the symmetric error distribution. Galaxies originally at m± 1

2dm are
lost equally to the right and left. If the distribution is constant, it is clear that “incomers”
from the right and the left compensate for those losses. But also if the distribution is linear
(and increasing to the right), the smaller number of incomers from the left are exactly
compensated by the larger number from the right—their sum is the same as the loss.

3.2 The Classical Malmquist Bias

Distant celestial bodies are observed, e.g., as traces recorded by a photographic plate
or a CCD detector. Fortunately, luminous objects exist which may be seen from
very far. This diversity in the cosmic zoo allows us to reach deep space, making
cosmology possible. But it also involves problems, because we gather the objects
from the sky, not from space.

Firstly, from large distances only very luminous objects are detectable, and we
usually do not know how much the objects differ from the average one: there are
no genuine Gregory’s standard candles. Secondly, objects in the sky which are ap-
parently similar (the same distance modulus!), have actually a complicated distri-
bution of true distances. Distances larger than suggested by the distance modulus,
are favoured because of the volume (r2dr) effect. Thirdly, at large distances there is
more space than within short distances around our position. Luminous galaxies are
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found throughout the cone, whereas dwarf galaxies concentrate into a small volume
close to the vertex, as we simply cannot see those at large distance.

Very luminous objects are rare, so are not found in our vicinity. We perhaps see
such objects that as a class might be useful distance indicators, but cannot calibrate
them, which requires a distance ladder to reach a few of such objects. For instance,
even if one could find standard candles among luminous quasars (Teerikorpi 2000),
there is no known method to derive their distances independently of redshift (except,
perhaps, assuming that they are radiating at the Eddington limit; Teerikorpi 2011).

When one uses “standard candles” (or “rods”), systematic errors related to the
above problems creep into the distance estimates. The concepts of the different kinds
of such biases are rather simple, though subtle.

3.2.1 A Unified Treatment of the Malmquist Bias

Following Butkevich et al. (2005), it is useful to consider two types of bias in a
simple uniform manner. The first bias was discussed by Gunnar Malmquist (1920,
1922) and the second one has been studied more recently in connection with extra-
galactic distance estimates.

The Malmquist bias, �〈M〉, may be defined as the difference between an av-
erage absolute magnitude, 〈M〉, calculated in some way in a sample, and the true
mean, M0, for objects of the same class. Averaging over an entire sample gives
the integral bias. Since, in absence of light extinction, an absolute magnitude is
uniquely derived from an apparent magnitude and a distance, we can average over
any of these variables keeping the other fixed. The result is a differential bias, either
magnitude-dependent, when the mean is for the stars of a fixed apparent magnitude,
or distance-dependent, when the averaging is done over the stars at the same true
distance.

We derive here the Malmquist bias formulae in a few steps, considering both
differential biases, and making the following assumptions:

1. There is no interstellar absorption.
2. The luminosity function φ(M) is independent of the distance r .
3. For any area in the sky, the spatial density of stars ρ depends only on distance.
4. At each m, the selection of a star into the sample does not depend on distance,

but only on m (needed for the magnitude-dependent bias).
5. Completeness to a limiting magnitude mlim (the distance dependent bias).

Basic Relations Averaging over m in (3.1) gives the fraction of stars that are
brighter than mlim and reside at the same distance r :

ψ (mlim, r)=
∫ mlim

−∞
φ (M)dm. (3.8)
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From the 5th assumption, at a distance r the absolute magnitude limit is Mlim =
mlim − 5 lg r

10 pc . Then we get the expression for ψ in terms of Mlim:

ψ (Mlim)=
∫ Mlim

−∞
φ (M)dM. (3.9)

Now we can calculate two mean values of absolute magnitude. Averaging over
distances, the mean M for stars of a given apparent magnitude m is

〈M〉ma (m)= ω

∫ ∞

0
Mφ (M)ρr2dr. (3.10)

Integration over m (i.e. over M) gives the mean for stars at a distance r

〈M〉rψ (Mlim)=
∫ Mlim

−∞
Mφ (M)dM. (3.11)

Gaussian Luminosity Function The above equations are valid for any lumi-
nosity function and density. If φ obeys a Gaussian law with the mean M0 and the
dispersion σ , then the following is true: Mφ(M)=M0φ(M)− σ 2φ′(M). Inserting
this into (3.10) and taking (3.2) into account, we get

(〈M〉m −M0) a (m)=−σ 2
∫ ∞

0
φ′ (M)ρr2dr (3.12)

and substituting it into (3.11) gives

(〈M〉r −M0)ψ (Mlim)=−σ 2
∫ Mlim

−∞
φ′ (M)dM. (3.13)

The integrals are simply related to the derivatives of a(m) and ψ(Mlim):

da (m)

dm
= ω

∫ ∞

0
φ′ (M)ρr2dr, (3.14)

∫ Mlim

−∞
φ′ (M)dM = φ (Mlim)= dψ (Mlim)

dMlim
. (3.15)

Substituting (3.14) and (3.15) into (3.12) and (3.13), respectively, we finally get
the desired equations for the two Malmquist biases:

�〈M〉m =−σ 2 d lna (m)

dm
(magnitude dependent), (3.16)

�〈M〉r =−σ 2 d lnψ (Mlim)

dMlim
(distance dependent). (3.17)

Equation (3.16) is the classical Malmquist bias for the stars of a given apparent mag-
nitude (Eq. (17) in Malmquist 1922). The distance-dependent bias (3.17), which
Malmquist did not consider, is equivalent to the formula derived by Teerikorpi
(1975b) in a study of the Hubble law.
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Spatial Distribution and Completeness An anisotropy in number density does
not affect the final relations, because one may replace ρ by a mean ρ(r). In fact, the
distance-dependent bias does not depend on the density ρ at all.

Generally the magnitude-dependent bias may be a complicated function of m.
The term including the distribution of apparent magnitudes in (3.16) reduces to a
simple form for the power-law space density ρ(r)∝ rα :

〈M〉m =M0 − (3+ α)0.461σ 2. (3.18)

With α = 0, one obtains the celebrated Eddington-Mamlquist formula:

〈M〉m =M0 − 1.382σ 2. (3.19)

This relation, valid only for a uniform spatial distribution, was given already by
Eddington (1914). The essence of the bias (selection from the sky or in space) was
realized by Eddington in connection with a concrete problem (the reality of the
division into dwarf and giant stars). This has been often the case with discoveries
later generalized into wider applications.

Finally, we note that the bias at constant m (seen through the narrow window
m± 1

2dm) does not depend on the magnitude completeness at m, if the selection of
the sample only depends on the magnitude and on nothing else. We emphasize that
a(m) is the distribution that would be observed in the sky for a complete sample,
and the Malmquist bias is bound to occur, irrespective of whether we have or not
such a complete sample at hand!

3.2.2 Two Kinds of Biases in Distance Determination

Eddington (1914) and Malmquist (1920, 1922) studied the difference between the
derived and the true mean absolute magnitude of a stellar class. Later this bias was
considered in the “inverse” problem of deriving distances for stars or galaxies as-
sumed to be members of a class with the average magnitude M0. The derived dis-
tance modulus for objects with apparent magnitude m 〈μder〉m and the true average
modulus 〈μtrue〉m

〈μder〉m =m−M0, 〈μtrue〉m =m− 〈M〉 (3.20)

differ by an amount given by the classical Malmquist bias �〈M〉m
〈μder〉m = 〈μtrue〉m +�〈M〉m. (3.21)

Behr (1951) noted, after comparing the width of the Local Group luminosity func-
tion to that of the field galaxies, that the standard candle method may lead to under-
estimated distances at large true distances. The idea was modelled by Scott (1957)
for the selection of clusters of galaxies. It was sort of reinvented by Sandage and
Tammann (1975) and Teerikorpi (1975a, 1975b), now in connection with field sam-
ples of luminosity classified spiral galaxies.
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Fig. 3.1 The significance of the two bias types for a standard candle schematically shown in
distance—magnitude diagrams. Note that if we identify the distance d with the redshift z, these
diagrams represent the Hubble diagram, viewed in two different ways

Type 1 and Type 2 Biases We refer to the mentioned problems as two types of
Malmquist biases (Teerikorpi 1997), the 1st type being intimately connected with
the magnitude-dependent bias treated by Malmquist. One may define these two as-
pects in distance determination:

• Type 1 bias is the systematic average error in the distance modulus μ for a class
of objects with derived μ= μder = const.

• Type 2 bias is the systematic error in the average derived 〈μder〉 for the class of
objects with true μ= μtrue = const.

With Type 1 bias one is interested in the distribution of true distance moduli, for a
fixed derived modulus, while Type 2 bias is related to the derived distance moduli,
at a given true distance. The objects of a standard candle class with the derived
modulus μ all have the same apparent magnitude m = μ+M0. From this we see
that the Type 1 bias has to do with the classical Malmquist bias. These two types
have a link to the Hubble diagram of a standard candle. For instance, at a fixed
redshift the average apparent magnitude deviates from the naively expected one by
the amount given by the Type 2 bias. Thus Teerikorpi (1993) separated the study of
the Hubble diagram into “distance against velocity” and “velocity against distance”
(see Fig. 3.1).

Malmquist Biases and Probability Hendry and Simmons (1994, 1995) have
formulated the distance estimation as a Bayesian inference problem. Indeed, one
may connect the two kinds of bias to the two approaches to probability. This also
touches the question arising when the sample contains only one member, i.e. the star
or galaxy whose distance is being measured. What is the best value of the distance
for that individual object?

Considering a standard candle, in the simplest case we have just its measured
magnitude m. One might wish to ascribe to it the distance modulus μ = m−M0,
with the error bars ±σ . Here we are just following the usual “frequentist approach”
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to probability, regarding that m−μ would have M0 as the limit of its average value
when distances are measured for many independent members of this same class at
the same true distance from us (and assuming that the magnitude limit is very faint).
This approach to μ would be justified if we were in the position of moving freely in
space, selecting randomly our targets from a large volume (from a spherical shell dr
around us). Adding a magnitude limit, while keeping the condition that the objects
are at a same true distance leads us directly to Type 2 bias.

In practice we stay “down here” and look for possible candidates through the
magnitude window m± 1

2dm. There is a whole distribution f (μ) of true distance
moduli μ that result in the apparent magnitude m when the presumed standard can-
dle has the absolute magnitude M =m−μ, instead of M0. Hence, to the uncertainty
due to the dispersion σM is here added the uncertainty about the true spatial distri-
bution. In this Bayesian situation the unknown distance modulus may be treated as a
random variable with a more or less known distribution. This distribution is subject
to modification upon acquisition of further information supplied by observational
data.

The Scott Effect Elizabeth Scott (1957) concluded that at a given distance, a
cluster with many members is more likely to be detected than a smaller cluster,
or if a very distant cluster is seen, then it must be unusual. Especially, the brightest
galaxies actually observed in the very distant clusters tend to be more luminous than
the brightest galaxies in nearby clusters, and hence, for distant clusters, the brightest
galaxy criterion leads to an underestimate of the distance. Scott used numerical
simulations and an analytical model to show that the selection is bound to affect
the Hubble z–m diagram for brightest cluster galaxies. She also pondered about
how to decide between a real and selection induced deviation from linearity in the
Hubble law: this may perhaps be solved by the accumulation of further data using
telescopes reaching fainter objects. Such adding-a-fainter-sample test was applied,
e.g., by Sandage (1988c).

3.2.3 The Behaviour of Biases for a Standard Candle

Let us consider a class of galaxies having a Gaussian luminosity function G(Mp,σ).
Such a class may be defined, e.g., via a fixed value of an observed parameter p, and
it is assumed that the volume-limited value of Mp has been calibrated. A sample
of these galaxies with apparent magnitudes measured up to some limit gives us a
collection of derived distance moduli μ=m−Mp .

Type 1 Bias The general Malmquist bias in distance moduli appears in the μtrue
versus μder diagram. Because the derived modulus is simply μder =m−M0, the x-
axis is practically the same as the m-axis, and an interval dμder is actually a narrow
magnitude-window m± 1

2dm. Looking through this window, the average systematic
error in the derived distance modulus is given by the type 1 bias: �〈μ〉 =�〈M〉m.
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Table 3.1 The shift �〈μ〉 for
different values of
A′ =Mlim −M0 and σM

σM 0.3 0.4 0.5 0.6 0.7

A′ −�〈μ〉

2.5 0.00 0.00 0.00 0.00 0.00

2.0 0.00 0.00 0.00 0.00 0.01

1.5 0.00 0.00 0.00 0.01 0.03

1.0 0.00 0.01 0.03 0.06 0.11

0.5 0.03 0.08 0.14 0.21 0.28

0.25 0.11 0.18 0.26 0.33 0.41

0.00 0.24 0.32 0.40 0.48 0.56

−0.25 0.41 0.49 0.57 0.65 0.73

−0.50 0.63 0.69 0.77 0.84 0.92

−1.00 1.09 1.13 1.18 1.25 1.32

−1.50 1.56 1.60 1.65 1.70 1.76

For a rα density law, the bias �〈μ〉 is constant, but generally the bias will depend
on μ (i.e. on m), via the term containing a(m) in the general Malmquist formula
(3.16).

As the bias is often rather constant, its presence may be difficult to prove by
studying how a parameter depends on the derived distance modulus. For example, in
the past the observation that the Hubble ratio (logV/rder = logV −0.2μder+const)
did not change with the derived modulus μder was sometimes taken, incorrectly, as
indicating the absence of the bias.

Type 2 Bias This distance-dependent effect has been discussed in extragalactic
astronomy, where the cosmological redshift allows one to assign relative distances
to galaxies. When one observes progressively more distant standard candles with
a dispersion σM , the distance modulus becomes more and more underestimated as
the magnitude limit cuts away objects fainter than Mlim = mlim − μtrue from the
Gaussian magnitude distribution (Fig. 3.1).

For a Gaussian luminosity function G(M0, σM) and a sharp magnitude limit, it
is straightforward to calculate the amount of the distance-dependent bias 〈μder〉 −
μtrue at each true distance modulus, due to the magnitude limit cutting galaxies
from the fainter wing of the luminosity function (Teerikorpi 1975b; Sandage 1994;
Butkevich et al. 2005; also Eq. (3.17) above). We use the parameter A = (Mlim −
M0)/2σM to express the position of the absolute limiting magnitude relative to the
true average M0. So at A = 0 the limit exactly halves the distribution. The bias
becomes

�〈μ〉 =
√

2

π
σM

e−A2

1+ erf(A)
, (3.22)

where erf is the error function erf(A)= 2√
π

∫ A
0 e−t2dt .
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Table 3.1 gives calculated values of the bias for different values of A′ = (Mlim−
M0) and σM . It shows that standard candles with different means M0, but the same
dispersion, sampled up to the same limiting magnitude have a characteristic bias
behaviour: for absolutely brighter classes the bias starts (or the same A′ is reached)
at a larger distance. This helps one to recognize the bias. We also see from the table
that Type 2 Malmquist bias may well produce effects larger than perhaps expected
from the classical formula 1.382σ 2 for the average bias for a ml-sample (Bottinelli
et al. 1988).

3.3 The Bias for a Distance Indicator M = ap + b

The period–luminosity relation of Cepheids, the rotational velocity–luminosity
(Tully-Fisher) relation for spiral galaxies, and the decay-rate–maximum-luminosity
relation for supernova explosions of type Ia, are important examples of distance
indicators based on a relation M = ap+ b. A general framework is relevant for un-
derstanding these indicators that continue to be the backbone of the cosmic distance
ladder on different spatial scales.

3.3.1 The Direct and Inverse Relations

A standard candle (or rod) is often defined through a linear relation M = ap + b

where p is a parameter whose value can be measured without knowing the dis-
tance (e.g., the (log) period of a Cepheid). Behind the linear relation there is a
bivariate distribution �(M,p)dMdP and the mentioned relation comes from the
corresponding conditional probability distribution with p fixed. We write the direct
regression form of this relation as

M = a · p+ b. (3.23)

It is also useful to write down the inverse relation as:

p = a′ ·M + b′. (3.24)

The direct relation predicts the absolute photometric quantity from the measured
parameter, as required for distance determination. Physically, the inverse relation
tells how the often more fundamental quantity M (related to the total luminosity or
mass) determines the value of the parameter p. How are these two forms connected?
Assume that the parameter p has an intrinsic dispersion σ i

p in galaxies with constant
absolute magnitude M , and its distribution around the average value p(M) of p at
M is a Gaussian function �M(p) ∝ G(p(M),σ i

p). We also need the luminosity
function φ(M) of the galaxies in question: φ(M) = const

∫∞
−∞ψM(p)dp. So the
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number of galaxies Np(M) in the element M ± 1
2dM , p± 1

2dp is

Np(M)dMdp = φ(M)
exp(−[p− p(M)]2/2(σ i

p)
2)dMdp∫∞

−∞ exp(−[p− p(M)]2/2(σ i
p)

2)dMdp
(3.25)

and the average value of M at a fixed p is obtained by integration over M .

3.3.2 The Classical Bias

The average values 〈M〉p,d and 〈M〉p,ml are easy to calculate when the luminos-
ity function is exponential or Gaussian (Teerikorpi 1984). For the case φ(M)d ∝
Gaussian G(M0, σM) the average absolute magnitudes become, in terms of the fun-
damental inverse relation parameters a′ and b′

〈M〉p,d =
[

a′

(σ i
p)

2
p− a′b′

(σ i
p)

2
+ M0

(σM)2

]
σ 2
Mp

, (3.26)

〈M〉p,ml = 〈M〉p,d − 1.382σ 2
Mp

, (3.27)

where σMp is the dispersion of M at a fixed (errorless) value of p. It is related to the
two other dispersions as 1/σ 2

Mp
= 1/σ 2

M+1/(σ i
p/a

′)2. These results show explicitly
that a distance indicator of the form M = ap+c does not avoid the usual Malmquist
bias.

In practice, the parameter p is measured with some error. Note that even with no
intrinsic scatter (σ i

p = 0) random errors in p (dispersion σo
p ) give rise to the same

bias as an intrinsic scatter of the same size. This reflects the decreased knowledge
of M , when p is measured inaccurately, i.e. one does not actually find objects with
a zero dispersion in M .

The General Formula When M = ap + b is used to calculate distance moduli,
to each p corresponds the modulus μp =m−M(p) and the bias in its general form
is �〈μ〉 = −σ 2

Mp
d lnap(m)/dm=−σ 2

Mp
d lnNp(μp)/dμp . Assuming that objects

with different values of p are similarly distributed in space (Np1(μp2)∝Np2(μp2))
and the dispersion σMp does not depend on p, the bias in the distance modulus μder

can be conveniently expressed independent of p in a similar form as for a single
standard candle class:

�〈μ〉 = −σ 2
Mp

d lnN(μ)/dμ, (3.28)

where the distribution N(μ) refers to a complete sample of distance moduli for the
objects considered (not the same as the observed one; see below).
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Fig. 3.2 The behaviour of
the bias in the derived
distance modulus versus the
true modulus for three
different values of p (p1
corresponds to the most
luminous class)

3.3.3 Type 2 Bias when M = ap + b

de Vaucouleurs (1983a) made a distinction between the “Malmquist effect” (the
progressive truncation of the luminosity function at increasing distances) and the
Malmquist bias in the distances derived from such a sample, arguing that the for-
mer may exist without the latter. Really, one might think that if there is a way of
classifying galaxies into absolute magnitude bins using, say, a relation M = ap+ b,
the magnitude limit will certainly cut away fainter galaxies from the sample, but
then the parameter p “glides” simultaneously, as if compensating for the distance
dependent effect. However, the theory shows that such a compensation is not com-
plete: average p shifts to larger values, but still, no matter what the value of p is, the
corresponding distribution of true M is cut at a common Mlim which depends only
on the distance. One cannot escape Type 2 bias, though at each true distance it is
smaller by the factor σ 2/(σ 2 + σ 2

M), as compared with the simple truncation effect
of the luminosity function with the dispersion σM .

That a bias should exist also in the TF method was suspected by Sandage and
Tammann (1984), when they derived the Hubble constant using a locally calibrated
infrared TF relation, and the bias in the direct TF relation was introduced on a the-
oretical basis in Teerikorpi (1984).

Figure 3.2 shows schematically how the derived distance modulus behaves ver-
sus the true modulus for different values of the p-parameter when the apparent
magnitude limit mlim is the same. It is assumed that larger p corresponds to larger
luminosity. For more luminous objects, the bias starts effectively at a larger true
distance. More generally, it is clear that

• For given p and mlim, the bias increases with distance
• For given distance and mlim, the bias is smaller for larger p
• For given distance and p, the bias is smaller for fainter mlim

The Cluster Incompleteness Bias In this special case of Type 2 bias the galax-
ies are at the same distance, and the decreasing completeness of the sample toward
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fainter galaxies makes the distances to clusters of galaxies too short. In the past,
there were assertions that there is no Malmquist bias in clusters (because there
is no volume effect in clusters), which actually mixed up Type 1 and 2 biases.
However, there were indications in the 1980s that the clusters, in comparison with
unbiased field galaxies, give a too large Hubble constant. This led to the recog-
nition of the cluster incompleteness bias (Teerikorpi 1987; Bottinelli et al. 1987;
Kraan-Korteweg et al. 1988; Sandage and Tammann 2006b).

This bias produces several things for the TF relation (e.g., Sandage et al. 1995):
(1) The derived slope of the TF relation is changed (less steep). (2) The apparent
zero-point of the TF relation in the cluster is too bright. (3) The scatter becomes
apparently low. The artificially decreased scatter is dangerous, because it may lead
one to underestimate the selection bias. In this manner, the bias itself may produce
an argument against its presence!

The Inverse Relation and the Zero Type 2 Bias Ideally, the parameter p is
not restricted by any such observational limit as Mlim. Hence, at any distance, the
distribution of observed p corresponding to a fixed M , and especially its average
〈p〉M is the same. Schechter (1980) thus realized that the inverse relation p = a′M+
b′ has the nice property that it may be derived in an unbiased manner even from
magnitude-limited samples.

In what manner could one use the inverse relation as a concrete distance indica-
tor? Assume that there is a cluster of galaxies at a true distance modulus μ. Derive
for each galaxy i which has pi measured, its distance modulus using as a “predic-
tor” of M the inverse relation: μi =m− (1/a′)(p− b′). Teerikorpi (1984) showed
that the distance estimate 〈μi〉 is unbiased, under the condition that there is no ob-
servational restriction to p. This result was confirmed by numerical simulations by
Tully (1988).

Consider a special subsample, the galaxies having a constant absolute magnitude
M . Deduce their magnitudes from p, using the inverse relation as M(p) = (p −
b′)/a′. Then the average bias for this subsample is

〈bias〉M =
∫∞
−∞[M −M(p)]ψM(p)dp∫∞

−∞ψM(p)dp
=M − 1

a′
(a′M + b′)− b′

a′
= 0. (3.29)

As the bias for every M is zero, the average bias in the distance moduli μ deduced
for the whole sample becomes zero. This result is independent of the (true) distance.
However, there will be a p-dependent systematic error in the distance moduli de-
duced for individual objects, because generally the slope of the line p = a′M + b′
differs from the slope defined by 〈M〉p,ml. Hence it is important in this method that
the parameter p can be measured for all the objects, after these have been selected
from the sky, in order to obtain an unbiased average distance modulus.

Our ordinary idea about a distance indicator is close to the direct relation: mea-
sure p, take from the relation the expected 〈M〉, and calculate μ=m−〈M〉 for this
one object. The use of the inverse relation may appear strange, because we tend to
look at the predictor of M , (1/a′)(p− b′) similarly as we look at the direct relation.
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Fig. 3.3 An explanation of
how the inverse Tull-Fisher
relation (p vs. M) may under
ideal conditions overcome the
Type 2 Malmquist bias. The
nearby calibrator sample is
made to glide over the distant
sample so that the regression
lines overlap

Direct distance moduli are “individuals”, while the inverse relation is collective:
measure the average p for the sample and calculate from 〈m〉 and 〈p〉 the distance
modulus.

The slope a and the zero-point b of the direct relation M = ap+ b should gener-
ally be derived from a local volume-limited sample with known distances. A prac-
tical example, for the TF relation, may be inspected in Theureau et al. (1997b). In
contrast, in the ideal case the inverse relation does not require that its calibrators
form a vl-sample. Further discussions on the inverse TF relation as a distance indi-
cator may be found in Hendry and Simmons (1994, 1995), Triay et al. (1994), and
Rauzy and Triay (1996).

The m–p diagram of Fig. 3.3, showing a “calibrator” cluster at 10 pc (μ= 0) and a more
distant cluster, reveals the secret of the inverse relation. The cluster to be measured is
at the unknown distance modulus μ, and is cut by the magnitude limit ml. Glide the
calibrator cluster along the m-axis by the amount of μ. Then the inverse regression lines
are superimposed. This means that the observed average of p at m is for the second cluster
〈p〉m which is the same as for the calibrator cluster at M =m−μ. From this follows that
〈μ〉m =m− (〈p〉m−b′)/a′, and by averaging over all m that μest = 〈m〉− (〈p〉−b′)/a′.

Problems The plus sides noted above for the inverse relation are balanced by
a few problems that hamper its practical use as a distance indicator and make it
difficult to solve simultaneously the problems of calibration and Type 2 bias.

Quite likely the p parameter is restricted by some upper and lower cut-offs (e.g.,
in the TF method narrow 21 cm line profiles are difficult to detect among the noise,
while broad and low profiles tend to be missed, too). Expected features from such
cut-offs were found in real data by Ekholm et al. (1999a). See also the Appendix of
Sandage et al. (1995).

It was also pointed out (Teerikorpi 1990b; Teerikorpi et al. 1999) that since the
measurement errors change the slope of the inverse TF relation for a distant sample,
one should force that slope (the “relevant slope”) through the calibrators, when cal-
culating the distances. However, there is the nasty condition that the distribution of
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the parameter p for the calibrators should reflect the cosmic distribution (i.e. have
the same average value, which is not the same as in the magnitude-limited distant
sample). For example, for the diameter TF relation, the systematic error depends on
the ratio of the calibrator and relevant (field) slopes a′c/a′, on the (Gaussian) disper-
sion of the distribution of the diameters σD and also on the space density law around
the observer ∝ r−α : 〈� logH 〉 = (3− α) ln 10σ 2

D(a
′
c/a

′ − 1). Since it depends on
the width σD of the diameter function, the effect can be large even when the slopes
a′c and a′ do not differ much (Ekholm et al. 1999a).

Subtle Biases in Direct and Inverse ap + b Distances Landy and Szalay (1992)
discussed the “inhomogeneous” Malmquist bias and its correction in the case of
a general space density distribution. In Teerikorpi (1993) this correction was dis-
cussed with explicit reference to direct and inverse Tully–Fisher relations, which
served to clarify certain points raised by Landy and Szalay. It was emphasized that
Malmquist’s formula with the term d loga(m)/dm was already a general one, and
is best interpreted as applicable to a direct M = ap+ b relation, for a constant value
of p (a “star class”). In that case, the distribution of m (or distance moduli) refers to
all magnitudes which could be observed without any cut-off in the magnitudes.

Feast (1972) had already given a formula quite similar to (3.28), but now N(μ) was
regarded as the distribution of the derived distance moduli in the observed sample.
Feast’s derivation contains the implicit assumption that the Type 2 bias is zero. One
can conclude that Feast’s and Landy & Szalay’s variant of Malmquist’s formula ap-
plies to the inverse distance moduli, having the Type 2 bias = 0 (Teerikorpi 1993;
Feast 1994; Hendry and Simmons 1994).

Hence, Type 1 corrections for the direct distance moduli require data on the true
spatial distribution of galaxies. Corrections for the inverse moduli depend on the
distribution of apparent magnitudes (distance moduli) in the sample, hence on the
selection function. Thus the Type 1 and 2 biases for the direct and inverse distances
have curious complementary properties.

3.4 Some Other Finesses and Biases

To cite Sandage and Tammann (2006a): “Generally, the deeper a scientific problem
is studied its solution becomes less simple. Although the first approximations made
at the beginning can scout out a territory, as the data base expands, first approxima-
tions must often be replaced.”

3.4.1 The Gould Effect: Original and Re-measured Samples

Gould (1993) pointed out a complication when a sample of galaxies, to be used
for, say, infrared I -mag TF relation, is made from a sample originally based on
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selection criteria other than I -magnitude, e.g. apparent diameter. The Type 1 bias in
the distance moduli from the I -mag relation does not now generally depend on the
squared dispersion σ 2

I of the I TF relation nor on σ 2
D of the diameter relation, but

on the covariance 〈εI εD〉 between the corresponding logarithmic distance errors ε.
We refer to Gould (1993) for a mathematical treatment and give here some helpful
heuristic explanations.

Explanations When one selects members of a standard candle class from the sky,
the dispersion σ1 in its absolute magnitude (or size) determines how the detected
sample is distributed in space (for the fixed mean M0 and a given space density law).
When one uses these same objects in the detection band to derive their photometric
distances m−M0, the resulting average Malmquist bias arises from a convolution
of the true spatial distribution and the distance error (also controlled by σ1).

If one after the original selection re-measures the sample in another photometric
band for which the standard candle dispersion is σ2, then the spatial distribution of
course remains the same, but now it is convolved with another distance error (not
only σ2 may differ form σ1, but the errors may be only partially correlated). This
is why the resulting mean systematic error in distance moduli now depends on the
variance 〈ε1ε2〉.

An extreme case is when this covariance is zero, i.e. the deflections about the two
TF relations are independent (or still more extremely, σ2 = 0). Then there should be
no Malmquist bias in the distance moduli from the I TF-relation. Let us explain.
The original sample selected “from the sky” has a certain distance distribution. The
second set of measurements produces symmetrical residuals around the standard
candle mean, because of the independence on the original deviations from the mean.
Hence, the average distance modulus inferred for the sample in question comes out
unbiased.1

The Gould effect also means that if the original selection band is accompanied by
a large dispersion in the distance indicator, the subsequent use of a smaller disper-
sion photometric band does not necessarily result in the perhaps naively expected
significant decrease in the bias. This is again because it is the first band which de-
termines the spatial distribution.

3.4.2 Effects Caused by Dusty Medium

Observations through a cloudy absorbing medium are affected by a selection effect:
the “holes” in the medium offer a deeper sampling volume, hence such directions
are preferred in a magnitude-limited sample. This results in an enhanced apparent
clustering in the sky (Ambartzumian 1940); this effect will be also considered in

1In practice, it may be hard to find such pairs of observables which correlate with a common
parameter (e.g., the TF parameter p), but have independent deflections (for instance, larger than
average galaxies tend to be also more luminous than average).
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Chap. 11. Also, the average extinction in a ml-sample is less than the all-sky average
extinction (Holmberg 1974; Fesenko 1975).

Absorption Bias: Random Clouds In a simple example the dusty medium con-
sists of identical clouds randomly distributed in space and each causing the extinc-
tion a mag. The mean absorption is 〈δm〉 = a〈s〉 where s is the number of clouds
intersected by the line of sight. Let us take the distribution of the apparent magni-
tudes for the objects beyond the dust layer to be ∝ ekm. Then in a magnitude limited
sample the number of objects observed through s dust clouds would be diminished
by the factor of esa . Using the Poisson distribution one may calculate the mean num-
ber of clouds in front of the observed objects. For a uniform spatial distribution of
the background objects (ekm = 100.6m) the result is (Teerikorpi 1978)

〈N〉 = 10−0.6a〈s〉 ≈ 〈s〉(1− 1.382a + · · · ). (3.30)

Thus the mean extinction is 〈N〉a and the second term in the Taylor series is essen-
tially the one used by Holmberg (1974), 1.382σ 2, where σ is the dispersion in ex-
tinction (the Poisson dispersion of s is

√〈s〉). Because we observe galaxies through
the cloudy interstellar medium, systematic differences in its structure in different
directions thus modify the mean extinctions in front of ml-samples and may lead to
apparent anisotropies in photometric distances and the Hubble flow.

It should be noted that variable extinction does not change the relative distribu-
tion of luminosities (absolute magnitudes) in a ml-sample of field galaxies: a de-
creased extinction makes the sampling volumes deeper, but the relative change is
similar for absolutely faint and bright galaxies. But if the galaxies are in a cluster,
then the observable part of the luminosity function (the absolute magnitude limit)
depends—in addition to the distance and the apparent magnitude limit—on the fore-
ground extinction.

The Reddening Bias Another kind of effect, linked to the selection of stars, was
originally pointed out by Holmberg (1974). It was shown to exist in real data by
Teerikorpi (1990a) who studied its theory in more detail. This bias in stellar redden-
ings probably caused the almost zero reddenings measured for stars at high galactic
latitudes, and was related to the debate on the average high latitude extinction.

To see the essence of the bias, suppose that a class of stars in a local vl-sample
has the average intrinsic colour Ci . Then the average intrinsic colour of the same
class of stars in a ml-sample will be bluer, because these stars are brighter, on the
average, and because there is a colour vs. absolute magnitude relation among the
stars. This bias, which makes the inferred reddenings progressively smaller, may be
modelled as a function of distance. Thus Teerikorpi (1990a) concluded that hidden
behind the bias there is significant non-zero reddening (caused by interstellar dust)
at high galactic latitudes, which was later confirmed, e.g., by interstellar polarization
measurements (Berdyugin and Teerikorpi 2002; Berdyugin et al. 2004) and from the
IRAS 100 micron full-sky map sensitive to cool diffuse dust (Schlegel et al. 1998).
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Fig. 3.4 One possible sign of
the extragalactic Cepheid
bias: the (normalized)
apparent V magnitude limit
of the Cepheid samples first
grows with the distance
(radial velocity Vc) and then
tends to bend down there
where the bias is suspected to
appear in derived Cepheid
distances (Paturel and
Teerikorpi (2005); reproduced
with permission © ESO)

3.4.3 A Selection Bias in the Cepheid Method?

At a given Cepheid period, the cosmic dispersion σ of the average absolute mag-
nitude is so small (≈ 0.2 mag) that the systematic errors (taken to be proportional
to σ 2) in the measured distance moduli have been usually considered as negligible.
However, this may not be always the case.

Evidence for the Bias Paturel et al. (1997a) gave evidence for a slight bias in the
Cepheid-based distances of a few galaxies and Lanoix et al. (1999) made calcula-
tions using the dispersion σ as a relevant factor for the incompleteness bias. They
showed by excluding short period (low-luminosity) Cepheids, that in some cases the
bias may be as high as 0.2–0.3 mag.

As a next step Teerikorpi and Paturel (2002) used the local Hubble law as an indi-
cator of relative distances. It was then possible to test the behaviour of the Cepheid
distances measured by the Hubble Space Telescope against relative kinematic dis-
tances. The tentative conclusion was that they were affected by an effect tending to
produce too short distances, on the average (see also Fig. 3.4).

Contributing Factors Other factors than the small scatter σ in the average PL-
relation are also relevant and can lead to a selection effect that is larger than sug-
gested by the scatter in the PL-relation itself: the amplitude of variation, the longest
observable period and dust extinction, together with the cut-off effect of the limiting
absolute magnitudes of the Cepheid sample (Sandage 1988b) in V and I-bands, both
needed for extinction corrections.

• the amplitude of variation: suppose that the Cepheid magnitude limit is mlim, the
true distance modulus is μ, the average magnitude at the period P is M(P) and
the half-amplitude of variation is �M . Then one can measure only such Cepheids
whose average absolute magnitude is, not brighter than mlim−μ, but brighter than
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mlim−μ−�M . In other words, at a given period P the effective magnitude limit
for a Cepheid whose whole variation is observed, is brighter by �M than for a
constant standard candle.

• the longest observable period: one may exclude shortest periods in order to de-
crease the selection bias at short periods where the Cepheids are absolutely fainter
(Lanoix et al. 1999). But there is some maximum period, due to the finite observ-
ing time available.

• the dust extinction: there is some average extinction E obscuring the whole
Cepheid population of the studied galaxy, arising in the Miky Way and in the
galaxy itself. When the Cepheids are searched for, the extinction brightens the ef-
fective limiting magnitude by E. This does not refer just to the observed sample
of Cepheids, affected by less extinction. It is the total extinction that influences
the constitution of the observed sample.

Let us comment on the first point. One reasonably would like to see a “good”
light curve and exlude those with the faintest parts missing. But this directly leads
to the bias. For numerical simulations and other evidence for the relevance of the
bias, see Paturel and Teerikorpi (2004, 2005, 2006).

One point deserving attention is that generally the number of well-observed
Cepheids in a distant galaxy is of the order of a few tens at most, which must be
a small fraction of the whole population. In order to assess better the bias, it would
be important to know how the total number of Cepheids depends on the Hubble type
and luminosity of the host galaxy.

3.4.4 Concluding Remarks

Large samples of classical photometric distance indicators have the advantage that
one may investigate their completeness and composition, and recognize selection
effects, and hence put the method on a safe basis.

Often in the forefront of scientific discoveries one rather likes to ignore selection
effects, because in order to positively identify these, one should have enough of
collected data, and this rarely happens in the avantgarde phase. Also, sometimes
selection effects produce apparent phenomena which, if true, would certainly be
more interesting than the mechanisms of selection and bias which naturally attract
less attention.

Hence, it should be a part of the methodology to try to recognize all possible se-
lection effects when one attempts to build an unbiased picture of the universe. When
writing about the determination of the distance of the Sun, Gill (1877) warned about
systematic errors in the methods and emphasized that “the observations themselves
must afford the material for the determination and elimination of all errors to which
it can be shown the method is liable”. In the next chapter, the method of normal-
ized distances, which has been applied to overcome Type 2 bias in the Tully-Fisher
distances, also illustrates Gill’s assertion.
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One should emphasize that selection biases continue to take astronomers by sur-
prise even in the local universe and they do not vanish anywhere, even though the as-
tronomical data are accumulated beyond old magnitude limits. Problems are shifted
towards larger distances (where the classical Malmquist bias turns into cosmologi-
cal; Sect. 7.4.5) and fainter magnitudes, and new generations of astronomers have
to learn how the biases reappear.



Chapter 4
Cosmological Redshift and the Distance Scale

Amidst the Great War raging in Europe, three remarkable articles appeared. Ein-
stein (1917) presented the static, homogeneous, and finite cosmological model as
a solution of his brand-new equations of general relativity. This required the in-
troduction of the cosmological constant. de Sitter (1917) derived another solution:
he made the matter density approach zero, and included the cosmological constant.
This static world model predicted the “de Sitter effect” where light from remote ob-
jects is redshifted and the redshift has a non-linear dependence on the distance. In a
novel manner, light became a tool to measure properties of the universe at large.

Slipher (1917) had managed to measure 25 nebular spectra for faint nebulae each
needing exposures of tens of hours. The line shifts were mostly towards longer
wavelengths, indicating speeds up to 1100 km s−1 when interpreted as Doppler ef-
fect. Slipher thus discovered cosmological redshifts.

4.1 The Distance–Redshift Law

Shapley and Shapley (1919) noted that fainter nebulae tend to have larger redshifts
“indicating a relation of speed to distance or, possibly, to mass.” After this hazy spec-
ulation, the next decade witnessed a race for the correct link between redshift and
distance. Lundmark (1925) saw some relation, but his distance indicator, the angular
size of a galaxy, was inaccurate (galaxies have a wide range of absolute sizes). Hub-
ble (1929), using less dispersed indicators, could suggest a linear distance-redshift
relation in the nearby galaxy universe. Within a few years Humason and Hubble
showed that the relation exists still deeper in space.

Y. Baryshev, P. Teerikorpi, Fundamental Questions of Practical Cosmology,
Astrophysics and Space Science Library 383,
DOI 10.1007/978-94-007-2379-5_4, © Springer Science+Business Media B.V. 2012
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4.1.1 Empirical Properties of Cosmological Redshift

One directly measurable datum for a galaxy is the redshift z of its spectrum, defined
as the relative shift of wavelengths λ or frequencies ν = c/λ:

z= λobs − λ0

λ0
= ν0 − νobs

νobs
, (4.1)

where λobs is the observed and λ0 is the rest wavelength of a spectral line. Hubble
and Humason also used the quantity apparent velocity: Vapp ≡ cz.

Roberts (1972) showed that there is an excellent agreement between the redshifts
of the optical lines and the million times longer 21 cm line of neutral hydrogen in
galaxies. One has also compared different lines for the same distant cluster galaxies
having radio, optical and X-ray lines. Now this basic property is established from
radio to γ -rays, from 106 to 1020 Hz.

Photometric Redshifts can be derived for very faint galaxies without observable
spectral lines, if the spectral energy distribution has been measured through several
filters (see the web-site hyperz; Bolzonella et al. 2000).

Physical Interpretation Modern physics knows two experimentally verified
ways to produce wavelength independent redshifts. The Doppler effect is caused
by the mutual speed of a light source and the observer moving in space. The grav-
itational redshift appears when light is emitted by an atom sitting closer to a grav-
itating mass than the observer (the light from the Sun has cz = 0.5 km/s). Besides
these mechanisms, there are theoretical ideas, in particular, space expansion making
a photon’s wavelength stretch. This widely accepted explanation of the cosmologi-
cal redshift is a consequence of general relativity applied to the universe uniformly
filled by matter.

The observed redshift zobs may contain contributions from different physical
causes so that (note: 1+ z= λobs/λ0)

1+ zobs = (1+ zcos)(1+ z3K)(1+ zv)(1+ zφ)(1+ zother), (4.2)

where zcos is the cosmological redshift, z3K is due to our velocity relative to the
background radiation, zv comes from the peculiar velocity of the observed galaxy,
zφ is the gravitational part caused by the local potential of the galaxy (e.g., in a
cluster), and zother is any unknown physical effect.

At large redshifts the cosmological redshift dominates over the Doppler shifts
due to the motions of our Galaxy and the observed galaxy. The gravitational redshift
is usually regarded as negligible in the light of galaxies.

Let us denote the line-of-sight component of our (the observer’s) peculiar veloc-
ity as v3K. Dropping other redshift sources, the result is

1+ zobs = (1+ zcos)

[
c+ v3K

c− v3K

]1/2

. (4.3)

For a small peculiar velocity, one may write 1+ zobs ≈ (1+ zcos)(1+ v3K/c).
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Corrections to the Redshift In relatively nearby space (z < 0.01), it is handy
to express the redshift as a velocity V = zc. In galaxy catalogues one usually finds
the velocity V as corrected to the Sun (heliocentric velocity) and the velocity VLG as
corrected to the barycentre of the Local Group (VLG). The velocity V3K, as corrected
to the reference frame of the cosmic background radiation, is the velocity that an
observer at rest “relative to the universe” (at our position) would measure for that
galaxy.

The LEDA database makes a correction to the observed redshift, expressed as
(heliocentric) velocity V , to obtain V3K: V3K = V + 360 cos θ , where θ is the angle
between the direction of the galaxy and our velocity relative to the background radi-
ation and 360 (km s−1) is its amplitude.1 One might now think that zcos = V3K/c. As
was noted by Harrison and Noonan (1979), if the galaxy is at rest, its cosmological
redshift is actually

zcos = V3K/c

1− (V3K − V )/c
. (4.4)

Generally the error is tiny, but it is important to be aware of the difference between
exact expressions and “fictitious” quantities in calculations involving observed and
cosmological redshifts mixed with peculiar velocities.

For the very local Hubble flow, the centre of expansion is usually taken to be
the barycentre of the Local Group, often placed on the line between M31 and our
Galaxy at 2/3 of the distance to M31 (assuming the mass ratio of the galaxies is
2). It is simple to correct the distance to this barycentre, but what about the radial
velocity? For instance, Yahil et al. (1977), the LEDA database choice, make the
correction to the radial velocity V referred to the Sun as �v = +308 cosλ km/s.
Here λ is the angle between the direction of the galaxy and the direction of the solar
motion apex (l = 105◦, b=−7◦).

In fact, the observer at the centroid would measure a slightly different velocity
than VYah = V + �v, depending on the location of the galaxy and the nature of
the nearby velocity field (Ekholm et al. 2001). If there is a Hubble flow relative to
the centroid (or if the deviation from it is spherically symmetric), one may show
from the first principles of the Hubble velocity field that the centroid would see the
velocity VYah/ cos θ , where θ is the angle between the centroid and the Galaxy as
seen from the measured galaxy. This angle (and the correcting factor 1/ cos θ ) is
large only for nearby galaxies located about perpendicular to the M31–Galaxy line.

To derive this result we first note that the “corrected” observer at the Sun is at rest relative
to the LG centroid, as supposed in the Yahil et al. correction. Relative to the Hubble flow,
the observer at the Sun has a peculiar velocity Hrc towards the centroid (in order to keep
the observer fixed). Then the corrected velocity of the galaxy at the distance rg from us
is its Hubble velocity Hrg minus the projection of our peculiar velocity along the line-
of-sight to the galaxy and the projection of the peculiar velocity of the galaxy itself (vpec
assumed radial relative to the centroid): VYah = Hrg − Hrc cosα − vpec cos θ . Here α

1The 1950.0 equatorial coordinates of the direction are α(3K)= 11.25 h and δ(3K) =−5.6◦, so
cos θ = sin δ(3K) sin δgal + cos δ(3K) cos δgal cos(α(3K)− αgal).
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is the angle between the galaxy and the centroid as seen from our position. Deviding by
cos θ and noting that (rg − rc cosα)/ cos θ is the galaxy-to-centroid distance rc,g, we see
that VYah/ cos θ gives the true expression for the Hubble law plus the peculiar velocity as
observed from the centroid: VYah/ cos θ =Hrc,g − vpec.

The K Correction The K-effect is a technical phenomenon caused by the red-
shift. It appears when one measures apparent magnitudes through filters defining a
fixed wavelength band. Photometric studies of distant objects generally use a fixed
finite bandwidth defined by a response function S.

Two things happen when a spectrum is redshifted: (1) the spectrum is stretched:
�λ→ (1+ z)�λ, and (2) it is shifted towards longer wavelengths: F(λobs) orig-
inates from the rest wavelength λobs/1 + z. Putting these two things together the
observed magnitude is obtained from the formula:

mobs =−2.5 log
∫ ∞

0
S(λ)F

(
λ

1+ z

)
dλ/(1+ z)+ const. (4.5)

The K-correction is defined so that the corrected magnitude (the expression for mobs
with z= 0) is the observed magnitude minus the K-correction:

mcor =mobs −K(z). (4.6)

To remember the sign in the definition imagine that the “K-effect” is added to the
“true” magnitude mcor to give the observed one: mobs =mcor +K(z).

A quasar’s continuum spectrum may often be approximated as a power-law
F(λ)∝ λ−α . Then the K-correction is simply K = 2.5(1− α) log(1+ z). When the
spectral index α = 1, the correction is zero—the stretching of the spectrum and its
shift exactly compensate each other.2 Generally the K-correction for quasars (also
affected by strong emission lines) is relatively small in comparison for galaxies
whose corrections may reach several magnitudes depending on the Hubble type and
the observing band (Fig. 4.1).

The K-corrections for galaxies of different types are needed for various purposes
such as calculating the luminosities and analysing the magnitude-redshift relation.
For evaluating the K-correction at an observed wavelength λ for an object at redshift
z the spectral energy distribution of the radiation F(λ) should be known at the rest-
frame wavelength λ/(1+ z). Modern calculations of K-factors use a model for the
SED of a galaxy (Poggianti 1997).

What is the Distance in the Hubble Law? Observations suggest a linear
distance-redshift relation, something that Hubble saw for his handful of nebulae
in 1929. In fact, what one observes for a standard candle is

m= 5 log z+M + constant. (4.7)

2If the spectrum is expressed using frequency units, f (ν)∝ ν−αν then the exponents are related to
each other as αν = 2− α and the K-correction is K = 2.5(αν − 1) log(1+ z).
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Fig. 4.1 K-corrections for galaxies of type E, Sa, and Sc for two wavelength bands R (effective
wavelength 6400 Å) and K (22 000 Å) (the data from Poggianti 1997)

The constant (5 log c/H + 25) contains the Hubble constant H . In terms of the
luminosity distance rlum the empirical Hubble law becomes

cz=Hrlum. (4.8)

One may write analogous expressions for a standard rod and angular size distance
(then cz = Hrang). Modern cosmology suggests that behind the observed Hubble
law is a cosmological linear velocity–distance relation. Here velocity Vexp refers to
space expansion causing the redshift by the Lemaître effect (Chap. 7), and distance
is the momentary metric distance rm. Do not confuse the law Vexp =H0rm with the
common form of (4.8) as V = Hr where V = cz refers to an inaccurate Doppler
interpretation of the redshift.

4.1.2 The Linearity of the Redshift Law

In the expanding Friedmann model, the linearity reflects the homogeneity of cosmic
matter. Thus in our inhomogeneous world there can well be local deviations from
linearity, and such indeed are seen. Quite another thing is that in the 1960s to 90s
there were claims for non-linearity in a more universal sense. These controversies
have calmed down, and now the arguments usefully illustrate selection effects on
the derived distance-redshift law.

Hawkins’s Result for Field Galaxies Hawkins (1962) argued that the Hubble
(log z vs. m) diagram for field galaxies supported the quadratic law z = kr2. This
was suggested to be expected from the gravitational redshift in a static uniform
universe.

The quadratic law predicts for a standard candle log z∝ 0.4m, instead of the lin-
ear Hubble law log z∝ 0.2m (assuming a constant Type 1 bias which would appear,
e.g., for a uniform galaxy distribution). With a good standard candle, a sufficient
range of the magnitude m and no selection limit to the redshift, one should easily
make observationally a difference between these two cases. However, the sample
used by Hawkins was not made of good standard candles, but was a collection
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of field galaxies with a broad, non-Gaussian distribution of absolute magnitudes.
Also, the local spatial distribution is lumpy. In such a general case one can de-
rive the log z vs. m relation for the linear distance–redshift law as follows: Write
〈log r〉m =−0.2(〈M〉m −m)+ const, hence using r ∝ z

〈log z〉m =−0.2
ω
∫∞

0 M(m, r)φ (M)ρ(r)r2dr

a(m)
+ 0.2m+ const. (4.9)

The distribution of apparent magnitudes a(m) is ω
∫∞

0 φ(M)ρr2dr . It is clear from
our discussion of the Malmquist bias (Chap. 3) that the first factor is a constant if
the luminosity function is Gaussian and if the radial number density is constant (or
∝ r−α). Then the relation is linear with the classical slope 0.2. Contrary to Soneira
(1979), this factor does depend on the luminosity function (as also pointed out by
Nicoll and Segal 1982). That it depends, is at the heart of the treatment of the clas-
sical Malmquist bias.

Without such a discussion of the expected 〈log z〉m vs. m relation, one cannot use
a general wide-luminosity Hubble diagram to derive the correct slope of the redshift
law (for an application see Koranyi and Strauss 1997).

Quadratic Law from Galaxy Groups de Vaucouleurs (1972) derived distances
to galaxy groups from the angular sizes and magnitudes of the five brightest mem-
bers. The resulting V/R vs. V diagram showed an increasing trend, roughly as ex-
pected from a quadratic law V ∝R2. Such a law seemed to support the hierarchical
cosmology which he studied at the time.

Luminosity classified field galaxies also showed an increasing V/R (Teerikorpi
1975a, 1975b), which was as expected from the Type 2 selection effect due to the
magnitude limit ml. If R is the distance inferred from a supposed standard candle
(M0), a lower envelope in the V/R vs. V diagram is defined by V/R = V/r0 (where
M0 =ml − 25− log r0). Hence, the Hubble ratio increases with velocity (distance)
and the slope depends on r0 (i.e. on M0).

For the groups identified from a galaxy catalog, its magnitude limit will produce
a pressure towards brighter n:th brightest magnitudes depending on the distance
r : Mn < M(r) = mlim − 25− 5 log r . This pressure also means brighter members
Mi , i ≤ n, on average. Due to this selection, related to the Scott effect and Type 2
bias, the first, second etc. brightest members in the selected groups are not standard
candles—their average luminosities change together with the limit M(r). The ob-
served behaviour of the Hubble ratios V/Ri derived from the 1st, 2nd etc. brightest
member galaxies can be understood using a statistical model similar to that of Pee-
bles (1968) who studied the luminosities of the brightest cluster galaxies, though in
this case the analysis includes the magnitude limit (Teerikorpi 1975b, 1981d).

Segal’s Law Segal (1972) proposed his chronometric redshift theory, producing
in static Einstein space the redshift that increases as the distance squared, in agree-
ment with Hawkins and de Vaucouleurs. Segal also wanted to show that the z ∝ r2

law explains the redshift and magnitude data better than the linear law. His use of
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galaxy samples with a wide luminosity range led to lengthy treatments requiring
the construction of the luminosity function and consideration of the magnitude limit
(e.g., Segal and Nicoll 1996). Due to the involved analyses, it is not so transparent
why Segal continued to obtain results favouring the quadratic law (see Koranyi and
Strauss 1997). We note that Segal (1976) derived for local galaxies the redshift—
number relation logN(z) = 3

2 log z+ const., as expected from the quadratic law if
the local spatial distribution is homogeneous (however, it is far from that).

The results claiming a quadratic redshift law had in common that they were based
on distance indicators quite vulnerable to selection effects, e.g. having a broad lu-
minosity function. The modern evidence for linearity comes from a variety of indi-
cators with a narrow luminosity function.

Brightest Cluster Galaxies In his 1929 discovery paper Hubble allowed for pos-
sible non-linearity at larger distances. However, the work on brightest cluster galax-
ies soon showed that the relation continues as linear as was possible to measure
by that method. Sandage (1995b) tells the story of the campaign set up by Hubble
together with Humason to measure redshifts for clusters. In their 1931 paper the
largest redshift was 19700 km s−1 and in 1936 the record was 42000 km s−1 for the
Boötis cluster. With the new Palomar 200-inch telescope, Humason measured for
the Hydra cluster z = 0.2 (60000 km s−1). New observations, together with better
defined apparent magnitudes again showed the linear Hubble law (Humason et al.
1956).

Extension of the Hubble diagram to z = 0.46 (by Minkowski in 1960 for the
cluster containing the radio source 3C295) showed that the linearity continues to
this limit as well. In fact, at such redshifts one already may expect some deviation
from linearity; in the Friedmann model the linearity is basically between the under-
lying expansion velocity and metric distance, neither of which is proportional to the
redshift and the luminosity distance, except at short distances. In other words, the
test for linearity goes over to the search for effects predicted by Friedmann models
(as will be discussed in Chap. 7).

The proper way to measure the size and magnitude of the brightest cluster galax-
ies, suitable for cosmological tests (clusters being “hard points” in the Hubble flow;
Giovanelli et al. 1997), has been much discussed. Sandage (1972) noted that the size
measurements of the brightest elliptical cluster galaxies from the Palomar Sky Sur-
vey plates approximated an isophotal diameter. The redshift–angular size diagram
showed a small scatter around a slope close to −1, instead of −2 expected from the
quadratic law. Actually, one would like to measure angular sizes corresponding to
the same linear size. The Petrosian (1976) size measure has such a goal.

If all galaxies had the same axially symmetric shape of the intrinsic surface
brightness profile I (r), one realizes that there should be a way to compare (an-
gular size) distances by inspecting the angular behaviour of the surface brightness
(say, considering where I (θ) has dropped into half of its central value). A practical
way of doing this is to use the growth curve l(θ)= 2π

∫ θ
0 I (θ)θ2dθ in the Petrosian
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Fig. 4.2 Distance modulus μ
vs. (log) radial velocity
diagram: SNIa (stars), the
B-mag TF distance from
unbiased plateau (dots:
averages of several galaxies),
Cepheids (crosses: in
individual galaxies, squares:
groups with a Cepheid
galaxy). The distance
modulus μ is related to the
(luminosity) distance dlum (in
Mpc) as μ= 5 logdlum + 25
(Courtesy of M. Hanski)

function η as defined by Kron (1995):

η(θ)= 1

2

d ln l(θ)

d ln θ
. (4.10)

The function η has the simple meaning that it is the surface brightness at θ divided
by the average surface brightness up to θ . For an elliptical galaxy it is generally a
monotonically decreasing function and for identical galaxies its fixed value corre-
sponds to a specific distance from the centre, even if there is a cosmological dim-
ming or even an evolution leaving the profile shape intact. This formalism is useful
in attempts to detect the strong surface brightness dimming predicted by space ex-
pansion (Chap. 8).

Djorgovski and Spinrad (1981) constructed the angular size–redshift relation for
the brightest cluster galaxies using such a Petrosian size measure. It agreed well with
the linear Hubble law (angle ∝ 1/z) in the range 0.01 < z < 0.2 where the Fried-
mann models predict little deviation. Keeping at relatively small redshifts z ≤ 0.2,
to avoid the problem with evolution, all the ways to define the size and magnitude
have resulted in a linear redshift relation, with no hint at the quadratic one. This is
so also for star-like sources like supernovae.

A Composite Diagram Figure 4.2 shows a Hubble diagram up to z≈ 0.1. It con-
tains, from different sources, individual Cepheid-measured galaxies, groups con-
taining a Cepheid-galaxy, unbiased TF data, and supernovae Ia data. The linear
Hubble line with the expected slope of 5 is shown.

Only when the Hubble law could be studied at redshifts approaching unity, using
the very luminous Ia class supernovae, one could detect a deviation “upwards”,
redshift increasing quicker than the luminosity distance. It was this effect that was
interpreted as an acceleration of the Friedmann universe and led to the adoption
of Einstein’s cosmological constant or dark energy as a part of the standard world
model (Chaps. 7 and 8).
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4.2 The Value of the Hubble Constant

The linearity of the Hubble law means that the Hubble constant H0 exists. Within the
Friedmann model H0 fixes the distance scale and its inverse is the Hubble time TH
characterizing the age of the expanding universe. In other cosmological frameworks
the Hubble constant may have other physical significance. The unit km s−1/Mpc
well conveys the meaning in expanding space models: the increase of the recession
velocity per each megaparsec. In astrophysical formulae, the Hubble constant often
appears in the dimensionless form h= h100 =H0/100 km s−1/Mpc.

4.2.1 The Start at 625 km s−1/Mpc

The first estimation of the Hubble constant (and the age of the expanding universe)
was made by Georges Lemaître (1927, 1931), even before the Hubble law was dis-
covered! In 1927 he predicted that in an expanding universe the redshift should
at small distances grow directly in proportion to distance. From apparent magni-
tudes for a few tens of nearby galaxies, he estimated an average distance of 0.95
Mpc. Combining this number with the average radial velocity (from the redshifts)
600 km s−1, he obtained 625 km s−1/Mpc for the ratio between velocity and dis-
tance.3 The corresponding Hubble time for Lemaître’s universe is about 1.6 milliard
years.

When was the Malmquist bias first applied in study of the Hubble constant? In
fact, Hubble’s (1936b) old value of H0 = 526, canonical for years, already included
an attempt to correct for the Malmquist bias (he applied the 1.382σ 2 formula for the
brightest stars of galaxies).

The Fall Down of H 0 Hubble (1936b) thought that the error in his 526
km s−1/Mpc was at most 15 percent. The age argument gave this estimate some
support. Namely, the corresponding Hubble time 1/H0 is about 1.8 milliard years,
conveniently close to the age of the oldest Earth rocks as at the time determined
from radioactive dating. De Vaucouleurs (1983b) noted with some hilarity that “this
agreement was often presented to students of that era as a brilliant confirmation of
both theory and the observations”!

It took only two decades for the measured value of H0 to drop from 526 to 75.
The main reasons were linked to the distance scale: (1) Baade’s work on M31 show-
ing Cepheid luminosities must be increased. (2) The brightest stars/HII regions con-
fusion was cleared up and (3) Hubble’s magnitude scale was corrected by Sandage
(1958).

As to the Type 2 bias, it seems that Behr (1951) was the first to point out, after
comparison of the width of the Local Group luminosity function to that of the field

3For more information on the chequered history of the attempts to measure H0 see Sandage
(1995b) and Tammann (2006).
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galaxies, that the standard candle method may lead to systematically short distances
at large true distances. He concluded that H0 = 260, i.e. a half of Hubble’s value.
This already gave a rough idea of how important a selection bias may be, but the
result went largely unnoticed.

4.2.2 Towards the Unbiased Value of H0

The 1970s and 80s were marked by the efforts of Sandage and Tammann, on one
hand, and by de Vaucouleurs and collaborators, on the other hand, to measure the
Hubble constant. De Vaucouleurs’s work led to the “short” distance scale, with H0 ≈
100. Sandage and Tammann preferred the “long” distance scale (H0 ≈ 55), which
led to a debate on the correct value of H0.

Apart from some other differences in the distance ladders, the major single reason
for the broad gap was the fact that Sandage and Tammann paid more attention to the
selection bias affecting magnitude-limited samples. Especially, both teams had as
the last step large samples of field galaxies. Their distances were determined using
distance indicators calibrated at shorter distances. Such data are very vulnerable to
the selection bias.

Where Type 2 Bias Appears If you want to see Type 2 bias in action, just take
any large magnitude-limited galaxy sample, calculate for each galaxy H = V/R

using a photometric distance indicator (say, the TF relation), and plot H against V.
You will see that H stays first roughly constant and then starts to increase (Fig. 4.3).
So clear is this phenomenon and so much expected from simple reasoning that one
cannot but repeat the words by Tammann et al. (1980): “If an author finds H0 to in-
crease with distance he proves in the first place only one thing, i.e., he has neglected
the Malmquist effect!” One should add that here “distance” means the true distance
or at least a true relative distance (e.g., redshift). If “distance” is the inferred dis-
tance, H does not necessarily change with the distance, though it may have a wrong
average value—we have moved from Type 2 to Type 1 bias. This serves as a warn-
ing that a simple comparison of the photometric distances from two methods may
hide a common bias.

In their “Steps toward the Hubble constant”, Sandage and Tammann (1975) stud-
ied the H vs. logV diagram for luminosity classified spirals. The diagram showed
an increase of H , caused by the magnitude limit. At small true distances there is an
unbiased region where the Hubble constant could be derived. In fact, each luminos-
ity class has its own limiting distance (Teerikorpi 1976; a modern discussion was
given by Sandage 1999).

For a Gaussian luminosity function G(M0, σ ) and a sharp magnitude limit ml, it
is easy to calculate the amount of the bias 〈μ〉−μtrue at each true distance (Teeriko-
rpi 1975b; Sandage 1994), or how much 〈logH 〉 will increase with the kinematic
distance; this happens differently for different values of mlim and p exactly as ex-
pected from the selection bias (Fig. 4.3). This behaviour also makes it possible to
use so-called normalized distances to study the value of the Hubble constant.
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Fig. 4.3 The Hubble parameter from the Tully-Fisher B-magnitude relation as a function of kine-
matic distance (in units of the Virgo cluster distance) for a magnitude limited sample. The maxi-
mum rotational velocity increases from (a) to (d). Based on the data and analysis in Bottinelli et
al. (1988)

Normalized Distances Take two standard candle classes, with luminosity func-
tions G(M1, σ ) and G(M2, σ ) so that �M =M1 −M2. If both are sampled from
the sky up to a sharp limit ml , it is easy to see that along the true distance modulus
axis μ, the Type 2 bias suffered by these two candles is depicted by curves of the
same form, but separated by constant �μ=−�M . The curve of the brighter can-
dle achieves only at larger distances the bias suffered by the fainter one. In this way,
inspection of two or more standard candle classes gives a way to recognize the bias.
Van den Bergh’s luminosity classes clearly showed this effect (Teerikorpi 1975b).

When the TF relation M = ap + b between the magnitude and maximum ro-
tational velocity of spiral galaxies entered the scene, there was some uncertainty
about which slope to use in distance determinations to individual galaxies—direct,
inverse, or something between? Bottinelli et al. (1986) and also Lynden-Bell et al.
(1988) argued that the direct slope is in a sense the natural one so that the regression
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line is derived as M against the fixed observed value of p—it is not so important
that there is an error in p.

Furthermore, the direct slope allows one to generalize the example of two stan-
dard candles to a continuum of p-values and in this way to investigate the Type 2
bias in distances. If one inspects the whole sample, the bias may not be conspic-
uous. And if one divides the sample into narrow ranges of p, each will contain a
small number of galaxies, making it difficult to see the behaviour of the bias for
each separate “standard candle” within p ± 1

2dp. For these reasons, it is helpful to
introduce so-called normalized distance dn (Teerikorpi 1984), which transforms the
distance axis so that the separate p-classes are shifted one over the other and the
bias is seen in its purity:

logdn = logdkin + 0.2(a · p+ b− const). (4.11)

This method (MND) uses an approximate kinematical (relative) distance scale (dkin),
e.g. as given by the Hubble law or Virgo-centric models, and studies the bias as seen
in the Hubble ratio logH , calculated for each galaxy from the TF distance and the
(corrected) radial velocity. One expects at small normalized distances a horizontal
unbiased plateau, from which the Hubble constant may be estimated. Bottinelli et
al. (1986) could identify the plateau for a sample of 395 galaxies. One appreciates
the debilitating effect of Type 2 bias by noting that when it was ignored, the result
was H0 ≈ 100 km s−1/Mpc, while the unbiased plateau yielded 72 km s−1/Mpc.

The tripple-entry-correction (TEC) method of Sandage (1988c) is based on
Spaenhauer (1978) logV –M diagrams which revealed how the magnitude limit
makes the average luminosity of a stellar standard candle change with growing true
distance V . Teerikorpi (1997) discussed how these two ways of deriving the value
of H0 from field spiral samples (MND, TEC) are connected, showing how the data
used in the NDM can be given the Spaenhauer representation. In the normalization,
the unbiased parts of the separate Spaenhauer patterns amalgamate together to form
a common unbiased plateau.

In a nutshell, the TEC leaves the p-classes in separation, so their individual be-
haviour can be inspected (cf. Fig. 4.3), while the MND unites them into one ensem-
ble, and the common bias behaviour is seen. Both methods are empirical in essence.

The Unbiased Plateau The normalized distance formula should also include
terms describing how the effective magnitude limit changes due to inclination and
galactic extinction (Bottinelli et al. 1995). One must also include the Hubble type
dependence in the TF relation. If the magnitude limits differ from a fixed one m0,
then one must add a term 0.2�mlim = 0.2(m0 −mlim) to the definition of dn (note
the sign: a brighter (lower) mlim increases the normalized distance, i.e. makes the
bias start at a shorter true distance). The sum of the corrections Aincl, Atype, and Agal
is used as one factor in the expression for the normalized distance:

logdn = logdkin + 0.2(ap+ b− const+�mlim +Aincl +Atype +Agal). (4.12)

This form of dnorm was used by Theureau et al. (1997a) in their study of H0.
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Fig. 4.4 The Hubble parameter from the Tully-Fisher diameter relation as a function of the kine-
matic distance (left) and the normalized distance (right) for the KLUN sample. After normaliza-
tion, the typical pattern appears, with the “plateau” and the biased part with the sharp lower en-
velope that reflects the effect of the limiting angular size (from Theureau et al. 1997a; reproduced
with permission © ESO)

The number of galaxies remains regrettably small in the unbiased region. In Bot-
tinelli et al. (1986) the total number of galaxies was 395, while the size of the
adopted plateau was = 41. In Theureau et al. (1997a), the size of the KLUN sample
was 4164, and the adopted plateau contained 478 galaxies (see Fig. 4.4). Gener-
ally the empirical plateau contains about 10% of the total sample—in Theureau et
al. (1997a) the cumulative error of 〈logH 〉 was seen to reach about 2% when the
fraction of the sample is 0.1.

The Cluster Incompleteness Bias Because of the large number of galaxies in a
small volume of space, one hopes to derive the distance of a cluster with a higher
accuracy than the distance to an individual galaxy (so that σμ→ σμ/

√
n). However,

when one applies the direct TF relation, there is always a systematic error on some
level, due to the incompleteness bias: for small p = logVmax the observed galaxies
are brighter than the average (Teerikorpi 1987). For an individual cluster this is
seen as a change in the residual m− (ap + b) as a function of p. For a collection
of clusters it is recommended to apply a normalization on logVM (Bottinelli et al.
1987) and inspect the combined data from the clusters in one diagram.

In principle, the use of TF relations with small scatter may reduce the incom-
pleteness bias. However, be aware of the Gould effect (Chap. 3) which can increase
the bias from that expected from the small dispersion.

The inverse TF-relation seems to be a solution to the cluster incompleteness bias.
In practice, there are problems. It is essential that there should be no selection ac-
cording to the HI-linewidth. Another thing is that the calibrator slope for the inverse
relation, derived from bright nearby galaxies, is not necessarily the correct slope for
distant galaxies, if their magnitudes are less accurate than for the calibrators. If one
ignores this problem, the inverse relation will give too small distances (Teerikorpi
1990b), as concretely shown for the Virgo cluster by Fouqué et al. (1990).

The correct slope for the inverse relation is especially important, because the aim
is to reach large distances, i.e. to use extreme values of m and p. A small error in
the slope causes large errors at large distances.
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4.2.3 Results on H0 in the Local Galaxy Universe z < 0.1

In 1958 Sandage asked, when correcting Hubble’s 1936 distances (Cepheids, the
brightest-star criterion), “what the possible final value of H is likely to be”. He gave
H ≈ 75, but also noted that if the absolute magnitude of the bightest star is −9.5,
then H would be as low as 55. In fact, these define the range where the majority of
modern measurements place the value of H0. We illustrate the problem with short
summaries of a few central efforts.

The KLUN Sample and the TF Method Bottinelli et al. (1986) found H0 =
72 km s−1/Mpc using the method of normalized distances, i.e. extracting a sample
cleaned of galaxies suffering from the Type 2 bias. This value was based on the de
Vaucouleurs calibrator distances. The calibrator distances adopted by Sandage and
Tammann at the time led to H0 = 63.

A developed version of the MND was applied by Theureau et al. (1997b) to the
KLUN (Kinematics of the Local Universe) sample constructed on the basis of the
Lyon-Meudon extragalactic data base and containing 5171 galaxies with diameters
D25 larger than 1.6 arcmin. Its 400 unbiased galaxies (ten times more than Bottinelli
et al. 1986 used) reached up to 2000–3000 km/s. Using the calibration from the
HST observations of extragalactic Cepheids available at the time gave: H0 = 53±
5 km s−1/Mpc (the B-magnitude relation), H0 = 57± 5 km s−1/Mpc (the diameter
relation).

Ekholm et al. (1999b) extended the measurement deeper in space with the inverse
relation—a task harder than might have been expected from its “unbiased” nature. A
simple application of the inverse relation, calibrated with 15 galaxies with Cepheid
distances, yielded H0 ≈ 80 km s−1/Mpc for the diameter relation and H0 ≈ 70 for
the magnitude relation. However, it was concluded that the calibrator selection bias
affects the derived value of H0 even when the relevant slope is used (as briefly dis-
cussed in Chap. 3). After the required correction for the calibrator bias, which also
depends on the radial space distribution of galaxies, the sample reaching 10000 km/s
(i.e. three times deeper than the sample in the MND approach) yielded:

H0 = 59± 5 km s−1/Mpc (the inverse diameter relation)
H0 = 58± 6 km s−1/Mpc (the inverse B-magnitude relation)

The HST Key Project In this program, Cepheids were measured in many local
spiral galaxies in order to calibrate several long-distance indicators. The distances
were based on the PL relation of the Large Magellanic Cloud Cepheids with the
zero-point corresponding to (m−M)0

LMC = 18.50.
Freedman et al. (2001) (also Freedman and Madore 2010) summarized the re-

sults from the TF (I-band) and the Fundamental Plane (FP) methods, the surface
brightness fluctuations (SBF) method and the SNII and SNe Ia distance indicators.
These averaged to (systematic errors included):

H0 = 72± 8 km s−1/Mpc.
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The TF galaxy sample extends to about 9000 km/s and the type Ia supernovae
extend to about 30000 km/s, where the peculiar velocities should not be a problem
at all.

The HST Project for the Calibration of SNe Ia With Sandage as Principal In-
vestigator this HST project measured Cepheids in galaxies where a SN Ia event had
been well observed. Thus Cepheid distances for 10 host galaxies were determined
and these were used for calibrating the maximum luminosity in the explosions of Ia
supernovae (Sandage et al. 2006).

The Hubble diagram for the SNIa host galaxies constructed by the HST team
contained 62 SNe Ia in the range 3000 < V0 < 20000 km/s, defining a Hubble line
with the exact expected slope of 0.2 (for B, V, and I bands) and a small scatter of
σ = 0.15 mag. Together with the locally calibrated luminosities the Hubble line
delivered the value of the Hubble constant:

H0 = 62.3± 5.3 km s−1/Mpc.

As to the possible (non)universality of the Cepheid PL relation, Sandage and his
associates (e.g., Tammann et al. 2003) have argued that there are differences also in
the slopes, so that low metallicity Cepheids have flatter slopes, and the derived dis-
tance would depend on what relation is used. After a correction of the host galaxy
distances for the assumed metallicity dependence (as measured by [O/H]), the Sne Ia
were calibrated to be somewhat brighter than in the HST Key Project work. “Failure
to take the slope differences in the P-L relation into account as a function of metal-
licity using Cepheids as distance indicators results in incorrect Cepheid distances.
Part of the 15% difference between our long distance scale [. . . ] and that of the HST
Key Project short scale is due to the effect of using an inappropriate P-L relation.”
(Sandage et al. 2009). For an analysis of this question by the HST Key Project, see
Freedman and Madore (2010).

The last three results (the inverse TF relation, the HST Key Project, the SNIa cal-
ibration project) which reach distances corresponding to V ≈ 10000–20000 km s−1,
are similar within the error ranges, though there may still be systematic errors, e.g.,
due to the suspected Cepheid distance bias (Chap. 3; Paturel and Teerikorpi 2005).
In fact, the calibrators which Ekholm et al. (1999b) used in the inverse TF work,
had their average adopted distance modulus about 0.2 larger than those used by
Freedman et al. (2001) which would shift their value from 58 to about 64.

Figure 4.5 shows how the best value of the measured Hubble constant has de-
creased during the several decades of observational cosmology and has now finally
levelled off around 60 to 70.

4.3 On Physical Methods in the Galaxy Universe

Along with the major distance indicators for large samples, there are special meth-
ods which may provide distance estimates for a number of individual objects. Es-
pecially interesting are physical methods which bypass the local calibration process
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Fig. 4.5 The evolution of the measured value of the Hubble constant in the past decades mainly
tells about the difficulty of measuring distances of galaxies. The last two points come from the
Hubble Space Telescope observations

and may reach large distances. On the other hand, systematic errors due to selection
effects or simplified physical models may be difficult to control because of the rel-
atively small number of objects. There is also a general bias due to the fact that one
“knows what to expect” and thus some important effect may go unnoticed.

4.3.1 The Sunyaev-Zeldovich Effect

The physics of this method involves the interaction of the cosmic microwave back-
ground radiation and the hot (108 deg) intergalactic gas in rich clusters of galaxies.
Sunyaev and Zeldovich (1972) described the effect expected when the CBR is ob-
served in the direction of such a hot gas. The inverse Compton scattering will give
photons below the peak of the thermal distribution (i.e. at wavelengths longer than
about 2 mm; the Rayleigh-Jeans part of the spectrum) extra energy, turning them
into higher-frequency photons. Hence, at the cluster the sky will be a little cooler
than around it (the relative decrement is about 10−4). The measurement of this SZ
effect can be used to infer the angular size distance to the cluster (Silk and White
1978).

The Basic Idea Assume that the cluster and the gas cloud is spherical, with radius
R, and the gas is of a uniform density, with the electron number density ne and
temperature Te. The drop in the temperature �T

T
depends on the size of the cloud

(determining the average line-of-sight column density), the electron number density,
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and also the temperature:

�T

T
=−aTeneR. (4.13)

Measuring the temperature deficit would give us the radius of the cluster R if we
knew the electron temperature and density of the hot gas. Information about these
quantities is given by the X-ray spectrum I (ν) of the bremsstrahlung emission from
the gas. It can be written as

I (ν)= bn2
eT
−1/2
e e−hν/kTeR. (4.14)

The unknown temperature Te is reflected in the slope of the spectrum (log I (ν) ∝
−T −1

e + const., leaving the unknowns ne and R to be solved from two equations,
as the factors a and b are known. From the size R and the observed angle follows
the angular size distance. This simplified description sets aside many technical and
physical details.

Silk and White (1978) viewed it realistic that one might measure distances to
nearby cluster to 40% accuracy. Only recently has such precision become in reach.
There are tens of clusters measured in this way in the redshift range of 0.1 to 0.9,
and depending on the sample and analysis the Hubble constant H0 has been derived
to be from about 60 to 75 (Carlstrom et al. 2002; Bonamente et al. 2006). Systematic
errors due to density and temperature inhomogeneities in the gas, departures from
isothermality, and asphericity may explain part of the scatter (Kawahara et al. 2008).

4.3.2 The Time Delay in Gravitational Lensing

In his book Morphological astronomy Zwicky (1957) correctly predicted several
future applications of “the discovery of images of nebulae which are formed through
the gravitational fields of foreground nebulae”, such as testing the general theory of
relativity and measuring dark masses of galaxies. Furthermore, gravitational lensing
could be used as big natural telescopes to “throw very welcome light on a number
of cosmological problems”.

As one important application, Refsdal (1964) showed how the time difference �t

between the changes in the lensed images of a distant supernova could lead to the
scaling (the Hubble constant) of the used Friedmann model. Here the redshifts of
the lens and the background object (zL, zS) are needed. The first gravitational lens
was discovered in 1979 (the quasar 0957+ 561). In the 1990s astronomers began to
apply Refsdahl’s idea to this and other lensed variable quasars.

If the angles between the lens and the images are θ1 and θ2, one can calculate the
difference between the two light path lengths from the light source to the observer:
L1−L2 = [(θ2

1 − θ2
2 )/2][DSDL/(DS−DL)]. Here DS and DL are the angular size

distances to the background source and the lensing object, respectively. Writing at
small redshifts D = zc/H0, the desired time difference becomes

�t =�L/c= [zSzL/(zS − zL)] ×H−1
0 × (θ2

1 − θ2
2 )/2. (4.15)
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The derived value of H0 is inversely proportional to the time difference and the
velocity of light is the only physical constant in this formula. In practice the time
difference (typically between 10 and 100 days) must be analysed using the Fried-
mann model and instead of a point-mass model one has to use a mass distribution
for the lens.4 The results have varied in the range from 50 to 80 (Jackson 2007).

After a slow start, both the SZ-effect method and the gravitational lensing method
have began to deliver useful complementary information on the value of the Hubble
constant at large distances in the not-so-well studied redshift range 0.2–0.8.

4.3.3 The Distance Scale and the Eddington Luminosity

In the era of the Great Debate, Öpik (1922) made a remarkable determination of
the distance to the Andromeda galaxy, using its rotation velocity, angular size, and
optical flux (as reported already in 1918 in Moscow). From the data available, Öpik
first calculated the distance of M31 to be 785 kpc, a value that he proposed instead
to be 450 kpc in the 1922 paper based on a different value of the mass-to-luminosity
ratio of M31.

Öpik’s method belongs to a wider class of dynamical distance evaluation meth-
ods. Consider the relation between the gravitating mass of a system and an observ-
able velocity quantity for a test particle:

M = arV 2 = aθdV 2. (4.16)

This formula contains a size r within the object (seen at angle θ at distance d)
and the relevant velocity V (or dispersion σ ). For an orbit around the mass M , the
constant of proportionality a is simply G−1. Then, omitting projection factors, the
observations of θ and V give the quantity

M/d = aθV 2. (4.17)

If one can express M/d in another form containing observable quantities and known
constants plus the unknown d , then one can bypass the M/d degeneracy and derive
the distance d (Teerikorpi 2011). For instance, if the mass M can be given as ∝
dn where n = 0,2 or 3, then one can solve for d , but if M ∝ d , then any prior
dependence on d disappears.

As a case of n = 2, if one expresses the mass M using the luminosity L and
the mass-to-luminosity ratio γ , so that M = γL = γf d2, then the distance can be
solved as

d = a

γ
× θ0V

2

f
. (4.18)

4Often the trend is towards more interest in the astrophysics of a phenomenon than in its possible
use as a distance indicator. For instance, in the gravitational lense method one may study H0,
assuming a mass model for the lense, or perhaps better, one may study the mass model, assuming
H0 (regarded to be more firmly derived with several other methods) (Jackson 2007).
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Fig. 4.6 Luminosity vs.
compact nucleus mass (in
logarithmic scales and solar
units) for very luminous yet
quiescent quasars
(0.6 < z < 1.5) for two values
of H0. The upper line is LEdd,
and the lower one is 0.5LEdd.
Varying H0 causes only a
vertical shift (Eq. (4.19)).
Two quasars show the (small)
effect of �
� =±0.15
(
= 1). (Based on data in
Table 1 in Teerikorpi 2011;
reproduced with permission
© ESO)

This is Öpik’s method, which requires an estimate for the mass-to-luminosity ra-
tio γ . Using modern data, where the horizontal part of the rotation curve starts at
a distance of about 2.5 deg from the centre of M31, one has to adopt the mass-to-
luminosity ratio M/L ≈ 17 (in the solar unit) in order to derive the currently ac-
cepted distance of 0.77 Mpc. Such a high value of M/L simply means the presence
of a lot of dark matter in the halo of the Andromeda galaxy. Why then could Öpik
obtain such an accurate value for the distance without knowing about dark matter?
Apart from Öpik having had good luck, he also had data that covered the innermost
nebula (within 2.5 arcminutes and not 2.5 degrees from the centre!), where the dark
matter is not important.

It would be difficult to apply Öpik’s distance indicator to distant galaxies.
Teerikorpi (2011) considered an analogous method, not for galaxies but for hy-
pothetical Eddington radiators for which M/L has a known value from physics.
Such objects might exist among active galactic nuclei, where the energy generation
may be either linked to or limited by the Eddington luminosity, even though we
are presently unable to use either the spectrum or some other property that can be
measured without knowing the distance, to identify AGNs (such as quasars) shining
close to LEdd.

In its simplest form, the Eddington luminosity is the maximum value of lumi-
nosity that can be powered by spherical accretion and its value depends only on the
mass of the radiating object and on physical constants: LEdd = 1.26×1038(M/M�)
erg s−1. The corresponding M/L ratio is small, γEdd = 3× 10−5. These “Edding-
ton radiators” would be among the most luminous stable sources within a class of a
fixed mass.

Recent years have made it possible to infer masses of the compact nuclei in
distant galaxies and quasars. In such determinations one may have to relate the size
to measurements other than the angular size (while the needed velocity value is
given by the line width �λ of some emission line (Hβ , CIV, or MgII)). One can infer
the size of the dynamically relevant broad line region from the optical luminosity
(Koratkar and Gaskell 1991), using in practice a luminosity–size (L–r) relation.
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This must be calibrated at low redshifts; using the reverberation mapping method,
one can derive the size r independently of H0, but L is tied to H0 (Kaspi et al. 2000).

A change in H0 does not affect the derived masses of high-redshift objects, but
in contrast can significantly affect the Eddington ratios L/LEdd:

MBH ∝ h0, L/LEdd ∝ 4πr2
lumfbol/MBH ∝ h−2. (4.19)

As an illustration, Teerikorpi (2011) used very luminous yet quiescent radio
quasars at redshifts 0.5–1.6, “AI” quasars, around Mmin ≈ −26.0 + 5 logh100 (a
minimum brightness V mag). About 30 potential AI objects in the redshift range
0.5–1.7 are found in a list of radio quasars with UBV photometry (Teerikorpi 2000)
and 11 of these have their masses measured by the method described above. They
are very luminous (Mmin < −25.6), but of lower activity than fainter quasars on
the basis of their optical variability and polarization (other properties in Teerikorpi
2001, 2003).

It turned out that if one assumes that this sample of possible Eddington radiator
candidates indeed has their luminosity around LEdd, one may infer which value of
H0 leads this efficiency (Fig. 4.6). Using standard values for the needed parameters
led to H0 ≈ 65 km s−1/Mpc. However, the systematic errors arising from the vari-
ous steps of calculation are not yet under control and we also do not know if these
objects are really Eddington radiators; if they are fainter (which is typical for the
active galactic nuclei in general), then the derived value of the Hubble constant is
just a lower limit.

This example also shows that it is often interesting to consider how a cosmic
phenomenon is related to the distance, even when its practical value as a distance
indicator may not be high.

4.3.4 Precision Cosmology from the Background Radiation

The angular power spectrum of the thermal background radiation can be interpreted
in terms of the physics of the photon, baryon and dark matter mixture around the
recombination epoch when electrons and protons combined to form neutral hydro-
gen. Before the recombination photons and baryons were tightly coupled and os-
cillations were set up under the effect of gravity and radiation pressure. After the
recombination, photons streamed freely and from their angular distribution now on
the celestial sphere we can extract information about the conditions some 400 000
years after the big bang (according to the standard cosmology), corresponding to
the redshift ≈ 1500 (as reviewed by Hu and Dodelson 2002).

Especially, the first peak in the angular power spectrum, observed at a scale of
about 1 deg, is a projection of the sound horizon at the recombination epoch. The
angle of this size is predicted by a flat spatial geometry (
= 1) and the prediction
does not depend much on 
� (or 
m). The smaller angular-scale peaks contain ad-
ditional information about the Friedmann model. Especially, the heights of the peaks
depend inversely on the quantity 
mh

2. This means that one cannot derive the value
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of the Hubble constant independently; it is coupled with the matter density parame-
ter (degeneracy), so that different combinations of the matter densities and the Hub-
ble constant can correspond to similar angular power spectra. For instance, from the
WMAP observations Spergel et al. (2003) inferred that H0 = 72± 5 km s−1/Mpc
when 
m = 0.27 and 
� = 0.73.

An accurate measurement of the Hubble constant in the large-scale galaxy uni-
verse would provide an important outside constraint for the multi-parametric models
used to interpret the anisotropies of the background radiation. The methods which
currently can be extended, say, to z > 0.5 still have considerable uncertainty in the
derived value of H0.



Chapter 5
Gravitational Physics for Cosmic Scales

World models have been always related to views on the reason why an apple falls.
At the heart of a cosmological model there must be a theory of that universal force
that acts between all masses and rules the dynamics of the whole universe. In current
cosmology, it is general relativity. This is not a quantum theory and developments
in theoretical physics suggest that also other possibilities exist to construct a gravity
theory to be used in world models—a good reason to pay attention to trends in
gravity physics.

Even our Solar System has become an arena of new gravity effects challeng-
ing explanations. In his lucid report Anderson (2009) asks “Is there something we
don’t know about gravity?”. Anomalies in the observed local motions include an
unexplained change in our Moon’s orbit, the increase in the length of the Astronom-
ical Unit, the deceleration of the spacecraft Pioneer 10 and 11, and the spacecraft
speedups after Earth flybys. These oddities in our cosmic backyard made Anderson
conclude “Maybe astronomy is already experiencing a transformation to . . . a new
theory of gravity.” This reminds one of the tiny anomaly in Mercury’s orbit, whose
explanation required the birth of a new gravity theory a century ago.

5.1 The Nature of the Gravitational Interaction

The new physics of the 20th century radically changed the basis of cosmological
models. In the same decade when the galaxy universe and the Hubble law were
discovered, the young Russian physicists George Gamow, Dimitrij Ivanenko and
Lev Landau introduced the “Ghc”-classification of physical theories and predicted
the appearance of a future relativistic quantum gravity theory (Gamow et al. 1928).
Then Matvej Bronstein (1934), whose short life ended as a victim of Stalin’s ter-
ror, noted that cosmological models should include both relativistic and quantum
physics.

Old world models were based on classical Newtonian gravity (“G”-theory). The
current cornerstone, general relativity, is a “Gc”-theory. Modern physics has the
vision of quantum relativistic gravity. However, in spite of efforts, up to now there
is still no such “Ghc”-theory, on which future cosmology is expected to be based. In
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this chapter we pay brief visits to Newton’s theory, Einstein’s general relativity, and
Poincaré-Feynman’s field gravity, a possible low-energy limit of the Ghc theory.

5.1.1 Newton’s Gravity Theory

In 1987 scientists celebrated three triumphal centuries of Newton’s gravity theory.
Indeed, even now most works in celestial mechanics use the classical theory that
allows one to calculate with a high accuracy the motions in our Solar System. Dy-
namical studies of stars and galaxies, as well as the large cosmological N-body
simulations, are also based on Newtonian gravitation.

Initial Principles In modern terms, Newton made a non-relativistic non-quantum
theory of gravity. It is based on Euclidean 3D space and 1D time. Their homogeneity
and isotropy involve more than simplicity or beauty; those symmetries lie behind the
conservation laws in classical physics.

An inertial system of reference is defined by means of the free motion of a refer-
ence body (plus the units of measurement). The centre of mass of a body moves with
a constant velocity if there are no external forces or their sum is zero. The principle
of least action is valid for a particle’s motion.

A mass distribution with density ρ(	r) defines the gravitational potential ϕ
N
(	r).

A change at one point instantaneously alters the potential at all other points. This
“action at a distance” is typical of classical theories with no “field” as a mediator of
the interaction and with no upper velocity limit.

Main Equations In a nutshell, Newtonian gravity theory is contained in two
equations. Poisson’s equation for the gravitational potential is

�ϕ
N
= 4πGρ. (5.1)

The equation of motion of a particle under a Newtonian gravity force 	F is

	F =mI

(
d 	v
dt

)
=−mG 	∇ϕN. (5.2)

The ratio of the gravitational and inertial masses mG/mI is not restricted by New-
ton’s theory itself. The weak equivalence principle states mG =mI.

Solutions Poisson’s equation for a spherically symmetric static body with mass
M , radius R and constant density ρ0 has the following solutions outside and inside
the body ( r is the distance from the centre of the ball):

ϕN(r)=−GM

r
(r > R), ϕN(r)=−2πGρ0

(
R2 − r2

3

)
(r < R). (5.3)
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The Newtonian gravity force acting on a test particle with mass m at the point de-
fined by the radius-vector 	r from the centre of the sphere with mass M is

	FN(	r)=−m 	∇ϕN =−GmM

r2

	r
r
, (5.4)

and its orbit around the sphere is an ordinary conic section.
In an important solution of Newton’s equation of motion a test particle is passing

by a much more massive central mass M at the impact distance b. If its speed is v,
it will suffer a small deflection

θN = 2GM

v2b
. (5.5)

Interestingly, light (v = c) passing by the Sun would be deflected an angle θN =
2GM�/R�c2 = 0.875′′. The observed value is two times larger.

5.1.2 Modern Physics of Fundamental Interactions

Modern physics deals with four presently known fundamental interactions: the elec-
tromagnetic, the weak, the strong and the gravitational.

Electromagnetic, Weak and Strong Forces The first three interactions are all
described within a single Lagrangian formalism of the relativistic quantum field
theory. This theory contains on a fundamental level:

• flat Minkowski space-time & inertial reference frames
• the energy-momentum (EM) tensor of the field
• the uncertainty principle & the principle of superposition

These forces are viewed as an exchange of force mediator particles, bosons of vari-
ous types (photons, W and Z bosons, gluons) carrying energy-momentum between
fermions. The Standard Model of elementary particles includes quantum electro-
dynamics, Weinberg-Salam-Glashow electroweak model, and quantum chromody-
namic. The particles are quanta of fields, either fermion (half-integer spin) or bosons
(integer spin) and the physical interactions are imagined as the exchange of force
carriers (e.g., Bogolubov and Shirkov 1976).

Gravitational Interaction This fourth force is much weaker (Table 5.1) and it is
described in a dramatically different way, as a curvature of space-time itself. General
relativity, a relativistic non-quantum theory, contains:

• curved Riemannian space-time & non-inertial reference frames
• no energy-momentum tensor of the gravity field
• the equivalence principle
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Table 5.1 The fundamental forces of Nature

Force Relative strength Range Phenomena

Strong 2000 10−13 cm atomic nuclei

Weak 10−8 10−15 cm neutron decay

Electromagnetic 1 infinite atoms, molecules, solids

Gravitational 10−43 infinite stars, galaxies, universe

These lists make it clear why general relativity and quantum field theory represent
very different physical interactions and why there are great difficulties in the quanti-
zation of the geometric gravity. The absence of the energy-momentum tensor for the
gravity field is striking. Noether’s theorem links conservation of energy-momentum
to Minkowski space. Hence, no conservation laws exist for the EM of the matter plus
gravity field in general relativity, precisely because there is no global Minkowski
space. For the same reason, general relativity is not quantizable in an ordinary sense
(Yilmaz 1997); the energy of the field quanta can not be defined properly.

5.1.3 Geometrical and Field Approaches to Gravitation

The geometrical way to gravity physics was developed by Einstein (1915, 1916) in
his general relativity and he quickly applied his theory to cosmology.

Einstein’s Geometrical Approach Here geometry becomes a dynamical phys-
ical entity that may be deformed, stretched and even spread (gravitational waves).
So gravity is related to the curvature of space and has a singular position among
interactions. In conditions of weak gravity, general relativity has passed all avail-
able tests in the Solar System and in binary pulsars. More accurate weak field
tests are still needed as well as new tests of strong-gravity effects (Will 2005;
Bertolami et al. 2006a).

How to Unify General Relativity with Quantum Physics Conceptual tensions
between quantum mechanics and general relativity continue to complicate the most
pressing question in today’s theoretical physics: how to merge quantum theory and
gravitation (e.g., Yilmaz 1997; Amelino-Camelia 2000; Chiao 2003). The standard
scheme of quantization applied to general relativity gives a theory that is not “renor-
malizable” (i.e. leads to inevitable infinities in physical quantities). Also other at-
tempts, based on the string/M theory, canonical/loop quantum gravity, and non-
commutative geometry, encounter big problems and after decades of work we still
have no quantum geometrical gravity theory.

Poincaré–Feynman Field Approach Meanwhile, a rather different approach ex-
ists. As early as 1905 Poincaré in “On the dynamics of the electron” advanced a
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relativistic theory for all physical interactions, in flat 4D space-time (now called
Minkowski space). He pointed out that analogously to electrodynamics, gravitation
should propagate with the speed of light, and there should exist mediators of the
interaction—gravitational waves, or l’onde gravifique as he called them (Poincaré
1905, 1906).

Poincaré thus could be viewed as the father of what is now called the relativis-
tic quantum field of gravitational interaction. This field theory approach to grav-
ity (gravidynamics) was examined by a number of physicists (e.g., Birkhoff 1944;
Moshinsky 1950; Thirring 1961; Kalman 1961).1

The strategy and principles of the field gravity theory were discussed by Feyn-
man, who wrote that “geometrical interpretation is not really necessary or essential
for physics” (Feynman et al. 1995). He pointed to the central role of the energy of
the gravity field for a reasonable theory of gravitational force. For him gravitons
were particles carrying the energy-momentum of the field: “the situation is exactly
analogous to electrodynamics—and in the quantum interpretation, every radiated
graviton carries away an amount of energy �ω”. A consistent field gravity theory,
where the inertial frames, Minkowski space, and energy of the gravity field have the
central role, has been partly developed by Sokolov and Baryshev (Sect. 5.3).

Some physicists have concluded that general relativity and field gravity are es-
sentially identical, while others argue it is impossible to derive general relativity
from a field without assuming something similar to geometrization. Appendix B
briefly reviews this important and debated item.

5.2 Einstein’s General Relativity

General relativity is a relativistic non-quantum theory (“Gc” in Gamow-Ivanenko-
Landau grouping), and a prototype of the geometrical approach to gravitation. It is a
mathematically exact non-linear theory without inner limitations to its physical ap-
plications. Its predictions include extraordinary objects—singularities within black
holes and of the whole universe.

5.2.1 Initial Principles and Basic Equations

Geometrization According to general relativity all gravity phenomena can be
described by the metric of a Riemannian space. It has no “prior geometry”, like

1A quantum description of the field was attempted by Bronstein (1936), Fierz and Pauli (1939),
Ivanenko and Sokolov (1947), Feynman (1963, 1971), Weinberg (1965), Zakharov (1965), and
Ogievetsky and Polubarinov (1965). Others tried to combine geometry and field; this has led to
three different theories with different predictions (Sect. 5.2.3).
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Minkowski space in other fundamental interaction theories. Gravity is not a mate-
rial field in space, but the property of the curved space itself. The role of the grav-
itational potential is played by the metric tensor gik . It determines the 4-interval of
the corresponding Riemannian space:2

ds2 = gikdx
idxk. (5.6)

A test particle moves on a geodesic line of the Riemannian space—this is one form
of the equivalence principle important for the birth of general relativity.

The Principle of Least Action Einstein’s field equations are obtained from the
principle of least action by the variation of the metric tensor gik in the action S of
the system matter + gravity field. The action has the form

S = S(m) + S(g) = 1

c

∫ (
�(m) +�(g)

)√−gd
, (5.7)

where Sm and Sg are the actions for the matter and gravitational field, �(m) is the
Lagrangian for the matter, and the Lagrangian for the field is

�(g) =− c4

16πG
�, (5.8)

where � is the scalar curvature of the Riemannian space.

Einstein’s Field Equations Variation δgik in (5.7) gives δ(S(m) + S(g)) = 0 for
the field equations:

�ik − 1

2
gik�= 8πG

c4
T ik
(m), (5.9)

where �ik is the Ricci tensor. T ik
(m) is the energy-momentum tensor (EMT) of the

matter. It includes all kinds of material substances, such as particles, fields, radi-
ation, dark energy, and the vacuum T ik

(vac) = gik� (� is Einstein’s cosmological

constant). T ik
(m) does not contain the EMT of the gravity field itself, as gravitation is

not a material field in general relativity.

The Equation of Motion of Test Particles A mathematical consequence of the
field equations (5.9) is that as the covariant derivative of the left side equals zero
(due to Bianchi identity), so for the right side we also have the continuity equation

T ik
(m);k = 0. (5.10)

2We use main definitions and notations similar to Landau and Lifshitz (1971), so 4D tensor indices
are denoted by Latin letters i, k, l, . . . which take on the values 0, 1, 2, 3, and the metric has
signature (+,−,−,−).
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This continuity equation also gives the equations of motion for the considered mat-
ter. It implies the geodesic equation of motion for a test particle:

dui

ds
=−�i

klu
kul. (5.11)

ui = dxi/ds is the 4-velocity of the particle and �i
kl is the Christoffel symbol.

5.2.2 The Weak Field Approximation

All relativistic gravity effects that have been directly tested by observations, happen
in the weak field, where the potential |ϕ| 
 c2. This is why the weak field approxi-
mation plays an important role in gravity physics.

The Metric Tensor In the case of a weak gravity field the metric tensor is usually
expressed in the form

gik = ηik + hik, gik = ηik − hik, gik = δik. (5.12)

The quantities |hik| 
 1, as well as the Minkowski space metric ηik are not tensors
of the Riemannian space. The different signs for covariant (in gik) and contravariant
(in gik) components are caused by the exact identity (valid for the metric tensor of
a Riemannian space)

gik · gik = 4. (5.13)

Equation (5.12) implies that the tensor gik is represented by the sum of two non-
tensor quantities, as ηik and hik are not tensors of the curved Riemannian space.
The situation is fundamentally different in the consistent field approach where the
sum of these two tensors is a tensor of Minkowski space.

Field Equations In linear approximation, Einstein’s equations (5.9) are

(
�− 1

c2

∂2

∂t2

)
hik = 16πG

c4

[
T ik
(m) −

1

2
ηikT(m)

]
. (5.14)

In the important case of a static spherically symmetric weak gravity field the solution
of these equations gives the metric tensor in isotropic coordinates:

gik = ηik+ 2ϕN
c2

diag(1,1,1,1), gik = ηik− 2ϕN
c2

diag(1,1,1,1), gik = δik,

(5.15)
where ϕN =−GM/r is the Newtonian potential. This shows transparently the met-
ric tensor in the role of the gravitational potential.
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The Equation of Motion in the Weak Field The post-Newtonian approximation
of the weak field includes all terms of order v2/c2 or ϕN/c

2. PN-geodesic equations
are frequently used in relativistic celestial mechanics. The 3-acceleration of a test
particle in the static spherically symmetric weak gravity field is given by the equa-
tion (

d 	v
dt

)
GR
= −

{
1+ (1+ α)

v2

c2
+ (4− 2α)

ϕN

c2
− 3α

( 	r
r
· 	v
c

)2}
	∇ϕN

+ (4− 2α)
	v
c

( 	v
c
· 	∇ϕN

)
, (5.16)

where 	v = d	r/dt , ϕN =−GM/r , and 	∇ϕN =GM	r/r3 (Brumberg 1991). The im-
portant parameter α is determined by the choice of the coordinate system: α = 2
for the Painlevé coordinates, α = 1 for the Schwarzschild coordinates, and α = 0
for harmonic and isotropic coordinates. Hence the orbit of a particle will depend on
this choice. However, one can suggest that an observable physical quantity should
not depend on the coordinate parameter α and a procedure of measuring the quan-
tity must be formulated, so that there will be no coordinate dependence in the final
results.3

Modified Lagrangian It is well known that the observations of distant Ia super-
novae are usually interpreted as indicating the acceleration of the universal expan-
sion due to the repulsive effect of the cosmological constant or dark energy. It has
also motivated the study of the consequencies of modified Lagrangians of general
relativity (Carroll et al. 2005) so that one might understand the global acceleration
without an unknown substance, dark energy. Viewed in this way, the high redshift
Hubble diagram becomes a test of classical general relativity. This approach has
been studied, including the effects of the modified Lagrangian on the Solar System,
the stellar structure and the cosmological models, by several authors (see, e.g., Mul-
tamäki and Vilja 2008). Clifton et al. (2011) have written an extensive review of
different modified gravity theories and their cosmological consequencies.

5.2.3 The Problem of Energy-Momentum of a Gravity Field

The problem of the energy of the gravity field in general relativity has a long history,
it was, in fact, born together with Einstein’s equations.

Hilbert (1917) noted that “in general relativity there are no equations of en-
ergy . . . corresponding to those in orthogonally invariant theories [i.e. theories in
Minkowski space]”. Then Emmy Noether (1918), his pupil, proved that the sym-
metry of Minkowski space is the cause of the conservation of the EM of a physical

3The problem of the meaning of coordinate systems in general relativity has been debated for
a long time and there is no commonly accepted solution (see, for instance, Misner et al. 1973,
p. 1097; Mitra 2002, 2006).



5.2 Einstein’s General Relativity 99

field. Many results of modern quantum field theories are based on this profound the-
orem. The Minkowski “prior geometry” conveniently guarantees the tensor nature
of the energy-momentum and its conservation for the fields.

Einstein and Grossmann (1913) had come close to Noether’s result: “remarkably
the conservation laws allow one to give a physical definition of the straight line,
though in our theory there is no object or process modelling the straight line, like
a light beam in ordinary relativity theory”. In other words, they said that the con-
servation laws imply Minkowski geometry. They also emphasized that the gravity
field must have an EM tensor as other physical fields. However, in the final general
relativity Einstein dropped this requirement in order to have a generally covariant
theory with no prior Minkowski geometry.

Schrödinger (1918) showed that the object t ik offered by Einstein for describing the
energy-momentum of the gravity field in general relativity may be made to vanish for
the Schwarzschild solution transformed to Cartesian coordinates. Bauer (1918) pointed
out that Einstein’s EM object, when calculated for a flat space-time but in a curvilinear
coordinate system, leads to a nonzero result. So, t ik can be zero when it should not be,
and nonzero when it should! Einstein (1918) replied that Nordström had already informed
him about this problem, and noted that in his theory t ik is not a tensor, and “there may
very well be gravitational fields without stress and energy density”.

The “pseudo-tensor” character of the gravity field in general relativity has been dis-
cussed from time to time, causing surprises for each new generation of physicists.
Rejecting Minkowski space leads to deep difficulties with the definition and conser-
vation of the energy-momentum for the field.

Pseudo-tensor of the Gravity Field Einstein’s equations (5.9) imply that the
covariant derivative of the EM tensor of matter vanishes (the continuity equation):

T ik
(m);k = 0. (5.17)

One is tempted to see in this expression a usual conservation law, but let us cite
the remarkable statement by Landau and Lifshitz (1971, Sect. 101): “however, this
equation does not generally express any conservation law whatever. This is related to
the fact that in a gravitational field the four-momentum of the matter alone must not
be conserved, but rather the four-momentum of matter plus gravitational field; the
latter is not included in the expression for T ik

(m)”. To define a conserved total four-
momentum for a gravitational field plus the matter within it, Landau and Lifshitz
suggested the expression

∂

∂xk
(−g)(T ik

(m) + t ik(g))= 0. (5.18)

Here t ik(g) is called the energy-momentum pseudo-tensor. It is important that the

quantities t ik
(g) do not constitute a tensor, i.e. they depend on the choice of the sys-

tem of coordinates. There are many variants of the expressions suggested for the
pseudo-tensor, among them Einstein’s (non-symmetric) and Landau and Lifshitz’s
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(symmetric) pseudo-tensors.4 Modern discussions of the energy-momentum pseu-
dotensor problem in general relativity and its modifications may be found in Xulu
(2003) and Multamäki et al. (2008).

Non-localizability Could one give a physical reason for the non-tensor nature of
the energy of a gravity field? E.g., it could be the non-localizability of the gravity
field in the geometrical approach (Misner et al. 1973, p. 467): “It is not localiz-
able. The equivalence principle forbids.” They also noted other properties of the
pseudo-tensor: “There is no unique formula for it, . . . , ‘local gravitational energy-
momentum’ has no weight. It does not curve space. It does not serve as a source
term . . . It does not produce any relative geodesic deviation of two nearby world
lines . . . It is not observable.” So the actual cause of the absence of the gravity en-
ergy, i.e. the pseudotensor nature of the EMT of the gravity field in general relativity,
is geometrization. In contrast, other fields may be localizable, i.e. detectable with a
local transformation of the field energy to the energy of a particle.

If there is no local field energy density, there is no energy in a finite vol-
ume, either. In Friedmann cosmologies this leads to the perplexing continuous cre-
ation/vanishment of energy within comoving volumes (Chap. 12).

Solving the Energy Problem Using “Effective” Spaces? Some efforts com-
bine general relativity with a field by accepting some Lorentz-covariant proper-
ties of an “effective” Minkowski space in “effective” Riemannian space. Babak
and Grishchuk (2002) claimed the field approach and general relativity are iden-
tical: “GR may be formulated as a strict non-linear field theory in flat space-time.
This is a different formulation of the theory, not a different theory.” They present
the metric tensor gik(xl) of a curved space-time as a sum of two non-tensors
gik = (ηik + hik)

√
γ /g with the condition gikgil = gkl = δkl (the Minkowski metric

ηik is not a tensor of curved space). Their Lagrangian theory contains an energy-
momentum tensor (close to LL-pseudotensor), black holes, quadrupole radiation
and expanding space cosmology. However, Straumann (2000) emphasized that in
general relativity there is a non-trivial topology, unlike Minkowski space.

Logunov and Mestvirishvili (1989) developed another field theory, called the
relativistic theory of gravitation. Besides the metric tensor gik of the effective Rie-
mann space, they introduced a “causality principle” as an additional restriction on
gik . Because of this there is no black hole solution in this theory. The scalar part of
gravitational tensor potentials exists only in a static field and can not be radiated.
The cosmological solution is the Friedmann expanding space with critical matter
density.

Yilmaz (1992) constructed a field theory where the right-hand side of the field
equation contains the EMT of the gravity field. The metric of the effective Riemann

4It has been argued that this way of importing the energy into the gravity field is physically in-
consistent (Logunov and Folomeshkin 1977; Logunov and Mestvirishvili 1989). Moreover Yilmaz
(1992) has shown that due to the Freud identity for any pseudo-tensor ∂i(

√−gtik)= 0, creating a
difficulty with the definition of the gravitational acceleration.
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space has an exponential form and excludes the event horizon and singularity. The
existence of the EMT of the gravity field allows one to consider consistently N-body
solutions, unlike in other theories.

Lacking but Required Properties of the Gravity Field EMT In the quantum
relativistic field theories of other interactions the EMTs of boson fields have the
following features:

• symmetry, T ik = T ki ;
• positive energy density, T 00 > 0;
• zero trace for massless fields, T = 0.

The cited attempts to introduce the energy-momentum tensor of the gravity field
within geometrical and effective “field” approaches do not possess the last two fea-
tures. These are necessary for a consistent field theory for both static and free fields,
similarly as in the case of the electromagnetic field.

For the case of a spherically symmetric weak static gravity field, one can easily
calculate the value of the energy density of the gravity field for different pseudo-
tensors. For instance, in harmonic coordinates the Landau-Lifshiz symmetric pseu-
dotensor gives t00

LL = − 7
8πG( 	∇ϕ

N
)2. Also the “final” energy-momentum tensor,

found by Grischuk et al. (1984), has a negative energy density of the weak static
field: t00

GPP =− 11
8πG( 	∇ϕN)

2. Hence, both the LL-pseudo-tensor and the GPP-tensor
give a negative energy density for the static gravitational field. Also their traces do
not vanish for static fields.

One may conclude that all theories which introduce a metric gik ≈ ηik + hik of
an “effective” Riemannian space lose some essential properties of the field approach
(e.g., the scalar part of the gravity field) and acquire some features of the geometrical
approach (such as the negative energy of the field, the event horizon etc.). All these
derivations of “geometry” from “gravitons” explicitly or implicitly contain propo-
sitions reducing the field approach to geometry (Padmanabhan 2008). Hence, the
principal question is still there—how to make a consistent quantum gravidynamics,
which is based on relativistic quantum principles and has a geometrical interpre-
tation only as an approximation of reality, like geometrical optics is in quantum
electrodynamics.

5.3 Poincaré-Feynman’s Field Approach to Gravity Theory

Poincaré (1905, 1906) suggested that all physical forces, including gravitation,
could be considered within the same physical principles (especially the Lorentz in-
variance). In the Poincaré-Feynman field approach, the gravity force between New-
ton’s apple and the Earth is caused by the exchange of gravitons. Gravitons (real and
virtual) are mediators of the gravitational interaction and represent quanta of a rela-
tivistic tensor field ψik in Minkowski space ηik . This path offers a natural solution
to the energy problem. Minkowski space implies the invariance under the Poincaré
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group transformation and hence the usually defined energy-momentum tensor of the
gravity field, as follows from Noether’s theorem.

The construction of field gravity is not yet complete and important questions, like
the quantization of the gravity field, remain open. The strategy is not to write down
the final exact non-linear equations, but to control the physical sense of all theoreti-
cal quantities used in the description of the gravitational interaction. The consistent
Lagrangian field gravity theory was started in the works by Thirring (1961) and
Kalman (1961), and continued by Sokolov, Baryshev and others.5

Up to now, only the weak field approximation at the post-Newtonian level has
been studied in detail, but this is enough to show that the field approach is feasible
and that it is not experimentally equivalent to general relativity. Below we give a
compact summary following Baryshev (2003).

5.3.1 Initial Principles

In Lectures on Gravitation (Feynman et al. 1995) gravitation is described as a rel-
ativistic tensor field in Minkowski space. Feynman discussed a standard quantum
field description of gravity “just as the next physical interaction”. Minkowski space-
time, inertial reference frames and the Lagrangian formalism appear in this descrip-
tion, as well as the energy-momentum tensor and positive energy density of the
field, the zero trace of the EMT for massless fields, the energy quanta of the field,
and the uncertainty and superposition principles. These form a natural starting point
for understanding the physics of gravity phenomena similarly to other fundamental
forces.

Consistent Iterations The gravity field has a positive energy which, in turn, be-
comes a source of an additional gravity field. This non-linearity is taken into account
by an iteration procedure. It is usual in physics to start with a linear approximation
and then add non-linearity by means of iterations. In this way, the field gravity the-
ory is constructed step by step using an iteration process so that at each step all
physical properties of the EMT of the gravity field are under control. Each step of
iteration is described by linear gauge-invariant field equations with fixed sources
in the right side. An important outcome of this procedure is that the superposition
principle can be reconciled with the non-linearity of the gravity field.

The Principle of Least Action Within the Lagrangian formalism of the relativis-
tic field theory, one derives the equations of motion for the gravity field and for
the matter, using the principle of least action. It states that for the true motion the
variation of the action δS = 0.

5These include: Sokolov and Baryshev (1980), Baryshev and Sokolov (1983, 1984), Sokolov
(1992a, 1992b, 1992c, 1992d), Baryshev (1982, 1995, 1996, 2003), Baryshev and Kovalevski
(1990), Baryshev and Raikov (1995), Baryshev and Paturel (2001), Paturel and Baryshev (2003a,
2003b), and other refs. in this book.
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The action integral for the whole system of a gravitational field and particles
(matter) within it, consists of three parts:

S = S(g) + S(int) + S(m) = 1

c

∫ (
�(g) +�(int) +�(m)

)
d
. (5.19)

The notations (g), (int), (m) refer to the actions for the free gravity field, the inter-
action, and the free particles (matter). The physical dimension of each part of the
action is [S] = [energy density]×[volume]×[time], meaning that the definition of
energy is assumed within the principle of least action.

In general relativity the action integral (5.7) has only two parts Sg and Sm. There
is no interaction part, because of geometrization.

Lagrangian for a Free Gravitational Field Within the Poincaré-Feynman ap-
proach the gravity field is presented by symmetric 2nd rank tensor potentials ψik in
Minkowski space with metric ηik . The Lagrangian for a free gravitational field we
take in the form:

�(g) =− 1

16πG

[(
2ψ,n

nmψ
lm
,l −ψlm,nψ

lm,n
)
−
(

2ψ,l
lnψ

,n −ψ,lψ
,l
)]

. (5.20)

This differs from Thirring’s (1961) choice by a divergent term, which does not
change the field equations, but has the advantage that the canonical energy momen-
tum tensor is symmetric. Here ψik

,l = ∂ψik/∂xl is the ordinary partial derivative of
the symmetric second rank tensor potential.

Lagrangian for Matter The Lagrangian for matter depends on the physical prob-
lem in question (particles, fields, fluid or gas). Gravity is also a kind of matter and
at each iteration step it is considered as a source fixed by the preceding step. For
relativistic point particles the Lagrangian is

�(p) =−ηikT ik
(p), (5.21)

where T ik
(p) is the energy-momentun tensor of the particles

T ik
(p) =

∑
a

mac
2δ(r− ra)

{
1− v2

a

c2

}1/2

uiau
k
a. (5.22)

Here m, v, ui are the mass, 3-velocity, and 4-velocity of a particle.
For a relativistic macroscopic body the EMT is

T ik
(m) = (ε+ p)uiuk − pηik. (5.23)

The energy density ε and pressure p refer to a comoving volume element.
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The Principle of Universality and Interaction Lagrangian In the field ap-
proach the principle of universality states that the gravitational field ψik interacts
with all kinds of matter via their energy-momentum tensor T ik , so the Lagrangian
for the interaction has the form:

�(int) =− 1

c2
ψikT

ik. (5.24)

The principle of universality of gravitational interaction (UGI), (5.24), was intro-
duced by Moshinsky (1950). It replaces the equivalence principle of general rela-
tivity6 and tells that the free fall acceleration of a body does not depend on its rest
mass—gravity “sees” only the energy momentum tensor of any matter. The UGI
and least action principles imply those consequences of the equivalence principle
which do not create paradoxes.

The equivalence principle cannot be a basis of field gravity, because it accepts the equiva-
lence between the inertial motion and the accelerated motion under gravity. For example,
this principle creates a puzzle when considering an electric charge resting in the Earth’s
gravity field on a laboratory table. Due to the equivalence of the laboratory frame (together
with the table) and an accelerated frame with a = g, the charge on the table is equivalent
to an accelerated charge and should thus radiate energy according to P = (2/3)(e2/c3)a2

ergs/s. In the field theory this charge does not radiate, as it is at rest in an inertial system.

5.3.2 Basic Equations of the Field Gravity

Field Equations Using the variation principle to obtain the field equations from
the action (5.19) one must assume that the sources T ik of the field are fixed (or
the motion of the matter given) and vary only the potentials ψik (serving as the
coordinates of the system). On the other hand, to find the equations of motion of the
matter in the field, one should assume the field to be given and vary the trajectory
of the particle (matter). So keeping the EMT of matter in (5.24) fixed and varying
δψik in (5.19) we get

−ψik,l
l +ψ

il,k
l +ψ

kl,i
l −ψ,ik − ηikψlm

,lm + ηikψ
,l
l =

8πG

c2
T ik. (5.25)

The field equations (5.25) are identical to the linear approximation of Einstein’s field
equations and that is why there are many similarities between general relativity and
field gravity in the weak field regime.

However, the difference is that ψik and ηik (and their sum, too) are true tensors in
Minkowski space. But, as we mentioned earlier, in general relativity the quantities
hik and ηik are not tensors of a general Riemannian space.

6This point is also different from all “effective geometry” theories where the universality of gravity
is understood as geodesic motion in Riemannian space.
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Remarkable Features of the Field Equations First, the divergence of the left
side of the field equations (5.25) is zero, implying the conservation law

T ik
,k = 0, (5.26)

in the approximation corresponding to the step in the iteration procedure. In the
zero-th approximation it does not include the EMT of the gravity field, but the first
approximation contains the gravity field of the zero-th approximation and expresses
the conservation laws and the equations of motion at the post-Newtonian level.

Second, Eqs. (5.25) are gauge invariant, i.e. they do not change under the follow-
ing transformations of the potentials:

ψik⇒ψik + λi,k + λk,i . (5.27)

An important difference between this gauge transformation and the general covari-
ant transformation of coordinates in general relativity is that (5.27) is performed in
a fixed inertial reference frame.

Third, the gauge freedom (5.27) allows one to put four additional conditions on
the potentials, in particular the Hilbert-Lorentz gauge:

ψik
,k =

1

2
ψ,i . (5.28)

With the gauge (5.28) the field equations take the form of wave equations:

(
�− 1

c2

∂2

∂t2

)
ψik = 8πG

c2

[
T ik − 1

2
ηikT

]
. (5.29)

The trace of this equation gives the field equation for the scalar part ψ = ηikψik of
the gravitational potentials:

(
�− 1

c2

∂2

∂t2

)
ψ(	r, t)=−8πG

c2
T (	r, t). (5.30)

Note the opposite signs in the right-hand sides of Eqs. (5.29) and (5.30). We shall
see that this corresponds to the important fact that the pure tensor part of the field
represents attraction, while the scalar part gives repulsion.

The Tensor-Scalar Structure of the Field Gravity The multi-component struc-
ture of the tensor potential has very important consequences in the quantum field
theory. It is well known that the symmetric 2nd rank tensor field ψik can be decom-
posed under the Poincaré group into a direct sum of subspaces. This represents one
particle with spin 2, one particle with spin 1, and two particles with spin 0 (Barnes
1965):

{ψik} = {2} ⊕ {1} ⊕ {0} ⊕ {0′ }. (5.31)
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The tensor ψik contains n= 10 independent components. The relation between the
number of components n and the value of the spin s (n= 2s + 1) is fulfilled for the
four particles as 10= 5+ 3+ 1+ 1 in Eq. (5.31).

As the field equations (5.25) are gauge invariant under the transformation ψik →
ψik + λi,k + λk,i one may use 4 additional functions λi to delete the 4 components
corresponding to spin 1 and the first spin 0, leaving only the spin 2 and the second
spin 0 parts of the tensor potential. Hence, after the Hilbert-Lorentz gauge (5.28),
the field equations (5.29) will describe the mixture of two fields with spin 2 and spin
0, generated by two corresponding parts of the source of the gravity field:

{ψik} = {2} ⊕ {0}⇐⇒ {T ik} = {2} ⊕ {0}. (5.32)

Now we can present the initial tensor potential and the EM tensor of the source as
the sum of pure tensor spin 2 and pure scalar spin 0 parts:

ψik =ψik
{2} +ψik

{0} =
(
ψik − 1

4
ηikψ

)
+ 1

4
ηikψ, (5.33)

T ik = T ik
{2} + T ik

{0} =
(
T ik − 1

4
ηikT

)
+ 1

4
ηikT . (5.34)

For the traces of each part we have the expressions: ηikψ
ik
{2} = 0, ηikψik

{0} = ψ ,

ηikT
ik
{2} = 0, ηikT ik

{0} = T . Hence, Eq. (5.29) can be written in the form

�ψik
{2} =

8πG

c2
T ik
{2} or �φik = 8πG

c2

[
T ik − 1

4
ηikT

]
(5.35)

and

�ψik
{0} = −

8πG

c2
T ik
{0} or �ψ

1

4
ηik =−8πG

c2
T

1

4
ηik, (5.36)

where ψik
{2} = φik and ηikφ

ik = 0.
This means that field gravity theory is actually a tensor-scalar theory, where the

scalar part of the field is simply the trace of the tensor potentials ψ = ηikψ
ik gen-

erated by the trace of the energy-momentum tensor of the matter T = ηikT
ik . Ac-

cording to the wave equations for spin 2 and spin 0 fields, both kinds of gravitons
are massless particles.

Zakharov (1965) showed that the interacting gravitational field ψik in Eq. (5.25) is de-
scribed by spin 2 and spin 0 gravitons. From quantum field considerations (the condition
of transversality of the gravitational vertex) he concluded that only spin 2 gravitons may
be emitted, which corresponds to quadrupole gravitational waves. However, according to
the wave equation (5.36), the trace T (	r, t) of the EMT of matter will generate gravita-
tional radiation, e.g. via spherical pulsations of a gravitating system. The radiated scalar
wave is monopole and has a longitudinal character in the sense that a test particle in the
wave moves along the direction of the wave propagation.
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Equations of Motion for Test Particles Variation of the action integral (5.19)
with respect to particle coordinates gives the equation of motion in a fixed gravita-
tional field (Kalman 1961; Baryshev 1986):

Ai
k

d(mcuk)

ds
=−mcBi

klu
kul, (5.37)

where mcuk = pk is the 4-momentum of the particle, and

Ai
k =
(

1− 1

c2
ψlnu

lun
)
ηik −

2

c2
ψknu

nui + 2

c2
ψi
k, (5.38)

Bi
kl =

2

c2
ψi
k,l −

1

c2
ψ

,i
kl − 1

c2
ψkl,nu

nui. (5.39)

The rest mass m of the particle cancels out. This shows how the principles of least
action and universality imply the principle of equivalence in the form: the rest mass
m of a body is equal to its inertial and gravitating masses (m=mI, m=mG). The
rest mass includes all contributions from all interactions. So a test of the equivalence
principle, using masses of different chemical materials, in fact checks the universal-
ity of the rest mass.

Repulsive Force of the Scalar Part Inserting to the equation of motion (5.37) the
scalar part of the gravitational potentials ψlm

{0} = (1/4)ψηlm, we get the equations of

motion of a particle in the scalar field ψ =ψlmη
lm as

(
1+ 1

4

ψ

c2

)
dpi

ds
= m

4c

(
ψ,i −ψ,lu

lui
)
. (5.40)

In the case of a weak field (ψ/c2 
 1) this equation gives for spatial components
(i = α) the expression for the gravity force

d 	p
dt
=−m

4
	∇ψ. (5.41)

As the trace of the weak static field (5.47) is equal to ψ =−2ϕN , we get

d 	p
dt
=+1

2
m 	∇ϕ

N
. (5.42)

This means that the scalar spin 0 part of the tensor field leads to repulsion; only
together with the tensor spin 2 part the result is Newton’s force.

The Energy-Momentum Tensor of the Gravity Field The standard Lagrangian
formalism and the Lagrangian of the gravity field (5.20) give the following expres-
sion for the canonical energy-momentum tensor:

T ik
(g) =

1

8πG

{(
ψlm,iψ

,k
lm − 1

2
ηikψlm,nψ

lm,n

)
− 1

2

(
ψ,iψ,k − 1

2
ηikψ,lψ

,l

)}

(5.43)
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Two important remarks should be made about this expression.
First, the EMT has an ordinary tensor character. However, the Lagrangian for-

malism cannot give a unique expression for an EMT of any field (e.g., Bogolubov
and Shirkov 1976) because a term with zero divergence can always be added. For
the final determination of the EMT of the field additional physical requirements
must be used, like the positive energy density, the symmetry, and the zero-trace in
the case of a massless field.

Second, the negative sign of the scalar part (the 2nd term in brackets) does not
mean the spin 0 field has negative energy. It reflects the repulsive force produced by
the scalar when the field is interacting with the sources.

For the free field the energy is positive for the pure tensor (spin 2) and scalar
(spin 0) components. Indeed, the free-field total Lagrangian (5.20) can be divided
into two independent parts that correspond to two particles with spin 2 (φik) and
spin 0 (ψ ). Their free field Lagrangians are

�{2} = 1

16πG
φlm,nφ

lm,n, and �{0} = 1

64πG
ψ,nψ

,n. (5.44)

Both signs are plus, due to the positive energy density condition for integer spin free
particles. Corresponding EMTs for the tensor and scalar free fields

T ik
{2} =

1

8πG
φ

,i
lm φlm,k, and T ik

{0} =
1

32πG
ψ,iψ,k (5.45)

are symmetric, have a positive energy density and a zero trace for the case of plane
monochromatic waves.

The Role of the Scalar Part of the Field The scalar ψ is an intrinsic part of
the gravitational tensor potential ψik and is not related to extra scalar fields such
as introduced in the Jordan-Brans-Dicke theories. So the observational constraints
existing for this extra scalar field do not restrict the scalar part ψ of the tensor
field ψik . Moreover, without the scalar ψ it is impossible to explain the classical
relativistic gravity effects.

The most intriguing consequence of the field gravity theory is that the scalar
part (spin 0) corresponds to a repulsive force, while the pure tensor part (spin 2)
corresponds to attraction (Eq. (5.57) in the next section). This explains the “wrong”
sign for the scalar part in the Lagrangian for the gravity field (5.20).

5.3.3 Post-Newtonian Approximations

The field equations (5.29) and the equations of motion (5.37) lead to various ob-
servable consequences of the field gravity. Some simple cases demonstrate how to
calculate weak-field predictions within field gravity.
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Static Spherically Symmetric Weak Field For a spherically symmetric static
weak field of a body with mass density ρ0 and total mass M , the zero approximation
of the total EMT equals that of the matter

T ik
(m) = diag(ρ0c

2,0,0,0) (5.46)

and the solution of the field equations (5.29) is the Birkhoff’s potential

ψik = ϕNdiag(1,1,1,1), (5.47)

where ϕN = −GM/r is the Newtonian potential outside the gravitating body. We
note again that ψik is a true tensor quantity in Minkowski space.

The gravitational field (5.47) can be expressed as the sum of the pure tensor and
scalar parts ψik =ψik

{2} +ψik
{0} so that

ψik = 3

2
ϕNdiag

(
1,

1

3
,

1

3
,

1

3

)
− 1

2
ϕNdiag(1,−1,−1,−1). (5.48)

This corresponds to attraction by spin 2 and repulsion by spin 0 potentials.
In the first (post-Newtonian) approximation the total EMT of the system is equal

to the sum of the EMT for the matter, interaction and gravity field (Kalman 1961;
Thirring 1961; Baryshev 1988):

T ik
(�) = T ik

(p/m) + T ik
(int) + T ik

(g). (5.49)

From the solution (5.47) and the expressions for the interaction EMT

T ik
(int) = ρ0ϕNdiag(1,1/3,1/3,1/3) (5.50)

and the EMT of the gravity field

T ik
(g) =+

1

8πG

(∇ϕN

)2 diag(1,1/3,1/3,1/3) (5.51)

we find the total energy density for the system gas + gravity in the form

T 00
(�) = T 00

(p/m) + T 00
(int) + T 00

(g) =
(
ρ0c

2 + e
)
+ ρ0ϕN +

1

8πG

(∇ϕN

)2
. (5.52)

Here (ρ0c
2 + e) gives the rest mass and kinetic (or thermal) energy densities, ρ0ϕN

is the negative interaction energy density, and ∇ϕ2
N
/8πG is the positive and local-

izable energy density of the gravitational field.

Physical Sense of the Potential Energy The total energy of the system is in the
PN approximation will be

E(�) =
∫

T 00
(�)dV =E0 +Ek +Ep, (5.53)
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where E0 =
∫
(ρ0c

2)dV is the rest-mass energy, Ek =
∫
(e)dV is the kinetic energy,

and Ep is the classical potential energy that equals the sum of the interaction and
gravitational field energies:

Ep =E(int) +E(g) =
∫ (

ρ0ϕN +
1

8πG
(∇ϕN)

2
)
dV = 1

2

∫
ρ0ϕNdV. (5.54)

The PN Correction due to the Energy of Gravity Field A gravitating body is
surrounded by a material gravity field ψik whose mass-energy density is given by
the 00-component of the EMT of this field in Eq. (5.51). In the PN level this leads
to a nonlinear correction for the gravitational potential.

Considering the energy density of the gravitational field (the last term in
Eq. (5.52)) as the source in the field equation of the second order, we get a non-
linear addition to Birkhoff’s ψ00 component

ψ00 = ϕN +
1

2

(ϕN)
2

c2
. (5.55)

Corrections to other components do not influence the motion of particles in this
approximation.

The PN Equations of Motion Substituting Birkhoff’s potential (5.47) into the
equation of motion (5.37) and taking into account the nonlinear PN correction (5.55)
one gets the 3-acceleration for a test particle:

(d 	v
dt

)
FG
=−

(
1+ v2

c2
+ 4

ϕN

c2

) 	∇ϕN + 4
	v
c

( 	v
c
· 	∇ϕN

)
. (5.56)

This equation coincides with the PN equation of motion in general relativity only
when in Eq. (5.16) the isotropic or harmonic coordinates are used (i.e. α = 0). It is
important that within the field gravity theory the equations of motion do not depend
on the choice of the coordinate system.

The Newtonian Limit Substituting (5.48), which gives the gravitational poten-
tial, into (5.37) and neglecting all terms of the order v2/c2 we get the Newtonian
force as the sum of two parts: the attractive force due to the spin 2 part and the
repulsive force due to the spin 0 part:

FN = F{2} + F{0} = −3

2
m0∇ϕN +

1

2
m0∇ϕN =−m0∇ϕN . (5.57)

This calculation shows that even on the Newtonian level the physics of the field
gravity theory dramatically differs from general relativity.



Chapter 6
Predictions of Gravity Theories

Celestial bodies and the entire universe itself offer many ways to test theories of
gravitation. General relativity, the well-known basis of current cosmology, can ex-
plain a wide spectrum of phenomena from the deflection of light by the Sun to
the Hubble law of redshifts within the Friedmann model. At the same time it is a
non-quantum theory and still requires testing in strong gravity. As we saw, a quite
different approach, the relativistic field theory, is also interesting as it aims to de-
scribe the gravitational interaction in the same way as other fundamental forces are
treated in physics.

In weak-gravity conditions, general relativity and field gravity usually deliver
similar predictions, but these diverge in some tests and when one goes towards
strong gravity. Thus different cosmic situations may allow one to test two cardi-
nally different concepts of gravitation, either strengthening the present foundations
or opening routes to new ideas in cosmology.

6.1 Gravitation at Different Scales and in Diverse Conditions

The Newtonian gravity force is given as FN = ma = GmM/r2. This familiar ex-
pression seems universal, but actually the various quantities have wide ranges, much
of which territory has not been experimentally explored and may hide secrets of
gravitation. Such quantities are the distance R between two masses, the time of
interaction t , the masses m and M , their velocities V , the acceleration a, and the
strength of the force F (Unzicker 2007).

Modified Newtonian Dynamics Milgrom (1983) suggested that for accelerations
below a critical value of about 10−8 cm/s2 there is a deflection in the classical New-
tonian law in this region where ordinary non-relativistic physics would otherwise
work. This was motivated by the possibility to explain the horizontal rotation curves
of spiral galaxies without dark matter.

Y. Baryshev, P. Teerikorpi, Fundamental Questions of Practical Cosmology,
Astrophysics and Space Science Library 383,
DOI 10.1007/978-94-007-2379-5_6, © Springer Science+Business Media B.V. 2012
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Milgrom writes the acceleration (a) vs. force law in a modified form:

f (a/a0)a = GM

r2
. (6.1)

In this expression the function f approaches zero for small values of the acceleration
a < a0 and approaches unity for higher accelerations. The quantity a0 is considered
as a constant of nature and its value could be of the order of 10−10 m/s2. The accel-
erations at the rims of spiral galaxies are less than such values. Then at large enough
distances from the centre of a galaxy the acceleration becomes so small that one
may approximate f (x) ≈ x. Putting this and a = V (r)2/r in Milgrom’s law (6.1)
one obtains

V (r)4/r2 ≈ a0GM/r2. (6.2)

We see that (1) at large distances from the mass M the rotation V (r) keeps constant:
V 4 = Ga0M , and (2) for a constant mass-to-luminosity ratio M/L, the result is
L∝ V 4, not unlike the Tully-Fisher relation (Sect. 2.3.1).

Bekenstein (2007) has developed a relativistic version of MOND. A critical test
will be an actual measurement of the gravitational force for accelerations < 10−8

cm/s2, which can be done in near future satellite experiments.

Gravitation on Different Distance and Mass Scales After MOND, studies of
the validity of the inverse square law on different scales of distance, mass, and ac-
celeration have appeared. This interest has also been motivated by the string the-
ory, where certain ideas predict deviations from the inverse square law at small,
but still rather close to “everyday” distances (mm-scales or less). On short scales,
gravity could fall off as 1/r2+n where n is the number of large extra dimen-
sions extending over macroscopic scales, within those variants of the string the-
ory. No deflection from the Newtonian gravity has been found at short distances
down to µm scales (Adelberger et al. 2003; Nesvizhevsky and Protasov 2004;
Kapner et al. 2007).

Baryshev and Raikov (1995) suggested from quantum considerations that for small masses
the Newtonian gravity law may fail. One may compare the gravitational interaction energy
Eint =GmM/r between two particles (masses m and M) at a mutual distance r , with the
uncertainty principle �E�t > �. Here the accuracy in measuring the energy is �E ≈Eint
during the interaction time �t ≈ r/v, which implies a condition on the product of masses:

mM >
v

c

�c

G
= v

c
m2

Pl. (6.3)

Hence the geodesic motion will be violated if the product of masses is less than v/c×
the square of the Planck mass mPl, and it is expected that for small masses Newton’s
gravity law is not valid. If one of the particles is a photon, then light will not be deflected
as predicted if the wavelength of the photon is longer than the gravitational radius of
the deflecting mass Rg = 2GM/c2. Such a photon will not move along a geodesic line.
Radioastronomical observations could test in this way the nature of gravitation (Baryshev
et al. 1996a, 1996b).
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From Weak to Strong Fields In the Solar System the Newtonian gravitational
potential is small compared to the speed of light squared φ/c2 = GM/Rc2 
 1.
This is called the weak field situation. In binary pulsars and neutron stars and in
active galactic nuclei one meets gravitational potentials φ ≈ c2. Such environments
permit us to test gravity theories in strong field conditions where classical relativistic
effects are more spectacular and other predicted phenomena become observationally
achievable.

6.2 Einstein’s General Relativity: Predictions

When Einstein (1915, 1916) presented the final mathematical formulation of general
relativity, his theory made three predictions that became classical: the gravitational
shift of spectral lines, the gravitational bending of light, and the advance of Mer-
cury’s perihelion.

As to the bending of light by the Sun, three values competed for the deflection an-
gle at the solar radius: Newtonian gravity predicted 0.875′′, the scalar gravity theory
of the Finnish physicist Gunnar Nordström anticipated 0.0′′, and Einstein’s general
relativity predicted 1.75′′. The bending was first detected in 1919 from eclipse ob-
servations made by two British expeditions, and the deflection favored Einstein’s
theory. This scientific result was reported by newspapers as a major story.

Since then many tests in the Solar System and observations of binary pulsars
have confirmed the weak field predictions of general relativity. Effects of strong
gravity are an important future subject. Even now black hole candidates and the loss
of energy by gravitational radiation are studied.

6.2.1 Major Predictions for Observations

Einstein’s field equations and the equations of motion give many predictions for both
strong and weak fields. The weak field effects have been tested with an accuracy of
about 0.1% (Will 1993, 2005).

The Deflection of Light A photon moving at impact distance b from a point
mass M is deflected, in the weak field region, by the angle:

θGR =
4GM

c2b
. (6.4)

In comparison, a particle passing the same mass with velocity v will experience a
deflection given by

θGR =
(

1+ v2

c2

)
θN , (6.5)
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where θN = 2GM/v2b is the Newtonian value for the deflection angle. Note that for
the velocity v = c we get Eq. (6.4) with θGR = 1.75′′ for the Sun. The reader may
verify that in order to derive this formula from the equation of motion (5.16) one
should use isotropic or harmonic coordinates (i.e. α = 0).

Gravitational Frequency-Shift A spectral line with frequency νem radiated by
an atom at the distance r from the surface of a massive body with radius R and
mass M , will be observed at infinity to have a frequency νobs. In the weak field
approximation (R�Rg) this redshift is

zGR =
(
νem − νobs

νobs

)
GR
= GM

c2r
. (6.6)

For the Sun the value of GM�/R�c2 is 1.9× 10−10.
An accurate interpretation of the gravitational redshift effect within general relativity con-
siders a clock in a gravity field. The clock is running faster when it is farther from the
gravitating body. The general relation is dt = dτ/

√
g00, so Einstein’s gravitational red-

shift for the Schwarzschild metric is

1+ zGR =
(

1− 2GM

c2r

)−1/2
. (6.7)

Will (1993) and Okun et al. (2000) emphasized that the energy of the photon does not
change during its radial motion in the gravity field, i.e. it does not lose or gain energy.
This differs from the usual mechanical behaviour of a particle.

The Time Delay of Light Signals The time delay phenomenon, or the Shapiro
effect, occurs when an emitter at a distance r1 sends a light signal to a mirror at a
distance r2 from a gravitating mass. If R is the distance between the emitter and the
mirror, then the additional travel time is

(�t)GR =
4GM

c3
ln

(
r1 + r2 +R

r1 + r2 −R

)
. (6.8)

For the Sun, 4GM�/c3 amounts to 20 microseconds. This effect occurs due to the
curvature of space near the massive body, where it takes for the light signal a longer
time to traverse a given distance as the time flows slowly.

The Perihelion Shift of a Planet The rate of the secular pericentre shift on an
elliptical orbit of a planet (around a star having mass M) is

(ω̇)GR = 6πGM

c2a(1− e2)P
, (6.9)

where a is the semi-major axis, e is the eccentricity, and P is the period of the orbit.
For Mercury this gives 43′′/century, while for the binary pulsar PSR1913+ 16 the
effect is much larger, about 4°/year.
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The Lense-Thirring Effect An elliptical orbit of a non-rotating test particle,
moving in the field of a central massive rotating body, will revolve as a whole about
the direction of the axis of the central body with the rate


LT = 2GJ

c2a3(1− e2)3/2
( 	j − 3	l(	l · 	j)), (6.10)

where 	j = 	J/J , 	l = 	L/L, 	L is the orbital angular momentum of the particle, and 	J
is the angular momentum of the central body.

This Lense-Thirring precession is also called the “dragging of inertial frames”.
For an Earth-orbiting satellite it is about 0.1′′/year, meaning that the orbit will make
a whole rotation in about 13 million years.

The Geodetic Precession of a Gyroscope The rate of precession of a gyroscope
orbiting a rotating massive body is:


WS = 3GM

2c2R2
o

	n× 	Vo + GJ

c2R3
o

(3	n(	n · 	j)− 	j). (6.11)

Here 	Ro is the radius vector of the centre of inertia of the gyroscope, 	n = 	Ro/Ro,
	Vo is the orbital velocity, 	J and M are the angular momentum and the mass of the

central body, and 	j = 	J/J .
The effect is a sum of two independent parts, one due to the gravitational potential

of the central body, effectively non-Newtonian (the Weyl-effect), and the second due
to its rotation (the Schiff-effect). For a gyroscope orbiting the Earth over the poles
this precession amounts to about 7′′/year.

The Quadrupole Gravitational Radiation The weak field approximation of
Einstein’s equations allows one to infer that a system of moving bodies will ra-
diate energy in the form of gravitational waves. The total radiation in all directions
gives the quadrupole luminosity (ergs/sec)

LGR = G

45c5

...

D
2

αβ . (6.12)

Dαβ is the quadrupole moment of the system. Gravitational waves in general rela-
tivity are transversal and correspond to a particle with spin 2. For instance, a binary
system (with the component mass Mi and the semi-major axis a) will lose orbital
energy via quadrupole gravitational radiation with power1

L{2} ≈ 2× 1032
(
M1

M�

)2(
M2

M�

)2(
M1 +M2

2M�

)(
a

R�

)−5

erg/s. (6.13)

1It is important to note that to calculate the loss of energy (6.12) one should use an expression for
the energy-momentum “pseudotensor” of the gravitational field, not defined uniquely in general
relativity. This has originated a long discussion about the reality of gravitational waves and their
ability to carry energy in general relativity.
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6.2.2 Strong Gravity, Black Holes, Quantum Gravity

An exact solution of Einstein’s equations (5.9) for any centrally symmetric mass
distribution is called the Schwarzschild metric. It has the following form for the
4-interval in the Schwarzschild system of coordinates (t, r, θ,φ):

ds2 =
(

1− rg

r

)
c2dt2 − dr2

1− rg
r

− r2(sin2 θdφ2 + dθ2). (6.14)

In other systems of coordinates the interval has different form. Note that the metric
in Eq. (6.14) depends only on the total mass M of the gravitating body. The quantity
rg is called the Schwarzschild radius for the mass M :

rg = 2GM

c2
= 3

M

M�
km. (6.15)

At r = rg the 00-component of the metric equals zero and the 11-component is
infinite. Hence the gravity becomes so strong that nothing, not even light, can escape
a body whose whole mass M is inside rg (a black hole).

The Black Hole An external observer within a static system of coordinates will
see matter collapsing eternally on the black hole. But in a free-falling coordinate
system, co-falling matter will within a finite (and rather short) proper time cross
the gravitational radius. Then the matter inevitably falls into the centre of the field
(r = 0), the true singularity of the metric.

Another important result is the equation of hydrostatic equilibrium

dp

dr
=−G(ρ + p/c2)(M + 4πpr3/c2)

r2(1− rg/r)
. (6.16)

In this Tolman-Oppenheimer-Volkoff equation the factor 1/(1 − rg/r) leads to an
infinite pressure gradient for r→ rg. This has a deep consequence: there is an upper
limit for the mass of static compact relativistic stars, around 2–3 M�. In the standard
general relativity, compact objects with larger masses may exist only as black holes.

General Relativity Without Black Holes? Theoretical studies of the gravita-
tional collapse have led some authors to conclude that there are solutions describing
relativistic compact objects with sizes close to the Schwarzschild radius but with no
event horizon.

If a substance has an unusual equation of state p = p(ρ), like that of the
physical vacuum and dark energy, it is possible to obtain non-singular static gen-
eral relativistic solutions for arbitrary large masses, which are stable, and have
no singularity, no event horizon and no information paradox (Dymnikova 2002;
Mazur and Mottola 2004; Chapline 2005).

An analysis of the physical meaning of the coordinate transformation in general
relativity led Mitra (2000, 2006) to argue that a black hole should have zero mass
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and that instead of black holes, Einstein’s equations have as a solution an “eternally
collapsing object” (ECO). Its size is close to Rg and it emits energy all the time so
that an event horizon never originates.

Robertson and Leiter (2005) adhered to the strong principle of equivalence so that
“special relativity must hold locally for all time-like observers in all of space-time”.
They found solutions of Einstein’s equations satisfying the requirement for time-
like world line completeness. The resulting “magnetospheric eternally collapsing
objects” (MECO) possess an intrinsic magnetic moment and do not have any event
horizon and curvature singularity.

These works show that additional conditions on the equation of state or coor-
dinate transformations or the metric tensor of Riemannian space can change the
physical contents of geometrical gravity theory.

Testing Quantum Geometry Quantum geometry predicts violation of the equiv-
alence principle, possible violation of the Lorentz invariance, and time-varying fun-
damental physical constants at such a level that their detection may be realistic in
near future (Amelino-Camelia et al. 2005). However, up to now increasingly strong
limits have been derived on variations of fundamental constants (Chand et al. 2004).
Also first observations of sharp images of a very distant supernova did not confirm
the predicted quantum structure of space-time at Planck scales (Ragazzoni et al.
2003). However, time delays between gamma-photons with different energies from
active galactic nuclei could be interpreted as a quantum gravity effect, assuming
that there is no intrinsic difference in the emission time at the source (reviewed by
Wagner 2009 and Amelino-Camelia and Smolin 2009).

6.3 Poincaré-Feynman Field Approach to Gravitation:
Predictions

In general relativity, Minkowski space is a tangent space at each point of curved
space (the local Lorentz invariance). The field approach uses the global Minkowski
space to describe all four fundamental interactions as fields in space. Though the
classical relativistic gravity effects in the weak field are identical in both theories,
some specific effects of the field gravity may distinguish it from general relativity.
Such are scalar gravitational waves, the translational motion of rotating bodies, and
the surface and the magnetic field of the relativistic compact bodies in “black hole
candidates”

6.3.1 Newtonian Force

In the field approach, the force between Newton’s apple and the Earth is caused by
the exchange of gravitons. Gravitons (real and virtual) mediate the gravitational
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interaction and represent quanta of a relativistic tensor field ψik in Minkowski
space ηik . Thus the gravity force has an ordinary quantum nature. Experiments by
Nesvizhevsky et al. (2002) point to this direction. Using freely falling ultra-cold
neutrons it was shown that the gravity acts like the usual electric force producing
quantum energy levels in the micro-particles moving in the gravity field (Westphal
et al. 2007).

Attraction and Repulsion As we discussed earlier, within the field gravity the
usual Newtonian force can be thought of as the sum of an attractive and a repulsive
force ( 	FN = ( 	F{2} + 	F{0}) = 3

2
	FN − 1

2
	FN ), corresponding to the pure tensor part

(spin 2) and the scalar part (spin 0) of the tensor potential. This new understand-
ing of the Newtonian potential opens new ways for experiments on the nature of
gravitational interaction, e.g., to measure the scalar “antigravity” even in weak-field
laboratory conditions.

6.3.2 Post-Newtonian Predictions for Observations

Only the weak field approximation at the post-Newtonian level has been studied in
detail for the field gravity, but this already gives predictions, which differ from gen-
eral relativity. In Chap. 5 we gave the PN equations of motion (5.57) for a particle
in a static spherically symmetric weak field.

The Pericentre Shift and Positive Gravity Energy The rate of the pericentre
shift of the orbit of a test particle with semi-major axis a, eccentricity e and period
P , can be directly calculated from Eq. (5.57):

(ω̇)FG =
6πGM

c2a(1− e2)P
. (6.17)

This formula is the same as in general relativity, but the interpretation is different.
For instance, the nonlinear contribution (the 2nd term in Eq. (5.56) due to T 00

(g) pro-
vides 16.7% of the total value (6.17). Therefore in the field theory the pericentre
shift is directly affected by the positive energy density of the gravity field, making
this physical quantity experimentally measurable.

Light in the Gravity Field Within the field gravity theory the deflection of light
and the time delay of light signals are consequences of the gravity-electromagnetic
field interaction, described by the Lagrangian Lint =ψikT

ik
(elm). This gives the effec-

tive refraction index in the PN approximation:

n(r)= 1+ 2GM

c2r
. (6.18)
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Hence the velocity of a light signal will have the value

cg(r)= c

n
= c

(
1− 2GM

c2r

)
, (6.19)

and the direction of light changes and the time delay appears, both fully consistent
with observations.

Atom in Gravity Field The gravitational redshift of spectral lines is caused by the
shift of atomic levels. It is universal, as gravitation changes the total energy and all
energy levels of an atomic system. In the PN approximation Eobs =E0(1+ ϕN/c

2)

and hence hνobs
ik =�E0

ik(1+ϕN/c
2). The same result as from this energy argument

was derived by Moshinsky (1950) who calculated the interaction of the gravity field
with the spinor and electromagnetic fields of a hydrogen atom. More generally, the
gravitational redshift is

1+ zg =
(

1+ 2�

c2

)−1/2

. (6.20)

This formula gives the correct PN result z≈ |ϕ|/c2.

6.4 Astrophysical Tests of Gravity Theories

Remarkably, all post-Newtonian classical relativistic gravitational effects—from
bending of light to precessions (Table 6.1)—have the same values in general rel-
ativity and field gravity, which are very different theories physically.

6.4.1 Rotating Bodies and Binary Systems

Though one can not clarify the nature of gravity just by measuring classical rela-
tivistic effects in the Solar System and binary pulsars, there are even in the weak
field regime untested effects, which may offer crucial experiments.

The Equivalence Principle Modern tests have shown that the inertial and gravi-
tational masses are equal to within about 10−13, and new tests have also been sug-
gested (Haugan and Lämmerzahl 2001; Bertolami et al. 2006b).

In the field gravity theory the basic concept is the rest mass m of a particle or a
body consisting of interacting particles. The major problem is how to give proper
relativistic definitions for inertial and gravitating masses without referring to the
non-relativistic Newtonian equation of motion.

According to the PN equation of motion (5.57) the 3-acceleration of a test particle
(1) does not depend on the rest mass m of the test body, and (2) does depend on
its velocity v and the value of the gravitational potential ϕN at the location of the
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Table 6.1 Comparison of gravity theories

Physics and predictions Newtonian gravity General Relativity Field Gravity

Geometry of space Euclidean Riemannian flat Minkowskian

Basic reference systems inertial any inertial

Gravitational potentials φN metric tensor symmetric tensor, trace

Positive field energy density No No Yes

Gravity force Yes Curvature Attraction + repulsion

Gravitational frequency shift Yes Yes Yes

Bending of light θ 1
2 θ Yes Yes

Relativistic perihelion shift No Yes Yes

Time delay (Shapiro effect) No Yes Yes

Lense-Thirring effect No Yes Yes

Precession of gyroscope No Yes Yes

Relativistic compact objects (Yes) Yes Yes

Event horizon Yes Yes No

Singularity Yes Yes No

Quadrupole radiation No Yes Yes

Scalar gravitational waves No No Yes

Free fall of a rotating body Yes Yes No

particle. This means that there are different ways in relativistic regime to define the
inertial and gravitational masses, which gives new possibilities to test their equality.

A new test of the equivalence principle could utilize the motion of a rotating
body. According to general relativity, such a body will have the same translational
motion as the non-rotating one (if tidal effects can be neglected). Within field gravity
one should integrate the gravity force over the volume of the rotating body, and then
the equations of translational motion will be:

d 	V
dt
= −

(
1+ V 2

c2
+ 4

ϕN

c2
+ Iω2

Mc2

)
	∇ϕN + 4

	V
c

( 	V
c
· 	∇ϕN

)

+ 3

Mc2

∫
[ 	ω	r]([ 	ω	r] · 	∇ϕN)dm. (6.21)

Equation (6.21) shows that the orbital translational velocity 	V of the centre of mass
of the body will have extra perturbations due to the rotation. The last term depends
on the direction and value of the angular velocity 	ω of rotation. Its order of magni-
tude is v2

rot/c
2 and it should be possible to measure in laboratory experiments and

astronomical observations using lunar laser ranging and timing of pulsars in binary
systems (Baryshev 2002).

Gravitational Waves from Binary Systems The best test of the gravitational ra-
diation formulae is offered by binary pulsars. For a binary system the loss of energy
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due to the tensor gravitational radiation is given by the quadrupole luminosity (the
same in field gravity and general relativity):

〈Ė〉{2} = 32G4m2
1m

2
2(m1 +m2)

(
1+ 73

24e
2 + 37

96e
4
)

5c5a5(1− e2)7/2
. (6.22)

Here m1, m2 are masses of the two bodies, a is the semimajor axis and e is the
eccentricity of the relative orbit.

Within field gravity theory there is an additional loss of energy due to the scalar
monopole radiation (which does not appear in general relativity), given by the rela-
tion (Baryshev 1982, 1995):

〈Ė〉{0} = G4m2
1m

2
2(m1 +m2)

(
e2 + 1

4e
4
)

4c5a5(1− e2)7/2
. (6.23)

Hence the ratio of the scalar to tensor luminosity is

〈Ė〉{0}
〈Ė〉{2}

= 5

128
·

(
e2 + 1

4e
4
)

(
1+ 73

24e
2 + 37

96e
4
) . (6.24)

The value of this ratio lies in the interval [0,1.1%] and for a circular orbit equals
zero. However, for a pulsating spherically symmetric body there is no quadrupole
radiation and the scalar radiation becomes decisive. In particular it follows that in
the field gravity theory it is impossible to have a “quiet” relativistic collapse of a
spherical body.

The orbit of the binary pulsar PSR 1913+16 has an eccentricity e= 0.6171309(6)
(Damour and Taylor 1991), hence the scalar part (6.24) is

�scalar = 0.735%.

Because the rate of change of the orbital period Ṗ is proportional to the total energy
loss (〈Ṗ 〉 = − 3

2
E
P
〈Ė〉), one expects a corresponding excess in the decrease of the

orbital period due to scalar gravitational radiation.
The data by Weisberg and Taylor (2002) show that the excess of the orbital period

decrease relative to the predicted quadrupole energy loss is

�obs =
(
(obs)− (quadr)

)
=+0.78%± 0.06%.

This is interestingly close to the expected value 0.735% for the additional energy
loss by scalar gravitational radiation (Baryshev 1995).

It has been shown by Damour and Taylor (1991) that one must take into account
the accelerations of the pulsar and the Sun in the Galaxy, and the proper motion of
the pulsar. The distance d to the pulsar PSR 1913 + 16 is a critical parameter in
the calculation of the Galactic effect. Unfortunately, the line of sight to the pulsar
passes through a complex region of our Galaxy, and one must be very careful, when
using known distances to other pulsars for a distance estimate to PSR 1913+ 16.
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Damour and Taylor used indirect arguments to re-estimate the standard dispersion-
measure distance of 5.2 kpc. With their new distance 8.3 kpc the Galactic effect is
+0.69%, which could almost explain the observed excess. However, the arguments
by Pynzar (1995), based on a study of the pulse structure of PSR 1913+ 16, lead
to a distance of about 3 kpc. For such a short distance the Galactic effect is only
+0.11%. In a new analysis, Weisberg et al. (2010) inferred that for a distance of 9.9
kpc the expected (general relativistic) and observed values would agree.

Indeed, the precise distance to the pulsar PSR 1913+ 16 may be viewed as a test
of fundamental physics, related to the nature of gravitation. Also distances to other
binary pulsars will be crucial for gravity physics.

The Double-Pulsar J0737-3039A/B The system J0737-3039A/B is expected to
provide the most precise test of general relativity (Deller et al. 2009). As all clas-
sical relativistic effects are the same in GR and FG (Table 6.1), this system also
tests field gravity. The extra scalar radiation in field gravity is in this case essen-
tially smaller than the quadrupole gravitational radiation. This is because the scalar
radiation is proportional to the eccentricity of the orbit (Eq. (6.24)). For the sys-
tem J0737-3039A/B the orbit is quite round, e= 0.08. Thus the additional radiation
would be only 0.03%.2 Deller et al. (2009) determined the distance to this system by
measuring its annual geometric parallax with the Australian Long Baseline Array
of radio telescopes, and concluded that with another 10 years of pulsar-timing ob-
servations, PSR J0737-3039A/B will be able to test the validity of general relativity
and other theories of gravitation with an accuracy of 0.01.

The BL Lac Object OJ287 as a Test Object Studies of binary supermassive
black hole candidates in active galaxy nuclei can also yield promising tests of scalar
and tensor gravitational radiation.3 The BL Lac object (a very active quasar) OJ287
shows a quasi-periodic pattern of prominent outbursts; 11 well-identified outbursts
and several probable outbursts are known since 1891 (Fig. 6.1). The outbursts seem
to come in pairs separated by one to two years, and the pairs occur about 12 years
apart (Sillanpää et al. 1996).

Valtonen and Lehto (1997) presented a model in which a secondary body (a black
hole) pierces the accretion disk of the primary black hole and produces two sharp
impact flashes per period, which may serve as time signals telling how the smaller
body moves around the primary. It appeared that from the data for a sufficient num-
ber of outbursts it was possible to calculate definite post-Newtonian Kepler orbits
for the smaller body, and this happened in the early 2007, just in time to predict
the exact date for September 2007 when the second of the double peaks was due to
appear.

It is interesting to write down the parameters of the calculated orbit: its eccentric-
ity is 0.663, the precession rate of the major axis is 39.0 deg per orbit, and the mass

2In principle, there is also another small effect, related to measuring the shape of the orbit: the
rotation of the orbiting body contributes to the equation of motion (Eq. (6.21)).
3Already Boris Komberg (1968) proposed a binary system as a quasar model.
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Fig. 6.1 Optical light curve for the quasar OJ287 (courtesy of Tuorla Observatory)

of the primary body is 18.0× 109 solar masses. The model included the emission
of gravitational radiation according to general relativity, and the predicted date for
the event was September 13 plus or minus one day, as discussed in Valtonen et al.
(2008a). The outburst happened as predicted. This is a test of general relativity (first
proposed by Valtonen and Lehto in 1997) because if the system does not lose energy
by emission of gravitational waves, then the orbit does not shrink, and the predicted
outburst time is delayed by 20 days in this case.

Viewing OJ287 as a test of field gravity, the only difference from general rela-
tivity is the scalar gravitational radiation. Its contribution would be 1% of the total
radiation, so that instead of 20 days, one would expect a delay 0.2d (5 hours) longer,
which is now difficult to discern from the observations.

6.4.2 Strong Gravity and Compact Objects

For strong gravity the predictions diverge dramatically. In field gravity there are no
black holes or singularities, and no such limit as the Oppenheimer-Volkoff mass.
Hence compact massive objects in binary star systems and active galactic nuclei are
major candidates for crucial tests.

No Black Holes in Field Gravity Now the mass density of the gravitational field
around an object with mass M and radius R for a static weak field is

ρ(g) =
T 00
(g)

c2
= ( 	∇ϕN)

2

8πGc2
= 1.1× 1013

(
M

M�

)2(10 km

R

)4

g/cm3. (6.25)
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It is positive, localizable, and does not depend on a choice of the coordinate system.
On the surface of a neutron star the mass density of the gravity field is about the
same as the mass density of the nuclear matter. This affects the structure of the
neutron star as we shall see below.

A very general mass-energy argument shows that there cannot be singularities in
field gravity. The total energy of the field around a body is

E(fg) =
∫ ∞

R

( 	∇ϕN)2

8πG
4πr2dr = GM2

2R
. (6.26)

This energy should be less than the rest mass energy of the body, which is deter-
mined by all things related to the body, including the gravity field.

E(fg) <Mc2 =⇒R >
GM

2c2
. (6.27)

The non-linearity of the gravity field makes the value of the limiting radius further
increase, because “the energy of the field energy” should be added. Hence a safe esti-
mate for the minimum radius of a massive body in the field gravity is Rlim > 0.5rg.4

Thus black holes and singularities are excluded by the existence of the positive en-
ergy density of the gravitational field.

Finite Gravity Force In the weak field approximation the field equation outside
a mass M , surrounded by a positive field energy density (6.25), is

�ϕ =+ 1

c2
(∇ϕ)2, (6.28)

which has the solution ϕ =−c2 ln(1+ GM

c2r
). Hence the gravity force is

Fg =m
dϕ

dr
= GMm

r2

1

(1+GM/c2r)
. (6.29)

For a maximally compact relativistic object having the radius RM = GM/c2, the
gravitational acceleration and the gravity force are restricted by

gmax ≤ c4

GM
= c2

RM
, and Fg ≤ mc2

RM
. (6.30)

In general relativity the energy-density of the gravity field is negative (Sect. 5.2.3),
hence the sign of the right side of (6.28) is opposite. In this case the solution is ϕ =
−c2 ln(1− GM

c2r
), and the gravity force is Fg = (GMm/r2)(1−GM/c2r)−1, which

is infinite, when r→GM/c2. This difference in the behaviour of the gravity force
in general relativity and field gravity has important consequences for the structure
of relativistic cosmic objects.

4This argument is a precise analogue to that of the classical radius of electron Re = e2/mec
2,

following from the requirement that the electric field energy E(fe) = e2/2R0 should be less than
the electron’s rest-mass energy mec

2.
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Hydrostatic Equilibrium Configurations In general relativity the equation of
hydrostatic equilibrium (6.16) leads to a maximum mass of a neutron star, about
2 M�, the Oppenheimer-Volkoff limit. Larger masses can exist only in the form of
black holes.

In field gravity the equations of motion are contained in the conservation laws
T ik
(�),k = 0, where T ik

(�) = T 00
(gas)+ T 00

(int)+ T 00
(grav) is the total EMT of considered sys-

tem gas+gravity field in corresponding approximation. The post-Newtonian equa-
tion of hydrostatic equilibrium in FG (Baryshev 1988) depends on a particular
choice of the interaction EMT and may be written

dp

dr
=−G(ρ0 + δρ)(Mr

0 + δMr)

r2
, (6.31)

where δρ = (e + p)/c2 + 2ρ0�, ρ0 is the rest-mass density, � = ψ00, Mr
0 =∫ r

0 4πr2ρ0dr , δMr = ∫ r0 4πr2[(e+ 3p)/c2 + 2ρ0�/c2 + (d�/dr)2/8πGc2]dr .
The most important difference between Eqs. (6.31) and (6.16) is that within the

field gravity theory the relativistic corrections lead to a decrease of the gravitating
mass relative to the rest-mass, due to the negative value of the gravitational potential
(�< 0). According to Eq. (6.31) a hydrostatic equilibrium is possible for any large
mass.

Tanyukhin (1995) constructed numerically the internal structure of neutron stars
using the field gravity theory. He showed that such stars are more homogeneous than
in general relativity, and with no upper limit on their mass.

Stability of Supermassive Stars Hoyle and Fowler (1963) suggested that a mass
of the order of 108M� may condense in a galactic nucleus into a supermassive star
(SMS), in which the nuclear energy generation take place. However, Fowler (1964)
soon showed that in general relativity a SMS is unstable and will collapse to a black
hole within a lifetime τ ≈ 10(M/108M�)−1 yr before the nuclear reactions begin.
Hence in the standard GR only black holes can be the primary power sources of
active galactic nuclei.

Within the field gravity theory the stability of supermassive stars was shown by
Baryshev (1992a) who used the method developed by Fowler (1966) for considering
the PN hydrostatic equilibrium and small adiabatic pulsations of a slowly rotating
SMS. Its total equilibrium energy (excluding the constant term

∫
ρ0c

2 =M0C
2) in

the form

E
(eq)
(SMS)

=
∫
V

(
e− 3p− 1

2
�0v

2
)
dV, (6.32)

is a consequence of the relativistic virial theorem in the PN approximation. Here e

is the thermal energy density, p is the pressure, 1
2�0v

2 is the density of the kinetic
rotational energy, so that �Erot =

∫ 1
2�0v

2dV . The first two terms can be expressed
via the Newtonian potential energy Epot plus the relativistic correction �Erel, hence

E
(eq)
(SMS)

= β

2
Epot −�Erel −�Erot, (6.33)
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where β = pgas/ptot 
 1 is the gas to the total pressure ratio (β ≈ 10−3 for a mass
M ≈ 108M�) and the relativistic correction is

�Erel =K(n,gt)
G2

c2
M

7/3
0 �

2/3
0c , (6.34)

where M0 is the rest-mass of the SMS, �0c is the central mass density and K(n,gt)
is a constant defined by the polytrope index n and the gravity theory. For the n= 3
polytrope the constant is5

K(3,FG)=+1.7349 while K(3,GR)=−0.9183. (6.35)

The different signs of the corrections show that in general relativity we have a PN
instability, while in field gravity a supermassive star is stable.

For small radial adiabatic pulsations of a SMS with radius R0 and mass M0, and
δr/r = (δR0/R0) exp(−ω0t), we get for the angular frequency

ω2
0 =

1

I

(
−β

2
Epot + 2�Erel + 2�Erot

)
, (6.36)

where I = ∫ r2�0dV is the inertial moment of the SMS. Within the field gravity the-
ory for the n= 3 polytrope, the oscillation period P0 = 2π/ω0 of the supermassive
star is

P0 = 2.11R0

c
[ 3

8β
Rg

R0
+ 4.78

R2
g

R2
0
+ J 2

(ckM0R0)
2

]1/2
, (6.37)

where Rg and J are the gravitational radius and the angular momentum of the SMS
and k is a constant ≈ 1. This expression has no singularity contrary to the case of
general relativity.

The PN stability in the field gravity theory radically changes the understanding
of the evolution of the supermassive stars. In particular, in their last stages the main
energy source will not be nuclear reactions with energy output of about 1%, but the
gravitational binding energy of the order of M0c

2.

6.4.3 Relativistic Compact Objects

Observations of “black hole candidates” in X-ray binary stellar systems (masses
about 10M�) and in galactic nuclei (106 to 109 M�) provide tests of strong gravity
effects. From the viewpoint of the FG theory the stellar-size objects and also the
supermassive objects inferred to be common in centres of galaxies, are not black
holes, but relativistic compact objects (RCO).

5Calculation of K(3, FG) was done by A. Raikov (details in Oschepkov and Raikov 1995).
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Probing the Existence of Black Holes Classical general relativity predicts black
holes—objects having an event horizon at the Schwarzchild radius 2GM/c2 after
which a one-way fall into the singularity is inevitable. There is no singularity and
event horizon in the field gravity theory. As we explained above, the positive local-
izable energy density of the gravity field prevents the appearence of a singularity at
the centre and also at the gravitational radius of a RCO. Instead of black holes, field
gravity produces compact relativistic objects having radii ≈GM/c2. Such objects
have a highly redshifted surface and an intrinsic magnetic field. Another important
prediction of field gravity is the existence of quark stars with masses of about 8 solar
masses (Sokolov 1992c).

To prove observationally the existence of black holes means to prove the ex-
istence of the event horizon in relativistic compact objects. Crucial observational
tests, which would convincingly reveal such a one-way sphere, have not yet been
made, and the proof would be difficult, because many astrophysical processes are
involved. Abramowicz et al. (2002) even argued that it is impossible to prove that
an object has an event horizon.

ADAF as a Test of the Event Horizon It is hard for black hole models to un-
derstand the observed low luminosity of the accretion disc in a certain variability
phase, when the accretion rate is still large. It was suggested (Narayan et al. 1997;
Narayan and Quataert 2005) that this could be explained by the “advection domi-
nated accretion flow” (ADAF) or “radiatively inefficient accretion flow”—it is as-
sumed that protons and electrons are decoupled in the flow, so the kinetic energy
is absorbed by the event horizon without an outward radiation. Bisnovatyi-Kogan
and Lovelace (2000) and Binney (2003) argued that the magnetic field present in
astrophysical plasmas of the accretion flow makes ADAF practically impossible.

Robertson and Leiter (2002, 2003, 2004, 2005) analysed data on black hole can-
didates in X-ray binary stars and active galactic nuclei and found evidence for in-
trinsic magnetic fields, in conflict with the black hole model. The low luminosity
phase is naturally explained by the “propeller effect” of the magnetic field of the
relativistic compact object. Robertson and Leitner’s “magnetospheric eternally col-
lapsing object” has no event horizon though its size is close to the Schwarzschild
radius. Observations of the gravitationally lensed quasar Q0957+ 561A,B revealed
the inner structure of the accretion disc, which demands an intrinsic magnetic field
of the central RCO and may be well modeled as a MECO (Schild et al. 2006). The
field gravity RCOs also can explain the magnetic fields in the “black holes”.

Another unexpected finding is the very small radius of radiating matter in ac-
cretion discs. For instance, in the best studied accretion disc, around the central
object of the Sy1 galaxy MCG-6-30-15, the inner radius of the orbiting matter is
rinner = 0.615Rg. This is smaller than the Schwarzschild radius and was interpreted
in terms of an extremely rotating Kerr black hole (Wilms et al. 2001). In compar-
ison, within the field gravity theory the minimum radius of a relativistic compact
object is about 0.5Rg, from Eq. (6.27).

Crucial observational tests are difficult. Perhaps the most direct test of the black
hole model was suggested by Falcke et al. (2000), who discussed VLBI observations
of the black hole candidate in the Galactic centre with micro-arcsecond angular
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resolution. The profile of such an image can even distinguish between non-rotating
and rotating black holes. Another direct test of the strong gravity effects would be
the detection of a gravity wave signal from the relativistic collapse.

Relativistic Jets It is natural to expect matter accreting onto a rotating relativis-
tic compact object and forming a disc around it. This process could be accompanied
by relativistic jets which are observed in active galactic nuclei. The nature of this
phenomenon is still debated and many observational facts have been gathered thus
far. For example, an interesting effect, discovered by Babadzhanyants and Belokon’
(1985, 1987) (also Belokon’ 1991), is that the time of the birth of a superluminal
radio component coincides with a strong optical flash. This effect was recently con-
firmed also for gamma-flashes in BLLac objects (Marscher et al. 2011).

Core-Collapse Supernovae, γ -Ray Bursts and Gravitational Waves The field
gravity (no black holes) makes dramatic changes in the physics of supernova explo-
sions. The collapse of the iron core of massive pre-SN stars will have a pulsational
character and leads to gravitational signals of long duration (seconds), comparable
with neutrino signals and gamma ray bursts.

The relation of the gamma-ray-burst (GRB) phenomenon to relativistic core-
collapse supernovae has become a generally accepted interpretation of the GRBs
(Paczynski 2001; Sokolov 2002). The compact GRB model suggested by Sokolov
et al. (2006) predicts a correlation of the gamma and x-ray signals with gravitational
bursts.

The gravitational antenna GEOGRAV observed a signal from SN1987A (Amaldi
et al. 1987) together with the neutrino signal observed by the Mont Blanc Under-
ground Neutrino Observatory (Aglietta et al. 1987). This could be a possible de-
tection of the scalar gravitational radiation from the spherical core-collapse of the
pre-supernova (Baryshev 1997). An observational strategy to make a distinction be-
tween scalar and tensor gravitational waves by using siderial time analysis was con-
sidered by Baryshev and Paturel (2001) and Paturel and Baryshev (2003a, 2003b).
It is based on the difference in the statistics for the detections of tensor and scalar
waves, the pulses assumed to arrive from burst sources in the Local Supergalaxy
(the flat nearby galaxy system within 20 Mpc).6

6.4.4 The Hubble Law of Redshifts as a Key Observation

The Hubble law of redshifts starts immediately beyond the border of the Local
Group. Such a law is also a part of the Friedmann model of the expanding uni-
verse, based on general relativity and homogeneous distribution of matter. We shall
discuss Friedmann’s model in the next chapter and focus here on the relation of the
Hubble law to gravity theories.

6Controversial claims about possible detections of gravitational signals by Nautilus and Explorer
antennas (Astone et al. 2002, 2006), if confirmed, require a new analysis of the potential sources
of gravitational waves (Coccia et al. 2004).
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The Hubble Law in Expanding Space In the 1930s Howard Robertson and
Goeffrey Walker realized that there is an intimate link between the homogeneous
matter distribution and the expansion law in the universe. General geometrical rea-
soning shows that if a uniform space (matter distribution) expands so that it remains
uniform, then there is everywhere a linear velocity–distance relation (not observ-
able directly). This regular expansion causes the redshift of light travelling in space
and leads to the observed linear relation between redshift and distance in the local
universe.

This connection between the supposed uniformity of matter distribution and the
Hubble law was the first great success of the expanding world model. In addition to
the linearity, the value of the slope (the Hubble constant) is closely linked to the age
of the universe and its overall agreement with the determinations of the ages of old
stars lends good support to the expansion picture. Further evidence for expansion
is given by the surface brightness test and the time dilation versus redshift effect
(Chap. 8).

General relativity does not permit a static matter distribution, and if the distri-
bution is homogeneous, one necessarily expects regular expansion (or contraction).
Taken together, the success of the Friedmann model to explain the Hubble law and
many other astronomical observations, lend strong indirect support to the validity of
general relativity even on the largest observed scales.

On the other hand, the lumpy distribution of visible matter has been seen as con-
flicting with the linear Hubble law, hence casting doubt on the expansion paradigm
where the linearity of the velocity–distance law is linked with homogeneity. How-
ever, the everywhere uniform dark energy may help the linear Hubble law to appear
even there where one would not expect it otherwise (Chap. 12).

The Hubble Law in Static Space The expanding space paradigm (and general
relativity), explains well astronomical observations. At the same time, it is in spirit
of science to test alternative ways to understand the cosmological redshift and the
linear Hubble law. If one can show that known alternatives cannot offer explanations
at the same level of success as the expanding space paradigm, the position of the
latter, together with general relativity, is made stronger. And if some alternative
remains reasonable, one should not close the case.

We note that a global Minkowski space is not automatically excluded or obsolete
in cosmology; field gravity allows one to consider an infinite matter distribution
in Minkowski space without the gravitational potential paradox. Thus assuming a
static global Minkowski space (a part of the hypothesis of gravity to be tested), one
may first ask if the redshift could be due to motions within space, together with the
ordinary Doppler effect.

Davis and Lineweaver (2004) argued that the Hubble diagram for distant SNIa
supernovae rules out the special relativistic Doppler interpretation at a high confi-
dence level. One may add the problem of how to give galaxies their motions re-
sulting in the linear Hubble law, without sacrificing the cosmological principle of
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“no-centre”.7 It is true that this has been discussed in Milne’s kinematic relativity,
based on special relativity with its length contraction and time dilation effects, but
that interesting scheme (in fact without gravitation!) cannot be regarded as a modern
contender even though Milne’s Cosmological Principle has remained so central for
modern cosmology.

The gravitational redshift has been tested in laboratory and appears both in field
gravity and in general relativity. Then the critical question is: Is there some way of
producing the cosmological redshift and the Hubble law using field gravity within
a global Minkowski space? Although this may sound unlikely, we shall discuss in
Chap. 9 a possible gravitational redshift effect related to the fractal distribution of
matter. Such a possibility is tempting to study, because then the inhomogeneity,
which may be problematic for the classical interpretation of the Hubble law, could
be the very reason for the Hubble law within a basically different framework.

Concluding Remarks Our discussion of gravity physics emphasized that there
are crucial experiments and astronomical observations for testing the nature of grav-
itation. In particular, the geometrical and field approaches are not equivalent exper-
imentally, though the classical relativistic gravity effects in the weak field are iden-
tical in both theories. The following observations, if made, would be against the
predictions of general relativity:

• the detection of scalar gravitational waves
• an extra deflection in the translational motion of rotating bodies
• too small sizes of compact objects in active galactic nuclei
• the presence of intrinsic magnetic fields in black hole candidates
• the non-expansion origin of cosmological redshifts

Similarly, evidence against such phenomena would be in direct conflict with the field
approach to gravitation. Hence, astronomical observations around these subjects can
potentially influence strongly cosmological physics.

In the next chapter we discuss the cosmological model constructed on the basis
of the main stream geometrical gravity theory, general relativity.

7An expansion in Newtonian absolute space would imply one privileged point where the celestial
body must remain at rest. Therefore, if one observes expansion of matter and has grounds to think
that it is a universal phenomenon, one cannot simultaneously accept absolute space and the no-
centre principle. In the modern paradigm the concept of no centre results from the overall expansion
of space together with the uniform substance.



Chapter 7
The Friedmann Model

In early history of relativistic cosmology Alexander Friedmann (1923), in his book
The world as space and time, modestly and wisely viewed cosmological models as
“schematic and simplified, reminding one of the real world only to the extent that
a dim reflection from a mirror of a schematic drawing of the cathedral of Cologne
may be reminiscient of the cathedral itself”. Since those pristine days, cosmology
has grown into an ambitious project dealing with applications of modern physics to
the description of the largest observable universe. Here we first take a brief look at
Newtonian cosmology and the first world model by Einstein and then describe the
Friedmann model, the main theoretical tool in the hands of today’s cosmologists,
which has developed into a many-component model containing ordinary matter,
radiation, and, for the most part, dark unknown substances.

7.1 Newtonian Cosmology

Under “Newtonian cosmology” we mean the early application of Newton’s theory
to the static infinite universe, a good baseline for modern world models. It is based
on classical mechanics and gravity theory together with the cosmological principle
of a uniform star distribution. Newtonian universe is only apparently simple, and
its paradoxes have been discussed up to our days. Interesting historical details may
be found in North (1965), Harrison (1981), Baryshev and Teerikorpi (2002), and
Teerikorpi et al. (2009).

7.1.1 Newtonian Cosmological Model

In our laboratories it is natural to regard the space outside the Earth as an empty
cosmos. Physicists may even forget that there is a huge universe around the lab. For
our Solar System the other stars are far enough so that the empty cosmos begins just
outside it.

Y. Baryshev, P. Teerikorpi, Fundamental Questions of Practical Cosmology,
Astrophysics and Space Science Library 383,
DOI 10.1007/978-94-007-2379-5_7, © Springer Science+Business Media B.V. 2012
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Uniform Stellar World A totally new situation is encountered in cosmology.
Contrary to the ancient Stoic view, still entertained in the 19th century, we think
that there is no place outside the matter in the universe, and “far enough from a
gravitating mass” carries little sense in cosmology. However, this does not mean
that there are no inertial frames in a universe filled by matter (cf. Narlikar 1993,
p. 29). Indeed, let us consider a star within a homogeneous isotropic matter distri-
bution. Then all forces from the other stars are mutually compensated and the net
cosmological gravity force vanishes. This means that in accordance with its defini-
tion, an inertial frame exists for each such star, when the sum of all forces equals
zero.

Newton viewed the fact that we see all those unmoving stars in the sky, instead of
one lump of stars, as evidence for an infinite uniform distribution of stars in space.
Fluctuations of the gravity force from nearest neighbours are expected to produce
small inhomogeneities in the star distribution.

Holtsmark’s Distribution A mathematical proof of Newton’s guess about the
possibility of an infinite homogeneous universe came from Norwegian physicist
Jan Holtsmark (1919). He considered a statistically uniform distribution of particles
(Poisson’s law) in Euclidean space. Actually he had charged particles interacting
with each other via Coulomb’s force, but this problem is identical to Newton’s one.

Holtsmark found that in an infinite universe of such interacting particles there
is only a finite average force acting on any particle. The strength of the force is
determined by the nearest neighbours. Holtsmark’s probability distribution for the
amplitude of the cosmological force F is

PH(F )= 2

πF

∫ ∞

0
exp(−ax3/2/F 3/2)x sinxdx, (7.1)

where a = (4/15)(2πG)3/2m3/2n0, m is the mass of a particle, and n0 is the num-
ber of particles per unite volume. This Holtsmark’s distribution has an infinite dis-
persion because of close encounters between point-like particles. Irina Petrovskaya
(1986) generalized the distribution for finite-sized stars; then the dispersion becomes
finite. This means that in the infinite homogeneous Newtonian universe there is no
gravitational force paradox. The net result of the action of an infinite number of
masses is a finite force with its amplitude essentially determined by the nearest
neighbours. Similar arguments were presented already by Svante Arrhenius (1908)
in his article about the infinity of the world.1

1In this same study Arrhenius explains the absence of spiral nebulae close to the band of the Milky
Way as due to the extinction of light by absorbing material. At that time and before, the odd
distribution of nebulae was often regarded as evidence for their status as constituents of our Milky
Way instead of being remote “Island Universes”.
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7.1.2 Paradoxes of the Newtonian Cosmology

Although the force paradox may be avoided as noted above, several other interesting
paradoxes appear within the Newtonian cosmological model having a homogeneous
distribution of eternal stars in infinite Euclidean space.

The Paradox of Gravitational Potential At the level of the concept of the gravi-
tational potential the Newtonian cosmology has a problem known as the Neumann-
Seeliger gravitational potential paradox: as the volume of a matter distribution of
a finite density tends to infinity the Newtonian gravitational potential at any point
increases without limit. Indeed, the solution of the Poisson equation inside the ho-
mogenous ball (Eq. (5.3)) gives the gravitational potential in the centre of a ball of
radius R as

ϕN(0)=−2πGρ0R
2 →−∞ for R→∞, (7.2)

i.e. it has an infinite value for an infinitely large ball, for any density ρ0 > 0. Another
way to see the problem is: considering that in a uniform matter distribution also the
potential should be constant, then only the solution ρ0 = 0 (no matter!) satisfies
Poisson’s equation. This is why it has been said that the Newtonian gravity theory
can not be applied to the cosmological problem (e.g., Landau and Lifshitz 1971,
p. 333).

The Photometric Paradox Two other problems of the Newtonian cosmology
are the paradox of dark sky (Cheseaux, Olbers) and the thermodynamic paradox
(Boltzmann).

If the stars are uniformly distributed in infinite space then the night sky should
be blazing as a typical star surface. Let n0 be the mean number density of stars in
space, hence the sky fraction f (r) covered by stars is:

f (r)= 1

4π

∫ r

0

A

r2
n04πr2dr, (7.3)

where A= πR2∗ is the area of a star’s cross section and 
∗ =A/r2 is the solid angle
of the star at distance r . Therefore the sky will be completely covered (f (r)= 1) if
the stars are distributed up to the radius

rOlb = (An0)
−1 ≈ 1

σn0
, (7.4)

where the last term is like the length of typical free motion between collisions of
gas particles having the cross section σ and the number density n0. In terms of
the typical distance L between the particles and the particle size d , the radius of
“Olbers’s sphere” rOlb can also be expressed as:

rOlb =
(
L

d

)2

L. (7.5)
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The total energy density of the background radiation at the Earth is

ρBR(r)= 1

c

∫ r

0

L∗
4πr2

n04πr2dr = L∗n0r

c
, (7.6)

where L∗ is the typical luminosity of a star. For r = rOlb, the sky background is as
bright as the surface of a star.

The Thermodynamic Paradox This means the thermal death of Boltzman’s uni-
verse filled with elastic interacting molecules. The second law of thermodynamics
tells that such a system inevitably drives towards an asymptotic homogeneous state
with thermodynamic equilibrium and small fluctuations. On the contrary, we ob-
serve around us a highly structured universe. This has the interesting implication
that the age of this complex world should be finite, otherwise all structures should
have been destroyed.

There is another more modern aspect of the thermodynamic paradox, related
to energy. The energy sources in the universe are restricted by the finite value of
the mass-energy of the matter mc2. In particular, the nuclear reactions in stars will
eventually stop, and stars cannot shine forever.

7.1.3 Suggestions to Resolve the Paradoxes

These paradoxes have been of great importance for cosmological research, stimu-
lating active searches for self-consistent world models.

Change the Poisson Equation The first solution of the gravitational paradox was
proposed by von Seeliger (1895) and Neumann (1896) as a modification of one ini-
tial postulate, the theory of gravitation. Perhaps gravity falls off at large distances
faster than the inverse-square law so that the gravitational potential has the New-
tonian expression multiplied by the extra factor e−αr , where α is small enough to
be consistent with the usual theory for short distances. This would make an infinite
quasi-Newtonian universe possible.

An analogous idea was used by Einstein (1917), who added the �-term into
general relativity. He replaced Poisson’s equation �φ = 4πGρ0 by

�φ −�φ = 4πGρ0, (7.7)

where � is a universal constant. The solution of Eq. (7.7) is:

φ =−4πG

�
ρ0 = const. (7.8)

Now the potential can be constant even for a finite matter density. Local inhomo-
geneities in finite regions of space can be considered as causing an additional local
potential which is Newtonian if sufficiently small relative to c2.
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Change the Mass Distribution It was argued by Fournier d’Albe (1907) and
Charlier (1908, 1922) that the Newtonian universe may be constructed without grav-
itational and night sky paradoxes if there is an unlimited clustering hierarchy (see
Chap. 10). In the model the typical value of the mass within the distance r from a
hierarchy element scales as M(r)∝ r1. The size and the mass of the universe are ar-
bitrarily large, but the mean density M(r)/r3 ∼ r−2 converges to zero and Olbers’s
paradox is avoided. Though the modern counterpart to hierarchy, the idea of fractal-
ity, is no longer needed to solve Newtonian paradoxes, it has special significance to
cosmology in studies of large-scale structure formation.

Let Light Be Redshifted In his pioneering discussion of the cosmological signif-
icance of the paucity of radiation, Bondi (1952) dropped the assumption of a static
universe and suggested that the redshift of light arising in large-scale expansion
could decrease the background radiation to the observed low level. In fact, he con-
sidered that one might choose either the redshift or a young universe as alternative
explanations of the dark sky.

Allow a Finite Age Stars have not existed always, but were switched on some
finite time ago: when we look far in space, we also look back in time, at the ancient
era when stars were not yet shining. This idea was pointed out by J.H. Mädler (1873)
in his book on the history of astronomy and in fact earlier mentioned by Edgar Allan
Poe, the American father of modern detective fiction. In 1848, he visioned in his
cosmological essay Eureka that the distance of the background where the stellar
discs are blended into one is “so immense that no ray from it has yet been able to
reach us at all”.

William Thomson, better known as Lord Kelvin (after the river flowing near his
university in Glasgow), noted that if the stars have been shining no longer than 100
million years, then the radius of the visible universe is at most 100 million light
years. Ages of this order appeared in a popular theory, which ascribed the hotness
of the Sun to the energy released when it gradually contracts under its own gravity.
Essentially such a solution for Olbers’s paradox is offered by the 14 milliard-year-
old big bang cosmos (Harrison 1987).

As an illustration, let us calculate the radius of Olbers’s sphere rOlb for a world filled by
stars similar to our Sun. Assume that the number density n0 is 1 star per cubic parsec. Then
1/n0 = pc3 ≈ 3× 1040 km3 and A= π(7× 105)2 km2. Equation (7.4) gives rOlb ≈ 2×
1028 km≈ 1015 pc. In megaparsecs this formidable length is 109 Mpc which corresponds
to 0.3× 106RH where RH is the Hubble distance. In other words, light would need about
300000 ages of the (Friedmann) universe in order to travel from the edge of Olbers’s
sphere to us!

Abandon Static Space The new idea of expanding space came from the geomet-
rical revolution in gravitation theory, general relativity. After the static world model
of Einstein (1917), non-static solutions of Einstein’s equations (Friedmann 1922,
1924) showed that the universe can expand or contract. The new model had a finite
age, the light within it was redshifted, and it did not suffer from the paradox of dark
sky.
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7.2 The Friedmann Cosmological Model

The Friedmann model (or the Friedmann-Lemaître-Robertson-Walker model), is the
main-stream framework for interpreting astrophysical observations and the basis
of the standard cosmological model. Here general relativity works together with
Einstein’s cosmological principle of homogeneity.

7.2.1 Basic Equations

As we discussed above, general relativity has been successfully tested in the weak
gravity conditions (of the Solar System and binary neutron stars), and the next nat-
ural step is to ask whether it can be applied to the Universe as a whole. Assuming
that it can, we arrive at the Friedmann model.

The Friedmann model is described by the exact non-linear Einstein equations for
the special case of homogeneous and isotropic matter distribution. Current versions
of standard cosmology make a distinction between ordinary matter (with positive
pressure) and dark energy (negative pressure). So it is convinient to write Einstein’s
equations in the two-fluid form:

�ik − 1

2
gik�= 8πG

c4

(
T ik
(m) + T ik

(de)

)
, (7.9)

where T ik
(m) is the energy-momentum tensor for ordinary matter (the 1st fluid), and

T ik
(de) is the dark energy component (the 2nd fluid; e.g., the famous cosmological

constant, Carroll et al. 1992).
From the Bianchi identities for the Riemann tensor �iklm (from which the “ge-

ometric” left side of Eq. (7.9), or the Einstein tensor) is constructed, one gets the
continuity equation for the right side:

T i
k ;i = (T i

(m)k + T i
(de)k);i = 0. (7.10)

T i
k is the total EMT of matter and dark energy. For non-interacting matter and dark

energy the covariant divergence of each EMT equals zero separately. The general
case of interaction, with energy transfer between matter and dark energy was studied
by Gromov et al. (2004).

7.2.2 Einstein’s Cosmological Principle

Einstein’s Cosmological Principle states that the universe is spatially homogeneous
and isotropic on “large scales”. This term is required, because the universe certainly
is inhomogeneous on scales of galaxies and their clusters.
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Einstein’s Static World Model In 1917, Albert Einstein applied general relativ-
ity, soon after he had invented it, to the cosmological problem. If the matter distribu-
tion is uniform, the curvature of space is the same everywhere. Einstein showed that
in the case of a static spherical space with radius of curvature R his Eq. (7.9), when
applied to ordinary matter of finite density ρ > 0 without pressure (dust model) do
not have a solution. It is instructive to write down the resulting two independent
equations:

− 3

R2
=−8πG

c2
ρ, − 1

R2
= 0. (7.11)

In order to secure a solution, Einstein added to the left “geometry” side of his field
equations the constant term gijλ, leading to a new pair of equations:

λ− 3

R2
=−8πG

c2
ρ, λ− 1

R2
= 0. (7.12)

Now the solution exists linking the cosmological constant λ, the constant density ρ

and the radius of curvature of the spherical universe R:

λ= 4πGρ

c2
= 1

R2
. (7.13)

This remarkable equation in early practical cosmology tells that by measuring the
matter density ρ in a local (but representative) region, one can infer the size of the
universe (if it indeed has the static spherical geometry).

Extension to Time-Dependent Universes After Friedmann’s work on non-static
models, Einstein’s hypothesis of homogeneity and isotropy can be taken to mean
that on all scales r > rhom the total energy density ε = ρc2 and the total pressure p

are functions of time only:

ε(	r, t)= ε(t), p(	r, t)= p(t). (7.14)

Here the total energy density is the sum of the energy density of ordinary matter
(εm) and dark energy (εde), and similarly for the total pressure:

ε = εm + εde, p = pm + pde. (7.15)

In models with one “effective” fluid the equation of state is usually suggested to
have the ideal form:

p = γ ε. (7.16)

To emphasize the difference between usual matter (with positive pressure) and dark
energy (with negative pressure) one can use separate notations for the equations of
state of the partial components:

pm = βεm, 0≤ β ≤ 1, pde =wεde, −1≤w < 0. (7.17)

Values w <−1 have also been considered for a hypothetical substance nicknamed
phantom energy (Caldwell et al. 2003).
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Fig. 7.1 Properties of the
universe at the times of
emission tem and observation
tobs of light from a distant
galaxy having the linear size
ABC. Note that l(tem) and
r(tem) are the external and
internal metric distances,
respectively, when the scale
factor is S(tem)

7.2.3 Space Expansion Paradigm

The standard cosmological model includes the expanding space paradigm, so that
the metric of a constant curvature space depends on time, and distances between
galaxies may increase (or decrease) with time.

The Robertson-Walker Metric Cosmological models deal with 4D space-time
geometry. An important consequence of homogeneity and isotropy of such spaces
is that their metric gik (the line element ds2 = gikdx

idxk) may be presented in the
form found by Robertson and Walker. As we discussed in Chap. 2, the line elements
of curved spaces may be given in different systems of coordinates, useful for certain
purposes. Expressed in the “spherical” comoving space coordinates χ, θ,φ the RW
line element is

ds2 = c2dt2 − S(t)2[dχ2 + Ik(χ)
2(dθ2 + sin2 θdφ2)], (7.18)

where t is the cosmic time, Ik(χ)= sin(χ),χ, sinh(χ) correspond to the curvature
constants k = +1,0,−1, respectively, and S(t) is the scale factor. The comoving
coordinates of a galaxy do not change during the expansion of the universe, while
the scale factor expresses how the distance between the observer (at χ = 0) and the
galaxy (at χ , θ , φ) changes with time.

In the expanding space paradigm the proper (internal) metric distance r of a body
with a fixed comoving coordinate χ is given by

r = S(t) · χ. (7.19)

It is internal in the sense that it is measured wholly within the curved space. It
changes with time t as the scale factor S(t). In other words, r and χ give the Eulerian
and Lagrangian representations of the comoving distance. The dimension of the
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metric distance [r] = cm, hence if [S] = cm, then the comoving coordinate distance
χ labeling the galaxy is dimensionless (see Fig. 7.1).

In fact, χ is the spherical angle and S(t) is the radius of the (pseudo)sphere embedded in
the 4D Euclidean space. This means that the “cm” (the measuring rod) itself is defined as
an unchangeable unit in the embedding Euclidean space. Hence the distance r measured
in cm may be viewed as the “internal” proper distance on the 3D hypersurface of the
embedding space.

When “cylindrical” comoving coordinates μ,θ,φ are used, the line element is

ds2 = c2dt2 − S(t)2
[

dμ2

1− kμ2
+μ2(dθ2 + sin2 θdφ2)

]
. (7.20)

The meaning of the coordinate μ is given by the fact that the external distance l is
expressed as

l = S(t) ·μ. (7.21)

In analogy with the 2D space within the 3D space (Chap. 2), this is the distance from
the z-axis in the embedding Euclidean 4D space. To avoid confusion, it is important
to use different designations for the distances defined by the intervals (7.18) and
(7.20). Note that the proper metric distance r is additive, while the external distance
l is not. The line element (7.20) is convenient, when one calculates the angular size
of a rigid rod as a function of distance, and in fact, S(t)μ is what is called the angular
size distance! It is also expressed in cm, but in physical meaning it differs from the
metric distance r . The relation between the two distances is

r = S(t)I−1
k (l/S), l = S(t)Ik(r/S), (7.22)

where I−1
k is the inverse function for Ik .

Expanding homogeneous space implies that at any given moment the recession
velocity is proportional to distance. The recession velocity Vexp of a body with fixed
χ , due to “space expansion”, is accurately defined as the rate of increase of the
metric distance r . Its simple and exact relativistic expression follows from (7.19):

Vexp = dr

dt
= dS

dt
χ = dS

dt

r

S
=H(t)r = c

r

RH
. (7.23)

Here H(t)= Ṡ/S is the Hubble constant (also a function of time) and RH = c/H(t)

is the Hubble distance at the time t . (“dot” means the time derivative d/dt). This also
signifies that the linear velocity-distance relation V = Hr , identified to be behind
the observed Hubble law, is a consequence of the uniform matter distribution.

7.2.4 Friedmann’s Equations

Up to now we have considered the “kinematics” of expansion. Now we discuss the
“dynamics”, i.e. how the scale factor S changes with time.
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In comoving coordinates the total EMT of the cosmological fluid is

T k
i = diag (ε,−p,−p,−p) . (7.24)

For an unbounded homogeneous matter distribution (7.14) Einstein’s equations (7.9)
are reduced to Friedmann’s equations. From the initial set of 16 equations we have
only two independent equations for the (0,0) and (1,1) components, and these may
be written as

Ṡ2

S2
+ kc2

S2
= 8πG

3c2
ε, (7.25)

2
S̈

S
+ Ṡ2

S2
+ kc2

S2
=−8πG

c2
p. (7.26)

The Bianchi identity (7.10) implies the continuity equation

3
Ṡ

S
=− ε̇

ε+ p
, (7.27)

which complements (7.25) and (7.26) as a consistency condition.
Using the Hubble “constant” H = Ṡ/S, we rewrite (7.25) and (7.26) as

H 2 − 8πG

3
ρ =−kc2

S2
, (7.28)

S̈ =−4πG

3

(
ρ + 3p

c2

)
S. (7.29)

In terms of the critical density ρcrit = 3H 2/8πG, the total density parameter

= ρ/ρcrit, the curvature density parameter 
k = kc2/S2H 2, and the deceleration
parameter q =−S̈S/Ṡ2, these equations have also the forms


− 1=
k, (7.30)

q ≡− S̈S

Ṡ2
= 1

2



(
1+ 3p

ρc2

)
. (7.31)

Here 
,p, and ρ are total quantities, i.e. sums of the corresponding components for
matter and dark energy.

Friedmann’s equation (7.31) determines how the scale factor S(t) or the distance
r(t) depend on time. For a cosmological fluid with the equation of state (7.16) and
zero curvature (k = 0) the scale factor behaves as

S(t)∝ t
2

3(1+γ ) , (7.32)

where γ >−1. For γ = 0 (dust) the scale factor is S(t)∝ t2/3, for γ = 1/3 (radia-
tion) S(t)∝ t1/2, and for γ =−1 (cosmological vacuum) S(t)∝ eαt .
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Equation (7.31) links together the deceleration q and the density parameter 
,
both of which may be studied observationally. Thus it could be seen as a test of
general relativity on very large scales. In fact, it would work nicely for a simple
world with dust-like matter (p = 0). However, the beauty and simplicity of the test
is deteriorated by the introduction of several components with differing physics; as
ρ =∑ρi and p =∑pi the model contains many free parameters. This makes the
Friedmann model very flexible when confronted with new observational data and, at
the same time, lessens the value of (7.31) as a promising large-scale test of general
relativity.

The Main Parameters of Friedmann Models The critical matter density ρcrit,
the Hubble parameter H , the deceleration parameter q , and the density parameter 

are the main physical parameters that define a Friedmann model. Such quantities as
the metric distance, the redshift, the time since the Big Bang, and relations between
them are also used when the Friedmann models are confronted with observations.

A special value of the total density determines the curvature of space:

ρcrit = 3H 2

8πG
= 1.88h2 × 10−29 g/cm3 = 2.8h2 × 1011 M�/Mpc3. (7.33)

This critical density can be derived from Eq. (7.28), by putting the curvature equal
to zero (k = 0).

All models with the density ρ > ρcrit or, equivalently, the density parameter 
=
ρ/ρcrit > 1 have a positive curvature. When exactly 
 = 1 the expanding space is
flat, and for a low density universe 
< 1 the curvature is negative. Here the density
ρ includes fields and matter, with positive or negative pressure, but does not include
the density of the gravity field.

Modern Friedmann models contain at least two important components of sub-
stance (matter, dark energy), and their relative contributions to the cosmic density
are characterized by the ratio

α(S)= ρde(S)

ρm(S)
. (7.34)

This is generally time dependent. It is also affected by a possible interaction (energy
transfer) between cosmic components, in particular between dark energy and dark
matter (e.g., Peebles and Ratra 2003). In an interesting special case the relative
contributions remain constant (α = const, a “coherent” Friedmann model; Gromov
et al. 2004).2 Due to the flexibility of the Friedmann model, one may test on a
phenomenological level even the possible interaction between dark matter and dark
energy, and thus their reality and nature (Teerikorpi et al. 2003).

2The parameters of the partial equations of state (7.17) and the associated “effective” one-fluid
parameter (7.16) are related by γ = (wα+β)/(α+1). For a coherent model with constant equation
of state parameters for matter (β) and dark energy (w), the associated one-fluid model also has γ =
constant in p = γ ε.
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7.3 Redshift, Distance, and Recession Velocity

The Friedmann model is rich with theoretical cosmological laws, which we cannot
observe directly; these are expressed as relations between quantities, one or both
of which are not observable from our limited vantage point. For instance, we can
observe the redshift (which together with the magnitude of a standard candle leads
to the Hubble law), but we cannot observe the recession velocity of the object in
question, nor its present metric distance.

7.3.1 Scale-Factor and Redshift

As a direct consequence of the continuity equation (7.27) there is a relation between
the density and the scale factor. For the ideal equation of state (7.16) this theoretical
cosmological law of changing density has a simple form independent of the value
of the curvature of space:

ρ ∝ S−3(1+γ ). (7.35)

The density may change because the scale-factor is a function of time S(t).

Lemaître’s Redshift–Scale Factor Relation In standard cosmology the cosmo-
logical redshift z is a new phenomenon of geometric physics, caused by space ex-
pansion making the wavelength of a travelling photon stretch according to the equa-
tion first derived by Lemaître (1927, 1931):

(1+ z)= λ0

λ1
= S0

S1
. (7.36)

Here λ1 and λ0 are the wavelengths at emission and reception, respectively, and S1
and S0 are the corresponding values of the scale factor. This Lemaître’s relation is a
consequence of the radial null-geodesics (ds = 0, dθ = 0, dφ = 0) of the RW line
element.

In order to derive Lemaître’s law we ask what the observed time interval δto is
for two light signals initially separated by the interval δte at emission, after they
propagate in expanding space? On its trajectory from a galaxy with comoving radial
coordinate χ to the observer (us) at χ = 0 for light is valid: 0= cdt − S(t)dχ , and
hence

constant=
∫ r

0
dr = c

∫ to

tem

dt

S(t)
= c

∫ to+δto

tem+δte
dt

S(t)
, (7.37)

where tem and to are the times of emission and observation. Using the identity be-
tween the last two integrals above and referring to Fig. 7.2 it is easy to show that

∫ tem+δtem

tem

dt

S(t)
=
∫ to+δto

to

dt

S(t)
, (7.38)
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Fig. 7.2 Lemaître’s redshift law. The integral from the time of emission to the time of detection
over dt/S(t) is a constant for the galaxy in question. The interval δe between the emissions of two
signals is changed into the longer interval δ0 at detection. The two integrals can be written as the
sums of two integrals as shown at the bottom

hence

δtem

S(tem)
= δto

S(to)
. (7.39)

Thus the time interval stretches along with the scale factor. As the wavelength is
proportional to 1/frequency (= period), it also is proportional to the scale factor,
which is Lemaître’s law.

Another Effect: Cooling-Down of Peculiar Velocities A photon moving in ex-
panding space loses its energy (is redshifted). Also a moving non-zero mass particle
loses its (kinetic) energy or slows down in expanding space. Let us look closer at
this interesting phenomenon.

A galaxy having a non-zero peculiar velocity does not remain at rest, but its
comoving coordinate changes. Assume that the origin of the coordinate system is at
another galaxy which is genuinely at rest. Then the change of rate of distance V (t)

between these galaxies can be written as a sum of two terms: the regular expansion
plus the peculiar velocity v(t)

V (t)= d[S(t)χg]
dt

= vexp(t)+ v(t)= dS

dt
× χg + S(t)× dχg

dt
. (7.40)

During the interval dt the galaxy experiences a change of v(t)dt in its comov-
ing coordinate and at the same time the space is expanding with the rate of
H(t)v(t)dt = (Ṡ/S)v(t)dt , hence what remains at t + dt is the peculiar velocity
v(t + dt)= v(t)− (Ṡ/S)v(t)dt . Finally we get the equation for the time evolution
of v(t): v̇/v =−Ṡ/S. Its solution is simply

v(t)∝ 1/S(t). (7.41)
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Thus the peculiar velocity diminishes inversely proportional to the scale factor,
which means that the kinetic energy grows smaller as measured by the fundamental
observers at rest in their galaxies at constant comoving coordinates. The ordinary
law of energy conservation is valid for a free particle in static Minkowski space, but
the situation differs for measurements within expanding space. Note that the “de-
celeration” of the particle is not caused by any force—the discussion is entirely in
terms of kinematics.

Relations Between Velocity, Distance, and Redshift In order to obtain the
velocity-redshift v(z) relation, one should start with the v(r) and r(z) relations.
The exact velocity-distance relation was already given (Eq. (7.23)) as

vexp(r)=Hr. (7.42)

Here H(t)= Ṡ/S is the Hubble parameter at the moment t . Its value at the present
epoch t0 is called the Hubble constant H0 =H(t0) and it determines the character-
istic time scale 1/H0 = r(t0)/vexp(t0).

The observer on the Earth lives at the epoch t = t0, and the observed redshift
serves as a measure of distance at this epoch. For photons moving along the coordi-
nate χ , cdt =±Sdχ , and we may write

S0dχ = cdz

H(z)
. (7.43)

Integration over the redshift gives the metric distance-redshift relation

r(t0, z)= r(z)=
∫ z

0

cdz′

H(z′)
. (7.44)

In the practical case of redshifts z < 1000, with non-interacting cold dark matter
(dm), radiation (rad) and dark energy (de) making the current total density parameter

0

tot = ρ0
tot/ρ

0
crit = 
0

dm + 
0
rad + 
0

de, the Hubble ratio may be given, from Eqs.
(7.28) and (7.35), as

H(z) = H0[
0
dm(1+ z)3 +
0

rad(1+ z)4 +
0
de(1+ z)3(1+w)

+ (1−
0
tot)(1+ z)2]1/2. (7.45)

Using the r(z) relation one gets the exact velocity-redshift relation

vexp(z)= r(z)H0 = c
r(z)

RH0

, (7.46)

where the expansion velocity is for an object (with the redshift z) observed at the
time t = t0, and RH0 is the present value of the Hubble radius.
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After All, why the Linear Distance–Redshift Law in Near Space? Consider a
nearby galaxy and the change of the scale factor during the small time interval dt
when the light travels from this galaxy to the observer (us):

S(tobs)≈ S(tem)+ dS

dt
× dt. (7.47)

When the distance is short and the expansion speed much less than the speed of
light, then the distance R measured by the astronomer using any of the available
ways is practically equal to the metric distance S(t)χ and the time interval can be
approximated as dt ≈ Sχ/c=R/c. From this follows that S(tobs)/S(tem)≡ 1+z=
1+ (Ṡ/S(tem))R/c and finally

cz=HR for small distances. (7.48)

This is also how Lemaître predicted the linear Hubble law.

7.3.2 Measuring Distance and Time in Friedmann Cosmology

Any observation of a distant object involves both distance and time, because to
reach us the light had to travel a finite time. As McVittie (1974) says, distance is
a degree of remoteness; in some sense or another, faint galaxies must be remote.
Only a cosmological model gives the exact recipe for calculating from the observed
properties of an object its distance.

The Fundamental Meter Stick Distance Amongst the variety of distances, one
would like to think that there exists a fundamental one, corresponding to meter sticks
put one after another from the Sun to the centre of a galaxy. Somewhat paradoxi-
cally, such a distance which one may find “natural” to think about, is the one which
cannot be directly measured.

In fact, when McVittie (1974) critically discussed various kinds of cosmic dis-
tances, he did not prefer any of them as the most natural choice for expressing very
large distances. However, within the Friedmann model, the metric distance is un-
questionably unique and real, even though not directly measurable.3 It is a primary
quantity of Riemannian geometry, while other distances (luminosity etc.) are ex-
tremely useful workhorses of practical cosmology, but hardly distances at all! They
are not additive and their values in “cm” have no direct physical sense.

Even when a layman asks the distance to a high-redshift quasar, it may be a good
idea to give the present metric distance. If the metric distance of a quasar is 800
Mpc, this can be characterized by saying that it is about 800/0.8= 1000 times more
distant than the Andromeda galaxy, giving a vivid impression of its remoteness.

3Because of the indirect, non-local measurement of distance, cosmological (metric) distances will
always be tied to a cosmological model and tend have some unphysical aura around them (Samuel
2005).
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In the 1977 Tallinn conference, Jõeveer and Einasto proposed the cell structure
of the galaxy universe. If one assumes, for the sake of argument, that there were
such a periodic structure with a metric size of 100 Mpc, then a quasar at the present
distance of 3000 Mpc, could be said to lie behind about 30 “cell walls”, illustrating
the usefulness of metric distance within the Friedmann model.

The Universal Time The question of the universal time and simultaneity ap-
peared already in Einstein’s static model, where he divided the global space-time
strictly into curved space and uncurved time, giving “a kind of absolute time distinct
from space” (Eddington 1923a). In view of the special theory of relativity, reject-
ing any preferred time (or space), the global cosmic time in the Friedmann model
may sound strange. And the universal time does not come alone, as Lehti (2002)
has emphasized, but together with the preferred spatial reference frame, where the
observers are at rest relative to the large-scale matter and the background radiation.

When one constructs the Friedmann model, one puts into the world the homoge-
neous substratum and defines the time coordinate so that the density only depends
on it. Similarly, when we apply the model, we accept (usually silently) that the
structure of the concrete world happens to be so regular from the beginning (the
initial conditions) that it can be described by the universal time together with the
momentary space where the metric distance has reality. Lehti (2002) illustrated the
situation: “The physicist looks at space from the perspective of general theories, and
the astronomer from the perspective of our unique cosmos”. That the universal time
is tightly linked to the structure of the universe (in the Friedmann model) is shown
by the fact that observers everywhere could use the temperature of the background
radiation as a clock showing the cosmic time (Lehti 2000).

7.3.3 Ages and Horizons

We observe distant events as they occurred when the photon now received was emit-
ted at the event. However, we usually would like to have a map of events as they
occur now all over the universe, or more generally, a series of such maps for dif-
ferent moments. British cosmologist E. Arthur Milne (1896–1950) thus classified
cosmological models into two kinds.

World Picture and World Map A World Map (WM) portrays the universe as it
would look if the speed of light were infinite: the model shows all parts of the uni-
verse at the same (present) cosmic time. A World Picture (WP) gives an observer’s
view of the universe: distant events are seen as they were the light-travel time ago.

A World Picture is familiar from physics, where the past-light cone diagram is
usually conveniently drawn in space-time with two spatial and one time coordinate,
so being a visualizable surface in the 3D space-time. Actually, the past-light cone
is a 3D hypersurface in the 4D space-time. The Friedmann model may be viewed
as a World Map, since it contains the universal time parameter whose fixed value
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defines a homogeneous 3D “hypersurface”. We can see only a small patch of the
hypersurface around us. In order to compare observations with theory predictions,
one must transform this theoretical WM into a WP-like representation.

Age-Redshift Relation In the Friedmann model there is the origin of the time
coordinate, t = 0, and the age of the universe. This was pointed out by Friedmann
himself in his first cosmological article. The connection between time and scale
factor differentials, cdt = cdS/(dS/dt), may be written as cdt =−cdz/(H(z)(1+
z)), giving the age of the universe at redshift z as

t (z)=
∫ ∞

z

dz′

(1+ z′)H(z′)
. (7.49)

For z = 0 this integral gives the present age of the universe t0. For a flat (
= 1)
Einstein-de Sitter model (
m = 1), t0 = (2/3)H−1

0 , while for an empty 
= 0 uni-
verse t0 =H−1

0 , where the characteristic Hubble time is

tHo =H−1
0 = (3.24h100 × 10−18 sec−1)−1 = 0.98h−1

100 × 1010 yrs. (7.50)

Table 8.1 shows ages and look-back times for different Friedmann models.

The Existence of Horizons The particle horizon χpart is defined as the largest
comoving distance from which the light emitted at t = 0 could have reached us by
now. More distant objects have not been able to affect us causally. It also means
the largest distance visible to us now, in principle at least. From cdt = S(t)dχ we
obtain

χpart = c

∫ t0

0

dt

S(t)
. (7.51)

The thus defined comoving distance χpart increases with time, hence parts of the uni-
verse which earlier were beyond the particle horizon, enter later the horizon (become
visible). The metric distance to the particle horizon is rpart = S0χpart. As a simple
example, for a flat dust model S(t) = S0(t/t0)

2/3 with its age t0 = (2/3)H−1
0 , the

integration gives rpart = 2c/H0.
The event horizon χevent is the most distant present event (t = t0) from which

the signal could reach us at some finite future time.4 The events beyond the event
horizon will be forever hidden for us. Allowing an infinite future, it is valid that

χevent = c

∫ ∞

t0

dt

S(t)
. (7.52)

4One may find it difficult to remember the difference between the two kinds of horizon. Note that
here a particle refers especially to a photon which we observe (and which left its origin sometimes
in the past 0→ t0), while “events” refer to phenomena all over the universe (and which will be
observed or not sometimes in the future t0 →∞).
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It is easy to show that for the scale factor behaving as S(t)∝ tp the event horizon is
at a finite distance only if p > 1, meaning an accelerating universe (d2S(t)/dt2 ∝
p(p − 1)tp−2 > 0). For example, the flat dust model does not have a finite event
horizon, or χevent =∞, so eventually all events just now happening in that infinite
universe will be seen. An interesting example is the exponentially accelerating de
Sitter universe with S(t) = eHt (H is a constant): the metric distance to the event
horizon is now finite and approaches zero in the distant future: χevent = (c/H)e−Ht .
At each moment there are an infinite number of events beyond the event horizon,
which will never be observed.

7.4 Basic Observable Quantities: Angle, Flux, Surface
Brightness

The metric distance r of an object having the cosmological redshift z is

r(z)=RH0

∫ z

0

dz′

h(z′)
, (7.53)

where RH0 = cH−1
0 is the Hubble radius 0.93h−1

100 × 1028 cm= 3000h−1
100 Mpc.

7.4.1 Mattig’s Relations

Figure 7.1 shows the difference between the momentary distance r(tobs) at the mo-
ment of reception of a photon and the distance r(temit) at the moment of emission
of the photon by a distant galaxy. The internal metric distance to an object with
redshift z at the moment of observation tobs, the r(z) distance, may be analytically
expressed only in some simple cases.

The External Metric Distance l(z) For the zero-pressure dust universe this re-
lation was first derived by Mattig (1958)5 as:

l(z)= c

H0

zq0 + (q0 − 1)((2q0z+ 1)1/2 − 1)

q2
0 (1+ z)

, (7.54)

where q0 =
0/2 is the deceleration parameter at t = t0 (Eq. (7.31)). In terms of the
internal metric distance it has the form

r(z)= S0I
−1
k

[√
2q0 − 1

k

H0

c
l(z)

]
, (7.55)

5Wolfgang Mattig has worked predominantly in the field of solar physics, and, as he mentioned in
a letter to us, he never worked in extragalactic research and cosmology was his hobby. He derived
the famous Mattig’s equation when he had to deliver a lecture on cosmology in connection with
his doctoral thesis.
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where Ik[χ] = sinχ,χ, sinhχ for k = 1,0,−1 and the scale factor S(t0) is

S0 = c

H0

√
k


0 − 1
. (7.56)

For the non-interacting two-fluid dust-vacuum Friedmann model

r(z)= c

H0

∫ z

0

dz′

(
0
vac +
0

m(1+ z′)3 −
0
k(1+ z′)2)1/2

. (7.57)

The corresponding l(z) relations for k =−1, 0, and 1, respectively, are

l(z)= c

H0

1

(−
0
k)

1/2
sinh

(∫ 1

1
1+z

(−
0
k)

1/2dy

y(
0
m/y −
0

k +
0
vacy

2)1/2

)
, (7.58)

l(z)= c

H0

∫ 1

1
1+z

dy

y(
0
m/y +
0

vacy
2)1/2

, (7.59)

l(z)= c

H0

1

(
0
k)

1/2
sin

(∫ 1

1
1+z

(
0
k)

1/2dy

y(
0
m/y −
0

k +
0
vacy

2)1/2

)
. (7.60)

Gromov et al. (2004) give relations for interacting cosmological fluids.6

7.4.2 The Angular Size-Redshift Relation

Before going to the angular size-redshift relation in Friedmann models let us first
extend the discussion (in Chap. 2) of curved spherical 2D space in 3D Euclidean
space to the 4D case of expanding curved spaces. Expansion complicates the inter-
pretation of the measured properties of distant objects.

2D Expanding Sphere Consider a “galaxy” with the linear size d and which was
at the distance u(te) when the now-observed light was emitted and the world radius
was S(te) (see Fig. 7.1). What is its observed angular size now?

An emitted photon continues its flight along the one and same great circle, i.e.
the geodetic line leading to the observer at P . The photons emitted at the moment
t = te from the end points A and B travel along the great circles PA and PB that
form the angle θ(te). So from Eq. (2.35)

θ(te)= d

S(te) sin u(te)
S(te)

. (7.61)

6We discuss here Friedmann models, but note that any developed non-Friedmann world model
must also have its own redshift-distance (z–r) and redshift-time (z–t ) relations and also the rules
which relate luminosity and angular size distances to the metric distance r , in order to be able to
predict observable effects and test these predictions (Chap. 8).
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These stretching great circles have by the moment of observation transformed into
the circles P ′A′ and P ′B ′. These form the angle θ(tobs) that is exactly the same as
θ(te). Hence the observed angular size expressed in terms of the radius of the sphere
S(tobs)= (1+ z)S(te) at the time tobs is

θ(tobs)= d(1+ z)

S(tobs) sin u(tobs)
S(tobs)

. (7.62)

Note that the ratio u/S does not change during expansion.

Friedmann Models The desired relation comes from the line intervals in 4-space
(Eqs. (7.18) or (7.20)). The latter one gives simpler expressions (the relation be-
tween the angle and the distance for the external metric is Euclidean). Thus consider
a rod with a linear size dl, perpendicular to the line-of-sight, with the comoving ra-
dial coordinate μ. The distance element between the ends of the rod at the moment
of emission t1 (dt = 0, dμ= 0) is

ds2 =−dl2 =−μ2S2(t1)(dθ)
2. (7.63)

The coordinates were so chosen that dφ = 0. Then the angular size becomes

θ1 = d

μ1S(t1)
= d(1+ z)

μ1S(t0)
, (7.64)

where the relation S(t1)= S(t0)/(1+ z) was used. Hence the angular size-redshift
relation in the Friedmann model has the form

θ(z)= d(1+ z)

l(z)
= d

lang(z)
, (7.65)

and the angular size distance lang(z) is

lang(z)= l(z)

1+ z
. (7.66)

Here appears the external metric distance l(z) = S(t0)μ. It may be expressed by
the Mattig equation (7.54) for the dust universe or by the Eqs. (7.58)–(7.60) for the
two-fluid Friedmann models. If space is flat (k = 0), then the external and proper
metric distances are equal (l(z)= r(z)).7

We see that a consequence of space expansion is that the angular size of a distant
object is (1+ z) times larger than the size that the object would have at its present
metric distance in a static Euclidean universe.

Generally the distance lang(z) has a maximum (or the angle has a minimum) at
some z whose value depends on the Friedmann model. If a true standard rod can be
found, then this test is not only parametric (telling about the Friedmann model), but
it also tests the reality of space expansion.

7A useful expression for the angular size distance for different dust-vacuum models was given by
Demianski et al. (2003), accurate to 1.5% in the z range from 0 to 10.
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7.4.3 The Magnitude-Redshift Relation

Consider a distant galaxy at the comoving radial coordinate μ in the Friedmann uni-
verse. The galaxy emits light isotropically around it with the rate L [energy/time],
the bolometric (total) luminosity of the source.

Draw a sphere with the galaxy in the centre and the observer (we) at the surface
at the moment of reception (now, S = S(t0)). The area of the sphere is 4π(S(t0)μ)2,
so we measure the flux

f = L

4π(S(t0)μ)2(1+ z)2
. (7.67)

Here one factor 1+ z comes from the redshift of each photon and the other one is
due to the slowed-down reception rate. We see that the luminosity distance llum(z)=
S(t0)μ(1+ z) = l(z)(1+ z). Since lang(z) = l(z)/(1+ z), we may summarize the
relations between external metric, angular size and luminosity distances:

l(z)= lang(z)(1+ z)= llum(z)

1+ z
. (7.68)

In terms of magnitude the bolometric magnitude-redshift relation is

mbol(z)= 5 log(l(z)(1+ z))+ 25+Mbol +Abol, (7.69)

where l(z) is the external metric distance in Mpc, Mbol is the bolometric absolute
magnitude of the source, and Abol is the extinction correction.

7.4.4 Surface Brightness

Using the above results on fluxes and angular sizes, we can now derive how the
surface brightness depends on the redshift in the Friedmann model. Let us consider
a shining sphere (luminosity L, diameter D) at redshift z. Then the flux fobs arriving
from the sphere and its size θ in the sky are

fobs = L

4π[(1+ z)l(z)]2 , θ = D(1+ z)

l
.

Hence the surface of the sphere shines with the brightness B

B ∝ fobs

θ2
∝ (1+ z)−4. (7.70)

The surface gets remarkably dim at high redshifts; at z= 1 the surface brightness is
only 1/16 of the value at a nearby distance! If in a static space the light is for some
“tired light effect” redshifted, then the surface brightness at redshift z is merely
lowered by the factor 1+ z, as each photon loses this much of its energy. The large
expected effect makes the search for the redshift dependence of surface brightness
a very important test of the reality of expansion (Chap. 8).
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7.4.5 Spatial Volumes and Cosmological Malmquist Bias

In some cosmological tests, such as the number–redshift relation (Chap. 8), and also
in a proper analysis of the magnitude–redshift relation (when one takes into account
the cosmological Malmquist bias), one has to know how to calculate the spatial
volume V (z) as a function of redshift.

Volumes in a Friedmann World From the expression for the RW-metrics (7.19),
(7.21), the comoving volume element of the expanding space is

dV = S3(t)I 2
k (χ)dχd

2ω= S2I 2
k (r/S)drd

2ω= l2
dl√

1− (l/S)
d2ω, (7.71)

where d2ω = sin θdθdφ is the solid angle element (4π for the whole sphere), and
r = Sχ , dr = Sdχ , Ik(χ)= Ik(r/S), l = Sμ, dl = Sdμ, l = SIk(r/S).

Hence the volume V (r) of the sphere with the radius equal to the metric distance
r , or the volume-distance relation, is

V (r)=
∫ r

0
dV = 4π

3
S3(t)χ3σk(χ)= 4π

3
r3σk(r/S), (7.72)

where σk(χ) = 3χ−3
∫ χ

0 I 2
k (y)dy is 3χ−3(

χ
2 − sin 2χ

4 ) for k = +1; is 1 for k = 0;

and is 3χ−3(
sinh 2χ

4 − χ
2 ) for k = −1. Then, the known relation r(z) leads to the

corresponding volume-redshift V (z) relation in Friedmann models.
For the popular case k = 0, the volume is simply V (z) = 4π

3 r(z)3, where the
present metric distance r(z) is obtained from Eq. (7.57) with 
0

k = 0. For example,
in the Einstein-de Sitter dust model, the co-moving volume V (z) has the especially
simple expression (where A= (32π/3)(c/H0)

3)

V (z)=A
[
1− 1/(1+ z)1/2

]3
. (7.73)

Classical vs. Cosmological Malmquist Bias As we discussed in Chap. 3, one
may inspect the Hubble diagram in two ways: as log z against m or m against log z.
In the 2nd case, the magnitude limit distorts the average Hubble relation at increas-
ing redshifts in an easily visualizable manner (type 2 bias). In the 1st case, the
magnitude limit is not important, but at higher redshifts we have the rather intricate
cosmological Malmquist bias, an analogue of the classical Malmquist (type 1) bias
(Teerikorpi 1998).

In the treatment of the classical Malmquist bias (Chap. 3), the space is assumed
to be Euclidean, static, and transparent. The standard candles do not change with
lookback time nor have any K-effect caused by the redshift of the spectrum across
a finite wavelength band. In modern cosmology, some of these assumptions are not
valid when one observes deep space. Here we briefly explain why the cosmological
bias differs from the classical one.
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Fig. 7.3 (left) Classical Malmquist Bias: Symmetrical parts of the Gaussian luminosity func-
tion, observed through the magnitude window [m − 1/2dm,m + 1/2dm], originate from dif-
ferent foreground and background volumes as determined by the r3-law of Euclidean volumes
and the r−2-law of fluxes. (right) Cosmological Malmquist Bias in Friedmann models: Sym-
metrical parts of the Gaussian luminosity function, observed through the magnitude window
[m− 1/2dm,m+ 1/2dm], originate from different comoving volumes. Fundamental theory gives
the change of M with redshift z and the value of comoving volume, allowing one to calculate the
average value of log z for standard candles with apparent magnitude m. (From Teerikorpi 1998;
reproduced with permission © ESO)

In classical space the flux of light is proportional to r−2, while the differential
volume at the distance r increases as r2dr (and similarly the number of sources if
they are uniformly distributed). In a more general cosmological case, where it is
convenient to replace r by the redshift z and consider comoving volumes, both of
these proportionalities usually differ from the classical ones. This changes Type 1
Malmquist bias: when looking the universe through a narrow magnitude window,
the shift in the average absolute magnitude of a standard candle is no longer the
classical one. Even for a homogeneous spatial distribution the shift generally is not
constant, as classically, but depends on the derived distance modulus.

The behaviour of the cosmological bias as a function of magnitude, as compared
with the constant classical bias, depends on how the luminosity distance and the co-
moving volume increase with the redshift (Fig. 7.3). For example, for the Einstein-
de Sitter model 
=
m = 1, the volume increases at such a slow rate that the bias
is progressively smaller than the classical 1.382σ 2. If one ignores this bias or be-
lieves that it is constant, one might conclude that 
< 1 (see examples in Teerikorpi
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1998). The treatment of the bias is complicated by the fact that it depends also on
the K-effect and evolution (both luminosity and number density).

As to the distance (redshift) dependent Type 2 bias, it comes to depend on the
true magnitude-redshift relation that tells how far away one is from the magnitude
limit at a given redshift (cf. the quantity A′ in Table 3.1).

Calculation of 〈log z〉 at m ± 1
2dm When one tries to compare the observed

distribution of data points in the Hubble diagram (log z vs. m) with a theoretical
prediction, the basic task is to calculate the average value of log z at a constant
value of m. Already the classical Malmquist bias makes one anticipate that 〈log z〉
at m is not the same as log z(m,M0), where z(m,M0) has been solved from the
Mattig equation (corresponding to an ideal standard candle with a zero-dispersion
luminosity function).

We consider the idealized case where we can forget complications due to the K-
effect. It is simply assumed that in the observed sample, the objects at constant m,
are distributed in space according to z as expected on the basis of the co-moving
volumes corresponding to dz and the space density of objects having absolute mag-
nitude M =m− f (z). We assume that the luminosity function G(M) is Gaussian
with average M0 and dispersion σ .

The average value of log z for a fixed m can then be calculated as

〈log zm〉 =
∫∞

0 log zdV (z)G(m− f (z))∫∞
0 dV (z)G(m− f (z))

, (7.74)

where dV (z)= (dV (z)/dz)dz. The derivative dV (z)/dz can be obtained from ex-
pressions giving the comoving volume V (z) for the considered Friedmann model.
The function f (z) comes from the magnitude–redshift relation (Eq. (7.69)). For a
detailed discussion and applications, see Teerikorpi (1998).

7.5 The Hot Big Bang Scenario

The standard cosmological model includes Friedmann’s model of expanding space
as a general framework and the Hot Big Bang scenario according to which the uni-
verse began from a high-temperature high-density initial state (as reviewed, e.g., by
Padmanabhan 2005).

At the present epoch the causally connected regions on the cosmic background
radiation sky have angular sizes of a couple of degrees (as can be inferred from the
particle horizon, Eq. (7.51), at the epoch of recombination z≈ 1500) giving rise to
the “horizon problem” within the classical Friedmann model. The modern version
of the big bang scenario includes the initial “inflationary” state of the universe with
an exponential expansion rate (Guth 1981). This has the advantage that at the begin-
ning t = 0 the radius of the universe was finite, and the horizon problem is solved.
The second plus of the inflation is that the density of the universe exactly equals the



7.5 The Hot Big Bang Scenario 155

critical value so that 
tot = 1 and the spatial geometry is Euclidean. A third conse-
quence is the quantum production of small initial density perturbations from which
the large-scale structure of the universe then grew.

At high redshifts the universe is radiation dominated and the scale factor grows as
S(t)∝ t1/2. While space expands, the photon gas and matter are cooling down and
the temperature decreases as T ∝ t−1/2. The temperature of the cosmic background
radiation at redshift z is predicted to be T (z) = T0(1+ z), where T0 = 2.726 K is
the present temperature.

After the first three minutes the primordial nucleosynthesis was completed, re-
sulting in a helium-to-hydrogen mass ratio 4He/H ≈ 0.25. Modern observations
of the CBR fluctuations are interpreted to give the baryon fraction in the universe

barh

2 = 0.024. This means that the matter contents of the universe are mostly non-
baryonic, and the composition of the dominating component is still unknown.

As the universe expanded, a time came when the matter density equaled the radi-
ation density. At redshifts z > 1500 the CBR temperature was T > 4000 K and the
intergalactic gas was ionized plasma. After the epoch of recombination z < 1000 the
intergalactic gas was in a neutral state, and the first structures began to grow. The
initial density-temperature fluctuation were imprinted into the “surface” of the last
scattering, and these may be observed as an anisotropy in the background radiation.

Because the primordial nucleosynthesis predicts a low baryonic matter density

bar ≈ 0.05, this led to the revised standard model dominated by non-baryonic
dark matter. This new “cold dark matter” component was also needed for produc-
ing the observed strong clustering and at the same time preserving the low level of
anisotropy of the background radiation (Chernin 1981).

The small primordial density fluctuations can be amplified by the gravitational
instability leading to large-scale structure formation. The modern version of the
standard model includes as its main mass components the dark energy 
de ≈ 0.7
and the non-baryonic cold dark matter 
cdm ≈ 0.3. The baryonic component is less
than 5% and does not play an important role in the large-scale structure forma-
tion. The actually observed luminous matter contribution is 
lum ≈ 0.005, which
also means that 90% of baryonic matter has an unknown chemical composition and
hence the abundance of light elements can not be considered as a strong test of the
big bang model.



Chapter 8
Classical Cosmological Tests

In science, an experiment is usually a way of investigating “cause-and-effect” pro-
cesses in Nature by creating a special situation where we can vary the physical con-
ditions and see how this affects the outcome of the process. Obviously, in large-scale
physics such operations are quite limited and an experiment rather means a carefully
planned set of observations directed to test a theoretical prediction. Modern physics
views the observable universe as a place where the physical laws may be studied on
the largest available scales. The cosmic laboratory has many features which com-
plicate the work, including non-locality of observations and selection effects always
putting their finger on observed relations.

8.1 Cosmological Tests

A world model can use information from nearby space as well as from the farthest
depths of the cosmos. Even the Solar System or the Local Group of galaxies may
serve as test fields of cosmological physics and be sources of fundamental discov-
eries having impact on the study of much larger scales.

8.1.1 From Low to High Redshifts

The local universe may be defined as a sphere around us where the redshifts of
galaxies are less than about 0.1. The intermediate universe refers to the range 0.1 <

z < 1, and the deep universe only starts around z= 1.

The Local Universe In this important region, the cosmic distance scale and the
Hubble law are established from well-studied galaxy samples. Galaxies of differ-
ent types, their masses, luminosities, chemical compositions and stellar contents, as
well as their spatial distribution, can be studied without relying heavily on specific
world models. Euclidean geometry rules and evolutionary effects are still small.

Y. Baryshev, P. Teerikorpi, Fundamental Questions of Practical Cosmology,
Astrophysics and Space Science Library 383,
DOI 10.1007/978-94-007-2379-5_8, © Springer Science+Business Media B.V. 2012
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This “local calibration” of cosmic properties makes possible comparisons at larger
distances and look-back times.

A special role is left for the very local universe, within 10 Mpc from the Milky
Way, where the Hubble law emerges in an environment like a miniature copy of
the structures on large scales, with groups, walls and voids. Kraan-Korteweg and
Tammann (1979) speak about “The Local Volume”.

The Intermediate Universe In the redshift range 0.1–1 detailed observations of
galaxies become harder, while new types of rare, but very luminous objects start
to appear: quasars and γ -ray bursts. The physics sufficient for describing the local
universe requires corrections, and cosmological tests are expected to reveal first
signs of the curvature of a Friedmann universe. The assumed homogeneity of the
universe should be established here.

The Deep Universe The redshift≈ 1, where deepness starts, roughly corresponds
to the Hubble distance c/H0 ≈ 3000h−1 Mpc. Strong cosmological influences on
observations are expected in this promising territory for testing world models. Dra-
matically, the Friedmann model predicts that the angular sizes of identical galaxies
first decrease with increasing distance (redshift) and after z≈ 1–2 start to grow. The
look-back times are a large fraction of the age of the (big bang) world and evolu-
tionary effects should be visible.

Understanding deep-space observations requires an adequate relativistic cosmo-
logical model. This is needed even for the practical tasks of calculating distances,
sizes, and luminosities of celestial bodies.

8.1.2 Classical and Crucial Cosmological Tests

A cosmological model should give definite mathematical descriptions for observ-
able quantities (redshift, flux density, angular size etc.) and predict relations be-
tween them. In fact, apart from its logical consistency and reasonable physics, it is
only through such quantities that the model is linked to reality. To illustrate this we
show, along with the Friedmann predictions, relations for the classical steady-state
and some other models.

One may speak about two kinds of cosmological tests. Crucial tests serve to
probe the validity of the basic assumptions of a world model, while parametric tests
are used to estimate the model parameters.

Parametric Tests The classical tests were considered by Sandage (1961) as a
program for the 5-m Hale telescope to derive the parameters of the Friedmann model
by observations in the galaxy universe. Among them were

• the angular size–redshift relation,
• the magnitude–redshift relation, and
• the number count–magnitude relation.
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Such classical parametric tests have been summarized in a pedagogic manner by
Sandage et al. (1995) in The Deep Universe. For instance, by comparing the obser-
vations of “standard candles” at small and large distances with theoretical predic-
tions one may estimate values of the model parameters.

Modern cosmology is actively engaged in the derivation of cosmological (Fried-
mann model) parameters from the anisotropies in the cosmic background radiation
(Hu and Dodelson 2002; Spergel et al. 2007). Such data from z ≈ 1000 valuably
complement the results of the classical tests at redshifts z ∼ 1. All cosmologies,
also such which do not relate their parameters to the CBR fluctuations, may be
tested using observations within the galaxy universe.

Crucial Tests Newton made his Experimentum Crucis when he studied the nature
of light and colour with glass prisms at his home at Woolsthorpe, Linconlshire,
during the years 1665–66 when the University of Cambridge was closed because of
the plague. “Crucis” refers to the cross, or an experiment of crossroads, where one
excludes an alternative and goes further.

We view as crucial those tests that concern the validity of the important initial hy-
potheses of cosmological models or their fundamental predictions. Therefore, cru-
cial tests for the standard cosmology include at least:

• testing the validity of general relativity
• determining the matter distribution in space
• testing the reality of space expansion
• measuring the temperature of the background radiation at different redshifts
• determining the ages of the oldest objects

Even parametric tests, considered as a whole, may be crucial: there may be no com-
bination of model parameters that satisfy them. Crucial tests are interesting, but
generally difficult to perform: concerned with the frontiers they require the best
technology of the time. The measurement of distances to spiral nebulae in the days
of the Island Universe debate is an example.

8.2 A Résumé of Selection and Distortion Effects

Astronomical selection effects may be divided into two types: observer-related and
physical (intrinsic and intervening) effects. The observer-related effects may be fun-
damental limitations or technical effects. An important limitation comes from our
position in space and time. It gives rise, among other things, to various forms of
the Malmquist bias (Chap. 3). Purely technical selection effects are caused by the
limited observing capabilities.

8.2.1 K-Correction, Absorption and Evolution Effects

The K-effect appears when objects with different redshifts are observed with fixed
filters, as we discussed in Sect. 4.1.1. Absorption of light by intervening medium
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makes the object fainter. It also contributes to selection: in a magnitude-limited sam-
ple the directions with less absorption are preferred.

When one constructs a volume-limited sample from a magnitude-limited one,
one should note that the K- and A-effects change the effective magnitude limit. For
instance, if the K-effect makes a galaxy fainter (KB(z) > 0), the effective B-limit
for such galaxies at the redshift z is brighter by this same amount. The K-effect can
be quite large for E-galaxies in optical wavelengths (Fig. 4.1), a few magnitudes
around z∼ 2. Therefore, unevolved galaxies similar to the local ones may be much
fainter in the sky than expected from the distance alone, in the same band.

Evolution If a global cosmic time exists and galaxies were formed almost simul-
taneously in the past, as in the big bang model, then nearby galaxies around us are
older than those that we see at high redshifts. “Standard candles” as a class may
actually change in cosmic time and we must then add evolution to the theoretical
prediction.

The K-correction depends only on the actual spectral distribution, while the evo-
lution correction Ei(z) is derived from phenomenological models of the evolution
of the spectral energy distribution for different Hubble types (e.g., Poggianti 1997;
Bruzual and Charlot 2003).

Evolution has often been invoked to explain differences between theory and ob-
servations. However, if one defines evolution in this way, one should have indepen-
dent proof that the model itself is sufficiently close to reality—otherwise there is the
risk of a circular argument.

8.2.2 Other Distortion Effects

The K-effect is an observer-related technical effect and evolution can be seen as
a poorly known physical distortion effect. They interfere in a complicated manner
with the Malmquist bias, both Type 1 and Type 2. Also other selection effects tend
to distort relations between observable quantities.

Surface Brightness One factor influencing the detection of galaxies is their sur-
face brightness, together with size. Very distant compact galaxies will look like a
star on a photograph, while galaxies of “normal” luminosity but with low surface
brightness have much of their surface below the sky background so they look small
and are hard to detect. These effects limit our ability to have an unbiased view of
the whole galaxy population (Arp 1965; Disney 1976) and can make one underes-
timate the number of low surface brightness (LSB) galaxies even in local surveys
(McGaugh 1994).

How much of the galaxy universe has been missed because of the low surface
brightness galaxies? Impey and Bothun (1997) stated that these “make up a signif-
icant amount of the luminosity density of the local universe. They contribute sub-
stantial but poorly determined amounts to the census of baryons and dark matter.”
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Now we have quantitative estimates. From a blind neutral hydrogen survey, Minchin
et al. (2004) found that LSB galaxies contribute over half of the number density of
galaxies, and they may make around 20% of the total mass density, but only 7% of
the luminosity. These numbers may be still lower limits, but already suggest that the
low surface brightness galaxies do not contribute radically to the cosmic mass.

Furthermore, the LSB galaxies are similarly clustered as the galaxies in general
on scales larger than 5 Mpc, while there are differences on scales from 2 to 5 Mpc—
they appear to favour the inner rims of filaments as defined by the other galaxies
(Rosenbaum and Bomans 2004). Earlier surveys (e.g., Binggeli et al. 1990) already
showed that dwarf and low surface brightness galaxies fall into the structures de-
lineated by the luminous ones and that there is no evidence that these galaxies fill
voids.

Anisotropic Radiation The relativistic beaming is an intrinsic physical effect,
but it also gives rise to an observer-related selection effect, because we cannot move
around the object. It appears for active galaxies that contain high-speed plasma jets.
The effect has a strong influence on measured fluxes and angular sizes, and on num-
ber counts of objects (e.g., Padovani and Urry 1992). An analytical method for cal-
culation of the probability distribution of the observed quantities in the double radio
sources was developed by Baryshev and Teerikorpi (1995) who also discussed an
age selection effect.

Gravitational Lensing This useful astronomical tool based on the deflection of
light by gravitating masses, is also an intervening selection effect which distorts
fluxes and angular sizes (e.g., Schneider et al. 1992; Refsdal and Surdej 1994). For
instance, it has been suggested that the amplification caused by gravitational lensing
may contribute to the Arp effect, i.e. the enhanced number of quasars around lower-
redshift galaxies (Chap. 9).

To Conclude Cosmological tests require great care because one must take into
account all essential selection effects, and all are not necessarily yet known. The
various effects work together hiding true relations between cosmological quantities.
This may produce strange behaviour of the quantities, perhaps interpreted as re-
vealing some new physics, or at least may result in erroneous numerical values; the
Hubble constant is a classical example.

8.3 The Angular Size-Redshift Relation

In an early study Tolman (1930) discussed angular sizes and light fluxes of dis-
tant nebulae in non-static space and considered their relation to redshift as a test
of expansion. Hoyle (1959) had a lecture on the Steady State model at a radio as-
tronomy meeting and suggested to study the angular size–redshift relation as a way
to distinguish between alternative cosmologies. The idea simply requires a celestial
body with a constant size and observable at various distances. It is also interesting
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to calculate the angular size–redshift relation for a co-moving structure, expanding
together with the universe.

8.3.1 Angular Size in the Friedmann Model

As was told in Chap. 7, the angular size distance lang(z) is obtained from the “ex-
ternal” metric distance l = S(t)μ as lang(z) = l(z)/(1 + z), while l is related to
the usual metric distance r as l = S(t)Ik(r/S) (Eq. (7.22)). The l(z) relation (Eqs.
(7.58)–(7.60)) for a two-fluid model and Mattig’s Eq. (7.54) for a simpler pressure-
less dust universe) contains the cosmological parameters. In the test using “standard
rods” at different redshifts, H0 drops out.

Generally the angular size distance lang(z) has a maximum (or the angular size
has a minimum) at some z whose value depends on the specific Friedmann model.
For the Einstein-de Sitter model (
m = 1, 
� = 0), the angular size of a rod with
the linear size d is

θE−deS = d

RH0

(1+ z)3/2

2[(1+ z)1/2 − 1] , (8.1)

which has the minimum at z = 1.25 (the expression contains the Hubble distance
RH0 = c/H0). For the current standard model with 
m = 0.3 and 
� = 0.7, the
minimum is expected to be around z= 1.61.

For structures expanding together with space one must divide the observed angle
by 1+ z (these were at redshift z smaller by a factor 1+ z).

8.3.2 Notes on Other Models

Some non-Friedmann models that have been discussed in the literature do not have
any minimum in the angular size at a finite redshift.

Classical Steady-State Model The parameters of this famous model correspond
to those of the zero-curvature Friedmann model with an exponentially growing scale
factor S(t) = S0e

Ht (H = const.). The metric distance is l(z) = RHz (Narlikar
1993). Similarly as in Friedmann models, due to space expansion, the angular size
distance is (1+z) times smaller, and the angular size-redshift relation for a standard
rod is

θss(z)= d

RH0

1+ z

z
. (8.2)

For structures expanding with space the formula becomes simply (d/RH0)/z.
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Fig. 8.1 Predicted (log) angular size vs. redshift relations for different models

Static Models In the usual tired light model (LaViolette 1986), a photon travers-
ing a distance r suffers an energy loss given by E(r)=E0e−βr . The redshift is then
related to the distance as z(r)= e(βr−1). In static Euclidean space, rang = r and the
angular size θ decreases with increasing redshift as

θtl = d

RH0

1

ln (1+ z)
. (8.3)

In the field-fractal model (Sect. 9.5.1) the cosmological redshift is due to a global
gravitational effect of dark matter with a stochastic self-similar distribution (with the
fractal dimension D = 2) up to the Hubble distance. The metric distance is given
by r(z) = RHgY(z), where RHg = c/Hg. The function Y(z) =W−1(z), and W(z)

is defined by Eq. (9.41). This static Euclidean space should have rang = r , leading
to the angular size–redshift relation

θff(z)= d

RHg

1

Y(z)
. (8.4)

Figure 8.1 shows that the static models (with no “extra” 1+z-term) predict a quickly
decreasing angular size. In particular, the field-fractal solution leads to a relation not
so far from the “1/z-law”.

Similar “Euclidean” θ ∼ 1/z behaviour (or not far from it) has been inferred in
some cosmological constructions, where it is assumed that the standard rods are ex-
panding along with space (e.g., Taganov 2008; Suntola 2011). As was noted above,
this is valid also for the steady state model.
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Fig. 8.2 Angular size vs.
redshift relation for galaxies
brighter than Mi =−18 from
the Hubble Ultra Deep Field.
From up to down, the curves
correspond to the Friedmann
models (
m,
�)= (1,0),
(0.3,0.7), (0,0), and (0,1)
(Nabokov and Baryshev
2008a)

8.3.3 Optical and Radio Angular Size Test

The main problem for the angular size test is how to identify a true “standard rod”
having the same size at different redshifts. There is also always some scatter, be-
cause the “rod” is generally viewed from different angles.

If size depends on luminosity, so that more compact objects are brighter (e.g.,
Nilsson et al. 1993), this may cause, because of an observational flux limit, a selec-
tion biasing the angular size-redshift relation. A similar effect appears, if the flux is
relativistically amplified due to outward motions.

Optical Galaxy Sizes The early history of the angular size-redshift test, includ-
ing the problematic definition of sizes for galaxies with diffuse edges, has been
described by Sandage (1995a). Djorgovski and Spinrad (1981) constructed the θ(z)

relation for a sample of elliptical galaxies with z < 1. Their data showed a behaviour
not far from z−1 (Chap. 4).

Using data on the angular sizes of galaxies from the Hubble Ultra Deep Field
and other deep surveys, Bouwens et al. (2004) and Ferguson et al. (2004) looked
for the evolution of linear sizes within the standard cosmological model (
� = 0.7,

m = 0.3). Nabokov and Baryshev (2008a) considered different cosmological mod-
els for the UDF in the range 0.1 < z < 3.5. Not surprisingly, the formally required
evolution of galaxy sizes (Full Width at Half Maximum sizes) much depends on the
choice of the model (Fig. 8.2).

These studies suggest that (within the standard cosmology) high-redshift galaxies
were smaller than now. The trend with redshift (size ∼ H−1(z); Ferguson et al.
2004) roughly agrees with the popular scenario where galactic disks are formed
within dark-matter halos (Fall and Efstathiou 1980).

Sizes of Radio Sources The angular size θ(z) test in radio is uncertain due to
selection effects in radio samples and possible size evolution of the radio com-
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Fig. 8.3 Angular size vs.
redshift relation for double
radio sources in radio
galaxies (open circles) and
quasars (dots) (Courtesy of
K. Nilsson)

ponents. For classical double radio sources Kapahi (1987) found an approximate
θ ∝ z−1 behaviour up to z≈ 2. Nilsson et al. (1993) confirmed that the outer double
components in radio galaxies and quasars have this enigmatic θ(z) relation with-
out minimum (Fig. 8.3). They interpreted this conflict with Friedmann models as
a selection effect reflecting a radio power-size anticorrelation (rather than as a real
size evolution).1 For double-lobed quasars in the VLA FIRST survey, Buchalter et
al. (1998) constructed a subsample with no (apparent) size evolution, and derived a
θ(z) relation roughly consistent with a wide range of Friedmann models.

A compact VLBI radio source (with a typical size of about 50 pc, in comparison
with the 500 kpc wide double radio sources) is produced by a relativistic jet from
the central engine of a quasar. For such ∼ milliarcsecond structures Kellermann
(1993) found an angular size-redshift relation in agreement with the Einstein–de
Sitter model (q0 = 1/2), whereas Jackson and Jannetta (2006) derived the quite dif-
ferent estimate q0 ≈−0.7 from analogous data on ultra-compact radio sources. For

= 1, the latter value corresponds to 
� ≈ 0.8 in the two-component Friedmann
model, because q = 0.5
m −
� (from Eq. (7.31)).

Wiik and Valtaoja (2001) used “knots” (shock fronts) appearing in high resolu-
tion radio maps. The size of a knot (of the order of 5 pc) may be derived from the

1Crawford (1995) defended the possibility that the deviation is due to a static cosmology. In this
case there would be no evolution and no power-size anticorrelation so the selection effect discussed
by Nilsson et al. (1993) would be of minor importance.
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observed variability, together with a light travel-time argument, and the sources may
be put on one angular size–redshift curve.

We can conclude that in spite of interesting tentative results the θ–z test remains
problematic; special joint radio/optical studies may be needed.

8.4 The Magnitude-Redshift Test

In this classical approach, a standard candle class at low and high redshifts is used
to test the redshift-magnitude (i.e. the luminosity distance) predictions of different
cosmological models.

8.4.1 The Magnitude in the Friedmann Model

When observed through a filter “i” the apparent magnitude of an object with the
absolute zero-redshift magnitude Mi is

mi(z)= 5 log(l(z)(1+ z))+Ci(z), (8.5)

where Ci(z)= 25+Mi +Ki(z)+Ai +Ei(z). If the K-, extinction, and evolution
corrections are known for a standard candle class, Eq. (8.5) can be used to derive
the redshift-luminosity distance relation llum(z)= l(z)(1+ z).

Special Cases For pure dust matter Friedmann model there is a small-z approxi-
mation often seen in early “pre-Mattig” studies

mbol ≈ 5 log z+ 1.086(1− q0)z+Ci(z). (8.6)

The first term in the right side of (8.6) gives the slope 5 of the usual Hubble relation.
We see that only for the deceleration q0 = 1 (
=
m = 2), the m–z relation has the
exact linear form m∝ 5 log z. If the universe is presently accelerating (q0 < 0), the
observed magnitude of a standard candle tends to be fainter than for a decelerating
universe (q0 > 0).

The “pure vacuum” flat model (
 = 
� = 1) has the linear relation l(z) =
r(z)= RH0z (the same as in the steady state model!), hence the magnitude-redshift
relation is mbol = 5 log(z(1+ z))+Ci(z).

8.4.2 Notes on Other Models

Similarly as for the angular size, it is of interest to see how the m(z) relations pre-
dicted by unconventional models differ from that of the standard model.
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Fig. 8.4 Predicted magnitude vs. redshift relations for different models, presented as residuals
from the Einstein-de Sitter model (the horizontal line at m−m(EdeS)= 0)

The Classical Steady State The luminosity and metric distances are related sim-
ilarly as in flat Friedmann models: r(z)= llum(z)/(1+ z). Because r(z)=RHz, the
magnitude-redshift relation is

mi(z)= 5 log(RHz(1+ z))+Ci(z). (8.7)

Static Models In the simplest tired light model with Euclidean static space (for
instance, Jaakkola 1993), the magnitude of a standard candle depends on the redshift
as follows:

mi(z)= 5 log(RH ln(1+ z))+ 2.5 log(1+ z)+Ci(z). (8.8)

In the field-fractal model, the luminosity and metric distances are related as
rlum(z) = r(z)(1 + z). This result includes the lost energy of individual photons
and their diminished arrival rate due to gravitational time dilation. The magnitude-
redshift relation then becomes

mi(z)= 5 log(RHgY(z)(1+ z))+Ci(z). (8.9)

Figure 8.4 shows how the predictions of different models differ from the Einstein-de
Sitter model. Note that the static field-fractal model predicts a magnitude–redshift
relation which is not so far from the �-dominated models (except for z > 1.5 where
the theoretical relation probably breaks down), whereas the static tired-light model
deviates strongly.
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8.4.3 Modern Renaissance of the m–z Test

Brightest elliptical galaxies in clusters have a narrow m–z relation. However, the
luminosity of giant ellipticals decreases with time, which makes it difficult to derive
reliable and useful results on cosmological parameters in this way (Sandage 1995b;
Yoshii and Takara 1988).

Supernovae of Type Ia Tammann (1979) suggested that high-redshift Ia su-
pernovae could be used for a determination of the cosmological constant. In-
deed, the modern renaissance of the m–z test came with the SNe Ia observa-
tions at redshifts up to around one, leading to the breakthrough discovery that
it is necessary to invoke a positive cosmological constant for understanding the
observed m–z Hubble relation within the Friedmann model (Riess et al. 1998;
Perlmutter et al. 1999): around z = 1 the supernovae are about 0.7 magnitudes
fainter than expected from the Einstein-de Sitter model (cf. Figs. 1.3 and 8.4).

The data are best described with a flat model containing about 70% dark energy
and 30% of gravitating (dark and luminous) matter. Within the standard model the
flatness condition comes, apart from inflation arguments, from the angular spectrum
of the fluctuations in the thermal background radiation, where the location of the
first acoustic peak suggests 
≈ 1.

After these pioneering efforts, several teams have provided a large increase in
the total number of measured SNe Ia. At high redshifts (z > 1), the Hubble Space
Telescope has been used for high-precision optical and infrared follow-up of super-
novae discovered from the ground and to carry out both search and follow-up from
space. Extensive ground-based projects have been adding hundreds of low-redshift
(z < 0.3) supernovae to the Hubble diagram. The number of well-measured objects
beyond z≈ 1 is smaller (around twenty in 2010). Kowalski et al. (2008) provided a
framework to analyse the supernova datasets in a homogeneous manner and created
the “Union” SNe Ia compilation of the world’s published SNIa data (for an analysis
of the updated “Union2” compilation, see Amanullah et al. 2010).

8.4.4 Other Attempts to Interpret the SNIa Data

Even though the Lambda term is now standard in cosmological equations, it is no
wonder—in view of its unknown physical nature2—that also other ways have been
searched for in order to explain the magnitude–redshift relation for the distant su-
pernovae. And even if minor, such effects should be taken into account in accurate
studies of dark energy and its time dependence.

2The vacuum and “antigravitating” dark energy have a quantum nature. At present they enter gen-
eral relativity on a phenomenological level only. As parts of any new quantum gravity theory these
entities will likely affect our understanding of dark matter and large-scale structure formation.
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We restrict ourselves to explanations based on possible problems in the standard
candles. Quite another kind of approach admits that the Ia supernovae are good
distance indicators, but says that it is problematic to take the magnitude (luminosity
distance) vs. redshift relation at its face value and to interpret it in terms of the ideal
homogeneous world model. The “acceleration” might be just a consequence of the
assumed homogeneity (e.g., Mattsson 2010; Célérier et al. 2010).

Selection Effects? The supernovae Ia have some scatter even after the correction
for the dimming rate. As is the case with Cepheid stars whose variation amplitude
enhances the usual magnitude selection effect (Chap. 3), the required detection of
a supernova when it is still brightening causes pressure towards brighter than aver-
age objects and increasingly so at higher redshifts. The correction for this selection
would mean making the observed magnitude still fainter by some amount and one
does not expect to explain in this way the “too” faint magnitudes of high-z super-
novae. Minor effects due to this Type 2 selection effect and gravitational lensing
have been discussed, e.g., by Kowalski et al. (2008) and Sarkar et al. (2008).

Intergalactic Dust? Extinction due to intergalactic dust has been proposed to be
the agent dimming the Ia supernovae fluxes beyond z = 0.5. This alternative can
be observationally constrained since it should be accompanied by reddening, unless
the dust is unusual (“grey”: extinction independent on wavelength) and suitably dis-
tributed at different redshifts (Aguirre 1999). In its original form, where the density
of the dusty medium follows that of non-relativistic matter (∼ (1+ z)3), this model
is contradicted by SNIa data beyond z ≈ 1.0 where the supernovae are too bright
(Riess et al. 2004). In the grey dust model of Robaina and Cepa (2007) the density
follows the stellar formation rate density evolution (with some delay due to the in-
jection of the dust into intergalactic space). Such a “replenishing grey dust” model
is flexible enough for explaining the run of the Hubble relation. Independent evi-
dence would be needed for the presence of the intergalactic grey dust. Minor effects
from reddening-producing intergalactic dust have been discussed by Ménard et al.
(2010).

Problems with the Candles? Could the average properties of Ia supernovae be
changing over cosmological times? After all, their use is a purely empirical method
to determine the luminosity distance. Hence, along with collecting SNe Ia events, it
is important to continue studying their physical nature as thermonuclear explosions
of carbon-oxygen white dwarfs (Hoyle and Fowler 1960) which have in some way
gained mass from their surroundings. Theoretically, these explosions are not yet
fully understood.

In fact, the Ia supernovae do not seem to form a uniform class. One speaks about
two components in their population: the “prompt” one proportional to the instanta-
neous host galaxy star formation rate (in S galaxies) and the “delayed” component,
delayed by several Gyr and proportional to the total stellar mass (in E galaxies).
Thus some of the photometric properties which are used to derive their luminosity
distance depend on the host galaxy type (Hamuy et al. 1995). The more luminous
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prompt population with broader light curves and younger progenitor stellar pop-
ulation dominates at high redshifts where the star formation rate was higher. The
resulting small redshift-dependent shift (∼ 0.05 mag) in the Hubble diagram, even
if not fully controlled (Howell et al. 2007), cannot change the general run of the
Hubble relation.

Another sign of non-uniformity among the Ia supernovae came from the different
expansion speeds of the ejected material (Branch 1987; Benetti et al. 2005). Maeda
et al. (2010) suggested that this diversity is not intrinsic, but caused by asymmetric
explosions viewed from random directions. The asymmetry would result from the
ignition occurring at an offset from the centre of the white dwarf progenitor. This
result also suggests that the expansion speed diversity does not undermine the use
of SNIae as standards.

Confirmation from Other Objects? Of course, one would like to have other
types of standard objects observable from low to high redshifts and based on other
physical mechanisms. Already before the supernova breakthrough, Jackson and
Dogdson (1997) used 256 ultracompact radiosources in the redshift range from 0.5
to 3.8 to construct the redshift–angular size diagram (first done by Kellermann 1993
using 79 sources). Their analysis excluded the Einstein-de Sitter model and it was
stated that the best-fit flat model has 
� = 0.8 (for more recent results, see Jackson
and Jannetta 2006). Also, it is interesting that the suggested class of the optically
most luminous quasars (Teerikorpi 1981b, 2000) appeared best when the magni-
tudes were calculated using the flat Friedmann model with 
� ≈ 0.7, as analysed
using the cosmological Malmquist bias approach (Teerikorpi 2003).

8.5 Galaxy Counts and the Background Radiation

The counts of stars as a function of their apparent magnitude is a classical way to
study our Milky Way. Since the 1920s, the counts of galaxies have been recognized
as a way to study the structure of the galaxy universe. They can also be compared
with the optical background radiation originating from all galaxies. However, if the
galaxy population evolves in a complicated manner over cosmic times (as it does
according to the standard view), the counts are a problematic way to determine
the cosmological model. The number-magnitude relation, especially for faint mag-
nitudes, is rather a test of the evolutionary processes within a given cosmological
model, than a test of the model itself.

Apart from evolution, the counts of faint galaxies can be much affected by se-
lection. In a Friedmann world the surface brightness rapidly gets dimmer with in-
creasing redshift and many high-z galaxies remain undetected below the threshold
surface brightness in a galaxy survey (Yoshii 1993). In order to study all such prob-
lems, one needs counts from bright to faint magnitudes in several photometric bands
and separately for different galaxy types (cf. a case study by Cohen et al. 2003). Here
we describe briefly how to predict the counts and the background radiation in the
ideal situation of non-evolving and uniformly distributed light sources.
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8.5.1 The Number-Redshift Relation

If the objects fill the space uniformly, their numbers directly reflect the volume
that they occupy and one may derive the growth of the cosmological volume with
distance (redshift). The number-redshift relation is also a step in the derivation of
the number-magnitude relation.

For different geometries, the known relations r(z) lead to corresponding volume-
redshift V (z) relations (Sect. 7.4.5).

Friedmann Models If the current number density of objects is n0, the number-
redshift relation can be found by using the known r(z) relation. After integration
over the redshift z and over the whole sky (the solid angle = 4π ) one derives

N(z)= 4πn0V (r(z)). (8.10)

Here the definition of the comoving distance r automatically accounts for space
expansion, so the number density is taken for the present epoch.

For some particular cases there are simple analytical formulas, e.g., for (
m,
�)

equal to (0,0), (1,0), (0,1).

Other Models In the steady-state model with its constant density n the number–
redshift relation for a uniform distribution is simply (Narlikar 1993):

N(z)= 4πn

(
c

H0

)3[
ln(1+ z)− 3z2 + 2z

2(1+ z)2

]
. (8.11)

In the field-fractal model the space is flat and static, and the metric distance is r(z)=
RH0Y(z). Hence the volume and the number behave as

V (z)= 4π

3
R3
H0
[Y(z)]3, N(z)= 4π

D
R3
H0

n0

(
r0

RH0

)3−D
[Y(z)]D. (8.12)

For the N(z) relation, the number density is taken to be n(r)= n0(r/r0)
D−3.

Prospects for the N(z) Test For small redshifts the number–distance relation
N(r) is sensitive to the spatial distribution, but not to the cosmological parameters.
Systematic redshift surveys give now the possibility to measure the number–redshift
relation. However, even the extensive SDSS survey (Chap. 11) is still affected by
large fluctuations due to the presence of huge structures around us, like the Sloan
Great Wall (Sylos Labini et al. 2009b).

8.5.2 The Number-Magnitude Test

The conclusion by Sandage (1988a) about the classical N(m) test is still relevant:
one may expect a gross agreement of the slope at bright magnitudes, but the uncer-
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tain evolution corrections, the lack of detailed homogeneity in the spatial distribu-
tion and the relative insensitivity to the curvature undermines its use as a check of
the standard model.

Friedmann Models It is assumed that there are objects with a known luminosity
function uniformly distributed in space. Let dA(m,z)dmdz be the number of ob-
jects with redshift [z, z+ dz] contributing to the counts per magnitude bin around
mi , i.e.

dA(mi, z)dmdz=�(Mi)
dV

dz
dmidz, (8.13)

where �(Mi) is the luminosity function and Mi is the i-filter absolute magnitude
(Mi = mi − 5 log(l(z)(1 + z)RH0(Mpc)) − 25 − Ki(z), no luminosity evolution,
space fully transparent). The differential number counts (per one steradian) in the i
band magnitude bin dmi are obtained by integrating (8.13) over z:

Nd(mi)=
∫ zmax

0
dA(mi, z)dmdz, (8.14)

where zmax is the maximum redshift for the objects.

Other Models Even though the galaxy counts may not deliver the parameters of
the Friedmann model, it may be useful to study the predictions of non-Friedmann
models in order to see how large differences would be expected. For the steady-
state model (with no evolution correction) and the static field-fractal model (where
the question of evolution is open) the N(m) predictions are also derived by using
the N(z) and m(z) relations in the same way as for the Friedmann model.

Modern Data on Faint Galaxy Counts At small and intermediate redshifts
(z < 0.2) the galaxy and space-time evolution can be neglected. In principle it
should be possible to verify experimentally the relation α =D/5 for N(m)∝ 10αm.
To do this properly, one has to analyse luminosity properties together with corre-
lation properties in volume-limited subsamples, in order to avoid any bias due to
observational selection effects (Sylos Labini et al. 1998; Gabrielli et al. 2005).

It has been found (e.g., Tyson 1988; Lilly et al. 1991) that for the B-magnitude
the slope of the counts is α ≈ 0.6 in the range 15 <m< 18 and α ≈ 0.45 for m∼ 19
up to m∼ 27. The fact that α ≈ 0.6 at intermediate magnitudes has been seen as a
proof of homogeneity of matter distribution (Peebles 1993), while the subsequent
change of slope has been interpreted as an effect of galaxy evolution, or a combined
effect of galaxy and space-time evolution (see Yoshii 1993).

In the infrared K-band α ∼ 0.67 for 12 < K < 16 and the slope changes at
K ∼ 18 to α ≈ 0.26, in contrast with the B-band counts (e.g., Gardner et al. 1993).

Several sources of bias and selection should be taken into account in the study
of the observations of faint galaxies (Yoshii 1993; McGaugh 1994), including the
Eddington bias in the counts (Teerikorpi 2004). If one defines the evolution as the
deviation from the Euclidean behaviour (α = 0.6) there is the a priori assumption
that the distribution becomes homogenous and that locations are not correlated with
luminosities; this should be tested independently.
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8.5.3 The Total Background Radiation Due to Galaxies

The sum of the photons arriving from different distances (redshifts), contains infor-
mation about all populations of objects during the whole history of the universe. The
background radiation was first detected in the microwave, radio, and X-ray bands.
Its observation in the optical wavelength region (and in the UV and IR wavebands)
has been much more challenging (the extragalactic background light, EBL). Also,
in this range the evolution of galaxies tends to mask the predicted differences due
to different cosmological models. We illustrate the calculation of the background
intensity for the Friedmann model.

Integrated Radiation Consider the flux density from an object with a power-law
spectrum Lνem ∼ ν−αem at the observed frequency νobs (cf. Eq. (7.66))

Fνobs =
L(νobs(1+ z))

(1+ z)34πl2m
= L(νobs)

(1+ z)1+α4πl2m
. (8.15)

For a uniform spatial distribution the number of sources per steradian in a spherical
shell dr is dN = nl2dr and the background intensity I (ν0) is

I (ν0)=
∫

F(ν0)dN = L(ν0)n0

4π

∫ ∞

0
(1+ z)−(1+α)dr. (8.16)

Now we can use the expression for the dr − dz relation in the form dr =
cdz/H(z)= cdz/[H0(
0z+ 1)1/2(1+ z)], where the last equality is for the simple
dust universe (Eq. (7.45)). In this case

I (ν0)= c

H0

L(ν0)n0

4π

∫ ∞

0

dz

(
0z+ 1)1/2(1+ z)2+α . (8.17)

In Friedmann models the integral in (8.17) converges for all α >−1.5, which is the
case for any realistic spectrum. To an order of magnitude the background intensity
is that originating within the Hubble radius:

I (ν0)≈ c

H0

L(ν0)n0

4π
. (8.18)

In Newtonian cosmology without redshift the integral is infinite (Olbers!):

I (ν0)= L(ν0)n0

4π

∫ ∞

0
dr. (8.19)

Analogous calculations can be done within other cosmological models.

Detection The measurement of the optical background light is very difficult
(Mattila 1990, 2003; Bernstein et al. 2002, 2005), because its expected intensity
(∼ 10−9 erg cm−1 s−1 sr−1 Å−1) is a tiny fraction (∼ 1%) of the total sky bright-
ness due to other sources of diffuse radiation, such as the zodiacal light, the airglow,
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the integrated galactic starlight, and diffuse galactic light. Up to now there is no gen-
erally accepted measurement of the EBL. The upper limits obtained do not deviate
much from the expectation (8.18), which suggests that astronomers have not missed
a very large fraction of luminous galaxies in their surveys, in agreement with the
studies of the low surface brightness galaxies (Sect. 8.2.2).

8.6 Classical Crucial Tests for the Friedmann Model

Crucial tests on the reality of the expansion of space were formulated years ago, but
possibilities to perform some of them have emerged only recently.

One may ask why such tests are so relevant, amid a lot of evidence, when taken
together, pointing at expansion. For instance, the Hubble expansion time TH ≈ 15×
109 yrs is not far from the ages of the oldest globular clusters and the age derived
from chemical elements. The thermal background radiation is natural to understand
as a result of the compressed and hot past state.

Nevertheless, the paradigm of the big bang cosmology is basically that of
expansion—expanding space (and the Hubble law) follow elegantly from the gen-
eral relativity-based Friedmann model. Furthermore, the new concept of expanding
space is related to the general relativistic view of space, time and gravitation, hence
its study is fundamental. To prove that space is really expanding, would mean strong
support for general relativity (or its various modifications; Clifton et al. 2011). In
Sandage’s (1995a) list of 23 astronomy problems for the next decades, “Is the ex-
pansion real?” was the first one in cosmology.

Here we describe the surface brightness-redshift test, the redshift-time depen-
dence test, the time dilation test, and the temperature-redshift test. Also the ages of
high-z galaxies are crucial for finite-age cosmologies.

8.6.1 The Tolman-Hubble Surface Brightness-Redshift Test

Hubble and Tolman (1935) proposed a test of the nature of the cosmological redshift
by measuring the surface brightness of near and distant galaxies. After attempts with
ground-based observations, it was applied to distant (up to z= 0.92) elliptical galax-
ies measured by the HST by Sandage and Lubin in 2001 and by Sandage (2010) who
gives references to earlier work.

The surface brightness B is expected to change with the redshift in the following
ways in a few well-known cases:

• classical space without redshift: B ∝ (1+ z)−0,
• tired light effect: B ∝ (1+ z)−1,
• expanding space: B ∝ (1+ z)−4.

The expected effect in expanding space, even though strong, is not easy to detect.
Sandage (1995b) gives a good description of the problems involved. Indeed, there
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are no extended surfaces (galaxies, their systems) which can be regarded as equally
bright intrinsically at different redshifts and whose surface brightness can be sim-
ply defined and measured. In galaxies the surface brightness decreases towards the
edge. One always measures some average brightness and the procedure should be
such that it catches equivalent regions both for large nearby objects and for the
remote ones which are much smaller in angular size and whose faint outer parts
have fallen below the detection limit and innermost parts are beyond the angular
resolution.

In Chap. 4 we mentioned the Petrosian size measure for elliptical galaxies. Based
on the surface brightness profile, this method can, in principle, pinpoint intrinsically
same linear radii for identical elliptical galaxies, nearby and distant. The surface
brightness dimmening does not influence the resulting size. Using this formalism
Sandage has searched for the expected dimmening in giant elliptical galaxies at
redshifts up to about 0.9.

There are a few further problems in this test (Sandage 1995b, 2010). Elliptical
galaxies are not identical in luminosity and surface brightness; bigger ones have
fainter surfaces within some fixed diameter, which must be taken into account when
one compares galaxies with similar Petrosian sizes. The brightness of the elliptical
galaxies evolves over the cosmic time and one must include the evolution correction
in the test.

Lubin and Sandage (2001) and Sandage (2010) have derived a behaviour close
to that expected for expanding space. Some uncertainty still remains because of the
mentioned problems; one would also like to see the test for different types of objects.
The result by Sandage (2010) may be given using the exponent n in the B(z) relation
(1+ z)−n. They derived n = 2.80± 0.25 (filter R) and n = 3.48± 0.14 (filter I ).
An evolution of the surface brightness is needed in order to obtain n= 4 from these
data. It is indeed regarded that the giant E galaxies were brighter in the past, due to
the passive evolution of the stellar population, roughly as needed. Sandage’s (2010)
conclusion was: “The Tolman prediction is verified. The expansion would seem to
be real.”

It should be noted the calculation also involves a dependence on the Friedmann
model, and Moles et al. (1998) have emphasized that both the size calculations and
evolution give uncomfortable extra freedom in the interpretion of the observations. It
would be interesting to repeat the analysis using some other cosmological models.
For instance, the static field-fractal model would seem to predict n = 2 (without
evolution), but in that model a fixed angular size corresponds to a larger linear size
than in the Friedmann models.

8.6.2 Maximum Age–Redshift Test

Friedmann models possess an exact relation between the time since the beginning
T (z) and the redshift z. The age of an object, now observed to have the redshift z
and born at zform > z, is given by tobj = T (z)− t (zform).
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Table 8.1 Ages in Myr as a
function of redshift for 
= 1
universes with (
� = 0.7)
and without dark energy.
H0 = 70 km sec−1/Mpc

z T de
back T de(z) Tback T (z)

0 0 13470 0 9310

0.5 5040 8430 4240 5070

1 7720 5750 6020 3290

3 11360 2110 8150 1160

5 12320 1150 8680 630

7 12720 750 8900 410

10 13000 470 9060 250

12 13100 370 9110 200

Table 8.1 gives the “look-back time” Tback and the “elapsed from the big bang
time” T (z) for a few redshifts, in the flat model with 
 = 
m = 1 using H0 =
70 km sec−1/Mpc, and similarly for an accelerating universe with the Lambda-term:

m = 0.3, 
� = 0.7. In these models, the present age of the universe is 9.3 and
13.5 milliard years, respectively. To adjust these ages to another value of the Hubble
constant, multiply them by 70/H .

The age paradox has always followed the expanding world model: there obvi-
ously cannot be objects older than the universe itself. In the 1930s the Hubble time
was estimated to be less than 2 milliard years, shorter than the age of the earth. Later
globular clusters became critical objects with high ages calculated from stellar evo-
lution. These ages have now come down below about 14 milliard years, admissible
for the Friedmann model. Nowadays, when the highest measured redshifts have ex-
ceeded 8 (and a case has been made for an object with z ∼ 10 by Bouwens et al.
2011), a related question concerns the high-z galaxies, their stellar populations, and
also the supermassive objects in the centres of active galaxies. Has there been suffi-
cient time for their formation?

8.6.3 Sandage’s Redshift-Time Dependence Test

Sandage (1962) considered how the redshift changes with time, when a distant
galaxy is observed. A general formula for the very slow change expected in an ex-
panding universe was derived by McVittie in the Appendix of Sandage (1962) for a
time interval short compared with the age of the universe. Nowadays this effect has
been discussed in the context of Friedmann models with dark energy (Loeb 1998;
Gudmundsson and Björnsson 2002).
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The redshift change. The radiation from a source arrives at times t0 and t0 +�t0, having
left the source at t and t +�t . The observed redshifts are

z= S0

S
− 1, z+�z= S(t0 +�t0)

S(t +�t)
− 1. (8.20)

Hence, to the first order of magnitude, taking into account that S(t+�t)= S(t)+ Ṡ(t)�t ,
�t/�t0 = S/S0, and �t0 → 0 , we get

(
dz

dt

)
0
= (1+ z)H0 −H(z), (8.21)

where H(z) is given by Eq. (7.45).

For a two-component universe (
=
m +
�)
(
dz

dt

)
0
=−(1+ z)H0

[
(
m(1+ z)+ (1−
tot)+
�(1+ z)−1)1/2 − 1

]
.

(8.22)
For a dust universe (
� = 0), all redshifts are decreasing at the present time. If

� > 0, the redshifts may be either increasing or decreasing, depending on the
value of z (nearby objects: z increasing; distant objects: z decreasing). Only now the
time is ripening for this difficult dz/dt-test. In terms of radial velocity, the predicted
change dv/dt is ∼ 1 cm s−1/yr. This may be within the reach of the future 42 m E-
ELT telescope, though even then requiring some 4000 hours of observing time over
a period of 20 years (Liske et al. 2008).

In the steady state model the redshift increases with time: cż =+cH0z. For the
rare case of an empty universe ż= 0; now there is no deceleration and for any two
objects the ratio of scale factors remains constant during the expansion. Because
1+ z = S0/Sem, the redshift is constant, too. Also for static models the prediction
is ż = 0, making this test a powerful tool to distinguish between fundamentally
different world models.

8.6.4 Wilson’s Supernova Time Dilation Test

Wilson (1939) suggested supernovae as a test of the nature of the cosmological red-
shift: in an expanding universe the light-curve of a supernova occurring in a distant
galaxy should appear to be expanded along the time axes in the ratio (1 + z) : 1
with respect to the standard local light-curve. This time delay test was also dis-
cussed by Rust (1974) and Teerikorpi (1981c). Recent observations of the super-
novae Ia have finally given the possibility to perform the test (Leibundgut 2001;
Goldhaber et al. 2001).

The observed width τobs of the supernova light-curve can be written as

τobs(z)= τem(1+ z)p, (8.23)

where p = 1 for the Doppler, gravitational and space expansion Lemaître effects,
while p = 0 for the tired light. For the Friedmann and steady-state models p = 1
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because of space expansion, and also for models based on gravitational redshift
p = 1.

The light-curves for 35 Type Ia supernovae with redshifts up to z≈ 1 were anal-
ysed by Goldhaber et al. (2001). They derived the dilation parameter p = 1.0± 0.1.
Another study by Blondin et al. (2008) measured the spectral ages in the supernova
rest frame. Comparison with the observed time led again to the (1 + z)−1 factor
expected for expanding space.

The time dilation test provides good evidence against the tired-light hypothe-
sis, but it can not distinguish between expanding space models and models involv-
ing cosmological gravitational redshift. However, it is interesting to mention that
Hawkins (2010) could not see the time dilation in quasar light curves, though he
notes that this result may tell more about the physics of quasars than about the cos-
mological effect searched for.

8.6.5 Background Radiation Temperature vs. Redshift

An important cosmological test is the measurement of the cosmic background ra-
diation temperature at different redshifts. In the Friedmann universes with a high
initial temperature of matter and radiation, the predicted temperature depends lin-
early on redshift, i.e. T (z) = T0(1+ z). In the steady-state model the temperature
does not evolve. Within static models the evolution of the background radiation is
not known.

The Bahcall-Wolf CBR Temperature-Redshift Test Bahcall and Wolf (1968)
suggested to use fine structure transitions for measuring physical properties of the
interstellar and intergalactic media. In particular the temperature of the photon exita-
tion may be measured at high redshifts in the absorption line systems of quasars, and
Bahcall and Wolf viewed this as a possible test for the existence at large redshifts of
the cosmic black-body radiation.

Using high-resolution spectroscopy at large telescopes, the exitation temperature
of the thermal background radiation has been estimated from atomic fine-structure
transitions in cool absorption-line systems along the line of sight to high-redshift
quasars (e.g., LoSecco et al. 2001; Molaro et al. 2002). The first results gave the
value TCBR = 11± 1.6 K at redshift z= 3.025, while the predicted value is 4.025×
2.726= 11.0 K.

A major problem for such estimates is how to take into account the different
competing local excitation processes. Furthermore, in this method the radiation of
the cold dust can not be separated from the background radiation having a similar
temperature.

CBR Temperature-Redshift Test by the SZ Effect The determination of the
temperature of the cosmic background radiation from the Sunyaev-Zeldovich effect,
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Fig. 8.5 Measurements of the background radiation temperature at high redshifts (based on the
data in Luzzi et al. 2009). The data points come from the SZ effect (z < 1) and from the line
transition observations. The curve gives the relation T = T0(1+ z)

which involves the scattering of the CBR photons from the hot gas inside a cluster
of galaxies (Zeldovich and Sunyaev 1969a, 1969b), was suggested by Fabbri et al.
(1978) and Rephaeli (1980) who saw it as a test of the universality of the radiation.
Its use as a crucial cosmological test at high redshifts was emphasized by Baryshev
(1992b) and discussed by Horellou et al. (2005) having in view the multifrequency
SZ observations to be made by the Planck satellite.

The basic idea comes from the fact that the intensity of the observed extra radia-
tion changes its sign at a frequency ν0 that can be expressed in the form of parameter
x as

x0 = hν

kBTCBR

= 3.830. (8.24)

If the temperature of the CBR changes with redshift as

TCBR(z)= T 0
CBR
× (1+ z)δ, (8.25)

where T 0
CBR
= 2.726 ± 0.002 is the present epoch temperature, then the crossover

frequency will change as

x0(z)= hν0(1+ z)

kBT 0
CBR

(1+ z)δ
= 3.830× (1+ z)1−δ. (8.26)

For Friedmann models δ = 1 and there is no change of the frequency x0 = 3.83.
For the steady-state model δ = 0, hence the characteristic zero intensity frequency
will increase with the redshift as x0 = 3.83(1+ z). Within static models different
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possibilities may appear, depending on the evolution processes and initial condi-
tions.

Recently Luzzi et al. (2009) have used the Sunyaev-Zeldovich effect to measure
the background temperature up to z ≈ 0.5. Also these multi-frequency measure-
ments of 13 galaxy clusters do not disagree with the prediction from the Friedmann
model (see Fig. 8.5).



Chapter 9
Constructing Universes: A Gallery of Ideas

Amidst the success story of standard cosmology one should not lose sight of healthy
reminders of why also off-the-mainstream ideas can be useful and have the right
to exist in contemporary science. First, the finite observable part of the possibly
infinite universe does not allow one to test directly the initial hypotheses on the
universe as a whole. The possibility of a major reform is not excluded. Second,
even the known phenomena may have different interpretations, each corresponding
to a specific choice of the basic framework able to explain key observations. Third,
theoretical physics is a developing subject and “new physics” may offer a variety of
cosmological applications. Fourth, observations and theoretical understanding are
always limited, hence even a quite credible world model has its limitations, too (in
current cosmology the nature of 95% of the substance is unknown).

These points emphasize the importance of crucial observational tests as the only
way to decide between alternative cosmological ideas; the different theories should
not only explain the known empirical facts, but they should also make predictions
which can be tested by new observations.

9.1 Territories of Cosmological Ideas: Classifying World Models

It is curious to see in history that there tend to be “incorrect” ideas, which are then
surprisingly transformed into main stream paradigms (so, the spiral nebulae were
generally viewed as part of the Milky Way, before they became Island Universes in
the 1920s). In the shadow of the main paradigm, other ideas are easily ignored or
little studied and one cannot really know how well these might explain the data. It
is wise to keep in view a variety of thoughts and to seek ways to test their validity
observationally.

A variety of cosmological ideas have been proposed, many of them only rudi-
mentary. Some may be obscure and hard to understand, except perhaps by their
authors. In actual world models one can discern three cornerstones, highlighting the
basic structure: Observation, Theory, and Cosmological Principle. One may char-
acterize a model by asking:

Y. Baryshev, P. Teerikorpi, Fundamental Questions of Practical Cosmology,
Astrophysics and Space Science Library 383,
DOI 10.1007/978-94-007-2379-5_9, © Springer Science+Business Media B.V. 2012
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• What empirical facts are viewed as cosmologically important or relevant?
• What physical theories, in particular for gravitation, are used?
• What assumptions, beyond our finite experience, are the initial principles?

In brief, theory is the physics known from laboratories, and extended by the aid of
principles into the expanse of the cosmos, where it is used to understand important
observations. One should note that two models may see the same observations as
important, but may explain them differently. For instance, the usual idea about the
background radiation is, of course, its origin in the hot early universe. A quite dif-
ferent approach has tried to see it as an integrated glow from radiation sources at a
variety of redshifts.

Examples In order to see Observation, Theory, and Principle in action, consider
first Ptolemy’s model. It purported to explain the important observed celestial move-
ments, the most basic being the daily rotation of the sky. Aristotelian physics and
the epicyclic theory described on the basis of Euclidean geometry formed the physi-
cal framework. The cosmological principle consisted of the uniform circular motion
around the centre of the universe.

For Newton’s cosmology the unchanging starry sky was a key observation
(proper motions of stars were still unknown through most of Newton’s lifetime),
while the planetary motions were explained by Newton’s mechanics and gravita-
tion. In cosmology, this theoretical apparatus was extended to the whole infinite
universe uniformly filled by gravitating stars.

Modern cosmology is based on key observations in the galaxy universe, where
we see the cosmological redshift and the Hubble law, and which is bathed in the
thermal background radiation. General relativity and Friedmann’s expanding model
form the theoretical framework, together with the standard particle physics. Accord-
ing to the Cosmological Principle all main matter components have a homogeneous
and isotropic spatial distribution.

Positive Roles of Other Ideas The Friedmann model is strong in explaining key
observations. There are some alternative approaches, but usually they can explain
only one or two empirical facts on which they focus attention (see, e.g., López-
Corredoira 2003, 2010). Nevertheless, rather than being just a “noisy minority”, they
can be valuable. For example, they may contain a part of a future world model, as a
novel inferred cosmological process, or they can define such territories of theoretical
ideas that push scientists to devise new cosmological tests.

Hubble and Tolman (1935) suggested the number counts and the surface bright-
ness as ways to test alternative explanations of the cosmological redshift. Another
good example is Hoyle’s (1959) angular size vs. redshift test, which he hoped could
support the classical steady-state model, some aspects of which remain fascinating.
The continuous creation of matter when space expands was a controversial element
of that model. Now the continuous appearance of dark energy is a part of the new
cosmological physics.
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9.2 Cosmological Principles

In order to bridge the known and the unknown we postulate something which as
if extends our knowledge to regions from where we can never obtain informa-
tion. Some principles hide in the shadows, like the belief that ordinary analytical
mathematics adequately describes reality or the epistemological assumption that the
knowledge about the whole universe is accessible to us. A general idea, since Gior-
dano Bruno, is that the physical laws found on Earth are valid everywhere, and the
builder of world models usually assumes that (1) physical laws are the same in all
space and time, (2) fundamental physical constants are true constants, and (3) par-
ticular properties, including measuring standards, are the same in all space and time.

When cosmology advances, these statements may require adjustments in the light
of new observations and theoretical ideas. For example, multi-dimensional theories
predict variations of physical constants. The requirement of the same physical laws
does not make the large-scale world just a blown-up copy of our neighbourhood;
it also permits new laws of cosmological physics which appear only on very large
spatial, temporal and mass scales.

9.2.1 The Perfect Cosmological Principle: Steady State

The ordinary Cosmological Principle makes the universe spatially uniform and
isotropic at each cosmic time (but its density may change). In the Steady State model
(Bondi and Gold 1948; Hoyle 1948; see also Narlikar 1993 and the book A Different
Approach to Cosmology by Hoyle et al. 2000), the Perfect Cosmological Principle
makes the universe globally similar in space and time. One might think that here
“perfectness” has some aesthetic appeal, but Bondi and Gold emphasized that the
philosophical motivation was the desire to use terrestrial physics unambiguously in
cosmological conditions. Especially, the creation process, instead of being in the
deep past, was “brought within the scope of physical inquire” (Bondi 1952); it was
assumed to happen all the time over the entire cosmos, even though very slowly.

General Conclusions In a world with no beginning and no overall evolution, the
mean matter density does not change with time on scales large enough. Regarding
the cosmic kinematics, Bondi and Gold (1948) argue that the Perfect Cosmological
Principle predicts regular expansion from the observed absence of thermodynamic
equilibrium (which an infinitely old static universe would have reached). So the
reason behind the cosmological redshift is space expansion: the spatial volume in-
creases with time. To compensate for the decreasing matter density, the creation of
matter, along with space, has to be assumed.

The spatial homogeneity and isotropy lead to the Robertson-Walker line ele-
ment characterized by the space curvature k = 0 and the deceleration parameter
q = −1. Hence the scale factor increases exponentially: S(t) = S0e

Ht , where the
Hubble constant H is a true constant. The cosmic density has the critical value
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ρ = 3H 2/8πG. The theory includes a modified form of general relativity, i.e. grav-
ity is geometrical in nature.1

Burbidge (2006) paid attention to the fact that within the steady-state model
Hoyle and Sandage (1956) predicted the acceleration of the universe. A main prop-
erty of the current cosmology was hidden in a minor alternative!

The discovery of the thermal background in the 1960s quickly made the big
bang idea the ruling paradigm. Indeed, the main difficulty for the steady state is
the accurate thermal spectrum of the background radiation. Hoyle (1982) noted that
the nuclear reactions going on inside stars during their life yield the correct order
of magnitude for the energy density of the microwave background. In this ordi-
nary physical process, a fraction of baryonic energy is converted into electromag-
netic radiation—the big problem is how to thermalize it. Also, the first attempts
to measure the temperature of the background radiation at high redshifts (z > 1),
though affected by uncertainties due to unknown local excitation radiation, favour
the changing temperature predicted by the Friedmann model (Chap. 8).

Note the difference between steady and static states. For instance, Toivo Jaakkola (1993)
sketched “Equilibrium cosmology”, the universe in steady state but static (the redshift hav-
ing some other reason than expansion). This has a historical antecedent in the speculations
of William MacMillan (1871–1948) before the galaxy universe was found. For MacMil-
lan cosmology was “the study of transformations of energy throughout the cosmos, the
study of the origins being of no more interest than the study of dissolutions”. The flow of
energy would be such that “the singular points [stars] may change their positions and their
brilliancy, but it is not necessary to suppose that the universe as a whole has ever been or
ever will be essentially different from what it is today”.

9.2.2 Einstein’s Cosmological Principle

When Einstein (1917) applied his general relativity to cosmology, not yet knowing
about galaxies, he imagined a world filled with stars and argued that the stars have a
natural uniform distribution: matter lumps around any preferred centre should with
time evaporate and disperse all over space (somewhat similarly the atomist Epicurus
argued against the Stoic world of one big island of matter within infinite space: “If
space were infinite and the bodies were limited in number, these could not stay in
some one place, but would be moved into infinity, they would be dispersed without
any assistance or propulsion other than collisions.”)

The hypothesis of the large-scale homogeneity was called Einstein’s Cosmolog-
ical Principle by Edward Milne who analysed the foundations of cosmology in the
1930s. The Copernican principle “all places in the Universe are alike” is naturally
fulfilled in a homogeneous world. (The many faces of the Copernican principle have
been interestingly discussed by Rudnicki (1995).) Besides the absence of a centre,

1In Hoyle-Narlikar’s approach a scale-invariant gravitation theory is used making possible the
creation of matter by means of a C-field. The C-field has negative energy and negative stresses and
is conserved together with usual matter.
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another advantage of uniformity was a simplification of equations, which permit-
ted Einstein to derive the static world model. Soon Friedmann (1922) liberated the
universe from this stiff state, allowing the uniformly distributed matter and space to
expand.

In these early years observational evidence for a homogeneous universe was mea-
gre at best and it was mainly theoretical reasoning that guided the cosmologist.

Derivation of Uniformity from Local Isotropy Walker (1944), a British math-
ematician who worked closely with Milne, proved that uniformity follows from his
hypothesis of “Local Spherical Symmetry” which supposes that isotropy exists lo-
cally about each point of a Riemannian manifold.

A simple reasoning leading to homogeneity when there is isotropy around each
point, may be found in the First Three Minutes by Weinberg (1977). He shows how
one can go from any one point to another arbitrary place along circle arcs on which
the density remains the same. Hence the density is the same on every point. Strictly
speaking this conclusion requires a hidden mathematical assumption of regularity,
i.e. a smooth density around each point, only then Local Isotropy + No Centre +
Regularity ⇒ Uniformity. “Local isotropy plus no centre” means that all points are
equivalent and around each point the density law does not depend on the direction
(it may depend on the distance from this point). The “regular” matter distribution is
described by continuous, smooth mathematical functions—the smooth fluid approx-
imation as explicitly mentioned by Narlikar (1993) when discussing simplifying
assumptions of cosmology. It means going over from a discrete distribution of par-
ticles to a continuum distribution so that one may use the concept of mass density at
each point of space. It is thus the union of local isotropy, no centre, and smoothness
which gives homogeneity.

9.2.3 Mandelbrot’s Cosmological Principle

The lumpy distribution of luminous matter makes it worthwhile to bear in mind
that Einstein’s homogeneity and Mandelbrot’s fractality might both be useful ap-
proximations to reality, but relate to different spatial scales and different substances.
In his Fractals: form, chance, and dimension, Benoit Mandelbrot (1977) foresaw
that galaxies are fractal-like distributed and described the properties of such a dis-
tribution. He recalls how around 1965, his ambition was to implement the law of
decreasing density with a model where there is “no centre of the universe” or “the
centre is everywhere”.

Mandelbrot views the fractal galaxy distribution as a major conceptual step in
the description of the cosmological matter distribution. It is a kind of synthesis of
hierarchical structures (“thesis”) and homogeneity (“antithesis”), essentially based
on randomness. Indeed, there is an essential difference between true random frac-
tals and stiff hierarchical protofractals. Into protofractals the hierarchy is injected
“ex-nihilo”, by defining explicitly its levels. But fractals internally contain a scale
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invariance (self-similarity) and the impression of a hierarchy follows as an unavoid-
able consequence.

Interestingly, fractality (to be discussed in Chap. 10) carries within itself also
a trace of uniformity. Within a fixed radius, i.e. for a fixed scale, every observer
counts the same number of elements, on average. But upon changing the radius, a
“new uniformity” is found with a new mean number density. Furthermore, there is
no centre for random fractals—another “relic” from homogeneity.

Thus Mandelbrot made the first step for fractals in cosmology, generalizing Ein-
stein’s cosmological principle (D = 3), now allowing a non-uniform galaxy distri-
bution with D < 3. His “Conditional Cosmographic Principle” states that all ob-
servers see similar cosmic landscapes around them, under the condition that they
make observations from a structure element, galaxy.

Mandelbrot’s cosmological principle of fractality—the observers attached to the
structure elements are equivalent—satisfies Milne’s formulation (“the whole world-
picture as seen by one observer (attached to a fundamental particle or galaxy)
is similar to the world-picture seen by any other observer”). It also automati-
cally makes what Igor Karachentsev (1974) called “the ecological correction to
the Copernican principle”: the real observer can live only on or close to a celestial
body.2 In this sense the Copernican principle is contained by Mandelbrot’s princi-
ple which may be seen as a generalization of the principle of homogeneity. Hence
there should not be fears about an “unprincipled” fractal universe (Coles 1998;
Wu et al. 1999).

Does Isotropy Always Imply Uniformity? The proof of uniformity is based on
the density being smooth around all points; this is not valid for fractals. It is smooth-
ness which wipes out fractality and makes uniformity. Actually local isotropy and
no centre suggest a fractal structure, of which homogeneity is a special case with
D = 3 (see Sylos Labini 1994).

Of course, there is never an exact local isotropy around every observer, not even
in a uniform world, and still less inside a fractal. Instead one may speak of a sta-
tistical isotropy, so that the sky observed from any galaxy “looks much the same”.
It is natural to conjecture that for distributions made of discrete points, there is a
generalization of the above chain of reasoning: Statistical Isotropy + No Centre ⇒
Fractality.

As will be considered in Chap. 10, the projection of a fractal structure with fractal
dimension D ≥ 2 could contribute to an apparent isotropic celestial distribution of
galaxies. According to the theorem on fractal projections the resulting distribution
will have the fractal dimension D = 2, which means homogeneity on a 2D plane or
isotropy on the celestial sphere.

Two other factors contribute to celestial isotropy: lacunarity and the luminosity
function. The patchiness on the sky depends on the fractal dimension, but also on

2This is usually called the Weak Anthropic Principle. The strong variant as formulated by Brandon
Carter (1974) states that the universe and the fundamental parameters on which it depends must be
such as to admit the creation of observers at some stage.
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the lacunarity, a measure of how frequent large voids are. Numerical simulations
show that fractals with a small lacunarity can have rather smooth projections on the
sky. The second factor is the wide range of the luminosities of celestial bodies. As a
result two objects with equal apparent brightness actually may have widely different
distances. The mixing of nearby and distant objects hides clusters and fills in holes.
For example, this decreases the celestial anisotropy for distant radio sources.

Towards Einstein–Mandelbrot Concordance? We do know of uniform cosmic
components: the photon gas of the background radiation, the ocean of possible low-
mass neutrinos, the hypothetical gravitons, and in particular, the suggested physical
vacuum or dark energy. These relativistic ingredients cannot form structures. As
the average density of the fractal matter decreases with increasing volume, there
will eventually be a scale beyond which the uniform component is denser than the
fractal one. Hence one may regard, after all, the universe as homogeneous on such
scales. However, this is not due to the galaxies, but because of the uniform relativis-
tic matter!

“Fractal universe” is sometimes linked with an infinite fractal, with zero aver-
age density. True, there are no scale limits to a pure mathematical fractal. But real
physical objects usually have lower and upper cutoffs between which fractality is
observed. Thus it is expected that the fractal galaxy distribution appears only within
a finite interval of scales. Mandelbrot allowed for the possibility that the distribution
is uniform on large scales, while fractal on smaller scales. With any uniform mat-
ter component, such as the photon-gas or the cosmological vacuum, the universe
becomes homogeneous on a sufficiently large scale and it would have a non-zero
average density. Thus the intuitions of both Einstein and Mandelbrot appear to have
grasped fundamental features of the universe.

9.3 Fractality in Cosmological Physics

In the modern Friedmann model the presumedly uniform dark matter and dark en-
ergy determine the dynamics of the universe. On the other hand, the spatial dis-
tribution of luminous matter (galaxies) appears to be described by a fractal law
(Chap. 11). Also, there is evidence for dark matter being about similarly distributed
as luminous matter. Then, could fractality have some deep-seated significance for
cosmology? Let us take a historical viewpoint.

9.3.1 The Einstein–Selety Correspondence

In his paper on relativistic cosmology Einstein (1917) emphasized that small stel-
lar speeds spoke against large potential differences and gave support to large–scale
smoothness. He viewed it important that the Poisson equation modified by the λ
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term has a solution for the constant density. So a static, homogeneous matter dis-
tribution is possible, which also explains the small stellar velocities. Einstein then
extended this result to general relativity, obtaining the spherical world model with a
finite radius of curvature.

One may wonder why Einstein assumed that the matter is uniformly distributed.
He really did not look at the non-uniform starry sky, but he viewed cosmology on
the same level as Newton and Seeliger had done when they pondered whether the
simplest situation, homogeneity, is on cosmological scales consistent with the local
physics in the Solar System. When Einstein could thus show that his equations lead
to a static world model, this must have further enhanced his positive attitude to the
idea of homogeneity.

The Austrian scientist Franz Selety was aware of both Einstein’s homogeneous
and Charlier’s hierarchical models (which will be discussed in Chap. 10). In Annalen
der Physik, Selety (1922) argued that it is possible to construct hierarchical worlds
which fulfil simultaneously the following conditions: (1) Infinite space & infinite
total mass, (2) mass filling space so that locally there is everywhere a finite density,
(3) zero average density of the mass in the whole world, and (4) non-existence of a
unique middle point or middle region of the world.

Selety realized that the cosmological principle of “no centre” may also be valid
for hierarchies: for an observer in a “molecular-hierarchic” system the universe ap-
pears everywhere basically similar. He also raised the question of Mach’s principle
in such universes and argued that it can be fulfilled. He pointed out that in such
models a zero average density for the whole world exists together with its infinite
total mass.

Einstein (1922) quickly replied. He expressed his opinion that Mach’s principle
is not fulfilled in a zero-density universe. Selety (1923) did not agree and once more
discussed the crucial points of his model. Summarizing the arguments raised by
Einstein and Selety, we see as main objections to hierarchical models in the 1920s
(when the observations were scarce, too):

• Mach’s principle invalid for a hierarchic world model with zero global density.
• Large potential differences → an excessively high velocity dispersion for stars.
• A hierarchic system evaporates & stars fill up the voids → homogeneity.
• A hierarchic world contains a preferred middle point.

A Retrospective View Mach attempted to link the inertial mass of a body to the
large-scale mass distribution in the universe. One can define the acceleration of a
particle only relative to distant masses. In fact, the nature of inertial mass is still a
challenge for modern physics, including general relativity, where the rest mass of
a particle is regarded as a relativistic invariant, independent of the large-scale mass
around the particle. Mach’s principle no longer defines admissible world models.
Other items related to the old Einstein–Selety “debate” still have relevance to cos-
mology.

The small speeds of stars are now known to be due to their motion in our Galaxy
and not related to the entire universe. In fact, the problem of velocities has moved
from stars to galaxies. Astronomers have been asking why the velocity dispersion
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Table 9.1 Observational research topics related to large-scale fractality

Subject References

conditional density
new methods of data analysis
2-point conditional column density

Pietronero 1987; Coleman and Pietronero 1992; Gabrielli et
al. 2005; Bharadwaj et al. 1999; Best 2000; Martinez and
Saar 2002; Baryshev and Bukhmastova 2004; Vasilyev 2004

fractal dimension
of galaxy distribution
scales of fractality

Coleman et al. 1988; Klypin et al. 1989; Lemson and Sanders
1991; Jones et al. 1988; Martinez and Jones 1990; Jones et
al. 1992; Sylos Labini et al. 1998

local radial galaxy distribution
number counts, normalization
luminosity function, multifractals
fractality of dark matter

Sandage 1995a, 1995b; Teerikorpi et al. 1998; Teeriko-
rpi 2004; Baryshev 1981; Joyce and Sylos Labini 2001;
Courtois et al. 2004; Sylos Labini and Pietronero 1996;
Baryshev 1981; Durrer and Sylos Labini 1998; Massey et
al. 2007a

dependence of correlation function
on depth, luminosity type of object
peculiar velocities

Einasto et al. 1986; Calzetti et al. 1987; Davis et al. 1988;
Norberg et al. 2001, 2002; Klypin and Kopylov 1983; Bah-
call 1988; Bahcall et al. 2003; Zehavi et al. 2002, 2005;
Hawkins et al. 2003

local fractal dimension
linearity and coldness of
the local Hubble flow

Tikhonov et al. 2000; Tikhonov and Makarov 2003; Sandage
et al. 1972; Sandage 1986–1987; Karachentsev and Makarov
1996; Ekholm et al. 2001; Whiting 2004; Karachentsev et al.
2009

local tests of cosmological vacuum
and dark energy within fractals

Chernin 2001; Baryshev et al. 2001; Axenides and
Perivolaropoulos 2002; Chernin et al. 2006; Macciò et al.
2005; Teerikorpi et al. 2008

statistical mechanics of
self-gravitating fractal gas, D = 2

Perdang 1990; De Vega et al. 1996, 1998; Combes 1999;
Huber and Pfenniger 2002

around the local Hubble flow is so small within the very lumpy galaxy distribution
(Sandage et al. 1972; Sandage 1999) Einstein’s �-term turns up here, too: it might
contribute to the smooth Hubble flow as was first pointed out by Chernin (2001);
see Chap. 12.

The stability of hierarchical (fractal) structures of gravitating particles is an open
topic in modern gravithermodynamics. Perdang (1990) and De Vega et al. (1996)
concluded that a statistical equilibrium may be possible for structures with D ≈ 2.

The question of the central point is related to the cosmological principle. Fractals
preserve important properties of the old hierarchical systems but are more realistic
models of the galaxy distribution (Mandelbrot 1989; Pietronero et al. 1997). In par-
ticular, a stochastic fractal structure does not contain a privileged centre.

The arguments of Einstein and Selety are no longer reasons for rejecting in-
homogeneous world models, but they continue to inspire questions in cosmology.
In particular, the nature of the large-scale structure has prompted astronomers and
physicists to study different aspects of self-similar systems. Tables 9.1 and 9.2 illus-
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Table 9.2 Theoretical research topics related to large-scale fractality

Subject References

protofractal (hierarchical) models
relativistic fractal models
cosmological tests,
fractal universe

Wertz 1971; Wesson 1978; Soneira and Peebles 1977, 1978;
Bonnor 1972; Ruffini et al. 1988; Ribeiro 1993; Gromov et
al. 2001; Fang et al. 1991; Baryshev et al. 1994a, 1994b;
Joyce et al. 2000

cosmological gravitational redshift de Sitter 1917; Bondi 1947; Baryshev 1981, 1994

N-body simulation, local structure
initial conditions and discreteness
stability, velocity, force

Governato et al. 1997; Moore et al. 2001; Klypin et al. 2003;
Macciò et al. 2005; Bottaccio et al. 2002; Baertschiger et al.
2002; Baertschiger and Sylos Labini 2004; Gabrielli et al.
2005

origin and evolution of
large scale fractals

Haggerty 1971; Peebles 1974; Alfvén 1989; Lerner 1986;
Ostriker and Cowie 1981; Schulman and Seiden 1986; Sza-
lay and Schramm 1985; Maddox 1987; Luo and Schramm
1992

cosmological principle
and fractality,
isotropy and homogeneity
fractal holography

Mandelbrot 1975, 1977; Pietronero and Sylos Labini 1995;
Rudnicki 1995; Wu et al. 1999; Baryshev and Teerikorpi
2002; Mandelbrot 1989; Sylos Labini 1994; Mureika 2007

trate the wide range of observational and theoretical items touched by the fractal-like
large-scale structure.

9.3.2 Fractal Sources for Gravity Field

In our simple classification of world models, the standard model has general rela-
tivity as Theory and homogeneous matter distribution as Cosmological Principle.
If one assumes a fractal matter distribution instead of the homogeneous one, this
leads to an unsolved problem of how to describe non-analytical fractal sources of
the cosmological gravity field.

One has attempted to bypass this problem by using the global mass-radius re-
lation M(r), the main characteristics of the fractal matter distribution which deter-
mines the fractal density field ρ(r). Taking Mandelbrot’s cosmological principle as
a generalization of Einstein’s principle for the case of cosmological models with
isotropic fractal structures, one may write

ρ(	r, t)= ρ(r, t), p(	r, t)= p(r, t). (9.1)

Here the variable r is the radius of a sphere around each point of a structure. Can
fractal cosmological models be based on solutions of gravity field equations with
the sources described by the fractal density law?
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Lemaître-Tolman-Bondi Models The LTB models are exact solutions of Ein-
stein’s equations for (1) spherical symmetry, (2) pressureless matter (dust) and
(3) motion with no particle layers intersecting. The last point means that one views
the matter expanding (or contracting) smoothly within spheres which retain their
identity during the process (similarly as the comoving coordinates of galaxies keep
fixed during the Friedmann expansion). These models are the simplest generaliza-
tion of the Friedmann models with a non-zero density gradient and “the assumption
of spherical symmetry supplies us with a model which lies between the completely
homogeneous models of cosmology and the actual universe with its irregularities”
(Bondi 1947).

The LTB model has helped us to understand the kinematics of galaxies around
individual mass concentrations. For example, Teerikorpi et al. (1992) and Ekholm
et al. (1999b) could see the expected behaviour around the Virgo cluster: (1) Hubble
law at large distances, (2) retardation at smaller distances, (3) zero-velocity border at
about half way from us to Virgo, and (4) collapsing galaxies at still smaller distances.
Hanski et al. (2001) studied the Perseus-Pisces supercluster using the LTB model
with the �-term.

Usually one considers the behaviour of a spherical layer of matter at distance
r from the centre of symmetry. In Newtonian terms, the dynamics of a shell is de-
scribed by two constants: (1) the mass inside the radius of the shell M(r) and (2) the
energy per mass of the shell

E(r)= 1

2

(
dr

dt

)2

− GM(r)

r
− �c2r2

6
. (9.2)

We remind that the energy density of cosmological vacuum (or dark energy)
corresponding to the �-term is ρDE = �c2/(8πG) and the last term becomes
−(4π/3)GρDEr

2. In practice, for a given M(r) one can calculate the expected
present radial velocity V (r) at the distance r , assuming that the expansion of the
system has began T years ago (often taken to be as the age of the large-scale Fried-
mann model). For � = 0, there is a parameterized solution (e.g., Olson and Silk
1979); for �> 0, one uses numerical integration (e.g., Hanski et al. 2001).

At the zero-velocity radius the peculiar velocity towards the mass concentration
equals the cosmological Hubble velocity for the same distance. This distance (about
1 Mpc for the Local Group and 10 Mpc for the Virgo cluster) has been often used for
estimating the total mass M0 of a gravitationally bound system (Lynden-Bell 1981;
Sandage 1986). The spherical model with �= 0 leads to the estimator

M0 = (π2/8G)t−2
0 R3

0 = 2.74 1012M�
(

t0

1010 yrs

)−2(
R0

1 Mpc

)3

. (9.3)

Here t0 is the age of the universe, or more generally, the “bang time” when the sys-
tem started expanding from the concentration. In fact, this formula is like Kepler’s
Third Law for a very eccentric orbit of a test particle with R0 equal to two times the
semi-major axis and t0 one half of the period.
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Fig. 9.1 The behaviour of
the velocity field within an
inhomogeneous (fractal)
matter distribution for various
values of 
lum when the total
density has the critical value
(= 1). In this calculation the
fractal dimension for the
luminous matter is D = 2 up
to the scale r = 200 Mpc.
(From Baryshev et al. 1998)

If �> 0, then dynamic mass determinations (like the virial theorem) lead to an
underestimate of the gravitating mass (the “lost gravity” effect of local dark energy;
Chernin et al. 2009), also when one uses the zero-velocity method (Peirani and de
Freitas Pacheco 2008).

Hierarchical Cosmologies Bonnor (1972) was the first to apply the LTB model
to the hierarchical cosmology. He used de Vaucouleurs’s density law ρ ∼ r−γ with
γ = 1.7. Ribeiro (1993) and Gromov et al. (2001) developed the approach to include
a fractal matter distribution on small scales and a homogeneous distribution on large
scales. The main result was that the fractal structure leads to a deflection from the
Hubble law at small distances, unless the global density parameter of matter is low
(
m < 0.1) (Fig. 9.1). The low density was mentioned already by Sandage et al.
(1972) as a possible cause of the smooth expansion within the lumpy local universe.

However, the LTB model leads to a conceptual problem, as the original formu-
lation contained a central point of the universe. A fractal distribution has no unique
centre, but every structure point may be treated as a local centre, surrounded by
a spherically symmetric (on average) matter distribution. In a sense, applying the
LTB model to fractals means that there is an infinity of centres with slightly differ-
ent initial conditions (for any fixed scale the average density—a power law—is only
approximately constant). A good thing is that this excludes geocentrism and points
the way towards exact general relativistic models where space expansion becomes
scale dependent: the expansion at distance r from a fixed point of the structure is
determined by the average mass of the sphere around this point.3

3An analogous thing exists for Friedmann models where the rate of expansion within distance r

from a galaxy is determined by the mass of the sphere around this galaxy.
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9.3.3 Field Gravity and Fractality

In a more radical variant one takes a fractal matter distribution and changes the
gravity theory, an idea proposed by Baryshev (1981). Though still a developing sub-
ject (Baryshev et al. 1994b), a qualitative picture has emerged, with some testable
results. Here gravitation is described as a relativistic quantum field in Minkowski
space (Chap. 6). The second hypothesis is fractal (D = 2) matter from the scales of
galactic halos up to the Hubble radius.

Cosmological Solution in Field Gravity In Chap. 6 we treated field gravity in
weak-field approximation using iterations. A specific feature of this theory is that
there is the case of a weak force with ∇ϕ → 0 while |ϕ| → c2/2. This is what
happens in the cosmological problem, and we can obtain some quantitative results
even at the post-Newtonian level.

Let us inspect static homogeneous (ρ = const) dust-like cold matter (p = 0) in
infinite space. Using expressions for the post-Newtonian energy-momentum tensors
of matter (where the field and interaction EMTs are traceless), we get the equation
for the ψ00 = ϕ component:

�ϕ = 4πG

(
ρ + 2ρ

ϕ

c2
+ 2(∇ϕ)2

8πGc2

)
. (9.4)

The main terms in the right-hand side of Eq. (9.4) are the positive rest mass density
ρ and the negative interaction mass density (2ρϕ)/c2. The last term is negligible,
because for ϕ→ const, ∇ϕ→ 0. Hence the simple equation (left) which is equiva-
lent to Einstein’s equation (right):

�ϕ − 8πGρ

c2
ϕ = 4πGρ↔�ϕ − λϕ = 4πGρ. (9.5)

A comparison shows that the �-term in field gravity theory is

λ= 8πGρ

c2
(9.6)

and it comes from the contribution of the energy-momentum tensor of the interac-
tion. This leads to the static cosmological solution

ϕ =−4πGρ

λ
=−c2

2
, (9.7)

with the �-term twice the similar term in Einstein’s static model (Sect. 7.2.2). Now
ϕ = constant is consistent with an initially homogeneous infinite gas distribution in
the static Minkowski space, without the gravitational potential paradox. This solu-
tion can be also derived as a limiting case (r→∞) of the exact solution of (9.5) for
a matter ball with radius r (Appendix C).



194 9 Constructing Universes: A Gallery of Ideas

9.4 Physical Laws, Fundamental Constants and Large Numbers

A century ago Poincaré posed the question about the constancy of physical laws in
the universe. He argued that unchanging physical laws give the basis of scientific
knowledge; otherwise there were no repeatable experience and the physical theory
would be devoid of predicting power. If some laws were changing under higher-level
laws, then these should be fixed and so on.

Known physical laws contain also fundamental constants as parameters which
may be determined from experiments. Though observations strongly limit possible
variations of those constants, Poincaré’s question is still with us. Another enigma
comes from the coincidences between some combinations of microphysical con-
stants and values of some cosmological quantities—emphasizing what modern cos-
mology has shown: both directions, “inwards” and “outwards”, are important for
understanding the universe.

9.4.1 Fundamental Constants in Cosmology

A physical law may be defined through a mathematical relation between physical
quantities which can be measured empirically. Any abstract physical theory has a
finite range of validity in reality. Experiments measuring physical quantities are
needed to find the borders of validity for the theory.

Dimensional Quantities The measurement of a physical quantity gives a dimen-
sional number. Founders of natural science from Newton to Maxwell were aware of
the deep link between physical dimensions and the structure of fundamental physi-
cal laws (Bridgman 1920, 1936; Whitney 1968).

Corresponding to three parts of physical reality—space, time, and matter—there
are three units: “cm”, “sec”, “gram”. Buckingem’s π -theorem, based on the scale
invariance of the dimensional physical quantities, states that the dimension of any
physical quantity may be presented as a product of power-law functions of those
fundamental dimensions:

(cm)n(sec)m(gram)l, (9.8)

where n,m, l are rational numbers. For example, the physical dimension of the
charge of an electron is [e] = erg1/2 cm1/2 = cm−1 sec−1 gram1/2.

In astronomy the Gaussian system of units [cm], [s], [g] is generally used, while
the International System is based on [m], [s], [kg]. Planck (1899) suggested three
particular physical constants as a “natural system of units”—the velocity of light c,
the gravitational constant G, and the constant of action h (now called the Planck
constant; also � = h/2π ). Then the values of the Planck units of length, time and
mass are:

lPl = (G�/c3)1/2 ≈ 1.6× 10−33 cm, (9.9)
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tPl = (G�/c5)1/2 ≈ 5.3× 10−44 s, (9.10)

mPl = (c�/G)1/2 ≈ 2.2× 10−5g. (9.11)

In terms of the Planck units, the other constants of nature become dimensionless
numbers and important equations in physics obtain simplified forms, e.g., Newton’s
law of gravitation (F =Gm1m2/r

2) becomes F =m1m2/r
2 where the force F is

now relative to the unit Planck force (= c4/G). As we mentioned in Chap. 5, the
Planck system c,G,� has also the deep interpretation as a representation of basic
physical theories.

Variability of Fundamental Constants The values of such constants as

G,c,h, e, k,me,mp, αe, αw, (9.12)

may be measured empirically. They link physical phenomena to mathematical mod-
els, i.e. the real world of physics to the ideal world of mathematics.4

The modern idea of possible variation of physical constants came from cosmo-
logical models describing the expanding universe. It was much discussed in 20th
century physics starting from the works by Milne (1935, G(t), e(t)), Dirac (1937,
G(t)), and Gamow (1967, e(t), α(t)). The problem became more complex when it
was realized that varying one constant implies the need to consider the changes in
all other constants (Troitskii 1987; Barrow 1990; Okun 1991).

In modern physics there are theories where fundamental constants are changing
as a consequence of the expansion of 3D space in higher dimensions. Kaluza-Klein,
supergravity, and brane/string theories predict different types of time-dependencies
(Uzan 2003).

The fine structure constant α, which plays a fundamental role in electromag-
netic interaction, was suspected to change as �αe/αe ≈ (−0.7± 0.2)× 10−5 over
the redshift range 0.5–3.5 (Murphy et al. 2001). Such studies use the fine structure
splitting in quasar spectra. The splitting ratio r = (λ2 − λ1)/(λ2 + λ1) at different
cosmic epochs (redshifts) gives the relative change of α between these epochs (Uzan
2003). In particular, for the redshifts z and 0 one may write:

�α

α
= 1

2

(
r(z)

r(0)
− 1

)
. (9.13)

Gutiérrez and López-Corredoira (2010) give a summary of the results from the dif-
ferent variants of the fine structure splitting method. The change of α claimed by
Murphy et al. (2001) has not been confirmed, and there is no clear evidence for
changes in α over the timescales considered (however, see Levshakov et al. 2007).
Because αe = e2/�c, the same restrictions as for α separately hold for e2, �, and c.
Another possibility is that e2(t)∝ �(t)c(t).

4Even “dimensionless” combinations of physical constants, say the fine structure constant αe =
e2/�c, actually depend on the dimensions of the constants that they contain. Thus αe ≈ 1/137
presupposes that c,h, e, are measured in the same system of units.
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Along with α, the proton-to-electron mass ratio μ=mp/me can be studied from
the spectra of high-redshift quasars. Using the Keck telescope, Malec et al. (2010)
derived from the molecular hydrogen absorption spectrum towards a z = 2.059
background quasar that �μ/μ = (+5.6 ± 5.5stat ± 2.9sys) × 10−6, “indicating an
insignificantly larger μ in the absorber”. This result was consistent with the earlier
study by King et al. (2008) (for zabs > 2.5) using the VLT. There are also limits
on other constants and their combinations (Uzan 2003). Observations with large
next-generation telescopes will be needed for more accurate data.

Constants of Cosmological Physics Such quantities as the Hubble constant
H ≈ 10−18 sec−1, the Hubble radius RH ≈ 1028 cm, the mass of the universe within
RH, Muniv ≈ 1056 g, the Hubble mass density ρ ≈ 10−28 g/cm3, the background ra-
diation temperature T0 ≈ 2.726◦ K, and the fractal dimension of the galaxy distribu-
tion D ≈ 2 are derived from observations and enter world models as free parameters.
Within the Friedmann model these depend on time. Some other approaches to cos-
mology might view their values as linked to the phase of evolution of the matter in
non-expanding space.

9.4.2 The Puzzle of Large Numbers in Cosmological Physics

Among the great puzzles of cosmology is the strange coincidence between the pa-
rameters of the universe and simple combinations of certain constants of micro-
physics. Known as the “Large Numbers Coincidences” (LNC), this still has no theo-
retical explanation within the standard cosmology, and the Anthropic Cosmological
Principle is often used to obtain some kind of understanding.

How it Started Weyl (1919) noticed that the ratio of the electron radius to its
gravitational radius is ∼ 1040 and the ratio of the world radius to the electron radius
may also be of the same order. Eddington (1923b) gave Weyl’s guess a more rigor-
ous form, and attracted the attention of scientists to the problem of Large Numbers.
Indeed, the ratio of electromagnetic to gravitational forces between a proton and
electron is a big number B and the number of protons in the universe is the square
of the same big number:

B = e2

Gmpme
≈ 1040,

Muniv

mp
≈ 1080 = B2. (9.14)

Eddington never attempted to explain the LNC by invoking varying constants; he
regarded it as a signal for a new foundation of physics. One can also write B as
(Chandrasekhar 1937; Andreev and Komberg 2000)

B ≈ e2

Gmpme
≈ �c

Gm2
p

≈
(
mPl

mp

)2

, (9.15)
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where e2 ≈ �c/137 and mPl = (�c/G)1/2. Different quantities in micro- and cosmo-
physics are related as powers of B , so that Qcos = BnQmicro.

Coincidences in Friedmann Cosmology Dirac (1937), impressed by the Weyl-
Eddington findings, proposed “a new basis for cosmology” by considering, in ad-
dition to B , the dimensionless numbers B1 and B2 combined from constants of
microphysics (e,me,mp,G) and cosmological quantities (the size R = cτ , the mass
density ρ, and the age τ of the universe):

B1 = cτ

(e2/mec2)
≈ 1040 and B2 = 4π(cτ)3ρ

3mp
≈ c3τ

Gmp
≈ 1080. (9.16)

Here τ = 2× 109 yrs and Gρτ 2 ≈ 1. Dirac realized that within the expanding uni-
verse one gets a relation between fundamental constants of laboratory physics and
continuously changing cosmological quantities R(t), ρ(t), τ . The strange coinci-
dence is that just at the present epoch we have

B ≈ B1 ≈
√
B2 ≈ 1040. (9.17)

9.4.3 Possible Explanations of the Coincidencies

Dirac considered the possibility that B = B1 =√B2 ∝ t and concluded that in this
case the quantity e2/Gmp ∝ t . He suggested that the gravitational “constant” is
decreasing with time as G∝ 1/t . Then the number of particles in the universe will
increase with time B2 ∝ B2 ∝ t2, which he interpreted as a continous creation of
protons. However, such a behaviour of G(t) conflicts with geological data on the
Earth’s temperature. Gamow (1967) suggested that it is the charge which varies,
e2 ∝ t , so the epoch of boiling oceans is far enough in the past. Modern limits on
the changes of the fine-structure constant also exclude such a possibility.

Dicke (1961) proposed another explanation. He noticed that the stellar evolution,
which produces the chemical elements necessary for carbon-based life, gives the
time scale τ∗ not far from the age of the universe:

τ∗ ≈
(
mPl

mp

)
h

mpc2
≈ 1010 yrs. (9.18)

Hence B1 ≈ 1040 would just follow from the anthropic principle, a selection effect
of the presence of the very observer (e.g., Barrow and Tipler 1988). This explanation
views the coincidence as having no fundamental theoretical reason.

Large Numbers and the Hubbloid The LNC can be formulated as an equilib-
rium condition for the galaxy universe, so it might not be a coincidence at all (Bary-
shev and Raikov 1988; Baryshev et al. 1994a, 1994b, 1996a, 1996b). Let us consider
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an extreme self-gravitating superobject (“Hubbloid”) for which the Eddington and
Planck luminosities are equal:

LEdd ≈ LPl. (9.19)

The Eddington luminosity is the maximum luminosity of an object (having the mass M)
for which there is a balance between the gravity force and radiation pressure:

LEdd ≈
GMmpc

σT
≈ c5Gm2

pm
2
e

e4
N. (9.20)

Here N is the number of protons in the object, σT = (8π/3)R2
e is the Thompson scattering

cross-section, and Re = e2/mec
2 is the classical radius of electron.

The Planck luminosity means the luminosity of an object which radiates its rest-mass
energy Mc2 during the time interval equal to the crossing-time of its gravitational radius
by light t =Rg/c= 2GM/c3:

LPl = Mc2

Rg/c
= c5

G
≈ 3.6× 1059 erg/s. (9.21)

Therefore Eq. (9.19) gives a rough estimate for the number of protons in the Hub-
bloid, directly explaining Eddington’s large number B2:

NH ≈
(

e2

Gmpme

)2

= B2 ≈ 1080. (9.22)

The mass MH and the (gravitational) radius RH of this object are

MH ≈mpNH ≈ 1056 g≈ 1022M�, (9.23)

RH ≈ GMH

c2
≈ e4

Gmpm2
ec

2
≈ReB ≈ 1027 cm, (9.24)

i.e. the Hubble radius. Hence, around this limit of the deep universe the Newtonian
gravitational potential GM(R)/R would reach the value c2 (and where any non-
relativistic Newtonian description of the expanding universe would break down;
Sect. 12.4.3).

The density of the Hubbloid is

ρH ≈ 3MH

4πR3
H

≈ Gm2
pm

4
ec

6

e8
≈ ρpB

−1 ≈ 10−27 g/cm3. (9.25)

Equating the Planck luminosity to the black body power LH = 4πR2
HσT

4
H gives

the temperature of radiation from the Hubbloid’s “surface”

TH ≈
(

LH

4πR2
H

)1/4

≈ TPlB
−3/4 ≈ 10 K, (9.26)

an equilibrium background temperature of this extreme object.
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A Link to Fractality Finally, the density of a proton ρp ≈ mp/λ
3
C (λC is its

Compton length h/mpc) and the product radius× density is the same for the proton
and the Hubbloid:

fH ≈ ρHRH ≈ ρpRe ≈ (2π)−1 g/cm2, (9.27)

where ρp ≈ 1013 g/cm3. The last equality uses the expression Hg = (2π)−1ρ0r0G/c

for the gravitational Hubble constant (Sect. 9.5.1), so the fractal density (for D = 2)
fH ≈ (2π)−1 g/cm2 may be considered as a fundamental cosmological constant,
which can be expressed via microphysics as

fH = ρ0r0 ≈mp

(
mec

2

e2

)2

≈mp

(
hc

me

)2

. (9.28)

Hence, the Hubbloid could have, in principle, a fractal structure with D = 2 from
the proton scale up to the Hubble radius. We find it interesting that within the idea of
a fractal universe the constants of microphysics are naturally related to the observed
global values of cosmological parameters.

Using the Planck scale, the quantities characterizing the Hubbloid become RH ≈
1060lPl, MH ≈ 1060mPl, t (crossing)H ≈ 1060tPl, TH ≈ 10−30TPl, and ρH ≈ 10120ρPl.
These relations, which also approximate the observable galaxy universe, may be
seen as another formulation of the puzzle of large numbers.

9.4.4 Other Cosmological Coincidencies

The “classical coincidencies” discussed above were found when the composition of
the cosmic matter was poorly known. New questions have arisen after the discovery
and measurement of different matter components: baryonic, dark matter and the
cosmic vacuum energy (dark energy). The physics of each of these involves their
own riddles. Byrd et al. (2007) conclude that “the energy content of the Universe is
well measured but poorly understood” and note that only the thermal background
radiation, contributing less than 0.01% of the current cosmic energy, can be well
treated on the basis of standard physics within the Friedmann model.

The relative importance of the cosmic components in terms of energy density
also leads to a puzzle, because the energy fractions vary in time when the universe
expands. Why is it so that currently especially the densities of dark matter and dark
energy are so close to each other?

The Theoretical Problem with the Small � The energy-momentum tensor cor-
responding to the cosmological constant � can be written as:

Tik =�
c4

8πG
gik (9.29)
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so the cosmological constant as a kind of substance has

ρvac = �c2

8πG
, �= 8πG

c2
ρvac. (9.30)

From the observations of distant SNIa supernovae one has derived that ρvac ≈
0.7ρcrit ≈ 6.4h2

70 × 10−30 g/cm3 (from Eq. (7.33)) and so � ≈ 2 × 10−56 cm−2.
From the theoretical point of view the energy density of “empty” space is the sum
of the zero point energies of the normal modes of fields up to a wave number cutoff
kmax ≈EPl/�c, where EPl =mPlc

2 and mPl =√�c/G, so that the expected energy
density of the vacuum is close to the Planck density ρPl:

ρvac ≈ �k4
max

16π2c
≈ ρPl = c5

G2�
≈ 1094 g cm−3, (9.31)

124 orders of magnitude larger than the observed value! Weinberg (1989) considers
possible solutions of this problem, showing that the cosmological constant riddle has
a great impact on other areas of physics and astronomy. However, “many theorists
have tried to invent adjustment mechanisms to cancel the cosmological constant, but
without any success so far”.

One aspect discussed by Weinberg (1989) is the anthropic constraint, meaning
that the value of � should be small enough to allow the formation of galaxies,
stars, heavy elements and, finally, human beings. However, the constraint is not
necessarily so tight as to exclude a range of values larger than what is now adopted
in standard cosmology. On the other hand, Starkman and Trotta (2006) argue that
one cannot use the anthropic principle to explain the value of �—much depends on
how one weighs the different “universes” in the ensemble from which our universe
is just one realization. In their specific example it would be very improbable to have
� equal to or greater than what we observe.

Insight from Friedmann Integrals Chernin (2002) writes the first equation of
Friedmann for the scale factor S in the form

Ṡ2

c2
=
(

S

AV

)2

+
(

S

AD

)−1

+
(

S

AB

)−1

+
(

S

AR

)−2

− k, (9.32)

where the A-terms with the unit of length are, mathematically, constants of integra-
tion which were physically determined by the initial conditions in the early universe.
In fact, they can be written in terms of the present total density ρ and the equation
of state parameters w as

Ai = (κρS3(1+wi))
1

1+3wi , (9.33)

where κ = 8πG/3c2. Especially, for the vacuum energy with w =−1

AV = (κρV)
−1/2 = 1.61028cm. (9.34)

This length is not far from the Hubble distance (RH = c/H = 3000h−1 Mpc =
0.925 1028h−1 cm) and the current particle horizon. Its expression does not depend
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on the scale factor S, while the other lengths (for the components with w > −1)
depend on a combination of S and ρ in such a way as to remain constant. Thus
one may also state the coincidence of the vacuum and the dark matter densities (as
well as the baryonic matter and radiation, within two orders of magnitude) so that
we are living during the period when the lengths (Friedmann integrals) are roughly
equal to the Hubble distance. Chernin asks why the present Hubble distance should
have such significance and links it to the possibility that the universe might actually
have a topology making its volume finite (Luminet et al. 2003). This finite size
would be nowadays near the Hubble (and the horizon) distance. Then one might say
(Byrd et al. 2007) that “in terms of the standard cosmology, the Anthropic Principle
requirements may perhaps all be reduced to only one condition: the present epoch is
the epoch when the size of the Universe reaches the universal value of the Friedmann
integral”.5

9.5 The Nature of Cosmological Redshift

When the high redshifts were found, before the concept of expanding space redshift
was known, high speeds plus the Doppler effect was a popular view. But one can
also find reservations about the Doppler explanation, even before the de Sitter effect
(Sect. 9.5.1). In letters to the discoverer, V.M. Slipher, William Campbell (Lick
Observatory) underlined that the high velocities are very important, though it was
not yet clear for what they are important. In 1914 Campbell wrote “As you have
already stated, one naturally seeks for an explanation other than that of a Doppler
effect. There is great interest in determining whether these high velocities are all of
the same sign . . . or whether you have cases opposite in sign. The former condition
would encourage us to look further for explanations not based on radial velocities,
whereas the latter condition would practically decode the question in favor of the
Doppler effect” (Brémond 2008).

Attempts to find a mechanism producing a “plus-sign” spectral shift (other than
the de Sitter effect and the expansion Lemaître redshift) started with the tired
light effect (Zwicky 1929). This concept refers to some unknown process mak-
ing photon energy decrease during its flight. So, one could say (Jaakkola et al.
1979) that “redshift is not an effect associated with space (its expansion) but one
associated with the presence of matter”. After Zwicky, there have been attempts
to find a viable mechanism for the photon energy loss (e.g., LaViolette 1986;
Brynjolfsson 2006). Also the gravitational cosmological redshift would belong to
this general class where photon interacts with matter (gravitons).

There are a few tests in principle able to refute the tired light models, if expansion
is real. We have discussed these in Chap. 8 (the surface brightness test, time dilation,

5Chernin (2002) suggests that the near-similarity of the four Friedmann integrals (for the four
energies) may reflect a deep time-independent cosmic internal symmetry (COINS) characterizing
our universe.



202 9 Constructing Universes: A Gallery of Ideas

change of redshift). The first two tests have gone towards confirming the presence
of expansion effects. The test suggested by Sandage (1962)—the slow change of
redshift for individual objects in expanding space—remains an important challenge
for the future.

9.5.1 Cosmological Gravitational Redshift

Space expansion ruled by uniform matter produces both the redshift and the linear
Hubble law. It is interesting to ask what a global gravitational effect as a redshift
mechanism would require from cosmological physics and the distribution of matter.
In fact, there are theoretical hints that such an effect can exist and that for a smooth
matter distribution it could lead to a quadratic r–z law for small redshifts.

De Sitter Effect of Gravitational Redshift In early history of relativistic cos-
mology de Sitter (1917) found a static solution of Einstein’s equations for an empty
universe with cosmological constant �:

ds2 =
(

1− r2

R2
�

)
c2dt2 − dr2

1− r2/R2
�

− r2(dθ2 + sin2 θdφ2). (9.35)

Here r is the distance from the source to the observer, and R2
� = 3/� is the charac-

teristic radius corresponding to the cosmological constant �.
The de Sitter effect is caused by the g00 component of the metric and from the

definition 1+ zg = 1/
√
g00 it is the cosmological gravitational redshift for a homo-

geneously distributed substance with positive mass density ρ� = �c2/8πG. Ein-
stein (1917) used an extra condition on the metric g00 = 1, thus he lost the gravita-
tional redshift in his static model.

Eddington (1923b) emphasized that in “De Sitter’s theory . . . there is the general
displacement of spectral lines to the red in distant objects due to the slowing down
of atomic vibrations which . . . would be erroneously interpreted as a motion of
recession”. In his discovery study Hubble (1929) refers to the de Sitter effect as a
possible explanation of the distance-redshift law.

We see that the cosmological gravitational redshift was considered as an expla-
nation of the observed spectral shifts already before the expansion interpretation. In
a sense this is a new effect in cosmological physics, due to the non-local observa-
tion. It appears only on cosmological scales and is not related to the Pound-Rebka
redshift experiment in the local gravity field. The global effect is always redshift,
while locally a photon has two possibilities—redshift or blueshift, depending on the
direction of propagation.

Small Redshifts Within expanding space cosmology Bondi (1947) in a sense re-
discovered the de Sitter effect. He considered a spherically symmetric distribution of
dust matter and showed that at small distances the observed cosmological redshift,
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i.e. the Lemaitre-effect, can be expressed as a sum of two parts. The first one is the
velocity effect due to the relative motion of the source and the observer. The second
part is due to the global gravitation effect of the total mass inside the spherical ball
with the light source at the centre of the ball and the observer at the surface of the
ball. The infinitely distributed matter outside the ball does not affect the value of the
redshift.

Bondi showed that for homogeneous matter and small redshifts (z
 1) the grav-
itational cosmological redshift is

zgrav = δφ(r)

c2
= 1

2

GM(r)

c2r
= 1

4

0

(
r

RH

)2

, (9.36)

where δφ(r) = φ(r) − φ(0) is the gravitational potential difference between the
surface and the centre of the ball and RH = c/H0 is the Hubble distance.

Bondi (1947) noted that “the sign of the velocity shift depends on the sign of v,
but the Einstein shift is easily seen to be towards the red”. In the case of a static
universe the velocity term is zero, hence the only term is the global gravitational
redshift (Eq. (9.36)), which is the “de Sitter” effect but now for the ordinary matter
distributed in all infinite space.

Why is the cosmological gravitational effect a redshift? From causality it follows
that the event of emission of a photon (or a spherical pulse) by the source which
marks the centre of the ball, must precede the detection of the photon. The latter
event marks the spherical surface where all potential observers are situated after the
time t = r/c. Therefore to calculate the gravitational shift within the cosmologically
distributed matter one should cut a matter ball with the centre at the source, with the
radius equal to the source–observer distance. Then the shift is towards red.

It is interesting to mention that some discussions placed the observer to the cen-
tre of the ball and hence a blueshift was obtained instead of Bondi’s and de Sitter’s
redshift (Zeldovich and Novikov 1984, p. 97; Peacock 1999, Problem 3.4). How-
ever, we surmise such a choice of the reference frame violates the causality in the
process considered: the ball with the source on its surface has no causal relation to
the emission of the photon.

Equation (9.36) shows that when c→∞, the redshift drops to zero. In New-
tonian physics one may put the sphere either around the source or the observer,
without causality problems, and thus infer that zgrav =−zgrav = 0.

Einstein’s Local Gravitational Shift Consider a static spherically symmetric
mass distribution inside a ball (radius r , mass M). The light emitted by a source at
the ball’s surface is observed to have at infinity the redshift

(1+ z)grav =
(

1− 2GM

rc2

)−1/2

(9.37)

from νobs = √g00νem where Einstein’s gravitation factor g00 is taken for the
Schwarzschild coordinates. Note that zgrav →∞ when r→Rg = 2GM/c2.
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Einstein’s gravitational shift changes the sign when the light changes the direc-
tion of propagation. For an observer at a large distance from the body the spectral
line shift is redshift, but for an observer at the surface of the body (and the source
at a large distance from it), the observed shift is towards blue. So the Einstein effect
will lead to extra noise in the global gravitational redshift due to local fluctuations
of the gravitational potential.

Fractal Matter Distribution In order to have a linear redshift law, instead of
the square law as expected within uniform matter, one may consider a fractal dis-
tribution (Baryshev 1981). Generalizing Eq. (9.36) to the distribution M(r) ∝ rD

one can derive for small redshifts a relation for the gravitational part of the redshift.
For a fractal structure with D = 2 this cosmological gravitational redshift is a linear
function of distance:

zgrav(r)= 4πGρ0r
2
0

c2D(D− 1)

(
r

r0

)D−1

= 2πGρ0r0

c2
r = Hg

c
r (D = 2). (9.38)

“The gravitational Hubble constant Hg” may be expressed as

Hg = 2πρ0r0
G

c
. (9.39)

For a structure with fractal dimension D = 2 the constant β = ρ0r0 may be viewed
as fundamental. Rost (2004) suggested the concept fractal density ρ(r)r3−D having
a constant value for a general fractal. In this case β = ρ0r0 is the fractal density for
D = 2, determining the value of the gravitational Hubble constant. For instance, if
the fractal density β ≈ 1/2π g/cm2 (say, ρ0 = 5× 10−24 g/cm3, r0 = 10 kpc), then
Hg = 2πβG/c≈ 69 km s−1/Mpc. A linear redshift law would seem possible, but it
would require a huge amount of dark matter, organized fractal-like with D = 2 (see
below).

For large redshifts there is still no exact field gravity theory and we consider only a hy-
pothetical approximate formula. The PN approximation suggests that the strong gravity
redshift could be given by the relation 1+ z = 1/

√
1+ 2ϕ(r)/c2. This describes a spec-

tral shift for light radiated at point r , and detected by an observer at infinity. Hence for
a source at the centre of a matter ball (r = 0) and an observer at its surface (r = R), the
observed redshift will be

1+ zobs = 1+ z(0)

1+ z(R)
=
(

1+ 2ϕ(R)/c2

1+ 2ϕ(0)/c2

) 1
2
. (9.40)

Inserting the expressions for the gravitational potential one can predict:

zobs(x)=
(

1

2
√
x
I1(4

√
x)

) 1
2 − 1≡W(x). (9.41)

Here x = r/RH and RH = c/Hg. An approximation for calculating the modified Bessel
function I1(y) is given by Abramowitz and Stegun (1964), Eqs. (9.8.3), (9.8.4).
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The Total Mass-Radius Relation The equation (C.4) for the gravitating mass in
Appendix C has two characteristic limiting cases. For small distances (r
RH)

M(r)= 2πρ0r0r
2 = 4.8× 1011M�(r/10 kpc)2. (9.42)

It is an interesting coincidence that this mass is close to a galaxy mass within r ≈
10 kpc, and also to the mass within the Hubble radius RH, if the density is close to
the critical value. In order to produce the gravitational Hubble law on scales of about
10 Mpc the total mass within such a ball should be M(10 Mpc)≈ 5× 1016M�, and
one has to postulate large amounts of dark matter. The organization of galaxies on
scales from 10 kpc up to 100 Mpc resembles a fractal with D ≈ 2. If dark matter
follows luminous matter, then the condition D = 2 for the total mass could be met.

Dark matter, both baryonic and non-baryonic, is an essential part of today’s cos-
mological thinking, and its appearance also in this non-standard approach is inter-
esting. However, there are two problems in this scheme, pending solution. First, to
have small fluctuations in the Hubble law the fractal should be special: isotropic
with small lacunarity. Second, and this is especially serious: the huge amount of
dark matter on small scales (on large scales its average density is around the critical
value, as noted above). This is best seen on the scale corresponding to the Local
Group of galaxies, M(1 Mpc)≈ 5× 1014M�, a hundred times more than even the
highest current estimates (Chernin et al. 2009) for the mass of the Local Group.

9.5.2 Anomalous Redshifts

During the last decades some observations have challenged the view that the redshift
of a distant extragalactic object always depends on its distance or that the redshift is
a continuous function of the distance.

Anomalous Redshifts In 1966 Halton Arp, at the Palomar Observatory, noticed
that radio sources, among them quasars, tended to be close to, or aligned across,
some of the galaxies in his Atlas of Peculiar Galaxies. If true, such associations
between high-redshift quasars and low-redshift galaxies would be violations of the
Hubble law: the quasars would have a large extra component in their redshift, in
addition to the cosmological one.

The current idea is that quasars indeed are associated with galaxies, though not as
nearby companions, but as active galactic nuclei having essentially the same redshift
as their host galaxies. This mainstream view regards Arp’s configurations as chance
associations. Indeed, when looking at the space populated by objects at different
distances one necessarily finds “optical double stars”. But are the associations more
frequent than expected from chance alone? One can calculate the expected number
of such cases, if one knows how many galaxies and quasars there are in the sky.
Such estimates have been made and debated during the last decades.
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Burbidge’s (1996) Estimate The number of known cases when a quasar is close (<3′) to
a bright galaxy was 46. So, draw a circle with a radius of 3′ around every inspected galaxy.
Then throw randomly all the “quasars” on the celestial globe with its total area of 41253
deg2. Counting the scores, how many of the quasars would be found inside some 3 arcmin
circle?
There are 18 000 bright galaxies (m< 14.5) over the whole sky and 12 500 quasars hav-
ing m < 18.5. 18 000 circles with 3′ radius cover 141 deg2. Hence, one expects that
(141/41253) × 12500 = 43 quasars would be found by chance close to galaxies—not
far from the mentioned 46. However, only a tiny fraction of the vicinities of all the 18 000
bright galaxies had been thus far inspected, especially by Arp about 200 galaxies. Hence,
the expected number of coincidences will be only (200/18000)× 43= 0.5.

Goeffrey Burbidge concluded that in general quasars have an intrinsic redshift
component plus a cosmological one. However, the last part of the above calculation
illustrates the need of systematic studies of the galaxy-quasar distribution over large
areas of the sky. In fact, Burbidge (2001) lists several statistical investigations which
use well-defined samples of quasars and compare their positions with bright low-z
galaxies. These suggested statistically significant, even strong correlations.

With large numbers of galaxies and quasars now available from the Sloan Digital
Sky Survey and other surveys, studies have generally indicated correlations in the
mentioned sense, usually interpreted in the framework of weak gravitational lensing
by foreground large-scale structures (e.g., Gaztañaga 2003; Scranton et al. 2005).

From Statistics to Physics A small number of genuine cases of anomalous red-
shifts would have negligible influence on statistical analyses of the associations.
Their message might be important, but it would go unnoticed. In order to be de-
tected and appreciated, such cases would need some other physical characteristics
than just the small angle between the objects.

It must be noted that for quasars there are no easy way to tell their distances
independently of the redshift. To say for sure that a quasar is at the same distance
as a galaxy, one should see a physical connection between them. Arp has pointed
out galaxy–quasar pairs where such a link seems to exist in the form of a luminous
“bridge” or “tail”. A famous, but debated case is the spiral galaxy NGC 4319, at
z = 0.005, with the quasar Mrk 205 (z = 0.072) almost “touching” it (see López-
Corredoira and Gutiérrez 2006 for some other examples).

One may also ask whether the galaxies (or quasars) in the associations are some-
how special. This is actually what Arp has claimed—he noticed the associations
when inspecting peculiar galaxies. López-Corredoira and Gutiérrez (2006) have em-
phasized such a physical approach: it complements the statistical analysis which has
often led to debates on the a posteriori nature of the probability calculations. In a
series of case studies they re-observed several Arp’s systems and nearly in half of
them they found some new anomalies, perhaps something expected from the the-
ories presented by Arp and Narlikar and by Hoyle and Burbidge and based on the
idea that quasars are ejected from the nuclei of galaxies and are composed of freshly
created matter, which clearly would require non-standard physics.

A detailed study of the companion objects in Arp’s systems may also reveal pe-
culiarities which could be a clue to the true nature of the apparent associations. As
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the associations have typical sizes of the order of 100 kpc, the higher-z companions
are within the massive halos of galaxies or, if they are actually distant background
objects, their line-of-sights intersect the halos. This leads to the possibility to ex-
plain galaxy-quasar associations using familiar physics of gravitational lensing, es-
pecially “mesolensing” (Baryshev and Ezova 1997), which amplifies the flux from
background objects and thus makes them apparently more frequent in the vicinity
of foreground galaxies.

We remind that within the paradigm of the Friedmann model striking exceptions
to the Hubble law are anomalies that more generally in physics “may be either gen-
uine or (more often) wrong observations or true observations having conventional
but not yet known explanations” (Aurela 1973). In fact, even conventional expla-
nations may have interesting new implications as illustrated by Arp’s effect which
possibly tells about the haloes of galaxies rather than about the redshift. This would
show how rare phenomena, ignored by almost everybody, may be decisive keys in
science.6

Gravitational Lensing and Galaxy–Quasar Associations The idea that halo
objects could act as lenses was used by Barnothy (1974) with globular clusters,
Canizares (1981) with dark condensed objects, and Baryshev et al. (1993) with
globulars and other intermediate (meso) mass ojects, to explain the properties of
galaxy-quasar pairs.

Baryshev and Ezova (1997) calculated probabilities of strong lensing of compact
background objects by King lenses in galaxy halos (King 1966 model profiles pro-
vide good fits to globular cluster surface brightness).7 The lenses were taken to be
globular clusters, dwarf galaxies, and clusters of dark matter with masses of 103

to 109 M�. They pointed out that the meso-lensing effect by such sub-halo objects
will magnify background point sources by about five magnitudes and would make
initially star-like images split or spread to 10–100 mas (milliarcsecond) sized forms.

Yonehara et al. (2003) arrived at similar conclusions in their work based on the
predicted cold dark matter lumps. Namely, high-resolution cosmological simula-
tions of hierarchic gravitational clustering (Klypin et al. 1999; Moore et al. 1999)
lead to the picture where “galaxies are scaled versions of galaxy clusters”, so that the
massive haloes contain large numbers of CDM lumps as satellites of galaxies. These
hypothetical lumps may have masses in the range from 106 to 109 M� and galaxies

6Hawkins et al. (2002) wrote aptly: “More cynical critics also point out that the results [on the
redshift periods of quasars] tend to come from a relatively small group of astronomers who have
a strong predujice in favour of detecting such unconventional phenomena. This small group of
astronomers, not unreasonably, respond by pointing out that adherents to the conventional cosmo-
logical paradigm have at least as strong a prejudice towards denying such results.”
7The importance of the King distribution is that it has a conical caustic which can explain the
enhanced probability for the galaxies harbouring the lenses to be near either the observer or the
quasar. The point and isothermal-sphere lens models which are often used give an enhanced prob-
ability for the galaxy to be located in a central position between the observer and the source, in
contradiction with the observed associations.
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like the Milky Way could have about 5000 dark satellites with masses larger than
about 108 M�.

The expected mesolensing may allow one to detect the substructures observa-
tionally. Baryshev and Ezova (1997) noted that VLBI radio observations might
show the predicted image splitting on several mas scales. Surdej et al. (1993) sug-
gested the use of the VLT optical interferometric facilities to probe the mass range
106–109 M� and Bukhmastova and Baryshev (2008) have seen this as an important
test of the CDM substructure prediction.

A typical expected angular separation between multiple quasar images is θ =
(4GM/c2)1/2D

−1/2
eff , where Deff = (DolDos/Dls) is expressed in terms of the an-

gular size distances between the observer, the lens, and the background source
(quasar). Normalized to a mass of 108M�, with Deff in Mpc, we obtain for θ (in
mas)

θ = 100(M/108M�)1/2(Deff/100 Mpc)−1/2. (9.43)

Thus lumps of 108M� can produce images of 0.1 arcsec, when the effective distance
of the lens galaxy is 100 Mpc.

One may make a rough estimate of the probability of mesolensing for a quasar
image located near the line-of-sight towards a foreground galaxy halo: P =
N [(4GM/c2)/R2

halo]Deff(Dls/Dos)
2Bias(V ), where Bias(V) represents the magnifica-

tion bias correction as a function of the magnitude V of the background source (Surdej et
al. 1993). If we simply assume that the halo is made out of N lumps of mass M , then this
may be conveniently expressed in terms of the halo mass Mha =NM and size Rha:

P = 0.1

[(
Mha

1012M�

)/( Rha

0.1 Mpc

)2]( Deff

100 Mpc

)(
Dls

Dos

)2 bias(V )

bias(V = 16)
. (9.44)

A systematic mapping of the dark halo substructure using gravitational lensing has
not yet been done. If the excess of high-z quasars close to low-z galaxies is real
and if lensing and amplification significantly contribute to it, then it is clear that in
the observed samples of galaxy-quasar pairs mesolensing must be common. Even
if the original Arp effect could be only partly explained in this way, one should
make efforts to detect the expected image splitting (Bukhmastova and Baryshev
2008). Modern and near future techniques will allow one to study the substructure
of galaxy halos. Large interferometers like the VLTI and KeckI-II telescopes have
achieved an optical resolution of about 5 milliarcsec, though for relatively bright
objects.

Anomalous Redshifts: Galaxies The question of non-cosmological redshifts has
not been restricted to quasars; it has also been asked if the redshifts of ordinary
galaxies show any anomalies. In particular, this has been studied from the differ-
ential velocities (redshifts) of companion galaxies with respect to the main galaxy
in a group, since Arp (1970) noted that primary galaxies appear to have mainly
smaller redshifts than their companions (also Bottinelli and Gouguenheim 1973).
Jaakkola (1971) and Jaakkola and Moles (1976) pointed out that the effect seems to
depend on the morphological type of the companion, excess redshifts (of the order
of 100 km/s) appearing especially for Sbc and Sc galaxies.
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These results were sometimes interpreted as evidence for anomalous redshifts,
though much smaller than in quasars. Jaakkola and Moles (1976) considered also
a possibility of selection effect: the group data might contain non-members (pro-
jected field galaxies taking part in the Hubble flow). Because the background vol-
ume is larger than the foreground volume, one might thus ascribe to the group more
galaxies from the background (larger redshifts) than from the foreground (smaller
redshifts). Jaakkola and Moles did not investigate such a selection quantitatively and
for various reasons they concluded that it does not work. However, Byrd and Valto-
nen (1985) made a quantitative study where they showed that if most of the group
population is composed of unbound expanding members then the way the groups are
selected will lead to an artificial redshift excess for the companions. This work was
especially motivated by the paper by Sulentic (1984) who studied spiral-dominated
galaxy groups in the catalogue published by Huchra and Geller two years earlier
and found a significant excess of positive redshifts for the companions.

One should note that the explanation given by Gene Byrd and Mauri Valtonen
was based not only on a selection effect, but also on an idea on the dynamics of the
galaxy groups (a pure field galaxy population, around a small bound group, would
not offer a sufficient explanation). About 25 years later, this explanation could be
essentially verified by Niemi and Valtonen (2009) using synthetic galaxy groups
extracted from the cosmological N-body simulation called the Millenium Simula-
tion performed by the Virgo Consortium (Springel et al. 2005). Niemi and Valtonen
found that about one half of all groups in their mock catalogues are actually grav-
itationally unbound, and a large and statistically highly significant redshift excess
appears only for such unbound groups, when in addition their first-ranked galaxies
have been misidentified. On the contrary, gravitationally bound groups did not show
any significant redshift excess.

Essentially, Niemi and Valtonen showed from numerical simulations of �-
dominated cosmological models that groups of galaxies should possess expanding
populations which reveal redshift asymmetries when viewed from outside at a rea-
sonably close distance. Thus the observed redshift asymmetries may be viewed as
indirect evidence for non-zero local dark energy (as implied by the �CDM model).
Independent evidence for expanding populations around the Local Group and some
other nearby groups, behaving roughly as expected from the repulsive “antigrav-
ity” of dark energy, have been also found from direct distance-velocity observations
(e.g., Teerikorpi et al. 2008; cf. Sect. 12.3). As Valtonen et al. (2008b) noted, “the
observation of ‘anomalous redshifts’ in 1970 proved highly significant in the case
of groups of galaxies, and it pointed to the existence of dark energy even though it
took many decades to fully understand the implications”.

The Hubble law might also reveal anomalous redshifts if such exist for a good
standard candle class. As compared with a class having pure cosmological redshift,
observations of a class with a significant non-cosmological redshift in its spectrum
would indicate an apparently too large Hubble constant. This is what Arp (2002) has
suggested especially for ScI galaxies (very luminous Sc galaxies in van den Bergh’s
morphological classification). In particular, Arp inspected the redshift versus dis-
tance diagram for spiral galaxies, based on the Cepheid distances derived from the



210 9 Constructing Universes: A Gallery of Ideas

HST observations (Freedman et al. 2001). He notes that for small distances (below
about 10 Mpc) there is a tight Hubble relation corresponding to H0 = 55 km/s/Mpc.
At larger distances the scatter is increased, especially towards higher velocities (red-
shifts), which Arp interprets as anomalous redshift.

In the same year Teerikorpi and Paturel (2002) independently studied the same
HST data and suggested that the Cepheid method is affected by a selection ef-
fect which leads to too low distances for distant galaxies (as we discussed in
Sect. 3.4.3). This implies “too large” redshifts for such biased distances. It was also
noted that unbiased (generally nearby) galaxies follow a tight Hubble relation with
H0 ≈ 56 km/s/Mpc (Paturel and Teerikorpi 2005)—in fact, the same thing was em-
phasized by Arp. It is interesting that also here a plausible selection effect was found,
making the possibility of anomalous redshifts less likely. At the end, both Arp and
Paturel and Teerikorpi concluded that the canonical HST value H0 = 72 km/s/Mpc
is too high locally, though for quite different reasons!

Periodic Redshifts and Quantized Physical Quantities According to Guthrie
and Napier (1996) “The term ‘quantized redshifts’ encompasses a set of claims
which are surely amongst the most bizarre to have been made in modern astro-
physics”. Twenty years earlier William Tifft had found that the redshifts of galaxies
in the Coma cluster seemed to occur preferentially in steps of about 72 km/s; this
result was later extended to galaxy groups and even to binary galaxies (Tifft 1980).
Guthrie and Napier (1996) analysed the Local Supercluster using a hundred galax-
ies with accurately measured redshifts. After corrected for the rotation of our Milky
Way, the redshifts of galaxies had a periodicity of 36 km/s, one half of Tifft’s orig-
inal period (see Napier 2003 for a brief review of this result on the “global” period
among field galaxies, which was earlier suggested by Tifft and Cocke 1984).

The redshift periodicities for galaxies have been little studied in recent years
(Godlowski et al. 2006 and Bajan et al. 2007 found weak effects of redshift peri-
odisation in the Local Group and in the Hercules Supercluster). Indeed, the topic is
not very appealing within the standard paradigm. Leaving aside the unknown origin
of the quantization, there is the problem of “Doppler smoothing”: large enough real
motions of galaxies should sweep away narrow redshift peaks within clusters and
binary galaxies.

In standard cosmology periodic redshifts, if real, could reflect regularly spaced
structures (the Hubble law: redshift ∼ distance). Thus Valtonen and Byrd (1986)
suggested that the 72 km/s period in binary galaxies could be due to contamina-
tion by optical pairs, together with a preferred distance between concentrations of
galaxies. This explanation would require 1 Mpc spacings between the concentra-
tions, and in any case would not work for clusters. Some much larger quasi-periods
in galaxy redshifts are more natural to ascribe to large-scale structure, like Einasto’s
120 Mpc cells. If interpreted in this way, some periodicities claimed in quasar red-
shifts8 would correspond to spatial scales of about 270h−1 Mpc (Burbidge and
Napier 2001).

8Here we speak about the formula of Karlsson (1977), log(1 + z) = 0.089, with peaks lying at
z= 0.061, 0.30, 0.60, 0.96, 1.41, 1.96, 2.63, 3.45, 4.47. . . .
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On the other hand, the �z ≈ 0.6 periodicity claimed for the Sloan Digital Sky
Survey quasars appears to be due a redshift dependent selection effect (variation of
the identifying characteristics of the colours) as demonstrated by Bell and Comeau
(2010). In fact, a pioneer since 1973 in the study of selection effects influencing
quasar samples, Dipak Basu argues that three effects can explain all earlier claimed
periodicities in quasar redshifts: (1) the availability of search lines, (2) changes in the
observed (U–B) and (B–V ) colour indices of a quasar due to the effect of emission
lines entering the U , B , V bands, such that the colour indices become similar to
those of main-sequence stars, and (3) changes in the U , B , V magnitudes due to
the emission lines so that brighter quasars are more easy to detect (Basu 2005). It is
evident that one must be very careful when trying to draw conclusions on the spatial
distribution of quasars (or on their possible non-cosmological redshifts) on the basis
of available large quasar samples.

We leave open the reality of the 36–72 km/s periodicities for galaxy redshifts,
and just note that it is natural to turn one’s attention to all properties of the redshift
including subtle phenomena which, if real, would easily elude detection without
dedicated studies. At the same time, one should keep in mind that Nature and ob-
serving methods can collaborate in many ways to produce interesting but physically
not real effects which may seem to require “new physics”.

Finally, we wish to point out an interesting parallel development in studies of
the “large” and the “small”. In 1990 Ari Lehto, a Finnish physicist, had come up
with a general formula for quantization of physical quantities, without knowing of
Tifft’s astronomy studies (as narrated by Lehto 1996 and Tifft 1996). He then found
that his formula describes well the redshift periods 36 and 72 km/s that Tifft has
derived. If the energy of any photon is quantized, as Lehto suggests, then also the
frequencies and, hence, the redshifts of light would occur at preferred values. Lehto
had searched for a common rule for the properties of the micro- and the macroworld
and he found that the ratios of the quantities involving lengths or energies may be
expressed as 2n/3 (n= 1,2,3, . . .). What he did was to take the ratios of observed
values of various stationary discrete systems (like Planck energy/electron rest mass
etc.) and he noted that the exponents of two thus obtained seemed to group near
0, 1/3 and 2/3 (Lehto 1990). In a more extensive study (Lehto 2009), involving
over 40 quantities, it was shown that it is quite unlikely that the groupings could
be due to chance. The pattern is best revealed by quantities which have been most
accurately measured (laboratory physics), but it seems to be visible also for cosmic
quantities.

Lehto’s system has the Planck units as natural starting points for making up the
physical world. The Planck scale is absolute, based on constants of nature. For ex-
ample, the observed temporary periods take values t = tPl2n/3, while the electron
mass is obtained as me = mPl2227/3 = mPl275+2/3. The redshift steps of about 72
and 36 km/s would come from V = 2−n/3c where n/3 is 12 and 13.

That the “natural” ratios seem to be built on the basis of the number 2, Lehto
interprets as a fundamental (though unknown) phenomenon analogous to that called
period doubling in chaotic systems (Lehto 2009). That the ratio 2n/3 is actually a
cubic root of 2n, Lehto interprets as due to 3-dimensional time; our perceived time
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is 1-dimensional, or the cubic root of the 3-D temporal volume, and it is this volume
which evolves through period doubling. This he regards as a novel aspect of time,
and not as any direct generalisation of our ordinary experience of the flow of 1-D
time.

We have mentioned Lehto’s approach as another reminder of how macroscopic
(astrophysical) and microscopic quantities might be connected and how at a first
sight strange results of observational cosmology might make sense only within a
new fundamental theory.



Chapter 10
Large-Scale Structure: Methods of Analysis

A major discovery of 20th century astronomy was the complex filamentary spa-
tial distribution of galaxies, after large surveys of galaxy redshifts permitted as-
tronomers to move from the study of how galaxies are scattered in the sky to
their real spatial arrangement. A rich variety of structures have been revealed, de-
scribed as binaries, clusters, walls, superclusters, voids, filaments, cells, soap bub-
bles, sponges, great attractors . . . They can be viewed as natural appearances of
one global master entity—stochastic hierarchical structure. To describe this novel
landscape, a new empirical law was found: the power-law behaviour of the galaxy
correlations.

Analysis of galaxy samples requires careful consideration of the method, its basic
assumptions and sensitivity to the fact that in practice one always extracts a small
part from the universe. Finite samples unavoidably lead to systematic errors when
one attempts to derive the statistical properties of the spatial organization of galaxies
(the spatial density distribution function).

10.1 From Simple Hierarchies to Stochastic Fractals

The ancients recognized constellations, which are not real systems of stars, just nice
projections on the sky. But there are also genuine stellar groups, and the same is
valid for the nebulae, faint patches at different though unknown distances. With his
telescope, the comet hunter Charles Messier found a swarm of them in the constel-
lation Virgo. William Herschel found hundreds of nebulae in Coma Berenices and
elsewhere. His son John saw hints of what is now called the Local Supercluster,
around the Virgo concentration, with the Milky Way “placed somewhat beyond the
borders of its densest portion”. Photographs began to reveal thousands of nebulae,
and later, in modern terms, galaxies.

In 1927 Lundmark’s map of clusters of nebulae hinted that the clusters them-
selves may be clustered. It took decades of arguings before this issue of superclus-
ters was resolved. Even earlier, one had speculated on hierarchies.

Y. Baryshev, P. Teerikorpi, Fundamental Questions of Practical Cosmology,
Astrophysics and Space Science Library 383,
DOI 10.1007/978-94-007-2379-5_10, © Springer Science+Business Media B.V. 2012
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Fig. 10.1 Fournier’s
hierarchic world model as a
protofractal: the elements are
repeated on different levels in
a self-similar way. The mean
density decreases with
increasing scale

10.1.1 Protofractal Worlds of Fournier d’Albe and Charlier

A self-similar structure of the cosmos was envisioned by Edmund Fournier d’Albe
in his 1907 book Two new worlds which gave a mathematical description of a pos-
sible hierarchical distribution of stars. In his world (Fig. 10.1) the stars were dis-
tributed in a hierarchy of clusters, so that by construction the mass inside each sphere
increases directly proportionally to its radius:

M(R)∝R. (10.1)

Dramatically different from the mass–radius behaviour in a homogeneous universe
(M ∝ R3), this was Fournier d’Albe’s idea of how to avoid paradoxes troubling
Newton’s universe. After inspection of Fournier’s book, Swedish astronomer Carl
Charlier (1908) considered other stellar distributions which also solve Olbers’s para-
dox and the riddle of infinite gravitation (which appears in two forms, involving
either forces or potentials).

The decisive factor is how fast the density decreases from one hierarchy level (i)
to the next one (i + 1), and this depends on the ratio of the sizes of the successive
elements and on the number Ni+1 of the lower elements forming the upper element.
Denoting the sizes (radii) with Ri and Ri+1, Charlier’s first criterion may be written
as

Ri+1/Ri ≥Ni+1 (10.2)

or the size of the upper level element divided by the size of the lower level element
is larger or equal to the number of lower elements forming the upper elements.
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Charlier (1922) derived, after a note by Selety (1922), a second criterion:

Ri+1/Ri ≥
√
Ni+1. (10.3)

For identical particles with mass m the first criterion means M(R)=mN(R)∝R1.
The second criterion, M(R)∝R2, is enough to cope with Olbers’s paradox and the
infinite gravity force in the Newtonian world. The original Fournier’s (and the first
Charlier’s) criterion is a stronger condition, and allows also a finite gravitational
potential and finite stellar velocities.

The Fractal Dimension of Fournier-Charlier Worlds Fournier’s world was in
fact an early attempt to make a protofractal. For regular, hierarchical clusters, the
fractal dimension D is simply obtained from the number N of elements per cluster
and the size ratio q =Ri+1/Ri . The fractal dimension is the ratio of their logarithms.
Thus it is at once seen that Charlier’s first criterion (N ≤ q) means that the fractal
dimension of such a universe is equal to or less than 1. The second criterion (

√
N <

q) implies D < 2.

In Fournier’s model mass grows proportional to radius. Hence the exponent D is equal
to one. It is interesting to calculate D from Fournier’s picture (Fig. 10.1). It gives N = 5
and q = 7, thus D = 0.83. And if we add two elements in the third dimension, then the
resulting hierarchy has just the critical dimension 1!

10.1.2 Genuine Fractal Structures

Fournier d’Albe’s and Charlier’s hierarchies with a number of preferred scales,
though overly simple for the real world, contained the seeds of the modern concept
of fractal. Stochastic fractals can be used to model scale-invariant galaxy clustering
without preferred scales.

Though fractal geometry emerged just a few decades ago, some elements of it
can be found already in the works of Poincaré and Hausdorff about a century ago.
Mandelbrot (1975) realized that fractal geometry is a powerful tool to characterize
irregular systems. Nature is full of complex structures: trees, clouds, and lightnings
are familiar objects, which have in common the property that if one magnifies a
small portion of them, a complexity comparable to that of the entire structure is
revealed. This is geometric self-similarity. Mandelbrot gave the following definition:
A fractal is a set for which the Hausdorff dimension strictly exceeds the topological
dimension.

The concept of fractal gives a convenient mathematical apparatus for treating
complex structures with long-range power-law correlations. One can describe a non-
uniform distribution by means of one number, the fractal dimension D. It appears
in the (luminous) mass–radius behaviour M ∝ RD . A general approach which uses
fractal as a model to describe large-scale structures at least on a limited range of
spatial scales includes the theory of hierarchic formation of structures from galaxies
to superclusters.
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Fractals are simple but subtle, as Luciano Pietronero likes to say. Here we briefly
describe their essential properties. We recommend Mandelbrot (1982) for an orig-
inal presentation by the father of fractals and Falconer (1990) for a special mathe-
matical treatment. We emphasize observational consequences of self-similarity so
that if this important property is actually present in galaxy data, one will be able to
detect it correctly.

Self-similarity and Power Law The difference between a self-similar distribu-
tion and one with an intrinsic characteristic scale was clearly discussed by Coleman
and Pietronero (1992). Self-similarity implies that the rescaling of the length r by a
factor b (r→ r ′ = br) leaves the considered property, presented by a function f (r),
unchanged apart from a renormalization that depends on b but not on the variable r .
This leads to the functional relation

f (r ′)= f (b · r)=A(b) · f (r), (10.4)

which is satisfied by a power law with any exponent. In fact for f (r)= f0r
α :

f (r ′)= f0(br)
α = (b)αf (r). (10.5)

Here the exponent α defines the behaviour of the function everywhere. There is
no preferred scale. It is true that the condition f (r0) = 1 implies a certain length
r0 = f

−1/α
0 , and one might be tempted to call it a characteristic length. However,

this is misleading for self-similar structures! The power law refers to a structure
that was at the beginning constructed as self-similar and therefore cannot posses a
preferred length. The value of r0 from f (r0) = 1 is just related to the amplitude
of the power law, and the amplitude has nothing to do with the scaling property.
Instead of a = 1, one could have used any other number in f (r0) = a to obtain
other lengths. This is a subtle point of self-similarity; there is no reference value
(like the mean density) with respect to which one can define what is big or small.

This behaviour of the power-law is in contrast with the exponential decay func-
tion g(r)= g0e

−r/r0 where the intrinsic characteristic parameter r0 fixes a preferred
length scale for the function. In the power-law the dimensionless exponent α is not
related to length scales at all.

Fractal Dimension The basic characteristic of a fractal structure is its dimension
D. It is a measure of the “strength of singularity” around the structure points. If
there is a zero-level of structure elements, as in physical fractals where there is no
mathematical singularity, the rate of growth of density with a decreasing spatial
scale still defines the fractal dimension.

Consider a simple regular fractal. Starting from a point occupied by an object
we count the number of objects within a sphere of radius r . Suppose that in the
structure of Fig. 10.1 we can find N0 objects in a volume of size r0. In a larger
volume of size r1 = kr · r0 we will find N1 = kN · N0 objects. In a self-similar
structure the parameters kr and kN will be the same also for other changes of scale.
So, in general a structure of size rn = knr · r0 will have Nn = knN ·N0 objects. We can
then write the number-size relation as

N(r)= B · rD, (10.6)
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Fig. 10.2 The Menger sponge (from www.wikihow.com) illustrates how to make a regular
(non-random) fractal: (1) an initial element, (2) a process of fragmentation or aggregation, fol-
lowing (3) an iteration rule. The true self-similar Menger fractal, the result of an infinite number
of steps, is beyond imagination. However, if we apply this model to a physical object, Nature puts
a size limit to the smallest elements and also the initial cube is finite. The fractal features can be
seen within this range

where the fractal dimension is the exponent D of the power law, i.e.

D = logkN
logkr

. (10.7)

The prefactor B becomes fixed by the zero-level parameters N0 and r0, B =N0/r
D
0 .

In terms of hierarchies, kr is the size ratio of an upper and next lower hierarchy
element and kN is the number of elements.

Fractal structures, embedded in 3D space, no more “fill” the space in an ordinary
manner. On smaller and smaller scales, where the eye would need a magnifying
glass, the rising density (Eq. (10.6)) makes “new” points and rich structures appear
there where uniformity would offer no surprises.

The Menger sponge. Take a cube of constant density (Fig. 10.2). Divide each face into
nine equal squares. Then make three holes through the central squares of the cube. Repeat
this procedure for all the remaining 20 smaller cubes. The new structure encompasses
the same cubic volume, but the mass (and the density) has decreased by the factor 20/27.
Now repeat again and again the same process, using the new smaller cubes. The structure
resembles that of a bath sponge where all the holes are connected (this is what makes the
sponge so useful: all the water is easily squeezed out). The fractal dimension D ≈ 2.7 can
be derived from (10.7) and the way the object was built: an element is always fragmented
into kN = 20 subelements so that the ratio of sizes is kR = 3.

We note that the smooth average power-law (Eq. (10.6)) for a fractal is accom-
panied by large fluctuations and clustering on all scales (cf. Fig. 10.1).

10.2 The Concept of a Fractal Density Field

There are essential differences between ordinary and fractal density fields. The for-
mer kind of model is usual for the description of gas or fluid having short-range cor-
relations, while the latter one emerges in physical systems with strong long range
scale-invariant fluctuations.

http://www.wikihow.com
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10.2.1 Ordinary Fluid-Like Density Fields

The concept of the density of a continuous medium, as used in hydrodynamics,
contains the assumption that one may define the density ρ(	x) at a point 	x and regard
it as a usual continuous function of position in space:

ρfluid = ρ(	x)= lim
V→0

M(	x,V )

V
, (10.8)

where M is the mass of the fluid inside the volume V around the point 	x. For or-
dinary fluids the limit exists, because at sufficiently small scales homogeneity is
reached. One can regard ρ(	x) as one realization of a stochastic process for which
the usual statistical moments like average and dispersion are defined. Such ordi-
nary fluid-like correlated distributions have a uniform background with correlated
fluctuations superimposed.

An ordinary stationary stochastic density field ρ(	x) may be represented as a sum
of density fluctuations δρ(	x) and the mean density ρ0 = 〈ρ(	x)〉: ρ(	x)= ρ0+ δρ(	x),
or in terms of the relative density fluctuation:

δ(	x)= ρ − ρ0

ρ0
= δρ(	x)

ρ0
. (10.9)

Note that the relative fluctuation δ(x) can have positive and negative values while
the density field ρ(x) is always positive for positive masses of particles.

One usually considers δρ(	x) as a realization of a Gaussian stochastic process
(with uncorrelated phases of fluctuations). Here the average density ρ0 > 0 is fun-
damental. It should exist and be well defined and positive for each outcome of the
process ρ(x) (see Gabrielli et al. 2005).

Ordinary Stochastic Discrete Processes An ordinary density field may be also
presented by a stochastic point-particle process. Here discreteness introduces new
aspects, because particles are point-like singularities.

An important homogeneous stochastic discrete density field is the Poisson pro-
cess. It creates a number density of particles n(	x)=∑N

i=1 δ(	x − 	xi).
Poisson’s law says that the probability P to find N particles in a volume is

P = 〈N〉
N exp(−〈N〉)

N ! , (10.10)

where 〈N〉 = n0V is the average number of particles in the volume V (r).

The only parameter of the Poisson distribution is the constant number density
n0 = 〈n(	x)〉. It gives a characteristic scale λ0 for this process

λ0 ≈ n
−1/3
0 ≈Rsep, (10.11)

which is approximately the mean separation between the particles, Rsep.
The normalized number variance σ 2(r) in a sphere with radius r

σ 2(r)= 〈N(r)2〉 − 〈N(r)〉2
〈N(r)〉2 (10.12)

characterizes a stochastic process on both small and large scales r .
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Fig. 10.3 Contrasting random homogeneity (D = 3) and fractality (D = 2) in spheres containing
10 000 points (constructed by N. Vasiliev)

A discrete stochastic process of point-particles is always accompanied by a noise
of discreteness or shot noise which appear when the scale is less than the mean dis-
tance between particles r < λ0. This fluctuation increases with decreasing distance
and grows without limit on very small scales:

σ(r)≈ 1√
N
≈
(

r

λ0

)−3/2

. (10.13)

On large scales r the normalized dispersion (10.13) approaches zero as 1/
√
N . The

homogenity scale Rhom ≈ λ0 of the Poisson process is defined from the condition
that the normalized number variance σ 2(Rhom)= 1.

The Poisson process gives a homogeneous stochastic discrete density field with-
out correlations (cf. Fig. 10.3). The eye may see apparent structures, but these are
just random fluctuations in one outcome of the process.1

10.2.2 Fractal Density Fields

In the structure analysis one considers the density field in the form of a spatial
distribution of N particles in positions 	xa in a volume V :

ρ(	x)=
N∑
a=1

maδ(	x − 	xa). (10.14)

For identical particles one may use the number density n(	x)=∑N
1 δ(	x − 	xa).

1Another example is the superhomogeneous discrete process like particles in a lattice with small
correlated shifts around the regular lattice knots. Such a process is used for making initial condi-
tions for cosmological N -body simulations (Gabrielli et al. 2004).
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Fig. 10.4 Top: an ordinary (fluid-like) discrete density field: a fluctuation on a Poisson back-
ground. Bottom: a stochastic fractal density field. (Courtesy of F. Sylos Labini)

In order to describe the continuous hierarchy of clustering (a new characteristic
of a fractal stochastic process), one may define the mass density within a fractal as a
function of two variables, the position 	xa of a particle and the radius r of the volume
V (r) in which the particles are counted:

ρM(	xa, r)= M(	xa,V )

V
. (10.15)

Here M(	xa,V ) is the mass in the volume V (r) around the particle at 	xa .
For a mathematical fractal the number of points of the structure in a finite volume

is infinite. In physics there are some natural lower limits for sizes of elements, mak-
ing the zero-level of the hierarchy. In this case the number of basic elements (point
mass particles) within the volume V (r) is finite, and Eq. (10.15) defines a measur-
able density. Though ρM(	xa, r) is highly fluctuating from one particle position to
another, it is possible to consider a statistical average that is a more stable property
of a fractal structure.

In Fig. 10.4 an ordinary density fluctuation is compared with a stochastic frac-
tal fluctuation. For fractals the usual concept of the mass density of a continuous
medium does not work. This is because the mass density can be defined only if both
the position 	x and the volume V are considered. In every volume V containing a
part of the structure there is a hierarchy of clusters and the mass density strongly
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depends on the size of the volume – quite different from the usual calculus. Now the
mass-volume ratio or the density (Eq. (10.8)) increases indefinitely when the vol-
ume tends towards zero: {ρM →∞, for V → 0}. If the basic zero level elements
exist then they determine the maximum value of the fractal density for the structure.

10.2.3 Exclusive Properties of Fractal Density Fields

A typical feature of the fractal density field is a power-law density-radius relation
around structure points. We can illustrate this property for a regular fractal structure
(Fig. 10.1), where the number of subelements within an element of the higher level is
given by Eq. (10.6). In a continuous representation (Eq. (10.15)) the number density
related to the radius r is

nV (r) = N(r)

V (r)
= 3

4π
Br−(3−D). (10.16)

This power-law is valid around any structure point, apart from some fluctuation,
depending on the actual position of the point within the structure.

The result is unexpected for our usual intuition—it seems like each point were
the centre from which the density decreases outwards.

The Concept of Fractal Density Rost (2004) has introduced the fractal density
ρD , the constant factor of proportionality k in the power-law M(r)= krD . It has the
dimension g/cmD and one may write

ρD = M(r)

rD
= constant. (10.17)

So, for D = 2, the fractal density ρD has the dimension g/cm2 corresponding to a
surface or column density. For D = 3, this concept coincides with the usual average
density defined for a homogeneous distribution. The fractal density ρD is directly
related to the prefactor B in Eqs. (10.6) and (10.16).

Massive, Zero-Density Universes An important consequence of Eq. (10.16) is
that in infinite space the fractal density field differs from an ordinary fluid-like den-
sity field at the limit of large volumes V where

{ρfractal → 0, for V →∞}. (10.18)

This property is due to a growing dilution of the hierarchy with increasing scales,
so that a fractal structure is asymptotically dominated by voids.

Hence an infinite fractal universe can contain an infinitely large number of ob-
jects (an infinite mass) simultaneously with the zero density of the whole universe.
This unusual property of a hierarchical structure was exploited in old world models
to avoid gravitational and photometric paradoxes of the infinite Newtonian universe
(cf. ϕ ∝M/R and F ∝M/R2).
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Lower and Upper Cutoffs In the realm of physics real structures usually have a
lower scale Rmin and an upper scale Rmax between which the physical system fol-
lows self-similar behaviour. In particular, in studies of the large-scale galaxy distri-
bution the lower cutoff Rmin is assumed to be equal to the size of a galaxy (galaxies
play a role of point-like particles).

The upper cutoff Rmax presents a special problem. A good analysis method
should allow one to determine from a galaxy survey the scale Rmax where the galaxy
distribution becomes uniform. However, such methods need a large survey volume
with size several times the scale Rmax. We still do not know the upper cutoff scale
for the galaxy distribution.

Lacunarity Two structures with the same fractal dimension may look very differ-
ent. It is essential how large a relative volume is occupied by voids, on a given scale.
This property was termed lacunarity by Mandelbrot (1982). It may be characterized
by the factor F in the relation

Nv(λ >�)= F�−D, (10.19)

where Nv is the number of voids with size λ >� within a fixed volume. For exam-
ples of structures of different lacunarities see Martinez and Saar (2002).

It was the high lacunarity of the Rayleigh–Lévy flight fractal that did not favour it
as a model for the distribution of galaxies (Peebles 1980). Later Mandelbrot (1989)
demonstrated that fractal structures with a small lacunarity resemble more closely
the arrangement of galaxies.

Projections and Intersections The properties of orthogonal projections and in-
tersections of a fractal object influence the analysis of galaxy samples with different
geometries, both from angular 2D and spatial 3D catalogues.

Orthogonal Projection Let an object (structure) with a fractal dimension D, em-
bedded in an Euclidean space of dimension d = 3, be orthogonally projected onto
an Euclidean plane (d ′ = 2). Then according to a general theorem of fractal projec-
tions (see Mandelbrot 1982; Falconer 1990), the projection as a fractal object has
the fractal dimension Dpr so that

Dpr =D if D < 2 and Dpr = 2 if D ≥ 2. (10.20)

This means that a cloud having the fractal dimension D ≈ 2.5 gives rise to a homo-
geneous shadow (Dpr = 2) on the ground (Fig. 10.5). Consequently, the orthogonal
projection hides from view fractal structures with D > 2. This may even affect the
distribution of galaxies in the sky (Chap. 11).

Intersection of a Fractal If an object with a fractal dimension D, embedded in
a d = 3 Euclidean space, intersects an object with the dimension D′, then accord-
ing to the law of co-dimension additivity (Mandelbrot 1982; Falconer 1990), the
dimension of the intersection Dint becomes

Dint =D +D′ − d. (10.21)
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Fig. 10.5 The projection of a
D = 2.5 cloud covers
completely the ground

For example, if a fractal structure with D = 2 in 3-d space is intersected by a plane
with D′ = 2, then the fractal dimension of the thin intersection is Dint = 2+2−3=
1. This property of intersections explains why a fractal structure with D ≈ 2 may
look as a fractal with D ≈ 1 when inspected on large scales from a sample coming
from a thin slice-like galaxy survey.

The Fractal Dimension of a Subset Visible to the Observer Järvenpää et al. (2003)
have proved an interesting theorem about visible parts and dimensions: Let F be a
fractal set in R3 with D > 2. The visible part of the set F from a point P is the
subset FV of those points lit by a spotlight at P . Then the part FV that is visible to
an observer cannot in general have a dimension more than 2.

Here one does not speak about the projection of FV , but about its spatial distri-
bution. Eckmann et al. (2004) have considered a related problem in the galaxy uni-
verse: in a deep sample a part of galaxies will remain “behind” more nearby galaxies
and thus for this reason will drop away from the sample. The remaining sample can
have D at most 2 even if as a whole the galaxy distribution has 2≤D ≤ 3. In prac-
tice, the galaxy samples are not yet so deep that this “shadowing” could essentially
affect their constitution.

10.3 Methods to Detect Structures in Galaxy Distribution

From the maps constructed from redshifts one may see by eye various structures.
However, a quantitative analysis of the spatial distribution of galaxies is a complex
task, even leading to conflicting conclusions. Here we focus on critical questions
arising in practical work with galaxy samples, related to idiosyncracies and limi-
tations of the used mathematical tools. Before going to the standard ξ correlation
function and the fractal-motivated � function we discuss general conditions for the
structure analysis. A new scale-length method (Sylos Labini et al. 2009a) allows
one to verify the reliability and statistical stability of the results from the standard
analysis.
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One might think that it is rather simple to study structures; just describe the sta-
tistical properties of N points within a volume V . However, one should carefully
(1) analyse the implicit assumptions in the statistical method employed, (2) con-
struct the sample and consider the cosmological corrections, and (3) compare the
results with model predictions. These points are related to a debate about the suitable
methods for analysing the galaxy distribution (Chap. 11). In fact, what is the best
method for characterizing a given stochastic point process depends on the underly-
ing correlations. We first summarize the properties of stochastic point processes and
then consider four different cases (for more details, see Sylos Labini et al. 2009b).

10.3.1 Conditions for the Validity of Statistical Analysis

In statistical studies of galaxy samples, the galaxy distribution is viewed as a real-
ization of a stationary stochastic point process (Gabrielli et al. 2005). A stochastic
point process (SPP) is stationary (SSPP), if it possesses statistical translational and
rotational invariance. It can be spatially uniform or non-uniform, and it is ergodic if
the ensemble average of a statistical quantity characterizing its properties equals its
infinite volume average. Ergodicity is needed when one wants to compare average
quantities in finite volumes with theoretical predictions based on ensemble averages.

A SSPP is uniform if, in a large enough sample the density fluctuations are small.
The scale λ0 at which uniformity begins can be defined as the scale beyond which
the fluctuations of the average density on that scale are of the same order as the
average density itself, while smaller on larger scales. A uniform SSPP inside a given
sample has a well-defined average density, representing the ensemble value within
relatively small error. A SSPP has a crossover to homogeneity, if it is nonuniform on
scales smaller than λ0 and uniform on larger scales (the transition from the regime
of large to small fluctuations). A SSPP can be uniform, but still have long range
correlations (a non-zero two-point correlation function ξ(r) on all scales). As a test
of uniformity one can use conditional properties; these are defined also when the
SSPP is not uniform. A SSPP is non-uniform inside a sample, if the conditional
density does not converge to a constant value. If the distribution is self-averaging
and nonuniform then the conditional density varies with the distance. Self-averaging
in a finite volume and on a scale r means that the probability density function (PDF)
of conditional fluctuations is statistically stable in different subvolumes of radius r .

Fluctuations and Correlations: 4 Cases For a uniform stochastic point process,
the average density is well-defined inside a given sample—the density, measured in
a sphere of radius r randomly placed inside the sample, has small relative fluctu-
ations. The fluctuations may be correlated, and the correlation function can be (i)
short-ranged (e.g., exponential decay) or (ii) long-ranged (e.g., power law).

If the distribution is not uniform, the density in a sphere probing the sample
varies wildly in different regions. Such a point distribution can generally present
long-range correlations of large amplitude. Then it may, case (iii), or may not, case
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(iv), present self-averaging properties, depending on whether the densities measured
in different subregions show systematic differences depending on their locations. If
so, there is no self-averaging in space: the PDF may differ in different subregions,
because (1) the underlying distribution is not translationally or rotationally invariant,
or (2) the volumes are not large enough for fluctuations to be self-averaging.

The Validity of Statistical Analysis The analysts of finite samples often use the
assumption that the sample density provides a good estimate of the “true” space
density, i.e. the situation corresponds to the cases (i) or (ii) above. This very strong
assumption may lead one to belittle finite size effects in the statistical analysis. If
the distribution inside the given sample is actually not uniform (cases (iii) and (iv)),
then the results are biased by important finite-size effects, and all estimations of
statistical quantities based on the uniformity assumption are affected, on all scales,
by this incorrect assumption (Gabrielli et al. 2005).

Therefore, one should first study whether the galaxy distribution is self-
averaging. If so, then one can study the possible transition to uniformity by using,
e.g., the conditional density. If the distribution is uniform, or becomes uniform on
a certain scale smaller than the sample size, one can characterize the correlations
between density fluctuations by using the standard two-point correlation function
which is appropriate only if one has proved that the distribution is self-averaging
and uniform inside the given sample.

10.3.2 The Scale-Length Analysis

In a finite sample we should make a difference between statistical quantities that are
normalized to the sample mean density and those that are not.

Strategy In order to determine whether a meaningful estimate of the average den-
sity is possible in the given sample, one should use statistical quantities that do not
require the assumption of homogeneity inside the sample. An example is the condi-
tional density ni(r) from the ith galaxy (the density in a sphere of radius r centered
on the ith galaxy). Conditional quantities are well-defined both for homogeneous
and inhomogeneous point distributions. If a distribution is self-averaging inside a
given sample, or in a range of scales, then it is possible to consider the whole sam-
ple average of the conditional density: n(r)= (

∑
ni(r))/N , the sum taken over all

N galaxies of the sample. The amplitude of conditional fluctuations is quantified

by the conditional variance δ(r)2 = (n(r)2 − n(r)
2
)/(n(r)

2
). When a distribution

is inhomogeneous, then persistently δ(r)2 ∼ 1 (Gabrielli and Sylos Labini 2001),
while for homogeneous distributions, with any kind of small-amplitude correlations
it is valid that δ(r)2 
 1.

To test whether a distribution is self-averaging inside a given sample one may
measure the PDF of conditional fluctuations. If this is stable in different subregions,
the statistical self-averaging permits one to determine whole-sample averages. Then
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if the conditional density is roughly constant inside the sample (i.e. the distribu-
tion is approximately uniform), one may safely determine fluctuations in amplitude
and their correlations normalized to the sample density. For instance, the two-point
correlation function (see below) measures the correlation amplitude of fluctuations
relative to the sample average. For a non-uniform distribution one cannot estimate
well the sample average, even if the distribution is self-averaging inside the sample
(Gabrielli et al. 2005).

The SL Analysis We consider the conditional number of points in spheres and
compute for each scale r the number of points ni(r) inside a sphere of radius r

whose centre is on the ith galaxy. The number of centres N will depend on the ra-
dius r , i.e. N = N(r). The random variable ni(r) depends on scale r and on the
spatial position of the sphere’s centre. We can express the location of the centre us-
ing polar coordinates, ni(r)= ni(r;Ri,αi, βi). When we integrate over the angular
coordinates for a fixed radial distance Ri , we find that ni(r)= n(r;Ri) will depend
on two variables: the length scale of the sphere r and the distance scale of the ith
sphere centre Ri , hence the term “scalelength analysis” (Sylos Labini et al. 2009a).

The number of centres N(r) will depend on the scale r . Why? This is because
one should use only such spheres which are fully contained in the sample volume.
If one uses incomplete spheres partially contained in the volume (and extrapolates
to the outside), it may happen, especially for large spheres, that outside the sample
there is a large-scale structure (or an under-density). This will introduce a bias in the
measurements, affecting large-scale determinations. As the aim is usually precisely
to study the properties of large-scale structures, one naturally should avoid a method
that implicitly assumes that these are irrelevant (Gabrielli et al. 2005; Sylos Labini
et al. 2009b).

One can study the statistical properties of the random variable ni(r) by deter-
mining its PDF, P(n, r). This gives the probability distribution to find n points in
a spherical volume of radius r centered on a distribution point. It can be estimated
from the frequency distribution obtained from the studied sample. In practice, one
inspects the form of the PDF (Gaussian or not) and its behaviour on different scales
r in subsamples of different depth (volume limited samples) (for a case study, see
Sylos Labini et al. 2009b).

For instance, if one finds that there is a non-Gaussian long tail towards large
scales r in the PDF, this can be interpreted as an effect of large-scale structures
(large fluctuations) within the volume in question.

The behaviour of the PDF in different VL samples, for large enough sphere radii,
allows one to test for the self-averaging properties of the distribution, and whether,
inside a given sample, it is meaningful to derive whole-sample average quantities
and whether a certain estimator is expected to give a reliable and stable measurement
of the ensemble properties of the distribution. One may divide the sample into two
(or preferably more) non-overlapping subsamples of same size and compare the
PDFs within them. If the PDFs differ systematically, one can conclude that there is
no self-averaging in the sample (see Sect. 12.1.1).
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10.3.3 Definitions for Correlation Functions

The theory of stochastic processes introduces and studies different functions in-
tended for the correlation analysis.

Complete and Reduced Correlation Functions The complete two-point corre-
lation function Rμμ of a stationary isotropic process μ(	r) is defined as

Rμμ(r)= 〈μ(	r1)μ(	r2)〉, (10.22)

where r = |	r| = | 	r1 − 	r2| is the mutual distance between considered points, and 〈·〉
is the ensemble average over all realizations of the stochastic process.

Taking into account the truly constant mean value μ0 of the process, μ0 =
〈μ(	r)〉 = const, one may define the reduced two-point correlation function C2 for
the fluctuations around μ0

C2(r)= 〈(μ(	r1)−μ0)(μ(	r2)−μ0)〉 =Rμμ(r)−μ2
0. (10.23)

For r = 0 it expresses the squared dispersion of the process as σ 2
μ = C2(0).

For example, as we shall see below, Peeble’s two-point ξ correlation function ac-
tually is the reduced two-point correlation function C2(x), normalized to the squared
mean value μ0: ξ(r) = C2(r)/μ

2
0, while Pietronero’s conditional density (� func-

tion) is the complete two-point correlation function Rμμ, normalized to the mean
value μ0: �(r)=Rμμ/μ0.

There is an important difference between the complete and reduced correlation
functions. For a stochastic fractal (cf. Eq. (10.16)) the complete correlation func-
tion Rμμ(r) has a power-law form, while the reduced correlation function C2(r),
according to its definition (10.23), cannot be a power law in this case. The same is
also true for ξ and � functions: if one of these is power-law, then the other is not.

Mass Variation in Spheres and Characteristic Scales In the applications below,
the stochastic process μ(	r) will describe the density field ρ(	r).

One should distinguish between conditional and unconditional functions. When
we inspect such statistics which are defined with the condition that there is a fixed
point-particle relative to which other particles of a process are considered, then we
have a conditional function. The major tools of structure analysis, � and ξ , are both
conditional correlation functions.

As an example of unconditional statistics we consider mass (number) fluctuations
inside a sphere of radius R using the stochastic variable M(R):

M(R)=
∫
V (R)

ρ(	r)d3r. (10.24)

For a given radius R fluctuations of this mass calculated in different positions in
space can be characterized by the normalized mass variance σ 2

M(R)

σ 2
M(R)= 〈M(R)2〉 − 〈M(R)〉2

〈M(R)〉2 , (10.25)
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where

〈M(R)〉 = 4π

3
ρ0R

3, 〈M(R)2〉 =
∫
V

d3r1

∫
V

d3r2〈ρ(	r1)ρ(	r2)〉. (10.26)

Here the location of the sphere is arbitrary. Its centre may be put anywhere within
the sample, also “between” the particles.

The Scale of Homogeneity Our intuitive vision of uniformity may be formalized
by means of the variable M(R). Define the homogeneity scale Rhom as the scale
at which σ 2

M(Rhom) = 1 (or some other threshold value). So a distribution of par-
ticles approaches homogeneity if the average mass fluctuation within spheres of
radius Rhom is about the average mass 〈M(Rhom)〉. This scale is well defined when
σ 2
M(R)→ 0 for R >Rhom.

The Correlation Length Another scale is the correlation length Rcor. It does not
depend on the amplitude of the correlation function and just characterizes the rate of
decrease of the correlation function. The correlation length may be infinite, as it is
for a power law correlation Rμμ(r)∝ r−γ , or finite, as for an exponential correlation
function Rμμ(r)∝ e−r/Rcor .

The Zero-ξ Length The scale rc where ξ(rc)= 0 is from the theoretical point of
view more fundamental than the above mentioned scales. Its true value is determined
by the physics of the structure formation process.

10.3.4 The Method of the Reduced Correlation Function ξ

A classical approach to the analysis of the large-scale structure is the correlation
function, first introduced to galaxies by Totsuji and Kihara (1969). They adopted this
method from the statistical physics of density fluctuations of ordinary gas (e.g., Lan-
dau and Lifshitz 1958). It was further developed and extensively applied to galaxy
data by Peebles (1980, 1993) and others.

Peebles’ ξ -Correlation Function One may define the two-point correlation func-
tion ξ(r) as the dimensionless reduced correlation function of the density fluctua-
tions δρ(	r)= ρ(	r)− ρ0 around the average density ρ0 (Peebles 1980).

ξ(r)= 〈δρ(	r1)δρ(	r2)〉
ρ2

0

= 〈ρ(	r1)ρ(	r2)〉 − ρ2
0

ρ2
0

. (10.27)

In fact, the ξ -function is simply the reduced correlation function (Eq. (10.23)) di-
vided by the squared mean value of the process, i.e.

ξ(r)= C2(r)/ρ
2
0 . (10.28)
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For a distribution of identical particles (with mass m0) one uses a number density
n(	r)= ρ(	r)/m0, whose average is 〈n(r)〉 = n0. Then

ξ(r)= 〈n(	r1)n(	r1 + 	r)〉
n2

0

− 1. (10.29)

This dimensionless function measures correlations of fluctuations relative to a con-
stant average number density n0.

In the theory of stochastic processes one usually considers a normalized cor-
relation function which is defined as Kμμ(r) = C2(r)/σ

2
x = (Rμμ(r) − x2

0)/σ
2
x ,

and has the normalization condition Kμμ(0) = 1. The definition of the ξ -function
(Eq. (10.27)) implies the condition ξ(0)= σ 2

ρ /ρ
2
0 .

Definition via Poisson Process The correlation function may also be defined as a
measure of the deflection of a distribution of particles from a Poisson distribution
(Peebles 1980). Consider two small spheres at points 	r1 and 	r2 with volumes dV1
and dV2 and with a mutual distance 	r12. Then the joint probability to find one par-
ticle in the volume dV1 and another one in the volume dV2 is proportional to the
number of pairs dN12

dN12 = n2
0dV1dV2[1+ ξ(	r12)], (10.30)

where n0 is the average number density and ξ(	r12) measures the deflection from the
Poisson distribution (so, ξ(	r12)= 0 for a Poisson process).

For a statistically isotropic distribution the function ξ(	r12) = ξ(r) depends on
the separation r only. When an object is chosen at random from the sample, the
expected number of neighbours dN at a distance r in dV is

dN = n0dV [1+ ξ(r)]. (10.31)

Here ξ(r) is considered as the same two-point correlation function as defined by
Eq. (10.29) (see Sect. 33 of Peebles 1980). It is a measure of finding an excess num-
ber of particles relative to the Poisson distribution, at the distance r > 0 provided
that there is a particle at r = 0. By definition (10.31), the correlation function ξ = 0
for a Poisson process.

ξ -Function Estimators Considering stochastic processes it is important to make
a distinction between functions (e.g., ξ(r)) defined by ensemble averages and their
estimators (ξ̂ (r)) applied to a finite galaxy sample.

To estimate the two-point correlation function from a sample of Ns objects within
a volume Vs , one generally makes use of an artificial Poisson process, which fills the
same volume Vs of the sample. Then the ξ -function for a given scale r is estimated
as the ratio of the number of pairs with such mutual distance in the sample to the
number of such pairs in the artificial Poisson distribution. Several different pairwise
estimators exist (Kerscher et al. 2000; Martinez and Saar 2002; Gabrielli et al. 2005),
and they differ mainly in their method of edge correction.2

2This means the way how to calculate the number of pairs when the points are so close to the
border of the sample that in some pairs one point will lie outside the sample volume if we could
repeat the counts in spheres outside the observable volume.
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The Davis–Peebles estimator weights the points according to the part of the
spherical shell volume contained in the sample volume. It is

ξ̂ (r)=
(

Nrd

Ns − 1

)
Np(r)

Np,rd(r)
− 1, (10.32)

where Np(r) is the number of data pairs of observed objects in the catalogue hav-
ing their mutual distance in the interval (r, r + dr). Np,dr (r) comes from the joint
catalogue of data and artificial random distributions in the same volume Vs . It is
the number of data-random pairs with the distance r in the joint catalogue. Ns and
Nrd are the total numbers of objects in the real sample and the random distribution,
respectively.

A central assumption of the correlation function method is homogeneity so that
the true average n0 is estimated from the observed sample as

n̂0 = n̄= Ns

Vs

(10.33)

with a high formal accuracy σn0 ≈ 1/
√
Ns . Here Ns is the total number of objects

in the volume Vs of a “fair” sample that is assumed to be representative of the
homogeneous distribution of galaxies in the whole universe.

The Normalization Condition for ξ Estimators A significant point related to ξ -
function estimators was emphasized by Pietronero (1987) and Calzetti et al. (1988),
and in more detail by Gabrielli et al. (2005). Namely, the definition of the correla-
tion function as a deflection from the Poisson distribution (Eq. (10.31)) implies an
integral condition for the ξ function estimated from a finite sample of galaxies.

For any sample with a finite number of galaxies Ns in a volume Vs one may
define an average number density simply as n̄ = Ns/Vs . Then integrating the left
side of Eq. (10.31) over the sample volume we get

∫
Vs
dN =Ns − 1, where Ns − 1

is the number of neighbours, i.e. the total number of particles in the volume Vs

without the one whose neighbours are counted. Then the integration of the right
side of (10.31) over the sample volume gives

Ns − 1=
∫
VS

n̄dV + n̄

∫
VS

ξ̂ (r)dV . (10.34)

The first term on the right side is
∫
Vs
n̄dV =Ns , the total number of particles in the

sample. Hence the second term will satisfy the condition
∫
VS

ξ̂ (r)dV =−1/n̄. For
fluid-like correlated distributions the effective number density may be arbitrarily
large and hence this condition becomes∫

VS

ξ̂ (r)dV = 0. (10.35)

These restrictions may lie behind some controversial results obtained by the ξ

function method. In particular, we have in mind the inevitable non-power law be-
haviour of the ξ estimator. Equation (10.35) implies that there is a distance rz where
ξ̂ (rz) = 0. Here the estimator changes its sign from positive to negative values,
which is impossible for a power-law function.
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A Distorted Power-Law Correlation Due to the ξ̂ -Estimator As was shown
above, if the complete correlation function is a power-law then neither ξ(r) nor ξ̂ (r)
can be a power-law function. Nevertheless, in practice ξ̂ (r) is usually presented in
the form valid for some range of scales r1 < r < r2:

ξ̂ (r)=
(
r

r0

)−γ
, r1 < r < r2. (10.36)

From such a power-law presentation one usually derives two numbers: the unit scale
r0 and the correlation exponent γ . We emphasize that due to the normalization
condition (10.35) both numbers give systematically distorted values for the homo-
geneity scale and the power-law exponent of the true complete correlation function
Rμμ(r) describing the density field.

The unit scale r0 (often called, somewhat misleadingly, correlation length) is
defined from the relation

ξ̂ (r0)= 1, (10.37)

which characterizes the amplitude of density fluctuations at the scale r0. In fact, it
is a distorted value of a true homogeneity scale of the distribution if the true value
is larger than the maximal size of a sphere that may be completely embedded in the
sample volume Vs.

The correlation exponent γ in the power-law representation of ξ̂ (r) (10.36) de-
scribes correctly only a limited interval of scales r1 < r < r2. On scales r > r2 this
does not represent the true value of the exponent, because there the estimated value
is distorted as the normalization condition (10.35) makes ξ̂ (r) deflect from the in-
herent power-law and to cross zero level. For example, the estimated exponent γest at
the unit scale r0 is two times larger than the true correlation exponent (Sect. 10.3.6).

On scales r < r1 the value of the exponent is affected by the noise of discrete-
ness, behaving as σ ∝ r−3/2 (Eq. (10.13)). The error will essentially grow on scales
smaller than the average distance between the particles.

10.3.5 The Method of the Conditional Density �

The conditional density has been used for analysis of fractal structures in modern
statistical physics. Proposed for extragalactic astronomy by Pietronero (1987), it
has been applied to 3D galaxy catalogues by many authors. On certain conditions,
this method can give an undistorted estimation of the power law correlation and the
fractal dimension. It may also be used for finding the true homogeneity scale of a
galaxy sample.

Continuous Stochastic Processes The conditional density �(r) is defined by
means of the complete correlation function (Eq. (10.22)) as follows:

�(r)= Rμμ(r)

μ0
= 〈ρ(	r1)ρ(	r1 + 	r)〉

ρ0
. (10.38)
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Here ρ(	r) is the stochastic density field and ρ0 is the ensemble average density. The
�-function is a measure of correlation in the total density field without subtraction
of the average density. The common interpretation of �(r) as an average density law
around each point of the structure makes its estimator a natural detector of fractality.

A statistical test of the nature of the galaxy distribution consists in measuring
both correlation functions ξ and � for the same sample of galaxies. If the � function
is power–law, this is evidence for a fractal distribution.

Discrete Stochastic Fractal Processes Let us consider a discrete stochastic pro-
cess, one realization of which is a set of identical particles at randomly selected
positions {	xa}, a = 1, . . . ,N , so that the number density n(	x) is given by the ex-
pression

n(	x)=
N∑
a=1

δ(	x − 	xa). (10.39)

For a fractal, it is natural to define the number density as a function of two variables:
n= n(	x, r). The first variable describes the position 	xa of a structure particle, and
the second one gives the radius r within which one counts the number of particles.
The variable r serves for constructing a statistics that measures the strength of the
singularity around a particle of the fractal, where the number of particles grows as a
power-law N(r)∝ rD .

Denote by NV (	xa, r) the number of particles in a sphere of radius r , centered at
the particle a with coordinates 	xa , belonging to the structure:

NV (	xa, r)=
∫ r

0
n( 	xa + 	x)4πx2dx, (10.40)

and NS(	xa, r) is the number of particles in the spherical shell r, r +�r , with the
centre at 	xa :

NS(	xa, r)=
∫ r+�r

r

n( 	xa + 	x)4πx2dx. (10.41)

From one realization to another these quantities fluctuate, but after averaging over
many realizations the stable power-law dependence on the scale r emerges. For
ergodic processes averaging over many realizations may be replaced by many points
in one realization. Following Pietronero (1987) we define the conditional (number)
density of a stochastic fractal process as

�(r)=
〈
NS(	xa, r)
4πr2�r

〉
	xa
= DB

4π
r−(3−D), (10.42)

and the conditional volume density as

�∗(r)=
〈
NV (	xa, r)
(4π/3)r3

〉
	xa
= 3B

4π
r−(3−D), (10.43)

where 〈·〉	xa means averaging over all points 	xa in one realization with the condition
that the centres of the spheres lie at the particles of a realization (this explains the
word “conditional”). The last equalities in (10.42) and (10.43) relate to ideal fractal
structures, for which �∗(r)= 3

D
�(r).
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�-Function Estimator Consider a stochastic fractal process where the num-
ber of particles NV (	xa, r) in a sphere of radius r , centered at the point 	xa
and the number NS(	xa, r) of particles in the shell (r, r + �r) are given by
Eqs. (10.40) and (10.41). Taking into account the definitions of conditional densities
(Eqs. (10.42) and (10.43)) one can use following two statistics for their estimation
from one realization (a finite galaxy sample):

�̂(r)= 1

N

N∑
a=1

1

4πr2�r
∫ r+�r

r

n( 	xa + 	x)4πx2dx (10.44)

for the shell conditional density �, and

�̂∗(r)= 1

N

N∑
a=1

3

4πr3

∫ r

0
n( 	xa + 	x)4πx2dx (10.45)

for the volume conditional density �∗.
So the conditional density method is quite simple in principle, just counting the

number of particles inside a spherical volume V (r) or shell �r . This is done for each
structure point and then the average is calculated. For the �-function estimation one
need not generate artificial Poisson distributions, as is necessary for the ξ -function
method.

Fractal Dimension and Co-dimension For a fractal structure both the � function
(Eq. (10.42)) and the estimator (Eq. (10.44)) have a power-law form

�̂(r)= �0r
−γ . (10.46)

This very important property of the �-estimator allows one to obtain an undistorted
value of the fractal dimension in a galaxy sample. The exponent that defines the de-
cay of the conditional density γ =D− 3 is called the co-dimension, where D is the
fractal dimension. The amplitude �0 of the estimator �̂(r) does not change when the
sample volume Vs is increased, only the range of available scales r increases. This
corresponds to the meaning of �(r) as characterizing the number density behaviour.

Homogeneity Scale For a fractal structure which has an upper cutoff at a homo-
geneity scale Rhom, beyond which the distribution becomes uniform, the estimator
of the �-function is

�̂(r)= constant, for r > Rhom. (10.47)

Thus the conditional density is a powerful tool when one searches for the crossover
from the regime of fractal clustering to the realm of homogeneity.

�-Function for 2D Intersections If a 3D fractal structure is intersected by a
plane then the fractal dimension for the intersection is given by Eq. (10.21):

Dint =D − 1. (10.48)
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To make the �-function analysis for the sample formed by the 2D intersection one
may use the coordinate system 	y = (y1, y2) and calculate the �-function for the
intersection, or �int(y).

Such a situation may occur in a slice-like galaxy survey for scales r larger than
the thickness of the slice. For instance, for the true fractal dimension D = 2 the
fractal dimension of the intersection will be Dint = 1, and one expects a power-law
behaviour for the corresponding �int(y)∝ y−1.

10.3.6 Comparison of the ξ and � Correlation Functions

When comparing the two methods, one should be aware that both are affected by
finite volume effects (in fact, the ξ function more strongly than the �-function)
and can be safely applied only in the range of scales where the required conditions
(Sect. 10.3.1) are fulfilled for the galaxy sample.

The Relation Between � and ξ From the definitions of the conditional density
� (Eq. (10.38)) and correlation function (Eq. (10.29)) we have the relation

ξ(r)= �(r)

n0
− 1 (10.49)

if the mean number density n0 of the stochastic process exists. This implies a similar
relation between the estimators applied to a finite sample:

ξ̂FS(r)= �̂FS(r)

n̄
− 1. (10.50)

Here ξ̂FS is the “full shell” estimator as it is defined through the � estimator calcu-
lated using full shells completely embedded in the sample volume.

Both � and ξ functions are conditional characteristics, i.e. they are defined on the
condition that the centres of counting spheres are set to structure particles. However,
there is still a deep difference between them. �(r) is a complete correlation function,
while ξ(r) is a reduced correlation function of the stochastic process. This makes
the properties of their ξ and � estimators very different.

The estimator �̂ (Eq. (10.44)) is always a positive function and has a power-law
form for fractal structures. On the contrary, the estimator ξ̂ (Eq. (10.32)) inevitably
changes its sign and hence cannot be presented as a power law even for scale in-
variant structures. All estimators of the ξ -function, which are based on counting of
pairs relative to an artificial Poisson distribution, have a common drawback. They
give essentially distorted values for the correlation exponent of the complete cor-
relation function of fractal distributions. But the �-function estimator is specially
constructed in order to give true values of the correlation exponent and the fractal
dimension.

The �-function estimator relates to intrinsic properties of the sample, while the
ξ -function estimator depends on both intrinsic and external properties. In fact, �̂
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measures the behaviour of the total density inside spheres within a sample, while
ξ̂ measures fluctuations relative to the average density assumed to be valid for all
space outside a finite sample. We illustrate this by considering counts around a fixed
point. The expected number of points in a shell with radius r and volume dV is
�(r)dV , as the conditional density �(r) describes the density–radius law. The same
expected number may be calculated with the correlation function ξ(r) as n0(1 +
ξ(r))dV . Hence,

�(r)= (1+ ξ(r))n0. (10.51)

It is important that the right-hand side of (10.51) becomes defined only after the
mean density n0 is calculated for the whole sample, while �(r) always exists lo-
cally. Remember that ξ(r) is defined for fluctuations around n0. For a study of how
an incorrect value of n0 can affect the measured large scale behaviour of the ξ(r)

correlation function, see Sylos Labini et al. (2009a).

Fractal Density Field For the case of a scale-invariant stochastic fractal density
field, the complete correlation function �(r) has the power-law form

�(r)= BD

4π
r−γ . (10.52)

For the same fractal structure the reduced correlation function ξ(r) will be

ξ(r)= BD

4πn0
r−γ − 1 (10.53)

which is not a power-law. This difference between complete and reduced correlation
functions was pointed out by Pietronero and Kuper (1986).

Thus the ξ -function may be approximated by a power-law only when ξ(r)� 1,
which corresponds to small scales r 
 r0. However, on small scales the noise of
discreteness deforms a true power-law. Hence a ξ -function estimation may give
incorrect values of the correlation exponent not only on large scales (normalization),
but also on small scales (discreteness).

The apparent slope for the correlation function ξ . It is instructive to calculate the exponent
γξ of the correlation function on scales close to the unit scale r0 (Joyce et al. 1999). Take
the logarithmic derivative of Eq. (10.53):

γξ (r)=−d[log ξ(r)]
d log r

= 2γ (r/r0)
−γ

2(r/r0)
−γ − 1

. (10.54)

Therefore at the unit scale r = r0 we get the remarkable result:

γξ (r0)= 2γ. (10.55)

For a density power-law with γ = 1, one would infer an apparent slope γξ = 2 for the
ξ -function, if measured at scales close to the “correlation length” r0! See Fig. 10.6.

The Sample Depth and r0 For a fractal structure sampled inside a sphere (the
average number density n̄=Ns/Vs = 3BRD−3

s /4π ), Eq. (10.53) yields

ξ̂ (r)= D

3

(
r

Rs

)−γ
− 1. (10.56)
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Fig. 10.6 The dependence of
the derived slope for the
ξ -function on the x range
used for its determination

Inserting r = r0 into (10.49) and noting that ξ(r = r0) = 1 one gets r0 =
((DB)/(8πn̄))1/γ . Hence �(r0)= DB

4π rD−3
0 = 2n̄= 6B

4π R
D−3
s , from which follows

the simple relation between the length r0 and the sample depth Rs:

r0 =
(

3− γ

6

)1/γ

Rs. (10.57)

Survey Geometry and Characteristic Scales In practice the �-function method
is restricted by the requirement that there should be room for the whole sphere in
the volume of the studied sample. For example, for galaxy surveys with slice-like
geometry, this makes it impossible to measure the conditional density for scales
larger than the thickness of the slice.

A galaxy sample is characterized by the following important scales (Fig. 10.7):

Rsep,R
sph
max,Rs. (10.58)

The average distance Rsep between galaxies in the sample may be roughly estimated
as n̄−1/3 or calculated from the nearest neighbour distribution. The radius of the
maximal sphere R

sph
max refers to completely embedded spheres in the sample and has

a crucial role. The depth Rs of a survey is related to the largest distances in the
sample, and it essentially differs from the radius of the maximal sphere in case of
slice-like surveys.
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Fig. 10.7 Different
geometries of the surveys and
important parameters

It is a general rule that in a correlation analysis of slice-like samples one should
consider separately two intervals of scales:

Rsep < r < R
sph
max, (10.59)

where one can use the � function method to estimate the value of D, and

R
sph
max < r < Rs, (10.60)

where the � function does not work. Here other possible methods are the � function
for fractal intersections and the bi-conditional column density.

10.4 Other Methods

Other methods of structure analysis may complement the information from the ξ

and � functions or can be used instead of them in some situations.

10.4.1 The Distribution of the Nearest Neighbour

The distribution of distances to the nearest neighbour point may be used to make a
distinction between fractal and ordinary distributions.

Poisson Distribution For a Poisson process in 3D space the probability density
ω(r) for finding the nearest neighbour at a distance r is

ω(r)= 4πn0r
2e−

4πn0r
3

3 . (10.61)

Here the average distance between point-particles is Rsep ≈ n
−1/3
o .

Fractal Distribution Gabrielli et al. (2005) have derived a useful approximation
for a fractal structure (here C =DB/4π ):

ω(r)= 4πCrD−1e−
4πCrD

D . (10.62)

Figure 10.8 presents ω(r) for two cases: a homogeneous Poisson distribution (D =
3) and the estimation from the 2dF galaxy survey (D = 1.8). The curves correspond
to the predictions from (10.61) and (10.62). It is seen that the lower is the value of
the fractal dimension, the closer are the neighbours within the structure. In fact, the
nearest neighbour distribution may be used as an additional method for estimating
the fractal dimension.
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Fig. 10.8 Probability
distributions for finding the
nearest neighbour at a
distance r for two cases:
(dots) the homogeneous
Poisson distribution (D = 3)
and (squares) data from the
2dF galaxy survey The dotted
curves correspond to
predictions for the Poisson
distribution (Eq. (10.61)) and
for 2dF (Eq. (10.62)) with
D = 1.8 (from Vasilyev et al.
2006)

10.4.2 The Bi-conditional Column Density

The conditional densities discussed above were one-point, as the counts are made
around each one point of the sample. However, in some cosmological studies (e.g.
gravitational lensing; Baryshev and Ezova 1997), it becomes necessary to use two-
point conditional densities, whereby one simultaneously fixes two particles {a, b}
with the coordinates {	xa, 	xb} and counts galaxies within a thin cylinder between
these points.

Definitions In order to define the distribution of particles along the cylinder
whose axis connects two structure points {a, b}, Baryshev and Bukhmastova (2004)
introduced the distribution between two occupied points (a, b), ηab(r) for a stochas-
tic fractal process. If the particles a and b are independent, they are statistically
equivalent and the probability to find a particle inside the cylinder will be equal to
the sum of the two 1-point conditional densities (given by the expression (10.42)).

For another case, when the distance rab = |	xa − 	xb| between two structure points
is fixed, Gabrielli (2005) derived the following formula for the bi-conditional (points
a and b) one-point (one variable r) column density:

ηab(r)= g [�a(r)× �b(rab − r)] . (10.63)

Here g = 1/(DB/4π) is a normalization factor and �a = �b = (DB/4π)r−(3−D)

is the ordinary conditional density given by Eq. (10.42). The distance r is measured
along the segment of the line connecting the particles a and b, and at the same time
it defines the radius r of the sphere having its centre at the first point and the radius
rab − r for another sphere having its centre at the second point. In this method the
volume elements are taken along the line connecting the two points—the coordinate
r is a Cartesian coordinate labelling volume elements (“tablets”) with thickness dr
along this cylinder (Fig. 10.9).
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Fig. 10.9 Method of cylinder: the centres of two galaxies are fixed at the points (x1, y1, z1)
and (x2, y2, z2). All the remaining galaxies with central coordinates (x3, y3, z3) are checked to
determine whether they belong to a given cylinder. In slice-like surveys this method allows one to
study scales comparable to the depth of the survey

Estimation In order to estimate ηab(r) one may use the statistic

η̂ab(r)=
〈
Nc(	xa, 	xb, r, h,�r)

πh2�r
〉
{a,b}

= 1

Nab

Nab∑
{a,b}

1

πh2�r
∫ r+�r

r

∫ h

0
n(	x)2πh dh dr, (10.64)

where Nc is the number of points in a volume element of the cylinder with a diameter
h and height �r and whose axis connects the structure points a and b. The volume
element lies at the distance r from a (corresponding to the distance rab− r from b).
Averaging is performed for every pair of points with connecting cylinders having
the length in the interval (l, l + �l). The parameters h and �r are taken to be a
fraction of the mean separation of the particles in the sample. Simulations show that
the estimated fractal dimension is robust to reasonable variations of the tablet size.

If a fractal structure and a homogeneous background co-exist, then the fractal dimension D

may be calculated by fitting on the observations the dimensionless probability distribution
with free parameters A, γ , and B:

N(y)/N =R1 · [y−γ × (1− y)−γ ] +R2, (10.65)

where N(y) is the observed number of points in each tablet, i.e. within the intervals
(y, y + �y) along the cylinder with a length l. The variable y is the relative distance
measured along the line connecting the two points (y = r/rab = r/ l). N is the total num-
ber of points within cylinders of length l. For genuine self-similar structures it is pos-
sible to calculate these numbers for all cylinders of different length simultaneously (see
Fig. 10.10). R2 takes into account a possible Poisson background. One can measure the
relative strength β of the fractal component as β = (1− R2)/R2 (Vasilyev 2004). When
β = 1, the contributions from the fractal structure and the Poisson background are equal
(R2 = 0.5).
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Fig. 10.10 Left: The histogram of the galaxy distribution η̂ab(r) of the LEDA sample along cylin-
ders with l < 100 Mpc. Right: The same distribution in logarithmic scale and the fitted theoretical
curve ηab(r), with D = 2.02 (Baryshev and Bukhmastova 2004)

10.4.3 The Radial Distribution N(z) and Its Fluctuations

The large number of photometric redshifts allows one to study structures of galaxies,
which reach scales of thousands of Mpc, by analysing the distribution N(z) in deep
fields (Nabokov and Baryshev 2010a, 2010b). Fluctuations in the numbers of galax-
ies in the bins �z= 0.1–0.3 are caused by Poisson noise, correlated structures, and
systematic errors in estimated z. This method requires covering a sufficiently large
region of the sky with a grid of deep multi-band surveys with a cell size ∼ 10× 10
deg2. The distribution of the photometric redshifts of the galaxies within each deep
∼ 10′ × 10′ field at the nodes of the grid will yield information on the radial extent
of superlarge structures; comparing the radial distributions in neighbouring fields
will yield information on their tangential extent. This method must be accompanied
by an analysis of the distortions in the N(z) distributions arising from the technique
for evaluating the photometric redshifts.

Modern multiband deep surveys of galaxies (Reshetnikov 2005), such as
COMBO-17, COSMOS, FDF, HUDF, and ALHAMBRA, offer the possibility of
measuring the sizes and contrast of superlarge inhomogeneities in the distribution
of galaxies at redshifts of 0.5–5. These surveys contain 103–105 galaxies with mea-
sured magnitudes in several bands, so it is possible to use photometric redshifts. The
accuracy of zphot is usually 0.03(1+ z), so that one may study scales greater than
about 200 Mpc/h. By using large redshift bins (0.1–0.3) containing many galaxies
(> 100), the Poisson noise (∼ 1/

√
N ) will be small (σP < 0.1), and fluctuations

corresponding to very large inhomogeneities in the distribution of galaxies can be
observed with a contrast greater than the Poisson level.

Distribution of Redshifts For magnitude-limited surveys the redshift distribution
is usually approximated (e.g., Massey et al. 2007a) as

N(z,�z)=Azαe(−z/z0)
β

�z, (10.66)
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Table 10.1 Linear dimensions in the tangential direction for angle θ at z = 1 and in the radial
direction for redshift bins �z centered at z= 1, for the model (h= 0.72,
V = 0.7,
m = 0.3)

θ 3′ 10′ 1° 10° 30°

�L (Mpc) 2.8 9.3 55.7 557 1670

�z 0.1 0.2 0.3 0.4 0.5

�L (Mpc) 235 470 706 943 1180

where the parameters α, β , and z0 are found by least squares, and A normalizes the
expression from the condition

∫
N(z)dz = Ntot. This formula has been tested on

model samples of magnitude-limited distant galaxies, assuming a uniform spatial
distribution of galaxies having luminosities according to the Shechter law (Lovyagin
2009).

For a uniform spatial distribution the observed redshift distribution may be de-
termined by a model for the number and luminosity evolution of galaxies. One may
also obtain a theoretical distribution of the type (10.66) from cosmological sim-
ulations of the distribution of galaxies. For example, from light cone simulations
(Heinämäki et al. 2005; Kim et al. 2009), one can extract the radial distribution of
dark halos (“galaxies”) within a redshift range of 0–6. In this way one may ob-
tain the form of the average distribution N(z), as well as expected deviations from
smooth behaviour due to structures.

The Scales Accessible for a Grid of Deep Fields In the flat Friedman model, the
linear size L of a region in the sky at the present time, which participates in expan-
sion of space (like a superlarge structure is expected to) and has now the observed
angular size θ is given by L(z)= θ(z)r(z) where r(z) is the metric distance of the
region. Using the precipes for calculating the metric distance (Sect. 7.4), Table 10.1
shows a useful collection of calculated linear sizes L (Mpc) in the tangential and
radial directions.

Selection Effects As the photometric redshift method is based on the continuum
spectrum, it is independent of the visibility of spectral lines at different redshifts.
However, there are some effects owing to the visibility of certain details of the con-
tinuum spectra and a degeneracy in the solutions for a fixed system of filters in a
given survey (e.g., the visibility of the Balmer 3646 Å and Lyman 912 Å limits).
The resulting systematic errors may show up as inhomogeneities in the radial dis-
tribution of galaxies. The errors in measuring magnitudes in different filters vary
and depend on the individual features of galactic spectra, as well as on the accuracy
with which the observations made at different angular resolutions are reduced (e.g.,
when combining optical and infrared data). In addition, the standards for the energy
distribution in galactic spectra used to derive photometric redshifts may differ from
the actual continuum spectra. Thus, when the systematic effects are included, the
observed dispersion in the fluctuations will be

σ 2(z,�z)= σ 2
corr + σ 2

P + σ 2
errors, (10.67)
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where the terms refer to correlated structures, to Poisson fluctuations and to the
errors in the method for evaluating the redshift. In Chap. 12 we will present some
results on the very large-scale structures, using this method.

10.4.4 Fourier Analysis of the Galaxy Distribution

If the spatial distribution of objects is given by a stochastic density field, then fluc-
tuations of this field may be represented by the Fourier integral as a superposition
of plane spatial waves with the wave number k = |	k| = 2π/λ:

δ(	x)= ρ(	x)− ρ̄

ρ̄
= 1

(2π)3

∫
δ̃(	k)e−i	k·	xd3k. (10.68)

Here the Fourier transform δ̃(	k) of the density fluctuations δ(	x) is a complex quan-
tity and thus may be given in the form

δ̃(	k)= |δ̃(	k)| exp(iφ(	k)). (10.69)

For a complete description of the spatial distribution the analysis should include
both the amplitude spectrum |δ̃(	k)| and the phase spectrum φ(	k).

For a Gaussian random process the phases of plane waves are distributed uni-
formly in the interval [0,2π] and to describe the density field it is sufficient to con-
sider only the power spectrum P(	k)= 〈|δ̃(	k)|2〉. When the distribution is isotropic,
the power spectrum and the correlation function are connected by the relation

P(k)= 4π
∫

ξ(r)
sin(kr)

kr
r2dr. (10.70)

Thus for a power-law correlation function ξ(r)∝ r−γ the power spectrum has also a
power law form P(k)∝ kγ−3 for a restricted range of scales k1 < k < k2. For small
k (large scales λ > Rs) there is a limit due to the size of the survey Rs, which causes
P(k)→ 0 for λ→Rs.

The main challenges of the power spectrum analysis are the same as for the
correlation function: (1) the average density ρ̄ should be well defined within the
sample volume, and (2) one should be able to control the finite volume effects.
However, a plus side is that the correlation exponent γ may be estimated without
distortion from P(k) for the scales λ < R

sph
max.

Fractal Density Fields A generalized power spectrum !(k) of a fractal process
is defined by the Fourier transform of the conditional density �(r), instead of ξ(r)
as in (10.70) (Sylos Labini and Amendola 1996; Sylos Labini et al. 1998). Due to
the power-law form �(r)∝ r−(3−D) for a stochastic fractal, the power spectrum is
also a power law !(k) ∝ k−D . Hence the dimension D may be directly measured
from the power spectrum.
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The Role of Sample Geometry For a slice-like survey for scales larger than the
maximum sphere completely embedded in the sample, the geometry of the studied
structure approaches the case of an intersection of a 3D fractal by a plane. Hence one
expects from the intersection theorem that for a structure with the fractal dimension
D the measured dimension of the sample will be Dint =D− 1. Therefore, there are
three characteristic intervals of scales for the behaviour of the power spectra P(k)

or !(k):

• For scales λ < R
sph
max where P(k)∝ k−D with the exponent equal to the true fractal

dimension
• For scales Rsph

max < λ< Rs where P(k)∝ k−(D−1) with the exponent equal to the
fractal dimension of the intersection

• For scales λ > Rs where P(k)→ 0 due to the finite size of the sample

10.4.5 Redshift-Space and the Peculiar-Velocity Field

From a redshift survey one obtains a redshift-space map, i.e. the position in the sky
and zobs, the observed redshift of a galaxy. As was discussed in Sect. 4.1.1, the value
of zobs may contain contributions from several causes.

Distance Error Due to Peculiar Velocity For peculiar velocities v 
 c the
Doppler part of the observed redshift is determined by the radial component vr of
the velocity as zv ≈ vr/c. So for small radial peculiar velocities vr

zobs = zcos + vr

c
(1+ zcos). (10.71)

Hence the derived distance r‖obs = r‖ +�rv will be distorted by a peculiar velocity
field in the line-of-sight direction by the amount

�rv = vr(1+ zcos)

H0
= 5 Mpc h−1

100
vr(1+ zcos)

500 km/s
. (10.72)

Note that the factor (1+zcos) leads to an increasing influence of vpec on the distance
error for deep redshift surveys.

Real-Space and Redshift-Space ξ Functions A ξ -function derived from red-
shift distances is termed the redshift-space correlation function ξz(s). In order to
obtain the real-space correlation function ξreal = ξ(r) one should extract all non-
cosmological contributions to zobs, which is not easy.

The shape of the observed ξz(s) is affected by the nature of the peculiar velocity
field. In virialized clusters the velocity dispersion leads to the “finger-of-God” ef-
fect, i.e. an elongated shape along the line-of-sight direction r‖. The mean tendency
of galaxies on larger scales to approach each other, due to the gravity of large-scale
structures, will appear as a compression of ξz(s) in the direction r‖. As these two
effects operate on different spatial scales, they do not compensate each other.
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Peebles (1980) and Davis and Peebles (1983) suggested a procedure for the
restoration of both the true ξ(r) and the relative peculiar velocity distribution f (v)

from the observed correlation function ξz(r⊥, r‖obs) where r⊥ and r‖obs are the ob-
served perpendicular and parallel to the line of sight components of the separation
s = (r2⊥ + r2‖obs)

1/2.
The method is based on the calculation of the projected correlation function

w(r⊥) which does not depend on the peculiar velocity field, if the distribution of
the radial peculiar velocities is symmetrical around each galaxy of the sample. Inte-
grating along the line of sight we obtain:

w(r⊥)= 2
∫ ∞

0
ξz(r⊥, r‖obs)dr‖obs, (10.73)

where in practice the interval of integration is restricted by chosen radial velocity
limits. Then the required inverse is the Abel integral

ξ(r)=− 1

π

∫ ∞

r

w′dr⊥
(r2 − r2⊥)1/2

, (10.74)

where w′ = dw(r⊥)/dr⊥. This is the restored real-space ξ(r) function.
For the power law ξ = (r0/r)

γ the integral (10.73) gives

w(r⊥)=Ar
1−γ
⊥ , (10.75)

where A= r
γ

0 �e(
1
2 )�e(

γ−1
2 )/�e(

γ
2 ) and �e(x) is the Euler gamma function.

Limitations of the Projection Method It is clear from (10.75) that such a so-
lution for the real-space ξ function is valid only if the exponent γ ≥ 1. For exam-
ple, γ = 1 gives w(r⊥)= constant, which again shows that the projection of a real
non-uniform distribution may be confused with a uniform background galaxy dis-
tribution. Such a method leads to elimination of information on structures with the
fractal dimension D ≥ 2. Therefore to take into account the peculiar velocity field
within fractal structures with D ≥ 2, one needs another method of restoration for
the correlation function, which is free from the above limitation.

Estimating the velocity dispersion. When density and velocity fields are weakly coupled,
the observed correlation function ξz(s) can be modelled as a convolution of the real space
correlation function ξ(r) with the galaxy pairwise velocity distribution f (v) (Peebles
1980). One presents this equation as

1+ ξz(r⊥, r‖obs)=H0

∫ [
1+ ξ(

√
r2⊥ + r2‖ )

]
f (v)dr‖. (10.76)

Here v = H0r‖obs − H0r‖ + v̄12(r) and v̄12(r) is the mean radial pairwise velocity of
galaxies at separation r , represented by a model. Davis and Peebles (1983) used the model
v̄12(r)=H0r‖/(1+ (r/r0)

2) and an exponential form for f (v):

f (v)= B e−
√

2|v|/σ12 . (10.77)

As a result one obtains the pairwise velocity dispersion σ12.
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Redshift-Space �z(s) and vpec Using the same notations as for the ξ function
(s, r⊥, r‖) we can write for the redshift-space conditional density

�z(s)= �z(r⊥, r‖obs). (10.78)

The relation between the real-space �(r) and redshift-space �z(s) is

�z(r⊥, r‖obs)=
∫

g(	r, 	w)�(r)d3w, (10.79)

where 	w = 	v1 − 	v2 is the relative peculiar velocity of a galaxy pair at separation 	r ,
and g(	r, 	w) is the relative peculiar velocity distribution. Here the components of the
relative distance 	r are given by the following formulae: r1 = r⊥, r3 = r‖obs−w3/H0,
and r2 = r2⊥ + (r‖obs −w3/H0)

2.
In order to restore the real-space conditional density from the observed redshift-

space � function one has to make computer simulations of artificial fractal structures
with known peculiar velocities and compare the modelled redshift-space �mod(s)

with the observed �z(s).

10.5 A Summary: Requirements for Reliable Correlation
Analysis

Let us collect together the main requirements for a reliable correlation analysis of
the galaxy distribution. First of all, there is the basic assumption that the stochastic
process behind the spatial distribution of galaxies is ergodic so that we can obtain
information about the average properties of the infinite ensemble from its one real-
ization in a finite volume. Furthermore, the finite sample should be self-averaging,
so that we can really extract from it sufficiently accurate and stable whole-sample
average quantities (for instance, the finite-volume effect can affect the mean number
density and thus artificially shift the measured zero-ξ length). Fortunately, the prop-
erty of self-averaging can be tested using the sample itself (Sect. 10.3; Sect. 12.2).

Besides these generalities, certain practical restrictions should be taken into ac-
count when one makes correlation analyses using the ξ or � functions. Borders
of the finite volume restrict the sizes and numbers of the testing spheres, so that a
narrow-angle survey contains only small spheres and the ξ or � functions can be
derived only for small scales. Wide-angle surveys do contain larger spheres, allow-
ing the analysis of larger scales; however, one should note that the largest spheres
contain basically only the most luminous objects, hence a small number of galaxies.
A particular problem is encapsulated in the integral constraint for ξ , which implies
that one cannot model the ξ function as a power-law, except within finite intervals.

In the next chapter we will show, from studies of real galaxy data, how the correct
interpretation of the results of correlation analysis depends on the understanding of
the general requirements and idiosyncracies of the applied methods.



Chapter 11
The Inhomogeneous Galaxy Universe:
Observational Results

The discovery of the surprisingly rich texture of galaxies, only faintly anticipated
from photographies, is of deep cosmological significance. In fact, the homogeneity
of the early universe is a fundamental hypothesis of the standard world model. One
has to assume that the structures now seen in the galaxy universe were formed by
gravitational clustering from initial small seeds. The predicted growth of the large-
scale structure may be checked by current observational means thanks to the great
progress in measuring distances by redshifts. At small redshifts (z < 0.5), huge red-
shift surveys have been completed. At redshifts up to 5, there are many deep multi-
band galaxy surveys, some completed and others being planned.

11.1 From the 2D Sky to the 3D Map

The scarcity of available observations at any historical moment tends to lead to
uncertain interpretations of the data. This also gave rise to a lengthy “fractal debate”
around the nature of galaxy clustering and the scale where uniformity begins. It has
involved Einstein, Hubble, Sandage, Peebles, Charlier, Lundmark, de Vaucouleurs,
Mandelbrot, Pietronero and other students of the large-scale clustering. In fact, in
the very decade when the galaxy universe was found and theoretical cosmology
made its first steps, Selety’s and Einstein’s correspondence on cosmic hierarchies
outlined the main directions for future studies of inhomogeneous world models. For
résumés of the main events illuminating this process, see Tables 11.1 and 11.2.

New aspects and tools for tackling the clustering problem arrived with the con-
cept of fractal (Mandelbrot 1975). Self-similar structures with long-range correla-
tions had appeared in physics and geophysics and were then extended to astronom-
ical scales, from the Solar System and interstellar clouds to galaxies and then to
increasingly large cosmic scales.

The 2D and 3D Epochs Early counts of bright galaxies gave results close to the
N ∝ 100.6m-law, pointing to homogeneity. Started by Totsuji and Kihara (1969) and
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Table 11.1 Early milestones in the debate on large-scale fractality

Years Authors Subject

1900–1920s
paradoxes

Fournier d’Albe regular hierarchical models

Charlier, Selety, Lundmark criteria for infinite world

Einstein, Selety Mach, stability, middle point

1930s–
1970s
clusters and
uniformity

Shapley, Zwicky, Abell strong galaxy clustering

Carpenter, Kiang, Karachentsev superclusters up to 100 Mpc

Neyman, Scott 2-level hierarchical model

de Vaucouleurs density-radius ρ(r)∝ r−γ , γ = 1.7

Hubble uniformity from galaxy counts

Ambartsumian, Holmberg, Fesenko variable extinction in MW

Sandage, Tammann, Hardy linear Hubble law at < 30 Mpc

Webster, Longair isotropy of radio sources

then developed by Peebles, the angular correlation analysis gave a small homogene-
ity scale Rhom ≤ 10 Mpc within which the correlation exponent γ ≈ 1.8 corresponds
to a fractal dimension D = 3− γ ≈ 1.2. Beyond Rhom the galaxy distribution was
thought to be homogeneous.

It was realized later that the correlation function estimator may result in distorted
values for Rhom and γ (or D). Moreover, due to fractal projections, angular cat-
alogues are not good for detecting a structure with D ≥ 2. For this 3D maps are
required and indeed on scales where the fractal analysis is possible in completely
embedded spheres, redshift-based maps have revealed a power–law density field and
have given evidence for the “hidden” fractal dimension of about 2.

The debate on the large-scale galaxy distribution has been revolving around two
new major empirical numbers—the fractal dimension D and the crossover scale
to homogeneity Rhom. The value of the correlation dimension D = 1.2 indirectly
deduced from angular catalogues has been contrasted by D = 2.2 ± 0.2 directly
obtained from 3D maps and Rhom has expanded from 10 Mpc to scales approaching
100 Mpc. The narrow cones of the existing deep galaxy surveys and their finite depth
have been the main limiting factors hampering precise estimates of D and Rhom.

11.2 Analysis of the Angular-Position Galaxy Catalogues

Already when galaxy catalogues gave just positions on the sky vault, and no dis-
tances, astronomers started to recognize superclusters of galaxies.
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Table 11.2 Modern events in the debate on large-scale fractality

Years Authors Subject

1970s–
1980s

Wertz, Bonnor, Wesson, Alfvén physics of hierarchy

Haggerty, Severne, Prigogine N-body dynamics in hierarchies

Totsuji, Kihara, Peebles w ∝ θ−0.8 ⇒ ξ ∝ r−1.8

Mandelbrot fractals, multifractals

Baryshev, Perdang first evidence for D = 2:

Lerner, Schulman, Seiden M(r), z(r), stability, percolation
ξ and �

function
Davis, Peebles γ = 1.8, r0 = 5 Mpc, 2000 galaxies

Einasto, Klypin, Kopylov, Bahcall r0 depends on depth and type

Pietronero the method of � function

Pietronero, Sanders, Coleman the first fractal analysis of CfA

Pietronero, Ruffini, Calzetti et al. explanation of r0(Rs)

Jones, Martinez, Saar, Einasto D2 = 1.2, D0 = 2, multifractal?

1990s–
2000s

Sylos Labini, Montuori, Pietronero D ≈ 2 from all 3D catalogues

Wu, Lahav, Rees fractality at r < 30 Mpc

Teerikorpi, Hanski, Theureau et al. TF < 200 Mpc⇒D = 2.2, KLUN

Paturel, Teerikorpi, Courtois LEDA counts < 15m: 0.44m, D = 2.2

fractals in
3D maps

Baryshev, Bukhmastova 2-point column density: D = 2.1

Zehavi (SDSS team) ξ(s)∝ s−1.2, 29 300 gal.

Hawkins (2dFGRS team) ξ(s)∝ s−0.75, 200 000 gal., D = 2.25
distortion by peculiar velocities?

Gott et al. (SDSS team) 500 Mpc Sloan Great Wall

Hogg et al. SDSS LRG �∗(r)∝ r−1.0, D = 2.0
for scales 1÷ 30h−1

100 Mpc

Vasilyev, Baryshev, Sylos Labini 2dF �∗(r)∝ r−0.8, D = 2.2
SDSS DR4 �∗(r)∝ r−1.0, D = 2.0
for scales 0.5÷ 30h−1

100 Mpc

Sylos Labini, Vasilyev, Baryshev SDSS DR6, 100 Mpc structures

11.2.1 Early Arguments for Galaxy Clustering

Inspecting his sky map for 11 475 nebulae from Dreyer’s NGC and Index catalogues,
Charlier (1922) concluded: A remarkable property of the image is that the nebulae
seem to be piled up in clouds. Concerning the nature of nebulae, Charlier chose to
regard the spiral nebulae as foreign Galaxies similar to our own. Thus he related
the observed clustering to the global matter distribution.

After the discovery of the galaxy universe it soon became clear that in addition
to field galaxies there are groups and clusters. In the 1930s clusters of galaxies were
already routinely used for extending the redshift–distance law to larger distances by
Hubble and Humason. In the following decades several observations were seen as
evidence for large-scale clustering:
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• Shapley’s metagalactic clouds
• De Vaucouleurs’s Local Supercluster and density-radius relation
• Abell’s rich clusters and their superclusters
• Shane-Wirtanen clouds of galaxies in the Lick counts

Shapley’s Wide Photographic Surveys of Galaxies Inspecting the distribution
of galaxy clusters, Shapley came to conclude that there are “metagalactic clouds”
(today’s superclusters), e.g., in the constellations of Coma, Centaurus and Hercules.
An interesting outcome of the 2D epoch, his book The Inner Metagalaxy (Shapley
1957) summarizes the work on the clustering of galaxies performed at the Harvard
observatory. In a section about deep surveys he notes that though the distribution of
galaxies on the surface of the sky is easily examined on photographs, a study of the
distribution in the line of sight is much complicated “. . . a pair with equal apparent
brightness may differ in distance by a factor of ten. . . . In the study of the radial
distribution of population it is necessary to use photometric methods for estimating
distances, relative or absolute.” The redshift is nowhere mentioned as a possible
distance indicator—the local universe was not yet a subject of redshift surveys, the
precious telescope time went to extending measurements into deeper space.

Gérard de Vaucouleurs (1953, 1958) presented evidence, from the Shapley and
Ames (1932) catalogue of 1249 galaxies, for a local supercluster centered at the
Virgo cluster, and having a diameter of 30 Mpc. It causes the well-known asymmetry
in the numbers of bright galaxies in the two hemispheres.

A large increase in the number of known galaxy clusters came with George
Abell’s (1958) catalogue of 2712 rich clusters covering the sky north of δ =−27°.1

Together with southern rich clusters in Abell et al. (1989), these lists contain 4704
clusters. Abell’s collection was one outcome of the photographic survey of the en-
tire northern sky, made by the Schmidt telescope at Palomar Observatory. The nine
hundred 60 × 60 cm2 copies of the Palomar Sky Atlas photographs were a basic
tool at observatories for decades. Rich clusters are rare, but can be seen from large
distances. Now the question was: do Abell’s rich clusters form superclusters?

Santa Barbara 1961 Conference In the meeting “On the stability of systems of
galaxies” astronomers presented their works on galaxy clustering on different scales
from binary galaxies to superclusters. Here de Vaucouleurs (1961) already discussed
his density-radius relation for systems of different sizes (see below). He noted that
there was no sign of a constant density level in the observed range, so the mean
density might be reached only for scales 10 times larger than the Local Supercluster
(i.e. 300 h−1

100 Mpc). Abell (1961) described his work on the rich clusters which form
superclusters of typically 10 clusters. In the conference summary Neyman, Page and

1Abell’s six richness classes were based on the number N of galaxies that are at most 2 mag fainter
than the 3rd brightest galaxy: for class 0 30≤N ≤ 49; for class 5 N ≥ 300.



11.2 Analysis of the Angular-Position Galaxy Catalogues 251

Scott wrote: Both Abell and de Vaucouleurs feel that superclustering is established
beyond doubt, and that the dimensions of second-order clusters (clusters of clusters
of galaxies) are 30 to 60 Mpc. This means that clusters cannot be treated as isolated
systems embedded in an isotropic, homogeneous medium of field galaxies. . .

Here the statisticians Jerzey Neyman and Elizabeth Scott admit that their clas-
sical and simple 2-level hierarchy model of galaxy clustering (Neyman and Scott
1952) was not enough to explain the real situation.

Further evidence came from the Lick Observatory survey by Shane and Wirta-
nen (1967). Its results were summarized by Shane (1975), close to the end of the
2D epoch: Clustering seems to be a general, if not a universal, property among
the galaxies. We find larger aggregations comprising numbers of clusters that ex-
tend over linear distances up to 30 Mpc. There is suggestive evidence of still larger
assemblages of galaxies on a scale of 100 Mpc or more.

The Cosmological de Vaucouleurs Law Carpenter (1938) found an intriguing
regularity among clusters of galaxies: larger clusters are less dense. In particular, the
number of galaxies N in a cluster grows with the size r as N(r) ∝ r1.5. Carpenter
viewed this relation as a cosmic restriction so that a cluster of a given extent may
have no more than a limited number of members. The relation extends from pairs of
galaxies to large clusters. This showed for him that small and large systems do not
essentially differ.

After comparing the distribution of Abell’s clusters with computer-made artifi-
cial maps, Kiang (1967) concluded that simple clustering by uniform clusters fails
to represent the world of Abell’s objects, in the same way as it has failed in the world
of galaxies, referring to Neyman and Scott’s model. He suggested that clustering of
galaxies occurs on all scales, without clear-cut hierarchic levels, and visualized the
arrangement so that the various clusters interpenetrate each other; this may guaran-
tee that the mean density does not depend on the volume. He came close to the view
of fractal clustering, but did not make the crucial step to the fractal concept, where
the mean density depends on the volume. Later Kiang and Saslaw (1969) found that
the clustering extends at least to scales of 100 Mpc.

Karachentsev (1966, 1968) added an important aspect to Carpenter’s result. He
estimated average properties of 143 systems from binary galaxies to superclusters
and found evidence that both luminous and total (virial) mass densities are decreas-
ing with increasing size of a system. This showed for the first time that the mass–
radius behaviour of the dark mass is also a power law, but the exponent is different
than for the luminous matter.

De Vaucouleurs made the decisive step in recognizing the cosmological signifi-
cance of the clustering of galaxies. The results of his thinking he published in 1970
in “The Case for a Hierarchical Cosmology”, where he suggested the existence of a
universal density–size law in the galaxy universe:

ρ(r)= ρ0(r/r0)
−γ , (11.1)

where ρ(r) is the mass density in the sphere of radius r and ρ0 and r0 are the
density and radius at the lower cutoff of the structure. The available galaxy data led
to γ ≈ 1.7.
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Fig. 11.1 De Vaucouleurs’s concepts of smooth and preferred-scales density–radius relation
(adapted from de Vaucouleurs 1971)

He considered two extreme cases for the possible behaviour of the density–radius
relation (Fig. 11.1). First, the density may decrease smoothly. This would happen if
there were no preferred sizes of systems (in modern terms, a stochastic fractal dis-
tribution). Second, the curve may have a series of peaks at several preferred scales,
corresponding to different kinds of systems (from galaxies to superclusters). In fact,
later the correlation analysis of observations pointed at the first case, with no pre-
ferred sizes.

11.2.2 Early Arguments for Homogeneity

Interestingly, many arguments also seemed to favour the uniformity of the galaxy
distribution. In this view clusters were considered as exceptional objects. Evidence
for homogeneity, as presented before the 1970s, included:

• Hubble’s galaxy counts
• Fluctuations in numbers of galaxies due to variable dust extinction
• Sandage-Tammann-Hardy argument from the local linear Hubble law
• Isotropic distribution of distant objects

Hubble’s Counts of Bright Galaxies Hubble (1926) concluded that his galaxy
counts correspond to the expectation from homogeneity up to m = 16. This was
widely regarded as evidence for a homogeneous world model.

The fundamental equation of stellar statistics (Eq. (3.2)), when applied to objects
having a power-law radial number density law n∝ r−γ , or a number–radius relation
N ∝ rD , gives the number of objects brighter than m as logN(m)= 0.2Dm+const,
with D = 3 − γ . For a uniform distribution (γ = 0) one obtains the Seeliger law
logN(m)= 0.6m+ const.
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Hubble found that in the range 8m–12m and at the point 16.7 the “0.6m-law” was
valid. For 10m–13m this was confirmed by Shapley and Ames (1932) in their cata-
logue, for the sum of the counts in the northern and southern skies. A shortcoming
was the lack of data within 12m–16m.

Hubble thought that clusters of galaxies contain only a small fraction of all galax-
ies, and the true distribution is quite smooth. This view had a strong impact on
theoretical cosmology, as expressed by Einstein in 1933: Hubble’s research has,
furthermore, shown that these objects are distributed in space in a statistically uni-
form fashion, by which the schematic assumption of the theory of a uniform mean
density receives experimental confirmation (cited by Peebles 1980). From this time
on the picture of a uniform galaxy field with clusters as rare fluctuations became a
paradigm of the homogeneous universe.

The bright galaxy counts were used by Sandage et al. (1972) to show the conflict
with de Vaucouleurs’s hierarchical model. For its γ = 1.7, logN(m) = 0.26m +
const, clearly different from the value 0.6m from the counts by Hubble and Zwicky,
available at the time. The modern counts in the range 10m–14m differ from these
old results (Sect. 12.1).

The Deep Counts Hubble (1934, 1937) extended the counts up to the magnitude
21 in his program on 1184 photographs (each covering 0.25 deg2) of random posi-
tions in the sky. Now the counts followed a 0.5m law at faint magnitudes. Hubble
did not abandon homogeneity, but tried to explain the deflection as due to a redshift
effect on galaxy magnitudes. Considering a kind of K-correction he concluded that
the 0.6m law may be obtained only in a static universe. In fact, to the end of his life,
Hubble thought that the cosmological redshift might be caused by something else
than expansion.

Sandage (2004) found three systematic errors that had affected Hubble’s calcula-
tions: (1) systematic errors in photographic magnitudes made them increasingly too
bright for fainter objects; (2) an error in the Hubble’s K-term; (3) when calculating
the spatial volumes in the Friedmann model for different redshifts Hubble used an
incorrect kind of distance (the redshift distance r ∝ z). Therefore, Hubble’s old re-
sult on faint galaxies cannot any longer be used as evidence either for homogeneity
or non-expansion.

Variable Extinction An argument against real superclusters referred to our
“dusty window” to extragalactic space. As the early evidence came from the 2D
sky, a natural source of worry was the variable light extinction in different direc-
tions, due to the cloudy dust foreground in the Milky Way.

Victor Ambartzumian (1940, 1951) developed the theory of a fluctuating Galac-
tic extinction and applied it to the counts of galaxies. In their well-known article
Neyman and Scott (1952) referred to Charlier and Ambartzumian and emphasized
two views: (1) galaxies are really clustered in space; (2) the clustering in the sky is
caused by variable extinction. Which factor dominates for clusters and superclus-
ters?

Warwick (1950), Holmberg (1974), and Fesenko (1975) concluded that the ob-
served clustering is much modified by dust. Zwicky (1955, 1957) proposed that



254 11 The Inhomogeneous Galaxy Universe: Observational Results

also intergalactic dust within clusters of galaxies could shade the background.
Karachentsev and Lipovetskii (1969) derived from counts of background clusters
a mean value of 0.2 mag for the B-band extinction.

Mattila (1977) detected diffuse light in the Coma cluster and concluded that part
of it could be scattered light from intergalactic dust in the cluster. Later together
with Stickel et al. (1998), he measured the far-IR emission of the dust in Coma
and calculated that the dust could cause only about 0.2 mag or less of extinction.
Teerikorpi (2002) showed from the reddenings of quasars seen through galaxy halos
(spectra of such quasars contain narrow absorption lines at lower redshifts) that
there is about 0.2 mag of extinction per halo. Inside compact galaxy clusters and
around the cores of rich clusters such as Coma the galaxy halos may almost overlap
in projection; one might on this basis alone expect an extinction of the order of
0.1 mag.

The argument from extinction lost its power after redshift maps revealed the
lumpy 3D galaxy distribution. However, Galactic extinction is still relevant for other
extragalactic subjects like the distance scale and the fluctuations in the cosmic back-
ground radiation.

The “Linearity” Argument de Vaucouleurs (1970) expected density fluctuations
to distort the Hubble law. In particular, in his hierarchical model the expansion rate
should be reduced by gravitation inside the Local Supercluster. His PhD student
Wertz developed a Newtonian expanding hierarchical model and predicted the de-
viation from linearity: the Hubble “constant” would grow with increasing distance
within 20 Mpc from us.

When Sandage et al. (1972) confronted the observations with the predicted devi-
ation from the Hubble law (Wertz 1971; Haggerty and Wertz 1972), the result was
striking: the linear law was found on all tested scales, while the hierarchical model
predicted so strong a deviation that one should not see any cosmological expansion
at distances closer than 20 Mpc. Later studies by Sandage, Ekholm, Karachentsev
and others strengthened the case: a linear flow starts close to the Local Group, al-
ready at 1.5 Mpc.

This test had a deeper meaning than being just a probe of the hierarchical distri-
bution of matter. It brought into light a paradox: both empirical facts were true, i.e.
the strongly inhomogeneous galaxy distribution and the linear Hubble law on the
same local scales. Sandage et al. (1972) suggested two possible solutions: either the
mass density parameter could be very small or there could be an invisible uniform
medium of high density. In both cases, the perturbations of the Hubble law would
be tiny. In fact, this cosmological test gave rise to a whole new approach, studying
the properties of the very local Hubble flow (we return to this subject in Chap. 12).

de Vaucouleurs (1972) did present evidence for a curved Hubble law in the lo-
cal universe. Teerikorpi (1975a, 1975b) argued that the phenomenon was caused
by a selection effect due to the magnitude limited catalogue influencing distance
estimates (Chap. 4).

Isotropy and Homogeneity Classically, from isotropy around one observer, to-
gether with the Copernican principle (“all points are alike”), one may infer the
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global homogeneity of the cosmic medium (Walker 1944; for a delightfully simple
argument, see Weinberg 1977). Before the 1970s three major observations supported
an isotropic matter distribution around us.

First, Hubble’s counts of faint galaxies (up to ≈ 21m) did not show large differ-
ences in different directions, after corrected for Galactic extinction.

Second, the thousands of faint radio sources in the early catalogues (4C, Parkes,
and others) were found to be uniformly distributed in the sky within statistical un-
certainty (Holden 1966; Webster 1977).

Third, already the first measurements of the cosmic background radiation (Con-
klin and Bracewell 1967; Penzias et al. 1969) found a smooth isotropy at the level
�T
T

< 10−3 for all angular scales up to arc-minutes.
These isotropies have generally been interpreted as strong evidence for homo-

geneity on scales exceeding 1000 Mpc. However, a final verdict requires direct ev-
idence from 3D-maps. It would also be useful to study which kind of a statistically
isotropic fractal structure would be compatible with the observed level of isotropy
as concerns galaxies and radio sources.

11.2.3 Results from Galaxy Angular Catalogues

The first deep wide area catalogues of galaxies and galaxy clusters appeared in the
1950s and 1960s, based on the Palomar Sky Atlas survey. Up to the 1970s, this was
the golden age of 2D angular catalogues.2

Angular Correlations The main tool was the angular correlation function tech-
nique, described in detail by Peebles (1980). The angular two-point correlation func-
tion w(θ) is defined analogously to ξ(r) as the excess probability relative to the
Poisson law to find an object in the solid angle δ
 at the angular distance θ from
randomly chosen objects in the sample:

δP = nδ
[1+w(θ)], (11.2)

where n is the mean surface density of objects in the sky.
A practical estimate of w(θ) for a sample of N galaxies in the sky is obtained by

counting objects in rings of radius θ and width δθ . If 
s is the survey solid angle,
the normalization condition is

N = n

∫

s

[1+w(θ)]d
. (11.3)

An important point is that if the 2D projection of an inhomogeneous spatial distribu-
tion is close to homogeneous, then this method cannot detect the true inhomogeneity
but regards it as a structureless Poisson distribution!

2The main sources were Abell’s (1958) catalogue of rich clusters, the Reference Catalogue by de
Vaucouleurs and de Vaucouleurs (1964), the Catalogue of Galaxies and Clusters of Galaxies by
Zwicky et al. (1961–68), and the Lick counts by Shane and Wirtanen (1967).
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Angular vs. Spatial Correlation Functions The aim of the analysis of angu-
lar catalogues was to infer the spatial correlation function ξ(r) from the measured
angular distribution. The relation between w(θ) and ξ(r) was derived by Limber
(1953), already in the context of galaxies (reviewed by Fall 1979).

Limber’s integral equation may be inverted analytically in order to obtain ξ(r).
This procedure requires differentiation of observed data always containing some
noise that amplifies errors. An important and useful case is the power-law solution.
Then the angular and the spatial correlation functions w(θ) and ξ(r) are simply
linked:

w(θ)=Aθ1−γ =AθD−2 ⇔ ξ(r)= Br−γ = Br−(3−D), (11.4)

where the constant A comes from observations and B depends on γ and the selec-
tion function φ (Fall 1979).

Caution: The power-law solution exists only if γ > 1, or D < 2. This means that the
method does not work for structures with the fractal dimension D ≥ 2 (cf. the fractal
projection theorem in Sect. 10.2.3). It is interesting to ask which side of D = 2 the real
galaxy distribution prefers!

Hierarchical D = 1.2 Models for 2D Catalogues In their pioneering work Tot-
suji and Kihara (1969) derived from the angular data of the Lick galaxy counts a
power law angular correlation function

w(θ)=Aθ−0.8, (11.5)

from which they finally obtained

ξTK(r)=
(

r

4.7h−1 Mpc

)−1.8

(11.6)

In 1973 Peebles started an extensive programme analysing all angular galaxy and
cluster catalogues, and concluded that these all are characterized by almost the same
power law with γ = 1.77 and r0 = 5h−1

100 Mpc in the interval 0.1–10 Mpc (reviews
may be found in Peebles 1980, 1993).

This was in fact a rediscovery of de Vaucouleurs’s density–radius relation on
small scales. Totsuji and Kihara (1969) and Peebles (1974) had for the first time
found that the galaxy correlation function is a power law with no peaks, contrary to
what would be expected from preferred scales (case 2 in de Vaucouleurs 1970). Thus
it naturally reflects the self-similarity of fractal structures (γ = 1.8 corresponds to
the fractal dimension D = 1.2).

The emerging picture of continuous hierarchy inspired the construction of protofractal
models for the galaxy distribution. Soneira and Peebles (1977, 1978) studied a regular
hierarchy of Fournier d’Albe’s type with 12 levels of galaxy pairs, so that kN = 2, kr =
1.76, and (from Eq. (10.8)) D = 1.23 (γ = 1.77). Soneira and Peebles concluded that
even this simple binary hierarchy model reproduced well the angular correlation function
of the galaxy distribution in the Lick counts. They also inferred from the Zwicky et al.
(1961–68) catalogue that there is no evidence for a spatially uniform population of field
galaxies. This confirmed the general tendency for galaxies to appear only in clusters.
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Tallinn 1977 Conference A landmark event in the study of clustering was the
IAU Symposium 79 The large scale structure of the Universe held in Tallinn, Esto-
nia, September 1977. This was also the first wide discussion of existing arguments
for and against homogeneity on extragalactic scales.

Peebles (1978) gave a review of the angular correlation function analysis. He em-
phasized that “a small systematic error in the angular distribution can be translated
into a very large error in the estimate of the spatial clustering” and that “redshift
data will allow us to avoid this problem”. Peebles argued that at distances≤ 10 Mpc
the galaxy clustering was described by a power law, but on larger scales the galaxy
distribution became homogeneous.

In a break-through work, Jõeveer and Einasto (1978) presented an analysis of
existing redshift data and concluded that galaxies are arranged in filaments sur-
rounding empty voids. They interpreted their surprising findings in terms of a cell
structure, with the mean diameter of voids about 50h−1 Mpc. The presence of large
structures and holes of various sizes was also demonstrated by de Vaucouleurs,
Tully, Abell, and others. Indeed, in his concluding remarks Longair (1978) noted
that Everyone seemed to agree about the existence of superclusters . . . systems on
scales∼ 30–100 Mpc. Then, when referring to the angular correlation analysis lead-
ing to a homogeneity scale at 10 Mpc, he asserted I am still a firm believer in the
basic correctness of the covariance analysis. Still today we are wondering if the two
results are compatible!

Emerging Evidence for D = 2 Though the angular correlations suggested the
fractal dimension D ≈ 1.2 (γ = 1.8), other pieces of evidence hinted at D ≈ 2. It is
interesting that Lundmark (1927) made in effect the first estimate of D on the basis
of Charlier’s model, noting that the second criterion is fulfilled, which corresponds
to D = 2. The scarce observations did not provide any convincing evidence, but
Knut Lundmark liked the idea that “the world is constructed in such a way that it is
not far from collapse on account of the total attraction being near one of the limits.”

Baryshev (1981) discussed some arguments in favour of the fractal dimension
D ≈ 2. Using such data as: (1) the galaxy number counts N(m) from 2m up to
24m; (2) the virial mass density—radius relation ρvir(R); (3) the peculiar-velocity
dispersion—radius relation σv(R), he concluded that a hierarchical model of galaxy
distribution with γ = 1 (D = 2) is consistent with the observations. A new theo-
retical idea on a special property of fractals with D = 2 was also presented, based
on Bondi’s (1947) consideration of the global gravitational part of the cosmological
redshift (Sect. 9.5.1).

Why Did Angular Catalogues Miss the D = 2 Structure? An explanation of
why it is difficult to study a fractal structure with dimension D ≥ 2 from the angular
distribution of galaxies was in essence given by Baryshev (1981). If we model a
part of the fractal as a spherical cluster of particles inside the radius R, then one can
derive the surface distribution F(σ) of the particles, projected on the sky, using the
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Abel equation

F(σ)= 2
∫ R

σ

ρ(r)
rdr√
r2 − σ 2

, (11.7)

where σ is the projected distance from the centre of the sphere.
For a power-law representation of a spherically symmetric fractal structure

ρ(r)= ρ0(r0/r)
3−D ∝ r−γ , analytical solutions exist in closed form for fractal di-

mensions 3, 2, and 1. For a homogeneous ball (D = 3, γ = 0)

F(σ)= 2ρ0r0
R

r0

√
1− σ 2

R2
. (11.8)

For a structure with D = 2 (γ = 1) we get

F(σ)= 2ρ0r0

[
ln

(
1+

√
1− σ 2

R2

)
+ ln

R

σ

]
. (11.9)

Finally, for D = 1 (γ = 2) the surface density will be

F(σ)= 2ρ0r0
r0

σ
arccos

σ

R
. (11.10)

Hence for the values σ 
R the surface density behaves approximately as

F(σ)∼ const (D = 3), F (σ )∼ lnσ (D = 2), F (σ )∼ σ−1 (D = 1).
(11.11)

For D = 3 and = 2 the surface density varies slightly. This means that the projected
distribution appears in the sky as a smooth surface. Thus the angular correlation
analysis becomes inefficient for structures with the fractal dimension close to or
larger than the critical value 2, because the information on the spatial structures with
D ≥ 2 is lost. As we already emphasized this result reflects the general theorem on
fractal projections (Sect. 10.2.3).

11.3 Redshift and Photometric Distance Surveys

For years, astronomers could make only indirect conclusions about the distribution
of galaxies on the basis of their projected locations in the sky. The situation was
changed when it became possible to make 3D maps of galaxies using data from
massive surveys of redshifts.
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Table 11.3 Some galaxy surveys. The columns: name of survey, solid angle 
 covered by survey,
magnitude limit, number of galaxies N , distance indicator

Catalogue 
 (sr) mlim N distance
indica-
tor

reference

CfA1 1.83 14.5 1845 z Huchra et al. (1983)

CfA2 (North) 1.23 15.5 6478 z De Lapparent et al. (1986)

PP 0.9 15.5 3301 z Haynes and Giovanelli (1988)

SSRS1 1.75 14.5 1773 z Da Costa et al. (1991)

SSRS2 1.13 15.5 3600 z Da Costa et al. (1994)

LCRS 0.12 17.5 26000 z Shectman et al. (1996)

IRAS 2Jy 4π 2. Jy 2652 z Strauss et al. (1992)

IRAS 1.2Jy 4π 1.2 Jy 5313 z Fischer et al. (1995)

ESP 0.006 19.4 4000 z Vettolani et al. (1997)

KLUN 4π 15 6500 TF Theureau et al. (1997b)

KLUN+ 4π 16 (20000) TF Theureau et al. (2005)

Local Volume 4π < 500 km/s 500 RGS Karachentsev et al. (2003)

2dF 0.27 19.5 250 000 z Colless et al. (2003)

SDSS π 19 106 z www.sdss.org

COSMOS 77′ × 77 25 500 000 photoZ cosmos.astro.caltech.edu

HUDF 3′ × 3′ 30 10 000 photoZ Beckwith et al. (2006)

11.3.1 Large Redshift Surveys

Nature has given the astronomer, in the form of the redshift–distance law, a way
to measure extragalactic distances, which is usually more precise than photometric
methods for regions where peculiar velocities are low enough.

Over 2700 galaxies had their redshift listed in the Second Reference Catalogue
by De Vaucouleurs et al. (1976). This was the breakthrough which made it possi-
ble to use redshifts for mapping the structures made by galaxies. During the last
decades, technological advances and systematic surveys have spurred a tremendous
explosion in the number of measured redshifts. Currently more than one million
redshifts have been measured.

Large redshift surveys are known by a number of abbreviations (from CfA to
SDSS; Table 11.3 shows the parameters for some of these). Based on these, several
3D maps have become available: both wide- and narrow-angle. The last decade saw
the appearance of especially large surveys: the two-degree field survey 2dF and the
Sloan Digital Sky Survey SDSS. The depth of these galaxy catalogues allows one to
detect and analyse structures with sizes up to 100 Mpc (see Fig. 11.2). Even much
larger scales have been probed using extremely deep surveys such as COSMOS and
HUDF. In principle, these surveys are able to detect structures with sizes of about
1000 Mpc, at lookback-time of around 109 years (Chap. 12).

http://www.sdss.org
http://cosmos.astro.caltech.edu
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Magnitude limit of a survey. The number of galaxies increases steeply with magnitude
(there is ∼ one galaxy/deg2 up to 15.5m and 85 up to 19m). Fortunately, multiple object
spectrographs allow a simultaneous detection of hundreds of spectra. Even if the sample
is complete up to a fixed limiting magnitude ml, its completeness in space depends on
the absolute magnitude M : the limit is at the distance modulus μl = ml −M . So, with
ml = 15.5 and M = −20, μl = 35.5 means the distance 125 Mpc, while galaxies with
M =−18 are sampled only up to 50 Mpc. Thus a survey probes the distribution of only
the most luminous galaxies at large distances, perhaps causing a biased picture. In order
to cope with this problem, one has to push the surveys to fainter limits, as one cannot tell
beforehand whether a galaxy is intrinsically bright or faint (distant or near).

11.3.2 Galaxy Catalogues with Photometric Distances

For the study of large-scale structure, redshift catalogues are generally superior to
those based on photometric distances: redshifts are (1) much less time-consuming
to measure, (2) usually more accurate than photometric distance indicators, and
(3) measurable for all Hubble types of galaxies.

However, some questions (such as the Hubble constant and galaxy streams) re-
quire large samples of galaxies for which both redshifts and photometric distances
are known. Even photometric distances as such are valuable. They can be used for
mapping the environment of the Local Group and for deriving the average number
density law around us.

Igor Karachentsev’s program of distance measurements to nearby galaxies within
about 10 Mpc has used especially the tip of the red giant branch (TRGB) method
(Karachentsev et al. 2003). Over these years many nearby galaxies have been re-
solved into stars for the first time in this program requiring large ground-based tele-
scopes as well as the Hubble Space Telescope.

The KLUN sample and its growing version KLUN+ (http://klun.obs-nancay.fr/
KLUN+) contain spiral galaxies for which photometric magnitudes and HI 21 cm
line widths have been measured. Using the TF relation, these quantities lead to an
estimate of the distance (up to ∼ 100 Mpc). Originally planned for measuring the
Hubble constant (e.g., Theureau et al. 1997b), the KLUN with its 5500 galaxies was
also used to study the density law of galaxies around us (Teerikorpi et al. 1998). In
the KLUN+ project an HI survey at the Nançay radio telescope is building a wide-
angle sample of 20 000 spiral galaxies (Theureau et al. 2005). The photometry, from
the DENIS (Near Infrared Survey) and 2MASS (2 Micron All Sky Survey), will be
complete to magnitude limits in five bands (B, I, J, H, K).

11.4 Analysis of the 3D Distribution of Galaxies

During the 1980s several galaxy redshift catalogues (Table 11.3) became available
for 3D analysis. The first survey, planned to produce a complete sample of redshifts
on a large region of the sky, was carried out at the Harvard-Smithsonian Center

http://klun.obs-nancay.fr/KLUN+
http://klun.obs-nancay.fr/KLUN+
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Fig. 11.2 A comparison of the CfA map (below) and the slice from the larger SDSS survey
(above). The Great Wall of CfA and the 500 Mpc long Sloan Great Wall extend across these
maps. Filamentary structures with sizes of 100 Mpc are evident. (Courtesy of J. Richard Gott III
and Mario Juric)

for Astrophysics. The redshifts for all galaxies brighter than 14.5 mag in Zwicky’s
catalogue were measured. A CfA survey map (see Fig. 11.2), published in a paper
titled A Slice of the Universe, became a symbol of the complexity of the galaxy
universe (de Lapparent et al. 1986).

11.4.1 The Fractal Breakthrough in the 1980s

After the concept of fractal entered the scene of large-scale structure research, one
part of the cosmological community continued to use the ξ -function method and
explained its peculiarities as due to a luminosity dependence of clustering. The sec-
ond, smaller, group started to apply the �-function, and this “fractal approach” has
also given rise to new fruitful directions for observational and theoretical studies.

ξ -Function Analysis of the CfA Data The paper by Davis and Peebles (1983;
DP83) was in many ways classical. It was the first systematic study of the CfA
data by the method of reduced correlation function. Complete to mB = 14.5 in the
regions (δ > 0, b > 40◦) and (δ ≥−2.5◦, b <−30◦)), the catalogue contained 2400
galaxies with redshifts.
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In DP83 the concepts of redshift-space and real-space correlation functions were
utilized, as developed by Peebles (1980). The peculiar velocities were treated us-
ing the method described in Sect. 10.4.5. The “cosmic energy equation” gave
〈vpec〉1/2 ≈ 850
1/2

0 km/s where vpec is the 3D rms peculiar velocity. Davis and
Peebles thus derived the density parameter 
0 ≈ 0.2 for the matter clustered as
galaxies on scales r < 1h−1 Mpc.

DP83 also suggested the ξ -function estimator that later came to be regarded as
standard. The calculation of data–random pairs was introduced for a correction of
the edge effect and to reduce the shot noise on small scales. The main conclu-
sion was that the real-space two-point correlation function after the projection has a
power-law form ξ ∝ r−γ in a surprisingly wide interval of scales:

ξDP(r)=
(

r

5.4h−1 Mpc

)−1.74

for 10h−1 kpc < r < 10h−1 Mpc. (11.12)

Together with estimated errors the ξ -function parameters were r0 = 5.4± 0.3h−1

Mpc and γ = 1.74 ± 0.04. It is important that for scales r > 10h−1 Mpc the ξ -
function drops, changes sign, and starts to oscillate near the zero-level. From what
we considered in Chap. 10, this is exactly as is expected for the ξ -function estimator.

After this pioneering work, the values of the unit scale r0 ≈ 5h−1 Mpc (defined
as ξ(r0)= 1) and the correlation exponent γ ≈ 1.8 have been generally considered
as standard cosmological numbers.

The Puzzling Behaviour of the ξ -Function In the 1980s it seemed that the first
3D map gave results consistent with the analysis of angular catalogues and that
the galaxy distribution becomes homogeneous on scales larger than 20h−1 Mpc.
Actually, an unexpected problem appeared. The characteristic length r0 was found
to depend on certain properties of the samples, such as the depth of the survey, the
type and luminosity of galaxies and clusters, and the mean separation between the
objects in the sample.

Unexpectedly, it was found that the length r0 (and hence the amplitude of the
ξ -function) is quite large for clusters of galaxies. Bahcall and Soneira (1983) cal-
culated the redshift-space ξ -function for a complete sample of 104 Abell clusters:
rcl

0 ≈ 25h−1 Mpc, γ cl ≈ 1.8. Klypin and Kopylov (1983) obtained almost the same
parameters, when they studied another Abell sample, containing 158 rich clusters
of galaxies: rcl

0 ≈ 25h−1 Mpc, γ cl ≈ 1.6. These results revealed quite a discrep-
ancy between the unit scales r0 for galaxies (5 Mpc) and for clusters (25 Mpc).
Moreover, when the ξ -function was calculated for superclusters of galaxies (Bah-
call and Burgett 1986; Lebedev and Lebedeva 1988), an even larger scale was found:
rcl

0 ≈ 60h−1 Mpc, γ cl ≈ 1.8. According to these data, the correlation length r0 in-
creases from 5 to 60 h−1 Mpc when one considers increasingly massive objects in
the universe.

An important property of this effect was also found by Einasto et al. (1986). From
galaxy and cluster samples having different volumes they found a rough relation
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between the derived scale r0 and the depth Rs of the sample:

r0 ∝Rs. (11.13)

In the framework of Gaussian density fluctuations on a homogeneous background
this behaviour of the ξ -function is enigmatic. The most popular explanation is
Kaiser’s (1984) idea of biased galaxy formation, based on a possible relation be-
tween the correlation functions for galaxy clusters and for the underlying mass den-
sity field. Here clusters are viewed as rare high density spots in the density field, so
that one might expect

ξclust = bξdensity(r). (11.14)

The bias factor b is about 10 if ξdensity = ξgal. This means that galaxies in clusters
are formed from rare peaks above some global threshold in the primordial density
field. However, the validity of this explanation was criticized by Gabrielli et al.
(2004). They showed that the increasing sparseness of peaks over the threshold in
Gaussian random fields does not explain the observed increase of the amplitude of
the correlation function ξ(r).

Other possibilities, such as luminosity segregation (Davis et al. 1988), demand
careful studies with larger galaxy samples.

Pietronero and the Mystery of r0 A radically new interpretation of the be-
haviour of the ξ -function was found by Pietronero (1987). He introduced the �-
function method for the 3D galaxy map analysis and derived the relation between
the � and ξ functions (Chap. 10). For a spherical sample with the depth Rs and a
fixed galaxy luminosity Pietronero derived that for a fractal structure one expects
a linear dependence of r0 on Rs. Hence the increasing amplitude of the ξ -function
and the corresponding increase of r0 for deeper samples may not be due to a larger
correlation length, but may be an artifact caused by the definition of the reduced
correlation function.

In the first �-function analysis of the CfA catalogue, Coleman et al. (1988) found
a power-law �(r) with γ = 1.5 ± 0.2. The fractal behaviour was detected within
the interval from 1 up to 20 h−1 Mpc without any characteristic scale, contrary to
r0 = 5 h−1 Mpc from the ξ -function.

Cellular Fractal Structure A few months after Pietronero’s 1987 article, the
fractal interpretation of the correlation length versus depth was applied to redshift
data by Calzetti et al. (1987). They confirmed the linear relation between r0 and Rs ,
when the depth changed from 5 up to 50h−1 Mpc.

Then Ruffini and collaborators developed a cellular model of the Friedmann uni-
verse: within cells with sizes of about 100 Mpc the distribution of galaxies has the
fractal dimension D ≈ 1.2, and on larger scales the universe becomes homogeneous
(Ruffini et al. 1988; Calzetti et al. 1988, 1989). The main conclusion was that de
Vaucouleurs’s density law may be reconciled with the uniform Friedmann model if
fractality has a maximum scale.
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The Ruffini at al. model uses hypothetical massive dark matter particles “ino”, which
obey Fermi statistics and are responsible for the initial density fluctuations of the cellular
structure formation. The “ino” rest-mass-energy is 0.4–10 eV, and the density parameter
would be 
ino = 0.4–1. The size of the fractal cell is about 100 Mpc, determined by
the Jeans length at the epoch when “inos” decoupled from matter. The angular scale of the
corresponding CBR fluctuations is about 1°. The low value of D ≈ 1.2 from the ξ -function
was used. It would be interesting to reconsider this model for D ≈ 2.

Multifractals and the ξ -Function Method Jones et al. (1988) and Martinez and
Jones (1990) noted that when they applied the methods of box-counting and mini-
mal spanning tree for determining the Hausdorf dimension DH of the CfA redshift
survey, they obtained the value DH = 2.1± 0.1. However, from the ξ -function for
the same galaxy catalogue they concluded that the correlation dimension differs
from this value, D2 = 1.2, hence “the Universe is not a simple fractal. It is a more
complex structure, a multifractal”. An analogous conclusion was made by Klypin
et al. (1989) and Balian and Schaeffer (1989).

Here we may have an example of how the method of data analysis can affect
theoretical conclusions. Indeed, as discussed in Chap. 10, the estimation of the frac-
tal dimension from the ξ function as D2 = 3 − γξ on scales close to r0 gives an
erroneous result, because there γξ (r = r0) ≈ 2γ (here γ is the true value of the
correlation dimension). In order to take into account this deflection in the observed
slope γξ (r = r0)= 1.8, we calculate D2 = 3− γ = 3− (γξ (r = r0)/2)= 2.1.

Therefore one may conclude that after all D2 ≈DH, i.e. the correlation dimen-
sion is consistent with the Hausdorf dimension for the CfA data and there is no need
for multifractality based on unequal dimensions. Modern results of the �-function
analysis for CfA, 2dF, SDSS and other galaxy redshift surveys confirm the value for
the correlation dimension D2 ≈ 2, and hence eliminate the need for a multifractality
of this kind.3

11.4.2 Further Steps in the Debate

In the 1980s, new evidence appeared for structures with sizes much larger than the
scale r0 derived from the ξ -function analysis.

Balatonfured 1987: Very Large Structures The results of a decade of research
after the Tallinn 1977 meeting were discussed at the 130th IAU Symposium in Hun-
gary.

3The multifractal picture, characterized by a continuous set of fractal dimensions, is a general-
ization of fractal properties (Paladin and Vulpiani 1987; Benzi et al. 1984). Multifractals may be
viewed in different ways because of the complexity of the problem (even for fractals there is no
unique definition). They are in contrast with homogeneity exactly like fractals are. Such an ap-
proach was first suggested for galaxy distributions by Pietronero (1987) (see Gabrielli et al. 2005;
Martinez and Saar 2002; Jones et al. 2004).
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In Balatonfured, new observations on the reality of structures with sizes of about
100 Mpc were presented. An extension of the CfA redshift survey (Huchra et al.
1988) showed that empty regions (voids) and filaments are common in the galaxy
distribution. The sizes of voids achieve 50 h−1 Mpc.

Karachentsev and Kopylov (1988) reported the results of a survey of 245 galaxies
in a narrow strip which passed through the Coma cluster. They detected a bubble-
like structure within the Coma supercluster and found that the average size of 14
voids was about 25h−1 Mpc.

The biggest structures were revealed by studies of rich galaxy clusters. Tully
(1986, 1987) analysed the distribution of 47 Abell clusters within a region up to z=
0.1 and found a flat structure having a size of about 300h−1 Mpc (the Pisces–Cetus
Supercluster Complex). Similar results from an even deeper survey were obtained
by Kopylov et al. (1988)—the program “The Northern Cone of Metagalaxy” with
redshifts up to z= 0.28 for 58 rich compact clusters with bII > 60° suggested that
there are structures on huge scales up to 500h−1 Mpc.

In the conference summary by Peebles (1988) one may read: There is consider-
able evidence of structure on scales ≥ 50 h−1 Mpc, but I think it is fair to repeat the
old questions: could this be an artifact of errors in the catalogues? Could the eye be
picking patterns out of noise? If the answers were definitely “no” it would be very
damaging for scale invariant cold dark matter. We all will be following the debate
with great interest.

Princeton “Dialogues’96” In 1996 the conference Critical Dialogues in Cos-
mology in Princeton was opened by the dialogue between Marc Davis and Luciano
Pietronero on the homogeneity of the galaxy distribution.

Davis (1997) discussed “overwhelming evidence for large scale homogeneity on
scales in excess of approximately 50h−1 Mpc, with a fractal distribution of matter on
smaller scales”. He emphasized that the observed correlation function ξ(r) is well
characterized by a power law, ξ(r)≈ (r/r0)

−γ , with r0 ≈ 5h−1 Mpc and γ = 1.8.
Hence the fractal dimension on scales r < r0 is D = 1.2. His arguments for homo-
geneity included, e.g., the isotropy of X-ray and radio source counts. He argued that
ξ(r) can be reliably recovered from the observed angular correlation function w(θ)

and he concluded: The measured two-point galaxy correlation function ξ(r) is a
power law over three decades of scale and approximates fractal behavior on scales
of 0.01h−1 Mpc < r < 10h−1 Mpc, but on scales larger than ≈ 20h−1 Mpc, the
fractal structure terminates, the rms fluctuation amplitude falls below unity, and the
Universe approaches homogeneity, as necessary to make sense of a FRW universe.

Pietronero defended such fractality which extends deeper. He described the �-
function method appropriate for the study of fractal structures and compared it with
the ξ -function. His main points were (Pietronero et al. 1997): (1) The method of ξ
function gives artificially distorted values both for the fractal dimension D and the
homogeneity scale rhom, (2) �-function is appropriate when one wants to estimate
the true value of D and to detect the crossover to homogeneity. (3) The �-function
analysis of the available 3D catalogues gave the fractal dimension D = 2.0± 0.2 on
scales up to the radius Rsph

max of the largest sphere contained in the sample. Pietronero
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also noted that the homogeneity scale was not yet reached in existing galaxy cata-
logues.

Both sides agreed that the galaxy distribution is fractal at least within scales 0.1–
10h−1 Mpc. But they disagreed about the values of the fractal dimension (Davis for
D ≈ 1.2, Pietronero for D ≈ 2) and the homogeneity scale (Davis for Rhom ≈ 20h−1

Mpc, Pietronero for Rhom ≥ 150h−1 Mpc).

11.4.3 Sky Projection of Fractals: The Angular �-Function

The fractal dimension D = 1.2 and the homogeneity on scales larger than r0 = 5h−1

Mpc were supported by the analyses of angular catalogues. Indeed, starting with
Totsuji and Kihara (1969) the analysts found in all angular galaxy catalogues
the universal behaviour of the angular correlation ξang(θ) ∝ θ−α with α ≈ 0.8.
For scales r < r0 in 3D space this would correspond to the fractal dimension
D = 2 − α ≈ 1.2. As this is less than 2, then the fractal projection theorem dis-
cussed in Chap. 10 allows one to estimate the true fractal dimension from the galaxy
distribution projected on the sky.

However, this logic is not quite watertight. If the spatial galaxy distribution is
actually a fractal structure with D ≥ 2 it is not certain if we could detect it from
the angular distribution of galaxies, as the projection would imitate a homogeneous
surface density. Consequently, 3D maps are required for detecting and reliably mea-
suring structures with D ≥ 2.

A decade after the first hint of a possible “conspiracy” of structures with D ≥ 2
(Baryshev 1981), detailed studies started to appear on the complex problem of an-
gular projections (Dogterom and Pietronero 1991; Coleman and Pietronero 1992;
Durrer et al. 1997 and others).

The Method of Angular �-Function The best demonstration of the consistency
of the observed angular and spatial fractal structures with D ≈ 2 was given by Mon-
tuori and Sylos Labini (1997). They studied 3D maps together with the correspond-
ing angular distributions from several redshift catalogues. For an undistorted esti-
mation of the correlation exponent in angular data they used the conditional surface
density �ang

�ang(θ)= 1

S(θ)

dN(θ)

dθ
= BangD

2π
θ−α, (11.15)

where S(θ)dθ is the solid angle element (S(θ) ≈ 2πθ for small angles θ 
 1),
N(θ)= Bangθ

D is the number of galaxies in the “polar cap” with the radius θ and D

is the fractal dimension of the 3D structure. If 0≤D < 2, then the fractal dimension
Dpr of the projected structure coincides with D.

This analysis of angular and spatial �-functions demonstrated clearly that the
fractal dimension of the observed structure is

D = 1.9± 0.1. (11.16)
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The angular correlation exponent was α = 0.1± 0.1 and the spatial correlation ex-
ponent was γ = 1.1± 0.1 for all studied catalogues.4

The most interesting fact shown by this study was that the previously derived
“universal” value of the angular correlation exponent αw = 0.8 could be an artefact
caused by the w(θ) method itself. This reduced correlation function gives distorted
values of the true correlation exponent. Similarly as with the ξ -function, the under-
lying reason is the normalization condition.

Here again the story of how to find the true correlation exponent revolves around
the difference between the power-law behaviour of the complete correlation function
and the non-power-law reduced correlation function. This happens both for angular
and spatial distributions.

11.5 Results from the 2dF and Sloan Digital Sky Surveys

The 2dF redshift survey (Colless et al. 2003) opened new prospects for differ-
ent kinds of statistical analyses. This survey contains about 220 000 galaxies in
two narrow slices of about 90◦ × 15◦ (SGP) and 75◦ × 10◦ (NGP) complete up
to bj = 19.5, with a typical redshift zs ≈ 0.15, and a typical absolute magnitude
Ms ≈−20.0+ 5 logh (Norberg et al. 2002).

The Sloan digital sky survey (SDSS) with its million redshifts and wide sky cov-
erage (about π steradians) is presently the best sample for the study of fundamental
questions of the galaxy distribution (the web site of SDSS: http://www.sdss.org/).

In order obtain reliable information on the correlation exponent and the homo-
geneity scale from these large samples, one should be aware of the methodological
limitations, as explained above. We will see that within the common range of appli-
cability ξ and � functions give compatible results.

11.5.1 The 2dF Galaxy Survey

Redshift Space ξ - and �-Functions Hawkins et al. (2003) analysed the 2dF data
using the reduced correlation function ξ . The redshift-space correlation function
was approximated by two different power-law forms:

ξz(s)=
(

13h−1 Mpc

s

)0.75

for 0.1 < s < 3h−1 Mpc, (11.17)

ξz(s)=
(

6.82h−1 Mpc

s

)1.57

for 3 < s < 20h−1 Mpc. (11.18)

4The angular correlation exponent α is related to D as α = 2−D = γ −1. The last equality follows
from the relation between the spatial and angular �-functions (the 3D �(r)∝ r−γ with γ = 3−D

and the angular �ang(θ)∝ θ−α with α = 2−D.)

http://www.sdss.org/
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Fig. 11.3 Conditional
density in spheres in six
volume-limited samples of
the 2dF GRS catalogue
(Fig. 4 from Vasilyev et al.
2006; reproduced with
permission © ESO). The
reference line is a power-law
with slope γ = 0.8,
corresponding to the fractal
dimension D = 2.2

On larger scales 30÷ 60h−1 Mpc, ξz(s) becomes negative.
Such a behaviour of ξ agrees with our discussion in Chap. 10. It means that the

distribution within the scales 0.1 < s < 3h−1 Mpc may be considered as a fractal
structure with the dimension D = 3−γ = 2.25. For scales s > 3 Mpc the ξ -function
continuously changes its slope and at r0 ≈ 5h−1 Mpc the exponent becomes γro =
2γ = 1.5 as predicted by Eq. (10.57).

Using the �-function in volume-limited samples, Vasilyev et al. (2006) derived
that the conditional density for the 2dF data is a power-law with the exponent γ =
0.8± 0.2 on scales 0.5 < s < 40h−1 Mpc (Fig. 11.3).

This value D = 2.2±0.2 is consistent with results obtained by Sylos Labini et al.
(1998) for all redshift catalogues available at the time. In their �-function analysis
the probed scales were limited by the radius of the maximum sphere rmax

sph within the

sample volume, i.e. about 20h−1 Mpc for slice-like surveys and 100h−1 Mpc for
the LEDA sample.

11.5.2 Results from the SDSS Survey

Zehavi et al. (2002) performed the ξ -function analysis of a sample of 29 300 SDSS
galaxies (redshifts 5700 < cz < 39000 km/s, absolute magnitudes −22 < Mr <

−19 +5 logh). The derived redshift-space ξ function has a non-power law form
(their Fig. 5). In the interval 2 < s < 8h−1 Mpc the ξ -function was approximated
by the power-law ξz(s)= (s/8.0h−1 Mpc)−1.2. Actually ξz(s) has three character-
istic intervals of scales: (1) the interval 0.1–0.5h−1 Mpc where γ ≈ 1.8, (2) 0.5–
5h−1 Mpc where γ ≈ 1, and (3) 5–30h−1 Mpc where γ ≈ 1.8. As we discussed
above, such a behaviour of the ξ function is just as expected for a fractal structure if
one takes into account the characteristic scales Rsep, r0, and R

sph
max.

The SDSS Luminous Red Galaxy sample is so deep (〈z〉 ≈ 0.3) that the radius of
the maximal sphere R

sph
max is about 100h−1 Mpc. Hogg et al. (2005) found for 3658
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Fig. 11.4 Conditional density in spheres for the three largest volume-limited samples of SDSS
DR4 main galaxies catalogue (from Sylos Labini et al. 2007; reproduced with permission © ESO).
There is the power-law correlation with γ = 1.0 ± 0.1 in the interval of scales [0.5, 30] Mpc/h
and large fluctuations on scales [30, 100] Mpc/h. The apparent tendency to homogeneity after
30 Mpc/h may be related to the strongly decreasing number of large spheres inside the slice-like
sample volumes

LRG galaxies that �∗(r) is a power-law corresponding to D ≈ 2 in the interval
1–25h−1 Mpc. On scales 25–70h−1 Mpc there is a deflection from the power law,
and within 70–100h−1 Mpc �∗ achieves a constant value. This was interpreted as a
detection of the homogeneity scale (but see Chap. 12).

A �-analysis of the SDSS DR4 main galaxy sample (Sylos Labini et al. 2007)
found power-law correlation with γ = 1.0± 0.1 in the interval 0.5–30h−1 Mpc and
large fluctuations in slope on larger scales (Fig. 11.4).

Other Results Tikhonov et al. (2000) and Tikhonov and Makarov (2003) pre-
sented results from the �-function method for several galaxy samples. They found
the fractal dimension D ≈ 2 on scales from 1 to 30 Mpc.

The method of the two-point conditional column density (Sect. 10.4.2) allows
one to extend the fractal analysis up to the depth Rs of a survey with slice-like ge-
ometry. The studies of LEDA, SDSS, and 2dF galaxies (Baryshev and Bukhmastova
2004; Vasilyev 2004; Vasilyev et al. 2006) extended the maximum scale from 20h−1

Mpc (the �-function method) up to ∼ 100h−1 Mpc. The result was that D ≈ 2.2 for
the whole range of scales.

11.5.3 Power Spectrum and Intersection of Fractals

We illustrate the method of power spectrum analysis by considering its application
to the galaxy data from the CfA and SDSS galaxy samples.



270 11 The Inhomogeneous Galaxy Universe: Observational Results

The CfA Survey The power spectrum of the CfA survey was discussed by Park et
al. (1994) using four volume-limited samples with about 1000 galaxies per sample
and with the depths from 60 to 130h−1 Mpc. The power spectrum is well described
by two power laws: on the scales 5–30h−1 Mpc the spectrum is P(k)∝ k−2.1, while
within 30–120h−1 Mpc it is P(k) ∝ k−1.1. As the radius of the maximal sphere is
about 30h−1 Mpc, this means that the observed behaviour of P(k) is like for a fractal
structure with D = 2.1 up to scales r = 120h−1 Mpc. On scales r > R

sph
max the survey

effectively becomes two-dimensional and the theorem of intersection predicts that
the dimension of the intersection should be Dint =D − 1= 1.1, just as observed.

The SDSS Survey The power spectra of several vl-samples of the early data
release SDSS survey were analysed by Tegmark et al. (2004). Their Fig. 22 presents
the decorrelated real-space galaxy-galaxy power spectrum, and again two power
laws can be seen: on the scales 10–60h−1 Mpc the spectrum is P(k) ∝ k−2, while
within 60–200h−1 Mpc the spectrum is P(k)∝ k−1. Similarly as for the CfA, this
is consistent with a fractal structure with D ≈ 2 on all considered scales. The same
behaviour was found also for the 2dFGRS sample (Tegmark et al. 2002).

11.6 Concluding Remarks

The history of the study of the large-scale structure demonstrates that the statistical
parameters of the observed galaxy distribution should be derived using adequate
mathematical techniques. This means that the samples of galaxies should first be
tested for the necessary conditions required by the intended correlation analysis
(Sylos Labini et al. 2009b). Earlier, when this was not done, discoveries of larger
and larger structures from more extensive data were unexpected and surprising.

In a Nature review, Wu et al. (1999) gave an apt summary of the situation as
follows: “The Universe is inhomogeneous—and essentially fractal—on the scale
of galaxies and clusters of galaxies, but most cosmologists believe that on larger
scales it becomes isotropic and homogeneous.”. It is also true that we are still not
quite certain about the large scale beyond which the lumpy galaxy universe looks
really smooth. In Chap. 12 we will discuss further steps in the analysis of the 3D
galaxy maps. One question is if one can see truly superlarge structures, on giga-
parsec scales, in deep fields.



Chapter 12
Some Outstanding Problems of Cosmological
Physics

We conclude with short descriptions of a few important problems of cosmological
physics. These also serve to tie together several topics from previous chapters.

We first consider two questions about the large-scale structure: Has the crossover
scale to homogeneity already been found? How certain is the detection of the Bary-
onic Acoustic Oscillations (BAO) on 100 Mpc scales in the distribution of galaxies?
This feature is an important prediction of the standard cosmology.

Second, we look at more nearby space, and discuss whether dark energy, initially
detected on 1000 Mpc scales, can also be observed on small scales, in the local
galaxy universe. This would form a local test of the standard cosmology with its
everywhere smooth dark energy (Einstein’s �-term).

Third, we describe interesting conceptual problems in the ideal Friedmann
model, related to the physics of space expansion. These may suggest new theoretical
developments and cosmological tests.

12.1 Homogeneity Scale and Superlarge Structures

The Great Debate on the nature and distances of spiral nebulae, around 1920, her-
alded the change of our Milky Way into an ordinary galaxy, whereby the centre of
the world finally disappeared into the expanse of galaxies. It soon went over to a dis-
cussion of the structure of the galaxy universe. Where does one find the smoothness
that Newton and Einstein pondered about? How large is the scale where the universe
becomes homogeneous? This question has always been at the heart of cosmology,
linked as it is to cosmological principles and to the problem of structure formation
on different scales.

Y. Baryshev, P. Teerikorpi, Fundamental Questions of Practical Cosmology,
Astrophysics and Space Science Library 383,
DOI 10.1007/978-94-007-2379-5_12, © Springer Science+Business Media B.V. 2012
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12.1.1 How to Establish the Homogeneity Scale?

Early counts of bright galaxies were close to the 100.6m law, pointing to smoothness
at quite short distances of several megaparsecs. As one might now guess from large-
scale 3D maps, showing much larger structures, those results were spurious. Modern
LEDA galaxy counts in the B magnitude range 10 to 16 give shallower slopes.

All-Sky Counts of LEDA Galaxies Especially in the epoch of angular galaxy
catalogues, the counts were regarded as evidence for a homogeneous galaxy distri-
bution. Also, the local counts served as a reference value for deeper galaxy counts.

The Lyon extragalactic data base (LEDA), created by Georges Paturel in 1983,
is a continuation of de Vaucouleurs’s Reference Catalogue and its later editions. In
fact, The Third Reference Catalogue (De Vaucouleurs et al. 1991) was already based
on the LEDA data. The LEDA database offers currently a catalogue of homogeneous
parameters of galaxies for the largest available whole sky sample. Among its more
than million galaxies, about 50 000 galaxies have a measured B magnitude brighter
than 16 mag.

Made from the amalgamation of all available catalogues and continually being
revised with the flow of new data, the completeness of the LEDA sample has been
studied over the years by inspecting the counts (Paturel et al. 1994, 1997b; Courtois
et al. 2004). Along with the completeness, the counts give information about the
slope of the bright end of the galaxy counts, hence on the spatial distribution law.

Teerikorpi (2004), in connection with a study of the influence of the Eddington
bias (Sect. 3.1.2) on galaxy counts, investigated the LEDA galaxy counts in the B
magnitude range 10–16. The analysis of the counts indicated a slope of 0.44 in the
B range 10–14, which corresponds to D = 2.2 up to scales of about 100h−1 Mpc.
Rather similar results were obtained by Courtois et al. (2004), who calculated the
regression line up to B = 16 for a somewhat different LEDA sample, and derived
the slope of about 0.5.

Radial Number Counts from the KLUN Sample Usually the large-scale struc-
ture is studied with redshift as a distance indicator. However, it is possible to use
other distance measures. Teerikorpi et al. (1998) derived the radial spatial distribu-
tion of galaxies around our Galaxy, using over 5000 Tully–Fisher distance moduli
from the KLUN program. The results gave clear evidence for a decrease in the av-
erage density consistent with the fractal dimension D = 2.2 ± 0.2 in the distance
range 10–100h−1 Mpc.

The method of distance moduli differs from usual galaxy counts in the sense
that the TF moduli probe with a better spatial resolution the distribution of galax-
ies. A magnitude measurement provides a very poor distance estimate, while a TF
distance modulus has an error of about 0.5 mag. Furthermore, the method takes into
account the incompleteness of the sample.

The results from the counts and the TF distance moduli have important conse-
quencies: First, there is no slope of 0.6 in the B magnitude interval brighter than 14,
i.e. no uniformity in the galaxy distribution up to 100h−1 Mpc. Second, the counts
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logN(m) = 0.44m + const in LEDA, the radial distribution N(r) ∝ r2.2 for the
KLUN sample, and the conditional density for main redshift catalogues �(r)∝ r−1

(Chap. 11) are consistent with a fractal structure having D = 2.2± 0.2 within the
scales 10–100h−1 Mpc. Third, the inhomogeneity on small scales influences the es-
timation of average number and luminosity densities (Joyce and Sylos Labini 2001).
For a fractal structure these densities depend on the radius of the volume in which
they are calculated. This means, e.g., that the usual normalization of deep galaxy
counts based on the local homogeneity should be revised to take into account the
local radial inhomogeneity.

The Problematic Homogeneity Scale In the 1930s Hubble argued that galaxy
clusters were the largest units in the distribution of matter, whereas Shapley pre-
sented evidence for still larger structures and he turned out to be right. In our times
the superclusters of galaxies have put the border of uniformity to a scale of at least
100 Mpc. On the other hand, the isotropy of the cosmic background radiation and
other arguments make us expect that on scales large enough the universe is homo-
geneous.

There are reports that the homogeneity scale has been already found in the avail-
able data, like the luminous red galaxy (LRG) sample of the SDSS. According to
Hogg et al. (2005), a power law with γ = 1 (D = 2) gives a good fit to the LRG
data up to at least 20h−1 Mpc after which the decrease of the density gets slower,
and there seems to be a flattening around 70 Mpc up to 100 Mpc, the largest scale
probed by the sample.

As we described in Chap. 10, a galaxy sample is characterized by several param-
eters, which are important for the correlation analysis of the spatial galaxy distri-
bution, among these the radius Rsph

max of the maximum sphere completely contained
in the sample. Joyce et al. (2005) have discussed the difficulties in establishing the
transition to a well-defined mean density. In a slice-like survey, such as the ear-
lier data releases of SDSS, an artificial homogenization may happen starting from
scales of about 0.25Rsph

max, when independent spheres in transversal direction cannot
be completely embedded in the sample volume. Hence the findings of a homogene-
ity should in future be checked using larger spherical volumes.

Self-averaging Properties of Galaxy Fluctuations Analyses of finite sam-
ple distributions usually assume that fluctuations are self-averaging, which means
that they are statistically similar in different regions of the given sample volume
(Chap. 10). By using the scale-length method, Sylos Labini et al. (2009b) tested
whether this assumption is satisfied in several samples of the SDSS Data Release
Six. They found that for scales shorter than 30h−1 Mpc, the probability density
function (PDF) was indeed statistically stable. However, on large spatial scales
(r > 30h−1 Mpc), the PDF showed systematic variations in different subvolumes
of the survey. Thus while up to 30h−1 Mpc galaxy structures have well-defined
power-law correlations, on larger scales it is not possible to consider whole sample
averages as useful statistical descriptors. This means that the density fluctuations
are too large in amplitude and too extended in space to be self-averaging on such
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large scales inside the sample volumes. Sylos Labini et al. (2009b) concluded that
the galaxy distribution is inhomogeneous up to the largest scales (r ≈ 100h−1 Mpc)
probed by the SDSS samples.

Sylos Labini et al. (2009a) studied also the statistical properties of large-scale
galaxy structures in samples from the 2dF Galaxy Redshift Survey. They measured
conditional fluctuations by means of the scale-length method and determined their
probability distribution. It was found that the galaxy distribution in these samples is
characterized by large-amplitude fluctuations with a large spatial extension, whose
size is only limited by the sample’s boundaries. These fluctuations were detected in
two independent regions in the northern and southern galactic caps (see also Sylos
Labini 2011).

12.1.2 Fluctuations in Very Deep Fields—Gigastructures?

Though the available data may not yet be sufficient to define the crossover scale to
homogeneity, one can find evidence for occasional very large structures which may
suggest some further surprises in this subject.

Spatial Tomography and Fluctuations in Deep Fields A perspective method
of the structure analysis on the very largest scales is offered by photometric red-
shifts with an accuracy of about 0.003%. For example, in this way Padmanab-
han et al. (2007) found for the large LRG sample of the SDSS that the power
spectrum P(k) has an exponential dependence extending to the gigaparsec scales
λ= 2π/k ≈ 1200h−1 Mpc.

Nabokov and Baryshev (2010a, 2010b) used the COSMOS, FDF, HUDF, and
HDF-N galaxy catalogs1 to study the prospects for the method of very deep narrow
fields (the 3-D space tomography as discussed in Sect. 10.4.3) for searching for
superlarge structures in the spatial distribution of galaxies. Their analysis of the
distribution N(z) of photometric redshifts in a grid of deep fields pointed to the
possible existence of superlarge structures with a contrast dN/N ∼ 50% and having
sizes of about 1000 Mpc (Fig. 12.1). This work demonstrated the usefulness of
the space tomography method as a tool for studying gigaparsec scale structures.
However, the reality of the detected candidate gigastructures must be verified by
further observations with a finer grid of deep fields. Nabokov and Baryshev note that
the influence of systematic errors can be reduced by observing the same deep fields
with several 3–10 metre telescopes and using different methods for determining the
photometric redshifts.

1These deep galaxy surveys are COSMOS (Cosmic Evolution Survey), FDF (FORS Deep Field of
the ESO VLT), HUDF (Hubble Ultra Deep Field), and HDF-N (Hubble Deep Field North). The
COSMOS survey contains about half a million photometric redshifts evaluated using 30 filters for
over 600 000 galaxies in a field of 77′ ×77′, with the limiting B magnitude of 26. The other samples
are smaller in galaxy number and field size, but extend deeper, with the limiting magnitudes 27–30.
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Fig. 12.1 Left: Radial distribution of galaxies from the COSMOS photometric redshift survey
(382143 galaxies). The solid curve indicates superlarge regions with densities higher or lower
than the expected average one (the dashed curve). Right: Relative deflections of galaxy numbers
in redshift bins for three resolutions in redshift. The expected Poisson level is also shown. From
Nabokov and Baryshev (2010b)

It is well known that the distribution of the redshifts of high-z quasars show non-
uniformities due to selection effects (Sect. 9.5.2). In order to study systematic effects
in galaxy photometric redshifts, artificial catalogs of uniformly distributed galaxies
with parameters corresponding to those of the surveys should be compiled to accom-
pany the deep field observations, so that selection effects and systematic distortions
in the observed photometric red shift distributions can be evaluated quantitatively.2

Anyway, it is interesting that the relative density fluctuations in the COSMOS-
HUDF-FDF fields behave similarly (Nabokov and Baryshev 2010b). Since the data
for these fields were obtained with different instruments and processed in different
ways, it is possible that real superlarge structures are making a significant contri-
bution to the observed fluctuations (Fig. 12.1). For example, the HUDF and FDF
fields are separated from one another in the sky by 36°, so that the transverse size of
a superlarge structure at a distance of z= 1 would be about 1700h−1 Mpc.

Observations of the redshifts of gamma bursts can also serve as a grid that covers
the entire sky. Available redshift data for more than 100 SWIFT gamma bursts are
compatible with the existence of superlarge structures in the distribution of their
parent galaxies (Nabokov and Baryshev 2008b). Raikov et al. (2010) concluded that
gamma bursts with z < 3 have an inhomogeneous spatial distribution with signs of
fractality (D = 2.2–2.5).

Known Large Structures The existence of superlarge structures is also consis-
tent with the already known large structures in the universe discovered by differ-
ent observational techniques. In the local universe, there is Paturel’s “hypergalactic

2The ALHAMBRA project (Moles et al. 2008), with observations of 8 deep fields in 20 filters and
a total of 6.6× 105 galaxies, is currently in the process of completion.
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plane” (Paturel et al. 1988; Courtois et al. 2004), whose influence may have been
present in the number density gradient found from the KLUN galaxy sample up
to about 100 Mpc (Teerikorpi et al. 1998). In a study of the 2dF survey superclus-
ters, their size spectrum extends from below 10 Mpc up to 100h−1 Mpc (maximal
diameters up to almost 200 Mpc) (Einasto et al. 2007).

The Great Wall, discovered in the CfA survey, a 200h−1 Mpc long filament of
galaxy groups and clusters, found its winner in the 500 Mpc long Sloan Great Wall
(from the SDSS survey; Gott et al. 2005).

The voids free of galaxies have also a wide spectrum of sizes, from small “pores”
and “bubbles” (on Mpc-scale; Tikhonov and Karachentsev 2006) through minivoids
to big voids with sizes of tens of Mpc (like the Local Void; Tully et al. 2008). The
suggested giant at the location of the WMAP cold spot has a record diameter of
about 225h−1 Mpc (Rudnick et al. 2007).

We note that the unexpected discovery of a large scale “dark flow”, based on
the observed Sunyaev-Zeldovich effect for X-ray galactic clusters (Kashlinsky et al.
2008) and on the peculiar velocities of the galaxies (Watkins et al. 2009), means that
the entire local volume, of size 300h−1 Mpc, is undergoing a large-scale motion, a
fact consistent with the existence of superlarge structures on scales of 1000 Mpc,
but problematic for the standard �CDM cosmology.

The trend in observational cosmology toward the discovery of structures of ever
larger size reminds one of the words by de Vaucouleurs (1970, 1971) who summa-
rized, forty years ago, the properties of galaxy clustering concluding: In the 1930s
astronomers stated, and cosmologists believed, that, except perhaps for a few clus-
ters, galaxies were randomly distributed throughout space; in the 1950s the same
property was assigned to cluster centres; now the hope is that, if superclusters are
here to stay (and apparently they are), at least they represent the last scale of clus-
tering we need to worry about. . .

The 3D Dark Matter Galaxies are the visible tracers of the large-scale structure,
but in modern cosmology dark matter and dark energy are the greatly dominating
substances. There are various indications of dark matter within galaxy systems of
different scales. However, in order to determine the overall distribution of gravitat-
ing dark matter, the gravitational lensing method is the most promising one, being
based on the analysis of rays of light influenced by dark matter along trajectories
passing through voids as well as superclusters. First important steps towards reveal-
ing the 3D organization of dark matter were made via an analysis of the weak gravi-
tational lensing in the HST survey COSMOS (Massey et al. 2007a). The shapes, ori-
entations, and photometric redshifts of half a million distant galaxies in a 1.3◦×1.3◦
field were measured. The main result was that the dark matter generally repeats the
distribution of the luminous matter both on small and large scales (galaxies, hot gas
in galaxy clusters). If confirmed by more extensive future studies in future this will
underline the relevance of the large-scale structure as measured using the luminous
tracers. Remarkable filamentary superlarge clusters of dark matter with sizes up to
1000 Mpc were found. Another intriguing result was that sometimes a cluster of
dark matter can appear without luminous matter and what is more challenging, in
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some cases clusters of luminous matter are devoid of dark matter. If true, one might
see here a sign of the same nature of both dark and luminous matter.

12.2 Detecting Baryonic Acoustic Oscillations

According to the standard cosmological model, the early universe contained a hot
plasma of electrons and baryons (protons and neutrons), in addition to dark matter
and photons. Some 400 000 years after the big bang the temperature had fallen low
enough for formation of neutral hydrogen atoms. At this recombination epoch the
sound speed dropped and the acoustic oscillations which were propagating in the
cosmic fluid became frozen.

12.2.1 Baryonic Oscillations as a Crucial Test

The length scale lBAO of the baryonic acoustic oscillations is basically obtained from
the integral

lBAO =
∫ trec

0
cs(t)(1+ z)dt ≈ 100h−1Mpc, (12.1)

where trec refers to the time of recombination and cs(t) is the sound speed at differ-
ent cosmic times t .

The BAO imprints in the matter distribution should be present in the galaxy
correlation function. Because the prediction is rather straightforward and gives
a well-defined spatial scale (about 100h−1 Mpc), the search for the BAO is an
important test of the standard model. In addition, this length scale could serve
as a standard meter stick for cosmological studies (Beutler et al. 2011 derived
H0 = 67± 3 km s−1/Mpc).

ξ(r) and P(k) for the �CDM model Standard models of galaxy formation pre-
dict the two-point correlation function ξ(r) of density fluctuations in the early uni-
verse, and they also can make a prediction for ξ(r) at the present time, in the regime
of weak perturbations, where fluctuations have been linearly amplified by gravi-
tational clustering in the expanding universe (Peebles 1980). The various models
differ in the predicted value of the characteristic length scales and in the scale-
behaviour of ξ(r). One may point out three length scales and three different regimes
(Sylos Labini and Vasilyev 2008; see Fig. 12.2):

(1) On scales smaller than r0 (where ξ(r0) = 1), the matter distribution is char-
acterized by strong clustering, about which little is known analytically and which is
generally constrained by N-body simulations where typically for r < r0, ξ(r)∼ r−γ
with γ ≈ 1.5 (Springel et al. 2005).

(2) The second length scale at rc � r0 is such that ξ(rc) = 0 (Peebles 1993;
Gabrielli et al. 2002). In the range r0 < r < rc , ξ(r) is characterized by positive
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Fig. 12.2 Expected module of the two-point correlation function ξ for a �CDM model, (left)
when there is no baryonic component, and (right) when there is a baryonic component (in this
case, the matter density is 
m = 0.12h−2 and the baryonic density is 
b = 0.024h−2). Note that
beyond the point rc, where ξ(rc)= 0 (the vertical line), the correlation function is negative (from
Sylos Labini and Vasilyev 2008; reproduced with permission © ESO)

correlations, which rapidly decay to zero when r→ rc . The scale rc is an imprint of
the early universe physics. It corresponds to the size of the horizon at the time when
matter and radiation were equal. The third length scale rBAO is located on scales
somewhat smaller than rc . This corresponds to the baryon acoustic oscillations at the
recombination epoch. Its precise location depends on the matter density parameters,
the baryon abundance and the Hubble constant (Eisenstein and Hu 1998).

(3) In the third range of scales, for r > rc, ξ(r) has typically a negative power-law
behaviour, i.e. ξ(r)∼ r−4 (Gabrielli et al. 2002, 2005).

The importance of the scales rBAO and rc as a crucial test for the �CDM model
is emphasized by the fact that these are rather insensitive to biasing, i.e. they are the
same both for the underlying dark matter and the visible luminous matter (see, e.g.,
Sylos Labini et al. 2009c).

From the samples provided by the Sloan Digital Sky Survey it has become possi-
ble to try to estimate the galaxy 2-point correlation function on scales large enough
for measuring the important lengths rBAO and rc. Thus Eisenstein et al. (2005) de-
termined the Landy and Szalay estimator of ξ(r) using the luminous red galaxy
(LRG) sample of the SDSS. The result appeared to reveal the baryon bump at around
110h−1 Mpc. Martinez et al. (2009) used the LRG-DR7 sample and also found the
bump, though the shape of the correlation function around rBAO is slightly different
from the one measured by Eisenstein et al.

Sylos Labini et al. (2009c) discussed the intriguing fact that in the ξ function
of Martinez et al. (as well as of Cabré and Gaztañaga 2009) the correlation is pos-
itive up to 200h−1 Mpc, while the �CDM prediction makes it negative beyond
rc ≈ 120h−1 Mpc (cf. Fig. 12.3). In fact, Sylos Labini et al. argued that even in the
newest SDSS samples, the large-scale behaviour of the correlation function cannot
be confidently derived because of intrinsic errors and volume-dependent systematic
effects. They claim that even in the LRG sample, deeper than the MG sample, fluctu-
ations in the density field are so large that one cannot detect the scale corresponding
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Fig. 12.3 Two-point
correlation function ξ from
the SDSS DR7 sample keeps
positive beyond r ≈ 120h−1

Mpc, where it is expected to
be negative. (Courtesy of F.
Sylos Labini)

to rBAO. In view of these big differences in the conclusions, one should not think
that the scale of the baryon acoustic oscillations has already been reliably detected.

12.3 Dark Energy in the Neighbourhood of the Local Group

The �CDM cosmology views dark energy as having constant density everywhere
so that it fills the voids as well as the interiors of galaxy systems, consistent with
the conception of uniform and constant vacuum density (Einstein’s �-term, the cos-
mological constant). Thus it may represent, together with other relativistic compo-
nents of the universe, the naturally homogeneous substance on which the Friedmann
model is based. If this is true, its local density should be identical to that inferred
from the cosmological recession of distant galaxies using Ia supernovae as distance
indicators, i.e. ρV ≈ 7× 10−30 g cm−1.

The possible alternative explanations of the SNIa Hubble diagram (Sect. 8.4.4),
requiring no dark energy, typically refer to phenomena on large scales. If any of
them is valid and there is no dark energy (or �= 0), then one does not expect any
true dark energy effect on much smaller scales, neither. But, if dark energy exists
like suggested by the large-scale observations and is smooth and constant like the
vacuum energy (with the equation of state ρv =−pv), then it should exist also lo-
cally. According to general relativity, gravity depends on pressure as well as density:
the effective gravitating density ρeff = ρ + 3p is negative for a vacuum (=−2ρv),
and this leads to repulsion (“antigravity”). Hence the study of the cosmic antigravity
in our neighbourhood is an important local test of the standard cosmological model,
somewhat analogous to the attempts to detect non-baryonic dark matter particles in
laboratories.

12.3.1 Towards a Local Measurement of Dark Energy

As a first step towards the local study of dark energy, Artur Chernin (2001) asked a
simple but highly interesting question: at what distance from the Local Group do the
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Table 12.1 Typical size
parameters for different
central masses. RV and RM
are, respectively, the
zero-gravity radius and the
Einstein-Straus radius for the
standard model

M/M� RV RM example

2× 106 10 kpc 17 kpc a globular cluster

1× 1012 1.0 Mpc 1.7 Mpc a compact binary galaxy

2× 1012 1.3 Mpc 2.2 Mpc the Local Group

1× 1014 4.8 Mpc 8.2 Mpc the Fornax cluster

1× 1015 10.3 Mpc 17.5 Mpc the Virgo cluster

2× 1015 13.0 Mpc 21.1 Mpc the Coma cluster

gravity of its mass and the antigravity of the dark energy (if its local density equals
its globally measured value) balance each other?

Zero-Gravity Radius Treating the Local Group as a point mass M on the
background of the antigraviting dark energy, its gravity produces the radial force
−GM/r2, where r is the distance from the group barycentre. The antigravity of
the vacuum produces the radial force G2ρV(

4π
3 r3)/r2; this Newtonian expression

can be justified from general relativity, inspecting a static space-time for a mass
embedded in the uniform dark energy (e.g., Chernin et al. 2006).

The gravity force (∝ 1/r2) dominates the antigravity force (∝ r) at small dis-
tances, and the acceleration is negative there. Taking the mass of the Local Group
as M ≈ 2× 1012M�, then at the distance

RV =
(

3

8π
M/ρV

)1/3

# 1.3 Mpc (12.2)

the gravity and the antigravity balance each other (the “zero-gravity distance”). At
larger distances the acceleration is positive.

A Gravitating System Within Dark Energy Calculations (Table 12.1) show
that for star clusters and individual galaxies, even for tight binary galaxies the zero-
gravity distance RV is much larger than the size of the system which is located
deep in the gravity-dominated region. At the same time, the region of the Huble
flow is well beyond RV. For galaxy groups and clusters, the zero-gravity radius
is near or within the region where the outflow of galaxies begins to be observed
(Fig. 12.4). It is on such scales where the system and its neighbourhood might shed
light on the dark energy. In fact, Chernin et al. (2010) have suggested that different
systems (groups and larger) may have a universal two-part design: a quasi-stationary
bound central component with an expanding outflow around it on the scales up to
the “Einstein-Straus” radius RM (will be defined below; Table 12.1). The dynamical
structure of such systems could reflect the gravity-antigravity interplay.

What happens to the test particles (dwarf galaxies) that have left the central re-
gion of the system? The particles move radially practically as predicted by the New-
tonian equation of motion, where the forces are the gravity of the central mass and
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Fig. 12.4 The zero-gravity spheres around the Local Group (at the centre) and two nearby galaxy
groups, as calculated using the masses 2 × 1012M� for the LG and the M81/M82 Group and
7 × 1012M� for the CenA/M83 Group (the map presenting the local environment up to about
5 Mpc is adapted from Karachentsev et al. 2003)

the antigravity of the dark energy:

r̈(t, χ)=−GM/r2 +
(

8πG

3
ρV

)
r, (12.3)

where r(t, χ) is the distance of a particle to the barycentre of the Local group and
χ is the Lagrangian coordinate of the particle.3

The first integral of (12.3) expresses the mechanical energy conservation:

1

2
ṙ2 =GM/r + 1

2
(r/A)2 + Ē, (12.4)

3A= 1/HV = ( 8πG
3 ρV)

−1/2 # 5× 1017s # 1.5× 1028 cm is a characteristic vacuum time/length,
the inverse value of the “vacuum Hubble constant” HV.
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where Ē(χ) is the total mechanical energy of a particle with the Lagrangian coor-
dinate χ (per its unit mass). The potential energy

U(r)=−GM/r − 1

2
(r/A)2 (12.5)

is negative. The total energy of a particle that has escaped from the gravity potential
well of the system must exceed the maximal value of the potential:

E >Umax =−3

2
GM/RV. (12.6)

The Normalized Hubble Diagram It is convenient to normalize the equations
to the zero-gravity distance RV and consider the Hubble diagram with normalized
distance and velocity (x- and y-axes): x = r/RV and y = V/HVRV (Teerikorpi et
al. 2008). Then radially moving test particles will move along curves, which depend
only on the constant total mechanical energy E of the particle:

y = x(1+ 2x−3 − 2αx−2)1/2. (12.7)

Here α parameterizes the energy, so that E = −αGM/RV. The curves have a ve-
locity minimum at x = 1, i.e. at r = RV (Fig. 12.5). The energy with α = 3/2 is
special: it is the minimum energy which still allows a particle initially below x = 1
to reach this zero-gravity border (and if the energy is slightly larger) to continue to
the vacuum-dominated region x > 1, where it starts accelerating. In the ideal case
one does not expect particles with x > 1 below this minimum velocity curve. If one
changes the values of the parameters M and ρV, the y−x curves do not change, but
the normalized positions of test particles do change as RV and HV change.

The physical sense of the minimum energy curve is that it corresponds to ejec-
tions an infinitely long time ago. Hence, any upper limit for the age provides a still
stricter lower-limit curve. The present position of the particle (in practice, a dwarf
galaxy) on its energy curve depends on how long ago it was ejected from the centre.
This, together with the fact that the masses of the galaxy groups (including our Lo-
cal Group) are not yet very accurately known, complicates this way of deriving the
local amount of antigravitating dark energy.

12.3.2 The Hubble Law and Dark Energy

After Lahav et al. (1991) derived a formula for the growth rate at the present epoch
f (z= 0)≈
0.6

m + 1
70
�(1+ 1

2
m), it has been often thought that dark energy has
insignificant local effects. Namely, the formula shows that for a fixed matter den-
sity parameter 
m, adding the cosmological vacuum into the model has practically
no effect for the present growth rate, which also determines the peculiar velocities
around the growing density fluctuations. Lahav et al. (1991) see this immunity to �

reflecting the cosmic vacuum as a uniform background which does not have local
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Fig. 12.5 The dynamical structure of a gravitating system within dark energy background, given
as a normalized Hubble diagram. A typical outflow pattern for the present time is also shown (from
Teerikorpi and Chernin 2010; reproduced with permission © ESO)

force effects. However, in our lumpy universe there are situations where local effects
of dark energy are expected and where these might be used to measure its density
(Chernin et al. 2006; Teerikorpi et al. 2005). The fact alone that one has to mod-
ify the virial theorem for a gravitationally bound system in order to account for the
antigravity of dark energy shows that dark energy can have local effects (Chernin et
al. 2009).

Dark Energy on Galaxy Group Scales In round numbers, the dark energy den-
sity may be written as

ρV/7× 10−30 g/cm3 = (M/2× 1012M�)
/(8π

3
(RV/1.3 Mpc)3

)
. (12.8)

Thus one would be able to determine the dark energy density around a galaxy group
if its mass M and the zero-gravity radius RV were known from observations.

The expected decelerations and accelerations in the nearby velocity field are very
small and impossible to measure directly. That is why Chernin and others have con-
sidered the possibility to see the signature of the zero-gravity distance in the ob-
served distance-velocity field.

Chernin et al. (2006) noted that the size of the group or the zero-velocity dis-
tance is a strict lower limit to RV, giving an upper limit to the local dark energy
density ρloc (for a fixed group mass). An upper limit to RV (and from it a lower
limit to ρloc) is obtained from the distance where the local outflow approaches the
global Hubble rate. This distance RM is expected to give the size of the volume
from which the mass M has been gathered during the formation of the group (so-
called Einstein-Straus vacuole; Table 12.1 gives RM for several examples). One
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can calculate its present value in terms of the zero-gravity radius assuming the
present average cosmic mass density ρm: RM = (2ρloc/ρm)

1/3RV (e.g., = 1.7RV
for 
V/
m = 0.7/0.3). This is also the distance where the global Hubble ratio is
reached, because at this point the enclosed mass is the same as for the uniform global
Friedmann model, hence the expansion rate is the same.4

Using this idealized model and RM ≈ 2.5 Mpc (Karachentsev et al. 2009),
Teerikorpi and Chernin (2010) estimated the dark energy density around the Lo-
cal Group as 0.5 < ρloc/ρV < 2.0, where ρV is the global value. A similar range
was derived from the Virgo cluster (Chernin et al. 2010). These tentative results en-
courage more extensive studies of the outflows around galaxy systems. Interestingly,
Hartwick (2011) has analysed a large sample of galaxy groups using a new method
based on positional and redshift information; he found, roughly as expected, that
the radial outflow around the groups goes over to the global Hubble law beyond the
distance of about 2RV ≈ RM, where the zero-gravity distance was calculated from
the virial mass.

The Paradoxical Hubble Law Sandage et al. (1972) recognized a contradiction
between the observed linear Hubble law and a possible hierarchical galaxy distribu-
tion (or more generally, a very non-uniform distribution). They used the existence of
the local Hubble law as an argument against de Vaucouleurs’s hierarchical model.

A strong deflection from a linear distance–velocity relation expected within the
hierarchical inhomogeneities has been confirmed by calculations (Haggerty and
Wertz 1972; Fang et al. 1991; Gromov et al. 2001). Baryshev (1992b, 1994) and
Baryshev et al. (1998) emphasized that the observed linear redshift-distance relation
inside the power-law fractal density distribution creates the “Hubble-de Vaucouleurs
paradox”, i.e. the coexistence of both laws on the same scales.

Using asymptotically homogeneous LTB models (cf. Sect. 9.3.2), Gromov et al.
(2001) found the necessary conditions for the linear Hubble law existing within a
fractal structure with dimension D = 2. The larger the scale of homogeneity Rhom
the smaller should be the density parameter 
m, e.g., for Rhom = 100 Mpc the linear
Hubble law exists at distances r > 1 Mpc if the density parameter 
m < 0.01 (which
agrees with one possible explanation given by Sandage et al. (1972)—a very low
cosmic density).5

Chernin (2001) suggested that the cold local Hubble flow is a signature of the
dominance of the cosmological vacuum (the �-term). Baryshev et al. (2001) ex-

4This is the same 1.7 as in the global scale factor ratio leading to zv = 0.7. Namely, the requirement
that the global acceleration is zero when ρV = 0.5ρm(zV) leads in terms of the current mass density
to the condition 2ρV = (1+ zV)

3ρm or (2ρloc/ρm)
1/3 = (1+ zV)= 1.7.

5The LTB models, which are asymptotically Friedmann-like on large scales, have three possible
initial conditions: the density distribution, the velocity field, and the bang time function, and any
two of these determine the third one. Therefore, Gromov et al. (2001) pointed out that the Hubble
law may be linear even inside a fractal distribution if the bang time function is suitably broad. This
explanation may sound too artificial; however, a variant of it has been applied by Célérier et al.
(2010) to explain the Hubble diagram of distant SNIa supernovae without the need to assume a big
local hole (or dark energy).
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tended this explanation to include dark energy which may vary in time. Cosmologi-
cal N-body simulations by Macciò et al. (2005) confirmed that inclusion of cosmic
vacuum in the calculations leads to significantly lower velocity dispersions in Local
Volume–like regions than what happens without dark energy. However, the simula-
tions of Hoffman et al. (2008) and Martinez-Vaquero et al. (2009) did not appear to
find any such significant difference, and further investigations are clearly desirable.

12.4 Conceptual Problems of the Expanding Space Physics

The physics of space expansion is a relatively little studied subject, even though
expansion is an essential ingredient of standard cosmology and the expanding space
within the Friedmann model has properties which may sound paradoxical. These
features, like violations of the ordinary speed limit and energy conservation, are
usually viewed as new cosmological physics differing from our ordinary laboratory
experience. They may also reflect real limitations of the model or may point ways
to somewhere beyond the current theory. In any case, they underline the need of
conceptual clarity in describing what the model means and what is observed. Even
new crucial tests may be inspired.

Such unexpected phenomena were brought into light after an analysis of the
Friedmann model by Harrison (1981, 1993, 1995). The non-Doppler nature of the
cosmological redshift in the standard model has been discussed by Kiang (2003),
Davis and Lineweaver (2004), Whiting (2004), and Francis et al. (2007) in attempts
to clarify some “common big bang misconceptions” and the “expanding confusions”
in the literature. We wish to emphasize here that the common cause of these inter-
esting and problematic issues is the geometrical description of expanding space in
the frame of general relativity, where there is no well-defined concept of the energy-
momentum tensor and hence no energy-momentum conservation for matter plus
gravity (cf. Chap. 5).

12.4.1 The Physical Meaning of Space Expansion

Nowadays, when the redshift is almost universally interpreted as due to the recession
of distant galaxies, the concept of space expansion is commonly used in cosmology
textbooks. In Chap. 2 we mentioned two opposite views on physical space as argued
by Poincaré and Einstein. A mathematical theory of space is based on internally
consistent abstract geometrical concepts of geometry, and its development does not
depend on physical experiments. A theory of physical space is based on measure-
ments of distances by means of real physical processes and units of length. Poincaré
wrote that in the geometry-physics unity the Euclidean geometry is the simplest one
and more convenient for physics, while Einstein considered that in more complex
geometry the physical laws may have simpler forms and the geometry of space may
be experimentally tested (Einstein’s practical geometry).
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Later Milne (1934) emphasized that space itself has no existence and it is phys-
ically preferable to use static space, as in ordinary physics, and consider the expan-
sion of matter as motion in this space. The question raised by Poincaré and Milne
about the physical meaning of space may be stated for expanding space as follows:
is the expansion physically measurable? If “yes” then the cosmological redshift can
be interpreted as a physical effect of expanding space. For instance, if the expansion
of space would be necessarily accompanied by growing physical units then it could
not be measured and the cosmological redshift would be caused by another physical
phenomenon.

The theoretical analyses by Barnes et al. (2006) and Gron and Elgaroy (2007)
have led them to conclude that the receding motion of galaxies within expanding
Friedmann models has a physical meaning that differs from ordinary motion of a
particle in static space. From this perspective, we find it useful to view the term
expansion as meaning continuous creation of space, just because the volume of any
comoving finite sphere is increasing. This concept of “space creation” serves to
throw light on the various enigmas arising within the Friedmann model as will be
considered below.

The Friedmann model gives an exact mathematical description of expanding
space within general relativity. The increasing scale factor S(t), along with the met-
ric distance r(t)= S(t)χ , physically corresponds to expanding space, a continuous
adding of vacuum, which is controlled by the homogeneous matter distribution in
the whole universe. Any comoving finite-sized box in the expanding universe in-
creases its volume all the time, obtaining more and more cubic centimetres. This
process may be visualized by a 2D analogy of an expanding sphere in 3D space,
where the surface of the sphere increases with time. For 2D beings their universe
grows with time (gets more square centimetres).

In the simple dust model, it is the classical empty vacuum which is created, while
in the � model, space is created together with physical vacuum (presented by the
constant � term). In comparison, in the steady state theory, space is created along
with matter whose density keeps constant (Hoyle’s C-field).

It is generally regarded that bounded physical objects, such as atoms, the Earth,
stars, and galaxies, do not participate in cosmological expansion (Cooperstock et
al. 1998), making it impossible to measure space expansion directly in the labora-
tory. One may say that in a Friedmann world there is no space creation inside these
objects, whereas outside of them space is created.

12.4.2 Violation of the Limiting Velocity

Harrison (1981, 1993) emphasized that the cosmological redshift appearing in the
Friedmann model is not the familiar Doppler effect, as often stated, but a new phys-
ical phenomenon, the Lemaître effect.

The exact formula for the Doppler effect caused by the relative motion of bodies
in static space is given by the special relativistic expression:

νobs = γ−1(1− 	β 	n)−1νemit, (12.9)
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Table 12.2 Velocities vs.
redshift for different models z vdop/c vexp/c,1 vexp/c,2 vexp/c,3

1 0.6 0.6 0.75 1

2 0.8 0.84 1.33 2

6 0.96 1.25 3.43 6

10 0.98 1.4 5.45 10

1000 1–2 · 10−6 1.94 500 1000

∞ 1 2 ∞ ∞

where γ = (1 − β2)− 1
2 is the Lorentz factor, 	β = 	v

c
is the velocity vector of the

moving body and 	n is the unit vector in the direction of the observer. For a purely
radial motion the angle � between 	n and 	β equals 180◦, then according to Eq. (12.9)
we have the redshift

(1+ z)Dop =
(
c+ v

c− v

)1/2

. (12.10)

The Doppler redshift z→∞ for v→ c.
The exact relativistic Doppler velocity-redshift relation is

vDop(z)

c
= 2z+ z2

2+ 2z+ z2
. (12.11)

For z→∞, the velocity vDop(z)→ c corresponding to the limit v ≤ c.
In the Friedmann model, the exact velocity-redshift relation is

vexp(z)

c
= r(z)

RH0

. (12.12)

This shows that for redshifts large enough (r(z) > RH0 ) the velocity of the receding
galaxy can exceed the speed of light, vexp > c.

Clearly we have two different mathematical formulae which correspond to two
different physical phenomena—Doppler and Lemaître effects. Equations (12.11)
and (12.12) give the same results only in the first order of v/c.

Expansion velocities. Table 12.2 compares the Doppler and Friedmann velocities calcu-
lated for three specific models. Their vexp vs. z relations are

For 
m = 1;
� = 0 vexp(z)= 2(
√

1+ z− 1√
1+ z

c, (12.13)

For 
m = 0;
� = 0 vexp(z)= z(1+ z/2)

1+ z
c, (12.14)

For 
m = 0;
� = 1 vexp(z)= zc. (12.15)

The usual explanation of such intriguing results, which illustrate the unusual
physics of expanding space, is that space expansion is not like ordinary motion in
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space, and it is not limited by the velocity of light (in this sense, “general relativity
violates special relativity” (Guth 1992)). One may also say that the superluminally
“moving” objects in the Friedmann model do not carry any information from place
A to place B; the galaxies in the ideal case do not move away from their constant
positions in the comoving coordinate system. In terms of space creation, at every
point between two galaxies new space appears and for large enough distances the
resulting rate of increase of distance can be arbitrarily high.

12.4.3 Newtonian Form of the Relativistic Friedmann Equation

The formal reason why the Friedmann model allows expansion velocities exceed-
ing the speed of light is that the Friedmann equation is identical to the Newtonian
equation of motion, and in Newtonian physics there is no limit on the velocity.

Friedmann’s equation may be written in the form

d2S

dt2
=−4πG

3
S

(
ρ + 3p

c2

)
. (12.16)

Because the Lagrangian comoving coordinates do not depend on time, one may
rewrite (12.16) using (7.19) as

d2r

dt2
=−GMg(r)

r2
. (12.17)

This is identical to the Newtonian equation, where the gravitating mass Mg(r) of a
comoving sphere with radius r is given by

Mg(r)= 4π

3

(
ρ + 3p

c2

)
r3. (12.18)

Therefore the relativistic equation describing the dynamical evolution of the uni-
verse is similar to the non-relativistic Newtonian equation of motion of a test particle
in the gravity field of a finite sphere containing a mass Mg within the radius r . The
second term in Eq. (12.18) does not essential change the Newtonian character of the
solutions.

Such a similarity was first mentioned by Milne (1934) and McCrea and Milne
(1934); they viewed the Newtonian model as an approximation to the Friedmann
model. Later many authors asserted that the Newtonian model can be used only at
short distances compared to the Hubble distance. Here, however, we see that the
Newtonian form of the Friedmann equation is exact and true for all distances.

The root of the puzzle lies in the geometrical description of gravity in general rel-
ativity and in the derivation of Friedmann’s equation from Einstein’s gravity equa-
tions, using the comoving synchronous coordinates with the universal cosmic time t
and homogeneous unbounded matter distribution. The Newtonian form of the Fried-
mann equation throws light on the question why the recession velocities of distant
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galaxies can be larger than the speed of light—in Newtonian theory there is no lim-
iting velocity.

The Energy of the Hubbloid The Hubble distance RH = c/H is often taken to be
“the size of the universe”; it is also the radius of the Hubbloid which we considered
in Sect. 9.4.3 in connection with the large cosmological numbers. In the Newtonian
description of an expanding uniform matter system RH has special significance. The
total potential energy of a sphere of radius R is Epot =−(3/5)GM(R)/R. The total
kinetic energy of this expanding sphere is Ekin = (3/5)M(R)V (R)2/2. Denoting
ρ = αρcrit (where ρcrit = 3H 2/8πG), the energies for the sphere of radius RH may
be written as

Epot =−(3/5)αM(RH)c
2/2, Ekin = (3/5)M(RH)c

2/2. (12.19)

For α = 1, i.e. ρ = ρcrit, the total energy Etot = Epot + Ekin is zero (in, fact
for spheres of all sizes). Furthermore, if we calculate the total rest mass energy
M(RH)c

2 within the “size of the universe” RH, this automatically will be rather
near the corresponding potential energy, if the cosmic density is not far from the crit-
ical density. Sometimes one has put emphasis on the coincidence Epot +Mc2 ≈ 0,
calling this the total (gravitational plus rest mass) energy of the universe (e.g.,
Feynman et al. 1995, p. 10). We see that for expanding systems with α ∼ 1
this happens only around the radius RH where the expansion velocity = c. For
much smaller or larger spheres the values of Epot and M(R)c2 are quite different,
Epot/M(R)c2 ∝ (R/RH)

2.

12.4.4 Problems of Energy Conservation

As we discussed in Chap. 5, the equation T i
k;i = 0 “does not generally express a law

of conservation” (Landau and Lifshitz 1971), because of the mathematical structure
of the covariant divergence in Riemannian space. In order to have the total (all kinds
of matter plus gravity) energy-momentum conserved, one should consider energy-
momentum pseudotensor, which could describe the gravity itself. However, this vio-
lates the tensor character of the laws of conservation and does not solve the problem
of the energy density of the gravitational field in a geometrical description of grav-
ity. The root of the problem lies in the equivalence principle and in the absence of
a true gravity force in general relativity, while all other fundamental fields present
true forces, have true EMTs, and operate in Minkowski space. Noether’s theorem
relates the conserved energy-momentum tensor of material fields to the maximal
symmetry of the Minkowski space; this is why the EMT of the gravity field can not
be properly defined in curved Riemannian space.

Energy in Co-moving Sphere In cosmology, the absence of a true energy-
momentum tensor for the gravity field appears in the fact that energy is not con-
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served during space expansion. Consider a comoving sphere with radius r(t) =
S(t)χ . The energy in this sphere is

e(r)=
∫ r

0
T 0

0 dV =
4π

3
ε(t)S3(t)χ3σk(χ), (12.20)

where σk(χ) =
∫ χ

0 I 2
k (y)dy which is equal to 1 for k = 0, to 3

χ3 (
χ2

2 − sin 2χ
4 ) for

k = 1, and to 3
χ3 (

sinh 2χ
4 − χ2

2 ) for k =−1. To calculate the time dependence of the
energy density we use the continuity equations (5.10) and (5.17) in the form

ε̇ =−3(ε+ p)
Ṡ

S
. (12.21)

For an ideal equation of state p = γρc2 this equation has the simple solution

ρ ∝ S−3(1+γ ). (12.22)

In particular, we have for dust, radiation and vacuum

ρdust ∝ S−3, ρrad ∝ S−4, ρvac ∝ const. (12.23)

Hence the energy inside a comoving sphere is all the time changing as

e(r)= 4π

3
ρc2r3σk(χ)∝ S−3γ (t). (12.24)

The energies of dust, radiation and vacuum behave as

edust(r)∝ const, erad(r)∝ S−1, evac(r)∝ S+3. (12.25)

Intriguingly, the continuity equations (5.10) and (5.17) can also be written in the
form

dE + pdV = 0, (12.26)

where dE = d(εV ) = d(ρc2V ) is the change of energy within the comoving vol-
ume V = const · S3. Equation (12.26) looks like the ordinary law of conservation of
energy in thermodynamics. However, the cosmological case is essentially different.

In laboratory conditions (12.26) means that if the energy decreases inside a finite
box, it reappears outside the box as the work produced by the pressure increasing
the volume of the box. The work performed by the pressure inside the box is the
cause of the energy decrease in the box.

In cosmological conditions Eq. (12.26) allows one to calculate how much the
energy increases or decreases inside a finite comoving volume but it does not tell
where the energy comes from or where it goes. This is because the cosmological
pressure does not produce work. It was noted by Harrison (1981, 1995) that in a
uniform unbounded Friedmann model one may imagine the whole universe parti-
tioned into macroscopic cells, each of comoving volume V , and all having their
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contents in identical states. The energy pdV lost from any one cell cannot reappear
in neighbouring cells because all cells experience identical losses. So the usual idea
of an expanding cell performing work on its surroundings does not apply in this
case.

Edward Harrison emphasized: “The conclusion, whether we like it or not, is ob-
vious: energy in the universe is not conserved” (Harrison 1981, p. 276). Peebles
(1993, p. 139) concluded similarly, when he considered the energy loss inside a
comoving sphere of the photon gas (see our Eq. (12.25)): “The resolution of this ap-
parent paradox is that while energy conservation is a good local concept, . . . there
is not a general global energy conservation in general relativity.”

In fact, only for the simplest dust model (p = 0) one may speak about the energy
conservation in an expanding universe. For any matter with p $= 0 within any local
comoving volume, the energy is not conserved. This is because in general relativity
there is no energy-momentum tensor of the gravity field and there is no gravity force
in usual physical sense.

Continuous Creation of Gravitating Mass It is also interesting to consider the
active gravitating mass of the cosmological fluid, which may be positive or negative
and may change sign with the cosmic time t . For one fluid with the equation of state
p = γρc2 the active gravitating mass (Eq. (12.18)) is

Mg(r)=+4π

3
(1+ 3γ )ρr3 ∝ S−3γ (t). (12.27)

So for dust, radiation and vacuum (or dark energy) we get

Mdust(r)=+4π

3
ρdustr

3 ∝ const, (12.28)

Mrad(r)=+4π

3
2ρradr

3 ∝ S−1(t), (12.29)

Mvac(r)=−4π

3
2ρvacr

3 ∝−S+3(t). (12.30)

In the case of dust, the gravitating mass does not depend on time, while for radiation
the gravitating mass continuously disappears in the expanding universe.

The strangest example is the vacuum, where the gravitating mass is negative:
the vacuum antigravity between any two galaxies participating in cosmological ex-
pansion increases in time due to the continuous creation of gravitating (actually
“antigravitating”) vacuum mass. In this sense the continuous creation of matter in
the classical Steady State model was just a particular case of the new physics of ex-
panding space. All these processes are supposed to happen in our local environment
of the galaxy universe, which makes Practical Cosmology a most exciting scientific
adventure of our times.



Appendix A
Useful Astronomical and Physical Constants

Astronomical units:

Astronomical unit AU= 1.49597870× 1013 cm
Parsec pc= 206 265 AU= 3.0857 1018 cm = 3.26 ly
Light-year ly= 0.9461× 1018 cm = 0.3066 pc
Hubble distance = c/H0 = 2997.9 h−1 Mpc
Sidereal year 1 yr= 365.2564 d= 3.156× 107 s
Hubble time TH =H−1

0 = 9.7776× 109 h−1 yr
Solar mass 1M� = 1.989× 1033 g

Physical constants:

Velocity of light c= 2.9979× 1010 cm/s
Gravitational constant G= 6.67× 10−8 cm3 g−1 s−2

Planck’s constant h= 6.6256× 10−27 erg s
Boltzmann’s constant k = 1.3806× 10−16 erg K−1

Mass of electron me = 9.1091× 10−28 g
Mass of proton mp = 1.6725× 10−24 g
Mass of neutron mn = 1.6725× 10−24 g
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Appendix B
Why General Relativity Is Principally Different
from Field Gravity

There have been many discussions about the derivation of Einstein’s field equations
from the spin 2 theory (another name for the field theory), and hence about the
possible identity of general relativity and the field approach.

In his lectures on gravitation, Feynman tried to derive the full Einsteinian La-
grangian by iterating the Lagrangian of the spin 2 field. Misner et al. (1973, Chap. 7)
wrote that “tensor theory in flat spacetime is internally inconsistent; when repaired,
it becomes general relativity”. They refered to the papers by Feynman (1963), Wein-
berg (1965), and Deser (1970) on a “field” derivation of Einstein’s equations.

However, Straumann (2000) pointed out internal inconsistencies in such attempts
to derive Einstein’s equations from the spin 2 field theory: (1) general relativity hav-
ing black hole solutions violates the simple topological structure of the Minkowski
space of the field gravity, and (2) general relativity has lost the energy-momentum
tensor of the gravity field together with the conservation laws (a direct conse-
quence of the global symmetry of the Minkowski space). In his review, Padman-
abhan (2008) showed that all derivations of general relativity from a spin 2 field are
based on some additional assumptions that are equivalent to the geometrization of
the gravitational interaction.

Indeed, general relativity and field gravity rest on incompatible physical prin-
ciples (such as non-inertial frames and Riemann geometry of curved space versus
inertial frames with Minkowski geometry of flat space). The geometrical approach
eliminates the gravity force, as already de Sitter (1916) noted: “Gravitation is thus,
properly speaking, not a ‘force’ in the new theory”. This however leads to the prob-
lem of energy precisely because the work done by a force changes the energy. Within
the field approach the gravity force is directly defined in an ordinary sense as the
fourth interaction and has quantum nature (Feynman 1971).
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Appendix C
The Gravitational Potential of a Fractal Matter
Ball with Finite Radius

For a homogeneous matter distribution ρ = ρ0 the solution of Eq. (9.5) inside the
ball has the form (Baryshev and Kovalevski 1990):

ϕ(x)

c2
=−1

2
+ sh(x)

2x ch(x0)
(C.1)

Here x = r/RH is the dimensionless radius in units of the Hubble radius RH =
c/tH = c/(8πGρ0)

1/2, x0 = r0/RH and r0 is the radius of the ball. The gravitating
mass of this ball is

M(r)=MHx

(
1− th(x)

x

)
, (C.2)

where MH =RHc
2/2G is the Hubble mass.

For sufficiently small distances (r 
 RH), the gravitational potential has New-
tonian behavior, and for large distances (r � RH) the mass grows linearly so that
the gravitational potential in the center of the ball asymptotically reaches the value
−c2/2.

In the case of the fractal dark matter distribution with D = 2 the rest mass den-
sity law is ρ(r)= ρ0r0/r and the solution of Eq. (9.5) inside the ball has the form
(Nagirner 2006):

ϕ(x)

c2
=−1

2
+ 1√

x

[
C1I1(4

√
x)+C2K1(4

√
x)
]

(C.3)

where I1 and K1 are the modified Bessel functions and x is the dimensionless dis-
tance. Using ordinary conditions for the gravitational potential of a finite ball with
radius x = x0, one finds that C2 = 0 and C1 = 1/(4 I0(4

√
x0)), where I0(x) is the

modified Bessel function.
The total gravitating mass inside the fractal ball of radius r is:

M(r)=MHx

(
1− I1(4

√
x)

2
√
xI0(4

√
x)

)
. (C.4)

Here x = r/RH is the dimensionless radius in units of the Hubble radius and RH =
c2/(2πGρ0r0). ρ0 and r0 define the lower cutoff of the fractal structure and MH =
RHc

2/2G is the Hubble mass as above.
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