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Chapter 1

Predictive Microbiology in Foods

Abstract Predictive microbiology in foods is a research area within food

microbiology intended to provide mathematical models to predict microbial behav-

ior in food environments. Although the first predictive models were dated at the

beginning of the 20th century, its great development has occurred in the past

decades as a result of computer software advances. In addition to the exhaustive

knowledge on food microbiology, the predictive microbiology field is based on

important mathematical and modeling concepts that should be previously

introduced for predictive microbiology beginners. The different typology of pre-

dictive models allows predicting growth, inactivation, and probability of growth of

bacteria in foods under different environmental conditions and considering addi-

tional factors such as the physiological state of cells or interaction with other

microorganisms. Nowadays, predictive models have become a necessary tool to

support decisions concerning food safety and quality because models can provide

rapid responses to specific questions. Furthermore, predictive models have been

incorporated as helpful elements into the self-control systems such as Hazard

Analysis for Critical Control Point (HACCP) programs and food safety risk-based

metrics. National and international food safety policies are now based on the

development of Quantitative Microbial Risk Assessment studies, which is greatly

supported by the application of predictive models. Predictive microbiology is still

growing but at the same time is turning into an important tool for improving food

safety and quality.

Keywords Predictive microbiology • Predictive modeling • HACCP • Growth and

inactivation models • Kinetic parameters • Food Safety Objectives • Quantitative

Microbial Risk Assessment

F. Pérez-Rodrı́guez and A. Valero, Predictive Microbiology in Foods,
SpringerBriefs in Food, Health, and Nutrition 5, DOI 10.1007/978-1-4614-5520-2_1,
# Fernando Pérez-Rodrı́guez and Antonio Valero 2013
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1.1 Historical Remarks

The origin of predictive microbiology is often linked to the works by Bigelow

(1921), Bigelow and Esty (1920), and Esty and Meyer (1922) in which a log-linear

model was proposed to describe bacterial death kinetic by heat. Their model found

a wide application in the food industry, and especially in the canning industry.

Indeed, nowadays these results are still applied by the food industry to reduce

Clostridium botulinum in low-acid canned foods. As pointed out by McMeekin and

Ross (2002), other areas, such as fermentation microbiology, have also contributed

to the development of predictive microbiology (Monod 1949). The term predictive

microbiology, which is relatively recent, was coined by Roberts and Jarvis (1983),

establishing the conceptual basis of modern predictive microbiology. However,

many years earkier, Scott (1937) had already put forward similar ideas in a specific

case, stressing the importance of knowing growth rates at different temperatures to

be able to predict population changes in beef meat.

During the 1960s and 1970s, several efforts were devoted to apply mathematical

models to inactivation of pathogens (e.g., Clostridium botulinum and Staphylococ-
cus aureus) and growth of spoilage bacteria (Spencer and Baines 1964; Nixon 1971).
Nonetheless, the great development of predictive microbiology started during the

1980s when computers and specific software facilitated the development of more

complex and precise models. McMeekin et al. (1993a) suggested, as another possi-

ble explanation, the marked increase in food-borne diseases during those years

together with a major awareness of the limitations of the microbiological methods

applied in that time, also in consonance with the ideas proposed by Roberts and

Jarvis (1983). Those years led to important advances in modeling, proposing differ-

ent mathematical functions to describe the relationship between temperature and

other environmental factors and kinetic parameters (e.g., growth rate). Ratkowsky

et al. (1982) introduced a simple model based upon Bêlehrádek-type models to

describe the bacteria growth rate as a function of temperature. Other work was

concerned with the Arrhenius model and its variations and the cardinal temperature

model of Rosso et al. (1995), which generated a new family of models in which the

gamma concept model is included (Zwietering et al. 1996). Although these studies

provided insight into the underlying mathematical principles governing the depen-

dency of kinetic parameters on environmental factors, other researchers devoted

their work to derive suitable mathematical functions to reflect the growth pattern

described by bacteria (i.e., cells vs. time) in food environments. In this research area,

several models were derived based the sigmoid shape of the microbial growth curve,

such as the logistic model and the modified Gompertz equation introduced by

Gibson et al. (1987) and the model of Baranyi and Roberts (1994) developed on

the basis of the logistic equation, which has come to be one of the most used models

together with the reparameterized Gompertz equation (Zwietering et al. 1990).

In this productive period of predictive microbiology, some studies aimed to study

the probability of growth and toxin production (Roberts et al. 1981; Genigeorgis

1981), which later gave rise to a new type of model, namely, probability or growth/
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no growthmodels for predicting the likelihood that organismswill grow and produce

toxin within a given period of time. Only over the past few years has this type of

model been more extensively studied to define the absolute limits for growth

of microorganisms in specified food environments (Salter et al. 2000; McMeekin

et al. 2002; Valero et al. 2010).

During the past few years, predictive microbiology has moved into new research

areas such as the study of the effect of pre-culture conditions on kinetic parameters,

modeling based on individual cells (Dupont and Augustin 2009), stochastic models,

bacterial transfer models (Pérez-Rodrı́guez et al. 2008), and more recently genome-

scale modeling (Brul et al. 2008; Métris et al. 2011). These incipient research areas

clearly reflect the continued effort of microbiologists to explore much more deeply,

even to genomic level, the ultimate factors or elements governing microbial

behavior. However, we should not forget that the final aim of predictive microbiol-

ogy is to be applied to improving food safety and quality. Thus, the past decade has

also seen the great development of Quantitative Microbial Risk Assessment

(QMRA) as a fundamental tool to support making decision processes for food

safety management underpinned by the use of predictive models (Lammerding

and Paoli 1997; Mataragas et al. 2010).

1.2 Framework and Concepts

1.2.1 Predictive Microbiology: Models and Types

Predictive microbiology in foods is a broad scientific field including different

concepts and applications. The language used by researchers in this area is some-

times specific and difficult to follow by readers who are not familiar with this

terminology. In this section, the predictive microbiology framework is brought to

new predictive microbiology practitioners and researchers.

Predictive microbiology can be considered as a scientific branch of the food

microbiology field intended to quantitatively assess the microbial behavior in

food environments to derive adequate mathematical models. A mathematical

model is a description of a real system by using mathematical equations, which

are simplifications of the system based on its more significant properties.

A basic model is structured as

MATHEMATICAL
FUNCTION RESPONSEINPUT

The mathematical model estimates the response of the represented system or

process based on the values of the input variables. The following generic mathe-

matical function can be used to explain the basic structure:

1.2 Framework and Concepts 3



εβββ +++= 332211 XXXY

Deterministic Stochastic

The variable Y is the response or dependent variable; X1, X2, and X3 are

explanatory or independent variables; and b1, b2, and b3 are the regression

coefficients, which are obtained from a regression method based on the observed

data set. The error is a term explaining the observed data variability, which is

assumed to be normally distributed. Therefore, mathematical models are composed

of two components, a deterministic part describing the deterministic relationship

between explanatory variables and the response variable and a stochastic part

corresponding to the observed data variability that cannot be explained by the

deterministic part. The error or stochastic assumption determines the regression

method to be used, although in some cases mathematical transformations of

variables may help to improve results from a specific regression method. This

aspect is further discussed in Chap. 3.

The regression methods are a set of statistical and mathematical techniques

intended to fit a mathematical expression to observed data by optimizing the values

of the regression coefficients. Optimization of coefficients is based on minimizing

the differences between observed responses and the predicted responses given by

the fitted model, which is named residual. Several regression methods have been

used in predictive microbiology, although the least squares (LS) method is the

regression method most used because of its widespread implementation in

modeling software. The regression methods largely depend on whether the function

to fit shows a nonlinear or linear form. The definition of nonlinearity relates to the

regression coefficients and not to the graphical relationship between the variables

and the response. For example, the quadratic regression model is considered to be

linear rather than nonlinear because the regression function is linear in the regres-

sion coefficient and the model can be estimated by using classical linear regression

methods.

Y ¼ b0 þ b1X þ b2X
2 þ e (1.1)

One of the most common nonlinear models is the exponential decay or expo-

nential growth model, which presents the regression coefficient in the power.

In these cases, nonlinear regression methods should be applied to correctly estimate

the regression parameters.

Y ¼ eaX þ a0 (1.2)

Most models developed in predictive microbiology require the application of the

nonlinear regression method such as the growth model by Baranyi and Roberts

4 1 Predictive Microbiology in Foods



(1994) or the modified Gompertz equation (Gibson et al. 1987) that describes the

bacterial concentration change over time.

Predictive microbial models may describe different microbial processes, including

kinetic processes (McMeekin et al. 1993b) such as microbial death and growth, or

physical processes such as bacteria and virus transfer (Pérez-Rodrı́guez et al. 2008),

which are described in Chap. 4, although most of the models developed in the

scientific literature correspond to kinetic models because of the great repercussions

in ensuring food safety and quality.

Traditionally, models have been classified into two types depending on the basis

of information used to construct the model (McMeekin and Ross 2002). The

mechanistic models are based on understanding the underlying phenomena

governing the system. In turn, empirical models simply try to describe the observed

response. Besides that, predictive microbiology models describing kinetic process

are classified as primary, secondary, and tertiary models. The primary models

account for the concentration change versus time (growth or death curve), whereas

secondary models relate the kinetic parameters derived from the primary model to

environmental variables. The tertiary models are implementations of both types of

model in computer tools intended to provide predictions such as the Pathogen

Modeling Program (PMP) or Combase Predictor, which are presented in Chap. 5.

In all cases, models should be validated because reliability of predictions should

be contrasted with real data in foods. With this end, different strategies have been

proposed such as traditional goodness-of-fit indexes applied to observed and

predicted data, and more specific indexes such as bias factor and accuracy factors

that can be determined by the prediction capacity of models (Ratkowsky 2004). All

these concepts and methodology are explained in detail in Chap. 3.

1.2.2 Predictive Microbiology: General Framework

Predictive models are mostly based on observations obtained from experiments

developed under controlled conditions. Because experiments with foods are com-

plex and laborious, data are often obtained in simplified experimental models in

which the paramount factors are under control. This practice is in accordance with

the reductionist approach implicit to predictive microbiology, which claims that

microbial behavior can be explained by considering only the most important factors

governing the phenomenon (McMeekin and Ross 2002), including not only envi-

ronmental factors but rather biological factors such as competitive microflora,

whose models are so-called between-species interaction models, or natural antimi-

crobial compounds (Vermeiren et al. 2006; Larsen et al. 2012). Furthermore, over

the past few years, there has been an increasing trend to develop predictive models

based on data obtained in food with the aim of obtaining more accurate predictions.

At the same time, an ‘omic’ perspective is being introduced into predictive micro-

biology, moving models onto a molecular level (Brul et al. 2008). These new

advances in predictive microbiology are treated in Chap. 7.

1.2 Framework and Concepts 5



Predictive models are useful tools for improving food safety and quality, which

can be applied to different facets of the food sector. Among its applications, we

highlight its integration into self-control systems such as Hazard Analysis for

Critical Control Point (HACCP) to determine process criteria and control limits

(McDonald and Sun 1999). Furthermore, applying predictive models can assist

shelf life studies and help to design or reformulate food products based on a safety

or quality perspective (van Boekel 2008).

The field of Microbial Risk Assessment (MRA) is one of the most relevant topics

that has emerged over the decades concerning food microbial safety. MRA is

defined as ‘a scientifically based process consisting of the following steps: (1)
hazard identification, (2) hazard characterization, (3) exposure assessment, and
(4) risk characterization’ (Codex Alimentarius Comission 1999). This methodol-

ogy is the basis for supporting risk management activities and establishing food

standards in a national and international framework. A quantitative approach is

preferred for MRA, so-called Quantitative Microbial Risk Assessment (QMRA), in

which numerical data or quantitative information is used to carry out the foregoing

four steps. Briefly, a QMRA consists of quantitatively assessing the fate of a

specific pathogenic microorganism along the food chain from farm to fork, and

estimating the attendant risk. The development of QMRA studies is greatly

supported by the application of predictive models because in many cases no data

are available for describing some specific food processes or food chain steps

(Lammerding and Fazil 2000). Chapter 6 provides a more specific explanation on

the importance of predictive models in QMRA.

The importance of predictive microbiology for supporting the decision-making

process concerning food safety can be evidenced by the risk management frame-

work proposed by the International Commission of Microbial Specifications in

foods (ICMSF) (van Schothorst 2004). This framework is mainly based on a

quantitative approach in which food processes can be defined as increments or

decreases of the target microorganism burden. For that purpose, predictive models

are the necessary element, which is applied to describe potential microbial

increments and decrements along the food chain. By using this quantitative approach

and on the basis of established Food Safety Objectives, other risk metrics can be

derived such as Performance Objective or Performance Criteria using the ICMSF

equation, which will be analyzed in Chap. 6.

1.3 A Tool for Improving Food Safety and Quality

Despite the improvement in food technology and processing, currently

microbiological hazards are associated with some food commodities; thus, their

evaluation, control, reduction, and/or elimination are important for different

commissions, governments, and organisms related to public health.

6 1 Predictive Microbiology in Foods



As previously stated, predictivemicrobiology is based on the use ofmathematical

models to estimate microbial behaviour in foods. For food industries, application of

this knowledge could be of great interest for assuring food safety and quality.

During the past several years there has been substantial advance in both the

concepts and methods used in predictive microbiology. Coupled with ‘user-

friendly’ software and the development of expert systems, these models are

providing powerful new tools for rapidly estimating the effects of formulation

and storage factors on the microbiological relations in foods.

Thus, predictive microbiology is understood as a scientific-based tool covering

an integrated approach that improves food safety and quality. Predictive models can

be effectively applied throughout the whole food chain, from raw material acquisi-

tion to end products. The utility of predictive microbiology will be further enhanced

when is recognized as an effective rapid method (McMeekin et al. 2002).

Bridging the gap between scientific development and practical implementation

in industry has always been a challenge. Traditionally, food operators are confident,

based on limited information, about their process or product. Indeed, scarcity in

available resources and facilities to develop rapid and cost-effective techniques

together with the increasing demand of safer and more stable food products from

consumers have decreased the investment in research and development sources.

Despite the earlier development of predictive microbiology in the science field,

in the 1980s it was accorded more awareness because the outbreaks occurring with

traditional food-borne pathogens, such as Salmonella spp. in eggs or Listeria
monocytogenes, which can grow at refrigeration temperatures.

From that time on, national governments and food authorities have prioritized

the use of food research for improving food safety.

Some of the potential applications of predictive microbiology are summarized

below.

Hazard Analysis and Critical Control Points (HACCP)

• Preliminary hazard analysis

• Identification and establishment of critical control points

• Corrective measures

• Evaluation of variables interaction

Risk Assessment and Risk Management

• Estimation of microbial population dynamics along the food chain

• Exposure assessment toward a specific pathogen

• Design of scientifically based management strategies to assure food safety

Shelf life studies

• Growth prediction of spoilage or pathogenic microorganisms in foods

Innovation and development of a new product

• Evaluation of the impact of microbial spoilage in a food product

• Effect of processing on food quality and safety

1.3 A Tool for Improving Food Safety and Quality 7



• Evaluation of the effect of other additional factors throughout the food chain

Hygienic measures and temperature integration

• Evaluation of the consequences of chill chain application on microbial spoilage

• Optimization of thermal and nonthermal inactivation processes

Education

• Education of both scientific and nonscientific staff

• Implementation and training of computing-based decision systems

Experimental design

• Estimation of the number of samples to be prepared

• Definition of intervals within each factor to be analyzed

Other current applications of predictive microbiology in an industrial context are

wide but can be summarized into three groups (Membré and Lambert 2008):

• Development of new products: Developing alternative product formulations by

the assessment basing on the assessment of growth of spoilage and pathogenic

microorganisms; this provides the definition of safer storage conditions, thus

increasing shelf life

• Operational support: Supporting food safety decisions that need to be made

when implementing or running a food manufacturing operation; also, setting

critical control points (CCPs) in HACCP, assessing impact of process deviations

on microbiological safety and quality of food products

• Incident support: Estimating the impact on consumer safety or product quality in

case of problems with products on the market

For food industries, besides economical issues, the desire to produce safe foods

using strategies is based on understanding sources and magnitudes of hazards.

These are themain reasons whyHACCP and risk assessment are taking part in any

decision-making process (McMeekin and Ross 2002). Among their main principles,

they must assess human exposure to pathogens in foods. Clearly, this information is

rarely available. Predictive microbiology models are commonly used to quantify the

human exposure of bacteria through the ingestion of foods. To translate these

concepts into food safety levels, risk-based metrics are used as a systematic approach

to food safety based on hazard identification and control. These metrics (i.e., Perfor-

mance Objectives and Food Safety Objectives) identify and evaluate key steps in the

food production chain, which have the greatest effect on risk associated with hazards;

it is often applied subjectively (Stringer 2005).

Thus, predictive microbiology gives improved, quantitative insight into the food

properties that are considered of importance to the safety and quality of foods

(McMeekin et al. 1993a; Zwietering et al. 1992). Specifically, published studies of

potential applications in meat (McDonald and Sun 1999; Sumner and Krist 2002;

8 1 Predictive Microbiology in Foods



Pin et al. 2011) and fish industries (Koutsoumanis and Nychas 2000; Dalgaard et al.

2002; Ross et al. 2003) are described.

Determination of shelf life is one of the most promising applications of predictive

microbiology to food industries, rendering a reliable and economic tool for obtaining

rapid estimations (Shimoni and Labuza 2000; Castillejo-Rodrı́guez et al. 2002;

Mataragas et al. 2006); this is also related to the applicability of time-temperature

indicators for monitoring of spoilage (Vaikousi et al. 2009). In this context, the

development and application of structured quality and safety assurance systems

based on prevention through monitoring, recording, and controlling of critical

parameters during the entire life cycle of the products, seem to be a prerequisite.

More recent applications are focused on the use of predictive modeling to reduce

the impact of climate change and seasonal variations on the safety and quality of

foods (Janevska et al. 2010). This goal can be reached starting with supply chain

data to recalculate periodically changes in model parameters used for prediction

of risk levels or shelf life, for example, the probability for contamination of the

product with certain pathogens, growth rate, or initial count of spoilage micro-

organisms. Application of appropriate statistical analysis would identify significant

variations in the trends in terms of decreased safety or shelf life of the product,

which would require further attention and corrective actions.

The development of a predictive model comprises different stages, depending on

the model type, application, or time/resources to be committed.

Some relevant questions are often arisen before the construction of a new or

modified predictive model. As literature sources contain a large quantity of devel-

oped models, much information is already gained by what one has really to analyze

if carrying out additional experimental trials to create new models regarding a

particular hazard/food combination.

Despite each particular situation, general questions (Q) could be formulated:

Q1: Are data and/or models sufficiently available in the literature?

Q2: Will the predictive model significantly improve current knowledge in the field?

Q3: Are available laboratory resources sufficient to perform all analyses in con-

trolled conditions?

Q4: Do the authors have ‘a priori’ knowledge about the main environmental

conditions affecting microbial growth/survival of the studied hazard(s) and

food(s)?

Q5: According to these conditions, is it possible to develop a full-factorial design?

Q6: Is the mathematical model comprehensive and representative of the observed

behaviour of the studied hazard(s)?

Q7: Could the model be validated with additional measurements or external data?

Q8: Could the model be effectively applied for food industries or authorities under

a given set of conditions?

In the decision tree presented in Table 1.1, according to yes (Y) and no (N)

answers, one can decide if a model can be applied.

Throughout this brief, each of these steps is analyzed accordingly. However,

experimental design is one of the most important because it will influence the type
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and number of conditions tested, data gathering, data processing, and definitely the

final model obtained. Without an adequate experimental design, data generated will

be erratic, thus needing further repetitions. The next chapters consider experimental

analyses and procedures for data generation.

Table 1.1 Aspects to be considered when constructing and applying a predictive model

STEP 1

Literature review and preliminary

analysis

Q1 Y Discard

N Next step

Q2 Y Next step

N Depends on the model purpose

STEP 2

Planning the experimental design

Q3 Y Next step

N Redefine the experimental design

Q4 Y Next step

N Go to STEP 1

Q5 Y Next step

N Create a non-full-factorial experimental design

STEP 3

Model development

Q6 Y Next step

N Revise data processing and choose another

equation

STEP 4

Model validation

Q7 Y Next step

N Go to STEPS 1 and 2

STEP 5

Model application

Q8 Y Application

N Go to STEPS 3 and 4
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Chapter 2

Experimental Design and Data Generation

Abstract One of the most critical steps when generating a predictive model is to

correctly design an experiment and collect suitable microbial data. Experimental

design will influence model structure and validation conditions. The survival and

growth of microorganisms in foods is affected not only by the chemical composi-

tion of the food and its storage conditions but also by the food matrix. In this sense,

a better quantification of the food structure effect has been studied throughout these

years. Regarding the method of data collection, although plating count has been

widely used (and still is used), there are rapid methods to obtain reliable and cost-

effective data. These achievements were primarily based on turbidimetry, although

other methods (microscopy, image analysis, flow cytometry, etc.) have arisen as

novel approaches in the predictive microbiology field. These aspects are further

discussed in this chapter.

Keywords Experimental design • Food matrix • Challenge testing • Data generation

• Absorbance • Turbidimetry • Flow cytometry • Microscopic methods

2.1 Experimental Design

In predictive microbiology, as with other scientific disciplines, collection of high-

quality data is an essential part of exploitation of results. Both the selection of

an appropriate model structure and the identification of accurate model parameters

are data-driven processes; that is, the efficiency and accuracy of these procedures

are determined by the quality of the experimental data.

The experimental design of a predictive model will mainly depend on its final

application into a real case scenario. This process is completely different when

estimating growth kinetic parameters as a function of certain environmental factors

than when one qualitatively estimate the probability that a given microorganism

may or may not grow under a specific set of conditions. Similarly, when performing

a validation study in a food matrix, design will be accomplished according to the

F. Pérez-Rodrı́guez and A. Valero, Predictive Microbiology in Foods,
SpringerBriefs in Food, Health, and Nutrition 5, DOI 10.1007/978-1-4614-5520-2_2,
# Fernando Pérez-Rodrı́guez and Antonio Valero 2013
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representativeness of data to real conditions or to the time invested in analytical

experimentation. For this purpose, it is very useful to previously screen the main

factors affecting microbial behavior through different assays. Implicitly, when

increasing the number and levels of involved factors, the experimental design

will be more complex.

Devlieghere (2000) already described the main factors to be considered to plan

an adequate experimental design. Some relevant questions are these:

• What is the main objective of the predictive model?

• Which are the main factors to be controlled, so that this objective will be

achieved?

• Which are the factor levels to be used?

• Which is the inoculum state to be employed? This refers to physiological state,

use of cocktail strains, inoculation form, etc.

• Which are the dependent variables of the proposed model?

• Which is the substrate or medium used?

• How many combinations of environmental factors will be finally included in the

model (from those previously identified)?

• How will data be collected?

Some of this information is discussed in the following sections. In the mean-

while, referring to the experimental design, a two-step procedure is often applied:

(1) screening experiments are performed at an extended range of the factors,

followed by (2) an extensive data collection study within the region of interest

(Gysemans et al. 2007). This latter point is referred to the inclusion of additional

levels of identified factors to obtain a more refined model and consequently, more

accurate microbial predictions.

In modeling microbial responses in foods, traditionally, full experimental

designs are chosen (Tassou et al. 2009). This approach considers all combinations

of the different explanatory variables. The main advantages are its ease of imple-

mentation together with its data processing. Further, one is sure that all information

is gained from the experiment, as all combinations are explored. However, this

experimental design is often labor intensive and costly.

Alternatives are being adopted by carefully selecting experimental conditions

(implementing an efficient design-of-experiment, or DOE). The number of experi-

ments required for it is calculated as (N) ~ 2k, where (k) is the number of variables.

If the number of variables is large, the fractional factorial design can be more

indicative.

Fractional factorial designs are reduced versions of full factorial designs, and

some of these have been published (McKellar and Lu 2001; Valero et al. 2009).

These designs are based on ‘a priori’ knowledge or assumptions on the most

important factors or expected interactions. A particular class of fractional factorial

designs called the Box–Benhken designs has been used for modeling microbial

growth or inactivation. Combining two-level factorial designs with balanced

incomplete blocks forms this experimental design. The repeatability of the model
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is normally tested through the performance of additional experiments at the central

points of the experimental design.

Latin-Square designs are special types of fractional factorial designs. According

to its definition, a Latin square of order x is an arrangement of x letters in an x-by-x
array so that each letter appears exactly once in each row and exactly once in each

column. In the context of experiment design in predictive microbiology, one

primary (treatment) factor (represented by the letters) is typically studied in the

presence of several blocking (nuisance) factors, although the approach is not

limited to one principal factor of interest. Latin-Square designs can be extended

to more individual factors, such as the Graeco-Latin Square or the hyper Graeco-

Latin Square designs. A Latin-Square design of order 4 is presented in Fig. 2.1.

Another experimental design commonly used in the field of predictive microbi-

ology, the Central Composite Design (Cheroutre-Vialette and Lebert 2002; Arroyo-

López et al. 2009), contains an embedded factorial or fractional factorial design

with center points that is augmented with a group of ‘star points’ which allow

estimation of curvature. If the distance from the center of the design space to a

factorial point is �1 unit for each factor, the distance from the center of the design

space to a star point is �a with || a > 1. The precise value of a depends on certain

properties desired for the design and on the number of factors involved. If two

factors are included, the Central Composite design will appear as shown in Fig. 2.2.

The Doehlert matrix describes a spherical experimental domain and stresses

uniformity in space filling. For two variables it consists of one central point and

six points forming a hexagon, situated on a circle. The formula used for calculation

of the number (N) of experiments required is (N ~ k2 + k + C0), where (k) is

the number of variables and (C0) is the number of center points. Replicates at the

central level of the variables are performed to validate the model by means of an

estimate of experimental variance.

For rather simplemodel structures and a limited numberof levels per environmental

factor, full factorial designs are preferable because these designs guarantee accurate

and reliable model parameters (Mertens et al. 2012). However, for more complex

cases, a Latin-Square design can be considered as an attractive alternative as it does

A B C D

C D A B 

D C B A

B A D C 

Fig. 2.1 Schematic

representation of a four-factor

level Latin-Square design

+ =

Fig. 2.2 Schematic

representation of a two-factor

Central Composite design
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not require a priori knowledge of the model structure (as is the case for the reduced

full factorial design), while keeping the experimental workload and cost low.

In contrast, central composite designs should be avoided because of the high degree

of uncertainty on the parameter estimates.

2.2 Growth Matrix: Food Versus Artificial Medium

For a long time, the ability of specific foods to support microbial growth of

pathogenic as well as spoilage microorganisms has been evaluated by inoculating

the target organism and monitoring its growth and survival over a certain period of

time. This methodology, traditionally named challenge testing, is still being used in

the field of predictive microbiology because it is sometimes necessary to gain

information about the microbial stability of a novel product formulation or to assess

the behavior of a specific microorganism (not previously tested). These experimen-

tal tests are useful to determine microbial shelf life and growth/survival kinetics

parameters, such as maximum growth rate or lag phase. However, although this

approach was considered the gold standard, it is also time consuming and costly.

Thanks to the development of predictive microbiology, microbial behavior is

explained with only a few significant environmental factors (mainly temperature,

pH, or aw), thus yielding accurate predictions in the majority of foods.

Most published studies of predictive microbiology (at least the earlier ones) used

artificial media, that is, culture media with a chemical composition that is intended

to mimic the food environment, which allowed a reduced variability in the results

(mainly because chemical composition can be more accurately adjusted). Also, it is

recognized that artificial liquid media provides a more homogeneous distribution of

microorganisms, leading to obtaining similar kinetics under the same environmen-

tal conditions.

In principle, observed data can be easily fitted to mathematical models because

they tend to be more robust and replications do not vary greatly.

A key step before the application of predictive models is validation in food

matrices: this involves the comparison of model predictions with additional data

coming from literature sources or by means of inoculating the target organism in a

given food (supposedly within the range of conditions covered by the model) and

evaluating the observations with model predictions to judge if they are biased.

Throughout this brief, a specific section about model validation is proposed, with

special attention to validation procedures, indexes used, and reliability of models

when applied to food matrices.

In this section, differences between structural composition between artificial

media and foods are presented.

Traditionally, when comparing model predictions in broth media with

observations in foods, one can assume that results will be fail-safe, that is, the

predicted growth in liquid media is much faster than that observed in food. Several

factors are attributable: food matrix (which in most cases is semisolid or solid),
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indigenous flora, or additional environmental factors present in the food and not

included in the model.

Growth of microorganisms in a liquid aqueous phase in foods is typically

planktonic and can be accompanied by motility allowing taxis to preferred regions

of the food. Transport of nutrients to the bacteria and of metabolites away from

them results in a locally uniform environment until considerable accumulation of

microbial biomass and metabolites cause bulk chemical changes (such as a decline

in pH). It is this microarchitecture in food that is mimicked in microbiological

experiments by the use of broth culture medium (Wilson et al. 2002).

However, foods are not typically homogeneous. The structure of foods creates

local physical or chemical environments that clearly affect spatial distribution of

microorganisms. Consequently, microbial growth or survival is influenced. Micro-

organisms occupy the aqueous phase of foods, and structural features of this phase

cause an effect on microbial behavior such as constraints of mechanical distribution

of water, redistribution of organic acids, and food preservatives (Hills et al. 1997).

Predictions based on data obtained from broth systems can be successfully

applied to microbial growth and survival in foods. In many cases, microorganisms

grow more slowly in a given structure food than in broths: this is the case when

performing a challenge testing, in which lower growth rates (and longer lag phases)

are observed than are proposed by predictive models (Pin et al. 1999). In structured

(heterogeneous) foods, microbial growth can strongly depend on the position in the

food and the assumption of perfect mixing can thus not be accepted. In conse-

quence, space must be considered (Dens and Van Impe 2000).

This concept is related to the microbial distribution of microorganisms. Figure 2.3

represents the distribution of amicrobial population in a specificmatrix (International

Life Sciences Institute 2010). Normally, in liquid media random distribution is

obtained, indicating that there is equal chance for any individual cell to occupy any

specific position. Presence of organisms can be considered independent (Fig. 2.3a).

Regular distribution is observed when high cell densities are encountered in the food

and these cells are neither clumped nor aggregated (Fig. 2.3b), as when contamina-

tion occurs in equipment or utensils when they are insufficiently cleaned. Finally, in

solid matrices colonies are normally are aggregated, forming clusters (biofilms): the

presence of organisms can be considered dependent.

a b cFig. 2.3 Representation

of the most common spatial

distributions of microbial

populations according to

the type of matrix in which

they are present
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Once a food product becomes contaminated, microbial growth can transform the

initial homogeneous distribution into a more clustered one. When cells are growing

inside the product, the spatial distribution is more similar to that presented in

Fig. 2.3c, mainly as a result of the physical constraints of the food matrix.

Regarding inactivation treatments, it is demonstrated that application of heat may

have a different impact onmicrobial death depending on the considered foodmatrix.

If thermal diffusivity of the product is lower, some contaminants can survive if the

heat has not sufficiently conducted to the interior of the food product. This formation

of the so-called cold spots may affect the spatial location of microorganisms.

Thus, the use of model foods that mimic real food structures entails significant

advantages from a practical point of view, such as better control, ease of operation,

and repeatability of analyses (Antwi et al. 2007; Noriega et al. 2008).

2.3 Data Generation

Data generation must be based on the optimization of the number of data together

with the implied cost of their acquisition. Generally, when building a growth and

survival model it is known that data should be collected throughout the whole

analytical period of time, about 100 kinetic curves being needed to make the

model significant (McDonald and Sun 1999). Gibson et al. (1987) concluded that

15 points per kinetic curve are necessary, 20 being the optimum number. Less than

10 points per curve makes the adjustment not fully representative of microbial

behavior, thus increasing uncertainty. Poschet and Van Impe (1999) established

that this uncertainty on dependent variables increases when fewer points are col-

lected, but, above a certain limit, this value remains stable.

Similarly, distribution of collected points within the experimental design is

crucial for estimation of dependent variables: this is achieved in such a way that

the representativeness of the model increases, at the same time reducing variance of

the estimated parameters.

There are currently different methods to collect data, but the classical one has

been widely used in predictive microbiology, that is, plate count techniques. This

method has been used to monitor microbial growth although it presents some

drawbacks. First, possible underestimation could occur because of the presence of

clumped cells. Second, plate count is a slow, labor-intensive, and costly method.

Further, it does not provide immediate results, so that model development becomes

more difficult, especially when a high number of data is required. However, to a

certain extent, plate counts can be done automatically by the use of automated

platers such as the spiral plater and automatic colony readers.

Traditionally, models performed in broth systems are based on the modification

of artificial culture media with preservatives, such as organic acids, sodium chlo-

ride, or sodium nitrite, or on lowering pH with the addition of chlorhydric acid.

Afterward, these modified media are inoculated with the specific microorganism,

and growth and survival are monitored over a certain period of time.
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When concerned with food matrices, one way to assess microbial behavior is to

perform a challenge test, that is, to inoculate the target microorganism in a specific

food and to evaluate if the food supports growth and survival under a limited set

of conditions.

The next section explains in more detail the experimental procedure to carry out

a general challenge test. Of course, there are many variants and uses of this method,

in accordance with the final objective to be fulfilled. This explanation summarizes

the most generic steps to achieve a challenge test.

2.3.1 Traditional Methods: Challenge Testing

Microbiological challenge testing has been and continues to be a useful tool for

determining the ability of a food to support the growth of spoilage organisms or

pathogens (US Food and Drug Administration 2009). In predictive microbiology, it

is needed to evaluate the behavior of a particular strain (or a cocktail of different

strains) to subsequently calculate kinetic parameters. Microbiological challenge

tests also play an important role in the validation of processes that are intended

to deliver some degree of lethality against a target organism or group of

target organisms (for example, a 5 log reduction of Escherichia coli O157:H7
for fermented meats). Selection of microorganisms to use in challenge testing

and/or modeling depends on the knowledge gained through commercial experience

and/or on epidemiological data that indicate that the food under consideration or

similar foods may be hazardous because of pathogen growth.

An appropriately designed microbiological challenge test will validate that a

specific process is in compliance with the predetermined performance standard. The

design, implementation, and assessment of microbiological challenge studies form a

complex task that depends on factors related to how the product is formulated,

manufactured, packaged, distributed, prepared, and consumed.

Failure to account for specific product and environmental factors in the design of

the test could result in flawed conclusions.

Microbiological challenge studies can be used in specific cases for the determi-

nation of the potential shelf life of certain refrigerated or ambient-stored foods. The

determination of whether challenge studies are appropriate or useful must consider

such factors as the likelihood of the product to support growth of spoilage organisms

or pathogens or include knowledge of the previous history of the product.

When conducting a microbiological challenge study, a number of factors must be

considered: (a) the selection of appropriate pathogens or surrogates, (b) the inocula-

tion level, (c) themethod of inoculation, (d) the duration of the study, (e) formulation

factors and storage conditions, and (f) sample analyses. These are described next.

(a) Selection of appropriate strains or surrogates

The ideal organisms for challenge testing are those that have been previously

isolated from similar formulations. Additionally, pathogens from known food-

borne outbreaks should be included to ensure the formulation is robust enough

to inhibit those organisms as well.
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For certain applications, surrogate microorganisms may be used in challenge

studies in place of specific pathogens. For example, introducing pathogens

into a processing facility is not feasible; therefore, it is desirable to use

surrogate microorganisms in those cases. An ideal surrogate is a strain of the

target pathogen that retains all other characteristics except its virulence.

In any case, it is important to incubate the microorganisms in standardized

conditions, preferably similar to those encountered in the food.

(b) Inoculation level

The inoculum level used in the microbiological challenge study depends on

whether the objective of the study is to determine product stability and shelf

life or to validate a step in the process designed to reduce microbial numbers.

Typically, an inoculum level between 102 and 103 colony-forming units (cfu)/g

of product is used to ascertain the microbiological stability of a formulation.

If the inoculum level is too low, microorganisms could not grow in the food

product because of the increased lag phase, so that one can assume in certain

cases that food formulation assures food safety when it is not low. In contrast,

at high inoculum levels, microbial growth could be overestimated. For study-

ing lethality processes, higher levels of microorganisms are needed (generally

more than 106 cfu/g).

(c) Method of inoculation

The method of inoculation is another extremely important consideration when

conducting a microbiological challenge study. Every effort must be made not

to change the critical parameters of the product formulation undergoing chal-

lenge. A variety of inoculation methods can be used depending upon the type

of product being challenged. In aqueous liquid matrices such as sauces and

gravies with high aw (>0.96), the challenge inoculum may be directly

inoculated into the product with mixing, using a minimal amount of sterile

water or buffer as a carrier. Use of a diluent adjusted to the approximate aw of

the product using the humectant present in the food minimizes the potential for

erroneous results in intermediate aw foods. In studies where moisture level is

one of the experimental variables, the inoculum may be suspended in the water

or liquid used to adjust the moisture level of the formulation. Products or

components with aw < 0.92 may be inoculated using the atomizer method with

a minimal volume of carrier water or buffer. Again, the product should always

be checked to ensure that the final product aw or moisture level has not been

changed. A short postinoculation drying period may be needed for some

products before final packaging. A minimum volume of sample should be

inoculated so that a minimum of three replicates per sampling time is available

throughout the challenge study. In some cases, such as in certain revalidation

studies and for uninoculated control samples, fewer replicates may be used.

(d) Duration of the study

The microbiological challenge test should be conducted for at least the whole

shelf life period of the food product. Some regulatory agencies recommend

extending the duration of the study a margin beyond the desired shelf life
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because it is important to determine what would happen if users held the

product beyond its intended shelf life and then consumed it.

The frequency of analysis depends on the environmental conditions under

which the food is subjected. It may be desirable to test more frequently (for

example, daily or multiple times per day) early in the challenge study (that is,

for the first few days or week) and then reduce the frequency of testing to

longer intervals.

(e) Formulation factors and storage conditions

When evaluating a formulation, it is important to understand the range of key

factors that control its microbiological stability. It is, therefore, important to

test each key variable singly or in combination in the formulation under worst-

case conditions. Experimental temperature should be similar to real

processing, distribution, and sale conditions. In a last step, the use of tempera-

ture shift might be recommended, such as storing the food product at one

specific temperature for a portion of its shelf life, after which time the product

may be subjected to elevated temperatures.

(f) Sample analysis

In challenge tests, it is recommended to analyze at least three replicates per

analytical point, although more replicates would be needed when requiring

more accuracy in the results. The culture media to be used will depend on the

type of microorganism to be controlled, but if the food product contains high

concentration levels of competitive flora, it would be better to use selective

media. Similarly, if the targeted microorganism is a toxin producer, toxin

concentration should be measured during the study period. In parallel, control

samples (uninoculated) may be analyzed in the same way as inoculated

samples to evaluate the effect of the food flora on the analytical period of time.

2.3.2 Rapid Methods

(a) Viable counts

Viable counts are commonly obtained by spread-plate and pour-plate

techniques and therefore are linked to the classical microbiological methods

that are considered to be reference methods, even though these can have certain

limitations (Rasch 2004). For instance, a clump of cells falling onto culture

agar would give rise a single colony, impeding estimation of the actual number

of individual cells when clumps are present in the medium. Hence,

microbiologists refer to results as colony-forming units (cfu) (McMeekin

et al. 1993a). Although automation has been also applied to plate count

methods (e.g., the spiral plating method) reducing sample preparation time

(e.g., decimal dilutions, human resources, etc.), this methodology still implies

long waiting times for enabling bacterial growth in culture media (24–48 h).

Predictive models can be developed based on data obtained in liquid and

solid media or on food matrices. When models are developed on food, more
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additional steps such as a homogenization step or filtering are required, making

the analytical process more laborious. Also, the medium where data are being

generated can affect the precision and accuracy of plate counts, which should

be considered when predictive models are built, although it is generally

accepted that the repeatability of enumeration data may only be precise to

about �0.5 log cfu (Mossel 1995).

(b) Turbidimetry

Bacterial kinetic modeling is mainly based on colony counting (traditional

method) and absorbance measures. It is well known that cellular concentration

in a liquid medium can be related to the optical density (OD) of the growth

medium. OD, or absorbance, is a measure of the light that is absorbed by a

cellular suspension. The chief characteristic of OD is that OD of a bacterial

suspension increases proportionally with the increment of bacterial concentra-

tion. OD of a cellular suspension can be also related to transmittance and

turbidity of the medium, important optical properties related to bacterial

concentration. Other factors affect OD such as the refractive index of the

bacterial strain and its shape and size. The main advantages of OD are rapidity,

simplicity, and noninvasiveness, which make the technique quite suitable for

modeling purposes. Automation in measuring OD has led to sophisticated

photometers such as Bioscreen C, which are able to perform multiple

measurements (200 wells) at specific time intervals while maintaining a fixed

incubation temperature. Nevertheless, important limitations exist that should

be considered when OD is used as the enumeration technique for modeling

bacterial growth. Linearity may be one of the most important drawbacks

because the linear relationship described by Beer-Lambert only holds for

approximately a tenfold increase in cell numbers:

log
Iincident
Itransmitted

� �
¼ absorbance ¼ �x c l (2.1)

here Iincident is the intensity of light entering the medium and Itransmitted is the

intensity of light exiting the medium, x is a constant dependent on the medium

and microorganism, c is microorganism concentration, and l is the distance the
light travels through in the medium (i.e., light path).

In some cases, nonlinearity of OD response has been corrected using an

empirical function derived from specific experiments in which bacterial

suspensions with concentration levels outside the range of linearity are diluted

and absorbance is measured. The relationship found between initial absorbance

and absorbance after dilution is analyzed to derive a correction function for

nonlinear OD data (Dalgaard et al. 1994).

Another important drawback associated with measuring OD is its relatively

high detection limit, which is often above 6 log cfu/ml, meaning that a growth

model should be based on high initial inoculum levels. The impossibility of

differentiating between living and dead cells limits its application to growth

models.
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In spite of all these limitations, predictive models based on OD data are very

often reported in the scientific literature, probably because fewer experimental

resources are needed to assay the multiple environmental conditions needed for

building secondary models. Moreover, kinetic parameters such as growth rate

can be estimated only based on OD measures because this parameter expresses

a rate of change with respect to time. Several studies have successfully

modeled these parameters based on OD data for different microorganisms

and environmental conditions (Dalgaard et al. 1994; Begot et al. 1996;

Augustin et al. 1999). However, some studies have proved that models based

on OD data can underestimate maximum growth rate, recommending the use of

the detection time approach for better estimation of this parameter (Lindqvist

2006; Lianou and Koutsoumanis 2011). The detection time (DT) approach

consists of performing several decimal dilutions of the initial inoculum and

estimating the DT based on OD data. Then, DTs are used to fit the following

equation, which provides an estimation of maximum growth rate (Cuppers and

Smelt 1993; Lianou and Koutsoumanis 2011):

log Nið Þ ¼ k � mmaxDTi (2.2)

where Ni is the inoculum size corresponding to different decimal dilutions of

the initial inocula, mmax is the maximum growth rate, and k is a constant.
The use of calibration curves relating OD and bacterial concentration also

produces reliable estimates of kinetic parameters and is an alternative to using

OD directly. Calibration equations estimated from experimental data are used to

transform OD values to count data. Then, the estimated counts can be used

to estimate kinetic parameters (Dalgaard and Koutsoumanis 2001). Precautions

should be taken when environmental stresses are applied during bacterial

growth because they can affect OD measures (i.e., bacterial shape and size);

therefore, calibration curves should be done for each specific growth condition

(Valero et al. 2006).

The development of growth/non-growth models is mainly based on use of the

OD technique because some of the limitations of the OD technique are not given

for this type of study in which no growth rate is observed but only if growth takes

place. That condition is experimentally determined based on recording a signifi-

cant change of OD in the microorganism suspension that is related to growth

(Salter et al. 2000; Skandamis et al. 2007; Valero et al. 2009, 2010).

(c) Flow cytometry

Flow cytometry is a rapid technique based on labeling cells in suspension with

fluorochrome molecules and passing them, in a liquid stream, through a micro-

capillary equipped with an electronic detection apparatus. The characteristics

of light scattering, light excitation, and emission of fluorochrome from cells are

collected to provide information on physiological state, size, shape, and integ-

rity of the analyzed cells. Moreover, the technique can be used to enumerate

target microorganisms, showing a good correlation with colony-counting

methods (Sørensen and Jakobsen 1996; Endo et al. 2001; Holm et al. 2004).
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The combination of both applications, that is, cell enumeration capacity and

cell physiological characterization, makes this technique an excellent method

to study and model microbial population heterogeneity, which is particularly

relevant under stress conditions (Fernandes et al. 2011). In spite of its

promising application in predictive microbiology, few studies have been car-

ried out based on data obtained by flow cytometry (Sørensen and Jakobsen

1996; Ferrer et al. 2009). It is likely that further development of omic models,

based on a molecular level approach, and new technological advances in

cytometry will boost the application of flow cytometry in predictive microbi-

ology studies in future years.

(d) Microscopy and image analysis

This method offers some advantages when compared to plate counting

methods and enumeration methods based on optical density. One of the most

important advantages is that direct observation on food matrices or artificial

media enables obtaining a lower limit of quantification, improving accuracy

and the precision of results. In addition, based on the biochemical properties of

cells and the use of specific fluorochromes, this technique can provide infor-

mation on the physiological state of bacteria on the surface (alive/dead,

sterease activity, etc.) (Bredholt et al. 1999). More recently, microscopy has

been applied to investigate and model individual cell lag times based on

observation of systems containing isolated cells (Métris et al. 2005; Niven

et al. 2006; Stringer et al. 2011; Gougouli and Koutsoumanis 2012). In general,

these systems consist of a surface inoculated with the test microorganism,

which can be agar or a microscope slide placed within a tailor-made chamber

or a device enabling control of environmental conditions such as temperature

or atmosphere (Métris et al. 2005; Niven et al. 2006). A photographic camera is

usually coupled with the microscope to capture images of cellular division at

certain intervals of time. Moreover, specific software such as ImageJ

(Abramoff et al. 2004) should be applied to analyze images taken by the

camera, obtaining counts and estimating lag time.

Image analysis can be also applied to estimate kinetic parameters based on

radial growth of colonies of bacteria (Dykes 1999; Guillier et al. 2006). How-

ever, this methodology is most preferred to model kinetic parameters (i.e.,

growth rate and lag time) of molds, monitoring the radial growth of mycelium

(Rosso and Robinson 2001; Baert et al. 2007; Garcia et al. 2010). Predictive

model studies have involved different fungal species such as Botrytis cynerea,
Penicillium expansum, and Aspergillus carbonarius (Dantigny et al. 2007;

Judet-Correia et al. 2010). In specific cases, image analysis supported by

suitable software has been also used to evaluate mycelium growth (Judet-

Correia et al. 2010). Automation of this process via image-analyzing systems

would further facilitate the application of this method to generate more reliable

predictive models.

(e) Electrochemical methods: impedance and conductance.

This technique is based on the fact that bacteria during growth produce

positively and negatively charged chemical compounds that modify the imped-

ance of growth medium (Rasch 2004). The time at which a significant change
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of impedance in the growth medium is detected is the so-called detection time

(DT), which is inversely proportional to the logarithm of the initial concentra-

tion level of the microorganism (Jasson et al. 2010). Also, conductance and

capacitance of growth medium can be used to enumerate bacteria in culture

media and foods (Lanzanova et al. 1993; Noble 1999; Koutsoumanis and

Nychas 2000). Besides their application for microorganism enumerations,

impedance data can be directly used to derive kinetic parameters (McMeekin

et al. 1993a). Some examples of this have been successfully developed for

Salmonella enteritidis, acid lactic bacteria, and Yersinia enterocolitica, in
which kinetic parameters have been derived from fitting primary growth

models (e.g., Gompertz model) to conductance or impedance data and using

DT with a similar mathematical approach to that used in optical density

methods (Lanzanova et al. 1993; Lindberg and Borch 1994; Fehlhaber and

Krüger, 1998).
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Chapter 3

Predictive Models: Foundation, Types,

and Development

Abstract According to their structure, predictivemodels can be primary, secondary,

or tertiary. This classification mainly depends on the final purpose and type of

prediction generated. There has been a significant evolution in the past few years

toward better understanding of microbial behavior in foods. Therefore, models that

describe the biological process of microbial growth and inactivation have been

subsequently developed. Also, fitting methods for linear and nonlinear regression

togetherwith goodness-of-fit indexes give us useful information about how themodel

is able to explain the observed data. Finally, models cannot be applied if a validation

process is not previously accomplished, which typically consists of confirming the

predictions experimentally by using any quantitative method. In this chapter, a

comprehensive review of the most popular validation methods is provided.

Keywords Mathematical function • Mechanistic models • Dynamic conditions

• Regression • Polynomial models • Artificial Neural Networks • Fitting methods

• Goodness of fit • Validation

3.1 Introduction

It is a goal of food microbiologists to know in advance the behavior of micro-

organisms in foods under foreseeable conditions. To do so, an exhaustive control of

physicochemical factors that could influence microbial growth is needed (such as

temperature, pH, aw, salt), as well as a deep knowledge about the biological

characteristics of the target microorganism(s).

As stated in the preceding chapter, the premises behind the scientific basis of

predictive microbiology are that microbial responses in foods are in certain way

reproducible against several extrinsic and intrinsic environmental factors (Ross

et al. 2000). This behavior can be translated into diverse mathematical models

that estimate microbial growth/inactivation/toxin production/probability of growth,

etc. This emerging area was redefined recently as modeling of microbial responses

F. Pérez-Rodrı́guez and A. Valero, Predictive Microbiology in Foods,
SpringerBriefs in Food, Health, and Nutrition 5, DOI 10.1007/978-1-4614-5520-2_3,
# Fernando Pérez-Rodrı́guez and Antonio Valero 2013
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in foods. McKellar and Lu (2004) presented a detailed review of the predictive

models published so far.

With the aim of performing comparative studies, several authors suggested

different classifications of predictive models based on their final purpose, the type

of microorganism to be studied, and their impact on food spoilage or food safety.

Basically, predictive models are split up into three groups: survival/inactivation

models, boundary (growth/no growth) models, and growth models. Basing on their

development, models can be classified as follows:

(a) Primary models: aim to describe the kinetics of a process with as few parameters

as possible while being able to accurately define the growth and inactivation

phases. They are represented as the increase (or decrease) in population density

against time.

(b) Secondary models: describe the effect of environmental conditions (i.e., physi-

cochemical and biological factors) on the values of the parameters of a primary

model.

(c) Tertiary models: based on computer software programs that provide an inter-

face between the underlying mathematics and the user, allowing model inputs

to be entered and estimates to be observed through simplified graphical outputs.

Whiting and Buchanan (1994a) called the foregoing integrated software-based

models ‘tertiary models.’ They defined tertiary-level models as personal computer

software packages that use the pertinent information from primary- and secondary-

level models to generate desired graphs, predictions, and comparisons. Primary-level

models describe the change in microbial numbers over time, and secondary-level

models indicate how the features of primary models change with respect to one or

more environmental factors such as pH, temperature, and aw. Following is a descrip-
tion of themost relevant primary and secondarymodels aswell as their uses and scope.

3.2 Primary Models

As already described, primary models intend estimating kinetic parameters (e.g.,

maximum growth rate, lag phase, inactivation rate) as a function of treatment time.

For model application, this time can assume, for instance, a storage phase, process-

ing, and/or thermal treatment.

The application of primary models to a set of microbiological data proceeds as

follows. In a first step, a mathematical model is assumed to explain the data, that is,

how microbial counts change over time. In a second step, such a model is fitted to

microbiological data by means of a regression (linear or nonlinear). As a conse-

quence of the fitting process, a number of kinetic parameters embedded in the

model is provided, such as the rate of growth/inactivation or lag time (in growth

processes) or ‘shoulder’/‘tail’ (in inactivation processes). The dataset used to fit the

model is normally obtained under specific intrinsic and extrinsic factors. For this

reason, the kinetic parameters provided after fitting solely apply for the specific

intrinsic and extrinsic factors characterizing the dataset.
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As represented in Fig. 3.1, primary models aim to describe the four phases of a

typical microbial population. Lag phase or the adaptation period is defined as an

adjustment period during which bacterial cells modify themselves to take advan-

tage of the new environment and initiate exponential growth (Buchanan and

Klawitter 1991). Then, microorganisms grow exponentially (exponential phase)

until they reach a ‘plateau’ or maximum population level (stationary phase). When

concentration of nutrients or physiological state of cells is decreasing, the microbial

population starts to decline (decline phase). There is here a distinction between

‘survival’ and ‘inactivation’ models. In brief, survival is understood as a process or

environmental condition not intentionally designed to kill the microbial population

but also to not allow growth (e.g., bacteriostatic), whereas inactivation is a process

implemented to destroy a microbial population in a specific food by certain log

numbers.

Several primary models have been published. Next are described the most

important models used for growth and survival/inactivation.

3.2.1 Growth Models

3.2.1.1 Sigmoid Functions

The equations introduced by Gibson et al. (1987), such as the modified logistic

(Eq. (3.1)) and the modified Gompertz (Eq. (3.2)) have been those most popular to

fit microbial growth data because these functions consist of three phases, similar to

the microbial growth curve:

log xðtÞ ¼ Aþ C= 1þ eð�Bðt�MÞÞ
� �h i

(3.1)

log xðtÞ ¼ Aþ C exp �exp �B t�Mð Þ½ �f g (3.2)

where x(t) is the number of cells at time t, A is the lower asymptotic value as

t decreases to zero, C is the difference between the upper and lower asymptote, M
is the time at which the absolute growth rate is maximum, andB is the relative growth

rate atM.

Time

lag exponential stationary decline
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gc

fu

Fig. 3.1 Representation

of the four-phase kinetics

followed by a generic

microbial population in

a medium
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The parameters of the modified Gompertz equation (A, C, B, andM) can be used

to characterize bacterial growth as follows:

lag ¼ M � 1

B
þ logN0 � Að Þ

BC
e

� �
" #

(3.3)

Specific growth rate ¼ BC

e
� BC

2:18
(3.4)

To simplify the fitting process, reparameterized versions of the Gompertz

equation have been proposed (Zwietering et al. 1990; Willocx et al. 1993):

log x ¼ Aþ C exp �exp 2:71
Rg

C

� �
tlag � t
� �þ 1

� 	
 �
(3.5)

where A ¼ log x0 (log cfu/ml), x0 is the initial cell number, C the asymptotic

increase in population density (log cfu/ml), Rg the growth rate (log cfu/h), and

tlag is the lag time duration (h).

Although it is used extensively, some authors (Whiting and Cygnarowicz-

Provost 1992; Baranyi 1992; Dalgaard et al. 1994; Membré et al. 1999) reported

that the Gompertz equation systematically overestimated growth rate compared

with the usual definition of the maximum growth rate. Nevertheless, this model was

for a long time that most widely used to fit bacterial curves.

3.2.1.2 Mechanistic Functions

Baranyi et al. (1993, 1995) and Baranyi and Roberts (1994) introduced a mecha-

nistic model for bacterial growth (Eq. (3.6)). In this model, it is assumed that during

lag phase bacteria need to synthesize an unknown substrate q critical for growth.

Once cells have adjusted to the environment, they grow exponentially until limited

by restrictions dictated by the growth medium.

dx

dt
¼ qðtÞ

qðtÞ þ 1
� mmax � 1� xðtÞ

xmax

� �m� �
xðtÞ (3.6)

where x is the number of cells at time t, xmax the maximum cell density, and q(t) is
the concentration of limiting substrate, which changes with time (Eq. (3.7)). The

parameter m characterizes the curvature before the stationary phase. When m ¼ 1,

the function reduces to a logistic curve, a simplification of the model that is often

assumed.

dq

dt
¼ mmax � qðtÞ (3.7)
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The initial value of q (q0) is a measure of the initial physiological state of the

cells. A more stable transformation of q0 may be defined as

h0 ¼ ln 1þ 1

q0

� �
¼ mmaxl (3.8)

Thus, the final model has four parameters: x0, the initial cell number; h0; xmax;

and mmax. The parameter h0 describes an interpretation of the lag first formalized by

Robinson et al. (1998). Using the terminology of these authors, h0 may be regarded

as the ‘work to be done’ by the bacterial cells to adapt to their new environment

before commencing exponential growth at the rate mmax characteristic of the

organism and the environment. The duration of the lag, however, also depends on

the rate at which this work is done, which is often assumed to be mmax.

3.2.1.3 Logistic and Linear Functions

Rosso et al. (1996) demonstrated that the logistic model using delay and rupture

was a model that, compared to those available at the time, provided very good

accuracy using only four descriptive parameters: lag time (tlag), growth rate (mmax),

initial population size (N0), and the maximum population density (Nmax).

lnðNÞ ¼ lnðN0Þ; t � lag

lnðNÞ ¼ lnðNmaxÞ � ln 1þ Nmax

N0

� 1

� �
expð�mmaxðtlag� lagÞÞ

� 	
; t>lag

8><
>:

(3.9)

Buchanan et al. (1997) proposed a three-phase linear model that can be described

by three phases: lag phase, exponential growth phase, and stationary phase, as

follows.

Lag phase:

For

t � tlag;Nt ¼ N0 (3.10)

Exponential growth phase:

For

tlag < t< tmax;Nt ¼ N0 þ m t� tlag
� �

(3.11)

Stationary phase:

For

t> tmax;Nt ¼ Nmax (3.12)
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whereNt is the log of the population density at time t (log cfu/ml);N0 is the log of the

initial population density (log cfu/ml); Nmax is the log of the maximum population

density supported by the environment (log cfu/ml); t is the elapsed time; tlag is the
time when the lag time ends (h); and m is the maximum growth rate (log cfu/ml/h).

In this model, the growth rate is always at maximum between the end of the lag

phase and the start of the stationary phase while m is set to zero during both the lag

and stationary phases. The lag is divided into two periods: a period for adaptation to

the new environment (ta) and the time for generation of energy to produce

biological components needed for cell replication (tm).

3.2.1.4 Compartmental Models

TheMcKellar model assumes that bacterial population exists in two ‘compartments’

or states: growing or nongrowing. All growth was assumed to originate from a small

fraction of the total population of cells that are present in the growing compartment

at t ¼ 0. Subsequent growth is based on the following logistic equation:

dG

dt
¼ G � m � 1� G

Nmax

� �
(3.13)

where G is the number of growing cells in the growing compartment. The

majority of cells were considered not to contribute to growth, and remained in

the nongrowing compartment, but were included in the total population.

Although this is an empirical model, it does account for the observation that

the first cells to begin growth dominate growth in liquid culture, and that any

cells that subsequently adapt to growth are of minimal importance (McKellar

et al. 1997). The model derives from the theory that microbial populations are

heterogeneous rather than homogeneous, existing as two populations of cells that

behave differently; the sum of the two populations effectively describes the

transition from lag to exponential phase, and defines a new parameter G0,

the initial population capable of growing. Reparameterization of the model led

to the finding that a relationship existed between mmax and l as described in the

Baranyi model. In fact, Baranyi and Pin (2001) stated that the initial physiologi-

cal state of the whole population could reside in a small subpopulation. Thus, the

McKellar model constitutes a simplified version of the Baranyi model and has

the same parameters.

The concept of heterogeneity in cell populations was extended further to the

development of a combined discrete–continuous simulation model for microbial

growth (McKellar and Knight 2000). At the start of a growth simulation, all the

cells were assigned to the nongrowing compartment. A distribution of individual cell

lag times was used to generate a series of discrete events in which each cell was

transferred from the nongrowing to the growing compartment at a time corres-

ponding to the lag time for that cell. Once in the growing compartment, cells start
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growing immediately, according to (Eq. (3.13)). The combination of the discrete

step with the continuous growth function accurately described the transition from

lag to exponential phase.

At the present time it is not possible to select one growth model as the most

appropriate representation of bacterial growth. If simple is better, then the three-

phase model is probably sufficient to represent fundamental growth parameters

accurately (Garthright 1997). The development of more complex models (and

subsequently more mechanistic models) will depend on an improved understanding

of cell behavior at the physiological level.

3.2.2 Inactivation Models

One of the quantitative microbiology tools for microbial inactivation is a freeware

add-in for Microsoft Excel, the so-called GInaFiT (Geeraerd and Van Impe Inacti-

vation Model Fitting Tool), which includes a large variety of primary inactivation

models by the using of linear and nonlinear regression approaches. The application,

described by Geeraerd et al. (2005), comprises nine model types: (1) classical log-

linear curves, (2) curves displaying a so-called shoulder before a log-linear decrease

is apparent, (3) curves displaying a so-called tail after a log-linear decrease, (4)

survival curves displaying both shoulder and tailing behavior, (5) concave curves,

(6) convex curves, (7) convex/concave curves followed by tailing, (8) biphasic

inactivation kinetics, and (9) biphasic inactivation kinetics preceded by a shoulder.

The models most used for describing the inactivation of pathogens in foods are

presented in Fig. 3.2, and a brief description of the various models is provided next.
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Fig. 3.2 Generic models used for describing the inactivation of pathogens in foods
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3.2.2.1 Bigelow Model (Linear Model)

This model was established to quantify microbial inactivation in the canning

industry, assuming first-order kinetics. Apparently, cell death occurs as a result of

inactivation of a critical enzyme, and it is commonly stated that this inactivation

follows first-order kinetics (although there might be some exceptions to this rule).

The model has the following form:

ln N ¼ ln N0 � kt (3.14)

with N as the number of microorganisms, N0 as the initial number of

microorganisms, and k as the first-order rate constant (seg�1). This equation is

then rearranged into

log
N

N0

¼ log SðtÞ ¼ � t

D
(3.15)

where D is the decimal reduction time (D ¼ 2.303/k, units in minutes or seconds),

and S(t) is the momentary survival ratio.

A drawback of this model is that it is mainly focused on thermal treatments

rather than on novel preservation techniques.

When log D-values are plotted against temperature, the reciprocal of the slope is

equal to the z-value, which is the temperature increase needed to reduce D by a

factor 10, so as to increase the destruction rate by a factor of 10.

D ¼ Dref 10

Tref�T

z

� �
(3.16)

z ¼ Tref � T

log D� log Dref

(3.17)

where Dref is the D-value at the reference temperature, Tref (the usual Tref is

121.1�C). D-values could be influenced by the type of organism (strain), treatment

temperature, physiological state of cells, pH, fat, and aw content.

The rate constant can also be related to the temperature by the Arrhenius

equation:

k ¼ k0 exp
� Ea

RT

� �
(3.18)

where Ea is the activation energy, k0 is the collision factor (regression coefficient),

and R the universal gas constant, and T is the temperature in Kelvin degrees.

The Arrhenius model has been used for describing the kinetic behavior of

Escherichia coli as a function of temperature, pH, and aw (Cerf et al. 1996).
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One parameter, named the sterilizing value (F), is used to designate the thermal

death time, or the time to kill all pathogenic organisms at 121.1�C.
The F value can be defined as the time taken to reduce initial microbial numbers,

at a specified temperature, by a particular value, normally a multiple of the D-value

for the target organism. The process goal as described by the sterilizing value is

given by the expression:

F ¼ Dðlog N0 � log NÞ (3.19)

For a nonacid food the minimum process must assure safety by destroying

any contaminating Clostridium botulinum. As suggested by Stumbo et al. (1975),

this is considered to accomplish the 12D process, which is a 10�12 reduction of the

N0 value.

Because of its broad applicability, the log-linear model is most appropriate to

obtain a first impression on the performance of an inactivation process. This

characteristic is especially useful for the food industry where elaborate knowledge

and the necessary tools for complicated models and generic parameter values are

not available (van Asselt and Zwietering 2006).

3.2.2.2 Weibull Model

The Weibull model has been used as a primary thermal inactivation model for

vegetative bacteria (van Boekel 2002). This model assumes nonlinearity of semi-

logarithmic survivor curves in the inactivation process through considering

biological variation with respect to thermal inactivation and is basically a statistical

model of distribution of inactivation times. The model is built by two parameters,

the scale parameter a (time) and the dimensionless shape parameter b. The loga-

rithm of the scale parameter a depends linearly on temperature; however, this

relationship for parameter b is not so well established. The shape parameter

accounts for upward concavity of a survival curve (b < 1), a linear survival

curve (b ¼ 1), and downward concavity (b > 1). Therefore, if b ¼ 1 no biological

variation is assumed (each cell is equally susceptible to be destroyed).

In terms of a survival curve, the cumulative function is

log SðtÞ ¼ � 1

2:303

t

a

� �b
(3.20)

The Weibull distribution function (which is close related to the gamma, extreme

value, and log-normal distributions) is widely used in reliability engineering to

describe time to failure in electronic and mechanical systems and is also appropriate

for the analysis of survival data, that is, time to failure after the application of stress.

Although the Weibull model is of an empirical nature, a link can be made with

physiological effects. b < 1 indicates that the remaining cells have the ability to
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adapt to the applied stress, whereas b > 1 indicates that the remaining cells become

increasingly damaged.

This variation in parameters allows the Weibull model to be more flexible than

the linear model on the basis of D-values. For instance, cell behavior may be quite

different when cells have been adapted to certain stress conditions in foods or have

been grown in ‘ideal’ laboratory conditions.

3.2.2.3 Shoulder/Tail Models

Shoulder/tail models are based upon the existence of a shoulder or lag period

(before inactivation) and a tail region (after the inactivation treatment). The first

type of deviation is produced when the curve is flat; that is, no change in the number

of microorganisms at the beginning of the inactivation treatment. The second type

is the tailing of survivor curves, which occurs at the end of the inactivation

treatment and is characterized by the culture showing more resistance than would

be expected from the previous logarithmic order of destruction.

Stringer et al. (2000) has summarized possible explanations for this deviation

from linearity such as variability in heating procedure, use of mixed cultures, and

clumping or protective effect of the food matrix or dead cells.

A linear approach was followed by Whiting (1993) for modeling inactivation of

Listeria monocytogenes and Salmonella as a function of temperature and in pres-

ence of NaCl, nitrites, and lactic acid.

log N ¼
log N0 when 0< t< tL

log N0 � 1

D

� �
ðt� tLÞ when t> tL

8><
>: (3.21)

where N is the number of microorganisms surviving at time t, N0 is the initial

microbial load, tL is the time before inactivation, and D is the D-value.

The model was successfully applied to describe nonthermal inactivation of

L. monocytogenes as a function of additional preservatives and reduced oxygen

(Buchanan and Golden 1995).

Regarding the shoulder region, model fitting is more difficult because a high

variability is associated with this parameter. Thus, survival is often described

through the time required for a 4-log reduction, T4D (Whiting 1993). This value

is calculated as the sum of tL þ 4D.
Nonlinear approaches normally represent a shoulder/tailing function such as

log
N

N0

¼ � tp

D
(3.22)

where p is the power that takes a concave curve when is lower than 1 and a convex

(shoulder curve) when is higher than 1.
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Other modeling approaches use the logistic functions, in which their inactivation

forms are called the Fermi equation. For the quantification of sigmoid decay curves,

the following expression is used:

log
N

N0

¼ log
1þ exp�btL

1þ expbðt�tLÞ

� 	
(3.23)

where N is the number of microorganisms surviving at time t, N0 is the initial

microbial load, b is the maximum specific decay rate, and tL is the time before

inactivation.

Geeraerd et al. (2000) developed a shoulder/tail inactivation model considering

the physiological state of cells and the residual population density (tail region):

N ¼ N
0
� Nres

� �
expð�kmaxtÞ

expð�kmaxtLÞ
1þ expðð�kmaxtLÞ � 1Þ expð�kmaxtÞ

þ Nres

� 	
(3.24)

where N is the number of microorganisms surviving at time t, N0 is the initial

microbial load, kmax is the maximum specific decay rate, tL is the time before

inactivation, and Nres is the residual population density.

Other inactivation models relied upon mechanistic processes in which

predictions can be achieved outside the range of the obtained experimental data.

These models have been mainly developed for spore-forming bacteria and for high-

temperature treatments (UHT, HTST sterilization). However, one drawback of

more complex and mechanistic models lies in the difficulty in being able to

successfully develop them, and the primary drawback is the absence of generic

parameters.

3.3 Secondary Models

These models predict the changes in the parameters of primary models such as

bacterial growth rate and lag time as a function of the intrinsic and extrinsic factors.

Mathematical expressions (secondary models) can be distinguished as two

different approaches:

1. The effects of the environmental factors are described simultaneously through a

polynomial function; this type of model has probably been the most extensively

used within predictive microbiology

2. The environmental factors are individually modeled, and a general model

describes the combined effects of the factors; this approach is notably applied

in the development of the increasingly popular square root and cardinal

parameter-type models
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3.3.1 Polynomial Models

Polynomial models (so-called response surface models) are empirical secondary

models in which the high degree of fitting and ease of elaboration are their most

significant advantages. Generally, second-order polynomial equations are used,

including three terms: first order, second order (quadratic), and interaction terms.

Several studies have described the relationship between certain environmental

factors (temperature, pH, aw, NaCl, NaNO2, etc.) by means of these types of

equations (Lebert et al. 2000; Zurera et al. 2004):

y ¼ b0 þ
Xk
j¼1

bjXj þ
Xk
j¼1

bjjX
2
j þ

Xk
j 6¼1

bjlXj Xl þ e (3.25)

where y is the dependent variable (growth rate, lag phase etc.),b0,bj,bjj, ybjl are the
estimated regression coefficients Xj y Xl are the independent variables (environ-

mental factors), and e is the error term.

Polynomial models are characterized by a high number of parameters, which

increase exponentially when increasing the number of factors included in the model.

In turn, their ease of implementation and handling allow them to be developed in

many computing software and model applications. Themain pitfalls of these models

are that they are too flexible (i.e., the excessive number of parameters can give

wrong estimations because error can be also modeled) and the absence of terms that

can explain biological behavior.

Response surface models can be graphically translated, as described in Fig. 3.3,

where the relationship between ln mmax and pH and NaCl levels can be seen.

Food operators can easily implement or even optimize formulations of novel

foods to achieve the necessary combinations of factors that just inhibit microbial

development.
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Fig. 3.3 Response surface representing the relationship between the ln of the maximum growth

rate (mmax) and pH and NaCl levels
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3.3.2 Square Root-Type Models

These secondary models were initially proposed by Ratkowsky et al. (1982), who

observed a linear relationship between the square root of the maximum growth rate

and temperature (at suboptimal conditions for growth):

ffiffiffiffiffiffiffiffiffi
mmax

p ¼ b � ðT � TminÞ (3.26)

where Tmin is the notional minimum temperature below which maximum growth

rate is equal to 0 (it ranges between 2�C and 3�C below the observed minimum

temperature). Tmin is generally obtained through a linear regression of the square

root of maximum growth rate and temperature.

Later, this model was extended to cover the whole temperature growth range

(Ratkowsky et al. 1983):

ffiffiffiffiffiffiffiffiffi
mmax

p ¼ b � ðT � TminÞ 1� exp ½cðT � TmaxÞ�f g (3.27)

Other adaptations include the effect of alternative environmental factors, such as

pH, aw, or lactic acid (Ross et al. 2003).

For modeling bacterial lag time, alternative expressions are suggested:

ffiffiffiffiffiffi
1

tlag

s
¼ b � ðT � TminÞ (3.28)

3.3.3 The Gamma Concept and the Cardinal
Parameter Model (CPM)

Zwietering et al. (1992) proposed a model called the gamma model describing the

growth rate relative to its maximum value at optimal conditions for growth:

mmax ¼ mopt gðTÞ g pHð Þ g awÞð (3.29)

where mopt is the growth rate at optimum conditions, and g(T), g(pH), and g(aw) are
the relative effects of temperature, pH, and aw, respectively. The concept underly-
ing this model (the gamma concept) is based on the following assumptions: (1) the

effect of any factor on the growth rate can be described, as a fraction of mopt, using a
function (g) normalized between 0 (no growth) and 1 (optimum condition for

growth); and (2) the environmental factors act independently on the bacterial

growth rate. Consequently, the combined effects of the environmental factors can

be obtained by multiplying the separate effects of each factor (Eq. (3.28)). Ross and
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Dalgaard (2004) considered that although this apparently holds true for growth

rates, environmental factors do interact synergistically to govern the biokinetic

ranges for each environmental factor.

At optimal conditions for growth, all g terms are equal to 1 and therefore mmax is

equal to mopt. The g terms proposed by Zwietering et al. (1992) for the normalized

effects of temperature, pH, and water activity are given in Eqs. (3.30), (3.31), and

(3.32).

gðTÞ ¼ T � Tmin

Topt � Tmin

� �2
(3.30)

g pHð Þ ¼ pH� pHmin

pHopt � pHmin

(3.31)

g awð Þ ¼ aw � awmin

1� awmin

(3.32)

The g-type terms for pH and lactic acid effects on growth rate were also included

in square root-type models by Presser et al. (1997) and Ross et al. (2003).

Introduced by Rosso et al. (1995), the cardinal parameter models (CPMs) were

also developed according to the gamma concept. The relative effects of tempera-

ture, pH, and aw on bacterial growth rate are described by a general model called

CPMn:

CMnðXÞ¼

0; X�Xmin

X�Xmaxð Þ X�Xminð Þ
Xopt�Xmin

� �n�1
Xopt�Xmin

� �
X�Xopt

� �� Xopt�Xmax

� �
n�1ð ÞXoptþXmin�nX

� �
 �;Xmin<X<Xmax

0; X�Xmax

8>>>><
>>>>:

(3.33)

where X is temperature, pH, or aw; Xmin and Xmax are, respectively, the values of X
below and above which no growth occurs; Xopt is the value of X at which bacterial

growth is optimum; and n is a shape parameter. As for the gamma model of

Zwietering et al. (1992), CMn(Xopt) is equal to 1, and CMn(Xmin) and CMn(Xmax)

are equal to 0.

For the effects of temperature and pH, n is set to 2 and 1, respectively (Augustin
et al. 2000a, b; Le Marc et al. 2002; Pouillot et al. 2003).

For the effects of aw, n is set to 2 (Augustin and Carlier 2000a, b). The combined

effects of the environmental factors are also obtained by multiplying the relative

effects of each factor. Thus, the Cardinal Parameter Model for the effects of

temperature, pH, and aw on mmax can be written as:

m
max

¼ mopt CM
2
ðTÞ CM

1
pHð Þ CM

2
aw
� �

xðT; pH; awÞ (3.34)
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or alternatively:

mmax ¼ mopt CM
2
ðTÞ CM

1
pHð Þ CM

1
aw
� �

xðT; pH; awÞ (3.35)

This model includes an additional termxðT; pH; awÞto account for the interactions
between the environmental factors.

The advantages of the CPMs lie in the lack of structural correlation between

parameters and the biological significance of all parameters (Rosso et al. 1995).

Several attempts have been made to include in CPMs the effects of organic acids

(Le Marc et al. 2002) or other inhibitory substances (Augustin et al. 2000).

3.3.4 Artificial Neural Networks (ANNs)

Artificial neural networks (ANN) are an artificial intelligence tool that has become

increasingly popular in different scientific areas including those concerned with

biological systems. They have appeared as an alternative to nonlinear models,

including a wide application in several scientific areas. The origins in the predictive

microbiology field have arisen thanks in part to their flexibility and the generation

of models with a high degree of accuracy to experimental data, in comparison with

other regression techniques (Basheer and Hajmeer 2000). Indeed, ANN models

have been used for describing growth, inactivation, and probability of growth of

microorganisms in different media (Hajmeer et al. 1997). ANN are inspired by the

functioning of neurons in human brain. ANN are empirical models able to explain

dependency between explanatory variables and response variables irrespective of

both the nonlinearity level between variables and independence and normality

assumptions, which are important constraints for other regression methods such

as LS. The ANN derives arbitrary nonlinear multiparametric discriminant functions

directly from experimental data (Almeida 2002).

ANNs constitute empirical approaches able to model (independently of the

nonlinearity degree) the existing relationship between a dependent variable (or

response variable) and a series of independent factors. It is noted that ANN are

not assuming a previous hypothesis of normality and independency between inde-

pendent factors. One advantage lies in obtaining various multi-equation models

with different outputs starting with the same neural network model, thus resulting in

a smaller estimation error. In turn, these models present more complexity than

linear regression techniques and minor interpretation. Additionally, a lack of

mechanistic basis to describe microbial behavior is known.

These models have been described in several studies (Basheer and Hajmeer

2000). Their application in predictive microbiology is found in some related papers

such as those by Hajmeer et al. (1997), Geeraerd et al. (1998), Hervás et al. (2001),

or Garcı́a-Gimeno et al. (2002).
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An ANN model is defined as a computational statistical model, with a network-

interconnected structure of single components, named neurons or nodes, which are

able to make parallel calculations.

The main features characterizing a neural network are the topology, learning

mechanism, association between input and output information, and presentation of

the generated information.

The topology or architecture of a neural network consists of the organization

of neurons inside the network forming different layers or aggregations (Fig. 3.4).

In this sense, the main parameters of a given network are as follows:

(a) Number of levels and/or layers

(b) Number of neurons per layer

(c) Connectivity degree between nodes (defined as the number of weights or

parameters)

(d) Function types between the different layers, which can be lineal, sigmoid, or

hyperbolic.

Distribution of neurons inside the network is achieved by means of forming

different layers with a specific number of neurons each. As a function of the neuron

position inside the network, three different layers can be differentiated:

(a) Input layer: formed by the independent factors of the model (temperature, pH,

aw, etc.).
(b) Hidden layer: internal layers without direct contact with the external side of the

network. Neurons of hidden layers can be interconnected in different ways that

conform (together with their number) with the network topology.

(c) Output layer: formed by the dependent variables (mmax, lag, etc.).

In Fig. 3.4 are seen two different forms of neural networks, based on their

connectivity. In feed-forward networks, nodes are numbered in such a way that

those with a higher number are never connected with those with lower numbers.

In the second type, the recurrent network, this numeration method is not followed.

The learning process is defined as a modification in the weights of the network

in response to input information, which is equivalent to the adjustment made in

the traditional regression models. The learning rule or algorithm most commonly

used is the error retro propagation algorithm: it consists of a descendent gradient

Fig. 3.4 (a) Example of a

feed-forward network.

(b) Example of a recurrent

network
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method to modify the weights of the network connections with the aim of

minimizing the error obtained between the desired output values and those obtained

by the ANN model.

The type of association between input and output information is represented by a

mathematical function. The nomenclature used for presenting this information is

‘number of input nodes’:‘number of hidden nodes’ f: ‘number of output nodes’ t,

where f is the function type (sigmoid, linear, or hyperbolic) toward the nodes of the

hidden layer and t represents the transfer function type toward the nodes of the

output layer.

Among the different ANN architectures, one of the most important is the multi-

layer perceptron (MLP), defined as a feed-forward ANN model that maps sets of

input data onto a set of appropriate output. An MLP consists of multiple layers

of nodes in a directed graph, with each layer fully connected to the next one.

As an alternative, different ANN models have been developed, based on radial

basis functions, or RBF (Lee and Hou 2002), or general network regression models

(Schepers et al. 2000). Product-unit neural networks models (PUNN) are ANN

models in which the computing function between nodes located in the hidden layer

is a multiplicative type: this allows implementation of higher-degree polynomial

equations, as shown by Valero et al. (2007).

The development of an ANNmodel implies a previous training of the network to

optimize the number of nodes in relationship to the variables included in the model.

The use of evolutionary algorithms (EA) reduces the probability that the searching

process of the solution does not reach the global optimum. EAs are based on a local

stochastic searching process, which allows finding a solution in complex matrices.

The general evolutionary process is based on the use of selection, replication,

and mutation operators (parametric and structural). Evolution of the network

topology corresponds to a local search for the structure of sigmoid and product-

base functions that display the best fit to the training data points. Detailed informa-

tion about the structure of EA is described in Hervás-Martı́nez et al. (2006).

Application of ANNs could be a sound technique to be applied in predictive

microbiology (Jeyamkondan et al. 2001). The higher accuracy and handling of

complex datasets allow them to be useful when several variables have to be

described. However, the ‘black-box’ limitations, described in other related studies

(Geeraerd et al. 2004), and the lack of interpretability still constitute a drawback for

many food microbiologists for efficient application.

Recently, fuzzy computational methods have been created as an alternative to

traditional regression models. In this case, observations do not hold a distribution

assumption and one cannot assign all the uncertainty of the model to the ran-

domness aspect of variables. ANN and fuzzy intelligent computational methods

offer real advantages over conventional modeling, involving the ability to handle

large amounts of noisy data from nonlinear and dynamic systems, especially when

the underlying physical relationships are not fully understood. Nevertheless, imple-

mentation of these combined modeling techniques often requires expert knowledge

and complex datasets.
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3.3.5 Secondary Inactivation Models

Although the effect of some environmental characteristics of heating treatments,

such as pH or aw content, upon the heat resistance of bacteria has been recognized

for a number of decades, very few attempts were made to develop secondary

models to quantify these effects.

Some complete quadratic models have been still recently developed to describe

the heat resistance of spores (Juneja et al. 1995): such models are overly

parameterized. Fernández et al. (1996) studied combined effects of temperature

and pH on the heat resistance of Bacillus stearothermophilus and Clostridium
sporogenes. They proposed two alternative models: a complete quadratic equation

log k ¼ a0 þ a1T þ a2pHþ a3TpHþ a4T
2 þ a5pH

2 (3.36)

and a simple linear equation

log k ¼ C0 þ C1T þ C2pH (3.37)

Davey (1993) added, to the logarithmic shape of the Arrhenius equation, a pH

and a squared pH term to describe the combined effects of temperature and pH on

the destruction rate of C. botulinum from data from the literature. They also

obtained the following reduced polynomial equation:

Lnk ¼ C0 þ C1

T
þ C2pHþ C3pH

2 (3.38)

where T is the absolute temperature. With respect to a complete quadratic model

(Eq. (3.37)), the Davey model presents the advantage of being more parsimonious

(four parameters instead of six) for a satisfactory degree of goodness of fit.

However, as in the case of any polynomial model, coefficients remain without

any biological meaning.

Evidence for an interacting effect between temperature and pH are referred in

the study of Fernández et al. (1996) for C. sporogenes. The model, subsequently

developed by Mafart and Leguérinel (1998), considers an additive effect on log

scale as follows:

log D ¼ log D	 � T � T	

zT
� ðpH � pH	Þ2

z
pH

2
(3.39)

where T* is the reference temperature, pH* is the pH of the maximum heat

resistance (7.0 for spores), and zT is the commonly used thermal z-value and zpH
is the distance from pH to pH*, which leads to a tenfold reduction of the decimal

reduction time, and D* is the D-value at T* and pH*.
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The aw was taken into account for the first time by Reichart (1994) who derived a

semi-empirical model for the death rate of E. coli. A five parameter model was

proposed by Cerf et al. (1996) including an extension of the Davey’s model with the

aw term:

Lnkmax ¼ C0 þ C1

T
þ C2pHþ C3pH

2 þ C4aw
2 (3.40)

where C0, C1, C2, C3, and C4 are empirical coefficients without biological

significance.

Leguérinel and Mafart (1998) modified the Bigelow model to include an exten-

sion with the aw term. The following relationship emerged:

log D ¼ log D	 � T � T	

z
T

� ðpH � pH	Þ2
zpH

2
� aw� 1

Zaw
(3.41)

where zaw is the distance of aw from 1, which leads to a tenfold increase of the

D-value.

Published models for other vegetative microorganisms are available, such as the

study of Blackburn et al. (1997), who developed a secondary inactivation model

for Salmonella enteritidis and E. coliO157:H7. Alternative secondary models for L.
monocytogenes, taking into account other factors such as type of organic acid and

type of solute to reduce aw values, were subsequently developed (Miller et al. 2009).

3.4 Predictive Modeling at Dynamic Conditions

In the previous chapters, an overall description of the use of predictive models was

provided. Some potential applications were described such as prediction of food

safety and shelf life; or the establishment of critical control points in a HACCP

system.

However, in the origins of predictive microbiology, scientific studies were

biased to the development of predictive models at static conditions. The use of

sigmoid functions provided a good description of microbial growth under

nonvarying environmental conditions. It is worthy to say that, in a real food process,

many factors are influencing microbial behavior and they do not maintain static

values along the food chain. Normally, the variation in these factors is normally

considered in the primary models and further included into the development of

secondary models.

To take into account the real food conditions, models explaining microbial

dynamics are needed. Indeed, when extrapolating predictions from predictive

models made on static conditions to more realistic dynamic conditions, predictions

may fail to describe accurately microbial evolution.

3.4 Predictive Modeling at Dynamic Conditions 43



There are different factors that can be added as building blocks into an elemen-

tary dynamic model, namely, fluctuating environmental conditions, variability in

the physiological state of cells, interactions, and production of metabolites affecting

microbial growth.

These factors can be incorporated into a model equation to obtain accurate

predictions within the food industry. However, mathematical complexity should

be embedded into user-friendly tools to improve their industrial applicability.

The elemental equation that describes a dynamic model can be expressed as

follows:

dNiðtÞ
dt

¼ mi � NiðtÞ; NjðtÞ; factðtÞ; chemðtÞ; physðtÞ � NiðtÞ (3.42)

where Ni(t) represents the cell density of microbial species, mi (h
�1) is the specific

rate resulting from the interactions within (Ni) and between (Nj) microbial species,

physicochemical environmental conditions (fact) physiological state of cells

(phys), and production of metabolites (chem). Multiplication of the specific

growth/inactivation rates at fluctuating conditions are time dependent. Total

growth/inactivation will be obtained at the final time of the dynamic profile if

mi > 0 or mi < 0, respectively. To describe the time-dependent evolution of each

factor included in the model, additional differential equations must be constructed

for each of them.

There are several dynamic models in predictive microbiology (Baranyi et al.

1993; Hills and Mackey 1995; McKellar 2001). One of the most commonly used is

the Baranyi and Roberts model, as previously shown in Eqs. (3.6, 3.7, 3.8). This

model can be adapted to be used for predicting dynamic growth and inactivation in

specific food matrices, as shown in Pin et al. (2011) or Psomas et al. (2011).

As already mentioned, environmental conditions in food products are time

dependent. In these cases, model predictions can be generated by combining a

dynamic primary model with a secondary model relating the primary parameters

(e.g., mmax, lag) with environmental conditions. The final equation will assume that

the specific rates will change according to the fluctuation of the environmental

factors.

The theory of the cumulative lag was suggested by Koutsoumanis (2001) to

model microbial growth at dynamic conditions: this was based on a theoretical

expression of lag time, being the ratio between the amount of work (Wn) that a cell

needs to do to adapt to its new environment and the rate (R) at which it is able to do
that work:

tlag ¼ Wn=R (3.43)

Thework needed (Wn) can be any biosynthetic or homeostatic process that the cell

needs to do after its transition from environment E1 to environment E2. If one takes

the time of transition from E1 to E2 as time zero, the ‘work accomplished’ by the cell

accumulates with time, at a rate that depends on the storage temperature. The lag time

can be calculated as the time required for the ‘work accomplished’ to reachWn.
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Consequently, the lag time at fluctuating conditions can be calculated as follows:

ðtlag

0

dW ¼ Wn (3.44)

ðtlag

0

R TðtÞ½ �dt ¼ Wn (3.45)

ðtlag

0

1

L TðtÞ½ � dt ¼ 1 (3.46)

ðtlag

0

TðtÞ � Tmin½ �2dt ¼ 1

b2
(3.47)

where t is the time, R is the rate of ‘work accomplished’ for an assumed constant

temperature time interval dt, L is the lag time corresponding to the temperature of

this interval, tlag is the total lag time, T is the temperature, and Tmin and b are the

square-root model parameters of lag time (see (Eq. 3.28)).

Other straight forward approaches are based on the use of the term time-

temperature-equivalent (TTE), which is linked to the time, temperature, and type

of microorganism. This approach also considers as starting point the square-root

secondary model (Rosset et al. 2004):

TTE ¼
Xn
i¼1

ti � ðTi � TminÞ2 (3.48)

where ti is the specific time duration between the step i and i þ 1; Ti is the

temperature (�C) assumed constant between i and i þ 1, and Tmin is the theoretical

minimum temperature required for growth described by the square root model.

According to a specific time–temperature profile, the ‘effective static tempera-

ture’ (Teff) can be estimated for the total duration of the profile, ttot:

Teff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ti � ðTi � TminÞ2

ttot

vuuut þ Tmin (3.49)

Concerning microbial inactivation, to predict the effect of non-log-linear micro-

bial behavior, Geeraerd et al. (2000) described the following functions to model the

shoulder and tailing effects:

dNðtÞ
dt

¼ � 1

1þ CcðtÞ
� 	

� kmax � 1� Nres

NðtÞ
� 	

� NðtÞ (3.50)
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dCcðtÞ
dt

¼ �kmax � CcðtÞ (3.51)

Before first-order inactivation takes place, some critical protective component,

Cc, must be inactivated. The shoulder is obtained by applying a Michaelis–Menten

function, which can be interpreted as the physiological state of the population in the

context of inactivation. Afterwards, microbial inactivation is assumed to follow a

linear approach, reaching the maximum inactivation rate, kmax. The tailing phe-

nomenon is explained by the existence of a residual population, Nres, which can

vary when modeling nonthermal or sequences of inactivation treatments (Shadbolt

et al. 2001).

Other dynamic models consider the cumulative effect in the microbial inhibition

of food-borne pathogens given by the addition of protective cultures, building as

much as possible on already-developed model structures or the Jameson effect

(Delignette-Müller et al. 2006). This point will be further described in this brief

(‘Between-species interaction models’).

3.5 Developing Predictive Models: Fitting Methods

3.5.1 Selection of the Model

In predictive microbiology, most models are devoid of biological basis, and there-

fore are built on the basis of an empirical approach. Hence, mathematical models

are derived by searching for the mathematical function(s) that adequately fit

observed values. Note that growth data (concentration vs. time) are used to derive

primary models whereas kinetic parameters from primary models, that is, lag time,

maximum growth rate, and maximum population density, are used to obtain

secondary models. In both cases, the selection of the mathematical function(s) to

be fitted should be based on a reasonable concordance between the theoretical basis

and characteristics of the model and the observed behavior of the variable. To

illustrate this, we use a simplified example based on growth data of E. coliO157:H7
in culture broth measured over time at different incubation temperatures between

5�C and 25�C. In this case, we focus on the secondary model. If the estimated

values of
ffiffiffi
m

p
for the growth data are plotted against the corresponding incubation

temperatures, a roughly straight-line relationship may be observed between both

variables as evidenced by the data points represented in Fig. 3.5. Thus, predictive

microbiology practitioners should look for mathematical functions featured by a

straight-line pattern. In this case, based on available secondary models presented in

Sect. 3.3, one finds that the square root model could be applied to fit the observed

growth for the suboptimal temperature range (Ratkowsky 1983).

46 3 Predictive Models: Foundation, Types, and Development



3.5.2 Fitting Methods

Regression methods are applied to estimate the function’s parameters that best

describe the observations. The regression method most widely used to fit mathe-

matical functions to data is the least squares method (LS). This method consists of

deriving the parameter’s values that minimize the sum of the squares of the

differences between observed values and those predicted by the fitted model,

which are so-called residuals. The residuals represent the distances between data

points and the best-fit model and are visualized as vertical lines, as shown in

Fig. 3.5. Good performance of the LS method greatly relies on the homoscedasticity

assumption, which means that the different data sets of the response variable should

show equal variance. When the data present unequal variance, parameter estimates

may improve using weighted least squares (WLS). The principle here is to assign to

each observation a weight that reflects the error of the measurement. In general, the

weight wi, assigned to the ith observation, will be a function of the variance of this

observation. Despite its popularity and versatility, LSM has its problems. Probably,

the most important drawback of LSM is its high sensitivity to outliers (i.e., extreme

observations) (Abdi 2007).

3.5.2.1 Nonlinear Versus Linear Regression

As commented in earlier sections,mathematical functions can be classified into linear

and nonlinear functions. Nonlinear functions are characterized by the fact that the

mathematical equation depends nonlinearly on one or more unknown parameters
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Fig. 3.5 A Ratkowsky’s model (straight line) for suboptimal temperatures fitted to square root-

transformed maximum growth rate values. Vertical lines between data points and the straight line
represent the residuals of the fitted Ratkowsky’s model
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whereas linear regression displays a linear relationship between parameters and

variables (Smyth et al. 2002). This aspect greatly determines the type of regression

method to be applied. In the case of linear regression, the ordinary LSmethods can be

efficiently applied to derive the parameter values. However, in nonlinear functions,

sometimes the derivative functions intended to estimate the parameter values

minimizing LS cannot be solved, which means they do not have an explicit form to

be applied. In these cases, a nonlinear regression method should be used. The LS

method for nonlinear regression is often based on iterative methods. These methods

search in a stepwise fashion for the best values of the estimate. Often they proceed by

using at each step a linear approximation of the function and refine this approxima-

tion by successive corrections. The techniques utilized are known as gradient descent

and Gauss–Newton approximations: they correspond to nonlinear least squares

approximation in numerical analysis and nonlinear regression in statistics.

3.5.3 Implications of the Error Term and Variable
Transformations

As pointed out in Chap. 1, models possess a deterministic and stochastic component.

The deterministic part describes the mathematical relationship existing among

variables, whereas the stochastic part accounts for the variation found in the

response variable (i.e., dependent variable), which cannot be explained by

the deterministic model. The stochastic component is represented by the error

term (e) in the model expression. The optimality of the LS method depends on the

error or stochastic component being independently, identically, and normally

distributed (i.e. normal distribution). When the property of independence of errors

is not met, that is, errors are correlated, the solution from the ordinary LS method is

not optimal. To overcome this problem, detailed knowledge about the behavior of

the correlated errors is necessary, together with the application of specific algorithms

such as time-series models or generalized least squares and other nonparametric

methods (Chatterjee and Hadi 2006). In relationship to the other two assumptions,

nonidentical variance at different values of the response variable can be solved by

applying a WLS as already mentioned, besides which the normal distribution

assumption is not always determinant. However, modelers usually apply specific

mathematical transformations to the response variable to homogenize variance and

make the error normally distributed.

Taking logarithms in both sides of the mathematical expression can linearize a

function. By linearizing a function enables application of a linear regression

analysis and in consequence an ordinary LS method is suitable. However, this

procedure can affect the error behavior, which should be considered to better fit the

model to data. For example, consider the following exponential model:

Y ¼ aebX þ e (3.52)
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If neperian logarithms are taken, the expression can be written as

lnðYÞ ¼ ln að Þ þ bX þ e0 (3.53)

where e0 would be distributed differently from e. In this respect, McMeekin et al.

(1993a) indicated that if ewere independent, identical, and normally distributed, the

logarithmic transformation would give rise to e0 showing a smaller variance when Y
is large in comparison to when Y is small. Therefore, these authors recommended

applying aWLS method to handle the unequal variance of the transformed response

variable, ln(Y).
In predictive microbiology the response variable in secondary models, that is, the

lag time, maximum growth rate, and maximum population density, are also trans-

formed to obtain better fitting according to the stochastic assumption considered in

each case andmodel. A particular case is the lag timewhose value is more variable at

low temperatures far from the optimal temperature. In those cases, the stochastic

assumption in the model is quite determinant and special precaution should be taken

to choose the most optimal model to be fitted. The most used transformations for this

kinetic parameter are based on the log assumption (i.e. ln(1/l)) and square-root

assumption (i.e.
ffiffiffiffiffiffiffiffi
1=l

p
) assumption as reflected by Ratkowsky (2004). Concerning

the maximum growth rate, many works have successfully used the root-square

transformation (i.e.,
ffiffiffi
m

p
) and log-transformation (e.g., ln (m)) for this parameter

(Ratkowsky 2004, 1983; McMeekin et al. 2002).

3.5.4 Goodness-of-Fit Indexes

Different statistical goodness-of-fit indexes are available to assess if themathematical

function fits well to the data points after a mathematical function is fitted by a

regression method. However, not all indexes are optimal to carry out this task, and

caution should be taken to select the suitable one. The selection of the statistical index

should be made accordingly to the type of function and applied fitting procedure.

One important issue is the linearity or nonlinearity of themodel, which can determine

the type of goodness-of-fit index to be used.

Before proceeding to examine goodness-of-fit indexes, predictive microbiology

practitioners should first analyze standardized residuals (i.e., the standardized

distance between data point and fitted model) (McMeekin et al. 1993a). Normality

assumption for the error term can be ascertained by testing normality in associated

residuals based on normal probability plots. Furthermore, linearity and homosce-

dasticity assumptions can also be evaluated by looking at the standardized residuals

with the use of scatter plots. If both assumptions are true, residuals should vary

randomly around zero and the spread of the residuals should be about the same

throughout the plot. As commented previously, one remarkable weakness of the

least squares regression method is its sensitivity to outliers, which can be also

detected by looking at residuals.
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The root mean square error (RMSE) is probably the most common index to test

the goodness of fit of models to the data. Its simplicity and easy interpretation make

it suitable for a first approach to the fitted model. Also, RMSE is a valid index for

both linear and nonlinear mathematical functions (Ratkowsky 1983, 2004). A low

RMSE value indicates a good fitting to data as a result of the closeness of the data

points to the fitted model. In turn, a high RMSE value signals that the data points are

far from the fitted models, that is, a poor fit to the data.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Yi � Ŷi

� �2
n

vuuut
(3.54)

here Yi corresponds to observed value; Ŷi is the predicted value and n is the number

of data points or observations.

One drawback of using RMSE is that it is not a standardized measure and

depends on the magnitude of the data value, so that models from different data

sets cannot be compared if, for example, units are different, such as meters and KPa.

To overcome this issue, an scaled index can be used such as the mean relative error

(MRE) in which the magnitude of the data is taken into consideration, including a

magnitude term in the denominator (Karadavut et al. 2010).

MRE ¼ 1

n

Pn
i¼1

Yi � Ŷi

�� ��
Ymax � Ymin

0
BB@

1
CCA (3.55)

where Ymax and Ymin correspond to the maximum and minimum value of

observations, respectively.

In general, linear models can be adequately assessed by using the coefficient of

determination (R2), which informs about the fraction of total data point variation

explained by the fitted model. This is mathematically defined by the ratio of the

variation explained by the fitted mathematical function to the data point variation.

R2 ¼ 1� SSreg

SStotal
(3.56)

where SSreg corresponds to the sum of squares result from the fitting process, while

SStotal is the sum of squares of point data or observations.

In spite of being a common practice, R2 or its adjusted version (adjusted-R2)

should be not applied to evaluate fittings of nonlinear models because some serious

limitations are derived from this application. For further information and detail

about this issue, we recommend reading Ratkowsky (2004).
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To enable comparison between different models, two indexes are mostly used in

predictive microbiology. The first is the F-ratio, which can be applied for models

with the same number of regression parameters or a different number, if models are

nested, meaning that one can be mathematically derived from the other (Zwietering

et al. 1990; Wijtzes et al. 1993; Pin et al. 2000; Silva et al. 2010). The F-ratio
expression used for the latter case can be written as

F ¼ SS1 � SS2ð Þ df1 � df2ð Þ=

SS2 df2=
(3.57)

where SS1 and SS2 correspond to the sum of squares resulting from the fitting

process for models 1 and 2, respectively, while df1 and df2 define the degree of

freedom in both models.

A second comparison index used for comparing predictive models is the

so-called Akaike’s information criterion (AIC), which may be given in its corrected

version, corrected Akaike’s information criterion (AICc) (Huang et al. 2011) This

parameter is particularly suitable to compare nonnested models with a different

number of parameters (Akaike 1974). In other words, AICc determines the model

with the fewest parameters that still provides an adequate fit to the data. According

to AICc, the most adequate model is the one with the lowest AICc value.

3.6 Model Validation

Validation is an essential step in the modeling process. Models cannot be applied

if a validation process is not previously accomplished, which typically consists

of confirming the predictions experimentally by using any quantitative method

(Dym 2004).

In predictive microbiology, experimental analysis of growth in food is the basis

of model validation (challenge tests): experimental growth data (i.e., observations)

are compared with the model predictions (Gibson et al. 1988; Sutherland and

Bayliss 1994). Although validation should be performed on food, in many cases,

because of the economic cost derived from challenge tests, data from scientific

literature or artificial media are also used for validation. When validation is

performed with data sets taken from the same experimental conditions as those

used to elaborate the model, validation is the so-called internal validation and aims

at determining if the model can sufficiently describe the experimental data. Some

authors have carried out internal validation studies obtaining good results (Garcı́a-

Gimeno et al. 2002; Zurera et al. 2004). The external validation is based on the

comparison between predictions and independent data sets, that is, either

observations obtained from challenge test (Whiting and Buchanan 1994b; te Giffel

and Zwietering 1999; Ross et al. 2000) or data taken from scientific literature

(Fernandez et al. 1997; McClure et al.1997).
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In predictive microbiology, diverse methods have been used to compare the

goodness of fit of models to experimental data used for model elaboration, and

also methods have been used to assess the acceptability of model predictions in

relation to the inherent error in experimental data (Zwietering et al. 1994). Nerbrink

et al. (1999) graphically compared the observed values of maximum growth rate

and generation time found in literature for the same experimental conditions.

By means of graphical representation, modelers can easily distinguish between

those predictions overestimating and underestimating bacterial growth. Modelers

usually classify models into fail-safe models, if predictions overestimate growth,

and fail-dangerous models if predictions underestimate growth. In the case of

pathogenic bacteria, a fail-safe model is preferred because decisions based on

these predictions are more conservative and therefore safer from the public health

aspect. Figure 3.6 is a typical example of graphical validation in which fail-safe

predictions are situated above the equivalence line, in the left-hand side of the graph.

The equivalence line represents for perfect concordance between predicted and

observed values. The point data found below the equivalence line, on the right-

hand side of the graph, represents for fail-dangerous predictions.

The proximity of observations to the fitted model is assessed by the mean square

error (MSE) and the coefficient of determination (R2), which have been widely

applied for validation purposes in food. Another measure of accuracy used for

predictive models was introduced by McClure et al. (1993), who compared models

based on the sum of the squares of the difference between the natural logarithm of

the observed (gobs) and predicted (gpred) values for generation time:

MSE ¼ S ln gobsð Þ � ln gpredð Þ½ �2 (3.58)
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Fig. 3.6 An example of graphical validation in which point data corresponding to model and

validation data are situated above and below the equivalence line, which indicates if predictions

are fail-safe or fail-dangerous, respectively
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The observed response will be more precise as the value become smaller.

By transforming the foregoing equation, the root mean square error (RMSE) is

calculated:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

mobs � mpred
� �2

n

vuuut
(3.59)

where mpred y mobs corresponds to the maximum growth rate observed and predicted

by the model, respectively, and n is the total number of data.

The RMSE is a measure of the residual variability, which cannot be explained by

controlled changes in the environmental factors (i.e., explanatory or independent

variables) such as temperature and pH. This residual variability may be caused by

various elements, including natural variability and certain systematic error. A low

RMSE value means better adequacy of the model to describe data (Sutherland et al.

1994). However, if the magnitude of observed data is large, the RMSE will increase

proportionally because of the residual variability is higher.

The standard error of prediction (SEP), an index similar to RMSE but using

relative terms, which means that its value does not depend on the magnitude of the

observed data (Hervás et al. 2001), is defined as

SEP ¼ 100

mobs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

mobs � mpred
� �2

n

vuuut
(3.60)

Ross (1996) developed two statistical indexes to assess the prediction capacity of

models in a simple manner. These indexes are the so-called bias factor (Bf) and

accuracy factor (Af), which give a good estimation of the reliability of models and

are written as

Bf ¼ 10
P

logðgobs=gpredÞ=n½ � (3.61)

Af ¼ 10
P

logðgobsj =gpredÞj=n½ � (3.62)

The main purpose of these indexes was to enable comparison between

predictions and independent observations, not being used for the model elaboration

and obtained from food (i.e., external validation), thereby assessing the capacity of

models for application in real conditions (Baranyi et al. 1999). The bias factor is an

overall average of the ratio of discrete model predictions to observations and

assesses whether the model is fail-safe, fail-dangerous, or perfect. A value of 1

means that observations are equally distributed above and below predictions pro-

ducing a perfect concordance, values < 1 mean a fail-dangerous model, and values

> 1 indicate a fail-safe model. The acceptable bias factor value for a predictive
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model can be 0.75–1.25. The accuracy factor is similar to the bias factor, except that

it is the absolute value of the ratio of predictions to observation, thus providing how

close predictions are to observations. A value of 1 indicates perfect coincidence, on

average, between both predictions and observations, whereas a value of 2 would

mean that, on average, predictions are two factors of difference with respect to

observations. These validation indexes have been widely used in validation studies

(Nerbrink et al. 1999; te Giffel and Zwietering 1999; Ross et al. 2000; Devlieghere

et al. 2001).

It is important to note that model users should know the application range or

model domain before application as well as the reliability limits that were given by

the validation index. When validation indexes are studied, prediction should be

analyzed concerning if they are fail-safe or fail-dangerous. Although a certain

safety margin is required, it is suggested that predictions are as close as possible

to real conditions.

The Bf and Af were modified by Baranyi et al. (1999) on the basis of the

difference of the mean of squared values. The most generic form is represented in

the following equation, when models f and g are compared:

Bf ¼ exp

Ð
R

ln f ðx1:::xnÞ � ln gðx1:::xnÞð Þdx1:::dxn
VðRÞ

2
4

3
5 (3.63)

Af ¼ exp

Ð
R

ln f ðx1:::xnÞ � ln gðx1:::xnÞð Þ2dx1:::dxn
VðRÞ

2
64

3
75 (3.64)

where f ðx1:::xnÞ are the predicted values of the maximum growth rate from the

function f composed of n environmental factors x;gðx1:::xnÞ are the predicted values
of the maximum growth rate from the function g composed of n environmental

factors x; and V(R) is the volume of the region, that is, if R encompasses the

temperature interval (T2�T1), then V(R) ¼ T2�T1.

Campos et al. (2005) proposed a new validation index in terms of microbial

counts in contrast to bias factor and accuracy factors that is based on estimations

from secondary models, that is, maximum growth rate and lag time, and not log-

counts. The robustness index (RI) was defined as the ratio of the standard error of

prediction to the standard error of calibration based on log-counts at specific time

intervals and for different environmental conditions. The standard error of calibra-

tion and standard error of prediction are the root mean square errors estimated from

the original and independent data sets, respectively. When RI results in values

lower than or close to 1, it means that prediction errors calculated based on

independent data are within the expected error of the model, which is defined by

the standard error of calibration. Because RI does not provide information regard-

ing whether the model is fail-safe or fail-dangerous as the Bf does, these authors
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proposed the mean relative error (RE), which is used with the RI to provide this

information. The equation for RE is written as follows:

RE ¼
Pn
i¼1

cobsi � cpredi
cpredi

� �2

n
(3.65)

here cobsi and cpredi correspond to observed concentration values belonging to an

independent data sets and concentration values predicted by the model, respectively

expressed in predicted value log(cfu/ml or g), while n specifies the number of

observed data from the different data sets.
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Chapter 4

Other Models and Modeling Approaches

Abstract Predictive models have been initially focused on the estimation of

kinetic parameters, as described in the preceding chapter. However, other modeling

approaches are often requested, especially when considering the transmission of a

pathogen along the food chain or the probability that this pathogen can grow or

survive at certain environmental conditions. This is the underlying reason why

transfer and growth/no growth models presented a relevant development in predic-

tive microbiology. These models can be effectively applied when presence/absence

data are required, or in specific food processes. Alternatively, survival and trans-

mission of microorganisms through food contact surfaces, environment and

between different foods can be also estimated. Additional advantages, such as the

extent of shelf life, or the effect of novel preservation methods in minimally

processed foods provide a wider application of predictive microbiology. Bacterial

transfer models and growth/no growth models are described in this chapter.

Keywords Transfer rate • Cross-contamination • Working surface • Probability of

growth • Logit P • Minimum convex polyhedron

4.1 Bacterial Transfer Models

Traditionally, predictive microbiology has focused on kinetic models intended to

reflect changes in concentration over time as consequences resulting from physio-

logical activity of cells. During the past few years, the need of describing how

microorganisms are transmitted throughout the food chain has led microbiologists

to look at other bacterial processes than growth and death. Cross-contamination is

reported to be an important factor strongly linked to food-borne disease outbreaks

and food spoilage. Hence, some risk assessment studies have pointed out that

although there are sufficient kinetic models, some gaps remains to be filled to

perform a complete quantitative risk assessment.

F. Pérez-Rodrı́guez and A. Valero, Predictive Microbiology in Foods,
SpringerBriefs in Food, Health, and Nutrition 5, DOI 10.1007/978-1-4614-5520-2_4,
# Fernando Pérez-Rodrı́guez and Antonio Valero 2013
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Cross-contamination refers to the indirect and direct microorganism transfer

from a contaminated food surface to other recipient food surfaces in food-related

environments. Basically, transfer can occur in many situations and scenarios, for

examples, after an inactivation process, which is so-called recontamination, or

during food preparation at the retail or consumption stage. The microorganism

transfer is a phenomenon rather affecting the number of contaminated food samples

in a lot than the concentration levels because bacterial transfer often occurs at low

numbers. Nevertheless, as pointed out by Roberts (1990), food-borne outbreaks are

often originated by an initial cross-contamination resulting in a contaminated food.

Then, careless handing of temperatures increases the low initial concentration up to

risk levels, leading to the outbreak.

When concerned with microorganism transfer to foods, a general division can be

established as function of the type of microorganism, that is, bacteria and virus. It is

evident that during the past few years, food-borne outbreaks derived from patho-

genic viruses have increased, and food safety national authorities and the food

industry have showed major concern. Virus transfer is particularly important

because virus transmission only relies on cross-contamination or transfers from

environment to foods because viruses are not able to grow. Nevertheless, few

studies have been conducted with virus in food-related environments and no

predictive models have yet been derived. Although only recently has bacterial

transfer been considered as an important area to be modeled, several studies have

attempted to give insight in the transfer process to provide more reliable models and

predictions.

As the variety of bacterial transfer being able to occur in food-related environments

is ample, scientists working in this area usually classify transfer into three types

(Pérez-Rodrı́guez et al. 2008): air-to-food transfer, surface-to-food in liquids trans-

fer, and surface-to-food by contact transfer.

4.1.1 Air-to-Food Transfer

The impact of bacteria transfer from the air to foods in public health may be

considered negligible as there is no epidemiological evidence of food-borne

outbreaks linked to bacteria transmission through air. Furthermore, most bacteria

are very sensitive to hydric stress, showing reduced viability in the air. Still,

exceptions can be observed, such as Staphylococcus aureus, a bacterium showing

a special persistence in air, and spores and molds, which can remain viable in the air

for long periods of time. The air-to-food transfer gains relevance in those foods

exposed to air or that use air for food preparation, such as ice cream and instant

powders (den Aantrekker et al. 2003b).

Mathematical models have been proposed to represent bacteria transmission

from air to foods based on an empirical approach using a quadratic equation relating

number of bacteria in the air and bacterial concentration in the food. Also, a

predictive model can be obtained using the settling velocity of particles because
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bacteria are expected to be in the dust and other particles suspended in the air.

This model can be easily described by the following equation (Whyte 1986):

T ¼ v � C � A � t (4.1)

where T ¼ number of bacteria transferred to the food (colony-forming units, cfu);

v ¼ the settling velocity of particles (m/h); C ¼ bacterial concentration in the air

(cfu/cm3); A ¼ food area (cm2); and t ¼ exposure time (h)

The value of v can be calculated by dividing the rate of sedimentation of cells

(cfu/m2·h) by the concentration of cells in the air (cfu/cm3). Those values can be

obtained by experimentation, using an air sampler for bacterial concentration in the

air and the Petri dish method to measure the sedimentation rate.

An more extensive review of air-to-food transfer models was carried out by den

Aantrekker et al. (2003b) in which probabilistic models describing spores or dioxin-

like compounds transfer during a rain event in plants were explained. Although

these models were developed for other situations than foods, authors stated that the

mechanism is basically the same as bacterial transfer in food-related environments

via aerosol or splash formed by spraying contaminated floors.

4.1.2 Surface-to-Food Transfer in Liquids

This type of transfer refers to transfer events in pipeline systems or food liquid tanks

that typically occur in the beverage food industry (Pérez-Rodrı́guez et al. 2008).

Mainly, the process starts when biofilms are formed on some specific zones in pipes

or tanks. Biofilms are agglomerations of bacteria and organic matter. When biofilm

is formed, this may become a microbial contamination source, enabling bacterial

transfer from the inner surface of the pipe to the food fluid.When disinfection fails to

remove biofilms, it can lead to a significant and continuous bacterial flux to the food

liquid flow, resulting in a large number of contaminated food products; hence, this is

a serious concern for food industries. Many biofilm models have been developed for

predicting microbial contamination in water distribution systems (McBain 2009).

They are based on a mechanistic approach, which basically consists of a set of

differential equations describing attachment, growth, and detachment of cells in the

liquid and solid phases (den Aantrekker et al. 2003b). These models can describe

cross-contamination in aqueous foods. The conceptual representation of mathemat-

ical models describing the liquid and solid phase is as follows.

Liquid-phase model:

@NL

@t
¼ Input þ desorption Kdð Þ þ growth mð Þ � absorption Kað Þ � output

(4.2)
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Solid-phase model:

@NS

@t
¼ Absorption Kað Þ þ growth mð Þ þ desorption Kdð Þ (4.3)

where Ka is the absorption constant standing for the capacity of attachment of cells

from liquid to solid (e.g., inner surface of the pipe), m is the maximum growth rate

on the inner surface, and Kd is the desorption constant describing the capacity of

releasing from the solid to the liquid.

4.1.3 Surface-to-Food Transfer by Contact

The most common bacterial transfer occurring in food-related environments

consists of two surfaces coming in contact in which at least one surface is

contaminated, that is, the donor surface, which, by contact, transfers cells to other

surfaces, named the recipient surface. A bacterial transfer by contact often involves

a chain of events in which cells are transferred between surfaces until reaching the

food. For instance, transfer from raw meat to a working surface and then from this

surface to the final food (e.g., ready-to-eat food) when handled on the surface.

In those cases, transfer can occur in different directions and different contamination

vectors can be interacting at the same time. For instance, in the foregoing example,

knife and worker hands can be also involved in the bacterial transfer to the final

food. To model this phenomenon, a simple concept is used so-called transfer rate or

coefficient, which stands for the proportion of cells transferred from the donor

surface to the recipient surface (Eq. (4.4)):

Tr(% ) =
cfu on recipient surface

cfu on donor surface
�100 (4.4)

here, the numerator represents the number of cells (cfu) on the recipient surface

after contact and in the denominator the number of cells (cfu) before contact in the

donor surfaces.

The transfer rates are estimated by using laboratory models or by using count data

from surveys carried out in food premises. In both cases, estimates are greatly

dominated by an important source of variability. This variability is related to both

analytical method error and experimental variation, as a consequence of there are

unknown factors governing bacterial transfer that are not controlled during experi-

mentation (pressure, contact time, attachment, exopolysaccharide production, etc.).

In this respect, several studies have considered the use of probability distribution to

account for the variability inherent to the bacterial transfer phenomenon (den

Aantrekker et al. 2003b; van Asselt et al. 2008; Montville et al. 2001). To give

more reliable and complete estimations, probability distributions should be applied

to represent bacterial transfers rates between surfaces (Pérez-Rodrı́guez et al. 2008).
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The normal distribution is mostly used to fit log-transformed transfer rates (Chen

et al. 2001; Montville et al. 2001; Montville and Schaffner 2003; Pérez-Rodrı́guez

et al. 2006), although the beta and gamma distribution have been also successfully

used to represent transfer rates (van Asselt et al. 2008; Pérez-Rodrı́guez et al. 2011).

As already mentioned, one of the most important difficulties associated with

modeling transfer is that transfer events can take place in different directions,

involving different transfer vectors and leading to a complex bacterial transfer

network (Fig. 4.1). In spite of this complexity, some attempts have been made to

mathematically reflect transfer pathways related to food handling and manu-

facturing practices in milk, seafood, and vegetable premises (Aziza et al. 2006;

Mylius et al. 2007; Pérez-Rodrı́guez et al. 2011).

As proposed by several authors (den Aantrekker et al. 2003a; van Asselt et al.

2008; Pérez-Rodrı́guez et al. 2008, 2006), to cope with such complexity, a systems

approach is usually taken in which the network is simplified to obtain specific linear

pathways representing the most important cross-contamination routes (Fig. 4.2).

These bacterial transfer pathways can be built by combining individual transfer

events (e.g., transfer from food to hand, transfer from hand to food, etc.), which are

mathematically described by multiplying the individual transfer rates for each step

provided there is independence between transfer events (3.55). As already men-

tioned, in many cases, such transfer rates are described by probability distributions

to reflect the observed ample transfer variability. Therefore, Monte Carlo methods

should be applied to perform the transfer calculations.

TrT %ð Þ ¼ Tr1 %ð Þ � Tr2 %ð Þ (4.5)

Food handler

Working surfaceTools

Food

Environment

Fig. 4.1 Schematic representation of a bacterial transfer network accounting for bacterial transfer

in food-related environments

Raw meat Cutting table RTE food
Tr1 (%) Tr2 (%)

Fig. 4.2 A simplified bacterial transfer pathway based on transfer events happening successively.

RTE, Ready to Eat food
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During the past few years, more specific transfer models have been built to

represent specific bacterial transfer scenarios. There exists a particular interest in

explaining bacterial transfer during the slicing and cutting process because many

studies have indicated this process is an important contamination source. These

studies have intended to describe the bacterial transfer during the slicing process

from an inoculated slicer or blade to the product and also from an inoculated food

product to the slicer or blade, considering as variable the number of slices (Fig. 4.3).

Such studies have used different bacterial species (Escherichia coli, Staphylococ-
cus aureus, or Listeria monocytogenes) and types of food matrices such as cooked

meat, cheese, and salmon, evidencing the influence of the type of microorganism,

food matrix, inoculum level, and exerted pressure during slicing on the transfer

ability of bacteria (Vorst et al. 2006; Pérez-Rodrı́guez et al. 2007a; Keskinen et al.

2008; Sheen 2008; Sheen and Hwang 2010). The results have found that bacteria

are transferred during slicing following a logarithmic process, and hence, exponen-

tial functions have been successfully applied to describe bacterial transfer

observations (Sheen and Hwang 2010). For instance, the log-linear and Weibull

functions were found by Pérez-Rodrı́guez et al. (2007b) to be suitable models to

describe E. coli O157:H7 and S. aureus transfer from a contaminated slicer to a

cooked meat product during slicing (Fig. 4.3).

Transfer models are mostly based on an empirical approach because we still

possess scant knowledge about the mechanisms controlling bacterial transfer in

foods. Nonetheless, some attempts have been made to gain insight into the phenom-

enon, providing some theoretical basis to model transfer in specific situations. In this

respect, a probabilistic standpoint has been provided to explain the stochastic nature

of the transfer phenomenon of cells based on the binomial process in which observed

transfer rates can be understood as the probability of one cell being transferred

from one surface to other (Aziza et al. 2006; Pérez-Rodrı́guez et al. 2008).
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Fig. 4.3 Escherichia coli O157:H7 transfer from the contaminated slicer (6 log cfu) to cooked

ham during a slicing process. Solid and dotted lines represent the Weibull model and log-linear

model fitted to transfer data (Adapted from Pérez-Rodrı́guez et al. 2007a)

62 4 Other Models and Modeling Approaches



More recently, Møller et al. (2012) also proposed a more mechanistic transfer

model to explain Salmonella transfer in a grinder based on a hypothesis that

transfer occurs from two different environments in the grinder showing different

transfer rates.

Transfer models are necessary for incorporation in quantitative risk assessment

models to yield more accuracy estimations and to contemplate diverse risk

scenarios concerning cross-contamination (Pérez-Rodrı́guez et al. 2008). Hence,

this type of model should be considered together with other processes such as

bacterial die-off on donor surfaces and food handler behavior to give more accurate

estimations of bacterial transfer to food. In this respect, some work has aimed to

provide a mathematical framework linking survival models and food handler

behavior models to transfer rates models and considering them important variables

affecting the final bacterial transfer to foods (Christensen et al. 2005; Ivanek et al.

2004; Mylius et al. 2007).

The bacterial transfer models are still in an early stage because there are many

gaps that should be filled in regarding how environmental and intrinsic factors

influence such a phenomenon. In spite of this fact, models developed so far seem to

well represent the observed transfer rates on an empirical basis, enabling applica-

tion to quantitative risk assessment studies. Further research together with new

modeling and experimental approaches is needed to advance in this new and

promising area within predictive microbiology with serious repercussions in public

health. These advances will help to derive more reliable mathematical models

considering different microorganisms, such as viruses and bacteria, and diverse

transfer events.

4.2 Growth/No Growth Models

In the earlier sections, it was stated that predictive microbiology focuses on deter-

mining the behavior of a given microorganism, combining mathematical modeling

with experimental data under some environmental factors. Predictive microbiology

can be divided into two kinds of models in this respect (Tienungoon et al. 2000):

kinetic models and boundary (i.e., growth/no growth)models. Boundarymodels (so-

called growth/no growthmodels) focus their attention on those conditions in which a

given microorganism can or cannot grow (Ratkowsky and Ross 1995; Presser et al.

1998; Stewart et al. 2001): the reason is that microbial growth is restricted to finite

limits of factors, and even growth sometimes declines abruptly at a very small

increase in the level of each factor. Consequently, the combination of both kinetic

and probabilistic models can help to provide a complete response of the behavior of

the microorganisms in the growth and no growth regions.

Microbial safety should be achieved by maintaining the food at specific conditions

that inhibit growth (Salter et al. 2000). To gain knowledge about these conditions,

the probability of growth of the microorganism at the boundary zone is needed.
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At the same time, food safety has to be attained, avoiding the destruction of the

organoleptical characteristics of the food.

Thus, growth/no growth models have been widely used for designing

formulations in minimally processed foods, by taking into account the hurdle
technology concept (Leistner 1992). This is a food preservation technique based

on the application of a combination of generally mild treatments that act as

‘obstacles’ which microflora must overcome to start to grow. Then, bacteria invest

their energy in trying to maintain their homeostatic equilibrium instead of

multiplying. Although the action mechanisms underlying these treatments are not

fully understood, it is very useful to know their effect on bacteria cells as well as the

extension of such effects.

Growth/no growth can be used in case of microorganisms for which only their

presence can represent a hazard (i.e., spores of Clostridium spp.), while kinetic

models can be better applied for those nonpathogenic microorganisms or other

microorganisms that can be dangerous when exceeding microbial limits, such as

Staphylococcus spp. (Buchanan 1992).

In this way, probability models are useful in the study of microbial pathogen

behavior. The application of these models is clear, for instance, when designing a

preservation method in minimally processed foods, for alternative formulations in

novel foods, and also for risk assessors so that they can determine the possibility

of real contamination of a given food (Presser et al. 1997) or minimize the risk of

pathogen growth (McMeekin et al. 2000).

A new trend in the elaboration of growth/no growth models has recently arisen

mainly to determine the absolute limits of microbial growth, that is, the presence of

extrinsic factors that cannot inhibit growth in themselves but which can when

combined (Ross et al. 2000).

Ross and McMeekin (1994) established that growth/no growth models are

complementary to kinetic models. However, whenmaximumgrowth rate approaches

to zero and lag phase to infinite, the microbial behavior should be quantified through

growth/no growth conditions. Once a significant growth is produced, predictive

microbiology must lead to growth kinetic models.

Ratkowsky and Ross (1995) proposed the application of logistic regression

models in food microbiology, which enables the modeling of boundary between

growth and no growth of bacteria when one or more controlling factors are

studied. This approach included a modified square root model to describe the

influence of temperature, pH, aw, and nitrite on the probability of growth

(McMeekin et al. 1993a):

ffiffiffiffiffiffiffi
mmax

p ¼ a1 � ðT� TminÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpH� pHminÞ � ðaw�aw minÞ � ðNO2max�NO2Þ

p
(4.6)

where mmax is maximum growth rate (h�1), T is temperature (ºC), aw is water

activity, and NO2 is nitrite concentration (ppm). Minimal values are the theoretical

values at which growth is allowed when exceeded. In contrast, maximal values are

the theoretical values below which growth is allowed.
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By taking the natural logarithm of the left-side term from this equation, one can

calculate the term logit P:

logit P ¼ ln
P

1� P

� �
(4.7)

being P ¼ probability of growth (between 0 and 1, being 0 ¼ no growth and

1 ¼ growth). Thus, the equation shown above is transformed as follows:

logit (PÞ ¼ b
0
þb1 � ln(T � TminÞ þ b

2
� ln(pH� pHminÞ þ :::

:::þ b3 � ln(aw � awminÞ þ b4 � ðNO2max � NO2Þ
(4.8)

where b0, b1, b2, b3, y, and b4 are the regression coefficients to be estimated by the

model. The rest of the model parameters (Tmin, pHmin, awmin, y NO2max) should be

estimated independently or are fixed to constant values. This approach was exten-

sively followed by other authors (Lanciotti et al. 2001) and predicts a binary

response variable, or equivalently the probability of an event’s occurrence in

terms of a specific set of explicative variables related to it. Later on, a new nonlinear

logistic regression technique was performed (Salter et al. 2000; Tienungoon et al.

2000). Logistic models were further developed to determine growth/no growth

interfaces in solid surfaces or food-based systems (McKellar et al. 2002;

Koutsoumanis et al. 2004a; Mejlholm et al. 2010).

Growth/no growth models have been implemented to determine the combination

of factors that just inhibit or allow growth at a specific probability level. Target

values reported in literature for graphical representations are normally set at 0.1

(indicating inhibitory conditions), 0.5 (boundary zone), and 0.9 (high probability

of growth). Two illustrative examples are presented in Fig. 4.4 for the models of

Kousoumanis et al. (2004b) for Salmonella typhimurium and of Valero et al. (2009)

for Staphylococcus aureus in broth media.

Another growth/no growth model was developed by Masana and Baranyi (2000)

to study the growth interface of Brochothrix thermosphacta as a function of pH

and aw. The proposed model included a novel parameter named bw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aw

p
.

Thus, the model shape was divided into two parts: a nonlinear part (corresponding

to the relationship between pH and aw) and a linear one, at a constant value of NaCl.
A cardinal growth/no growth model was performed by Le Marc et al. (2002).

This model describes the growth interface of L. monocytogenes basing on an

original kinetic model with four factors, where mmax is estimated. The final equation

is a transformation of the original cardinal model of Rosso et al. (1995).

m
max

¼ mopt � �ðTÞ � dðpHÞ � Bð RCOOH½ �Þ � fðT; pH; ½RCOOH�Þ (4.9)

where mopt is the maximum growth rate of the microorganism at optimal conditions.
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The growth interface can be easily obtained by reducing the value of mmax to

zero. This can be achieved when the interaction term (fðT; pH; ½RCOOH�Þ) is equal
to zero.

Later, Le Marc et al. (2005) suggested modeling microbial growth limits through

the combination of the minimum convex polyhedron (MCP) concept and logistic

regression. MCP was introduced by Baranyi et al. (1996) and, according to this

definition, the interpolation region is the MCP encompassing all the combinations

where measurements were made. The combination of these techniques showed that

extrapolation problems at growth limits are solved.

Very recently, a simplified growth/no growth model conceptually derived from

the gamma model was proposed (Polese et al. 2011). Bacteria growth limits were

through a normalization constant (Z), which quantifies the product of the cardinal
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Fig. 4.4 Graphical

representation of growth/no

growth model predictions
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(a) and for Staphylococcus
aureus (Valero et al. 2009)

(b) in broth media at P values

of 0.1, 0.5, and 0.9
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optimal distances for growth probability, assuming Z as a species-independent

constant. For complex systems, all the relevant environmental factors could be

taken into account (Eq. (4.10)):

P ¼ � � ðT � TminÞ � ðpH � pHminÞ � ðaw � aw minÞ �P
i

1� Ci

MICi

� �

P ffi 0; P<0

P ffi P; 0 � P � 1

P ffi 1; P>1 (4.10)

where P is the growth probability, Tmin, pHmin, and awmin are the notional minimal

values of temperature, pH, and water activity, below which growth is not possible,

Ci is the concentration of the i inhibitory substance, and MICi is the minimal

inhibitory concentration of the ith substance.

The constant � is defined as

� ¼ 1

ðTp � TminÞ � ðpHp � pHminÞ � ðawp � aw minÞ (4.11)

where TP, pHP, and awP are the theoretical (conceptual) values for each factor (when
other factors are at their optimum), above which growth probability is not further

affected.

As a whole, the developed simplified model produced conservative estimates,

with only a limited number of fail-dangerous predictions, suggesting its potential

applicability as a first estimate for the development of safe food products.

These growth/no growth models generally predict an abrupt transition zone

between growth and no growth conditions: this occurs because of the small number

of replicates (n) in comparison to the number of conditions tested. In this situation,

difficulties in the application of logistic regression models are found, especially

when achieving convergence to a global optimum or to an appropriate set of

conditions (Ratkowsky 2002), unless alternatives procedures are used (Geeraerd

et al. 2004).

By increasing the number of replicates (n ~ 20–30), smoother transitions

between growth and no growth zones can be achieved. With this methodology,

probability of growth does not dramatically change along a narrow set of conditions

because more reliable growth/no growth responses can be provided (Vermeulen

et al. 2007; Valero et al. 2009).

In addition, there is a growing tendency to use a cocktail of different strains to

predict a more realistic microbial behavior in foods. In the case of growth/no

growth models, as stated by Vermeulen et al. (2007), the use of different strains

allows obtaining a broader growth/no growth domain, because at certain stressful

conditions, growth is generally led by the most resistant strain. Besides, the

importance of taking into account the strain variability for predictive modeling

and risk assessment purposes has been emphasized (Lindqvist 2006).
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It can be concluded that these mathematical models may lead to more realistic

estimations of food safety risks and can provide useful quantitative data for the

development of processes that allowproduction of safer food products (Koutsoumanis

et al. 2005).

4.3 Between-Species Interaction Models

Food matrices are complex systems where different microbial populations can

coexist and interact. Many studies have demonstrated that microbial flora in

foods can inhibit or reduce growth of pathogenic bacteria (Buchanan 1999; Ongeng

et al. 2007; Le Marc et al. 2009). However, most predictive models ignore this

aspect (Malakar et al. 2003), being able to lead a significant discrepancy between

predictions and reality (Vereecken et al. 2003).

Interactions between bacterial populations can be classified into indirect

interactions, that is, derived from changes in pH, redox potential, substrates

(e.g., antimicrobial substances), or specific metabolites produced by a specific

population and direct interaction in which bacterial populations compete for colo-

nization spaces (i.e., niche) and nutrients. All these aspects should be considered in

models to better represent microbial response in foods.

Although there are several studies dealing with interaction and competition

between bacterial species (Peterson et al. 1964; Carpentier and Chassaing 2004;

Jablasone et al. 2005), few have attempted to propose a mathematical basis for

explaining such a phenomenon. Leroi and De Vuyst (2007), based on the work by

Bernaerts et al. (2004), proposed a general conceptual model explaining interaction

between different populations by including the growth-influencing factors.

dNðtÞi
dt

¼ mi NiðtÞ (4.12)

mi ¼ f NiðtÞh i; NjðtÞ
� �

j 6¼i
; EðtÞh i; MðtÞh i; SðtÞh i; HðtÞh i::

n o
(4.13)

where mi is the grow rate of a specific population i ¼ 1,. . .n, N(t)i and N(t)j are
concentrations of different microbial populations, t corresponds to time, E(t)
represents environmental factors, M(t) is microbial metabolite concentration, S(t)
is substrate concentration, and H(t) is the physiological state of the concentration of
the cells.

Another approach is based on focusing specifically on the inhibitory factors: this

is intended to explain the inhibition of a specific population caused by an inhibitory

factor derived from other microbial population. As mentioned by Leroi and De

Vuyst (2007), this effect can be incorporated into a secondary model by including a

new term corresponding to the inhibitory function, denoted by g, ranging from 0 to
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1. This new term is a reduction ratio of the optimum value of the growth rate (mopt),
which can be mathematically defined as

g ¼ mi mopt
�

(4.14)

here, g denotes the reduction ratio resulting from an inhibition factor, mopt is the
optimum value of growth rate when the inhibitory factor is absent, and mi is
the value of growth rate when the inhibitory effect is present.

The inhibition factor g can be quantified by a mathematical function based on the

environmental variables, nutrient depletion, or inhibitory metabolites exerting

the inhibitory effect (Leroi and De Vuyst 2007). For example, the g explaining

the inhibitory effect of the lactic acid produced by lactic acid bacteria on S. aureus
can be defined as follows (Ross and Dalgaard 2004):

g ¼ 1� lac½ �
MIC0

lac

� �
(4.15)

here, [lac] stands for lactic acid concentrations and MIC0
lac is the absolute minimal

inhibitory concentration of lactic acid.

Then, this inhibitory function is included into a secondary model, for example,

based on a cardinal-type model or gamma-concept approach (Leroi et al. 2012).

Here, the hypothesis is that the resultant growth of one specific microbial popula-

tion is caused by the combination of all inhibitory effects derived from both the

environmental factors (e.g., pH, temperature, water activity) and the activity of

other microbial populations (e.g., acidification, antimicrobial substances). Because

independence between effects is assumed, growth can be estimated by multiplying

the corresponding inhibitory functions. If no independence is found, more complex

terms should be included in the model to explain such an interaction between the

inhibition factors (te Giffel and Zwietering 1999).

Mechanistic models have been also proposed to reflect interactions between

different microbial populations (Larsen et al. 2012). These (semi)mechanistic

models encompasses the multiple factors exerting the inhibitory effect between

microbial populations such as nutrient depletion (e.g., nutrient diffusion coeffi-

cient), colonization space (e.g., modeling colony growth), production rate of inhib-

itory or toxic substances (e.g., lactic acid), changes in the chemical properties of

food (e.g., pH, water activity), etc. (Malakar et al. 2003; Martens et al. 1999;

Poschet et al. 2005). However, as pointed out by Leroi and De Vuyst (2007), the

mechanistic approach can lead to complex mathematical models with multiple

interrelated variables. Thus, a more simplistic approach is preferred in which

microbial interaction modeling is simplified by quantifying how much growth of

one population is reduced by growth of other populations. In relationship to this,

two different modeling approaches can be taken: one based on the Jameson effect

and other based on the Lotka–Volterra type model (Cornu et al. 2011). The former

approach, based on the Jameson effect, claims that the interaction between different
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bacterial populations consists of the growth of lower-density populations slowing

down when the higher-density populations reach a maximum level (Jameson 1962).

Both approaches can be explained on the basis of the following general growth

function:

dNðtÞi
dt

¼ mmaxi
NiðtÞ fiðtÞ aiðtÞ (4.16)

where f(t)i represents an adaptation function and a(t)i is an inhibition function for a

population i.
Cornu et al. (2002, 2011) incorporated the Jameson effect hypothesis into a

growth model, assuming that the inhibition effect is equal for all competitive

microbial populations, thus a(t)I is an inhibition function so that f ðtÞi ¼ f ðtÞ1 ¼ f
ðtÞ2 ¼ f ðtÞn, being a modification of the logistic function of deceleration, is based

on the densities of both populations and written as follows:

fiðtÞ ¼ 1� NiðtÞ � NjðtÞ
Nmaxtotal

(4.17)

This inhibition function has been modified by other authors to explain the effect

of specific bacterial populations in determined food matrices (Le Marc et al. 2009;

Mejlholm and Dalgaard 2007).

The interaction models based on the Lotka–Volterra type models can be consid-

ered as a variation of the previous mathematical structure in which there exist as

many functions f(t) as potential competitive microbial populations in which each

population has a different inhibition effect represented by the coefficient aij in the

following general equation (Vereecken et al. 2000; Vereecken and Van Impe 2002;

Powell 2004):

fiðtÞ ¼ 1

Nmaxi

ðNmaxi � Ni � aij NjÞ (4.18)

where aij is the interaction coefficient quantifying the effect of one population (i) on
the other (j).

Including the effect of competition between species into predictive models is a

needed step to achieve more accurate predictions. Indeed, the recent application of

bio-protective cultures as food preservatives and the need to know how endogenous

flora affects growth of pathogens in foods is increasing the attention of micro-

biologists to this area as models considering these factors might have important

applications in the food industry. Although between-species interaction models are

still incipient, the efforts made until now have resulted in suitable mathematical

models focused on the paramount inhibitory effect produced by the dominant

microbial population. Future trends in modeling the interaction between bacteria

species move toward a mechanistic approach considering bacterial growth in foods

from a more holistic perspective (Larsen et al. 2012).
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4.4 Single-Cell Models

Modeling the variability associated with the lag phase of microorganisms

constitutes a significant aspect of a microbial risk assessment. Previous research

in this field has widely demonstrated that variability sources are attributed to the

lag phase rather than to maximum growth rate (McKellar et al. 1997; Augustin

and Carlier 2000a). As already mentioned, growth of microorganisms in broth

media can underestimate lag phase because of ideal existing conditions. Simi-

larly, other additional factors such as inoculum level or pre-incubation

conditions (cell history) influence lag-phase values. As microbial contamination

of foods normally occurs at low levels, higher variability in lag phase is

expected, especially when cells are stressed (Robinson et al. 2001). In contrast,

higher population levels increase the probability of finding at least one cell to

start multiplication, originating shorter lag-phase values (Baranyi 1998).

Augustin et al. (2000) showed that the lag phase was longer when cells were

severely stressed and the inoculum level was lowered. This inoculum-level effect

can be explained by an increasing variability in individual cell lag phases when

stress factors become more stringent. Several authors have already studied the

effect of environmental conditions on the distributions of the individual cell lag

(Smelt et al. 2002; Métris et al. 2003, 2008; Francois et al. 2006). These

observations were confirmed by Métris et al. (2002) when the effect of salt

stress and acid stress on lag-time distributions of isolated L. monocytogenes cells
was investigated.

Moreover, studies at the single-cell level are needed to better quantify this

variability and predict microbial behavior in realistic conditions. The individual-

based approach of the lag phase is gaining interest, especially for pathogens that

initially contaminate food products in low amounts. In turn, this could be a major

drawback in predictive microbiology, because counting methods can only measure

cell concentrations higher than 10 cfu per sample. Inaccuracies in measurements

can cause difficulties in model validation. Growth modeling concentrates on the

early stages of microbial growth in the actual environment. The previous environ-

ment (i.e., pre-incubation conditions) can largely affect growth in the actual

environment, whose effect gradually decreases after inoculation: this is called the

adjustment process, as described by Baranyi (1998). After adjustment, an exponen-

tially growing population is established that ultimately reaches an upper limit

(stationary phase). This population limit is caused by the depletion of nutrients or

by the accumulation of waste products of metabolism.

Modeling at the single-cell level uses stochastic processes when variability

among individual cells is taken into account. An intrinsic feature of stochastic

processes is that one can obtain unexpected results. Relationships between the

individual lag-time distributions and the lag time of the bacterial population

show, for instance, that the doubling time depends on the number of cells, from

1/mmax, when the number of cells is 1, converging to ln2/mmax, at higher concentra-

tion levels (Baranyi and Pin 2001).
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The lag phase and subsequent growth before the stationary phase can be

modeled using a biphasic linear function:

lnðNtÞ ¼ lnðnÞ þ mmaxðt� LÞ (4.19)

where Nt is the population size at time t, n is the inoculum size, m is the specific

growth rate, and L is the population lag phase.

Malakar and Barker (2008) stated that individual lag phases of individual cells in

the inoculum, Li, are identically and independently distributed random variables.

Thus, the natural logarithm of the population with a sufficient long time is (when t is
higher than Li)

lnðNtÞ ¼ lnðnÞ þ m t� 1

m
ln

Pn
i¼1

e�m�Li

n

0
BB@

1
CCA

2
664

3
775 (4.20)

Then, from the biphasic growth model, the population lag time Kn, arising from

an initial inoculum of size n, is

Kn ¼ � 1

m
ln

Pn
i¼1

e�m�Li

n

0
BB@

1
CCA (4.21)

This formula shows that lag phase decreases with the initial cell number because

the exponentially growing subgenerations of cells with shorter lag phases will take

over the whole population.

The three-phase linear model proposed by Buchanan et al. (1997) has a physio-

logical basis. It is assumed that each individual cell has a certain lag phase, Li, and a
certain generation time, tm. Furthermore, the lag-phase duration of a single cell is

subdivided into two parts, namely, the adjustment period and the metabolic period.

During the first period, the cells adapt themselves to their new environment. The

metabolic period is the time needed for the cell to generate sufficient energy and

synthesize biological materials needed for cell replication.

To simulate transition between nongrowing and growing cells McKellar and

Knight (2000) developed a discrete–continuous model. This model combines a

discrete adaptation step, as a property of individual cells, with the continuous logistic

model for bacterial growth. An extension to a continuous–discrete–continuousmodel

included dynamic conditions formodeling population lag because mmax can change as

function of environmental conditions during the lag phase.

Baranyi and Pin (2001) described the mathematical relationship between the

individual and population lag phase. They concluded that distributions of individual

lag phases are different from the distributions of the population lag phases.
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However, at the current accuracy of available data, it is impossible to deduce the

distribution of the individual lag phases from a population growth curve. Moreover,

to study the distribution of lag times of individual cells, a large quantity of replicate

measurements is necessary. Consequently, the lag phase of individual cells cannot

be studied using traditional viable counts.

Automated turbidity measurements could provide a solution because they are

suited to producing a large quantity of replicate detection time measurements.

If each observed culture starts from a single cell, then the distribution of the

detection times should be close to the distribution of the lag times of the initial

individual cells, assuming that the specific growth rate is the same and constant for

each population engendered by a single cell (Métris et al. 2002, 2003).

In this sense, protocols to isolate single cells have been optimized by Francois

et al. (2003) for Lactococcus lactis, and subsequently developed for Listeria
monocytogenes (Francois et al. 2006), through the use of turbidimetric measure-

ments in microtiter plates. This method combined a high probability of having

single cells with a sufficient yield. A similar approach was followed by Guillier

et al. (2005) by assuming a Poisson distribution of the inoculated cells in the

microtiter wells to obtain single cells. Then, the growth of the population generated

by that cell can be detected and monitored by an automatic turbidimeter, such as the

Bioscreen (Labsystems, Finland). The time elapsed until the detection of growth is

used to derive the lag time for the original single cells.

Wu et al. (2000) compared the dilution method with a microscopy method

for determination of the lag time of L. monocytogenes and concluded that

microscopy provides accurate estimates of the lag time of single cells. The use

of microscopy has several advantages compared to the dilution method for the

determination of the lag phase of single cells. First, the microscopy method is a

direct method, allowing direct observation of the first cell division, whereby the

other is indirect; it is based on the (turbidity) detection time of the one-cell-

generated subpopulation. The calculation of the lag phase from detection times is

based on assumptions that are difficult to check. Also, the variation of the

subsequent generation times also contributes to the variation of the observed

detection times. The need for direct methods to study the lag phases of single

cells was also stressed by McKellar and Knight (2000). If a treatment results in

cells not dividing, the detection time-based methods can establish only ‘ND’

results (‘not detected’ within the observation time), whereas microscopy-based

methods can distinguish between dead and live cells (Wu et al. 2000). These

methods were used by other authors to evaluate the effect of preservatives on

Listeria innocua in solid agar surfaces (Rasch et al. 2007). Similarly, Guillier

et al. (2006) introduced a new method of the estimation of individual lag phases

based on the measurement of bacterial colony surfaces by an image analysis

procedure.

Wu et al. (2000) observed that the difference between lag times obtained from

microscopy data and lag times computed from (DT) data is that the former observes

when the cell effectively divides for the first time (tlag) and the latter observes when
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the cell biomass starts to grow, that is, increase in volume(s). Both lag values were

related by the equation:

Li ¼ tþ Dobt (4.22)

where Li is the mean individual cell lag time, t the adaptation time, and Dobt the

doubling time.

Stochastic approaches to study variability of individual cells at growth

boundaries were developed by Koutsoumanis (2008). He described that the non-

growing fraction of cells close to the growth boundary resulted in a delay of

population growth, which he called pseudo-lag. The environment determines the

extent of pseudo-lag whereas its variability is affected by both the inoculum size

and the growth conditions. At growth-limiting conditions the total apparent lag of

the population is a convolution of the pseudo-lag and the physiological lag of the

growing cells. These studies are becoming more interesting at conditions

approaching growth limits, where the variability of cell behavior increases.
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Chapter 5

Software and Data Bases: Use and Application

Abstract Obtaining data for improving food safety management systems is often

required to assist decision making in a short timeframe, potentially allowing

decisions to be made and practices to be implemented in real time. Collection,

storage, and retrieval of new data regarding microbial responses in foods gain

insight on the achievement of food safety management measures (i.e., food safety

objectives, performance objectives), avoiding the increase of fail-dangerous events.

The role of data bases in predictive microbiology has been widely demonstrated as

useful tools for the development of computing software or tertiary models, which

allow users to estimate growth, survival, or inactivation of food-borne pathogens

and spoilage microorganisms in different food matrices. Additionally, the fast

development of information and communication technologies (ICTs) has increased

the software tools available in predictive microbiology. These tools, named tertiary

models, are created for a wide range of applications and types of users: scientists,

food operators, risk managers, etc. Although early versions were designed as

standalone systems, nowadays on-line software is a major trend making tools

available everywhere to everyone through the Internet. In this chapter, descriptive

examples of data bases and software tools used in predictive microbiology are

explained.

Keywords Data base • ComBase • Sym’Previus • Microbial Response Viewer

• Pathogen Modeling Program • ComBase Predictor • Seafood Spoilage and Safety

Predictor • MicroHibro

5.1 The Data Base as a Source of Data for Modeling Purposes

As stated in the earlier sections of this brief, one of the main objectives pursued in

predictive microbiology is quantification of microbial responses in foods. However,

the complexity of the food environment has been recognized, which thus makes it

difficult to quantify or even to categorize some of its features and their potential
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# Fernando Pérez-Rodrı́guez and Antonio Valero 2013

75



effects on microbial population dynamics or the ability to recover a target organism

from a food sample. An additional difficulty is that, with the background informa-

tion on the environment and with currently available techniques to measure micro-

bial responses, both variability and uncertainty may be large (Ratkowsky 2004),

which can produce wider confidence limits and a reduction in the accuracy of

microbial estimates. It should be noted that predictive models themselves constitute

a simplification of the real biological responses of microorganisms affected by

different combinations of physicochemical and biological environmental factors.

When these factors are identified, the same simplification is carried out as when a

process is characterized by some mathematical variables.

Predictive microbiology software programs are based on data bases and mathe-

matical models. Behind predictive software programs are the raw data upon which

the models are built. The relationship between mathematical models and data bases

provides the fast comparison of large amounts of data under a standardized and

harmonized recording format.

A data base is a large collection of data organized in a specific form for rapid

search and retrieval. Creation of data bases in predictive microbiology can provide

a solution to inaccuracy in measurements, which can be compensated by increasing

their number, to variability in responses and to data exchange between different

research and academic institutions.

The largest and most used database, called ComBase (Combined, or Common,

i.e., joint, Database of microbial responses to food environments) was launched at

the Fourth International Conference on Predictive Modeling in Foods, Quimper,

France, June 2003. Its technical details can be read in Baranyi and Tamplin (2004)

and on the website (www.combase.cc).

This data base was developed in the Institute of Food Research, Norwich, UK

(IFR), to pool available predictive microbiology data. Soon, the leaders of FSA and

USDA-ARS agreed that incorporating all their data in this common data base would

be mutually beneficial. The European Commission also embraced the idea, and now

the original Food MicroModel and PMP datasets have been supplemented with

additional data submitted by supporting institutes, universities, and companies,

mainly from Europe.

Furthermore, data have also been compiled from the scientific literature and a

continuous updating process is carried out. The website is maintained by the IFR in

collaboration with the Food Safety Center, University of Tasmania, and the Eastern

Regional Research Center of the USDA Agricultural Research Service.

Accessibility and application of resources of data involves thousands of

researchers, risk assessors, legislative officers, food manufacturers, and their labo-

ratory managers at no expense.

Users can compare observations with independent predictions gained from other

software packages or with external data. If ComBase is accepted internationally as

the benchmark, the number of sources generating different views on risk can be

decreased (McMeekin et al. 2006).

In Fig. 5.1 can be seen a explanatory record in ComBase. The raw data are

organized in the data base and a browser is incorporated to facilitate data searching.
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Additional information about physicochemical factors, culture, media, and material

and methods followed are provided. Observed data (graphical representation and

numeric data) can be used for academic or scientific purposes.

Although ComBase contains a vast amount of data (more than 50,000 records),

sometimes it is not easy to obtain the desired information from the retrieved data,

especially the case of a growth/no growth interface, where variability is much

larger. However, Le Marc et al. (2005) showed an application of the use of

ComBase data within the MCP concept to generate growth/no growth models for

various pathogens.

For a better understanding of Combase information, a new ComBase-derived

data base was developed by Koseki (2009), named Microbial Responses Viewer

(MRV). The software can be accessed at http://mrv.nfri.affrc.go.jp/Default.aspx#/

About. A screen capture is presented in Fig. 5.2. The main objective is that food

processors or other interested partners can easily find the appropriate food design

and processing conditions from the retrieval of microbial growth/no growth data.

The response was defined as representing ‘growth’ if a significant increase in

bacterial concentration (>1.0 log) was observed. Alternatively, ‘growth’ was

defined as a positive value of the specific growth rate. The specific growth rate

is illustrated using a two-dimensional contour plot with growth/no growth data.

Fig. 5.1 Example of a detailed record in ComBase
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MRV provides information concerning growth/no growth boundary conditions and

the specific growth rates of queried microorganisms.

The software allows the user to rapidly view growth/no growth contour plots

superimposed by actual ComBase data. Contours of any two of three variables

(temperature, pH, and aw) can be visualized, while the third is held constant.

The Sym’previus project (www.symprevius.org) is an extensive decision

support system developed in France that includes a data base and simulation tools

for growth, survival, inactivation and growth/no growth interface of pathogenic

bacteria and some spoilage microorganisms. Consumer exposure can be evaluated

by means of a probabilistic module. Information from Sym’previus is available on a

commercial basis through contact centers as indicated on the homepage cited

above. Among the software features, a data base was built to integrate food,

bacteria, and environmental characteristics on microbial behavior concerning path-

ogenic germs able to contaminate food, and also epidemiological data (prevalence

or level of contamination in food).

The Sym’Previus network started in 1999. Sym’Previus meets the French exper-

tise in predictive microbiology of major food companies, technical centers, and

public research institutes. This project aimed at proposing an assisting tool in the

Fig. 5.2 Microbial Responses Viewer. Overview of the growth model of Escherichia coli in
culture media (upper part) and a contour plot (bottom part) of growth/no growth interface together
with a comparison with observed data retrieved from ComBase
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management of food safety. The data base is integrated into a query system, called

MIEL, a multi-criterion system that allows formulating specific interrogation with a

specific selection of food and microorganisms. MIEL crosses the user demand about

food, microorganisms, and environmental factors (Leporq et al. 2005). Therefore,

one can obtain the data most closely related to the searched information.

In a further step, a number of softwares called expert systems have been

developed to provide more complex decision support based on a set of rules and

algorithms for inference based on the relationships underlying these rules. In these

systems, the core knowledge is stored as a series of IF–THEN rules that connect

diverse evidence such as user input, data from data bases, and the formalized

opinions of experts into a web of knowledge. There are various examples of

decision support systems that encapsulate knowledge which is based in predictive

microbiology, such as those applied in predicting food safety and shelf life

(Zwietering et al. 1992); a stepwise system structured as a standard risk assessment

process to assist in decisions regarding microbiological food safety (van Gerwen

et al. 2000); or other systems for microbial processes as described by Schellekens

et al. (1994).

5.2 Fitting Software for Modeling Purposes

Nowadays, the great development of computational sciences and software

engineering have enabled obtaining user-friendly software that, based on specific

mathematical algorithms, are able to fit many types of mathematical function to

observations including qualitative and quantitative data. In predictive microbiol-

ogy, observations usually correspond to either counts describing microbial growth

and inactivation or kinetic parameter values obtained under different environmental

conditions. In such cases, different fitting procedures can be used depending on the

type of model and variable considered. As mentioned in a previous section, linear

and nonlinear regression methods are applied to data on the basis of the type of

mathematical function to be fitted. Most software incorporates both types of fitting

procedure and, in some cases, specific developments and algorithms are implanted

to optimize fitting procedure.

The MS Excel adding DMfit is a free software application for predictive

microbiology modeling developed by the Computational Biology group at Institute

of Food Research (Norwich, UK). The application is a Microsoft Excel Add-In to

fit log counts versus time data, providing kinetic parameters such as growth/death

rate and lag time/shoulder. The available primary models are the reparameterized

Gompertz equation (Zwietering et al. 1990) and the Baranyi model (Baranyi et al.

1995), including a modification for fitting optical density data. Furthermore, the

application includes a module to fit secondary models encompassing the gamma

model, Ratkwosky model, and polynomial models. The latest version of Dmfit can

be downloaded at the Combase website http://www.combase.cc/. In addition, there

is an on-line version, which can be executed in the Internet, including some basic
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features taken from the Excel macro. This version is also available through the

combase’s webpage.

GInaFiT is a freeware add-in for Microsoft Excel aimed to fit several inactiva-

tion models (Geeraerd et al. 2005) to experimental data provided by users in an

Excel spreadsheet. This application has been developed by the chemical and

biochemical process technology and control group (Biotec) at the University of

Leuven. The application includes a collection of the most representative inactiva-

tion models highlighting the log-linear model (e.g., Bigelow model), and the

Weibull model and its adaptations. The software can be downloaded on-line at

http://cit.kuleuven.be/biotec/downloads.php and once installed, executed in the

Microsoft environment. Similar to this application, an Excel macro developed by

Prof. M. Peleg of the Department of Food Science at University of Massachusetts

enables fitting the Weibull model to inactivation data. The macro files can be

downloaded at a specific website containing other similar macros concerning

predictive microbiology developed by Prof. Peleg’s research group (http://people.

umass.edu/~aew2000/GrowthAndSurvival/GrowthAndSurvival.html).

Symprevius is a decision-making tool based on predictive microbiology with

different features that is discussed in the next section. Among them, we highlight

here the growth-fitting model tool. This tool is able to fit primary and secondary

models to data provided by users based on the primary model function proposed by

Rosso (1995) and cardinal values-type secondary model (Rosso et al. 1995). The

application fits models applying a subroutine taken from R software’s so-called

‘nls’ function (Leporq et al. 2005). These tools are available on-line by simply

taking out a subscription at http://www.symprevius.org.

More specific subroutines have been developed by using R software. In relation

to this, the growth curve-fitting package, so-called ‘grofit,’ developed by Kahm

et al. (2010) is able to fit growth functions such as the logistic function, Gompertz

equation, modified Gompertz equation, and Richards equation studied in the work

by Zwietering et al. (1990).

More general statistical software can be also used by predictive microbiology

users to fit models. The most used software are from SAS (SAS Institute, Cary, NC,

USA), Matlab (Mathworks, Natick, MA, USA), SPSS (SPSS, Chicago, IL, USA),

or R (R Development Core Team), software that includes a multitude of fitting

options to perform linear and nonlinear regression procedures based on the maxi-

mum likelihood and least squares methods. For other more accessible alternatives,

users who are not familiar with complex statistical packages based on a specific

program language may turn to more user-friendly applications such as GraphPad

Prism software (GraphPad, San Diego, CA, USA) or TableCurve software

(SYSTAT Software, Richmond, CA, USA), which also allow fitting linear and

nonlinear functions.

Microsoft Excel (Microsoft, Redmond, WA, USA) is widely used by scientists

from different research areas. Predictive microbiology is not an exception and,

indeed, some curve-fitting tools are built in Excel, as already mentioned. Excel can

also be used to fit curves in a simple way by using the Solver function, which enables

one to find an optimal solution based on an iterative process and the constraints
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defined by users. Linear and nonlinear regression procedures can be applied in Excel

with the least squares method or the maximum likelihood method (Brown 2001).

The optimal solution, that is, the values of regression parameters that best fit the

observations, can be found by combining search algorithms (e.g., Newton and

conjugate methods) and algorithms for providing initial estimates of variables

(e.g., tangent and quadratic methods), which can be chosen according to the type of

function to be fitted and available computational resources (Walsh and Diamond

1995). Some examples of Excel applications to fit nonlinear functions have been

shown in predictivemicrobiology literature (Koutsoumanis et al. 2006; Corradini and

Peleg 2007). For predictive microbiology beginners who desire to deepen the use of

Excel for fitting growth curves, we would recommend reading thoroughly the book

by Billo (2007), which presents in an understandable way the main applications of

Excel in science.

5.3 Prediction Software: Some Examples

The introduction and rapid spread of information and communications technologies

(ICTs) have also reached predictive microbiology. During the past few years,

numerous software concerning predictive microbiology (e.g., tertiary models) has

been developed, covering a wide range of applications and type of users: scientists,

food operators, risk managers, etc. Although early versions were designed as

standalone systems, nowadays, on-line software is a major trend, making tools

available everywhere to everyone through the Internet.

The Pathogen Modeling Program (PMP) and ComBase Predictor can be consid-

ered to be the pioneering software about application of predictive microbiology

models. Both applications are based on the same philosophy, to make available

unpublished and published models developed by official organisms and scientists by

incorporating them into an easy-to-use software tool for end-users. PMP software is

developed by the U.S. Department of Agriculture-Agricultural Research Service

(USDA-ARS) and particularly at the USDA-ARS Eastern Regional Research Center

(ERRC) in Wyndmoor, Pennsylvania. The distribution of the application started in

the 1990s and has continued to the present time. PMP is built upon predictivemodels

developed by USDA, which mainly are growth and inactivation (irradiation and

pasteurization) models for different pathogenic bacteria (Listeria monocytogenes,
Escherichia coli O157:H7, Bacillus cereus, etc.). The primary models in PMP are

based on the Gompertz equation (Zwietering et al. 1990). Users are provided with

estimates of generation time, lag time, kinetic curve graphs, and their confidence

intervals for the selected values of environmental factors (Fig. 5.3). The PMP

software, which is now in its seventh version, PMP 7.0, can be downloaded at the

PMP website http://www.ars.usda.gov/Services/docs.htm?docid=11550. Recently,

PMP has launched an on-line version of PMP software using a selection of the

predictive models included in the standalone version in addition to new developed

models, among which we can highlight the module dealing with transfer models.
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ComBase Predictor is a free on-line tool, as is PMP online which enables us to

predict the response of different types of bacteria to key environmental factors in

food (temperature, pH, salt concentration, etc.). ComBase Predictor has been devel-

oped at the Institute of Food Research (Nowrich, UK). Also, predictive models were

developed by this research group on the basis of kinetic data obtained in culture

broth. This application is the successor to the UK Food MicroModel program

described by McClure et al. (1994). The primary model used by ComBase Predictor

is the Baranyi’s model (Baranyi and Roberts 1994), and the secondary models are

polynomial equations relating environmental factors and kinetic parameters.

In contrast to PMP, Combase Predictor software predicts growth and survival of

microorganisms as a function of temperature, pH, and salt concentration, including

in some cases the effect of a fourth environmental factor, such as the concentration

of carbon dioxide or organic acids (Fig. 5.4). In addition, ComBase Predictor also

includes spoilage microorganisms such as certain species of lactic acid bacteria. As

an important feature of this software, which makes it different from PMP, is that

ComBase Predictor allows predictions under dynamic temperature, permitting

introducing time–temperature profiles for all microorganisms considered in the

application. Therefore, users are able to introduce data recorded by temperature

loggers obtaining growth or inactivation predictions for the introduced profile.

Furthermore, ComBase Predictor can simultaneously produce predictions for up to

four microorganisms. The application is accessible on-line after registration at the

ComBase website (www.combase.cc).

Fig. 5.3 Screen from the Pathogen Modeling Program (PMP)
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Another important prediction software is the Seafood Spoilage and Safety Pre-

dictor (SSSP), which exclusively deals with predictive models for seafood and fish

products. The application was developed by the DTU National Institute of Aquatic

research. In a first version, the application only contained spoilage predictivemodels

for different types of seafood products (smoked salmon, shrimps, etc.), which was

known as the Seafood Spoilage Predictor (SSP). The current format of SSSP,

launched in 2004, incorporates a food safety option focused on Listeria mono-
cytogenes growth (Gimenez and Dalgaard 2004). The main features of the SSSP

software are (1) inclusion of the relative rate of spoilage models for products from

temperate and tropical waters based on sensory analysis, (2) spoilage models based

on growth of microorganisms such as Photobacterium phosphoreum and

Shewanella putrefraciens, (3) predictions under dynamic conditions of temperature

using time–temperature profiles from data loggers and user-defined predictive

Fig. 5.4 Screen from ComBase predictor
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models based on the cardinal-type model approach (Mejlholm and Dalgaard 2007).

The SSSP software can be downloaded at the website of DTU National Institute

of Aquatic Research (http://sssp.dtuaqua.dk). The latest version corresponds to

SSSP v. 3.1, which is translated into several languages including English, Spanish,

and Chinese.

Symprevius is another software tool available on-line developed by INRA

(French National Institute of Agricultural Research) and other public and private

partners that includes several predictive microbiology functionalities (Leporq et al.

2005). This application requires a commercial subscription for full access. Basi-

cally, Symprevius allows making predictions concerning growth, inactivation, and

growth/no-growth interfaces for different microorganisms and foods under statis-

tics and dynamic conditions. Similarly, it permits including a stochastic component

in variables to represent variability and uncertainty in estimates. In addition,

specific tools are specially designed for strengthening HACCP systems and devel-

oping new products or determining shelf life. The application can be accessed at

www.symprevius.net.

As already mentioned, predictive models are equations or mathematical

functions that are derived from experimental data to provide estimates of microbial

response in real systems. However, it is well known that predictive models and

particularly complex mathematical functions are not accessible for nonexpert users.

Hence, when models are built, an applicability component should be incorporated

making the model ready to apply. Computing sciences and software engineering

allow us to provide models with an applicability component, converting models not

only in suitable function describing observation, but rather tools to be applied by

end-users. A new prediction on-line software tool was launched in 2012, developed

by the Predictive Microbiology Group at University of Córdoba. The application

incorporates different predictive models for a variety of microorganisms and foods,

enabling users to obtain growth and inactivation predictions under selected envi-

ronmental conditions (Fig. 5.5). The application, so-called MicroHibro, claims a

new dimension for predictive models concerning its application and usability.

MicroHibro allows including any type of mathematical function enabling its easy

update and making the tool dynamic and renewable. The on-line application can be

freely accessed after user registration at http://www.microhibro.com. Because

MicroHibro is an on-line tool, users can save its own predictive models and

predictions in a virtual account, which can be accessed anytime and anywhere to

retrieve saved data. MicroHibro also incorporate a validation module to allow users

to assess available models using their own data. Finally, the application applies a

stochastic approach intended for risk assessors to carry out probabilistic risk models

based on an object-oriented system and allowing defining environmental factors as

probability distributions. Results are displayed using a suitable graphic interface to

improve interpretability and data analysis.

The increasing interest in predictive software tools has produced a multitude of

specific prediction software tools, focused on determined food categories or indus-

trial sectors. Even private companies such as PURAC have developed prediction

software tools for Listeria (Opti. Form, Listeria Suppression Model, and Listeria
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Control Model). In general, PURAC software tools deal with L. monocytogenes
growth, including, as factors, preservatives commercialized by PURAC and

other environmental factors influencing Listeria growth. PURAC offers this tool

(as adding value to their products) to help users and customers obtain safer product

formulations. Some of these applications can be freely downloaded at the PURAC

website http://www.purac.com/EN/Food/Purac-Calculators/Listeria-Control-

Model.aspx with previous registration. Similarly, Campden and Chorleywood Food

Research Association, Chipping Campden, UK, commercializes a software tool for

estimating shelf life and formulation of bakery products. More recently, two works

by Psomas et al. (2011, 2012) presented a standalone software tool, the so-called

UGPM (Unified Growth Prediction Model), based on Visual Basic programming

language. The application provides predictions of microbial growth in foods under

dynamic or static temperature conditions. In particular, the UGPM software applies

the primary model of Baranyi and Roberts (1994), in combination with secondary

temperature models, to simulate growth of a spoilage and pathogenic bacteria

(Staphylococcus aureus, L. monocytogenes, and lactic acid bacteria) during storage
of a specific food or food category (e.g., cheese and cooked meat products). UGPM

is built upon a specific mathematical algorithm to estimate growth under dynamic

conditions on the basis of Baranyi’s growth model (Baranyi and Roberts 1994). This

software can be freely downloaded at the authors’ website: http://users.uoa.gr/�
apsomas and http://www.aua.gr/psomas.

Fig. 5.5 Screen from MicroHibro software

5.3 Prediction Software: Some Examples 85

http://www.purac.com/EN/Food/Purac-Calculators/Listeria-Control-Model.aspx
http://www.purac.com/EN/Food/Purac-Calculators/Listeria-Control-Model.aspx
http://users.uoa.gr/~apsomas
http://users.uoa.gr/~apsomas
http://www.aua.gr/psomas


Chapter 6

Application of Predictive Models

in Quantitative Risk Assessment

and Risk Management

Abstract Food-borne pathogens associated with food products are a major

concern of both industries and governments; thus, design of proper risk mitigation

and elimination strategies is required. Currently, the great development showed by

the scientific method and the tendency to optimize processes through its systemati-

zation has led to the necessity to unify and standardize food safety management

processes. With this, it is not intended to abandon the approach that has prevailed

historically, based on consultations of experts and use of ‘default values’ (conser-

vative control limits and measures which establish the guarantee of the safety of a

process or food), but complete foundations to improve its result through a structured

approach based on scientific facts. In this respect, the World Trade Organization

(WTO) (The WTO agreement on the application of sanitary and phytosanitary

measures (SPS Agreement), 1995), according to the agreements of the General

Agreement on Tariffs and Trade (GATT) and Sanitary and Phytosanitary Measures

(SPS), proposes that to ensure fair and safe international trade, standards and

harmonized food regulation need to be established, based on a scientific and

rigorous approach, recommending for that the application of methods of risk

assessment. Application of predictive models within a risk assessment framework

is presented throughout this chapter.

Keywords Risk analysis • Quantitative microbiological risk assessment • Modular

process risk model • Food Safety Objective • Performance Objective • Uncertainty

• Variability • Probability distributions

6.1 The Risk Analysis Framework

The process of conducting a Microbial Risk Assessment is a structured, systematic

approach to integrate and evaluate information from diverse sources concerning the

origin and fate of pathogens along the food chain and to determine the magnitude of
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public health risks. In addition, predictive microbiology can help risk assessors and

risk managers to make decisions concerning risk mitigation in food products

because it is possible to know the microbial behavior in a medium, or in a food

through different mathematical models, as a function of certain intrinsic or extrinsic

environmental factors.

FAO/WHO (Food Agriculture Organization/World Health Organization) taking

the lead fromWTO in 1995, introduced, through meetings of experts, the concept of

risk analysis as a systematized and ‘rational’ scheme in which the development

of food standards on national and international scale is based (FAO/WHO 1995).

This approach also could be followed by food industries and food companies, even

though in this case its development is mainly intended to improve the Hazard

Analysis and Critical Control Points (HACCP) programs and to assess, from the

bio-sanitary point of view, new designs and novel products (van Gerwen and Gorris

2004; Voysey 2000). This food safetymanagement approach has been completed and

developed through the inclusion of other concepts such as the Food Safety Objective

(ICMSF 2002). The use of predictive modeling will help in choosing the most

appropriate levels of factors to be used to meet target management measures. The

main achievement within a HACCP system lies on setting quantitative levels, which

can be transmitted to governments and national authorities to improve food safety.

The Risk Analysis, according to the FAO/WHO (1995), consists of three

components (Fig. 6.1): RiskAssessment, RiskManagement, andRiskCommunication.

Risk assessment is ‘the qualitative and/or quantitative evaluation of the nature of

the adverse effects associated with biological, chemical, and physical agents which

may be present in food’ (FAO/WHO 1995). Risk assessment is structured in four

steps: Hazard Identification; Hazard Characterization, Exposure Assessment, and

Risk Characterization. The document entitled Principles and Guidelines for the

Risk assessment

Risk communication

Risk management

• Risk identification

• Exposure assessment

• Hazard characterization

• Risk characterization

• Assessment of risk
management strategies

• Selection and
implementation of
adequate risk management
actions 

Interactive opinion and information exchange

Fig. 6.1 Interaction between the elements of risk analysis (FAO/WHO 2006)
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Conduct of Microbiological Risk Assessment (Alinorm 99/13A) provided specific

definitions for the four steps of Microbiological Risk Assessment:

1. Hazard Identification. ‘The identification of biological agents capable of causing

adverse health effects and which may be present in a particular food or group of

foods’.

2. Hazard Characterization. ‘The qualitative and/or quantitative evaluation of the

nature of the adverse health associated with the hazard’.
3. Exposure Assessment. ‘The qualitative and/or quantitative evaluation of the

likely intake of a biological agent via food, as well as exposure from other

sources if relevant’.
4. Risk Characterization. ‘The process of determining the qualitative and/or quanti-

tative estimation, including attendant uncertainties, of the probability of occur-

rence and severity of known or potential adverse health effects in a given

population based on hazard Identification, Hazard Characterization and Exposure

Assessment’.

The variety of the necessary knowledge to manage correctly a risk assessment

requires a cross-disciplinary team(microbiology, epidemiology,medical science, food

technology, etc.) that can handle appropriately the available scientific information.

Risk assessment is the basis of the following component in the risk analysis

framework, that is, the risk management. Risk management is defined by the

FAO/WHO (1997) as ‘the process of weighing policy alternatives in the light of

the results of Risk Assessment and, if appropriate, selecting and implementing

appropriate control options including regulatory measures.’ On this basis, the

Codex Alimentarius has developed its own procedure to elaborate Codex Standards

(FAO/WHO 2001).

The last component of the risk analysis is risk communication, defined as ‘an

interactive exchange of information and opinions concerning risk among risk

assessors, risk managers, consumers and other interested parties’ (FAO/WHO 1998).

These three components should be functionally separated to avoid whatever type

of conflict of interest. Nevertheless, it has to be considered that, at the same time,

the risk analysis is an interactive process in which the interaction between risk

assessor and risk manager, with regard to its practical application, is essential

(Fig. 6.1) (FAO/WHO 2006).

The risk analysis process should be evaluated and reviewed as appropriate, with

the aim of generating new scientific data. Similarly, the principle of precaution

should be followed as many sources of uncertainty exist in the process of risk

assessment and risk management of foods related to human health. Thus, the

reported results may state the degree of uncertainty assumed in each option and

the characteristic of the hazard. More principles are described in detail by the

Codex Alimentarius (2007).

Recently, FAO/WHO have published a guideline to support countries in applying

risk analysis principles and procedures during emergencies in their own national

food control systems, as risk analysis as a key component of national Food Safety

Emergencies Response planning (FAO/WHO 2011). It is concluded that the
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application of risk analysis during an emergency should follow the same principles

applied under normal circumstances in each country. The only differences in an

emergency situation are the factors affecting the decision making, which could

include time pressure, the likelihood of increased uncertainty, an increased need

for multiagency collaboration, involvement of officials at a higher level, and a strong

demand for timely communication.

The main output of these policies in food safety is to define the acceptable level

of a microbial hazard, which was previously expressed as a level that is ‘As Low As

Reasonably Achievable’ (ALARA). For many years, the ALARA has been applied

in the food industrial sector to guarantee safe food production. The basis of this

approach is that if the food industry could improve constantly, the risk will be

reduced. However, to meet a specific public health goal a certain level of technical

capability and willingness of industry is necessary, and “reasonably achievable”

may not be enough to see a real reduction in disease, or it is only linked to disease

reduction in a general sense (Todd 2004). Also, ALARA is an ambiguous concept

that can differ among countries and industrial sectors, just as occurs with techno-

logical capacity (Toyofoku 2006).

The agreement of SPS (WTO 1995) states that members have the right to adopt

SPS measures to achieve their self-determined health protection level. This level is

defined as ‘Appropriate Level of Protection’ (ALOP), and it is estimated for the

member (country) establishing a sanitary or physosanitary measurement to protect

the lives or the health of humans, animals, or plants within its territory. In the

context of food safety, an ALOP is a statement of the degree of public health

protection that is to be achieved by the food safety systems implemented in a

country. Typically, an ALOP would be articulated as a statement related to the

disease burden associated with a particular hazard–food combination and its con-

sumption in a country. It is often framed in a context of continual improvement in

relationship to disease reduction (FAO/WHO 2002).

The ALOP is not the most adequate concept to develop and implant the neces-

sary control measurements throughout the food chain (Havelaar et al. 2004). The

terms in which the ALOP is expressed do not form part of the ‘language’ that the

industry or the other operators of the food chain use for food safety management

(Gorris 2005). Therefore, the ICMSF (2002) proposes the creation of a new

concept, the Food Safety Objective (FSO). The ICMSF (2002) defines FSO as

‘The maximum frequency and/or concentration of a hazard in a food at the time of

consumption that provides or contributes to the appropriate level of protection

(ALOP).’ The FSO, as an objective, allows large flexibility in designing and

implementing control measurements throughout the food chain (Zwietering

2005). The FSO can be understood as a more or less complex system of objectives

that industrials and other operators of the food chain use as a criterion to select and

develop the most adequate control measures (Fig. 3.1).

The principal strength of the new framework of microbiological food safety

management lies in its structure, based on a system of ‘quantifiable’ objectives,

that, first the ICMSF (2002) and later the FAO/WHO (2004), had tried to delimit
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and define through different concepts. The two first concepts are defined here as

proposed by FAO/WHO (2004):

• Performance Objective: ‘The maximum frequency and/or concentration of a

hazard in a food at a specified step in the food chain before the time of

consumption that provides or contributes to an FSO or ALOP, as applicable.’
• Performance Criteria: ‘The effect in frequency and/or concentration of a hazard

in a food that must be achieved by the application of one or more control

measures to provide or contribute to a PO or an FSO.’

These terms and concepts must again be translated to others that food operators

can understand, which are the process criteria and product criteria. van Schothorst

(2002) defined the process criteria as the control parameters (e.g., time, temperature,

pH, aw), as a step that can be applied to reach an efficiency criteria. In an HACCP

context these would correspond with the control limits of a process (Jouve 1999) and

are defined as the parameters of a food product that are essential to assure that a FSO

will be reached (van Schothorst 2002, 2005). This set of objectives, criteria, and

limits can be considered in the HACCP programs and GMP/GHP guides to finally

achieve in this way a FSO (van Schothorst 2005).

To determine performance criteria, the inequation proposed by the ICMSF

(2002) can be applied. The inequation, in a few words, considers the effect of

different processes and sub processes along the food chain (growth, inactivation,

cross-contamination, etc.) to reach an FSO:

H0 þ
X

I þ
X

R � FSO (6.1)

H0 is the initial population of microorganisms, I is a factor of increase, and R is a

factor of reduction. The terms are expressed in log10.

In the next sections, the integration of predictive microbiology within these risk

management concepts is explained.

6.2 Quantitative Microbial Risk Assessment

Needs Predictive Models

Microbial Risk Assessment (MRA) can be defined as a scientific approach intended

to estimate the microbial risk associated with food-borne pathogens (Codex

Alimentarius Commission 1999). Lammerding and Paoli (1997) pointed out that

MRA assesses the impact of changes and trends in the food supply chain; thus, MRA

should be able to predict how active or passive changes during processing, distribu-

tion, and consumption of foods affect public health. By taking a quantitative approach

(i.e., using numerical information), MRA yields more accurate estimations reducing

misinterpretation or bias when risk managers use this information. In general,

Quantitative MRA (QMRA) is preferred to qualitative MRA, when necessary data

and quantitative information are available (Lammerding and Fazil 2000).
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QMRA aims to quantitatively describe the effect of food processes, from farm to

fork, on microbial risk. To this end, microbial prevalence (e.g., percent of

contaminated servings) and concentration (e.g., log cfu/g) along the food chain

should be quantified. However, some limitation arises because of the lack of

knowledge or information, for example, during pasteurization when pathogen

levels are reduced to undetectable levels at which microbiological analysis is not

effective or also at the moment of consumption where performing a quantitative

analysis is not feasible in a practical sense (Lammerding and Fazil 2000). Thus,

predictive models should be incorporated into QMRA to estimate the quantitative

effect of determined steps or stages along the food chain for which no data are

available or data collection is difficult. Perhaps the work that best summarizes this

approach is one of the first published works approaching QMRA and predictive

microbiology in a strict sense, which was carried out by Cassin et al. (1998). In this

work, different predictive models are applied to estimate the final risk by

Escherichia coli O157:H7 associated with consumption of beef hamburgers in the

U.S. population.

Of the four components constituting MRA methodology, two components

require an important contribution of predictive models, that is, hazard characteriza-

tion and exposure assessment. Hazard characterization is mainly based on applying

dose–response models. This type of model establishes a mathematical relationship

between ingested dose of the food-borne pathogen and host response in terms of

probability of infection, illness, or death (Buchanan et al. 2000). Information from

outbreaks, epidemiological studies (Strachan et al. 2005), and experimentation with

animal and humans (studies in vivo) are used to derive dose–response models,

although important limitations are associated with this kind of studies because of

ethical issues, scarcity of information, natural variability, etc. Different types

of dose–response model can be developed and applied in QMRA studies; many

of these are thoroughly reviewed in the book by Haas et al. (1999). Nonetheless,

dose–response modeling still needs important advances to provide more reliable

and accurate models. Therefore, new modeling strategies are being proposed, such

as the Key Events Dose–Response Framework (KEDRF), which is an analytical

approach to model dose–response relationships on the basis of existing information

(Buchanan et al. 2009; Julien et al. 2009).

In quantitative exposure assessment, predictive models are intended to describe

prevalence and concentration changes at different stages along the food chain

(Klapwijk et al. 2000). In other words, the final goal of an exposure assessment

study is to know the exposure level to a pathogenic microorganism in terms of

prevalence and concentration at the moment of consumption. In this case, predic-

tive microbiology can provide suitable models to better describe different bacterial

processes in food-related environments, such as bacterial growth and inactivation

(e.g., pasteurization), bacterial transfer (e.g., cross-contamination during handling

of foods), and growth probability under determined storage and preservation

conditions. Many of the models presented in previous chapters can be now used

in a more applicable context to determine the risk associated with certain food(s)

and pathogenic microorganism(s). Although important efforts have been made to
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agree on a standardized methodology (van Gerwen et al. 2000; FAO/WHO 2008;

Bassett et al. 2012), the application of predictive models in QMRA studies is still a

complex task, a blend of science and art when information is scarce or data are not

conclusive.

Basically, quantitative exposure assessment studies follow a systems approach

to represent each food process in the food chain (Lindqvist et al. 2002; Nauta 2003;

Pérez-Rodrı́guez et al. 2006; Carrasco et al. 2010; Tromp et al. 2010). First, a clear

representation of the scope of the exposure assessment should be defined according

to the requirements or questions to be answered by the QMRA study. Then, the

most significant steps in the selected food chain are considered and often

represented in a process diagram (Fig. 6.2). For each step, quantitative data or

predictive models can be applied to estimate the attendant change of concentration

and prevalence of the studied microorganism. Thus, the model output of a previous

step would be the model input of a subsequent step in the food chain and so on until

the final step is reached in which the final exposure to the pathogen is estimated.

An interesting example of exposure assessment methodology is the Modular

Process Risk Model (MPRM) (Nauta 2001, 2003, 2005). This methodology is a

development of the process risk model presented by Cassin et al. (1998). Basically,

this approach proposes that any step throughout the food chain can be described

mathematically through six basic processes: growth, inactivation, mixing, parti-

tioning, removal, and cross-contamination (Table 6.1). In this methodology, a

systems approach is taken in which the food chain to be modeled is compart-

mentalized considering the six basic processes. Through the application of six types

of models, an accurate estimation can be made of the level of exposure to a pathogen

from a specific food process. According to Nauta (2001), the model of exposure

assessment should be divided into small parts, as many as necessary to express the

Initial contamination 

Pasteurization 

Handling and preparation 

Distribution and retail 

Consumption 

Initial prevalence and
concentration

Final prevalence and
concentration

Inactivation model

Transfer model

Growth model

Fig. 6.2 Example of process diagram for an exposure assessment model using specific predictive

models for describing microorganism transmission along the represented food chain
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logic between the variables and thus model as accurately as possible the relationship

between them, all in accordance with the purposes or objectives of the assessment.

Themain advantageof thismethod lies in the systematization and simplificationof the

model creation process.

To estimate the final risk (e.g., probability of becoming ill or number of cases

associated with a microorganism and food), the dose–response model and the expo-

sure assessment model should be combined by entering the dose (prevalence and

concentration) estimated by the exposure assessment model into the dose–response

model equation. Several methodological approaches have been proposed to carry out

this mathematical procedure, some of which have been studied in detail in more

specific works (Pérez-Rodrı́guez et al. 2007b, 2011).

In conclusion, QMRA methodology is a relatively recent research area, which

requires predictive microbiology models. In spite of the aforementioned advances

during the past years, there are still several methodological questions to be ans-

wered regarding how models may be applied to obtain a more accurate and precise

risk estimation. How rare events (i.e., sporadic cases) can be incorporated in risk

assessment studies and how predictive models can help to address this issue are

examples of such new challenges faced by risk assessors (Oscar 2011). Therefore,

the development of new and innovative predictive models is needed to improve the

QMRA studies and fill in the existing and forthcoming data gaps.

6.3 Uncertainty and Variability

6.3.1 Definition of Uncertainty and Variability

Although the terms variability and uncertainty may be easily confounded, they are

distinct concepts defined within a decision-making context (NRC 1994). Variability

refers to temporal, spatial, or interindividual differences (heterogeneity) in the

value of an input (Cullen and Frey 1999). For example, variability might refer to

Table 6.1 Qualitative effect of the six basic processes proposed by Nauta (2001) on prevalence,

concentration, and portion size

Process

Effect on the fraction

of contaminated units

Effect on the total number

cells over all units

Effect on

unit size

Growth ¼ + ¼
Inactivation � � ¼
Mixing + ¼ +

Partitioning � ¼ �
Removal � � ¼
Cross-contamination + ¼/+ ¼
‘¼’ no effect, ‘+’ increase ,‘�’ decrease

Source: Adapted from European Commission (2003)
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differences in the growth capability between bacterial strains, or in the consumption

patterns among consumers. In general, variability cannot be reduced by additional

studies or measurements. In contrast, uncertainty is the level of ignorance about an

unknown quantity because of analytical limitations or low precision of a measure-

ment system. Therefore, uncertainty can be reduced by increasing the number of

analyses or improving measurement precision (Cullen and Frey 1999).

To quantify both components in variables, statistical indexes can be applied,

such as standard deviation or coefficient of variation. However, if more detail is

required concerning how the variability and uncertainty of a variable behave,

probability distributions should be used describing the probability or frequency of

occurrence for each possible value of the studied variable. However, the interpreta-

tion of the distributions differs in each case. Usually, variability is represented as

distributions of frequencies that provide the relative frequency of values from a

specific interval. In turn, uncertainty is accounted for by a set of probability

distributions, which reflect the degree of belief, or subjective probability that a

known value is within a specified interval.

6.3.1.1 Uncertainty and Variability in Predictive Models

As already known, predictive models are not as accurate as would be required by

risk managers or, in general, by end-users. Predictions are often far, in a certain

extent, from observed microbial response, even though in many instances that is

considered admissible. Many factors are responsible for such lack of accuracy,

among which we highlight experimental error (e.g., experimenter variability),

biological variability (e.g., intra- and interbacterial strain variability), measurement

error (e.g., plate counting error), uncontrolled factors (antimicrobial substances in

foods), and the food matrix used. Accordingly, prediction models are strongly

associated with an important variability and uncertainty component, which should

be adequately addressed when models are developed and applied.

During the past few years, some authors have stressed the importance of

considering variability and uncertainty when kinetic models are developed (Nauta

2000). In some cases, experimental error derived from plate counting has been

incorporated by using probability distributions combined by a Monte Carlo

approach (discussed next) (Poschet 2003). With this approach, authors obtained

different multiple values for the kinetic parameters (e.g., growth rate) whose

variations were described with probability distributions (i.e., normal distribution).

In a study by Membré et al. (2005), the variability resulting from the bacterial

strains for different bacterial species was studied regarding its effect on growth rate,

resulting in estimation of the 95% confidence interval for the obtained growth

curves. In this respect, the use of confidence intervals and prediction limits should

be further encouraged to better know the uncertainty and variability associated with

predictions in addition to facilitating validation process in foods. The use of

Bayesian techniques have been also proposed to incorporate variability and uncer-

tainty in growth predictive models (Pouillot et al. 2003). Another important issue to
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be addressed is the separation between variability and uncertainty caused by its

relevance in decision-making processes (Pérez-Rodrı́guez et al. 2007a), even

though, in some situations, to separate variability and uncertainty in the microbial

response variation is not sufficiently clear (Nauta 2000). An interesting and illus-

trative dissertation about this issue was carried out in great detail by Nauta (2007).

6.3.2 Uncertainty and Variability in QMRA

QMRA can be addressed from two different approaches: point-estimate and proba-

bilistic. The first approach concerns use of point-estimate values to describe variables

of the model (Lammerding and Paoli 1997). With a deterministic approach only

individual scenarios are analyzed, which can correspond to aworst-case, best-case, or

average-case scenario depending on the type of point-estimate selected (i.e., average,

maximum, minimum value). In the second approach, variables are defined with

distributions of probability representing uncertainty and/or variability in variables.

Both approaches enable supporting adequate decisions in decision-making processes,

although by considering variability and uncertainty, a more complete estimate can be

obtained because all possible scenarios are being considered through the use of

probability distributions. Hence, an increasing number of probabilistic risk assess-

ment studies has been published during the past few years (Lindqvist et al. 2002;

Pouillot et al. 2007; Pérez-Rodrı́guez et al. 2007b; Tromp et al. 2010). In relationship

to these two components, variability and uncertainty, QMRA models can be classi-

fied as first- or second-order models (with one or two dimensions, respectively)

(Hoffman and Hammonds 1994). First-order or one-dimensional models do not

establish a separation between both components, in such a way that variability and

uncertainty are expressed by a single probability distribution. Second-order or two-

dimensional models, on the other hand, apply more than one distribution for any one

variable (Vose 2000). In these cases, variability is explained with the values

contained in each probability distribution and uncertainty is considered as a set of

probability distributions. Second-order models are preferred as the decision-making

process is greatly benefited by this approach (Cox andRicci 2005). In spite of this, the

number of studies on separation between uncertainty and variability is still scarce

(Delignette-Müller et al. 2006; Pérez-Rodrı́guez et al. 2007b; Pouillot and

Delignette-Muller 2010; Ottoson et al. 2011), mainly because high-quality data and

information are required to discriminate between the two components.

6.3.3 Operating with Probability Distributions

The most used techniques to propagate uncertainty and variability in a probabilistic

food risk assessment model comprise classic statistics and numerical methods

(Vose 2000). The method of moments is a classical method that can be applied to
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propagate information about uncertainty and variability on the basis of the

properties of mean and standard deviation of input values. However, this method

is only valid when input values are distributed normally. By contrast, the algebraic

method can be applied even when other types of distributions than the normal

distribution are used to characterize uncertainty and variability; however, this

method is limited to specific distributions, which are not usually used in risk

assessment studies. The Monte Carlo analysis is a numerical method that allows

propagating numerous types of probability distributions in risk assessment studies

based on the random sampling processes of each distribution. This method has

become quite popular among food risk assessors and managers by the existence of

commercial software, which enables an easy application by users who are not

advanced practitioners in numerical methods.
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Chapter 7

Future Trends and Perspectives

Abstract New methodologies have been proposed to be incorporated in predictive

microbiology in foods and quantitative microbial risk assessment (QMRA) to

achieve more reliable models and facilitate predictive model applications. The

meta-analysis is one of the proposed strategies focused on a systematic analysis

of a large collection of data with the intention of generating standardized and

summarized information to produce a global estimate. This data analysis approach

can be applied to better understand the relationship between environmental factors

and kinetic parameters or to input QMRA studies to assess the effect of a particular

intervention or treatment concerning food safety. The emergence of systems biol-

ogy is also affecting predictive microbiology, offering new and more mechanistic

approaches to yield more reliable and robust predictive models. The so-called

genomic-scale models are built on a molecular and genomic basis supported by

experimental data obtained from the genomic, proteomic, and metabolomic

research areas. Although the existing gene-scale models are promising regarding

prediction capacity, they are still few and limited to specific model microorganisms

and situations. Further research is needed, in the coming decades, to complete

omics information and thus to produce more suitable models to be applied to real-

world situations in food safety and quality.

Keywords Meta-analysis • Stepwise process • Data bases • Systems biology

• Genomic-scale models • Flux balance analysis (FBA) • Network analysis

• Objective function

7.1 Introduction

7.1.1 Meta-Analysis Approach and Benchmarking Data

As previously explained, Quantitative Microbial Risk Assessment (QMRA) is an

iterative process that gives insight into setting microbiological criteria and

F. Pérez-Rodrı́guez and A. Valero, Predictive Microbiology in Foods,
SpringerBriefs in Food, Health, and Nutrition 5, DOI 10.1007/978-1-4614-5520-2_7,
# Fernando Pérez-Rodrı́guez and Antonio Valero 2013
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identifying the most relevant factors along the food chain. However, it is recognized

that the great amount of data required is the most important drawback to be

implemented. Also, as a multidisciplinary area, data processing is becoming more

difficult as information is reported in a heterogeneous form. The need to account for

variability and uncertainty sources together with the characterization of the main

statistical distributions to describe the data leads to the creation of alternative tools

to integrate these findings and provide a global estimate. A meta-analysis is a

systematic analysis of a large collection of data from individual studies aiming to

integrate the information generated in a QMRA study and to produce a global

estimate of the effect of a particular intervention or treatment (van Besten and

Zwietering 2012). This technique has been more extensively used in food microbi-

ology and can give an improved understanding of main and side effects on

microbiological kinetics (Ross et al. 2008).

To start the application of a meta-analysis approach, a sufficient number of data

should be generated. Gonzales-Barron and Butler (2011) suggested a stepwise

procedure to meta-analysis consisting of (1) systematic review; (2) data extraction

to collate quantitative and qualitative information from the primary studies; (3)

selection of the appropriate effect size parameter to describe, summarize, and com-

pare the data of the primary studies, and when needed, subsequent translation of

the reported findings of the individual studies into the parameter; (4) estimation of

the overall effect size by combining the primary studies; (5) assessment of heteroge-

neity among the studies; and, finally, (6) the presentation of the meta-analysis results.

Selection of data coming from primary studies can begin with experimental data

from research institutions or extra data available in scientific data bases. However,

individual results must be incorporated into the meta-analysis when they are

properly defined, structured, and transparently reported.

In the systematic review process the information to be included in the meta-

analysis has to be sufficiently accurate to answer the embedded question of a given

case study. For instance, in a lettuce disinfection process, one can measure several

heads of lettuce to see if there is contamination by Escherichia. coli. The data

introduced in the meta-analysis approach should justify if the intervention (disin-

fection) makes a causal inference on the outcome (presence/absence of E. coli) and,
if so, how large the effect is.

The data extraction from the primary studies should provide the information

necessary for summarizing and synthesizing the results and include both numeric

and nonnumeric data.

Effect size refers to the degree to which the phenomenon is present in the

population (reduction of E. coli numbers by disinfection). For the primary studies,

meta-analysis converts the effect size into a ‘parameter’ that allows direct compari-

son and summation of the primary studies. There are many types of effect size

parameters: (1) binary or dichotomous, for example, indicating the presence or

absence of the event of interest in each subject, (2) continuous, and (3) ordinal,

where the outcome is measured on an ordered categorical scale.

For the estimation of the overall size effect, primary studies may be weighted to

reflect sample size, quality of research design, or other factors influencing their
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reliability. A relevant factor in precision is the sample size, with larger samples

yielding more precise estimates than smaller samples. Another factor affecting

precision is the study design, with matched groups yielding more precise estimates

(as compared with independent groups) and clustered groups yielding less precise

estimates. This consideration can also imply that the obtaining of a lower variance

in the primary studies leads to a more accurate global estimate.

On the other hand, it is necessary to make a heterogeneity test among the

primary samples to assess the extra-variation in the meta-analysis approach. Gen-

erally speaking, individual samples are weighted and statistically compared with

aiming at quantifying the variability associated to heterogeneity. In food microbi-

ology, most of the microbial data have been generated in culture media and the

effect of environmental factors may not necessarily reflect what might happen in an

actual food. Also, results of different studies on factors influencing microbial

kinetics are not always similar or may be even contradictory. Variations among

microbial strains, individual cell studies, or model estimations contribute positively

to increase variability in results. Therefore, quantitative information about the

influence of various factors on microbial kinetics is often not adequate under

specific conditions, and also often is not available in the published literature.

Finally, results coming from the meta-analysis are presented into several graph

types, such as bubble plots, which display point estimates and confidence intervals

of each primary study and the overall effects in the global estimate.

The use of data bases in predictive microbiology can provide thousands of

records of microbial growth or inactivation kinetics under a wide range of environ-

mental conditions. A systematic and critical analysis of the literature followed by

integration of the gathered data results in global estimates of kinetic parameters

with their variability, and these can be used to benchmark the latest published data

(van Asselt and Zwietering 2006). Meta-analysis has been used in various QMRA

studies for relating the microbial concentration of a given hazard to a public health

outcome (Pérez-Rodrı́guez et al. 2007b). However, large variability sources are

expected in some cases, mainly because of heterogeneity in primary data. Addi-

tionally, overlapping problems are generated when the same information of one

variable is obtained from different studies. In spite of these disadvantages, when a

large dataset is manipulated, meta-analysis can provide useful links to discern

between explanatory variables on the global estimate. The construction of updated

data bases on the reviewed question or parameter can also reveal the present

knowledge, can highlight default areas where there is a lack of information on

factors that might affect the parameter of interest, and can therefore provide

direction for future research.

7.2 Mechanistic Predictive Models

Advances in molecular biology, particularly in genome sequencing and high-

throughput measurements, enable us to obtain comprehensive data on the cellular

system and gain information on the underlying molecules (Kitano 2002).
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This genomics revolution has in the past years provided researchers with the option

to look genome wide for cellular responses at the level of gene expression (Keijser

et al. 2007) and protein presence (Wolff et al. 2006; Hahne et al. 2010). The need

of integrating all this complex information has contributed to an emerging scien-

tific field, so-called systems biology, aimed at understanding complex biological

systems at the systems level (Kitano 2001). The fundamental idea behind the

systems biology approach is that biological systems are hierarchically organized

with influences going both up and down through the hierarchy (Brul et al. 2008).

The great avalanche of ‘omics’ data (i.e., genomic and proteomic data) in

systems biology necessitates applying mathematical methods to better understand

the interactions and relationships among the different elements within the studied

system (Fig. 7.1). Stelling (2004) classified mathematical models applied in

systems biology in interaction-based models, constraint-based models, and

mechanism-based models. The interaction-based models refer to network topology

analysis in which interactions between the different elements in the system, for

example, metabolic reactions, protein–protein interactions, and gene regulation, are

accounted for by graphical networks. In constraint-based models, physicochemical

properties such as reaction stoichiometries and reversibilities impose constraints on

network function in addition to network topology. This network reconstruction

process ultimately results in the generation of a biochemically, genomically, and

genetically (BiGG) structured data base that can be further utilized for both

mathematical computation and analysis of high-throughput data sets. The network

spans the set of metabolic reactions taking place in a specific biological system,

assuming a stationary state (Hertog et al. 2011) in which each reaction is referred to

as a flux. The methodologies developed in metabolic engineering such as metabolic

control analysis and metabolic flux analysis are applied to analyze steady-state

fluxes, although these may also be used to explain oscillatory systems so long as

average fluxes are considered (Schuster et al. 2002). More quantitative models can

be addressed based on kinetic rates of metabolic reactions included in the biological

networks. In this approach, a system of linear differential equations is used to

account for reactions rate of the quasi-dynamic or dynamic state fluxes (Hertog

et al. 2011). As new genomic data become available, these may aid in the parame-

terization of metabolic models (Voit 2002). However, one weakness of this

approach is that it ignores the variability and noise found in biological networks,

which may have important implications in their function (Heath and Kavraki 2009).

To overcome this limitation, a stochastic approach has been proposed that basically

consists of adding a noise term to the differential equations. Similarly, gene

expression regulation (i.e., transcription and translation) and signaling networks

have a probabilistic nature that should be accounted for by applying a stochastic

approach (Treviño Santa Cruz et al. 2005; McAdams and Arkin 1997).

The latter type of model mentioned by Stelling (2004) refers to mechanism-

based models. The author means that with this type of model, models can predict

the system dynamics by integrating detailed mechanisms operating in metabolism,

signal processing, and gene regulation. The success of this mechanistic approach,
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that is, integrated modeling, relies largely on the availability of information about

the complete mechanism and attendant parameters.

Traditionally, in the field of predictive microbiology applied to foods, the scarce

information on the mechanisms involved in the cellular functions has hampered

microbiologists from undertaking more mechanistic models, albeit some mecha-

nistic parameters has been introduced in specific cases (Baranyi and Roberts 1995).

The emergence of systems biology is creating a new path for microbiologists in

predictive microbiology, offering new and more mechanistic approaches to give

rise to more reliable and robust models (Brul et al. 2008). In so doing, predictive

microbiology will be able to move from the most used empirical modeling, that is,

black box models, toward so-called white or gray box models, based on an better
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Fig. 7.1 Scheme of the workflow applied to systems biology
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understanding of the biological functions in cells, enabling providing more accurate

predictions under specific physical and chemical changes and even extending the

model outside the range of space bounded by observations. Such data not only

allow for a better fine-tuning of growth/no growth boundaries but will also begin to

strengthen die-off/survival models (Brul et al. 2008). Several computer models

have been developed on the basis of information derived from systems biology

studies and wealthy databases. However, many of the mechanistic studies have

been done under conditions and in model microorganisms with relatively low

practical relevance (Brul et al. 2008). One of the most studied microorganisms is

E. coli, as much is known about its metabolism, regulation, and genome, enabling

the development of more mechanistic and reliable in silico models for this model

microorganism (Reed and Palsson 2003). The experience obtained with E. coli has
served to be applied to other microorganisms such as Haemophilus influenzae
(Edward and Palsson 1999), Helicobacter pylori, and Saccharomyces cerevisiae
(Petranovic and Vemuri 2009).

To date, few systems biology-based models have been explored or developed

within the area of predictive microbiology in foods (Brul et al. 2008). However,

constraint-based models seem to be the first choice by microbiologists to under-

stand the behavior of microorganisms in food-related environments (Métris et al.

2011; Peck et al. 2011). The most significant kinetic reactions constituting the

metabolism of the model bacterium are modeled and simulated to know which

specific metabolic processes are related to a determined bacterial response (e.g.,

outgrowth, adaptation, survival). These models consist of describing the fluxes

that make up a metabolic network in which each flux accounts for a metabolic

reaction as concentration change per time unit for the substrate and product.

The reactions can be described by a system of linear differential equations in

which stoichiometric coefficient of equations are assumed to be constant because

the model represents

dx

dt
¼ Sv ¼ 0 (7.1)

Here, x defines a vector of the intermediate concentrations of metabolites at a

specific time, S is the stoichiometric matrix describing all the metabolic reactions,

and Sij corresponds to the ith stoichiometric coefficient in the jth reaction.

The thermodynamic constraints and enzyme capacity constraints are represented

by vector v ¼ [v1, . . . vj], which includes the reaction rates of each metabolic

reaction or flux. Setting Eq. (7.1) to 0 means that conservation laws apply in the

production and consumption rates (i.e., rateconsumption ¼ rateproduction). A simplified

example of the steady-state flux might be the well-known coenzyme nicotinamide

adenine dinucleotide (NAD), involved in many metabolic routes as an electron

donator. In this case, the reaction would be

NADþ þ H ! NADH
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According to the law of conservation, NAD + NADH ¼ a constant, which

means that the sum of concentrations of NAD andNADHdoes not change with time.

The derivation of the reaction rate equations is another important aspect and

should be based on an appropriate metabolic network, which should be completely

known and closed. The quasi-steady-state and rapid equilibrium approaches can be

used to obtain the reaction rate equations. With regard to the kinetic parameters,

these might be estimated by using sources such as literature data, electronic data

bases, experimental data for dependencies between initial reactions rates and

products, inhibitors, substrates, and activators, and finally time-series data for

enzyme kinetics and whole pathways (Demin et al. 2005).

Because the system of equations has more fluxes than metabolites, the system is

underdetermined (Kauffman et al. 2003), which means that the system has multiple

solutions. To reduce the solution space of the system, the model is constrained by

imposing different rules, which are often related to thermodynamic feasibility,

enzymatic capacity, and mass balance. Model solutions that do not comply with

such criteria are excluded from the solution space of the model (Reed and Palsson

2003). Once constraints are defined for the model, the corresponding solution space

should be determined. To this end, several mathematical approaches can be taken

such as linear optimization, elementary modes and extreme pathways, phenotypic

phase plane analysis, gene deletions, or finding objective functions. The linear

optimization, which is referred to as flux balance analysis (FBA), is based on an

objective function, which is utilized to define the solution space by maximizing or

minimizing the defined objective function (Feist and Palsson 2010; Varma and

Palsson 1994). The most used objective functions include ATP production, produc-

tion of a specific by-product, and biomass production (i.e., growth rate) (Van Impe

et al. 2011; Reed and Palsson 2003). In this respect, using a biomass production

objective function can accurately estimate the growth rate of E. coli, as evidenced
by the work by Feist et al. (2007).

Métris et al. (2011) performed in silico simulations based on the model of E. coli
K12 MG1655 previously developed by Feist et al. (2007) considering 1,387 meta-

bolic reactions and 1,260 genes. This study can be considered as one of the first

approaches of predictive microbiology in the foods area to systems biology

modeling. This model applied the most often used objective function based on

optimizing the biomass production, which is associated with growth-associated

maintenance (GAM) energy and non-growth-associated maintenance (NGAM)

energy. Their values were derived from experiments in a chemostat without added

NaCl, which we refer to as the control conditions (Feist et al. 2007). The model was

modified to consider exposure to osmotic stress by including changes of concentra-

tions in an osmoprotectant associated with osmolarity changes. The work did not find

definitive results relating the changes of these substances with a decrease of the

growth rate. Similarly, the model was tested to ascertain if biomass composition

derived from osmotic stress might explain the decrease of growth rates observed in

experiments; however, again the results were not conclusive. Finally, the authors

suggested that more specific objective functions should be developed to explain the

chemicophysical limitations of the growth rate. For that, authors suggested including
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gene regulation, crowding, and other additional cell resources such as ribosomal

content and some tradeoff observed under osmotic stress. This work and its results

provide evidence that a new modeling approach is emerging, although still with

important gaps and limitations. Nonetheless, it might provide the necessary theoreti-

cal basis to develop more mechanistic predictive models in foods (Fig. 7.1).
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Rasch M, Métris A, Baranyi J, Budde BB (2007) The effect of reuterin on the lag time of single

cells of Listeria innocua grown on a solid agar surface at different pH and NaCl concentrations.

Int J Food Microbiol 113:35–40. doi:10.1016/j.ijfoodmicro.2006.07.012

Ratkowsky DA (ed) (1983) Nonlinear regression modeling: a unified practical approach. Dekker,

New York

Ratkowsky DA (2002) Some examples of, and some problems with, the use of nonlinear logistic

regression in predictive food microbiology. Int J Food Microbiol 73:119–125. doi:10.1016/

S0168-1605(01)00643-2

Ratkowsky DA (2004) Model fitting and uncertainty. In: McKellar RC, Lu X (eds) Modelling

microbial responses in foods. CRC Press, Boca Raton, pp 191–195

Ratkowsky DA, Ross T (1995) Modelling the bacterial growth/no growth interface. Lett Appl

Microbiol 20:29–33. doi:10.1111/j.1472-765X.1995.tb00400.x

Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and

growth rates of bacterial cultures. J Bacteriol 149:1–5

Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial

culture growth rate throughout the entire biokinetic temperature range. J Bacteriol

154:1222–1226

Reed JL, Palsson BØ (2003) Thirteen years of building constraint-based in silico models of

Escherichia coli. J Bacteriol Soc. doi:10.1128/JB.185.9.2692
Reichart O (1994) Modeling the destruction of Escherichia coli on the base of reaction kinetics. Int

J Food Microbiol 23:449–465. doi:10.1016/0168-1605(94)90169-4

Roberts D (1990) Foodborne illness; sources of infection: food. Lancet 336:859–861. doi:10.1016/

0140-6736(90)92352-I

Roberts TA, Jarvis B (1983) Predictive modelling of food safety with particular reference to

Clostridium botulinum in model cured meat systems. In: Roberts TA, Skinner FA (eds) Food

microbiology: advances and prospects. Academic Press, New York, pp 85–95

120 References

http://dx.doi.org/10.1016/j.ijfoodmicro.2004.10.008
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.011
http://dx.doi.org/10.1016/S0168-1605(02)00192-7
http://dx.doi.org/10.1111/j.1539-6924.2007.00921.x
http://dx.doi.org/10.1111/j.1539-6924.2007.00921.x
http://dx.doi.org/10.1016/S0168-1605(03)00106-5
http://dx.doi.org/10.1016/j.compag.2011.01.013
http://dx.doi.org/10.1016/j.compag.2012.04.002
http://dx.doi.org/10.1016/j.ijfoodmicro.2006.07.012
http://dx.doi.org/10.1016/S0168-1605(01)00643-2
http://dx.doi.org/10.1016/S0168-1605(01)00643-2
http://dx.doi.org/10.1111/j.1472-765X.1995.tb00400.x
http://dx.doi.org/10.1128/JB.185.9.2692
http://dx.doi.org/10.1016/0168-1605(94)90169-4
http://dx.doi.org/10.1016/0140-6736(90)92352-I
http://dx.doi.org/10.1016/0140-6736(90)92352-I


Roberts TA, Gibson AM, Robinson A (1981) Prediction of toxin production by Clostridium
botulinum in pasteurised pork slurry. J Food Technol 16:337–355

Robinson TP, Ocio MJ, Kaloti A, Mackey BM (1998) The effect of the growth environment on the

lag phase of Listeria monocytogenes. Int J Food Microbiol 44:83–92. doi:10.1016/S0168-1605

(98)00120-2

Robinson TP, Aboaba OO, Kaloti A, Ocio MJ, Baranyi J, Mackey BM (2001) The effect of

inoculum size on the lag phase of Listeria monocytogenes. Int J Food Microbiol 70:163–173.

doi:10.1016/S0168-1605(01)00541-4

Ross T (1996) Indice of performance evaluation of predictive models in food microbiology. J Appl

Bacteriol 81:501–508. doi:10.1111/j.1365-2672.1996.tb03539.x

Ross T, Dalgaard P (2004) Secondary models. In: McKellar RC, Lu X (eds) Modelling microbial

responses in foods. CRC Press, Boca Raton, pp 63–150. ISBN 0-8493-1237-X

Ross T, McMeekin TA (1994) Predictive microbiology. Int J Food Microbiol 23:241–264.

doi:10.1016/0168-1605(94)90155-4

Ross T, Dalgaard P, Tienungoon S (2000) Predictive modelling of the growth and survival of

Listeria in fishery products. Int J Food Microbiol 62:231–245. doi:10.1016/S0168-1605(00)

00340-8

Ross T, Ratkowsky DA, Mellefont LA, McMeekin TA (2003) Modelling the effects of tempera-

ture, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. Int
J Food Microbiol 82:33–43. doi:10.1016/S0168-1605(02)00252-0

Ross T, Zhang D, Mc Questin OJ (2008) Temperature governs the inactivation rate of vegetative

bacteria under growth-preventing conditions. Int J Food Microbiol 128:129–135. doi:10.1016/

j.ijfoodmicro.2008.07.023

Rosset P, Cornu M, Noel V, Morelli E, Poumeyrol G (2004) Time-temperature profiles of chilled

ready-to-eat foods in school catering and probabilistic analysis of Listeria monocytogenes
growth. Int J Food Microbiol 96:49–59. doi:10.1016/j.ijfoodmicro.2004.03.008

Rosso L (1995) Modelling and predictive microbiology: building of a new tool for food industry.
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