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Chapter 1
Introduction

Abstract The study of precursor could be traced back to 100 years ago, the time
when Sommerfeld and Brillouin attempted to explore the propagation speed of a
finite pulse. Precursors, generated from sharp rising edges of an optical pulse,
therefore verify the speed limit raised by Einstein. As they pointed out, the
information velocity never exceed the speed of light in vacuum c. The problem
will become much more interesting when single photon source is involved. In this
chapter, we would like to introduce the optical precursor in classical wave domain,
and extend the discussion to the single-photon domain.

1.1 The Speed Limit of Light and Causality Principle

The invariance of speed of light is one of the founding bases of modern physics. In
1905, when Einstein published ‘‘on the Electrodynamics of moving bodies’’, he
raised the following postulate as one of the two core assumption of special relativity
[1]: the light is always propagating in the empty space with a definite velocity
c which is independent of the state of the motion of the emitting body. Therefore, the
speed of light in vacuum is c in any reference frame. The constant speed of light is so
surprising, because the postulate changes the physical picture concerning our time–
space. The time and space mingle together through the constant speed of light.
According to the special relativity theory, the speed of light in vacuum c is the
maximum speed that any object could be accelerated to reach.

However, the problem is that Einstein didn’t specify the velocity of light pulse
that the speed limit applied to. It is natural that there is only a single velocity of
light pulse when it propagates in the vacuum or air due to the absence of the
medium dispersion. Studies on the dispersive medium, especially on superluminal
medium, give birth to a term called ‘‘fast light’’ or ‘‘superluminal velocities’’.
Early observations on fast light occurred at the time when laser was invented.
Basov et al. [2] investigated the propagation of a pulse through a collection of
inverted atoms, which amplify the incident laser pulse. In this case, the intensity of
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the pulse was high enough to induce a nonlinear optical response and the pulse
actually underwent severe distortion. Later, Garrett and McCumber [3] examined a
weak Gaussian pulse propagating through the anomalous dispersion medium. With
a long Gaussian-pulse and a short medium, they first reported theoretically that the
pulse retained the shape while propagating with a negative group velocity. Large
amount of theoretical interpretation and experimental reports enrich the discus-
sions in the topic of fast light at the end of last century [4–12]. Beautiful exper-
iments include the work of Wang et al. [13], which showed a tiny peak advance of
62 ns in the superluminal medium, with negligible pulse distortion and attenua-
tion, as shown in Fig. 1.1. In their gain doublet medium, the Gaussian pulse
maintained its original shape when passing through such a gain-assisted region.
Later, Michael D. Stenner demonstrated the Gaussian propagation in the anoma-
lous dispersion region of atomic ensembles [14], and verified that the information
did not follow the advancement. On the other hand, Gehring et al. [15] observed
backward pulse in the course of the forward energy flow in erbium-doped optical
fiber. Other interpretation of superluminal velocity can still be found in recent
works [16]. Actually, most scientists agree that the fast light observations do not
violate Einstein special relativity theory, and rather, it is the result of classical EM
field propagation theory.

To visualize the question, Fig. 1.2 displays the pulse propagation with a neg-
ative velocity. The pulse is emitted from the medium at the output surface before
entering into the input surface. At the same time, a backward pulse travels to
cancel the incoming pulse at the input surface. This behavior violates causality
principle: the cause determines the results. Actually, Fig. 1.2 exaggerates the
situation occurring in superluminal medium, where usually the propagation length

Fig. 1.1 Gaussian pulse propagation in the gain doublet medium, where the group velocity of the
light pulse is negative. Reprinted by permission from Macmillan Publishers Ltd: Wang et al. [13].
Copyright 2013
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of the medium is smaller than the pulse width. One can also describe it as pulse
reshaping and energy redistribution [4] when the pulse is propagating in such kind
of medium.

1.2 Single Photon Tunneling

Classical optical pulses are consisted of a large number of photons, following
macroscopic electromagnetic wave propagation theory. While it is possible that a
classical optical pulse travels with a negative group velocity, what about a photon
in this pulse? Therefore, the problem is particularly interesting when the light
pulse consists of a few photons, or even, a single photon. The speed of a classical
light pulse represents the average speed of this group of photons, but does not
guarantee every single one.

Figure 1.3 shows coincidence profile reported by Steinberg et al. [17] to
demonstrate the seemingly ‘‘superluminal’’ propagation of a single photon with a
Gaussian wave-packet. By scanning the trombone prism which varied the optical
length for the single photons, they mapped out the single photon wave-packet.
After inserting the barrier into the light path, they need to increase the optical
length to obtain coincidence. In Fig. 1.3, they reported that a superluminal velocity
(1.7 ± 0.2)c was observed. They interpreted the phenomenon as a result of ‘‘weak
measurement’’, in which forbidden values could be obtained by both state prep-
aration and postselection of low probability. This work does not rule out the
probability for a photon traveling with speed faster than light. Quite a few com-
ments have been published to review the photon tunneling effect, and discussed the
true speed with which a photon travels [18, 19]. A number of experimental
researcher believe that the causality principle must applies to single photons

MediumInput pulse

Output pulse

Time

Propagation distance

Fig. 1.2 Light pulse
propagated with negative
group velocity
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[20, 21], but some argue that the group velocity maybe the same as the velocity of
individual photons [18].

In Chaps. 5 and 6 in this book, we would like to answer this question, with
experimental works concerning optical precursor. Before doing so, we would like
to review the definitions for different velocities and their relations.

1.3 Phase Velocity, Group Velocity and Information
Velocity

Phase velocity vp ¼ x=k describes the propagation of a plane wave expð�ixt þ
ikxÞ with a single optical frequency. But actually each optical pulse is consisted of
a continuous frequency spectrum. In vacuum or air, the phase velocity is constant,
equal to c. In dispersive medium, different spectral components in a wave train
move with different phase velocities and thus the pulse distorts in some extent.
However, when the distortion is slight enough and the wave train retains to be
well-shaped, it is still meaningful to determine the group velocity. The group
velocity in a dispersive medium is written as:

vg ¼
dx
dk
j0

¼ c

nðxÞ þ xðdn=dxÞ
ð1:1Þ

Fig. 1.3 Single photon wave packet advancement observed by Steinberg et al. Reprinted figure
with permission from [17]. Copyright 2013 by the American Physical Society

4 1 Introduction

http://dx.doi.org/10.1007/978-981-4451-94-9_5
http://dx.doi.org/10.1007/978-981-4451-94-9_6


Usually, dn=dx is positive, and thus vg is smaller than the constant c. In an
anomalous dispersion region, where the frequency of light coincide with the
excitation resonance of the material, dn=dx is a negative number. If dn=dx is so
negative that the term x dn

dx is larger than nðxÞ; vg takes a negative value.
Another remarkable type of medium is the material with electromagnetically-

induced transparency (EIT) [22–24]. We can calculate vg of the main signal
propagating in an EIT system, from the linear susceptibility of EIT system in Refs.
[25, 26]. Imagine the simplest case, where both the probe and coupling fields are
on-resonance to the transitions. The linear susceptibility can be simplified as:

vðxÞ ¼ OD

kp0L
� 4c13ðxþ ic12Þ

Xcj j2�4ðxþ ic13Þðxþ ic12Þ
� OD

kp0L

4ðxþ ic12Þc13

X2
c þ 4c12c13

ð1:2Þ

And with the strong coupling field limit, the group velocity can be approxi-
mated as

vg �
2L

OD

X2
c

4c13
ð1:3Þ

In which OD � a0L is the optical depth of medium, X2
c is the Rabi frequency of

the coupling field and c13 is the dephasing rate between the ground state and
excited state. From Eq. (1.3), the main signal propagating in an EIT medium is
much more slowed down due to an increase of optical depth. Also, the strength of
the coupling field could modify the group velocity.

Extensive discussion concerning information has been made in various litera-
tures, for example in Ref. [27]. Information is conveyed in the process that, the
initial situation is the one with a certain number of equally possible outcomes, and
a single outcome is selected in the final situation. In the binary unit system, each
bit has a binary choice: 0 or 1. It is reasonable to define that one bit of information
is sent if the amplitude or phase of the input pulse changes from ‘‘0’’ to ‘‘1’’, or
‘‘1’’ to ‘‘0’’. Similarly, if one detects the output pulse with a change of amplitude
or phase, the information is received. For example, the amplitude of the pulse
changes from 0 mV (defined as ‘‘0’’) to 5 mV (defined as ‘‘1’’). The information is
sent at the very front moment when the amplitude is still 0 mV, and is received
when the amplitude increase to be 5 mV at the output detection side. If we define
the time for the whole process is T, the information velocity is obtained from the
effective propagation distance divided by T. Obviously, T includes the time for the
changing of the input value. In principle, any pulse shape can be utilized to send
information, as long as the amplitude or phase change can be identified. The most
efficient way is to encode information in a non-analytic wave front, i.e., step-rising
or falling edge, with which such a functional value change is completed at a single
moment. To demonstrate the information velocity is different from the group
velocity, Sommerfeld and Brillouin [28, 29] theoretically studied the propagation
of a step pulse through a dispersive medium. They defined ‘‘signal’’ at the

1.3 Phase Velocity, Group Velocity and Information Velocity 5



non-analytic wave front, and proved that the wave front of the step edge travelled
at the fastest speed in a medium, the speed of light in vacuum c.

1.4 What is Precursor?

The concept of precursor was introduced by Sommerfeld and Brillouin in 1914
when they aimed to discuss the possibility to transmit signal in a dispersive
medium with a speed faster than c. They pointed out that a signal should be
effectively delivered with a non-analytical wave front, theoretically represented as
a step pulse. In the dispersive medium which separates spectral constitutes, a small
part of the incident step-pulse always propagates at the very front of the whole
main pulse, with a velocity at or very close to the speed of light in vacuum. The
small signal was called ‘‘forerunners’’, because they always exist at the very front
of the whole bulk of transmitted pulse. This particular signal caught attentions
from other physicists afterwards, and the name ‘‘precursor’’ was widely accepted
later on. Specifically, two spectral poles contribute to the precursor field: extre-
mely high-frequency (x!1) Sommerfeld precursor and low-frequency (x! 0)
Brillouin precursor. Both of them are frequency components far away from the
excitation resonance x0, and thus weakly interact with the ground-state atoms. The
atoms are always transparent for these two branches of spectral components. In
contrast, another catalogue of optical transients, free-induction decay (FID) [30–
34], is referring to the frequency components at the vicinity of the atomic reso-
nance. To describe in detail what happens inside the medium, we could view the
atoms as a cloud of microscopic dipoles. Generally speaking, all of these optical
transients are the consequences of light-matter interaction, in which a macroscopic
polarization is created when the incident optical field polarizes the microscopic
dipoles. We restrict the problem in a linear interaction effect, even though FID is
not restricted to be a linear effect. Therefore we assume that the incident field is
weak, and it can only stimulate a linear polarization response from the medium.
The interaction process is described as Fig. 1.4. This linear polarization generates
a radioactive field which interferes with the incident field. The modified incident
field interacts with the macroscopic polarization again and the above process
repeats until a steady state is obtained. Usually, the steady-state polarization takes
a finite time to be established. Imagine an optical pulse with a sharp step front
where the electromagnetic field suddenly turns on or turn off. If the cloud of
dipoles is so intense that they severely absorb the resonant and near-resonant
spectral components of the incident pulse, the main pulse could not transmit
through the medium. However, the steep wave front survives because the dipoles
do not have enough time to response to the sudden change of the incident field.
Therefore the fronts transmit through the atoms as through the vacuum, i.e.,
propagating without loss and with the constant value c. This signal constitutes
precursor. If the resonant and near-resonant spectral components are not absorbed
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completely by the medium, their response to the changing excitation field produces
the FID signal.

1.5 History of Precursor Research

In 1914, when Sommerfeld and Brillouin [28] started up the discussion of the
various velocities involved in the propagation of a wave packet, they found out
that the group velocity can be differed much from the signal velocity in the region
where dispersion is anomalous. At the same time, in their analytical calculation
using asymptotic evaluation of Fourier integrals, the precursor was predicted.
Certain frequency constitutes of a finite pulse train will propagate through the
medium with a velocity close to the speed of light in vacuum c. However, Som-
merfeld and Brillouin made a mistake and predicted that the magnitude of pre-
cursor is of the order of 10�7 with extremely short coherent time of fs. Later on
Oughstun and Sherman [35] identified the mistakes made in the early works, and
pointed out that the precursor signals can be similar with the amplitude of main
signal. Though the effect was well studied by various theoretical groups, the
experimental observation of precursor remained a challenge due to the broad
excitation resonance of the existing medium. The first direct experimental dem-
onstration of Sommerfeld and Brillouin precursor was reported in 1969 by Pleshko
and Palócz [36], in the microwave domain within a waveguide with artificially
controllable stop band. The observation of optical SB-precursors is an even bigger
challenge, since the optical frequency is extremely high and far beyond the
technological limit of detector resolution. The first observation of SB-precursors in
the optical regime is obtained with semiconductor GaAs, with the incident carrier-
frequency set relatively close to an exitonic resonance [37]. Precursor behaviors
have been reported in c rays [38], microwaves [36], sound waves [39, 40], and

Fig. 1.4 Interaction between
incident EM field and atoms.
The figure is from Jeong [43]
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optical waves [26, 37, 41–43] and single-photon correlations [44]. Among these
works, the observation reported by Jeong et al. [43] and Wei et al. [26], introduced
cold atomic ensemble as the medium. Jeong et al. reported the first direct obser-
vation of optical precursors in a cloud of cold potassium atomic gas (39K). Since
Doppler broadening is largely suppressed in the cold atom medium, the atomic
resonance linewidth is extremely narrow, of the order of natural linewidth
(*MHz), which is inversely proportional to the precursor time scale. Thus,
building a magneto-optical trap (MOT) is their key concept to increase time-scale
up to a measurable value (16–32 ns). The optical precursors were then observable
under the bandwidth of all electronics including the detectors. They demonstrated
tens of nanosecond-long spikes with near 100 % transmission. The peaks at the
front decay to steady state values due to the absorption of main signal expected
from Beer-Lambert law. However, optical depth (OD) of potassium atoms was not
enough to test mature regime (large OD) nor beating between two types of pre-
cursors. Consequently the precursor signal was not able to be separated from the
main pulse part in their works. Motivated by their works in cold atom medium, the
first observation of optical precursors through three-level EIT system was reported
by Wei et al., Chen et al. [26, 45]. With the advantage of electromagnetically-
induced transparency window and slow light effect, they observed the precursor
and the main pulse presented together in a single measurement. The clear signature
of optical precursor was presented in these measurements. The precursor is
propagating in the medium with much less loss than the main pulse, and therefore
it has potential application in teleportation and communication in dense material.
Under-water communication, bio-imaging in tissues, for example, could utilize
precursor as the signal carrier.

Optical precursor research in coherent cold atoms naturally triggers revisiting
analogous quantum optical phenomena, such as 0p pulse [45, 46], optical nutation
and free-induction decay. 0p pulse in area theorem [45] was compared to optical
precursors theoretically [39, 47], but had been ignored by most of community until
the comparison [48] with experimental demonstration of precursors in resonant
regime [43] due to conventional ultra-fast characteristics. Dartmouth group
compared all the formalism appeared in the relevant literatures together and show
that the analytic expression of resonant precursors can be derived both by Max-
well’s equations and optical Bloch equations [49].

Well-known optical transients, optical nutation and optical free-induction decay
(FID), are optical analogues of spin resonance effect [50], and were first observed
by Brewer and Shoemaker in 1972 [30, 31]. The equations describing such optical
phenomena are formally equivalent to the well-studied spin-resonance Bloch
equation. Optical FID was studied extensively in the early days, especially after
the invention of the laser, and later was introduced in two-photon process [51–54].
All of these FID experiments in the past were weak and be indirectly detected by
heterodyne means through the interference between radiation and the driving field.
With the same problem similar with the observation of optical precursor, the broad
linewidth of transition resonance and far-detuned driving field restrict the FID
signal to be weak and fast. With modern technology of laser cooling and trapping,

8 1 Introduction



direct observation of FID signal was demonstrated within laser-cooled 85Rb atoms
[55]. In recent years, people work on unification of the concepts of optical pre-
cursors and coherent transients [56, 57]. Optical precursors and FIDs have gen-
erally been considered as two separate effects in the past decades. That’s probably
because the two phenomena occur under very different conditions of optical
thickness and excitation strength. FIDs focus on the time-dependent phase
coherence of the atomic states excited by the radiation. It is not restricted to linear
dispersion theory and thus includes strong driving fields’ cases. Rather, assumption
of negligible propagation effects is taken while calculating FID fields. On the other
hand, SB precursors are limited to weak excitation system, and thus frequency-
domain linear transfer function play an important role in the theory. We will talk
more about this in the next chapter.
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Chapter 2
Theory of Optical Precursors

Abstract In this chapter, we discuss the theoretical framework of optical pre-
cursors based on the incident electromagnetic waves interacting with dielectric
media. The simplest way to interpret the light-matter interaction is the medium
optical response to the incident light characterized by dielectric constant eðxÞ as a
function of incident light frequency x. To build a theoretical model of optical
precursors, first we derive macroscopic dielectric constant eðxÞ starting from the
microscopic dipole moment pðxÞ. Based on Maxwell’s equation and transfer
function, the transmitted step-modulated electromagnetic field through dielectric
media will be derived in general form of inverse Fourier transform of transmitted
spectrum. The general expression of transmitted field can be solved numerically or
analytically depending on the specific parameter regimes, such as Brillouin regime
or resonant regime. The discussion extends from single Lorentz medium to elec-
tromagnetically-induced transparency medium, where the main signal transmits
without loss.

2.1 Lorentz Medium and Transfer Function

Let’s start with the conventional approach, in which we consider collection of
dipole moments oscillating at the characteristic frequency x0 under externally
shined electromagnetic field E x; tð Þ in x direction as depicted by Fig. 2.1. This can
be modeled as Lorentz oscillator driven by external force of E-field denoted as F,

F ¼m€x

, �eEðx; tÞ � 2mc _x� mx2
0x ¼ m€x

, �eEðx; tÞ ¼ mð€xþ 2c _xþ x2
0xÞ

ð2:1Þ

where x denotes the displacement from the equilibrium position of the Lorentz
oscillator. m denotes the mass of electron, and e denotes the electron charge. 2c is

JF Chen et al., Optical Precursors, SpringerBriefs in Physics,
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the damping constant, and x0 denotes resonant frequency. Equation (2.1) indicates
the model follows damped harmonic oscillators governed by Hooke’s law. Assume
that the external electromagnetic field oscillates at x. By Fourier transform, Eq.
(2.1) is rewritten as displacement x.

�eEðx;xÞ ¼ mð�x2 � 2ixcþ x2
0Þx

x ¼ eEðx;xÞ=m

x2 � x2
0 þ 2ixc

ð2:2Þ

Then microscopic dipole oscillator pðxÞ and microscopic polarization PðxÞ are
obtained as a function of frequency,

pðxÞ ¼ � ex ¼ �e2=m

x2 � x2
0 þ 2ixc

Eðx;xÞ

PðxÞ ¼ NpðxÞ ¼ �Ne2=m

x2 � x2
0 þ 2ixc

Eðx;xÞ
ð2:3Þ

where N is the number of oscillators. Equation (2.3) implies how the macroscopic
polarization is formed by the incident E-field. To relate Eðx;xÞ and PðxÞ, the
linear susceptibility vðxÞ can be introduced as

PðxÞ ¼ e0vðxÞEðx;xÞ ð2:4Þ

where

vðxÞ ¼ �Ne2=m

x2 � x2
0 þ 2ixc

ð2:5Þ

Now the medium response, macroscopic polarization PðxÞ, is added to the
original E-field to form a total displacement field Eðx;xÞ.

Dðx;xÞ ¼ eðxÞEðx;xÞ ¼ e0Eðx;xÞ þ PðxÞ ¼ ð1þ vðxÞÞe0Eðx;xÞ ð2:6Þ

ε(ω)()

e-

electromagnetic field

?

macroscopic dielectric material

e+

:collection of microscopic dipoles

)()()()( ωεωχωω ⇒⇒⇒ Pp

Fig. 2.1 Light interaction with dielectric media
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where eðxÞ is the dielectric function and the plasma frequency is xpl, and we have,

eðxÞ ¼ 1þ vðxÞ ¼ 1�
x2

pl

x2 � x2
0 þ 2ixc

ð2:7Þ

where xpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ne2=e0m
p

. Dielectric function eðxÞ represents the medium response
to an incident light. In general, the first term of eðxÞ is the background dielectric
constant e0.

The dielectric function is the key to understand the physical interpretation of
optical precursors. Plasma frequency xpl indicates the strength of absorption, one
of the mechanisms in light-matter interaction. Full width half max 2c implies the
life time of the system, so that it affects the time scale of the transients or optical
precursors. Finally, the atomic resonant frequency x0 with respect to the carrier
frequency xp determines the field strength of the transients, i.e. optical precursors.

In the next section, the dielectric function of a Lorentz medium plays a role in
the transfer function, Tðz;xÞ ¼ eikðxÞz, as shown in Fig. 2.2, to evaluate emerging
field Eðz; tÞout of the dielectric material.

To deal with the optical field propagation, we first unify the notation of the
optical field throughout the whole book. The real electric field in plane wave is
expressed as,

!* E z; tð Þ ¼ 1
2

Re Eevp z; tð Þ!* nei kz�xtð Þ
n o

ð2:8Þ

where n
* is the polarization unit vector, and Eevpðz; tÞ is the complex envelope.

Fourier transform of the complex envelope gives the spectrum of the optical field,

~Eðx; zÞ ¼ 1
ffiffiffiffiffiffi

2p
p

Z 1

�1
Eðt; zÞeixtdt ð2:9Þ

Now let’s consider an incident field E
*

ð0; tÞ and consequent emerging field

E
*

ðz; tÞ out of dielectric medium. The medium is characterized via the transfer
function T z;xð Þ ¼ eik xð Þz, which is derived from Maxwell’s equation,

),0( )(eE zikω ω

)(ωε

),(),(),0( tzEzEtE ⇔⇔ ω
F.T.F.T.

Fig. 2.2 Schematic diagram
describing transfer function
eðxÞ
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r!
2

E
!ðz; tÞ � 1

c2

o2 E
!ðz; tÞ
ot2

¼ 1
e0c2

o2 P
!ðz; tÞ
ot2

ð2:10Þ

According to Eq. (2.10), the polarization ~Pðz; tÞ acts as a source of total electric
field. Let’s remind of the fact that the total field consists of the incident electric

field ~Eðz; tÞ and the modified one by the interaction with the medium polarization.
We assume that a polarized plane-wave field propagation vector along the z-
direction and isotropic medium and for convenience we denote the electric field as
Eðz; tÞ. The propagation of light is described by the scalar 1-dimensional wave
equation, which is given as follows:

o2Eðz; tÞ
oz2

� 1
c2

o2Eðz; tÞ
ot2

¼ 1
e0c2

o2Pðz; tÞ
ot2

ð2:11Þ

Here, by performing Fourier transform on Eq. (2.11), it is easy to obtain explicit
form of the medium response as a function of frequency and the spectrum of the
electric field ~Eð0;xÞ:

o2Eðz;xÞ
oz2

þ x2

c2
ð1þ vðxÞÞEðz;xÞ ¼ 0

) o2Eðz;xÞ
oz2

þ k2ðxÞEðz;xÞ ¼ 0

ð2:12Þ

where kðxÞ � x
ffiffiffiffiffiffiffiffiffiffiffiffi

leðxÞ
p

. Then we express propagated field as a function of
frequency.

Eðz;xÞ ¼ Eð0;xÞ eikðxÞz � Eð0;xÞ Tðz;xÞ ð2:13Þ

By performing inverse Fourier transform, we could evaluate the transmitted
field through medium as,

Eðz; tÞ ¼ 1
ffiffiffiffiffiffi

2p
p

Z 1

�1
Eðz;xÞ e�ixtdx ¼ 1

ffiffiffiffiffiffi

2p
p

Z 1

�1
Eð0;xÞ eiðkðxÞ�xtÞdx

¼ 1
ffiffiffiffiffiffi

2p
p

Z 1

�1
Eð0;xÞ e/ðx;hÞdx

ð2:14Þ

where /ðx; hÞ ¼ ix z
c ðnðxÞ � hÞ, h � ct

z

nðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
x2

pl

x2 � x2
0 þ 2ixc

s

ð2:15Þ

Generally, without approximations, analytic solution of Eq. (2.14) does not
exist. To evaluate the integral and identify optical precursor components, Som-
merfeld and Brillouin [1] introduced asymptotic theory associated with ‘‘saddle-
points’’ methods, which are valid in the limit of z!1. After several decades,
Oughstun and Sherman developed modern asymptotic theory of optical precursors
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[2]. The conventional asymptotic theory of optical precursors by SB and OS
usually consider highly dissipative (c � 0:1 x0) and off-resonance condition
(xp 6¼ x0), which result in precursor transmission with small intensity and a
femtosecond time scale. The modern asymptotic analysis introduced by OS usually
shows complicated expression of precursors field which can be numerically
evaluated.

Recently, on the other hand, recent experimental works report optical precur-
sors [3, 4] in ‘‘resonant regime’’ [5], indicating the characteristics of on-resonant
condition as well as narrow linewidth. The existence of optical precursors has been
verified in the resonant regime, where one can obtain analytic expression of optical
precursors [6]. To prove the existence of optical precursors within the boundary of
SB and OS, LeFew simplify the OS’s modern asymptotic theory as we will discuss
later [6].

2.2 Classical Theory of Optical Precursors: Asymptotic
Method

In the conventional theory of optical precursors, the input field is taken as a step-
modulated sinusoidal electric field of the form as illustrated in Fig. 2.3.

Eð0; tÞ ¼ E0HðtÞe�ixpt ð2:16Þ

where H tð Þ is the Heaviside unit step function. By performing Fourier Transform
of the input pulse Eq. (2.16), the input spectrum E 0;xð Þis

Eð0; tÞ ¼ E0HðtÞe�ixpt , ~Eð0;xÞ ¼ iE0
ffiffiffiffiffiffi

2p
p
ðx� xpÞ

ð2:17Þ

The step-modulated electric field is the starting point of the theories. Optical
precursor theory for other input pulses, such as a hyperbolic tangent-modulated
pulse [2], square pulse [7], Gaussian pulse [8], have been discussed. In this section,
we only consider a step-modulated or square-modulated input pulse.

Fig. 2.3 Step modulated
optical field interacts with a
Lorentz dielectric medium
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The modern asymptotic theory of OS is very complicated, so that it is difficult
to obtain a physical meaning of the problem. The numerical evaluation over broad
range of parameter spaces as well as understanding their characteristics will
provide us insight into the propagation of transient pulses. Conventional method to
handle the general type of integral Eq. (2.14) is asymptotic analysis based on the
saddle-point method [9] which is valid in the limit when a distance into the
mediumz� a�1

0 . The inverse of absorption coefficient a�1
0 indicates the distance

over which the incident electromagnetic field intensity decreases by 1/e of its
initial value.

To understand some of the concepts underlying the saddle-points method, let’s
start with presenting the ‘‘stationary phase’’ approximation in the following
integral,

I ¼
Z

f ðxÞ eiqðxÞdx ð2:18Þ

where f xð Þ is a slowly varying function in terms of x. The phase term q xð Þ is
large enough, causing rapid scillation of the integrand siq xð Þ. In Fig. 2.4a, inte-
gration of the fast-oscillating field over the entire range of frequency x is averaged
out and thus result in zero-value except for slowly varying q xð Þ near the stationary
point, xsp, as illustrated in Fig. 2.4b. Note that the subscript ‘sp’ denotes the
‘‘stationary point’’, but will be used as ‘‘saddle point’’. To obtain the stationary
points, the first derivative of the phase oxq xð Þjxsp

¼ 0 is required. Phase has an

extreme value at these stationary points q xsp

� �

, so that it is called ‘‘stationary
phase’’. A non-zero contribution to the integral can be obtained by the integration
along the stationary point xsp

� �

. The ‘‘steepest-decent’’ method is a subset of the
saddle point method for the case when the phase q xð Þ is a real number. The
stationary-phase approximation only considers the first leading-order term of the
‘‘steepest-decent’’ method.

)(ωiqe

ω

(a)

(b)

Fig. 2.4 Illustration of stationary phase. a Rapid oscillation without a stationary point, and
b with a stationary point. The figure is from Jeong [9]
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The above description provides us precise understanding of the concept of
saddle-points in non-zero transmitted field components. Equation (2.14) is
equivalent to the Eq. (2.18) when we let f ðxÞ � ~Eð0;xÞ ¼ iE0

ffiffiffiffi

2p
p
ðx�xpÞ

, and

qðxÞ � zuðx; hÞ=c. Therefore, the saddle points, xsp, are obtained by the first
derivative with respect to x

/0ðxspðz; tÞÞ � ox/ðx; hÞjxsp
¼ 0 ð2:19Þ

The integral has a non-zero value when it is evaluated near the extreme value of
the phase.

With the saddle-points xsp obtained by Eq. (2.19), the corresponding phases

uðxsp; hÞ, and their second derivatives u00ðxSPðz; tÞÞ � o2
xuðx; hÞ

�

�

xsp
, the phase

can be expressed as Taylor expansion

/ðx; hÞ � /ðxsp; hÞ þ /0ðxspðz; tÞÞðx� xspÞ þ
1
2!

/00ðxspðz; tÞÞðx� xspÞ2

ð2:20Þ

and

Z 1

�1
e/ðx;hÞ dx �

Z 1

�1
e/ðxsp;hÞþ1

2!/
00ðxspðz;tÞÞðx�xspÞ2 dx ¼ e/ðxsp;hÞ

ffiffiffiffiffiffi

2p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� /00ðxspðz; tÞÞ
�

�

�

�

q

ð2:21Þ

by recalling
R1
�1 e�

x2

2r2 dx ¼
ffiffiffiffiffiffi

2p
p

r, where r � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� /00ðxspðz; tÞÞ
�

�

�

�

q

. Therefore,
Eq. (2.14) is given by

ExSPðz; tÞ ¼
iE0

ffiffiffiffiffiffi

2p
p
ðxSP � xcÞ

e/ðxSP;tÞþiw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/00ðxSPðz; tÞÞj j
p ð2:22Þ

where w is the angle of steepest decent.
For the case of a single-resonance Lorentz medium, there are two types of

saddle points as we will see in this chapter. The two saddle points are related to the
two transient parts of the emerging transmitted field. One of two saddle points has
high-frequency components associated with Sommerfeld precursor Es z; tð Þ, and
the other is low frequency or DC component associated with Brillouin precursors
EB z; tð Þ.

As one might notice, pole contribution to the integral becomes dominant and
non-zero value can be obtained at singular point x ¼ xp. This pole contribution is
associated with the steady-state part of the emerging field, main signal EC z; tð Þ as
we will see later. To evaluate transient transmitted field (SB precursors), Oughstun
and Sherman [2] have developed Brillouin’s asymptotic analysis by keeping a
higher order term in the saddle-point equation. OS also have used modern math-
ematical methods ‘‘Olver-type path’’ [10] to search for a convenient path of
integral.
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Since the original work by OS [2] have demonstrated saddle points and each
part of transmitted field with complicated mathematical expression, we would like
to deal with the simplest expression of the phase and consequent derivatives most
recently suggested by LeFew [11]. Let’s again consider the phase of integrand in
Eq. (2.14).

uðxÞ ¼ z

c
ix½nðxÞ � h� ¼ z

c
ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � ðx2
0 þ x2

plÞ þ 2ixc

x2 � x2
0 þ 2ixc

s

� h

2

4

3

5 ð2:23Þ

Instead of using the conventional form, the complex frequency is set as
g � iðxþ icÞ, which is shifted by �c from the imaginary axis of complex fre-
quency x and rotated by 90o [11]. Then, Eq. (2.23) can be simplified as

uðxÞ ¼ z

c
ðgþ cÞ R2

R1
� h

� �

ð2:24Þ

where R1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg2 þ x2
0 � c2Þ=x2

0

p

, and R2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg2 þ x2
0 þ x2

pl � c2Þ=x2
0

q

. The
saddle-point equation is given by

ox/ðx; hÞjxsp
¼ R3

1R2h� R2
1R2

2 þ ðR2
2 � R2

1Þgðgþ cÞ
�

�

gsp
¼ 0 ð2:25Þ

With four saddle-points, g�sp(g�s and g�B ) or x�sp (x�s and x�B ), obtained from Eq.
(2.25), one can evaluate ESðz; tÞ and EBðz; tÞ numerically from Eq. (2.22) as

ESðz; tÞ �
X

x�S

	E0euðx�S ðz;tÞ;tÞ� i
2Arg½u00ðx�S ðz;tÞÞ�

ffiffiffiffiffiffi

2p
p
ðx�S � xpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/00ðx�S ðz; tÞÞ
�

�

�

�

q ð2:26Þ

EBðz; tÞ �
X

x�B

	E0e/ðx�B ðz;tÞ;tÞ� i
2Arg½/00ðx�B ðz;tÞÞ�

ffiffiffiffiffiffi

2p
p
ðx�B � xpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/00ðx�B ðz; tÞÞj j
p ð2:27Þ

Besides the saddle-points, another non-zero contribution to the integral Eq.
(2.14) arises from 1=ðx� xpÞ at singular point x ¼ xp. The pole contribution to
the integral is related to the steady-state response of the medium to the incident
field, which is known as the main signal.

ECðz; tÞ ¼ 2pi Res½x ¼ xp� ð2:28Þ

With the numerical frame work of asymptotic theory: Eqs. (2.26–2.28), the total
transmitted field intensity can be obtained as in Fig. 2.5. The left colum shows the
results of asymptotic theory in Eqs. (2.26–2.28), which are compared to analytic
results based on (2.48–2.49) [right column]. Although the recent asymptotic
analysis [11] has significantly reduced the numerical errors for resonant regime,
one cannot avoid intrinsic difference between the theory and the experimental data
right at the front edge [12].
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2.3 Optical Precursor Theory for Resonant Medium

The main assumptions of the resonant regime are small plasma frequency
(xpl 


ffiffiffiffiffiffiffiffiffiffi

8x0c
p

), narrow material resonance (c
 x0), nearly resonance with
material oscillators (xp�x0), and slowly varying approximation (SVA) [13–15].
Under these assumptions, it is possible to evaluate analytic solution describing the
propagation of the step-modulated field through the single –Lorentz dielectrics
[14–16]. The total emerging field is given by

Eðz; tÞ ¼ ESBðz; tÞ þ ECðz; tÞ ð2:29Þ

where the total transient response is ESBðz; tÞ; which should be equivalent to the
sum of two precursors ESðz; tÞ þ EBðz; tÞ:

Fig. 2.5 The absolute value of total transient field envelope for the asymptotic theory [left
column, Eqs. (2.26–2.28)] and for analytic expression [right column, Eqs. (2.48–2.49)]. a The
total transient transmission. b The amplitude of precursors, and c main signal for D * 4c
(denoted by red dash-dot line), D * 2c (denoted by blue dashed line), D * 0 (denoted by black
solid line)
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2.3.1 Analytic Expression for a Single-Resonance Lorentz
Dielectrics: Two-Level System

In this section, let’s consider weakly dispersive resonant medium for which ana-
lytic solution of Eq. (2.14) is achievable. The first assumption we take is small
plasma frequency condition, xpl 


ffiffiffiffiffiffiffiffiffiffi

8x0c
p

, to eliminate square root by the Taylor
expansion,

nðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
x2

pl

x2 � x2
0 þ 2ixc

s

� 1� 1
2

x2
pl

x2 � x2
0 þ 2ixc

ð2:30Þ

By the condition of medium’s resonant frequency, we further simplify the
denominator of Eq. (2.30) as x2 � x2

0 þ 2ixc � 2xðx� x0 þ icÞ, and hence

nðxÞ � 1�
x2

pl

4xðx� x0 þ icÞ ð2:31Þ

Therefore, the simplified phase is given as

/ðxÞ ¼ ix½z
c

nðxÞ � t� � �ixs� ip

D0 þ ic
ð2:32Þ

where p � a0zc=2, retarded time s � t � z=c, detuning from medium resonance
D0 � x� x0, and absorption coefficient a0 � x2

pl=2cc. Based on the simplified
phase Eq. (2.32), there are two ways to obtain analytic expression. One is contour
integral which is used when we deal with off-resonant expression, but lose
information about the saddle points. The other is method of steepest decent [17]
and saddle-point method for the on-resonance case.

Method 1: Contour integral by Cauchy integral formula [16].
The first approach to solve Eq. (2.14) associated with simplified phase Eq.

(2.32) is contour integral based on Cauchy integral formula [16] as illustrated in
Fig. 2.6.

The original integral in Eq. (2.14) is performed along the real axis of the
complex frequency plane in Fig. 2.6. By Cauchy theorem [17] the integral is given
as

Eðz; tÞ ¼ E0

2pi

Z 1

�1

e�ixs

x� xp
e
�ia0zc=2
x�x0þicdx

¼ E0

2pi

I

xp

Gdxþ E0

2pi

I

x0�ic

Gdx

¼ Ecðz; tÞ þ ESBðz; tÞ

ð2:33Þ
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where the integrand is

G � eixs

x� xp
e
�ia0zc=2
x�x0þic ð2:34Þ

The contour integral is divided into two associated with two singular points.
First part is singular point at carrier frequency and it contribute to first term of the
integral

ECðz; tÞ ¼
E0

2pi

I

xp

e�ixs

x� xp
e
�ia0zc=2
x�x0þicdx ð2:35Þ

By setting the complex variable m � x� xp,

ECðz; tÞ ¼
E0

2pi

I

m¼0

dm
m

e�iðmþxpÞse
�ia0zc=2

mþic ð2:36Þ

A solution to above expression can be evaluated by the residue theorem,
I

C

f ðmÞdm ¼ 2pi
X

enclosed residuesð Þ ð2:37Þ

Thus, the solution has an analytic form indicating exponential decay of the
envelope of the transmitted main signal.

ECðz; tÞ ¼ E0HðsÞe�ixpse
a0zc=2
iD0�c ð2:38Þ

There is different way to express Eq. (2.38) using ‘‘generating Bessel function’’,

]Im[ω

δ

0
ω

c
ω

]Re[ω

R

Fig. 2.6 Schematics of
contour integral
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e
x
2ðu�1

uÞ ¼
X

1

m¼�1
umJmðxÞ ð2:39Þ

By letting u ¼ iy
ffiffiffiffiffiffiffi

s=p
p

, and x ¼ 2
ffiffiffiffiffi

ps
p

, we get different expression of Eq. (2.39)
as

e
iðsy�p

yÞ¼
P

1

m¼�1
imðspÞ

m
2 ymJmð2

ffiffiffiffi

ps
p Þ

ð2:40Þ

where y � �D0 � ic: Therefore, the alternate form of Eq. (2.40) is given as

ECðz; tÞ ¼ E0HðsÞe
a0zc=2
iD0�ce�ixps

¼ E0HðsÞe�ixpsþðiD0�cÞs
X

1

m¼�1
imðs

p
Þ

m
2ð�D0 � icÞmJmð2

ffiffiffiffiffi

ps
p Þ

¼ E0HðsÞe�ixpsþðiD0�cÞs
X

1

n¼�1
ð p

iD0 � c
ÞnðpsÞ�n=2Jnð2

ffiffiffiffiffi

ps
p Þ

ð2:41Þ

Now, let’s look at the second term of Eq. (2.33), which is the contour integral
around singular point of the exponent, x0 � ic, by setting z � x� xp þ ic.

ESBðz; tÞ ¼
E0

2pi
e�iðx0�icÞs

I

z¼0

dz
e�izs�ia0zc=2z

zþ x0 � xp � ic
ð2:42Þ

By rewriting the denominator as

1
z� a

¼ � 1
a

X

1

n¼0

z

a

� 	

¼ �
X

1

n¼0

zn

anþ1
ð2:43Þ

where a � xp � x0 þ ic, and

e�izs�ip=z ¼
X

m¼1

m¼�1
ð�izÞmðs

p
Þm=2Jmð2

ffiffiffiffiffi

ps
p Þ ð2:44Þ

where p � a0zd=2, Then we rewrite Eq. (2.33) as

ESBðz; tÞ ¼ �
E0

2pi
eð�ix0�cÞs
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z¼0

dz
X
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m¼�1

X
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n¼0

zmþnimðs=pÞm=2ð�1ÞmJmð2
ffiffiffiffiffi
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p Þ

ðxp � x0 � icÞnþ1

ð2:45Þ

By considering the residue theorem
Z

z¼0

dzzmþn ¼ 2pidm; nþ1ð Þ ð2:46Þ

24 2 Theory of Optical Precursors



and J�nðxÞ ¼ ð�1ÞnJnðxÞ;

ESBðz; tÞ ¼ �E0HðsÞe�ixpsþðiD�cÞs
X

1

n¼1

p

iD0 � c
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ðpsÞ�n=2Jnð2
ffiffiffiffiffi

ps
p Þ ð2:47Þ

for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p=ðsðD2
0 þ c2ÞÞ

q

\1. Exponential decay e�cs and the Bessel function
J�nð2

ffiffiffiffiffi

ps
p Þ in Eq. (2.47) affect the transient time scale, and it indicates that the

second term of the contour integral is the transient part of total transmission.

Therefore, for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p=ðsðD2
0 þ c2ÞÞ

q

\1, the total transmitted field is evaluated

from the sum of Eqs. (2.41) and (2.47)
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ð2:48Þ

The alternate form of the total transmission is derived by considering
P
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[ 1, we have,
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ps
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The above expression for total transmitted field is useful if one would like to see
the effect of detuning within near resonance regime, i.e., D0 � c. However,
ESBðz; tÞ cannot be separated to ESðz; tÞ and EBðz; tÞ. To obtain analytic form of
each precursor part, one requires restricted on-resonant condition of xp ¼ x0 as
discussed in method 2.

Method 2: Saddle-point approximation.
Let’s redefine the phase /ðx; tÞ as EðtÞ ¼ 1

ffiffiffiffi

2p
p
R1
�1 Eð0;xÞ ei/ðx;hÞdx, and the

first and second derivatives of the phase are

/0ðx�sp; tÞ � �sþ p

ðDsp þ icÞ2

/00ðx�sp; tÞ � �
2p

ðDsp þ icÞ3
ð2:50Þ

From above equation, saddle-point can easily obtained from ox/ðx; tÞjxsp
¼ 0
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D�sp ¼ �
ffiffiffiffiffiffiffiffiffi

a0zc
2s

r

� ic ð2:51Þ

where, Dsp � xsp � x0. Here, let’s define nðtÞ �
ffiffiffiffiffiffi

a0zc
2s

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a0zc
2ðt�L=cÞ

q

, then the de-
tuned saddle-points is

D�sp ¼ �nðtÞ � ic ð2:52Þ

and the second derivatives of the phase are written as

/00ðx�spÞ ¼ �
a0zc

ð�nðtÞÞ3
ð2:53Þ

Now let’s consider the general form of the transmitted field. The transmitted
field is mainly attributed to the saddle pointxspcontribution.
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From the spectrum of the input pulse, the two transient fields at two types of
saddle-points are given as
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Here, the first approximation can be made because of the on-resonance con-
dition xp � x0, so that x�sp � xp � x�sp � x0 ¼ D�sp.

The second approximation is due to the narrow-resonance condition (c! 0), so
that D�spðtÞ � nðtÞ.
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ESBðz; tÞ ¼ ESðz; tÞ þ EBðz; tÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2a0zcs
p

s

E0e�ixpscos
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2a0zcs
p

� p
4

� 	 ð2:57Þ

By assuming highly absorptive media, the total transmitted field only consists
of Sommerfeld and Brillouin precursors, and main signal is zero due to absorption
by two-level atoms. In the next section, we will discuss EIT media where the
delayed main signal can be transmitted without absorption.

From the Bessel function approximation J0ðxÞ �
ffiffiffiffi

2
px

q

cosðx� p=4Þ, we finally

obtain the total transient field as,

ESBðz; tÞ ¼ E0J0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2a0zcs
p

ÞHðsÞe�cseðk0z�x0sÞ ð2:58Þ

The above expression is equivalent to the zeros order of Bessel term in Eq.
(2.48) for on-resonance condition. One can prove that for a step-off pulse E0ðz ¼
0; tÞ ¼ E0Hð�tÞ with falling edge, the SB precursor is the same as equation (2.58)
but with a minus sign. Therefore, for step input pulse E0ðz ¼ 0; tÞ ¼ E0Hð�tÞ, we
obtain

ESBðz; tÞ ¼ �E0J0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2a0zcs
p

ÞHðsÞe�cseiðk0z�x0sÞ ð2:59Þ

The interesting thing is that the identical expression derived in two approaches
has been discussed over and over in the past with various impulse responses, such
as 0p-pulse [13]. By solving Maxwell-Bloch equation, the analytic expression of
0p-pulse turned out to be exactly the same as Eq. (2.59). Although quite a few
could notice that 0p-pulse is identical to resonant precursors [14], majority of
optical community, even Crisp, had denied the existence of optical precursors in
small area (0p)-pulse analysis. However, due to the experimental demonstration of
resonant precursors, the analogy between optical precursors and 0p-pulse can be
accepted and both phenomena are interpreted as coherent transients [15].

2.3.2 Main Signal Propagation in Electromagnetic Induced
Transparency Medium

Conventional theory of optical precursors deals with a single Lorentz oscillator, as
we have discussed so far. In a single Lorentz medium, the main signal corre-
sponding to the pole x! x0 is absorbed heavily. What happens if we consider
EIT medium? How does the change affect total transmitted field? We would like to
answer such questions in this last section based on the Ref. [18].

For a three-level EIT system, the model of simple Lorentz oscillators does not
apply. We can instead take a semi-classical approach to obtain the dielectric
function. As depicted in Fig. 2.7a, the three-state system is coupled with a strong
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coupling field. Assume that the coupling field is on-resonance with the transition
2j i ! 3j i. The Hamiltonian in the rotating-wave wave is shown below, including

the relaxation mechanism with decay rate of 2j i ( 3j i) as C2 ¼ 2c12 (C3 ¼ 2c13):

Heff _¼ �h
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6
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3

7

5

ð2:60Þ

where Dp ¼ xp � x0. From uj iR¼ a1ðtÞ 1j i þ a2ðtÞ 2j i þ a3ðtÞ 3j i, the coupled
differential equations:
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ð2:61Þ

With ground state approximation a1 � 1, the steady state for the system con-
sidering relaxation mechanism can be obtained from the following calculation:

0 ¼ �Dp �
iC2

2


 �

a2 �
1
2

X�ca3

0 ¼ � 1
2

Xp �
1
2

Xca2 � Dp þ
iC3

2

� �

a3

ð2:62Þ

(a)

(b) (c)

Fig. 2.7 Optical pulse propagation though an EIT. The figure was published in Jeong H and Du
S (2009) Phys. Rev. A(R) 79: 011802
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Therefore, the probability amplitude of state 3j i is:

a3 ¼
2XpðDp þ iC2

2 Þ
Xcj j2�4ðDp þ iC3

2 Þðdþ
iC2
2 Þ

ð2:63Þ

The induced polarization density is:

P ¼ uh jP̂ uj i
¼ Nða�1a3l13e�ixpt þ a�2a3l23e�ixct þ a1a�3l

�
13eixpt þ a2a�3l

�
23eixctÞ

ð2:64Þ

If only the polarization induced by the probe laser beam is considered, Eq.
(2.62) becomes:

P ¼ Nða�1a3l13e�ixpt þ a1a�3l
�
13eixptÞ ð2:65Þ

Therefore, we obtain the linear susceptibility v of this three-level system:

vðxÞ ¼ 2Nl13a3

e0Ep
¼ N l13j j2

e0�h
�

4ðDp þ iC2
2 Þ

Xcj j2�4ðDp þ iC3
2 ÞðDp þ iC2

2 Þ

¼ a0z

kpz
�

2C3ðDp þ iC2
2 Þ

Xcj j2�4ðDp þ iC3
2 ÞðDp þ iC2

2 Þ

ð2:66Þ

For EIT medium, with high optical depth condition a0z� 1, the saddle points
are far-detuned from the resonance, we can treat the SB precursor field the same as
a two-level system. The analytic expression of the SB precursors is same as Eqs.
(2.58–2.59). The big difference comes from the main signal part which is not
absorbed within the EIT window. To describe the main signal, the above stationary
phase approximation (2.50) is not appropriate because /00ðxcÞ ¼ 0. To obtain the
main field expression, we could deal with the impulse response (Green’s function)
of the EIT window [ x0 � De;x0 þ Deð Þ],

GEITðz; tÞ ¼
1

2p

Z x0þDe

x0�De

ei½kðxÞ�xt�dx ð2:67Þ

where De � Xc=2. As we convolute the input signal E 0; tð Þ with Green’s function
GEIT z; tð Þ, the main signal EC z; tð Þ can be expressed as

ECðz; tÞ ¼
1

2p

Z 1

�1
GEITðz; t � sÞE0ð0; sÞdx

¼
Z 1

0
GEITðz; t � sÞ dx

ð2:68Þ

The interesting point is that Eq. (2.68) implies active control of main signal by
varying the parameters of the medium and control beam.

With reasonable approximation, the analytical expression of the main field is
obtained as follows [19]. The ground-state dephasing is negligible, i.e., c12 � 0 or
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Xcj j2� 4c12c13. The carrier frequency of the probe beam is xp, while we now
denote x as the frequency deviation from xp due to the spectral constitutes of the
finite probe pulse. Since the EIT transparency window is very narrow, the EIT
linear susceptibility can be expanded to the third order near x ¼ 0:

vðxÞ � vð0Þ þ v0ð0Þxþ 1
2

v00ð0Þx2 þ 1
6

v00ð0Þx3

¼ 4ia0c12c13

kp0X
2
c

þ 4a0c13

kp0X
2
c

xþ x2

2
32ia0c2

13

kp0X
4
c

þ x3

6

12a0c13ð�
32c2

13

X6
c
þ 8

X4
c
Þ

kp0

ð2:69Þ

The transfer function can then be approximated as:

TðxÞ ¼ e�c12sg e�x2=ð2a2Þeixsg eix3=ð3b3Þ ð2:70Þ

where sg ¼ 2a0zc13= Xcj j2 is the group delay, a ¼ ffiffiffiffiffiffiffi

a0z
p

=ð2sgÞ determines the EIT

bandwidth, b ¼ Xcj j2½24a0zc13ð Xcj j2�4c2
13Þ�

�1=3. The impulse response function
can be expressed as a convolution:

hðtÞ ¼ ab
ffiffiffiffiffiffi

2p
p e�c12sg e�

1
2a2ðt�sgÞ2 � Aið�btÞ ð2:71Þ

AiðbtÞ is an Airy function, which comes from the third-order term of the linear
susceptibility. The main field is the convolution of the input step pulse with the
impulse response function:

EM�ðtÞ ¼ E0Hð�tÞ � hðtÞ

¼ E0

2
e�c12sgð1� erf ½aðt � sgÞ

ffiffiffi

2
p �Þ � bAið�btÞ

ð2:72Þ

where erf denotes the error function, which indicates that the main field is delayed
by sg: The Airy function adds a small modulation on top of the main field and
leads to the ‘‘postcursor’’ introduced in Mache and Segard’s work in 2009. But in
most cases, the Airy function effect is small and can be ignored.

References

1. Brillouin, L.: Wave Propagation and Group Velocity. Academic Press, New York (1960)
2. Oughstun, K.E., Sherman, G.C.: Electromagnetic Pulse Propagation in Causal Dielectrics.

Springer, Berlin (1994)
3. Jeong, H., Dawes, A.M., Gauthier, D.J.: Direct observation of optical precursors in a region

of anomalous dispersion. Phys. Rev. Lett. 96, 143901 (2006)
4. Wei, D., Chen, J.F., Loy, M.M.T., Wong, G.K.L., Du, S.: Optical precursors with

electromagnetically-induced transparency in cold atoms. Phys. Rev. Letts. 103, 093602
(2009)

30 2 Theory of Optical Precursors



5. Jeong, H., Österberg, U.L., Hansson, T.: Evolution of Sommerfeld and Brillouin precursors in
intermediate spectral regimes. JOSA B 26, 2455–2460 (2009)

6. LeFew, W.R., Venakides, S., Gauthier, D.J.: Accurate description of optical precursors and
their relation to weak-field coherent optical transients. Phys. Rev. A 79, 063842 (2009)

7. Jeong, H., Du, S.: Slow-light-induced interference with stacked optical precursors for square
input pulses. Opt. Lett. 35, 124–126 (2010)

8. Jeong, H., Österberg, U.L.: Steady-state pulse component in ultrafast pulse propagation in an
anomalously dispersive dielectric. Phys. Rev. A 77, 021803 (2008)

9. Jeong, H.: Direct observation of optical precursors in a cold potassium gas. Ph.D. Dissertation
(unpublished) (2006)

10. Copson, E.T.: Asymptotic Expansions. University Press, Cambridge (1965)
11. LeFew, W.R.: Optical precursor behavior. Ph.D. Dissertation, Duke University (unpublishd)

(2007)
12. Jeong, H.J., Dawes, A.M.C., Gauthier, D.J.: Carrier-frequency dependence of a step-

modulated pulse propagating through a weakly dispersive single narrow-resonance absorber.
J. Mod. Opt. 58(10), 865–872 (2011)

13. Crisp, M.D.: Propagation of small-area pulses of coherent light through a resonant medium.
Phys. Rev. A 1, 1604–1611 (1970)

14. Varoquaux, E., Williams, G.A., Avenel, O.: Pulse propagation in a resonant medium:
Application to sound waves in superfluid 3He. Phys. Rev. B 34, 7617–7640 (1986)

15. Jeong, H., Österberg, U.: Coherent transients: Optical precursors and 0p pulses. JOSA B 25,
B1–B5 (2008)

16. Aaviksoo, J., Lippmaa, J., Kuhl, J.: Observability of optical precursors. JOSA B 5,
1631–1635 (1988)

17. Arfken, G.B., Weber, H.J., Ruby, L.: Mathematical Methods for Physicists, vol. 3,
pp. 428–431. Academic Press, San Diego (1985)

18. Jeong, H., Du, S.: Two-way transparency in the light-matter interaction: Optical precursors
with electromagnetically induced transparency. Phys. Rev. A 79, 011802 (2009)

19. Chen, J.F., Wang, S., Wei, D., Loy, M.M.T., Wong, G.K.L., Du, S.: Optical coherent
transients in cold atoms: From free-induction decay to optical precursors. Phys. Rev. A 81,
033844 (2010)

References 31



Chapter 3
Searching for Precursors: From
Microwave to Primary Optical
Experiments

Abstract In this chapter, we review some early experimental works on precursor
observation. The first experimental observation of Sommerfeld-Brillouin precursor
is reported in coaxial transmission line, where SB precursors exist in microwave.
Later, precursors are studied and measured experimentally in sound-wave domain,
with superfluid 3He-B prepared closer to ‘‘resonant regime’’. The first optical
precursor was reported in infrared light propagated through GaAs single-crystal
layer. We review and discuss these experimental works within the theoretical
framework in Chap. 2.

Theoretical calculation on precursor phenomena was first made by Sommerfeld
and Brillouin in 1914, with a purpose to looking for maximum velocity of a signal
carried by optical pulse. In the previous chapters, our discussion focused on the
asymptotic approach we used to obtain the SB precursor field. In this chapter, we
would like to review our experimental observations of the transient signals in
microwave, sound, and optical domain. With a dispersive medium model with
broad resonance, SB predicted that the precursor field is an extremely rapid
transient with femto-second time-scale profile, and with almost negligible mag-
nitude. Oughstun and Sherman later recalculated the problem and verified the
availability of measurement. However, the dispersive medium, indeed usually with
broad resonance, puts the coherence time of the transient beyond the measurement
limit. There were no reports on precursor observation in electromagnetic waves,
including microwaves and optical waves, until 1969, when Pleshko and Palócz [1]
reported the first microwave experiment with a transmission waveguide. In this
artificially controlled dispersive medium, the plasma frequency can be tuned to be
appropriate for the precursor in microwave with sub-nano to nano second scale.

JF Chen
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3.1 In Microwave Frequency Domain: First Precursor

The first experimental observation of precursor was reported by Pleshko and
Palócz [1] in the microwave frequency domain. The fabricated medium was a
coaxial transmission waveguide. In this fabricated waveguide, the resonant line
was located at the frequency of the order of GHz. Therefore the dispersion curve at
high and low frequencies was not symmetric with respect to the resonant spectral
line. The precursor at the first arrival time t0 ¼ z=c comes from the extremely large
frequencies x!1. The refraction index at large frequencies is approximated as:

nðxÞ � 1�
x2

pl

2x2
ð3:1Þ

From Eqs. (2.12), (2.15) and (3.1), the amplitude is derived as:

Eðz; tÞ ¼ E0

2pi

Z

dx
x� xp

e�i½ðt�t0Þxþn=x� ð3:2Þ

in which the contour is taken in a counterclockwise direction around the whole

circle with a large radius R, and n ¼ x2
plz

2c . Change the variable m ¼ �iðt � t0Þx in
Eq. (3.2), with limits x� xp, and we could transform Eq. (3.2) into

Eðz; tÞ ¼ E0

2pi

Z

dm
m

em�nðt�t0Þ
m ð3:3Þ

Note that Bessel function with integer m has a form as:

JmðxÞ ¼
1

2pi
ðx
2
Þm
Z

dm
mmþ1

em�ðx2=4mÞ ð3:4Þ

One can identify that if x ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðt � t0Þ
p

, Eq. (3.5) becomes,

Eðz; tÞ ¼ E0J0½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðt � t0Þ
p

� ð3:5Þ

Equation (3.5) indicates that the high-frequency components of the incident
wave arrive at the earliest with velocity close to c, and they give rise to Som-
merfeld precursor expressed as Bessel function. The oscillation frequency of
Sommerfeld precursor increases with parameter n, or say, with plasma frequency
of the medium. According to Sommerfeld and Brillouin’s theory, a typical value
for plasma frequency is xpl ¼ 1016 s�1, and thus the oscillating period of Som-
merfeld precursor is of the order of 10�20 s. Hence, with these parameters, Som-
merfeld precursor is indiscernible with the present detection technique. However,
in the waveguide experiments, the plasma frequency of the medium is of the order
of 109, and the precursor oscillates with sub-nano-second to nano-second.
Figure 3.1 shows the high frequency limit case, with n ¼ 1011 in simulation.
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On the low frequency side in the spectrum, the stationary phase point x! 0

contributes to the Brillouin precursor, which arrives at t1 ¼ nðx¼0Þz
c . At this sta-

tionary phase point, /0 and /00 vanish, and we keep terms up to x3 to expand
/ðxÞ:

/ðxÞ ¼ �xðt � t1Þ þ
z

6
ðd

3k

dx3
Þ0x3 ð3:6Þ

The transmitted amplitude is written as,

Eðz; tÞ ¼
Z

E0ðxÞdxei½ðt1�tÞxþðz=6Þðd3k=dx3Þ0x3� ð3:7Þ

Here E0ðxÞ represents the spectrum of the incident pulse, and for convenience,
in low frequency limits we consider it to be constant. From Eq. (3.1) the third-
order derivative becomes,

dk3

d3x
j0 ¼

3x2
pl

x4
0c

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
pl

x2
0

r ¼
3x2

pl

x4
0cnð0Þ ð3:8Þ

The integration in Eq. (3.7) can be written as an Airy function, if we change the
variables as [2]:

t0 ¼ 2
zðd3k=dx3Þ0

� �1=3

ðt1 � tÞ ð3:9Þ

x0 ¼ 1
2p

zðd3k=dx3Þ0
2

� �1=3

x ð3:10Þ

0 20 40 60 80
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

E
S
(A

rb
 U

ni
t)

Time (ns)

Fig. 3.1 Theoretical
simulation based on the
Sommerfeld precursor in
waveguide at the high
frequency limit
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Therefore the Brillouin precursor is expressed as Airy function:

EBðz; tÞ ¼ 2p
2

zðd3k=dx3Þ0

� �1=3

Ai ðt1 � tÞ 2
zðd3k=dx3Þ0

� �1=3
 !

ð3:11Þ

Figure 3.2 shows the Airy function contributing to the Brillouin precursor from
low frequency limit. In the simulation, we set the parameter

2
zðd3k=dx3Þ0

� �1=3
¼ 2� 108.

The waveguide was first filled with the longitudinally magnetized ferromag-
netic material, and the dispersion characteristic could be varied by the applied
magnetic field. The incident wave was a sinusoidal wave train with a frequency of
0.625 GHz, in microwave frequency range, and the electric field could be captured
directly by a high-bandwidth oscilloscope. After varying the magnetic field
applied onto the waveguide, the plasma frequency was well controlled. As shown
in Fig. 3.3 from Ref. [1], when the magnetic field was low, the Sommerfeld
precursors were superimposed on the Brillouin precursor. When the magnetic field
increased and the plasma frequency grew, Sommerfeld precursor became invisible
since the oscillation was beyond the detection limit. To observe the Sommerfeld
and Brillouin precursor separately, they further selected two different guiding
structures to mimic the two extreme frequency branches. High-bandwidth function
generator (able to produce rise time as short as 30 ps) and high speed oscilloscope
(12.4 GHz sampling oscilloscope) was utilized in the direct measurement of the
electric field. Figure 3.4 shows the case for precursors at low frequency branch,
which matches our previous simulation at the frequency extreme (as shown in
Fig. 3.2). At the other frequency extreme, air filled waveguide was utilized and the
Sommerfeld precursor was claimed to be observed with the C-band waveguide
with cut-off frequency of 4.29 GHz. However, the frequency components and the
delay time of the transient signal is evaluated from the oscilloscope with a rather
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rough approach, and we believe that the observed transient signal needs further
verification with modern advanced technique.

In conclusion, the first experimental observation of SB precursor was carried
out in microwave regime, with controllable energy band of waveguide medium.

Fig. 3.3 Output waveform in
microwave domain, with
different plasma frequency
controlled by the applied
magnetic field. The scale of
the measurement is of 5 ns/
div. a 20 GAUSS, b 100
GAUSS. Reprinted Fig. 2
with permission from Pleshko
and Palócz [1]. Copyright
2013 by the American
Physical Society

Fig. 3.4 Output waveform
measured in material of RG8/
U coaxial line. Reprinted
Fig. 3 with permission from
Pleshko and Palócz [1].
Copyright 2013 by the
American Physical Society
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Even though this is considered a weak proof for Sommerfeld precursor, the work
shows the Brillouin precursors with considerable magnitude. This is the unique
attempt to demonstrate the precursor field through the real incident field. In
contrast, precursors carried out in optical domain are depicted in field amplitude
envelope, due to the high oscillation ([10 THz) with optical frequency.

3.2 Observation of Sound Wave with Superfluid 3He-B

When the electromagnetic waves propagate with a speed in the order of physical
constant c, sound waves travel much slower with *340 m/s. Therefore it is much
easier to measure the sound-wave velocity with satisfactory accuracy. It is a good
experimental approach to study the problem of wave propagation, especially on
phase velocity, group velocity and information velocity. Further, sound wave is
classified as a mechanical wave, different from electromagnetic wave. Precursors
in sound-wave realm provide reference for comparison with wave propagation in
other realms. Avenel et al. (1983) [2] reported sound-wave precursor in superfluid
3He-B [2, 3], which can be considered an ideal homogeneous medium at low
temperature. The experiments were carried out in a copper nuclear demagnetiza-
tion cryostat. The sound transducers operated at constant frequency and the mode
resonance was temperature dependent. In such a special medium, the sound wave
was propagated with very weak damping. Further, the wave was propagating with
a carrier frequency close to the resonant frequency of the superfluid, which was
equivalent to a Lorentzian medium. In the resonant regime, the medium dispersion
is described by a simplified expression for kðxÞ, according to Eq. (2.30),

kðxÞ ¼ x
c
�

x2
pl

x� x0 þ ic
ð3:12Þ

With slowly varying approximation, the precursor field can be described with
Bessel function,

ESBðz; tÞ ¼ E0J0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2a0zcs
p

ÞHðsÞe�cseðk0z�x0sÞ ð3:13Þ

where c denotes the decay coefficient. The typical parameters in Eq. (3.12) are:
k ¼ 3:7 lm, velocity for sound wave propagation in the sonic cell c0 ¼ 202 m/s,
x0 ¼ 55 MHz and c ¼ 90� 103 rad/s. According to Varoquaus et al., the ampli-
tude and phase of the experimental signal are shown in Fig. 3.2, with excitation
detuning, (from top to bottom) Dx ¼ 9:4� 105 rad/s; 4:3� 105 rad/s; 2:4�
105 rad/s and 6:4� 104 rad/s. The least-detuning case (bottom curve in Fig. 3.2)
exhibits clear wiggles demonstrating Bessel function of Eq. (3.13). In such an
acoustic system, the electronic signal characteristic of rectangular envelope must
be transformed to a mechanical signal through a transducer. The rectangular-
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envelope hence undergoes a convolution with the response function HðsÞ of the
transducer. The actual envelope of the incident sound wave is given by,

AðsÞ ¼ HðsÞArf ðsÞ ð3:14Þ

Once more, at the receiver end, the mechanical signal is transformed to the
electronic signal. Therefore the sharp fronts of the rectangular envelope are
smoothed by the transformation, before emitting into the liquid medium. The
sound wave again is transformed to electronic signal at the receiver end. The top
curve in Fig. 3.5 shows the envelope received at the electronic device without
experiencing dispersion: AðsÞ ¼ H2ðsÞArf ðsÞ.

Fig. 3.5 Sound-wave
precursor reported in
Varoquaux et al. [3]. The
experimental results are
plotted with dots and the
calculated curves are plotted
with solid line. Reprinted
Fig. 1 with permission from
Avenel et al. [2]. Copyright
2013 by the American
Physical Society
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Superfluid in 3He-B was explored to be the medium for observing the precursor
propagation, due to low-dissipation and close to resonance. However, because of
the relatively slow response of mechanical wave, rectangular envelope of sound
wave is hard to be generated in experiments. Therefore the SB precursor aroused
by the sudden change of incident field was not separate from the main wave train
in the measurement. In contrast, in optical regime, this problem is easily solved
with well controlled optical pulses.

3.3 Searching for Precursors in Optical Domain: In GaAs
Crystal and Water

When Sommerfeld and Brillouin introduced precursors, they had in time problem
of propagation in optical domain. For a long time, to demonstrate the existence of
optical precursors was considered to be a hard work. There are two main reasons.
Firstly, the carrier frequency of an optical pulse is extremely high (*1014 Hz).
Secondly, the excitation resonance for common medium has broad spectrum,
which means the Sommerfeld precursor must be having ultra-high frequency.
Extremely fast modulation (femto-second to sub-pico-second) should be applied
onto an optical pulse to stimulate the transient signals. Technology on optical pulse
modulation and ultra-fast optical pulse detection is still being developed and
usually does not meet the necessary requirements. Therefore, experimental works
started from microwave, and sound-wave, and were not reported in optical range
until 1991. The indication of the existence of precursors in optical range was first
demonstrated in thin layers of GaAs (L = 0.2 lm), with ultrashort optical pulses
with wavelength in the optical range [4]. The effective excitation line corre-
sponded to optical wavelength of k ¼ 818:3 nm, with full width half maximum of
the resonance-line as C ¼ 2c ¼ 7:5� 1011 rad/s. The effective plasma frequency
can be calculated as xpl ¼ 1:0� 1014 rad, and so that xpl� 0:1x0. Also, we could
evaluate the optical depth from these parameters, with z = 0.2 lm, a0L � 9. The
incident optical pulse is composed of a steep rising edge followed by a single-sided
exponential decay function expð�t=sÞ. To approach the ideal step-on pulse
envelope described by Heaviside function E0þðtÞ ¼ E0HðþtÞ, the rising edge of
the incident pulse is as short as possible, and it is 0.5 ps in the experiment. Such a
short rising edge of profile provides a broad range spectrum (*1012 rad/s as
reported) for the incident pulse, and those far-detuned frequency components,
therefore, give rise to the Sommerfeld Brillouin precursor in the transmission
profile. However, the transient signal observed in the GaAs layer is very fast, of
the order of several picoseconds, and not able to be detected directly in the time
domain. The time-resolved transmission of the optical pulse was attained via cross
correlation function [4] measured with the initial laser pulse in a several millimeter
long LiIO3 crystal.
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The condition xpl �
ffiffiffiffiffiffiffiffiffiffi

8x0c
p

is not satisfied in this system, and thus Eq. (2.7)
should be dealt without approximation. It is not easy to gain an analytical solution
for such parameter regime described above. However, with refractive index feature
displayed as Eq. (2.13),

nðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
x2

pl

x2 � x2
0 þ 2ixc

s

ð3:15Þ

one could obtain a numerical result from frequency-domain linear dispersion
theory. For sufficiently weak excitation, the atomic population remains mostly in
the ground state, and the Fourier frequency components of the incident pulse can
be treated independently and nonlinear wave mixing between them can be ignored
with first-order perturbation theory. The induced electric dipole in the frequency
domain at the transition is determined by the linear relation:

PðxÞ ¼ e0vðxÞEðxÞ ð3:16Þ

where the linear susceptibility of the dispersive medium is denoted as vðxÞ. Next,
we assume that, every frequency component of the input pulse is evolving within
the medium independently and is governed by corresponding linear transfer
function. The propagation of the weak probe field envelope is given by the integral

EðL; tÞ ¼ 1
2p

Z

E0ðxÞei½DkðxÞz�xt�dx ð3:17Þ

in which we make an approximation
ffiffiffiffiffiffiffiffiffiffiffi

1þ v
p

¼ 1þ 1
2 v, and thus DkðxÞ ¼ xp

2c vðxÞ.
The linear transfer function can be expressed as,

TðxÞ ¼ eiDkðxÞz ð3:18Þ

Equation (3.16) can be expressed as the transfer function:

EðL; tÞ ¼ 1
2p

Z

E0ðxÞTðxÞe�ixtdx ð3:19Þ

Therefore, with Fourier transform of input probe pulse E0ðtÞ, the transmitted
field can be readily obtained from the integral (3.19). Figure 3.6 shows the CCF
signal with detuned wave number D ¼ 3:1 cm�1, equivalent to angular frequency
5.8 9 1011 rad/s. As shown in the figure, the peak at the very front is SB precursor
and the main signal with group velocity becomes notable because of the incident
exponential decay pulse shape. Normally the main signal is almost completely
absorbed through the medium. However, with optical pulse absorption and
reemission appropriately excited by the input exponential waveform, the trans-
mitted pulse exhibits precursor followed by delayed main signal within the same
intensity envelope.

On the other hand, Choi and Österberg [5] reported the propagation of optical
precursor in distilled water. Instead of sending a short pulse with steep rising or
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falling edges, they coupled the laser source into a holey fiber to generate a broad
bandwidth for the optical pulse. The incident pulse was *540 fs long (with a
bandwidth of 60 nm), with linear chirp applied. Their evidence for the existence of
precursor is reflected in two points as described below. Firstly, the Brillouin
precursor from low frequencies in the pulse varies as 1=

ffiffi

z
p

with distance when
z!1, according to asymptotic approximation. Choi and Österberg [5] compared
the exponential decay of main pulse e�az with the observed attenuation in the
measurement, and concluded that the behavior of the observed peak matched the
calculation for Brillouin precursor. Secondly, at large propagation depth
z [ 500 mm, the optical pulse broke up and the lagging peak seemed to be
growing with distance with respect to the main pulse peak. However, the exper-
imental work was questioned. Roberts [6] introduced his theoretical work and
pointed out that non-exponential decay is only valid for pulses with dc content.
Österberg [7] argued that the theory developed by Roberts failed to describe the
behavior of transient signal such as precursor. However, he admitted that it was
difficult to determine the distance dependence of the amplitude of Brillouin pre-
cursor approximated as 1

½u00ðxspÞz�1=2 eizuðxspÞ, since the saddle points are complicated

in the case of water. Not much later, Alfano et al. [8] debated that the pulse
breakup observed by CO did not arise from precursor but from vibration overtone
absorption and dispersion in water. By measuring the absorption spectrum of water
from 650 to 850 nm, they verified the existence of a vibrational overtone
absorption band centered at 760 nm. Also, the temporal profile of the incident
pulse was split by the band after traveling a distance of 1.2 m in water.

To conclude this section, the earlier attempts in GaAs and water are still below
what is required to compare with the analytical solutions. The absorption and
dispersion character of water is too complicated to give a clear verification for the
existence of precursor. On the other hand, for GaAs, the line width of the resonant-
line is too broad, when compared to the carrier frequency of optical pulses. The
life time for the coherent transient is too short, only being several picoseconds, to

Fig. 3.6 CCF intensity
measurement of transmitted
optical pulse through GaAs
thin layer. Reprinted Fig. 3
with permission from
Aaviksoo et al. [4] Copyright
2013 by the American
Physical Society
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be detected directly with time-domain signal-collection equipment. Again, the
precursor at the front mingles with the main signal, without a clear signature for
the separated signal. To stop the debate, the precursor community is calling for
more solid evidence, with optical precursors which are able to be detected directly
in time domain, and also clearly separated from the main pulse. Next round of
attempts start from the absorptive medium with narrow resonance. Naturally, cold
atomic ensembles become one of best candidates for the experimental measure-
ments, with the modern technique of laser cooling and trapping.
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Chapter 4
Observation of Optical Precursors
in Cold Atoms

Abstract Cold atomic source was first introduced into the community of pre-
cursor in 2006, when Jeong (Phys. Rev. Lett. 96:143901, 2006) reported the direct
observation in a cloud of potassium cold atoms. Later, Wei et al. reported
observation in a 2-dimensional magneto-optical trap with optical depth as high as
50, with the assistance of EIT effect. With the advent of cold atom traps and
tunable diode lasers, we now have a single physical system with parameters that
can be widely tuned to cover both physical regimes. Also, in the chapter, we
discuss and interpret the slow and fast light phenomena while comparing with the
precursor propagation in the same system. In the last section, we review the
stacked precursors measured with a multiple-step function.

Broad resonance of excitation for dispersive medium is the main problem among all
the experimental works in microwave, sound, and optical waves discussed in the
previous chapter. The result is that the coherence time of the transient signal is too
short for direct detection in time. Also, the theoretical calculations from Oughstern
and Sherman (1988) imply that resonant probing xp � x0 increases the magnitude
of precursor to be comparable with the main signal. However, for a medium with
broad resonance, the excitation frequency must be detuned from the resonant fre-
quency to avoid heavy absorption. Motivated by the advantage of narrow-resonance
medium, cold atomic ensemble was recently introduced into the optical transient
community. With laser cooling and trapping technology, atoms are cooled down to
the order of 0.0001 K, which is below the lowest temperature that any refrigerator
could reach. Therefore, effects caused by thermal motion are depressed. Doppler
broadening and atomic collision are suppressed to be negligible in cold atomic
ensemble. Linewidths of atomic energy levels are only limited by natural broad-
ening. With cold atoms as propagation medium, the single-resonance Lorentzian
curve for the two-level atomic system has a narrow-resonance spectrum, charac-
terized by c�x0: For example, for rubidium, the decoherence rate c ¼ 2p� 3 MHz
and hence the lifetime for optical transient signal is about 26 ns. Based on the
advantages, cold atoms easily bring the optical precursors into the time-domain
oscilloscope in laboratory. In cold atomic medium, the signature of precursor is the
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clearest one compared to the observed signal in previous experiments. Furthermore,
with electromagnetically-induced transparency effect, precursors are demonstrated
to be prevailing the main signal. More detailed features of the transients are pre-
sented in this chapter.

4.1 Precursors in a Two-Level System

The first observation of optical precursor in cold atom source was reported by Jeong
et al. [1], with a cloud of cold potassium (39K) atoms cooled and trapped in a
magneto-optical trap. Later, a series of observations were reported in cold rubidium
(85Rb) magneto-optical trap [2], with versatile experimental parameters for optical
depth and excitation detuning. Figure 4.1 demonstrates the general schemes for
measurement. As Fig. 4.1a shows, a weak step-modulated incident laser pulse
generated via a modulator is sent through the cold atom cloud and received by PMT
detector. In the following sections, we are going to consider the problem dealing
with conditions of small and large optical thickness, separately. Optical thickness is
characterized by optical depth (a0z), which quantifies the ability of medium to
absorb light. It is an important parameter for the precursor measurement.

4.1.1 In Cold Atoms with Small Optical Thickness

At condition a0z� 1; the measurement within cold potassium (39K) atoms is
shown in Fig. 4.2. For off-resonant carrier frequency, D � xp � x0 6¼ 0; the
steady state signal transmits through the dielectric medium with little absorption,
and the modulation frequency is inversely related to the detuning of the carrier
frequency. Thus, the carrier frequency is close to the medium resonance, and the
modulation of the envelope disappears. The steady-state transmission always
follows the Beer-Lambert’s law of absorption, so, it determines the level of the

PMT

|2

pω MOT
Modulator

Laser

|1

pω

(a)

(b)

Fig. 4.1 Schemes for precursor observation in magneto-optical trap (MOT) with two-level
energy structure. a General experimental setup. b Energy level structure
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transmission after the initial transients. At slightly higher optical depth a0z� 2
reported by Chen et al. [3], the experimental results agree with the above general
feature. As shown by Fig. 4.3c, for off-resonance case D ¼ 2p� 20 MHz, the
oscillation signal appears at the rising edge with a period determined by frequency
detuning is 2p=D ¼ 50 ns: At the falling edge, the signal intensity is proportional

to Dþ icj j�2; and therefore the signal is reduced to almost zero and is undetected.
Actually, as discussed in Ref. [3], the optical transient observed at small optical
thickness condition is classified as free-induction decay (FID). Instead of oscil-
lating as Bessel function as calculated in Chap. 2, the transient decays exponen-
tially with a time constant of 1=ð2cÞ ¼ 26:5 ns: Also, as evident from the result in
Fig. 4.3c3, the frequency of the FID signal is always on atomic resonance. The
direct measurement of FID from a weak probe pulse clearly shows that FID can be
a transient response from the linear propagation. Free-induction decay is a dipole
radiation process occurring in coherent atom cloud. It is not a spontaneous
emission, even though the optical frequency of FID field can be significantly
different from the initial driving probe field.

4.1.2 In Cold Atoms with Large Optical Thickness

To increase the optical depth of the MOT, Wei et al. and Chen et al. [2, 3] used a
two-dimensional magneto-optical trap, where the cold atoms are aligned as a cloud
in the shape of a cigarette. The experimental setup scheme is similar, as shown in
Fig. 4.1. The on-resonance optical depth satisfies a0z� 1: The laser beam with
wavelength of 795 nm is directed through a 3 GHz acousto-optic modulator
(AOM), and the first-order diffractive output constitutes the weak probe beam

Fig. 4.2 Experimentally observed transient transmission (black solid lines) taken at (a) on-
resonance (D ¼ 0) for three different optical depths, (b) for off-resonances, D� 5c; and D� c;
which are compared with theory Eqs. (2.48) and (2.49) (black dotted lines). The figure is from
Jeong thesis (2006): 22–23
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whose amplitude is a near-square pulse with a length of 2 ls. With such a suffi-
ciently long square-modulated pulse, optical precursors are displayed both at the
rising and falling edges in a single shot.
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Fig. 4.3 Experimentally observed transient transmission (black circles) taken at condition a0z ¼
2:2: a The input pulse with sharp rising and falling edges. b D ¼ 0: c D ¼ 2p� 20 MHz� 7c:
Panel (c3) is an enlarged view of (c1). The blue solid lines are theoretical curves obtained from
Eq. (3.15) using FFT. The figure was published in our earlier publication: Chen JF et al. (2010)
Phys. Rev. A 81: 033844
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Figure 4.4 shows the measured optical precursors obtained at the transmitted
side after the cold atoms cloud with the on-resonance optical depth a0L ¼ 30: The
input weak near-square pulse, showed in (a) is on-resonance with the atomic
transition (D ¼ 0). Figure 4.4b shows that the main field is absorbed due to the
strong absorption, but the precursors at the rising and falling edges emerge without
relative time delay through vacuum. The transmission at the rising and falling
edges displays oscillatory structure matching Bessel function. The precursor
envelope decays exponentially with a time constant of 1=ð2cÞ ¼ 26:5 ns: When the
carrier frequency of the probe laser is detuned (D 6¼ 0), the spectrum is not
symmetric and it is difficult to obtain analytic solutions. Figure 4.5 shows the
transients emerging at the rising and falling edges at different probe detuning. The
theoretical curves obtained from FFT still match the experimental curves well. As
expected, as the frequency of the probe field moves away from the resonant
frequency, the leakage of the main pulse becomes dominant in the transmitted
pulse and the precursor is diminished by the increasing probe detuning.
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Fig. 4.4 a The input near-square pulse with length of 2 ls; b Transmitted signal after the MOT
atoms; c and d specifically are shown the precursors at the rising and falling edge in b. The black
circles are experimental data. The blue solid lines are numerical simulation from Eq. (2.14) using
FFT. The red dash lines, overlapping with the blue solid lines, are calculated with asymptotic
analysis by taking into account the finite rise and fall time of 7 ns. The figure was originally
published in: Chen JF et al. (2010) Phys. Rev. A 81: 033844
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4.2 Precursors in a Three-level EIT System

In this section, we review in detail the first observation of precursors in three-level
EIT system, which was carried out in a cloud of cold 85Rb atoms. The three-level K
system is constituted from 1ij ¼ 5S1=2; F ¼ 2

�
�

� ; 2ij ¼ 5S1=2; F ¼ 3
�

�

� and 3ij ¼
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Fig. 4.5 Off-resonance optical precursors measured at the two-level system with a0z ¼ 27: Rows
(a–c) list the rising (column 1) and falling edges (column 2) with D ¼ 0; 4c; 10c; respectively.
The figure is from Chen JF et al. (2010) Phys. Rev. A 81: 033844
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5P1=2; F ¼ 3
�

:
�

� The atomic decay rates are C3 ¼ 2p� 6 MHz; C31 ¼ 15
27 C3; and

C32 ¼ 12
27 C3: Ignoring dephasing caused by collision and thermal motions, the

dephasing rates are determined by the lifetime of excited state 3ij : c13 ¼ c23 ¼
C3=2: The dephasing rate of the two ground states is measured to be c12 ¼ 0:01c13:
As Fig. 4.6b indicates, both the coupling and probe laser beams are split from a
single laser operated at the 85Rb D1 line (795 nm). Since the probe and coupling
beams of the EIT process are from the same laser, the relative phase-frequency noise
in the EIT two-photon transition can be eliminated. After a beam splitter, the main
laser power passes through an acousto-optic modulator (AOM) and the +1 order
serves as the coupling laser that is on resonance with or slightly detuned from the
transition 2i ! 3ijj : The other part of beam power passes through a high-frequency
AOM (Brimose) with a central frequency of 3.217 GHz, and the +1 order becomes
the probe beam. Therefore, the probe laser detuning can be varied with the AOM
central frequency. To make use of most of the multi-Zeeman states for optimizing
the EIT effect, both the coupling and probe lasers are identically circularly polarized
(rþ). The coupling beam is almost collinear with the probe beam, but slightly
deviated by 2� to avoid entering into a photomultiplier tube (PMT).

The transmitted signal is obtained from the PMT. The included EIT process
mainly influences the main pulse which is absorbed completely in the two-level
system. Firstly, the EIT transparency window let the resonant spectral components
of the input pulse get through the medium, almost without loss, as indicated in
Fig. 4.7a where the main pulse transmission is more than 90 %. Secondly, the
main pulse transmitted through the EIT transparency window propagates with a
slow group velocity vg\c; and hence it is delayed relative to the precursor signal.
As shown in (a), the main pulse is switched on after 250 ns (the time when the
field grows to 50 % of transmission). The main field is basically composed of
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Fig. 4.6 Experimental configuration for optical precursor measurements in three-level K system.
a Measurement scheme. Coupling and probe laser beams are directed from a single laser, and are
modulated with individual acousto-optic modulators. b Energy level diagram of 85Rb D1 line
(795 nm)
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resonant spectral components, which severely interacts with the EIT medium and
thus are slowed down. In contrast, the precursor field, with far off-resonant
spectrum, barely interacts with the medium and thus travels with the maximum
speed c. Fig. 4.7b shows that the precursors at the rising edge have the same shape
as those observed in the two-level case, and c indicates a different pattern at the
falling edge. The precursors generated from the falling edges interfere with the
delayed main field. The damped oscillatory precursor field is superimposed onto
the transmitted main field and thus the peak transmission is increased to 150 %.
One more interesting feature shown in Fig. 4.7 is that, on top of the main field
where it is switched on completely, there is an oscillation with a longer period.
This is called the postcursor, described by a convolution with an Airy function
described in Chap. 2, which was first predicted by Macke and Segard [4].

For completeness, we are also going to show the detuning case for EIT system.
Compared with Fig. 4.4, both the two-level and EIT systems give nearly identical
results at large probe detuning. This is because the EIT transmission profile is
similar to that of the two-level systems at two far-off-resonance wings (Fig. 4.8).

T
ra

ns
m

is
si

on

Time (ns)

(a)

(b) (c)

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-100 0 100 200
-0.05

0.00

0.05

0.10

0.15

0.20

1900 2000 2100 2200
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Fig. 4.7 Observation of optical precursors in an three-level EIT system with optical depth
a0z ¼ 30: Coupling field in the EIT process can be characterized by Rabi frequency Xc ¼ 4c13:
The black circles are experimental data. The blue solid lines are numerical simulations using
FFT. The red dashed lines are calculated with hybrid-asymptotic analysis by taking into account
the finite rise and fall time of 7 ns. The figure was published in: Chen JF et al. (2010) Phys. Rev.
A 81: 033844

52 4 Observation of Optical Precursors in Cold Atoms

http://dx.doi.org/10.1007/978-981-4451-94-9_2


4.3 Finite Rise Time and Fall Time Effect on Optical
Precursors

In the above measurements of optical precursors, it is obvious that the peak
transmission of the precursor signal decreases as optical depth grows. This effect is
caused by the finite rise or fall time of the step on or off pulse. Oughstun [5] has
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Fig. 4.8 Off-resonance optical precursors measured at the three-level K system with a0z ¼ 27:
Rows (a–c) list the rising (column 1) and falling edges (column 2) with D ¼ 0; 4c; 10c;
respectively. The figure was published in: Chen JF et al. (2010) Phys. Rev. A 81: 033844
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theoretically investigated the finite-rise-time effect on the precursor field forma-
tion. The rise and fall times in the previous sessions are taken as 7 ns.

Oughstun suggested using a hyperbolic tangent function to describe a real step
pulse, while for simplicity we take a simple approach and model the realistic step
pulse by turning on or off the field amplitude linearly with a finite rise or fall time
Dt: The real square pulse with length T and rise (fall) time Dt can be mathemat-
ically expressed as a convolution of two ideal square functions [6]:

~E0ðtÞ ¼
E0

Dt
Pðt; TÞ 	Pðt;DtÞ

¼ 1
Dt

Z Dt

0
E0Pðt � t0; TÞdt0

ð4:1Þ

in which the unit square function is defined as Pðt; tdÞ ¼ 1 for 0� t� td and
otherwise zero. Therefore, the output precursor field becomes:

~ESB
ðtÞ ¼
1
Dt

ESB
ðtÞ 	Pðt;DtÞ

¼ 1
Dt

Z Dt

0
ESB
ðt � t0Þdt0

ð4:2Þ

Therefore the origin of the finite-rise-time effect is: the averaging effect within
the rise (fall) time window reduces the peak values of the precursors. The visibility
of optical precursor signal is limited by the finite rise or fall time of the input pulse.
The rise or fall time is supposed to be shorter than the duration of the first
oscillation described by the Bessel function Eq. (2.59), and the decay time constant
1=ð2cÞ: Alternatively, if we consider the finite rise (fall) time effect in frequency
domain, it works as a low-pass filter with a bandwidth determined by 1=Dt:

UðxÞ ¼ 1
Dt

Z

Pðt;DtÞe�ixtdt

¼ sin cðxDt=2Þe�ixDt=2
ð4:3Þ

If we generate the square pulse using an electro-optical modulator (EOM)
driven by the same digital delay generator, a shorter rise and fall time of Dt ¼ 3 ns
is achieved. The results obtained from the two-level system are shown in Fig. 4.9.
The overall output transmission profiles are the same as the case of Dt ¼ 7 ns:
However, the normalized peak intensity of the precursor generated from step pulse
with rise time Dt ¼ 3 ns is about 27 %, which shows a significant increase com-
pared to that of Dt ¼ 7 ns in (b). With this in mind, we are able to explain why the
precursor signal seems to be heavily diminished in optical thick medium, which
weakly interacts with the precursor field. The saddle points contributing to the
Sommerfeld-Brillouin precursor move far away from the atomic resonance, and
thus are attenuated by the filter effect caused by the finite rise and fall time. The
next section includes more results.
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4.4 Changing the Optical Thickness of the Medium

As discussed in the previous two sessions, the cold atomic ensemble is converted
from an EIT three-level system to a two-level system simply by controlling the
coupling laser on or off. Moreover, the optical depth of the atomic cloud can be
varied from 0 to 45, by changing the density of the trapped rubidium atoms.

As the optical depth increases, the near-resonance frequency components are
strongly absorbed by the medium. Figure 4.10 shows the details of optical tran-
sients at the rising and falling edges, while comparing the cases with different
optical depths. From a0z [ 10; the transient can be more precisely described in
terms of Sommerfeld-Brillouin precursor, exhibiting damped oscillation. At low
optical depth of a0z� 2; the transient spike at the rising or falling edge has an
exponential decay profile, which is significantly distinguished from the cases of
a0z [ 10: With such a low optical thickness, the optical transients should be
described as free-induction decay, which stems from the radiation of the macro-
scopic dipole constituted by the atom cloud. This will be discussed in more detail
at the end of this session.

I would like to conclude with some general features for precursor. Firstly, from
Fig. 4.10 column a and b, the precursors that emerged at the rising and falling
edges are identical. Secondly, at a0z [ 10; one could hardly distinguish between
two-level and EIT system. The reason is, at high optical depth condition, the
spectral components contributing to the precursor signal move to far-off-resonance
regime, where the dispersion curves for two-level and EIT material are identical.
On the other hand, Fig. 4.10 indicates that, wave front at the rising edge, or
similarly at the falling edge, travels with the speed of light c independent of the
atomic density. There are three characteristic times that determine the precursor
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signal. The first is the oscillation peak duration determined by the Bessel function
ss ¼ p2=ð2a0zc13sÞ: With increasing optical depth a0z; the oscillation duration
becomes shorter. The second is the precursor (intensity) decay time constant sc ¼
1=ð2c13Þ determined by the atomic natural linewidth. Therefore, for all optical
depth cases shown in Fig. 4.10, the decay times sc ¼ 26:5 ns are the same for cold
rubidium atomic ensemble. Finally, the group delay time sg determines the sep-
aration between precursor and the main field.

By varying the optical depth from 0 up to 45, we measure the peak transmission
of the optical transients for Dt ¼ 3 and 7 ns, respectively. Also, the theoretical
curves calculated for 1 ns rise time are plotted for comparison. Figure 4.11 suggests
that higher precursor intensity can be achieved by using a faster light modulator.
We find distinct transmission tendencies in the two regimes. Below a0z ¼ 5; the
optical transients grow with increasing optical depth and share the same trans-
mission peak value among different rise (fall) time, while the situations change at
high optical depth condition, above a0z ¼ 5: Figure 4.12 explains the intensity

transmission profiles HðxÞj j2 for both two-level and EIT systems. The field
strongly interacts with the atoms at their absorption resonances. For the two-level
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Fig. 4.10 Optical precursors at the rising and falling edge from a two-level system [(a1)(b1–
a4)(b4)] and three-level EIT system at different optical depth conditions. For the two-level
system, the coupling laser is switched off; for the three-level EIT system, the coupling laser is
applied with Xc ¼ 4c13: The blue circles denote the experimental data. The solid red curves are
obtained from frequency domain linear dispersion approach using FFT. The original figure is
from: Wei et al. (2009) Phys. Rev. Letts. 103: 093602
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system, there is one absorption resonance, as shown in Fig. 4.12a. For the EIT
system in Fig. 4.12b, there are two absorption dips separated by about Xc: At the
resonant frequency of the original two-state transition, a transparency window with
100 % transmission occurs. The dashed lines represent the spectrum of a step-
modulated pulse with on-resonance carrier frequency. At low optical depth, when
the absorption is not significant, the on-resonance frequency components dominate.
These spectral components strongly coupled with the atomic system contribute to
the FID signal and dominate the optical transient response at low optical depth. At
high optical depth when the on-absorption-resonance frequency components are
absorbed, optical precursors start to be formed from the lossless far-detuned fre-
quency components that propagate at the speed of light in vacuum c. In this case,
the optical transients are dominated by optical precursors. In the two-level system,
the main field is absorbed and the precursors ‘‘precede’’ nothing. In the EIT system,
the main field lying in the narrow transparency window is delayed due to the slow-
light effect. For the two extreme regimes, we have obtained analytic solutions. For
the intermediate regime, the optical transients cannot be clearly classified as FID or
precursor, and only numerical solutions are obtained.

The transient peaks following the falling edge of the weak square pulse through
the two-level system provides us hints of the evolution from FID to precursor,
which is depicted in Fig. 4.11. At low optical depth condition, the transient peaks
get enhanced with increasing optical depth because of many-atom collective
enhancement. Moreover, the FID field has a narrow line width c13=2p ¼ 3 MHz
and thus, is immune to the effect of finite rise and fall time. At a high optical depth
condition, we observe optical precursors alternately, since the far-off-resonance
frequency components contribute most due to their low absorption. As the optical
depth increases, the Sommerfeld-Brillouin saddle points move further away from
the atomic resonance and closer to the filter cut-off frequency. As a result, the
precursor transmission peak drops. Figure 4.11 shows that, the optical coherent
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transients excited by a resonant step pulse at low optical depth can be character-
ized as FID and those excited by a resonant step pulse at high optical depth as
precursors. The transition point is around a0z ¼ 5:

4.5 Precursors in Superluminal Medium

As more and more physicists are involved in the vigorous discussion of the speed
law, which says that nothing can travel faster than the speed of light in vacuum c,
fast light propagation in superluminal medium becomes a hot topic. When a
Gaussian light pulse travels through the superluminal medium, it is demonstrated
that the pulse moves faster than that traveling through vacuum. This is done by
comparing the pulse center in both cases. However, the input pulse undergoes
severe distortion. A remarkable experiment reported by Wang et al. [7]. showed a
tiny peak advance of 62 ns in the superluminal medium, with negligible pulse
distortion. In their gain doublet medium, the Gaussian pulse can maintain its
original pulse shape when passing through such a gain assisted region. However,
how does the information exactly travels in this light pulse? What is the infor-
mation velocity vi? Can it be equal to the group velocity, which is �c=330 in
Wang’s experiment? With these questions in mind, information velocity is defined
in the propagation velocity of non-analytical wave front. A sharp step pulse in the
rise or fall edge of a square pulse is qualified as such a wave front to clarify the
information velocity.

In the case of a two-level Lorentz absorber system, the on-resonance group
velocity becomes negative and it is classified as the superluminal medium [8, 9].
Some may argue that Einstein’s causality can’t be violated in the propagation of
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step pulse because the main field is essentially completely absorbed at high optical
depth. That’s why we prepare the two-level system in the low optical depth
condition, where the main field is not attenuated to zero. Figure 4.13b shows the
propagation of both Gaussian and step pulses at a low optical depth of 2.3 where
more than 10 % of the original main field is present. We observe a significant peak
advancement of 50 ns in the Gaussian pulse propagation, with obvious attenuation
and distortion. However, for the step pulse, we observe no advancement of the
rising edge. For comparison, the Gaussian pulse and the step pulse are tested in the
EIT system. In the three-level EIT medium, the main field experiences slow light
effect and is delayed by the group delay time sg: Figure 4.13a shows the propa-
gation of a Gaussian as well as a step pulses through an EIT medium having an
optical depth of 30. In the case of Gaussian pulse, we measured a group delay of
about 200 ns with no attenuation and distortion. This pulse delay is consistent with
the measurement in the case of step pulse case, where the delayed main field turns
on smoothly after 200 ns. The leading edge of the precursor shows no detectable
delay to the step pulse wave front.

As discussed in Sect. 1.4, both Gaussian and step-modulated optical pulse can
be used to encode information, since field amplitudes do change in both cases.
However, the advanced Gaussian peak (as shown in Fig. 4.13b) does not represent
information propagation in medium. Conversely, the slowly increasing envelope
of the Gaussian wave front causes a difficulty for information detection, since it
takes a certain amount of time to measure the observable amplitude change. Even
when we are able to measure 1/1,000,000 of amplitude change, the time span for
such an amplitude change delays the detection of information. The problem of a
Gaussian pulse is that it does not have an obvious start point. In contrast, step pulse
has a clear start point. However, an ideal step-modulated pulse is not possible in
real experiment, and any near-step pulse is characterized by the finite rise or fall
time. As long as the rise time is much shorter than the atomic dephasing time, the
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precursor field is observable and thus be able to flag the information. The pre-
cursors observed in the superluminal medium confirm that there is no violation of
Einstein’s causality principle in light propagation through fast light medium and
the information velocity is different from the group velocity.

4.6 Stacked Optical Precursor

Generating optical pulses with high peak power from a low-power laser is of great
interest to optical communication, nonlinear spectroscopy, and optical bio-imaging
[10, 11]. Therefore, various pulse compression schemes has arisen. A standard
pulse compression scheme makes use of frequency chirping followed by a dis-
persive compensator [12–14]. Alternatively, pulse compression can also be
achieved through a nonlinear medium [15–17]. To achieve a short pulse with peak
power higher than that of the input beam in the continuous-mode, one can
implement frequency-phase modulation to the laser field applied through a near-
resonant atomic vapor [16], or pass light through a dispersive modulator [18, 19].
Segard et al. [20] reported peak intensity with three times of enhancement using
the electromagnetic pulses in microwave regime. They retained a rotational line
(0 ? 1) of HC15N for excitation, with wavelength k = 3.5 mm and linewidth
characterized by Doppler broadening of 100 kHz. The molecular gas sample was
contained in an oversized circular waveguide (length l ¼ 182 m), and the effective
optical depth of the sample was 60 approximately. The amplitude of the input
pulse was modulated by a series of step pulses and the pulse passes through a
resonant absorber. Without experimental demonstration they discussed the possi-
bility of enhancing the peak power with step phase modulation in optical regime
[21].

In the narrow resonance cold atomic ensemble described in the former sections,
the optical stacked precursors come into experimental observation. The theoretical
approach developed in Chap. 2 well predicts the transient behavior. The input
pulses with ideal step front generate Sommerfeld-Brillouin precursors. At high
optical depth a0z [ 10; the oscillatory precursor field can be approximated as
Bessel function:

ESB
ðtÞ ¼ 
E0J0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a0zc13ðt � z=cÞ
p

ÞHðt � z=cÞe�c13ðt�z=cÞ ð4:4Þ

in which, J0ðxÞ is the zeroeth-order first kind Bessel function. If we arrange a series
of on and off steps with a time sequence so that the precursor fields produced from
all steps at different times interfere constructively, it is possible to generate a
transient pulse with higher peak power than that from a single step. Suppose that
we design to generate a transient pulse at t0 þ z=c; the on and off step sequence
applied to the input amplitude can be arranged as [22, 23]:
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AMðtÞ ¼ Hðt � t0Þ þ
X

N�1

i¼1

ð�1Þi�1Hðt0 � t � tiÞ ð4:5Þ

where N denotes the total number of steps, and ti ¼ x2
i =ð2a0zc13Þ: xi ¼ ðiþ 1=4Þp

(for i� 1) is the ith zero of the Bessel function J1ðxÞ that indicates the position of
the extreme of J0ðxÞin Eq. (4.4). The peak amplitude of the stacked optical pre-
cursor from the amplitude modulation is then obtained at t0 þ z=c as:

EAM ¼ E0 �
X

N�1

i¼1

ð�1ÞiJ0ðxiÞe�x2
i =ð2a0zÞ ð4:6Þ

The above amplitude modulation is not the most efficient scheme to enhance the
transient peak because the laser is switched off during some period of dark time.
Phase modulation keeps the laser power constant and thus avoids the dark time
problem. A maximum phase modulation with sequenced steps in Eqs. (4.4–4.8)
can be expressed as:

PMðtÞ ¼ eipAMðtÞ ¼ �2AMðtÞ þ 1 ð4:7Þ

where the second steady-state term does not contribute to the transient response.
Therefore, such a phase modulation is equivalent to the amplitude modulation
case, but provides a factor of 2 enhancement in the transient field amplitude.

One could further increase the transient spike by adding up the contribution
from the main field, which travels through the absorptive material with negligible
loss by virtue of the EIT transparency effect [22]. With the on-step arranged
closest to the designed point t0 þ z=c as written in Eq. (4.5), we keep the main field
in phase with the transient field at time t0 so that they can interfere constructively.
Therefore, instead of Eq. (4.6), the stacked field is expressed as follows:

EAM ¼ E0 1þ
X

N�1

i¼1

ð�1ÞiJ0ðxiÞe�x2
i =ð2a0zÞ

" #

ð4:8Þ

The experimental setup and energy level scheme is similar with Figs. 4.1 and
4.6. However, after the 3 GHz AOM, an electro-optical modulator (EOM,
10–20 GHz) is inserted into the probe beam path and utilized to modulate the
amplitude or phase of the probe beam. An arbitrary function generator generates
fast on and fast off step waveform.

In a realistic experiment, the step modulation generated from the modulator has
a finite rise and fall time. We know that the finite rise-time effect reduces the
precursor transient peak magnitude at high optical depth. However, Eq. (4.6)
implies that the peak of the stacked precursor increases as we increase the optical

depth because of the decay factor e�x2
i =ð2a0zÞ: These two effects will compete and

thus the optical depth has an optimum value for generating a high peak power. The
peak power generated from the stacked transients from amplitude and phase
modulation is optimized with a finite optical depth. In the following part of this
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section, we would like to describe the recent experiment on stacked precursor
observed in cold atoms.

In this particular system, the modulator controlled by the function generator can
produce the rise or fall edge with rising time or falling time of 3 ns at best. We
found out that the optimized optical depth is in the range between 25 and 35,
where the peak power is not sensitive to the change of optical depth. We chose the
optical depth a0z ¼ 33: Due to the time limit of stacking the coherent transient as
expressed in the decay term, the terms with xi [

ffiffiffiffiffiffiffiffiffi

2a0z
p

contribute little to the total
transient field. Therefore, for a0z ¼ 33; we consider the terms with i� 3 and set
the total on–off steps number as N ¼ 4; with ft1; t2; t3g ¼ f12; 40; 83g ns and
t0 ¼ 1000 ns: The experimental observations of stacked optical precursors with
sequenced-step amplitude and phase modulation are shown in Fig. 4.14a1, b1, c1
show the amplitude modulation case, while a2, b2, c2 show the transients gen-
erated from phase modulation. In the two-level system, with amplitude modula-
tion, as Fig. 4.14a1 shows, the steady-state main field is totally absorbed. Because
of the finite rise and fall time effect, the precursor peak transmission from a single
step is less than 20 % (Fig. 4.6 shows about 10 % transmission for a0z ¼ 30). The
stacking of the succeeding transient peak produces a substantial increase for the
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Fig. 4.14 Stacked optical precursor. Column 1 and column 2 depict the cases of amplitude
modulation and phase modulation, respectively. The optical depth is a0z ¼ 33: Transmission of a
weak probe pulse with sequenced on–off step modulation is shown in (a) two-level system with
coupling Rabi frequency Xc ¼ 0; and (b) EIT system (Xc ¼ 2:5c13). Panel (c1) is the applied
amplitude-modulation waveform, and panel (c2) is the applied phase-modulation waveform. The
figure is from our earlier publication: Chen et al. (2010) Phys. Rev. Lett. 104: 223602
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peak transmission, which is about unity as a1 shown, at the designed location t0: In
the EIT system shown in Fig. 4.14b1, with the coupling laser on, where the main
field can be preserved after the medium, the peak power reaches about three times
that of the input because of the constructive interference between the stacked
precursor and the main field. The red solid lines in the figure are simulated with the
transfer function (3.18) and fast-Fourier-transform. In this simulation, we use a
more accurate function to mimic the realistic step edges, i.e., the hyperbolic
tangent function HðtÞ ! ½1þ tanhð2t=Dt � 1Þ�=2: The simulated results agree
well with the experimental data. Alternatively, the modulation waveform can also
be applied to the probe beam phase as shown in Fig. 4.14c2, without changing the
amplitude of the probe electric field. For comparison, the phase modulation results
are shown in the second column. The enhancement on the transient peaks gen-
erated by phase modulation is dramatic, but the shapes are almost identical with
the amplitude modulated ones. In the two-level system, the transient peak trans-
mission at t0 increases from 1.2 to 4.5, four times the enhancement in the intensity
profile as predicted by Eq. (4.7). In the EIT system, the transient peak goes up to
about eight times the input, quite close to the rough prediction which gives 9 times
the enhancement relative to two-level amplitude modulation result (2 times the
enhancement of precursor field, added with 1 times of the main field, results in 9
times the enhancement of intensity).

In the former sections, the study of precursors suggested that the transient signal
may have potential applications in optical communication through absorptive
medium. In this section, we verify that the precursor fields can be stacked con-
structively, and we could obtain high peak output power. Stacking up the precursor
fields can be considered as a scheme of pulse compression, with amplitude or
phase modulation applied onto the input square pulse which generates precursor
fields.
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Chapter 5
Optical Precursor of a Single Photon

Abstract The optical precursor refers to the propagation of the front of a step
optical pulse that always travels at c, the speed of light in vacuum, in any dis-
persive medium. In particular, it is directly related to the maximum speed of
information transmission. However, the classical precursors are entirely based on
the propagation of macroscopic electromagnetic (EM) wave, whereas the envi-
sioned applications, particularly in quantum cryptography, involve the interactions
of single photons with atoms or molecules quantum mechanically. In this chapter,
we review the heralded single photon source and single-photon waveform re-
shaping. The first direct observation of optical precursors of a single photon was
reported for heralded single photons passing through cold atoms. The classical
precursor theory applies to the case of single photons. Also, the causality holds for
a single photon. This observation is important for understanding the speed limit of
quantum information transmission.

5.1 Introduction

As discussed in previous chapters, optical precursor is a good approach to the
study of the propagation limit of optical pulses, which indicates that information
carried by any classical optical pulse cannot travel faster than the speed of light in
vacuum c. In a classical pulse, there are a number of photons, which are either
independent with each other (corresponding to thermal light source) or coherent
with each other (corresponding to laser source). The group velocity that we talks
about actually refers to the velocity of the center of wave train in the classical
domain. When keep track of a photon propagating in a medium, we can identify
whether it travels at the same group velocity of the whole train, or at a speed faster
than any other photons, including even those experiencing little dispersion. It is
beyond the current technology to follow the same photon in a bulk of photons, but
it is much easier to send a single photon in a single shot and follow it. Two special
cases greatly stimulate people’s interest. One is the propagation of a single photon
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in a slow-light medium, and the other is in a superluminal medium. Eisaman et al.
[1] verified the first case by sending heralded single photons through the EIT
medium, in which the single-photon pulse whose spectral waveform matches the
transparency window travels at a group velocity controlled by the slow-light effect.
On the other hand, as mentioned in Chap. 1, Steinberg’ work [2] on superluminal
medium did not rule out the probability for individual photons to break the speed
limit. Even with a small probability of such a single-photon ‘‘superluminal
channel’’ [3], people can send information faster than c and break the causality
principle to realize the dream of time flying.

In quantum information processing and quantum network, single-photon source
is preferable for carrying information to other ‘‘quantum processors’’, due to its
weak coupling with the environment and intrinsic quantum nature. Literatures on
the potential of single photons in quantum network are fruitful [4–6]. Furthermore,
narrowband paired photons have been developed and serve as a satisfactory
approach to generating heralded single-photon source, with temporal waveform
well controlled. Thanks to all these advanced technologies, we are now able to
answer the questions raised at the beginning of this Brief: Can a single photon
break the universal speed limit?

5.2 Heralded Single Photon and Waveform Shaping

In quantum mechanics, a Fock state of the light field nj i refers to the eigenstate of

the number operator n̂ ¼ âyâ, and its eigenvalue n corresponds to a definite photon
number. It is easy to produce single-photon level light source, from which the
average photon number in a weak laser light pulse is one. However, a light pulse
produced from coherent light source, though weak, still satisfies Poisson distri-
bution and constitutes a coherent state but not a Fock state. To generate a single
photon in a Fock state is another big subject. Recently, single photons in a Fock
state have been demonstrated to be produced from quantum dot [7, 8], single
molecule [9, 10], single atom in cavities [11–13], and atomic clouds [13–17]. Yet,
experiments reporting the propagation of a single photon are limited mainly
because that the single photon wave function is beyond manipulation. The state of
art in generating controllable single photon source utilizes narrow-band paired
photons produced from a cold atomic ensemble [17–19]. The coherence time of
the paired photon correlation function can be extended to 100 ns*1 ls. Therefore
the temporal waveform of a single photon is ready to be manipulated by an electro-
optic modulator (EOM) applying on the controlling laser beams or on the signal
photon beam.

In this section, we will introduce the concept of heralded single photons by
mainly discussing about the heralded single photon formed by the two-photon
state. As depicted in Fig. 5.1, in the two-photon state, one of the generated photons
(photon 1) serves as the trigger and the other highly correlated one (photon 2)
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therefore constitutes the single photon source. In other words, within the corre-
lation time of the photon pair, photon 2 can be considered as a single photon in a
Fock state. The correlation function of the paired photons now serves as the single
photon wavefunction, representing the probability amplitude of the arrival of the
single photon.

On the other hand, the single-photon quantum nature of the heralded anti-
Stokes photons is verified by using a beam splitter (BS), shown in Fig. 5.2. A
single photon incident on a BS must be transmitted to port T or reflected to port R,
but never both. If the number of the Stokes counts at D1, the transmitted anti-
Stokes collected by D2, and the reflected beam collected by D3 are denoted as NG,
NT , and NR, respectively, the conditional second-order auto correlation-function is

expressed as gð2Þc ¼ NGTRNG=NGT NGR, where NGT ;NGR;NGTR are the two-fold and

three-fold coincidence counts respectively. A classical field must satisfy gð2Þc � 1.

Convincing proof for the singe-photon nature requires gð2Þc \0:5, since a two-

photon Fock state has gð2Þc ¼ 0:5.
To reshape the waveform of heralded single photon generated in this manner,

Kolchin et al. [20] inserted the EO-modulator in the optical path of one of the
paired photons generated via four-wave mixing. The waveform of heralded single
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Fig. 5.1 Heralded single photons constituted from correlated photon pairs
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Fig. 5.2 Measurement scheme of conditional second-order auto-correlation function gð2Þc
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photon may be modulated in the same manner as a classical light pulse, once the
time origin is established. In this scheme, reshaping the single photon waveform
becomes straightforward. Only the relative time delay (s ¼ tas � ts) of the anti-
Stokes photons with respect to its counterpart Stokes photons needs to be con-
sidered, since the detection of the Stokes photon establish the time origin of the
heralded single photon waveform. If we express the amplitude modulation func-
tion for the anti-Stokes photons as mðsÞ, the conditional single-photon wave packet
is modulated in the same way as classical pulse as:

w0ðsÞ ¼ 0h jmðsÞâasðts þ sÞâsðtsÞ Ws;as

�

�

�

jts ¼ 0

¼ 1
2p

Z

U0ðxÞe�ixsdx
ð5:1Þ

where U0ðxÞ denotes the spectrum of the conditional single photon.

5.3 Theory of Precursor of a Single Photon

When the incident optical pulse is generated from a laser beam, one needs to deal
with classical electric field in Maxwell’s equation in Eq. (2.9). If a single photon is
the incident source, an operator representing the quantized electric field should be
applied to the Maxwell’s equation:

o2Êðz; tÞ
oz2

� 1
c2

o2Êðz; tÞ
ot2

¼ 1
e0c2

o2P̂ðz; tÞ
ot2

ð5:2Þ

Similar to the classical electric field, the operator in the time–space can be
Fourier transformed into the spectral domain. If we restrict quantized electric fields
as electric fields of continuous single mode Gaussian wave in free space, which
can be further simplified to plane waves in free space, we obtain the electric field
operators for positive and negative-frequency parts as

ÊðþÞðz; tÞ ¼ 1
ffiffiffiffiffiffi

2p
p

Z þ1

0
dx

ffiffiffiffiffiffiffiffiffi

2�h�x
ce0A

r

âðxÞei½kðxÞz�xt� ð5:3Þ

Êð�Þðz; tÞ ¼ 1
ffiffiffiffiffiffi

2p
p

Z þ1

0
dx

ffiffiffiffiffiffiffiffiffi

2�h�x
ce0A

r

âþðxÞei½kðxÞz�xt� ð5:4Þ

where A is the single-mode cross-section area. Considering the real experiment
where the incident single photons are emitted into free space, the normalization

constant
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�h�x=ðce0AÞ
p

is determined according to energy conservation
1
2 Ace0E2 ¼ Nh i�hx.

Therefore the derivations in Chap. 2 can be applied to the precursor of a single
photon, except that the electric field now is replaced by electric field operator,
which is not observable in experiments. With heralded single photons as source,
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we could measure the second-order correlation function in the coincidence
measurement:

Gð2Þðtas; tsÞ ¼ Wh âys
�

�

�
ðtsÞâyasðtasÞâasðtasÞâsðtsÞ Wj i

¼ 0h jâasðtasÞâsðtsÞ Wj i
�

�

�

�

2
ð5:5Þ

where Wj i represents the two-photon state. For convenience we define the two-

photon amplitude as Wðtas; tsÞ ¼ 0h âasðtasÞâsðtsÞ Wj ijj j. âs;as and â
y
s;as denote the

annihilation and creation operator for the paired photons generated (called Stokes
and anti-Stokes). By separating a term only relevant to the relative time delay
s ¼ tas � ts, we can further simplify the two-photon amplitude to
Wðtas; tsÞ ! wðsÞ. At this moment, we can view wðsÞ as the probability amplitude
for a single photon. Note that,

âsðtÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z

dxâsðxÞei½ksðxÞL=2�xt�

âasðtÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z

dxâasðxÞei½kasðxÞL=2�xt�
ð5:6Þ

and the commutation relation:

½âsðtÞ; âys ðt0Þ� ¼ ½âasðtÞ; âyasðt0Þ� ¼ dðt � t0Þ ð5:7Þ

The incident single photon wave function can be expanded in the frequency
domain,

w0ðsÞ ¼
1

2p

Z

U0ðxÞe�ixsdx ð5:8Þ

where U0ðxÞ represents the spectrum of the conditional single photon. The linear
transfer function can describe the single photon with a spectrum of U0ðxÞ passing
through the cold atoms in MOT2. The output wave function can be written as,

wðsÞ ¼ 1
2p

Z

U0ðxÞei½kasðxÞL�xs�dx ð5:9Þ

Therefore the wave function wðsÞ evolves as the electric field amplitude in
Chap. 2:

Eðz; tÞ ¼ 1
ffiffiffiffiffiffi

2p
p

Z 1

�1
Eð0;xÞ ei/ðx;hÞdx ð5:10Þ

In conclusion, the theory in Chap. 2 also applies to the precursor of a single
photon. The single photon wave function can be measured through two-photon
coincidence as described in the following section.

5.3 Theory of Precursor of a Single Photon 69

http://dx.doi.org/10.1007/978-981-4451-94-9_2
http://dx.doi.org/10.1007/978-981-4451-94-9_2


5.4 Observation of Optical Precursor of a Single Photon
[21]

The first part of the system mainly consists of a generation channel for paired
photons within the atomic ensemble MOT1. The four energy levels are chosen as
1j i ¼ 5S1=2;F ¼ 2

�

�

�

, 2j i ¼ 5S1=2;F ¼ 3
�

�

�

, 3j i ¼ 5P1=2;F ¼ 3
�

�

�

, and 4j i ¼ 5P3=2;
�

�

F ¼ 3i. The atoms are initially prepared in the ground state 1j i and pumped to
excited states by a pump laser which is blue detuned from 1j i ! 4j i transition.
Stokes photons are generated from spontaneous Raman transition. The anti-Stokes
photons are stimulated by the coupling laser on resonant with 2j i ! 3j i transition.
Stokes photons are collected by a detector D1, which triggers both the function
generator and the coincidence counts measurement. Anti-Stokes photons are col-
lected by a single mode fiber, before directed into the electro-optical amplitude-
modulator controlled by the function generator. Therefore the heralded single
photon waveform is modulated with a designed waveform trigged by the detection
of the corresponding Stokes photon. The anti-Stokes photons propagate through
MOT2 and the precursor can be caught by both detectors D2 and D3. In MOT2, the
atomic cloud can be switched between two-level atomic system and a three-level
EIT system, by controlling the second coupling beam Xc2. The parameters in MOT1
are fixed as: a0z ¼ 30, Xp ¼ 0:5c13, Xc1 ¼ 3:0c13, where c13 ¼ 2p� 3 MHz is the
electro dipole relaxation rate between 1j i and 3j i (Fig. 5.3).

A near-square waveform truncated by the EOM serves as the incident single
photon waveform as shown in Fig. 5.4a, with a temporal length of 100 ns and a
rise (fall) time of 3 ns. After the heralded single photon (anti-Stokes photons in the
generated photon pairs) passes through the EIT system (Fig. 5.4b), the optical
precursor at the rising edge is clearly observed. The main wave packet arrives with
a 50 ns delay and interferes with the precursor at the falling edge. In the two-level
system (Fig. 5.4c), the main wave packet is absorbed whereas precursors at the
rising and falling edge remain. Obviously, the precursor and the main signal
propagate with different velocity through the dispersive medium. Figure 5.4d plots
the signal time delays at different optical depth conditions for MOT2. The main
wave packet of the heralded anti-Stokes photon travels at the group velocity
whereas the precursor shows no relative delay to the propagation through vacuum.

Fig. 5.3 Schematics of the experimental setup. The figure was published in: Zhang [22]
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This suggests that the wave front of an optical precursor propagates at c, which is
independent of optical depths and other material properties.

We drive the EOM with a step-on waveform as shown in Fig. 5.5a, with a sharp
rising edge (the rising time is 3 ns). In comparison, Fig. 5.5b shows the two-
photon correlation after the anti-Stokes photon has passed through the EIT med-
ium in MOT2, with a0z ¼ 18. Similar to Fig. 5.4, the precursor induced by the
well-defined wave front is clearly seen at the rising edge and separate from the
delayed main wave packet. To investigate the propagation of single photons in a
superluminal medium whose group velocity could be negative, we prepare the
MOT2 into a two-level system (without the coupling laser) with a low optical
depth a0z ¼ 2:5. In the vicinity of a transition frequency, there exists an anomalous
dispersion and therefore the group velocity in this region becomes negative. The
negative group velocity in such a fast light medium can be demonstrated by the
Gaussian pulse propagation shown in Fig. 5.5d. We observe a peak advance of
about 40 ns and a 10 % transmission compared with the propagation through
vacuum. Figure 5.5c shows that, for a sharp rising edge, no advancement of any
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Fig. 5.4 Single-photon optical precursors from a square amplitude modulation. a The heralded
anti-Stokes photon waveform modulated as a square wave function. b and c are two-photon
coincidence after the anti-Stokes photons passing through the EIT system (Xc2 ¼ 3:5c13,
a0z ¼ 10) and two-level system (Xc2 ¼ 0, a0L ¼ 10) in MOT2, respectively. d The relative time
delay (compared with the case of the vacuum) of the precursor and main wave packet as functions
of optical depth of the medium MOT2. The red solid line is the calculated EIT group delay curve.
The coincidence counts are measured with 1 ns time bin. The figure was published in: Zhang [22]
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light component can be observed. The well-defined wave front propagates always
the in the front of the whole light pulse at a single photon level. The results
indicate that the single-photon optical precursor is always the fastest part even in
superluminal propagation and Einstein’s causality holds for a single photon.

According to Sect. 5.1, gð2Þc \0:5 characterizes single photon source. Taking the
measurement shown in Fig. 5.5 for an example, with a coincidence window of

200 ns (0� s� 200 ns), we obtain gð2Þc ¼ 0:16� 0:11 before the MOT2. When the
heralded single photons travel through MOT2 and the precursor is generated, we

obtain gð2Þc ¼ 0:21� 0:12. In all these measurements, the precursors are within the
coincidence window. The results indicate the near-single-photon characteristics of
the heralded anti-Stokes photons and the observed precursors.

The above experimental results also indicate that the optical precursor traveling
at c is always the fastest part of the single-photon wave packet in both slow-light
and superluminal media. The coincidence counts measurement shows no proba-
bility counts for negative delay time, i.e., no counts for single photon with a
velocity exceeding c. For the single-photon tunneling, we interpret it as a
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Fig. 5.5 Single-photon
optical precursors from a step
amplitude modulation. a The
heralded anti-Stokes photon
waveform with a step
modulation. b and c are two-
photon coincidences after the
anti-Stokes photons passing
through the EIT system
(Xc2 ¼ 3:8c13, a0z ¼ 18) and
two-level system (Xc2 ¼ 0,
a0z ¼ 2:5). Inset (d) shows
the input Gaussian pulse
propagation in the two-level
system with a peak
advancement of about 40 ns
(the lower blue curve)
compared to the reference
pulse (the up green curve).
The red solid lines in b, c are
calculated from classical
wave propagation theory with
input square waveform
obtained from (a). The figure
was published in: Zhang [22]
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rearrangement of probability amplitude for a single-photon waveform. As we
discuss in the above chapters, information is effectively encoded at the sharp edges
of a pulse. Similar to the case of classical light pulses, the sharp rising or falling
edges in the single-photon waveform directly determine the start time for sending
the single photon. The precursor measurement with single-photon source verifies
that, the speed of information carried by a single photon is limited by the speed of
light in vacuum.
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Chapter 6
Discussion and Outlook

Abstract We discuss the potential applications of optical precursors. Precursor
fields are generated from the linear dispersion effect, such that the precursor fields
can be stacked to achieve extremely high transient pulse. Another application in
pulse manipulation is stimulated by the precursor generated from phase step-
modulation, which may be applied to differential phase shifted key scheme.
Communication in dense material is another possible application of precursor.
Constructed from far off-resonance spectral components regardless of specific
medium, precursor finds further advantage in communication under water.

The existence of optical precursor was predicted 100 years ago by Sommerfeld
and Brillouin, when they studied the speed limit of a light pulse. Asymptotic
analysis was introduced to theoretically calculate the transient signals, and it is
found that saddle points contribute to the precursor fields. Many experimental
attempts were made, with medium from solid, superfluid, to water. The universal
problem, broad-resonance excitation, slowed down the progress of experimental
observation. Modern laser cooling and trapping technique solve this problem and
offer an ideal medium, cold atoms cloud with narrow resonance, for the optical
precursor observation. Sharp rising and falling edges in the optical pulse excite the
precursor fields, which propagate with considerable amplitude even in absorptive
gas cloud. Precursors are also observed in single-photon propagation, in which the
light pulse should not be described by classical electric field, but the probability
amplitude from quantum theory. Optical precursors always travel with the speed of
light in vaccum c, at the very front of the whole pulse train, either in EIT slow-
light medium or superluminal medium. We have to emphasize again that the
precursor signal is totally attributed from the linear propagation effect. Very weak
optical excitation is enough for measurement. This feature facilitates the future
wide application in optical communication in underwater or imaging in biological
tissue. In this chapter, we discuss some potential applications.

JF Chen et al., Optical Precursors, SpringerBriefs in Physics,
DOI: 10.1007/978-981-4451-94-9_6, � The Author(s) 2013
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6.1 Pulse Manipulation

Precursor fields are available to be stacked and constitute higher pulse transients.
As discussed in Chap. 5, with the input probe field amplitude or phase modulated
by predesigned, sequenced, on–off step waveforms, one could easily obtain
stacked optical precursor. It is a linear effect that optical fields constructively build
up with each other. Also, a remarkable advantage is that the stacked precursor
fields are simply generated from linear passive absorptive material. Such a pro-
found transmission enhancement is a direct application of optical precursor, which
was predicted to be a tiny signal in Sommerfeld and Brillouin’s theoretical work.

If one can shorten the time of switching, the peak transmission of the transient
pulse can be improved further by utilizing an optical thick medium. The power reach
an upper limit for a specific number of on–off steps, with an extreme that all the
transients stimulated by these steps squeeze to unity at very thick optical absorber.
Figure 6.1 shows the peak transmission from phase modulation as a function of the
rise time at two different optical depths in the EIT system. The stacked peak power is
obtained from on–off steps with N ¼ 10: As the rise time reduces to \0.1 ns, the
peak transmissions go up to about 15 for a0z ¼ 33; and 18 for a0z ¼ 66:

Phase modulation with the input pulse composed of a series of phase shifts
differed by 180� produces precursor and stacked precursors. Suppose that we encode
phase shifting of p (on-step) as ‘‘1’’, phase shifting of�p (off-step) as ‘‘0’’. Arrange
these steps at points which match the ith zeros of the Bessel function J1ðxÞ; and thus
the precursor field could be well predicted by adding all the precursors together. The

Rise time (ns)

P
ea

k 
tr

an
sm

is
si

on

0.01 0.1 1
0

2

4

6

8

10

12

14

16

18

α0 L=33,Ωc=2.50γ13

α0 L=66, Ωc=3.54γ13

Fig. 6.1 Theoretical curves for the precursor peak transmission as a function of the rise time of
incident step edges. The curves are calculated with EIT configuration, and the applied modulation
is phase modulation. For a0z ¼ 66; the coupling Rabi frequency Xc is adjusted to have the same
main field transmission (80 %) as that with a0z ¼ 33: The figure is from our earlier publication:
Chen et al. (2010) Phys. Rev. Lett. 104: 223602
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size of message carried by one pulse is determined by the available nodes for steps.
To maximize the size of message, the demodulator could be consisted of a dense
medium. Also, the switching time of phase change is fast enough, for example
\0:1 ns: In summary, stacked precursors from phase modulation have potential
application in differential phase-shift keying in optical communication.

6.2 Communication

Throughout this book, we emphasize that the speed of information carried by
classical light pulse or a single photon is bounded by the speed of light in vacuum
c. For now, it is still the fastest speed with which people can send messages to
communicate with each other. However, it does not promise that information
always propagate with this upper limit, especially when the transmission path is
composed of a dispersive medium where pulse reshaping occurs. As discussed in
the previous chapters, precursor field is generated from fast switching edge of the
incident pulse. The fast changing envelope excites a broad spectrum around the
carrier frequency of the incident light, and the extremely high and low frequency
components give rise to precursors since these parts of light barely interact with
the medium. In other words, a transmitted precursor signal indicates one sudden
change of pulse amplitude, no matter switching on or off. In this sense, optical
precursor, if observable, is the fastest part of light with meaningful information.

Precursor propagation features low absorption over distance, apart from high
speed. Note that the optical depth a0z includes distance of propagation z: In theory,
the precursor peak always reach unity regardless of the value of a0z; due to the
Bessel function in the precursor field expression. Therefore, increasing z does not
decay the precursor peak amplitude. However, as we discussed in Chap. 5, the finite
rise and fall time limited by the switching speed of optical fields cause the precursor
peak to decay with a0z. Figure 6.2 shows the tendency with different switching
speed of incident pulse. The decay slope of peak amplitude decreases with higher
switching speed, or say, smaller rise or fall time. The peak amplitude approaches
unity at large propagation distance, provided the switching is fast enough.

In the radio-frequency regime, ultra-wide-band impulse radar arises, and
stimulates interest in precursor penetration into foliage. In optical regime, the idea
to use precursor for communication under water is being tested continually [1–4],
with the help of the femtosecond-pulse technique. To demonstrate why ultra-fast
optical pulse can be used to penetrate in dense medium, we simulate the propa-

gation of Gaussian pulse (We express the Gaussian function as e�ðt=rÞ
2

; with r as
the Gaussian width.) in cold atomic cloud described in Chap. 5, with two different
Gaussian pulse width of r ¼ 0:5 ns and r ¼ 100 ns; respectively. We assume that
the carrier frequency of the incident optical pulse is resonant to the transition of
two-level atomic system. The results are shown in Fig. 6.3, in which we could
compare the propagation of narrow and wide Gaussian pulse. Obviously, the
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Fig. 6.2 The transient peak transmission versus optical depth. a For EIT; b for two-level system.
The dots and squares denote experimental data, and curves plot the simulation results. The figure
was published in J. F. Chen et al. (2010) J. Opt. 12: 104010
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Fig. 6.3 Gaussian pulse propagation in two-level energy structure, with cold atomic ensembles
as medium as described in Chap. 5. For (a, b), OD = 3; for (c, d), OD = 30. The insets show the
corresponding transmission spectrum at each optical depth condition. Red dashed lines denote the
input pulse, while the blue solid lines denote the transmitted pulse through the medium. All the
graph are plotted with numerical solutions from Chap. 2
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Gaussian pulse with narrow width propagates with little loss even in absorptive
medium. The negligible loss is ascribed to the precursor field generated by the
ultra-fast pulse, with wide spectrum around carrier frequency. In contrast, the
slowly-varying Gaussian pulse is absorbed completely by the medium. Actually,
the question whether precursor can improve energy transmission in water attracts
quite a few discussions [5] and many attempts have been on-going. It will be a
breakthrough if communication under water works without huge construction of
fiber system. From the absorption curve, there is a region of single Lorentz
function at near infrared regime (700–800 nm) [6]. The FWHM of this absorption
curve is around 40 nm, and thus the transient stay for only several picosecond.
When future detectors and modulators improve to reach femto-second scale for
resolution, infrared optical pulses transmit signal in water efficiently.

Exploring the propagation of precursors in water extend to materials constituted
mainly from water, for example, biological tissue [7]. Firstly, the problem was
studied in biological tissue due to the concern of health effects raised up by the
transient signal. It was verified both in calculation and experiments that the short-
rise-time microwave penetrates deeper into tissue than ordinary wave. With the
same principle, the precursor can be utilized as signal in living-tissue imaging.
This is an under-developed topic which deserves future intensive attentions.
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