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Preface

This volume is a collection of papers devoted to the 70th birthday of Professor
Vladimir Rabinovich. The opening article (by Stefan Samko) contains a short
biography of Vladimir Rabinovich, along with some personal recollections and
bibliography of his work. It is followed by twenty research and survey papers in
various branches of Analysis (pseudodifferential operators and partial differential
equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue
spaces, etc.) close to Professor Rabinovich’s research interests. Many of them are
written by participants of the International workshop “Analysis, Operator The-
ory, and Mathematical Physics” (Ixtapa, Mexico, January 23-27, 2012) having a
long history of scientific collaboration with Vladimir Rabinovich, and are partially
based on the talks presented there.

The volume will be of great interest to researchers and graduate students in
Differential Equations, Operator Theory, Functional and Harmonic Analysis.

The Editors
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Vladimir Rabinovich:
a Mathematician, Colleague and Friend

Stefan Samko

Dedicated to the T0th anniversary of Professor Viadimir Rabinovich

It was my pleasure to accept the invitation to write this introductory paper to the
volume dedicated to the 70th anniversary of Vladimir Samuilovich Rabinovich, my
university colleague in the “previous life” in the Soviet Union, collaborator and
friend for more than 40 years.

Vladimir Rabinovich, known to his friends and most of the colleagues as
Volodya Rabinovich, was born in Kiev on September 2, 1940, where his childhood
passed. In the beginning of the Nazi invasion of USSR in 1941, when many people
were evacuated from the Western regions to the interior parts of the country, his

V. Rabinovich at his desk, México City, May 2012.



X S. Samko

family went from Kiev to the city of Kuibyshev on Volga river (the city of Samara
before 1935 and after 1991). Most likely I could not write this article otherwise.
They returned to Kiev in 1947.

In 1961 he became a student of the Department of Mechanics and Math-
ematics of the Rostov State University in the Soviet Union. He graduated from
this department with Diploma of Honour in 1966. He started his mathematical
career at the Chair “Differential and Integral Equations” of the same department
as a Ph.D. student in 1966-1969 years, under the guidance of Professor V.A. Ka-
kichev, who noticed Volodya Rabinovich as a capable student and drew him into
the world of mathematics. His scientific interests, already during the Ph.D. stud-
ies were heavily influenced by the professor of the same Department, well known
mathematician I.B. Simonenko. In 1969 Volodya defended Ph.D. Theses and took
a position of assistant professor at the same chair, but later moved to the chair
“Algebra and discrete mathematics”, guided by I.B. Simonenko.

In 1972 he became Associate Professor of the same Department of Mechanics
and Mathematics, and Full Professor in 1994.

In 1998 Volodya leaves Russia and moves to Mexico where he took position of
the full professor at the National Polytechnic Institute of Mexico in Mexico-City,
where he continuous to work till present.

Under supervisorship of V. Rabinovich there were defended 8 Ph.D. thesis
in Russia, and 3 in Mexico. He is a member of Editorial Boards of various in-
ternational journals, in particular, “Complex Variables and Elliptic Equations”,
“Communications in Mathematical Analysis”, “Journal of Pseudodifferential Op-
erators”, “Mathematics in Engineering, Science and Aerospace”.

The first studies of V. Rabinovich were related to the investigation of the
Fredholm properties of the multidimensional Wiener-Hopf equations in unbounded
domains in R™ with the cone type structure at infinity. These results were pub-
lished in the papers [37] (1967), [38] (1968) and [40] (1969). But the most impor-
tant results of V.Rabinovich of that time were obtained during the last years of
his Ph.D. studies. They were about the Fredholm properties of the general bound-
ary value problems for pseudodifferential operators in such unbounded domains,
published in the leading Soviet journals Mathem. Sbornik and Doklady Akademii
Nauk, see [41] (1969) and [44] (1971). These papers were the first ones where the
general boundary value problems for pseudodifferential operators were considered
in unbounded domains. These results were included in his Ph.D.

Among the most important results obtained by V. Rabinovich in 1972-1977
there were the solvability of the Cauchy and Goursat problems for parabolic pseu-
dodifferential operators, Fredholm properties of pseudodifferential operators and

boundary value problems for them on non compact manifolds [46] (1972), [48]
(1973), [52] (1975) and [56] (1979).

His paper [51] (1974) devoted to the multi-dimensional convolution operators
in the space with exponential weights is worth of special mentioning. In this paper
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he extended the well-known results of I. Gohberg and M. Krein to a class of mul-
tidimensional convolution operators. It gave a start to his further studies of partial
differential operators and pseudodifferential operators in spaces with exponential
weights. Thus in the paper [28] (1978) he introduced a class of pseudodifferential
operators with analytical symbols in a tube domain in C" and obtained effective
results on the boundedness of pseudodifferential operators together with the study
of their Fredholm properties in spaces with exponential weights and exponential
decreasing of solutions of pseudodifferential equations at infinity.

In the series of his papers [60] (1982), [61] (1983), continued with a Ph.D.
student R. Babadjanian [1] (1985), [2] (1986) and [3] (1987), he studied Fred-
holm properties of pseudodifferential-difference operators, integral-difference and
differential-difference operators. In particular in [2] there was proved the impor-
tant theorem on the Wiener-Hopf factorization of the operator-valued functions in
the Wiener algebra.

The next important scientific results of the V. Rabinovich are connected with
the so-called method of limit operators. The idea of the limit operators historically
goes back to a paper of J. Favard of 1927 on the existence of solutions to ordinary
differential equations with almost periodic coefficients. These results of Favard were
extended to the case of elliptic partial differential equations by E. Muhamadiev in
a paper of 1981.

V. Rabinovich in fact turned this approach into a powerful general method,
nowadays known as the “method of limit operators” by extending it and giving
its wide applications to the investigation of the Fredholm properties of pseudodif-
ferential operators, convolution type operators on Z™ and R", general boundary
values problems of the Boutet de Monvel type on manifolds with conical struc-
ture at infinity and pseudodifferential operators with shifts, etc, in his paper [61]
(1985) and in the series of his papers [22, 24] (1985) and [25] (1986) with the Ph.D.
student B. Lange and later in his papers [73] (1992), [76] (1993), [77] (1994), [84]
(1998), [87] (1999) and [89, 90] (2001).

These investigations were also elaborated and continued in collaboration with
S. Roch (Darmstadt) and B. Silbermann (Chemnitz) in the papers [136] (1998),
[137, 138] (2001), [113] (2002), [114-116] (2003), [117] (2004), [124, 125] (2007),
[141] (2008) and in his papers [95-97] (2003), [98] (2004).

In 2004 the book [139] by V. Rabinovich, S. Roch and B. Silbermann was
published, in which there were presented both the techniques of the method of limit
operators and the main results on its applications to various problems of operator
theory including convolution type operators, discrete and continuous pseudodiffer-
ential operators, singular integral operators on Carleson curves and finite sections
method.

V. Rabinovich and S. Roch discovered that the method of limit operators is
a powerful tool for the investigation of the essential spectra of the electromagnetic
Schrodinger operators on R™, Z", and on periodic graphs, as was realized and
developed in the papers [98] (2004), [101, 102] (2005), [103, 120] (2006), [123]
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(2007) [127-129, 141] (2008) [130-132] (2009), [134] (2010). In particular, by means
of the method of limit operators there was obtained a simple and short proof of the
well-known Hunziker-van Winter-Zhislin Theorem on the essential spectra of the
multiparticle Schrodinger operators, along with some new results on the essential
spectra of the Schrodinger and Dirac operators.

The area of mathematical interests of V. Rabinovich, as can be already seen
from the above, includes various topics from both Analysis and Mathematical
Physics. In reality it is even wider than has been described in the previous lines.
We could mention a lot more. For instance, it is worthwhile mentioning his stud-
ies of the exponential decrease of solutions of differential and pseudodifferential
equations. In the papers [12] (1997), [99] (2004), [134] (2006), [127, 128] (2008)
and [106, 130, 131, 133] (2009) there were obtained strong and exact results on
the behavior of solutions of the differential and pseudodifferential equations with
increasing discontinuous coefficients, which in particular included a far going gen-
eralizations of the well-known S. Agmon’s results on the exponential decrease of
solutions of elliptic second-order partial differential equations. Note that there were
also given applications to the study of exponential decrease of eigenfunctions cor-
responding to the discrete spectra of the electromagnetic Schrodinger and Dirac
operators for wide classes of potentials.

London, Conference dedicated to the 80th birthday
of M.Z. Solomyak, September 2011.
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Special words should be said about his studies of algebras of singular integral
operators on a class of composed Carleson curves with coefficients having oscillat-
ing discontinuity, which go back to his interests of his research at the Department of
Mechanics and Mathematics of the Rostov State University and continue through
his life up to the present time. In the papers [71] (1991), [80] (1995) and [81, 82]
(1996). there was shown that in the case where curves, coefficients and weights
oscillate, the usual Mellin transform, which is the effective tool in the case of Lya-
punov curves and piecewise continuous coeflicients and non-oscillating weights,
should be replaced by the Mellin pseudodifferential operators with variable and
non stabilized symbols.

These investigations were continued with A. Bottcher (Chemnitz) and Yu.
Karlovich (Cuernavaca, Mexico) in the papers [4] (1996), [5] (1998), [6] (2000), [7]
(2001), where in a crystal clear form there was explained the appearance of the
logarithmic spirals and logarithmic horns in the local spectra of singular integral
operators on a class of composed Carleson curves.

Recently he turned to the studies in a new and rapidly developing area known
as “Variable Exponent Analysis”. In the papers [143] (1997), [144] (2008) and [145]
(2011) joint with the author of this article there were studied singular integral
operators and also pseudodifferential in variable exponents Lebesgue spaces, in-
cluding the case of composite Carleson curves. In particular, in [145] (2011) the
Simonenko local principle was extended to the case of variable exponent Lebesgue
spaces where the main challenge was the localization of the space itself.

The task to overview all the studies of Volodya Rabinovich is too enormous
for this introductory article, but we still mention a few. In the papers [147, 154]
(2000), [148, 149] (2001), [150] (2002) and [151] (2004) with B.-W. Schulze and
N. Tarkhanov (Potsdam) there were studied Fredholm properties of boundary
value problems in domains with cuspidal points and cuspidal edges and also was
described the behavior of solutions near singular manifolds of the boundary.

In another cycle of papers [29, 30] (2008) and [31] (2009) with Ya. Lutsky
(Karmiel, Israel) he investigated the invertibility of the homogeneous Cauchy prob-
lem for parabolic pseudodifferential operators with discontinuous and increasing
symbols, along with the study of the behavior of solutions at infinity and near the
sets of discontinuities of the symbols.

His interests vary from rather pure mathematical topics in Operator Theory
and Mathematical Physics to very applied fields, such as acoustic problems, wave
propagation etc. In the papers [69] (1990), [14] (1996) and [33] (1998) with his
Ph.D. student O. Obrezanova and the colleague S.M. Grudskii there were solved
some theoretical and applied problems of the underwater sound long distance
propagation in the ocean. In particular, there were obtained effective asymptotic
formulas for the acoustic fields in the ocean generated by non uniformly moving
sources. These investigations were continued later after he moved to Mexico, with
his Mexican Master and Ph.D. students in the papers [146] (2003), [34] (2005),
[35] (2007), [36] (2009), [109] (2010).
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ST
Caucasus, Mount Elbrus region, July 2010.
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The reader can also find other topics of Vladimir Rabinovich’s interests in
the titles of his publications in the end of the article.

Volodya is a happy person having a nice family. He and his wife Nelli have
two beautiful daughters Katya and Masha, now living in Israel. He has two grand-
daughters and a grandson and enjoys being their grandfather.

He is very sociable and liked by friends as the life and soul of the party.
He has an an outward-looking personality which enables him to get along with
people from all walks of life and easily interact with colleagues and all the people
around. He is also active and outdoorsy. I remember him playing football when a
student at the Rostov State University. He was a member of the student football
team of the department and also of a combined team of the university and till
his move to Mexico played football on the professors’ teams at the Rostov State
University. From his student’s studies till these days, every year he spends some
time in mountains, his hiking there being at a serious alpinist’s level. These days,
his friends wish him to keep in a top physical shape, and keep in general a keen
interest to mathematics, mountains, social life, for many and many years ahead.
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Abstract. We treat the Dirichlet problem for the 1D heat equation in a
bounded domain G C R?. The boundary of G is assumed to be smooth and
noncharacteristic except for two points where it has contact of degree less
than 2 with lines orthogonal to the t-axis. At these points the boundary has
cuspidal singularities which have to be treated with particular care. We prove
that this problem fits into the framework of analysis on manifolds with sin-
gular points elaborated by V. Rabinovich et al. (2000). The results extend to
general parabolic equations.
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1. Preliminaries

Boundary value problems for parabolic equations in a bounded domain with
smooth boundary fail to be regular in general, for there are characteristic points on
the boundary. Petrovskii in his paper [22] found conditions on the behavior of the
boundary nearby points of inflection with horizontal tangents which are necessary
and sufficient for the first boundary value problem for the heat equation to be well
posed. Most criteria of regularity beginning with that of [22] appeal to the contact
degree at which outer characteristics meet the boundary. If the contact degree
coincides with the order of equation, the analysis reveals many common features
with analysis on manifolds with conical points. This situation was well understood
in the 1960s, see [13, 14, 20, 21, 27], etc. If the contact degree is different from the
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order of operator, the problem can be handled within the framework of degenerate
elliptic equations.

In [13] one studies the first boundary value problem for a single second-order
equation

i=1,...,n i=1
j=1,....n
with
(L) (@, &) == Y a"(x)6& >0
i=1,...,n
Jj=1,....,n
for all £ = (&1,...,&,) in R™. Here u(z) is a real function defined in a bounded
domain G in R™ with C* boundary, and @ = (z!,...,2") represents the coor-

dinates. The coefficients are real and of class C* in the closure of G. The first
boundary value problem consists in prescribing the values of u on a certain por-
tion of the boundary 0G. One wishes to obtain unique solutions of the problem
which are smooth up to and including the boundary. If the leading part is ellip-
tic, i.e., 02(L)(z, &) > 0 for £ # 0, we have the usual Dirichlet problem. Another
well-known example of (1.1) is the heat equation —u/, , +u} = 0. For this classical
equation, however, certain aspects of the first boundafy value problem have never
been adequately studied. It is customary to call operators L, with o?(L)(z,&) > 0,
degenerate elliptic. The systematic study of the general class of such equations
was initiated by Fichera [8] who established estimates in LP norms, and proved
the existence of generalized solutions. Oleynik [21] proved under certain conditions
that “weak solutions are strong” and that solutions are actually smooth up to the
boundary.

Following [8], the boundary is divided into three portions, on two of which
the boundary values of u will be given. Let X3 be the set of noncharacteristic
boundary points, i.e., those where o?(L)(z,v) > 0, Xy the set of characteristic
boundary points where

n
D (a'(x) + diva” () v; > 0,
i=1
and X} = 0G \ (X3 U X3). As usual, we use v = (v1,...,12) to denote the unit
exterior normal at dG. The first boundary problem is that of finding a solution of
(1.1) which has given values on Yy U X3. After subtraction of a function with the
same values, one may assume that the given boundary values on X, U X5 are zero.
Under certain conditions [13] establishes that this problem has a smooth solution
in G. The proof of regularity in [13] is based on a global argument, which can not
prove local regularity.
There are simple examples showing that, if X touches X5 or X3, then the
solution need not be smooth. On the other hand, there are interesting cases, such
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as the heat equation, in which they do touch and where, nevertheless, the solutions
are smooth.

2. On the heat equation

Consider the heat equation for one space variable u} , —u; = 0 in the plane
domain (with C'* boundary except at the corners shown) of the type represented
in Figure 1.

P P Py

xz
Py Ps

FIGURE 1. A general domain G.

In the first boundary problem the value of the solution is prescribed on the
whole boundary except for the top segment. There is an extensive literature de-
voted to this problem, however, most of the research treats only domains of the
kind of horizontal strip limited from the left and from the right by disjoint smooth
curves whose angular coefficients never vanish. At the lower corners the boundary
values have to satisfy certain compatibility conditions. Concerning domains of the
type of Figure 1, Levi in his paper [17] pointed out that the problem of the behavior
of the solution at the characteristic points P3, P, Ps, and the characteristic seg-
ment [Py, P»] (all of which belong to Xy) is a very difficult one, and there has been
little further study of this problem. Kohn and Nirenberg proved in [13] that, if the
solution is smooth in the closure of the domain G of Figure 1, then the boundary
values of u may have to satisfy compatibility conditions at the point P, depending
on the value of the curvature of the boundary there. Furthermore, if the curvature
is not zero, the solution need not be C*° there, but the smaller the curvature the
smoother is the solution at that point. It is C'°° if the curvature vanishes.

It is expected that a solution there might be non-smooth at P, = (to, zo),
since for ¢t < ty on the two sides of P, the solution is determined by different
data, and there may not be matching of smoothness at P;. At all other points, in
particular the points P and Ps;, where the boundary curve is convex, the solution
is C°. Kondrat’ev [14] studied boundary value problems for general parabolic
equations in domains like Figure 1. In the case of second-order parabolic equations
he had noted that at convex boundary points like P3 and Ps, the smaller the
curvature the smoother is the solution. Kohn and Nirenberg said in their paper [13],
“He informed us in October 1966 that he could prove that for the heat equation
the solution is C*° at convex boundary points Ps = (x¢, to) provided that at these
points the boundary curve has the form ¢ — ty = c¢(x — z)?, where ¢ > 0 and
p > 2 is an integer.” To our best knowledge, this result has not been published
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except for the case p = 2. In [13] the solution u is proved to be C*° at points like
P3 and Ps, where the boundary has positive curvature. This is proved for general
second-order parabolic equations in n dimensions. The proof applies to a singular
transformation of variables not unlike one used by Kondrat’ev in [14] which “blows
up” the points P; and Ps.

Both [14] and [13] assume that the boundary is C* in a neighborhood of the
characteristic points under study. For the heat equation, the existence of a classical
solution to the first boundary values problem in non-cylindrical domains was first
obtained by Gevrey [10]. This result applies in particular to the plane domains G
consisting of all (x,t) € R?, such that |z| < 1 and f(|z|) <t < §(1), where f(r) is a
C* function on (0,1] with f(r) > 0, §'(r) # 0 for all r € (0, 1] and §(0+) = 0. The
boundary point (0, 0) is regular if §~1(¢) satisfies the Holder condition of exponent
larger than 1/2. When applied to the function f(r) = P, this implies 0 < p < 2.
In [3] a more intricate situation is treated when the domain G nearby the origin
consists of those (z,t) € R? which satisfy > 0 and —ax?® < t < ba?, where
a and b are fixed positive numbers. The boundary of G is therefore not smooth
and it has a cuspidal singularity at the origin which can actually be thought of as
characteristic point.

For a recent account of the theory along more classical lines using the concept
of (ir) regularity of a boundary point for a partial differential equation we refer
the reader to [9].

The present paper is aimed to study the first boundary value problem for
second-order parabolic equations in the case when the contact degree of outer
characteristics with the boundary is less than the order of equation. The problem
is shown to fit into analysis on compact manifolds with cuspidal points elaborated
by V. Rabinovich et al. [24]. We restrict our discussion to the 1D heat equation. We
hope that the methods employed here may prove useful in treating more general
systems.

3. Blow-up techniques

Consider the first boundary value problem for the heat equation in a domain
G C R? of the type of Figure 2. The boundary of G is assumed to be C™ except
for a finite number of characteristic points. At points like P; and P, the boundary
curve possesses a tangent which is horizontal, hence 0G is characteristic for the
heat equation at such points. The characteristic touches the boundary with the
degree > 2, which is included in the treatise [14]. At points like P, the boundary
curve is not smooth but it touches smoothly a characteristic from below and above.
Such points are therefore cuspidal singularities of the boundary, implicit treatable
cases have been studied in [3].

We restrict our discussion to the boundary points like P; and Ps. These are
cuspidal singularities of the boundary curve which touches smoothly a vertical line
at P3 and P5. Thus, the boundary meets a characteristic at P; and Ps at contact
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Py

Py Py
Ps

P3=(z0,to) t—to=f(lz—wol)
x
FIGURE 2. Typical domain.

degree < 2. As mentioned, the study of regularity of such points for solutions of
the first boundary value problem for the heat equation goes back at least as far as
[10]. While the approach of [10] is based on potential theory, we apply the so-called
blow-up techniques developed in [24]. This allows one not only to get a regularity
theorem in a sharper form including asymptotics of solutions but also to prove the
Fredholm property in suitable weighted Sobolev spaces for more general cusps.
The first boundary value problem for the heat equation in G is formulated as
follows: Write X for the set of all characteristic points P;, P, ... on the boundary
of G. Given functions f in G and ug on 9G \ X1, find a function w on G \ Xy which
satisfies
_u;cl,m + U;‘ = f in gv
u=wup on 9G \ Xy,

cf. Section 1. By the local principle of Simonenko [25], the Fredholm property of
problem (3.1) in suitable function spaces is equivalent to the local invertibility of
this problem at each point of the closure of G. Here we focus upon the points
like Ps.

Assume that the domain G is described in a neighborhood of the point P3 =
(x0,t0) by the inequality

(3.1)

t—1tg > f(|$—l‘0|), (32)
where f is a monotone increasing C*° function of r € (0, 1] with f(0+) = 0. We
take P3 to be the origin.

We now blow up the domain G at the point Ps by introducing new coordinates
(w,r) with the aid of
z=f1(r)w,

- (3.3)

where |w| < 1 and r € (0,f(1)]. By definition, the new coordinates are singular at
r = 0, for the entire segment [—1, 1] on the w-axis is blown down into the origin by
(3.3). The rectangle (—1,1) x (0, f(1)] transforms under the change of coordinates
(3.3) into the part of the domain G nearby Ps lying below the line ¢t = f(1).

In the domain of coordinates (w,r) problem (3.1) reduces to an ordinary dif-
ferential equation with respect to the variable r with operator-valued coefficients.
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More precisely, under transformation (3.3) the derivatives in ¢ and = change by
the formulas

Ou  Ou 1 ou
ot~ or L ((r) ow’
Ou 1 Ou
or 7 (r) Ow’

and so (3.1) transforms into

717“2/— //_fil(r)w/:fITQ in (—
(71 0DPU7 = Ul = a0 = (HOPF i (L) x O o

U="U, on {£1} x (0,f(1)],

where U(w, ) and F(w, r) are pullbacks of u(z,t) and f(z,t) under transformation
(3.3), respectively.

We are interested in the local solvability of problem (3.4) near the edge r = 0
in the rectangle (—1,1) x (0,f(1)). Note that the ordinary differential equation
degenerates at r = 0, since the coefficient (f7(7))? of the higher-order derivative
in 7 vanishes at r = 0. In order to handle this degeneration in an orderly fashion,
we find a change of coordinate s = §(r) in an interval (0, ro] with some ro < (1),
such that

1,0 d d
(0 g = o

Such a function § is determined uniquely up to a constant from the equation
§(r) = (F=(r))~2 and is given by

o) =stm)+ -y

for r € (0,§(1)]. The constant §(rg) is not essential, one can choose §(ry) = 0.
Problem (3.4) becomes

(3.5)

d F
I 1 0'(0—1 = in (—1,1) x40 1
Us Uw,w+ ds Og\/ ( (s))wa (5’(5_1(8)) m ( ) )X (07f( ))7
U="U, on {£1} x §(0,§(1)],
(3.6)
where we use the same letter to designate U and the push-forward of U under the
transformation s = 6(r), and §(0, (1)) = (§(0), 5(f(1))).
Ezample. After [10], consider f(r) = r? with p > 0. Then
p o[z PN
5(r0)+p_2(r ER— r) it p#2,

d(ro) +1log , if p=2.
To

o(r) =
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For p > 2, the value 6(0) is obviously finite. For p € (0, 2], we get 6(0+) = —oo.
Choosing
p Pt
Sro) =4 p20 T PFE
logrg, if p=2,

we arrive at the local boundary value problem

11 —2 N\,
U= Uty wUL= ("7 8)77F in (1,1) < (5(0),p/ (0 = 2).

2—-ps ¥ (3.7)
U=l on {1} x (5(0), p/(p — 2],
for p # 2, and
U,-ul ., — in; =¢e’F in (—1,1) x (—o0,0), (3.8)
U=Uy on{£1} x (—00,0],
for p = 2.

This example demonstrates rather strikingly that the value §(0) actually char-
acterizes the threshold of weak singularities in the first boundary value problem
for the heat equation. If §(0+) is finite, one can certainly assume that 6(0+) = 0,
for if not, we take 19 = 0 and choose §(rg) = 0. Then §~1(0+) = 0 and so
§(671(04)) = +oo, i.e., the coefficient of U/, in (3.6) blows up at §(0+). This
manifests singularities of solutions at s = 0. On the other hand, if §(0+) = —o0,
then the coefficient of U/, in (3.6) need not blow up at §(0+), as is seen from
(3.7) and (3.8). In the case 6(0) = —oo the boundary value problem (3.4) can be
specified within the calculus of pseudodifferential operators with operator-valued
symbols on the real axis s € R developed by Rabinovich et al. in [24]. The symbols
under considerations take their values in the space of boundary value problems on
the interval w € [—1,1].

For those pseudodifferential operators whose symbols are slowly varying at
the point s = —oo, the paper [24] gives a criterion of local solvability at —oco. Note
that this criterion does not apply directly to problem (3.6), for [24] deals with
classical polyhomogeneous symbols while our problem requires quasihomogeneous
symbols. However, the approach of [24] still works in the anisotropic case while
the derivatives in s are counted with weight factor 2.

The symbol of problem (3.6) is slowly varying at s = —oo if and only if, for
each j =1,2,..., an inequality

se(—iljg(m)) ‘(Zg)j log \/6’(5*1(3))‘ < 00 (3.9)

is valid. Inequalities (3.9) can be easily reformulated in terms of the original func-

tion f, namely,
d\J
—1(,)\2 -1
sup r log r)| < oo
s (67 00? , ) s )
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for all j = 1,2,.... From the Hardy-Littlewood inequality it follows that, under
these conditions, if moreover j > 1, then the left-hand side is arbitrarily small if
7o is small enough.

4. Further reduction

From now on we will tacitly assume that the coefficients of (3.6) are slowly varying
at s = —o0, i.e., (3.9) is fulfilled.

Using transformations rather standard in Sturm-Liouville’s theory we reduce
problem (3.6) to a simpler form. Set

bs) = 1 log /5'(571(s))
F

F= 5515

then (3.6) rewrites as
UL = Uy +bs)wl = F i (=1,1) x 5(0, (1)),

U="Uy on {£1} x 46(0,§(1)].
Introduce )

_ _ L2

a(w, ) = exp ( 0% b(s))
which is a bounded C*° function with positive values on the closed cylinder
[—1,1] x 6(0,§(1)]. An easy computation shows that problem (3.6) transforms to
1 .
UL L), = F i (1,1) % 600.(1),
U=Up on {£1} x 46(0,f(1)].

On replacing the unknown function by U = v we finally arrive at the boundary

Vva
value problem

V=, +ev=vaF in (=1,1)x5(0,§(1)), 1
v =+/aly on {£1} x 6(0,f(1)], D)

where (Va)l., — (v/a)"
c(w,s) = 7\/(1 °,
cf. [6, v. I, p. 250].

Ezxample. If §(r) = rP, then
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In the general case we get

1 1
c(w,s) = —Qb(s) + 40.)2 ((b(s))* +V/(s)) (4.2)
where b is a C'*° function slowly varying at s = —oo. It follows that ¢ inherits this
behavior at s = —oo uniformly in w € [—-1,1].

Our approach to solving problem (4.1) is fairly standard in the theory of
linear equations. On choosing a proper scale of weighted Sobolev spaces in the
strip C = [—1,1] x R and taking the data vg = \/aUy in the corresponding trace
spaces on the boundary w = +1 of C we can assume without loss of generality
that vg = 0. We think of (4.1) as a perturbation of the problem with homogeneous
boundary conditions

v, — v, =vaF in C,
v=20 on OC.

This is exactly the first boundary value problem for the heat equation in the
cylinder C which is nowadays well understood, cf. for instance Chapter 3 in [28]. If
g = v/a F vanishes, problem (4.3) possesses infinitely many linearly independent
solutions of the form

(4.3)

T
2
with n a natural number. In order to eliminate the solutions with n large enough
it is necessary to pose growth restrictions on v(w,s) for s — —oo. As but one
possibility to do that we mention Sobolev spaces with exponential and powerlike
weight factors, see [24]. Since the coefficients of the operator are stationary, the
Fourier transform in s applies to reduce the problem to a Sturm-Liouville eigen-
value problem on the interval (—1,1), see Chapter 5 in [6, v. 1]. Instead of the
Fourier transform one can use orthogonal decompositions over the eigenfunctions,
which leads immediately to asymptotics of solutions of the unperturbed problem
at s = —oo0.

On returning to problem (4.1) we observe that it differs from the unperturbed
problem by the multiplication operator v + cv. If the unperturbed problem is
Fredholm and the perturbation v — cv is compact, then the perturbed problem is
Fredholm as well. The local version of this assertion states that if the unperturbed
problem is invertible and the perturbation v — cv is small, then the perturbed
problem is also invertible. Since, under our assumptions, ¢(w,s) — 0 uniformly
inw € [-1,1], as s & —o0, the operator v — cv is compact in natural scales of
weighted Sobolev spaces.

Up(w, 8) = ¢, exp ( - ( n>23> sin 72r n(w+1) (4.4)

5. The unperturbed problem

In this section we treat problem (4.3) in the infinite strip C = (—1,1) x R. We
are interested in a solution of this problem in a half-strip s € (—o0,S), where

S =0(j(1)).
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A solution can be found by the Fourier method of separation of variables, see
for instance § 2 of Chapter 3 in [28]. We first look for a solution of the corresponding
homogeneous problem of the form v(w, s) = v1(w)va(s), obtaining two eigenvalue
problems for determining the functions vy (w) and v (s). The first of the two looks
like

v =Avy forw e (—1,1),

5.1

v1(£1) = 0. (5.1)

It has a nonzero solution only for the values A, = — (g n)2, where n € N. The
solution is

V1,n(w) = sin V=An(w+1) (5.2)

up to a constant factor. Substituting A = A, into the equation for wvy(s), we

readily find va ,,(s) = exp(Ans) up to a constant factor. We have thus constructed
a sequence of solutions

Un(w, 8) = ¢ exp(Ans) sin /=, (w + 1)

to the homogeneous problem (4.3), cf. (4.4). Note that each solution v, is un-
bounded at s = —o0.

This is a general property of Sturm-Liouville eigenvalue problems that system
(5.2) is orthogonal and complete in L?(—1,1). Moreover, this system is orthonor-
mal, as is easy to check.

Let now g be an arbitrary function on C, such that g(-, s) € L?(—1, 1) for each
s < S. For any fixed s < S, we represent g as Fourier series over the orthonormal
basis (5.2)

9(w,s) =Y gn(s) sin/=An(w + 1),
where
1
In(s) = / g(w, s) sin /=X, (w + 1) dw.

-1

We seek for a solution v of problem (4.3) in the form of Fourier series over the
eigenfunctions of problem (5.1), i.e.,

oo

v(w,s) = Z Un(s) sin/=Ap(w + 1),

n=1

s being thought of as parameter. The function v(w, s) satisfies the boundary con-
ditions of (4.3), since all summands of the series satisfy them. Substituting the
series into (4.3) yields

o0

(V(8) = Avn(s) — gn(s)) sin \/_)‘n(w +1)=0

n=1
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for all w € (—1,1). This equation is satisfied if and only if all the coefficients
vanish, i.e.,
U;z(s) — Ann(8) = gn(s) (5.3)
for s < S.
It is worth pointing out that no initial conditions for v, (s) are available, and
S0 vp(8) is not determined uniquely. On solving this ordinary differential equation
we get

on(s) = [ Mg ()ds' (5.9

where s, < S is an arbitrary constant. The change of s, results in an additional
multiple of e, for

s s
/ ez\n(s—s )gn(s')ds' _ / e)\n(s—s )gn(s’)ds’ =c, e)\ns

Sn snt+Asp

sntAsn ,
with ¢, = / e g, (s')ds’.
Sn
We have thus proved

Lemma 5.1. Suppose that g is an arbitrary function on the cylinder C satisfying
g(,8) € L?(—=1,1) for all s < S. Then problem (4.3) has formal solution of the
form

v(w,s) = i </9 e)‘”(s_s/)gn(s’)ds’> sin /= Ap(w +1).

n=1 Sn

If we pose the additional condition v(w, sg) = 0 for some sy < S, then the
functions vy, (s) should fulfill the initial condition v, (sp) = 0. In this case v, are
uniquely determined by formulas (5.4) with s,, = sg for all n € N, which leads to
the uniqueness of the formal solution. In our setting the elimination of all nontrivial
solutions of the homogeneous problem except for a finite number is achieved by
requiring the solution to belong to a scale of Sobolev spaces with exponential
weight functions.

6. Asymptotic solutions

We can now return to the study of perturbed problem (4.1). The corresponding
equation we write in the form

v+ C(slv=yg (6.1)
where g
C(s) = _(dw) + ¢(w, s)

is a continuous function on (—oo,S) with values in second-order ordinary differ-
ential operators on (—1,1). We think of C(s) as unbounded operator in L?(—1,1)
whose domain consists of all v € H?(—1,1) satisfying v(—1) = v(1) = 0. As but
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one result of the theory of Sturm-Liouville boundary value problems we mention
that C(s) is closed.

As usual in the theory of ordinary differential equations with operator-valued
coefficients, we associate the operator pencil s(s,0) = (10) + C(s) with (6.1). It
depends on parameters s € (—o0,S5) and o € C. Our basic assumption is that
5(s,0) stabilizes to an operator pencil §(—o0, o) independent of s, as s — —o0.
This just amounts to saying that the coefficient ¢(w,s) extends continuously to
s = —oo. We tacitly assume that ¢(—oo,w) = 0, for we are interested in true
cusps, see Figure 2.

Lemma 6.1. Let k > 1 be integer. When acting from H?*(—1,1) N H'(—1,1) to
H?* =1 (-1,1), the operator 5(—00,0) = C(—o0) is invertible.

Proof. See Section 5. O

[e]
Moreover, s(—oc,0) acting from H2?*(—1,1) N H(—1,1) to H>*~D(-1,1)
has a bounded inverse everywhere in the entire complex plane C except for the

discrete set
_—)
Op = —1\, = z(2n>

with n € N. It is worth pointing out that s(—o0,0)~! = Re(—o0)(—10), the resol-
vent of C(—o0) at —i0.

Lemma 6.2. There exists a constant ¢ with the property that, for all complex o
lying away from any angular sector containing the positive imaginary axis, the
inequality

||UH?{%(71,1) + |0|2k|\v||%2(71,1)

< e(lls(=00, oY0lacn 1,0y + 1012 Vlls(=00, 0)lF 1))

is fulfilled whenever v € H?*(—1,1)N Iofl(—l, 1) with k > 1.

Proof. The operator pencils s(—oo, o) with this property are said to be anisotropic
elliptic. See [2] for a more general estimate. O

If s(s, A) stabilizes at s = —oo then the singularity at s = —oo gives rise
to a finite number of singular solutions. However, an irregular singular point is a
complicated conglomeration of singularities, which does not allow one to construct
explicit asymptotic formulas.

By a solution of (6.1) is meant any function v(s) with values in H?(—1,1)
satisfying v(—1) = v(1) = 0, which has a strong derivative in L?(—1,1) for almost
all s < S, and which fulfills (6.1).

Lemma 5.1 suggests readily a scale of Hilbert spaces to control the solutions.
For any k = 0,1,... and v € R, we introduce H*7(—00, S) to be the space of all
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functions on (—o0, S) with values in H?*(—1,1), such that the norm

ol = ([

s e k ) ) 1/2
B3 09 () 115
o] =0

is finite, cf. Slobodetskii [26]. In particular, H%7(—o0, S) consists of all square inte-
grable functions on (—o0,S) with values in L?(—1,1) with respect to the measure
e~ 27%ds.

Recall that the numbers o,, are called eigenvalues of the operator pencil
s(—00, ), for there are nonzero functions ¢, = vy, in H?(—1,1) vanishing at 41
and satisfying s(—o0, 0, ), = 0. The functions ¢, are called eigenfunctions of
s5(—00,0) at op,.

We now bring three theorems on asymptotic behavior of solutions of homoge-
neous problem (6.1) as s — —oo. They fit well the abstract theory of [19]. However,
[19] is a straightforward generalisation of the asymptotic formula of Evgrafov [7]
for solutions of first-order equations to equations of an arbitrary order. Our results
go thus back at least as far as [7] while we refer to the more available paper [19].

Theorem 6.3. Let c(w,s) — c(w,—00) in the L*(—1,1)-norm when s — —oc.
Suppose that in the strip —p < So < —~ there lie exactly N of the eigenvalues
on, and that there are no eigenvalues o, on the lines So = —p and So = —v.
Then the solution v € HY(—00,8) of problem (6.1) with g € H**(—o00,S) has
the form
v(s) =c181(8) + -+ ensn(s) + R(s)

where s1,...,sN are solutions of the homogeneous problem in H'Y(—o00, S) which
do not depend on v, c1,...,cy constants, and R € HV*(—o00, S).

Proof. An easy computation using the continuous embedding
HY(—1,1) = C[-1,1]

shows that from the convergence of c(s,) to ¢(—o0,) in the L?(—1,1)-norm it
follows that C(s) — C(—o0) in the operator norm of £(H?(—1,1), L*(—1,1)), as
s — —oo. Hence the desired conclusion is a direct consequence of Theorem 3 in
[19] with

HO = Lz(_171)7
Hy = H*(~1,1)n H'(~1,1). O

Thus, any solution v € H7(—o00,5) of (6.1) with a “good” right-hand side
g can be written as the sum of several singular functions and a “remainder” which
behaves better at infinity. The singular functions si, ..., sy are linearly indepen-
dent and do not depend on the particular solution v. What is still lacking is that
they are not explicit.

The concept of stabilization we have so far used falls outside the framework
of “small perturbations.” To meet this heuristic concept, we need some further
restrictions on the speed at which C(s) tends to C'(—o0) when s — —oo. Let
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o, be a fixed eigenvalue of the limit pencil s(—o0, o). Assume moreover that the
pencil s(s, o) stabilizes to s(—o0,0) as s — —oo. Since o, is a simple eigenvalue
of §(—o00,0), for s sufficiently large there exists a simple eigenvalue o,,(s) of the
pencil s(s, o) which tends to o, as s = —oo. We write ¢, (s) for the corresponding
eigenfunction with [/, (s)|[z2(~1,1) = 1.

Theorem 6.4. Suppose
50
|21l s < o0

for some (and so for all) so < S. Let v(s) be a solution of homogeneous equation
(6.1) for s < S, such that v € HY (=00, S) with A\yt1 <y < An. Then,

s
—z/ on(s')ds
v(s)=e s (con(s) + R(s)) (6.2)
where ¢ is a constant and R € H'(—o0, S).

Proof. By Theorem 1 of [19], it suffices to verify if, under the assumption of The-
orem 6.4, the integral

S0
/ 211G ()2 s, 1) 05

o0
is finite, where Hy and H; are the same spaces as in the proof of Theorem 6.3.
To this end we pick any v € H?(—1,1). The Sobolev embedding theorem implies
that v is actually continuous on the interval [—1,1] and the C[—1,1]-norm of v
is dominated by C'||v||g1(—1,1) with C' a constant independent of v. By Holder’s
inequality,

1 el = ([ 1¢ensputol )

<N Cy9)lln2(=1,0) loller=1,10
and so

1C" (s)vll e < Clic' (5 9l L2 (-1, vl -

Hence it follows that ||C'(s)| z(ay,m,) < C |I€'(+8)||22(~1,1), establishing the de-
sired estimate. U

Were o,,(s) independent of s, we would deduce under the assumptions of
Theorem 6.4 that

s
—z/ on(s")ds'
e Js R(s) = e (579 R(s)
€ H"*(—00, S)

which belongs to H'7(—o00,S). Hence, the remainder in formula (6.2) behaves
better than v(s) itself, as s — —oo, showing the asymptotic character of this
formula.
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If the coefficient ¢(w, s) bears a transparent structure close to the point at
(minus) infinity, then the asymptotic behavior of solutions can be described more
precisely. Suppose

J
1 1
c(w,s) = ch(w) o +cjt1(w, ) 1 (6.3)
§=0
on the interval (—oo, S), where ¢; are smooth functions on [—1,1] for j < J, and
¢j+1 a smooth function on [—1, 1] X (—o0, S) satisfying

les+1(y8)llLz—11) < C,

i 8)ln o < €
for s — —o0.

Theorem 6.5. Under the above assumptions, any solution v(s) of homogeneous
problem (6.1) which belongs to the space HYV(—00,S) with Apt1 < v < An, has
the form

J—1
o(s) = 570 Mt (C sin /= An(w+1) +¢ Y 1;(w) Slj + R(s) slj)
j=1

where ¢ is a constant depending on the solution v(s), the constant ooy and the
functions ; € H?(—1,1) vanishing at &1 do not depend on the solution, and
Re HYY (-0, 8).

Proof. This follows from Theorem 2 of [19] if one takes into account the compu-
tations of Section 5. O

The constant op and the functions 1; are computed by means of a finite
number of algebraic operations.

7. Local solvability at a cusp

Changing the coordinates by

YTy
s =4(t),

we return to the coordinates (x,t) in the domain G close to the boundary point
P; =(0,0), see Figure 2. Then Theorems 6.3 and 6.4 are traced back to solutions
of the heat equation uj —u}, , = f with zero Dirichlet data near the cuspidal point
in G. We get

where a(w, s) =



16 A. Antoniouk and N. Tarkhanov

Let H*7(0,T) consist of all functions u(t,z) defined for 0 < t < T = §(1)
and |z| < §71(¢), such that \/au((d o §)~!(s)w,d1(s)) belongs to H*Y(—o0,S).
We endow H"*7(0,T) with a norm in an obvious way. This scale of Hilbert spaces
fits well to control the solutions of the heat equation near the singular point P; in
the domain G.

Since
o o ) o
68 (f l(t))z at + f’(f_l(t)) xaxv
0 _ 0
o =T @) g

the norm in H*7(0,T) under natural assumptions on f proves to be equivalent to
the norm

([l 2. 7(0,T)

/ /g e~ (1 ()20 (7 (1)02)° (Vau) 2

dzxdt \1/2
p)
2]+\a|<2k

(G-
where Gy is the part of G nearby Pj lying below the line ¢ = f(1).

Theorem 7.1. Let c(w,s) — c(w,—00) in the L*(—1,1)-norm when s — —oo.
Suppose in the strip —p < So < —v there lie exactly N of the eigenvalues o,
and there are no eigenvalues o, on the lines So = —p and So = —v. Then the
solution u € HY(0,T) of problem (3.1) with (F=1(¢))?f € H>*(0,T) has the form

u(t) =crui(t) +... +envun(t) + R(t)

where uy,...,uy are linearly independent solutions of the homogeneous problem
in HY7(0,T) which do not depend on u, c1,...,cx constants, and R € HV*(0,T).

Proof. This follows from Theorem 6.3 with
uj(z,t) = 3]‘( _
forj=1,...,N. O

Theorem 7.1 shows that any solution u € H7(0,T) of (3.1) with a “good”
right-hand side f can be written as the sum of several singular functions and a
“remainder” which behaves better at the cuspidal point Ps. The singular functions
u1,...,uy prove to be independent of the particular solution u. Unfortunately,
they are not explicit.

Let 0, = —tA, be a fixed eigenvalue of the limit pencil s(—o0, ). Sup-
pose the pencil s(s, o) stabilizes to s(—o0,0) as s = —oo. For s sufficiently large
there exists a simple eigenvalue o, (s) of the pencil s(s,o) which tends to oy,
as s — —oo. We write ¢,,(s) for the corresponding eigenfunction normalized by

len()lL2(-1.0) = 1.
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Theorem 7.2. Suppose

S0
/ 521/, )25 < 00

—0o0
for some (and so for all) so < S. Let u(t) be a solution of homogeneous equation
(3.1) on the interval (0,T), such that u € HY7(0,T) with Apy1 < < An. Then,

5(T)
t) = _2/5@) O T 6() + Rt 7.1
u(e,t) = e (¢ o #n(sory00) +RO) (@)

where ¢ is a constant and R € HY0(0,T).

Proof. For the proof it suffices to apply formula (6.2) and pass to the coordinates
(z,t). O

We now look for restrictions on the geometry of the singular point Ps under
which Theorem 7.2 is applicable. To this end, let f(r) = r? close to r = 0, where
p > 0. Then,

1 11 1 p-1 w?
- 2p—2s +4(p—2)2 s27
1 1 \2
=1+ (1)
for p # 2 and p = 2, respectively. Hence, the stabilization condition of Theorem
7.2 is fulfilled for all p.

We finish the paper with local solvability of the Dirichlet problem for the
heat equation nearby the boundary point P3 in G. By the local solvability at Ps
is meant that there is a disk B of small radius around Pj3, such that for each f
in G with (F71(¢))2f € H*7(0,T) there is a function v € H»7(0,T) satisfying
uy —uy , = fin GN B and u = 0 on 9G N B. Yet another designation for the local
solvability is the local invertibility from the right at P3. For a deeper discussion
of local invertibility we refer the reader to [24]. Recall that local solvability at
each point of G is equivalent to the Fredholm property, which is due to the local
principle of [25].

c(w, s)

Theorem 7.3. Suppose that v € R is different from A\, for alln =1,2,.... Then the
Dirichlet problem for the heat equation is locally solvable at the cuspidal point Ps.

Proof. As mentioned above, condition (3.9) just amounts to saying that our prob-
lems fits into the framework of analysis of pseudodifferential operators with slowly
varying symbols. Hence, the desired result follows in much the same way as Corol-
lary 23.2 of [24]. O

If u',u” € HY7(0,T) are two solutions to the Dirichlet problem in G N B,
then their difference v = u’ — u” belongs to the space H7(0,T) and satisfies
the Dirichlet problem with right-hand side f being zero. By Theorem 7.2, u has
the form v = cju; + --- + cyuny + R, where N is the greatest number with
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AN > 7, U1,...,un are linearly independent solutions of the homogeneous Dirich-
let problem in H%7(0,T), and R a solution of the homogeneous Dirichlet prob-
lem in H1°°(0,T). The regularity theory of [24] gives even more, namely that
R € H*>(0,T) for all k € N.

In particular, if v > Ay := —(7/2)?, then the solution u of the Dirichlet
problem nearby P5 is determined uniquely up to a solution of the homogeneous
Dirichlet problem which belongs to H*°°(0, T) for each k = 1,2, .... For f = 0, the
solution u itself belongs to H*>°(0,T) for all k = 1,2, .... Hence it follows that
u(0,04) = 0, i.e., the boundary point P3 is regular in Wiener’s sense, see [29].
This viewpoint sheds very surprisingly some new light on the connection between
regularity criteria of boundary points in Dirichlet problems and the concept of
differential operators with slowly varying coefficients. For a thorough treatment
we refer the reader to [9)].
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Abstract. The main goal of this work is to extend the notion of bisingular
pseudo-differential operators, already introduced on compact manifolds, to
Shubin type operators on R™ = R" @ R"2, n; + no = n. First, we prove
global calculus (an analogue of the I' calculus in the work of Shubin) for such
operators, we introduce the notion of bisingular globally elliptic operators
and we derive estimates for the action in anisotropic weighted Sobolev spaces,
recently introduced by Gramchev, Pilipovi¢, Rodino. Next, we investigate the
complex powers of such operators and we demonstrate a Weyl type theorem
for the spectral counting function of positive self-adjoint unbounded bisingular
globally elliptic operators. The crucial ingredient for the proof is the use
of the spectral zeta function. For particular classes of operators, defined as
polynomials of Pi X Pa, Py X Igna, Ign1 X Pa, P;j being globally elliptic in R™7,
j = 1,2, we are able to estimate and, in some cases, calculate explicitly the
lower-order term in the asymptotic expansion of the spectral function.
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1. Introduction

Let us recall the expression of a Shubin type differential operators with polynomial
coefficients in R™ ([36], see also [4, 18, 28]):
P= Y caupa’Dy, D*=(—i)0g. (1.1)
lee|+]8]<m

We assume that P is an L?- self-adjoint operator and satisfies the global ellipticity
condition

Pm(@,€) = D capr’€ #0 for (x,6) # (0,0). (12)

la|+|Bl=m
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This guarantees the existence of a basis of orthonormal eigenfunctions u;, j € N,
with eigenvalues A;, lim;_,o |Aj| = 400, see Shubin [36] for the asymptotics of the
counting function. If u € L?(R"), or u € S'(R™), then

o0
u = Zajuj, a; = (U,U,j)Lz(Rn), ] = 1,2, ey (13)
j=1

with convergence in L?(R"™) or S’'(R™).

Let us address to [5-7, 10, 13, 22| for further information on the regularity
of the eigenfunctions. Basic examples of operators in the class considered in this
paper are tensor products of Shubin operators. Namely, let P(x, D) be a linear
partial differential operator with polynomial coefficients of the form

P(va) = P1<$17D361)P2<$27D362)

— 1 .8 2 B
- Z C(xﬁmngl Z caﬁxZDgocég )
lef+B<ma la|+[B8] <ma

(1.4)

r1 € R™ 29 € R™ so that P, and P, are self-adjoint, invertible and globally
elliptic on R™ and R™2, that is (1.2) holds for both operators. Spectrum and
eigenfunctions of P are easily detected from those of P;, P, if we note that

UGy o) (1, 2) = u (21)ud, (22),  j1,j2 €N,
is an orthonormal basis of L2(R"**"2) and

\1 42 .
Pujlva - )‘jl)‘jgujhjw Ji,J2 € N.

The study of the counting function is interesting, and challenging. In Section 2
we shall embed example (1.4) into a general pseudo-differential calculus, including
also the case when p;(z, D) € G™i(R™) with symbol p;(x;,&) in the classes of
Shubin

10802 plas, €] < Clas, &)™ 11 (a6) = (1+ [l + |66[2) .

In Section 3 we shall introduce a general notion of ellipticity, inspired by (1.4),
see Definition 3.1. As a consequence of Theorem 3.11, using a generalization of
Tauberian Theorem due to J. Aramaki [1], we will be able to study the counting
function of operators of the form (1.4), see Theorem 3.12. In Section 4 we focus on
the tensor product of Hermite-type operators, and we evaluate directly the first
term of the asymptotic expansion of the counting function.

Motivations of the present paper, and connection with existing literature, are
twofold. On one hand, the case when in (1.4) we have the tensor product of two
Hermite operators, or more generally tensor product of real powers of Hermite
operators in several distinct variables, is relevant in Probability, see for example
[25], and other applications. Tensorized Hermite operators were treated in [12]
from a sequential point of view, i.e., basing on eigenfunction expansions. In [12]
the authors observed also a connection with the twisted Laplacian of Wong [37],
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which was proved to be unitarily equivalent to the tensor product of the one-
dimensional Hermite operator and the identity operator. Similar ideas are present
in the subsequent papers [9, 13, 15, 16, 26, 27]. On the other hand, the structure
of our pseudo-differential class is strictly connected with the pioneering work [31],
and [29] where similar operators were dubbed as bisingular operators. Recently,
bisingular operators on compact manifolds were studied in [2] and [28], see also [3]
for analogue results in the SG-setting. In particular, our results of Section 3 can
be seen as a version of [2] for global operators on R™ x R™2. In conclusion, we may
also observe that our class of symbols, in the case of zero orders, is included in
the Hormader class Sg o(R™ *"2). Hence our Theorem 3.3 enters the very general
results of [23], see also [24] and [32], where necessary and sufficient condition for
the Fredholm property were expressed in terms of invertibility of limit operators.
Let us address in particular to Theorem 1.1 in the recent paper [33].

2. T calculus for bisingular operators

Definition 2.1. We define I'1™2(R™+"2) m; € R,ms € R, as the subset of
C*>°(R?™1+2n2) functions such that for all multiindex «;,3; (i = 1,2) there exists

a constant C' so that
|6518626?116?22a(x1, $2,€1,€2)| < C<x1’ §1>m1—\a1|—|[31| <$2, §2>m2—\0¢2|—|ﬁ2\’ (2_1)

1 ~x2

for all z1, &1, 22, &2.

We define
Ffoo,fooGRnl,nz) — ﬂ mme (Rn1+n2)

mi1,ma€R?

as the set of smoothing symbols.

Definition 2.2. A linear operator A : C°(R™*"2) — C°°(R"*"2) is a globally
bisingular operator if it can be written in this way!

A(u)(z1,22) = Op(a)(u)(z1,72)
B //eixl'&m?'@a(ﬂclaxz’51,52)11(51,52)551552

where a € T2 (R™+72). We define G™"2(R™1"2) as the set of operators as
in (2.2) with symbol in ['™1:m2 (R™+n12),

(2.2)

The S-continuity of globally bisingular operators is immediate, we just have
to check all seminorms. More interesting is the Sobolev continuity.

Theorem 2.3. An operator A € G™+™2(R"1"2) can be extended for every s; €
R, s2 € R continuously as an operator

A QS1,82 (Rn1+n2) N Qsl_m1732_m2 (Rm-&-m).

ldg; = (2m)~midg;.
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Where, for positive integers si,s2, we define Q%152 (R™¥"2) qs the space of all
u € LER™*"2) such that

_ 1,..82 par oz
Q12 = E 7" 25 Dt DRul 2.
[ar]|+]B1]<s1,
[az|4]B2]|<s2

[l

For general s1,ss, we set
Q3152 (R"H'm) — {u c S'(Rnﬁ'"?) |
u = Op((z1,61) " (x2,62)**)(v), v € LAR™F"2)}.

The proof of Theorem 2.3 follows by the remark that I'O0(R™ x R"2) C
TY(R™*"2). Then we use the well-known results of L?-continuity and the defini-
tion of Q%1*2(R™*"2). We prove now that globally bisingular operators form an
algebra.

Theorem 2.4. Let A € G™v™2(R™*"2) gnd B € G'2(R™MT"2) then Ao B €
Gmitl,ma+tls (Rnl +n2 ) .

Proof. With a simple evaluation we obtain
(Ao Blu(zy,x2) = // etz oy my, £, £2)00(&r, E2)dE S,
where

c(xr, 22,61, 62) :/efwlfwza(xhxz,ﬂhUz)b(yh92751752)dy1dy25771d772

pr= (Y1 —x1,m — &), p2 = (y2 — 2,2 — &2).

(2.3)

We divide ab into four parts, for a fixed integer N > 0:

a(xhx%7717772>b(y17y27£17£2) = (ab){v + (ab)é\, + (ab)év + TN,

where
(ab)} = " lz: Blllal! (y1 — 1) (m — &)™ Ot alm, w2, 61,72)
| +lon|<2N
b1, Yo, &1, 62),
(ab)y = » lz: ,82!1a2! (y2 — 22)7 (2 — &)™ 052 a(w1, 2,11, &2)
Ba|+|az|<2N
052b(y1, 72,1, 62),
PN — _ 1 VB (e — VB2 (£ )a
(ab)s Z;Iizgé:zgx ,31!52!a1!a2!(y1 21)7 (y2 — 22)(m — &)

(772 - §2)ﬁ281?11 87?22a(m1’ L2, §17€2)85116522b(x1? €2, €1a §2)a
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1
N - b — B2
N = Z 51!52!a1!a2!(y1 21)7" (y2 — x2)
|an | +] 81| <2N
ez |+ 82| <2N

1 1
=) - [ [ =¥
o Jo
It onzalzy, w2, & +ti(m — &), &2 +ta(n2 — &2))
O 0p2b(wy + by (yr — 1), 2 + ba(y2 — 22), &1, &) dbrdt.

Dividing the integral (2.3) in four parts, one defines
cfv :/e_i’“_i“2 (ab)fvdyldygdmdng,

Ry :/e_ml_iHQ’l“Ndylddenldng.

Now, we only focus on ¢. Notice that
(y1 — xl)&efi(ylfzhmffl) — (_i)ﬁ1Dg1efi(y17m1,n1*§1)7 (2.4)
1
(771 _ é‘l)@le—i<yl—$177]1_§1> — (_,L')OélDoéle—i<yl—$1,711—§1> (2 5)
Y1 : :
If oy # fi1, there exists an index ¢ such that, for example, (a1); > (51)i. So,
using relation (2.5) and integrating by parts, we derive (a1); times w.r.t. y; the
expression (y; — x1)”1, and, since (a1); > (B1), the derivative is zero. Clearly
the same scheme can be used if (a1); < (B1); using (2.4). This implies that we

can restrict ourself to consider the case a; = (1, so we will just write a;. Now,
integrating by parts and using relation (2.5), we get

1 .
o= //6_””_’”’"2_§2> > 0t a(wr, we,&1,ms)
al
lai| <N (26)
Dg1b(x1,y2, &1, §2)dy2dns.
The expression (2.6) can be written in the form
1
=2 a1 Oei a2 Db,
|| <N 1
where the symbol oy means the composition of the operators acting on R™2. With
the same scheme we can prove that

1
N _ [
Cy = E az!afja o1 Dg2b.

1
== 06 0¢7 aD Di2b.



26 U. Battisti, T. Gramchev, L. Rodino and S. Pilipovié¢

We have now to analyze the remainder. Consider this identity

(i, m) M (y2,m2) M (1= Ay, = A )M (1= Ay, — Ay, )MemHnmthe = g7tk
(2.7)
By Peetre inequality, we have

] < (o, &)™ TN (@, L)t () gy ) IBIFEN () gy 212N
<n1 o £1>\m1|+2N<n2 _ £2>\m2|+2N'

Using (2.7) with M big enough and integrating by parts, we prove that Ry €
T +lo—2N,mo+l2—2N (Rnl +n2). O

Remark 2.5. Tt is useful to write ¢ in this way

oo
¢~ E Cmy+1l1—2§,ma+12—2j>5
=0
where
. ol 2
Crma+l1—2j,ma+l2—2] = Cmy 4+l —24,ma+la—25 T Cimy -+l —2j,ma+la—2j
3
+ Crmy+ly—2j,ma+12—25>
and
ck = E L Ofta oy Db — E 1 0919920 DY D2b
mi+l—2j,matla—25 — o) e 2 My ! “71 T2 S Faa T )
la1|=j laz|<j
c =) b (822a 0y D22b - > ' o gezape Doy
mi+li—2j,ma+la—25 = as! &2 1 Ha, g T T 1 P2V )
|az|=j lar|<yj
c) = L e gozg pes peo
mi+li—2j,ma+la—25 = | Yz Y z1 T2

Carlag
lar|=laz|=]

In the following, we will study a subclass of globally bisingular operators,
namely operators with homogeneous principal part.
Definition 2.6. A symbol a € IT'"™1:™2(R"1*"2) has homogeneous principal part if

i) there exists a function a,, .(z1, z2, &1, §&2) homogeneous w.r.t. (x1, &) of order
mq such that

a—y (xh gl)aml}- e pm—Lma (Rn1+n2)’

11 cut-off function at the origin, and the operator a(z1,x2,&1, D2), with
(x1,&1) frozen, is a classical global operator in R"2;
ii) there exists a. ,,, homogeneous w.r.t. (xz, &) of order mgy such that

a— w2($2, fg)a.mZ € I‘mhmZ*l(Rnhnz)’

19 cut-off function at the origin, and the operator a(z1,z2, D1,&2), with
(x2,&2) frozen, is a classical global operator in R™;
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iii) there exists a function am, m, (71, T2, &1,&2) bihomogeneous w.r.t. (x1,&1) of
order m; and w.r.t. (zg,&2) of order mg, such that am, m, is equal to the
principal symbol of ap,, .(z1,x2, &1, D2) and of a. m, (21, x2, D1,&2) and

a—1(x1,81)am, . — Y2(22,82)(a. my) + 1 (21, 1) Y2 (22, £2)Amy me

belongs to [~ bma2=1(Rritnz)

In the following, the class of symbols with homogeneous principal part is
written as I/t (R™1+72) and the operators with homogeneous principal symbol
as G2 (R™+72), We introduce three functions associated to an operator A €
valnl ;M2 (Rnl +n2):2

oy (A) : T*(R™) \ {0} — G52 (R™2)
(x1,&1) = am, (21, 22, &1, D2),
03?(A) : T*(R™)\ {0} — GZ* (R™)
(72,8&2) ¥ a.my (71,72, D1,62),
o7 (A) s TR\ {0} x T*(R™2) \ {0} — AL (R 72)
(xlax2a§1a§2) = am17m2(x1?x27€a§2)'

3. Globally elliptic bisingular operators and the Weyl formula
Definition 3.1. Let A € G2 (R™1+72) - A is globally elliptic bisingular operator
if there exist constants Ri, Re such that
i) the operator
Uy, (21,22, &1, D2) : S(R™) — S(R™)
is invertible for every (z1,&1) € T*R™ \ {0};
ii) the operator
. my (21,2, D1, &2) : S(R™) = S(R™)
is invertible for every (z2,&2) € T*R"™2\ {0};
iii) there exists a positive constant C' such that
|am1>m2 ($1, x2, 517 £2>| Z C<x17£1>m1 <$2, £2>m27 (3 1)
V|l‘i|2+|€i|2 > R;,i=1,2. '

Since am, m, (71, T2, &1, &2) is bihomogeneous it is enough to require that (3.1)
is fulfilled for (z1,&;) € T*R™ \ {0}, (z2,&2) € T*R™ \ {0}.

Remark 3.2. If an operator A € G2 (R™ ") satisfies item 4ii) of Defini-
tion 3.1 then both the operators am,,.(z1,22,&1,D2)(z2,&2) € G™(R™) and
Aoy (X1, @2, D1, &2)(21,&1) € G™ (R™) are elliptic Shubin type operators. If more-
over A satisfies items ¢) and ) one can prove that both an,, .(z1, 2, &1, D2) (22, &2)

2’}-{2’?&;’” (RM1+72) is the set of homogeneous function of order m; w.r.t. &;.
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and a.m, (21,22, D1,&2)(x1,&1) are injective Fredholm operator with zero index,
therefore invertible operators also in the scale of Q° spaces. Thus, in Definition
3.1, it is equivalent to require the invertibility of the operators on the Schwartz
spaces or on the Sobolev spaces Q°. For this reason, in the following we will not
specify the space in which the operators are assumed to be invertible.

Theorem 3.3. If an operator A is globally elliptic bisingular then it is a Fredholm
operator.

Proof. Tt is a consequence of Theorem 2.3. From Remark 2.5, if A is elliptic one
can define an operator B as the operator with symbol

b= 1 (x1,61)ay,; .+ Ya(x2,&)a,,, — r(x1, &) ba(22,E2) A, -

Applying the calculus, one can check that B is an inverse of A modulo compact
operator. O

Using a Neumann series procedure, by Theorem 3.3, one can prove that,
if an operator is globally elliptic bisingular, then there exists an inverse modulo
smoothing operators. So we have this immediate corollary:

Corollary 3.4. Let A € G2 (R™1+12) be globally elliptic then
i) Zf Au € QS1,S2 (R"l"'”?) then u € Qsl+m1,82+m2 (Rm-&-m);
ii) if Au e S(R™*"2) then u € S(R™"2),

Our aim is now to study the counting function of positive self-adjoint glob-
ally bisingular operators. We will use Tauberian techniques, so we need to define
complex powers of globally bisingular operators.

First we define parameter ellipticity:

Definition 3.5. Let A be a sector of the complex plane and a be a symbol belonging
to T2 (R™F72); a is called A-elliptic w.r.t. A if there exists a constant R such
that

i) o1 (A) (21, 61) — Mrnz € G (R™?)
is invertible for all |z1| + |£1] > R, for all A € A.
ii) 052 (A)(x2,&2) — Mrm € GJ' (R™)
is invertible for all |zo| + |£2| > R, for all A € A.
iif) (™2 (A) (21, 23, €1,62) — A) T € D712 (RP+nz)
for all |z;| + |&| > R, for all A € A.

In the following, we consider sector of the complex plane A with vertex at
the origin as in the figure below.
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A

arg =m — 0

arg = —7m+ 0

It is an exercise to prove that, if A € G2 (R™*72) is A-elliptic, then the
operator is sectorial. Follow for example the scheme of Theorem 2 in [2].

We make now some natural assumptions in order to perform the functional
calculus.

Assumptions 3.6.

i) AeGprme (R™1+n2) s A-elliptic,
ii) ¢(A) N A =0, in particular A is invertible.

Remark 3.7. In item ii) of Assumptions 3.6, we assume that the operator is in-
vertible. We have made these assumptions in order to get a simpler theory. It is
nevertheless possible to handle functional calculus of operators with non trivial
kernel, even with infinite-dimensional kernel, the crucial requirement is that the
origin must be an isolated point of the spectrum. Roughly speaking, instead of
considering the operator A, one studies the operator Ao (I — Pier 4); Prer 4 being
the projection into the kernel of A. Clearly this operator is invertible, cf. [8].

Definition 3.8. Let A be a globally bisingular operator that satisfies Assumptions
3.6, we can define
i

A, N (A= Ad)"'d\, Re(z) <0, (3.2)

T on AT

where Ac = AU {z € C| |z| < €}. The complex power of A is defined in this way

A — A, Re(z) < 0,
A, koA keN,Re(z—k)<0.

Since the operator A is sectorial, the Dunfort integral in (3.2) converges. As usual,
one can prove that the Definition 3.8 does not depend on k.
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Theorem 3.9. If A € G 1™2(R""2) fulfils Assumptions 3.6, then A* € G™1*™m2*
(R™+72). Moreover,3

o (A7) (21, &) = (07" (A)(21,6))7, (3.3)
0525 (A7) (w2, &) = (052 (A) (22, &)) (34)
o'mIZ}mzz(AZ)(xlvx27£17£2) - (O'ml’m2 (A)($1,$2,£1,£2))Z, (35)

where the complex power in (3.3), (3.4) is the complex power of operators, while
in (3.5) is the standard complex power of a function.

We now introduce the (-function of suitable bisingular operators, then we
will study the meromorphic extension of the (-function and we will analyze its
first left pole. We do not write the proofs of the following statements, they are
similar to Theorem 4 and Corollary 1 of [2].

Definition 3.10. Let A € G™*™2(R™*"2) be a bisingular operator that satisfies
Assumptions 3.6, then
(A, 2) = // Kg= (21,22, 21, 22)dz1dre, Re(z) < 2min{— " ,— "2 } ,
R71+no mi ma
where K 4- is the kernel of A%.

Theorem 3.11. Let A € G™v™2(R™*"2) be an operator that satisfies Assump-
tions 3.6. Then ((A,z) can be extended as a meromorphic function on {z €
C | Re(z) < 2min{—::lll,—gf2} + €}. Moreover, the Laurent coefficients at pole
Zpole = 2min{— m1 — e } depend on ::Lll and ::L?Q

In the case ' > ey

ma °
2 2r)~mi—na _am
lim <Z+ nl) (A, z) = (2m) / / (G, ,.) 2ml dfrdxodEs.
Zﬁ,i’;; my mi R2n2 Jg2ni—1
(3.6)
In the case ::L?Q > ::Lll :
2 ) —m—na _2n
lim <z+ nQ)C(A,z): (2m) / / (umy) ™ ™5 dBydayde,.
Z_,_i:;z meo mo R271 Jg2no—1
(3.7)
In the case ™ = ™ =]|:
maq ma2
204N 1 2 T
*(4) o
res
li A z)— =-T A) +TRy(A )
tim o0 (a2 <z+z>2)’ fral i), 39

3We have just defined symbols T'"™1:™2(R71+72) with m1,ma € R2. It is nevertheless possible
to define the same class with complex numbers z1, z2, in the inequality (2.1) instead of m,; we
use Re(z;).
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where
TRLQ(A) = (277')_"1_"2

1
lim ( / / ((aml’.)_ld01d$2d£2 - TesQ(A) log T))
TN Jay| g | <r Js2m—t

1
+ lim < / / Gy, “Ldfodurde; — res?(A)log T ) ’
TTree N2 |lz1|+|&1|<T §2ng—1 (( 2 ) 1 ( ) )

and

@ §
TRy(A) = mym 1 ma.meo )d01d05.
Re( ) myms - SQM—l(a 1, 2) Og(a 1 2) 14b2

Now, applying a generalization of Tauberian Theorem due to J. Aramaki [1],
we easily obtain the following:

Theorem 3.12. Let A € G™v™2(R™*"2) pe self-adjoint and positive, suppose
moreover that A satisfies Assumptions 3.6. Then

CiAllog A+ CIA + O(AI=0r) 2 = 2ne —

ma ma
no ng

Na(A) = { ConPrz + O(N?mz ~%2) 2z 2
ny ny

Cy\Zm2 +O()\2m1 53) 2n1  2np

mi ma ’
for certain §; > 0. It is moreover possible to find the exact value of the constants
in terms of {@my,.s @ mys Qma ms §, the principal symbol of A.

1 l
= mi.ms)  d01d0O2,
= (2m)mM+n22n,my é27L2—1 \/SZ'rLlfl(a 1ma) 12
TRy 2(A) —TRy(A 1
o = T P AL ] )00
l 4n1n2 §2n2—1 J§2n1—1

1 2no
Cy = )" ™2 dfodrd
? (2m)mtn22n, /]R2n1 /§27L271<a ’mQ) 2 dfydzydEy,

1 2nq
C3 = ) ™ dfydxodEs.
3 (27)nitn22m, /R27L2 /Szrrqfl(aml’) + dbrdrzdty

4. Tensor products of Hermite-type operators

We use the notation in the Introduction. We consider globally elliptic self-adjoint
bisingular differential operators of the special form

P(z,D,) = Pi(x1, Dy, ) Pa(x2, Dy,),
so that Puj = )\}1 /\?QUJ, J=(j1,J2) € Z2, cf. (1.4). Hence we have:
Proposition 4.1. Let u be a tempered distribution in R™+m2 Jf
u= Z ajuj in S'(R™1"2),

s 72
jezy
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then
P(z,Dz)u= Z A, A2, auj, (4.1)
J=(41,42) €27
where P(z, Dy )u € L2(R™*"2) js equivalent to
DAL g* < oo (4.2)

jezi
With the notation at the end of Section 2, we obtain

o1 (P)(x1,&1) = pm, (21, 1) Pe(22D2),
09" (P)(22,82) = Ppm, (72,&2)P1(x1, D1),

O'thnQ(xlaanglaé-Q) = Pm, ($1,§1)pm2 <I2’€2)'

Thus, Definition 3.1 before amounts to assume global ellipticity of pi,po, cf.
(1.2), and invertibility of Pj(z1,D;1) and Pa(x1,D2) as required in the Intro-
duction. From Corollary 3.4, we have that Pu € Q%1 ~™1:52=m2(R™+12) jmplies
u € Q¥152(R™*"2) for every s; € R, sy € R. In particular, if Pu € S(R™1"2)
then u € S(R™+"2),

Assuming further that Py, P, are strictly positive, we may apply Theorem
3.12 to estimate the counting function N(\) of P. By direct calculation, we shall
give now more precise results in the case when P;, P, are Hermite-type operators.

We first recall a classical result of L. Dirichlet for the first summatory function
of 7(n), see [20, 21] for an overview on the subject:

(A
DO =3 ) =Y 1), Az, (43)

n<A,
neN

where 7(n) denotes the number of divisors of n and [A] stands for the integer part
of A. In 1849, Dirichlet proved that

D) =Aln A+ (25 — DA+ E(N), A>1, (4.4)
where 7 is the Euler-Mascheroni constant and
E\) =0(\'?), X = +oc. (4.5)

It is still an open problem to evaluate the optimal order of the reminder E(\)
in the asymptotic expansion (4.4). In 1916 [17] Hardy discovered that O(\4) is
a lower bound. Then a lot of upper bound have been proved, the better one has
been given by Huxley in [19]. He proved that E()) is O(A¢(log \)?¢), where

131 18627

= ~ 14 462 d:=
c 6 0,314903846 8320

1 ~ 3,238822115.
i +1 ~ 3,238822115
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The conjecture is that the E()) is O(A1). One can recast the issue of computing
D()\) as a lattice point problem. More precisely, since

D= > > 1= > 1, (4.6)

n<\,neNd|n,deN ning <A
ni,n2€N

we readily obtain that D(\) is the number of positive integers lattice points in the
first quadrant between the axes and hyperbola i1z < A. We will use this result
for the proof of the second part of the next proposition.

Proposition 4.2. Assume that A; are self-adjoint operators with spectrum n"™,n €
N, and eigenfunctions u’ being an orthonormal basis of R™, ¢ =1, 2. Denote by
N(X), A > 0 the counting function,

N(A) = card{(n1,n2) : n{"'n3? < A}, A >0,
where card means cardinal number. Then we have the following assertions.
a) Let mq > mg > 0. Then

N\ ~ ¢ (:;) AY™2 1 C(my, ma, NAY™ 4+ O(1), (4.7)
where e - < Clm o o
(m1 —mg) — 1Mz, A) < (m1 —mg)’
b) Let m = m; = ma. Then
N = ;Ai mA+ 2 "Iy o). (4.8)

Proof. a) First we recall from [11] the next identity, for « > 1,¢ > 0:

>

— (n+q)"

oo
1 t—n
= + o dt.

T;)(TH'Q) (1_a)(N+qa1 Z/ (t + q)ot!

One can find that

aZ/ anﬂ = O(1/N®).

Note that with ¢ = 1 one obtains the formula for the partial sum of the Riemann
zeta function ((a). Set

\/m1
/\1/m2 /\1/m2
R(\,m1,mgo) = Z:l (nml/m - {nml/m]) .
Clearly 0 < R(A\, mq,ma) < A/™1 hut we are not able to find the exact behavior
of R(A\,m1,m2) as A — oo.
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Now we calculate

\1/ma
AY/m1] | a7 /m2

Ny = > 1=> > 1

n;”lng’ﬂg)\ ni=1 no=1

We have
A/

— R(\,my,m2)

nmi/m2 nmi/msz

|:)\1/m2 :| [)\1/m1] )\l/mz

n=1 n=1

and, using (4.9) with a = 71 N = [A}/™], we obtain

AL/m1
1 mi mo

AL/m2 ~ AL/m2 AVme 4 0(1).

; o fma ™~ <m2> (m1 —mo) +00)

This implies

Soing (m) Ama— T \Um RO\ my,m) + O(1).
e ma (m1 —ma2)
ny Ny < <A
This and the estimate of R proves (4.7).
b) Since
n'ndt < X\ is equivalent to ning < )\1/’",
we directly obtain N(\) = D(AY/™) which gives (4.8). O

Ezxample. An example of on operator that satisfies the hypothesis of Proposition
4.2 is the following. Let m1,mo € N,my > mao, k1, ke > 0 and

82 ) maq 62 ) mao
Al_k1<—a%+$> , Ag_k2<—a§+y> , x,y €R.
Then, we know that the Hermite basis of L?(R?),

hjh]é (xv y) = hj1 (:C)h]é (y)v Ji1,J2=0,1,...,
is the set of eigenfunctions and that k;(2n+1)™,n =0,1,..., are the eigenvalues
for A;, i =1,2.
We use the result of Proposition 4.2 to calculate the counting function for
A1 As. With the transformation A/(k1k2) — A, we can, and we will, assume that
ki =ky=1.
Put

Li={neNU0;1<2n+1<[\/™]},

)\l/mg
Inn, = {n2 ENUO1<2np+1< [(an + 1)m1/m2} } '
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Hence, the cardinal numbers of these sets are not greater than
Al/mg

AY™1/2 41 and
[ ]/ +1an |:(2n1+1)m1/m2

|+

respectively. With this notation we have

e Y =y Y

(2n14+1)™1 (2nz+1)m2 <A n1€Ix\ o€l ny
1 [ AL/ma }

= E + T,
2 i (2n + 1)ma/mo

where r,, takes values 0 and 1. We obtain

0 < S(A,my,me) = Zrn_ )\l/ml] 1.

nely
Next
1 AL/me A\L/ma
27%; [(2n+1 ml/m?} z; 2n + 1)ma/m2 — RO ma ma),
where

O<R(/\ ml,mg) [/\Uml]-i-l

By the proof of the previous proposition, with r =1 or r = 0,

1131/m1
SIRUESP SR
nely (2n + 1ym/ma t=1 trma/ma

mo—mq

- <m1) - m1n12m2 (;([Al/ml] + 7”)) "2 O(1/AY M),

ma

This implies

mo—mq

Ny = (e (M) (L)

+ O(I/Al/m2)> — R(A, m1,ma) + S(A,m1, m2)

)\l/mZ m m m1—2mo
_ ¢ 1y 2 9y T \/m
2 mao miq mo

- R(/\,ml,mg) + S(/\,ml,mg) + 0(1)

l/mz
= A ¢ <m1> * C()‘7m17m2))\1/m1 + 0(1)’

2 mo

35
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where
my—2mo
2 ma mo [Al/ml] 1
B - - <
mp —ma 2)\1/ma \/mi — C()‘vmlva)
my—2m
2 lmg 2m2 [)\l/ml] 1

my — ma oAL/mi T \L/mi
One can consider in a similar way

Ay = k(= Ag, + |z1]|)™ + 71, Ag = ko(=Ag, + [|22]2)™2 + 12, 2 € R™,
ki > ke > 0,r; > 0,7 =1,2; but the computation is much more complicate.
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The Index Formula of Douglas
for Block Toeplitz Operators on
the Bergman Space of the Ball

Albrecht Bottcher and Antti Perala

For Vladimir Rabinovich on his 70th birthday

Abstract. The index formula of Douglas is a formula which expresses the in-
dex of a Fredholm Toeplitz operator with a discontinuous symbol as the limit
of the indices of a family of Fredholm Toeplitz operators with continuous sym-
bols. This paper is concerned with Toeplitz operators on the Bergman space
AP of the unit ball of C"™. The symbols are supposed to be matrix functions
with entries in C'+ H* or to be certain discontinuous matrix functions which
are locally elliptic in a sense. The main result reduces the index computa-
tion for the Toeplitz operators under consideration to the case of continuous
matrix symbols.

Mathematics Subject Classification (2010). Primary 47B35. Secondary 30H20,
47B53.
Keywords. Bergman space, Toeplitz operator, index formula, discontinuous
symbol.

1. Introduction and main results

Let B = B,, the unit ball in C™ and denote by S = S?”~! the boundary of B.
The CV-valued Bergman space [AP(B)]" (1 < p < c0) is the Banach space of all
holomorphic C¥-valued functions in B which belong to [LP(B)]" with normalized
volume measure. Given a CV*¥_valued function a € [L>°(B)]V*¥ | the Toeplitz
operator T'(a) is the bounded linear operator on [AP(B)]" which sends f to P(af),
where P : [LP(B)]N — [AP(B)]" is the Bergman projection. The matrix function
a is called the symbol of the operator T'(a).

Toeplitz operators with continuous symbols are fairly well understood. If
a € [C(B)]N*N | then T'(a) is Fredholm if and only if a|S is invertible, and one has

The second author acknowledges support by the Academy of Finland project no. 75166001.
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nice formulas for the Fredholm index Ind T'(a); see [3], [6], [11], [22], [25]. A first
reasonable Banach algebra beyond C(B) is C(B) + H*°(B), where H*(B) is the
algebra of all bounded holomorphic functions in B. Douglas [8] was the first to
consider Toeplitz operators T'(a) with a € [C'+ H®]N*¥ on the CV-valued Hardy
space of S!, and he proved that T'(a) is Fredholm if and only if the determinant of
the harmonic extension Ha of a into B, is bounded away from zero near S' and
that in this case

IndT(a) = };ni IndT(a,) = — lim wind det a,., (1)

r—1

where a,(t) = (Ha)(rt). See also [2], [10].

Toeplitz operators on [A%(B)]Y with symbols in [C(B) + H*>(B)]N*N were
studied by McDonald [13], and the passage to [AP(B)]Y was performed in [4],
[15], [16]. A matrix function a € [C(B) + H>®(B)]V*¥ has radial limits almost
everywhere on S and hence defines a function ag on S. We may therefore consider
the harmonic extension Ha of ag into B. Arbitrary functions in L>°(B) need
not to have radial limits almost everywhere on S and so it is not clear what the
harmonic extension should be. Consequently, when working in the Bergman space,
one prefers using the Berezin transform, which is defined for all matrix functions in
[L>(B)]N*N. We let a denote the Berezin transform of a. Given a matrix function
a on B and a number r € (0, 1), we define a, on B by a,(z) = a(rz). Note that if
a € [C(B)+ H>®(B)|N*N  then a, € [C(B)|M*¥ for all r € (0,1). Let || - || be any
matrix norm on CV*¥. Tt turns out that for symbols a in [C(B) + H>®(B)]N*¥
the following are equivalent:

(i) T(a) is Fredholm on [AP(B)]V,
(ii) ag is invertible in [C(S) + H>(S)|V*V;
(iii) there are numbers ro € (0,1) and M € (0,00) such that a.|S is invertible

and |la; S| < M forall g <7 < 1;

(iv) there are numbers rog € (0,1) and M € (0, 00) such that (Ha),|S is invertible

and ||(Ha), 1|S|| < M for all 1o < r < 1;

(v) there are numbers 19 € (0,1) and M € (0,00) such that @,|S is invertible

and |la; S| < M for all mo <7 < 1.

McDonald [13] proved that the index is zero if N =1 and m > 2, but did
curiously say nothing about the index for N = m = 1. The latter case was disposed
of in [16]. Except for these two results, we have not seen any extension of the index
formula (1) to general N and m in the literature. This problem was mentioned in
[15], [16], and there it was also pointed out that the formula Ind A = Ind det A,
which holds for operator matrices A whose entries commute modulo trace class
operators, does not suffice to reach all of C+ H° even for the Bergman space on the
disk B;. Moreover, as Fredholm Toeplitz operators with continuous scalar-valued
symbols always have index zero if m > 2, it seems to be principally impossible to
reduce the index computation of T'(a) to that of det T'(a).

However, there is another approach to index formulas. This approach is due
to Silbermann [21], and it is based on combining harmonic approximation with so-
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called stable convergence; see also [2]. The purpose of this paper is to demonstrate
that this approach yields the first equality of Douglas’ formula (1) for all N and
m. Of course, the second equality must be replaced by any of the index formulas
known for continuous matrix symbols.

We note that the method of [21] gives the desired index formula for C' + H*>
symbols almost immediately in the Hardy space setting. The same is not true in
the context of Bergman spaces. The reason is that if we are in the Hardy space and
one of the symbols a and b is continuous, then T'(a,-b.) = T((ab),) + K + C,. where
K is compact and ||Cy|| — 0 as r — 1. This nice circumstance is the foundation of
the Banach algebraic approach of [21]. In the Bergman space, we can merely show
that T'(a,b,) = T((ab),) + K, + C, where K, is compact for each r and ||Cy| — 0.
This makes things a little difficult even for C' + H*° symbols.

Herewith our first main result.

Theorem 1.1. Let 1 < p < oo and a € [C(B) + H*>(B)]N*N. Suppose the Toeplitz
operator T'(a) is Fredholm on the Bergman space [AP(B)|N. Then there is a number
ro € (0,1) such that the Toeplitz operators T(a,) are Fredholm on [AP(B)|N for
all o <r <1 and

IndT(a) = };Hi Ind T'(a,). (2)

In particular, IndT'(a) = 0 whenever N < m.

We remark that the theorem remains literally true with a, replaced by (Ha),
or Q.

We secondly consider another class of discontinuous matrix symbols in the
algebra [L>°(B)]N¥*N . This class is motivated by paper [1], which was devoted to
the case N =m =1 and p = 2, and this class contains symbols with jumps. Note
that paper [1] had in turn one source of motivation in McDonald’s paper [14].
While in the case of Hardy spaces jumps and locally sectorial symbols come along
with lenses bounded by two circular arcs when passing to general p € (1,00),
we will encounter certain ellipses with their foci in the endpoints of the jumps
when considering the Bergman spaces with p € (1, 00). However, note that we will
establish only sufficient conditions for Fredholmness, so that we cannot exclude
that eventually the ellipses may be replaced by smaller lentiform domains, perhaps
even circular lenses. Our main result in this context is as follows. The precise
theorem requires a series of definitions and explanations and will be deferred to
Section 4.

Theorem 1.2. Let a € [L>®(B)|N*N be locally u-elliptic, where p is a number
determined by the norm of the Bergman projection. Then T(a) is Fredholm on
[AP(B)|V*N and

IndT(a) = }1_% Ind T'(a,).

In particular, IndT(a) =0 if N < m.

Section 2 contains the proof of Theorem 1.1. Section 3 is devoted to the notion
of p-ellipticity. In Section 4 we state and prove the precise version of Theorem 1.2.
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2. C 4+ H®° symbols

Each of the four Fredholm criteria quoted in Section 1 shows that if T'(a) is Fred-
holm on [AP(B)|V for some p € (1,00), then T(a) is Fredholm on [AP(B)}N for
all exponents p € (1,00). Let M(a) denote the operator of multiplication by a.
The Fredholm properties of T'(a) on [AP(B)]V are clearly the same as those of
PM(a)P + 1 — P on [LP(B)]". A classical result by Shneiberg [20] implies that
if a bounded linear operator A is Fredholm on [LP(B)]" for all p in some open
subset U of (1,00), then the index of A is constant on the connected components
of U. Therefore it suffices to prove Theorem 1.1 in the case p = 2.

Our proof is based on the following result. All operators occurring therein are
bounded linear operators on a Banach space. We denote strong convergence (=
pointwise convergence) of operators by — and uniform convergence (= convergence
in the norm) by =.

Lemma 2.1. (Silbermann [21]) Let A be Fredholm and Ind A = 0. Suppose F
is another operator and for each r € (0,1) we are given operators A, and F,.
Suppose also that the operators A, are Fredholm for r close enough to 1. Then,
with convergence understood as convergence for r — 1, we have the following.
(a) If Ay — A*, F, — F, and F,. A, = I+ K + E, with a compact operator K and
with E,. = 0, then there is anrg € (0,1) such that Ind A, <0 forreg <r < 1.
(b) If A, — A, F} — F*, and A.F, = I + K + E, with a compact operator
K and with E, = 0, then there is an r9 € (0,1) such that Ind A, > 0 for
ro <r<1.

Proof. (a) There is a compact operator L such that A + L is invertible. It follows

that
F.(A,+L)=1I+K+E.+F.L

=I+K+FL+E,

with £ = 0. Put

Then
D (A, +L)=1+K+FL+E. —(K+FL)(A+ L)™' (A, + L)
=I+K+FL—(K+FL)+E/
=I+E/
with EJ! = 0. Therefore A, + L is left invertible for all r close enough to 1, which
implies that Ind (A, + L) < 0 and thus Ind 4, < 0. Part (b) is analogous. O

Suppose now that a € [C(B) + H*(B)]¥*N and that T(a) is Fredholm.
Then there are numbers 71 € (0,1) and M € (0, 00) such that |[a=1(2)|| < M for
r1 < |z| < 1. Letting 9 = \/r1, we obtain that [la;(2)|] < M for ro <r <1 and
rg < |z] < 1. We define x on B by x(z) = 1if |z| > o and x(z) = 0 if |2| < rs.
Then ya; ! and xa~! are well defined matrix functions in [L>°(B)]N*V.
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Lemma 2.2. We have M(xa; ') — M(xa~t') and M(a,) — M(a) as r — 1.

Proof. We begin with the first assertion. The norms
1M (xa; DIl = lIxar s

remain bounded as 7 — 1. Since L>°(B) is dense in L?(B), it therefore suffices to
show that M (xa, })v — M(xa=!)v — 0 for every v € [L>(B)]N. As

M (xa; ') = M(xa™") = M(xa; ")M(a — a,)M(xa™"),
we are left with proving that M (a—a,)v — 0 in the scalar case (N = 1). Obviously,

1M (a - a,)ol3 = / 0 — a, o2V < [[o]]2 / la — a, 24V
B B

= ||v|\§o/B la(z) = a(rz)[*dV (2). (3)
Fix ¢ > 0. Since a is bounded, there is a compact set K C B such that
/ la(z) — a(r2)PdV () < £/2,
B\K
and as a is uniformly continuous on K, it follows that

/ la(z) — a(rz)|?dV(z) < e/2
K

whenever 7 is close enough to 1. This proves the first assertion.
Since |M(a, — a)v||3 can also be estimated from above by (3), we get the
second assertion. (]

Lemma 2.3. If IndT(a) = 0, then T'(a,) is Fredholm and IndT'(a,) < 0 for all r
close enough to 1.

Proof. We employ Lemma 2.1(a) with A = T'(a), F = T(xa™ '), A, = T(a,),
F,. = T(xa;'). Since a,|S is invertible for r sufficiently close to 1, the operators
T'(a,) are Fredholm for these r. The adjoint of T'(¢) may be identified with T'(¢p).
From Lemma 2.2 we infer that AY — A* and F, — F. Furthermore,

F.A, = T(X) - PM(Xar_l)(I - P)M(av")P'

The operator T'(x) is I plus a compact operator. We have a = ¢+ f with ¢ in
[C(B)NY*N and f in [H*®(B)]V*N. Consequently, (I — P)M(a,)P is equal to
(I — P)M (e, )P. Taking into account that ¢ is continuous on the closed ball B, it is
easily seen that M (c,) = M(c). The operator (I — P)M (c)P is compact. Finally,
M(xa; ') — M(xa™') due to Lemma 2.2. But if K, = K, K is compact, and
C, — C, then C,. K, = CK. Thus,

PM(xa;YY(I — P)M(a,)P = PM(xa *)(I — P)M(c)P + E, = L+ E,

with a compact operator L and with certain operators F, such that E, = 0.
Lemma 2.1 now yields the assertion. O
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Recall that the Bergman projection P : L?(B) — A%(B) is defined by
1
P = av B
PNE = [y J@ V). e,
that the normalized reproducing kernel of A%(B) is
(1 - [#f2)m /2
(1= (w,z))m™ "

and that the Berezin transform f of f € L>(B) is the function

k. (w) =

m+1

7o) = (s b2) /H_"Z' o J@) V(). <€ B

This is a bounded continuous function in B.

We need the following well-known properties of the Berezin transform. Let
|- || denote any matrix norm on CN*¥ and let L§(B) stand for the functions f
in L*°(B) for which the essential supremum of |f(z)| on the set {z € B :r < |z] <
1} goes to zero as r — 1. Toeplitz operators with symbols in [L5°(B)]N*V are
compact. Recall also that f, is defined by f,(z) = f(rz) for z € B. A shell is a set
of the form {z € B:1—§ < |z| < 1} with some § € (0, 1).

Lemma 2.4. Let f,g € [L>=(B)]V*N.
(a) If f is continuous on B, then f € C(B) and f|S = f|S.
(b) If f or g is continuous on B, then (fg)” — fg € [Lg(B)]N*N.

(c) With sup meaning the essential supremum,

sup || f(2)]| < sup | (2]
z€B zEB

(d) If f is identically zero on some shell, then f € [L5°(B)NV*N.

Proof. Property (a) can be proved as in [27] using the automorphisms ¢, of B
introduced in Section 2.2 of [19]. Property (b) is easily seen using the argument
of the proofs of Proposition 3 of [26] or Proposition 6.1.7 of [27]. As for (c), note
that

7 = [ s P avi)| < [ ik v
<l [ )P aVew) =1

Finally, if f = 0 on some shell {2, we can choose a matrix function ¢ in [C'(B)]N*¥
such that ¢f = 0 on B and ¢|Q2y = I on some shell Q5 C Q. From (b) we infer

that N

(pf) = f € [Lg (B,
Since (pf) is identically zero, it follows that Gf € [L°(B)N*Y. But property
(a) tells us that @(z) converges uniformly to I as |z| — 1. O
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Lemma 2.5. If £ € [L5°(B)|N*N | then T(I + &) is Fredholm of index zero for all
r sufficiently close to 1.

Proof. Given any & > 0, thereis anrg € (0, 1) such that |£(2)|| < e forro < |z| < 1.
It follows that ||{(rz)| <€ for \/ro <7 <1 and /rg < |z| < 1. Consequently, the
essential norm of T'(§,), that is, the distance of T'(§,) to the compact operators in
the operator norm, is smaller than || P|| €; see, e.g., the proof of [13, Proposition 1.7].
Thus, if ||P||e < 1, then T(I +&,) = I +T(&,) can be written as I + A, + K, with
[|A-|l <1 and with a compact operator K. This implies the assertion. O

Ifa € [C(B)+H>(B)|N*N then a—ais in [L3°(B)]N*Y due to Lemma 2.4(a)
and due to the fact that h = h for h € H> (B). It therefore suffices to prove formula
(2) in the case where a coincides with its Berezin transform, a = a.

Recall that as € [C(S) + H®(S9)]N*¥ is the function given by the radial
limits of a. We know that ag is invertible in [C(S) + H>(S)|N*N. Let bs be
the inverse and define b € [C(B) + H®(B)]V*¥ as the Berezin transform of the
harmonic extension of bg. Thus, b = b on B. Since ab|S = ba|S = I, it follows
that the operators T'(a)T'(b) — I and T'(b)T(a) — I are compact, and hence T'(b) is
Fredholm of index zero together with T'(a).

Lemma 2.6. IfIndT'(a) = 0, then IndT'(a,) = Ind T'(b,) = 0 for all r close enough
to 1.

Proof. Using that ab = I on S and that h =hftorhe H®(B), we obtain
from Lemma 2.4(b) that [ = ab+~ = ab + v with v € [LF(B)]N*N. There
are a shell  and a constant M < oo such that a and b are invertible on Q and
la=t]] < M and |67 < M on €. Hence I = ab(I + b~'a"'y) on Q, which
implies that I = ab(I + &) +n with & € [L3°(B)]V*Y and some matrix function
n € [Lg°(B)]N*YN which vanishes identically on Q. We have I = a,b.(I + &) + 1,
and thus I = T(a,)T(b,)T(I + &) + T (n,) + K, with some compact operator K.
Since T'(n,) is compact and T'(I 4 &, ) is Fredholm of index zero for r close enough
to 1 by Lemma 2.5, we conclude that 0 = Ind7T'(a,) + Ind T'(b,) whenever r is
sufficiently close to 1. However, we know from Lemma 2.3 that Ind T'(a,) < 0,
and the same lemma applied to T'(b) also shows that Ind T'(b,) < 0. Consequently,
both indices must be zero. ]

At this point we have proved formula (2) under the extra assumption that
Ind7T'(a) = 0.

Lemma 2.7. If IndT'(a) = &, then T(a,) is Fredholm and IndT(a,) = k for all v
close enough to 1.

Proof. Choose an integer kK > 0 such that N + k > m and consider the
CN+R) X (N+k)_yalued matrix function v given by v = diag(a, I},). Clearly T'(v)
is Fredholm and IndT'(v) = k. Since N + k > m, we obtain from [25] a matrix
function ¢ € [C(B)|NV+R)*X(N+k) guch that T(v) is Fredholm and Ind T'(¢)) = —&.
By Lemma 2.4(a), we may without loss of generality assume that v = ¥ and
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P = 1; Put w = vy. Then T(w) equals T'(v)T(¢) plus a compact operator, and
hence T'(w) is Fredholm of index zero. From Lemma 2.6 we deduce that T'(w,)
and thus also T'(w,) is Fredholm of index zero whenever r is close enough to 1.
From Lemma 2.4(b) we infer that w = v + v with v € [L(B)]V*N. We may
write vi) = w(I —wty) = w(I — &) + n as in the previous proof to obtain that
ety = We(I — &) + 1y and thus

IndT(vy) + Ind T(¢,) = Ind T (w,) + Ind T (I + &) =0
for r sufficiently close to 1. Since
IndT(¢,) =IndT(¢) = —k and IndT(v,) = IndT(a,),

we arrive at the equality Ind T'(a,) — k = 0, as desired. O

The proof of formula (2) is complete. That Ind T'(a) = 0 for N < m follows
immediately from (2) and the fact that Fredholm Toeplitz operators with contin-
uous matrix symbols always have index zero if N < m. This last fact can in turn
be proved in several ways. For example, we have Boutet de Monvel’s beautiful

formula
1 m —1)! _ 1
(2miym (<2m _) /Strace ((a=* da)*™1)

for Toeplitz operators with continuous matrix symbols. Proofs can be found in [3],
[11], [22]. This formula implies that Ind T'(a) = 0 for N < m. An argument which
is independent of this formula is as follows.

Let a € [C(B)]¥*¥ and suppose a|S is invertible. Then the matrix functions
|a] and u in the polar decomposition a = |a|u are continuous on S. We extend |a|
and u to functions on B by |a|(ot) = ola|(t) and u(et) = pu(t). Then Ind T'(a) =
Ind7T(|a|) + Ind T(u) = Ind T'(u). Note that u is a continuous map of S*™~! into
the group U(N). Suppose we know that the homotopy group ma,,—1(U(N)) is
finite. Then Ind T'(u) may assume only finitely many values k1, ..., xs. However,

IndT(a) = —

Ind T'(u") = Ind (T'(u)"™ 4+ compact operator) = nInd T'(u)

for every natural number n, and since Ind T'(u™) must also be one of the numbers
Kl,...,Ks, the finite set {x1,...,Kks} is invariant under multiplication by an ar-
bitrary natural number. But this is only possible if the set is the singleton {0}.
Consequently, Ind T'(u) = 0, as desired.

Finally, it is well known that the homotopy groups ma,,—1(U(NV)) are finite
for N < m. We thank Thomas Piittman of Bochum for acquainting us with the
following reasoning. There is a general theorem which says that the rational ho-
motopy groups 7;(G) ® Q of a Lie group G of rank r are isomorphic to those of a
product of r odd spheres. If G = U(N), then, by [17], these spheres are just the
first N odd spheres S',S3,... S?¥=1, But if 2k — 1 < 2N — 1 < 2m — 1, then
Tom—1(S?#71) is finite, and hence ma,, 1 (S* x S? x - - x 2V ~"1) @ Q = 0. It follows
that mam—1(U(N)) ® Q = 0, which implies that 7y, —1(U(N)) must be finite.



Index Formulas for Toeplitz Operators on the Ball 47

3. p-ellipticity

We denote the norm of the Bergman projection on LP(B) by || P||,. If p = 2, then P
is an orthogonal projection and hence || P||2 = 1. In the case of general p € (1, 00)
we have ||P||, > 1. Estimates for ||P||, can be found in [7] and [28]. From the
Riesz-Thorin interpolation theorem we deduce that p — | PJ|, is a continuous
function (because log||PJ|, is a convex function of 1/p) which is monotonically
decreasing on (1,2] and monotonically increasing on [2, 00).

Let a € [L%°(B)]V*". From now on we let || - || stand for the spectral norm
on CV*N_ We also equip [LP(B)]" with the norm

£ = CFlS + -+ LA E) 2.

With these two conventions, the norm of the operator f ~ af on [LP(B)]V is the
essential supremum of ||a(z)||, z ranging over B.

Let p € [2,00) be a real number. A compact subset R of CN*¥ is called
p-elliptic if there are invertible matrices ¢,d € CV*¥ such that

(1T = cwd| < sinZ (4)

for all w € R. This definition is motivated by the notion of y-sectoriality, for which
see, e.g., [2, p. 221]. Now let a € [L>°(B)]N¥*N. For a measurable subset U of B
with positive measure, we denote by Ry (a) C CN*Y the essential range of a|U.
Equivalently, R (a) is the set of all matrices w € CV*¥ for which the operator
of multiplication by (a — w)|U is not invertible on [L?(U)]¥. This implies that
Ru(a) is a compact set. The matrix function a is called p-elliptic on U if Ry (a)
is a p-elliptic set. We call a globally u-elliptic if a is p-elliptic on some shell.

Proposition 3.1. Define the number p € [2,00) by 1/sin(n/p) = ||Pllp. If a in
[L>°(B)|N*N is u-elliptic on the entire ball B, then T (a) is invertible on [AP(B)]Y,
and if a is globally p-elliptic, then T(a) is Fredholm of index zero on [AP(B)]™.

Proof. Suppose first that a is p-elliptic on B. Then (4) holds for all w in Rp(a),
which implies that
I — cad||s < sin(m/p)
and hence that
I = T (a)dl| = [[T(I = cad)|| < [|P[l, [T = cad||c < 1.

Consequently, ¢T'(a)dI and thus also T'(a) are invertible. Now suppose a is p-elliptic
on a shell. Then (4) holds for all essential values of a on the shell 1 -0 < |z|<1.
We take any of these values, say wg, and define ag by ag(z) =wo for |z|<1—4¢
and ap(z)=a(z) for 1 —§ < |z| < 1. Then ag is p-elliptic on B and T'(a)—T (ao)
is compact. Since T'(ap) is invertible, we conclude that T'(a) is Fredholm of index
Z€ro. (]

It is readily seen that if N = 1 and p = 2, then a compact set R C C is
2-elliptic if and only if R is contained in an open half-plane whose boundary passes
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through the origin. This happens in turn if and only if the origin does not belong
to the convex hull of R, that is, 0 ¢ conv R.

For N = 1 and general u we have the following geometrical description of
p-ellipticity. A 27 /u-sector is the open subset in C lying between two rays which
start at the origin and make the angle 27/u at the origin. Given points «, 5 € C,
we denote by &,(a, 8) the boundary and interior of the ellipse with the foci «, 3,
with the major semi-axis 1/sin(7/u), and with the minor semi-axis 1/ tan(m/u).
Thus, for a = —1 and g =1,

Eu(—-1,1) = {Jc—i—iye(C:JUQSin27T—|—y2tar127T < 1}.
H H

Proposition 3.2. Let R be a compact subset of C.

(a) The set R is p-elliptic if and only if R is contained in an open disk which is
completely contained in a 27/ p-sector.

(b) If the convex hull of R is a line segment, conv R = [«, ], then for R to be
w-elliptic it is necessary and sufficient that 0 ¢ &, (e, ).

Proof. Tt will be convenient to use the abbreviations

. 7T
§s=sn , c=cos , t=tan .
1

(a) Condition (4) amounts to the requirement that |1 — cwd| < s. Putting
zo = 1/(cd), this means that |w—zg| < s|zo|. The rest is elementary plane geometry.

(b) Since the situation is invariant under homotheties, we may without loss
of generality assume that the length of the line segment [a, §] is 2. By virtue of
(a), we have to show that [, §] is contained in an open disk lying in a 27 /u-sector
if and only if 0 ¢ £,(a, B). It is easily seen that [, 5] is contained in such a disk
if and only if there is a closed disk which has both « and § on its boundary and
which is contained in a 27/pu-sector. The center zy of this disk is on the median
of [a, B]. We parametrize this median by a parameter § € (—oo, 00), so that |d] is
the distance of zy to [a, ] and the two signs of § correspond to the two sides of
[, B]. The radius of this disk is v/1 + §2. Consequently, the disk is contained in
a 27/ p-sector if and only if v/1 + 62/|z0| < s. This is equivalent to the inequality
V14 62/s < |z|, which means that the closed disk Ds with center zy and radius
V1 +42/s does not contain the origin. Thus, [, ] is contained in an open disk
lying in a 2x/p-sector if and only if there exists a ¢ such that 0 ¢ Dy, which
happens if and only if 0 ¢ N Ds. The assertion is therefore equivalent to the
equality N Ds = £, (a, ). To show this equality we may without loss of generality
assume that [a, 8] = [-1,1].

We first prove that N Ds C £,(—1,1). Take a point = + iy ¢ &,(—1,1) and
suppose without loss of generality that y < 0. Take § > 0 as § = —ys?/c? and
consider the disk Dgs with center 6 and radius V1+ 62 /s. For the distance d
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between x + iy and the center id of this disk we have

2 2 2 2 s ? 1 2 2 232
"+ (y—-06)"=z"+y 1+ , ) = , (27" +y" |
c s c
1 2 2 2 5° 2 st 1 2 2 2,2 2 st
= = t
and the radius R od Djg satisfies

14462 1 st
2 _ 2
R® = o2 _32(1+y o)

d2

Thus, if z + iy ¢ £,(—1,1) and hence 2?s? + y*t* > 1, then d > R, which implies
that x + iy does not belong to Ds and all the more not to N Ds.
To prove that £,(—1,1) C N Dy, pick « + iy € £,(—1,1). We then have the
inequality
25?4+ %% < 1.
Let d be the distance between x+iy and the center id of Ds and let R be the radius
of Ds. We must show that d? = 22 + (y — 6)%2 < V1 + §2/s = R? or equivalently,

J6) =146 = 2@ + (y— 6)°) > 0

for all § € (—o0, 00). But the graph of f is a convex parabola, and a straightforward
computation reveals that the minimum of f(4) is

52
f (—y 2) =1-a22s2— %2 > 0.
c
This completes the proof. O

It is well known that the local spectra of Toeplitz operators with piecewise
continuous symbols on the Hardy spaces of S! are circular arcs. When considering
the finite section method for these Toeplitz operators or when passing to such
Toeplitz operators with locally sectorial symbols, these circular arcs blow up to
lenses. For Toeplitz operators on the Hardy spaces of S!, p-sectoriality on U C S*
means that Ry (a) is contained in a 27/ p-sector. This is weaker than p-ellipticity,
which additionally requires that Ry (a) is contained in a disk lying in a 27/u
sector. The lens O,(a, ) is defined as the set of all points in C at which the
line segment [«, 8] is seen at an angle of at least 27/u, and for a compact set
R C C with convR = [a, ] to be p-sectorial it is necessary and sufficient that
0 ¢ Ou(e, ). This is again weaker than condition (b), because it is easily seen
that always O, (o, 8) C E.(w, B). However note that O,(a, 5) touches £, (a, )
from inside at the two points with minimal curvature. Finally, note that if u = 2,
then O, («, 8) and &,(a, B) both degenerate to the line segment [, 5]. Figures 1
and 2 show examples.

The following result provides additional insight in the case where p = 2 and
N is arbitrary.
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Proposition 3.3. Let R be a compact subset of CN*N . The following are equivalent.

(i) R is 2-elliptic.
(ii) There is an invertible matriz d € CN*N such that |[I — wd|| < 1 for all

wER.

(iii) There is an invertible matriz c € CN*N such that |[I—cwl|| < 1 for allw € R.
(iv) There exist invertible matrices ¢,d € CN*N and a number ¢ > 0 such that

(v) There exist an invertible matriz d €

Re (cwd) > eI for all w € R.

CN*N gnd a number e > 0 such that

Re (wd) > el for allw € R.

(vi) There exist an invertible matriz ¢ € CN*N and a number ¢ > 0 such that

Re (cw) > el for all w € R.

If, in addition, conv R is a line segment, that is, a set of the form {(1—&)a+£5:
€ € [0,1]} with certain a, B € CNXN | then R is 2-elliptic if and only if conv R
consists of invertible matrices only.

Proof. What we call 2-ellipticity here is analytic sectoriality in the book [2]. The
equivalence of (i) to (vi) therefore follows from Lemma 3.6(a),(b) of [2]. The last
assertion is due to Clancey [5] and is also proved as Theorem 3.4 in [2]. O
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FIGURE 1. The boundaries of the lenses O,(—1,1) and the ellipses
Eu(—1,1) for p = 3,4,6,20.
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FIGURE 2. Superposition of the boundaries of the lenses O, (—1, 1) and
the ellipses &,(—1,1) for u = 3,6, 20.

4. Locally p-elliptic symbols

We call a matrix function a € [L>°(B)]N*¥ locally p-elliptic if every point 7 € S
has an open neighborhood U, C C™ such that a is p-elliptic on U, N B. An
equivalent definition is as follows. Given 7 € S, let R, (a) denote the intersection
of the sets Rynp(a) where U ranges over all open neighborhoods U € C™ of 7.
Then a is locally p-elliptic if and only if R, (a) is a p-elliptic set for every 7 € S.
A standard compactness argument reveals that if a is locally p-elliptic, then a is
even v-elliptic provided v > p is sufficiently close to p.

Obviously, a matrix function a € [L>(B)]N*Y is locally p-elliptic if it can
be written a = oy + n where ¢ and @ are matrix functions in [C(B)]N*V
such that ¢|S and v|S are invertible, o € [L>(B)]¥*¥ is globally p-elliptic, and
n € [L>°(B)]N*N vanishes identically on some shell 1 —§ < |z| < 1.

Proposition 4.1. Let a € [L=(B)]N*N be locally 2-elliptic. Then a = i) + 1
where ¥ € [C(B)|N*N, 4|8 is invertible, o € [L>(B)|N*N is 2-elliptic on B, and
n € [L(B)]N*N vanishes identically on some shell 1 —§ < |z| < 1.

Proof. Choose a finite cover {U;} = {U, } of S such that a is 2-elliptic on U; N B.
By virtue of Proposition 3.3(ii), there are invertible N x N matrices d; such that
I — a(z)d;|| < 1 almost everywhere on U; N B. Clearly, {U;} is also a cover of
some shell 2. Now we may proceed exactly as in [18] or the proof of Theorem 3.8
of [2] to obtain a matrix function d € [C(Q)]V*Y such that ||I —a(z)d(z)|| < 1 for
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almost all z € Q. Put 0 = ad on Q and 0 = w on B\ 2, where w is any value in
Ra(ad). Then o is 2-elliptic on the entire ball B. Since ||I — ad|| < 1, the matrix
function ad is invertible on §2, and hence so also is d. Let v be any matrix function
in [C(B)]V*Y which coincides with d~! on Q. Thus, a = ¢/ on (2, which implies
that @ = o9 + 1 on B with n|Q = 0. O

Theorem 4.2. Let 1 < p < oo and define p € [2,00) by 1/sin(n/p) = ||P||p.
Suppose a € [L>(B)|N*N is locally p-elliptic. Then T(a) is Fredholm on the space
[AP(B)]N, and there is a number ro € (0,1) such that T(a,) is Fredholm for
ro <r <1 and

IndT(a) = linﬁ Ind T'(a,).
r—

Proof. That T'(a) is Fredholm can be proved in a standard way with the help of the
local principle of Allan and Douglas, for which see, e.g., [2], [9]. Our assumptions
imply that if p # 2, then T'(a) is actually Fredholm on [A*(B)]" for all ¢ in some
open neighborhood U of the segment [p,q], where 1/p 4+ 1/¢ = 1. This can be
shown as follows. For the sake of definiteness, let p > 2. The invertibility of the
local representatives is guaranteed if

[1Plle [[I = erady[loo < 1;

recall the proof of Proposition 3.1. But we know that a is locally v-elliptic for some
v > p. Since

|Pllp = 1/ sin(r/p) < 1/ sin(/v),
there is an £ > 0 such that the inequality

[1Pllp+e < 1/sin(m/v)
holds. By duality, || P||; = || P||p, and hence there is also a § > 0 such that
[1Pllg-5 < 1/sin(m/v).
It results that
1Pl < max{[[Plpte; [| Pllg-s} < 1/sin(m/v)

forte (q—0,p+¢).

The operators T'(a,) have continuous symbols, and hence they are Fred-
holm on [AY(B)]YN for all t € U if they are Fredholm on [A%(B)]"V. The result of
Shneiberg [20] implies the index formula for all ¢ € U once it has been established
for t = 2. Thus, we are left with proving the theorem for p = 2.

Since locally p-elliptic symbols are locally 2-elliptic, we deduce from Proposi-
tion 4.1 that a = o)+n where ¢ is a matrix function in [C(B)]N*¥ such that ¥|S is
invertible, o € [L>°(B)]N*¥ is 2-elliptic on all of B, and n € [L°(B)]*¥ vanishes
identically on some shell 1 — ¢ < |z| < 1. It follows that T'(a) = T'(0)T(¥) + T'(n)
plus a compact operator. Moreover, T'(n) is also compact, and since T'(o) is in-
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vertible by virtue of Proposition 3.1, we obtain that

IndT'(a) = Ind T'(3). (5)
We now pass to Berezin transforms. From Lemma 2.4(b) we infer that

A=Y +i+y

with v € [Lg°(B)]V*¥Y. By Lemma 2.4(d), the Berezin transform of 7 also belongs
to [L5°(B)]N*N. There are a shell Q and a constant M; < oo such that ||~ <
M; on Q. We have || I — cod|| < 1 with invertible matrices ¢,d € CV*¥ on all of B.
From Lemma 2.4(c) we conclude that ||[I—cad|| < 1 on B, which gives ||[o7|| < M»
on B with some constant My < oo and also shows that T'(5,) is invertible for all r.
Thus, on €2 we can write

a=GY[+47 5 [+ ),
which implies that on all of B we have
a=oy[I+¢&+6
where ¢ and 0 are in [L(B)]V*" and 6 vanishes identically on some shell. This
gives
(@) = T@E)T ()T +&) +T(0) + K,
with a compact operator K. The operator T'(6,.) is compact for r sufficiently close

to 1, and due to Lemma 2.5 the operator T'(I + &) is Fredholm of index zero for
such r. In summary, there is an o such that

Ind T(a,) = Ind T(5,) + Ind T(¢,) + Ind T(I +&,)
where T'(c,) is invertible and T'(I 4 &) is Fredholm of index zero. Since
Ind () = lim Ind T ()
due to Lemma 2.4(a), we finally see that
lim Ind T'(a,) = Ind T().

Comparison with (5) completes the proof. O

We remark that for N = m = 1 and p = 2 the previous theorem was estab-
lished in [1]. McDonald [14] considered symbols a € L>°(B) which are uniformly
continuous on the two pieces By and B_ which arise when cutting the ball B by
a hyperplane of real dimension 2m — 1. For such symbols, he proved that T'(a) is
Fredholm on A?(B) if and only if a is locally 2-elliptic. Note that the sets R, (a) are
all either singletons or doubletons, so that conv R, (a) is always a line segment in
this case. For recent developments in Toeplitz operators with more general piece-
wise continuous symbols we refer to Loaiza’s paper [12] and the nice expositions by
Vasilevski in [23] and [24]. However, almost all the available results are for p = 2
and in many cases also for N = m = 1 only. Fighting with p, N,m at the same
time remains a challenge for the future.
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The Green Function and Optical Field
Enhancement in a Multilayered
Microsphere with Metamaterial

Gennadiy Burlak and Vladimir Rabinovich

Abstract. The radiation of a nanosource placed in a coated microsphere with
conventional and metamaterial layers having a negative refraction index
(NIM) is studied. We consider also that a NIM defect is embedded in such
a structure. Our calculations show strong enhancement of the optical field
strength assisted by NIM defect. In a resonant case the optical field is almost
completely arrested in a vicinity of the defect layer.
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1. Introduction

Metamaterials, artificial composite structures with exotic material properties, have
emerged as a new frontier of science involving physics, material science and engi-
neering. Nowadays such nanostructured composites are well studied due to intense
fundamental and applied research over the past several years [28]-[10]. Next step
is a generation of compound structures that can be constructed by alternating of
conventional and metamaterial layers. The insertion of metamaterial layers in con-
ventional structures and creation of such a compound environment can open new
fundamentals and applied perspectives. In such systems the propagating modes be-
come reconfigurable and can be switched between the left-handed and right-handed
modes by changing the position of the metamaterial in the spherical stack[12].

In this paper we study the optical properties of alternating multilayered mi-
crospheres with NIM layers. In such a system a basic building block (single-layer
unit cell) is a spherical layer that normally has A/4 width. An application of the
well-known idea about coating by quarter-wave layers opens a possibility to sharply
increase the @ factor of such a system up to @ ~ 10° [5]-[21]. It is important that
in such a complex system the remarkable optical phenomena in the interface of
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FIGURE 1. Geometry of a multilayered microsphere. A stack of multi-
layers with embeded NIM layer is deposited on the surface of the mi-
crosphere.

conventional and NIM layers [28], [24] can be accumulated. Moreover, the real
part of the effective (average) refractive index can become positive, zero or neg-
ative along the radial direction. The latter allows imparting new peculiarities to
known optical effects [19]. We numerically study the details of spectrum and the
optical field distribution of radiating nanoemitter placed in a microsphere coated
by alternating conventional and metamaterial layers with negative refraction in-
dex (NIM). We consider that a NIM defect is embedded in such a spherical stack.
Our calculations show strong enhancement of a nanoemitter field assisted by NIM
defect. In resonant case the photon field is almost completely arrested in a vicinity
of the defect layer.

2. Basic equations

The spatial scale of the nanoemitter objects (~ 1 — 100nm) is at least one order
of magnitude smaller than the spatial scale of microspheres (~ 10% — 10*nm).
Therefore in the coated microsphere (Figure 1), we can represent the nanoemitter
structure as a point source (object) placed at r’ and having a dipole moment dg.

It is well known that the solution of the wave equation for the radiated
electromagnetic field E due to a general source J(r’) is [14], [9]

E(rw) = iw,uo/vdr'é(r,r',w)ﬁ(r’,w)J(r’), (2.1)
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where é(r, r’,w) is the dyadic Green function (DGF), which depends on the type
of boundary conditions imposed on E(r) and contains all the physical informa-
tion necessary for describing the multilayered structure (the time dependence is
assumed to be e™?). Eq. (2.1) is complemented by the standard boundary con-
ditions: limitation of the fields in the center of the microsphere and continuity
of the tangential components of the fields at the interfaces of layers. We also use
Sommerfeld’s radiation conditions, where there is only an outgoing wave in the
external boundary of the microsphere. In this case, the electromagnetic field E in
the coated structure consists of the sum of the waves radiating in the surrounding
medium and the multiple wave reflections due to the interfaces between layers.
Substituting the nanoemitter source in the form J = iwd, d =ded(r — r’) in
(2.1), we obtain

E( r, I‘/,OJ) = _poé( r, r’,w), (22)
where pg = (fido/e0) (w2 / 02). In such a situation, the nanoemitter frequency
spectrum is identical to the dyadic Green function (DGF) spectrum. Thus, the
equation of the field generated by a nanoemitter assumes the form of the DGF
G( r, r',w) equation, and is given by [14], [9]

2
Er,w)G(r, r',w)| =d(r— 1),
(2.3)
where %(r,w) = i~ !(r,w), and r is the point where the field is observed, while r’

fir,w) |(V x B(r,w) V x G r, v/sw) =,

is the nanoemitter (point source) location, T is the unit dyadic. For a scalar case
with I = pix = pdi , € = €ix = €6, and k=p~* from Eq. (2.3) we obtain the
DGPF equation in well-known form

2

~

V xVxG(r, r’,w)—w n?(r,w)G(r, r,w)=6(r— 1), (2.4)

c2

where n = +[ep]'/? is the refraction index that is positive for conventional mate-

rials, n > 0, and n is negative for metamaterials, n < 0. (We note that in some
references the equation for DGF Eq. (2.3) is written without fi(r,w) in the left. For
a scalar case this leads to a simple renormalization: GG /u.) The dyadic Green
function (A}( r, r' w) in (2.4) satisfies the boundary conditions at the interfaces of
spherical layers

Fx G =T x GItYs kp(r,w) xTx GI¥ = sy (r,w) xFx GI*. (2.5)

Let us consider the multilayered spherical structure: a concentric system of
spherical layers contacting with the sphere (concentric stack) deposited onto the
surface of the microsphere with a nanoemitter placed in such a structure (see
Figure 1). The layers are localized at the distance Ry from the center, where
di, = Ry, — Ri41 is the width of a kth layer.

Let us first specify some details of the Green function technique for multi-
layered microspheres and introduce our notations. Following the approach[17], we
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write down DGF of such a system as follows:
G(r,r',w) = GV (r,r',w)éps + GUI (r,1',0), (2.6)

where év(r,r' ,w) represents the contribution of the direct waves from the ra-
diation sources in the unbounded medium, whereas G*)(r, 1/, w) describes the
contribution of the multiple wave reflections and transmissions due to the layer
interfaces. The dyadic Green tensor év(r r',w) in (2.6) is given by

év(r,r’,w) = Zé( r') Z Z Z Gy nm(r, 1, w), (2.7)

qeon 1 m=0

with onil ( )
n+ n—m)!
n(n+1) (n+m)!(2 %0m), (28)
where the prime denotes the nanoemitter coordinates r' = (1,6, ¢’), n and m
are spherical and azimuthal quantum numbers, respectively, while ks, = wn/c is
the wave number of the medium where the radiated nanoemitters are located. It
is worth noting that due to the dyad Tr, the d-function in (2.7) contributes to
the radial (longitudinal) part [9]. Due to the equality T - (66 + ©p) = 0, such a
singularity does not contribute to the field (2.2) for the considered case of a dipole,
such a case is considered below.
The partial dyadic Green tensor G
GV

qnm(

M (5 ks ) Myun (' i) 4 NoGam (5 i Ny (7 ), 7> 1) o )
M (1, Ko )M (2 Keg) + N (1, k1 )N G (2, K}, x < v/

In Eq. (2.9), vectors M and N represent T E- and T'M-waves, respectively, where
m sin
M- = ] 2.1
com (k) = F )P c050) (52 ) e (2.10)

dP™(cos8) (cos
df

Cnm =

Y (.1, w) in (2.7) has a form

r,r’,w)

k) Jmares

N 8) = " P c0s) (5 (e (2.11)
1 d[rjn(kr)] [dPY’L”(cos 6) <cos
kr dr do

= " P(cos 9)( Or;) (me)es),

where j,(z) and h,(z) stand for spherical Bessel and Hankel functions [1] re-
spectively, and P"(x) is the associated Legendre function. For the sake of sim-
plicity, we use in (2.10), (2.11) and further on, the standard short notation:
M, (k) = Me,,(r, k) and M’gnm(k) = Mc¢,,,(r', k). The superscript M) in

) (mo)eq

sin
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Egs. (2.9)—(2.17) indicates that in (2.10) and (2.11), the spherical Bessel function

jn(z) has to be replaced by the first-type spherical Hankel function hsll)(:c) for
r >, R
The scattering DGF G(/*) (r r’,w) is written as

GU9) (r, 1, w) Z Z Z CED Gy (r, T, W), (2.12)

qeon 1 m=0

where f and s denote the layers where the field point and source point are located;
drs is the Kronecker symbol and

G2 (r,r',w) = Ay ( (k) Pr + NU nm(kf)PN> (2.13)

+ Arp (MU, (k1) Qur + N, (k1) Qx )

with
Py = A AMY (k) + Ans B M (k). (2.14)
Py = AR APNL (k) + Ans BN (ks), (2.15)
Qs = A CPMY (k) + Ans DM (k) (2.16)
Qn = A CPNG (k) + A DNCD (&), (2.17)

where Ayy = 1 — 0fs, Ofs is the Kronecker symbol, ks = ns(w)w/c, n(w) =
+/es(w)ps(w) is the refraction index of the s layer (see Eq. (3.4) in the next
Section). Frequency dependent coefficients A7*(w), Bf*(w), C{*(w) and D{*(w) in
(2.14)—(2.17) are defined from the above-mentioned boundary conditions and de-
scribe the details of the wave behavior in the interface of the stack layers. The use
of boundary conditions yields the relations between these coefficients that can be
written in the following matrix form:

B FAREE C N AT N IETS (e P} (2.18)
where k=M, N, f=1,...,N —1 and
Abs  pls 1/Tk /Tk
Jf:S_[lc ’“],If—[ Ff Ff}, 2.19
k cls ple|» k= |Rb,/Th, 1/T1’§f (2:19)
1 0 0 0
+ _ - _
) a0

The reflection Rff and the transmittance Tff coefficients from Eq. (2.19) are
written in Refs. [17], [8], where one can find more details.

We note that the argument of the spherical Bessel j,(x) or Hankel functions
hﬁ}’”(x) (x = nw/c) in Egs. (2.13)—(2.19) is positive for conventional layer (n >
0) or negative for metamaterial layer (n > 0). In general it leads to significant
modifications of the scattering coefficients in (2.12). However the situation is more
simple in contact of two NIM layers. Really, it is easy to see that due to general
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properties [1] j;(—x) = (—=1)'5;(x) and hl(l’Q)(—a:) = (—1)lhl(2’1)(x) and since DGF
is a bilinear function of the Bessel (or Hankel) functions for points r and 7’ that
are in NIM layers we have jj(—z)j,(—z') = ji(z)ji(z') and hl(1>(—x)hl(1)(—x’) =
hl(Q) (x)hl(Q) (z'). However when the points r and ' belong to different materials
the terms G /% (r,r’,w) for odd [ = 1,3,5,... produce the substantial difference

q,lm
in behavior of the DGF for a compound NIM (or conventional) layers stack with

respect of conventional stack.

3. Permittivity, permeability, and refractive index of NIP layers

In this section we briefly discuss the properties of NIM layers. Let us consider a
causal linear magnetodielectric medium characterized by a (relative) permittivity
e(r,w) and a (relative) permeability u(r,w), both of which are spatially varying,
complex functions of frequency satisfying the relations

e(r,—w") =e*(r,w), pr,—w")=p"(r,w). (3.1)

The relation n?(r,w) =&(r,w)u(r,w) formally offers two possibilities for the (com-
plex) refractive index n(r,w)

n(r,w) = ++/|e(r, w)p(r,w)| et @) +ourwl/z, (3.2)
where
0 < [¢e(r,w) + Pulr,w)]/2 <. (3-3)
Further, we follow references [11], [30] that allow us to rewrite Eq. (3.2) as
n(,w) = Ve (r, w)p(e, )] €l e Houte2, (3.4)

In the following, we refer to the material of a layer as being left-handed (or
metamaterial) if the real part of its refractive index is negative. In order to allow
a dependence on the frequency of the refractive index, let us restrict our attention
to a single-resonance permittivity

2

w
=1 Pe 3.5
e(w) + W2, — w? — iy (3.5)

and a single-resonance permeability
2
Wpm

pw) =1+ (3.6)

Wi —w? — Wy,
where wpe, wpy, are the coupling strengths, wre, wr, are the transverse reso-
nance frequencies, and 7., v, are the absorption parameters. Both the permittivity
and the permeability satisfy the Kramers-Kronig relations (see discussion in [26],
[15]). Figure 2 shows the NIP refractive index n(r,w) = Ren(r,w) + i Imn(r,w)
(w = 27f), with the permittivity e(w) and the permeability p(w) being respec-
tively given by Egs. (3.5) and (3.6) in the frequency interval from 155THz up to
175 THz. In our case it is used the following typical values: wry, /27 = frm, =
159.2THz, v,n/27 = fy = 0.001592THz, fr. = 163.9THz, fp. = 119.4THz,
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FIGURE 2. Real (a) and imaginary (b) parts of the refractive index n(w)
(w=2rf) of LH layer in the stack as functions of frequency f = w/2m,
with the permittivity €(w) and the permeability p(w) being respectively
given by Egs. (3.5) and (3.6) [wrm = (10'6/27) THz, wre = 1.03 wrm;
Wpm = 0.43WTm; wpe = 0.75WTm; Ye = Ym = 1077wy, (solid lines))].
The values of the parameters have been chosen to be similar to those
in Refs. [11]-[23]. Insets show the details of Ren and Imn in the area
where Ren < 0. See details in text.

fpm = 68.44THz. In the inset, the details of n(r,w) are shown in the frequency
interval from 164 THz up to 175 THz where Ren(r,w) < 0. It is worth noting
that the negative real part of the refractive index is typically observed together
with strong dispersion, so that absorption cannot be disregarded in general. How-
ever, in a very recent experiment[29], it was experimentally demonstrated that the
incorporation of gain material in a metamaterial makes it possible to fabricate
an extremely low-loss and active optical NIM structure. As a result, the origi-
nal loss-limited negative refractive index can be drastically improved with loss
compensation.
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4. Numerical results

Analytical solutions to Eq. (2.18) for scattering coefficients Al*, B/"* C/* and
D,{’s for cases of 1 or 2 layers in a spherical stack were derived in Ref. [17]. But
corresponding equations are rather laborious, and thus are hardly suitable in prac-
tice for studying the frequency spectrum for the cases with more than 2 layers in
the stack already. However, namely in such a structure, one can expect physi-
cally interesting phenomena due to the wave re-reflections in the layers of the
stack. Similarly to the plane case, such phenomena are most pronounced when
the thicknesses of the alternating spherical layers are approximately equal to A/4
(quarter-wave layers) [4], [27], [6]. In a general case of alternating layers (having
small losses), the equality ko |ng|dr = 7/, (di is width, ko = w/c) is considered,
so that d = w/lkg |ng|, where [ is integer. In this case, the optical thicknesses of
the conventional and NIP material layers are the same dj |n;| = da |na.

We consider a spherical stack with 1/ky = Ag/27, where Ag is the refer-
ence wavelength of the structure. The equality dj, |ni| = Ag/4 corresponds to the
quarter-wave case. (Let us remind that the continuity of the fields in the layer
interfaces requires the continuity of impedances Z = (u/e)'/? which is positive
for both the NIP and the conventional layers.) Since the amplitude of a spherical
electromagnetic wave depends on the distance to the center of the microsphere,
such a Ag/4 approximation is only asymptotically close to the plane wave case and
can be optimized yet with respect to the local properties of the layers in the stack.

Now we have to identify the nanosource position in a microsphere. If a na-
noemitter is placed close to the center of a microsphere, the system is nearly
spherically symmetric; therefore the modes with small spherical quantum num-
bers mainly contribute to the sums in Eqgs. (2.7), (2.12). This case is close to a
rotational invariant geometry where the dipole moment orientation does not need
to be specified. Therefore, we draw more attention to a case where the nanoemitter
is placed rather far from the center in one of the layers of the spherical stack. In
such a system, the preferred direction (center-source) arises, therefore larger num-
bers of spherical modes contribute to DGF (2.7), (2.12). As a result the frequency
spectrum of DGF becomes richer but more complicated.

In this Section, we numerically explore the details of frequency spectrum
and radial dependencies of nanoemitter radiation (the dyadic Green function) for
alternating quarter-wave compound stack (Figure 1). The details of the numer-
ical algorithm can be found in Ref. [8]. Since nanoemitters (e.g., nanorods [18])
are highly polarized objects, we further pay more attention to the tangential na-
noemitter orientation with d =dp, so only the tangential components of the Green
tensor G, contribute.

The following parameters have been used in our calculations: the geometry of
a system is ABCBC BC..BD, where the letters A, B, C, D indicate the materials of
layers, here A and D are inner and surrounded spherical layers, respectively, while
B and C are alternating layers in the spherical stack, Ag = 1.75 um (Ko = 27 fo/c,
fo = 171.5THz). A bottom microsphere has a refraction index ny = 1.5+i2-1074
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FIGURE 3. The frequency spectrums of W (r,r’, f) = Im(Gyy (7,7, f))
for (a) r = v/ = 2.5r1, and (b) r = ' = 2.91ry, where r; = 1 um is
the radius of the internal bottom microsphere, panel (c) shows Re(n),
where n = n(w = 27 f) is the refraction index of NIM layer. Spherical
stack consists of 14 layers, the defect LH layer is embedded as 7th layer.
See details in text.

(A, glass, radius 1000nm). The refraction index of the NIP layer is given by Eq.
(3.4) (see Figure 2 for details) (B, width 437nm), ny = 1.46 + i3 - 1072 (SiOx,
C, width 300nm) and ny = 1 (D, swrrounding space). To consider the realistic
layers case we added to each n; a small imaginary part, which corresponds to the
material dissipation. To seek for simplicity, further we consider a situation when
the embedded NIM defect is the same as other NIM layers in the stack. This allows
us to observe the main features of such a compound system. The results of our
calculations are shown in Figs. 3-8.

It is known that due to the fluctuation-dissipation theorem the correlation
function of the electromagnetic field at points 7 and 7’ can be written by means
of the macroscopic Green function as follows [16]

(E(ME(r)), ~ (s (@)G(r,r',w)), w =21 f . (4.1)

w
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FIGURE 4. Radial distribution of W(r,7’, fo) for a resonance fy =
170.5 THz and two positions of an emitter (indicated by arrows): (a)
r’/ry = 2.5, and (b) ' /r1 = 2.91, where r; is the radius of the internal
bottom microsphere (r/r; < 1). Dash line shows the structure (refrac-
tive indices) of the stack. In order to see the field structure clearly the
refractive indices are multiplied by 10. Spherical stack has 14 layers, the
defect NIM layer is embedded as 7th layer (is marked by symbol X).
See details in text.

For case r = r' and small absorbing Eq. (4.1) yields the energy of fluctuating
electromagnetic field as <E(T)2> ~ puHw) Im(CA}(r, r’,w)). From the latter we

~

observe that signum Im(G(r,r’,w) must coincide with signum Re p(w). Therefore
Im(G(r,r,w)) in NIP medium (with Re pu(w) < 0) is negative.
Further we perform our study as follows. (i) We evaluate the frequency spec-

~

trum of the field W (r,w) = Im(G(r,r,w)), for fixed r to define the spectral res-
onances f;, after that (i) we evaluate W (r,7’,wp) = Im(G(r,7’,wp)) for some
resonance wy that allows to study the correlations of field states between various
points of the stack r and r/, which belong to the same or different layers. The
typical structure of the Green function spectrum (that is G,,(r,r) in our case) is
shown in Figure 3.

While calculations we have evaluated complete the complex Green tensor
G, however further we will pay attention to the imaginary part W(r,r/, f) =
Im(Gyy(r,r’, f)). In a spherical geometry the value of Gy, (r,7’, f) depends on
the source position r’ (distance to the center), therefore we start our study for
cases when the emitter is placed in the opposite boundaries of a NIM layer. In
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FIGURE 5. (a) The frequency spectrum of the field W(r,7', f) =
Im(Gyp(r, 7, f)) for r = r’ = 4.07, and (b) radial distribution of the
W (r,r', fo) = Im(Gyu(r, ', fo)) for a resonance fo = 170.5 THz and the
position of the atom: v/ /ry = 4.07, where 7 is the radius of the internal
bottom microsphere. Spherical stack has 14 layers, the defect LH layer
is embedded in 7 layer. See details in text.

Figure 3 the frequency spectrum of the field W(f) for (a) r =+’ = 2.5r1, and (b)
r =1 = 2.91ry, (r1 is the radius of the internal microsphere) is shown. Such a
spectrum consists of various resonances corresponding to eigenfrequencies of such
a system. As it is expected, the signum of Im(G,,(r,r, f)) is negative for such
a configuration. In Figure 3 panel (c) the frequency dependence of the refraction
index of NIM layer Ren(f) is depicted. Spherical stack has 14 layers and a defect
NIM layer is embedded as Tth layer in the stack. We observe from Figure 3 (a)
and (b) that spectra have similar structure because the width of the NIM layer is
small with respect of the distance to center of the microsphere.

After evaluation the structure of resonances for Im(Gy,(r,7, f)) we study
the spatial (radial) distribution of W (r,7’, fo) = Im(Gyy (1,7, fo)) at fixed source
place r’ for some resonance f = fo. Such dependencies are shown in Figure 4 for
two positions of a source (both in a NIM layer) for a resonance fo = 170.57 THz,
see Figure 3 (a). As it was already mentioned in this case the accumulating of
partial terms in the sum (2.12) becomes. From Figure 4 (a) and (b) we observe
that the field structures in 5th NIM layer are similar but quite different from the
field behavior in other layers. It is interesting to see that the field strength W in
5th layer is about 150 (arbitrary units) what is at least in 3-5 times higher than in
the other layers. In Figure 4 a dash line shows the structure (refractive indices) of
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FIGURE 6. Case without a defect in the spherical stack. (a) Frequency
spectrum of W(r,r', f) for r = v’ = 2.5r1, and (b) radial distribution
of the W (r,r’, fo) for a resonance fy = 169.5THz and the position of
the emitter: ' /r; = 2.5, where rq is the radius of the internal bottom
microsphere. Spherical stack has 14 alternating layers. See details in
text.

the spherical stack (to see the spatial field structure clearly the refractive indices
in Figure 4 (c) are multiplied by 10). Spherical stack has 14 layers, and the defect
NIM layer (marked as a symbol X) is embedded as 7th layer in the stack.

To see whether the field shape and strength in 5th layer of Figure 4 is sensitive
to the source place we calculate W for other nanoemitter position ' = 4.07 ym
that is farther from the center, but belongs to other NIM layer, see Figure 5. We
observe that such a configuration the field amplitude W in 5th layer is strongly
(about 3 times) reduced, but the shape of the field remains stable.

Now we investigate whether the field state in 5th layer depends on the pres-
ence of the defect in the stack. To do this we calculated the spatial field distribution
but without of a defect (indicated as X); in this case spherical stack is exactly pe-
riodic one. Figure 6 (a) shows corresponding frequency spectrum with a resonance
line closely to 170.5 THz that than was used to evaluate the spatial field distribu-
tion shown in Figure 6 (b). We observe from Figure 6 (b) that the shape of W in
5th layer is similar to that is shown in Figure 4 (a), but the amplitude of the field
state is considerably less (40 times).

We should explore yet the case when a nanoemitter is placed in conven-
tional material SiOy (beyond of NIM layer). Such a configuration is shown in
Figure 7. In this layer Re(n) > 0 and, as it is expected in Figure 7 (a) W(r =
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FIGURE 7. (a) The frequency spectrum of the field W(r,7', f) =
Im(Gyy(r,r’, f)) for r = r' = 2.45r, and (b) radial distribution of
the W(r, ', fo) = Im(Gypu(r,v’, fo)) for a resonance fo = 170.5THz
and the position of the atom: r'/rqy = 2.45 (that is SiO layer), where
rq is the radius of the internal bottom microsphere. Spherical stack has
14 layers, the defect LH layer is embedded as 7 layer. See details in text.

', f) = Im(Gyup(r =1/, f)) is positive. Figure 7 (b) shows the radial dependence
W (r,r', fo) at v’ /ry = 2.45 for the frequency resonance fy = 170.57 THz.

We observe from Figure 7 (b) that the strength W is considerably less with
respect to case when a source was placed in NIP layer, Figure 4. This confirms
the conclusion that assistance of defect is important to attain the maximum field
strength.

In previous figures the frequency spectrum and radial distribution of the
field (~ Im(Gyy(r, 7, f))) for the multilayered stack were shown. However in ex-
periments it is important to identify the spatial and angular distribution of the
optical field, radiated by nanosources located in a coated microsphere. It is of in-
terest to consider the spatial field distribution in a cross-section contained both
center of the coated microsphere and nanoemitter for some resonance. Such a
distribution is shown in Figure 8 for the resonance f, = 170.57THz (see Fig-
ure 3(a)). In order to see clearly the field details, Figure 8 shows —W (r, ¢), where
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Ficure 8. The spatial structure —W(r,¢) (arbitrary units) where
W(r,p) = Im(Gup(r,7’,¢)) in a cross-section 0 < r < 7pm and
0 < ¢ < 27 of the coated microsphere for resonance f = 170.57 THz.
A nanoemitter is placed in NIM layer at point ' = 2.5 um. One can
observe the confinement of field in the vicinity of NIM defect, see Fig-
ure 4 (a).

W(r,¢) = Im(Gyy(r,r’,)). We observe from Figure 8 very sharp field peak in
place of the nanosource location r’ = 2.5 um. Such a spatial field structure may
be treated as a confinement of the electromagnetic energy inside the NIM layer of
coated microsphere. The confinement of the defect optical mode can be explaned
as the follows[31]. Once a photon enters the defect region, it encounters two A\/4
Bragg reflectors (the periodic parts of the stack) before and behind it. This leads
that the photon will be strongly reflected back to the defect region and thus re-
mains long time in the defect area. Such a long dwell time results in very high
energy field density around the defect. The leakage of photons through such a
structure into the outer space obviously is small. We observe from Figure 8 that
the field structure inside of multilayered stack is anisotropic and quite intricate,
but the field distribution beyond the coated microsphere has a periodic character.

5. Conclusion

We numerically study the details of spectrum and the optical field distribution of
nanoemitters placed in a microsphere coated by conventional and metamaterial
layers with embedded a NIM defect. By the Green function technique we system-
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atically have investigated the behavior of the nanoemitter fields for the frequency
range where the metamaterial has negative index refraction. Our calculations have
shown a strong enhancement of the nanoemitter fields correlations assisted by the
embedded defect. In resonant case the photon field is almost completely arrested
in a NIM layer in vicinity of the defect layer. This allows to confine resonantly
the field energy in a multilayered stack in very narrow frequency range in order
to create very selective stop-band filters. Incorporating nanoemitters into such
structured compound microspheres allow expanding essentially the operational
properties of microspheres at engineering of nanometer-sized photon emitters as
attractive artificial light sources for advanced optical technologies.
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Abstract. We investigate the Neumann type boundary value problems for
anisotropic pseudo-Maxwell equations in screen type problems. It is shown
that the problem is well posed in tangent Sobolev spaces and unique solv-
ability and regularity results are obtained via potential methods and the co-
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1. Introduction

The purpose of the present paper is to investigate the screen-type boundary value
problem for pseudo-Maxwell equations

curl p reurlU — segraddiv (eU) —w?cU =0 in Q, (1.1)

where (Q is a bounded or an unbounded domain with boundary, using the potential
method.
The present investigation covers the anisotropic case when the matrices

€ = [ejkl3ys 5 1= k]33 (1.2)

The investigation was supported by the grant of the Georgian National Science Foundation
GNSF/ST07/3-175.



74 0. Chkadua, R. Duduchava and D. Kapanadze

in (1.1) are real valued, constant, symmetric and positive definite, i.e.,

(e6,6) > cle*,  (u&,€) > dlg*,  VEeR?,

for some positive constants ¢ > 0, d > 0, where

3
(€)= _mi&;, m, £€C
j=1
s is a positive real number and the frequency parameter w is assumed to be non-
zero and complex valued, i.e., Imw # 0.

The study of boundary value problems in electromagnetism naturally leads
us to the pseudo-Maxwell equations inherited with tangent boundary conditions,
which are in some sense non-standard for the elliptic equations (1.1), cf. works of
Buffa, Costabel, Christiansen, Dauge, Hazard, Lenoir, Mitrea, Nicaise and others.
The case with the Dirichlet type boundary condition v x U is mostly investigated
by variational methods, here v is the unit normal to the boundary 9. Our goal
is to investigate well-posedness of the Neumann type boundary value problems for
(1.1) as well as its unique solvability in unbounded domains with screen configu-
ration, i.e.,

Q=R3:=R3\(,

where C denotes a smooth open hypersurface with a smooth boundary.

2. Neumann boundary value problems for
pseudo-Maxwell equations

From now on throughout the paper, unless stated otherwise, 2 denotes either a
bounded Q% C R3 or an unbounded Q= := R3*\Q+ domain with smooth boundary
S := 9O and v is the outer unit normal vector field to S. Whenever necessary,
we will specify the case.

For rigorous formulation of conditions for the unique solvability of the formu-
lated boundary value problems we use the Bessel potential H"(2), H"(S) spaces.
We quote [20] for definitions and properties of these spaces.

By C we denote an orientable smooth open surface in R3 (a screen) with
boundary AC, which has two faces C~ and CT distinguished by the orientation of
the normal vector field: v is pointing from C* to C~. Moreover, we assume that
C is a part of some smooth and simple (non self intersecting) hypersurface S that
divides the space R? into two disjoint domains Q% and Q= := R3\Q+ such that
Q7 is bounded and S = 00*.

The space H"(C) comprises those functions ¢ € H"(S) which are supported
in C (functions with the “vanishing traces on the boundary”). For the detailed
definitions and properties of these spaces we refer, e.g., to [13, 14, 20]).

We did not distinguish notation for the Banach spaces and their vector ana-
logues unless this does not lead to a confusion. Although we use the boldface
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letters for vector-functions, in contrast to scalar functions, which are denoted by
non-boldface letters.

It is well known that the space H"~'/2(S) is a trace space for H" (), provided
that » > 1/2 and the corresponding trace operator is denoted by ~s. For the
detailed definitions and properties of these spaces we refer, e.g., to [20].

We introduce the following definitions:

HY, o(S) = {U cH'(S) : (e, U) = o}

is a proper linear subspace of H"(S). For a constant matrix e = ¢¢l3 the space

HQV,O(S )= H,’;}O(S ) coincides with the space of tangent vector fields. The operator
T
e, U 1= v x U x v :U—<€V U) - :< N e ) )
lev| lev| lev| lev| lev|?

which is actually a multiplication by 3 x 3 matrix function, is a projection onto
the subspace 7., H"(S) = HL, ((S).
It is easy to see that the operator
Tev - HZ,O(S) - ng,o(s)
is continuous and invertible for all » € R; the inverse mapping is given by the
following formula
(v, u)

(v, ev) ev, ue€H,, ,(S)

(7‘(’51,)_111:11— ev,0

and we have
(v, 7, U)

uU -
e (v,ev)

ev=U for all U € Hj, ((S).

We also use the following spaces:
H;MO(Q*) = {U cHY(QY) : (ev,7sU) =0 on S},
and
HL, o(RE) = {U € HY(R3) : (ev,7c<U) =0 on c}.
Theorem 2.1. The operator in (1.1)
A(D)U := curl p teurl U — segraddiv(eU) — w?eU

is elliptic, has a positive definite principal symbol, it is self-adjoint and the follow-
ing Green’s formula holds

(AD)U,V)g: = (MDD, )U,V)g+a.,(U,V)gr —0*(cU,V)g,  (21)
for all U,V € HY(QT), where W(D,v) is the Neumann’s boundary operator
N(D,v)U :=v x p teurlU — sdiv(eU)ev, U cHY(Q); (2.2)
ac,, is the natural bilinear differential form associated with the Green formula

a.,(U,V)q = (u 'ewlU,curl V), + s (div(eU), div(eV)) . (2.3)
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The first part of the result is due to Lemma 3.1 below, while the remaining
part is standard and for a similar proof we refer, e.g., to [2].

Based on this fact we obtain that the Neumann’s trace (D, v)U € H™2(S).
Let us mention the well-known fact, that the Neumann boundary value problem

A(D)U:O in Q+, m(D,V)U:g on 87 geH_%<8)’

is not an elliptic boundary value problem in the sense of the Shapiro-Lopatinski
condition. To overcome this problem we consider the tangent boundary conditions
and look for a solution in tangent spaces. First, for any V' € Hl, ((Q2") we have
Ter V' =V and therefore from (2.2) and (2.3) we obtain

(N(D, V)U, V) = (OUD, )U, 70 V) = (D, 0)U, 7, V).

Thus 7., N(D,v)U is well defined as a functional on H?

ev,0

(S) and belongs to

1
HEVQ,O (S)

The purpose of the present paper is to investigate the following screen type
Neumann boundary value problem (BVP) for pseudo-Maxwell equations:

Find U € H}, ,(R2) such that

ev,0
{ A(D)U = curl p~tewrlU — segraddiv(eU) —w?eU =0 in R3,

2.4
véc(ﬂe,fﬁ(D,u)U):gi on C, (24)

where s is an arbitrary positive constant and the given data g* satisfy the condi-
tions

gt e H_P(C), gt —g ercHM(C). (2.5)

ev,0 ev,0
In Section 5, cf. Theorem 5.3 below, we prove that the screen-type Neumann
BVP for pseudo-Maxwell equations (2.4)—(2.5) has a solution which is unique.

3. Vector potentials
We start the section with the following result.

Lemma 3.1. The basic differential operator A(D) in (2.4) is elliptic: the principal
symbol

Apr(f) = Ucurl(g),uilgcurl(g) + 85[5j£k]3><357 5 = (51752753)T € R37 (31)
where
0 g3 —i2
qurl(f) = _i§3 0 Zfl
i€ —i& 0
is non-vanishing, i.e., det Ap. (&) # 0 for £ # 0 and even positive definite, i.e.,

(Ape(&)n,m) > clé?|n|? c=const >0, VEeR? VnpeC3. (3.2)
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Proof. Let A be a 3 x 3 real-valued and symmetric matrix A" = A, positive
definite on the Euclidean space R3

(AL, €) > cl¢®,  VEER®.
Then A is positive definite on the complex space C?
(An,m) > cln?,  vneC. (3.3)
In fact, let n = n, +in; € C3, n,., n; € R3. Then
(An,n) = (Any,np) + (Ani, mi) + i(Ani, np) — i(Anr,7:)
= (Any,mp) + (Ang,mi) > clne|* + clni|* = clnl*, V€ C?,

since (Any, i) = (0, Ani) = (Ani, ).

If 1 is a real, symmetric and positive definite matrix, so is its inverse p~!

and
(™) > dil¢f?, di >0, YneR’ (34)
Then the symbol A, (£) is real valued and symmetric (Apy) " (€) = Ap:(€) and due
to (3.3) it suffices to prove the positive definiteness for only real-valued vectors
n € R3.
Applying the first inequality in (1.2) and (3.4) we get:
<-Apr (§)777 77> = <:u_10'cur1 (5)77, Ocurl (f)n> + 5| <§7 677>|2
= (u7'E x 0, & x ) + s[(€,en)|? (3.5)
> dif€ x 0’ + s en?, V& neR

Since the unit sphere in R3 is compact, it is sufficient to prove that

(Ape(©)mm) >0, V& neR?, [ =n =1. (3.6)
Let us assume the opposite: (A, (£€°)n° %) = 0 for some ¢ € R3, |€°] = 1 and
7% € R3, [n°| = 1. Then, due to (3.5),

O xn’=0, () =0.
The first equality means that the vectors are parallel £© = +1° and, inserted into
the second equality, this gives (en”, n°) = 0. The latter contradicts the inequality
(1.2)
(en®n°) = el = ¢ > 0.

The obtained contradiction verifies (3.6), implies the positive definiteness (3.2)

and the ellipticity. O

The elliptic operator A(D) in (2.4) has the fundamental solution (cf. [13])

Fa(z):=F, [AHO)] = Fol, Hﬂ /fmsfl*(e,r)dr :

¢ =(,6)" eR? x=(2/,23) €R?,
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where F~! denotes the inverse Fourier transform and A(¢) is the full symbol of
the operator A(D):

A(f) = Ucurl(f)ﬂilocuﬂ(f) + SE[Ejfk]Zing - W257 § = <€17€2a§3)T S R3-

If 25 < 0 (if, respectively, x3 > 0) we fix the sign “4” (the sign “—") and a contour
L in the upper (in the lower) complex half-plane, which encloses all roots of the
polynomial equation det A(£) = 0 in the corresponding half-planes.

Let us consider, respectively, the single layer and double layer potential op-
erators

VU (z) := %SFA(QC —7)U(7)dS, (3.7)

WU (x) := fis[(‘)’t(D,u(T))FA)(:c —n)"U(r)dS, x €, (3.8)

related to pseudo-Maxwell equations in (2.4). Obviously,
A(D)VU (z) = A(D)WU (z) =0, YU € L41(S), Vzel. (3.9)
For the next Propositions 3.2-3.5 and for their proofs we refer, e.g., to [6, 10,
16).
Proposition 3.2. Let Q C R? be a domain with the smooth boundary S = 0N).
The potential operators above map continuously the spaces:
V o H(S) - HT2(Q),
W o H'(S) - HTY2(Q) VreR
The direct values V_1, Wq and V1 of the potential operators V, W and

N(D,v)W are pseudodifferential operators of order —1, 0 and 1, respectively, and
map continuously the spaces:

Vo, o H(S) = HTL(S),
Wo @ H'(S) = H'(S), (3.11)
Vi, : H(S) > HYS), VreR

Proposition 3.3. The potential operators on an open, compact, smooth surface
C C R? hawe the following mapping properties:

V o H(C) - H/2(RY),
W . H'(C)— HtY/2(R3), VreR.
The direct values V_1, Wq and V1 of the potential operators V, W and

N(D,v)W are pseudodifferential operators of order —1, 0 and 1, respectively, and
have the following mapping properties:

V_i : H"(C)— H"(C),
W, : H(C)— H"(C), (3.13)
Vi ¢ H'(C)—HYC), VreR

(3.10)

(3.12)



Screen Type Problems for Pseudo-Maxwell BVPs 79

Proposition 3.4. For the traces of potential operators we have the following Plemelji
formulae:

(15 VU)(x) = (15+ VU) (%) = V_1U (%), (3.14)
(v5+ (D, ¥)VU)(x) = F, U(x) + (Wo)"(x, DU (), (3.15)
U(x)+ Wo(x,D)U(x), (3.16)

x) = (ys+N(D,v)WU)(x) = Vi1 U(x), (3.17)
xeS8S, UeHS),

N =

(- WU)(x) = %
(s M(D, v)WU)

—~

where (Wo)*(x, D) is the adjoint to the pseudodifferential operator Wo(x, D), the
direct value of the potential operator M(D,v)V on the boundary S.

Proposition 3.5. Let the boundary S = 0QF be a compact smooth surface. Solu-
tions to pseudo-Mazwell equations with anisotropic coefficients € and u are repre-
sented as

Ux) = £W(y5:U)(x) F V(1s: D, v)U)(2),  x € QF, (3.18)

where ys+N(D,v)V¥ is Neumann’s trace operator (see (2.2)) and ys+ ¥ is Dirich-
let’s trace operator.

If C ¢ R? is an open compact smooth surface, then a solution to pseudo-
Mazwell equations with anisotropic coefficients € and u is represented as

U(z) = W([U))(z) = V(UD,»)U])(x), = eR,
U] i= e U = 76U, [UD,1)U] i= 76+ ND, 1)U — 7¢-N(D, )U.
As a consequence of the representation formula (3.18) we derive the following.

Corollary 3.6. For a complex-valued frequency a solution to the screen type Neu-
mann BVP for pseudo-Mazwell equations (2.4)—(2.5) decays at infinity exponen-
tially, i.e.,

Ux)=0 (e*“’m) as |z] - oo provided that Imw # 0 (3.19)
for some v > 0.

Theorem 3.7. The screen type Neumann BVP for pseudo-Mazwell equations (2.4)—
(2.5) has at most one solution in H}, o(RE).

Proof. Let us consider homogeneous BVP (2.4) with g* = g~ = 0 (extended
by 0 to the complementary surface C¢ := S\ C) and apply the Green’s formulae
with V' = U; taking into account the boundary conditions in (2.4) and that
(ev,U*) = 0 and Corollary 3.6, we get

O:/ (/flcurlU,curlU>dx+s/ |div5U|2dx—w2/ (eU,U)dx.
o=+ o o
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1

Since € and p~+ are positive definite and Imw # 0, it follows, that

/ (eU,U)dz =0 and, therefore, U = 0. O
R3

It is well known that the bilinear differential form a. ,(U, V') in (2.3) is not
coercive on H! (7). In the paper [4] M. Costabel suggested the following modified
bilinear form (see [17] for an earlier version)

al’,(U,V)qs := (p tewrlU, curl V) oo + s (div(eU), div(eV)) g
+ (Grads (v, U*),VE) s — (DivsVE, (ev, U*)) 5
= (p tewrlU, curl V)i + s (div(eU), div(eV)) o+
+ 2Re (Grads (ev, UF), V) ;

(3.20)

here U* := 'ny, VE = 7§V denote the traces of the vector fields on the
boundary and

s det ¢

X. = vx(e(Xxv)), XeH(S). (3.21)

(ev,v)

The surface gradient Grads and the surface divergence Divs are negative adjoint
to each-other with respect to the bilinear form on the boundary

Gradsy = (D1p, Dap, D3p) ", DivsU := DU, + DU, + D3U3,
Dj:=0;—v;0,, j=12,3,
(DivsU,V)g = —(U,GradsV) g U,V e H(S).
(see [8]).

The following theorem proved in [4] for a bounded domain plays a key role
in the present investigation.

Theorem 3.8. The modified bilinear differential form a’, in (3.20) is coercive in
the space H* (Qi) there exist positive constants ¢y and co such that

Real”, (U, U)gs > o |U[H"(QF)]"

— | UL VU e H'(QF)
provided that
U)=0(l«|'7°)  as |z[ >0 (3.22)

for some § > 0 if the domain is unbounded.

Proof. As noted already, for a bounded domain Q27 the theorem is proved in [4].

Concerning an unbounded domain Q~: The coerciveness (3.23) is valid for
the domain QF := S% N Q~, where S% is the ball with a sufficiently large radius
R, and the bilinear differential form

a’, p(U,V) = (u teurlU, curl V)QE +s (div(sU),div(EV))Q}—%
+ 2Re (Grads(ev, U™ ),V _)g + 2Re (Grads(ev,U ™), V;)asgé.
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The condition (3.22) and the independence of the constants ¢y, ¢z from the domain
Q™ configuration, ensures that the limit R — oo eliminates the last summand
in the form above (the integrals over the surface of the sphere 9S%) and the
coerciveness for the domain 2~ emerges as the limit case. O

Corollary 3.9. The quadratic differential form a. ,(U,U)q+ in (2.3) is coercive:
there exist positive constants ¢y and co such that

Rea. ,(U,U)gs > o |[UJHYQF)|? = 2| |U[Lo(2F) | (3.23)

on the space H}, ((QF).

ev,0
The quadratic differential form a. ,(U,U)q- in (2.3) is coercive on the space
of HL, o(27) of those vector fields which satisfy the condition (3.22).

ev,0

Proof. Note that due to definitions (3.21), (3.20) the last summands in the mod-
ified form a’,(U,U) vanish if either (ev, U*) = 0, which is the case when
U € H., ,(Q7), or U. = 0 which is the case when U € H.,(Q27). Then the

ev,0
modified form coincides with a. ,(U,U)q+ and the claimed positive definiteness

follows from (3.23). O

Corollaries 3.9 and 3.6 imply the following result.

Corollary 3.10. The quadratic differential form a.,(U,V) in (2.3) is coercive
(satisfies the inequality (3.23)) for all vector fields U € HL, ,(17) provided they
are solutions to pseudo-Mazwell equation.

Lemma 3.11. The operator V_y in (3.7) is invertible in the following space settings
V_i : H'(S) = H™™YS) VvreR. (3.24)
The principal symbol of the pseudodifferential operator V _q is positive definite
(Vorpe(x,8)n,m) = colnl?€]™" vneC®, xe8, ¢eR’, (3.25)
for some positive constant cq.

Proof. (see [5, 12, 19] for similar proofs): Let the boundary surface S = 90 be
covered by a finite set of open smooth surfaces {S; }]Ail and

K‘,j:Xj’—)Sj, J)EXJ', j=1....M

be diffeomorphisms of open subsets X; C R? onto S;. Let us extend them to the
diffeomorphisms of layers:

»”j X]‘i—>§j, )A(:j,ngRB, gij:Sj,
X = (—e €) x Xj, 5~'j = {(x,tr(x)) : —e<t<e, x€S;} (3.26)
wj(x,x3) == kj(x) + z3v(k;(x)), xz€X;, z3€[—€e, j=1,...,M.
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For the principal symbol V_; ,,(x,&) of the operator V_; we have the for-
mulae

gmj (x)

Vorpr(k(2),£) = 27 det >, (x, 0)
] b

[ ) (14w 0) 1 1)

(3.27)

for & e R?, x = K;(2)S; xéXjCRQ,

where (Ap;) 71 (€) is the inverse to the principal symbol in (3.1),
Oiki(x) Oaki(z) vi(s(x))
%; (x,0) = | Oika(x) Ooka(x) wval(st(z))
Oikz(x) Oaks(z) vs(s(x))

is the Jacoby matrix of the diffeomorphism in (3.26) and

g,ij = (det”(a]ckcj,5'[/<Ej)”2><2)é With 8klij = (aklijl,aklijg)—r
is the square root from the Gram determinant, the surface element on S (cf., e.g.,
[5, 12]).

Since Ay, is positive definite (cf. (3.2)), the same holds for the inverse. In
fact, we introduce 1’ = (A,,) "1 (€)n € C3 into (3.2) and proceed as follows:

(Ape) "1 m) = (0, A (1) = e PIEP = | (Ape) ™ (E)mI? 1€
=c1|(Ap) T IETTONPIE T > canPlE) T3 VEER?, wneCP (3.28)

because (Apy)~1(€) is homogeneous of order —2 and, as an invertible matrix, is
bounded from below on the unit sphere |(Ap,) 71 (£)n] > ¢35 > 0 for all [£] = |n| = 1.
Then, with (3.27) and (3.28) at hand, we derive

(Vo pr(rj (), )n,m) = c2Gr; ()] /°°

= 9 det (2, 0) 154 (2, 0) T 7 (&, )| 2 dt (3.29)

— 00

o0
> calnf? A ot VneC?, veeR?
_47’ t2+|€|2 077 77 )

and (3.25) is proved.
Since the symbol of the DO V_; is elliptic (cf. (3.25)) and S has no bound-
ary, the pseudodifferential operator

V_, : H'(S) — HTY(S) (3.30)

is Fredholm for arbitrary r € R (cf. [11, 13, 14]).

Let us introduce the vectors U = V = V®, & € H~/2(S) into the Green
formula (2.1). Since A(D)U(z) = A(D)V®(z) = 0 in Q% then by applying the
equalities (cf. (3.14), (3.15))

1
VEU =72(VR) =V_1®,  F(MN(D,v)VP) = T2+ (Wo) @, (3.31)
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we get

1 *
£, (2, V12)s — (Wo)' @, V_1®)5 = —(75 (D, »)U),15U)ss
= +(u tewlU, curl U)o+ £ s (div(eU), div(eU)) e F w?(e U, U)o -
Further, taking the difference of the obtained equalities we find that

(Vo1®, )5 = (u tewrlU, cwrl U)gs + s (div(eU), div(el))gs — w?(e U, U)gs.
(3.32)
Since w is complex valued, from (3.32) follows that V_1® = 0 implies U = 0.
Then,

® =5- (N(D,v)V®) — 75+ (N(D,v)VE) = 0,

which implies that the kernel of V_; in H~1/2(S) is trivial Ker V_; = {0}.
Consider the adjoint ¥DO to (3.30)

1

(V_1)" : H 2(S) — H2(S). (3.33)
From (3.32) we derive:
( (V—l)* 2, (I’)S =(V_1®, <I))S
= (u tewrlU, curl U)gs + s (div(eU), div(eU))gs — w (e U, U)gs.

Repeating the above arguments for the operator V_; we find out that the operator
(V_1)" in (3.33) has a trivial kernel, i.e., Ker V_; = {0} in H~/2(S). The claimed
invertibility of the operator V _; in (3.30) follows. O

Lemma 3.12. The operator V _1 is invertible in the following space settings

~ 1 1 1 1
Vo BOHO o), -, <r<,. (3.34)

Proof. In [12, Theorem 2.7] and in [3, Theorem 1.9] it is proved that, since the
symbol V_1 pr(x,€) is positive definite, the corresponding operators (3.24) on the
manifold (surface) C with boundary dS = ) is Fredholm for all » € R. The same
operator on the manifold (surface) C with the boundary 9C # () is Fredholm if and
only if the condition |r| < 1/2 holds. In both cases, due to the positive definiteness
of the symbol (3.25), the index is trivial Ind V_; = 0. Indeed, since w is complex
valued, from (3.32) follows that V_1® = 0 implies U = 0. Then,

® = v5- (MN(D,v)V®) — 75+ (N(D,v)VE) =0,

which implies that the kernel of V_; in H~1/2(S) is trivial Ker V_; = {0}. Due
to the trivial index Ind V _; = 0 this implies trivial co-kernel

dim Coker V_; = dim Ker(V_1)* =0

and provides the invertibility of the operator (3.24) for r = 0.



84 0. Chkadua, R. Duduchava and D. Kapanadze

Concerning a surface C with boundary 9C # ): equality (3.32) is valid for an
open surface as well

(V_o1®, %), = (p 'ewrl U, curl U)gs + s (div(eU), div(eU)) s
— W eU,U)yps, U=VE,  @ecH Y?Q).

From (3.35) follows, as for the closed surface, the invertibility of operator (3.34)
for r = 0.

If a pseudodifferential operators on a manifold with or without boundary is
Fredholm in the spaces H® for all sg < s < s1, it has the same kernel in H? for
all so < s < s1 (see [9] and also [1, 7, 15] and [10] for similar results). Therefore,
the operator V' _; in (3.34) is invertible for all |r| < 1/2. O

(3.35)

Remark 3.13. For arbitrary complex w, Imw # 0, the operator V _; is coercive
Re(V_1®,8)s > cof | @[H2(S)||” - c1||@[H-Y%(5) |

if S is closed, and
Re (V_1®, %), > co|T|H 20| — e[| ®[H3/2(0) || (3.36)

if C is open, for all ® € ]HI;,%2 (S), all ¥ € H;} {)2 (C), and some positive constants
Co, C1-

Moreover, for a purely imaginary frequency w = i # 0 the operator V _; is
positive definite, i.e.,

(V1@ @) > M|B[H2(S)|?, ®H 2(S),
if S is closed, and
(V_10,®), > M| ®|H :(C)|>, ¥eH :(C) (3.37)

if C is open, for some M > 0.
Indeed, if w = i5 # 0 then from Green’s formula (3.32) we obtain
(V_o1®,®) = (p tewrlU, cwrl U) s + s (div(eU), div(eU ) ) s + B2 (eU, U )gs > 0,

if ® # 0 and, therefore, U # 0 in QF. Positive and invertible operators are positive
definite. For the proof we can lift the operator with the help of Bessel potentials
to a positive and invertible operator in Ls-setting, prove the positive definiteness
of the lifted operator and, returning to the original operator in the setting (3.24),
get the positive definiteness.

The proof of positive definiteness for w = i and an open surface S results
from equality (3.35) and is similar to the foregoing case.

The coerciveness (3.36) follows from the positive definiteness (3.37) and the
next auxiliary lemma.

Lemma 3.14. Let A(D) be an elliptic partial differential operator of order 2 with
constant N x N complez-valued matrix coefficients. Let further

A(D)® - A°(D)® = G, ® c H'(Q)V
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where G € CN*N(8) is a matriz-function. Let V_1(x, D) be the direct values of
the single layer potential operator related to A(D), while VO | (x,D) be the direct

value of the single layer potential operator related to A°(D) (cf. (3.11)).
Then the difference

B_3(x,D):=V_i(x,D) = V°,(x,D) (3.38)

is a pseudodifferential operators of order —3 (the orders of WDOs are indicated in
the indices).

Proof. Recall the formulae for the fundamental solution and the direct value of
single layer potential for A(D) (cf. (3.7))

Fa(z):=F_, [A1¢)], z e,

E—ax
Vo®(x) = § Palv—)®()ds, xes,
S

where A(€) is the full symbol of the operator A(D). Similarly are written the
fundamental solution F 40 and the potential VO .
The symbol of the pseudodifferential operator (of the difference)

B_4(x.D)®(x) = V_1(x, D)®(x) -V, (x. D) (x)
- 7{5 Fa(x —y) — Fao(x — y)| ®(y) dS

is represented locally as

—3(w,€) = Voa(x,€) = VO (x,€)

o S?m /. AT @09) - () (F0)] d
- 27rdet(;(x) / AT F W) G (FW(1.6) di

=0(l¢17?) as |¢] - o0, £€R? x€S, (3.39)

where G(x) := A%(x,¢&) — A(x,€) is a N x N matrix-function. The obtained
equality (3.39) shows that the pseudodifferential operator B_3(x,D) has order
—3 indeed. (|

Corollary 3.15. For a smooth, closed surface S the potential operator V(V _1)~!
has the following mapping properties

P=V(V_y)! : H3(S) » HIELQF) forall reR, (3.40)
while for an open surface C it maps
P=V(V_1)"! B30 - HFLRE) forall —L<r<]

ev,0 ev,0

Proof. Since ysV(V_1)7'® = ® (see (3.14)) the asserted mapping properties are
trivial consequences of the mapping properties of the participating operators V in
(3.10) and of (V_1)~1 in (3.24). O
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4. Boundary pseudodifferential equations

First we derive and investigate equivalent boundary pseudodifferential equations
for the elliptic Neumann BVP (2.4) in QF.
Consider the potential operator

Pd(z) :=V(V_y) '®@x), @®cH/(S), 2eq, (4.1)

ev,0

where Q = QF (cf. (3.40)). Note that U = P®(x) = V¥, ¥ = (V_;) &,
satisfies the basic equation in (2.4) in QF (cf. (3.9)).

By introducing U = P® from (4.1) into vs= (7, N(D,v)U) = g* on S and
using Plemelji’s formulae (3.15), we derive the following boundary pseudodifferen-
tial equations

Pi® = Fyse o, N(D,v)V(V_1) " '® = Fg%,
where
1 * —1
Py = wg,,(21 + (Wo) )(V_l) (4.2)
are the modified Poincaré-Steklov pseudodifferential operators of order 1.

Lemma 4.1. The operators

Pe o HYH(S) = H(S) (4.3)
are coercive
Re (PL®, )5 > co||@[HL ()| — 1| ®[Lacro(S)] (4.4)

for some positive constants co, c1 and all ® € Hi,/fo (S).

Moreover, the operators have the trivial kernels, i.e., Ker Py = {0} and are
invertible.

If the frequency is purely imaginary w = i # 0, B € R, the operators P+ are
positive definite

(P2®, @) > M| ®|HLL,(S)| (4.5)

EVO

for some positive constants M.

Proof. By introducing U = V(V_1)~'@® into the Green formula (2.1) we find out
that

(P+®,®) g = (1 curl U, curl lNJ)Qi + 5 (div(eO), div(eﬁ))ﬂi —w?(e U, ﬁ)Qi
(4.6)
Since 'yglNI =& cH/? (S), due to Corollary 3.9 and Corollary 3.6 the form

ev,0
ae,u(f], U)o: = (u eurl U, curl ﬁ)gi + 5 (div(cD), div(dN]))Qi
are coercive: the inequality

[0 28 “(U U)Qj: > CQ||U|HEV 0 )H2 — C?,Hi}}}LQ}EV’O(Qi)HQ
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holds for U = V(V_1)"'®, ® € Hil/fo(S) and some ¢z > 0, cg > 0. From (4.6)
we then obtain

Re (P+®, ®)g > oo U|HL, o (25)|]° = ca|| U |Lacr 0(2)||?

eV, 0
for some ¢4 > 0. Further, invoking the trace theorem (cf. [20]) and the continuity
property of the operator P = V(V_1)~1 (cf. (3.40)) we easily derive the following
inequalities

[01E, 0@ 2 eslns UL, s >0,
IV(V_1) @ HLL (95 < c6]|®[Locuo(S)||,  es > 0.

Applying the inequalities (4.7) we get the estimate with suitable positive constants
Re (Ps®, @) > co|[U|HL, o(25)]]” = ca]|U|La,ew0(25)]”
> erl s U L (S = es | O HL ()]

ev,0 cv0(
= crll@HALS) - e[ VVor) e E (@)
=z CO||<I’}H;://?0(S)H2 - Cl||‘I’|L2,su,o ||
for ® € Hi,/fo(é‘). Thus the operator (4.3) is coercive and, therefore, is Fredholm

with the index zero. Moreover, it is invertible since it has trivial kernel. Indeed, for
Imw # 0 equating in (4.14) the imaginary part to 0 we get that (P+,®,®)¢ =0,
which implies

0= (sﬁ, ﬁ)ﬂi > c||(7|IL2(Qi)||2 —U=0 in OF.

Therefore 'ygﬁ =®=0o0nsS.
If w =i then P4 is positive
Re (P+®,®)5 = (P+®,®)g = a.,(U,U)qgs + (U, U)ge >0
if U # 0 in Q% (cf. (4.14)) and, therefore, ® # 0 on S; moreover, Py is coercive
(P+®,®) g = Re (P ®, &) g > oo ®[HL%(S)||* — e1]|@[Lae o(S)||*

ev,0

for all & € H/? (S) (cf. (4.4)). The positive definiteness (4.5) is a consequence of

these two prosf)lé(l)rties (see [18, Exercise 2.17]). O
Corollary 4.2. The operators Py are invertible in the following space settings
Pi @ HL,o(S) = HL (S), VreR. (4.8)
Corollary 4.3. The inverse operators
Prt s Ho 00 (S) = HI(S), (4.9)
which exist due to Lemma 4.1, are coercive
Re (P2, ®)s 2 mo||¥[HL ' (S)|[* — ma | @ [HL) o ()] (4.10)

for some positive constants mg, my and all ¥ € HEJ{)Z(S).
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If the frequency is purely imaginary w = i # 0, 5 € R, the operators P;l
are positive definite
_ —1/2
(PL'0, W) > M| T [HS, ) (S)||

for some positive constants M.

Proof. Follows from Lemma 4.1 if we introduce ® = P ¥ and recall, that due
to the invertibility (4.3) the estimates

DIEZEO < [P EL )| < mlwEL )]

euO euO

hold for some m > 0. O

Now let us prove analogues of Lemma 4.1 and Corollaries 4.2, 4.3 for a sub-
surface C C S with the boundary 9C # 0.

Lemma 4.4. For an open subsurface C C S the operators

rePy : HILH(C) = HL(C) (4.11)
are coercive with suitable positive constants cg, c1
2 2
Re (rePe®, @) > col|@|HL (O] — e1]| @[ L2, 0(C)] (4.12)
for ® € Hi,/JQO(C). Moreover, the operators have the zero kernels Kerr¢Pyr = {0}

and are invertible.
If the frequency is purely imaginary w = i # 0, § € R, the operators r¢P+
are positive definite with a suitable positive constants M4 :

(reP+®, @), > M| ®[HL(C)]. (4.13)

Proof. Using the continuity of the embedding Hiz/?o €) cC Hiz/fo (8) and the proved
coercivity (4.4), we proceed as follows:

Re (reP+®, @), = Re (Po®, @) > oo @[HL(S)|

euO

= co|| @RS ~ erf| [L2.cv 0O

EVO

for all ® € Hil/,QO(C). The coercivity (4.12) is proved. Since r¢ Py is coercive, it is
Fredholm and has vanishing index, i.e., Ind (r¢P+) = 0.

Thus, to prove the invertibility we just need to check, that the kernel of the
operator in (4.11) is trivial, i.e., Kerr¢P+ = {0}.

For this purpose we apply the equality
(PLU,U)g = (u tewrl F,curl F) s + s (div(eF),div(eF)) g
— WX (eF,F)u F =V(V_1)"'U,  ~sF=UcH(S),

ev,0
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proved for a surface S without boundary. By introducing in the above equality the
vector U = ® € Hi,/fo (C€) C Hil/fo(S), we get
(rcPr®,®)g = (P+®,®)g = (1 'cwrl F, curl F) g+

+ s (div(eF),div(eF))gs — w?(e F, F)qs
for all F = V(V_1)71®. Since w is complex valued, from (4.14) follows that the
equality r¢P+® = 0 implies F = 0. Then,

(Vo) '@ =75 (D, )V (Vor) ' @) — s+ (D, )V (Voy) ' @) =0,

which implies, due to the invertibility of V_; (see (3.34)), that @ = 0 and the

kernel is trivial Ker V_; = {0}. Due to the vanishing index Ind V_; = 0 this
implies trivial co-kernel

dim Coker V_; = dim Ker (V_1)* =0

(4.14)

and provides the invertibility of the operator r¢Py in (4.11).
The positive definiteness (4.13) follows from the positive definiteness (4.5) as
in the case of coerciveness. O

Corollary 4.5. The operators r¢P+ are invertible in the following space setting

g1 o1 1 1
rePy : HL 3(C) — HL, 3(C), —y <<y (4.15)
Proof. For a similar proof we refer to the concluding part of the proof of Lemma
3.12. O

5. Proofs of the basic results
Let us look for a solution to the screen-type problem (2.4) in the form
V(V_) '@t (z) xze€Qt,
B {V(Vl)_lé_(x) z€Q forsome & e H/? (S). &)

Then U satisfies the basic differential equation from BVP (2.4) in the domains
QF (cf. (3.9)) and, due to the mapping properties of V we have U € HL, o(R3).
Further we need to fulfil the boundary conditions (cf. (2.2))

revst (T M(D,v)U) =g* on C. (5.2)

ev,0

Due to the Plemelji formulae (3.15) equation (5.2) acquires the form
rePL®* = gF on C, (5.3)

where Py are the modified Poincaré-Steklov pseudodifferential operators of order
1, defined in (4.2).

—1/2

Let fg* € HL,'%

the entire closed surface S and let £o(g* —g~) € H

—-1/2
ev,0

(8) be a fixed extension of the function g+ € H
—1/2
ev,0

(C) up to

(8) be an extension by zero
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of the function g™ —g~ € TcHEV o (C) Then (g™ := gt —Lly(gt—g™) € H—l/Q(S)

ev,0

is an extension of the function g— € H;,%z ), ie.,

relg” =g — (gt —g7 ) =g and relgt =rclg. (5.4)
Using (5.3) we write the boundary conditions on S as follows
Pr®F = F(lg™ + %),
where the functions ¥+ € HE,} {)2 (€C°) are unknown.
Due to Lemma 4.1 we then obtain
o+ = Fprlgt F P wE (5.5)

From the ellipticity of the differential operator A(D) follows that a gener-
alized solution to the equation A(D)E = 0 is analytic in Rg and, therefore, the

following continuity conditions
{ reeys+U —reeys-U =0, (5 6)
reevs+ (WD, v)U) —reevs- (WD, v)U) =0 '

hold across the complementary surface C¢.
Then taking into the account (5.5) and (5.4) we obtain the following system
of equations with respect of the unknown functions ¥*:

{ TeePL T +ree PN = —reePL gt — ree Pz Mg 5.7)
reeWT —rec W™ = 0. '
The last equation in (5.7) implies
=0t = e H,P(CY)
and we obtain
reeB(D)¥ = F, (5.8)

where

B(D) :=P; ' +P", (5.9)
and

F = —rc.P Mgt —reePZHg™ = —1ceB(D)g™ + reeP= o(gh — g7).

What we obtain is an equivalent pseudodifferential operator to the BVP (2.4)
(see the forthcoming Theorem 5.3).

Lemma 5.1. The operator

re-B(D) : H_MP(CO) — HM (C) (5.10)

ev,0 ev,0

1S coercive

Re (re- B(D)®, ®) .. > Oy || |HL 57(CO)|| — Ca||®|HLL (€O, ¥ € HL, 1 (C0)

(5.11)
and invertible.
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Moreover, if the frequency is purely imaginary w = i # 0, f € R, the
operator B(D) is positive definite and the inequality

(reB(D)®, ®),. > Mo||R|H, ()|, vV eH, ) (Co) (5.12)

ev,0 ev,0

holds for some constant My > 0.

Proof. Similarly as in Lemma 4.4 the coercivity (5.11) and the positive definite-
ness (5.12) of the operator r¢.B(D) we obtain from corresponding results for the
“non-restricted” operator B(D) in (5.9), which follow immediately from similar
properties of the summand PL ! established in Corollary 4.3.

From the coercivity (5.11) it follows that the operator in (5.10) is Fredholm
and has trivial index, i.e., Indr¢eB(D) = 0. Then to prove that the operator
reeB(D) in (5.10) is invertible, it suffices to show that the kernel is trivial, i.e.,
KerreeB(D) = {0}. The latter follows immediately for w = if from the positive
definiteness (5.12).

By introducing into the Green formula (2.1) the values

Ut =V(V_;)'®*, & =P W, el /*C)

ev,0

and summing them up, we get
(T, B(D)¥)s=a.,U" U g+ +a., U, U )o-
— WU, Uy — (U, U )q--

Since Imw # 0, by equating in (5.13) the real and the imaginary parts to 0 we get
that (¥, B(D)¥)s = 0 implies

0= (U, U e > ¢|UF L5 = U* =0 in QF.

(5.13)

Thus 'ygUi = ®* =0 on S and therefore P.®* = ¥ =0 on S. O
Corollary 5.2. The operator reB(D) is invertible in the following space setting
~p_ 1 ol 1 1
reeB(D) @ HL, 3(C°) — HL,, 3(C°), —y <<,

For similar arguments we refer to the concluding part of the proof of Lemma
3.12. The next theorem is the main result of this section.

Theorem 5.3. Let 0 <r < é and the conditions

gt eHL /), g"—g ercHL ()

hold. Let {g™ € H;;E/Q(C) be some fized extension of the data functions g+ up to
r—1/2
ev,0

the entire closed surface S, while lo(gT —g~) € H
of the function gt —g~.
The elliptic BVP (2.4) has a unique solution U € HLT{(R2) of the form

ev,0
—Ve(Vey) T [P gt + P in QF,
- ve(ve,)! [73:1(69+ —lo(gt —g7)) + P:I\I'} in O,

(8) is an extension by zero

(5.14)
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_~ 1
where ¥ € H. 5(C°) is a unique solution to the system

re’B(D)¥ = F on C°

B B g1 (5.15)
F:=rce(P_) "l(gt —g~) —re-B(D)lg", FeH,,3(C).
The pseudodifferential operator of order —1
reeB(D) = ree [Py1+ P2 1 L, 3(CY) — HL 3(CY) (5.16)
is invertible.
Proof. The proof follows directly from Lemma 5.1 and Corollary 5.2. (]
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Functions of Noncommuting Operators

in an Asymptotic Problem

for a 2D Wave Equation with Variable Velocity
and Localized Right-hand Side
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Dedicated to Viadimir Rabinovich

Abstract. In the present paper, we use the theory of functions of noncommut-
ing operators, also known as noncommutative analysis (which can be viewed
as a far-reaching generalization of pseudodifferential operator calculus), to
solve an asymptotic problem for a partial differential equation and show how,
starting from general constructions and operator formulas that seem to be
rather abstract from the viewpoint of differential equations, one can end up
with very specific, easy-to-evaluate expressions for the solution, useful, e.g.,
in the tsunami wave problem.
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Keywords. Wave equation, localized solutions, asymptotics, noncommutative
analysis, Maslov canonical operator.

1. Introduction

In the present paper, we use the theory of functions of noncommuting operators
[1-3], aka noncommutative analysis (which can be viewed as a far-reaching general-
ization of pseudodifferential operator calculus), to solve an asymptotic problem for
a partial differential equation and show how, starting from general constructions
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A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow.
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and operator formulas that seem to be rather abstract from the viewpoint of dif-
ferential equations, one can end up with very specific, easy-to-evaluate expressions
for the solution, useful, e.g., in the tsunami wave problem.

We consider the Cauchy problem with zero initial data for a 2D wave equa-
tion with variable velocity and with right-hand side localized near the origin in
space and decaying in time. One physical interpretation of this problem is that
it describes, in the linear approximation, the propagation of tsunami waves gen-
erated by local vertical displacements of the ocean bottom (see [4-9, 17-19] and
also [11-16] and the bibliography therein). Normally, the diameter of the region
where these displacements occur (some tens to a hundred of kilometers) is much
smaller than the distance traveled by the waves (thousands of kilometers), and
their ratio, p, can serve as a small parameter. Accordingly, we are interested in
the asymptotics of the solution as y — 0. In the simplest piston model of tsunami
generation, the bottom displacement occurs instantaneously at ¢ = 0. This cor-
responds to a right-hand side of the form o0’(¢)v(z), where §(¢) is the Dirac delta
function, and the problem is immediately equivalent, via Duhamel’s principle, to
the Cauchy problem for the homogeneous wave equation with initial data v(x)
for the unknown function itself and zero initial data for its t-derivative. Fairly
explicit asymptotic solution formulas suitable for easy implementation in Wolfram
Mathematica [27] were constructed and analyzed for the latter problem in [11-16]
on the basis of a generalization of Maslov’s canonical operator [1, 20]. Now as-
sume we wish to take into account the fact that the ocean bottom displacement
evolves in time rather than happens instantaneously. Then it is natural to consider
a right-hand side of the form ¢'(t)v(x), where g(t) is some smooth approximation
to the delta function. An analysis shows that the solution can be represented as
the sum of two parts, a propagating part, which travels along the characteristics,
and a transient part, which is localized in the vicinity of the origin and decays
in time. The propagating part can further be represented as the solution of the
Cauchy problem for the homogeneous wave equation with initial data obtained
from v(z) by application of certain functions f(L) of the spatial part L of the
wave operator, where the corresponding symbols f(£) are given by simple for-
mulas expressing them via the Fourier transform of g(t). These initial data, also
localized near the origin, will be referred to as the equivalent source functions. The
transient part of the solution is given by a formula similar to those for the equiv-
alent source functions with the only difference that the function f(§) additionally
depends on time as a parameter. The transient part is apparently not so important
in tsunami wave analysis, but nevertheless it might be useful from the viewpoint
of satellite registration of tsunami waves [17-19]. Since, as was mentioned above,
the asymptotic formulas for the solution of the Cauchy problem with localized
initial data for the homogeneous wave equation are already known from [11-16],
we see that the only remaining thing is to compute f(L)v for all these functions
f(€). Tt is here that noncommutative analysis comes fully into play. Note that
L is an operator with variable coefficients, and so computing the function f(L)
efficiently may prove quite a challenging task. However, all we actually need is
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the asymptotics of f(L)v, and methods of noncommutative analysis permit one to
prove that f(L)v = f(Lo)v plus an asymptotically small remainder, where L is
obtained from L by freezing the coefficients at the origin. Now computing f(Lg)v
is a breeze, because f(Lg) is conjugate by the Fourier transform to the operator
of multiplication by the function f(or,(p)), where o, (p) is the symbol of Lg.

The one-dimensional counterpart of the problem studied in the present paper
was considered in [21]. In the two-dimensional case, the results were announced
n [22], where the proofs were partly only sketched and partly absent altogether.
Here we develop and refine these results and give complete proofs. Finally, note
that we deal with the setting in which the wave propagation velocity is assumed
to vanish nowhere. The case it which it vanishes (as it happens on the coastline
in the tsunami run-up problem) is much more complicated. The asymptotics of
solutions of such degenerate problems in some special cases was considered in the
spirit of the approach of [11-16] in [23-25] (see also references therein); in the
present paper, we restrict ourselves to wave propagation in open ocean.

The outline of the paper is as follows. In Section 2, we give a detailed state-
ment of the mathematical problem and write out well-known formulas expressing
the solution in operator form. Using these formulas, we split the solution into the
sum of the propagating and transient parts. Section 3 presents simple formulas
for the asymptotics of the solution. The proofs of the theorems stated in this sec-
tion depend on the results presented in Section 4, which is the most important
part of the paper and where the asymptotics of the equivalent source functions
and the transient part of the solution are computed with the use of the noncom-
mutative analysis machinery. Finally, Section 5 provides two simple examples; all
computations and visualizations in these examples have been done with Wolfram
Mathematica.

2. Exact solution

2.1. Statement of the problem

Consider the Cauchy problem for the wave equation

0%n 0 9 on 9 ) o
. ) ) ) |
o oo (C0pl ) = o0 (G0t ) =a ezo. )

with the initial conditions
77|t:0 =0, 77t|t:0 =0, (2-2)

where z = (z1,22) € R?, 1 = n(x,t) is the unknown function, c¢(z) is an everywhere
positive smooth function stabilizing at infinity," and the right-hand side Q =
Q(z,t) depends on two parameters A, u > 0 and has the form

_ dgo()

Q(z,t) = Ngh(M)V (z) , where gg(7) = P (2.3)

IThat is, c(z) = const > 0 for sufficiently large |z]|.
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with some smooth real functions V (y), y € R?, and go(7), 7 € [0, 00), such that
V@O < Ca@+Jy))7lo=> Jal=0,1,2,..., (2.4)

g0(0) = 0, /g()(T)dT:L 0P ) < Cre™, k=0,1,2,..., (2.5)
0

for some s > 1, v > 0, and positive constants C,, and Cy.

Remark 2.1. One can also consider the case in which go(7) decays as some (suf-
ficiently large) negative power of 7 as 7 — oco. In this case, the estimates are
somewhat more awkward, and we restrict ourselves to the case of the physically
natural exponential decay (2.5) for the sake of clarity.

Our aim is to find the asymptotics as u — 0 of the solution of problem (2.1)
on an arbitrary finite time interval uniformly with respect to A in the region

Ap > const > 0. (2.6)

This will be done in Sections 3 and 4, and in the present section we deal with the
exact solution of the problem.

2.2. Physical interpretation and examples of right-hand sides

First, speaking in terms of the physical interpretation given in the introduction,
let us explain the meaning of the parameters A and u and condition (2.6). The
right-hand side Q(x,t) describes the time evolution (the factor A\2g)(\t)) and the
spatial shape (the factor V' (x/u)) of the perturbation (the tsunami source). In view
of (2.5), A characterizes the decay rate of the perturbation, so that 1/ ~ tg, where
to is the mean lifetime of the perturbation. The small parameter y characterizes
the source size rg, p ~ ro. We see that the product Au = r¢/to has the dimension
of velocity and rewrite condition (2.6) in the form
;Z = Cizo < wy, (2.7)
where ¢y = ¢(0), the wave propagation velocity at the origin, is taken to represent
the typical wave propagation velocity in the problem and wq is some dimensionless
constant. This has a very clear meaning: the waves excited by the perturbation
cannot travel too far before the perturbation dies out; they only cover a distance
(coto) of the same order of magnitude as the diameter r( of the perturbation region.
We introduce the ratio .
0
w= A (2.8)
so that condition (2.7) (and hence (2.6)) becomes

w < wy. (2.9)

Mathematically, condition (2.9) means that the parameter \ is large (at least of
the order of u~!) as 4 — 0. Note that, in view of the first two conditions in (2.5),
Ago(At) — §(t) and A2gh(Mt) — &'(t) as A — oo.
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In what follows, the dependence on the parameters A and p is sometimes not
immediately important to the argument, and in such cases we often “hide” these
parameters by using the notation

g(1) = Ago(A1), wv(x)= V(;j), so that Q(z,t) = ¢'(t)v(x). (2.10)

Next, let us give specific examples of right-hand sides Q(z,t). In practice,
the actual ocean bottom displacement is known neither in much detail nor very
precisely, because the corresponding measurements are impractical or impossible
(cf. [17-19]). This results in certain freedom, which can be turned into an ad-
vantage. Namely, when constructing the function Q(z,t) = ¢'(t)v(z) to be used
in the analytical-numerical simulation according to the model (2.1), one should
take ansatzes that, on the one hand, fit the general information available about
the source shape and evolution and, on the other hand, can be handled efficiently
in the computations. (The latter includes the requirement that these functions,
as well as their Fourier transforms, be given by closed-form expressions, which
permits one to reduce the amount of numerical computations in favor of the less
time-consuming analytical transformations.)

A useful class of functions V(y) satisfying (2.4) is described by the expres-
sion [10, 14, 16], generalizing [5, 8, 9],

V(y) = A(l + (2’1)2 + <Zz>2> 73/2, (2.11)

where A, by, and by are real parameters. The Fourier transform of this function is
remarkably simple,

V(p) = Abybye~Vipi+3r3, (2.12)

One can further apply a differential operator

~ o 0
p=r( Y,
<8y1 6y2>

with constant coefficients to the function V' and then rotate the coordinate system
by some angle 6, thus obtaining a broad variety of functions of the form

Veoly) = [PVI(TO)).  T(0) = ( cosd SM) ,

—ginf cosf

satisfying (2.4). Such functions model elliptic-shaped sources of various eccentricity
and various direction of axes with a wavy relief depending on the differential
operator P (see [11, 15]). Figure 1 shows the graph of V (y) rotated by an angle of
/10 and of its Fourier transform.

Let us also give two examples of functions go(t) satisfying (2.5),

(a) go(T) = ae” " (sin(ar + ¢o) — sin¢y), (b) go(r) =e""P(1), (2.13)
where a > 0 and ¢ are real parameters, a = (o + 1)/(acos¢p — a?singy) is a

normalizing factor, and P(7) = Y} _,(k!) "1 P,7¥ is a polynomial of degree n with
Y iy Px =1 (see Figure 2).
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Ficure 1. The function V(y) with b; = 1 and by = 4 rotated by the
angle 0 = 7/10 (left) and its Fourier transform V' (p) (right).

&®

08 -
0.6

04r

0.6, AN

02}

L0

08F ! ~
N

L) N
04t

[ )=

-02%

N
05

FIGURE 2. Examples of g(t) Ago(At) for A = 1,2,3,4: go(r
e "(sin(ar + @o) — singg) (left diagram); go(7) = e~ 7(0.27 + 0.47%)

(right diagram).

2.3. Operator solution formulas and energy estimates
We denote the spatial part of the wave operator in (2.1) by L; thus,
> = —(V,*(x)V)u. (2.14)

ou

ou
2
<c x) Oy

0 0
Lu=— 2 -
Y 81‘1 <C (1‘) 81‘1) 8332
The operator (2.14) (with domain W2(R?)) is a nonnegative self-adjoint operator
on L?*(R?). Let D = /L be the positive square root of L. Problem (2.1) becomes
(2.15)

Nt=0 = Nt|t=0 = 0.

n"(t) + D*n(t) = g'(t)v,

Duhamel’s formula represents the solution of (2.15) as the integral

/tw(t,r) dr, (2.16)
0

n(t)
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where w(t, 7) is the solution of the problem?
wi(t,7) + D*w(t,7) =0, wli=r = g(T)v, wWi|=r = 0. (2.17)
Indeed, the function (2.16) satisfies (2.15), because

' (t) + D*n(t) = /Ot (wiy(t,7) + D*w(t, 7)) dr + jt (w(t,t)) + wi(t,t)
=gtv,  n0)=0,  7'(0)=g(0)v=0
in view of (2.5). Now we can use the general solution formula (e.g., see [26, p. 191])
u(t) = cos(Dt)ug + D~ sin(Dt)uy (2.18)
for the abstract hyperbolic Cauchy problem
u” (t) + D?u(t) = 0, Ulimo = uo, Utlt=o = w1 (2.19)

and write
n(t) = [/Ot cos(D(t —7))g(T) dT} v =Re [/Ot P g(rydr|v. (2.20)

Here we have used the fact that g(7) is real valued; the real part of an operator A
is defined as usual by Re A = (A + A*). Formula (2.20) is the desired abstract
operator formula for the solution of problem (2.1).

Remark 2.2. Since the operator D is self-adjoint, it follows that the expressions
cos(Dt), sin(Dt)/D, and e'P!, occurring in (2.18) and (2.20), are well defined in
the framework of functional calculus for self-adjoint operators as functions f(D)
with bounded continuous symbols f(£) = cosét, f(&) = £ Lsinét, and f(§) =
'€t respectively. Moreover, e'P? is none other than the strongly continuous group
of unitary operators generated by D, Re(f(D)) = (Re f)(D), and, for “good”
functions f(€), the operator f(D) can be defined not only via the integral over the
spectral measure but also via the Fourier transform as
D= 1 (Fr)eé™Pu),  ue IAR?),
Vor

where fis the Fourier transform of f and the angle brackets stand for the value

of the distribution f(7) on the L?(R?)-valued function €™ Pu.

Remark 2.3. The energy of the solution of the Cauchy problem (2.19) is defined
by the formula [26, p. 191]

1

E) = ) (I @I + IDuI?) = ) (WO + (o), Lu(e)) — (2:21)

2The standard Duhamel formula would give w|i=r = 0 and w¢|t=r = ¢’(7)v in (2.17), but we
have made use of the special form of the right-hand side.
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(where || - || stands for the L? norm and (-, -) for the L? inner product) and is
conserved in the course of time. Hence, in view of (2.10) and the estimates (2.4),
the solution of problem (2.17) (with 7 viewed as a parameter) satisfies

2 2u2

(

c(x)VV (i)
g*(7)

)\2
= /RQ ()| VV () dyrdyz =, g5(A7)c5 IVVI2 (1 +O(n)

2
dxl dxg

efult,r) =7 o m) |t =40 /R

as u — 0, where ¢y = ¢(0). Now it follows from (2.16) that, with some constant C,
t 2 1 )
el < { [ Vemlenar} + 5wl
¢ ’ NQ)‘Q 2 2
<o{a [imoniar} + 7 oo v

> ? PN 2 2
<of [Tnar} + " goo v
—_ 0(1) 4 O(MQ)\Qe—QuAt) — 0(1) 4 O(w—2e—21/)\t);
i.e., the energy of the solution is uniformly bounded as p — 0 for all ¢ > ¢ > 0.
(However, it may have a “spike” of the order of w=2 for ¢ ~ 1/); of course, this
is only important if w < 1.) In other words, we have chosen a physically natural
normalization of the right-hand side of our problem.

Remark 2.4. For the inhomogeneous wave equation
u”(t) + D%u(t) = F(t), (2.22)

one has the energy identity

t
Elu](t) = E[u](0) + Re/ (F(1),u/ (1)) dr,
0
which implies the well-known estimates®

[u@ oy + o' Ol < CE 1u(0)llypy + 1w ()], + P IF(l,),  (2:23)

where || - ||, stands for the norm on the Sobolev space H* = W3 (R?); in particular,
[I-llo = [l -]l. Of the estimates (2.23), the most important for us is the one with
s = 0 (corresponding to the sum of the energy integral and the L? norm), in which
the main estimates for the norms of remainders in asymptotic formulas will be
obtained. However, occasionally our argument involves estimates with different s.

3Their derivation takes into account the fact that the norm |u||, is equivalent to the norm
l(x+ L)S/2u|| by virtue of the conditions imposed on the velocity c¢(z).



Functions of Noncommuting Operators in an Asymptotic Problem 103

2.4. Solution splitting into propagating and transient components

Let us further transform formula (2.20) to reveal the structure of the solution and
represent it in a form suitable for subsequent computations. We have

t oo o)
/ P g(rydr = / P g(rydr — / e P g(rydr
0 0 ¢ (2.24)

o0 (e ]
:eiDt/ e_iDTg(T)dT—/ e_iDTg(T+t)dT.
0 0

Let H(7) be the Heaviside step function (H(7) = 1 for 7 > 0 and H(r) = 0 for
7 <0), and, for ¢ > 0, let

o0

G(&,t) = /000 e Tg(r +t)dr = / e CTH(T)g(T +t)dr

— 00

be the Fourier transform of /27 H (7)g (7 +t) with respect to the variable 7. (Note
that G(£,0) = v27g(¢), where the function g(7) is assumed to be extended by
zero for the negative values of 7.) Then formula (2.24) can be rewritten as

t
/ e P g(r)ydT = eP'G(D,0) — G(D,t) = V2re'Pt§(D) — G(D, t),
0

and accordingly

1N(t) = Nprop(t) + Nirans(t), (2.25)
where
Nprop(t) = V21 Re(e"P'g(D))v (2.26)
= V27 cos(Dt) Re §(D)v — v/2m sin(Dt) Im (D),
77trans<t) = - Re(G(D, t))U- (2.27)

The function 7prop(t) given by (2.26) is the solution of the Cauchy problem
for the homogeneous wave equation

u” (t) + D*u(t) = 0 (2.28)
with the initial data
uo = V21 Re g(D)wv, u; = —V2n Im §(D) Do. (2.29)

(This follows from the comparison of (2.26) with (2.18).) Hence this function will
be called the propagating component of the solution, and the initial data (2.29) for
Nprop () Will be called the equivalent source functions. We shall see in Section 3.3
that, exactly as one should expect, Mprop(t) propagates along the characteristics.

The function 7yans(t) given by (2.27) will be called the transient component of
the solution, because it exponentially decays as At — oo, as shown by the following
proposition. (We shall also see in Section 3.1 that 7¢ans(t) always remains localized
near the origin.)
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Proposition 2.5. As p — 0, the propagating component satisfies the estimates

Ipron ()1, = O), [l (8)]] = O(1),
and the transient component satisfies the estimates
||77trans(t)H1 = O<e_ukt)7 ”nérans(t)H = O(w_le_y)\t)a

where v is the constant in condition (2.5).

Proof. We will estimate the transient part (2.27) of the solution directly and the
propagating part (2.26) via the Cauchy data (2.29) by using the energy estimates.
Formulas (2.27) and (2.29) involve the real and imaginary parts of the operator
G(D,t) applied to the original right-hand side source function v. (Recall that
g(D) is a special case of G(D, t) for t = 0.) Thus, we need to estimate the operator
G(D,t). Note that, for an arbitrary bounded measurable function f(£), one has

17(D): HY = B[ < suplf(©)l,  |[F(D): H' — H'| < Csuplf(&)  (2:30)
EER EER
with some constant C independent of f.# Thus, we need estimates for the function
G(&,t). Since g(7) = Ago(AT), we have

where

Go(&,t) = /000 e*ingo(T +t)dr (2.32)

is the Fourier transform of the function v/27H (7)go(7 + t) with respect to 7. By
Lemma 2.6 below, we have

[V273(€)| = |Go(¢/A, 0)| < Coo
and hence, by (2.29) and (2.30),
luoll, = V27 |[Reg(D)vl|; < CCoo [lv]l, = O(1),
lur]l = V27 [Im §(D) Dol < Coo | D < C |lvll, = O(1),

because v = V(z/p) and hence |[v|; = O(1) (cf. the computation in Remark 2.3)
Now the energy estimates (2.23) for s = 0 give the desired estimates for npyop(t)
The estimates for the transient part go as follows, again with the use of Lemma 2.6:

Hntrans(t)Hl = ”Re G(D’t)U”l S CS%MGO(f//\’)‘t)l ”UHI

< CCooe "M ||, = O(e™),

4Indeed, the first estimate is obvious, because the operator D is self-adjoint on HO = Lo (R?).
To obtain the second estimate, we replace the norm on H! by the equivalent Hilbert norm
llull = (u, (1 4+ L)u)'/? (cf. Remark 2.4); then the operator D becomes self-adjoint on H', and
the second estimate follows.
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0Gy (&
<
<o 5 ()

< Core™ o] = O(pre™ ) = O(w™ e ™M),

oG

AOTES X ol

because v = V' (x/p) and hence ||v]| = O(n). This completes the proof. O

The following lemma establishes the estimates for Go(&,t) used in the proof
given above and also estimates that will be useful below.

Lemma 2.6. The function Go(§,t) satisfies the estimates

oG (6,1)] < Crme ™" (1 + |£|)7k71 k,m=20,1,2 (2.33)
(‘)tmafk ) >~ Ukm ) ) T Uy Ly Ly ey .
with some constants Cip,. For t =0 and m = 0, one has the better estimates
%Gy e
el €0 S Culi+eh 2 k=ora. s

Proof. First, let us prove the estimates (2.33) and (2.34) for |¢| < 1. Then we have
am+kG0 00 ) it
' otm ok (5’”' - /0 (—ir)Fe ™7 ge™ (v + 1) dr

by (2.5), whence the claim follows. Now let || > 1. Then we write

oma AR I AR m
6= () [ e

for some integer N > k 4 1 and then integrate by parts N times, thus obtaining

oo
SCme*”t/ ke VT dr
0

N

(€)= @&~ g™V (t) + (1)~ / i€yt (2 4ty dr. (2.35)

=1

™Gy
atm

Next, we differentiate both sides of (2.35) k times with respect to &, which gives

am+kGo = I+k=D ik (mti-1)
atmaé-k - Zl 1 l _ 1 (Zg) 90 ( )

_ l—l—S—l _N—s o —s —itr (m
kzs 0() _1)!) (i€) N (/0 rh=seig g(() +N)(T+t)d7'.

Here all factors gémH*l) (t) and the integral are bounded in modulus by const - e~

by virtue of (2.5), and the smallest power of ¢! on the right-hand side is %71,
which implies the estimate (2.33). For ¢ = 0 and m = 0, the smallest power
of €71 on the right-hand side is €72, since go(0) = 0, and we have the esti-
mate (2.34). O

vt
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3. Asymptotics of the solution

In this section, we describe the asymptotics as p — 0 of the solution 7n(t) =
Nprop (t) +Merans (t) of problem (2.1), (2.2). In all theorems in this section, we assume
that all conditions stated in Section 2.1 are satisfied. Recall that the problem also
contains the large parameter A, which is related to p by the condition w < wy
(see (2.9)), where w = co(Au) ! (see (2.8)). If w can be treated as a second small
parameter (i.e., the distance traveled by the waves in the lifetime of the source is
much smaller than the source diameter), then additional Taylor series expansions
in w lead to further simplifications in the asymptotic formulas.

3.1. Asymptotics of the transient component

The asymptotics of the transient component 7yans(t) of the solution as yu — 0 is
given by the following theorem.

Theorem 3.1. One has

Moas(est) = = [ [ ReGalwlpl OV @)™ Py dpa + RO, (31)
or, in the polar coordinates (r,p), x = rn(p), where n(p) = (cos p, sin @),
2m
ntrans(rn - 277' / / PRe G() O.)p, )\t)
x V (pn(i))erreeosti=o)idp dyp + R(t), (32)

where the remainder R(t) satisfies the estimates
1RO, = O(ue™),  R'®)| = O(uw™'e ™), p—0. (3-3)
Proof. Consider the operators
7,0 — —2V2, DO — (L(O))l/% (3.4)

Thus, L is obtained by freezing the coefficients of the operator L at the origin,
and D) is just the positive square root of the positive self-adjoint operator L(®).

Lemma 3.2. One has
[Re G(D©, ) — ReG<D,t)}V(z) = R(t), (3.5)

where R(t) satisfies the estimates (3.3).

The proof of this lemma will be given in Section 4. Thus, the operator D
in the expression (2.27) for Ny ans(2,t) can be replaced by the operator D) with
constant coefficients. Now it remains to compute Re G(D®) )V (z/u). Since D)
is an operator with constant coefficients and with symbol ¢y|p|, it follows that

F(D©) = F~" o F(colpl) o F (3.6)
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for any function F'(§), where F is the Fourier transform and the middle factor on
the right-hand side is the operator of multiplication by F'(co|p|). Thus we obtain

1 ~ .
G(D(O)’t)V<Z) = on //ReGo(w|p|,/\t)V(p)e”’x/“dpl dpa

(we have used the formula for G(£,¢) and made obvious changes of variables),
which proves Theorem 3.1. O

3.2. Asymptotics of the equivalent source functions

Now we proceed to the computation of the propagating component of the solution.
It satisfies the Cauchy problem (2.28), (2.29), and so a good starting point would
be to compute the equivalent source functions (2.29). Once we compute them
(asymptotically) and prove that they are localized near the origin, we can use
the methods developed in [11-16] to obtain the asymptotics of the propagating
solution component. However, we would like to apply ready-to-use formulas from
these papers rather than to write out new formulas based on the same ideas. The
formulas in [11-16] were obtained for the case in which u., the initial data for the
t-derivative of the solution, is zero. So we resort to the following trick.

Proposition 3.3. The propagating solution component nprop(t) can be represented
in the form

Mprop(t) = M (t) + 5 (1), (3.7)

where n1(t) and n2(t) are the solutions of the Cauchy problems
7/ (t) + D% =0, mli—o = V21 Reg(D)v, Ml=o=0,  (38)
(1) + D*p = 0, ple=o = V2rD ™ Img(D)v, im0 = 0. (3.9)

Proof. The sum (3.7) obviously satisfies the wave equation (2.28). Next,
Malt=0 = 0, (75)li=0 = 115 |t=0 = —D’n2l1=0 = —V2r D Im g(D)v,

which shows that the initial conditions (2.29) are satisfied and hence completes
the proof. O

Thus, let us compute the asymptotics of the new equivalent source functions
Mo = V2rReg(D)v,  n20 = V2rD ' Img(D)v. (3.10)

Theorem 3.4. The equivalent source functions (3.10) have the following asymp-
totics as p — 0:

x x
7710=U1<M) + Ry, 7720=U2<M) + Ry, (3.11)

where the Fourier transforms of the functions Ui(y) and Us(y) are given by the
formulas

go(wlpl) &

Ui(p) = V2 Rego(wlp)V(p),  Ua(p) = V27A~' Im wlpl Vip) (3.12)
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and the remainders satisfy the estimates
[Rully = O(w), IRzl = O(n). (3.13)

Proof. The proof goes along the same lines as that of Theorem 3.1. Namely, we
prove that the operator D in formulas (3.10) can asymptotically be replaced by
D© and then compute the Fourier transforms of U; and Us using formula (3.6).
The latter computation is trivial, and we omit it altogether. As for the first part,
it is given by the following lemma, which will be proved together with Lemma 3.2
in Section 4.

Lemma 3.5. One has

V2r[Reg(D) — Reg(D<0>)]v<z) =Ry,

(3.14)
Var[D (D) - (D) (D)) () = o
]
where Ry and Ry satisfy the estimates (3.13).
This completes the proof of Theorem 3.4. O

Remark 3.6. If we replace 119 and 799 in the Cauchy problems for n; and 72 by
Ui(x/p) and Us(z/p), respectively, then the resulting error 6(¢) in the computation
of Nprop(t) will satisfy the estimates

16y =O0(w), 9@ =0),  n—0,

uniformly on any finite time interval. Indeed, let us write 6(t) = 61(t) + d5(t),
where §; and d2 are the errors in 77 and 7, respectively. Then, by virtue of the
energy estimates (2.23), we have

o ()]l + 1@ < C () [161(0)]ly = C(#) [[Rally = O(p),

185811y + 1165 ()] < C(@) 165(0)]] = C(t) || D?62(0) |

= C(t) | D*Ra|| < C1(t) || Rally = O(n).

Thus, the accuracy provided by Theorem 3.4 permits computing the propagating
part of the solution modulo O(u) in the energy norm.
3.3. Asymptotics of the propagating part

Remark 3.6 shows that, to compute the asymptotics of the propagating part of
the solution of problem (2.1) modulo O(y) in the energy norm, it suffices to solve
problems (3.8) and (3.9) asymptotically with the initial data replaced by the func-
tions Ui (z/p) and Us(x/p) indicated in Theorem 3.4. Thus, we need to solve the
problems

n () + D*m =0, mli—o = Ui(z/1), nili=o =0, (3.15)
1y (t) + D*n2 =0, mali—o = Ua(z/p), njli—o = 0. (3.16)

(We denote the new unknown functions by the same letters ny 2; this will not lead
to a misunderstanding.) The initial data in these problems are localized near the
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origin, and hence the asymptotics of solutions of these problems modulo O(y) in
all spaces H® can be obtained with the use of the approach developed in [11-14]
and based on the Maslov canonical operator [1, 20]. Let us briefly recall this
construction.

3.3.1. Bicharacteristics, canonical operator and solution formulas. In the phase
space Ri,p with the coordinates (z,p) = (21,22, p1,p2), consider the Hamiltonian
system

p=—g . i= (3.17)

corresponding to the Hamiltonian function H = |p|c(z). This system determines
the Hamiltonian phase flow g%,. Let n(y)) = *(cos,sine). Consider the La-
grangian manifold Ag = {p = n(¥),x = an(y)}, isomorphic to the two-dim-
ensional cylinder, where ¢ € [0,27) and « € R are coordinates on Ag. By shifting
this manifold along the flow g%, we obtain the family of Lagrangian manifolds
Ay = g4, Ao, each of which is equipped with the same coordinate system (¢, ) as
Ag. We take the point with coordinates (¢, &) = (0,0) for the distinguished point
on Ay and construct the Maslov canonical operator K ﬁt [1, 20] on each of the
manifolds A;. (Here h — 0 is the small parameter occurring in the construction
of the canonical operator; all Jacobians in the definition of K k, are taken with
respect to the coordinates (¢, @).) /

It follows from the results in [11-14] that the asymptotics of the solutions
71,2 of problems (3.15) and (3.16) can be obtained as follows. Using the Fourier
transforms (3.12) of the equivalent source functions computed in Theorem 3.4, we
introduce the following two smooth functions on A;, independent of ¢ and « but
depending on the coordinate 1) and an additional parameter p:

#1(8,p) = Ui(pn(v)) = V27 Re Go(wp)V (pn(v)),
p2(t29) = Talpn(0) = V2mr 1 ® 7V (pn)

Then the formulas in [11, 13] give

m2(t) = \/2/; Re (6”/4 /000 KX (o1 2(, p)) dp) +O(). (3.18)

Let us find the derivative n4(t). By the commutation formula [20] for the canonical
operator, we have

. © g
(0 =\ e e/ [ 0 R pon(v ) o

- \/2/; Re(e—iw/4/0°° KRl { - Zi”hywﬂw,p)} dp) +O0(p).

But the Hamiltonian A is preserved along the trajectories of the Hamiltonian
system, and hence H}At = H}AO = c(an(¢)). It was shown in [11] that, modulo
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lower-order terms, one can set « = 0 in the functions on A;. Taking into account
the definition of 2, we obtain

1500 = virme( = [T KL LotV (on(w)] dp) + 0G0,

Finally, we use the formula 7p.0p(t) = m1(t) + n5(¢) and arrive at the following
theorem.

Theorem 3.7. The propagating part of the solution has the following asymptotics:

Tprop(t) = /1t Re (e’f /0 h EXP[p o (wp)V (pm(v))] dp) +R(t), (3.19)

where the bar stands for complex conjugation and the remainder satisfies the esti-
mates
IR, =On), IR ()l = O(n) (3.20)

uniformly on any finite interval of time t.

3.3.2. Asymptotics near the front. Now let us compute the propagating part (3.19)
of the solution in more explicit terms. To this end, we need some geometry. Let
(P(t,v), X (t,)), ¥ € [0.27), be the family of solutions of the Hamiltonian system
(3.17) with the initial conditions

pli=o =n(¥), zli=o =0. (3.21)

For each t, the equations p = P(t,v), x = X(t,v¢), ¥ € [0.27), define a smooth
closed curve I'; in the four-dimensional phase space Rip; this curve is called the
wave front in R} . The projection v, = {x = X (t,1)): ¢ € [0.2m)} of I'; into R2
is called the front in the configuration space. In contrast to I';, the curve ¢ may
well be nonsmooth; namely, it may have turning (or focal) points (in this case,
Xy = 0 for some 9) and points of self-intersection. Moreover, the front 7y at the
initial time ¢ = 0 is just the point x = 0.

For each ¢, the function (3.19) is localized in a neighborhood of the front ~;
[11-16]. Formula (3.19) provides the global asymptotics of the propagating part of
the solution; i.e., this formula holds both near regular and near focal points of the
front. The formula can be simplified in a neighborhood of any point of the front,
but the simplified expression depends on whether the point is regular or focal.
Here we restrict ourselves to the case of a neighborhood of a regular point.

Take some time ¢ and angle 1/° and assume that the point X (t,9%) € v; is
not focal; i.e., Xy (¢,%°) # 0. In some neighborhood of X (t,1°), we can introduce
the local coordinates (v, y), where y = y(x,t) is the (signed) distance between the
point & and the front and ¢ = (z,t) is determined by the condition that the
vector x — X (t,4(x,t)) is orthogonal to the vector tangent to the wave front at
the point X (¢, (x,t)); in other words

<{E - X(ta w(xvt))a le(tvw(x?t)» =0.
Set
S(xvt) = <P(taw(xvt))ax - X(tvw(xat)»'
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Next, we introduce the Morse index m(t,1)°) of the trajectory X (1,4°), 7 € (0,1],
which is the number of zeros of the function | Xy (7,1°)| on the half-open interval
7 € (0,t] [20].

It may happen that some region of points x where we intend to write out
the asymptotics simultaneously belongs to several neighborhoods of the above-
mentioned type, where the corresponding points X (¢,°) lie on several (but finitely
many!) distinct arcs of the front ;. (For example, this is the case if we study the
asymptotics near a point of self-intersection of the front ~;.) Then all these arcs
contribute to the asymptotics at such points x, and we use an additional subscript
j to distinguish these neighborhoods as well as all associated objects (¢°, ¥(z,t),
S(z,t), Morse index, etc.). Now from the results in [11, 12, 15, 16] we obtain the
following theorem.

Theorem 3.8. In a neighborhood of the front v but outside a neighborhood of the
focal points, the asymptotic formula (3.19) for the propagating part of the solution
can be rewritten in the form

B o e—iwm(w?,t)/Q co Sj (x’ t)
77pr0p<t) - \/MR ZJ:|: \/IXw(ll)at)l C(X(d)’t))F( w ’w):|1pz/;j(x,t) +R(t),

(3.22)
where

Fe) = e [ Upbo(on T (om(u))e (3.23)

R(t) satisfies the estimate (3.20), and the sum with respect to j is taken over all
distinct arcs of v, contributing to the asymptotics at x.°

Remark 3.9. The factor

1 co
VX (@, )] \/C(X(ll%t))

includes the two-dimensional analog of the so-called Green law and the trajectory
divergence related to the velocity c(z) (with height ¢?(z) describing the bottom
topography). The function F' depends on the time and space shape of the source
generating the waves [11-16]. Formulas (3.19), (3.22), and (3.23) apply to any
localized perturbation.

4. Obtaining asymptotic expansions by noncommutative analysis

The aim of this section is to prove Lemmas 3.2 and 3.5. Vaguely speaking, these
lemmas state that the replacement of the operator D by the operator D) (3.4)
with constant coefficients in certain expressions results in an O(u) error. However,
it is much easier to deal with functions of the differential operators L and L(®) than
with functions of their square roots, the pseudodifferential operators D = v/L and

5More formally, for example, fix an € > 0; the intersection of +; with the e-neighborhood of z
can be covered by finitely many arcs of length < ¢; take the contributions of all these arcs.
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DO = /L) Hence in Section 4.1 we represent the latter functions via the former
and accordingly restate the lemmas. In Section 4.2, we make all noncommutative
computations.

4.1. Eliminating the square roots

Lemma 4.1. The functions Re Go(&,t) and €~ Im Go(€,t) are smooth even func-
tions of & and hence smooth functions of £2.

Proof. The function go(7) is real valued, and Go(&,t) = Go(—¢&,t) by (2.32). Thus,
ReGo(—&,t) = Re Gp(§,t) and Im Go(—¢,t) = —Im Gy (&, t); i.e., the real part of
G is an even function of £, and the imaginary part of G is an odd function of .
Hence the desired claim follows. O

Now let us introduce the functions
f1(8) = ReGo(¢1/2,0),
F2(€) = €7/ Im Go(€1/2,0), (4.1)
f3(&,1) = ReGo(¢'/2, ).

By Lemma 4.1, these functions are smooth for all £, including £ = 0. Formulas
(3.10) for the equivalent sources and (2.27) for the transient solution component
can now be rewritten as

Mo = fl(/\_QL)V(z),
oo = A‘lfg()\_QL)V<z), (4.2)

X
ntrans(t) - _f3(>‘72L7 At)v<u> .
Indeed, for example,
AT (ATPL) = AT (ATPL) T2 Im Go (A 2L) 2, 0)
=D ' ImGy(A"'D,0) = D' ImG(D,0) = V2rD ' Im (D).

The following theorem is an equivalent restatement of Lemmas 3.2 and 3.5 in terms
of functions of L and L(®). (We write R3(t) = —R(t) to unify the notation.)

Theorem 4.2. One has
fl(/\‘QL)V(z) - fl(/\‘QL(O))V<Z) YR,

A‘lfg(/\_QL)V(z) = A‘lfg(/\_QL(O))V<Z) + R, (4.3)

f3(>\2L,>\t)V<z> - fg()\QL(O),)\t)V<z> + Rs(t),
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where the remainders satisfy the estimate
[Rally = Op), [Rall, = O(p),
1IR3 ()], = O(ue™),  ||R5(t)]| = O(*Ae™").

The proof will be given below in Section 4.2.
We need some estimates for the symbols (4.1). These are provided by the
following lemma.

Lemma 4.3. The following estimates hold for the functions (4.1):

(4.4)

A< Cro+1e) 7 1O < Com 1+ 1) 7¥27H,
ak+mf3(€ t) . ) ) (4.5)
) < ) —v —1/2—k
\ o | S Come™ (1€ 72k,
k=0,1,2,..., where the Cyy, are some constants (in general, different from those

introduced earlier).

Proof. For k = 0, the desired estimates (4.5) readily follow from (2.33) and (2.34);
it suffices to replace & by £/? (and use the fact that the functions f; given by
(4.1) are smooth and in particular continuous at £ = 0). Next, note that if f(§) =
F(£'/2), where F(C) is a smooth even function, then f’(¢) = ¥(£'/2), where ¥(¢) =
éF’(C)/C is again a smooth even function. Thus, it suffices to prove that if a smooth
even function F satisfies estimates of the form

IFR QO <de(@+ )" H,  k=0,1,2,...,

for some kg, then W satisfies the same estimates but with ky increased by 2 and
with new constants dj, each of which is a finite linear combination of the old ones.
This is trivial for || > 1, and in the region |{]| < 1 one can use the identity

1
CUPQO = CHEQ - FO) = [ F(6c) ds O
0
4.2. Computation of the transient part and the equivalent sources

Now we will prove Lemmas 3.2 and 3.5 by proving the equivalent Theorem 4.2.
Let f(&) be any of the functions f1(§), f2(£), and f5(,t) given by (4.1) or the
function f4(&,t) = 0f3(&,t)/0t. We need to compute the difference

R=R(x,\p) = (FA2L) — FA2LO))V <z> (4.6)

and estimate it in an appropriate norm. Let us make the change of variables
2 = py. In the new variables, (4.6) becomes

R = (F(Ly) = [V (), (47)
where
2 o 0
I — —? < (ny) O — _ 2v2 _
" wVy 2 Vy, v wVy, Vy 9’ Oy )
and w = ¢o/(Ap) is bounded by condition (2.6).
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To compute this difference, we use the machinery of noncommutative anal-
ysis. We refer the reader to [1, 2] for details concerning the definition and prop-
erties of functions of noncommuting operators and only recall that a function

F(;ll, e ,Zln) of (possibly, noncommuting) operators Ay, ..., A, can be defined
as follows in the particular case where the A; are the generators of uniformly
bounded strongly continuous one-parameter operator groups et t € R, on a
Hilbert space H:

F(jx A)u = L F(ty,t ty)etAntn o etMtiy qry Lt
1y---54dn _<2ﬂ_)n/2 N 1,025---5tn 1 ns

u € H, where F is the Fourier transform of the symbol F', which is assumed to
satisfy certain conditions (e.g., see [2]) guaranteeing that the integral on the right-
hand side is well defined. The numbers (Feynman indices) over operators indicate
the order of their action: of any two operators, the operator with the smaller
Feynman index stands to the right of the operators with the larger Feynman
index in products.

It follows by the zero-order Newton formula of noncommutative analysis (see
[1] and [2, Theorem 1.8]) that

1 2 1
F(L) = ) = S Ly 0L, - 1) = L (L, LT, @9)
where ) )
5 o o) 16~ f&
oc 08 =" g,

is the first difference quotient of f and
A (y) =0 0
T—Ly—L;0>—w2<vy, (1— 2 >Vy>=w22 Bluy) -

Here we have denoted
A(2),

)

ox) =1~

2
0
this function is uniformly bounded together with all of its derivatives for z € R2,
and ¢(0) = 0.

We further transform the right-hand side of (4.8) as follows.

Proposition 4.4.

2
5f 2 §f 3 201 §2f 4 3001
s (Lo LT = 5 (L LT 5 (L LY LT L), (49)
where
52f gé (€1a§2) - fsg (§17€3)

(51752753) = §2 _ 53
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is the second difference quotient of f and

T L) = 70 _ (O
[T, L,"] Y Y
is the commutator of T' and Léo).

Proof. The proof of (4.9) mimics the derivation of the general commutation for-
mula [2, Proposition 1.3]

(B, B)[A. B] (4.10)

of noncommutative analysis, with T" playing the role of A and Ll(,o) playing the role
of B. Recall this derivation (e.g., see [2, pp. 52-53]). We need to compute

A, F(B) = Af(B) — (B)A = Af(B) — Af(B).

The Feynman indices can be chosen independently for either summand on the
right, and we can write

2

A, F(B)]) = Af(B) — Af(B) = A(f(B) - }(B)) = A(B — B)

(Here we have used the identity f(z) — f(§) = (x = &) gg (z,€), which is in fact the
definition of ¢ f/d€.) Next, we move apart the Feynman indices over the B’s, thus
obtaining

2 1 3 §f1 3 21 3§

A<B_B)55<B7B)=A(B—B) 2 5F 2 5f 1

0 4 3
(B,B)=[A, B] 5¢ (B, B).

2 1 3 2
(In the middle, we have written A(B — B) = [A, B] using the fact that no other
operators in the expression have Feynman indices in the interval [1, 3].) Thus, we

arrive at the desired commutation formula (4.10).
1
The derivation of (4.9) differs from this only in that now, instead of f(B),

1
3 3
we have gg (Ly,Léo)); i.e., there is an additional operator argument, L,, but this

argument does not invalidate the computation, because its Feynman number does
not lie between those of A=T and B = Léo). O
Let us evaluate the commutator [T, Lgo)].
Proposition 4.5. One has
[T, L) = uTy,  where ||Ty: H*(R2) — H*3R2)|| < Cs

for all s with some constants Cs independent of p as p — 0.
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Proof. We have
[Tv Lg(;O)] = W4<Vy7 [Vf/, (b(/-//y)]

= uw4z< ” <2¢z7 “y>a?/ + gl (uy))V >

and it remains to recall that ¢(z) is uniformly bounded together with all deriva-
tives. ]

By Propositions 4.4 and 4.5, we can write

3 2 1 27 4 3 L 9
FL) = L) = (L LT+ 4 (L, L0, LT,
Accordingly,
R = (f(Ly) — f(L))V = AW + uBY, (4.11)
where
wetv, A= L%O) _ 1R o) pong
— TV, - 55( L), B= 5e2 (Ly, L, LT . (4.12)

Let us estimate the expression (4.11) for f = f;, j =1,2,3,4.
Proposition 4.6. One has V € H*(R}) for every s.
Proof. This follows from the estimates (2.4). O
Proposition 4.7. For every s, one has W € H*® (Ri) and
Wl e (mzy = O(1), p— 0.

Proof. We have
() = p(F (1), ),
where the vector function

F(z)f/o Zf( %) df

is bounded together with all derivatives, and hence for the function W = TV we
obtain

0 oV (y) 0 AV (y) )
W(y) = w2< F(uy), + F(uy), .
W) = w5, Fw)y)p =+ 5 Fwy)y) -y
Since, by virtue of the estimates (2.4), the function y;0V (y)/dyy lies in H*(R?)
for every s, we arrive at the desired assertion. O

Proposition 4.8. Let f = f;, j = 1,2,3,4. Then for each s € R there exists a
constant Cs independent of p — 0 such that

|A: H¥R2) — H*R2)|| < Cs,  ||B: H*(R2) » H**R2)|| < C

Jorj=1,2,
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|A: H*(RY) — H*(R})|| < Coe™", ||B: H*(R}) = H**(R2)|| < Coe™"
for 7 =3,4.

Proof. We make use of the following representation of the kth difference quotient:

ok
(%f (Crenbop) = [ FB0& + - + Oppr8egr) dOy - dby
Ag

_ \/12 / (/Oo f(\k/)(p)eip(algl+"'+9k+15k+1)dp) df, - - - dby,
™ Ak — 00

where ﬁ’?)(p) is the Fourier transform of the kth derivative f(*)(¢) and
Ap={01,....0ks1 R0 4 40,1 =1,0,>0,j=1,....k+1}

is the standard k-simplex. Hence

2 1 1 S ) ) o
(L, L) = / (/ f’(p)ewmvew%%>dp) ds,
Al — 00

0 \/271'
S
e (Ly, LOLO)T

B \/12 / (/OO ?/jl(p)@ipelLyeip%LgJO) TleiPGSLEJO) dp) df,dos.
™ AQ — 0o
(4.13)

Let us estimate the operators (4.13). To this end, we use the following lemma.

Lemma 4.9. For each s, there exists a constant C, independent of u — 0 such that

e H*(R2) — H*(R?)|| < Cs,

M (R2) — HS(Rf})H <G,
for allt € R.

Proof. For s =0, the claim is obvious, because the operators Léo) and L, are self-
adjoint in L%(Ry,). For other values of s, one equips H® (Ri) with the equivalent
norm H(l + Ly)s/QuH, so that the operator L, becomes self-adjoint. This norm
depends on the parameter p, but it is not hard to prove (for positive integer s
by a straightforward computation, and for other s by duality and interpolation)
that the constants in the inequalities specifying the equivalence of norms remain
bounded as p — 0. The argument for Léo) is simpler, because the parameter p is
not involved. The proof of Lemma 4.9 is complete. (]

Now we can finish the proof of Proposition 4.8. If f = f1, fo, f3, or f4, then
it follows from Lemma 4.3 that the Fourier transforms of f’ and f” belong to
L'(R), and in the case of f3 and f4 the L'-norm decays as e~"!. By combining
this with Lemma 4.9 and with the estimate for 77 in Proposition 4.5, we arrive at
the assertion of Proposition 4.8. (]
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By applying Propositions 4.6, 4.7, and 4.8 to formulas (4.11) and (4.12), we
find that R = O(u) in all H*(R2) for f = f1 and f = fo and R = O(pue™"") in all
HS(Ri) for f = fs and f = f4. Let us finally estimate the remainders R; in (4.3).
We should take into account the additional factor A~! for j = 2 and pass from the
variables y to the original variables © = uy. Since

lull, = Nl mz) < 0~ ull ez for p<1ands>0, (4.14)

we arrive at the desired estimates (4.4). For example, for Ry we obtain

C
|Rell, < Cua—p! 2 =X~ <
0
(where the factor A=! comes from (4.2) and the factor y'=2? = y=! from (4.14) for
s = 2). The estimates for R; and Rz are similar. The proof of Theorem 4.2 and
hence of Lemmas 3.2 and 3.5 is complete. (|

5. Examples

In conclusion, let us present two simple examples in which the asymptotics of the
solution of the Cauchy problem (2.1), (2.2) with a special right-hand side will be
demonstrated. Namely, we use the right-hand side (2.3), Q(x,t) = N2gy(\)V (z/ 1),
where V(y) = A1 + (y1/b1)? + (y2/b2)?)~%/? is the simplest spatial shape fac-
tor (2.11) and the function go(7) is given by one of formulas (a) (a sine source)
and (b) (a polynomial source) in Eq. (2.13).

Recall that the asymptotics of the solution is given by Theorem 3.1, Egs. (3.1)
and (3.2) (the transient solution component) and by Theorem 3.8, Eq. (3.22) (the
propagating solution component away from the focal points). The transient com-
ponent Nans(2,t) and the wave profile F(z,1) (see (3.23)) of the propagating
component depend only on the right-hand side and on the parameters A, u, and
w; they are represented by integrals which, for our choice of the right-hand side,
can be evaluated (or, in the case of the transient component, considerably simpli-
fied) analytically. The other ingredients of the asymptotic formula (3.22) for the
propagating component (the phase functions S;(z,t), the Lagrangian coordinates
;(x,t), the Morse index m(w?, t), and the factors responsible for the Green law
and for the trajectory divergence) depend on the solution of the Cauchy problem
(3.21) for the Hamiltonian system (3.17), which, except for the simplest cases,
should be solved numerically.

Accordingly, our exposition in both examples is as follows. First, we find the
function Go(€,t) (2.32), which plays a crucial role in all subsequent calculations.
Then we write out the wave profile F(z,) and finally present the expression for
the transient component 7ans(z,t) of the solution. In the second example, we
also numerically compute the trajectories and display snapshots of the solution
obtained with the use of Wolfram Mathematica.
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The calculations are mostly carried out in polar coordinates, so let us rewrite
formula (2.12) for the Fourier transform of V' in the polar coordinates (p, 1), where

p = pn(v) with n(v) = (cos, sin):
V(pn()) = Abiboe PP where (1) = \/b% cos?1p + b3 sin” 1. (5.1)

5.1. The case of a sine source
Let
go(7) = ae™ " (sin(ar + ¢p) — sin ¢y),
where a = (a? + 1)/(acos ¢y — a?sin ¢g) is a normalizing factor. By evaluating
the integral in (2.32), we obtain

_, e HatFo0) ;o jeilattdo) /2 gin gy
Golgt) =aet(") ATt T,
1+ia+ i€ 1—ida+1 14+14€
We see that Go(&,t) is a rational function of £. Moreover, a routine compu-
tation (which we omit) shows that it can be represented in the form

= 2 (0 (Bn(€) + 160 (€7), (5.3)

(5.2)

where R, (¢) and @, (¢) are ratlonal functions with real coefficients and with de-
nominators nonvanishing for ¢ > 0. This is, of course, consistent with the assertion
in Lemma 4.1 concerning the parity of the real and imaginary parts of Gy. As to

go(&), we have
N B 1 a 1’6*1@50/2 iewO/Q sin ¢g
go(f)—¢ Go(&,0) = \/2ﬂ<1+za+z§ 1—z’a+z’§_1+i£>'

To evaluate the wave profile F(z, 1) of the propagating solution component,
we substitute the functions (5.1) and (5.4) into formula (3.23) and obtain

(5.4)

aAby er—iw/4
V2mw3/2

x/oo\/ ( e/ ie/2 Sin%)e*pw—l(ﬁ(w)fiz)dp
0 l+ia—ip 1—ta—ip 1—1ip

F(va) =

aAblbge*”f/4 i . ~ ' |
T Vomws? {26 Pl (w T (B(Y) —iz),1 + ic)

— ;eid’OIo (W™ (B() —iz2),1 —ia) —Io(w " (B(¥) —iz),1) sin gzﬁo} ,
where the integral

o \/pe_clp dp

Ih(C1,Cs) = .
0(C1,Co) ; Cy—ip

, C1,05€C, ReCy > 0, arg Oy # ;T (5.5)

can be expressed via the complementary error function

2 o 2
erfe(w) = eV dv
o),
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by the formula

Io(C1,Cs) = i/\gr + efi”/47r\/C’geiC1C2 erfc (e”/4 \/C’lC'g).
1

To evaluate the transient term of the solution, we substitute the functions
(5.1) and (5.2) into (3.2) and obtain

ntrans(rn(<p))
A —At 27 ] T
_a b1b262 / Re{’ (sin(@At + ¢o) — sin ég) + sin ¢y / L
2mw 0 z ' a

+ a- Z'e*i(octerJO) /Oo e Pdp
2 0o pPraoa—i
- % ,-pzy
+ a;’tel(at+¢0)/ e pi|dw+0(/1/)
0 pPoa—i

-t 2m .
_ adbibae / Re| ! (sin(at + o) — sin go)
0

27w?
+an@ée%%w+2ﬂﬁ@)—2$@»
+(1;ie*“M+¢®e@*”2El«a-—wz)
4 @ i@ By (— (o +1)z) |dy + Ou),
where z = z(r, ¢, 1) = w™H(B(¢) — irp~! cos(¥ — ¢)), Re(z) > 0, and

+oo _—t oo z .
Ey(2) E/ et dt, Ci(z) = —/ COtStdt, Si(2) E/ Sl?tdt.
z z 0

5.2. The case of a polynomial source

Now let
go(T) = e T P(1),
where
P(r) = 1;’,‘ *
k=1

is a polynomial of degree n with coefficients Py such that Py = 0 and ZZ=1 P, =1.
Let us use formula (2.32) for Go(¢, 7). Since

> c . a\" 1
—t—7’—i7’t+ Cdr = —t<t+' ) "
/0 e (t+7)"dr=e 235 |4
it follows that

» 9\ 1 . 1 [\ 1
Golet) = e P<t“ag>1+ig’ 90(5)\/27TP<16§)1+Z.§7 (5.6)
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and we see that Go(&,t) again has the form (5.3). Using (5.1), (5.6) and (3.23), we
evaluate the wave profile of the propagating part of the solution as follows:

A%z_:;“ { (‘ 322)10@(,8(:0) —iz) Jw, 02)]

1

ZA\ﬁ;l:jB\//: iCy [ <—é’1 (1'_,_ Qé’l + dgﬁ))erfc(\/iCﬁ))}

where Iy(Ci, C2) is the integral (5.5).

F(va) =

Ce=1

)
=P iz

Remark 5.1. In both examples, one can prove that the following asymptotic for-
mulas hold for the functions F(z,1) for small w:

1b1bo
F(z,9¢) = +
B g e sy
This means that for small w the solution of the inhomogeneous problem (corre-
sponding to “sources stretched in time”) passes into the solution of the homoge-
neous problem (corresponding to “instantaneous sources”).

O(w).

Let us compute the transient term of the solution for the case in which P(7)
is a second-order polynomial; then

Go(&,t) = e Pot2/2 4 (Py — P)t — Py 2Pyt + 2P — 3P, L AP
) 1+¢&2 (1+¢&2)2 (1+&2)3
iget <P2t2/2 + Pt 2Pt+2P, — P, 4P, >
1+¢? (1+¢€2) (14 ¢€2)3

For the transient term, we find
Mirans = —N2e M [ (PA2 /24 (PL = PN — P )61 (z)
n <2P2)\3t + (2P — 3P2))\2>62<z) + 4P2)\463<z>},

where

Abiby [ i) o=/ (01p1)2+(b2p2)?
/ ( dp1dps.

2m A%k + (wlpl)?)*

If we pass to the polar coordinates by setting y = rn(¢) and p = pn(t)), then we
obtain

dpdi)

Abib 27 e P(B(Y)—ircos(v—¢))
outm(e) = ot [ [

T oma2k (14 w?p?)k

Here one can evaluate the integral over p. For k = 1,2, 3, we obtain

O1(rn(p), p) = 2??\12?32 /0 ! dip (— cos(z)Ci(z) + ; sin(z) (m — 2Si (2))),
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O2(rn(p), 1) = SiingQ /0 ! dip (2 — 2zsin(2)Ci(z) — z cos(z) (7 — ZSi(z))),
2m
O3(rn(p), 1) = 3;1:;:12 /0 dy (4 — zsin(z) (72 + 2Ci(z) — 22Si(z))

+ zcos(z)(—m + 22Ci(z) + 28i(z))>,

where 2(¢0) = w™ (B — ir cos(yp — @)).

An illustration of the solution given by the sum of propagating and transient
terms in the second example is shown in Figure 3. Here the propagating part
is calculated for the constant velocity c(x) = ¢o = 1, and other constants are
by =1,bo =2,A=1,4=0.1,P, =0,P, = 1. The first four snapshots are taken
at small times t = 0.3,0.7,1.0,1.5 to show how the transient term behaves, and
the last three snapshots are taken at large times t = 1.5,4.0,6.5. At ¢t = 6.5,
the transient term practically disappears, while the propagating part continues its
motion.The function gy and the wave profile for P, = —2, P, = 3, and various \ are
compared in Figure 4. For small )\, the wave profile has the form that “reproduces”
the shape of the function gy, while for large A the wave profile is almost the same
as for go = 0(¢).
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On Toeplitz and Hankel Operators
with Oscillatory Symbols Containing
Blaschke Products and Applications
to the KdV Equation
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Abstract. We derive an asymptotic formula for the argument of a Blaschke
product in the upper half-plane with purely imaginary zeros. We then use
this formula to find conditions for the quotient of two such Blaschke products
to be continuous on the real line. These results are applied to certain Hankel
and Toeplitz operators arising in the Cauchy problem for the Korteweg-de
Vries equation. Our main theorems include certain compactness conditions
for Hankel operators and invertibility conditions for Toeplitz operators with
oscillating symbols containing such quotients. As a by-product we obtain a
well-posedness result for the Korteweg-de Vries equation.
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1. Introduction

The theory of Toeplitz operators on Hardy spaces with symbols having discon-
tinuities of the second kind has been in focus of one of the authors (see, e.g.,
[2-5], [9], [14, 15] and the literature cited therein). The range of symbols under
consideration is quite large and varies from discontinuities with rapidly oscillating
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behavior (oscillations of power, exponential and super-exponential types) to slowly
oscillating (e.g., logarithmic). A large variety of generalizations of classical almost
periodic symbols has been considered. For example, the so-called a-almost peri-
odic and a-semi-almost periodic symbols have been studied in great detail [3] (see
also [4, 6, 7] for matrix-valued analogs). We note that those generalizations are
highly non trivial. The main problem is that, as opposed to traditional symbols
(continuous or with at most jump discontinuities), the Toeplitz operators with
those more general symbols need not be Fredholm, i.e., the kernels and co-kernels
may be infinitely dimensional. This raises serious problems: finding criteria for one-
sided and generalized invertibility, construction of bases in kernels and co-kernels,
to name just two. Addressing these issues has required developing new methods
(see monographs [7, 9]). We mention here only the method of the so-called “u-
periodic factorizations of symbols”. Further development of the theory of Toeplitz
and Hankel operators with such symbols would therefore be interesting in its own
right due to the nontriviality of its methods.

What is perhaps even more important is that, while the symbols above may
look a bit artificially complicated, there are some problems of mathematical physics
and partial differential equations where such symbols naturally appear. In particu-
lar, a symbol with a cubic oscillation of its argument is a main player in the study
of the Cauchy problem for the Korteweg-de Vries (KdV) equation [18-20].

In the present paper we consider Toeplitz and Hankel operators with symbols
which besides the cubic oscillation contain quotients of Blaschke products with
zeros on the imaginary line. We obtain asymptotics of such Blaschke products and
then use them to find some sufficient conditions for continuity of their quotients.
We then apply these results to study one-sided invertibility of the corresponding
Toeplitz operator and compactness of the Hankel operator. We emphasize that our
interest to this circle of problems was stimulated by certain well-posedness issues
more related to the Cauchy problem for the KdV equation.

Let us describe our main objects in detail. Consider the Blaschke product in
the upper half-plane C; := {z € C[Im z > 0}

. 1Kn,
B(z) = 1.1
=100, (1)
n=1
with purely imaginary simple zeros such that
Kn > Kpty1 >0 and limk, =0, n — oco. (1.2)

Such Blaschke products are of course very specific but they do arise in the spectral
and scattering theories for Schrédinger operators (see, e.g., [17]). Typically, ik, =
VE,, where E,, is the (negative) nth bound state of a Schrédinger operator.

It is well known (see [10, 16]) that B(z) is convergent for any
z € C4 \ {0} if and only if

Zlin < 0. (1.3)
n=1
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Of course B(z) is analytic in any neighborhood of a real point x not containing
0. We are specifically concerned with the asymptotic behavior of suitably defined
arg B(x) as ¢ — 0 and conditions providing continuity at = 0 of

Q)= !t

= hte) (1.4)

where Bj o(x) are two Blaschke products given by (1.1). The results obtained are
then applied to the study of Toeplitz and Hankel operators with symbols

a(z) = D (2)Q (x), (1.5)

where either D € H® + C(R) or D e H® + C(R). We recall that H$e stands for
the Hardy space of analytic and bounded functions in the upper half-plane C,
and C (R) is the space of functions continuous on the one point compactification
of the real axis R. The class of operators with such symbols is quite broad (see
(4.10) below) and includes the Hankel and Toeplitz operators arising in the initial
value problem for the Korteweg-de Vries (KdV) equation. We use our results on
Hankel and Toeplitz operators to describe some subtle properties of solutions to
the KdV equation which we believe cannot be achieved by usual PDE methods. We
emphasize that although Hankel operators naturally appear in many other (if not
every) so-called completely integrable systems of nonlinear PDEs (see, e.g., [1]),
not much from the theory of Hankel and Toeplitz operators have been actually
used there so far. We believe that the language of Hankel and Toeplitz operators
is quite adequate in the setting of completely integrable systems and the theory
of those operators will find more useful applications in integrable systems.

This work is organized as follows. In Section 2 we derive an asymptotic for-
mula for the argument of the Blaschke product (1.1). The sufficient conditions of
continuity of the function @ (z) (1.4) at the point z = 0 are given in Section 3.
Applications to the theory of Toeplitz and Hankel operators with oscillating sym-
bol are considered in Section 4. In Section 5 we apply our results to the theory of
the KdV equation.

2. Argument of Blaschke products

Let B(z) be of the form (1.1)-(1.3) and let the branch of arctanz be chosen such
that arctanz € (—7,7) for # € R. We define the Blaschke product (1.1) under
conditions (1.2)—(1.3) such that the function

B:R\ {0} = C, z~ B(x)

is continuous, B(co) = 1 and |B(z)| = 1 for all z € R\ {0}. So we can choose a
branch of arg B such that arg B(z) is continuous on R\ {0} and arg B(cco) = 0.
The following statement is elementary.
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Theorem 2.1. The function arg B(x) is continuously increasing on R\ {0},

arg B(z) = —2 Z arctan n, x#0 (2.1)
and
arg B(x) = —arg B(—z), xz€R, (2.2)
lim arg B(z) = Foo. (2.3)
z—=+0
Proof. Since for £ > 0
arg T _ g arg(x — ik, ) = —2arctan Hn,
T+ 1Ky, x

we immediately have (2.1) and (2.2). The series is convergent due to the Blaschke
condition (1.3). It follows from

Z ’arctan ‘ > Z ’arctan ‘ >

Kp > || ~n>|w|

that (2.3) holds. The function —2 arctan x" is clearly increasing on Ry := (0, +00)
and R_ := (—o00,0) respectively and so is arg B(x). O
With each Blaschke product B of the type (1.1) we associate a function f
constructed as follows. Fix a point ;3 > k1 and define f
J:[1/2,00) = (0,k1/2], =+ f(x)
as a continuous strictly decreasing function that interpolates the points
{(1/2,k1)2) ,(1,K1),(2,K2,) ... }. That is
(1/2):,%1/2, fn)=k,, n=12.... (2.4)
We call such f a function associated with a Blaschke product B of the type (1.1).
Similarly, given a continuous suitably decreasing function f, we call a Blaschke
product B of the type (1.1) satisfying (2.4) a Blaschke product associated with f.
Hypothesis 2.2. Let B (z) be a Blaschke product of the form (1.1)—(1.3) such that:
i) its zeros {iky,} satisfy

. Kn — Kn+1
lim

n—00 Kn

=0; (2.5)

ii) there exists a continuously differentiable associated function f(z) such that
F+ ) = 1)+ (s = mnsn)| _

lim sup (2.6)
N0 _1/2<s<1/2 (Kn = Knt1)
Theorem 2.3. Under Hypothesis 2.2
arg B(z) = —2 / arctan f(u) du+o(l), = —0. (2.7)
x

1/2
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Proof. Since the function arg B(x) is odd, it is enough to consider the case x > 0.
Let €, (x) be the difference
n+1/2
K U
€n(x) := arctan " — arctan )du.
x x
n—1/2

It is easy to see that

1/2

en(z) = / Karctan fin) — arctan f(n;— 5))
0 (arctan F0) _ rotan /=) )} ds

(n) = f(n+s)) z(f(n) = f(n—s))

+ arctan

+ f(n)f(n+s) w2+ f(n)f(n—s)

[arctan

1/
= / [arctan 0, (s, x) + arctan d,(—s, x)] ds,
0

where
z(f(n) — f(n+s))

24 fm) fints) °ETUB2:

On(s,x) =

By a direct computation

1/

s:c)+6( x)
/arct (5, 2)0n(— s,x)ds'

Since —0,(s, )0, (—s, ) > 0, we have
1/2
len(@)] < / 160 (5,2) + On(—5, 2)|ds.
0

For s € [-1/2,1/2], we set
Ay = Ky — Kntl,
Al (s) = f(n+s) = f(n),
AP (s) = A (s) = sAP(1).

Note that Ag)(l) =—-A,, Ag)(l) =0 and
AP (s) = f(n+s) = f(n) + s(kn = Kn1)- (2.8)
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Let us evaluate now
L A (s) AP (—s)
On(s,2) + 0p(—s,2) = —x {xQ +Fm)f(n+ 5) + 22+ F(n)f(n — )
f o s g i) )
(@2 + f(n)f(n+s))(@® + f(n)f(n—s))
_ LAY APy
B 2+ f(n)f(n+s) 22+ f(n)f(n—s)
L A () = A (=) f ()
(@2 + f(n)f(n+s))(@2+ f(n)f(n—s)) |
Consider two cases: f(n) > x and f(n) < z. If f(n) > z, then
Af)(s)) z Ag)(—s)‘
= s T rmrm-s)
z|s| An(1A5 (s)] + AL (=s)])
f(n)f(n+s)f(n—s) '

X

|6n(87x) + 6n(_37x)

Since for s € [-1/2,1/2]
fn+s)>f(n+1)

and
A (s < Ay AP (=]s]) < An-,
one has
AP () + AP (=) Ap+An zA,
On(s,x) + dp(—s,2)| < .
19n(8:2) + 6n(=5,)] { A 2(n) [ ) f(n+1)
Recalling (2.8), it follows from (2.6) and (2.5) that!
TA
On(8,2) + 6n(—s,2)| < ap " ,
|0n (s, 2) + 6n(—s, )] £ f(n+1)

where «,, is independent of s, and lim «, = 0.
If f(n) < x then A
|0n (s, ) + 0n(=s, )]
C AP AR ) 5 {1a80()] + 1880 (=91} £(n)

x x x3
It follows from (2.6) that

1A (s)] IAD) (5) — s,
sup = sup
“1/2<s<1/2 Dn _1/2<s<1/2 Ay

IWe write f < g if f < Cg with some C' > 0 independent of arguments of the functions f and g.
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is bounded with respect to n and hence

{a0(s)] + a0 (-} 1A

SO ()

~ JANS T T
Therefore
Al AP (=s) A A\’ A
oulsve) + (s 5 12 ILISTEI By (B) g S,
n X x x
where 3, is independent of s and lim 3, = 0, and we finally have
n— oo
A,
an, » fn) >z
len ()| < f(n)f(n+1)
~ An
[ee]
We now estimate the remainder é(x) := arg B(x) + 2 / arctan fiu) du
1/2

for x > 0 small enough. We have

x>|s§:°f|en<x>|g{ Y r Y 4y }m

f)zvz  a<f(n)<vz f(n)<z

: fg: e { f(n1+ n- f(ln)} . N%m e { f(n1+ ol f<1n>}

+ 3 g - s,
f(n)<z
where
o1(z) ==sup{a, 1z < f(n) <z}, o2(z) :=sup{B,: f(n) <z}.

Thus, we have

1 1
p@I %= (f(m T f(l))

+ 201 (2) < ! !

Ug(x)

where
ny =max{n: f(n) >z}, ny=max{n: f(n)>az}.

It is easy to see that

. . x
fimy o) = o) = T gy =
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and
T
lim =1.
x—0 f(?’LQ + 1)
Hence lim,_,0 6(z) = 0, and the theorem is proved. O
Theorem 2.4. Under Hypothesis 2.2
[ )
m (v
arg B(x) = o 581 (x) — Qm/ w2 dv+o(l), x=—0, (2.9)

0
where =1 : (0, k1 /2] = [1/2,00) is the inverse function of f.

Proof. As above we may assume x > 0. By Theorem 2.3 for = — 0 one has

arg B(z) = -2 / arctan fiu) du+ o(1)
1/2

oo

> 9 wf'(u)du 1
1/2—1— x/ +0o(1)

1/2

f(u)

= —2u arctan

K1/2 T ud f(u)
= arctan - + 2z / 22+ F2(u) +o(1).
1/2

Here we have used

lim warctan <f;u)) =0, (2.10)

U— 00

that can be easily shown by contradiction. If (2.10) does not hold, then there exists
a sequence of positive numbers {u,}32 ; such that

nl;néo Up = 00 (2.11)
and
Un f(un) > 6 > 0. (2.12)

By the definition of the function f(u), the integral
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is finite. Since f(u) is a continuous strictly decreasing function it follows from
(2.12) that

o) Un+1
Un+1 —
I:Z/f()du>éz N
n=1 o, n=1 Un+1

20 Z 1n<1 un+1—un>'
n=1 Un+1
= 6 ln H uZJrl .
n=1 n

Thus the last infinite product is convergent, and hence

. Un+1 . UN+1
lim = lim
N—o00 Unp, N—oco U1

must be finite, which contradicts (2.11). Thus (2.10) holds true.
Changing the variable v = f (u) we continue

K1/2 " )
B(x) = arct -2z 1
arg B(x) = arctan N 22 2 +o(1)
0
1
2x/fx /f2+ ) —l—actn( ;/2>+0(1).
0 K1/2
. Kij2 = m 1
Due to lim arctan = _ and sup {f 7' (v) : v € [k1)2, 1]} < 0o we have
z—0 T 2
e d / d
- 1 K
2 S )y S / Y | = |arctan = — arctan /2],
x? + v? x2 + v? x
Ki/2 Ri/2
That is
lim 2z / - d =0
z—0
Ki/2
and (2.9) follows. O

In place of Hypothesis 2.2 we can state somewhat stronger.

Hypothesis 2.5. Let B (z) be a Blaschke product of the form (1.1)—(1.3) that has
an associated function f(x) such that |f/(z)| is decreasing and
FOn) = fO(n+1)

lim 00 =0, 1=0,1. (2.13)
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Hypothesis 2.5 implies Hypothesis 2.2. For [ = 0 condition (2.13) is the same
as i) of Hypothesis 2.2 and one only needs to show that (2.13) for [ = 1 implies
(2.6). Indeed, it is easy to see that

AP (s) = ['(no)s — f'(n1)s = (f'(no) — f'(n))s,

with some ng and n; from [n n+ 1] and [n,n + s] respectively. One has

AP ()| _|£m0) = F(n ‘f (n=1) = f(n+1)
An f/(nl) TL+1)
fln=1)=f'm)||F(n— ‘f ’(n+1>' f'(n) '
=l fe-) f(n+1 f'(n) fn+1)|

Since f'(z) satisfies (2.13) we immediately conclude that (2.6) holds.
Hypothesis 2.5 is of course much easier to verify and a simple example is in
order.

Ezxample. Take
f(z) =2z, (2.14)
where § is any real number if & > 1 and § < —1 if a = 1. It follows from

ra =" (o= 7).

T Inx

that f(x) is continuous and decreasing for = large enough. Moreover for some
ng € [n,n + 1]
!/
= sl ) |l g
f(n)
and condition (2.13) for I = 0 holds. Similarly using the second derivative of
f(z) one verifies that (2.13) holds also for [ = 1. Therefore any Blaschke product

associated with the function (2.14) satisfies Hypothesis 2.5.

Let us demonstrate now how Theorem 2.4 applies in the case of (2.14) with
a>1and g =0.

Ezxample. Take
flz)=2"% a>1,
then f~!(v) = v=/® and by (2.9) for > 0 we have
1/

T A _ 1/“du
arg B(x) = 5 _zx/xQ—f—vQ dv+o(l)= _ —2z 1/a/ -y o(1), = —0.
0 0

Due to the symmetry of arg B(z) we finally obtain

arg B(z) = (;T - c|ac|_<1w> sgn(x) +o(1), z—0,

i ufl/a
where ¢ := 2 du.
14+ u?

0
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3. Quotient of Blaschke products

In this section we consider the continuity of the quotient @ (z) = Bi(x)/Ba(z) of
Blaschke products Bj 2(x) subject to Hypothesis 2.2. More specifically, we study
conditions on B 2 providing continuity of arg @ (x) as = 0. The following state-
ment is the main result of this section.

Theorem 3.1. Let By 2 be subject to Hypothesis 2.2 and f1 2 be associated with B 2
functions. Set

r)=fit ()= f" ),
The function arg Q) (x) is continuos at x = 0 if at least one of the following holds:
i) 313(1) r(v) exists;

ii) there exists ¢ € C, such that [r(s)ds — c1v = o(v).
0

Proof. Let & > 0 and assume condition i). Then by Theorem 2.4 we have

1
argQ (x Zx/ dv—l—o() x — 0.
0

Introduce a function O; (v) := r(v) — ro where rg = lir% r(v). Then, by i), we get
v—

1 1

xdv
arg Q (z) = —27"0/ QIC/ xz_’_vg o(1)

0 0
1

=2 t —2 o(1).
ro arctan x/ x2+v2 (1)

0
Estimate the integral in the last equation:
[ 01(v) Vowde [ ad
1(v x dv x dv
x/IQ—l—dev Sa(:c)/x2+v2 +/x2+1}2
0 0 Jz

= a(z)arctan /2 + (arctanz ™! — arctan z~1/2),

where a(z) = sup {|O1(v)| : v € [0,+/z]}. Thus we obtain

and the theorem is proven under condition 1i).
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v

Assume that ii) is satisfied. Denoting F(v) := [ r(s)ds we have

0
/ d F(v)
v
argQ (z) = —2x/ 22 402 +o(1)
0
Flo 1
vF
=-2 —4 1
xx2+v2 x/ xQ—l—v +o(l)
0
2z F(1 / 2d i Os(
x v? dv v Os
- _ iy 1
ﬂc2+1 1/ 2 4+02)2 m/ rc2+v2 Foll),
0 0
where O3 (v) := F'(v) — cyv. Consider the last integrals:
1 5 d 1/x 0o
v* dv
= 1 3.1
x/(x2+112)2 / 1+s2 / 1+s2 +oll), (8-1)
0 0 0
and
Va 1
vO2 (v v3dv v2dv
<
/ x2+v2 N|x| Mm)/(ﬂ%—v) +/(m2+v2)2
VT
1/\/x 1/x
/ s2ds / s2ds
(14 s2)2 (1+s2)2’
0 1/

where 8(z) = sup { |02U(U)| cv e (0, \/:c)} Hence we have

1
- vO2(v)dv _

z—0 (:C2 + v)2 (32)
0

Taking into account (3.1) and (3.2), the assertion is proven under conditionii). O

Ezample. Consider a Blaschke product B; satisfying Hypothesis 2.2. Let f; be a

function associated with By set fi =: f. Next let a(x) be a continuous function

such that lim a(z) =0 and B(z) := z+ a(x) is monotonically increasing. Define
xr—r00

f2(2) := f(B(x)+c), where c is a real constant. Then f; ' (v) = f~1(v) —c—a1(v),
where lim a4 (v) = 0, and hence
v—0
r(w)=f1w) - fy'w)=c+ai(v) =¢c, v—0.
By Theorem 3.1 lirr%) arg By (x)/Ba(z) exists.
z—
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Ezample. Consider a more delicate case of Theorem 3.1 (part ii) ). Let f(z) =
x + p(x), where p(x) is a periodic continuous function such that (z) is increasing
on [1/2,00). Then the inverse function has the form

B7Hw) = v —q(v),
where ¢(v) is a periodic continuous function. As in the previous example, let us
construct two Blaschke products By and By with the associated functions f; and
f2. Let fi(x) = f(x), where f satisfies Hypothesis 2.2 and such that f'(x) is
monotonic function and f”(x) is bounded. Set fo(x) = f(B(x)). Then fy ' (v) =
B~ ) = f~1(v) — q(f~(v)) and r(v) = q¢(f~(v)). Consider
v v v
Fo) = [l w)du= [ awdu+ [a(r ),
0 0 0
where ¢ is the zero Fourier coefficient of ¢(v) and ¢;(v) = ¢(v) — go. Then
F(v) = qov — / q (u) f (u)du.
f=1 ()
Let Fy(v) be an antiderivative of ¢1(v). That is F{(v) = ¢1(v). Then
oo oo
+ [ R@s @
RS SO

F(v) = qov — Fi(u) f'(u)

L URGTW) S
%—+“4@y+_/FNV(M-
f=1(v)
1
Since f'(f~1(v)) = and Fi(f~1(v)) is bounded, one has
FUTOD= oy 4 AU )
F(v) — qov| < v "(w)du
) %“"ﬁ*wy+r4ﬁ()

Let v = f(z), then
f'() f'(x)
f(x) fl@) |

Condition (2.5) and the monotonicity of the function f’(z) imply the condition ii)
of Theorem 3.1 and arg Q) (z) approaches a finite limit as  — 0.

PO =l S (o

'+f@st

Theorem 3.1 has a consequence which will be crucial in the last section.
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Corollary 3.2. Let

Bl<z):HZ—’Ll/n and BQ(Z):HZ—ZHVL

z 4+ v, Z 4+ 1Kkn
n=1 n=1

be two Blaschke products subject to Hypothesis 2.2 with interlacing zeros (i.e.,
Kn > Up, > Knt1 for any n € N) and associated functions f1 and fo. If there exists
a real continuously differentiable function f such that

fRx—-1)=fi(z), [(Q2z) =fa(x),
and

(1) .
Kni1, N is odd
2

f =4 ,

vel,oon 15 even
then arg Bi(x)/Ba(x) is continuous on the real line.
Proof. Indeed

_ IR B () S A () B
f1 1(“)_f2 1(“)— 9 - 9 9

and Theorem 3.1 now applies. O

4. Toeplitz and Hankel operators
Let H% be the usual Hardy space of the upper and lower half-planes. By the

Paley-Wiener theorem

oo

HE =127 = [ gt ve R, g€ La®y)

0
Let P* be the orthogonal projector of Ly(R) onto H2(R). The operators P* can
be written as follows

Pt = ;(I +9),
where
$H@ =1 (I 4 Lm) - L),

T T—T
R

with the singular integral understood in the sense of the Cauchy principal value.
The Toeplitz operator with a symbol? a (r) € L (R) is defined by

T(a)f :=Ptaf:H? - H}. (4.1)
Let
(J)(x) = f(=x) : La(R) = La(R) (4.2)

2 Loo(R) is the usual space of functions essentially bounded on R.
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be the reflection operator. The Hankel operator with the symbol a is given by the
formula

(H(a)f)(x) = (JP~af)(x) : HE — HZ. (4.3)
The theory of Toeplitz and Hankel operators is given, e.g., in [8, 12, 13]. Recall a
few more definitions.

Definition 4.1. A bounded linear operator A acting in a Banach space B is called
left (right) invertible if there exists a bounded in B operator A; ' (A; 1) such that

AJ'A=T (AAY =1T),
where [ is the identity operator on B.

Definition 4.2. A bounded linear operator A is called Fredholm if
ImA=ImA, dimkerA < oo, and dim(B/Im A) < co.

The number
ind(A4) := dimker A — dim(B/Im A)
is called the index of the operator A.

Define the distance between a function a € Lo (R) and a subset M C Lo (R)
as

dist(a, M) := w?elg/l essezup la(z) — m(x)|.

Introduce . .

HY +CR):={f+g: feHY, gecCR)}.
This space is a closed subspace (and even a closed subalgebra) of L. (R) and is
particularly important in the theory of Toeplitz and Hankel operators. We will use
the following well-known results.

Theorem 4.3 (Widom-Devinatz, see [8], p. 59). Let a(x) be a unimodular function
(that is |a(x)| = 1 for almost all © € R). Then the operator T (a) defined by (4.1)
i) is left invertible if and only if dist(a, H®) < 1;
ii) s right invertible if and only if dist(a, H®) < 1;
iii) 4s invertible if and only if dist(a, GH®) < 1,
where GHS® C HS® is the set of all invertible in HS® elements.

Theorem 4.4 (I. Gohberg, see [8], [12, 13]). Let a(z) € C(R), then the operator
T(a) is Fredholm if and only if a(x) # 0 for all x € R. Moreover

ind(T'(a)) = —wind a,

where wind a is the number of rotations which the point z = a(x) makes around
the origin in the complex plane (when x moves along R from —oo to +00).

Theorem 4.5 ([8], Ch.2, [9], Theorem 2.7). Let a(z) € Loo(R) and
ess inf {|a(z)| : x € R} > 0. Then

i) if a(x) € H® + C(R) but 1/a(zx) ¢ H + C(R) then T(a) is left invertible;
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ii) if a(x) € HY® + C(R) but 1/a(x) ¢ HY + C(R) then T(a) is right invertible;
iii) if a(z) € (H® + C(R)) N (HL + C(R)) then T(a) is Fredholm.
Theorem 4.6 ([8], [12, 13]). Let a(z) € Loo(R). Then
| Ha) 1<l a ||z
and the Hankel operator (4.3) is compact if and only if
a(r) e HY + C(R).
Note that if h(x) € HS® then H(h) = 0 and consequently
H(a) = H(a — h). (4.4)
Consider now
a(x) = D (x) B1(x)/Ba(z), (4.5)
where D (z) is a unimodular function and B 2(z) are Blaschke products satisfying

the conditions of Theorem 3.1. Then Theorems 3.1, 4.4 and 4.5 imply the following
result.

Theorem 4.7. Let a have the form (4.5).
i) IfDe H®+CR) (D€ H®+CR)) and 1/D ¢ H® +CR) (1/D ¢
H + C(R)) then T(a) is left (right) invertible.
i) If De (H® + C(R)) N (HY + C(R)) then T(a) is Fredholm.
iii) If D € C(R) then a € C(R) and T(a) is Fredholm and
ind(T'(a)) = —wind a(z).

We will also need

Theorem 4.8. Let a function a have the form (4.5) with some D € HS® +C(R) and
1/D ¢ H¥(R) + C(R). Then the Hankel operator H(a) is compact, || H(a) ||< 1
and hence the operator I 4+ H(a) is invertible.

Proof. The compactness of the operator H(a) is a direct consequence of Theorem
4.6. Turn to the invertibility of I 4+ H(a). By Theorem 4.7, the operator T'(a) is
left invertible and thus by Theorem 4.3 (i) there exists a function h(x) from H$°
such that || a — h ||L < 1. By (4.4), H(a) = H(a — h) and hence by Theorem 4.6

[ H(a) [<lla=h [l <1 (4.6)

and operator I 4+ H(a) is invertible. O
The symbol

d(z) = ) D(2) | t>0,ceR (4.7)

arises in the inverse scattering transform method for the Korteweg-de Vries (KdV)
equation (see [18, 19]). The form of the unimodular function D (z) depends on the
properties of the initial data in the Cauchy problem for the KdV equation. In
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certain particular cases discussed in the next section the function D (z) is of the

form
_ Bi@) .,

where By 2(x) are Blaschke products with zeros converging to 0 along the imagi-
nary axis and I(z) is an inner function (I(z) € H® and |I(x)| =1 a.e. on R). To
apply Theorem 4.8 to the case of (4.7)-(4.8) we need one result from [3, 9].

D (z)

Definition 4.9. Let A be a real-valued function defined for all sufficiently large
x > 0. The function A is called regular if it is strictly monotonically increasing,
twice continuously differentiable and satisfies
.. xA(x)
mlingo inf A'(z)
zA"(x)
im 5
z—00 A/ (QC)
1"
lim Val'(z) =
T—00 A/ ($)3/2
Theorem 4.10 ([3], [9], Ch. 5). If the homeomorphism 6(z) : R — R is a regular
function and 6(—x) = —6(x) for sufficiently large x > 0, then
exp{i€d(z)} € H + C(R)
for all € > 0. Moreover the following representation holds

exp{i&d(z)} = Be(x) Ce(x), (4.9)
where Be(x) is a Blaschke product with an infinite number of zeros with no ac-
cumulation points at a finite distance and Ce(x) is a unimodular function from

C(R).

> -2,

:0’

The following theorem is one of the main results of this paper.

Theorem 4.11. Let By 2(z) be Blaschke products of the form (1.1) with zeros sat-
isfying the conditions of Theorem 2.4 and Theorem 3.1 and let I (x) be an inner
function. Consider
: Bi(z)
z) = ei(te’+ea) ZUE) p , t>0, ceR. 4.10
e B @ (1.10)

Then the Toeplitz operator T () : Hi — Hi is left invertible, the Hankel operator
H(¢) : HF — H? is compact and the operator I + H(¢) : H2 — H?2 is invertible.

Proof. By Theorem 3.1
Bl (x)

= Ba(x) e C(R).

Q (2)
It follows from Theorem 4.10 that

ei(tx3+cz) c Hio +C(R)
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(it is easy to check that function 6(x) := ta® + cz is regular). Since the set H® +
C(R) is an algebra we have

o(x) € HZ® + C(R). (4.11)
It remains to demonstrate that
1/¢(z) ¢ HE(R) + C(R). (4.12)
To this end consider
1/¢(z) = Be(z) d(z),

where Be(z) is as in (4.9) d(z) € C(R) and |d(z)] = 1 for all z € R. Since
the Blaschke product B¢(x) has an infinite number of zeros, we conclude that
dimkerT'(1/¢) = oo (see, e.g., [9], p. 24) and hence the operator T'(1/¢) cannot
be Fredholm. On the other hand if (4.12) doesn’t hold, i.e., 1/¢ € H?ro—f—C(R) (and
(4.11) also holds), then ([8, 12, 13]) T'(1/¢) must be Fredholm. This contradiction
proves (4.12). O

5. Applications to the Korteweg-de Vries equation

In this section we apply the results obtained in the previous sections to soliton
theory (see, e.g., the book [1] by Ablowitz-Clarkson). We do not assume that
the reader is familiar with this theory and therefore present here some background
information. Consider the initial value (Cauchy) problem for the Korteweg-de Vries
(KdV) equation

Ou (z,t) ou(x,t) = Ou(x,t)
P 6u (x,t) O + opd = 0, t>0,z€R. (5.1)
w(,0) = g (2). (5.2)

This equation is arguably the most celebrated nonlinear partial differential equa-
tions. It was derived by Korteweg and de Vries in 1895 as a model for describing
shallow water but remained essentially unused until the 50s when it was found
to be particularly important in plasma physics. In 1955, Fermi, Pasta, and Ulam
took a chain of harmonic oscillators coupled with a quadratic nonlinearity and in-
vestigated how the energy in one mode would spread to the rest. (One of the first
dynamics calculations carried out on a computer.) They found that the system cy-
cled periodically and never came to the rest. This was a striking phenomenon which
back then had no explanation. Although Fermi, Pasta, and Ulam never published
their observation, the equation drew attention of mathematicians and theoreti-
cal physicists. The breakthrough occurred in the mid 60s when Gardner, Greene,
Kruskal, and Miura found a truly ingenious way to linearize it. Their method,
now called the inverse scattering transform (IST), is a major achievement of the
20th century mathematics and with its help we have learned an incredible amount
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about the KdV equation and physical systems described by it3. We have given here
only a small part of the fascinating story behind the KdV equation. The interested
reader can learn more about the history in [1] or any other book on soliton theory.

Conceptually, the IST is similar to the Fourier transform and consists, as the
standard Fourier transform method, of the following three steps:

1. the direct transform mapping the (real) initial data g(z) to a new set of
variables Sy in which (5.1) turns into a very simple first-order linear ordinary
equation for S(¢) with the initial condition S(0) = So;

2. solve then this linear ordinary differential equation for S(t);

3. apply the inverse transform to find u(x,t) from S(¢).

In its original edition due to Gardner-Greene-Kruskal-Miura (see, e.g., [1]), So
was the set of the so-called scattering data associated with the pair of Schrédinger
operators Hy = —d?/dz? and H, = —d?/dz?® + q(z) on Ly (R). Moreover, this
procedure comes with a beautiful formula

82
u(z,t) = —2a , logdet (I + M, ), (5.3)

where M ; : Lo (0,00) — Lo (0, 00) is a two parametric family of integral operators

M, .f) ( /Mxty—i—sf()ds, €Ly (0,00, (5.4)

explicitly constructed in terms of S(¢).
One immediately sees that the operator defined by (5.4) is Hankel. We de-

scribe this operator following [18, 19]. The operator (5.4) is unitary equivalent to
H,::=H) +H (5.5)

)
;e
The first operator on the right-hand side of (5.5) is the Hankel operator defined
by (4.3) with the symbol R, ; given by
R;c,t (/\) — eQi)\(4/\2t—3c)R (/\) ,

where R (M) is the so-called reflection coefficient corresponding to the pair of
Schrodinger operators Ho, H,. We can easily do without presenting its formal
definition by stating its properties. For a.e. real A

R(=A)=R(\), |R(N)|<1. (5.6)

Note that (5.6) implies that H (R(z,t)) is self-adjoint.
The other operator ]HI;(CQZ on the right-hand side of (5.5) is also a Hankel
operator corresponding to the measure

dpa (@) i= 2’ =7)gp(q),

3Similar methods have also been developed for many other physically important evolution nonlin-
ear partial differential equations (PDE), which are typically referred to as completely integrable.
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where p(a) is a measure subject to

a
Suppp C [0,a], dp >0, / dp < o0. (5.7)
0

The measure p is related to the negative spectrum of H, but its explicit expression
in terms of H, is not essential in our consideration. What we need is the following
relation between the support of p and the negative spectrum of H:

o € Supp p <= —a’ € Spec (H,) NR_.

More specifically, the operator Hfz is unitarily equivalent to xr, pz ¢+, where

Xr. is the Heaviside function of R, F is the Fourier operator

1 .
Ff(A) = / e f(x)dz,
FHW=, [ @
and py ¢ is the Fourier transform of the measure? Pt

The pair of functions (R, pg¢) is called the scattering data and we view
H, ; as the Hankel operator associated with (R ¢, pzt)-

It is quite easy to see that the Hankel operator xg, p.F is (self-adjoint) non-

negative. The operator ]I-]Ifz then is also non-negative for any real  and ¢t > 0.

That is

H?) >0 (5.8)
and it is all we can say so far about H,; based upon (5.6) and (5.7). Besides
the full line Schrodinger operator H,, introduce H, qD = —d?/dx? + q(z) defined
on Ly (R_) with the Dirichlet boundary condition u (0) = 0. We label quantities

related to H, qD with a superscript D. We are now able to state the main result of
this section.

Theorem 5.1. Assume that the initial profile q (x) in (5.2) is real, locally integrable,
supported on (—o00,0) and such that

inf Spec (H,) = —a® > —oo. (5.9)

Then the Cauchy problem for the KdV equation (5.1)—=(5.2) has a unique solution
u (x,t) which is a meromorphic function in x on the whole complex plane with no
real poles for any t > 0 if at least one of the following conditions holds:

1. The operator HqD has a non-empty absolutely continuous spectrum;

2. The set iSupp p is a set of uniqueness of HY® functions;

3. The sets Supp p” = {v,}n>1 and Supp p = {kn}n>1 satisfy the Blaschke
condition and the corresponﬁz’ng Blaschke products are subject to the condi-
tions of Corollary 3.2.

4We recall i (\) := \/127\_ 22 e du(x).
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Proof. Under conditions 1 and/or 2, the theorem is already proven in [18, 19] and
it remains to show that the conclusion of theorem also holds under condition 3.
Moreover, the arguments of [18, 19] (see also [20]) based upon (5.3) can be easily
adjusted to handle condition 3 if we prove that the operator I 4 H ; is invertible
under this condition.

Without loss of generality, we may assume that the operator HqD has an
empty absolutely continuous spectrum (otherwise we are under condition 1). The
structure of the reflection coefficient R () is studied in [17] where it is shown that
R ()\) admits the following factorization

-1
R(X) = lim_ <HA+%> (HAHM) S(\), AeCq, (5.10)

where S € H$® and S is contractive on C4 (ie., [S(A\)] <1, A€ C,) and the
sequence {Vp }n>1 is such that

{=12}n>1 = Spec (HP) NR_,

(the negative spectrum of the half-line Dirichlet Schrédinger operator), and the
sequence {kp }n>1 is such that

{=#2}nz1 = Spec (Hy) N R,

(the negative spectrum of the full-line Schrédinger operator). Moreover these se-
quences are interlacing, i.e.,

Kp > Up > Kpy1 for any n € N. (5.11)

Since we have assumed that the operator H, f has no absolutely continuous spec-
trum, |S(A)| = 1 for a.e. real A (see, e.g., [17]) and hence S (A\) = I (\) where
I(A) is an inner function of C,.

Note next that

-1
m . m .
A — vy, A — 1Kkn
I
s Q—[l A+iyn> (71_[1 A+mn>

-1
ﬁ)\—z’l/n ﬁ/\—mn
ot A+ v, it A+ iKkn

:By (\)By(\)7,

where
B (\) = ﬁ AW nd By()) = ﬁ A =ik,
et A+ iy, e A+ ikp
We have thus arrived at the factorization
Bi (A
Bs (N)

and hence for every x € R and ¢ > 0 the function

Rz,t ()\) _ eZi)\(4/\2t7x)R ()\) ,

ROV ="1I0y, aecs,
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by Corollary 3.2, satisfies the conditions of Theorem 4.11 and hence
[H (Re0)|| < 1.
This immediately implies that

1
e

= [[H (Ra,) || < 1.

Therefore I + HS; > 0 and is boundedly invertible. Due to (5.8)
1+HY +HE) =1+HY >0
is also boundedly invertible and the theorem is proven. Il

Note that Theorem 5.1 represents an existence and uniqueness result for the
KdV equation in a very strong sense. We refer the interested reader to [18, 19]
for detailed discussions of statements like Theorem 5.1 and the extensive recent
literature on the subject cited therein.

Let us discuss what the conditions of Theorem 5.1 actually mean in terms of
the initial profile ¢ (z) in (5.2). Condition (5.9) means that the spectrum of H is
bounded from below, which (see, e.g., [11]) is satisfied if

Sup/ max (—¢,0) < oo. (5.12)
x x—1

The condition (5.12) becomes also necessary for (5.9) if ¢ is negative. Note that
(5.9) imposes no restriction on the positive part max (g, 0) of ¢ (z) (e.g., it can grow
arbitrarily fast at —oo or look like the stock market) but H, still satisfies (5.9).

Condition 1 means that ¢ (z) has a certain pattern of behavior at —co. The
precise statement is rather complicated but particular examples are easy. Condition
1 is satisfied if, for example, ¢ is quasi-periodic on (—oo, 0) or approaches a constant
as x — —oo sufficiently fast.

Condition 2 means that the negative spectrum of H, is, in a way, rich enough.
Condition 2 holds if, loosely speaking, max (—g,0) (the negative part of ¢) is large.
A typical example would be ¢q () — —c? as © — —oo for some real ¢ (so-called
step like initial profiles).

Condition 3 is much trickier as the problem of the negative spectrum dis-
tribution for the Schrodinger operator is notoriously difficult. In fact, besides the
Lieb-Thirring estimate [21]

Z Fn S /Rmax(—q,O), (5.13)

n>1

nothing is known about the distribution of {,} in general. The reason for that
is a poor understanding of how individual eigenvalues —x2 of H, depend on ¢
and even (5.13) was a good open problem for quite some time. By the same token
constructing a nontrivial explicit example of ¢ (x) subject to condition 3 but not
condition 1 appears to be a real challenge. Note that one can always start with a
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desired spectrum and then work backwards to an essentially non-computable (and
quite pathological) ¢ (z) via the Gelfand-Levitan-Marchenko inverse method.

The following statement is important.

Corollary 5.2. The conclusions of Theorem 5.1 hold if q (x) in (5.2) is real, locally
integrable, supported on R_ and such that

0
/ |x| max (—q (z),0) dz < oo. (5.14)
— 00

Proof. The condition (5.14) clearly implies (5.12). Furthermore, it is well known
that the negative spectra of H, and HP are finite under the condition (5.14).
Hence {x,} and {v,} are also finite and Corollary 3.2 clearly applies. We are then
under Condition 3. O

We emphasize that even Corollary 5.2 is new and nontrivial as it cannot be
achieved by usual PDEs techniques. We however conjecture that the condition
(5.9) alone will be sufficient for Theorem 5.1 to hold. We are not sure if condition
(5.9) implies that I 4+ H (R, ;) is boundedly invertible but there are some strong
reasons to believe that I + H, ; has this property.
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Abstract. We construct Mellin quantisations or operator conventions, applied
to corner-degenerate pseudo-differential symbols, referring to geometric cor-
ners of singularity order k € N, and we obtain holomorphic Mellin symbols in
z € C*, also with a corresponding degenerate behaviour.
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1. Introduction

This investigation is devoted to the construction of operator conventions or quan-
tisations that are associated with corner degenerate operators within a suitable
pseudo-differential algebra. The terminology corner-degenerate refers to config-
urations, locally described by (R1)*xR"xR? > (r,z,y), with r = (r1,...,7%)
being a tuple of half-axis variables and y = (y',...,y") constituted by “higher”
edge variables, 37 € R%, q :2521 gj- A symbol p(r,z,y,p, &, 1) in the variables
(r,z,y) € RE x R" xR and covariables (p,,n) is called corner degenerate if there
is a symbol p(r, 7, y, p,&,7) € SH((R4)* x R™ x R? x R];z%ﬂ) in the standard sym-
bol class of order i € R (to be formulated below) which is smooth in 7 up to r = 0
such that for p = (p1,...,pk), = (', ...,n*) we have

p(r,z,y,p,6,m) (1.1)
=p(r, @, y, T1p1,T1T2P2, - - - TIT2 .. .Tkpk7§77“177177"17“27727 s, TiT2 . ~7”1c77k)~

Degenerate symbols of the above-mentioned kind appear as symbols of degenerate
differential operators, and we obtain pseudo-differential symbols when we pass to
an operator algebra that contains the degenerate differential operators together
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with the parametrices of elliptic elements. If the singularities are of conical or edge
type, we talk about Fuchs-type or edge-degenerate symbols, otherwise, for higher
k about corner-degenerate symbols of the respective singularity order. From the
case k = 1,2 it is well known that in the process of building up pseudo-differential
algebras of the above type there appear so-called Mellin operator conventions,
also called quantisations. Those rephrase operators in r referring to the Fourier
transform to actions based on the Mellin transform, cf. [1], [2], [4], [8], [9], [14], [23],
[25]. In operator algebras that reflect asymptotics of solutions it is also essential to
specify the Mellin symbols to be holomorphic (or meromorphic) in the respective
Mellin covariables. The program of this article is to establish such quantisations
for arbitrary k£ € N and to characterise natural classes of Mellin symbols in the
respective complex covariables, again with a corresponding degenerate behaviour.

In order to make our iterative construction work with increasing k we have
to reproduce the process once again for k = 1, 2 in more detailed form than carried
out before in [24]. In addition we generalise here the degenerate symbols to the
case of a higher edge-degenerate dependence on several edge covariables.

In the present article the main focus is to illustrate the iterative process in
this form for the step from & = 1 in Section 2 to kK = 2 in Section 3 and to
observe a number of new structures such as kernel cut-offs in different covariables
and asymptotic summations that avoid destroying holomorphy in the covariables.
After these preparations, the iterative process really works, and the corresponding
result is formulated in Section 4.

Holomorphic Mellin symbols and associated operators only furnish some part
of the higher corner algebras. The asymptotic parts of those algebras form “com-
plementary” ingredients, cf. the papers [7], [28]. Those are not studied in this
article. Similarly as in cone and edge theories for £ = 1 it will be interesting to
study further special cases and applications. Let us also point out that our corner-
degenerate operators correspond to corners as described in [26] but different to
spaces like R’i X R? with some other metric. Theories with complete metrics usu-
ally give rise to degenerate behaviour of simpler structure such as of “multi-Fuchs”
type which is not the topic here.

PDE problems on manifolds with corner singularities or also with non-com-
pact “ends up to infinity” have attracted many mathematicians since a long time.
The field of singular PDEs in that sense remained an active area of research. The
motivation lies in numerous applications and new challenges, see [9], [10] or [26].

Let us finally give a list of references to illustrate the long history of the
singular analysis and the variety of different aspects of the analysis that employs
Mellin techniques, Dauge [3], Eskin [5], Komech [11], Kondratyev [12], Pham The
Lai [15], Plamenevskij [16-18], Rabinovich [19, 20], Rempel and Schulze [21, 22].

2. Mellin quantisation for singularities of first order

In this section we briefly sketch the well-known approach to construct holomorphic
Mellin symbols in the case of edge-degenerate symbols.
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Let S¥(U x R™) for u € R and an open set U C R™ denote the space of all
(so-called symbols) a(z, &) € C°(U x R™) satisfying the symbolic estimates

DS D a(x,)| < c(g)*”!

forall (z,£) € KxR", K € U, € N 8 € N* with constants ¢ = ¢(a, 8, K) > 0;
N = {0,1,2,...}. Moreover, by S¥(U x R"™) we denote the subspace of classical
elements a(z,§), i.e., with an asymptotic expansion a ~ Z;io a,—j, where a,_;
are homogeneous of order p—j in the sense a,—;(z, \§) = AW Ja,_;(x, &) for A > 1,
|€] > const > 0, for all j. Recall that S*(U x R™) and S%(U x R™) are Fréchet in
a canonical way. We write S#(R™) and S (R™) for the subsets of z-independent
symbols; those are closed subspaces of S#(U x R™) and S/} (U x R™), respectively.
We set S7(U x R") = [, S"(U x R™) which is equal to S(R",C>(U)), the
Schwartz space of C*°(U)-valued functions.

We will employ several variants of such symbol spaces, in particular, with
holomorphic dependence on some covariables. If E is a Fréchet space and G C C
an open set, by A(G, E) we denote the space of all holomorphic functions in G
with values in F, in the topology of uniform convergence on compact subsets. For
instance, it will be important to possess the space Sk (U x R™) of all h(z, z,§) €
A(C;, SH(U, x RY)) such that

h(z, B +ip, &) € S*(U x RIE™)

for every 8 € R, such that h(z, 8 +1ip, &) is a bounded set in S*(U x R;E") when /3
varies over a compact interval. We will employ below an alternative terminology,
namely, with
I'g:={z€C:Rez=p}

and denote by S*(U xI'g xRY) the space of all symbols in the covariables (z,{) with
z varying on I'g. Then it is more intuitive to distinguish the spaces for different 8
and to say that

h(z,z,8)|r, € S*(U xTg x R™)
holds uniformly in finite S-intervals.

In the case U = ¥ x ¥ for an open set ¥ C R™ we also write (z, ') rather
than z. For a symbol a(z,2',&) € SH(X x ¥ x R™) we set

// =2 (g, 2! EYu(a’ ) da'd, (2.1)

d¢ .= (2m)~"d¢, u € C§°(X), which is the pseudo-differential operator associated
with a via the Fourier transform. Instead of Op we also write Op, in order to
point out the action with respect to the x-variable.

Given an open Riemannian manifold X by L*(X;R!) we denote the space
of pseudo-differential operators on X of order u where the local amplitude func-
tions a(x, &, \) are symbols in S#(X x R**!) for ¥ C R™ open, n = dim X, mod-
ulo smoothing operators. The latter are identified with S(R!,C*(X x X)) =
S(R!, L=°°(X)), where the identification L=°(X) = C*®(X x X) refers to the
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measure dz on X, i.e., ¢(z,2’) € C°°(X x X) corresponds to the operator C§°(X) >
u — [c(z,z")u(z’)da’. The subspace with a(z,&,\) € SH(Z x R will be de-
noted by L (X;R'). We systematically employ L*(X;R') or L% (X;R") in canon-
ical Frechet topologies. More details on this kind of notation may be found in
[24]. An A(\) € L*(X;R!) is said to be parameter-dependent elliptic if for the
local amplitude functions a(z, £, \) there are a(=Y (z,£,\) € S™#(Z x R"*) such
that (aa"D)(z,£,0) —1 € S~HE x R**!). In that case there is an ATV (\) €
L"(X;RY) such that (AACD)(\) € L™°(X;R!). We call AV a parameter-
dependent parametrix of A. In our applications the parameter A is often splitted
up into (z,7m) for z € I'g, n € R9. In that case we also write L*(X;T's x R?) for
the corresponding space of parameter-dependent operators.

Singular spaces contain half-axis variables, and in an intrinsic description of
operators it is natural to employ the Mellin transform. We set

Mu(z) == /000 >~ Lu(r)dr

which is a function in A(C) when v € C§° (R, ). Recall that the weighted Mellin

transform M, u(z) := Mu(2)|r,,,_, extends to an isomorphism

M, WLQ(RH - LQ(FU%W),

and the inverse is (M fF1/2 g(2)dz, dz := (2mi)~tdz. For v = 0 we
also write M rather than Mo
Let us define
op;(flu = M;lwau (2.2)
for a symbol f(r, z) € C>*(Ry, S#(I'12—~)) which is a pseudo-differential operator
on R, based on the weighted Mellin transform. Clearly, analogously as (2.1) in

(2.2) we also may admit symbols depending on (r,7’) € Ry x R. Note that the
substitution r = e=% =: x(¢), x : R — R, yields the relation

onl / / st >Cff?’ s
// = f (et ip)o(t')dt' dp (2:3)
for v(t) = u(e™") = (x*u)(?).

In the following we apply the Mellin operator convention (2.2) also to symbols
taking values in some vector space, e.g., a space of operators.

As noted before, one of the major issues in our consideration is to pass from
the Fourier to the Mellin operator convention and to achieve Mellin symbols that
are holomorphic in the covariable z. In this context we always accept remainders
that may be ignored in the (non-canonical) quantisation.

Let us consider parameter-dependent symbols of the kind

p(r,z,p,§,m) = p(r,z,rp,&,mn)
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for p(r,z,p,&, 1) € SF(Ry X ¥ x R;Eﬁ;q). Note that the smoothness up to r = 0
can be defined in different equivalent ways. We may ask the symbolic estimates
for functions in C*° (R4 x ¥ X R;:EZ;Q) uniformly in (r,z) € [0, R) x K for any
R >0 and K € X. Another way is to start with symbols over R x ¥ and restrict
them to R4 x 3. The equivalence follows from a variant of Seeley’s theorem.

For a symbol f(r,z,z,£) € S¥(Ry x ¥ x Iy x R™) we form
k(f)(r,m,@,f) = F H_Zf(r,:c,z,f)dz = (Ml_/127z_>9f)<r7m767€) (24)

which gives us a S*(Ry x ¥ x R™)-valued distribution on Ry 9. Then, for any
P(0) € C§°(R4) that is equal to 1 in a neighbourhood of § =1 we set

Vy(f)(r,2,2,8) = | 077 (0)k(f)(r, x,0,€)d0
: (2.5)
= (My/2,05:0(O)k(f)) (r, 2, 2,6).
This belongs to S/ (R4 x X x R™) and Vy(-) represents a continuous operator
Vy 1 SP(Ry x . x Ty x R") = SH(R: x X x R")
where
Vu(f)lr, = f mod SRy x ¥ x T'g x R"™). (2.6)

The operator V), is referred to as a kernel cut-off operator, here with respect to
the Mellin transform. The Fourier version of the kernel cut-off is discussed, for
instance, [23] or [24].

Theorem 2.1. Let p(r,x,y,p,&,1) = p(r,x,y,rp,&,10) for plr,z,y,p.&7) €
SHRy x X x Q x R;Zqﬁ), Y CR", Q CRY? open. Then there exists an

h(r,z,y,2,§,17) € Si (R4 x X x Q x RY)
such that
Op, . (P)(y: 1) = 0p},O0p,(h)(y, 1) mod C(Q, L™ (R4 x X;RY)),  (2.7)
for every v € R.

The (non-canonical) map

p(r,z,y, p,§,1) — hir,z,y,2,&,1) (2.8)

defined by Theorem 2.1 may be interpreted as a change of the quantisation rule for
amplitude functions; operators for p(r, z,y, p,&,7) refer to the Fourier transform
in r, operators associated with h(r,z,y, z,£,7) refer to the Mellin transform in 7.
To have a convenient notation we will also call (2.8) a Mellin quantisation (on
the level of symbols) and the correspondence in opposite direction the inverse
Mellin quantisation. Theorem 2.1 may be found in [24, Theorem 3.2.7]. Concerning
alternative arguments, cf. [13].
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In order to treat the higher singular case below we have to go back once again
to the method of [24] and give a more transparent proof. The dependence on y is
not the essential point. Therefore, it will often be dropped.

Lemma 2.2. Let p and p as in Theorem 2.1 and
b(r7x77—7£7 ﬁ) = ﬁ(r7 x? T?E?ﬁ)' (2'9)
Set fo(r,x,iT,&,1) :=b(r,z,—7,£,7) € SH(Ry x X x Ty x Rg};q). Then we have

0P, (P) () = 0P 20D, (f0) (7)) + O, (p1) (7)) mod L™°(Ry x S5 RY)  (2.10)

where
oo e o] —iT dl
b} (o). €. utr) = [ @Q/o () folreainmut) dn

and

pi(r,, p,€,7]) = pu(r, @, rp, £,7) for pi(r,, 7,6,7]) € S* (R x £ x REESD),

Proof. We consider the diffeomorphism x : Ry — Ry ., x(¢) := e~* = r, and form

O, @) @o(t) = Op, ([ [ - e im. . ot ot ar)
for a(t,z,7,&,1) = fole ™, z,iT, &, 7). Then we have

1/2 - *y— -
0D11, 0P, (o) ()u(r) = (x*) ™' Opy.o (a) () (1)
for v(t) = (x*u)(t) = u(e™?), i.e., when Y. denotes the operator push forward
under x it follows that op}\//[fOpz(fo)(ﬁ) = X«Op; ,.(a)(77). In abuse of notation we
often suppress the z-variable; basically we consider the diffeomorphism x X idy :
R x ¥ — R4 x 3. As such it is a pseudo-differential operator on Ry 3 r based on

the Fourier transform, i.e., there is a ¢(r,z,p,£,7) € SF(R4 x ¥ X R;Z?q) such
that
1/2 - - S
0Py 0D, (fo)(7) = Op, . (¢)(7) mod L™>(Ry. x L3RY).
The well-known asymptotic formula for symbols under operator push forwards
tells us that

o0

C(T7 z,p, 57 ﬁ)|7"=x(t),p=7' ~ Z

1
=0 7!

(92a)(t,x, (dx(®)r, &, MP;(t,7)  (2.11)

where dx(t) = —e™t, ®;(t,7) = DJ,e® 17|, for §(t, ') = x(t')—x(t)—dx (t)(t' —
t), and &9 = 1. We have ®,(¢,7)|t=—1ogr,r=p = ¥;(r,rp) where U;(r,p) is a
polynomial of degree < j/2 with coefficients in C*°(R), cf. [24, Lemma 3.2.9].
Let us now verify that

1+n+q)
P&
(2.12)
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for a Symb01 ]51 (7", Z, ﬁ?gv ﬁ) € Suil(R+ X %X R;—Erg—q

first summand on the right of (2.12) comes from
a(t, z, (dx ()7, & Mle=y=1(r),r=p
= fole™" @, —i(dx(t))7, & Mlemx—1 (r),r=p (2.13)
= b(r,@,mp,&,7) = p(r,z, 7p, & 7)-

Here we employ the formula (2.9), the definition of fj in terms of b and the relation

). The characterisation of the

a(t7 x? T? 57 ﬁ) = f0(67t7 x? _ZT7 57 ﬁ)'
The other summand p; in (2.12) will be obtained by an asymptotic summation.
First analogously as (2.13) we find

1, - . -
]' (83_(1) (t7 Z, (dX(t))Tv 3 n)'t:x—l(r)n—:p = g} (T7 T, TP, 3 77)

for g (r,x, p,&,7) € SF7(Ry x X x R;E%‘*‘%, for any fixed j > 1. This entails

1 ) i N
i (02a) (t, z, (dX()T, & Mlimy-1 () r=p = G5 (2,70, &M Vs (r,rp)  (2.14)

=: g;(r,z,rp,&,17)

for g;(r,x,5,€,7) € S*=9/2(Ry. x ¥ x R;E"F7). Then we define

%)
ﬁl(r7x7ﬁ7£7ﬁ) ~ _Zgj(r7x7ﬁ7£7ﬁ)
j=1

where the asymptotic sum is carried out in S¥71 (R, x X x R;Z?q) (i.e., in the
class with smoothness in 7 up to 0). The minus sign on the right is chosen for
algebraic reasons as we shall see in the iterative construction below. This yields
altogether the formula (2.12), or equivalently,

c(r,@, p,&,71) = plr, 2, p. &, 71) + pr(r, 2, p, €, 77) mod S™(Ry x £ x RIE™H)

fOTp(ﬂ%Pfaﬁ) = ﬁ(r7m7rpv§7ﬁ) as beforevpl(raxapa§7ﬁ) = ﬁl(rvxarp7€aﬁ)' Thus

we have .
0D 320D, (fo0)(77) = Op,..(p) (7)) + OD,.. (1) (7) (2.15)
modulo an operator family in L=°(R. x 3;RY). O

Proof of Theorem 2.1. In order to prove the formula (2.7) for arbitrary weight ~ it
suffices to observe that because of the holomorphic dependence of h on z we have

1/2
op},0p,.(h)(y, 1) = opy;”Op, (h)(y,m), (2.16)
on functions with compact support in r € R;.. The argument is Cauchy’s theorem,

cf. also [24, Proposition 2.3.69]. Applying Lemma 2.2 for p; rather than p it follows
that there are

fl(rvxvi’]—?gvﬁ) € Su_l(R+ X 2 % PO X RZ;Q%

ﬁg(T,CE,ﬁ,f,ﬁ) € Suiz(R+ X 3 % R;:ZZ;_Q)
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such that for ps(r, x, p, 5, 7) := pa(r, z,7p, &, 1) we have
Opr,ac<p1)(77) - OpM Opx(fl)(ﬁ) + Opr,x<p2)(ﬁ) mod L_OO<R+ X Z7R%)

This gives us

Oprm Zopl/QOpm f] ( )+Opr x(PZ)(U)

By iterating the arguments we obtain a recursive process which yields

pj(ﬂ%ﬂfaﬁ) :ﬁj<r7m7rpa§7ﬁ)
for some p;(r,z, p,&,7) € SPI(Ry x ¥ x R;:’E%‘Fq) for every j € N and resulting

symbols f;(r,z,it,&,7) € SF7I(Ry x ¥ x T x R?J%q), Then the asymptotic sum

FOrymyir, &,0) ~ Y fi(r,a,im, &, ) (2.17)

Jj=0

carried out in the space S*(Ry x ¥ x Iy x R"'HI) has the property

Op,,(p) (7)) = 0p3”Op, () (7)) mod L™ (R x T RY). (2.18)

We now apply (2.5) and set h(r,z, z,£,7) := Vy(f)(r, x, 2,&,7) in the version with
(£,7) instead of €. Taking into account (2.6) and (2.18) it follows that
(7

(
0P, (p) () = 0p3;”Op, (h)(7]) mod L™ (Ry x X;RY). (2.19)
]

Definition 2.3. Let M (X;R?) denote the subspace of all operator families
h(z,n) € A(Cs, L*(X;RY))

such that h(8 +ip,n) € L*(X;Ts x R}) for every § € R, uniformly in ¢ <3 < ¢’
for all reals ¢ < ¢’. For ¢ = 0 we simply write M} (X).

Theorem 2.4. For every f(r,y,z,n) € C°(Ry x Q,L*(X;Ts x RY)) there exists
an h(r,y,z,m) € C® (R4 x Q, M5(X;R)), namely, h(r,y, z,n) = Vy(f)(r,y, 2,1),
with obvious meaning of notation, analogous to (2.5), such that

hlr, = f mod C*(Q, L™°(R+ x X;R))
and h is unique modulo C* (R4 x Q, My (X;RY)).

Recall that Theorem 2.4 is a consequence of the construction on the kernel
cut-off at the beginning which implies, in particular, that h(r,y, z,n) € C*° (R4 x
Q, M5(X;R?)), h(r,y,z,n)r, € C®[R4 x Q, LF1(X;Ts x R?)) for some fixed
B € R implies h(r,y,z,n7) € C°(R; X Q,Mg_l(X;Rq)), cf. the arguments for
[9, Remark 6.1.6].

As a consequence of the definition we have in M (X;R?) a natural semi-
norm system which turns it to a Fréchet space. For completeness we recall the
following result, cf. [24, Theorem 3.2.7].
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Corollary 2.5. Let

p(r,y, p, i) == B(r,y,vp,7) for p(r,y, p,71) € CF(Ry x Q, LM(X;R;H)).
Then there exists an

h(r,y,z,7) € O (R4 x Q, M5 (X;RY))
such that
op; (1) (y, 1) = Op,.(p)(y, 1) mod C*(Q, L™ (R4 x X;RY))

for every v € R.
Corollary 2.6. Let

p(r.y, p.m) = p(r,y,rp,mn) for plr,y, p,ij) € C°(Ry x Q, L*(X;RED).
Then there exists an

h(r,y, z,) € C% (Ry x Q, Mp(X;R))

such that for h(r,y,z,n) = h(r,y, z,rn) we have
op3;(R)(y,m) = Op,.(p)(y,n) mod C*(Q, L™ (R4 x X;RY)) (2.20)
for every v € R.

The proof follows from a simple modification of Theorem 2.1. The extra -
factor at 7 is regarded as an r-dependence of coefficients, operating from the left
on functions in r € Ry.

Remark 2.7.

(i) The operator functions both in the versions of Corollaries 2.5 and 2.6 belong
to C=(Q, LH(Ry x X;RY)), C=(Q, LRy x X;RY)), respectively, and the
claimed relations refer to the respective families of mappings C§° (R4 x X) —
C*® (R4 x X). The role of the obtained left-hand sides of (2.20) is, that the
operators in Mellin quantised form admit continuous extensions to weighted
Sobolev spaces, in contrast to the Fourier representations of the respective
degenerate operators on the right.

(ii) In the “full” cone and edge algebras that contain Mellin operator families as
in Corollary 2.6 it is advisable to take classical symbols. The constructions
so far restrict to the classical case.

3. The case of second-order corners
Symbols of the kind (1.1) for & = 2 have the form

p(r7m7y7p7£777) = 15(7"7%yﬂ"lﬂh7"17"2/’275,7"177177"17"2772) (31)

for r := (r1,72), v := (y*,y?) € RY for ¢ := q1 + g2, and we intend to show an
iterated Mellin quantisation result analogously as Theorem 2.1.
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Let us give a brief motivation of symbols like (3.1). If we consider, for instance,

a Riemannian metric on R x R x R? x R% x R4 3 (r1, 72, 2,9, y?) of the form
dri + 13 (dr% +ridz? + (dyl)Q) + (dy*)?.

Then the Laplace-Beltrami operator has a symbol like 7“1_2r2_2p(r, x,y, p, &, m) with

p being of the form (3.1) and p(r, z,y, p, &, 77) elliptic of order 2 with respect to the

covariables (p, &, 1), up to r = 0.

Another motivation of such symbols comes from the analysis of elliptic (non-
degenerate) differential operators of order p in a corner configuration, say, em-
bedded in an Euclidean space. Then symbols in degenerate form (3.1) appear by
iteratively introducing polar coordinates into the operator, here twice, and together
with a weight factor r;*r5*. In a similar manner there occur degenerate symbols
(1.1) when we have corners of orders k. From the spaces of Definition 2.3 we can
pass to certain derived spaces, for instance C*°(R; x Ry x RY, M(’;Zl (X5 % R%))
for I's in the variable zo, § € R.

Definition 3.1. Let Mgzl,Ozz (X;RY) defined to be the space of all h(z1,22,7)
€ .A((CZZ,M(‘;Z1 (X;R?)) such that

Bz, z20m)lr, € Mp_ (XiT5 x RY), (3:2)
for every § € R, uniformly in compact J-intervals.

This space is Fréchet in a natural way. In Definition 3.1 we may interchange

~

the role of z; and 29 and get the same space, in other words Mgzl,OZ2 (X;RY) =
MH

o
complex variables, see [6]. The following result tells us that the spaces of Defi-
nition 3.1 are very rich for every u € R.

Theorem 3.2.
(i) For every
f(7“1,7"2,y, 21, 2277’) € COO(R+ X R+ X Rq7M521 (X’ Is x Rq))

0. (X;Rf). Concerning generalities on holomorphic functions in several
221

there exists an h(ri,re,y, z1,22,m) € C°(Ry x Ry X Rq,M(‘;Zl,OZ?(X;Rq))
such that
h|1’*(‘ = f mod COO(R+ X R+ X Rq,MCSOO(X,Pg X R%))

Z1

and h is unique modulo C®(Ry x Ry x Rq7M55f,022 (X;RY)).

(ii) For every m(r1,72,y, 21, 22,m) € C®(Ry x Ry x RY LF(X;Ts x I's x RY))
with fized 5,0 € R there exists an

h(ri,72,y, 21, 22,m) € O (R4 x Ry x RQ,M&NOQ (X5RY))
such that
hlr;xr; =mmod C*(Ry x Ry x R, L™(X;T's x I's x RY)), (3.3)
and h is unique modulo C*°(Ry x Ry x RQ7M52),022 (X;RY)).
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Proof. Let us consider the assertion (i). The proof of (ii) then follows from a slight
modification of Theorem 2.4 with respect to z; combined with (i). In order to find
h we apply the kernel cut-off formula (2.5), modified for global operator functions
along X and z; restricted for a moment to I'g for a fixed §. Without loss of
generality we assume § = 0, since a translation in the complex plane gives rise to
the construction for any other 4. Then if ¢ is a cut-off function on R 4 we may set

V1p(f)(7"1,7”2,y,21,22,77> = /]R 9Z271w(9)k(f)(7"1,7"2,y, 21, 9777)d9

for
k(f)(r17r27yazla6an) = 6_22](.(7“177427?/’Zla227n)d22'
To
The variables r1,79 and y do not affect the process, similarly as in the consider-
ations around the formula (2.5). So we drop these variables here. From the same
source we see that if z; is varying on I's we obtain

Vy(f)(z1,22,m) € LM(X; T x To X RY). (3.4)

Another information in this context is that (3.4) holds uniformly in compact §-
intervals. Now the application of V,, in 25 and for fixed S gives us a holomorphic
dependence on zy with the symbol property (after z-localisation) in (x, 21, 22,&, 1)
for z; € I'g and 22 € I's for every J, uniformly in finite d-intervals. This uniformity
then holds for (3, d) varying in compact sets in R2. At the same time we have holo-
morphic dependence separately in z; and z; for z; € I'g and 29 € I';, respectively.
A classical lemma of Osgood implies that then that h := Vy(f)(21, 22,7) is jointly
holomorphic in (z1,22) € C x C with values in L¥(X;R]). Thus the properties
required in Definition 3.1 are satisfied. (|

Remark 3.3.
(i) An equivalent definition of M(‘;ZUOZ? (X;R9) is that this space consists of all
h(z1, 22,m) € A(C, x Cy,, L"(X;R1)) such that
h(21,2’2,77)|1“5><1“5 S L”(X;Fﬁ X F(; X Rq)

for every (3,46) € R2, uniformly in compact subsets of R?. The iterated ap-
plication of Vy ., Vy ., gives rise to a continuous operator

VoV - LH(X5Tp x T x RY) = Mp_ o, (X;RY)
for any fixed 3,6 € R, and this is the same as Vy ., Vy 2, -
(ii) Let h(z1,22,m) € Mng,OZ?(X;}Rq)7 h(z1,22,m)|rs € Mg;l(X;I‘(g x RY) for
some fixed 6 € R. Then we have h(z1, 22,1) € Mg:l{OZQ (X;R9).

An analogous property holds when we interchange the role of z; and z».

Theorem 3.4. Let h; € C°(Ry xR, XRq,Mg'il 0., (X;RY)), j € N, be an arbitrary
sequence with pj41 < pj for all j, uj — —oo as j — oo, then there is an h €
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C®(Ry x Ry x IRq,Mng,OZ2 (X;RY)), = po, unique modulo C°(RL x Ry x
RY, M(gzoiozz (X;R?)), such that

N
h— Zohj € C™(Ry x Ry x RY, MGY*,  (X;R7))
iz

for every N € N.

Proof. Without loss of generality we consider the case of (r1,79,y)-independent
hj. For an asymptotic summation of L*(X)-valued operator function we usually
go back to the local symbols that we denote by

hj(T17T27x7217227£7n)' (35)

Then it suffices to carry out the asymptotic sum over j and return to global
operator functions along X, using a partition of unity, etc.

The symbols (3.5) belong to the space S(‘SZI’OQ (2 x Rgf]q) which is defined
to be the set of all g(z,z1,22,m) € .A((CZQ,S(’SZ1 (3 x R?ﬁ;q)) such that g|p, €
St (B xTsx Rgf]q) for every § € R, uniformly in compact d-intervals. The space

zq1 )
ngl 0., (Zx R?;q) is Fréchet in a canonical way.

If we try to carry out the asymptotic sum of h; € 5%117022 (X x R"9) we
have to take into account that the standard way of performing a convergent sum
Z;io X; (21, 22, &, mh;(x, 21, 22,€,m) with j-depending excision functions y; will
not produce an element in 55217022 (3 x R™4). In fact, the summands are not
holomorphic in the complex variables. However, we may form the asymptotic sum
in the covariables (21,22,&,m) € Tg x T'g x R*"? which gives us a symbol f €

SH(E x Ty x Ty x R"*4) and then apply the kernel cut-off operator Vy, to f, first
with respect to z; € I'g which gives us

le (f)(x7217227£777) € ngl (E x Ty x Rn+q)
according to (2.5). Then, applying analogously Vy, with respect to zo € I'g yields
Vd)szl (f)(mv 21, 22, 57 77) € ngl 02y (2 X Rn+q).

These constructions work because of the well-known properties of kernel cut-off
operators and the property that

I n+q
h(x7zl7227£777) € ‘51(921,(922 (E xR )
and
h(z, B +ip, 6 +it,6,m) € SPH(E x Ty x T's x RZ’ZQ) for some fixed 3,6 € R

entails h(x, z1,22,€,7) € Sg;{oq (X x R*H9), O
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Remark 3.5. In asymptotic summations we employed repeatedly a combination of
standard asymptotic summation combined with kernel cut-off, in order to restore
the holomorphic dependence on the complex covariables. There is also an alterna-
tive way of carrying out asymptotic sums by applying a summation on the kernel
side, similarly as in [23, Section 3.2.2, Proposition 3; Section 3.2.3, Theorem 4].
This idea preserves holomorphy in the variables that are not touched by the partial
kernel cut-off; see also [13] for a similar argument in terms of Volterra symbols.

Theorem 3.6. For every
p(r17 r2,Y, 21, P2, ﬁ) = ﬁ(rla T2,Y,21,T2pP2, ﬁ)

for
ﬁ(rlaTQay7zl7ﬁQ?ﬁ) € COO<R+ X R"t‘ X Rq’M(ng <X7R52 X R%))

there exists an
h(ri,ra,y,21,22,7) € C®(Ry x Ry x quMgzl,OQ (X;RY))
such that
Op,,op}), (p)(y,7) = opi?_ophy, (h)(y, ) (3.6)
modulo C®(RY, L=*(Ry x Ry x X;RY)) for any reals B1, Ba.

For the proof we prepare the following lemma, and we drop the y-variables
again.

Lemma 3.7. Let p and p be as in the assumptions of Theorem 3.6 and
C>® (R4 x R+,M(’;Zl (X;Ri:%q)) 3 b(r1,ra, 21,7,1) := p(r1,72, 21,7, 7).
Set
C* (R4 x R+,M521 (X;To x RY) 2 fo(ri,re,21,i7,7) := b(ry,re, 21, —7, 7).
Then we have
Op,.,(p)(r1, 21,7)|r —OPM (fo)(r1, 21, M)y + Op,, (P1)(r1, 21, )|, (3.7)
modulo C*®°(Ry ., LR, x X;Tg X R%)) for every fixed real 3, where
p1(r1,72, 21, p2, 1) = P1(r1, 72, 21, T2P2, 1)
for p1(r1, 72, 21, p2, ) € CP (R, x R+,Mg:(X;IR{52 x R1)).

Proof. We first let z; vary on I'g. Then we apply the operator push forward under

X Re = Ry, X(8) 1= €', to 0opk® (fo)(r1, 21, 7). This gives us

OpM (fo)(r1,21,M) = x«Opy(a@)(r1, 21,7)

for a(r,t,21,7,7) = fo(r1,e7t, 21,47,7). Thus, according to the transformation
rule of pseudo-differential operators under diffeomorphisms it follows that

opyr” (fo)(r1, 21,7) = Op,,(€)(r1, 21,77) mod C(Ry p,, L™(Ry x X;RY)),
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for a function ¢(r1,72, 21, p2,7) € C%(Ry x Ry, LH(X; Tz, x Ry, x RY)) which
has an asymptotic expansion

_ — 1 i
C(Tl, T2, 21, P2, 77)|T2:)<(t)7p2:’r ~ Z j' (a’]ra) (7"1, ta 21, (dX<t))T7 77)(1)] (t7 T) (38)
i=07"
cf. (2.11), for ®;(¢, 7) only depending on x. Now the term on the right of (3.8) for
j = 0 just coincides with p(rq, ra, 21, r2p2, 77) and hence

c(r1,72, 21, p2, ) = P(r1,72, 21,7202, 1) + P1 (11,72, 21,72p2,7)  (3.9)
modulo C*° (R x Ry, L™°(X; Ty x RZZ%)) for some

p1(r1,72, 21, p2,7) € CF (R4 x R+,Mg:11(X;R,32 x RY)). (3.10)

In (3.10) we indicated holomorphic dependence of p; on z; € C, although we first
interpreted z; as a variable on I'g. However, the asymptotic sum for p; may be
produced in combination with a kernel cut-off step in z1, and this yields p; as
a holomorphic function. Since p is holomorphic also in z1, the equivalence (3.9)
modulo C® (R4 x Ry, L™°(X;T'z x R1+q)) holds under restriction to I'g > 2.
In the asymptotic summation for p; we employed the fact that the smoothness
in 71 and r2 up to 0 remains under control indeed, and that the holomorphy in
z1 is guaranteed when we combine the asymptotic process in the covariables in
Ty x R;:% with a kernel cut off step with respect to z;. The relation (3.7) now
contains holomorphic functions in z; and the smoothing remainders appear first
for z; € I'g. Then, when we take z; € I'g for any other real § the remainder is
again of such a quality, as indicated in (3.7). O

Proof of Theorem 3.6. Similarly as in (2.16) it suffices to show the assertion (3.6)
for some specific f1, B2, e.g., f1 = B2 = 1/2 which is again a consequence of
Cauchy’s theorem. By iterating the result of Lemma 3.7 we produce in a recursive
manner

pj(r1,72, 21, p2, 1) = Pj(r1, 72, 21, 72p2, 1)
for p;(r1,r2, 21, p2,7) € C° (R4 x R+,M5:f (X;Rz, x RY)). Analogously as (3.7)
we obtain equivalences

Oprg(pj)(ﬁ,zl,n)—OPM (fi)(r1,21,7) + Op,., (Pj+1)(r1, 21,7),

for f;(r1,7e, z1,i7,7) € C° (R4 x Ry, M(’;;J (X;To x Rl:%q)) where pg := p for all
z1 € C, with remainders in C*°(Ry, L™*°(Ry x X;T's x R])) when restricted to
I'g in z1. Thus we have for every [ € N

Op,, (p)(r1, 1,71) = op}” (Zf]) r1,21,1) + 0Py, (Pra) (1, 21,7)

modulo a reminder of the above—mentloned kind.
The analogue of the step (2.17) cannot be done immediately in the framework
of operator functions that are holomorphic in z1, since the asymptotic summation
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with excision functions in the covariables (z1,z2,7) € I'g x I'g X R% destroys the
holomorphic dependence on z;. However, we may fix § and first treat z; as a
covariable on T'g. Without loss of generality we take § = 1/2. Then the asymptotic
sum gives us

m(T17T27ia7i7—7ﬁ> Nij(Tl,Tg,ia,iT,ﬁ), (311)
§=0

for m(r1,ra, i, iT, 7)) € C®°(Ry x Ry, LH(X;To x o x RY)).
Applying now the kernel cut-off operator Vy as in Theorem 2.4 with respect to
21 € T we obtain an m(ry, 72, 21,i7,7) € C® (R4 X R+,M5Z1(X;FO X R%)) such
that

m(Th T2, iaa iT7 ﬁ) = m(rh T2, 21, iT) ﬁ) |Z1 [S2)
modulo C®(Ry xRy, L™°(X; Ty x Ty x R%)). Moreover, applying Vy, with respect
to z2 € T'g as in Theorem 3.2 (i) yields a function

h(ry,r2, 21, 22,7) € CF (R x Ry, M5 o (X5RY)) (3.12)

such that
m(ry, o, 21,47, 1) = h(ri, 2, 21, 22,7)| 25er, -
It follows that
Op,,(P)(r1, 21,7) = opyy”. (h)(r1, 21,7)
modulo C*®(Ry ,,, L™>°(R4 x X;T x R%)). This gives us finally (3.6) for 51 =
B2 = 1/2 after applying op}\éi on both sides. O

Let us now turn to the Mellin quantisation of corner-degenerate symbols
which is the main issue of this section. Those symbols can be written as (3.1), now
for

~ .~ = ~1 = 2

p(r7x7y7p17p27£77717772) € SH(R+ X R+ X R;L,—;q X Rﬁi%jj?;ﬂjﬂ)' (313)
Similarly as before we pass to globalized corner-degenerate operator functions
along X, i.e., we start with functions

P(TI,T%ZJ,PhPQJ}lle) = ﬁ(ﬁ,Tz,y,7"1p1,7"17"2p2,7"1771,7’17"2772) (314)
for
ﬁ(r7y7ﬁ175277~7177:72) € COO(R+ X R+ X Rq7Lu(X;R/23i%27ﬁ17,572))' (315>

Theorem 3.8. For every p of the form (3.14) with (3.15) there ezists an
h(r,y, 21, 22, 7%, 7%) € C®°(Ry x Ry x RZ’Mgzl,Ogg (X;RY. .))) such that for

T2
h(?", Y, 21,22, 7717 772) = iL(?", Y, 21,122, T17717 7"17’2772) (316>
we have
OP,,.1, ()(y,m) = ophi_ophr (h)(y,n) (3.17)

modulo C*°(R?, L=>°(Ry x Ry x X;R?)) for any reals p1, Ba.



166 N. Habal and B.-W. Schulze

Proof. The proof will be given in several steps. First we apply Theorem 2.1 in
global form with respect to X. Then the result reads as follows. For every

Pyt o) =Byt e it
where p(r1,yt, p1,7t) € C°(Ry x RU, LA(X; R1+q1 )) there exists an

Byt oY) € O Ry x RY Mp_ (X5RE))

such that
Op,, (P)(y",71") = opyy,, (W) (Y, 71")
for every 51 € R, modulo smoothing remainders. The assertion extends in an

obvious manner to the case when we let p* and A' depend on further variables and

covariables (ro, y?, pa, %) € Ry xR x le%zg Taking into account these additional

variables we get an analogue of Theorem 2.1 that states the Mellin quantisation
in the ri-variable, namely a correspondence

pl(rlar%gﬁphﬁ%ﬁ) ~ hl(’l"l,’l"g,y,zl,ﬁg,ﬁ)
with the replacement of notation for y = (y*,y?) and 7j = (77!, 7%) € RY.

h' ~ B, P(ri,ra,y, fo, ) € C(Ry x R2 x RY, MY (X5 R, 1))

we are in the situation of Theorem 3.6 and we can produce an
h(ri,ra,y,21,22,M) € C®(Ry x R x R? Mo Lo, (X;R%))
such that in the notation of Theorem 3.6
Op,,oph; (P)(y,7) = opyi_ophr (R)(y, 1)

modulo C* (R, L~>°(R4 xR x X;RY)). From now on we drop again the variables
y. We establish a modification of Theorem 3.6. More precisely we apply Theorem
3.6 to families of operator functions of the same nature, with parameter ¢ € R,..
Starting with p, p as in Theorem 3.6 we form

pc(7”177"2721ap2777) = ﬁ(rl,T2,21,CT2p2,ﬁ1,Cﬁ2)

where
P (r1, 7o, 21, P2, ', 77) i= P(r1,r2, 21, ¢pa, i1, i)

belongs to C*° (R4 x R4, Mgzl (X; Rz, x RY)) for every fixed ¢ € Ry; 77 = (7', 7%).
An inspection of the proof of Theorem 3.6 shows that the resulting Mellin symbol
h° is of the form

hc(rlv 2,21, 22, ﬁ) = B(C r,T2,21,C22, 771 Cﬁz)
for an h(c, 71,79, 21, 22,7, 72) € C®(Ry . x Ry x Ry, Mb_ 0., (X'R‘;]l w2)s de,
we have

Op,,oph; (P°)(7) = opji,_ophi (h)(i}) mod L™ (Ry x Ry x X;RY).

Our point is to verify that, in the c-version of the relation (3.7) we simply replace
7 by (7it,¢en?) and it by icr. All the smoothing remainders will depend on c,
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however, this does not affect the final result, since such remainders are accepted
in the quantisation. The relation (3.7) takes the form

Opm(pc)(rhzhﬁ)'r‘a _OpM (.fo)(rlazh )|F5 +Opr2(p(1:)(r1azlaﬁ)|r‘5 (318)

modulo a remainder as in (3.7) for a p{ of analogous structure as p°®, but of
order u — 1 and f§(r1,72, 21,i7,7) = fo(r1, e, 21,4icT,7t, ¢ij?). In addition in this
computation we generate p§ with an extra smooth dependence on ¢, i.e., we get

p§(r1, 72, 21,72p2,7) = P1(c, 11,72, 21, Ccrapa, i, if?). (3.19)

The same iteration process as before gives us functions

Ij(ri,re, 21,47, 1) = fi(c,r1, 72, 21, dcT, it ei?)
for every j > 1. The asymptotic sum analogously as (3.11) yields an m® that
can be carried out in such a way that i7 and 7? contains the factor ¢, and the
subsequent z;-kernel cut-off preserves this structure as well. This gives us finally
h¢ of the desired structure. Summing up we proved the following result, with
slightly modified meaning of p® now with an extra c-dependence. For every

p°(r1,72, 21, p2, 1) := P(c, 71,72, 21, €rapa, i, i’ )
for
ﬁ(c7 1,72, 21752’771’52) € COOGR-‘HC X R-hﬁ X R-ﬁ-ﬂ“w Mng (X7R113:_%1 52))

there exists an

he(ri,7a, 21, 22,7) = ﬁ(c,rl,rg,zl,CZQ,ﬁl,cﬁQ)
for
h(c,r1,72, 21, 72,7, 7%) € C®°(Ry x Ry x R, Mb 0., (XiRY, 2)
such that
Op,.,0opy;,, (P°)(7) = 520
oph: ophy (h°)(7]) mod C*(Ry ., L™ (R4 x Ry x X;RY)), '

What concerns the part of the proof which generates p§ we also see that the factor
c remains at the covariables iT and 72. In computing p$ we also apply an analogue
of what we did in (2.11). It follows analogously as (3.8) a function
cc<r17 T2, 21, P2, 77]1’ 77]2) = C(C, r1,72,21,CpP2, ﬁla cﬁQ)a
via
c° (7"1, T2, 21, anﬁl ﬁ2) |rzfx(t) p2=T

~ Z 7“1 t, 21, (dX( ))CT, ﬁ17cﬁ2)¢j(t,7). (3.21)

Let us explain the sense of carrying out the asymptotic sum (3.21). The contribu-
tion of

c ~1 =2y ~1  ~2
a (rlvtVZlvTvn i )* a(cvrhtvzhc’r?n , C1) )
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for a(c,r1,t, 21, c7, 0, cii?) = folc,r1,e™t, 21, dcr, 7it, ch?) contains in its argument
the right combination of iT and 7? with the factor ¢, namely, icT and c7j?. Although
®,(t,7) is independent of ¢, we gain through the 7-differentiation of a® in the c-
dependent version of (3.8) also an extra factor ¢/. The function ®,;(¢,7) has the
form

(I)j (t, T) = ‘I’j (T‘Q, %)|7~':€*t‘r,r2:e*f

for the above-mentioned polynomial U,(rs,7) of degree < j/2 in 7, with smooth
dependence in 73 up to ro = 0. In addition we have

Cj\IJj(TQ,’T') = 1/)]‘(0, 7“2,’7:'),

7 = ¢F, with a function (e, r5,7) being a polynomial in 7 of degree < j/2
and smooth in (¢,71,72) € Ry x Ry x Ry up to (0,0,0). In order to see how to
carry out the asymptotic sum (3.21) with a control of smoothness in (¢,r1,72) €
Ry x Ry x Ry up to (0,0,0) we replace the summands by

gj (C7 1,72, 21, 7:—7 77) = a(j) (C, 1,72, %1, 72:7 77)1/)] (C7 2, 72:)
for

, N 1, . .
a9 (e,r1, e, 21,7, 0)) i= j,(aia)(cﬂ“l,—103;7"2,21,7:,77)

where g;(c, 71,72, 21,7,7) € C®(Ry x Ry x R+,Mg;j/2(X;R;%q)). We form

%)
ﬁl(C,Tl,Tg,Zl,’?,ﬁ) = —Zgj(C,T1,T2,Z1,7~',7~7)~
j=1

This yields

CC(T17T27217PQ77~’)

~ ~1 =2 - S =2
:p(c77"177”2a21707”202777 , C1] )+p1(CaT1aT2azlaCT2PQa77 , CT] )

modulo C®°(Ry x Ry x Ry, L™°(X; Ty x R;:%)) for some p1(c, 71,72, 21, P2,7) €
C®(Ry e xRy p, x Ry oy x RE ME™H(X;R;, x RY)). This gives us (2.19) for (3.19)
which is the c-variant of (3.7).

In the final step of the proof we simply interpret ¢ as r; € Ry and 7 as
(7“1771, 7“17“2772). Then the assertion of the theorem is an immediate consequence of
(3.20). This is an admissible argument, since the 1 and r4 variables are involved as
variables in left symbols, i.e., they act in the respective pseudo-differential opera-
tors as multiplications from the left. All the ¢ dependent smoothing remainders oc-
curring in the first part of the proof after replacements ¢ ~ 1, ij ~ (r1nt, r1r2n?)
turn again to smoothing remainders of analogous quality. O
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4. Mellin symbols for higher-order corners

The method of proving Theorem 3.8 is iterative. It is nearly straightforward to
generalise the respective operator-valued symbol spaces with holomorphic depen-
dence on several complex variables. Therefore, we briefly formulate the result and
content ourselves with a few remarks.

First we have the following analogue of Definition 3.1. As before let X be a
closed C'*° manifold.

Definition 4.1. The space MgZ(X;R%) for z = (z1,...,2k), n €RL, k>2 peR,
is defined to be the set of all h(z’, 2z, ), 2’ = (21, ..., 2k—1), such that h(2’, zx,n) €
A(C.,, M ,(X;RY)) with

h(z', zx,m) € Mg (X;Ts5 x RY)

for every § € R, uniformly in compact d-intervals. We also write M (X ;R?) rather
than M{, (X;R?).

Here we inductively assume that the spaces M} (X;RY) are already defined
for every [ € N, with a Fréchet topology that follows in a natural way from the
definition. As before when we write I's as a component of a space of parameters we
mean the real variable Im zj, with zj, varying on I's. The space M5 (X;R?) can be
defined in many equivalent ways; e.g., analogously as in Remark 3.3(i). In addition
there is an analogue of Remark 3.3(ii). Moreover, we have continuous embeddings
MgI(X;Rq) — M4 (X;R?) for any p/ < p.

Observe that there are analogues of Theorems 3.2 and 3.4 also for arbitrary
k. Those play a similar role for higher corner operators as the above theorems for
the case k = 2.

Consider an operator function
p(r,y, p,n) = B(ryy, r1p1,71r2p2, -y 71 - Trpr, it iren’®, k)
for
- L k
p(ﬁ%ﬂﬂ?) € COO((R+)k X Q’LM(X;R/;;‘J))’ (42)

Q C RY open, (R4)¥ = Ry x --- x Ry (k factors). Then our main result is as
follows.

Theorem 4.2. For every p as in (4.1) with (4.2) there exists an h(r,y,2,7) €
C=((Ry)*F xQ, M§_ (X3RY)), 2= (21,. .., Zk), such that for h(r,y, z,n) defined by

1 2 k
h(r,y, 21,7122, 717225, « . , P17« + . Tk—1 2k, T11] s T1T2N ooy T1T2 . . TET)")

we have
Op,,..ry () (y,m) = 0PRf---0Phr (A)(y,m) mod (9, L™ (RY x X;RY))

for any reals By, ..., Bk.
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Remark 4.3. Theorem 4.2 refers to an equivalence of (y,n)-depending families of
operators C5°(RE x X) — C°°(R% x X) modulo smoothing operators. The role
of the Mellin quantisation is to modify the original operator by removing some
smoothing (possibly singular) error and to obtain someone that admits a contin-
uous extension between suitable weighted Sobolev spaces. This aspect cannot be
discussed in detail here; it requires more voluminous considerations.

Remark 4.4. The Mellin quantisation result of Theorem 4.2 may be specified for
classical symbols. Then, starting with classical p we obtain classical h in the sense
that everywhere in the definition of holomorphic Mellin symbols we have L’
stead of L*. This aspect is of relevance in the higher corner pseudo-differential
calculus for analogous reasons as in cone and edge algebras corresponding to the
case k = 1.

in-

Let us finally observe that the spaces M (X; R?) admit a concept of ellipticity
and parametrices that is also a part of the elliptic theory in higher corner operators.
First note that

hj(z,m) € My (X;RY), j=1,2,
implies hi(z,n)ha(z,m) € ME#2(X;RY) for arbitrary pi, u2 € R.
An element h(z,m) € M{(X;R?) is called elliptic if there is a tuple § =
(Bi1,...,B) € R¥ such that

h(z,n)|pﬁ € L”(X;Fﬁ X Rq) for Pg = Fﬁ1 X - X Fﬁk

is parameter-dependent elliptic of order p with the parameters (z1,...,25,7) €
I's x R?. This definition is independent of the choice of j, i.e., the condition is
equivalent to the one with respect to g/ for any other 3’ € R,

Theorem 4.5. Let h(z,n) € M{5(X;R?) be elliptic; then there exists an
WY (z,n) € Mp" (X;RY)
such that
h(z,mMh "V (z,n) =1, K=Y (z,n)h(z,n) = 1 mod M5 (X;R9). (4.3)

Proof. By assumption f(z,n) := h(z,n)|r, € L*(X;T's x RY) is parameter-depen-
dent elliptic. Let f(=Y(z,n) € L™*(X;T's x R?) be a parameter-dependent para-
metrix. Then we may set

WD (z,) = (Vo STV (2,)

where Vy, , is the multiple kernel cut-off operator Vi . := Vy 2, ... Vy. 2, . For sim-
plicity we took the same 1 with respect to different variables; we could distinguish
with 4’s in different variables as well. The property (4.3) then follows from a cor-
responding relation between f(z,7), f(~"(z,n) and the corresponding analogues
of the above-mentioned properties of the kernel cut-off operator. O
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Abstract. Let M(R") be the class of bounded away from one and infinity
functions p : R™ — [1,00] such that the Hardy-Littlewood maximal opera-
tor is bounded on the variable Lebesgue space LF()(R™). We show that if a
belongs to the Hérmander class S;l’(f_l) with 0 < p < 1,0 < § < 1, then
the pseudodifferential operator Op(a) is bounded on LP¢)(R™) provided that
p € M(R™). Let M*(R"™) be the class of variable exponents p € M(R") rep-
resented as 1/p(z) = 6/po + (1 — 0)/p1(x) where po € (1,00), 6 € (0,1), and
p1 € M(R™). We prove that if a € SY , slowly oscillates at infinity in the first
variable, then the condition

li inf 6 >0
Rgnoo\z\ir\lé\ZR‘a(m ol

is sufficient for the Fredholmness of Op(a) on LP¢) (R™) whenever p € M*(R™).
Both theorems generalize pioneering results by Rabinovich and Samko [24] ob-
tained for globally log-Hélder continuous exponents p, constituting a proper
subset of M*(R"™).
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Keywords. Pseudodifferential operator, Héormander symbol, slowly oscillat-
ing symbol, variable Lebesgue space, Hardy-Littlewood maximal operator,
Fefferman-Stein sharp maximal operator, Fredholmness.

1. Introduction

We denote the usual operators of first-order partial differentiation on R™ by 9, :=
0/0z;. For every multi-index o = (a, ..., ;) with non-negative integers o, we
write 0% := 09! ...0g». Further, |a| := a; + --- + a,, and for each vector { =
(€1,...,&) € R define €% := €0 ... €2 and (€) := (1+£]3)"/? where |¢|, stands
for the Euclidean norm of &.
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Let C§°(R™) denote the set of all infinitely differentiable functions with com-
pact support. Recall that, given u € C§°(R"™), a pseudodifferential operator Op(a)
is formally defined by the formula

1
= d He=v8) g
Op(ap)(@)i= o1, [ de [ ala.umer O,
where the symbol a is assumed to be smooth in both the spatial variable z and
the frequency variable £, and satisfies certain growth conditions (see, e.g., [26,
Chap. VI]). An example of symbols one might consider is the class S’;f&, introduced
by Hormander [13], consisting of a € C*°(R"™ x R™) with

0207 a(x, €)] < Cap(€)™ I+ (2,6 € RT),

where m € R and 0 < §,p < 1 and the positive constants C, g depend only on o
and .
The study of pseudodifferential operators Op(a) with symbols in S?, on so-
called variable Lebesgue spaces was started by Rabinovich and Samko [24, 25].
Let p : R® — [1,00] be a measurable a.e. finite function. By LP()(R") we
denote the set of all complex-valued functions f on R™ such that

L) (f/A) = /R |f(30)//\|p(x)dx < 00
for some A > 0. This set becomes a Banach space when equipped with the norm
1Fllpe) = inf {A > 0 L) (f/A) < 1}

It is easy to see that if p is constant, then LP()(R™) is nothing but the standard
Lebesgue space LP(R™). The space LP()(R") is referred to as a variable Lebesgue
space.

Lemma 1.1. (see, e.g., [15, Thm. 2.11] or [10, Thm. 3.4.12)) If p : R™ — [1, 0] is
an essentially bounded measurable function, then C§°(R™) is dense in LPC)(R™).

We will always suppose that

1< p_:=essinfp(x), esssupp(z)=:p;s < co. (1.1)
xeR™ rERN

Under these conditions, the space LP(") (R™) is separable and reflexive, and its dual
space is isomorphic to L ()(R™), where
1/p(z)+1/p'(z) =1 (z€R™)

(see, e.g., [15] or [10, Chap. 3]).
Given f € L] (R™), the Hardy-Littlewood maximal operator is defined by

Mf(z): Z‘é§|c2|/ o)y

where the supremum is taken over all cubes @ C R™ containing = (here, and
throughout, cubes will be assumed to have their sides parallel to the coordinate
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axes). By M(R"™) denote the set of all measurable functions p:R™ — [1,00] such that

(1.1) holds and the Hardy-Littlewood maximal operator is bounded on LP()(R™).
Assume that (1.1) is fulfilled. Diening [7] proved that if p satisfies

< c

~ log(e +1/[x —yl)

and p is constant outside some ball, then p € M(R™). Further, the behavior of p

at infinity was relaxed by Cruz-Uribe, Fiorenza, and Neugebauer [5, 6], where it
was shown that if p satisfies (1.2) and there exists a po > 1 such that

Ip(z) — p(y)] (z,y € R") (1.2)

Ip(2) = pool| < (z € R"), (1.3)

¢
log(e + [x])
then p € M(R™). Following [10, Section 4.1], we will say that if conditions (1.2)—
(1.3) are fulfilled, then p is globally log-Hélder continuous.

Conditions (1.2) and (1.3) are optimal for the boundedness of M in the
pointwise sense; the corresponding examples are contained in [21] and [5]. However,
neither (1.2) nor (1.3) is necessary for p € M(R™). Nekvinda [19] proved that if p
satisfies (1.1)—(1.2) and

/ Ip(x) = poolct/P@=P<l gz < oo (1.4)

for some pos > 1 and ¢ > 0, then p € M(R"™). One can show that (1.3) implies
(1.4), but the converse, in general, is not true. The corresponding example is
constructed in [3]. Nekvinda further relaxed condition (1.4) in [20]. Lerner [16]
(see also [10, Example 5.1.8]) showed that there exist discontinuous at zero or/and
at infinity exponents, which nevertheless belong to M(R™). We refer to the recent
monograph [10] for further discussions concerning the class M(R"™).

Our first main result is the following theorem concerning the boundedness of
pseudodifferential operators on variable Lebesgue spaces.

Theorem 1.2. Let 0 < p<1,0< 6 <1, and a € SZ%pfl), If p € M(R™), then
Op(a) extends to a bounded operator on the variable Lebesgue space LPC)(R™).

The respective result for a € S(ﬂo and p satisfying (1.1)—(1.3) was proved by
Rabinovich and Samko [24, Theorem 5.1].

Following [24, Definition 4.5], a symbol a € ST is said to be slowly oscillating
at infinity in the first variable if

0g00a(x, )| < Cap(a) (€)™ 1,
where
Jim Cap(x) =0 (1.5)

for all multi-indices « and 8 # 0. We denote by SO™ the class of all symbols
slowly oscillating at infinity. Finally, we denote by SO{* the set of all symbols
a € SO™, for which (1.5) holds for all multi-indices o and /5. The classes SO™
and SOF* were introduced by Grushin [12].
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We denote by M*(IR™) the set of all variable exponents p € M(R™) for which
there exist constants pg € (1,00), 8 € (0,1), and a variable exponent p; € M(R"™)
such that

1 6 1-90
=+
px)  po  pi(z)
for almost all € R™. Rabinovich and Samko observed in the proof of [24, Theo-
rem 6.1] that if p satisfies (1.1)—(1.3), then p € M*(R™). It turns out that the class
M*(R™) contains many interesting exponents which are not globally log-Hélder
continuous (see [14]). In particular, there exists e > 0 such that for every «,
satisfying 0 < 8 < a < € the function

p(x) =2+ o+ Bsin (log(log |#]) X {zern:|z|>e} ()  (z € R™)
belongs to M*(R"™).

As usual, we denote by I the identity operator on a Banach space. Recall
that a bounded linear operator A on a Banach space is said to be Fredholm if
there is an (also bounded linear) operator B such that the operators AB — I and
BA — I are compact. In that case the operator B is called a regularizer for the
operator A.

Our second main result is the following sufficient condition for the Fredholm-
ness of pseudodifferential operators on variable Lebesgue spaces.

Theorem 1.3. Suppose p € M*(R"™) and a € SO°. If

li inf 6| >0, 1.6
Rféom%\zzz'“(x )l (1.6)

then the operator Op(a) is Fredholm on the variable Lebesgue space LPC)(R™).

As it was the case with Theorem 1.2, for p satisfying (1.1)-(1.3) this result
was established by Rabinovich and Samko [24, Theorem 6.1]. Notice that for such
p condition (1.6) is also necessary for the Fredholmness (see [24, Theorems 6.2
and 6.5]). Whether or not the necessity holds in the setting of Theorem 1.3, remains
an open question.

The paper is organized as follows. In Section 2.2, the Diening-Ruzicka gener-
alization (see [11]) of the Fefferman-Stein sharp maximal theorem to the variable
exponent setting is stated. Further, Diening’s results [8] on the duality and left-
openness of the class M(R") are formulated. In Section 2.4 we discuss a point-
wise estimate relating the Fefferman-Stein sharp maximal operator of Op(a)u and
Myu := M(Ju|?)'/9 for ¢ € (1,00) and u € C§°(R™). Such an estimate for the
range of parameters p, §, and m = n(p — 1) as in Theorem 1.2 was recently ob-
tained by Michalowski, Rule, and Staubach [17]. Combining this key pointwise
estimate with the sharp maximal theorem and taking into account that M, is
bounded on LPO)(R™) for some ¢ € (1, 00) whenever p € M(R"), we give the proof
of Theorem 1.2 in Section 2.5.

Section 3 is devoted to the proof of the sufficient condition for the Fredholm-
ness of a pseudodifferentail operator with slowly oscillating symbol. In Section 3.1,
we state analogues of the Riesz-Thorin and Krasnoselskii interpolation theorems
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for variable Lebesgue spaces. Section 3.2 contains the composition formula for
pseudodifferential operators with slowly oscillating symbols and the compactness
result for pseudodifferential operators with symbols in SOy ! Both results are es-
sentially due to Grushin [12]. Section 3.3 contains the proof of Theorem 1.3. Its
outline is as follows. From (1.6) it follows that there exist symbols br € SO° and
Yr+c€E 500_1 such that I — Op(a) Op(br) = Op(pgr + ¢). Since g + ¢ € SOo_l,
the operator Op(pg + ¢) is compact on all standard Lebesgue spaces. Its compact-
ness on the variable Lebesgue space LP()(R") is proved by interpolation, since it
is bounded on the variable Lebesgue space Lpl(')(R"), where p; is the variable
exponent from the definition of the class M*(R™). Actually, the class M*(R") is
introduced exactly for the purpose to perform this step. Therefore Op(bg) is a
right regularizer for Op(a) on LP()(R™). In the same fashion it can be shown that
Op(br) is a left regularizer for Op(a). Thus Op(a) is Fredholm.

2. Boundedness of the operator Op(a)

2.1. Lattice property of variable Lebesgue spaces
We start with the following simple but important property of variable Lebesgue
spaces. Usually it is called the lattice property or the ideal property.

Lemma 2.1. (see, e.g., [10, Thm. 2.3.17]) Let p : R™ — [1, 00| be a measurable a.e.
finite function. If g € LPC)(R™), f is a measurable function, and |f(z)| < |g(z)|
for a.e. z € R™, then f € LPO(R™) and || f|lp¢y < 9llp()-

2.2. The Fefferman-Stein sharp maximal function

Let f € LL (R™). For a cube Q C R™, put

loc
1

The Fefferman-Stein sharp maximal function is defined by
1
M?# f(x) := sup / |f(z) — foldx,
@3 1@l Jg
where the supremum is taken over all cubes @) containing x.
It is obvious that M# f is pointwise dominated by M f. Hence, by Lemma 2.1,
1M fllpy < const]| fll,) for fe LPO(R™)

whenever p € M(R"™). The converse is also true. For constant p this fact goes
back to Fefferman and Stein (see, e.g., [26, Chap. IV, Section 2.2]). The variable
exponent analogue of the Fefferman-Stein theorem was proved by Diening and
Ruzicka [11].

Theorem 2.2. (see [11, Thm. 3.6] or [10, Thm. 6.2.5]) If p,p’ € M(R"™), then there
exists a constant Cy(p) > 0 such that for all f € LPC)(R™),

1fllpcy < Co@IMP o0y
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2.3. Duality and left-openness of the class M(R™)
Let 1 < g < oo. Given f € LL (R"), the qth maximal operator is defined by

loc

1 ; 1/‘1
M, f(z) = Z‘$€<|Q| /Q ) dy) ,

where the supremum is taken over all cubes Q C R" containing z. For ¢ = 1
this is the usual Hardy-Littlewood maximal operator. Diening [8] established the
following deep duality and left-openness result for the class M(R™).

Theorem 2.3. (see [8, Thm. 8.1] or [10, Thm. 5.7.2]) Let p : R™ — [1,00] be a
measurable function satisfying (1.1). The following statements are equivalent:
(a) M is bounded on LPC)(R™);
(b) M is bounded on Lpl(')(R”);
(c) there exists an s € (1/p_,1) such that M is bounded on L*PC)(R™);
(d) there exists a q € (1,00) such that M, is bounded on LP()(R™).

2.4. The crucial pointwise estimate

One of the main steps in the proof of Theorem 1.2 is the following pointwise
estimate.

Theorem 2.4. (see [17, Thm. 3.3]) Let 1 < g < o0 and a € S5 with 0 < p < 1,
0<d6<1, and m=n(p—1). For every u € C§°(R™),

M#(Op(a)u)(z) < C(g,a)Myu(z) (x€R™),
where C(q,a) is a positive constant depending only on q and the symbol a.

This theorem generalizes the pointwise estimate by Miller [18, Theorem 2.8]
for a € S, and by Alvarez and Hounie [1, Theorem 4.1] for a € S)s with the
parameters satisfying 0 < 6 < p <1/2 and m <n(p —1).

Let 0 < s < 1. One of the main steps in the Rabinovich and Samko’s proof
[24] of the boundedness on LP()(R") of the operator Op(a) with a € 57 o is another
pointwise estimate

M#(|Op(a)ul*)(z) < C[Mu(z)]* (z € R")

for all w € C§°(R™), where C' is a positive constant independent of u. It was proved
in [24, Corollary 3.4] following the ideas of Alvarez and Pérez [2], where the same
estimate is obtained for the Calderén-Zygmund singular integral operator in place
of the pseudodifferential operator Op(a).

2.5. Proof of Theorem 1.2
Suppose p € M(R™). Then, by Theorem 2.3, p’ € M(R") and there exists a
number ¢ € (1,00) such that M, is bounded on LP()(R™). In other words, there
exists a positive constant é(p, q) depending only on p and ¢ such that for all
u € LPO(R™),

[Mqullpy < Clp, @)llullp(.)- (2.1)
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From Theorem 2.2 it follows that there exists a constant C(p) such that for all
u e C(RM),

1 Op(@)ullyy < Ce(p)| M7 (Op(a)u)lp(.)- (22)
On the other hand, from Theorem 2.4 and Lemma 2.1 we obtain that there exists
a positive constant C'(q, a), depending only on ¢ and a, such that

IM#(Op(a)u)llpy < Clg, )l Myully)- (2.3)
Combining (2.1)—(2.3), we arrive at

[ Op(a)ully < Cu(p)C(q,a)C(p, q)|lullp.

for all u € C§°(R™). It remains to recall that Cg°(R™) is dense in LP()(R™) (see
Lemma 1.1). O

3. Fredholmness of the operator Op(a)

3.1. Interpolation theorem
For a Banach space X, let B(X) and K(X) denote the Banach algebra of all
bounded linear operators and its ideal of all compact operators on X, respectively.
Theorem 3.1. Let p; : R” — [1,00], j = 0,1, be a.e. finite measurable functions,
and let pg : R™ — [1,00] be defined for 6 € [0,1] by
1 0 1-6
= +
po(x)  po(x)  pi(x)
Suppose A is a linear operator defined on LP°C)(R™) U LP1()(R™).
(a) If A € B(LPiC)(R™)) for j = 0,1, then A € B(LP*)(R™)) for all 6 € [0,1]
and

(x € R™).

”AHB(LPG(')(R")) < 4||A||%(Lpo<->(Rn))||A||i;zgm<->(Rn))-
(b) If A€ K(LPoO)(R™)) and A € B(LP*C)(R™)), then A € K(LP*C)(R™)) for all
0 € (0,1).

Part (a) is proved in [10, Corollary 7.1.4] under the more general assump-
tion that p; may take infinite values on sets of positive measure (and in the set-
ting of arbitrary measure spaces). Part (b) was proved in [24, Proposition 2.2]
under the additional assumptions that p; satisfy (1.1)-(1.3). It follows without
these assumptions from a general interpolation theorem by Cobos, Kiihn, and
Schonbeck [4, Theorem 3.2] for the complex interpolation method for Banach
lattices satisfying the Fatou property. Indeed, the complex interpolation space
[LPoC)(R™), LP1()(R™)],_g is isomorphic to the variable Lebesgue space LP¢()(R™)
(see [10, Theorem 7.1.2]), and L) (R™) have the Fatou property (see [10, p. 77]).

3.2. Calculus of pseudodifferential operators

Let m € Z and OPSO™ be the class of all pseudodifferential operators Op(a) with
a € SO™. By analogy with [12, Section 2] one can get the following composition
formula (see also [22, Theorem 6.2.1] and [23, Chap. 4]).
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Proposition 3.2. If Op(a;) € OPSO™* and Op(az) € OPSO™2, then their product

Op(a1) Op(az) = Op(o) belongs to OPSO™¥™2 qnd its symbol o is given by
o(z,§) = ai(z,§az(z,§) + c(z,§), x,{€R",

where ¢ € SOy~

Proposition 3.3. Let 1 < g < oo. If c € SOy, then Op(c) € K(LI(R™)).

Proof. From Theorem 1.2 it follows that Op(c) € B(L9(R™)) for all constant expo-
nents ¢ € (1,00). By [12, Theorem 3.2], Op(c) € K(L*(R")). Hence, by the Kras-
noselskii interpolation theorem (Theorem 3.1(b) for constant p; with j = 0,1),
Op(c) € K(L1(R™)) for all ¢ € (1, 00). O
3.3. Proof of Theorem 1.3
The idea of the proof is borrowed from [12, Theorem 3.4] and [24, Theorem 6.1].
Let p € C§°(R™ x R™) be such that ¢(z,&) = 1if |z| + |{] < 1 and p(z,£) =0 if
|z| + [£] > 2. For R > 0, put

or(®,§) = p(z/R,§/R), x,§ €R™.
From (1.6) it follows that there exists an R > 0 such that

inf Ja(z,£)| > 0.

|z[+]€]>R
Then it is not difficult to check that
1- @R(x7£) .
if |z| 4+ > R,
bR(xag) = (Z($,£) | | |€|
0 if x|+ |¢] < R,

belongs to SOP. It is also clear that pr € SO°.
From Proposition 3.2 it follows that there exists a function ¢ € SOy ' such
that

Op(abr) — Op(a) Op(br) = Op(c). (3.1)
On the other hand, since

a(xvg)bR<x7€) = 1_30R(xa§)7 I,fERn,

we have
Op(abr) = Op(1 — ¢r) = I — Op(¢r). (32)
Combining (3.1)—(3.2), we get
I — Op(a) Op(br) = Op(pr) + Op(c) = Op(¢r + c). (3.3)

Since p € M*(R™), there exist pg € (1,00), 0 € (0,1), and p; € M(R™) such

that
1 6 1-—90

=+

p(x)  po pi(x)
From Theorem 1.2 we conclude that all pseudodifferential operators considered
above are bounded on LPo(R™), LP()(R™), and LP*()(R™). Since pr + ¢ € SOy !,
from Proposition 3.3 it follows that Op(pr + ¢) € K(LP°(R")). Then, by The-

(x € R™).
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orem 3.1(b), Op(¢r + ¢) € K(LPO)(R™)). Therefore, from (3.3) it follows that
Op(bgr) is a right regularizer for Op(a). Analogously it can be shown that Op(bg)
is also a left regularizer for Op(a). Thus Op(a) is Fredholm on LP()(R™). O

4. Addendum

After the paper was accepted for publication, Lars Diening communicated to us
[9] a short (but nontrivial!) proof of the inclusion M(R™) C M™*(R™). Thus, the
following result holds.

Theorem 4.1 (Diening). We have M(R™) = M*(R"™).

Proof. By definition, M*(R™) C M(R™). Let us show the reverse inclusion. Sup-
pose that p € M(R™). By Theorem 2.3(c), there exists a constant r € (1, 00) such
that p/r € M(R"™). Then, in view of Theorem 2.3(b), (p/r) € M(R™). Applying
Theorem 2.3(c) once again, we see that there is a constant s € (1,00) such that
! (p)l € M(R™). Therefore, by Theorem 2.3(b),

- e (L)) <

Simple calculations show that
1 TS
=1-s+ z € R"). 4.1
ni(@) pay -y
To prove that p € M*(R"), we have to find pg € (1,00) and 0 € (0,1) such that
1 6 1-90
= + xz € R™). 4.2
p(z)  po pie) ( ) (42)
Equalities (4.1) and (4.2) give

1 0 (1-0)rs n
(@) —p0+(1—9)(1—s)—|— () (z € R™).
The choice § :=1— ' € (0,1) leads to
1 1-1 1-s 1 n
p@) " w ors | p@) (v e .
So, necessarily,
_Ts— 1 1, 50)

Po s—1 € ( ,00).

Thus, p € M*(R™), which finishes the proof. O

Consequently, our Theorem 1.3 can be restated as follows.
Theorem 4.2. Suppose p € M(R") and a € SO°. If

lim  inf |a(z,&)| > 0,
R—ro0 Im|+\E\ZR| (@8)]

then the operator Op(a) is Fredholm on the variable Lebesgue space LPC)(R™).
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On the other hand, Theorem 4.1 immediately implies that there exist func-
tions in M*(R™) different from globally log-Ho6lder continuous exponents, since
the latter constitute a proper subclass of M(R™). Therefore, the results of our
preprint [14], while being formally correct, are redundant.
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Piecewise Slowly Oscillating Data
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Abstract. Applying the theory of pseudodifferential and Calderén-Zygmund
operators, we study the compactness of commutators of multiplication op-
erators al and convolution operators W°(b) on weighted Lebesgue spaces
L?(R,w) with p € (1,00) and Muckenhoupt weights w for some classes of
piecewise slowly oscillating functions a € PSO® and b € PSO; ,, on the
real line R. Then we study the Banach algebra Z, ., generated by the op-
erators aW"(b) with functions a € SO° and b € SOj,, admitting slowly
oscillating discontinuities at every point A € RU {oco}. Applying the method
of limit operators under some condition on Muckenhoupt weights w, we de-
scribe the maximal ideal space of the commutative quotient Banach algebra
Zpw = Zpw/Kpw where Ky o is the ideal of compact operators on LP (R, w),
define the Gelfand transform for Z7 ,, and establish the Fredholmness for the
operators A € Zp ..
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1. Introduction

Let B(X) denote the Banach algebra of all bounded linear operators acting on a
Banach space X, let (X)) be the closed two-sided ideal of all compact operators in
B(X), and let B™(X) = B(X)/K(X) be the Calkin algebra of the cosets A™ := A+
K(X) where A € B(X). An operator A € B(X) is said to be Fredholm, if its image
is closed and the spaces ker A and ker A* are finite-dimensional (see, e.g., [10]).

Partially supported by the SEP-CONACYT Project No. 168104 (México) and by PROMEP
(México) via “Proyecto de Redes”.
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A measurable function w : R — [0,00] is called a weight if the preimage
w~1({0,0}) of the set {0,00} has measure zero. For 1 < p < oo, a weight w
belongs to the Muckenhoupt class Ap(R) if

1 1/p 1 1/q
Cpw = SUD ( /wp(:c)dx> ( /wq(x)dx) < 00,
r \I|Jr 1| Jr

where 1/p + 1/¢ = 1, and supremum is taken over all intervals I C R of finite
length |I].

In what follows we assume that 1 < p < co and w € A,(R), and consider the
weighted Lebesgue space LP(R, w) equipped with the norm

PyyyP ip
e O
R
As is known (see, e.g., [12]), the Cauchy singular integral operator Sg given by

1 ft)

(Srf)(z) = lim / dt, zeR, (1.1)
R\(z—e,z+¢) t—x

is bounded on every space LP(R,w) with 1 < p < co and w € A,(R).
Let F : L?(R) — L?(R) denote the Fourier transform,

(Ff)(x):= f(x) = /Rf(t)eimdt, z € R,

A function a € L*(R) is called a Fourier multiplier on LP (R, w) if the convolution
operator W°(a) := F~1aF maps the dense subset L?(R) N LP(R,w) of LP(R,w)
into itself and extends to a bounded linear operator on LP(R,w). Let My, ,, stand
for the Banach algebra of all Fourier multipliers on LP(R,w) equipped with the
norm [, = [WO(a)ll5(Lr(®,w))-
Setting By = B(LP(R,w)) and Kp . = K(LP(R,w)) for p € (1,00) and
w € Ap(R), we consider the Banach subalgebra
Ay = alg (al, WO(b) : a € PSO°, be PSOS,,) (1.2)

p,w

of By generated by all multiplication operators al (o € PSO®) and all convolu-
tion operators WO(b) (b € PSO; ), and the Banach subalgebra

2y i=alg (al, WO(b) : a € SO°, be SOS,,) (1.3)
of 2, ., generated by all the operators aW?(b) with a € SO® and b € SO, where

the algebras PSO® C L*(R) and PSO; ,, C M, ., of piecewise slowly oscillating
functions on the real line R and the algebras SO° C L>(R) and SO;, ,, C My, of
slowly oscillating functions admitting slowly oscillating discontinuities at arbitrary
points A € RU {oco} are defined in Section 2.

In the present paper, applying the theory of pseudodifferential and Calderén-
Zygmund operators, we study the compactness of the commutators

[al, WO(b)] := aW°(b) — WO(b)al
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on the weighted Lebesgue spaces LP(R,w) with p € (1,00) and w € A,(R) for
some classes of functions a € PSO® and b € PSO, ,. Obtained results ex-
tend those in [11, Lemmas 7.1-7.4] and [1, Theorem 4.2, Corollary 4.3] to the
weighted Lebesgue spaces LP(R, w) with general Muckenhoupt weights w and to
wider classes of data functions a,b. In addition, this implies that the quotient
Banach algebra Z7 , = Z,.,/Kpw is a central subalgebra of the Banach alge-
bra A7, = 2Ap./Kpw. Then, under some condition on Muckenhoupt weights
w € Ap(R), we describe the maximal ideal space of the commutative Banach al-
gebra Z7 . define the Gelfand transform for ZJ , and establish the Fredholmness
for the operators A € Z,,,. To this end we use the method of limit operators,
which was essentially developed and applied to different classes of integral and
pseudodifferential operators by V.S. Rabinovich and his co-authors (see, e.g., [20],
[7], [23] and the references therein).

The paper is organized as follows. In Section 2 we introduce the Banach al-
gebras of slowly oscillating and piecewise slowly oscillating functions. In Section 3
we describe the maximal ideal spaces of the commutative Banach algebras SO; ,,.
In Section 4 we study the compactness of commutators of convolution type oper-
ators with piecewise slowly oscillating data. Section 5 is devoted to applications
of limit operators. Finally, in Section 6, using the results of Section 5, we describe
the maximal ideal space of the commutative Banach algebra Z7 , and study the
Fredholmness of operators A € Z,, ,,.

2. Algebras of piecewise slowly oscillating functions

2.1. The C*-algebra SO°

Let T' be the unit circle T = {z € C: |z| = 1} or the one-point compactification
R := RU {00} of the real line R. For a bounded measurable function f : I' — C
and aset I C T, let

osc(f, I) =ess sup {|f(t) — f(s)| : t, s € I}.
Following [3, Section 4], we say that a function f € L>°(T') is called slowly oscil-
lating at a point n € T if for every r € (0,1) or, equivalently, for some r € (0, 1),
glg% 0osC (f7 Frs,s(ﬁ)) =0 for n# oo,
lim osc (f, I‘,,E,E(n)) =0 for n= o0,

e00
where
T () = {{ZGF: re<l|z—mn|<e} if n# oo,
’ {zeT:re<|z|<e} if n=oo.
For each n € T', let SO, (T") denote the C*-subalgebra of L>°(I") defined by

SO,(T) == {f € Cp('\ {n}) : [ slowly oscillates at n},
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where Cy(T'\ {n}) := C(T'\ {n}) N L>=(T'). Hence, setting SO, := SO, (R) for all
X € R, we conclude that

SO0 = {f € Cp(R\ {o0}) : IEIEOO osc (f, [z, —x/2] U [z/2,2]) = 0},
SOy = {f € Gy \{A}) : lim osc (£, A+ ([—z,—2/2 Ula/2,a]) = 0}

for A € R. Let SO° be the minimal C*-subalgebra of L>°(R) that contains all the
C*-algebras SOy with A € R. In particular, SO° contains C'(R).

(2.1)

Lemma 2.1. Let A € R, a € SOy, and let v:T — R be the homeomorphism given
by v(t) = i(1+t)/(1 —t). Then aovy € SO, (T) where n :=y~1(N).

Proof. First, let A € R and hence n € T\ {1}. Fix § < |p — 1| and put Ts(n) :=
{teT: 0<|t—n| <4} Since v/(n) = 2i/(1 —n)? # 0, we conclude that

v(t)—k' Y(t) = A
t—mn t—mn

0<m:= Iinf

<M := su
teTs(n) P

teTs(n)

' < 00. (2.2)

Then, taking € € (0,0) and setting r := m/(2M) € (0,1) and ¢’ := eM, we infer
from (2.2) by analogy with [3, Lemma 4.2] that if /2 < |t — 5| < € then
mlt —n| < y(t) = Al < M|t = = me/2 < |7(t) = Al < Me
sre <|y(Et) - A <€

Hence v(T./2.(n)) C R%gez (A), which implies that a oy € SO,(T) for every
a € S0,y.

Let now A = co and hence n = 1. Fix § € (0,2). As }m} ((t—=1)y(t)) = 24, we

—

again get

0<m:= mi t—1)y({)| < M := t—1)y(t)| < oo. 2.3
mi= ain |6 Dy@)] < M= max |6 - Dr(®)] <o (23)

Then for €/2 < |t — 1] <& < § we deduce from (2.3) that
mlt — 17 < |y®)| < Mt — 1|7 = me™ < |y(t)| < M2e7!
ere <)l <€,

where r = m/(2M) € (0,1) and & := 2¢~'M. Consequently, ¥(T./2 (1)) C
R,er o (00), which means that a oy € SO (T) if a € SOu. O

Corollary 2.2. For every A € R, the mapping a — ao 8y defined by the homeomor-
phism

Ax—1
x4+ A
is an isometric isomorphism of the C*-algebra SO) onto the C*-algebra SO .

Br: R=R, z+— (2.4)
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Proof. Obviously, the C*-algebras SO, (T) for all n € T are isometrically isomor-
phic. In particular, setting «,,(t) = nt for all ¢ € T, we conclude that the map
a — a o q, is an isomorphism of SO,(T) onto SO;(T). Applying Lemma 2.1, we
infer that the map a — a o 5, where B\ = yoa, oy~ ! (see (2.4)) and X = (),
is an isometric isomorphism SOy — SO, (T) = SO1(T) = SO. O

2.2. Fourier multipliers

Let C™(R) be the set of all n times continuously differentiable functions a : R — C,
and let V(R) be the Banach algebra of all functions a : R — C with finite total
variation

V(a) := sup{zr_:lm(ti) —a(tiz1)]:—oo <ty <t1 < -+ <ty <400, nE N}

where the supremum is taken over all finite partitions of the real line R and the
norm in V(R) is given by |allv = ||a||p~m®) + V(a). As is known (see, e.g., [15,
Chapter 9]), every function a € V(R) has finite one-sided limits at every point
teR.

Let PC be the C*-algebra of all functions on R having finite one-sided limits
at every point ¢t € R. If @ € PC has finite total variation, then a € M, ., for all
p € (1,00) and all w € Ay(R) according to Stechkin’s inequality

llallaz,.. < ISlIBLr @R w) (lallLe®) + V(a)) (2.5)

(see, e.g., [11, Theorem 2.11] and [9]), where the Cauchy singular integral operator
Sk is given by (1.1).

The following result obtained in [18, Corollary 2.10] supply us with another
class of Fourier multipliers in M), ,,.

Theorem 2.3. If a € C3(R\{0}) and || D*a|| 1 (r) < o0 for all k = 0,1,2,3, where
(Da)(z) = xad(z) for x € R, then the convolution operator W°(a) is bounded on

every weighted Lebesgue space LP(R,w) with 1 < p < oo and w € Ap(R), and
llallaz,.., < Cpwmax {HDka”Loo(R) : k=0, 1,2,3} < 0,

where the constant Cp . € (0,00) depends only on p and w.

2.3. Banach algebras SO;,w

For A € R, we consider the commutative Banach algebras
SO3 = {a € SO\NCHR\ {A}) : lim (DSa)(2) = 0, k = 1,2,3}
equipped with the norm
lallsog := max {||DXall @) : k=0,1,2,3},

where (Dya)(z) = (x — A)a’(x) for A € R and (Dya)(z) = zd/(z) if A = co. By
Theorem 2.3, SO} C M,, .. Let SO, ., denote the closure of SO3 in M, ., and
let SO, ,, be the Banach subalgebra of M,, ,, generated by all the algebras SO j «

(A € R). Because M, ,, C My = L>®(R), we conclude that SO, ,, C SO°.
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2.4. Banach algebras PS Oz,w

We denote by Cp.(R) (resp., Cp.w(R), PC, ) the closure in M, ,, of the set of all
functions a € C(R) (resp., a € C(R), a € PC) of finite total variation. Obviously,
Cpw(R), Cpw(R) and PC),, are Banach subalgebras of M, ,,, and

Cpw(R) € C(R), C,.(R)C C(R), PC,, C PC.

Let PSO° be the C*-subalgebra of L>°(R) generated by the C*-algebras SO° and
PC, and let PSO; ,, be the Banach subalgebra of M, ,, generated by the Banach

algebras SO3 ,, and PCy .

p,w

3. The maximal ideal space of the Banach algebra S O;,w

In what follows, let M (A) denote the maximal ideal space of a commutative Ba-
nach algebra A. If C is a Banach subalgebra of A and A € M(C), then the set
Mx(A) :={§ € M(A) : &|lc = A} is called the fiber of M(A) over A. Hence for
every Banach algebra A ¢ L®(R) with M(C(R) N .A) = R and every A € R, the
fiber M (A) denotes the set of all characters (multiplicative linear functionals) of
A that annihilate the set {f € C(R)NA: f(\) = 0}.

Identifying the points A € R with the evaluation functionals 8y on R, & A(f) =
f(\) for f € C(R), we infer that the maximal ideal space M (SO°) of SO° is of
the form

M(S0°) = | MA(S0°) (3.1)
AER
where M, (SO°) := {¢{ € M(SO°) : lomw) = 8} are fibers of M(SO°) over A € R.
Applying Corollary 2.2 and [4, Proposition 5], we infer that for every A € R,
Mx(SO°) = M)(SO»)) = Mso(SOx) = (clossox R) \ R, (3.2)

where clossox R is the weak-star closure of R in SO, the dual space of SOx.
The fiber Mo (SOx) is related to the partial limits of a function a € SOx
at infinity as follows (see [7, Corollary 4.3] and [1, Corollary 3.3]).

Proposition 3.1. If {ax}32, is a countable subset of SOs and £ € Mu(SOs),
then there exists a sequence {g,} C Ry such that g, — 0o as n — oo, and for
every t € R\ {0} and every k € N, lim,,_, o ar(gnt) = &(ag).

Let 1 < p < oo and w € A,(R). For every A € R we consider three unital
commutative Banach algebras with the same unit which are homomorphically
embedded one into another:

SO C SOy pw C SO, (3.3)

To study the relations between their maximal ideal spaces, by analogy with [1]
and [18], we use the following result (see [30, Theorem 3.10]).
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Theorem 3.2. Let B; (i = 1,2,3) be commutative Banach algebras with the same
unit which are homomorphically inclosed one into another, By C By C Bs. Suppose
that By is dense in By and every multiplicative linear functional defined on B;
extends to a multiplicative linear functional on Bs. Then every multiplicative linear
functional on Bs also extends to a multiplicative linear functional on Bs.

Given A € R, we consider the commutative algebra C(IR) N S0O3% c SO3. As
M(C(R) N SO3) =R, we see that for every ¢ € R the set

M(SO3) = {& € M(S03) : f|c(]f§)mso§ =0}
is the fiber of M (SO3) over the point ¢. Then
M(SO}) = | Mi(SO3), (3.4)
teR
where M;(SO3) = {t} for all t € R\ {\}.
Modifying the proof of [4, Proposition 5], we obtain the following.
Lemma 3.3. If A € R, then the fiber Mx(SO3) has the form
My(SO3) = (clos(sos)- (R \ {A1) \ (R\ {A})
where clos oz~ (R\ {\}) is the weak-star closure of R\ {\} in (SO3)*, the dual
space of SO3.
Proof. First, let us prove that
M(S03) C clos(gog)- (R \ {A}). (3-5)
Fix £ € M(SO3). Any (SO3)*-neighborhood of € is of the form
U :=Ua,,...ane(&) = {n € (SO3)* : In(a;) — &(ai)| < e, i=1,...,n},

where £ > 0 and a1,...,a, € SO3. We must show that there is a ¢y € R\ {A\}
such that &z, € U. Put a := |ay — &(a1)| + - - + |an — &(ay)|. According to [13, § 13,
Theorem 1], a € SO3 and then £(a) = 0. Therefore, a is not invertible in SO3
and, hence, there is a sequence {t,} C R\ {A\} such that lim,, . a(t,) = 0. Since
la;(t) — €(a;)| < a(t) for all £ € R\ {\} and each 4, we infer that there exists a
to € R\ {\} such that |a;(to) — £(a;)| < a(to) < & for each i. Thus, &, € U, which
implies (3.5).

It is clear that 6, ¢ My (SO3) for t € R\ {\} because there is a function
be CR)N SO3 such that b(t ) # 0 for t € R\ {\} and b()\) = 0. Therefore, by
(3.5), MA(SO)  (closgsog- (B \ A1) \ (B {A}).

Conversely, let € € (clos(sos (R\ {AH)\ (R\ {\}), let a,b € SO3, and let
€ > 0. Then choose t € R\ {A} so that &; € Uqg p,ap:c(€). We have

|€(ab) — £(a)E(D)] < [€(ab) — a(t)b(t)] + |a(t) = &(a)[[b()] + [£(a)[[b(t) — £(b)]
<e+efb(t)] + [E(a)le.
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Since € > 0 can be chosen arbitrarily, we get £(ab) = £(a)&(b), that is, £ € M (SO
But as £ ¢ R\ {\} = Usern (0 M;(S0O3), we conclude that actually £ € M, (SO

).
).
U

3
A
3
A

Lemma 3.4. If )\ € R, then every multiplicative linear functional defined on SO3
extends to a multiplicative linear functional on SO).

Proof. Fix A € R. Since M;(S03) = {8,} for all t € R\ {\} and the evalua-
tion functionals &, identified with the points ¢ € R\ {A} belong to M(S05), it
remains to prove the existence of the required extensions for the multiplicative
linear functionals £ € M, (SO3).

By Lemma 3.3, every functional £ € M,(SO3) is the limit of a net {t,} C
R\ {)\} that does not converge to functionals ¢ € R\ {\}, that is,

&(a) = ho{n to(a) for every a € SO3,

where t4(a) = a(ts) for a € SO} and t, € R\ {\}. Then, for every a € SO3,
{ta(a)} is a Cauchy net in C, that is, for every € > 0 there exists 7 > 0 such that
lta(a) —tp(a)| < e if a, B = . Given b € SO,, there is a sequence {a,} C SO}
such that lim, . [|[b — an|foc(r) = 0. Then from the relations

[ta(b) = ts(D)] < [ta(b — an)| + [ta(an) = ts(an)| + [t (an — b)]
< b= anllL=®) + ltalan) —tg(an) + |b— anllL®)
it follows that {¢,(b)} is a Cauchy net in C for every b € SO,, and hence this net
converges in C and its limit is unique. N
For each b € SOy, we define £(b) := lim,, to(b). Then £ is a multiplicative lin-

ear functional on SO, (and therefore bounded of norm 1 by [25, Proposition 10.6,
Theorem 10.7]) because

£(bd) = limt, (bd) = lim t, (b) limt, (d) = £(b)E(d) for all b,d € SO,.
Thus, € is a required extension of & € M(SO%) to SO,. O

Note that the proof of Lemma 3.4 in case A = oo improves that in [18,
Lemma 3.3].

Applying (3.3), the density of SO3 in SO, ;. in the norm of M, ,, and
Lemma 3.4, we conclude that for every A\ € R the commutative Banach algebras

By =80, By=SO0spw, Bs=SO,

satisfy the conditions of Theorem 3.2. By Theorem 3.2, every multiplicative lin-
ear functional on SO, p . extends to a multiplicative linear functional on SOy,
and hence M (SO pw) C M(SO,). On the other hand, M(SO,) C M(SOxp )
because SO p.w C SOx. Thus we get the following result.

Lemma 3.5. If 1 <p < oo, w e Ay(R) and X € R, then the mazimal ideal spaces
of SOz p.w and SOy coincide as sets, that is, M(SOx pw) = M(SOs).
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Fix p € (1,00) and w € A,(R). Lemma 3.5 and relations (3.2) imply that

Mx(SO; ) = MA(SOx pw) = MA(SON) = Moo(SOx) (3.6)
for every A € R. Analogously to (3. 1) and (3.4) we obtain
M(80;,,) = | Ma(s0;,, (3.7)
AER

Applying (3.7), (3.6) and (3.1) we arrive at the following result.
Theorem 3.6. If 1 < p < 0o and w € Ay(R), then the mazimal ideal spaces of
SOy ., and SO° coincide as sets, M(SO;, ) = M(SO°).

, W

4. Compactness of commutators of convolution type operators

4.1. SO® and VMO

Let ' € {R, T}. Given a locally integrable function f € L{, (I') and a finite interval
I onT, let |I| denote the length of I and let

>:w%mw

denote the average of f over I. For a > 0, consider the quantities

. 1
Wﬁﬁ@ﬂ/v f)lt,
Mm:mmmnmagmm (4.1)

The function f € L{ (I') is said to have bounded mean oscillation, f € BMO(T),
if || f||« < oco. The space BMO(T) is a Banach space under the norm || ||, provided
that two functions differing by a constant are identified. A function f € BMO(T)
is said to have vanishing mean oscillation, f € VMO(T'), if My(f) = 0. As is well
known (see, e.g., [26]), VMO(T) is a closed subspace of BMO(T).

Consider the homeomorphism ~ : T — R, ~(t) = i(1 +¢)/(1 — t). By [12,
Chapter VI, Corollary 1.3], f € BMO(R) if and only if f oy € BMO(T), and the
norms of these functions are equivalent. On the other hand,

VMO :={foy~': fe VMO(T)} (4.2)

is a proper closed subspace of VMO(R). Since VM O(T) is the closure of C(T) in
BMO(T) (see, e.g., [12, p. 253]), (4.2) implies the following property of VMO.

Proposition 4.1. VMO is the closure in BMO(R) of the set C(R).

Let H® be the closed subalgebra of L>°(R) that consists of all functions being
non-tangential limits on R of bounded analytic functions on the upper half-plane.

Theorem 4.2. The C*-algebra SO° is contained in the C*-algebra QC' of quasi-
continuous functions on R, where

QC := (H® 4+ C(R)) N (H* + C(R)) = VMO N L=(R). (4.3)
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Proof. If a € SOy, then @ := ao~vy € SO1(T) in view of Lemma 2.1. By
[27, Lemma 1] and [22, Lemma A4], every function @ € SO;(T) belongs to the
set VMO(T) N L*>(T). According to [26], VMO(T) N L*>°(T) = QC(T), where
QC(T) := (H>(T) + C(T)) N (H>(T) 4+ C(T)) is the C*-algebra of quasicontin-
uous functions on T, and H>°(T) is the closed subalgebra of L>°(T) consisting of
all functions being non-tangential limits on T of bounded analytic functions on
D:={z € C:|z| < 1}. Thus, @ € QC(T), and therefore a =ao~y~! € QC, where
QC is given by (4.3). Applying (4.3) and Corollary 2.2, we infer that for all A € R
the C*-algebras SOy, and hence SO°, are contained in QC. O

4.2. Compactness of commutators

Given 1 < p < oo and w € Ap(R), we consider the Banach algebra B, ., and its
ideal of compact operators KCp, ,,. In case w = 1 we abbreviate B, 1 and K, 1 to B,
and K, respectively. The notation C,(R), C,(R), PC, and SO, is understood
analogously.

For two algebras A and B contained in a Banach algebra C, we denote by
alg (A, B) the Banach subalgebra of C generated by the algebras A and B.

First we recall two known results on the compactness of commutators.

Lemma 4.3. [11, Lemmas 7.1-7.4] Let 1 < p < 0.
(a) Ifa € PC, be PC,, and a(o0) = b(F£oo) = 0, then aW(b), WO(b)al
€ Kp.
(b) Ifa € C(R) and b € PC,, ora € PC and b € Cp(R), then [al, WO(b)]
eK,.
(c) Ifa € C(R) and b € Cp(R), then [al, WO (b)] € K,,.

Theorem 4.4. [1, Theorem 4.2, Corollary 4.3] If 1 < p < oo and either a €
alg (SOuo, PC) and b € SOup, or a € SO and b € alg (SO, p, PCy), or a €
alg (SOu0, C(R)) and b € alg (SOx p, Cp(R)), then [al, WO(b)] € K,,.

The use of a weighted analogue [16] of the Krasnoselskii theorem [19, The-
orem 3.10] on interpolation of compactness, which follows from the Stein-Weiss
interpolation theorem (see, e.g., [5, Corollary 5.5.4]), leads to the following com-
pactness result.

Lemma 4.5. [16, Corollary 5.3] If a linear operator T is bounded on every weighted
Lebesgue space LP(R,w) (1 < p < oo, w € Ap(R)) and T is compact on the space
L2(R), then T is compact on every space LP(R,w).

Applying the theory of pseudodifferential and Calderén-Zygmund operators
and Theorem 4.2, we establish the following compactness result for weighted
Lebesgue spaces.

Theorem 4.6. Let 1 < p < 0o andw € Ap(R). Ifa € PSO® and b € SO, ,, ora €

pyw?
SO° and b € PSO; ,,, or a € alg(SOx,C(R)) and b € alg (SO p.w, Cp.w(R)),

then the commutator [al, WO(b)] is compact on the space LP(R,w).
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Proof. By definition, PSO; ,, = alg (SO, ,,, PCpw) C My, where SO;w is the
Banach subalgebra of M, ., generated by all the algebras SOx .. (A € R), SOx .1
is the closure of SO} in M, ,, and PC,,, is the closure in M, ,, of the set of
piecewise continuous functions of finite total variation, and hence PC, ., is the
closure in M, ,, of the set of all piecewise constant functions with finite sets of
discontinuities (see, e.g., [11, Remark 2.12]). In addition, C), ,,(R) is the closure of
C(R)NV(R) in M, . Consequently, it is sufficient to prove the compactness of

the commutator [al, WO(b)] in the following four cases for each X, u € R:

1) a € SOy and b € SO3,

2) a € SOy and b(x) = sgn(:c — 1),

3) a(x) = sgn(x — \) and b € SO,

4) a € C(R) and b € C(R) NV (R).
Under these conditions on functions a and b, the commutators [al, WO(b)] are
bounded linear operators on every Lebesgue space LP(R,w) with 1 < p < o
and w € A,(R). Hence, according to Lemma 4.5, it is sufficient to prove the
compactness of the commutator [aI, WO(b)] only on the space L?(R), which implies
its compactness on all the spaces LP(R,w). Thus, in the case of L?(R) we may
replace b € SOz by b € SO,,. Then the case 3) is reduced to the case 2) under the
transform A — FAF L. Indeed, FaF~! = WO(b) and FWO(b)F~* = aI where
b(z) = a(—z) and @ = b. Because the assertion in the case 4) for the space L2(R)
follows from Lemma 4.3(c), it only remains to consider cases 1) and 2).

1) Let a € SOy and b € SO, (A, u € R) If A\ = u = oo, then the compactness
of the commutator [al, W?(b)] follows from Theorem 4.4. Let A € R and p = oco.
In this case we assume without loss of generality that b € SO2,. Then from [18,
Lemma 2.2] it follows that the distribution K = F~!b agrees with a function K (-)
differentiable on R\ {0} and such that

|K(z)] < Aglz|™!,  |K'(2)] < Aylz|™? forall z e R\ {0}, (4.4)
where the constants A, (o =0, 1) are estimated by
A, < Cymax {||Dkb|\Loo(R) : k=0,1,2, 3},

(Db)(z) = zb/(x) for © € R and the constants C,, € (0,00) depend only on «.
Hence K (-) is a classical Calderén-Zygmund kernel, and the convolution operator
WO(b) can be considered as the Calderén-Zygmund operator given by

(Tf)x) = v.p./RK(x —y)f(y)dy for z € R, (4.5)

where T is bounded on every weighted Lebesgue space LP(R, w) with p € (1,00)
and w € Ap(R) (see, e.g., Theorem 2.3). In particular, the second condition in
(4.4) implies that there is a constant Ay € (0, 00) such that

K (z —y) — K(2)| < Aoly|’|2| 770 for |z| = 2]y| > 0, (4.6)
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where 6 € (0,1). Moreover, because the convolution operator W°(b) is bounded
on the space L%(R), we conclude from [29, p. 291, Proposition 2] that

sup ‘/ K(z)dx| < co. (4.7)
r<|z|<R

0<r<R<oo

Since conditions (4.4), (4.6) and (4.7) for the operator T = W°(b) represented in
the form (4.5) are fulfilled, we infer from [14, Theorem 7.5.6] that there exists a
constant C € (0, 00) such that

[[aZ, WO®)]|| 5, < Cllalls (4.8)

for every a € BMO(R), where By = B(L*(R)) and || - ||« is given by (4.1). On
the other hand, by Theorem 4.2, the function a € SO, belongs to the Banach
space VM O. Hence, by Proposition 4.1, for every a € SO, there exists a sequence
{an} € C(R) such that lim, o [|@ — an||« = 0, and therefore, by (4.8),

: 0 0 : 0
nh_)rrgo |laZ, WO(b)] — [and, W (b)]HB2 = nh_)rrgo (@ —an)I,W (())]HB2 =0. (4.9)
But [a,, ], WO(b)] € Ky for all a, € C(R) and b € SO in virtue of Theorem 4.4.
Thus, we deduce from (4.9) that the commutator [al, W°(b)] is compact on the
space L?(R) for every a € SOy and every b € SO, which proves the assertion for
A€ Rand p = 0.

The case A = oo and p € R is reduced to the previous one under the transform
A FAF~L Let now A, € R. Then

[al, WO(b)] = [(a — a(00))I, W° (b — b(c0))], (4.10)

and there exist functions ¢, d € C(R) that vanish at oo and functions @b e L°(R)
such that a — a(co) = ac and b — b(0co) = db. Since the operators ¢cW?(d) and

WO(d)cI are compact on the space L?(R) due to Lemma 4.3(a), we infer from
(4.10) and the equality

[(a — a(00))I, WO (b — b(c0))] = ac WOd)WO(b) — WO(b)WO(d) cal

that [al, W°(b)] € Ky for all A\, u € R, which completes the proof of compactness
of the commutator [al, WO(b)] in case 1).

2) Let now a € SOy and b(z) = sgn(z — u) where A,z € R. Clearly, we
may exclude p = oco. Since a € QC = (H™ + C(R)) N (H* + C(R)) in view of
Theorem 4.2, it immediately follows from the Hartman compactness result (see,
e.g., [8, Theorem 2.18]) that [al, Sr] € K2 (see also [21, Section 4]). Applying then
the equality WO(b) = —e_, Sre, I where e,(z) = e* for p,x € R, we infer that
the commutator [al, W°(b)] = —e_,[al, Srle, ! is compact on the space L*(R),
which completes the proof in case 2). O
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5. Applications of limit operators

Fix w € Ap(R). Then v = logw is a BM O function on R (see, e.g., [12, Chapter 6]).
Hence, from [12, Chapter 6, Theorem 1.2] it follows the existence of two continuous
functions

+oo
vy () = x/ v(g) dr for +z>0. (5.1)
z T
The functions vy are differentiable almost everywhere on Ry = {z : £z > 0}, and
a2 () = vi(z) —v(z) for almost all z € Ry. (5.2)

In what follows we assume that at least one of the functions « — zv/, (z) belongs to
L at a neighborhood Uy C Ry of +oo, respectively. By (5.2), this is equivalent
to the condition

v —v e L®U-) or wvy—wvel®Uy). (5.3)

We say that a weight w is locally equivalent to a weight W at a neighborhood
Uyr of oo if w/W, W/w € L*°(Uy). Thus, in view of (5.2), the weight w =
e’ is locally equivalent to the weight wi = e+ at a neighborhood UL of +oo,
respectively. Therefore, the weights w4 that coincide with w on R\ Ux and with
wyx on Uy, belong to A,(R) along with w, and A € B(LP(R,w)) if and only if
A€ B(LP(R, wy)).

Let ex(z) = € for all A,z € R, and let Uy = W%(e,) is the translation
operator acting by the rule (Uyf)(x) = f(x — A) for x € R. Let SO;, := SO ;. As
usual, for all a € SO° and all £ € M(SO°) we put a(§) := £(a).

Lemma 5.1. If 1 < p < oo, w = e" € A,(R), a € SO°, b € SO, ,,, and (5.3)
holds, then for every & € M (SO®) there is a sequence {hn} C (0,00) such that

hyp — 400 as n — 00, limy, 00 a(hy) = a(§), limy,— o0 b(hy) = b(E), and
. “17\ _ I 01y o—17) —
i—gg (e, (al)ey, I) =al, igg (en, W (bey,, I) =b(&)1, (5.4)
on the space LP (R, w),

s-lim (U_p, Wyawy 'Up,) = a(é)1,
li n;w o, WOb)yw U WO (b (5:9)
s-lim (U_p, w4 WO ()i Un,) = WO(b),

on the space LP(R) if vy —v € L>®(Uy), and

s-lim (U, W_aw”'U_p,) = a(é)1,
n—oo
o1 0 (5.6)
s-lim (Up, w-W°(b)w="U_y, ) = W°(b),

n—oo

on the space LP(R) if v —v € L=(U_).
Proof. By definition (see Subsection 2.3), every function b € SO, is approxi-

p,w
mated in the Banach algebra M, ,, by a sequence of functions b,, = >_ AEF,, b, A

where by, € SOi for all m € N and all \ € R, and F,, are finite subsets of R
that contain co. Hence b, € SO; ,, N SO;.
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Fix £ € Mo (SO®). Since the set {by o € SO3 : m € N} is at most
countable, from Proposition 3.1 it follows that there exists a sequence {h,} C
(0, 00) such that h,, — +00 as n — oo and

E(bm,0o) = li_}rn bm,co(hn) for all m € N. (5.7)

Then we infer from (5.7) and the estimate

z+hy, dt
J e

n

< sup |t o (1)] ‘ln (erhn)‘ (5.8)
lt—hal <] ha
that
E(moe) = T by (4 ) (5.9)

for every z € R and all m € N. Because the functions b,, » are continuous at oo
for all m € N and all A € R, we conclude that for these m and A,

Jim bin A (T + hp) = b (00) = E(by2)- (5.10)
As the limit
b= lim_ > b, (5.11)
XEF,

is uniform in the norm of M, ,,, we deduce from (5.9), (5.10) and (5.11), that for
every x € R,
lim b(z +h,) = lim lm > bya(x + hn)

n— o0 n—00 M—00
AEF,

= lim lim Z b a(x + hy)

M—00 N—00
AEF,

= lim D &(bma) = £0). (5.12)
AeF,,

Moreover, in view of (2.1) one can easily prove that the convergence in (5.12) is
uniform on compacts of R.
On the other hand, on the space L?(R,w) we also have the following:

: 01—\ _ o 1: e ol 0
slim (e, WO(0)e;,)) = s-im WO(b( + h,)) = shm WOb(h,).  (5.13)
Indeed, according to [17, Lemma 2.5] established by analogy with [28, Section 3.2],
for every f € LP(R,w) and every ¢ € L*(R) with [ ¢(z)dz = 1, we have
;1_{% ILf * 0 = fllLr®,w) =0, (5.14)

where ¢.(x) = e tp(z/e), * € R, € > 0. Choosing now rapidly decreasing func-
tions ¢ € S(R) whose Fourier transforms F¢ have compact supports in R, we de-
rive from (5.14) that the set ® of functions in LP(R,w) whose Fourier transforms
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have compact supports in R is dense in LP(R,w). Therefore, for every function
f € @ there is a function ¢ € C*°(R) with a compact support in R such that

(WOLb(- + hn) = b)) f = FHb(- + ) = b(ha) [ F f.
By analogy with (5.12), from (5.11) it follows that

tim | [b(- + n) = b(hn)]¥ |l

n—oo
= lim lim_ AEEF: [ba(- + hn) — bm,A(hn)]wHMw
= lim_lim A; [ba (- + hn) — bm,A(hn)]wHMw

< lim li

~ m—oo Z nl—>ngo
AEF,

In view of Theorem 2.3, we obtain

| (a4 ) = b ()] ]|

P,w

< Cpw | max HDk([b’">*(' +hn) = b (k) [9) HLOO(JR)’

where (Da)(z) = xzd/(z).
Let K := supp %. Since K is a compact subset of R and

lim max |[b (2 + hn) = b (ha)]| = 0,

n—oo xe K

lim max |(D*bu ) (2 + hy)| =0 (k=1,2,3)

n—oo xeK

(see [7, Section 4]), we infer from (5.17) and the relations

D*([bm (- + hn) = bimx(hn)]¥)

k
= Z (IZ) (DV [bm,/\(' + hn) - bm,)\(hn)])(Dk_uw)7

max || D*y| g < 00, and

k=0,1,2,3
Dlbm(@+ ) = brahn)] = (Db )@+ ),
D?[byn A (x + ) = b a(ha)] = (@ f Zn)z (Db ) (2 + hy)
b (Db @+ ),

(x + hn)

[ [bma (- + hn) = s (h) 0], -

(5.15)

(5.16)

(5.17)
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3

D3 [bm,)\(m + hn) - bm,)\(hn)] = (LC -fh )3 (D3bm,)\)(x + hn)
32%h,
(@ hyyp (P P2 )
zh? — 22h,
+ (l‘—f—h )3 (Dbm,/\)(x+hn)a
that
i [ [b A (- + hn) = b ()|, =0 (5.18)

Then from (5.16) and (5.18) it follows that
lim ||[b(- + hn) — b(hn)]¢||,, =0,

n—oo P,w

which together with (5.15) implies (5.13). Hence,
. 0 —1\ _ o1 0 — o _
s-lim (e, WO (b)e;, ) = s-lim WO (b(hn)) = s-limb(hn )T = b(E)].

Thus, we obtain (5.4) because the first equality in (5.4) is evident.

It remains to prove (5.5) because the proof of (5.6) is similar. Since the
weight wy = e+ is equivalent to the weight w = eV at a neighborhood of +oco,
we conclude that the operators waw, 'l and w,WO(b)w;'I for a € SO° and
b € SO; , are bounded on the space LP(R). Because the first equality in (5.5) is
evident, let us prove the second equality there.

First, suppose that b € SO; , N SO;. Because the function z — zv/ (z)

belongs to L>°(U.), we infer by analogy with (5.8) that for all sufficiently large

hp > 0,
w (7))

)

wthn dt
/ !, (1) : ' < ess sup [tv], (t)]
hn teUy

x+hy, dt
lim (/ !, (1) ) =0
n—00 o t

uniformly on compacts of R. Therefore,

slim [ exp (04 (2 + hn) = 04 () I] = s-lim [exp ( /h i+h" ', (t) Cff)f] ~ 1.

which implies that

n—oo n—oo

Consequently, for b € M, N M, we get
1 ~ 0 ~—1 — o v4 (z+hn) 1170 —v4 (z+hy)
%ngé (U_p, w WO (b)w; Uy, ) %ngé (e Wo(b)e I)

= s-lim (exp (v (x + hn) — vp (hn))WO(b) exp (v (hn) — v (2 + hn))I)

= W), (5.19)

which completes the proof of (5.5) for b € SO; ,, N SO;.
For all b € SO, , N SO; from (5.19) it follows that

p,w
||W0(b)HB(LP(]R)) < ||@+W0(b)®;1]||B(LP(]R)) = ||W0(b)HB(LP(]R,7D+))’
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and therefore, for these b,
18122, < (1Dl az

p,wy "

(5.20)

Since every function b € SO; ,, is approximated in the Banach algebra M, ., by

a sequence of functions bn, € SOy, N SOF and since the norms | - |[ag, ,, and

| - Ilas, ., are equivalent, we infer from (5.20) that SO; , C SO for all considered

weights w € A,(R), which implies (5.5) for every b € SO . O

In particular, the proof of Lemma 5.1 gives the following result.

Corollary 5.2. If1 <p < oo and w € Ay(R) satisfies (5.3), then SO; ,, C SO;.

6. Fredholm study of the Banach algebra 2, ,,

Along with the Banach algebra Z), ., C B, ,, given by (1.3), we consider the Banach
subalgebra

Zpw = alg (al, WO(b) : a€ C(R), be Cpu(R)) (6.1)

of Z,., generated by the operators al and WO(b) with a € C(R) and b € C,_,(R).
By analogy with [24, Proposition 5.8.1], we obtain the following.

Lemma 6.1. If1 < p < co and w € A,(R), then the Banach algebra z\p,w contains
the ideal K,y of compact operators in Bp .

Proof. As is well known, every compact operator on the space LP(R,w) can be
uniformly approximated in By, ., by a finite sum of rank one operators of the form

(T@@»:auy/uww@nm (z €R), (6.2)

R

where a € LP(R,w), b € LY(R,w~!) and 1/p + 1/q = 1. Because the set Cy(R)
of continuous functions on R with compact support is dense in LP(R,w) and
Li(R,w~1t), we can take a,b € Co(R) in (6.2). Then there is a number M > 0
such that the set {x — Yy :x € suppa, y € supp b} is contained in the segment
[-M, M]. Choose now a function

1—exp((m—|—M)_3) if ©<—-M,
k(z) =<1 if xe[-M,M],
l—exp(—(z—M)™3) if z> M.

Then (6.2) can be rewritten in the form
(Te)(w) = @) [ bo = 9)blo) ) dy = [aW(Rbe](2) (@ € )

It remains to prove that k € Cp(R) because then T € Z,,, in view of (6.1).
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Obviously, k¥ € C(R) and lim, 4. [z?k(z)] = £1. It is easily seen that
the functions k(x), k’(z), vk(x), 2k’ (x), 2k" () belong to the space L'(R). Hence,
/

k. k' € C(R) and k(c0) = k'(c0) = 0. Moreover,

P (@) = [ 2 hidy
= - /]R 2™ k(y) + yk' (y)ldy
= —i /R e'™ (2K (y) + yk” (y)]dy,

and therefore k' € L'(R), which implies that the function keC (R) is of bounded

total variation. Hence, by (2.5), k € Cp.w(R) for all p € (1,00) and all w €
A, (R). O

By Lemma 6.1, K, C é\p’w C Zpw C Upw, where 2, ,, is given by (1.2).
Then from Theorem 4.6 it follows that the commutative Banach algebra ZJ , =
Zpw/Kpw is a central subalgebra of the Banach algebra 27, = 24, 1 /Kp w-

Theorem 6.2. If 1 < p < o0, w = e” € A,(R), and (5.3) holds with vy given by
(5.1), then the mazimal ideal space M( ) of the algebra 27 is homeomorphic
to the set

0 —<tL€JRMt(SO°) « MOO(SOO)) U (MOO(SOQ) x tLEJRMt(SOO)) 63)

U (MOO(SOO) x MOO(SOO))

U)

equipped with topology induced by the product topology of M(SO°) x M(SO?),
and the Gelfand transform T' : Z7 = — C(S ), A™ — A(-,-) is defined on the
generators A™ = (aW°(b))™ of the algebm where a € SO° and b € SO,

pyw?
by A(&,n) = a(§)b(n) for all (§,n) €
Proof. Note that if J is a maximal ideal of Z

pw7

Z7 ,, then
Jn{al + Kpw:a€SO°} and JNclos{W(b) + Ky : b€ SO, }
are maximal ideals of the commutative Banach algebras
{aI + Kpw:a€ SO} and clos{W°(b) + Kp : b€ SOS,, }, (6.4)
respectively (see [10, Lemma 1.33]). Therefore, taking into account the relations
M ({al + Kpw : a € SO°}) = M(SO°),
M (clos{W°(b) + Kp.w : b € SO5 ,}) = M(SO5,,),

and the fact that M(SO; ,) = M(SO°) due to Theorem 3.6, we conclude that
for every point (§,n) € M(SO®) x M(SO®) there exists the closed two-sided
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(not necessarily maximal) ideal Ig . of the Banach algebra Z7,, generated by the
maximal ideals

{aI—l—le,u, :ae SO°% {(a) = O} and

6.5
clos{Wo(b)—f—ICp}w : be SO, ,, n(b) = 0} (0

of the commutative Banach algebras (6.4), respectively. Thus, by virtue of (3.1),
the maximal ideal space of Z7,  can be identified with a subset of

M(SO°) x M(SO°)

:<UA@@oﬂuM@w0ﬁ)x(UA@@OﬂUM@@O%)
teR teR
Fix (€,1) € Uper Me(SO°) x Uy Mi(SO°). Given a € SO° and b € SO,

choose functions a; € C(R) and by € C,.,,(R) such that a(&) = a1(€), b(n) = bi(n),
and aj(o0) = b1(00) = 0. Then

aWo(b) =T, + Ty + T3 (6.6)

where
T1 = (a — al)WO(b), T2 = alWo(b — bl), T3 = alWo(bl).

The operator T3 is compact by Lemma 4.3(a), and the cosets T7", T belong to the
ideal I, e Thus, the smallest closed two-sided ideal of Z7, which corresponds to
the point (§,71) € U,cr M(SO®) xJyer Mi(SO°) commdes with the whole algebra
Z] - So, the maximal ideals of the algebra Z] , can only correspond to points
(&,n) € Q, where Q is given by (6.3).

It remains to show that for all (§,7) € €, the closed two-sided ideals 77
generated by the maximal ideals (6.5) are maximal ideals of the commutative
Banach algebra Z7

paw:*
First, let us prove that these ideals are proper. To this end we need to show

that for all (§,m) € €2 the ideals Z7, do not contain the coset I™ = I + Kj .
Clearly, the ideals Z7  are closures i 1n B’T = B} ./ Kpw of the sets

{ Sl Az + 3 [WO(bmn”B:;} (6.7)

n=1 m=1
where a,, € SO°, {(an) =0, by, € SO; ), N(bm) =0, and Ay, By, € 2 4.
Given t € R, let (£,1) € M;(SO°) x My (SO®). Assume that I™ € Iz,
Hence, by (6.7), there is a sequence of operators of the form

Ny, My,
Cio =3 tngAng + 3 WOlbm k) B (6.8)
n=1 m=1

with An,k € SO° f(ank) =0, bmk S SO ) n(bmk) =0 and Ank, m,k € pr,
and there is a sequence of compact operators Ky € Ky such that Cf € 1z,
and limg_,o0 ||Cr + K — I|| = 0. Since for every n € My (SO®) and every



204 Yu.l. Karlovich and I. Loreto Hernandez

countable set {by} C SOy, there is a sequence h, — +oo in R such that
lim, 00 bi(z 4+ hy) = n(by) for all x € R (see [7, Corollary 4.3]), we conclude
that there exists a sequence {h,} C R4 such that lim,_,. h, = 400 and, for all
m=1,2,...,My and all ¥ € N, lim,_,c b x(h,) = 0 and therefore, by (5.4) in
Lemma 5.1, s-lim, o0 (thWO(bmk)e_hVI) = 0. Moreover, from (6.8), the alge-
braic properties of limit operators (see [7, Proposition 6.1]) and [17, Lemma 3.8]
it follows that we can choose the sequence {h,} in such a way that there exists
the strong limit

Ny,
Cy = E—Eg} (ehu (Ck + Kk)e_h,/[) = Z:l an,kAmk € Bp,w,

where gn,k = an,kl and an, € SO°. Hence, limy_, oo ék = I, which is impossible
because the operators C belong to the maximal ideal {aI :a€S0° &a) = 0}
of the C*-algebra {aI D a€ SOO}.

Given t € R, let now (&,7n) € Mo (SO®) x M(SO°), and we again assume
that I™ € I, . For definiteness, suppose that vy —v € L>(U4) in (5.3). Then
analogously to the previous case there exists a sequence of operators Cy of the
form (6.8), where an i € SO°, {(ank) = 0, by € SOy, N(bmx) = 0 and
Ak, B,k € Zpw, and there exists a sequence of compact operators Kj, € KCp
such that CJ € 17, and limy_, o ||Cr + K — I|| = 0. Consequently, on the space
LP(R) we get

Ny, M,
klggo <nz=:1 an,k’w+An,k’w+1I + mzzjl w+W0(bm,k)Bm,kw+1I + w+ka+1I> =1,
where w is the weight constructed in Section 5 and equivalent to the weight w at
a neighborhood U of +00. Since for every £ € My (SO®) and every countable set
{ar} C SO° there is a sequence h, — +oo in R such that lim, o ar(x + h,) =
&(ag) for all x € R (see [7, Corollary 4.3]), we conclude that there exists a sequence
{h,} C Ry such that lim,_,. h, = 400 and for all n = 1,2,..., Ny and all
k € N, limy,_ o0 anx(hy) = 0 and therefore s-lim, oo (U_p, an xUn,) = 0, where
Un, = W%(ep, ) is a translation operator. Because the function z — 2v/, (x) belongs
to L*°(U4.), we infer from (5.5) in Lemma 5.1 that

lS/—nggl (U_hqurWo(bm,k)@;thV) = Wo(bymk).
Using then (6.8), the algebraic properties of limit operators (see [7, Proposi-
tion 6.1]) and [8, Lemma 18.9], we can choose the sequence {h,} in such a way
that there exists the strong limit

My,
Cp = IS/—BQ (U_hl,@_;,_(ck —+ Kk)’wjrthy) = Z Wo(bm,k)Bm,k S Bp,

m=1
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where Emk = WO(Bmtk) and Em,k € S0;,, C SO, for considered weights w.
Hence, limy_, ék = [ in the norm of B,, which is impossible because the oper-
ators Cj, belong to the maximal ideal clos{W°(b) : be SO, n(b) =0} of the
Banach algebra clos{W°(b) : be SO3,,}.

Thus, for all (,7) € Q the ideals Igm do not contain the unit coset I™, and
hence these ideals are proper. Suppose, contrary to our claim on the maximality
of the ideal IZ,, that for a point (£,n) € Q there is a proper closed two-sided ideal
fg , of the algebra Z7, that properly contains the ideal Z¢ . Then there is a coset
AT e Z],

(@)™ = (a(&)W° (b(n)))"™ = (aW®(b))™ — (a(§)b(n)I)™ € IF,, (6.9)
for all @ € SO°® and all b € SO°

p,w?

number ¢ # 0 such that A™ — (cI)™ € I}, . Hence (cI)™ € fgn because A™ € fgn
and If  C fgr ,- But the coset (cI)™ is invertible in the algebra Z7 ,, which implies

that the ideal Z7, coincides with the whole algebra Z7,,. Thus the ideal fgn is
not proper, a contradiction. Consequently, all the ideals Z7, for (&n) € Q are
maximal, and therefore M (2] ) can be identified with Q given by (6.3).
Furthermore, by (6.9), the value of the Gelfand transform of the coset A™ =
(aWO(b))™ at a point (&,7) € Q equals a(€)b(n) for each choice of a € SO° and
b€ SO, . This defines the Gelfand transform for the whole algebra Z7 O

p,w "

which belongs to fgn \ Z{ - Since in view of (6.6),

and since A™ ¢ IF . there exists a complex

Corollary 6.3. If 1 <p < oo, w=e" € A,(R), and (5.3) holds, then the operator
A € Z, ., is Fredholm on the space LP(R,w) if and only if the Gelfand transform
of the coset A™ is invertible, that is, if A(&,n) # 0 for all (§,1n) € Q.

Since Z] ,, is a central subalgebra of the Banach algebra 217 ,, applying the
Allan-Douglas local principle (see, e.g., [10]) and the two idempotents theorem
(see, e.g., [6]), one can construct a Fredholm theory for the Banach algebra 2, .,
(cf. [1]-]2]). We will consider this question in a forthcoming paper.

References

[1] M.A. Bastos, A. Bravo, and Yu.I. Karlovich, Convolution type operators with symbols
generated by slowly oscillating and piecewise continuous matrixz functions. Operator
Theory: Advances and Applications 147 (2004), 151-174.

[2] M.A. Bastos, A. Bravo, and Yu.I. Karlovich, Symbol calculus and Fredholmness for

a Banach algebra of convolution type operators with slowly oscillating and piecewise
continuous data. Math. Nachr. 269-270 (2004), 11-38.

[3] M.A. Bastos, C.A. Fernandes, and Yu.l. Karlovich, C*-algebras of integral operators
with piecewise slowly oscillating coefficients and shifts acting freely. Integral Equa-
tions and Operator Theory 55 (2006), 19-67.



206 Yu.l. Karlovich and I. Loreto Hernandez

[4] M.A. Bastos, Yu.l. Karlovich, and B. Silbermann, Toeplitz operators with symbols
generated by slowly oscillating and semi-almost periodic matriz functions. Proc. Lon-
don Math. Soc. (3) 89 (2004), 697-737.

[5] J. Bergh and J. Lofstrom, Interpolation Spaces. An Introduction. Springer, Berlin,
1976.

[6] A. Bottcher and Yu.l. Karlovich, Carleson Curves, Muckenhoupt Weights, and
Toeplitz Operators. Progress in Mathematics 154, Birkh&user, Basel, 1997.

[7] A. Bottcher, Yu.l. Karlovich, and V.S. Rabinovich, The method of limit operators for
one-dimensional singular integrals with slowly oscillating data. J. Operator Theory
43 (2000), 171-198.

[8] A. Bétcher, Yu.l. Karlovich, and I.M. Spitkovsky, Convolution Operators and Fac-
torization of Almost Periodic Matriz Functions. Operator Theory: Advances and
Applications 131, Birkhauser, Basel, 2002.

[9] A. Botcher and I.M. Spitkovsky, Wiener-Hopf integral operators with PC symbols
on spaces with Muckenhoupt weight. Revista Matemadtica Iberoamericana 9 (1993),
257-279.

[10] A. Bottcher and B. Silbermann, Analysis of Toeplitz Operators. 2nd edition, Springer,
Berlin, 2006.

[11] R.V. Duduchava, Integral Equations with Fized Singularities. Teubner, Leipzig, 1979.

[12] J.B. Garnett, Bounded Analytic Functions. Academic Press, New York, 1981.

[13] I.M. Gelfand, D.A. Raikov, and G.E. Shilov, Commutative Normed Rings. Fizmatgiz,
Moscow, 1960 (Russian); English transl.: Chelsea, New York, 1964.

[14] L. Grafakos, Classical and Modern Fourier Analysis. Pearson/Prentice Hall, Upper
Saddle River, NJ, 2004.

[15] N.B. Haaser and J.A. Sullivan, Real Analysis. Dover Publications, New York, 1991.

[16] Yu.l. Karlovich, Boundedness and compactness of pseudodifferential operators with

non-reqular symbols on weighted Lebesgue spaces, Integral Equations and Operator
Theory 73 (2012), 217-254.

[17] Yu.l. Karlovich and J. Loreto Hernandez, Wiener-Hopf operators with semi-almost
periodic matrix symbols on weighted Lebesgue spaces. Integral Equations and Oper-
ator Theory 62 (2008), 85-128.

[18] Yu.l. Karlovich and J. Loreto Herndndez, Wiener-Hopf operators with slowly oscil-
lating matriz symbols on weighted Lebesgue spaces. Integral Equations and Operator
Theory 64 (2009), 203-237.

[19] M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik, and P.E. Sobolevskii, Integral Op-
erators in Spaces of Summable Functions. Nauka, Moscow, 1966 (Russian); English
transl.: Noordhoff I.P., Leyden, 1976.

[20] B.V. Lange and V.S. Rabinovich, Pseudo-differential operators on R™ and limit op-
erators. Math. USSR, Sb. 57 (1987), 183-194.

[21] S.C. Power, Fredholm Toeplitz operators and slow oscillation. Can. J. Math. 32
(1980), 1058-1071.

[22] S.C. Power, Hankel Operators on Hilbert Space. Pitman Research Notes in Math. 64,
Pitman, Boston, 1982.



Convolution Type Operators with PSO® Data 207

[23] V.S. Rabinovich, S. Roch, and B. Silbermann, Limit Operators and Their Ap-
plications in Operator Theory. Operator Theory: Advances and Applications 150,
Birkh&user, Basel, 2004.

[24] S. Roch, P.A. Santos, and B. Silbermann, Non-commutative Gelfand Theories. A
Tool-kit for Operator Theorists and Numerical Analysts. Springer, London, 2011.

[25] W. Rudin, Functional Analysis. 2nd edition, McGraw-Hill Inc., New York, 1991.

[26] D. Sarason, Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207
(1975), 391-405.

[27] D. Sarason, Toeplitz operators with piecewise quasicontinuous symbols. Indiana Univ.
Math. J. 26 (1977), 817-838.

[28] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Prince-
ton Univ. Press, Princeton, NJ, 1970.

[29] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilla-
tory Integrals. Princeton Univ. Press, Princeton, NJ, 1993.

[30] I.B. Simonenko and Chin Ngok Min, Local Method in the Theory of One-Dimensional
Singular Integral Equations with Piecewise Continuous Coefficients. Noetherity. Ros-
tov Univ. Press, Rostov on Don, 1986 (Russian).

Yuri I. Karlovich

Facultad de Ciencias

Universidad Auténoma del Estado de Morelos
Av. Universidad 1001, Col. Chamilpa

C.P. 62209 Cuernavaca, Morelos, México
e-mail: karlovich@uaem.mx

Ivan Loreto Herndndez

Instituto de Matematicas

Universidad Nacional Auténoma de México
Av. Universidad s/n, Col. Lomas de Chamilpa
C.P. 62210 Cuernavaca, Morelos, México
e-mail: ivan@matcuer.unam.mx


mailto:karlovich@uaem.mx
mailto:ivan@matcuer.unam.mx

Operator Theory:
Advances and Applications, Vol. 228, 209-238
(© 2013 Springer Basel

Transmutations and Spectral Parameter
Power Series in Eigenvalue Problems

Vladislav V. Kravchenko and Sergii M. Torba

Dedicated to 70th birthday anniversary of Prof. Dr. Viadimir S. Rabinovich.

Abstract. We give an overview of recent developments in Sturm-Liouville the-
ory concerning operators of transmutation (transformation) and spectral pa-
rameter power series (SPPS). The possibility to write down the dispersion
(characteristic) equations corresponding to a variety of spectral problems re-
lated to Sturm-Liouville equations in an analytic form is an attractive feature
of the SPPS method. It is based on a computation of certain systems of recur-
sive integrals. Considered as families of functions these systems are complete
in the Lo-space and result to be the images of the nonnegative integer powers
of the independent variable under the action of a corresponding transmuta-
tion operator. This recently revealed property of the Delsarte transmutations
opens the way to apply the transmutation operator even when its integral
kernel is unknown and gives the possibility to obtain further interesting prop-
erties concerning the Darboux transformed Schrédinger operators.

We introduce the systems of recursive integrals and the SPPS approach,
explain some of its applications to spectral problems with numerical illus-
trations, give the definition and basic properties of transmutation operators,
introduce a parametrized family of transmutation operators, study their map-
ping properties and construct the transmutation operators for Darboux trans-
formed Schrédinger operators.
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1. Introduction

Transmutation operators also called operators of transformation are a widely used
tool in the theory of linear differential equations (see, e.g., [3], [10], [49], [51], [63]
and the recent review [61]). It is well known that under certain quite general con-

ditions the transmutation operator transmuting the operator A = — d‘fQ +q(x) into
2
B=- di? is a Volterra integral operator with good properties. Its integral kernel

can be obtained as a solution of a certain Goursat problem for the Klein-Gordon
equation with a variable coefficient. In particular, the elementary solutions of the
equation Bv = \v are transformed into the solutions of the equation Au = Au. If
the integral kernel of the transmutation operator is unknown, and usually this is
the case, there is no way to apply it to an arbitrary smooth function. This obsta-
cle strongly restricts the application of the transmutation operators confining it
to purely theoretical purposes.

Recently, in [9] a relation of the transmutation operators with another funda-
mental object of the Sturm-Liouville theory was revealed. Sometimes this object
is called the L-basis [24] where L refers to a corresponding linear ordinary differ-
ential operator. The L-basis is an infinite family of functions {¢y},-, such that
Lo =0 for k = 0,1, Loy, = k(k — 1)pg—2, for k = 2,3,... and all @), satisfy
certain prescribed initial conditions. In [41], [42], [45] it was shown that the L-
basis naturally arises in a representation of the solutions of the Sturm-Liouville
equation in terms of powers of the spectral parameter. The approach based on
such representation is called the spectral parameter power series (SPPS) method.
The functions ¢y which constitute the L-basis appear as the expansion coefficients
in the SPPS. In [41], [42] and [45] convenient representations for their practical
computation were proposed which converted the SPPS method into an efficient
and highly competitive technique for solving a variety of spectral and scattering
problems related to Sturm-Liouville equations (see [12], [13], [37], [39], [45], [47]).
The above-mentioned relation between the transmutation operators and the func-
tions ¢y, called in the present paper the recursive integrals consists in the fact
established in [9] that for every system {¢y},-, there exists a transmutation op-
erator T such that T[z¥] = ¢y, i.e., the functions j, are the images of the usual
powers of the independent variable. Moreover, it was shown how this operator can
be constructed and how it is related to the “canonical” transformation operator
considered, e.g., in [51, Chapter 1]. This result together with the practical formu-
las for calculating the functions ) makes it possible to apply the transmutation
technique even when the integral kernel of the operator is unknown. Indeed, now
it is easy to apply the transmutation operator to any function approximated by a
polynomial.

Deeper understanding of the mapping properties of the transmutation oper-
ators led us in [46] to the explicit construction of the transmutation operator for
a Darboux transformed Schrédinger operator by a known transmutation operator
for the original Schrodinger operator as well as to several interesting relations be-
tween the two transmutation operators. These relations also allowed us to prove
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the main theorem on the transmutation operators under a weaker condition than
it was known before (not requiring the continuous differentiablity of the potential
in the Schrédinger operator).

In the present paper we overview the recent results related to the SPPS
approach explaining and illustrating its main advantage, the possibility to write
down in an analytic form the characteristic equation of the spectral problem.
This equation can be approximated in different ways, and its solutions give us
the eigenvalues of the problem. In other words the eigenvalue problem reduces to
computation of zeros of a certain complex analytic function given by its Taylor
series whose coefficients are obtained as simple linear combinations of the values
of the functions ¢y, at a given point. We discuss different applications of the SPPS
method and give the results of some comparative numerical calculations.

Following [9] and [46] we introduce a parametrized family of transmutation
operators and study their mapping properties,we give an explicit representation
for the kernel of the transmutation operator corresponding to the Darboux trans-
formed potential in terms of the transmutation kernel for its superpartner (Theo-
rem 6.2). Moreover, this result leads to interesting commutation relations between
the two transmutation operators (Corollary 6.6) which in their turn allow us to ob-
tain a transmutation operator for the one-dimensional Dirac system with a scalar
potential as well as to prove the main property of the transmutation operator un-
der less restrictive conditions than it has been proved until now. We give several
examples of explicitly constructed kernels of transmutation operators. It is worth
mentioning that in the literature there are very few explicit examples and even in
the case when ¢ is a constant such kernel was presented recently in [9]. The results
discussed in the present paper allow us to enlarge considerably the list of avail-
able examples and give a relatively simple tool for constructing Darboux related
sequences of the transmutation kernels.

2. Recursive integrals: a question on the completeness

Let f € C?*(a,b) N Cta,b] be a complex-valued function and f(x) # 0 for any
x € [a,b]. The interval (a,b) is assumed being finite. Let us consider the following
functions

XO2) =1, XM (z) = n/ X(=D(s) (fQ(s))(_l)" ds,
" zo€lab], n=1,2,.... (21)
We pose the following questions. Is the family of functions {X (m) }ZOZO com-
plete let us say in L2(a,b)? What about the completeness of {X (2")}:;0 or
{X(2n+1)}°° o?
n=—

The following example shows that both questions are meaningful and natural.

Example 2.1. Let f =1, a =0, b= 1. Then it is easy to see that choosing zo = 0
we have XO(z) =1, XW(z) = 2, X@®(z) = 22, XO)(z) = 23,.... Thus, the
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family of functions {X(") }20:0 is complete in Ls(0,1). Moreover, both {X(Z”)}:ozo
and {X(Q”“)}ZOZO are complete in Ly(0,1) as well.

If instead of a = 0 we choose a = —1 then {X(")}ZOZO is still complete in
L(—1,1) but neither { X(™ 1> nor {X@n+1}>

Together with the family of functions {X (”)}:ozo we consider also another
oo

similarly defined family of functions {)? (n) } ne0’

~ ~ X —~ _ n—1
XO=1, XO@=n [ X006 (7)) as
Zo

xo € [a,b], n=1,2,.... (2.2)

Remark 2.2. As we show below the introduced families of functions are closely
related to the one-dimensional Schrodinger equations of the form u” — qu = Au
where ¢ is a complex-valued continuous function. Slightly more general families
of functions can be studied in relation to Sturm-Liouville equations of the form
(py’) + qy = Ary. Their definition based on a corresponding recursive integration
procedure is given in [42], [45], [37].

We introduce the infinite system of functions {¢},-, defined as follows

x (k):C (6]
Nx):{ﬂ )X® (@), k odd,

f(x))?(k) (), k even. (2.3)

The system (2.3) is closely related to the notion of the L-basis introduced
and studied in [24]. Here the letter L corresponds to a linear ordinary differential
operator.

Together with the system of functions (2.3) we define the functions {1 }72
using the “second half” of the recursive integrals (2.1) and (2.2),

XUQ)(CE), k odd,
Ui(z) = Xffk)x(x) (2.4)
f@) k even.

The following result obtained in [41] (for additional details and simpler proof see
[42] and [45]) establishes the relation of the system of functions {¢x},, and
{¥r}3—o to the Sturm-Liouville equation.

Theorem 2.3 ([41]). Let g be a continuous complez-valued function of an indepen-
dent real variable x € [a,b] and \ be an arbitrary complex number. Suppose there
exists a solution f of the equation

" =af=0 (2.5)
on (a,b) such that f € C?(a,b) N C'la,b] and f(z) # 0 for any z € [a,b]. Then
the general solution u € C?(a,b) N C*a,b] of the equation

u —qu=\u (2.6)
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on (a,b) has the form
U = Clul + CoUs
where ¢1 and co are arbitrary complex constants,
u; = and Uy = 2.7
1 I;)(Zk:)!%k 2 1;)(2k+1)!<p2k+1 (2.7)
and both series converge uniformly on [a,b] together with the series of the first
derivatives which have the form
e P ( f/

uy :f/+z (2k)! f¢2k+2k¢2k1> and
k=1

0o )\k !
"= kz:;) (2k + 1)! (J; Prk1 (264 1) m) - 28

The series of the second derivatives converge uniformly on any segment [a1,b1] C
(a,b).

The representation (2.7) offers the linearly independent solutions of (2.6) in
the form of spectral parameter power series (SPPS). The possibility to represent
solutions of the Sturm-Liouville equation in such form is by no means a novelty,
though it is not a widely used tool (in fact, besides the work reviewed below and in
[37] we are able to mention only [4, Sect. 10], [23] and the recent paper [40]) and to
our best knowledge for the first time it was applied for solving spectral problems in
[45]. The reason of this underuse of the SPPS lies in the form in which the expan-
sion coeflicients were sought. Indeed, in previous works the calculation of coeffi-
cients was proposed in terms of successive integrals with the kernels in the form of
iterated Green functions (see [4, Sect. 10]). This makes any computation based on
such representation difficult, less practical and even proofs of the most basic results
like, e.g., the uniform convergence of the spectral parameter power series for any
value of A € C (established in Theorem 2.3) are not an easy task. For example, in [4,
p. 16] the parameter X is assumed to be small and no proof of convergence is given.

The way of how the expansion coefficients in (2.7) are calculated according
to (2.1), (2.2) is relatively simple and straightforward, this is why the estimation
of the rate of convergence of the series (2.7) presents no difficulty, see [45]. More-
over, in [7] a discrete analogue of Theorem 2.3 was established and the discrete
analogues of the series (2.7) resulted to be finite sums.

Another crucial feature of the introduced representation of the expansion
coefficients in (2.7) consists in the fact that not only these coefficients (denoted
by ¢ in (2.3)) are required for solving different spectral problems related to the
Sturm-Liouville equation. Indeed, the functions X 2*+1) and X%k =0,1,2,...
do not participate explicitly in the representation (2.7). Nevertheless, together
with the functions @y they appear in the representation (2.8) of the derivatives of
the solutions and therefore also in characteristic equations corresponding to the
spectral problems.
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In the present work we also overview another approach developed in [43], [8],
[9] and [46] where the formal powers (2.1) and (2.2) were considered as infinite fam-
ilies of functions intimately related to the corresponding Sturm-Liouville operator.
As we show this leads to a deeper understanding of the transmutation operators
[3], [10] also known as transformation operators [49], [51]. Indeed, the functions
¢k () result to be the images of the powers z* under the action of a correspond-
ing transmutation operator [9]. This makes it possible to apply the transmutation
operator even when the operator itself is unknown (and this is the usual situation
— very few explicit examples are available) due to the fact that its action on every
polynomial is known. This result was used in [8] and [9] to prove the completeness
(Runge-type approximation theorems) for families of solutions of two-dimensional
Schrédinger and Dirac equations with variable complex-valued coefficients.

Remark 2.4. Tt is easy to see that by definition the solutions u; and wug from (2.7)
satisfy the following initial conditions

uy(xo) = f(x0), u (z0) = f'(wo),
UQ(JU()) =0, ué(mo) = 1/f($0)-

Remark 2.5. It is worth mentioning that in the regular case the existence and
construction of the required f presents no difficulty. Let ¢ be real valued and
continuous on [a, b]. Then (2.5) possesses two linearly independent regular solutions
v1 and vo whose zeros alternate. Thus one may choose f = vy + ivy. Moreover, for
the construction of v; and vs in fact the same SPPS method may be used [45].

Theorem 2.3 together with the results on the completeness of Sturm-Liouville
eigenfunctions and generalized eigenfunctions [51] implies the validity of the follow-
ing two statements. For their detailed proofs we refer to [43] and [44] respectively.

Theorem 2.6 ([43]). Let (a,b) be a finite interval and f € C*(a,b) N C*a,b] be a
complez-valued function such that f(z) # 0 for any x € [a, b].

If zy = a (or xy = b) then each of the four systems of functions {X(Q")}SO,
{X(Q”“)}go, {)?(2")};0, {)?(2”“)};0 is complete in Lo(a,b).

If xg is an arbitrary point of the interval (a,b) then each of the following two
combined systems of functions {)?(2")}:3:0 U {X(Z”“)}ZO:O and {)?(2"“)}:):0 U
{X(Z”)}:ozo is complete in La(a,b).

Theorem 2.7 ([44]). Let f satisfy the conditions of the preceding theorem and
{er}iey be the system of functions defined by (2.3) with zo being an arbitrary
point of the interval [a,b]. Then for any complex-valued continuous, piecewise con-
tinuously differentiable function h defined on [a,b] and for any e > 0 there exists
such N € N and such complex numbers oy, k =0,1,..., N that

N
max_|h(z) — Zakgok(x) <e.
z€[a,b] o
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3. Dispersion relations for spectral problems and
approximate solutions

The SPPS representation (2.7) for solutions of the Sturm-Liouville equation (2.6)
is very convenient for writing down the dispersion (characteristic) relations in an
analytical form. This fact was used in [13], [37], [39], [45], [47] for approximat-
ing solutions of different eigenvalue problems. Here in order to explain this we
consider two examples: the Sturm-Liouville problem and the quantum-mechanical
eigenvalue problem. As the performance of the SPPS method in application to
classical (regular and singular) Sturm-Liouville problems was studied in detail
in [45] here we consider the Sturm-Liouville problems with boundary conditions
which depend on the spectral parameter . This situation occurs in many physical
models (see, e.g., [5, 14, 19, 20, 27, 64] and references therein) and is considerably
more difficult from the computational point of view. Moreover, as we show in this
section the SPPS method is applicable to models admitting complex eigenvalues —
an important advantage in comparison with the best purely numerical techniques
all of them being based on the shooting method.

Consider the equation u” — qu = Au together with the boundary conditions

u(a) cosa + u'(a) sina = 0, (3.1)

Bru(b) — Bau' (b) = ¢(A) (Biu(b) — By’ (b)), (3:2)

where « is an arbitrary complex number, ¢ is a complex-valued function of the
variable A and B1, B2, 51, 8% are complex numbers. For some special forms of the
function ¢ such as ¢(\) = X or ¢(A\) = A2 +c1 A+ ca, results were obtained [19], [64]
concerning the regularity of the problem; we will not dwell upon the details. Notice
that the SPPS approach is applicable as well to a more general Sturm-Liouville
equation (pu')’ + qu = Aru. For the corresponding details we refer to [37] and [45].

For simplicity, let us suppose that @ = 0 and hence the condition (3.1)
becomes u(a) = 0. Then choosing the initial integration point in (2.1) and (2.2)
as o = a and taking into account Remark 2.4 we obtain that if an eigenfunction
exists it necessarily coincides with us up to a multiplicative constant. In this case
condition (3.2) becomes equivalent to the equality [45], [37]

/ S 1 $2(N) o~ A _

(3.3)
where ¢1 2(A) = B12 — 6{}2¢(/\). This is the characteristic equation of the consid-
ered spectral problem. Calculation of eigenvalues given by (3.3) is especially simple
in the case of ¢ being a polynomial of A. Precisely this particular situation was
considered in all of the above-mentioned references concerning Sturm-Liouville
problems with spectral parameter dependent boundary conditions. In any case
the knowledge of an explicit characteristic equation (3.3) for the spectral prob-
lem makes possible its accurate and efficient solution. For this the infinite sums
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in (3.3) are truncated after a certain N € N. The paper [45] contains several nu-
merical tests corresponding to a variety of computationally difficult problems. All
they reveal an excellent performance of the SPPS method. We do not review them
here referring the interested reader to [45]. Instead we consider another interesting
example from [37], a Sturm-Liouville problem admitting complex eigenvalues.

Ezample 3.1. Consider the equation (2.6) with ¢ = 0 on the interval (0,7) with
the boundary conditions u(0) = 0 and u(w) = —A?u(w). The exact eigenvalues of
the problem are )\, = n? together with the purely imaginary numbers Ay = =i.
Application of the SPPS method with N = 100 and 3000 interpolating points
(used for representing the integrands as splines) delivered the following results
A1 = 1, A2 = 4.0000000000007, Az = 9.00000000001, Ay = 15.99999999996,
As = 25.000000002, A\¢ = 35.99999997, A\; = 49.0000004, As = 63.9999994,
Ag = 80.9996, A\;p = 100.02 and AL = =i. Thus, the complex eigenvalues are
as easily and accurately detected by the SPPS method as the real eigenvalues.
Note that for a better accuracy in calculation of higher eigenvalues of a Sturm-
Liouville problem an additional simple shifting procedure described in [45] and
based on the representation of solutions not as series in powers of A but in powers
of (A — Xg) is helpful. We did not apply it here and hence the accuracy of the cal-
culated value of A1 is considerably worse than the accuracy of the first calculated
eigenvalues which in general can be improved by means of the mentioned shifting
procedure.

Figures 1-3 give us an idea about the stability of the computed eigenval-
ues when N increases. In Figure 1 we plot A\; and Ay computed with N =
14,16, ...,120. Figure 2 shows A3 computed with N = 24,30,...,140 and Fig-
ure 3 shows A4 computed with N = 40,50,...,140 Similar plots can be done
for calculated higher eigenvalues. In all cases the computed eigenvalues reveal a
remarkable stability when IV increases.

An attractive feature of the SPPS method is the possibility to easily plot the
characteristic relation. In Figure 4 we show the absolute value of the expression
from the left-hand side of (3.3) as a function of the complex variable A for the
considered example. Its zeros coincide with the eigenvalues of the problem. It is
important to mention that such plot is obtained in a fraction of a second. This is
due to the fact that once the required formal powers X (™ are computed (and this
takes several seconds) the calculation of the characteristic relation involves only
simple algebraic operations.

Let us consider the one-dimensional Schrodinger equation

Hu(z) = —u"(z) + Q(z)u(x) = Mu(z), = €R, (3.4)
where
aq, x <0,
Qlz)=q4q(@), 0<a<h, (35)

g, x> h,
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FIGURE 1. The approximate eigenvalues A; and As from Example 3.1
computed using different number N of formal powers.
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FI1GURE 2. The approximate values of A3 from Example 3.1 computed
using different number N of formal powers.
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F1GURE 3. The approximate values of Ay from Example 3.1 computed
using different number IV of formal powers.

FI1GURE 4. The absolute value of the expression from the left-hand side
of (3.3) as a function of the complex variable A for the considered exam-
ple. With the arrows we indicate the calculated complex eigenvalues A\ .
The other zeros of the graph correspond to the first five real eigenvalues
of the problem.
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a1 and ao are complex constants and ¢ is a continuous complex-valued function
defined on the segment [0, h]. Thus, outside a finite segment the potential ) admits
constant values, and at the end points of the segment the potential may have
discontinuities. We are looking for such values of the spectral parameter A € C for
which the Schrodinger equation possesses a solution u belonging to the Sobolev
space H?(R) which in the case of the potential of the form (3.5) means that we
are looking for solutions exponentially decreasing at +o0c. This eigenvalue problem
is one of the central in quantum mechanics for which H is a self-adjoint operator
in L?(R) with the domain H?(R). It implies that @ is a real-valued function. In
this case the operator H has a continuous spectrum [min {al,ag},—i—oo) and a
discrete spectrum located on the set

IIEI%(l)nh] g(z), min {a, a2}>.
Computation of energy levels of a quantum well described by the potential @
is a problem of physics of semiconductor nanostructures (see, e.g., [31]). Other
important models which reduce to the spectral problem (3.4) arise in studying the
electromagnetic and acoustic wave propagation in inhomogeneous waveguides (see
for instance [2], [16], [25], [17], [6], [56], [53]).

A characteristic equation for this spectral problem in terms of spectral pa-
rameter power series was obtained in [13] (see also [37]) where a simple numerical
algorithm based on the approximation of the characteristic equation was imple-
mented and compared to other known numerical techniques. Here we only give an
example from [13].

The usual approach to numerical solution of the considered eigenvalue prob-
lem consists in applying the shooting method (see, e.g., [31]) which is known to
be unstable, relatively slow and to the difference of the SPPS approach does not
offer any explicit equation for determining eigenvalues and eigenfunctions. In [30]
another method based on approximation of the potential by square wells was pro-
posed. It is limited to the case of symmetric potentials. The approach based on
the SPPS is completely different and does not require any shooting procedure, ap-
proximation of the potential or numerical differentiation. Derived from the exact
characteristic equation its approximation is considered, and in fact numerically
the problem is reduced to finding zeros of a polynomial Zi\;o arpp” in the interval
[min(J(x)70)v (/LQ =-A).

As an example, consider the potential @ defined by the expression Q(z) =
—vsech’z, = € (—00,00). It is not of a finite support, nevertheless its absolute
value decreases rapidly when x — +o0o. The original problem is approximated by
a problem with a finite support potential @ defined by the equality

0, < —a
2
Q(z) = —vsech’z, —a<z<a

0, T > a.
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An attractive feature of the potential Q) is that its eigenvalues can be calculated
explicitly (see, e.g., [26]). In particular, for v = m(m + 1) the eigenvalue A, is
given by the formula A\, = —(m —n)?, n=0,1,....

The results of application of the SPPS method for v = 12 are given in Table
1 in comparison with the exact values and the results from [30].

n  Exact values Num.res. from [30] Num.res. using SPPS (N = 180)

0 -9 -9.094 —8.999628656
1 —4 —4.295 —3.999998053
2 -1 —0.885 —0.999927816

TABLE 1. Approximations of A, of the Hamiltonian H = —D? — 12sech?® z.

The results obtained by means of SPPS are considerably more accurate, and
as was pointed out above the application of the SPPS method has much less
restrictions.

4. Transmutation operators

We slightly modify here the definition given by Levitan [49] adapting it to the
purposes of the present work. Let F be a linear topological space and F; its linear
subspace (not necessarily closed). Let A and B be linear operators: F; — FE.

Definition 4.1. A linear invertible operator T defined on the whole F such that E;
is invariant under the action of T is called a transmutation operator for the pair
of operators A and B if it fulfills the following two conditions.

1. Both the operator T and its inverse T~! are continuous in F;
2. The following operator equality is valid

AT =TB (4.1)
or which is the same

A=TBT™ %

Very often in literature the transmutation operators are called the transfor-
mation operators. Here we keep ourselves to the original term coined by Delsarte

and Lions [23]. Our main interest concerns the situation when A = — dd; + g(x),
B = - dcfz, and ¢ is a continuous complex-valued function. Hence for our pur-

poses it will be sufficient to consider the functional space E = Cla,b] with the
topology of uniform convergence and its subspace E; consisting of functions from
C? [a, b]. One of the possibilities to introduce a transmutation operator on E was
considered by Lions [50] and later on in other references (see, e.g., [51]), and con-
sists in constructing a Volterra integral operator corresponding to a midpoint of
the segment of interest. As we begin with this transmutation operator it is con-
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venient to consider a symmetric segment [—a,a] and hence the functional space
E = C[—a,al. It is worth mentioning that other well-known ways to construct the
transmutation operators (see, e.g., [49], [63]) imply imposing initial conditions on
the functions and consequently lead to transmutation operators satisfying (4.1)
only on subclasses of Fj.

Thus, we consider the space E = C[—a,a] and an operator of transmutation
for the defined above A and B can be realized in the form (see, e.g., [49] and [51])
of a Volterra integral operator

Tu(z) = u(z) + ’ K(z, t)u(t)dt (4.2)

—Xx

where K (z,t) = H(m;rt, xgt) and H is the unique solution of the Goursat problem

0 i(g;)v) = q(u + v)H(u,v), (4.3)
H(u,0) = ; /0 q(s) ds, H(0,v) =0. (4.4)

If the potential ¢ is continuously differentiable, the kernel K itself is the solution
of the Goursat problem
2

<aa; - (J(:v>> K(z,t) = aatQK(:c,t),

1 T
/ q(s) ds, K(z,—z)=0.

2 Jo
If the potential ¢ is n times continuously differentiable, the kernel K(xz,t) is
n+ 1 times continuously differentiable with respect to both independent variables
(see [51]).

An important property of this transmutation operator consists in the way
how it maps solutions of the equation

v+ Wi =0 (4.5)

K(z,z) =

into solutions of the equation
v — q(x)u +wPu=0 (4.6)

where w is a complex number. Denote by e (iw, z) the solution of (4.6) satisfying
the initial conditions

eo(iw,0)=1  and  ep(iw,0) = iw.

The subindex “0” indicates that the initial conditions correspond to the point
x = 0 and the letter “e” reminds us that the initial values coincide with the initial
values of the function e™?.

The transmutation operator (4.2) maps e™? into eg(iw, z),

eo(iw, x) = T[] (4.7)
(see [51, Theorem 1.2.1]).
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Following [51] we introduce the following notations
Kc<$7t§ h) =h + K<I7t) + K(xv _t) + h/ {K(x,g) - K(xa _f)}dg
t
where h is a complex number, and
Ks(z,t;00) = K(z,t) — K(z, —t).

Theorem 4.2 ([51]). Solutions c¢(w,x;h) and s(w,z;00) of equation (4.6) satisfying
the initial conditions

c(w,0;h) =1, c(w,0;h) =h (4.8)
s(w, 0;00) = 0, st (w,0;00) = 1 (4.9)
can be represented in the form
c(w, z; h) = coswzx +/ Kc(x,t; h) coswt dt (4.10)
0
and . . .
s(w, x;00) = SHwr —|—/ Ky(z,t oo)Smmf dt. (4.11)
w 0 w
Denote by
x
Teu(x) = u(x) —|—/ K (z,t; h)u(t)dt (4.12)
0
and .
Tsu(z) = u(x) —|—/ K(z,t;00)u(t)dt (4.13)
0

the corresponding integral operators. As was pointed out in [9], they are not trans-
mutations on the whole subspace 7, they even do not map all solutions of (4.5)
into solutions of (4.6). For example, as we show below

d? d?
(- oo @) 1 27| 2, 0] =0
when ¢ is constant.

Ezample 4.3. Transmutation operator for operators A := d‘fQ + ¢, ¢ is a constant,
and B := dd;. According to (4.3) and (4.4), finding the kernel of transmutation
operator is equivalent to finding the function H(s,t) = K(s + t,s — t) satisfying
the Goursat problem
0%H (s,t)
0sot
The solution of this problem is given by [28, (4.85)]

CS

= —cH(s,t), H(s,0)=— o

H(0,t) = 0.

VestJy(2y/ est)

H(S,t):_;/OSJO(Z\/Ct<S—€))d€=— o ,
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where Jy and J; are the Bessel functions of the first kind, and the formula is valid
even if the radicand is negative. Hence,

Tty w—y> __1Ve@ =) A (Ve —y?)
2

4.14
5 o c—y (4.14)

K(e) = 1
From (4.14) we get the ‘sine’ kernel
ty/c(x? — 12)J; (\/c(ac2 —2))
- 72— 42 ’

and can check the above statement about the operator T,

T) =1 /O’C ty/c(x? — ti)le_(QQ/c(xQ —12)) it = Jo(av/0),

( &~ -l-c) T,[1] = \/chiWc) £ 0.

dx?

Ks(z,t;00) =

For the rest of this section suppose that f is a solution of (2.5) fulfilling the
condition of Theorem 2.3 on a finite segment [—a,a]. We normalize f in such a
way that f(0) =1 and let f'(0) = h where h is some complex constant. Define the
system of functions {¢y},-, by this function f with the use of (2.1), (2.2) and
(2.3). The system of functions {¢y},-, is related to the transmutation operators
T, (with the same parameter h in the kernel) and T, in a way that it is the
union of functions which are the result of acting of operator T on the odd powers
of independent variable and of operator T, on the even powers of independent
variable. The following theorem holds, see [9] for the details of the proof.

Theorem 4.4 ([9]). Let q be a continuous complex-valued function of an independent
real variable x € [—a,al, and f be a particular solution of (2.5) such that f €
C? (—a,a), f # 0 on [—a,a] and normalized as f(0) = 1. Let ¢, k € Ng := NU{0}
are functions defined by (2.3). Then the following equalities are valid

YE = Tc[xk] when k € Ny is even or equal to zero
and

or = Ts[z"] when k € N is odd.

As for the transmutation operator T', it does not map all powers of the
independent variable into the functions . Instead, the following theorem holds.

Theorem 4.5 ([9]). Under the conditions of Theorem 4.4 the following equalities
are valid

or = T[z"] when k is odd (4.15)

and

h
TP = T[x*] when k € Ny is even or equal to zero (4.16)
where by h we denote f'(0) € C.

Pk
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Taking into account the first of former relations the second can be written
also as follows

h
o =T [mk + - 130’““] when k € Ny is even or equal to zero.
Remark 4.6. Let f be the solution of (2.5) satisfying the initial conditions
f(0)=1, and f'(0)=0. (4.17)

If it does not vanish on [—a, a] then from Theorem 4.5 we obtain that @) = T'[z¥]
for any k € Ny. In general, of course there is no guaranty that the solution satisfying
(4.17) have no zero on [—a, a]. Hence the operator T transmutes the powers of x
into ¢ whose construction is based on the solution f satisfying (4.17) only in
some neighborhood of the origin. In the next section we show how to change the
operator T so that the new operator map z* into ¢4 (x) on the whole segment

[—a,al.

Note that in Theorem 4.5 the operator T' does not depend on the function
f, so the right-hand sides of the equalities (4.15) and (4.16) do not change with
the change of f. Consider two non-vanishing solutions f and g of (2.5) normalized
as f(0) = ¢g(0) = 1 and let gai and ¢7 be the functions obtained from f and g
respectively by means of (2.1), (2.2) and (2.3). The relation between <p£ and ¢
are given by the following proposition which may be easily deduced from equalities
(4.15) and (4.16).

Proposition 4.7. The following equalities hold

goi =y when k € N is odd,

and N N
_ 9 =
Ve

where hy = f'(0) and hy = ¢'(0).

ggoi_H when k € Ny is even,

5. A parametrized family of transmutation operators

In [9] a parametrized family of operators T}, h € C was introduced, given by the
integral expression

Tru(z) = u(x) + ’ K(z,t; h)u(t)dt (5.1)

—Z

where
K(x,t;h) = ;l + K(z,t) + ;l /t (K(z,s) — K(z,—s)) ds. (5.2)

They are related to operators Ty and T, (with the parameter h in the kernel of
the latter operator) by
T, =T.P. + TsP,, (5.3)
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where P, f(z) = (f(z) + f(—2))/2 and P, f(z) = (f(z) — f(—x)) /2 are projectors
onto even and odd functions, respectively. In this section we show that the oper-
ators T}, are transmutations, summarize their properties and in Theorem 5.8 we
show how they act on powers of x.

Let us notice that K(z,t;0) = K(z,t) and that the expression

K(z,t;h) — K(x,—t;h) = K(x,t) — K(z,—t) — Z /_t (K(z,s) — K(z,—s)) ds

= K(z,t) — K(z,—t)
does not depend on h. Thus, it is possible to compute K(z,t;h) for any h by

a given K(xz,t; hy) for some particular value h;. We formulate this result as the
following statement.

Theorem 5.1 ([9]). The integral kernels K(x, t; h) and K(x,t; hq) are related by the

exrpression

h—hy
2

h—hy

K(z,t;h) = 5

+ K(z,t;:hy) + / (K(z,5h1) — K(z, —s; h1)) ds.
t

(5.4)

The operator T, may be expressed in terms of another operator T}, and in
particular, in terms of the operator 1. The following proposition holds.

Proposition 5.2. The operators Ty, and Th, are related by the expression

Tw,u =Ty, [u(m) 4 he N ha /m u(t) dt] (5.5)

valid for any u € C[—a,al]. In particular,

Thu — T{u(x) + ’; /

—Z

x

ult) dt} . (5.6)

Proof. Using formulas (5.1) and (5.2) we obtain

xT

Thu:Tu—i—];/ u(t)dt—f—g/ u(t)/ K(z,s)dsdt
- —x t

x

- /u(t) K(x,s)dsdt,
2 —x —t

and after changing the order of integration in the last two integrals, we have

Thu:Tu—i—Z/ w(tydi+ " K(Jc,s)/ w(t) dt ds

—x 2 -z -z

- Z ’ K(x,s)/_su(t)dtds

—T —Z



226 V.V. Kravchenko and S.M. Torba

:Tu—i—g/_iu(t)dt—f—]; _ZK(.I,S)[/_O;C—F/OSU(t)dt] ds
—Z/_iK(x,s)[/_i—/iu(t)dt} ds

h h [*

2

/xu(t)dt—k y [ K@) /Su(t)dtds:T[u(x)—i— Z/xu(t) dt}

—T —T —S —T

Since [*, fit u(s)dsdt = 0 for any function u € C[—a, a], we have from (5.6) that

T [u(m) + / 0 dt]

_ T[u(m) yhe / u(t)d + / (u(t) gt /ttu(s) ds) dt]

_ T[u(m) + h; / ") dt} — Ty 0

—x

Using (4.8)—(4.13) and (5.3) it is possible to check how the operators T}, act
on solutions of (4.5).

Proposition 5.3 ([46]). The operator Tj, maps a solution v of an equation v" +
w?v = 0, where w is a complex number, into a solution u of the equation u" —

q(7)u + w?u = 0 with the following correspondence of the initial values
u(0) = v(0), u'(0) = v'(0) + hv(0). (5.7)
Remark 5.4. Formulas (5.7) are valid for any function v € C'[—a, a].
We know that the integral kernel of the transmutation operator 7' is related

to the solution of the Goursat problem (4.3)—(4.4). A similar result holds for the
operators T},.

Theorem 5.5 ([46]). In order for the function K (x,t; h) to be the kernel of a trans-
mutation operator acting as described in Proposition 5.3, it is necessary and suf-
ficient that H(u,v; h) := K(u+v,u — v;h) be a solution of the Goursat problem

0?H (u,v; h) B .
ougy =t vH@,vih)
1 u
H(u,0;h) = h + / q(s) ds, H(0,v;h) = h.
22/, 2

If the potential q is continuously differentiable, the function K(x,t;h) itself must
be the solution of the Goursat problem
2

(86302 - q(x)) K(x,t;h) = i2K(x,t;h), (5.8)

h 1 [ h
K(z,z;h) = 9 + 2/, q(s) ds, K(x,—x;h) = 9" (5.9)
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Under some additional requirements on the potential g the operators T}, are
transmutations in the sense of Definition 4.1. The following theorem generalizes
the results obtained in [46].

Theorem 5.6. Suppose the potential q satisfies either of the following two condi-
tions.
® g¢c ct [_av (Z],’
e g € C[—a,a] and there exists a particular complex-valued solution g of (2.5)
non-vanishing on [—a, al.
Then the operator T}, given by (5.1) satisfies the equality

<— dd; - q(x)) Thlu] = Ty [— dd; (u)] (5.10)

for any u € C*[—a,a).

Proof. In [46] the theorem was proved for the case ¢ € C'[—a,a] and for the case
when the particular solution g from the statement satisfies the conditions g(0) = 1
and ¢'(0) = h.

We may normalize the particular solution g as g(0) = 1. Suppose that ¢’(0) =
hi. We know already that (5.10) holds for the operator T},. To finish the proof,
we use (5.5) and obtain

<_ di; + q($)> Thlu] = <—dd; + Q(x)) Th, {u(x) L0 _th /z u(t) dt}

h—hy d&® [*
_ "
Ty, {u (x) + 9 g2 /ﬂﬂ u(t) dt}

—T), [u"(m) 4R _th /_i u” (t) dt} =T, {— dcfz (u)] . O

Remark 5.7. As was pointed out in Remark 2.5, in the regular case the non-
vanishing solution g of (2.5) exists due to the alternation of zeroes of two linearly
independent solutions. Of course, it would be interesting to prove that the op-
erators T}, are transmutations in the general case of complex-valued potentials
q € C[—a,a] without any additional assumption.

Suppose now that a function f is a solution of (2.5), non-vanishing on [—a, a]
and normalized as f(0) = 1. Let h := f’(0) be some complex constant. Define as be-
fore the system of functions {¢ }7° , by this function f and by (2.3). The following
theorem states that the operator T}, transmutes powers of = into the functions .

Theorem 5.8 ([9]). Let q be a continuous complex-valued function of an independent
real variable x € [—a,al, and f be a particular solution of (2.5) such that f €
C?(—a,a) together with 1/f are bounded on [—a,a] and normalized as f(0) = 1,
and let h := f'(0), where h is a complex number. Then the operator (5.1) with the
kernel defined by (5.2) transforms z* into ¢y (z) for any k € No.

Thus, we clarified that the system of functions {¢y} may be obtained as the
result of the Volterra integral operator acting on powers of the independent vari-
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able. As was mentioned before, this offers an algorithm for transmuting functions
in the situation when K(x,t; h) is unknown. Moreover, properties of the Volterra
integral operator such as boundedness and bounded invertibility in many func-
tional spaces gives us a tool to prove the completeness of the system of function
{¢x} in various situations.

Ezample 5.9. Consider a function k(z,t) = (later, in Example 6.8 it is

t—1
2(xz+1)
explained how it can be obtained). We have

t—1 2 t—1
92 — 0 )k(z,t) = = :
—x—1 xr— x 2
k(z,—z) = S = -, and k(z,x) = 2(z+11) =—2+5/ (112 ds, thus the
function k(z,t) satisfies the Goursat problem (5.8)—(5.9) with ¢(z) = 2/(z + 1)2
and h = —1 and by Theorem 5.5 is the kernel of the transmutation operator T _;.

Consider the function f = T_1[1] = x_lH as a solution of (2.5) such that
f(0) =1 and f/(0) = h = —1, nonvanishing on any [—a,a] C (—=1,1). The first 3
functions ¢y, are given by

x3 + 322 + 3z 223 + 32
=S ir PTT B P s
It can be easily checked that
Tt - l)t x3+3x2+3x
Toe=at [ oeen®= sern =
Tt —=1)t? 223 + 322
To1a® = +/ <2( +)1) =5 11) =
We can calculate the kernel K of the original operator T by (5.4), it is given by

20 + 2t + 2 — 12

K(z,t) = Az +1)

and we can check that T'[x] = ¢ and T[1] = m3+?2)3(m;i»13)m+3 = o+ in accordance
with Theorem 4.5.

6. Transmutation operators and Darboux-transformed equations

To construct the system of functions {¢}72, we use the half of the functions
{X(k’), X(k)}z.;o. What about the second half? Note that starting with the func-
tion 1/f we obtain the same system of functions {X(k) )Af(k’)}oo with the only

change that Xj(ck) becomes Xl(/} and X( ) becomes Xl(/} Hence the “second half”

of the functions { X ), X }k:o from (2.3) is used. The function 1/ f is continuous
complex valued and non-vanishing, and is a solution of the equation u” — gau = 0,
where g = 2(f'/ f)2 — ¢g. The last equation is known as the Darboux transfor-
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mation of the original equation. The Darboux transformation is closely related to
the factorization of the Schrédinger equation, and nowadays it is used in dozens of
works, see, e.g., [18, 29, 52, 58] in connection with solitons and integrable systems,
e.g., [1, 32, 55, 57] and the review [59] of applications to quantum mechanics.

For the convenience denote the potential of the original equation by ¢; and the
corresponding Sturm-Liouville operator by A; := d‘f; — ¢1(z). Suppose a solution
f of the equation A;f = 0 is given such that f(z) # 0, = € [—a,a], it is normal-
ized as f(0) =1 and h := f’(0) is some complex number. Denote the Darboux-
transformed operator by A, := d‘fQ — q2(x), where ¢a(z) = 2(1;/(%))2 —q1(x).

From the previous section we know that there exists a transmutation operator
T, for the original equation (2.6) with the potential ¢; and such that

Tlghxk = Pk, k € Np. (61)

The subindex “1” in the notation T},;, indicates that the transmutation operator
corresponds to Aj.

Similarly, there exists a transmutation operator Ts,_j; for the Darboux-
transformed operator A, such that

ng,hxk = wk, ke No, (62)

where the family of functions {1 }72 , is defined by (2.4).

It is interesting to obtain some relations between the operators Ty, and
T»,_5, and between their integral kernels K; and Ks. In this section we explain
how to construct the integral kernel K5 by the known integral kernel K; and show
that the operators Ty, and Ty, _j satisfy certain commutation relations with the
operator of differentiation.

We remind some well-known facts about the Darboux transformation. First,
1/f is a solution of Asu = 0. Second, it is closely related to the factorization of
Sturm-Liouville and one-dimensional Schrédinger operators. Namely, we have

d2

B B fl f/ _ 1 9 1
A=, —ql(x)—(ax—l- f)(ax— f>_f8mf 0y (6.3)
d? f/ f/ 1
AQ—de—qg(x)_(ax— f)(aﬁ f)_fafoaxf.. (6.4)
Suppose that u is a solution of the equation Aju = wu for some w € C. Then the

function v = (81 — J;/)u = (fam;)u is a solution of the equation Ayv = wv, and
vice versa, given a solution v of Asv = ww, the function u = (81 + J;l )v = (}&Cf)v
is a solution of Aju = wu.

Suppose that the operator T := T, which transmutes the operator A; into
the operator B = d?/dz? and the powers 2" into the functions ¢y, is known in the
sense that its kernel K (z, t; h) is given. As before h = f/(0). Then the function 1/ f
is the non-vanishing solution of the equation Asu = 0 satisfying 1/f(0) = 1 and
(1/f)'(0) = —h. Hence we are looking for the operator To := Ta._, transmuting
the operator A, into the operator B and the powers ¥ into the functions .
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Let us explain the idea for obtaining the operator T5. We want to find an
operator transforming solutions of the equation Bu + w?u = 0 into solutions of
the equation Apu + w?u = 0, see the first diagram below. Starting with a solution
o of the equation (02 + w?)o = 0, by application of T; we get a solution of
(A + w2)u = 0, and the expression (f@x})Tlo is a solution of (4s + wQ)'U =0.
But the operator ( fc')z})Tl is unbounded and hence cannot coincide with the
operator Ts. In order to find the required bounded operator we may consider the
second copy of the equation (92 + w?)u = 0, which is a result of the Darboux
transformation applied to (02 + w?)o = 0 with respect to the particular solution
g = 1 and construct the operator To by making the second diagram commutative.
In order to obtain a bounded operator T, instead of using f 5'95} for the last step,

we will use the inverse of }(%Ef, ie., }(fox f(s)- ds+ C’).

T T
92 + w? "> 02— g+ w? 9% + w? D> 02— g+ w?
A A
\ \
T
aﬁ—qg—l—wz (’)ﬁ—i—oﬂ 2 >6§—q2+w2

That explains how to obtain the following theorem.

Theorem 6.1 ([46]). The operator Ta, acting on solutions u of equations (0% +
w?u =0, we C by the rule

nlile) = ([ romman+ o) (6:5)
coincides with the transmutation operator To._p,.

Now we show that the operator T, can be written as a Volterra integral oper-
ator and, as a consequence, extended by continuity to a wider class of functions. To
obtain simpler expression for the integral kernel Ko(z,t; —h) we have to suppose
that the original integral kernel K;(z,¢; h) is known in the larger domain than re-
quired by definition (5.1). Namely, suppose that the function Kj(z,t; h) is known
and is continuously differentiable in the domain II: —a <z <a,—a <t < a. We
refer the reader to [46] for further details.

Theorem 6.2 ([46]). The operator To admits a representation as the Volterra inte-

gral operator
T

Tolul(xz) = u(x) + Ko(x,t; —h)u(t) dt, (6.6)

with the kernel
1
f(x)

Such representation is valid for any function u € C*[—a,a).

Ko(z,t;—h) = — < ’ O Ki(s,t;h) f(s)ds + ;Lf(—t)) (6.7)

—t
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By Theorems 6.1 and 6.2 the Volterra operators 15 and T coincide on the set
of finite linear combinations of solutions of the equations (02 + w?)u = 0, w € C.
Since this set is dense in C[—a,a], by continuity of T and Ty we obtain the
following corollaries.

Corollary 6.3 ([46]). The operator Ty given by (6.6) with the kernel (6.7) coincides
with Ty on C[—a,a].

Corollary 6.4 ([46]). The operator Ty given by (6.5) coincides with T2 on C'[—a,a.

Operator A; is the Darboux transformation of the operator As with respect
to the solution 1/f, hence we may obtain another relation between the operators
T, and Ts.

Corollary 6.5 ([46]). For any function u € C*[—a,a] the equality

T4 ul(2) = f(x)( / ' iy Tl ) +u<o>) (6.8)
1s valid.

From the second commutative diagram at the beginning of this subsection
we may deduce some commutation relations between the operators Ty, To and
d/dz. The proof immediately follows from (6.5) and (6.8).

Corollary 6.6 ([46]). The following operator equalities hold on C'[—a, a]:

amjlch _ ;Tgax. (6.10)

In [44] the following notion of generalized derivatives was introduced. Con-
sider a function g assuming that both f and g possess the derivatives of all orders
up to the order n on the segment [—a, a]. Then in [—a, a] the following generalized
derivatives are defined

Y0(9)(x) = g(x),

-1
(@)@ = (@) (ei9) @)
fork=1,2,...,n.
Let a function u be defined by the equality
1
g= leu’

and assume that u € C™[—a,a]. Note that below we do not necessarily require
that the functions f and g be from C"[—a, a]. With the use of (6.9) and (6.10) we
have
1T u)l f? 1T u = fTou’

= ' 2 = 2,
r !

Y2(9) = le . (szu’>/ = le fT” = Jerlu”.

n(g) =12+ (
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By induction we obtain the following corollary.

Corollary 6.7 ([46]). Let u € C"[—a,a] and g = }Tlu. Then

Ye(g) = fToul®) if k is odd, k <mn,
and

Yi(g) = ;Tlu(k) if k is even, k < n.
Ezample 6.8. We start with the operator Ag = d?/dz?. We have to pick up such
a solution f of the equation Agf = 0 that f’/f # 0. This is in order to obtain
an operator A; # Ag as a result of the Darboux transformation of Ay. For such
solution f consider, e.g., fo(z) = = + 1. Both fy and 1/fy are bounded on any
segment [—a,a] C (—1;1) and the Darboux transformed operator has the form

A = a2
1= dg2 (z+1)2"

The transmutation operator T' for Ag is obviously an identity operator and
Ko(z,t;0) = 0. Since f{(0) = 1, we look for the parametrized operator To..
Its kernel is given by (5.4): Ko(z,t;1) = 1/2. From Theorem 6.2 we obtain the
transmutation kernel for the operator A;

1 1-—t t—1

K t—1) = — . = 6.11
eb===_1" 4 2z +1)° (6.11)

the kernel from Example 5.9.
To obtain a less trivial example consider again the operator A; = dcf; — (xf1)2

and the function fi(x) = (z + 1)? as a solution of A;f = 0. Since h = f;(0) = 2,
we compute Kj(z,t;2) from (6.11) using (5.4)

322 + 61 +4 — 3t% + 2t
4(x+1)
The Darboux transformation of the operator A; with respect to the solution f; is

the operator A = dcf; — (x_fl)2 and by Theorem 6.2 the transmutation operator

Ty, o for As is given by the Volterra integral operator (5.1) with the kernel
1 T 3t+1 9 9
K t;—2) = — 1)°d 1—t
2(1‘77 ) ($+1)2(/_t2(8+1)<8+ ) S+( )
(Bt—1)(z+1)2-3t—-1)>2(t+1)

Ki(z,t;2) =

4(z +1)? '
This procedure may be continued iteratively. Consider the operators
. d?>  nn+1)
" de? (x41)27

The function f,(z) = (z + 1)"*! is a solution of the equation A, f = 0. The
Darboux transformation of the operator A, with respect to the solution f, is
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the operator

> @)\° nn+1) & (n+1)(n+2)
_2< ) (z+1)2  da? (x+1)2

dxz? fn(x) -

i.e., exactly the operator A, 1. If we know K,,(z,t; —n) for the operator A,,, by
(5.4) we compute the kernel K, (x,t;n+1) corresponding to the solution f,(z) and
by Theorem 6.2 we may calculate the kernel K,,11(z,t; —n — 1). Careful analysis
shows that we have to integrate only polynomials in all integrals involved, so the
described procedure can be performed up to any fixed n.

Ezample 6.9. Consider the Schrédinger equation
u" + 2sech?(x) u = u. (6.12)

This equation appears in soliton theory and as an example of a reflectionless po-
tential in the one-dimensional quantum scattering theory (see, e.g., [48]). Equation
(6.12) can be obtained as a result of the Darboux transformation of the equation
u” = u with respect to the solution f(xz) = coshz. The transmutation operator
for the operator A; = 82 — 1 was calculated in [9, Example 3]. Its kernel is given

by the expression

1 Va2 — 21 (Va2 — 2)

2 x—t ’

where I; is the modified Bessel function of the first kind. Hence from Theorem 6.2
we obtain the transmutation kernel for the operator Ay = 92 + 2sech®z — 1

1 TIo(Vs? =)t Vs? =12 (Vs? —12)
I

2 cosh(x) J_, s—t (s — )2

Kl(xvt; 0) =

Ko(z,t;0) = )coshsds.

7. Transmutation operator for the one-dimensional Dirac equation
with a Lorentz scalar potential
One-dimensional Dirac equations with Lorentz scalar potentials are widely studied
(see, for example, [11, 15, 33-36, 38, 54, 60, 62] and [55] for intertwining techniques
for them).

According to [54] the Dirac equation in one space dimension with a Lorentz
scalar potential can be written as

(0 +m+ S(x))¥; = EVs, (7.1)

(—895 +m+S(a:))\IJ2 = E\Ifl, (72)

where m (m > 0) is the mass and S(z) is a Lorentz scalar. Denote n = m + .5 and
write the system (7.1), (7.2) in a matrix form as

(o 0.2 () =2 (5 o) (w):
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In order to apply the results on the transmutation operators and factorizations
(6.3), (6.4) we consider a function f such that

@) =-n=-m-—S(z).

We can take f(z) = exp (= [y (m+ S(s))ds), then f(0) = 1 and f does not
vanish. Suppose the operators T; and Ts are transmutations for the operators
Al = ((‘)x + J}')(ax - J}’) and Ay = ((‘)x - J}')(ax + ’;l) respectively (corresponding
to functions f and 1/f in the sense of Proposition 5.3). As was shown in [46] with
the use of commutation relations (6.9) and (6.10), the operator

[Ty 0
(V1)

transmutes any solution (51) of the system
2

= Eu, (7.3)

1
12 = —EU1 (74)

into the solution (il) of the system (7.1),(7.2) with the initial conditions ¥ (0) =
2

u1(0), U2(0) = u2(0). And vice versa if <\Ijl

- > is a solution of the system (7.1),
2

-1
(7.2), then the operator (T(l) T(il) transmutes it into the solution (Zl> of
2 2

(7.3),(7.4) such that u1(0) = ¥1(0), u2(0) = ¥5(0).

Consider two systems of functions {¢;}72, and {¢x}32, constructed from
the function f by (2.3) and (2.4). The general solution of the system (7.3),(7.4) is
given by

up = Civg + Chvo
up = Cyvy — Crvg,

where (7 and Cs are arbitrary constants and

 (—DFER o,

vl(x)zcosEx:Z ;o
= (2k)!
) oo (_1 kE2k+1
vo(z) = sin Ex = Z (2]1 1) 2k+1

k=0
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From (6.1) and (6.2) we see that the general solution of the one-dimensional Dirac
system (7.1),(7.2) has the form

_ & (_1)kE2k & (_1)kE2k+1

Uy =01y (2k)! por+C2 > (2 4+ 1)1 P2
k=0 k=0

_ o (_1)kE2k B o (_1)kE2k+1

Uy =Co Z (2k)! Yo — C1 kZ:O (2 +1)! Yap11-

k=0

Remark 7.1. Tt is possible to consider the two- or three-dimensional Dirac system
and to construct the transmutation operator for it under some conditions on the
potential. But the techniques involved, such as bicomplex numbers, pseudoanalytic
function theory, Vekua equation and formal powers go well beyond the scope of
the present article. We refer interested readers to the recent paper [8].
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1. Introduction

The 3D Navier-Stokes equations describe the motion of a viscous incompressible
fluid in R3. The equations need to be solved for an unknown divergence-free ve-
locity vector u(z,t) = (u;(x,t))3_; and pressure p(x,t) [2], [5]. Here we consider
the case when the fluid is filling the domain € and € is a compact set in R? with
C* boundary 9. Let Qr := Q x [0,T), Qu := Q x [0,400). The Navier-Stokes
equations in dimensionless coordinates have the form

Ou; °L o dp
ot +;“J oz ~ VAN oy, + filz,1), (2,1) € Qoo (1.1)
Ouj
dlvu—z =0, (2,t) € Quo, (1.2)

* O

This research was partially supported by the CONACYT Project No. 80504 (Mexico) and by
the SIP — IPN Project No. 20121028.
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with the initial condition

u(x,0) = u’(z), z € Q, (1.3)

and the boundary condition
w(z,t)|5q =0, t > 0. (1.4)
Notation and preliminary results. We denote by J'(€2) the set of all sufficiently
smooth solenoidal vectors with compact support in the domain €, and by H ()
the completion of J'() in the norm W, *(). Let J°() be the completion of the
set J' () in Lo(€2) and denote by P an orthogonal projection (Leray’s projection)

of the Hilbert space L2(2) onto the subspace J°(£2). The norm of a real vector
function f in the space Lo () is defined as

1)l = { / |f<x,t>|2dx}1/2,

where | f(z,t)| is magnitude of the R? vector f(x,t). The scalar product of vectors
f,g in R? is denoted by fg, and the scalar product in the space Ly(2) is denoted
by (-,-). The norm of a function u(-,t) in the Sobolev space W, 2() is defined as

1/2
s E)ly 5 = {/Dum £,b) dm} ; (15)

and the norm of a function wu(-,t) in the Sobolev space W*2(€) is denoted by
lu(-, )|, o- The scalar product in the Hilbert space W*2(Q) is denoted by (f, ¢)2;
and the norm in the space L, () is denoted as [[I,, (for p # 2). The subspace of
L2(Qr) such that u(-,t) for all fixed ¢ belongs to J°(Q) is denoted by L3(Qr).
In the case when we use the spaces W#2(Q) for several domains, we include the
domains in the notation (for example, [[u(-,?)[; 5 (), [|f(-,¢)]| (€2), etc.).

The following problem was considered in [5]:

vAu = —grad p+ f(z), f € L2();

1.6
divu =0, uly, =0. (16)

A generalized solution of problem (1.6) is defined as a function v € H(2) that

satisfies the identity
/ Zum@md:c = / fPda
Q Q

k=1
for any ® € H(Q). A generalized solution exists and it is unique [5]. In [10], [11],
[5, p. 67] the following estimate for the generalized solution of problem (1.6) is
provided:
lealy» + llerad o < eI £1]. (L.7)

Applying the projection P to equation (1.6) we obtain a symmetric in J°()
operator A given by
Au := PAu (1.8)
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for all u € W22(Q) N H(Q). The operator A was considered in [5, pp. 44-47] and
it was proved that there exists a self-adjoint extension of the operator A as an
operator in J O(Q) This extension A maps its domain of definition D(A) onto
J°(€) and there exists an operator A~L.

It follows from inequality (1.7) that D(A) = W22(Q) N H(Q) and, therefore,
the operator PAuw is self-adjoint. From equation (1.6) we infer that

_/Qf:umkkadx—/ﬂw(ﬁu)dﬂc (1.9)

k=1
for functions u € WE’Q (QONH(Q) and w € H(Q). Inequality (1.7) implies that the
norms ||Au|| and HAuH of the functions u € W22(Q) N H(L) are equivalent [5],
IRl < 140] < o al. (L1

In the Galerkin approximation to solutions of the Navier-Stokes problem we use
orthogonal in Lo (2) eigenfunctions of the operator A such that

Adk(z) = Ma®(z), a(z) € H(Q) nW>2(0Q), (1.11)
that is,
Ad® = \a® — grad py,
div a*(z) = 0, ak}aﬂ =0.

In what follows we use several formulas for the projection P. For a vector
function w € W12(Q), the following relations hold

Pw = w — grad p, (1.12)
Ap = div w, gfz o = wn, (1.13)

where n is the normal unit vector to the boundary 9f2.

For this Neumann problem with the boundary 992 € C*° it was proved that
the kernel of the problem is one-dimensional and consists of constants. In the case
when wl|,,, = 0 and the pressure p is orthogonal to the constants in €, in [7] it
was shown that

1plly,2 < ¢lldiv w]]. (1.14)

Let now u € W22(Q) N W, (). We will show in Lemma 2.1 below that
the function (u, V)u := Z?:1 u;0z,u belongs to La(€2). By definition of Leray’s
projection, we have

P(u, Vu = (u, V)u — grad p, (1.15)

Oou; Ou; op
Ap = J , =0. (1.16)
1S%:§3 89@ 8le on 90

In what follows we consider a generalized solution to the Navier-Stokes problem.



242 V.V. Kucherenko

Definition 1.1. A generalized solution of the Navier-Stokes problem (abbreviation
GSNS) (1.1), (1.2), (1.3) in the cylinder Qp with the initial data

u’(-) € H(Q), (1.17)

and the right-hand side f(-,-) € La(Qr), with supyepo 7y [l (-, )] < 00, is a vector
function (z,t) — u(x,t) such that: 1) u(-,t) € H(Q) for t € [0,T); the function
u(+,t) is strongly continuous in ¢ € [0,7") as a function with values in H(2) and
||u(',t) - uo(')H1 , — 0 ast — 0; 2) generalized derivatives ut, gy, Uz, zy, Pu; are
in the space Lg((@t) for t € [0,T) and satisfy equation (1.1). Then u(-,t) € J°(Q)
for almost all ¢ € [0,T).

Lemma 1.2. If the GSNS exists in Qp, then it is unique.

Proof. Evidently, a GSNS is a generalized solution in the integral sense [5]. It
was proved that the generalized solution in the integral sense on [0, t) is unique if
sup,¢o, [l 7)[l; o < 0o. As the norm [lu(+,7)||; , of the GSNS is bounded on
any segment [0, t] with ¢ < T, the GSNS is unique in the cylinder Qr. O

The GSNS solutions have important energy integral estimates [5], [8] for
t < oo:

ul, O < [Jul-, 0] +/0 1fCom)l d, (1.18)

1 t 3
2||u(~,t)||2+z//0 > e, (- )| dr (1.19)
=1

<o+ ) [ [cons [iseone) o

Let u(z,t) € C%(Qr) be a classical solution to the Navier-Stokes equation, hence
Ou € H(Q). Applying projection P to the Navier-Stokes equations (1.1) we obtain

0 ~
81; — vAu = —P(u, V)u + PF. (1.20)
Now, let u € W22(Q2) N H(Q), so taking scalar square in Lz(£2) on the left-
and right-hand side of equality (1.20) we obtain the second integral inequality for
the parabolic equation [6] in the form

d

v 3 G 5 + O + 0% B, 1)

(1.21)
< 2||(u, VYul(-, 1) + 2 f (07, w e WH(Q) N H(Q).

Due to equivalence of the norms (1.10) we can substitute the term ||ﬁu(, 1f)||2 in
the left-hand side of (1.21) by the term ¢ ||Au(-, t)]|” .
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Below we show that the energy integral estimates (1.19) and inequality (1.21)
can be applied to the Galerkin approximations u™(z,t) for the GSNS

u(z,t) =Y cpn(t)aF (x). (1.22)
k=1

In 2D case the existence and uniqueness of GSNS is proved globally in Q. by the
Galerkin method on the basis of inequality (1.19) and the following multiplicative
inequality for a real functions in the space Wy*(€2), Q € R? [5]:

/v4dx1dx2 §c/ U2d$1d$2/ |grad v|2dac1dac2. (1.23)
Q Q Q

In 3D case multiplicative inequality (1.23) does not hold, therefore, up to
now the existence and uniqueness of 3D GSNS can be proved only locally in Qr;;
the time 7} depends on the initial data [5], [8].

By virtue of the imbedding theorem, the 3D GSNS belongs to C(£2) for almost
all ¢ in [0,77). We set

Yu(t) = maxu(z,)|.

Below it is proved that on the interval [0,7;) where the GSNS solution wu(z,t)
exists, the following inequality holds:

a0l < It oo { ) [ marf v2 [ {? [} 1P as
(1.24)

Therefore, the condition

sup |lu(-t)]|3, < oo forall 0<T < T, (1.25)
t€[0,T) ’

is necessary for the existence of classical solution in the interval [0,T;).
In the case when for the classical solution to the Navier-Stokes problem

2
sup ||u(-, t)[[7 5 = oo, (1.26)
t€[0,T7)

in Lemma 3.2 we establish the following estimate from below for the norm
lw(-,)|l; o of this solution in the interval [0,T;) for T} < +oc:

2 a
u(-, 1t > -
[[u(-,2)] L2 = ¢

where a, b are some positive constants.
We obtain the GSNS as a limit of the Galerkin approximations u™(z,t).
Observe that the Galerkin approximations are defined for all ¢ € [0, c0). Let

b, (1.27)

S:= {720 s s 07, < o 12
n tel0,T) ’
and let

T, := sup 7. (1.29)

TES,
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Below in Theorem 3.3 we prove that T, > 0, and if Ty, = oo, then evidently a
GSNS exists and it is unique in [0, 0o). Further, if T, < oo, then

sup sup ||u"(~,t)||32:oo, (1.30)
n t€[0,Ty)

and the GSNS exists only in the interval [0,7) where the norm |[u(-,?)[|; 5 of the
GSNS can be estimated from below as

2 a
U 'at >
FCOIFESy

Evidently the classical solution such that u € C?(Qr) is also the GSNS, therefore,
this classical solution exists only in the time interval [0,T}), that is, T; = Tj.

—b. (1.31)

2. Priory estimates for the classical solutions

Estimates for the norm ||u(-,t)||; , of classical solution can be derived from in-
equality (1.21) on the basis of the following lemma.

Lemma 2.1. If the components of a real vector function v are in W*2(Q), then:
1) in 2D case

[ (= g;)j)de (2.1)
<e{ [} "L (o] o Gt o2y an

2) in 3D case
v\ 2 3 2 3/2 1/2
/(vk 1) dr <c / +0? | dx {/ (|Av|2 +v2> dx} .
o\ 0z e\ Q
(2.2)

3) If vector functions v,w € W22(Q2) N Wy2(), then in 2D case

) {fara)”

(2.3)
and in 3D case

[y awsel [x]ofad " {fusora) s
/Qw%iidxgc{/gglwmzdx} {/Q|vxi|2dx}1/2{/Q|Av|2dx}1/2. (25)

ov
8%[

2

[ (g ) s e frac} " { [ 32

m=

6xm

c'hcj



Estimate from Below for the Growth of Solution 245

Proof. 1) Let us consider the 2D case. Performing the standard extension of func-
tions w,v € W22(Q2) onto some cube II, as functions in W *(IT), such that the
norms of extended functions w,v, in the space WO2 ’Q(H) are equivalent to the
norms of the functions w,v in W22(Q) [1]. So the linear operator of extension
A w = Aw, satisfies the following estimates [1]

[Awll, o (1) < cwll, 5 (2), k=0,1,2. (2.6)

Furthermore, applying to the functions from the spaces I/VO1 ’Q(H),WOQ ’2(1_[) the
multiplicative inequality [5], [3], [9] we obtain that

/2

([atar) " <ol [} "] [ o }
[tae<e [ }”“‘{/zm } |

Combining the Cauchy inequality, inequalities (2.7) and estimates (2.6), we get
1/2 1/2 1/2
/w%iidx < {/ @4dx} {/ ﬁidx} < c{/ dex} (2.8)
Q I I Q
1/2 2 1/2 1/2
X {/ viidx} {/ (Z lwa, |? +w2> dm} {/ (|Av|? +v2)d:c} .
Q o \Z Q

=1

2.7)

Inequality (2.1) is a direct consequence of inequality (2.8).
2) Let us now consider the 3D case. The Holder inequality provides that

1/3 2/3
/w%iidx < {/ |w|6dx} {/ |va, |2 dm} (2.9)
Q Q Q
1/3 1/3 1/3
< {/ |w|6dac} {/ |V, 2al:c} {/ Vg, [* d:c} .
Q Q Q

Then, applying the imbedding theorem and the multiplicative inequalities to the
extended functions w,v we obtain the estimates:

. 1/3 3 ,
w|” dx <ec / Wy, | " dx 7,
{/H| | } { priA }
, 1/3 , 1/6 3
Uy, | dx <c /@i dx} / Vg m;
{[ntac}” <e{ [l { X1

(2.10)

}1/2
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Substituting this estimates in inequality (2.9) we get

3 1/2 3 ) 1/2
@02 de < ¢ / Wy, | da {/ Ez,zdx} / Vpoo,| dzy .
J e <eq [ 3ot Panpy [ ) 2 e

(2.11)

Inequality (2.2) is a direct consequence of inequality (2.11) and estimates of the
norms (2.6) for the extended functions w, v.

3) Functions u € Wy"*(Q2) N W22(Q) satisfy the inequalities [5]:

[ully g < cllAull, full < cflAully 5 (2.12)

Estimates (2.3), (2.4) are direct consequences of estimates (2.1), (2.2) and esti-
mates (2.12). Estimate (2.5) follows from estimates (2.11) and (2.12). O

Now, in what follows some estimates for the norm |lu(-,t)||;  of solution
to the Navier-Stokes problem are deduced. Below in the inequalities by ¢, ¢; are
denoted constants that depend on the domain €.

Lemma 2.2. The C?(Qr) solution to the Navier-Stokes problem (1.1)—(1.4) satis-
fies the following differential inequalities.

1° In the 2D case

d _
dtHu(wt)Hf,z + v e )1 + ve? || A, 1)
) A (2.13)
c 2 4
< O S+ DI
2° In the 3D case
d _
g 1w 0] Dot v w1 4 v | Aul- 1))
. . . 3 (2.14)
3 4 6
< 02+ LGOI < 6 a0l 2 + v 1760172
v v v
3° In both the 2D and 3D cases
d 2 36 2 2 2
12 < 2520 02+ DI (215)

4° In the 3D case there exists such a constant cy that the norm ||u(-,t)||; 5 sat-
isfies the inequality
2 v?
a0l < on 0.7 (2.16)

when
2

4 T
|+ juc o, < (217)

v
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Proof. 1° Let us consider the 2D case. For u € W, *(Q)NW22(£2) we can estimate
the norm ||(u, V)u(z, t)||* through inequality (2.3) as:

/Q |, V)l d < e [Jul ul

1o llAu] . (2.18)

Then applying the inequality |ab| < 2‘222 + ”22b2 and equivalence (1.10) to inequality
(2.18), we obtain

2
2 €3 2 4 VEaRon2
[l de <l + % 1Bl (219)

Furthermore, substituting estimate (2.19) in the right-hand side of inequality

(1.21), subtracting the term ”22 Hﬁu(,ﬁ)”2 from the right- and left-hand sides of
inequality (1.21) and using equivalence of the norms (1.10), we deduce differential
inequality (2.13) with some constant ¢, ¢;.

2° Now, let us consider the 3D case. For u € W, *(Q) N W22(Q) we can
estimate the norm ||(u, V)u(z, t)||* by using inequality (2.4):

2 3/2
/Q V)l dr <l Jul

Substituting this estimate in the right-hand side of inequality (1.21), applying the

2,2°

inequality |ab| < 2“52 + ”22b2, subtracting the term ”22 ||£u(x,t)||2 from the right-
and left-hand sides of inequality (1.21) and using equivalence of the norms (1.10),
we deduce differential inequality (2.14) with some constants c;.

3° Evidently, the following inequality holds:
Ity V)l )1 < 9y (0) [lul-, D)7 5 (2.20)
Substituting estimate (2.20) in the right-hand side of inequalities (1.21) we obtain
inequality (2.15).
4° Tt follows from inequality (2.4) and estimate (2.12) for u € Wg?(Q) N
W?22(Q) that
[ 1wVl do < el
Q

Now, we substitute this estimate in inequality (1.21), apply equivalence (1.10) and
subtract the term c2cq Hu||? 5 | Aul|?. As a result, we obtain

d
Yt a7 o+ e )17 + 2 (0% = eo llul 117 o) 1Al O < 20 I

(2.21)

2
2,2°

Evidently, by condition (2.17) inequality (2.16) is satisfied in some interval [0, t).
Suppose t* is the minimum point in [0, 7], where ||u(30,1f*)||?2 = ’éj, and t* < T

hence ||u(,t*)|ﬁ 5 < v’ in [0,t*). Therefore, from inequality (2.21) it follows that

o
d 2 2
v 5 IO < 215,01,
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and by inequality (2.17) we conclude that

2 4 " 2 2 V2
2s [ IFG O e+ [lul 0y, <
0 Co

)

l[u(, )]

in [0,¢*]. This contradiction proves inequality (2.16). O

Conclusion 2.3.

1° Estimate (1.24) is a direct consequence of differential inequality (2.15).
2° Assume that the integral fot I£(-,7)|I? dr is bounded for allt > 0. Then in the

2D case we have the following.
a) The function ||u(-,t)| is bounded for all t >0 by inequality (1.18) and
the integral f(f [, 7')||?2 dr is bounded for allt > 0 by inequality (1.19).

Hence, the integral fot w(T)dT of the function

w(r) == S { G nI?) ful, )2

is also bounded for all t > 0 by inequalities (1.18), (1.19).
b) Due to inequality (2.13) and Gronwall’s lemma, we obtain

ot < e { | twde} 190|?,

+ i/ot exp {/:w(r)dr} Hf(',S)HQ ds.

As the integral fot w(T)dr is bounded for all t > 0, the function
°ll

(2.22)

Hu(,t)”f2 is bounded for all t > 0 by a constant depending on ||u
and Jy £ (7)1 dr.

3. The Galerkin approximations and existence of the GSNS

1° Let a*(x) € H(2) be vector functions chosen to be the eigenfunctions of problem
(1.11). The system {a*(x)} is orthonormal in Ly(Q) and dense in J°(£2).

Let u%(z) € H(Q). Evidently,

u'(z) =Y cpak (). (3.1)
k=1

We search the Galerkin approximate solutions u"(x,t) of problem (1.1) in the form

u(z,t) = chn(t)ak(x). (3.2)
k=1

The functions ¢k, (t) are determined by the initial data

ckn(o):ck7 k= 17"'7”7
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and the Galerkin conditions
3
— fa?) + Z {V(ugi,agi) — (u?u”,agﬂ)} =0. (3.3)
i=1

Conditions (3.3) were obtained formally from system (1.1) substituting u by
u™, multiplying by the function a’ and integrating over Q. The Galerkin conditions
(3.3) represent a system of ordinary differential equations of the form

den
i VZa]kc;m + Z @jpkCpnChn = fj, (3.4)
p,k=1
where aji, ajpr are constants and f; = (f,a’).

If we multiply relations (3.3) by ¢;»(f) and sum them up with respect to the

index j from 1 to n, we obtain

2dt ” QUL +”Z||% BT = (f,u"). (3.5)

To derive equation (3.5), we use the followmg identity

3
(Z uiuzi,u> =0, (3.6)

which holds for functions in H(€2). Then, from equation (3.5) and the Cauchy
inequality it follows that

Ol )l < 10

B

whence
01 < 0+ [ 1iCmar (3.)

Therefore, substituting estimate (3.7) into the right-hand side of inequality (3.5)
and integrating the resulting inequality by ¢t we infer that the basic estimates (1.19)
are true for the Galerkin approximations u"(x,t) as well.

As the functions a”(z) are orthonormal in L(), it follows from inequality

(3.7) that )
> < (1o c.o + / 15, ||d7)

Hence, if fo 17, H dr < oo for all t > 0, then system (3.4) for the coefficients
Cjn has a solutzon in the interval [0, +00).

2° Now we verify that inequality (1.21) holds for the Galerkin approximations
as well. As the eigenfunctions a*(z) of problem (1.11) belong to W22(Q) N H(f2)
[5], we can rewrite equations (3.3) in an equivalent form

{(ut,a])—l/(Au a’) } ( Zu”u" —|—f,aj> ,7=1,...,n. (3.8)
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Cin

Multiplying these equations by d dr —VAjcjn and summing them up with respect
to the index j from 1 to n, after some simple standard transformation, we obtain

3
”jt SO, GOl + B G0l + 2| A )
=1

3
= <— Zufuﬁq + fouy — Vﬁu”) .

=1

(3.9)

Leray’s projection P in the bases {a*(x) : k = 1,...} has the form Pf =
Sore (f,a¥)ak . Let P, f be

n

P.f:= Z(f, ak)ak.

k=1

Hence, as Pyuy = u}, P,Au™ = Au”™, we can rewrite equations (3.8) in the form

3
(u? — vAu", Png) = (— > uiul + f, Png> (3.10)
1=1

for any function g(z,t) € L2(Qu). We set g = — Zle ufuly, + f, and, therefore,
the right-hand side of equation (3.9) can be presented in the form

3 3
<_ S+ fu @m) _ <pn =S, + ]t - yzun>
=1

=1
3
Po| =Y upul, + f]
=1

Now, we substitute equality (3.11) into the right-hand side of inequality (3.9) and
obtain the inequality

2

(3.11)

3 2

n,n
E u Uy,

=1

2
+2|f1I7,

(3.12)
which means that inequality (1.21) also holds for the Galerkin approximations
u(x,t).

d < ~ 2
v 5 SNl GOl )+ 0 B, <2
i=1

Lemma 3.1. The Galerkin approxzimations u™(x,t) satisfy inequalities (2.13)—(2.15)
of Lemma 2.2.

Proof. The proof of Lemma 2.2 is based on the inequalities of Lemma 2.1 and
inequality (1.21). As the Galerkin approximations also satisfy all these inequalities,
then inequalities of Lemma 2.2 also hold for the Galerkin approximations. (|

The global existence of GSNS in the 2D case is well known, in particular,
this follows from inequality (2.22).
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Now, we consider the 3D case and inequality (2.14).

Lemma 3.2.
1) Let b > 0 and 2(t) be a function in C*([1,T)), z(t) > 0. Suppose that the
function z(t) on the interval [, T) satisfies the inequality
d Yy 14+«
dtz(t) <. (zt)+b)"", a>0. (3.13)

We put
T*(1) := v (2(7) +b)"%, Ty :=min(T, T*(1) + 7). (3.14)
Then the following estimate holds on the interval [1,Tp,):
-1/
0
t) < —
A= (o) = =yt

2) Consider a function z(t) in C1([0,T})) such that z(t) > 0, inequality (3.13)
is satisfied and limy_7, 2(t) = +o0o. Then the following inequality holds on
the interval [0,T}):

b. (3.15)

—1/a

A)> )

(T —tytfe (3.16)

2

3) If supycpo,n IF (5 )| < oo and supycpopy) lu(,t)ll; o = +oo, then for the

classical solution to the Navier-Stokes problem on the interval [0,T}), T; <
+oo, estimate (1.27) holds for some positive constants a,b.

Proof. 1) Dividing inequality (3.13) by (z(t) + b)Ha and integrating the result in

the interval [, ], we obtain
—(2(0) +6)7" + (2(1) +6)7" <At = 7). (3.17)
Therefore,
(2(7) +0)" =t —7) < (2(t) +6)%,
and
(2(t) +0)* < 1/{(2(7) + )" —=2(t = 7)}. (3.18)
Inequality (3.15) is a direct consequence of inequality (3.18) and definition (3.14).

2) Suppose now that in inequality (3.17) we take t — T};. Then the condition
limy_,7, z(t) = +oo implies that

(2(1) +b)" <(T1 — 1) (3.19)
for all 7 € [0,7;). From inequality (3.19) it follows that for all 7 € [0,7;) we have
1
2(T) +b)* >
G2 - m

and, therefore, inequality (3.16) is satisfied.
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3) Consider inequality (2.14) for a classical solution. We set

2(t) = Ju( )3,

bi=cor®® sup ||IF(, )17, (3.20)
t€[0,T7]
266
vi= g (3.21)

With such notation inequality (2.14) has the form (3.13) for o = 2. Hence, by part

2) of the lemma, we obtain estimate (1.27) with the constant a = (2;36)_1/2 .0

If the initial data and the integral [J° | f(;, t)||? dt are small enough, i.e.,

2

o v
/ 1FC DI de+ [, 0)[2, <
0 €o

then the global existence of the GSNS to the Navier-Stokes problem in the cylinder
Qoo = 2 x [0,400) easily follows from estimates (2.16), (2.17).

Now, denote by W (T') the Banach space obtained as the completion of the
set of functions

4
v

N
{g(fc,t) g =Y fe(®)en(@); fu(t) € CH(0, T)), o € WH(2) N H(Q), N < OO}

k=1
in the norm ||-[|y 1, where, with 3 >0,
2 2 g 2 2
iy == g et 120 [ o= Boua 7 + v e 0} . (322

Evidently, by definition the GSNS belongs to the space W(T'). Below we prove
the convergence of the Galerkin approximations in the space W(T') to the GSNS.
In the following theorem we use the notations S; and T, from (1.28) and (1.29),
respectively.

Theorem 3.3. (3D case) Suppose that the initial data and the right-hand side f(z,t)
of the Navier-Stokes problem (1.1)~(1.4) in a domain Q € R3 with compact closure
and a C* boundary 0X) satisfy the conditions

u’(-) € H(Q); sup [[f(- )] < oo (3.23)
t€[0,00]

Let b be the constant defined by equality (3.20). Then the following assertions are
fulfilled.

1) The GSNS exists and it is unique on the interval [0,T,) for T, > T*, where

-2
T =y (0, +0) (3.24)
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The norm |lu(-,t)||, , of the GSNS on the interval [0, T™) satisfies the inequal-
ity
—1/2
2 v
u(-,t < —b. 3.25
Bl < L (3:25)

2) IfT, < oo, then

sup sup [[u"(#)|[} , = oo, (3.26)
n tef0,Ty)

and the GSNS on the interval [0,T,) satisfies the inequality
A=1/2

Hl 2 = \/T _ t

If T, = oo, then the GSNS exists on [0, +00).

3) The Galerkin approzimations u™ converge to the GSNS in the norm ||~HW(T)
for all intervals [0,T] and oll T < Ty,

l[u(-,t) (3.27)

Proof. 1a) The existence of the GSNS is proved by the Galerkin method. As the
Galerkin approximations u™(z, t) satisfy inequality (2.14), by Lemma 3.2 we obtain
the estimate

~1/2

Y
u

o COR2 s -

-2

(3.28)

where T, = 'y_l( ||u%Hf T+ b) and vl (x) := 22:1 a®(z)(u®, a*). For a function
u® € H(Q), we get |[ud — UOH1 , = 0 asn — oo [5], and, therefore, Ty — T* =
_ 2 —2 '
Y[l +0)
Substituting the estimate (3.28) into the right-hand side of the first inequality
n (2.14) for the function u™(z,t), we get

d

_ 2 2 c
0 2+ v 01 + v A, D) <

Cq
(T — t)3/2 + £( ).

Integrating the latter inequality by ¢, we infer that

t
()3 2 + /0 (v e, DI” + veg | Aul, 7| )dr

2 1 c
< HuOHl,Q +26{(T; )12 - (T 1/2} ! / 1 (7))l dr.

Since the right-hand side of inequality (3.29) monotonically increases in ¢, we
conclude that

(3.29)

max lu(-,7)

2 0112 1 Cyq
clo.] 17,2 < H“ }’1,2+26{(T* —t)1/2 - (T*) 1/2} / 1/ (7)) 2dr.
(3.30)



254 V.V. Kucherenko

Summing inequalities (3.29) and (3.30) and taking ¢ = T', we obtain the inequality

1

[ ||u0||i2 + a1 { (T + ag (3.31)
n

1
s~ e
with some positive constants a;, i = 1,2. Hence Ty > T™ > 0.
Furthermore, as inequality (2.14) holds for the Galerkin approximations
u™(z,t) on the intervals [0,T], T < T, integrating again the first inequality in
(2.14) for u™(x,t) by t € [0,T] and taking into account (1.28), we conclude that
the Galerkin approximations also satisfy the inequality

3
2 2 a3T 2 a4 2
By <2 07, + 5 (s s el )+ [ sl a

[0,

(3.32)
Therefore we can choose a subsequence u"7(x,t) such that the sequences u"(x,t),
uy (2, 1), uzt, (2,1), uzis, (z,t) are weakly converging in Lo(Qr) for all0 < T < Tj,.
Let us prove that the sequences uy’ (z,t), u™(x,t) strongly converge in
Ly(Qr) (for all 0 < T' < T,) applying the Friedrich inequality. This inequality
asserts that for any function u in W, 2(€) and any & > 0 there exist N, functions

wj, j=1,..., Ne, such that

/QuQ(x)dx < Z (/Q uwjdx)2 + e/ﬂ(grad u)?dz. (3.33)

We prove that estimate (3.33) is also valid for all the function u from W12(Q).
Let S be a rectangle that contains some vicinity of 2, and let A be a bounded
operator of extension [1],

A WEAHQ) — W2 (S), (Au)lg=u
satisfying the inequalities
[Aully, 5 (5) < cllull, o (€2), k=0,1. (3.34)

Actually, the unique analytical expression for the extension operator A generates
two bounded operators Ao : Ly(Q) — Ly(Q) and A; : WH2(Q) — Wy*(S) with
the norms [|Aol|, ||A1]-

Consider the Friedrich inequality in rectangle S, and let w;, j =1,2,..., N¢
be functions in Friedrich’s inequality for VVO1 ’2(5). We can take for wj;, j =
1,..., N, the orthogonal trigonometric system in the rectangle S. The Friedrich
inequality in the rectangle S implies that

/ (Agu)?dx < Z (/ (Agu) w]dx) +€/S(grad (Aju))?dz. (3.35)
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By virtue of equality /(Aou)wjd:c = / u(Ajw;)dx and estimate (3.34) for k =1,
s Q
from (3.35) we get

/QuQ(:c)dx < /S(Aou)Qd:c

2 (3.36)
< Z (/ u(Agw;) dac) + e ||A]? / {(grad v)* + v’} d,
whence
/uQ(x)dﬂc Z (/ (Afw; d:c>2 el /(grad u)’dx
o 1—ﬂmm ) 1—el|A ] Ja
(3.37)

We use the above inequality for u = J,, (u™ — u™) and integrate it with respect
to t from 0 to T' obtaining:

r 2
/ /}3zk(ul”’—ul"7)| dxdt

1—€|\Al|| Z/ [/ {00, (" = w”)} (Ajw;)dz | dt (3.38)
| Al .
smm/ /Z’wm — )| dadt.

Observe that the Galerkin approximations u™ satisfy inequality (3.32) and
90 < cl|Aum| as u™ € H(Q)N W22(Q). Therefore, the last integral in the
right-hand side of inequality (3.38) does not exceed a fixed constant multiplied by
e. The first integral in the right-hand side of inequality (3.38) can be considered
arbitrarily small for sufficiently large n;,n;, as the sequence {uy? (x,t)} converges
weakly in Lo(Qr) and in Lo(Q2) to the function weakly continuous in ¢ [5], and
hence the integral

s

2

/OT {/Q{ax“(ulni — ")} (Agw;)dz| dt =0

as n;,n; — oo. Thus, the right-hand side of (3.38) can be considered arbitrarily
small for sufficiently large indices n;,n;. This proves that the sequences {u}’ }, k =
2,3 converge strongly in Ly (Qr). Estimate ||ul® < ¢ ||u|ﬁ2 is valid for u € H(2),
and we obtain that the sequence {u™i} also converges in La(Qp).
1b) Now we prove that the sequence {(u™i,V)u™} strongly converges in
Lo(Qr). With this goal in mind we employ 1nequahty (2.5) and set w = u;"" — ul"j,
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v =uy". Thus, we get

/ / |(up' — w7 ) O, u } dx <c Ir[lax g GOl o (3.39)

dt.

T
X { max [lu)" (-, t)|; , + max [l ( ,t)||172}/0 |up — w ||12|\Auzi

t€[0,T] t€[0,T]
Due to inequality (3.32) the numbers

'7t 5 7t 5 ',t
e [luf (Dl o max (0] 5, max g (S0l

are bounded in the interval [0,T], 0 < T' < T by some constant C(7") uniformly
with respect to n;, nj, [. Hence, applying the Cauchy inequality to the right-hand
side of (3.39) we obtain

[ for =
gCl(T){/O |Au2’7|2dt}1/2{/0THul — ) ||12 }1/2.

, . . T a2 )12 .
By virtue of inequality (3.32) the numbers { Jo N1Aug ] dt} are uniformly
bounded by some constant Co>(T") in [0,T], 0 < T' < T, and in part la) it was
proved that {fOT ||ul — ul ||1 2 } — 0 as n;, n; — oo. Therefore, the right-

2dac

(3.40)

hand side in inequality (3.40) can be considered arbitrarily small as n;, n; — cc.
We consider the following inequality in a similar way:

T
/ / |l 0, (u — )| da
0 Q

< of s o0 ) [ = 8 =)

te[0,T]

o 1/2 T 1/2
<o [ e ol ak { - o)
T oo 1/2
gCl(T){/O ||ul"i—ul”||172dt} |

From inequality (3.41) it follows the convergence:

(3.41)

T
/ |upy O, (] — u?j)|2dt — 0 as n;, nj — oc.
0
Combining inequalities (3.40), (3.41) we infer that the sequence {(u"i, V)u™}
strongly converges in L2(Qr) to some function 1,

Y= lim (u™,V)u™. (3.42)
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1c) Equality (3.8) can be rewritten in the following equivalent form:
Ul — vAu" = —P,(u",V)u" + P, . (3.43)
Therefore, we obtain
By (u" — u™) — vA(u" — u™) (3.44)
—(Pp — Pp) (W™, V)u" + (P, — Pp) f + P {(u™, V)u™ — (u", V)u"};
(u" = u™)|ymg = (Pn = Pr)u’

Using the equivalence

T
al/ A" —wm)| dt</ 1A m)||2dt§a2/ A @ — wm)|dt,

by standard calculations from (3.44) we get the inequality

max | (u" = w™) (-, DI}, + / {I0nu” =) + ve A = um)|*} di

[0,7]
0|2 ! n n||2
<[ = Pl + e | {0 = P, 9 (3.45)
P = P fIP + 1™, )™ = (", )" |* Y.
From [5, pp. 44-46] it follows that ||(P, — Pm)uOH? , = 0and [[(P, — Pp)f]l — 0
T
as n, m — oo. We proved above that / [(u", V)u" — (u™, V)u™ > dt — 0 as
0

i,7 — oo. Evidently,

T
/ ||(P7LJ _Pm)(um,V)u"?Hth
0 (3.46)

T T
§4/‘ngvmw_¢Wﬁ+2/ WBU—RHWF%
0 0

where ¢ := lim,,; oo (u", V)u™ . Consequently, the right-hand side of inequality
(3.46) tends to zero as n; — oco. Hence, the right-hand side of inequality (3.45) for
n = nj, m = n; tends to zero as ,j — oo, that is, the Galerkin approximations
{u"7} converge in the norm ||-[|y ) to the function

= lim u™ € W(T). (3.47)
J]—0
If we substltute the expressions (u)'" — u;”)dz,ul’ by (v — w)dyuj’ and

w0y (U] — 1)) by ugdy, (u)' — ;) in inequalities (3.40) and (3.41), then, simi-
larly to 1b), we obtain the following convergence in La(Qr) :

lim (v, V)u™ = (u, V)u = .
T j —»00

Note that linear combinations of the functions a’,j = 1,..., with time-
dependent coefficients d;(t) are dense in L5(Qr). Thus, integrating the scalar
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product of the right-hand and left-hand sides of equality (3.43) with a function
g € L5(Qr) and passing to limit as n = n; — oo, we deduce that function (3.47)
satisfies the equation

T
/ (?;Z — vAu+ P(u,V)u — Pf(x,t),9(z, t)) dt =0,
0
for all g € L3(Qr)

(3.48)

on the intervals [0,T], T < T,. Evidently, the function u(x,t) possesses all prop-
erties of the GSNS solution. By Lemma 1.2 the GSNS solution is unique.

1d) Now, we prove that all the sequence {(u™, V)u"} converge in Lo(Qr).
Observe that {u"/} converges in the norm ||-[|yy; 7 to a unique GSNS u(z,t), and

T
/ [(u, V)u" — (u, V)ul|* dt = 0 as j — occ.
0

So, for any subsequence {ny}, such that the sequence {(u", V)u™ } converges in
L2(Qr), this sequence converges to the same limit (u, V)u, where the function u
is the GSNS function obtained above.

Now, suppose the opposite, i.e., that all the sequence {(u",V)u"} do not
converge in Lo(Qr). Then there exist €9 > 0 and such a subsequence {7,} that

r 2
/0 H(uﬁq’v)“ﬁq - (u,V)uH dt > e for all {ng,}.

By the above-mentioned considerations we can find a subsequence {n;} C {n4}
such that

T
/ H(Uﬁ’,V)uﬁl - (u,V)uHth —0 as j— oo.
0

The obtained contradiction proves that all the sequence {(u™, V)u"} converges in
L2(Qr) to the function (u, V)u.

2a) Now we prove inequality (3.25). The Galerkin approximations u™ satisfy
inequality (3.28). Recall that [[u” — ully;g) — 0 as n — co. So we can pass to
limit in inequality (3.28) and obtain inequality (3.25).

2b) In order to prove inequality (3.27) we consider inequality (2.14) at the
Galerkin approximation ™ and apply inequality (3.17) to the functions u™. There-
fore, we obtain

~(u"C )1 2+ 8) 7%+ ([ (7)o +0) 7% < A(E = 7), (3.49)

H2/3

where b := ¢gr?/3 supyepo,r,) I1F () . By definition of the value T}, there exist

sequences n,, — oo and t,,, — T, such that ||u""(-,t,,.) — 00. Let us set

7
t = ty,, and n = n,, in inequality (3.49). Passing in inequality (3.49) to limit as
nm — 00 we obtain inequality (3.27).

2¢) The statement 3) of the theorem was proved in part 1c). O
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importance as motivation for these scales are presented and discussed in a
historical perspective.
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1. Introduction

We consider the general one-dimensional Hardy inequality

1/p

(/Ob (/0”” f(t)dt)qu(x)dx> " <C (/Ob fp(I)U(x)dx> (1.1)

with a fixed b, 0 < b < oo, for measurable functions f > 0, weights u and v
and for the parameters p, ¢ satisfying 0 < ¢ < oo and p > 1. The validity of this
inequality can be characterized by some single conditions which are different for
the case p < ¢ (then we call it the Muckenhoupt-Bradley condition and denote it
App < 00) and for the case ¢ < p (then we call it the Maz’ya-Rozin condition
and denote it Aprp < 00).

The first author was supported by RVO: 67985840. The third author gratefully acknowl-
edges financial support by Fundac¢do para a Ciéncia e a Tecnologia (FCT), Portugal, (Grant
SFRH/BPD/34258/2006) and Lulea University of Technology for financial support for the re-
search visits in 2011.
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The main goal of the paper is to give a survey of recent results, not going
into details, which could be found in the references.

We want to show that the necessary and sufficient conditions mentioned
above can be extended (or more precisely replaced) by a whole SCALE of con-
ditions depending on some additional parameters and, hence, provide the reader
with infinitely many equivalent conditions.This is important for example due to
the fact that the validity of the Hardy inequality is closely connected with the
solvability of some boundary value problems, in particular with spectral problems
for (nonlinear) ordinary differential equations, and with extremal problems. To be
more concrete, the best constant C' in (1.1) describes the (first) eigenvalue of a dif-
ferential operator, and equivalent conditions from the scales mentioned provide us
also with different estimates of the eigenvalues (for details see, e.g., [12], Sections
4 and 14, or [6], Chapters 7 and 8, and several papers mentioned in [6]). Moreover,
among the estimates for the constant C' resulting from our equivalent conditions,
there are also estimates expressed in term of the gamma-function (see, e.g., the
reference [202] in [6]) and the conditions of the validity of inequality (1.1) allow
even to decide about the discreteness of the spectrum. Therefore, it is important
to obtain estimates — as good as possible — for the best constant in (1.1).

The fact that scales of conditions can improve the estimate of the best con-
stant was first illustrated in the Ph.D. thesis of A. Wedestig [18], Example 3.1, p.
29. In this thesis it was also proved that Hardy type inequalities described by a
scale of conditions can be used to derive a characterization of the corresponding
limiting inequalities (where the (arithmetic mean) Hardy operator is replaced by
the geometric mean operator). Such a result can not be obtained in this way by
using the standard Muckenhoupt-Bradley condition (see (2.3)). In fact, this was
the crucial motivation already when L.E. Persson and V. Stepanov derived their
alternative conditions (see (2.6) and (2.8)).

In the following sections, we divide our description into three cases: p = ¢, p <
q and ¢ < p, and after some historical remarks, we present and illustrate the main
results concerning the scales. Finally, in Section 4 we make a final discussion and
present some examples and illustrations, which support some previous statements
in the text.

2. Some historical results
2a) The case p = q. A classical result here reads:

Theorem 2.1. Let 1 < p < oo. Then the inequality (1.1) holds for all measurable
functions f >0 on (0,0),0 < b < oo, if and only if

b Ve / 1/p'
A:= sup (/ u(m)dm) (/ v!=P (x)dx) < 00, (2.1)
re(0,b) r 0

where as usual p’ =p/(p —1) when p > 1 and p’ = 0o when p =1 (so the second
integral must be interpreted as a supremum).
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Remark 2.2. The condition (2.1) is frequently called the Muckenhoupt condition
since B. Muckenhoupt [11] presented in 1972 a nice and direct proof, which abso-
lutely has influenced the further development in a crucial way. However, Mucken-
houpt mentioned that G. Talenti [16] and G.A. Tomaselli [17] had already proved
this result in 1969, but in these papers the result was not so explicitly stated as
n [11]. More of this history, including some surprising details, can be found in the
book [6] by A. Kufner, L. Maligranda and L.E. Persson.

Remark 2.3. In the paper [17] Tomaselli also derived two other conditions for
characterizing the Hardy inequality, namely the following:

A* = su < /O Tu(ac) < /O i (t)dt)pdx) < /O Sl (x)dx) - < 00

A™ = inf sup (1:5) /0 xu(t) {f(t)—i— /0 tvl—P’(s)dsrdKoo.

f>0x6mb)f

and

Also this result has absolutely influenced the further development and in fact
it was proved in [2] that these two conditions can be replaced by infinitely many
conditions (indeed even by 14 different scales of conditions, of course even for the
case p < ¢, see our Theorem 3.1 with p = q).

Moreover, for the best constant C' in (1.1) it yields that

CrAr A"~ A™.

2b) The case 1 < p < gq. Inequality (1.1) is usually characterized by the (so-called
Muckenhoupt-Bradley) condition

Ay = sup App(z) < oo, (2.2)

0<z<b
( /0 R (t)dt> v . (2.3)

b
AA4B($):_’(;/ U(ﬂdt)

Here and in the sequel p’ = p/(p — 1). Further, let us denote

b T
Ulz) = / w(t)ydt, — V(z):= /0 0P () dt, (2.4)

and assume that U(z) < oo, V(x) < oo for every z € (0,b).

The index MB in Ayp = sup UY(x)V/? () indicates the efforts of
0<z<b
B. Muckenhoupt and J.S. Bradley. In 1972 B. Muckenhoupt [11] gave a nice proof

of the fact that Aj;p < oo is necessary and sufficient for (1.1) to hold for the case
p = ¢ and in 1978 J.S. Bradley [1] extended the Muckenhoupt result to the case
p < q and gave a complete and simple proof of Muckenhoupt type of this result.
However, this result was also independently derived in 1979 by V. Maz’ya and
L. Rozin (see [9] and [10]) and by V. Kokilashvili (see [5]).

where
1/q
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Besides the condition Ay p < 00, some other equivalent conditions have been
derived during the next decades, e.g., the conditions Ag < oo or A% < oo, where

1/q

= inf su 1 xu ot :
Ao = h>f00<3£b<h(x) /O (O (h(t) + V(1)) dt) :

(2.5)

h>00<z<b

b , 1/p
Af = inf sup (h(lx) / P () (h(t) + U(t)) +1dt> .

This result was proved by P. Gurka in 1984 in [4]; he extended to the case p < ¢
the result proved for p = ¢ in 1969 by G.A. Tomaselli [17].
Some other alternative conditions are that Apg < oo or Apg < oo, where

x 1/q
Aps = sup < / u(t)Vq(t)dt> VP (z);
0<z<b 0
" (2.6)

b
Le i= sup ( / vl—P’(t)Up/(t)dt> U9 (2).

0<z<b

This result was proved in 2002 in [13] by L.E. Persson and V. Stepanov but as we
have seen it was proved for the case p = ¢ already in 1969 in [17].
Moreover, for the best constant C' in (1.1) it yields that

C’QﬁAﬂ4B khAgi%<AE khAp55%44}S.
2c) The case 1 < ¢ < p < oo. A necessary and sufficient condition for (1.1) to

hold in this case was derived by V. Maz’ya and L. Rozin in the late seventies (see
[9] and [10]) and it reads:

Buyg = ( /0 h ure(z)vrv (:c)u(x)dx) " < o0, (2.7)

where 1/r :=1/q — 1/p. An alternative condition was found by L.E. Persson and
V. Stepanov in 2002 (see [13]) and it reads:

Brs = < /0 h { /0 xu(t)Vq(t)dt] R dm) W oo (28)

Moreover, for the best constant C' in (1.1) it yields that
C = Byr ~ Bpg.

Some complementary history to this section can be found in the book [6]; see also
[7] and [12].
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3. Unification and extensions: Scales of conditions

3a) The case 1 < p < q. The first scale of conditions was derived in 2004 in [8]
by A. Kufner, L.E. Persson and A. Wedestig. It reads A(r) < oo (with 1 <r < p)
or A*(r) < oo (with 1 < r < ¢'), where

A(r) -

b 1/q
sup (/ u(t)V‘I(p_’“)/”(t)dt> vrbirg), 1<r<p  (3.1)

0<z<b

x 1/p'
A*(r) = sup </ vl_p/(t)Up/(ql_T)/q/(t)dt> U(T_l)/q/(x), l<r<d.
0<z<b 0

Note that the end point condition A(p) < oo is just the Muckenhoupt-Bradley
condition Ay g < oo mentioned above.

In 2004 in [3] four new scales of equivalent integral conditions were derived
by A. Gogatishvili et al. This result was used to characterize the inequality (1.1)
by four scales of conditions, namely the scales including the Muckenhoupt-Bradley
condition, the Persson-Stepanov condition and the dual of these scales.

Here, we will present, discuss and extend the existing list of (equivalent) scales
with 10 new scales of conditions where also, e.g., the Gurka result mentioned above
(see [7]) appears as a special case.

Theorem 3.1. Let 1 < p < g < 00, 0 < s < oo, and define, for the weight functions
u, v, the functions U and V by (2.4), and the functions A;(s), i =1,2,...,14, as
follows:

0<z<b

b ) 1/q
Ai(s) == sup ( / u(t)vq<p'5>(t)dt> vV (2); (3.2)

z /1 1/ﬂ
As(s) := sup </ v!=P (t)UP(qS)(t)dt> U®(x);
0<z<b 0
@ N 1/q
As(s) == sup < / u(t)Vq(p’+S>(t)dt) VS (2);
0<z<b 0
b 1/1)1
Ay(s) := sup (/ vl_”/(t)U”(nlﬁs)(t)dt) U~*%(z);
0<z<b x
. 1+sq
As(s) = sup ( / w(t)V v Gt (t)dt) U~*(x);
0<z<b x
xT ’ lfb/'p/
Ag(s) :== sup (/ vl_p/(t)UWisp/)(t)dt) V=3 (x);
0<z<b 0
Az(s) :== sup </ u(t)VP’(lqsq)(t)dt) ’ Us(x), gs<1,
0<z<b 0
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1—sq

b M q
Asg(s) :== sup (/ u(t)Vr'a=s0 (t)dt) Us(x), gqs>1;

0<z<b

1—sp
b . p’
Ag(s) := sup (/ VP (YU a0 =) (t)dt) Ve(z), ps<1;
0<z<b x
x / 1—;;}’
Aip(s) :== sup (/ vlfp/(t)Uq(lfW’) (t)dt) ' Vi(z), p's>1;
0<z<b

N
=

=
—
)
N
|

= inf sup
h>00<z<b

b 1/q
/ w(t)h ()1 ’_S)dt> (h(z) +V(z))®, p's>1;
et l/p/
/ vt h(t)? (q_s)dt) (h(z) +U(x))®, qs>1;
0

L 1/q
/ u(t)(h(t) + V(¢ ))q<p'+s>dt> hs (x);
0

h>0p<z<b

1413(8):

inf sup
h>0p<z<b

A1a(s) == inf sup <
(

1414(8)2

h>0p<z<b

1/p
inf sup ( / vl—P’()(h()+U(t))p’<i+8><t)> h=* ().

Then the Hardy inequality (1.1) holds for all measurable functions f > 0 if
and only if any of the quantities A;(s), i = 1,2,3,...,14, is finite for some
0 < s < oo. Moreover, for the best constant C in (1.1) we have C =~ A;(s),
i1=1,2,3,...,14. The constants in the equivalence relations can depend on s.

Remark 3.2. The constants in (2.2), (2.5) (2.6) and (3.1) can be described in the
following way:

1 1 -1
AMB:A1<p/), APS:A3<p), A(r):Al(Tp )With1<r<p,

1 -1
PS—A4<q/), A*(T):AQ (rq/ )Wlth1<7”<q/,

1 . 1
Ao =s <q> Ao = <p’) '

Hence, Theorem 3.1 generalizes the corresponding results in [3] and [8] and also
all previous results of this type.

The first 4 scales were those proved in [3] and the scale in [8] is just the
interval to the left of the Muckenhoupt-Bradley point (see Figure 1). The proof of
Theorem 3.1 can be found in [2].
3b) The case 0 < ¢ < p < 00, p > 1, g # 1. The main result here (Theorem
3.3) is taken from the paper [14] by L.E. Persson, V. Stepanov and P. Wall, where
the complete proof and further information can be found. We remark that there
is a substantial difference with the case 1 < p < g < 00, because no duality exists
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for 0 < ¢ <1 < p < oo. Moreover, also in the case 1 < ¢ < p < oo we have only
found 4 different scales of conditions corresponding to the first four conditions in
Theorem 2.1. For simplicity we here also only consider the case b = oo

For simplicity we again suppose (see [6]) the following concerning the involved
weight functions:

0<U(x):= / u(t)dt < oo, 0 < V(x):= / v P (t)dt < oo for all z > 0.
T 0

(3.3)
Let 1/r:=1/q—1/p.
We now introduce the following scales of constants related to previous con-
stants and their dual ones:
For s > 0 we define the following functionals:

e r/p 1/r
B\ n(s) = ( L[] vq<1/p’—s>+“<t>u<t>dt> ,

oo ot r/p 1r
BU)(s) = ( /0 /0 uvq@/p*s)] u(t)vq(l/')’“)—s’“(t)dt) ,

1/r

co [ pt 7"/10/
B (s) = (/0 /OUP'U/“)dV] U”l(t)u(t)dt> ,

T [ r/p 1/r
Bpy(s) := (/0 /th(l/p’H)dv] Uq(l/p'+s)r5(t)dv(t)> '

The main theorem in this case reads:

Theorem 3.3.

a) Let0 <g<p<oo, 1l <p<ooand q+# 1. Then the Hardy inequality (1.1)
with b = oo holds for some finite constant C > 0 if and only if any of the

constants BJ(\})R(S) or ngv(s) is finite for some s > 0. Moreover, for the best

constant C' in (1.1) we have
C =~ B{}.(s) = BUL(s). (3.4)
b) Let 1 < g < p < co. Then the Hardy inequality (1.1) with b = oo holds for

some finite constant C' > 0 if and only if any of the constants B( ) r(s) or

BJ(DQ;( ) is finite for some s > 0. Moreover, for the best constant C in (1.1)
we have

2 2
C' ~ Biip(s) = BEy(s).

Remark 3.4. Note that Theorem 3.3 is a generalization of the original results of
Maz’ya-Rozin and Persson-Stepanov since BJ(\}) ( ,) = Bur and B(l)( ) = Bps
(see Figure 2).
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Remark 3.5. The statement in b) is just a corollary of a statement similar as in
a) in a dual situation, namely when [ in inequality (1.1) is replaced by [° (see
Theorem 2 in [13]).

Remark 3.6. It is known ([15], Remark on p. 93), that under the condition (3.3)
the Maz’ya-Rozin constant has an equivalent form

00 1/r
Bug = ( / yr/ayria dV) , and Bl = g,zsgm.
0

Similarly, a counterpart to the Persson-Stepanov constant is

Bps i= ( /O h { /O ’ u(t)Vq(t)dt] " V94V (z) dx)

Moreover (see [13])

1/r

and
q ) r/q q
Bpg = . (/ qu) V_’"/”(oo) + pBTPs if 0 < V(0) < 0.
0

These observations motivate us to introduce the following new alternative
scales of constants:

B, (s) = (/0‘” Utm uvq(l/p's)]r/q yre-i(p) dV(w)l/T’

0o f r/q 1/r
BUYs) = (/ [ et v—“—1<t>dV<t>>

It can be proved as above that

[Bia(s)] = as [Bir(s)]

and

r

Wl (7 ) s W]
[BAs)] = [ Vo (o0) + s [BRY(s)|

if 0 < V(00) < oo. Similarly,

[B&s)] =

sp’

oo t , r/q
Bi7n(s) == </O UO ur <1/q—3>dv]

(B

where

/

1/r
ur (/a=s)+rs(p) dV(t))
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and

BRG] =as [BRe)], U0) =,

r

r o , r/q r
[Be] = ([T o av) oo+ e (o)

where 0 < U(0) < oo, and

BE)(s) = (/OOO [/:O Uq(l/p’+s)dv} v U= (t)u(t) dt) W.

Hence it is possible to complement Theorem 3.3 with some additional scales of
conditions.

4. Final discussion, examples and some illustrations

First we illustrate the various conditions for characterizing the inequality
b/ x g 2 b »
/ / Fydr | w@yde| <c / Pa)o(z)de |
0 \o 0
which are stated and discussed in the previous sections.

The case 1 < p < g < oo (Figure 1)

o A(r) Amp Ai(s) < o0
° > S
1
pl
0 A*(r) Ayp = Ajyp Aa(s) < 00
1
q/
0 Aps As(s) < o0
) >
p
0] A*PS A4(S) < o0
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O Ag Aqa(s) < 00
o > > S
q
0] AE A14(S) < OSO
- >
p/

The case 0 < g < p < o0, p > 1, q # 1 (Figure 2)

1
0] Bur BE\/I)R(S) < oo
C ) > -S
v )
0 Byr By/r(s) < o0
C > S
1
! (1)
o Bps Bpg(s) < oo
le > S
1
g )
@) Bpg <0 Bps(s) < oo
> > S

We have not given explicit estimates of the best constants C' in (1.1). We
shall continue by shortly discussing also this important aspect. First we note that
by analyzing the proof of the theorems in this review paper we can state also some
estimates of the best constants C' in (1.1). By then just using these estimates we
conclude that o < C' < 8, where « is the maximum of all lower estimates of C'
and S is the minimum of all upper estimates of C. We refer to the paper [8] and
the Ph.D. thesis [18], where this aspect was developed and illustrated via concrete
estimates and examples.

For example, for the condition A(r) on the first scale in Figure 1 it yields
that

P 1/p ,
sup (pis) A(s) < C < inf <p a 1)1/p A(s), (4.1)

D = =
1<s<p p + 1 1<s<p
p—s s—1

see [8], Theorem 1 and cf. [18]. Here and in the sequel p’ = pfl. Moreover, for

the condition App at the right endpoint we have the standard estimate (see the
books [6, 7, 12])
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’

1/q 1/p
where k(p,q) = (1 + g,) (1 + 7; ) . Later on V.M. Manakov improved this

. (q@p) 0 <
r (quJ) r <p<qq:p1>) ,p<q.

Concerning the condition Aps we have the following estimate (see [13, Theo-
rem 1]):

constant to

k(p,q) =

Aps < C <p' Aps. (4.3)
By using this information and making elementary estimates we can see that

by using Apg we get that
Aup - (p—1)Y1<C < Aup-p'(p—1)"1, (4.4)

see [18], p. 29. In particular, this always improves the lower bound in (4.2) for all
p > 2. We only give the following elementary example how this information can
be used:

Ezample 1 (cf. [18], Example 3.1). Let p = 3,¢ = 4 and choose s = 1.15 in the
lower bound in (4.1). Then we obtain the following estimates:

a) Ayp < C < Ayp - 1.530348452,
by using (4.2) with Manakov’s constant.
b) Amp -1.189207115 < C,
by using (4.3).
¢) Aup - 1.396254480 < C,
by using the scale of conditions in (4.1).
Summing up, we find that

Anp - 1.396254480 < C' < Ay - 1.530348452

which is a better estimate than those we can find in the standard books (see
[6, 7, 12]).

We have also mentioned that alternative conditions for characterizing (1.1)
are useful for deriving limit cases of Hardy-type inequalities. To illustrate this idea
we first give the following elementary example.

Example 2. The classical form of Hardy’s inequality reads:

/OOO (i /Oxf(y)dy)pd:cg (pfl)p/ooo FP(x)dz, p> 1. (4.5)

This inequality was stated in 1920 and proved in 1925 by G.H. Hardy. The constant
P
C= (;;51) is sharp.

Replacing f(z) by (f(2))/? in (4.5) we find that

/OOO (i /Ox(f(y))l/de>pdﬂc§ <p€1>p/ooo flx)dz, p> 1.



272 A. Kufner, L.-E. Persson and N. Samko

By now letting p — oo we find that

(ch /Om(f(y))l/pdy>p — exp (; /Oz 1nf(y)dy> , and <p€ 1)p .

(the scale of Power means converges to the geometric mean when p — o). Hence,
we find that the inequality

/OOO exp (; /Ox 1nf(y)dy) dzx < e/ooo fz)da (4.6)

may be regarded as a limit case of (4.5).
In fact, (4.6) is known in the literature as the Pélya-Knopp inequality but
the relation above is not always pointed out. The constant C' = e in (4.6) is sharp.

Guided by this example it is natural to find a characterization of the inequal-
ity (1.1) with the arithmetic mean operator H f(x) := i fox In f(y)dy replaced by
the geometric mean operator G f(x) := exp (} fox In f(y)dy) via some limit proce-
dure like that in Example 2.

However, this is impossible by using the standard Aj;p condition. This was
the motivation when Persson and Stepanov derived the alternative condition Apg
in [13]. In fact, by using this condition the suggested limit algorithm above works
perfectly and the following result can be proved (cf. [13], Theorem 2): Let 0 < p <
q < 0o. Then the inequality

/p

( /Ob (exp (; /O In f(y)dy)>qu(:v)dx> v gy ( /Ob fp@)v(x)dx)l (4.7)

holds if and only if

@ 1/q
D:= sup z~ /P (/ w(y)dy> < 00, (4.8)
0

0<z<b

where

Moreover, D < C < e!/PD.

Ezample 3. By using this result with v(z) =u(z) =1, b=ccand p=¢ =1 we
see that w(y) =1 so that D =1 and we obtain (4.6).

Moreover, by considering the Hardy inequality (1.1) with b = oo, u(z) = =P,
v(z) = 1 and p = ¢ > 1 and using (2.6) we find that Apg = 1 and via the
corresponding estimate (4.3) we obtain (4.5). This fact does not follow by using
the condition Apsp with the corresponding estimate (4.2).

In the Ph.D. thesis [18] it was proved that also by using the scale A(s),
1 < s < p, in Figure 1 it is possible to obtain other characterizations of the
inequality (4.7) (see [18], Theorem 3.2).
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Abstract. The method of sub- and super-solutions is a classical tool in the
theory of second-order differential equations. It is known that this method
does not have a direct extension to almost periodic equations. We show that
if an almost periodic second-order semi-linear elliptic equation possesses an
ordered pair of almost periodic sub- and super-solutions, then very many
equations in the envelope have either almost automorphic solutions, or Besi-
covitch almost periodic solutions. In addition, we provide an application to
almost periodically forced pendulum equations.
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1. Introduction

The method of sub- and super-solutions (alternative terms are upper and lower
solutions) is a popular and powerful tool in the existence theory of boundary value
problems for which a maximum principle holds. In the framework of ordinary dif-
ferential equations basic ideas can be traced back to E. Picard and O. Perron.
Since that time hundreds papers have been published in this direction. A detailed
account of the existing results in the case of ordinary differential equations can be
found in [3] (see also references therein). The method extends to elliptic and para-
bolic partial differential equations. Simplest results of such kind can be found, e.g.,
in [2, Ch. IV, Appendix] and [21, Ch. 1]. For further development and applications
to real world problems we refer to [11, 24] and references therein.

In particular, the sub- and super-solution method provides results on exis-
tence of solutions to periodic boundary value problems, both in one and many
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spatial dimensions. Therefore, it is quite natural to try to develop the method
for existence of almost periodic solutions to almost periodic differential equations.
First results in the case of nonlinear ordinary differential equations have been ob-
tained by M. Krasnosel’skii, V. Burd and Yu. Kolesov [8, Sect. 10] by using the
theory of monotone operators. Those authors found existence results for almost
periodic solutions under certain assumptions that, in particular, guarantee the
uniqueness of the solution.

In 1983 A. Pankov [19] (see also [20, Sect. 5.1.2]) has considered almost
periodic semi-linear elliptic equations of second order. Assuming the existence of
a properly ordered pair of sub- and super-solutions, he was able to prove the
existence of a very weak almost periodic solution in the sense of Besicovitch-
Sobolev spaces. This solution is almost periodic in classical sense under certain
additional assumptions that ensure the uniqueness of solution.

In the case of ordinary differential equations, the authors of [22] made an
attempt to prove that an ordered pair of Bohr almost periodic sub- and super-
solutions gives rise to the existence of a Bohr almost periodic solution without
any uniqueness assumption. Unfortunately, that result is wrong. R. Ortega and
M. Tarallo [18] have constructed an example of almost periodic equation of the
form

—u" +cu=g(t,u)
that possesses an ordered pair of constant sub- and super-solutions, but has no
almost periodic solution between them. Actually, in their example the function g
is quasi-periodic in ¢ with two independent frequencies.

Our main aim in this paper is to understand what happens if there are
ordered sub- and super-solutions, but the uniqueness does not hold. Basically,
we prove that in the envelop of the equation under consideration there exist a
residual set ., and a set of full measure ), such that for every equation in Q4.
there is an almost automorphic solution, while equations in §2;, possess bounded
almost periodic in the sense of Besicovitch solutions. We do not know whether
at least one equation in the envelop has a solution that is, at the same time,
almost automorphic and almost periodic in Besicovitch sense, i.e., Qa0 () Qb # 0.
In addition, we weaken regularity assumptions made in [19] and show that the
frequency modulus of solution obtained is contained in the frequency modulus of
the equation. Let us point out that the main ingredients of the paper are monotone
iteration techniques and the metrizability of appropriate Bohr compactifications.

The organization of the paper is as follows. In Section 2 we sketch basic facts
on Bohr almost periodic functions. Our approach is based on the notion of Bohr
compactification and follows [20, 23]. A standard presentation of the theory can be
found in [12]. In Section 3 we remind the notion of almost automorphy (see, e.g.,
[15, 16] for more details) and prove a technical result needed later on. Section 4 is
devoted to a brief account of Besicovitch almost periodicity. In Section 5 we study
almost periodic second-order elliptic equations. The main result of the section,
Theorem 5.1, provides sufficient conditions for the existence of almost periodic
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solutions, including the modulus containment property. The central part of the
paper is Section 6 in which the main result, Theorem 6.1, is proven. In Theorem 6.2
we give certain sufficient conditions for the existence of constant sub- and super-
solutions. In addition, we show that if each equation in the envelop has at most
one bounded solution, the solution constructed in Theorem 6.1 is almost periodic
in the sense of Bohr. In Section 7 we give an application of Theorem 6.1 to the
pendulum equation with almost periodic forcing term.

Note that to simplify the notation we often denote by C a generic positive
constant.

2. Bohr almost periodic functions and Bohr compactification

Let Cp(R™) denote the space of all bounded continuous functions on R"™. Endowed
with the norm

If1l = sup [f(x)],

rER™
this is a Banach space. According to the Bochner definition, a function f € C,(R"™)
is almost periodic (shortly, a.p.) in the sense of Bohr if the family of shifts {f(- +
y) }yern is precompact in C,(R™). The set of all a.p. functions is a closed linear
subspace of C,(R™), hence, a Banach space. We denote by C AP(R™) the space of
all almost periodic functions on R"™.

An important property of a.p. functions is the existence of mean value. Let
KT:{ICERn : |£Ck| <T k= 1,2,...,k}.
The mean value of an almost periodic function f is defined by

)= Jm o, / L fwde. (2.1)

The limit in (2.1) exists uniformly with respect to @ € R™ and is independent of a.

The following statement is often considered as the main result on almost
periodic functions. Let Trig(R™) be the space of all trigonometric polynomials,
i.e., finite sums of the form

Z a; exp(i&; - ),

where a; € C, §; € R" and

n
Ty = Zﬂﬁkyk
k=1

is the standard dot product in R™.

Proposition 2.1 (Approximation Theorem). The space Trig(R™) is a dense sub-
space of the Banach space CAP(R™).

See [20, Proposition 1.3 of Ch. 1].
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The Fourier-Bohr transform of an almost periodic function f is defined by

f(&) = (f(x) exp(—i& - z)) . (22)
The set )

o(f) ={§ €R™: f(£) # 0} (2.3)
is called the spectrum of an almost periodic function f. It follows immediately from
Proposition 2.1 that, for any a.p. function f, the set o(f) is at most countable.
The additive subgroup Mod(f) of R™ generated by o(f) is called the modulus of
the function f.

Now we give a brief description of Bohr compactifications of the (additive
group of) space R™. The standard approach uses Pontryagin’s duality theory (see,
e.g., [7, Ch. 6] for a detailed presentation of the theory of locally compact abelian
groups including Pontryagin’s duality). Consider R™ as a locally compact abelian
group. Its dual group, (R™)’, consists of all characters which are, in this case,
functions of the form exp(if - ). The correspondence exp(i§ - ) — £ is an isomor-
phisms (R")" ~ R™. Denote by (R™)/, the group (R™)" endowed with the discrete
topology. We set R = ((R™)’,)". This is a compact abelian group called the Bohr
compactification of R™. Also we introduce the dual homomorphism

i R = (R")” > RY = (R"),)
to the identity homomorphism (R™)), — (R™)’. The homomorphism iz is injective
and its image ig(R"™) is a dense subgroup in R%.
In what follows, we need a more general notion of relative Bohr compactifi-
cation. Let I' C (R™)" be an nonzero additive subgroup considered as a discrete

group (later on we always suppose that I' # {0}). The Bohr compactification of
R™ relative to T'is defined as R . = I". The homomorphism

Z'BJ :R” — R%I
is defined as the dual to the identity map I' — R™. Its image is still a dense
subgroup of R’ r- The kernel kerip r is a linear subspace of R™ orthogonal to the
linear subspace of (R™)" generated by I'. If ' = (R™)’, we return to the original

Bohr compactification.
The main result on Bohr compactifications is the following

Proposition 2.2. A function f on R™ is almost periodic, with Mod(f) C T, if and
only if f is of the form

f(z) = fliprz),

- ' ) ) .
where [ is a (unique) continuous function on R r-

See [20, Proposition 3.5 of Ch. 1]

Let f be an a.p. function and T' D Mod(f). We use f as a standard notation
for the function on the Bohr compactification given in Proposition 2.2. For any
s € R, we set

f (@) = f(s+iprz), z€R™.
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Notice, that the map s — f(*) is a continuous map from R r into CAP(R™). The

set of a.p. functions H(f) = {f(s)}seRg . is called the envelope of f. The envelope
H(f) is independent of the choice of I' D Mod(f). Actually, H(f) is the closure of
the set of shifts { f(-+y)}yern. In classical literature the later property is accepted
as the definition of the envelope.

Also let us point out that, for any additive subgroup I' C R",

CAPr(R") = {f € CAP(R") : Mod(f) C T}
is a closed linear subspace of CAP(R™). By Proposition 2.2, the operator Jr : f —

f is an isometric isomorphism from the Banach space C APr(R™) onto the Banach
space C(R% p).

Now we complement Proposition 2.2 with the following result that expresses
the mean value of an almost periodic function in terms of Bohr compactification
(see [20, 23]). Let p = pr be the Haar measure on R -, i.e., a unique positive

translation invariant measure such that u(R 1) = 1 (see, e.g., [7, Ch. 4]).

Proposition 2.3. For every f € CAPr(R™) we have
(f) = f(s)duls) -
Ry r
Also we need a refined version of Proposition 2.1.

Proposition 2.4. Given a countable subgroup I' C R™, there exists a sequence of
trigonometric polynomials Py, (x) with the following properties

(a) Py(z) >0 for all z € R™;

(b) (Pm) =1;

(¢c) For any f € CAPr(R™), the sequence of trigonometric polynomials

fm(@) = (fW) Pz =)y = (f(@ = y) P (y))y
belongs to CAPr(R™) and converges to f in that space.

For a proof we refer to [20, 23]. The trigonometric polynomials P, are called
the Bochner-Fejer kernels, while f,, are the Bochner-Fejer approximations of f.

It is known (see, e.g., [7, Section 24]) that a compact abelian group is metriz-
able if and only if its dual group is countable. Hence, the Bohr compactification
R’ r is metrizable whenever the subgroup I' C R" is countable. In the rest of
the paper we accept the following convention: the symbol I" denotes a countable
subgroup of R" so that R} - is metrizable.

3. Almost automorphic functions

Let us remind the notion of almost automorphic function due to S. Bochner. For
details we refer to [15, 16] and references therein. A function f € Cy(R™) is almost
automorphic if for every sequence y, € R™ there exists a subsequence yys such that
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the pointwise limit

lim f(z + yw) = g(z) (3.1)
exists and

limg(z —yr) = f(2) (3.2)
pointwise. Note that the function ¢ in (3.1) is measurable, but not necessarily
continuous.

An almost automorphic function f is uniformly almost automorphic if the
limits in (3.1) and (3.2) are uniform on compact subsets of R™, i.e., in the space
C(R™) which is a Fréchet space. Equivalently, f is uniformly almost automorphic
if all functions g that appear in (3.1) are continuous (see [17]).

We denote by AA(R™) (respectively, AA,(R™)) the sets of all almost auto-

morphic (respectively, uniformly almost automorphic) functions on R™. These are
closed linear subspaces in Cy(R™). Notice that

CAPR") Cc AA,(R™) C AA(R™)
and all the inclusions are strict.

Proposition 3.1. Let @ be a function on R’ p, where I' C R™ is a countable sub-
group. Suppose that for all s € R 1 the function u®)(z) = (s +iprx) belongs
to Cy(R™) and is uniformly continuous. If the map

U:Rjposeul® e CRY)

is continuous at the point sy € R 1, then U is continuous at each point of the
orbit so +ip rR™ and u(s0) e AA,(R™).

Proof. Suppose that s, — s{ = so + to in R%,F’ where ty = ig rzo. Then s, =
s!—ty — so and, by continuity, u(*) — u(*0) in the space C(R"). Hence,
wlm) () = um) (- 4 20) = w0 (- + o) = ul0)(.)
in C(R™), and the first statement of the proposition follows.
Denote by T the closure of the set
{(s0 +ip,ry,u (- +y)) 1y € R"}

in the space R% . x C(R™). Since the function u(*¢) is bounded and uniformly
continuous, the Arzela-Ascoli theorem implies that 7" is a compact subset of R 1. x
C(R™). The projection of T on the first factor is a surjective map, while the image
H of the other projection is the closure of the set {u(*0)(- +y) : y € R"} in C(R"),
the so-called hull of u(*®). We set

Hy ={f€CR"): (s, f) €T}

for any s € Ry . This is a non-empty closed subset of 7T'.
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First we show that Hy, = {u(*)}. Indeed, suppose that (so, f) € T. Then
there exists sy, = ¢{p rem, such that s,, = 0 in R%I and

u(s‘))(~ + &) = ulotsm) 5

The continuity of U at so implies that f = u(%).

Now let us prove that the function «(%¢) is uniformly almost automorphic.
Since T' is compact, for any sequence t,, = iprZTm, T;m € R", there exists a
subsequence t,,» such that sg 4 t,,,y — to and tg — t;,,y — Sg in R%,F’ and u(SO)(' +
Tm) = [ and f(- — xp) — h in C(R™). Since T is closed, (tg, f) € T and
(s0,h) € T). Hence, h € H,,. Since Hy, = {u(*)}, we conclude that h = u(s0)
and, therefore, u(*0) € AA,(R"). This completes the proof. O

4. Besicovitch almost periodic functions

Let L} (R™), 1 < p < 0o, stand for the local Lebesgue space with the exponent p.
For any f € LY (R"), p < 0o, we introduce the quantity
1 1/p
Il =timsup | [ ipG@pad] (4.1)
T—00 Kr

Functions with finite semi-norm || f||(,y form the so-called Marcinkiewicz space
MP(R™). Tt is easily seen that MP(R™) C M?(R™) whenever ¢ < p.

A function f € MP(R™), p < oo, is Besicovitch almost periodic, with the
exponent p, if there is a sequence f, € CAP(R") such that

Jim [|f = fallp) = 0.

The set of all such functions is denoted by BP(R™). Obviously, B?(R™) C BY(R")
if ¢ < p. It is not difficult to verify that, for any f € BP(R™), ‘limsup’ in (4.1) can
be replaced by ‘lim’.

The spaces MP(R™) and BP(R™) are complete semi-normed spaces, but not
Banach spaces because the semi-norm || - ||,y has a nontrivial kernel.

For Besicovitch a.p. functions the definition of mean value given in (2.1)
makes sense. The only difference is that, in general, the limit is not uniform with
respect to a. Therefore, the notions of Fourier-Bohr transform and spectrum ex-
tend immediately to Besicovitch a.p. functions. Moreover, the spectrum is at most
countable. The modulus, Mod(f), of a Besicovitch a.p. function f is well defined
as well. Moreover, for any subgroup I' C R™, we set

BR(R") = {f € B(R") : Mod(f) CT'}.
Obviously, this is a linear subspace of BP(R™) closed in the sense that if f,, €
BP(R™) and || fr, — fll(py = 0, then f € BR(R™).
By Proposition 2.3, the operator Jr initially defined on CAP-(R™) extends
uniquely to an isometric epimorphism

o BARY) = LP(RE 1), pe[lo).
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Its kernel consists of all functions f € BE(R™) such that || f||,y = 0. However,
the relation between Besicovitch a.p. functions and functions on Bohr compacti-
fications is less straightforward than in the case of Bohr a.p. functions (Proposi-
tion 2.2). The following statement is a direct consequence of the Birkhoff ergodic
theorem (see, e.g., [4, Section VIIL7]).

Proposition 4.1. Suppose that f € LP(R%}F). Then there exists a measurable subset
Q C R such that p(Q) =1, and for all s € Q the function

fO) @) = f(s +ipra), zeR",
belongs to BE(R™) and
= [ Ferue).

Now we notice that the Bochner-Fejer approximations introduced in Propo-
sition 2.4, (c), make sense for Besicovitch a.p. functions. Moreover, the following
statement holds.

Proposition 4.2. If f € BL(R™), p € [1,00), and fj is the sequence of Bochner-
Fejer approzimations for f, then || f — fillp)y — 0 as k — oo.

See [20, Theorem 2.4 of Ch. 1].

Surprisingly enough, we did not find the following simple proposition in the
existing literature.
Proposition 4.3. Suppose that f € B'(R™) N L>=(R"). Then f € BP(R") for all
p € [1,00).

Proof. Let T' = Mod(f) and fi be the sequence of Bochner-Fejer approximations
for f. Making use of the properties of Bochner-Fejer kernels listed in Proposi-
tion 2.4, we deduce easily that

Il fellzee < (I fllpe-

Hence,
Lf = Fellfyy = (1 = ful?) = (1 = Fellf = fulP~) < CIFlle=)P 1 = frlly -
This, together with Proposition 4.2, implies the required. O

5. Linear almost periodic problem

First we introduce certain functional spaces. For a detailed account of Holder
spaces on an arbitrary, not necessarily bounded, domain we refer to [9, Section 3.1].
In this and subsequent sections we consider real-valued functions only. Let o €
(0,1). The space Cy'(R™) consists of all functions f € Cy(R™) that satisfy the
uniform Hoélder condition with the exponent a:

|f(@) = f(y)l

fla = sup < 00
e asyeRrazy [T —Yl*
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This is a Banach space with respect to the norm

Iflleg = I1F1 + [fla-
The space
CAP*(R") = CAPR") N Cy (R™)
is a closed subspace of Cf'(R™).
For any positive integer m, we denote by C7*(R™) the space of all functions
f € Cp(R™) such that all derivatives of f up to order m belong to Cy(R™). This is
a Banach space with respect to the norm

Iflleg = > IID £,
k=0

where D f is a vector that consists of all kth derivatives of f, D°f = f. Similarly,
we denote by CAP™(R™) the space of all a.p. functions having a.p. derivatives up
to order m. This is a closed subspace of C{"(R").

Finally, the space C;""*(R"™) is the space of all functions f € CJ*(R") such
that D™ f € C¢(R™). Endowed with the norm

[fllegmee = fllop + D™ flas
this is a Banach space. We set
CAP™*(R") = CAP™(R™) N C;"T*(R™).
This is a closed subspace of C’g“’a(R”). Actually, it is easily seen that
CAP™*(R™) = CAP(R™) N C:lJra(R") .
We use the following convention:
CY(R™) = Cy(R™) and CAP°(R™) = CAP(R").

Now we consider second-order elliptic operators of the form

& 0?u(x) " Ou(x)
Au(z) = — gzjl aij (@) g, ow; + ;bi(x) oo, T Cl@ul@). (5.1)
More precisely, we assume that
(1) The matriz (a;;) of leading coefficients is symmetric and there exists a con-
stant \g > 0 such that

> aij(@)&&5 = Nolél
ij=1
for all & = (&1,...,&) € R" and x € R™.
(ii) There exists a constant co > 0 such that c(x) > ¢ for all x € R™.

We do not exclude the case when n = 1. In this case, without loss of generality,
we may assume that the leading coefficient is equal to 1 and the operator becomes

Au(z) = —u"(z) + b(z)u/ (z) + c(z)u(z). (5.2)
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We start with the following

Proposition 5.1. Suppose that the operator A satisfies (i) and (ii), and its coeffi-
cients belong to C'(R™), with o € (0,1) ifn > 1 and o € [0,1) if n = 1. Then for
any f € C(R™) there exists a unique solution u € CET*(R™) of the equation

Au=f. (5.3)
Moreover,
lull < g M IFI (5.4)
[ullc < CIIf
and
lull gz+e < Cllfllcg (5.6)

where the constant C' > 0 depends only on Mg, co and norms of the coefficients in
Cg(R™). In addition, if f >0, then u > 0.

In the case when « € (0, 1), this is a well-known result (see, e.g., [9, The-
orems 4.3.1 and 4.3.2]) based on the so-called Schauder’s a priori estimates. We
mention that estimate (5.4) and the positivity result follow from the maximum
principle (see [9, Theorem 2.9.2]). Less known estimate (5.5) follows from interior
L? estimates for elliptic equations [6, Section 9.5] and the Sobolev embedding the-
orem. In the case when n = 1 and « = 0 the statement of the proposition is also
well known and can be found, e.g., in [8].

In the rest of the paper, in addition to (i) we impose the following almost
periodicity assumption.
(i) The coefficients a;j, b; and ¢, i,j = 1,...,n, belong to CAP*(R™), where
a€(0,1)ifn>1and ae(0,1) ifn=1.
We denote by Mod(A) the smallest additive subgroup of R™ that contains

the spectra of all coefficients of A. Now let I' C R™ be any countable subgroup
that contains Mod(A). We introduce the envelope H(A) = {A(S)}SE]R% . of Aby

n 2 n
S y(g) = — (5) () O u(@) () OUE) | ()
AB)y(z) = igl a; (x) Dusd, + ;bi (x) oz, TC Ma)u(z).
As in the case of functions, the set H(A) is independent of the choice of T' D
Mod(A), while the parametrization of the envelope does depend on T'. Tt is easily
seen that if A satisfies (i), (ii) and (iii), then all operators A(*) in the envelope
satisfy the same assumptions.

The key result of the section is

Theorem 5.1. Assume (1)-(iii). If f € CAP*(R™), then equation (5.3) has a unique
solution u € CAP***(R™). In addition,

Mod(u) € Mod(A) + Mod(f) . (5.7)



Sub- and Super-solutions 285

Proof. Let I' > Mod(A) be any countable subgroup of R™ such that f € CAPr(R™).
By Proposition 5.1, equation (5.3) has a unique solution u € C’f"’o‘ (R™).
We have to show that u € C'APp(R™) which implies that u € CAPAT(R™).
With this aim we consider the family of equations
AG) gy, = f(s) , SE€ R%}F .

By Proposition 5.1, each of these equations has a unique solution us € C’b%o‘ (R™),
with ug = u.

Notice that the map s — us is a continuous mapping from Rgr— Cy(R™).
Indeed, by inequality (5.4), for any so, s € R} 1

s — syl < e A (s = uso) |l < e (1S = FEO )+ [[(A) = AP )ug )

Since f € CAPr(R™) and the coefficients of A satisfy almost periodicity assump-
tion (ii), the right-hand side of the last inequality tends to zero as s — sg in R 1
and the conclusion follows.

As consequence, i(s) = us(0) is a well-defined continuous function on R} ..
Furthermore, due to the uniqueness of bounded solution (see Proposition 5.1),

Ustipre(y) =us(y+mz), Vse R r,z € R" and y € R™.
Hence,
u(r) = uo(r) = u(iprz),
and, by Proposition 2.2, u € CAPr(R™). O

6. Semi-linear problem

In this section we consider semi-linear equations

Au(z) = g(z,u(z)), xR, (6.1)
where A is a second-order elliptic operator of the form (5.1). We always suppose
that A satisfies assumptions (i) and (iii). Assumption (ii) is not needed in general.

In addition, we impose the following assumption on the nonlinearity g.

(iv) For any R > 0 the function g(x,u) is almost periodic in x € R™ uniformly
with respect to u € R, with |u| < R, and there exists a constant Cr > 0 such
that

l9(z,u) — g(z,v)] < Crlu —v|
for all z € R™ and u,v € R, with |u| < R and [v| < R, and
l9(z,u) = g(y,v)| < Crlz —y|*
for all z,y € R™ and u € R, with |u| < R, provided a # 0 in assumption (iii).
In particular, assumption (iv) implies that the function g(z, ) can be consid-
ered as an a.p. function of x € R™ with values in the Fréchet space C(R) of continu-

ous functions on R endowed with the topology of uniform convergence on compact
intervals. Hence, (J,cp o(g(-,u)) generates a countable subgroup Mod(g) € R™.
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Moreover, for any I' O Mod(g) there exists a unique continuous function § on
R’ 1 such that

g(z,u) = gliprz,u), (r,u)eR" xR.
If I' D Mod(g) is a countable subgroup of R", we set

¢ (x,u) = g(s +ipra,u), (r,u) eR" xR, se€ R 1

Notice that all the functions ¢(*) satisfy assumption (iv).
Together with equation (6.1) we consider the following family of equations

APy(z) = g (x,u(z)), = eR", (6.2)
where s € R 1 and I' © Mod(A) + Mod(g) will be fixed later.

A function u € CAP**®(R") (respectively, u € CAP**2(R")) is called a
super-solution (respectively, a sub-solution) of equation (6.1) if

Au(z) > g(z,u(z))
(respectively,
Au(z) < g(z,u(z)) )

for all x € R™. Given super- and sub-solutions, u and u, we set
I' = Mod(A) + Mod(g) + Mod(u) + Mod(u) .

Notice that the functions u(®) and u(®) are super- and sub-solutions for equation
(6.2) for all s € R .

Theorem 6.1. Under assumptions (i), (iil) and (iv) suppose that there exist sub-
and super-solutions for equation (6.1) such that u < u. Then for every s € R% r
there exists a solution us € CET*(R™) of equation (6.2) such that u'®) < us < ul®.
Furthermore, there exist a residual set Qqq € R 1 and a set O, C Ry 1 of mea-

sure 1 both translation invariant and such that us is uniformly almost automorphzc
is $ € Qqq and ug € BR(R™) for all p € [1,00) if s € Q.

Proof. Replacing c¢(x) by ¢(z)+6 and g(z,u) by g(z, u)+ 6u, we may suppose, due
to assumption (iv), that ¢(x) > ¢p > 0 and the nonlinearity g(z,u) is increasing
in u € [inf u, sup u.

Let us consider a sequence of functions wuy defined recurrently as follows. We
set ug = u. Next, ugt1 € CAP?*'Q(R") is defined as a unique solution of the
equation

Augi1(z) = g(z, up(x)) . (6.3)
The sequence uy is well defined. Indeed, if uy € C’APIE'HX(]R”), then, by assump-
tion (iv), g(z,ur(x)) € CAPZ(R™). By Theorem 5.1, equation (6.3) has a unique
solution in C’APIE"’O‘(R”). Moreover, since wu is a super-solution, the positivity
statement of Proposition 5.1 implies that the sequence uy is monotone decreasing,
i.e., Upy1 < ug. Since up € CAP?T(R"), the function u; extends to a unique
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function i, € C(R% ), and the sequence of functions 7y, is monotone decreas-
ing and bounded. Hence, the sequence t; converges to a measurable function @
pointwise on R .
We are going to prove that the function
u®(z) = a(s +ipro)
is actually a C§+a-solution of equation (6.2). It is easily seen that, for any s € R% s
the functions
u,(:) () = ux(s+ip,re)
satisfy
AOUE) (@) = g@ (@, u (). (6.4)
As a consequence, ufj) € CAP?T*(R") for all s € R’ r and integer k.
We claim that there exists a constant C' > 0 independent of s and k such
that
g gz < €. (6.5)
Indeed, denoting by C' a generic positive constant independent of s and k, we have
that Hufj)H < C. Assumption (iv) implies easily that

lg . u)l < €.
Equation (6.4) and estimate (5.5) of Proposition 5.1 imply that
lilleg < lluylle; < ©
(the first estimate is trivial). By assumption (iv),
199w leg < €

and estimate (6.5) follows from inequality (5.6) of Proposition 5.1.

Suppose that a > 0. By (6.5), the functions u,(j> and their derivatives up to

second order are equicontinuous. Since u,(j> — u(®) pointwise, by the Arzela-Ascoli

theorem, u(®) € CZT*(R") and u,(:) converges to u(®) uniformly on compact sets
together with derivatives up to second order. Passing to the limit in equation (6.4),
we obtain that u(®) is a solution of equation (6.2).

Now suppose that o« = 0 and n = 1. By (6.5), the functions u,(j) and their
first derivatives are equicontinuous. As above, u(*) € C}(R") and u,(j)
to u(®) uniformly on compact sets together with first derivatives. Equation (6.4)
can be expressed as follows

—() )" = b (@) (W) — @)l + g (@, ul)

Hence, second derivatives converges uniformly on compact sets, and u(®) e CZ(R™)
satisfies equation (6.2).

converges

Since u € R 1, the existence of the set {3, follows from Proposition 4.1. On
the other hand, the map U : s ~ u(®) from R% p into C(R™) is of the first Baire
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class as a pointwise limit of continuous maps. It is well known that any map of
the first Baire class from a complete metric space into a separable metric space is
continuous on a residual set (see, e.g., [10, Section 31.X, Theorem 1]). Hence, the
existence of the set €, follows from Proposition 3.1. O

Remark 6.1. Bounded solutions u(*) obtained in the proof of Theorem 6.1 are
maximum solutions between u(®) and u(®). Starting the iteration process with
ug = u, we obtain the minimum solution.

Remark 6.2. The function % constructed in the proof of Theorem 6.1 can be
considered as a generalized solution of equation (6.1) in the sense of Sobolev-
Besicovitch spaces [20].

Now we give general sufficient conditions for sub- and super-solutions to exist.
Theorem 6.2. Assume (i)—(iii). Suppose that the nonlinearity g is of the form
g(xv ’LL) =91 ($, u) + 92($7 u) )

where both g1 and go satisfy assumption (iv), %g; is a continuous function on

R™ x R, and

lg1(z,u)| < C (6.6)
and 5
aif (z,u) <0 (6.7)

for all (x,u) € R™ x R. Then the conclusion of Theorem 6.1 holds with

I' = Mod(A) + Mod(g) .
Proof. (a) Reduction to the case when go = 0. If u € CZT*(R™) is a solution of
equation (6.1), then

Au(z) + h(z)u = g1(z,u(x)), where h(z)= /0 a@fj

It is easy to see that h(z) > 0 and, by estimate (5.4) of Proposition 5.1,

Jull < C1, (6.8)

where C; > 0 is independent of the solution. Modifying gs outside the region
|u| > 2C4, we may assume that g = g1 is a bounded function.

(z, tu(x)) dt.

(b) The case when g = gy is bounded. Let

9—sup{ g‘g(
u

where (1 is the constant in estimate (6.8). Obviously, we may assume that C; > C.
Equation (6.1) is equivalent to the equation

x,u)

I:CGR”,|U|§01},

Au + 0u = g(z,u) + 0u

and the function g(x,u) + Ou is increasing in the region |u| < Ci. We define
u € CAPF%O‘(R") as a unique nonnegative solution of equation Au = C which
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exists by Proposition 5.1 and set u = —u. It is easy to verify that these are super-
and sub-solutions, respectively, and we conclude by Theorem 6.1. (]

Remark 6.3. If equation (6.1) possesses at most one solution between u and u, then
the map U : R  — C(R") considered in the proof of Theorem 6.1 is continuous

at the point s = 0 and, hence, the solution v = u(9) of equation (6.1) is uniformly
almost automorphic. If the uniqueness of solution between infu and sup u holds
for all equations (6.2), s € R’ 1, then all solutions u(®) are almost periodic because
the function @(s) = u(s)(0) is continuous on R .

Corollary 6.1. Under the assumptions of Theorem 6.1, suppose in addition that
c(x) > 0 on R™, while
dg
<—-k<0
ou — i
and is uniformly continuous on the strip R™ x [inf u,supu]. Then equation (6.1)

has a unique solution u € C’APlg"’a between u and u.

Proof. Due to Remark 6.3, we have to verify the uniqueness needed there. Let
us mention that dg(*)/du is bounded and continuous on R” x [inf u,supu] for all
s € R p. If u1 and up are two solutions of equation (6.2) between u and u, then
v = u] — ug satisfies

APy 4 h(z)v =0

where
L ogls)
h(z) = —/ 9 (z,tur(x) + (1 — tug(x))dt > k> 0.
0
By Proposition 5.1, v = 0 and we conclude. O

Remark 6.4. The statement of Corollary 6.1 remains valid if we replace the assump-
tions ¢(z) > 0 and dg/0u < —k by c¢(x) > ¢o > 0 and 9g/du < 0, respectively.

Finally, we mention that Theorem 6.1 covers the case when the coefficients
and sub- and super-solution are periodic. In that case it implies the existence of a
periodic solution — a statement well known in the literature. Indeed, in the periodic
case R% o is a torus. Hence, the sets (2,a and ), being translation invariant,
coincide with the whole of the torus.

7. Almost periodically forced pendulum
As an application of our main result, consider the pendulum equation
v’ + cu' + asinu = h(t) (7.1)

with an almost periodic forcing term h(t). Here a > 0 and the damping coefficient
¢ > 0 so that the undamped case is allowed. The envelope of equation (7.1) is

u" +cu' +asinu=h®(t), seRpr, (7.2)
where I' = Mod(h).
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Theorem 7.1. Let h € CAP(R) and I' = Mod(h).

(a) If ||| = a, then for every s € Rpr there exists a solution us € CZ(R) of
equation (7.2) such that

g vVt e R.
Furthermore, there exist a residual subset Qqq C Rpr and a measurable
subset 0y, C Rp 1 of measure 1 both translation invariant and such that us is
uniformly almost automorphic if s € Qqq and us € BA(R™) for all p € [1, 00)
if s € Qp.

(b) If |h|| < a, then equation (7.1) has a unique solution u € CAP?(R) such that

7T<u(1€)< VieR.

2 )
Moreover, Mod(u) CT.

Proof. (a) It is easy to verify that v = 7/2 and v = 37/2 are sub- and super-
solutions, and the result follows from Theorem 6.1.

(b) If § > 0 is sufficiently small, then v = 7/2+ ¢ and u = 37/2 — § are sub-
and super-solutions. Since the derivative (asinu) = acosu is strictly negative on
[7/2 4+ 0,3m/2 — §], Corollary 6.1 applies and we conclude. O

Let us point out that if h(t) is periodic and ||h|| < a, then there is a peri-
odic solution between 7/2 and 37/2. The uniqueness of such solution takes place
whenever ||h] < a.

The existence of a bounded solution under the assumptions of Theorem 7.1(a),
as well as the almost periodicity of a unique bounded solution in case (b), is ob-
tained in [5, 13] (see also [14]). In [5] the sub- and super-solution approach based
on the Schauder fixed point theorem is used, while the proofs of [13] make use of
an early result of Z. Opial which can be considered as a simple version of the sub-
and super-solution method. In our approach we employ relative Bohr compactifi-
cations together with monotone iteration techniques. This permits us to obtain an
extra information about the almost automorphy and Besicovitch almost periodic-
ity of solutions to the equations in the envelope of (7.1) as well as the modules
containment property. According to a remark of Mawhin [13], all these results can
be considered as an improvement of a result of [1] which provides the existence
of a weak Besicovitch almost periodic solution to equation (7.1) (cf. Remark 6.2)
by means of certain variational techniques. It is interesting that in [1] the same
interval [7/2, 37 /2] appears.
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1. Introduction

We started our studies of various operators in Morrey and Campanato-type spaces
several years ago, mainly in the case of maximal, singular and potential operators
in such spaces with variable exponents and Hardy operators in Morrey spaces
with constant exponents. We discovered that there existed a vast bibliography on
the subject counting many hundreds of publications, especially on applications to
differential equations. They include in particular the books A. Kufner, O. John
and S. Fucik [63] (1977) and M. Giaquinta [40] (1983). We refer also to Section
27 of the book O.V. Besov, V.P. I'in and S.M. Nikolskii [13] (1996) (see also the
English translation [14, 15] of the first Russian edition of [13]) where an important
overview on anisotropic Morrey type spaces may be found.

The earliest overview on Morrey-Campanato spaces seems to be first given
in the paper J. Peetre [86] (1969). Probably the next one was M.H. Taibleson and
G. Weiss [104] (1979).

During the last several decades there was a kind of a boom in studies in
Morrey-Campanato-type spaces and their usage in applications, both enriching
each other. Many of them, as well as various old results, were not covered in the
existing surveys or books, but were of interest.

In the study of this topic and search of references, also in the historical ret-
rospective, we made many notes in our notebooks. Our personal overview of those
notes led us to the idea to collect and edit them, and publish it as a survey which
may be useful for others involved into research around the Morrey-Campanato-
type spaces.

This however led us to a manuscript exceeding one hundred pages, which is
not well suited for a paper. About 4/5 of that overview was naturally related to
the study of various operators, mainly classical operators of harmonic analysis,
in Morrey-Campanato-type spaces, and about 1/5 of it was connected with the
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spaces themselves, i.e., proper definitions of various versions of the spaces, study of
the structure of the spaces, preduals, etc. We made a decision to restrict ourselves
to this first portion. It is presented in this paper. We hope to submit the remaining
part for publication elsewhere. Note that in this paper we do not touch Sobolev-
Morrey and Besov-Morrey type spaces as well as other generalizations of such a
kind and refer a potential reader to Section 27 of the above cited books [13-15] and
the recent book [114] (2010) titled “Morrey and Campanato Meet Besov, Lizorkin
and Triebel”.

The subjects we touch in this overview may be seen from Contents. Inside
every Subsection we mainly follow the chronological order which more or less
corresponds to a natural way of generalization from the simple to more advanced.

We could have lost some references. Anyway, we tried to do our best through a
vast search in MathSciNet, MathNetRu and other sources. In the case the overview
occasionally proves to be not complete in this or other item, we will be grateful to
the readers for the indication of possible omissions. To be clear, we emphasize once
again that in this survey we do not touch mapping properties of operators, so that
many important papers on the behaviour of the classical operators of harmonic
analysis in Morrey and Campanato spaces remained beyond this overview. We are
aware of the fact that sometimes such a separation is rather relative because any
property of an operator in a space may be considered as a property of the space.
Nevertheless we had to follow the choice we made. Otherwise we would exceed any
reasonable limit for this paper.

2. Morrey spaces

2.1. Classical Morrey spaces

The spaces which bear the name of Morrey spaces were introduced in 1938 by C.
Morrey [71] in relation to regularity problems of solutions to partial differential
equations.

We start from the definition of these spaces. Let 2 C R™ be an open set. We
denote B(x,r) = B(z,r) N Q,z € Q,r > 0, and |A| will stand for the Lebesgue
measure of a measurable subset in R".

Definition 2.1 (Morrey spaces). Let 1 < p < oo and A > 0. The Morrey space
LPA(Q) is defined as

LP’A(Q)—{fELp(Q): sup ! /

A [~
zeQr>0T B(xz,r)

If(y)I”dy<0<>}. (1)

This is a Banach space with respect to the norm

1/p
1
[fllLery = sup ( A/~ |f(y)|pdy> : (2)
zer>0 \ T B(z,r)
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The space LP*(Q) is trivial when A > n (LP*(Q) = {0}) and LP°(Q) =
LP(Q) and LP™(Q) = L*°(Q). In the case A € (0,n], the space LP*(€) is non-
separable.

Note that for these spaces sometimes another notation, M?:9, is used. Apart
from the choice of a different letter M, the second parameter is also introduced
into the norm in a way different from (2), namely

Pl = 8,7t Wl ey

fas
In this survey we mainly follow the notation in (1)—(2).

The local version of such spaces, with only one point z = 0 taken into ac-
count, has a connection with studies of N. Wiener [111] (1930), [112] (1932), who
considered functions f for which

1

Ti=

is limited in 7" > 0 or tends to zero as T — oo. In the multidimensional case such
local spaces defined by the norm

1/p
1

appeared in A. Beurling [16] (1964) as the dual of the so-called Beurling algebra.
He also considered similar spaces with sup,.. ; instead of sup,. . Similar local Mor-
rey type spaces with the norm of type (3) where \B((l),r)| is replaced by |B(01,r)\>‘
appeared in V.S. Guliev [47] (1994), see also [50] (1996), and in J. Garcia-Cuerva
and M.J.L. Herrero [38] (1994). In [38] and J. Alvarez, M. Guzmén-Partida and
J. Lakey [8] (2000) there were introduced the function space B%*(R™) character-
ized by the norm

1/p
— 1 P
P = d 4
”fHB ?«151) <| B(O,T)|1+; /B(O,r) |f($)| l‘) ( )

(called inhomogeneous) and also its homogeneous version B4*(R™) of type (4)
with the supremum taken over r > 0.

Morrey spaces are a particular case of Campanato spaces considered in Sec-
tion 4 and we present many results for Morrey spaces in that section in the context
of Campanato spaces. Nevertheless, in this section we dwell on some results just
for Morrey spaces.

T
/ f@)Pde, ac(01), p=1 or p=2

2.1.1. Embeddings in Morrey spaces. By application of the Holder inequality to
integrals over B(zx,r) the embedding for Morrey spaces follows:

Theorem 2.2. Let 1 < p < g < 0o and let \,v be non-negative numbers. Then
LI (Q) — LPA(Q) (5)
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under the condition
< (6)

if | is finite and the condition
= (7)

if |Q] is infinite.

Condition (6) is necessary and sufficient for embedding (5) in case of “nice”
sets 2, see L.C. Piccinini [89] (1969), where 2 = Q¢ was a cube in R™, see also a
similar result for a modification LP:* p,r € [1,00) of Morrey spaces in Y. Furusho
[36] (1980). This modification is introduced as follows: let S be the family of all
systems S = {Q;: |UQ; C Qo} consisting of a finite number of non-intersecting

A—n
parallel subcubes Q;, and let [[ullLw.0(,) = suPgcq, |Q] ™ |lullLr(q), and
1/r
HUHLQv*(Qo) = sup Z HUJHZ(p,A)Qj )
sSes Q;€es
there is proved a necessary and sufficient condition for the validity of the embed-
ding LPA — L%H in the case of n/r — \/p <1 and n/s — u/q < 1.

See also embedding theorems for Campanato spaces in Subsection 4.1.

2.1.2. Hoélder’s inequality. For Morrey spaces the following Holder type inequality
holds (obtained by application of the usual Holder inequality to integrals over

B(z,r), see for instance Lemma 11 in P. Olsen [78] (1995)).

Theorem 2.3 (Hélder’s inequality in Morrey spaces). Let f € LP*(Q) and g €
Le#(Q). Then
£l

where 1 <p < 00,1 < g < o0, 117 —i—tl]zland

Lro©) < N fllex@)llgllLan(e), (8)

1 1 1 vooA i
) =_+ .
r.p q r p g

2.1.3. Weak Morrey spaces. Weak Morrey-Campanato spaces appeared already
in the paper by S. Spanne [100] (1966), see also Subsection 4.3. Such weak-type
Morrey spaces defined by the condition

supt?|[{y € Q: |f(y)| >t} N B(z,r)| < ort
>0
e

where Q C R™, were used by M. Ragusa [91] (1995). In the paper C. Miao and B.
Yuan [70] (2007) weak Morrey spaces M \ were defined in a more general setting
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in terms of Lorentz spaces of functions initially defined on non-atomic measurable
spaces. For the spaces M, = {f : ||f|; y < oo} introduced via the norm

DY
1y =supr™»suptu{y: |f(y)| >, ye B(x,r)}

x,r t>0
there were proved an embedding theorem and a convexity property.

2.1.4. Interpolation. G. Stampacchia [101] (1964), [102] (1965) and S. Campanato
& M. Murthy [21] (1965) proved interpolation properties of Morrey spaces (in fact
they obtained the result for the more general space, now called Campanato space,
see its definition in Section 4). Loosely speaking, they proved (in the spirit of
Riesz-Thorin interpolation theorem) that if 7" is a bounded linear operator from
L% to LPii | § = 1,2, then T is bounded from L7 to LP** for the corresponding
intermediate values of p,q and )\, see the precise formulation in Theorem 4.5 in
the setting of Campanato spaces. The conclusion in the other direction is false,
see the comments after Theorem 4.5.

2.1.5. Preduals. Recall that for a given normed space X, a normed space Y is
called predual of X, if X is dual of Y.

Preduals of Morrey spaces were studied by some authors, namely by C. Zorko
[115] (1986), D.A. Adams [3] (1988), E.A. Kalita [57] (1998) and D.R. Adams and
J. Xiao [4] (2004). Following D.R. Adams and J. Xiao, we denote the preduals
obtained in [115], [57] and [4] by Z9*, K%* and H%*, respectively, ¢ = o1- The
first two spaces are defined by the following norms

[fllza = inf{|{ck}|el = chak}
K

where ay, is a (g, \)-atom and the infimum is taken with respect to all possible
atomic decompositions of f (a function a on R™ is called a (g, A)-atom, if it is

supported on a ball B C R™ and |ja||, < |B|_"Ap); note that in C. Zorko [115] the
predual was introduced in a more general setting of generalized Morrey spaces;

1/q
1fllan = inf ( / |f<x>|qw3,q<x>dx> ,
o R™
with
wn(@) = [ e (= o = yl) o),
R:;“

where the infimum is taken over all non-negative Radon measures o(y,r) on R’}
with the normalization o(R} ") = 1;

1/q
lles =int ([ 1@t -o(@)az)
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where the infimum is taken over all nonnegative functions on R™ satisfying the
condition

”‘JJHLl(A(;O)) <1, (9)
with the A-dimensional Hausdorff capacity Ag\oo), the introduction of the latter
norm in [4] being based on the previous studies in [3].

As shown in [4], for 1 <p < 00,0 < A < n,

20 = K = H  with || fllzax ~ [|fllcax ~ 1] o

and the Morrey space may be characterized in terms of its predual by the following
theorem.

Theorem 2.4. Let 1 <p < oo, 0 <A <n. Then

I fllrr = S‘jp ( /}Rn |f($)|pw(x)dx) 1/p

where the supremum is taken with respect to all nonnegative functions on R™ sat-
isfying the condition (9).

An interested reader may be also referred to Sections 5-7 of [4] with respect
to Morrey type capacities.

In the case of Campanato spaces, M.H. Taibleson and G. Weiss [105] (1980)
proved that they are dual to some Hardy spaces.

2.1.6. Vanishing Morrey spaces V LP'*. Morrey space LP**, as noted, is not sep-
arable in the case A > 0. A version of Morrey space where it is possible to ap-
proximate by “nice functions” is the so-called vanishing Morrey space V LP*()
introduced by C. Vitanza [110] (1990). This is a subspace of functions in LP**(Q),
which satisfy the condition

1

lim sup / fly)|Pdy = 0. 10

r=0 gepr E(m,g)l W) (10)
0<o<r

2.1.7. Different underlying spaces. The spaces L”* may be introduced on sets of
different nature, for instance, an n-dimensional compact manifold via local charts
(see M. Geisler [39] (1988)) where the spaces introduced in this way were char-
acterized in terms of geodesic distances and other quantities on the manifold. In
Subsection 2.2 we touch a more general setting when the underlying space is a
quasimetric measure space. Morrey spaces and their generalizations in the case
where the underlying spaces is the Heisenberg group were studied in V. Gulyiev
[50] (1996).
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2.1.8. Anisotropic Morrey spaces. Morrey spaces corresponding to anisotropic dis-
tances appeared first in G. Barozzi [12] (1965) defined in the following way. Let
Q C R™ be a bounded open set, p > 1 and 0 < A < n. Let m = (mq,...,my,)
be an n-tuple of non-negative numbers, m; > 1 and m = max(mq,...,my). Let
By (z,7) ={y € Q:dn(z,y) < r} be an anisotropic ball defined by the distance

1/m
n
> lwy —yyl™
j=1

Then the corresponding Morrey space is introduced by the condition

1
sup A/ |f(y)IP dy < oo
z,r 77 J B (x,r)

The corresponding anisotropic Sobolev spaces were also introduced in [12].

In a more general setting such anisotropic Morrey spaces were later studied
by V.P. Il'in in [52] (1959), [53](1971), see the presentation of the latter results
also in Section 27 of the book [13].

Morrey spaces with integral means over one-parametrical ellipsoids were in-
troduced in L. Softova in [98] (2007) with the aim to study anisotropic singular

integrals. Let o = (a1, ..., ay) be a given vector with a; > 1,4 =1,...,n, and
n - (2 — yr)?
En(z,r) = {y eR™: Z 201 <1 (11)
k=1

be an ellipsoid centered at the point € R™. Then the anisotropic space LP*(R")
localized at the origin and corresponding to the given vector «, is defined by the
norm

1/p
1
171.x sup<TA /&(Om)lf(y)l”dy> < oo (12)

See also Subsection 3.1 for the generalized anisotropic Morrey spaces of such a
kind introduced in L. Softova [97] (2006).

Anisotropic Morrey spaces LP*(Q), A = (A1, ..., \,) may be also introduced,
with means taken over rectangles centered at the point x with independent lengths
of sides. Such spaces LP*1:*2(R%) were introduced in L.-E. Persson and N. Samko
[88] (2010) for the case 2 = R2 by the norm

1471 To+T2 1/p
[ fllzpr122 = sup [y, y2)|P dyr dyo
x1>0,22>0 7'1 7”2 (x1— 7'1)+ (x2— 7‘2)+
r1>0,72>0

(13)
with the aim to study two-dimensional Hardy operators in such spaces.
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2.1.9. Miscellaneous. As is well known, Morrey spaces have been generalized or
modified in various ways in order to obtain existence and uniqueness of solutions
to partial differential equations. One of such modifications, LP**(£2,t) introduced
in M. Transirico et al. [108] (1995) (with ¢ = 1) and A. Canale et al. [22] (1998),
is aimed to better reflect the local nature of solutions, first of all for unbounded
domains, being defined by the norm

1/p
1
fllpea = sup / f)|P dy ;
Ifllex (o, sup |, EW)I ()|

o<r<t
in [22] the corresponding Sobolev spaces were also dealt with.

In P. Cavaliere, G. Manzo and A. Vitolo [23](1996) Morrey spaces were inten-
tionally studied on unbounded domains with the main emphasis on the connection
between Morrey type and BMO spaces and embedding and density results involv-
ing the continuity of the translation operator.

Another modification of Morrey spaces is known under the name of Stummel
class introduced in M.A. Ragusa and P. Zamboni [92] (2001) (with the goal to
obtain a better version of the Sobolev type embedding). The Stummel class is
defined, for 0 < p < n, as

zeR™ J|z—y|<r |$ - y|n7p

Sp = {f € Li, (R™) : }%77(7") =0, n(r) = sup /| [F W) dy} ,

which is the Stummel-Kato class in the case p = 2. Note that

n(r) > sup .-, [ |f(y)dy.
zER™ a—y|<r

In general L1+ is contained in S, if A > n — p, and in the case n(r) ~ r® the
following equivalence holds:

fes, <« felLbnrte

see Lemma 1.1 in [92]. Some versions of Stummel classes with n different from
powers are also studied there, which corresponds to the generalized Morrey spaces
studied in Subsection 3.

S. Leonardi [64] (2002) introduced a similar version of such a space, defined
by the norm

P 1/p
H.fHprA(Q) i= sup {/ |f(y)| \ dy}
zeq Lo |7 =yl

and proved a certain version of the Miranda-Talenti inequality in terms of Sobolev
type spaces related to the norms || f|| y».x(q)-

A more general hybrid of Morrey and Stummel type spaces, the space denoted
by M g’)‘(X , i), was introduced in Eridani, V. Kokilashvili and A. Meskhi [34] on
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a quasi-metric measure space (X, p, 1), with the norm defined by

1/p
1
s =sw ([ 1f@PP e )
. 2eX \ 7" Jp(z,y)<r

r>0

2.2. Morrey spaces over R™ in case of a general measure

Y. Sawano and H. Tanaka [95] (2005) introduced Morrey spaces in R™, but with
a Radon measure p as follows

//15<k,u>={f sup (k@)1 [ e du) <oo}, (14)

where @ is a closed cube whose edges are parallel to the coordinate axes and it
is supposed that the measure p is not necessarily a doubling measure but satisfies
the growth condition

w(B(z,r)) < cort
for some fixed constants ¢g > 0 and ¢ € (0,n], and p(Q) > 0. It is shown that
the definition of the space does not depend on the choice of the parameter k > 1,
that is,

M (k1) = A7 (ks ) (15)
for all k&3 > 1, ko > 1, up to equivalence of norms. More precisely
Er—1\"
17 Lpon i < 1 ginsy < Co (1) 1 Lpion (16)

for 1 < k1 < kg < oo, see formula (3) in [96]. In [96] there was also made a
comparison of the space .#ZF (2, ) with the space .#2 (1, 11), the latter being defined
with the usage of cubes @ which only satisfy the condition u(kQ) < Su(Q) with
8> kv a where k > 1 is fixed and the measure 1t does not necessarily satisfies
the growth condition or the doubling condition. This comparison includes also the
case of vector-valued Morrey spaces .} (¢", 1) defined by

il gz er oy = sUP MQ);i(/Q'fj

QeQ(1;k;8)

For similar results on Campanato spaces, we refer to Section 4.

1/q
& du) < 0.

For Morrey spaces in a more general setting of abstract quasimetric measure
spaces see Subsection 3.1.

3. Generalized Morrey spaces

Recall that the classical Morrey space is defined by the norm.

, d=diamQ. (17)

1
T ]
7“; Lr(B(z,r)) Loo(0.d)

£l e () = sup
x€Q
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There are known two types of generalizations of Morrey spaces. The first is to
replace the power function r* by a function ¢(r) (or more generally ¢(z,7)),
usually with some quasi monotonicity type conditions with respect to r. Another
way is to replace the L>°(0,d)-norm by L?(0,d)-norm, 0 < § < oco. For brevity,
we will call these by y-generalizations and 6-generalizations. Both ways may be
naturally mixed.

3.1. -generalizations

Let X be a quasimetric space with a Borel measure u. The generalized Morrey
space is defined by the (quasi)norm

1/p
1
£l = S“P<¢(x,r> /| (I,T)If(y)l”du(y)> L 0<p<oe ()

where B(z,r) is a ball in X and the non-negative function ¢ is subject to some
restrictions, usually related to monotonicity-type conditions in r. Generalized Mor-
rey spaces, LP#° of such a type seem to first appear in the paper G.T. Dzhu-
makaeva and K. Zh. Nauryzbaev [31] (1982), where the norm is introduced by

1/p
s = s o ([ wpar) <o

1 <p < oo, Qis adomain of finite measure in R™, S is the family of all measurable
subsets of © and ¢(r) is a positive nondecreasing function on RY. Under the
assumption that o(r) = 1 for r > 1 and that ¢P(r) is concave in (0, 1), in [31] there
was proved that LP¥%(Q) C LI(€), p < q < oo, if and only if fol r4/Ppi(r)dr <
o0, with the corresponding interpretation for ¢ = oo

The generalized Morrey spaces LP-#(2) defined by the norm

I1f]

1/p
pe=sup | - /~ F@IPdpty) |, 1<p<oo, (19)
x,r (SO(T) B(z,r)

were studied in the paper C. Zorko [115] (1986) in a more general setting of Cam-
panato spaces, see Section 4. We mention the result from [115, Prop. 2] stating
that the zero continuation of a function f € LP-¥(Q) belongs to LP¥(R™) under the
assumption that the function ¢ is nondecreasing. In [115, Prop. 3] there was also
shown a possibility to approximate by nice functions in the subspace of L?»¥(R™)
defined by the condition lim, ¢ || f(-—y) — f(-)||r.» = 0 (recall that Morrey spaces
are not separable).

Often the (quasi)norm in such a generalized Morrey space is taken in the
form

1

1/p
1 » ~
Il = g r)< B o T du@)) L 0<p<w,
(20)
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in particular in the form

1 1 ) l/r
sz =550 g (1 [ F@Puan) L o<p<o o)

in the case X = R".

With the norm of form (18), such spaces appeared in E. Nakai [72] (1994)
for X = R", and the spaces L} (X) with the (quasi)norm (21) in J. Alvarez and
C. Pérez [9] (1994) and with the norm (20) in E. Nakai [73] (1997).

In [73] there were studied the pointwise multipliers from such a space L}, (X)
to another one of similar type. Let PWM(E, F') denote the set of pointwise mul-
tipliers from F to F. Under some assumptions on 7 and s, it was proved that

PWNI(LE, L52) = 12,
where 1/p1 + 1/ps = 1/p2, 0 < pa < p1 < oo and 3 = Yo /1¢1. In E. Nakai [74]
(2000) there were obtained necessary conditions on p; and 1); for (22) to be valid,
and sufficient conditions for PWM(L} , L) = {0}.

In the paper H. Arai and T. Mizuhara [10] (1997) the generalized Morrey
spaces with the norm of the type (18) were considered within the framework of
homogeneous underlying space, normal in the sense of Macias and Segovia [67],
under the assumption that ¢(x,r) is increasing in r and satisfies the doubling
condition uniformly in z. There was proved a general theorem which allows to
obtain estimates of the form

(22)

|F )l < CIIG L

from estimates of the form [ FPwduy < C [ Glwdp, where w ranges some sub-
classes of the Muckenhoupt class A;(u). This important result was used to obtain
Morrey space estimates for various classical operators.

Relations between the generalized Morrey spaces with the norm (21) and
the corresponding Stummel classes (see section 2.1.9) were studied in Eridani and
H. Gunawan [33] (2005), the results adjoin to those for the case where 1) is a power
function.

In E. Nakai [75] (2006) the generalized Morrey spaces, with the norm defined
as in (20), appeared in the case where the underlying space X was a homogeneous
metric measure space.

In L. Softova [97] (2006) and [98] (2007) there were introduced the generalized
anisotropic Morrey spaces with the aim to study anisotropic singular integrals.
Let a = (e, ...,ay,) be a given vector with a; > 1,4 =1,...,n, and &,(x,r) the
ellipsoid defined in (11). Then the anisotropic space LP¥%(R"™) is defined by the
norm

/1

1 1/p
= SUD [ vwra) <
P T,r <<,0(£C, 7“) Eo(z,r) | |
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As a generalization of results from Y. Sawano and H. Tanaka [95] (see Sub-
section 2.2), Y. Sawano in [94] (2008) dealt with the generalized Morrey spaces
defined by the condition

1/p
P Cotutian /Q rdn) <o

where 1 < p < 00,k > 1, ¢ is an increasing function, @ is a cube with edges
parallel to the coordinate axes, and p is a positive Radon measure, non necessarily
satisfying the doubling condition. The independence of such spaces on the choice
of k> 1, as in (15)—(16), is extended to this setting.

Y. Komori and S. Shirai [60] (2009) considered the generalized Morrey spaces
LP*(w), defined by the norm

I$1enmcor =50 (e |- |f<x>|pw<x>dx)1/p, 0@ = [ wix)da, (@3

where 0 < £ < 1 and the supremum is taken over all cubes in R", which is nothing
else, but the usual Morrey space with respect to the measure u(E) = fE w(z) dz;
the authors called this space weighted. Note that if we interpret the space LP*(w)
as a weighted generalized Morrey space, then given the function w, the function
o = w" already defines the generalized Morrey space, this meaning that the space
LP%(w), introduced in this way, is not a space with an arbitrary weight, but with
a special weight equal to a power of the function ¢.

3.2. O-generalizations

A Morrey-type space with sup,..  replaced by the ||-|| e (0, 00)-norm first appeared
in D.R. Adams [5], p. 44 (1981) with the norm defined by

1/6

6/p
<1 dr
p.0.A(Rn) 1= SU Pd 24
fllmosn = suw | [ (M [, 1 y> " (24)

where the corresponding Sobolev type theorem for the Riesz potential operator
was stated. Spaces with both #- and yp-generalization, but “localized” to the point
z = 0, with the norm

1/6

oo 1 9/pd

i
P.0,% mny) Pd 25
gz = | [ (M /| o y> " (25)

were introduced and intensively studied by V.S. Guliyev [47] (1994) together with
the study of the classical operators in these spaces, see also the books V.S. Guliyev
[50] (1996) and [51] (1999) where these results were presented for the case when the
underlying space is the Heisenberg group or a homogeneous group, respectively.
Note that these investigations appeared in fact independently of the development
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of the main trends in the theory of Morrey spaces and their applications. They
had as a background the usage of the local characteristics

f.r) = / F@)Pdy and Q°(fir) = / @)l dy
R™\ B(z,r) B(z,r)

widely used in Baku mathematical school (A.A. Babaev and his students) for a
characterization of weighted Holder and other spaces, we refer for instance to the
papers [11] and [1], [2].

In the case 8§ = p the spaces Lﬁ;g:g (R™) coincide with a certain weighted
Lebesgue spaces:

* dr
LP:ZMP Rn — Lp Rn — .
Wi e = @, ww= [
In a series of papers by V. Burenkov, H. Guliyev and V. Guliyev related to
such spaces, this “localized” version with the norm (25), where p, 0 € (0, 00), was
called “local Morrey-type space” and the version with the norm

1/6

6/p
o 1 dr
fllpp.0.0Rny := sup / / f(y)Pdy , 26
lsmeecenyi=sup | [ { o [ 1w ’ (26)

the “global Morrey-type space”, with p,6 € (0,00). As shown in V.I. Burenkov
and H. Guliyev [18] (2004), such space LP%¥(R") is “reasonable” under the as-
sumptions

n

e

1/p < 0

L8(0,t2)

< oo and
L9(t1,oo)

1
(pl/l)

for some t1,t2 € (0, 00), being trivial (LP-%%(R™) = ()) if one of these conditions is
violated; the space Lﬁ;g’g is also trivial if the second condition is violated, and the

function in Lﬁ)’ff must vanish in a sense at the origin, if the first condition does
not hold.

4. Campanato spaces

Campanato spaces, also referred to sometimes as Morrey-Campanato spaces, were
introduced by S. Campanato [19] (1963) (in the case of bounded domains in R™);
in 1964 they also appeared in the paper of G. Stampacchia [101]. They are a gener-
alization of the BM O spaces of functions of bounded mean oscillation introduced
by F. John and L. Nirenberg [56] (1961) and defined, for open sets Q C R™, by
the seminorm

1

[f]BMO =Sup ~
x,r |B(l‘,’l“)| E(m,r)

fly) — fﬁ(x,r) dy.
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4.1. Definitions and basic facts

Definition 4.1 (Campanato spaces). Let 2 C R™ be an open set, 1 < p < oo and
A > 0. The Campanato space L7 () is defined as

LPNQ) = {f € LP(Q) : [flgrr) <o} (27)

the Campanato seminorm being given by

1/p
1
[f]ZPvA(Q) ‘= Sup A - |f(y) — fg o [P dy
™ Bl (z,r)

z€Q;r>0

or equivalently

1 1/p
su mf —c P d ) 93
IEQ"’E;O (T/\ cER! /E(z,r) |f(y) | y) ( )

The embedding theorem for Campanato spaces reads as follows (see [63,
p. 217])

Theorem 4.2. Let 1 < p < g < oo and let \,v be non-negative numbers. If |Q] is
finite then
LV (Q) = LPMNN) (29)

under the condition
A—n cv—n

p  q
In G. Stampacchia [102] (1965) there was introduced Campanato-type space
K7 (Qo) where Qg is a cube in R™ defined by the set of seminorms

(30)

1 1/p
K(Q;) := sup( /uac—u pdx) 31
( ]) QcQ, |Q|1_)\/n Ql ( ) Q| ( )
where {Q; : UQ; C Qo} is a given family of cubes parallel to the cube Qo, no two
of which have common interior points, and the condition

1
r

K(Q)|" 32
sup Ej:l @Q)I"] <o (32)

holds, where the supremum is taken with respect to all admissible families of cubes.
In some papers such spaces were called strong Campanato spaces, see, e.g., [79, 84].

The importance of Campanato spaces stems from the fact that, for A greater
than n (and less than n + p), they coincide with the spaces of Holder continuous
functions, providing an integral characterization of such functions, while in the case
A < n they coincide with Morrey spaces, as the theorem below states, proved in
S. Campanato [19] (1963) (in [19] the domain was supposed to satisfy the condition
(A) and have Lipschitz boundary; for the proof under the only condition (A) we
refer to Section 4.3 of the book by A. Kufner et al. [63]), where the proof of the
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coincidence of the Campanato spaces with the BMO space in the case A = n may
be also found.
We say that an open set Q C R™ is of type (A), if there exists a constant
A > 0 such that _
|B(z,r)| > Ar™, (33)
and by H*(Q)) we denote the space of functions satisfying the Hélder condition
in €.
Theorem 4.3. Let 1 < p < co and 2 be a bounded domain of type (A). Then
1. ZPANQ) = LPA(Q), when X € [0,n),
2. LPAQ) = BMO(Q) when A\ =n,
3. ZLPAQ) =2 HYQ) with a = )‘;”, when A € (n,n + pl.

Note that the statement (3) of Theorem 4.3 for the case p = 1 was also proved
in N. Meyers [69] (1964).

For strong Campanato spaces defined by (31) and (32), in A. Ono [79] (1970)
there were obtained relations with Lipschitz spaces Lip(a,p) of functions Holder
continuous in LP-norm, and in A. Ono [83] (1978) in the final form as the statement

20 @0 =ip (=" ).
r p
withl <r<ococand 0<n/r—(n—\)/p<1l.
We refer also to A. Ono [80] (1972), A. Ono and Y. Furusho [84], A. Ono [82]
(1977/1978), and A. Ono [81] (1977/1978) with regards to other results around
the strong Campanato spaces.

In [20] (1964) S. Campanato introduced spaces f,f’A(Q) of “higher order”
defined by the seminorm

z€Qr>0 B(x,r)

1/p
[flgpr = sup (; Pigfjk[ If(y)—P(y)I”dy> (34)

where Py is the class of polynomials of degree at most k and proved the following
generalization of Theorem 4.3, where C™(Q2),m > 0,0 < a < 1, stands for the
class of functions continuous in 2 with all the derivatives up to the order m and
with the derivatives of order m in H*(2).
Theorem 4.4. Let 1 < p < oo,k > 0 and Q be a bounded domain of type (A). Then
1. 2P (Q) = LPNQ), when A € [0,n),
2. f,f’\(Q) >~ C™(Q) with m = {";’\} ,o = ’\;" —m, when n+mp < A <
n+(m+1)p, m=0,1,2,... k.
We refer to S. Janson et al. [55] (1983) for the alternative proof of Theorem
4.4 in the case 2 = R"”, which includes also the case p = oo.
Note that the condition (A) is not necessary for the validity of the embedding
f,f’)‘(fl) — C™*(Q) but the inverse embedding in equivalence (2) in Theorem 4.4
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essentially uses this condition. We refer to D. Opéla [85] (2003) for the study of
the influence of the geometry of 2 on the inverse embedding.

4.2. DeVore-Sharpley-Christ versions of Campanato-type spaces

In R.A. DeVore and R.C. Sharpley [28] and M. Christ [25] there was introduced
a version of Campanato-type spaces in which the L°°-norm in z is replaced by
LP-norm, namely they introduced the space Cp' defined for 1 < ¢ < p, by the
norm

P 1/p
I fllog = [/Qggp b (/ )~ Pl dy dx] )

where Py, stands for the class of polynomials of degree at most k, k > 0. This norm
does not depend on g € [1, p|, see [28, p. 36]. We refer to [28] for the study of various
properties of these spaces such as comparison with Besov spaces, interpolation,
embeddings, extension theorem, etc. These spaces may be also found in H. Triebel
[109, Subsection 1.7.2.]. They are also known as local approzimation Campanato
spaces. In the case p = 2 we refer also to a paper [32] (2006) on a characterization
of such spaces when o may be negative (o> —7).

Spaces of the type Cpf(X) were studied in D. Yang [113] (2005) in the case
where the underlying space was a homogeneous metric measure spaces. A com-
parison of such spaces and some other Campanato related spaces with Besov and
Triebel-Lizorkin spaces may be also found in that paper. We also mention a char-
acterization of the Hajtasz-Sobolev spaces in terms of the Calderén-Scott maximal
function f¥, obtained in [113].

4.3. p-generalization

Following the long-standing traditions in the study of Campanato spaces, we use
two forms to define them. Namely

f,f"’o:—{fELpzsup (1 inf /E( )|f(y)—P(y)|pdy<oo} (36)

zr (1) PEP;

and

Ly = {f € LP : sup inf /§< : |f(y) = P(y)lP dy < OO}. (37)

o T ¢( ) PeP;,

Such a generalized Campanato space L% (Q) := L(l)’w (Q), over cubes Q@ C R™,
defined by the seminorm

1
sy =sp 0 /I(M)CQ|f(y)—f1(x,r)|dy,

z,r an

with I(x,r) = {u : |y — 2| < r/2}, appeared in S. Spanne [99] (1965), where
LY¥(Q) was characterized in terms of rearrangements of the function |f — Jr@@mls
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restricted to I(z,r). Under the assumption that the function v is increasing on
(0,00) and the integral foe vt q¢ converges, he proved the embedding

L' (Q) — H"(Q), (38)

where H¥' is the generalized Holder space

h
HY = {f:1f ) - f@) < Cam). o= [ a @)

The generalized Campanato space £}?(Q) of higher order defined by the
seminorm

1/p
I )
flege i= sup <¢(T> A5 /E(“) [f(y) = P(y)| dy) (40)

where Py is the class of polynomials of degree at most k, £k > 0 and Q is an
open set in R™, was studied by S. Spanne [100] (1966) who gave its equivalent
characterization in terms of the seminorm

1 » 1/p
o (so(r) 7= Pk(f”mé(z,r») (41)

z,r

where Py is the orthogonal projection of L?(B(z,r)) onto the space of restrictions
of polynomials of order k on B(z, r), under the assumption that € is of type (A).
He also considered weak generalized Morrey-type spaces with the LP-norm in (41)
replaced by the weak LP-norm.

As shown in J. Alvarez [7] (1981) the generalized Campanato spaces £
are not better than the LP space if one admits the function ¢ such that ¢(t) —
oo as t — 0. More precisely, let ¢ be a nonnegative function such that o(t) is
nonincreasing and P (¢) is nondecreasing near zero and ¢(0) = oo; suppose also
that g : (0,1) — R is a nonnegative, nonincreasing p-integrable function such that
g(t) — oo ast — 0. Then there exist a cube Qo, a function f € Z}"¥(Qo) and two
constants C,ty > 0 such that

As(t) = Cg(to)

where A\f(t) = [{z : |f(z)| > t}| is the distribution function, so that Z"*(Qo)
contains functions whose distribution functions exceed that of any given function
in Lp(Qo)

In the case where 2 C R™ is a bounded open set, generalized Campanato
spaces .Z? () defined by condition (40), appeared in C. Zorko [115] (1986). As
a generalization of the statement 1. of Theorem 4.4, there was proved that

2PH(Q) = 1)
under the condition (A), see (33), and the following assumptions: ¢(r) is nonde-

creasing, ¢(r)r~" is nonincreasing and o(2r) < cp(r) with 0 < ¢ < 27, with the
generalized Morrey space LP¥((2) defined by the norm (19).
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We refer also to Proposition 5 of [115] where the reader can find a statement
on preduals of type of Theorem 2.4 for Campanato spaces.

As a generalization of Spanne’s result (38), J. Kovats [61] (1999) proved the
embedding
t 1
: A ()P
) = e, e = [ VT (42)

where (2 is a domain of type (A) and C*¥1 is the space of functions differentiable
up to order k with the last derivative satisfying the Holder condition as in (39),
under the assumption that the integral defining the function 7 converges.

The generalized Campanato spaces, in the case where the underlying space
X was a normal homogeneous metric measure space, defined for 1 < p < oo by

1 1 1/p
I flle.e = SUP 1) (uB(x,r) /BW) If(y)—fBu,r)l”du(y))

were introduced in E. Nakai [75] (2006). Recall that a homogeneous metric measure
space is called normal if

Kir < uB(z,r) < Kar. (43)

There were given relations between such generalized Campanato spaces and Mor-
rey and Hoélder spaces, the latter defined by the norm

. 2| f(z) = fy)]
[fllay == x,yséer Pz, d(z,y)) + ¢y, d(y, x))’

including necessary and sufficient conditions on the function ¢ for the relations
Lr?(X)/C =2 LP(X), LPYX)=LPYX), LP?(X)=As(X).

A modified version of (vector-valued) Campanato spaces, with non-doubling
measures, in the language of the RBMO spaces of X. Tolsa [107] (2001) was
introduced and studied in Y. Sawano and H. Tanaka [96] (2006).

P. Gérka [41, Theor. 3.1] (2009) gave a simple proof of a statement of type
(3) of Theorem 4.3 in the general setting of homogeneous metric measure spaces
(X, p, u), for the Campanato spaces defined by the condition

uB(lx,r) /~ }f(y) - fB(x,r)}pdu(y) < oPrer,

B(z,r)

not requiring the space (X, p, ) to be normal. A local version of this theorem
was used in [41, Theor. 3.3] to prove some embeddings of Hajlasz-Sobolev space
M'P(X), 1 < p < oo, into Holder spaces.
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4.4. Interpolation results

G. Stampacchia [101] (1964), [102] (1965) and S. Campanato and M. Murthy [21]
(1965) proved a Riesz-Thorin-type interpolation theorem for operators acting from
LP into Campanato spaces .Z%* (at that time, Morrey and Campanato spaces were
simply called Morrey spaces). The result in a more complete form obtained in S.
Campanato and M. Murthy [21] (1965) is the following, where .f,f’)‘(Q) is the
space defined by (34) and €2 is a bounded open set in R™.

Theorem 4.5. Let 1 < p; < 00,1 <q; <00, 0< N\, <n+p, i =1,2, and for
0 <60 <1 definep, q and X by

1 1-6 0 1 1-6 0 1 1-6 0

— + , — + R = + . 44

D D1 P2 q @ @ A A1 A2 (44)
If T is a bounded linear operator from L% (Q) to f,f"’A" (Q), i = 1,2 with the
operator norm K;, then T is bounded from L1(Q) to ,,Sflf/\(Q) with the norm at
most CKll_‘gKg, with C' depending only on 0, \;, p; and q;.

Interpolation in the other direction fails, as first shown by E. Stein and A.
Zygmund [103] (1967) who constructed a bounded linear operator on H® and L?
but not on L?,q > 2 and BMO. Further results on such a failure may be found
in the papers by A. Ruiz and L. Vega [93] (1995) and O. Blasco et al. [17] (1999),
where there were given examples of operators bounded from LPi** to L9, which
are not bounded in the intermediate spaces.

Note that a version of Marcinkiewicz type theorem was obtained in G. Stam-
pacchia [101] (1964) for spaces .£P*(Qo), where Qo is a cube in R™. The linear
operator T' was defined to be of strong type (p, q, \), if [|Tf||.ger < K||f||z» and
of weak type (p, g, A), if

K q
supr |z € Q: 177 - (Tl > o} = (K slar)

where () is a cube with sides parallel to @, and the following interpolation theorem
was proved

Theorem 4.6. If T is of weak types (p1,q1, A1) and (p2,q2, A2), where p; > 1,

pi < qi, 1= 1,2, 1 # qo, p1 # p2, then T is of strong type (p,q, \) with p,q, A
defined in (44).

For some related interpolation statements we also refer to the thesis of P. Gris-
vard [44] (1965), published in [45, 46] (1966) and the paper J. Peetre [87] (1966).
S. Spanne [100] (1966) generalized and simplified the proofs of the interpolation
theorem in the setting of generalized Campanato space. In fact, he reduced the
validity of the interpolation to the LP case. Namely, let

1 1-6 9
= +

, r) =wo(r) o (r)?, 0<O<1
p= m T @(r) = wo(r) "ei(r)
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and let Ay, Ag, A1 be normed spaces such that the interpolation theorem is valid
for the two triplets (Ag, Ag, A1) and (LP°, LP, LP*). Then the interpolation theorem
is valid also for (Ao, Ag, A1) and (L*7°, LP%, £P%), with the same convexity
constant. A similar result holds for the corresponding weak Campanato spaces.

4.5. Other characterizations of Campanato spaces

B. Grevholm [43] (1970) used the interpolation theorem for Campanato spaces to
characterize the Campanato spaces as the Besov spaces, namely
A\ —
LPNQ) =B(Q), O<a=" "<k
p

where  is an open set in R™ satisfying some conditions and B*(2), in the case
Q = R", is defined by the seminorm

A%, Lo

t>0,|y|<1 t>
while in the case 2 # R™ the space B*() is defined as the interpolation space
B*(Q) = (CO(Q), C’k(Q)) a

PERS
under a certain interpolation method.

A result similar in a sense was obtained by different means in H.C. Greenwald
[42] (1983) who proved the coincidence of the Campanato space £ (R™) with
the Lipschitz-type space A(a, k) defined in terms of Gauss-Weierstrass integral:

fllaksr =D sup sup t5=/2|DY f(a, 1)] < oo,
M:kteR‘F z€ER™

where f(z,t) is the Gauss-Weierstrass integral of f and D stands for the differen-
tiation with respect to x.

Consider also the space L(a,p, k — 1) of equivalence classes modulo Py_1 of
locally integrable functions f for which

1/p

1
Hf”L(a,p,kfl) = ng]Rl?n |Q|_a/n |:|Q| /Q |f(x) - PQf<l‘)|p dx < 00, (45)

where @ is a ball and Pg f is the unique element of P;_; such that
/[f(:n)—PQf(x)]x” dz =0, 0<|v|<k-1. (46)
Q

Such spaces occur in the duality theory of Hardy spaces as discussed by M.
Taibleson and G. Weiss [105] (1980); we refer also to a related paper M.H. Taibleson
and G. Weiss [104] (1979). The main result of [42] asserts that the spaces Aq
and L(a,p, k — 1) coincide and that their norms are equivalent. An earlier result
of similar nature was obtained by B. Grevholm [43] (1970) for p in the range
1 < p < oo using interpolation theory. The result in [42] is valid for 1< p < oo
and is proved by elementary methods.
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X.T. Duong and L.X. Yan [30] (2005) studied identity approximations adapt-
ed to Morrey-Campanato spaces on quasimetric measure spaces.

In D. Deng, X.T. Duong and L. Yan [27], the authors gave an equivalent
characterization of the spaces L(a,p,k — 1) by using the identity approximations
instead of the minimizing polynomial in the definition of the norm (45) in the case
a >0, k > [na] + 1 when these spaces do not depend on p € [1, 00].

X.T. Duong, J. Xiao and L. Yan [29] (2006) studied the Morrey-Campanato
spaces defined with the constant ¢ = fp in the definition in (28) replaced by a
semigroup of operators. They studied relations with the usually defined Morrey-
Campanato spaces and showed that under appropriate choice of a semigroup, the
new definition coincides with the old one.

L. Tang [106] (2007) used the ideas of [30] to define the Campanato spaces
by the norm

swp e [ 1) = As(D)lda,

where Ap(f) is an identlty approxnnatlon from [30]. There is shown that in some
cases such different norms are equivalent but there were also given examples where
they are not.

4.6. Miscellaneous

The central mean oscillation space CMOY, introduced in Y.Z. Chen and K.S. Lau
[24] (1989) and J. Garcia-Cuerva [37] (1989), defined by

1/q
1
Il fllemos = sup If(x) — fBo,m|?do
|B(0,7)| JB(0,r) 0

was shown to be the dual space of an atomic space HA? associated with the
Beurling algebra. The central bounded mean oscillation space CBMOY introduced
in S. Lu and D. Yang [65] (1992) and S. Lu and D. Yang [66] (1995) is defined by

1

1/q
flx)—f Tdx .
0 T)| B(Or)| ( ) B(O,?")'

A generalization of CMO? and CBMOY, introduced in J. Garcia-Cuerva and
M.J.L. Herrero [38] (1994) and J. Alvarez, M. Guzmén-Partida and J. Lakey [8]
(2000), are the so-called A-central mean oscillation spaces CMO?%* and \-central
bounded mean oscillation spaces CBMO??, defined by

HfHCBMOq Sup
| B(

1/q
1 1
f ax sup flx) = feo.n|?de
H HCMO |B(0 7A)| |B(0,7’)| B(077-)| ( ) B(0 )l

and

1/q
1 1
a, - ~lid .
I fllceavoa Sup D 1B(0,7)]* <|B(0,r)| B(O7r)|f($) fB(o,)| 30)
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M. Kronz [62] (2001) introduced Morrey and Campanato spaces for elements
which are mappings between metric measure spaces.

A classical Morrey inequality states that in the case p > n, the following
embedding of a Sobolev space into Holder space holds

WP(Q) — C%(Q).

In the paper A. Cianchi and L. Pick [26] (2003), in the case p = 1, there was
given a detailed study of more general embeddings of Sobolev spaces into Morrey
and Campanato spaces for the case €2 is a cube in R". For a weakly differentiable
function f on @ they gave optimal integrability conditions on the gradient of f, to
belong to Morrey or Campanato space. More generally they gave a characterization
of the rearrangement-invariant Banach function spaces such that the corresponding
Sobolev space W!X(Q) is continuously embedded into Morrey or Campanato
space. This enabled the authors to find the largest space X (Q) for which such an
embedding holds (the so-called optimal range partner). Such an optimal space is
of Marcinkiewicz type in the case of Campanato spaces and have a different nature
in the case of Morrey spaces. In particular, the following theorem was proved in
[26], where M (Q) is the Marcinkiewicz space defined by the norm

tntl
= su t) (1), t) = .
i@ = s SO, vO ="
Theorem 4.7. Let ¢ be a strictly positive continuous function on (0,00). Then the
space X(Q) = My(Q) is the largest rearrangement invariant space for which the
embedding

[fll2re@ < ClIVFlx@
holds.

A version of grand Morrey spaces LP)*(X) over homogeneous-type space X,
which turns into the grand Lebesgue space LP) (X) introduced in T. Iwaniec and
C. Sbordone [54] (1992) when A = 0, was suggested in A. Meskhi [68] (2009). It is
defined by the norm

1/(p—e¢)
€ —e
1f oo = suwp | sup / £ du(y) |
0 B(z,r)

<e<p—1 \zeX,r>0 (M(B($7 ’I“))))‘

5. Variable exponent Morrey and Campanato spaces

The Morrey spaces LP()A()(Q) with variable exponents A(+) and p(-) over an open
set Q C R™, were recently introduced almost simultaneously by different authors
in A. Almeida, J. Hasanov and S. Samko [6] (2008), V. Kokilashvili and A. Meskhi
[58] (2008), [59] (2010), T. Ohno [77] (2008), X. Fan [35] (2010).
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In A. Almeida, J. Hasanov and S. Samko [6] (2008) the space LP()A()((Q)
was introduced as the space of functions with the finite norm

1 llooonory = inf { P20 <f ) < 1}

v

and the modular IP()AC)(f) defined by
PN = s o swP a.
z€Q,r>0T B(z,r)

In the case of a bounded 2 they gave several equivalent norms and proved em-
bedding theorems for such Morrey spaces under the assumption that p(x) satisfies
the log-condition well known in the variable exponent analysis. Similar embedding
theorem for variable Campanato spaces may be found in [90] (2011) within the
frameworks of the general setting of metric measure spaces.

V. Kokilashvili and A. Meskhi [58] (2008), see also [59] (2010), introduced
Morrey-type spaces Mg((:)) in the general setting when the underlying space is a
homogeneous-type space (X, p, 1), with the norm defined by

£l ygaer = sup (u(B, )P F| ey (o)
() zeX,r>0
where 1 < infx g < ¢(-) < p(-) < supyp < oo. In the case where X is bounded,
some equivalence of norms and embedding theorems were obtained.

A p-generalization LP()»:%(R™) of Morrey spaces with variable exponent p(z)
and constant 0 < v <n, was given in T. Ohno [77] (2008) by the condition

o(r) Fy) 'Y
v /B(z,r)

dy <1
A Y=
A more general version MP()@(Q), Q C R™ of such generalized variable
exponent Morrey spaces was introduced in V. Guliev, J. Hasanov and S. Samko
[49] (2010), defined by the norm

for some \ > 0.

ro p&)
I fllppcre = sup

2€Q,r>0 W(x, 7“) HfHLP(‘)(B(gcJ«))-

Aa)—n
They recover the space LP()A()(Q) under the choice w(z,r) =7 »@ .
Both ¢- and f-generalizations of Morrey spaces of variable order were intro-
duced in V. Guliev, J. Hasanov and S. Samko [48] (2010), as the space of functions
with the finite norm

sup

zeQ

w(zx,r) -
; ||f||Lp(')(B(:E,T))

n )
ro L9C)(0,0)
where ¢ = diam €.

The corresponding variable exponent Campanato spaces are interesting be-
cause they in general contain functions which are locally in LP():*() on one subset,
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BMO-functions locally on another subset and variable order Hélder continuous on
the third one.

Such spaces appeared in X. Fan [35] (2010), where besides variable exponent
Morrey spaces there were also introduced Campanato spaces ZP()A0) of variable
order, in the Euclidean case, via the norm

_ (M)
1l zsrnirie = Il + sup_{|r™20 (f = Faam)|

)
To€EQ,r>0 Lr() (B(zo,r))

where fp =|B|7! [, f g f(z)dz. The equivalence of such Campanato spaces to vari-
able exponent Holder Spaces is shown when inf, o A(x) > n and to variable expo-
nent Morrey spaces, when sup,cq A(z) < n. In the latter result, the proof of the
embedding of Morrey spaces into Campanato spaces was based on the notion of
p(+)-average of a function introduced in this paper.

Similar results for variable exponent Campanato spaces ZP()A0)(X) in a
more general setting of metric measure spaces were obtained in H. Rafeiro and
S. Samko [90] (2011). In [90], in the setting of an arbitrary quasimetric measure
spaces, the log-Holder condition for p(z) is introduced with the distance d(x,y)
replaced by pB(z,d(z,y)), which provides a weaker restriction on p(z) in the
general setting. Some initial basic facts for variable exponent Lebesgue spaces
hold without the assumption that X is homogeneous or even Ahlfors lower or
upper regular, but the main results for Campanato spaces are proved in the case
of homogeneous spaces X .

In E. Nakai [76] (2010) there were introduced ¢-generalizations of such spaces
on a space of homogeneous-type, normal in the sense of Macias and Segovia. In
[76] ¢ was admited to be variable, but p constant and the norm defined by

1/p
1 1 )
flne = sup (MBW)) L O = Tt du(y)> .

We note also the embedding LP()(X) «— L“¢ < £V¢ proved in [76], where

LY% stands for the corresponding Morrey space and (B(z,r)) = e , where
p«(z) = p(x) when 0 < r < 1/2 and p.(z) = p4+ when 1/2 <r < 0.
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1. Preliminaries

Let H be an infinite-dimensional separable Hilbert space. We denote by L(H) the
C*-algebra of the bounded linear operators and by K (H) the ideal of the compact
operators on H.

A sequence P = (P,)n>1 of orthogonal projections of finite rank which con-
verges strongly to the identity operator on H is called a filtration on H. Given
a filtration P, let F¥ stand for the set of all sequences A = (A4,,) of operators
A, : im P, — im P, such that the sequence (A4, P,) converges strongly to an
operator WP (A) € L(H). Since every sequence in F” is bounded by the Banach-
Steinhaus theorem, one can introduce pointwise defined operations

(An) + (Bn) == (An + Byn), (An)(Bn) :== (AnBy), (4n)" = (4;) (1.1)

and the supremum norm ||(A,)|| 7 := sup,, ||A,||, which make F to a unital C*-
algebra and W7 : ¥ — L(H) to a unital *-homomorphism. This homomorphism
is also known as the consistency map associated with the filtration P.

Set d(n) := rank P, := dimim P,, < oo for every n and choose an orthonormal
basis in each of the spaces im P,,. Every operator A,, € L(im P,,) can be identified
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with its matrix representation with respect to the chosen basis and, thus, with
an element of the C*-algebra C2(™*9(") of all §(n) x §(n) matrices with complex
entries. The choice of a basis in each space im P,, makes F7 to a special instance of
an algebra of matrix sequences in the following sense. Given a sequence J of positive
integers, we let F° stand for the set of all bounded sequences (A,) of matrices
A, € COmxd(M) Tntroducing again pointwise operations and the supremum norm,
we make F° to a C*-algebra with identity element (I5(n)), the algebra of matriz
sequences with dimension function §. The set of all sequences in F? which tend to
zero in the norm forms a closed ideal of F°. We denote this ideal by G° and refer
to sequences in G° as zero sequences. For example, the algebra of matrix sequences
with constant dimension function § = 1 is [*°(N), but in what follows we will be
mainly interested in strictly increasing dimension functions, as they occur in the
context of filtrations.

When passing from F7 to F° with 6(n) := rank P,, one loses the embedding
of the matrix algebras L(im P,) = CO(M*3(") into a common Hilbert space. It
makes thus no sense to speak about strong convergence of a sequence in F°. But
it will turn out that algebras of matrix sequences provide a suitable frame to
formulate and study stability problems as well as a lot of other problems which
do not depend upon an embedding into a Hilbert space. Moreover, some of the
notions and assertions discussed in this paper remain meaningful in the much more
general context, when F€ is the direct product of a sequence C = (Cn)n>1 of unital
C*-algebras. The associated ideal of zero sequences in F¢, which can be identified
with the direct sum of the family C in a natural way, will then be denoted by G€.
Sequences in G¢ will be called zero sequences again.

The following will serve as a running example in this paper. We consider the
algebra of the finite sections discretization for Toeplitz operators with continuous
generation function. For a continuous function a on the complex unit circle T, the
associated Toeplitz operator is the operator T'(a) on [?(Z") which is given by the
infinite matrix (a;—;)75_¢, with ax denoting the kth Fourier coefficient of a. Note
that T'(a) is a bounded operator and ||T(a)|| = ||a|/s. For n € N, put

P, : 12(Z+) — 12<Z+), (xn)nzo — (l‘o, T1, ..., Tp—1, 0,0, .. )

Then P = (P,) is a filtration on [2(Z*). We let S(T(C)) stand for the smallest
closed subalgebra of F¥ which contains all sequences (P, T (a)|im p,) of finite sec-
tions of Toeplitz operators T'(a) with a € C(T). Let Ry, : im P,, — im P, be the
reflection operator

(x(), Ti1, ..., Tp—1, 0,0, ) — (l‘n_l, ..., 1, o, 0, 0, )

It is not hard to see that for each sequence A = (A,) € S(T(C)), the strong
limit W(A) = slimR,A,R,P, exists and that W is a unital and fractal *-
homomorphism from S(T(C)) to L(I1?ZT). The following is a by now classical
result by Bottcher and Silbermann [5], see also Chapter 2 in [6] and Sections 1.3,
1.4 and 1.6 in [7].
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Theorem 1.1.

(a) The algebra S(T(C)) consists of all sequences (P,T (a)P,+P,KPp,+R,LR,+
G,) where a € C(T), K, L € K(I*(Z*1)), and (G,,) € G”.

(b) For every sequence A € S(T(C)), the coset A + GT is invertible in the quo-
tient algebra S(T(C))/GT if and only if the operators WP (A) and W(A) are
invertible.

Due to its transparent structure, the algebra S(T(C')) served as a basic ex-
ample for the development of algebraic methods in asymptotic numerical analysis.
These methods have found fruitful applications in the stability analysis of differ-
ent approximation methods for numerous classes of operators; see the monographs
[7, 8, 17] for an overview. In particular, I would like to emphasize the finite sections
method for band-dominated operators, a topic which was mainly influenced and
shaped by Vladimir S. Rabinovich and the limit operator techniques developed by
him, see [9-13] and [15] for an overview. In fact, the algebra of the finite sections
method for band-dominated operators is the first real-life example of an essentially
fractal, but not fractal, algebra (these notions will be introduced below).

2. Fractality

As it was observed in [14, 16], several natural approximation procedures lead to
C*-subalgebras A of the algebra F which are distinguished by the property of self-
similarity: Given a subsequence of a sequence in A, one can uniquely reconstruct
the full sequence up to a sequence which tends to zero in the norm. These algebras
were called fractal in [16]. The goals of this section is to recall the basic definitions
and some consequences of fractality, and to give a short proof of the known fact
that every separable subalgebra of F possesses a fractal restriction.

In this section, we let F := F€ be the product of a family C = (Cp,)nen of
unital C*-algebras and G := G€ the associated ideal of zero sequences.

2.1. Definition and first consequences

For each strictly increasing sequence n : N — N, let F,, stand for the product
of the family (Cyn))nen of C*-algebras, and write G, for the associated ideal of
zero sequences. The elements of F;, can be viewed of as subsequences of sequences
in F. The canonical restriction mapping R, : F — F;, (An) = (Aym)) is a *-
homomorphism from F onto F,, and maps G onto G,. More generally, for each
C*-subalgebra A of F, we let A, denote the image of A under R,,. Clearly, A, is
a C*-subalgebra of F,,. We call algebras obtained in this way restrictions of A.

Definition 2.1.
(a) Let A be a C*-subalgebra of F. A *-homomorphism W from A into a C*-
algebra B is called fractal if it factors through R,|4 for every strictly in-

creasing sequence 1 : N — N i.e., if for each such 7, there is a mapping
W, : A, — B such that W = W, R, | 4.
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(b) A C*-subalgebra A of F is fractal if the canonical homomorphism
A= A/(ANG), A— A+ (ANG)

is fractal.
(c) A sequence A € F is fractal if the smallest C*-subalgebra of F which contains
the sequence A and the identity sequence is fractal.

For example, if P is a filtration, then the associated consistency map W7 is
fractal (since the strong limit of a sequence (A,) € F” can be determined from
each subsequence of (A4,,)). For the same reason, the homomorphism W appearing
in Theorem 1.1 is fractal.

The fractal subalgebras of F are distinguished by their property that every
sequence in the algebra can be rediscovered from each of its (infinite) subsequences
up to a sequence tending to zero. Note that, by Definition 2.1, a fractal sequence
always lies in a unital fractal algebra, whereas a fractal algebra needs not to be
unital.

Assertion (a) of the following theorem provides an equivalent characterization
of the fractality of an algebra. Proofs of Theorems 2.2 and 2.3 are given in [16]
and in Section 1.6 of [7].

Theorem 2.2.
(a) A C*-subalgebra A of F is fractal if and only if the implication
R,(A)eG, = Acg (2.1)

holds for every sequence A € A and every strictly increasing sequence 1.

(b) If A is a fractal C*-subalgebra of F, then A,NG, = (ANG), for each strictly
mcereasing sequence 1.

(c) A unital C*-subalgebra of F is fractal if and only if each of its elements is
fractal.

The following criterion will prove to be useful in order to verify the fractality
of many specific algebras of approximation methods.

Theorem 2.3. A unital C*-subalgebra A of F is fractal if and only if there is a
family {Wi}er of unital and fractal *-homomorphisms Wy from A into unital C*-
algebras By such that the following equivalence holds for every sequence A € A:
The coset A + ANG is invertible in A/(ANG) if and only if W (A) is invertible
in By for everyt €T.

For example, since W7 and W are fractal homomorphisms, we conclude from
Theorem 1.1 (b) and from the previous theorem that the algebra S(T(C)) is frac-
tal. O

The property of fractality has striking consequences for asymptotic spectral prop-
erties of a sequence A = (A,), see [14, 16] and Chapter 3 in [7]. Here we only
mention a few of them which are relevant for what follows. For every element a
of a unital C*-algebra A, we let o2(a) denote the set of all non-negative square
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roots of points in the spectrum of a*a. In case A = C**" the numbers in o3(a)
are known as the singular values of a.

Proposition 2.4. Let A be a fractal C*-subalgebra of F and A = (A,) a sequence
in A. Then

(a) the sequence A is stable if and only if it possesses a stable subsequence;

(b) the limit im,,_, || Ay exists and is equal to ||A + G||;

(c) the limit lim,, o 02(Ay,) exists with respect to the Hausdorff distance on R
and is equal to o2(A + G).

2.2. The fractal restriction theorem

The preceding proposition and related results from [7] indicate that it is a question
of vital importance in numerical analysis to single out fractal subsequences of a
given sequence in F. The following theorem states that such subsequences always
exist.

Theorem 2.5. Let A be a separable C*-subalgebra of F. Then there exists a strictly
increasing sequence 1 : N — N such that the restricted algebra A, = R, A is a
fractal subalgebra of F,.

Since finitely generated C*-algebras are separable, this result immediately
implies:

Corollary 2.6. Fvery sequence in F possesses a fractal subsequence.

Theorem 2.5 was first proved in [14]. We shall give a much shorter proof
here, which is based on the following converse of assertion (b) of Proposition 2.4
(whereas the original proof used the converse of assertion (c) of this proposition).

Proposition 2.7. Let A be a C*-subalgebra of F and L a dense subset of A. If
the sequence of the norms ||Ay|| converges for each sequence (Ay) € L, then the
algebra A is fractal.

Proof. First we show that if the sequence of the norms converges for each sequence
in £, then it converges for each sequence in A. Let (4,,) € A and £ > 0. Choose
(Lp) € L such that |[(A, — Ly)|| = sup||An — Ln|| < &/3, and let ng € N be such
that ||| Ly| — || Lm|l| < € for all m, n > ng. Then, for m, n > no,

WAl = 1Amlll < Al = [[Lalll + ([ Lol = [ Lmlll + Ll = [[Am ]
< N An = Lol + Lol = | Lmlll + ([ Lm — A < &
Thus, (]|4,]]) is a Cauchy sequence, hence convergent. But the convergence of the
norms for each sequence in A implies the fractality of A by Theorem 2.2. Indeed,

if a subsequence of a sequence (4,) € A tends to zero, then 0 = liminf |4, | =
lim || 4,|, whence (A,) € G.

Proof of Theorem 2.5. Let {A™},,en be a dense countable subset of A which

consists of sequences A™ = (A"),en. Let 71 : N — N be a strictly increasing

sequence such that the sequence of the norms ||A7171 (| converges. Next let ns
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be a strictly increasing subsequence of 7; such that the sequence (||Af]2 (my[Dnen
converges. We proceed in this way and find, for each k > 2, a strictly increasing
subsequence 7, of nr_1 such that the sequence (||A§k(n)||)neN converges. Define
the sequence n by n(n) := n,(n). Then 7 is strictly increasing, and the sequence
(HAf]’(n) [Nnen converges for every k € N.

Since the sequences R, (A™) with k € N form a dense subset of the restricted

algebra A, and since each sequence R, (A™) = (A:;(n))nEN has the property that

the sequence of the norms ||A7’;(n>|\ converges, the assertion follows from Proposi-
tion 2.7. 0

3. Essential fractality

Recall that a C*-subalgebra A of F is fractal if each sequence (A,) € A can be
rediscovered from each of its (infinite) subsequences modulo a sequence in the ideal
G. There are plenty of subalgebras of F which arise from concrete discretization
methods and which are fractal (the finite sections algebra S(T(C)) for Toeplitz
operators is one example). On the other hand, the algebra of the finite sections
method for band-dominated operators is an example of an algebra which fails
to be fractal. But the latter algebra enjoys a weaker form of fractality which we
called essential fractality in [15]. Basically, a C*-subalgebra A of F is essentially
fractal if each sequence (A,) € A can be rediscovered from each of its (infinite)
subsequences modulo a sequence in the ideal I of the compact sequences. The role
of this ideal in numerical analysis can be compared with the role of the ideal of
the compact operators in operator theory.

In this section, we first recall the definition of a compact sequence and state
some useful characterizations of compactness and the definitions of J-fractality
and essential fractality from [15]. The main goal of this section is to derive an
analogue of the fractal restriction theorem for essential fractality.

Unless otherwise stated, we let F = F? be an algebra of matrix sequences
with dimension function § and G := G? the associated ideal of zero sequences in
this section.

3.1. Compact sequences

Slightly abusing the notation, we call a sequence (K,) € F a sequence of rank one
matrices if the rank of every matrix K, is less than or equal to one. The product
of a sequence of rank one matrices with a sequence in F is a sequence of rank one
matrices again. Hence, the set of all finite sums of sequences of rank one matrices
forms an (in general, non-closed) ideal of F. We let KC denote the closure of this
ideal and refer to the elements of I as compact sequences. Thus, K is the smallest
closed ideal of F which contains all sequences of rank one matrices, and a sequence
(A,) € F is compact if, and only if, for every e > 0, there is a sequence (K,,) € F
such that

sup ||An — Kp|| <e and sup rank K, < co. (3.1)

n n
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Note that K contains the ideal G, and that the restriction of a compact sequence
is compact. More precisely, if K is a compact sequence in the algebra F° of matrix
sequences with dimension function § and if 7 is a strictly increasing sequence, then
the restriction R, K is a compact sequence in the algebra R, F ¥ o Foon of matrix
sequences with dimension function 6 o 7.

An appropriate notion of the rank of a sequence in F can be introduced as
follows. A sequence A € F has finite essential rank if it is the sum of a sequence
in G and a sequence (K,) with sup, rank K, < co. If A is of finite essential rank,
then there is a smallest integer r > 0 such that A can be written as (Gy,) + (Ky)
with (Gp) € G and sup, rank K,, < r. We call this integer the essential rank of
A and write essrank A = r. Thus, the sequences of essential rank 0 are just the
sequences in G. If A is not of finite essential rank, we set essrank A = co. Clearly,
the sequences of finite essential rank form an ideal of F which is dense in K, and
for arbitrary sequences A, B € F one has

essrank (A 4+ B) < essrank A + essrank B,
essrank (AB) < min {essrank A, essrank B}.

Given a filtration P = (P,) on a Hilbert space H, we identify the algebra F” with
the algebra F of matrix sequences with dimension function 6(n) := rank P,. Note
that this identification requires the choice of an orthogonal basis in each space
im P,,. We define the ideal ¥ of the compact sequences in F¥ in the same way as
before. It is clear that then the ideal ¥ can be identified with K, independently
of the choice of the bases.

For example, using the explicit description of the finite sections algebra of
Toeplitz operators in Theorem 1.1 (a), it is not hard to show that the intersection
S(T(C)) N K consists of all sequences

(P,KP,+ R,LR, + G,) with K, L compact and (G,,) € G (3.2)
and that the essential rank of the sequence (3.2) is equal to rank K +rank L. [

There are several equivalent characterizations of compact sequences, see [15]. In
what follows we shall need a characterization of a compact sequence (K,,) in terms
of the asymptotic behavior of the singular values of the entries K,. To state this
criterion, we denote the decreasingly ordered singular values of an n xn matrix A by

JAll = £1(4) 2 Ba(4) 2 - 2 £,(4) 2 0 (3.3)

and recall from Linear Algebra that A* A and AA* are unitarily equivalent, whence
Yi(A) = Xg(A4*), and that every matrix A has a singular value decomposition
(SVD)
A= E*diag (Z1(A), ..., Tu(A)F (3.4)

with unitary matrices F and F'.

The announced characterization of compact sequences in terms of singular
values reads as follows. See Sections 4.2 and 5.1 in [15] for the proof of this and
the following theorem.
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Theorem 3.1. The following assertions are equivalent for a sequence (K,) € F:
(a) limg o0 SUP,,>p Yk (Kpn) = 0;
(b) limg— o0 limsup,,_, . Xk (K,) = 0;
(c) the sequence (K) is compact.

A sequence in F is called a Fredholm sequence if it is invertible modulo .
As the compact sequences, Fredholm sequences can be characterized in terms of
singular values. Let 01(A) < --- < 0,(A) denote the increasingly ordered singular
values of an n x n-matrix A.

Theorem 3.2. The following assertions are equivalent for a sequence (A,) € F:
(a) (A,) is a Fredholm sequence.
(b) There are sequences (By) € F and (J,) € K with sup,, rank J, < oo such
that B, A, = I, + J, for all n € N.
(c) Thereis a k € ZT such that liminf, . oxy1(Ay) > 0.

3.2. J-fractal algebras

Our next goal is to introduce fractality of an algebra A with respect to an arbitrary
ideal J in place of G. The results presented in this subsection hold in the general
case, when F is the product of a family (C,)nen of unital C*-algebras. We start
with a criterion for the fractality of the canonical quotient map A — A/J.

Theorem 3.3. Let A be a C*-subalgebra of F and J a closed ideal of A. The
canonical homomorphism 77 : A — A/J is fractal if and only if the following
implication holds for every sequence A € A and every strictly increasing sequence
n:N—-N

R,(A)eJ, = AcJ. (3.5)
Proof. Let 77 be fractal, i.e., for each 7, there is a mapping 7r;77 such that 77 =
7 Ryla. Let Ry(A) € J, for a sequence A € A. We choose a sequence J € J
such that R, (A) = R;(J). Applying the homomorphism 7r;77 to both sides of this
equality we obtain 77 (A) = 77 (J) = 0, whence A € J.

For the reverse implication, let A and B be sequences in A with R, (A) =
R,(B). Then R,(A —B) =0 € J,, and (3.5) implies that A — B € 7. Thus, the
mapping

7r;,7:.»477 —A/J, R,(A)—»A+JTJ
is correctly defined, and it satisfies 7r;,7 Ryla = 7. O

Let now J be a closed ideal of F. Then AN J is a closed ideal of A, and the
preceding theorem states that the canonical mapping 74" : A — A/(ANJ) is
fractal if and only if the implication

R,(A) e (ANg), = AcJ (3.6)

holds for every sequence A € A and every strictly increasing sequence 7. It would
be much easier to check this implication if one would have

(ANT)y=AyNT,y (3.7)
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for every n, in which case the implication (3.6) reduces to R,;(A) € J,, = A € J.
Recall from Theorem 2.2 (b) that (3.7) indeed holds if 7 = G and if the canonical
homomorphism 7479 : A — A/(ANG) is fractal. One cannot expect an analogous
result for arbitrary closed ideals J of F, as the following example shows.

Ezample. Let A := S(T(C)) the algebra of the finite sections method for Toeplitz
operators and K the ideal of the compact sequences in the corresponding algebra
F. Then

T = {() € K2 lim Ko =0}

is a closed ideal of F. Employing again the explicit description of S(T(C)) in
Theorem 1.1 (a), it is not hard to see that S(T(C)) N J = G. Consequently,
the canonical homomorphism 75(T(ENNT coincides with 79 and is, thus, fractal.
But G, = (S(T(C)) N J), is a proper subset of S(T(C)), N J, for the sequence
n(n) := 2n + 1. Indeed, the sequence (Pap41K Pay41) belongs to S(T(C)), N T,y
for each compact operator K. O

The previous considerations suggest the following definitions. Note that both
definitions coincide if J is a closed ideal of A and F.

Definition 3.4. Let A be a C*-subalgebra of F.

(a) If J is a closed ideal of A then A is called J-fractal if the canonical homo-
morphism 77 : A — A/J is fractal.

(b) If J is a closed ideal of F then A is called J-fractal if A is (AN J)-fractal
and if (ANJ), = A, NJ, for every strictly increasing sequence 7 : N — N.

The following results show that J-fractality implies what one expects: A
sequence in a J-fractal algebra belongs to J or is invertible modulo 7 if and only
if at least one of its subsequences has this property.

Theorem 3.5. Let J be a closed ideal of F. A C*-subalgebra A of F is J-fractal
if and only if the following implication holds for every sequence A € A and every
strictly increasing sequence 1:

R,(A)eJ, = AcJ. (3.8)

Proof. Let Abe J-fractal and A € A a sequence with R, (A) € J,,. Then R, (A) €
A,NT, = (ANT),, and the (ANJ)-fractality of A implies A € J via Theorem 3.3.

Conversely, let (3.8) hold for every strictly increasing sequence 7. From The-
orem 3.3 we conclude that A is (A N J)-fractal. Further, the inclusion C in
(ANJ), = A, N T, is obvious. For the reverse inclusion, let A be a sequence
in F with R,(A) € A, NJ,. Then there are sequences B € A and J € J such
that R,(A) = R,(B) = R,(J). Since R,(B) € J,, the implication (3.8) gives
B € J. Hence, R,(B) € (AN J),, and since R,(B) = R,(A), one also has
R,(A) e (ANT)y. O
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Theorem 3.6. Let J be a closed ideal of F and A a J-fractal and unital C*-
subalgebra of F. Then the following implication holds for every sequence A € A
and every strictly increasing sequence 1:

R,(A) + T, is invertible in F,/J, = A+ J is invertible in F/J.  (3.9)

Proof. Let A € A be such that R,(A) + 7, is invertible in F,/J,. Since C*-
algebras are inverse closed, this coset is also invertible in (A, + J,)/J,- The latter
algebra is canonically *-isomorphic to A, /(A, N J,), hence, to A,/(AN JT), by
J-fractality of A. Thus, the coset R, (A)+ (ANJ), is invertible in A, /(AN T ).
Choose sequences B € A and J € AN J such that

Ry(A) Ry(B) = Ry(I) + Ry(J)

where I denotes the identity element of F. Applying the homomorphism 777]“4“*7 to
both sides of this equality one gets

,]T.Aﬂj (A) ,/TAOJ (B) _ ,/TAOJ (:[) 4 ,]T.Aﬂj (J)

which shows that AB — I € J. Hence, A is invertible modulo J from the right-
hand side. The invertibility from the left-hand side follows analogously. O

Corollary 3.7. Let J be a closed ideal of F and A a J-fractal and unital C*-
subalgebra of F. Then a sequence A € A

(a) belongs to J if and only if there is a strictly increasing sequence n such that
A, belongs to 7.

(b) is invertible modulo J if and only if there is a strictly increasing sequence 1)
such that A, is invertible modulo 7.

We still mention the following simple facts for later reference.

Proposition 3.8. Let J be a closed ideal of F and A a J-fractal C*-subalgebra of
F. Then

(a) every C*-subalgebra of A is J-fractal.
(b) if Z is an ideal of F with J CZI and if (ANI), = A, NI, for each strictly
increasing sequence n: N — N, then A is Z-fractal.

Proof. (a) Let B be a C*-subalgebra of A, and let B be a sequence in B with
R,(B) € J, for a certain strictly increasing sequence 7. Then R,(B) € A, N J,.
Since A is J-fractal, Theorem 3.5 implies that B € 7. Hence B is J-fractal, again
by Theorem 3.5.

(b) Let R,(A) € T, for a sequence A € A and a strictly increasing sequence
7n. By hypothesis, R,(A) € (ANZ),. Choose a sequence J € ANZ with R,(A) =
R,(J). The J-fractality of A implies that A —J € J, whence A € J+J CZ. By
Theorem 3.5, A is Z-fractal. O
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3.3. Essential fractality and Fredholm property

Let again F be the algebra of matrix sequences with dimension function § and X
the associated ideal of compact sequences. We call the K-fractal C*-subalgebras
of F essentially fractal.

Note that each restriction F,, of F is again an algebra of matrix sequences
(with dimension function ¢ o 7); hence, the restriction /C,, of K is just the ideal
of the compact sequences related with F,. If we speak on compact subsequences
and Fredholm subsequences in what follows, we thus mean sequences R,A € I,
and sequences R, A which are invertible modulo K, respectively. In these terms,
Corollary 3.7 reads as follows.

Corollary 3.9. Let A be an essentially fractal and unital C*-subalgebra of F. Then
a sequence A € A is compact (resp. Fredholm) if and only if one of the subsequences
of A is compact (resp. Fredholm).

The following is a consequence of Proposition 3.8.

Corollary 3.10. Let A be a fractal C*-subalgebra of F. If (ANK), = A, NK,, for
each strictly increasing sequence n: N — N, then A is essentially fractal.

Essential fractality has striking consequences for the behavior of the smallest
singular values.

Theorem 3.11. Let A be an essentially fractal and unital C*-subalgebra of F. A
sequence (Ay) € A is Fredholm if and only if there is a k € N such that

limsup o, (4,,) > 0. (3.10)

n—oo

Proof. If (A,,) is Fredholm then liminf,,_, . o) (4,) > 0 for some k& € N by The-
orem 3.2 (c¢), whence (3.10). Conversely, let (3.10) hold for some k. We choose
a strictly increasing sequence 1 such that lim, ;oo 0%(A,@n)) > 0. Thus, the re-
stricted sequence (A, (,))n>1 is Fredholm by Theorem 3.2. Since A is essentially
fractal, Corollary 3.9 (b) implies the Fredholm property of the sequence (4,,) it-
self. O

Consequently, if a sequence (A,) in an essentially fractal and unital C*-
subalgebra of F is not Fredholm, then
lim o,(A,) =0 for each k € N. (3.11)
n—oo

In analogy with operator theory, we call a sequence (A,,) with property (3.11) not
normally solvable.

Corollary 3.12. Let A be an essentially fractal and unital C*-subalgebra of F. Then
a sequence in A is either Fredholm or not normally solvable.

Ezample. Consider the finite sections algebra S(T(C')) for Toeplitz operators. It
is a simple consequence of Theorem 1.1 (a) that (S(T(C))NK), = S(T(C)), N,
for each strictly increasing sequence 7. Since S(T(C)) is fractal and G C K, the
algebra S(T(C)) is essentially fractal by Corollary 3.10. O
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3.4. Essential fractal restriction

Our final goal is an analogue of Theorem 2.5 for essential fractality. Recall that
we based the proof of Theorem 2.5 on the fact that there is a sequence 7 such that
the norms ||A; || converge for each sequence (A,). We start with showing that
n can be even chosen such that not only the sequences (|| A, ,)ll) = (E (Anmy))
converge, but every sequence (X (A;(ny)) with & € N. Here, ¥1(A4) > --- > %,,(4)
denote the decreasingly ordered singular values of the n X n-matrix A.

Proposition 3.13. Let A be a separable C*-subalgebra of F. Then there is a strictly
increasing sequence 1 : N — N such that the sequence (Xx(A;(n)))n>1 converges
for every sequence (An)n>1 € A and every k € N.

Proof. First consider a single sequence (A4,,) € A. We choose a strictly increasing
sequence 7, : N — N such that the sequence (X1(A, (n)))n>1 converges, then a
subsequence 75 of 11 such that the sequence (3o (Anz(n)))n21 converges, and so on.
The sequence n(n) := n,(n) has the property that the sequence (Xx(A;n)))n>1
converges for every k € N.

Now let (A™),,>1 be a countable dense subset of A, consisting of sequences
A™ = (A")n>1. We use the result of the previous step to find a strictly increasing
sequence 7; such that the sequences (Ek(Aél(n)))nzl converge for every k € N,
then a subsequence 72 of 1, such that the sequences (Zk(Afn(n)))nZl converge for
every k, and so on. Then the sequence n(n) := n,(n) has the property that the
sequences (X (A}, )))n>1 converge for every pair k, m € N.

Let n be as in the previous step, i.e., the sequences (Zk(An(n)))"Zl converge
for every k € N and for every sequence Am = (A7")p>1 in a countable dense subset
of A. We show that then the sequences (X (A;(n)))n>1 converge for every k € N
and every sequence A = (A,) in A. Fix k € N and let £ > 0. Using the well-known
inequality |25 (A) — Xk (B)| < ||A — B|| we obtain

Sk (Anen)) = Zr(An)|
< |Zk(A n(n))_zk( n(n))|+|2k( n(n))_Ek(AZZl)”
+ [Ze(A50) — Ze(Ay0)l
< N Anmy = Aniy |+ 12k (A7ny) — Zk(Agi)| + A5 — Ano
< 2|[[A = A" F 4 [Ek(Af)) — Zk(Af)l-

Now choose m € N such that ||[A — A™|| < ¢/3 and then N € N such that
12k (AN —2k(AT))| < e/3foralln, I > N. Then [Sk(Ay ;) —Zk(Ay)| < e for

all n, [ > N. Thus, (Xx(A;(n)))n>1 is a Cauchy sequence, hence convergent. [

Proposition 3.14. Let A be a C*-subalgebra of F with the property that the se-
quences (Xr(An))n>1 converge for every sequence (A,) € A and every k € N.
Then A is essentially fractal.
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Proof. Let K = (K,) € A and let n : N — N be a strictly increasing sequence
such that K,, € IC;,. Then, by Theorem 3.1 (b),
lim limsup X (Kyny) = 0. (3.12)
k=00 nooo
By hypothesis, limsup,, ., Xx(Kyn)) = limy, 00 L (Ky). Hence, (3.12) implies
limg 00 limy, 00 B (K,) = 0, whence K € K by assertion (a) of Theorem 3.1.

Thus, every sequence in A which has a compact subsequence is compact itself.
Thus A is essentially fractal by Theorem 3.5. O

Theorem 3.15. Let A be a separable C*-subalgebra of F. Then there is a strictly
increasing sequence 11 : N — N such that the restricted algebra A, = R,A is
essentially fractal.

Indeed, if 7 is as in Proposition 3.13, then the restriction A, is essentially
fractal by Proposition 3.14. (]

We know from Theorems 2.5 and 3.15 that every separable C*-subalgebra of F has
both a fractal and an essentially fractal restriction. It is an open question whether
this fact holds for arbitrary closed ideals J of F in place of G or K, i.e., whether
one can always force J-fractality by a suitable restriction.

4. Essential spectral approximation

In a series of papers [1-3], Arveson studied the question of whether one can discover
the essential spectrum of a self-adjoint operator A from the behavior of the eigen-
values of the finite sections P, AP, of A. More generally, one might ask whether
one can discover the essential spectrum of a self-adjoint sequence A = (A4,,) € F
(i.e., the spectrum of the coset A + K, considered as an element of the quotient
algebra F/K) from the behavior of the eigenvalues of the matrices A,,7 To answer
this question, Arveson introduced the notions of essential and transient points,
and he discovered (under an additional condition) a certain dichotomy: if A is a
self-adjoint band-dominated operator, then every point in R is either transient or
essential; see Subsection 4.2. The goal of this section is to relate the essential spec-
tral approximation with the property of essential fractality. In particular, we will
see that a subalgebra A of F is essentially fractal if and only if every self-adjoint
sequence in A4 has Arveson dichotomy.

4.1. Essential spectra of self-adjoint sequences

Given a self-adjoint matrix A and a subset M of R, let N(A4, M) denote the number
of eigenvalues of A which lie in M, counted with respect to their multiplicity. If
M = {\} is a singleton, we write N(A, A) in place of N(A, {A}). Thus, if A is an
eigenvalue of A, then N(A, \) is its multiplicity.

Let A = (Ay,) € F be a self-adjoint sequence. Following Arveson [1-3], a
point A € R is called essential for this sequence if, for every open interval U
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containing A,
lim N(A,, U) = oo,

n—oo
and A\ € R is called transient for A if there is an open interval U which contains A
such that

sup N(4,, U) < co.

neN
Thus, A € R is not essential for A if and only if A is transient for a subsequence
of A, and ) is not transient for A if and only if X is essential for a subsequence of
A. Moreover, if a point A is transient (resp. essential) for A, then is also transient
(resp. essential) for every subsequence of A.

Theorem 4.1. Let A € F be a self-adjoint sequence. A point A € R belongs to the
essential spectrum of A if and only if it is not transient for the sequence A.

Proof. Let A = (A,) be a bounded sequence of self-adjoint matrices. First let
A€ R\ o(A+K). We set By, := A, — AL, and have to show that 0 is transient
for the sequence (B,,). Since A € R\ o(A + K), the sequence (B,,) is Fredholm.
By Theorem 3.2 (c), there is a k € ZT such that

lirginf Ok+1(Bn) =:C >0 and liminfox(B,) =0.

n—oo

Let U := (—C/2, C/2). Since the singular values of a self-adjoint matrix are just
the absolute values of the eigenvalues of that matrix, we conclude that N (B, U) <
k for all sufficiently large n. Thus, 0 is transient.

Conversely, let A € R be transient for (4, ). We claim that (A, — AI,) is a
Fredholm sequence. By transiency, there is an interval U = (A—e, A4¢) withe > 0
such that sup,,cy N(An, U) =: k < 0o. Let T, denote the orthogonal projection
from C%(™ onto the U-spectral subspace of A,,. Then rank T}, is not greater than
k. It is moreover obvious that the matrices C,, := (A4,, — \[,)(I — T,,) + T,, are
invertible for all n € N and that their inverses are uniformly bounded by the
maximum of 1/¢ and 1. Hence, (C; 1) € F and

(A, = \L)(I -T,)C;' =1-T,C; .

Since (T},) is a compact sequence (of essential rank not greater than k), this identity
shows that the coset (A, — AI,) + K is invertible from the right-hand side. Since
this coset is self-adjoint, it is then invertible from both sides. Thus, (A4,, — AI,) is
a Fredholm sequence. i

Proposition 4.2. The set of the non-transient points and the set of the essential
points of a self-adjoint sequence A € F are compact.

Proof. The first assertion is an immediate consequence of Theorem 4.1. The second
assertion will follow once we have shown that the set of the essential points of A
is closed.

Let (Ar) be a sequence of essential points for A = (A4,,) with limit A\. Assume
that A is not essential for A. Then there is a strictly increasing sequence 7 :
N — N such that X is transient for A,. Let U be an open neighborhood of A
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with sup,cy N(Aym), U) =: ¢ < oo. Since A\ — A and U is open, there are a
k € N and an open neighborhood Uy of Ay with Uy C U. Clearly, N (A, ), Ux) <
N(Aymy, U) < c. On the other hand, since Ay is also essential for the restricted
sequence A, one has N (A, ), Ur) — oo as n — 0o, a contradiction. O

Note that the set of the non-transient points of a self-adjoint sequence is
non-empty by Theorem 4.1, whereas it is easy to construct self-adjoint sequences
without any essential point: take a sequence which alternates between the zero and
the identity matrix. In contrast to this observation, the following result shows that
sequences which arise by discretization of a self-adjoint operator, always possess
essential points. Let H be an infinite-dimensional separable Hilbert space with
filtration P := (P,), and define the algebra F” as in Section 1. One can think of
FP as a C*-subalgebra of the algebra F° with dimension function §(n) := rank P,.

Theorem 4.3. Let A := (A,,) € F¥ be a self-adjoint sequence with strong limit A.
Then every point in the essential spectrum of A is an essential point for A.

Proof. We show that A — Al is a Fredholm operator if A € R is not essential for
A. Then ) is transient for a subsequence of A, i.e., there are an infinite subset M
of N and an interval U = (A — ¢, A + ¢) with € > 0 such that

sup N(A,, U) =k < cc. (4.1)
neM
Let T, denote the orthogonal projection from H onto the U-spectral subspace of
A, P,. By (4.1), the rank of the projection T}, is not greater than k if n € M. So
we conclude that the operators C,, := (A, — AI,)({ — T},) + T, are invertible for
all n € M and that their inverses are uniformly bounded by the maximum of 1/
and 1. Hence,

(A, = ML) —=T,)C; ' =1 -T,C;* (4.2)

for all n € M. By the weak sequential compactness of the unit ball of L(H), one
finds weakly convergent subsequences ((I =T, )Cy!)p>1 of (I =T,)C ! )nem and
(Tn,Cpt)rz1 of (TB;, ' )nem with limits C' and T, respectively. The product of
a weakly convergent sequence with limit X and a *-strongly convergent sequence
with limit Y is weakly convergent with limit XY . Thus, passing to subsequences
and taking the weak limit in (4.2) yields (A—AI)C = I—T'. Further, the rank of T is
not greater than & by Lemma 5.7 in [4]. Thus, (A—AI)C'—1I is a compact operator.
The compactness of C(A — M) — I follows similarly. Hence, A is a Fredholm

operator. O

Arveson gave a first example where the inclusion in Theorem 4.3 is proper.
He constructed a self-adjoint unitary operator A € L(I?(N)) with

U(A) = Oess (A) = {_1, 1} (43)

such that 0 is an essential point of the sequence (P, AP,).
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4.2. Arveson dichotomy and essential fractality

We say that a self-adjoint sequence A € F enjoys Arveson’s dichotomy if every
real number is either essential or transient for this sequence. Note that Arveson
dichotomy is preserved when passing to subsequences. Arveson introduced and
studied this property in [1-3]. In particular, he proved the dichotomy of the fi-
nite sections sequence (P, AP,) when A is a self-adjoint band-dominated operator
which satisfies a Wiener and a Besov space condition. A generalization to arbitrary
band-dominated operators was obtained in [15].

Theorem 4.4. The set of all self-adjoint sequences in F with Arveson dichotomy
is closed in F.

Proof. Let (A,)nen be a sequence of self-adjoint sequences in F with Arveson
dichotomy which converges to a (necessarily self-adjoint) sequence A in the norm
of F. Then A, + K — A 4+ K in the norm of F/K. Since A,, + K and A + K are
self-adjoint elements of F//C, this implies that the spectra of A, + K converge to
the spectrum of A + K in the Hausdorff metric. Thus, by Theorem 4.1, the sets
of the non-transient points of A,, converge to the set of the non-transient points
of A. Since the A, have Arveson dichotomy by hypothesis, this finally implies
that the sets of the essential points of A,, converge to the set of the non-transient
points of A in the Hausdorff metric.

Let now A be a non-transient point for A and assume that A is not essential for
A. Then there is a strictly increasing sequence 77 : N — N such that A is transient
for the restricted sequence A,. As we have seen above, there is a sequence (\,),
where )\, is an essential point for A,, with A\,, — A. Since the property of being
an essential is preserved under passage to a subsequence, A, is also essential for
the restricted sequence (A,,),.

Since the sequences (A,), also have Arveson dichotomy and since (A,),
tends to A, in the norm of F,, we can repeat the above arguments to conclude
that the sets M, of the essential points for (A,,), converge to the set M of the non-
transient points for A, in the Hausdorff metric. Since A,, € M,, by construction,
this implies that A € M. This means that A in not transient for A, a contradiction.

O

Here is the announced result which relates Arveson dichotomy with essential
fractality.

Theorem 4.5. Let A be a unital C*-subalgebra of F. Then A is essentially fractal
if and only if every self-adjoint sequence in A has Arveson dichotomy.

Proof. First let A be essentially fractal. Let A be a self-adjoint sequence in A and
A € R a point which is not essential for A. The ) is transient for a subsequence of
A thus, 0 is transient for a subsequence of A — AL From Theorem 4.1 we conclude
that this subsequence has the Fredholm property. Then, by Corollary 3.9 (b) and
since A is essentially fractal, the sequence A — AI itself is a Fredholm sequence.
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Thus, 0 is transient for A — AI by Theorem 4.1 again, whence finally follows that
A is transient for A. Hence, A has Arveson dichotomy.

Now assume that 4 is not essentially fractal. Then, by Theorem 3.5, there are
a sequence A = (A,) € A and a strictly increasing sequence 7 : N — N such that
the restricted sequence A, belongs to K, but A ¢ K. The self-adjoint sequence
A*A has the same properties, i.e., (A*A), = ATA, €K, but A*A € K.

Since A7 A, € K, the essential spectrum of A A, (i.e., the spectrum of the
coset Ay A, + K, in F,/K,) consists of the point 0 only. Thus, by Theorem 4.1,
0 is the only non-transient point for the restricted sequence A7 A,,.

Since A*A & K, there is a strictly increasing sequence p : N — N such
that u(N) N7(N) = 0 and A} A, ¢ K. Hence, the essential spectrum of A% A,
contains at least one point A # 0, and this point is non-transient for A7 A, by
Theorem 4.1 again. Hence, there is a subsequence v of p such that A is essential
for AJA,, but A # 0 is transient for A}A, as we have seen above. Thus, A is
neither transient nor essential for A*A. Hence, the sequence A*A does not have
Arveson dichotomy. O

Corollary 4.6. Every self-adjoint sequence in F possesses a subsequence with Arve-
son dichotomy.

Proof. Let A be a self-adjoint sequence in F. The smallest closed subalgebra A of
F which contains A is separable. By Theorem 3.15, there is an essentially fractal
restriction A, of A. Then A, is a subsequence of A with Arveson dichotomy by
the previous theorem. O
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(—o0,t) with ¢t < 0. The estimate is given in terms of some integrals of K.
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Introduction

Consider a self-adjoint integral operator K in the space Lo(M,v) on a domain
or a manifold M provided with a finite measure v. If its integral kernel K is
continuous then the operator is compact and its spectrum consists of eigenvalues
accumulating to zero. Such operators have been considered by many authors, most
of whom studied the rate of convergence of eigenvalues and obtained various quan-
titative versions of the following general statement: the smoother the kernel is, the
faster the eigenvalues tend to zero (see, for instance, [2] or [8]).

The paper deals with a different, seemingly simple question: how many neg-
ative eigenvalues are there? More precisely, we are interested in obtaining explicit
lower bounds for the number of negative eigenvalues in terms of the integral ker-
nel K.

One can argue that in the generic case the dimensions of positive and negative
eigenspaces must be the same, so that both of them are infinite dimensional and
there are infinitely many negative eigenvalues. However, this argument is of little
use when we need to study a particular integral operator.

The research was partly carried out during my visit to Academia Sinica, Taipei. I am very grateful
to my hosts, especially to Dr. Jin-Cheng Jiang, for their financial and scientific support.
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It is not immediately clear what properties of K guarantee that there are
many negative eigenvalues. The fact that K is real and negative on a large set
is clearly insufficient (for instance, the operator with constant integral kernel
K = —1 has only one negative eigenvalue). On the positive side, if K takes large
negative values on the diagonal and the Hilbert—Schmidt norm of K is relatively
small, one can estimate the number of its negative eigenvalues as follows.

Ezample. Let M_ = {£ € M : K(§,¢&) < 0}. If M_ # @ then the number of
negative eigenvalues of the operator K is not smaller than

o = (M (6, ) du(e ) (/ e ane )dV(n)>

Indeed, if K_ is the truncation of K to the subspace Lo(M_,v) then C_ =
(Tr K_)?||[K_||5% where Tr and ||-||2 stand for the trace and the Hilbert-Schmidt
norm. Since Tr K_ < 0, we have

-2

(Te K- IE-I2% < (DN ] [ D2oA < #H{A
i i

where A; are the negative eigenvalues of K_ . Thus C_ estimates the number of
negative eigenvalues of K_ and, consequently, of K from below.

The main result of the paper is Theorem 1.2 which provides a similar estimate
involving some integrals of /. Unlike in the previous example, it does not rely only
on the behaviour of K on the diagonal and takes into account the contribution of
its off-diagonal part.

Theorem 1.2 is stated and proved in Section 1. It is formulated in a very
general setting but even in the simplest situation (say, for integral operators on
a line segment) the result is not obvious. Section 2 contains some comments and
examples. In particular, in Subsection 2.3 we discuss the link between the problems
of estimating the number of negative eigenvalues and the difference between the
Dirichlet and Neumann counting functions of the Laplace operator on a domain.

1. The main theorem

Throughout the paper N (A4;t) denotes the dimension of the eigenspace of a self-
adjoint operator (or a Hermitian matrix) A corresponding to the interval (—oo,t).

Let M be a Hausdorff topological space equipped with a locally finite Borel
measure v. We shall always be assuming that M and v satisfy the following
condition,

(C1) every open set U C M contains infinitely many elements and has non-zero
measure.
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Let us consider the symmetric integral operator Ky in the space Lo(M,v)
given by a continuous kernel K(n, &) = K(&,n)

Ko : uln) > Kou(€) = /M/c<s,n>u<n>du<n>. (L1)

We assume that the domain of K consists of Lo-functions w such that the
integral on the right-hand side of (1.1) is absolutely convergent for almost all
£ € M and the function Kgu, defined by this integral, belongs to the space
Ly(M,v). Let K be an arbitrary self-adjoint extension of Kj .

Let »(&,n) be the smaller eigenvalue of the Hermitian 2 X 2-matrix

2 _ (K& K(&n)
RO = (’C(n,ﬁ) /C(n,Z))’ (1.2)
that is,

#(&m) = (mm)* +4[KEn)*. (13)

Obviously, »#(¢,7n) is a continuous real-valued function on M x M such that

#(&m) = #(n,§).

Remark 1.1. By (1.3),if K(,€) is identically equal to a constant C' then (&, n) =

We shall say that a measure p on M x M is symmetric if it is invariant
with respect to the transformation (£,71) — (n,€). If p is a symmetric measure
on M x M , we shall denote by ' its marginal, that is, the measure on M such
that p/(S) = p (S x M) for all measurable S C M . Finally, assuming that

(C2) 0< [uruar (E=2(&m)) du(€,m) < oo

where
e ) it —s(Em) >0,
(t—=(&n)), = {0 if t — (& m) <0,

(§€)+’Cnn 1\/ K€, €) —

let us denote

2
(Sursnr (¢ = (€m) 1 duém)
C = . 1.4
= K 4 () i) -4
Theorem 1.2. Let the condition (C1) be fulfilled. If inf s <t <0 then
1 Ci(w)

N(K,t) > 5t 16 (1.5)

for all symmetric Borel measures p satisfying the condition (Cz).

Proof. Consider the open set
= {(&n) e M X M : =(§,n) <t},
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and let M; be its projection onto M,
M, = {geM : (g,M)ﬂEt;é@}.

Further on, without loss of generality, we shall be assuming that p is supported
on X; (if not, we replace p with its restriction to X ).
Given a collection
On = ((€1,m);- -, (€nsmn)) € BF i= Bp X X 5y

~
n times

of points (&;,m;) € ¥, let us consider the Hermitian 2n x 2n-matrix

Kii Ki2 -+ Kin
) Ko1 Koo -+ Kan
Icml ICn,Q e Icnm
where ( ) ( )
K givf’ K g'wn > *
ICi» = J 4 = ’Cl .
7 <’C(m,§j) K(ni,n;) (i)
Let

KD (0,) = A (K™ (0,) —tI) A,

where T is the identity 2n x 2n-matrix and A = diag{A1, Aa,...,A,} is the block
diagonal matrix formed by the 2 x 2-matrices

1 (10
A = (=g (5 1)
Since A > 0, we have
@) N (KC)(0,),t) =N (16@") (0), o) for all g, € 7.

By direct calculation,

/61,1 —tA? /61,2 s Kin
L . ) s
gen = | Rt e
,€n71 I€n,2 e Ianm - tA%

where
Kig 1= (0= oe(&m) ™2 (= sgom)) ™ Kiy = (Kja)"
Let us split () (6,,) into the sum of the block diagonal matrix

k:g:g)(en) = diag {’61,1 — tA% s ’62,2 — tAg, ey kjn,n — tAi}

and the matrix /Cf)?’ (0,) == K@) (8,) — Ké?gg) (0,) . The equalities

I@j,j — tA? = (t — %(gj,’ﬂj))_l (’C(Q)(gj,nj) — tI) 5 ]: 1, Lo
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imply that

K:(Qn)

diag (0n) of multiplicity n or higher for each 6, €

(ii) —1 is an eigenvalue of
zp.

On the other hand,

,C(2n) 2 [1C( fzvf] |2+|K(£zv77j)|2+|’C(7h7£j)|2+|lc(77u77j)|
IKer @)1 = 2 &) (&= (6. m,))

where ||-||2 is the Hilbert—Schmidt norm. Let us consider the absolutely continuous
with respect to p measure i with the density (¢t — »(£,n)), so that da(¢,n) =

(t — (& m)) du(&,n) . Then

[ (= m) ™ ey ™ K ) Al ) i)

, (1.6)

= (ﬂ(zt))n_Q/E /E (&, )17 dpa(&ir mi) dp(€5,m5) = (Ce(p)) ™" (A(0)"

for all ¢ # j, where Ci(u) is defined by (1.4) and a(X;) is finite in view
f (C3). Similar calculations show that the integrals over X} with respect to
di(€r,m) - . dfi(€n,mn) of all other term in the right-hand side of (1.6) are also
equal to (Cy(p))~t ((24))"™ . Therefore

(A(Z0) ™" / IS )13 dii(€r,m) - dji(€n,ma) = 4n(n —1) (Ca() ™"
and, consequently, there exists a point 0, 0 € X7 such that
IS @03 < 4n(n—1) (Ci(p) ™

Since H/&fjf”)(en)ug continuously depends on 6,, and every open set contains
infinitely many elements, for each € > 0 there exists a point

on,s = ((51,57 77176)7 sy (fn,a nn,s)) € E?
such that

IKSE @no)lF < 4n(n—1) (C(w) ™" +e (L7)
and all the entries & . and n;. are distinct. The estimate (1.7) implies that the

number of eigenvalues of the matrix Kéﬁ;‘)(ew) lying in the interval [1,00) does
not exceed 4n(n — 1) (Cy(u))~* + €. Therefore, in view of (i) and (ii),

N (/c<2”> (One) t) =N (/€<2”>(9n,5) : 0) >n—dn(n—1)(Cy(u)" —e.

Since the measure v is locally finite and the function K is continuous, for
every 0 >0 and (£,n) € M x M there exist open neighbourhoods Ug s C M and
Un,s C M of the points ¢ and 7 such that v(Ue5) < oo, v(Uy,s) < 0o and

|’C(£777) - ’C(flﬂ?/” < 57 Vf/ S U§,57 V77/ e U, 0 .
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In view of (C1), v(Ugs) > 0 and v(U,,s) > 0. Let ues := (Z/(U&(;))_l)(g’g and
Up.s = (W(Upys)) " X5, Where xes and X, are the characteristic functions of
the sets Ugs and U, 5. Then ugs, uys € Lo(M,v) and

K& m) - (K“E,57“n,5)L2(M,u) < 9. (1.8)

Let us choose the neighbourhoods Ug s and U, s so small that all the func-
tions ug, . s and uy, . s have disjoint supports, and let K. s be the contraction of
K to the 2n-dimensional subspace spanned by these functions. In view of (1.8),
in the basis

{u§1,5;67 sy UEy 08y Uny o8y ey unn,s:é}

the operator K. s is represented by a 2n x 2n-matrix that converges to e (On.e)
as 0 — 0. Consequently,

N(Kes5,t) = n—4n(n—1) (Cy(u)™t —¢

for all sufficiently small §. By the variational principle, the same estimate holds
N(K,t). Letting € — 0, we see that

N(K 1) = n—4n(n—1) (Ce(n) ™"

by (90 -5

for all positive integers n. Choosing n, > 1 such that ’Qn“ — Ct(‘i)H‘ <1 and

substituting n = n,, in the above inequality, we obtain (1.5). O

2. Comments and examples

2.1. General comments

The estimate (1.5) implies that K has at least one eigenvalue below a negative
t whenever inf s < t. Indeed, in this case (1.5) with any symmetric measure p
satisfying (C2) shows that N(K,t) > }. Since the function N(K,t) is integer
valued, it follows that N (K,t) > 1.

If Cy(u) < 8 then (1.5) implies only the obvious estimate N(K,¢) > 1. In
order to obtain a better result, one has to increase the constant C;(u) by choosing
an appropriate measure p . In particular, Theorem 1.2 gives a good estimate when
the function (&, n) is takes large negative values on a “thin” subset ¥’ C M X
M, the measure p is supported on ¥’ and |K| is relatively small outside a
neighbourhood of ¥'. On the contrary, if K is almost constant on M x M then
x~ K —|K| and Ci(p) = (t—K+|KDLIK|72 < 4.

A possible strategy of optimizing the choice of p is to fix the marginal p’
and to maximize [ (t — »(£,n)), du(€,n) over the set of symmetric measures p
with the fixed marginal. The minimization (or maximization) of an integral of the
form [ f(&,m)du(€, n) over the set of measures with fixed marginals is known as
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Kantorovich’s problem. It has been solved for some special functions f(£,n) (see,
for instance, [6] and references therein).

I won'’t elaborate further on this problem, as it requires different techniques
(and a different author). Instead, in the rest of the paper we shall consider a couple
of examples demonstrating possible applications of Theorem 1.2.

2.2. Operators with difference kernels in R”

Let v be a Borel measure on R™, and let h be a continuous function on R™ such
that h(—0) = h(0). Consider the symmetric operator

a(n) v Kou() = / h(E — ) u(n) dv(n) (2.1)

in the space Lo(R™,v). In the notation of Section 1, M = R™, K(&,n) = h(§ — 1)
and »(¢,m) = h(0) — |h(§ —n)| (see Remark 1.1).

Let us fix ¢t <0 and 0 € R™ such that |h(0)| > h(0) —¢, and define a measure
1o on R?"™ by the identity

/ F(em) dus(En) = / (o +6) + Fn+ 0.m)) dis(n)

where fi is a probability measure on R™. Clearly, the measure pg is symmetric, and
its marginal coincides with the measure pj on R™ given by the equality

/ o(n) diy(n) = / (v(n) + v(n + 0)) di(n).
‘We have
/ (t— (€n), dus(En) = 2(|h(B)] — h(0) + 1) (2.2)

and
[ et auite) auy
- / / (2R — ) + [B(E — 0+ O)2 + [h(E — 1 — O)2) dE(E) dfi(r).
Since [h(€ — 7 — 0)] = |h(n — € +6)| and
/ Ih(n — €+ 0) dia(€) da(n) = / (€ — 7+ 0) da€) daln)

the equality (2.3) can be rewritten in the form

(2.3)

[ weenpane awam =z [[ (e =P + b - n+ o)) aate) .
(2.4)
In view of (2.2) and (2.4), Theorem 1.2 implies that
2

2 8[[(nE =P+ (& —n+0)*) di(S) dfi(n)

for all probability measures fi on R"™.
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Let di(€) = e™x(e£) d§ where x is the characteristic function of the unit
ball. One can easily see that

timsup [ [(1h(& = n)? + n(¢ =1+ O)F) 2"x(c6) (o) d€ dy < 2Himsup[H(O)

06— o0

Passing to the limit in (2.5) and optimizing the choice of 6, we obtain

Corollary 2.1. Let K be a self-adjoint extension of the operator (2.1). If the mea-
sure v satisfies the condition (C1) and h(0) — supgegn [h(0)] <t <0 then

L, (supgens [R(O)] — h(0) + 1)
K,t) > : '
NED) > ) + ( 4 limsup, o, [1(6)]

(2.6)

In particular, (2.6) implies that N (K, 0) = co whenever
h#0 and lim |h(0)| =0.
06— 00

2.3. Dirichlet and Neumann counting functions

Consider the Laplace operator A on an open domain Q C R?, and denote by
Np(A) and Ny(A) the numbers of its Dirichlet and Neumann eigenvalues lying
in the interval [0, \?).

Let Gy = {f € Ly()) : —Af= )\Qf}, where the equality —Au = A\2f is
understood in the sense of distributions, and let B be the self-adjoint operator in
G generated by the truncation of the quadratic form ||Vf|\%2(m — A2 ||f||2L2(Q)
to the subspace G .

Lemma 2.2. For any open bounded set €2,

(1) the kernel of By is spanned by the Dirichlet and Neumann eigenfunctions
corresponding to A\? ;

(2) Nx(A) — Np(A\) = np(A) + g~ (A) , where np(A) is the number of linearly
independent Dirichlet eigenfunctions corresponding to the eigenvalue X2, and
g~ (\) is the dimension of the negative eigenspace of By .

Proof. This is a particular case of [9, Lemma 1.2] and [9, Theorem 1.7]. O

Remark 2.3. For domains smooth boundaries, Lemma 2.2(2) was proved in [5]. In
this section, we shall only need the estimate Ny(A) — Np(A) < np(A)+ gy which
can easily be deduced from the variational principle, using integration by parts [3].

In order to obtain effective estimates with the use of Lemma 2.2, we need
some information about the space G . It is not easy to describe, as it depends on
Q). However, the subspace G, always contains restrictions to €2 of the functions
f satisfying the equation —Af = A2f on the whole space R?. In particular, G
contains restrictions to 2 of the functions

fua) = [ et uane). (27)
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where v/(¢) is a finite Borel measure on the sphere S§ ! := {¢ € R?: |¢] = A} and
u is a function from Lo (Sifl, v). Note that the integral in the right-hand side
of (2.7) defines a real analytic function on R", so that f,|, # 0 for all nonzero
u € Ly(SE 1, v).

Let K), be the operator in the space Lg(Sf\_l,V) given by the integral
kernel

K(&n) == —[€=nxa€—mn),
where x¢q is the Fourier transform of the characteristic function ygo of the set .
One can easily see that

1
IV fullZaio) = A Mulliai) = o Kaww ), ) (2.8)
for all u € Ly(S§ 1, v)

Corollary 2.4. For all open sets 2, all A >0 and all Borel measures v on S‘ifl
we have

Nx(A) = Np(A) = N(K).,0)+np(A). (2.9)

Proof. Denote by L) the negative eigensubspace of the operator Kj , , and let
Ly ={fu:ueLy}. Inview of (2.8), (Bxrf, )L, <0 for all nonzero f € Ly .
By the variational principle, g_()\) > dim L, = N (K} ,,0). This inequality and
Lemma 2.2(2) imply (2.9). O

One can slightly improve the estimate (2.9) assuming that
(Cs3) the subspace Ly does not contain a Dirchlet or Neumann eigenfunction of
the form f, with u € Lao(S§ ', v).
Corollary 2.5. If the condition (Cs) is fulfilled then
Nx(A) = Np(A) = N(K),,0)+dimker Ky , +np(X). (2.10)

Proof. Let LY = {fu : u € ker Kz, }. By (2.8), (Brf, [)r,) < 0 for all func-
tions f € Ly + LY. Also, Lemma 2.2(1) and the condition (C3) imply that
ker By () (Ly + LY) = {0} . Now the standard variational arguments show that

g-(N) >dim (Ly + LY) = N(K»,,0) + dimker K, ,
and (2.10) follows from Lemma 2.2(2). O
Remark 2.6. Since K (&,€) =0, we have »#(&,n) = —|Kx(§,n)| (see Remark 1.1).

Thus inf s < 0 and, consequently, N (K} ,,0) > 1. Therefore (2.9) implies the
estimate Nn(A) — Np(A) > 14 np(A), which was obtained in [5] and [3].

Remark 2.7. f xq(0) = 0 for some 0 € R? and v is the sum of d-measures
at any two points &,n € Sf\l_l such that £ —n = 60, then K, = 0. Applying
Corollary 2.5, we see that Nx(A) — Np(A) = 2+ np(A) for all A > |6]/2. This
estimate was discussed in [1].
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Since the function K is continuous, it is almost constant for small ¢ and 7.
Therefore Theorem 1.2 is not well suited for estimating N'(K ,,0) with small X
(see the remark in Subsection 2.1). However, it is useful for studying the behaviour
of Nx(A) — Np()\) for large values of .

Lemma 2.8. Denote

Cd— 7"4 . “ _ _
CoOvr) = “07 ((inf K@) ) 2 0]

where cq_1 is the volume of the unit (d—1)-dimensional sphere in R% and |Qy-1|
is the volume of the set {x € Q : dist(z,09Q) < A~'}. If v is the Euclidean

measure on S§* then N(K,,0) > 1 + Cgfg’r) for all 7€ (0,2)).

Proof. Let m,, be the normalized Euclidean measure on an n-dimensional sphere
Sp = {¢€ € R™! : |¢] = t}, such that m,(S?) = 1. Consider the symmetric
probability measure p, on S‘ifl X S‘ifl defined by the equality

/d—l d—1 f(g’")dﬂr(faﬁ)
S$TTxS§

1
[/ (F(&m) + F00,€)) dmaa(n) dmg 1 (6).
sqt JnesqT g —nl=r
For all functions ¢g on Sifl, we obviously have

Lo o s@dmismdmi( = [ o©dmar©). @)
si1 Jnesd—tile—n|=r

d—1
S)\

On the other hand,

/d,l/ 1 9(77) dmd—l('ﬂ) dmd_l(g)
SX USSR

- //SH o Vri&m gn) dma—i(n) dma—1 (€) (2.12)

=00 [ amdmanio).

where 1, is the characteristic function of the set
{(&m) esTt xSt [g—n| <r}
and C\(r) = fgegifl:‘g_mgr dmg_1(§) . Since

d / g(n) dma—1(n) Camar’™? / g(n) dmg—2(n)
d—1 - _ d—2 )
dr nesshle—n|<r cg—1 A1 neStTije—n|=r

differentiating the right- and left-hand sides of the identity (2.12), we obtain

Lo smdmesmdnis© = [ gmdmam.  (213)
371 Jyest—lfe—n|=r

d—1
S)\
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The equalities (2.11) and (2.13) imply that the marginal p] of the measure pu,
coincides with mg_q.
Using Remark 1.1, we obtain

/dfl d—1 (_%(5777))4_ dﬂr(f?ﬂ)
S3TTxSY
= /H L le=nP1Ra€ = n)ldur(&,n)
S5 XSy

_ 2 / / [Xa (& = )| dma—s(n) dmg-1 (€)
s§7t Jnest g —nl=r
: gn:f Ko(0))

As was shown in |

/S . / L) ()

:/d 1/d 1 |£_n|4 |)A<Q(£_n>|2dmd71(£)dmd,1(n)
S§ T USST

<18¢;t M Q.
Now the required estimate follows from Theorem 1.2. O

Corollary 2.4 and Lemma 2.8 imply that
Nn(\) — Np(\) > const A47* Q1| 7* (2.14)

for all sufficiently large A. This estimate was obtained by a different method in
[4]. So far it is unknown whether one can get a better result in terms of growth as
A — oo for a general domain €.

For domains with smooth boundaries, the two-term Weyl asymptotic formula
(see, for instance, [7] or [10]) implies that Nx(A) — Np()\) = O(A4~1). There are
reasons to believe that the same is true for all domains but the standard techniques,
which work for domains with irregular boundaries, fail to produce such results. It
is possible that (2.14) can be improved by applying Theorem 1.2 with some other
measures v and p to the operator K, or/and more careful analysis of the
asymptotic behaviour of the integrals in (1.4) as A — co.
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Abstract. We study the C*-algebra generated by Toeplitz operators acting
on the Bergman or poly-Bergman space over the unit disk D on the complex
plane, whose pseudodifferential defining symbols belong to the algebra R =
R(C(D); Sp, Sp). The algebra R is generated by the multiplication operators
al, where a € C(D), and the following two operators

1 ¢(¢) . 1 ¢(¢)

(So0)) =~ [ (a0 md o= [ ) i)
In the Bergman space case, both algebras 7 (C(D)), generated by Toeplitz
operators T, with defining symbols a € C(D), and 7 (R(C(D); Sp, Sp)), gen-
erated by Toeplitz operators T4 with defining symbols A € R(C(D); Sp, Sp),
consist of the same operators, and the Fredholm symbol algebra for both of
them is isomorphic and isometric to C'(9D). At the same time, their generating
Toeplitz operators possess quite different properties.
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1. Introduction

The idea of considering Toeplitz operators with pseudodifferential symbols is not
new, see for example [2, 8, 12, 15], where operators related to the Hardy spaces
were studied. While for the Bergman space case, this is probably a first attempt
to treat such a question. To be more precise we study the C*-algebra generated
by Toeplitz operators acting on the Bergman or poly-Bergman space over the unit

The second named author has been partially supported by CONACYT Project 102800, México.
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disk D on the complex plane, whose pseudodifferential defining symbols belong
to the algebra R = R(C(D); Sp, Sj;). The last algebra is generated by the multi-
plication operators al, where a € C(D), and the following two singular integral
(pseudodifferential) operators

s == [ Haan ana (s =-_ [ A o),
(1.1)

where dv is the standard Lebesgue plane measure.

The choice of the algebra R is not accidental, moreover it is quite natural
due to the deep internal connection between the action of the operators (1.1),
considered in the upper half-plane II, and the decomposition of Lo(II) onto the
direct sum of poly-Bergman type spaces (see, for example, [17] and Section 3 of
this paper).

The main qualitative results of the paper are as follows. The algebra C(D) is
obviously commutative, while the algebra R(C(D); Sp, S;;) is even not essentially
commutative, its Fredholm symbol algebra has infinite-dimensional irreducible rep-
resentations. Nevertheless, for the Bergman space case, both algebras T (C(D)),
which is generated by Toeplitz operators T, with defining symbols a € C(D), and
T(R(C(D); Sp, S3)), which is generated by Toeplitz operators T4 with defining
symbols A € R(C(D); Sp, S}), are, in fact, the same; and the Fredholm symbol
algebra for both of them is isomorphic and isometric to C'(S*), where St is the
boundary of the unit disk D.

At the same time, although both algebras 7 (R(C(D); Sp, Sj;)) and 7 (C(D))
consist of the same operators, being thought as generated by Toeplitz operators
with defining symbols from R(C(D); Sp, Sf)) and C(D) respectively, they possess
quite different properties.

Contrary to the case of 7(C(D)), the first algebra T (R(C(D); Sp,Sp;)) does
not obey compact semi-commutator property; the Toeplitz operators T4, with A €
R(C(D); Sp, S;;) can be zero for non zero A; there are symbols A € R(C(D); Sp, Sp)
such that the Toeplitz operator T4 has finite rank; etc.

At the same time, for the n-poly-Bergman space case, the corresponding alge-
bras T, (C (D)), which is generated by Toeplitz operators T, with defining symbols
a € C(D), and T,(R(C(D); Sp, Sf)), which is generated by Toeplitz operators
T4 with defining symbols A € R(C(D); Sp, Sp), are quite different. The first one
is essentially quite similar to 7(C(ID)), while the second one is unitarily equiv-
alent to the matrix algebra T(C(D)) ® M, xn(C). The Fredholm symbol algebra
of 7,(C(D)) is isomorphic and isometric to C'(S'), while the Fredholm symbol
algebra of 7, (R(C(D); Sp, S3)) is isomorphic and isometric to the matrix algebra
Myn(C(SY) = C(SY) @ M,y5n(C).
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2. Algebra R(C(D); Sp, S;)

Let D be the unit disk on the complex plane. We consider the Hilbert space Lo (D)
with the standard Lebesgue plane measure dv(z) = dzdy, where z = z + iy. The
following singular integral operators

L[ Q) , L[ e
s == [ Ao ma sz =~ [ A
are known to be bounded on Lo(D) and mutually adjoint. It is known as well
that, for each a € C'(D), both commutators [Sp, al] and [S};, al] are compact, and
being considered in the whole complex plane, these operators obey the relation
Sg=Sc"

We denote by R = R(C(D); Sp, S;;) the C*-algebra generated by all operators
of the form al, where a € C'(D), Sp and Sj;. This algebra is irreducible and contains
the ideal K of all operators compact on L2(ID). We will denote by 7 the natural
projection

dv(C)

m: R—R=R/K.

The structure of the Fredholm symbol (or Calkin) algebra Sym R = R is known
for a long time and well understood. We give briefly its description based on the
simple functional model for the operators S and S}, considered in the upper half-
plane IT in C. According to [17], both operators St and S§; are unitarily equivalent
to the direct sum of two unilateral shifts, forward and backward, both taken with
the infinite multiplicity.

To describe the algebra R we will use the standard Douglas-Varela local prin-
ciple [7, 14, 18]. The algebra 7(C(D)) = C(D) is obviously a central commutative
C*-subalgebra of the algebra ﬁ, thus we will localize by the points zy € D. Denote
by J., the maximal ideal of the algebra w(C(D)) which corresponds to the point
z0 € D, and by J(zp) the closed two-sided ideal of the algebra R generated by J,.
Then the local algebra R (z) is defined as R/J(z0), and let 7(zo) be the natural
straight-through projection

7(20) : R — R — R(z0).

For each zy € D, the local algebra 7%(20) has quite a simple description. Indeed,
we have the following local equivalences: m(20)(al) = a(zy) € C and 7(z)(Sg) ~
[7(20)(Sp)] ™!, moreover the spectrum of 7(2)(Sp) coincides with the unit circle:
spec(z0)(Sp) = S!' = OD. Thus the algebra ﬁ(zo), being a C*-algebra with
identity generated by a single normal element, is isomorphic and isometric to
C(specn(29)(Sp)) = C(S'), and under their identification the homomorphism
7(20) is defined on generators of the algebra R = R(C(D); Sp, S};) as follows

m(z0) : al — a(z) € C,
7(z0) : Spr—te€C(Sh), (2.1)
m(z0) : Sp——te C(Sh),
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here ¢ and ¢ stand for the continuous functions defined on S* by ¢ + ¢ and ¢ + t,
respectively.
The case zg € ST = 0D is more delicate. Given zy € S!, introduce the Mobius

transformation
20 — &

20+ 2’
which maps the unit disk D onto the upper half-plane II and sends the point
zp € OD to 0 € II. The inverse mapping has obviously the form
T —w
%+ w’
Further, the operator V,, : Lo(II) — Lo(ID), which is given by

(Vo)) = | 70 gw(izo_z),

(z0 + 2) zo+ 2

is unitary, and

Vatelw) = (V) = 0o (a0 ).

It is straightforward to check that
V. 1SpVey = (iz0)*Suh(w)l  and  V'SpVe, = (i20)*h(w)Si,

where h(w) = (i +w)*/|i + w|*. We note that the function h(w) is continuous on
ITUOII (except the point 00), h(0) = 1, and h(w) = 1/h(w). As h(0) = 1 we have,
for each zy € S', the following local equivalences at the point 0 € II:

V. S Vi = (i20)2Smh(w)I 2 (iz0)*Sm,

Vi, S5Vz, = (i20)*h(w)Sfy ~ (iz0) Sy,
which implies that the local algebra ﬁ(zo) is isomorphic and isometric to the C*-
algebra with identity R(C; Sm, Sy;), which is generated by the operators St and

St (or by (iz0)%Sn and (iz0)%Sy;), acting on Lo(II). Identifying the last algebras,
the homomorphism

m(z0) : R — R(z0) = R(C; St S5)
is defined on generators of the algebra R = R(C(D); Sp, S5) as follows
m(z0) : al — a(zp) € C,
m(z0) : Sp+— (i20)?Sn € R(C; Sm, Spy),
m(z0) : Sp—— (i20)?Sf € R(C; Sm, Spy).
Recall now necessary ingredients from [17]. We define the unitary operator
Uy =F®I: Ly(II) = Ly(R) ® La(Ry) — L2(R) ® La(Ry),
where the Fourier transform F' : Loy (R) — Lo(R) is given by

F@ =, [ 50
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The next unitary operator
UQ : LQ(H) = LQ(R) ® LQ(R+) — LQ(R) ® L2(R+)
is given by

.
(U2<p)(x’y) - \/2|$| 90( ’ 2|$|)

The inverse operator Uy ' = Us : Ly(R) @ La(Ry) — Lo(R) ® Lo(R,) acts as
follows,

(Us o) (@, y) = V20| oz, 2[z] - y).
We introduce then the following integral operators

(5:D) = 1w+ [ "ot f(tydr,

0

t

(S-D) =—fw)+et [ et a
y
which are bounded on Ls(Ry) and are mutually adjoint.

Theorem 2.1 ([17]). The unitary operator U = UyU; gives an isometric isomor-
phism of the space La(Il) = [L2(Ry) @ La(R4)] @ [L2(R_) @ Lao(R4)] under which
the two-dimensional singular integral operators St and Sf; are unitary equivalent
to the following operators

USnU'=I®S)e(I®S),
USHiU 1t =(I®S-)®(I®S:).

Recall (see, for example, [1]), that the Laguerre polynomial L, (y) of degree
n,n=20,1,2,..., and type 0 is defined by

eY d"
La(y) = Lu(y) = | g

~ ol (=)t
= eR
Zk!(n—k)! g YEED
k=0
and that the system of functions

l(y) =eV2L,(y), neZy=NuU{o},

forms an orthonormal basis in the space La(R).

(e™y")

Theorem 2.2 ([17]). For each admissible n, the following equalities hold:
(S+ln)(y) = —lnta(y),  (S-Ln)(y) = —ln-a(y), and  (S_Lo)(y) = 0.

Corollary 2.3. The unitary operator U = UsU; gives an isometric isomorphism of
the space Lo(IT) = [La(Ry) ® La(Ry)] & [L2(R-) ® Lo(R4 )] under which

U(iz)?Sn U™ = (I ® (i20)2Sy) @ (I ® (i20)%S-),
U (iz0)*Si U™ = (I @ (i20)?S-) @ (I ® (i20)*S4).
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The operators (iz9)?S4 and (iz9)?S— are the forward and backward unilateral shift
operators on Lo(Ry) with respect to the orthonormal basis formed by the functions
efn(y> = (_1)n(120)2n£n(y); n= 07 ]-7 27 B

The operators (iz9)?Sy and (iz9)?S— are the forward and backward unilateral
shift operators on Lo(Ry) with respect to the orthonormal basis formed by the
functions 02 (y) = (—1)"(iz0)*"ln(y), n =0,1,2,... .

Finally we denote by 7 (C(S')) the C*-algebra generated by all Toeplitz op-
erators T, with continuous defining symbols a(t) € C(S') and acting on the Hardy
space H2(S!) over the unit circle S'. Note that we use the standard normalized
measure on S! so that the system of functions {t*},cz, forms an orthonormal
base in H2(S1).

It is well known (see, for example, [6]) that the algebra 7(C(S')) coincides
with the set of all operators of the form T, + K, where a(t) € C(S') and K
is a compact operator on H?(S!). Then by the obtained description of the local
algebra R (zo) and by [4, 5] we have

Corollary 2.4. For any zg € S*, the local algebra 7%(20) is isomorphic and isometric
to a subalgebra of the C*-algebra T (C(S)) & T(C(SY)). The homomorphism

m(z0) : R — R(z0) C T(C(S1) @ T(C(S))
is defined on generators of the algebra R = R(C(D); Sp, S;;) as follows
m(z0) : al — a(z) € C,
m(z) : Sp+— (T, T,) € T(C(SH)) @ T(C(SY)),
m(z0) : Sp— (T, Tr) € T(C(SY)) @ T(C(SY)).

We note as well that the local algebra ﬁ(zo) possesses many one-dimensional
irreducible representations. In particular, for each ty € S, we denote by «(to) :

~

R(zo) — C the representation which is defined on the generators by
t(to): (Ty, T,) — to and (to) : (T}, Ty) — to.
Thus, for each (zg,tg) € 0D x S!, the homomorphism
t(to) om(z0) : R(C(D); Sp, Sp) — C

is a one-dimensional representation of the algebra R which is defined on generators
of the algebra R = R(C(D); Sp, Sj;) as follows

t(to)om(z0) : al — a(zo),
L(to) o W(Zo) : SID) — to,
t(to) om(zg) : SpH+— to.

These representations define the homomorphism (2.1) for all boundary points zo €
dD. Now, gluing together the obtained characterizations of the local algebras we
come to the following description of the Fredholm symbol algebra Sym R = R of
the algebra R = R(C(D); Sp, Sp;)-
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Let MM = D x S11UST x {0, 00}. We denote by & the set of all vector-functions
o, continuous on 9 and having the form

c(z,t) € C, (2,t) e D x St
g = Tc(z,t) + KO(Z) € T(C(Sl))v (270) € St x {0700}
Tc(z,t) + KOO(Z) € T(C(Sl>)7 (2700) €S x {0,00}
The set & is a C*-algebra with respect to the component-wise operations and the

norm |[of| = supgy [[o (-, -)][-

Theorem 2.5. The Fredholm symbol algebra SymR = R of the algebra R =
R(C(D); Sp, Sp) is isomorphic and isometric to the algebra &. Under their iden-
tification, the symbol homomorphism

sym: R — SymR =6

is generated by the following mapping: if A = a1(2)I + a2(2)Sp + as(2)S; and
e(z,t) = a1(2) + az(2)t + az(2)t, then

c(z,t) € C, (2,t) eD x St
SymA = Tc(z,t) € T(C(Sl))v (Z,O) €8x {0,00}
Toony € T(C(SY)), (2,00) € S* x {0,00} .

3. Poly-Bergman type spaces and action
of the operators S and Sy}

Recall that the space A2 (II) of m-analytic functions as the subspace of Lo (II)
consisting of all functions ¢ = ¢(z, z) = p(z,y), which satisfy the equation

ON L _ 1 (00N,
92) 7 o \ o Oy L

Similarly, the space .Z%(H) of n-anti-analytic functions as the subspace of Lo (II)
comnsisting of all functions ¢ = (z, z) = p(z,y), which satisfy the equation

ON'__ 1[0 N,
92) 7 o \ o Oy L

Of course, we have A2(Il) = AZ( ) and A2(IT) = A%(I), for n = 1, as well as
AZ(IT) C A2, (1T ) and A2 (I )CAn_H( ), for each n € N.
We introduce as well the space .A n) (IT) of true-n-analytic functions by

AL (IT) = A2 (1) © A%, (1),
for n > 1, and by A(1)( ) = A?(Il); and, symmetrically, introduce the space

.A(n)( ) of true-n-anti-analytic functions by
A () = A2 (1) © A7, (10),
for n > 1, and by j%l)(ﬂ) = A2(II), for n = 1.
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We have obviously

=@, and R = @A
k=1 k=1

It is known as well (see, for example [16]) that

1) = P A, (ID) @ P Ay, (1D
k=1 k=1
Theorem 3.1 ([9, 17]). For all admissible indices, we have
|A%7L)(H) AL () = A ) (1),
(o (D) = A, ) (ID),
k|ﬂgn)(n) : 'A(n) (I1) — A(n 1 (1),
(o (D) (ID).

1I _>A(n+k II

Corollary 3.2 ([17]). For alln € N we have
(St)" (Sm)" (Sm)"™ = (Sm)™ and (S)" (Sm)"™ (Sm)"™ = (Sm)™
Corollary 3.3. Forn,m € Z,

* \MM n B7 m=n
Bn(Si)" (5" Bn = { o "

)

while for n,m € N
Bu(Sn)"(Sn)™ B = 0,
where By is the Bergman projection of Lo(IT) onto the Bergman space A%(I).

4. Toeplitz operators on the Bergman space
with defining symbol in R(C; Su, Sy;)
We describe here the algebra Ty = To(R(C; Sm, Sf;)) = BaR(C; S, Sj;) B, which

is generated by all Toeplitz operators T4 = BryABp acting on the Bergman space
A2(I) and with A € R(C; St, Siy).

Lemma 4.1. Given k1,...,kn,n1,...,nN € Z4 such that
m m
ZniSZki for m=1,....N—1 (4.1)
i=1 =
and
N N
i=1 i=1

there exists s € Z4 such that
(St)™ (Sm)*™ -+ (Si)"™ (Sm)*™* = (S11)*(Sm)°.
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Proof. Given k1,...,kn,n1,...,nn € Z4, which satisfy (4.1) and (4.2), it is easy
to see that there is j € {1,..., N — 1} such that

(kj >n; and kjt1 >n;) or (n; >kip and njpr > kjy). (4.3)
If k; > n; and kj41 > ny, then by Corollary 3.2 we have that
(S51)™ (Sm)*™ ... (Sfy)"™+* (Sm) ™+ (Sip)™ (Sm)™ ... (Sfy)™ ()™
= (S1)™ (Sm)™ ... (Si)™** (S)™*1 7" (Sm)™ (Sfp)"™ (Sn)™ (Su)™ ~™
X oo x (i)™ (Sm)*
= (S1)™ (St)™ ... (Sf)"™+H (Sm) TR 71 (S )™ (Sm) L ()™ (S
If nj > kj41 and nj4q1 > kjy1, then similarly by Corollary 3.2, we have that
(SH)™ (Sm)* ... (Sf)™+* (Sm)*+* (Sf)™ (Sm)™ ... (Sf)™ (Sm)*™
= (S{)™ (SH)kN o (Sﬁ)”ﬂ'“_kﬂ'“ (Slf[)kﬂl (Sn)k.7+1 (Sﬂ)kj“ (Sﬂ)"j—kﬂl (Sn)kj
X -ex (i)™ (Sm)*™
= (Si)"™ (Sm)™ ... (Sgp)morr o R (S ) (Sgp) ™ ()L (Sh)™ (Sm) .
Applying the above arguments inductively (N —1)-times we obtain the result. O

Given a multi-index J = (ni1,k1,...,nn, kn), where n;, k; € Z;, we define
the non-commutative monomial m;(z,y) by
my(z,y) =y ¥at .yt
and set its degree by
degmy=|J|=nn+kn+- - +n1+ k.

The following corollary is a consequence of the above lemma and Corol-
lary 3.3.

Corollary 4.2. Let mj(z,y) be a non-commutative monomial, then

B, if J satisfies to (4.1) and (4.2)

Brim (S, Stp) Bu = { 0 otherwise

Lemma 4.3. Let P(z,y) be a non-commutative polynomial of degree k
P(x7y) = Z aJmJ(x,y),
[7I1<k

where ay € C. Then
BuP(Su, St;)Bn = bpB,

bp = Z a.gj

|J|<k, JEIo,0
and Io o is the set of multi-indexes that satisfy (4.1) and (4.2).

where
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Proof. We split the polynomial P as follows
Pry)= > amylzy)+ Y, am(z,y)
|J|<k, J€Io,0 [J|<k, J&Io,0
and evaluate it on S and S
P(Su,S5) = S aymy(Sm, S+ > aymy(Su,Si). (4.4)
|J|<k,J€Io0 |JI<k,J¢10,0

Then by Corollary 3.2 we have
BuP(Su, Si)Bu = Y a;Bum,;(Su,Si)Bu+ Y a;Bum,(Su,Si)Bn

|J|<k, [J|<K,
JEIO,O J¢IO,O
=bpBn + 0= bpB. O

Theorem 4.4. Let A be an element of R(C; Sm, Sy;). Then the Toeplitz operator
T4 acting on A*(1) is equal to baBr, where ba is given by
ba = (Afo, fo),

where fo is any function from A%(I1) having norm 1.

Proof. The set of non-commutative polynomials P(Sm, Sf;) is dense in the algebra
R(C; Sm, Sf;)- By Lemma 4.3 we have

Tp(sy,sz) = BuP(Sp, Sp)Bn = bpBn
with bp € C. On the other hand,

bp = (bpBu fo, fo) = (Tp(s,.sz).fo, fo) = (BuP(Sb, Sp) B fo, fo)
= (P(5p, Sp) fo, fo)-

The functional A — (Afo, fo) is continuous on R(C;St, Sfy), thus the result
follows. O

To get an alternative formula for by we proceed as follows. Analogously to
Corollary 3.3 we have

Lemma 4.5. For Toeplitz operators Ty and T, from the algebra T(C(SY)) and for
n,m € Zy, we have

I-T,T,, m=n

(I - TT) T T (I - T,T,) :{ 0, man

while for n,m € N
(I -T,T,) T," T, (I — T:T,) = 0.

We note that the operator Ko = I — T,T, is the one-dimensional projection
onto the subspace of H?(S1) generated by 1, and that I —T,T; = 0, which implies
(I-T,T,)T(I-TT;) =0, for all T € T(C(S1)).
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The Bergman projection By = I — SiSf; obviously belongs to the algebra
R(C; Sm, Sfp), and by Corollary 2.4, under the isomorphic inclusion
o: R(C;Su, Sfy) — T(C(SY) @ T(C(SY)),
the image of the Bergman projection By has the form (K, 0).
Now, given A € R(C; Sm, Sf;), consider the Toeplitz operator
Ta=(I—SuSH)A(I — SuSt) € R(C; Su, Spy)-

Let 0(A) = (00(A),05(A4)) € T(C(SY)) & T(C(SY)), then we have that o(T4) =
(Kooo(A)Kp,0), and thus, being considered as acting on the Bergman space
A2(II), the Toeplitz operator T4 is scalar, T4 = bal, with the following alter-

native formula for ba:
bA = <KO O'Q(A)Kol, 1>H2(Sl) = <O‘Q(A)K01,KQ 1>H2(Sl) (4 5)
= (00(A)L, 1) m2(s1)- '

5. Toeplitz operators on the Bergman space
with defining symbol in R(C(D); Sp, S;))

We consider here the C*-algebra T (R(C(D); Sp,S;)) which is generated by all

Toeplitz operators of the form T4 with symbols A € R(C(D); Sp, Sp) and acting

on the Bergman space A?(DD) over the unit disk D.

Given A € R(C(D); Sp, Sf), consider its Fredholm symbol (see Theorem 2.5)
c(z,t) € C, (2,t) e D x S?
symA =1 00(A,z2) =Tep)+ Ko(z) € T(C(S)),  (2,0) € S* x {0,00}

Too(A,2) = T,y + Koo(2) € T(C(SY)), (2,00) € ' x {0, 00}

Combining the local description of Corollary 2.4 with formula (4.5) and the global

description provided by Theorem 2.5, we arrive to the following result.

Theorem 5.1. The Fredholm symbols algebra
Sym T(R(C(D); Sp, Sp)) = T(R(C(D); Sp, Sp))/K
of the algebra T(R(C(D); Sp, Sf)) is isomorphic and isometric to C(S'). Under
their identification the symbol homomorphism
sym : T(R(C(D); Sp, S5)) — C(SY)
is generated by the following mapping of generators of T(R(C(D);Sp,Ss)): for
any A € R(C(D); Sp, Sp),
symTa = ba(2) = (00(4,2)1,1) gr2(s1) € C(S").
Remark 5.2. Given A € R(C(D); Sp, S;), denote by ZA(Z) an extension of the func-

tion b4 (z) continuous on S! to a function continuous on the closed unit disk D.
Then the Toeplitz operator T4 with pseudodifferential symbol A€ R(C(D);Sp,Sp)
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is nothing but a compact perturbation of the Toeplitz operator T;, ) whose sym-
bol is a function continuous on D:

Ty =15

ba(z) TG

where K is a compact operator.
That is, if fact, both classes of symbols R(C(D); Sp, Sj;) and C(D) generate
the same Toeplitz operator algebra:

T(R(C(D); Sp, Sp)) = T(C(D)).

Ezxample. Consider the operator

A=Y ay(S) S0V + Y ) (S0 (S5
1,j=0 i,j=1
where a;j, b;; € C(D). Its Fredholm symbol is given by symTa=a(z) =1 jaii(2).
Thus we have
Ta=T;+ K
where K is a compact operator.
Example. Consider now

n

A= 3" aiima(2)(S5) (Sp)(S5)™(Sn)",

i\j,m k=0

where a; jm i € C(D). The Fredholm symbol of T4 is given by

symT4 =a(z Z (Z Ajtk— mjmk( ))

4,k=0
Thus we have

Ta=T;+ K,
where K is a compact operator.

We mention that both algebras 7 (R(C(D); Sp, Sf)) and T (C (D)) consist of
the same operators, although their generators are different, being the Toeplitz ope-
rators with defining symbols from R(C(D); Sp, Sp) and from C(ID), respectively.
Moreover these generating Toeplitz operators possess quite different properties.

For example, the last algebra 7 (C(D)) possesses the compact semi-commu-
tator property:

[To,Ty) =ToTy — Tap € £, forall a,beC(D),
while the first algebra T (R(C(D); Sp,Sp;)) does not, i.e., the semi-commutator
[Ta,Ts) = TaTp — Tap is not necessarily compact for each A and B from
R(C(D); Sp, Sp)-

Indeed, consider the semi-commutator [Ts:, Ts,) = Ts:Ts, — Ts: s, Its com-
pactness is equivalent to sym [TS]§7TSD) = (. At the same time, we have

0’0(36,2) = Tt7 0’0(5]1)),2) = Tt, Uo(Sﬁ)SD,Z) = TtTt = I,
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and thus
sym [TSﬁaTSD) = <Tt171>H2(Sl) . <Tt1,1>H2(Sl) — <1, 1>H2(Sl) =0-0—-1=-1.

That is, [Ts:,Ts,) = —1 + K, for some compact operator K.

The exact form of K can be easily figured out. By [11, Lemma 2] we have
that Ts: = 0 and Ts, = 0. It is well known (see, for example, [11, Lemma 1])
that the orthogonal projection ED of Ly(D) onto the anti-analytic Bergman space
A2(D) has the form Bp = I — S;Sp. Then by [3], we have

BD§D|A2(D) =Tr-sz8, =1 —Tszs, = Ky,
where

Kuo)o) = | [ om0 = (01

is the one-dimensional projection of A?(ID) onto the one-dimensional space L
generated by the first element of the standard orthonormal monomial basis ¢ (z) =

\/frzk_l, k € N, of A%(D). Thus finally,
(Ts:,Ts,) =Ts:Ts, — Tszs, = —1 + Ko, .

The above suggests two observations. First, contrary to the case of Toeplitz
operators with defining symbols from C(D), the Toeplitz operator T4, with A €
R(C(D); Sp, Sp;) can be the zero-operator for non zero A. Two examples, T'sx = 0
and T's, = 0, have been just considered. We note that, in particular, such symbols
A are those whose kernel contains A?(ID) or those for which the image of their
restriction on A?(D) is orthogonal to A?(D).

The second observation is as follows. By a result of D. Luecking [13], there
are no symbols a € C(D) such that the Toeplitz operator T, has a finite rank.
At the same time, such symbols A € R(C(D); Sp, Sj;) do exist. As we have just
shown,

Tr-sys, = Ki, € T(C(D)) = T(R(C(D); Sp, Sp))
is a rank one operator. Similarly, by [10, Theorem 2.3, Lemma 3.3], we have
T(Sﬁ)k—1(Sm)k—1,(sﬂ§)k(sﬂz)k = ng, for all k€N,

where Ky, ¢ = {p, {i){} is the one-dimensional projection onto the one-dimensional
subspace generated by ¢(z) = \/izkfl.

Further, to cover a set of finite rank operators, which is dense in the set K
of all compact operators in A%(ID), it is sufficient to add the rank one operators
of the form Ky, ¢, = (p, lk)i, where k,l € N, and then consider all their linear
combinations. These last operators (for k # [) are just the products of two Toeplitz
operators:

KZZT\/’;Zkfl = T(Sg)l*I(SD)lfl—(Sﬁ)l(Sm)lT Ifzk*“ k> l,
Ky, 0, = Ky, = T(Sﬂ)k—l(Sm)k—17(5§)k(sn)k, k=1,
T\/£2171K5k = \/izl—lT(Sﬁ)kfl(SD)kfl—(Sﬁ)k(Sup)k7 k<l
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6. Toeplitz operators on the poly-Bergman space
with defining symbol in R(C; Su, Sy;)

Now we describe the algebra Bir , R(C; Str, Sfy)Bi,». This algebra is generated by
Toeplitz operators acting on the poly-Bergman space over II and with defining
symbols from R(C; S, Sf).

Recall that the poly-Bergman space admits the representation

AL(1D) = €D AL (1),

where A%m) (IT) is the subspace of the true-m-analytic functions.

By Theorem 3.1, the operator (Si)* : A%n) (IT) — A%nJrk) (TI) is unitary, thus

we define
U @A) — A% (6.1)
m=1

as follows
U(dr, -+, dn) = d1 + (Su)(d2) + ...+ (Su)"Hon),

the adjoint operator
Ut s AL — @ A1) (6.2)
m=1

is given by

U*Tl) = (Bﬂwv ) BH(Sﬁ)n71¢)
Theorem 6.1. Let A be an element of R(C; Sm, Sf;). Then the Toeplitz operator
TAn = BunABn,, acting on A%(H) is unitarily equivalent to the matriz operator

Ma, =U*Ta U acting on @, _, A*(I), where U and U* are given by (6.1) and
(6.2) respectively. The entries of the matriz-operator M a , are given by

Man(i, ) :T(Sﬁ)iflA(sH)j—l, ,7=12,...,n,

where T(gxyi-14(sy)i-1 is a Toeplitz operator acting on A%(T1) and with defining
symbol (S3) "1 A(Sn) L.

Proof. We start with (see, for example, [17])

Bu, = Z B (my and By m) = (Sn)™ 'Bu(Sh)™

m=1

where Bry () is the orthogonal projection onto the space A%m) (IT) of true-m-
analytic functions.
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Let us calculate U*T4 ,U. For ¢ = (¢1,...,¢r), we have
MA,nd) = U*TA,nU(¢17 BEEE ¢n)
= U"Brn(A(¢1) + A((S)(¢2)) + -+ A((S1)" ™ ()

v (Z B (m)) (ZA((SH)j1(¢j)))
m=1 J=1

<z": (Sm)™~ an Sm™ ) (i:A ((Sm) j—1 ]))>
m=1

(ZZ ((Sm)™* Bu(Si)™ 1 A(Su)’~ 1)((153))
= (BH(Sﬁ)i_l (Z Z<(5H)m_1BH(Sﬁ)m_lA(SH)j_an)(¢j)))

i=1
n

= (ZZ 1S5 (Sm)™ Br(Si)™ A(Sm) 1BH)(¢J))

m=1 j=1 i1

By Corollary 3.3 we obtain

U TanU (z": i (S) T A(Sh)’ BH)(%))

=1

(ZTs*y LA(Sm)i— 1(¢3))

j=1 i=1

n

i=1

[

= (T(Sﬁ)i—lA(Sn)j—l)i,j=l (b D

Since T(sxyi-14(sy)i-1 € BuR(C; S, Sp) Bu, by Theorem 4.4 we have that
Tisz)i-1A(sy)i-1 = M4 j(A) B, where m; j(A) € C. Hence we have the following
corollary.

Corollary 6.2. Let A be an element of R(C; Sm, Sy;). Then the Toeplitz operator
Ta.pn acting on A% (IT) 4s unitarily equivalent to the matrizc My , = U*T4 nU acting
on @, _, A*(I), where U and U* are given by (6.1) and (6.2) respectively. The
entries of the matriz Ma , are given by

Ma (i, 5) = mi j(A)Bm, 1,7=12,...,n

) )

where

mH( ) < Slz[_lf07511;[_1f0>’

and fo is any function from A%(I1) having norm 1.
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Moreover, the operator Ta , = UMa ,U* has the following form

Tan= 3 miy(A)(S,) Bu(Siy "

4,j=1

To get an alternative formula for m; ;(A) we proceed as follows. Analogously
to Corollary 3.3 and Lemma 4.5 we have

Lemma 6.3. For Toeplitz operators Ty and T, from the algebra T(C(SY)) and for
i,7,n,m € Zy, we have

TiI - T,T)T’, i+m=n+j

t )

0, i+m#*En+j

Y

T (I-T,1,)T; T" T} T) (I — T,T, )T'—{

while
T} (I - T,T,) T} T/T" T (I — T,T,)T’
_ { TiI-T,T)T?, i+m=n+j andm<j

t’
0, i+m#*Fn+jorm>j

We note that the operator Ky, = I —T{"T}" is the n-dimensional projection
onto the subspace of H?(S!) generated by 1,¢,...,t""! and that I — T =
which implies (I — T/*T}*) T (I = T"T{*) = 0, for all T € T(C(S")).

The Bergman projection B, = I — (Su)™(S5)™ belongs to the algebra
R(C; S, Sfp), and by Corollary 2.4, under the isomorphic inclusion

R(C; 811, 81) — T(C(81) @ T(C(SY)),

the image of the Bergman projection By, has the form (K,,0).
Now, given A € R(C; Sm, Sy;), consider the Toeplitz operator

Ta = (I = (Sm)"(Sn)")A = (Sm)"(S)") € R(C; S, Siy)-

Let 0(A) = (00(A),000(A)) € T(C(S)) @ T(C(SY)), then we have o(Ta,) =
(K, 00(A)K,,0), and thus, being considered as acting on the poly-Bergman space
AZ(II), the Toeplitz operator T4, has the form

Ty = Z mi j(A)(Sn)" ' Br(Si )i~
2,7=1
with the following alternative formula for m; ;(A):
mij(A) = (Knoo(A)Kt! ™t g1y = (00(A) Kpt! ™! Kt ™Y g2y
(o0(A) 1t 2 (s1). (6.3)
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7. Toeplitz operators on the poly-Bergman space
with defining symbols in R(C(D); Sp, S5)

Given A € R(C(D); Sp, S;;), we consider the Toeplitz operator on the poly-Berg-
man space A2 (D) with pseudodifferential defining symbols A:

Tan: A2(D) — A%(D),

SO — BD,YL(AQDL
where Bp,, is the orthogonal projection of Ly(ID) onto the poly-Bergman space
A2 (D).
Introduce now the C*-algebra 7, = T,(R(C(D); Sp, S;;)) which is generated
by all Toeplitz operators T4, with symbols A € R(C(D); Sp, S;;). Given A €
R(C(D); Sp, Sp), consider its Fredholm symbol (see Theorem 2.5):

c(z,t) € C, (z,t) €D x St
symA =1 o00(A,z) =T..p)+ Ko(z) € T(C(S)), (2,0) € S* x {0,00}
Ooo(A,2) = T,y + Koo(2) € T(C(S)), (2,00) € St x {0, 00}.
Combining the local description of Corollary 2.4 with formula (6.3) and the global
description provided by Theorem 2.5, we arrive to the following result.

Theorem 7.1. The Fredholm symbols algebra
Sym T (R(C(D); Sp, 5p)) = Tn(R(C(D); Sp, Sp))/K

of the algebra Tp(R(C(D); Sp, Sp)) is isomorphic and isometric to the algebra
Mysn (C(SY)) of all n x n matriz-functions continuous on S*. Under their iden-
tification the symbol homomorphism

sym : To(R(C(D); Sp, S3)) — Mnxa(C(S"))

is generated by the following mapping of generators of Tn(R(C(ID); Sp,Sp)): for
any A € R(C(D); Sp, S;),

sym Tan = {mi;[A](2)}j-1
= {{o0(A, )71 7Y o (519 121 € Mo (C(SY)).

Remark 7.2. Given A € R(C(D); Sp, Sj), denote by m; ;[A](z) an extension of
the function m; ;j[A](z) continuous on S! to a function continuous on the closed
unit disk . Then the Toeplitz operator T4 , with pseudodifferential symbol A €
R(C(D); Sp, S;;) is nothing but a compact perturbation of the Toeplitz operator
T, ,» whose defining symbol has the form

Z mm S]D)z 1B]D)(S*)

4,j=1
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where m; ;[A](z) are the above functions continuous on . We calculate now the
Fredholm symbol sym T4, .

n

symTa, , = <Z s [A)(2)(T) (1 — Ty Ty (Ty) s~ L 1 1>

Ls=1 H2(Y)/ 4 j=1

n

n
= | 22 Pl = T ()7

ij=1

n
(Zmla 1 ¢ Z>H2(Sl)>
i,

; im1
= (miJ[A](Z))i,j:l =sym T n.
Therefore, from the above equation we have that
TA,n = TAl,n + Kv

where K is a compact operator.
At the same time the Toeplitz operator T4 ,, is unitarily equivalent (via U of
the form (6.1)) to the following matrix-operator

Tiiiae) T K € T(C(D)) @ Mpxn(C),

where K is compact, and M[A](z) = {m; ;[A](2)}} ;=1 € Muxn(C(D)). Moreover,
contrary to the Bergman space case, for n > 2 the algebra 7, (R(C(D); Sp, S3)) is
unitarily equivalent to the matrix algebra 7 (C(D)) ® My, xn(C).

Remark 7.3. Let us consider the operator

n

Ap =" ai(2)(Sp) T (Sp)

ij=1

and calculate the Fredholm symbol sym T4, »,

sym T, = <Z ar,s(2)(T) =N (T =1 1 1>
l,S*l H2(Sl)

n
ij=1
n

ij=1

i g n i g
- (Zzaz,sw%t”m(sw) - ( ‘“’S(Z)‘s“’“>
i,j=1 =1 s=1

n

i—1j—1 n min{i,j}—1
( E g Aj—ny,j— k 6k u) = E ai—k,j—k<z) ’
ij=1

h=0 ij=1

here 6, ,, is the Kronecker symbol.
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Consider now the functions m; ;[A](z) as in the above remark. If we take
aij(2) = mi[Al(z) = mi-1,;-1[A](2),
where m; ;[A](z) =01if ¢ <0 or j <0, then
symTa, n = {mi; [A](Z)}ijl =symT4 pn.
Thus we have that
Tan =Tayn + K,

where K is compact operator.
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Introduction

Let X be a Banach space and [P = [P(Z, X) denote the set of all p-summable se-
quences (;);ez C X, that is all functions ¥ : Z — X, i+ x; with ), [|z;|” < oo.

Provided with pointwise defined operations and the norm || (z;)|| := (3,7 l|2i|?) ; ,
[P becomes a Banach space for every 1 < p < oo. Analogously, one introduces
the space [ = [*°(Z,X) of all bounded sequences (x;) C X with the norm
o)l = supes N2l

Define the linear and bounded shift operators Vi and the operators al of
multiplication with a function a € [*°(Z, £L(X)) by the rules

Vie(z;) == (xs—r) and (al)(z;) := (a;x;), respectively.

Here £(X) denotes the Banach algebra of all bounded linear operators on X.
Every finite sum of the form > aV} is said to be banded and all operators which
are limits of sequences of band operators in the operator norm are referred to as
band-dominated operators. Notice that the set A;» of all band-dominated operators
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depends on p but always forms a closed and inverse closed subalgebra of L(IP) (cf.
[12, Section 2.1]).

Let P = (Ln)nen be the sequence of the projections Ly := X{—n, . .n}{,
where xy stands for the characteristic function of the set U. In [11, 12] and [18] the
Fredholm properties and the finite sections L, AL,, of band-dominated operators A
have been of particular interest. For this, in the latter paper the authors introduce
certain sequence algebras which contain the finite section sequences, as well as
homomorphisms on these algebras which provide snapshots of a given sequence
carrying crucial information on its asymptotic behavior. More precisely, this setting
is as follows:

Firstly, let F denote the Banach algebra of all bounded sequences A = {A4,}
of bounded linear operators A, € L(im L,) equipped with entry-wise defined
operations and the norm ||A|| := sup,, || A ||. The sequence A is said to be stable if
limsup,, ||A,!|| < oo, where we set [|A;}| := oo if A, is not invertible. It is well
known that stability is equivalent to invertibility of the coset A+ G in the quotient
F /G, where G stands for the closed ideal in F of all sequences {G,, } with |G| — 0
asn — o0o. If h = (hy)nen is a strictly increasing sequence of positive integers then
we analogously define Fj, and G, as algebras of (sub)sequences A, = {Ap,, }.

Of course, the finite section sequence { L, AL, } of a band-dominated operator
always belongs to F and we let F 4,, denote the smallest closed subalgebra of F
containing all of these {L,, AL, } with so-called rich band-dominated operators (see
Definition 1.3). Due to the special structure of the elements A = {A,} € F4,, one
easily finds that the sequence (A, L) converges in L£(I?) in the sense of P-strong
convergence (a precise definition will also be given later on). Denote the limit by
WPO(A). Further, at least for certain subsequences Ay, of A, also the shifted copies
(V=hn An, L, Vin, ) of Ap converge. Their limits can be considered as operators
acting on {?(Zz, X ) and will be denoted by W*!(Ay,). They somehow capture the
asymptotic behavior of A at the edges of the truncation process.

Omne of the main results of [11, 12] and [18] states that the stability of a
sequence A € F4,, is equivalent to the invertibility of all snapshots W*(A,) with
t € {—1,0,1} and suitable h.

After repeating some important notions and results from [18] in Section 1 we state
this theorem exactly.

In Section 2 we turn our attention to the main goal of the present paper,
the convergence of the norms ||A,|| and condition numbers cond(A,,) for a class of
sequences A = {A,} € F. Besides that we even determine the convergence of the
e-pseudospectra spe A,. Such results on pseudospectral approximation have been
proved in [12], Sections 6.3 and 6.4 in the case [2, based on an abstract C*-algebra
approach. The case [P, which is subject of the present text, is much more involved
and requires advanced techniques.

The final section is devoted to the application of our results to F.4,,.
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1. P-notions and the algebraic framework

For the treatment of the given approximation method it turned out to be valuable
to replace compactness, the usual Fredholm property, and strong convergence by
the following similar concepts of P-compactness, P-Fredholmness and P-strong
convergence. For details and proofs we refer to [18] and, under additional restric-
tions, its predecessors [12, 16] and [11]. The major benefit of these substitutes is
the unified treatment of all cases p € [1, c0].

1.1. P-compact and P-Fredholm operators

We say that an operator A € L(I?) is P-compact if the norms ||(I — L,)A]|| and
|A(I — L) tend to zero as n — co. In what follows let K(I”, P) denote the set of
all P-compact operators and L£(IP,P) the set of all operators A € L(I?) for which
KA and AK are P-compact whenever K is so. Then L£(IP,P) is a Banach algebra
and K(I?,P) forms a closed ideal in L(I?,P).

An operator A € L(I?,P) is said to be P-Fredholm if the respective coset
A+ K(IP,P) is invertible in the quotient algebra L(IP, P)/K(I?,P). The elements
in (A+ K(IP,P))~! are called P-regularizers for A.

Let us mention that the picture which one obtains with these modifications is still
surprisingly similar to what we know from the classical setting, as the following
theorem reveals.

Theorem 1.1 ([18, Theorem 1.28]).

o L(IP,P) is an inverse closed subalgebra of L(IP) and K(I?,P) forms a closed
ideal in L(I?,P).
o Let A€ L(IP,P). Then the following are equivalent.
— A is P-Fredholm.
— There is an operator B € L(IP) with [ — AB,I — BA € K(I?, P).
— There is an operator B € L(IP,P) with I — AB,I — BA € K(I?, P).
o If A € L(I?,P) is Fredholm then A is P-Fredholm. In case dim X < oo
P-Fredholmness also implies Fredholmness.

Also the band-dominated operators perfectly fit into that framework.

Theorem 1.2 ([18, Theorem 1.30]). The set Ajp of band-dominated operators forms
a closed and inverse closed subalgebra of L(IP,P) containing K(I?,P) as a closed
ideal. Furthermore Ap [KC(IP,P) is inverse closed in L(I?,P)/K(I1?,P).

1.2. P-strong convergence

A sequence (A,) C L(IP) is said to converge P-strongly to A € L(I?) if, for all
K € K(I?,P), both ||K(A, — A)| and ||(A, — A)K]| tend to zero as n — co. We
write A = P-lim,, A,, in this case. From [12, Proposition 1.1.17] we learn that the
P-strong limit A of a sequence (A4,,) C L(IP,P) is uniquely determined, belongs
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to L(IP,P) and fulfills
]l < liminf |4,
n— oo

Definition 1.3. Let H4 denote the set of all strictly increasing (decreasing) se-
quences h = (hy,) of positive (negative) integers h,, and set H := Hy U H_. For
A € L(IP,P) and h € H the operator Ay, is called limit operator of A with respect
to h if Ay = P-lim,, V_j, AV}, . Further we say that an operator A € L(IP,P) is
rich if every sequence h € H has a subsequence g C h such that the limit operator
Ay exists.

Notice that in case dim X < oo all band-dominated operators are rich by
[12, Corollary 2.1.17].

1.3. Sequences and snapshots
Set T := {—1,0,1}, I® := I, I*! := xz_I, and for t € T and n € N introduce
Lt := V_,1 L,V together with EY : £(im L!) — L(im L,,) being the isometric
isomorphism given by Ef (By,) := Vit BnVont.
Let FT denote the set of all sequences A = {A,,} € F for which the P-strong
limits
WEHA) = Pn—ilorg EY(A,)LL, teT,

exist. Notice that W (A)xz, I = xz, W (A) = 0, hence WT!(A) can be consid-
ered as operator acting on E*! := [P(Z_, X). Similarly, W—1(A) can be regarded
as operator on E~! := [P(Zy, X), whereas WY(A) acts on E° := [P(Z, X). With
the definition P! = (L), en we analogously get the notions of Pf-compact and
Pt-Fredholm operators on E?, t € T..

Moreover we let 77 stand for the set

{Z{E;(L;ng)} +G: K'e K(ELPY, G e g} :
teT

It can be easily derived that F7 is a closed subalgebra of F containing G and
JT as closed ideals. If h € H we write A, for the subsequence {4y, } and we
analogously introduce the respective algebras Fy, Gp, }",? and th . Following [18]
we call a sequence Aj, € }"}T N/ hT -Fredholm if Aj, + th is invertible in the quotient
Fi /T -

In the sequel, for given A € F and h € H, we let Hy, stand for the set of all
subsequences g C h such that A, € ]-;T, and we call the operators W*(A,), g € Ha
snapshots of A. Also notice that the mappings which send a sequence A, € F, gT to
a snapshot are unital algebra homomorphisms on ]-;T.

1.4. An example

Consider the space [P(Z,C) and the bounded linear operator A = I + aV_; with
a sequence a = (a;) € {°°. Its matrix representation (with respect to the standard
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basis) is

Further suppose that a,, tends to zero as n goes to 0o, whereas, for n <0, as, =1
and agn,+1 = 0 hold. Clearly, the finite sections L, AL, can be regarded as finite
matrices in the above sense. With ¢g (and h) being the increasing sequence of all
positive odd (even) numbers, we get the following snapshots of A = {L,AL,}:

WOA) = A, WH(Ag) = W (Ay) = WH(A) =T,
1 0 1

1 1
1 0
Wl (Ag) = . WA =

1 . 1

and there are no further ones.

1.5. The snapshots of A € F 4,,

Recall that F4,, stands for the smallest closed subalgebra of F containing the
finite section sequences {L,AL,} of rich band-dominated operators A. While for
A = {A,} € Fa, the P-strong limit W°(A) = P-lim A, L,, always exists, this is
in general not guaranteed for W*!(A). However, the following holds.

Proposition 1.4 ([18, Proposition 3.1]). Let A € F4,, and h € Hy. Then there
exists a subsequence g of h such that Ay € ]:g, that is Ha, is not empty.

Here comes the announced criterion for the stability.

Theorem 1.5 ([18, Corollary 3.4]). A sequence A € F 4, is stable if and only if all
of its snapshots W' (Ay), t € T, h € Hy are invertible in L(E?), respectively.

2. Localizable sequences and their properties

The aim of this section is to identify a class of sequences A = {A,,} € FT which
offer stronger connections between the operators A, and the snapshots W*(A). The
main tools for this are the local principle of Allan and Douglas and the concept of
KMS-algebras which is due to Bottcher, Krupnik and one of the authors [3].
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2.1. Localization and the KMS property

Let A be a Banach algebra with identity and C be a closed C*-subalgebra of the
center of A which contains the identity. By the Gelfand-Naimark Theorem, C is
isomorphic to the algebra of continuous functions on the maximal ideal space Mg
of C. Therefore the elements of C will be called functions. For each maximal ideal
x € M¢ we introduce 7, the smallest closed ideal in A containing z, and let ¢,
denote the canonical mapping from A to A/J,. In the case J, = A we define
that ¢, (A) is invertible in A/ 7, for each A € A. The local principle of Allan and
Douglas [12, Theorem 2.3.16] states that A € A is invertible if and only if ¢, (A)
is invertible in A/ 7, for every x € Mc.

Definition 2.1. The algebra A is a KMS-algebra with respect to C ! if for every
A€ A and ¢,y € C with disjoint supports

1(e — ) Al < max(||lpAll, [[LAl).

From [3, Theorem 5.3] we know that A is a KMS-algebra w.r.t. C if and
only if
Al = max ||¢p.(A)|| for every A€ A. (2.1)
TEMc

Also notice that, by Proposition 5.1 in [3],
lloz(A)]| = inf{||pA| : ¢ €C,0 < ¢ < 1,9 =1 in a neighborhood of z}. (2.2)

2.2. A family of central (sub)algebras of sequence algebras

For our concrete setting of {P-spaces and within the algebra F7 we introduce
central subalgebras C, as follows. Let v : N — R, be a non-decreasing sequence
of positive numbers v, < jn with 7, — 0o as n — oo and let b) : R — [—1,1]
denote the continuous piecewise linear spline which is given by b)(+n) = +£1
and b (+(n — 7,)) = £} and constant outside the interval [—n,n], for every n,
respectively. For every continuous function ¢ € C[—1,1] we let @) stand for the
restriction of the inflated copy ¢ o b) of ¢ to Z. It straightforwardly follows that
the set
C7:={{iLln}: 0 € C[-1,1]}

forms a Banach subalgebra of FT with W!({¢) L,}) = ¢(t)I*, t € T. At this point
we mention that the sequence 7y provides a certain flexibility in the inflation process
which will permit to adapt it to the sequence A under consideration. This will play
a crucial role in the application to the finite section sequences of band-dominated
operators.

Introduce the Banach algebra B7 of all sequences A € F for which the com-
mutator [A, C] := AC — CA belongs to G for every C € C7. Let B"'T denote the
Banach algebra BY N FT and notice that BT includes C” as well as J7.

Proposition 2.2. The set C7/G := {C+ G : C € C"} forms a closed central C*-
subalgebra of both BY /G and BYT /G, and it is isometrically isomorphic to C[—1,1].

'In recent literature (e.g., [15]) such pairs (A,C) are also called “faithful localizing pairs”.
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Proof. Let ¢ € C[—1,1]. Then we obviously have

[elloo = I{en Ln}lF = [{hLn} +Gll7/g-
On the other hand [|¢loc = sup,e(—117 [9(2)] < [{@)Ln} + Gl 7/g follows from

lp(@)] = llp(@) | = P-HmV_ )1 @) onLn V@) -1 @)
< Hminf [V 4710 0n Ln Vi) -1 @) |
< limsup [} Ln || = [{£)Ln} + Gll7/g
n—oo

with (b))~! being the inverse of the bijective function b) : [-n,n] — [~1,1], and
|-] the floor function. Thus, C7/G = C[—1, 1] and the rest easily follows. O

Corollary 2.3. The set C'/JT = {C+ JT : C € C'} is a closed central C*-
subalgebra of B»T/JT, and it is isometrically isomorphic to C[—1,1].

Proof. Clearly, C7/J7T is commutative and inherits the involution from C7/G.
We only need to show that |[{¢}L,} + G| = |{p}Ln} + JT| holds for every
¢ € C[—1,1]. The estimate “>” is obvious. Assume that it is even proper, which
means that there is an € > 0 and a sequence J € J7 such that ||{¢)L,} + G| >
{enLn} + I + € > {2 Ln} + T+ G| + . WLOG we can also assume that
{pr Ly} + G|l = 1. Fix 29 € (—1,1) \ {0} such that |p(zg)| > 1 — € and choose a
function ¢ € C[—1,1] equal to 1 in a neighborhood of xg, equal to zero on T and
of norm one. Then B + G := ¢(x0)l — {¢) L, }{¥)L,} + J) + G is invertible in
FT where its inverse is given by a Neumann series. Further, {7 L, }J € G, hence
¢z, (B + G) is zero, a contradiction. O

Proposition 2.4. The set BY/G is a KMS-algebra with respect to C7/G, hence for
every A = {A,} € BY

limsup ||A,|| = max |l¢.(A+G)].
n—soo ze[—1,1]

Proof.? Choose p,1 € C[—1,1] with disjoint supports, define Y, := A, ¢} L, and
Ly = App) Ly, as well as Ny, := supp ¢}, M,, := supp ¢}, and prove that
lim sup ||Yoxn, Ln + Znx s, Ln || < max(limsup ||Y, ||, limsup | Z,|))-
For this and in case p € [1,00) let z € I? and observe
(XN, Yo XN, Loy + Xt ZnX v, L)z ||

= [Ix~, Yaxw, Ln||” + |IXat, ZnXag, L ||”

< max([|Yall, 1 Zal)? [Ix v, Lnl|” + X2, Lnz|?]

< max([|Yol], [|Zn])" [l =]]".

Thus, for every € > 0 there is an integer N such that

XN Yiex vy, L + X Zie Xy, Lie|| < max(limsup || Yy |[, imsup || Z,||) + €

2This idea already appeared in [3].
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for every k > N. Consequently, limsup || xn, Ynxn~, Ln + XM, ZnXa, Ln|| is not
greater than max(limsup || Y, ||, limsup || Z,||). From A € BY we deduce that
XN, Yo XN, Ln = Yoxn, Ln  and  xam, Znx M, Ln — ZnX M, Ln
belong to G and thus the assertion follows. For the case p = oo simply replace
(2.3) by
O, Yo X v, L + X, Zn X, Ln) 2|

= max(||xn, Yo X, Ln ||, (| X1, ZnX a1, Ln|))

< max(|[Yol], | Znl) max(|[xn, Lnz|, | Xaz, Lnz|)

< max(|[Yoll, [|Zn]) || O

2.3. Localizable sequences

Roughly speaking, we call a sequence A € BT localizable, if its snapshots describe
A locally sufficiently well and our aim is to replace the local cosets in Proposition
2.4 by the snapshots. For the precise definition recall the local homomorphisms ¢,,
which were defined in the beginning of this section.

Definition 2.5. Let £7'7 denote the set of all sequences A € BT such that for
every z € [—1,1] and ¢ € C[-1,1]

o [[[WHA), V_tn@)VinIt]|| = 0 as n — oo

* 6u(A+09) = ({EL(L,WH(A)LL} +G),
where ¢ := z if z € {£1}, and ¢t := 0 otherwise. In what follows, the sequences in
LT are said to be localizable (with respect to C7).

Proposition 2.6. We have

1. £7T is a Banach algebra containing G and JIT as closed ideals.

2. LT /G is inverse closed in F/G, and LT /JT is inverse closed in F*/JT.

3. A sequence A € LT is stable if and only if its snapshots are invertible. It is
JT-Fredholm iff its snapshots are P*-Fredholm, respectively.

Proof. The first assertion is quite obvious and from [18] we know that all snapshots
of a JT-Fredholm sequence are P!-Fredholm and further that a sequence in FT
is stable if and only if it is J7-Fredholm and all snapshots are invertible.

Let ¢ € C[-1,1], z € [-1,1] with ¢t € T as in Definition 2.5, further set
W, := V_i1n0) Vin It and suppose that the operator A := W*(A) is P’-Fredholm
with B one of its Pl-regularizers. Then Ty := BA — I, Ty, := AB — I' and
K := B — BAB are Pt-compact and

BW,, = (B(Ty + I') + K)W,, =g BW,(Ts + I') + KW,
= BW,AB + KW, =g BAW,B + KW,
=g W,BAB + W, K = W, B,

where =g means equality up to a sequence of operators tending to zero in the norm.
Fix a function ¢* € C[—1,1] with ||¢*|lcc = 1, which equals 1 in a neighborhood
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of « and which is equal to zero in a neighborhood of every 7 € T', 7 # t. Then,
both sequences

A" = { g E, (L, ALy )¢ Lo} and  B® := {7 B, (L, BLy, )¢y " Ln }
belong to BT and
¢ (A"B* — 1+ G)
= ¢ ({7 By (L AV_tn Y03 " VinI' BLy )07} = 1+ G)
= 0. ({(¢7") B}, (L, ABL;, )¢ "} =1+ G)
= ¢ ({En (L (T2 + 1)Ly} =14 G)
= ¢ ({E, (L, T2 L} + ),
as well as ¢, (B*A® — 1+ G) = ¢, ({EL (LY TV L} + G).

From Corollary 2.3 we know that we can apply the local principle of Al-
lan/Douglas to the elements in the algebra BY1/J7. Let ®,, x € [—~1,1] denote
the respective local homomorphisms. Since for the localizable sequence A the cosets
O, (A+TT), ®,(A" + J7T) coincide and since ®,(A*B* + J7T), &, (B*A* + J7)
both equal @, (I+J7) we find that A+ 77 is invertible in BT/ J7 if all snapshots
are P!-Fredholm. This particularly yields that A is J7-Fredholm in this case.

So, let A € £7T be JT-Fredholm and B € FT be a regularizer. We show

that B € £'T. The operator A := W!(A) is P!-Fredholm and B := W(B) is one
of its Pt-regularizers [18, Theorem 2.4]. Check that

62(T") = 62(T") = 62 ({{EL (L, KLy} + G - K € K(B', P')}).

With the notions as above we get ¢, (A*B—1+G), ¢, (A*B* —1+G) € ¢,(J*) and
then we successively deduce that ¢,(J*) further contains the following elements:
¢z (AT(B-B")+G), ¢, (B*A*(B—-B")+G), ¢ (B—B*+G). Consequently, there is a
P'-compact operator M on the space Ef such that ¢, (B—B* —{EL (L, ML.)}+G)
equals zero, and hence the respective snapshot W*(B — B* — {E!,(LL, M L!)}) is
zero as well. Since W!(B®) = W*(B) and W' ({EL(Lt ML!)}) = M, this operator
M equals zero and we see that ¢, (B—B*+G) = 0. This proves that B € £»7. O

Following many standard references such as [4, 5, 8] or [12] we now slightly
change the perspective, consider the Cartesian product
S:=L(E_1) x L(Eg) x L(E41)
and equip it with componentwise defined algebraic operations as well as the norm
(A, B, C) | == max{|[All, | Bl |C|[}

to obtain a Banach algebra. For a sequence A € £77 we denote by smbA the
triple

smb A = (W1(A), W (A), WT(A) € S
and call it the symbol of A.
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Proposition 2.7. The mapping
Smb:£"7T/G -+ S, A+GrsmbA
is an isometric (and hence injective) algebra homomorphism. Moreover,
la+Gll = tim |4,
holds for every A = {A,} € £7VT.

Proof. Obviously, the mapping £¥'7 — S, A — smbA is an algebra homomor-
phism and G belongs to its kernel, hence Smb proves to be a homomorphism as
well. For every = € [—1, 1], the respective local homomorphisms ¢, and ¢ chosen
as in Definition 2.5 we have

I¢o (A + )| = llda({Ey (L, WH(A) L)} + G)
< {EL (L, W (A)L)} + 4
= limsup || B, (L, W' (A) Ly, )| < [W*(A)]].
n—oo
On the other hand, Theorem 1.13. in [18] and Equation (2.1) together with Propo-
sition 2.4 yield
IWH(8) | < timint B (4,,)22, |
< limsup || 4,,
n— oo

=[A+ Gl = max |¢z(A+G)
z€[—1,1]

< Tim sup || 4, |
n— oo

for every ¢ € T and every subsequence (4, ) of (Ay). Thus, we have proved that
limsup || Ay, || equals maxser [|[W!(A)]|| for every subsequence (4,, ), and therefore
the limit lim || 4, exists and has the same value. O

Now we can prove the announced asymptotic behavior for localizable se-
quences. For this we introduce the notation ||B~!|| := co if B is not invertible.

Corollary 2.8. Let A = {A,} € LT, Then the norms ||A,|| and ||AY|| converge
and

i (Al = max (WA, Tim A7) = e |(94(A)) 7).

Proof. The limit lim||A,,|| is already supplied by the previous proposition, and
we now consider the “inverses”. Suppose that one snapshot of A = {A,} is not
invertible. Then Theorem 3.2. in [18] yields that s} (A,) or s} (A,) tend to zero as
n — oo and by Corollary 2.11. in [18] it follows that lim ||4;,'|| = cc. Conversely,
if all snapshots are invertible then the sequence is stable. Set B,, := A, Lif A, is
invertible and B,, := 0 otherwise. Then {B,,} proves to be a G-regularizer for A,
hence belongs to £ by Proposition 2.6, and its snapshots are (W*(A))~!. This
provides the second asserted limit as well. O
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Corollary 2.9. Let A = {A,} € LT be stable. Then the condition numbers of the
operators A, which are defined by cond(A,) = || A.||[|A,]] converge and their
limat is
: _ t . t -1
Jim_cond(Ay) = man [ W4(A)] - ma (7 (4)) .

Remark 2.10. We want to point out that the idea to study an extension of the nat-
ural finite section algebra (arising from a certain class of operators) by additional
sequences of “inflated functions” in order to obtain an algebra with a well-suited
center which permits to employ the KMS-techniques of [3] goes back to Roch [14].

2.4. Approximation of pseudospectra

Within this paragraph we suppose X to be a (complex) space of the type
LP(S,%, u), with (S, 3, u) being a measure space such that p(S) < co. This partic-
ularly includes X = CV, N € N, equipped with the p-norm and the usual counting
measure, as well as X = LP([0,1)). The latter is important for the treatment of
band-dominated operators over the real axis (see [18, Section 3.3]).

Then X := [P(Z,X) can be identified with LP(S,%, i) where the measure
space (5,3, 1) is given by S := Z x S, 3 := {Urezik} x Ag © A € X} and
(Upezik} x Ax) == D pcp #(Ax). For the following result see the discussion in
[20], preliminary to Theorem 2.5 and Theorem 2.6.

Theorem 2.11. Let Q be a connected open subset of C and A : Q — L(X) an
analytic operator-valued function. Suppose that there exists A\g €  such that the
derivative A'(Ng) of A in X\g is invertible.

IfF A < M for all A € Q then ||AN)|| < M for all X € Q.

This theorem stands in the end of a series of results dealing with the question
“Can the resolvent norm of an operator be constant on an open set?” As some
milestones in this development we further refer to Globevnik [7], Bottcher [2] and
Daniluk [6], and Shargorodsky [20].

Definition 2.12. For N € Ny and € > 0 the (N, ¢)-pseudospectrum of a bounded
linear operator A is defined as the set (we again use the convention ||[B~!|| = oo
if B is not invertible)

spneAi={zeC:|[(A—2D)"2 |2 " > 1/e}.
Let Mj, M, ... be a sequence of nonempty subsets of C. The uniform (partial)

limiting set

u-lim M, (p—lim Mn)
n—o0 n—o00

of this sequence is the set of all A € C that are (partial) limits of a sequence (\,)
with A, € M,,.

Remark 2.13. Notice that (for N = 0) this definition of the (V, €)-pseudospectrum
includes the definition of the (classical) e-pseudospectrum

spe Ai={2€C:|(A—z2I)"Y| >1/e}.
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This has gained attention after it was discovered in [13] and [2] that, on the
one hand the e-pseudospectra approximate the spectrum but are less sensitive to
perturbations, and on the other hand the pseudospectra of discrete convolution
operators mimic exactly the pseudospectra of an appropriate limiting operator,
which is in general not true for the “usual” spectrum. See also [1, 5, 8] and the
references cited there.

Later on, Hansen [9, 10] introduced the (N, €)-pseudospectra for linear opera-
tors on separable Hilbert spaces and pointed out that they share the nice properties
with case N = 0, but offer a better approximation of the spectrum. Furthermore,
it was shown how the spectrum can be approximated numerically, based on the
consideration of singular values of certain finite matrices. Recently, one of the
authors extended this to the Banach space case [17].

Here, we restrict our considerations to the asymptotic connection between the
(N, e)-pseudospectra of the operators A,, and the respective snapshots. In analogy
to [5, Theorem 3.17] we prove

Theorem 2.14. Let X = LP(S,%, u) with (S, X, 1) being a measure space such that
wu(S) < oo. For A= {A,} € L7T and every N € Ny, € >0

wlim spy ¢ Ap = p-lim spy,c A, = U spN.e WH(A).

Proof. Suppose z € sp W'(A), that is W(A — 2I) and hence W((A — 2I)2") are
not invertible. Then by Proposition 2.6 A — zI is not stable and Proposition 2.7
yields that lim || (A4, — an)*zN || = oo which implies z € spn . A, for sufficiently
large n. Thus z € wlim, spy.c Ap.

So, now suppose that A — 2I is stable, but z € spx, W*(A), which means
that |[(W'(A) — 2I)=2"|| > ¢=2". Let U be an arbitrary open ball around z such
that W'(A) — yI is invertible for all y € U. If |(W'(A) — yI)~2" || would be
less than or equal to 2" for every y € U then Theorem 2.11 would imply that
[[(WEA) — zI)*ZNH < ¢ 2" a contradiction. For this notice that the function
y — (WHA) — yI)=2" is analytic on U and its first derivative in z is invertible.
Hence there is a y € U such that [|[(W!(A) — yI)_QN | > ¢=2" | that is we can find
a ko such that

1
k

Because U was arbitrary we can choose a sequence (2, )men of complex numbers
Zm €SP c—1/m W' (A) such that z,, — z. Since lim,, H(An—szn)’QN || exists and

_oN
[(WHA) — yI)*ZNH > <e — ) for all %k > ko.

equals maxser |[(WH(A) — 2,I)~2" ||, due to Proposition 2.7, it is greater than or
equal to (¢ — 1/m)~2". Consequently, for sufficiently large n, ||(Ay — zmI)~2" || >
¢=2" and thus Zm € SPN,e Ap. This shows that z = lim,, 2., belongs to the closed
set u-lim,, spn e Ap.



FSM for Band-dominated Operators — Spectral Approximation 387

Finally consider the case that ||(W*(A)—2I)=2"|| < ¢=2" for allt € T. Then

. _9oN _ 9N _ 9N
lim [(An = 2L) ™2 || = max [[(W!(A) = 20) 7% || < e,

n—oo

hence there are a § > 0 and an ng € N such that [|(A, — 2L,) 2" || < 2" —§ for
all n > ng. If |y — 2| is sufficiently small and n > ng we then get

(A = yLa) 2" = 1((An — 2La)(I + (2 — ) (An — 2L) ") 72" ||
= |[(Ap = 2Ln) "2 (T + (2 — y)(An — 2L,) " H) 72|

(A — 2L,) "2 |
= (1— |z = yll(An — 2La) 1)
E’QN—é
< —1)2N
(1= |2z = yll(An — 2Ln) 1))

<e€

2N

Thus, z ¢ p-lim, spn.e Ay. Since wlim, spx e A, C p-lim, spn . Ay, this completes
the proof. O

Proposition 3.6 in [8] states that for compact sets M,, the limits w-lim M,
and p-lim M, coincide if and only if M,, converge w.r.t. the Hausdorff distance (to
the same limiting set). Thus, we can reformulate the preceding theorem as follows.

Corollary 2.15. For a sequence A = {A,} € LVT the (N, €)-pseudospectra of the
elements A, converge with respect to the Hausdorff distance to the union of the
(N, €)-pseudospectra of all snapshots WE(A).

Remark 2.16. It is not hard to check that the previous results remain true, if one
considers subsequences A, of A and the respective algebras ﬁg’T.

3. Finite sections of band-dominated operators

Now, we reap the fruit of our labor and we recover and extend the results of
[12, Section 6.3] on the finite sections of band-dominated operators on 2.

Proposition 3.1. Let A = {A,} € Fa,,. Then

li Al = WA

im sup || An[| = max max ||V (A, )|
liminf | A,| = min max |[W*(A,)|.
n—00 ge T

Proof. The idea is simple and straightforward: Given A and g € H, we are going
to construct a sequence vy such that A, is localizable with respect to C7, and
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apply the abstract results of the previous section. Choose g € Hga, set i1 := 1 and
construct a subsequence i = (ix) of g such that

max {[|(E,,'(Ag, ) Lg, — W' (Ag))Lyll,
|Ee(Bg (Ag, )b, — WA £ € Togn > ia} <
for every k > 2. This is possible, since E*(Ag, )L}, tend P'-strongly to W*(A,).
Now, for k € N, define ~,, := k/2 for all n € {ig,...,ixr1 — 1} and consider C7,
B with respect to v = (V).

Firstly, let € (—=1,1) and ¢ = 0, and check that for every ¢ € C[—1,1] and
every operator B € A;» we have that ||[B, ¢} I]|| — 0 as n — oco. Indeed, this is eas-
ily seen if B is a shift or an operator of multiplication, hence it is clear for band op-
erators and follows for band-dominated ones by a simple approximation argument.
Consequently, [{L,BLn}, {¢lL,}] € G for all B € Ap and all ¢ € C[—1,1]. Since
A can be approximated (in the norm) by sequences A™ which consist of finite sums
and products of pure finite section sequences {L,B7 L, }, and since G is a closed
ideal, we even find that [A,{¢}L,}] € G. Thus, A; € B;”T. Moreover, for every
continuous function ¢ being equal to one in a neighborhood of # and vanishing in
the endpoints £1, we conclude that (I —L,,) By} I and @) B(I — L,) tend to zero in
the norm as n — oo and therefore {¢} L, }({L,BL,}{L,CL,} —{L,BCL,}) € G
for every B,C € Aj». Applying this observation to the sequences A™ and utilizing
the approximation ||[A™ — A|| — 0 as m — oo, we easily get that the sequence
{p) Ly} (A — {L,W°(A)L,}) belongs to the ideal G, hence ¢,(A; + G;) equals
¢u({ED (LY WO(A;)LY )} + G;). Here ¢, is the local homomorphism on B;"" /g;
in the point z.

For z = t = 1 (and similarly for x = t = —1) we note that the snap-
shot W1(A;) is always (the compression to the space E! of) a band-dominated
operator, and therefore it follows that ||[W?1(A;), V_,,p) V,, I']|| — 0 as n — oo, by
the same arguments as above. In order to verify the relation

Ox(Ai + G;) = ¢z({E3,L (L1 Wl(Ai)Lzln)} +G)

in
we simply fix a continuous function ¢ being equal to one in z = 1, having its
support in [1/2,1] and derive from the choice of A; and the construction of the
blowing-up process for ¢ that

7, (A, = Ei (Li, WHA) L) = 0], Li(As, = Eiy (L, W (A) L )| = 0

k

as k — oo. Thus A; belongs to EZ’T and, by Proposition 2.7, the limit of || 4;,
exists and

. > . ) _ + ) _ t )
limsup [|An[| 2 Tim [[As, || = max [W5(A)]| = max [W5(Ag)|

n—oo

Since g is chosen arbitrarily, we see that this estimate holds for every g € Hs. On
the other hand, choose h such that the sequence (|4, ||) converges and realizes
the limsup, that is lim,, ||Ap, || = limsup,, ||A,||. Pass to a subsequence g € Ha,
to deduce the asserted equality. The liminf can be tackled analogously. O
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In the same way we get

Corollary 3.2. Let A = {A,,} € Fa,, be stable. Then

n—00 gEHA \ teT

lim sup cond(4,,) = max <max|Wt(Ag)| -11{16%3(|(Wt(Ag))1|>

lim inf cond(4,,) = min <max|Wt(Ag)| -ItnaTX|(Wt(Ag))1|> .
€

n—o00 gEH, \ teT
Finally, again by considering suitable subsequences, one obtains

Corollary 3.3. Let X = LP(S, %, u) with (S,%, u) being a measure space such that
u(S) < co. For A={A,} € Fa,, and every N € Ny, € >0

p-lim spn e An, = U spN,e WH(A,).

oo gEH,, teT

Remark 3.4. Tf for the whole sequence A = {A,,} € F4,, the snapshots W*1(A)
already exist then these relations simplify to

lim [|A,| = max|[W*(A)|| and
n—oo teT
: _ ¢ . t -1
Jim cond(An) = max [[W*(A)| - max | (W"(A)) ™|l

and we again get that p-limspy. A, and wlimspy,c A, coincide and equal to the
union of the (N, €)-pseudospectra of all snapshots. This result particularly includes
the sequences in the algebra generated by the finite sections of Toeplitz or block
Toeplitz operators with continuous symbol by the construction as in Section 2.4.5
of [19]. These have been considered in lots of papers. A comprehensive survey is
given in the book [5]. See, in particular, its Sections 3.2 and 7.3.

If we consider X = LP[0,1) the above results can be applied to convolution
type operators on LP(R). For more details see [18] and the references cited there.
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Related to Boundary Value Problems
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Abstract. The main topic of this work is the investigation of operator relations
which appear during the reduction of linear systems, particularly in the study
of boundary value problems. The first objective is to improve formulations like
“equivalent reduction” by the help of operator relations. Then we describe how
some of these operator relations can be employed to determine the regularity
class and effective solution of boundary value problems. Furthermore operator
relations are used to put boundary value problems into a correct space setting,
e.g., by operator normalization.
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1. Introduction

In many applications problems are “reduced” to simpler problems. So it happens,
e.g., in linear boundary value problems for partial differential equations of mathe-
matical physics by potential methods leading to boundary integral equations or to
semi-homogeneous boundary value problems where either the differential equation
or the boundary condition is homogeneous. It is quite common to speak about
“equivalent reduction”, see [41, p. 174], for instance. Sometimes it is mentioned
that there exists a one-to-one correspondence (substitution) between the solution
spaces and another one between the given data spaces, see [16, Theorem 5.6.7] and
connected remarks. Clearly, if these mappings are linear homeomorphisms, then
well-posed problems are transformed into well-posed problems and ill-posed into
ill-posed problems.

In the present paper we would like to illuminate the situation a little more.
Typically an elliptic linear boundary value problem is written in the form

Au=f inQ (pde in nice domain) (1.1)
Bu=g onI'=0Q (boundary condition). (1.2)
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More precisely the problem is: Determine the (general*) solution of the system
(1.1)—(1.2) (in a certain form**) where the following are given: Q) is a Lipschitz
domain in R™ (e.g.), A € L(X,Y1),B € L(X,Y;) are bounded linear operators
in Banach spaces of function(al)s living on Q or T' = 9. The data (f,g) are
arbitrarily given in the (known) space Y = Y; @ Y2 (denoting the direct sum
considered as a Banach space). It is even more precise to mention that: *We
are looking for all solutions for any given data in those indicated spaces and in
a specific form that is **explicit, closed analytic, of series expansion, numerical
(plenty possible choices), with error estimate etc., or just in any form. As a rule
it is expected that the more detailed formulation is guessed by the reader.

The situation becomes a bit more transparent if we consider the operator
associated with the boundary value problem

L—(é);){ay—m@n (1.3)

where the data space Y and the solution space X are usually assumed to be known
(eventually modified later for practical reasons and in contrast to free bound-
ary problems or certain inverse problems). As a standard situation we shall work
only with Banach spaces; other interesting frameworks could be topological vector
spaces or Hilbert spaces. It is clear that a linear boundary value problem in the
abstract setting (1.1)—(1.2) is well posed if and only if the operator L is bound-
edly invertible (a linear homeomorphism). Thus the main problem is: Find (in a
certain form) the inverse (resolvent) of the associated operator L (or a generalized
inverse etc.). Associated operators were systematically used, e.g., in the work of
[5, 9, 10, 14-16, 27, 29, 34, 36, 41].

Who is not interested in the determination of the resolvent operator but only
in the (unique) solution w for a single data set f, g may become more interested by
the question if the solution depends continuously on the data, i.e., in the proof of
the problem to be well posed and therefore the existence of a continuous resolvent
operator (for continuity one needs to know the topologies).

This paper aims at discovering relations between associated operators, de-
scribing their properties in view of so-called “equivalent reduction” to simpler
situations. Precise operator theoretical formulations allow the discovery of odd
situations (like ill-posedness) and of convenient strategies for normalization (like
inclusion of compatibility conditions or the identification of transmission proper-
ties). We prove that the reduction of linear systems to semi-homogeneous linear
systems can be seen as an operator relation (Section 3). This kind of operator
relation has strong transfer properties in what concerns (a) common regularity
properties of operators (like invertibility, the Fredholm property etc.) and (b) the
mutual computation of generalized inverses (Section 4). Finally three well-known
classes of examples are discussed (Section 5) in order to underline the usefulness
of the employment of operator relations.
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If the reader is interested to see the explicit and efficient solution of concrete
boundary value problems by the help of operator relations, we refer to further
recent publications of the author and his collaborators [6, 8-10, 30, 40].

2. Some operator relations appearing in potential methods

The classical idea to present the possible solution u € X by surface and/or volume
potentials can be seen as an operator factorization:

XL_<§ Y
N

If K is a linear homeomorphism, then L is “equivalently reduced” to T'= KL
in the sense that the two operators are (algebraically and topologically) equivalent,
i.e., by definition that T is representable as

T = E L F (2.1)

where E, F' are linear homeomorphisms. This defines an equivalence relation in the
genuine mathematical sense (reflexive, symmetric and transitive) and practically
it includes the idea of a substitution in the solution and in the data space. For the
existence of a relation (2.1) we write 7' ~ L.

Obviously T has all the good properties that L has and vice versa. More
precisely: the relation (2.1) implies the transfer property TP1: Both operators
belong to the same regularity class of bounded linear operators in Banach spaces
in the sense of the following classification, which was stimulated by [28, 32] and
introduced in [38]:

ker T ker T’
a(T)=0 a(T) < 00 complemented closed
boundedly  right invertible right
B(T)=0 invertible Fredholm invertible surjective
left invertible right semi-Fredholm
B(T) < o Fredholm Fredholm regularizable F_
imT left left generalized no
complem. invertible regularizable invertible name
imT semi-Fredholm no normally
closed injective Fi name solvable

Herein o(T) = dimker T and S(T) = codim im7T = dimY/im 7. An operator T'
is said to be generalized invertible if there exists another bounded linear operator
T~ such that TT~T = T. This is equivalent to the fact that ker T and im T are
complemented. For more details see [8, 28, 38]. The reason for TP1 to be valid
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is simply that equivalent operators have isomorphic kernels, cokernels and iso-
morphic related quotient spaces, as well. But there is another important transfer
property TP2: Pseudo-inverses can be computed from each other, provided E, F’
or E~1, F~! are known. The word pseudo-inverses stands here for the collection of
inverses, one-sided inverses, generalized inverses and Fredholm regularizers (yield-
ing one-sided inversion up to compact or finite rank operators). TP2 is doubtless
of particular interest in applications. Surely one finds plenty of further transfer
properties such as possible normalization methods or asymptotic expansion of L
and T.

Now let us think, instead of (2.1) about operator relations in more generality.
Beside of the common definition of a relation between elements S € £, , T € Lo
in two classes of operators £1 and Lo as a subset of £1 X L5 one concretely meets
relations defined

e by common properties (such as shown in the diagram),
e by isomorphic subspaces (like kernels etc.),
e by operator matrix identities.

For instance it makes sense in a certain context to consider two operators to be
“equivalent” if and only if they are both Fredholm operators and have the same
defect numbers [4] (which is quite different from the present notation). Also “local
equivalence” [37] is an operator relation but does not directly fall into one of these
categories.

Some important operator matrix identities are the following: Two operators
acting in Banach spaces are called equivalent after extension, in brief S 2 T [1], if
there are Banach spaces Z7, Z> and linear homeomorphisms F, F' such that

(g Igl)_E<€ IEQ)F' (2.2)

The relation (2.1) can be seen as a special case. Further the two operators are
called A-related operators, in brief S A T [6, 8], if there is a companion operator
Sa and linear homeomorphisms F, F' such that

< ; SOA > —ETF (2.3)

If E or F are only linear bijections (not necessarily bi-continuous), then S and T

are called algebraically equivalent, etc., writing

syT , ST , SHT . (2.4)

alg alg alg

Properties of these relations are described in [3, 6, 8]. In the present context
the most important relation is (2.2) as we shall see. A remarkable known result is
the following

Theorem 2.1 (of Bart and Tsekanovskii [3]). Let T € L(X1, X2) and S € L(Y7,Y?2)
be bounded linear operators in Banach spaces and assume T X S. Then ker T ~
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ker S. Also im T is closed if and only if im S is closed, and in that case Xo/imT ~
Yg/ im§S.

Assume moreover that T and S are generalized invertible*. Then TS if and
only if kerT ~ ker S and Xo/imT ~ Y;/im S.

This assumption* is essential. There are cases where sufficiency fails oth-
erwise, see Example 6 in [3]. The following result is known from [6, 8], the last
conclusion was already observed in [3], Theorem 3.

Corollary 2.2. If TA S, then the two operators have the two above-mentioned
transfer properties TP1 and TP2.

In case of Fredholm or semi-Fredholm operators the corresponding finite-
dimensional defect spaces have the same dimension.

3. Reduction to semi-homogeneous systems

Consider the semi-homogeneous (abstract) boundary value problem

L%:(é)u:(?)e{o}@}é:}’z (3.1)

with associated operator
B|kerA : Xo =kerA — YQ. (32)
How is this operator related to the full thing

B

In general, they will not be equivalent operators, since Y and Y5 may not be
isomorphic. But, if A is surjective and ker A is complemented, i.e., A : X — Y
is right invertible, then we have the following relation:

L:(A):X—>Y:Y1@Y2 ?

Lemma 3.1. Let L = g € L(X,Y1®Y3) be a bounded linear operator acting
in Banach spaces. Further let R be a right inverse of A, i.e.,
R € ﬁ(yl,X) s AR = I|y1 . (33)

Then the following operator factorization holds

- _ 0 Alx, B|x, 0 P
L=ETE= <I|Y2 B|X1 >< 0 I|X1 )(Q) (3.4)

where P = I — RA, Q@ = RA are continuous projectors in X , Xg = ker A =
imP = ker@, X; = imQ = kerP. The first and third factor in (3.4) are
(boundedly) invertible as

E=Y,0Xs —Y10Ys

F=X— Xy X;.

Proof. This lemma is proved by verification. O
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Obviously there is an analogous result for the semi-homogeneous (abstract)
boundary value problem

Lou—<g)u—<£>€Y1€B{0}~Yl.

The following conclusion is known in special form from applications, see [16, 41]
for instance, however never seen in this way, namely as an operator relation.

A

Theorem 3.2. Let L = ( B

) € L(X,Y1 ®Ya) be a bounded linear operator in
Banach spaces. Then
Jrecvi,oy AR=1 = L X Blier a,
JpecaryBR=T = L& Afes.

Proof. The first statement follows from the lemma before, since the first and the
third factor of (3.4) are invertible. Obviously, in the formulation of the lemma,
A and B are interchangeable through a composition with permutation matrices.
Hence an analogous relation holds also in the second case. For convenience we
mention the corresponding formula: If BR = I|y,, then

(3)- (5 #)(% )(5) o

where we put now P =1 — RB, @ = RB which are continuous projectors in X ,
Xo=kerB=imP =ker@Q, X; = imQ = ker P. U

Remark 3.3. Formula (3.4) holds also, if R is a generalized inverse of A, i.e., 4
is not necessarily right invertible. However, in this case, the first factor in (3.4)
is not invertible, since A|x, is not surjective. Therefore (3.4) is not anymore an
equivalent after extension relation. Anyway, the two operators L and L° can be
equivalent after extension. For instance, Fredholm operators A, B, L, where Blier 4
is invertible and both Alxe, g and L have the same defect numbers, satisfy a relation
like (2.2), as a consequence of Theorem 2.1. It is not quite clear under which
(interesting) conditions the inverse conclusions in Theorem 3.2 are valid.

Theorem 3.4. Let L be defined as before. Then

I. L is boundedly invertible (and the abstract boundary value problem is well
posed) if and only if
1. the two semi-homogeneous problems are well posed,
2. the solution of the abstract boundary value problem splits uniquely as
u = ug + u’ where

= (1) e - (2),

3. A and B are right invertible;
II. Each of the three conditions for its own is not sufficient for the boundary
value problem to be well posed;
III. The first two or the last two conditions imply that L is invertible.
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Proof. 1. If L is invertible, then it is surjective, the two semi-homogeneous problems
are solvable for any data and the solutions are unique. Thus Lo and L° are also
bijective bounded linear mappings and boundedly invertible because of the inverse
mapping theorem. This implies the properties 1 and 2. It further implies that A
and B are surjective, since Ly and L° are invertible, and that their kernels are
complemented because of

ker A + ker B = X, ker A ® ker B ~ X.
The latter norm equivalence follows from the fact that Lous = f, Louy = g yields

ur| + |uo| = |Lg ' ]+ [(L%)"Yg| < 2|L7Y(f,9)]
<2|L7Y|Lu| < 2|7 |L| |ul

beside of the triangular inequality |u| < |ui|+ |ug| in X. Therefore A and B are

surjective and both have complemented kernels, i.e., they are right invertible.
The reverse implication is evident.

I1. Condition 1 and 3 are both not sufficient, see Example 6.2 later on. Condition

2 is not sufficient, since there exist non-complemented, closed subspaces of Banach

spaces, if they are not Hilbert spaces [20]. Thus, if X = X; + X is an algebraic

and not topologic decomposition, then

L = (le) X o XX,
Ix,

is not boundedly invertible, because the norms in X and X;+ X are not equivalent.

III. Both cases (if 1 and 2 or 2 and 3 are satisfied) imply the surjectivity of L and

L% & L & Ly. Further Lo and L? are injective. Thus L is bijective and equivalent

after extension to a boundedly invertible or right invertible, injective operator, i.e.,

also boundedly invertible. O

Remark 3.5. What happens if A or B is not right invertible?

1. If A is not right invertible, then either
(a) A is not surjective, the boundary value problem is not solvable for all
data f € Y7, i.e., Y7 is chosen too large for a well-posed problem; or
(b) A is surjective but ker A is not complemented, in which case it helps to
change the topology of Y7 or of &.

2. The right inverses R of A or B in applications are often a volume or surface
potential or an extension operator, left invertible to a trace operator, see
(16, 41].

3. Bach of the formulations (corresponding with L, L and Ly, respectively) has
advantages in certain situations, see the examples in Section 5. A motivation
for the consideration of the full problem (1.1)—(1.2) can be found in the theory
of boundary-domain integro-differential equations [27].
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4. Transfer properties

First we look at a consequence motivated by examples given in [3] which seems to
be important if we think about formulations like “equivalent reduction” of linear
boundary value problems or other linear systems.

Proposition 4.1. Let T and S be two bounded linear operators in Banach spaces.
If TZ, S but not TAS, then T,S do not necessarily belong to the same
reqularity class of operators.

Proof. This follows from techniques with non-complemented subspaces which allow
to construct operators with closed image, isomorphic kernels and co-kernels but
only one of them being generalized invertible, see [3], Section 4. Further examples
were given in [18]: convolution operators in Sobolev spaces on finite intervals. [

Hilbert spaces are of particular interest in applications, because of the energy
norm, for instance. Here we have:

Proposition 4.2. Let T and S be two normally solvable operators in Hilbert spaces.
Then T XS if and only if

kerT ~ kerS cokerT ~ coker S.

If this is fulfilled, T, S have the transfer properties TP1 and TP2: they do belong
to the same regularity class and generalized inverses can be computed from each
other provided the mappings E, F or E=Y, F~1 in (2.2) are known.

Proof. Normally solvable operators are linear and bounded by definition and their
images are closed according to a Lemma of Hausdorff [28]. In Hilbert spaces all
closed subspaces are complemented [20]. Therefore T and S are generalized invert-
ible (see the diagram), hence the second part of Theorem 2.1 applies. O

Proposition 4.3. Let T' and S be two bounded linear operators with closed image in
separable Hilbert spaces. Then TS if and only if their defect numbers coincide:

a(T) = aS),  B(T) = B(S).

Proof. This is a consequence of the previous proposition since closed subspaces of
separable Hilbert spaces are isomorphic if and only if they have the same dimen-
sion, finite or infinite. O

Remark 4.4. The stronger relation T ~ S yields moreover
kerT ~ ker S , cokerT ~ coker S
Xi/kerT ~Yi/kerS , imT ~ im S

(also in the Banach space case) and these conditions are obviously characteristic
for the relation T' ~ S provided T and S are generalized invertible, i.e., if both
kernels and both images are complemented, cf. Theorem 2.1.
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According to the second transfer property (see Corollary 2.2) we have a kind
of reverse order law [31] which reads in its simplest form: If T'= E'F and E, F are
invertible, then 7-! = F~'E~!. Now we have:

Theorem 4.5 (Reverse order law). If the inverses of the operators E,F in the
relation S A T (see (2.2)) are known and if S is generalized invertible, a generalized
inverse T~ of T can be computed from a generalized inverse S= of S, by the formula

S~ 0

- _ —1 1

T~ =Ry F ( 0 I ) E (4.1)
where Ry1 denotes the restriction to the first block of the operator matrizx.

Proof. See [8] or verify directly that TT-T =T. O

Similarly one obtains the following:

Corollary 4.6. Assume again S<T.

1. If the operators T, S belong to the smaller class of invertible, left invertible or
right invertible operators, a generalized inverse is automatically the inverse,
a left or right inverse, respectively.

2. Regularizers of Fredholm operators or one-sided reqularizers of semi-Fredholm
operators (up to compact or finite rank operators) are obtained by the reverse
order law (4.1) in the same way.

Remark 4.7. In Theorem 4.5 it suffices even to assume only that F is left invertible
and F is right invertible. However this case is less relevant for applications. If the
order of the two factors is inverse: T' = FE where E-F = I, FF~ = I, the
operator T is not necessarily generalized invertible.

5. Normalization

If an operator L (associated to a boundary value problem) is not normally solvable,
the question is: How to change the space setting (X,Y’) such that the modified
operator L (defined by restriction and /or extension) is normally solvable or even of
higher regularity in the sense of the diagram? We speak then about normalization.
Somehow one likes to do this in a “natural way” by a “minimal change of spaces”.

The idea is to normalize another, related operator T' % L (for instance) which
belongs to a class of operators where the question can be answered more easily,
and to transfer the normalization of T' to a normalization of L.

Certainly there exist plenty of different normalization methods in various for-
mulations, see [12, 17, 33] for instance. Here we shall describe only one representa-
tive concept called minimal normalization. It was realized in Sommerfeld diffrac-
tion problems and their reduction to Wiener-Hopf equations in Sobolev spaces
[26, 39] with Fourier symbols in the class of invertible Hélder continuous functions
with a possible jump at infinity QC“(R) [30]. Actually the special form of the
operator S = L is not relevant.
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Proposition 5.1. Let T : X1 — Y7 and S : Xo — Y5 be bounded linear operators in
Banach spaces and S AT (see (2.2)). Further assume that

(i) T is not normally solvable,

(ii) T admits a minimal image normalization, i.e., there exists a linear subspace
Y™ C Y1 which is dense in Y1 and a Banach space with respect to a different
norm such that the (image) restricted operator

T= = RstT : X; =Y
s normally solvable, and moreover T is Fredholm with
dim(Y;¥/imT~) = dim(Y;/imT).
Then

(j) S is not normally solvable,

(jj) admits a minimal image normalization

7= 0

0 I
where Yy = R E(Y[X®Z5) is equipped with the norm topology induced by Y~
and Ry denotes restriction to the first component, further (v) S~ is Fredholm
with

S_<:R11E< )F:Xg—)}/Q_<

a(ST) =a(T™) = a(T) = aS)
B(S™) =p(T7) = dim(Yy/imT).

Proof. All statements are direct consequences of the relation S 4 T and results of
the previous section. Note that the last equality is not a definition but a statement.
O

Corollary 5.2.

1. A generalized inverse or Fredholm regqularizer of S™ can be computed from a
corresponding one of T™ by the reverse order law.

II. Roughly speaking: If T is invertible, the problem Su = g is well posed in the
modified setting (X,Y5%).

Remark 5.3. 1. The formulation of Proposition 5.1 is a little long-winded but hits
exactly the situation in Sommerfeld type and wedge diffraction problems [9, 10,
14, 26, 38] where the image of related Wiener-Hopf operators is made smaller by
the postulation of so-called compatibility conditions between two given data.

2. There is a dual method called “minimal domain normalization” where the
domain of T is enlarged to a space Xf O X; = domT such that X; is dense in
X7, Tm = ExtT : X7 — Y; a continuous extension of T etc., see [30].

Ezample. The Sommerfeld type diffraction problem with two (possibly different)
impedance conditions on the two banks of the boundary (which is a half-line in
R?) leads to a Wiener-Hopf operator in the standard setting of [15]

W = r Ay : HY? 5 H2R,)
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where ¢(€) = 1 —ip(€2 — k?)~Y/2 # 0, € € R, and p is a suitable constant, see
[22, 25, 29]. Here W maps the space Hi/Q (of H'/? functions supported on R )
onto the space H'/?(R,) (of H'/?(R, ) functions extensible by zero to a function in
H'Y?(R)). As H'/2(R,) is a proper dense subspace of H'/2(R. ), and the operator
W restricted on H'/?(R,) is also bounded (with respect to a new norm) and
injective, as well, the problem becomes well posed by minimal image normalization.

6. Examples of boundary value problems

Let us consider three well-known sceneries of elliptic boundary value problems with
different functional analytic structure, however fitting the present framework, i.e.,
working with the operators associated to the boundary value problems, in contrast
to more classical formulations, e.g., in [19].

6.1. Semi-classical formulation of an elliptic boundary value problem

The first class of boundary value problems is taken from the book of Wloka [41]. We
call it a semi-classical formulation because the orders of the differential operators
are not greater than the differentiability order of the solution space. Here the
domain Q C R"™ is bounded with (2m + k, x)-smooth boundary where m,k €
N, k 4+ k > 1. The spaces and operators are given by

m
X = W22m+l(Q) Y, = WQI(Q) Yy = H W22m+l7mj71/2<69)
j=1
A= Z as(z)D?
|s|<2m
B= Y bunD’
[s|<m;
where A is uniformly elliptic and B = (By,..., Bam—1) has 2m-smooth coeffi-
cients, ord B; < 2m — 1 and the Lopatinskii-Shapiro condition is fulfilled, see
[41, Section 11.1].

The main theorem is about the equivalence of (a) the boundary value problem
is elliptic, (b) L is smoothable, (¢) L is Fredholm, (d) an a priori estimate holds,
see [41], Theorem 13.1. Surely, in general a (constructive) reduction to a semi-
homogeneous problem is not possible. However, if the coefficients of A are constant
and if an extension operator is known as

EG,  WHQ) — WHR"Y

which is right invertible by the corresponding restriction operator, then a right
inverse of A is given by

R = rqF '@ ' FE, where ®() = > a.(if)°, {€R,
|s|]<2m

and Theorem 3.2 is applicable. We find a relation L & L0 = Blker A-
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This indeed is the strategy to construct resolvent operators in special situa-
tions, particularly for certain geometrical configurations [23, 26].

Conversely, for special boundary conditions such as Dirichlet, Neumann and
others with constant coefficients it is often possible to find an extension operator
that is left invertible by B. In this case we obtain an equivalent after extension
relation between L and Ly = Alker p as explained in Theorem 3.2.

6.2. Weak formulation of an elliptic boundary value problem

This class can be found in the book of Hsiao and Wendland [16], Chapter 5. The
boundary value problems are put in a so-called variational or weak formulation.
Here Q0 C R™ is a strong Lipschitz domain,

~ 9 Ou - du ,
Au = —j;l oz, (ajk(x)axk) + ; bj(x)axj +elx)u=f in Q

is an elliptic differential equation with f given in H ~1(Q) and solution u wanted
in X = H'(2). We consider the Dirichlet problem in the following sense. Defining
the sesquilinear form:

n

ao(u,v) = /Q{ 3 <ajk(x)§;‘;)T g; 4 z: (bj@)ggj)TU + (c(x)u)Tv}dx

k=1
we look (in the sense of the formulation in Section 2) for v € X such that
ag(u,v) = (f,0)q for all v € H}(Q)
To}ru =g € Hl/Q(F)

Note that H~1(f) is the space of H~'() functionals u extensible by zero to a
functional £of € H='(R") and g € H'/?(T) is arbitrarily given.

To make the solution unique, one has to exclude functionals f € Hp ()
supported on I' = 92, which is possible by considering a smaller data space instead
of Y7: the orthogonal complement of INJITI(Q) in H=1(Q) written as

Hy' Q) = H1(Q) e HR H(Q).

It turns out that in this setting the problem is Fredholm or even well-posed (see
[16], Chapter 5) and the previous results are applicable, if the corresponding right
inverses can be constructed (for special configurations).

6.3. A class of canonical diffraction problems

The third class of problems is devoted to applications in the theory of wave prop-
agation, see Meister et al. [9, 23]. There are plenty of so-called canonical prob-
lems which can be solved explicitly by Wiener-Hopf and related methods. One
of the subclasses that admitted complete explicit solution consists of boundary
value problems for the Helmholtz equation with a complex wave number k£ where
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Smk >0 in a quadrant Q = {z = (21,22) € R? : z; > 0}
(A+EHu=0 inQ
To(ou+ BOu/dx+~vOu/Oy) =g onT = K.

We are interested in weak solutions u € H'(Q) for given g € H~/?(R)? identi-
fying T'\ {(0,0)} with Ry x R} and admitting different sets (v, 8,7) of constant
coefficients on the two half-lines.

The resulting boundary pseudo-differential operators (denoted by T in the
beginning of Section 2) have the form [10]

T = (11;}2 Iz{;) (6.1)

where T are convolution type operators with symmetry (alias Wiener-Hopf plus/
minus Hankel operators acting in Sobolev spaces) and K; are very special Fourier
integral operators (appearing as compositions of certain extension and trace op-
erators), provided the ansatz potentials satisfy some minimal assumption (kind of
non-vanishing Fourier symbols called normal type). Precisely they have the form

Tj=ryAp,0° « HVARy) — HV2(Ry)
Kj = CoAy,t° : H*(Ry) — HV2(Ry).

Here ¢° denotes odd extension from R4 to R, Ay is the convolution operator with
Fourier symbol ¢ as before, and Cj is given by

~

Cofa) = (2m)™" [ expl=t(©)alfie)de . v >0
where fdenotes the Fourier transform of f and t(¢) = (£2 — k?)Y/?, € € R, with
t(&) = ¢ at +oo .

In brief, it is always possible to obtain generalized inverses of the (scalar)
operators Tj by factorization methods provided the Fourier symbols do not vanish
in R [9, 10]. Thus, if the matrix (6.1) is triangular with one of the K; = 0, there
is a chance to invert (in the generalized sense) the operator matrix (6.1). So it
happens in all those boundary value problems (of normal type), but depending on
a tricky choice of the ansatz, i.e., of the potential K. For certain boundary value
problems, e.g., the impedance problem with two different impedances on the two
half-lines, it is only possible to obtain a triangular operator matrix T with a choice
of IC that is not a linear homeomorphism, but a left invertible Fredholm operator
with index a(T') — B(T) = —1. Thus the operator relations in Section 2 have to be
modified by including a rank one operator, see [10, Section 5].

Beside of this, there appear compatibility conditions in most of the boundary
value problems, up to the case where the two boundary conditions have different
order: one is of order one (Neumann, Robin, oblique derivatives, etc.), the other of
order zero (Dirichlet type). The compatibility conditions are automatically discov-
ered via operator relations and sometimes they are of subtle nature, particularly
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in multimedia and interface problems (where more than two domains touch each
other in a singular point), see [24, 30] for further study.

There are plenty of other sceneries where operator relations play a fundamen-
tal role, for instance in system theory [1], the theory of Wiener-Hopf plus Hankel
operators [13], convolution equations on finite intervals [4, 7] and other singular
equations [6, 8]. In this sense the following bibliography is kept short. Several other
books and papers are relevant in the context of the present work. For instance,
from the area of operator theory we should emphasize also the work of H. Bart, I.
Gohberg, M. Kaashoek and collaborators where the notion of matricial coupling
and Schur coupling is considered and its interaction with the notion of equivalence
after extension, see [2].

The area of boundary value problems is so large that we can only refer indi-
rectly to the bibliographies of the encyclopaedic work such as the books of O.A.
Ladyzhenskaya [19] or G. Hsiao and W. Wendland [16]. It would be also interesting
to know how the present idea can be applied in cases of general boundary value
problems in the sense of [5, 35] and boundary value problems for pseudo-differential
equations in non-Lipschitz domains [11, 36], for instance.

Conclusion

Operator relations in general and the equivalent after extension relation in partic-
ular represent a powerful tool for investigations in the theory of linear boundary
value problems and other linear systems. The transfer property TP1 joins plenty of
statements about common properties of two related operators such as to be Fred-
holm, semi-Fredholm etc. which were often listed separately in former publications,
see [21] for instance.

TP2 enables results about explicit solution, simultaneously for different kinds
of pseudo-inverses, i.e., in quite different functional analytic situations. Suitable
normalization methods are discovered from the reduced systems, sometimes in
a “natural way” like compatibility conditions in the image space of the related
operators.

In the authors opinion, a remarkable value of the employment of operator
relations consists in the possibility of a compact and clear formulation of results
concerning the solution of linear systems. With the words of Albert Einstein: Make
things as simple as possible, but not simpler.
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