
Operator Theory
Advances and Applications 

228

Operator Theory, 
Pseudo-Differential 
Equations, and 
Mathematical 
Physics

Yuri I. Karlovich
Luigi Rodino
Bernd Silbermann
Ilya M. Spitkovsky   
Editors

The Vladimir Rabinovich Anniversary 
Volume





 

 
 

Joseph A. Ball (Blacksburg, VA, USA) 
Harry Dym (Rehovot, Israel) 
Marinus A. Kaashoek (Amsterdam, The Netherlands) 
Heinz Langer (Vienna, Austria) 
Christiane Tretter (Bern, Switzerland) 
 

Vadim Adamyan (Odessa, Ukraine) 
Albrecht Böttcher (Chemnitz, Germany) 
B. Malcolm Brown (Cardiff, UK) 
Raul Curto (Iowa, IA, USA) 
Fritz Gesztesy (Columbia, MO, USA) 
Pavel Kurasov (Lund, Sweden) 
Leonid E. Lerer (Haifa, Israel) 
Vern Paulsen (Houston, TX, USA) 
Mihai Putinar (Santa Barbara, CA, USA) 
Leiba Rodman (Williamsburg, VA, USA) 
Ilya M. Spitkovsky (Williamsburg, VA, USA) 

Lewis A. Coburn (Buffalo, NY, USA) 
Ciprian Foias (College Station, TX, USA) 
J.William Helton (San Diego, CA, USA) 
Thomas Kailath (Stanford, CA, USA) 
Peter Lancaster (Calgary, Canada) 
Peter D. Lax (New York, NY, USA) 
Donald Sarason (Berkeley, CA, USA) 
Bernd Silbermann (Chemnitz, Germany) 
Harold Widom (Santa Cruz, CA, USA) 

 

Associate Editors: Honorary and Advisory Editorial Board: 

Operator Theory: Advances and Applications 

Founded in 1979 by Israel Gohberg 

Editors: 

Volume 228



Operator Theory, 
Pseudo-Differential Equations,
and Mathematical Physics

Yuri I. Karlovich
Luigi Rodino
Bernd Silbermann
Ilya M. Spitkovsky

The Vladimir Rabinovich Anniversary Volume

Editors



 
 
 
 
 
 
 
 

 
© Springer Basel 2013 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with 
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed 
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts 
thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current 
version, and permission for use must always be obtained from Springer. Permissions for use may be obtained 
through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the 
respective Copyright Law. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein. 
 
Printed on acid-free paper 
 

    
ISBN 978-3-0348-0  ISBN 978-3-0348-0  (eBook) 
DOI 10.1007/978-3-0348-0  
Springer Basel Heidelberg New York Dordrecht London 
 

536-0 537-7
537-7

 

Chemnitz

Yuri I. Karlovich
Facultad de Ciencias
Universidad Autónoma del Estado de Morelos
Cuernavaca, Morelos
Mexico

Luigi Rodino
Dipartimento di Matematica
Universit  di Torino
Torino
Italy

Bernd Silbermann
Fakultät für Mathematik
Technische Universität Chemnitz

Germany

Ilya M. Spitkovsky
Department of Mathematics
College of William and Mary
Williamsburg, VA

à

Editors

USA

Library of Congress Control Number: 2012951622

Springer Basel is part of Springer Science+Business Media (www.springer.com) 

www.springer.com


Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

S. Samko
Vladimir Rabinovich: a Mathematician, Colleague and Friend . . . . . . . ix

A. Antoniouk and N. Tarkhanov
The Dirichlet Problem for the Heat Equation in Domains
with Cuspidal Points on the Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

U. Battisti, T. Gramchev, L. Rodino and S. Pilipović
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Preface

This volume is a collection of papers devoted to the 70th birthday of Professor
Vladimir Rabinovich. The opening article (by Stefan Samko) contains a short
biography of Vladimir Rabinovich, along with some personal recollections and
bibliography of his work. It is followed by twenty research and survey papers in
various branches of Analysis (pseudodifferential operators and partial differential
equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue
spaces, etc.) close to Professor Rabinovich’s research interests. Many of them are
written by participants of the International workshop “Analysis, Operator The-
ory, and Mathematical Physics” (Ixtapa, Mexico, January 23–27, 2012) having a
long history of scientific collaboration with Vladimir Rabinovich, and are partially
based on the talks presented there.

The volume will be of great interest to researchers and graduate students in
Differential Equations, Operator Theory, Functional and Harmonic Analysis.

The Editors
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Vladimir Rabinovich:
a Mathematician, Colleague and Friend

Stefan Samko

Dedicated to the 70th anniversary of Professor Vladimir Rabinovich

It was my pleasure to accept the invitation to write this introductory paper to the
volume dedicated to the 70th anniversary of Vladimir Samuilovich Rabinovich, my
university colleague in the “previous life” in the Soviet Union, collaborator and
friend for more than 40 years.

Vladimir Rabinovich, known to his friends and most of the colleagues as
Volodya Rabinovich, was born in Kiev on September 2, 1940, where his childhood
passed. In the beginning of the Nazi invasion of USSR in 1941, when many people
were evacuated from the Western regions to the interior parts of the country, his

V. Rabinovich at his desk, México City, May 2012.



x S. Samko

family went from Kiev to the city of Kuibyshev on Volga river (the city of Samara
before 1935 and after 1991). Most likely I could not write this article otherwise.
They returned to Kiev in 1947.

In 1961 he became a student of the Department of Mechanics and Math-
ematics of the Rostov State University in the Soviet Union. He graduated from
this department with Diploma of Honour in 1966. He started his mathematical
career at the Chair “Differential and Integral Equations” of the same department
as a Ph.D. student in 1966–1969 years, under the guidance of Professor V.A. Ka-
kichev, who noticed Volodya Rabinovich as a capable student and drew him into
the world of mathematics. His scientific interests, already during the Ph.D. stud-
ies were heavily influenced by the professor of the same Department, well known
mathematician I.B. Simonenko. In 1969 Volodya defended Ph.D. Theses and took
a position of assistant professor at the same chair, but later moved to the chair
“Algebra and discrete mathematics”, guided by I.B. Simonenko.

In 1972 he became Associate Professor of the same Department of Mechanics
and Mathematics, and Full Professor in 1994.

In 1998 Volodya leaves Russia and moves to Mexico where he took position of
the full professor at the National Polytechnic Institute of Mexico in Mexico-City,
where he continuous to work till present.

Under supervisorship of V. Rabinovich there were defended 8 Ph.D. thesis
in Russia, and 3 in Mexico. He is a member of Editorial Boards of various in-
ternational journals, in particular, “Complex Variables and Elliptic Equations”,
“Communications in Mathematical Analysis”, “Journal of Pseudodifferential Op-
erators”, “Mathematics in Engineering, Science and Aerospace”.

The first studies of V. Rabinovich were related to the investigation of the
Fredholm properties of the multidimensional Wiener-Hopf equations in unbounded
domains in ℝ𝑛 with the cone type structure at infinity. These results were pub-
lished in the papers [37] (1967), [38] (1968) and [40] (1969). But the most impor-
tant results of V.Rabinovich of that time were obtained during the last years of
his Ph.D. studies. They were about the Fredholm properties of the general bound-
ary value problems for pseudodifferential operators in such unbounded domains,
published in the leading Soviet journals Mathem. Sbornik and Doklady Akademii
Nauk, see [41] (1969) and [44] (1971). These papers were the first ones where the
general boundary value problems for pseudodifferential operators were considered
in unbounded domains. These results were included in his Ph.D.

Among the most important results obtained by V. Rabinovich in 1972–1977
there were the solvability of the Cauchy and Goursat problems for parabolic pseu-
dodifferential operators, Fredholm properties of pseudodifferential operators and
boundary value problems for them on non compact manifolds [46] (1972), [48]
(1973), [52] (1975) and [56] (1979).

His paper [51] (1974) devoted to the multi-dimensional convolution operators
in the space with exponential weights is worth of special mentioning. In this paper
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he extended the well-known results of I. Gohberg and M. Krein to a class of mul-
tidimensional convolution operators. It gave a start to his further studies of partial
differential operators and pseudodifferential operators in spaces with exponential
weights. Thus in the paper [28] (1978) he introduced a class of pseudodifferential
operators with analytical symbols in a tube domain in ℂ𝑛 and obtained effective
results on the boundedness of pseudodifferential operators together with the study
of their Fredholm properties in spaces with exponential weights and exponential
decreasing of solutions of pseudodifferential equations at infinity.

In the series of his papers [60] (1982), [61] (1983), continued with a Ph.D.
student R. Babadjanian [1] (1985), [2] (1986) and [3] (1987), he studied Fred-
holm properties of pseudodifferential-difference operators, integral-difference and
differential-difference operators. In particular in [2] there was proved the impor-
tant theorem on the Wiener-Hopf factorization of the operator-valued functions in
the Wiener algebra.

The next important scientific results of the V. Rabinovich are connected with
the so-called method of limit operators. The idea of the limit operators historically
goes back to a paper of J. Favard of 1927 on the existence of solutions to ordinary
differential equations with almost periodic coefficients. These results of Favard were
extended to the case of elliptic partial differential equations by E. Muhamadiev in
a paper of 1981.

V. Rabinovich in fact turned this approach into a powerful general method,
nowadays known as the “method of limit operators” by extending it and giving
its wide applications to the investigation of the Fredholm properties of pseudodif-
ferential operators, convolution type operators on ℤ𝑛 and ℝ𝑛, general boundary
values problems of the Boutet de Monvel type on manifolds with conical struc-
ture at infinity and pseudodifferential operators with shifts, etc, in his paper [61]
(1985) and in the series of his papers [22, 24] (1985) and [25] (1986) with the Ph.D.
student B. Lange and later in his papers [73] (1992), [76] (1993), [77] (1994), [84]
(1998), [87] (1999) and [89, 90] (2001).

These investigations were also elaborated and continued in collaboration with
S. Roch (Darmstadt) and B. Silbermann (Chemnitz) in the papers [136] (1998),
[137, 138] (2001), [113] (2002), [114–116] (2003), [117] (2004), [124, 125] (2007),
[141] (2008) and in his papers [95–97] (2003), [98] (2004).

In 2004 the book [139] by V. Rabinovich, S. Roch and B. Silbermann was
published, in which there were presented both the techniques of the method of limit
operators and the main results on its applications to various problems of operator
theory including convolution type operators, discrete and continuous pseudodiffer-
ential operators, singular integral operators on Carleson curves and finite sections
method.

V. Rabinovich and S. Roch discovered that the method of limit operators is
a powerful tool for the investigation of the essential spectra of the electromagnetic
Schrödinger operators on ℝ𝑛,ℤ𝑛, and on periodic graphs, as was realized and
developed in the papers [98] (2004), [101, 102] (2005), [103, 120] (2006), [123]
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(2007) [127–129, 141] (2008) [130–132] (2009), [134] (2010). In particular, by means
of the method of limit operators there was obtained a simple and short proof of the
well-known Hunziker-van Winter-Zhislin Theorem on the essential spectra of the
multiparticle Schrödinger operators, along with some new results on the essential
spectra of the Schrödinger and Dirac operators.

The area of mathematical interests of V. Rabinovich, as can be already seen
from the above, includes various topics from both Analysis and Mathematical
Physics. In reality it is even wider than has been described in the previous lines.
We could mention a lot more. For instance, it is worthwhile mentioning his stud-
ies of the exponential decrease of solutions of differential and pseudodifferential
equations. In the papers [12] (1997), [99] (2004), [134] (2006), [127, 128] (2008)
and [106, 130, 131, 133] (2009) there were obtained strong and exact results on
the behavior of solutions of the differential and pseudodifferential equations with
increasing discontinuous coefficients, which in particular included a far going gen-
eralizations of the well-known S. Agmon’s results on the exponential decrease of
solutions of elliptic second-order partial differential equations. Note that there were
also given applications to the study of exponential decrease of eigenfunctions cor-
responding to the discrete spectra of the electromagnetic Schrödinger and Dirac
operators for wide classes of potentials.

London, Conference dedicated to the 80th birthday
of M.Z. Solomyak, September 2011.
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Special words should be said about his studies of algebras of singular integral
operators on a class of composed Carleson curves with coefficients having oscillat-
ing discontinuity, which go back to his interests of his research at the Department of
Mechanics and Mathematics of the Rostov State University and continue through
his life up to the present time. In the papers [71] (1991), [80] (1995) and [81, 82]
(1996). there was shown that in the case where curves, coefficients and weights
oscillate, the usual Mellin transform, which is the effective tool in the case of Lya-
punov curves and piecewise continuous coefficients and non-oscillating weights,
should be replaced by the Mellin pseudodifferential operators with variable and
non stabilized symbols.

These investigations were continued with A. Böttcher (Chemnitz) and Yu.
Karlovich (Cuernavaca, Mexico) in the papers [4] (1996), [5] (1998), [6] (2000), [7]
(2001), where in a crystal clear form there was explained the appearance of the
logarithmic spirals and logarithmic horns in the local spectra of singular integral
operators on a class of composed Carleson curves.

Recently he turned to the studies in a new and rapidly developing area known
as “Variable Exponent Analysis”. In the papers [143] (1997), [144] (2008) and [145]
(2011) joint with the author of this article there were studied singular integral
operators and also pseudodifferential in variable exponents Lebesgue spaces, in-
cluding the case of composite Carleson curves. In particular, in [145] (2011) the
Simonenko local principle was extended to the case of variable exponent Lebesgue
spaces where the main challenge was the localization of the space itself.

The task to overview all the studies of Volodya Rabinovich is too enormous
for this introductory article, but we still mention a few. In the papers [147, 154]
(2000), [148, 149] (2001), [150] (2002) and [151] (2004) with B.-W. Schulze and
N. Tarkhanov (Potsdam) there were studied Fredholm properties of boundary
value problems in domains with cuspidal points and cuspidal edges and also was
described the behavior of solutions near singular manifolds of the boundary.

In another cycle of papers [29, 30] (2008) and [31] (2009) with Ya. Lutsky
(Karmiel, Israel) he investigated the invertibility of the homogeneous Cauchy prob-
lem for parabolic pseudodifferential operators with discontinuous and increasing
symbols, along with the study of the behavior of solutions at infinity and near the
sets of discontinuities of the symbols.

His interests vary from rather pure mathematical topics in Operator Theory
and Mathematical Physics to very applied fields, such as acoustic problems, wave
propagation etc. In the papers [69] (1990), [14] (1996) and [33] (1998) with his
Ph.D. student O. Obrezanova and the colleague S.M. Grudskii there were solved
some theoretical and applied problems of the underwater sound long distance
propagation in the ocean. In particular, there were obtained effective asymptotic
formulas for the acoustic fields in the ocean generated by non uniformly moving
sources. These investigations were continued later after he moved to Mexico, with
his Mexican Master and Ph.D. students in the papers [146] (2003), [34] (2005),
[35] (2007), [36] (2009), [109] (2010).
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Caucasus, Mount Elbrus region, July 2010.
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The reader can also find other topics of Vladimir Rabinovich’s interests in
the titles of his publications in the end of the article.

Volodya is a happy person having a nice family. He and his wife Nelli have
two beautiful daughters Katya and Masha, now living in Israel. He has two grand-
daughters and a grandson and enjoys being their grandfather.

He is very sociable and liked by friends as the life and soul of the party.
He has an an outward-looking personality which enables him to get along with
people from all walks of life and easily interact with colleagues and all the people
around. He is also active and outdoorsy. I remember him playing football when a
student at the Rostov State University. He was a member of the student football
team of the department and also of a combined team of the university and till
his move to Mexico played football on the professors’ teams at the Rostov State
University. From his student’s studies till these days, every year he spends some
time in mountains, his hiking there being at a serious alpinist’s level. These days,
his friends wish him to keep in a top physical shape, and keep in general a keen
interest to mathematics, mountains, social life, for many and many years ahead.
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and S.L. Èdel′shtĕın, Asymptotics of an acoustic field generated by a moving aerial
sound source in an oceanic waveguide. In: Oceanic Acoustics (Russian), pp. 9–20.
“Nauka”, Moscow, 1993.

[14] S.M. Grudskii, O.A. Obrezanova, and V.S. Rabinovich, Propagation of sound from
a moving air-borne source in the ice-covered ocean. Acoustic J. 27 (1996), no. 2,
191–196; Engl. transl.: Physical Acoustics (1996), no. 2, 166–171.

[15] V.I. Il′ichev, V.S. Rabinovich, E.A. Rivelis, and Yu.V. Hoha, The far field of narrow-
band sound source that moves in a waveguide (in Russian). Dokl. Akad. Nauk SSSR,
304 (1989), no. 5, 1123–1127.

[16] A.N. Karapetyants, V.S. Rabinovich, and N.L. Vasilevski, On algebras of two di-
mensional singular integral operators with homogeneous discontinuities in symbols.
Integr. Equat. Oper. Theory 40 (2001), no. 3, 278–308.

[17] Yu.I. Karlovich, V.S. Rabinovich, and N.L. Vasilevski, Algebras of pseudodifferential
operators with discontinuous oscillating symbols. Commun. Math. Anal. (electronic
only) (2011), 108–130.

[18] K.V. Khmelnytskaya, V.V. Kravchenko, and V.S. Rabinovich, Quaternionic funda-
mental solutions for electromagnetic scattering problems and application. Z. Anal.
Anwendungen 22 (2003), no. 1, 147–166.

[19] M.N. Kostjukovich and V.S. Rabinovich, Discrete analogues of boundary value prob-
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en océanos estratificados mediante el método de modos normales. Lat. Am. J. Phys.
Educ. 3 (2009), no. 2, 452–459.

[37] V.S. Rabinovich, The multidimensional Wiener-Hopf equation for cones (in Rus-
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Verlag, Basel, 2011.

[109] V.S. Rabinovich and M.Q. Cerdan, Invertibility of Helmholtz operators for nonho-
mogeneous medias. Math. Methods Appl. Sci. 33 (2010), no. 4, 527–538.

[110] V.S. Rabinovich and B. Lange, Fredholmness of pseudodifferential operators with
symbols from the class 𝐶∞

𝑏 (R
2𝑛). In Seminar Analysis, 1984/85 (Berlin, 1984/85),

pp. 147–161. Akad. Wiss. DDR, Berlin, 1985.

[111] V.S. Rabinovich and I. Miranda, Non-uniformly moving source in electromagnetic
waveguides. WSEAS Transactions on Systems 1 (2002), no. 2, 109–114.

[112] V.S. Rabinovich and I.S. Miranda, Radiation from nonuniformly moving sources in
the plasma. In: Proceeding of the International Seminar “Day of Diffraction”, 2004,
St. Petersburg, Russia, pp. 163–174. IEEE; Catalog, No. 04EX837, 2005.

[113] V.S. Rabinovich and S. Roch, Local theory of the Fredholmness of band-dominated
operators with slowly oscillating coefficients. In: Toeplitz Matrices and Singular



Vladimir Rabinovich xxiii

Integral Equations (Pobershau, 2001), Oper. Theory Adv. Appl., vol. 135, pp.
267–291. Birkhäuser, Basel, 2002.

[114] V.S. Rabinovich and S. Roch, Algebras of approximation sequences: spectral and
pseudospectral approximation of band-dominated operators. In: Linear Algebra, Nu-
merical Functional Analysis and Wavelet Analysis, pp. 167–188. Allied Publ., New
Delhi, 2003.

[115] V.S. Rabinovich and S. Roch, An axiomatic approach to the limit operators method.
In: Singular Integral Operators, Factorization and Applications, Oper. Theory Adv.
Appl., vol. 142, pp. 263–285. Birkhäuser, Basel, 2003.
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Abstract. We treat the Dirichlet problem for the 1D heat equation in a
bounded domain 𝒢 ⊂ ℝ2. The boundary of 𝒢 is assumed to be smooth and
noncharacteristic except for two points where it has contact of degree less
than 2 with lines orthogonal to the 𝑡 -axis. At these points the boundary has
cuspidal singularities which have to be treated with particular care. We prove
that this problem fits into the framework of analysis on manifolds with sin-
gular points elaborated by V. Rabinovich et al. (2000). The results extend to
general parabolic equations.

Mathematics Subject Classification (2010). Primary 35K35; Secondary 35G15,
58J35.

Keywords. Heat equation, the first boundary value problem, characteristic
boundary points, cusps.

1. Preliminaries

Boundary value problems for parabolic equations in a bounded domain with
smooth boundary fail to be regular in general, for there are characteristic points on
the boundary. Petrovskii in his paper [22] found conditions on the behavior of the
boundary nearby points of inflection with horizontal tangents which are necessary
and sufficient for the first boundary value problem for the heat equation to be well
posed. Most criteria of regularity beginning with that of [22] appeal to the contact
degree at which outer characteristics meet the boundary. If the contact degree
coincides with the order of equation, the analysis reveals many common features
with analysis on manifolds with conical points. This situation was well understood
in the 1960 s, see [13, 14, 20, 21, 27], etc. If the contact degree is different from the
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order of operator, the problem can be handled within the framework of degenerate
elliptic equations.

In [13] one studies the first boundary value problem for a single second-order
equation

𝐿𝑢 := −
∑

𝑖=1,...,𝑛
𝑗=1,...,𝑛

𝑎𝑖,𝑗(𝑥)𝑢′′𝑥𝑖,𝑥𝑗 +
𝑛∑
𝑖=1

𝑎𝑖(𝑥)𝑢′𝑥𝑖 + 𝑎0(𝑥)𝑢 = 𝑓 (1.1)

with

𝜎2(𝐿)(𝑥, 𝜉) :=
∑

𝑖=1,...,𝑛
𝑗=1,...,𝑛

𝑎𝑖,𝑗(𝑥)𝜉𝑖𝜉𝑗 ≥ 0

for all 𝜉 = (𝜉1, . . . , 𝜉𝑛) in ℝ𝑛. Here 𝑢(𝑥) is a real function defined in a bounded
domain 𝒢 in ℝ𝑛 with 𝐶∞ boundary, and 𝑥 = (𝑥1, . . . , 𝑥𝑛) represents the coor-
dinates. The coefficients are real and of class 𝐶∞ in the closure of 𝒢. The first
boundary value problem consists in prescribing the values of 𝑢 on a certain por-
tion of the boundary ∂𝒢. One wishes to obtain unique solutions of the problem
which are smooth up to and including the boundary. If the leading part is ellip-
tic, i.e., 𝜎2(𝐿)(𝑥, 𝜉) > 0 for 𝜉 ∕= 0, we have the usual Dirichlet problem. Another
well-known example of (1.1) is the heat equation −𝑢′′𝑥,𝑥+𝑢′𝑡 = 0. For this classical
equation, however, certain aspects of the first boundary value problem have never
been adequately studied. It is customary to call operators 𝐿, with 𝜎2(𝐿)(𝑥, 𝜉) ≥ 0,
degenerate elliptic. The systematic study of the general class of such equations
was initiated by Fichera [8] who established estimates in 𝐿𝑝 norms, and proved
the existence of generalized solutions. Oleynik [21] proved under certain conditions
that “weak solutions are strong” and that solutions are actually smooth up to the
boundary.

Following [8], the boundary is divided into three portions, on two of which
the boundary values of 𝑢 will be given. Let Σ3 be the set of noncharacteristic
boundary points, i.e., those where 𝜎2(𝐿)(𝑥, 𝜈) > 0, Σ2 the set of characteristic
boundary points where

𝑛∑
𝑖=1

(𝑎𝑖(𝑥) + div 𝑎𝑖,⋅(𝑥)) 𝜈𝑖 > 0,

and Σ1 = ∂𝒢 ∖ (Σ2 ∪ Σ3). As usual, we use 𝜈 = (𝜈1, . . . , 𝜈2) to denote the unit
exterior normal at ∂𝒢. The first boundary problem is that of finding a solution of
(1.1) which has given values on Σ2 ∪ Σ3. After subtraction of a function with the
same values, one may assume that the given boundary values on Σ2 ∪Σ3 are zero.
Under certain conditions [13] establishes that this problem has a smooth solution
in 𝒢. The proof of regularity in [13] is based on a global argument, which can not
prove local regularity.

There are simple examples showing that, if Σ1 touches Σ2 or Σ3, then the
solution need not be smooth. On the other hand, there are interesting cases, such
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as the heat equation, in which they do touch and where, nevertheless, the solutions
are smooth.

2. On the heat equation

Consider the heat equation for one space variable 𝑢′′𝑥,𝑥 − 𝑢′𝑡 = 0 in the plane
domain (with 𝐶∞ boundary except at the corners shown) of the type represented
in Figure 1.

�
𝑡

� 𝑥

�
𝑃1

�
𝑃2

�

𝑃3

�
𝑃4

�

𝑃5

Figure 1. A general domain 𝒢.

In the first boundary problem the value of the solution is prescribed on the
whole boundary except for the top segment. There is an extensive literature de-
voted to this problem, however, most of the research treats only domains of the
kind of horizontal strip limited from the left and from the right by disjoint smooth
curves whose angular coefficients never vanish. At the lower corners the boundary
values have to satisfy certain compatibility conditions. Concerning domains of the
type of Figure 1, Levi in his paper [17] pointed out that the problem of the behavior
of the solution at the characteristic points 𝑃3, 𝑃4, 𝑃5, and the characteristic seg-
ment [𝑃1, 𝑃2] (all of which belong to Σ2) is a very difficult one, and there has been
little further study of this problem. Kohn and Nirenberg proved in [13] that, if the
solution is smooth in the closure of the domain 𝒢 of Figure 1, then the boundary
values of 𝑢 may have to satisfy compatibility conditions at the point 𝑃4 depending
on the value of the curvature of the boundary there. Furthermore, if the curvature
is not zero, the solution need not be 𝐶∞ there, but the smaller the curvature the
smoother is the solution at that point. It is 𝐶∞ if the curvature vanishes.

It is expected that a solution there might be non-smooth at 𝑃4 = (𝑡0, 𝑥0),
since for 𝑡 < 𝑡0 on the two sides of 𝑃4 the solution is determined by different
data, and there may not be matching of smoothness at 𝑃4. At all other points, in
particular the points 𝑃3 and 𝑃5, where the boundary curve is convex, the solution
is 𝐶∞. Kondrat’ev [14] studied boundary value problems for general parabolic
equations in domains like Figure 1. In the case of second-order parabolic equations
he had noted that at convex boundary points like 𝑃3 and 𝑃5, the smaller the
curvature the smoother is the solution. Kohn and Nirenberg said in their paper [13],
“He informed us in October 1966 that he could prove that for the heat equation
the solution is 𝐶∞ at convex boundary points 𝑃3 = (𝑥0, 𝑡0) provided that at these
points the boundary curve has the form 𝑡 − 𝑡0 = 𝑐 (𝑥 − 𝑥0)

𝑝, where 𝑐 > 0 and
𝑝 ≥ 2 is an integer.” To our best knowledge, this result has not been published
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except for the case 𝑝 = 2. In [13] the solution 𝑢 is proved to be 𝐶∞ at points like
𝑃3 and 𝑃5, where the boundary has positive curvature. This is proved for general
second-order parabolic equations in 𝑛 dimensions. The proof applies to a singular
transformation of variables not unlike one used by Kondrat’ev in [14] which “blows
up” the points 𝑃3 and 𝑃5.

Both [14] and [13] assume that the boundary is 𝐶∞ in a neighborhood of the
characteristic points under study. For the heat equation, the existence of a classical
solution to the first boundary values problem in non-cylindrical domains was first
obtained by Gevrey [10]. This result applies in particular to the plane domains 𝒢
consisting of all (𝑥, 𝑡) ∈ ℝ2, such that ∣𝑥∣ < 1 and 𝔣(∣𝑥∣) < 𝑡 < 𝔣(1), where 𝔣(𝑟) is a
𝐶1 function on (0, 1] with 𝔣(𝑟) > 0, 𝔣′(𝑟) ∕= 0 for all 𝑟 ∈ (0, 1] and 𝔣(0+) = 0. The
boundary point (0, 0) is regular if 𝔣−1(𝑡) satisfies the Hölder condition of exponent
larger than 1/2. When applied to the function 𝔣(𝑟) = 𝑟𝑝, this implies 0 < 𝑝 < 2.
In [3] a more intricate situation is treated when the domain 𝒢 nearby the origin
consists of those (𝑥, 𝑡) ∈ ℝ2 which satisfy 𝑥 > 0 and −𝑎𝑥2 < 𝑡 < 𝑏𝑥2, where
𝑎 and 𝑏 are fixed positive numbers. The boundary of 𝒢 is therefore not smooth
and it has a cuspidal singularity at the origin which can actually be thought of as
characteristic point.

For a recent account of the theory along more classical lines using the concept
of (ir) regularity of a boundary point for a partial differential equation we refer
the reader to [9].

The present paper is aimed to study the first boundary value problem for
second-order parabolic equations in the case when the contact degree of outer
characteristics with the boundary is less than the order of equation. The problem
is shown to fit into analysis on compact manifolds with cuspidal points elaborated
by V. Rabinovich et al. [24]. We restrict our discussion to the 1D heat equation. We
hope that the methods employed here may prove useful in treating more general
systems.

3. Blow-up techniques

Consider the first boundary value problem for the heat equation in a domain
𝒢 ⊂ ℝ2 of the type of Figure 2. The boundary of 𝒢 is assumed to be 𝐶∞ except
for a finite number of characteristic points. At points like 𝑃1 and 𝑃2 the boundary
curve possesses a tangent which is horizontal, hence ∂𝒢 is characteristic for the
heat equation at such points. The characteristic touches the boundary with the
degree ≥ 2, which is included in the treatise [14]. At points like 𝑃2 the boundary
curve is not smooth but it touches smoothly a characteristic from below and above.
Such points are therefore cuspidal singularities of the boundary, implicit treatable
cases have been studied in [3].

We restrict our discussion to the boundary points like 𝑃3 and 𝑃5. These are
cuspidal singularities of the boundary curve which touches smoothly a vertical line
at 𝑃3 and 𝑃5. Thus, the boundary meets a characteristic at 𝑃3 and 𝑃5 at contact
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�
𝑡

�𝑥

�
𝑃1

�

𝑃2

𝑃3=(𝑥0,𝑡0)

�

𝑃4
�

𝑃5

𝒢

𝑡−𝑡0=𝔣(∣𝑥−𝑥0∣)

Figure 2. Typical domain.

degree < 2. As mentioned, the study of regularity of such points for solutions of
the first boundary value problem for the heat equation goes back at least as far as
[10]. While the approach of [10] is based on potential theory, we apply the so-called
blow-up techniques developed in [24]. This allows one not only to get a regularity
theorem in a sharper form including asymptotics of solutions but also to prove the
Fredholm property in suitable weighted Sobolev spaces for more general cusps.

The first boundary value problem for the heat equation in 𝒢 is formulated as
follows: Write Σ1 for the set of all characteristic points 𝑃1, 𝑃2, . . . on the boundary
of 𝒢. Given functions 𝑓 in 𝒢 and 𝑢0 on ∂𝒢 ∖Σ1, find a function 𝑢 on 𝒢 ∖Σ1 which
satisfies

−𝑢′′𝑥,𝑥 + 𝑢′𝑡 = 𝑓 in 𝒢,

𝑢 = 𝑢0 on ∂𝒢 ∖ Σ1,
(3.1)

cf. Section 1. By the local principle of Simonenko [25], the Fredholm property of
problem (3.1) in suitable function spaces is equivalent to the local invertibility of
this problem at each point of the closure of 𝒢. Here we focus upon the points
like 𝑃3.

Assume that the domain 𝒢 is described in a neighborhood of the point 𝑃3 =
(𝑥0, 𝑡0) by the inequality

𝑡 − 𝑡0 > 𝔣(∣𝑥 − 𝑥0∣), (3.2)

where 𝔣 is a monotone increasing 𝐶∞ function of 𝑟 ∈ (0, 1] with 𝔣(0+) = 0. We
take 𝑃3 to be the origin.

We now blow up the domain 𝒢 at the point 𝑃3 by introducing new coordinates
(𝜔, 𝑟) with the aid of

𝑥 = 𝔣−1(𝑟)𝜔,

𝑡 = 𝑟,
(3.3)

where ∣𝜔∣ < 1 and 𝑟 ∈ (0, 𝔣(1)]. By definition, the new coordinates are singular at
𝑟 = 0, for the entire segment [−1, 1] on the 𝜔 -axis is blown down into the origin by
(3.3). The rectangle (−1, 1)× (0, 𝔣(1)] transforms under the change of coordinates
(3.3) into the part of the domain 𝒢 nearby 𝑃3 lying below the line 𝑡 = 𝔣(1).

In the domain of coordinates (𝜔, 𝑟) problem (3.1) reduces to an ordinary dif-
ferential equation with respect to the variable 𝑟 with operator-valued coefficients.



6 A. Antoniouk and N. Tarkhanov

More precisely, under transformation (3.3) the derivatives in 𝑡 and 𝑥 change by
the formulas

∂𝑢

∂𝑡
=

∂𝑢

∂𝑟
− 1

𝔣−1(𝑟)𝔣′(𝔣−1(𝑟))
𝜔
∂𝑢

∂𝜔
,

∂𝑢

∂𝑥
=

1

𝔣−1(𝑟)
∂𝑢

∂𝜔
,

and so (3.1) transforms into

(𝔣−1(𝑟))2𝑈 ′
𝑟 − 𝑈 ′′

𝜔,𝜔 − 𝔣−1(𝑟)
𝔣′(𝔣−1(𝑟))

𝜔𝑈 ′
𝜔 = (𝔣−1(𝑟))2𝐹 in (−1, 1)× (0, 𝔣(1)),

𝑈 = 𝑈0 on {±1} × (0, 𝔣(1)],

(3.4)

where 𝑈(𝜔, 𝑟) and 𝐹 (𝜔, 𝑟) are pullbacks of 𝑢(𝑥, 𝑡) and 𝑓(𝑥, 𝑡) under transformation
(3.3), respectively.

We are interested in the local solvability of problem (3.4) near the edge 𝑟 = 0
in the rectangle (−1, 1) × (0, 𝔣(1)). Note that the ordinary differential equation
degenerates at 𝑟 = 0, since the coefficient (𝔣−1(𝑟))2 of the higher-order derivative
in 𝑟 vanishes at 𝑟 = 0. In order to handle this degeneration in an orderly fashion,
we find a change of coordinate 𝑠 = 𝛿(𝑟) in an interval (0, 𝑟0] with some 𝑟0 < 𝔣(1),
such that

(𝔣−1(𝑟))2
𝑑

𝑑𝑟
=

𝑑

𝑑𝑠
.

Such a function 𝛿 is determined uniquely up to a constant from the equation
𝛿′(𝑟) = (𝔣−1(𝑟))−2 and is given by

𝛿(𝑟) = 𝛿(𝑟0) +

∫ 𝑟
𝑟0

𝑑𝜗

(𝔣−1(𝜗))2
(3.5)

for 𝑟 ∈ (0, 𝔣(1)]. The constant 𝛿(𝑟0) is not essential, one can choose 𝛿(𝑟0) = 0.
Problem (3.4) becomes

𝑈 ′
𝑠 − 𝑈 ′′

𝜔,𝜔 +
𝑑

𝑑𝑠
log

√
𝛿′(𝛿−1(𝑠))𝜔𝑈 ′

𝜔 =
𝐹

𝛿′(𝛿−1(𝑠))
in (−1, 1)× 𝛿(0, 𝔣(1)),

𝑈 = 𝑈0 on {±1} × 𝛿(0, 𝔣(1)],

(3.6)
where we use the same letter to designate 𝑈 and the push-forward of 𝑈 under the
transformation 𝑠 = 𝛿(𝑟), and 𝛿(0, 𝔣(1)) = (𝛿(0), 𝛿(𝔣(1))).

Example. After [10], consider 𝔣(𝑟) = 𝑟𝑝 with 𝑝 > 0. Then

𝛿(𝑟) =

⎧⎨⎩ 𝛿(𝑟0) +
𝑝

𝑝 − 2

(
𝑟
𝑝−2
𝑝 − 𝑟

𝑝−2
𝑝

0

)
, if 𝑝 ∕= 2,

𝛿(𝑟0) + log
𝑟

𝑟0
, if 𝑝 = 2.
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For 𝑝 > 2, the value 𝛿(0) is obviously finite. For 𝑝 ∈ (0, 2], we get 𝛿(0+) = −∞.
Choosing

𝛿(𝑟0) =

⎧⎨⎩ 𝑝

𝑝 − 2
𝑟
𝑝−2
𝑝

0 , if 𝑝 ∕= 2,

log 𝑟0, if 𝑝 = 2,

we arrive at the local boundary value problem

𝑈 ′
𝑠 − 𝑈 ′′

𝜔,𝜔 +
1

2−𝑝

1

𝑠
𝜔𝑈 ′
𝜔 =

(𝑝−2
𝑝

𝑠
) 2
𝑝−2

𝐹 in (−1, 1)× (𝛿(0), 𝑝/(𝑝 − 2)),

𝑈 = 𝑈0 on {±1} × (𝛿(0), 𝑝/(𝑝 − 2)],

(3.7)

for 𝑝 ∕= 2, and

𝑈 ′
𝑠 − 𝑈 ′′

𝜔,𝜔 − 1

2
𝜔𝑈 ′
𝜔 = 𝑒𝑠𝐹 in (−1, 1)× (−∞, 0),

𝑈 = 𝑈0 on {±1} × (−∞, 0],
(3.8)

for 𝑝 = 2.

This example demonstrates rather strikingly that the value 𝛿(0) actually char-
acterizes the threshold of weak singularities in the first boundary value problem
for the heat equation. If 𝛿(0+) is finite, one can certainly assume that 𝛿(0+) = 0,
for if not, we take 𝑟0 = 0 and choose 𝛿(𝑟0) = 0. Then 𝛿−1(0+) = 0 and so
𝛿′(𝛿−1(0+)) = +∞, i.e., the coefficient of 𝑈 ′

𝜔 in (3.6) blows up at 𝛿(0+). This
manifests singularities of solutions at 𝑠 = 0. On the other hand, if 𝛿(0+) = −∞,
then the coefficient of 𝑈 ′

𝜔 in (3.6) need not blow up at 𝛿(0+), as is seen from
(3.7) and (3.8). In the case 𝛿(0) = −∞ the boundary value problem (3.4) can be
specified within the calculus of pseudodifferential operators with operator-valued
symbols on the real axis 𝑠 ∈ ℝ developed by Rabinovich et al. in [24]. The symbols
under considerations take their values in the space of boundary value problems on
the interval 𝜔 ∈ [−1, 1].

For those pseudodifferential operators whose symbols are slowly varying at
the point 𝑠 = −∞, the paper [24] gives a criterion of local solvability at −∞. Note
that this criterion does not apply directly to problem (3.6), for [24] deals with
classical polyhomogeneous symbols while our problem requires quasihomogeneous
symbols. However, the approach of [24] still works in the anisotropic case while
the derivatives in 𝑠 are counted with weight factor 2.

The symbol of problem (3.6) is slowly varying at 𝑠 = −∞ if and only if, for
each 𝑗 = 1, 2, . . ., an inequality

sup
𝑠∈(−∞,𝛿(𝑟0))

∣∣∣( 𝑑

𝑑𝑠

)𝑗
log

√
𝛿′(𝛿−1(𝑠))

∣∣∣ < ∞ (3.9)

is valid. Inequalities (3.9) can be easily reformulated in terms of the original func-
tion 𝔣, namely,

sup
𝑟∈(0,𝑟0)

∣∣∣((𝔣−1(𝑟))2 𝑑

𝑑𝑟

)𝑗
log 𝔣−1(𝑟)

∣∣∣ < ∞
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for all 𝑗 = 1, 2, . . .. From the Hardy-Littlewood inequality it follows that, under
these conditions, if moreover 𝑗 > 1, then the left-hand side is arbitrarily small if
𝑟0 is small enough.

4. Further reduction

From now on we will tacitly assume that the coefficients of (3.6) are slowly varying
at 𝑠 = −∞, i.e., (3.9) is fulfilled.

Using transformations rather standard in Sturm-Liouville’s theory we reduce
problem (3.6) to a simpler form. Set

𝑏(𝑠) =
𝑑

𝑑𝑠
log

√
𝛿′(𝛿−1(𝑠)),

𝐹 =
𝐹

𝛿′(𝛿−1(𝑠))
,

then (3.6) rewrites as

𝑈 ′
𝑠 − 𝑈 ′′

𝜔,𝜔 + 𝑏(𝑠)𝜔𝑈 ′
𝜔 = 𝐹 in (−1, 1)× 𝛿(0, 𝔣(1)),

𝑈 = 𝑈0 on {±1} × 𝛿(0, 𝔣(1)].

Introduce

𝑎(𝜔, 𝑠) = exp
(

− 1

2
𝜔2𝑏(𝑠)

)
which is a bounded 𝐶∞ function with positive values on the closed cylinder
[−1, 1]× 𝛿(0, 𝔣(1)]. An easy computation shows that problem (3.6) transforms to

𝑈 ′
𝑠 −

1

𝑎
(𝑎𝑈 ′

𝜔)𝜔 = 𝐹 in (−1, 1)× 𝛿(0, 𝔣(1)),

𝑈 = 𝑈0 on {±1} × 𝛿(0, 𝔣(1)].

On replacing the unknown function by 𝑈 =
1√
𝑎
𝑣 we finally arrive at the boundary

value problem

𝑣′𝑠 − 𝑣′′𝜔,𝜔 + 𝑐𝑣 =
√

𝑎𝐹 in (−1, 1)× 𝛿(0, 𝔣(1)),

𝑣 =
√

𝑎𝑈0 on {±1} × 𝛿(0, 𝔣(1)],
(4.1)

where

𝑐(𝜔, 𝑠) =
(
√

𝑎)′′𝜔,𝜔 − (
√

𝑎)′𝑠√
𝑎

,

cf. [6, v. I, p. 250].

Example. If 𝔣(𝑟) = 𝑟𝑝, then

𝑐(𝜔, 𝑠) =

⎧⎨⎩
−1
2
𝑏(𝑠) +

1

4

𝑝 − 1

(𝑝 − 2)2
𝜔2

𝑠2
, if 𝑝 ∕= 2,

−1
2
𝑏(𝑠) +

(1
4
𝜔
)2

, if 𝑝 = 2.
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In the general case we get

𝑐(𝜔, 𝑠) = −1
2
𝑏(𝑠) +

1

4
𝜔2

(
(𝑏(𝑠))2 + 𝑏′(𝑠)

)
(4.2)

where 𝑏 is a 𝐶∞ function slowly varying at 𝑠 = −∞. It follows that 𝑐 inherits this
behavior at 𝑠 = −∞ uniformly in 𝜔 ∈ [−1, 1].

Our approach to solving problem (4.1) is fairly standard in the theory of
linear equations. On choosing a proper scale of weighted Sobolev spaces in the
strip 𝒞 = [−1, 1]× ℝ and taking the data 𝑣0 =

√
𝑎𝑈0 in the corresponding trace

spaces on the boundary 𝜔 = ±1 of 𝒞 we can assume without loss of generality
that 𝑣0 ≡ 0. We think of (4.1) as a perturbation of the problem with homogeneous
boundary conditions

𝑣′𝑠 − 𝑣′′𝜔,𝜔 =
√

𝑎𝐹 in 𝒞,
𝑣 = 0 on ∂𝒞. (4.3)

This is exactly the first boundary value problem for the heat equation in the
cylinder 𝒞 which is nowadays well understood, cf. for instance Chapter 3 in [28]. If
𝑔 =

√
𝑎𝐹 vanishes, problem (4.3) possesses infinitely many linearly independent

solutions of the form

𝑣𝑛(𝜔, 𝑠) = 𝑐𝑛 exp
(

−
(𝜋

2
𝑛
)2

𝑠
)
sin

𝜋

2
𝑛(𝜔 + 1) (4.4)

with 𝑛 a natural number. In order to eliminate the solutions with 𝑛 large enough
it is necessary to pose growth restrictions on 𝑣(𝜔, 𝑠) for 𝑠 → −∞. As but one
possibility to do that we mention Sobolev spaces with exponential and powerlike
weight factors, see [24]. Since the coefficients of the operator are stationary, the
Fourier transform in 𝑠 applies to reduce the problem to a Sturm-Liouville eigen-
value problem on the interval (−1, 1), see Chapter 5 in [6, v. 1]. Instead of the
Fourier transform one can use orthogonal decompositions over the eigenfunctions,
which leads immediately to asymptotics of solutions of the unperturbed problem
at 𝑠 = −∞.

On returning to problem (4.1) we observe that it differs from the unperturbed
problem by the multiplication operator 𝑣 �→ 𝑐𝑣. If the unperturbed problem is
Fredholm and the perturbation 𝑣 �→ 𝑐𝑣 is compact, then the perturbed problem is
Fredholm as well. The local version of this assertion states that if the unperturbed
problem is invertible and the perturbation 𝑣 �→ 𝑐𝑣 is small, then the perturbed
problem is also invertible. Since, under our assumptions, 𝑐(𝜔, 𝑠) → 0 uniformly
in 𝜔 ∈ [−1, 1], as 𝑠 → −∞, the operator 𝑣 �→ 𝑐𝑣 is compact in natural scales of
weighted Sobolev spaces.

5. The unperturbed problem

In this section we treat problem (4.3) in the infinite strip 𝒞 = (−1, 1) × ℝ. We
are interested in a solution of this problem in a half-strip 𝑠 ∈ (−∞, 𝑆), where
𝑆 = 𝛿(𝔣(1)).
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A solution can be found by the Fourier method of separation of variables, see
for instance § 2 of Chapter 3 in [28]. We first look for a solution of the corresponding
homogeneous problem of the form 𝑣(𝜔, 𝑠) = 𝑣1(𝜔)𝑣2(𝑠), obtaining two eigenvalue
problems for determining the functions 𝑣1(𝜔) and 𝑣2(𝑠). The first of the two looks
like

𝑣′′1 = 𝜆 𝑣1 for 𝜔 ∈ (−1, 1),
𝑣1(±1) = 0.

(5.1)

It has a nonzero solution only for the values 𝜆𝑛 = − (
𝜋
2 𝑛

)2
, where 𝑛 ∈ ℕ. The

solution is

𝑣1,𝑛(𝜔) = sin
√

−𝜆𝑛(𝜔 + 1) (5.2)

up to a constant factor. Substituting 𝜆 = 𝜆𝑛 into the equation for 𝑣2(𝑠), we
readily find 𝑣2,𝑛(𝑠) = exp(𝜆𝑛𝑠) up to a constant factor. We have thus constructed
a sequence of solutions

𝑣𝑛(𝜔, 𝑠) = 𝑐𝑛 exp(𝜆𝑛𝑠) sin
√

−𝜆𝑛(𝜔 + 1)

to the homogeneous problem (4.3), cf. (4.4). Note that each solution 𝑣𝑛 is un-
bounded at 𝑠 = −∞.

This is a general property of Sturm-Liouville eigenvalue problems that system
(5.2) is orthogonal and complete in 𝐿2(−1, 1). Moreover, this system is orthonor-
mal, as is easy to check.

Let now 𝑔 be an arbitrary function on 𝒞, such that 𝑔(⋅, 𝑠) ∈ 𝐿2(−1, 1) for each
𝑠 < 𝑆. For any fixed 𝑠 < 𝑆, we represent 𝑔 as Fourier series over the orthonormal
basis (5.2)

𝑔(𝜔, 𝑠) =

∞∑
𝑛=1

𝑔𝑛(𝑠) sin
√

−𝜆𝑛(𝜔 + 1),

where

𝑔𝑛(𝑠) =

∫ 1

−1
𝑔(𝜔, 𝑠) sin

√
−𝜆𝑛(𝜔 + 1) 𝑑𝜔.

We seek for a solution 𝑣 of problem (4.3) in the form of Fourier series over the
eigenfunctions of problem (5.1), i.e.,

𝑣(𝜔, 𝑠) =

∞∑
𝑛=1

𝑣𝑛(𝑠) sin
√

−𝜆𝑛(𝜔 + 1),

𝑠 being thought of as parameter. The function 𝑣(𝜔, 𝑠) satisfies the boundary con-
ditions of (4.3), since all summands of the series satisfy them. Substituting the
series into (4.3) yields

∞∑
𝑛=1

(𝑣′𝑛(𝑠)− 𝜆𝑛𝑣𝑛(𝑠)− 𝑔𝑛(𝑠)) sin
√

−𝜆𝑛(𝜔 + 1) = 0
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for all 𝜔 ∈ (−1, 1). This equation is satisfied if and only if all the coefficients
vanish, i.e.,

𝑣′𝑛(𝑠)− 𝜆𝑛𝑣𝑛(𝑠) = 𝑔𝑛(𝑠) (5.3)

for 𝑠 < 𝑆.
It is worth pointing out that no initial conditions for 𝑣𝑛(𝑠) are available, and

so 𝑣𝑛(𝑠) is not determined uniquely. On solving this ordinary differential equation
we get

𝑣𝑛(𝑠) =

∫ 𝑠
𝑠𝑛

𝑒𝜆𝑛(𝑠−𝑠
′)𝑔𝑛(𝑠

′)𝑑𝑠′, (5.4)

where 𝑠𝑛 < 𝑆 is an arbitrary constant. The change of 𝑠𝑛 results in an additional
multiple of 𝑒𝜆𝑛𝑠, for∫ 𝑠

𝑠𝑛

𝑒𝜆𝑛(𝑠−𝑠
′)𝑔𝑛(𝑠

′)𝑑𝑠′ −
∫ 𝑠
𝑠𝑛+Δ𝑠𝑛

𝑒𝜆𝑛(𝑠−𝑠
′)𝑔𝑛(𝑠

′)𝑑𝑠′ = 𝑐𝑛 𝑒𝜆𝑛𝑠

with 𝑐𝑛 =

∫ 𝑠𝑛+Δ𝑠𝑛

𝑠𝑛

𝑒−𝜆𝑛𝑠
′
𝑔𝑛(𝑠

′)𝑑𝑠′.

We have thus proved

Lemma 5.1. Suppose that 𝑔 is an arbitrary function on the cylinder 𝒞 satisfying
𝑔(⋅, 𝑠) ∈ 𝐿2(−1, 1) for all 𝑠 < 𝑆. Then problem (4.3) has formal solution of the
form

𝑣(𝜔, 𝑠) =

∞∑
𝑛=1

( ∫ 𝑠
𝑠𝑛

𝑒𝜆𝑛(𝑠−𝑠
′)𝑔𝑛(𝑠

′)𝑑𝑠′
)
sin

√
−𝜆𝑛(𝜔 + 1).

If we pose the additional condition 𝑣(𝜔, 𝑠0) = 0 for some 𝑠0 < 𝑆, then the
functions 𝑣𝑛(𝑠) should fulfill the initial condition 𝑣𝑛(𝑠0) = 0. In this case 𝑣𝑛 are
uniquely determined by formulas (5.4) with 𝑠𝑛 = 𝑠0 for all 𝑛 ∈ ℕ, which leads to
the uniqueness of the formal solution. In our setting the elimination of all nontrivial
solutions of the homogeneous problem except for a finite number is achieved by
requiring the solution to belong to a scale of Sobolev spaces with exponential
weight functions.

6. Asymptotic solutions

We can now return to the study of perturbed problem (4.1). The corresponding
equation we write in the form

𝑣′𝑠 + 𝐶(𝑠)𝑣 = 𝑔 (6.1)

where

𝐶(𝑠) = −
( 𝑑

𝑑𝜔

)2
+ 𝑐(𝜔, 𝑠)

is a continuous function on (−∞, 𝑆) with values in second-order ordinary differ-
ential operators on (−1, 1). We think of 𝐶(𝑠) as unbounded operator in 𝐿2(−1, 1)
whose domain consists of all 𝑣 ∈ 𝐻2(−1, 1) satisfying 𝑣(−1) = 𝑣(1) = 0. As but
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one result of the theory of Sturm-Liouville boundary value problems we mention
that 𝐶(𝑠) is closed.

As usual in the theory of ordinary differential equations with operator-valued
coefficients, we associate the operator pencil 𝔰(𝑠, 𝜎) = (𝚤𝜎) + 𝐶(𝑠) with (6.1). It
depends on parameters 𝑠 ∈ (−∞, 𝑆) and 𝜎 ∈ ℂ. Our basic assumption is that
𝔰(𝑠, 𝜎) stabilizes to an operator pencil 𝔰(−∞, 𝜎) independent of 𝑠, as 𝑠 → −∞.
This just amounts to saying that the coefficient 𝑐(𝜔, 𝑠) extends continuously to
𝑠 = −∞. We tacitly assume that 𝑐(−∞, 𝜔) ≡ 0, for we are interested in true
cusps, see Figure 2.

Lemma 6.1. Let 𝑘 ≥ 1 be integer. When acting from 𝐻2𝑘(−1, 1) ∩
∘
𝐻1(−1, 1) to

𝐻2(𝑘−1)(−1, 1), the operator 𝔰(−∞, 0) = 𝐶(−∞) is invertible.

Proof. See Section 5. □

Moreover, 𝔰(−∞, 𝜎) acting from 𝐻2𝑘(−1, 1) ∩
∘
𝐻(−1, 1) to 𝐻2(𝑘−1)(−1, 1)

has a bounded inverse everywhere in the entire complex plane ℂ except for the
discrete set

𝜎𝑛 = −𝚤𝜆𝑛 = 𝚤
(𝜋

2
𝑛
)2

with 𝑛 ∈ ℕ. It is worth pointing out that 𝔰(−∞, 𝜎)−1 = ℛ𝐶(−∞)(−𝚤𝜎), the resol-
vent of 𝐶(−∞) at −𝚤𝜎.

Lemma 6.2. There exists a constant 𝑐 with the property that, for all complex 𝜎
lying away from any angular sector containing the positive imaginary axis, the
inequality

∥𝑣∥2𝐻2𝑘(−1,1) + ∣𝜎∣2𝑘∥𝑣∥2𝐿2(−1,1)

≤ 𝑐
(
∥𝔰(−∞, 𝜎)𝑣∥2𝐻2(𝑘−1)(−1,1) + ∣𝜎∣2(𝑘−1)∥𝔰(−∞, 𝜎)𝑣∥2𝐿2(−1,1)

)
is fulfilled whenever 𝑣 ∈ 𝐻2𝑘(−1, 1) ∩

∘
𝐻1(−1, 1) with 𝑘 ≥ 1.

Proof. The operator pencils 𝔰(−∞, 𝜎) with this property are said to be anisotropic
elliptic. See [2] for a more general estimate. □

If 𝔰(𝑠, 𝜆) stabilizes at 𝑠 = −∞ then the singularity at 𝑠 = −∞ gives rise
to a finite number of singular solutions. However, an irregular singular point is a
complicated conglomeration of singularities, which does not allow one to construct
explicit asymptotic formulas.

By a solution of (6.1) is meant any function 𝑣(𝑠) with values in 𝐻2(−1, 1)
satisfying 𝑣(−1) = 𝑣(1) = 0, which has a strong derivative in 𝐿2(−1, 1) for almost
all 𝑠 < 𝑆, and which fulfills (6.1).

Lemma 5.1 suggests readily a scale of Hilbert spaces to control the solutions.
For any 𝑘 = 0, 1, . . . and 𝛾 ∈ ℝ, we introduce 𝐻𝑘,𝛾(−∞, 𝑆) to be the space of all
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functions on (−∞, 𝑆) with values in 𝐻2𝑘(−1, 1), such that the norm

∥𝑣∥𝐻𝑘,𝛾(−∞,𝑆) :=
(∫ 𝑆

−∞
𝑒−2𝛾𝑠

𝑘∑
𝑗=0

∥𝑣(𝑗)(𝑠)∥2𝐻2(𝑘−𝑗)(−1,1)𝑑𝑠
)1/2

is finite, cf. Slobodetskii [26]. In particular,𝐻0,𝛾(−∞, 𝑆) consists of all square inte-
grable functions on (−∞, 𝑆) with values in 𝐿2(−1, 1) with respect to the measure
𝑒−2𝛾𝑠𝑑𝑠.

Recall that the numbers 𝜎𝑛 are called eigenvalues of the operator pencil
𝔰(−∞, 𝜎), for there are nonzero functions 𝜑𝑛 = 𝑣1,𝑛 in 𝐻2(−1, 1) vanishing at ±1
and satisfying 𝔰(−∞, 𝜎𝑛)𝜑𝑛 = 0. The functions 𝜑𝑛 are called eigenfunctions of
𝔰(−∞, 𝜎) at 𝜎𝑛.

We now bring three theorems on asymptotic behavior of solutions of homoge-
neous problem (6.1) as 𝑠 → −∞. They fit well the abstract theory of [19]. However,
[19] is a straightforward generalisation of the asymptotic formula of Evgrafov [7]
for solutions of first-order equations to equations of an arbitrary order. Our results
go thus back at least as far as [7] while we refer to the more available paper [19].

Theorem 6.3. Let 𝑐(𝜔, 𝑠) → 𝑐(𝜔,−∞) in the 𝐿2(−1, 1) -norm when 𝑠 → −∞.
Suppose that in the strip −𝜇 < ℑ𝜎 < −𝛾 there lie exactly 𝑁 of the eigenvalues
𝜎𝑛, and that there are no eigenvalues 𝜎𝑛 on the lines ℑ𝜎 = −𝜇 and ℑ𝜎 = −𝛾.
Then the solution 𝑣 ∈ 𝐻1,𝛾(−∞, 𝑆) of problem (6.1) with 𝑔 ∈ 𝐻0,𝜇(−∞, 𝑆) has
the form

𝑣(𝑠) = 𝑐1 𝑠1(𝑠) + ⋅ ⋅ ⋅+ 𝑐𝑁 𝑠𝑁 (𝑠) + 𝑅(𝑠)

where 𝑠1, . . . , 𝑠𝑁 are solutions of the homogeneous problem in 𝐻1,𝛾(−∞, 𝑆) which
do not depend on 𝑣, 𝑐1, . . . , 𝑐𝑁 constants, and 𝑅 ∈ 𝐻1,𝜇(−∞, 𝑆).

Proof. An easy computation using the continuous embedding

𝐻1(−1, 1) ↪→ 𝐶[−1, 1]
shows that from the convergence of 𝑐(𝑠, ⋅) to 𝑐(−∞, ⋅) in the 𝐿2(−1, 1) -norm it
follows that 𝐶(𝑠) → 𝐶(−∞) in the operator norm of ℒ(𝐻2(−1, 1), 𝐿2(−1, 1)), as
𝑠 → −∞. Hence the desired conclusion is a direct consequence of Theorem 3 in
[19] with

𝐻0 = 𝐿2(−1, 1),
𝐻1 = 𝐻2(−1, 1) ∩

∘
𝐻1(−1, 1). □

Thus, any solution 𝑣 ∈ 𝐻1,𝛾(−∞, 𝑆) of (6.1) with a “good” right-hand side
𝑔 can be written as the sum of several singular functions and a “remainder” which
behaves better at infinity. The singular functions 𝑠1, . . . , 𝑠𝑁 are linearly indepen-
dent and do not depend on the particular solution 𝑣. What is still lacking is that
they are not explicit.

The concept of stabilization we have so far used falls outside the framework
of “small perturbations.” To meet this heuristic concept, we need some further
restrictions on the speed at which 𝐶(𝑠) tends to 𝐶(−∞) when 𝑠 → −∞. Let
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𝜎𝑛 be a fixed eigenvalue of the limit pencil 𝔰(−∞, 𝜎). Assume moreover that the
pencil 𝔰(𝑠, 𝜎) stabilizes to 𝔰(−∞, 𝜎) as 𝑠 → −∞. Since 𝜎𝑛 is a simple eigenvalue
of 𝔰(−∞, 𝜎), for 𝑠 sufficiently large there exists a simple eigenvalue 𝜎𝑛(𝑠) of the
pencil 𝔰(𝑠, 𝜎) which tends to 𝜎𝑛 as 𝑠 → −∞. We write 𝜑𝑛(𝑠) for the corresponding
eigenfunction with ∥𝜑𝑛(𝑠)∥𝐿2(−1,1) = 1.

Theorem 6.4. Suppose ∫ 𝑠0
−∞

𝑠2 ∥𝑐′(⋅, 𝑠)∥2𝐿2(−1,1)𝑑𝑠 < ∞

for some (and so for all) 𝑠0 ≤ 𝑆. Let 𝑣(𝑠) be a solution of homogeneous equation
(6.1) for 𝑠 < 𝑆, such that 𝑣 ∈ 𝐻1,𝛾(−∞, 𝑆) with 𝜆𝑛+1 < 𝛾 < 𝜆𝑛. Then,

𝑣(𝑠) = 𝑒
−𝚤

∫ 𝑆
𝑠

𝜎𝑛(𝑠
′)𝑑𝑠′

(𝑐 𝜑𝑛(𝑠) +𝑅(𝑠)) (6.2)

where 𝑐 is a constant and 𝑅 ∈ 𝐻1,0(−∞, 𝑆).

Proof. By Theorem 1 of [19], it suffices to verify if, under the assumption of The-
orem 6.4, the integral ∫ 𝑠0

−∞
𝑠2 ∥𝐶′(𝑠)∥2ℒ(𝐻1,𝐻0)

𝑑𝑠

is finite, where 𝐻0 and 𝐻1 are the same spaces as in the proof of Theorem 6.3.
To this end we pick any 𝑣 ∈ 𝐻2(−1, 1). The Sobolev embedding theorem implies
that 𝑣 is actually continuous on the interval [−1, 1] and the 𝐶[−1, 1] -norm of 𝑣
is dominated by 𝐶 ∥𝑣∥𝐻1(−1,1) with 𝐶 a constant independent of 𝑣. By Hölder’s
inequality,

∥𝐶 ′(𝑠)𝑣∥𝐻0 =
( ∫ 1

−1
∣𝑐′(𝜔, 𝑠)𝑣(𝜔)∣2 𝑑𝜔

)1/2
≤ ∥𝑐′(⋅, 𝑠)∥𝐿2(−1,1) ∥𝑣∥𝐶[−1,1],

and so

∥𝐶′(𝑠)𝑣∥𝐻0 ≤ 𝐶 ∥𝑐′(⋅, 𝑠)∥𝐿2(−1,1) ∥𝑣∥𝐻1 .

Hence it follows that ∥𝐶′(𝑠)∥ℒ(𝐻1,𝐻0) ≤ 𝐶 ∥𝑐′(⋅, 𝑠)∥𝐿2(−1,1), establishing the de-
sired estimate. □

Were 𝜎𝑛(𝑠) independent of 𝑠, we would deduce under the assumptions of
Theorem 6.4 that

𝑒
−𝚤

∫ 𝑆
𝑠

𝜎𝑛(𝑠
′)𝑑𝑠′

𝑅(𝑠) = 𝑒−𝜆𝑛(𝑆−𝑠)𝑅(𝑠)

∈ 𝐻1,𝜆𝑛(−∞, 𝑆)

which belongs to 𝐻1,𝛾(−∞, 𝑆). Hence, the remainder in formula (6.2) behaves
better than 𝑣(𝑠) itself, as 𝑠 → −∞, showing the asymptotic character of this
formula.
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If the coefficient 𝑐(𝜔, 𝑠) bears a transparent structure close to the point at
(minus) infinity, then the asymptotic behavior of solutions can be described more
precisely. Suppose

𝑐(𝜔, 𝑠) =

𝐽∑
𝑗=0

𝑐𝑗(𝜔)
1

𝑠𝑗
+ 𝑐𝐽+1(𝜔, 𝑠)

1

𝑠𝐽+1
(6.3)

on the interval (−∞, 𝑆), where 𝑐𝑗 are smooth functions on [−1, 1] for 𝑗 ≤ 𝐽 , and
𝑐𝐽+1 a smooth function on [−1, 1]× (−∞, 𝑆) satisfying

∥𝑐𝐽+1(⋅, 𝑠)∥𝐿2(−1,1) ≤ 𝐶,

∥𝑐′𝐽+1(⋅, 𝑠)∥𝐿2(−1,1) ≤ 𝐶

𝑠
for 𝑠 → −∞.

Theorem 6.5. Under the above assumptions, any solution 𝑣(𝑠) of homogeneous
problem (6.1) which belongs to the space 𝐻1,𝛾(−∞, 𝑆) with 𝜆𝑛+1 < 𝛾 < 𝜆𝑛, has
the form

𝑣(𝑠) = 𝑠𝚤𝜎0 𝑒𝜆𝑛𝑠
(
𝑐 sin

√
−𝜆𝑛(𝜔 + 1) + 𝑐

𝐽−1∑
𝑗=1

𝜓𝑗(𝜔)
1

𝑠𝑗
+𝑅(𝑠)

1

𝑠𝐽

)
where 𝑐 is a constant depending on the solution 𝑣(𝑠), the constant 𝜎0 and the
functions 𝜓𝑗 ∈ 𝐻2(−1, 1) vanishing at ±1 do not depend on the solution, and
𝑅 ∈ 𝐻1,0(−∞, 𝑆).

Proof. This follows from Theorem 2 of [19] if one takes into account the compu-
tations of Section 5. □

The constant 𝜎0 and the functions 𝜓𝑗 are computed by means of a finite
number of algebraic operations.

7. Local solvability at a cusp

Changing the coordinates by

𝜔 =
𝑥

𝔣−1(𝑡)
,

𝑠 = 𝛿(𝑡),

we return to the coordinates (𝑥, 𝑡) in the domain 𝒢 close to the boundary point
𝑃3 = (0, 0), see Figure 2. Then Theorems 6.3 and 6.4 are traced back to solutions
of the heat equation 𝑢′𝑡−𝑢′′𝑥,𝑥 = 𝑓 with zero Dirichlet data near the cuspidal point
in 𝒢. We get

𝑣(𝜔, 𝑠) =
√

𝑎(𝜔, 𝑠)𝑢(𝑥, 𝑡),

𝑔(𝜔, 𝑠) =
√

𝑎(𝜔, 𝑠) (𝔣−1(𝑡))2𝑓(𝑥, 𝑡),

where 𝑎(𝜔, 𝑠) = exp
1

4

𝑥2

𝔣−1(𝑡)𝔣′(𝔣−1(𝑡))
.
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Let 𝐻𝑘,𝛾(0, 𝑇 ) consist of all functions 𝑢(𝑡, 𝑥) defined for 0 < 𝑡 < 𝑇 = 𝔣(1)
and ∣𝑥∣ < 𝔣−1(𝑡), such that

√
𝑎 𝑢((𝛿 ∘ 𝔣)−1(𝑠)𝜔, 𝛿−1(𝑠)) belongs to 𝐻𝑘,𝛾(−∞, 𝑆).

We endow 𝐻𝑘,𝛾(0, 𝑇 ) with a norm in an obvious way. This scale of Hilbert spaces
fits well to control the solutions of the heat equation near the singular point 𝑃3 in
the domain 𝒢.

Since

∂

∂𝑠
= (𝔣−1(𝑡))2

∂

∂𝑡
+

𝔣−1(𝑡)
𝔣′(𝔣−1(𝑡))

𝑥
∂

∂𝑥
,

∂

∂𝜔
= 𝔣−1(𝑡)

∂

∂𝑥
,

the norm in 𝐻𝑘,𝛾(0, 𝑇 ) under natural assumptions on 𝔣 proves to be equivalent to
the norm

∥𝑢∥𝐻𝑘,𝛾(0,𝑇 )

:=
(∫∫

𝒢0

𝑒−2𝛾𝛿(𝑡)
∑

2𝑗+∣𝛼∣≤2𝑘
∣((𝔣−1(𝑡))2∂𝑡)𝑗(𝔣−1(𝑡)∂𝑥)𝛼

(√
𝑎𝑢
) ∣2 𝑑𝑥𝑑𝑡

(𝔣−1(𝑡))3
)1/2

,

where 𝒢0 is the part of 𝒢 nearby 𝑃3 lying below the line 𝑡 = 𝔣(1).

Theorem 7.1. Let 𝑐(𝜔, 𝑠) → 𝑐(𝜔,−∞) in the 𝐿2(−1, 1) -norm when 𝑠 → −∞.
Suppose in the strip −𝜇 < ℑ𝜎 < −𝛾 there lie exactly 𝑁 of the eigenvalues 𝜎𝑛
and there are no eigenvalues 𝜎𝑛 on the lines ℑ𝜎 = −𝜇 and ℑ𝜎 = −𝛾. Then the
solution 𝑢 ∈ 𝐻1,𝛾(0, 𝑇 ) of problem (3.1) with (𝔣−1(𝑡))2𝑓 ∈ 𝐻0,𝜇(0, 𝑇 ) has the form

𝑢(𝑡) = 𝑐1 𝑢1(𝑡) + . . .+ 𝑐𝑁 𝑢𝑁(𝑡) +𝑅(𝑡)

where 𝑢1, . . . , 𝑢𝑁 are linearly independent solutions of the homogeneous problem
in 𝐻1,𝛾(0, 𝑇 ) which do not depend on 𝑢, 𝑐1, . . . , 𝑐𝑁 constants, and 𝑅 ∈ 𝐻1,𝜇(0, 𝑇 ).

Proof. This follows from Theorem 6.3 with

𝑢𝑗(𝑥, 𝑡) = 𝑠𝑗

( 𝑥

𝔣−1(𝑡)
, 𝛿(𝑡)

)
for 𝑗 = 1, . . . , 𝑁 . □

Theorem 7.1 shows that any solution 𝑢 ∈ 𝐻1,𝛾(0, 𝑇 ) of (3.1) with a “good”
right-hand side 𝑓 can be written as the sum of several singular functions and a
“remainder” which behaves better at the cuspidal point 𝑃3. The singular functions
𝑢1, . . . , 𝑢𝑁 prove to be independent of the particular solution 𝑢. Unfortunately,
they are not explicit.

Let 𝜎𝑛 = −𝚤𝜆𝑛 be a fixed eigenvalue of the limit pencil 𝔰(−∞, 𝜎). Sup-
pose the pencil 𝔰(𝑠, 𝜎) stabilizes to 𝔰(−∞, 𝜎) as 𝑠 → −∞. For 𝑠 sufficiently large
there exists a simple eigenvalue 𝜎𝑛(𝑠) of the pencil 𝔰(𝑠, 𝜎) which tends to 𝜎𝑛
as 𝑠 → −∞. We write 𝜑𝑛(𝑠) for the corresponding eigenfunction normalized by
∥𝜑𝑛(𝑠)∥𝐿2(−1,1) = 1.
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Theorem 7.2. Suppose ∫ 𝑠0
−∞

𝑠2 ∥𝑐′(⋅, 𝑠)∥2𝐿2(−1,1)𝑑𝑠 < ∞

for some (and so for all) 𝑠0 ≤ 𝑆. Let 𝑢(𝑡) be a solution of homogeneous equation
(3.1) on the interval (0, 𝑇 ), such that 𝑢 ∈ 𝐻1,𝛾(0, 𝑇 ) with 𝜆𝑛+1 < 𝛾 < 𝜆𝑛. Then,

𝑢(𝑥, 𝑡) = 𝑒
−𝚤

∫ 𝛿(𝑇 )
𝛿(𝑡)

𝜎𝑛(𝑠
′)𝑑𝑠′(

𝑐
1√
𝑎
𝜑𝑛

( 𝑥

𝔣−1(𝑡)
, 𝛿(𝑡)

)
+𝑅(𝑡)

)
(7.1)

where 𝑐 is a constant and 𝑅 ∈ 𝐻1,0(0, 𝑇 ).

Proof. For the proof it suffices to apply formula (6.2) and pass to the coordinates
(𝑥, 𝑡). □

We now look for restrictions on the geometry of the singular point 𝑃3 under
which Theorem 7.2 is applicable. To this end, let 𝔣(𝑟) = 𝑟𝑝 close to 𝑟 = 0, where
𝑝 > 0. Then,

𝑐(𝜔, 𝑠) =
1

2

1

𝑝 − 2

1

𝑠
+
1

4

𝑝 − 1

(𝑝 − 2)2
𝜔2

𝑠2
,

𝑐(𝜔, 𝑠) =
1

4
+
(1
4
𝜔
)2

for 𝑝 ∕= 2 and 𝑝 = 2, respectively. Hence, the stabilization condition of Theorem
7.2 is fulfilled for all 𝑝.

We finish the paper with local solvability of the Dirichlet problem for the
heat equation nearby the boundary point 𝑃3 in 𝒢. By the local solvability at 𝑃3
is meant that there is a disk 𝐵 of small radius around 𝑃3, such that for each 𝑓
in 𝒢 with (𝔣−1(𝑡))2𝑓 ∈ 𝐻0,𝛾(0, 𝑇 ) there is a function 𝑢 ∈ 𝐻1,𝛾(0, 𝑇 ) satisfying
𝑢′𝑡− 𝑢′′𝑥,𝑥 = 𝑓 in 𝒢 ∩𝐵 and 𝑢 = 0 on ∂𝒢 ∩𝐵. Yet another designation for the local
solvability is the local invertibility from the right at 𝑃3. For a deeper discussion
of local invertibility we refer the reader to [24]. Recall that local solvability at
each point of 𝒢 is equivalent to the Fredholm property, which is due to the local
principle of [25].

Theorem 7.3. Suppose that 𝛾 ∈ ℝ is different from 𝜆𝑛 for all 𝑛 = 1, 2, . . .. Then the
Dirichlet problem for the heat equation is locally solvable at the cuspidal point 𝑃3.

Proof. As mentioned above, condition (3.9) just amounts to saying that our prob-
lems fits into the framework of analysis of pseudodifferential operators with slowly
varying symbols. Hence, the desired result follows in much the same way as Corol-
lary 23.2 of [24]. □

If 𝑢′, 𝑢′′ ∈ 𝐻1,𝛾(0, 𝑇 ) are two solutions to the Dirichlet problem in 𝒢 ∩ 𝐵,
then their difference 𝑢 = 𝑢′ − 𝑢′′ belongs to the space 𝐻1,𝛾(0, 𝑇 ) and satisfies
the Dirichlet problem with right-hand side 𝑓 being zero. By Theorem 7.2, 𝑢 has
the form 𝑢 = 𝑐1𝑢1 + ⋅ ⋅ ⋅ + 𝑐𝑁𝑢𝑁 + 𝑅, where 𝑁 is the greatest number with
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𝜆𝑁 > 𝛾, 𝑢1, . . . , 𝑢𝑁 are linearly independent solutions of the homogeneous Dirich-
let problem in 𝐻1,𝛾(0, 𝑇 ), and 𝑅 a solution of the homogeneous Dirichlet prob-
lem in 𝐻1,∞(0, 𝑇 ). The regularity theory of [24] gives even more, namely that
𝑅 ∈ 𝐻𝑘,∞(0, 𝑇 ) for all 𝑘 ∈ ℕ.

In particular, if 𝛾 > 𝜆1 := −(𝜋/2)2, then the solution 𝑢 of the Dirichlet
problem nearby 𝑃3 is determined uniquely up to a solution of the homogeneous
Dirichlet problem which belongs to 𝐻𝑘,∞(0, 𝑇 ) for each 𝑘 = 1, 2, . . .. For 𝑓 = 0, the
solution 𝑢 itself belongs to 𝐻𝑘,∞(0, 𝑇 ) for all 𝑘 = 1, 2, . . .. Hence it follows that
𝑢(0, 0+) = 0, i.e., the boundary point 𝑃3 is regular in Wiener’s sense, see [29].
This viewpoint sheds very surprisingly some new light on the connection between
regularity criteria of boundary points in Dirichlet problems and the concept of
differential operators with slowly varying coefficients. For a thorough treatment
we refer the reader to [9].
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Globally Bisingular Elliptic Operators
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Abstract. The main goal of this work is to extend the notion of bisingular
pseudo-differential operators, already introduced on compact manifolds, to
Shubin type operators on ℝ𝑛 = ℝ𝑛1 ⊕ ℝ𝑛2 , 𝑛1 + 𝑛2 = 𝑛. First, we prove
global calculus (an analogue of the Γ calculus in the work of Shubin) for such
operators, we introduce the notion of bisingular globally elliptic operators
and we derive estimates for the action in anisotropic weighted Sobolev spaces,
recently introduced by Gramchev, Pilipović, Rodino. Next, we investigate the
complex powers of such operators and we demonstrate a Weyl type theorem
for the spectral counting function of positive self-adjoint unbounded bisingular
globally elliptic operators. The crucial ingredient for the proof is the use
of the spectral zeta function. For particular classes of operators, defined as
polynomials of 𝑃1×𝑃2, 𝑃1× 𝐼ℝ𝑛2 , 𝐼ℝ𝑛1 ×𝑃2, 𝑃𝑗 being globally elliptic in ℝ𝑛𝑗 ,
𝑗 = 1, 2, we are able to estimate and, in some cases, calculate explicitly the
lower-order term in the asymptotic expansion of the spectral function.
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Keywords. Pseudo-differential operators, counting function, 𝜁-function, bisin-
gular operators.

1. Introduction

Let us recall the expression of a Shubin type differential operators with polynomial
coefficients in ℝ𝑛 ([36], see also [4, 18, 28]):

𝑃 =
∑

∣𝛼∣+∣𝛽∣≤𝑚
𝑐𝛼𝛽𝑥

𝛽𝐷𝛼𝑥 , 𝐷𝛼 = (−𝑖)∣𝛼∣∂𝛼𝑥 . (1.1)

We assume that 𝑃 is an 𝐿2- self-adjoint operator and satisfies the global ellipticity
condition

𝑝𝑚(𝑥, 𝜉) =
∑

∣𝛼∣+∣𝛽∣=𝑚
𝑐𝛼𝛽𝑥

𝛽𝜉𝛼 ∕= 0 for (𝑥, 𝜉) ∕= (0, 0). (1.2)
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This guarantees the existence of a basis of orthonormal eigenfunctions 𝑢𝑗 , 𝑗 ∈ ℕ,
with eigenvalues 𝜆𝑗 , lim𝑗→∞ ∣𝜆𝑗 ∣ = +∞, see Shubin [36] for the asymptotics of the
counting function. If 𝑢 ∈ 𝐿2(ℝ𝑛), or 𝑢 ∈ 𝒮 ′(ℝ𝑛), then

𝑢 =
∞∑
𝑗=1

𝑎𝑗𝑢𝑗, 𝑎𝑗 = (𝑢, 𝑢𝑗)𝐿2(ℝ𝑛), 𝑗 = 1, 2, . . . , (1.3)

with convergence in 𝐿2(ℝ𝑛) or 𝒮 ′(ℝ𝑛).
Let us address to [5–7, 10, 13, 22] for further information on the regularity

of the eigenfunctions. Basic examples of operators in the class considered in this
paper are tensor products of Shubin operators. Namely, let 𝑃 (𝑥,𝐷) be a linear
partial differential operator with polynomial coefficients of the form

𝑃 (𝑥,𝐷) = 𝑃1(𝑥1, 𝐷𝑥1)𝑃2(𝑥2, 𝐷𝑥2)

=

⎛⎝ ∑
∣𝛼∣+∣𝛽∣≤𝑚1

𝑐1𝛼𝛽𝑥
𝛽
1𝐷
𝛼
𝑥1

⎞⎠⎛⎝ ∑
∣𝛼∣+∣𝛽∣≤𝑚2

𝑐2𝛼𝛽𝑥
𝛽
2𝐷
𝛼
𝑥2

⎞⎠ ,
(1.4)

𝑥1 ∈ ℝ𝑛1 , 𝑥2 ∈ ℝ𝑛2,, so that 𝑃1 and 𝑃2 are self-adjoint, invertible and globally
elliptic on ℝ𝑛1 and ℝ𝑛2 , that is (1.2) holds for both operators. Spectrum and
eigenfunctions of 𝑃 are easily detected from those of 𝑃1, 𝑃2, if we note that

𝑢(𝑗1,𝑗2)(𝑥1, 𝑥2) = 𝑢1𝑗1(𝑥1)𝑢
2
𝑗2(𝑥2), 𝑗1, 𝑗2 ∈ ℕ,

is an orthonormal basis of 𝐿2(ℝ𝑛1+𝑛2), and

𝑃𝑢𝑗1,𝑗2 = 𝜆1𝑗1𝜆
2
𝑗2𝑢𝑗1,𝑗2 , 𝑗1, 𝑗2 ∈ ℕ.

The study of the counting function is interesting, and challenging. In Section 2
we shall embed example (1.4) into a general pseudo-differential calculus, including
also the case when 𝑝𝑖(𝑥,𝐷) ∈ 𝐺𝑚𝑖(ℝ𝑛𝑖) with symbol 𝑝𝑖(𝑥𝑖, 𝜉𝑖) in the classes of
Shubin

∣∂𝛽𝑖𝑥𝑖∂𝛼𝑖𝜉𝑖 𝑝(𝑥𝑖, 𝜉𝑖)∣ ≤ 𝐶⟨𝑥𝑖, 𝜉𝑖⟩𝑚𝑖−∣𝛼𝑖∣−∣𝛽𝑖∣, ⟨𝑥𝑖, 𝜉𝑖⟩ = (1 + ∣𝑥𝑖∣2 + ∣𝜉𝑖∣2) 1
2 .

In Section 3 we shall introduce a general notion of ellipticity, inspired by (1.4),
see Definition 3.1. As a consequence of Theorem 3.11, using a generalization of
Tauberian Theorem due to J. Aramaki [1], we will be able to study the counting
function of operators of the form (1.4), see Theorem 3.12. In Section 4 we focus on
the tensor product of Hermite-type operators, and we evaluate directly the first
term of the asymptotic expansion of the counting function.

Motivations of the present paper, and connection with existing literature, are
twofold. On one hand, the case when in (1.4) we have the tensor product of two
Hermite operators, or more generally tensor product of real powers of Hermite
operators in several distinct variables, is relevant in Probability, see for example
[25], and other applications. Tensorized Hermite operators were treated in [12]
from a sequential point of view, i.e., basing on eigenfunction expansions. In [12]
the authors observed also a connection with the twisted Laplacian of Wong [37],
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which was proved to be unitarily equivalent to the tensor product of the one-
dimensional Hermite operator and the identity operator. Similar ideas are present
in the subsequent papers [9, 13, 15, 16, 26, 27]. On the other hand, the structure
of our pseudo-differential class is strictly connected with the pioneering work [31],
and [29] where similar operators were dubbed as bisingular operators. Recently,
bisingular operators on compact manifolds were studied in [2] and [28], see also [3]
for analogue results in the 𝑆𝐺-setting. In particular, our results of Section 3 can
be seen as a version of [2] for global operators on ℝ𝑛1 ×ℝ𝑛2 . In conclusion, we may
also observe that our class of symbols, in the case of zero orders, is included in
the Hörmader class 𝑆0

0,0(ℝ
𝑛1+𝑛2). Hence our Theorem 3.3 enters the very general

results of [23], see also [24] and [32], where necessary and sufficient condition for
the Fredholm property were expressed in terms of invertibility of limit operators.
Let us address in particular to Theorem 1.1 in the recent paper [33].

2. Γ calculus for bisingular operators

Definition 2.1. We define Γ𝑚1,𝑚2(ℝ𝑛1+𝑛2), 𝑚1 ∈ ℝ,𝑚2 ∈ ℝ, as the subset of
𝐶∞(ℝ2𝑛1+2𝑛2) functions such that for all multiindex 𝛼𝑖, 𝛽𝑖 (𝑖 = 1, 2) there exists
a constant 𝐶 so that

∣∂𝛽1𝑥1∂𝛽2𝑥2∂𝛼1

𝜉1
∂𝛼2

𝜉2
𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2)∣ ≤ 𝐶⟨𝑥1, 𝜉1⟩𝑚1−∣𝛼1∣−∣𝛽1∣⟨𝑥2, 𝜉2⟩𝑚2−∣𝛼2∣−∣𝛽2∣, (2.1)

for all 𝑥1, 𝜉1, 𝑥2, 𝜉2.

We define

Γ−∞,−∞(ℝ𝑛1,𝑛2) =
∩

𝑚1,𝑚2∈ℝ2

Γ𝑚1,𝑚2(ℝ𝑛1+𝑛2)

as the set of smoothing symbols.

Definition 2.2. A linear operator 𝐴 : 𝐶∞
𝑐 (ℝ

𝑛1+𝑛2) → 𝐶∞(ℝ𝑛1+𝑛2) is a globally
bisingular operator if it can be written in this way1

𝐴(𝑢)(𝑥1, 𝑥2) = Op(𝑎)(𝑢)(𝑥1, 𝑥2)

=

∫∫
𝑒𝑖𝑥1⋅𝜉1+𝑖𝑥2⋅𝜉2𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2)𝑢̂(𝜉1, 𝜉2)𝑑𝜉1𝑑𝜉2

(2.2)

where 𝑎 ∈ Γ𝑚1,𝑚2(ℝ𝑛1+𝑛2). We define 𝐺𝑚1,𝑚2(ℝ𝑛1+𝑛2) as the set of operators as
in (2.2) with symbol in Γ𝑚1,𝑚2(ℝ𝑛1+𝑛2).

The 𝒮-continuity of globally bisingular operators is immediate, we just have
to check all seminorms. More interesting is the Sobolev continuity.

Theorem 2.3. An operator 𝐴 ∈ 𝐺𝑚1,𝑚2(ℝ𝑛1+𝑛2) can be extended for every 𝑠1 ∈
ℝ, 𝑠2 ∈ ℝ continuously as an operator

𝐴 : 𝑄𝑠1,𝑠2(ℝ𝑛1+𝑛2) → 𝑄𝑠1−𝑚1,𝑠2−𝑚2(ℝ𝑛1+𝑛2).

1𝑑𝜉𝑖 = (2𝜋)−𝑛𝑖𝑑𝜉𝑖.
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Where, for positive integers 𝑠1, 𝑠2, we define 𝑄𝑠1,𝑠2(ℝ𝑛1+𝑛2) as the space of all
𝑢 ∈ 𝐿2(ℝ𝑛1+𝑛2) such that

∥𝑢∥𝑄𝑠1,𝑠2 =
∑

∣𝛼1∣+∣𝛽1∣≤𝑠1,
∣𝛼2∣+∣𝛽2∣≤𝑠2

∥𝑥𝛽11 𝑥𝛽22 𝐷𝛼1
𝑥1 𝐷

𝛼2
𝑥2 𝑢∥𝐿2 .

For general 𝑠1, 𝑠2, we set

𝑄𝑠1,𝑠2(ℝ𝑛1+𝑛2) = {𝑢 ∈ 𝒮 ′(ℝ𝑛1+𝑛2) ∣
𝑢 = Op(⟨𝑥1, 𝜉1⟩−𝑠1⟨𝑥2, 𝜉2⟩−𝑠2)(𝑣), 𝑣 ∈ 𝐿2(ℝ𝑛1+𝑛2)}.

The proof of Theorem 2.3 follows by the remark that Γ0,0(ℝ𝑛1 × ℝ𝑛2) ⊆
Γ00(ℝ

𝑛1+𝑛2). Then we use the well-known results of 𝐿2-continuity and the defini-
tion of 𝑄𝑠1,𝑠2(ℝ𝑛1+𝑛2). We prove now that globally bisingular operators form an
algebra.

Theorem 2.4. Let 𝐴 ∈ 𝐺𝑚1,𝑚2(ℝ𝑛1+𝑛2) and 𝐵 ∈ 𝐺𝑙1,𝑙2(ℝ𝑛1+𝑛2) then 𝐴 ∘ 𝐵 ∈
𝐺𝑚1+𝑙1,𝑚2+𝑙2(ℝ𝑛1+𝑛2).

Proof. With a simple evaluation we obtain

(𝐴 ∘ 𝐵)𝑢(𝑥1, 𝑥2) =

∫∫
𝑒𝑖𝑥1𝜉1+𝑖𝑥2𝜉2𝑐(𝑥1, 𝑥2, 𝜉1, 𝜉2)𝑢̂(𝜉1, 𝜉2)𝑑𝜉1𝑑𝜉2,

where

𝑐(𝑥1, 𝑥2, 𝜉1, 𝜉2) =

∫
𝑒−𝑖𝜇1−𝑖𝜇2𝑎(𝑥1, 𝑥2, 𝜂1, 𝜂2)𝑏(𝑦1, 𝑦2, 𝜉1, 𝜉2)𝑑𝑦1𝑑𝑦2𝑑𝜂1𝑑𝜂2

𝜇1 = ⟨𝑦1 − 𝑥1, 𝜂1 − 𝜉1⟩, 𝜇2 = ⟨𝑦2 − 𝑥2, 𝜂2 − 𝜉2⟩.
(2.3)

We divide 𝑎𝑏 into four parts, for a fixed integer 𝑁 > 0:

𝑎(𝑥1, 𝑥2, 𝜂1, 𝜂2)𝑏(𝑦1, 𝑦2, 𝜉1, 𝜉2) = (𝑎𝑏)𝑁1 + (𝑎𝑏)𝑁2 + (𝑎𝑏)𝑁3 + 𝑟𝑁 ,

where

(𝑎𝑏)𝑁1 =
∑

∣𝛽1∣+∣𝛼1∣<2𝑁

1

𝛽1!𝛼1!
(𝑦1 − 𝑥1)

𝛽1(𝜂1 − 𝜉1)
𝛼1∂𝛼1

𝜂1 𝑎(𝑥1, 𝑥2, 𝜉1, 𝜂2)

∂𝛽1𝑦1 𝑏(𝑥1, 𝑦2, 𝜉1, 𝜉2),

(𝑎𝑏)𝑁2 =
∑

∣𝛽2∣+∣𝛼2∣<2𝑁

1

𝛽2!𝛼2!
(𝑦2 − 𝑥2)

𝛽2(𝜂2 − 𝜉2)
𝛼2∂𝛼2

𝜂2 𝑎(𝑥1, 𝑥2, 𝜂1, 𝜉2)

∂𝛽2𝑦2 𝑏(𝑦1, 𝑥2, 𝜉1, 𝜉2),

(𝑎𝑏)𝑁3 = −
∑

∣𝛼1∣+∣𝛽1∣<2𝑁
∣𝛼2∣+∣𝛽2∣<2𝑁

1

𝛽1!𝛽2!𝛼1!𝛼2!
(𝑦1 − 𝑥1)

𝛽1(𝑦2 − 𝑥2)
𝛽2(𝜂1 − 𝜉1)

𝛼1

(𝜂2 − 𝜉2)
𝛽2∂𝛼1

𝜂1 ∂𝛼2
𝜂2 𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2)∂

𝛽1
𝑦1 ∂

𝛽2
𝑦2 𝑏(𝑥1, 𝑥2, 𝜉1, 𝜉2),
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𝑟𝑁 =
∑

∣𝛼1∣+∣𝛽1∣<2𝑁
∣𝛼2∣+∣𝛽2∣<2𝑁

1

𝛽1!𝛽2!𝛼1!𝛼2!
(𝑦1 − 𝑥1)

𝛽1(𝑦2 − 𝑥2)
𝛽2

(𝜂1 − 𝜉1)
𝛼1(𝜂2 − 𝜉2)

𝛼2

∫ 1

0

∫ 1

0

(1 − 𝑡1)
𝑁−1(1− 𝑡2)

𝑁−1

∂𝛼1
𝜂1 ∂𝛼2

𝜂2 𝑎(𝑥1, 𝑥2, 𝜉1 + 𝑡1(𝜂1 − 𝜉1), 𝜉2 + 𝑡2(𝜂2 − 𝜉2))

∂𝛽1𝑦1 ∂
𝛽2
𝑦2 𝑏(𝑥1 + 𝑡1(𝑦1 − 𝑥1), 𝑥2 + 𝑡2(𝑦2 − 𝑥2), 𝜉1, 𝜉2)𝑑𝑡1𝑑𝑡2.

Dividing the integral (2.3) in four parts, one defines

𝑐𝑁𝑖 =

∫
𝑒−𝑖𝜇1−𝑖𝜇2(𝑎𝑏)𝑁𝑖 𝑑𝑦1𝑑𝑦2𝑑𝜂1𝑑𝜂2,

𝑅𝑁 =

∫
𝑒−𝑖𝜇1−𝑖𝜇2𝑟𝑁𝑑𝑦1𝑑𝑦2𝑑𝜂1𝑑𝜂2.

Now, we only focus on 𝑐𝑁1 . Notice that

(𝑦1 − 𝑥1)
𝛽1𝑒−𝑖⟨𝑦1−𝑥1,𝜂1−𝜉1⟩ = (−𝑖)𝛽1𝐷𝛽1𝜂1 𝑒

−𝑖⟨𝑦1−𝑥1,𝜂1−𝜉1⟩, (2.4)

(𝜂1 − 𝜉1)
𝛼1𝑒−𝑖⟨𝑦1−𝑥1,𝜂1−𝜉1⟩ = (−𝑖)𝛼1𝐷𝛼1

𝑦1 𝑒−𝑖⟨𝑦1−𝑥1,𝜂1−𝜉1⟩. (2.5)

If 𝛼1 ∕= 𝛽1, there exists an index 𝑖 such that, for example, (𝛼1)𝑖 > (𝛽1)𝑖. So,
using relation (2.5) and integrating by parts, we derive (𝛼1)𝑖 times w.r.t. 𝑦1 the
expression (𝑦1 − 𝑥1)

𝛽1 , and, since (𝛼1)𝑖 > (𝛽1)𝑖, the derivative is zero. Clearly
the same scheme can be used if (𝛼1)𝑖 < (𝛽1)𝑖 using (2.4). This implies that we
can restrict ourself to consider the case 𝛼1 = 𝛽1, so we will just write 𝛼1. Now,
integrating by parts and using relation (2.5), we get

𝑐𝑁1 =
1

𝛼!

∫ ∫
𝑒−𝑖⟨𝑦2−𝑥2,𝜂2−𝜉2⟩

∑
∣𝛼1∣<𝑁

∂𝛼1

𝜉1
𝑎(𝑥1, 𝑥2, 𝜉1, 𝜂2)

𝐷𝛼1
𝑥1 𝑏(𝑥1, 𝑦2, 𝜉1, 𝜉2)𝑑𝑦2𝑑𝜂2.

(2.6)

The expression (2.6) can be written in the form

𝑐𝑁1 =
∑

∣𝛼1∣<𝑁

1

𝛼1!
∂𝛼1

𝜉1
𝑎 ∘2 𝐷𝛼1

𝑥1 𝑏,

where the symbol ∘2 means the composition of the operators acting on ℝ𝑛2 . With
the same scheme we can prove that

𝑐𝑁2 =
∑

∣𝛼2∣<𝑁

1

𝛼2!
∂𝛼2

𝜉2
𝑎 ∘1 𝐷𝛼2

𝑥2 𝑏.

Integrating by parts two times, we get

𝑐𝑁3 = −
∑

∣𝛼1∣<𝑁
∣𝛼2∣<𝑁

1

𝛼1!𝛼2!
∂𝛼1

𝜉1
∂𝛼2

𝜉2
𝑎𝐷𝛼1
𝑥1 𝐷

𝛼2
𝑥2 𝑏.
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We have now to analyze the remainder. Consider this identity

⟨𝑦1, 𝜂1⟩2𝑀 ⟨𝑦2, 𝜂2⟩2𝑀 (1−Δ𝑦1 −Δ𝜂1)
𝑀 (1−Δ𝑦2 −Δ𝜂2)

𝑀𝑒−𝑖𝜇1−𝑖𝜇2 = 𝑒−𝑖𝜇1−𝑖𝜇2 .
(2.7)

By Peetre inequality, we have

∣𝑟𝑁 ∣ ≤ ⟨𝑥1, 𝜉1⟩𝑚1+𝑙1−2𝑁 ⟨𝑥2, 𝜉2⟩𝑚2+𝑙2−2𝑁 ⟨𝑦1 − 𝑥1⟩∣𝑙1∣+2𝑁⟨𝑦2 − 𝑥2⟩∣𝑙2∣+2𝑁
⟨𝜂1 − 𝜉1⟩∣𝑚1∣+2𝑁 ⟨𝜂2 − 𝜉2⟩∣𝑚2∣+2𝑁 .

Using (2.7) with 𝑀 big enough and integrating by parts, we prove that 𝑅𝑁 ∈
Γ𝑚1+𝑙2−2𝑁,𝑚2+𝑙2−2𝑁 (ℝ𝑛1+𝑛2). □

Remark 2.5. It is useful to write 𝑐 in this way

𝑐 ∼
∞∑
𝑗=0

𝑐𝑚1+𝑙1−2𝑗,𝑚2+𝑙2−2𝑗 ,

where

𝑐𝑚1+𝑙1−2𝑗,𝑚2+𝑙2−2𝑗 = 𝑐1𝑚1+𝑙1−2𝑗,𝑚2+𝑙2−2𝑗 + 𝑐2𝑚1+𝑙1−2𝑗,𝑚2+𝑙2−2𝑗
+ 𝑐3𝑚1+𝑙1−2𝑗,𝑚2+𝑙2−2𝑗 ,

and

𝑐1𝑚1+𝑙1−2𝑗,𝑚2+𝑙2−2𝑗 =
∑

∣𝛼1∣=𝑗

1

𝛼1!

(
∂𝛼1

𝜉1
𝑎 ∘2 𝐷𝛼1

𝑥1 𝑏 −
∑

∣𝛼2∣≤𝑗

1

𝛼2!
∂𝛼1
𝑥1 ∂

𝛼2
𝑥2 𝑎𝐷

𝛼1
𝑥1 𝐷

𝛼2
𝑥2 𝑏

)
,

𝑐2𝑚1+𝑙1−2𝑗,𝑚2+𝑙2−2𝑗 =
∑

∣𝛼2∣=𝑗

1

𝛼2!

(
∂𝛼2

𝜉2
𝑎 ∘1 𝐷𝛼2

𝑥2 𝑏 −
∑

∣𝛼1∣≤𝑗

1

𝛼1!
∂𝛼1
𝑥1 ∂

𝛼2
𝑥2 𝑎𝐷

𝛼1
𝑥1 𝐷

𝛼2
𝑥2 𝑏

)
,

𝑐3𝑚1+𝑙1−2𝑗,𝑚2+𝑙2−2𝑗 =
∑

∣𝛼1∣=∣𝛼2∣=𝑗

1

𝛼1!𝛼2!
∂𝛼1
𝑥1 ∂

𝛼2
𝑥2 𝑎𝐷

𝛼1
𝑥1 𝐷

𝛼2
𝑥2 .

In the following, we will study a subclass of globally bisingular operators,
namely operators with homogeneous principal part.

Definition 2.6. A symbol 𝑎 ∈ Γ𝑚1,𝑚2(ℝ𝑛1+𝑛2) has homogeneous principal part if

i) there exists a function 𝑎𝑚1,⋅(𝑥1, 𝑥2, 𝜉1, 𝜉2) homogeneous w.r.t. (𝑥1, 𝜉1) of order
𝑚1 such that

𝑎 − 𝜓1(𝑥1, 𝜉1)𝑎𝑚1,⋅ ∈ Γ𝑚1−1,𝑚2(ℝ𝑛1+𝑛2),

𝜓1 cut-off function at the origin, and the operator 𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2), with
(𝑥1, 𝜉1) frozen, is a classical global operator in ℝ𝑛2 ;

ii) there exists 𝑎⋅,𝑚2 homogeneous w.r.t. (𝑥2, 𝜉2) of order 𝑚2 such that

𝑎 − 𝜓2(𝑥2, 𝜉2)𝑎⋅,𝑚2 ∈ Γ𝑚1,𝑚2−1(ℝ𝑛1,𝑛2),

𝜓2 cut-off function at the origin, and the operator 𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2), with
(𝑥2, 𝜉2) frozen, is a classical global operator in ℝ𝑛1 ;
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iii) there exists a function 𝑎𝑚1,𝑚2(𝑥1, 𝑥2, 𝜉1, 𝜉2) bihomogeneous w.r.t. (𝑥1, 𝜉1) of
order 𝑚1 and w.r.t. (𝑥2, 𝜉2) of order 𝑚2, such that 𝑎𝑚1,𝑚2 is equal to the
principal symbol of 𝑎𝑚1,⋅(𝑥1, 𝑥2, 𝜉1, 𝐷2) and of 𝑎⋅,𝑚2(𝑥1, 𝑥2, 𝐷1, 𝜉2) and

𝑎 − 𝜓1(𝑥1, 𝜉1)𝑎𝑚1,⋅ − 𝜓2(𝑥2, 𝜉2)(𝑎⋅,𝑚2) + 𝜓1(𝑥1, 𝜉1)𝜓2(𝑥2, 𝜉2)𝑎𝑚1,𝑚2

belongs to Γ𝑚1−1,𝑚2−1(ℝ𝑛1+𝑛2).

In the following, the class of symbols with homogeneous principal part is
written as Γ𝑚1,𝑚2

𝑝𝑟 (ℝ𝑛1+𝑛2), and the operators with homogeneous principal symbol

as 𝐺𝑚1,𝑚2
𝑝𝑟 (ℝ𝑛1+𝑛2). We introduce three functions associated to an operator 𝐴 ∈

𝐺𝑚1,𝑚2
𝑝𝑟 (ℝ𝑛1+𝑛2):2

𝜎𝑚1
1 (𝐴) : 𝑇 ∗(ℝ𝑛1) ∖ {0} → 𝐺𝑚2

𝑐𝑙 (ℝ
𝑛2)

(𝑥1, 𝜉1) �→ 𝑎𝑚1,⋅(𝑥1, 𝑥2, 𝜉1, 𝐷2),

𝜎𝑚2
2 (𝐴) : 𝑇 ∗(ℝ𝑛2) ∖ {0} → 𝐺𝑚1

𝑐𝑙 (ℝ
𝑛1)

(𝑥2, 𝜉2) �→ 𝑎⋅,𝑚2(𝑥1, 𝑥2, 𝐷1, 𝜉2),

𝜎𝑚1,𝑚2(𝐴) : 𝑇 ∗(ℝ𝑛1) ∖ {0} × 𝑇 ∗(ℝ𝑛2) ∖ {0} → ℋ𝑚1,𝑚2

𝜉1,𝜉2
(ℝ𝑛1+𝑛2)

(𝑥1, 𝑥2, 𝜉1, 𝜉2) �→ 𝑎𝑚1,𝑚2(𝑥1, 𝑥2, 𝜉, 𝜉2).

3. Globally elliptic bisingular operators and the Weyl formula

Definition 3.1. Let 𝐴 ∈ 𝐺𝑚1,𝑚2
𝑝𝑟 (ℝ𝑛1+𝑛2), 𝐴 is globally elliptic bisingular operator

if there exist constants 𝑅1, 𝑅2 such that

i) the operator

𝑎𝑚1,⋅(𝑥1, 𝑥2, 𝜉1, 𝐷2) : 𝒮(ℝ𝑛2 ) → 𝒮(ℝ𝑛2)

is invertible for every (𝑥1, 𝜉1) ∈ 𝑇 ∗ℝ𝑛1 ∖ {0};
ii) the operator

𝑎⋅,𝑚2(𝑥1, 𝑥2, 𝐷1, 𝜉2) : 𝒮(ℝ𝑛1 ) → 𝒮(ℝ𝑛1)

is invertible for every (𝑥2, 𝜉2) ∈ 𝑇 ∗ℝ𝑛2 ∖ {0};
iii) there exists a positive constant 𝐶 such that

∣𝑎𝑚1,𝑚2(𝑥1, 𝑥2, 𝜉1, 𝜉2)∣ ≥ 𝐶⟨𝑥1, 𝜉1⟩𝑚1⟨𝑥2, 𝜉2⟩𝑚2 ,

∀∣𝑥𝑖∣2 + ∣𝜉𝑖∣2 ≥ 𝑅𝑖, 𝑖 = 1, 2.
(3.1)

Since 𝑎𝑚1,𝑚2(𝑥1, 𝑥2, 𝜉1, 𝜉2) is bihomogeneous it is enough to require that (3.1)
is fulfilled for (𝑥1, 𝜉1) ∈ 𝑇 ∗ℝ𝑛1 ∖ {0}, (𝑥2, 𝜉2) ∈ 𝑇 ∗ℝ𝑛2 ∖ {0}.

Remark 3.2. If an operator 𝐴 ∈ 𝐺𝑚1,𝑚2
𝑝𝑟 (ℝ𝑛1+𝑛2) satisfies item iii) of Defini-

tion 3.1 then both the operators 𝑎𝑚1,⋅(𝑥1, 𝑥2, 𝜉1, 𝐷2)(𝑥2, 𝜉2) ∈ 𝐺𝑚2(ℝ𝑛2) and
𝑎⋅,𝑚2(𝑥1, 𝑥2, 𝐷1, 𝜉2)(𝑥1, 𝜉1) ∈ 𝐺𝑚1(ℝ𝑛1) are elliptic Shubin type operators. If more-
over 𝐴 satisfies items i) and ii) one can prove that both 𝑎𝑚1,⋅(𝑥1, 𝑥2, 𝜉1, 𝐷2)(𝑥2, 𝜉2)

2ℋ𝑚1,𝑚2
𝜉1,𝜉2

(ℝ𝑛1+𝑛2) is the set of homogeneous function of order 𝑚𝑖 w.r.t. 𝜉𝑖.
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and 𝑎⋅,𝑚2(𝑥1, 𝑥2, 𝐷1, 𝜉2)(𝑥1, 𝜉1) are injective Fredholm operator with zero index,
therefore invertible operators also in the scale of 𝑄𝑠 spaces. Thus, in Definition
3.1, it is equivalent to require the invertibility of the operators on the Schwartz
spaces or on the Sobolev spaces 𝑄𝑠. For this reason, in the following we will not
specify the space in which the operators are assumed to be invertible.

Theorem 3.3. If an operator 𝐴 is globally elliptic bisingular then it is a Fredholm
operator.

Proof. It is a consequence of Theorem 2.3. From Remark 2.5, if 𝐴 is elliptic one
can define an operator 𝐵 as the operator with symbol

𝑏 = 𝜓1(𝑥1, 𝜉1)𝑎
−1
𝑚1,⋅ + 𝜓2(𝑥2, 𝜉2)𝑎

−1
⋅,𝑚2

− 𝜓1(𝑥1, 𝜉1)𝜓2(𝑥2, 𝜉2)𝑎
−1
𝑚1,𝑚2

.

Applying the calculus, one can check that 𝐵 is an inverse of 𝐴 modulo compact
operator. □

Using a Neumann series procedure, by Theorem 3.3, one can prove that,
if an operator is globally elliptic bisingular, then there exists an inverse modulo
smoothing operators. So we have this immediate corollary:

Corollary 3.4. Let 𝐴 ∈ 𝐺𝑚1,𝑚2
𝑝𝑟 (ℝ𝑛1+𝑛2) be globally elliptic then

i) if 𝐴𝑢 ∈ 𝑄𝑠1,𝑠2(ℝ𝑛1+𝑛2) then 𝑢 ∈ 𝑄𝑠1+𝑚1,𝑠2+𝑚2(ℝ𝑛1+𝑛2);
ii) if 𝐴𝑢 ∈ 𝒮(ℝ𝑛1+𝑛2) then 𝑢 ∈ 𝒮(ℝ𝑛1+𝑛2).

Our aim is now to study the counting function of positive self-adjoint glob-
ally bisingular operators. We will use Tauberian techniques, so we need to define
complex powers of globally bisingular operators.

First we define parameter ellipticity:

Definition 3.5. Let Λ be a sector of the complex plane and 𝑎 be a symbol belonging
to Γ𝑚1,𝑚2

𝑝𝑟 (ℝ𝑛1+𝑛2); 𝑎 is called Λ-elliptic w.r.t. Λ if there exists a constant 𝑅 such
that

i) 𝜎𝑚1
1 (𝐴)(𝑥1, 𝜉1)− 𝜆𝐼ℝ𝑛2 ∈ 𝐺𝑚2

𝑐𝑙 (ℝ
𝑛2)

is invertible for all ∣𝑥1∣+ ∣𝜉1∣ > 𝑅, for all 𝜆 ∈ Λ.
ii) 𝜎𝑚2

2 (𝐴)(𝑥2, 𝜉2)− 𝜆𝐼ℝ𝑛1 ∈ 𝐺𝑚1

𝑐𝑙 (ℝ
𝑛1)

is invertible for all ∣𝑥2∣+ ∣𝜉2∣ > 𝑅, for all 𝜆 ∈ Λ.
iii)

(
𝜎𝑚1,𝑚2(𝐴)(𝑥1, 𝑥2, 𝜉1, 𝜉2)− 𝜆

)−1 ∈ Γ−𝑚1,−𝑚2(ℝ𝑛1+𝑛2)

for all ∣𝑥𝑖∣+ ∣𝜉𝑖∣ > 𝑅, for all 𝜆 ∈ Λ.

In the following, we consider sector of the complex plane Λ with vertex at
the origin as in the figure below.
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arg = 𝜋 − 𝜃

arg = −𝜋 + 𝜃

It is an exercise to prove that, if 𝐴 ∈ 𝐺𝑚1,𝑚2
𝑝𝑟 (ℝ𝑛1+𝑛2) is Λ-elliptic, then the

operator is sectorial. Follow for example the scheme of Theorem 2 in [2].

We make now some natural assumptions in order to perform the functional
calculus.

Assumptions 3.6.

i) 𝐴 ∈ 𝐺𝑚1,𝑚2
𝑝𝑟 (ℝ𝑛1+𝑛2) is Λ-elliptic,

ii) 𝜎(𝐴) ∩ Λ = ∅, in particular 𝐴 is invertible.

Remark 3.7. In item ii) of Assumptions 3.6, we assume that the operator is in-
vertible. We have made these assumptions in order to get a simpler theory. It is
nevertheless possible to handle functional calculus of operators with non trivial
kernel, even with infinite-dimensional kernel, the crucial requirement is that the
origin must be an isolated point of the spectrum. Roughly speaking, instead of
considering the operator 𝐴, one studies the operator 𝐴 ∘ (𝐼 −𝑃ker 𝐴); 𝑃ker 𝐴 being
the projection into the kernel of 𝐴. Clearly this operator is invertible, cf. [8].

Definition 3.8. Let 𝐴 be a globally bisingular operator that satisfies Assumptions
3.6, we can define

𝐴𝑧 :=
𝑖

2𝜋

∫
∂Λ+

𝜖

𝜆𝑧(𝐴 − 𝜆Id)−1𝑑𝜆, Re(𝑧) < 0, (3.2)

where Λ𝜖 = Λ ∪ {𝑧 ∈ ℂ ∣ ∣𝑧∣ < 𝜖}. The complex power of 𝐴 is defined in this way

𝐴𝑧 =

{
𝐴𝑧 Re(𝑧) < 0,

𝐴𝑧−𝑘 ∘ 𝐴𝑘 𝑘 ∈ ℕ,Re(𝑧 − 𝑘) < 0.

Since the operator 𝐴 is sectorial, the Dunfort integral in (3.2) converges. As usual,
one can prove that the Definition 3.8 does not depend on 𝑘.
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Theorem 3.9. If 𝐴 ∈ 𝐺𝑚1,𝑚2
𝑝𝑟 (ℝ𝑛1,𝑛2) fulfils Assumptions 3.6, then 𝐴𝑧 ∈ 𝐺𝑚1𝑧,𝑚2𝑧

(ℝ𝑛1+𝑛2). Moreover,3

𝜎𝑚1𝑧
1 (𝐴𝑧)(𝑥1, 𝜉1) =

(
𝜎𝑚1
1 (𝐴)(𝑥1, 𝜉1)

)𝑧
, (3.3)

𝜎𝑚2𝑧
2 (𝐴𝑧)(𝑥2, 𝜉2) =

(
𝜎𝑚2
2 (𝐴)(𝑥2, 𝜉2)

)𝑧
, (3.4)

𝜎𝑚1𝑧,𝑚2𝑧(𝐴𝑧)(𝑥1, 𝑥2, 𝜉1, 𝜉2) =
(
𝜎𝑚1,𝑚2(𝐴)(𝑥1, 𝑥2, 𝜉1, 𝜉2)

)𝑧
, (3.5)

where the complex power in (3.3), (3.4) is the complex power of operators, while
in (3.5) is the standard complex power of a function.

We now introduce the 𝜁-function of suitable bisingular operators, then we
will study the meromorphic extension of the 𝜁-function and we will analyze its
first left pole. We do not write the proofs of the following statements, they are
similar to Theorem 4 and Corollary 1 of [2].

Definition 3.10. Let 𝐴 ∈ 𝐺𝑚1,𝑚2(ℝ𝑛1+𝑛2) be a bisingular operator that satisfies
Assumptions 3.6, then

𝜁(𝐴, 𝑧) =

∫∫
ℝ𝑛1+𝑛2

𝐾𝐴𝑧(𝑥1, 𝑥2, 𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2, Re(𝑧) < 2min

{
− 𝑛1

𝑚1
,− 𝑛2

𝑚2

}
,

where 𝐾𝐴𝑧 is the kernel of 𝐴
𝑧 .

Theorem 3.11. Let 𝐴 ∈ 𝐺𝑚1,𝑚2(ℝ𝑛1+𝑛2) be an operator that satisfies Assump-
tions 3.6. Then 𝜁(𝐴, 𝑧) can be extended as a meromorphic function on {𝑧 ∈
ℂ ∣ Re(𝑧) < 2min{− 𝑛1

𝑚1
,− 𝑛2

𝑚2
} + 𝜖}. Moreover, the Laurent coefficients at pole

𝑧𝑝𝑜𝑙𝑒 = 2min{− 𝑛1

𝑚1
,− 𝑛2

𝑚2
} depend on 𝑛1

𝑚1
and 𝑛2

𝑚2
.

In the case 𝑛1

𝑚1
> 𝑛2

𝑚2
:

lim
𝑧→− 2𝑛1

𝑚1

(
𝑧 +

2𝑛1
𝑚1

)
𝜁(𝐴, 𝑧) =

(2𝜋)−𝑛1−𝑛2

𝑚1

∫
ℝ2𝑛2

∫
𝕊2𝑛1−1

(𝑎𝑚1,⋅)
− 2𝑛1

𝑚1 𝑑𝜃1𝑑𝑥2𝑑𝜉2.

(3.6)
In the case 𝑛2

𝑚2
> 𝑛1

𝑚1
:

lim
𝑧→− 2𝑛2

𝑚2

(
𝑧 +

2𝑛2
𝑚2

)
𝜁(𝐴, 𝑧) =

(2𝜋)−𝑛1−𝑛2

𝑚2

∫
ℝ2𝑛1

∫
𝕊2𝑛2−1

(𝑎⋅,𝑚2)
− 2𝑛2

𝑚2 𝑑𝜃2𝑑𝑥1𝑑𝜉1.

(3.7)
In the case 𝑛1

𝑚1
= 𝑛2

𝑚2
= 𝑙:

𝑟𝑒𝑠2(𝐴) = lim
𝑧→−𝑙

(𝑧 + 𝑙)2𝜁(𝐴, 𝑧) =
(2𝜋)−𝑛1−𝑛2

𝑚1𝑚2

∫
𝕊2𝑛2−1

∫
𝕊2𝑛1−1

(𝑎𝑚1,𝑚2)
−𝑙𝑑𝜃1𝑑𝜃2,

(3.8)

lim
𝑧→−𝑙

(𝑧 + 𝑙)

(
𝜁(𝐴, 𝑧)− 𝑟𝑒𝑠2(𝐴)

(𝑧 + 𝑙)2

)
, = −𝑇𝑅1,2(𝐴) + 𝑇𝑅𝜃(𝐴), (3.9)

3We have just defined symbols Γ𝑚1,𝑚2 (ℝ𝑛1+𝑛2) with 𝑚1,𝑚2 ∈ ℝ2. It is nevertheless possible

to define the same class with complex numbers 𝑧1, 𝑧2, in the inequality (2.1) instead of 𝑚𝑖 we
use Re(𝑧𝑖).
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where

𝑇𝑅1,2(𝐴) = (2𝜋)−𝑛1−𝑛2(
lim
𝜏→∞

(
1

𝑚1

∫
∣𝑥2∣+∣𝜉2∣<𝜏

∫
𝕊2𝑛1−1

(
(𝑎𝑚1,⋅)

−𝑙𝑑𝜃1𝑑𝑥2𝑑𝜉2 − 𝑟𝑒𝑠2(𝐴) log 𝜏
))

+ lim
𝜏→∞

(
1

𝑚2

∫
∣𝑥1∣+∣𝜉1∣<𝜏

∫
𝕊2𝑛2−1

(
(𝑎𝑚2,⋅)

−𝑙𝑑𝜃2𝑑𝑥1𝑑𝜉1 − 𝑟𝑒𝑠2(𝐴) log 𝜏
)))

,

and

𝑇𝑅𝜃(𝐴) =
(2𝜋)−𝑛1−𝑛2

𝑚1𝑚2

∫
𝕊2𝑛2−1

∫
𝕊2𝑛1−1

(𝑎𝑚1,𝑚2)
−𝑙 log(𝑎𝑚1,𝑚2)𝑑𝜃1𝑑𝜃2.

Now, applying a generalization of Tauberian Theorem due to J. Aramaki [1],
we easily obtain the following:

Theorem 3.12. Let 𝐴 ∈ 𝐺𝑚1,𝑚2(ℝ𝑛1+𝑛2) be self-adjoint and positive, suppose
moreover that 𝐴 satisfies Assumptions 3.6. Then

𝑁𝐴(𝜆) =

⎧⎨⎩
𝐶1𝜆

𝑙 log𝜆+ 𝐶′
1𝜆
𝑙 +𝑂(𝜆𝑙−𝛿1 ) 2𝑛1

𝑚2
= 2𝑛2

𝑚2
= 𝑙,

𝐶2𝜆
2
𝑛2
𝑚2 +𝑂(𝜆2

𝑛2
𝑚2

−𝛿2) 2𝑛2

𝑚2
> 2𝑛1

𝑚1
,

𝐶3𝜆
2
𝑛1
𝑚2 +𝑂(𝜆2

𝑛1
𝑚1

−𝛿3) 2𝑛1

𝑚1
> 2𝑛2

𝑚2
,

for certain 𝛿𝑖 > 0. It is moreover possible to find the exact value of the constants
in terms of {𝑎𝑚1,⋅, 𝑎⋅,𝑚2 , 𝑎𝑚1,𝑚2}, the principal symbol of 𝐴.

𝐶1 =
1

(2𝜋)𝑛1+𝑛22𝑛1𝑚2

∫
𝕊2𝑛2−1

∫
𝕊2𝑛1−1

(𝑎𝑚1,𝑚2)
−𝑙𝑑𝜃1𝑑𝜃2,

𝐶′
1 =

𝑇𝑅1,2(𝐴)− 𝑇𝑅𝜃(𝐴)

𝑙
− 1

4𝑛1𝑛2

∫
𝕊2𝑛2−1

∫
𝕊2𝑛1−1

(𝑎𝑚1,𝑚2)
−𝑙𝑑𝜃1𝑑𝜃2,

𝐶2 =
1

(2𝜋)𝑛1+𝑛22𝑛2

∫
ℝ2𝑛1

∫
𝕊2𝑛2−1

(𝑎⋅,𝑚2)
− 2𝑛2

𝑚2 𝑑𝜃2𝑑𝑥1𝑑𝜉1,

𝐶3 =
1

(2𝜋)𝑛1+𝑛22𝑛1

∫
ℝ2𝑛2

∫
𝕊2𝑛1−1

(𝑎𝑚1,⋅)
− 2𝑛1

𝑚1 𝑑𝜃1𝑑𝑥2𝑑𝜉2.

4. Tensor products of Hermite-type operators

We use the notation in the Introduction. We consider globally elliptic self-adjoint
bisingular differential operators of the special form

𝑃 (𝑥,𝐷𝑥) = 𝑃1(𝑥1, 𝐷𝑥1)𝑃2(𝑥2, 𝐷𝑥2),

so that 𝑃𝑢j = 𝜆1𝑗1𝜆
2
𝑗2
𝑢j, j = (𝑗1, 𝑗2) ∈ ℤ2+, cf. (1.4). Hence we have:

Proposition 4.1. Let 𝑢 be a tempered distribution in ℝ𝑛1+𝑛2 . If

𝑢 =
∑
j∈ℤ2

+

𝑎j𝑢j in 𝒮 ′(ℝ𝑛1+𝑛2),
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then

𝑃 (𝑥,𝐷𝑥)𝑢 =
∑

j=(𝑗1,𝑗2)∈ℤ2
+

𝜆1𝑗1𝜆
2
𝑗2𝑎j𝑢j, (4.1)

where 𝑃 (𝑥,𝐷𝑥)𝑢 ∈ 𝐿2(ℝ𝑛1+𝑛2) is equivalent to∑
j∈ℤ2

+

(𝜆1𝑗1𝜆
2
𝑗2)

2∣𝑎j∣2 < +∞. (4.2)

With the notation at the end of Section 2, we obtain

𝜎𝑚1
1 (𝑃 )(𝑥1, 𝜉1) = 𝑝𝑚1(𝑥1, 𝜉1)𝑃2(𝑥2𝐷2),

𝜎𝑚2
2 (𝑃 )(𝑥2, 𝜉2) = 𝑝𝑚2(𝑥2, 𝜉2)𝑃1(𝑥1, 𝐷1),

𝜎𝑚1,𝑚2(𝑥1, 𝑥2, 𝜉1, 𝜉2) = 𝑝𝑚1(𝑥1, 𝜉1)𝑝𝑚2(𝑥2, 𝜉2).

Thus, Definition 3.1 before amounts to assume global ellipticity of 𝑝1, 𝑝2, cf.
(1.2), and invertibility of 𝑃1(𝑥1, 𝐷1) and 𝑃2(𝑥1, 𝐷2) as required in the Intro-
duction. From Corollary 3.4, we have that 𝑃𝑢 ∈ 𝑄𝑠1−𝑚1,𝑠2−𝑚2(ℝ𝑛1+𝑛2) implies
𝑢 ∈ 𝑄𝑠1,𝑠2(ℝ𝑛1+𝑛2), for every 𝑠1 ∈ ℝ, 𝑠2 ∈ ℝ. In particular, if 𝑃𝑢 ∈ 𝒮(ℝ𝑛1+𝑛2)
then 𝑢 ∈ 𝒮(ℝ𝑛1+𝑛2).

Assuming further that 𝑃1, 𝑃2 are strictly positive, we may apply Theorem
3.12 to estimate the counting function 𝑁(𝜆) of 𝑃 . By direct calculation, we shall
give now more precise results in the case when 𝑃1, 𝑃2 are Hermite-type operators.

We first recall a classical result of L. Dirichlet for the first summatory function
of 𝜏(𝑛), see [20, 21] for an overview on the subject:

𝐷(𝜆) =
∑
𝑛≤𝜆,
𝑛∈ℕ

𝜏(𝑛) =

[𝜆]∑
𝑛=1

𝜏(𝑛), 𝜆 ≥ 1, (4.3)

where 𝜏(𝑛) denotes the number of divisors of 𝑛 and [𝜆] stands for the integer part
of 𝜆. In 1849, Dirichlet proved that

𝐷(𝜆) = 𝜆 ln𝜆+ (2𝛾 − 1)𝜆+ 𝐸(𝜆), 𝜆 ≥ 1, (4.4)

where 𝛾 is the Euler-Mascheroni constant and

𝐸(𝜆) = 𝑂(𝜆1/2), 𝜆 → +∞. (4.5)

It is still an open problem to evaluate the optimal order of the reminder 𝐸(𝜆)

in the asymptotic expansion (4.4). In 1916 [17] Hardy discovered that 𝑂(𝜆
1
4 ) is

a lower bound. Then a lot of upper bound have been proved, the better one has
been given by Huxley in [19]. He proved that 𝐸(𝜆) is 𝑂(𝜆𝑐(log𝜆)𝑑), where

𝑐 :=
131

416
∼ 0, 3149038462 𝑑 :=

18627

8320
+ 1 ∼ 3, 238822115.
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The conjecture is that the 𝐸(𝜆) is 𝑂(𝜆
1
4 ). One can recast the issue of computing

𝐷(𝜆) as a lattice point problem. More precisely, since

𝐷(𝜆) =
∑

𝑛≤𝜆,𝑛∈ℕ

∑
𝑑∣𝑛,𝑑∈ℕ

1 =
∑

𝑛1𝑛2≤𝜆

𝑛1,𝑛2∈ℕ

1, (4.6)

we readily obtain that 𝐷(𝜆) is the number of positive integers lattice points in the
first quadrant between the axes and hyperbola 𝑥1𝑥2 ≤ 𝜆. We will use this result
for the proof of the second part of the next proposition.

Proposition 4.2. Assume that 𝐴𝑖 are self-adjoint operators with spectrum 𝑛𝑚𝑖 , 𝑛 ∈
ℕ, and eigenfunctions 𝑢𝑛𝑖 being an orthonormal basis of ℝ𝑛𝑖 , 𝑖 = 1, 2. Denote by
𝑁(𝜆), 𝜆 > 0 the counting function,

𝑁(𝜆) = card{(𝑛1, 𝑛2) : 𝑛𝑚1
1 𝑛𝑚2

2 ≤ 𝜆}, 𝜆 > 0,

where card means cardinal number. Then we have the following assertions.

a) Let 𝑚1 > 𝑚2 > 0. Then

𝑁(𝜆) ∼ 𝜁

(
𝑚1

𝑚2

)
𝜆1/𝑚2 + 𝐶(𝑚1,𝑚2, 𝜆)𝜆

1/𝑚1 +𝑂(1), (4.7)

where

−1− 𝑚2

(𝑚1 − 𝑚2)
≤ 𝐶(𝑚1,𝑚2, 𝜆) ≤ − 𝑚2

(𝑚1 − 𝑚2)
.

b) Let 𝑚 = 𝑚1 = 𝑚2. Then

𝑁(𝜆) =
1

𝑚
𝜆

1
𝑚 ln𝜆+

2𝛾 − 1

𝑚
𝜆+𝑂(𝜆

1
2𝑚 ). (4.8)

Proof. a) First we recall from [11] the next identity, for 𝛼 > 1, 𝑞 > 0 :

𝑁∑
𝑛=0

1

(𝑛+ 𝑞)𝛼

=

∞∑
𝑛=0

1

(𝑛+ 𝑞)𝛼
+

1

(1− 𝛼)(𝑁 + 𝑞)𝛼−1
+ 𝛼

∞∑
𝑛=𝑁

∫ 𝑛+1
𝑛

𝑡 − 𝑛

(𝑡+ 𝑞)𝛼+1
𝑑𝑡.

(4.9)

One can find that

𝛼
∞∑
𝑛=𝑁

∫ 𝑛+1
𝑛

𝑡 − 𝑛

(𝑡+ 𝑞)𝛼+1
= 𝑂(1/𝑁𝛼).

Note that with 𝑞 = 1 one obtains the formula for the partial sum of the Riemann
zeta function 𝜁(𝛼). Set

𝑅(𝜆,𝑚1,𝑚2) =

𝜆1/𝑚1∑
𝑛=1

(
𝜆1/𝑚2

𝑛𝑚1/𝑚2
−
[

𝜆1/𝑚2

𝑛𝑚1/𝑚2

])
.

Clearly 0 ≤ 𝑅(𝜆,𝑚1,𝑚2) ≤ 𝜆1/𝑚1 but we are not able to find the exact behavior
of 𝑅(𝜆,𝑚1,𝑚2) as 𝜆 → ∞.
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Now we calculate

𝑁(𝜆) =
∑

𝑛
𝑚1
1 𝑛

𝑚2
2 ≤𝜆

1 =

[𝜆1/𝑚1 ]∑
𝑛1=1

[
𝜆1/𝑚2

𝑛
𝑚1/𝑚2
1

]
∑
𝑛2=1

1.

We have
[𝜆1/𝑚1 ]∑
𝑛=1

[
𝜆1/𝑚2

𝑛𝑚1/𝑚2

]
=

[𝜆1/𝑚1 ]∑
𝑛=1

𝜆1/𝑚2

𝑛𝑚1/𝑚2
− 𝑅(𝜆,𝑚1,𝑚2)

and, using (4.9) with 𝛼 = 𝑚1

𝑚2
, 𝑁 = [𝜆1/𝑚1 ], we obtain

𝜆1/𝑚2

𝜆1/𝑚1∑
𝑛=1

1

𝑛𝑚1/𝑚2
∼ 𝜁

(
𝑚1

𝑚2

)
𝜆1/𝑚2 − 𝑚2

(𝑚1 − 𝑚2)
𝜆1/𝑚1 +𝑂(1).

This implies∑
𝑛
𝑚1
1 𝑛

𝑚2
2 ≤𝜆

1 ∼ 𝜁

(
𝑚1

𝑚2

)
𝜆1/𝑚2 − 𝑚2

(𝑚1 − 𝑚2)
𝜆1/𝑚1 − 𝑅(𝜆,𝑚1,𝑚2) +𝑂(1).

This and the estimate of 𝑅 proves (4.7).

b) Since

𝑛𝑚1 𝑛𝑚2 ≤ 𝜆 is equivalent to 𝑛1𝑛2 ≤ 𝜆1/𝑚,

we directly obtain 𝑁(𝜆) = 𝐷(𝜆1/𝑚) which gives (4.8). □

Example. An example of on operator that satisfies the hypothesis of Proposition
4.2 is the following. Let 𝑚1,𝑚2 ∈ ℕ,𝑚1 > 𝑚2, 𝑘1, 𝑘2 > 0 and

𝐴1 = 𝑘1

(
−∂2

∂2𝑥
+ 𝑥2

)𝑚1

, 𝐴2 = 𝑘2

(
−∂2

∂2𝑦
+ 𝑦2

)𝑚2

, 𝑥, 𝑦 ∈ ℝ.

Then, we know that the Hermite basis of 𝐿2(ℝ2),

ℎ𝑗1,𝑗2(𝑥, 𝑦) = ℎ𝑗1(𝑥)ℎ𝑗2 (𝑦), 𝑗1, 𝑗2 = 0, 1, . . . ,

is the set of eigenfunctions and that 𝑘𝑖(2𝑛+1)
𝑚𝑖, 𝑛 = 0, 1, . . . , are the eigenvalues

for 𝐴𝑖, 𝑖 = 1, 2.

We use the result of Proposition 4.2 to calculate the counting function for
𝐴1𝐴2. With the transformation 𝜆/(𝑘1𝑘2) → 𝜆, we can, and we will, assume that
𝑘1 = 𝑘2 = 1.

Put

𝐼𝜆 = {𝑛 ∈ ℕ ∪ 0; 1 ≤ 2𝑛+ 1 ≤ [𝜆1/𝑚1 ]},

𝐼𝜆,𝑛1 =

{
𝑛2 ∈ ℕ ∪ 0; 1 ≤ 2𝑛2 + 1 ≤

[
𝜆1/𝑚2

(2𝑛1 + 1)𝑚1/𝑚2

]}
.
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Hence, the cardinal numbers of these sets are not greater than

[𝜆1/𝑚1 ]/2 + 1 and
1

2

[
𝜆1/𝑚2

(2𝑛1 + 1)𝑚1/𝑚2

]
+ 1,

respectively. With this notation we have

𝑁(𝜆) =
∑

(2𝑛1+1)𝑚1(2𝑛2+1)𝑚2≤𝜆
1 =

∑
𝑛1∈𝐼𝜆

∑
𝑛2∈𝐼𝜆,𝑛1

1

=
1

2

∑
𝑛∈𝐼𝜆

[
𝜆1/𝑚2

(2𝑛+ 1)𝑚1/𝑚2

]
+ 𝑟𝑛,

where 𝑟𝑛 takes values 0 and 1. We obtain

0 ≤ 𝑆(𝜆,𝑚1,𝑚2) =
∑
𝑛∈𝐼𝜆

𝑟𝑛 ≤ 1

2
[𝜆1/𝑚1 ] + 1.

Next

1

2

∑
𝑛∈𝐼𝜆

[
𝜆1/𝑚2

(2𝑛+ 1)𝑚1/𝑚2

]
=
1

2

∑
𝑛∈𝐼𝜆

𝜆1/𝑚2

(2𝑛+ 1)𝑚1/𝑚2
− 𝑅(𝜆,𝑚1,𝑚2),

where

0 ≤ 𝑅(𝜆,𝑚1,𝑚2) ≤ 1

2
[𝜆1/𝑚1 ] + 1.

By the proof of the previous proposition, with 𝑟 = 1 or 𝑟 = 0,

∑
𝑛∈𝐼𝜆

1

(2𝑛+ 1)𝑚1/𝑚2
=

1
2 [𝜆

1/𝑚1 ]+𝑟∑
𝑡=1

1

𝑡𝑚1/𝑚2

= 𝜁

(
𝑚1

𝑚2

)
− 𝑚2

𝑚1 − 𝑚2

(1
2
([𝜆1/𝑚1 ] + 𝑟)

)𝑚2−𝑚1
𝑚2

+𝑂(1/𝜆1/𝑚2).

This implies

𝑁(𝜆) =
1

2
𝜆1/𝑚2

(
𝜁

(
𝑚1

𝑚2

)
− 𝑚2

𝑚1 − 𝑚2

(1
2
([𝜆1/𝑚1 ] + 𝑟)

)𝑚2−𝑚1
𝑚2

+𝑂(1/𝜆1/𝑚2)
)

− 𝑅(𝜆,𝑚1,𝑚2) + 𝑆(𝜆,𝑚1,𝑚2)

=
𝜆1/𝑚2

2
𝜁

(
𝑚1

𝑚2

)
− 𝑚2

𝑚1 − 𝑚2
2
𝑚1−2𝑚2

𝑚2 𝜆1/𝑚1

− 𝑅(𝜆,𝑚1,𝑚2) + 𝑆(𝜆,𝑚1,𝑚2) + 𝑂(1)

=
𝜆1/𝑚2

2
𝜁

(
𝑚1

𝑚2

)
+ 𝐶(𝜆,𝑚1,𝑚2)𝜆

1/𝑚1 +𝑂(1),
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where

−2
𝑚1−2𝑚2

𝑚2 𝑚2

𝑚1 − 𝑚2
− [𝜆1/𝑚1 ]

2𝜆1/𝑚1
− 1

𝜆1/𝑚1
≤ 𝐶(𝜆,𝑚1,𝑚2)

≤ −2
𝑚1−2𝑚2

𝑚2 𝑚2

𝑚1 − 𝑚2
+
[𝜆1/𝑚1 ]

2𝜆1/𝑚1
+

1

𝜆1/𝑚1
.

One can consider in a similar way

𝐴1 = 𝑘1(−Δ𝑥1 + ∥𝑥1∥2)𝑚1 + 𝑟1, 𝐴2 = 𝑘2(−Δ𝑥2 + ∥𝑥2∥2)𝑚2 + 𝑟2, 𝑥𝑖 ∈ ℝ𝑛1 ,

𝑘1 > 𝑘2 > 0, 𝑟𝑖 > 0, 𝑖 = 1, 2; but the computation is much more complicate.
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Basel, 2010.

[29] V.S. Pilidi, Multidimensional bisingular operators. Dokl. Akad. Nauk SSSR 201
(1971), 787–789.
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Faculty of Sciences and Mathematics
University of Novi Sad
Trg Dositeja Obradovica 4
21000, Novi Sad, Serbia
e-mail: stevan.pilipovic@uns.dmi.ac.rs

mailto:ubertino.battisti@unito.it
mailto:luigi.rodino@unito.it
mailto:todor@unica.it
mailto:stevan.pilipovic@uns.dmi.ac.rs


Operator Theory:
Advances and Applications, Vol. 228, 39–55
c⃝ 2013 Springer Basel

The Index Formula of Douglas
for Block Toeplitz Operators on
the Bergman Space of the Ball
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Abstract. The index formula of Douglas is a formula which expresses the in-
dex of a Fredholm Toeplitz operator with a discontinuous symbol as the limit
of the indices of a family of Fredholm Toeplitz operators with continuous sym-
bols. This paper is concerned with Toeplitz operators on the Bergman space
𝐴𝑝 of the unit ball of ℂ𝑚. The symbols are supposed to be matrix functions
with entries in 𝐶+𝐻∞ or to be certain discontinuous matrix functions which
are locally elliptic in a sense. The main result reduces the index computa-
tion for the Toeplitz operators under consideration to the case of continuous
matrix symbols.
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1. Introduction and main results

Let 𝐵 = 𝔹𝑚 the unit ball in ℂ𝑚 and denote by 𝑆 = 𝕊2𝑚−1 the boundary of 𝐵.
The ℂ𝑁 -valued Bergman space [𝐴𝑝(𝐵)]𝑁 (1 < 𝑝 < ∞) is the Banach space of all
holomorphic ℂ𝑁 -valued functions in 𝐵 which belong to [𝐿𝑝(𝐵)]𝑁 with normalized
volume measure. Given a ℂ𝑁×𝑁 -valued function 𝑎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 , the Toeplitz
operator 𝑇 (𝑎) is the bounded linear operator on [𝐴𝑝(𝐵)]𝑁 which sends 𝑓 to 𝑃 (𝑎𝑓),
where 𝑃 : [𝐿𝑝(𝐵)]𝑁 → [𝐴𝑝(𝐵)]𝑁 is the Bergman projection. The matrix function
𝑎 is called the symbol of the operator 𝑇 (𝑎).

Toeplitz operators with continuous symbols are fairly well understood. If
𝑎 ∈ [𝐶(𝐵)]𝑁×𝑁 , then 𝑇 (𝑎) is Fredholm if and only if 𝑎∣𝑆 is invertible, and one has
The second author acknowledges support by the Academy of Finland project no. 75166001.
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nice formulas for the Fredholm index Ind𝑇 (𝑎); see [3], [6], [11], [22], [25]. A first
reasonable Banach algebra beyond 𝐶(𝐵) is 𝐶(𝐵) +𝐻∞(𝐵), where 𝐻∞(𝐵) is the
algebra of all bounded holomorphic functions in 𝐵. Douglas [8] was the first to
consider Toeplitz operators 𝑇 (𝑎) with 𝑎 ∈ [𝐶+𝐻∞]𝑁×𝑁 on the ℂ𝑁 -valued Hardy
space of 𝕊1, and he proved that 𝑇 (𝑎) is Fredholm if and only if the determinant of
the harmonic extension ℋ𝑎 of 𝑎 into 𝔹1 is bounded away from zero near 𝕊1 and
that in this case

Ind𝑇 (𝑎) = lim
𝑟→1

Ind𝑇 (𝑎𝑟) = − lim
𝑟→1

wind det 𝑎𝑟, (1)

where 𝑎𝑟(𝑡) = (ℋ𝑎)(𝑟𝑡). See also [2], [10].

Toeplitz operators on [𝐴2(𝐵)]𝑁 with symbols in [𝐶(𝐵) +𝐻∞(𝐵)]𝑁×𝑁 were
studied by McDonald [13], and the passage to [𝐴𝑝(𝐵)]𝑁 was performed in [4],
[15], [16]. A matrix function 𝑎 ∈ [𝐶(𝐵) + 𝐻∞(𝐵)]𝑁×𝑁 has radial limits almost
everywhere on 𝑆 and hence defines a function 𝑎𝑆 on 𝑆. We may therefore consider
the harmonic extension ℋ𝑎 of 𝑎𝑆 into 𝐵. Arbitrary functions in 𝐿∞(𝐵) need
not to have radial limits almost everywhere on 𝑆 and so it is not clear what the
harmonic extension should be. Consequently, when working in the Bergman space,
one prefers using the Berezin transform, which is defined for all matrix functions in
[𝐿∞(𝐵)]𝑁×𝑁 . We let 𝑎̃ denote the Berezin transform of 𝑎. Given a matrix function
𝑎 on 𝐵 and a number 𝑟 ∈ (0, 1), we define 𝑎𝑟 on 𝐵 by 𝑎𝑟(𝑧) = 𝑎(𝑟𝑧). Note that if
𝑎 ∈ [𝐶(𝐵) +𝐻∞(𝐵)]𝑁×𝑁 , then 𝑎𝑟 ∈ [𝐶(𝐵)]𝑁×𝑁 for all 𝑟 ∈ (0, 1). Let ∥ ⋅ ∥ be any
matrix norm on ℂ𝑁×𝑁 . It turns out that for symbols 𝑎 in [𝐶(𝐵) +𝐻∞(𝐵)]𝑁×𝑁

the following are equivalent:

(i) 𝑇 (𝑎) is Fredholm on [𝐴𝑝(𝐵)]𝑁 ,
(ii) 𝑎𝑆 is invertible in [𝐶(𝑆) +𝐻∞(𝑆)]𝑁×𝑁 ;
(iii) there are numbers 𝑟0 ∈ (0, 1) and 𝑀 ∈ (0,∞) such that 𝑎𝑟∣𝑆 is invertible

and ∥𝑎−1𝑟 ∣𝑆∥ ≤ 𝑀 for all 𝑟0 < 𝑟 < 1;
(iv) there are numbers 𝑟0 ∈ (0, 1) and 𝑀 ∈ (0,∞) such that (ℋ𝑎)𝑟∣𝑆 is invertible

and ∥(ℋ𝑎)−1𝑟 ∣𝑆∥ ≤ 𝑀 for all 𝑟0 < 𝑟 < 1;
(v) there are numbers 𝑟0 ∈ (0, 1) and 𝑀 ∈ (0,∞) such that 𝑎̃𝑟∣𝑆 is invertible

and ∥𝑎̃−1𝑟 ∣𝑆∥ ≤ 𝑀 for all 𝑟0 < 𝑟 < 1.

McDonald [13] proved that the index is zero if 𝑁 = 1 and 𝑚 ≥ 2, but did
curiously say nothing about the index for 𝑁 = 𝑚 = 1. The latter case was disposed
of in [16]. Except for these two results, we have not seen any extension of the index
formula (1) to general 𝑁 and 𝑚 in the literature. This problem was mentioned in
[15], [16], and there it was also pointed out that the formula Ind𝐴 = Ind det𝐴,
which holds for operator matrices 𝐴 whose entries commute modulo trace class
operators, does not suffice to reach all of 𝐶+𝐻∞ even for the Bergman space on the
disk 𝔹1. Moreover, as Fredholm Toeplitz operators with continuous scalar-valued
symbols always have index zero if 𝑚 ≥ 2, it seems to be principally impossible to
reduce the index computation of 𝑇 (𝑎) to that of det𝑇 (𝑎).

However, there is another approach to index formulas. This approach is due
to Silbermann [21], and it is based on combining harmonic approximation with so-
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called stable convergence; see also [2]. The purpose of this paper is to demonstrate
that this approach yields the first equality of Douglas’ formula (1) for all 𝑁 and
𝑚. Of course, the second equality must be replaced by any of the index formulas
known for continuous matrix symbols.

We note that the method of [21] gives the desired index formula for 𝐶 +𝐻∞

symbols almost immediately in the Hardy space setting. The same is not true in
the context of Bergman spaces. The reason is that if we are in the Hardy space and
one of the symbols 𝑎 and 𝑏 is continuous, then 𝑇 (𝑎𝑟𝑏𝑟) = 𝑇 ((𝑎𝑏)𝑟)+𝐾+𝐶𝑟 where
𝐾 is compact and ∥𝐶𝑟∥ → 0 as 𝑟 → 1. This nice circumstance is the foundation of
the Banach algebraic approach of [21]. In the Bergman space, we can merely show
that 𝑇 (𝑎𝑟𝑏𝑟) = 𝑇 ((𝑎𝑏)𝑟)+𝐾𝑟+𝐶𝑟 where 𝐾𝑟 is compact for each 𝑟 and ∥𝐶𝑟∥ → 0.
This makes things a little difficult even for 𝐶 +𝐻∞ symbols.

Herewith our first main result.

Theorem 1.1. Let 1 < 𝑝 < ∞ and 𝑎 ∈ [𝐶(𝐵) +𝐻∞(𝐵)]𝑁×𝑁 . Suppose the Toeplitz
operator 𝑇 (𝑎) is Fredholm on the Bergman space [𝐴𝑝(𝐵)]𝑁 . Then there is a number
𝑟0 ∈ (0, 1) such that the Toeplitz operators 𝑇 (𝑎𝑟) are Fredholm on [𝐴𝑝(𝐵)]𝑁 for
all 𝑟0 < 𝑟 < 1 and

Ind𝑇 (𝑎) = lim
𝑟→1

Ind𝑇 (𝑎𝑟). (2)

In particular, Ind𝑇 (𝑎) = 0 whenever 𝑁 < 𝑚.

We remark that the theorem remains literally true with 𝑎𝑟 replaced by (ℋ𝑎)𝑟
or 𝑎̃𝑟.

We secondly consider another class of discontinuous matrix symbols in the
algebra [𝐿∞(𝐵)]𝑁×𝑁 . This class is motivated by paper [1], which was devoted to
the case 𝑁 = 𝑚 = 1 and 𝑝 = 2, and this class contains symbols with jumps. Note
that paper [1] had in turn one source of motivation in McDonald’s paper [14].
While in the case of Hardy spaces jumps and locally sectorial symbols come along
with lenses bounded by two circular arcs when passing to general 𝑝 ∈ (1,∞),
we will encounter certain ellipses with their foci in the endpoints of the jumps
when considering the Bergman spaces with 𝑝 ∈ (1,∞). However, note that we will
establish only sufficient conditions for Fredholmness, so that we cannot exclude
that eventually the ellipses may be replaced by smaller lentiform domains, perhaps
even circular lenses. Our main result in this context is as follows. The precise
theorem requires a series of definitions and explanations and will be deferred to
Section 4.

Theorem 1.2. Let 𝑎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 be locally 𝜇-elliptic, where 𝜇 is a number
determined by the norm of the Bergman projection. Then 𝑇 (𝑎) is Fredholm on
[𝐴𝑝(𝐵)]𝑁×𝑁 and

Ind𝑇 (𝑎) = lim
𝑟→1

Ind𝑇 (𝑎̃𝑟).

In particular, Ind𝑇 (𝑎) = 0 if 𝑁 < 𝑚.

Section 2 contains the proof of Theorem 1.1. Section 3 is devoted to the notion
of 𝜇-ellipticity. In Section 4 we state and prove the precise version of Theorem 1.2.
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2. 𝑪 +𝑯∞ symbols

Each of the four Fredholm criteria quoted in Section 1 shows that if 𝑇 (𝑎) is Fred-
holm on [𝐴𝑝(𝐵)]𝑁 for some 𝑝 ∈ (1,∞), then 𝑇 (𝑎) is Fredholm on [𝐴𝑝(𝐵)]𝑁 for
all exponents 𝑝 ∈ (1,∞). Let 𝑀(𝑎) denote the operator of multiplication by 𝑎.
The Fredholm properties of 𝑇 (𝑎) on [𝐴𝑝(𝐵)]𝑁 are clearly the same as those of
𝑃𝑀(𝑎)𝑃 + 𝐼 − 𝑃 on [𝐿𝑝(𝐵)]𝑁 . A classical result by Shneiberg [20] implies that
if a bounded linear operator 𝐴 is Fredholm on [𝐿𝑝(𝐵)]𝑁 for all 𝑝 in some open
subset 𝑈 of (1,∞), then the index of 𝐴 is constant on the connected components
of 𝑈 . Therefore it suffices to prove Theorem 1.1 in the case 𝑝 = 2.

Our proof is based on the following result. All operators occurring therein are
bounded linear operators on a Banach space. We denote strong convergence (=
pointwise convergence) of operators by→ and uniform convergence (= convergence
in the norm) by ⇉.

Lemma 2.1. (Silbermann [21]) Let 𝐴 be Fredholm and Ind𝐴 = 0. Suppose 𝐹
is another operator and for each 𝑟 ∈ (0, 1) we are given operators 𝐴𝑟 and 𝐹𝑟.
Suppose also that the operators 𝐴𝑟 are Fredholm for 𝑟 close enough to 1. Then,
with convergence understood as convergence for 𝑟 → 1, we have the following.

(a) If 𝐴∗
𝑟 → 𝐴∗, 𝐹𝑟 → 𝐹 , and 𝐹𝑟𝐴𝑟 = 𝐼+𝐾+𝐸𝑟 with a compact operator 𝐾 and

with 𝐸𝑟 ⇉ 0, then there is an 𝑟0 ∈ (0, 1) such that Ind𝐴𝑟 ≤ 0 for 𝑟0 < 𝑟 < 1.
(b) If 𝐴𝑟 → 𝐴, 𝐹 ∗

𝑟 → 𝐹 ∗, and 𝐴𝑟𝐹𝑟 = 𝐼 + 𝐾 + 𝐸𝑟 with a compact operator
𝐾 and with 𝐸𝑟 ⇉ 0, then there is an 𝑟0 ∈ (0, 1) such that Ind𝐴𝑟 ≥ 0 for
𝑟0 < 𝑟 < 1.

Proof. (a) There is a compact operator 𝐿 such that 𝐴+ 𝐿 is invertible. It follows
that

𝐹𝑟(𝐴𝑟 + 𝐿) = 𝐼 +𝐾 + 𝐸𝑟 + 𝐹𝑟𝐿

= 𝐼 +𝐾 + 𝐹𝐿+ 𝐸′
𝑟

with 𝐸′
𝑟 ⇉ 0. Put

𝐷𝑟 = 𝐹𝑟 − (𝐾 + 𝐹𝐿)(𝐴+ 𝐿)−1.

Then

𝐷𝑟(𝐴𝑟 + 𝐿) = 𝐼 +𝐾 + 𝐹𝐿+ 𝐸′
𝑟 − (𝐾 + 𝐹𝐿)(𝐴+ 𝐿)−1(𝐴𝑟 + 𝐿)

= 𝐼 +𝐾 + 𝐹𝐿 − (𝐾 + 𝐹𝐿) + 𝐸′′
𝑟

= 𝐼 + 𝐸′′
𝑟

with 𝐸′′
𝑟 ⇉ 0. Therefore 𝐴𝑟 +𝐿 is left invertible for all 𝑟 close enough to 1, which

implies that Ind (𝐴𝑟 + 𝐿) ≤ 0 and thus Ind𝐴𝑟 ≤ 0. Part (b) is analogous. □

Suppose now that 𝑎 ∈ [𝐶(𝐵) + 𝐻∞(𝐵)]𝑁×𝑁 and that 𝑇 (𝑎) is Fredholm.
Then there are numbers 𝑟1 ∈ (0, 1) and 𝑀 ∈ (0,∞) such that ∥𝑎−1(𝑧)∥ ≤ 𝑀 for
𝑟1 < ∣𝑧∣ < 1. Letting 𝑟2 =

√
𝑟1, we obtain that ∥𝑎−1𝑟 (𝑧)∥ ≤ 𝑀 for 𝑟2 < 𝑟 < 1 and

𝑟2 < ∣𝑧∣ < 1. We define 𝜒 on 𝐵 by 𝜒(𝑧) = 1 if ∣𝑧∣ > 𝑟2 and 𝜒(𝑧) = 0 if ∣𝑧∣ < 𝑟2.
Then 𝜒𝑎−1𝑟 and 𝜒𝑎−1 are well defined matrix functions in [𝐿∞(𝐵)]𝑁×𝑁 .
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Lemma 2.2. We have 𝑀(𝜒𝑎−1𝑟 ) → 𝑀(𝜒𝑎−1) and 𝑀(𝑎𝑟) → 𝑀(𝑎) as 𝑟 → 1.

Proof. We begin with the first assertion. The norms

∥𝑀(𝜒𝑎−1𝑟 )∥ = ∥𝜒𝑎−1𝑟 ∥∞
remain bounded as 𝑟 → 1. Since 𝐿∞(𝐵) is dense in 𝐿2(𝐵), it therefore suffices to
show that 𝑀(𝜒𝑎−1𝑟 )𝑣 − 𝑀(𝜒𝑎−1)𝑣 → 0 for every 𝑣 ∈ [𝐿∞(𝐵)]𝑁 . As

𝑀(𝜒𝑎−1𝑟 )− 𝑀(𝜒𝑎−1) = 𝑀(𝜒𝑎−1𝑟 )𝑀(𝑎 − 𝑎𝑟)𝑀(𝜒𝑎−1),

we are left with proving that𝑀(𝑎−𝑎𝑟)𝑣 → 0 in the scalar case (𝑁 = 1). Obviously,

∥𝑀(𝑎 − 𝑎𝑟)𝑣∥22 =
∫
𝐵

∣𝑎 − 𝑎𝑟∣2∣𝑣∣2𝑑𝑉 ≤ ∥𝑣∥2∞
∫
𝐵

∣𝑎 − 𝑎𝑟∣2𝑑𝑉

= ∥𝑣∥2∞
∫
𝐵

∣𝑎(𝑧)− 𝑎(𝑟𝑧)∣2𝑑𝑉 (𝑧). (3)

Fix 𝜀 > 0. Since 𝑎 is bounded, there is a compact set 𝐾 ⊂ 𝐵 such that∫
𝐵∖𝐾

∣𝑎(𝑧)− 𝑎(𝑟𝑧)∣2𝑑𝑉 (𝑧) < 𝜀/2,

and as 𝑎 is uniformly continuous on 𝐾, it follows that∫
𝐾

∣𝑎(𝑧)− 𝑎(𝑟𝑧)∣2𝑑𝑉 (𝑧) < 𝜀/2

whenever 𝑟 is close enough to 1. This proves the first assertion.
Since ∥𝑀(𝑎𝑟 − 𝑎)𝑣∥22 can also be estimated from above by (3), we get the

second assertion. □

Lemma 2.3. If Ind𝑇 (𝑎) = 0, then 𝑇 (𝑎𝑟) is Fredholm and Ind𝑇 (𝑎𝑟) ≤ 0 for all 𝑟
close enough to 1.

Proof. We employ Lemma 2.1(a) with 𝐴 = 𝑇 (𝑎), 𝐹 = 𝑇 (𝜒𝑎−1), 𝐴𝑟 = 𝑇 (𝑎𝑟),
𝐹𝑟 = 𝑇 (𝜒𝑎−1𝑟 ). Since 𝑎𝑟∣𝑆 is invertible for 𝑟 sufficiently close to 1, the operators
𝑇 (𝑎𝑟) are Fredholm for these 𝑟. The adjoint of 𝑇 (𝜑) may be identified with 𝑇 (𝜑).
From Lemma 2.2 we infer that 𝐴∗

𝑟 → 𝐴∗ and 𝐹𝑟 → 𝐹 . Furthermore,

𝐹𝑟𝐴𝑟 = 𝑇 (𝜒)− 𝑃𝑀(𝜒𝑎−1𝑟 )(𝐼 − 𝑃 )𝑀(𝑎𝑟)𝑃.

The operator 𝑇 (𝜒) is 𝐼 plus a compact operator. We have 𝑎 = 𝑐 + 𝑓 with 𝑐 in
[𝐶(𝐵)]𝑁×𝑁 and 𝑓 in [𝐻∞(𝐵)]𝑁×𝑁 . Consequently, (𝐼 − 𝑃 )𝑀(𝑎𝑟)𝑃 is equal to
(𝐼−𝑃 )𝑀(𝑐𝑟)𝑃 . Taking into account that 𝑐 is continuous on the closed ball 𝐵, it is
easily seen that 𝑀(𝑐𝑟)⇉ 𝑀(𝑐). The operator (𝐼 − 𝑃 )𝑀(𝑐)𝑃 is compact. Finally,
𝑀(𝜒𝑎−1𝑟 ) → 𝑀(𝜒𝑎−1) due to Lemma 2.2. But if 𝐾𝑟 ⇉ 𝐾, 𝐾 is compact, and
𝐶𝑟 → 𝐶, then 𝐶𝑟𝐾𝑟 ⇉ 𝐶𝐾. Thus,

𝑃𝑀(𝜒𝑎−1𝑟 )(𝐼 − 𝑃 )𝑀(𝑎𝑟)𝑃 = 𝑃𝑀(𝜒𝑎−1)(𝐼 − 𝑃 )𝑀(𝑐)𝑃 + 𝐸𝑟 = 𝐿+ 𝐸𝑟

with a compact operator 𝐿 and with certain operators 𝐸𝑟 such that 𝐸𝑟 ⇉ 0.
Lemma 2.1 now yields the assertion. □
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Recall that the Bergman projection 𝑃 : 𝐿2(𝐵) → 𝐴2(𝐵) is defined by

(𝑃𝑓)(𝑧) =

∫
𝐵

1

(1 − (𝑧, 𝑤))𝑚+1
𝑓(𝑤) 𝑑𝑉 (𝑤), 𝑧 ∈ 𝐵,

that the normalized reproducing kernel of 𝐴2(𝐵) is

𝑘𝑧(𝑤) =
(1 − ∣𝑧∣2)(𝑚+1)/2
(1− (𝑤, 𝑧))𝑚+1

,

and that the Berezin transform 𝑓 of 𝑓 ∈ 𝐿∞(𝐵) is the function

𝑓(𝑧) = (𝑓𝑘𝑧, 𝑘𝑧) =

∫
𝐵

(1− ∣𝑧∣2)𝑚+1
∣1− (𝑤, 𝑧)∣2𝑚+2 𝑓(𝑤) 𝑑𝑉 (𝑤), 𝑧 ∈ 𝐵.

This is a bounded continuous function in 𝐵.
We need the following well-known properties of the Berezin transform. Let

∥ ⋅ ∥ denote any matrix norm on ℂ𝑁×𝑁 and let 𝐿∞
0 (𝐵) stand for the functions 𝑓

in 𝐿∞(𝐵) for which the essential supremum of ∣𝑓(𝑧)∣ on the set {𝑧 ∈ 𝐵 : 𝑟 < ∣𝑧∣ <
1} goes to zero as 𝑟 → 1. Toeplitz operators with symbols in [𝐿∞

0 (𝐵)]
𝑁×𝑁 are

compact. Recall also that 𝑓𝑟 is defined by 𝑓𝑟(𝑧) = 𝑓(𝑟𝑧) for 𝑧 ∈ 𝐵. A shell is a set
of the form {𝑧 ∈ 𝐵 : 1− 𝛿 < ∣𝑧∣ < 1} with some 𝛿 ∈ (0, 1).
Lemma 2.4. Let 𝑓, 𝑔 ∈ [𝐿∞(𝐵)]𝑁×𝑁 .

(a) If 𝑓 is continuous on 𝐵, then 𝑓 ∈ 𝐶(𝐵) and 𝑓 ∣𝑆 = 𝑓 ∣𝑆.
(b) If 𝑓 or 𝑔 is continuous on 𝐵, then (𝑓𝑔)̃ − 𝑓𝑔 ∈ [𝐿∞

0 (𝐵)]
𝑁×𝑁 .

(c) With sup meaning the essential supremum,

sup
𝑧∈𝐵

∥𝑓(𝑧)∥ ≤ sup
𝑧∈𝐵

∥𝑓(𝑧)∥.

(d) If 𝑓 is identically zero on some shell, then 𝑓 ∈ [𝐿∞
0 (𝐵)]

𝑁×𝑁 .

Proof. Property (a) can be proved as in [27] using the automorphisms 𝜑𝑎 of 𝐵
introduced in Section 2.2 of [19]. Property (b) is easily seen using the argument
of the proofs of Proposition 3 of [26] or Proposition 6.1.7 of [27]. As for (c), note
that

∥𝑓(𝑧)∥ =
∥∥∥∥∫
𝐵

𝑓(𝑤) ∣𝑘𝑧(𝑤)∣2 𝑑𝑉 (𝑤)

∥∥∥∥ ≤
∫
𝐵

∥𝑓(𝑤)∥ ∣𝑘𝑧(𝑤)∣2 𝑑𝑉 (𝑤)

≤ ∥𝑓∥∞
∫
𝐵

∣𝑘𝑧(𝑤)∣2 𝑑𝑉 (𝑤) = ∥𝑓∥∞.

Finally, if 𝑓 = 0 on some shell Ω, we can choose a matrix function 𝜑 in [𝐶(𝐵)]𝑁×𝑁

such that 𝜑𝑓 = 0 on 𝐵 and 𝜑∣Ω0 = 𝐼 on some shell Ω0 ⊂ Ω. From (b) we infer
that

(𝜑𝑓 )̃ − 𝜑𝑓 ∈ [𝐿∞
0 (𝐵)]

𝑁×𝑁 .

Since (𝜑𝑓 )̃ is identically zero, it follows that 𝜑𝑓 ∈ [𝐿∞
0 (𝐵)]

𝑁×𝑁 . But property
(a) tells us that 𝜑(𝑧) converges uniformly to 𝐼 as ∣𝑧∣ → 1. □
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Lemma 2.5. If 𝜉 ∈ [𝐿∞
0 (𝐵)]

𝑁×𝑁 , then 𝑇 (𝐼 + 𝜉𝑟) is Fredholm of index zero for all
𝑟 sufficiently close to 1.

Proof. Given any 𝜀 > 0, there is an 𝑟0 ∈ (0, 1) such that ∥𝜉(𝑧)∥ < 𝜀 for 𝑟0 < ∣𝑧∣ < 1.
It follows that ∥𝜉(𝑟𝑧)∥ < 𝜀 for

√
𝑟0 < 𝑟 < 1 and

√
𝑟0 < ∣𝑧∣ < 1. Consequently, the

essential norm of 𝑇 (𝜉𝑟), that is, the distance of 𝑇 (𝜉𝑟) to the compact operators in
the operator norm, is smaller than ∥𝑃∥ 𝜀; see, e.g., the proof of [13, Proposition 1.7].
Thus, if ∥𝑃∥ 𝜀 < 1, then 𝑇 (𝐼+ 𝜉𝑟) = 𝐼 +𝑇 (𝜉𝑟) can be written as 𝐼 +𝐴𝑟+𝐾𝑟 with
∥𝐴𝑟∥ < 1 and with a compact operator 𝐾𝑟. This implies the assertion. □

If 𝑎 ∈ [𝐶(𝐵)+𝐻∞(𝐵)]𝑁×𝑁 , then 𝑎̃−𝑎 is in [𝐿∞
0 (𝐵)]

𝑁×𝑁 due to Lemma 2.4(a)
and due to the fact that ℎ̃ = ℎ for ℎ ∈ 𝐻∞(𝐵). It therefore suffices to prove formula
(2) in the case where 𝑎 coincides with its Berezin transform, 𝑎 = 𝑎̃.

Recall that 𝑎𝑆 ∈ [𝐶(𝑆) + 𝐻∞(𝑆)]𝑁×𝑁 is the function given by the radial
limits of 𝑎. We know that 𝑎𝑆 is invertible in [𝐶(𝑆) + 𝐻∞(𝑆)]𝑁×𝑁 . Let 𝑏𝑆 be
the inverse and define 𝑏 ∈ [𝐶(𝐵) +𝐻∞(𝐵)]𝑁×𝑁 as the Berezin transform of the

harmonic extension of 𝑏𝑆 . Thus, 𝑏 = 𝑏̃ on 𝐵. Since 𝑎𝑏∣𝑆 = 𝑏𝑎∣𝑆 = 𝐼, it follows
that the operators 𝑇 (𝑎)𝑇 (𝑏)− 𝐼 and 𝑇 (𝑏)𝑇 (𝑎)− 𝐼 are compact, and hence 𝑇 (𝑏) is
Fredholm of index zero together with 𝑇 (𝑎).

Lemma 2.6. If Ind𝑇 (𝑎) = 0, then Ind𝑇 (𝑎𝑟) = Ind𝑇 (𝑏𝑟) = 0 for all 𝑟 close enough
to 1.

Proof. Using that 𝑎𝑏 = 𝐼 on 𝑆 and that ℎ̃ = ℎ for ℎ ∈ 𝐻∞(𝐵), we obtain
from Lemma 2.4(b) that 𝐼 = 𝑎̃𝑏̃ + 𝛾 = 𝑎𝑏 + 𝛾 with 𝛾 ∈ [𝐿∞

0 (𝐵)]
𝑁×𝑁 . There

are a shell Ω and a constant 𝑀 < ∞ such that 𝑎 and 𝑏 are invertible on Ω and
∥𝑎−1∥ ≤ 𝑀 and ∥𝑏−1∥ ≤ 𝑀 on Ω. Hence 𝐼 = 𝑎𝑏(𝐼 + 𝑏−1𝑎−1𝛾) on Ω, which
implies that 𝐼 = 𝑎𝑏(𝐼 + 𝜉) + 𝜂 with 𝜉 ∈ [𝐿∞

0 (𝐵)]
𝑁×𝑁 and some matrix function

𝜂 ∈ [𝐿∞
0 (𝐵)]

𝑁×𝑁 which vanishes identically on Ω. We have 𝐼 = 𝑎𝑟𝑏𝑟(𝐼 + 𝜉𝑟) + 𝜂𝑟
and thus 𝐼 = 𝑇 (𝑎𝑟)𝑇 (𝑏𝑟)𝑇 (𝐼 + 𝜉𝑟) + 𝑇 (𝜂𝑟) +𝐾𝑟 with some compact operator 𝐾𝑟.
Since 𝑇 (𝜂𝑟) is compact and 𝑇 (𝐼 + 𝜉𝑟) is Fredholm of index zero for 𝑟 close enough
to 1 by Lemma 2.5, we conclude that 0 = Ind𝑇 (𝑎𝑟) + Ind𝑇 (𝑏𝑟) whenever 𝑟 is
sufficiently close to 1. However, we know from Lemma 2.3 that Ind 𝑇 (𝑎𝑟) ≤ 0,
and the same lemma applied to 𝑇 (𝑏) also shows that Ind𝑇 (𝑏𝑟) ≤ 0. Consequently,
both indices must be zero. □

At this point we have proved formula (2) under the extra assumption that
Ind𝑇 (𝑎) = 0.

Lemma 2.7. If Ind 𝑇 (𝑎) = 𝜅, then 𝑇 (𝑎𝑟) is Fredholm and Ind𝑇 (𝑎𝑟) = 𝜅 for all 𝑟
close enough to 1.

Proof. Choose an integer 𝑘 ≥ 0 such that 𝑁 + 𝑘 ≥ 𝑚 and consider the
ℂ(𝑁+𝑘)×(𝑁+𝑘)-valued matrix function 𝑣 given by 𝑣 = diag(𝑎, 𝐼𝑘). Clearly 𝑇 (𝑣)
is Fredholm and Ind𝑇 (𝑣) = 𝜅. Since 𝑁 + 𝑘 ≥ 𝑚, we obtain from [25] a matrix
function 𝜓 ∈ [𝐶(𝐵)](𝑁+𝑘)×(𝑁+𝑘) such that 𝑇 (𝜓) is Fredholm and Ind𝑇 (𝜓) = −𝜅.
By Lemma 2.4(a), we may without loss of generality assume that 𝑣 = 𝑣 and
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𝜓 = 𝜓. Put 𝑤 = 𝑣𝜓. Then 𝑇 (𝑤) equals 𝑇 (𝑣)𝑇 (𝜓) plus a compact operator, and
hence 𝑇 (𝑤) is Fredholm of index zero. From Lemma 2.6 we deduce that 𝑇 (𝑤𝑟)
and thus also 𝑇 (𝑤𝑟) is Fredholm of index zero whenever 𝑟 is close enough to 1.
From Lemma 2.4(b) we infer that 𝑤 = 𝑣𝜓 + 𝛾 with 𝛾 ∈ [𝐿∞

0 (𝐵)]
𝑁×𝑁 . We may

write 𝑣𝜓 = 𝑤(𝐼 − 𝑤−1𝛾) = 𝑤(𝐼 − 𝜉) + 𝜂 as in the previous proof to obtain that
𝑣𝑟𝜓𝑟 = 𝑤𝑟(𝐼 − 𝜉𝑟) + 𝜂𝑟 and thus

Ind𝑇 (𝑣𝑟) + Ind 𝑇 (𝜓𝑟) = Ind𝑇 (𝑤𝑟) + Ind𝑇 (𝐼 + 𝜉𝑟) = 0

for 𝑟 sufficiently close to 1. Since

Ind𝑇 (𝜓𝑟) = Ind𝑇 (𝜓) = −𝜅 and Ind𝑇 (𝑣𝑟) = Ind𝑇 (𝑎𝑟),

we arrive at the equality Ind𝑇 (𝑎𝑟)− 𝜅 = 0, as desired. □

The proof of formula (2) is complete. That Ind𝑇 (𝑎) = 0 for 𝑁 < 𝑚 follows
immediately from (2) and the fact that Fredholm Toeplitz operators with contin-
uous matrix symbols always have index zero if 𝑁 < 𝑚. This last fact can in turn
be proved in several ways. For example, we have Boutet de Monvel’s beautiful
formula

Ind𝑇 (𝑎) = − 1

(2𝜋𝑖)𝑚
(𝑚 − 1)!

(2𝑚 − 1)!

∫
𝑆

trace ((𝑎−1 𝑑𝑎)2𝑚−1)

for Toeplitz operators with continuous matrix symbols. Proofs can be found in [3],
[11], [22]. This formula implies that Ind𝑇 (𝑎) = 0 for 𝑁 < 𝑚. An argument which
is independent of this formula is as follows.

Let 𝑎 ∈ [𝐶(𝐵)]𝑁×𝑁 and suppose 𝑎∣𝑆 is invertible. Then the matrix functions
∣𝑎∣ and 𝑢 in the polar decomposition 𝑎 = ∣𝑎∣𝑢 are continuous on 𝑆. We extend ∣𝑎∣
and 𝑢 to functions on 𝐵 by ∣𝑎∣(𝜚𝑡) = 𝜚∣𝑎∣(𝑡) and 𝑢(𝜚𝑡) = 𝜚𝑢(𝑡). Then Ind 𝑇 (𝑎) =
Ind𝑇 (∣𝑎∣) + Ind𝑇 (𝑢) = Ind𝑇 (𝑢). Note that 𝑢 is a continuous map of 𝕊2𝑚−1 into
the group 𝑈(𝑁). Suppose we know that the homotopy group 𝜋2𝑚−1(𝑈(𝑁)) is
finite. Then Ind𝑇 (𝑢) may assume only finitely many values 𝜅1, . . . , 𝜅𝑠. However,

Ind𝑇 (𝑢𝑛) = Ind (𝑇 (𝑢)𝑛 + compact operator) = 𝑛 Ind𝑇 (𝑢)

for every natural number 𝑛, and since Ind𝑇 (𝑢𝑛) must also be one of the numbers
𝜅1, . . . , 𝜅𝑠, the finite set {𝜅1, . . . , 𝜅𝑠} is invariant under multiplication by an ar-
bitrary natural number. But this is only possible if the set is the singleton {0}.
Consequently, Ind𝑇 (𝑢) = 0, as desired.

Finally, it is well known that the homotopy groups 𝜋2𝑚−1(𝑈(𝑁)) are finite
for 𝑁 < 𝑚. We thank Thomas Püttman of Bochum for acquainting us with the
following reasoning. There is a general theorem which says that the rational ho-
motopy groups 𝜋𝑗(𝐺)⊗ℚ of a Lie group 𝐺 of rank 𝑟 are isomorphic to those of a
product of 𝑟 odd spheres. If 𝐺 = 𝑈(𝑁), then, by [17], these spheres are just the
first 𝑁 odd spheres 𝕊1, 𝕊3, . . . , 𝕊2𝑁−1. But if 2𝑘 − 1 ≤ 2𝑁 − 1 < 2𝑚 − 1, then
𝜋2𝑚−1(𝕊2𝑘−1) is finite, and hence 𝜋2𝑚−1(𝕊1×𝕊3×⋅ ⋅ ⋅×𝕊2𝑁−1)⊗ℚ = 0. It follows
that 𝜋2𝑚−1(𝑈(𝑁))⊗ ℚ = 0, which implies that 𝜋2𝑚−1(𝑈(𝑁)) must be finite.
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3. 𝝁-ellipticity

We denote the norm of the Bergman projection on 𝐿𝑝(𝐵) by ∥𝑃∥𝑝. If 𝑝 = 2, then 𝑃
is an orthogonal projection and hence ∥𝑃∥2 = 1. In the case of general 𝑝 ∈ (1,∞)
we have ∥𝑃∥𝑝 ≥ 1. Estimates for ∥𝑃∥𝑝 can be found in [7] and [28]. From the
Riesz-Thorin interpolation theorem we deduce that 𝑝 �→ ∥𝑃∥𝑝 is a continuous
function (because log ∥𝑃∥𝑝 is a convex function of 1/𝑝) which is monotonically
decreasing on (1, 2] and monotonically increasing on [2,∞).

Let 𝑎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 . From now on we let ∥ ⋅ ∥ stand for the spectral norm
on ℂ𝑁×𝑁 . We also equip [𝐿𝑝(𝐵)]𝑁 with the norm

∥𝑓∥ = (∥𝑓1∥2𝑝 + ⋅ ⋅ ⋅+ ∥𝑓𝑁∥2𝑝)1/2.
With these two conventions, the norm of the operator 𝑓 �→ 𝑎𝑓 on [𝐿𝑝(𝐵)]𝑁 is the
essential supremum of ∥𝑎(𝑧)∥, 𝑧 ranging over 𝐵.

Let 𝜇 ∈ [2,∞) be a real number. A compact subset ℛ of ℂ𝑁×𝑁 is called
𝜇-elliptic if there are invertible matrices 𝑐, 𝑑 ∈ ℂ𝑁×𝑁 such that

∥𝐼 − 𝑐𝑤𝑑∥ < sin
𝜋

𝜇
(4)

for all 𝑤 ∈ ℛ. This definition is motivated by the notion of 𝜇-sectoriality, for which
see, e.g., [2, p. 221]. Now let 𝑎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 . For a measurable subset 𝑈 of 𝐵
with positive measure, we denote by ℛ𝑈 (𝑎) ⊂ ℂ𝑁×𝑁 the essential range of 𝑎∣𝑈 .
Equivalently, ℛ𝑈 (𝑎) is the set of all matrices 𝑤 ∈ ℂ𝑁×𝑁 for which the operator
of multiplication by (𝑎 − 𝑤)∣𝑈 is not invertible on [𝐿2(𝑈)]𝑁 . This implies that
ℛ𝑈 (𝑎) is a compact set. The matrix function 𝑎 is called 𝜇-elliptic on 𝑈 if ℛ𝑈 (𝑎)
is a 𝜇-elliptic set. We call 𝑎 globally 𝜇-elliptic if 𝑎 is 𝜇-elliptic on some shell.

Proposition 3.1. Define the number 𝜇 ∈ [2,∞) by 1/ sin(𝜋/𝜇) = ∥𝑃∥𝑝. If 𝑎 in
[𝐿∞(𝐵)]𝑁×𝑁 is 𝜇-elliptic on the entire ball 𝐵, then 𝑇 (𝑎) is invertible on [𝐴𝑝(𝐵)]𝑁 ,
and if 𝑎 is globally 𝜇-elliptic, then 𝑇 (𝑎) is Fredholm of index zero on [𝐴𝑝(𝐵)]𝑁 .

Proof. Suppose first that 𝑎 is 𝜇-elliptic on 𝐵. Then (4) holds for all 𝑤 in ℛ𝐵(𝑎),
which implies that

∥𝐼 − 𝑐𝑎𝑑∥∞ < sin(𝜋/𝜇)

and hence that

∥𝐼 − 𝑐𝑇 (𝑎)𝑑𝐼∥ = ∥𝑇 (𝐼 − 𝑐𝑎𝑑)∥ ≤ ∥𝑃∥𝑝 ∥𝐼 − 𝑐𝑎𝑑∥∞ < 1.

Consequently, 𝑐𝑇 (𝑎)𝑑𝐼 and thus also 𝑇 (𝑎) are invertible. Now suppose 𝑎 is 𝜇-elliptic
on a shell. Then (4) holds for all essential values of 𝑎 on the shell 1−𝛿< ∣𝑧∣< 1.
We take any of these values, say 𝑤0, and define 𝑎0 by 𝑎0(𝑧)=𝑤0 for ∣𝑧∣< 1− 𝛿
and 𝑎0(𝑧)=𝑎(𝑧) for 1 − 𝛿 < ∣𝑧∣ < 1. Then 𝑎0 is 𝜇-elliptic on 𝐵 and 𝑇 (𝑎)−𝑇 (𝑎0)
is compact. Since 𝑇 (𝑎0) is invertible, we conclude that 𝑇 (𝑎) is Fredholm of index
zero. □

It is readily seen that if 𝑁 = 1 and 𝜇 = 2, then a compact set ℛ ⊂ ℂ is
2-elliptic if and only if ℛ is contained in an open half-plane whose boundary passes
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through the origin. This happens in turn if and only if the origin does not belong
to the convex hull of ℛ, that is, 0 /∈ convℛ.

For 𝑁 = 1 and general 𝜇 we have the following geometrical description of
𝜇-ellipticity. A 2𝜋/𝜇-sector is the open subset in ℂ lying between two rays which
start at the origin and make the angle 2𝜋/𝜇 at the origin. Given points 𝛼, 𝛽 ∈ ℂ,
we denote by ℰ𝜇(𝛼, 𝛽) the boundary and interior of the ellipse with the foci 𝛼, 𝛽,
with the major semi-axis 1/ sin(𝜋/𝜇), and with the minor semi-axis 1/ tan(𝜋/𝜇).
Thus, for 𝛼 = −1 and 𝛽 = 1,

ℰ𝜇(−1, 1) =
{
𝑥+ 𝑖𝑦 ∈ ℂ : 𝑥2 sin2

𝜋

𝜇
+ 𝑦2 tan2

𝜋

𝜇
≤ 1

}
.

Proposition 3.2. Let ℛ be a compact subset of ℂ.

(a) The set ℛ is 𝜇-elliptic if and only if ℛ is contained in an open disk which is
completely contained in a 2𝜋/𝜇-sector.

(b) If the convex hull of ℛ is a line segment, convℛ = [𝛼, 𝛽], then for ℛ to be
𝜇-elliptic it is necessary and sufficient that 0 /∈ ℰ𝜇(𝛼, 𝛽).

Proof. It will be convenient to use the abbreviations

𝑠 = sin
𝜋

𝜇
, 𝑐 = cos

𝜋

𝜇
, 𝑡 = tan

𝜋

𝜇
.

(a) Condition (4) amounts to the requirement that ∣1 − 𝑐𝑤𝑑∣ < 𝑠. Putting
𝑧0 = 1/(𝑐𝑑), this means that ∣𝑤−𝑧0∣ < 𝑠∣𝑧0∣. The rest is elementary plane geometry.

(b) Since the situation is invariant under homotheties, we may without loss
of generality assume that the length of the line segment [𝛼, 𝛽] is 2. By virtue of
(a), we have to show that [𝛼, 𝛽] is contained in an open disk lying in a 2𝜋/𝜇-sector
if and only if 0 /∈ ℰ𝜇(𝛼, 𝛽). It is easily seen that [𝛼, 𝛽] is contained in such a disk
if and only if there is a closed disk which has both 𝛼 and 𝛽 on its boundary and
which is contained in a 2𝜋/𝜇-sector. The center 𝑧0 of this disk is on the median
of [𝛼, 𝛽]. We parametrize this median by a parameter 𝛿 ∈ (−∞,∞), so that ∣𝛿∣ is
the distance of 𝑧0 to [𝛼, 𝛽] and the two signs of 𝛿 correspond to the two sides of

[𝛼, 𝛽]. The radius of this disk is
√
1 + 𝛿2. Consequently, the disk is contained in

a 2𝜋/𝜇-sector if and only if
√
1 + 𝛿2/∣𝑧0∣ < 𝑠. This is equivalent to the inequality√

1 + 𝛿2/𝑠 < ∣𝑧0∣, which means that the closed disk 𝐷𝛿 with center 𝑧0 and radius√
1 + 𝛿2/𝑠 does not contain the origin. Thus, [𝛼, 𝛽] is contained in an open disk

lying in a 2𝜋/𝜇-sector if and only if there exists a 𝛿 such that 0 /∈ 𝐷𝛿, which
happens if and only if 0 /∈ ∩𝐷𝛿. The assertion is therefore equivalent to the
equality ∩𝐷𝛿 = ℰ𝜇(𝛼, 𝛽). To show this equality we may without loss of generality
assume that [𝛼, 𝛽] = [−1, 1].

We first prove that ∩𝐷𝛿 ⊂ ℰ𝜇(−1, 1). Take a point 𝑥 + 𝑖𝑦 /∈ ℰ𝜇(−1, 1) and
suppose without loss of generality that 𝑦 ≤ 0. Take 𝛿 ≥ 0 as 𝛿 = −𝑦𝑠2/𝑐2 and

consider the disk 𝐷𝛿 with center 𝑖𝛿 and radius
√
1 + 𝛿2/𝑠. For the distance 𝑑
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between 𝑥+ 𝑖𝑦 and the center 𝑖𝛿 of this disk we have

𝑑2 = 𝑥2 + (𝑦 − 𝛿)2 = 𝑥2 + 𝑦2
(
1 +

𝑠2

𝑐2

)2

=
1

𝑠2

(
𝑥2𝑠2 + 𝑦2

𝑠2

𝑐4

)
=

1

𝑠2

(
𝑥2𝑠2 + 𝑦2

𝑠2

𝑐2
+ 𝑦2

𝑠4

𝑐4

)
=

1

𝑠2

(
𝑥2𝑠2 + 𝑦2𝑡2 + 𝑦2

𝑠4

𝑐4

)
,

and the radius 𝑅 od 𝐷𝛿 satisfies

𝑅2 =
1 + 𝛿2

𝑠2
=

1

𝑠2

(
1 + 𝑦2

𝑠4

𝑐4

)
.

Thus, if 𝑥+ 𝑖𝑦 /∈ ℰ𝜇(−1, 1) and hence 𝑥2𝑠2 + 𝑦2𝑡2 > 1, then 𝑑 > 𝑅, which implies

that 𝑥+ 𝑖𝑦 does not belong to 𝐷𝛿 and all the more not to ∩𝐷𝛿.
To prove that ℰ𝜇(−1, 1) ⊂ ∩𝐷𝛿, pick 𝑥 + 𝑖𝑦 ∈ ℰ𝜇(−1, 1). We then have the

inequality

𝑥2𝑠2 + 𝑦2𝑡2 ≤ 1.

Let 𝑑 be the distance between 𝑥+𝑖𝑦 and the center 𝑖𝛿 of 𝐷𝛿 and let 𝑅 be the radius
of 𝐷𝛿. We must show that 𝑑2 = 𝑥2 + (𝑦 − 𝛿)2 ≤ √

1 + 𝛿2/𝑠 = 𝑅2 or equivalently,

𝑓(𝛿) := 1 + 𝛿2 − 𝑠2(𝑥2 + (𝑦 − 𝛿)2) ≥ 0

for all 𝛿 ∈ (−∞,∞). But the graph of 𝑓 is a convex parabola, and a straightforward
computation reveals that the minimum of 𝑓(𝛿) is

𝑓

(
−𝑦

𝑠2

𝑐2

)
= 1− 𝑥2𝑠2 − 𝑦2𝑡2 ≥ 0.

This completes the proof. □

It is well known that the local spectra of Toeplitz operators with piecewise
continuous symbols on the Hardy spaces of 𝕊1 are circular arcs. When considering
the finite section method for these Toeplitz operators or when passing to such
Toeplitz operators with locally sectorial symbols, these circular arcs blow up to
lenses. For Toeplitz operators on the Hardy spaces of 𝕊1, 𝜇-sectoriality on 𝑈 ⊂ 𝕊1

means that ℛ𝑈 (𝑎) is contained in a 2𝜋/𝜇-sector. This is weaker than 𝜇-ellipticity,
which additionally requires that ℛ𝑈 (𝑎) is contained in a disk lying in a 2𝜋/𝜇
sector. The lens 𝒪𝜇(𝛼, 𝛽) is defined as the set of all points in ℂ at which the
line segment [𝛼, 𝛽] is seen at an angle of at least 2𝜋/𝜇, and for a compact set
ℛ ⊂ ℂ with convℛ = [𝛼, 𝛽] to be 𝜇-sectorial it is necessary and sufficient that
0 /∈ 𝒪𝜇(𝛼, 𝛽). This is again weaker than condition (b), because it is easily seen
that always 𝒪𝜇(𝛼, 𝛽) ⊂ ℰ𝜇(𝛼, 𝛽). However note that 𝒪𝜇(𝛼, 𝛽) touches ℰ𝜇(𝛼, 𝛽)
from inside at the two points with minimal curvature. Finally, note that if 𝜇 = 2,
then 𝒪𝜇(𝛼, 𝛽) and ℰ𝜇(𝛼, 𝛽) both degenerate to the line segment [𝛼, 𝛽]. Figures 1
and 2 show examples.

The following result provides additional insight in the case where 𝜇 = 2 and
𝑁 is arbitrary.
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Proposition 3.3. Let ℛ be a compact subset of ℂ𝑁×𝑁 . The following are equivalent.

(i) ℛ is 2-elliptic.
(ii) There is an invertible matrix 𝑑 ∈ ℂ𝑁×𝑁 such that ∥𝐼 − 𝑤𝑑∥ < 1 for all

𝑤 ∈ ℛ.
(iii) There is an invertible matrix 𝑐 ∈ ℂ𝑁×𝑁 such that ∥𝐼−𝑐𝑤∥ < 1 for all 𝑤 ∈ ℛ.
(iv) There exist invertible matrices 𝑐, 𝑑 ∈ ℂ𝑁×𝑁 and a number 𝜀 > 0 such that

Re (𝑐𝑤𝑑) ≥ 𝜀𝐼 for all 𝑤 ∈ ℛ.
(v) There exist an invertible matrix 𝑑 ∈ ℂ𝑁×𝑁 and a number 𝜀 > 0 such that

Re (𝑤𝑑) ≥ 𝜀𝐼 for all 𝑤 ∈ ℛ.
(vi) There exist an invertible matrix 𝑐 ∈ ℂ𝑁×𝑁 and a number 𝜀 > 0 such that

Re (𝑐𝑤) ≥ 𝜀𝐼 for all 𝑤 ∈ ℛ.

If, in addition, convℛ is a line segment, that is, a set of the form {(1− 𝜉)𝛼+ 𝜉𝛽 :
𝜉 ∈ [0, 1]} with certain 𝛼, 𝛽 ∈ ℂ𝑁×𝑁 , then ℛ is 2-elliptic if and only if convℛ
consists of invertible matrices only.

Proof. What we call 2-ellipticity here is analytic sectoriality in the book [2]. The
equivalence of (i) to (vi) therefore follows from Lemma 3.6(a),(b) of [2]. The last
assertion is due to Clancey [5] and is also proved as Theorem 3.4 in [2]. □

Figure 1. The boundaries of the lenses 𝒪𝜇(−1, 1) and the ellipses
ℰ𝜇(−1, 1) for 𝜇 = 3, 4, 6, 20.
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Figure 2. Superposition of the boundaries of the lenses 𝒪𝜇(−1, 1) and
the ellipses ℰ𝜇(−1, 1) for 𝜇 = 3, 6, 20.

4. Locally 𝝁-elliptic symbols

We call a matrix function 𝑎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 locally 𝜇-elliptic if every point 𝜏 ∈ 𝑆
has an open neighborhood 𝑈𝜏 ⊂ ℂ𝑚 such that 𝑎 is 𝜇-elliptic on 𝑈𝜏 ∩ 𝐵. An
equivalent definition is as follows. Given 𝜏 ∈ 𝑆, let ℛ𝜏 (𝑎) denote the intersection
of the sets ℛ𝑈∩𝐵(𝑎) where 𝑈 ranges over all open neighborhoods 𝑈 ⊂ ℂ𝑚 of 𝜏 .
Then 𝑎 is locally 𝜇-elliptic if and only if ℛ𝜏 (𝑎) is a 𝜇-elliptic set for every 𝜏 ∈ 𝑆.
A standard compactness argument reveals that if 𝑎 is locally 𝜇-elliptic, then 𝑎 is
even 𝜈-elliptic provided 𝜈 > 𝜇 is sufficiently close to 𝜇.

Obviously, a matrix function 𝑎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 is locally 𝜇-elliptic if it can
be written 𝑎 = 𝜑𝜎𝜓 + 𝜂 where 𝜑 and 𝜓 are matrix functions in [𝐶(𝐵)]𝑁×𝑁

such that 𝜑∣𝑆 and 𝜓∣𝑆 are invertible, 𝜎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 is globally 𝜇-elliptic, and
𝜂 ∈ [𝐿∞(𝐵)]𝑁×𝑁 vanishes identically on some shell 1− 𝛿 < ∣𝑧∣ < 1.

Proposition 4.1. Let 𝑎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 be locally 2-elliptic. Then 𝑎 = 𝜎𝜓 + 𝜂
where 𝜓 ∈ [𝐶(𝐵)]𝑁×𝑁 , 𝜓∣𝑆 is invertible, 𝜎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 is 2-elliptic on 𝐵, and
𝜂 ∈ [𝐿∞(𝐵)]𝑁×𝑁 vanishes identically on some shell 1− 𝛿 < ∣𝑧∣ < 1.

Proof. Choose a finite cover {𝑈𝑗} = {𝑈𝜏𝑗} of 𝑆 such that 𝑎 is 2-elliptic on 𝑈𝑗 ∩𝐵.
By virtue of Proposition 3.3(ii), there are invertible 𝑁 × 𝑁 matrices 𝑑𝑗 such that
∥𝐼 − 𝑎(𝑧)𝑑𝑗∥ < 1 almost everywhere on 𝑈𝑗 ∩ 𝐵. Clearly, {𝑈𝑗} is also a cover of
some shell Ω. Now we may proceed exactly as in [18] or the proof of Theorem 3.8
of [2] to obtain a matrix function 𝑑 ∈ [𝐶(Ω)]𝑁×𝑁 such that ∥𝐼 − 𝑎(𝑧)𝑑(𝑧)∥ < 1 for
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almost all 𝑧 ∈ Ω. Put 𝜎 = 𝑎𝑑 on Ω and 𝜎 = 𝑤 on 𝐵 ∖ Ω, where 𝑤 is any value in
ℛΩ(𝑎𝑑). Then 𝜎 is 2-elliptic on the entire ball 𝐵. Since ∥𝐼 − 𝑎𝑑∥ < 1, the matrix
function 𝑎𝑑 is invertible on Ω, and hence so also is 𝑑. Let 𝜓 be any matrix function
in [𝐶(𝐵)]𝑁×𝑁 which coincides with 𝑑−1 on Ω. Thus, 𝑎 = 𝜎𝜓 on Ω, which implies
that 𝑎 = 𝜎𝜓 + 𝜂 on 𝐵 with 𝜂∣Ω = 0. □

Theorem 4.2. Let 1 < 𝑝 < ∞ and define 𝜇 ∈ [2,∞) by 1/ sin(𝜋/𝜇) = ∥𝑃∥𝑝.
Suppose 𝑎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 is locally 𝜇-elliptic. Then 𝑇 (𝑎) is Fredholm on the space
[𝐴𝑝(𝐵)]𝑁 , and there is a number 𝑟0 ∈ (0, 1) such that 𝑇 (𝑎̃𝑟) is Fredholm for
𝑟0 < 𝑟 < 1 and

Ind𝑇 (𝑎) = lim
𝑟→1

Ind𝑇 (𝑎̃𝑟).

Proof. That 𝑇 (𝑎) is Fredholm can be proved in a standard way with the help of the
local principle of Allan and Douglas, for which see, e.g., [2], [9]. Our assumptions
imply that if 𝑝 ∕= 2, then 𝑇 (𝑎) is actually Fredholm on [𝐴𝑡(𝐵)]𝑁 for all 𝑡 in some
open neighborhood 𝑈 of the segment [𝑝, 𝑞], where 1/𝑝 + 1/𝑞 = 1. This can be
shown as follows. For the sake of definiteness, let 𝑝 > 2. The invertibility of the
local representatives is guaranteed if

∥𝑃∥𝑡 ∥𝐼 − 𝑐𝜏𝑎𝑑𝜏∥∞ < 1;

recall the proof of Proposition 3.1. But we know that 𝑎 is locally 𝜈-elliptic for some
𝜈 > 𝜇. Since

∥𝑃∥𝑝 = 1/ sin(𝜋/𝜇) < 1/ sin(𝜋/𝜈),

there is an 𝜀 > 0 such that the inequality

∥𝑃∥𝑝+𝜀 < 1/ sin(𝜋/𝜈)

holds. By duality, ∥𝑃∥𝑞 = ∥𝑃∥𝑝, and hence there is also a 𝛿 > 0 such that

∥𝑃∥𝑞−𝛿 < 1/ sin(𝜋/𝜈).

It results that

∥𝑃∥𝑡 ≤ max{∥𝑃∥𝑝+𝜀, ∥𝑃∥𝑞−𝛿} < 1/ sin(𝜋/𝜈)

for 𝑡 ∈ (𝑞 − 𝛿, 𝑝+ 𝜀).

The operators 𝑇 (𝑎̃𝑟) have continuous symbols, and hence they are Fred-
holm on [𝐴𝑡(𝐵)]𝑁 for all 𝑡 ∈ 𝑈 if they are Fredholm on [𝐴2(𝐵)]𝑁 . The result of
Shneiberg [20] implies the index formula for all 𝑡 ∈ 𝑈 once it has been established
for 𝑡 = 2. Thus, we are left with proving the theorem for 𝑝 = 2.

Since locally 𝜇-elliptic symbols are locally 2-elliptic, we deduce from Proposi-
tion 4.1 that 𝑎 = 𝜎𝜓+𝜂 where 𝜓 is a matrix function in [𝐶(𝐵)]𝑁×𝑁 such that 𝜓∣𝑆 is
invertible, 𝜎 ∈ [𝐿∞(𝐵)]𝑁×𝑁 is 2-elliptic on all of 𝐵, and 𝜂 ∈ [𝐿∞(𝐵)]𝑁×𝑁 vanishes
identically on some shell 1− 𝛿 < ∣𝑧∣ < 1. It follows that 𝑇 (𝑎) = 𝑇 (𝜎)𝑇 (𝜓) + 𝑇 (𝜂)
plus a compact operator. Moreover, 𝑇 (𝜂) is also compact, and since 𝑇 (𝜎) is in-
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vertible by virtue of Proposition 3.1, we obtain that

Ind𝑇 (𝑎) = Ind𝑇 (𝜓). (5)

We now pass to Berezin transforms. From Lemma 2.4(b) we infer that

𝑎̃ = 𝜎𝜓 + 𝜂 + 𝛾

with 𝛾 ∈ [𝐿∞
0 (𝐵)]

𝑁×𝑁 . By Lemma 2.4(d), the Berezin transform of 𝜂 also belongs

to [𝐿∞
0 (𝐵)]

𝑁×𝑁 . There are a shell Ω and a constant 𝑀1 < ∞ such that ∥𝜓−1∥ ≤
𝑀1 on Ω. We have ∥𝐼−𝑐𝜎𝑑∥ < 1 with invertible matrices 𝑐, 𝑑 ∈ ℂ𝑁×𝑁 on all of 𝐵.
From Lemma 2.4(c) we conclude that ∥𝐼−𝑐𝜎𝑑∥ < 1 on 𝐵, which gives ∥𝜎−1∥ ≤ 𝑀2

on 𝐵 with some constant 𝑀2 < ∞ and also shows that 𝑇 (𝜎𝑟) is invertible for all 𝑟.
Thus, on Ω we can write

𝑎̃ = 𝜎𝜓[𝐼 + 𝜓−1𝜎−1(𝜂 + 𝛾)],

which implies that on all of 𝐵 we have

𝑎̃ = 𝜎𝜓[𝐼 + 𝜉] + 𝜃

where 𝜉 and 𝜃 are in [𝐿∞
0 (𝐵)]

𝑁×𝑁 and 𝜃 vanishes identically on some shell. This
gives

𝑇 (𝑎̃𝑟) = 𝑇 (𝜎𝑟)𝑇 (𝜓𝑟)𝑇 (𝐼 + 𝜉𝑟) + 𝑇 (𝜃𝑟) +𝐾𝑟

with a compact operator 𝐾𝑟. The operator 𝑇 (𝜃𝑟) is compact for 𝑟 sufficiently close
to 1, and due to Lemma 2.5 the operator 𝑇 (𝐼 + 𝜉𝑟) is Fredholm of index zero for
such 𝑟. In summary, there is an 𝑟0 such that

Ind𝑇 (𝑎̃𝑟) = Ind𝑇 (𝜎𝑟) + Ind𝑇 (𝜓𝑟) + Ind𝑇 (𝐼 + 𝜉𝑟)

where 𝑇 (𝜎𝑟) is invertible and 𝑇 (𝐼 + 𝜉𝑟) is Fredholm of index zero. Since

Ind𝑇 (𝜓) = lim
𝑟→1

Ind𝑇 (𝜓𝑟)

due to Lemma 2.4(a), we finally see that

lim
𝑟→1

Ind𝑇 (𝑎̃𝑟) = Ind𝑇 (𝜓).

Comparison with (5) completes the proof. □

We remark that for 𝑁 = 𝑚 = 1 and 𝑝 = 2 the previous theorem was estab-
lished in [1]. McDonald [14] considered symbols 𝑎 ∈ 𝐿∞(𝐵) which are uniformly
continuous on the two pieces 𝐵+ and 𝐵− which arise when cutting the ball 𝐵 by
a hyperplane of real dimension 2𝑚 − 1. For such symbols, he proved that 𝑇 (𝑎) is
Fredholm on 𝐴2(𝐵) if and only if 𝑎 is locally 2-elliptic. Note that the setsℛ𝜏 (𝑎) are
all either singletons or doubletons, so that convℛ𝜏 (𝑎) is always a line segment in
this case. For recent developments in Toeplitz operators with more general piece-
wise continuous symbols we refer to Loaiza’s paper [12] and the nice expositions by
Vasilevski in [23] and [24]. However, almost all the available results are for 𝑝 = 2
and in many cases also for 𝑁 = 𝑚 = 1 only. Fighting with 𝑝,𝑁,𝑚 at the same
time remains a challenge for the future.
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The Green Function and Optical Field
Enhancement in a Multilayered
Microsphere with Metamaterial

Gennadiy Burlak and Vladimir Rabinovich

Abstract. The radiation of a nanosource placed in a coated microsphere with
conventional and metamaterial layers having a negative refraction index
(NIM) is studied. We consider also that a NIM defect is embedded in such
a structure. Our calculations show strong enhancement of the optical field
strength assisted by NIM defect. In a resonant case the optical field is almost
completely arrested in a vicinity of the defect layer.
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1. Introduction

Metamaterials, artificial composite structures with exotic material properties, have
emerged as a new frontier of science involving physics, material science and engi-
neering. Nowadays such nanostructured composites are well studied due to intense
fundamental and applied research over the past several years [28]–[10]. Next step
is a generation of compound structures that can be constructed by alternating of
conventional and metamaterial layers. The insertion of metamaterial layers in con-
ventional structures and creation of such a compound environment can open new
fundamentals and applied perspectives. In such systems the propagating modes be-
come reconfigurable and can be switched between the left-handed and right-handed
modes by changing the position of the metamaterial in the spherical stack[12].

In this paper we study the optical properties of alternating multilayered mi-
crospheres with NIM layers. In such a system a basic building block (single-layer
unit cell) is a spherical layer that normally has 𝜆/4 width. An application of the
well-known idea about coating by quarter-wave layers opens a possibility to sharply
increase the 𝑄 factor of such a system up to 𝑄 ∼ 109 [5]–[21]. It is important that
in such a complex system the remarkable optical phenomena in the interface of
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Figure 1. Geometry of a multilayered microsphere. A stack of multi-
layers with embeded NIM layer is deposited on the surface of the mi-
crosphere.

conventional and NIM layers [28], [24] can be accumulated. Moreover, the real
part of the effective (average) refractive index can become positive, zero or neg-
ative along the radial direction. The latter allows imparting new peculiarities to
known optical effects [19]. We numerically study the details of spectrum and the
optical field distribution of radiating nanoemitter placed in a microsphere coated
by alternating conventional and metamaterial layers with negative refraction in-
dex (NIM). We consider that a NIM defect is embedded in such a spherical stack.
Our calculations show strong enhancement of a nanoemitter field assisted by NIM
defect. In resonant case the photon field is almost completely arrested in a vicinity
of the defect layer.

2. Basic equations

The spatial scale of the nanoemitter objects (∼ 1 − 100nm) is at least one order
of magnitude smaller than the spatial scale of microspheres (∼ 103 − 104 nm).
Therefore in the coated microsphere (Figure 1), we can represent the nanoemitter
structure as a point source (object) placed at r′ and having a dipole moment d0.

It is well known that the solution of the wave equation for the radiated
electromagnetic field E due to a general source J(r′) is [14], [9]

E(r,𝜔) = 𝑖𝜔𝜇0

∫
𝑉

𝑑r′Ĝ(r, r′, 𝜔)𝜇(r′, 𝜔)J(r′), (2.1)
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where Ĝ(r, r′, 𝜔) is the dyadic Green function (DGF), which depends on the type
of boundary conditions imposed on E(r) and contains all the physical informa-
tion necessary for describing the multilayered structure (the time dependence is
assumed to be 𝑒𝑖𝜔𝑡). Eq. (2.1) is complemented by the standard boundary con-
ditions: limitation of the fields in the center of the microsphere and continuity
of the tangential components of the fields at the interfaces of layers. We also use
Sommerfeld’s radiation conditions, where there is only an outgoing wave in the
external boundary of the microsphere. In this case, the electromagnetic field E in
the coated structure consists of the sum of the waves radiating in the surrounding
medium and the multiple wave reflections due to the interfaces between layers.
Substituting the nanoemitter source in the form J = 𝑖𝜔d, d = d0𝛿( r − r′) in
(2.1), we obtain

E( r, r′, 𝜔) = −p0Ĝ( r, r′, 𝜔), (2.2)

where p0 = (𝜇d0/𝜀0)
(
𝜔2/𝑐2

)
. In such a situation, the nanoemitter frequency

spectrum is identical to the dyadic Green function (DGF) spectrum. Thus, the
equation of the field generated by a nanoemitter assumes the form of the DGF

Ĝ( r, r′, 𝜔) equation, and is given by [14], [9]

𝜇(r, 𝜔)

[
(∇ × 𝜅̂(r, 𝜔))∇ × Ĝ( r, r′, 𝜔)−𝜔2

𝑐2
𝜀(r, 𝜔)Ĝ( r, r′, 𝜔)

]
= 𝛿( r− r

′
)̂I,

(2.3)
where 𝜅̂(r, 𝜔) = 𝜇−1(r, 𝜔), and r is the point where the field is observed, while r′

is the nanoemitter (point source) location, Î is the unit dyadic. For a scalar case
with 𝜇 = 𝜇𝑖𝑘 = 𝜇𝛿𝑖𝑘 , 𝜀 = 𝜀𝑖𝑘 = 𝜀𝛿𝑖𝑘 and 𝜅=𝜇−1 from Eq. (2.3) we obtain the
DGF equation in well-known form

∇ × ∇ × Ĝ( r, r′, 𝜔)−𝜔2

𝑐2
𝑛2(r, 𝜔)Ĝ( r, r′, 𝜔) = 𝛿( r− r

′
)̂I, (2.4)

where 𝑛 = ±[𝜀𝜇]1/2 is the refraction index that is positive for conventional mate-
rials, 𝑛 > 0, and 𝑛 is negative for metamaterials, 𝑛 < 0. (We note that in some
references the equation for DGF Eq. (2.3) is written without 𝜇(r, 𝜔) in the left. For

a scalar case this leads to a simple renormalization: Ĝ→ Ĝ/𝜇.) The dyadic Green

function Ĝ( r, r′, 𝜔) in (2.4) satisfies the boundary conditions at the interfaces of
spherical layers

r̂× Ĝ𝑓𝑠 = r̂× Ĝ𝑓+1,𝑠, 𝜅𝑓 (r, 𝜔)× r̂× Ĝ𝑓𝑠 = 𝜅𝑓+1(r, 𝜔)× r̂× Ĝ𝑓𝑠. (2.5)

Let us consider the multilayered spherical structure: a concentric system of
spherical layers contacting with the sphere (concentric stack) deposited onto the
surface of the microsphere with a nanoemitter placed in such a structure (see
Figure 1). The layers are localized at the distance 𝑅𝑘 from the center, where
𝑑𝑘 = 𝑅𝑘 − 𝑅𝑘+1 is the width of a 𝑘th layer.

Let us first specify some details of the Green function technique for multi-
layered microspheres and introduce our notations. Following the approach[17], we
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write down DGF of such a system as follows:

Ĝ(r, r′, 𝜔) = Ĝ𝑉 (r, r′, 𝜔)𝛿𝑓𝑠 + Ĝ(𝑓𝑠)(r, r′, 𝜔), (2.6)

where Ĝ𝑉 (r, r′, 𝜔) represents the contribution of the direct waves from the ra-

diation sources in the unbounded medium, whereas Ĝ(𝑓𝑠)(r, r′, 𝜔) describes the
contribution of the multiple wave reflections and transmissions due to the layer

interfaces. The dyadic Green tensor Ĝ𝑉 (r, r′, 𝜔) in (2.6) is given by

Ĝ𝑉 (r, r′, 𝜔) =
r̂r̂

𝑘2𝑠
𝛿(r− r′) + 𝑖𝑘𝑠

4𝜋

∑
𝑞=𝑒,𝑜

∞∑
𝑛=1

𝑛∑
𝑚=0

𝐶𝑉𝑛𝑚Ĝ𝑞,𝑛𝑚(r, r
′, 𝜔), (2.7)

with

𝐶𝑛𝑚 =
2𝑛+1

𝑛(𝑛+1)

(𝑛−𝑚)!

(𝑛+𝑚)!
(2−𝛿0𝑚), (2.8)

where the prime denotes the nanoemitter coordinates r′ = (𝑟′, 𝜃′, 𝜑′), 𝑛 and 𝑚
are spherical and azimuthal quantum numbers, respectively, while 𝑘𝑠 = 𝜔𝑛𝑠/𝑐 is
the wave number of the medium where the radiated nanoemitters are located. It
is worth noting that due to the dyad r̂r̂, the 𝛿-function in (2.7) contributes to

the radial (longitudinal) part [9]. Due to the equality r̂ ⋅ (𝜃𝜃 + 𝜑𝜑) = 0, such a
singularity does not contribute to the field (2.2) for the considered case of a dipole,
such a case is considered below.

The partial dyadic Green tensor Ĝ𝑉𝑞,𝑛𝑚(r, r
′, 𝜔) in (2.7) has a form

Ĝ𝑉𝑞,𝑛𝑚(r, r
′, 𝜔)

=

(
M

(1)
𝑞,𝑛𝑚(r, 𝑘𝑠)M𝑞,𝑛𝑚(r

′, 𝑘𝑠) +N
(1)
𝑞,𝑛𝑚(r, 𝑘𝑠)N𝑞,𝑛𝑚(r

′, 𝑘𝑠), r > r′

M𝑞,𝑛𝑚(r, 𝑘𝑠)M
(1)
𝑞,𝑛𝑚(r′, 𝑘𝑠) +N𝑞,𝑛𝑚(r, 𝑘1)N

(1)
𝑞,𝑛𝑚(r′, 𝑘𝑠)}, r < r′

)
. (2.9)

In Eq. (2.9), vectorsM and N represent 𝑇𝐸- and 𝑇𝑀 -waves, respectively, where

M 𝑒
𝑜𝑛𝑚

(𝑘) = ∓ 𝑚

sin 𝜃
𝑗𝑛(𝑘𝑟)𝑃

𝑚
𝑛 (cos 𝜃)

(
sin

cos

)
(𝑚𝜙)e𝜃 (2.10)

− 𝑗𝑛(𝑘𝑟)
𝑑𝑃𝑚𝑛 (cos 𝜃)

𝑑𝜃

(
cos

sin

)
(𝑚𝜙)e𝜙 ,

N 𝑒
𝑜 ,𝑛𝑚

(𝑘) =
𝑛(𝑛+ 1)

𝑘𝑟
𝑗𝑛(𝑘𝑟)𝑃

𝑚
𝑛 (cos 𝜃)

(
cos

sin

)
(𝑚𝜙)e𝑟 (2.11)

+
1

𝑘𝑟

𝑑[𝑟𝑗𝑛(𝑘𝑟)]

𝑑𝑟
[
𝑑𝑃𝑚𝑛 (cos 𝜃)

𝑑𝜃

(
cos

sin

)
(𝑚𝜙)e𝜃

∓ 𝑚

sin 𝜃
𝑃𝑚𝑛 (cos 𝜃)

(
sin

cos

)
(𝑚𝜙)e𝜙],

where 𝑗𝑛(𝑥) and ℎ𝑛(𝑥) stand for spherical Bessel and Hankel functions [1] re-
spectively, and 𝑃𝑚𝑛 (𝑥) is the associated Legendre function. For the sake of sim-
plicity, we use in (2.10), (2.11) and further on, the standard short notation:
M 𝑒

𝑜𝑛𝑚
(𝑘) = M 𝑒

𝑜𝑛𝑚
(r, 𝑘) and M′

𝑒
𝑜𝑛𝑚

(𝑘) = M 𝑒
𝑜𝑛𝑚

(r′, 𝑘). The superscript (1) in
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Eqs. (2.9)–(2.17) indicates that in (2.10) and (2.11), the spherical Bessel function

𝑗𝑛(𝑥) has to be replaced by the first-type spherical Hankel function ℎ
(1)
𝑛 (𝑥) for

𝑟 > 𝑟′.
The scattering DGF Ĝ(𝑓𝑠)(r, r′, 𝜔) is written as

Ĝ(𝑓𝑠)(r, r′, 𝜔) =
𝑖𝑘𝑠
4𝜋

∑
𝑞=𝑒,𝑜

∞∑
𝑛=1

𝑛∑
𝑚=0

𝐶(𝑓,𝑠)
𝑛𝑚 Ĝ𝑞,𝑛𝑚(r, r

′, 𝜔), (2.12)

where 𝑓 and 𝑠 denote the layers where the field point and source point are located;
𝛿𝑓𝑠 is the Kronecker symbol and

Ĝ(𝑓𝑠)
𝑞,𝑛𝑚(r, r

′, 𝜔) = Δ𝑁𝑓

(
M(1)
𝑞,𝑛𝑚(𝑘𝑓 )P𝑀 +N(1)

𝑞,𝑛𝑚(𝑘𝑓 )P𝑁

)
(2.13)

+ Δ1𝑓

(
M(1)
𝑞,𝑛𝑚(𝑘𝑓 )Q𝑀 +N(1)

𝑞,𝑛𝑚(𝑘𝑓 )Q𝑁

)
,

with

P𝑀 = Δ1𝑠𝐴
𝑓𝑠
𝑀M

′
𝑞,𝑛𝑚(𝑘𝑠) + Δ𝑁𝑠𝐵

𝑓𝑠
𝑀M

′(1)
𝑞,𝑛𝑚(𝑘𝑠), (2.14)

P𝑁 = Δ1𝑠𝐴
𝑓𝑠
𝑁N

′
𝑞,𝑛𝑚(𝑘𝑠) + Δ𝑁𝑠𝐵

𝑓𝑠
𝑁 N

′(1)
𝑞,𝑛𝑚(𝑘𝑠), (2.15)

Q𝑀 = Δ1𝑠𝐶
𝑓𝑠
𝑀M

′
𝑞,𝑛𝑚(𝑘𝑠) + Δ𝑁𝑠𝐷

𝑓𝑠
𝑀M

′(1)
𝑞,𝑛𝑚(𝑘𝑠), (2.16)

Q𝑁 = Δ1𝑠𝐶
𝑓𝑠
𝑀N

′
𝑞,𝑛𝑚(𝑘𝑠) + Δ𝑁𝑠𝐷

𝑓𝑠
𝑀N

′(1)
𝑞,𝑛𝑚(𝑘𝑠), (2.17)

where Δ𝑓𝑠 = 1 − 𝛿𝑓𝑠, 𝛿𝑓𝑠 is the Kronecker symbol, 𝑘𝑠 = 𝑛𝑠(𝜔)𝜔/𝑐, 𝑛(𝜔) =

±√𝜀𝑠(𝜔)𝜇𝑠(𝜔) is the refraction index of the 𝑠’ layer (see Eq. (3.4) in the next

Section). Frequency dependent coefficients 𝐴𝑓𝑠𝑘 (𝜔), 𝐵
𝑓𝑠
𝑘 (𝜔), 𝐶

𝑓𝑠
𝑘 (𝜔) and 𝐷𝑓𝑠𝑘 (𝜔) in

(2.14)–(2.17) are defined from the above-mentioned boundary conditions and de-
scribe the details of the wave behavior in the interface of the stack layers. The use
of boundary conditions yields the relations between these coefficients that can be
written in the following matrix form:

J𝑓+1,𝑠𝑘 − I𝑓𝑘 ⋅ J𝑓,𝑠𝑘 + 𝜎+𝛿,𝑓+1,𝑠 − I𝑓𝑘 ⋅ 𝜎−𝛿𝑓𝑠 = 0, (2.18)

where 𝑘 = 𝑀,𝑁 , 𝑓 = 1, . . . , 𝑁 − 1 and

J𝑓,𝑠𝑘 =

[
𝐴𝑓,𝑠𝑘 𝐵𝑓,𝑠𝑘
𝐶𝑓,𝑠𝑘 𝐷𝑓,𝑠𝑘

]
, I𝑓𝑘 =

[
1/𝑇 𝑘𝐹𝑓 𝑅𝑘𝐹𝑓/𝑇

𝑘
𝐹𝑓

𝑅𝑘𝑃𝑓/𝑇
𝑘
𝑃𝑓 1/𝑇 𝑘𝑃𝑓

]
, (2.19)

𝜎+ =

[
1 0
0 0

]
, 𝜎− =

[
0 0
0 1

]
. (2.20)

The reflection 𝑅𝑘𝑗𝑓 and the transmittance 𝑇 𝑘𝑗𝑓 coefficients from Eq. (2.19) are

written in Refs. [17], [8], where one can find more details.
We note that the argument of the spherical Bessel 𝑗𝑛(𝑥) or Hankel functions

ℎ
(1,2)
𝑛 (𝑥) (𝑥 = 𝑛𝜔/𝑐) in Eqs. (2.13)–(2.19) is positive for conventional layer (𝑛 >
0) or negative for metamaterial layer (𝑛 > 0). In general it leads to significant
modifications of the scattering coefficients in (2.12). However the situation is more
simple in contact of two NIM layers. Really, it is easy to see that due to general
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properties [1] 𝑗𝑙(−𝑥) = (−1)𝑙𝑗𝑙(𝑥) and ℎ
(1,2)
𝑙 (−𝑥) = (−1)𝑙ℎ(2,1)𝑙 (𝑥) and since DGF

is a bilinear function of the Bessel (or Hankel) functions for points 𝑟 and 𝑟′ that
are in NIM layers we have 𝑗𝑙(−𝑥)𝑗𝑙(−𝑥′) = 𝑗𝑙(𝑥)𝑗𝑙(𝑥

′) and ℎ
(1)
𝑙 (−𝑥)ℎ

(1)
𝑙 (−𝑥′) =

ℎ
(2)
𝑙 (𝑥)ℎ

(2)
𝑙 (𝑥′). However when the points 𝑟 and 𝑟′ belong to different materials

the terms Ĝ
(𝑓,𝑠)
𝑞,𝑙𝑚 (r, r

′, 𝜔) for odd 𝑙 = 1, 3, 5, . . . produce the substantial difference

in behavior of the DGF for a compound NIM (or conventional) layers stack with
respect of conventional stack.

3. Permittivity, permeability, and refractive index of NIP layers

In this section we briefly discuss the properties of NIM layers. Let us consider a
causal linear magnetodielectric medium characterized by a (relative) permittivity
𝜀(r, 𝜔) and a (relative) permeability 𝜇(r, 𝜔), both of which are spatially varying,
complex functions of frequency satisfying the relations

𝜀(r,−𝜔∗) = 𝜀∗(r, 𝜔), 𝜇(r,−𝜔∗) = 𝜇∗(r, 𝜔). (3.1)

The relation 𝑛2(r, 𝜔)=𝜀(r, 𝜔)𝜇(r, 𝜔) formally offers two possibilities for the (com-
plex) refractive index 𝑛(r, 𝜔)

𝑛(r, 𝜔) = ±
√

∣𝜀(r, 𝜔)𝜇(r, 𝜔)∣ 𝑒𝑖[𝜙𝜀(r,𝜔)+𝜙𝜇(r,𝜔)]/2, (3.2)

where
0 < [𝜙𝜀(r, 𝜔) + 𝜙𝜇(r, 𝜔)]/2 < 𝜋. (3.3)

Further, we follow references [11], [30] that allow us to rewrite Eq. (3.2) as

𝑛(r, 𝜔) =
√

∣𝜀(r, 𝜔)𝜇(r, 𝜔)∣ 𝑒𝑖[𝜙𝜀(r,𝜔)+𝜙𝜇(r,𝜔)]/2. (3.4)

In the following, we refer to the material of a layer as being left-handed (or
metamaterial) if the real part of its refractive index is negative. In order to allow
a dependence on the frequency of the refractive index, let us restrict our attention
to a single-resonance permittivity

𝜀(𝜔) = 1 +
𝜔2
P𝑒

𝜔2
T𝑒 − 𝜔2 − 𝑖𝜔𝛾𝑒

(3.5)

and a single-resonance permeability

𝜇(𝜔) = 1 +
𝜔2
P𝑚

𝜔2
T𝑚 − 𝜔2 − 𝑖𝜔𝛾𝑚

, (3.6)

where 𝜔P𝑒, 𝜔P𝑚 are the coupling strengths, 𝜔T𝑒, 𝜔T𝑚 are the transverse reso-
nance frequencies, and 𝛾𝑒, 𝛾𝑚 are the absorption parameters. Both the permittivity
and the permeability satisfy the Kramers-Kronig relations (see discussion in [26],
[15]). Figure 2 shows the NIP refractive index 𝑛(r, 𝜔) = Re𝑛(r, 𝜔) + 𝑖 Im𝑛(r, 𝜔)
(𝜔 = 2𝜋𝑓), with the permittivity 𝜀(𝜔) and the permeability 𝜇(𝜔) being respec-
tively given by Eqs. (3.5) and (3.6) in the frequency interval from 155THz up to
175THz. In our case it is used the following typical values: 𝜔T𝑚/2𝜋 = 𝑓𝑇𝑚 =
159.2THz, 𝛾𝑚/2𝜋 = 𝑓𝛾 = 0.001592THz, 𝑓𝑇𝑒 = 163.9THz, 𝑓𝑃𝑒 = 119.4THz,
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Figure 2. Real (a) and imaginary (b) parts of the refractive index 𝑛(𝜔)
(𝜔 = 2𝜋𝑓) of LH layer in the stack as functions of frequency 𝑓 = 𝜔/2𝜋,
with the permittivity 𝜀(𝜔) and the permeability 𝜇(𝜔) being respectively
given by Eqs. (3.5) and (3.6) [𝜔T𝑚 = (1016/2𝜋)THz, 𝜔T𝑒 = 1.03𝜔T𝑚;
𝜔P𝑚 = 0.43𝜔T𝑚; 𝜔P𝑒 = 0.75𝜔T𝑚; 𝛾𝑒 = 𝛾𝑚 = 10−7 𝜔T𝑚 (solid lines)].
The values of the parameters have been chosen to be similar to those
in Refs. [11]–[23]. Insets show the details of Re𝑛 and Im𝑛 in the area
where Re𝑛 < 0. See details in text.

𝑓𝑃𝑚 = 68.44THz. In the inset, the details of 𝑛(r, 𝜔) are shown in the frequency
interval from 164THz up to 175THz where Re𝑛(r, 𝜔) < 0. It is worth noting
that the negative real part of the refractive index is typically observed together
with strong dispersion, so that absorption cannot be disregarded in general. How-
ever, in a very recent experiment[29], it was experimentally demonstrated that the
incorporation of gain material in a metamaterial makes it possible to fabricate
an extremely low-loss and active optical NIM structure. As a result, the origi-
nal loss-limited negative refractive index can be drastically improved with loss
compensation.
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4. Numerical results

Analytical solutions to Eq. (2.18) for scattering coefficients 𝐴𝑓,𝑠𝑘 , 𝐵𝑓,𝑠𝑘 , 𝐶𝑓,𝑠𝑘 and

𝐷𝑓,𝑠𝑘 for cases of 1 or 2 layers in a spherical stack were derived in Ref. [17]. But
corresponding equations are rather laborious, and thus are hardly suitable in prac-
tice for studying the frequency spectrum for the cases with more than 2 layers in
the stack already. However, namely in such a structure, one can expect physi-
cally interesting phenomena due to the wave re-reflections in the layers of the
stack. Similarly to the plane case, such phenomena are most pronounced when
the thicknesses of the alternating spherical layers are approximately equal to 𝜆/4
(quarter-wave layers) [4], [27], [6]. In a general case of alternating layers (having
small losses), the equality 𝑘0 ∣𝑛𝑘∣ 𝑑𝑘 = 𝜋/𝑙, (𝑑𝑘 is width, 𝑘0 = 𝜔/𝑐) is considered,
so that 𝑑𝑘 = 𝜋/𝑙𝑘0 ∣𝑛𝑘∣, where 𝑙 is integer. In this case, the optical thicknesses of
the conventional and NIP material layers are the same 𝑑1 ∣𝑛1∣ = 𝑑2 ∣𝑛2∣.

We consider a spherical stack with 1/𝑘0 = Λ0/2𝜋, where Λ0 is the refer-
ence wavelength of the structure. The equality 𝑑𝑘 ∣𝑛𝑘∣ = Λ0/4 corresponds to the
quarter-wave case. (Let us remind that the continuity of the fields in the layer
interfaces requires the continuity of impedances 𝑍 = (𝜇/𝜀)1/2 which is positive
for both the NIP and the conventional layers.) Since the amplitude of a spherical
electromagnetic wave depends on the distance to the center of the microsphere,
such a Λ0/4 approximation is only asymptotically close to the plane wave case and
can be optimized yet with respect to the local properties of the layers in the stack.

Now we have to identify the nanosource position in a microsphere. If a na-
noemitter is placed close to the center of a microsphere, the system is nearly
spherically symmetric; therefore the modes with small spherical quantum num-
bers mainly contribute to the sums in Eqs. (2.7), (2.12). This case is close to a
rotational invariant geometry where the dipole moment orientation does not need
to be specified. Therefore, we draw more attention to a case where the nanoemitter
is placed rather far from the center in one of the layers of the spherical stack. In
such a system, the preferred direction (center-source) arises, therefore larger num-
bers of spherical modes contribute to DGF (2.7), (2.12). As a result the frequency
spectrum of DGF becomes richer but more complicated.

In this Section, we numerically explore the details of frequency spectrum
and radial dependencies of nanoemitter radiation (the dyadic Green function) for
alternating quarter-wave compound stack (Figure 1). The details of the numer-
ical algorithm can be found in Ref. [8]. Since nanoemitters (e.g., nanorods [18])
are highly polarized objects, we further pay more attention to the tangential na-
noemitter orientation with d =𝑑𝜑, so only the tangential components of the Green
tensor 𝐺𝜑𝜑 contribute.

The following parameters have been used in our calculations: the geometry of
a system is 𝐴𝐵𝐶𝐵𝐶𝐵𝐶..𝐵𝐷, where the letters 𝐴,𝐵,𝐶,𝐷 indicate the materials of
layers, here 𝐴 and 𝐷 are inner and surrounded spherical layers, respectively, while
𝐵 and 𝐶 are alternating layers in the spherical stack, Λ0 = 1.75𝜇m (𝐾0 = 2𝜋𝑓0/𝑐,
𝑓0 = 171.5THz). A bottom microsphere has a refraction index 𝑛4 = 1.5+ 𝑖2 ⋅10−4
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Figure 3. The frequency spectrums of 𝑊 (𝑟, 𝑟′, 𝑓) = Im(𝐺𝜑𝜑(𝑟, 𝑟
′, 𝑓))

for (a) 𝑟 = 𝑟′ = 2.5𝑟1, and (b) 𝑟 = 𝑟′ = 2.91𝑟1, where 𝑟1 = 1𝜇m is
the radius of the internal bottom microsphere, panel (c) shows Re(𝑛),
where 𝑛 = 𝑛(𝜔 = 2𝜋𝑓) is the refraction index of NIM layer. Spherical
stack consists of 14 layers, the defect LH layer is embedded as 7th layer.
See details in text.

(𝐴, glass, radius 1000nm). The refraction index of the NIP layer is given by Eq.
(3.4) (see Figure 2 for details) (𝐵, width 437nm), 𝑛2 = 1.46 + 𝑖3 ⋅ 10−3 (𝑆𝑖𝑂2,
𝐶, width 300nm) and 𝑛1 = 1 (𝐷, surrounding space). To consider the realistic
layers case we added to each 𝑛𝑖 a small imaginary part, which corresponds to the
material dissipation. To seek for simplicity, further we consider a situation when
the embedded NIM defect is the same as other NIM layers in the stack. This allows
us to observe the main features of such a compound system. The results of our
calculations are shown in Figs. 3–8.

It is known that due to the fluctuation-dissipation theorem the correlation
function of the electromagnetic field at points 𝑟 and 𝑟′ can be written by means
of the macroscopic Green function as follows [16]

⟨E(𝑟)E(𝑟′)⟩𝜔 ∼ Im(𝜇−1(𝜔)Ĝ(𝑟, 𝑟′, 𝜔)), 𝜔 = 2𝜋𝑓 . (4.1)
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Figure 4. Radial distribution of 𝑊 (𝑟, 𝑟′, 𝑓0) for a resonance 𝑓0 =
170.5THz and two positions of an emitter (indicated by arrows): (a)
𝑟′/𝑟1 = 2.5, and (b) 𝑟′/𝑟1 = 2.91, where 𝑟1 is the radius of the internal
bottom microsphere (𝑟/𝑟1 < 1). Dash line shows the structure (refrac-
tive indices) of the stack. In order to see the field structure clearly the
refractive indices are multiplied by 10. Spherical stack has 14 layers, the
defect NIM layer is embedded as 7th layer (is marked by symbol X).
See details in text.

For case 𝑟 = 𝑟′ and small absorbing Eq. (4.1) yields the energy of fluctuating
electromagnetic field as

〈
E(𝑟)

2
〉
𝜔

∼ 𝜇−1(𝜔) Im(Ĝ(𝑟, 𝑟′, 𝜔)). From the latter we

observe that signum Im(Ĝ(𝑟, 𝑟′, 𝜔) must coincide with signum Re𝜇(𝜔). Therefore

Im(Ĝ(𝑟, 𝑟, 𝜔)) in NIP medium (with Re𝜇(𝜔) < 0) is negative.

Further we perform our study as follows. (i) We evaluate the frequency spec-

trum of the field 𝑊 (𝑟, 𝜔) = Im(Ĝ(𝑟, 𝑟, 𝜔)), for fixed 𝑟 to define the spectral res-

onances 𝑓𝑖, after that (ii) we evaluate 𝑊 (𝑟, 𝑟′, 𝜔0) = Im(Ĝ(𝑟, 𝑟′, 𝜔0)) for some
resonance 𝜔0 that allows to study the correlations of field states between various
points of the stack 𝑟 and 𝑟′, which belong to the same or different layers. The
typical structure of the Green function spectrum (that is 𝐺𝜑𝜑(r, r) in our case) is
shown in Figure 3.

While calculations we have evaluated complete the complex Green tensor
𝐺, however further we will pay attention to the imaginary part 𝑊 (𝑟, 𝑟′, 𝑓) =
Im(𝐺𝜑𝜑(𝑟, 𝑟

′, 𝑓)). In a spherical geometry the value of 𝐺𝜑𝜑(𝑟, 𝑟
′, 𝑓) depends on

the source position 𝑟′ (distance to the center), therefore we start our study for
cases when the emitter is placed in the opposite boundaries of a NIM layer. In
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Figure 5. (a) The frequency spectrum of the field 𝑊 (𝑟, 𝑟′, 𝑓) =
Im(𝐺𝜑𝜑(𝑟, 𝑟

′, 𝑓)) for 𝑟 = 𝑟′ = 4.07, and (b) radial distribution of the
𝑊 (𝑟, 𝑟′, 𝑓0) = Im(𝐺𝜑𝜑(𝑟, 𝑟

′, 𝑓0)) for a resonance 𝑓0 = 170.5THz and the
position of the atom: 𝑟′/𝑟1 = 4.07, where 𝑟1 is the radius of the internal
bottom microsphere. Spherical stack has 14 layers, the defect LH layer
is embedded in 7 layer. See details in text.

Figure 3 the frequency spectrum of the field 𝑊 (𝑓) for (a) 𝑟 = 𝑟′ = 2.5𝑟1, and (b)
𝑟 = 𝑟′ = 2.91𝑟1, (𝑟1 is the radius of the internal microsphere) is shown. Such a
spectrum consists of various resonances corresponding to eigenfrequencies of such
a system. As it is expected, the signum of Im(𝐺𝜑𝜑(𝑟, 𝑟, 𝑓)) is negative for such
a configuration. In Figure 3 panel (c) the frequency dependence of the refraction
index of NIM layer Re𝑛(𝑓) is depicted. Spherical stack has 14 layers and a defect
NIM layer is embedded as 7th layer in the stack. We observe from Figure 3 (a)
and (b) that spectra have similar structure because the width of the NIM layer is
small with respect of the distance to center of the microsphere.

After evaluation the structure of resonances for Im(𝐺𝜑𝜑(𝑟, 𝑟, 𝑓)) we study
the spatial (radial) distribution of 𝑊 (𝑟, 𝑟′, 𝑓0) = Im(𝐺𝜑𝜑(𝑟, 𝑟

′, 𝑓0)) at fixed source
place 𝑟′ for some resonance 𝑓 = 𝑓0. Such dependencies are shown in Figure 4 for
two positions of a source (both in a NIM layer) for a resonance 𝑓0 = 170.57THz,
see Figure 3 (a). As it was already mentioned in this case the accumulating of
partial terms in the sum (2.12) becomes. From Figure 4 (a) and (b) we observe
that the field structures in 5th NIM layer are similar but quite different from the
field behavior in other layers. It is interesting to see that the field strength 𝑊 in
5th layer is about 150 (arbitrary units) what is at least in 3–5 times higher than in
the other layers. In Figure 4 a dash line shows the structure (refractive indices) of
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Figure 6. Case without a defect in the spherical stack. (a) Frequency
spectrum of 𝑊 (𝑟, 𝑟′, 𝑓) for 𝑟 = 𝑟′ = 2.5𝑟1, and (b) radial distribution
of the 𝑊 (𝑟, 𝑟′, 𝑓0) for a resonance 𝑓0 = 169.5THz and the position of
the emitter: 𝑟′/𝑟1 = 2.5, where 𝑟1 is the radius of the internal bottom
microsphere. Spherical stack has 14 alternating layers. See details in
text.

the spherical stack (to see the spatial field structure clearly the refractive indices
in Figure 4 (c) are multiplied by 10). Spherical stack has 14 layers, and the defect
NIM layer (marked as a symbol 𝑋) is embedded as 7th layer in the stack.

To see whether the field shape and strength in 5th layer of Figure 4 is sensitive
to the source place we calculate 𝑊 for other nanoemitter position 𝑟′ = 4.07𝜇m
that is farther from the center, but belongs to other NIM layer, see Figure 5. We
observe that such a configuration the field amplitude 𝑊 in 5th layer is strongly
(about 3 times) reduced, but the shape of the field remains stable.

Now we investigate whether the field state in 5th layer depends on the pres-
ence of the defect in the stack. To do this we calculated the spatial field distribution
but without of a defect (indicated as 𝑋); in this case spherical stack is exactly pe-
riodic one. Figure 6 (a) shows corresponding frequency spectrum with a resonance
line closely to 170.5THz that than was used to evaluate the spatial field distribu-
tion shown in Figure 6 (b). We observe from Figure 6 (b) that the shape of 𝑊 in
5th layer is similar to that is shown in Figure 4 (a), but the amplitude of the field
state is considerably less (40 times).

We should explore yet the case when a nanoemitter is placed in conven-
tional material 𝑆𝑖𝑂2 (beyond of NIM layer). Such a configuration is shown in
Figure 7. In this layer Re(𝑛) > 0 and, as it is expected in Figure 7 (a) 𝑊 (𝑟 =
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Figure 7. (a) The frequency spectrum of the field 𝑊 (𝑟, 𝑟′, 𝑓) =
Im(𝐺𝜑𝜑(𝑟, 𝑟

′, 𝑓)) for 𝑟 = 𝑟′ = 2.45𝑟1, and (b) radial distribution of
the 𝑊 (𝑟, 𝑟′, 𝑓0) = Im(𝐺𝜑𝜑(𝑟, 𝑟

′, 𝑓0)) for a resonance 𝑓0 = 170.5THz
and the position of the atom: 𝑟′/𝑟1 = 2.45 (that is 𝑆𝑖𝑂2 layer), where
𝑟1 is the radius of the internal bottom microsphere. Spherical stack has
14 layers, the defect LH layer is embedded as 7 layer. See details in text.

𝑟′, 𝑓) = Im(𝐺𝜑𝜑(𝑟 = 𝑟′, 𝑓)) is positive. Figure 7 (b) shows the radial dependence
𝑊 (𝑟, 𝑟′, 𝑓0) at 𝑟′/𝑟1 = 2.45 for the frequency resonance 𝑓0 = 170.57THz.

We observe from Figure 7 (b) that the strength 𝑊 is considerably less with
respect to case when a source was placed in NIP layer, Figure 4. This confirms
the conclusion that assistance of defect is important to attain the maximum field
strength.

In previous figures the frequency spectrum and radial distribution of the
field (∼ Im(𝐺𝜑𝜑(𝑟, 𝑟

′, 𝑓))) for the multilayered stack were shown. However in ex-
periments it is important to identify the spatial and angular distribution of the
optical field, radiated by nanosources located in a coated microsphere. It is of in-
terest to consider the spatial field distribution in a cross-section contained both
center of the coated microsphere and nanoemitter for some resonance. Such a
distribution is shown in Figure 8 for the resonance 𝑓0 = 170.57THz (see Fig-
ure 3(a)). In order to see clearly the field details, Figure 8 shows −𝑊 (𝑟, 𝜑), where
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Figure 8. The spatial structure −𝑊 (𝑟, 𝜑) (arbitrary units) where
𝑊 (𝑟, 𝜑) = Im(𝐺𝜑𝜑(𝑟, 𝑟

′, 𝜑)) in a cross-section 0 < 𝑟 < 7𝜇m and
0 < 𝜑 < 2𝜋 of the coated microsphere for resonance 𝑓 = 170.57THz.
A nanoemitter is placed in NIM layer at point 𝑟′ = 2.5𝜇m. One can
observe the confinement of field in the vicinity of NIM defect, see Fig-
ure 4 (a).

𝑊 (𝑟, 𝜑) = Im(𝐺𝜑𝜑(𝑟, 𝑟
′, 𝜑)). We observe from Figure 8 very sharp field peak in

place of the nanosource location 𝑟′ = 2.5𝜇m. Such a spatial field structure may
be treated as a confinement of the electromagnetic energy inside the NIM layer of
coated microsphere. The confinement of the defect optical mode can be explaned
as the follows[31]. Once a photon enters the defect region, it encounters two 𝜆/4
Bragg reflectors (the periodic parts of the stack) before and behind it. This leads
that the photon will be strongly reflected back to the defect region and thus re-
mains long time in the defect area. Such a long dwell time results in very high
energy field density around the defect. The leakage of photons through such a
structure into the outer space obviously is small. We observe from Figure 8 that
the field structure inside of multilayered stack is anisotropic and quite intricate,
but the field distribution beyond the coated microsphere has a periodic character.

5. Conclusion

We numerically study the details of spectrum and the optical field distribution of
nanoemitters placed in a microsphere coated by conventional and metamaterial
layers with embedded a NIM defect. By the Green function technique we system-
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atically have investigated the behavior of the nanoemitter fields for the frequency
range where the metamaterial has negative index refraction. Our calculations have
shown a strong enhancement of the nanoemitter fields correlations assisted by the
embedded defect. In resonant case the photon field is almost completely arrested
in a NIM layer in vicinity of the defect layer. This allows to confine resonantly
the field energy in a multilayered stack in very narrow frequency range in order
to create very selective stop-band filters. Incorporating nanoemitters into such
structured compound microspheres allow expanding essentially the operational
properties of microspheres at engineering of nanometer-sized photon emitters as
attractive artificial light sources for advanced optical technologies.
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1. Introduction

The purpose of the present paper is to investigate the screen-type boundary value
problem for pseudo-Maxwell equations

curl𝜇−1curl𝑼 − 𝑠 𝜀 graddiv (𝜀𝑼)− 𝜔2𝜀𝑼 = 0 in Ω, (1.1)

where Ω is a bounded or an unbounded domain with boundary, using the potential
method.

The present investigation covers the anisotropic case when the matrices

𝜀 = [𝜀𝑗𝑘]3×3 , 𝜇 = [𝜇𝑗𝑘]3×3 (1.2)

The investigation was supported by the grant of the Georgian National Science Foundation
GNSF/ST07/3-175.
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in (1.1) are real valued, constant, symmetric and positive definite, i.e.,

⟨𝜀𝜉, 𝜉⟩ ≥ 𝑐∣𝜉∣2 , ⟨𝜇𝜉, 𝜉⟩ ≥ 𝑑∣𝜉∣2 , ∀𝜉 ∈ ℝ3 ,

for some positive constants 𝑐 > 0, 𝑑 > 0, where

⟨𝜂, 𝜉⟩ :=
3∑
𝑗=1

𝜂𝑗𝜉𝑗 , 𝜂, 𝜉 ∈ ℂ3.

𝑠 is a positive real number and the frequency parameter 𝜔 is assumed to be non-
zero and complex valued, i.e., Im𝜔 ∕= 0.

The study of boundary value problems in electromagnetism naturally leads
us to the pseudo-Maxwell equations inherited with tangent boundary conditions,
which are in some sense non-standard for the elliptic equations (1.1), cf. works of
Buffa, Costabel, Christiansen, Dauge, Hazard, Lenoir, Mitrea, Nicaise and others.
The case with the Dirichlet type boundary condition 𝝂 ×𝑼 is mostly investigated
by variational methods, here 𝝂 is the unit normal to the boundary ∂Ω. Our goal
is to investigate well-posedness of the Neumann type boundary value problems for
(1.1) as well as its unique solvability in unbounded domains with screen configu-
ration, i.e.,

Ω = ℝ3
𝒞 := ℝ3 ∖ 𝒞,

where 𝒞 denotes a smooth open hypersurface with a smooth boundary.

2. Neumann boundary value problems for
pseudo-Maxwell equations

From now on throughout the paper, unless stated otherwise, Ω denotes either a
bounded Ω+ ⊂ ℝ3 or an unbounded Ω− := ℝ3∖Ω+ domain with smooth boundary
𝒮 := ∂Ω+ and 𝝂 is the outer unit normal vector field to 𝒮. Whenever necessary,
we will specify the case.

For rigorous formulation of conditions for the unique solvability of the formu-
lated boundary value problems we use the Bessel potential ℍ𝑟(Ω), ℍ𝑟(𝒮) spaces.
We quote [20] for definitions and properties of these spaces.

By 𝒞 we denote an orientable smooth open surface in ℝ3 (a screen) with
boundary ∂𝒞, which has two faces 𝒞− and 𝒞+ distinguished by the orientation of
the normal vector field: 𝝂 is pointing from 𝒞+ to 𝒞−. Moreover, we assume that
𝒞 is a part of some smooth and simple (non self intersecting) hypersurface 𝒮 that

divides the space ℝ3 into two disjoint domains Ω+ and Ω− := ℝ3∖Ω+ such that
Ω+ is bounded and 𝒮 = ∂Ω±.

The space ℍ̃𝑟(𝒞) comprises those functions 𝜑 ∈ ℍ𝑟(𝒮) which are supported
in 𝒞 (functions with the “vanishing traces on the boundary”). For the detailed
definitions and properties of these spaces we refer, e.g., to [13, 14, 20]).

We did not distinguish notation for the Banach spaces and their vector ana-
logues unless this does not lead to a confusion. Although we use the boldface



Screen Type Problems for Pseudo-Maxwell BVPs 75

letters for vector-functions, in contrast to scalar functions, which are denoted by
non-boldface letters.

It is well known that the space ℍ𝑟−1/2(𝒮) is a trace space for ℍ𝑟(Ω), provided
that 𝑟 > 1/2 and the corresponding trace operator is denoted by 𝛾𝒮 . For the
detailed definitions and properties of these spaces we refer, e.g., to [20].

We introduce the following definitions:

ℍ𝑟𝜀𝝂,0(𝒮) :=
{
𝑼 ∈ ℍ𝑟(𝒮) : ⟨𝜀𝝂,𝑼⟩ = 0

}
is a proper linear subspace of ℍ𝑟(𝒮). For a constant matrix 𝜀 = 𝜀0𝐼3 the space
ℍ𝑟𝜀𝝂,0(𝒮) = ℍ𝑟𝝂,0(𝒮) coincides with the space of tangent vector fields. The operator

𝜋𝜀𝝂𝑼 :=
𝜀𝝂

∣𝜀𝝂∣ × 𝑼 × 𝜀𝝂

∣𝜀𝝂∣ = 𝑼 − ⟨ 𝜀𝝂

∣𝜀𝝂∣ ,𝑼⟩ 𝜀𝝂

∣𝜀𝝂∣ =
(
𝐼 − (𝜀𝝂)(𝜀𝝂)⊤

∣𝜀𝝂∣2
)
𝑼 ,

which is actually a multiplication by 3 × 3 matrix function, is a projection onto
the subspace 𝜋𝜀𝝂ℍ

𝑟(𝒮) = ℍ𝑟𝜀𝝂,0(𝒮).
It is easy to see that the operator

𝜋𝜀𝝂 : ℍ𝑟𝝂,0(𝒮) → ℍ𝑟𝜀𝝂,0(𝒮)
is continuous and invertible for all 𝑟 ∈ ℝ; the inverse mapping is given by the
following formula

(𝜋𝜀𝝂)
−1u = u− ⟨𝝂,u⟩

⟨𝝂, 𝜀𝝂⟩ 𝜀𝝂, u ∈ ℍ𝑟𝜀𝝂,0(𝒮)

and we have

𝜋𝜀𝝂𝑼 − ⟨𝝂, 𝜋𝜀𝝂𝑼⟩
⟨𝝂, 𝜀𝝂⟩ 𝜀𝝂 = 𝑼 for all 𝑼 ∈ ℍ𝑟𝝂,0(𝒮).

We also use the following spaces:

ℍ1
𝜀𝝂,0(Ω

+) =
{
𝑼 ∈ ℍ1(Ω+) : ⟨𝜀𝝂, 𝛾𝒮𝑼⟩ = 0 on 𝒮

}
,

and

ℍ1
𝜀𝝂,0(ℝ

3
𝒞) =

{
𝑼 ∈ ℍ1(ℝ3

𝒞) : ⟨𝜀𝝂, 𝛾𝒞±𝑼⟩ = 0 on 𝒞
}
.

Theorem 2.1. The operator in (1.1)

𝑨(𝐷)𝑼 := curl𝜇−1curl𝑼 − 𝑠 𝜀 graddiv(𝜀𝑼)− 𝜔2𝜀𝑼

is elliptic, has a positive definite principal symbol, it is self-adjoint and the follow-
ing Green’s formula holds

(𝑨(𝐷)𝑼 ,𝑽 )Ω+ = (𝔑(𝐷,𝝂)𝑼 ,𝑽 )𝒮 + 𝒂𝜀,𝜇(𝑼 ,𝑽 )Ω+ − 𝜔2(𝜀𝑼 ,𝑽 )Ω+ (2.1)

for all 𝑼 ,𝑽 ∈ ℍ1(Ω+), where 𝔑(𝐷,𝝂) is the Neumann’s boundary operator

𝔑(𝐷,𝝂)𝑼 := 𝝂 × 𝜇−1curl𝑼 − 𝑠 div(𝜀𝑼)𝜀𝝂, 𝑼 ∈ ℍ1(Ω+); (2.2)

𝒂𝜀,𝜇 is the natural bilinear differential form associated with the Green formula

𝒂𝜀,𝜇(𝑼 ,𝑽 )Ω := (𝜇−1curl𝑼 , curl𝑽 )Ω + 𝑠 (div(𝜀𝑼), div(𝜀𝑽 ))Ω. (2.3)
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The first part of the result is due to Lemma 3.1 below, while the remaining
part is standard and for a similar proof we refer, e.g., to [2].

Based on this fact we obtain that the Neumann’s trace 𝔑(𝐷,𝝂)𝑼 ∈ ℍ− 1
2 (𝒮).

Let us mention the well-known fact, that the Neumann boundary value problem

𝑨(𝐷)𝑼 = 0 in Ω+, 𝔑(𝐷,𝝂)𝑼 = 𝑔 on 𝒮, 𝑔 ∈ ℍ− 1
2 (𝒮),

is not an elliptic boundary value problem in the sense of the Shapiro-Lopatinski
condition. To overcome this problem we consider the tangent boundary conditions
and look for a solution in tangent spaces. First, for any 𝑽 ∈ ℍ1

𝜀𝝂,0(Ω
+) we have

𝜋𝜀𝝂𝑽 = 𝑽 and therefore from (2.2) and (2.3) we obtain

(𝔑(𝐷,𝝂)𝑼 ,𝑽 ) = (𝔑(𝐷,𝝂)𝑼 , 𝜋𝜀𝝂𝑽 ) = (𝜋𝜀𝝂𝔑(𝐷,𝝂)𝑼 , 𝜋𝜀𝝂𝑽 ).

Thus 𝜋𝜀𝝂𝔑(𝐷,𝝂)𝑼 is well defined as a functional on ℍ
1
2
𝜀𝝂,0(𝒮) and belongs to

ℍ
− 1

2
𝜀𝝂,0(𝒮).

The purpose of the present paper is to investigate the following screen type
Neumann boundary value problem (BVP) for pseudo-Maxwell equations:
Find 𝑼 ∈ ℍ1

𝜀𝝂,0(ℝ
3
𝒞) such that{

𝑨(𝐷)𝑼 = curl𝜇−1curl𝑼 − 𝑠 𝜀 graddiv(𝜀𝑼)− 𝜔2𝜀𝑼 = 0 in ℝ3
𝒞 ,

𝛾±𝒞 (𝜋𝜀𝝂𝔑(𝐷,𝝂)𝑼) = 𝒈± on 𝒞 ,
(2.4)

where 𝑠 is an arbitrary positive constant and the given data 𝒈± satisfy the condi-
tions

𝒈± ∈ ℍ
−1/2
𝜀𝝂,0 (𝒞), 𝒈+ − 𝒈− ∈ 𝑟𝒞ℍ̃

−1/2
𝜀𝝂,0 (𝒞). (2.5)

In Section 5, cf. Theorem 5.3 below, we prove that the screen-type Neumann
BVP for pseudo-Maxwell equations (2.4)–(2.5) has a solution which is unique.

3. Vector potentials

We start the section with the following result.

Lemma 3.1. The basic differential operator 𝑨(𝐷) in (2.4) is elliptic: the principal
symbol

𝒜pr(𝜉) := 𝜎curl(𝜉)𝜇
−1𝜎curl(𝜉) + 𝑠 𝜀

[
𝜉𝑗𝜉𝑘]3×3𝜀, 𝜉 = (𝜉1, 𝜉2, 𝜉3)

⊤ ∈ ℝ3, (3.1)

where

𝜎curl(𝜉) :=

⎡⎣ 0 𝑖𝜉3 −𝑖𝜉2
−𝑖𝜉3 0 𝑖𝜉1
𝑖𝜉2 −𝑖𝜉1 0

⎤⎦
is non-vanishing, i.e., det𝒜pr(𝜉) ∕= 0 for 𝜉 ∕= 0 and even positive definite, i.e.,

⟨𝒜pr(𝜉)𝜂, 𝜂⟩ ≥ 𝑐∣𝜉∣2∣𝜂∣2 𝑐 = const > 0, ∀ 𝜉 ∈ ℝ3, ∀𝜂 ∈ ℂ3. (3.2)
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Proof. Let 𝒜 be a 3 × 3 real-valued and symmetric matrix 𝒜⊤ = 𝒜, positive
definite on the Euclidean space ℝ3

⟨𝒜𝜉, 𝜉⟩ ≥ 𝑐∣𝜉∣2 , ∀𝜉 ∈ ℝ3 .

Then 𝒜 is positive definite on the complex space ℂ3

⟨𝒜𝜂, 𝜂⟩ ≥ 𝑐∣𝜂∣2 , ∀𝜂 ∈ ℂ3. (3.3)

In fact, let 𝜂 = 𝜂𝑟 + 𝑖𝜂𝑖 ∈ ℂ3, 𝜂𝑟, 𝜂𝑖 ∈ ℝ3. Then

⟨𝒜𝜂, 𝜂⟩ = ⟨𝒜𝜂𝑟 , 𝜂𝑟⟩+ ⟨𝒜𝜂𝑖, 𝜂𝑖⟩+ 𝑖⟨𝒜𝜂𝑖, 𝜂𝑟⟩ − 𝑖⟨𝒜𝜂𝑟, 𝜂𝑖⟩
= ⟨𝒜𝜂𝑟 , 𝜂𝑟⟩+ ⟨𝒜𝜂𝑖, 𝜂𝑖⟩ ≥ 𝑐∣𝜂𝑟∣2 + 𝑐∣𝜂𝑖∣2 = 𝑐∣𝜂∣2, ∀𝜂 ∈ ℂ3,

since ⟨𝒜𝜂𝑟 , 𝜂𝑖⟩ = ⟨𝜂𝑟,𝒜𝜂𝑖⟩ = ⟨𝒜𝜂𝑖, 𝜂𝑟⟩.
If 𝜇 is a real, symmetric and positive definite matrix, so is its inverse 𝜇−1

and

⟨𝜇−1𝜂, 𝜂⟩ ≥ 𝑑1∣𝜁∣2, 𝑑1 > 0, ∀ 𝜂 ∈ ℝ3. (3.4)

Then the symbol 𝒜pr(𝜉) is real valued and symmetric (𝒜pr)
⊤(𝜉) = 𝒜pr(𝜉) and due

to (3.3) it suffices to prove the positive definiteness for only real-valued vectors
𝜂 ∈ ℝ3.

Applying the first inequality in (1.2) and (3.4) we get:

⟨𝒜pr(𝜉)𝜂, 𝜂⟩ = ⟨𝜇−1𝜎curl(𝜉)𝜂, 𝜎curl(𝜉)𝜂⟩ + 𝑠∣⟨𝜉, 𝜀𝜂⟩∣2
= ⟨𝜇−1𝜉 × 𝜂, 𝜉 × 𝜂⟩+ 𝑠∣⟨𝜉, 𝜀𝜂⟩∣2
≥ 𝑑1∣𝜉 × 𝜂∣2 + 𝑠∣⟨𝜉, 𝜀𝜂⟩∣2, ∀ 𝜉, 𝜂 ∈ ℝ3.

(3.5)

Since the unit sphere in ℝ3 is compact, it is sufficient to prove that

⟨𝒜pr(𝜉)𝜂, 𝜂⟩ > 0, ∀ 𝜉, 𝜂 ∈ ℝ3, ∣𝜉∣ = ∣𝜂∣ = 1. (3.6)

Let us assume the opposite: ⟨𝒜pr(𝜉
0)𝜂0, 𝜂0⟩ = 0 for some 𝜉0 ∈ ℝ3, ∣𝜉0∣ = 1 and

𝜂0 ∈ ℝ3, ∣𝜂0∣ = 1. Then, due to (3.5),

𝜉0 × 𝜂0 = 0, ⟨𝜉0, 𝜀𝜂0⟩ = 0.

The first equality means that the vectors are parallel 𝜉0 = ±𝜂0 and, inserted into
the second equality, this gives ⟨𝜀𝜂0, 𝜂0⟩ = 0. The latter contradicts the inequality
(1.2)

⟨𝜀𝜂0, 𝜂0⟩ ≥ 𝑐∣𝜂0∣ = 𝑐 > 0.

The obtained contradiction verifies (3.6), implies the positive definiteness (3.2)
and the ellipticity. □

The elliptic operator 𝑨(𝐷) in (2.4) has the fundamental solution (cf. [13])

F𝑨(𝑥) := ℱ−1
𝜉→𝑥

[𝒜−1(𝜉)
]
= ℱ−1

𝜉′→𝑥′
[
± 1

2𝜋

∫
ℒ
𝑒−𝑖𝜏𝑥3𝒜−1(𝜉′, 𝜏)𝑑𝜏

]
,

𝜉′ = (𝜉1, 𝜉2)
⊤ ∈ ℝ2, 𝑥 = (𝑥′, 𝑥3) ∈ ℝ3,
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where ℱ−1 denotes the inverse Fourier transform and 𝒜(𝜉) is the full symbol of
the operator 𝑨(𝐷):

𝒜(𝜉) := 𝜎curl(𝜉)𝜇
−1𝜎curl(𝜉) + 𝑠 𝜀

[
𝜉𝑗𝜉𝑘]3×3𝜀 − 𝜔2𝜀, 𝜉 = (𝜉1, 𝜉2, 𝜉3)

⊤ ∈ ℝ3.

If 𝑥3 < 0 (if, respectively, 𝑥3 > 0) we fix the sign “+” (the sign “−”) and a contour
ℒ in the upper (in the lower) complex half-plane, which encloses all roots of the
polynomial equation det 𝒜(𝜉) = 0 in the corresponding half-planes.

Let us consider, respectively, the single layer and double layer potential op-
erators

V𝑼(𝑥) :=

∮
𝒮
F𝑨(𝑥 − 𝜏)𝑼(𝜏) 𝑑𝑆, (3.7)

W𝑼(𝑥) :=

∮
𝒮
[(𝔑(𝐷,𝝂(𝜏))F𝑨)(𝑥 − 𝜏)]⊤𝑼(𝜏) 𝑑𝑆, 𝑥 ∈ Ω, (3.8)

related to pseudo-Maxwell equations in (2.4). Obviously,

𝑨(𝐷)V𝑼 (𝑥) = 𝑨(𝐷)W𝑼 (𝑥) = 0, ∀𝑼 ∈ 𝕃1(𝒮), ∀𝑥 ∈ Ω. (3.9)

For the next Propositions 3.2–3.5 and for their proofs we refer, e.g., to [6, 10,
16].

Proposition 3.2. Let Ω ⊂ ℝ3 be a domain with the smooth boundary 𝒮 = ∂Ω.
The potential operators above map continuously the spaces:

V : ℍ𝑟(𝒮) → ℍ𝑟+3/2(Ω),

W : ℍ𝑟(𝒮) → ℍ𝑟+1/2(Ω) ∀ 𝑟 ∈ ℝ.
(3.10)

The direct values V−1, W0 and V+1 of the potential operators V, W and
𝔑(𝐷,𝝂)W are pseudodifferential operators of order −1, 0 and 1, respectively, and
map continuously the spaces:

V−1 : ℍ𝑟(𝒮) → ℍ𝑟+1(𝒮),
W0 : ℍ𝑟(𝒮) → ℍ𝑟(𝒮),
V+1 : ℍ𝑟(𝒮) → ℍ𝑟−1(𝒮), ∀ 𝑟 ∈ ℝ.

(3.11)

Proposition 3.3. The potential operators on an open, compact, smooth surface
𝒞 ⊂ ℝ3 have the following mapping properties:

V : ℍ̃𝑟(𝒞) → ℍ𝑟+3/2(ℝ3
𝒞),

W : ℍ̃𝑟(𝒞) → ℍ𝑟+1/2(ℝ3
𝒞), ∀ 𝑟 ∈ ℝ.

(3.12)

The direct values V−1, W0 and V+1 of the potential operators V, W and
𝔑(𝐷,𝝂)W are pseudodifferential operators of order −1, 0 and 1, respectively, and
have the following mapping properties:

V−1 : ℍ̃𝑟(𝒞) → ℍ𝑟+1(𝒞),
W0 : ℍ̃𝑟(𝒞) → ℍ𝑟(𝒞),
V+1 : ℍ̃𝑟(𝒞) → ℍ𝑟−1(𝒞), ∀ 𝑟 ∈ ℝ.

(3.13)
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Proposition 3.4. For the traces of potential operators we have the following Plemelji
formulae:

(𝛾𝒮−V𝑼)(𝒳) = (𝛾𝒮+V𝑼)(𝒳) = V−1𝑼(𝒳), (3.14)

(𝛾𝒮±𝔑(𝐷,𝝂)V𝑼)(𝒳) = ∓1
2
𝑼(𝒳) + (W0)

∗(𝒳 , 𝐷)𝑼(𝒳) , (3.15)

(𝛾𝒮±W𝑼)(𝒳) = ±1
2
𝑼(𝒳) +W0(𝒳 , 𝐷)𝑼(𝒳) , (3.16)

(𝛾𝒮−𝔑(𝐷,𝝂)W𝑼)(𝒳) = (𝛾𝒮+𝔑(𝐷,𝝂)W𝑼)(𝒳) = V+1𝑼(𝒳) , (3.17)

𝒳 ∈ 𝒮 , 𝑼 ∈ ℍ𝑠(𝒮) ,
where (W0)

∗(𝒳 , 𝐷) is the adjoint to the pseudodifferential operatorW0(𝒳 , 𝐷), the
direct value of the potential operator 𝔑(𝐷,𝝂)V on the boundary 𝒮.
Proposition 3.5. Let the boundary 𝒮 = ∂Ω± be a compact smooth surface. Solu-
tions to pseudo-Maxwell equations with anisotropic coefficients 𝜀 and 𝜇 are repre-
sented as

𝑼(𝑥) = ±W(𝛾𝒮±𝑼)(𝑥) ∓V(𝛾𝒮±𝔑(𝐷,𝝂)𝑼)(𝑥), 𝑥 ∈ Ω±, (3.18)

where 𝛾𝒮±𝔑(𝐷,𝝂)Ψ is Neumann’s trace operator (see (2.2)) and 𝛾𝒮±Ψ is Dirich-
let’s trace operator.

If 𝒞 ⊂ ℝ3 is an open compact smooth surface, then a solution to pseudo-
Maxwell equations with anisotropic coefficients 𝜀 and 𝜇 is represented as

𝑼(𝑥) =W([𝑼 ])(𝑥) −V([𝔑(𝐷,𝝂)𝑼 ])(𝑥), 𝑥 ∈ ℝ3
𝒞 ,

[𝑼 ] := 𝛾𝒞+𝑼 − 𝛾𝒞−𝑼 , [𝔑(𝐷,𝝂)𝑼 ] := 𝛾𝒞+𝔑(𝐷,𝝂)𝑼 − 𝛾𝒞−𝔑(𝐷,𝝂)𝑼 .

As a consequence of the representation formula (3.18) we derive the following.

Corollary 3.6. For a complex-valued frequency a solution to the screen type Neu-
mann BVP for pseudo-Maxwell equations (2.4)–(2.5) decays at infinity exponen-
tially, i.e.,

𝑼(𝑥) = 𝒪
(
𝑒−𝛾∣𝑥∣

)
as ∣𝑥∣ → ∞ provided that Im𝜔 ∕= 0 (3.19)

for some 𝛾 > 0.

Theorem 3.7. The screen type Neumann BVP for pseudo-Maxwell equations (2.4)–
(2.5) has at most one solution in ℍ1

𝜀𝝂,0(ℝ
3
𝒞).

Proof. Let us consider homogeneous BVP (2.4) with 𝒈+ = 𝒈− = 0 (extended
by 0 to the complementary surface 𝒞𝑐 := 𝒮 ∖ 𝒞) and apply the Green’s formulae
with 𝑽 = 𝑼 ; taking into account the boundary conditions in (2.4) and that
⟨𝜀𝝂,𝑼±⟩ = 0 and Corollary 3.6, we get

0 =

∫
Ω±

⟨𝜇−1curl𝑼 , curl𝑼⟩𝑑𝑥 + 𝑠

∫
Ω±

∣div 𝜀𝑼 ∣2𝑑𝑥 − 𝜔2

∫
Ω±

⟨𝜀𝑼 ,𝑼⟩𝑑𝑥.
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Since 𝜀 and 𝜇−1 are positive definite and Im𝜔 ∕= 0, it follows, that∫
ℝ3

⟨𝜀𝑼 ,𝑼⟩𝑑𝑥 = 0 and, therefore, 𝑼 ≡ 0. □

It is well known that the bilinear differential form 𝒂𝜀,𝜇(𝑼 ,𝑽 ) in (2.3) is not
coercive on ℍ1(Ω±). In the paper [4] M. Costabel suggested the following modified
bilinear form (see [17] for an earlier version)

𝒂𝑚𝜀,𝜇(𝑼 ,𝑽 )Ω± := (𝜇−1curl𝑼 , curl𝑽 )Ω± + 𝑠 (div(𝜀𝑼), div(𝜀𝑽 ))Ω±

+ (𝒢𝑟𝑎𝑑𝒮⟨𝜀𝝂,𝑼±⟩,𝑽 ±
𝜀 )𝒮 − (𝒟𝑖𝑣𝒮𝑽 ±

𝜀 , ⟨𝜀𝝂,𝑼±⟩)𝒮
= (𝜇−1curl𝑼 , curl𝑽 )Ω± + 𝑠 (div(𝜀𝑼), div(𝜀𝑽 ))Ω±

+ 2Re (𝒢𝑟𝑎𝑑𝒮 ⟨𝜀𝝂,𝑼±⟩,𝑽 ±
𝜀 )𝒮 ;

(3.20)

here 𝑼± := 𝛾±𝒮 𝑼 , 𝑽
± := 𝛾±𝒮 𝑽 denote the traces of the vector fields on the

boundary and

𝒳𝜀 := −𝑠 det 𝜀

⟨𝜀𝝂,𝝂⟩𝝂 × (
𝜀
(𝒳 × 𝝂

))
, 𝒳 ∈ ℍ𝑟(𝒮). (3.21)

The surface gradient 𝒢𝑟𝑎𝑑𝒮 and the surface divergence 𝒟𝑖𝑣𝒮 are negative adjoint
to each-other with respect to the bilinear form on the boundary

𝒢𝑟𝑎𝑑𝒮𝜑 := (𝒟1𝜑,𝒟2𝜑,𝒟3𝜑)
⊤, 𝒟𝑖𝑣𝒮𝑼 := 𝒟1𝑼1 +𝒟2𝑼2 +𝒟3𝑼3,

𝒟𝑗 := ∂𝑗 − 𝜈𝑗∂𝝂 , 𝑗 = 1, 2, 3,

(𝒟𝑖𝑣𝒮𝑼 ,𝑽 )𝒮 = −(𝑼 ,𝒢𝑟𝑎𝑑𝒮𝑽 )𝒮 𝑼 ,𝑽 ∈ ℍ𝑟(𝒮).
(see [8]).

The following theorem proved in [4] for a bounded domain plays a key role
in the present investigation.

Theorem 3.8. The modified bilinear differential form 𝒂𝑚𝜀,𝜇 in (3.20) is coercive in

the space ℍ1(Ω±): there exist positive constants 𝑐1 and 𝑐2 such that

Re𝒂𝑚𝜀,𝜇(𝑼 ,𝑼)Ω± ≥ 𝑐1
∥∥𝑼 ∣∣ℍ1(Ω±)

∥∥2 − 𝑐2
∥∥𝑼 ∣∣𝕃2(Ω±)

∥∥2 ∀𝑼 ∈ ℍ1(Ω±)

provided that

𝑼(𝑥) = 𝒪 (∣𝑥∣−1−𝛿) 𝑎𝑠 ∣𝑥∣ → ∞ (3.22)

for some 𝛿 > 0 if the domain is unbounded.

Proof. As noted already, for a bounded domain Ω+ the theorem is proved in [4].
Concerning an unbounded domain Ω−: The coerciveness (3.23) is valid for

the domain Ω−
𝑅 := 𝕊3𝑅 ∩ Ω−, where 𝕊3𝑅 is the ball with a sufficiently large radius

𝑅, and the bilinear differential form

𝒂𝑚𝜀,𝜇,𝑅(𝑼 ,𝑽 ) := (𝜇−1curl𝑼 , curl𝑽 )Ω−
𝑅
+ 𝑠 (div(𝜀𝑼), div(𝜀𝑽 ))Ω−

𝑅

+ 2Re (𝒢𝑟𝑎𝑑𝒮⟨𝜀𝝂,𝑼−⟩,𝑽 −
𝜀 )𝒮 + 2Re (𝒢𝑟𝑎𝑑𝒮⟨𝜀𝝂,𝑼−⟩,𝑽 −

𝜀 )∂𝕊3𝑅
.
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The condition (3.22) and the independence of the constants 𝑐1, 𝑐2 from the domain
Ω− configuration, ensures that the limit 𝑅 → ∞ eliminates the last summand
in the form above (the integrals over the surface of the sphere ∂𝕊3𝑅) and the
coerciveness for the domain Ω− emerges as the limit case. □

Corollary 3.9. The quadratic differential form 𝒂𝜀,𝜇(𝑼 ,𝑼)Ω+ in (2.3) is coercive:
there exist positive constants 𝑐1 and 𝑐2 such that

Re𝒂𝜀,𝜇(𝑼 ,𝑼)Ω± ≥ 𝑐1
∥∥𝑼 ∣∣ℍ1(Ω±)

∥∥2 − 𝑐2
∥∥𝑼 ∣∣𝕃2(Ω±)

∥∥2 (3.23)

on the space ℍ1
𝜀𝝂,0(Ω

+).

The quadratic differential form 𝒂𝜀,𝜇(𝑼 ,𝑼)Ω− in (2.3) is coercive on the space
of ℍ1

𝜀𝝂,0(Ω
−) of those vector fields which satisfy the condition (3.22).

Proof. Note that due to definitions (3.21), (3.20) the last summands in the mod-
ified form 𝒂𝑚𝜀,𝜇(𝑼 ,𝑼) vanish if either ⟨𝜀𝝂,𝑼±⟩ = 0, which is the case when

𝑼 ∈ ℍ1
𝜀𝝂,0(Ω

−), or 𝑼 𝜀 = 0 which is the case when 𝑼 ∈ ℍ1
𝜀𝝂(Ω

−). Then the
modified form coincides with 𝒂𝜀,𝜇(𝑼 ,𝑼)Ω± and the claimed positive definiteness
follows from (3.23). □

Corollaries 3.9 and 3.6 imply the following result.

Corollary 3.10. The quadratic differential form 𝒂𝜀,𝜇(𝑼 ,𝑽 ) in (2.3) is coercive
(satisfies the inequality (3.23)) for all vector fields 𝑼 ∈ ℍ1

𝜀𝝂,0(Ω
−) provided they

are solutions to pseudo-Maxwell equation.

Lemma 3.11. The operator V−1 in (3.7) is invertible in the following space settings

V−1 : ℍ𝑟(𝒮) → ℍ𝑟+1(𝒮) ∀𝑟 ∈ ℝ. (3.24)

The principal symbol of the pseudodifferential operator V−1 is positive definite

⟨𝑉−1,pr(𝒳 , 𝜉)𝜂, 𝜂⟩ ≥ 𝑐0∣𝜂∣2∣𝜉∣−1 ∀𝜂 ∈ 𝐶3 , 𝒳 ∈ 𝒮, 𝜉 ∈ ℝ3, (3.25)

for some positive constant 𝑐0.

Proof. (see [5, 12, 19] for similar proofs): Let the boundary surface 𝒮 = ∂Ω± be
covered by a finite set of open smooth surfaces {𝒮𝑗}𝑀𝑗=1 and

𝜅𝑗 : 𝑋𝑗 �→ 𝒮𝑗 , 𝑥 ∈ 𝑋𝑗 , 𝑗 = 1, . . . ,𝑀

be diffeomorphisms of open subsets 𝑋𝑗 ⊂ ℝ2 onto 𝒮𝑗 . Let us extend them to the
diffeomorphisms of layers:

ϰ𝑗 : 𝑋̃𝑗 �→ 𝒮𝑗 , 𝑋̃𝑗 ,𝒮𝑗 ⊂ ℝ3, 𝒮𝑗 ∩ 𝒮 = 𝒮𝑗 ,
𝑋̃𝑗 := (−𝜖, 𝜖)× 𝑋𝑗, 𝒮𝑗 :=

{
(𝒳 , 𝑡𝝂(𝒳)) : −𝜖 < 𝑡 < 𝜖 , 𝒳 ∈ 𝒮𝑗

}
(3.26)

ϰ𝑗(𝑥, 𝑥3) := 𝜅𝑗(𝑥) + 𝑥3𝝂(𝜅𝑗(𝑥)) , 𝑥 ∈ 𝑋𝑗 , 𝑥3 ∈ [−𝜖, 𝜖] , 𝑗 = 1, . . . ,𝑀.
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For the principal symbol 𝑉−1,pr(𝒳 , 𝜉) of the operator V−1 we have the for-
mulae

𝑉−1,pr(𝜅𝑗(𝑥), 𝜉) =
𝒢𝜅𝑗 (𝑥)

2𝜋 detϰ′
𝑗(𝑥, 0)

∞∫
−∞

(𝒜pr)
−1([ϰ′

𝑗(𝑥, 0)
⊤]−1(𝜉, 𝑡)

)
𝑑𝑡

for 𝜉 ∈ ℝ2, 𝒳 = 𝜅𝑗(𝑥)𝒮𝑗 , 𝑥 ∈ 𝑋𝑗 ⊂ ℝ2,

(3.27)

where (𝒜pr)
−1(𝜉) is the inverse to the principal symbol in (3.1),

ϰ′
𝑗(𝑥, 0) =

⎡⎣ ∂1𝜅1(𝑥) ∂2𝜅1(𝑥) 𝜈1(ϰ𝑗(𝑥))
∂1𝜅2(𝑥) ∂2𝜅2(𝑥) 𝜈2(ϰ𝑗(𝑥))
∂1𝜅3(𝑥) ∂2𝜅3(𝑥) 𝜈3(ϰ𝑗(𝑥))

⎤⎦
is the Jacoby matrix of the diffeomorphism in (3.26) and

𝒢𝜅𝑗 := (det∥(∂𝑘𝜅𝑗 , ∂𝑙𝜅𝑗)∥2×2) 1
2 with ∂𝑘𝜅𝑗 := (∂𝑘𝜅𝑗1, ∂𝑘𝜅𝑗2)

⊤

is the square root from the Gram determinant, the surface element on 𝒮 (cf., e.g.,
[5, 12]).

Since 𝒜pr is positive definite (cf. (3.2)), the same holds for the inverse. In
fact, we introduce 𝜂′ = (𝒜pr)

−1(𝜉)𝜂 ∈ ℂ3 into (3.2) and proceed as follows:

⟨(𝒜pr)
−1(𝜉)𝜂, 𝜂⟩ = ⟨𝜂′,𝒜pr(𝜉)𝜂

′⟩ ≥ 𝑐∣𝜂′∣2∣𝜉∣2 = 𝑐∣(𝒜pr)
−1(𝜉)𝜂∣2∣𝜉∣2

= 𝑐1∣(𝒜pr)
−1(∣𝜉∣−1𝜉)𝜂∣2∣𝜉∣−2 ≥ 𝑐2∣𝜂∣2∣𝜉∣−2, ∀𝜉 ∈ ℝ3 , ∀𝜂 ∈ ℂ3, (3.28)

because (𝒜pr)
−1(𝜉) is homogeneous of order −2 and, as an invertible matrix, is

bounded from below on the unit sphere ∣(𝒜pr)
−1(𝜉)𝜂∣ ≥ 𝑐3 > 0 for all ∣𝜉∣ = ∣𝜂∣ = 1.

Then, with (3.27) and (3.28) at hand, we derive

⟨𝑉−1,pr(𝜅𝑗(𝑥), 𝜉)𝜂, 𝜂⟩ ≥ 𝑐2𝒢𝜅𝑗 (𝑥)∣𝜂∣2
2𝜋 detϰ′

𝑗(𝑥, 0)

∫ ∞

−∞
∣[ϰ′
𝑗(𝑥, 0)

⊤]−1(𝜉, 𝑡)∣−2 𝑑𝑡 (3.29)

≥ 𝑐4∣𝜂∣2
∫ ∞

−∞

𝑑𝑡

𝑡2 + ∣𝜉∣2 = 𝑐0∣𝜂∣2∣𝜉∣−1 ∀𝜂 ∈ ℂ3, ∀𝜉 ∈ ℝ2

and (3.25) is proved.

Since the symbol of the ΨDO V−1 is elliptic (cf. (3.25)) and 𝒮 has no bound-
ary, the pseudodifferential operator

𝑽 −1 : ℍ𝑟(𝒮) −→ ℍ𝑟+1(𝒮) (3.30)

is Fredholm for arbitrary 𝑟 ∈ ℝ (cf. [11, 13, 14]).

Let us introduce the vectors 𝑼 = 𝑽 = VΦ, Φ ∈ ℍ−1/2(𝒮) into the Green
formula (2.1). Since 𝑨(𝐷)𝑼(𝑥) = 𝑨(𝐷)VΦ(𝑥) = 0 in Ω±, then by applying the
equalities (cf. (3.14), (3.15))

𝛾±𝒮 𝑼 = 𝛾±𝒮 (VΦ) = V−1Φ, 𝛾±𝒮
(
𝔑(𝐷,𝝂)VΦ) = ∓1

2
Φ+ (W0)

∗Φ, (3.31)



Screen Type Problems for Pseudo-Maxwell BVPs 83

we get

± 1

2
(Φ,V−1Φ)𝒮 − ((W0)

∗Φ,V−1Φ)𝒮 = −(𝛾±𝒮 (𝔑(𝐷,𝝂)𝑼), 𝛾±𝒮 𝑼)𝒮

= ±(𝜇−1curl𝑼 , curl𝑼)Ω± ± 𝑠 (div(𝜀𝑼), div(𝜀𝑼))Ω± ∓ 𝜔2(𝜀𝑼 ,𝑼)Ω± .

Further, taking the difference of the obtained equalities we find that

(V−1Φ,Φ)𝒮 = (𝜇−1curl𝑼 , curl𝑼)
ℝ3 + 𝑠 (div(𝜀𝑼), div(𝜀𝑼))

ℝ3 − 𝜔2(𝜀𝑼 ,𝑼)
ℝ3 .

(3.32)

Since 𝜔 is complex valued, from (3.32) follows that V−1Φ = 0 implies 𝑼 ≡ 0.
Then,

Φ = 𝛾𝒮−
(
𝔑(𝐷,𝝂)VΦ)− 𝛾𝒮+

(
𝔑(𝐷,𝝂)VΦ) = 0,

which implies that the kernel of V−1 in ℍ−1/2(𝒮) is trivial KerV−1 = {0}.
Consider the adjoint ΨDO to (3.30)

(V−1)
∗
: ℍ− 1

2 (𝒮) −→ ℍ
1
2 (𝒮). (3.33)

From (3.32) we derive:

( (V−1)
∗Φ,Φ)𝒮 = (V−1Φ,Φ)𝒮

= (𝜇−1curl𝑼 , curl𝑼)
ℝ3 + 𝑠 (div(𝜀𝑼), div(𝜀𝑼))

ℝ3 − 𝜔2(𝜀𝑼 ,𝑼)
ℝ3 .

Repeating the above arguments for the operatorV−1 we find out that the operator
(V−1)

∗
in (3.33) has a trivial kernel, i.e., KerV−1 = {0} in ℍ−1/2(𝒮). The claimed

invertibility of the operator 𝑽 −1 in (3.30) follows. □

Lemma 3.12. The operator V−1 is invertible in the following space settings

𝑽 −1 : ℍ̃𝑟−
1
2 (𝒞) → ℍ𝑟+

1
2 (𝒞), −1

2
< 𝑟 <

1

2
. (3.34)

Proof. In [12, Theorem 2.7] and in [3, Theorem 1.9] it is proved that, since the
symbol 𝑉−1,pr(𝒳 , 𝜉) is positive definite, the corresponding operators (3.24) on the
manifold (surface) 𝒞 with boundary ∂𝒮 = ∅ is Fredholm for all 𝑟 ∈ ℝ. The same
operator on the manifold (surface) 𝒞 with the boundary ∂𝒞 ∕= ∅ is Fredholm if and
only if the condition ∣𝑟∣ < 1/2 holds. In both cases, due to the positive definiteness
of the symbol (3.25), the index is trivial Ind𝑽 −1 = 0. Indeed, since 𝜔 is complex
valued, from (3.32) follows that 𝑽 −1Φ = 0 implies 𝑼 ≡ 0. Then,

Φ = 𝛾𝒮−
(
𝔑(𝐷,𝝂)𝑽 Φ)− 𝛾𝒮+

(
𝔑(𝐷,𝝂)𝑽 Φ) = 0,

which implies that the kernel of 𝑽 −1 in ℍ−1/2(𝒮) is trivial Ker𝑽 −1 = {0}. Due
to the trivial index Ind𝑽 −1 = 0 this implies trivial co-kernel

dim Coker𝑽 −1 = dim Ker (𝑽 −1)∗ = 0

and provides the invertibility of the operator (3.24) for 𝑟 = 0.
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Concerning a surface 𝒞 with boundary ∂𝒞 ∕= ∅: equality (3.32) is valid for an
open surface as well

(𝑽 −1Ψ,Ψ)𝒞 = (𝜇−1curl𝑼 , curl𝑼)
ℝ3 + 𝑠 (div(𝜀𝑼), div(𝜀𝑼))

ℝ3

− 𝜔2(𝜀𝑼 ,𝑼)
ℝ3 , 𝑼 = VΨ, Ψ ∈ ℍ̃−1/2(𝒞). (3.35)

From (3.35) follows, as for the closed surface, the invertibility of operator (3.34)
for 𝑟 = 0.

If a pseudodifferential operators on a manifold with or without boundary is
Fredholm in the spaces ℍ𝑠 for all 𝑠0 < 𝑠 < 𝑠1, it has the same kernel in ℍ𝑠 for
all 𝑠0 < 𝑠 < 𝑠1 (see [9] and also [1, 7, 15] and [10] for similar results). Therefore,
the operator 𝑽 −1 in (3.34) is invertible for all ∣𝑟∣ < 1/2. □

Remark 3.13. For arbitrary complex 𝜔, Im𝜔 ∕= 0, the operator 𝑽 −1 is coercive

Re (𝑽 −1Φ,Φ)𝒮 ≥ 𝑐0
∥∥Φ∣∣ℍ−1/2(𝒮)∥∥2 − 𝑐1

∥∥Φ∣∣ℍ−3/2(𝒮)∥∥2
if 𝒮 is closed, and

Re (𝑽 −1Ψ,Ψ)𝒞 ≥ 𝑐0
∥∥Ψ∣∣ℍ̃−1/2(𝒞)∥∥2 − 𝑐1

∥∥Ψ∣∣ℍ̃−3/2(𝒞)∥∥2 (3.36)

if 𝒞 is open, for all Φ ∈ ℍ
−1/2
𝜀𝝂,0 (𝒮), all Ψ ∈ ℍ̃

−1/2
𝜀𝝂,0 (𝒞), and some positive constants

𝑐0, 𝑐1.
Moreover, for a purely imaginary frequency 𝜔 = 𝑖𝛽 ∕= 0 the operator 𝑽 −1 is

positive definite, i.e.,

(V−1Φ,Φ)𝒮 ≥ 𝑀∥Φ∣∣ℍ− 1
2 (𝒮)∥2 , Φ ∈ ℍ− 1

2 (𝒮),
if 𝒮 is closed, and

(V−1Ψ,Ψ)𝒞 ≥ 𝑀∥Ψ∣∣ℍ̃− 1
2 (𝒞)∥2 , Ψ ∈ ℍ̃− 1

2 (𝒞) (3.37)

if 𝒞 is open, for some 𝑀 > 0.

Indeed, if 𝜔 = 𝑖𝛽 ∕= 0 then from Green’s formula (3.32) we obtain

(V−1Φ,Φ)𝒮 = (𝜇−1curl𝑼 , curl𝑼)
ℝ3+𝑠 (div(𝜀𝑼), div(𝜀𝑼))

ℝ3+𝛽2(𝜀𝑼 ,𝑼)
ℝ3 > 0,

if Φ ∕= 0 and, therefore, 𝑼 ∕= 0 in Ω±. Positive and invertible operators are positive
definite. For the proof we can lift the operator with the help of Bessel potentials
to a positive and invertible operator in 𝕃2-setting, prove the positive definiteness
of the lifted operator and, returning to the original operator in the setting (3.24),
get the positive definiteness.

The proof of positive definiteness for 𝜔 = 𝑖𝛽 and an open surface 𝒮 results
from equality (3.35) and is similar to the foregoing case.

The coerciveness (3.36) follows from the positive definiteness (3.37) and the
next auxiliary lemma.

Lemma 3.14. Let 𝑨(𝐷) be an elliptic partial differential operator of order 2 with
constant 𝑁 × 𝑁 complex-valued matrix coefficients. Let further

𝑨(𝐷)Φ− 𝑨0(𝐷)Φ = 𝐺Φ, Φ ∈ ℍ1(Ω)𝑁 ,
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where 𝐺 ∈ ℂ𝑁×𝑁 (𝒮) is a matrix-function. Let V−1(𝒳 ,𝒟) be the direct values of
the single layer potential operator related to 𝑨(𝐷), while V0

−1(𝒳 ,𝒟) be the direct

value of the single layer potential operator related to 𝑨0(𝐷) (cf. (3.11)).
Then the difference

𝑩−3(𝒳 ,𝒟) := V−1(𝒳 ,𝒟)−V0
−1(𝒳 ,𝒟) (3.38)

is a pseudodifferential operators of order −3 (the orders of ΨDOs are indicated in
the indices).

Proof. Recall the formulae for the fundamental solution and the direct value of
single layer potential for 𝑨(𝐷) (cf. (3.7))

F𝑨(𝑥) := ℱ−1
𝜉→𝑥

[𝒜−1(𝜉)
]
, 𝑥 ∈ Ω,

V−1Φ(𝒳) :=
∮
𝒮
𝐹𝑨(𝒳 − 𝑦)Φ(𝑦) 𝑑𝑆, 𝒳 ∈ 𝒮,

where 𝒜(𝜉) is the full symbol of the operator 𝑨(𝐷). Similarly are written the
fundamental solution F𝑨0 and the potential V0

−1.
The symbol of the pseudodifferential operator (of the difference)

𝑩−3(𝒳 ,𝒟)Φ(𝒳) = V−1(𝒳 ,𝒟)Φ(𝒳)−V0
−1(𝒳 ,𝒟)Φ(𝒳)

:=

∮
𝒮
[F𝑨(𝒳 − 𝑦)− F𝑨0(𝒳 − 𝑦)]Φ(𝑦) 𝑑𝑆

is represented locally as

ℬ−3(𝒳 , 𝜉) = 𝑉−1(𝒳 , 𝜉)− 𝑉 0
−1(𝒳 , 𝜉)

= − Γϰ𝑗 (𝒳)
2𝜋 det ϰ̃′

𝑗(𝒳)

∫ ∞

−∞

[𝒜−1(ϰ̃′
𝑗(𝒳)(𝑡, 𝜉)

)− (𝒜0)−1
(
ϰ̃′
𝑗(𝒳)(𝑡, 𝜉)

)]
𝑑𝑡

= − Γϰ𝑗 (𝒳)
2𝜋 det ϰ̃′

𝑗(𝒳)

∫ ∞

−∞
𝒜−1(ϰ̃′

𝑗(𝒳)(𝑡, 𝜉)
)
𝐺(𝒳)(𝒜0)−1

(
ϰ̃′
𝑗(𝒳)(𝑡, 𝜉)

)
𝑑𝑡

= 𝒪(∣𝜉∣−3) as ∣𝜉∣ → ∞, 𝜉 ∈ ℝ2, 𝒳 ∈ 𝒮, (3.39)

where 𝐺(𝒳) := 𝒜0(𝒳 , 𝜉) − 𝒜(𝒳 , 𝜉) is a 𝑁 × 𝑁 matrix-function. The obtained
equality (3.39) shows that the pseudodifferential operator 𝑩−3(𝒳 ,𝒟) has order
−3 indeed. □
Corollary 3.15. For a smooth, closed surface 𝒮 the potential operator V(V−1)

−1

has the following mapping properties

P := V(V−1)
−1 : ℍ

𝑟+ 1
2

𝜀𝝂,0 (𝒮) → ℍ𝑟+1𝜀𝝂,0(Ω
±) for all 𝑟 ∈ ℝ, (3.40)

while for an open surface 𝒞 it maps

P := V(V−1)
−1 : ℍ

𝑟+ 1
2

𝜀𝝂,0(𝒞) → ℍ𝑟+1𝜀𝝂,0(ℝ
3
𝒞) for all − 1

2 < 𝑟 < 1
2 .

Proof. Since 𝛾𝒮V(V−1)
−1Φ = Φ (see (3.14)) the asserted mapping properties are

trivial consequences of the mapping properties of the participating operators V in
(3.10) and of (V−1)

−1 in (3.24). □
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4. Boundary pseudodifferential equations

First we derive and investigate equivalent boundary pseudodifferential equations
for the elliptic Neumann BVP (2.4) in Ω±.

Consider the potential operator

PΦ(𝑥) := V(V−1)
−1Φ(𝑥), Φ ∈ ℍ

1/2
𝜀𝝂,0(𝒮), 𝑥 ∈ Ω, (4.1)

where Ω = Ω± (cf. (3.40)). Note that 𝑼 = PΦ(𝑥) = VΨ, Ψ := (V−1)
−1Φ,

satisfies the basic equation in (2.4) in Ω± (cf. (3.9)).
By introducing 𝑼 = PΦ from (4.1) into 𝛾𝒮± (𝜋𝜀𝝂𝔑(𝐷,𝝂)𝑼 ) = 𝒈± on 𝒮 and

using Plemelji’s formulae (3.15), we derive the following boundary pseudodifferen-
tial equations

𝒫±Φ = ∓𝛾𝒮±𝜋𝜀𝝂𝔑(𝐷,𝝂)V(V−1)
−1Φ = ∓𝒈±,

where

𝒫± := 𝜋𝜀𝝂

(1
2
𝐼 ∓ (W0)

∗
)
(V−1)

−1 (4.2)

are the modified Poincaré-Steklov pseudodifferential operators of order 1.

Lemma 4.1. The operators

𝒫± : ℍ
1/2
𝜀𝝂,0(𝒮) → ℍ

−1/2
𝜀𝝂,0 (𝒮) (4.3)

are coercive

Re (𝒫±Φ,Φ)𝒮 ≥ 𝑐0
∥∥Φ∣∣ℍ1/2

𝜀𝝂,0(𝒮)
∥∥2 − 𝑐1

∥∥Φ∣∣𝕃2,𝜀𝝂,0(𝒮)∥∥2 (4.4)

for some positive constants 𝑐0, 𝑐1 and all Φ ∈ ℍ
1/2
𝜀𝝂,0(𝒮).

Moreover, the operators have the trivial kernels, i.e., Ker𝒫± = {0} and are
invertible.

If the frequency is purely imaginary 𝜔 = 𝑖𝛽 ∕= 0, 𝛽 ∈ ℝ, the operators 𝒫± are
positive definite

(𝒫±Φ,Φ)𝒮 ≥ 𝑀±
∥∥Φ∣∣ℍ1/2

𝜀𝝂,0(𝒮)
∥∥ (4.5)

for some positive constants 𝑀±.

Proof. By introducing 𝑼̃ = V(V−1)
−1Φ into the Green formula (2.1) we find out

that

(𝒫±Φ,Φ)𝒮 = (𝜇−1curl 𝑼̃ , curl 𝑼̃)Ω± + 𝑠 (div(𝜀𝑼̃), div(𝜀𝑼̃))Ω± − 𝜔2(𝜀 𝑼̃ , 𝑼̃)Ω± .
(4.6)

Since 𝛾𝒮𝑼̃ = Φ ∈ ℍ
1/2
𝜀𝝂,0(𝒮), due to Corollary 3.9 and Corollary 3.6 the form

𝒂𝜀,𝜇(𝑼̃ , 𝑼̃)Ω± = (𝜇−1curl 𝑼̃ , curl 𝑼̃)Ω± + 𝑠 (div(𝜀𝑼̃), div(𝜀𝑼̃))Ω±

are coercive: the inequality

𝒂𝜀,𝜇(𝑼̃ , 𝑼̃)Ω± ≥ 𝑐2
∥∥𝑼̃ ∣∣ℍ1

𝜀𝝂,0(Ω
±)
∥∥2 − 𝑐3

∥∥𝑼̃ ∣∣𝕃2,𝜀𝝂,0(Ω±)
∥∥2
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holds for 𝑼̃ = V(V−1)
−1Φ, Φ ∈ ℍ

1/2
𝜀𝝂,0(𝒮) and some 𝑐2 > 0, 𝑐3 > 0. From (4.6)

we then obtain

Re (𝒫±Φ,Φ)𝒮 ≥ 𝑐2
∥∥𝑼̃ ∣∣ℍ1

𝜀𝝂,0(Ω
±)
∥∥2 − 𝑐4

∥∥𝑼̃ ∣∣𝕃2,𝜀𝝂,0(Ω±)
∥∥2

for some 𝑐4 > 0. Further, invoking the trace theorem (cf. [20]) and the continuity
property of the operator P = V(V−1)

−1 (cf. (3.40)) we easily derive the following
inequalities ∥∥𝑼̃ ∣∣ℍ1

𝜀𝝂,0(Ω
±)
∥∥ ≥ 𝑐5

∥∥𝛾𝒮𝑼̃ ∣∣ℍ1/2
𝜀𝝂,0(𝒮)

∥∥, 𝑐5 > 0,∥∥V(V−1)
−1Φ

∣∣ℍ1/2
𝜀𝝂,0(Ω

±)
∥∥ ≤ 𝑐6

∥∥Φ∣∣𝕃2,𝜀𝝂,0(𝒮)∥∥, 𝑐6 > 0.
(4.7)

Applying the inequalities (4.7) we get the estimate with suitable positive constants

Re (𝒫±Φ,Φ)𝒮 ≥ 𝑐2
∥∥𝑼̃ ∣∣ℍ1

𝜀𝝂,0(Ω
±)
∥∥2 − 𝑐4

∥∥𝑼̃ ∣∣𝕃2,𝜀𝝂,0(Ω±)
∥∥2

≥ 𝑐7
∥∥𝛾𝒮𝑼̃ ∣∣ℍ1/2

𝜀𝝂,0(𝒮)
∥∥2 − 𝑐8

∥∥𝑼̃ ∣∣ℍ1/2
𝜀𝝂,0(Ω

±)
∥∥2

= 𝑐7
∥∥Φ∣∣ℍ1/2

𝜀𝝂,0(𝒮)
∥∥2 − 𝑐8

∥∥V(V−1)
−1Φ

∣∣ℍ1/2
𝜀𝝂,0(Ω

±)
∥∥2

≥ 𝑐0
∥∥Φ∣∣ℍ1/2

𝜀𝝂,0(𝒮)
∥∥2 − 𝑐1

∥∥Φ∣∣𝕃2,𝜀𝝂,0(𝒮)∥∥2
for Φ ∈ ℍ

1/2
𝜀𝝂,0(𝒮). Thus the operator (4.3) is coercive and, therefore, is Fredholm

with the index zero. Moreover, it is invertible since it has trivial kernel. Indeed, for
Im𝜔 ∕= 0 equating in (4.14) the imaginary part to 0 we get that (𝒫±1Φ,Φ)𝒮 = 0,
which implies

0 = (𝜀𝑼̃ , 𝑼̃)Ω± ≥ 𝑐
∥∥𝑼̃ ∣∣𝕃2(Ω±)

∥∥2 =⇒ 𝑼̃ ≡ 0 in Ω±.

Therefore 𝛾±𝒮 𝑼̃ = Φ ≡ 0 on 𝒮.
If 𝜔 = 𝑖𝛽 then 𝒫± is positive

Re (𝒫±Φ,Φ)𝒮 = (𝒫±Φ,Φ)𝒮 = 𝒂𝜀,𝜇(𝑼̃ , 𝑼̃)Ω± + 𝛽2(𝜀𝑼̃ , 𝑼̃)Ω± > 0

if 𝑼̃ ∕= 0 in Ω± (cf. (4.14)) and, therefore, Φ ∕= 0 on 𝒮; moreover, 𝒫± is coercive

(𝒫±Φ,Φ)𝒮 = Re (𝒫±Φ,Φ)𝒮 ≥ 𝑐0
∥∥Φ∣∣ℍ1/2

𝜀𝝂,0(𝒮)
∥∥2 − 𝑐1

∥∥Φ∣∣𝕃2,𝜀𝝂,0(𝒮)∥∥2
for all Φ ∈ ℍ

1/2
𝜀𝝂,0(𝒮) (cf. (4.4)). The positive definiteness (4.5) is a consequence of

these two properties (see [18, Exercise 2.17]). □

Corollary 4.2. The operators 𝒫± are invertible in the following space settings

𝒫± : ℍ𝑟𝜀𝝂,0(𝒮) → ℍ𝑟−1𝜀𝝂,0(𝒮), ∀𝑟 ∈ ℝ. (4.8)

Corollary 4.3. The inverse operators

𝒫−1
± : ℍ

−1/2
𝜀𝝂,0 (𝒮) → ℍ

1/2
𝜀𝝂,0(𝒮), (4.9)

which exist due to Lemma 4.1, are coercive

Re (𝒫−1
± Ψ,Ψ)𝒮 ≥ 𝑚0

∥∥Ψ∣∣ℍ−1/2
𝜀𝝂,0 (𝒮)

∥∥2 − 𝑚1

∥∥Ψ∣∣ℍ−1
𝜀𝝂,0(𝒮)

∥∥2 (4.10)

for some positive constants 𝑚0, 𝑚1 and all Ψ ∈ ℍ
−1/2
𝜀𝝂,0 (𝒮).
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If the frequency is purely imaginary 𝜔 = 𝑖𝛽 ∕= 0, 𝛽 ∈ ℝ, the operators 𝒫−1
±

are positive definite

(𝒫−1
± Ψ,Ψ)𝒮 ≥ 𝑀±

∥∥Ψ∣∣ℍ−1/2
𝜀𝝂,0 (𝒮)

∥∥
for some positive constants 𝑀±.

Proof. Follows from Lemma 4.1 if we introduce Φ = 𝒫−1
± Ψ and recall, that due

to the invertibility (4.3) the estimates

1

𝑚

∥∥Ψ∣∣ℍ−1/2
𝜀𝝂,0 (𝒮)

∥∥2 ⩽ ∥∥𝒫−1
± Ψ

∣∣ℍ1/2
𝜀𝝂,0(𝒮)

∥∥ ⩽ 𝑚
∥∥Ψ∣∣ℍ−1/2

𝜀𝝂,0 (𝒮)
∥∥

hold for some 𝑚 > 0. □

Now let us prove analogues of Lemma 4.1 and Corollaries 4.2, 4.3 for a sub-
surface 𝒞 ⊂ 𝒮 with the boundary ∂𝒞 ∕= ∅.
Lemma 4.4. For an open subsurface 𝒞 ⊂ 𝒮 the operators

𝑟𝒞𝒫± : ℍ̃
1/2
𝜀𝝂,0(𝒞) → ℍ

−1/2
𝜀𝝂,0 (𝒞) (4.11)

are coercive with suitable positive constants 𝑐0, 𝑐1

Re (𝑟𝒞𝒫±Φ,Φ)𝒞 ≥ 𝑐0
∥∥Φ∣∣ℍ̃1/2

𝜀𝝂,0(𝒞)
∥∥2 − 𝑐1

∥∥Φ∣∣𝕃2,𝜀𝝂,0(𝒞)∥∥2 (4.12)

for Φ ∈ ℍ̃
1/2
𝜀𝝂,0(𝒞). Moreover, the operators have the zero kernels Ker 𝑟𝒞𝒫± = {0}

and are invertible.

If the frequency is purely imaginary 𝜔 = 𝑖𝛽 ∕= 0, 𝛽 ∈ ℝ, the operators 𝑟𝒞𝒫±
are positive definite with a suitable positive constants 𝑀±:

(𝑟𝒞𝒫±Φ,Φ)𝒞 ≥ 𝑀±
∥∥Φ∣∣ℍ̃1/2

𝜀𝝂,0(𝒞)
∥∥. (4.13)

Proof. Using the continuity of the embedding ℍ̃
1/2
𝜀𝝂,0(𝒞) ⊂ ℍ

1/2
𝜀𝝂,0(𝒮) and the proved

coercivity (4.4), we proceed as follows:

Re (𝑟𝒞𝒫±Φ,Φ)𝒞 = Re (𝒫±Φ,Φ)𝒮 ≥ 𝑐0
∥∥Φ∣∣ℍ1/2

𝜀𝝂,0(𝒮)
∥∥2

= 𝑐0
∥∥Φ∣∣ℍ̃1/2

𝜀𝝂,0(𝒞)
∥∥2 − 𝑐1

∥∥Φ∣∣𝕃2,𝜀𝝂,0(𝒞)∥∥2
for all Φ ∈ ℍ̃

1/2
𝜀𝝂,0(𝒞). The coercivity (4.12) is proved. Since 𝑟𝒞𝒫± is coercive, it is

Fredholm and has vanishing index, i.e., Ind (𝑟𝒞𝒫±) = 0.

Thus, to prove the invertibility we just need to check, that the kernel of the
operator in (4.11) is trivial, i.e., Ker 𝑟𝒞𝒫± = {0}.

For this purpose we apply the equality

(𝒫±𝑼 ,𝑼)𝒮 = (𝜇−1curl𝑭 , curl𝑭 )Ω± + 𝑠 (div(𝜀𝑭 ), div(𝜀𝑭 ))Ω±

− 𝜔2(𝜀𝑭 ,𝑭 )Ω±𝑭 = V(V−1)
−1𝑼 , 𝛾𝒮𝑭 = 𝑼 ∈ ℍ

1/2
𝜀𝝂,0(𝒮),
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proved for a surface 𝒮 without boundary. By introducing in the above equality the

vector 𝑼 = Φ ∈ ℍ̃
1/2
𝜀𝝂,0(𝒞) ⊂ ℍ

1/2
𝜀𝝂,0(𝒮), we get

(𝑟𝒞𝒫±Φ,Φ)𝒮 = (𝒫±Φ,Φ)𝒮 = (𝜇−1curl𝑭 , curl𝑭 )Ω±

+ 𝑠 (div(𝜀𝑭 ), div(𝜀𝑭 ))Ω± − 𝜔2(𝜀𝑭 ,𝑭 )Ω±
(4.14)

for all 𝑭 = V(V−1)
−1Φ. Since 𝜔 is complex valued, from (4.14) follows that the

equality 𝑟𝒞𝒫±Φ = 0 implies 𝑭 ≡ 0. Then,

(V−1)
−1Φ = 𝛾𝒮−

(
𝔑(𝐷,𝝂)𝑽 (V−1)

−1Φ)− 𝛾𝒮+

(
𝔑(𝐷,𝝂)𝑽 (V−1)

−1Φ) = 0,

which implies, due to the invertibility of 𝑽 −1 (see (3.34)), that Φ = 0 and the
kernel is trivial Ker𝑽 −1 = {0}. Due to the vanishing index Ind𝑽 −1 = 0 this
implies trivial co-kernel

dim Coker𝑽 −1 = dim Ker (𝑽 −1)∗ = 0

and provides the invertibility of the operator 𝑟𝒞𝒫± in (4.11).
The positive definiteness (4.13) follows from the positive definiteness (4.5) as

in the case of coerciveness. □

Corollary 4.5. The operators 𝑟𝒞𝒫± are invertible in the following space setting

𝑟𝒞𝒫± : ℍ̃
𝑟+ 1

2
𝜀𝝂,0(𝒞) → ℍ

𝑟− 1
2

𝜀𝝂,0 (𝒞), −1
2

< 𝑟 <
1

2
. (4.15)

Proof. For a similar proof we refer to the concluding part of the proof of Lemma
3.12. □

5. Proofs of the basic results

Let us look for a solution to the screen-type problem (2.4) in the form

𝑼(𝑥) =

{
V(V−1)

−1Φ+(𝑥) 𝑥 ∈ Ω+,

V(V−1)
−1Φ−(𝑥) 𝑥 ∈ Ω− for some Φ± ∈ ℍ

1/2
𝜀𝝂,0(𝒮).

(5.1)

Then 𝑼 satisfies the basic differential equation from BVP (2.4) in the domains
Ω± (cf. (3.9)) and, due to the mapping properties of V we have 𝑼 ∈ ℍ1

𝜀𝝂,0(ℝ
3
𝒞).

Further we need to fulfil the boundary conditions (cf. (2.2))

𝑟𝒞𝛾𝒮± (𝜋𝜀𝝂𝔑(𝐷,𝝂)𝑼) = 𝒈± on 𝒞. (5.2)

Due to the Plemelji formulae (3.15) equation (5.2) acquires the form

𝑟𝒞𝒫±Φ± = 𝒈± on 𝒞, (5.3)

where 𝒫± are the modified Poincaré-Steklov pseudodifferential operators of order
1, defined in (4.2).

Let ℓ𝒈+ ∈ ℍ
−1/2
𝜀𝝂,0 (𝒮) be a fixed extension of the function 𝒈+ ∈ ℍ

−1/2
𝜀𝝂,0 (𝒞) up to

the entire closed surface 𝒮 and let ℓ0(𝒈+−𝒈−) ∈ ℍ
−1/2
𝜀𝝂,0 (𝒮) be an extension by zero
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of the function 𝒈+−𝒈− ∈ 𝑟𝒞ℍ̃
−1/2
𝜀𝝂,0 (𝒞). Then ℓ𝒈− := ℓ𝒈+−ℓ0(𝒈

+−𝒈−) ∈ ℍ
−1/2
𝜀𝝂,0 (𝒮)

is an extension of the function 𝒈− ∈ ℍ
−1/2
𝜀𝝂,0 (𝒞), i.e.,

𝑟𝒞ℓ𝒈− = 𝒈+ − (𝒈+ − 𝒈−) = 𝒈− and 𝑟𝒞𝑐ℓ𝒈+ = 𝑟𝒞𝑐ℓ𝒈−. (5.4)

Using (5.3) we write the boundary conditions on 𝒮 as follows

𝒫±Φ± = ∓(ℓ𝒈± +Ψ±),

where the functions Ψ± ∈ ℍ̃
−1/2
𝜀𝝂,0 (𝒞𝑐) are unknown.

Due to Lemma 4.1 we then obtain

Φ± = ∓𝒫−1
± ℓ𝒈± ∓ 𝒫−1

± Ψ
±. (5.5)

From the ellipticity of the differential operator 𝑨(𝐷) follows that a gener-
alized solution to the equation 𝑨(𝐷)𝑬 = 0 is analytic in ℝ3

𝒞 and, therefore, the
following continuity conditions{

𝑟𝒞𝑐𝛾𝒮+𝑼 − 𝑟𝒞𝑐𝛾𝒮−𝑼 = 0 ,

𝑟𝒞𝑐𝛾𝒮+ (𝔑(𝐷,𝝂)𝑼)− 𝑟𝒞𝑐𝛾𝒮− (𝔑(𝐷,𝝂)𝑼) = 0
(5.6)

hold across the complementary surface 𝒞𝑐.
Then taking into the account (5.5) and (5.4) we obtain the following system

of equations with respect of the unknown functions Ψ±:{
𝑟𝒞𝑐𝒫−1

+ Ψ
+ + 𝑟𝒞𝑐𝒫−1

− Ψ
− = −𝑟𝒞𝑐𝒫−1

+ ℓ𝒈+ − 𝑟𝒞𝑐𝒫−1
− ℓ𝒈−

𝑟𝒞𝑐Ψ+ − 𝑟𝒞𝑐Ψ− = 0.
(5.7)

The last equation in (5.7) implies

Ψ := Ψ+ = Ψ− ∈ ℍ̃
−1/2
𝜀𝝂,0 (𝒞𝑐)

and we obtain

𝑟𝒞𝑐𝔅(𝐷)Ψ = 𝑭 , (5.8)

where

𝔅(𝐷) := 𝒫−1
+ + 𝒫−1

− , (5.9)

and

𝑭 := −𝑟𝒞𝑐𝒫−1
+ ℓ𝒈+ − 𝑟𝒞𝑐𝒫−1

− ℓ𝒈− = −𝑟𝒞𝑐𝔅(𝐷)ℓ𝒈+ + 𝑟𝒞𝑐𝒫−1
− ℓ0(𝒈

+ − 𝒈−).

What we obtain is an equivalent pseudodifferential operator to the BVP (2.4)
(see the forthcoming Theorem 5.3).

Lemma 5.1. The operator

𝑟𝒞𝑐𝔅(𝐷) : ℍ̃
−1/2
𝜀𝝂,0 (𝒞𝑐) → ℍ

1/2
𝜀𝝂,0(𝒞𝑐) (5.10)

is coercive

Re (𝑟𝒞𝑐𝔅(𝐷)Ψ,Ψ)𝒞𝑐 ≥ 𝐶1

∥∥Ψ∣∣ℍ̃−1/2
𝜀𝝂,0 (𝒞𝑐)

∥∥− 𝐶2

∥∥Ψ∣∣ℍ̃−1
𝜀𝝂,0(𝒞𝑐)

∥∥, ∀Ψ ∈ ℍ̃
−1/2
𝜀𝝂,0 (𝒞𝑐)
(5.11)

and invertible.
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Moreover, if the frequency is purely imaginary 𝜔 = 𝑖𝛽 ∕= 0, 𝛽 ∈ ℝ, the
operator 𝔅(𝐷) is positive definite and the inequality

(𝑟𝒞𝑐𝔅(𝐷)Ψ,Ψ)𝒞𝑐 ≥ 𝑀0

∥∥Ψ∣∣ℍ̃−1/2
𝜀𝝂,0 (𝒞𝑐)

∥∥, ∀Ψ ∈ ℍ̃
−1/2
𝜀𝝂,0 (𝒞𝑐) (5.12)

holds for some constant 𝑀0 > 0.

Proof. Similarly as in Lemma 4.4 the coercivity (5.11) and the positive definite-
ness (5.12) of the operator 𝑟𝒞𝑐𝔅(𝐷) we obtain from corresponding results for the
“non-restricted” operator 𝔅(𝐷) in (5.9), which follow immediately from similar
properties of the summand 𝒫−1

± , established in Corollary 4.3.
From the coercivity (5.11) it follows that the operator in (5.10) is Fredholm

and has trivial index, i.e., Ind 𝑟𝒞𝑐𝔅(𝐷) = 0. Then to prove that the operator
𝑟𝒞𝑐𝔅(𝐷) in (5.10) is invertible, it suffices to show that the kernel is trivial, i.e.,
Ker 𝑟𝒞𝑐𝔅(𝐷) = {0}. The latter follows immediately for 𝜔 = 𝑖𝛽 from the positive
definiteness (5.12).

By introducing into the Green formula (2.1) the values

𝑼± = V(V−1)
−1Φ±, Φ± = 𝒫−1

± Ψ, Ψ ∈ ℍ̃
−1/2
𝜀𝝂,0 (𝒞𝑐)

and summing them up, we get

(Ψ,𝔅(𝐷)Ψ)𝒮 = 𝒂𝜀,𝜇(𝑼
+,𝑼+)Ω+ + 𝒂𝜀,𝜇(𝑼

−,𝑼−)Ω−

− 𝜔2(𝜀𝑼+,𝑼+)Ω+ − 𝜔2(𝜀𝑼−,𝑼−)Ω− .
(5.13)

Since Im𝜔 ∕= 0, by equating in (5.13) the real and the imaginary parts to 0 we get
that (Ψ,𝔅(𝐷)Ψ)𝒮 = 0 implies

0 = (𝜀𝑼±,𝑼±)Ω± ≥ 𝑐
∥∥𝑼±∣∣𝕃2(Ω±)

∥∥2 =⇒ 𝑼± ≡ 0 in Ω±.

Thus 𝛾±𝒮 𝑼± = Φ± ≡ 0 on 𝒮 and therefore 𝒫±Φ± = Ψ ≡ 0 on 𝒮. □

Corollary 5.2. The operator 𝑟𝒞𝑐𝔅(𝐷) is invertible in the following space setting

𝑟𝒞𝑐𝔅(𝐷) : ℍ̃
𝑟− 1

2
𝜀𝝂,0 (𝒞𝑐) → ℍ

𝑟+ 1
2

𝜀𝝂,0 (𝒞𝑐), −1
2

< 𝑟 <
1

2
.

For similar arguments we refer to the concluding part of the proof of Lemma
3.12. The next theorem is the main result of this section.

Theorem 5.3. Let 0 ≤ 𝑟 < 1
2 and the conditions

𝒈± ∈ ℍ
𝑟−1/2
𝜀𝝂,0 (𝒞), 𝒈+ − 𝒈− ∈ 𝑟𝒞ℍ̃

𝑟−1/2
𝜀𝝂,0 (𝒞).

hold. Let ℓ𝒈+ ∈ ℍ
𝑟−1/2
𝜀𝝂,0 (𝒞) be some fixed extension of the data functions 𝒈+ up to

the entire closed surface 𝒮, while ℓ0(𝒈
+−𝒈−) ∈ ℍ

𝑟−1/2
𝜀𝝂,0 (𝒮) is an extension by zero

of the function 𝒈+ − 𝒈−.
The elliptic BVP (2.4) has a unique solution 𝑼 ∈ ℍ𝑟+1𝜀𝝂,0(ℝ

3
𝒞) of the form

𝑼 =

{ −V𝒆(V𝒆
−1)

−1 [𝒫−1
+ ℓ𝒈+ + 𝒫−1

+ Ψ
]

in Ω+,

V𝒆(V𝒆
−1)

−1 [𝒫−1
− (ℓ𝒈+ − ℓ0(𝒈

+ − 𝒈−)) + 𝒫−1
− Ψ

]
in Ω−,

(5.14)
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where Ψ ∈ ℍ̃
𝑟− 1

2
𝜀𝝂,0 (𝒞𝑐) is a unique solution to the system

𝑟𝒞𝑐𝔅(𝐷)Ψ = 𝑭 on 𝒞𝑐,
𝑭 := 𝑟𝒞𝑐(𝒫−)−1ℓ0(𝒈+ − 𝒈−)− 𝑟𝒞𝑐𝔅(𝐷)ℓ𝒈+, 𝑭 ∈ ℍ

𝑟+ 1
2

𝜀𝝂,0 (𝒞𝑐).
(5.15)

The pseudodifferential operator of order −1
𝑟𝒞𝑐𝔅(𝐷) = 𝑟𝒞𝑐

[𝒫−1
+ + 𝒫−1

−
]
: ℍ̃

𝑟− 1
2

𝜀𝝂,0 (𝒞𝑐) → ℍ
𝑟+ 1

2
𝜀𝝂,0 (𝒞𝑐) (5.16)

is invertible.

Proof. The proof follows directly from Lemma 5.1 and Corollary 5.2. □
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Functions of Noncommuting Operators
in an Asymptotic Problem
for a 2D Wave Equation with Variable Velocity
and Localized Right-hand Side
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Abstract. In the present paper, we use the theory of functions of noncommut-
ing operators, also known as noncommutative analysis (which can be viewed
as a far-reaching generalization of pseudodifferential operator calculus), to
solve an asymptotic problem for a partial differential equation and show how,
starting from general constructions and operator formulas that seem to be
rather abstract from the viewpoint of differential equations, one can end up
with very specific, easy-to-evaluate expressions for the solution, useful, e.g.,
in the tsunami wave problem.
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analysis, Maslov canonical operator.

1. Introduction

In the present paper, we use the theory of functions of noncommuting operators
[1–3], aka noncommutative analysis (which can be viewed as a far-reaching general-
ization of pseudodifferential operator calculus), to solve an asymptotic problem for
a partial differential equation and show how, starting from general constructions
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and operator formulas that seem to be rather abstract from the viewpoint of dif-
ferential equations, one can end up with very specific, easy-to-evaluate expressions
for the solution, useful, e.g., in the tsunami wave problem.

We consider the Cauchy problem with zero initial data for a 2D wave equa-
tion with variable velocity and with right-hand side localized near the origin in
space and decaying in time. One physical interpretation of this problem is that
it describes, in the linear approximation, the propagation of tsunami waves gen-
erated by local vertical displacements of the ocean bottom (see [4–9, 17–19] and
also [11–16] and the bibliography therein). Normally, the diameter of the region
where these displacements occur (some tens to a hundred of kilometers) is much
smaller than the distance traveled by the waves (thousands of kilometers), and
their ratio, 𝜇, can serve as a small parameter. Accordingly, we are interested in
the asymptotics of the solution as 𝜇 → 0. In the simplest piston model of tsunami
generation, the bottom displacement occurs instantaneously at 𝑡 = 0. This cor-
responds to a right-hand side of the form 𝛿′(𝑡)𝑣(𝑥), where 𝛿(𝑡) is the Dirac delta
function, and the problem is immediately equivalent, via Duhamel’s principle, to
the Cauchy problem for the homogeneous wave equation with initial data 𝑣(𝑥)
for the unknown function itself and zero initial data for its 𝑡-derivative. Fairly
explicit asymptotic solution formulas suitable for easy implementation inWolfram
Mathematica [27] were constructed and analyzed for the latter problem in [11–16]
on the basis of a generalization of Maslov’s canonical operator [1, 20]. Now as-
sume we wish to take into account the fact that the ocean bottom displacement
evolves in time rather than happens instantaneously. Then it is natural to consider
a right-hand side of the form 𝑔′(𝑡)𝑣(𝑥), where 𝑔(𝑡) is some smooth approximation
to the delta function. An analysis shows that the solution can be represented as
the sum of two parts, a propagating part, which travels along the characteristics,
and a transient part, which is localized in the vicinity of the origin and decays
in time. The propagating part can further be represented as the solution of the
Cauchy problem for the homogeneous wave equation with initial data obtained
from 𝑣(𝑥) by application of certain functions 𝑓(𝐿) of the spatial part 𝐿 of the
wave operator, where the corresponding symbols 𝑓(𝜉) are given by simple for-
mulas expressing them via the Fourier transform of 𝑔(𝑡). These initial data, also
localized near the origin, will be referred to as the equivalent source functions. The
transient part of the solution is given by a formula similar to those for the equiv-
alent source functions with the only difference that the function 𝑓(𝜉) additionally
depends on time as a parameter. The transient part is apparently not so important
in tsunami wave analysis, but nevertheless it might be useful from the viewpoint
of satellite registration of tsunami waves [17–19]. Since, as was mentioned above,
the asymptotic formulas for the solution of the Cauchy problem with localized
initial data for the homogeneous wave equation are already known from [11–16],
we see that the only remaining thing is to compute 𝑓(𝐿)𝑣 for all these functions
𝑓(𝜉). It is here that noncommutative analysis comes fully into play. Note that
𝐿 is an operator with variable coefficients, and so computing the function 𝑓(𝐿)
efficiently may prove quite a challenging task. However, all we actually need is
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the asymptotics of 𝑓(𝐿)𝑣, and methods of noncommutative analysis permit one to
prove that 𝑓(𝐿)𝑣 = 𝑓(𝐿0)𝑣 plus an asymptotically small remainder, where 𝐿0 is
obtained from 𝐿 by freezing the coefficients at the origin. Now computing 𝑓(𝐿0)𝑣
is a breeze, because 𝑓(𝐿0) is conjugate by the Fourier transform to the operator
of multiplication by the function 𝑓(𝜎𝐿0(𝑝)), where 𝜎𝐿0(𝑝) is the symbol of 𝐿0.

The one-dimensional counterpart of the problem studied in the present paper
was considered in [21]. In the two-dimensional case, the results were announced
in [22], where the proofs were partly only sketched and partly absent altogether.
Here we develop and refine these results and give complete proofs. Finally, note
that we deal with the setting in which the wave propagation velocity is assumed
to vanish nowhere. The case it which it vanishes (as it happens on the coastline
in the tsunami run-up problem) is much more complicated. The asymptotics of
solutions of such degenerate problems in some special cases was considered in the
spirit of the approach of [11–16] in [23–25] (see also references therein); in the
present paper, we restrict ourselves to wave propagation in open ocean.

The outline of the paper is as follows. In Section 2, we give a detailed state-
ment of the mathematical problem and write out well-known formulas expressing
the solution in operator form. Using these formulas, we split the solution into the
sum of the propagating and transient parts. Section 3 presents simple formulas
for the asymptotics of the solution. The proofs of the theorems stated in this sec-
tion depend on the results presented in Section 4, which is the most important
part of the paper and where the asymptotics of the equivalent source functions
and the transient part of the solution are computed with the use of the noncom-
mutative analysis machinery. Finally, Section 5 provides two simple examples; all
computations and visualizations in these examples have been done with Wolfram
Mathematica.

2. Exact solution

2.1. Statement of the problem

Consider the Cauchy problem for the wave equation

∂2𝜂

∂𝑡2
− ∂

∂𝑥1

(
𝑐2(𝑥)

∂𝜂

∂𝑥1

)
− ∂

∂𝑥2

(
𝑐2(𝑥)

∂𝜂

∂𝑥2

)
= 𝑄, 𝑡 ≥ 0, (2.1)

with the initial conditions

𝜂∣𝑡=0 = 0, 𝜂𝑡∣𝑡=0 = 0, (2.2)

where 𝑥 = (𝑥1, 𝑥2) ∈ R2, 𝜂 = 𝜂(𝑥, 𝑡) is the unknown function, 𝑐(𝑥) is an everywhere
positive smooth function stabilizing at infinity,1 and the right-hand side 𝑄 =
𝑄(𝑥, 𝑡) depends on two parameters 𝜆, 𝜇 > 0 and has the form

𝑄(𝑥, 𝑡) = 𝜆2𝑔′0(𝜆𝑡)𝑉
(

𝑥

𝜇

)
, where 𝑔′0(𝜏) =

𝑑𝑔0(𝜏)

𝑑𝜏
, (2.3)

1That is, 𝑐(𝑥) = const > 0 for sufficiently large ∣𝑥∣.
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with some smooth real functions 𝑉 (𝑦), 𝑦 ∈ R2, and 𝑔0(𝜏), 𝜏 ∈ [0,∞), such that

∣𝑉 (𝛼)(𝑦)∣ ≤ 𝐶𝛼(1 + ∣𝑦∣)−∣𝛼∣−ϰ, ∣𝛼∣ = 0, 1, 2, . . . , (2.4)

𝑔0(0) = 0,

∫ ∞

0

𝑔0(𝜏) 𝑑𝜏 = 1, ∣𝑔(𝑘)0 (𝜏)∣ ≤ 𝐶𝑘𝑒
−𝜈𝜏 , 𝑘 = 0, 1, 2, . . . , (2.5)

for some ϰ > 1, 𝜈 > 0, and positive constants 𝐶𝛼 and 𝐶𝑘.

Remark 2.1. One can also consider the case in which 𝑔0(𝜏) decays as some (suf-
ficiently large) negative power of 𝜏 as 𝜏 → ∞. In this case, the estimates are
somewhat more awkward, and we restrict ourselves to the case of the physically
natural exponential decay (2.5) for the sake of clarity.

Our aim is to find the asymptotics as 𝜇 → 0 of the solution of problem (2.1)
on an arbitrary finite time interval uniformly with respect to 𝜆 in the region

𝜆𝜇 > const > 0. (2.6)

This will be done in Sections 3 and 4, and in the present section we deal with the
exact solution of the problem.

2.2. Physical interpretation and examples of right-hand sides

First, speaking in terms of the physical interpretation given in the introduction,
let us explain the meaning of the parameters 𝜆 and 𝜇 and condition (2.6). The
right-hand side 𝑄(𝑥, 𝑡) describes the time evolution (the factor 𝜆2𝑔′0(𝜆𝑡)) and the
spatial shape (the factor 𝑉 (𝑥/𝜇)) of the perturbation (the tsunami source). In view
of (2.5), 𝜆 characterizes the decay rate of the perturbation, so that 1/𝜆 ∼ 𝑡0, where
𝑡0 is the mean lifetime of the perturbation. The small parameter 𝜇 characterizes
the source size 𝑟0, 𝜇 ∼ 𝑟0. We see that the product 𝜆𝜇 = 𝑟0/𝑡0 has the dimension
of velocity and rewrite condition (2.6) in the form

𝑐0
𝜆𝜇

≡ 𝑐0𝑡0
𝑟0

≤ 𝜔0, (2.7)

where 𝑐0 = 𝑐(0), the wave propagation velocity at the origin, is taken to represent
the typical wave propagation velocity in the problem and 𝜔0 is some dimensionless
constant. This has a very clear meaning: the waves excited by the perturbation
cannot travel too far before the perturbation dies out; they only cover a distance
(𝑐0𝑡0) of the same order of magnitude as the diameter 𝑟0 of the perturbation region.
We introduce the ratio

𝜔 =
𝑐0
𝜆𝜇

, (2.8)

so that condition (2.7) (and hence (2.6)) becomes

𝜔 < 𝜔0. (2.9)

Mathematically, condition (2.9) means that the parameter 𝜆 is large (at least of
the order of 𝜇−1) as 𝜇 → 0. Note that, in view of the first two conditions in (2.5),
𝜆𝑔0(𝜆𝑡) → 𝛿(𝑡) and 𝜆2𝑔′0(𝜆𝑡) → 𝛿′(𝑡) as 𝜆 → ∞.
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In what follows, the dependence on the parameters 𝜆 and 𝜇 is sometimes not
immediately important to the argument, and in such cases we often “hide” these
parameters by using the notation

𝑔(𝜏) = 𝜆𝑔0(𝜆𝜏), 𝑣(𝑥) = 𝑉

(
𝑥

𝜇

)
, so that 𝑄(𝑥, 𝑡) = 𝑔′(𝑡)𝑣(𝑥). (2.10)

Next, let us give specific examples of right-hand sides 𝑄(𝑥, 𝑡). In practice,
the actual ocean bottom displacement is known neither in much detail nor very
precisely, because the corresponding measurements are impractical or impossible
(cf. [17–19]). This results in certain freedom, which can be turned into an ad-
vantage. Namely, when constructing the function 𝑄(𝑥, 𝑡) = 𝑔′(𝑡)𝑣(𝑥) to be used
in the analytical-numerical simulation according to the model (2.1), one should
take ansatzes that, on the one hand, fit the general information available about
the source shape and evolution and, on the other hand, can be handled efficiently
in the computations. (The latter includes the requirement that these functions,
as well as their Fourier transforms, be given by closed-form expressions, which
permits one to reduce the amount of numerical computations in favor of the less
time-consuming analytical transformations.)

A useful class of functions 𝑉 (𝑦) satisfying (2.4) is described by the expres-
sion [10, 14, 16], generalizing [5, 8, 9],

𝑉 (𝑦) = 𝐴

(
1 +

(
𝑦1
𝑏1

)2

+

(
𝑦2
𝑏2

)2)−3/2
, (2.11)

where 𝐴, 𝑏1, and 𝑏2 are real parameters. The Fourier transform of this function is
remarkably simple,

𝑉 (𝑝) = 𝐴𝑏1𝑏2𝑒
−
√
𝑏21𝑝

2
1+𝑏

2
2𝑝

2
2 . (2.12)

One can further apply a differential operator

𝑃 = 𝑃

(
∂

∂𝑦1
,

∂

∂𝑦2

)
with constant coefficients to the function 𝑉 and then rotate the coordinate system
by some angle 𝜃, thus obtaining a broad variety of functions of the form

𝑉𝑃,𝜃(𝑦) = [𝑃𝑉 ](𝑇 (𝜃)𝑦), 𝑇 (𝜃) ≡
(
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

)
,

satisfying (2.4). Such functions model elliptic-shaped sources of various eccentricity
and various direction of axes with a wavy relief depending on the differential

operator 𝑃 (see [11, 15]). Figure 1 shows the graph of 𝑉 (𝑦) rotated by an angle of
𝜋/10 and of its Fourier transform.

Let us also give two examples of functions 𝑔0(𝑡) satisfying (2.5),

(a) 𝑔0(𝜏) = 𝑎𝑒−𝜏 (sin(𝛼𝜏 + 𝜙0)− sin𝜙0), (b) 𝑔0(𝜏) = 𝑒−𝜏𝑃 (𝜏), (2.13)

where 𝛼 > 0 and 𝜙 are real parameters, 𝑎 = (𝛼2 + 1)/(𝛼 cos𝜙0 − 𝛼2 sin𝜙0) is a
normalizing factor, and 𝑃 (𝜏) =

∑𝑛
𝑘=1(𝑘!)

−1𝑃𝑘𝜏𝑘 is a polynomial of degree 𝑛 with∑𝑛
𝑘=1 𝑃𝑘 = 1 (see Figure 2).
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Figure 1. The function 𝑉 (𝑦) with 𝑏1 = 1 and 𝑏2 = 4 rotated by the

angle 𝜃 = 𝜋/10 (left) and its Fourier transform 𝑉 (𝑝) (right).
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Figure 2. Examples of 𝑔(𝑡) = 𝜆𝑔0(𝜆𝑡) for 𝜆 = 1, 2, 3, 4: 𝑔0(𝜏) =
𝑒−𝜏 (sin(𝛼𝜏 + 𝜑0) − sin𝜑0) (left diagram); 𝑔0(𝜏) = 𝑒−𝜏 (0.2𝜏 + 0.4𝜏2)
(right diagram).

2.3. Operator solution formulas and energy estimates

We denote the spatial part of the wave operator in (2.1) by 𝐿; thus,

𝐿𝑢 = − ∂

∂𝑥1

(
𝑐2(𝑥)

∂𝑢

∂𝑥1

)
− ∂

∂𝑥2

(
𝑐2(𝑥)

∂𝑢

∂𝑥2

)
≡ −⟨∇, 𝑐2(𝑥)∇⟩𝑢. (2.14)

The operator (2.14) (with domain 𝑊 2
2 (R

2)) is a nonnegative self-adjoint operator

on 𝐿2(R2). Let 𝐷 =
√

𝐿 be the positive square root of 𝐿. Problem (2.1) becomes

𝜂′′(𝑡) +𝐷2𝜂(𝑡) = 𝑔′(𝑡)𝑣, 𝜂∣𝑡=0 = 𝜂𝑡∣𝑡=0 = 0. (2.15)

Duhamel’s formula represents the solution of (2.15) as the integral

𝜂(𝑡) =

∫ 𝑡
0

𝑤(𝑡, 𝜏) 𝑑𝜏, (2.16)
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where 𝑤(𝑡, 𝜏) is the solution of the problem2

𝑤′′
𝑡𝑡(𝑡, 𝜏) +𝐷2𝑤(𝑡, 𝜏) = 0, 𝑤∣𝑡=𝜏 = 𝑔(𝜏)𝑣, 𝑤𝑡∣𝑡=𝜏 = 0. (2.17)

Indeed, the function (2.16) satisfies (2.15), because

𝜂′′(𝑡) +𝐷2𝜂(𝑡) =

∫ 𝑡
0

(
𝑤′′
𝑡𝑡(𝑡, 𝜏) +𝐷2𝑤(𝑡, 𝜏)

)
𝑑𝜏 +

𝑑

𝑑𝑡

(
𝑤(𝑡, 𝑡)

)
+ 𝑤′

𝑡(𝑡, 𝑡)

= 𝑔′(𝑡)𝑣, 𝜂(0) = 0, 𝜂′(0) = 𝑔(0)𝑣 = 0

in view of (2.5). Now we can use the general solution formula (e.g., see [26, p. 191])

𝑢(𝑡) = cos(𝐷𝑡)𝑢0 +𝐷−1 sin(𝐷𝑡)𝑢1 (2.18)

for the abstract hyperbolic Cauchy problem

𝑢′′(𝑡) +𝐷2𝑢(𝑡) = 0, 𝑢∣𝑡=0 = 𝑢0, 𝑢𝑡∣𝑡=0 = 𝑢1 (2.19)

and write

𝜂(𝑡) =

[∫ 𝑡
0

cos(𝐷(𝑡 − 𝜏))𝑔(𝜏) 𝑑 𝜏

]
𝑣 = Re

[∫ 𝑡
0

𝑒𝑖𝐷(𝑡−𝜏)𝑔(𝜏) 𝑑 𝜏

]
𝑣. (2.20)

Here we have used the fact that 𝑔(𝜏) is real valued; the real part of an operator 𝐴
is defined as usual by Re𝐴 = 1

2 (𝐴 + 𝐴∗). Formula (2.20) is the desired abstract
operator formula for the solution of problem (2.1).

Remark 2.2. Since the operator 𝐷 is self-adjoint, it follows that the expressions
cos(𝐷𝑡), sin(𝐷𝑡)/𝐷, and 𝑒𝑖𝐷𝑡, occurring in (2.18) and (2.20), are well defined in
the framework of functional calculus for self-adjoint operators as functions 𝑓(𝐷)
with bounded continuous symbols 𝑓(𝜉) = cos 𝜉𝑡, 𝑓(𝜉) = 𝜉−1 sin 𝜉𝑡, and 𝑓(𝜉) =
𝑒𝑖𝜉𝑡, respectively. Moreover, 𝑒𝑖𝐷𝑡 is none other than the strongly continuous group
of unitary operators generated by 𝐷, Re(𝑓(𝐷)) = (Re 𝑓)(𝐷), and, for “good”
functions 𝑓(𝜉), the operator 𝑓(𝐷) can be defined not only via the integral over the
spectral measure but also via the Fourier transform as

𝑓(𝐷)𝑢 =
1√
2𝜋

⟨𝑓(𝜏), 𝑒𝑖𝜏𝐷𝑢⟩, 𝑢 ∈ 𝐿2(R2),

where 𝑓 is the Fourier transform of 𝑓 and the angle brackets stand for the value

of the distribution 𝑓(𝜏) on the 𝐿2(R2)-valued function 𝑒𝑖𝜏𝐷𝑢.

Remark 2.3. The energy of the solution of the Cauchy problem (2.19) is defined
by the formula [26, p. 191]

ℰ [𝑢](𝑡) = 1

2

(∥𝑢′(𝑡)∥2 + ∥𝐷𝑢(𝑡)∥2) ≡ 1

2

(∥𝑢′(𝑡)∥2 + (𝑢(𝑡), 𝐿𝑢(𝑡))
)

(2.21)

2The standard Duhamel formula would give 𝑤∣𝑡=𝜏 = 0 and 𝑤𝑡∣𝑡=𝜏 = 𝑔′(𝜏)𝑣 in (2.17), but we
have made use of the special form of the right-hand side.
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(where ∥ ⋅ ∥ stands for the 𝐿2 norm and ( ⋅ , ⋅ ) for the 𝐿2 inner product) and is
conserved in the course of time. Hence, in view of (2.10) and the estimates (2.4),
the solution of problem (2.17) (with 𝜏 viewed as a parameter) satisfies

ℰ [𝑤](𝑡, 𝜏) = 𝑔2(𝜏)

2

∥∥𝐷(𝑉 (𝑥/𝜇))∥∥2 = 𝑔2(𝜏)

2𝜇2

∫
R2

∣∣∣∣𝑐(𝑥)∇𝑉

(
𝑥

𝜇

)∣∣∣∣2 𝑑𝑥1𝑑𝑥2
=

𝑔2(𝜏)

2

∫
R2

𝑐2(𝜇𝑦)∣∇𝑉 (𝑦)∣2 𝑑𝑦1𝑑𝑦2 = 𝜆2

2
𝑔20(𝜆𝜏)𝑐

2
0 ∥∇𝑉 ∥2 (1 +𝑂(𝜇))

as 𝜇 → 0, where 𝑐0 = 𝑐(0). Now it follows from (2.16) that, with some constant 𝐶,

ℰ [𝜂](𝑡) ≤
{∫ 𝑡

0

√
ℰ [𝑤](𝑡, 𝜏) 𝑑𝜏

}2

+
1

2
∥𝑤(𝑡, 𝑡)∥2

≤ 𝐶

{
𝜆

∫ 𝑡
0

∣𝑔0(𝜆𝜏)∣ 𝑑𝜏
}2

+
𝜇2𝜆2

2
𝑔20(𝜆𝑡) ∥𝑉 ∥2

≤ 𝐶

{∫ ∞

0

∣𝑔0(𝜏)∣ 𝑑𝜏
}2

+
𝜇2𝜆2

2
𝑔20(𝜆𝑡) ∥𝑉 ∥2

= 𝑂(1) +𝑂(𝜇2𝜆2𝑒−2𝜈𝜆𝑡) = 𝑂(1) +𝑂(𝜔−2𝑒−2𝜈𝜆𝑡);

i.e., the energy of the solution is uniformly bounded as 𝜇 → 0 for all 𝑡 > 𝜀 > 0.
(However, it may have a “spike” of the order of 𝜔−2 for 𝑡 ∼ 1/𝜆; of course, this
is only important if 𝜔 ≪ 1.) In other words, we have chosen a physically natural
normalization of the right-hand side of our problem.

Remark 2.4. For the inhomogeneous wave equation

𝑢′′(𝑡) +𝐷2𝑢(𝑡) = 𝐹 (𝑡), (2.22)

one has the energy identity

ℰ [𝑢](𝑡) = ℰ [𝑢](0) + Re
∫ 𝑡
0

(𝐹 (𝜏), 𝑢′(𝜏)) 𝑑𝜏,

which implies the well-known estimates3

∥𝑢(𝑡)∥𝑠+1 + ∥𝑢′(𝑡)∥𝑠 ≤ 𝐶(𝑡)
(∥𝑢(0)∥𝑠+1 + ∥𝑢′(0)∥𝑠 + sup

𝜏∈[0,𝑡]
∥𝐹 (𝜏)∥𝑠

)
, (2.23)

where ∥ ⋅ ∥𝑠 stands for the norm on the Sobolev space 𝐻𝑠 =𝑊 𝑠
2 (R

2); in particular,
∥ ⋅ ∥0 = ∥ ⋅ ∥. Of the estimates (2.23), the most important for us is the one with
𝑠 = 0 (corresponding to the sum of the energy integral and the 𝐿2 norm), in which
the main estimates for the norms of remainders in asymptotic formulas will be
obtained. However, occasionally our argument involves estimates with different 𝑠.

3Their derivation takes into account the fact that the norm ∥𝑢∥𝑠 is equivalent to the norm∥∥(1 + 𝐿)𝑠/2𝑢
∥∥ by virtue of the conditions imposed on the velocity 𝑐(𝑥).
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2.4. Solution splitting into propagating and transient components

Let us further transform formula (2.20) to reveal the structure of the solution and
represent it in a form suitable for subsequent computations. We have∫ 𝑡

0

𝑒𝑖𝐷(𝑡−𝜏)𝑔(𝜏) 𝑑 𝜏 =

∫ ∞

0

𝑒𝑖𝐷(𝑡−𝜏)𝑔(𝜏) 𝑑 𝜏 −
∫ ∞

𝑡

𝑒𝑖𝐷(𝑡−𝜏)𝑔(𝜏) 𝑑 𝜏

= 𝑒𝑖𝐷𝑡
∫ ∞

0

𝑒−𝑖𝐷𝜏𝑔(𝜏) 𝑑 𝜏 −
∫ ∞

0

𝑒−𝑖𝐷𝜏𝑔(𝜏 + 𝑡) 𝑑 𝜏.

(2.24)

Let 𝐻(𝜏) be the Heaviside step function (𝐻(𝜏) = 1 for 𝜏 ≥ 0 and 𝐻(𝜏) = 0 for
𝜏 < 0), and, for 𝑡 ≥ 0, let

𝐺(𝜉, 𝑡) =

∫ ∞

0

𝑒−𝑖𝜉𝜏𝑔(𝜏 + 𝑡) 𝑑𝜏 ≡
∫ ∞

−∞
𝑒−𝑖𝜉𝜏𝐻(𝜏)𝑔(𝜏 + 𝑡) 𝑑𝜏

be the Fourier transform of
√
2𝜋𝐻(𝜏)𝑔(𝜏 + 𝑡) with respect to the variable 𝜏 . (Note

that 𝐺(𝜉, 0) =
√
2𝜋𝑔(𝜉), where the function 𝑔(𝜏) is assumed to be extended by

zero for the negative values of 𝜏 .) Then formula (2.24) can be rewritten as∫ 𝑡
0

𝑒𝑖𝐷(𝑡−𝜏)𝑔(𝜏) 𝑑 𝜏 = 𝑒𝑖𝐷𝑡𝐺(𝐷, 0)− 𝐺(𝐷, 𝑡) =
√
2𝜋𝑒𝑖𝐷𝑡𝑔(𝐷)− 𝐺(𝐷, 𝑡),

and accordingly

𝜂(𝑡) = 𝜂prop(𝑡) + 𝜂trans(𝑡), (2.25)

where

𝜂prop(𝑡) =
√
2𝜋Re

(
𝑒𝑖𝐷𝑡𝑔(𝐷)

)
𝑣 (2.26)

≡
√
2𝜋 cos(𝐷𝑡)Re 𝑔(𝐷)𝑣 −

√
2𝜋 sin(𝐷𝑡) Im 𝑔(𝐷)𝑣,

𝜂trans(𝑡) = −Re(𝐺(𝐷, 𝑡))𝑣. (2.27)

The function 𝜂prop(𝑡) given by (2.26) is the solution of the Cauchy problem
for the homogeneous wave equation

𝑢′′(𝑡) +𝐷2𝑢(𝑡) = 0 (2.28)

with the initial data

𝑢0 =
√
2𝜋Re 𝑔(𝐷)𝑣, 𝑢1 = −

√
2𝜋 Im 𝑔(𝐷)𝐷𝑣. (2.29)

(This follows from the comparison of (2.26) with (2.18).) Hence this function will
be called the propagating component of the solution, and the initial data (2.29) for
𝜂prop(𝑡) will be called the equivalent source functions. We shall see in Section 3.3
that, exactly as one should expect, 𝜂prop(𝑡) propagates along the characteristics.

The function 𝜂trans(𝑡) given by (2.27) will be called the transient component of
the solution, because it exponentially decays as 𝜆𝑡 → ∞, as shown by the following
proposition. (We shall also see in Section 3.1 that 𝜂trans(𝑡) always remains localized
near the origin.)
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Proposition 2.5. As 𝜇 → 0, the propagating component satisfies the estimates

∥𝜂prop(𝑡)∥1 = 𝑂(1),
∥∥𝜂′prop(𝑡)∥∥ = 𝑂(1),

and the transient component satisfies the estimates

∥𝜂trans(𝑡)∥1 = 𝑂(𝑒−𝜈𝜆𝑡), ∥𝜂′trans(𝑡)∥ = 𝑂(𝜔−1𝑒−𝜈𝜆𝑡),

where 𝜈 is the constant in condition (2.5).

Proof. We will estimate the transient part (2.27) of the solution directly and the
propagating part (2.26) via the Cauchy data (2.29) by using the energy estimates.
Formulas (2.27) and (2.29) involve the real and imaginary parts of the operator
𝐺(𝐷, 𝑡) applied to the original right-hand side source function 𝑣. (Recall that
𝑔(𝐷) is a special case of 𝐺(𝐷, 𝑡) for 𝑡 = 0.) Thus, we need to estimate the operator
𝐺(𝐷, 𝑡). Note that, for an arbitrary bounded measurable function 𝑓(𝜉), one has∥∥𝑓(𝐷) : 𝐻0 → 𝐻0

∥∥ ≤ sup
𝜉∈R

∣𝑓(𝜉)∣, ∥∥𝑓(𝐷) : 𝐻1 → 𝐻1
∥∥ ≤ 𝐶 sup

𝜉∈R
∣𝑓(𝜉)∣ (2.30)

with some constant 𝐶 independent of 𝑓 .4 Thus, we need estimates for the function
𝐺(𝜉, 𝑡). Since 𝑔(𝜏) = 𝜆𝑔0(𝜆𝜏), we have

𝐺(𝜉, 𝑡) = 𝐺0(𝜉/𝜆, 𝜆𝑡), (2.31)

where

𝐺0(𝜉, 𝑡) =

∫ ∞

0

𝑒−𝑖𝜉𝜏𝑔0(𝜏 + 𝑡) 𝑑𝜏 (2.32)

is the Fourier transform of the function
√
2𝜋𝐻(𝜏)𝑔0(𝜏 + 𝑡) with respect to 𝜏 . By

Lemma 2.6 below, we have

∣
√
2𝜋𝑔(𝜉)∣ = ∣𝐺0(𝜉/𝜆, 0)∣ ≤ 𝐶00

and hence, by (2.29) and (2.30),

∥𝑢0∥1 =
√
2𝜋 ∥Re 𝑔(𝐷)𝑣∥1 ≤ 𝐶𝐶00 ∥𝑣∥1 = 𝑂(1),

∥𝑢1∥ =
√
2𝜋 ∥Im 𝑔(𝐷)𝐷𝑣∥ ≤ 𝐶00 ∥𝐷𝑣∥ ≤ 𝐶 ∥𝑣∥1 = 𝑂(1),

because 𝑣 = 𝑉 (𝑥/𝜇) and hence ∥𝑣∥1 = 𝑂(1) (cf. the computation in Remark 2.3).
Now the energy estimates (2.23) for 𝑠 = 0 give the desired estimates for 𝜂prop(𝑡).
The estimates for the transient part go as follows, again with the use of Lemma 2.6:

∥𝜂trans(𝑡)∥1 = ∥Re𝐺(𝐷, 𝑡)𝑣∥1 ≤ 𝐶 sup
𝜉

∣𝐺0(𝜉/𝜆, 𝜆𝑡)∣ ∥𝑣∥1
≤ 𝐶𝐶00𝑒

−𝜈𝜆𝑡 ∥𝑣∥1 = 𝑂(𝑒−𝜈𝜆𝑡),

4Indeed, the first estimate is obvious, because the operator 𝐷 is self-adjoint on 𝐻0 = 𝐿2(R2).
To obtain the second estimate, we replace the norm on 𝐻1 by the equivalent Hilbert norm

∥𝑢∥ = (𝑢, (1 + 𝐿)𝑢)1/2 (cf. Remark 2.4); then the operator 𝐷 becomes self-adjoint on 𝐻1, and
the second estimate follows.
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∥𝜂′trans(𝑡)∥ =
∥∥∥∥Re ∂𝐺

∂𝑡
(𝐷, 𝑡)𝑣

∥∥∥∥ ≤ sup
𝜉

∣∣∣∣𝜆∂𝐺0

∂𝑡

(
𝜉

𝜆
, 𝜆𝑡

)∣∣∣∣ ∥𝑣∥
≤ 𝐶01𝜆𝑒

−𝜈𝜆𝑡 ∥𝑣∥ = 𝑂(𝜇𝜆𝑒−𝜈𝜆𝑡) = 𝑂(𝜔−1𝑒−𝜈𝜆𝑡),

because 𝑣 = 𝑉 (𝑥/𝜇) and hence ∥𝑣∥ = 𝑂(𝜇). This completes the proof. □

The following lemma establishes the estimates for 𝐺0(𝜉, 𝑡) used in the proof
given above and also estimates that will be useful below.

Lemma 2.6. The function 𝐺0(𝜉, 𝑡) satisfies the estimates∣∣∣∣∂𝑚+𝑘𝐺0

∂𝑡𝑚∂𝜉𝑘
(𝜉, 𝑡)

∣∣∣∣ ≤ 𝐶𝑘𝑚𝑒−𝜈𝑡(1 + ∣𝜉∣)−𝑘−1, 𝑘,𝑚 = 0, 1, 2, . . . , (2.33)

with some constants 𝐶𝑘𝑚. For 𝑡 = 0 and 𝑚 = 0, one has the better estimates∣∣∣∣∂𝑘𝐺0

∂𝜉𝑘
(𝜉, 0)

∣∣∣∣ ≤ 𝐶𝑘0(1 + ∣𝜉∣)−𝑘−2, 𝑘 = 0, 1, 2, . . . . (2.34)

Proof. First, let us prove the estimates (2.33) and (2.34) for ∣𝜉∣ ≤ 1. Then we have∣∣∣∣∂𝑚+𝑘𝐺0

∂𝑡𝑚∂𝜉𝑘
(𝜉, 𝑡)

∣∣∣∣ = ∣∣∣∣∫ ∞

0

(−𝑖𝜏)𝑘𝑒−𝑖𝜉𝜏𝑔(𝑚)0 (𝜏 + 𝑡) 𝑑𝜏

∣∣∣∣ ≤ 𝐶𝑚𝑒−𝜈𝑡
∫ ∞

0

𝜏𝑘𝑒−𝜈𝜏 𝑑𝜏

by (2.5), whence the claim follows. Now let ∣𝜉∣ > 1. Then we write

∂𝑚𝐺0

∂𝑡𝑚
(𝜉, 𝑡) =

(
𝑖

𝜉

)𝑁 ∫ ∞

0

[
𝑑𝑁

𝑑𝜏𝑁
(
𝑒−𝑖𝜉𝜏

)]
𝑔
(𝑚)
0 (𝜏 + 𝑡) 𝑑𝜏

for some integer 𝑁 > 𝑘 + 1 and then integrate by parts 𝑁 times, thus obtaining

∂𝑚𝐺0

∂𝑡𝑚
(𝜉, 𝑡) =

𝑁∑
𝑙=1

(𝑖𝜉)−𝑙𝑔(𝑚+𝑙−1)0 (𝑡) + (𝑖𝜉)−𝑁
∫ ∞

0

𝑒−𝑖𝜉𝜏𝑔(𝑚+𝑁)0 (𝜏 + 𝑡) 𝑑𝜏. (2.35)

Next, we differentiate both sides of (2.35) 𝑘 times with respect to 𝜉, which gives

∂𝑚+𝑘𝐺0

∂𝑡𝑚∂𝜉𝑘
(𝜉, 𝑡) = 𝑖−𝑘

∑𝑁

𝑙=1

(𝑙 + 𝑘 − 1)!

(𝑙 − 1)!
(𝑖𝜉)−𝑙−𝑘𝑔(𝑚+𝑙−1)0 (𝑡)

+ 𝑖−𝑘
∑𝑘

𝑠=0

(
𝑘

𝑠

)
(𝑙 + 𝑠 − 1)!

(𝑙 − 1)!
(𝑖𝜉)−𝑁−𝑠

∫ ∞

0

𝜏𝑘−𝑠𝑒−𝑖𝜉𝜏𝑔(𝑚+𝑁)0 (𝜏 + 𝑡) 𝑑𝜏.

Here all factors 𝑔
(𝑚+𝑙−1)
0 (𝑡) and the integral are bounded in modulus by const ⋅ 𝑒−𝜈𝑡

by virtue of (2.5), and the smallest power of 𝜉−1 on the right-hand side is 𝜉−𝑘−1,
which implies the estimate (2.33). For 𝑡 = 0 and 𝑚 = 0, the smallest power
of 𝜉−1 on the right-hand side is 𝜉−𝑘−2, since 𝑔0(0) = 0, and we have the esti-
mate (2.34). □
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3. Asymptotics of the solution

In this section, we describe the asymptotics as 𝜇 → 0 of the solution 𝜂(𝑡) =
𝜂prop(𝑡)+𝜂trans(𝑡) of problem (2.1), (2.2). In all theorems in this section, we assume
that all conditions stated in Section 2.1 are satisfied. Recall that the problem also
contains the large parameter 𝜆, which is related to 𝜇 by the condition 𝜔 < 𝜔0
(see (2.9)), where 𝜔 = 𝑐0(𝜆𝜇)

−1 (see (2.8)). If 𝜔 can be treated as a second small
parameter (i.e., the distance traveled by the waves in the lifetime of the source is
much smaller than the source diameter), then additional Taylor series expansions
in 𝜔 lead to further simplifications in the asymptotic formulas.

3.1. Asymptotics of the transient component

The asymptotics of the transient component 𝜂trans(𝑡) of the solution as 𝜇 → 0 is
given by the following theorem.

Theorem 3.1. One has

𝜂trans(𝑥, 𝑡) = − 1

2𝜋

∫∫
Re𝐺0(𝜔∣𝑝∣, 𝜆𝑡)𝑉 (𝑝)𝑒𝑖𝑝𝑥/𝜇𝑑𝑝1 𝑑𝑝2 +𝑅(𝑡), (3.1)

or, in the polar coordinates (𝑟, 𝜑), 𝑥 = 𝑟n(𝜑), where n(𝜑) = (cos𝜑, sin𝜑),

𝜂trans(𝑟n(𝜑)) = − 1

2𝜋

∫ 2𝜋

0

∫ ∞

0

𝜌Re𝐺0(𝜔𝜌, 𝜆𝑡)

× 𝑉
(
𝜌n(𝜓)

)
𝑒𝑖𝑟𝜌 cos(𝜓−𝜑)/𝜇𝑑𝜌 𝑑𝜓 +𝑅(𝑡), (3.2)

where the remainder 𝑅(𝑡) satisfies the estimates

∥𝑅(𝑡)∥1 = 𝑂(𝜇𝑒−𝜈𝜆𝑡), ∥𝑅′(𝑡)∥ = 𝑂(𝜇𝜔−1𝑒−𝜈𝜆𝑡), 𝜇 → 0. (3.3)

Proof. Consider the operators

𝐿(0) = −𝑐20∇2, 𝐷(0) = (𝐿(0))1/2. (3.4)

Thus, 𝐿(0) is obtained by freezing the coefficients of the operator 𝐿 at the origin,
and 𝐷(0) is just the positive square root of the positive self-adjoint operator 𝐿(0).

Lemma 3.2. One has[
Re𝐺(𝐷(0), 𝑡)− Re𝐺(𝐷, 𝑡)

]
𝑉

(
𝑥

𝜇

)
= 𝑅(𝑡), (3.5)

where 𝑅(𝑡) satisfies the estimates (3.3).

The proof of this lemma will be given in Section 4. Thus, the operator 𝐷
in the expression (2.27) for 𝜂trans(𝑥, 𝑡) can be replaced by the operator 𝐷(0) with
constant coefficients. Now it remains to compute Re𝐺(𝐷(0), 𝑡)𝑉 (𝑥/𝜇). Since 𝐷(0)

is an operator with constant coefficients and with symbol 𝑐0∣𝑝∣, it follows that
𝐹 (𝐷(0)) = ℱ−1 ∘ 𝐹 (𝑐0∣𝑝∣) ∘ ℱ (3.6)
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for any function 𝐹 (𝜉), where ℱ is the Fourier transform and the middle factor on
the right-hand side is the operator of multiplication by 𝐹 (𝑐0∣𝑝∣). Thus we obtain

𝐺(𝐷(0), 𝑡)𝑉

(
𝑥

𝜇

)
=

1

2𝜋

∫∫
Re𝐺0(𝜔∣𝑝∣, 𝜆𝑡)𝑉 (𝑝)𝑒𝑖𝑝𝑥/𝜇𝑑𝑝1 𝑑𝑝2

(we have used the formula for 𝐺(𝜉, 𝑡) and made obvious changes of variables),
which proves Theorem 3.1. □

3.2. Asymptotics of the equivalent source functions

Now we proceed to the computation of the propagating component of the solution.
It satisfies the Cauchy problem (2.28), (2.29), and so a good starting point would
be to compute the equivalent source functions (2.29). Once we compute them
(asymptotically) and prove that they are localized near the origin, we can use
the methods developed in [11–16] to obtain the asymptotics of the propagating
solution component. However, we would like to apply ready-to-use formulas from
these papers rather than to write out new formulas based on the same ideas. The
formulas in [11–16] were obtained for the case in which 𝑢1, the initial data for the
𝑡-derivative of the solution, is zero. So we resort to the following trick.

Proposition 3.3. The propagating solution component 𝜂prop(𝑡) can be represented
in the form

𝜂prop(𝑡) = 𝜂1(𝑡) + 𝜂′2(𝑡), (3.7)

where 𝜂1(𝑡) and 𝜂2(𝑡) are the solutions of the Cauchy problems

𝜂′′1 (𝑡) +𝐷2𝜂1 = 0, 𝜂1∣𝑡=0 =
√
2𝜋Re 𝑔(𝐷)𝑣, 𝜂′1∣𝑡=0 = 0, (3.8)

𝜂′′2 (𝑡) +𝐷2𝜂2 = 0, 𝜂2∣𝑡=0 =
√
2𝜋𝐷−1 Im 𝑔(𝐷)𝑣, 𝜂′2∣𝑡=0 = 0. (3.9)

Proof. The sum (3.7) obviously satisfies the wave equation (2.28). Next,

𝜂′2∣𝑡=0 = 0, (𝜂′2)
′∣𝑡=0 = 𝜂′′2 ∣𝑡=0 = −𝐷2𝜂2∣𝑡=0 = −

√
2𝜋𝐷 Im 𝑔(𝐷)𝑣,

which shows that the initial conditions (2.29) are satisfied and hence completes
the proof. □

Thus, let us compute the asymptotics of the new equivalent source functions

𝜂10 =
√
2𝜋Re 𝑔(𝐷)𝑣, 𝜂20 =

√
2𝜋𝐷−1 Im 𝑔(𝐷)𝑣. (3.10)

Theorem 3.4. The equivalent source functions (3.10) have the following asymp-
totics as 𝜇 → 0:

𝜂10 = 𝑈1

(
𝑥

𝜇

)
+𝑅1, 𝜂20 = 𝑈2

(
𝑥

𝜇

)
+𝑅2, (3.11)

where the Fourier transforms of the functions 𝑈1(𝑦) and 𝑈2(𝑦) are given by the
formulas

𝑈1(𝑝) =
√
2𝜋Re 𝑔0(𝜔∣𝑝∣)𝑉 (𝑝), 𝑈2(𝑝) =

√
2𝜋𝜆−1 Im

𝑔0(𝜔∣𝑝∣)
𝜔∣𝑝∣ 𝑉 (𝑝) (3.12)
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and the remainders satisfy the estimates

∥𝑅1∥1 = 𝑂(𝜇), ∥𝑅2∥2 = 𝑂(𝜇). (3.13)

Proof. The proof goes along the same lines as that of Theorem 3.1. Namely, we
prove that the operator 𝐷 in formulas (3.10) can asymptotically be replaced by
𝐷(0) and then compute the Fourier transforms of 𝑈1 and 𝑈2 using formula (3.6).
The latter computation is trivial, and we omit it altogether. As for the first part,
it is given by the following lemma, which will be proved together with Lemma 3.2
in Section 4.

Lemma 3.5. One has
√
2𝜋
[
Re 𝑔(𝐷)− Re 𝑔(𝐷(0))

]
𝑉

(
𝑥

𝜇

)
= 𝑅1,

√
2𝜋
[
𝐷−1 Im 𝑔(𝐷) − (𝐷(0))−1 Im 𝑔(𝐷(0))

]
𝑉

(
𝑥

𝜇

)
= 𝑅2,

(3.14)

where 𝑅1 and 𝑅2 satisfy the estimates (3.13).

This completes the proof of Theorem 3.4. □
Remark 3.6. If we replace 𝜂10 and 𝜂20 in the Cauchy problems for 𝜂1 and 𝜂2 by
𝑈1(𝑥/𝜇) and 𝑈2(𝑥/𝜇), respectively, then the resulting error 𝛿(𝑡) in the computation
of 𝜂prop(𝑡) will satisfy the estimates

∥𝛿(𝑡)∥1 = 𝑂(𝜇), ∥𝛿′(𝑡)∥ = 𝑂(𝜇), 𝜇 → 0,

uniformly on any finite time interval. Indeed, let us write 𝛿(𝑡) = 𝛿1(𝑡) + 𝛿′2(𝑡),
where 𝛿1 and 𝛿2 are the errors in 𝜂1 and 𝜂2, respectively. Then, by virtue of the
energy estimates (2.23), we have

∥𝛿1(𝑡)∥1 + ∥𝛿′1(𝑡)∥ ≤ 𝐶(𝑡) ∥𝛿1(0)∥1 = 𝐶(𝑡) ∥𝑅1∥1 = 𝑂(𝜇),

∥𝛿′2(𝑡)∥1 + ∥𝛿′′2 (𝑡)∥ ≤ 𝐶(𝑡) ∥𝛿′′2 (0)∥ = 𝐶(𝑡)
∥∥𝐷2𝛿2(0)

∥∥
= 𝐶(𝑡)

∥∥𝐷2𝑅2

∥∥ ≤ 𝐶1(𝑡) ∥𝑅2∥2 = 𝑂(𝜇).

Thus, the accuracy provided by Theorem 3.4 permits computing the propagating
part of the solution modulo 𝑂(𝜇) in the energy norm.

3.3. Asymptotics of the propagating part

Remark 3.6 shows that, to compute the asymptotics of the propagating part of
the solution of problem (2.1) modulo 𝑂(𝜇) in the energy norm, it suffices to solve
problems (3.8) and (3.9) asymptotically with the initial data replaced by the func-
tions 𝑈1(𝑥/𝜇) and 𝑈2(𝑥/𝜇) indicated in Theorem 3.4. Thus, we need to solve the
problems

𝜂′′1 (𝑡) +𝐷2𝜂1 = 0, 𝜂1∣𝑡=0 = 𝑈1(𝑥/𝜇), 𝜂′1∣𝑡=0 = 0, (3.15)

𝜂′′2 (𝑡) +𝐷2𝜂2 = 0, 𝜂2∣𝑡=0 = 𝑈2(𝑥/𝜇), 𝜂′2∣𝑡=0 = 0. (3.16)

(We denote the new unknown functions by the same letters 𝜂1,2; this will not lead
to a misunderstanding.) The initial data in these problems are localized near the
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origin, and hence the asymptotics of solutions of these problems modulo 𝑂(𝜇) in
all spaces 𝐻𝑠 can be obtained with the use of the approach developed in [11–14]
and based on the Maslov canonical operator [1, 20]. Let us briefly recall this
construction.

3.3.1. Bicharacteristics, canonical operator and solution formulas. In the phase
space R4

𝑥,𝑝 with the coordinates (𝑥, 𝑝) = (𝑥1, 𝑥2, 𝑝1, 𝑝2), consider the Hamiltonian
system

𝑝̇ = −∂ℋ
∂𝑥

, 𝑥̇ =
∂ℋ
∂𝑝

(3.17)

corresponding to the Hamiltonian function ℋ = ∣𝑝∣𝑐(𝑥). This system determines
the Hamiltonian phase flow 𝑔𝑡ℋ. Let n(𝜓) =

𝑡(cos𝜓, sin𝜓). Consider the La-
grangian manifold Λ0 = {𝑝 = n(𝜓), 𝑥 = 𝛼n(𝜓)}, isomorphic to the two-dim-
ensional cylinder, where 𝜓 ∈ [0, 2𝜋) and 𝛼 ∈ R are coordinates on Λ0. By shifting
this manifold along the flow 𝑔𝑡ℋ, we obtain the family of Lagrangian manifolds
Λ𝑡 = 𝑔𝑡ℋΛ0, each of which is equipped with the same coordinate system (𝜓, 𝛼) as
Λ0. We take the point with coordinates (𝜓, 𝛼) = (0, 0) for the distinguished point
on Λ0 and construct the Maslov canonical operator 𝐾ℎΛ𝑡 [1, 20] on each of the
manifolds Λ𝑡. (Here ℎ → 0 is the small parameter occurring in the construction
of the canonical operator; all Jacobians in the definition of 𝐾ℎΛ𝑡 are taken with
respect to the coordinates (𝜓, 𝛼).)

It follows from the results in [11–14] that the asymptotics of the solutions
𝜂1,2 of problems (3.15) and (3.16) can be obtained as follows. Using the Fourier
transforms (3.12) of the equivalent source functions computed in Theorem 3.4, we
introduce the following two smooth functions on Λ𝑡, independent of 𝑡 and 𝛼 but
depending on the coordinate 𝜓 and an additional parameter 𝜌:

𝜑1(𝜓, 𝜌) = 𝑈1(𝜌n(𝜓)) =
√
2𝜋Re 𝑔0(𝜔𝜌)𝑉 (𝜌n(𝜓)),

𝜑2(𝜓, 𝜌) = 𝑈2(𝜌n(𝜓)) =
√
2𝜋𝜆−1 Im

𝑔0(𝜔𝜌)

𝜔𝜌
𝑉 (𝜌n(𝜓)).

Then the formulas in [11, 13] give

𝜂1,2(𝑡) =

√
𝜇

2𝜋
Re

(
𝑒−𝑖𝜋/4

∫ ∞

0

𝐾
𝜇/𝜌
Λ𝑡

(
√

𝜌𝜑1,2(𝜓, 𝜌)) 𝑑 𝜌

)
+𝑂(𝜇). (3.18)

Let us find the derivative 𝜂′2(𝑡). By the commutation formula [20] for the canonical
operator, we have

𝜂′2(𝑡) =
√

𝜇

2𝜋
Re

(
𝑒−𝑖𝜋/4

∫ ∞

0

∂

∂𝑡
𝐾
𝜇/𝜌
Λ𝑡

(
√

𝜌𝜑2(𝜓, 𝜌)) 𝑑𝜌

)
=

√
𝜇

2𝜋
Re
(
𝑒−𝑖𝜋/4

∫ ∞

0

𝐾
𝜇/𝜌
Λ𝑡

[
− 𝑖𝜌

𝜇
ℋ∣∣

Λ𝑡

√
𝜌𝜑2(𝜓, 𝜌)

]
𝑑𝜌
)
+𝑂(𝜇).

But the Hamiltonian ℋ is preserved along the trajectories of the Hamiltonian
system, and hence ℋ∣∣

Λ𝑡
= ℋ∣∣

Λ0
= 𝑐(𝛼n(𝜓)). It was shown in [11] that, modulo
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lower-order terms, one can set 𝛼 = 0 in the functions on Λ𝑡. Taking into account
the definition of 𝜑2, we obtain

𝜂′2(𝑡) =
√

𝜇Re

(
𝑒−

𝑖𝜋
4

∫ ∞

0

𝐾
𝜇/𝜌
Λ𝑡

[√
𝜌
(−𝑖 Im 𝑔0(𝜔𝜌)𝑉 (𝜌n(𝜓))

)]
𝑑 𝜌

)
+𝑂(𝜇).

Finally, we use the formula 𝜂prop(𝑡) = 𝜂1(𝑡) + 𝜂′2(𝑡) and arrive at the following
theorem.

Theorem 3.7. The propagating part of the solution has the following asymptotics :

𝜂prop(𝑡) =
√

𝜇Re

(
𝑒−

𝑖𝜋
4

∫ ∞

0

𝐾
𝜇/𝜌
Λ𝑡

[√
𝜌 𝑔0

(
𝜔𝜌
)
𝑉 (𝜌n(𝜓))

]
𝑑 𝜌

)
+𝑅(𝑡), (3.19)

where the bar stands for complex conjugation and the remainder satisfies the esti-
mates

∥𝑅(𝑡)∥1 = 𝑂(𝜇), ∥𝑅′(𝑡)∥ = 𝑂(𝜇) (3.20)

uniformly on any finite interval of time 𝑡.

3.3.2. Asymptotics near the front. Now let us compute the propagating part (3.19)
of the solution in more explicit terms. To this end, we need some geometry. Let
(𝑃 (𝑡, 𝜓), 𝑋(𝑡, 𝜓)), 𝜓 ∈ [0.2𝜋), be the family of solutions of the Hamiltonian system
(3.17) with the initial conditions

𝑝∣𝑡=0 = n(𝜓), 𝑥∣𝑡=0 = 0. (3.21)

For each 𝑡, the equations 𝑝 = 𝑃 (𝑡, 𝜓), 𝑥 = 𝑋(𝑡, 𝜓), 𝜓 ∈ [0.2𝜋), define a smooth
closed curve Γ𝑡 in the four-dimensional phase space R

4
𝑥,𝑝; this curve is called the

wave front in R4
𝑥,𝑝. The projection 𝛾𝑡 = {𝑥 = 𝑋(𝑡, 𝜓) : 𝜓 ∈ [0.2𝜋)} of Γ𝑡 into R2

𝑥

is called the front in the configuration space. In contrast to Γ𝑡, the curve 𝛾𝑡 may
well be nonsmooth; namely, it may have turning (or focal) points (in this case,
𝑋𝜓 = 0 for some 𝜓) and points of self-intersection. Moreover, the front 𝛾0 at the
initial time 𝑡 = 0 is just the point 𝑥 = 0.

For each 𝑡, the function (3.19) is localized in a neighborhood of the front 𝛾𝑡
[11–16]. Formula (3.19) provides the global asymptotics of the propagating part of
the solution; i.e., this formula holds both near regular and near focal points of the
front. The formula can be simplified in a neighborhood of any point of the front,
but the simplified expression depends on whether the point is regular or focal.
Here we restrict ourselves to the case of a neighborhood of a regular point.

Take some time 𝑡 and angle 𝜓0 and assume that the point 𝑋(𝑡, 𝜓0) ∈ 𝛾𝑡 is
not focal; i.e., 𝑋𝜓(𝑡, 𝜓

0) ∕= 0. In some neighborhood of 𝑋(𝑡, 𝜓0), we can introduce
the local coordinates (𝜓, 𝑦), where 𝑦 = 𝑦(𝑥, 𝑡) is the (signed) distance between the
point 𝑥 and the front and 𝜓 = 𝜓(𝑥, 𝑡) is determined by the condition that the
vector 𝑥 − 𝑋(𝑡, 𝜓(𝑥, 𝑡)) is orthogonal to the vector tangent to the wave front at
the point 𝑋(𝑡, 𝜓(𝑥, 𝑡)); in other words

⟨𝑥 − 𝑋(𝑡, 𝜓(𝑥, 𝑡)), 𝑋𝜓(𝑡, 𝜓(𝑥, 𝑡))⟩ = 0.

Set
𝑆(𝑥, 𝑡) = ⟨𝑃 (𝑡, 𝜓(𝑥, 𝑡)), 𝑥 − 𝑋(𝑡, 𝜓(𝑥, 𝑡))⟩.
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Next, we introduce the Morse index 𝑚(𝑡, 𝜓0) of the trajectory 𝑋(𝜏, 𝜓0), 𝜏 ∈ (0, 𝑡],
which is the number of zeros of the function ∣𝑋𝜓(𝜏, 𝜓0)∣ on the half-open interval
𝜏 ∈ (0, 𝑡] [20].

It may happen that some region of points 𝑥 where we intend to write out
the asymptotics simultaneously belongs to several neighborhoods of the above-
mentioned type, where the corresponding points𝑋(𝑡, 𝜓0) lie on several (but finitely
many!) distinct arcs of the front 𝛾𝑡. (For example, this is the case if we study the
asymptotics near a point of self-intersection of the front 𝛾𝑡.) Then all these arcs
contribute to the asymptotics at such points 𝑥, and we use an additional subscript
𝑗 to distinguish these neighborhoods as well as all associated objects (𝜓0, 𝜓(𝑥, 𝑡),
𝑆(𝑥, 𝑡), Morse index, etc.). Now from the results in [11, 12, 15, 16] we obtain the
following theorem.

Theorem 3.8. In a neighborhood of the front 𝛾𝑡 but outside a neighborhood of the
focal points, the asymptotic formula (3.19) for the propagating part of the solution
can be rewritten in the form

𝜂prop(𝑡) =
√

𝜇Re
∑
𝑗

[
𝑒−𝑖𝜋𝑚(𝜓

0
𝑗 ,𝑡)/2√∣𝑋𝜓(𝜓, 𝑡)∣

√
𝑐0

𝑐(𝑋(𝜓, 𝑡))
𝐹

(
𝑆𝑗(𝑥, 𝑡)

𝜇
, 𝜓

)]
𝜓=𝜓𝑗(𝑥,𝑡)

+𝑅(𝑡),

(3.22)
where

𝐹 (𝑧, 𝜓) = 𝑒−𝑖𝜋/4
∫ ∞

0

√
𝜌 ¯̃𝑔0(𝜔𝜌)𝑉 (𝜌n(𝜓))𝑒𝑖𝑧𝜌𝑑𝜌, (3.23)

𝑅(𝑡) satisfies the estimate (3.20), and the sum with respect to 𝑗 is taken over all
distinct arcs of 𝛾𝑡 contributing to the asymptotics at 𝑥.5

Remark 3.9. The factor

1√∣𝑋𝜓(𝜓, 𝑡)∣
√

𝑐0
𝑐(𝑋(𝜓, 𝑡))

includes the two-dimensional analog of the so-called Green law and the trajectory
divergence related to the velocity 𝑐(𝑥) (with height 𝑐2(𝑥) describing the bottom
topography). The function 𝐹 depends on the time and space shape of the source
generating the waves [11–16]. Formulas (3.19), (3.22), and (3.23) apply to any
localized perturbation.

4. Obtaining asymptotic expansions by noncommutative analysis

The aim of this section is to prove Lemmas 3.2 and 3.5. Vaguely speaking, these
lemmas state that the replacement of the operator 𝐷 by the operator 𝐷(0) (3.4)
with constant coefficients in certain expressions results in an 𝑂(𝜇) error. However,
it is much easier to deal with functions of the differential operators 𝐿 and 𝐿(0) than
with functions of their square roots, the pseudodifferential operators 𝐷 =

√
𝐿 and

5More formally, for example, fix an 𝜀 > 0; the intersection of 𝛾𝑡 with the 𝜀-neighborhood of 𝑥
can be covered by finitely many arcs of length ≤ 𝜀; take the contributions of all these arcs.
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𝐷(0) =
√

𝐿(0). Hence in Section 4.1 we represent the latter functions via the former
and accordingly restate the lemmas. In Section 4.2, we make all noncommutative
computations.

4.1. Eliminating the square roots

Lemma 4.1. The functions Re𝐺0(𝜉, 𝑡) and 𝜉−1 Im𝐺0(𝜉, 𝑡) are smooth even func-
tions of 𝜉 and hence smooth functions of 𝜉2.

Proof. The function 𝑔0(𝜏) is real valued, and 𝐺0(𝜉, 𝑡) = 𝐺0(−𝜉, 𝑡) by (2.32). Thus,
Re𝐺0(−𝜉, 𝑡) = Re𝐺0(𝜉, 𝑡) and Im𝐺0(−𝜉, 𝑡) = − Im𝐺0(𝜉, 𝑡); i.e., the real part of
𝐺0 is an even function of 𝜉, and the imaginary part of 𝐺0 is an odd function of 𝜉.
Hence the desired claim follows. □

Now let us introduce the functions

𝑓1(𝜉) = Re𝐺0(𝜉
1/2, 0),

𝑓2(𝜉) = 𝜉−1/2 Im𝐺0(𝜉
1/2, 0),

𝑓3(𝜉, 𝑡) = Re𝐺0(𝜉
1/2, 𝑡).

(4.1)

By Lemma 4.1, these functions are smooth for all 𝜉, including 𝜉 = 0. Formulas
(3.10) for the equivalent sources and (2.27) for the transient solution component
can now be rewritten as

𝜂10 = 𝑓1(𝜆
−2𝐿)𝑉

(
𝑥

𝜇

)
,

𝜂20 = 𝜆−1𝑓2(𝜆−2𝐿)𝑉
(

𝑥

𝜇

)
,

𝜂trans(𝑡) = −𝑓3(𝜆
−2𝐿, 𝜆𝑡)𝑉

(
𝑥

𝜇

)
.

(4.2)

Indeed, for example,

𝜆−1𝑓2(𝜆−2𝐿) = 𝜆−1(𝜆−2𝐿)−1/2 Im𝐺0

(
(𝜆−2𝐿)1/2, 0

)
= 𝐷−1 Im𝐺0(𝜆

−1𝐷, 0) = 𝐷−1 Im𝐺(𝐷, 0) =
√
2𝜋𝐷−1 Im 𝑔(𝐷).

The following theorem is an equivalent restatement of Lemmas 3.2 and 3.5 in terms
of functions of 𝐿 and 𝐿(0). (We write 𝑅3(𝑡) = −𝑅(𝑡) to unify the notation.)

Theorem 4.2. One has

𝑓1(𝜆
−2𝐿)𝑉

(
𝑥

𝜇

)
= 𝑓1(𝜆

−2𝐿(0))𝑉

(
𝑥

𝜇

)
+𝑅1,

𝜆−1𝑓2(𝜆−2𝐿)𝑉
(

𝑥

𝜇

)
= 𝜆−1𝑓2(𝜆−2𝐿(0))𝑉

(
𝑥

𝜇

)
+𝑅2,

𝑓3(𝜆
−2𝐿, 𝜆𝑡)𝑉

(
𝑥

𝜇

)
= 𝑓3(𝜆

−2𝐿(0), 𝜆𝑡)𝑉

(
𝑥

𝜇

)
+𝑅3(𝑡),

(4.3)
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where the remainders satisfy the estimate

∥𝑅1∥1 = 𝑂(𝜇), ∥𝑅2∥2 = 𝑂(𝜇),

∥𝑅3(𝑡)∥1 = 𝑂(𝜇𝑒−𝜈𝜆𝑡), ∥𝑅′
3(𝑡)∥ = 𝑂(𝜇2𝜆𝑒−𝜈𝜆𝑡).

(4.4)

The proof will be given below in Section 4.2.
We need some estimates for the symbols (4.1). These are provided by the

following lemma.

Lemma 4.3. The following estimates hold for the functions (4.1):

∣𝑓 (𝑘)1 (𝜉)∣ ≤ 𝐶𝑘0(1 + ∣𝜉∣)−1−𝑘, ∣𝑓 (𝑘)2 (𝜉)∣ ≤ 𝐶𝑘𝑚(1 + ∣𝜉∣)−3/2−𝑘,∣∣∣∣∂𝑘+𝑚𝑓3(𝜉, 𝑡)

∂𝑥𝑘∂𝑡𝑚

∣∣∣∣ ≤ 𝐶𝑘𝑚𝑒−𝜈𝑡(1 + ∣𝜉∣)−1/2−𝑘,
(4.5)

𝑘 = 0, 1, 2, . . . , where the 𝐶𝑘𝑚 are some constants (in general, different from those
introduced earlier).

Proof. For 𝑘 = 0, the desired estimates (4.5) readily follow from (2.33) and (2.34);
it suffices to replace 𝜉 by 𝜉1/2 (and use the fact that the functions 𝑓𝑗 given by
(4.1) are smooth and in particular continuous at 𝜉 = 0). Next, note that if 𝑓(𝜉) =
𝐹 (𝜉1/2), where 𝐹 (𝜁) is a smooth even function, then 𝑓 ′(𝜉) = Ψ(𝜉1/2), where Ψ(𝜁) =
1
2𝐹

′(𝜁)/𝜁 is again a smooth even function. Thus, it suffices to prove that if a smooth
even function 𝐹 satisfies estimates of the form

∣𝐹 (𝑘)(𝜁)∣ ≤ 𝑑𝑘(1 + ∣𝜁∣)−𝑘−𝑘0 , 𝑘 = 0, 1, 2, . . . ,

for some 𝑘0, then Ψ satisfies the same estimates but with 𝑘0 increased by 2 and
with new constants 𝑑𝑘, each of which is a finite linear combination of the old ones.
This is trivial for ∣𝜁∣ ≥ 1, and in the region ∣𝜁∣ < 1 one can use the identity

𝜁−1𝐹 ′(𝜁) = 𝜁−1
(
𝐹 ′(𝜁)− 𝐹 ′(0)

)
=

∫ 1

0

𝐹 ′′(𝜃𝜁) 𝑑𝜃. □

4.2. Computation of the transient part and the equivalent sources

Now we will prove Lemmas 3.2 and 3.5 by proving the equivalent Theorem 4.2.
Let 𝑓(𝜉) be any of the functions 𝑓1(𝜉), 𝑓2(𝜉), and 𝑓3(𝜉, 𝑡) given by (4.1) or the
function 𝑓4(𝜉, 𝑡) = ∂𝑓3(𝜉, 𝑡)/∂𝑡. We need to compute the difference

ℛ ≡ ℛ(𝑥, 𝜆, 𝜇) = (
𝑓(𝜆−2𝐿)− 𝑓(𝜆−2𝐿(0))

)
𝑉

(
𝑥

𝜇

)
(4.6)

and estimate it in an appropriate norm. Let us make the change of variables
𝑥 = 𝜇𝑦. In the new variables, (4.6) becomes

ℛ =
(
𝑓(𝐿𝑦)− 𝑓(𝐿(0)

𝑦 )
)
𝑉 (𝑦), (4.7)

where

𝐿𝑦 = −𝜔2∇𝑦 𝑐
2(𝜇𝑦)

𝑐20
∇𝑦 , 𝐿(0)

𝑦 = −𝜔2∇2
𝑦, ∇𝑦 =

(
∂

∂𝑦1
,

∂

∂𝑦2

)
,

and 𝜔 = 𝑐0/(𝜆𝜇) is bounded by condition (2.6).
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To compute this difference, we use the machinery of noncommutative anal-
ysis. We refer the reader to [1, 2] for details concerning the definition and prop-
erties of functions of noncommuting operators and only recall that a function

𝐹 (
1

𝐴1, . . . ,
𝑛

𝐴𝑛) of (possibly, noncommuting) operators 𝐴1, . . . , 𝐴𝑛 can be defined
as follows in the particular case where the 𝐴𝑗 are the generators of uniformly
bounded strongly continuous one-parameter operator groups 𝑒𝑖𝐴𝑗 𝑡, 𝑡 ∈ R, on a
Hilbert space 𝐻 :

𝐹 (
1

𝐴1, . . . ,
𝑛

𝐴𝑛)𝑢 =
1

(2𝜋)𝑛/2

∫
R𝑛

𝐹 (𝑡1, 𝑡2, . . . , 𝑡𝑛)𝑒
𝑖𝐴𝑛𝑡𝑛 ⋅ ⋅ ⋅ 𝑒𝑖𝐴1𝑡1𝑢 𝑑𝑡1 ⋅ ⋅ ⋅ 𝑑𝑡𝑛,

𝑢 ∈ 𝐻 , where 𝐹 is the Fourier transform of the symbol 𝐹 , which is assumed to
satisfy certain conditions (e.g., see [2]) guaranteeing that the integral on the right-
hand side is well defined. The numbers (Feynman indices) over operators indicate
the order of their action: of any two operators, the operator with the smaller
Feynman index stands to the right of the operators with the larger Feynman
index in products.

It follows by the zero-order Newton formula of noncommutative analysis (see
[1] and [2, Theorem I.8]) that

𝑓(𝐿𝑦)− 𝑓(𝐿(0)
𝑦 ) =

𝛿𝑓

𝛿𝜉
(
3

𝐿𝑦,
1

𝐿(0)
𝑦 )

2

(𝐿𝑦 − 𝐿
(0)
𝑦 ) =

𝛿𝑓

𝛿𝜉
(
3

𝐿𝑦,
1

𝐿(0)
𝑦 )

2

𝑇 , (4.8)

where
𝛿𝑓

𝛿𝜉
(𝜉1, 𝜉2) =

𝑓(𝜉1)− 𝑓(𝜉2)

𝜉1 − 𝜉2
is the first difference quotient of 𝑓 and

𝑇 = 𝐿𝑦 − 𝐿(0)
𝑦 = 𝜔2

〈
∇𝑦,

(
1− 𝑐2(𝜇𝑦)

𝑐20

)
∇𝑦

〉
≡ 𝜔2

2∑
𝑗=1

∂

∂𝑦𝑗
𝜙(𝜇𝑦)

∂

∂𝑦𝑗
.

Here we have denoted

𝜙(𝑧) = 1− 𝑐2(𝑧)

𝑐20
;

this function is uniformly bounded together with all of its derivatives for 𝑧 ∈ R2,
and 𝜙(0) = 0.

We further transform the right-hand side of (4.8) as follows.

Proposition 4.4.

𝛿𝑓

𝛿𝜉
(
3

𝐿𝑦,
1

𝐿(0)
𝑦 )

2

𝑇 =
𝛿𝑓

𝛿𝜉
(
3

𝐿𝑦,
2

𝐿(0)
𝑦 )

1

𝑇 +
𝛿2𝑓

𝛿𝜉2
(
4

𝐿𝑦,
3

𝐿(0)
𝑦 ,

1

𝐿(0)
𝑦 )

2

[𝑇, 𝐿
(0)
𝑦 ], (4.9)

where

𝛿2𝑓

𝛿𝜉2
(𝜉1, 𝜉2, 𝜉3) =

𝛿𝑓
𝛿𝜉 (𝜉1, 𝜉2)− 𝛿𝑓

𝛿𝜉 (𝜉1, 𝜉3)

𝜉2 − 𝜉3
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is the second difference quotient of 𝑓 and

[𝑇, 𝐿(0)
𝑦 ] = 𝑇𝐿(0)

𝑦 − 𝐿(0)
𝑦 𝑇

is the commutator of 𝑇 and 𝐿
(0)
𝑦 .

Proof. The proof of (4.9) mimics the derivation of the general commutation for-
mula [2, Proposition I.3]

2

𝐴𝑓(
1

𝐵)−
1

𝐴𝑓(
2

𝐵) =
𝛿𝑓

𝛿𝜉
(
1

𝐵,
3

𝐵)
2

[𝐴,𝐵] (4.10)

of noncommutative analysis, with 𝑇 playing the role of 𝐴 and 𝐿
(0)
𝑦 playing the role

of 𝐵. Recall this derivation (e.g., see [2, pp. 52–53]). We need to compute

[𝐴, 𝑓(𝐵)] ≡ 𝐴𝑓(𝐵)− 𝑓(𝐵)𝐴 =
2

𝐴𝑓(
1

𝐵)−
1

𝐴𝑓(
2

𝐵).

The Feynman indices can be chosen independently for either summand on the
right, and we can write

[𝐴, 𝑓(𝐵)] =
2

𝐴𝑓(
1

𝐵)−
2

𝐴𝑓(
3

𝐵) =
2

𝐴(𝑓(
1

𝐵)− 𝑓(
3

𝐵)) =
2

𝐴(
1

𝐵 −
3

𝐵)
𝛿𝑓

𝛿𝜉
(
1

𝐵,
3

𝐵).

(Here we have used the identity 𝑓(𝑥)− 𝑓(𝜉) = (𝑥− 𝜉) 𝛿𝑓𝛿𝜉 (𝑥, 𝜉), which is in fact the

definition of 𝛿𝑓/𝛿𝜉.) Next, we move apart the Feynman indices over the 𝐵’s, thus
obtaining

2

𝐴(
1

𝐵 −
3

𝐵)
𝛿𝑓

𝛿𝜉
(
1

𝐵,
3

𝐵)=
2

𝐴(
1

𝐵 −
3

𝐵)
𝛿𝑓

𝛿𝜉
(
0

𝐵,
4

𝐵)=
2

[𝐴,𝐵]
𝛿𝑓

𝛿𝜉
(
0

𝐵,
4

𝐵)=
2

[𝐴,𝐵]
𝛿𝑓

𝛿𝜉
(
1

𝐵,
3

𝐵).

(In the middle, we have written
2

𝐴(
1

𝐵 −
3

𝐵) =
2

[𝐴,𝐵] using the fact that no other
operators in the expression have Feynman indices in the interval [1, 3].) Thus, we
arrive at the desired commutation formula (4.10).

The derivation of (4.9) differs from this only in that now, instead of 𝑓(
1

𝐵),

we have 𝛿𝑓𝛿𝜉 (
3

𝐿𝑦,
1

𝐿
(0)
𝑦 ); i.e., there is an additional operator argument,

3

𝐿𝑦, but this

argument does not invalidate the computation, because its Feynman number does

not lie between those of 𝐴 = 𝑇 and 𝐵 = 𝐿
(0)
𝑦 . □

Let us evaluate the commutator [𝑇, 𝐿
(0)
𝑦 ].

Proposition 4.5. One has

[𝑇, 𝐿(0)
𝑦 ] = 𝜇𝑇1, where

∥∥𝑇1 : 𝐻𝑠(R2
𝑦) −→ 𝐻𝑠−3(R2

𝑦)
∥∥ ≤ 𝐶𝑠

for all 𝑠 with some constants 𝐶𝑠 independent of 𝜇 as 𝜇 → 0.



116 S. Dobrokhotov, D. Minenkov, V. Nazaikinskii and B. Tirozzi

Proof. We have

[𝑇, 𝐿(0)
𝑦 ] = 𝜔4⟨∇𝑦, [∇2

𝑦, 𝜙(𝜇𝑦)]

= 𝜇𝜔4
2∑
𝑗=1

〈
∇𝑦,

(
2𝜙′𝑧𝑗 (𝜇𝑦)

∂

∂𝑦𝑗
+ 𝜇𝜙′′𝑧𝑗𝑧𝑗 (𝜇𝑦)

)
∇𝑦

〉
,

and it remains to recall that 𝜙(𝑧) is uniformly bounded together with all deriva-
tives. □

By Propositions 4.4 and 4.5, we can write

𝑓(𝐿𝑦)− 𝑓(𝐿(0)
𝑦 ) =

𝛿𝑓

𝛿𝜉
(
3

𝐿𝑦,
2

𝐿(0)
𝑦 )

1

𝑇 + 𝜇
𝛿2𝑓

𝛿𝜉2
(
4

𝐿𝑦,
3

𝐿(0)
𝑦 ,

1

𝐿(0)
𝑦 )

2

𝑇 1.

Accordingly,

ℛ =
(
𝑓(𝐿𝑦)− 𝑓(𝐿(0)

𝑦 )
)
𝑉 = 𝐴𝑊 + 𝜇𝐵𝑉, (4.11)

where

𝑊 = 𝑇𝑉, 𝐴 =
𝛿𝑓

𝛿𝜉
(
2

𝐿𝑦,
1

𝐿(0)
𝑦 ), 𝐵 =

𝛿2𝑓

𝛿𝜉2
(
4

𝐿𝑦,
3

𝐿(0)
𝑦 ,

1

𝐿(0)
𝑦 )

2

𝑇 1. (4.12)

Let us estimate the expression (4.11) for 𝑓 = 𝑓𝑗 , 𝑗 = 1, 2, 3, 4.

Proposition 4.6. One has 𝑉 ∈ 𝐻𝑠(R2
𝑦) for every 𝑠.

Proof. This follows from the estimates (2.4). □
Proposition 4.7. For every 𝑠, one has 𝑊 ∈ 𝐻𝑠(R2

𝑦) and

∥𝑊∥𝐻𝑠(R2
𝑦)
= 𝑂(𝜇), 𝜇 → 0.

Proof. We have
𝜙(𝜇𝑦) = 𝜇⟨𝐹 (𝜇𝑦), 𝑦⟩,

where the vector function

𝐹 (𝑧) =

∫ 1

0

∂𝜙

∂𝑧
(𝜃𝑧) 𝑑𝜃

is bounded together with all derivatives, and hence for the function 𝑊 = 𝑇𝑉 we
obtain

𝑊 (𝑦) = 𝜇𝜔2

(
∂

∂𝑦1
⟨𝐹 (𝜇𝑦), 𝑦⟩∂𝑉 (𝑦)

∂𝑦1
+

∂

∂𝑦2
⟨𝐹 (𝜇𝑦), 𝑦⟩∂𝑉 (𝑦)

∂𝑦2

)
.

Since, by virtue of the estimates (2.4), the function 𝑦𝑗∂𝑉 (𝑦)/∂𝑦𝑘 lies in 𝐻𝑠(R2
𝑦)

for every 𝑠, we arrive at the desired assertion. □
Proposition 4.8. Let 𝑓 = 𝑓𝑗, 𝑗 = 1, 2, 3, 4. Then for each 𝑠 ∈ R there exists a
constant 𝐶𝑠 independent of 𝜇 → 0 such that∥∥𝐴 : 𝐻𝑠(R2

𝑦) → 𝐻𝑠(R2
𝑦)
∥∥ ≤ 𝐶𝑠,

∥∥𝐵 : 𝐻𝑠(R2
𝑦) → 𝐻𝑠−3(R2

𝑦)
∥∥ ≤ 𝐶𝑠

for 𝑗 = 1, 2,
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∥∥𝐴 : 𝐻𝑠(R2
𝑦) → 𝐻𝑠(R2

𝑦)
∥∥ ≤ 𝐶𝑠𝑒

−𝜈𝑡,
∥∥𝐵 : 𝐻𝑠(R2

𝑦) → 𝐻𝑠−3(R2
𝑦)
∥∥ ≤ 𝐶𝑠𝑒

−𝜈𝑡

for 𝑗 = 3, 4.

Proof. We make use of the following representation of the 𝑘th difference quotient:

𝛿𝑘𝑓

𝛿𝜉𝑘
(𝜉1, . . . , 𝜉𝑘+1) =

∫
Δ𝑘

𝑓 (𝑘)(𝜃1𝜉1 + ⋅ ⋅ ⋅+ 𝜃𝑘+1𝜉𝑘+1) 𝑑𝜃1 ⋅ ⋅ ⋅ 𝑑𝜃𝑘

=
1√
2𝜋

∫
Δ𝑘

(∫ ∞

−∞
𝑓 (𝑘)(𝑝)𝑒𝑖𝑝(𝜃1𝜉1+⋅⋅⋅+𝜃𝑘+1𝜉𝑘+1)𝑑𝑝

)
𝑑𝜃1 ⋅ ⋅ ⋅ 𝑑𝜃𝑘,

where 𝑓 (𝑘)(𝑝) is the Fourier transform of the 𝑘th derivative 𝑓 (𝑘)(𝜉) and

Δ𝑘 = {(𝜃1, . . . , 𝜃𝑘+1 ∈ R𝑘+1 : 𝜃1 + ⋅ ⋅ ⋅+ 𝜃𝑘+1 = 1, 𝜃𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑘 + 1}
is the standard 𝑘-simplex. Hence

𝛿𝑓

𝛿𝜉
(
2

𝐿𝑦,
1

𝐿(0)
𝑦 ) =

1√
2𝜋

∫
Δ1

(∫ ∞

−∞
𝑓 ′(𝑝)𝑒𝑖𝑝𝜃1𝐿𝑦𝑒𝑖𝑝𝜃2𝐿

(0)
𝑦 𝑑𝑝

)
𝑑𝜃1,

𝛿2𝑓

𝛿𝜉2
(
4

𝐿𝑦,
3

𝐿(0)
𝑦 ,

1

𝐿(0)
𝑦 )

2

𝑇 1

=
1√
2𝜋

∫
Δ2

(∫ ∞

−∞
𝑓 ′′(𝑝)𝑒𝑖𝑝𝜃1𝐿𝑦𝑒𝑖𝑝𝜃2𝐿

(0)
𝑦 𝑇1𝑒

𝑖𝑝𝜃3𝐿
(0)
𝑦 𝑑𝑝

)
𝑑𝜃1𝑑𝜃2.

(4.13)
Let us estimate the operators (4.13). To this end, we use the following lemma.

Lemma 4.9. For each 𝑠, there exists a constant 𝐶𝑠 independent of 𝜇 → 0 such that∥∥𝑒𝑖𝑡𝐿𝑦 : 𝐻𝑠(R2
𝑦) → 𝐻𝑠(R2

𝑦)
∥∥ ≤ 𝐶𝑠,

∥∥∥𝑒𝑖𝑡𝐿(0)
𝑦 : 𝐻𝑠(R2

𝑦) → 𝐻𝑠(R2
𝑦)
∥∥∥ ≤ 𝐶𝑠

for all 𝑡 ∈ R.

Proof. For 𝑠 = 0, the claim is obvious, because the operators 𝐿
(0)
𝑦 and 𝐿𝑦 are self-

adjoint in 𝐿2(R𝑦). For other values of 𝑠, one equips 𝐻𝑠(R2
𝑦) with the equivalent

norm
∥∥(1 + 𝐿𝑦)

𝑠/2𝑢
∥∥, so that the operator 𝐿𝑦 becomes self-adjoint. This norm

depends on the parameter 𝜇, but it is not hard to prove (for positive integer 𝑠
by a straightforward computation, and for other 𝑠 by duality and interpolation)
that the constants in the inequalities specifying the equivalence of norms remain

bounded as 𝜇 → 0. The argument for 𝐿
(0)
𝑦 is simpler, because the parameter 𝜇 is

not involved. The proof of Lemma 4.9 is complete. □

Now we can finish the proof of Proposition 4.8. If 𝑓 = 𝑓1, 𝑓2, 𝑓3, or 𝑓4, then
it follows from Lemma 4.3 that the Fourier transforms of 𝑓 ′ and 𝑓 ′′ belong to
𝐿1(R), and in the case of 𝑓3 and 𝑓4 the 𝐿1-norm decays as 𝑒−𝜈𝑡. By combining
this with Lemma 4.9 and with the estimate for 𝑇1 in Proposition 4.5, we arrive at
the assertion of Proposition 4.8. □
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By applying Propositions 4.6, 4.7, and 4.8 to formulas (4.11) and (4.12), we
find that ℛ = 𝑂(𝜇) in all 𝐻𝑠(R2

𝑦) for 𝑓 = 𝑓1 and 𝑓 = 𝑓2 and ℛ = 𝑂(𝜇𝑒−𝜈𝑡) in all
𝐻𝑠(R2

𝑦) for 𝑓 = 𝑓3 and 𝑓 = 𝑓4. Let us finally estimate the remainders 𝑅𝑗 in (4.3).

We should take into account the additional factor 𝜆−1 for 𝑗 = 2 and pass from the
variables 𝑦 to the original variables 𝑥 = 𝜇𝑦. Since

∥𝑢∥𝑠 ≡ ∥𝑢∥𝐻𝑠(R2
𝑥)

≤ 𝜇1−𝑠 ∥𝑢∥𝐻𝑠(R2
𝑦)

for 𝜇 ≤ 1 and 𝑠 > 0, (4.14)

we arrive at the desired estimates (4.4). For example, for 𝑅2 we obtain

∥𝑅2∥2 ≤ 𝐶𝜇𝜆−1𝜇1−2 = 𝐶𝜆−1 ≤ 𝐶𝜔

𝑐0
𝜇

(where the factor 𝜆−1 comes from (4.2) and the factor 𝜇1−2 = 𝜇−1 from (4.14) for
𝑠 = 2). The estimates for 𝑅1 and 𝑅3 are similar. The proof of Theorem 4.2 and
hence of Lemmas 3.2 and 3.5 is complete. □

5. Examples

In conclusion, let us present two simple examples in which the asymptotics of the
solution of the Cauchy problem (2.1), (2.2) with a special right-hand side will be
demonstrated. Namely, we use the right-hand side (2.3), 𝑄(𝑥, 𝑡) = 𝜆2𝑔′0(𝜆𝑡)𝑉 (𝑥/𝜇),
where 𝑉 (𝑦) = 𝐴(1 + (𝑦1/𝑏1)

2 + (𝑦2/𝑏2)
2)−3/2 is the simplest spatial shape fac-

tor (2.11) and the function 𝑔0(𝜏) is given by one of formulas (a) (a sine source)
and (b) (a polynomial source) in Eq. (2.13).

Recall that the asymptotics of the solution is given by Theorem 3.1, Eqs. (3.1)
and (3.2) (the transient solution component) and by Theorem 3.8, Eq. (3.22) (the
propagating solution component away from the focal points). The transient com-
ponent 𝜂trans(𝑥, 𝑡) and the wave profile 𝐹 (𝑧, 𝜓) (see (3.23)) of the propagating
component depend only on the right-hand side and on the parameters 𝜆, 𝜇, and
𝜔; they are represented by integrals which, for our choice of the right-hand side,
can be evaluated (or, in the case of the transient component, considerably simpli-
fied) analytically. The other ingredients of the asymptotic formula (3.22) for the
propagating component (the phase functions 𝑆𝑗(𝑥, 𝑡), the Lagrangian coordinates
𝜓𝑗(𝑥, 𝑡), the Morse index 𝑚(𝜓0

𝑗 , 𝑡), and the factors responsible for the Green law
and for the trajectory divergence) depend on the solution of the Cauchy problem
(3.21) for the Hamiltonian system (3.17), which, except for the simplest cases,
should be solved numerically.

Accordingly, our exposition in both examples is as follows. First, we find the
function 𝐺0(𝜉, 𝑡) (2.32), which plays a crucial role in all subsequent calculations.
Then we write out the wave profile 𝐹 (𝑧, 𝜓) and finally present the expression for
the transient component 𝜂trans(𝑥, 𝑡) of the solution. In the second example, we
also numerically compute the trajectories and display snapshots of the solution
obtained with the use of Wolfram Mathematica.
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The calculations are mostly carried out in polar coordinates, so let us rewrite
formula (2.12) for the Fourier transform of 𝑉 in the polar coordinates (𝜌, 𝜓), where
𝑝 = 𝜌n(𝜓) with n(𝜓) = (cos𝜓, sin𝜓):

𝑉
(
𝜌n(𝜓)

)
= 𝐴𝑏1𝑏2𝑒

−𝜌𝛽(𝜓), where 𝛽(𝜓) ≡
√

𝑏21 cos
2 𝜓 + 𝑏22 sin

2 𝜓. (5.1)

5.1. The case of a sine source

Let
𝑔0(𝜏) = 𝑎𝑒−𝜏 (sin(𝛼𝜏 + 𝜙0)− sin𝜙0),

where 𝑎 = (𝛼2 + 1)/(𝛼 cos𝜙0 − 𝛼2 sin𝜙0) is a normalizing factor. By evaluating
the integral in (2.32), we obtain

𝐺0(𝜉, 𝑡) = 𝑎𝑒−𝑡
( 𝑖𝑒−𝑖(𝛼𝑡+𝜙0)/2
1 + 𝑖𝛼+ 𝑖𝜉

− 𝑖𝑒𝑖(𝛼𝑡+𝜙0)/2

1− 𝑖𝛼+ 𝑖𝜉
− sin𝜙0
1 + 𝑖𝜉

)
. (5.2)

We see that 𝐺0(𝜉, 𝑡) is a rational function of 𝜉. Moreover, a routine compu-
tation (which we omit) shows that it can be represented in the form

𝐺0(𝜉, 𝑡) =
∑
𝑚

𝑞𝑚(𝑡)
(
𝑅𝑚(𝜉

2) + 𝑖𝜉𝑄𝑚(𝜉
2)
)
, (5.3)

where 𝑅𝑚(𝜁) and 𝑄𝑚(𝜁) are rational functions with real coefficients and with de-
nominators nonvanishing for 𝜁 ≥ 0. This is, of course, consistent with the assertion
in Lemma 4.1 concerning the parity of the real and imaginary parts of 𝐺0. As to
𝑔0(𝜉), we have

𝑔0(𝜉) =
1√
2𝜋

𝐺0(𝜉, 0) =
𝑎√
2𝜋

( 𝑖𝑒−𝑖𝜙0/2
1 + 𝑖𝛼+ 𝑖𝜉

− 𝑖𝑒𝑖𝜙0/2

1− 𝑖𝛼+ 𝑖𝜉
− sin𝜙0
1 + 𝑖𝜉

)
. (5.4)

To evaluate the wave profile 𝐹 (𝑧, 𝜓) of the propagating solution component,
we substitute the functions (5.1) and (5.4) into formula (3.23) and obtain

𝐹 (𝑧, 𝜓) =
𝑎𝐴𝑏1𝑏2𝑒

−𝑖𝜋/4
√
2𝜋𝜔3/2

×
∫ ∞

0

√
𝜌
( 𝑖𝑒−𝑖𝜙0/2
1 + 𝑖𝛼 − 𝑖𝜌

− 𝑖𝑒𝑖𝜙0/2

1− 𝑖𝛼 − 𝑖𝜌
− sin𝜙0
1− 𝑖𝜌

)
𝑒−𝜌𝜔

−1(𝛽(𝜓)−𝑖𝑧)𝑑𝜌

=
𝑎𝐴𝑏1𝑏2𝑒

−𝑖𝜋/4
√
2𝜋𝜔3/2

[ 𝑖

2
𝑒−𝑖𝜙0I0

(
𝜔−1(𝛽(𝜓)− 𝑖𝑧), 1 + 𝑖𝛼

)
− 𝑖

2
𝑒𝑖𝜙0I0

(
𝜔−1(𝛽(𝜓) − 𝑖𝑧), 1− 𝑖𝛼

)− I0
(
𝜔−1(𝛽(𝜓) − 𝑖𝑧), 1

)
sin𝜙0

]
,

where the integral

I0(𝐶1, 𝐶2) =

∫ ∞

0

√
𝜌𝑒−𝐶1𝜌 𝑑𝜌

𝐶2 − 𝑖𝜌
, 𝐶1, 𝐶2 ∈ C, Re𝐶1 > 0, arg𝐶2 ∕= 𝜋

2
, (5.5)

can be expressed via the complementary error function

erfc(𝑤) =
2√
𝜋

∫ ∞

𝑤

𝑒−𝑣
2

𝑑𝑣
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by the formula

I0(𝐶1, 𝐶2) =
𝑖
√

𝜋√
𝐶1

+ 𝑒−𝑖𝜋/4𝜋
√

𝐶2𝑒
𝑖𝐶1𝐶2 erfc

(
𝑒𝑖𝜋/4

√
𝐶1𝐶2

)
.

To evaluate the transient term of the solution, we substitute the functions
(5.1) and (5.2) into (3.2) and obtain

𝜂trans(𝑟n(𝜑))

=
𝑎𝐴𝑏1𝑏2𝑒

−𝜆𝑡

2𝜋𝜔2

∫ 2𝜋

0

Re
[ 𝑖

𝑧
(sin(𝛼𝜆𝑡+ 𝜙0)− sin𝜙0) + sin𝜙0

∫ ∞

0

𝑒−𝜌𝑧𝑑𝜌
𝜌 − 𝑖

+
𝛼 − 𝑖

2
𝑒−𝑖(𝛼𝑡+𝜙0)

∫ ∞

0

𝑒−𝜌𝑧𝑑𝜌
𝜌+ 𝛼 − 𝑖

+
𝛼+ 𝑖

2
𝑒𝑖(𝛼𝑡+𝜙0)

∫ ∞

0

𝑒−𝜌𝑧𝑑𝜌
𝜌 − 𝛼 − 𝑖

]
𝑑𝜓 +𝑂(𝜇)

=
𝑎𝐴𝑏1𝑏2𝑒

−𝜆𝑡

2𝜋𝜔2

∫ 2𝜋

0

Re
[ 𝑖

𝑧
(sin(𝛼𝜆𝑡+ 𝜙0)− sin𝜙0)

+ sin𝜙0
𝑖

2
𝑒−𝑖𝑧

(
𝜋 + 2𝑖Ci(𝑧)− 2Si(𝑧)

)
+

𝛼 − 𝑖

2
𝑒−𝑖(𝛼𝑡+𝜙0)𝑒(𝛼−𝑖)𝑧𝐸1

(
(𝛼 − 𝑖)𝑧

)
+

𝛼+ 𝑖

2
𝑒𝑖(𝛼𝑡+𝜙0)𝑒−(𝛼+𝑖)𝑧𝐸1

(−(𝛼+ 𝑖)𝑧
)]

𝑑𝜓 +𝑂(𝜇),

where 𝑧 = 𝑧(𝑟, 𝜑, 𝜓) = 𝜔−1(𝛽(𝜓)− 𝑖𝑟𝜇−1 cos(𝜓 − 𝜑)
)
, Re(𝑧) > 0, and

𝐸1

(
𝑧
) ≡

∫ +∞

𝑧

𝑒−𝑡

𝑡
𝑑𝑡, Ci (𝑧) ≡ −

∫ ∞

𝑧

cos 𝑡

𝑡
𝑑𝑡, Si (𝑧) ≡

∫ 𝑧
0

sin 𝑡

𝑡
𝑑𝑡.

5.2. The case of a polynomial source

Now let

𝑔0(𝜏) = 𝑒−𝜏𝑃 (𝜏),

where

𝑃 (𝜏) =
𝑛∑
𝑘=1

𝑃𝑘
𝑘! 𝜏

𝑘

is a polynomial of degree 𝑛 with coefficients 𝑃𝑘 such that 𝑃0 = 0 and
∑𝑛
𝑘=1 𝑃𝑘 = 1.

Let us use formula (2.32) for 𝐺0(𝜉, 𝜏). Since∫ ∞

0

𝑒−𝑡−𝜏−𝑖𝜉𝜏 (𝑡+ 𝜏)𝑘 𝑑𝜏 = 𝑒−𝑡
(
𝑡+ 𝑖

∂

∂𝜉

)𝑘
1

1 + 𝑖𝜉
,

it follows that

𝐺0(𝜉, 𝑡) = 𝑒−𝑡𝑃
(
𝑡+ 𝑖

∂

∂𝜉

)
1

1 + 𝑖𝜉
, 𝑔0(𝜉) =

1√
2𝜋

𝑃

(
𝑖
∂

∂𝜉

)
1

1 + 𝑖𝜉
, (5.6)
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and we see that 𝐺0(𝜉, 𝑡) again has the form (5.3). Using (5.1), (5.6) and (3.23), we
evaluate the wave profile of the propagating part of the solution as follows:

𝐹 (𝑧, 𝜓) =
𝐴𝑏1𝑏2𝑒

−𝑖𝜋/4
√
2𝜋𝜔3/2

[
𝑃

(
− ∂

∂𝐶2

)
I0(𝜌(𝛽(𝜓) − 𝑖𝑧)/𝜔,𝐶2)

]∣∣∣∣
𝐶2=1

= −𝑖
𝐴𝑏1𝑏2

√
𝜋√

2𝜔3/2
𝑒𝑖𝐶1

[
𝑃
(
−

2

𝐶1

( 1

𝑖+
1

2𝐶1
+

𝑑

𝑑𝐶1

))
erfc(

√
𝑖𝐶1)

)]∣∣∣∣
𝐶1=

𝛽(𝜓)−𝑖𝑧
𝜔

,

where I0(𝐶1, 𝐶2) is the integral (5.5).

Remark 5.1. In both examples, one can prove that the following asymptotic for-
mulas hold for the functions 𝐹 (𝑧, 𝜓) for small 𝜔:

𝐹 (𝑧, 𝜓) =
𝑖𝑏1𝑏2

2
√
2(𝑧 + 𝑖𝛽(𝜓))3/2

+𝑂(𝜔).

This means that for small 𝜔 the solution of the inhomogeneous problem (corre-
sponding to “sources stretched in time”) passes into the solution of the homoge-
neous problem (corresponding to “instantaneous sources”).

Let us compute the transient term of the solution for the case in which 𝑃 (𝜏)
is a second-order polynomial; then

𝐺0(𝜉, 𝑡) = 𝑒−𝑡
(

𝑃2𝑡
2/2 + (𝑃1 − 𝑃2)𝑡 − 𝑃1

1 + 𝜉2
+
2𝑃2𝑡+ 2𝑃1 − 3𝑃2

(1 + 𝜉2)2
+

4𝑃2
(1 + 𝜉2)3

)
− 𝑖𝜉𝑒−𝑡

(
𝑃2𝑡

2/2 + 𝑃1𝑡

1 + 𝜉2
+
2𝑃2𝑡+ 2𝑃1 − 𝑃2

(1 + 𝜉2)2
+

4𝑃2
(1 + 𝜉2)3

)
.

For the transient term, we find

𝜂trans = −𝜆2𝑒−𝜆𝑡
[(

𝑃2𝜆
2𝑡2/2 + (𝑃1 − 𝑃2)𝜆𝑡 − 𝑃1

)
Θ1

(𝑥

𝜇

)
+
(
2𝑃2𝜆

3𝑡+ (2𝑃1 − 3𝑃2)𝜆
2
)
Θ2

(𝑥

𝜇

)
+ 4𝑃2𝜆

4Θ3

(𝑥

𝜇

)]
,

where

Θ𝑘(𝑦, 𝜇) =
𝐴𝑏1𝑏2
2𝜋𝜆2𝑘

∫
ℝ2

𝑒𝑖⟨𝑝,𝑦⟩𝑒−
√
(𝑏1𝑝1)2+(𝑏2𝑝2)2

(1 + (𝜔∣𝑝∣)2)𝑘 𝑑𝑝1𝑑𝑝2.

If we pass to the polar coordinates by setting 𝑦 = 𝑟n(𝜑) and 𝑝 = 𝜌n(𝜓), then we
obtain

Θ𝑘(𝑟n(𝜑), 𝜇) =
𝐴𝑏1𝑏2
2𝜋𝜆2𝑘

∫ ∞

0

∫ 2𝜋

0

𝜌𝑒−𝜌(𝛽(𝜓)−𝑖𝑟 cos(𝜓−𝜑))

(1 + 𝜔2𝜌2)𝑘
𝑑𝜌𝑑𝜓.

Here one can evaluate the integral over 𝜌. For 𝑘 = 1, 2, 3, we obtain

Θ1(𝑟n(𝜑), 𝜇) =
𝐴𝑏1𝑏2
2𝜋𝜆2𝜔2

∫ 2𝜋

0

𝑑𝜓
(
− cos(𝑧)Ci (𝑧) +

1

2
sin(𝑧)

(
𝜋 − 2Si (𝑧)

))
,
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Θ2(𝑟n(𝜑), 𝜇) =
𝐴𝑏1𝑏2
8𝜋𝜆2𝜔2

∫ 2𝜋

0

𝑑𝜓
(
2− 2𝑧 sin(𝑧)Ci(𝑧)− 𝑧 cos(𝑧)

(
𝜋 − 2Si(𝑧)

))
,

Θ3(𝑟n(𝜑), 𝜇) =
𝐴𝑏1𝑏2
32𝜋𝜆2𝜔2

∫ 2𝜋

0

𝑑𝜓
(
4− 𝑧 sin(𝑧)

(
𝜋𝑧 + 2Ci(𝑧)− 2𝑧Si(𝑧)

)
+ 𝑧 cos(𝑧)(−𝜋 + 2𝑧Ci(𝑧) + 2Si(𝑧))

)
,

where 𝑧(𝜓) = 𝜔−1(𝛽 − 𝑖𝑟 cos(𝜓 − 𝜑)).
An illustration of the solution given by the sum of propagating and transient

terms in the second example is shown in Figure 3. Here the propagating part
is calculated for the constant velocity 𝑐(𝑥) ≡ 𝑐0 = 1, and other constants are
𝑏1 = 1, 𝑏2 = 2,Λ = 1, 𝜇 = 0.1, 𝑃1 = 0, 𝑃2 = 1. The first four snapshots are taken
at small times 𝑡 = 0.3, 0.7, 1.0, 1.5 to show how the transient term behaves, and
the last three snapshots are taken at large times 𝑡 = 1.5, 4.0, 6.5. At 𝑡 = 6.5,
the transient term practically disappears, while the propagating part continues its
motion.The function 𝑔0 and the wave profile for 𝑃1 = −2, 𝑃2 = 3, and various 𝜆 are
compared in Figure 4. For small 𝜆, the wave profile has the form that “reproduces”
the shape of the function 𝑔0, while for large 𝜆 the wave profile is almost the same
as for 𝑔0 = 𝛿(𝑡).

References

[1] V.P. Maslov, Operational Methods. Mir, 1973.

[2] V.E. Nazaikinskii, B.Yu. Sternin, and V.E. Shatalov, Methods of Noncommutative
Analysis. Walter de Gruyter, 1996.

[3] V.P. Maslov and M.V. Karasev, Nonlinear Poisson Brackets, Geometry and Quan-
tization. Amer. Math. Soc., 1993.

[4] C.C. Mei, The Applied Dynamics of Ocean Surface Waves. World Scientific, 1989.

[5] E.N. Pelinovski, Hydrodynamics of Tsunami Waves. Nizhni Novgorod, 1996.

[6] Yu.I. Shokin, L.B. Chubarov, A.G. Marchuk, and K.V. Simonov, Numerical Experi-
ment in Tsunami Problem. Nauka, Siberian Branch, 1989.

[7] B.V. Levin, Tsunami and Seequake in the Ocean. Nature 5 (1996), 48–61.

[8] S.F. Dotsenko, B.Yu. Sergievskii, and L.V. Cherkasov, Space Tsunami Waves Gener-
ated by Alternating Displacement of the Ocean Surface. Tsunami Research 1 (1986),
7–14.

[9] S. Wang, The Propagation of the Leading Wave, ASCE Specialty Conference on
Coastal Hydrodynamics, University of Delaware, June 29–July 1, 1987, pp. 657–670.

[10] S.Ya. Sekerzh-Zenkovich, Simple Asymptotic Solution to the Cauchy–Poisson Prob-
lem for Leading Waves. Russ. J. Math. Phys. 16:2 (2009), 215–222.

[11] S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, and T. Tudorovski, Description
of Tsunami Propagation Based on the Maslov Canonical Operator. Doklady Math.
74:1 (2006), 592–596.

[12] S.Yu. Dobrokhotov, A.I. Shafarevich, and B. Tirozzi, Localized Wave and Vortical
Solutions to Linear Hyperbolic Systems and Their Application to the Linear Shallow
Water Equations. Russ. J. Math. Phys. 15:2 (2008), 192–221.



Functions of Noncommuting Operators in an Asymptotic Problem 123
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Abstract. We derive an asymptotic formula for the argument of a Blaschke
product in the upper half-plane with purely imaginary zeros. We then use
this formula to find conditions for the quotient of two such Blaschke products
to be continuous on the real line. These results are applied to certain Hankel
and Toeplitz operators arising in the Cauchy problem for the Korteweg-de
Vries equation. Our main theorems include certain compactness conditions
for Hankel operators and invertibility conditions for Toeplitz operators with
oscillating symbols containing such quotients. As a by-product we obtain a
well-posedness result for the Korteweg-de Vries equation.
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1. Introduction

The theory of Toeplitz operators on Hardy spaces with symbols having discon-
tinuities of the second kind has been in focus of one of the authors (see, e.g.,
[2–5], [9], [14, 15] and the literature cited therein). The range of symbols under
consideration is quite large and varies from discontinuities with rapidly oscillating
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behavior (oscillations of power, exponential and super-exponential types) to slowly
oscillating (e.g., logarithmic). A large variety of generalizations of classical almost
periodic symbols has been considered. For example, the so-called 𝛼-almost peri-
odic and 𝛼-semi-almost periodic symbols have been studied in great detail [3] (see
also [4, 6, 7] for matrix-valued analogs). We note that those generalizations are
highly non trivial. The main problem is that, as opposed to traditional symbols
(continuous or with at most jump discontinuities), the Toeplitz operators with
those more general symbols need not be Fredholm, i.e., the kernels and co-kernels
may be infinitely dimensional. This raises serious problems: finding criteria for one-
sided and generalized invertibility, construction of bases in kernels and co-kernels,
to name just two. Addressing these issues has required developing new methods
(see monographs [7, 9]). We mention here only the method of the so-called “𝑢-
periodic factorizations of symbols”. Further development of the theory of Toeplitz
and Hankel operators with such symbols would therefore be interesting in its own
right due to the nontriviality of its methods.

What is perhaps even more important is that, while the symbols above may
look a bit artificially complicated, there are some problems of mathematical physics
and partial differential equations where such symbols naturally appear. In particu-
lar, a symbol with a cubic oscillation of its argument is a main player in the study
of the Cauchy problem for the Korteweg-de Vries (KdV) equation [18–20].

In the present paper we consider Toeplitz and Hankel operators with symbols
which besides the cubic oscillation contain quotients of Blaschke products with
zeros on the imaginary line. We obtain asymptotics of such Blaschke products and
then use them to find some sufficient conditions for continuity of their quotients.
We then apply these results to study one-sided invertibility of the corresponding
Toeplitz operator and compactness of the Hankel operator. We emphasize that our
interest to this circle of problems was stimulated by certain well-posedness issues
more related to the Cauchy problem for the KdV equation.

Let us describe our main objects in detail. Consider the Blaschke product in
the upper half-plane ℂ+ := {𝑧 ∈ ℂ∣Im 𝑧 > 0}

𝐵(𝑧) =

∞∏
𝑛=1

𝑧 − 𝑖𝜅𝑛
𝑧 + 𝑖𝜅𝑛

, (1.1)

with purely imaginary simple zeros such that

𝜅𝑛 > 𝜅𝑛+1 > 0 and lim𝜅𝑛 = 0, 𝑛 → ∞. (1.2)

Such Blaschke products are of course very specific but they do arise in the spectral
and scattering theories for Schrödinger operators (see, e.g., [17]). Typically, 𝑖𝜅𝑛 =√

𝐸𝑛 where 𝐸𝑛 is the (negative) 𝑛th bound state of a Schrödinger operator.
It is well known (see [10, 16]) that 𝐵(𝑧) is convergent for any

𝑧 ∈ ℂ+ ∖ {0} if and only if
∞∑
𝑛=1

𝜅𝑛 < ∞. (1.3)
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Of course 𝐵(𝑧) is analytic in any neighborhood of a real point 𝑥 not containing
0. We are specifically concerned with the asymptotic behavior of suitably defined
arg𝐵(𝑥) as 𝑥 → 0 and conditions providing continuity at 𝑥 = 0 of

𝑄 (𝑥) :=
𝐵1(𝑥)

𝐵2(𝑥)
, (1.4)

where 𝐵1,2(𝑥) are two Blaschke products given by (1.1). The results obtained are
then applied to the study of Toeplitz and Hankel operators with symbols

𝑎(𝑥) = 𝐷 (𝑥)𝑄 (𝑥) , (1.5)

where either 𝐷 ∈ 𝐻∞
+ + 𝐶(ℝ̇) or 𝐷 ∈ 𝐻∞

+ + 𝐶(ℝ̇). We recall that 𝐻∞
+ stands for

the Hardy space of analytic and bounded functions in the upper half-plane ℂ+

and 𝐶(ℝ̇) is the space of functions continuous on the one point compactification
of the real axis ℝ. The class of operators with such symbols is quite broad (see
(4.10) below) and includes the Hankel and Toeplitz operators arising in the initial
value problem for the Korteweg-de Vries (KdV) equation. We use our results on
Hankel and Toeplitz operators to describe some subtle properties of solutions to
the KdV equation which we believe cannot be achieved by usual PDE methods. We
emphasize that although Hankel operators naturally appear in many other (if not
every) so-called completely integrable systems of nonlinear PDEs (see, e.g., [1]),
not much from the theory of Hankel and Toeplitz operators have been actually
used there so far. We believe that the language of Hankel and Toeplitz operators
is quite adequate in the setting of completely integrable systems and the theory
of those operators will find more useful applications in integrable systems.

This work is organized as follows. In Section 2 we derive an asymptotic for-
mula for the argument of the Blaschke product (1.1). The sufficient conditions of
continuity of the function 𝑄 (𝑥) (1.4) at the point 𝑥 = 0 are given in Section 3.
Applications to the theory of Toeplitz and Hankel operators with oscillating sym-
bol are considered in Section 4. In Section 5 we apply our results to the theory of
the KdV equation.

2. Argument of Blaschke products

Let 𝐵(𝑥) be of the form (1.1)–(1.3) and let the branch of arctan𝑥 be chosen such
that arctan𝑥 ∈ (−𝜋2 , 𝜋2 ) for 𝑥 ∈ ℝ. We define the Blaschke product (1.1) under
conditions (1.2)–(1.3) such that the function

𝐵 : ℝ̇ ∖ {0} → ℂ, 𝑥 �→ 𝐵(𝑥)

is continuous, 𝐵(∞) = 1 and ∣𝐵(𝑥)∣ = 1 for all 𝑥 ∈ ℝ̇ ∖ {0}. So we can choose a
branch of arg𝐵 such that arg𝐵(𝑥) is continuous on ℝ̇ ∖ {0} and arg𝐵(∞) = 0.
The following statement is elementary.
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Theorem 2.1. The function arg𝐵(𝑥) is continuously increasing on ℝ ∖ {0},

arg𝐵(𝑥) = −2
∞∑
𝑛=1

arctan
𝜅𝑛
𝑥

, 𝑥 ∕= 0 (2.1)

and
arg𝐵(𝑥) = − arg𝐵(−𝑥), 𝑥 ∈ ℝ, (2.2)

lim
𝑥→±0

arg𝐵(𝑥) = ∓∞. (2.3)

Proof. Since for ±𝑥 > 0

arg
𝑥 − 𝑖𝜅𝑛
𝑥+ 𝑖𝜅𝑛

= 2 arg(𝑥 − 𝑖𝜅𝑛) = −2 arctan 𝜅𝑛
𝑥

,

we immediately have (2.1) and (2.2). The series is convergent due to the Blaschke
condition (1.3). It follows from

∞∑
𝑛=1

∣∣∣ arctan 𝜅𝑛
𝑥

∣∣∣ > ∑
𝜅𝑛>∣𝑥∣

∣∣∣ arctan 𝜅𝑛
𝑥

∣∣∣ > ∑
𝜅𝑛>∣𝑥∣

𝜋

4

that (2.3) holds. The function −2 arctan 𝜅𝑛
𝑥
is clearly increasing on ℝ+ := (0,+∞)

and ℝ− := (−∞, 0) respectively and so is arg𝐵(𝑥). □
With each Blaschke product 𝐵 of the type (1.1) we associate a function 𝑓

constructed as follows. Fix a point 𝜅1/2 > 𝜅1 and define 𝑓

𝑓 : [1/2,∞)→ (0, 𝜅1/2], 𝑥 �→ 𝑓(𝑥)

as a continuous strictly decreasing function that interpolates the points{(
1/2, 𝜅1/2

)
, (1, 𝜅1) , (2, 𝜅2,) , . . .

}
. That is

𝑓(1/2) = 𝜅1/2, 𝑓(𝑛) = 𝜅𝑛, 𝑛 = 1, 2, . . . . (2.4)

We call such 𝑓 a function associated with a Blaschke product 𝐵 of the type (1.1).
Similarly, given a continuous suitably decreasing function 𝑓 , we call a Blaschke
product 𝐵 of the type (1.1) satisfying (2.4) a Blaschke product associated with 𝑓 .

Hypothesis 2.2. Let 𝐵 (𝑧) be a Blaschke product of the form (1.1)–(1.3) such that:

i) its zeros {𝑖𝜅𝑛} satisfy
lim
𝑛→∞

𝜅𝑛 − 𝜅𝑛+1
𝜅𝑛

= 0; (2.5)

ii) there exists a continuously differentiable associated function 𝑓(𝑥) such that

lim
𝑛→∞ sup

−1/2≤𝑠≤1/2

∣𝑓(𝑛+ 𝑠)− 𝑓(𝑛) + 𝑠(𝜅𝑛 − 𝜅𝑛+1)∣
(𝜅𝑛 − 𝜅𝑛+1)

= 0. (2.6)

Theorem 2.3. Under Hypothesis 2.2

arg𝐵(𝑥) = −2
∞∫

1/2

arctan
𝑓(𝑢)

𝑥
𝑑𝑢+ 𝑜(1), 𝑥 → 0. (2.7)
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Proof. Since the function arg𝐵(𝑥) is odd, it is enough to consider the case 𝑥 > 0.
Let 𝜖𝑛(𝑥) be the difference

𝜖𝑛(𝑥) := arctan
𝜅𝑛
𝑥

−
𝑛+1/2∫
𝑛−1/2

arctan
𝑓(𝑢)

𝑥
𝑑𝑢.

It is easy to see that

𝜖𝑛(𝑥) =

1/2∫
0

[(
arctan

𝑓(𝑛)

𝑥
− arctan

𝑓(𝑛+ 𝑠)

𝑥

)

+

(
arctan

𝑓(𝑛)

𝑥
− arctan

𝑓(𝑛 − 𝑠)

𝑥

)]
𝑑𝑠

=

1/2∫
0

[
arctan

𝑥(𝑓(𝑛)− 𝑓(𝑛+ 𝑠))

𝑥2 + 𝑓(𝑛)𝑓(𝑛+ 𝑠)
+ arctan

𝑥(𝑓(𝑛)− 𝑓(𝑛 − 𝑠))

𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠)

]
𝑑𝑠

=

1/2∫
0

[arctan 𝛿𝑛(𝑠, 𝑥) + arctan 𝛿𝑛(−𝑠, 𝑥)] 𝑑𝑠,

where

𝛿𝑛(𝑠, 𝑥) :=
𝑥(𝑓(𝑛)− 𝑓(𝑛+ 𝑠))

𝑥2 + 𝑓(𝑛)𝑓(𝑛+ 𝑠)
, 𝑠 ∈ [−1/2, 1/2].

By a direct computation

𝜖𝑛(𝑥) =

1/2∫
0

arctan
𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)

1− 𝛿𝑛(𝑠, 𝑥)𝛿𝑛(−𝑠, 𝑥)
𝑑𝑠.

Since −𝛿𝑛(𝑠, 𝑥)𝛿𝑛(−𝑠, 𝑥) > 0, we have

∣𝜖𝑛(𝑥)∣ ≤
1/2∫
0

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣𝑑𝑠.

For 𝑠 ∈ [−1/2, 1/2], we set
Δ𝑛 := 𝜅𝑛 − 𝜅𝑛+1,

Δ(1)
𝑛 (𝑠) := 𝑓(𝑛+ 𝑠)− 𝑓(𝑛),

Δ(2)
𝑛 (𝑠) := Δ(1)

𝑛 (𝑠)− 𝑠Δ(1)
𝑛 (1).

Note that Δ
(1)
𝑛 (1) = −Δ𝑛, Δ(2)

𝑛 (1) = 0 and

Δ(2)
𝑛 (𝑠) = 𝑓(𝑛+ 𝑠)− 𝑓(𝑛) + 𝑠(𝜅𝑛 − 𝜅𝑛+1). (2.8)



132 S. Grudsky and A. Rybkin

Let us evaluate now

𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥) = − 𝑥

{
Δ
(2)
𝑛 (𝑠)

𝑥2 + 𝑓(𝑛)𝑓(𝑛+ 𝑠)
+

Δ
(2)
𝑛 (−𝑠)

𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠)

+
𝑠Δ𝑛(𝑓(𝑛+ 𝑠)− 𝑓(𝑛 − 𝑠))𝑓(𝑛)

(𝑥2 + 𝑓(𝑛)𝑓(𝑛+ 𝑠))(𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠))

}
= − 𝑥

{
Δ
(2)
𝑛 (𝑠)

𝑥2 + 𝑓(𝑛)𝑓(𝑛+ 𝑠)
+

Δ
(2)
𝑛 (−𝑠)

𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠)

+
𝑠Δ𝑛(Δ

(1)
𝑛 (𝑠)−Δ

(1)
𝑛 (−𝑠))𝑓(𝑛)

(𝑥2 + 𝑓(𝑛)𝑓(𝑛+ 𝑠))(𝑥2 + 𝑓(𝑛)𝑓(𝑛 − 𝑠))

}
.

Consider two cases: 𝑓(𝑛) ≥ 𝑥 and 𝑓(𝑛) < 𝑥. If 𝑓(𝑛) ≥ 𝑥, then

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣ ≤
𝑥
∣∣∣Δ(2)
𝑛 (𝑠)

∣∣∣
𝑓(𝑛)𝑓(𝑛+ 𝑠)

+
𝑥
∣∣∣Δ(2)
𝑛 (−𝑠)

∣∣∣
𝑓(𝑛)𝑓(𝑛 − 𝑠)

+
𝑥 ∣𝑠∣ Δ𝑛(∣Δ(1)

𝑛 (𝑠)∣+ ∣Δ(1)
𝑛 (−𝑠)∣)

𝑓(𝑛)𝑓(𝑛+ 𝑠)𝑓(𝑛 − 𝑠)
.

Since for 𝑠 ∈ [−1/2, 1/2]
𝑓(𝑛+ 𝑠) > 𝑓(𝑛+ 1)

and

∣Δ(1)
𝑛 (∣𝑠∣)∣ < Δ𝑛, Δ(1)

𝑛 (−∣𝑠∣) < Δ𝑛−1,
one has

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣ <
{

∣Δ(2)
𝑛 (𝑠)∣+ ∣Δ(2)

𝑛 (−𝑠)∣
Δ𝑛

+
Δ𝑛 +Δ𝑛−1
2𝑓(𝑛)

}
𝑥Δ𝑛

𝑓(𝑛)𝑓(𝑛+ 1)
.

Recalling (2.8), it follows from (2.6) and (2.5) that1

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣ ≲ 𝛼𝑛
𝑥Δ𝑛

𝑓(𝑛)𝑓(𝑛+ 1)
,

where 𝛼𝑛 is independent of 𝑠, and lim
𝑛→∞𝛼𝑛 = 0.

If 𝑓(𝑛) < 𝑥 then

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣

≲ ∣Δ(2)
𝑛 (𝑠)∣
𝑥

+
∣Δ(2)
𝑛 (−𝑠)∣

𝑥
+

𝑠Δ𝑛

{
∣Δ(1)
𝑛 (𝑠)∣+ ∣Δ(1)

𝑛 (−𝑠)∣
}

𝑓(𝑛)

𝑥3
.

It follows from (2.6) that

sup
−1/2≤𝑠≤1/2

∣Δ(1)
𝑛 (𝑠)∣
Δ𝑛

= sup
−1/2≤𝑠≤1/2

∣Δ(2)
𝑛 (𝑠)− 𝑠Δ𝑛∣

Δ𝑛

1We write 𝑓 ≲ 𝑔 if 𝑓 ≤ 𝐶𝑔 with some 𝐶 > 0 independent of arguments of the functions 𝑓 and 𝑔.
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is bounded with respect to 𝑛 and hence{
∣Δ(1)
𝑛 (𝑠)∣+ ∣Δ(1)

𝑛 (−𝑠)∣
} 𝑠𝑓(𝑛)Δ𝑛

𝑥3

≲ ∣Δ(1)
𝑛 (𝑠)∣+ ∣Δ(1)

𝑛 (−𝑠)∣
Δ𝑛

(
Δ𝑛
𝑥

)2

≲
(
Δ𝑛
𝑥

)2

.

Therefore

∣𝛿𝑛(𝑠, 𝑥) + 𝛿𝑛(−𝑠, 𝑥)∣ ≲ ∣Δ(2)
𝑛 (𝑠)∣+ ∣Δ(2)

𝑛 (−𝑠)∣
Δ𝑛

⋅ Δ𝑛
𝑥
+

(
Δ𝑛
𝑥

)2

≲ 𝛽𝑛
Δ𝑛
𝑥

,

where 𝛽𝑛 is independent of 𝑠 and lim
𝑛→∞ 𝛽𝑛 = 0 , and we finally have

∣𝜖𝑛(𝑥)∣ ≲

⎧⎨⎩
𝛼𝑛

𝑥Δ𝑛
𝑓(𝑛)𝑓(𝑛+ 1)

, 𝑓(𝑛) ≥ 𝑥

𝛽𝑛
Δ𝑛
𝑥

, 𝑓(𝑛) < 𝑥.

We now estimate the remainder 𝛿(𝑥) := arg𝐵(𝑥) + 2

∞∫
1/2

arctan
𝑓(𝑢)

𝑥
𝑑𝑢

for 𝑥 > 0 small enough. We have

∣𝛿(𝑥)∣ ≲
∞∑
𝑛=1

∣𝜖𝑛(𝑥)∣ ≤
⎧⎨⎩ ∑
𝑓(𝑛)≥√

𝑥

+
∑

𝑥≤𝑓(𝑛)<√𝑥
+

∑
𝑓(𝑛)<𝑥

⎫⎬⎭ ∣𝜖𝑛(𝑥)∣

≲
∑

𝑓(𝑛)≥√
𝑥

𝑥

{
1

𝑓(𝑛+ 1)
− 1

𝑓(𝑛)

}
+

∑
𝑥≤𝑓(𝑛)<√𝑥

𝜎1(𝑥)𝑥

{
1

𝑓(𝑛+ 1)
− 1

𝑓(𝑛)

}

+
∑
𝑓(𝑛)<𝑥

𝜎2(𝑥)

𝑥
{𝑓(𝑛)− 𝑓(𝑛+ 1)} ,

where

𝜎1(𝑥) := sup
{
𝛼𝑛 : 𝑥 ≤ 𝑓(𝑛) <

√
𝑥
}
, 𝜎2(𝑥) := sup {𝛽𝑛 : 𝑓(𝑛) < 𝑥} .

Thus, we have

∣𝛿(𝑥)∣ ≲ 𝑥

(
1

𝑓(𝑛1 + 1)
− 1

𝑓(1)

)
+ 𝑥𝜎1(𝑥)

(
1

𝑓(𝑛2 + 1)
− 1

𝑓(𝑛1 + 1)

)
+

𝜎2(𝑥)

𝑥
𝑓(𝑛2 + 1),

where

𝑛1 = max
{
𝑛 : 𝑓(𝑛) ≥ √

𝑥
}
, 𝑛2 = max {𝑛 : 𝑓(𝑛) ≥ 𝑥} .

It is easy to see that

lim
𝑥→0

𝜎1(𝑥) = lim
𝑥→0

𝜎2(𝑥) = lim
𝑥→0

𝑥

𝑓(𝑛1 + 1)
= 0
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and

lim
𝑥→0

𝑥

𝑓(𝑛2 + 1)
= 1.

Hence lim𝑥→0 𝛿(𝑥) = 0, and the theorem is proved. □

Theorem 2.4. Under Hypothesis 2.2

arg𝐵(𝑥) =
𝜋

2
sgn (𝑥) − 2𝑥

1∫
0

𝑓−1(𝑣)
𝑥2 + 𝑣2

𝑑𝑣 + 𝑜(1), 𝑥 → 0, (2.9)

where 𝑓−1 : (0, 𝜅1/2] → [1/2,∞) is the inverse function of 𝑓 .

Proof. As above we may assume 𝑥 > 0. By Theorem 2.3 for 𝑥 → 0 one has

arg𝐵(𝑥) = −2
∞∫

1/2

arctan
𝑓(𝑢)

𝑥
𝑑𝑢 + 𝑜(1)

= −2𝑢 arctan 𝑓(𝑢)

𝑥

∣∣∣∣∞
1/2

+ 2𝑥

∞∫
1/2

𝑢𝑓 ′(𝑢)𝑑𝑢
𝑥2 + 𝑓2(𝑢)

+ 𝑜(1)

= arctan
𝜅1/2

𝑥
+ 2𝑥

∞∫
1/2

𝑢𝑑 𝑓(𝑢)

𝑥2 + 𝑓2(𝑢)
+ 𝑜(1).

Here we have used

lim
𝑢→∞ 𝑢 arctan

(
𝑓(𝑢)

𝑥

)
= 0, (2.10)

that can be easily shown by contradiction. If (2.10) does not hold, then there exists
a sequence of positive numbers {𝑢𝑛}∞𝑛=1 such that

lim
𝑛→∞𝑢𝑛 = ∞ (2.11)

and

𝑢𝑛𝑓(𝑢𝑛) ≥ 𝛿 > 0. (2.12)

By the definition of the function 𝑓(𝑢), the integral

𝐼 :=

∞∫
𝑢1

𝑓(𝑢) 𝑑𝑢



Blaschke Products and KdV Equation 135

is finite. Since 𝑓(𝑢) is a continuous strictly decreasing function it follows from
(2.12) that

𝐼 =

∞∑
𝑛=1

𝑢𝑛+1∫
𝑢𝑛

𝑓(𝑢) 𝑑𝑢 ≥ 𝛿

∞∑
𝑛=1

𝑢𝑛+1 − 𝑢𝑛
𝑢𝑛+1

≳ 𝛿

∞∑
𝑛=1

∣∣∣∣ln(1− 𝑢𝑛+1 − 𝑢𝑛
𝑢𝑛+1

)∣∣∣∣
= 𝛿 ln

∞∏
𝑛=1

𝑢𝑛+1
𝑢𝑛

.

Thus the last infinite product is convergent, and hence

lim
𝑁→∞

𝑁∏
𝑛=1

𝑢𝑛+1
𝑢𝑛

= lim
𝑁→∞

𝑢𝑁+1
𝑢1

must be finite, which contradicts (2.11). Thus (2.10) holds true.
Changing the variable 𝑣 = 𝑓(𝑢) we continue

arg𝐵(𝑥) = arctan
𝜅1/2

𝑥
− 2𝑥

𝜅1/2∫
0

𝑓−1(𝑣)𝑑𝑣
𝑥2 + 𝑣2

+ 𝑜(1)

= −2𝑥
1∫

0

𝑓−1(𝑣)𝑑𝑣
𝑥2 + 𝑣2

+ 2𝑥

1∫
𝜅1/2

𝑓−1(𝑣)𝑑𝑣
𝑥2 + 𝑣2

+ arctan
(𝜅1/2

𝑥

)
+ 𝑜(1).

Due to lim
𝑥→0

arctan
𝜅1/2

𝑥
=

𝜋

2
and sup

{
𝑓−1(𝑣) : 𝑣 ∈ [𝜅1/2, 1]

}
< ∞ we have

2𝑥

∣∣∣∣∣∣∣
1∫

𝜅1/2

𝑓−1(𝑣)𝑑𝑣
𝑥2 + 𝑣2

∣∣∣∣∣∣∣ ≲ 𝑥

∣∣∣∣∣∣∣
1∫

𝜅1/2

𝑑𝑣

𝑥2 + 𝑣2

∣∣∣∣∣∣∣ =
∣∣∣∣arctan 1𝑥 − arctan

𝜅1/2

𝑥

∣∣∣∣ .
That is

lim
𝑥→0

2𝑥

1∫
𝜅1/2

𝑓−1(𝑣)
𝑥2 + 𝑣2

𝑑𝑣 = 0

and (2.9) follows. □

In place of Hypothesis 2.2 we can state somewhat stronger.

Hypothesis 2.5. Let 𝐵 (𝑧) be a Blaschke product of the form (1.1)–(1.3) that has
an associated function 𝑓(𝑥) such that ∣𝑓 ′(𝑥)∣ is decreasing and

lim
𝑛→∞

𝑓 (𝑙)(𝑛)− 𝑓 (𝑙)(𝑛+ 1)

𝑓 (𝑙)(𝑛)
= 0, 𝑙 = 0, 1. (2.13)
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Hypothesis 2.5 implies Hypothesis 2.2. For 𝑙 = 0 condition (2.13) is the same
as i) of Hypothesis 2.2 and one only needs to show that (2.13) for 𝑙 = 1 implies
(2.6). Indeed, it is easy to see that

Δ(2)
𝑛 (𝑠) = 𝑓 ′(𝑛0)𝑠 − 𝑓 ′(𝑛1)𝑠 = (𝑓 ′(𝑛0)− 𝑓 ′(𝑛1))𝑠,

with some 𝑛0 and 𝑛1 from [𝑛, 𝑛+ 1] and [𝑛, 𝑛+ 𝑠] respectively. One has∣∣∣∣∣Δ(2)
𝑛 (𝑠)

Δ𝑛

∣∣∣∣∣ =
∣∣∣∣𝑓 ′(𝑛0)− 𝑓 ′(𝑛1)

𝑓 ′(𝑛1)

∣∣∣∣ 𝑠 ≤
∣∣∣∣𝑓 ′(𝑛 − 1)− 𝑓 ′(𝑛+ 1)

𝑓 ′(𝑛+ 1)

∣∣∣∣
≤
∣∣∣∣𝑓 ′(𝑛 − 1)− 𝑓 ′(𝑛)

𝑓 ′(𝑛 − 1)

∣∣∣∣ ∣∣∣∣𝑓 ′(𝑛 − 1)

𝑓 ′(𝑛+ 1)

∣∣∣∣+ ∣∣∣∣𝑓 ′(𝑛)− 𝑓 ′(𝑛+ 1)
𝑓 ′(𝑛)

∣∣∣∣ ∣∣∣∣ 𝑓 ′(𝑛)
𝑓 ′(𝑛+ 1)

∣∣∣∣ .
Since 𝑓 ′(𝑥) satisfies (2.13) we immediately conclude that (2.6) holds.

Hypothesis 2.5 is of course much easier to verify and a simple example is in
order.

Example. Take
𝑓(𝑥) = 𝑥−𝛼 ln𝛽 𝑥, (2.14)

where 𝛽 is any real number if 𝛼 > 1 and 𝛽 < −1 if 𝛼 = 1. It follows from

𝑓 ′(𝑥) = −𝑓(𝑥)

𝑥

(
𝛼 − 𝛽

ln𝑥

)
,

that 𝑓(𝑥) is continuous and decreasing for 𝑥 large enough. Moreover for some
𝑛0 ∈ [𝑛, 𝑛+ 1] ∣∣∣∣𝑓(𝑛)− 𝑓(𝑛+ 1)

𝑓(𝑛)

∣∣∣∣ = ∣∣∣∣𝑓 ′(𝑛0)𝑓(𝑛)

∣∣∣∣ → 0

and condition (2.13) for 𝑙 = 0 holds. Similarly using the second derivative of
𝑓(𝑥) one verifies that (2.13) holds also for 𝑙 = 1. Therefore any Blaschke product
associated with the function (2.14) satisfies Hypothesis 2.5.

Let us demonstrate now how Theorem 2.4 applies in the case of (2.14) with
𝛼 > 1 and 𝛽 = 0.

Example. Take
𝑓(𝑥) = 𝑥−𝛼, 𝛼 > 1,

then 𝑓−1(𝑣) = 𝑣−1/𝛼 and by (2.9) for 𝑥 > 0 we have

arg𝐵(𝑥) =
𝜋

2
− 2𝑥

1∫
0

𝑣−1/𝛼

𝑥2 + 𝑣2
𝑑𝑣 + 𝑜(1) =

𝜋

2
− 2𝑥−1/𝛼

1/𝑥∫
0

𝑢−1/𝛼 𝑑𝑢

1 + 𝑢2
+ 𝑜(1), 𝑥 → 0.

Due to the symmetry of arg𝐵(𝑥) we finally obtain

arg𝐵(𝑥) =
(𝜋

2
− 𝑐∣𝑥∣− 1

𝛼

)
sgn (𝑥) + 𝑜(1), 𝑥 → 0,

where 𝑐 := 2

∞∫
0

𝑢−1/𝛼

1 + 𝑢2
𝑑𝑢.
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3. Quotient of Blaschke products

In this section we consider the continuity of the quotient 𝑄 (𝑥) = 𝐵1(𝑥)/𝐵2(𝑥) of
Blaschke products 𝐵1,2(𝑥) subject to Hypothesis 2.2. More specifically, we study
conditions on 𝐵1,2 providing continuity of arg𝑄 (𝑥) as 𝑥 = 0. The following state-
ment is the main result of this section.

Theorem 3.1. Let 𝐵1,2 be subject to Hypothesis 2.2 and 𝑓1,2 be associated with 𝐵1,2

functions. Set

𝑟 (𝑣) := 𝑓−11 (𝑣)− 𝑓−12 (𝑣) .

The function arg𝑄 (𝑥) is continuos at 𝑥 = 0 if at least one of the following holds:

i) lim
𝑣→0

𝑟(𝑣) exists;

ii) there exists 𝑐1 ∈ ℂ, such that
𝑣∫
0

𝑟(𝑠)𝑑𝑠 − 𝑐1𝑣 = 𝑜(𝑣).

Proof. Let 𝑥 > 0 and assume condition i). Then by Theorem 2.4 we have

arg𝑄 (𝑥) = −2𝑥
1∫

0

𝑟(𝑣)

𝑥2 + 𝑣2
𝑑𝑣 + 𝑜(1), 𝑥 → 0.

Introduce a function 𝑂1(𝑣) := 𝑟(𝑣) − 𝑟0 where 𝑟0 = lim
𝑣→0

𝑟(𝑣). Then, by i), we get

arg𝑄 (𝑥) = −2𝑟0
1∫

0

𝑥 𝑑𝑣

𝑥2 + 𝑣2
− 2𝑥

1∫
0

𝑂1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
+ 𝑜(1)

= −2𝑟0 arctan 1
𝑥

− 2𝑥

1∫
0

𝑂1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
+ 𝑜(1).

Estimate the integral in the last equation:∣∣∣∣∣∣𝑥
1∫

0

𝑂1(𝑣)

𝑥2 + 𝑣2
𝑑𝑣

∣∣∣∣∣∣ ≲ 𝛼(𝑥)

√
𝑥∫

0

𝑥 𝑑𝑣

𝑥2 + 𝑣2
+

1∫
√
𝑥

𝑥 𝑑𝑣

𝑥2 + 𝑣2

= 𝛼(𝑥) arctan𝑥−1/2 + (arctan𝑥−1 − arctan𝑥−1/2),

where 𝛼(𝑥) = sup {∣𝑂1(𝑣)∣ : 𝑣 ∈ [0,√𝑥]}. Thus we obtain

lim
𝑥→0

𝑥

1∫
0

𝑂1(𝑣)𝑑𝑣

𝑥2 + 𝑣2
= 0

and the theorem is proven under condition i).
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Assume that ii) is satisfied. Denoting 𝐹 (𝑣) :=
𝑣∫
0

𝑟(𝑠)𝑑𝑠 we have

arg𝑄 (𝑥) = −2𝑥
1∫

0

𝑑𝐹 (𝑣)

𝑥2 + 𝑣2
+ 𝑜(1)

= −2𝑥 𝐹 (𝑣)

𝑥2 + 𝑣2

∣∣∣∣1
𝜈=0

− 4𝑥

1∫
0

𝑣 𝐹 (𝑣)𝑑𝑣

(𝑥2 + 𝑣2)2
+ 𝑜(1)

= −2𝑥𝐹 (1)

𝑥2 + 1
− 4𝑥𝑐1

1∫
0

𝑣2 𝑑𝑣

(𝑥2 + 𝑣2)2
− 4𝑥

1∫
0

𝑣 𝑂2(𝑣) 𝑑𝑣

(𝑥2 + 𝑣2)2
+ 𝑜(1),

where 𝑂2(𝑣) := 𝐹 (𝑣)− 𝑐1𝑣. Consider the last integrals:

𝑥

1∫
0

𝑣2 𝑑𝑣

(𝑥2 + 𝑣2)2
=

1/𝑥∫
0

𝑠2𝑑𝑠

(1 + 𝑠2)2
=

∞∫
0

𝑠2𝑑𝑠

(1 + 𝑠2)2
+ 𝑜(1), (3.1)

and ∣∣∣∣∣∣𝑥
1∫

0

𝑣𝑂2(𝑣) 𝑑𝑣

(𝑥2 + 𝑣2)2

∣∣∣∣∣∣ ≲ ∣𝑥∣

⎧⎨⎩𝛽(𝑥)

√
𝑥∫

0

𝑣2𝑑𝑣

(𝑥2 + 𝑣2)2
+

1∫
√
𝑥

𝑣2𝑑𝑣

(𝑥2 + 𝑣2)2

⎫⎬⎭
≲ 𝛽(𝑥)

1/
√
𝑥∫

0

𝑠2 𝑑𝑠

(1 + 𝑠2)2
+

1/𝑥∫
1/
√
𝑥

𝑠2 𝑑𝑠

(1 + 𝑠2)2
,

where 𝛽(𝑥) = sup

{ ∣𝑂2(𝑣)∣
𝑣

: 𝑣 ∈ (0,
√
𝑥)

}
. Hence we have

lim
𝑥→0

𝑥

1∫
0

𝑣𝑂2(𝑣)𝑑𝑣

(𝑥2 + 𝑣)2
= 0. (3.2)

Taking into account (3.1) and (3.2), the assertion is proven under condition ii). □

Example. Consider a Blaschke product 𝐵1 satisfying Hypothesis 2.2. Let 𝑓1 be a
function associated with 𝐵1 set 𝑓1 =: 𝑓 . Next let 𝛼(𝑥) be a continuous function
such that lim

𝑥→∞𝛼(𝑥) = 0 and 𝛽(𝑥) := 𝑥+𝛼(𝑥) is monotonically increasing. Define

𝑓2(𝑥) := 𝑓(𝛽(𝑥)+𝑐), where 𝑐 is a real constant. Then 𝑓−12 (𝑣) = 𝑓−1(𝑣)−𝑐−𝛼1(𝑣),
where lim

𝑣→0
𝛼1(𝑣) = 0, and hence

𝑟(𝑣) = 𝑓−1 (𝑣)− 𝑓−12 (𝑣) = 𝑐+ 𝛼1(𝑣) → 𝑐, 𝑣 → 0.

By Theorem 3.1 lim
𝑥→0

arg𝐵1(𝑥)/𝐵2(𝑥) exists.
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Example. Consider a more delicate case of Theorem 3.1 (part ii) ). Let 𝛽(𝑥) =
𝑥+ 𝑝(𝑥), where 𝑝(𝑥) is a periodic continuous function such that 𝛽(𝑥) is increasing
on [1/2,∞). Then the inverse function has the form

𝛽−1(𝑣) = 𝑣 − 𝑞(𝑣),

where 𝑞(𝑣) is a periodic continuous function. As in the previous example, let us
construct two Blaschke products 𝐵1 and 𝐵2 with the associated functions 𝑓1 and
𝑓2. Let 𝑓1(𝑥) = 𝑓 (𝑥), where 𝑓 satisfies Hypothesis 2.2 and such that 𝑓 ′(𝑥) is
monotonic function and 𝑓 ′′(𝑥) is bounded. Set 𝑓2(𝑥) = 𝑓(𝛽(𝑥)). Then 𝑓−12 (𝑣) =
𝛽−1(𝑓−1(𝑣)) = 𝑓−1(𝑣)− 𝑞(𝑓−1(𝑣)) and 𝑟(𝑣) = 𝑞(𝑓−1(𝑣)). Consider

𝐹 (𝑣) =

𝑣∫
0

𝑞(𝑓−1(𝑢))𝑑𝑢 =

𝑣∫
0

𝑞0𝑑𝑢+

𝑣∫
0

𝑞1(𝑓
−1(𝑢))𝑑𝑢,

where 𝑞0 is the zero Fourier coefficient of 𝑞(𝑣) and 𝑞1(𝑣) = 𝑞(𝑣) − 𝑞0. Then

𝐹 (𝑣) = 𝑞0𝑣 −
∞∫

𝑓−1(𝑣)

𝑞1(𝑢)𝑓
′(𝑢)𝑑𝑢.

Let 𝐹1(𝑣) be an antiderivative of 𝑞1(𝑣). That is 𝐹 ′
1(𝑣) = 𝑞1(𝑣). Then

𝐹 (𝑣) = 𝑞0𝑣 − 𝐹1(𝑢)𝑓
′(𝑢)

∣∣∣∣∣
∞

𝑓−1(𝑣)

+

∞∫
𝑓−1(𝑣)

𝐹1(𝑢)𝑓
′′(𝑢)𝑑𝑢

= 𝑞0𝑣 +
𝐹1(𝑓

−1(𝑣))
(𝑓−1(𝑣))′

+

∞∫
𝑓−1(𝑣)

𝐹1(𝑢)𝑓
′′(𝑢)𝑑𝑢.

Since 𝑓 ′(𝑓−1(𝑣)) =
1

(𝑓−1(𝑣))′
and 𝐹1(𝑓

−1(𝑣)) is bounded, one has

∣𝐹 (𝑣) − 𝑞0𝑣∣ ≲

⎛⎜⎝∣∣∣∣ 𝑣

𝑣 (𝑓−1(𝑣))′

∣∣∣∣+
∣∣∣∣∣

∞∫
𝑓−1(𝑣)

𝑓 ′′(𝑢)𝑑𝑢

∣∣∣∣∣
⎞⎟⎠ .

Let 𝑣 = 𝑓(𝑥), then

∣𝐹 (𝑣) − 𝑞0𝑣∣ ≲
(
𝑣

∣∣∣∣𝑓 ′(𝑥)𝑓(𝑥)

∣∣∣∣+ ∣∣∣𝑓 ′(𝑥)∣∣∣) ≲ 𝑣

∣∣∣∣𝑓 ′(𝑥)𝑓(𝑥)

∣∣∣∣ .
Condition (2.5) and the monotonicity of the function 𝑓 ′(𝑥) imply the condition ii)
of Theorem 3.1 and arg𝑄 (𝑥) approaches a finite limit as 𝑥 → 0.

Theorem 3.1 has a consequence which will be crucial in the last section.



140 S. Grudsky and A. Rybkin

Corollary 3.2. Let

𝐵1(𝑧) =

∞∏
𝑛=1

𝑧 − 𝑖𝜈𝑛
𝑧 + 𝑖𝜈𝑛

and 𝐵2(𝑧) =

∞∏
𝑛=1

𝑧 − 𝑖𝜅𝑛
𝑧 + 𝑖𝜅𝑛

be two Blaschke products subject to Hypothesis 2.2 with interlacing zeros (i.e.,
𝜅𝑛 > 𝜈𝑛 > 𝜅𝑛+1 for any 𝑛 ∈ ℕ) and associated functions 𝑓1 and 𝑓2. If there exists
a real continuously differentiable function 𝑓 such that

𝑓 (2𝑥 − 1) = 𝑓1 (𝑥) , 𝑓 (2𝑥) = 𝑓2 (𝑥) ,

and

𝑓 (𝑛) =

⎧⎨⎩𝜅
(1)
𝑛+1
2

, 𝑛 is odd

𝜈
(2)
𝑛
2

, 𝑛 is even
,

then arg𝐵1(𝑥)/𝐵2(𝑥) is continuous on the real line.

Proof. Indeed

𝑓−11 (𝑣)− 𝑓−12 (𝑣) =
𝑓−1(𝑣) + 1

2
− 𝑓−1(𝑣)

2
=
1

2

and Theorem 3.1 now applies. □

4. Toeplitz and Hankel operators

Let 𝐻2± be the usual Hardy space of the upper and lower half-planes. By the
Paley-Wiener theorem

𝐻2
± =

⎧⎨⎩𝑓 : 𝑓(𝑥) =

∞∫
0

𝑔(𝑡)𝑒±𝑖𝑡𝑥𝑑𝑡, 𝑥 ∈ ℝ, 𝑔 ∈ 𝐿2(ℝ+)

⎫⎬⎭ .

Let 𝑃± be the orthogonal projector of 𝐿2(ℝ) onto 𝐻2
±(ℝ). The operators 𝑃± can

be written as follows

𝑃± =
1

2
(𝐼 ± 𝑆),

where

(𝑆𝑓)(𝑥) :=
1

𝜋𝑖

∫
ℝ

𝑓(𝜏)

𝜏 − 𝑥
𝑑𝜏 : 𝐿2(ℝ) → 𝐿2(ℝ),

with the singular integral understood in the sense of the Cauchy principal value.
The Toeplitz operator with a symbol2 𝑎 (𝑥) ∈ 𝐿∞(ℝ) is defined by

𝑇 (𝑎)𝑓 := 𝑃+ 𝑎𝑓 : 𝐻2
+ → 𝐻2

+. (4.1)

Let

(𝐽𝑓)(𝑥) = 𝑓(−𝑥) : 𝐿2(ℝ) → 𝐿2(ℝ) (4.2)

2𝐿∞(ℝ) is the usual space of functions essentially bounded on ℝ.
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be the reflection operator. The Hankel operator with the symbol 𝑎 is given by the
formula

(ℍ(𝑎)𝑓)(𝑥) := (𝐽𝑃−𝑎𝑓)(𝑥) : 𝐻2
+ → 𝐻2

+. (4.3)

The theory of Toeplitz and Hankel operators is given, e.g., in [8, 12, 13]. Recall a
few more definitions.

Definition 4.1. A bounded linear operator 𝐴 acting in a Banach space 𝐵 is called
left (right) invertible if there exists a bounded in 𝐵 operator 𝐴−1

ℓ (𝐴−1
𝑟 ) such that

𝐴−1
ℓ 𝐴 = 𝐼 (𝐴𝐴−1

𝑟 = 𝐼),

where 𝐼 is the identity operator on 𝐵.

Definition 4.2. A bounded linear operator 𝐴 is called Fredholm if

Im𝐴 = Im𝐴, dimker𝐴 < ∞, and dim(𝐵/Im𝐴) < ∞.

The number
ind(𝐴) := dimker𝐴 − dim(𝐵/Im𝐴)

is called the index of the operator 𝐴.

Define the distance between a function 𝑎 ∈ 𝐿∞(ℝ) and a subset𝑀 ⊂ 𝐿∞(ℝ)
as

dist(𝑎,𝑀) := inf
𝑚∈𝑀

ess sup
𝑥∈ℝ

∣𝑎(𝑥)− 𝑚(𝑥)∣.
Introduce

𝐻∞
+ + 𝐶(ℝ̇) := {𝑓 + 𝑔 : 𝑓 ∈ 𝐻∞

+ , 𝑔 ∈ 𝐶(ℝ̇)}.
This space is a closed subspace (and even a closed subalgebra) of 𝐿∞(ℝ) and is
particularly important in the theory of Toeplitz and Hankel operators. We will use
the following well-known results.

Theorem 4.3 (Widom-Devinatz, see [8], p. 59). Let 𝑎(𝑥) be a unimodular function
(that is ∣𝑎(𝑥)∣ = 1 for almost all 𝑥 ∈ ℝ). Then the operator 𝑇 (𝑎) defined by (4.1)

i) is left invertible if and only if dist(𝑎,𝐻∞
+ ) < 1;

ii) is right invertible if and only if dist(𝑎,𝐻∞
+ ) < 1;

iii) is invertible if and only if dist(𝑎,𝐺𝐻∞
+ ) < 1,

where 𝐺𝐻∞
+ ⊂ 𝐻∞

+ is the set of all invertible in 𝐻∞
+ elements.

Theorem 4.4 (I. Gohberg, see [8], [12, 13]). Let 𝑎(𝑥) ∈ 𝐶(ℝ̇), then the operator
𝑇 (𝑎) is Fredholm if and only if 𝑎(𝑥) ∕= 0 for all 𝑥 ∈ ℝ. Moreover

ind(𝑇 (𝑎)) = −wind𝑎,

where wind 𝑎 is the number of rotations which the point 𝑧 = 𝑎(𝑥) makes around
the origin in the complex plane (when 𝑥 moves along ℝ from −∞ to +∞).

Theorem 4.5 ([8], Ch.2, [9], Theorem 2.7). Let 𝑎(𝑥) ∈ 𝐿∞(ℝ) and
ess inf {∣𝑎(𝑥)∣ : 𝑥 ∈ ℝ} > 0. Then

i) if 𝑎(𝑥) ∈ 𝐻∞
+ + 𝐶(ℝ̇) but 1/𝑎(𝑥) /∈ 𝐻∞

+ + 𝐶(ℝ̇) then 𝑇 (𝑎) is left invertible;
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ii) if 𝑎(𝑥) ∈ 𝐻∞
+ +𝐶(ℝ̇) but 1/𝑎(𝑥) /∈ 𝐻∞

+ +𝐶(ℝ̇) then 𝑇 (𝑎) is right invertible;

iii) if 𝑎(𝑥) ∈ (𝐻∞
+ + 𝐶(ℝ̇)) ∩ (𝐻∞

+ + 𝐶(ℝ̇)) then 𝑇 (𝑎) is Fredholm.

Theorem 4.6 ([8], [12, 13]). Let 𝑎(𝑥) ∈ 𝐿∞(ℝ). Then

∥ ℍ(𝑎) ∥≤∥ 𝑎 ∥𝐿∞

and the Hankel operator (4.3) is compact if and only if

𝑎(𝑥) ∈ 𝐻∞
+ + 𝐶(ℝ̇).

Note that if ℎ(𝑥) ∈ 𝐻∞
+ then ℍ(ℎ) = 0 and consequently

ℍ(𝑎) = ℍ(𝑎 − ℎ). (4.4)

Consider now

𝑎(𝑥) = 𝐷 (𝑥)𝐵1(𝑥)/𝐵2(𝑥), (4.5)

where 𝐷 (𝑥) is a unimodular function and 𝐵1,2(𝑥) are Blaschke products satisfying
the conditions of Theorem 3.1. Then Theorems 3.1, 4.4 and 4.5 imply the following
result.

Theorem 4.7. Let 𝑎 have the form (4.5).

i) If 𝐷 ∈ 𝐻∞
+ + 𝐶(ℝ̇) (𝐷 ∈ 𝐻∞

+ + 𝐶(ℝ̇)) and 1/𝐷 /∈ 𝐻∞
+ + 𝐶(ℝ̇) (1/𝐷 /∈

𝐻∞
+ + 𝐶(ℝ̇)) then 𝑇 (𝑎) is left (right) invertible.

ii) If 𝐷 ∈ (𝐻∞
+ + 𝐶(ℝ̇)) ∩ (𝐻∞

+ + 𝐶(ℝ̇)) then 𝑇 (𝑎) is Fredholm.

iii) If 𝐷 ∈ 𝐶(ℝ̇) then 𝑎 ∈ 𝐶(ℝ̇) and 𝑇 (𝑎) is Fredholm and

ind(𝑇 (𝑎)) = −wind𝑎(𝑥).

We will also need

Theorem 4.8. Let a function 𝑎 have the form (4.5) with some 𝐷 ∈ 𝐻∞
+ +𝐶(ℝ̇) and

1/𝐷 /∈ 𝐻∞
+ (ℝ) + 𝐶(ℝ̇). Then the Hankel operator ℍ(𝑎) is compact, ∥ ℍ(𝑎) ∥< 1

and hence the operator 𝐼 + ℍ(𝑎) is invertible.

Proof. The compactness of the operator ℍ(𝑎) is a direct consequence of Theorem
4.6. Turn to the invertibility of 𝐼 + ℍ(𝑎). By Theorem 4.7, the operator 𝑇 (𝑎) is
left invertible and thus by Theorem 4.3 (i) there exists a function ℎ(𝑥) from 𝐻∞

+

such that ∥ 𝑎 − ℎ ∥𝐿∞< 1. By (4.4), ℍ(𝑎) = ℍ(𝑎 − ℎ) and hence by Theorem 4.6

∥ ℍ(𝑎) ∥≤∥ 𝑎 − ℎ ∥𝐿∞< 1 (4.6)

and operator 𝐼 +ℍ(𝑎) is invertible. □

The symbol

𝜙(𝑥) = 𝑒𝑖(𝑡𝑥
3+𝑐𝑥)𝐷 (𝑥) , 𝑡 > 0, 𝑐 ∈ ℝ (4.7)

arises in the inverse scattering transform method for the Korteweg-de Vries (KdV)
equation (see [18, 19]). The form of the unimodular function 𝐷 (𝑥) depends on the
properties of the initial data in the Cauchy problem for the KdV equation. In
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certain particular cases discussed in the next section the function 𝐷 (𝑥) is of the
form

𝐷 (𝑥) =
𝐵1(𝑥)

𝐵2(𝑥)
𝐼(𝑥), (4.8)

where 𝐵1,2(𝑥) are Blaschke products with zeros converging to 0 along the imagi-
nary axis and 𝐼(𝑥) is an inner function (𝐼(𝑥) ∈ 𝐻∞

+ and ∣𝐼(𝑥)∣ = 1 a.e. on ℝ). To
apply Theorem 4.8 to the case of (4.7)–(4.8) we need one result from [3, 9].

Definition 4.9. Let Δ be a real-valued function defined for all sufficiently large
𝑥 > 0. The function Δ is called regular if it is strictly monotonically increasing,
twice continuously differentiable and satisfies

lim
𝑥→∞ inf

𝑥Δ′′(𝑥)
Δ′(𝑥)

> −2,

lim
𝑥→∞

𝑥Δ′′(𝑥)

Δ′ (𝑥)2
= 0,

lim
𝑥→∞

√
𝑥Δ′′(𝑥)

Δ′ (𝑥)3/2
= 0.

Theorem 4.10 ([3], [9], Ch. 5). If the homeomorphism 𝛿(𝑥) : ℝ → ℝ is a regular
function and 𝛿(−𝑥) = −𝛿(𝑥) for sufficiently large 𝑥 > 0, then

exp{𝑖𝜉𝛿(𝑥)} ∈ 𝐻∞
+ + 𝐶(ℝ̇)

for all 𝜉 > 0. Moreover the following representation holds

exp{𝑖𝜉𝛿(𝑥)} = 𝐵𝜉(𝑥)𝐶𝜉(𝑥), (4.9)

where 𝐵𝜉(𝑥) is a Blaschke product with an infinite number of zeros with no ac-
cumulation points at a finite distance and 𝐶𝜉(𝑥) is a unimodular function from

𝐶(ℝ̇).

The following theorem is one of the main results of this paper.

Theorem 4.11. Let 𝐵1,2(𝑥) be Blaschke products of the form (1.1) with zeros sat-
isfying the conditions of Theorem 2.4 and Theorem 3.1 and let 𝐼 (𝑥) be an inner
function. Consider

𝜙(𝑥) = 𝑒𝑖(𝑡𝑥
3+𝑐𝑥)𝐵1(𝑥)

𝐵2(𝑥)
𝐼(𝑥), 𝑡 > 0, 𝑐 ∈ ℝ. (4.10)

Then the Toeplitz operator 𝑇 (𝜙) : 𝐻2
+ → 𝐻2

+ is left invertible, the Hankel operator
ℍ(𝜙) : 𝐻2

+ → 𝐻2
+ is compact and the operator 𝐼 +ℍ(𝜙) : 𝐻2

+ → 𝐻2
+ is invertible.

Proof. By Theorem 3.1

𝑄 (𝑥) =
𝐵1(𝑥)

𝐵2(𝑥)
∈ 𝐶(ℝ̇).

It follows from Theorem 4.10 that

𝑒𝑖(𝑡𝑥
3+𝑐𝑥) ∈ 𝐻∞

+ + 𝐶(ℝ̇)
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(it is easy to check that function 𝛿(𝑥) := 𝑡𝑥3 + 𝑐𝑥 is regular). Since the set 𝐻∞
+ +

𝐶(ℝ̇) is an algebra we have

𝜙(𝑥) ∈ 𝐻∞
+ + 𝐶(ℝ̇). (4.11)

It remains to demonstrate that

1/𝜙(𝑥) /∈ 𝐻∞
+ (ℝ) + 𝐶(ℝ̇). (4.12)

To this end consider

1/𝜙(𝑥) = 𝐵𝜉(𝑥) 𝑑(𝑥),

where 𝐵𝜉(𝑥) is as in (4.9) 𝑑(𝑥) ∈ 𝐶(ℝ̇) and ∣𝑑(𝑥)∣ = 1 for all 𝑥 ∈ ℝ. Since
the Blaschke product 𝐵𝜉(𝑥) has an infinite number of zeros, we conclude that
dimker𝑇 (1/𝜙) = ∞ (see, e.g., [9], p. 24) and hence the operator 𝑇 (1/𝜙) cannot

be Fredholm. On the other hand if (4.12) doesn’t hold, i.e., 1/𝜙 ∈ 𝐻∞
+ +𝐶(ℝ̇) (and

(4.11) also holds), then ([8, 12, 13]) 𝑇 (1/𝜙) must be Fredholm. This contradiction
proves (4.12). □

5. Applications to the Korteweg-de Vries equation

In this section we apply the results obtained in the previous sections to soliton
theory (see, e.g., the book [1] by Ablowitz-Clarkson). We do not assume that
the reader is familiar with this theory and therefore present here some background
information. Consider the initial value (Cauchy) problem for the Korteweg-de Vries
(KdV) equation

∂𝑢 (𝑥, 𝑡)

∂𝑡
− 6𝑢 (𝑥, 𝑡)

∂𝑢 (𝑥, 𝑡)

∂𝑥
+

∂3𝑢 (𝑥, 𝑡)

∂𝑥3
= 0, 𝑡 ≥ 0, 𝑥 ∈ ℝ. (5.1)

𝑢 (𝑥, 0) = 𝑞 (𝑥) . (5.2)

This equation is arguably the most celebrated nonlinear partial differential equa-
tions. It was derived by Korteweg and de Vries in 1895 as a model for describing
shallow water but remained essentially unused until the 50s when it was found
to be particularly important in plasma physics. In 1955, Fermi, Pasta, and Ulam
took a chain of harmonic oscillators coupled with a quadratic nonlinearity and in-
vestigated how the energy in one mode would spread to the rest. (One of the first
dynamics calculations carried out on a computer.) They found that the system cy-
cled periodically and never came to the rest. This was a striking phenomenon which
back then had no explanation. Although Fermi, Pasta, and Ulam never published
their observation, the equation drew attention of mathematicians and theoreti-
cal physicists. The breakthrough occurred in the mid 60s when Gardner, Greene,
Kruskal, and Miura found a truly ingenious way to linearize it. Their method,
now called the inverse scattering transform (IST), is a major achievement of the
20th century mathematics and with its help we have learned an incredible amount



Blaschke Products and KdV Equation 145

about the KdV equation and physical systems described by it3. We have given here
only a small part of the fascinating story behind the KdV equation. The interested
reader can learn more about the history in [1] or any other book on soliton theory.

Conceptually, the IST is similar to the Fourier transform and consists, as the
standard Fourier transform method, of the following three steps:

1. the direct transform mapping the (real) initial data 𝑞(𝑥) to a new set of
variables 𝑆0 in which (5.1) turns into a very simple first-order linear ordinary
equation for 𝑆(𝑡) with the initial condition 𝑆(0) = 𝑆0;

2. solve then this linear ordinary differential equation for 𝑆(𝑡);
3. apply the inverse transform to find 𝑢(𝑥, 𝑡) from 𝑆(𝑡).

In its original edition due to Gardner-Greene-Kruskal-Miura (see, e.g., [1]), 𝑆0
was the set of the so-called scattering data associated with the pair of Schrödinger
operators 𝐻0 = −𝑑2/𝑑𝑥2 and 𝐻𝑞 = −𝑑2/𝑑𝑥2 + 𝑞 (𝑥) on 𝐿2 (ℝ). Moreover, this
procedure comes with a beautiful formula

𝑢 (𝑥, 𝑡) = −2 ∂2

∂𝑥2
log det (𝐼 +𝕄𝑥,𝑡) , (5.3)

where𝕄𝑥,𝑡 : 𝐿2 (0,∞) → 𝐿2 (0,∞) is a two parametric family of integral operators

(𝕄𝑥,𝑡𝑓) (𝑦) =

∫ ∞

0

𝑀𝑥,𝑡 (𝑦 + 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑓 ∈ 𝐿2 (0,∞) , (5.4)

explicitly constructed in terms of 𝑆(𝑡).

One immediately sees that the operator defined by (5.4) is Hankel. We de-
scribe this operator following [18, 19]. The operator (5.4) is unitary equivalent to

ℍ𝑥,𝑡 := ℍ
(1)
𝑥,𝑡 +ℍ

(2)
𝑥,𝑡. (5.5)

The first operator on the right-hand side of (5.5) is the Hankel operator defined
by (4.3) with the symbol 𝑅𝑥,𝑡 given by

𝑅𝑥,𝑡 (𝜆) = 𝑒2𝑖𝜆(4𝜆
2𝑡−𝑥)𝑅 (𝜆) ,

where 𝑅 (𝜆) is the so-called reflection coefficient corresponding to the pair of
Schrödinger operators 𝐻0, 𝐻𝑞. We can easily do without presenting its formal
definition by stating its properties. For a.e. real 𝜆

𝑅 (−𝜆) = 𝑅 (𝜆), ∣𝑅 (𝜆)∣ ≤ 1. (5.6)

Note that (5.6) implies that ℍ (𝑅(𝑥, 𝑡)) is self-adjoint.

The other operator ℍ
(2)
𝑥,𝑡 on the right-hand side of (5.5) is also a Hankel

operator corresponding to the measure

𝑑𝜌𝑥,𝑡(𝛼) := 𝑒2𝛼(4𝛼
3𝑡−𝑥)𝑑𝜌(𝛼),

3Similar methods have also been developed for many other physically important evolution nonlin-
ear partial differential equations (PDE), which are typically referred to as completely integrable.
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where 𝜌(𝛼) is a measure subject to

Supp 𝜌 ⊆ [0, 𝑎], 𝑑𝜌 ≥ 0,

∫ 𝑎
0

𝑑𝜌 < ∞. (5.7)

The measure 𝜌 is related to the negative spectrum of 𝐻𝑞 but its explicit expression
in terms of 𝐻𝑞 is not essential in our consideration. What we need is the following
relation between the support of 𝜌 and the negative spectrum of 𝐻𝑞:

𝛼 ∈ Supp 𝜌 ⇐⇒ −𝛼2 ∈ Spec (𝐻𝑞) ∩ ℝ−.

More specifically, the operatorℍ
(2)
𝑥,𝑡 is unitarily equivalent to 𝜒ℝ+𝜌𝑥,𝑡ℱ , where

𝜒ℝ+ is the Heaviside function of ℝ+, ℱ is the Fourier operator

(ℱ𝑓) (𝜆) =
1√
2𝜋

∫ ∞

−∞
𝑒𝑖𝜆𝑥𝑓(𝑥)𝑑𝑥,

and 𝜌𝑥,𝑡 is the Fourier transform of the measure4 𝜌𝑥,𝑡.

The pair of functions (𝑅𝑥,𝑡, 𝜌𝑥,𝑡) is called the scattering data and we view
ℍ𝑥,𝑡 as the Hankel operator associated with (𝑅𝑥,𝑡, 𝜌𝑥,𝑡).

It is quite easy to see that the Hankel operator 𝜒ℝ+𝜌𝑥,𝑡ℱ is (self-adjoint) non-

negative. The operator ℍ
(2)
𝑥,𝑡 then is also non-negative for any real 𝑥 and 𝑡 ≥ 0.

That is

ℍ
(2)
𝑥,𝑡 ≥ 0 (5.8)

and it is all we can say so far about ℍ𝑥,𝑡 based upon (5.6) and (5.7). Besides
the full line Schrödinger operator 𝐻𝑞, introduce 𝐻𝐷𝑞 = −𝑑2/𝑑𝑥2 + 𝑞 (𝑥) defined
on 𝐿2 (ℝ−) with the Dirichlet boundary condition 𝑢 (0) = 0. We label quantities
related to 𝐻𝐷𝑞 with a superscript 𝐷. We are now able to state the main result of
this section.

Theorem 5.1. Assume that the initial profile 𝑞 (𝑥) in (5.2) is real, locally integrable,
supported on (−∞, 0) and such that

inf Spec (𝐻𝑞) = −𝑎2 > −∞. (5.9)

Then the Cauchy problem for the KdV equation (5.1)–(5.2) has a unique solution
𝑢 (𝑥, 𝑡) which is a meromorphic function in 𝑥 on the whole complex plane with no
real poles for any 𝑡 > 0 if at least one of the following conditions holds:

1. The operator 𝐻𝐷𝑞 has a non-empty absolutely continuous spectrum;

2. The set 𝑖 Supp 𝜌 is a set of uniqueness of 𝐻∞
+ functions;

3. The sets Supp 𝜌𝐷 = {𝜈𝑛}𝑛≥1 and Supp 𝜌 = {𝜅𝑛}𝑛≥1 satisfy the Blaschke
condition and the corresponding Blaschke products are subject to the condi-
tions of Corollary 3.2.

4We recall 𝜇 (𝜆) := 1√
2𝜋

∫∞
−∞ 𝑒𝑖𝜆𝑥𝑑𝜇(𝑥).
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Proof. Under conditions 1 and/or 2, the theorem is already proven in [18, 19] and
it remains to show that the conclusion of theorem also holds under condition 3.
Moreover, the arguments of [18, 19] (see also [20]) based upon (5.3) can be easily
adjusted to handle condition 3 if we prove that the operator 𝐼 +ℍ𝑥,𝑡 is invertible
under this condition.

Without loss of generality, we may assume that the operator 𝐻𝐷𝑞 has an
empty absolutely continuous spectrum (otherwise we are under condition 1). The
structure of the reflection coefficient 𝑅 (𝜆) is studied in [17] where it is shown that
𝑅 (𝜆) admits the following factorization

𝑅 (𝜆) = lim
𝑚→∞

⎧⎨⎩
(
𝑚∏
𝑛=1

𝜆 − 𝑖𝜈𝑛
𝜆+ 𝑖𝜈𝑛

)(
𝑚∏
𝑛=1

𝜆 − 𝑖𝜅𝑛
𝜆+ 𝑖𝜅𝑛

)−1⎫⎬⎭𝑆 (𝜆) , 𝜆 ∈ ℂ+, (5.10)

where 𝑆 ∈ 𝐻∞
+ and 𝑆 is contractive on ℂ+ (i.e., ∣𝑆 (𝜆)∣ ≤ 1, 𝜆 ∈ ℂ+) and the

sequence {𝜈𝑛}𝑛≥1 is such that
{−𝜈2𝑛}𝑛≥1 = Spec

(
𝐻𝐷𝑞

) ∩ℝ−,

(the negative spectrum of the half-line Dirichlet Schrödinger operator), and the
sequence {𝜅𝑛}𝑛≥1 is such that

{−𝜅2𝑛}𝑛≥1 = Spec (𝐻𝑞) ∩ ℝ−,

(the negative spectrum of the full-line Schrödinger operator). Moreover these se-
quences are interlacing, i.e.,

𝜅𝑛 > 𝜈𝑛 > 𝜅𝑛+1 for any 𝑛 ∈ ℕ. (5.11)

Since we have assumed that the operator 𝐻𝐷𝑞 has no absolutely continuous spec-
trum, ∣𝑆 (𝜆)∣ = 1 for a.e. real 𝜆 (see, e.g., [17]) and hence 𝑆 (𝜆) = 𝐼 (𝜆) where
𝐼 (𝜆) is an inner function of ℂ+.

Note next that

lim
𝑚→∞

⎧⎨⎩
(
𝑚∏
𝑛=1

𝜆 − 𝑖𝜈𝑛
𝜆+ 𝑖𝜈𝑛

)(
𝑚∏
𝑛=1

𝜆 − 𝑖𝜅𝑛
𝜆+ 𝑖𝜅𝑛

)−1⎫⎬⎭ =

( ∞∏
𝑛=1

𝜆 − 𝑖𝜈𝑛
𝜆+ 𝑖𝜈𝑛

)( ∞∏
𝑛=1

𝜆 − 𝑖𝜅𝑛
𝜆+ 𝑖𝜅𝑛

)−1

=: 𝐵1 (𝜆)𝐵2 (𝜆)
−1

,

where

𝐵1 (𝜆) =

∞∏
𝑛=1

𝜆 − 𝑖𝜈𝑛
𝜆+ 𝑖𝜈𝑛

and 𝐵2 (𝜆) =

∞∏
𝑛=1

𝜆 − 𝑖𝜅𝑛
𝜆+ 𝑖𝜅𝑛

.

We have thus arrived at the factorization

𝑅 (𝜆) =
𝐵1 (𝜆)

𝐵2 (𝜆)
𝐼 (𝜆) , 𝜆 ∈ ℂ+,

and hence for every 𝑥 ∈ ℝ and 𝑡 > 0 the function

𝑅𝑥,𝑡 (𝜆) = 𝑒2𝑖𝜆(4𝜆
2𝑡−𝑥)𝑅 (𝜆) ,
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by Corollary 3.2, satisfies the conditions of Theorem 4.11 and hence

∥ℍ (𝑅𝑥,𝑡)∥ < 1.

This immediately implies that∥∥∥ℍ(1)
𝑥,𝑡

∥∥∥ = ∥ℍ (𝑅𝑥,𝑡)∥ < 1.

Therefore 𝐼 +ℍ
(1)
𝑥,𝑡 ≥ 0 and is boundedly invertible. Due to (5.8)

𝐼 +ℍ
(1)
𝑥,𝑡 +ℍ

(2)
𝑥,𝑡 = 𝐼 +ℍ

(1)
𝑥,𝑡 ≥ 0

is also boundedly invertible and the theorem is proven. □

Note that Theorem 5.1 represents an existence and uniqueness result for the
KdV equation in a very strong sense. We refer the interested reader to [18, 19]
for detailed discussions of statements like Theorem 5.1 and the extensive recent
literature on the subject cited therein.

Let us discuss what the conditions of Theorem 5.1 actually mean in terms of
the initial profile 𝑞 (𝑥) in (5.2). Condition (5.9) means that the spectrum of 𝐻𝑞 is
bounded from below, which (see, e.g., [11]) is satisfied if

sup
𝑥

∫ 𝑥
𝑥−1

max (−𝑞, 0) < ∞. (5.12)

The condition (5.12) becomes also necessary for (5.9) if 𝑞 is negative. Note that
(5.9) imposes no restriction on the positive part max (𝑞, 0) of 𝑞 (𝑥) (e.g., it can grow
arbitrarily fast at −∞ or look like the stock market) but 𝐻𝑞 still satisfies (5.9).

Condition 1 means that 𝑞 (𝑥) has a certain pattern of behavior at −∞. The
precise statement is rather complicated but particular examples are easy. Condition
1 is satisfied if, for example, 𝑞 is quasi-periodic on (−∞, 0) or approaches a constant
as 𝑥 → −∞ sufficiently fast.

Condition 2 means that the negative spectrum of𝐻𝑞 is, in a way, rich enough.
Condition 2 holds if, loosely speaking, max (−𝑞, 0) (the negative part of 𝑞) is large.
A typical example would be 𝑞 (𝑥) → −𝑐2 as 𝑥 → −∞ for some real 𝑐 (so-called
step like initial profiles).

Condition 3 is much trickier as the problem of the negative spectrum dis-
tribution for the Schrödinger operator is notoriously difficult. In fact, besides the
Lieb-Thirring estimate [21] ∑

𝑛≥1
𝜅𝑛 ≲

∫
ℝ

max (−𝑞, 0) , (5.13)

nothing is known about the distribution of {𝜅𝑛} in general. The reason for that
is a poor understanding of how individual eigenvalues −𝜅2𝑛 of 𝐻𝑞 depend on 𝑞
and even (5.13) was a good open problem for quite some time. By the same token
constructing a nontrivial explicit example of 𝑞 (𝑥) subject to condition 3 but not
condition 1 appears to be a real challenge. Note that one can always start with a
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desired spectrum and then work backwards to an essentially non-computable (and
quite pathological) 𝑞 (𝑥) via the Gelfand-Levitan-Marchenko inverse method.

The following statement is important.

Corollary 5.2. The conclusions of Theorem 5.1 hold if 𝑞 (𝑥) in (5.2) is real, locally
integrable, supported on ℝ− and such that∫ 0

−∞
∣𝑥∣max (−𝑞 (𝑥) , 0)𝑑𝑥 < ∞. (5.14)

Proof. The condition (5.14) clearly implies (5.12). Furthermore, it is well known
that the negative spectra of 𝐻𝑞 and 𝐻𝐷𝑞 are finite under the condition (5.14).
Hence {𝜅𝑛} and {𝜈𝑛} are also finite and Corollary 3.2 clearly applies. We are then
under Condition 3. □

We emphasize that even Corollary 5.2 is new and nontrivial as it cannot be
achieved by usual PDEs techniques. We however conjecture that the condition
(5.9) alone will be sufficient for Theorem 5.1 to hold. We are not sure if condition
(5.9) implies that 𝐼 + ℍ (𝑅𝑥,𝑡) is boundedly invertible but there are some strong
reasons to believe that 𝐼 +ℍ𝑥,𝑡 has this property.
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Birkhäuser Verlag, Basel, 2002.
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1. Introduction

This investigation is devoted to the construction of operator conventions or quan-
tisations that are associated with corner degenerate operators within a suitable
pseudo-differential algebra. The terminology corner-degenerate refers to config-
urations, locally described by (ℝ+)

𝑘×ℝ𝑛×ℝ𝑞 ∋ (𝑟, 𝑥, 𝑦), with 𝑟 = (𝑟1, . . . , 𝑟𝑘)
being a tuple of half-axis variables and 𝑦 =(𝑦1, . . . , 𝑦𝑘) constituted by “higher”

edge variables, 𝑦𝑗 ∈ ℝ𝑞𝑗 , 𝑞 =
∑𝑘
𝑗=1 𝑞𝑗 . A symbol 𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) in the variables

(𝑟, 𝑥, 𝑦) ∈ ℝ𝑘+×ℝ𝑛×ℝ𝑞 and covariables (𝜌, 𝜉, 𝜂) is called corner degenerate if there

is a symbol 𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇((ℝ+)
𝑘×ℝ𝑛×ℝ𝑞×ℝ

𝑘+𝑛+𝑞
𝜌,𝜉,𝜂 ) in the standard sym-

bol class of order 𝜇 ∈ ℝ (to be formulated below) which is smooth in 𝑟 up to 𝑟 = 0
such that for 𝜌 = (𝜌1, . . . , 𝜌𝑘), 𝜂 = (𝜂1, . . . , 𝜂𝑘) we have

𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) (1.1)

= 𝑝(𝑟, 𝑥, 𝑦, 𝑟1𝜌1, 𝑟1𝑟2𝜌2, . . . , 𝑟1𝑟2 . . . 𝑟𝑘𝜌𝑘, 𝜉, 𝑟1𝜂
1, 𝑟1𝑟2𝜂

2, . . . , 𝑟1𝑟2 . . . 𝑟𝑘𝜂
𝑘).

Degenerate symbols of the above-mentioned kind appear as symbols of degenerate
differential operators, and we obtain pseudo-differential symbols when we pass to
an operator algebra that contains the degenerate differential operators together
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with the parametrices of elliptic elements. If the singularities are of conical or edge
type, we talk about Fuchs-type or edge-degenerate symbols, otherwise, for higher
𝑘 about corner-degenerate symbols of the respective singularity order. From the
case 𝑘 = 1, 2 it is well known that in the process of building up pseudo-differential
algebras of the above type there appear so-called Mellin operator conventions,
also called quantisations. Those rephrase operators in 𝑟 referring to the Fourier
transform to actions based on the Mellin transform, cf. [1], [2], [4], [8], [9], [14], [23],
[25]. In operator algebras that reflect asymptotics of solutions it is also essential to
specify the Mellin symbols to be holomorphic (or meromorphic) in the respective
Mellin covariables. The program of this article is to establish such quantisations
for arbitrary 𝑘 ∈ ℕ and to characterise natural classes of Mellin symbols in the
respective complex covariables, again with a corresponding degenerate behaviour.

In order to make our iterative construction work with increasing 𝑘 we have
to reproduce the process once again for 𝑘 = 1, 2 in more detailed form than carried
out before in [24]. In addition we generalise here the degenerate symbols to the
case of a higher edge-degenerate dependence on several edge covariables.

In the present article the main focus is to illustrate the iterative process in
this form for the step from 𝑘 = 1 in Section 2 to 𝑘 = 2 in Section 3 and to
observe a number of new structures such as kernel cut-offs in different covariables
and asymptotic summations that avoid destroying holomorphy in the covariables.
After these preparations, the iterative process really works, and the corresponding
result is formulated in Section 4.

Holomorphic Mellin symbols and associated operators only furnish some part
of the higher corner algebras. The asymptotic parts of those algebras form “com-
plementary” ingredients, cf. the papers [7], [28]. Those are not studied in this
article. Similarly as in cone and edge theories for 𝑘 = 1 it will be interesting to
study further special cases and applications. Let us also point out that our corner-
degenerate operators correspond to corners as described in [26] but different to
spaces like ℝ𝑘+ ×ℝ𝑞 with some other metric. Theories with complete metrics usu-
ally give rise to degenerate behaviour of simpler structure such as of “multi-Fuchs”
type which is not the topic here.

PDE problems on manifolds with corner singularities or also with non-com-
pact “ends up to infinity” have attracted many mathematicians since a long time.
The field of singular PDEs in that sense remained an active area of research. The
motivation lies in numerous applications and new challenges, see [9], [10] or [26].

Let us finally give a list of references to illustrate the long history of the
singular analysis and the variety of different aspects of the analysis that employs
Mellin techniques, Dauge [3], Eskin [5], Komech [11], Kondratyev [12], Pham The
Lai [15], Plamenevskij [16–18], Rabinovich [19, 20], Rempel and Schulze [21, 22].

2. Mellin quantisation for singularities of first order

In this section we briefly sketch the well-known approach to construct holomorphic
Mellin symbols in the case of edge-degenerate symbols.



Mellin Quantisation in Corner Operators 153

Let 𝑆𝜇(𝑈 × ℝ𝑛) for 𝜇 ∈ ℝ and an open set 𝑈 ⊆ ℝ𝑚 denote the space of all
(so-called symbols) 𝑎(𝑥, 𝜉) ∈ 𝐶∞(𝑈 × ℝ𝑛) satisfying the symbolic estimates

∣𝐷𝛼𝑥𝐷𝛽𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝑐 ⟨𝜉⟩𝜇−∣𝛽∣

for all (𝑥, 𝜉) ∈ 𝐾×ℝ𝑛,𝐾 ⋐ 𝑈 , 𝛼 ∈ ℕ𝑚, 𝛽 ∈ ℕ𝑛, with constants 𝑐 = 𝑐(𝛼, 𝛽,𝐾) > 0;
ℕ = {0, 1, 2, . . .}. Moreover, by 𝑆𝜇cl(𝑈 × ℝ𝑛) we denote the subspace of classical
elements 𝑎(𝑥, 𝜉), i.e., with an asymptotic expansion 𝑎 ∼ ∑∞

𝑗=0 𝑎𝜇−𝑗 , where 𝑎𝜇−𝑗
are homogeneous of order 𝜇−𝑗 in the sense 𝑎𝜇−𝑗(𝑥, 𝜆𝜉) = 𝜆𝜇−𝑗𝑎𝜇−𝑗(𝑥, 𝜉) for 𝜆 ≥ 1,
∣𝜉∣ ≥ const > 0, for all 𝑗. Recall that 𝑆𝜇(𝑈 × ℝ𝑛) and 𝑆𝜇cl(𝑈 × ℝ𝑛) are Fréchet in
a canonical way. We write 𝑆𝜇(ℝ𝑛) and 𝑆𝜇cl(ℝ

𝑛) for the subsets of 𝑥-independent
symbols; those are closed subspaces of 𝑆𝜇(𝑈 ×ℝ𝑛) and 𝑆𝜇cl(𝑈 ×ℝ𝑛), respectively.
We set 𝑆−∞(𝑈 × ℝ𝑛) =

∩
𝜇∈ℝ

𝑆𝜇(𝑈 × ℝ𝑛) which is equal to 𝒮(ℝ𝑛, 𝐶∞(𝑈)), the
Schwartz space of 𝐶∞(𝑈)-valued functions.

We will employ several variants of such symbol spaces, in particular, with
holomorphic dependence on some covariables. If 𝐸 is a Fréchet space and 𝐺 ⊆ ℂ

an open set, by 𝒜(𝐺,𝐸) we denote the space of all holomorphic functions in 𝐺
with values in 𝐸, in the topology of uniform convergence on compact subsets. For
instance, it will be important to possess the space 𝑆𝜇𝒪(𝑈 × ℝ𝑛) of all ℎ(𝑥, 𝑧, 𝜉) ∈
𝒜(ℂ𝑧 , 𝑆𝜇(𝑈𝑥 × ℝ𝑛𝜉 )) such that

ℎ(𝑥, 𝛽 + 𝑖𝜌, 𝜉) ∈ 𝑆𝜇(𝑈 × ℝ1+𝑛
𝜌,𝜉 )

for every 𝛽 ∈ ℝ, such that ℎ(𝑥, 𝛽+ 𝑖𝜌, 𝜉) is a bounded set in 𝑆𝜇(𝑈 ×ℝ1+𝑛
𝜌,𝜉 ) when 𝛽

varies over a compact interval. We will employ below an alternative terminology,
namely, with

Γ𝛽 := {𝑧 ∈ ℂ : Re 𝑧 = 𝛽}
and denote by 𝑆𝜇(𝑈×Γ𝛽×ℝ𝑛𝜉 ) the space of all symbols in the covariables (𝑧, 𝜉) with
𝑧 varying on Γ𝛽 . Then it is more intuitive to distinguish the spaces for different 𝛽
and to say that

ℎ(𝑥, 𝑧, 𝜉)∣Γ𝛽 ∈ 𝑆𝜇(𝑈 × Γ𝛽 × ℝ𝑛)

holds uniformly in finite 𝛽-intervals.

In the case 𝑈 = Σ × Σ for an open set Σ ⊆ ℝ𝑛 we also write (𝑥, 𝑥′) rather
than 𝑥. For a symbol 𝑎(𝑥, 𝑥′, 𝜉) ∈ 𝑆𝜇(Σ× Σ× ℝ𝑛) we set

Op(𝑎)𝑢(𝑥) :=

∫∫
𝑒𝑖(𝑥−𝑥

′)𝜉𝑎(𝑥, 𝑥′, 𝜉)𝑢(𝑥′)𝑑𝑥′𝑑𝜉, (2.1)

𝑑𝜉 := (2𝜋)−𝑛𝑑𝜉, 𝑢 ∈ 𝐶∞
0 (Σ), which is the pseudo-differential operator associated

with 𝑎 via the Fourier transform. Instead of Op we also write Op𝑥 in order to
point out the action with respect to the 𝑥-variable.

Given an open Riemannian manifold 𝑋 by 𝐿𝜇(𝑋 ;ℝ𝑙) we denote the space
of pseudo-differential operators on 𝑋 of order 𝜇 where the local amplitude func-
tions 𝑎(𝑥, 𝜉, 𝜆) are symbols in 𝑆𝜇(Σ × ℝ𝑛+𝑙) for Σ ⊆ ℝ𝑛 open, 𝑛 = dim𝑋 , mod-
ulo smoothing operators. The latter are identified with 𝒮(ℝ𝑙, 𝐶∞(𝑋 × 𝑋)) =
𝒮(ℝ𝑙, 𝐿−∞(𝑋)), where the identification 𝐿−∞(𝑋) = 𝐶∞(𝑋 × 𝑋) refers to the
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measure 𝑑𝑥 on𝑋 , i.e., 𝑐(𝑥, 𝑥′) ∈ 𝐶∞(𝑋×𝑋) corresponds to the operator 𝐶∞
0 (𝑋) ∋

𝑢 → ∫
𝑐(𝑥, 𝑥′)𝑢(𝑥′)𝑑𝑥′. The subspace with 𝑎(𝑥, 𝜉, 𝜆) ∈ 𝑆𝜇cl(Σ × ℝ𝑛+𝑙) will be de-

noted by 𝐿𝜇cl(𝑋 ;ℝ
𝑙). We systematically employ 𝐿𝜇(𝑋 ;ℝ𝑙) or 𝐿𝜇cl(𝑋 ;ℝ

𝑙) in canon-
ical Fréchet topologies. More details on this kind of notation may be found in
[24]. An 𝐴(𝜆) ∈ 𝐿𝜇(𝑋 ;ℝ𝑙) is said to be parameter-dependent elliptic if for the
local amplitude functions 𝑎(𝑥, 𝜉, 𝜆) there are 𝑎(−1)(𝑥, 𝜉, 𝜆) ∈ 𝑆−𝜇(Σ× ℝ𝑛+𝑙) such
that (𝑎𝑎(−1))(𝑥, 𝜉, 𝜆) − 1 ∈ 𝑆−1(Σ × ℝ𝑛+𝑙). In that case there is an 𝐴(−1)(𝜆) ∈
𝐿−𝜇(𝑋 ;ℝ𝑙) such that (𝐴𝐴(−1))(𝜆) ∈ 𝐿−∞(𝑋 ;ℝ𝑙). We call 𝐴(−1) a parameter-
dependent parametrix of 𝐴. In our applications the parameter 𝜆 is often splitted
up into (𝑧, 𝜂) for 𝑧 ∈ Γ𝛽, 𝜂 ∈ ℝ𝑞. In that case we also write 𝐿𝜇(𝑋 ; Γ𝛽 × ℝ𝑞) for
the corresponding space of parameter-dependent operators.

Singular spaces contain half-axis variables, and in an intrinsic description of
operators it is natural to employ the Mellin transform. We set

𝑀𝑢(𝑧) :=

∫ ∞

0

𝑟𝑧−1𝑢(𝑟)𝑑𝑟

which is a function in 𝒜(ℂ) when 𝑢 ∈ 𝐶∞
0 (ℝ+). Recall that the weighted Mellin

transform 𝑀𝛾𝑢(𝑧) := 𝑀𝑢(𝑧)∣Γ1/2−𝛾
extends to an isomorphism

𝑀𝛾 : 𝑟
𝛾𝐿2(ℝ+) → 𝐿2(Γ1/2−𝛾),

and the inverse is (𝑀−1
𝛾 𝑔)(𝑟) =

∫
Γ1/2−𝛾

𝑟−𝑧𝑔(𝑧)𝑑𝑧, 𝑑𝑧 := (2𝜋𝑖)−1𝑑𝑧. For 𝛾 = 0 we

also write 𝑀 rather than 𝑀0.

Let us define

op𝛾𝑀 (𝑓)𝑢 :=𝑀−1
𝛾 𝑓𝑀𝛾𝑢 (2.2)

for a symbol 𝑓(𝑟, 𝑧) ∈ 𝐶∞(ℝ+, 𝑆𝜇(Γ1/2−𝛾)) which is a pseudo-differential operator
on ℝ+, based on the weighted Mellin transform. Clearly, analogously as (2.1) in
(2.2) we also may admit symbols depending on (𝑟, 𝑟′) ∈ ℝ+ × ℝ+. Note that the
substitution 𝑟 = 𝑒−𝑡 =: 𝜒(𝑡), 𝜒 : ℝ → ℝ+, yields the relation

op
1/2
𝑀 (𝑓)𝑢(𝑟) =

∫
ℝ

∫ ∞

0

( 𝑟

𝑟′
)−𝑖𝜌

𝑓(𝑟, 𝑖𝜌)𝑢(𝑟′)
𝑑𝑟′

𝑟′
𝑑𝜌

= (𝜒∗)−1
∫∫

𝑒𝑖(𝑡−𝑡
′)𝜌𝑓(𝑒−𝑡, 𝑖𝜌)𝑣(𝑡′)𝑑𝑡′𝑑𝜌 (2.3)

for 𝑣(𝑡) = 𝑢(𝑒−𝑡) = (𝜒∗𝑢)(𝑡).
In the following we apply the Mellin operator convention (2.2) also to symbols

taking values in some vector space, e.g., a space of operators.

As noted before, one of the major issues in our consideration is to pass from
the Fourier to the Mellin operator convention and to achieve Mellin symbols that
are holomorphic in the covariable 𝑧. In this context we always accept remainders
that may be ignored in the (non-canonical) quantisation.

Let us consider parameter-dependent symbols of the kind

𝑝(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) = 𝑝(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝑟𝜂)
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for 𝑝(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇(ℝ+ × Σ× ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 ). Note that the smoothness up to 𝑟 = 0

can be defined in different equivalent ways. We may ask the symbolic estimates
for functions in 𝐶∞(ℝ+ × Σ × ℝ

1+𝑛+𝑞
𝜌,𝜉,𝜂 ) uniformly in (𝑟, 𝑥) ∈ [0, 𝑅)× 𝐾 for any

𝑅 > 0 and 𝐾 ⋐ Σ. Another way is to start with symbols over ℝ × Σ and restrict
them to ℝ+ × Σ. The equivalence follows from a variant of Seeley’s theorem.

For a symbol 𝑓(𝑟, 𝑥, 𝑧, 𝜉) ∈ 𝑆𝜇(ℝ+ × Σ× Γ0 × ℝ𝑛) we form

𝑘(𝑓)(𝑟, 𝑥, 𝜃, 𝜉) :=

∫
Γ0

𝜃−𝑧𝑓(𝑟, 𝑥, 𝑧, 𝜉)𝑑𝑧 =
(
𝑀−1

1/2,𝑧→𝜃𝑓
)
(𝑟, 𝑥, 𝜃, 𝜉) (2.4)

which gives us a 𝑆𝜇(ℝ+ × Σ × ℝ𝑛)-valued distribution on ℝ+,𝜃. Then, for any
𝜓(𝜃) ∈ 𝐶∞

0 (ℝ+) that is equal to 1 in a neighbourhood of 𝜃 = 1 we set

𝒱𝜓(𝑓)(𝑟, 𝑥, 𝑧, 𝜉) :=
∫
ℝ+

𝜃𝑧−1𝜓(𝜃)𝑘(𝑓)(𝑟, 𝑥, 𝜃, 𝜉)𝑑𝜃

=
(
𝑀1/2,𝜃→𝑧𝜓(𝜃)𝑘(𝑓)

)
(𝑟, 𝑥, 𝑧, 𝜉).

(2.5)

This belongs to 𝑆𝜇𝒪(ℝ+ × Σ× ℝ𝑛) and 𝒱𝜓(⋅) represents a continuous operator
𝒱𝜓 : 𝑆𝜇(ℝ+ × Σ× Γ0 × ℝ𝑛) → 𝑆𝜇𝒪(ℝ+ × Σ× ℝ𝑛)

where

𝒱𝜓(𝑓)∣Γ0 = 𝑓 mod 𝑆−∞(ℝ+ × Σ× Γ0 × ℝ𝑛). (2.6)

The operator 𝒱𝜓 is referred to as a kernel cut-off operator, here with respect to
the Mellin transform. The Fourier version of the kernel cut-off is discussed, for
instance, [23] or [24].

Theorem 2.1. Let 𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) := 𝑝(𝑟, 𝑥, 𝑦, 𝑟𝜌, 𝜉, 𝜂) for 𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) ∈
𝑆𝜇(ℝ+ × Σ× Ω× ℝ

1+𝑞
𝜌,𝜉,𝜂), Σ ⊆ ℝ𝑛, Ω ⊆ ℝ𝑞 open. Then there exists an

ℎ(𝑟, 𝑥, 𝑦, 𝑧, 𝜉, 𝜂) ∈ 𝑆𝜇𝒪(ℝ+ × Σ× Ω× ℝ
𝑞
𝜂)

such that

Op𝑟,𝑥(𝑝)(𝑦, 𝜂) = op𝛾𝑀Op𝑥(ℎ)(𝑦, 𝜂) mod 𝐶∞(Ω, 𝐿−∞(ℝ+ × Σ;ℝ𝑞𝜂)), (2.7)

for every 𝛾 ∈ ℝ.

The (non-canonical) map

𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) → ℎ(𝑟, 𝑥, 𝑦, 𝑧, 𝜉, 𝜂) (2.8)

defined by Theorem 2.1 may be interpreted as a change of the quantisation rule for
amplitude functions; operators for 𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) refer to the Fourier transform
in 𝑟, operators associated with ℎ(𝑟, 𝑥, 𝑦, 𝑧, 𝜉, 𝜂) refer to the Mellin transform in 𝑟.
To have a convenient notation we will also call (2.8) a Mellin quantisation (on
the level of symbols) and the correspondence in opposite direction the inverse
Mellin quantisation. Theorem 2.1 may be found in [24, Theorem 3.2.7]. Concerning
alternative arguments, cf. [13].
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In order to treat the higher singular case below we have to go back once again
to the method of [24] and give a more transparent proof. The dependence on 𝑦 is
not the essential point. Therefore, it will often be dropped.

Lemma 2.2. Let 𝑝 and 𝑝 as in Theorem 2.1 and

𝑏(𝑟, 𝑥, 𝜏, 𝜉, 𝜂) := 𝑝(𝑟, 𝑥, 𝜏, 𝜉, 𝜂). (2.9)

Set 𝑓0(𝑟, 𝑥, 𝑖𝜏, 𝜉, 𝜂) := 𝑏(𝑟, 𝑥,−𝜏, 𝜉, 𝜂) ∈ 𝑆𝜇(ℝ+ × Σ× Γ0 × ℝ
𝑛+𝑞
𝜉,𝜂 ). Then we have

Op𝑟,𝑥(𝑝)(𝜂) = op
1/2
𝑀𝑟
Op𝑥(𝑓0)(𝜂) + Op𝑟,𝑥(𝑝1)(𝜂) mod 𝐿−∞(ℝ+ × Σ;ℝ𝑞𝜂) (2.10)

where

op
1/2
𝑀 (𝑓0)(𝑥, 𝜉, 𝜂)𝑢(𝑟) =

∫ ∞

−∞

∫ ∞

0

( 𝑟

𝑟′
)−𝑖𝜏

𝑓0(𝑟, 𝑥, 𝑖𝜏, 𝜉, 𝜂)𝑢(𝑟
′)
𝑑𝑟′

𝑟′
𝑑𝜏,

and

𝑝1(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) := 𝑝1(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂) for 𝑝1(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇−1(ℝ+ × Σ× ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 ).

Proof. We consider the diffeomorphism 𝜒 : ℝ𝑡 → ℝ+,𝑟, 𝜒(𝑡) := 𝑒−𝑡 = 𝑟, and form

Op𝑡,𝑥(𝑎)(𝜂)𝑣(𝑡) = Op𝑥

(∫∫
𝑒𝑖(𝑡−𝑡

′)𝜏𝑓0(𝑒
−𝑡, 𝑥, 𝑖𝜏, 𝜉, 𝜂)𝑣(𝑡′)𝑑𝑡′𝑑𝜏

)
for 𝑎(𝑡, 𝑥, 𝜏, 𝜉, 𝜂) = 𝑓0(𝑒

−𝑡, 𝑥, 𝑖𝜏, 𝜉, 𝜂). Then we have

op
1/2
𝑀𝑟
Op𝑥(𝑓0)(𝜂)𝑢(𝑟) = (𝜒∗)−1Op𝑡,𝑥(𝑎)(𝜂)𝑣(𝑡)

for 𝑣(𝑡) = (𝜒∗𝑢)(𝑡) = 𝑢(𝑒−𝑡), i.e., when 𝜒∗ denotes the operator push forward
under 𝜒 it follows that op

1/2
𝑀𝑟
Op𝑥(𝑓0)(𝜂) = 𝜒∗Op𝑡,𝑥(𝑎)(𝜂). In abuse of notation we

often suppress the 𝑥-variable; basically we consider the diffeomorphism 𝜒 × idΣ :
ℝ×Σ → ℝ+ ×Σ. As such it is a pseudo-differential operator on ℝ+ ∋ 𝑟 based on

the Fourier transform, i.e., there is a 𝑐(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇(ℝ+ × Σ × ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 ) such

that

op
1/2
𝑀𝑟
Op𝑥(𝑓0)(𝜂) = Op𝑟,𝑥(𝑐)(𝜂) mod 𝐿−∞(ℝ+ × Σ;ℝ𝑞𝜂).

The well-known asymptotic formula for symbols under operator push forwards
tells us that

𝑐(𝑟, 𝑥, 𝜌, 𝜉, 𝜂)∣𝑟=𝜒(𝑡),𝜌=𝜏 ∼
∞∑
𝑗=0

1

𝑗!

(
∂𝑗𝜏𝑎

)
(𝑡, 𝑥, (𝑑𝜒(𝑡))𝜏, 𝜉, 𝜂)Φ𝑗(𝑡, 𝜏) (2.11)

where 𝑑𝜒(𝑡) = −𝑒−𝑡, Φ𝑗(𝑡, 𝜏) = 𝐷𝑗𝑡′𝑒
𝑖𝛿(𝑡,𝑡′)𝜏 ∣𝑡′=𝑡 for 𝛿(𝑡, 𝑡′) = 𝜒(𝑡′)−𝜒(𝑡)−𝑑𝜒(𝑡)(𝑡′−

𝑡), and Φ0 ≡ 1. We have Φ𝑗(𝑡, 𝜏)∣𝑡=− log 𝑟,𝜏=𝜌 = Ψ𝑗(𝑟, 𝑟𝜌) where Ψ𝑗(𝑟, 𝜌) is a

polynomial of degree ≤ 𝑗/2 with coefficients in 𝐶∞(ℝ+), cf. [24, Lemma 3.2.9].
Let us now verify that

𝑐(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) = 𝑝(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂) + 𝑝1(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂) mod 𝑆−∞(ℝ+ × Σ× ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 )

(2.12)
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for a symbol 𝑝1(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇−1(ℝ+×Σ×ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 ). The characterisation of the

first summand on the right of (2.12) comes from

𝑎(𝑡, 𝑥, (𝑑𝜒(𝑡))𝜏, 𝜉, 𝜂)∣𝑡=𝜒−1(𝑟),𝜏=𝜌

= 𝑓0(𝑒
−𝑡, 𝑥,−𝑖(𝑑𝜒(𝑡))𝜏, 𝜉, 𝜂)∣𝑡=𝜒−1(𝑟),𝜏=𝜌 (2.13)

= 𝑏(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂) = 𝑝(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂).

Here we employ the formula (2.9), the definition of 𝑓0 in terms of 𝑏 and the relation

𝑎(𝑡, 𝑥, 𝜏, 𝜉, 𝜂) = 𝑓0(𝑒
−𝑡, 𝑥,−𝑖𝜏, 𝜉, 𝜂).

The other summand 𝑝1 in (2.12) will be obtained by an asymptotic summation.
First analogously as (2.13) we find

1

𝑗!

(
∂𝑗𝜏𝑎

)
(𝑡, 𝑥, (𝑑𝜒(𝑡))𝜏, 𝜉, 𝜂)∣𝑡=𝜒−1(𝑟),𝜏=𝜌 =: 𝑔

′
𝑗(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂)

for 𝑔′𝑗(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇−𝑗(ℝ+ × Σ× ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 ), for any fixed 𝑗 ≥ 1. This entails

1

𝑗!

(
∂𝑗𝜏𝑎

)
(𝑡, 𝑥, (𝑑𝜒(𝑡))𝜏, 𝜉, 𝜂)∣𝑡=𝜒−1(𝑟),𝜏=𝜌 = 𝑔′𝑗(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂)Ψ𝑗(𝑟, 𝑟𝜌) (2.14)

=: 𝑔𝑗(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂)

for 𝑔𝑗(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇−𝑗/2(ℝ+ × Σ× ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 ). Then we define

𝑝1(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∼ −
∞∑
𝑗=1

𝑔𝑗(𝑟, 𝑥, 𝜌, 𝜉, 𝜂)

where the asymptotic sum is carried out in 𝑆𝜇−1(ℝ+ × Σ × ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 ) (i.e., in the

class with smoothness in 𝑟 up to 0). The minus sign on the right is chosen for
algebraic reasons as we shall see in the iterative construction below. This yields
altogether the formula (2.12), or equivalently,

𝑐(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) = 𝑝(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) + 𝑝1(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) mod 𝑆−∞(ℝ+ × Σ× ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 )

for 𝑝(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) = 𝑝(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂) as before, 𝑝1(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) = 𝑝1(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂). Thus
we have

op
1/2
𝑀𝑟
Op𝑥(𝑓0)(𝜂) = Op𝑟,𝑥(𝑝)(𝜂) + Op𝑟,𝑥(𝑝1)(𝜂) (2.15)

modulo an operator family in 𝐿−∞(ℝ+ × Σ;ℝ𝑞𝜂). □

Proof of Theorem 2.1. In order to prove the formula (2.7) for arbitrary weight 𝛾 it
suffices to observe that because of the holomorphic dependence of ℎ on 𝑧 we have

op𝛾𝑀Op𝑥(ℎ)(𝑦, 𝜂) = op
1/2
𝑀 Op𝑥(ℎ)(𝑦, 𝜂), (2.16)

on functions with compact support in 𝑟 ∈ ℝ+. The argument is Cauchy’s theorem,
cf. also [24, Proposition 2.3.69]. Applying Lemma 2.2 for 𝑝1 rather than 𝑝 it follows
that there are

𝑓1(𝑟, 𝑥, 𝑖𝜏, 𝜉, 𝜂) ∈ 𝑆𝜇−1(ℝ+ × Σ× Γ0 × ℝ
𝑛+𝑞
𝜉,𝜂 ),

𝑝2(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇−2(ℝ+ × Σ× ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 )
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such that for 𝑝2(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) := 𝑝2(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂) we have

Op𝑟,𝑥(𝑝1)(𝜂) = op
1/2
𝑀𝑟
Op𝑥(𝑓1)(𝜂) + Op𝑟,𝑥(𝑝2)(𝜂) mod 𝐿−∞(ℝ+ × Σ;ℝ𝑞𝜂).

This gives us

Op𝑟,𝑥(𝑝)(𝜂) =

1∑
𝑗=0

op
1/2
𝑀𝑟
Op𝑥(𝑓𝑗)(𝜂) + Op𝑟,𝑥(𝑝2)(𝜂).

By iterating the arguments we obtain a recursive process which yields

𝑝𝑗(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) = 𝑝𝑗(𝑟, 𝑥, 𝑟𝜌, 𝜉, 𝜂)

for some 𝑝𝑗(𝑟, 𝑥, 𝜌, 𝜉, 𝜂) ∈ 𝑆𝜇−𝑗(ℝ+ × Σ × ℝ
1+𝑛+𝑞
𝜌,𝜉,𝜂 ) for every 𝑗 ∈ ℕ and resulting

symbols 𝑓𝑗(𝑟, 𝑥, 𝑖𝜏, 𝜉, 𝜂) ∈ 𝑆𝜇−𝑗(ℝ+ × Σ× Γ0 × ℝ
𝑛+𝑞
𝜉,𝜂 ). Then the asymptotic sum

𝑓(𝑟, 𝑥, 𝑖𝜏, 𝜉, 𝜂) ∼
∞∑
𝑗=0

𝑓𝑗(𝑟, 𝑥, 𝑖𝜏, 𝜉, 𝜂) (2.17)

carried out in the space 𝑆𝜇(ℝ+ × Σ× Γ0 × ℝ
𝑛+𝑞
𝜉,𝜂 ) has the property

Op𝑟,𝑥(𝑝)(𝜂) = op
1/2
𝑀 Op𝑥(𝑓)(𝜂) mod 𝐿−∞(ℝ+ × Σ;ℝ𝑞𝜂). (2.18)

We now apply (2.5) and set ℎ(𝑟, 𝑥, 𝑧, 𝜉, 𝜂) := 𝒱𝜓(𝑓)(𝑟, 𝑥, 𝑧, 𝜉, 𝜂) in the version with
(𝜉, 𝜂) instead of 𝜉. Taking into account (2.6) and (2.18) it follows that

Op𝑟,𝑥(𝑝)(𝜂) = op
1/2
𝑀 Op𝑥(ℎ)(𝜂) mod 𝐿−∞(ℝ+ × Σ;ℝ𝑞𝜂). (2.19)

□
Definition 2.3. Let 𝑀𝜇

𝒪(𝑋 ;ℝ
𝑞) denote the subspace of all operator families

ℎ(𝑧, 𝜂) ∈ 𝒜(ℂ𝑧 , 𝐿𝜇(𝑋 ;ℝ𝑞𝜂))
such that ℎ(𝛽 + 𝑖𝜌, 𝜂) ∈ 𝐿𝜇(𝑋 ; Γ𝛽 × ℝ𝑞𝜂) for every 𝛽 ∈ ℝ, uniformly in 𝑐 ≤ 𝛽 ≤ 𝑐′

for all reals 𝑐 ≤ 𝑐′. For 𝑞 = 0 we simply write 𝑀𝜇
𝒪(𝑋).

Theorem 2.4. For every 𝑓(𝑟, 𝑦, 𝑧, 𝜂) ∈ 𝐶∞(ℝ+ × Ω, 𝐿𝜇(𝑋 ; Γ𝛽 × ℝ𝑞)) there exists

an ℎ(𝑟, 𝑦, 𝑧, 𝜂) ∈ 𝐶∞(ℝ+×Ω,𝑀𝜇
𝒪(𝑋 ;ℝ

𝑞)), namely, ℎ(𝑟, 𝑦, 𝑧, 𝜂) = 𝒱𝜓(𝑓)(𝑟, 𝑦, 𝑧, 𝜂),
with obvious meaning of notation, analogous to (2.5), such that

ℎ∣Γ𝛽 = 𝑓 mod 𝐶∞(Ω, 𝐿−∞(ℝ+ × 𝑋 ;ℝ𝑞𝜂))

and ℎ is unique modulo 𝐶∞(ℝ+ × Ω,𝑀−∞
𝒪 (𝑋 ;ℝ𝑞𝜂)).

Recall that Theorem 2.4 is a consequence of the construction on the kernel
cut-off at the beginning which implies, in particular, that ℎ(𝑟, 𝑦, 𝑧, 𝜂) ∈ 𝐶∞(ℝ+ ×
Ω,𝑀𝜇

𝒪(𝑋 ;ℝ
𝑞)), ℎ(𝑟, 𝑦, 𝑧, 𝜂)∣Γ𝛽 ∈ 𝐶∞(ℝ+ × Ω, 𝐿𝜇−1(𝑋 ; Γ𝛽 × ℝ𝑞)) for some fixed

𝛽 ∈ ℝ implies ℎ(𝑟, 𝑦, 𝑧, 𝜂) ∈ 𝐶∞(ℝ+ × Ω,𝑀𝜇−1
𝒪 (𝑋 ;ℝ𝑞)), cf. the arguments for

[9, Remark 6.1.6].
As a consequence of the definition we have in 𝑀𝜇

𝒪(𝑋 ;ℝ
𝑞) a natural semi-

norm system which turns it to a Fréchet space. For completeness we recall the
following result, cf. [24, Theorem 3.2.7].
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Corollary 2.5. Let

𝑝(𝑟, 𝑦, 𝜌, 𝜂) := 𝑝(𝑟, 𝑦, 𝑟𝜌, 𝜂) for 𝑝(𝑟, 𝑦, 𝜌, 𝜂) ∈ 𝐶∞(ℝ+ × Ω, 𝐿𝜇(𝑋 ;ℝ1+𝑞
𝜌,𝜂 )).

Then there exists an

ℎ(𝑟, 𝑦, 𝑧, 𝜂) ∈ 𝐶∞(ℝ+ × Ω,𝑀𝜇
𝒪(𝑋 ;ℝ

𝑞
𝜂))

such that

op𝛾𝑀 (ℎ)(𝑦, 𝜂) = Op𝑟(𝑝)(𝑦, 𝜂) mod 𝐶∞(Ω, 𝐿−∞(ℝ+ × 𝑋 ;ℝ𝑞𝜂))

for every 𝛾 ∈ ℝ.

Corollary 2.6. Let

𝑝(𝑟, 𝑦, 𝜌, 𝜂) := 𝑝(𝑟, 𝑦, 𝑟𝜌, 𝑟𝜂) for 𝑝(𝑟, 𝑦, 𝜌, 𝜂) ∈ 𝐶∞(ℝ+ × Ω, 𝐿𝜇(𝑋 ;ℝ1+𝑞
𝜌,𝜂 )).

Then there exists an

ℎ(𝑟, 𝑦, 𝑧, 𝜂) ∈ 𝐶∞(ℝ+ × Ω,𝑀𝜇
𝒪(𝑋 ;ℝ

𝑞
𝜂))

such that for ℎ(𝑟, 𝑦, 𝑧, 𝜂) = ℎ̃(𝑟, 𝑦, 𝑧, 𝑟𝜂) we have

op𝛾𝑀 (ℎ)(𝑦, 𝜂) = Op𝑟(𝑝)(𝑦, 𝜂) mod 𝐶∞(Ω, 𝐿−∞(ℝ+ × 𝑋 ;ℝ𝑞𝜂)) (2.20)

for every 𝛾 ∈ ℝ.

The proof follows from a simple modification of Theorem 2.1. The extra 𝑟-
factor at 𝜂 is regarded as an 𝑟-dependence of coefficients, operating from the left
on functions in 𝑟 ∈ ℝ+.

Remark 2.7.

(i) The operator functions both in the versions of Corollaries 2.5 and 2.6 belong
to 𝐶∞(Ω, 𝐿𝜇(ℝ+ × 𝑋 ;ℝ𝑞𝜂)), 𝐶

∞(Ω, 𝐿𝜇(ℝ+ × 𝑋 ;ℝ𝑞𝜂)), respectively, and the

claimed relations refer to the respective families of mappings 𝐶∞
0 (ℝ+×𝑋)→

𝐶∞(ℝ+ × 𝑋). The role of the obtained left-hand sides of (2.20) is, that the
operators in Mellin quantised form admit continuous extensions to weighted
Sobolev spaces, in contrast to the Fourier representations of the respective
degenerate operators on the right.

(ii) In the “full” cone and edge algebras that contain Mellin operator families as
in Corollary 2.6 it is advisable to take classical symbols. The constructions
so far restrict to the classical case.

3. The case of second-order corners

Symbols of the kind (1.1) for 𝑘 = 2 have the form

𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) = 𝑝(𝑟, 𝑥, 𝑦, 𝑟1𝜌1, 𝑟1𝑟2𝜌2, 𝜉, 𝑟1𝜂
1, 𝑟1𝑟2𝜂

2) (3.1)

for 𝑟 := (𝑟1, 𝑟2), 𝑦 := (𝑦1, 𝑦2) ∈ ℝ𝑞 for 𝑞 := 𝑞1 + 𝑞2, and we intend to show an
iterated Mellin quantisation result analogously as Theorem 2.1.
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Let us give a brief motivation of symbols like (3.1). If we consider, for instance,
a Riemannian metric on ℝ+ ×ℝ+×ℝ𝑛𝑥 ×ℝ𝑞1 ×ℝ𝑞1 ∋ (𝑟1, 𝑟2, 𝑥, 𝑦1, 𝑦2) of the form

𝑑𝑟22 + 𝑟22
(
𝑑𝑟21 + 𝑟21𝑑𝑥

2 + (𝑑𝑦1)2
)
+ (𝑑𝑦2)2.

Then the Laplace-Beltrami operator has a symbol like 𝑟−21 𝑟−22 𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) with
𝑝 being of the form (3.1) and 𝑝(𝑟, 𝑥, 𝑦, 𝜌, 𝜉, 𝜂) elliptic of order 2 with respect to the
covariables (𝜌, 𝜉, 𝜂), up to 𝑟 = 0.

Another motivation of such symbols comes from the analysis of elliptic (non-
degenerate) differential operators of order 𝜇 in a corner configuration, say, em-
bedded in an Euclidean space. Then symbols in degenerate form (3.1) appear by
iteratively introducing polar coordinates into the operator, here twice, and together
with a weight factor 𝑟−𝜇1 𝑟−𝜇2 . In a similar manner there occur degenerate symbols
(1.1) when we have corners of orders 𝑘. From the spaces of Definition 2.3 we can
pass to certain derived spaces, for instance 𝐶∞(ℝ+×ℝ+×ℝ𝑞,𝑀𝜇

𝒪𝑧1
(𝑋 ; Γ𝛿×ℝ

𝑞
𝜂))

for Γ𝛿 in the variable 𝑧2, 𝛿 ∈ ℝ.

Definition 3.1. Let 𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞𝜂) defined to be the space of all ℎ(𝑧1, 𝑧2, 𝜂)

∈ 𝒜(ℂ𝑧2 ,𝑀𝜇
𝒪𝑧1

(𝑋 ;ℝ𝑞𝜂)) such that

ℎ(𝑧1, 𝑧2, 𝜂)∣Γ𝛿 ∈ 𝑀𝜇
𝒪𝑧1

(𝑋 ; Γ𝛿 × ℝ𝑞𝜂), (3.2)

for every 𝛿 ∈ ℝ, uniformly in compact 𝛿-intervals.

This space is Fréchet in a natural way. In Definition 3.1 we may interchange
the role of 𝑧1 and 𝑧2 and get the same space, in other words 𝑀𝜇

𝒪𝑧1 ,𝒪𝑧2
(𝑋 ;ℝ𝑞𝜂)

∼=
𝑀𝜇

𝒪𝑧2 ,𝒪𝑧1
(𝑋 ;ℝ𝑞𝜂). Concerning generalities on holomorphic functions in several

complex variables, see [6]. The following result tells us that the spaces of Defi-
nition 3.1 are very rich for every 𝜇 ∈ ℝ.

Theorem 3.2.

(i) For every

𝑓(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑧2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀𝜇
𝒪𝑧1

(𝑋 ; Γ𝛿 × ℝ𝑞))

there exists an ℎ(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑧2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞))

such that

ℎ∣Γ𝛿 = 𝑓 mod 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀−∞
𝒪𝑧1

(𝑋 ; Γ𝛿 × ℝ𝑞𝜂))

and ℎ is unique modulo 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀−∞
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞𝜂)).

(ii) For every 𝑚(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑧2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞, 𝐿𝜇(𝑋 ; Γ𝛽 × Γ𝛿 × ℝ𝑞𝜂))
with fixed 𝛽, 𝛿 ∈ ℝ there exists an

ℎ(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑧2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞𝜂))

such that

ℎ∣Γ𝛽×Γ𝛿 = 𝑚 mod 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞, 𝐿−∞(𝑋 ; Γ𝛽 × Γ𝛿 × ℝ𝑞)), (3.3)

and ℎ is unique modulo 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀−∞
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞𝜂)).
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Proof. Let us consider the assertion (i). The proof of (ii) then follows from a slight
modification of Theorem 2.4 with respect to 𝑧1 combined with (i). In order to find
ℎ we apply the kernel cut-off formula (2.5), modified for global operator functions
along 𝑋 and 𝑧1 restricted for a moment to Γ𝛽 for a fixed 𝛽. Without loss of
generality we assume 𝛿 = 0, since a translation in the complex plane gives rise to
the construction for any other 𝛿. Then if 𝜓 is a cut-off function on ℝ+,𝜃 we may set

𝒱𝜓(𝑓)(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑧2, 𝜂) =
∫
ℝ+

𝜃𝑧2−1𝜓(𝜃)𝑘(𝑓)(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝜃, 𝜂)𝑑𝜃

for

𝑘(𝑓)(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝜃, 𝜂) :=

∫
Γ0

𝜃−𝑧2𝑓(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑧2, 𝜂)𝑑𝑧2.

The variables 𝑟1, 𝑟2 and 𝑦 do not affect the process, similarly as in the consider-
ations around the formula (2.5). So we drop these variables here. From the same
source we see that if 𝑧1 is varying on Γ𝛽 we obtain

𝒱𝜓(𝑓)(𝑧1, 𝑧2, 𝜂) ∈ 𝐿𝜇(𝑋 ; Γ𝛽 × Γ0 × ℝ𝑞𝜂). (3.4)

Another information in this context is that (3.4) holds uniformly in compact 𝛽-
intervals. Now the application of 𝒱𝜓 in 𝑧2 and for fixed 𝛽 gives us a holomorphic
dependence on 𝑧2 with the symbol property (after 𝑥-localisation) in (𝑥, 𝑧1, 𝑧2, 𝜉, 𝜂)
for 𝑧1 ∈ Γ𝛽 and 𝑧2 ∈ Γ𝛿 for every 𝛿, uniformly in finite 𝛿-intervals. This uniformity
then holds for (𝛽, 𝛿) varying in compact sets in ℝ2. At the same time we have holo-
morphic dependence separately in 𝑧1 and 𝑧2 for 𝑧1 ∈ Γ𝛽 and 𝑧2 ∈ Γ𝛿, respectively.
A classical lemma of Osgood implies that then that ℎ := 𝒱𝜓(𝑓)(𝑧1, 𝑧2, 𝜂) is jointly
holomorphic in (𝑧1, 𝑧2) ∈ ℂ × ℂ with values in 𝐿𝜇(𝑋 ;ℝ𝑞𝜂). Thus the properties
required in Definition 3.1 are satisfied. □

Remark 3.3.

(i) An equivalent definition of 𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞) is that this space consists of all

ℎ(𝑧1, 𝑧2, 𝜂) ∈ 𝒜(ℂ𝑧1 × ℂ𝑧2 , 𝐿
𝜇(𝑋 ;ℝ𝑞𝜂)) such that

ℎ(𝑧1, 𝑧2, 𝜂)∣Γ𝛽×Γ𝛿 ∈ 𝐿𝜇(𝑋 ; Γ𝛽 × Γ𝛿 × ℝ𝑞)

for every (𝛽, 𝛿) ∈ ℝ2, uniformly in compact subsets of ℝ2. The iterated ap-
plication of 𝒱𝜓,𝑧1𝒱𝜓,𝑧2 gives rise to a continuous operator

𝒱𝜓,𝑧1𝒱𝜓,𝑧2 : 𝐿𝜇(𝑋 ; Γ𝛽 × Γ𝛿 × ℝ𝑞) → 𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞)

for any fixed 𝛽, 𝛿 ∈ ℝ, and this is the same as 𝒱𝜓,𝑧2𝒱𝜓,𝑧1.
(ii) Let ℎ(𝑧1, 𝑧2, 𝜂) ∈ 𝑀𝜇

𝒪𝑧1 ,𝒪𝑧2
(𝑋 ;ℝ𝑞), ℎ(𝑧1, 𝑧2, 𝜂)∣Γ𝛿 ∈ 𝑀𝜇−1

𝒪𝑧1
(𝑋 ; Γ𝛿 × ℝ𝑞) for

some fixed 𝛿 ∈ ℝ. Then we have ℎ(𝑧1, 𝑧2, 𝜂) ∈ 𝑀𝜇−1
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞).

An analogous property holds when we interchange the role of 𝑧1 and 𝑧2.

Theorem 3.4. Let ℎ𝑗 ∈ 𝐶∞(ℝ+×ℝ+×ℝ𝑞,𝑀
𝜇𝑗
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞)), 𝑗 ∈ ℕ, be an arbitrary

sequence with 𝜇𝑗+1 < 𝜇𝑗 for all 𝑗, 𝜇𝑗 → −∞ as 𝑗 → ∞, then there is an ℎ ∈
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𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞)), 𝜇 := 𝜇0, unique modulo 𝐶∞(ℝ+ × ℝ+ ×
ℝ𝑞,𝑀−∞

𝒪𝑧1 ,𝒪𝑧2
(𝑋 ;ℝ𝑞)), such that

ℎ −
𝑁∑
𝑗=0

ℎ𝑗 ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀
𝜇𝑁+1

𝒪𝑧1 ,𝒪𝑧2
(𝑋 ;ℝ𝑞))

for every 𝑁 ∈ ℕ.

Proof. Without loss of generality we consider the case of (𝑟1, 𝑟2, 𝑦)-independent
ℎ𝑗 . For an asymptotic summation of 𝐿𝜇(𝑋)-valued operator function we usually
go back to the local symbols that we denote by

ℎ𝑗(𝑟1, 𝑟2, 𝑥, 𝑧1, 𝑧2, 𝜉, 𝜂). (3.5)

Then it suffices to carry out the asymptotic sum over 𝑗 and return to global
operator functions along 𝑋 , using a partition of unity, etc.

The symbols (3.5) belong to the space 𝑆𝜇𝒪𝑧1 ,𝒪𝑧2
(Σ× ℝ

𝑛+𝑞
𝜉,𝜂 ) which is defined

to be the set of all 𝑔(𝑥, 𝑧1, 𝑧2, 𝜂) ∈ 𝒜(ℂ𝑧2 , 𝑆𝜇𝒪𝑧1
(Σ𝑥 × ℝ

𝑛+𝑞
𝜉,𝜂 )) such that 𝑔∣Γ𝛿 ∈

𝑆𝜇𝒪𝑧1
(Σ×Γ𝛿×ℝ

𝑛+𝑞
𝜉,𝜂 ) for every 𝛿 ∈ ℝ, uniformly in compact 𝛿-intervals. The space

𝑆𝜇𝒪𝑧1 ,𝒪𝑧2
(Σ× ℝ

𝑛+𝑞
𝜉,𝜂 ) is Fréchet in a canonical way.

If we try to carry out the asymptotic sum of ℎ𝑗 ∈ 𝑆
𝜇𝑗
𝒪𝑧1 ,𝒪𝑧2

(Σ × ℝ𝑛+𝑞) we

have to take into account that the standard way of performing a convergent sum∑∞
𝑗=0 𝜒𝑗(𝑧1, 𝑧2, 𝜉, 𝜂)ℎ𝑗(𝑥, 𝑧1, 𝑧2, 𝜉, 𝜂) with 𝑗-depending excision functions 𝜒𝑗 will

not produce an element in 𝑆𝜇𝒪𝑧1 ,𝒪𝑧2
(Σ × ℝ𝑛+𝑞). In fact, the summands are not

holomorphic in the complex variables. However, we may form the asymptotic sum
in the covariables (𝑧1, 𝑧2, 𝜉, 𝜂) ∈ Γ0 × Γ0 × ℝ𝑛+𝑞 which gives us a symbol 𝑓 ∈
𝑆𝜇(Σ×Γ0 ×Γ0 ×ℝ𝑛+𝑞) and then apply the kernel cut-off operator 𝒱𝜓1 to 𝑓 , first
with respect to 𝑧1 ∈ Γ0 which gives us

𝒱𝜓1(𝑓)(𝑥, 𝑧1, 𝑧2, 𝜉, 𝜂) ∈ 𝑆𝜇𝒪𝑧1
(Σ× Γ0 × ℝ𝑛+𝑞)

according to (2.5). Then, applying analogously 𝒱𝜓2 with respect to 𝑧2 ∈ Γ0 yields

𝒱𝜓2𝒱𝜓1(𝑓)(𝑥, 𝑧1, 𝑧2, 𝜉, 𝜂) ∈ 𝑆𝜇𝒪𝑧1 ,𝒪𝑧2
(Σ× ℝ𝑛+𝑞).

These constructions work because of the well-known properties of kernel cut-off
operators and the property that

ℎ(𝑥, 𝑧1, 𝑧2, 𝜉, 𝜂) ∈ 𝑆𝜇𝒪𝑧1 ,𝒪𝑧2
(Σ× ℝ𝑛+𝑞)

and

ℎ(𝑥, 𝛽 + 𝑖𝜌, 𝛿 + 𝑖𝜏, 𝜉, 𝜂) ∈ 𝑆𝜇−1(Σ× Γ𝛽 × Γ𝛿 × ℝ
𝑛+𝑞
𝜉,𝜂 ) for some fixed 𝛽, 𝛿 ∈ ℝ

entails ℎ(𝑥, 𝑧1, 𝑧2, 𝜉, 𝜂) ∈ 𝑆𝜇−1𝒪𝑧1 ,𝒪𝑧2
(Σ× ℝ𝑛+𝑞). □
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Remark 3.5. In asymptotic summations we employed repeatedly a combination of
standard asymptotic summation combined with kernel cut-off, in order to restore
the holomorphic dependence on the complex covariables. There is also an alterna-
tive way of carrying out asymptotic sums by applying a summation on the kernel
side, similarly as in [23, Section 3.2.2, Proposition 3; Section 3.2.3, Theorem 4].
This idea preserves holomorphy in the variables that are not touched by the partial
kernel cut-off; see also [13] for a similar argument in terms of Volterra symbols.

Theorem 3.6. For every

𝒑(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝜌2, 𝜂) = 𝒑(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑟2𝜌2, 𝜂)

for

𝒑(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝜌2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀𝜇
𝒪𝑧1

(𝑋 ;ℝ𝜌2 × ℝ
𝑞
𝜂))

there exists an

𝒉(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑧2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞,𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞𝜂))

such that

Op𝑟2op
𝛽1
𝑀𝑟1

(𝒑)(𝑦, 𝜂) = op𝛽2𝑀𝑟2
op𝛽1𝑀𝑟1

(𝒉)(𝑦, 𝜂) (3.6)

modulo 𝐶∞(ℝ𝑞, 𝐿−∞(ℝ+ × ℝ+ × 𝑋 ;ℝ𝑞𝜂)) for any reals 𝛽1, 𝛽2.

For the proof we prepare the following lemma, and we drop the 𝑦-variables
again.

Lemma 3.7. Let 𝒑 and 𝒑 be as in the assumptions of Theorem 3.6 and

𝐶∞(ℝ+ × ℝ+,𝑀𝜇
𝒪𝑧1

(𝑋 ;ℝ1+𝑞
𝜏,𝜂 )) ∋ 𝒃(𝑟1, 𝑟2, 𝑧1, 𝜏, 𝜂) := 𝒑(𝑟1, 𝑟2, 𝑧1, 𝜏, 𝜂).

Set

𝐶∞(ℝ+ × ℝ+,𝑀𝜇
𝒪𝑧1

(𝑋 ; Γ0 × ℝ𝑞)) ∋ 𝒇0(𝑟1, 𝑟2, 𝑧1, 𝑖𝜏, 𝜂) := 𝒃(𝑟1, 𝑟2, 𝑧1,−𝜏, 𝜂).

Then we have

Op𝑟2(𝒑)(𝑟1, 𝑧1, 𝜂)∣Γ𝛽 = op
1/2
𝑀𝑟2

(𝒇0)(𝑟1, 𝑧1, 𝜂)∣Γ𝛽 +Op𝑟2(𝒑1)(𝑟1, 𝑧1, 𝜂)∣Γ𝛽 (3.7)

modulo 𝐶∞(ℝ+,𝑟1 , 𝐿
−∞(ℝ+,𝑟2 × 𝑋 ; Γ𝛽 × ℝ

𝑞
𝜂)) for every fixed real 𝛽, where

𝒑1(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) = 𝒑1(𝑟1, 𝑟2, 𝑧1, 𝑟2𝜌2, 𝜂)

for 𝒑1(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+,𝑀𝜇−1
𝒪𝑧1

(𝑋 ;ℝ𝜌2 × ℝ
𝑞
𝜂)).

Proof. We first let 𝑧1 vary on Γ0. Then we apply the operator push forward under

𝜒 : ℝ𝑡 → ℝ+,𝑟2 , 𝜒(𝑡) := 𝑒−𝑡, to op1/2𝑀𝑟2
(𝒇0)(𝑟1, 𝑧1, 𝜂). This gives us

op
1/2
𝑀𝑟2

(𝒇0)(𝑟1, 𝑧1, 𝜂) = 𝜒∗Op𝑡(𝒂)(𝑟1, 𝑧1, 𝜂)

for 𝒂(𝑟1, 𝑡, 𝑧1, 𝜏, 𝜂) = 𝒇0(𝑟1, 𝑒
−𝑡, 𝑧1, 𝑖𝜏, 𝜂). Thus, according to the transformation

rule of pseudo-differential operators under diffeomorphisms it follows that

op
1/2
𝑀𝑟2

(𝒇0)(𝑟1, 𝑧1, 𝜂) = Op𝑟2(𝒄)(𝑟1, 𝑧1, 𝜂) mod 𝐶∞(ℝ+,𝑟1 , 𝐿
−∞(ℝ+ × 𝑋 ;ℝ𝑞𝜂)),
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for a function 𝒄(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+, 𝐿𝜇(𝑋 ; Γ0,𝑧1 × ℝ𝜌2 × ℝ
𝑞
𝜂)) which

has an asymptotic expansion

𝒄(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂)∣𝑟2=𝜒(𝑡),𝜌2=𝜏 ∼
∞∑
𝑗=0

1

𝑗!

(
∂𝑗𝜏𝒂

)
(𝑟1, 𝑡, 𝑧1, (𝑑𝜒(𝑡))𝜏, 𝜂)Φ𝑗(𝑡, 𝜏) (3.8)

cf. (2.11), for Φ𝑗(𝑡, 𝜏) only depending on 𝜒. Now the term on the right of (3.8) for
𝑗 = 0 just coincides with 𝒑(𝑟1, 𝑟2, 𝑧1, 𝑟2𝜌2, 𝜂) and hence

𝒄(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) = 𝒑(𝑟1, 𝑟2, 𝑧1, 𝑟2𝜌2, 𝜂) + 𝒑1(𝑟1, 𝑟2, 𝑧1, 𝑟2𝜌2, 𝜂) (3.9)

modulo 𝐶∞(ℝ+ × ℝ+, 𝐿−∞(𝑋 ; Γ0 × ℝ
1+𝑞
𝜌2,𝜂

)) for some

𝒑1(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+,𝑀𝜇−1
𝒪𝑧1

(𝑋 ;ℝ𝜌2 × ℝ
𝑞
𝜂)). (3.10)

In (3.10) we indicated holomorphic dependence of 𝒑1 on 𝑧1 ∈ ℂ, although we first
interpreted 𝑧1 as a variable on Γ0. However, the asymptotic sum for 𝒑1 may be
produced in combination with a kernel cut-off step in 𝑧1, and this yields 𝒑1 as
a holomorphic function. Since 𝒑 is holomorphic also in 𝑧1, the equivalence (3.9)

modulo 𝐶∞(ℝ+ × ℝ+, 𝐿−∞(𝑋 ; Γ𝛽 × ℝ
1+𝑞
𝜌2,𝜂

)) holds under restriction to Γ𝛽 ∋ 𝑧1.
In the asymptotic summation for 𝒑1 we employed the fact that the smoothness
in 𝑟1 and 𝑟2 up to 0 remains under control indeed, and that the holomorphy in
𝑧1 is guaranteed when we combine the asymptotic process in the covariables in
Γ0 × ℝ

1+𝑞
𝜌2,𝜂

with a kernel cut off step with respect to 𝑧1. The relation (3.7) now
contains holomorphic functions in 𝑧1 and the smoothing remainders appear first
for 𝑧1 ∈ Γ0. Then, when we take 𝑧1 ∈ Γ𝛽 for any other real 𝛽 the remainder is
again of such a quality, as indicated in (3.7). □
Proof of Theorem 3.6. Similarly as in (2.16) it suffices to show the assertion (3.6)
for some specific 𝛽1, 𝛽2, e.g., 𝛽1 = 𝛽2 = 1/2 which is again a consequence of
Cauchy’s theorem. By iterating the result of Lemma 3.7 we produce in a recursive
manner

𝒑𝑗(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) = 𝒑𝑗(𝑟1, 𝑟2, 𝑧1, 𝑟2𝜌2, 𝜂)

for 𝒑𝑗(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) ∈ 𝐶∞(ℝ+ ×ℝ+,𝑀𝜇−𝑗
𝒪𝑧1

(𝑋 ;ℝ𝜌2 ×ℝ
𝑞
𝜂)). Analogously as (3.7)

we obtain equivalences

Op𝑟2(𝒑𝑗)(𝑟1, 𝑧1, 𝜂) = op
1/2
𝑀𝑟2

(𝒇𝑗)(𝑟1, 𝑧1, 𝜂) + Op𝑟2(𝒑𝑗+1)(𝑟1, 𝑧1, 𝜂),

for 𝒇𝑗(𝑟1, 𝑟2, 𝑧1, 𝑖𝜏, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+,𝑀𝜇−𝑗
𝒪𝑧1

(𝑋 ; Γ0 × ℝ
1+𝑞
𝜏,𝜂 )) where 𝒑0 := 𝒑 for all

𝑧1 ∈ ℂ, with remainders in 𝐶∞(ℝ+, 𝐿−∞(ℝ+ × 𝑋 ; Γ𝛽 × ℝ
𝑞
𝜂)) when restricted to

Γ𝛽 in 𝑧1. Thus we have for every 𝑙 ∈ ℕ

Op𝑟2(𝒑)(𝑟1, 𝑧1, 𝜂) = op
1/2
𝑀𝑟2

( 𝑙∑
𝑗=0

𝒇𝑗

)
(𝑟1, 𝑧1, 𝜂) + Op𝑟2(𝒑𝑙+1)(𝑟1, 𝑧1, 𝜂)

modulo a reminder of the above-mentioned kind.
The analogue of the step (2.17) cannot be done immediately in the framework

of operator functions that are holomorphic in 𝑧1, since the asymptotic summation
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with excision functions in the covariables (𝑧1, 𝑧2, 𝜂) ∈ Γ𝛽 × Γ0 × ℝ
𝑞
𝜂 destroys the

holomorphic dependence on 𝑧1. However, we may fix 𝛽 and first treat 𝑧1 as a
covariable on Γ𝛽 . Without loss of generality we take 𝛽 = 1/2. Then the asymptotic
sum gives us

𝑚(𝑟1, 𝑟2, 𝑖𝛼, 𝑖𝜏, 𝜂) ∼
∞∑
𝑗=0

𝒇𝑗(𝑟1, 𝑟2, 𝑖𝛼, 𝑖𝜏, 𝜂), (3.11)

for 𝑚(𝑟1, 𝑟2, 𝑖𝛼, 𝑖𝜏, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+, 𝐿𝜇(𝑋 ; Γ0 × Γ0 × ℝ
𝑞
𝜂)).

Applying now the kernel cut-off operator 𝒱𝜓 as in Theorem 2.4 with respect to

𝑧1 ∈ Γ0 we obtain an 𝒎(𝑟1, 𝑟2, 𝑧1, 𝑖𝜏, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+,𝑀𝜇
𝒪𝑧1

(𝑋 ; Γ0 × ℝ
𝑞
𝜂)) such

that

𝑚(𝑟1, 𝑟2, 𝑖𝛼, 𝑖𝜏, 𝜂) =𝒎(𝑟1, 𝑟2, 𝑧1, 𝑖𝜏, 𝜂)∣𝑧1∈Γ0

modulo 𝐶∞(ℝ+×ℝ+, 𝐿−∞(𝑋 ; Γ0×Γ0×ℝ
𝑞
𝜂)). Moreover, applying 𝒱𝜓 with respect

to 𝑧2 ∈ Γ0 as in Theorem 3.2 (i) yields a function

𝒉(𝑟1, 𝑟2, 𝑧1, 𝑧2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+,𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞𝜂)) (3.12)

such that

𝒎(𝑟1, 𝑟2, 𝑧1, 𝑖𝜏, 𝜂) = 𝒉(𝑟1, 𝑟2, 𝑧1, 𝑧2, 𝜂)∣𝑧2∈Γ0 .

It follows that

Op𝑟2(𝒑)(𝑟1, 𝑧1, 𝜂) = op
1/2
𝑀𝑟2

(𝒉)(𝑟1, 𝑧1, 𝜂)

modulo 𝐶∞(ℝ+,𝑟1 , 𝐿
−∞(ℝ+ × 𝑋 ; Γ0 × ℝ

𝑞
𝜂)). This gives us finally (3.6) for 𝛽1 =

𝛽2 = 1/2 after applying op
1/2
𝑀𝑟1

on both sides. □

Let us now turn to the Mellin quantisation of corner-degenerate symbols
which is the main issue of this section. Those symbols can be written as (3.1), now
for

𝑝(𝑟, 𝑥, 𝑦, 𝜌1, ˜̃𝜌2, 𝜉, 𝜂
1, ˜̃𝜂2) ∈ 𝑆𝜇(ℝ+ × ℝ+ × ℝ𝑛+𝑞𝑥,𝑦 × ℝ

2+𝑛+𝑞

𝜌1, ˜̃𝜌2,𝜉,𝜂1, ˜̃𝜂2
). (3.13)

Similarly as before we pass to globalized corner-degenerate operator functions
along 𝑋 , i.e., we start with functions

𝑝(𝑟1, 𝑟2, 𝑦, 𝜌1, 𝜌2, 𝜂
1, 𝜂2) = 𝑝(𝑟1, 𝑟2, 𝑦, 𝑟1𝜌1, 𝑟1𝑟2𝜌2, 𝑟1𝜂

1, 𝑟1𝑟2𝜂
2) (3.14)

for

𝑝(𝑟, 𝑦, 𝜌1, ˜̃𝜌2, 𝜂
1, ˜̃𝜂2) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞, 𝐿𝜇(𝑋 ;ℝ2+𝑞

𝜌1, ˜̃𝜌2,𝜂1, ˜̃𝜂2
)). (3.15)

Theorem 3.8. For every 𝑝 of the form (3.14) with (3.15) there exists an

ℎ̃(𝑟, 𝑦, 𝑧1, 𝑧2, 𝜂
1, ˜̃𝜂2) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ𝑞𝑦,𝑀

𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞
𝜂1, ˜̃𝜂2

)) such that for

ℎ(𝑟, 𝑦, 𝑧1, 𝑧2, 𝜂
1, 𝜂2) := ℎ̃(𝑟, 𝑦, 𝑧1, 𝑟1𝑧2, 𝑟1𝜂

1, 𝑟1𝑟2𝜂
2) (3.16)

we have

Op𝑟2,𝑟1(𝑝)(𝑦, 𝜂) = op𝛽2𝑀𝑟2
op𝛽1𝑀𝑟1

(ℎ)(𝑦, 𝜂) (3.17)

modulo 𝐶∞(ℝ𝑞, 𝐿−∞(ℝ+ × ℝ+ × 𝑋 ;ℝ𝑞)) for any reals 𝛽1, 𝛽2.
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Proof. The proof will be given in several steps. First we apply Theorem 2.1 in
global form with respect to 𝑋 . Then the result reads as follows. For every

𝑝1(𝑟1, 𝑦
1, 𝜌1, 𝜂

1) = 𝑝1(𝑟1, 𝑦
1, 𝑟1𝜌1, 𝜂

1)

where 𝑝1(𝑟1, 𝑦
1, 𝜌1, 𝜂

1) ∈ 𝐶∞(ℝ+ × ℝ𝑞1 , 𝐿𝜇(𝑋 ;ℝ1+𝑞1
𝜌1,𝜂1

)) there exists an

ℎ1(𝑟1, 𝑦
1, 𝑧1, 𝜂

1) ∈ 𝐶∞(ℝ+ × ℝ𝑞1 ,𝑀𝜇
𝒪𝑧1

(𝑋 ;ℝ𝑞1𝜂1))

such that
Op𝑟1(𝑝

1)(𝑦1, 𝜂1) = op𝛽1𝑀𝑟1
(ℎ1)(𝑦1, 𝜂1)

for every 𝛽1 ∈ ℝ, modulo smoothing remainders. The assertion extends in an
obvious manner to the case when we let 𝑝1 and ℎ1 depend on further variables and
covariables (𝑟2, 𝑦

2, 𝜌2, 𝜂
2) ∈ ℝ+×ℝ𝑞2×ℝ

1+𝑞2
𝜌2,𝜂2

. Taking into account these additional

variables we get an analogue of Theorem 2.1 that states the Mellin quantisation
in the 𝑟1-variable, namely a correspondence

𝑝1(𝑟1, 𝑟2, 𝑦, 𝜌1, 𝜌2, 𝜂)⇝ ℎ1(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝜌2, 𝜂)

with the replacement of notation for 𝑦 = (𝑦1, 𝑦2) and 𝜂 = (𝜂1, 𝜂2) ∈ ℝ𝑞.

ℎ1 ⇝ 𝒑, 𝒑(𝑟1, 𝑟2, 𝑦, 𝜌2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ𝑞2 × ℝ𝑞,𝑀𝜇
𝒪𝑧1

(𝑋 ;ℝ1+𝑞
𝜌2,𝜂

))

we are in the situation of Theorem 3.6 and we can produce an

𝒉(𝑟1, 𝑟2, 𝑦, 𝑧1, 𝑧2, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ𝑞2 × ℝ𝑞,𝑀𝜇
𝒪𝑧1 ,𝒪𝑧2

(𝑋 ;ℝ𝑞𝜂))

such that in the notation of Theorem 3.6

Op𝑟2op
𝛽1
𝑀𝑟1

(𝒑)(𝑦, 𝜂) = op𝛽2𝑀𝑟2
op𝛽1𝑀𝑟1

(𝒉)(𝑦, 𝜂)

modulo 𝐶∞(ℝ𝑞, 𝐿−∞(ℝ+×ℝ+×𝑋 ;ℝ𝑞𝜂)). From now on we drop again the variables
𝑦. We establish a modification of Theorem 3.6. More precisely we apply Theorem
3.6 to families of operator functions of the same nature, with parameter 𝑐 ∈ ℝ+.
Starting with 𝒑,𝒑 as in Theorem 3.6 we form

𝒑c(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) := 𝒑(𝑟1, 𝑟2, 𝑧1, 𝑐𝑟2𝜌2, 𝜂
1, 𝑐𝜂2)

where
𝒑c(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂

1, 𝜂2) := 𝒑(𝑟1, 𝑟2, 𝑧1, 𝑐𝜌2, 𝜂
1, 𝑐𝜂2)

belongs to 𝐶∞(ℝ+×ℝ+,𝑀𝜇
𝒪𝑧1

(𝑋 ;ℝ𝜌2 ×ℝ
𝑞
𝜂)) for every fixed 𝑐 ∈ ℝ+; 𝜂 = (𝜂1, 𝜂2).

An inspection of the proof of Theorem 3.6 shows that the resulting Mellin symbol
𝒉c is of the form

𝒉c(𝑟1, 𝑟2, 𝑧1, 𝑧2, 𝜂) = 𝒉̃(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑐𝑧2, 𝜂
1, 𝑐𝜂2)

for an 𝒉̃(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑧2, 𝜂
1, ˜̃𝜂2) ∈ 𝐶∞(ℝ+,𝑐 × ℝ+ × ℝ+,𝑀𝜇

𝒪𝑧1 ,𝒪𝑧2
(𝑋 ;ℝ𝑞

𝜂1, ˜̃𝜂2
)), i.e.,

we have

Op𝑟2op
𝛽1
𝑀𝑟1

(𝒑c)(𝜂) = op𝛽2𝑀𝑟2
op𝛽1𝑀𝑟1

(𝒉c)(𝜂) mod 𝐿−∞(ℝ+ × ℝ+ × 𝑋 ;ℝ𝑞𝜂).

Our point is to verify that, in the 𝑐-version of the relation (3.7) we simply replace
𝜂 by (𝜂1, 𝑐𝜂2) and 𝑖𝜏 by 𝑖𝑐𝜏 . All the smoothing remainders will depend on 𝑐,
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however, this does not affect the final result, since such remainders are accepted
in the quantisation. The relation (3.7) takes the form

Op𝑟2(𝒑
c)(𝑟1, 𝑧1, 𝜂)∣Γ𝛽 = op

1/2
𝑀𝑟2

(𝒇 c0 )(𝑟1, 𝑧1, 𝜂)∣Γ𝛽 +Op𝑟2(𝒑c1)(𝑟1, 𝑧1, 𝜂)∣Γ𝛽 (3.18)

modulo a remainder as in (3.7) for a 𝒑c1 of analogous structure as 𝒑c, but of
order 𝜇 − 1 and 𝒇 c0 (𝑟1, 𝑟2, 𝑧1, 𝑖𝜏, 𝜂) = 𝒇0(𝑟1, 𝑟2, 𝑧1, 𝑖𝑐𝜏, 𝜂

1, 𝑐𝜂2). In addition in this
computation we generate 𝒑c1 with an extra smooth dependence on 𝑐, i.e., we get

𝒑c1(𝑟1, 𝑟2, 𝑧1, 𝑟2𝜌2, 𝜂) = 𝒑1(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑐𝑟2𝜌2, 𝜂
1, 𝑐𝜂2). (3.19)

The same iteration process as before gives us functions

𝒇 c𝑗 (𝑟1, 𝑟2, 𝑧1, 𝑖𝜏, 𝜂) = 𝒇𝑗(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑖𝑐𝜏, 𝜂
1, 𝑐𝜂2)

for every 𝑗 ≥ 1. The asymptotic sum analogously as (3.11) yields an 𝑚c that
can be carried out in such a way that 𝑖𝜏 and 𝜂2 contains the factor 𝑐, and the
subsequent 𝑧1-kernel cut-off preserves this structure as well. This gives us finally
𝒉c of the desired structure. Summing up we proved the following result, with
slightly modified meaning of 𝒑c now with an extra 𝑐-dependence. For every

𝒑c(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) := 𝒑(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑐𝑟2𝜌2, 𝜂
1, 𝑐𝜂2)

for

𝒑(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂
1, ˜̃𝜂2) ∈ 𝐶∞(ℝ+,𝑐 × ℝ+,𝑟1 × ℝ+,𝑟2 ,𝑀

𝜇
𝒪𝑧1

(𝑋 ;ℝ1+𝑞

𝜌2,𝜂1, ˜̃𝜂2
))

there exists an

𝒉c(𝑟1, 𝑟2, 𝑧1, 𝑧2, 𝜂) := 𝒉̃(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑐𝑧2, 𝜂
1, 𝑐𝜂2)

for

𝒉̃(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑧2, 𝜂
1, ˜̃𝜂2) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ+,𝑀𝜇

𝒪𝑧1 ,𝒪𝑧2
(𝑋 ;ℝ𝑞

𝜂1, ˜̃𝜂2
))

such that

Op𝑟2op
𝛽1
𝑀𝑟1

(𝒑c)(𝜂) =

op𝛽2𝑀𝑟2
op𝛽1𝑀𝑟1

(𝒉c)(𝜂) mod 𝐶∞(ℝ+,𝑐, 𝐿
−∞(ℝ+ × ℝ+ × 𝑋 ;ℝ𝑞𝜂)).

(3.20)

What concerns the part of the proof which generates 𝒑c1 we also see that the factor
𝑐 remains at the covariables 𝑖𝜏 and 𝜂2. In computing 𝒑c1 we also apply an analogue
of what we did in (2.11). It follows analogously as (3.8) a function

𝒄c(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂
1, 𝜂2) = 𝒄(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑐𝜌2, 𝜂

1, 𝑐𝜂2),

via

𝒄c(𝑟1, 𝑟2, 𝑧1, 𝜌2,𝜂
1, 𝜂2)∣𝑟2=𝜒(𝑡),𝜌2=𝜏

∼
∞∑
𝑗=0

1

𝑗!

(
∂𝑗𝜏𝒂

)
(𝑟1, 𝑡, 𝑧1, (𝑑𝜒(𝑡))𝑐𝜏, 𝜂

1, 𝑐𝜂2)Φ𝑗(𝑡, 𝜏).
(3.21)

Let us explain the sense of carrying out the asymptotic sum (3.21). The contribu-
tion of

𝒂c(𝑟1, 𝑡, 𝑧1, 𝜏, 𝜂
1, 𝜂2) := 𝒂(𝑐, 𝑟1, 𝑡, 𝑧1, 𝑐𝜏, 𝜂

1, 𝑐𝜂2)
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for 𝒂(𝑐, 𝑟1, 𝑡, 𝑧1, 𝑐𝜏, 𝜂
1, 𝑐𝜂2) = 𝒇0(𝑐, 𝑟1, 𝑒

−𝑡, 𝑧1, 𝑖𝑐𝜏, 𝜂1, 𝑐𝜂2) contains in its argument
the right combination of 𝑖𝜏 and 𝜂2 with the factor 𝑐, namely, 𝑖𝑐𝜏 and 𝑐𝜂2. Although
Φ𝑗(𝑡, 𝜏) is independent of 𝑐, we gain through the 𝜏 -differentiation of 𝒂c in the 𝑐-
dependent version of (3.8) also an extra factor 𝑐𝑗 . The function Φ𝑗(𝑡, 𝜏) has the
form

Φ𝑗(𝑡, 𝜏) = Ψ𝑗(𝑟2, 𝜏 )∣𝜏=𝑒−𝑡𝜏,𝑟2=𝑒−𝑡

for the above-mentioned polynomial Ψ𝑗(𝑟2, 𝜏 ) of degree ≤ 𝑗/2 in 𝜏 , with smooth
dependence in 𝑟2 up to 𝑟2 = 0. In addition we have

𝑐𝑗Ψ𝑗(𝑟2, 𝜏 ) =: 𝜓𝑗(𝑐, 𝑟2, ˜̃𝜏),

˜̃𝜏 = 𝑐𝜏 , with a function 𝜓𝑗(𝑐, 𝑟2, ˜̃𝜏) being a polynomial in ˜̃𝜏 of degree ≤ 𝑗/2

and smooth in (𝑐, 𝑟1, 𝑟2) ∈ ℝ+ × ℝ+ × ℝ+ up to (0, 0, 0). In order to see how to
carry out the asymptotic sum (3.21) with a control of smoothness in (𝑐, 𝑟1, 𝑟2) ∈
ℝ+ × ℝ+ × ℝ+ up to (0, 0, 0) we replace the summands by

𝒈𝑗(𝑐, 𝑟1, 𝑟2, 𝑧1, ˜̃𝜏, 𝜂) := 𝒂(𝑗)(𝑐, 𝑟1, 𝑟2, 𝑧1, ˜̃𝜏, 𝜂)𝜓𝑗(𝑐, 𝑟2, ˜̃𝜏)

for

𝒂(𝑗)(𝑐, 𝑟1, 𝑟2, 𝑧1, ˜̃𝜏, 𝜂) :=
1

𝑗!

(
∂𝑗𝜏𝒂

)
(𝑐, 𝑟1,− log 𝑟2, 𝑧1, ˜̃𝜏, 𝜂)

where 𝒈𝑗(𝑐, 𝑟1, 𝑟2, 𝑧1, ˜̃𝜏, 𝜂) ∈ 𝐶∞(ℝ+ × ℝ+ × ℝ+,𝑀
𝜇−𝑗/2
𝒪𝑧1

(𝑋 ;ℝ1+𝑞
˜̃𝜏,𝜂

)). We form

𝒑1(𝑐, 𝑟1, 𝑟2, 𝑧1, ˜̃𝜏, 𝜂) = −
∞∑
𝑗=1

𝒈𝑗(𝑐, 𝑟1, 𝑟2, 𝑧1, ˜̃𝜏, 𝜂).

This yields

𝒄c(𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂)

= 𝒑(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑐𝑟2𝜌2, 𝜂
1, 𝑐𝜂2) + 𝒑1(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝑐𝑟2𝜌2, 𝜂

1, 𝑐𝜂2)

modulo 𝐶∞(ℝ+ ×ℝ+ ×ℝ+, 𝐿−∞(𝑋 ; Γ0 ×ℝ
1+𝑞
𝜌2,𝜂

)) for some 𝒑1(𝑐, 𝑟1, 𝑟2, 𝑧1, 𝜌2, 𝜂) ∈
𝐶∞(ℝ+,𝑐×ℝ+,𝑟1 ×ℝ+,𝑟2 ×ℝ

𝑞
𝜂,𝑀

𝜇−1
𝒪 (𝑋 ;ℝ𝜌2 ×ℝ

𝑞
𝜂)).This gives us (2.19) for (3.19)

which is the 𝑐-variant of (3.7).

In the final step of the proof we simply interpret 𝑐 as 𝑟1 ∈ ℝ+ and 𝜂 as
(𝑟1𝜂

1, 𝑟1𝑟2𝜂
2). Then the assertion of the theorem is an immediate consequence of

(3.20). This is an admissible argument, since the 𝑟1 and 𝑟2 variables are involved as
variables in left symbols, i.e., they act in the respective pseudo-differential opera-
tors as multiplications from the left. All the 𝑐 dependent smoothing remainders oc-
curring in the first part of the proof after replacements 𝑐 ⇝ 𝑟1, 𝜂 ⇝ (𝑟1𝜂

1, 𝑟1𝑟2𝜂
2)

turn again to smoothing remainders of analogous quality. □
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4. Mellin symbols for higher-order corners

The method of proving Theorem 3.8 is iterative. It is nearly straightforward to
generalise the respective operator-valued symbol spaces with holomorphic depen-
dence on several complex variables. Therefore, we briefly formulate the result and
content ourselves with a few remarks.

First we have the following analogue of Definition 3.1. As before let 𝑋 be a
closed 𝐶∞ manifold.

Definition 4.1. The space 𝑀𝜇
𝒪𝑧
(𝑋 ;ℝ𝑞𝜂) for 𝑧 = (𝑧1, . . . , 𝑧𝑘), 𝜂 ∈ ℝ𝑞, 𝑘 ≥ 2, 𝜇 ∈ ℝ,

is defined to be the set of all ℎ(𝑧′, 𝑧𝑘, 𝜂), 𝑧′ = (𝑧1, . . . , 𝑧𝑘−1), such that ℎ(𝑧′, 𝑧𝑘, 𝜂) ∈
𝒜(ℂ𝑧𝑘 ,𝑀𝜇

𝒪𝑧′
(𝑋 ;ℝ𝑞𝜂)) with

ℎ(𝑧′, 𝑧𝑘, 𝜂) ∈ 𝑀𝜇
𝒪𝑧′

(𝑋 ; Γ𝛿 × ℝ𝑞𝜂)

for every 𝛿 ∈ ℝ, uniformly in compact 𝛿-intervals. We also write𝑀𝜇
𝒪(𝑋 ;ℝ

𝑞) rather
than 𝑀𝜇

𝒪𝑧
(𝑋 ;ℝ𝑞).

Here we inductively assume that the spaces 𝑀𝜇
𝒪𝑧′

(𝑋 ;ℝ𝑙𝜆) are already defined

for every 𝑙 ∈ ℕ, with a Fréchet topology that follows in a natural way from the
definition. As before when we write Γ𝛿 as a component of a space of parameters we
mean the real variable Im 𝑧𝑘 with 𝑧𝑘 varying on Γ𝛿. The space 𝑀𝜇

𝒪(𝑋 ;ℝ
𝑞) can be

defined in many equivalent ways; e.g., analogously as in Remark 3.3(i). In addition
there is an analogue of Remark 3.3(ii). Moreover, we have continuous embeddings

𝑀𝜇′
𝒪 (𝑋 ;ℝ

𝑞) ↪→ 𝑀𝜇
𝒪(𝑋 ;ℝ

𝑞) for any 𝜇′ ≤ 𝜇.

Observe that there are analogues of Theorems 3.2 and 3.4 also for arbitrary
𝑘. Those play a similar role for higher corner operators as the above theorems for
the case 𝑘 = 2.

Consider an operator function

𝑝(𝑟, 𝑦, 𝜌, 𝜂) = 𝑝(𝑟, 𝑦, 𝑟1𝜌1, 𝑟1𝑟2𝜌2, . . . , 𝑟1 . . . 𝑟𝑘𝜌𝑘, 𝑟1𝜂
1, 𝑟1𝑟2𝜂

2, . . . , 𝑟1 . . . 𝑟𝑘𝜂
𝑘)
(4.1)

for

𝑝(𝑟, 𝑦, 𝜌, 𝜂) ∈ 𝐶∞((ℝ+)
𝑘 × Ω, 𝐿𝜇(𝑋 ;ℝ𝑘+𝑞𝜌,𝜂 )), (4.2)

Ω ⊆ ℝ𝑞 open, (ℝ+)
𝑘 = ℝ+ × ⋅ ⋅ ⋅ × ℝ+ (𝑘 factors). Then our main result is as

follows.

Theorem 4.2. For every 𝑝 as in (4.1) with (4.2) there exists an ℎ̃(𝑟, 𝑦, 𝑧, 𝜂) ∈
𝐶∞((ℝ+)

𝑘×Ω,𝑀𝜇
𝒪𝑧
(𝑋 ;ℝ𝑞𝜂)), 𝑧 = (𝑧1, . . . , 𝑧𝑘), such that for ℎ(𝑟, 𝑦, 𝑧, 𝜂) defined by

ℎ̃(𝑟, 𝑦, 𝑧1, 𝑟1𝑧2, 𝑟1𝑟2𝑧3, . . . , 𝑟1𝑟2 . . . 𝑟𝑘−1𝑧𝑘, 𝑟1𝜂1, 𝑟1𝑟2𝜂2, . . . , 𝑟1𝑟2 . . . 𝑟𝑘𝜂𝑘)

we have

Op𝑟𝑘,...,𝑟1(𝑝)(𝑦, 𝜂) = op𝛽𝑘𝑀𝑟𝑘
. . . op𝛽1𝑀𝑟1

(ℎ)(𝑦, 𝜂) mod 𝐶∞(Ω, 𝐿−∞(ℝ𝑘+ × 𝑋 ;ℝ𝑞))

for any reals 𝛽1, . . . , 𝛽𝑘.
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Remark 4.3. Theorem 4.2 refers to an equivalence of (𝑦, 𝜂)-depending families of
operators 𝐶∞

0 (ℝ
𝑘
+ × 𝑋) → 𝐶∞(ℝ𝑘+ × 𝑋) modulo smoothing operators. The role

of the Mellin quantisation is to modify the original operator by removing some
smoothing (possibly singular) error and to obtain someone that admits a contin-
uous extension between suitable weighted Sobolev spaces. This aspect cannot be
discussed in detail here; it requires more voluminous considerations.

Remark 4.4. The Mellin quantisation result of Theorem 4.2 may be specified for
classical symbols. Then, starting with classical 𝑝 we obtain classical ℎ in the sense
that everywhere in the definition of holomorphic Mellin symbols we have 𝐿𝜇cl in-
stead of 𝐿𝜇. This aspect is of relevance in the higher corner pseudo-differential
calculus for analogous reasons as in cone and edge algebras corresponding to the
case 𝑘 = 1.

Let us finally observe that the spaces𝑀𝜇
𝒪(𝑋 ;ℝ

𝑞) admit a concept of ellipticity
and parametrices that is also a part of the elliptic theory in higher corner operators.
First note that

ℎ𝑗(𝑧, 𝜂) ∈ 𝑀
𝜇𝑗
𝒪 (𝑋 ;ℝ𝑞), 𝑗 = 1, 2,

implies ℎ1(𝑧, 𝜂)ℎ2(𝑧, 𝜂) ∈ 𝑀𝜇1+𝜇2
𝒪 (𝑋 ;ℝ𝑞) for arbitrary 𝜇1, 𝜇2 ∈ ℝ.

An element ℎ(𝑧, 𝜂) ∈ 𝑀𝜇
𝒪(𝑋 ;ℝ

𝑞) is called elliptic if there is a tuple 𝛽 =

(𝛽1, . . . , 𝛽𝑘) ∈ ℝ𝑘 such that

ℎ(𝑧, 𝜂)∣Γ𝛽 ∈ 𝐿𝜇(𝑋 ; Γ𝛽 × ℝ𝑞) for Γ𝛽 := Γ𝛽1 × ⋅ ⋅ ⋅ × Γ𝛽𝑘

is parameter-dependent elliptic of order 𝜇 with the parameters (𝑧1, . . . , 𝑧𝑘, 𝜂) ∈
Γ𝛽 × ℝ𝑞. This definition is independent of the choice of 𝛽, i.e., the condition is
equivalent to the one with respect to Γ𝛽′ for any other 𝛽′ ∈ ℝ𝑘.

Theorem 4.5. Let ℎ(𝑧, 𝜂) ∈ 𝑀𝜇
𝒪(𝑋 ;ℝ

𝑞) be elliptic; then there exists an

ℎ(−1)(𝑧, 𝜂) ∈ 𝑀−𝜇
𝒪 (𝑋 ;ℝ𝑞)

such that

ℎ(𝑧, 𝜂)ℎ(−1)(𝑧, 𝜂) = 1, ℎ(−1)(𝑧, 𝜂)ℎ(𝑧, 𝜂) = 1 mod 𝑀−∞
𝒪 (𝑋 ;ℝ𝑞). (4.3)

Proof. By assumption 𝑓(𝑧, 𝜂) := ℎ(𝑧, 𝜂)∣Γ𝛽 ∈ 𝐿𝜇(𝑋 ; Γ𝛽 ×ℝ𝑞) is parameter-depen-

dent elliptic. Let 𝑓 (−1)(𝑧, 𝜂) ∈ 𝐿−𝜇(𝑋 ; Γ𝛽 × ℝ𝑞) be a parameter-dependent para-
metrix. Then we may set

ℎ(−1)(𝑧, 𝜂) :=
(𝒱𝜓,𝑧𝑓 (−1))(𝑧, 𝜂)

where 𝒱𝜓,𝑧 is the multiple kernel cut-off operator 𝒱𝜓,𝑧 := 𝒱𝜓,𝑧𝑘 . . .𝒱𝜓,𝑧1 . For sim-
plicity we took the same 𝜓 with respect to different variables; we could distinguish
with 𝜓’s in different variables as well. The property (4.3) then follows from a cor-
responding relation between 𝑓(𝑧, 𝜂), 𝑓 (−1)(𝑧, 𝜂) and the corresponding analogues
of the above-mentioned properties of the kernel cut-off operator. □
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Pseudodifferential Operators
on Variable Lebesgue Spaces
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To Professor Vladimir Rabinovich on the occasion of his 70th birthday

Abstract. Let ℳ(ℝ𝑛) be the class of bounded away from one and infinity
functions 𝑝 : ℝ𝑛 → [1,∞] such that the Hardy-Littlewood maximal opera-
tor is bounded on the variable Lebesgue space 𝐿𝑝(⋅)(ℝ𝑛). We show that if 𝑎

belongs to the Hörmander class 𝑆
𝑛(𝜌−1)
𝜌,𝛿 with 0 < 𝜌 ≤ 1, 0 ≤ 𝛿 < 1, then

the pseudodifferential operator Op(𝑎) is bounded on 𝐿𝑝(⋅)(ℝ𝑛) provided that
𝑝 ∈ ℳ(ℝ𝑛). Let ℳ∗(ℝ𝑛) be the class of variable exponents 𝑝 ∈ ℳ(ℝ𝑛) rep-
resented as 1/𝑝(𝑥) = 𝜃/𝑝0 + (1 − 𝜃)/𝑝1(𝑥) where 𝑝0 ∈ (1,∞), 𝜃 ∈ (0, 1), and
𝑝1 ∈ ℳ(ℝ𝑛). We prove that if 𝑎 ∈ 𝑆0

1,0 slowly oscillates at infinity in the first
variable, then the condition

lim
𝑅→∞

inf
∣𝑥∣+∣𝜉∣≥𝑅

∣𝑎(𝑥, 𝜉)∣ > 0

is sufficient for the Fredholmness of Op(𝑎) on 𝐿𝑝(⋅)(ℝ𝑛) whenever 𝑝 ∈ ℳ∗(ℝ𝑛).
Both theorems generalize pioneering results by Rabinovich and Samko [24] ob-
tained for globally log-Hölder continuous exponents 𝑝, constituting a proper
subset of ℳ∗(ℝ𝑛).

Mathematics Subject Classification (2010). Primary 47G30; Secondary 42B25,
46E30.

Keywords. Pseudodifferential operator, Hörmander symbol, slowly oscillat-
ing symbol, variable Lebesgue space, Hardy-Littlewood maximal operator,
Fefferman-Stein sharp maximal operator, Fredholmness.

1. Introduction

We denote the usual operators of first-order partial differentiation on ℝ𝑛 by ∂𝑥𝑗 :=
∂/∂𝑥𝑗 . For every multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑛) with non-negative integers 𝛼𝑗 , we
write ∂𝛼 := ∂𝛼1

𝑥1 . . . ∂𝛼𝑛𝑥𝑛 . Further, ∣𝛼∣ := 𝛼1 + ⋅ ⋅ ⋅ + 𝛼𝑛, and for each vector 𝜉 =

(𝜉1, . . . , 𝜉𝑛) ∈ ℝ𝑛, define 𝜉𝛼 := 𝜉𝛼1
1 . . . 𝜉𝛼𝑛𝑛 and ⟨𝜉⟩ := (1+ ∣𝜉∣22)1/2 where ∣𝜉∣2 stands

for the Euclidean norm of 𝜉.
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Let 𝐶∞
0 (ℝ

𝑛) denote the set of all infinitely differentiable functions with com-
pact support. Recall that, given 𝑢 ∈ 𝐶∞

0 (ℝ
𝑛), a pseudodifferential operator Op(𝑎)

is formally defined by the formula

(Op(𝑎)𝑢)(𝑥) :=
1

(2𝜋)𝑛

∫
ℝ𝑛

𝑑𝜉

∫
ℝ𝑛

𝑎(𝑥, 𝜉)𝑢(𝑦)𝑒𝑖⟨𝑥−𝑦,𝜉⟩𝑑𝑦,

where the symbol 𝑎 is assumed to be smooth in both the spatial variable 𝑥 and
the frequency variable 𝜉, and satisfies certain growth conditions (see, e.g., [26,
Chap. VI]). An example of symbols one might consider is the class 𝑆𝑚𝜌,𝛿, introduced

by Hörmander [13], consisting of 𝑎 ∈ 𝐶∞(ℝ𝑛 × ℝ𝑛) with

∣∂𝛼𝜉 ∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼,𝛽⟨𝜉⟩𝑚−𝜌∣𝛼∣+𝛿∣𝛽∣ (𝑥, 𝜉 ∈ ℝ𝑛),

where 𝑚 ∈ ℝ and 0 ≤ 𝛿, 𝜌 ≤ 1 and the positive constants 𝐶𝛼,𝛽 depend only on 𝛼
and 𝛽.

The study of pseudodifferential operators Op(𝑎) with symbols in 𝑆0
1,0 on so-

called variable Lebesgue spaces was started by Rabinovich and Samko [24, 25].

Let 𝑝 : ℝ𝑛 → [1,∞] be a measurable a.e. finite function. By 𝐿𝑝(⋅)(ℝ𝑛) we
denote the set of all complex-valued functions 𝑓 on ℝ𝑛 such that

𝐼𝑝(⋅)(𝑓/𝜆) :=
∫
ℝ𝑛

∣𝑓(𝑥)/𝜆∣𝑝(𝑥)𝑑𝑥 < ∞

for some 𝜆 > 0. This set becomes a Banach space when equipped with the norm

∥𝑓∥𝑝(⋅) := inf
{
𝜆 > 0 : 𝐼𝑝(⋅)(𝑓/𝜆) ≤ 1

}
.

It is easy to see that if 𝑝 is constant, then 𝐿𝑝(⋅)(ℝ𝑛) is nothing but the standard
Lebesgue space 𝐿𝑝(ℝ𝑛). The space 𝐿𝑝(⋅)(ℝ𝑛) is referred to as a variable Lebesgue
space.

Lemma 1.1. (see, e.g., [15, Thm. 2.11] or [10, Thm. 3.4.12]) If 𝑝 : ℝ𝑛 → [1,∞] is
an essentially bounded measurable function, then 𝐶∞

0 (ℝ
𝑛) is dense in 𝐿𝑝(⋅)(ℝ𝑛).

We will always suppose that

1 < 𝑝− := ess inf
𝑥∈ℝ𝑛

𝑝(𝑥), ess sup
𝑥∈ℝ𝑛

𝑝(𝑥) =: 𝑝+ < ∞. (1.1)

Under these conditions, the space 𝐿𝑝(⋅)(ℝ𝑛) is separable and reflexive, and its dual
space is isomorphic to 𝐿𝑝

′(⋅)(ℝ𝑛), where

1/𝑝(𝑥) + 1/𝑝′(𝑥) = 1 (𝑥 ∈ ℝ𝑛)

(see, e.g., [15] or [10, Chap. 3]).
Given 𝑓 ∈ 𝐿1

loc(ℝ
𝑛), the Hardy-Littlewood maximal operator is defined by

𝑀𝑓(𝑥) := sup
𝑄∋𝑥

1

∣𝑄∣
∫
𝑄

∣𝑓(𝑦)∣𝑑𝑦

where the supremum is taken over all cubes 𝑄 ⊂ ℝ𝑛 containing 𝑥 (here, and
throughout, cubes will be assumed to have their sides parallel to the coordinate



PDO on Variable Lebesgue Spaces 175

axes). Byℳ(ℝ𝑛) denote the set of all measurable functions 𝑝 :ℝ𝑛→ [1,∞] such that
(1.1) holds and the Hardy-Littlewood maximal operator is bounded on 𝐿𝑝(⋅)(ℝ𝑛).

Assume that (1.1) is fulfilled. Diening [7] proved that if 𝑝 satisfies

∣𝑝(𝑥) − 𝑝(𝑦)∣ ≤ 𝑐

log(𝑒+ 1/∣𝑥 − 𝑦∣) (𝑥, 𝑦 ∈ ℝ𝑛) (1.2)

and 𝑝 is constant outside some ball, then 𝑝 ∈ ℳ(ℝ𝑛). Further, the behavior of 𝑝
at infinity was relaxed by Cruz-Uribe, Fiorenza, and Neugebauer [5, 6], where it
was shown that if 𝑝 satisfies (1.2) and there exists a 𝑝∞ > 1 such that

∣𝑝(𝑥) − 𝑝∞∣ ≤ 𝑐

log(𝑒+ ∣𝑥∣) (𝑥 ∈ ℝ𝑛), (1.3)

then 𝑝 ∈ ℳ(ℝ𝑛). Following [10, Section 4.1], we will say that if conditions (1.2)–
(1.3) are fulfilled, then 𝑝 is globally log-Hölder continuous.

Conditions (1.2) and (1.3) are optimal for the boundedness of 𝑀 in the
pointwise sense; the corresponding examples are contained in [21] and [5]. However,
neither (1.2) nor (1.3) is necessary for 𝑝 ∈ ℳ(ℝ𝑛). Nekvinda [19] proved that if 𝑝
satisfies (1.1)–(1.2) and∫

ℝ𝑛

∣𝑝(𝑥) − 𝑝∞∣𝑐1/∣𝑝(𝑥)−𝑝∞∣ 𝑑𝑥 < ∞ (1.4)

for some 𝑝∞ > 1 and 𝑐 > 0, then 𝑝 ∈ ℳ(ℝ𝑛). One can show that (1.3) implies
(1.4), but the converse, in general, is not true. The corresponding example is
constructed in [3]. Nekvinda further relaxed condition (1.4) in [20]. Lerner [16]
(see also [10, Example 5.1.8]) showed that there exist discontinuous at zero or/and
at infinity exponents, which nevertheless belong to ℳ(ℝ𝑛). We refer to the recent
monograph [10] for further discussions concerning the class ℳ(ℝ𝑛).

Our first main result is the following theorem concerning the boundedness of
pseudodifferential operators on variable Lebesgue spaces.

Theorem 1.2. Let 0 < 𝜌 ≤ 1, 0 ≤ 𝛿 < 1, and 𝑎 ∈ 𝑆
𝑛(𝜌−1)
𝜌,𝛿 . If 𝑝 ∈ ℳ(ℝ𝑛), then

Op(𝑎) extends to a bounded operator on the variable Lebesgue space 𝐿𝑝(⋅)(ℝ𝑛).

The respective result for 𝑎 ∈ 𝑆0
1,0 and 𝑝 satisfying (1.1)–(1.3) was proved by

Rabinovich and Samko [24, Theorem 5.1].
Following [24, Definition 4.5], a symbol 𝑎 ∈ 𝑆𝑚1,0 is said to be slowly oscillating

at infinity in the first variable if

∣∂𝛼𝜉 ∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼𝛽(𝑥)⟨𝜉⟩𝑚−∣𝛼∣,

where

lim
𝑥→∞𝐶𝛼𝛽(𝑥) = 0 (1.5)

for all multi-indices 𝛼 and 𝛽 ∕= 0. We denote by 𝑆𝑂𝑚 the class of all symbols
slowly oscillating at infinity. Finally, we denote by 𝑆𝑂𝑚0 the set of all symbols
𝑎 ∈ 𝑆𝑂𝑚, for which (1.5) holds for all multi-indices 𝛼 and 𝛽. The classes 𝑆𝑂𝑚

and 𝑆𝑂𝑚0 were introduced by Grushin [12].
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We denote by ℳ∗(ℝ𝑛) the set of all variable exponents 𝑝 ∈ ℳ(ℝ𝑛) for which
there exist constants 𝑝0 ∈ (1,∞), 𝜃 ∈ (0, 1), and a variable exponent 𝑝1 ∈ ℳ(ℝ𝑛)
such that

1

𝑝(𝑥)
=

𝜃

𝑝0
+
1− 𝜃

𝑝1(𝑥)

for almost all 𝑥 ∈ ℝ𝑛. Rabinovich and Samko observed in the proof of [24, Theo-
rem 6.1] that if 𝑝 satisfies (1.1)–(1.3), then 𝑝 ∈ ℳ∗(ℝ𝑛). It turns out that the class
ℳ∗(ℝ𝑛) contains many interesting exponents which are not globally log-Hölder
continuous (see [14]). In particular, there exists 𝜀 > 0 such that for every 𝛼, 𝛽
satisfying 0 < 𝛽 < 𝛼 ≤ 𝜀 the function

𝑝(𝑥) = 2 + 𝛼+ 𝛽 sin
(
log(log ∣𝑥∣)𝜒{𝑥∈ℝ𝑛:∣𝑥∣≥𝑒}(𝑥)

)
(𝑥 ∈ ℝ𝑛)

belongs to ℳ∗(ℝ𝑛).
As usual, we denote by 𝐼 the identity operator on a Banach space. Recall

that a bounded linear operator 𝐴 on a Banach space is said to be Fredholm if
there is an (also bounded linear) operator 𝐵 such that the operators 𝐴𝐵 − 𝐼 and
𝐵𝐴 − 𝐼 are compact. In that case the operator 𝐵 is called a regularizer for the
operator 𝐴.

Our second main result is the following sufficient condition for the Fredholm-
ness of pseudodifferential operators on variable Lebesgue spaces.

Theorem 1.3. Suppose 𝑝 ∈ ℳ∗(ℝ𝑛) and 𝑎 ∈ 𝑆𝑂0. If

lim
𝑅→∞

inf
∣𝑥∣+∣𝜉∣≥𝑅

∣𝑎(𝑥, 𝜉)∣ > 0, (1.6)

then the operator Op(𝑎) is Fredholm on the variable Lebesgue space 𝐿𝑝(⋅)(ℝ𝑛).

As it was the case with Theorem 1.2, for 𝑝 satisfying (1.1)–(1.3) this result
was established by Rabinovich and Samko [24, Theorem 6.1]. Notice that for such
𝑝 condition (1.6) is also necessary for the Fredholmness (see [24, Theorems 6.2
and 6.5]). Whether or not the necessity holds in the setting of Theorem 1.3, remains
an open question.

The paper is organized as follows. In Section 2.2, the Diening-Růžička gener-
alization (see [11]) of the Fefferman-Stein sharp maximal theorem to the variable
exponent setting is stated. Further, Diening’s results [8] on the duality and left-
openness of the class ℳ(ℝ𝑛) are formulated. In Section 2.4 we discuss a point-
wise estimate relating the Fefferman-Stein sharp maximal operator of Op(𝑎)𝑢 and
𝑀𝑞𝑢 := 𝑀(∣𝑢∣𝑞)1/𝑞 for 𝑞 ∈ (1,∞) and 𝑢 ∈ 𝐶∞

0 (ℝ
𝑛). Such an estimate for the

range of parameters 𝜌, 𝛿, and 𝑚 = 𝑛(𝜌 − 1) as in Theorem 1.2 was recently ob-
tained by Michalowski, Rule, and Staubach [17]. Combining this key pointwise
estimate with the sharp maximal theorem and taking into account that 𝑀𝑞 is

bounded on 𝐿𝑝(⋅)(ℝ𝑛) for some 𝑞 ∈ (1,∞) whenever 𝑝 ∈ ℳ(ℝ𝑛), we give the proof
of Theorem 1.2 in Section 2.5.

Section 3 is devoted to the proof of the sufficient condition for the Fredholm-
ness of a pseudodifferentail operator with slowly oscillating symbol. In Section 3.1,
we state analogues of the Riesz-Thorin and Krasnoselskii interpolation theorems
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for variable Lebesgue spaces. Section 3.2 contains the composition formula for
pseudodifferential operators with slowly oscillating symbols and the compactness
result for pseudodifferential operators with symbols in 𝑆𝑂−1

0 . Both results are es-
sentially due to Grushin [12]. Section 3.3 contains the proof of Theorem 1.3. Its
outline is as follows. From (1.6) it follows that there exist symbols 𝑏𝑅 ∈ 𝑆𝑂0 and
𝜑𝑅 + 𝑐 ∈ 𝑆𝑂−1

0 such that 𝐼 −Op(𝑎)Op(𝑏𝑅) = Op(𝜑𝑅 + 𝑐). Since 𝜑𝑅 + 𝑐 ∈ 𝑆𝑂−1
0 ,

the operator Op(𝜑𝑅+ 𝑐) is compact on all standard Lebesgue spaces. Its compact-
ness on the variable Lebesgue space 𝐿𝑝(⋅)(ℝ𝑛) is proved by interpolation, since it
is bounded on the variable Lebesgue space 𝐿𝑝1(⋅)(ℝ𝑛), where 𝑝1 is the variable
exponent from the definition of the class ℳ∗(ℝ𝑛). Actually, the class ℳ∗(ℝ𝑛) is
introduced exactly for the purpose to perform this step. Therefore Op(𝑏𝑅) is a
right regularizer for Op(𝑎) on 𝐿𝑝(⋅)(ℝ𝑛). In the same fashion it can be shown that
Op(𝑏𝑅) is a left regularizer for Op(𝑎). Thus Op(𝑎) is Fredholm.

2. Boundedness of the operator Op(𝒂)

2.1. Lattice property of variable Lebesgue spaces

We start with the following simple but important property of variable Lebesgue
spaces. Usually it is called the lattice property or the ideal property.

Lemma 2.1. (see, e.g., [10, Thm. 2.3.17]) Let 𝑝 : ℝ𝑛 → [1,∞] be a measurable a.e.
finite function. If 𝑔 ∈ 𝐿𝑝(⋅)(ℝ𝑛), 𝑓 is a measurable function, and ∣𝑓(𝑥)∣ ≤ ∣𝑔(𝑥)∣
for a.e. 𝑥 ∈ ℝ𝑛, then 𝑓 ∈ 𝐿𝑝(⋅)(ℝ𝑛) and ∥𝑓∥𝑝(⋅) ≤ ∥𝑔∥𝑝(⋅).
2.2. The Fefferman-Stein sharp maximal function

Let 𝑓 ∈ 𝐿1
loc(ℝ

𝑛). For a cube 𝑄 ⊂ ℝ𝑛, put

𝑓𝑄 :=
1

∣𝑄∣
∫
𝑄

𝑓(𝑥)𝑑𝑥.

The Fefferman-Stein sharp maximal function is defined by

𝑀#𝑓(𝑥) := sup
𝑄∋𝑥

1

∣𝑄∣
∫
𝑄

∣𝑓(𝑥) − 𝑓𝑄∣𝑑𝑥,

where the supremum is taken over all cubes 𝑄 containing 𝑥.
It is obvious that𝑀#𝑓 is pointwise dominated by𝑀𝑓 . Hence, by Lemma 2.1,

∥𝑀#𝑓∥𝑝(⋅) ≤ const∥𝑓∥𝑝(⋅) for 𝑓 ∈ 𝐿𝑝(⋅)(ℝ𝑛)

whenever 𝑝 ∈ ℳ(ℝ𝑛). The converse is also true. For constant 𝑝 this fact goes
back to Fefferman and Stein (see, e.g., [26, Chap. IV, Section 2.2]). The variable
exponent analogue of the Fefferman-Stein theorem was proved by Diening and
Růžička [11].

Theorem 2.2. (see [11, Thm. 3.6] or [10, Thm. 6.2.5]) If 𝑝, 𝑝′ ∈ ℳ(ℝ𝑛), then there
exists a constant 𝐶#(𝑝) > 0 such that for all 𝑓 ∈ 𝐿𝑝(⋅)(ℝ𝑛),

∥𝑓∥𝑝(⋅) ≤ 𝐶#(𝑝)∥𝑀#𝑓∥𝑝(⋅).



178 A.Yu. Karlovich and I.M. Spitkovsky

2.3. Duality and left-openness of the class 퓜(ℝ𝒏)

Let 1 ≤ 𝑞 < ∞. Given 𝑓 ∈ 𝐿𝑞loc(ℝ
𝑛), the 𝑞th maximal operator is defined by

𝑀𝑞𝑓(𝑥) := sup
𝑄∋𝑥

(
1

∣𝑄∣
∫
𝑄

∣𝑓(𝑦)∣𝑞𝑑𝑦
)1/𝑞

,

where the supremum is taken over all cubes 𝑄 ⊂ ℝ𝑛 containing 𝑥. For 𝑞 = 1
this is the usual Hardy-Littlewood maximal operator. Diening [8] established the
following deep duality and left-openness result for the class ℳ(ℝ𝑛).

Theorem 2.3. (see [8, Thm. 8.1] or [10, Thm. 5.7.2]) Let 𝑝 : ℝ𝑛 → [1,∞] be a
measurable function satisfying (1.1). The following statements are equivalent:

(a) 𝑀 is bounded on 𝐿𝑝(⋅)(ℝ𝑛);
(b) 𝑀 is bounded on 𝐿𝑝

′(⋅)(ℝ𝑛);
(c) there exists an 𝑠 ∈ (1/𝑝−, 1) such that 𝑀 is bounded on 𝐿𝑠𝑝(⋅)(ℝ𝑛);
(d) there exists a 𝑞 ∈ (1,∞) such that 𝑀𝑞 is bounded on 𝐿𝑝(⋅)(ℝ𝑛).

2.4. The crucial pointwise estimate

One of the main steps in the proof of Theorem 1.2 is the following pointwise
estimate.

Theorem 2.4. (see [17, Thm. 3.3]) Let 1 < 𝑞 < ∞ and 𝑎 ∈ 𝑆𝑚𝜌,𝛿 with 0 < 𝜌 ≤ 1,

0 ≤ 𝛿 < 1, and 𝑚 = 𝑛(𝜌 − 1). For every 𝑢 ∈ 𝐶∞
0 (ℝ

𝑛),

𝑀#(Op(𝑎)𝑢)(𝑥) ≤ 𝐶(𝑞, 𝑎)𝑀𝑞𝑢(𝑥) (𝑥 ∈ ℝ𝑛),

where 𝐶(𝑞, 𝑎) is a positive constant depending only on 𝑞 and the symbol 𝑎.

This theorem generalizes the pointwise estimate by Miller [18, Theorem 2.8]

for 𝑎 ∈ 𝑆0
1,0 and by Álvarez and Hounie [1, Theorem 4.1] for 𝑎 ∈ 𝑆𝑚𝜌,𝛿 with the

parameters satisfying 0 < 𝛿 ≤ 𝜌 ≤ 1/2 and 𝑚 ≤ 𝑛(𝜌 − 1).
Let 0 < 𝑠 < 1. One of the main steps in the Rabinovich and Samko’s proof

[24] of the boundedness on 𝐿𝑝(⋅)(ℝ𝑛) of the operator Op(𝑎) with 𝑎 ∈ 𝑆0
1,0 is another

pointwise estimate

𝑀#(∣Op(𝑎)𝑢∣𝑠)(𝑥) ≤ 𝐶[𝑀𝑢(𝑥)]𝑠 (𝑥 ∈ ℝ𝑛)

for all 𝑢 ∈ 𝐶∞
0 (ℝ

𝑛), where 𝐶 is a positive constant independent of 𝑢. It was proved

in [24, Corollary 3.4] following the ideas of Álvarez and Pérez [2], where the same
estimate is obtained for the Calderón-Zygmund singular integral operator in place
of the pseudodifferential operator Op(𝑎).

2.5. Proof of Theorem 1.2

Suppose 𝑝 ∈ ℳ(ℝ𝑛). Then, by Theorem 2.3, 𝑝′ ∈ ℳ(ℝ𝑛) and there exists a
number 𝑞 ∈ (1,∞) such that 𝑀𝑞 is bounded on 𝐿𝑝(⋅)(ℝ𝑛). In other words, there
exists a positive constant 𝐶(𝑝, 𝑞) depending only on 𝑝 and 𝑞 such that for all
𝑢 ∈ 𝐿𝑝(⋅)(ℝ𝑛),

∥𝑀𝑞𝑢∥𝑝(⋅) ≤ 𝐶(𝑝, 𝑞)∥𝑢∥𝑝(⋅). (2.1)
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From Theorem 2.2 it follows that there exists a constant 𝐶#(𝑝) such that for all
𝑢 ∈ 𝐶∞

0 (ℝ
𝑛),

∥Op(𝑎)𝑢∥𝑝(⋅) ≤ 𝐶#(𝑝)∥𝑀#(Op(𝑎)𝑢)∥𝑝(⋅). (2.2)

On the other hand, from Theorem 2.4 and Lemma 2.1 we obtain that there exists
a positive constant 𝐶(𝑞, 𝑎), depending only on 𝑞 and 𝑎, such that

∥𝑀#(Op(𝑎)𝑢)∥𝑝(⋅) ≤ 𝐶(𝑞, 𝑎)∥𝑀𝑞𝑢∥𝑝(⋅). (2.3)

Combining (2.1)–(2.3), we arrive at

∥Op(𝑎)𝑢∥𝑝(⋅) ≤ 𝐶#(𝑝)𝐶(𝑞, 𝑎)𝐶(𝑝, 𝑞)∥𝑢∥𝑝(⋅)
for all 𝑢 ∈ 𝐶∞

0 (ℝ
𝑛). It remains to recall that 𝐶∞

0 (ℝ
𝑛) is dense in 𝐿𝑝(⋅)(ℝ𝑛) (see

Lemma 1.1). □

3. Fredholmness of the operator Op(𝒂)

3.1. Interpolation theorem

For a Banach space 𝑋 , let ℬ(𝑋) and 𝒦(𝑋) denote the Banach algebra of all
bounded linear operators and its ideal of all compact operators on 𝑋 , respectively.

Theorem 3.1. Let 𝑝𝑗 : ℝ
𝑛 → [1,∞], 𝑗 = 0, 1, be a.e. finite measurable functions,

and let 𝑝𝜃 : ℝ
𝑛 → [1,∞] be defined for 𝜃 ∈ [0, 1] by

1

𝑝𝜃(𝑥)
=

𝜃

𝑝0(𝑥)
+
1− 𝜃

𝑝1(𝑥)
(𝑥 ∈ ℝ𝑛).

Suppose 𝐴 is a linear operator defined on 𝐿𝑝0(⋅)(ℝ𝑛) ∪ 𝐿𝑝1(⋅)(ℝ𝑛).
(a) If 𝐴 ∈ ℬ(𝐿𝑝𝑗(⋅)(ℝ𝑛)) for 𝑗 = 0, 1, then 𝐴 ∈ ℬ(𝐿𝑝𝜃(⋅)(ℝ𝑛)) for all 𝜃 ∈ [0, 1]

and
∥𝐴∥ℬ(𝐿𝑝𝜃(⋅)(ℝ𝑛)) ≤ 4∥𝐴∥𝜃ℬ(𝐿𝑝0(⋅)(ℝ𝑛))∥𝐴∥1−𝜃ℬ(𝐿𝑝1(⋅)(ℝ𝑛)).

(b) If 𝐴 ∈ 𝒦(𝐿𝑝0(⋅)(ℝ𝑛)) and 𝐴 ∈ ℬ(𝐿𝑝1(⋅)(ℝ𝑛)), then 𝐴 ∈ 𝒦(𝐿𝑝𝜃(⋅)(ℝ𝑛)) for all
𝜃 ∈ (0, 1).

Part (a) is proved in [10, Corollary 7.1.4] under the more general assump-
tion that 𝑝𝑗 may take infinite values on sets of positive measure (and in the set-
ting of arbitrary measure spaces). Part (b) was proved in [24, Proposition 2.2]
under the additional assumptions that 𝑝𝑗 satisfy (1.1)–(1.3). It follows without
these assumptions from a general interpolation theorem by Cobos, Kühn, and
Schonbeck [4, Theorem 3.2] for the complex interpolation method for Banach
lattices satisfying the Fatou property. Indeed, the complex interpolation space
[𝐿𝑝0(⋅)(ℝ𝑛), 𝐿𝑝1(⋅)(ℝ𝑛)]1−𝜃 is isomorphic to the variable Lebesgue space 𝐿𝑝𝜃(⋅)(ℝ𝑛)
(see [10, Theorem 7.1.2]), and 𝐿𝑝𝑗(⋅)(ℝ𝑛) have the Fatou property (see [10, p. 77]).

3.2. Calculus of pseudodifferential operators

Let 𝑚 ∈ ℤ and 𝑂𝑃𝑆𝑂𝑚 be the class of all pseudodifferential operators Op(𝑎) with
𝑎 ∈ 𝑆𝑂𝑚. By analogy with [12, Section 2] one can get the following composition
formula (see also [22, Theorem 6.2.1] and [23, Chap. 4]).
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Proposition 3.2. If Op(𝑎1) ∈ 𝑂𝑃𝑆𝑂𝑚1 and Op(𝑎2) ∈ 𝑂𝑃𝑆𝑂𝑚2 , then their product
Op(𝑎1)Op(𝑎2) = Op(𝜎) belongs to 𝑂𝑃𝑆𝑂𝑚1+𝑚2 and its symbol 𝜎 is given by

𝜎(𝑥, 𝜉) = 𝑎1(𝑥, 𝜉)𝑎2(𝑥, 𝜉) + 𝑐(𝑥, 𝜉), 𝑥, 𝜉 ∈ ℝ𝑛,

where 𝑐 ∈ 𝑆𝑂𝑚1+𝑚2−1
0 .

Proposition 3.3. Let 1 < 𝑞 < ∞. If 𝑐 ∈ 𝑆𝑂−1
0 , then Op(𝑐) ∈ 𝒦(𝐿𝑞(ℝ𝑛)).

Proof. From Theorem 1.2 it follows that Op(𝑐) ∈ ℬ(𝐿𝑞(ℝ𝑛)) for all constant expo-
nents 𝑞 ∈ (1,∞). By [12, Theorem 3.2], Op(𝑐) ∈ 𝒦(𝐿2(ℝ𝑛)). Hence, by the Kras-
noselskii interpolation theorem (Theorem 3.1(b) for constant 𝑝𝑗 with 𝑗 = 0, 1),
Op(𝑐) ∈ 𝒦(𝐿𝑞(ℝ𝑛)) for all 𝑞 ∈ (1,∞). □

3.3. Proof of Theorem 1.3

The idea of the proof is borrowed from [12, Theorem 3.4] and [24, Theorem 6.1].
Let 𝜑 ∈ 𝐶∞

0 (ℝ
𝑛 × ℝ𝑛) be such that 𝜑(𝑥, 𝜉) = 1 if ∣𝑥∣ + ∣𝜉∣ ≤ 1 and 𝜑(𝑥, 𝜉) = 0 if

∣𝑥∣+ ∣𝜉∣ ≥ 2. For 𝑅 > 0, put

𝜑𝑅(𝑥, 𝜉) = 𝜑(𝑥/𝑅, 𝜉/𝑅), 𝑥, 𝜉 ∈ ℝ𝑛.

From (1.6) it follows that there exists an 𝑅 > 0 such that

inf
∣𝑥∣+∣𝜉∣≥𝑅

∣𝑎(𝑥, 𝜉)∣ > 0.

Then it is not difficult to check that

𝑏𝑅(𝑥, 𝜉) :=

⎧⎨⎩
1− 𝜑𝑅(𝑥, 𝜉)

𝑎(𝑥, 𝜉)
if ∣𝑥∣+ ∣𝜉∣ ≥ 𝑅,

0 if ∣𝑥∣+ ∣𝜉∣ < 𝑅,

belongs to 𝑆𝑂0. It is also clear that 𝜑𝑅 ∈ 𝑆𝑂0.
From Proposition 3.2 it follows that there exists a function 𝑐 ∈ 𝑆𝑂−1

0 such
that

Op(𝑎𝑏𝑅)−Op(𝑎)Op(𝑏𝑅) = Op(𝑐). (3.1)

On the other hand, since

𝑎(𝑥, 𝜉)𝑏𝑅(𝑥, 𝜉) = 1− 𝜑𝑅(𝑥, 𝜉), 𝑥, 𝜉 ∈ ℝ𝑛,

we have
Op(𝑎𝑏𝑅) = Op(1 − 𝜑𝑅) = 𝐼 −Op(𝜑𝑅). (3.2)

Combining (3.1)–(3.2), we get

𝐼 −Op(𝑎)Op(𝑏𝑅) = Op(𝜑𝑅) + Op(𝑐) = Op(𝜑𝑅 + 𝑐). (3.3)

Since 𝑝 ∈ ℳ∗(ℝ𝑛), there exist 𝑝0 ∈ (1,∞), 𝜃 ∈ (0, 1), and 𝑝1 ∈ ℳ(ℝ𝑛) such
that

1

𝑝(𝑥)
=

𝜃

𝑝0
+
1− 𝜃

𝑝1(𝑥)
(𝑥 ∈ ℝ𝑛).

From Theorem 1.2 we conclude that all pseudodifferential operators considered
above are bounded on 𝐿𝑝0(ℝ𝑛), 𝐿𝑝(⋅)(ℝ𝑛), and 𝐿𝑝1(⋅)(ℝ𝑛). Since 𝜑𝑅 + 𝑐 ∈ 𝑆𝑂−1

0 ,
from Proposition 3.3 it follows that Op(𝜑𝑅 + 𝑐) ∈ 𝒦(𝐿𝑝0(ℝ𝑛)). Then, by The-
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orem 3.1(b), Op(𝜑𝑅 + 𝑐) ∈ 𝒦(𝐿𝑝(⋅)(ℝ𝑛)). Therefore, from (3.3) it follows that
Op(𝑏𝑅) is a right regularizer for Op(𝑎). Analogously it can be shown that Op(𝑏𝑅)
is also a left regularizer for Op(𝑎). Thus Op(𝑎) is Fredholm on 𝐿𝑝(⋅)(ℝ𝑛). □

4. Addendum

After the paper was accepted for publication, Lars Diening communicated to us
[9] a short (but nontrivial!) proof of the inclusion ℳ(ℝ𝑛) ⊆ ℳ∗(ℝ𝑛). Thus, the
following result holds.

Theorem 4.1 (Diening). We have ℳ(ℝ𝑛) = ℳ∗(ℝ𝑛).

Proof. By definition, ℳ∗(ℝ𝑛) ⊆ ℳ(ℝ𝑛). Let us show the reverse inclusion. Sup-
pose that 𝑝 ∈ ℳ(ℝ𝑛). By Theorem 2.3(c), there exists a constant 𝑟 ∈ (1,∞) such
that 𝑝/𝑟 ∈ ℳ(ℝ𝑛). Then, in view of Theorem 2.3(b), (𝑝/𝑟)′ ∈ ℳ(ℝ𝑛). Applying
Theorem 2.3(c) once again, we see that there is a constant 𝑠 ∈ (1,∞) such that
1
𝑠

(
𝑝
𝑟

)′ ∈ ℳ(ℝ𝑛). Therefore, by Theorem 2.3(b),

𝑝1 :=

(
1

𝑠

(𝑝

𝑟

)′)′
∈ ℳ(ℝ𝑛).

Simple calculations show that

1

𝑝1(𝑥)
= 1− 𝑠+

𝑟𝑠

𝑝(𝑥)
(𝑥 ∈ ℝ𝑛). (4.1)

To prove that 𝑝 ∈ ℳ∗(ℝ𝑛), we have to find 𝑝0 ∈ (1,∞) and 𝜃 ∈ (0, 1) such that
1

𝑝(𝑥)
=

𝜃

𝑝0
+
1− 𝜃

𝑝1(𝑥)
(𝑥 ∈ ℝ𝑛). (4.2)

Equalities (4.1) and (4.2) give

1

𝑝(𝑥)
=

𝜃

𝑝0
+ (1 − 𝜃)(1− 𝑠) +

(1− 𝜃)𝑟𝑠

𝑝(𝑥)
(𝑥 ∈ ℝ𝑛).

The choice 𝜃 := 1− 1
𝑟𝑠 ∈ (0, 1) leads to

1

𝑝(𝑥)
=
1− 1

𝑟𝑠

𝑝0
+
1− 𝑠

𝑟𝑠
+

1

𝑝(𝑥)
(𝑥 ∈ ℝ𝑛).

So, necessarily,

𝑝0 =
𝑟𝑠 − 1

𝑠 − 1
∈ (1,∞).

Thus, 𝑝 ∈ ℳ∗(ℝ𝑛), which finishes the proof. □
Consequently, our Theorem 1.3 can be restated as follows.

Theorem 4.2. Suppose 𝑝 ∈ ℳ(ℝ𝑛) and 𝑎 ∈ 𝑆𝑂0. If

lim
𝑅→∞

inf
∣𝑥∣+∣𝜉∣≥𝑅

∣𝑎(𝑥, 𝜉)∣ > 0,

then the operator Op(𝑎) is Fredholm on the variable Lebesgue space 𝐿𝑝(⋅)(ℝ𝑛).
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On the other hand, Theorem 4.1 immediately implies that there exist func-
tions in ℳ∗(ℝ𝑛) different from globally log-Hölder continuous exponents, since
the latter constitute a proper subclass of ℳ(ℝ𝑛). Therefore, the results of our
preprint [14], while being formally correct, are redundant.
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[15] O. Kováčik and J. Rákosńık, On spaces 𝐿𝑝(𝑥) and 𝑊 𝑘,𝑝(𝑥). Czechoslovak Math. J.
41(116) (1991), no. 4, 592–618.



PDO on Variable Lebesgue Spaces 183

[16] A.K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable
𝐿𝑝 spaces. Math. Z. 251 (2005), no. 3, 509–521.

[17] N. Michalowski, D. Rule, and W. Staubach, Weighted 𝐿𝑝 boundedness of pseudodif-
ferential operators and applications. Canad. Math. Bull. 55 (2012), 555–570.

[18] N. Miller,Weighted Sobolev spaces and pseudodifferential operators with smooth sym-
bols. Trans. Amer. Math. Soc. 269 (1982), 91–109.

[19] A. Nekvinda,Hardy-Littlewood maximal operator on 𝐿𝑝(𝑥)(ℝ𝑛).Math. Inequal. Appl.
7 (2004), 255–265.

[20] A. Nekvinda, Maximal operator on variable Lebesgue spaces for almost monotone
radial exponent. J. Math. Anal. Appl. 337 (2008), 1345–1365.
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Abstract. Applying the theory of pseudodifferential and Calderón-Zygmund
operators, we study the compactness of commutators of multiplication op-
erators 𝑎𝐼 and convolution operators 𝑊 0(𝑏) on weighted Lebesgue spaces
𝐿𝑝(ℝ, 𝑤) with 𝑝 ∈ (1,∞) and Muckenhoupt weights 𝑤 for some classes of
piecewise slowly oscillating functions 𝑎 ∈ 𝑃𝑆𝑂⋄ and 𝑏 ∈ 𝑃𝑆𝑂⋄

𝑝,𝑤 on the
real line ℝ. Then we study the Banach algebra 𝒵𝑝,𝑤 generated by the op-
erators 𝑎𝑊 0(𝑏) with functions 𝑎 ∈ 𝑆𝑂⋄ and 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤 admitting slowly
oscillating discontinuities at every point 𝜆 ∈ ℝ ∪ {∞}. Applying the method
of limit operators under some condition on Muckenhoupt weights 𝑤, we de-
scribe the maximal ideal space of the commutative quotient Banach algebra
𝒵𝜋

𝑝,𝑤 = 𝒵𝑝,𝑤/𝒦𝑝,𝑤 where 𝒦𝑝,𝑤 is the ideal of compact operators on 𝐿𝑝(ℝ, 𝑤),
define the Gelfand transform for 𝒵𝜋

𝑝,𝑤 and establish the Fredholmness for the
operators 𝐴 ∈ 𝒵𝑝,𝑤 .

Mathematics Subject Classification (2010). Primary 47G10; Secondary 45E10,
46J10, 47A53, 47B47.

Keywords. Convolution type operator, piecewise slowly oscillating function,
𝐵𝑀𝑂 and 𝑉 𝑀𝑂 functions, commutator, maximal ideal space, Fredholmness.

1. Introduction

Let ℬ(𝑋) denote the Banach algebra of all bounded linear operators acting on a
Banach space𝑋 , let 𝒦(𝑋) be the closed two-sided ideal of all compact operators in
ℬ(𝑋), and let ℬ𝜋(𝑋) = ℬ(𝑋)/𝒦(𝑋) be the Calkin algebra of the cosets 𝐴𝜋 := 𝐴+
𝒦(𝑋) where 𝐴 ∈ ℬ(𝑋). An operator 𝐴 ∈ ℬ(𝑋) is said to be Fredholm, if its image
is closed and the spaces ker𝐴 and ker𝐴∗ are finite-dimensional (see, e.g., [10]).

Partially supported by the SEP-CONACYT Project No. 168104 (México) and by PROMEP
(México) via “Proyecto de Redes”.
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A measurable function 𝑤 : ℝ → [0,∞] is called a weight if the preimage
𝑤−1({0,∞}) of the set {0,∞} has measure zero. For 1 < 𝑝 < ∞, a weight 𝑤
belongs to the Muckenhoupt class 𝐴𝑝(ℝ) if

𝑐𝑝,𝑤 := sup
𝐼

(
1

∣𝐼∣
∫
𝐼

𝑤𝑝(𝑥)𝑑𝑥

)1/𝑝(
1

∣𝐼∣
∫
𝐼

𝑤−𝑞(𝑥)𝑑𝑥
)1/𝑞

< ∞,

where 1/𝑝 + 1/𝑞 = 1, and supremum is taken over all intervals 𝐼 ⊂ ℝ of finite
length ∣𝐼∣.

In what follows we assume that 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ), and consider the
weighted Lebesgue space 𝐿𝑝(ℝ, 𝑤) equipped with the norm

∥𝑓∥𝐿𝑝(ℝ,𝑤) :=
( ∫

ℝ

∣𝑓(𝑥)∣𝑝𝑤𝑝(𝑥)𝑑𝑥
)1/𝑝

.

As is known (see, e.g., [12]), the Cauchy singular integral operator 𝑆ℝ given by

(𝑆ℝ𝑓)(𝑥) = lim
𝜀→0

1

𝜋𝑖

∫
ℝ∖(𝑥−𝜀,𝑥+𝜀)

𝑓(𝑡)

𝑡 − 𝑥
𝑑𝑡, 𝑥 ∈ ℝ, (1.1)

is bounded on every space 𝐿𝑝(ℝ, 𝑤) with 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ).
Let ℱ : 𝐿2(ℝ) → 𝐿2(ℝ) denote the Fourier transform,

(ℱ𝑓)(𝑥) := 𝑓(𝑥) :=

∫
ℝ

𝑓(𝑡)𝑒𝑖𝑡𝑥𝑑𝑡, 𝑥 ∈ ℝ,

A function 𝑎 ∈ 𝐿∞(ℝ) is called a Fourier multiplier on 𝐿𝑝(ℝ, 𝑤) if the convolution
operator 𝑊 0(𝑎) := ℱ−1𝑎ℱ maps the dense subset 𝐿2(ℝ) ∩ 𝐿𝑝(ℝ, 𝑤) of 𝐿𝑝(ℝ, 𝑤)
into itself and extends to a bounded linear operator on 𝐿𝑝(ℝ, 𝑤). Let 𝑀𝑝,𝑤 stand
for the Banach algebra of all Fourier multipliers on 𝐿𝑝(ℝ, 𝑤) equipped with the
norm ∥𝑎∥𝑀𝑝,𝑤 := ∥𝑊 0(𝑎)∥ℬ(𝐿𝑝(ℝ,𝑤)).

Setting ℬ𝑝,𝑤 := ℬ(𝐿𝑝(ℝ, 𝑤)) and 𝒦𝑝,𝑤 := 𝒦(𝐿𝑝(ℝ, 𝑤)) for 𝑝 ∈ (1,∞) and
𝑤 ∈ 𝐴𝑝(ℝ), we consider the Banach subalgebra

𝔄𝑝,𝑤 := alg
(
𝑎𝐼,𝑊 0(𝑏) : 𝑎 ∈ 𝑃𝑆𝑂⋄, 𝑏 ∈ 𝑃𝑆𝑂⋄

𝑝,𝑤

)
(1.2)

of ℬ𝑝,𝑤 generated by all multiplication operators 𝑎𝐼 (𝑎 ∈ 𝑃𝑆𝑂⋄) and all convolu-
tion operators 𝑊 0(𝑏) (𝑏 ∈ 𝑃𝑆𝑂⋄

𝑝,𝑤), and the Banach subalgebra

𝒵𝑝,𝑤 := alg
(
𝑎𝐼,𝑊 0(𝑏) : 𝑎 ∈ 𝑆𝑂⋄, 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤

)
(1.3)

of 𝔄𝑝,𝑤 generated by all the operators 𝑎𝑊
0(𝑏) with 𝑎 ∈ 𝑆𝑂⋄ and 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤, where
the algebras 𝑃𝑆𝑂⋄ ⊂ 𝐿∞(ℝ) and 𝑃𝑆𝑂⋄

𝑝,𝑤 ⊂ 𝑀𝑝,𝑤 of piecewise slowly oscillating
functions on the real line ℝ and the algebras 𝑆𝑂⋄ ⊂ 𝐿∞(ℝ) and 𝑆𝑂⋄

𝑝,𝑤 ⊂ 𝑀𝑝,𝑤 of
slowly oscillating functions admitting slowly oscillating discontinuities at arbitrary
points 𝜆 ∈ ℝ ∪ {∞} are defined in Section 2.

In the present paper, applying the theory of pseudodifferential and Calderón-
Zygmund operators, we study the compactness of the commutators

[𝑎𝐼,𝑊 0(𝑏)] := 𝑎𝑊 0(𝑏)− 𝑊 0(𝑏)𝑎𝐼
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on the weighted Lebesgue spaces 𝐿𝑝(ℝ, 𝑤) with 𝑝 ∈ (1,∞) and 𝑤 ∈ 𝐴𝑝(ℝ) for
some classes of functions 𝑎 ∈ 𝑃𝑆𝑂⋄ and 𝑏 ∈ 𝑃𝑆𝑂⋄

𝑝,𝑤. Obtained results ex-
tend those in [11, Lemmas 7.1–7.4] and [1, Theorem 4.2, Corollary 4.3] to the
weighted Lebesgue spaces 𝐿𝑝(ℝ, 𝑤) with general Muckenhoupt weights 𝑤 and to
wider classes of data functions 𝑎, 𝑏. In addition, this implies that the quotient
Banach algebra 𝒵𝜋𝑝,𝑤 := 𝒵𝑝,𝑤/𝒦𝑝,𝑤 is a central subalgebra of the Banach alge-
bra 𝔄𝜋𝑝,𝑤 := 𝔄𝑝,𝑤/𝒦𝑝,𝑤. Then, under some condition on Muckenhoupt weights
𝑤 ∈ 𝐴𝑝(ℝ), we describe the maximal ideal space of the commutative Banach al-
gebra 𝒵𝜋𝑝,𝑤, define the Gelfand transform for 𝒵𝜋𝑝,𝑤 and establish the Fredholmness
for the operators 𝐴 ∈ 𝒵𝑝,𝑤. To this end we use the method of limit operators,
which was essentially developed and applied to different classes of integral and
pseudodifferential operators by V.S. Rabinovich and his co-authors (see, e.g., [20],
[7], [23] and the references therein).

The paper is organized as follows. In Section 2 we introduce the Banach al-
gebras of slowly oscillating and piecewise slowly oscillating functions. In Section 3
we describe the maximal ideal spaces of the commutative Banach algebras 𝑆𝑂⋄

𝑝,𝑤.
In Section 4 we study the compactness of commutators of convolution type oper-
ators with piecewise slowly oscillating data. Section 5 is devoted to applications
of limit operators. Finally, in Section 6, using the results of Section 5, we describe
the maximal ideal space of the commutative Banach algebra 𝒵𝜋𝑝,𝑤 and study the
Fredholmness of operators 𝐴 ∈ 𝒵𝑝,𝑤.

2. Algebras of piecewise slowly oscillating functions

2.1. The 𝑪∗-algebra 𝑺𝑶⋄

Let Γ be the unit circle 𝕋 = {𝑧 ∈ ℂ : ∣𝑧∣ = 1} or the one-point compactification
ℝ̇ := ℝ ∪ {∞} of the real line ℝ. For a bounded measurable function 𝑓 : Γ → ℂ

and a set 𝐼 ⊂ Γ, let

osc (𝑓, 𝐼) = ess sup
{∣𝑓(𝑡)− 𝑓(𝑠)∣ : 𝑡, 𝑠 ∈ 𝐼

}
.

Following [3, Section 4], we say that a function 𝑓 ∈ 𝐿∞(Γ) is called slowly oscil-
lating at a point 𝜂 ∈ Γ if for every 𝑟 ∈ (0, 1) or, equivalently, for some 𝑟 ∈ (0, 1),

lim
𝜀→0

osc
(
𝑓, Γ𝑟𝜀, 𝜀(𝜂)

)
= 0 for 𝜂 ∕= ∞,

lim
𝜀→∞ osc

(
𝑓, Γ𝑟𝜀, 𝜀(𝜂)

)
= 0 for 𝜂 = ∞,

where

Γ𝑟𝜀, 𝜀(𝜂) :=

{{
𝑧 ∈ Γ : 𝑟𝜀 ≤ ∣𝑧 − 𝜂∣ ≤ 𝜀

}
if 𝜂 ∕= ∞,{

𝑧 ∈ Γ : 𝑟𝜀 ≤ ∣𝑧∣ ≤ 𝜀
}

if 𝜂 = ∞.

For each 𝜂 ∈ Γ, let 𝑆𝑂𝜂(Γ) denote the 𝐶∗-subalgebra of 𝐿∞(Γ) defined by

𝑆𝑂𝜂(Γ) :=
{
𝑓 ∈ 𝐶𝑏(Γ ∖ {𝜂}) : 𝑓 slowly oscillates at 𝜂

}
,
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where 𝐶𝑏(Γ ∖ {𝜂}) := 𝐶(Γ ∖ {𝜂}) ∩ 𝐿∞(Γ). Hence, setting 𝑆𝑂𝜆 := 𝑆𝑂𝜆(ℝ̇) for all

𝜆 ∈ ℝ̇, we conclude that

𝑆𝑂∞ =
{
𝑓 ∈ 𝐶𝑏(ℝ̇ ∖ {∞}) : lim

𝑥→+∞ osc
(
𝑓, [−𝑥,−𝑥/2] ∪ [𝑥/2, 𝑥]

)
= 0

}
,

𝑆𝑂𝜆 =
{
𝑓 ∈ 𝐶𝑏(ℝ̇ ∖ {𝜆}) : lim

𝑥→+0
osc

(
𝑓, 𝜆+ ([−𝑥,−𝑥/2] ∪ [𝑥/2, 𝑥])) = 0

} (2.1)

for 𝜆 ∈ ℝ. Let 𝑆𝑂⋄ be the minimal 𝐶∗-subalgebra of 𝐿∞(ℝ) that contains all the
𝐶∗-algebras 𝑆𝑂𝜆 with 𝜆 ∈ ℝ̇. In particular, 𝑆𝑂⋄ contains 𝐶(ℝ̇).

Lemma 2.1. Let 𝜆 ∈ ℝ̇, 𝑎 ∈ 𝑆𝑂𝜆, and let 𝛾 : 𝕋 → ℝ̇ be the homeomorphism given
by 𝛾(𝑡) = 𝑖(1 + 𝑡)/(1− 𝑡). Then 𝑎 ∘ 𝛾 ∈ 𝑆𝑂𝜂(𝕋) where 𝜂 := 𝛾−1(𝜆).

Proof. First, let 𝜆 ∈ ℝ and hence 𝜂 ∈ 𝕋 ∖ {1}. Fix 𝛿 < ∣𝜂 − 1∣ and put 𝕋𝛿(𝜂) :={
𝑡 ∈ 𝕋 : 0 < ∣𝑡 − 𝜂∣ ≤ 𝛿

}
. Since 𝛾′(𝜂) = 2𝑖/(1− 𝜂)2 ∕= 0, we conclude that

0 < 𝑚 := inf
𝑡∈𝕋𝛿(𝜂)

∣∣∣∣𝛾(𝑡)− 𝜆

𝑡 − 𝜂

∣∣∣∣ < 𝑀 := sup
𝑡∈𝕋𝛿(𝜂)

∣∣∣∣𝛾(𝑡)− 𝜆

𝑡 − 𝜂

∣∣∣∣ < ∞. (2.2)

Then, taking 𝜀 ∈ (0, 𝛿) and setting 𝑟 := 𝑚/(2𝑀) ∈ (0, 1) and 𝜀′ := 𝜀𝑀 , we infer
from (2.2) by analogy with [3, Lemma 4.2] that if 𝜀/2 ≤ ∣𝑡 − 𝜂∣ ≤ 𝜀 then

𝑚∣𝑡 − 𝜂∣ ≤ ∣𝛾(𝑡)− 𝜆∣ ≤ 𝑀 ∣𝑡 − 𝜂∣ ⇒ 𝑚𝜀/2 ≤ ∣𝛾(𝑡)− 𝜆∣ ≤ 𝑀𝜀

⇔ 𝑟𝜀′ ≤ ∣𝛾(𝑡)− 𝜆∣ ≤ 𝜀′.

Hence 𝛾(𝕋𝜀/2,𝜀(𝜂)) ⊂ ℝ̇𝑟𝜀′,𝜀′(𝜆), which implies that 𝑎 ∘ 𝛾 ∈ 𝑆𝑂𝜂(𝕋) for every
𝑎 ∈ 𝑆𝑂𝜆.

Let now 𝜆 = ∞ and hence 𝜂 = 1. Fix 𝛿 ∈ (0, 2). As lim
𝑡→1

(
(𝑡− 1)𝛾(𝑡)) = 2𝑖, we

again get

0 < 𝑚 := min
𝑡∈𝕋𝛿(1)

∣∣(𝑡 − 1)𝛾(𝑡)
∣∣ < 𝑀 := max

𝑡∈𝕋𝛿(1)

∣∣(𝑡 − 1)𝛾(𝑡)
∣∣ < ∞. (2.3)

Then for 𝜀/2 ≤ ∣𝑡 − 1∣ ≤ 𝜀 < 𝛿 we deduce from (2.3) that

𝑚∣𝑡 − 1∣−1 ≤ ∣𝛾(𝑡)∣ ≤ 𝑀 ∣𝑡 − 1∣−1 ⇒ 𝑚𝜀−1 ≤ ∣𝛾(𝑡)∣ ≤ 𝑀2𝜀−1

⇔ 𝑟𝜀′ ≤ ∣𝛾(𝑡)∣ ≤ 𝜀′,

where 𝑟 = 𝑚/(2𝑀) ∈ (0, 1) and 𝜀′ := 2𝜀−1𝑀 . Consequently, 𝛾(𝕋𝜀/2,𝜀(1)) ⊂
ℝ̇𝑟𝜀′,𝜀′(∞), which means that 𝑎 ∘ 𝛾 ∈ 𝑆𝑂1(𝕋) if 𝑎 ∈ 𝑆𝑂∞. □

Corollary 2.2. For every 𝜆 ∈ ℝ, the mapping 𝑎 �→ 𝑎∘𝛽𝜆 defined by the homeomor-
phism

𝛽𝜆 : ℝ̇ → ℝ̇, 𝑥 �→ 𝜆𝑥 − 1

𝑥+ 𝜆
(2.4)

is an isometric isomorphism of the 𝐶∗-algebra 𝑆𝑂𝜆 onto the 𝐶∗-algebra 𝑆𝑂∞.
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Proof. Obviously, the 𝐶∗-algebras 𝑆𝑂𝜂(𝕋) for all 𝜂 ∈ 𝕋 are isometrically isomor-
phic. In particular, setting 𝛼𝜂(𝑡) = 𝜂𝑡 for all 𝑡 ∈ 𝕋, we conclude that the map
𝑎 �→ 𝑎 ∘ 𝛼𝜂 is an isomorphism of 𝑆𝑂𝜂(𝕋) onto 𝑆𝑂1(𝕋). Applying Lemma 2.1, we
infer that the map 𝑎 �→ 𝑎 ∘ 𝛽𝜆, where 𝛽𝜆 = 𝛾 ∘ 𝛼𝜂 ∘ 𝛾−1 (see (2.4)) and 𝜆 = 𝛾(𝜂),
is an isometric isomorphism 𝑆𝑂𝜆 → 𝑆𝑂𝜂(𝕋) → 𝑆𝑂1(𝕋) → 𝑆𝑂∞. □

2.2. Fourier multipliers

Let 𝐶𝑛(ℝ) be the set of all 𝑛 times continuously differentiable functions 𝑎 : ℝ → ℂ,
and let 𝑉 (ℝ) be the Banach algebra of all functions 𝑎 : ℝ → ℂ with finite total
variation

𝑉 (𝑎) := sup
{∑𝑛

𝑖=1
∣𝑎(𝑡𝑖)− 𝑎(𝑡𝑖−1)∣ : −∞ < 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 < +∞, 𝑛 ∈ ℕ

}
where the supremum is taken over all finite partitions of the real line ℝ and the
norm in 𝑉 (ℝ) is given by ∥𝑎∥𝑉 = ∥𝑎∥𝐿∞(ℝ) + 𝑉 (𝑎). As is known (see, e.g., [15,
Chapter 9]), every function 𝑎 ∈ 𝑉 (ℝ) has finite one-sided limits at every point

𝑡 ∈ ℝ̇.
Let 𝑃𝐶 be the 𝐶∗-algebra of all functions on ℝ having finite one-sided limits

at every point 𝑡 ∈ ℝ̇. If 𝑎 ∈ 𝑃𝐶 has finite total variation, then 𝑎 ∈ 𝑀𝑝,𝑤 for all
𝑝 ∈ (1,∞) and all 𝑤 ∈ 𝐴𝑝(ℝ) according to Stechkin’s inequality

∥𝑎∥𝑀𝑝,𝑤 ≤ ∥𝑆ℝ∥ℬ(𝐿𝑝(ℝ,𝑤))
(∥𝑎∥𝐿∞(ℝ) + 𝑉 (𝑎)

)
(2.5)

(see, e.g., [11, Theorem 2.11] and [9]), where the Cauchy singular integral operator
𝑆ℝ is given by (1.1).

The following result obtained in [18, Corollary 2.10] supply us with another
class of Fourier multipliers in 𝑀𝑝,𝑤.

Theorem 2.3. If 𝑎 ∈ 𝐶3(ℝ∖ {0}) and ∥𝐷𝑘𝑎∥𝐿∞(ℝ) < ∞ for all 𝑘 = 0, 1, 2, 3, where

(𝐷𝑎)(𝑥) = 𝑥𝑎′(𝑥) for 𝑥 ∈ ℝ, then the convolution operator 𝑊 0(𝑎) is bounded on
every weighted Lebesgue space 𝐿𝑝(ℝ, 𝑤) with 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ), and

∥𝑎∥𝑀𝑝,𝑤 ≤ 𝐶𝑝,𝑤max
{∥𝐷𝑘𝑎∥𝐿∞(ℝ) : 𝑘 = 0, 1, 2, 3

}
< ∞,

where the constant 𝐶𝑝,𝑤 ∈ (0,∞) depends only on 𝑝 and 𝑤.

2.3. Banach algebras 𝑺𝑶⋄
𝒑,𝒘

For 𝜆 ∈ ℝ̇, we consider the commutative Banach algebras

𝑆𝑂3
𝜆 :=

{
𝑎 ∈ 𝑆𝑂𝜆 ∩ 𝐶3(ℝ ∖ {𝜆}) : lim

𝑥→𝜆
(𝐷𝑘𝜆𝑎)(𝑥) = 0, 𝑘 = 1, 2, 3

}
equipped with the norm

∥𝑎∥𝑆𝑂3
𝜆
:= max

{∥𝐷𝑘𝜆𝑎∥𝐿∞(ℝ) : 𝑘 = 0, 1, 2, 3
}
,

where (𝐷𝜆𝑎)(𝑥) = (𝑥 − 𝜆)𝑎′(𝑥) for 𝜆 ∈ ℝ and (𝐷𝜆𝑎)(𝑥) = 𝑥𝑎′(𝑥) if 𝜆 = ∞. By
Theorem 2.3, 𝑆𝑂3

𝜆 ⊂ 𝑀𝑝,𝑤. Let 𝑆𝑂𝜆,𝑝,𝑤 denote the closure of 𝑆𝑂3
𝜆 in 𝑀𝑝,𝑤, and

let 𝑆𝑂⋄
𝑝,𝑤 be the Banach subalgebra of 𝑀𝑝,𝑤 generated by all the algebras 𝑆𝑂𝜆,𝑝,𝑤

(𝜆 ∈ ℝ̇). Because 𝑀𝑝,𝑤 ⊂ 𝑀2 = 𝐿∞(ℝ), we conclude that 𝑆𝑂⋄
𝑝,𝑤 ⊂ 𝑆𝑂⋄.
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2.4. Banach algebras 𝑷𝑺𝑶⋄
𝒑,𝒘

We denote by 𝐶𝑝,𝑤(ℝ̇) (resp., 𝐶𝑝,𝑤(ℝ), 𝑃𝐶𝑝,𝑤) the closure in 𝑀𝑝,𝑤 of the set of all

functions 𝑎 ∈ 𝐶(ℝ̇) (resp., 𝑎 ∈ 𝐶(ℝ), 𝑎 ∈ 𝑃𝐶) of finite total variation. Obviously,

𝐶𝑝,𝑤(ℝ̇), 𝐶𝑝,𝑤(ℝ) and 𝑃𝐶𝑝,𝑤 are Banach subalgebras of 𝑀𝑝,𝑤, and

𝐶𝑝,𝑤(ℝ̇) ⊂ 𝐶(ℝ̇), 𝐶𝑝,𝑤(ℝ) ⊂ 𝐶(ℝ), 𝑃𝐶𝑝,𝑤 ⊂ 𝑃𝐶.

Let 𝑃𝑆𝑂⋄ be the 𝐶∗-subalgebra of 𝐿∞(ℝ) generated by the 𝐶∗-algebras 𝑆𝑂⋄ and
𝑃𝐶, and let 𝑃𝑆𝑂⋄

𝑝,𝑤 be the Banach subalgebra of 𝑀𝑝,𝑤 generated by the Banach
algebras 𝑆𝑂⋄

𝑝,𝑤 and 𝑃𝐶𝑝,𝑤.

3. The maximal ideal space of the Banach algebra 𝑺𝑶⋄
𝒑,𝒘

In what follows, let 𝑀(𝒜) denote the maximal ideal space of a commutative Ba-
nach algebra 𝒜. If 𝒞 is a Banach subalgebra of 𝒜 and 𝜆 ∈ 𝑀(𝒞), then the set
𝑀𝜆(𝒜) := {𝜉 ∈ 𝑀(𝒜) : 𝜉∣𝒞 = 𝜆} is called the fiber of 𝑀(𝒜) over 𝜆. Hence for

every Banach algebra 𝒜 ⊂ 𝐿∞(ℝ) with 𝑀(𝐶(ℝ̇) ∩ 𝒜) = ℝ̇ and every 𝜆 ∈ ℝ̇, the
fiber 𝑀𝜆(𝒜) denotes the set of all characters (multiplicative linear functionals) of
𝒜 that annihilate the set {𝑓 ∈ 𝐶(ℝ̇) ∩ 𝒜 : 𝑓(𝜆) = 0}.

Identifying the points 𝜆 ∈ ℝ̇ with the evaluation functionals 𝛿𝜆 on ℝ̇, 𝛿𝜆(𝑓) =

𝑓(𝜆) for 𝑓 ∈ 𝐶(ℝ̇), we infer that the maximal ideal space 𝑀(𝑆𝑂⋄) of 𝑆𝑂⋄ is of
the form

𝑀(𝑆𝑂⋄) =
∪
𝜆∈ℝ̇

𝑀𝜆(𝑆𝑂⋄) (3.1)

where 𝑀𝜆(𝑆𝑂⋄) :=
{
𝜉 ∈ 𝑀(𝑆𝑂⋄) : 𝜉∣𝐶(ℝ̇) = 𝛿𝜆

}
are fibers of𝑀(𝑆𝑂⋄) over 𝜆 ∈ ℝ̇.

Applying Corollary 2.2 and [4, Proposition 5], we infer that for every 𝜆 ∈ ℝ̇,

𝑀𝜆(𝑆𝑂⋄) =𝑀𝜆(𝑆𝑂𝜆) =𝑀∞(𝑆𝑂∞) = (clos𝑆𝑂∗∞ℝ) ∖ ℝ, (3.2)

where clos𝑆𝑂∗∞ℝ is the weak-star closure of ℝ in 𝑆𝑂∗
∞, the dual space of 𝑆𝑂∞.

The fiber 𝑀∞(𝑆𝑂∞) is related to the partial limits of a function 𝑎 ∈ 𝑆𝑂∞
at infinity as follows (see [7, Corollary 4.3] and [1, Corollary 3.3]).

Proposition 3.1. If {𝑎𝑘}∞𝑘=1 is a countable subset of 𝑆𝑂∞ and 𝜉 ∈ 𝑀∞(𝑆𝑂∞),
then there exists a sequence {𝑔𝑛} ⊂ ℝ+ such that 𝑔𝑛 → ∞ as 𝑛 → ∞, and for
every 𝑡 ∈ ℝ ∖ {0} and every 𝑘 ∈ ℕ, lim𝑛→∞ 𝑎𝑘(𝑔𝑛𝑡) = 𝜉(𝑎𝑘).

Let 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ). For every 𝜆 ∈ ℝ̇ we consider three unital
commutative Banach algebras with the same unit which are homomorphically
embedded one into another:

𝑆𝑂3
𝜆 ⊂ 𝑆𝑂𝜆,𝑝,𝑤 ⊂ 𝑆𝑂𝜆. (3.3)

To study the relations between their maximal ideal spaces, by analogy with [1]
and [18], we use the following result (see [30, Theorem 3.10]).
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Theorem 3.2. Let 𝐵𝑖 (𝑖 = 1, 2, 3) be commutative Banach algebras with the same
unit which are homomorphically inclosed one into another, 𝐵1 ⊂ 𝐵2 ⊂ 𝐵3. Suppose
that 𝐵1 is dense in 𝐵2 and every multiplicative linear functional defined on 𝐵1

extends to a multiplicative linear functional on 𝐵3. Then every multiplicative linear
functional on 𝐵2 also extends to a multiplicative linear functional on 𝐵3.

Given 𝜆 ∈ ℝ̇, we consider the commutative algebra 𝐶(ℝ̇) ∩ 𝑆𝑂3
𝜆 ⊂ 𝑆𝑂3

𝜆. As

𝑀(𝐶(ℝ̇) ∩ 𝑆𝑂3
𝜆) = ℝ̇, we see that for every 𝑡 ∈ ℝ̇ the set

𝑀𝑡(𝑆𝑂3
𝜆) =

{
𝜉 ∈ 𝑀(𝑆𝑂3

𝜆) : 𝜉∣𝐶(ℝ̇)∩𝑆𝑂3
𝜆
= 𝛿𝑡

}
is the fiber of 𝑀(𝑆𝑂3

𝜆) over the point 𝑡. Then

𝑀(𝑆𝑂3
𝜆) =

∪
𝑡∈ℝ̇

𝑀𝑡(𝑆𝑂3
𝜆), (3.4)

where 𝑀𝑡(𝑆𝑂3
𝜆) = {𝑡} for all 𝑡 ∈ ℝ̇ ∖ {𝜆}.

Modifying the proof of [4, Proposition 5], we obtain the following.

Lemma 3.3. If 𝜆 ∈ ℝ̇, then the fiber 𝑀𝜆(𝑆𝑂3
𝜆) has the form

𝑀𝜆(𝑆𝑂3
𝜆) =

(
clos(𝑆𝑂3

𝜆)
∗(ℝ̇ ∖ {𝜆})) ∖ (ℝ̇ ∖ {𝜆})

where clos(𝑆𝑂3
𝜆)

∗(ℝ̇ ∖ {𝜆}) is the weak-star closure of ℝ̇ ∖ {𝜆} in (𝑆𝑂3
𝜆)

∗, the dual

space of 𝑆𝑂3
𝜆.

Proof. First, let us prove that

𝑀(𝑆𝑂3
𝜆) ⊂ clos(𝑆𝑂3

𝜆)
∗(ℝ̇ ∖ {𝜆}). (3.5)

Fix 𝜉 ∈ 𝑀(𝑆𝑂3
𝜆). Any (𝑆𝑂3

𝜆)
∗-neighborhood of 𝜉 is of the form

𝑈 := 𝑈𝑎1,...,𝑎𝑛;𝜀(𝜉) =
{
𝜂 ∈ (𝑆𝑂3

𝜆)
∗ : ∣𝜂(𝑎𝑖)− 𝜉(𝑎𝑖)∣ < 𝜀, 𝑖 = 1, . . . , 𝑛

}
,

where 𝜀 > 0 and 𝑎1, . . . , 𝑎𝑛 ∈ 𝑆𝑂3
𝜆. We must show that there is a 𝑡0 ∈ ℝ̇ ∖ {𝜆}

such that 𝛿𝑡0 ∈ 𝑈. Put 𝑎 := ∣𝑎1− 𝜉(𝑎1)∣+ ⋅ ⋅ ⋅+ ∣𝑎𝑛− 𝜉(𝑎𝑛)∣. According to [13, § 13,
Theorem 1], 𝑎 ∈ 𝑆𝑂3

𝜆 and then 𝜉(𝑎) = 0. Therefore, 𝑎 is not invertible in 𝑆𝑂3
𝜆

and, hence, there is a sequence {𝑡𝑛} ⊂ ℝ̇ ∖ {𝜆} such that lim𝑛→∞ 𝑎(𝑡𝑛) = 0. Since

∣𝑎𝑖(𝑡) − 𝜉(𝑎𝑖)∣ ≤ 𝑎(𝑡) for all 𝑡 ∈ ℝ̇ ∖ {𝜆} and each 𝑖, we infer that there exists a

𝑡0 ∈ ℝ̇ ∖ {𝜆} such that ∣𝑎𝑖(𝑡0)− 𝜉(𝑎𝑖)∣ ≤ 𝑎(𝑡0) < 𝜀 for each 𝑖. Thus, 𝛿𝑡0 ∈ 𝑈, which
implies (3.5).

It is clear that 𝛿𝑡 /∈ 𝑀𝜆(𝑆𝑂3
𝜆) for 𝑡 ∈ ℝ̇ ∖ {𝜆} because there is a function

𝑏 ∈ 𝐶(ℝ̇) ∩ 𝑆𝑂3
𝜆 such that 𝑏(𝑡) ∕= 0 for 𝑡 ∈ ℝ̇ ∖ {𝜆} and 𝑏(𝜆) = 0. Therefore, by

(3.5), 𝑀𝜆(𝑆𝑂3
𝜆) ⊂ (

clos(𝑆𝑂3
𝜆)

∗(ℝ̇ ∖ {𝜆})) ∖ (ℝ̇ ∖ {𝜆}).
Conversely, let 𝜉 ∈ (

clos(𝑆𝑂3
𝜆)

∗(ℝ̇ ∖ {𝜆})) ∖ (ℝ̇ ∖ {𝜆}), let 𝑎, 𝑏 ∈ 𝑆𝑂3
𝜆, and let

𝜀 > 0. Then choose 𝑡 ∈ ℝ̇ ∖ {𝜆} so that 𝛿𝑡 ∈ 𝑈𝑎,𝑏,𝑎𝑏;𝜀(𝜉). We have

∣𝜉(𝑎𝑏)− 𝜉(𝑎)𝜉(𝑏)∣ ≤ ∣𝜉(𝑎𝑏)− 𝑎(𝑡)𝑏(𝑡)∣+ ∣𝑎(𝑡)− 𝜉(𝑎)∣∣𝑏(𝑡)∣ + ∣𝜉(𝑎)∣∣𝑏(𝑡)− 𝜉(𝑏)∣
≤ 𝜀+ 𝜀∣𝑏(𝑡)∣+ ∣𝜉(𝑎)∣𝜀.
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Since 𝜀 > 0 can be chosen arbitrarily, we get 𝜉(𝑎𝑏) = 𝜉(𝑎)𝜉(𝑏), that is, 𝜉 ∈ 𝑀(𝑆𝑂3
𝜆).

But as 𝜉 /∈ ℝ̇∖{𝜆} = ∪
𝑡∈ℝ̇∖{𝜆} 𝑀𝑡(𝑆𝑂3

𝜆), we conclude that actually 𝜉 ∈ 𝑀𝜆(𝑆𝑂3
𝜆).

□

Lemma 3.4. If 𝜆 ∈ ℝ̇, then every multiplicative linear functional defined on 𝑆𝑂3
𝜆

extends to a multiplicative linear functional on 𝑆𝑂𝜆.

Proof. Fix 𝜆 ∈ ℝ̇. Since 𝑀𝑡(𝑆𝑂3
𝜆) = {𝛿𝑡} for all 𝑡 ∈ ℝ̇ ∖ {𝜆} and the evalua-

tion functionals 𝛿𝑡 identified with the points 𝑡 ∈ ℝ̇ ∖ {𝜆} belong to 𝑀(𝑆𝑂𝜆), it
remains to prove the existence of the required extensions for the multiplicative
linear functionals 𝜉 ∈ 𝑀𝜆(𝑆𝑂3

𝜆).
By Lemma 3.3, every functional 𝜉 ∈ 𝑀𝜆(𝑆𝑂3

𝜆) is the limit of a net {𝑡𝛼} ⊂
ℝ̇ ∖ {𝜆} that does not converge to functionals 𝑡 ∈ ℝ̇ ∖ {𝜆}, that is,

𝜉(𝑎) = lim
𝛼

𝑡𝛼(𝑎) for every 𝑎 ∈ 𝑆𝑂3
𝜆,

where 𝑡𝛼(𝑎) = 𝑎(𝑡𝛼) for 𝑎 ∈ 𝑆𝑂3
𝜆 and 𝑡𝛼 ∈ ℝ̇ ∖ {𝜆}. Then, for every 𝑎 ∈ 𝑆𝑂3

𝜆,
{𝑡𝛼(𝑎)} is a Cauchy net in ℂ, that is, for every 𝜀 > 0 there exists 𝛾 > 0 such that
∣𝑡𝛼(𝑎) − 𝑡𝛽(𝑎)∣ < 𝜀 if 𝛼, 𝛽 ≻ 𝛾. Given 𝑏 ∈ 𝑆𝑂𝜆, there is a sequence {𝑎𝑛} ⊂ 𝑆𝑂3

𝜆

such that lim𝑛→∞ ∥𝑏 − 𝑎𝑛∥𝐿∞(ℝ) = 0. Then from the relations

∣𝑡𝛼(𝑏)− 𝑡𝛽(𝑏)∣ ≤ ∣𝑡𝛼(𝑏 − 𝑎𝑛)∣+ ∣𝑡𝛼(𝑎𝑛)− 𝑡𝛽(𝑎𝑛)∣+ ∣𝑡𝛽(𝑎𝑛 − 𝑏)∣
≤ ∥𝑏 − 𝑎𝑛∥𝐿∞(ℝ) + ∣𝑡𝛼(𝑎𝑛)− 𝑡𝛽(𝑎𝑛)∣+ ∥𝑏 − 𝑎𝑛∥𝐿∞(ℝ)

it follows that {𝑡𝛼(𝑏)} is a Cauchy net in ℂ for every 𝑏 ∈ 𝑆𝑂𝜆, and hence this net
converges in ℂ and its limit is unique.

For each 𝑏 ∈ 𝑆𝑂𝜆, we define 𝜉(𝑏) := lim𝛼 𝑡𝛼(𝑏). Then 𝜉 is a multiplicative lin-
ear functional on 𝑆𝑂𝜆 (and therefore bounded of norm 1 by [25, Proposition 10.6,
Theorem 10.7]) because

𝜉(𝑏𝑑) = lim
𝛼

𝑡𝛼(𝑏𝑑) = lim
𝛼

𝑡𝛼(𝑏) lim
𝛼

𝑡𝛼(𝑑) = 𝜉(𝑏)𝜉(𝑑) for all 𝑏, 𝑑 ∈ 𝑆𝑂𝜆.

Thus, 𝜉 is a required extension of 𝜉 ∈ 𝑀(𝑆𝑂3
𝜆) to 𝑆𝑂𝜆. □

Note that the proof of Lemma 3.4 in case 𝜆 = ∞ improves that in [18,
Lemma 3.3].

Applying (3.3), the density of 𝑆𝑂3
𝜆 in 𝑆𝑂𝜆,𝑝,𝑤 in the norm of 𝑀𝑝,𝑤 and

Lemma 3.4, we conclude that for every 𝜆 ∈ ℝ̇ the commutative Banach algebras

𝐵1 = 𝑆𝑂3
𝜆, 𝐵2 = 𝑆𝑂𝜆,𝑝,𝑤, 𝐵3 = 𝑆𝑂𝜆

satisfy the conditions of Theorem 3.2. By Theorem 3.2, every multiplicative lin-
ear functional on 𝑆𝑂𝜆,𝑝,𝑤 extends to a multiplicative linear functional on 𝑆𝑂𝜆,
and hence 𝑀(𝑆𝑂𝜆,𝑝,𝑤) ⊂ 𝑀(𝑆𝑂𝜆). On the other hand, 𝑀(𝑆𝑂𝜆) ⊂ 𝑀(𝑆𝑂𝜆,𝑝,𝑤)
because 𝑆𝑂𝜆,𝑝,𝑤 ⊂ 𝑆𝑂𝜆. Thus we get the following result.

Lemma 3.5. If 1 < 𝑝 < ∞, 𝑤 ∈ 𝐴𝑝(ℝ) and 𝜆 ∈ ℝ̇, then the maximal ideal spaces
of 𝑆𝑂𝜆,𝑝,𝑤 and 𝑆𝑂𝜆 coincide as sets, that is, 𝑀(𝑆𝑂𝜆,𝑝,𝑤) = 𝑀(𝑆𝑂𝜆).
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Fix 𝑝 ∈ (1,∞) and 𝑤 ∈ 𝐴𝑝(ℝ). Lemma 3.5 and relations (3.2) imply that

𝑀𝜆(𝑆𝑂⋄
𝑝,𝑤) =𝑀𝜆(𝑆𝑂𝜆,𝑝,𝑤) = 𝑀𝜆(𝑆𝑂𝜆) = 𝑀∞(𝑆𝑂∞) (3.6)

for every 𝜆 ∈ ℝ̇. Analogously to (3.1) and (3.4) we obtain

𝑀(𝑆𝑂⋄
𝑝,𝑤) =

∪
𝜆∈ℝ̇

𝑀𝜆(𝑆𝑂⋄
𝑝,𝑤). (3.7)

Applying (3.7), (3.6) and (3.1) we arrive at the following result.

Theorem 3.6. If 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ), then the maximal ideal spaces of
𝑆𝑂⋄

𝑝,𝑤 and 𝑆𝑂⋄ coincide as sets, 𝑀(𝑆𝑂⋄
𝑝,𝑤) = 𝑀(𝑆𝑂⋄).

4. Compactness of commutators of convolution type operators

4.1. 𝑺𝑶⋄ and 𝑽 𝑴𝑶

Let Γ ∈ {ℝ,𝕋}. Given a locally integrable function 𝑓 ∈ 𝐿1
loc(Γ) and a finite interval

𝐼 on Γ, let ∣𝐼∣ denote the length of 𝐼 and let
𝐼(𝑓) := ∣𝐼∣−1

∫
𝐼

𝑓(𝑡)𝑑𝑡

denote the average of 𝑓 over 𝐼. For 𝑎 > 0, consider the quantities

𝑀𝑎(𝑓) := sup
∣𝐼∣≤𝑎

∣𝐼∣−1
∫
𝐼

∣𝑓(𝑡)− 𝐼(𝑓)∣𝑑𝑡,

𝑀0(𝑓) := lim
𝑎→0

𝑀𝑎(𝑓), ∥𝑓∥∗ := lim
𝑎→∞𝑀𝑎(𝑓). (4.1)

The function 𝑓 ∈ 𝐿1
loc(Γ) is said to have bounded mean oscillation, 𝑓 ∈ 𝐵𝑀𝑂(Γ),

if ∥𝑓∥∗ < ∞. The space 𝐵𝑀𝑂(Γ) is a Banach space under the norm ∥⋅∥∗, provided
that two functions differing by a constant are identified. A function 𝑓 ∈ 𝐵𝑀𝑂(Γ)
is said to have vanishing mean oscillation, 𝑓 ∈ 𝑉 𝑀𝑂(Γ), if 𝑀0(𝑓) = 0. As is well
known (see, e.g., [26]), 𝑉 𝑀𝑂(Γ) is a closed subspace of 𝐵𝑀𝑂(Γ).

Consider the homeomorphism 𝛾 : 𝕋 → ℝ̇, 𝛾(𝑡) = 𝑖(1 + 𝑡)/(1 − 𝑡). By [12,
Chapter VI, Corollary 1.3], 𝑓 ∈ 𝐵𝑀𝑂(ℝ) if and only if 𝑓 ∘ 𝛾 ∈ 𝐵𝑀𝑂(𝕋), and the
norms of these functions are equivalent. On the other hand,

𝑉 𝑀𝑂 :=
{
𝑓 ∘ 𝛾−1 : 𝑓 ∈ 𝑉 𝑀𝑂(𝕋)

}
(4.2)

is a proper closed subspace of 𝑉 𝑀𝑂(ℝ). Since 𝑉 𝑀𝑂(𝕋) is the closure of 𝐶(𝕋) in
𝐵𝑀𝑂(𝕋) (see, e.g., [12, p. 253]), (4.2) implies the following property of 𝑉 𝑀𝑂.

Proposition 4.1. 𝑉 𝑀𝑂 is the closure in 𝐵𝑀𝑂(ℝ) of the set 𝐶(ℝ̇).

Let𝐻∞ be the closed subalgebra of 𝐿∞(ℝ) that consists of all functions being
non-tangential limits on ℝ of bounded analytic functions on the upper half-plane.

Theorem 4.2. The 𝐶∗-algebra 𝑆𝑂⋄ is contained in the 𝐶∗-algebra 𝑄𝐶 of quasi-
continuous functions on ℝ̇, where

𝑄𝐶 := (𝐻∞ + 𝐶(ℝ̇)) ∩ (𝐻∞ + 𝐶(ℝ̇)) = 𝑉 𝑀𝑂 ∩ 𝐿∞(ℝ). (4.3)
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Proof. If 𝑎 ∈ 𝑆𝑂∞, then 𝑎̃ := 𝑎 ∘ 𝛾 ∈ 𝑆𝑂1(𝕋) in view of Lemma 2.1. By
[27, Lemma 1] and [22, Lemma A4], every function 𝑎̃ ∈ 𝑆𝑂1(𝕋) belongs to the
set 𝑉 𝑀𝑂(𝕋) ∩ 𝐿∞(𝕋). According to [26], 𝑉 𝑀𝑂(𝕋) ∩ 𝐿∞(𝕋) = 𝑄𝐶(𝕋), where

𝑄𝐶(𝕋) := (𝐻∞(𝕋) + 𝐶(𝕋)) ∩ (𝐻∞(𝕋) + 𝐶(𝕋)) is the 𝐶∗-algebra of quasicontin-
uous functions on 𝕋, and 𝐻∞(𝕋) is the closed subalgebra of 𝐿∞(𝕋) consisting of
all functions being non-tangential limits on 𝕋 of bounded analytic functions on
𝔻 := {𝑧 ∈ ℂ : ∣𝑧∣ < 1}. Thus, 𝑎̃ ∈ 𝑄𝐶(𝕋), and therefore 𝑎 = 𝑎̃ ∘ 𝛾−1 ∈ 𝑄𝐶, where

𝑄𝐶 is given by (4.3). Applying (4.3) and Corollary 2.2, we infer that for all 𝜆 ∈ ℝ̇

the 𝐶∗-algebras 𝑆𝑂𝜆, and hence 𝑆𝑂⋄, are contained in 𝑄𝐶. □

4.2. Compactness of commutators

Given 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ), we consider the Banach algebra ℬ𝑝,𝑤 and its
ideal of compact operators 𝒦𝑝,𝑤. In case 𝑤 ≡ 1 we abbreviate ℬ𝑝,1 and 𝒦𝑝,1 to ℬ𝑝
and 𝒦𝑝, respectively. The notation 𝐶𝑝(ℝ̇), 𝐶𝑝(ℝ), 𝑃𝐶𝑝 and 𝑆𝑂∞,𝑝 is understood
analogously.

For two algebras 𝒜 and ℬ contained in a Banach algebra 𝒞, we denote by
alg (𝒜,ℬ) the Banach subalgebra of 𝒞 generated by the algebras 𝒜 and ℬ.

First we recall two known results on the compactness of commutators.

Lemma 4.3. [11, Lemmas 7.1–7.4] Let 1 < 𝑝 < ∞.

(a) If 𝑎 ∈ 𝑃𝐶, 𝑏 ∈ 𝑃𝐶𝑝, and 𝑎(±∞) = 𝑏(±∞) = 0, then 𝑎𝑊 0(𝑏),𝑊 0(𝑏)𝑎𝐼
∈ 𝒦𝑝.

(b) If 𝑎 ∈ 𝐶(ℝ̇) and 𝑏 ∈ 𝑃𝐶𝑝, or 𝑎 ∈ 𝑃𝐶 and 𝑏 ∈ 𝐶𝑝(ℝ̇), then [𝑎𝐼,𝑊
0(𝑏)]

∈ 𝒦𝑝.
(c) If 𝑎 ∈ 𝐶(ℝ) and 𝑏 ∈ 𝐶𝑝(ℝ), then [𝑎𝐼,𝑊

0(𝑏)] ∈ 𝒦𝑝.
Theorem 4.4. [1, Theorem 4.2, Corollary 4.3] If 1 < 𝑝 < ∞ and either 𝑎 ∈
alg (𝑆𝑂∞, 𝑃𝐶) and 𝑏 ∈ 𝑆𝑂∞,𝑝, or 𝑎 ∈ 𝑆𝑂∞ and 𝑏 ∈ alg (𝑆𝑂∞,𝑝, 𝑃𝐶𝑝), or 𝑎 ∈
alg (𝑆𝑂∞, 𝐶(ℝ)) and 𝑏 ∈ alg (𝑆𝑂∞,𝑝, 𝐶𝑝(ℝ)), then [𝑎𝐼,𝑊 0(𝑏)] ∈ 𝒦𝑝.

The use of a weighted analogue [16] of the Krasnoselskii theorem [19, The-
orem 3.10] on interpolation of compactness, which follows from the Stein-Weiss
interpolation theorem (see, e.g., [5, Corollary 5.5.4]), leads to the following com-
pactness result.

Lemma 4.5. [16, Corollary 5.3] If a linear operator T is bounded on every weighted
Lebesgue space 𝐿𝑝(ℝ, 𝑤) (1 < 𝑝 < ∞, 𝑤 ∈ 𝐴𝑝(ℝ)) and 𝑇 is compact on the space
𝐿2(ℝ), then 𝑇 is compact on every space 𝐿𝑝(ℝ, 𝑤).

Applying the theory of pseudodifferential and Calderón-Zygmund operators
and Theorem 4.2, we establish the following compactness result for weighted
Lebesgue spaces.

Theorem 4.6. Let 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ). If 𝑎 ∈ 𝑃𝑆𝑂⋄ and 𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤, or 𝑎 ∈

𝑆𝑂⋄ and 𝑏 ∈ 𝑃𝑆𝑂⋄
𝑝,𝑤, or 𝑎 ∈ alg (𝑆𝑂∞, 𝐶(ℝ)) and 𝑏 ∈ alg (𝑆𝑂∞,𝑝,𝑤, 𝐶𝑝,𝑤(ℝ)),

then the commutator [𝑎𝐼,𝑊 0(𝑏)] is compact on the space 𝐿𝑝(ℝ, 𝑤).
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Proof. By definition, 𝑃𝑆𝑂⋄
𝑝,𝑤 = alg (𝑆𝑂⋄

𝑝,𝑤, 𝑃𝐶𝑝,𝑤) ⊂ 𝑀𝑝,𝑤, where 𝑆𝑂⋄
𝑝,𝑤 is the

Banach subalgebra of𝑀𝑝,𝑤 generated by all the algebras 𝑆𝑂𝜆,𝑝,𝑤 (𝜆 ∈ ℝ̇), 𝑆𝑂𝜆,𝑝,𝑤
is the closure of 𝑆𝑂3

𝜆 in 𝑀𝑝,𝑤, and 𝑃𝐶𝑝,𝑤 is the closure in 𝑀𝑝,𝑤 of the set of
piecewise continuous functions of finite total variation, and hence 𝑃𝐶𝑝,𝑤 is the
closure in 𝑀𝑝,𝑤 of the set of all piecewise constant functions with finite sets of

discontinuities (see, e.g., [11, Remark 2.12]). In addition, 𝐶𝑝,𝑤(ℝ) is the closure of

𝐶(ℝ) ∩ 𝑉 (ℝ) in 𝑀𝑝,𝑤. Consequently, it is sufficient to prove the compactness of

the commutator [𝑎𝐼,𝑊 0(𝑏)] in the following four cases for each 𝜆, 𝜇 ∈ ℝ̇:

1) 𝑎 ∈ 𝑆𝑂𝜆 and 𝑏 ∈ 𝑆𝑂3
𝜇,

2) 𝑎 ∈ 𝑆𝑂𝜆 and 𝑏(𝑥) = sgn(𝑥 − 𝜇),
3) 𝑎(𝑥) = sgn(𝑥 − 𝜆) and 𝑏 ∈ 𝑆𝑂3

𝜇,

4) 𝑎 ∈ 𝐶(ℝ) and 𝑏 ∈ 𝐶(ℝ) ∩ 𝑉 (ℝ).

Under these conditions on functions 𝑎 and 𝑏, the commutators [𝑎𝐼,𝑊 0(𝑏)] are
bounded linear operators on every Lebesgue space 𝐿𝑝(ℝ, 𝑤) with 1 < 𝑝 < ∞
and 𝑤 ∈ 𝐴𝑝(ℝ). Hence, according to Lemma 4.5, it is sufficient to prove the
compactness of the commutator [𝑎𝐼,𝑊 0(𝑏)] only on the space 𝐿2(ℝ), which implies
its compactness on all the spaces 𝐿𝑝(ℝ, 𝑤). Thus, in the case of 𝐿2(ℝ) we may
replace 𝑏 ∈ 𝑆𝑂3

𝜇 by 𝑏 ∈ 𝑆𝑂𝜇. Then the case 3) is reduced to the case 2) under the

transform 𝐴 �→ ℱ𝐴ℱ−1. Indeed, ℱ𝑎ℱ−1 = 𝑊 0 (̃𝑏) and ℱ𝑊 0(𝑏)ℱ−1 = 𝑎̃𝐼 where

𝑏̃(𝑥) = 𝑎(−𝑥) and 𝑎̃ = 𝑏. Because the assertion in the case 4) for the space 𝐿2(ℝ)
follows from Lemma 4.3(c), it only remains to consider cases 1) and 2).

1) Let 𝑎 ∈ 𝑆𝑂𝜆 and 𝑏 ∈ 𝑆𝑂𝜇 (𝜆, 𝜇 ∈ ℝ̇). If 𝜆 = 𝜇 = ∞, then the compactness
of the commutator [𝑎𝐼,𝑊 0(𝑏)] follows from Theorem 4.4. Let 𝜆 ∈ ℝ and 𝜇 = ∞.
In this case we assume without loss of generality that 𝑏 ∈ 𝑆𝑂3

∞. Then from [18,
Lemma 2.2] it follows that the distribution 𝐾 = ℱ−1𝑏 agrees with a function 𝐾(⋅)
differentiable on ℝ ∖ {0} and such that∣∣𝐾(𝑥)∣∣ ≤ 𝐴0∣𝑥∣−1,

∣∣𝐾 ′(𝑥)
∣∣ ≤ 𝐴1∣𝑥∣−2 for all 𝑥 ∈ ℝ ∖ {0}, (4.4)

where the constants 𝐴𝛼 (𝛼 = 0, 1) are estimated by

𝐴𝛼 ≤ 𝐶𝛼max
{∥𝐷𝑘𝑏∥𝐿∞(ℝ) : 𝑘 = 0, 1, 2, 3

}
,

(𝐷𝑏)(𝑥) = 𝑥𝑏′(𝑥) for 𝑥 ∈ ℝ and the constants 𝐶𝛼 ∈ (0,∞) depend only on 𝛼.
Hence 𝐾(⋅) is a classical Calderón-Zygmund kernel, and the convolution operator
𝑊 0(𝑏) can be considered as the Calderón-Zygmund operator given by

(𝑇𝑓)(𝑥) = v.p.

∫
ℝ

𝐾(𝑥 − 𝑦)𝑓(𝑦)𝑑𝑦 for 𝑥 ∈ ℝ, (4.5)

where 𝑇 is bounded on every weighted Lebesgue space 𝐿𝑝(ℝ, 𝑤) with 𝑝 ∈ (1,∞)
and 𝑤 ∈ 𝐴𝑝(ℝ) (see, e.g., Theorem 2.3). In particular, the second condition in
(4.4) implies that there is a constant 𝐴2 ∈ (0,∞) such that

∣𝐾(𝑥 − 𝑦)− 𝐾(𝑥)∣ ≤ 𝐴2∣𝑦∣𝛿∣𝑥∣−1−𝛿 for ∣𝑥∣ ≥ 2∣𝑦∣ > 0, (4.6)
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where 𝛿 ∈ (0, 1). Moreover, because the convolution operator 𝑊 0(𝑏) is bounded
on the space 𝐿2(ℝ), we conclude from [29, p. 291, Proposition 2] that

sup
0<𝑟<𝑅<∞

∣∣∣ ∫
𝑟<∣𝑥∣<𝑅

𝐾(𝑥)𝑑𝑥
∣∣∣ < ∞. (4.7)

Since conditions (4.4), (4.6) and (4.7) for the operator 𝑇 = 𝑊 0(𝑏) represented in
the form (4.5) are fulfilled, we infer from [14, Theorem 7.5.6] that there exists a
constant 𝐶 ∈ (0,∞) such that∥∥[𝑎𝐼,𝑊 0(𝑏)]

∥∥
ℬ2

≤ 𝐶∥𝑎∥∗ (4.8)

for every 𝑎 ∈ 𝐵𝑀𝑂(ℝ), where ℬ2 = ℬ(𝐿2(ℝ)) and ∥ ⋅ ∥∗ is given by (4.1). On
the other hand, by Theorem 4.2, the function 𝑎 ∈ 𝑆𝑂𝜆 belongs to the Banach
space 𝑉 𝑀𝑂. Hence, by Proposition 4.1, for every 𝑎 ∈ 𝑆𝑂𝜆 there exists a sequence
{𝑎𝑛} ∈ 𝐶(ℝ̇) such that lim𝑛→∞ ∥𝑎 − 𝑎𝑛∥∗ = 0, and therefore, by (4.8),

lim
𝑛→∞

∥∥[𝑎𝐼,𝑊 0(𝑏)]− [𝑎𝑛𝐼,𝑊
0(𝑏)]

∥∥
ℬ2
= lim
𝑛→∞

∥∥[(𝑎 − 𝑎𝑛)𝐼,𝑊
0(𝑏)]

∥∥
ℬ2
= 0. (4.9)

But [𝑎𝑛𝐼,𝑊
0(𝑏)] ∈ 𝒦2 for all 𝑎𝑛 ∈ 𝐶(ℝ̇) and 𝑏 ∈ 𝑆𝑂∞ in virtue of Theorem 4.4.

Thus, we deduce from (4.9) that the commutator [𝑎𝐼,𝑊 0(𝑏)] is compact on the
space 𝐿2(ℝ) for every 𝑎 ∈ 𝑆𝑂𝜆 and every 𝑏 ∈ 𝑆𝑂∞, which proves the assertion for
𝜆 ∈ ℝ and 𝜇 = ∞.

The case 𝜆 = ∞ and 𝜇 ∈ ℝ is reduced to the previous one under the transform
𝐴 �→ ℱ𝐴ℱ−1. Let now 𝜆, 𝜇 ∈ ℝ. Then

[𝑎𝐼,𝑊 0(𝑏)] = [(𝑎 − 𝑎(∞))𝐼,𝑊 0(𝑏 − 𝑏(∞))], (4.10)

and there exist functions 𝑐, 𝑑 ∈ 𝐶(ℝ̇) that vanish at ∞ and functions 𝑎̃, 𝑏̃ ∈ 𝐿∞(ℝ)
such that 𝑎 − 𝑎(∞) = 𝑎̃𝑐 and 𝑏 − 𝑏(∞) = 𝑑𝑏̃. Since the operators 𝑐𝑊 0(𝑑) and
𝑊 0(𝑑)𝑐𝐼 are compact on the space 𝐿2(ℝ) due to Lemma 4.3(a), we infer from
(4.10) and the equality

[(𝑎 − 𝑎(∞))𝐼,𝑊 0(𝑏 − 𝑏(∞))] = 𝑎̃𝑐𝑊 0(𝑑)𝑊 0 (̃𝑏)− 𝑊 0(̃𝑏)𝑊 0(𝑑) 𝑐𝑎̃𝐼

that [𝑎𝐼,𝑊 0(𝑏)] ∈ 𝒦2 for all 𝜆, 𝜇 ∈ ℝ, which completes the proof of compactness
of the commutator [𝑎𝐼,𝑊 0(𝑏)] in case 1).

2) Let now 𝑎 ∈ 𝑆𝑂𝜆 and 𝑏(𝑥) = sgn(𝑥 − 𝜇) where 𝜆, 𝜇 ∈ ℝ̇. Clearly, we

may exclude 𝜇 = ∞. Since 𝑎 ∈ 𝑄𝐶 = (𝐻∞ + 𝐶(ℝ̇)) ∩ (𝐻∞ + 𝐶(ℝ̇)) in view of
Theorem 4.2, it immediately follows from the Hartman compactness result (see,
e.g., [8, Theorem 2.18]) that [𝑎𝐼, 𝑆ℝ] ∈ 𝒦2 (see also [21, Section 4]). Applying then
the equality 𝑊 0(𝑏) = −𝑒−𝜇𝑆ℝ𝑒𝜇𝐼 where 𝑒𝜇(𝑥) = 𝑒𝑖𝜇𝑥 for 𝜇, 𝑥 ∈ ℝ, we infer that
the commutator [𝑎𝐼,𝑊 0(𝑏)] = −𝑒−𝜇[𝑎𝐼, 𝑆ℝ]𝑒𝜇𝐼 is compact on the space 𝐿2(ℝ),
which completes the proof in case 2). □
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5. Applications of limit operators

Fix 𝑤 ∈ 𝐴𝑝(ℝ). Then 𝑣 = log𝑤 is a 𝐵𝑀𝑂 function on ℝ (see, e.g., [12, Chapter 6]).
Hence, from [12, Chapter 6, Theorem 1.2] it follows the existence of two continuous
functions

𝑣±(𝑥) := 𝑥

∫ ±∞

𝑥

𝑣(𝜏)

𝜏2
𝑑𝜏 for ± 𝑥 > 0. (5.1)

The functions 𝑣± are differentiable almost everywhere on ℝ± = {𝑥 : ±𝑥 > 0}, and
𝑥𝑣′±(𝑥) = 𝑣±(𝑥) − 𝑣(𝑥) for almost all 𝑥 ∈ ℝ±. (5.2)

In what follows we assume that at least one of the functions 𝑥 �→ 𝑥𝑣′±(𝑥) belongs to
𝐿∞ at a neighborhood 𝑈± ⊂ ℝ± of ±∞, respectively. By (5.2), this is equivalent
to the condition

𝑣− − 𝑣 ∈ 𝐿∞(𝑈−) or 𝑣+ − 𝑣 ∈ 𝐿∞(𝑈+). (5.3)

We say that a weight 𝑤 is locally equivalent to a weight𝑊 at a neighborhood
𝑈± of ±∞ if 𝑤/𝑊, 𝑊/𝑤 ∈ 𝐿∞(𝑈±). Thus, in view of (5.2), the weight 𝑤 =
𝑒𝑣 is locally equivalent to the weight 𝑤± = 𝑒𝑣± at a neighborhood 𝑈± of ±∞,
respectively. Therefore, the weights 𝑤± that coincide with 𝑤 on ℝ ∖ 𝑈± and with
𝑤± on 𝑈±, belong to 𝐴𝑝(ℝ) along with 𝑤, and 𝐴 ∈ ℬ(𝐿𝑝(ℝ, 𝑤)) if and only if
𝐴 ∈ ℬ(𝐿𝑝(ℝ, 𝑤±)).

Let 𝑒𝜆(𝑥) = 𝑒𝑖𝜆𝑥 for all 𝜆, 𝑥 ∈ ℝ, and let 𝑈𝜆 = 𝑊 0(𝑒𝜆) is the translation
operator acting by the rule (𝑈𝜆𝑓)(𝑥) = 𝑓(𝑥− 𝜆) for 𝑥 ∈ ℝ. Let 𝑆𝑂⋄

𝑝 := 𝑆𝑂⋄
𝑝,1. As

usual, for all 𝑎 ∈ 𝑆𝑂⋄ and all 𝜉 ∈ 𝑀(𝑆𝑂⋄) we put 𝑎(𝜉) := 𝜉(𝑎).

Lemma 5.1. If 1 < 𝑝 < ∞, 𝑤 = 𝑒𝑣 ∈ 𝐴𝑝(ℝ), 𝑎 ∈ 𝑆𝑂⋄, 𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤, and (5.3)

holds, then for every 𝜉 ∈ 𝑀∞(𝑆𝑂⋄) there is a sequence {ℎ𝑛} ⊂ (0,∞) such that
ℎ𝑛 → +∞ as 𝑛 → ∞, lim𝑛→∞ 𝑎(ℎ𝑛) = 𝑎(𝜉), lim𝑛→∞ 𝑏(ℎ𝑛) = 𝑏(𝜉), and

s-lim
𝑛→∞

(
𝑒ℎ𝑛(𝑎𝐼)𝑒

−1
ℎ𝑛

𝐼
)
= 𝑎𝐼, s-lim

𝑛→∞
(
𝑒ℎ𝑛𝑊

0(𝑏)𝑒−1ℎ𝑛 𝐼
)
= 𝑏(𝜉)𝐼, (5.4)

on the space 𝐿𝑝(ℝ, 𝑤),

s-lim
𝑛→∞

(
𝑈−ℎ𝑛𝑤+𝑎𝑤−1

+ 𝑈ℎ𝑛
)
= 𝑎(𝜉)𝐼,

s-lim
𝑛→∞

(
𝑈−ℎ𝑛𝑤+𝑊 0(𝑏)𝑤−1

+ 𝑈ℎ𝑛
)
= 𝑊 0(𝑏),

(5.5)

on the space 𝐿𝑝(ℝ) if 𝑣+ − 𝑣 ∈ 𝐿∞(𝑈+), and

s-lim
𝑛→∞

(
𝑈ℎ𝑛𝑤−𝑎𝑤−1

− 𝑈−ℎ𝑛
)
= 𝑎(𝜉)𝐼,

s-lim
𝑛→∞

(
𝑈ℎ𝑛𝑤−𝑊 0(𝑏)𝑤−1

− 𝑈−ℎ𝑛
)
=𝑊 0(𝑏),

(5.6)

on the space 𝐿𝑝(ℝ) if 𝑣− − 𝑣 ∈ 𝐿∞(𝑈−).

Proof. By definition (see Subsection 2.3), every function 𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤 is approxi-

mated in the Banach algebra 𝑀𝑝,𝑤 by a sequence of functions 𝑏𝑚 =
∑
𝜆∈𝐹𝑚 𝑏𝑚,𝜆

where 𝑏𝑚,𝜆 ∈ 𝑆𝑂3
𝜆 for all 𝑚 ∈ ℕ and all 𝜆 ∈ ℝ̇, and 𝐹𝑚 are finite subsets of ℝ̇

that contain ∞. Hence 𝑏𝑚 ∈ 𝑆𝑂⋄
𝑝,𝑤 ∩ 𝑆𝑂⋄

𝑝.
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Fix 𝜉 ∈ 𝑀∞(𝑆𝑂⋄). Since the set {𝑏𝑚,∞ ∈ 𝑆𝑂3
∞ : 𝑚 ∈ ℕ} is at most

countable, from Proposition 3.1 it follows that there exists a sequence {ℎ𝑛} ⊂
(0,∞) such that ℎ𝑛 → +∞ as 𝑛 → ∞ and

𝜉(𝑏𝑚,∞) = lim
𝑛→∞ 𝑏𝑚,∞(ℎ𝑛) for all 𝑚 ∈ ℕ. (5.7)

Then we infer from (5.7) and the estimate∣∣𝑏𝑚,∞(𝑥+ ℎ𝑛)− 𝑏𝑚,∞(ℎ𝑛)
∣∣ = ∣∣∣∣ ∫ 𝑥+ℎ𝑛

ℎ𝑛

𝑡𝑏′𝑚,∞(𝑡)
𝑑𝑡

𝑡

∣∣∣∣
≤ sup

∣𝑡−ℎ𝑛∣≤∣𝑥∣

∣∣𝑡𝑏′𝑚,∞(𝑡)∣∣ ∣∣∣∣ ln(𝑥+ ℎ𝑛
ℎ𝑛

)∣∣∣∣ (5.8)

that

𝜉(𝑏𝑚,∞) = lim
𝑛→∞ 𝑏𝑚,∞(𝑥+ ℎ𝑛) (5.9)

for every 𝑥 ∈ ℝ and all 𝑚 ∈ ℕ. Because the functions 𝑏𝑚,𝜆 are continuous at ∞
for all 𝑚 ∈ ℕ and all 𝜆 ∈ ℝ, we conclude that for these 𝑚 and 𝜆,

lim
𝑛→∞ 𝑏𝑚,𝜆(𝑥 + ℎ𝑛) = 𝑏𝑚,𝜆(∞) = 𝜉(𝑏𝑚,𝜆). (5.10)

As the limit

𝑏 = lim
𝑚→∞

∑
𝜆∈𝐹𝑚

𝑏𝑚,𝜆, (5.11)

is uniform in the norm of 𝑀𝑝,𝑤, we deduce from (5.9), (5.10) and (5.11), that for
every 𝑥 ∈ ℝ,

lim
𝑛→∞ 𝑏(𝑥+ ℎ𝑛) = lim

𝑛→∞ lim
𝑚→∞

∑
𝜆∈𝐹𝑚

𝑏𝑚,𝜆(𝑥+ ℎ𝑛)

= lim
𝑚→∞ lim

𝑛→∞

∑
𝜆∈𝐹𝑚

𝑏𝑚,𝜆(𝑥+ ℎ𝑛)

= lim
𝑚→∞

∑
𝜆∈𝐹𝑚

𝜉(𝑏𝑚,𝜆) = 𝜉(𝑏). (5.12)

Moreover, in view of (2.1) one can easily prove that the convergence in (5.12) is
uniform on compacts of ℝ.

On the other hand, on the space 𝐿𝑝(ℝ, 𝑤) we also have the following:

s-lim
𝑛→∞

(
𝑒ℎ𝑛𝑊

0(𝑏)𝑒−1ℎ𝑛
)
= s-lim
𝑛→∞𝑊 0(𝑏(⋅+ ℎ𝑛)) = s-lim

𝑛→∞𝑊 0(𝑏(ℎ𝑛)). (5.13)

Indeed, according to [17, Lemma 2.5] established by analogy with [28, Section 3.2],
for every 𝑓 ∈ 𝐿𝑝(ℝ, 𝑤) and every 𝜑 ∈ 𝐿1(ℝ) with

∫
ℝ
𝜑(𝑥)𝑑𝑥 = 1, we have

lim
𝜀→0

∥𝑓 ∗ 𝜑𝜀 − 𝑓∥𝐿𝑝(ℝ,𝑤) = 0, (5.14)

where 𝜑𝜀(𝑥) = 𝜀−1𝜑(𝑥/𝜀), 𝑥 ∈ ℝ, 𝜀 > 0. Choosing now rapidly decreasing func-
tions 𝜑 ∈ 𝒮(ℝ) whose Fourier transforms ℱ𝜑 have compact supports in ℝ, we de-
rive from (5.14) that the set Φ of functions in 𝐿𝑝(ℝ, 𝑤) whose Fourier transforms
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have compact supports in ℝ is dense in 𝐿𝑝(ℝ, 𝑤). Therefore, for every function
𝑓 ∈ Φ there is a function 𝜓 ∈ 𝐶∞(ℝ) with a compact support in ℝ such that(

𝑊 0[𝑏(⋅+ ℎ𝑛)− 𝑏(ℎ𝑛)]
)
𝑓 = ℱ−1[𝑏(⋅+ ℎ𝑛)− 𝑏(ℎ𝑛)]𝜓ℱ𝑓. (5.15)

By analogy with (5.12), from (5.11) it follows that

lim
𝑛→∞

∥∥[𝑏(⋅+ ℎ𝑛)− 𝑏(ℎ𝑛)
]
𝜓
∥∥
𝑀𝑝,𝑤

= lim
𝑛→∞ lim

𝑚→∞

∥∥∥∥ ∑
𝜆∈𝐹𝑚

[
𝑏𝑚,𝜆(⋅+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)

]
𝜓

∥∥∥∥
𝑀𝑝,𝑤

= lim
𝑚→∞ lim

𝑛→∞

∥∥∥∥ ∑
𝜆∈𝐹𝑚

[
𝑏𝑚,𝜆(⋅+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)

]
𝜓

∥∥∥∥
𝑀𝑝,𝑤

≤ lim
𝑚→∞

∑
𝜆∈𝐹𝑚

lim
𝑛→∞

∥∥[𝑏𝑚,𝜆(⋅+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)
]
𝜓
∥∥
𝑀𝑝,𝑤

.

(5.16)

In view of Theorem 2.3, we obtain∥∥∥[𝑏𝑚,𝜆(⋅+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)
]
𝜓
∥∥∥
𝑀𝑝,𝑤

≤ 𝐶𝑝,𝑤 max
𝑘=0,1,2,3

∥∥∥𝐷𝑘([𝑏𝑚,𝜆(⋅+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)
]
𝜓
)∥∥∥
𝐿∞(ℝ)

,
(5.17)

where (𝐷𝑎)(𝑥) = 𝑥𝑎′(𝑥).
Let 𝐾 := supp 𝜓. Since 𝐾 is a compact subset of ℝ and

lim
𝑛→∞max

𝑥∈𝐾
∣∣[𝑏𝑚,𝜆(𝑥+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)

]∣∣ = 0,

lim
𝑛→∞max

𝑥∈𝐾
∣∣(𝐷𝑘𝑏𝑚,𝜆)(𝑥 + ℎ𝑛)

∣∣ = 0 (𝑘 = 1, 2, 3)

(see [7, Section 4]), we infer from (5.17) and the relations

𝐷𝑘
([

𝑏𝑚,𝜆(⋅+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)
]
𝜓
)

=

𝑘∑
𝜈=0

(
𝑘

𝜈

)(
𝐷𝜈

[
𝑏𝑚,𝜆(⋅+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)

])
(𝐷𝑘−𝜈𝜓),

max
𝑘=0,1,2,3

∥𝐷𝑘𝜓∥𝐿∞(ℝ) < ∞, and

𝐷
[
𝑏𝑚,𝜆(𝑥+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)

]
=

𝑥

𝑥+ ℎ𝑛
(𝐷𝑏𝑚,𝜆)(𝑥 + ℎ𝑛),

𝐷2
[
𝑏𝑚,𝜆(𝑥+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)

]
=

𝑥2

(𝑥+ ℎ𝑛)2
(𝐷2𝑏𝑚,𝜆)(𝑥 + ℎ𝑛)

+
𝑥ℎ𝑛

(𝑥+ ℎ𝑛)2
(𝐷𝑏𝑚,𝜆)(𝑥+ ℎ𝑛),



200 Yu.I. Karlovich and I. Loreto Hernández

𝐷3
[
𝑏𝑚,𝜆(𝑥+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)

]
=

𝑥3

(𝑥+ ℎ𝑛)3
(𝐷3𝑏𝑚,𝜆)(𝑥 + ℎ𝑛)

+
3𝑥2ℎ𝑛

(𝑥+ ℎ𝑛)3
(𝐷2𝑏𝑚,𝜆)(𝑥+ ℎ𝑛)

+
𝑥ℎ2𝑛 − 𝑥2ℎ𝑛
(𝑥+ ℎ𝑛)3

(𝐷𝑏𝑚,𝜆)(𝑥 + ℎ𝑛),

that
lim
𝑛→∞

∥∥[𝑏𝑚,𝜆(⋅+ ℎ𝑛)− 𝑏𝑚,𝜆(ℎ𝑛)
]
𝜓
∥∥
𝑀𝑝,𝑤

= 0. (5.18)

Then from (5.16) and (5.18) it follows that

lim
𝑛→∞

∥∥[𝑏(⋅+ ℎ𝑛)− 𝑏(ℎ𝑛)
]
𝜓
∥∥
𝑀𝑝,𝑤

= 0,

which together with (5.15) implies (5.13). Hence,

s-lim
𝑛→∞

(
𝑒ℎ𝑛𝑊

0(𝑏)𝑒−1ℎ𝑛
)
= s-lim
𝑛→∞𝑊 0(𝑏(ℎ𝑛)) = s-lim

𝑛→∞ 𝑏(ℎ𝑛)𝐼 = 𝑏(𝜉)𝐼.

Thus, we obtain (5.4) because the first equality in (5.4) is evident.
It remains to prove (5.5) because the proof of (5.6) is similar. Since the

weight 𝑤+ = 𝑒𝑣+ is equivalent to the weight 𝑤 = 𝑒𝑣 at a neighborhood of +∞,
we conclude that the operators 𝑤+𝑎𝑤−1

+ 𝐼 and 𝑤+𝑊 0(𝑏)𝑤−1
+ 𝐼 for 𝑎 ∈ 𝑆𝑂⋄ and

𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤 are bounded on the space 𝐿𝑝(ℝ). Because the first equality in (5.5) is

evident, let us prove the second equality there.
First, suppose that 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤 ∩ 𝑆𝑂⋄
𝑝. Because the function 𝑥 �→ 𝑥𝑣′+(𝑥)

belongs to 𝐿∞(𝑈+), we infer by analogy with (5.8) that for all sufficiently large
ℎ𝑛 > 0, ∣∣∣∣ ∫ 𝑥+ℎ𝑛

ℎ𝑛

𝑡𝑣′+(𝑡)
𝑑𝑡

𝑡

∣∣∣∣ ≤ ess sup
𝑡∈𝑈+

∣∣𝑡𝑣′+(𝑡)∣∣ ∣∣∣∣ ln(𝑥+ ℎ𝑛
ℎ𝑛

)∣∣∣∣,
which implies that

lim
𝑛→∞

(∫ 𝑥+ℎ𝑛
ℎ𝑛

𝑡𝑣′+(𝑡)
𝑑𝑡

𝑡

)
= 0

uniformly on compacts of ℝ. Therefore,

s-lim
𝑛→∞

[
exp

(
𝑣+(𝑥+ ℎ𝑛)− 𝑣+(ℎ𝑛)

)
𝐼
]
= s-lim
𝑛→∞

[
exp

(∫ 𝑥+ℎ𝑛
ℎ𝑛

𝑡𝑣′+(𝑡)
𝑑𝑡

𝑡

)
𝐼

]
= 𝐼.

Consequently, for 𝑏 ∈ 𝑀𝑝,𝑤 ∩ 𝑀𝑝, we get

s-lim
𝑛→∞

(
𝑈−ℎ𝑛𝑤+𝑊 0(𝑏)𝑤−1

+ 𝑈ℎ𝑛
)
= s-lim
𝑛→∞

(
𝑒𝑣+(𝑥+ℎ𝑛)𝑊 0(𝑏)𝑒−𝑣+(𝑥+ℎ𝑛)𝐼

)
= s-lim
𝑛→∞

(
exp

(
𝑣+(𝑥+ ℎ𝑛)− 𝑣+(ℎ𝑛)

)
𝑊 0(𝑏) exp

(
𝑣+(ℎ𝑛)− 𝑣+(𝑥+ ℎ𝑛)

)
𝐼
)

= 𝑊 0(𝑏), (5.19)

which completes the proof of (5.5) for 𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤 ∩ 𝑆𝑂⋄

𝑝.
For all 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤 ∩ 𝑆𝑂⋄
𝑝 from (5.19) it follows that∥∥𝑊 0(𝑏)

∥∥
ℬ(𝐿𝑝(ℝ)) ≤ ∥∥𝑤+𝑊 0(𝑏)𝑤−1

+ 𝐼
∥∥
ℬ(𝐿𝑝(ℝ)) ≤ ∥∥𝑊 0(𝑏)

∥∥
ℬ(𝐿𝑝(ℝ,𝑤+))

,
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and therefore, for these 𝑏,

∥𝑏∥𝑀𝑝 ≤ ∥𝑏∥𝑀𝑝,𝑤̃+
. (5.20)

Since every function 𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤 is approximated in the Banach algebra 𝑀𝑝,𝑤 by

a sequence of functions 𝑏𝑚 ∈ 𝑆𝑂⋄
𝑝,𝑤 ∩ 𝑆𝑂⋄

𝑝 and since the norms ∥ ⋅ ∥𝑀𝑝,𝑤̃+
and

∥ ⋅ ∥𝑀𝑝,𝑤 are equivalent, we infer from (5.20) that 𝑆𝑂⋄
𝑝,𝑤 ⊂ 𝑆𝑂⋄

𝑝 for all considered
weights 𝑤 ∈ 𝐴𝑝(ℝ), which implies (5.5) for every 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤. □

In particular, the proof of Lemma 5.1 gives the following result.

Corollary 5.2. If 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ) satisfies (5.3), then 𝑆𝑂⋄
𝑝,𝑤 ⊂ 𝑆𝑂⋄

𝑝.

6. Fredholm study of the Banach algebra 퓩𝒑,𝒘

Along with the Banach algebra 𝒵𝑝,𝑤 ⊂ ℬ𝑝,𝑤 given by (1.3), we consider the Banach
subalgebra

𝒵𝑝,𝑤 := alg
(
𝑎𝐼,𝑊 0(𝑏) : 𝑎 ∈ 𝐶(ℝ̇), 𝑏 ∈ 𝐶𝑝,𝑤(ℝ̇)

)
(6.1)

of 𝒵𝑝,𝑤 generated by the operators 𝑎𝐼 and 𝑊 0(𝑏) with 𝑎 ∈ 𝐶(ℝ̇) and 𝑏 ∈ 𝐶𝑝,𝑤(ℝ̇).

By analogy with [24, Proposition 5.8.1], we obtain the following.

Lemma 6.1. If 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(ℝ), then the Banach algebra 𝒵𝑝,𝑤 contains
the ideal 𝒦𝑝,𝑤 of compact operators in ℬ𝑝,𝑤.
Proof. As is well known, every compact operator on the space 𝐿𝑝(ℝ, 𝑤) can be
uniformly approximated in ℬ𝑝,𝑤 by a finite sum of rank one operators of the form

(𝑇𝜑)(𝑥) = 𝑎(𝑥)

∫
ℝ

𝑏(𝑦)𝜑(𝑦) 𝑑𝑦 (𝑥 ∈ ℝ), (6.2)

where 𝑎 ∈ 𝐿𝑝(ℝ, 𝑤), 𝑏 ∈ 𝐿𝑞(ℝ, 𝑤−1) and 1/𝑝 + 1/𝑞 = 1. Because the set 𝐶0(ℝ)
of continuous functions on ℝ with compact support is dense in 𝐿𝑝(ℝ, 𝑤) and
𝐿𝑞(ℝ, 𝑤−1), we can take 𝑎, 𝑏 ∈ 𝐶0(ℝ) in (6.2). Then there is a number 𝑀 > 0
such that the set

{
𝑥 − 𝑦 : 𝑥 ∈ supp 𝑎, 𝑦 ∈ supp 𝑏

}
is contained in the segment

[−𝑀,𝑀 ]. Choose now a function

𝑘(𝑥) :=

⎧⎨⎩
1− exp

(
(𝑥+𝑀)−3

)
if 𝑥 < −𝑀,

1 if 𝑥 ∈ [−𝑀,𝑀 ],

1− exp
(− (𝑥 − 𝑀)−3

)
if 𝑥 > 𝑀.

Then (6.2) can be rewritten in the form

(𝑇𝜑)(𝑥) = 𝑎(𝑥)

∫
ℝ

𝑘(𝑥 − 𝑦)𝑏(𝑦)𝜑(𝑦) 𝑑𝑦 =
[
𝑎𝑊 0(𝑘)𝑏𝜑

]
(𝑥) (𝑥 ∈ ℝ).

It remains to prove that 𝑘 ∈ 𝐶𝑝,𝑤(ℝ̇) because then 𝑇 ∈ 𝒵𝑝,𝑤 in view of (6.1).
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Obviously, 𝑘 ∈ 𝐶(ℝ̇) and lim𝑥→±∞[𝑥3𝑘(𝑥)] = ±1. It is easily seen that
the functions 𝑘(𝑥), 𝑘′(𝑥), 𝑥𝑘(𝑥), 𝑥𝑘′(𝑥), 𝑥𝑘′′(𝑥) belong to the space 𝐿1(ℝ). Hence,

𝑘, 𝑘 ′ ∈ 𝐶(ℝ̇) and 𝑘(∞) = 𝑘 ′(∞) = 0. Moreover,

𝑥2𝑘 ′(𝑥) =
∫
ℝ

𝑥2(𝑖𝑦)𝑒𝑖𝑥𝑦𝑘(𝑦)𝑑𝑦

= −
∫
ℝ

𝑥𝑒𝑖𝑥𝑦[𝑘(𝑦) + 𝑦𝑘′(𝑦)]𝑑𝑦

= −𝑖

∫
ℝ

𝑒𝑖𝑥𝑦[2𝑘′(𝑦) + 𝑦𝑘′′(𝑦)]𝑑𝑦,

and therefore 𝑘 ′ ∈ 𝐿1(ℝ), which implies that the function 𝑘 ∈ 𝐶(ℝ̇) is of bounded

total variation. Hence, by (2.5), 𝑘 ∈ 𝐶𝑝,𝑤(ℝ̇) for all 𝑝 ∈ (1,∞) and all 𝑤 ∈
𝐴𝑝(ℝ). □

By Lemma 6.1, 𝒦𝑝,𝑤 ⊂ 𝒵𝑝,𝑤 ⊂ 𝒵𝑝,𝑤 ⊂ 𝔄𝑝,𝑤, where 𝔄𝑝,𝑤 is given by (1.2).
Then from Theorem 4.6 it follows that the commutative Banach algebra 𝒵𝜋𝑝,𝑤 =
𝒵𝑝,𝑤/𝒦𝑝,𝑤 is a central subalgebra of the Banach algebra 𝔄𝜋𝑝,𝑤 = 𝔄𝑝,𝑤/𝒦𝑝,𝑤.
Theorem 6.2. If 1 < 𝑝 < ∞, 𝑤 = 𝑒𝑣 ∈ 𝐴𝑝(ℝ), and (5.3) holds with 𝑣± given by
(5.1), then the maximal ideal space 𝑀

(𝒵𝜋𝑝,𝑤) of the algebra 𝒵𝜋𝑝,𝑤 is homeomorphic
to the set

Ω :=

( ∪
𝑡∈ℝ

𝑀𝑡(𝑆𝑂⋄)× 𝑀∞(𝑆𝑂⋄)
)

∪
(
𝑀∞(𝑆𝑂⋄)×

∪
𝑡∈ℝ

𝑀𝑡(𝑆𝑂⋄)
)

∪
(
𝑀∞(𝑆𝑂⋄)× 𝑀∞(𝑆𝑂⋄)

) (6.3)

equipped with topology induced by the product topology of 𝑀(𝑆𝑂⋄) × 𝑀(𝑆𝑂⋄),
and the Gelfand transform Γ : 𝒵𝜋𝑝,𝑤 → 𝐶(Ω), 𝐴𝜋 �→ 𝒜(⋅, ⋅) is defined on the

generators 𝐴𝜋 = (𝑎𝑊 0(𝑏))𝜋 of the algebra 𝒵𝜋𝑝,𝑤, where 𝑎 ∈ 𝑆𝑂⋄ and 𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤,

by 𝒜(𝜉, 𝜂) = 𝑎(𝜉)𝑏(𝜂) for all (𝜉, 𝜂) ∈ Ω.
Proof. Note that if 𝐽 is a maximal ideal of 𝒵𝜋𝑝,𝑤, then

𝐽 ∩ {
𝑎𝐼 +𝒦𝑝,𝑤 : 𝑎 ∈ 𝑆𝑂⋄} and 𝐽 ∩ clos{𝑊 0(𝑏) +𝒦𝑝,𝑤 : 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤

}
are maximal ideals of the commutative Banach algebras{

𝑎𝐼 +𝒦𝑝,𝑤 : 𝑎 ∈ 𝑆𝑂⋄} and clos
{
𝑊 0(𝑏) +𝒦𝑝,𝑤 : 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤

}
, (6.4)

respectively (see [10, Lemma 1.33]). Therefore, taking into account the relations

𝑀
({

𝑎𝐼 +𝒦𝑝,𝑤 : 𝑎 ∈ 𝑆𝑂⋄}) =𝑀(𝑆𝑂⋄),

𝑀
(
clos

{
𝑊 0(𝑏) +𝒦𝑝,𝑤 : 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤

})
=𝑀(𝑆𝑂⋄

𝑝,𝑤),

and the fact that 𝑀(𝑆𝑂⋄
𝑝,𝑤) = 𝑀(𝑆𝑂⋄) due to Theorem 3.6, we conclude that

for every point (𝜉, 𝜂) ∈ 𝑀(𝑆𝑂⋄) × 𝑀(𝑆𝑂⋄) there exists the closed two-sided
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(not necessarily maximal) ideal ℐ𝜋𝜉,𝜂 of the Banach algebra 𝒵𝜋𝑝,𝑤 generated by the
maximal ideals {

𝑎𝐼 +𝒦𝑝,𝑤 : 𝑎 ∈ 𝑆𝑂⋄, 𝜉(𝑎) = 0
}

and

clos
{
𝑊 0(𝑏) +𝒦𝑝,𝑤 : 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤, 𝜂(𝑏) = 0
} (6.5)

of the commutative Banach algebras (6.4), respectively. Thus, by virtue of (3.1),
the maximal ideal space of 𝒵𝜋𝑝,𝑤 can be identified with a subset of

𝑀(𝑆𝑂⋄)× 𝑀(𝑆𝑂⋄)

=

( ∪
𝑡∈ℝ

𝑀𝑡(𝑆𝑂⋄) ∪ 𝑀∞(𝑆𝑂⋄)
)

×
( ∪
𝑡∈ℝ

𝑀𝑡(𝑆𝑂⋄) ∪ 𝑀∞(𝑆𝑂⋄)
)
.

Fix (𝜉, 𝜂) ∈ ∪
𝑡∈ℝ

𝑀𝑡(𝑆𝑂⋄)×∪
𝑡∈ℝ

𝑀𝑡(𝑆𝑂⋄). Given 𝑎 ∈ 𝑆𝑂⋄ and 𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤

choose functions 𝑎1 ∈ 𝐶(ℝ̇) and 𝑏1 ∈ 𝐶𝑝,𝑤(ℝ̇) such that 𝑎(𝜉) = 𝑎1(𝜉), 𝑏(𝜂) = 𝑏1(𝜂),
and 𝑎1(∞) = 𝑏1(∞) = 0. Then

𝑎𝑊 0(𝑏) = 𝑇1 + 𝑇2 + 𝑇3 (6.6)

where
𝑇1 = (𝑎 − 𝑎1)𝑊

0(𝑏), 𝑇2 = 𝑎1𝑊
0(𝑏 − 𝑏1), 𝑇3 = 𝑎1𝑊

0(𝑏1).

The operator 𝑇3 is compact by Lemma 4.3(a), and the cosets 𝑇
𝜋
1 , 𝑇 𝜋2 belong to the

ideal 𝐼𝜋𝜉,𝜂. Thus, the smallest closed two-sided ideal of 𝒵𝜋𝑝,𝑤 which corresponds to
the point (𝜉, 𝜂) ∈ ∪

𝑡∈ℝ
𝑀𝑡(𝑆𝑂⋄)×∪𝑡∈ℝ

𝑀𝑡(𝑆𝑂⋄) coincides with the whole algebra
𝒵𝜋𝑝,𝑤. So, the maximal ideals of the algebra 𝒵𝜋𝑝,𝑤 can only correspond to points
(𝜉, 𝜂) ∈ Ω, where Ω is given by (6.3).

It remains to show that for all (𝜉, 𝜂) ∈ Ω, the closed two-sided ideals ℐ𝜋𝜉,𝜂
generated by the maximal ideals (6.5) are maximal ideals of the commutative
Banach algebra 𝒵𝜋𝑝,𝑤.

First, let us prove that these ideals are proper. To this end we need to show
that for all (𝜉, 𝜂) ∈ Ω the ideals ℐ𝜋𝜉,𝜂 do not contain the coset 𝐼𝜋 = 𝐼 + 𝒦𝑝,𝑤.
Clearly, the ideals ℐ𝜋𝜉,𝜂 are closures in ℬ𝜋𝑝,𝑤 = ℬ𝜋𝑝,𝑤/𝒦𝑝,𝑤 of the sets{ 𝑁∑

𝑛=1

[𝑎𝑛𝐼]
𝜋𝐴𝜋𝑛 +

𝑀∑
𝑚=1

[𝑊 0(𝑏𝑚)]
𝜋𝐵𝜋𝑚

}
(6.7)

where 𝑎𝑛 ∈ 𝑆𝑂⋄, 𝜉(𝑎𝑛) = 0, 𝑏𝑚 ∈ 𝑆𝑂⋄
𝑝,𝑤, 𝜂(𝑏𝑚) = 0, and 𝐴𝑛, 𝐵𝑚 ∈ 𝒵𝑝,𝑤.

Given 𝑡 ∈ ℝ̇, let (𝜉, 𝜂) ∈ 𝑀𝑡(𝑆𝑂⋄) × 𝑀∞(𝑆𝑂⋄). Assume that 𝐼𝜋 ∈ ℐ𝜋𝜉,𝜂.
Hence, by (6.7), there is a sequence of operators of the form

𝐶𝑘 =

𝑁𝑘∑
𝑛=1

𝑎𝑛,𝑘𝐴𝑛,𝑘 +

𝑀𝑘∑
𝑚=1

𝑊 0(𝑏𝑚,𝑘)𝐵𝑚,𝑘 (6.8)

with 𝑎𝑛,𝑘 ∈ 𝑆𝑂⋄, 𝜉(𝑎𝑛,𝑘) = 0, 𝑏𝑚,𝑘 ∈ 𝑆𝑂⋄
𝑝,𝑤, 𝜂(𝑏𝑚,𝑘) = 0 and 𝐴𝑛,𝑘, 𝐵𝑚,𝑘 ∈ 𝒵𝑝,𝑤,

and there is a sequence of compact operators 𝐾𝑘 ∈ 𝒦𝑝,𝑤 such that 𝐶𝜋𝑘 ∈ ℐ𝜋𝜉,𝜂
and lim𝑘→∞ ∥𝐶𝑘 + 𝐾𝑘 − 𝐼∥ = 0. Since for every 𝜂 ∈ 𝑀∞(𝑆𝑂⋄) and every
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countable set {𝑏𝑘} ⊂ 𝑆𝑂⋄
𝑝,𝑤 there is a sequence ℎ𝜈 → +∞ in ℝ such that

lim𝜈→∞ 𝑏𝑘(𝑥 + ℎ𝜈) = 𝜂(𝑏𝑘) for all 𝑥 ∈ ℝ (see [7, Corollary 4.3]), we conclude
that there exists a sequence {ℎ𝜈} ⊂ ℝ+ such that lim𝜈→∞ ℎ𝜈 = +∞ and, for all
𝑚 = 1, 2, . . . ,𝑀𝑘 and all 𝑘 ∈ ℕ, lim𝜈→∞ 𝑏𝑚,𝑘(ℎ𝜈) = 0 and therefore, by (5.4) in
Lemma 5.1, s-lim𝑛→∞

(
𝑒ℎ𝜈𝑊

0(𝑏𝑚,𝑘)𝑒−ℎ𝜈 𝐼
)
= 0. Moreover, from (6.8), the alge-

braic properties of limit operators (see [7, Proposition 6.1]) and [17, Lemma 3.8]
it follows that we can choose the sequence {ℎ𝜈} in such a way that there exists
the strong limit

𝐶𝑘 := s-lim
𝜈→∞

(
𝑒ℎ𝜈 (𝐶𝑘 +𝐾𝑘)𝑒−ℎ𝜈 𝐼

)
=

𝑁𝑘∑
𝑛=1

𝑎𝑛,𝑘𝐴𝑛,𝑘 ∈ ℬ𝑝,𝑤,

where 𝐴𝑛,𝑘 = 𝑎̃𝑛,𝑘𝐼 and 𝑎̃𝑛,𝑘 ∈ 𝑆𝑂⋄. Hence, lim𝑘→∞ 𝐶𝑘 = 𝐼, which is impossible

because the operators 𝐶𝑘 belong to the maximal ideal
{
𝑎𝐼 : 𝑎 ∈ 𝑆𝑂⋄, 𝜉(𝑎) = 0

}
of the 𝐶∗-algebra

{
𝑎𝐼 : 𝑎 ∈ 𝑆𝑂⋄}.

Given 𝑡 ∈ ℝ, let now (𝜉, 𝜂) ∈ 𝑀∞(𝑆𝑂⋄) × 𝑀𝑡(𝑆𝑂⋄), and we again assume
that 𝐼𝜋 ∈ ℐ𝜋𝜉,𝜂. For definiteness, suppose that 𝑣+ − 𝑣 ∈ 𝐿∞(𝑈+) in (5.3). Then
analogously to the previous case there exists a sequence of operators 𝐶𝑘 of the
form (6.8), where 𝑎𝑛,𝑘 ∈ 𝑆𝑂⋄, 𝜉(𝑎𝑛,𝑘) = 0, 𝑏𝑚,𝑘 ∈ 𝑆𝑂⋄

𝑝,𝑤, 𝜂(𝑏𝑚,𝑘) = 0 and
𝐴𝑛,𝑘, 𝐵𝑚,𝑘 ∈ 𝒵𝑝,𝑤, and there exists a sequence of compact operators 𝐾𝑘 ∈ 𝒦𝑝,𝑤
such that 𝐶𝜋𝑘 ∈ ℐ𝜋𝜉,𝜂 and lim𝑘→∞ ∥𝐶𝑘 +𝐾𝑘 − 𝐼∥ = 0. Consequently, on the space

𝐿𝑝(ℝ) we get

lim
𝑘→∞

( 𝑁𝑘∑
𝑛=1

𝑎𝑛,𝑘𝑤+𝐴𝑛,𝑘𝑤
−1
+ 𝐼 +

𝑀𝑘∑
𝑚=1

𝑤+𝑊 0(𝑏𝑚,𝑘)𝐵𝑚,𝑘𝑤
−1
+ 𝐼 + 𝑤+𝐾𝑘𝑤

−1
+ 𝐼

)
= 𝐼,

where 𝑤+ is the weight constructed in Section 5 and equivalent to the weight 𝑤 at
a neighborhood 𝑈+ of +∞. Since for every 𝜉 ∈ 𝑀∞(𝑆𝑂⋄) and every countable set
{𝑎𝑘} ⊂ 𝑆𝑂⋄ there is a sequence ℎ𝜈 → +∞ in ℝ such that lim𝜈→∞ 𝑎𝑘(𝑥 + ℎ𝜈) =
𝜉(𝑎𝑘) for all 𝑥 ∈ ℝ (see [7, Corollary 4.3]), we conclude that there exists a sequence
{ℎ𝜈} ⊂ ℝ+ such that lim𝜈→∞ ℎ𝜈 = +∞ and for all 𝑛 = 1, 2, . . . , 𝑁𝑘 and all
𝑘 ∈ ℕ, lim𝜈→∞ 𝑎𝑛,𝑘(ℎ𝜈) = 0 and therefore s-lim𝜈→∞(𝑈−ℎ𝜈𝑎𝑛,𝑘𝑈ℎ𝜈 ) = 0, where
𝑈ℎ𝜈 = 𝑊 0(𝑒ℎ𝜈 ) is a translation operator. Because the function 𝑥 �→ 𝑥𝑣′+(𝑥) belongs
to 𝐿∞(𝑈+), we infer from (5.5) in Lemma 5.1 that

s-lim
𝜈→∞

(
𝑈−ℎ𝜈𝑤+𝑊 0(𝑏𝑚,𝑘)𝑤

−1
+ 𝑈ℎ𝜈

)
= 𝑊 0(𝑏𝑚,𝑘).

Using then (6.8), the algebraic properties of limit operators (see [7, Proposi-
tion 6.1]) and [8, Lemma 18.9], we can choose the sequence {ℎ𝜈} in such a way
that there exists the strong limit

𝐶𝑘 := s-lim
𝜈→∞

(
𝑈−ℎ𝜈𝑤+(𝐶𝑘 +𝐾𝑘)𝑤

−1
+ 𝑈ℎ𝜈

)
=

𝑀𝑘∑
𝑚=1

𝑊 0(𝑏𝑚,𝑘)𝐵𝑚,𝑘 ∈ ℬ𝑝,
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where 𝐵𝑚,𝑘 = 𝑊 0(̂𝑏𝑚,𝑘) and 𝑏̂𝑚,𝑘 ∈ 𝑆𝑂⋄
𝑝,𝑤 ⊂ 𝑆𝑂⋄

𝑝 for considered weights 𝑤.

Hence, lim𝑘→∞ 𝐶𝑘 = 𝐼 in the norm of ℬ𝑝, which is impossible because the oper-
ators 𝐶𝑘 belong to the maximal ideal clos

{
𝑊 0(𝑏) : 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤, 𝜂(𝑏) = 0
}
of the

Banach algebra clos
{
𝑊 0(𝑏) : 𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤

}
.

Thus, for all (𝜉, 𝜂) ∈ Ω the ideals ℐ𝜋𝜉,𝜂 do not contain the unit coset 𝐼𝜋, and
hence these ideals are proper. Suppose, contrary to our claim on the maximality
of the ideal ℐ𝜋𝜉,𝜂, that for a point (𝜉, 𝜂) ∈ Ω there is a proper closed two-sided ideal
ℐ̃𝜋𝜉,𝜂 of the algebra 𝒵𝜋𝑝,𝑤 that properly contains the ideal ℐ𝜋𝜉,𝜂. Then there is a coset
𝐴𝜋 ∈ 𝒵𝜋𝑝,𝑤 which belongs to ℐ̃𝜋𝜉,𝜂 ∖ ℐ𝜋𝜉,𝜂. Since in view of (6.6),

(𝑎𝑊 0(𝑏))𝜋 − (𝑎(𝜉)𝑊 0(𝑏(𝜂)))𝜋 = (𝑎𝑊 0(𝑏))𝜋 − (𝑎(𝜉)𝑏(𝜂)𝐼)𝜋 ∈ ℐ𝜋𝜉,𝜂 (6.9)

for all 𝑎 ∈ 𝑆𝑂⋄ and all 𝑏 ∈ 𝑆𝑂⋄
𝑝,𝑤, and since 𝐴𝜋 /∈ ℐ𝜋𝜉,𝜂, there exists a complex

number 𝑐 ∕= 0 such that 𝐴𝜋 − (𝑐𝐼)𝜋 ∈ ℐ𝜋𝜉,𝜂. Hence (𝑐𝐼)𝜋 ∈ ℐ̃𝜋𝜉,𝜂 because 𝐴𝜋 ∈ ℐ̃𝜋𝜉,𝜂
and ℐ𝜋𝜉,𝜂 ⊂ ℐ̃𝜋𝜉,𝜂. But the coset (𝑐𝐼)𝜋 is invertible in the algebra 𝒵𝜋𝑝,𝑤, which implies
that the ideal ℐ̃𝜋𝜉,𝜂 coincides with the whole algebra 𝒵𝜋𝑝,𝑤. Thus the ideal ℐ̃𝜋𝜉,𝜂 is
not proper, a contradiction. Consequently, all the ideals ℐ𝜋𝜉,𝜂 for (𝜉, 𝜂) ∈ Ω are

maximal, and therefore 𝑀(𝒵𝜋𝑝,𝑤) can be identified with Ω given by (6.3).

Furthermore, by (6.9), the value of the Gelfand transform of the coset 𝐴𝜋 =
(𝑎𝑊 0(𝑏))𝜋 at a point (𝜉, 𝜂) ∈ Ω equals 𝑎(𝜉)𝑏(𝜂) for each choice of 𝑎 ∈ 𝑆𝑂⋄ and
𝑏 ∈ 𝑆𝑂⋄

𝑝,𝑤. This defines the Gelfand transform for the whole algebra 𝒵𝜋𝑝,𝑤. □

Corollary 6.3. If 1 < 𝑝 < ∞, 𝑤 = 𝑒𝑣 ∈ 𝐴𝑝(ℝ), and (5.3) holds, then the operator
𝐴 ∈ 𝒵𝑝,𝑤 is Fredholm on the space 𝐿𝑝(ℝ, 𝑤) if and only if the Gelfand transform
of the coset 𝐴𝜋 is invertible, that is, if 𝒜(𝜉, 𝜂) ∕= 0 for all (𝜉, 𝜂) ∈ Ω.

Since 𝒵𝜋𝑝,𝑤 is a central subalgebra of the Banach algebra 𝔄𝜋𝑝,𝑤, applying the
Allan-Douglas local principle (see, e.g., [10]) and the two idempotents theorem
(see, e.g., [6]), one can construct a Fredholm theory for the Banach algebra 𝔄𝑝,𝑤
(cf. [1]–[2]). We will consider this question in a forthcoming paper.
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erties concerning the Darboux transformed Schrödinger operators.
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1. Introduction

Transmutation operators also called operators of transformation are a widely used
tool in the theory of linear differential equations (see, e.g., [3], [10], [49], [51], [63]
and the recent review [61]). It is well known that under certain quite general con-

ditions the transmutation operator transmuting the operator 𝐴 = − 𝑑2

𝑑𝑥2 +𝑞(𝑥) into

𝐵 = − 𝑑2

𝑑𝑥2 is a Volterra integral operator with good properties. Its integral kernel
can be obtained as a solution of a certain Goursat problem for the Klein-Gordon
equation with a variable coefficient. In particular, the elementary solutions of the
equation 𝐵𝑣 = 𝜆𝑣 are transformed into the solutions of the equation 𝐴𝑢 = 𝜆𝑢. If
the integral kernel of the transmutation operator is unknown, and usually this is
the case, there is no way to apply it to an arbitrary smooth function. This obsta-
cle strongly restricts the application of the transmutation operators confining it
to purely theoretical purposes.

Recently, in [9] a relation of the transmutation operators with another funda-
mental object of the Sturm-Liouville theory was revealed. Sometimes this object
is called the 𝐿-basis [24] where 𝐿 refers to a corresponding linear ordinary differ-
ential operator. The 𝐿-basis is an infinite family of functions {𝜑𝑘}∞𝑘=0 such that
𝐿𝜑𝑘 = 0 for 𝑘 = 0, 1, 𝐿𝜑𝑘 = 𝑘(𝑘 − 1)𝜑𝑘−2, for 𝑘 = 2, 3, . . . and all 𝜑𝑘 satisfy
certain prescribed initial conditions. In [41], [42], [45] it was shown that the 𝐿-
basis naturally arises in a representation of the solutions of the Sturm-Liouville
equation in terms of powers of the spectral parameter. The approach based on
such representation is called the spectral parameter power series (SPPS) method.
The functions 𝜑𝑘 which constitute the 𝐿-basis appear as the expansion coefficients
in the SPPS. In [41], [42] and [45] convenient representations for their practical
computation were proposed which converted the SPPS method into an efficient
and highly competitive technique for solving a variety of spectral and scattering
problems related to Sturm-Liouville equations (see [12], [13], [37], [39], [45], [47]).
The above-mentioned relation between the transmutation operators and the func-
tions 𝜑𝑘 called in the present paper the recursive integrals consists in the fact
established in [9] that for every system {𝜑𝑘}∞𝑘=0 there exists a transmutation op-
erator T such that T[𝑥𝑘] = 𝜑𝑘, i.e., the functions 𝜑𝑘 are the images of the usual
powers of the independent variable. Moreover, it was shown how this operator can
be constructed and how it is related to the “canonical” transformation operator
considered, e.g., in [51, Chapter 1]. This result together with the practical formu-
las for calculating the functions 𝜑𝑘 makes it possible to apply the transmutation
technique even when the integral kernel of the operator is unknown. Indeed, now
it is easy to apply the transmutation operator to any function approximated by a
polynomial.

Deeper understanding of the mapping properties of the transmutation oper-
ators led us in [46] to the explicit construction of the transmutation operator for
a Darboux transformed Schrödinger operator by a known transmutation operator
for the original Schrödinger operator as well as to several interesting relations be-
tween the two transmutation operators. These relations also allowed us to prove
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the main theorem on the transmutation operators under a weaker condition than
it was known before (not requiring the continuous differentiablity of the potential
in the Schrödinger operator).

In the present paper we overview the recent results related to the SPPS
approach explaining and illustrating its main advantage, the possibility to write
down in an analytic form the characteristic equation of the spectral problem.
This equation can be approximated in different ways, and its solutions give us
the eigenvalues of the problem. In other words the eigenvalue problem reduces to
computation of zeros of a certain complex analytic function given by its Taylor
series whose coefficients are obtained as simple linear combinations of the values
of the functions 𝜑𝑘 at a given point. We discuss different applications of the SPPS
method and give the results of some comparative numerical calculations.

Following [9] and [46] we introduce a parametrized family of transmutation
operators and study their mapping properties,we give an explicit representation
for the kernel of the transmutation operator corresponding to the Darboux trans-
formed potential in terms of the transmutation kernel for its superpartner (Theo-
rem 6.2). Moreover, this result leads to interesting commutation relations between
the two transmutation operators (Corollary 6.6) which in their turn allow us to ob-
tain a transmutation operator for the one-dimensional Dirac system with a scalar
potential as well as to prove the main property of the transmutation operator un-
der less restrictive conditions than it has been proved until now. We give several
examples of explicitly constructed kernels of transmutation operators. It is worth
mentioning that in the literature there are very few explicit examples and even in
the case when 𝑞 is a constant such kernel was presented recently in [9]. The results
discussed in the present paper allow us to enlarge considerably the list of avail-
able examples and give a relatively simple tool for constructing Darboux related
sequences of the transmutation kernels.

2. Recursive integrals: a question on the completeness

Let 𝑓 ∈ 𝐶2(𝑎, 𝑏) ∩ 𝐶1[𝑎, 𝑏] be a complex-valued function and 𝑓(𝑥) ∕= 0 for any
𝑥 ∈ [𝑎, 𝑏]. The interval (𝑎, 𝑏) is assumed being finite. Let us consider the following
functions

𝑋(0)(𝑥) ≡ 1, 𝑋(𝑛)(𝑥) = 𝑛

∫ 𝑥
𝑥0

𝑋(𝑛−1)(𝑠)
(
𝑓2(𝑠)

)(−1)𝑛
d𝑠,

𝑥0 ∈ [𝑎, 𝑏], 𝑛 = 1, 2, . . . . (2.1)

We pose the following questions. Is the family of functions
{
𝑿(𝒏)

}∞
𝒏=0

com-

plete let us say in 𝑳2(𝒂, 𝒃)? What about the completeness of
{
𝑿(2𝒏)

}∞
𝒏=0

or{
𝑿(2𝒏+1)

}∞
𝒏=0

?

The following example shows that both questions are meaningful and natural.

Example 2.1. Let 𝑓 ≡ 1, 𝑎 = 0, 𝑏 = 1. Then it is easy to see that choosing 𝑥0 = 0
we have 𝑋(0)(𝑥) = 1, 𝑋(1)(𝑥) = 𝑥, 𝑋(2)(𝑥) = 𝑥2, 𝑋(3)(𝑥) = 𝑥3, . . .. Thus, the
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family of functions
{
𝑋(𝑛)

}∞
𝑛=0

is complete in 𝐿2(0, 1). Moreover, both
{
𝑋(2𝑛)

}∞
𝑛=0

and
{
𝑋(2𝑛+1)

}∞
𝑛=0

are complete in 𝐿2(0, 1) as well.

If instead of 𝑎 = 0 we choose 𝑎 = −1 then {
𝑿(𝒏)

}∞
𝒏=0

is still complete in

𝑳2(−1, 1) but neither
{
𝑿(2𝒏)

}∞
𝒏=0

nor
{
𝑿(2𝒏+1)

}∞
𝒏=0

.

Together with the family of functions
{
𝑋(𝑛)

}∞
𝑛=0

we consider also another

similarly defined family of functions
{
𝑋̃(𝑛)

}∞
𝑛=0

,

𝑋̃(0) ≡ 1, 𝑋̃(𝑛)(𝑥) = 𝑛

∫ 𝑥
𝑥0

𝑋̃(𝑛−1)(𝑠)
(
𝑓2(𝑠)

)(−1)𝑛−1

d𝑠,

𝑥0 ∈ [𝑎, 𝑏], 𝑛 = 1, 2, . . . . (2.2)

Remark 2.2. As we show below the introduced families of functions are closely
related to the one-dimensional Schrödinger equations of the form 𝑢′′ − 𝑞𝑢 = 𝜆𝑢
where 𝑞 is a complex-valued continuous function. Slightly more general families
of functions can be studied in relation to Sturm-Liouville equations of the form
(𝑝𝑦′)′ + 𝑞𝑦 = 𝜆𝑟𝑦. Their definition based on a corresponding recursive integration
procedure is given in [42], [45], [37].

We introduce the infinite system of functions {𝜑𝑘}∞𝑘=0 defined as follows

𝜑𝑘(𝑥) =

{
𝑓(𝑥)𝑋(𝑘)(𝑥), 𝑘 odd,

𝑓(𝑥)𝑋̃(𝑘)(𝑥), 𝑘 even.
(2.3)

The system (2.3) is closely related to the notion of the 𝐿-basis introduced
and studied in [24]. Here the letter 𝐿 corresponds to a linear ordinary differential
operator.

Together with the system of functions (2.3) we define the functions {𝜓𝑘}∞𝑘=0
using the “second half” of the recursive integrals (2.1) and (2.2),

𝜓𝑘(𝑥) =

⎧⎨⎩
𝑋̃(𝑘)(𝑥)

𝑓(𝑥)
, 𝑘 odd,

𝑋(𝑘)(𝑥)

𝑓(𝑥)
, 𝑘 even.

(2.4)

The following result obtained in [41] (for additional details and simpler proof see
[42] and [45]) establishes the relation of the system of functions {𝜑𝑘}∞𝑘=0 and
{𝜓𝑘}∞𝑘=0 to the Sturm-Liouville equation.
Theorem 2.3 ([41]). Let 𝑞 be a continuous complex-valued function of an indepen-
dent real variable 𝑥 ∈ [𝑎, 𝑏] and 𝜆 be an arbitrary complex number. Suppose there
exists a solution 𝑓 of the equation

𝑓 ′′ − 𝑞𝑓 = 0 (2.5)

on (𝑎, 𝑏) such that 𝑓 ∈ 𝐶2(𝑎, 𝑏) ∩ 𝐶1[𝑎, 𝑏] and 𝑓(𝑥) ∕= 0 for any 𝑥 ∈ [𝑎, 𝑏]. Then
the general solution 𝑢 ∈ 𝐶2(𝑎, 𝑏) ∩ 𝐶1[𝑎, 𝑏] of the equation

𝑢′′ − 𝑞𝑢 = 𝜆𝑢 (2.6)
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on (𝑎, 𝑏) has the form
𝑢 = 𝑐1𝑢1 + 𝑐2𝑢2

where 𝑐1 and 𝑐2 are arbitrary complex constants,

𝑢1 =

∞∑
𝑘=0

𝜆𝑘

(2𝑘)!
𝜑2𝑘 and 𝑢2 =

∞∑
𝑘=0

𝜆𝑘

(2𝑘 + 1)!
𝜑2𝑘+1 (2.7)

and both series converge uniformly on [𝑎, 𝑏] together with the series of the first
derivatives which have the form

𝑢′1 = 𝑓 ′ +
∞∑
𝑘=1

𝜆𝑘

(2𝑘)!

(
𝑓 ′

𝑓
𝜑2𝑘 + 2𝑘 𝜓2𝑘−1

)
and

𝑢′2 =
∞∑
𝑘=0

𝜆𝑘

(2𝑘 + 1)!

(
𝑓 ′

𝑓
𝜑2𝑘+1 + (2𝑘 + 1)𝜓2𝑘

)
. (2.8)

The series of the second derivatives converge uniformly on any segment [𝑎1, 𝑏1] ⊂
(𝑎, 𝑏).

The representation (2.7) offers the linearly independent solutions of (2.6) in
the form of spectral parameter power series (SPPS). The possibility to represent
solutions of the Sturm-Liouville equation in such form is by no means a novelty,
though it is not a widely used tool (in fact, besides the work reviewed below and in
[37] we are able to mention only [4, Sect. 10], [23] and the recent paper [40]) and to
our best knowledge for the first time it was applied for solving spectral problems in
[45]. The reason of this underuse of the SPPS lies in the form in which the expan-
sion coefficients were sought. Indeed, in previous works the calculation of coeffi-
cients was proposed in terms of successive integrals with the kernels in the form of
iterated Green functions (see [4, Sect. 10]). This makes any computation based on
such representation difficult, less practical and even proofs of the most basic results
like, e.g., the uniform convergence of the spectral parameter power series for any
value of 𝜆 ∈ ℂ (established in Theorem 2.3) are not an easy task. For example, in [4,
p. 16] the parameter 𝜆 is assumed to be small and no proof of convergence is given.

The way of how the expansion coefficients in (2.7) are calculated according
to (2.1), (2.2) is relatively simple and straightforward, this is why the estimation
of the rate of convergence of the series (2.7) presents no difficulty, see [45]. More-
over, in [7] a discrete analogue of Theorem 2.3 was established and the discrete
analogues of the series (2.7) resulted to be finite sums.

Another crucial feature of the introduced representation of the expansion
coefficients in (2.7) consists in the fact that not only these coefficients (denoted
by 𝜑𝑘 in (2.3)) are required for solving different spectral problems related to the

Sturm-Liouville equation. Indeed, the functions 𝑋̃(2𝑘+1) and 𝑋(2𝑘), 𝑘 = 0, 1, 2, . . .
do not participate explicitly in the representation (2.7). Nevertheless, together
with the functions 𝜑𝑘 they appear in the representation (2.8) of the derivatives of
the solutions and therefore also in characteristic equations corresponding to the
spectral problems.
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In the present work we also overview another approach developed in [43], [8],
[9] and [46] where the formal powers (2.1) and (2.2) were considered as infinite fam-
ilies of functions intimately related to the corresponding Sturm-Liouville operator.
As we show this leads to a deeper understanding of the transmutation operators
[3], [10] also known as transformation operators [49], [51]. Indeed, the functions
𝜑𝑘(𝑥) result to be the images of the powers 𝑥𝑘 under the action of a correspond-
ing transmutation operator [9]. This makes it possible to apply the transmutation
operator even when the operator itself is unknown (and this is the usual situation
– very few explicit examples are available) due to the fact that its action on every
polynomial is known. This result was used in [8] and [9] to prove the completeness
(Runge-type approximation theorems) for families of solutions of two-dimensional
Schrödinger and Dirac equations with variable complex-valued coefficients.

Remark 2.4. It is easy to see that by definition the solutions 𝑢1 and 𝑢2 from (2.7)
satisfy the following initial conditions

𝑢1(𝑥0) = 𝑓(𝑥0), 𝑢′1(𝑥0) = 𝑓 ′(𝑥0),

𝑢2(𝑥0) = 0, 𝑢′2(𝑥0) = 1/𝑓(𝑥0).

Remark 2.5. It is worth mentioning that in the regular case the existence and
construction of the required 𝑓 presents no difficulty. Let 𝑞 be real valued and
continuous on [𝑎, 𝑏]. Then (2.5) possesses two linearly independent regular solutions
𝑣1 and 𝑣2 whose zeros alternate. Thus one may choose 𝑓 = 𝑣1+ 𝑖𝑣2. Moreover, for
the construction of 𝑣1 and 𝑣2 in fact the same SPPS method may be used [45].

Theorem 2.3 together with the results on the completeness of Sturm-Liouville
eigenfunctions and generalized eigenfunctions [51] implies the validity of the follow-
ing two statements. For their detailed proofs we refer to [43] and [44] respectively.

Theorem 2.6 ([43]). Let (𝑎, 𝑏) be a finite interval and 𝑓 ∈ 𝐶2(𝑎, 𝑏) ∩ 𝐶1[𝑎, 𝑏] be a
complex-valued function such that 𝑓(𝑥) ∕= 0 for any 𝑥 ∈ [𝑎, 𝑏].

If 𝑥0 = 𝑎 (or 𝑥0 = 𝑏) then each of the four systems of functions
{
𝑋(2𝑛)

}∞
0
,{

𝑋(2𝑛+1)
}∞
0
,
{
𝑋̃(2𝑛)

}∞
0
,
{
𝑋̃(2𝑛+1)

}∞
0

is complete in 𝐿2(𝑎, 𝑏).

If 𝑥0 is an arbitrary point of the interval (𝑎, 𝑏) then each of the following two

combined systems of functions
{
𝑋̃(2𝑛)

}∞
𝑛=0

∪ {
𝑋(2𝑛+1)

}∞
𝑛=0

and
{
𝑋̃(2𝑛+1)

}∞
𝑛=0

∪{
𝑋(2𝑛)

}∞
𝑛=0

is complete in 𝐿2(𝑎, 𝑏).

Theorem 2.7 ([44]). Let 𝑓 satisfy the conditions of the preceding theorem and
{𝜑𝑘}∞𝑘=0 be the system of functions defined by (2.3) with 𝑥0 being an arbitrary
point of the interval [𝑎, 𝑏]. Then for any complex-valued continuous, piecewise con-
tinuously differentiable function ℎ defined on [𝑎, 𝑏] and for any 𝜀 > 0 there exists
such 𝑁 ∈ ℕ and such complex numbers 𝛼𝑘, 𝑘 = 0, 1, . . . , 𝑁 that

max
𝑥∈[𝑎,𝑏]

∣∣∣∣ℎ(𝑥)− 𝑁∑
𝑘=0

𝛼𝑘𝜑𝑘(𝑥)

∣∣∣∣ < 𝜀.
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3. Dispersion relations for spectral problems and
approximate solutions

The SPPS representation (2.7) for solutions of the Sturm-Liouville equation (2.6)
is very convenient for writing down the dispersion (characteristic) relations in an
analytical form. This fact was used in [13], [37], [39], [45], [47] for approximat-
ing solutions of different eigenvalue problems. Here in order to explain this we
consider two examples: the Sturm-Liouville problem and the quantum-mechanical
eigenvalue problem. As the performance of the SPPS method in application to
classical (regular and singular) Sturm-Liouville problems was studied in detail
in [45] here we consider the Sturm-Liouville problems with boundary conditions
which depend on the spectral parameter 𝜆. This situation occurs in many physical
models (see, e.g., [5, 14, 19, 20, 27, 64] and references therein) and is considerably
more difficult from the computational point of view. Moreover, as we show in this
section the SPPS method is applicable to models admitting complex eigenvalues –
an important advantage in comparison with the best purely numerical techniques
all of them being based on the shooting method.

Consider the equation 𝑢′′ − 𝑞𝑢 = 𝜆𝑢 together with the boundary conditions

𝑢(𝑎) cos𝛼+ 𝑢′(𝑎) sin𝛼 = 0, (3.1)

𝛽1𝑢(𝑏)− 𝛽2𝑢
′(𝑏) = 𝜙(𝜆)

(
𝛽′1𝑢(𝑏)− 𝛽′2𝑢

′(𝑏)
)
, (3.2)

where 𝛼 is an arbitrary complex number, 𝜙 is a complex-valued function of the
variable 𝜆 and 𝛽1, 𝛽2, 𝛽

′
1, 𝛽

′
2 are complex numbers. For some special forms of the

function 𝜙 such as 𝜙(𝜆) = 𝜆 or 𝜙(𝜆) = 𝜆2+𝑐1𝜆+𝑐2, results were obtained [19], [64]
concerning the regularity of the problem; we will not dwell upon the details. Notice
that the SPPS approach is applicable as well to a more general Sturm-Liouville
equation (𝑝𝑢′)′+ 𝑞𝑢 = 𝜆𝑟𝑢. For the corresponding details we refer to [37] and [45].

For simplicity, let us suppose that 𝛼 = 0 and hence the condition (3.1)
becomes 𝑢(𝑎) = 0. Then choosing the initial integration point in (2.1) and (2.2)
as 𝑥0 = 𝑎 and taking into account Remark 2.4 we obtain that if an eigenfunction
exists it necessarily coincides with 𝑢2 up to a multiplicative constant. In this case
condition (3.2) becomes equivalent to the equality [45], [37]

(
𝑓(𝑏)𝜙1(𝜆)− 𝑓 ′(𝑏)𝜙2(𝜆)

) ∞∑
𝑘=0

𝜆𝑘

(2𝑘 + 1)!
𝑋(2𝑘+1)(𝑏)− 𝜙2(𝜆)

𝑓(𝑏)

∞∑
𝑘=0

𝜆𝑘

(2𝑘)!
𝑋(2𝑘)(𝑏) = 0,

(3.3)
where 𝜙1,2(𝜆) = 𝛽1,2 − 𝛽′1,2𝜙(𝜆). This is the characteristic equation of the consid-
ered spectral problem. Calculation of eigenvalues given by (3.3) is especially simple
in the case of 𝜙 being a polynomial of 𝜆. Precisely this particular situation was
considered in all of the above-mentioned references concerning Sturm-Liouville
problems with spectral parameter dependent boundary conditions. In any case
the knowledge of an explicit characteristic equation (3.3) for the spectral prob-
lem makes possible its accurate and efficient solution. For this the infinite sums
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in (3.3) are truncated after a certain 𝑁 ∈ ℕ. The paper [45] contains several nu-
merical tests corresponding to a variety of computationally difficult problems. All
they reveal an excellent performance of the SPPS method. We do not review them
here referring the interested reader to [45]. Instead we consider another interesting
example from [37], a Sturm-Liouville problem admitting complex eigenvalues.

Example 3.1. Consider the equation (2.6) with 𝑞 ≡ 0 on the interval (0, 𝜋) with
the boundary conditions 𝑢(0) = 0 and 𝑢(𝜋) = −𝜆2𝑢(𝜋). The exact eigenvalues of
the problem are 𝜆𝑛 = 𝑛2 together with the purely imaginary numbers 𝜆± = ±𝑖.
Application of the SPPS method with 𝑁 = 100 and 3000 interpolating points
(used for representing the integrands as splines) delivered the following results
𝜆1 = 1, 𝜆2 = 4.0000000000007, 𝜆3 = 9.00000000001, 𝜆4 = 15.99999999996,
𝜆5 = 25.000000002, 𝜆6 = 35.99999997, 𝜆7 = 49.0000004, 𝜆8 = 63.9999994,
𝜆9 = 80.9996, 𝜆10 = 100.02 and 𝜆± = ±𝑖. Thus, the complex eigenvalues are
as easily and accurately detected by the SPPS method as the real eigenvalues.
Note that for a better accuracy in calculation of higher eigenvalues of a Sturm-
Liouville problem an additional simple shifting procedure described in [45] and
based on the representation of solutions not as series in powers of 𝜆 but in powers
of (𝜆 − 𝜆0) is helpful. We did not apply it here and hence the accuracy of the cal-
culated value of 𝜆10 is considerably worse than the accuracy of the first calculated
eigenvalues which in general can be improved by means of the mentioned shifting
procedure.

Figures 1–3 give us an idea about the stability of the computed eigenval-
ues when 𝑁 increases. In Figure 1 we plot 𝜆1 and 𝜆2 computed with 𝑁 =
14, 16, . . . , 120. Figure 2 shows 𝜆3 computed with 𝑁 = 24, 30, . . . , 140 and Fig-
ure 3 shows 𝜆4 computed with 𝑁 = 40, 50, . . . , 140 Similar plots can be done
for calculated higher eigenvalues. In all cases the computed eigenvalues reveal a
remarkable stability when 𝑁 increases.

An attractive feature of the SPPS method is the possibility to easily plot the
characteristic relation. In Figure 4 we show the absolute value of the expression
from the left-hand side of (3.3) as a function of the complex variable 𝜆 for the
considered example. Its zeros coincide with the eigenvalues of the problem. It is
important to mention that such plot is obtained in a fraction of a second. This is
due to the fact that once the required formal powers 𝑋(𝑛) are computed (and this
takes several seconds) the calculation of the characteristic relation involves only
simple algebraic operations.

Let us consider the one-dimensional Schrödinger equation

𝐻𝑢(𝑥) = −𝑢′′(𝑥) +𝑄(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥), 𝑥 ∈ ℝ, (3.4)

where

𝑄(𝑥) =

⎧⎨⎩
𝛼1, 𝑥 < 0,

𝑞(𝑥), 0 ≤ 𝑥 ≤ ℎ,

𝛼2, 𝑥 > ℎ,

(3.5)
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Figure 1. The approximate eigenvalues 𝜆1 and 𝜆2 from Example 3.1
computed using different number 𝑁 of formal powers.

Figure 2. The approximate values of 𝜆3 from Example 3.1 computed
using different number 𝑁 of formal powers.
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Figure 3. The approximate values of 𝜆4 from Example 3.1 computed
using different number 𝑁 of formal powers.

Figure 4. The absolute value of the expression from the left-hand side
of (3.3) as a function of the complex variable 𝜆 for the considered exam-
ple. With the arrows we indicate the calculated complex eigenvalues 𝜆±.
The other zeros of the graph correspond to the first five real eigenvalues
of the problem.
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𝛼1 and 𝛼2 are complex constants and 𝑞 is a continuous complex-valued function
defined on the segment [0, ℎ]. Thus, outside a finite segment the potential 𝑄 admits
constant values, and at the end points of the segment the potential may have
discontinuities. We are looking for such values of the spectral parameter 𝜆 ∈ ℂ for
which the Schrödinger equation possesses a solution 𝑢 belonging to the Sobolev
space 𝐻2(ℝ) which in the case of the potential of the form (3.5) means that we
are looking for solutions exponentially decreasing at ±∞. This eigenvalue problem
is one of the central in quantum mechanics for which 𝐻 is a self-adjoint operator
in 𝐿2(ℝ) with the domain 𝐻2(ℝ). It implies that 𝑄 is a real-valued function. In
this case the operator 𝐻 has a continuous spectrum

[
min {𝛼1, 𝛼2} ,+∞)

and a
discrete spectrum located on the set[

min
𝑥∈[0,ℎ]

𝑞(𝑥),min {𝛼1, 𝛼2}
)
.

Computation of energy levels of a quantum well described by the potential 𝑄
is a problem of physics of semiconductor nanostructures (see, e.g., [31]). Other
important models which reduce to the spectral problem (3.4) arise in studying the
electromagnetic and acoustic wave propagation in inhomogeneous waveguides (see
for instance [2], [16], [25], [17], [6], [56], [53]).

A characteristic equation for this spectral problem in terms of spectral pa-
rameter power series was obtained in [13] (see also [37]) where a simple numerical
algorithm based on the approximation of the characteristic equation was imple-
mented and compared to other known numerical techniques. Here we only give an
example from [13].

The usual approach to numerical solution of the considered eigenvalue prob-
lem consists in applying the shooting method (see, e.g., [31]) which is known to
be unstable, relatively slow and to the difference of the SPPS approach does not
offer any explicit equation for determining eigenvalues and eigenfunctions. In [30]
another method based on approximation of the potential by square wells was pro-
posed. It is limited to the case of symmetric potentials. The approach based on
the SPPS is completely different and does not require any shooting procedure, ap-
proximation of the potential or numerical differentiation. Derived from the exact
characteristic equation its approximation is considered, and in fact numerically

the problem is reduced to finding zeros of a polynomial
∑𝑁
𝑘=0 𝑎𝑘𝜇

𝑘 in the interval[
min 𝑞(𝑥), 0

)
, (𝜇2 = −𝜆).

As an example, consider the potential 𝑄 defined by the expression 𝑄(𝑥) =

−𝜐 sech2 𝑥, 𝑥 ∈ (−∞,∞). It is not of a finite support, nevertheless its absolute
value decreases rapidly when 𝑥 → ±∞. The original problem is approximated by

a problem with a finite support potential 𝑄̂ defined by the equality

𝑄̂(𝑥) =

⎧⎨⎩
0, 𝑥 < −𝑎

−𝜐 sech2 𝑥, −𝑎 ≤ 𝑥 ≤ 𝑎

0, 𝑥 > 𝑎.
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An attractive feature of the potential 𝑄 is that its eigenvalues can be calculated
explicitly (see, e.g., [26]). In particular, for 𝜐 = 𝑚(𝑚 + 1) the eigenvalue 𝜆𝑛 is
given by the formula 𝜆𝑛 = −(𝑚 − 𝑛)2, 𝑛 = 0, 1, . . ..

The results of application of the SPPS method for 𝜐 = 12 are given in Table
1 in comparison with the exact values and the results from [30].

𝑛 Exact values Num.res. from [30] Num.res. using SPPS (𝑁 = 180)

0 −9 −9.094 −8.999628656
1 −4 −4.295 −3.999998053
2 −1 −0.885 −0.999927816

Table 1. Approximations of 𝜆𝑛 of the Hamiltonian 𝐻 = −𝐷2 − 12 sech2 𝑥.

The results obtained by means of SPPS are considerably more accurate, and
as was pointed out above the application of the SPPS method has much less
restrictions.

4. Transmutation operators

We slightly modify here the definition given by Levitan [49] adapting it to the
purposes of the present work. Let 𝐸 be a linear topological space and 𝐸1 its linear
subspace (not necessarily closed). Let 𝐴 and 𝐵 be linear operators: 𝐸1 → 𝐸.

Definition 4.1. A linear invertible operator 𝑇 defined on the whole 𝐸 such that 𝐸1

is invariant under the action of 𝑇 is called a transmutation operator for the pair
of operators 𝐴 and 𝐵 if it fulfills the following two conditions.

1. Both the operator 𝑇 and its inverse 𝑇−1 are continuous in 𝐸;
2. The following operator equality is valid

𝐴𝑇 = 𝑇𝐵 (4.1)

or which is the same

𝐴 = 𝑇𝐵𝑇−1.

Very often in literature the transmutation operators are called the transfor-
mation operators. Here we keep ourselves to the original term coined by Delsarte

and Lions [23]. Our main interest concerns the situation when 𝐴 = − 𝑑2

𝑑𝑥2 + 𝑞(𝑥),

𝐵 = − 𝑑2

𝑑𝑥2 , and 𝑞 is a continuous complex-valued function. Hence for our pur-
poses it will be sufficient to consider the functional space 𝐸 = 𝐶[𝑎, 𝑏] with the
topology of uniform convergence and its subspace 𝐸1 consisting of functions from
𝐶2 [𝑎, 𝑏]. One of the possibilities to introduce a transmutation operator on 𝐸 was
considered by Lions [50] and later on in other references (see, e.g., [51]), and con-
sists in constructing a Volterra integral operator corresponding to a midpoint of
the segment of interest. As we begin with this transmutation operator it is con-
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venient to consider a symmetric segment [−𝑎, 𝑎] and hence the functional space
𝐸 = 𝐶[−𝑎, 𝑎]. It is worth mentioning that other well-known ways to construct the
transmutation operators (see, e.g., [49], [63]) imply imposing initial conditions on
the functions and consequently lead to transmutation operators satisfying (4.1)
only on subclasses of 𝐸1.

Thus, we consider the space 𝐸 = 𝐶[−𝑎, 𝑎] and an operator of transmutation
for the defined above 𝐴 and 𝐵 can be realized in the form (see, e.g., [49] and [51])
of a Volterra integral operator

𝑇𝑢(𝑥) = 𝑢(𝑥) +

∫ 𝑥
−𝑥

𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 (4.2)

where𝐾(𝑥, 𝑡) = 𝐻
(
𝑥+𝑡
2 , 𝑥−𝑡2

)
and 𝐻 is the unique solution of the Goursat problem

∂2𝐻(𝑢, 𝑣)

∂𝑢 ∂𝑣
= 𝑞(𝑢+ 𝑣)𝐻(𝑢, 𝑣), (4.3)

𝐻(𝑢, 0) =
1

2

∫ 𝑢
0

𝑞(𝑠) 𝑑𝑠, 𝐻(0, 𝑣) = 0. (4.4)

If the potential 𝑞 is continuously differentiable, the kernel 𝐾 itself is the solution
of the Goursat problem(

∂2

∂𝑥2
− 𝑞(𝑥)

)
𝐾(𝑥, 𝑡) =

∂2

∂𝑡2
𝐾(𝑥, 𝑡),

𝐾(𝑥, 𝑥) =
1

2

∫ 𝑥
0

𝑞(𝑠) 𝑑𝑠, 𝐾(𝑥,−𝑥) = 0.

If the potential 𝑞 is 𝑛 times continuously differentiable, the kernel 𝐾(𝑥, 𝑡) is
𝑛+1 times continuously differentiable with respect to both independent variables
(see [51]).

An important property of this transmutation operator consists in the way
how it maps solutions of the equation

𝑣′′ + 𝜔2𝑣 = 0 (4.5)

into solutions of the equation

𝑢′′ − 𝑞(𝑥)𝑢 + 𝜔2𝑢 = 0 (4.6)

where 𝜔 is a complex number. Denote by 𝑒0(𝑖𝜔, 𝑥) the solution of (4.6) satisfying
the initial conditions

𝑒0(𝑖𝜔, 0) = 1 and 𝑒′0(𝑖𝜔, 0) = 𝑖𝜔.

The subindex “0” indicates that the initial conditions correspond to the point
𝑥 = 0 and the letter “𝑒” reminds us that the initial values coincide with the initial
values of the function 𝑒𝑖𝜔𝑥.

The transmutation operator (4.2) maps 𝑒𝑖𝜔𝑥 into 𝑒0(𝑖𝜔, 𝑥),

𝑒0(𝑖𝜔, 𝑥) = 𝑇 [𝑒𝑖𝜔𝑥] (4.7)

(see [51, Theorem 1.2.1]).
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Following [51] we introduce the following notations

𝐾𝑐(𝑥, 𝑡;ℎ) = ℎ+𝐾(𝑥, 𝑡) +𝐾(𝑥,−𝑡) + ℎ

∫ 𝑥
𝑡

{𝐾(𝑥, 𝜉)− 𝐾(𝑥,−𝜉)}𝑑𝜉

where ℎ is a complex number, and

𝐾𝑠(𝑥, 𝑡;∞) = 𝐾(𝑥, 𝑡)− 𝐾(𝑥,−𝑡).

Theorem 4.2 ([51]). Solutions 𝑐(𝜔, 𝑥;ℎ) and 𝑠(𝜔, 𝑥;∞) of equation (4.6) satisfying
the initial conditions

𝑐(𝜔, 0;ℎ) = 1, 𝑐′𝑥(𝜔, 0;ℎ) = ℎ (4.8)

𝑠(𝜔, 0;∞) = 0, 𝑠′𝑥(𝜔, 0;∞) = 1 (4.9)

can be represented in the form

𝑐(𝜔, 𝑥;ℎ) = cos𝜔𝑥+

∫ 𝑥
0

𝐾𝑐(𝑥, 𝑡;ℎ) cos𝜔𝑡 𝑑𝑡 (4.10)

and

𝑠(𝜔, 𝑥;∞) =
sin𝜔𝑥

𝜔
+

∫ 𝑥
0

𝐾𝑠(𝑥, 𝑡;∞)
sin𝜔𝑡

𝜔
𝑑𝑡. (4.11)

Denote by

𝑇𝑐𝑢(𝑥) = 𝑢(𝑥) +

∫ 𝑥
0

𝐾𝑐(𝑥, 𝑡;ℎ)𝑢(𝑡)𝑑𝑡 (4.12)

and

𝑇𝑠𝑢(𝑥) = 𝑢(𝑥) +

∫ 𝑥
0

𝐾𝑠(𝑥, 𝑡;∞)𝑢(𝑡)𝑑𝑡 (4.13)

the corresponding integral operators. As was pointed out in [9], they are not trans-
mutations on the whole subspace 𝐸1, they even do not map all solutions of (4.5)
into solutions of (4.6). For example, as we show below(

− 𝑑2

𝑑𝑥2
+ 𝑞(𝑥)

)
𝑇𝑠[1] ∕= 𝑇𝑠

[
− 𝑑2

𝑑𝑥2
(1)

]
= 0

when 𝑞 is constant.

Example 4.3. Transmutation operator for operators 𝐴 := 𝑑2

𝑑𝑥2 + 𝑐, 𝑐 is a constant,

and 𝐵 := 𝑑2

𝑑𝑥2 . According to (4.3) and (4.4), finding the kernel of transmutation
operator is equivalent to finding the function 𝐻(𝑠, 𝑡) = 𝐾(𝑠 + 𝑡, 𝑠 − 𝑡) satisfying
the Goursat problem

∂2𝐻(𝑠, 𝑡)

∂𝑠∂𝑡
= −𝑐𝐻(𝑠, 𝑡), 𝐻(𝑠, 0) = −𝑐𝑠

2
, 𝐻(0, 𝑡) = 0.

The solution of this problem is given by [28, (4.85)]

𝐻(𝑠, 𝑡) = − 𝑐

2

∫ 𝑠
0

𝐽0
(
2
√

𝑐𝑡(𝑠 − 𝜉)
)
𝑑𝜉 = −

√
𝑐𝑠𝑡𝐽1(2

√
𝑐𝑠𝑡)

2𝑡
,
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where 𝐽0 and 𝐽1 are the Bessel functions of the first kind, and the formula is valid
even if the radicand is negative. Hence,

𝐾(𝑥, 𝑦) = 𝐻

(
𝑥+ 𝑦

2
,
𝑥 − 𝑦

2

)
= −1

2

√
𝑐(𝑥2 − 𝑦2)𝐽1

(√
𝑐(𝑥2 − 𝑦2)

)
𝑥 − 𝑦

. (4.14)

From (4.14) we get the ‘sine’ kernel

𝐾𝑠(𝑥, 𝑡;∞) = − 𝑡
√

𝑐(𝑥2 − 𝑡2)𝐽1
(√

𝑐(𝑥2 − 𝑡2)
)

𝑥2 − 𝑡2
,

and can check the above statement about the operator 𝑇𝑠,

𝑇𝑠[1](𝑥) = 1−
∫ 𝑥
0

𝑡
√

𝑐(𝑥2 − 𝑡2)𝐽1
(√

𝑐(𝑥2 − 𝑡2)
)

𝑥2 − 𝑡2
𝑑𝑡 = 𝐽0(𝑥

√
𝑐),(

𝑑2

𝑑𝑥2
+ 𝑐

)
𝑇𝑠[1] =

√
𝑐𝐽1(𝑥

√
𝑐)

𝑥
∕= 0.

For the rest of this section suppose that 𝑓 is a solution of (2.5) fulfilling the
condition of Theorem 2.3 on a finite segment [−𝑎, 𝑎]. We normalize 𝑓 in such a
way that 𝑓(0) = 1 and let 𝑓 ′(0) = ℎ where ℎ is some complex constant. Define the
system of functions {𝜑𝑘}∞𝑘=0 by this function 𝑓 with the use of (2.1), (2.2) and
(2.3). The system of functions {𝜑𝑘}∞𝑘=0 is related to the transmutation operators
𝑇𝑐 (with the same parameter ℎ in the kernel) and 𝑇𝑠 in a way that it is the
union of functions which are the result of acting of operator 𝑇𝑠 on the odd powers
of independent variable and of operator 𝑇𝑐 on the even powers of independent
variable. The following theorem holds, see [9] for the details of the proof.

Theorem 4.4 ([9]). Let 𝑞 be a continuous complex-valued function of an independent
real variable 𝑥 ∈ [−𝑎, 𝑎], and 𝑓 be a particular solution of (2.5) such that 𝑓 ∈
𝐶2 (−𝑎, 𝑎), 𝑓 ∕= 0 on [−𝑎, 𝑎] and normalized as 𝑓(0) = 1. Let 𝜑𝑘, 𝑘 ∈ ℕ0 := ℕ∪{0}
are functions defined by (2.3). Then the following equalities are valid

𝜑𝑘 = 𝑇𝑐[𝑥
𝑘] when 𝑘 ∈ ℕ0 is even or equal to zero

and

𝜑𝑘 = 𝑇𝑠[𝑥
𝑘] when 𝑘 ∈ ℕ is odd.

As for the transmutation operator 𝑇 , it does not map all powers of the
independent variable into the functions 𝜑𝑘. Instead, the following theorem holds.

Theorem 4.5 ([9]). Under the conditions of Theorem 4.4 the following equalities
are valid

𝜑𝑘 = 𝑇 [𝑥𝑘] when 𝑘 is odd (4.15)

and

𝜑𝑘 − ℎ

𝑘 + 1
𝜑𝑘+1 = 𝑇 [𝑥𝑘] when 𝑘 ∈ ℕ0 is even or equal to zero (4.16)

where by ℎ we denote 𝑓 ′(0) ∈ ℂ.



224 V.V. Kravchenko and S.M. Torba

Taking into account the first of former relations the second can be written
also as follows

𝜑𝑘 = 𝑇

[
𝑥𝑘 +

ℎ

𝑘 + 1
𝑥𝑘+1

]
when 𝑘 ∈ ℕ0 is even or equal to zero.

Remark 4.6. Let 𝑓 be the solution of (2.5) satisfying the initial conditions

𝑓(0) = 1, and 𝑓 ′(0) = 0. (4.17)

If it does not vanish on [−𝑎, 𝑎] then from Theorem 4.5 we obtain that 𝜑𝑘 = 𝑇 [𝑥𝑘]
for any 𝑘 ∈ ℕ0. In general, of course there is no guaranty that the solution satisfying
(4.17) have no zero on [−𝑎, 𝑎]. Hence the operator 𝑇 transmutes the powers of 𝑥
into 𝜑𝑘 whose construction is based on the solution 𝑓 satisfying (4.17) only in
some neighborhood of the origin. In the next section we show how to change the
operator 𝑇 so that the new operator map 𝑥𝑘 into 𝜑𝑘(𝑥) on the whole segment
[−𝑎, 𝑎].

Note that in Theorem 4.5 the operator 𝑇 does not depend on the function
𝑓 , so the right-hand sides of the equalities (4.15) and (4.16) do not change with
the change of 𝑓 . Consider two non-vanishing solutions 𝑓 and 𝑔 of (2.5) normalized

as 𝑓(0) = 𝑔(0) = 1 and let 𝜑𝑓𝑘 and 𝜑𝑔𝑘 be the functions obtained from 𝑓 and 𝑔

respectively by means of (2.1), (2.2) and (2.3). The relation between 𝜑𝑓𝑘 and 𝜑𝑔𝑘
are given by the following proposition which may be easily deduced from equalities
(4.15) and (4.16).

Proposition 4.7. The following equalities hold

𝜑𝑓𝑘 = 𝜑𝑔𝑘 when 𝑘 ∈ ℕ is odd,

and

𝜑𝑓𝑘 = 𝜑𝑔𝑘 +
ℎ𝑓 − ℎ𝑔
𝑘 + 1

𝜑𝑔𝑘+1 when 𝑘 ∈ ℕ0 is even,

where ℎ𝑓 = 𝑓 ′(0) and ℎ𝑔 = 𝑔′(0).

5. A parametrized family of transmutation operators

In [9] a parametrized family of operators Tℎ, ℎ ∈ ℂ was introduced, given by the
integral expression

Tℎ𝑢(𝑥) = 𝑢(𝑥) +

∫ 𝑥
−𝑥
K(𝑥, 𝑡;ℎ)𝑢(𝑡)𝑑𝑡 (5.1)

where

K(𝑥, 𝑡;ℎ) =
ℎ

2
+𝐾(𝑥, 𝑡) +

ℎ

2

∫ 𝑥
𝑡

(
𝐾(𝑥, 𝑠)− 𝐾(𝑥,−𝑠)

)
𝑑𝑠. (5.2)

They are related to operators 𝑇𝑠 and 𝑇𝑐 (with the parameter ℎ in the kernel of
the latter operator) by

Tℎ = 𝑇𝑐𝑃𝑒 + 𝑇𝑠𝑃𝑜, (5.3)
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where 𝑃𝑒𝑓(𝑥) =
(
𝑓(𝑥) + 𝑓(−𝑥)

)
/2 and 𝑃𝑜𝑓(𝑥) =

(
𝑓(𝑥)− 𝑓(−𝑥)

)
/2 are projectors

onto even and odd functions, respectively. In this section we show that the oper-
ators Tℎ are transmutations, summarize their properties and in Theorem 5.8 we
show how they act on powers of 𝑥.

Let us notice that K(𝑥, 𝑡; 0) = 𝐾(𝑥, 𝑡) and that the expression

K(𝑥, 𝑡;ℎ)−K(𝑥,−𝑡;ℎ) = 𝐾(𝑥, 𝑡)− 𝐾(𝑥,−𝑡)− ℎ

2

∫ 𝑡
−𝑡
(𝐾(𝑥, 𝑠)− 𝐾(𝑥,−𝑠)) 𝑑𝑠

= 𝐾(𝑥, 𝑡)− 𝐾(𝑥,−𝑡)

does not depend on ℎ. Thus, it is possible to compute K(𝑥, 𝑡;ℎ) for any ℎ by
a given K(𝑥, 𝑡;ℎ1) for some particular value ℎ1. We formulate this result as the
following statement.

Theorem 5.1 ([9]). The integral kernels K(𝑥, 𝑡;ℎ) and K(𝑥, 𝑡;ℎ1) are related by the
expression

K(𝑥, 𝑡;ℎ) =
ℎ − ℎ1
2

+K(𝑥, 𝑡;ℎ1) +
ℎ − ℎ1
2

∫ 𝑥
𝑡

(
K(𝑥, 𝑠;ℎ1)−K(𝑥,−𝑠;ℎ1)

)
𝑑𝑠.

(5.4)

The operator Tℎ may be expressed in terms of another operator Tℎ1 and in
particular, in terms of the operator 𝑇 . The following proposition holds.

Proposition 5.2. The operators Tℎ1 and Tℎ2 are related by the expression

Tℎ2𝑢 = Tℎ1

[
𝑢(𝑥) +

ℎ2 − ℎ1
2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡

]
(5.5)

valid for any 𝑢 ∈ 𝐶[−𝑎, 𝑎]. In particular,

Tℎ𝑢 = 𝑇

[
𝑢(𝑥) +

ℎ

2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡

]
. (5.6)

Proof. Using formulas (5.1) and (5.2) we obtain

Tℎ𝑢 = 𝑇𝑢+
ℎ

2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡+
ℎ

2

∫ 𝑥
−𝑥

𝑢(𝑡)

∫ 𝑥
𝑡

𝐾(𝑥, 𝑠) 𝑑𝑠 𝑑𝑡

− ℎ

2

∫ 𝑥
−𝑥

𝑢(𝑡)

∫ 𝑥
−𝑡

𝐾(𝑥, 𝑠) 𝑑𝑠 𝑑𝑡,

and after changing the order of integration in the last two integrals, we have

𝑇ℎ𝑢 = 𝑇𝑢+
ℎ

2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡+
ℎ

2

∫ 𝑥
−𝑥

𝐾(𝑥, 𝑠)

∫ 𝑠
−𝑥

𝑢(𝑡) 𝑑𝑡 𝑑𝑠

− ℎ

2

∫ 𝑥
−𝑥

𝐾(𝑥, 𝑠)

∫ −𝑠

−𝑥
𝑢(𝑡) 𝑑𝑡 𝑑𝑠
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= 𝑇𝑢+
ℎ

2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡+
ℎ

2

∫ 𝑥
−𝑥

𝐾(𝑥, 𝑠)

[ ∫ 0

−𝑥
+

∫ 𝑠
0

𝑢(𝑡) 𝑑𝑡

]
𝑑𝑠

− ℎ

2

∫ 𝑥
−𝑥

𝐾(𝑥, 𝑠)

[ ∫ 0

−𝑥
−
∫ 0

−𝑠
𝑢(𝑡) 𝑑𝑡

]
𝑑𝑠

= 𝑇𝑢+
ℎ

2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡+
ℎ

2

∫ 𝑥
−𝑥

𝐾(𝑥, 𝑠)

∫ 𝑠
−𝑠

𝑢(𝑡) 𝑑𝑡 𝑑𝑠 = 𝑇

[
𝑢(𝑥) +

ℎ

2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡

]
.

Since
∫ 𝑥
−𝑥

∫ 𝑡
−𝑡 𝑢(𝑠) 𝑑𝑠 𝑑𝑡 = 0 for any function 𝑢 ∈ 𝐶[−𝑎, 𝑎], we have from (5.6) that

Tℎ1

[
𝑢(𝑥) +

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡

]
= 𝑇

[
𝑢(𝑥) +

ℎ2 − ℎ1
2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡+
ℎ1
2

∫ 𝑥
−𝑥

(
𝑢(𝑡) +

ℎ2 − ℎ1
2

∫ 𝑡
−𝑡

𝑢(𝑠) 𝑑𝑠

)
𝑑𝑡

]
= 𝑇

[
𝑢(𝑥) +

ℎ2
2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡

]
= Tℎ2𝑢. □

Using (4.8)–(4.13) and (5.3) it is possible to check how the operators Tℎ act
on solutions of (4.5).

Proposition 5.3 ([46]). The operator Tℎ maps a solution 𝑣 of an equation 𝑣′′ +
𝜔2𝑣 = 0, where 𝜔 is a complex number, into a solution 𝑢 of the equation 𝑢′′ −
𝑞(𝑥)𝑢 + 𝜔2𝑢 = 0 with the following correspondence of the initial values

𝑢(0) = 𝑣(0), 𝑢′(0) = 𝑣′(0) + ℎ𝑣(0). (5.7)

Remark 5.4. Formulas (5.7) are valid for any function 𝑣 ∈ 𝐶1[−𝑎, 𝑎].

We know that the integral kernel of the transmutation operator 𝑇 is related
to the solution of the Goursat problem (4.3)–(4.4). A similar result holds for the
operators Tℎ.

Theorem 5.5 ([46]). In order for the function 𝐾(𝑥, 𝑡;ℎ) to be the kernel of a trans-
mutation operator acting as described in Proposition 5.3, it is necessary and suf-
ficient that 𝐻(𝑢, 𝑣;ℎ) := 𝐾(𝑢+ 𝑣, 𝑢 − 𝑣;ℎ) be a solution of the Goursat problem

∂2𝐻(𝑢, 𝑣;ℎ)

∂𝑢 ∂𝑣
= 𝑞(𝑢+ 𝑣)𝐻(𝑢, 𝑣;ℎ),

𝐻(𝑢, 0;ℎ) =
ℎ

2
+
1

2

∫ 𝑢
0

𝑞(𝑠) 𝑑𝑠, 𝐻(0, 𝑣;ℎ) =
ℎ

2
.

If the potential 𝑞 is continuously differentiable, the function 𝐾(𝑥, 𝑡;ℎ) itself must
be the solution of the Goursat problem(

∂2

∂𝑥2
− 𝑞(𝑥)

)
𝐾(𝑥, 𝑡;ℎ) =

∂2

∂𝑡2
𝐾(𝑥, 𝑡;ℎ), (5.8)

𝐾(𝑥, 𝑥;ℎ) =
ℎ

2
+
1

2

∫ 𝑥
0

𝑞(𝑠) 𝑑𝑠, 𝐾(𝑥,−𝑥;ℎ) =
ℎ

2
. (5.9)
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Under some additional requirements on the potential 𝑞 the operators Tℎ are
transmutations in the sense of Definition 4.1. The following theorem generalizes
the results obtained in [46].

Theorem 5.6. Suppose the potential 𝑞 satisfies either of the following two condi-
tions.

∙ 𝑞 ∈ 𝐶1[−𝑎, 𝑎];
∙ 𝑞 ∈ 𝐶[−𝑎, 𝑎] and there exists a particular complex-valued solution 𝑔 of (2.5)

non-vanishing on [−𝑎, 𝑎].
Then the operator Tℎ given by (5.1) satisfies the equality(

− 𝑑2

𝑑𝑥2
+ 𝑞(𝑥)

)
Tℎ[𝑢] = Tℎ

[
− 𝑑2

𝑑𝑥2
(𝑢)

]
(5.10)

for any 𝑢 ∈ 𝐶2[−𝑎, 𝑎].

Proof. In [46] the theorem was proved for the case 𝑞 ∈ 𝐶1[−𝑎, 𝑎] and for the case
when the particular solution 𝑔 from the statement satisfies the conditions 𝑔(0) = 1
and 𝑔′(0) = ℎ.

We may normalize the particular solution 𝑔 as 𝑔(0) = 1. Suppose that 𝑔′(0) =
ℎ1. We know already that (5.10) holds for the operator Tℎ1 . To finish the proof,
we use (5.5) and obtain(

− 𝑑2

𝑑𝑥2
+ 𝑞(𝑥)

)
Tℎ[𝑢] =

(
− 𝑑2

𝑑𝑥2
+ 𝑞(𝑥)

)
Tℎ1

[
𝑢(𝑥) +

ℎ − ℎ1
2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡

]
= −Tℎ1

[
𝑢′′(𝑥) +

ℎ − ℎ1
2

𝑑2

𝑑𝑥2

∫ 𝑥
−𝑥

𝑢(𝑡) 𝑑𝑡

]
= −Tℎ1

[
𝑢′′(𝑥) +

ℎ − ℎ1
2

∫ 𝑥
−𝑥

𝑢′′(𝑡) 𝑑𝑡
]
= Tℎ

[
− 𝑑2

𝑑𝑥2
(𝑢)

]
. □

Remark 5.7. As was pointed out in Remark 2.5, in the regular case the non-
vanishing solution 𝑔 of (2.5) exists due to the alternation of zeroes of two linearly
independent solutions. Of course, it would be interesting to prove that the op-
erators Tℎ are transmutations in the general case of complex-valued potentials
𝑞 ∈ 𝐶[−𝑎, 𝑎] without any additional assumption.

Suppose now that a function 𝑓 is a solution of (2.5), non-vanishing on [−𝑎, 𝑎]
and normalized as 𝑓(0) = 1. Let ℎ := 𝑓 ′(0) be some complex constant. Define as be-
fore the system of functions {𝜑𝑘}∞𝑘=0 by this function 𝑓 and by (2.3). The following
theorem states that the operator Tℎ transmutes powers of 𝑥 into the functions 𝜑𝑘.

Theorem 5.8 ([9]). Let 𝑞 be a continuous complex-valued function of an independent
real variable 𝑥 ∈ [−𝑎, 𝑎], and 𝑓 be a particular solution of (2.5) such that 𝑓 ∈
𝐶2(−𝑎, 𝑎) together with 1/𝑓 are bounded on [−𝑎, 𝑎] and normalized as 𝑓(0) = 1,
and let ℎ := 𝑓 ′(0), where ℎ is a complex number. Then the operator (5.1) with the
kernel defined by (5.2) transforms 𝑥𝑘 into 𝜑𝑘(𝑥) for any 𝑘 ∈ ℕ0.

Thus, we clarified that the system of functions {𝜑𝑘} may be obtained as the
result of the Volterra integral operator acting on powers of the independent vari-
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able. As was mentioned before, this offers an algorithm for transmuting functions
in the situation when K(𝑥, 𝑡;ℎ) is unknown. Moreover, properties of the Volterra
integral operator such as boundedness and bounded invertibility in many func-
tional spaces gives us a tool to prove the completeness of the system of function
{𝜑𝑘} in various situations.
Example 5.9. Consider a function 𝑘(𝑥, 𝑡) = 𝑡−1

2(𝑥+1) (later, in Example 6.8 it is

explained how it can be obtained). We have

(∂2𝑥 − ∂2𝑡 )𝑘(𝑥, 𝑡) =
𝑡 − 1

(𝑥+ 1)3
=

2

(𝑥+ 1)2
⋅ 𝑡 − 1

2(𝑥+ 1)
,

𝑘(𝑥,−𝑥) = −𝑥−1
2(𝑥+1) = − 1

2 and 𝑘(𝑥, 𝑥) = 𝑥−1
2(𝑥+1) = − 1

2 +
1
2

∫ 𝑥
0

2
(𝑠+1)2 𝑑𝑠, thus the

function 𝑘(𝑥, 𝑡) satisfies the Goursat problem (5.8)–(5.9) with 𝑞(𝑥) = 2/(𝑥 + 1)2

and ℎ = −1 and by Theorem 5.5 is the kernel of the transmutation operator T−1.
Consider the function 𝑓 = T−1[1] = 1

𝑥+1 as a solution of (2.5) such that

𝑓(0) = 1 and 𝑓 ′(0) = ℎ = −1, nonvanishing on any [−𝑎, 𝑎] ⊂ (−1, 1). The first 3
functions 𝜑𝑘 are given by

𝜑0 = 𝑓 =
1

𝑥+ 1
, 𝜑1 =

𝑥3 + 3𝑥2 + 3𝑥

3(𝑥+ 1)
, 𝜑2 =

2𝑥3 + 3𝑥2

3(𝑥+ 1)
.

It can be easily checked that

T−1𝑥 = 𝑥+

∫ 𝑥
−𝑥

(𝑡 − 1)𝑡

2(𝑥+ 1)
𝑑𝑡 =

𝑥3 + 3𝑥2 + 3𝑥

3(𝑥+ 1)
= 𝜑1,

T−1𝑥2 = 𝑥2 +

∫ 𝑥
−𝑥

(𝑡 − 1)𝑡2

2(𝑥+ 1)
𝑑𝑡 =

2𝑥3 + 3𝑥2

3(𝑥+ 1)
= 𝜑2.

We can calculate the kernel 𝐾 of the original operator 𝑇 by (5.4), it is given by

𝐾(𝑥, 𝑡) =
2𝑥+ 2𝑡+ 𝑥2 − 𝑡2

4(𝑥+ 1)

and we can check that 𝑇 [𝑥] = 𝜑1 and 𝑇 [1] = 𝑥3+3𝑥2+3𝑥+3
3(𝑥+1) = 𝜑0+𝜑1 in accordance

with Theorem 4.5.

6. Transmutation operators and Darboux-transformed equations

To construct the system of functions {𝜑𝑘}∞𝑘=0 we use the half of the functions{
𝑋(𝑘), 𝑋̃(𝑘)

}∞
𝑘=0

. What about the second half? Note that starting with the func-

tion 1/𝑓 we obtain the same system of functions
{
𝑋(𝑘), 𝑋̃(𝑘)

}∞
𝑘=0

with the only

change that 𝑋
(𝑘)
𝑓 becomes 𝑋̃

(𝑘)
1/𝑓 and 𝑋̃

(𝑘)
𝑓 becomes 𝑋

(𝑘)
1/𝑓 . Hence the “second half”

of the functions
{
𝑋(𝑘), 𝑋̃(𝑘)

}∞
𝑘=0

from (2.3) is used. The function 1/𝑓 is continuous

complex valued and non-vanishing, and is a solution of the equation 𝑢′′ − 𝑞2𝑢 = 0,

where 𝑞2 = 2 (𝑓 ′/𝑓)2 − 𝑞. The last equation is known as the Darboux transfor-
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mation of the original equation. The Darboux transformation is closely related to
the factorization of the Schrödinger equation, and nowadays it is used in dozens of
works, see, e.g., [18, 29, 52, 58] in connection with solitons and integrable systems,
e.g., [1, 32, 55, 57] and the review [59] of applications to quantum mechanics.

For the convenience denote the potential of the original equation by 𝑞1 and the

corresponding Sturm-Liouville operator by 𝐴1 :=
𝑑2

𝑑𝑥2 − 𝑞1(𝑥). Suppose a solution
𝑓 of the equation 𝐴1𝑓 = 0 is given such that 𝑓(𝑥) ∕= 0, 𝑥 ∈ [−𝑎, 𝑎], it is normal-
ized as 𝑓(0) = 1 and ℎ := 𝑓 ′(0) is some complex number. Denote the Darboux-
transformed operator by 𝐴2 :=

𝑑2

𝑑𝑥2 − 𝑞2(𝑥), where 𝑞2(𝑥) = 2
( 𝑓 ′(𝑥)
𝑓(𝑥)

)2 − 𝑞1(𝑥).

From the previous section we know that there exists a transmutation operator
T1;ℎ for the original equation (2.6) with the potential 𝑞1 and such that

T1;ℎ𝑥
𝑘 = 𝜑𝑘, 𝑘 ∈ ℕ0. (6.1)

The subindex “1” in the notation T1;ℎ indicates that the transmutation operator
corresponds to 𝐴1.

Similarly, there exists a transmutation operator T2;−ℎ for the Darboux-
transformed operator 𝐴2 such that

T2;−ℎ𝑥𝑘 = 𝜓𝑘, 𝑘 ∈ ℕ0, (6.2)

where the family of functions {𝜓𝑘}∞𝑘=0 is defined by (2.4).
It is interesting to obtain some relations between the operators T1;ℎ and

T2;−ℎ and between their integral kernels K1 and K2. In this section we explain
how to construct the integral kernelK2 by the known integral kernelK1 and show
that the operators T1;ℎ and T2;−ℎ satisfy certain commutation relations with the
operator of differentiation.

We remind some well-known facts about the Darboux transformation. First,
1/𝑓 is a solution of 𝐴2𝑢 = 0. Second, it is closely related to the factorization of
Sturm-Liouville and one-dimensional Schrödinger operators. Namely, we have

𝐴1 =
𝑑2

𝑑𝑥2
− 𝑞1(𝑥) =

(
∂𝑥 +

𝑓 ′

𝑓

)(
∂𝑥 − 𝑓 ′

𝑓

)
=
1

𝑓
∂𝑥𝑓

2∂𝑥
1

𝑓
⋅, (6.3)

𝐴2 =
𝑑2

𝑑𝑥2
− 𝑞2(𝑥) =

(
∂𝑥 − 𝑓 ′

𝑓

)(
∂𝑥 +

𝑓 ′

𝑓

)
= 𝑓∂𝑥

1

𝑓2
∂𝑥𝑓 ⋅ . (6.4)

Suppose that 𝑢 is a solution of the equation 𝐴1𝑢 = 𝜔𝑢 for some 𝜔 ∈ ℂ. Then the

function 𝑣 =
(
∂𝑥 − 𝑓 ′

𝑓

)
𝑢 =

(
𝑓∂𝑥

1
𝑓

)
𝑢 is a solution of the equation 𝐴2𝑣 = 𝜔𝑣, and

vice versa, given a solution 𝑣 of 𝐴2𝑣 = 𝜔𝑣, the function 𝑢 =
(
∂𝑥+

𝑓 ′
𝑓

)
𝑣 =

(
1
𝑓 ∂𝑥𝑓

)
𝑣

is a solution of 𝐴1𝑢 = 𝜔𝑢.
Suppose that the operator T1 := T1;ℎ which transmutes the operator 𝐴1 into

the operator 𝐵 = 𝑑2/𝑑𝑥2 and the powers 𝑥𝑘 into the functions 𝜑𝑘 is known in the
sense that its kernelK1(𝑥, 𝑡;ℎ) is given. As before ℎ = 𝑓 ′(0). Then the function 1/𝑓
is the non-vanishing solution of the equation 𝐴2𝑢 = 0 satisfying 1/𝑓(0) = 1 and
(1/𝑓)′(0) = −ℎ. Hence we are looking for the operator T2 := T2;−ℎ transmuting
the operator 𝐴2 into the operator 𝐵 and the powers 𝑥𝑘 into the functions 𝜓𝑘.
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Let us explain the idea for obtaining the operator T2. We want to find an
operator transforming solutions of the equation 𝐵𝑢 + 𝜔2𝑢 = 0 into solutions of
the equation 𝐴2𝑢+𝜔2𝑢 = 0, see the first diagram below. Starting with a solution
𝜎 of the equation (∂2𝑥 + 𝜔2)𝜎 = 0, by application of T1 we get a solution of
(𝐴1 + 𝜔2)𝑢 = 0, and the expression

(
𝑓∂𝑥

1
𝑓

)
T1𝜎 is a solution of (𝐴2 + 𝜔2)𝑣 = 0.

But the operator
(
𝑓∂𝑥

1
𝑓

)
T1 is unbounded and hence cannot coincide with the

operator T2. In order to find the required bounded operator we may consider the
second copy of the equation (∂2𝑥 + 𝜔2)𝑢 = 0, which is a result of the Darboux
transformation applied to (∂2𝑥 + 𝜔2)𝜎 = 0 with respect to the particular solution
𝑔 ≡ 1 and construct the operator T2 by making the second diagram commutative.
In order to obtain a bounded operator T2, instead of using 𝑓∂𝑥

1
𝑓 for the last step,

we will use the inverse of 1
𝑓 ∂𝑥𝑓 , i.e.,

1
𝑓

( ∫ 𝑥
0 𝑓(𝑠) ⋅ 𝑑𝑠+ 𝐶

)
.

∂2𝑥 + 𝜔2 T1 ��

T2
��������������

∂2𝑥 − 𝑞1 + 𝜔2

𝑓∂𝑥
1
𝑓

��
∂2𝑥 − 𝑞2 + 𝜔2

∂2𝑥 + 𝜔2 T1 �� ∂2𝑥 − 𝑞1 + 𝜔2

1
𝑓 (

∫
𝑓 ⋅+𝐶)

��
∂2𝑥 + 𝜔2

∂𝑥

��

T2 �� ∂2𝑥 − 𝑞2 + 𝜔2

1
𝑓 ∂𝑥𝑓

��

That explains how to obtain the following theorem.

Theorem 6.1 ([46]). The operator 𝑇2, acting on solutions 𝑢 of equations (∂2𝑥 +
𝜔2)𝑢 = 0, 𝜔 ∈ ℂ by the rule

𝑇2[𝑢](𝑥) =
1

𝑓(𝑥)

(∫ 𝑥
0

𝑓(𝜂)T1[𝑢
′](𝜂) 𝑑𝜂 + 𝑢(0)

)
(6.5)

coincides with the transmutation operator T2;−ℎ.

Now we show that the operator 𝑇2 can be written as a Volterra integral oper-
ator and, as a consequence, extended by continuity to a wider class of functions. To
obtain simpler expression for the integral kernel K2(𝑥, 𝑡;−ℎ) we have to suppose
that the original integral kernel K1(𝑥, 𝑡;ℎ) is known in the larger domain than re-
quired by definition (5.1). Namely, suppose that the function K1(𝑥, 𝑡;ℎ) is known
and is continuously differentiable in the domain Π̄ : −𝑎 ≤ 𝑥 ≤ 𝑎,−𝑎 ≤ 𝑡 ≤ 𝑎. We
refer the reader to [46] for further details.

Theorem 6.2 ([46]). The operator 𝑇2 admits a representation as the Volterra inte-
gral operator

𝑇2[𝑢](𝑥) = 𝑢(𝑥) +

∫ 𝑥
−𝑥
K2(𝑥, 𝑡;−ℎ)𝑢(𝑡) 𝑑𝑡, (6.6)

with the kernel

K2(𝑥, 𝑡;−ℎ) = − 1

𝑓(𝑥)

(∫ 𝑥
−𝑡

∂𝑡K1(𝑠, 𝑡;ℎ)𝑓(𝑠) 𝑑𝑠+
ℎ

2
𝑓(−𝑡)

)
. (6.7)

Such representation is valid for any function 𝑢 ∈ 𝐶1[−𝑎, 𝑎].
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By Theorems 6.1 and 6.2 the Volterra operators 𝑇2 and T2 coincide on the set
of finite linear combinations of solutions of the equations (∂2𝑥 + 𝜔2)𝑢 = 0, 𝜔 ∈ ℂ.
Since this set is dense in 𝐶[−𝑎, 𝑎], by continuity of 𝑇2 and T2 we obtain the
following corollaries.

Corollary 6.3 ([46]). The operator 𝑇2 given by (6.6) with the kernel (6.7) coincides
with T2 on 𝐶[−𝑎, 𝑎].

Corollary 6.4 ([46]). The operator 𝑇2 given by (6.5) coincides with T2 on 𝐶1[−𝑎,𝑎].

Operator 𝐴1 is the Darboux transformation of the operator 𝐴2 with respect
to the solution 1/𝑓 , hence we may obtain another relation between the operators
T1 and T2.

Corollary 6.5 ([46]). For any function 𝑢 ∈ 𝐶1[−𝑎, 𝑎] the equality

T1[𝑢](𝑥) = 𝑓(𝑥)

(∫ 𝑥
0

1

𝑓(𝜂)
T2[𝑢

′](𝜂) 𝑑𝜂 + 𝑢(0)

)
(6.8)

is valid.

From the second commutative diagram at the beginning of this subsection
we may deduce some commutation relations between the operators T1, T2 and
𝑑/𝑑𝑥. The proof immediately follows from (6.5) and (6.8).

Corollary 6.6 ([46]). The following operator equalities hold on 𝐶1[−𝑎, 𝑎]:

∂𝑥𝑓T2 = 𝑓T1∂𝑥 (6.9)

∂𝑥
1

𝑓
T1 =

1

𝑓
T2∂𝑥. (6.10)

In [44] the following notion of generalized derivatives was introduced. Con-
sider a function 𝑔 assuming that both 𝑓 and 𝑔 possess the derivatives of all orders
up to the order 𝑛 on the segment [−𝑎, 𝑎]. Then in [−𝑎, 𝑎] the following generalized
derivatives are defined

𝛾0(𝑔)(𝑥) = 𝑔(𝑥),

𝛾𝑘(𝑔)(𝑥) =
(
𝑓2(𝑥)

)(−1)𝑘−1(
𝛾𝑘−1(𝑔)

)′
(𝑥)

for 𝑘 = 1, 2, . . . , 𝑛.
Let a function 𝑢 be defined by the equality

𝑔 =
1

𝑓
T1𝑢,

and assume that 𝑢 ∈ 𝐶𝑛[−𝑎, 𝑎]. Note that below we do not necessarily require
that the functions 𝑓 and 𝑔 be from 𝐶𝑛[−𝑎, 𝑎]. With the use of (6.9) and (6.10) we
have

𝛾1(𝑔) = 𝑓2 ⋅
( 1
𝑓
T1𝑢

)′
= 𝑓2 ⋅ 1

𝑓
T2𝑢

′ = 𝑓T2𝑢
′,

𝛾2(𝑔) =
1

𝑓2
⋅
(
𝑓T2𝑢

′
)′
=

1

𝑓2
⋅ 𝑓T1𝑢

′′ =
1

𝑓
T1𝑢

′′.
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By induction we obtain the following corollary.

Corollary 6.7 ([46]). Let 𝑢 ∈ 𝐶𝑛[−𝑎, 𝑎] and 𝑔 = 1
𝑓T1𝑢. Then

𝛾𝑘(𝑔) = 𝑓T2𝑢
(𝑘) if 𝑘 is odd, 𝑘 ≤ 𝑛,

and

𝛾𝑘(𝑔) =
1

𝑓
T1𝑢

(𝑘) if 𝑘 is even, 𝑘 ≤ 𝑛.

Example 6.8. We start with the operator 𝐴0 = 𝑑2/𝑑𝑥2. We have to pick up such
a solution 𝑓 of the equation 𝐴0𝑓 = 0 that 𝑓 ′/𝑓 ∕= 0. This is in order to obtain
an operator 𝐴1 ∕= 𝐴0 as a result of the Darboux transformation of 𝐴0. For such
solution 𝑓 consider, e.g., 𝑓0(𝑥) = 𝑥 + 1. Both 𝑓0 and 1/𝑓0 are bounded on any
segment [−𝑎, 𝑎] ⊂ (−1; 1) and the Darboux transformed operator has the form
𝐴1 =

𝑑2

𝑑𝑥2 − 2
(𝑥+1)2 .

The transmutation operator 𝑇 for 𝐴0 is obviously an identity operator and
𝐾0(𝑥, 𝑡; 0) = 0. Since 𝑓 ′0(0) = 1, we look for the parametrized operator T0;1.
Its kernel is given by (5.4): K0(𝑥, 𝑡; 1) = 1/2. From Theorem 6.2 we obtain the
transmutation kernel for the operator 𝐴1

K1(𝑥, 𝑡;−1) = − 1

𝑥+ 1
⋅ 1− 𝑡

2
=

𝑡 − 1

2(𝑥+ 1)
, (6.11)

the kernel from Example 5.9.

To obtain a less trivial example consider again the operator 𝐴1 =
𝑑2

𝑑𝑥2 − 2
(𝑥+1)2

and the function 𝑓1(𝑥) = (𝑥 + 1)2 as a solution of 𝐴1𝑓 = 0. Since ℎ = 𝑓 ′1(0) = 2,
we compute K1(𝑥, 𝑡; 2) from (6.11) using (5.4)

K1(𝑥, 𝑡; 2) =
3𝑥2 + 6𝑥+ 4− 3𝑡2 + 2𝑡

4(𝑥+ 1)
.

The Darboux transformation of the operator 𝐴1 with respect to the solution 𝑓1 is

the operator 𝐴2 =
𝑑2

𝑑𝑥2 − 6
(𝑥+1)2 and by Theorem 6.2 the transmutation operator

T2;−2 for 𝐴2 is given by the Volterra integral operator (5.1) with the kernel

K2(𝑥, 𝑡;−2) = − 1

(𝑥+ 1)2

(∫ 𝑥
−𝑡

−3𝑡+ 1
2(𝑠+ 1)

(𝑠+ 1)2 𝑑𝑠+ (1− 𝑡)2
)

=
(3𝑡 − 1)(𝑥+ 1)2 − 3(𝑡 − 1)2(𝑡+ 1)

4(𝑥+ 1)2
.

This procedure may be continued iteratively. Consider the operators

𝐴𝑛 :=
𝑑2

𝑑𝑥2
− 𝑛(𝑛+ 1)

(𝑥 + 1)2
.

The function 𝑓𝑛(𝑥) = (𝑥 + 1)𝑛+1 is a solution of the equation 𝐴𝑛𝑓 = 0. The
Darboux transformation of the operator 𝐴𝑛 with respect to the solution 𝑓𝑛 is
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the operator

𝑑2

𝑑𝑥2
− 2

(
𝑓 ′𝑛(𝑥)
𝑓𝑛(𝑥)

)2

+
𝑛(𝑛+ 1)

(𝑥+ 1)2
=

𝑑2

𝑑𝑥2
− (𝑛+ 1)(𝑛+ 2)

(𝑥+ 1)2
,

i.e., exactly the operator 𝐴𝑛+1. If we know K𝑛(𝑥, 𝑡;−𝑛) for the operator 𝐴𝑛, by
(5.4) we compute the kernelK𝑛(𝑥, 𝑡;𝑛+1) corresponding to the solution 𝑓𝑛(𝑥) and
by Theorem 6.2 we may calculate the kernel K𝑛+1(𝑥, 𝑡;−𝑛 − 1). Careful analysis
shows that we have to integrate only polynomials in all integrals involved, so the
described procedure can be performed up to any fixed 𝑛.

Example 6.9. Consider the Schrödinger equation

𝑢′′ + 2 sech2(𝑥)𝑢 = 𝑢. (6.12)

This equation appears in soliton theory and as an example of a reflectionless po-
tential in the one-dimensional quantum scattering theory (see, e.g., [48]). Equation
(6.12) can be obtained as a result of the Darboux transformation of the equation
𝑢′′ = 𝑢 with respect to the solution 𝑓(𝑥) = cosh𝑥. The transmutation operator
for the operator 𝐴1 = ∂2𝑥 − 1 was calculated in [9, Example 3]. Its kernel is given
by the expression

K1(𝑥, 𝑡; 0) =
1

2

√
𝑥2 − 𝑡2𝐼1(

√
𝑥2 − 𝑡2)

𝑥 − 𝑡
,

where 𝐼1 is the modified Bessel function of the first kind. Hence from Theorem 6.2
we obtain the transmutation kernel for the operator 𝐴2 = ∂2𝑥 + 2 sech

2 𝑥 − 1

K2(𝑥, 𝑡; 0) =
1

2 cosh(𝑥)

∫ 𝑥
−𝑡

(
𝐼0(

√
𝑠2 − 𝑡2)𝑡

𝑠 − 𝑡
−

√
𝑠2 − 𝑡2𝐼1(

√
𝑠2 − 𝑡2)

(𝑠 − 𝑡)2

)
cosh 𝑠 𝑑𝑠.

7. Transmutation operator for the one-dimensional Dirac equation
with a Lorentz scalar potential

One-dimensional Dirac equations with Lorentz scalar potentials are widely studied
(see, for example, [11, 15, 33–36, 38, 54, 60, 62] and [55] for intertwining techniques
for them).

According to [54] the Dirac equation in one space dimension with a Lorentz
scalar potential can be written as

(∂𝑥 +𝑚+ 𝑆(𝑥))Ψ1 = 𝐸Ψ2, (7.1)

(−∂𝑥 +𝑚+ 𝑆(𝑥))Ψ2 = 𝐸Ψ1, (7.2)

where 𝑚 (𝑚 > 0) is the mass and 𝑆(𝑥) is a Lorentz scalar. Denote 𝜂 = 𝑚+𝑆 and
write the system (7.1), (7.2) in a matrix form as(

∂𝑥 + 𝜂 0
0 ∂𝑥 − 𝜂

)(
Ψ1

Ψ2

)
= 𝐸

(
0 1
−1 0

)(
Ψ1

Ψ2

)
.
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In order to apply the results on the transmutation operators and factorizations
(6.3), (6.4) we consider a function 𝑓 such that

𝑓 ′(𝑥)
𝑓(𝑥)

= −𝜂 = −𝑚 − 𝑆(𝑥).

We can take 𝑓(𝑥) = exp
(− ∫ 𝑥

0
(𝑚+ 𝑆(𝑠)) 𝑑𝑠

)
, then 𝑓(0) = 1 and 𝑓 does not

vanish. Suppose the operators T1 and T2 are transmutations for the operators

𝐴1 =
(
∂𝑥+

𝑓 ′

𝑓

)(
∂𝑥− 𝑓 ′

𝑓

)
and 𝐴2 =

(
∂𝑥− 𝑓 ′

𝑓

)(
∂𝑥+

𝑓 ′

𝑓

)
respectively (corresponding

to functions 𝑓 and 1/𝑓 in the sense of Proposition 5.3). As was shown in [46] with
the use of commutation relations (6.9) and (6.10), the operator

T =

(
T1 0
0 T2

)

transmutes any solution

(
𝑢1
𝑢2

)
of the system

𝑢′1 = 𝐸𝑢2 (7.3)

𝑢′2 = −𝐸𝑢1 (7.4)

into the solution

(
Ψ1

Ψ2

)
of the system (7.1),(7.2) with the initial conditions Ψ1(0) =

𝑢1(0), Ψ2(0) = 𝑢2(0). And vice versa if

(
Ψ1

Ψ2

)
is a solution of the system (7.1),

(7.2), then the operator
(

T−1
1 0

0 T−1
2

)
transmutes it into the solution

(
𝑢1
𝑢2

)
of

(7.3),(7.4) such that 𝑢1(0) = Ψ1(0), 𝑢2(0) = Ψ2(0).

Consider two systems of functions {𝜑𝑘}∞𝑘=0 and {𝜓𝑘}∞𝑘=0 constructed from
the function 𝑓 by (2.3) and (2.4). The general solution of the system (7.3),(7.4) is
given by

𝑢1 = 𝐶1𝑣1 + 𝐶2𝑣2

𝑢2 = 𝐶2𝑣1 − 𝐶1𝑣2,

where 𝐶1 and 𝐶2 are arbitrary constants and

𝑣1(𝑥) = cos𝐸𝑥 =

∞∑
𝑘=0

(−1)𝑘𝐸2𝑘

(2𝑘)!
𝑥2𝑘,

𝑣2(𝑥) = sin𝐸𝑥 =
∞∑
𝑘=0

(−1)𝑘𝐸2𝑘+1

(2𝑘 + 1)!
𝑥2𝑘+1.
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From (6.1) and (6.2) we see that the general solution of the one-dimensional Dirac
system (7.1),(7.2) has the form

Ψ1 = 𝐶1

∞∑
𝑘=0

(−1)𝑘𝐸2𝑘

(2𝑘)!
𝜑2𝑘 + 𝐶2

∞∑
𝑘=0

(−1)𝑘𝐸2𝑘+1

(2𝑘 + 1)!
𝜑2𝑘+1,

Ψ2 = 𝐶2

∞∑
𝑘=0

(−1)𝑘𝐸2𝑘

(2𝑘)!
𝜓2𝑘 − 𝐶1

∞∑
𝑘=0

(−1)𝑘𝐸2𝑘+1

(2𝑘 + 1)!
𝜓2𝑘+1.

Remark 7.1. It is possible to consider the two- or three-dimensional Dirac system
and to construct the transmutation operator for it under some conditions on the
potential. But the techniques involved, such as bicomplex numbers, pseudoanalytic
function theory, Vekua equation and formal powers go well beyond the scope of
the present article. We refer interested readers to the recent paper [8].
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Abstract. Estimates for the growth of solution from below to the Navier-
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1. Introduction

The 3D Navier-Stokes equations describe the motion of a viscous incompressible
fluid in ℝ3. The equations need to be solved for an unknown divergence-free ve-
locity vector 𝑢(𝑥, 𝑡) = (𝑢𝑖(𝑥, 𝑡))

3
𝑖=1 and pressure 𝑝(𝑥, 𝑡) [2], [5]. Here we consider

the case when the fluid is filling the domain Ω and Ω is a compact set in ℝ3 with
𝐶∞ boundary ∂Ω. Let ℚ𝑇 := Ω× [0, 𝑇 ), ℚ∞ := Ω× [0,+∞). The Navier-Stokes
equations in dimensionless coordinates have the form

∂𝑢𝑖
∂𝑡

+

3∑
𝑗=1

𝑢𝑗
∂𝑢𝑖
∂𝑥𝑗

= 𝜈Δ𝑢𝑖 − ∂𝑝

∂𝑥𝑖
+ 𝑓𝑖(𝑥, 𝑡), (𝑥, 𝑡) ∈ ℚ∞, (1.1)

div 𝑢 =

3∑
𝑗=1

∂𝑢𝑗
∂𝑥𝑗

= 0, (𝑥, 𝑡) ∈ ℚ∞, (1.2)

This research was partially supported by the CONACYT Project No. 80504 (Mexico) and by
the SIP – IPN Project No. 20121028.
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with the initial condition

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ Ω, (1.3)

and the boundary condition

𝑢(𝑥, 𝑡)∣∂Ω = 0, 𝑡 ≥ 0. (1.4)

Notation and preliminary results. We denote by 𝐽 ⋅(Ω) the set of all sufficiently
smooth solenoidal vectors with compact support in the domain Ω, and by 𝐻(Ω)

the completion of 𝐽 ⋅(Ω) in the norm 𝑊 1,2
0 (Ω). Let 𝐽∘(Ω) be the completion of the

set 𝐽 ⋅(Ω) in 𝐿2(Ω) and denote by 𝑃 an orthogonal projection (Leray’s projection)
of the Hilbert space 𝐿2(Ω) onto the subspace 𝐽∘(Ω). The norm of a real vector
function 𝑓 in the space 𝐿2(Ω) is defined as

∥𝑓(⋅, 𝑡)∥ :=
{∫

Ω

∣𝑓(𝑥, 𝑡)∣2 𝑑𝑥
}1/2

,

where ∣𝑓(𝑥, 𝑡)∣ is magnitude of the ℝ3 vector 𝑓(𝑥, 𝑡). The scalar product of vectors
𝑓, 𝑔 in ℝ3 is denoted by 𝑓𝑔, and the scalar product in the space 𝐿2(Ω) is denoted

by (⋅, ⋅). The norm of a function 𝑢(⋅, 𝑡) in the Sobolev space 𝑊 1,2
0 (Ω) is defined as

∥𝑢(⋅, 𝑡)∥1,2 :=
{∫

Ω

3∑
𝑘=1

∣𝑢𝑥𝑘(𝑥, 𝑡)∣2 𝑑𝑥
}1/2

; (1.5)

and the norm of a function 𝑢(⋅, 𝑡) in the Sobolev space 𝑊 𝑘,2(Ω) is denoted by
∥𝑢(⋅, 𝑡)∥𝑘,2. The scalar product in the Hilbert space𝑊 𝑘,2(Ω) is denoted by (𝑓, 𝑔)𝑘,2;

and the norm in the space 𝐿𝑝(Ω) is denoted as ∥⋅∥𝑝 (for 𝑝 ∕= 2). The subspace of

𝐿2(ℚ𝑇 ) such that 𝑢(⋅, 𝑡) for all fixed 𝑡 belongs to 𝐽∘(Ω) is denoted by 𝐿∘
2(ℚ𝑇 ).

In the case when we use the spaces 𝑊 𝑘,2(Ω) for several domains, we include the
domains in the notation (for example, ∥𝑢(⋅, 𝑡)∥𝑘,2 (Ω), ∥𝑓(⋅, 𝑡)∥ (Ω), etc.).

The following problem was considered in [5]:

𝜈Δ𝑢 =− grad 𝑝+ 𝑓(𝑥), 𝑓 ∈ 𝐿2(Ω);

div 𝑢 = 0, 𝑢∣∂Ω = 0.
(1.6)

A generalized solution of problem (1.6) is defined as a function 𝑢 ∈ 𝐻(Ω) that
satisfies the identity

𝜈

∫
Ω

3∑
𝑘=1

𝑢𝑥𝑘Φ𝑥𝑘𝑑𝑥 = −
∫
Ω

𝑓Φ𝑑𝑥

for any Φ ∈ 𝐻(Ω). A generalized solution exists and it is unique [5]. In [10], [11],
[5, p. 67] the following estimate for the generalized solution of problem (1.6) is
provided:

∥𝑢∥2,2 + ∥grad 𝑝∥ ≤ 𝑐 ∥𝑓∥ . (1.7)

Applying the projection 𝑃 to equation (1.6) we obtain a symmetric in 𝐽∘(Ω)
operator Δ̃ given by

Δ̃𝑢 := 𝑃Δ𝑢 (1.8)
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for all 𝑢 ∈ 𝑊 2,2(Ω) ∩ 𝐻(Ω). The operator Δ̃ was considered in [5, pp. 44–47] and

it was proved that there exists a self-adjoint extension of the operator Δ̃ as an

operator in 𝐽∘(Ω)̇. This extension Δ̃ maps its domain of definition 𝐷(Δ̃) onto

𝐽∘(Ω) and there exists an operator Δ̃−1.
It follows from inequality (1.7) that 𝐷(Δ̃) = 𝑊 2,2(Ω)∩𝐻(Ω) and, therefore,

the operator 𝑃Δ𝑢 is self-adjoint. From equation (1.6) we infer that

−
∫
Ω

3∑
𝑘=1

𝑢𝑥𝑘𝑤𝑥𝑘𝑑𝑥 =

∫
Ω

𝑤(Δ̃𝑢)𝑑𝑥 (1.9)

for functions 𝑢 ∈ 𝑊 2,2(Ω)∩𝐻(Ω) and 𝑤 ∈ 𝐻(Ω). Inequality (1.7) implies that the

norms ∥Δ𝑢∥ and ∥∥Δ̃𝑢
∥∥ of the functions 𝑢 ∈ 𝑊 2,2(Ω) ∩ 𝐻(Ω) are equivalent [5],∥∥Δ̃𝑢

∥∥ ≤ ∥∥Δ𝑢
∥∥ ≤ 𝑎1

∥∥Δ̃𝑢
∥∥. (1.10)

In the Galerkin approximation to solutions of the Navier-Stokes problem we use

orthogonal in 𝐿2(Ω) eigenfunctions of the operator Δ̃ such that

Δ̃𝑎𝑘(𝑥) = 𝜆𝑘𝑎
𝑘(𝑥), 𝑎𝑘(𝑥) ∈ 𝐻(Ω) ∩ 𝑊 2,2(Ω), (1.11)

that is,

Δ𝑎𝑘 = 𝜆𝑘𝑎
𝑘 − grad 𝑝𝑘,

div 𝑎𝑘(𝑥) = 0, 𝑎𝑘
∣∣
∂Ω

= 0.

In what follows we use several formulas for the projection 𝑃. For a vector
function 𝑤 ∈ 𝑊 1,2(Ω), the following relations hold

𝑃𝑤 = 𝑤 − grad 𝑝, (1.12)

Δ𝑝 = div 𝑤,
∂𝑝

∂𝑛

∣∣∣∣
∂Ω

= 𝑤𝑛, (1.13)

where 𝑛 is the normal unit vector to the boundary ∂Ω.
For this Neumann problem with the boundary ∂Ω ∈ 𝐶∞ it was proved that

the kernel of the problem is one-dimensional and consists of constants. In the case
when 𝑤∣∂Ω = 0 and the pressure 𝑝 is orthogonal to the constants in Ω, in [7] it
was shown that

∥𝑝∥2,2 ≤ 𝑐 ∥div 𝑤∥ . (1.14)

Let now 𝑢 ∈ 𝑊 2,2(Ω) ∩ 𝑊 1,2
0 (Ω). We will show in Lemma 2.1 below that

the function (𝑢,∇)𝑢 :=
∑3
𝑖=1 𝑢𝑖∂𝑥𝑖𝑢 belongs to 𝐿2(Ω). By definition of Leray’s

projection, we have

𝑃 (𝑢,∇)𝑢 = (𝑢,∇)𝑢 − grad 𝑝, (1.15)

Δ𝑝 =
∑

1≤𝑖,𝑗≤3

∂𝑢𝑗
∂𝑥𝑖

∂𝑢𝑖
∂𝑥𝑗

,
∂𝑝

∂𝑛

∣∣∣∣
∂Ω

= 0. (1.16)

In what follows we consider a generalized solution to the Navier-Stokes problem.
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Definition 1.1. A generalized solution of the Navier-Stokes problem (abbreviation
GSNS) (1.1), (1.2), (1.3) in the cylinder ℚ𝑇 with the initial data

𝑢0(⋅) ∈ 𝐻(Ω), (1.17)

and the right-hand side 𝑓(⋅, ⋅) ∈ 𝐿2(ℚ𝑇 ), with sup𝑡∈[0,𝑇 ] ∥𝑓(⋅, 𝑡)∥ < ∞, is a vector

function (𝑥, 𝑡) �→ 𝑢(𝑥, 𝑡) such that: 1) 𝑢(⋅, 𝑡) ∈ 𝐻(Ω) for 𝑡 ∈ [0, 𝑇 ); the function
𝑢(⋅, 𝑡) is strongly continuous in 𝑡 ∈ [0, 𝑇 ) as a function with values in 𝐻(Ω) and∥∥𝑢(⋅, 𝑡)− 𝑢0(⋅)∥∥

1,2
→ 0 as 𝑡 → 0; 2) generalized derivatives 𝑢𝑡, 𝑢𝑥𝑘 , 𝑢𝑥𝑚𝑥𝑘 , 𝑝𝑥𝑗 are

in the space 𝐿2(ℚ𝑡) for 𝑡 ∈ [0, 𝑇 ) and satisfy equation (1.1). Then 𝑢𝑡(⋅, 𝑡) ∈ 𝐽∘(Ω)
for almost all 𝑡 ∈ [0, 𝑇 ).

Lemma 1.2. If the GSNS exists in ℚ𝑇 , then it is unique.

Proof. Evidently, a GSNS is a generalized solution in the integral sense [5]. It
was proved that the generalized solution in the integral sense on [0, 𝑡) is unique if
sup𝜏∈[0,𝑡) ∥𝑢(⋅, 𝜏)∥1,2 < ∞. As the norm ∥𝑢(⋅, 𝜏)∥1,2 of the GSNS is bounded on
any segment [0, 𝑡] with 𝑡 < 𝑇 , the GSNS is unique in the cylinder ℚ𝑇 . □

The GSNS solutions have important energy integral estimates [5], [8] for
𝑡 < ∞:

∥𝑢(⋅, 𝑡)∥ ≤ ∥𝑢(⋅, 0)∥+
∫ 𝑡
0

∥𝑓(⋅, 𝜏)∥ 𝑑𝜏, (1.18)

1

2
∥𝑢(⋅, 𝑡)∥2 + 𝜈

∫ 𝑡
0

3∑
𝑖=1

∥𝑢𝑥𝑖(⋅, 𝜏)∥2 𝑑𝜏 (1.19)

≤ 1

2
∥𝑢(⋅, 0)∥2 + 1

2

∫ 𝑡
0

∥𝑓(⋅, 𝜏)∥2 𝑑𝜏 + 1

2

∫ 𝑡
0

{
∥𝑢(⋅, 0)∥+

∫ 𝑠
0

∥𝑓(⋅, 𝜏)∥ 𝑑𝜏

}2

𝑑𝑠.

Let 𝑢(𝑥, 𝑡) ∈ 𝐶2(ℚ𝑇 ) be a classical solution to the Navier-Stokes equation, hence
∂𝑡𝑢 ∈ 𝐻(Ω). Applying projection 𝑃 to the Navier-Stokes equations (1.1) we obtain

∂𝑢

∂𝑡
− 𝜈Δ̃𝑢 = −𝑃 (𝑢,∇)𝑢+ 𝑃𝑓. (1.20)

Now, let 𝑢 ∈ 𝑊 2,2(Ω) ∩ 𝐻(Ω), so taking scalar square in 𝐿2(Ω) on the left-
and right-hand side of equality (1.20) we obtain the second integral inequality for
the parabolic equation [6] in the form

𝜈
𝑑

𝑑𝑡
∥𝑢(⋅, 𝑡)∥21,2 + ∥𝑢𝑡(⋅, 𝑡)∥2 + 𝜈2

∥∥Δ̃𝑢(⋅, 𝑡)∥∥2 (1.21)

≤ 2
∥∥(𝑢,∇)𝑢(⋅, 𝑡)∥∥2 + 2 ∥𝑓(⋅, 𝑡)∥2 , 𝑢 ∈ 𝑊 2,2(Ω) ∩ 𝐻(Ω).

Due to equivalence of the norms (1.10) we can substitute the term
∥∥Δ̃𝑢(⋅, 𝑡)∥∥2 in

the left-hand side of (1.21) by the term 𝑐 ∥Δ𝑢(⋅, 𝑡)∥2 .
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Below we show that the energy integral estimates (1.19) and inequality (1.21)
can be applied to the Galerkin approximations 𝑢𝑛(𝑥, 𝑡) for the GSNS

𝑢𝑛(𝑥, 𝑡) :=
𝑛∑
𝑘=1

𝑐𝑘𝑛(𝑡)𝑎
𝑘(𝑥). (1.22)

In 2D case the existence and uniqueness of GSNS is proved globally in ℚ∞ by the
Galerkin method on the basis of inequality (1.19) and the following multiplicative

inequality for a real functions in the space 𝑊 1,2
0 (Ω), Ω ∈ ℝ2 [5]:∫

Ω

𝑣4𝑑𝑥1𝑑𝑥2 ≤ 𝑐

∫
Ω

𝑣2𝑑𝑥1𝑑𝑥2

∫
Ω

∣grad 𝑣∣2 𝑑𝑥1𝑑𝑥2. (1.23)

In 3D case multiplicative inequality (1.23) does not hold, therefore, up to
now the existence and uniqueness of 3D GSNS can be proved only locally in ℚ𝑇𝑙 ;
the time 𝑇𝑙 depends on the initial data [5], [8].

By virtue of the imbedding theorem, the 3D GSNS belongs to 𝐶(Ω) for almost
all 𝑡 in [0, 𝑇𝑙). We set

𝑦𝑢(𝑡) := max
𝑥∈Ω

∣𝑢(𝑥, 𝑡)∣ .
Below it is proved that on the interval [0, 𝑇𝑙) where the GSNS solution 𝑢(𝑥, 𝑡)
exists, the following inequality holds:

∥𝑢(⋅, 𝑡)∥21,2 ≤ ∥𝑢(⋅, 0)∥21,2 exp
{
4

𝜈

∫ 𝑡
0

𝑦2𝑢(𝜏)𝑑𝜏

}
+ 2

∫ 𝑡
0

exp

{
4

𝜈

∫ 𝑡
𝑠

𝑦2𝑢(𝜏)𝑑𝜏

}
∥𝑓∥2 𝑑𝑠.
(1.24)

Therefore, the condition

sup
𝑡∈[0,𝑇 ]

∥𝑢(⋅, 𝑡)∥21,2 < ∞ for all 0 ≤ 𝑇 < 𝑇𝑙 (1.25)

is necessary for the existence of classical solution in the interval [0, 𝑇𝑙).
In the case when for the classical solution to the Navier-Stokes problem

sup
𝑡∈[0,𝑇𝑙)

∥𝑢(⋅, 𝑡)∥21,2 = ∞, (1.26)

in Lemma 3.2 we establish the following estimate from below for the norm
∥𝑢(⋅, 𝑡)∥1,2 of this solution in the interval [0, 𝑇𝑙) for 𝑇𝑙 < +∞:

∥𝑢(⋅, 𝑡)∥21,2 ≥ 𝑎√
𝑇𝑙 − 𝑡

− 𝑏, (1.27)

where 𝑎, 𝑏 are some positive constants.
We obtain the GSNS as a limit of the Galerkin approximations 𝑢𝑛(𝑥, 𝑡).

Observe that the Galerkin approximations are defined for all 𝑡 ∈ [0,∞). Let

𝑆𝑔 :=

{
𝑇 ≥ 0 : sup

𝑛
sup
𝑡∈[0,𝑇 ]

∥𝑢𝑛(⋅, 𝑡)∥21,2 < ∞
}

(1.28)

and let
𝑇𝑔 := sup

𝑇∈𝑆𝑔
𝑇. (1.29)
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Below in Theorem 3.3 we prove that 𝑇𝑔 > 0, and if 𝑇𝑔 = ∞, then evidently a
GSNS exists and it is unique in [0,∞). Further, if 𝑇𝑔 < ∞, then

sup
𝑛

sup
𝑡∈[0,𝑇𝑔)

∥𝑢𝑛(⋅, 𝑡)∥21,2 = ∞, (1.30)

and the GSNS exists only in the interval [0, 𝑇𝑔) where the norm ∥𝑢(⋅, 𝑡)∥1,2 of the
GSNS can be estimated from below as

∥𝑢(⋅, 𝑡)∥21,2 ≥ 𝑎√
𝑇𝑔 − 𝑡

− 𝑏. (1.31)

Evidently the classical solution such that 𝑢 ∈ 𝐶2(ℚ𝑇 ) is also the GSNS, therefore,
this classical solution exists only in the time interval [0, 𝑇𝑔), that is, 𝑇𝑙 = 𝑇𝑔.

2. Priory estimates for the classical solutions

Estimates for the norm ∥𝑢(⋅, 𝑡)∥1,2 of classical solution can be derived from in-

equality (1.21) on the basis of the following lemma.

Lemma 2.1. If the components of a real vector function 𝑣 are in 𝑊 2,2(Ω), then:

1) in 2D case∫
Ω

(
𝑣𝑘

∂𝑣𝑖
∂𝑥𝑗

)2

𝑑𝑥 (2.1)

≤ 𝑐

{∫
Ω

𝑣2𝑑𝑥

}1/2{∫
Ω

(∣∣∣∣ ∂𝑣

∂𝑥𝑗

∣∣∣∣2 + 𝑣2
)
𝑑𝑥

}{∫
Ω

(
∣Δ𝑣∣2 + 𝑣2

)
𝑑𝑥

}1/2

;

2) in 3D case∫
Ω

(
𝑣𝑘

∂𝑣𝑖
∂𝑥𝑗

)2

𝑑𝑥 ≤ 𝑐

{∫
Ω

(
3∑
𝑙=1

∣∣∣∣ ∂𝑣∂𝑥𝑙

∣∣∣∣2 + 𝑣2

)
𝑑𝑥

}3/2{∫
Ω

(
∣Δ𝑣∣2 + 𝑣2

)
𝑑𝑥

}1/2

.

(2.2)

3) If vector functions 𝑣, 𝑤 ∈ 𝑊 2,2(Ω) ∩ 𝑊 1,2
0 (Ω), then in 2D case∫

Ω

(
𝑣𝑘

∂𝑣𝑖
∂𝑥𝑗

)2

𝑑𝑥 ≤ 𝑐

{∫
Ω

𝑣2𝑑𝑥

}1/2
{∫

Ω

2∑
𝑚=1

∣∣∣∣ ∂𝑣

∂𝑥𝑚

∣∣∣∣2 𝑑𝑥
}{∫

Ω

∣Δ𝑣∣2 𝑑𝑥
}1/2

,

(2.3)
and in 3D case∫

Ω

(
𝑣𝑘

∂𝑣𝑖
∂𝑥𝑗

)2

𝑑𝑥 ≤ 𝑐

{∫
Ω

3∑
𝑗=1

∣∣∣∣ ∂𝑣

∂𝑥𝑗

∣∣∣∣2 𝑑𝑥
}3/2{∫

Ω

∣Δ𝑣∣2 𝑑𝑥
}1/2

; (2.4)

∫
Ω

𝑤2𝑣2𝑥𝑖𝑑𝑥 ≤ 𝑐

{∫
Ω

3∑
𝑘=1

∣𝑤𝑥𝑘 ∣2 𝑑𝑥
}{∫

Ω

∣𝑣𝑥𝑖 ∣2 𝑑𝑥
}1/2{∫

Ω

∣Δ𝑣∣2 𝑑𝑥
}1/2

. (2.5)
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Proof. 1) Let us consider the 2D case. Performing the standard extension of func-

tions 𝑤, 𝑣 ∈ 𝑊 2,2(Ω) onto some cube Π, as functions in 𝑊 2,2
0 (Π), such that the

norms of extended functions 𝑤, 𝑣, in the space 𝑊 2,2
0 (Π) are equivalent to the

norms of the functions 𝑤, 𝑣 in 𝑊 2,2(Ω) [1]. So the linear operator of extension
𝐴 : 𝑤 = 𝐴𝑤, satisfies the following estimates [1]

∥𝐴𝑤∥𝑘,2 (Π) ≤ 𝑐 ∥𝑤∥𝑘,2 (Ω), 𝑘 = 0, 1, 2. (2.6)

Furthermore, applying to the functions from the spaces 𝑊 1,2
0 (Π),𝑊 2,2

0 (Π) the
multiplicative inequality [5], [3], [9] we obtain that

{∫
Π

𝑤4𝑑𝑥

}1/2

≤ 𝑐

{∫
Π

𝑤2𝑑𝑥

}1/2
{∫

Π

2∑
𝑖=1

∣𝑤𝑥𝑖 ∣2 𝑑𝑥
}1/2

,

∫
Π

𝑣4𝑥𝑖𝑑𝑥 ≤ 𝑐

{∫
Π

𝑣2𝑥𝑖𝑑𝑥

}1/2
{∫

Π

2∑
𝑗=1

∣∣𝑣𝑥𝑖𝑥𝑗 ∣∣2 𝑑𝑥
}1/2

.

(2.7)

Combining the Cauchy inequality, inequalities (2.7) and estimates (2.6), we get

∫
Ω

𝑤2𝑣2𝑥𝑖𝑑𝑥 ≤
{∫

Π

𝑤4𝑑𝑥

}1/2{∫
Π

𝑣4𝑥𝑖𝑑𝑥

}1/2

≤ 𝑐

{∫
Ω

𝑤2𝑑𝑥

}1/2

(2.8)

×
{∫

Ω

𝑣2𝑥𝑖𝑑𝑥

}1/2
{∫

Ω

(
2∑
𝑖=1

∣𝑤𝑥𝑖 ∣2 + 𝑤2

)
𝑑𝑥

}1/2 {∫
Ω

(∣Δ𝑣∣2 + 𝑣2
)
𝑑𝑥

}1/2

.

Inequality (2.1) is a direct consequence of inequality (2.8).

2) Let us now consider the 3D case. The Hölder inequality provides that

∫
Ω

𝑤2𝑣2𝑥𝑖𝑑𝑥 ≤
{∫

Ω

∣𝑤∣6 𝑑𝑥
}1/3{∫

Ω

∣𝑣𝑥𝑖 ∣3 𝑑𝑥
}2/3

(2.9)

≤
{∫

Ω

∣𝑤∣6 𝑑𝑥
}1/3{∫

Ω

∣𝑣𝑥𝑖 ∣2 𝑑𝑥
}1/3{∫

Ω

∣𝑣𝑥𝑖 ∣4 𝑑𝑥
}1/3

.

Then, applying the imbedding theorem and the multiplicative inequalities to the
extended functions 𝑤, 𝑣 we obtain the estimates:{∫

Π

∣𝑤∣6 𝑑𝑥
}1/3

≤ 𝑐

{∫
Π

3∑
𝑖=1

∣𝑤𝑥𝑖 ∣2 𝑑𝑥
}

,

{∫
Π

∣𝑣𝑥𝑖 ∣4 𝑑𝑥
}1/3

≤ 𝑐

{∫
Π

∣𝑣𝑥𝑖 ∣2 𝑑𝑥
}1/6

{∫
Π

3∑
𝑗=1

∣∣𝑣𝑥𝑗𝑥𝑖∣∣2 𝑑𝑥
}1/2

.

(2.10)
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Substituting this estimates in inequality (2.9) we get∫
Π

𝑤2𝑣2𝑥𝑖𝑑𝑥 ≤ 𝑐

{∫
Π

3∑
𝑘=1

∣𝑤𝑥𝑘 ∣2 𝑑𝑥
}{∫

Π

∣𝑣𝑥𝑖 ∣2 𝑑𝑥
}1/2

{∫
Π

3∑
𝑗=1

∣∣𝑣𝑥𝑗𝑥𝑖∣∣2 𝑑𝑥
}1/2

.

(2.11)

Inequality (2.2) is a direct consequence of inequality (2.11) and estimates of the
norms (2.6) for the extended functions 𝑤, 𝑣.

3) Functions 𝑢 ∈ 𝑊 1,2
0 (Ω) ∩ 𝑊 2,2(Ω) satisfy the inequalities [5]:

∥𝑢∥2,2 ≤ 𝑐 ∥Δ𝑢∥ , ∥𝑢∥ ≤ 𝑐 ∥Δ𝑢∥1,2 . (2.12)

Estimates (2.3), (2.4) are direct consequences of estimates (2.1), (2.2) and esti-
mates (2.12). Estimate (2.5) follows from estimates (2.11) and (2.12). □

Now, in what follows some estimates for the norm ∥𝑢(⋅, 𝑡)∥1,2 of solution
to the Navier-Stokes problem are deduced. Below in the inequalities by 𝑐, 𝑐𝑖 are
denoted constants that depend on the domain Ω.

Lemma 2.2. The 𝐶2(ℚ𝑇 ) solution to the Navier-Stokes problem (1.1)–(1.4) satis-
fies the following differential inequalities.

1∘ In the 2D case

𝑑

𝑑𝑡
∥𝑢(⋅, 𝑡)∥21,2 + 𝜈−1 ∥𝑢𝑡(⋅, 𝑡)∥2 + 𝜈𝑐2 ∥Δ𝑢(⋅, 𝑡)∥2

≤ 𝑐21
𝜈3

∥𝑢(⋅, 𝑡)∥2 ∥𝑢(⋅, 𝑡)∥41,2 +
4

𝜈
∥𝑓(⋅, 𝑡)∥2.

(2.13)

2∘ In the 3D case

𝑑

𝑑𝑡
∥𝑢(⋅, 𝑡)∥21,2 + 𝜈−1 ∥𝑢𝑡(⋅, 𝑡)∥2 + 𝜈𝑐22 ∥Δ𝑢(⋅, 𝑡)∥2

≤ 𝑐3
𝜈3

∥𝑢(⋅, 𝑡)∥61,2 +
𝑐4
𝜈

∥𝑓(⋅, 𝑡)∥2 ≤ 𝑐6
𝜈3

[
∥𝑢(⋅, 𝑡)∥21,2 + 𝜈 ∥𝑓(⋅, 𝑡)∥2/3

]3
.

(2.14)

3∘ In both the 2D and 3D cases

𝑑

𝑑𝑡
∥𝑢(⋅, 𝑡)∥21,2 ≤ 36

𝜈
𝑦2𝑢(𝑡) ∥𝑢(⋅, 𝑡)∥21,2 +

2

𝜈
∥𝑓(⋅, 𝑡)∥2 . (2.15)

4∘ In the 3D case there exists such a constant 𝑐0 that the norm ∥𝑢(⋅, 𝑡)∥1,2 sat-
isfies the inequality

∥𝑢(⋅, 𝑡)∥21,2 <
𝜈2

𝑐0
𝑜𝑛 [0, 𝑇 ], (2.16)

when

4

𝜈

∫ 𝑇
0

∥𝑓(⋅, 𝑡)∥2 𝑑𝑡+ ∥𝑢(⋅, 0)∥21,2 <
𝜈2

𝑐0
. (2.17)
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Proof. 1∘ Let us consider the 2D case. For 𝑢 ∈ 𝑊 1,2
0 (Ω)∩𝑊 2,2(Ω) we can estimate

the norm ∥(𝑢,∇)𝑢(𝑥, 𝑡)∥2 through inequality (2.3) as:∫
Ω

∣(𝑢,∇)𝑢∣2 𝑑𝑥 ≤ 𝑐2 ∥𝑢∥ ∥𝑢∥21,2 ∥Δ𝑢∥ . (2.18)

Then applying the inequality ∣𝑎𝑏∣ ≤ 𝑎2

2𝜈2 +
𝜈2𝑏2

2 and equivalence (1.10) to inequality
(2.18), we obtain ∫

Ω

∣(𝑢,∇)𝑢∣2 𝑑𝑥 ≤ 𝑐3
𝜈2

∥𝑢∥2 ∥𝑢∥41,2 +
𝜈2

2

∥∥Δ̃𝑢
∥∥2. (2.19)

Furthermore, substituting estimate (2.19) in the right-hand side of inequality

(1.21), subtracting the term 𝜈2

2

∥∥Δ̃𝑢(⋅, 𝑡)∥∥2 from the right- and left-hand sides of
inequality (1.21) and using equivalence of the norms (1.10), we deduce differential
inequality (2.13) with some constant 𝑐, 𝑐1.

2∘ Now, let us consider the 3D case. For 𝑢 ∈ 𝑊 1,2
0 (Ω) ∩ 𝑊 2,2(Ω) we can

estimate the norm ∥(𝑢,∇)𝑢(𝑥, 𝑡)∥2 by using inequality (2.4):∫
Ω

∣(𝑢,∇)𝑢∣2 𝑑𝑥 ≤ 𝑐 ∥𝑢∥3/21,2 ∥𝑢∥2,2 .

Substituting this estimate in the right-hand side of inequality (1.21), applying the

inequality ∣𝑎𝑏∣ ≤ 𝑎2

2𝜈2 +
𝜈2𝑏2

2 , subtracting the term 𝜈2

2

∥∥Δ̃𝑢(𝑥, 𝑡)
∥∥2 from the right-

and left-hand sides of inequality (1.21) and using equivalence of the norms (1.10),
we deduce differential inequality (2.14) with some constants 𝑐𝑖.

3∘ Evidently, the following inequality holds:

∥(𝑢,∇)𝑢(⋅, 𝑡)∥2 ≤ 9𝑦2𝑢(𝑡) ∥𝑢(⋅, 𝑡)∥21,2 (2.20)

Substituting estimate (2.20) in the right-hand side of inequalities (1.21) we obtain
inequality (2.15).

4∘ It follows from inequality (2.4) and estimate (2.12) for 𝑢 ∈ 𝑊 1,2
0 (Ω) ∩

𝑊 2,2(Ω) that ∫
Ω

∣(𝑢,∇)𝑢∣2 𝑑𝑥 ≤ 𝑐2𝑐0 ∥𝑢∥21,2 ∥𝑢∥22,2 .
Now, we substitute this estimate in inequality (1.21), apply equivalence (1.10) and

subtract the term 𝑐2𝑐0 ∥𝑢∥21,2 ∥Δ𝑢∥2. As a result, we obtain

𝜈
𝑑

𝑑𝑡
∥𝑢(⋅, 𝑡)∥21,2 + ∥𝑢𝑡(⋅, 𝑡)∥2 + 𝑐2

(
𝜈2 − 𝑐0 ∥𝑢(⋅, 𝑡)∥21,2

) ∥Δ𝑢(⋅, 𝑡)∥2 ≤ 2 ∥𝑓(⋅, 𝑡)∥2 .
(2.21)

Evidently, by condition (2.17) inequality (2.16) is satisfied in some interval [0, 𝑡).

Suppose 𝑡∗ is the minimum point in [0, 𝑇 ], where ∥𝑢(𝑥, 𝑡∗)∥21,2 = 𝜈2

𝑐0
, and 𝑡∗ < 𝑇 ;

hence ∥𝑢(⋅, 𝑡∗)∥21,2 < 𝜈2

𝑐0
in [0, 𝑡∗). Therefore, from inequality (2.21) it follows that

𝜈
𝑑

𝑑𝑡
∥𝑢(⋅, 𝑡)∥21,2 ≤ 2 ∥𝑓(⋅, 𝑡)∥2 ,
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and by inequality (2.17) we conclude that

∥𝑢(⋅, 𝑡)∥21,2 ≤ 4

𝜈

∫ 𝑡∗
0

∥𝑓(⋅, 𝑡)∥2 𝑑𝑡+ ∥𝑢(⋅, 0)∥21,2 <
𝜈2

𝑐0

in [0, 𝑡∗]. This contradiction proves inequality (2.16). □

Conclusion 2.3.

1∘ Estimate (1.24) is a direct consequence of differential inequality (2.15).

2∘ Assume that the integral
∫ 𝑡
0 ∥𝑓(⋅, 𝜏)∥2 𝑑𝜏 is bounded for all 𝑡 ≥ 0. Then in the

2D case we have the following.

a) The function ∥𝑢(⋅, 𝑡)∥2 is bounded for all 𝑡 ≥ 0 by inequality (1.18) and

the integral
∫ 𝑡
0
∥𝑢(⋅, 𝜏)∥21,2 𝑑𝜏 is bounded for all 𝑡 ≥ 0 by inequality (1.19).

Hence, the integral
∫ 𝑡
0 𝑤(𝜏)𝑑𝜏 of the function

𝑤(𝜏) :=
𝑐

𝜈3

{( ∥𝑢(⋅, 𝜏)∥2 ) ∥𝑢(⋅, 𝜏)∥21,2} ,

is also bounded for all 𝑡 ≥ 0 by inequalities (1.18), (1.19).
b) Due to inequality (2.13) and Gronwall’s lemma, we obtain

∥𝑢(⋅, 𝑡)∥21,2 ≤ exp

{∫ 𝑡
0

𝑤(𝜏)𝑑𝜏

} ∥∥𝑢0(⋅)∥∥2
1,2

+
4

𝜈

∫ 𝑡
0

exp

{∫ 𝑡
𝑠

𝑤(𝜏)𝑑𝜏

}
∥𝑓(⋅, 𝑠)∥2 𝑑𝑠.

(2.22)

As the integral
∫ 𝑡
0 𝑤(𝜏)𝑑𝜏 is bounded for all 𝑡 ≥ 0, the function

∥𝑢(⋅, 𝑡)∥21,2 is bounded for all 𝑡 ≥ 0 by a constant depending on
∥∥𝑢0∥∥

and
∫ 𝑡
0
∥𝑓(⋅, 𝜏)∥2 𝑑𝜏.

3. The Galerkin approximations and existence of the GSNS

1∘ Let 𝑎𝑘(𝑥) ∈ 𝐻(Ω) be vector functions chosen to be the eigenfunctions of problem
(1.11). The system {𝑎𝑘(𝑥)} is orthonormal in 𝐿2(Ω) and dense in 𝐽∘(Ω).

Let 𝑢0(𝑥) ∈ 𝐻(Ω). Evidently,

𝑢0(𝑥) =

∞∑
𝑘=1

𝑐𝑘𝑎
𝑘(𝑥). (3.1)

We search the Galerkin approximate solutions 𝑢𝑛(𝑥, 𝑡) of problem (1.1) in the form

𝑢𝑛(𝑥, 𝑡) =

𝑛∑
𝑘=1

𝑐𝑘𝑛(𝑡)𝑎
𝑘(𝑥). (3.2)

The functions 𝑐𝑘𝑛(𝑡) are determined by the initial data

𝑐𝑘𝑛(0) = 𝑐𝑘, 𝑘 = 1, . . . , 𝑛,
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and the Galerkin conditions

(𝑢𝑛𝑡 − 𝑓, 𝑎𝑗) +

3∑
𝑖=1

{
𝜈(𝑢𝑛𝑥𝑖 , 𝑎

𝑗
𝑥𝑖)− (𝑢𝑛𝑖 𝑢

𝑛, 𝑎𝑗𝑥𝑖)
}
= 0. (3.3)

Conditions (3.3) were obtained formally from system (1.1) substituting 𝑢 by
𝑢𝑛, multiplying by the function 𝑎𝑗 and integrating over Ω. The Galerkin conditions
(3.3) represent a system of ordinary differential equations of the form

𝑑𝑐𝑗𝑛
𝑑𝑡

− 𝜈
𝑛∑
𝑘=1

𝑎𝑗𝑘𝑐𝑘𝑛 +
𝑛∑

𝑝,𝑘=1

𝑎𝑗𝑝𝑘𝑐𝑝𝑛𝑐𝑘𝑛 = 𝑓𝑗 , (3.4)

where 𝑎𝑗𝑘, 𝑎𝑗𝑝𝑘 are constants and 𝑓𝑗 = (𝑓, 𝑎𝑗).
If we multiply relations (3.3) by 𝑐𝑗𝑛(𝑡) and sum them up with respect to the

index 𝑗 from 1 to 𝑛, we obtain

1

2

𝑑

𝑑𝑡
∥𝑢𝑛(⋅, 𝑡)∥2 + 𝜈

3∑
𝑖=1

∥∥𝑢𝑛𝑥𝑖(⋅, 𝑡)∥∥2 = (𝑓, 𝑢𝑛). (3.5)

To derive equation (3.5), we use the following identity(
3∑
𝑖=1

𝑢𝑖𝑢𝑥𝑖 , 𝑢

)
= 0, (3.6)

which holds for functions in 𝐻(Ω). Then, from equation (3.5) and the Cauchy
inequality it follows that

𝑑

𝑑𝑡
∥𝑢𝑛(⋅, 𝑡)∥ ≤ ∥𝑓(⋅, 𝑡)∥ ,

whence

∥𝑢𝑛(⋅, 𝑡)∥ ≤ ∥𝑢𝑛(⋅, 0)∥+
∫ 𝑡
0

∥𝑓(⋅, 𝜏)∥ 𝑑𝜏. (3.7)

Therefore, substituting estimate (3.7) into the right-hand side of inequality (3.5)
and integrating the resulting inequality by 𝑡 we infer that the basic estimates (1.19)
are true for the Galerkin approximations 𝑢𝑛(𝑥, 𝑡) as well.

As the functions 𝑎𝑘(𝑥) are orthonormal in 𝐿2(Ω), it follows from inequality
(3.7) that

𝑛∑
𝑘=1

𝑐2𝑘𝑛(𝑡) ≤
(
∥𝑢𝑛(⋅, 0)∥+

∫ 𝑡
0

∥𝑓(⋅, 𝜏)∥ 𝑑𝜏

)2

.

Hence, if
∫ 𝑡
0 ∥𝑓(⋅, 𝜏)∥ 𝑑𝜏 < ∞ for all 𝑡 ≥ 0, then system (3.4) for the coefficients

𝑐𝑗𝑛 has a solution in the interval [0,+∞).
2∘ Now we verify that inequality (1.21) holds for the Galerkin approximations

as well. As the eigenfunctions 𝑎𝑘(𝑥) of problem (1.11) belong to 𝑊 2,2(Ω) ∩ 𝐻(Ω)
[5], we can rewrite equations (3.3) in an equivalent form{

(𝑢𝑛𝑡 , 𝑎
𝑗)− 𝜈(Δ̃𝑢𝑛, 𝑎𝑗)

}
=

(
−

3∑
𝑖=1

𝑢𝑛𝑖 𝑢
𝑛
𝑥𝑖 + 𝑓, 𝑎𝑗

)
, 𝑗 = 1, . . . , 𝑛. (3.8)
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Multiplying these equations by
𝑑𝑐𝑗𝑛
𝑑𝑡 − 𝜈𝜆𝑗𝑐𝑗𝑛 and summing them up with respect

to the index 𝑗 from 1 to 𝑛, after some simple standard transformation, we obtain

𝜈
𝑑

𝑑𝑡

3∑
𝑖=1

∥∥𝑢𝑛𝑥𝑖(⋅, 𝑡)∥∥2 + ∥𝑢𝑛𝑡 (⋅, 𝑡)∥2 + 𝜈2
∥∥Δ̃𝑢𝑛(⋅, 𝑡)∥∥2

=

(
−

3∑
𝑖=1

𝑢𝑛𝑖 𝑢
𝑛
𝑥𝑖 + 𝑓, 𝑢𝑛𝑡 − 𝜈Δ̃𝑢𝑛

)
.

(3.9)

Leray’s projection 𝑃 in the bases {𝑎𝑘(𝑥) : 𝑘 = 1, . . . } has the form 𝑃𝑓 =∑∞
𝑘=1(𝑓, 𝑎

𝑘)𝑎𝑘 . Let 𝑃𝑛𝑓 be

𝑃𝑛𝑓 :=

𝑛∑
𝑘=1

(𝑓, 𝑎𝑘)𝑎𝑘.

Hence, as 𝑃𝑛𝑢
𝑛
𝑡 = 𝑢𝑛𝑡 , 𝑃𝑛Δ̃𝑢𝑛 = Δ̃𝑢𝑛, we can rewrite equations (3.8) in the form(

𝑢𝑛𝑡 − 𝜈Δ̃𝑢𝑛, 𝑃𝑛𝑔
)
=

(
−

3∑
𝑖=1

𝑢𝑛𝑖 𝑢
𝑛
𝑥𝑖 + 𝑓, 𝑃𝑛𝑔

)
(3.10)

for any function 𝑔(𝑥, 𝑡) ∈ 𝐿2(ℚ∞). We set 𝑔 = −∑3
𝑖=1 𝑢𝑛𝑖 𝑢

𝑛
𝑥𝑖 + 𝑓 , and, therefore,

the right-hand side of equation (3.9) can be presented in the form(
−

3∑
𝑖=1

𝑢𝑛𝑖 𝑢
𝑛
𝑥𝑖 + 𝑓, 𝑢𝑛𝑡 − 𝜈Δ̃𝑢𝑛

)
=

(
𝑃𝑛

[
−

3∑
𝑖=1

𝑢𝑛𝑖 𝑢
𝑛
𝑥𝑖 + 𝑓

]
, 𝑢𝑛𝑡 − 𝜈Δ̃𝑢𝑛

)

=

∥∥∥∥∥𝑃𝑛[−
3∑
𝑖=1

𝑢𝑛𝑖 𝑢
𝑛
𝑥𝑖 + 𝑓

]∥∥∥∥∥
2

. (3.11)

Now, we substitute equality (3.11) into the right-hand side of inequality (3.9) and
obtain the inequality

𝜈
𝑑

𝑑𝑡

3∑
𝑖=1

∥∥𝑢𝑛𝑥𝑖(⋅, 𝑡)∥∥2 + ∥𝑢𝑛𝑡 (⋅, 𝑡)∥2 + 𝜈2
∥∥∥Δ̃𝑢𝑛(⋅, 𝜏)

∥∥∥2 ≤ 2

∥∥∥∥∥
3∑
𝑖=1

𝑢𝑛𝑖 𝑢
𝑛
𝑥𝑖

∥∥∥∥∥
2

+ 2 ∥𝑓∥2 ,
(3.12)

which means that inequality (1.21) also holds for the Galerkin approximations
𝑢𝑛(𝑥, 𝑡).

Lemma 3.1. The Galerkin approximations 𝑢𝑛(𝑥, 𝑡) satisfy inequalities (2.13)–(2.15)
of Lemma 2.2.

Proof. The proof of Lemma 2.2 is based on the inequalities of Lemma 2.1 and
inequality (1.21). As the Galerkin approximations also satisfy all these inequalities,
then inequalities of Lemma 2.2 also hold for the Galerkin approximations. □

The global existence of GSNS in the 2D case is well known, in particular,
this follows from inequality (2.22).
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Now, we consider the 3D case and inequality (2.14).

Lemma 3.2.

1) Let 𝑏 ≥ 0 and 𝑧(𝑡) be a function in 𝐶1([𝜏, 𝑇 )), 𝑧(𝑡) > 0. Suppose that the
function 𝑧(𝑡) on the interval [𝜏, 𝑇 ) satisfies the inequality

𝑑

𝑑𝑡
𝑧(𝑡) ≤ 𝛾

𝛼

(
𝑧(𝑡) + 𝑏

)1+𝛼
, 𝛼 > 0. (3.13)

We put

𝑇 ∗(𝜏) := 𝛾−1(𝑧(𝜏) + 𝑏)−𝛼, 𝑇𝑚 := min(𝑇, 𝑇 ∗(𝜏) + 𝜏). (3.14)

Then the following estimate holds on the interval [𝜏, 𝑇𝑚):

𝑧(𝑡) ≤ 𝛾−1/𝛼

(𝑇 ∗(𝜏) − (𝑡 − 𝜏))1/𝛼
− 𝑏. (3.15)

2) Consider a function 𝑧(𝑡) in 𝐶1([0, 𝑇𝑙)) such that 𝑧(𝑡) > 0, inequality (3.13)
is satisfied and lim𝑡→𝑇𝑙 𝑧(𝑡) = +∞. Then the following inequality holds on
the interval [0, 𝑇𝑙):

𝑧(𝑡) ≥ 𝛾−1/𝛼

(𝑇𝑙 − 𝑡)1/𝛼
− 𝑏. (3.16)

3) If sup𝑡∈[0,𝑇𝑙] ∥𝑓(⋅, 𝑡)∥ < ∞ and sup𝑡∈[0,𝑇𝑙) ∥𝑢(⋅, 𝑡)∥21,2 = +∞, then for the

classical solution to the Navier-Stokes problem on the interval [0, 𝑇𝑙), 𝑇𝑙 <
+∞, estimate (1.27) holds for some positive constants 𝑎, 𝑏.

Proof. 1) Dividing inequality (3.13) by
(
𝑧(𝑡) + 𝑏

)1+𝛼
and integrating the result in

the interval [𝜏, 𝑡], we obtain

−(𝑧(𝑡) + 𝑏)−𝛼 + (𝑧(𝜏) + 𝑏)−𝛼 ≤ 𝛾(𝑡 − 𝜏). (3.17)

Therefore,

(𝑧(𝜏) + 𝑏)−𝛼 − 𝛾(𝑡 − 𝜏) ≤ (𝑧(𝑡) + 𝑏)−𝛼,

and

(𝑧(𝑡) + 𝑏)𝛼 ≤ 1/{(𝑧(𝜏) + 𝑏)−𝛼 − 𝛾(𝑡 − 𝜏)}. (3.18)

Inequality (3.15) is a direct consequence of inequality (3.18) and definition (3.14).

2) Suppose now that in inequality (3.17) we take 𝑡 → 𝑇𝑙. Then the condition

lim𝑡→𝑇𝑙 𝑧(𝑡) = +∞ implies that

(𝑧(𝜏) + 𝑏)−𝛼 ≤ 𝛾(𝑇𝑙 − 𝜏) (3.19)

for all 𝜏 ∈ [0, 𝑇𝑙). From inequality (3.19) it follows that for all 𝜏 ∈ [0, 𝑇𝑙) we have

(𝑧(𝜏) + 𝑏)𝛼 ≥ 1

𝛾(𝑇𝑙 − 𝜏)

and, therefore, inequality (3.16) is satisfied.
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3) Consider inequality (2.14) for a classical solution. We set

𝑧(𝑡) := ∥𝑢(⋅, 𝑡)∥21,2 ,
𝑏 := 𝑐6𝜈

2/3 sup
𝑡∈[0,𝑇𝑙]

∥𝑓(⋅, 𝑡)∥2/3 , (3.20)

𝛾 :=
2𝑐6
𝜈3

. (3.21)

With such notation inequality (2.14) has the form (3.13) for 𝛼 = 2. Hence, by part

2) of the lemma, we obtain estimate (1.27) with the constant 𝑎 =
(
2𝑐6
𝜈3

)−1/2
. □

If the initial data and the integral
∫∞
0

∥𝑓(⋅, 𝑡)∥2 𝑑𝑡 are small enough, i.e.,
4

𝜈

∫ ∞

0

∥𝑓(⋅, 𝑡)∥2 𝑑𝑡+ ∥𝑢(⋅, 0)∥21,2 <
𝜈2

𝑐0
,

then the global existence of the GSNS to the Navier-Stokes problem in the cylinder
ℚ∞ = Ω× [0,+∞) easily follows from estimates (2.16), (2.17).

Now, denote by 𝑊 (𝑇 ) the Banach space obtained as the completion of the
set of functions{

𝑔(𝑥, 𝑡) : 𝑔 =

𝑁∑
𝑘=1

𝑓𝑘(𝑡)𝜑𝑘(𝑥); 𝑓𝑘(𝑡) ∈ 𝐶1([0, 𝑇 ]), 𝜑𝑘 ∈ 𝑊 1,2(Ω) ∩ 𝐻(Ω), 𝑁 < ∞
}

in the norm ∥⋅∥𝑊 (𝑇 ), where, with 𝑐22 > 0,

∥𝑢∥2𝑊 (𝑇 ) := max
𝑡∈[0,𝑇 ]

∥𝑢(⋅, 𝑡)∥21,2+
∫ 𝑇
0

{
𝜈−1 ∥∂𝑡𝑢(⋅, 𝑡)∥2 + 𝜈𝑐22 ∥Δ𝑢(⋅, 𝑡)∥2

}
𝑑𝑡. (3.22)

Evidently, by definition the GSNS belongs to the space 𝑊 (𝑇 ). Below we prove
the convergence of the Galerkin approximations in the space 𝑊 (𝑇 ) to the GSNS.
In the following theorem we use the notations 𝑆𝑔 and 𝑇𝑔 from (1.28) and (1.29),
respectively.

Theorem 3.3. (3D case) Suppose that the initial data and the right-hand side 𝑓(𝑥, 𝑡)
of the Navier-Stokes problem (1.1)–(1.4) in a domain Ω ∈ ℝ3 with compact closure
and a 𝐶∞ boundary ∂Ω satisfy the conditions

𝑢0(⋅) ∈ 𝐻(Ω); sup
𝑡∈[0,∞]

∥𝑓(⋅, 𝑡)∥ < ∞. (3.23)

Let 𝑏 be the constant defined by equality (3.20). Then the following assertions are
fulfilled.

1) The GSNS exists and it is unique on the interval [0, 𝑇𝑔) for 𝑇𝑔 ≥ 𝑇 ∗, where

𝑇 ∗ = 𝛾−1
(∥∥𝑢0∥∥2

1,2
+ 𝑏

)−2
. (3.24)



Estimate from Below for the Growth of Solution 253

The norm ∥𝑢(⋅, 𝑡)∥1,2 of the GSNS on the interval [0, 𝑇 ∗) satisfies the inequal-
ity

∥𝑢(⋅, 𝑡)∥21,2 ≤ 𝛾−1/2√
𝑇 ∗ − 𝑡

− 𝑏. (3.25)

2) If 𝑇𝑔 < ∞, then

sup
𝑛

sup
𝑡∈[0,𝑇𝑔)

∥𝑢𝑛(⋅, 𝑡)∥21,2 = ∞, (3.26)

and the GSNS on the interval [0, 𝑇𝑔) satisfies the inequality

∥𝑢(⋅, 𝑡)∥21,2 ≥ 𝛾−1/2√
𝑇𝑔 − 𝑡

− 𝑏. (3.27)

If 𝑇𝑔 = ∞, then the GSNS exists on [0,+∞).

3) The Galerkin approximations 𝑢𝑛 converge to the GSNS in the norm ∥⋅∥𝑊 (𝑇 )

for all intervals [0, 𝑇 ] and all 𝑇 < 𝑇𝑔.

Proof. 1a) The existence of the GSNS is proved by the Galerkin method. As the
Galerkin approximations 𝑢𝑛(𝑥, 𝑡) satisfy inequality (2.14), by Lemma 3.2 we obtain
the estimate

∥𝑢𝑛(⋅, 𝑡)∥21,2 ≤ 𝛾−1/2√
𝑇 ∗
𝑛 − 𝑡

− 𝑏. (3.28)

where 𝑇 ∗
𝑛 = 𝛾−1

( ∥∥𝑢0𝑛∥∥21,2 + 𝑏
)−2

and 𝑢0𝑛(𝑥) :=
∑𝑛
𝑘=1 𝑎

𝑘(𝑥)(𝑢0, 𝑎𝑘). For a function

𝑢0 ∈ 𝐻(Ω), we get
∥∥𝑢0𝑛 − 𝑢0

∥∥
1,2

→ 0 as 𝑛 → ∞ [5], and, therefore, 𝑇 ∗
𝑛 → 𝑇 ∗ =

𝛾−1
( ∥∥𝑢0∥∥2

1,2
+ 𝑏

)−2
.

Substituting the estimate (3.28) into the right-hand side of the first inequality
in (2.14) for the function 𝑢𝑛(𝑥, 𝑡), we get

𝑑

𝑑𝑡
∥𝑢(⋅, 𝑡) 2

1,2 + 𝜈−1 ∥𝑢𝑡(⋅, 𝑡)∥2 + 𝜈𝑐22 ∥Δ𝑢(⋅, 𝑡)∥2 ≤ 𝑐

(𝑇 ∗
𝑛 − 𝑡)3/2

+
𝑐4
𝜈

∥𝑓(⋅, 𝑡)∥2.

Integrating the latter inequality by 𝑡, we infer that

∥𝑢(⋅, 𝑡)∥21,2 +
∫ 𝑡
0

(
𝜈−1 ∥𝑢𝑡(⋅, 𝜏)∥2 + 𝜈𝑐22 ∥Δ𝑢(⋅, 𝜏)∥2 )𝑑𝜏

≤ ∥∥𝑢0∥∥2
1,2
+ 2𝑐

{
1

(𝑇 ∗
𝑛 − 𝑡)1/2

− 1

(𝑇 ∗
𝑛)

1/2

}
+

𝑐4
𝜈

∫ 𝑡
0

∥𝑓(⋅, 𝜏)∥2𝑑𝜏.
(3.29)

Since the right-hand side of inequality (3.29) monotonically increases in 𝑡, we
conclude that

max
𝜏∈[0,𝑡]

∥𝑢(⋅, 𝜏)∥21,2 ≤ ∥∥𝑢0∥∥2
1,2
+ 2𝑐

{
1

(𝑇 ∗
𝑛 − 𝑡)1/2

− 1

(𝑇 ∗
𝑛)

1/2

}
+

𝑐4
𝜈

∫ 𝑡
0

∥𝑓(⋅, 𝜏)∥2𝑑𝜏.
(3.30)
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Summing inequalities (3.29) and (3.30) and taking 𝑡 = 𝑇 , we obtain the inequality

∥𝑢𝑛∥2𝑊 (𝑇 ) ≤ 2
∥∥𝑢0∥∥2

1,2
+ 𝑎1

{
1

(𝑇 ∗
𝑛 − 𝑇 )1/2

− 1

(𝑇 ∗
𝑛)

1/2

}
+ 𝑎2 (3.31)

with some positive constants 𝑎𝑖, 𝑖 = 1, 2. Hence 𝑇𝑔 ≥ 𝑇 ∗ > 0.

Furthermore, as inequality (2.14) holds for the Galerkin approximations
𝑢𝑛(𝑥, 𝑡) on the intervals [0, 𝑇 ], 𝑇 < 𝑇𝑔, integrating again the first inequality in
(2.14) for 𝑢𝑛(𝑥, 𝑡) by 𝑡 ∈ [0, 𝑇 ] and taking into account (1.28), we conclude that
the Galerkin approximations also satisfy the inequality

∥𝑢𝑛∥2𝑊 (𝑇 ) ≤ 2
∥∥𝑢0∥∥2

1,2
+

𝑎3𝑇

𝜈3

(
sup
𝑛

sup
𝑡∈[0,𝑇 ]

∥𝑢𝑛(⋅, 𝑡)∥21,2
)3

+
𝑎4
𝜈

∫ 𝑇
0

∥𝑓(⋅, 𝑡)∥2 𝑑𝑡.
(3.32)

Therefore we can choose a subsequence 𝑢𝑛𝑞 (𝑥, 𝑡) such that the sequences 𝑢𝑛𝑞 (𝑥, 𝑡),
𝑢
𝑛𝑞
𝑡 (𝑥, 𝑡), 𝑢

𝑛𝑞
𝑥𝑚(𝑥, 𝑡), 𝑢

𝑛𝑞
𝑥𝑖𝑥𝑗 (𝑥, 𝑡) are weakly converging in 𝐿2(ℚ𝑇 ) for all 0 < 𝑇 < 𝑇𝑔.

Let us prove that the sequences 𝑢
𝑛𝑞
𝑥𝑚(𝑥, 𝑡), 𝑢𝑛𝑞(𝑥, 𝑡) strongly converge in

𝐿2(ℚ𝑇 ) (for all 0 < 𝑇 < 𝑇𝑔) applying the Friedrich inequality. This inequality

asserts that for any function 𝑢 in 𝑊 1,2
0 (Ω) and any 𝜀 > 0 there exist 𝑁𝜀 functions

𝜔𝑗 , 𝑗 = 1, . . . , 𝑁𝜀, such that∫
Ω

𝑢2(𝑥)𝑑𝑥 ≤
𝑁𝜀∑
𝑗=1

(∫
Ω

𝑢𝜔𝑗𝑑𝑥

)2

+ 𝜀

∫
Ω

(grad 𝑢)2𝑑𝑥. (3.33)

We prove that estimate (3.33) is also valid for all the function 𝑢 from 𝑊 1,2(Ω).
Let 𝑆 be a rectangle that contains some vicinity of Ω, and let 𝐴 be a bounded
operator of extension [1],

𝐴 : 𝑊 1,2(Ω) → 𝑊 1,2
0 (𝑆), (𝐴𝑢)∣Ω = 𝑢

satisfying the inequalities

∥𝐴𝑢∥𝑘,2 (𝑆) ≤ 𝑐 ∥𝑢∥𝑘,2 (Ω), 𝑘 = 0, 1. (3.34)

Actually, the unique analytical expression for the extension operator 𝐴 generates
two bounded operators 𝐴0 : 𝐿2(Ω) → 𝐿2(Ω) and 𝐴1 : 𝑊

1,2(Ω) → 𝑊 1,2
0 (𝑆) with

the norms ∥𝐴0∥ , ∥𝐴1∥ .

Consider the Friedrich inequality in rectangle 𝑆, and let 𝜔𝑗 , 𝑗 = 1, 2, . . . , 𝑁𝜀
be functions in Friedrich’s inequality for 𝑊 1,2

0 (𝑆). We can take for 𝜔𝑗 , 𝑗 =
1, . . . , 𝑁𝜀, the orthogonal trigonometric system in the rectangle 𝑆. The Friedrich
inequality in the rectangle 𝑆 implies that∫

𝑆

(𝐴0𝑢)
2𝑑𝑥 ≤

𝑁𝜀∑
𝑗=1

(∫
𝑆

(𝐴0𝑢)𝜔𝑗𝑑𝑥

)2

+ 𝜀

∫
𝑆

(grad (𝐴1𝑢))
2𝑑𝑥. (3.35)
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By virtue of equality

∫
𝑆

(𝐴0𝑢)𝜔𝑗𝑑𝑥 =

∫
Ω

𝑢(𝐴∗
0𝜔𝑗)𝑑𝑥 and estimate (3.34) for 𝑘 = 1,

from (3.35) we get∫
Ω

𝑢2(𝑥)𝑑𝑥 ≤
∫
𝑆

(𝐴0𝑢)
2𝑑𝑥

≤
𝑁𝜀∑
𝑗=1

(∫
Ω

𝑢(𝐴∗
0𝜔𝑗)𝑑𝑥

)2

+ 𝜀 ∥𝐴1∥2
∫
Ω

{
(grad 𝑢)2 + 𝑢2

}
𝑑𝑥,

(3.36)

whence∫
Ω

𝑢2(𝑥)𝑑𝑥 ≤ 1

1− 𝜀 ∥𝐴1∥2
𝑁𝜀∑
𝑗=1

(∫
Ω

𝑢(𝐴∗
0𝜔𝑗)𝑑𝑥

)2

+
𝜀 ∥𝐴1∥2

1− 𝜀 ∥𝐴1∥2
∫
Ω

(grad 𝑢)2𝑑𝑥.

(3.37)

We use the above inequality for 𝑢 = ∂𝑥𝑘(𝑢
𝑛𝑖 − 𝑢𝑛𝑗 ) and integrate it with respect

to 𝑡 from 0 to 𝑇 obtaining:∫ 𝑇
0

∫
Ω

∣∣∂𝑥𝑘(𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙 )

∣∣2 𝑑𝑥𝑑𝑡

≤ 1

1− 𝜀 ∥𝐴1∥2
𝑁𝜀∑
𝑗=1

∫ 𝑇
0

[∫
Ω

{
∂𝑥𝑘(𝑢

𝑛𝑖
𝑙 − 𝑢

𝑛𝑗
𝑙 )

}
(𝐴∗

0𝜔𝑗)𝑑𝑥

]2
𝑑𝑡

+
𝜀 ∥𝐴1∥2

1− 𝜀 ∥𝐴1∥2
∫ 𝑇
0

∫
Ω

3∑
𝑚=1

∣∣∂2𝑥𝑘𝑥𝑚(𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙 )

∣∣2 𝑑𝑥𝑑𝑡.
(3.38)

Observe that the Galerkin approximations 𝑢𝑛𝑖 satisfy inequality (3.32) and
∥𝑢𝑛𝑖∥2,2 ≤ 𝑐 ∥Δ𝑢𝑛𝑖∥ as 𝑢𝑛𝑖 ∈ 𝐻(Ω) ∩ 𝑊 2,2(Ω). Therefore, the last integral in the

right-hand side of inequality (3.38) does not exceed a fixed constant multiplied by
𝜀. The first integral in the right-hand side of inequality (3.38) can be considered
arbitrarily small for sufficiently large 𝑛𝑖, 𝑛𝑗 , as the sequence {𝑢𝑛𝑞𝑥𝑘(𝑥, 𝑡)} converges
weakly in 𝐿2(ℚ𝑇 ) and in 𝐿2(Ω) to the function weakly continuous in 𝑡 [5], and
hence the integral ∫ 𝑇

0

[∫
Ω

{∂𝑥𝑘(𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙 )}(𝐴∗

0𝜔𝑗)𝑑𝑥

]2
𝑑𝑡 → 0

as 𝑛𝑖, 𝑛𝑗 → ∞. Thus, the right-hand side of (3.38) can be considered arbitrarily
small for sufficiently large indices 𝑛𝑖, 𝑛𝑗 . This proves that the sequences {𝑢𝑛𝑖𝑥𝑘}, 𝑘 =

1, 2, 3 converge strongly in 𝐿2(ℚ𝑇 ). Estimate ∥𝑢∥2 ≤ 𝑐 ∥𝑢∥21,2 is valid for 𝑢 ∈ 𝐻(Ω),

and we obtain that the sequence {𝑢𝑛𝑖} also converges in 𝐿2(ℚ𝑇 ).

1b) Now we prove that the sequence {(𝑢𝑛𝑖 ,∇)𝑢𝑛𝑖} strongly converges in
𝐿2(ℚ𝑇 ). With this goal in mind we employ inequality (2.5) and set 𝑤 = 𝑢𝑛𝑖𝑙 −𝑢

𝑛𝑗
𝑙 ,
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𝑣 = 𝑢𝑛𝑖𝑘 . Thus, we get∫ 𝑇
0

∫
Ω

∣∣(𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙 )∂𝑥𝑙𝑢

𝑛𝑖
𝑘

∣∣2 𝑑𝑥 ≤ 𝑐 max
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑖𝑘 (⋅, 𝑡)∥1,2 (3.39)

×
{
max
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑖𝑙 (⋅, 𝑡)∥1,2 + max
𝑡∈[0,𝑇 ]

∥∥𝑢𝑛𝑗𝑙 (⋅, 𝑡)∥∥1,2}∫ 𝑇
0

∥∥𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙

∥∥
1,2

∥Δ𝑢𝑛𝑖𝑘 ∥ 𝑑𝑡.

Due to inequality (3.32) the numbers

max
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑖𝑙 (⋅, 𝑡)∥1,2 , max
𝑡∈[0,𝑇 ]

∥∥𝑢𝑛𝑗𝑙 (⋅, 𝑡)∥∥1,2 , max
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑖𝑘 (⋅, 𝑡)∥1,2
are bounded in the interval [0, 𝑇 ], 0 < 𝑇 < 𝑇𝑔 by some constant 𝐶(𝑇 ) uniformly
with respect to 𝑛𝑖, 𝑛𝑗 , 𝑙. Hence, applying the Cauchy inequality to the right-hand
side of (3.39) we obtain∫ 𝑇

0

∫
Ω

∣∣(𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙 )∂𝑥𝑙𝑢

𝑛𝑖
𝑘

∣∣2 𝑑𝑥

≤ 𝐶1(𝑇 )

{∫ 𝑇
0

∥Δ𝑢𝑛𝑖𝑘 ∥2 𝑑𝑡
}1/2{∫ 𝑇

0

∥∥𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙

∥∥2
1,2

𝑑𝑡

}1/2

.

(3.40)

By virtue of inequality (3.32) the numbers
{∫ 𝑇

0
∥Δ𝑢𝑛𝑖𝑘 ∥2 𝑑𝑡

}1/2
are uniformly

bounded by some constant 𝐶2(𝑇 ) in [0, 𝑇 ], 0 < 𝑇 < 𝑇𝑔, and in part 1a) it was

proved that
{∫ 𝑇

0

∥∥𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙

∥∥2
1,2

𝑑𝑡
}

→ 0 as 𝑛𝑖, 𝑛𝑗 → ∞. Therefore, the right-

hand side in inequality (3.40) can be considered arbitrarily small as 𝑛𝑖, 𝑛𝑗 → ∞.

We consider the following inequality in a similar way:∫ 𝑇
0

∫
Ω

∣∣𝑢𝑛𝑖𝑘 ∂𝑥𝑘(𝑢
𝑛𝑖
𝑙 − 𝑢

𝑛𝑗
𝑙 )

∣∣2 𝑑𝑥
≤ 𝑐

(
max
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑖𝑘 (⋅, 𝑡)∥21,2
)∫ 𝑇

0

∥∥𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙

∥∥
1,2

∥∥Δ(𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙 )

∥∥ 𝑑𝑡

≤ 𝐶(𝑇 )

{∫ 𝑇
0

∥∥Δ(𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙 )

∥∥2 𝑑𝑡}1/2{∫ 𝑇
0

∥∥𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙

∥∥2
1,2

𝑑𝑡

}1/2

≤ 𝐶1(𝑇 )

{∫ 𝑇
0

∥∥𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙

∥∥2
1,2

𝑑𝑡

}1/2

.

(3.41)

From inequality (3.41) it follows the convergence:∫ 𝑇
0

∣∣𝑢𝑛𝑖𝑘 ∂𝑥𝑘(𝑢
𝑛𝑖
𝑙 − 𝑢

𝑛𝑗
𝑙 )

∣∣2 𝑑𝑡 → 0 as 𝑛𝑖, 𝑛𝑗 → ∞.

Combining inequalities (3.40), (3.41) we infer that the sequence {(𝑢𝑛𝑖 ,∇)𝑢𝑛𝑖}
strongly converges in 𝐿2(ℚ𝑇 ) to some function 𝜓,

𝜓 := lim
𝑛𝑗→∞(𝑢

𝑛𝑗 ,∇)𝑢𝑛𝑗 . (3.42)
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1c) Equality (3.8) can be rewritten in the following equivalent form:

𝑢𝑛𝑡 − 𝜈Δ̃𝑢𝑛 = −𝑃𝑛(𝑢
𝑛,∇)𝑢𝑛 + 𝑃𝑛𝑓. (3.43)

Therefore, we obtain

∂𝑡(𝑢
𝑛 − 𝑢𝑚)− 𝜈Δ̃(𝑢𝑛 − 𝑢𝑚) (3.44)

= −(𝑃𝑛 − 𝑃𝑚)(𝑢
𝑛,∇)𝑢𝑛 + (𝑃𝑛 − 𝑃𝑚)𝑓 + 𝑃𝑚{(𝑢𝑚,∇)𝑢𝑚 − (𝑢𝑛,∇)𝑢𝑛};

(𝑢𝑛 − 𝑢𝑚)∣𝑡=0 = (𝑃𝑛 − 𝑃𝑚)𝑢
0.

Using the equivalence

𝑎1

∫ 𝑇
0

∥∥Δ̃(𝑢𝑛 − 𝑢𝑚)
∥∥2𝑑𝑡 ≤

∫ 𝑇
0

∥Δ(𝑢𝑛 − 𝑢𝑚)∥2 𝑑𝑡 ≤ 𝑎2

∫ 𝑇
0

∥∥Δ̃(𝑢𝑛 − 𝑢𝑚)
∥∥2𝑑𝑡,

by standard calculations from (3.44) we get the inequality

max
[0,𝑇 ]

∥(𝑢𝑛 − 𝑢𝑚)(⋅, 𝑡)∥21,2 +
∫ 𝑇
0

{
∥∂𝑡(𝑢𝑛 − 𝑢𝑚)∥2 + 𝜈𝑐 ∥Δ(𝑢𝑛 − 𝑢𝑚)∥2

}
𝑑𝑡

≤ ∥∥(𝑃𝑛 − 𝑃𝑚)𝑢
0
∥∥2
1,2
+ 𝑐

∫ 𝑇
0

{
∥(𝑃𝑛 − 𝑃𝑚)(𝑢

𝑛,∇)𝑢𝑛∥2 (3.45)

+ ∥(𝑃𝑛 − 𝑃𝑚)𝑓∥2 + ∥(𝑢𝑚,∇)𝑢𝑚 − (𝑢𝑛,∇)𝑢𝑛∥2
}
𝑑𝑡.

From [5, pp. 44–46] it follows that
∥∥(𝑃𝑛 − 𝑃𝑚)𝑢

0
∥∥2
1,2

→ 0 and ∥(𝑃𝑛 − 𝑃𝑚)𝑓∥ → 0

as 𝑛, 𝑚 → ∞. We proved above that

∫ 𝑇
0

∥(𝑢𝑛𝑗 ,∇)𝑢𝑛𝑗 − (𝑢𝑛𝑖 ,∇)𝑢𝑛𝑖∥2 𝑑𝑡 → 0 as

𝑖, 𝑗 → ∞. Evidently,∫ 𝑇
0

∥∥(𝑃𝑛𝑗 − 𝑃𝑛𝑖)(𝑢
𝑛𝑗 ,∇)𝑢𝑛𝑗∥∥2 𝑑𝑡

≤ 4

∫ 𝑇
0

∥(𝑢𝑛𝑗 ,∇)𝑢𝑛𝑗 − 𝜓∥2 𝑑𝑡+ 2
∫ 𝑇
0

∥∥(𝑃𝑛𝑗 − 𝑃𝑛𝑖)𝜓
∥∥2 𝑑𝑡,

(3.46)

where 𝜓 := lim𝑛𝑗→∞(𝑢𝑛𝑗 ,∇)𝑢𝑛𝑗 . Consequently, the right-hand side of inequality
(3.46) tends to zero as 𝑛𝑗 → ∞. Hence, the right-hand side of inequality (3.45) for
𝑛 = 𝑛𝑗 , 𝑚 = 𝑛𝑖 tends to zero as 𝑖, 𝑗 → ∞, that is, the Galerkin approximations
{𝑢𝑛𝑗} converge in the norm ∥⋅∥𝑊 (𝑇 ) to the function

𝑢 := lim
𝑗→∞

𝑢𝑛𝑗 ∈ 𝑊 (𝑇 ). (3.47)

If we substitute the expressions (𝑢𝑛𝑖𝑙 − 𝑢
𝑛𝑗
𝑙 )∂𝑥𝑙𝑢

𝑛𝑖
𝑘 by (𝑢𝑛𝑖𝑙 − 𝑢𝑙)∂𝑥𝑙𝑢

𝑛𝑖
𝑘 and

𝑢𝑛𝑖𝑘 ∂𝑥𝑘(𝑢
𝑛𝑖
𝑙 − 𝑢

𝑛𝑗
𝑙 ) by 𝑢𝑘∂𝑥𝑘(𝑢

𝑛𝑖
𝑙 − 𝑢𝑙) in inequalities (3.40) and (3.41), then, simi-

larly to 1b), we obtain the following convergence in 𝐿2(ℚ𝑇 ) :

lim
𝑛𝑗→∞(𝑢

𝑛𝑗 ,∇)𝑢𝑛𝑗 = (𝑢,∇)𝑢 = 𝜓.

Note that linear combinations of the functions 𝑎𝑗 , 𝑗 = 1, . . . , with time-
dependent coefficients 𝑑𝑗(𝑡) are dense in 𝐿∘

2(ℚ𝑇 ). Thus, integrating the scalar
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product of the right-hand and left-hand sides of equality (3.43) with a function
𝑔 ∈ 𝐿∘

2(ℚ𝑇 ) and passing to limit as 𝑛 = 𝑛𝑗 → ∞, we deduce that function (3.47)
satisfies the equation∫ 𝑇

0

(
∂𝑢

∂𝑡
− 𝜈Δ̃𝑢+ 𝑃 (𝑢,∇)𝑢 − 𝑃𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡)

)
𝑑𝑡 = 0,

for all 𝑔 ∈ 𝐿∘
2(ℚ𝑇 )

(3.48)

on the intervals [0, 𝑇 ], 𝑇 < 𝑇𝑔. Evidently, the function 𝑢(𝑥, 𝑡) possesses all prop-
erties of the GSNS solution. By Lemma 1.2 the GSNS solution is unique.

1d) Now, we prove that all the sequence {(𝑢𝑛,∇)𝑢𝑛} converge in 𝐿2(ℚ𝑇 ).
Observe that {𝑢𝑛𝑗} converges in the norm ∥⋅∥𝑊 (𝑇 ) to a unique GSNS 𝑢(𝑥, 𝑡), and∫ 𝑇

0

∥(𝑢𝑛𝑗 ,∇)𝑢𝑛𝑗 − (𝑢,∇)𝑢∥2 𝑑𝑡 → 0 as 𝑗 → ∞.

So, for any subsequence {𝑛𝑞}, such that the sequence {(𝑢𝑛𝑗 ,∇)𝑢𝑛𝑗} converges in
𝐿2(ℚ𝑇 ), this sequence converges to the same limit (𝑢,∇)𝑢, where the function 𝑢
is the GSNS function obtained above.

Now, suppose the opposite, i.e., that all the sequence {(𝑢𝑛,∇)𝑢𝑛} do not
converge in 𝐿2(ℚ𝑇 ). Then there exist 𝜀0 > 0 and such a subsequence {𝑛̃𝑞} that∫ 𝑇

0

∥∥∥(𝑢𝑛̃𝑞 ,∇)𝑢𝑛̃𝑞 − (𝑢,∇)𝑢
∥∥∥2 𝑑𝑡 ≥ 𝜀0 for all {𝑛̃𝑞}.

By the above-mentioned considerations we can find a subsequence {𝑛̂𝑖} ⊂ {𝑛̃𝑞}
such that ∫ 𝑇

0

∥∥(𝑢𝑛̂𝑖 ,∇)𝑢𝑛̂𝑖 − (𝑢,∇)𝑢∥∥2𝑑𝑡 → 0 as 𝑗 → ∞.

The obtained contradiction proves that all the sequence {(𝑢𝑛,∇)𝑢𝑛} converges in
𝐿2(ℚ𝑇 ) to the function (𝑢,∇)𝑢.

2a) Now we prove inequality (3.25). The Galerkin approximations 𝑢𝑛 satisfy
inequality (3.28). Recall that ∥𝑢𝑛 − 𝑢∥𝑊 (𝑇 ) → 0 as 𝑛 → ∞. So we can pass to

limit in inequality (3.28) and obtain inequality (3.25).

2b) In order to prove inequality (3.27) we consider inequality (2.14) at the
Galerkin approximation 𝑢𝑛 and apply inequality (3.17) to the functions 𝑢𝑛. There-
fore, we obtain

−(∥𝑢𝑛(⋅, 𝑡)∥21,2 + 𝑏)−2 + (∥𝑢𝑛(⋅, 𝜏)∥21,2 + 𝑏)−2 ≤ 𝛾(𝑡 − 𝜏), (3.49)

where 𝑏 := 𝑐6𝜈
2/3 sup𝑡∈[0,𝑇𝑔] ∥𝑓(⋅, 𝑡)∥2/3 . By definition of the value 𝑇𝑔, there exist

sequences 𝑛𝑚 → ∞ and 𝑡𝑛𝑚 → 𝑇𝑔 such that ∥𝑢𝑛𝑚(⋅, 𝑡𝑛𝑚 )∥21,2 → ∞. Let us set

𝑡 = 𝑡𝑛𝑚 and 𝑛 = 𝑛𝑚 in inequality (3.49). Passing in inequality (3.49) to limit as
𝑛𝑚 → ∞ we obtain inequality (3.27).

2c) The statement 3) of the theorem was proved in part 1c). □
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Abstract. In this paper we present, discuss and illustrate some new scales
of conditions to characterize modern forms of Hardy’s inequalities which can
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historical perspective.
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1. Introduction

We consider the general one-dimensional Hardy inequality(∫ 𝑏
0

(∫ 𝑥
0

𝑓(𝑡)𝑑𝑡

)𝑞
𝑢(𝑥)𝑑𝑥

)1/𝑞

≤ 𝐶

(∫ 𝑏
0

𝑓𝑝(𝑥)𝑣(𝑥)𝑑𝑥

)1/𝑝

(1.1)

with a fixed 𝑏, 0 < 𝑏 ≤ ∞, for measurable functions 𝑓 ≥ 0, weights 𝑢 and 𝑣
and for the parameters 𝑝, 𝑞 satisfying 0 < 𝑞 < ∞ and 𝑝 ≥ 1. The validity of this
inequality can be characterized by some single conditions which are different for
the case 𝑝 ≤ 𝑞 (then we call it the Muckenhoupt-Bradley condition and denote it
𝐴𝑀𝐵 < ∞) and for the case 𝑞 < 𝑝 (then we call it the Maz’ya-Rozin condition
and denote it 𝐴𝑀𝑅 < ∞).
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The main goal of the paper is to give a survey of recent results, not going
into details, which could be found in the references.

We want to show that the necessary and sufficient conditions mentioned
above can be extended (or more precisely replaced) by a whole SCALE of con-
ditions depending on some additional parameters and, hence, provide the reader
with infinitely many equivalent conditions.This is important for example due to
the fact that the validity of the Hardy inequality is closely connected with the
solvability of some boundary value problems, in particular with spectral problems
for (nonlinear) ordinary differential equations, and with extremal problems. To be
more concrete, the best constant 𝐶 in (1.1) describes the (first) eigenvalue of a dif-
ferential operator, and equivalent conditions from the scales mentioned provide us
also with different estimates of the eigenvalues (for details see, e.g., [12], Sections
4 and 14, or [6], Chapters 7 and 8, and several papers mentioned in [6]). Moreover,
among the estimates for the constant 𝐶 resulting from our equivalent conditions,
there are also estimates expressed in term of the gamma-function (see, e.g., the
reference [202] in [6]) and the conditions of the validity of inequality (1.1) allow
even to decide about the discreteness of the spectrum. Therefore, it is important
to obtain estimates – as good as possible – for the best constant in (1.1).

The fact that scales of conditions can improve the estimate of the best con-
stant was first illustrated in the Ph.D. thesis of A. Wedestig [18], Example 3.1, p.
29. In this thesis it was also proved that Hardy type inequalities described by a
scale of conditions can be used to derive a characterization of the corresponding
limiting inequalities (where the (arithmetic mean) Hardy operator is replaced by
the geometric mean operator). Such a result can not be obtained in this way by
using the standard Muckenhoupt-Bradley condition (see (2.3)). In fact, this was
the crucial motivation already when L.E. Persson and V. Stepanov derived their
alternative conditions (see (2.6) and (2.8)).

In the following sections, we divide our description into three cases: 𝑝 = 𝑞, 𝑝 <
𝑞 and 𝑞 < 𝑝, and after some historical remarks, we present and illustrate the main
results concerning the scales. Finally, in Section 4 we make a final discussion and
present some examples and illustrations, which support some previous statements
in the text.

2. Some historical results

2a) The case 𝒑 = 𝒒. A classical result here reads:

Theorem 2.1. Let 1 ≤ 𝑝 < ∞. Then the inequality (1.1) holds for all measurable
functions 𝑓 ≥ 0 on (0, 𝑏), 0 < 𝑏 ≤ ∞, if and only if

𝐴 := sup
𝑟∈(0,𝑏)

(∫ 𝑏
𝑟

𝑢(𝑥)𝑑𝑥

)1/𝑝(∫ 𝑟
0

𝑣1−𝑝
′
(𝑥)𝑑𝑥

)1/𝑝′

< ∞, (2.1)

where as usual 𝑝′ = 𝑝/(𝑝 − 1) when 𝑝 > 1 and 𝑝′ = ∞ when 𝑝 = 1 (so the second
integral must be interpreted as a supremum).
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Remark 2.2. The condition (2.1) is frequently called the Muckenhoupt condition
since B. Muckenhoupt [11] presented in 1972 a nice and direct proof, which abso-
lutely has influenced the further development in a crucial way. However, Mucken-
houpt mentioned that G. Talenti [16] and G.A. Tomaselli [17] had already proved
this result in 1969, but in these papers the result was not so explicitly stated as
in [11]. More of this history, including some surprising details, can be found in the
book [6] by A. Kufner, L. Maligranda and L.E. Persson.

Remark 2.3. In the paper [17] Tomaselli also derived two other conditions for
characterizing the Hardy inequality, namely the following:

𝐴∗ := sup
𝑟∈(0,𝑏)

(∫ 𝑟
0

𝑢(𝑥)

(∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)𝑑𝑡

)𝑝
𝑑𝑥

)(∫ 𝑟
0

𝑣1−𝑝
′
(𝑥)𝑑𝑥

)−1
< ∞

and

𝐴∗∗ := inf
𝑓>0

sup
𝑥∈(0,𝑏)

1

𝑓(𝑥)

∫ 𝑥
0

𝑢(𝑡)

[
𝑓(𝑡) +

∫ 𝑡
0

𝑣1−𝑝
′
(𝑠)𝑑𝑠

]𝑝
𝑑𝑡 < ∞.

Also this result has absolutely influenced the further development and in fact
it was proved in [2] that these two conditions can be replaced by infinitely many
conditions (indeed even by 14 different scales of conditions, of course even for the
case 𝑝 ≤ 𝑞, see our Theorem 3.1 with 𝑝 = 𝑞).

Moreover, for the best constant 𝐶 in (1.1) it yields that

𝐶 ≈ 𝐴 ≈ 𝐴∗ ≈ 𝐴∗∗.

2b) The case 1 < 𝒑 ≤ 𝒒. Inequality (1.1) is usually characterized by the (so-called
Muckenhoupt-Bradley) condition

𝐴𝑀𝐵 := sup
0<𝑥<𝑏

𝐴𝑀𝐵(𝑥) < ∞, (2.2)

where

𝐴𝑀𝐵(𝑥) :=

(∫ 𝑏
𝑥

𝑢(𝑡)𝑑𝑡

)1/𝑞 (∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)𝑑𝑡

)1/𝑝′

. (2.3)

Here and in the sequel 𝑝′ = 𝑝/(𝑝 − 1). Further, let us denote

𝑈(𝑥) :=

∫ 𝑏
𝑥

𝑢(𝑡)𝑑𝑡, 𝑉 (𝑥) :=

∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)𝑑𝑡, (2.4)

and assume that 𝑈(𝑥) < ∞, 𝑉 (𝑥) < ∞ for every 𝑥 ∈ (0, 𝑏).
The index 𝑀𝐵 in 𝐴𝑀𝐵 := sup

0<𝑥<𝑏
𝑈1/𝑞(𝑥)𝑉 1/𝑝′(𝑥) indicates the efforts of

B. Muckenhoupt and J.S. Bradley. In 1972 B. Muckenhoupt [11] gave a nice proof
of the fact that 𝐴𝑀𝐵 < ∞ is necessary and sufficient for (1.1) to hold for the case
𝑝 = 𝑞 and in 1978 J.S. Bradley [1] extended the Muckenhoupt result to the case
𝑝 ≤ 𝑞 and gave a complete and simple proof of Muckenhoupt type of this result.
However, this result was also independently derived in 1979 by V. Maz’ya and
L. Rozin (see [9] and [10]) and by V. Kokilashvili (see [5]).
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Besides the condition 𝐴𝑀𝐵 < ∞, some other equivalent conditions have been
derived during the next decades, e.g., the conditions 𝐴𝐺 < ∞ or 𝐴∗

𝐺 < ∞, where

𝐴𝐺 := inf
ℎ>0

sup
0<𝑥<𝑏

(
1

ℎ(𝑥)

∫ 𝑥
0

𝑢(𝑡)(ℎ(𝑡) + 𝑉 (𝑡))
𝑞

𝑝′+1𝑑𝑡

)1/𝑞

;

𝐴∗
𝐺 := inf

ℎ>0
sup

0<𝑥<𝑏

(
1

ℎ(𝑥)

∫ 𝑏
𝑥

𝑣1−𝑝
′
(𝑡)(ℎ(𝑡) + 𝑈(𝑡))

𝑝′
𝑞 +1𝑑𝑡

)1/𝑝′

.

(2.5)

This result was proved by P. Gurka in 1984 in [4]; he extended to the case 𝑝 ≤ 𝑞
the result proved for 𝑝 = 𝑞 in 1969 by G.A. Tomaselli [17].

Some other alternative conditions are that 𝐴𝑃𝑆 < ∞ or 𝐴∗
𝑃𝑆 < ∞, where

𝐴𝑃𝑆 := sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑢(𝑡)𝑉 𝑞(𝑡)𝑑𝑡

)1/𝑞

𝑉 −1/𝑝(𝑥);

𝐴∗
𝑃𝑆 := sup

0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑣1−𝑝
′
(𝑡)𝑈𝑝

′
(𝑡)𝑑𝑡

)1/𝑝′

𝑈−1/𝑞′(𝑥).

(2.6)

This result was proved in 2002 in [13] by L.E. Persson and V. Stepanov but as we
have seen it was proved for the case 𝑝 = 𝑞 already in 1969 in [17].

Moreover, for the best constant 𝐶 in (1.1) it yields that

𝐶 ≈ 𝐴𝑀𝐵 ≈ 𝐴𝐺 ≈ 𝐴∗
𝐺 ≈ 𝐴𝑃𝑆 ≈ 𝐴∗

𝑃𝑆 .

2c) The case 1 ≤ 𝒒 < 𝒑 < ∞. A necessary and sufficient condition for (1.1) to
hold in this case was derived by V. Maz’ya and L. Rozin in the late seventies (see
[9] and [10]) and it reads:

𝐵𝑀𝑅 :=

(∫ ∞

0

𝑈 𝑟/𝑝(𝑥)𝑉 𝑟/𝑝
′
(𝑥)𝑢(𝑥)𝑑𝑥

)1/𝑟

< ∞, (2.7)

where 1/𝑟 := 1/𝑞 − 1/𝑝. An alternative condition was found by L.E. Persson and
V. Stepanov in 2002 (see [13]) and it reads:

𝐵𝑃𝑆 :=

(∫ ∞

0

[∫ 𝑥
0

𝑢(𝑡)𝑉 𝑞(𝑡)𝑑𝑡

]𝑟/𝑝
𝑢(𝑥)𝑉 𝑞−𝑟/𝑝(𝑥) 𝑑𝑥

)1/𝑟

< ∞. (2.8)

Moreover, for the best constant 𝐶 in (1.1) it yields that

𝐶 ≈ 𝐵𝑀𝑅 ≈ 𝐵𝑃𝑆 .

Some complementary history to this section can be found in the book [6]; see also
[7] and [12].
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3. Unification and extensions: Scales of conditions

3a) The case 1 < 𝒑 ≤ 𝒒. The first scale of conditions was derived in 2004 in [8]
by A. Kufner, L.E. Persson and A. Wedestig. It reads 𝐴(𝑟) < ∞ (with 1 < 𝑟 < 𝑝)
or 𝐴∗(𝑟) < ∞ (with 1 < 𝑟 < 𝑞′), where

𝐴(𝑟) := sup
0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑢(𝑡)𝑉 𝑞(𝑝−𝑟)/𝑝(𝑡)𝑑𝑡

)1/𝑞

𝑉 (𝑟−1)/𝑝(𝑥), 1 < 𝑟 < 𝑝; (3.1)

𝐴∗(𝑟) := sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)𝑈𝑝

′(𝑞′−𝑟)/𝑞′(𝑡)𝑑𝑡
)1/𝑝′

𝑈 (𝑟−1)/𝑞′(𝑥), 1 < 𝑟 < 𝑞′.

Note that the end point condition 𝐴(𝑝) < ∞ is just the Muckenhoupt-Bradley
condition 𝐴𝑀𝐵 < ∞ mentioned above.

In 2004 in [3] four new scales of equivalent integral conditions were derived
by A. Gogatishvili et al. This result was used to characterize the inequality (1.1)
by four scales of conditions, namely the scales including the Muckenhoupt-Bradley
condition, the Persson-Stepanov condition and the dual of these scales.

Here, we will present, discuss and extend the existing list of (equivalent) scales
with 10 new scales of conditions where also, e.g., the Gurka result mentioned above
(see [7]) appears as a special case.

Theorem 3.1. Let 1 < 𝑝 ≤ 𝑞 < ∞, 0 < 𝑠 < ∞, and define, for the weight functions
𝑢, 𝑣, the functions 𝑈 and 𝑉 by (2.4), and the functions 𝐴𝑖(𝑠), 𝑖 = 1, 2, . . . , 14, as
follows:

𝐴1(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑢(𝑡)𝑉
𝑞( 1

𝑝′ −𝑠)(𝑡)𝑑𝑡

)1/𝑞

𝑉 𝑠(𝑥); (3.2)

𝐴2(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)𝑈𝑝

′( 1
𝑞−𝑠)(𝑡)𝑑𝑡

)1/𝑝′

𝑈𝑠(𝑥);

𝐴3(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑢(𝑡)𝑉
𝑞( 1

𝑝′ +𝑠)(𝑡)𝑑𝑡

)1/𝑞

𝑉 −𝑠(𝑥);

𝐴4(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑣1−𝑝
′
(𝑡)𝑈𝑝

′( 1
𝑞+𝑠)(𝑡)𝑑𝑡

)1/𝑝′

𝑈−𝑠(𝑥);

𝐴5(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑢(𝑡)𝑉
𝑞

𝑝′(1+𝑠𝑞) (𝑡)𝑑𝑡

) 1+𝑠𝑞
𝑞

𝑈−𝑠(𝑥);

𝐴6(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)𝑈

𝑝′
𝑞(1+𝑠𝑝′) (𝑡)𝑑𝑡

) 1+𝑠𝑝′
𝑝′

𝑉 −𝑠(𝑥);

𝐴7(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑢(𝑡)𝑉
𝑞

𝑝′(1−𝑠𝑞) (𝑡)𝑑𝑡

) 1−𝑠𝑞
𝑞

𝑈𝑠(𝑥), 𝑞𝑠 < 1;
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𝐴8(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑢(𝑡)𝑉
𝑞

𝑝′(1−𝑠𝑞) (𝑡)𝑑𝑡

) 1−𝑠𝑞
𝑞

𝑈𝑠(𝑥), 𝑞𝑠 > 1;

𝐴9(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑣1−𝑝
′
(𝑡)𝑈

𝑝′
𝑞(1−𝑠𝑝′) (𝑡)𝑑𝑡

) 1−𝑠𝑝′
𝑝′

𝑉 𝑠(𝑥), 𝑝′𝑠 < 1;

𝐴10(𝑠) := sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)𝑈

𝑝′
𝑞(1−𝑠𝑝′) (𝑡)𝑑𝑡

) 1−𝑠𝑝′
𝑝′

𝑉 𝑠(𝑥), 𝑝′𝑠 > 1;

𝐴11(𝑠) := inf
ℎ>0

sup
0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑢(𝑡)ℎ(𝑡)
𝑞( 1

𝑝′ −𝑠)𝑑𝑡

)1/𝑞

(ℎ(𝑥) + 𝑉 (𝑥))𝑠, 𝑝′𝑠 > 1;

𝐴12(𝑠) := inf
ℎ>0

sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)ℎ(𝑡)𝑝

′( 1
𝑞−𝑠)𝑑𝑡

)1/𝑝′

(ℎ(𝑥) + 𝑈(𝑥))𝑠, 𝑞𝑠 > 1;

𝐴13(𝑠) := inf
ℎ>0

sup
0<𝑥<𝑏

(∫ 𝑥
0

𝑢(𝑡)(ℎ(𝑡) + 𝑉 (𝑡))
𝑞( 1

𝑝′+𝑠)𝑑𝑡

)1/𝑞

ℎ−𝑠(𝑥);

𝐴14(𝑠) := inf
ℎ>0

sup
0<𝑥<𝑏

(∫ 𝑏
𝑥

𝑣1−𝑝
′
(𝑡)(ℎ(𝑡) + 𝑈(𝑡))𝑝

′( 1
𝑞+𝑠)(𝑡)

)1/𝑝′

ℎ−𝑠(𝑥).

Then the Hardy inequality (1.1) holds for all measurable functions 𝑓 ≥ 0 if
and only if any of the quantities 𝐴𝑖(𝑠), 𝑖 = 1, 2, 3, . . . , 14, is finite for some
0 < 𝑠 < ∞. Moreover, for the best constant 𝐶 in (1.1) we have 𝐶 ≈ 𝐴𝑖(𝑠),
𝑖 = 1, 2, 3, . . . , 14. The constants in the equivalence relations can depend on 𝑠.

Remark 3.2. The constants in (2.2), (2.5) (2.6) and (3.1) can be described in the
following way:

𝐴𝑀𝐵 = 𝐴1

(
1

𝑝′

)
, 𝐴𝑃𝑆 = 𝐴3

(
1

𝑝

)
, 𝐴(𝑟) = 𝐴1

(
𝑟 − 1

𝑝

)
with 1 < 𝑟 < 𝑝,

𝐴∗
𝑃𝑆 = 𝐴4

(
1

𝑞′

)
, 𝐴∗(𝑟) = 𝐴2

(
𝑟 − 1

𝑞′

)
with 1 < 𝑟 < 𝑞′,

𝐴𝐺 = 𝐴13

(
1

𝑞

)
, 𝐴∗

𝐺 = 𝐴14

(
1

𝑝′

)
.

Hence, Theorem 3.1 generalizes the corresponding results in [3] and [8] and also
all previous results of this type.

The first 4 scales were those proved in [3] and the scale in [8] is just the
interval to the left of the Muckenhoupt-Bradley point (see Figure 1). The proof of
Theorem 3.1 can be found in [2].

3b) The case 0 < 𝒒 < 𝒑 < ∞, 𝒑 > 1, 𝒒 ∕= 1. The main result here (Theorem
3.3) is taken from the paper [14] by L.E. Persson, V. Stepanov and P. Wall, where
the complete proof and further information can be found. We remark that there
is a substantial difference with the case 1 < 𝑝 ≤ 𝑞 < ∞, because no duality exists
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for 0 < 𝑞 < 1 < 𝑝 < ∞. Moreover, also in the case 1 < 𝑞 < 𝑝 < ∞ we have only
found 4 different scales of conditions corresponding to the first four conditions in
Theorem 2.1. For simplicity we here also only consider the case 𝑏 = ∞.

For simplicity we again suppose (see [6]) the following concerning the involved
weight functions:

0 < 𝑈(𝑥) :=

∫ ∞

𝑥

𝑢(𝑡)𝑑𝑡 < ∞, 0 < 𝑉 (𝑥) :=

∫ 𝑥
0

𝑣1−𝑝
′
(𝑡)𝑑𝑡 < ∞ for all 𝑥 > 0.

(3.3)
Let 1/𝑟 := 1/𝑞 − 1/𝑝.

We now introduce the following scales of constants related to previous con-
stants and their dual ones:

For 𝑠 > 0 we define the following functionals:

𝐵
(1)
𝑀𝑅(𝑠) :=

(∫ ∞

0

[∫ ∞

𝑡

𝑢𝑉 𝑞(1/𝑝
′−𝑠)

]𝑟/𝑝
𝑉 𝑞(1/𝑝

′−𝑠)+𝑟𝑠(𝑡)𝑢(𝑡) 𝑑𝑡

)1/𝑟

,

𝐵
(1)
𝑃𝑆(𝑠) :=

(∫ ∞

0

[∫ 𝑡
0

𝑢𝑉 𝑞(1/𝑝
′+𝑠)

]𝑟/𝑝
𝑢(𝑡)𝑉 𝑞(1/𝑝

′+𝑠)−𝑠𝑟(𝑡) 𝑑𝑡

)1/𝑟

,

𝐵
(2)
𝑀𝑅(𝑠) :=

(∫ ∞

0

[∫ 𝑡
0

𝑈𝑝
′(1/𝑞−𝑠)𝑑𝑉

]𝑟/𝑝′
𝑈 𝑟𝑠−1(𝑡)𝑢(𝑡) 𝑑𝑡

)1/𝑟

,

𝐵
(2)
𝑃𝑆(𝑠) :=

(∫ ∞

0

[∫ ∞

𝑡

𝑈 𝑞(1/𝑝
′+𝑠)𝑑𝑉

]𝑟/𝑝
𝑈 𝑞(1/𝑝

′+𝑠)−𝑟𝑠(𝑡) 𝑑𝑉 (𝑡)

)1/𝑟

.

The main theorem in this case reads:

Theorem 3.3.

a) Let 0 < 𝑞 < 𝑝 < ∞, 1 < 𝑝 < ∞ and 𝑞 ∕= 1. Then the Hardy inequality (1.1)
with 𝑏 = ∞ holds for some finite constant 𝐶 ≥ 0 if and only if any of the

constants 𝐵
(1)
𝑀𝑅(𝑠) or 𝐵

(1)
𝑃𝑆(𝑠) is finite for some 𝑠 > 0. Moreover, for the best

constant 𝐶 in (1.1) we have

𝐶 ≈ 𝐵
(1)
𝑀𝑅(𝑠) ≈ 𝐵

(1)
𝑃𝑆(𝑠). (3.4)

b) Let 1 < 𝑞 < 𝑝 < ∞. Then the Hardy inequality (1.1) with 𝑏 = ∞ holds for

some finite constant 𝐶 > 0 if and only if any of the constants 𝐵
(2)
𝑀𝑅(𝑠) or

𝐵
(2)
𝑃𝑆(𝑠) is finite for some 𝑠 > 0. Moreover, for the best constant 𝐶 in (1.1)

we have

𝐶 ≈ 𝐵
(2)
𝑀𝑅(𝑠) ≈ 𝐵

(2)
𝑃𝑆(𝑠).

Remark 3.4. Note that Theorem 3.3 is a generalization of the original results of

Maz’ya-Rozin and Persson-Stepanov since 𝐵
(1)
𝑀𝑅(

1
𝑝′ ) = 𝐵𝑀𝑅 and 𝐵

(1)
𝑃𝑆(

1
𝑝 ) = 𝐵𝑃𝑆

(see Figure 2).
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Remark 3.5. The statement in b) is just a corollary of a statement similar as in
a) in a dual situation, namely when

∫ 𝑥
0 in inequality (1.1) is replaced by

∫∞
𝑥 (see

Theorem 2 in [13]).

Remark 3.6. It is known ([15], Remark on p. 93), that under the condition (3.3)
the Maz’ya-Rozin constant has an equivalent form

ℬ𝑀𝑅 :=
(∫ ∞

0

𝑈 𝑟/𝑞𝑉 𝑟/𝑞
′
𝑑𝑉

)1/𝑟

, and 𝐵𝑟𝑀𝑅 =
𝑞

𝑝′
ℬ𝑟𝑀𝑅.

Similarly, a counterpart to the Persson-Stepanov constant is

ℬ𝑃𝑆 :=
(∫ ∞

0

[∫ 𝑥
0

𝑢(𝑡)𝑉 𝑞(𝑡)𝑑𝑡

]𝑟/𝑞
𝑉 −𝑟/𝑞𝑑𝑉 (𝑥) 𝑑𝑥

)1/𝑟

.

Moreover (see [13])

𝐵𝑟𝑃𝑆 =
𝑞

𝑝
ℬ𝑟𝑃𝑆 if 𝑉 (∞) = ∞,

and

𝐵𝑟𝑃𝑆 =
𝑞

𝑟

(∫ ∞

0

𝑢𝑉 𝑞
)𝑟/𝑞

𝑉 −𝑟/𝑝(∞) +
𝑞

𝑝
ℬ𝑟𝑃𝑆 if 0 < 𝑉 (∞) < ∞.

These observations motivate us to introduce the following new alternative
scales of constants:

ℬ(1)
𝑀𝑅(𝑠) :=

(∫ ∞

0

[∫ ∞

𝑡

𝑢𝑉 𝑞(1/𝑝
′−𝑠)

]𝑟/𝑞
𝑉 𝑟𝑠−1(𝑡) 𝑑𝑉 (𝑡)

)1/𝑟

,

ℬ(1)
𝑃𝑆(𝑠) :=

(∫ ∞

0

[∫ 𝑡
0

𝑢𝑉 𝑞(1/𝑝
′+𝑠)

]𝑟/𝑞
𝑉 −𝑟𝑠−1(𝑡) 𝑑𝑉 (𝑡)

)1/𝑟

.

It can be proved as above that[
𝐵
(1)
𝑀𝑅(𝑠)

]𝑟
= 𝑞𝑠

[
ℬ(1)
𝑀𝑅(𝑠)

]𝑟
,[

𝐵
(1)
𝑃𝑆(𝑠)

]𝑟
= 𝑞𝑠

[
ℬ(1)
𝑃𝑆(𝑠)

]𝑟
if 𝑉 (∞) = ∞

and [
𝐵
(1)
𝑃𝑆(𝑠)

]𝑟
=

𝑞

𝑟

(∫ ∞

0

𝑢𝑉 𝑞(1/𝑝
′+𝑠)

)𝑟/𝑞
𝑉 −𝑟𝑠(∞) + 𝑞𝑠

[
ℬ(1)
𝑃𝑆(𝑠)

]𝑟
,

if 0 < 𝑉 (∞) < ∞. Similarly,[
𝐵
(2)
𝑀𝑅(𝑠)

]𝑟
=

1

𝑠𝑝′
[
ℬ(2)
𝑀𝑅(𝑠)

]𝑟
,

where

ℬ(2)
𝑀𝑅(𝑠) :=

(∫ ∞

0

[∫ 𝑡
0

𝑈𝑝
′(1/𝑞−𝑠)𝑑𝑉

]𝑟/𝑞′
𝑈𝑝

′(1/𝑞−𝑠)+𝑟𝑠(𝑡) 𝑑𝑉 (𝑡)

)1/𝑟
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and [
𝐵
(2)
𝑃𝑆(𝑠)

]𝑟
= 𝑞𝑠

[
ℬ(2)
𝑃𝑆(𝑠)

]𝑟
, 𝑈(0) = ∞,

[
𝐵
(2)
𝑃𝑆(𝑠)

]𝑟
=

𝑞

𝑟

(∫ ∞

0

𝑈 𝑞(1/𝑝
′+𝑠) 𝑑𝑉

)𝑟/𝑞
𝑈−𝑟𝑠(0) + 𝑞𝑠

[
ℬ(2)
𝑃𝑆(𝑠)

]𝑟
,

where 0 < 𝑈(0) < ∞, and

ℬ(2)
𝑃𝑆(𝑠) :=

(∫ ∞

0

[∫ ∞

𝑡

𝑈 𝑞(1/𝑝
′+𝑠)𝑑𝑉

]𝑟/𝑞
𝑈−𝑟𝑠−1(𝑡)𝑢(𝑡) 𝑑𝑡

)1/𝑟

.

Hence it is possible to complement Theorem 3.3 with some additional scales of
conditions.

4. Final discussion, examples and some illustrations

First we illustrate the various conditions for characterizing the inequality⎛⎝ 𝑏∫
0

⎛⎝ 𝑥∫
0

𝑓(𝑡) 𝑑𝑡

⎞⎠𝑞 𝑢(𝑥) 𝑑𝑥
⎞⎠

1
𝑞

≤ 𝐶

⎛⎝ 𝑏∫
0

𝑓𝑝(𝑥)𝑣(𝑥) 𝑑𝑥

⎞⎠
1
𝑝

,

which are stated and discussed in the previous sections.

The case 1 < 𝒑 ≤ 𝒒 < ∞ (Figure 1)

𝐴1(𝑠) < ∞𝐴(𝑟) 𝐴𝑀𝐵

𝐴𝑀𝐵 = 𝐴∗
𝑀𝐵𝐴∗(𝑟) 𝐴2(𝑠) < ∞

𝐴3(𝑠) < ∞𝐴𝑃𝑆

𝐴4(𝑠) < ∞𝐴∗
𝑃𝑆

��

𝑂
� 𝑠�

1
𝑝′

��
𝑂

� 𝑠�

1
𝑞′

��
𝑂 𝑠�

1
𝑝

��
𝑂 𝑠�

1
𝑞′
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𝐴12(𝑠) < ∞

𝐴14(𝑠) < ∞

𝐴𝐺

𝐴∗
𝐺

��

𝑂
� 𝑠�

1
𝑞

��
𝑂

� 𝑠�

1
𝑝′

The case 0 < 𝒒 < 𝒑 < ∞, 𝒑 > 1, 𝒒 ∕= 1 (Figure 2)

𝐵
(1)
𝑀𝑅(𝑠) < ∞𝐵𝑀𝑅

𝐵
(2)
𝑀𝑅(𝑠) < ∞

𝐵
(1)
𝑃𝑆(𝑠) < ∞𝐵𝑃𝑆

𝐵
(2)
𝑃𝑆(𝑠) < ∞𝐵∗

𝑃𝑆 < ∞

𝐵∗
𝑀𝑅

��

𝑂
�𝑠�

1
𝑝′

��
𝑂

�𝑠�

1
𝑞′

��
𝑂 𝑠�

1
𝑝

��
𝑂

�𝑠�

1
𝑝′

We have not given explicit estimates of the best constants 𝐶 in (1.1). We
shall continue by shortly discussing also this important aspect. First we note that
by analyzing the proof of the theorems in this review paper we can state also some
estimates of the best constants 𝐶 in (1.1). By then just using these estimates we
conclude that 𝛼 ≤ 𝐶 ≤ 𝛽, where 𝛼 is the maximum of all lower estimates of 𝐶
and 𝛽 is the minimum of all upper estimates of 𝐶. We refer to the paper [8] and
the Ph.D. thesis [18], where this aspect was developed and illustrated via concrete
estimates and examples.

For example, for the condition 𝐴(𝑟) on the first scale in Figure 1 it yields
that

sup
1<𝑠<𝑝

⎛⎝
(
𝑝
𝑝−𝑠

)𝑝
(
𝑝
𝑝−𝑠

)𝑝
+ 1
𝑠−1

⎞⎠1/𝑝

𝐴(𝑠) ≤ 𝐶 ≤ inf
1<𝑠<𝑝

(
𝑝 − 1

𝑝 − 𝑠

)1/𝑝′

𝐴(𝑠), (4.1)

see [8], Theorem 1 and cf. [18]. Here and in the sequel 𝑝′ = 𝑝
𝑝−1 . Moreover, for

the condition 𝐴𝑀𝐵 at the right endpoint we have the standard estimate (see the
books [6, 7, 12])

𝐴𝑀𝐵 ≤ 𝐶 ≤ 𝐴𝑀𝐵 ⋅ 𝑘(𝑝, 𝑞), (4.2)



Weight Characterizations of Hardy-type Inequalities 271

where 𝑘(𝑝, 𝑞) =
(
1 + 𝑞

𝑝′

)1/𝑞 (
1 + 𝑝′

𝑞

)1/𝑝′
. Later on V.M. Manakov improved this

constant to

𝑘(𝑝, 𝑞) =

⎛⎝ Γ
(
𝑝𝑞
𝑞−𝑝

)
Γ
(
𝑞
𝑞−𝑝

)
Γ
(
𝑝(𝑞−1)
𝑞−𝑝

)
⎞⎠

𝑞−𝑝
𝑞𝑝

, 𝑝 < 𝑞.

Concerning the condition 𝐴𝑃𝑆 we have the following estimate (see [13, Theo-
rem 1]):

𝐴𝑃𝑆 ≤ 𝐶 ≤ 𝑝′ 𝐴𝑃𝑆 . (4.3)

By using this information and making elementary estimates we can see that
by using 𝐴𝑃𝑆 we get that

𝐴𝑀𝐵 ⋅ (𝑝 − 1)1/𝑞 ≤ 𝐶 ≤ 𝐴𝑀𝐵 ⋅ 𝑝′(𝑝 − 1)1/𝑞, (4.4)

see [18], p. 29. In particular, this always improves the lower bound in (4.2) for all
𝑝 > 2. We only give the following elementary example how this information can
be used:

Example 1 (cf. [18], Example 3.1). Let 𝑝 = 3, 𝑞 = 4 and choose 𝑠 = 1.15 in the
lower bound in (4.1). Then we obtain the following estimates:

a) 𝐴𝑀𝐵 ≤ 𝐶 ≤ 𝐴𝑀𝐵 ⋅ 1.530348452,
by using (4.2) with Manakov’s constant.

b) 𝐴𝑀𝐵 ⋅ 1.189207115≤ 𝐶,

by using (4.3).

c) 𝐴𝑀𝐵 ⋅ 1.396254480≤ 𝐶,

by using the scale of conditions in (4.1).

Summing up, we find that

𝐴𝑀𝐵 ⋅ 1.396254480≤ 𝐶 ≤ 𝐴𝑀𝐵 ⋅ 1.530348452
which is a better estimate than those we can find in the standard books (see
[6, 7, 12]).

We have also mentioned that alternative conditions for characterizing (1.1)
are useful for deriving limit cases of Hardy-type inequalities. To illustrate this idea
we first give the following elementary example.

Example 2. The classical form of Hardy’s inequality reads:∫ ∞

0

(
1

𝑥

∫ 𝑥
0

𝑓(𝑦)𝑑𝑦

)𝑝
𝑑𝑥 ≤

(
𝑝

𝑝 − 1

)𝑝 ∫ ∞

0

𝑓𝑝(𝑥)𝑑𝑥, 𝑝 > 1. (4.5)

This inequality was stated in 1920 and proved in 1925 by G.H. Hardy. The constant

𝐶 =
(
𝑝
𝑝−1

)𝑝
is sharp.

Replacing 𝑓(𝑥) by (𝑓(𝑥))1/𝑝 in (4.5) we find that∫ ∞

0

(
1

𝑥

∫ 𝑥
0

(𝑓(𝑦))1/𝑝𝑑𝑦

)𝑝
𝑑𝑥 ≤

(
𝑝

𝑝 − 1

)𝑝 ∫ ∞

0

𝑓(𝑥)𝑑𝑥, 𝑝 > 1.
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By now letting 𝑝 → ∞ we find that(
1

𝑥

∫ 𝑥
0

(𝑓(𝑦))1/𝑝𝑑𝑦

)𝑝
→ exp

(
1

𝑥

∫ 𝑥
0

ln 𝑓(𝑦)𝑑𝑦

)
, and

(
𝑝

𝑝 − 1

)𝑝
→ 𝑒

(the scale of Power means converges to the geometric mean when 𝑝 → ∞). Hence,
we find that the inequality∫ ∞

0

exp

(
1

𝑥

∫ 𝑥
0

ln 𝑓(𝑦)𝑑𝑦

)
𝑑𝑥 ≤ 𝑒

∫ ∞

0

𝑓(𝑥)𝑑𝑥 (4.6)

may be regarded as a limit case of (4.5).
In fact, (4.6) is known in the literature as the Pólya-Knopp inequality but

the relation above is not always pointed out. The constant 𝐶 = 𝑒 in (4.6) is sharp.

Guided by this example it is natural to find a characterization of the inequal-
ity (1.1) with the arithmetic mean operator 𝐻𝑓(𝑥) := 1

𝑥

∫ 𝑥
0
ln 𝑓(𝑦)𝑑𝑦 replaced by

the geometric mean operator 𝐺𝑓(𝑥) := exp
(
1
𝑥

∫ 𝑥
0
ln 𝑓(𝑦)𝑑𝑦

)
via some limit proce-

dure like that in Example 2.
However, this is impossible by using the standard 𝐴𝑀𝐵 condition. This was

the motivation when Persson and Stepanov derived the alternative condition 𝐴𝑃𝑆
in [13]. In fact, by using this condition the suggested limit algorithm above works
perfectly and the following result can be proved (cf. [13], Theorem 2): Let 0 < 𝑝 ≤
𝑞 < ∞. Then the inequality(∫ 𝑏

0

(
exp

(
1

𝑥

∫ 𝑥
0

ln 𝑓(𝑦)𝑑𝑦

))𝑞
𝑢(𝑥)𝑑𝑥

)1/𝑞

≤ 𝐶

(∫ 𝑏
0

𝑓𝑝(𝑥)𝑣(𝑥)𝑑𝑥

)1/𝑝

(4.7)

holds if and only if

𝐷 := sup
0<𝑥<𝑏

𝑥−1/𝑝
(∫ 𝑥

0

𝑤(𝑦)𝑑𝑦

)1/𝑞

< ∞, (4.8)

where

𝑤(𝑥) :=

[
𝐺

(
1

𝑣(𝑥)

)]𝑞/𝑝
𝑢(𝑥).

Moreover, 𝐷 ≤ 𝐶 ≤ 𝑒1/𝑝𝐷.

Example 3. By using this result with 𝑣(𝑥) ≡ 𝑢(𝑥) ≡ 1, 𝑏 = ∞ and 𝑝 = 𝑞 = 1 we
see that 𝑤(𝑦) ≡ 1 so that 𝐷 = 1 and we obtain (4.6).
Moreover, by considering the Hardy inequality (1.1) with 𝑏 = ∞, 𝑢(𝑥) ≡ 𝑥−𝑝,
𝑣(𝑥) ≡ 1 and 𝑝 = 𝑞 > 1 and using (2.6) we find that 𝐴𝑃𝑆 = 1 and via the
corresponding estimate (4.3) we obtain (4.5). This fact does not follow by using
the condition 𝐴𝑀𝐵 with the corresponding estimate (4.2).

In the Ph.D. thesis [18] it was proved that also by using the scale 𝐴(𝑠),
1 < 𝑠 < 𝑝, in Figure 1 it is possible to obtain other characterizations of the
inequality (4.7) (see [18], Theorem 3.2).
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Abstract. The method of sub- and super-solutions is a classical tool in the
theory of second-order differential equations. It is known that this method
does not have a direct extension to almost periodic equations. We show that
if an almost periodic second-order semi-linear elliptic equation possesses an
ordered pair of almost periodic sub- and super-solutions, then very many
equations in the envelope have either almost automorphic solutions, or Besi-
covitch almost periodic solutions. In addition, we provide an application to
almost periodically forced pendulum equations.
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1. Introduction

The method of sub- and super-solutions (alternative terms are upper and lower
solutions) is a popular and powerful tool in the existence theory of boundary value
problems for which a maximum principle holds. In the framework of ordinary dif-
ferential equations basic ideas can be traced back to E. Picard and O. Perron.
Since that time hundreds papers have been published in this direction. A detailed
account of the existing results in the case of ordinary differential equations can be
found in [3] (see also references therein). The method extends to elliptic and para-
bolic partial differential equations. Simplest results of such kind can be found, e.g.,
in [2, Ch. IV, Appendix] and [21, Ch. 1]. For further development and applications
to real world problems we refer to [11, 24] and references therein.

In particular, the sub- and super-solution method provides results on exis-
tence of solutions to periodic boundary value problems, both in one and many
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spatial dimensions. Therefore, it is quite natural to try to develop the method
for existence of almost periodic solutions to almost periodic differential equations.
First results in the case of nonlinear ordinary differential equations have been ob-
tained by M. Krasnosel’skii, V. Burd and Yu. Kolesov [8, Sect. 10] by using the
theory of monotone operators. Those authors found existence results for almost
periodic solutions under certain assumptions that, in particular, guarantee the
uniqueness of the solution.

In 1983 A. Pankov [19] (see also [20, Sect. 5.1.2]) has considered almost
periodic semi-linear elliptic equations of second order. Assuming the existence of
a properly ordered pair of sub- and super-solutions, he was able to prove the
existence of a very weak almost periodic solution in the sense of Besicovitch-
Sobolev spaces. This solution is almost periodic in classical sense under certain
additional assumptions that ensure the uniqueness of solution.

In the case of ordinary differential equations, the authors of [22] made an
attempt to prove that an ordered pair of Bohr almost periodic sub- and super-
solutions gives rise to the existence of a Bohr almost periodic solution without
any uniqueness assumption. Unfortunately, that result is wrong. R. Ortega and
M. Tarallo [18] have constructed an example of almost periodic equation of the
form

−𝑢′′ + 𝑐𝑢 = 𝑔(𝑡, 𝑢)

that possesses an ordered pair of constant sub- and super-solutions, but has no
almost periodic solution between them. Actually, in their example the function 𝑔
is quasi-periodic in 𝑡 with two independent frequencies.

Our main aim in this paper is to understand what happens if there are
ordered sub- and super-solutions, but the uniqueness does not hold. Basically,
we prove that in the envelop of the equation under consideration there exist a
residual set Ω𝑎𝑎 and a set of full measure Ω𝑏 such that for every equation in Ω𝑎𝑎
there is an almost automorphic solution, while equations in Ω𝑏 possess bounded
almost periodic in the sense of Besicovitch solutions. We do not know whether
at least one equation in the envelop has a solution that is, at the same time,
almost automorphic and almost periodic in Besicovitch sense, i.e., Ω𝑎𝑎

∩
Ω𝑏 ∕= ∅.

In addition, we weaken regularity assumptions made in [19] and show that the
frequency modulus of solution obtained is contained in the frequency modulus of
the equation. Let us point out that the main ingredients of the paper are monotone
iteration techniques and the metrizability of appropriate Bohr compactifications.

The organization of the paper is as follows. In Section 2 we sketch basic facts
on Bohr almost periodic functions. Our approach is based on the notion of Bohr
compactification and follows [20, 23]. A standard presentation of the theory can be
found in [12]. In Section 3 we remind the notion of almost automorphy (see, e.g.,
[15, 16] for more details) and prove a technical result needed later on. Section 4 is
devoted to a brief account of Besicovitch almost periodicity. In Section 5 we study
almost periodic second-order elliptic equations. The main result of the section,
Theorem 5.1, provides sufficient conditions for the existence of almost periodic
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solutions, including the modulus containment property. The central part of the
paper is Section 6 in which the main result, Theorem 6.1, is proven. In Theorem 6.2
we give certain sufficient conditions for the existence of constant sub- and super-
solutions. In addition, we show that if each equation in the envelop has at most
one bounded solution, the solution constructed in Theorem 6.1 is almost periodic
in the sense of Bohr. In Section 7 we give an application of Theorem 6.1 to the
pendulum equation with almost periodic forcing term.

Note that to simplify the notation we often denote by 𝐶 a generic positive
constant.

2. Bohr almost periodic functions and Bohr compactification

Let 𝐶𝑏(ℝ
𝑛) denote the space of all bounded continuous functions on ℝ𝑛. Endowed

with the norm

∥𝑓∥ = sup
𝑥∈ℝ𝑛

∣𝑓(𝑥)∣ ,

this is a Banach space. According to the Bochner definition, a function 𝑓 ∈ 𝐶𝑏(ℝ
𝑛)

is almost periodic (shortly, a.p.) in the sense of Bohr if the family of shifts {𝑓(⋅+
𝑦)}𝑦∈ℝ𝑛 is precompact in 𝐶𝑏(ℝ

𝑛). The set of all a.p. functions is a closed linear
subspace of 𝐶𝑏(ℝ

𝑛), hence, a Banach space. We denote by 𝐶𝐴𝑃 (ℝ𝑛) the space of
all almost periodic functions on ℝ𝑛.

An important property of a.p. functions is the existence of mean value. Let

𝐾𝑇 = {𝑥 ∈ ℝ𝑛 : ∣𝑥𝑘∣ ≤ 𝑇, 𝑘 = 1, 2, . . . , 𝑘} .

The mean value of an almost periodic function 𝑓 is defined by

⟨𝑓⟩ = lim
𝑇→∞

1

(2𝑇 )𝑛

∫
𝑎+𝐾𝑇

𝑓(𝑥) 𝑑𝑥 . (2.1)

The limit in (2.1) exists uniformly with respect to 𝑎 ∈ ℝ𝑛 and is independent of 𝑎.

The following statement is often considered as the main result on almost
periodic functions. Let Trig(ℝ𝑛) be the space of all trigonometric polynomials,
i.e., finite sums of the form ∑

𝑎𝑗 exp(i𝜉𝑗 ⋅ 𝑥) ,
where 𝑎𝑗 ∈ ℂ, 𝜉𝑗 ∈ ℝ𝑛 and

𝑥 ⋅ 𝑦 =
𝑛∑
𝑘=1

𝑥𝑘𝑦𝑘

is the standard dot product in ℝ𝑛.

Proposition 2.1 (Approximation Theorem). The space Trig(ℝ𝑛) is a dense sub-
space of the Banach space 𝐶𝐴𝑃 (ℝ𝑛).

See [20, Proposition 1.3 of Ch. 1].
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The Fourier-Bohr transform of an almost periodic function 𝑓 is defined by

𝑓(𝜉) = ⟨𝑓(𝑥) exp(−i𝜉 ⋅ 𝑥)⟩ . (2.2)

The set

𝜎(𝑓) = {𝜉 ∈ ℝ𝑛 : 𝑓(𝜉) ∕= 0} (2.3)

is called the spectrum of an almost periodic function 𝑓 . It follows immediately from
Proposition 2.1 that, for any a.p. function 𝑓 , the set 𝜎(𝑓) is at most countable.
The additive subgroup Mod(𝑓) of ℝ𝑛 generated by 𝜎(𝑓) is called the modulus of
the function 𝑓 .

Now we give a brief description of Bohr compactifications of the (additive
group of) space ℝ𝑛. The standard approach uses Pontryagin’s duality theory (see,
e.g., [7, Ch. 6] for a detailed presentation of the theory of locally compact abelian
groups including Pontryagin’s duality). Consider ℝ𝑛 as a locally compact abelian
group. Its dual group, (ℝ𝑛)′, consists of all characters which are, in this case,
functions of the form exp(i𝜉 ⋅ 𝑥). The correspondence exp(i𝜉 ⋅ 𝑥) �→ 𝜉 is an isomor-
phisms (ℝ𝑛)′ ≃ ℝ𝑛. Denote by (ℝ𝑛)′𝑑 the group (ℝ

𝑛)′ endowed with the discrete
topology. We set ℝ𝑛𝐵 = ((ℝ𝑛)′𝑑)

′. This is a compact abelian group called the Bohr
compactification of ℝ𝑛. Also we introduce the dual homomorphism

𝑖𝐵 : ℝ
𝑛 = (ℝ𝑛)′′ → ℝ𝑛𝐵 = ((ℝ𝑛)′𝑑)

′

to the identity homomorphism (ℝ𝑛)′𝑑 → (ℝ𝑛)′. The homomorphism 𝑖𝐵 is injective
and its image 𝑖𝐵(ℝ

𝑛) is a dense subgroup in ℝ𝑛𝐵.
In what follows, we need a more general notion of relative Bohr compactifi-

cation. Let Γ ⊆ (ℝ𝑛)′ be an nonzero additive subgroup considered as a discrete
group (later on we always suppose that Γ ∕= {0}). The Bohr compactification of
ℝ𝑛 relative to Γ is defined as ℝ𝑛𝐵,Γ = Γ′. The homomorphism

𝑖𝐵,Γ : ℝ
𝑛 → ℝ𝑛𝐵,Γ

is defined as the dual to the identity map Γ → ℝ𝑛. Its image is still a dense
subgroup of ℝ𝑛𝐵,Γ. The kernel ker 𝑖𝐵,Γ is a linear subspace of ℝ

𝑛 orthogonal to the

linear subspace of (ℝ𝑛)′ generated by Γ. If Γ = (ℝ𝑛)′, we return to the original
Bohr compactification.

The main result on Bohr compactifications is the following

Proposition 2.2. A function 𝑓 on ℝ𝑛 is almost periodic, with Mod(𝑓) ⊆ Γ, if and
only if 𝑓 is of the form

𝑓(𝑥) = 𝑓(𝑖𝐵,Γ𝑥) ,

where 𝑓 is a (unique) continuous function on ℝ𝑛𝐵,Γ.

See [20, Proposition 3.5 of Ch. 1]

Let 𝑓 be an a.p. function and Γ ⊇ Mod(𝑓). We use 𝑓 as a standard notation
for the function on the Bohr compactification given in Proposition 2.2. For any
𝑠 ∈ ℝ𝑛𝐵,Γ, we set

𝑓 (𝑠)(𝑥) = 𝑓(𝑠+ 𝑖𝐵,Γ𝑥) , 𝑥 ∈ ℝ𝑛 .
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Notice, that the map 𝑠 �→ 𝑓 (𝑠) is a continuous map from ℝ𝑛𝐵,Γ into 𝐶𝐴𝑃 (ℝ𝑛). The

set of a.p. functions 𝐻(𝑓) = {𝑓 (𝑠)}𝑠∈ℝ𝑛𝐵,Γ
is called the envelope of 𝑓 . The envelope

𝐻(𝑓) is independent of the choice of Γ ⊇ Mod(𝑓). Actually, 𝐻(𝑓) is the closure of
the set of shifts {𝑓(⋅+𝑦)}𝑦∈ℝ𝑛. In classical literature the later property is accepted
as the definition of the envelope.

Also let us point out that, for any additive subgroup Γ ⊆ ℝ𝑛,

𝐶𝐴𝑃Γ(ℝ
𝑛) = {𝑓 ∈ 𝐶𝐴𝑃 (ℝ𝑛) : Mod(𝑓) ⊆ Γ}

is a closed linear subspace of 𝐶𝐴𝑃 (ℝ𝑛). By Proposition 2.2, the operator 𝐽Γ : 𝑓 �→
𝑓 is an isometric isomorphism from the Banach space 𝐶𝐴𝑃Γ(ℝ

𝑛) onto the Banach
space 𝐶(ℝ𝑛𝐵,Γ).

Now we complement Proposition 2.2 with the following result that expresses
the mean value of an almost periodic function in terms of Bohr compactification
(see [20, 23]). Let 𝜇 = 𝜇Γ be the Haar measure on ℝ𝑛𝐵,Γ, i.e., a unique positive

translation invariant measure such that 𝜇(ℝ𝑛𝐵,Γ) = 1 (see, e.g., [7, Ch. 4]).

Proposition 2.3. For every 𝑓 ∈ 𝐶𝐴𝑃Γ(ℝ
𝑛) we have

⟨𝑓⟩ =
∫
ℝ𝑛𝐵,Γ

𝑓(𝑠) 𝑑𝜇(𝑠) .

Also we need a refined version of Proposition 2.1.

Proposition 2.4. Given a countable subgroup Γ ⊆ ℝ𝑛, there exists a sequence of
trigonometric polynomials 𝑃𝑚(𝑥) with the following properties

(a) 𝑃𝑚(𝑥) ≥ 0 for all 𝑥 ∈ ℝ𝑛;
(b) ⟨𝑃𝑚⟩ = 1;
(c) For any 𝑓 ∈ 𝐶𝐴𝑃Γ(ℝ

𝑛), the sequence of trigonometric polynomials

𝑓𝑚(𝑥) = ⟨𝑓(𝑦)𝑃𝑚(𝑥 − 𝑦)⟩𝑦 = ⟨𝑓(𝑥 − 𝑦)𝑃𝑚(𝑦)⟩𝑦
belongs to 𝐶𝐴𝑃Γ(ℝ

𝑛) and converges to 𝑓 in that space.

For a proof we refer to [20, 23]. The trigonometric polynomials 𝑃𝑚 are called
the Bochner-Fejer kernels, while 𝑓𝑚 are the Bochner-Fejer approximations of 𝑓 .

It is known (see, e.g., [7, Section 24]) that a compact abelian group is metriz-
able if and only if its dual group is countable. Hence, the Bohr compactification
ℝ𝑛𝐵,Γ is metrizable whenever the subgroup Γ ⊆ ℝ𝑛 is countable. In the rest of
the paper we accept the following convention: the symbol Γ denotes a countable
subgroup of ℝ𝑛 so that ℝ𝑛𝐵,Γ is metrizable.

3. Almost automorphic functions

Let us remind the notion of almost automorphic function due to S. Bochner. For
details we refer to [15, 16] and references therein. A function 𝑓 ∈ 𝐶𝑏(ℝ

𝑛) is almost
automorphic if for every sequence 𝑦𝑘 ∈ ℝ𝑛 there exists a subsequence 𝑦𝑘′ such that
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the pointwise limit

lim 𝑓(𝑥+ 𝑦𝑘′) = 𝑔(𝑥) (3.1)

exists and

lim 𝑔(𝑥 − 𝑦𝑘′) = 𝑓(𝑥) (3.2)

pointwise. Note that the function 𝑔 in (3.1) is measurable, but not necessarily
continuous.

An almost automorphic function 𝑓 is uniformly almost automorphic if the
limits in (3.1) and (3.2) are uniform on compact subsets of ℝ𝑛, i.e., in the space
𝐶(ℝ𝑛) which is a Fréchet space. Equivalently, 𝑓 is uniformly almost automorphic
if all functions 𝑔 that appear in (3.1) are continuous (see [17]).

We denote by 𝐴𝐴(ℝ𝑛) (respectively, 𝐴𝐴𝑢(ℝ
𝑛)) the sets of all almost auto-

morphic (respectively, uniformly almost automorphic) functions on ℝ𝑛. These are
closed linear subspaces in 𝐶𝑏(ℝ

𝑛). Notice that

𝐶𝐴𝑃 (ℝ𝑛) ⊂ 𝐴𝐴𝑢(ℝ
𝑛) ⊂ 𝐴𝐴(ℝ𝑛)

and all the inclusions are strict.

Proposition 3.1. Let 𝑢̃ be a function on ℝ𝑛𝐵,Γ, where Γ ⊂ ℝ𝑛 is a countable sub-

group. Suppose that for all 𝑠 ∈ ℝ𝑛𝐵,Γ the function 𝑢(𝑠)(𝑥) = 𝑢̃(𝑠 + 𝑖𝐵,Γ𝑥) belongs

to 𝐶𝑏(ℝ
𝑛) and is uniformly continuous. If the map

𝑈 : ℝ𝑛𝐵,Γ ∋ 𝑠 �→ 𝑢(𝑠) ∈ 𝐶(ℝ𝑛)

is continuous at the point 𝑠0 ∈ ℝ𝑛𝐵,Γ, then 𝑈 is continuous at each point of the

orbit 𝑠0 + 𝑖𝐵,Γℝ
𝑛 and 𝑢(𝑠0) ∈ 𝐴𝐴𝑢(ℝ

𝑛).

Proof. Suppose that 𝑠′𝑚 → 𝑠′0 = 𝑠0 + 𝑡0 in ℝ𝑛𝐵,Γ, where 𝑡0 = 𝑖𝐵,Γ𝑥0. Then 𝑠𝑚 =

𝑠′𝑚 − 𝑡0 → 𝑠0 and, by continuity, 𝑢
(𝑠𝑚) → 𝑢(𝑠0) in the space 𝐶(ℝ𝑛). Hence,

𝑢(𝑠
′
𝑚)(⋅) = 𝑢(𝑠𝑚)(⋅+ 𝑥0) → 𝑢(𝑠0)(⋅+ 𝑥0) = 𝑢(𝑠

′
0)(⋅)

in 𝐶(ℝ𝑛), and the first statement of the proposition follows.

Denote by 𝑇 the closure of the set

{(𝑠0 + 𝑖𝐵,Γ𝑦, 𝑢
(𝑠0)(⋅+ 𝑦)) : 𝑦 ∈ ℝ𝑛}

in the space ℝ𝑛𝐵,Γ × 𝐶(ℝ𝑛). Since the function 𝑢(𝑠0) is bounded and uniformly
continuous, the Arzelà-Ascoli theorem implies that 𝑇 is a compact subset of ℝ𝑛𝐵,Γ×
𝐶(ℝ𝑛). The projection of 𝑇 on the first factor is a surjective map, while the image
𝐻 of the other projection is the closure of the set {𝑢(𝑠0)(⋅+ 𝑦) : 𝑦 ∈ ℝ𝑛} in 𝐶(ℝ𝑛),
the so-called hull of 𝑢(𝑠0). We set

𝐻𝑠 = {𝑓 ∈ 𝐶(ℝ𝑛) : (𝑠, 𝑓) ∈ 𝑇 }
for any 𝑠 ∈ ℝ𝑛𝐵,Γ. This is a non-empty closed subset of 𝑇 .
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First we show that 𝐻𝑠0 = {𝑢(𝑠0)}. Indeed, suppose that (𝑠0, 𝑓) ∈ 𝑇 . Then
there exists 𝑠𝑚 = 𝑖𝐵,Γ𝑥𝑚 such that 𝑠𝑚 → 0 in ℝ𝑛𝐵,Γ and

𝑢(𝑠0)(⋅+ 𝑥𝑚) = 𝑢(𝑠0+𝑠𝑚) → 𝑓 .

The continuity of 𝑈 at 𝑠0 implies that 𝑓 = 𝑢(𝑠0).
Now let us prove that the function 𝑢(𝑠0) is uniformly almost automorphic.

Since 𝑇 is compact, for any sequence 𝑡𝑚 = 𝑖𝐵,Γ𝑥𝑚, 𝑥𝑚 ∈ ℝ𝑛, there exists a

subsequence 𝑡𝑚′ such that 𝑠0 + 𝑡𝑚′ → 𝑡0 and 𝑡0 − 𝑡𝑚′ → 𝑠0 in ℝ𝑛𝐵,Γ, and 𝑢(𝑠0)(⋅+
𝑥𝑚′) → 𝑓 and 𝑓(⋅ − 𝑥𝑚′) → ℎ in 𝐶(ℝ𝑛). Since 𝑇 is closed, (𝑡0, 𝑓) ∈ 𝑇 and
(𝑠0, ℎ) ∈ 𝑇 ). Hence, ℎ ∈ 𝐻𝑠0 . Since 𝐻𝑠0 = {𝑢(𝑠0)}, we conclude that ℎ = 𝑢(𝑠0)

and, therefore, 𝑢(𝑠0) ∈ 𝐴𝐴𝑢(ℝ
𝑛). This completes the proof. □

4. Besicovitch almost periodic functions

Let 𝐿𝑝loc(ℝ
𝑛), 1 ≤ 𝑝 ≤ ∞, stand for the local Lebesgue space with the exponent 𝑝.

For any 𝑓 ∈ 𝐿𝑝loc(ℝ
𝑛), 𝑝 < ∞, we introduce the quantity

∥𝑓∥(𝑝) = lim sup
𝑇→∞

1

2𝑇

[∫
𝐾𝑇

∣𝑓(𝑥)∣𝑝 𝑑𝑥
]1/𝑝

. (4.1)

Functions with finite semi-norm ∥𝑓∥(𝑝) form the so-called Marcinkiewicz space
𝑀𝑝(ℝ𝑛). It is easily seen that 𝑀𝑝(ℝ𝑛) ⊆ 𝑀 𝑞(ℝ𝑛) whenever 𝑞 ≤ 𝑝.

A function 𝑓 ∈ 𝑀𝑝(ℝ𝑛), 𝑝 < ∞, is Besicovitch almost periodic, with the
exponent 𝑝, if there is a sequence 𝑓𝑛 ∈ 𝐶𝐴𝑃 (ℝ𝑛) such that

lim
𝑛→∞ ∥𝑓 − 𝑓𝑛∥(𝑝) = 0 .

The set of all such functions is denoted by 𝐵𝑝(ℝ𝑛). Obviously, 𝐵𝑝(ℝ𝑛) ⊆ 𝐵𝑞(ℝ𝑛)
if 𝑞 ≤ 𝑝. It is not difficult to verify that, for any 𝑓 ∈ 𝐵𝑝(ℝ𝑛), ‘lim sup’ in (4.1) can
be replaced by ‘lim’.

The spaces 𝑀𝑝(ℝ𝑛) and 𝐵𝑝(ℝ𝑛) are complete semi-normed spaces, but not
Banach spaces because the semi-norm ∥ ⋅ ∥(𝑝) has a nontrivial kernel.

For Besicovitch a.p. functions the definition of mean value given in (2.1)
makes sense. The only difference is that, in general, the limit is not uniform with
respect to 𝑎. Therefore, the notions of Fourier-Bohr transform and spectrum ex-
tend immediately to Besicovitch a.p. functions. Moreover, the spectrum is at most
countable. The modulus, Mod(𝑓), of a Besicovitch a.p. function 𝑓 is well defined
as well. Moreover, for any subgroup Γ ⊆ ℝ𝑛, we set

𝐵𝑝Γ(ℝ
𝑛) = {𝑓 ∈ 𝐵𝑝(ℝ𝑛) : Mod(𝑓) ⊆ Γ} .

Obviously, this is a linear subspace of 𝐵𝑝(ℝ𝑛) closed in the sense that if 𝑓𝑛 ∈
𝐵𝑝Γ(ℝ

𝑛) and ∥𝑓𝑛 − 𝑓∥(𝑝) → 0, then 𝑓 ∈ 𝐵𝑝Γ(ℝ
𝑛).

By Proposition 2.3, the operator 𝐽Γ initially defined on 𝐶𝐴𝑃Γ(ℝ
𝑛) extends

uniquely to an isometric epimorphism

𝐽Γ : 𝐵𝑝Γ(ℝ
𝑛) → 𝐿𝑝(ℝ𝑛𝐵,Γ) , 𝑝 ∈ [1,∞) .
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Its kernel consists of all functions 𝑓 ∈ 𝐵𝑝Γ(ℝ
𝑛) such that ∥𝑓∥(𝑝) = 0. However,

the relation between Besicovitch a.p. functions and functions on Bohr compacti-
fications is less straightforward than in the case of Bohr a.p. functions (Proposi-
tion 2.2). The following statement is a direct consequence of the Birkhoff ergodic
theorem (see, e.g., [4, Section VIII.7]).

Proposition 4.1. Suppose that 𝑓 ∈ 𝐿𝑝(ℝ𝑛𝐵,Γ). Then there exists a measurable subset

Ω ⊆ ℝ𝑛𝐵,Γ such that 𝜇(Ω) = 1, and for all 𝑠 ∈ Ω the function

𝑓 (𝑠)(𝑥) = 𝑓(𝑠+ 𝑖𝐵,Γ𝑥) , 𝑥 ∈ ℝ𝑛 ,

belongs to 𝐵𝑝Γ(ℝ
𝑛) and

⟨𝑓 (𝑠)⟩ =
∫
ℝ𝑛𝐵,Γ

𝑓(𝑧) 𝑑𝜇(𝑧) .

Now we notice that the Bochner-Fejer approximations introduced in Propo-
sition 2.4, (𝑐), make sense for Besicovitch a.p. functions. Moreover, the following
statement holds.

Proposition 4.2. If 𝑓 ∈ 𝐵𝑝Γ(ℝ
𝑛), 𝑝 ∈ [1,∞), and 𝑓𝑘 is the sequence of Bochner-

Fejer approximations for 𝑓 , then ∥𝑓 − 𝑓𝑘∥(𝑝) → 0 as 𝑘 → ∞.

See [20, Theorem 2.4 of Ch. 1].

Surprisingly enough, we did not find the following simple proposition in the
existing literature.

Proposition 4.3. Suppose that 𝑓 ∈ 𝐵1(ℝ𝑛) ∩ 𝐿∞(ℝ𝑛). Then 𝑓 ∈ 𝐵𝑝(ℝ𝑛) for all
𝑝 ∈ [1,∞).

Proof. Let Γ = Mod(𝑓) and 𝑓𝑘 be the sequence of Bochner-Fejer approximations
for 𝑓 . Making use of the properties of Bochner-Fejer kernels listed in Proposi-
tion 2.4, we deduce easily that

∥𝑓𝑘∥𝐿∞ ≤ ∥𝑓∥𝐿∞ .

Hence,

∥𝑓 − 𝑓𝑘∥𝑝(𝑝) = ⟨∣𝑓 − 𝑓𝑘∣𝑝⟩ = ⟨∣𝑓 − 𝑓𝑘∣∣𝑓 − 𝑓𝑘∣𝑝−1⟩ ≤ (2∥𝑓∥𝐿∞)𝑝−1∥𝑓 − 𝑓𝑘∥(1) .
This, together with Proposition 4.2, implies the required. □

5. Linear almost periodic problem

First we introduce certain functional spaces. For a detailed account of Hölder
spaces on an arbitrary, not necessarily bounded, domain we refer to [9, Section 3.1].
In this and subsequent sections we consider real-valued functions only. Let 𝛼 ∈
(0, 1). The space 𝐶𝛼𝑏 (ℝ

𝑛) consists of all functions 𝑓 ∈ 𝐶𝑏(ℝ
𝑛) that satisfy the

uniform Hölder condition with the exponent 𝛼:

[𝑓 ]𝛼 = sup
𝑥,𝑦∈ℝ𝑛,𝑥 ∕=𝑦

∣𝑓(𝑥)− 𝑓(𝑦)∣
∣𝑥 − 𝑦∣𝛼 < ∞ .
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This is a Banach space with respect to the norm

∥𝑓∥𝐶𝛼𝑏 = ∥𝑓∥+ [𝑓 ]𝛼 .

The space
𝐶𝐴𝑃𝛼(ℝ𝑛) = 𝐶𝐴𝑃 (ℝ𝑛) ∩ 𝐶𝛼𝑏 (ℝ

𝑛)

is a closed subspace of 𝐶𝛼𝑏 (ℝ
𝑛).

For any positive integer 𝑚, we denote by 𝐶𝑚𝑏 (ℝ
𝑛) the space of all functions

𝑓 ∈ 𝐶𝑏(ℝ
𝑛) such that all derivatives of 𝑓 up to order 𝑚 belong to 𝐶𝑏(ℝ

𝑛). This is
a Banach space with respect to the norm

∥𝑓∥𝐶𝑚
𝑏
=

𝑚∑
𝑘=0

∥𝐷𝑘𝑓∥ ,

where 𝐷𝑘𝑓 is a vector that consists of all 𝑘th derivatives of 𝑓 , 𝐷0𝑓 = 𝑓 . Similarly,
we denote by 𝐶𝐴𝑃𝑚(ℝ𝑛) the space of all a.p. functions having a.p. derivatives up
to order 𝑚. This is a closed subspace of 𝐶𝑚𝑏 (ℝ

𝑛).

Finally, the space 𝐶𝑚+𝛼𝑏 (ℝ𝑛) is the space of all functions 𝑓 ∈ 𝐶𝑚𝑏 (ℝ
𝑛) such

that 𝐷𝑚𝑓 ∈ 𝐶𝛼𝑏 (ℝ
𝑚). Endowed with the norm

∥𝑓∥𝐶𝑚+𝛼
𝑏

= ∥𝑓∥𝐶𝑚
𝑏
+ [𝐷𝑚𝑓 ]𝛼 ,

this is a Banach space. We set

𝐶𝐴𝑃𝑚+𝛼(ℝ𝑛) = 𝐶𝐴𝑃𝑚(ℝ𝑛) ∩ 𝐶𝑚+𝛼𝑏 (ℝ𝑛) .

This is a closed subspace of 𝐶𝑚+𝛼𝑏 (ℝ𝑛). Actually, it is easily seen that

𝐶𝐴𝑃𝑚+𝛼(ℝ𝑛) = 𝐶𝐴𝑃 (ℝ𝑛) ∩ 𝐶𝑚+𝛼𝑏 (ℝ𝑛) .

We use the following convention:

𝐶0
𝑏 (ℝ

𝑛) = 𝐶𝑏(ℝ
𝑛) and 𝐶𝐴𝑃 0(ℝ𝑛) = 𝐶𝐴𝑃 (ℝ𝑛) .

Now we consider second-order elliptic operators of the form

𝐴𝑢(𝑥) = −
𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)
∂2𝑢(𝑥)

∂𝑥𝑖∂𝑥𝑗
+

𝑛∑
𝑖=1

𝑏𝑖(𝑥)
∂𝑢(𝑥)

∂𝑥𝑖
+ 𝑐(𝑥)𝑢(𝑥) . (5.1)

More precisely, we assume that

(i) The matrix (𝑎𝑖𝑗) of leading coefficients is symmetric and there exists a con-
stant 𝜆0 > 0 such that

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 ≥ 𝜆0∣𝜉∣2

for all 𝜉 = (𝜉1, . . . , 𝜉𝑛) ∈ ℝ𝑛 and 𝑥 ∈ ℝ𝑛.

(ii) There exists a constant 𝑐0 > 0 such that 𝑐(𝑥) ≥ 𝑐0 for all 𝑥 ∈ ℝ𝑛.

We do not exclude the case when 𝑛 = 1. In this case, without loss of generality,
we may assume that the leading coefficient is equal to 1 and the operator becomes

𝐴𝑢(𝑥) = −𝑢′′(𝑥) + 𝑏(𝑥)𝑢′(𝑥) + 𝑐(𝑥)𝑢(𝑥) . (5.2)
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We start with the following

Proposition 5.1. Suppose that the operator 𝐴 satisfies (i) and (ii), and its coeffi-
cients belong to 𝐶𝛼𝑏 (ℝ

𝑛), with 𝛼 ∈ (0, 1) if 𝑛 > 1 and 𝛼 ∈ [0, 1) if 𝑛 = 1. Then for

any 𝑓 ∈ 𝐶𝛼𝑏 (ℝ
𝑛) there exists a unique solution 𝑢 ∈ 𝐶2+𝛼

𝑏 (ℝ𝑛) of the equation

𝐴𝑢 = 𝑓 . (5.3)

Moreover,

∥𝑢∥ ≤ 𝑐−10 ∥𝑓∥ , (5.4)

∥𝑢∥𝐶1
𝑏
≤ 𝐶∥𝑓∥ (5.5)

and

∥𝑢∥𝐶2+𝛼
𝑏

≤ 𝐶∥𝑓∥𝐶𝛼
𝑏
, (5.6)

where the constant 𝐶 > 0 depends only on 𝜆0, 𝑐0 and norms of the coefficients in
𝐶𝛼𝑏 (ℝ

𝑛). In addition, if 𝑓 ≥ 0, then 𝑢 ≥ 0.

In the case when 𝛼 ∈ (0, 1), this is a well-known result (see, e.g., [9, The-
orems 4.3.1 and 4.3.2]) based on the so-called Schauder’s a priori estimates. We
mention that estimate (5.4) and the positivity result follow from the maximum
principle (see [9, Theorem 2.9.2]). Less known estimate (5.5) follows from interior
𝐿𝑝 estimates for elliptic equations [6, Section 9.5] and the Sobolev embedding the-
orem. In the case when 𝑛 = 1 and 𝛼 = 0 the statement of the proposition is also
well known and can be found, e.g., in [8].

In the rest of the paper, in addition to (i) we impose the following almost
periodicity assumption.

(iii) The coefficients 𝑎𝑖𝑗, 𝑏𝑗 and 𝑐, 𝑖, 𝑗 = 1, . . . , 𝑛, belong to 𝐶𝐴𝑃𝛼(ℝ𝑛), where
𝛼 ∈ (0, 1) if 𝑛 > 1 and 𝛼 ∈ [0, 1) if 𝑛 = 1.

We denote by Mod(𝐴) the smallest additive subgroup of ℝ𝑛 that contains
the spectra of all coefficients of 𝐴. Now let Γ ⊆ ℝ𝑛 be any countable subgroup
that contains Mod(𝐴). We introduce the envelope 𝐻(𝐴) = {𝐴(𝑠)}𝑠∈ℝ𝑛𝐵,Γ

of 𝐴 by

𝐴(𝑠)𝑢(𝑥) = −
𝑛∑
𝑖,𝑗=1

𝑎
(𝑠)
𝑖𝑗 (𝑥)

∂2𝑢(𝑥)

∂𝑥𝑖∂𝑥𝑗
+

𝑛∑
𝑖=1

𝑏
(𝑠)
𝑖 (𝑥)

∂𝑢(𝑥)

∂𝑥𝑖
+ 𝑐(𝑠)(𝑥)𝑢(𝑥) .

As in the case of functions, the set 𝐻(𝐴) is independent of the choice of Γ ⊇
Mod(𝐴), while the parametrization of the envelope does depend on Γ. It is easily
seen that if 𝐴 satisfies (i), (ii) and (iii), then all operators 𝐴(𝑠) in the envelope
satisfy the same assumptions.

The key result of the section is

Theorem 5.1. Assume (i)–(iii). If 𝑓 ∈ 𝐶𝐴𝑃𝛼(ℝ𝑛), then equation (5.3) has a unique
solution 𝑢 ∈ 𝐶𝐴𝑃 2+𝛼(ℝ𝑛). In addition,

Mod(𝑢) ⊆ Mod(𝐴) +Mod(𝑓) . (5.7)
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Proof. Let Γ⊇Mod(𝐴) be any countable subgroup of ℝ𝑛 such that 𝑓 ∈𝐶𝐴𝑃Γ(ℝ
𝑛).

By Proposition 5.1, equation (5.3) has a unique solution 𝑢 ∈ 𝐶2+𝛼
𝑏 (ℝ𝑛).

We have to show that 𝑢 ∈ 𝐶𝐴𝑃Γ(ℝ
𝑛) which implies that 𝑢 ∈ 𝐶𝐴𝑃 2+𝛼

Γ (ℝ𝑛).
With this aim we consider the family of equations

𝐴(𝑠)𝑢𝑠 = 𝑓 (𝑠) , 𝑠 ∈ ℝ𝑛𝐵,Γ .

By Proposition 5.1, each of these equations has a unique solution 𝑢𝑠 ∈ 𝐶2+𝛼
𝑏 (ℝ𝑛),

with 𝑢0 = 𝑢.
Notice that the map 𝑠 �→ 𝑢𝑠 is a continuous mapping from ℝ𝑛𝐵,Γ → 𝐶𝑏(ℝ

𝑛).

Indeed, by inequality (5.4), for any 𝑠0, 𝑠 ∈ ℝ𝑛𝐵,Γ

∥𝑢𝑠 − 𝑢𝑠0∥ ≤ 𝑐−10 ∥𝐴(𝑠)(𝑢𝑠 − 𝑢𝑠0)∥ ≤ 𝑐−10 (∥𝑓 (𝑠) − 𝑓 (𝑠0)∥+ ∥(𝐴(𝑠0) − 𝐴(𝑠))𝑢𝑠0∥) .
Since 𝑓 ∈ 𝐶𝐴𝑃Γ(ℝ

𝑛) and the coefficients of 𝐴 satisfy almost periodicity assump-
tion (ii), the right-hand side of the last inequality tends to zero as 𝑠 → 𝑠0 in ℝ𝑛𝐵,Γ
and the conclusion follows.

As consequence, 𝑢̃(𝑠) = 𝑢𝑠(0) is a well-defined continuous function on ℝ𝑛𝐵,Γ.

Furthermore, due to the uniqueness of bounded solution (see Proposition 5.1),

𝑢𝑠+𝑖𝐵,Γ𝑥(𝑦) = 𝑢𝑠(𝑦 + 𝑥) , ∀𝑠 ∈ ℝ𝑛𝐵,Γ, 𝑥 ∈ ℝ𝑛 and 𝑦 ∈ ℝ𝑛 .

Hence,

𝑢(𝑥) = 𝑢0(𝑥) = 𝑢̃(𝑖𝐵,Γ𝑥) ,

and, by Proposition 2.2, 𝑢 ∈ 𝐶𝐴𝑃Γ(ℝ
𝑛). □

6. Semi-linear problem

In this section we consider semi-linear equations

𝐴𝑢(𝑥) = 𝑔(𝑥, 𝑢(𝑥)) , 𝑥 ∈ ℝ𝑛 , (6.1)

where 𝐴 is a second-order elliptic operator of the form (5.1). We always suppose
that 𝐴 satisfies assumptions (i) and (iii). Assumption (ii) is not needed in general.
In addition, we impose the following assumption on the nonlinearity 𝑔.

(iv) For any 𝑅 > 0 the function 𝑔(𝑥, 𝑢) is almost periodic in 𝑥 ∈ ℝ𝑛 uniformly
with respect to 𝑢 ∈ ℝ, with ∣𝑢∣ ≤ 𝑅, and there exists a constant 𝐶𝑅 > 0 such
that

∣𝑔(𝑥, 𝑢)− 𝑔(𝑥, 𝑣)∣ ≤ 𝐶𝑅∣𝑢 − 𝑣∣
for all 𝑥 ∈ ℝ𝑛 and 𝑢, 𝑣 ∈ ℝ, with ∣𝑢∣ ≤ 𝑅 and ∣𝑣∣ ≤ 𝑅, and

∣𝑔(𝑥, 𝑢)− 𝑔(𝑦, 𝑣)∣ ≤ 𝐶𝑅∣𝑥 − 𝑦∣𝛼
for all 𝑥, 𝑦 ∈ ℝ𝑛 and 𝑢 ∈ ℝ, with ∣𝑢∣ ≤ 𝑅, provided 𝛼 ∕= 0 in assumption (iii).

In particular, assumption (iv) implies that the function 𝑔(𝑥, 𝑢) can be consid-
ered as an a.p. function of 𝑥 ∈ ℝ𝑛 with values in the Fréchet space 𝐶(ℝ) of continu-
ous functions on ℝ endowed with the topology of uniform convergence on compact
intervals. Hence,

∪
𝑢∈ℝ

𝜎(𝑔(⋅, 𝑢)) generates a countable subgroup Mod(𝑔) ⊆ ℝ𝑛.
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Moreover, for any Γ ⊇ Mod(𝑔) there exists a unique continuous function 𝑔 on
ℝ𝑛𝐵,Γ such that

𝑔(𝑥, 𝑢) = 𝑔(𝑖𝐵,Γ𝑥, 𝑢) , (𝑥, 𝑢) ∈ ℝ𝑛 × ℝ .

If Γ ⊇ Mod(𝑔) is a countable subgroup of ℝ𝑛, we set

𝑔(𝑠)(𝑥, 𝑢) = 𝑔(𝑠+ 𝑖𝐵,Γ𝑥, 𝑢) , (𝑥, 𝑢) ∈ ℝ𝑛 × ℝ , 𝑠 ∈ ℝ𝑛𝐵,Γ .

Notice that all the functions 𝑔(𝑠) satisfy assumption (iv).
Together with equation (6.1) we consider the following family of equations

𝐴(𝑠)𝑢(𝑥) = 𝑔(𝑠)(𝑥, 𝑢(𝑥)) , 𝑥 ∈ ℝ𝑛 , (6.2)

where 𝑠 ∈ ℝ𝑛𝐵,Γ and Γ ⊇ Mod(𝐴) +Mod(𝑔) will be fixed later.

A function 𝑢 ∈ 𝐶𝐴𝑃 2+𝛼(ℝ𝑛) (respectively, 𝑢 ∈ 𝐶𝐴𝑃 2+𝛼(ℝ𝑛)) is called a
super-solution (respectively, a sub-solution) of equation (6.1) if

𝐴𝑢(𝑥) ≥ 𝑔(𝑥, 𝑢(𝑥))

(respectively,

𝐴𝑢(𝑥) ≤ 𝑔(𝑥, 𝑢(𝑥)) )

for all 𝑥 ∈ ℝ𝑛. Given super- and sub-solutions, 𝑢 and 𝑢, we set

Γ = Mod(𝐴) +Mod(𝑔) +Mod(𝑢) +Mod(𝑢) .

Notice that the functions 𝑢(𝑠) and 𝑢(𝑠) are super- and sub-solutions for equation
(6.2) for all 𝑠 ∈ ℝ𝑛𝐵,Γ.

Theorem 6.1. Under assumptions (i), (iii) and (iv) suppose that there exist sub-
and super-solutions for equation (6.1) such that 𝑢 ≤ 𝑢. Then for every 𝑠 ∈ ℝ𝑛𝐵,Γ

there exists a solution 𝑢𝑠 ∈ 𝐶2+𝛼
𝑏 (ℝ𝑛) of equation (6.2) such that 𝑢(𝑠) ≤ 𝑢𝑠 ≤ 𝑢(𝑠).

Furthermore, there exist a residual set Ω𝑎𝑎 ⊆ ℝ𝑛𝐵,Γ and a set Ω𝑏 ⊆ ℝ𝑛𝐵,Γ of mea-
sure 1 both translation invariant and such that 𝑢𝑠 is uniformly almost automorphic
is 𝑠 ∈ Ω𝑎𝑎 and 𝑢𝑠 ∈ 𝐵𝑝Γ(ℝ

𝑛) for all 𝑝 ∈ [1,∞) if 𝑠 ∈ Ω𝑏.

Proof. Replacing 𝑐(𝑥) by 𝑐(𝑥)+𝜃 and 𝑔(𝑥, 𝑢) by 𝑔(𝑥, 𝑢)+𝜃𝑢, we may suppose, due
to assumption (iv), that 𝑐(𝑥) ≥ 𝑐0 > 0 and the nonlinearity 𝑔(𝑥, 𝑢) is increasing
in 𝑢 ∈ [inf 𝑢, sup𝑢].

Let us consider a sequence of functions 𝑢𝑘 defined recurrently as follows. We
set 𝑢0 = 𝑢. Next, 𝑢𝑘+1 ∈ 𝐶𝐴𝑃 2+𝛼

Γ (ℝ𝑛) is defined as a unique solution of the
equation

𝐴𝑢𝑘+1(𝑥) = 𝑔(𝑥, 𝑢𝑘(𝑥)) . (6.3)

The sequence 𝑢𝑘 is well defined. Indeed, if 𝑢𝑘 ∈ 𝐶𝐴𝑃 2+𝛼
Γ (ℝ𝑛), then, by assump-

tion (iv), 𝑔(𝑥, 𝑢𝑘(𝑥)) ∈ 𝐶𝐴𝑃𝛼Γ (ℝ
𝑛). By Theorem 5.1, equation (6.3) has a unique

solution in 𝐶𝐴𝑃 2+𝛼
Γ (ℝ𝑛). Moreover, since 𝑢 is a super-solution, the positivity

statement of Proposition 5.1 implies that the sequence 𝑢𝑘 is monotone decreasing,
i.e., 𝑢𝑘+1 ≤ 𝑢𝑘. Since 𝑢𝑘 ∈ 𝐶𝐴𝑃 2+𝛼(ℝ𝑛), the function 𝑢𝑘 extends to a unique



Sub- and Super-solutions 287

function 𝑢̃𝑘 ∈ 𝐶(ℝ𝑛𝐵,Γ), and the sequence of functions 𝑢̃𝑘 is monotone decreas-
ing and bounded. Hence, the sequence 𝑢̃𝑘 converges to a measurable function 𝑢
pointwise on ℝ𝑛𝐵,Γ.

We are going to prove that the function

𝑢(𝑠)(𝑥) = 𝑢̃(𝑠+ 𝑖𝐵,Γ𝑥)

is actually a 𝐶2+𝛼
𝑏 -solution of equation (6.2). It is easily seen that, for any 𝑠 ∈ ℝ𝑛𝐵,Γ,

the functions

𝑢
(𝑠)
𝑘 (𝑥) = 𝑢̃𝑘(𝑠+ 𝑖𝐵,Γ𝑥)

satisfy

𝐴(𝑠)𝑢
(𝑠)
𝑘+1(𝑥) = 𝑔(𝑠)(𝑥, 𝑢

(𝑠)
𝑘 (𝑥)) . (6.4)

As a consequence, 𝑢
(𝑠)
𝑘 ∈ 𝐶𝐴𝑃 2+𝛼(ℝ𝑛) for all 𝑠 ∈ ℝ𝑛𝐵,Γ and integer 𝑘.

We claim that there exists a constant 𝐶 > 0 independent of 𝑠 and 𝑘 such
that

∥𝑢(𝑠)𝑘 ∥𝐶2+𝛼
𝑏

≤ 𝐶 . (6.5)

Indeed, denoting by 𝐶 a generic positive constant independent of 𝑠 and 𝑘, we have

that ∥𝑢(𝑠)𝑘 ∥ ≤ 𝐶. Assumption (iv) implies easily that

∥𝑔(𝑠)(⋅, 𝑢(𝑠)𝑘 )∥ ≤ 𝐶 .

Equation (6.4) and estimate (5.5) of Proposition 5.1 imply that

∥𝑢(𝑠)𝑘 ∥𝐶𝛼𝑏 ≤ ∥𝑢(𝑠)𝑘 ∥𝐶1
𝑏
≤ 𝐶

(the first estimate is trivial). By assumption (iv),

∥𝑔(𝑠)(⋅, 𝑢(𝑠)𝑘 )∥𝐶𝛼𝑏 ≤ 𝐶 ,

and estimate (6.5) follows from inequality (5.6) of Proposition 5.1.

Suppose that 𝛼 > 0. By (6.5), the functions 𝑢
(𝑠)
𝑘 and their derivatives up to

second order are equicontinuous. Since 𝑢
(𝑠)
𝑘 → 𝑢(𝑠) pointwise, by the Arzelà-Ascoli

theorem, 𝑢(𝑠) ∈ 𝐶2+𝛼
𝑏 (ℝ𝑛) and 𝑢

(𝑠)
𝑘 converges to 𝑢(𝑠) uniformly on compact sets

together with derivatives up to second order. Passing to the limit in equation (6.4),
we obtain that 𝑢(𝑠) is a solution of equation (6.2).

Now suppose that 𝛼 = 0 and 𝑛 = 1. By (6.5), the functions 𝑢
(𝑠)
𝑘 and their

first derivatives are equicontinuous. As above, 𝑢(𝑠) ∈ 𝐶1
𝑏 (ℝ

𝑛) and 𝑢
(𝑠)
𝑘 converges

to 𝑢(𝑠) uniformly on compact sets together with first derivatives. Equation (6.4)
can be expressed as follows

−(𝑢(𝑠)𝑘+1)′′ = −𝑏(𝑠)(𝑥)(𝑢
(𝑠)
𝑘+1)

′ − 𝑐(𝑠)(𝑥)𝑢
(𝑠)
𝑘+1 + 𝑔(𝑠)(𝑥, 𝑢

(𝑠)
𝑘 ) .

Hence, second derivatives converges uniformly on compact sets, and 𝑢(𝑠) ∈ 𝐶2
𝑏 (ℝ

𝑛)
satisfies equation (6.2).

Since 𝑢̃ ∈ ℝ𝑛𝐵,Γ, the existence of the set Ω𝑏 follows from Proposition 4.1. On

the other hand, the map 𝑈 : 𝑠 �→ 𝑢(𝑠) from ℝ𝑛𝐵,Γ into 𝐶(ℝ𝑛) is of the first Baire
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class as a pointwise limit of continuous maps. It is well known that any map of
the first Baire class from a complete metric space into a separable metric space is
continuous on a residual set (see, e.g., [10, Section 31.X, Theorem 1]). Hence, the
existence of the set Ω𝑎𝑎 follows from Proposition 3.1. □

Remark 6.1. Bounded solutions 𝑢(𝑠) obtained in the proof of Theorem 6.1 are
maximum solutions between 𝑢(𝑠) and 𝑢(𝑠). Starting the iteration process with
𝑢0 = 𝑢, we obtain the minimum solution.

Remark 6.2. The function 𝑢 constructed in the proof of Theorem 6.1 can be
considered as a generalized solution of equation (6.1) in the sense of Sobolev-
Besicovitch spaces [20].

Now we give general sufficient conditions for sub- and super-solutions to exist.

Theorem 6.2. Assume (i)–(iii). Suppose that the nonlinearity 𝑔 is of the form

𝑔(𝑥, 𝑢) = 𝑔1(𝑥, 𝑢) + 𝑔2(𝑥, 𝑢) ,

where both 𝑔1 and 𝑔2 satisfy assumption (iv), ∂𝑔2∂𝑢 is a continuous function on
ℝ𝑛 × ℝ, and

∣𝑔1(𝑥, 𝑢)∣ ≤ 𝐶 (6.6)

and
∂𝑔2
∂𝑢

(𝑥, 𝑢) ≤ 0 (6.7)

for all (𝑥, 𝑢) ∈ ℝ𝑛 × ℝ. Then the conclusion of Theorem 6.1 holds with

Γ = Mod(𝐴) +Mod(𝑔) .

Proof. (a) Reduction to the case when 𝑔2 = 0. If 𝑢 ∈ 𝐶2+𝛼
𝑏 (ℝ𝑛) is a solution of

equation (6.1), then

𝐴𝑢(𝑥) + ℎ(𝑥)𝑢 = 𝑔1(𝑥, 𝑢(𝑥)) , where ℎ(𝑥) =

∫ 1

0

∂𝑔2
∂𝑢

(𝑥, 𝑡𝑢(𝑥)) 𝑑𝑡 .

It is easy to see that ℎ(𝑥) ≥ 0 and, by estimate (5.4) of Proposition 5.1,

∥𝑢∥ ≤ 𝐶1 , (6.8)

where 𝐶1 > 0 is independent of the solution. Modifying 𝑔2 outside the region
∣𝑢∣ ≥ 2𝐶1, we may assume that 𝑔 = 𝑔1 is a bounded function.

(b) The case when 𝑔 = 𝑔1 is bounded . Let

𝜃 = sup

{∣∣∣∣∂𝑔∂𝑢(𝑥, 𝑢)
∣∣∣∣ : 𝑥 ∈ ℝ𝑛, ∣𝑢∣ ≤ 𝐶1

}
,

where 𝐶1 is the constant in estimate (6.8). Obviously, we may assume that 𝐶1 ≥ 𝐶.
Equation (6.1) is equivalent to the equation

𝐴𝑢 + 𝜃𝑢 = 𝑔(𝑥, 𝑢) + 𝜃𝑢

and the function 𝑔(𝑥, 𝑢) + 𝜃𝑢 is increasing in the region ∣𝑢∣ ≤ 𝐶1. We define
𝑢 ∈ 𝐶𝐴𝑃 2+𝛼

Γ (ℝ𝑛) as a unique nonnegative solution of equation 𝐴𝑢 = 𝐶 which
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exists by Proposition 5.1 and set 𝑢 = −𝑢. It is easy to verify that these are super-
and sub-solutions, respectively, and we conclude by Theorem 6.1. □

Remark 6.3. If equation (6.1) possesses at most one solution between 𝑢 and 𝑢, then
the map 𝑈 : ℝ𝑛𝐵,Γ �→ 𝐶(ℝ𝑛) considered in the proof of Theorem 6.1 is continuous

at the point 𝑠 = 0 and, hence, the solution 𝑢 = 𝑢(0) of equation (6.1) is uniformly
almost automorphic. If the uniqueness of solution between inf 𝑢 and sup𝑢 holds
for all equations (6.2), 𝑠 ∈ ℝ𝑛𝐵,Γ, then all solutions 𝑢

(𝑠) are almost periodic because

the function 𝑢̃(𝑠) = 𝑢(𝑠)(0) is continuous on ℝ𝑛𝐵,Γ.

Corollary 6.1. Under the assumptions of Theorem 6.1, suppose in addition that
𝑐(𝑥) ≥ 0 on ℝ𝑛, while

∂𝑔

∂𝑢
≤ −𝜅 < 0

and is uniformly continuous on the strip ℝ𝑛 × [inf 𝑢, sup𝑢]. Then equation (6.1)
has a unique solution 𝑢 ∈ 𝐶𝐴𝑃 2+𝛼

Γ between 𝑢 and 𝑢.

Proof. Due to Remark 6.3, we have to verify the uniqueness needed there. Let
us mention that ∂𝑔(𝑠)/∂𝑢 is bounded and continuous on ℝ𝑛 × [inf 𝑢, sup𝑢] for all
𝑠 ∈ ℝ𝑛𝐵,Γ. If 𝑢1 and 𝑢2 are two solutions of equation (6.2) between 𝑢 and 𝑢, then
𝑣 = 𝑢1 − 𝑢2 satisfies

𝐴(𝑠)𝑣 + ℎ(𝑥)𝑣 = 0

where

ℎ(𝑥) = −
∫ 1

0

∂𝑔(𝑠)

∂𝑢
(𝑥, 𝑡𝑢1(𝑥) + (1− 𝑡)𝑢2(𝑥)) 𝑑𝑡 ≥ 𝜅 > 0 .

By Proposition 5.1, 𝑣 = 0 and we conclude. □

Remark 6.4. The statement of Corollary 6.1 remains valid if we replace the assump-
tions 𝑐(𝑥) ≥ 0 and ∂𝑔/∂𝑢 < −𝜅 by 𝑐(𝑥) ≥ 𝑐0 > 0 and ∂𝑔/∂𝑢 ≤ 0, respectively.

Finally, we mention that Theorem 6.1 covers the case when the coefficients
and sub- and super-solution are periodic. In that case it implies the existence of a
periodic solution – a statement well known in the literature. Indeed, in the periodic
case ℝ𝑛𝐵,Γ is a torus. Hence, the sets Ω𝑎𝑎 and Ω𝑏, being translation invariant,
coincide with the whole of the torus.

7. Almost periodically forced pendulum

As an application of our main result, consider the pendulum equation

𝑢′′ + 𝑐𝑢′ + 𝑎 sin𝑢 = ℎ(𝑡) (7.1)

with an almost periodic forcing term ℎ(𝑡). Here 𝑎 > 0 and the damping coefficient
𝑐 ≥ 0 so that the undamped case is allowed. The envelope of equation (7.1) is

𝑢′′ + 𝑐𝑢′ + 𝑎 sin𝑢 = ℎ(𝑠)(𝑡) , 𝑠 ∈ ℝ𝐵,Γ , (7.2)

where Γ = Mod(ℎ).
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Theorem 7.1. Let ℎ ∈ 𝐶𝐴𝑃 (ℝ) and Γ = Mod(ℎ).

(a) If ∥ℎ∥ = 𝑎, then for every 𝑠 ∈ ℝ𝐵,Γ there exists a solution 𝑢𝑠 ∈ 𝐶2
𝑏 (ℝ) of

equation (7.2) such that

𝜋

2
≤ 𝑢𝑠(𝑡) ≤ 3𝜋

2
, ∀𝑡 ∈ ℝ .

Furthermore, there exist a residual subset Ω𝑎𝑎 ⊆ ℝ𝐵,Γ and a measurable
subset Ω𝑏 ⊆ ℝ𝐵,Γ of measure 1 both translation invariant and such that 𝑢𝑠 is
uniformly almost automorphic if 𝑠 ∈ Ω𝑎𝑎 and 𝑢𝑠 ∈ 𝐵𝑝Γ(ℝ

𝑛) for all 𝑝 ∈ [1,∞)
if 𝑠 ∈ Ω𝑏.

(b) If ∥ℎ∥ < 𝑎, then equation (7.1) has a unique solution 𝑢 ∈ 𝐶𝐴𝑃 2(ℝ) such that

𝜋

2
< 𝑢(𝑡) <

3𝜋

2
, ∀𝑡 ∈ ℝ .

Moreover, Mod(𝑢) ⊆ Γ.

Proof. (a) It is easy to verify that 𝑢 = 𝜋/2 and 𝑢 = 3𝜋/2 are sub- and super-
solutions, and the result follows from Theorem 6.1.

(b) If 𝛿 > 0 is sufficiently small, then 𝑢 = 𝜋/2+ 𝛿 and 𝑢 = 3𝜋/2− 𝛿 are sub-
and super-solutions. Since the derivative (𝑎 sin𝑢)′ = 𝑎 cos𝑢 is strictly negative on
[𝜋/2 + 𝛿, 3𝜋/2− 𝛿], Corollary 6.1 applies and we conclude. □

Let us point out that if ℎ(𝑡) is periodic and ∥ℎ∥ ≤ 𝑎, then there is a peri-
odic solution between 𝜋/2 and 3𝜋/2. The uniqueness of such solution takes place
whenever ∥ℎ∥ < 𝑎.

The existence of a bounded solution under the assumptions of Theorem 7.1(a),
as well as the almost periodicity of a unique bounded solution in case (b), is ob-
tained in [5, 13] (see also [14]). In [5] the sub- and super-solution approach based
on the Schauder fixed point theorem is used, while the proofs of [13] make use of
an early result of Z. Opial which can be considered as a simple version of the sub-
and super-solution method. In our approach we employ relative Bohr compactifi-
cations together with monotone iteration techniques. This permits us to obtain an
extra information about the almost automorphy and Besicovitch almost periodic-
ity of solutions to the equations in the envelope of (7.1) as well as the modules
containment property. According to a remark of Mawhin [13], all these results can
be considered as an improvement of a result of [1] which provides the existence
of a weak Besicovitch almost periodic solution to equation (7.1) (cf. Remark 6.2)
by means of certain variational techniques. It is interesting that in [1] the same
interval [𝜋/2, 3𝜋/2] appears.

Acknowledgment

We are grateful to the referee for his/her careful reading and valuable suggestions.



Sub- and Super-solutions 291

References

[1] J. Blot, Almost periodically forced pendulum, Funkcialaj Ekvacioj, 36 (1993), 235–
250.

[2] R. Courant, D. Gilbert, Methods of Mathematical Physics, V. II. Partial Differential
Equations, Wiley, New York, 1962.

[3] C. De Coster, P. Habets, Two-Point Boundary Value Problems: Lower and Upper
Solutions, Elsevier, Amsterdam, 2006.

[4] N. Dunford, J. Schwartz, Linear Operators; Part I: General Theory , Wiley, New
York, 1957.

[5] G. Fournier, A. Szulkin, M. Willem, Semilinear elliptic equations in ℝ𝑛 with almost
periodic or unbounded forcing term , SIAM J. Math. Anal., 27 (1996), 1653–1660.

[6] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order ,
Springer, Berlin, 1998.

[7] E. Hewitt, K. Ross, Abstract Harmonic Analysis, V. 1, Springer, Berlin, 1979.

[8] M.A. Krasnosel’skii, V.Sh. Burd, Yu.S. Kolesov, Nonlinear Almost Periodic Oscilla-
tions, Wiley, New York, 1973 (English Edition).

[9] N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Amer.
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[14] J. Mawhin, Global results for the forced pendulum equation, Handbook of Differen-
tial Equations, Ordinary Differential Equations, 1 (eds. A. Cañada, P. Drabek, A.
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1. Introduction

We started our studies of various operators in Morrey and Campanato-type spaces
several years ago, mainly in the case of maximal, singular and potential operators
in such spaces with variable exponents and Hardy operators in Morrey spaces
with constant exponents. We discovered that there existed a vast bibliography on
the subject counting many hundreds of publications, especially on applications to
differential equations. They include in particular the books A. Kufner, O. John
and S. Fuč́ık [63] (1977) and M. Giaquinta [40] (1983). We refer also to Section
27 of the book O.V. Besov, V.P. Il′in and S.M. Nikol′skĭı [13] (1996) (see also the
English translation [14, 15] of the first Russian edition of [13]) where an important
overview on anisotropic Morrey type spaces may be found.

The earliest overview on Morrey-Campanato spaces seems to be first given
in the paper J. Peetre [86] (1969). Probably the next one was M.H. Taibleson and
G. Weiss [104] (1979).

During the last several decades there was a kind of a boom in studies in
Morrey-Campanato-type spaces and their usage in applications, both enriching
each other. Many of them, as well as various old results, were not covered in the
existing surveys or books, but were of interest.

In the study of this topic and search of references, also in the historical ret-
rospective, we made many notes in our notebooks. Our personal overview of those
notes led us to the idea to collect and edit them, and publish it as a survey which
may be useful for others involved into research around the Morrey-Campanato-
type spaces.

This however led us to a manuscript exceeding one hundred pages, which is
not well suited for a paper. About 4/5 of that overview was naturally related to
the study of various operators, mainly classical operators of harmonic analysis,
in Morrey-Campanato-type spaces, and about 1/5 of it was connected with the
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spaces themselves, i.e., proper definitions of various versions of the spaces, study of
the structure of the spaces, preduals, etc. We made a decision to restrict ourselves
to this first portion. It is presented in this paper. We hope to submit the remaining
part for publication elsewhere. Note that in this paper we do not touch Sobolev-
Morrey and Besov-Morrey type spaces as well as other generalizations of such a
kind and refer a potential reader to Section 27 of the above cited books [13–15] and
the recent book [114] (2010) titled “Morrey and Campanato Meet Besov, Lizorkin
and Triebel”.

The subjects we touch in this overview may be seen from Contents. Inside
every Subsection we mainly follow the chronological order which more or less
corresponds to a natural way of generalization from the simple to more advanced.

We could have lost some references. Anyway, we tried to do our best through a
vast search in MathSciNet, MathNetRu and other sources. In the case the overview
occasionally proves to be not complete in this or other item, we will be grateful to
the readers for the indication of possible omissions. To be clear, we emphasize once
again that in this survey we do not touch mapping properties of operators, so that
many important papers on the behaviour of the classical operators of harmonic
analysis in Morrey and Campanato spaces remained beyond this overview. We are
aware of the fact that sometimes such a separation is rather relative because any
property of an operator in a space may be considered as a property of the space.
Nevertheless we had to follow the choice we made. Otherwise we would exceed any
reasonable limit for this paper.

2. Morrey spaces

2.1. Classical Morrey spaces

The spaces which bear the name of Morrey spaces were introduced in 1938 by C.
Morrey [71] in relation to regularity problems of solutions to partial differential
equations.

We start from the definition of these spaces. Let Ω ⊆ ℝ𝑛 be an open set. We

denote 𝐵(𝑥, 𝑟) = 𝐵(𝑥, 𝑟) ∩ Ω, 𝑥 ∈ Ω, 𝑟 > 0, and ∣𝐴∣ will stand for the Lebesgue
measure of a measurable subset in ℝ𝑛.

Definition 2.1 (Morrey spaces). Let 1 ≤ 𝑝 < ∞ and 𝜆 ≥ 0. The Morrey space
𝐿𝑝,𝜆(Ω) is defined as

𝐿𝑝,𝜆(Ω) =

{
𝑓 ∈ 𝐿𝑝(Ω) : sup

𝑥∈Ω;𝑟>0

1

𝑟𝜆

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦 < ∞
}

. (1)

This is a Banach space with respect to the norm

∥𝑓∥𝐿𝑝,𝜆(Ω) := sup
𝑥∈Ω;𝑟>0

(
1

𝑟𝜆

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦
)1/𝑝

. (2)
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The space 𝐿𝑝,𝜆(Ω) is trivial when 𝜆 > 𝑛 (𝐿𝑝,𝜆(Ω) = {0}) and 𝐿𝑝,0(Ω) ∼=
𝐿𝑝(Ω) and 𝐿𝑝,𝑛(Ω) ∼= 𝐿∞(Ω). In the case 𝜆 ∈ (0, 𝑛], the space 𝐿𝑝,𝜆(Ω) is non-
separable.

Note that for these spaces sometimes another notation, 𝑀𝑝,𝑞, is used. Apart
from the choice of a different letter 𝑀 , the second parameter is also introduced
into the norm in a way different from (2), namely

∥𝑓∥𝑀𝑝,𝑞(Ω) := sup
𝑥∈Ω;𝑟>0

𝑟
𝑛
𝑞 −𝑛

𝑝 ∥𝑓∥𝐿𝑝(𝐵(𝑥,𝑟)).

In this survey we mainly follow the notation in (1)–(2).

The local version of such spaces, with only one point 𝑥 = 0 taken into ac-
count, has a connection with studies of N. Wiener [111] (1930), [112] (1932), who
considered functions 𝑓 for which

1

𝑇 1−𝛼

∫ 𝑇
0

∣𝑓(𝑥)∣𝑝 d𝑥, 𝛼 ∈ (0, 1), 𝑝 = 1 or 𝑝 = 2

is limited in 𝑇 > 0 or tends to zero as 𝑇 → ∞. In the multidimensional case such
local spaces defined by the norm

∥𝑓∥𝐵𝑝 = sup
𝑟>0

(
1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥)∣𝑝 d𝑥
)1/𝑝

(3)

appeared in A. Beurling [16] (1964) as the dual of the so-called Beurling algebra.
He also considered similar spaces with sup𝑟>1 instead of sup𝑟>0. Similar local Mor-
rey type spaces with the norm of type (3) where 1

∣𝐵(0,𝑟)∣ is replaced by
1

∣𝐵(0,𝑟)∣𝜆
appeared in V.S. Guliev [47] (1994), see also [50] (1996), and in J. Garćıa-Cuerva
and M.J.L. Herrero [38] (1994). In [38] and J. Alvarez, M. Guzmán-Partida and
J. Lakey [8] (2000) there were introduced the function space 𝐵𝑞,𝜆(ℝ𝑛) character-
ized by the norm

∥𝑓∥𝐵𝑝,𝜆 = sup
𝑟>1

(
1

∣𝐵(0, 𝑟)∣1+ 𝜆
𝑝

∫
𝐵(0,𝑟)

∣𝑓(𝑥)∣𝑝 d𝑥
)1/𝑝

(4)

(called inhomogeneous) and also its homogeneous version 𝐵̇𝑞,𝜆(ℝ𝑛) of type (4)
with the supremum taken over 𝑟 > 0.

Morrey spaces are a particular case of Campanato spaces considered in Sec-
tion 4 and we present many results for Morrey spaces in that section in the context
of Campanato spaces. Nevertheless, in this section we dwell on some results just
for Morrey spaces.

2.1.1. Embeddings in Morrey spaces. By application of the Hölder inequality to

integrals over 𝐵(𝑥, 𝑟) the embedding for Morrey spaces follows:

Theorem 2.2. Let 1 ≤ 𝑝 ≤ 𝑞 < ∞ and let 𝜆, 𝜈 be non-negative numbers. Then

𝐿𝑞,𝜈(Ω) ↪→ 𝐿𝑝,𝜆(Ω) (5)
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under the condition
𝜆 − 𝑛

𝑝
≤ 𝜈 − 𝑛

𝑞
(6)

if ∣Ω∣ is finite and the condition

𝜆 − 𝑛

𝑝
=

𝜈 − 𝑛

𝑞
(7)

if ∣Ω∣ is infinite.

Condition (6) is necessary and sufficient for embedding (5) in case of “nice”
sets Ω, see L.C. Piccinini [89] (1969), where Ω = 𝑄0 was a cube in ℝ𝑛, see also a
similar result for a modification 𝐿𝑝,𝜆𝑟 , 𝑝, 𝑟 ∈ [1,∞) of Morrey spaces in Y. Furusho
[36] (1980). This modification is introduced as follows: let 𝑆 be the family of all
systems 𝑆 = {𝑄𝑗 :

∪
𝑄𝑗 ⊂ 𝑄0} consisting of a finite number of non-intersecting

parallel subcubes 𝑄𝑗 , and let ∥𝑢∥𝐿(𝑝,𝜆)(𝑄𝑗) = sup𝑄⊂𝑄𝑗 ∣𝑄∣𝜆−𝑛
𝑛𝑝 ∥𝑢∥𝐿𝑝(𝑄), and

∥𝑢∥𝐿𝑝,𝜆𝑟 (𝑄0)
= sup
𝑆∈𝑆

⎧⎨⎩ ∑
𝑄𝑗∈𝑆

∥𝑢∥𝑟𝐿(𝑝,𝜆)𝑄𝑗

⎫⎬⎭
1/𝑟

;

there is proved a necessary and sufficient condition for the validity of the embed-
ding 𝐿𝑝,𝜆𝑟 ↪→ 𝐿𝑞,𝜇𝑠 in the case of 𝑛/𝑟 − 𝜆/𝑝 ≤ 1 and 𝑛/𝑠 − 𝜇/𝑞 ≤ 1.

See also embedding theorems for Campanato spaces in Subsection 4.1.

2.1.2. Hölder’s inequality. For Morrey spaces the following Hölder type inequality
holds (obtained by application of the usual Hölder inequality to integrals over

𝐵(𝑥, 𝑟), see for instance Lemma 11 in P. Olsen [78] (1995)).

Theorem 2.3 (Hölder’s inequality in Morrey spaces). Let 𝑓 ∈ 𝐿𝑝,𝜆(Ω) and 𝑔 ∈
𝐿𝑞,𝜇(Ω). Then

∥𝑓𝑔∥𝐿𝑟,𝜈(Ω) ≤ ∥𝑓∥𝐿𝑝,𝜆(Ω)∥𝑔∥𝐿𝑞,𝜇(Ω), (8)

where 1 ≤ 𝑝 < ∞, 1 ≤ 𝑞 < ∞, 1
𝑝 + 1

𝑞 ≥ 1 and

1

𝑟
=
1

𝑝
+
1

𝑞
,

𝜈

𝑟
=

𝜆

𝑝
+

𝜇

𝑞
.

2.1.3. Weak Morrey spaces. Weak Morrey-Campanato spaces appeared already
in the paper by S. Spanne [100] (1966), see also Subsection 4.3. Such weak-type
Morrey spaces defined by the condition

sup
𝑡>0
𝑥∈Ω

𝑡𝑝∣{𝑦 ∈ Ω : ∣𝑓(𝑦)∣ > 𝑡} ∩ 𝐵(𝑥, 𝑟)∣ ≤ 𝐶𝑟𝜆

where Ω ⊂ ℝ𝑛, were used by M. Ragusa [91] (1995). In the paper C. Miao and B.
Yuan [70] (2007) weak Morrey spaces 𝑀∗

𝑝,𝜆 were defined in a more general setting
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in terms of Lorentz spaces of functions initially defined on non-atomic measurable
spaces. For the spaces 𝑀∗

𝑝,𝜆 = {𝑓 : ∥𝑓∥∗𝑝,𝜆 < ∞} introduced via the norm

∥𝑓∥∗𝑝,𝜆 = sup
𝑥,𝑟

𝑟−
𝜆
𝑝 sup
𝑡>0

𝑡𝜇 {𝑦 : ∣𝑓(𝑦)∣ > 𝑡, 𝑦 ∈ 𝐵(𝑥, 𝑟)}

there were proved an embedding theorem and a convexity property.

2.1.4. Interpolation. G. Stampacchia [101] (1964), [102] (1965) and S. Campanato
& M. Murthy [21] (1965) proved interpolation properties of Morrey spaces (in fact
they obtained the result for the more general space, now called Campanato space,
see its definition in Section 4). Loosely speaking, they proved (in the spirit of
Riesz-Thorin interpolation theorem) that if 𝑇 is a bounded linear operator from
𝐿𝑞𝑖 to 𝐿𝑝𝑖,𝜆𝑖 , 𝑖 = 1, 2, then 𝑇 is bounded from 𝐿𝑞 to 𝐿𝑝,𝜆 for the corresponding
intermediate values of 𝑝, 𝑞 and 𝜆, see the precise formulation in Theorem 4.5 in
the setting of Campanato spaces. The conclusion in the other direction is false,
see the comments after Theorem 4.5.

2.1.5. Preduals. Recall that for a given normed space 𝑋 , a normed space 𝑌 is
called predual of 𝑋 , if 𝑋 is dual of 𝑌 .

Preduals of Morrey spaces were studied by some authors, namely by C. Zorko
[115] (1986), D.A. Adams [3] (1988), E.A. Kalita [57] (1998) and D.R. Adams and
J. Xiao [4] (2004). Following D.R. Adams and J. Xiao, we denote the preduals
obtained in [115], [57] and [4] by 𝑍𝑞,𝜆, 𝐾𝑞,𝜆 and 𝐻𝑞,𝜆, respectively, 𝑞 = 𝑝

𝑝−1 . The
first two spaces are defined by the following norms

∥𝑓∥𝑍𝑞,𝜆 = inf

{
∥{𝑐𝑘}∥ℓ1 : 𝑓 =

∑
𝑘

𝑐𝑘𝑎𝑘

}
where 𝑎𝑘 is a (𝑞, 𝜆)-atom and the infimum is taken with respect to all possible
atomic decompositions of 𝑓 (a function 𝑎 on ℝ𝑛 is called a (𝑞, 𝜆)-atom, if it is

supported on a ball 𝐵 ⊂ ℝ𝑛 and ∥𝑎∥𝑞 ≤ ∣𝐵∣− 𝜆
𝑛𝑝 ); note that in C. Zorko [115] the

predual was introduced in a more general setting of generalized Morrey spaces;

∥𝑓∥𝐾𝑞,𝜆 = inf
𝜎

(∫
ℝ𝑛

∣𝑓(𝑥)∣𝑞𝜔1−𝑞
𝜎 (𝑥) d𝑥

)1/𝑞

,

with

𝜔𝜎(𝑥) =

∫
ℝ
𝑛+1
+

𝑟−𝜆1ℝ1
+
(𝑟 − ∣𝑥 − 𝑦∣) d𝜎(𝑦, 𝑟),

where the infimum is taken over all non-negative Radon measures 𝜎(𝑦, 𝑟) on ℝ𝑛+1+

with the normalization 𝜎(ℝ𝑛+1+ ) = 1;

∥𝑓∥𝐻𝑞,𝜆 = inf
𝜔

(∫
ℝ𝑛

∣𝑓(𝑥)∣𝑞𝜔1−𝑞(𝑥) d𝑥
)1/𝑞

,
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where the infimum is taken over all nonnegative functions on ℝ𝑛 satisfying the
condition

∥𝜔∥
𝐿1(Λ

(∞)
𝜆 )

≤ 1, (9)

with the 𝜆-dimensional Hausdorff capacity Λ
(∞)
𝜆 , the introduction of the latter

norm in [4] being based on the previous studies in [3].

As shown in [4], for 1 < 𝑝 < ∞, 0 < 𝜆 < 𝑛,

𝑍𝑞,𝜆 = 𝐾𝑞,𝜆 = 𝐻𝑞,𝜆 with ∥𝑓∥𝑍𝑞,𝜆 ∼ ∥𝑓∥𝐾𝑞,𝜆 ∼ ∥𝑓∥𝐻𝑞,𝜆

and the Morrey space may be characterized in terms of its predual by the following
theorem.

Theorem 2.4. Let 1 < 𝑝 < ∞, 0 < 𝜆 < 𝑛. Then

∥𝑓∥𝐿𝑝,𝜆 = sup
𝜔

( ∫
ℝ𝑛

∣𝑓(𝑥)∣𝑝𝜔(𝑥) d𝑥
)1/𝑝

where the supremum is taken with respect to all nonnegative functions on ℝ𝑛 sat-
isfying the condition (9).

An interested reader may be also referred to Sections 5–7 of [4] with respect
to Morrey type capacities.

In the case of Campanato spaces, M.H. Taibleson and G. Weiss [105] (1980)
proved that they are dual to some Hardy spaces.

2.1.6. Vanishing Morrey spaces 𝑽 𝑳𝒑,𝝀. Morrey space 𝐿𝑝,𝜆, as noted, is not sep-
arable in the case 𝜆 > 0. A version of Morrey space where it is possible to ap-
proximate by “nice functions” is the so-called vanishing Morrey space 𝑉 𝐿𝑝,𝜆(Ω)
introduced by C. Vitanza [110] (1990). This is a subspace of functions in 𝐿𝑝,𝜆(Ω),
which satisfy the condition

lim
𝑟→0

sup
𝑥∈ℝ

𝑛

0<𝜚<𝑟

1

𝜚𝜆

∫
𝐵(𝑥,𝜚)

∣𝑓(𝑦)∣𝑝 d𝑦 = 0. (10)

2.1.7. Different underlying spaces. The spaces 𝐿𝑝,𝜆 may be introduced on sets of
different nature, for instance, an 𝑛-dimensional compact manifold via local charts
(see M. Geisler [39] (1988)) where the spaces introduced in this way were char-
acterized in terms of geodesic distances and other quantities on the manifold. In
Subsection 2.2 we touch a more general setting when the underlying space is a
quasimetric measure space. Morrey spaces and their generalizations in the case
where the underlying spaces is the Heisenberg group were studied in V. Gulyiev
[50] (1996).
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2.1.8. Anisotropic Morrey spaces. Morrey spaces corresponding to anisotropic dis-
tances appeared first in G. Barozzi [12] (1965) defined in the following way. Let
Ω ⊂ ℝ𝑛 be a bounded open set, 𝑝 ≥ 1 and 0 ≤ 𝜆 ≤ 𝑛. Let 𝑚 = (𝑚1, . . . ,𝑚𝑛)
be an 𝑛-tuple of non-negative numbers, 𝑚𝑗 ≥ 1 and 𝑚 = max(𝑚1, . . . ,𝑚𝑛). Let
𝐵𝑚(𝑥, 𝑟) = {𝑦 ∈ Ω : 𝑑𝑚(𝑥, 𝑦) < 𝑟} be an anisotropic ball defined by the distance

𝑑𝑚(𝑥, 𝑦) =

⎛⎝ 𝑛∑
𝑗=1

∣𝑥𝑗 − 𝑦𝑗∣𝑚𝑗

⎞⎠1/𝑚

.

Then the corresponding Morrey space is introduced by the condition

sup
𝑥,𝑟

1

𝑟𝜆

∫
𝐵𝑚(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦 < ∞.

The corresponding anisotropic Sobolev spaces were also introduced in [12].

In a more general setting such anisotropic Morrey spaces were later studied
by V.P. Il′in in [52] (1959), [53](1971), see the presentation of the latter results
also in Section 27 of the book [13].

Morrey spaces with integral means over one-parametrical ellipsoids were in-
troduced in L. Softova in [98] (2007) with the aim to study anisotropic singular
integrals. Let 𝛼 = (𝛼1, . . . , 𝛼𝑛) be a given vector with 𝛼𝑖 ≥ 1, 𝑖 = 1, . . . , 𝑛, and

E𝛼(𝑥, 𝑟) =

{
𝑦 ∈ ℝ𝑛 :

𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)
2

𝑟2𝛼𝑘
< 1

}
(11)

be an ellipsoid centered at the point 𝑥 ∈ ℝ𝑛. Then the anisotropic space 𝐿𝑝,𝜆(ℝ𝑛)
localized at the origin and corresponding to the given vector 𝛼, is defined by the
norm

∥𝑓∥𝑝,𝜆 = sup
𝑟>0

(
1

𝑟𝜆

∫
E𝛼(0,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦
)1/𝑝

< ∞. (12)

See also Subsection 3.1 for the generalized anisotropic Morrey spaces of such a
kind introduced in L. Softova [97] (2006).

Anisotropic Morrey spaces 𝐿𝑝,𝜆(Ω), 𝜆 = (𝜆1, . . . , 𝜆𝑛) may be also introduced,
with means taken over rectangles centered at the point 𝑥 with independent lengths
of sides. Such spaces ℒ𝑝,𝜆1,𝜆2(ℝ2

+) were introduced in L.-E. Persson and N. Samko
[88] (2010) for the case Ω = ℝ2

+ by the norm

∥𝑓∥ℒ𝑝,𝜆1,𝜆2 = sup
𝑥1>0,𝑥2>0
𝑟1>0,𝑟2>0

(
1

𝑟𝜆11 𝑟𝜆22

∫ 𝑥1+𝑟1
(𝑥1−𝑟1)+

∫ 𝑥2+𝑟2
(𝑥2−𝑟2)+

∣𝑓(𝑦1, 𝑦2)∣𝑝 d𝑦1 d𝑦2
)1/𝑝

(13)
with the aim to study two-dimensional Hardy operators in such spaces.
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2.1.9. Miscellaneous. As is well known, Morrey spaces have been generalized or
modified in various ways in order to obtain existence and uniqueness of solutions
to partial differential equations. One of such modifications, 𝐿𝑝,𝜆(Ω, 𝑡) introduced
in M. Transirico et al. [108] (1995) (with 𝑡 = 1) and A. Canale et al. [22] (1998),
is aimed to better reflect the local nature of solutions, first of all for unbounded
domains, being defined by the norm

∥𝑓∥𝐿𝑝,𝜆(Ω,𝑡) = sup
𝑥∈Ω
0<𝑟<𝑡

(
1

𝑟𝜆

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦
)1/𝑝

;

in [22] the corresponding Sobolev spaces were also dealt with.

In P. Cavaliere, G. Manzo and A. Vitolo [23](1996) Morrey spaces were inten-
tionally studied on unbounded domains with the main emphasis on the connection
between Morrey type and BMO spaces and embedding and density results involv-
ing the continuity of the translation operator.

Another modification of Morrey spaces is known under the name of Stummel
class introduced in M.A. Ragusa and P. Zamboni [92] (2001) (with the goal to
obtain a better version of the Sobolev type embedding). The Stummel class is
defined, for 0 < 𝑝 < 𝑛, as

𝑆𝑝 =

{
𝑓 ∈ 𝐿1

loc(ℝ
𝑛) : lim

𝑟→0
𝜂(𝑟) = 0, 𝜂(𝑟) = sup

𝑥∈ℝ𝑛

∫
∣𝑥−𝑦∣<𝑟

∣𝑓(𝑦)∣
∣𝑥 − 𝑦∣𝑛−𝑝 d𝑦

}
,

which is the Stummel-Kato class in the case 𝑝 = 2. Note that
𝜂(𝑟) ≥ sup

𝑥∈ℝ𝑛

1
𝑟𝑛−𝑝

∫
∣𝑥−𝑦∣<𝑟

∣𝑓(𝑦)∣ d𝑦.

In general 𝐿1,𝜆 is contained in 𝑆𝑝, if 𝜆 > 𝑛− 𝑝, and in the case 𝜂(𝑟) ∼ 𝑟𝛼 the
following equivalence holds:

𝑓 ∈ 𝑆𝑝 ⇐⇒ 𝑓 ∈ 𝐿1,𝑛−𝑝+𝛼,

see Lemma 1.1 in [92]. Some versions of Stummel classes with 𝜂 different from
powers are also studied there, which corresponds to the generalized Morrey spaces
studied in Subsection 3.

S. Leonardi [64] (2002) introduced a similar version of such a space, defined
by the norm

∥𝑓∥𝑁𝑝,𝜆(Ω) := sup
𝑥∈Ω

{∫
Ω

∣𝑓(𝑦)∣𝑝
∣𝑥 − 𝑦∣𝜆 d𝑦

}1/𝑝

and proved a certain version of the Miranda-Talenti inequality in terms of Sobolev
type spaces related to the norms ∥𝑓∥𝑁𝑝,𝜆(Ω).

A more general hybrid of Morrey and Stummel type spaces, the space denoted

by 𝑀𝑝,𝜆
𝛽 (𝑋,𝜇), was introduced in Eridani, V. Kokilashvili and A. Meskhi [34] on
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a quasi-metric measure space (𝑋, 𝜌, 𝜇), with the norm defined by

∥𝑓∥𝑀𝑝,𝜆
𝛽

:= sup
𝑥∈𝑋
𝑟>0

(
1

𝑟𝜆

∫
𝜌(𝑥,𝑦)<𝑟

∣𝑓(𝑦)∣𝑝𝜌𝛽(𝑥, 𝑦) d𝜇(𝑦)
)1/𝑝

.

2.2. Morrey spaces over ℝ𝒏 in case of a general measure

Y. Sawano and H. Tanaka [95] (2005) introduced Morrey spaces in ℝ𝑛, but with
a Radon measure 𝜇 as follows

M 𝑝
𝑞 (𝑘, 𝜇) =

{
𝑓 : sup

𝑄
∣𝜇(𝑘𝑄)∣ 1

𝑝− 1
𝑞

(∫
𝑄

∣𝑓 ∣𝑞 d𝜇
)1/𝑞

< ∞
}

, (14)

where 𝑄 is a closed cube whose edges are parallel to the coordinate axes and it
is supposed that the measure 𝜇 is not necessarily a doubling measure but satisfies
the growth condition

𝜇(𝐵(𝑥, 𝑟)) ≤ 𝑐0 𝑟
ℓ

for some fixed constants 𝑐0 > 0 and ℓ ∈ (0, 𝑛], and 𝜇(𝑄) > 0. It is shown that
the definition of the space does not depend on the choice of the parameter 𝑘 > 1,
that is,

M 𝑝
𝑞 (𝑘1, 𝜇) = M 𝑝

𝑞 (𝑘2, 𝜇) (15)

for all 𝑘1 > 1, 𝑘2 > 1, up to equivalence of norms. More precisely

∥𝑓∥M𝑝
𝑞 (𝑘1,𝜇)

≤ ∥𝑓∥M𝑝
𝑞 (𝑘2,𝜇)

≤ 𝐶𝑛

(
𝑘1 − 1

𝑘2 − 1

)𝑛
∥𝑓∥M𝑝

𝑞 (𝑘1,𝜇)
(16)

for 1 < 𝑘1 < 𝑘2 < ∞, see formula (3) in [96]. In [96] there was also made a
comparison of the spaceM 𝑝

𝑞 (2, 𝜇) with the spaceM 𝑝
𝑞 (1, 𝜇), the latter being defined

with the usage of cubes 𝑄 which only satisfy the condition 𝜇(𝑘𝑄) ≤ 𝛽𝜇(𝑄) with

𝛽 > 𝑘
𝑛𝑝𝑞
𝑝−𝑞 where 𝑘 > 1 is fixed and the measure 𝜇 does not necessarily satisfies

the growth condition or the doubling condition. This comparison includes also the
case of vector-valued Morrey spaces M 𝑝

𝑞 (ℓ
𝑟, 𝜇) defined by

∥𝑓𝑗∥M𝑝
𝑞 (ℓ𝑟 ,𝜇)

:= sup
𝑄∈𝒬(𝜇;𝑘;𝛽)

𝜇(𝑄)
1
𝑝− 1

𝑞

(∫
𝑄

∥𝑓𝑗∥𝑞ℓ𝑟 d𝜇
)1/𝑞

< ∞.

For similar results on Campanato spaces, we refer to Section 4.

For Morrey spaces in a more general setting of abstract quasimetric measure
spaces see Subsection 3.1.

3. Generalized Morrey spaces

Recall that the classical Morrey space is defined by the norm.

∥𝑓∥𝐿𝑝,𝜆(Ω) := sup
𝑥∈Ω

∥∥∥∥ 1

𝑟
𝜆
𝑝

∥𝑓∥𝐿𝑝(𝐵(𝑥,𝑟))
∥∥∥∥
𝐿∞(0,𝑑)

, 𝑑 = diamΩ. (17)
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There are known two types of generalizations of Morrey spaces. The first is to
replace the power function 𝑟𝜆 by a function 𝜑(𝑟) (or more generally 𝜑(𝑥, 𝑟)),
usually with some quasi monotonicity type conditions with respect to 𝑟. Another
way is to replace the 𝐿∞(0, 𝑑)-norm by 𝐿𝜃(0, 𝑑)-norm, 0 < 𝜃 < ∞. For brevity,
we will call these by 𝜑-generalizations and 𝜃-generalizations. Both ways may be
naturally mixed.

3.1. 𝝋-generalizations

Let 𝑋 be a quasimetric space with a Borel measure 𝜇. The generalized Morrey
space is defined by the (quasi)norm

∥𝑓∥𝑝,𝜑 = sup
𝑥,𝑟

(
1

𝜑(𝑥, 𝑟)

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝜇(𝑦)
)1/𝑝

, 0 < 𝑝 < ∞, (18)

where 𝐵(𝑥, 𝑟) is a ball in X and the non-negative function 𝜑 is subject to some
restrictions, usually related to monotonicity-type conditions in 𝑟. Generalized Mor-
rey spaces, 𝐿𝑝,𝜑,𝑆, of such a type seem to first appear in the paper G.T. Dzhu-
makaeva and K. Zh. Nauryzbaev [31] (1982), where the norm is introduced by

∥𝑓∥𝑝,𝜑,𝑆 = sup
𝐸∈𝑆

1

𝜑(∣𝐸∣)
(∫
𝐸∩Ω

∣𝑓(𝑦)∣𝑝 d𝑦
)1/𝑝

< ∞,

1 ≤ 𝑝 < ∞, Ω is a domain of finite measure in ℝ𝑛, 𝑆 is the family of all measurable
subsets of Ω and 𝜑(𝑟) is a positive nondecreasing function on ℝ1

+. Under the
assumption that 𝜑(𝑟) = 1 for 𝑟 ≥ 1 and that 𝜑𝑝(𝑟) is concave in (0, 1), in [31] there

was proved that 𝐿𝑝,𝜑,𝑆(Ω) ⊂ 𝐿𝑞(Ω), 𝑝 < 𝑞 ≤ ∞, if and only if
∫ 1
0 𝑟−𝑞/𝑝𝜑𝑞(𝑟) d𝑟 <

∞, with the corresponding interpretation for 𝑞 = ∞.

The generalized Morrey spaces 𝐿𝑝,𝜑(Ω) defined by the norm

∥𝑓∥𝑝,𝜑 = sup
𝑥,𝑟

(
1

𝜑(𝑟)

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝜇(𝑦)
)1/𝑝

, 1 ≤ 𝑝 < ∞, (19)

were studied in the paper C. Zorko [115] (1986) in a more general setting of Cam-
panato spaces, see Section 4. We mention the result from [115, Prop. 2] stating
that the zero continuation of a function 𝑓 ∈ 𝐿𝑝,𝜑(Ω) belongs to 𝐿𝑝,𝜑(ℝ𝑛) under the
assumption that the function 𝜑 is nondecreasing. In [115, Prop. 3] there was also
shown a possibility to approximate by nice functions in the subspace of 𝐿𝑝,𝜑(ℝ𝑛)
defined by the condition lim𝑦→0 ∥𝑓(⋅−𝑦)−𝑓(⋅)∥𝐿𝑝,𝜑 = 0 (recall that Morrey spaces
are not separable).

Often the (quasi)norm in such a generalized Morrey space is taken in the
form

∥𝑓∥𝐿𝑝𝜓 = sup
𝐵(𝑥,𝑟)

1

𝜓(𝑥, 𝑟)

(
1

𝜇(𝐵(𝑥, 𝑟))

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝜇(𝑦)
)1/𝑝

, 0 < 𝑝 < ∞,

(20)
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in particular in the form

∥𝑓∥𝐿𝑝𝜓(𝑤) = sup
𝐵

1

𝜓(∣𝐵∣)
(
1

∣𝐵∣
∫
𝐵

∣𝑓(𝑦)∣𝑝 𝑤(𝑦) d𝑦
)1/𝑝

, 0 < 𝑝 < ∞, (21)

in the case 𝑋 = ℝ𝑛.

With the norm of form (18), such spaces appeared in E. Nakai [72] (1994)
for 𝑋 = ℝ𝑛, and the spaces 𝐿𝑝𝜓(𝑋) with the (quasi)norm (21) in J. Alvarez and

C. Pérez [9] (1994) and with the norm (20) in E. Nakai [73] (1997).

In [73] there were studied the pointwise multipliers from such a space 𝐿𝑝𝜓(𝑋)

to another one of similar type. Let PWM(𝐸,𝐹 ) denote the set of pointwise mul-
tipliers from 𝐸 to 𝐹 . Under some assumptions on 𝜓1 and 𝜓2, it was proved that

PWM(𝐿𝑝1𝜓1
, 𝐿𝑝2𝜓2

) = 𝐿𝑝3𝜓3
, (22)

where 1/𝑝1 + 1/𝑝3 = 1/𝑝2, 0 < 𝑝2 < 𝑝1 < ∞ and 𝜓3 = 𝜓2/𝜓1. In E. Nakai [74]
(2000) there were obtained necessary conditions on 𝑝𝑖 and 𝜓𝑖 for (22) to be valid,
and sufficient conditions for PWM(𝐿𝑝1𝜓1

, 𝐿𝑝2𝜓2
) = {0}.

In the paper H. Arai and T. Mizuhara [10] (1997) the generalized Morrey
spaces with the norm of the type (18) were considered within the framework of
homogeneous underlying space, normal in the sense of Maćıas and Segovia [67],
under the assumption that 𝜑(𝑥, 𝑟) is increasing in 𝑟 and satisfies the doubling
condition uniformly in 𝑥. There was proved a general theorem which allows to
obtain estimates of the form

∥𝐹∥𝐿𝑝,𝜑 ≤ 𝐶∥𝐺∥𝐿𝑞,𝜑
from estimates of the form

∫
𝐹 𝑝𝑤𝑑𝜇 ≤ 𝐶

∫
𝐺𝑞𝑤𝑑𝜇, where 𝑤 ranges some sub-

classes of the Muckenhoupt class 𝐴1(𝜇). This important result was used to obtain
Morrey space estimates for various classical operators.

Relations between the generalized Morrey spaces with the norm (21) and
the corresponding Stummel classes (see section 2.1.9) were studied in Eridani and
H. Gunawan [33] (2005), the results adjoin to those for the case where 𝜓 is a power
function.

In E. Nakai [75] (2006) the generalized Morrey spaces, with the norm defined
as in (20), appeared in the case where the underlying space 𝑋 was a homogeneous
metric measure space.

In L. Softova [97] (2006) and [98] (2007) there were introduced the generalized
anisotropic Morrey spaces with the aim to study anisotropic singular integrals.
Let 𝛼 = (𝛼1, . . . , 𝛼𝑛) be a given vector with 𝛼𝑖 ≥ 1, 𝑖 = 1, . . . , 𝑛, and E𝛼(𝑥, 𝑟) the
ellipsoid defined in (11). Then the anisotropic space 𝐿𝑝,𝜑,𝛼(ℝ𝑛) is defined by the
norm

∥𝑓∥𝑝,𝜑,𝛼 = sup
𝑥,𝑟

(
1

𝜑(𝑥, 𝑟)

∫
E𝛼(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦
)1/𝑝

< ∞.
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As a generalization of results from Y. Sawano and H. Tanaka [95] (see Sub-
section 2.2), Y. Sawano in [94] (2008) dealt with the generalized Morrey spaces
defined by the condition

sup
𝑄

(
1

𝜑(𝜇(𝑘𝑄))

∫
𝑄

∣𝑓 ∣𝑝 d𝜇
)1/𝑝

< ∞,

where 1 ≤ 𝑝 < ∞, 𝑘 > 1, 𝜑 is an increasing function, 𝑄 is a cube with edges
parallel to the coordinate axes, and 𝜇 is a positive Radon measure, non necessarily
satisfying the doubling condition. The independence of such spaces on the choice
of 𝑘 > 1, as in (15)–(16), is extended to this setting.

Y. Komori and S. Shirai [60] (2009) considered the generalized Morrey spaces
𝐿𝑝,𝜅(𝑤), defined by the norm

∥𝑓∥𝐿𝑝,𝜅(𝑤) = sup
𝑄

(
1

𝑤(𝑄)𝜅

∫
𝑄

∣𝑓(𝑥)∣𝑝𝑤(𝑥) d𝑥
)1/𝑝

, 𝑤(𝑄) =

∫
𝑄

𝑤(𝑥) d𝑥, (23)

where 0 < 𝜅 < 1 and the supremum is taken over all cubes in ℝ𝑛, which is nothing
else, but the usual Morrey space with respect to the measure 𝜇(𝐸) =

∫
𝐸

𝑤(𝑥) d𝑥;
the authors called this space weighted. Note that if we interpret the space 𝐿𝑝,𝜅(𝑤)
as a weighted generalized Morrey space, then given the function 𝑤, the function
𝜑 = 𝑤𝜅 already defines the generalized Morrey space, this meaning that the space
𝐿𝑝,𝜅(𝑤), introduced in this way, is not a space with an arbitrary weight, but with
a special weight equal to a power of the function 𝜑.

3.2. 𝜽-generalizations

A Morrey-type space with sup𝑟>0 replaced by the ∥⋅∥𝐿𝜃(0,∞)-norm first appeared
in D.R. Adams [5], p. 44 (1981) with the norm defined by

∥𝑓∥𝐿𝑝,𝜃,𝜆(ℝ𝑛) := sup
𝑥∈ℝ𝑛

⎛⎝∫ ∞

0

(
1

𝑟𝜆

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦
)𝜃/𝑝

d𝑟

𝑟

⎞⎠1/𝜃

(24)

where the corresponding Sobolev type theorem for the Riesz potential operator
was stated. Spaces with both 𝜃- and 𝜑-generalization, but “localized” to the point
𝑥 = 0, with the norm

∥𝑓∥𝐿𝑝,𝜃,𝜑
loc,0

(ℝ𝑛) :=

⎛⎝∫ ∞

0

(
1

𝜑(𝑟)

∫
𝐵(0,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦
)𝜃/𝑝

d𝑟

𝑟

⎞⎠1/𝜃

(25)

were introduced and intensively studied by V.S. Guliyev [47] (1994) together with
the study of the classical operators in these spaces, see also the books V.S. Guliyev
[50] (1996) and [51] (1999) where these results were presented for the case when the
underlying space is the Heisenberg group or a homogeneous group, respectively.
Note that these investigations appeared in fact independently of the development
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of the main trends in the theory of Morrey spaces and their applications. They
had as a background the usage of the local characteristics

Ω(𝑓, 𝑟) =

∫
ℝ𝑛∖𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦 and Ω∗(𝑓, 𝑟) =
∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

widely used in Baku mathematical school (A.A. Babaev and his students) for a
characterization of weighted Hölder and other spaces, we refer for instance to the
papers [11] and [1], [2].

In the case 𝜃 = 𝑝 the spaces 𝐿𝑝,𝜃,𝜑loc,0 (ℝ
𝑛) coincide with a certain weighted

Lebesgue spaces:

𝐿𝑝,𝑝,𝜑loc,0 (ℝ
𝑛) = 𝐿𝑝(ℝ𝑛, 𝑤), 𝑤(𝑥) =

∫ ∞

∣𝑥∣

d𝑟

𝑟𝜑(𝑟)
.

In a series of papers by V. Burenkov, H. Guliyev and V. Guliyev related to
such spaces, this “localized” version with the norm (25), where 𝑝, 𝜃 ∈ (0,∞), was
called “local Morrey-type space” and the version with the norm

∥𝑓∥𝐿𝑝,𝜃,𝜑(ℝ𝑛) := sup
𝑥∈ℝ𝑛

⎛⎝∫ ∞

0

(
1

𝜑(𝑟)

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦
)𝜃/𝑝

d𝑟

𝑟

⎞⎠1/𝜃

, (26)

the “global Morrey-type space”, with 𝑝, 𝜃 ∈ (0,∞). As shown in V.I. Burenkov
and H. Guliyev [18] (2004), such space 𝐿𝑝,𝜃,𝜑(ℝ𝑛) is “reasonable” under the as-
sumptions ∥∥∥∥ 1

𝜑1/𝑝

∥∥∥∥
𝐿𝜃(𝑡1,∞)

< ∞ and

∥∥∥∥∥ 𝑟
𝑛
𝑝

𝜑1/𝑝

∥∥∥∥∥
𝐿𝜃(0,𝑡2)

< ∞

for some 𝑡1, 𝑡2 ∈ (0,∞), being trivial (𝐿𝑝,𝜃,𝜑(ℝ𝑛) = ∅) if one of these conditions is
violated; the space 𝐿𝑝,𝜃,𝜑loc,0 is also trivial if the second condition is violated, and the

function in 𝐿𝑝,𝜃,𝜑loc,0 must vanish in a sense at the origin, if the first condition does
not hold.

4. Campanato spaces

Campanato spaces, also referred to sometimes as Morrey-Campanato spaces, were
introduced by S. Campanato [19] (1963) (in the case of bounded domains in ℝ𝑛);
in 1964 they also appeared in the paper of G. Stampacchia [101]. They are a gener-
alization of the 𝐵𝑀𝑂 spaces of functions of bounded mean oscillation introduced
by F. John and L. Nirenberg [56] (1961) and defined, for open sets Ω ⊆ ℝ𝑛, by
the seminorm

[𝑓 ]BMO := sup
𝑥,𝑟

1

∣𝐵(𝑥, 𝑟)∣

∫
𝐵(𝑥,𝑟)

∣∣∣𝑓(𝑦)− 𝑓𝐵(𝑥,𝑟)

∣∣∣d𝑦.
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4.1. Definitions and basic facts

Definition 4.1 (Campanato spaces). Let Ω ⊆ ℝ𝑛 be an open set, 1 ≤ 𝑝 < ∞ and
𝜆 ≥ 0. The Campanato space L 𝑝,𝜆(Ω) is defined as

L 𝑝,𝜆(Ω) :=
{
𝑓 ∈ 𝐿𝑝(Ω) : [𝑓 ]L 𝑝,𝜆(Ω) < ∞}

(27)

the Campanato seminorm being given by

[𝑓 ]L 𝑝,𝜆(Ω) := sup
𝑥∈Ω;𝑟>0

(
1

𝑟𝜆

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)− 𝑓𝐵(𝑥,𝑟)∣𝑝 d𝑦
)1/𝑝

or equivalently

sup
𝑥∈Ω;𝑟>0

(
1

𝑟𝜆
inf
𝑐∈ℝ1

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)− 𝑐∣𝑝 d𝑦
)1/𝑝

. (28)

The embedding theorem for Campanato spaces reads as follows (see [63,
p. 217])

Theorem 4.2. Let 1 ≤ 𝑝 ≤ 𝑞 < ∞ and let 𝜆, 𝜈 be non-negative numbers. If ∣Ω∣ is
finite then

L 𝑞,𝜈(Ω) ↪→ L 𝑝,𝜆(Ω) (29)

under the condition
𝜆 − 𝑛

𝑝
≤ 𝜈 − 𝑛

𝑞
. (30)

In G. Stampacchia [102] (1965) there was introduced Campanato-type space

L
(𝑝,𝜆)
𝑟 (𝑄0) where 𝑄0 is a cube in ℝ𝑛 defined by the set of seminorms

𝐾(𝑄𝑗) := sup
𝑄⊂𝑄𝑗

(
1

∣𝑄∣1−𝜆/𝑛
∫
𝑄

∣𝑢(𝑥)− 𝑢𝑄∣𝑝 d𝑥
)1/𝑝

(31)

where {𝑄𝑗 : ∪𝑄𝑗 ⊂ 𝑄0} is a given family of cubes parallel to the cube 𝑄0, no two
of which have common interior points, and the condition

sup
{𝑄𝑗}

⎛⎝∑
𝑗

∣𝐾(𝑄𝑗)∣𝑟
⎞⎠ 1

𝑟

< ∞ (32)

holds, where the supremum is taken with respect to all admissible families of cubes.
In some papers such spaces were called strong Campanato spaces, see, e.g., [79, 84].

The importance of Campanato spaces stems from the fact that, for 𝜆 greater
than 𝑛 (and less than 𝑛+ 𝑝), they coincide with the spaces of Hölder continuous
functions, providing an integral characterization of such functions, while in the case
𝜆 < 𝑛 they coincide with Morrey spaces, as the theorem below states, proved in
S. Campanato [19] (1963) (in [19] the domain was supposed to satisfy the condition
(A) and have Lipschitz boundary; for the proof under the only condition (A) we
refer to Section 4.3 of the book by A. Kufner et al. [63]), where the proof of the
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coincidence of the Campanato spaces with the BMO space in the case 𝜆 = 𝑛 may
be also found.

We say that an open set Ω ⊂ ℝ𝑛 is of type (A), if there exists a constant
𝐴 > 0 such that

∣𝐵(𝑥, 𝑟)∣ ≥ 𝐴𝑟𝑛, (33)

and by 𝐻𝛼(Ω) we denote the space of functions satisfying the Hölder condition
in Ω.

Theorem 4.3. Let 1 ≤ 𝑝 < ∞ and Ω be a bounded domain of type (A). Then

1. L 𝑝,𝜆(Ω) ∼= 𝐿𝑝,𝜆(Ω), when 𝜆 ∈ [0, 𝑛),
2. L 𝑝,𝜆(Ω) ∼= 𝐵𝑀𝑂(Ω) when 𝜆 = 𝑛,
3. L 𝑝,𝜆(Ω) ∼= 𝐻𝛼(Ω) with 𝛼 = 𝜆−𝑛

𝑝 , when 𝜆 ∈ (𝑛, 𝑛+ 𝑝].

Note that the statement (3) of Theorem 4.3 for the case 𝑝 = 1 was also proved
in N. Meyers [69] (1964).

For strong Campanato spaces defined by (31) and (32), in A. Ono [79] (1970)
there were obtained relations with Lipschitz spaces Lip(𝛼, 𝑝) of functions Hölder
continuous in 𝐿𝑝-norm, and in A. Ono [83] (1978) in the final form as the statement

L (𝑝,𝜆)
𝑟 (𝑄0) ∼= Lip

(
𝑛

𝑟
− 𝑛 − 𝜆

𝑝
, 𝑟

)
,

with 1 ≤ 𝑟 < ∞ and 0 < 𝑛/𝑟 − (𝑛 − 𝜆)/𝑝 < 1.
We refer also to A. Ono [80] (1972), A. Ono and Y. Furusho [84], A. Ono [82]

(1977/1978), and A. Ono [81] (1977/1978) with regards to other results around
the strong Campanato spaces.

In [20] (1964) S. Campanato introduced spaces L 𝑝,𝜆
𝑘 (Ω) of “higher order”

defined by the seminorm

[𝑓 ]L 𝑝,𝜆
𝑘

:= sup
𝑥∈Ω;𝑟>0

(
1

𝑟𝜆
inf
𝑃∈𝒫𝑘

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)− 𝑃 (𝑦)∣𝑝 d𝑦
)1/𝑝

(34)

where 𝒫𝑘 is the class of polynomials of degree at most 𝑘 and proved the following
generalization of Theorem 4.3, where 𝐶𝑚,𝛼(Ω),𝑚 ≥ 0, 0 < 𝛼 ≤ 1, stands for the
class of functions continuous in Ω with all the derivatives up to the order 𝑚 and
with the derivatives of order 𝑚 in 𝐻𝛼(Ω).

Theorem 4.4. Let 1 ≤ 𝑝 < ∞, 𝑘 ≥ 0 and Ω be a bounded domain of type (A). Then

1. L 𝑝,𝜆
𝑘 (Ω) ∼= 𝐿𝑝,𝜆(Ω), when 𝜆 ∈ [0, 𝑛),

2. L 𝑝,𝜆
𝑘 (Ω) ∼= 𝐶𝑚,𝛼(Ω) with 𝑚 =

[
𝑛−𝜆
𝑝

]
, 𝛼 = 𝜆−𝑛

𝑝 − 𝑚, when 𝑛 +𝑚𝑝 < 𝜆 <

𝑛+ (𝑚+ 1)𝑝, 𝑚 = 0, 1, 2, . . . , 𝑘.

We refer to S. Janson et al. [55] (1983) for the alternative proof of Theorem
4.4 in the case Ω = ℝ𝑛, which includes also the case 𝑝 = ∞.

Note that the condition (A) is not necessary for the validity of the embedding

L 𝑝,𝜆
𝑘 (Ω) ↪→ 𝐶𝑚,𝛼(Ω) but the inverse embedding in equivalence (2) in Theorem 4.4
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essentially uses this condition. We refer to D. Opěla [85] (2003) for the study of
the influence of the geometry of Ω on the inverse embedding.

4.2. DeVore-Sharpley-Christ versions of Campanato-type spaces

In R.A. DeVore and R.C. Sharpley [28] and M. Christ [25] there was introduced
a version of Campanato-type spaces in which the 𝐿∞-norm in 𝑥 is replaced by
𝐿𝑝-norm, namely they introduced the space 𝐶𝛼𝑝 defined for 1 ≤ 𝑞 ≤ 𝑝, by the
norm

∥𝑓∥𝐶𝛼𝑝 :=
[∫

Ω

sup
𝑄∋𝑥

inf
𝑃∈𝒫[𝛼]

1

∣𝑄∣𝛼𝑝𝑛 + 𝑝
𝑞

(∫
𝑄

∣𝑓(𝑦)− 𝑃 (𝑦)∣𝑞 d𝑦
) 𝑝

𝑞

d𝑥

]1/𝑝
, (35)

where 𝒫𝑘 stands for the class of polynomials of degree at most 𝑘, 𝑘 ≥ 0. This norm
does not depend on 𝑞 ∈ [1, 𝑝], see [28, p. 36]. We refer to [28] for the study of various
properties of these spaces such as comparison with Besov spaces, interpolation,
embeddings, extension theorem, etc. These spaces may be also found in H. Triebel
[109, Subsection 1.7.2.]. They are also known as local approximation Campanato
spaces. In the case 𝑝 = 2 we refer also to a paper [32] (2006) on a characterization
of such spaces when 𝛼 may be negative (𝛼 > −𝑛2 ).

Spaces of the type 𝐶𝛼𝑝 (𝑋) were studied in D. Yang [113] (2005) in the case
where the underlying space was a homogeneous metric measure spaces. A com-
parison of such spaces and some other Campanato related spaces with Besov and
Triebel-Lizorkin spaces may be also found in that paper. We also mention a char-
acterization of the Hajl̷asz-Sobolev spaces in terms of the Calderón-Scott maximal
function 𝑓 ♯𝛼, obtained in [113].

4.3. 𝝋-generalization

Following the long-standing traditions in the study of Campanato spaces, we use
two forms to define them. Namely

L 𝑝,𝜑
𝑘 :=

{
𝑓 ∈ 𝐿𝑝 : sup

𝑥,𝑟

1

𝜑(𝑟)
inf
𝑃∈𝒫𝑘

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)− 𝑃 (𝑦)∣𝑝 d𝑦 < ∞
}

(36)

and

L𝑝,𝜓𝑘 =

{
𝑓 ∈ 𝐿𝑝 : sup

𝑥,𝑟

1

𝑟𝑛𝜓(𝑟)
inf
𝑃∈𝒫𝑘

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)− 𝑃 (𝑦)∣𝑝 d𝑦 < ∞
}

. (37)

Such a generalized Campanato space L1,𝜓(𝑄) := L1,𝜓0 (𝑄), over cubes 𝑄 ⊂ ℝ𝑛,
defined by the seminorm

[𝑓 ]L1,𝜓(Ω) := sup
𝑥,𝑟

1

𝑟𝑛𝜓(𝑟)

∫
𝐼(𝑥,𝑟)⊂𝑄

∣𝑓(𝑦)− 𝑓𝐼(𝑥,𝑟)∣ d𝑦,

with 𝐼(𝑥, 𝑟) = {𝑢 : ∣𝑦 − 𝑥∣ < 𝑟/2}, appeared in S. Spanne [99] (1965), where
L1,𝜓(𝑄) was characterized in terms of rearrangements of the function ∣𝑓 − 𝑓𝐼(𝑥,𝑟)∣,
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restricted to 𝐼(𝑥, 𝑟). Under the assumption that the function 𝜓 is increasing on

(0,∞) and the integral
∫ 𝜀
0
𝜓(𝑡)
𝑡 d𝑡 converges, he proved the embedding

L1,𝜓(𝑄) ↪→ 𝐻𝜓1(𝑄), (38)

where 𝐻𝜓1 is the generalized Hölder space

𝐻𝜓1 = {𝑓 : ∣𝑓(𝑥+ ℎ)− 𝑓(𝑥)∣ ≤ 𝐶𝜓1(ℎ)}, 𝜓1(ℎ) =

∫ ℎ
0

𝜓(𝑡)

𝑡
d𝑡. (39)

The generalized Campanato space L 𝑝,𝜑
𝑘 (Ω) of higher order defined by the

seminorm

[𝑓 ]L 𝑝,𝜑
𝑘

:= sup
𝑥,𝑟

(
1

𝜑(𝑟)
inf
𝑃∈𝒫𝑘

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)− 𝑃 (𝑦)∣𝑝 d𝑦
)1/𝑝

(40)

where 𝒫𝑘 is the class of polynomials of degree at most 𝑘, 𝑘 ≥ 0 and Ω is an
open set in ℝ𝑛, was studied by S. Spanne [100] (1966) who gave its equivalent
characterization in terms of the seminorm

sup
𝑥,𝑟

(
1

𝜑(𝑟)
∥𝑓 − P𝑘(𝑓)∥𝑝𝐿𝑝(𝐵(𝑥,𝑟))

)1/𝑝

(41)

where P𝑘 is the orthogonal projection of 𝐿
2(𝐵(𝑥, 𝑟)) onto the space of restrictions

of polynomials of order 𝑘 on 𝐵(𝑥, 𝑟), under the assumption that Ω is of type (A).
He also considered weak generalized Morrey-type spaces with the 𝐿𝑝-norm in (41)
replaced by the weak 𝐿𝑝-norm.

As shown in J. Alvarez [7] (1981) the generalized Campanato spaces L 𝑝,𝜑
0

are not better than the 𝐿𝑝 space if one admits the function 𝜑 such that 𝜑(𝑡) →
∞ as 𝑡 → 0. More precisely, let 𝜑 be a nonnegative function such that 𝜑(𝑡) is
nonincreasing and 𝑡𝜑𝑝(𝑡) is nondecreasing near zero and 𝜑(0) = ∞; suppose also
that 𝑔 : (0, 1)→ ℝ is a nonnegative, nonincreasing 𝑝-integrable function such that
𝑔(𝑡) → ∞ as 𝑡 → 0. Then there exist a cube 𝑄0, a function 𝑓 ∈ L 𝑝,𝜑

0 (𝑄0) and two
constants 𝐶, 𝑡0 > 0 such that

𝜆𝑓 (𝑡) ≥ 𝐶𝜆𝑔(𝑡0)

where 𝜆𝑓 (𝑡) = ∣{𝑥 : ∣𝑓(𝑥)∣ > 𝑡}∣ is the distribution function, so that L 𝑝,𝜑
0 (𝑄0)

contains functions whose distribution functions exceed that of any given function
in 𝐿𝑝(𝑄0).

In the case where Ω ⊂ ℝ𝑛 is a bounded open set, generalized Campanato
spaces L 𝑝,𝜑

𝑘 (Ω) defined by condition (40), appeared in C. Zorko [115] (1986). As
a generalization of the statement 1. of Theorem 4.4, there was proved that

L 𝑝,𝜑
𝑘 (Ω) ∼= 𝐿𝑝,𝜑(Ω)

under the condition (A), see (33), and the following assumptions: 𝜑(𝑟) is nonde-

creasing, 𝜑(𝑟)𝑟−𝑛 is nonincreasing and 𝜑(2𝑟) ≤ 𝑐𝜑(𝑟) with 0 < 𝑐 < 2
𝑛
𝑝 , with the

generalized Morrey space 𝐿𝑝,𝜑(Ω) defined by the norm (19).
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We refer also to Proposition 5 of [115] where the reader can find a statement
on preduals of type of Theorem 2.4 for Campanato spaces.

As a generalization of Spanne’s result (38), J. Kovats [61] (1999) proved the
embedding

L𝑝,𝜓𝑘 (Ω) ↪→ 𝐶𝑘,𝜓1 (Ω), 𝜓1(𝑡) =

∫ 𝑡
0

𝜓(𝑟)1/𝑝

𝑟1+𝑘
d𝑟 (42)

where Ω is a domain of type (A) and 𝐶𝑘,𝜓1 is the space of functions differentiable
up to order 𝑘 with the last derivative satisfying the Hölder condition as in (39),
under the assumption that the integral defining the function 𝜓1 converges.

The generalized Campanato spaces, in the case where the underlying space
𝑋 was a normal homogeneous metric measure space, defined for 1 ≤ 𝑝 < ∞ by

∥𝑓∥ℒ𝑝,𝜙 := sup
𝑥,𝑟

1

𝜙(𝑥, 𝑟)

(
1

𝜇𝐵(𝑥, 𝑟)

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)− 𝑓𝐵(𝑥,𝑟)∣𝑝 d𝜇(𝑦)
)1/𝑝

were introduced in E. Nakai [75] (2006). Recall that a homogeneous metric measure
space is called normal if

𝐾1𝑟 ≤ 𝜇𝐵(𝑥, 𝑟) ≤ 𝐾2𝑟. (43)

There were given relations between such generalized Campanato spaces and Mor-
rey and Hölder spaces, the latter defined by the norm

∥𝑓∥Λ𝜙 := sup
𝑥,𝑦∈𝑋
𝑥 ∕=𝑦

2∣𝑓(𝑥)− 𝑓(𝑦)∣
𝜙(𝑥, 𝑑(𝑥, 𝑦)) + 𝜙(𝑦, 𝑑(𝑦, 𝑥))

,

including necessary and sufficient conditions on the function 𝜙 for the relations

ℒ𝑝,𝜙(𝑋)/𝒞 ∼= 𝐿𝑝,𝜙(𝑋), ℒ𝑝,𝜙(𝑋) ∼= 𝐿𝑝,𝜙(𝑋), ℒ𝑝,𝜙(𝑋) ∼= Λ𝜙(𝑋).

A modified version of (vector-valued) Campanato spaces, with non-doubling
measures, in the language of the 𝑅𝐵𝑀𝑂 spaces of X. Tolsa [107] (2001) was
introduced and studied in Y. Sawano and H. Tanaka [96] (2006).

P. Górka [41, Theor. 3.1] (2009) gave a simple proof of a statement of type
(3) of Theorem 4.3 in the general setting of homogeneous metric measure spaces
(𝑋, 𝜌, 𝜇), for the Campanato spaces defined by the condition

1

𝜇𝐵(𝑥, 𝑟)

∫
𝐵(𝑥,𝑟)

∣∣𝑓(𝑦)− 𝑓𝐵(𝑥,𝑟)
∣∣𝑝 d𝜇(𝑦) ≤ 𝐶𝑝𝑟𝛼𝑝,

not requiring the space (𝑋, 𝜌, 𝜇) to be normal. A local version of this theorem
was used in [41, Theor. 3.3] to prove some embeddings of Hajl̷asz-Sobolev space
𝑀1,𝑝(𝑋), 1 < 𝑝 < ∞, into Hölder spaces.
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4.4. Interpolation results

G. Stampacchia [101] (1964), [102] (1965) and S. Campanato and M. Murthy [21]
(1965) proved a Riesz-Thorin-type interpolation theorem for operators acting from
𝐿𝑝 into Campanato spacesL 𝑞,𝜆 (at that time, Morrey and Campanato spaces were
simply called Morrey spaces). The result in a more complete form obtained in S.

Campanato and M. Murthy [21] (1965) is the following, where L 𝑝,𝜆
𝑘 (Ω) is the

space defined by (34) and Ω is a bounded open set in ℝ𝑛.

Theorem 4.5. Let 1 ≤ 𝑝𝑖 ≤ ∞, 1 ≤ 𝑞𝑖 ≤ ∞, 0 ≤ 𝜆𝑖 < 𝑛 + 𝑝, 𝑖 = 1, 2, and for
0 < 𝜃 < 1 define 𝑝, 𝑞 and 𝜆 by

1

𝑝
=
1− 𝜃

𝑝1
+

𝜃

𝑝2
,

1

𝑞
=
1− 𝜃

𝑞1
+

𝜃

𝑞2
,

1

𝜆
=
1− 𝜃

𝜆1
+

𝜃

𝜆2
. (44)

If 𝑇 is a bounded linear operator from 𝐿𝑞𝑖(Ω) to L 𝑝𝑖,𝜆𝑖
𝑘 (Ω), 𝑖 = 1, 2 with the

operator norm 𝐾𝑖, then 𝑇 is bounded from 𝐿𝑞(Ω) to L 𝑝,𝜆
𝑘 (Ω) with the norm at

most 𝐶𝐾1−𝜃
1 𝐾𝜃2 , with 𝐶 depending only on 𝜃, 𝜆𝑖, 𝑝𝑖 and 𝑞𝑖.

Interpolation in the other direction fails, as first shown by E. Stein and A.
Zygmund [103] (1967) who constructed a bounded linear operator on 𝐻𝛼 and 𝐿2

but not on 𝐿𝑞, 𝑞 > 2 and 𝐵𝑀𝑂. Further results on such a failure may be found
in the papers by A. Ruiz and L. Vega [93] (1995) and O. Blasco et al. [17] (1999),
where there were given examples of operators bounded from 𝐿𝑝𝑖,𝜆 to 𝐿𝑞𝑖 , which
are not bounded in the intermediate spaces.

Note that a version of Marcinkiewicz type theorem was obtained in G. Stam-
pacchia [101] (1964) for spaces L 𝑝,𝜆(𝑄0), where 𝑄0 is a cube in ℝ𝑛. The linear
operator 𝑇 was defined to be of strong type (𝑝, 𝑞, 𝜆), if ∥𝑇𝑓∥L 𝑞,𝜆 ≤ 𝐾∥𝑓∥𝐿𝑝 and
of weak type (𝑝, 𝑞, 𝜆), if

sup
𝑄

𝑟−𝜆∣ {𝑥 ∈ 𝑄 : ∣𝑇𝑓 − (𝑇𝑓)𝑄∣ > 𝜎} ∣ ≤
(

𝐾

𝜎
∥𝑓∥𝐿𝑝

)𝑞
,

where𝑄 is a cube with sides parallel to𝑄0, and the following interpolation theorem
was proved

Theorem 4.6. If 𝑇 is of weak types (𝑝1, 𝑞1, 𝜆1) and (𝑝2, 𝑞2, 𝜆2), where 𝑝𝑖 ≥ 1,
𝑝𝑖 ≤ 𝑞𝑖, 𝑖 = 1, 2, 𝑞1 ∕= 𝑞2, 𝑝1 ∕= 𝑝2, then 𝑇 is of strong type (𝑝, 𝑞, 𝜆) with 𝑝, 𝑞, 𝜆
defined in (44).

For some related interpolation statements we also refer to the thesis of P. Gris-
vard [44] (1965), published in [45, 46] (1966) and the paper J. Peetre [87] (1966).
S. Spanne [100] (1966) generalized and simplified the proofs of the interpolation
theorem in the setting of generalized Campanato space. In fact, he reduced the
validity of the interpolation to the 𝐿𝑝 case. Namely, let

1

𝑝
=
1− 𝜃

𝑝0
+

𝜃

𝑝1
, 𝜑(𝑟) = 𝜑0(𝑟)

1−𝜃𝜑1(𝑟)𝜃 , 0 < 𝜃 < 1
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and let 𝐴0, 𝐴𝜃, 𝐴1 be normed spaces such that the interpolation theorem is valid
for the two triplets (𝐴0, 𝐴𝜃, 𝐴1) and (𝐿

𝑝0 , 𝐿𝑝, 𝐿𝑝1). Then the interpolation theorem
is valid also for (𝐴0, 𝐴𝜃, 𝐴1) and (L

𝑝0,𝜑0

𝑘 , L 𝑝,𝜑
𝑘 , L 𝑝1,𝜑1

𝑘 ), with the same convexity
constant. A similar result holds for the corresponding weak Campanato spaces.

4.5. Other characterizations of Campanato spaces

B. Grevholm [43] (1970) used the interpolation theorem for Campanato spaces to
characterize the Campanato spaces as the Besov spaces, namely

L 𝑝,𝜆
𝑘 (Ω) = 𝐵𝛼(Ω), 0 < 𝛼 =

𝜆 − 𝑛

𝑝
< 𝑘,

where Ω is an open set in ℝ𝑛 satisfying some conditions and 𝐵𝛼(Ω), in the case
Ω = ℝ𝑛, is defined by the seminorm

sup
𝑡>0,∣𝑦∣<1

∥Δ𝑘𝑡𝑦𝑓∥𝐿∞

𝑡𝛼

while in the case Ω ∕= ℝ𝑛 the space 𝐵𝛼(Ω) is defined as the interpolation space

𝐵𝛼(Ω) =
(
𝐶0(Ω), 𝐶𝑘(Ω)

)
𝛼
𝑘 ,∞

under a certain interpolation method.

A result similar in a sense was obtained by different means in H.C. Greenwald

[42] (1983) who proved the coincidence of the Campanato space L 𝑝,𝜆
𝑘 (ℝ𝑛) with

the Lipschitz-type space Λ(𝛼, 𝑘) defined in terms of Gauss-Weierstrass integral:

∥𝑓∥𝛼,𝑘+1 =
∑
∣𝜈∣=𝑘

sup
𝑡∈ℝ+

sup
𝑥∈ℝ𝑛

𝑡(𝑘−𝛼)/2∣𝐷𝜈𝑓(𝑥, 𝑡)∣ < ∞,

where 𝑓(𝑥, 𝑡) is the Gauss-Weierstrass integral of 𝑓 and 𝐷 stands for the differen-
tiation with respect to 𝑥.

Consider also the space 𝐿(𝛼, 𝑝, 𝑘 − 1) of equivalence classes modulo 𝑃𝑘−1 of
locally integrable functions 𝑓 for which

∥𝑓∥𝐿(𝛼,𝑝,𝑘−1) = sup
𝑄⊂ℝ𝑛

∣𝑄∣−𝛼/𝑛
[
1

∣𝑄∣
∫
𝑄

∣𝑓(𝑥)− 𝑃𝑄𝑓(𝑥)∣𝑝 d𝑥
]1/𝑝

< ∞, (45)

where 𝑄 is a ball and 𝑃𝑄𝑓 is the unique element of 𝑃𝑘−1 such that∫
𝑄

[𝑓(𝑥)− 𝑃𝑄𝑓(𝑥)]𝑥
𝜈 d𝑥 = 0, 0 ≤ ∣𝜈∣ ≤ 𝑘 − 1. (46)

Such spaces occur in the duality theory of Hardy spaces as discussed by M.
Taibleson and G. Weiss [105] (1980); we refer also to a related paper M.H. Taibleson
and G. Weiss [104] (1979). The main result of [42] asserts that the spaces Λ𝛼,𝑘
and 𝐿(𝛼, 𝑝, 𝑘 − 1) coincide and that their norms are equivalent. An earlier result
of similar nature was obtained by B. Grevholm [43] (1970) for 𝑝 in the range
1 ≤ 𝑝 < ∞ using interpolation theory. The result in [42] is valid for 1≤ 𝑝 ≤ ∞
and is proved by elementary methods.
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X.T. Duong and L.X. Yan [30] (2005) studied identity approximations adapt-
ed to Morrey-Campanato spaces on quasimetric measure spaces.

In D. Deng, X.T. Duong and L. Yan [27], the authors gave an equivalent
characterization of the spaces 𝐿(𝛼, 𝑝, 𝑘 − 1) by using the identity approximations
instead of the minimizing polynomial in the definition of the norm (45) in the case
𝛼 > 0, 𝑘 > [𝑛𝛼] + 1 when these spaces do not depend on 𝑝 ∈ [1,∞].

X.T. Duong, J. Xiao and L. Yan [29] (2006) studied the Morrey-Campanato
spaces defined with the constant 𝑐 = 𝑓𝐵 in the definition in (28) replaced by a
semigroup of operators. They studied relations with the usually defined Morrey-
Campanato spaces and showed that under appropriate choice of a semigroup, the
new definition coincides with the old one.

L. Tang [106] (2007) used the ideas of [30] to define the Campanato spaces
by the norm

sup
𝐵

1

𝜇(𝐵)𝛼+1

∫
𝐵

∣𝑓(𝑥)− 𝐴𝐵(𝑓)∣ d𝑥,
where 𝐴𝐵(𝑓) is an identity approximation from [30]. There is shown that in some
cases such different norms are equivalent but there were also given examples where
they are not.

4.6. Miscellaneous

The central mean oscillation space CMO𝑞, introduced in Y.Z. Chen and K.S. Lau
[24] (1989) and J. Garćıa-Cuerva [37] (1989), defined by

∥𝑓∥CMO𝑞 = sup
𝑟≥1

(
1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥)− 𝑓𝐵(0,𝑟)∣𝑞 d𝑥
)1/𝑞

was shown to be the dual space of an atomic space 𝐻𝐴𝑞 associated with the
Beurling algebra. The central bounded mean oscillation space CBMO𝑞 introduced
in S. Lu and D. Yang [65] (1992) and S. Lu and D. Yang [66] (1995) is defined by

∥𝑓∥CBMO𝑞 = sup
𝑟>0

(
1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥)− 𝑓𝐵(0,𝑟)∣𝑞 d𝑥
)1/𝑞

.

A generalization of CMO𝑞 and CBMO𝑞, introduced in J. Garćıa-Cuerva and
M.J.L. Herrero [38] (1994) and J. Alvarez, M. Guzmán-Partida and J. Lakey [8]
(2000), are the so-called 𝜆-central mean oscillation spaces CMO𝑞,𝜆 and 𝜆-central
bounded mean oscillation spaces CBMO𝑞,𝜆, defined by

∥𝑓∥CMO𝑞,𝜆 = sup
𝑟≥1

1

∣𝐵(0, 𝑟)∣𝜆
(

1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥)− 𝑓𝐵(0,𝑟)∣𝑞 d𝑥
)1/𝑞

and

∥𝑓∥CBMO𝑞,𝜆 = sup
𝑟>0

1

∣𝐵(0, 𝑟)∣𝜆
(

1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥)− 𝑓𝐵(0,𝑟)∣𝑞 d𝑥
)1/𝑞

.
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M. Kronz [62] (2001) introduced Morrey and Campanato spaces for elements
which are mappings between metric measure spaces.

A classical Morrey inequality states that in the case 𝑝 > 𝑛, the following
embedding of a Sobolev space into Hölder space holds

𝑊 1,𝑝(Ω) ↪→ 𝐶0,𝛼(Ω).

In the paper A. Cianchi and L. Pick [26] (2003), in the case 𝑝 = 1, there was
given a detailed study of more general embeddings of Sobolev spaces into Morrey
and Campanato spaces for the case Ω is a cube in ℝ𝑛. For a weakly differentiable
function 𝑓 on 𝑄 they gave optimal integrability conditions on the gradient of 𝑓 , to
belong to Morrey or Campanato space. More generally they gave a characterization
of the rearrangement-invariant Banach function spaces such that the corresponding
Sobolev space 𝑊 1𝑋(𝑄) is continuously embedded into Morrey or Campanato
space. This enabled the authors to find the largest space 𝑋(𝑄) for which such an
embedding holds (the so-called optimal range partner). Such an optimal space is
of Marcinkiewicz type in the case of Campanato spaces and have a different nature
in the case of Morrey spaces. In particular, the following theorem was proved in
[26], where 𝑀𝜓(𝑄) is the Marcinkiewicz space defined by the norm

∥𝑓∥𝑀𝜓(𝑄) = sup
0<𝑡<1

𝜓(𝑡)𝑓∗∗(𝑡), 𝜓(𝑡) =
𝑡

1
𝑛+1

𝜑(𝑡
1
𝑛 )

.

Theorem 4.7. Let 𝜑 be a strictly positive continuous function on (0,∞). Then the
space 𝑋(𝑄) = 𝑀𝜓(𝑄) is the largest rearrangement invariant space for which the
embedding

∥𝑓∥L 1,𝜑(𝑄) ≤ 𝐶∥∇𝑓∥𝑋(𝑄)
holds.

A version of grand Morrey spaces 𝐿𝑝),𝜆(𝑋) over homogeneous-type space 𝑋 ,
which turns into the grand Lebesgue space 𝐿𝑝)(𝑋) introduced in T. Iwaniec and
C. Sbordone [54] (1992) when 𝜆 = 0, was suggested in A. Meskhi [68] (2009). It is
defined by the norm

∥𝑓∥𝐿𝑝),𝜆(𝑋) := sup
0<𝜀<𝑝−1

(
sup

𝑥∈𝑋,𝑟>0

𝜀

(𝜇(𝐵(𝑥, 𝑟)))𝜆

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝−𝜀 d𝜇(𝑦)
)1/(𝑝−𝜀)

.

5. Variable exponent Morrey and Campanato spaces

The Morrey spaces 𝐿𝑝(⋅),𝜆(⋅)(Ω) with variable exponents 𝜆(⋅) and 𝑝(⋅) over an open
set Ω ⊂ ℝ𝑛, were recently introduced almost simultaneously by different authors
in A. Almeida, J. Hasanov and S. Samko [6] (2008), V. Kokilashvili and A. Meskhi
[58] (2008), [59] (2010), T. Ohno [77] (2008), X. Fan [35] (2010).
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In A. Almeida, J. Hasanov and S. Samko [6] (2008) the space 𝐿𝑝(⋅),𝜆(⋅)(Ω)
was introduced as the space of functions with the finite norm

∥𝑓∥𝐿𝑝(⋅),𝜆(⋅)(Ω) = inf

{
𝜈 : 𝐼𝑝(⋅),𝜆(⋅)

(
𝑓

𝜈

)
≤ 1

}
and the modular 𝐼𝑝(⋅),𝜆(⋅)(𝑓) defined by

𝐼𝑝(⋅),𝜆(⋅)(𝑓) := sup
𝑥∈Ω,𝑟>0

1

𝑟𝜆(𝑥)

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝(𝑦) d𝑦.

In the case of a bounded Ω they gave several equivalent norms and proved em-
bedding theorems for such Morrey spaces under the assumption that 𝑝(𝑥) satisfies
the log-condition well known in the variable exponent analysis. Similar embedding
theorem for variable Campanato spaces may be found in [90] (2011) within the
frameworks of the general setting of metric measure spaces.

V. Kokilashvili and A. Meskhi [58] (2008), see also [59] (2010), introduced

Morrey-type spaces 𝑀
𝑞(⋅)
𝑝(⋅) in the general setting when the underlying space is a

homogeneous-type space (𝑋, 𝜌, 𝜇), with the norm defined by

∥𝑓∥
𝑀

𝑞(⋅)
𝑝(⋅)

= sup
𝑥∈𝑋,𝑟>0

(𝜇(𝐵(𝑥, 𝑟)))1/𝑝(𝑥)−1/𝑞(𝑥)∥𝑓∥𝐿𝑞(⋅)(𝐵(𝑥,𝑟))
where 1 < inf𝑋 𝑞 ≤ 𝑞(⋅) ≤ 𝑝(⋅) ≤ sup𝑋 𝑝 < ∞. In the case where 𝑋 is bounded,
some equivalence of norms and embedding theorems were obtained.

A 𝜑-generalization 𝐿𝑝(⋅),𝜈,𝜑(ℝ𝑛) of Morrey spaces with variable exponent 𝑝(𝑥)
and constant 0 ≤ 𝜈 ≤ 𝑛, was given in T. Ohno [77] (2008) by the condition

𝜑(𝑟)

𝑟𝜈

∫
𝐵(𝑥,𝑟)

∣∣∣∣𝑓(𝑦)𝜆

∣∣∣∣𝑝(𝑦) d𝑦 ≤ 1

for some 𝜆 > 0.

A more general version ℳ𝑝(⋅),𝜔(Ω), Ω ⊆ ℝ𝑛 of such generalized variable
exponent Morrey spaces was introduced in V. Guliev, J. Hasanov and S. Samko
[49] (2010), defined by the norm

∥𝑓∥ℳ𝑝(⋅),𝜔 = sup
𝑥∈Ω,𝑟>0

𝑟−
𝑛

𝑝(𝑥)

𝜔(𝑥, 𝑟)
∥𝑓∥𝐿𝑝(⋅)(𝐵(𝑥,𝑟)).

They recover the space 𝐿𝑝(⋅),𝜆(⋅)(Ω) under the choice 𝜔(𝑥, 𝑟) = 𝑟
𝜆(𝑥)−𝑛
𝑝(𝑥) .

Both 𝜑- and 𝜃-generalizations of Morrey spaces of variable order were intro-
duced in V. Guliev, J. Hasanov and S. Samko [48] (2010), as the space of functions
with the finite norm

sup
𝑥∈Ω

∥∥∥∥𝜔(𝑥, 𝑟)

𝑟
𝑛

𝑝(𝑥)

∥𝑓∥𝐿𝑝(⋅)(𝐵(𝑥,𝑟))
∥∥∥∥
𝐿𝜃(⋅)(0,ℓ)

,

where ℓ = diam Ω.

The corresponding variable exponent Campanato spaces are interesting be-
cause they in general contain functions which are locally in 𝐿𝑝(⋅),𝜆(⋅) on one subset,
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BMO-functions locally on another subset and variable order Hölder continuous on
the third one.

Such spaces appeared in X. Fan [35] (2010), where besides variable exponent
Morrey spaces there were also introduced Campanato spaces L 𝑝(⋅),𝜆(⋅) of variable
order, in the Euclidean case, via the norm

∥𝑓∥L 𝑝(⋅),𝜆(⋅)(Ω) := ∥𝑓∥𝐿𝑝(⋅)(Ω) + sup
𝑥0∈Ω,𝑟>0

∥∥∥𝑟−𝜆(⋅)
𝑝(⋅) (𝑓 − 𝑓𝐵(𝑥0,𝑟))

∥∥∥
𝐿𝑝(⋅)(𝐵(𝑥0,𝑟))

,

where 𝑓𝐵 = ∣𝐵∣−1 ∫
𝐵

𝑓(𝑥) d𝑥. The equivalence of such Campanato spaces to vari-
able exponent Hölder spaces is shown when inf𝑥∈Ω 𝜆(𝑥) > 𝑛 and to variable expo-
nent Morrey spaces, when sup𝑥∈Ω 𝜆(𝑥) < 𝑛. In the latter result, the proof of the
embedding of Morrey spaces into Campanato spaces was based on the notion of
𝑝(⋅)-average of a function introduced in this paper.

Similar results for variable exponent Campanato spaces L 𝑝(⋅),𝜆(⋅)(𝑋) in a
more general setting of metric measure spaces were obtained in H. Rafeiro and
S. Samko [90] (2011). In [90], in the setting of an arbitrary quasimetric measure
spaces, the log-Hölder condition for 𝑝(𝑥) is introduced with the distance 𝑑(𝑥, 𝑦)
replaced by 𝜇𝐵(𝑥, 𝑑(𝑥, 𝑦)), which provides a weaker restriction on 𝑝(𝑥) in the
general setting. Some initial basic facts for variable exponent Lebesgue spaces
hold without the assumption that 𝑋 is homogeneous or even Ahlfors lower or
upper regular, but the main results for Campanato spaces are proved in the case
of homogeneous spaces 𝑋 .

In E. Nakai [76] (2010) there were introduced 𝜑-generalizations of such spaces
on a space of homogeneous-type, normal in the sense of Maćıas and Segovia. In
[76] 𝜑 was admited to be variable, but 𝑝 constant and the norm defined by

∥𝑓∥L𝑝,𝜑 = sup
𝑥,𝑟>0

1

𝜑(𝐵(𝑥, 𝑟))

(
1

𝜇(𝐵(𝑥, 𝑟))

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)− 𝑓𝐵(𝑥,𝑟)∣𝑝 d𝜇(𝑦)
)1/𝑝

.

We note also the embedding 𝐿𝑝(⋅)(𝑋) ↪→ 𝐿1,𝜑 ↪→ L 1,𝜑 proved in [76], where

𝐿1,𝜑 stands for the corresponding Morrey space and 𝜑(𝐵(𝑥, 𝑟)) = 𝑟−
1

𝑝∗(𝑥) , where
𝑝∗(𝑥) = 𝑝(𝑥) when 0 < 𝑟 < 1/2 and 𝑝∗(𝑥) = 𝑝+ when 1/2 ≤ 𝑟 < ∞.
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[20] S. Campanato, Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm.
Sup. Pisa (3) 18 (1964), 137–160.

[21] S. Campanato and M.K.V. Murthy, Una generalizzazione del teorema di Riesz-
Thorin. Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 87–100.

[22] A. Canale, P. Di Gironimo and A. Vitolo, Functions with derivatives in spaces of
Morrey type and elliptic equations in unbounded domains. Studia Math. 128 (1998),
no. 3, 199–218.



Morrey-Campanato Spaces: an Overview 319

[23] P. Cavaliere, G. Manzo and A. Vitolo, Spaces of Morrey type and BMO spaces in
unbounded domains of R𝑛. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 20
(1996), 123–140.

[24] Y.Z. Chen and K.S. Lau, Some new classes of Hardy spaces. J. Funct. Anal. 84
(1989), 255–278.

[25] M. Christ, The extension problem for certain function spaces involving fractional
orders of differentiability. Ark. Mat. 22 (1984), no. 1, 63–81.

[26] A. Cianchi and L. Pick, Sobolev embeddings into spaces of Campanato, Morrey and
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[85] D. Opěla, Spaces of functions with bounded and vanishing mean oscillation. In:
Function Spaces, Differential Operators and Nonlinear Analysis (Teistungen, 2001),
pp. 403–413. Birkhäuser, Basel, 2003.
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1. Preliminaries

Let 𝐻 be an infinite-dimensional separable Hilbert space. We denote by 𝐿(𝐻) the
𝐶∗-algebra of the bounded linear operators and by 𝐾(𝐻) the ideal of the compact
operators on 𝐻 .

A sequence 𝒫 = (𝑃𝑛)𝑛≥1 of orthogonal projections of finite rank which con-
verges strongly to the identity operator on 𝐻 is called a filtration on 𝐻 . Given
a filtration 𝒫 , let ℱ𝒫 stand for the set of all sequences A = (𝐴𝑛) of operators
𝐴𝑛 : im𝑃𝑛 → im𝑃𝑛 such that the sequence (𝐴𝑛𝑃𝑛) converges strongly to an
operator 𝑊𝒫(A) ∈ 𝐿(𝐻). Since every sequence in ℱ𝒫 is bounded by the Banach-
Steinhaus theorem, one can introduce pointwise defined operations

(𝐴𝑛) + (𝐵𝑛) := (𝐴𝑛 +𝐵𝑛), (𝐴𝑛)(𝐵𝑛) := (𝐴𝑛𝐵𝑛), (𝐴𝑛)
∗ := (𝐴∗

𝑛) (1.1)

and the supremum norm ∥(𝐴𝑛)∥ℱ := sup𝑛 ∥𝐴𝑛∥, which make ℱ𝒫 to a unital 𝐶∗-
algebra and 𝑊𝒫 : ℱ𝒫 → 𝐿(𝐻) to a unital ∗-homomorphism. This homomorphism
is also known as the consistency map associated with the filtration 𝒫 .

Set 𝛿(𝑛) := rank𝑃𝑛 := dim im𝑃𝑛 < ∞ for every 𝑛 and choose an orthonormal
basis in each of the spaces im𝑃𝑛. Every operator 𝐴𝑛 ∈ 𝐿(im𝑃𝑛) can be identified
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with its matrix representation with respect to the chosen basis and, thus, with
an element of the 𝐶∗-algebra ℂ𝛿(𝑛)×𝛿(𝑛) of all 𝛿(𝑛)× 𝛿(𝑛) matrices with complex
entries. The choice of a basis in each space im𝑃𝑛 makes ℱ𝒫 to a special instance of
an algebra of matrix sequences in the following sense. Given a sequence 𝛿 of positive
integers, we let ℱ𝛿 stand for the set of all bounded sequences (𝐴𝑛) of matrices
𝐴𝑛 ∈ ℂ𝛿(𝑛)×𝛿(𝑛). Introducing again pointwise operations and the supremum norm,
we make ℱ𝛿 to a 𝐶∗-algebra with identity element (𝐼𝛿(𝑛)), the algebra of matrix

sequences with dimension function 𝛿. The set of all sequences in ℱ𝛿 which tend to
zero in the norm forms a closed ideal of ℱ𝛿. We denote this ideal by 𝒢𝛿 and refer
to sequences in 𝒢𝛿 as zero sequences. For example, the algebra of matrix sequences
with constant dimension function 𝛿 = 1 is 𝑙∞(ℕ), but in what follows we will be
mainly interested in strictly increasing dimension functions, as they occur in the
context of filtrations.

When passing from ℱ𝒫 to ℱ𝛿 with 𝛿(𝑛) := rank𝑃𝑛, one loses the embedding
of the matrix algebras 𝐿(im𝑃𝑛) ∼= ℂ𝛿(𝑛)×𝛿(𝑛) into a common Hilbert space. It
makes thus no sense to speak about strong convergence of a sequence in ℱ𝛿. But
it will turn out that algebras of matrix sequences provide a suitable frame to
formulate and study stability problems as well as a lot of other problems which
do not depend upon an embedding into a Hilbert space. Moreover, some of the
notions and assertions discussed in this paper remain meaningful in the much more
general context, when ℱ𝒞 is the direct product of a sequence 𝒞 = (𝒞𝑛)𝑛≥1 of unital
𝐶∗-algebras. The associated ideal of zero sequences in ℱ𝒞 , which can be identified
with the direct sum of the family 𝒞 in a natural way, will then be denoted by 𝒢𝒞 .
Sequences in 𝒢𝒞 will be called zero sequences again.

The following will serve as a running example in this paper. We consider the
algebra of the finite sections discretization for Toeplitz operators with continuous
generation function. For a continuous function 𝑎 on the complex unit circle 𝕋, the
associated Toeplitz operator is the operator 𝑇 (𝑎) on 𝑙2(ℤ+) which is given by the
infinite matrix (𝑎𝑖−𝑗)∞𝑖,𝑗=0, with 𝑎𝑘 denoting the 𝑘th Fourier coefficient of 𝑎. Note

that 𝑇 (𝑎) is a bounded operator and ∥𝑇 (𝑎)∥ = ∥𝑎∥∞. For 𝑛 ∈ ℕ, put

𝑃𝑛 : 𝑙
2(ℤ+) → 𝑙2(ℤ+), (𝑥𝑛)𝑛≥0 �→ (𝑥0, 𝑥1, . . . , 𝑥𝑛−1, 0, 0, . . .).

Then 𝒫 = (𝑃𝑛) is a filtration on 𝑙2(ℤ+). We let 𝒮(T(𝐶)) stand for the smallest
closed subalgebra of ℱ𝒫 which contains all sequences (𝑃𝑛𝑇 (𝑎)∣im𝑃𝑛) of finite sec-
tions of Toeplitz operators 𝑇 (𝑎) with 𝑎 ∈ 𝐶(𝕋). Let 𝑅𝑛 : im𝑃𝑛 → im𝑃𝑛 be the
reflection operator

(𝑥0, 𝑥1, . . . , 𝑥𝑛−1, 0, 0, . . .) �→ (𝑥𝑛−1, . . . , 𝑥1, 𝑥0, 0, 0, . . .).

It is not hard to see that for each sequence A = (𝐴𝑛) ∈ 𝒮(T(𝐶)), the strong
limit 𝑊 (A) := s-lim𝑅𝑛𝐴𝑛𝑅𝑛𝑃𝑛 exists and that 𝑊 is a unital and fractal ∗-
homomorphism from 𝒮(T(𝐶)) to 𝐿(𝑙2ℤ+). The following is a by now classical
result by Böttcher and Silbermann [5], see also Chapter 2 in [6] and Sections 1.3,
1.4 and 1.6 in [7].
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Theorem 1.1.

(a) The algebra 𝒮(T(𝐶)) consists of all sequences (𝑃𝑛𝑇 (𝑎)𝑃𝑛+𝑃𝑛𝐾𝑃𝑛+𝑅𝑛𝐿𝑅𝑛+
𝐺𝑛) where 𝑎 ∈ 𝐶(𝕋), 𝐾, 𝐿 ∈ 𝐾(𝑙2(ℤ+)), and (𝐺𝑛) ∈ 𝒢𝒫 .

(b) For every sequence A ∈ 𝒮(T(𝐶)), the coset A+ 𝒢𝒫 is invertible in the quo-

tient algebra 𝒮(T(𝐶))/𝒢𝒫 if and only if the operators 𝑊𝒫(A) and 𝑊 (A) are
invertible.

Due to its transparent structure, the algebra 𝒮(T(𝐶)) served as a basic ex-
ample for the development of algebraic methods in asymptotic numerical analysis.
These methods have found fruitful applications in the stability analysis of differ-
ent approximation methods for numerous classes of operators; see the monographs
[7, 8, 17] for an overview. In particular, I would like to emphasize the finite sections
method for band-dominated operators, a topic which was mainly influenced and
shaped by Vladimir S. Rabinovich and the limit operator techniques developed by
him, see [9–13] and [15] for an overview. In fact, the algebra of the finite sections
method for band-dominated operators is the first real-life example of an essentially
fractal, but not fractal, algebra (these notions will be introduced below).

2. Fractality

As it was observed in [14, 16], several natural approximation procedures lead to
𝐶∗-subalgebras 𝒜 of the algebra ℱ which are distinguished by the property of self-
similarity: Given a subsequence of a sequence in 𝒜, one can uniquely reconstruct
the full sequence up to a sequence which tends to zero in the norm. These algebras
were called fractal in [16]. The goals of this section is to recall the basic definitions
and some consequences of fractality, and to give a short proof of the known fact
that every separable subalgebra of ℱ possesses a fractal restriction.

In this section, we let ℱ := ℱ𝒞 be the product of a family 𝒞 = (𝒞𝑛)𝑛∈ℕ of
unital 𝐶∗-algebras and 𝒢 := 𝒢𝒞 the associated ideal of zero sequences.

2.1. Definition and first consequences

For each strictly increasing sequence 𝜂 : ℕ → ℕ, let ℱ𝜂 stand for the product
of the family (𝒞𝜂(𝑛))𝑛∈ℕ of 𝐶∗-algebras, and write 𝒢𝜂 for the associated ideal of
zero sequences. The elements of ℱ𝜂 can be viewed of as subsequences of sequences
in ℱ . The canonical restriction mapping 𝑅𝜂 : ℱ → ℱ𝜂, (𝐴𝑛) �→ (𝐴𝜂(𝑛)) is a

∗-
homomorphism from ℱ onto ℱ𝜂 and maps 𝒢 onto 𝒢𝜂. More generally, for each
𝐶∗-subalgebra 𝒜 of ℱ , we let 𝒜𝜂 denote the image of 𝒜 under 𝑅𝜂. Clearly, 𝒜𝜂 is
a 𝐶∗-subalgebra of ℱ𝜂. We call algebras obtained in this way restrictions of 𝒜.
Definition 2.1.

(a) Let 𝒜 be a 𝐶∗-subalgebra of ℱ . A ∗-homomorphism 𝑊 from 𝒜 into a 𝐶∗-
algebra ℬ is called fractal if it factors through 𝑅𝜂∣𝒜 for every strictly in-
creasing sequence 𝜂 : ℕ → ℕ, i.e., if for each such 𝜂, there is a mapping
𝑊𝜂 : 𝒜𝜂 → ℬ such that 𝑊 =𝑊𝜂𝑅𝜂∣𝒜.



328 S. Roch

(b) A 𝐶∗-subalgebra 𝒜 of ℱ is fractal if the canonical homomorphism

𝒜 → 𝒜/(𝒜 ∩ 𝒢), A �→ A+ (𝒜 ∩ 𝒢)
is fractal.

(c) A sequenceA ∈ ℱ is fractal if the smallest 𝐶∗-subalgebra of ℱ which contains
the sequence A and the identity sequence is fractal.

For example, if 𝒫 is a filtration, then the associated consistency map 𝑊𝒫 is
fractal (since the strong limit of a sequence (𝐴𝑛) ∈ ℱ𝒫 can be determined from

each subsequence of (𝐴𝑛)). For the same reason, the homomorphism 𝑊 appearing
in Theorem 1.1 is fractal.

The fractal subalgebras of ℱ are distinguished by their property that every
sequence in the algebra can be rediscovered from each of its (infinite) subsequences
up to a sequence tending to zero. Note that, by Definition 2.1, a fractal sequence
always lies in a unital fractal algebra, whereas a fractal algebra needs not to be
unital.

Assertion (a) of the following theorem provides an equivalent characterization
of the fractality of an algebra. Proofs of Theorems 2.2 and 2.3 are given in [16]
and in Section 1.6 of [7].

Theorem 2.2.

(a) A 𝐶∗-subalgebra 𝒜 of ℱ is fractal if and only if the implication

𝑅𝜂(A) ∈ 𝒢𝜂 ⇒ A ∈ 𝒢 (2.1)

holds for every sequence A ∈ 𝒜 and every strictly increasing sequence 𝜂.
(b) If 𝒜 is a fractal 𝐶∗-subalgebra of ℱ , then 𝒜𝜂∩𝒢𝜂 = (𝒜∩𝒢)𝜂 for each strictly

increasing sequence 𝜂.
(c) A unital 𝐶∗-subalgebra of ℱ is fractal if and only if each of its elements is

fractal.

The following criterion will prove to be useful in order to verify the fractality
of many specific algebras of approximation methods.

Theorem 2.3. A unital 𝐶∗-subalgebra 𝒜 of ℱ is fractal if and only if there is a
family {𝑊𝑡}𝑡∈𝑇 of unital and fractal ∗-homomorphisms 𝑊𝑡 from 𝒜 into unital 𝐶∗-
algebras ℬ𝑡 such that the following equivalence holds for every sequence A ∈ 𝒜:
The coset A+𝒜 ∩ 𝒢 is invertible in 𝒜/(𝒜 ∩ 𝒢) if and only if 𝑊𝑡(A) is invertible
in ℬ𝑡 for every 𝑡 ∈ 𝑇 .

For example, since𝑊𝒫 and𝑊 are fractal homomorphisms, we conclude from
Theorem 1.1 (b) and from the previous theorem that the algebra 𝒮(T(𝐶)) is frac-
tal. □

The property of fractality has striking consequences for asymptotic spectral prop-
erties of a sequence A = (𝐴𝑛), see [14, 16] and Chapter 3 in [7]. Here we only
mention a few of them which are relevant for what follows. For every element 𝑎
of a unital 𝐶∗-algebra 𝒜, we let 𝜎2(𝑎) denote the set of all non-negative square



Arveson Dichotomy and Essential Fractality 329

roots of points in the spectrum of 𝑎∗𝑎. In case 𝒜 = ℂ𝑛×𝑛, the numbers in 𝜎2(𝑎)
are known as the singular values of 𝑎.

Proposition 2.4. Let 𝒜 be a fractal 𝐶∗-subalgebra of ℱ and A = (𝐴𝑛) a sequence
in 𝒜. Then

(a) the sequence A is stable if and only if it possesses a stable subsequence;
(b) the limit lim𝑛→∞ ∥𝐴𝑛∥ exists and is equal to ∥A+ 𝒢∥;
(c) the limit lim𝑛→∞ 𝜎2(𝐴𝑛) exists with respect to the Hausdorff distance on ℝ

and is equal to 𝜎2(A+ 𝒢).
2.2. The fractal restriction theorem

The preceding proposition and related results from [7] indicate that it is a question
of vital importance in numerical analysis to single out fractal subsequences of a
given sequence in ℱ . The following theorem states that such subsequences always
exist.

Theorem 2.5. Let 𝒜 be a separable 𝐶∗-subalgebra of ℱ . Then there exists a strictly
increasing sequence 𝜂 : ℕ → ℕ such that the restricted algebra 𝒜𝜂 = 𝑅𝜂𝒜 is a
fractal subalgebra of ℱ𝜂.

Since finitely generated 𝐶∗-algebras are separable, this result immediately
implies:

Corollary 2.6. Every sequence in ℱ possesses a fractal subsequence.

Theorem 2.5 was first proved in [14]. We shall give a much shorter proof
here, which is based on the following converse of assertion (b) of Proposition 2.4
(whereas the original proof used the converse of assertion (c) of this proposition).

Proposition 2.7. Let 𝒜 be a 𝐶∗-subalgebra of ℱ and ℒ a dense subset of 𝒜. If
the sequence of the norms ∥𝐴𝑛∥ converges for each sequence (𝐴𝑛) ∈ ℒ, then the
algebra 𝒜 is fractal.

Proof. First we show that if the sequence of the norms converges for each sequence
in ℒ, then it converges for each sequence in 𝒜. Let (𝐴𝑛) ∈ 𝒜 and 𝜀 > 0. Choose
(𝐿𝑛) ∈ ℒ such that ∥(𝐴𝑛 − 𝐿𝑛)∥ = sup ∥𝐴𝑛 − 𝐿𝑛∥ < 𝜀/3, and let 𝑛0 ∈ ℕ be such
that ∣∥𝐿𝑛∥ − ∥𝐿𝑚∥∣ < 𝜀 for all 𝑚, 𝑛 ≥ 𝑛0. Then, for 𝑚, 𝑛 ≥ 𝑛0,

∣∥𝐴𝑛∥ − ∥𝐴𝑚∥∣ ≤ ∣∥𝐴𝑛∥ − ∥𝐿𝑛∥∣+ ∣∥𝐿𝑛∥ − ∥𝐿𝑚∥∣+ ∣∥𝐿𝑚∥ − ∥𝐴𝑚∥∣
≤ ∥𝐴𝑛 − 𝐿𝑛∥+ ∣∥𝐿𝑛∥ − ∥𝐿𝑚∥∣+ ∥𝐿𝑚 − 𝐴𝑚∥ ≤ 𝜀.

Thus, (∥𝐴𝑛∥) is a Cauchy sequence, hence convergent. But the convergence of the
norms for each sequence in 𝒜 implies the fractality of 𝒜 by Theorem 2.2. Indeed,
if a subsequence of a sequence (𝐴𝑛) ∈ 𝒜 tends to zero, then 0 = lim inf ∥𝐴𝑛∥ =
lim ∥𝐴𝑛∥, whence (𝐴𝑛) ∈ 𝒢. □
Proof of Theorem 2.5. Let {A𝑚}𝑚∈ℕ be a dense countable subset of 𝒜 which
consists of sequences A𝑚 = (𝐴𝑚𝑛 )𝑛∈ℕ. Let 𝜂1 : ℕ → ℕ be a strictly increasing
sequence such that the sequence of the norms ∥𝐴1

𝜂1(𝑛)
∥ converges. Next let 𝜂2
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be a strictly increasing subsequence of 𝜂1 such that the sequence (∥𝐴2
𝜂2(𝑛)

∥)𝑛∈ℕ

converges. We proceed in this way and find, for each 𝑘 ≥ 2, a strictly increasing
subsequence 𝜂𝑘 of 𝜂𝑘−1 such that the sequence (∥𝐴𝑘𝜂𝑘(𝑛)∥)𝑛∈ℕ converges. Define

the sequence 𝜂 by 𝜂(𝑛) := 𝜂𝑛(𝑛). Then 𝜂 is strictly increasing, and the sequence
(∥𝐴𝑘𝜂(𝑛)∥)𝑛∈ℕ converges for every 𝑘 ∈ ℕ.

Since the sequences 𝑅𝜂(A
𝑚) with 𝑘 ∈ ℕ form a dense subset of the restricted

algebra 𝒜𝜂, and since each sequence 𝑅𝜂(A
𝑚) = (𝐴𝑘𝜂(𝑛))𝑛∈ℕ has the property that

the sequence of the norms ∥𝐴𝑘𝜂(𝑛)∥ converges, the assertion follows from Proposi-

tion 2.7. □

3. Essential fractality

Recall that a 𝐶∗-subalgebra 𝒜 of ℱ is fractal if each sequence (𝐴𝑛) ∈ 𝒜 can be
rediscovered from each of its (infinite) subsequences modulo a sequence in the ideal
𝒢. There are plenty of subalgebras of ℱ which arise from concrete discretization
methods and which are fractal (the finite sections algebra 𝒮(T(𝐶)) for Toeplitz
operators is one example). On the other hand, the algebra of the finite sections
method for band-dominated operators is an example of an algebra which fails
to be fractal. But the latter algebra enjoys a weaker form of fractality which we
called essential fractality in [15]. Basically, a 𝐶∗-subalgebra 𝒜 of ℱ is essentially
fractal if each sequence (𝐴𝑛) ∈ 𝒜 can be rediscovered from each of its (infinite)
subsequences modulo a sequence in the ideal 𝒦 of the compact sequences. The role
of this ideal in numerical analysis can be compared with the role of the ideal of
the compact operators in operator theory.

In this section, we first recall the definition of a compact sequence and state
some useful characterizations of compactness and the definitions of 𝒥 -fractality
and essential fractality from [15]. The main goal of this section is to derive an
analogue of the fractal restriction theorem for essential fractality.

Unless otherwise stated, we let ℱ = ℱ𝛿 be an algebra of matrix sequences
with dimension function 𝛿 and 𝒢 := 𝒢𝛿 the associated ideal of zero sequences in
this section.

3.1. Compact sequences

Slightly abusing the notation, we call a sequence (𝐾𝑛) ∈ ℱ a sequence of rank one
matrices if the rank of every matrix 𝐾𝑛 is less than or equal to one. The product
of a sequence of rank one matrices with a sequence in ℱ is a sequence of rank one
matrices again. Hence, the set of all finite sums of sequences of rank one matrices
forms an (in general, non-closed) ideal of ℱ . We let 𝒦 denote the closure of this
ideal and refer to the elements of 𝒦 as compact sequences. Thus, 𝒦 is the smallest
closed ideal of ℱ which contains all sequences of rank one matrices, and a sequence
(𝐴𝑛) ∈ ℱ is compact if, and only if, for every 𝜀 > 0, there is a sequence (𝐾𝑛) ∈ ℱ
such that

sup
𝑛

∥𝐴𝑛 − 𝐾𝑛∥ < 𝜀 and sup
𝑛
rank𝐾𝑛 < ∞. (3.1)
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Note that 𝒦 contains the ideal 𝒢, and that the restriction of a compact sequence
is compact. More precisely, if K is a compact sequence in the algebra ℱ𝛿 of matrix
sequences with dimension function 𝛿 and if 𝜂 is a strictly increasing sequence, then
the restriction 𝑅𝜂K is a compact sequence in the algebra 𝑅𝜂ℱ𝛿 ∼= ℱ𝛿∘𝜂 of matrix
sequences with dimension function 𝛿 ∘ 𝜂.

An appropriate notion of the rank of a sequence in ℱ can be introduced as
follows. A sequence A ∈ ℱ has finite essential rank if it is the sum of a sequence
in 𝒢 and a sequence (𝐾𝑛) with sup𝑛 rank𝐾𝑛 < ∞. If A is of finite essential rank,
then there is a smallest integer 𝑟 ≥ 0 such that A can be written as (𝐺𝑛) + (𝐾𝑛)
with (𝐺𝑛) ∈ 𝒢 and sup𝑛 rank𝐾𝑛 ≤ 𝑟. We call this integer the essential rank of
A and write ess rankA = 𝑟. Thus, the sequences of essential rank 0 are just the
sequences in 𝒢. If A is not of finite essential rank, we set ess rankA = ∞. Clearly,
the sequences of finite essential rank form an ideal of ℱ which is dense in 𝒦, and
for arbitrary sequences A,B ∈ ℱ one has

ess rank (A+B) ≤ ess rankA+ ess rankB,

ess rank (AB) ≤ min {ess rankA, ess rankB}.
Given a filtration 𝒫 = (𝑃𝑛) on a Hilbert space 𝐻 , we identify the algebra ℱ𝒫 with
the algebra ℱ of matrix sequences with dimension function 𝛿(𝑛) := rank𝑃𝑛. Note
that this identification requires the choice of an orthogonal basis in each space
im𝑃𝑛. We define the ideal 𝒦𝒫 of the compact sequences in ℱ𝒫 in the same way as
before. It is clear that then the ideal 𝒦𝒫 can be identified with 𝒦, independently
of the choice of the bases.

For example, using the explicit description of the finite sections algebra of
Toeplitz operators in Theorem 1.1 (a), it is not hard to show that the intersection
𝒮(T(𝐶)) ∩ 𝒦 consists of all sequences

(𝑃𝑛𝐾𝑃𝑛 +𝑅𝑛𝐿𝑅𝑛 +𝐺𝑛) with 𝐾, 𝐿 compact and (𝐺𝑛) ∈ 𝒢 (3.2)

and that the essential rank of the sequence (3.2) is equal to rank𝐾+rank𝐿. □

There are several equivalent characterizations of compact sequences, see [15]. In
what follows we shall need a characterization of a compact sequence (𝐾𝑛) in terms
of the asymptotic behavior of the singular values of the entries 𝐾𝑛. To state this
criterion, we denote the decreasingly ordered singular values of an 𝑛×𝑛matrix𝐴 by

∥𝐴∥ = Σ1(𝐴) ≥ Σ2(𝐴) ≥ ⋅ ⋅ ⋅ ≥ Σ𝑛(𝐴) ≥ 0 (3.3)

and recall from Linear Algebra that 𝐴∗𝐴 and 𝐴𝐴∗ are unitarily equivalent, whence
Σ𝑘(𝐴) = Σ𝑘(𝐴

∗), and that every matrix 𝐴 has a singular value decomposition
(SVD)

𝐴 = 𝐸∗ diag (Σ1(𝐴), . . . , Σ𝑛(𝐴))𝐹 (3.4)

with unitary matrices 𝐸 and 𝐹 .
The announced characterization of compact sequences in terms of singular

values reads as follows. See Sections 4.2 and 5.1 in [15] for the proof of this and
the following theorem.
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Theorem 3.1. The following assertions are equivalent for a sequence (𝐾𝑛) ∈ ℱ :

(a) lim𝑘→∞ sup𝑛≥𝑘 Σ𝑘(𝐾𝑛) = 0;
(b) lim𝑘→∞ lim sup𝑛→∞ Σ𝑘(𝐾𝑛) = 0;
(c) the sequence (𝐾𝑛) is compact.

A sequence in ℱ is called a Fredholm sequence if it is invertible modulo 𝒦.
As the compact sequences, Fredholm sequences can be characterized in terms of
singular values. Let 𝜎1(𝐴) ≤ ⋅ ⋅ ⋅ ≤ 𝜎𝑛(𝐴) denote the increasingly ordered singular
values of an 𝑛 × 𝑛-matrix 𝐴.

Theorem 3.2. The following assertions are equivalent for a sequence (𝐴𝑛) ∈ ℱ :

(a) (𝐴𝑛) is a Fredholm sequence.
(b) There are sequences (𝐵𝑛) ∈ ℱ and (𝐽𝑛) ∈ 𝒦 with sup𝑛 rank𝐽𝑛 < ∞ such

that 𝐵𝑛𝐴𝑛 = 𝐼𝑛 + 𝐽𝑛 for all 𝑛 ∈ ℕ.
(c) There is a 𝑘 ∈ ℤ+ such that lim inf𝑛→∞ 𝜎𝑘+1(𝐴𝑛) > 0.

3.2. 퓙 -fractal algebras

Our next goal is to introduce fractality of an algebra𝒜 with respect to an arbitrary
ideal 𝒥 in place of 𝒢. The results presented in this subsection hold in the general
case, when ℱ is the product of a family (𝒞𝑛)𝑛∈ℕ of unital 𝐶

∗-algebras. We start
with a criterion for the fractality of the canonical quotient map 𝒜 → 𝒜/𝒥 .
Theorem 3.3. Let 𝒜 be a 𝐶∗-subalgebra of ℱ and 𝒥 a closed ideal of 𝒜. The
canonical homomorphism 𝜋𝒥 : 𝒜 → 𝒜/𝒥 is fractal if and only if the following
implication holds for every sequence A ∈ 𝒜 and every strictly increasing sequence
𝜂 : ℕ → ℕ

𝑅𝜂(A) ∈ 𝒥𝜂 =⇒ A ∈ 𝒥 . (3.5)

Proof. Let 𝜋𝒥 be fractal, i.e., for each 𝜂, there is a mapping 𝜋𝒥𝜂 such that 𝜋𝒥 =

𝜋𝒥𝜂 𝑅𝜂∣𝒜. Let 𝑅𝜂(A) ∈ 𝒥𝜂 for a sequence A ∈ 𝒜. We choose a sequence J ∈ 𝒥
such that 𝑅𝜂(A) = 𝑅𝜂(J). Applying the homomorphism 𝜋𝒥𝜂 to both sides of this

equality we obtain 𝜋𝒥 (A) = 𝜋𝒥 (J) = 0, whence A ∈ 𝒥 .
For the reverse implication, let A and B be sequences in 𝒜 with 𝑅𝜂(A) =

𝑅𝜂(B). Then 𝑅𝜂(A−B) = 0 ∈ 𝒥𝜂, and (3.5) implies that A−B ∈ 𝒥 . Thus, the
mapping

𝜋𝒥𝜂 : 𝒜𝜂 → 𝒜/𝒥 , 𝑅𝜂(A) �→ A+ 𝒥
is correctly defined, and it satisfies 𝜋𝒥𝜂 𝑅𝜂∣𝒜 = 𝜋𝒥 . □

Let now 𝒥 be a closed ideal of ℱ . Then 𝒜∩𝒥 is a closed ideal of 𝒜, and the
preceding theorem states that the canonical mapping 𝜋𝒜∩𝒥 : 𝒜 → 𝒜/(𝒜 ∩ 𝒥 ) is
fractal if and only if the implication

𝑅𝜂(A) ∈ (𝒜 ∩ 𝒥 )𝜂 =⇒ A ∈ 𝒥 (3.6)

holds for every sequence A ∈ 𝒜 and every strictly increasing sequence 𝜂. It would
be much easier to check this implication if one would have

(𝒜 ∩ 𝒥 )𝜂 = 𝒜𝜂 ∩ 𝒥𝜂 (3.7)
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for every 𝜂, in which case the implication (3.6) reduces to 𝑅𝜂(A) ∈ 𝒥𝜂 ⇒ A ∈ 𝒥 .
Recall from Theorem 2.2 (b) that (3.7) indeed holds if 𝒥 = 𝒢 and if the canonical
homomorphism 𝜋𝒜∩𝒢 : 𝒜 → 𝒜/(𝒜∩𝒢) is fractal. One cannot expect an analogous
result for arbitrary closed ideals 𝒥 of ℱ , as the following example shows.
Example. Let 𝒜 := 𝒮(T(𝐶)) the algebra of the finite sections method for Toeplitz
operators and 𝒦 the ideal of the compact sequences in the corresponding algebra
ℱ . Then

𝒥 := {(𝐾𝑛) ∈ 𝒦 : lim
𝑛→∞ ∥𝐾2𝑛∥ = 0}

is a closed ideal of ℱ . Employing again the explicit description of 𝒮(T(𝐶)) in
Theorem 1.1 (a), it is not hard to see that 𝒮(T(𝐶)) ∩ 𝒥 = 𝒢. Consequently,
the canonical homomorphism 𝜋𝒮(T(𝐶))∩𝒥 coincides with 𝜋𝒢 and is, thus, fractal.
But 𝒢𝜂 = (𝒮(T(𝐶)) ∩ 𝒥 )𝜂 is a proper subset of 𝒮(T(𝐶))𝜂 ∩ 𝒥𝜂 for the sequence
𝜂(𝑛) := 2𝑛 + 1. Indeed, the sequence (𝑃2𝑛+1𝐾𝑃2𝑛+1) belongs to 𝒮(T(𝐶))𝜂 ∩ 𝒥𝜂
for each compact operator 𝐾. □

The previous considerations suggest the following definitions. Note that both
definitions coincide if 𝒥 is a closed ideal of 𝒜 and ℱ .
Definition 3.4. Let 𝒜 be a 𝐶∗-subalgebra of ℱ .
(a) If 𝒥 is a closed ideal of 𝒜 then 𝒜 is called 𝒥 -fractal if the canonical homo-

morphism 𝜋𝒥 : 𝒜 → 𝒜/𝒥 is fractal.

(b) If 𝒥 is a closed ideal of ℱ then 𝒜 is called 𝒥 -fractal if 𝒜 is (𝒜 ∩ 𝒥 )-fractal
and if (𝒜 ∩ 𝒥 )𝜂 = 𝒜𝜂 ∩ 𝒥𝜂 for every strictly increasing sequence 𝜂 : ℕ → ℕ.

The following results show that 𝒥 -fractality implies what one expects: A
sequence in a 𝒥 -fractal algebra belongs to 𝒥 or is invertible modulo 𝒥 if and only
if at least one of its subsequences has this property.

Theorem 3.5. Let 𝒥 be a closed ideal of ℱ . A 𝐶∗-subalgebra 𝒜 of ℱ is 𝒥 -fractal
if and only if the following implication holds for every sequence A ∈ 𝒜 and every
strictly increasing sequence 𝜂:

𝑅𝜂(A) ∈ 𝒥𝜂 =⇒ A ∈ 𝒥 . (3.8)

Proof. Let 𝒜 be 𝒥 -fractal andA ∈ 𝒜 a sequence with 𝑅𝜂(A) ∈ 𝒥𝜂. Then 𝑅𝜂(A) ∈
𝒜𝜂∩𝒥𝜂 = (𝒜∩𝒥 )𝜂, and the (𝒜∩𝒥 )-fractality of𝒜 impliesA ∈ 𝒥 via Theorem 3.3.

Conversely, let (3.8) hold for every strictly increasing sequence 𝜂. From The-
orem 3.3 we conclude that 𝒜 is (𝒜 ∩ 𝒥 )-fractal. Further, the inclusion ⊆ in
(𝒜 ∩ 𝒥 )𝜂 = 𝒜𝜂 ∩ 𝒥𝜂 is obvious. For the reverse inclusion, let A be a sequence
in ℱ with 𝑅𝜂(A) ∈ 𝒜𝜂 ∩ 𝒥𝜂. Then there are sequences B ∈ 𝒜 and J ∈ 𝒥 such
that 𝑅𝜂(A) = 𝑅𝜂(B) = 𝑅𝜂(J). Since 𝑅𝜂(B) ∈ 𝒥𝜂, the implication (3.8) gives
B ∈ 𝒥 . Hence, 𝑅𝜂(B) ∈ (𝒜 ∩ 𝒥 )𝜂, and since 𝑅𝜂(B) = 𝑅𝜂(A), one also has
𝑅𝜂(A) ∈ (𝒜 ∩ 𝒥 )𝜂. □
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Theorem 3.6. Let 𝒥 be a closed ideal of ℱ and 𝒜 a 𝒥 -fractal and unital 𝐶∗-
subalgebra of ℱ . Then the following implication holds for every sequence A ∈ 𝒜
and every strictly increasing sequence 𝜂:

𝑅𝜂(A) + 𝒥𝜂 is invertible in ℱ𝜂/𝒥𝜂 =⇒ A+ 𝒥 is invertible in ℱ/𝒥 . (3.9)

Proof. Let A ∈ 𝒜 be such that 𝑅𝜂(A) + 𝒥𝜂 is invertible in ℱ𝜂/𝒥𝜂. Since 𝐶∗-
algebras are inverse closed, this coset is also invertible in (𝒜𝜂+𝒥𝜂)/𝒥𝜂. The latter
algebra is canonically ∗-isomorphic to 𝒜𝜂/(𝒜𝜂 ∩ 𝒥𝜂), hence, to 𝒜𝜂/(𝒜 ∩ 𝒥 )𝜂 by
𝒥 -fractality of 𝒜. Thus, the coset 𝑅𝜂(A)+ (𝒜∩𝒥 )𝜂 is invertible in 𝒜𝜂/(𝒜∩𝒥 )𝜂.
Choose sequences B ∈ 𝒜 and J ∈ 𝒜 ∩ 𝒥 such that

𝑅𝜂(A)𝑅𝜂(B) = 𝑅𝜂(I) +𝑅𝜂(J)

where I denotes the identity element of ℱ . Applying the homomorphism 𝜋𝒜∩𝒥
𝜂 to

both sides of this equality one gets

𝜋𝒜∩𝒥 (A)𝜋𝒜∩𝒥 (B) = 𝜋𝒜∩𝒥 (I) + 𝜋𝒜∩𝒥 (J)

which shows that AB − I ∈ 𝒥 . Hence, A is invertible modulo 𝒥 from the right-
hand side. The invertibility from the left-hand side follows analogously. □

Corollary 3.7. Let 𝒥 be a closed ideal of ℱ and 𝒜 a 𝒥 -fractal and unital 𝐶∗-
subalgebra of ℱ . Then a sequence A ∈ 𝒜
(a) belongs to 𝒥 if and only if there is a strictly increasing sequence 𝜂 such that

A𝜂 belongs to 𝒥𝜂.
(b) is invertible modulo 𝒥 if and only if there is a strictly increasing sequence 𝜂

such that A𝜂 is invertible modulo 𝒥𝜂.
We still mention the following simple facts for later reference.

Proposition 3.8. Let 𝒥 be a closed ideal of ℱ and 𝒜 a 𝒥 -fractal 𝐶∗-subalgebra of
ℱ . Then

(a) every 𝐶∗-subalgebra of 𝒜 is 𝒥 -fractal.

(b) if ℐ is an ideal of ℱ with 𝒥 ⊆ ℐ and if (𝒜 ∩ ℐ)𝜂 = 𝒜𝜂 ∩ ℐ𝜂 for each strictly
increasing sequence 𝜂 : ℕ → ℕ, then 𝒜 is ℐ-fractal.

Proof. (a) Let ℬ be a 𝐶∗-subalgebra of 𝒜, and let B be a sequence in ℬ with
𝑅𝜂(B) ∈ 𝒥𝜂 for a certain strictly increasing sequence 𝜂. Then 𝑅𝜂(B) ∈ 𝒜𝜂 ∩ 𝒥𝜂.
Since 𝒜 is 𝒥 -fractal, Theorem 3.5 implies that B ∈ 𝒥 . Hence ℬ is 𝒥 -fractal, again
by Theorem 3.5.

(b) Let 𝑅𝜂(A) ∈ ℐ𝜂 for a sequence A ∈ 𝒜 and a strictly increasing sequence
𝜂. By hypothesis, 𝑅𝜂(A) ∈ (𝒜∩ ℐ)𝜂. Choose a sequence J ∈ 𝒜 ∩ ℐ with 𝑅𝜂(A) =
𝑅𝜂(J). The 𝒥 -fractality of 𝒜 implies that A−J ∈ 𝒥 , whence A ∈ J+𝒥 ⊆ ℐ. By
Theorem 3.5, 𝒜 is ℐ-fractal. □
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3.3. Essential fractality and Fredholm property

Let again ℱ be the algebra of matrix sequences with dimension function 𝛿 and 𝒦
the associated ideal of compact sequences. We call the 𝒦-fractal 𝐶∗-subalgebras
of ℱ essentially fractal.

Note that each restriction ℱ𝜂 of ℱ is again an algebra of matrix sequences
(with dimension function 𝛿 ∘ 𝜂); hence, the restriction 𝒦𝜂 of 𝒦 is just the ideal
of the compact sequences related with ℱ𝜂. If we speak on compact subsequences
and Fredholm subsequences in what follows, we thus mean sequences 𝑅𝜂A ∈ 𝒦𝜂
and sequences 𝑅𝜂A which are invertible modulo 𝒦𝜂, respectively. In these terms,
Corollary 3.7 reads as follows.

Corollary 3.9. Let 𝒜 be an essentially fractal and unital 𝐶∗-subalgebra of ℱ . Then
a sequenceA ∈ 𝒜 is compact (resp. Fredholm) if and only if one of the subsequences
of A is compact (resp. Fredholm).

The following is a consequence of Proposition 3.8.

Corollary 3.10. Let 𝒜 be a fractal 𝐶∗-subalgebra of ℱ . If (𝒜 ∩ 𝒦)𝜂 = 𝒜𝜂 ∩ 𝒦𝜂 for
each strictly increasing sequence 𝜂 : ℕ → ℕ, then 𝒜 is essentially fractal.

Essential fractality has striking consequences for the behavior of the smallest
singular values.

Theorem 3.11. Let 𝒜 be an essentially fractal and unital 𝐶∗-subalgebra of ℱ . A
sequence (𝐴𝑛) ∈ 𝒜 is Fredholm if and only if there is a 𝑘 ∈ ℕ such that

lim sup
𝑛→∞

𝜎𝑘(𝐴𝑛) > 0. (3.10)

Proof. If (𝐴𝑛) is Fredholm then lim inf𝑛→∞ 𝜎𝑘 (𝐴𝑛) > 0 for some 𝑘 ∈ ℕ by The-
orem 3.2 (𝑐), whence (3.10). Conversely, let (3.10) hold for some 𝑘. We choose
a strictly increasing sequence 𝜂 such that lim𝑛→∞ 𝜎𝑘(𝐴𝜂(𝑛)) > 0. Thus, the re-
stricted sequence (𝐴𝜂(𝑛))𝑛≥1 is Fredholm by Theorem 3.2. Since 𝒜 is essentially
fractal, Corollary 3.9 (b) implies the Fredholm property of the sequence (𝐴𝑛) it-
self. □

Consequently, if a sequence (𝐴𝑛) in an essentially fractal and unital 𝐶∗-
subalgebra of ℱ is not Fredholm, then

lim
𝑛→∞ 𝜎𝑘(𝐴𝑛) = 0 for each 𝑘 ∈ ℕ. (3.11)

In analogy with operator theory, we call a sequence (𝐴𝑛) with property (3.11) not
normally solvable.

Corollary 3.12. Let 𝒜 be an essentially fractal and unital 𝐶∗-subalgebra of ℱ . Then
a sequence in 𝒜 is either Fredholm or not normally solvable.

Example. Consider the finite sections algebra 𝒮(T(𝐶)) for Toeplitz operators. It
is a simple consequence of Theorem 1.1 (a) that (𝒮(T(𝐶))∩𝒦)𝜂 = 𝒮(T(𝐶))𝜂 ∩𝒦𝜂
for each strictly increasing sequence 𝜂. Since 𝒮(T(𝐶)) is fractal and 𝒢 ⊂ 𝒦, the
algebra 𝒮(T(𝐶)) is essentially fractal by Corollary 3.10. □
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3.4. Essential fractal restriction

Our final goal is an analogue of Theorem 2.5 for essential fractality. Recall that
we based the proof of Theorem 2.5 on the fact that there is a sequence 𝜂 such that
the norms ∥𝐴𝜂(𝑛)∥ converge for each sequence (𝐴𝑛). We start with showing that
𝜂 can be even chosen such that not only the sequences (∥𝐴𝜂(𝑛)∥) = (Σ1(𝐴𝜂(𝑛)))
converge, but every sequence (Σ𝑘(𝐴𝜂(𝑛))) with 𝑘 ∈ ℕ. Here, Σ1(𝐴) ≥ ⋅ ⋅ ⋅ ≥ Σ𝑛(𝐴)
denote the decreasingly ordered singular values of the 𝑛 × 𝑛-matrix 𝐴.

Proposition 3.13. Let 𝒜 be a separable 𝐶∗-subalgebra of ℱ . Then there is a strictly
increasing sequence 𝜂 : ℕ → ℕ such that the sequence (Σ𝑘(𝐴𝜂(𝑛)))𝑛≥1 converges
for every sequence (𝐴𝑛)𝑛≥1 ∈ 𝒜 and every 𝑘 ∈ ℕ.

Proof. First consider a single sequence (𝐴𝑛) ∈ 𝒜. We choose a strictly increasing
sequence 𝜂1 : ℕ → ℕ such that the sequence (Σ1(𝐴𝜂1(𝑛)))𝑛≥1 converges, then a
subsequence 𝜂2 of 𝜂1 such that the sequence (Σ2(𝐴𝜂2(𝑛)))𝑛≥1 converges, and so on.
The sequence 𝜂(𝑛) := 𝜂𝑛(𝑛) has the property that the sequence (Σ𝑘(𝐴𝜂(𝑛)))𝑛≥1
converges for every 𝑘 ∈ ℕ.

Now let (A𝑚)𝑚≥1 be a countable dense subset of 𝒜, consisting of sequences
A𝑚 = (𝐴𝑚𝑛 )𝑛≥1. We use the result of the previous step to find a strictly increasing
sequence 𝜂1 such that the sequences (Σ𝑘(𝐴

1
𝜂1(𝑛)

))𝑛≥1 converge for every 𝑘 ∈ ℕ,

then a subsequence 𝜂2 of 𝜂1 such that the sequences (Σ𝑘(𝐴
2
𝜂2(𝑛)

))𝑛≥1 converge for
every 𝑘, and so on. Then the sequence 𝜂(𝑛) := 𝜂𝑛(𝑛) has the property that the
sequences (Σ𝑘(𝐴

𝑚
𝜂(𝑛)))𝑛≥1 converge for every pair 𝑘, 𝑚 ∈ ℕ.

Let 𝜂 be as in the previous step, i.e., the sequences (Σ𝑘(𝐴
𝑚
𝜂(𝑛)))𝑛≥1 converge

for every 𝑘 ∈ ℕ and for every sequence A𝑚 = (𝐴𝑚𝑛 )𝑛≥1 in a countable dense subset
of 𝒜. We show that then the sequences (Σ𝑘(𝐴𝜂(𝑛)))𝑛≥1 converge for every 𝑘 ∈ ℕ

and every sequence A = (𝐴𝑛) in 𝒜. Fix 𝑘 ∈ ℕ and let 𝜀 > 0. Using the well-known
inequality ∣Σ𝑘(𝐴)− Σ𝑘(𝐵)∣ ≤ ∥𝐴 − 𝐵∥ we obtain

∣Σ𝑘(𝐴𝜂(𝑛))− Σ𝑘(𝐴𝜂(𝑙))∣
≤ ∣Σ𝑘(𝐴𝜂(𝑛))− Σ𝑘(𝐴

𝑚
𝜂(𝑛))∣+ ∣Σ𝑘(𝐴𝑚𝜂(𝑛))− Σ𝑘(𝐴

𝑚
𝜂(𝑙))∣

+ ∣Σ𝑘(𝐴𝑚𝜂(𝑙))− Σ𝑘(𝐴𝜂(𝑙))∣
≤ ∥𝐴𝜂(𝑛) − 𝐴𝑚𝜂(𝑛)∥+ ∣Σ𝑘(𝐴𝑚𝜂(𝑛))− Σ𝑘(𝐴

𝑚
𝜂(𝑙))∣+ ∥𝐴𝑚𝜂(𝑙) − 𝐴𝜂(𝑙)∥

≤ 2 ∥A−A𝑚∥ℱ + ∣Σ𝑘(𝐴𝑚𝜂(𝑛))− Σ𝑘(𝐴
𝑚
𝜂(𝑙))∣.

Now choose 𝑚 ∈ ℕ such that ∥A − A𝑚∥ℱ < 𝜀/3 and then 𝑁 ∈ ℕ such that
∣Σ𝑘(𝐴𝑚𝜂(𝑛))−Σ𝑘(𝐴𝑚𝜂(𝑙))∣ < 𝜀/3 for all 𝑛, 𝑙 ≥ 𝑁 . Then ∣Σ𝑘(𝐴𝜂(𝑛))−Σ𝑘(𝐴𝜂(𝑙))∣ < 𝜀 for

all 𝑛, 𝑙 ≥ 𝑁 . Thus, (Σ𝑘(𝐴𝜂(𝑛)))𝑛≥1 is a Cauchy sequence, hence convergent. □

Proposition 3.14. Let 𝒜 be a 𝐶∗-subalgebra of ℱ with the property that the se-
quences (Σ𝑘(𝐴𝑛))𝑛≥1 converge for every sequence (𝐴𝑛) ∈ 𝒜 and every 𝑘 ∈ ℕ.
Then 𝒜 is essentially fractal.
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Proof. Let K = (𝐾𝑛) ∈ 𝒜 and let 𝜂 : ℕ → ℕ be a strictly increasing sequence
such that K𝜂 ∈ 𝒦𝜂. Then, by Theorem 3.1 (b),

lim
𝑘→∞

lim sup
𝑛→∞

Σ𝑘(𝐾𝜂(𝑛)) = 0. (3.12)

By hypothesis, lim sup𝑛→∞Σ𝑘(𝐾𝜂(𝑛)) = lim𝑛→∞ Σ𝑘(𝐾𝑛). Hence, (3.12) implies
lim𝑘→∞ lim𝑛→∞Σ𝑘(𝐾𝑛) = 0, whence K ∈ 𝒦 by assertion (a) of Theorem 3.1.
Thus, every sequence in 𝒜 which has a compact subsequence is compact itself.
Thus 𝒜 is essentially fractal by Theorem 3.5. □

Theorem 3.15. Let 𝒜 be a separable 𝐶∗-subalgebra of ℱ . Then there is a strictly
increasing sequence 𝜂 : ℕ → ℕ such that the restricted algebra 𝒜𝜂 = 𝑅𝜂𝒜 is
essentially fractal.

Indeed, if 𝜂 is as in Proposition 3.13, then the restriction 𝒜𝜂 is essentially
fractal by Proposition 3.14. □

We know from Theorems 2.5 and 3.15 that every separable 𝐶∗-subalgebra of ℱ has
both a fractal and an essentially fractal restriction. It is an open question whether
this fact holds for arbitrary closed ideals 𝒥 of ℱ in place of 𝒢 or 𝒦, i.e., whether
one can always force 𝒥 -fractality by a suitable restriction.

4. Essential spectral approximation

In a series of papers [1–3], Arveson studied the question of whether one can discover
the essential spectrum of a self-adjoint operator 𝐴 from the behavior of the eigen-
values of the finite sections 𝑃𝑛𝐴𝑃𝑛 of 𝐴. More generally, one might ask whether
one can discover the essential spectrum of a self-adjoint sequence A = (𝐴𝑛) ∈ ℱ
(i.e., the spectrum of the coset A + 𝒦, considered as an element of the quotient
algebra ℱ/𝒦) from the behavior of the eigenvalues of the matrices 𝐴𝑛? To answer
this question, Arveson introduced the notions of essential and transient points,
and he discovered (under an additional condition) a certain dichotomy: if 𝐴 is a
self-adjoint band-dominated operator, then every point in ℝ is either transient or
essential; see Subsection 4.2. The goal of this section is to relate the essential spec-
tral approximation with the property of essential fractality. In particular, we will
see that a subalgebra 𝒜 of ℱ is essentially fractal if and only if every self-adjoint
sequence in 𝒜 has Arveson dichotomy.

4.1. Essential spectra of self-adjoint sequences

Given a self-adjoint matrix 𝐴 and a subset𝑀 of ℝ, let𝑁(𝐴, 𝑀) denote the number
of eigenvalues of 𝐴 which lie in 𝑀 , counted with respect to their multiplicity. If
𝑀 = {𝜆} is a singleton, we write 𝑁(𝐴, 𝜆) in place of 𝑁(𝐴, {𝜆}). Thus, if 𝜆 is an
eigenvalue of 𝐴, then 𝑁(𝐴, 𝜆) is its multiplicity.

Let A = (𝐴𝑛) ∈ ℱ be a self-adjoint sequence. Following Arveson [1–3], a
point 𝜆 ∈ ℝ is called essential for this sequence if, for every open interval 𝑈
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containing 𝜆,
lim
𝑛→∞𝑁(𝐴𝑛, 𝑈) = ∞,

and 𝜆 ∈ ℝ is called transient for A if there is an open interval 𝑈 which contains 𝜆
such that

sup
𝑛∈ℕ

𝑁(𝐴𝑛, 𝑈) < ∞.

Thus, 𝜆 ∈ ℝ is not essential for A if and only if 𝜆 is transient for a subsequence
of A, and 𝜆 is not transient for A if and only if 𝜆 is essential for a subsequence of
A. Moreover, if a point 𝜆 is transient (resp. essential) for A, then is also transient
(resp. essential) for every subsequence of A.

Theorem 4.1. Let A ∈ ℱ be a self-adjoint sequence. A point 𝜆 ∈ ℝ belongs to the
essential spectrum of A if and only if it is not transient for the sequence A.

Proof. Let A = (𝐴𝑛) be a bounded sequence of self-adjoint matrices. First let
𝜆 ∈ ℝ ∖ 𝜎(A + 𝒦). We set 𝐵𝑛 := 𝐴𝑛 − 𝜆𝐼𝑛 and have to show that 0 is transient
for the sequence (𝐵𝑛). Since 𝜆 ∈ ℝ ∖ 𝜎(A + 𝒦), the sequence (𝐵𝑛) is Fredholm.
By Theorem 3.2 (c), there is a 𝑘 ∈ ℤ+ such that

lim inf
𝑛→∞ 𝜎𝑘+1(𝐵𝑛) =: 𝐶 > 0 and lim inf

𝑛→∞ 𝜎𝑘(𝐵𝑛) = 0.

Let 𝑈 := (−𝐶/2, 𝐶/2). Since the singular values of a self-adjoint matrix are just
the absolute values of the eigenvalues of that matrix, we conclude that𝑁(𝐵𝑛, 𝑈) ≤
𝑘 for all sufficiently large 𝑛. Thus, 0 is transient.

Conversely, let 𝜆 ∈ ℝ be transient for (𝐴𝑛). We claim that (𝐴𝑛 − 𝜆𝐼𝑛) is a
Fredholm sequence. By transiency, there is an interval 𝑈 = (𝜆−𝜀, 𝜆+𝜀) with 𝜀 > 0
such that sup𝑛∈ℕ 𝑁(𝐴𝑛, 𝑈) =: 𝑘 < ∞. Let 𝑇𝑛 denote the orthogonal projection

from ℂ𝛿(𝑛) onto the 𝑈 -spectral subspace of 𝐴𝑛. Then rank𝑇𝑛 is not greater than
𝑘. It is moreover obvious that the matrices 𝐶𝑛 := (𝐴𝑛 − 𝜆𝐼𝑛)(𝐼 − 𝑇𝑛) + 𝑇𝑛 are
invertible for all 𝑛 ∈ ℕ and that their inverses are uniformly bounded by the
maximum of 1/𝜀 and 1. Hence, (𝐶−1

𝑛 ) ∈ ℱ and

(𝐴𝑛 − 𝜆𝐼𝑛)(𝐼 − 𝑇𝑛)𝐶
−1
𝑛 = 𝐼 − 𝑇𝑛𝐶

−1
𝑛 .

Since (𝑇𝑛) is a compact sequence (of essential rank not greater than 𝑘), this identity
shows that the coset (𝐴𝑛 − 𝜆𝐼𝑛) +𝒦 is invertible from the right-hand side. Since
this coset is self-adjoint, it is then invertible from both sides. Thus, (𝐴𝑛 − 𝜆𝐼𝑛) is
a Fredholm sequence. □
Proposition 4.2. The set of the non-transient points and the set of the essential
points of a self-adjoint sequence A ∈ ℱ are compact.

Proof. The first assertion is an immediate consequence of Theorem 4.1. The second
assertion will follow once we have shown that the set of the essential points of A
is closed.

Let (𝜆𝑘) be a sequence of essential points for A = (𝐴𝑛) with limit 𝜆. Assume
that 𝜆 is not essential for A. Then there is a strictly increasing sequence 𝜂 :
ℕ → ℕ such that 𝜆 is transient for A𝜂. Let 𝑈 be an open neighborhood of 𝜆
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with sup𝑛∈ℕ 𝑁(𝐴𝜂(𝑛), 𝑈) =: 𝑐 < ∞. Since 𝜆𝑘 → 𝜆 and 𝑈 is open, there are a
𝑘 ∈ ℕ and an open neighborhood 𝑈𝑘 of 𝜆𝑘 with 𝑈𝑘 ⊆ 𝑈 . Clearly, 𝑁(𝐴𝜂(𝑛), 𝑈𝑘) ≤
𝑁(𝐴𝜂(𝑛), 𝑈) ≤ 𝑐. On the other hand, since 𝜆𝑘 is also essential for the restricted
sequence A𝜂, one has 𝑁(𝐴𝜂(𝑛), 𝑈𝑘) → ∞ as 𝑛 → ∞, a contradiction. □

Note that the set of the non-transient points of a self-adjoint sequence is
non-empty by Theorem 4.1, whereas it is easy to construct self-adjoint sequences
without any essential point: take a sequence which alternates between the zero and
the identity matrix. In contrast to this observation, the following result shows that
sequences which arise by discretization of a self-adjoint operator, always possess
essential points. Let 𝐻 be an infinite-dimensional separable Hilbert space with
filtration 𝒫 := (𝑃𝑛), and define the algebra ℱ𝒫 as in Section 1. One can think of
ℱ𝒫 as a 𝐶∗-subalgebra of the algebra ℱ𝛿 with dimension function 𝛿(𝑛) := rank𝑃𝑛.

Theorem 4.3. Let A := (𝐴𝑛) ∈ ℱ𝒫 be a self-adjoint sequence with strong limit 𝐴.
Then every point in the essential spectrum of 𝐴 is an essential point for A.

Proof. We show that 𝐴 − 𝜆𝐼 is a Fredholm operator if 𝜆 ∈ ℝ is not essential for
A. Then 𝜆 is transient for a subsequence of A, i.e., there are an infinite subset 𝕄
of ℕ and an interval 𝑈 = (𝜆 − 𝜀, 𝜆+ 𝜀) with 𝜀 > 0 such that

sup
𝑛∈𝕄

𝑁(𝐴𝑛, 𝑈) =: 𝑘 < ∞. (4.1)

Let 𝑇𝑛 denote the orthogonal projection from 𝐻 onto the 𝑈 -spectral subspace of
𝐴𝑛𝑃𝑛. By (4.1), the rank of the projection 𝑇𝑛 is not greater than 𝑘 if 𝑛 ∈ 𝕄. So
we conclude that the operators 𝐶𝑛 := (𝐴𝑛 − 𝜆𝐼𝑛)(𝐼 − 𝑇𝑛) + 𝑇𝑛 are invertible for
all 𝑛 ∈ 𝕄 and that their inverses are uniformly bounded by the maximum of 1/𝜀
and 1. Hence,

(𝐴𝑛 − 𝜆𝐼𝑛)(𝐼 − 𝑇𝑛)𝐶
−1
𝑛 = 𝐼 − 𝑇𝑛𝐶

−1
𝑛 (4.2)

for all 𝑛 ∈ 𝕄. By the weak sequential compactness of the unit ball of 𝐿(𝐻), one
finds weakly convergent subsequences ((𝐼 −𝑇𝑛𝑟)𝐶

−1
𝑛𝑟 )𝑟≥1 of ((𝐼 −𝑇𝑛)𝐶

−1
𝑛 )𝑛∈𝕄 and

(𝑇𝑛𝑟𝐶
−1
𝑛𝑟 )𝑟≥1 of (𝑇𝑛𝐵

−1
𝑛 )𝑛∈𝕄 with limits 𝐶 and 𝑇 , respectively. The product of

a weakly convergent sequence with limit 𝑋 and a ∗-strongly convergent sequence
with limit 𝑌 is weakly convergent with limit 𝑋𝑌 . Thus, passing to subsequences
and taking the weak limit in (4.2) yields (𝐴−𝜆𝐼)𝐶 = 𝐼−𝑇 . Further, the rank of 𝑇 is
not greater than 𝑘 by Lemma 5.7 in [4]. Thus, (𝐴−𝜆𝐼)𝐶−𝐼 is a compact operator.
The compactness of 𝐶(𝐴 − 𝜆𝐼) − 𝐼 follows similarly. Hence, 𝐴 is a Fredholm
operator. □

Arveson gave a first example where the inclusion in Theorem 4.3 is proper.
He constructed a self-adjoint unitary operator 𝐴 ∈ 𝐿(𝑙2(ℕ)) with

𝜎(𝐴) = 𝜎𝑒𝑠𝑠(𝐴) = {−1, 1} (4.3)

such that 0 is an essential point of the sequence (𝑃𝑛𝐴𝑃𝑛).
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4.2. Arveson dichotomy and essential fractality

We say that a self-adjoint sequence A ∈ ℱ enjoys Arveson’s dichotomy if every
real number is either essential or transient for this sequence. Note that Arveson
dichotomy is preserved when passing to subsequences. Arveson introduced and
studied this property in [1–3]. In particular, he proved the dichotomy of the fi-
nite sections sequence (𝑃𝑛𝐴𝑃𝑛) when 𝐴 is a self-adjoint band-dominated operator
which satisfies a Wiener and a Besov space condition. A generalization to arbitrary
band-dominated operators was obtained in [15].

Theorem 4.4. The set of all self-adjoint sequences in ℱ with Arveson dichotomy
is closed in ℱ .

Proof. Let (A𝑛)𝑛∈ℕ be a sequence of self-adjoint sequences in ℱ with Arveson
dichotomy which converges to a (necessarily self-adjoint) sequence A in the norm
of ℱ . Then A𝑛 +𝒦 → A+𝒦 in the norm of ℱ/𝒦. Since A𝑛 +𝒦 and A+ 𝒦 are
self-adjoint elements of ℱ/𝒦, this implies that the spectra of A𝑛 +𝒦 converge to
the spectrum of A + 𝒦 in the Hausdorff metric. Thus, by Theorem 4.1, the sets
of the non-transient points of A𝑛 converge to the set of the non-transient points
of A. Since the A𝑛 have Arveson dichotomy by hypothesis, this finally implies
that the sets of the essential points of A𝑛 converge to the set of the non-transient
points of A in the Hausdorff metric.

Let now 𝜆 be a non-transient point forA and assume that 𝜆 is not essential for
A. Then there is a strictly increasing sequence 𝜂 : ℕ → ℕ such that 𝜆 is transient
for the restricted sequence A𝜂. As we have seen above, there is a sequence (𝜆𝑛),
where 𝜆𝑛 is an essential point for A𝑛, with 𝜆𝑛 → 𝜆. Since the property of being
an essential is preserved under passage to a subsequence, 𝜆𝑛 is also essential for
the restricted sequence (A𝑛)𝜂.

Since the sequences (A𝑛)𝜂 also have Arveson dichotomy and since (A𝑛)𝜂
tends to A𝜂 in the norm of ℱ𝜂, we can repeat the above arguments to conclude
that the sets𝑀𝑛 of the essential points for (A𝑛)𝜂 converge to the set𝑀 of the non-
transient points for A𝜂 in the Hausdorff metric. Since 𝜆𝑛 ∈ 𝑀𝑛 by construction,
this implies that 𝜆 ∈ 𝑀 . This means that 𝜆 in not transient forA𝜂, a contradiction.

□

Here is the announced result which relates Arveson dichotomy with essential
fractality.

Theorem 4.5. Let 𝒜 be a unital 𝐶∗-subalgebra of ℱ . Then 𝒜 is essentially fractal
if and only if every self-adjoint sequence in 𝒜 has Arveson dichotomy.

Proof. First let 𝒜 be essentially fractal. Let A be a self-adjoint sequence in 𝒜 and
𝜆 ∈ ℝ a point which is not essential for A. The 𝜆 is transient for a subsequence of
A, thus, 0 is transient for a subsequence of A−𝜆I. From Theorem 4.1 we conclude
that this subsequence has the Fredholm property. Then, by Corollary 3.9 (b) and
since 𝒜 is essentially fractal, the sequence A − 𝜆I itself is a Fredholm sequence.
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Thus, 0 is transient for A− 𝜆I by Theorem 4.1 again, whence finally follows that
𝜆 is transient for A. Hence, A has Arveson dichotomy.

Now assume that 𝒜 is not essentially fractal. Then, by Theorem 3.5, there are
a sequence A = (𝐴𝑛) ∈ 𝒜 and a strictly increasing sequence 𝜂 : ℕ → ℕ such that
the restricted sequence A𝜂 belongs to 𝒦𝜂 but A ∕∈ 𝒦. The self-adjoint sequence
A∗A has the same properties, i.e., (A∗A)𝜂 = A∗

𝜂A𝜂 ∈ 𝒦𝜂, but A∗A ∕∈ 𝒦.
Since A∗

𝜂A𝜂 ∈ 𝒦𝜂, the essential spectrum of A∗
𝜂A𝜂 (i.e., the spectrum of the

coset A∗
𝜂A𝜂 + 𝒦𝜂 in ℱ𝜂/𝒦𝜂) consists of the point 0 only. Thus, by Theorem 4.1,

0 is the only non-transient point for the restricted sequence A∗
𝜂A𝜂.

Since A∗A ∕∈ 𝒦, there is a strictly increasing sequence 𝜇 : ℕ → ℕ such
that 𝜇(ℕ) ∩ 𝜂(ℕ) = ∅ and A∗

𝜇A𝜇 ∕∈ 𝒦𝜂. Hence, the essential spectrum of A∗
𝜇A𝜇

contains at least one point 𝜆 ∕= 0, and this point is non-transient for A∗
𝜇A𝜇 by

Theorem 4.1 again. Hence, there is a subsequence 𝜈 of 𝜇 such that 𝜆 is essential
for A∗

𝜈A𝜈 , but 𝜆 ∕= 0 is transient for A∗
𝜂A𝜂 as we have seen above. Thus, 𝜆 is

neither transient nor essential for A∗A. Hence, the sequence A∗A does not have
Arveson dichotomy. □

Corollary 4.6. Every self-adjoint sequence in ℱ possesses a subsequence with Arve-
son dichotomy.

Proof. Let A be a self-adjoint sequence in ℱ . The smallest closed subalgebra 𝒜 of
ℱ which contains A is separable. By Theorem 3.15, there is an essentially fractal
restriction 𝒜𝜂 of 𝒜. Then A𝜂 is a subsequence of A with Arveson dichotomy by
the previous theorem. □
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Abstract. The paper presents a lower bound for the number of eigenvalues
of an integral operator 𝐾 with continuous kernel 𝒦 lying in the interval
(−∞, 𝑡) with 𝑡 ⩽ 0 . The estimate is given in terms of some integrals of 𝒦 .
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Introduction

Consider a self-adjoint integral operator 𝐾 in the space 𝐿2(𝑀, 𝜈) on a domain
or a manifold 𝑀 provided with a finite measure 𝜈 . If its integral kernel 𝒦 is
continuous then the operator is compact and its spectrum consists of eigenvalues
accumulating to zero. Such operators have been considered by many authors, most
of whom studied the rate of convergence of eigenvalues and obtained various quan-
titative versions of the following general statement: the smoother the kernel is, the
faster the eigenvalues tend to zero (see, for instance, [2] or [8]).

The paper deals with a different, seemingly simple question: how many neg-
ative eigenvalues are there? More precisely, we are interested in obtaining explicit
lower bounds for the number of negative eigenvalues in terms of the integral ker-
nel 𝒦 .

One can argue that in the generic case the dimensions of positive and negative
eigenspaces must be the same, so that both of them are infinite dimensional and
there are infinitely many negative eigenvalues. However, this argument is of little
use when we need to study a particular integral operator.

The research was partly carried out during my visit to Academia Sinica, Taipei. I am very grateful
to my hosts, especially to Dr. Jin-Cheng Jiang, for their financial and scientific support.
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It is not immediately clear what properties of 𝒦 guarantee that there are
many negative eigenvalues. The fact that 𝒦 is real and negative on a large set
is clearly insufficient (for instance, the operator with constant integral kernel
𝒦 ≡ −1 has only one negative eigenvalue). On the positive side, if 𝒦 takes large
negative values on the diagonal and the Hilbert–Schmidt norm of 𝐾 is relatively
small, one can estimate the number of its negative eigenvalues as follows.

Example. Let 𝑀− = {𝜉 ∈ 𝑀 : 𝒦(𝜉, 𝜉) < 0} . If 𝑀− ∕= ∅ then the number of
negative eigenvalues of the operator 𝐾 is not smaller than

𝐶− :=

(∫
𝑀−

𝒦(𝜉, 𝜉) d𝜈(𝜉)
)2(∫

𝑀−

∫
𝑀−

∣𝒦(𝜉, 𝜂)∣2 d𝜈(𝜉) d𝜈(𝜂)
)−1

.

Indeed, if 𝐾− is the truncation of 𝐾 to the subspace 𝐿2(𝑀−, 𝜈) then 𝐶− =
(Tr𝐾−)2 ∥𝐾−∥−22 where Tr and ∥⋅∥2 stand for the trace and the Hilbert–Schmidt
norm. Since Tr𝐾− < 0 , we have

(Tr𝐾−)2 ∥𝐾−∥−22 ⩽

⎛⎝∑
𝑗

𝜆𝑗

⎞⎠2⎛⎝∑
𝑗

𝜆2𝑗

⎞⎠−2

⩽ #{𝜆𝑗} ,

where 𝜆𝑗 are the negative eigenvalues of 𝐾− . Thus 𝐶− estimates the number of
negative eigenvalues of 𝐾− and, consequently, of 𝐾 from below.

The main result of the paper is Theorem 1.2 which provides a similar estimate
involving some integrals of 𝒦 . Unlike in the previous example, it does not rely only
on the behaviour of 𝒦 on the diagonal and takes into account the contribution of
its off-diagonal part.

Theorem 1.2 is stated and proved in Section 1. It is formulated in a very
general setting but even in the simplest situation (say, for integral operators on
a line segment) the result is not obvious. Section 2 contains some comments and
examples. In particular, in Subsection 2.3 we discuss the link between the problems
of estimating the number of negative eigenvalues and the difference between the
Dirichlet and Neumann counting functions of the Laplace operator on a domain.

1. The main theorem

Throughout the paper 𝒩 (𝐴; 𝑡) denotes the dimension of the eigenspace of a self-
adjoint operator (or a Hermitian matrix) 𝐴 corresponding to the interval (−∞, 𝑡) .

Let 𝑀 be a Hausdorff topological space equipped with a locally finite Borel
measure 𝜈 . We shall always be assuming that 𝑀 and 𝜈 satisfy the following
condition,

(C1) every open set 𝑈 ⊂ 𝑀 contains infinitely many elements and has non-zero
measure.
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Let us consider the symmetric integral operator 𝐾0 in the space 𝐿2(𝑀, 𝜈)

given by a continuous kernel 𝒦(𝜂, 𝜉) = 𝒦(𝜉, 𝜂) ,

𝐾0 : 𝑢(𝜂) �→ 𝐾0𝑢(𝜉) :=

∫
𝑀

𝒦(𝜉, 𝜂)𝑢(𝜂) d𝜈(𝜂) . (1.1)

We assume that the domain of 𝐾0 consists of 𝐿2-functions 𝑢 such that the
integral on the right-hand side of (1.1) is absolutely convergent for almost all
𝜉 ∈ 𝑀 and the function 𝐾0𝑢 , defined by this integral, belongs to the space
𝐿2(𝑀, 𝜈) . Let 𝐾 be an arbitrary self-adjoint extension of 𝐾0 .

Let ϰ(𝜉, 𝜂) be the smaller eigenvalue of the Hermitian 2× 2-matrix

𝒦(2)(𝜉, 𝜂) :=

(𝒦(𝜉, 𝜉) 𝒦(𝜉, 𝜂)
𝒦(𝜂, 𝜉) 𝒦(𝜂, 𝜂)

)
, (1.2)

that is,

ϰ(𝜉, 𝜂) =
𝒦(𝜉, 𝜉) +𝒦(𝜂, 𝜂)

2
− 1

2

√
(𝒦(𝜉, 𝜉) − 𝒦(𝜂, 𝜂))2 + 4 ∣𝒦(𝜉, 𝜂)∣2 . (1.3)

Obviously, ϰ(𝜉, 𝜂) is a continuous real-valued function on 𝑀 × 𝑀 such that
ϰ(𝜉, 𝜂) = ϰ(𝜂, 𝜉) .

Remark 1.1. By (1.3), if 𝒦(𝜉, 𝜉) is identically equal to a constant 𝐶 then ϰ(𝜉, 𝜂) =
𝐶 − ∣𝒦(𝜉, 𝜂)∣ .

We shall say that a measure 𝜇 on 𝑀 × 𝑀 is symmetric if it is invariant
with respect to the transformation (𝜉, 𝜂) �→ (𝜂, 𝜉) . If 𝜇 is a symmetric measure
on 𝑀 × 𝑀 , we shall denote by 𝜇′ its marginal, that is, the measure on 𝑀 such
that 𝜇′(𝑆) = 𝜇 (𝑆 × 𝑀) for all measurable 𝑆 ⊂ 𝑀 . Finally, assuming that

(C2) 0 <
∫
𝑀×𝑀 (𝑡 − ϰ(𝜉, 𝜂))+ d𝜇(𝜉, 𝜂) < ∞

where

(𝑡 − ϰ(𝜉, 𝜂))+ :=

{
𝑡 − ϰ(𝜉, 𝜂) if 𝑡 − ϰ(𝜉, 𝜂) ⩾ 0 ,

0 if 𝑡 − ϰ(𝜉, 𝜂) < 0 ,

let us denote

𝐶𝑡(𝜇) :=

(∫
𝑀×𝑀 (𝑡 − ϰ(𝜉, 𝜂))+ d𝜇(𝜉, 𝜂)

)2∫
𝑀

∫
𝑀 ∣𝒦(𝜉, 𝜂)∣2 d𝜇′(𝜉) d𝜇′(𝜂) . (1.4)

Theorem 1.2. Let the condition (C1) be fulfilled. If inf ϰ < 𝑡 ⩽ 0 then

𝒩 (𝐾, 𝑡) ⩾ 1

2
+

𝐶𝑡(𝜇)

16
(1.5)

for all symmetric Borel measures 𝜇 satisfying the condition (C2).

Proof. Consider the open set

Σ𝑡 := {(𝜉, 𝜂) ∈ 𝑀 × 𝑀 : ϰ(𝜉, 𝜂) < 𝑡} ,
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and let 𝑀𝑡 be its projection onto 𝑀 ,

𝑀𝑡 :=
{
𝜉 ∈ 𝑀 : (𝜉,𝑀)

∩
Σ𝑡 ∕= ∅

}
.

Further on, without loss of generality, we shall be assuming that 𝜇 is supported
on Σ𝑡 (if not, we replace 𝜇 with its restriction to Σ𝑡 ).

Given a collection

𝜃𝑛 = ((𝜉1, 𝜂1), . . . , (𝜉𝑛, 𝜂𝑛)) ∈ Σ𝑛𝑡 := Σ𝑡 × ⋅ ⋅ ⋅ × Σ𝑡︸ ︷︷ ︸
𝑛 times

of points (𝜉𝑗 , 𝜂𝑗) ∈ Σ𝑡 , let us consider the Hermitian 2𝑛 × 2𝑛-matrix

𝒦(2𝑛)(𝜃𝑛) :=

⎛⎜⎜⎜⎝
𝒦1,1 𝒦1,2 ⋅ ⋅ ⋅ 𝒦1,𝑛

𝒦2,1 𝒦2,2 ⋅ ⋅ ⋅ 𝒦2,𝑛

...
...

. . .
...

𝒦𝑛,1 𝒦𝑛,2 ⋅ ⋅ ⋅ 𝒦𝑛,𝑛

⎞⎟⎟⎟⎠
where

𝒦𝑖,𝑗 :=

(𝒦(𝜉𝑖, 𝜉𝑗) 𝒦(𝜉𝑖, 𝜂𝑗)
𝒦(𝜂𝑖, 𝜉𝑗) 𝒦(𝜂𝑖, 𝜂𝑗)

)
= (𝒦𝑗,𝑖)∗ .

Let

𝒦̃(2𝑛)(𝜃𝑛) := Λ
(
𝒦(2𝑛)(𝜃𝑛)− 𝑡𝐼

)
Λ ,

where 𝐼 is the identity 2𝑛×2𝑛-matrix and Λ = diag{Λ1,Λ2, . . . ,Λ𝑛} is the block
diagonal matrix formed by the 2× 2-matrices

Λ𝑗 = (𝑡 − ϰ(𝜉𝑗 , 𝜂𝑗))
−1/2

(
1 0
0 1

)
.

Since Λ > 0 , we have

(i) 𝒩 (𝒦(2𝑛)(𝜃𝑛) , 𝑡
)
= 𝒩

(
𝒦̃(2𝑛)(𝜃𝑛) , 0

)
for all 𝜃𝑛 ∈ Σ𝑛𝑡 .

By direct calculation,

𝒦̃(2𝑛)(𝜃𝑛) :=

⎛⎜⎜⎜⎝
𝒦̃1,1 − 𝑡Λ21 𝒦̃1,2 ⋅ ⋅ ⋅ 𝒦̃1,𝑛

𝒦̃2,1 𝒦̃2,2 − 𝑡Λ22 ⋅ ⋅ ⋅ 𝒦̃2,𝑛

...
...

. . .
...

𝒦̃𝑛,1 𝒦̃𝑛,2 ⋅ ⋅ ⋅ 𝒦̃𝑛,𝑛 − 𝑡Λ2𝑛

⎞⎟⎟⎟⎠ ,

where

𝒦̃𝑖,𝑗 := (𝑡 − ϰ(𝜉𝑖, 𝜂𝑖))
−1/2

(𝑡 − ϰ(𝜉𝑗 , 𝜂𝑗))
−1/2 𝒦𝑖,𝑗 = (𝒦̃𝑗,𝑖)∗ .

Let us split 𝒦̃(2𝑛)(𝜃𝑛) into the sum of the block diagonal matrix

𝒦̃(2𝑛)
diag(𝜃𝑛) := diag

{
𝒦̃1,1 − 𝑡Λ21 , 𝒦̃2,2 − 𝑡Λ22 , . . . , 𝒦̃𝑛,𝑛 − 𝑡Λ2𝑛

}
and the matrix 𝒦̃(2𝑛)

off (𝜃𝑛) := 𝒦̃(2𝑛)(𝜃𝑛)− 𝒦̃(2𝑛)
diag (𝜃𝑛) . The equalities

𝒦̃𝑗,𝑗 − 𝑡Λ2𝑗 = (𝑡 − ϰ(𝜉𝑗 , 𝜂𝑗))
−1 (𝒦(2)(𝜉𝑗 , 𝜂𝑗)− 𝑡𝐼

)
, 𝑗 = 1, . . . , 𝑛 ,
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imply that

(ii) −1 is an eigenvalue of 𝒦̃(2𝑛)
diag (𝜃𝑛) of multiplicity 𝑛 or higher for each 𝜃𝑛 ∈

Σ𝑛𝑡 .

On the other hand,

∥𝒦̃(2𝑛)
off (𝜃𝑛)∥22 =

∑
𝑖∕=𝑗

∣𝒦(𝜉𝑖, 𝜉𝑗)∣2 + ∣𝒦(𝜉𝑖, 𝜂𝑗)∣2 + ∣𝒦(𝜂𝑖, 𝜉𝑗)∣2 + ∣𝒦(𝜂𝑖, 𝜂𝑗)∣2
(𝑡 − ϰ(𝜉𝑖, 𝜂𝑖)) (𝑡 − ϰ(𝜉𝑗 , 𝜂𝑗))

, (1.6)

where ∥⋅∥2 is the Hilbert–Schmidt norm. Let us consider the absolutely continuous
with respect to 𝜇 measure 𝜇̃ with the density (𝑡 − ϰ(𝜉, 𝜂)) , so that d𝜇̃(𝜉, 𝜂) =
(𝑡 − ϰ(𝜉, 𝜂)) d𝜇(𝜉, 𝜂) . Then∫

Σ𝑛𝑡

(𝑡 − ϰ(𝜉𝑖, 𝜂𝑖))
−1
(𝑡 − ϰ(𝜉𝑗 , 𝜂𝑗))

−1 ∣𝒦(𝜉𝑖, 𝜉𝑗)∣2 d𝜇̃(𝜉1, 𝜂1) . . . d𝜇̃(𝜉𝑛, 𝜂𝑛)

= (𝜇̃(Σ𝑡))
𝑛−2

∫
Σ𝑡

∫
Σ𝑡

∣𝒦(𝜉𝑖, 𝜉𝑗)∣2 d𝜇(𝜉𝑖, 𝜂𝑖) d𝜇(𝜉𝑗 , 𝜂𝑗) = (𝐶𝑡(𝜇))
−1 (𝜇̃(Σ𝑡))

𝑛

for all 𝑖 ∕= 𝑗 , where 𝐶𝑡(𝜇) is defined by (1.4) and 𝜇̃(Σ𝑡) is finite in view
of (C2). Similar calculations show that the integrals over Σ𝑛𝑡 with respect to
d𝜇̃(𝜉1, 𝜂1) . . . d𝜇̃(𝜉𝑛, 𝜂𝑛) of all other term in the right-hand side of (1.6) are also
equal to (𝐶𝑡(𝜇))

−1 (𝜇̃(Σ𝑡))
𝑛
. Therefore

(𝜇̃(Σ𝑡))
−𝑛

∫
Σ𝑛𝑡

∥𝒦̃(2𝑛)
off (𝜃𝑛)∥22 d𝜇̃(𝜉1, 𝜂1) . . . d𝜇̃(𝜉𝑛, 𝜂𝑛) = 4𝑛(𝑛 − 1) (𝐶𝑡(𝜇))

−1

and, consequently, there exists a point 𝜃𝑛,0 ∈ Σ𝑛𝑡 such that

∥𝒦̃(2𝑛)
off (𝜃𝑛,0)∥22 ⩽ 4𝑛(𝑛 − 1) (𝐶𝑡(𝜇))

−1.

Since ∥𝒦̃(2𝑛)
off (𝜃𝑛)∥22 continuously depends on 𝜃𝑛 and every open set contains

infinitely many elements, for each 𝜀 > 0 there exists a point

𝜃𝑛,𝜀 = ((𝜉1,𝜀, 𝜂1,𝜀), . . . , (𝜉𝑛,𝜀, 𝜂𝑛,𝜀)) ∈ Σ𝑛𝑡

such that

∥𝒦̃(2𝑛)
off (𝜃𝑛,𝜀)∥22 ⩽ 4𝑛(𝑛 − 1) (𝐶𝑡(𝜇))

−1 + 𝜀 (1.7)

and all the entries 𝜉𝑖,𝜀 and 𝜂𝑗,𝜀 are distinct. The estimate (1.7) implies that the

number of eigenvalues of the matrix 𝒦̃(2𝑛)
off (𝜃𝑛,𝜀) lying in the interval [1,∞) does

not exceed 4𝑛(𝑛 − 1) (𝐶𝑡(𝜇))
−1 + 𝜀 . Therefore, in view of (i) and (ii),

𝒩
(
𝒦(2𝑛)(𝜃𝑛,𝜀) , 𝑡

)
= 𝒩

(
𝒦̃(2𝑛)(𝜃𝑛,𝜀) , 0

)
⩾ 𝑛 − 4𝑛(𝑛 − 1) (𝐶𝑡(𝜇))

−1 − 𝜀 .

Since the measure 𝜈 is locally finite and the function 𝒦 is continuous, for
every 𝛿 > 0 and (𝜉, 𝜂) ∈ 𝑀 ×𝑀 there exist open neighbourhoods 𝑈𝜉,𝛿 ⊂ 𝑀 and
𝑈𝜂,𝛿 ⊂ 𝑀 of the points 𝜉 and 𝜂 such that 𝜈(𝑈𝜉,𝛿) < ∞ , 𝜈(𝑈𝜂,𝛿) < ∞ and

∣𝒦(𝜉, 𝜂) − 𝒦(𝜉′, 𝜂′)∣ < 𝛿 , ∀𝜉′ ∈ 𝑈𝜉,𝛿 , ∀𝜂′ ∈ 𝑈𝜂,𝛿 .
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In view of (C1), 𝜈(𝑈𝜉,𝛿) > 0 and 𝜈(𝑈𝜂,𝛿) > 0 . Let 𝑢𝜉,𝛿 := (𝜈(𝑈𝜉,𝛿))
−1 𝜒𝜉,𝛿 and

𝑢𝜂,𝛿 := (𝜈(𝑈𝜂,𝛿))
−1

𝜒𝜂,𝛿 , where 𝜒𝜉,𝛿 and 𝜒𝜂,𝛿 are the characteristic functions of
the sets 𝑈𝜉,𝛿 and 𝑈𝜂,𝛿 . Then 𝑢𝜉,𝛿 , 𝑢𝜂,𝛿 ∈ 𝐿2(𝑀, 𝜈) and∣∣∣𝒦(𝜉, 𝜂)− (𝐾𝑢𝜉,𝛿, 𝑢𝜂,𝛿)𝐿2(𝑀,𝜈)

∣∣∣ < 𝛿 . (1.8)

Let us choose the neighbourhoods 𝑈𝜉,𝛿 and 𝑈𝜂,𝛿 so small that all the func-
tions 𝑢𝜉𝑖,𝜀,𝛿 and 𝑢𝜂𝑗,𝜀,𝛿 have disjoint supports, and let 𝐾𝜀,𝛿 be the contraction of
𝐾 to the 2𝑛-dimensional subspace spanned by these functions. In view of (1.8),
in the basis

{𝑢𝜉1,𝜀,𝛿, . . . , 𝑢𝜉𝑛,𝜀,𝛿, 𝑢𝜂1,𝜀,𝛿, . . . , 𝑢𝜂𝑛,𝜀,𝛿}
the operator 𝐾𝜀,𝛿 is represented by a 2𝑛×2𝑛-matrix that converges to 𝒦(2𝑛)(𝜃𝑛,𝜀)
as 𝛿 → 0 . Consequently,

𝒩 (𝐾𝜀,𝛿, 𝑡) ⩾ 𝑛 − 4𝑛(𝑛 − 1) (𝐶𝑡(𝜇))
−1 − 𝜀

for all sufficiently small 𝛿 . By the variational principle, the same estimate holds
𝒩 (𝐾, 𝑡) . Letting 𝜀 → 0 , we see that

𝒩 (𝐾, 𝑡) ⩾ 𝑛 − 4𝑛(𝑛 − 1) (𝐶𝑡(𝜇))
−1

=
1

𝐶𝑡(𝜇)

((
𝐶𝑡(𝜇) + 4

4

)2

−
(
2𝑛 − 𝐶𝑡(𝜇) + 4

4

)2
)

for all positive integers 𝑛 . Choosing 𝑛𝜇 ⩾ 1 such that
∣∣∣2𝑛𝜇 − 𝐶𝑡(𝜇)+4

4

∣∣∣ ⩽ 1 and

substituting 𝑛 = 𝑛𝜇 in the above inequality, we obtain (1.5). □

2. Comments and examples

2.1. General comments

The estimate (1.5) implies that 𝐾 has at least one eigenvalue below a negative
𝑡 whenever inf ϰ < 𝑡 . Indeed, in this case (1.5) with any symmetric measure 𝜇
satisfying (C2) shows that 𝒩 (𝐾, 𝑡) ⩾ 1

2 . Since the function 𝒩 (𝐾, 𝑡) is integer
valued, it follows that 𝒩 (𝐾, 𝑡) ⩾ 1 .

If 𝐶𝑡(𝜇) ⩽ 8 then (1.5) implies only the obvious estimate 𝒩 (𝐾, 𝑡) ⩾ 1 . In
order to obtain a better result, one has to increase the constant 𝐶𝑡(𝜇) by choosing
an appropriate measure 𝜇 . In particular, Theorem 1.2 gives a good estimate when
the function ϰ(𝜉, 𝜂) is takes large negative values on a “thin” subset Σ′ ⊂ 𝑀 ×
𝑀 , the measure 𝜇 is supported on Σ′ and ∣𝒦∣ is relatively small outside a
neighbourhood of Σ′ . On the contrary, if 𝒦 is almost constant on 𝑀 × 𝑀 then
ϰ ≈ 𝒦 − ∣𝒦∣ and 𝐶𝑡(𝜇) ≈ (𝑡 − 𝒦 + ∣𝒦∣)2+ ∣𝒦∣−2 ⩽ 4 .

A possible strategy of optimizing the choice of 𝜇 is to fix the marginal 𝜇′

and to maximize
∫
(𝑡 − ϰ(𝜉, 𝜂))+ d𝜇(𝜉, 𝜂) over the set of symmetric measures 𝜇

with the fixed marginal. The minimization (or maximization) of an integral of the
form

∫
𝑓(𝜉, 𝜂) d𝜇(𝜉, 𝜂) over the set of measures with fixed marginals is known as
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Kantorovich’s problem. It has been solved for some special functions 𝑓(𝜉, 𝜂) (see,
for instance, [6] and references therein).

I won’t elaborate further on this problem, as it requires different techniques
(and a different author). Instead, in the rest of the paper we shall consider a couple
of examples demonstrating possible applications of Theorem 1.2.

2.2. Operators with difference kernels in ℝ𝑛

Let 𝜈 be a Borel measure on ℝ𝑛, and let ℎ be a continuous function on ℝ𝑛 such
that ℎ(−𝜃) = ℎ(𝜃). Consider the symmetric operator

𝑢(𝜂) �→ 𝐾0𝑢(𝜉) :=

∫
ℎ(𝜉 − 𝜂)𝑢(𝜂) d𝜈(𝜂) (2.1)

in the space 𝐿2(ℝ
𝑛, 𝜈). In the notation of Section 1, 𝑀 = ℝ𝑛, 𝒦(𝜉, 𝜂) = ℎ(𝜉 − 𝜂)

and ϰ(𝜉, 𝜂) = ℎ(0)− ∣ℎ(𝜉 − 𝜂)∣ (see Remark 1.1).
Let us fix 𝑡 ⩽ 0 and 𝜃 ∈ ℝ𝑛 such that ∣ℎ(𝜃)∣ > ℎ(0)− 𝑡, and define a measure

𝜇𝜃 on ℝ2𝑛 by the identity∫
𝑓(𝜉, 𝜂) d𝜇𝜃(𝜉, 𝜂) =

∫
(𝑓(𝜂, 𝜂 + 𝜃) + 𝑓(𝜂 + 𝜃, 𝜂)) d𝜇̃(𝜂) ,

where 𝜇̃ is a probability measure on ℝ𝑛. Clearly, the measure 𝜇𝜃 is symmetric, and
its marginal coincides with the measure 𝜇′𝜃 on ℝ𝑛 given by the equality∫

𝑣(𝜂) d𝜇′𝜃(𝜂) =
∫
(𝑣(𝜂) + 𝑣(𝜂 + 𝜃)) d𝜇̃(𝜂) .

We have ∫
(𝑡 − ϰ(𝜉, 𝜂))+ d𝜇𝜃(𝜉, 𝜂) = 2 (∣ℎ(𝜃)∣ − ℎ(0) + 𝑡) (2.2)

and∫∫
∣𝒦(𝜉, 𝜂)∣2 d𝜇′𝜃(𝜉) d𝜇′𝜃(𝜂)

=

∫∫ (
2∣ℎ(𝜉 − 𝜂)∣2 + ∣ℎ(𝜉 − 𝜂 + 𝜃)∣2 + ∣ℎ(𝜉 − 𝜂 − 𝜃)∣2) d𝜇̃(𝜉) d𝜇̃(𝜂). (2.3)

Since ∣ℎ(𝜉 − 𝜂 − 𝜃)∣ = ∣ℎ(𝜂 − 𝜉 + 𝜃)∣ and∫∫
∣ℎ(𝜂 − 𝜉 + 𝜃)∣2 d𝜇̃(𝜉) d𝜇̃(𝜂) =

∫∫
∣ℎ(𝜉 − 𝜂 + 𝜃)∣2 d𝜇̃(𝜉) d𝜇̃(𝜂) ,

the equality (2.3) can be rewritten in the form∫∫
∣𝒦(𝜉, 𝜂)∣2 d𝜇′(𝜉) d𝜇′(𝜂) = 2

∫∫ (∣ℎ(𝜉 − 𝜂)∣2 + ∣ℎ(𝜉 − 𝜂 + 𝜃)∣2) d𝜇̃(𝜉) d𝜇̃(𝜂) .
(2.4)

In view of (2.2) and (2.4), Theorem 1.2 implies that

𝒩 (𝐾, 𝑡) ⩾ 1

2
+

(∣ℎ(𝜃)∣ − ℎ(0) + 𝑡)
2

8
∫∫
(∣ℎ(𝜉 − 𝜂)∣2 + ∣ℎ(𝜉 − 𝜂 + 𝜃)∣2) d𝜇̃(𝜉) d𝜇̃(𝜂) (2.5)

for all probability measures 𝜇̃ on ℝ𝑛.
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Let d𝜇̃(𝜉) = 𝜀𝑛𝜒(𝜀𝜉) d𝜉 where 𝜒 is the characteristic function of the unit
ball. One can easily see that

lim sup
𝜀→0

∫∫ (∣ℎ(𝜉 − 𝜂)∣2 + ∣ℎ(𝜉 − 𝜂 + 𝜃)∣2) 𝜀2𝑛𝜒(𝜀𝜉)𝜒(𝜀𝜂) d𝜉 d𝜂 ⩽ 2 lim sup
𝜃→∞

∣ℎ(𝜃)∣2 .

Passing to the limit in (2.5) and optimizing the choice of 𝜃 , we obtain

Corollary 2.1. Let 𝐾 be a self-adjoint extension of the operator (2.1). If the mea-
sure 𝜈 satisfies the condition (C1) and ℎ(0)− sup𝜃∈ℝ𝑛 ∣ℎ(𝜃)∣ < 𝑡 ⩽ 0 then

𝒩 (𝐾, 𝑡) ⩾ 1

2
+

(
sup𝜃∈ℝ𝑛 ∣ℎ(𝜃)∣ − ℎ(0) + 𝑡

4 lim sup𝜃→∞ ∣ℎ(𝜃)∣
)2

. (2.6)

In particular, (2.6) implies that 𝒩 (𝐾, 0) = ∞ whenever

ℎ ∕≡ 0 and lim
𝜃→∞

∣ℎ(𝜃)∣ = 0.

2.3. Dirichlet and Neumann counting functions

Consider the Laplace operator Δ on an open domain Ω ⊂ ℝ𝑑 , and denote by
𝑁D(𝜆) and 𝑁N(𝜆) the numbers of its Dirichlet and Neumann eigenvalues lying
in the interval [0, 𝜆2) .

Let 𝐺𝜆 :=
{
𝑓 ∈ 𝐿2(Ω) : −Δ𝑓 = 𝜆2𝑓

}
, where the equality −Δ𝑢 = 𝜆2𝑓 is

understood in the sense of distributions, and let ℬ𝜆 be the self-adjoint operator in
𝐺𝜆 generated by the truncation of the quadratic form ∥∇𝑓∥2𝐿2(Ω)

− 𝜆2 ∥𝑓∥2𝐿2(Ω)

to the subspace 𝐺𝜆 .

Lemma 2.2. For any open bounded set Ω ,

(1) the kernel of ℬ𝜆 is spanned by the Dirichlet and Neumann eigenfunctions
corresponding to 𝜆2 ;

(2) 𝑁N(𝜆) − 𝑁D(𝜆) = 𝑛D(𝜆) + 𝑔−(𝜆) , where 𝑛D(𝜆) is the number of linearly
independent Dirichlet eigenfunctions corresponding to the eigenvalue 𝜆2 , and
𝑔−(𝜆) is the dimension of the negative eigenspace of ℬ𝜆 .

Proof. This is a particular case of [9, Lemma 1.2] and [9, Theorem 1.7]. □

Remark 2.3. For domains smooth boundaries, Lemma 2.2(2) was proved in [5]. In
this section, we shall only need the estimate 𝑁N(𝜆)−𝑁D(𝜆) ⩽ 𝑛D(𝜆)+ 𝑔𝜆 which
can easily be deduced from the variational principle, using integration by parts [3].

In order to obtain effective estimates with the use of Lemma 2.2, we need
some information about the space 𝐺𝜆 . It is not easy to describe, as it depends on
Ω . However, the subspace 𝐺𝜆 always contains restrictions to Ω of the functions
𝑓 satisfying the equation −Δ𝑓 = 𝜆2𝑓 on the whole space ℝ𝑑 . In particular, 𝐺𝜆
contains restrictions to Ω of the functions

𝑓𝑢(𝑥) =

∫
𝕊
𝑑−1
𝜆

𝑒−𝑖𝑥⋅𝜉 𝑢(𝜉) d𝜈(𝜉) , (2.7)
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where 𝜈(𝜉) is a finite Borel measure on the sphere 𝕊𝑑−1𝜆 := {𝜉 ∈ ℝ𝑑 : ∣𝜉∣ = 𝜆} and

𝑢 is a function from 𝐿2(𝕊
𝑑−1
𝜆 , 𝜈) . Note that the integral in the right-hand side

of (2.7) defines a real analytic function on ℝ𝑛 , so that 𝑓𝑢∣Ω ∕≡ 0 for all nonzero

𝑢 ∈ 𝐿2(𝕊
𝑑−1
𝜆 , 𝜈) .

Let 𝐾𝜆,𝜈 be the operator in the space 𝐿2(𝕊
𝑑−1
𝜆 , 𝜈) given by the integral

kernel

𝒦(𝜉, 𝜂) := − ∣𝜉 − 𝜂∣2 𝜒̂Ω(𝜉 − 𝜂) ,

where 𝜒̂Ω is the Fourier transform of the characteristic function 𝜒Ω of the set Ω .
One can easily see that

∥∇𝑓𝑢∥2𝐿2(Ω)
− 𝜆2 ∥𝑓𝑢∥2𝐿2(Ω)

=
1

2
(𝐾𝜆,𝜈𝑢, 𝑢)𝐿2(𝕊

𝑑−1
𝜆 ,𝜈) (2.8)

for all 𝑢 ∈ 𝐿2(𝕊
𝑑−1
𝜆 , 𝜈)

Corollary 2.4. For all open sets Ω , all 𝜆 > 0 and all Borel measures 𝜈 on 𝕊𝑑−1𝜆

we have

𝑁N(𝜆) − 𝑁D(𝜆) ⩾ 𝒩 (𝐾𝜆,𝜈 , 0) + 𝑛D(𝜆) . (2.9)

Proof. Denote by ℒ−
𝜆 the negative eigensubspace of the operator 𝐾𝜆,𝜈 , and let

𝐿−
𝜆 = {𝑓𝑢 : 𝑢 ∈ ℒ−

𝜆 } . In view of (2.8), (ℬ𝜆𝑓, 𝑓)𝐿2(Ω) < 0 for all nonzero 𝑓 ∈ 𝐿−
𝜆 .

By the variational principle, 𝑔−(𝜆) ⩾ dim𝐿−
𝜆 = 𝒩 (𝐾𝜆,𝜈 , 0) . This inequality and

Lemma 2.2(2) imply (2.9). □

One can slightly improve the estimate (2.9) assuming that

(C3) the subspace 𝐿𝜆 does not contain a Dirchlet or Neumann eigenfunction of

the form 𝑓𝑢 with 𝑢 ∈ 𝐿2(𝕊
𝑑−1
𝜆 , 𝜈) .

Corollary 2.5. If the condition (C3) is fulfilled then

𝑁N(𝜆)− 𝑁D(𝜆) ⩾ 𝒩 (𝐾𝜆,𝜈 , 0) + dimker𝐾𝜆,𝜈 + 𝑛D(𝜆) . (2.10)

Proof. Let 𝐿0
𝜆 = {𝑓𝑢 : 𝑢 ∈ ker𝐾𝜆,𝜈} . By (2.8), (ℬ𝜆𝑓, 𝑓)𝐿2(Ω) ⩽ 0 for all func-

tions 𝑓 ∈ 𝐿−
𝜆 + 𝐿0

𝜆 . Also, Lemma 2.2(1) and the condition (C3) imply that

kerℬ𝜆
∩(

𝐿−
𝜆 + 𝐿0

𝜆

)
= {0} . Now the standard variational arguments show that

𝑔−(𝜆) ⩾ dim
(
𝐿−
𝜆 + 𝐿0

𝜆

)
= 𝒩 (𝐾𝜆,𝜈 , 0) + dimker𝐾𝜆,𝜈 ,

and (2.10) follows from Lemma 2.2(2). □

Remark 2.6. Since 𝒦𝜆(𝜉, 𝜉) ≡ 0 , we have ϰ(𝜉, 𝜂) = −∣𝒦𝜆(𝜉, 𝜂)∣ (see Remark 1.1).
Thus inf ϰ < 0 and, consequently, 𝒩 (𝐾𝜆,𝜈 , 0) ⩾ 1 . Therefore (2.9) implies the
estimate 𝑁N(𝜆) − 𝑁D(𝜆) ⩾ 1 + 𝑛D(𝜆) , which was obtained in [5] and [3].

Remark 2.7. If 𝜒̂Ω(𝜃) = 0 for some 𝜃 ∈ ℝ𝑑 and 𝜈 is the sum of 𝛿-measures

at any two points 𝜉, 𝜂 ∈ 𝕊𝑑−1𝜆 such that 𝜉 − 𝜂 = 𝜃 , then 𝐾𝜆,𝜈 = 0 . Applying
Corollary 2.5, we see that 𝑁N(𝜆) − 𝑁D(𝜆) ⩾ 2 + 𝑛D(𝜆) for all 𝜆 ⩾ ∣𝜃∣/2 . This
estimate was discussed in [1].
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Since the function 𝒦 is continuous, it is almost constant for small 𝜉 and 𝜂 .
Therefore Theorem 1.2 is not well suited for estimating 𝒩 (𝐾𝜆,𝜈 , 0) with small 𝜆
(see the remark in Subsection 2.1). However, it is useful for studying the behaviour
of 𝑁N(𝜆) − 𝑁D(𝜆) for large values of 𝜆 .

Lemma 2.8. Denote

𝐶Ω(𝜆, 𝑟) =
𝑐𝑑−1 𝑟4

18

(
inf
∣𝜃∣=𝑟

∣𝜒̂Ω(𝜃)∣2
)

𝜆𝑑−4 ∣Ω𝜆−1 ∣−1 ,

where 𝑐𝑑−1 is the volume of the unit (𝑑−1)-dimensional sphere in ℝ𝑑 and ∣Ω𝜆−1 ∣
is the volume of the set {𝑥 ∈ Ω : dist(𝑥, ∂Ω) < 𝜆−1} . If 𝜈 is the Euclidean

measure on 𝕊𝑑−1𝜆 then 𝒩 (𝐾𝜆,𝜈 , 0) ⩾ 1
2 +

𝐶Ω(𝜆,𝑟)
16 for all 𝑟 ∈ (0, 2𝜆) .

Proof. Let 𝑚𝑛 be the normalized Euclidean measure on an 𝑛-dimensional sphere
𝕊𝑛𝑡 := {𝜉 ∈ ℝ𝑛+1 : ∣𝜉∣ = 𝑡} , such that 𝑚𝑛(𝕊

𝑛
𝑡 ) = 1 . Consider the symmetric

probability measure 𝜇𝑟 on 𝕊𝑑−1𝜆 × 𝕊𝑑−1𝜆 defined by the equality∫
𝕊
𝑑−1
𝜆 ×𝕊

𝑑−1
𝜆

𝑓(𝜉, 𝜂) d𝜇𝑟(𝜉, 𝜂)

=
1

2

∫
𝕊
𝑑−1
𝜆

∫
𝜂∈𝕊

𝑑−1
𝜆 :∣𝜉−𝜂∣=𝑟

(𝑓(𝜉, 𝜂) + 𝑓(𝜂, 𝜉)) d𝑚𝑑−2(𝜂) d𝑚𝑑−1(𝜉) .

For all functions 𝑔 on 𝕊𝑑−1𝜆 , we obviously have∫
𝕊
𝑑−1
𝜆

∫
𝜂∈𝕊

𝑑−1
𝜆 :∣𝜉−𝜂∣=𝑟

𝑔(𝜉) d𝑚𝑑−2(𝜂) d𝑚𝑑−1(𝜉) =
∫
𝕊
𝑑−1
𝜆

𝑔(𝜉) d𝑚𝑑−1(𝜉) . (2.11)

On the other hand,∫
𝕊
𝑑−1
𝜆

∫
𝜂∈𝕊

𝑑−1
𝜆 :∣𝜉−𝜂∣⩽𝑟

𝑔(𝜂) d𝑚𝑑−1(𝜂) d𝑚𝑑−1(𝜉)

=

∫∫
𝕊
𝑑−1
𝜆 ×𝕊

𝑑−1
𝜆

𝜓𝑟(𝜉, 𝜂) 𝑔(𝜂) d𝑚𝑑−1(𝜂) d𝑚𝑑−1(𝜉)

= 𝐶𝜆(𝑟)

∫
𝕊
𝑑−1
𝜆

𝑔(𝜂) d𝑚𝑑−1(𝜂) ,

(2.12)

where 𝜓𝑟 is the characteristic function of the set

{(𝜉, 𝜂) ∈ 𝕊𝑑−1𝜆 × 𝕊𝑑−1𝜆 : ∣𝜉 − 𝜂∣ ⩽ 𝑟}
and 𝐶𝜆(𝑟) =

∫
𝜉∈𝕊

𝑑−1
𝜆 :∣𝜉−𝜂∣⩽𝑟 d𝑚𝑑−1(𝜉) . Since

d

d𝑟

(∫
𝜂∈𝕊

𝑑−1
𝜆 :∣𝜉−𝜂∣⩽𝑟

𝑔(𝜂) d𝑚𝑑−1(𝜂)

)
=

𝑐𝑑−2 𝑟𝑑−2

𝑐𝑑−1 𝜆𝑑−1

∫
𝜂∈𝕊

𝑑−1
𝜆 :∣𝜉−𝜂∣=𝑟

𝑔(𝜂) d𝑚𝑑−2(𝜂),

differentiating the right- and left-hand sides of the identity (2.12), we obtain∫
𝕊
𝑑−1
𝜆

∫
𝜂∈𝕊

𝑑−1
𝜆 :∣𝜉−𝜂∣=𝑟

𝑔(𝜂) d𝑚𝑑−2(𝜂) d𝑚𝑑−1(𝜉) =
∫
𝕊
𝑑−1
𝜆

𝑔(𝜂) d𝑚𝑑−1(𝜂) . (2.13)
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The equalities (2.11) and (2.13) imply that the marginal 𝜇′𝑟 of the measure 𝜇𝑟
coincides with 𝑚𝑑−1.

Using Remark 1.1, we obtain∫
𝕊
𝑑−1
𝜆 ×𝕊

𝑑−1
𝜆

(−ϰ(𝜉, 𝜂))+ d𝜇𝑟(𝜉, 𝜂)

=

∫
𝕊
𝑑−1
𝜆 ×𝕊

𝑑−1
𝜆

∣𝜉 − 𝜂∣2 ∣𝜒̂Ω(𝜉 − 𝜂)∣ d𝜇𝑟(𝜉, 𝜂)

= 𝑟2
∫
𝕊
𝑑−1
𝜆

∫
𝜂∈𝕊

𝑑−1
𝜆 :∣𝜉−𝜂∣=𝑟

∣𝜒̂Ω(𝜉 − 𝜂)∣ d𝑚𝑑−2(𝜂) d𝑚𝑑−1(𝜉)

⩾ 𝑟2 inf
∣𝜃∣=𝑟

∣𝜒̂Ω(𝜃)∣.

As was shown in [4],∫
𝕊
𝑑−1
𝜆

∫
𝕊
𝑑−1
𝜆

∣𝒦(𝜉, 𝜂)∣2 𝜇′𝑟(𝜉)𝜇
′
𝑟(𝜂)

=

∫
𝕊
𝑑−1
𝜆

∫
𝕊
𝑑−1
𝜆

∣𝜉 − 𝜂∣4 ∣𝜒̂Ω(𝜉 − 𝜂)∣2 d𝑚𝑑−1(𝜉) d𝑚𝑑−1(𝜂)

⩽ 18 𝑐−1𝑑−1 𝜆
4−𝑑 ∣Ω𝜆−1 ∣ .

Now the required estimate follows from Theorem 1.2. □

Corollary 2.4 and Lemma 2.8 imply that

𝑁N(𝜆) − 𝑁D(𝜆) ⩾ const𝜆𝑑−4 ∣Ω𝜆−1 ∣−1 (2.14)

for all sufficiently large 𝜆 . This estimate was obtained by a different method in
[4]. So far it is unknown whether one can get a better result in terms of growth as
𝜆 → ∞ for a general domain Ω .

For domains with smooth boundaries, the two-term Weyl asymptotic formula
(see, for instance, [7] or [10]) implies that 𝑁N(𝜆) − 𝑁D(𝜆) ⩾ 𝑂(𝜆𝑑−1) . There are
reasons to believe that the same is true for all domains but the standard techniques,
which work for domains with irregular boundaries, fail to produce such results. It
is possible that (2.14) can be improved by applying Theorem 1.2 with some other
measures 𝜈 and 𝜇 to the operator 𝐾𝜆,𝜈 or/and more careful analysis of the
asymptotic behaviour of the integrals in (1.4) as 𝜆 → ∞ .
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Abstract. We study the 𝐶∗-algebra generated by Toeplitz operators acting
on the Bergman or poly-Bergman space over the unit disk 𝔻 on the complex
plane, whose pseudodifferential defining symbols belong to the algebra ℛ =
ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻). The algebra ℛ is generated by the multiplication operators

𝑎𝐼 , where 𝑎 ∈ 𝐶(𝔻), and the following two operators

(𝑆𝔻𝜑)(𝑧) = − 1
𝜋

∫
𝔻

𝜑(𝜁)

(𝜁 − 𝑧)2
𝑑𝜈(𝜁) and (𝑆∗

𝔻𝜑)(𝑧) = − 1
𝜋

∫
𝔻

𝜑(𝜁)

(𝜁 − 𝑧)2
𝑑𝜈(𝜁).

In the Bergman space case, both algebras 𝒯 (𝐶(𝔻)), generated by Toeplitz
operators 𝑇𝑎 with defining symbols 𝑎 ∈ 𝐶(𝔻), and 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻)), gen-

erated by Toeplitz operators 𝑇𝐴 with defining symbols 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻),

consist of the same operators, and the Fredholm symbol algebra for both of
them is isomorphic and isometric to 𝐶(∂𝔻). At the same time, their generating
Toeplitz operators possess quite different properties.

Mathematics Subject Classification (2010). Primary 47B35; Secondary 47L80,
47G10.

Keywords. Toeplitz operator, poly-Bergman space, pseudodifferential opera-
tor.

1. Introduction

The idea of considering Toeplitz operators with pseudodifferential symbols is not
new, see for example [2, 8, 12, 15], where operators related to the Hardy spaces
were studied. While for the Bergman space case, this is probably a first attempt
to treat such a question. To be more precise we study the 𝐶∗-algebra generated
by Toeplitz operators acting on the Bergman or poly-Bergman space over the unit

The second named author has been partially supported by CONACYT Project 102800, México.
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disk 𝔻 on the complex plane, whose pseudodifferential defining symbols belong
to the algebra ℛ = ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
). The last algebra is generated by the multi-

plication operators 𝑎𝐼, where 𝑎 ∈ 𝐶(𝔻), and the following two singular integral
(pseudodifferential) operators

(𝑆𝔻𝜑)(𝑧) = − 1

𝜋

∫
𝔻

𝜑(𝜁)

(𝜁 − 𝑧)2
𝑑𝜈(𝜁) and (𝑆∗

𝔻𝜑)(𝑧) = − 1

𝜋

∫
𝔻

𝜑(𝜁)

(𝜁 − 𝑧)2
𝑑𝜈(𝜁),

(1.1)
where 𝑑𝜈 is the standard Lebesgue plane measure.

The choice of the algebra ℛ is not accidental, moreover it is quite natural
due to the deep internal connection between the action of the operators (1.1),
considered in the upper half-plane Π, and the decomposition of 𝐿2(Π) onto the
direct sum of poly-Bergman type spaces (see, for example, [17] and Section 3 of
this paper).

The main qualitative results of the paper are as follows. The algebra 𝐶(𝔻) is
obviously commutative, while the algebra ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) is even not essentially

commutative, its Fredholm symbol algebra has infinite-dimensional irreducible rep-
resentations. Nevertheless, for the Bergman space case, both algebras 𝒯 (𝐶(𝔻)),
which is generated by Toeplitz operators 𝑇𝑎 with defining symbols 𝑎 ∈ 𝐶(𝔻), and
𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
)), which is generated by Toeplitz operators 𝑇𝐴 with defining

symbols 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
), are, in fact, the same; and the Fredholm symbol

algebra for both of them is isomorphic and isometric to 𝐶(𝑆1), where 𝑆1 is the
boundary of the unit disk 𝔻.

At the same time, although both algebras 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)) and 𝒯 (𝐶(𝔻))

consist of the same operators, being thought as generated by Toeplitz operators
with defining symbols from ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) and 𝐶(𝔻) respectively, they possess

quite different properties.
Contrary to the case of 𝒯 (𝐶(𝔻)), the first algebra 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
)) does

not obey compact semi-commutator property; the Toeplitz operators 𝑇𝐴, with 𝐴 ∈
ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) can be zero for non zero𝐴; there are symbols𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
)

such that the Toeplitz operator 𝑇𝐴 has finite rank; etc.
At the same time, for the 𝑛-poly-Bergman space case, the corresponding alge-

bras 𝒯𝑛(𝐶(𝔻)), which is generated by Toeplitz operators 𝑇𝑎 with defining symbols
𝑎 ∈ 𝐶(𝔻), and 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
)), which is generated by Toeplitz operators

𝑇𝐴 with defining symbols 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
), are quite different. The first one

is essentially quite similar to 𝒯 (𝐶(𝔻)), while the second one is unitarily equiv-
alent to the matrix algebra 𝒯 (𝐶(𝔻)) ⊗ 𝑀𝑛×𝑛(ℂ). The Fredholm symbol algebra
of 𝒯𝑛(𝐶(𝔻)) is isomorphic and isometric to 𝐶(𝑆1), while the Fredholm symbol
algebra of 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
)) is isomorphic and isometric to the matrix algebra

𝑀𝑛×𝑛(𝐶(𝑆1)) = 𝐶(𝑆1)⊗ 𝑀𝑛×𝑛(ℂ).
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2. Algebra 퓡(𝑪(𝔻);𝑺𝔻, 𝑺
∗
𝔻
)

Let 𝔻 be the unit disk on the complex plane. We consider the Hilbert space 𝐿2(𝔻)
with the standard Lebesgue plane measure 𝑑𝜈(𝑧) = 𝑑𝑥𝑑𝑦, where 𝑧 = 𝑥 + 𝑖𝑦. The
following singular integral operators

(𝑆𝔻𝜑)(𝑧) = − 1

𝜋

∫
𝔻

𝜑(𝜁)

(𝜁 − 𝑧)2
𝑑𝜈(𝜁) and (𝑆∗

𝔻𝜑)(𝑧) = − 1

𝜋

∫
𝔻

𝜑(𝜁)

(𝜁 − 𝑧)2
𝑑𝜈(𝜁)

are known to be bounded on 𝐿2(𝔻) and mutually adjoint. It is known as well
that, for each 𝑎 ∈ 𝐶(𝔻), both commutators [𝑆𝔻, 𝑎𝐼] and [𝑆

∗
𝔻
, 𝑎𝐼] are compact, and

being considered in the whole complex plane, these operators obey the relation
𝑆∗
ℂ
= 𝑆−1

ℂ
.

We denote byℛ = ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
) the 𝐶∗-algebra generated by all operators

of the form 𝑎𝐼, where 𝑎 ∈ 𝐶(𝔻), 𝑆𝔻 and 𝑆∗
𝔻
. This algebra is irreducible and contains

the ideal 𝒦 of all operators compact on 𝐿2(𝔻). We will denote by 𝜋 the natural
projection

𝜋 : ℛ −→ ℛ̂ = ℛ/𝒦.

The structure of the Fredholm symbol (or Calkin) algebra Symℛ = ℛ̂ is known
for a long time and well understood. We give briefly its description based on the
simple functional model for the operators 𝑆Π and 𝑆∗

Π, considered in the upper half-
plane Π in ℂ. According to [17], both operators 𝑆Π and 𝑆∗

Π are unitarily equivalent
to the direct sum of two unilateral shifts, forward and backward, both taken with
the infinite multiplicity.

To describe the algebra ℛ̂ we will use the standard Douglas-Varela local prin-
ciple [7, 14, 18]. The algebra 𝜋(𝐶(𝔻)) ∼= 𝐶(𝔻) is obviously a central commutative

𝐶∗-subalgebra of the algebra ℛ̂, thus we will localize by the points 𝑧0 ∈ 𝔻. Denote
by 𝐽𝑧0 the maximal ideal of the algebra 𝜋(𝐶(𝔻)) which corresponds to the point

𝑧0 ∈ 𝔻, and by 𝐽(𝑧0) the closed two-sided ideal of the algebra ℛ̂ generated by 𝐽𝑧0 .

Then the local algebra ℛ̂(𝑧0) is defined as ℛ̂/𝐽(𝑧0), and let 𝜋(𝑧0) be the natural
straight-through projection

𝜋(𝑧0) : ℛ −→ ℛ̂ −→ ℛ̂(𝑧0).
For each 𝑧0 ∈ 𝔻, the local algebra ℛ̂(𝑧0) has quite a simple description. Indeed,
we have the following local equivalences: 𝜋(𝑧0)(𝑎𝐼)

𝑧0∼ 𝑎(𝑧0) ∈ ℂ and 𝜋(𝑧0)(𝑆
∗
𝔻
)
𝑧0∼

[𝜋(𝑧0)(𝑆𝔻)]
−1, moreover the spectrum of 𝜋(𝑧0)(𝑆𝔻) coincides with the unit circle:

spec𝜋(𝑧0)(𝑆𝔻) = 𝑆1 = ∂𝔻. Thus the algebra ℛ̂(𝑧0), being a 𝐶∗-algebra with
identity generated by a single normal element, is isomorphic and isometric to
𝐶(spec𝜋(𝑧0)(𝑆𝔻)) = 𝐶(𝑆1), and under their identification the homomorphism
𝜋(𝑧0) is defined on generators of the algebra ℛ = ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) as follows

𝜋(𝑧0) : 𝑎𝐼 �−→ 𝑎(𝑧0) ∈ ℂ,

𝜋(𝑧0) : 𝑆𝔻 �−→ 𝑡 ∈ 𝐶(𝑆1), (2.1)

𝜋(𝑧0) : 𝑆∗
𝔻 �−→ 𝑡 ∈ 𝐶(𝑆1),
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here 𝑡 and 𝑡 stand for the continuous functions defined on 𝑆1 by 𝑡 �→ 𝑡 and 𝑡 �→ 𝑡,
respectively.

The case 𝑧0 ∈ 𝑆1 = ∂𝔻 is more delicate. Given 𝑧0 ∈ 𝑆1, introduce the Möbius
transformation

𝑤 = 𝑖
𝑧0 − 𝑧

𝑧0 + 𝑧
,

which maps the unit disk 𝔻 onto the upper half-plane Π and sends the point
𝑧0 ∈ ∂𝔻 to 0 ∈ Π. The inverse mapping has obviously the form

𝑧 = 𝑧0
𝑖 − 𝑤

𝑖+ 𝑤
.

Further, the operator 𝑉𝑧0 : 𝐿2(Π) −→ 𝐿2(𝔻), which is given by

(𝑉𝑧0𝜑)(𝑧) =
2𝑖𝑧0

(𝑧0 + 𝑧)2
𝜑

(
𝑖
𝑧0 − 𝑧

𝑧0 + 𝑧

)
,

is unitary, and

(𝑉 −1
𝑧0 𝜑)(𝑤) = (𝑉 ∗

𝑧0𝜑)(𝑤) =
2𝑖𝑧0

(𝑖 + 𝑤)2
𝜑

(
𝑧0

𝑖 − 𝑤

𝑖+ 𝑤

)
.

It is straightforward to check that

𝑉 −1
𝑧0 𝑆𝔻𝑉𝑧0 = (𝑖𝑧0)

2𝑆Πℎ(𝑤)𝐼 and 𝑉 −1
𝑧0 𝑆∗

𝔻𝑉𝑧0 = (𝑖𝑧0)
2ℎ(𝑤)𝑆∗

Π,

where ℎ(𝑤) = (𝑖+ 𝑤)4/∣𝑖+ 𝑤∣4. We note that the function ℎ(𝑤) is continuous on

Π∪ ∂Π (except the point ∞), ℎ(0) = 1, and ℎ(𝑤) = 1/ℎ(𝑤). As ℎ(0) = 1 we have,
for each 𝑧0 ∈ 𝑆1, the following local equivalences at the point 0 ∈ Π:

𝑉 −1
𝑧0 𝑆𝔻𝑉𝑧0 = (𝑖𝑧0)

2𝑆Πℎ(𝑤)𝐼
0∼ (𝑖𝑧0)

2𝑆Π,

𝑉 −1
𝑧0 𝑆∗

𝔻𝑉𝑧0 = (𝑖𝑧0)
2ℎ(𝑤)𝑆∗

Π
0∼ (𝑖𝑧0)

2𝑆∗
Π,

which implies that the local algebra ℛ̂(𝑧0) is isomorphic and isometric to the 𝐶∗-
algebra with identity ℛ(ℂ;𝑆Π, 𝑆∗

Π), which is generated by the operators 𝑆Π and
𝑆∗
Π (or by (𝑖𝑧0)

2𝑆Π and (𝑖𝑧0)
2𝑆∗

Π), acting on 𝐿2(Π). Identifying the last algebras,
the homomorphism

𝜋(𝑧0) : ℛ −→ ℛ̂(𝑧0) = ℛ(ℂ;𝑆Π, 𝑆∗
Π)

is defined on generators of the algebra ℛ = ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
) as follows

𝜋(𝑧0) : 𝑎𝐼 �−→ 𝑎(𝑧0) ∈ ℂ,

𝜋(𝑧0) : 𝑆𝔻 �−→ (𝑖𝑧0)
2𝑆Π ∈ ℛ(ℂ;𝑆Π, 𝑆∗

Π),

𝜋(𝑧0) : 𝑆∗
𝔻 �−→ (𝑖𝑧0)

2𝑆∗
Π ∈ ℛ(ℂ;𝑆Π, 𝑆∗

Π).

Recall now necessary ingredients from [17]. We define the unitary operator

𝑈1 = 𝐹 ⊗ 𝐼 : 𝐿2(Π) = 𝐿2(ℝ)⊗ 𝐿2(ℝ+) −→ 𝐿2(ℝ)⊗ 𝐿2(ℝ+),

where the Fourier transform 𝐹 : 𝐿2(ℝ) → 𝐿2(ℝ) is given by

(𝐹𝑓)(𝑥) =
1√
2𝜋

∫
ℝ

𝑒−𝑖𝑥𝜉𝑓(𝜉) 𝑑𝜉.
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The next unitary operator

𝑈2 : 𝐿2(Π) = 𝐿2(ℝ)⊗ 𝐿2(ℝ+) −→ 𝐿2(ℝ)⊗ 𝐿2(ℝ+)

is given by

(𝑈2𝜑)(𝑥, 𝑦) =
1√
2∣𝑥∣ 𝜑(𝑥,

𝑦

2∣𝑥∣ ).

The inverse operator 𝑈−1
2 = 𝑈∗

2 : 𝐿2(ℝ) ⊗ 𝐿2(ℝ+) −→ 𝐿2(ℝ) ⊗ 𝐿2(ℝ+) acts as
follows,

(𝑈−1
2 𝜑)(𝑥, 𝑦) =

√
2∣𝑥∣𝜑(𝑥, 2∣𝑥∣ ⋅ 𝑦).

We introduce then the following integral operators

(𝑆+𝑓)(𝑦) = −𝑓(𝑦) + 𝑒−
𝑦
2

∫ 𝑦
0

𝑒
𝑡
2 𝑓(𝑡) 𝑑𝑡,

(𝑆−𝑓)(𝑦) = −𝑓(𝑦) + 𝑒
𝑦
2

∫ ∞

𝑦

𝑒−
𝑡
2 𝑓(𝑡) 𝑑𝑡,

which are bounded on 𝐿2(ℝ+) and are mutually adjoint.

Theorem 2.1 ([17]). The unitary operator 𝑈 = 𝑈2𝑈1 gives an isometric isomor-
phism of the space 𝐿2(Π) = [𝐿2(ℝ+)⊗ 𝐿2(ℝ+)]⊕ [𝐿2(ℝ−)⊗ 𝐿2(ℝ+)] under which
the two-dimensional singular integral operators 𝑆Π and 𝑆∗

Π are unitary equivalent
to the following operators

𝑈 𝑆Π 𝑈−1 = (𝐼 ⊗ 𝑆+)⊕ (𝐼 ⊗ 𝑆−),

𝑈 𝑆∗
Π 𝑈−1 = (𝐼 ⊗ 𝑆−)⊕ (𝐼 ⊗ 𝑆+).

Recall (see, for example, [1]), that the Laguerre polynomial 𝐿𝑛(𝑦) of degree
𝑛, 𝑛 = 0, 1, 2, . . . , and type 0 is defined by

𝐿𝑛(𝑦) = 𝐿0
𝑛(𝑦) =

𝑒𝑦

𝑛!

𝑑𝑛

𝑑𝑦𝑛
(𝑒−𝑦 𝑦𝑛)

=

𝑛∑
𝑘=0

𝑛!

𝑘!(𝑛 − 𝑘)!

(−𝑦)𝑘

𝑘!
, 𝑦 ∈ ℝ+,

and that the system of functions

ℓ𝑛(𝑦) = 𝑒−𝑦/2𝐿𝑛(𝑦), 𝑛 ∈ ℤ+ = ℕ ∪ {0},
forms an orthonormal basis in the space 𝐿2(ℝ+).

Theorem 2.2 ([17]). For each admissible 𝑛, the following equalities hold:

(𝑆+ℓ𝑛)(𝑦) = −ℓ𝑛+1(𝑦), (𝑆−ℓ𝑛)(𝑦) = −ℓ𝑛−1(𝑦), and (𝑆−ℓ0)(𝑦) = 0.

Corollary 2.3. The unitary operator 𝑈 = 𝑈2𝑈1 gives an isometric isomorphism of
the space 𝐿2(Π) = [𝐿2(ℝ+)⊗ 𝐿2(ℝ+)]⊕ [𝐿2(ℝ−)⊗ 𝐿2(ℝ+)] under which

𝑈 (𝑖𝑧0)
2𝑆Π 𝑈−1 = (𝐼 ⊗ (𝑖𝑧0)

2𝑆+)⊕ (𝐼 ⊗ (𝑖𝑧0)
2𝑆−),

𝑈 (𝑖𝑧0)
2𝑆∗

Π 𝑈−1 = (𝐼 ⊗ (𝑖𝑧0)
2𝑆−)⊕ (𝐼 ⊗ (𝑖𝑧0)

2𝑆+).



360 A. Sánchez-Nungaray and N. Vasilevski

The operators (𝑖𝑧0)
2𝑆+ and (𝑖𝑧0)

2𝑆− are the forward and backward unilateral shift
operators on 𝐿2(ℝ+) with respect to the orthonormal basis formed by the functions
ℓ′𝑛(𝑦) = (−1)𝑛(𝑖𝑧0)2𝑛ℓ𝑛(𝑦), 𝑛 = 0, 1, 2, . . . .

The operators (𝑖𝑧0)
2𝑆+ and (𝑖𝑧0)

2𝑆− are the forward and backward unilateral
shift operators on 𝐿2(ℝ+) with respect to the orthonormal basis formed by the
functions ℓ′′𝑛(𝑦) = (−1)𝑛(𝑖𝑧0)2𝑛ℓ𝑛(𝑦), 𝑛 = 0, 1, 2, . . . .

Finally we denote by 𝒯 (𝐶(𝑆1)) the 𝐶∗-algebra generated by all Toeplitz op-
erators 𝑇𝑎 with continuous defining symbols 𝑎(𝑡) ∈ 𝐶(𝑆1) and acting on the Hardy
space 𝐻2(𝑆1) over the unit circle 𝑆1. Note that we use the standard normalized
measure on 𝑆1 so that the system of functions {𝑡𝑘}𝑘∈ℤ+ forms an orthonormal
base in 𝐻2(𝑆1).

It is well known (see, for example, [6]) that the algebra 𝒯 (𝐶(𝑆1)) coincides
with the set of all operators of the form 𝑇𝑎 + 𝐾, where 𝑎(𝑡) ∈ 𝐶(𝑆1) and 𝐾
is a compact operator on 𝐻2(𝑆1). Then by the obtained description of the local

algebra ℛ̂(𝑧0) and by [4, 5] we have
Corollary 2.4. For any 𝑧0 ∈ 𝑆1, the local algebra ℛ̂(𝑧0) is isomorphic and isometric
to a subalgebra of the 𝐶∗-algebra 𝒯 (𝐶(𝑆1))⊕ 𝒯 (𝐶(𝑆1)). The homomorphism

𝜋(𝑧0) : ℛ −→ ℛ̂(𝑧0) ⊂ 𝒯 (𝐶(𝑆1))⊕ 𝒯 (𝐶(𝑆1))

is defined on generators of the algebra ℛ = ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
) as follows

𝜋(𝑧0) : 𝑎𝐼 �−→ 𝑎(𝑧0) ∈ ℂ,

𝜋(𝑧0) : 𝑆𝔻 �−→ (𝑇𝑡, 𝑇𝑡) ∈ 𝒯 (𝐶(𝑆1))⊕ 𝒯 (𝐶(𝑆1)),

𝜋(𝑧0) : 𝑆∗
𝔻 �−→ (𝑇𝑡, 𝑇𝑡) ∈ 𝒯 (𝐶(𝑆1))⊕ 𝒯 (𝐶(𝑆1)).

We note as well that the local algebra ℛ̂(𝑧0) possesses many one-dimensional
irreducible representations. In particular, for each 𝑡0 ∈ 𝑆1, we denote by 𝜄(𝑡0) :

ℛ̂(𝑧0) → ℂ the representation which is defined on the generators by

𝜄(𝑡0) : (𝑇𝑡, 𝑇𝑡) �−→ 𝑡0 and 𝜄(𝑡0) : (𝑇𝑡, 𝑇𝑡) �−→ 𝑡0.

Thus, for each (𝑧0, 𝑡0) ∈ ∂𝔻× 𝑆1, the homomorphism

𝜄(𝑡0) ∘ 𝜋(𝑧0) : ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻) −→ ℂ

is a one-dimensional representation of the algebraℛ which is defined on generators
of the algebra ℛ = ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) as follows

𝜄(𝑡0) ∘ 𝜋(𝑧0) : 𝑎𝐼 �−→ 𝑎(𝑧0),

𝜄(𝑡0) ∘ 𝜋(𝑧0) : 𝑆𝔻 �−→ 𝑡0,

𝜄(𝑡0) ∘ 𝜋(𝑧0) : 𝑆∗
𝔻 �−→ 𝑡0.

These representations define the homomorphism (2.1) for all boundary points 𝑧0 ∈
∂𝔻. Now, gluing together the obtained characterizations of the local algebras we

come to the following description of the Fredholm symbol algebra Symℛ = ℛ̂ of
the algebra ℛ = ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
).
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Let𝔐 = 𝔻×𝑆1⊔𝑆1×{0,∞}. We denote by 𝔖 the set of all vector-functions
𝜎, continuous on 𝔐 and having the form

𝜎 =

⎧⎨⎩
𝑐(𝑧, 𝑡) ∈ ℂ, (𝑧, 𝑡) ∈ 𝔻× 𝑆1

𝑇𝑐(𝑧,𝑡) +𝐾0(𝑧) ∈ 𝒯 (𝐶(𝑆1)), (𝑧, 0) ∈ 𝑆1 × {0,∞}
𝑇𝑐(𝑧,𝑡) +𝐾∞(𝑧) ∈ 𝒯 (𝐶(𝑆1)), (𝑧,∞) ∈ 𝑆1 × {0,∞}

.

The set 𝔖 is a 𝐶∗-algebra with respect to the component-wise operations and the
norm ∥𝜎∥ = sup𝔐 ∥𝜎(⋅, ⋅)∥.
Theorem 2.5. The Fredholm symbol algebra Symℛ = ℛ̂ of the algebra ℛ =
ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) is isomorphic and isometric to the algebra 𝔖. Under their iden-

tification, the symbol homomorphism

sym : ℛ −→ Symℛ = 𝔖

is generated by the following mapping: if 𝐴 = 𝑎1(𝑧)𝐼 + 𝑎2(𝑧)𝑆𝔻 + 𝑎3(𝑧)𝑆
∗
𝔻
and

𝑐(𝑧, 𝑡) = 𝑎1(𝑧) + 𝑎2(𝑧)𝑡+ 𝑎3(𝑧)𝑡, then

sym𝐴 =

⎧⎨⎩
𝑐(𝑧, 𝑡) ∈ ℂ, (𝑧, 𝑡) ∈ 𝔻× 𝑆1

𝑇𝑐(𝑧,𝑡) ∈ 𝒯 (𝐶(𝑆1)), (𝑧, 0) ∈ 𝑆1 × {0,∞}
𝑇𝑐(𝑧,𝑡) ∈ 𝒯 (𝐶(𝑆1)), (𝑧,∞) ∈ 𝑆1 × {0,∞} .

3. Poly-Bergman type spaces and action
of the operators 𝑺Π and 𝑺∗

Π

Recall that the space 𝒜2
𝑛(Π) of 𝑛-analytic functions as the subspace of 𝐿2(Π)

consisting of all functions 𝜑 = 𝜑(𝑧, 𝑧) = 𝜑(𝑥, 𝑦), which satisfy the equation(
∂

∂𝑧

)𝑛
𝜑 =

1

2𝑛

(
∂

∂𝑥
+ 𝑖

∂

∂𝑦

)𝑛
𝜑 = 0.

Similarly, the space 𝒜2
𝑛(Π) of 𝑛-anti-analytic functions as the subspace of 𝐿2(Π)

consisting of all functions 𝜑 = 𝜑(𝑧, 𝑧) = 𝜑(𝑥, 𝑦), which satisfy the equation(
∂

∂𝑧

)𝑛
𝜑 =

1

2𝑛

(
∂

∂𝑥
− 𝑖

∂

∂𝑦

)𝑛
𝜑 = 0.

Of course, we have 𝒜2
1(Π) = 𝒜2(Π) and 𝒜2

1(Π) = 𝒜2(Π), for 𝑛 = 1, as well as

𝒜2
𝑛(Π) ⊂ 𝒜2

𝑛+1(Π) and 𝒜2
𝑛(Π) ⊂ 𝒜2

𝑛+1(Π), for each 𝑛 ∈ ℕ.

We introduce as well the space 𝒜2
(𝑛)(Π) of true-𝑛-analytic functions by

𝒜2
(𝑛)(Π) = 𝒜2

𝑛(Π) ⊖ 𝒜2
𝑛−1(Π),

for 𝑛 > 1, and by 𝒜2
(1)(Π) = 𝒜2

1(Π); and, symmetrically, introduce the space

𝒜2
(𝑛)(Π) of true-𝑛-anti-analytic functions by

𝒜2
(𝑛)(Π) = 𝒜2

𝑛(Π) ⊖ 𝒜2
𝑛−1(Π),

for 𝑛 > 1, and by 𝒜2
(1)(Π) = 𝒜2

1(Π), for 𝑛 = 1.
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We have obviously

𝒜2
𝑛(Π) =

𝑛⊕
𝑘=1

𝒜2
(𝑘)(Π) and 𝒜2

𝑛(Π) =

𝑛⊕
𝑘=1

𝒜2
(𝑘)(Π).

It is known as well (see, for example [16]) that

𝐿2(Π) =

∞⊕
𝑘=1

𝒜2
(𝑘)(Π)⊕

∞⊕
𝑘=1

𝒜2
(𝑘)(Π).

Theorem 3.1 ([9, 17]). For all admissible indices, we have

(𝑆Π)
𝑘∣𝒜2

(𝑛)
(Π) : 𝒜2

(𝑛)(Π) → 𝒜2
(𝑛+𝑘)(Π),

(𝑆∗
Π)
𝑘∣𝒜2

(𝑛)
(Π) : 𝒜2

(𝑛)(Π) → 𝒜2
(𝑛−𝑘)(Π),

(𝑆Π)
𝑘∣𝒜2

(𝑛)
(Π) : 𝒜2

(𝑛)(Π) → 𝒜2
(𝑛−𝑘)(Π),

(𝑆∗
Π)
𝑘∣𝒜2

(𝑛)
(Π) : 𝒜2

(𝑛)(Π) → 𝒜2
(𝑛+𝑘)(Π).

Corollary 3.2 ([17]). For all 𝑛 ∈ ℕ we have

(𝑆Π)
𝑛(𝑆∗

Π)
𝑛(𝑆Π)

𝑛 = (𝑆Π)
𝑛 and (𝑆∗

Π)
𝑛(𝑆Π)

𝑛(𝑆∗
Π)
𝑛 = (𝑆∗

Π)
𝑛.

Corollary 3.3. For 𝑛,𝑚 ∈ ℤ+

𝐵Π(𝑆
∗
Π)
𝑚(𝑆Π)

𝑛𝐵Π =

{
𝐵Π, 𝑚 = 𝑛
0, 𝑚 ∕= 𝑛

,

while for 𝑛,𝑚 ∈ ℕ

𝐵Π(𝑆Π)
𝑛(𝑆∗

Π)
𝑚𝐵Π = 0,

where 𝐵Π is the Bergman projection of 𝐿2(Π) onto the Bergman space 𝒜2(Π).

4. Toeplitz operators on the Bergman space
with defining symbol in 퓡(ℂ;𝑺Π, 𝑺

∗
Π)

We describe here the algebra 𝒯0 = 𝒯0(ℛ(ℂ;𝑆Π, 𝑆∗
Π)) = 𝐵Πℛ(ℂ;𝑆Π, 𝑆∗

Π)𝐵Π, which
is generated by all Toeplitz operators 𝑇𝐴 = 𝐵Π𝐴𝐵Π acting on the Bergman space
𝒜2(Π) and with 𝐴 ∈ ℛ(ℂ;𝑆Π, 𝑆∗

Π).

Lemma 4.1. Given 𝑘1, . . . , 𝑘𝑁 , 𝑛1, . . . , 𝑛𝑁 ∈ ℤ+ such that
𝑚∑
𝑖=1

𝑛𝑖 ≤
𝑚∑
𝑖=1

𝑘𝑖 for 𝑚 = 1, . . . , 𝑁 − 1 (4.1)

and
𝑁∑
𝑖=1

𝑛𝑖 =

𝑁∑
𝑖=1

𝑘𝑖, (4.2)

there exists 𝑠 ∈ ℤ+ such that

(𝑆∗
Π)
𝑛𝑁 (𝑆Π)

𝑘𝑁 ⋅ ⋅ ⋅ (𝑆∗
Π)
𝑛1(𝑆Π)

𝑘1 = (𝑆∗
Π)
𝑠(𝑆Π)

𝑠.
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Proof. Given 𝑘1, . . . , 𝑘𝑁 , 𝑛1, . . . , 𝑛𝑁 ∈ ℤ+, which satisfy (4.1) and (4.2), it is easy
to see that there is 𝑗 ∈ {1, . . . , 𝑁 − 1} such that

(𝑘𝑗 ≥ 𝑛𝑗 and 𝑘𝑗+1 ≥ 𝑛𝑗) or (𝑛𝑗 ≥ 𝑘𝑗+1 and 𝑛𝑗+1 ≥ 𝑘𝑗+1). (4.3)

If 𝑘𝑗 ≥ 𝑛𝑗 and 𝑘𝑗+1 ≥ 𝑛𝑗 , then by Corollary 3.2 we have that

(𝑆∗
Π)
𝑛𝑁 (𝑆Π)

𝑘𝑁 . . . (𝑆∗
Π)
𝑛𝑗+1 (𝑆Π)

𝑘𝑗+1 (𝑆∗
Π)
𝑛𝑗 (𝑆Π)

𝑘𝑗 . . . (𝑆∗
Π)
𝑛1(𝑆Π)

𝑘1

= (𝑆∗
Π)
𝑛𝑁 (𝑆Π)

𝑘𝑁 . . . (𝑆∗
Π)
𝑛𝑗+1 (𝑆Π)

𝑘𝑗+1−𝑛𝑗 (𝑆Π)𝑛𝑗 (𝑆∗
Π)
𝑛𝑗 (𝑆Π)

𝑛𝑗 (𝑆Π)
𝑘𝑗−𝑛𝑗

× ⋅ ⋅ ⋅ × (𝑆∗
Π)
𝑛1(𝑆Π)

𝑘1

= (𝑆∗
Π)
𝑛𝑁 (𝑆Π)

𝑘𝑁 . . . (𝑆∗
Π)
𝑛𝑗+1 (𝑆Π)

𝑘𝑗+1+𝑘𝑗−𝑛𝑗 (𝑆∗
Π)
𝑛𝑗−1 (𝑆Π)

𝑘𝑗−1 . . . (𝑆∗
Π)
𝑛1(𝑆Π)

𝑘1 .

If 𝑛𝑗 ≥ 𝑘𝑗+1 and 𝑛𝑗+1 ≥ 𝑘𝑗+1, then similarly by Corollary 3.2, we have that

(𝑆∗
Π)
𝑛𝑁 (𝑆Π)

𝑘𝑁 . . . (𝑆∗
Π)
𝑛𝑗+1 (𝑆Π)

𝑘𝑗+1 (𝑆∗
Π)
𝑛𝑗 (𝑆Π)

𝑘𝑗 . . . (𝑆∗
Π)
𝑛1(𝑆Π)

𝑘1

= (𝑆∗
Π)
𝑛𝑁 (𝑆Π)

𝑘𝑁 . . . (𝑆∗
Π)
𝑛𝑗+1−𝑘𝑗+1 (𝑆∗

Π)
𝑘𝑗+1 (𝑆Π)

𝑘𝑗+1 (𝑆∗
Π)
𝑘𝑗+1 (𝑆∗

Π)
𝑛𝑗−𝑘𝑗+1 (𝑆Π)

𝑘𝑗

× ⋅ ⋅ ⋅ × (𝑆∗
Π)
𝑛1(𝑆Π)

𝑘1

= (𝑆∗
Π)
𝑛𝑁 (𝑆Π)

𝑘𝑁 . . . (𝑆∗
Π)
𝑛𝑗+1+𝑛𝑗−𝑘𝑗+1(𝑆Π)

𝑘𝑗 (𝑆∗
Π)
𝑛𝑗−1 (𝑆Π)

𝑘𝑗−1 . . . (𝑆∗
Π)
𝑛1(𝑆Π)

𝑘1 .

Applying the above arguments inductively (𝑁−1)-times we obtain the result. □

Given a multi-index 𝐽 = (𝑛1, 𝑘1, . . . , 𝑛𝑁 , 𝑘𝑁 ), where 𝑛𝑖, 𝑘𝑖 ∈ ℤ+, we define
the non-commutative monomial 𝑚𝐽(𝑥, 𝑦) by

𝑚𝐽 (𝑥, 𝑦) = 𝑦𝑛𝑁𝑥𝑘𝑁 ⋅ ⋅ ⋅ 𝑦𝑛1𝑥𝑘1

and set its degree by

deg𝑚𝐽 = ∣𝐽 ∣ = 𝑛𝑁 + 𝑘𝑁 + ⋅ ⋅ ⋅+ 𝑛1 + 𝑘1.

The following corollary is a consequence of the above lemma and Corol-
lary 3.3.

Corollary 4.2. Let 𝑚𝐽(𝑥, 𝑦) be a non-commutative monomial, then

𝐵Π𝑚𝐽 (𝑆Π, 𝑆∗
Π)𝐵Π =

{
𝐵Π, if 𝐽 satisfies to (4.1) and (4.2)
0, otherwise

.

Lemma 4.3. Let 𝑃 (𝑥, 𝑦) be a non-commutative polynomial of degree 𝑘

𝑃 (𝑥, 𝑦) =
∑
∣𝐽∣≤𝑘

𝑎𝐽𝑚𝐽(𝑥, 𝑦),

where 𝑎𝐽 ∈ ℂ. Then

𝐵Π𝑃 (𝑆Π, 𝑆∗
Π)𝐵Π = 𝑏𝑃𝐵Π,

where

𝑏𝑃 =
∑

∣𝐽∣≤𝑘, 𝐽∈𝐼0,0
𝑎𝐽

and 𝐼0,0 is the set of multi-indexes that satisfy (4.1) and (4.2).
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Proof. We split the polynomial 𝑃 as follows

𝑃 (𝑥, 𝑦) =
∑

∣𝐽∣≤𝑘, 𝐽∈𝐼0,0
𝑎𝐽𝑚𝐽(𝑥, 𝑦) +

∑
∣𝐽∣≤𝑘, 𝐽 /∈𝐼0,0

𝑎𝐽𝑚𝐽(𝑥, 𝑦)

and evaluate it on 𝑆Π and 𝑆∗
Π

𝑃 (𝑆Π, 𝑆∗
Π) =

∑
∣𝐽∣≤𝑘,𝐽∈𝐼0,0

𝑎𝐽𝑚𝐽 (𝑆Π, 𝑆∗
Π) +

∑
∣𝐽∣≤𝑘,𝐽 /∈𝐼0,0

𝑎𝐽𝑚𝐽(𝑆Π, 𝑆∗
Π). (4.4)

Then by Corollary 3.2 we have

𝐵Π𝑃 (𝑆Π, 𝑆∗
Π)𝐵Π =

∑
∣𝐽∣≤𝑘,
𝐽∈𝐼0,0

𝑎𝐽𝐵Π𝑚𝐽 (𝑆Π, 𝑆∗
Π)𝐵Π +

∑
∣𝐽∣≤𝑘,
𝐽 /∈𝐼0,0

𝑎𝐽𝐵Π𝑚𝐽(𝑆Π, 𝑆∗
Π)𝐵Π

= 𝑏𝑃𝐵Π + 0 = 𝑏𝑃𝐵Π. □

Theorem 4.4. Let 𝐴 be an element of ℛ(ℂ;𝑆Π, 𝑆∗
Π). Then the Toeplitz operator

𝑇𝐴 acting on 𝒜2(Π) is equal to 𝑏𝐴𝐵Π, where 𝑏𝐴 is given by

𝑏𝐴 = ⟨𝐴𝑓0, 𝑓0⟩,
where 𝑓0 is any function from 𝒜2(Π) having norm 1.

Proof. The set of non-commutative polynomials 𝑃 (𝑆Π, 𝑆∗
Π) is dense in the algebra

ℛ(ℂ;𝑆Π, 𝑆∗
Π). By Lemma 4.3 we have

𝑇𝑃 (𝑆𝔻,𝑆∗
𝔻
) = 𝐵Π𝑃 (𝑆𝔻, 𝑆

∗
𝔻)𝐵Π = 𝑏𝑃𝐵Π

with 𝑏𝑃 ∈ ℂ. On the other hand,

𝑏𝑃 = ⟨𝑏𝑃𝐵Π𝑓0, 𝑓0⟩ = ⟨𝑇𝑃 (𝑆𝔻,𝑆∗
𝔻
)𝑓0, 𝑓0⟩ = ⟨𝐵Π𝑃 (𝑆𝔻, 𝑆

∗
𝔻)𝐵Π𝑓0, 𝑓0⟩

= ⟨𝑃 (𝑆𝔻, 𝑆
∗
𝔻)𝑓0, 𝑓0⟩.

The functional 𝐴 �−→ ⟨𝐴𝑓0, 𝑓0⟩ is continuous on ℛ(ℂ;𝑆Π, 𝑆∗
Π), thus the result

follows. □

To get an alternative formula for 𝑏𝐴 we proceed as follows. Analogously to
Corollary 3.3 we have

Lemma 4.5. For Toeplitz operators 𝑇𝑡 and 𝑇𝑡 from the algebra 𝒯 (𝐶(𝑆1)) and for
𝑛,𝑚 ∈ ℤ+, we have

(𝐼 − 𝑇𝑡𝑇𝑡)𝑇
𝑚
𝑡 𝑇 𝑛𝑡 (𝐼 − 𝑇𝑡𝑇𝑡) =

{
𝐼 − 𝑇𝑡𝑇𝑡, 𝑚 = 𝑛
0, 𝑚 ∕= 𝑛

,

while for 𝑛,𝑚 ∈ ℕ

(𝐼 − 𝑇𝑡𝑇𝑡)𝑇
𝑚
𝑡 𝑇 𝑛𝑡 (𝐼 − 𝑇𝑡𝑇𝑡) = 0.

We note that the operator 𝐾0 = 𝐼 − 𝑇𝑡𝑇𝑡 is the one-dimensional projection
onto the subspace of 𝐻2(𝑆1) generated by 1, and that 𝐼 −𝑇𝑡𝑇𝑡 = 0, which implies
(𝐼 − 𝑇𝑡𝑇𝑡)𝑇 (𝐼 − 𝑇𝑡𝑇𝑡) = 0, for all 𝑇 ∈ 𝒯 (𝐶(𝑆1)).
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The Bergman projection 𝐵Π = 𝐼 − 𝑆Π𝑆∗
Π obviously belongs to the algebra

ℛ(ℂ;𝑆Π, 𝑆∗
Π), and by Corollary 2.4, under the isomorphic inclusion

𝜎 : ℛ(ℂ;𝑆Π, 𝑆∗
Π) −→ 𝒯 (𝐶(𝑆1))⊕ 𝒯 (𝐶(𝑆1)),

the image of the Bergman projection 𝐵Π has the form (𝐾0, 0).
Now, given 𝐴 ∈ ℛ(ℂ;𝑆Π, 𝑆∗

Π), consider the Toeplitz operator

𝑇𝐴 = (𝐼 − 𝑆Π𝑆∗
Π)𝐴(𝐼 − 𝑆Π𝑆∗

Π) ∈ ℛ(ℂ;𝑆Π, 𝑆∗
Π).

Let 𝜎(𝐴) = (𝜎0(𝐴), 𝜎∞(𝐴)) ∈ 𝒯 (𝐶(𝑆1))⊕ 𝒯 (𝐶(𝑆1)), then we have that 𝜎(𝑇𝐴) =
(𝐾0 𝜎0(𝐴)𝐾0, 0), and thus, being considered as acting on the Bergman space
𝒜2(Π), the Toeplitz operator 𝑇𝐴 is scalar, 𝑇𝐴 = 𝑏𝐴𝐼, with the following alter-
native formula for 𝑏𝐴:

𝑏𝐴 = ⟨𝐾0 𝜎0(𝐴)𝐾01, 1⟩𝐻2(𝑆1) = ⟨𝜎0(𝐴)𝐾01,𝐾0 1⟩𝐻2(𝑆1)

= ⟨𝜎0(𝐴)1, 1⟩𝐻2(𝑆1).
(4.5)

5. Toeplitz operators on the Bergman space
with defining symbol in 퓡(𝑪(𝔻);𝑺𝔻, 𝑺

∗
𝔻
)

We consider here the 𝐶∗-algebra 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)) which is generated by all

Toeplitz operators of the form 𝑇𝐴 with symbols 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
) and acting

on the Bergman space 𝒜2(𝔻) over the unit disk 𝔻.

Given 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
), consider its Fredholm symbol (see Theorem 2.5)

sym𝐴 =

⎧⎨⎩
𝑐(𝑧, 𝑡) ∈ ℂ, (𝑧, 𝑡) ∈ 𝔻× 𝑆1

𝜎0(𝐴, 𝑧) = 𝑇𝑐(𝑧,𝑡) +𝐾0(𝑧) ∈ 𝒯 (𝐶(𝑆1)), (𝑧, 0) ∈ 𝑆1 × {0,∞}
𝜎∞(𝐴, 𝑧) = 𝑇𝑐(𝑧,𝑡) +𝐾∞(𝑧) ∈ 𝒯 (𝐶(𝑆1)), (𝑧,∞) ∈ 𝑆1 × {0,∞}

.

Combining the local description of Corollary 2.4 with formula (4.5) and the global
description provided by Theorem 2.5, we arrive to the following result.

Theorem 5.1. The Fredholm symbols algebra

Sym 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻)) = 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻))/𝒦

of the algebra 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)) is isomorphic and isometric to 𝐶(𝑆1). Under

their identification the symbol homomorphism

sym : 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻)) −→ 𝐶(𝑆1)

is generated by the following mapping of generators of 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)): for

any 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
),

sym𝑇𝐴 = 𝑏𝐴(𝑧) = ⟨𝜎0(𝐴, 𝑧)1, 1⟩𝐻2(𝑆1) ∈ 𝐶(𝑆1).

Remark 5.2. Given 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
), denote by 𝑏̃𝐴(𝑧) an extension of the func-

tion 𝑏𝐴(𝑧) continuous on 𝑆1 to a function continuous on the closed unit disk 𝔻.
Then the Toeplitz operator 𝑇𝐴 with pseudodifferential symbol 𝐴∈ℛ(𝐶(𝔻);𝑆𝔻,𝑆

∗
𝔻
)
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is nothing but a compact perturbation of the Toeplitz operator 𝑇𝑏̃𝐴(𝑧) whose sym-

bol is a function continuous on 𝔻:

𝑇𝐴 = 𝑇𝑏̃𝐴(𝑧) +𝐾,

where 𝐾 is a compact operator.
That is, if fact, both classes of symbols ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) and 𝐶(𝔻) generate

the same Toeplitz operator algebra:

𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻)) = 𝒯 (𝐶(𝔻)).

Example. Consider the operator

𝐴 =

𝑛∑
𝑖,𝑗=0

𝑎𝑖𝑗(𝑧)(𝑆
∗
𝔻)
𝑖(𝑆𝔻)

𝑗 +

𝑛∑
𝑖,𝑗=1

𝑏𝑖𝑗(𝑧)(𝑆𝔻)
𝑖(𝑆∗

𝔻)
𝑗 ,

where 𝑎𝑖𝑗 , 𝑏𝑖𝑗 ∈ 𝐶(𝔻). Its Fredholm symbol is given by sym𝑇𝐴= 𝑎̃(𝑧)=
∑𝑛
𝑖=0𝑎𝑖𝑖(𝑧).

Thus we have
𝑇𝐴 = 𝑇𝑎̃ +𝐾

where 𝐾 is a compact operator.

Example. Consider now

𝐴 =
𝑛∑

𝑖,𝑗,𝑚,𝑘=0

𝑎𝑖,𝑗,𝑚,𝑘(𝑧)(𝑆
∗
𝔻)
𝑖(𝑆𝔻)

𝑗(𝑆∗
𝔻)
𝑚(𝑆𝔻)

𝑘,

where 𝑎𝑖,𝑗,𝑚,𝑘 ∈ 𝐶(𝔻). The Fredholm symbol of 𝑇𝐴 is given by

sym𝑇𝐴 = 𝑎̃(𝑧) =

𝑛∑
𝑗,𝑘=0

(
𝑘∑
𝑚=0

𝑎𝑗+𝑘−𝑚,𝑗,𝑚,𝑘(𝑧)

)
.

Thus we have
𝑇𝐴 = 𝑇𝑎̃ +𝐾,

where 𝐾 is a compact operator.

We mention that both algebras 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)) and 𝒯 (𝐶(𝔻)) consist of

the same operators, although their generators are different, being the Toeplitz ope-
rators with defining symbols from ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) and from 𝐶(𝔻), respectively.

Moreover these generating Toeplitz operators possess quite different properties.
For example, the last algebra 𝒯 (𝐶(𝔻)) possesses the compact semi-commu-

tator property:

[𝑇𝑎, 𝑇𝑏) = 𝑇𝑎𝑇𝑏 − 𝑇𝑎𝑏 ∈ 𝒦, for all 𝑎, 𝑏 ∈ 𝐶(𝔻),

while the first algebra 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)) does not, i.e., the semi-commutator

[𝑇𝐴, 𝑇𝐵) = 𝑇𝐴𝑇𝐵 − 𝑇𝐴𝐵 is not necessarily compact for each 𝐴 and 𝐵 from
ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
).

Indeed, consider the semi-commutator [𝑇𝑆∗
𝔻
, 𝑇𝑆𝔻

) = 𝑇𝑆∗
𝔻
𝑇𝑆𝔻

−𝑇𝑆∗
𝔻
𝑆𝔻
. Its com-

pactness is equivalent to sym [𝑇𝑆∗
𝔻
, 𝑇𝑆𝔻

) = 0. At the same time, we have

𝜎0(𝑆
∗
𝔻, 𝑧) = 𝑇𝑡, 𝜎0(𝑆𝔻, 𝑧) = 𝑇𝑡, 𝜎0(𝑆

∗
𝔻𝑆𝔻, 𝑧) = 𝑇𝑡𝑇𝑡 = 𝐼,
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and thus

sym [𝑇𝑆∗
𝔻
, 𝑇𝑆𝔻

) = ⟨𝑇𝑡1, 1⟩𝐻2(𝑆1) ⋅ ⟨𝑇𝑡1, 1⟩𝐻2(𝑆1) − ⟨1, 1⟩𝐻2(𝑆1) = 0 ⋅ 0− 1 = −1.
That is, [𝑇𝑆∗

𝔻
, 𝑇𝑆𝔻

) = −𝐼 +𝐾, for some compact operator 𝐾.
The exact form of 𝐾 can be easily figured out. By [11, Lemma 2] we have

that 𝑇𝑆∗
𝔻
= 0 and 𝑇𝑆𝔻

= 0. It is well known (see, for example, [11, Lemma 1])

that the orthogonal projection 𝐵𝔻 of 𝐿2(𝔻) onto the anti-analytic Bergman space

𝒜2(𝔻) has the form 𝐵𝔻 = 𝐼 − 𝑆∗
𝔻
𝑆𝔻. Then by [3], we have

𝐵𝔻𝐵𝔻∣𝒜2(𝔻) = 𝑇𝐼−𝑆∗
𝔻
𝑆𝔻
= 𝐼 − 𝑇𝑆∗

𝔻
𝑆𝔻
= 𝐾ℓ1 ,

where

(𝐾ℓ1𝜑)(𝑧) =
1

𝜋

∫
𝔻

𝜑(𝜁)𝑑𝑣(𝜁) = ⟨𝜑, ℓ1⟩ℓ1
is the one-dimensional projection of 𝒜2(𝔻) onto the one-dimensional space 𝐿1

generated by the first element of the standard orthonormal monomial basis ℓ𝑘(𝑧) =√
𝑘
𝜋 𝑧
𝑘−1, 𝑘 ∈ ℕ, of 𝒜2(𝔻). Thus finally,

[𝑇𝑆∗
𝔻
, 𝑇𝑆𝔻

) = 𝑇𝑆∗
𝔻
𝑇𝑆𝔻

− 𝑇𝑆∗
𝔻
𝑆𝔻
= −𝐼 +𝐾ℓ1 .

The above suggests two observations. First, contrary to the case of Toeplitz
operators with defining symbols from 𝐶(𝔻), the Toeplitz operator 𝑇𝐴, with 𝐴 ∈
ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) can be the zero-operator for non zero 𝐴. Two examples, 𝑇𝑆∗

𝔻
= 0

and 𝑇𝑆𝔻
= 0, have been just considered. We note that, in particular, such symbols

𝐴 are those whose kernel contains 𝒜2(𝔻) or those for which the image of their
restriction on 𝒜2(𝔻) is orthogonal to 𝒜2(𝔻).

The second observation is as follows. By a result of D. Luecking [13], there
are no symbols 𝑎 ∈ 𝐶(𝔻) such that the Toeplitz operator 𝑇𝑎 has a finite rank.
At the same time, such symbols 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) do exist. As we have just

shown,
𝑇𝐼−𝑆∗

𝔻
𝑆𝔻
= 𝐾ℓ1 ∈ 𝒯 (𝐶(𝔻)) = 𝒯 (ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻))

is a rank one operator. Similarly, by [10, Theorem 2.3, Lemma 3.3], we have

𝑇(𝑆∗
𝔻
)𝑘−1(𝑆𝔻)𝑘−1−(𝑆∗

𝔻
)𝑘(𝑆𝔻)𝑘 = 𝐾ℓ𝑘 , for all 𝑘 ∈ ℕ,

where𝐾ℓ𝑘𝜑 = ⟨𝜑, ℓ𝑘⟩ℓ𝑘 is the one-dimensional projection onto the one-dimensional
subspace generated by ℓ𝑘(𝑧) =

√
𝑘
𝜋𝑧
𝑘−1.

Further, to cover a set of finite rank operators, which is dense in the set 𝒦
of all compact operators in 𝒜2(𝔻), it is sufficient to add the rank one operators
of the form 𝐾ℓ𝑘,ℓ𝑙𝜑 = ⟨𝜑, ℓ𝑘⟩ℓ𝑙, where 𝑘, 𝑙 ∈ ℕ, and then consider all their linear
combinations. These last operators (for 𝑘 ∕= 𝑙) are just the products of two Toeplitz
operators:

𝐾ℓ𝑘,ℓ𝑙 =

⎧⎨⎩
𝐾ℓ𝑙𝑇

√
𝑘
𝑙 𝑧

𝑘−𝑙 = 𝑇(𝑆∗
𝔻
)𝑙−1(𝑆𝔻)𝑙−1−(𝑆∗

𝔻
)𝑙(𝑆𝔻)𝑙𝑇

√
𝑘
𝑙 𝑧

𝑘−𝑙 , 𝑘 > 𝑙,

𝐾ℓ𝑘 = 𝑇(𝑆∗
𝔻
)𝑘−1(𝑆𝔻)𝑘−1−(𝑆∗

𝔻
)𝑘(𝑆𝔻)𝑘 , 𝑘 = 𝑙,

𝑇√
𝑙
𝑘 𝑧

𝑙−1𝐾ℓ𝑘 = 𝑇√
𝑙
𝑘 𝑧

𝑙−1𝑇(𝑆∗
𝔻
)𝑘−1(𝑆𝔻)𝑘−1−(𝑆∗

𝔻
)𝑘(𝑆𝔻)𝑘 , 𝑘 < 𝑙.
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6. Toeplitz operators on the poly-Bergman space
with defining symbol in 퓡(ℂ;𝑺Π, 𝑺

∗
Π)

Now we describe the algebra 𝐵Π,𝑛ℛ(ℂ;𝑆Π, 𝑆∗
Π)𝐵Π,𝑛. This algebra is generated by

Toeplitz operators acting on the poly-Bergman space over Π and with defining
symbols from ℛ(ℂ;𝑆Π, 𝑆∗

Π).

Recall that the poly-Bergman space admits the representation

𝒜2
𝑛(Π) =

𝑛⊕
𝑚=1

𝒜2
(𝑚)(Π),

where 𝒜2
(𝑚)(Π) is the subspace of the true-𝑚-analytic functions.

By Theorem 3.1, the operator (𝑆Π)
𝑘 : 𝒜2

(𝑛)(Π) → 𝒜2
(𝑛+𝑘)(Π) is unitary, thus

we define

𝑈 :

𝑛⊕
𝑚=1

𝒜2(Π) −→ 𝒜2
𝑛(Π) (6.1)

as follows

𝑈(𝜙1, ⋅ ⋅ ⋅ , 𝜙𝑛) = 𝜙1 + (𝑆Π)(𝜙2) + . . .+ (𝑆Π)
𝑛−1(𝜙𝑛),

the adjoint operator

𝑈∗ : 𝒜2
𝑛(Π) −→

𝑛⊕
𝑚=1

𝒜2(Π) (6.2)

is given by

𝑈∗𝜓 = (𝐵Π𝜓, . . . , 𝐵Π(𝑆
∗
Π)
𝑛−1𝜓).

Theorem 6.1. Let 𝐴 be an element of ℛ(ℂ;𝑆Π, 𝑆∗
Π). Then the Toeplitz operator

𝑇𝐴,𝑛 = 𝐵Π,𝑛𝐴𝐵Π,𝑛 acting on 𝒜2
𝑛(Π) is unitarily equivalent to the matrix operator

𝑀𝐴,𝑛 = 𝑈∗𝑇𝐴,𝑛𝑈 acting on
⊕𝑛
𝑚=1 𝒜2(Π), where 𝑈 and 𝑈∗ are given by (6.1) and

(6.2) respectively. The entries of the matrix-operator 𝑀𝐴,𝑛 are given by

𝑀𝐴,𝑛(𝑖, 𝑗) = 𝑇(𝑆∗
Π)

𝑖−1𝐴(𝑆Π)𝑗−1 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

where 𝑇(𝑆∗
Π)

𝑖−1𝐴(𝑆Π)𝑗−1 is a Toeplitz operator acting on 𝒜2(Π) and with defining

symbol (𝑆∗
Π)
𝑖−1𝐴(𝑆Π)𝑗−1.

Proof. We start with (see, for example, [17])

𝐵Π,𝑛 =

𝑛∑
𝑚=1

𝐵Π,(𝑚) and 𝐵Π,(𝑚) = (𝑆Π)
𝑚−1𝐵Π(𝑆

∗
Π)
𝑚−1,

where 𝐵Π,(𝑚) is the orthogonal projection onto the space 𝒜2
(𝑚)(Π) of true-𝑚-

analytic functions.
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Let us calculate 𝑈∗𝑇𝐴,𝑛𝑈 . For 𝜙 = (𝜙1, . . . , 𝜙𝑛), we have

𝑀𝐴,𝑛𝜙 = 𝑈∗𝑇𝐴,𝑛𝑈(𝜙1, . . . , 𝜙𝑛)

= 𝑈∗𝐵Π,𝑛(𝐴(𝜙1) +𝐴((𝑆Π)(𝜙2)) + ⋅ ⋅ ⋅+𝐴((𝑆Π)
𝑛−1(𝜙𝑛)))

= 𝑈∗
(
𝑛∑
𝑚=1

𝐵Π,(𝑚)

)⎛⎝ 𝑛∑
𝑗=1

𝐴((𝑆Π)
𝑗−1(𝜙𝑗))

⎞⎠
= 𝑈∗

(
𝑛∑
𝑚=1

(𝑆Π)
𝑚−1𝐵Π(𝑆

∗
Π)
𝑚−1

)⎛⎝ 𝑛∑
𝑗=1

𝐴((𝑆Π)
𝑗−1(𝜙𝑗))

⎞⎠
= 𝑈∗

⎛⎝ 𝑛∑
𝑚=1

𝑛∑
𝑗=1

((𝑆Π)
𝑚−1𝐵Π(𝑆

∗
Π)
𝑚−1𝐴(𝑆Π)𝑗−1)(𝜙𝑗)

⎞⎠
=

⎛⎝𝐵Π(𝑆
∗
Π)
𝑖−1

⎛⎝ 𝑛∑
𝑚=1

𝑛∑
𝑗=1

((𝑆Π)
𝑚−1𝐵Π(𝑆

∗
Π)
𝑚−1𝐴(𝑆Π)𝑗−1𝐵Π)(𝜙𝑗)

⎞⎠⎞⎠𝑛
𝑖=1

=

⎛⎝ 𝑛∑
𝑚=1

𝑛∑
𝑗=1

(𝐵Π(𝑆
∗
Π)
𝑖−1(𝑆Π)𝑚−1𝐵Π(𝑆

∗
Π)
𝑚−1𝐴(𝑆Π)𝑗−1𝐵Π)(𝜙𝑗)

⎞⎠𝑛
𝑖=1

.

By Corollary 3.3 we obtain

𝑈∗𝑇𝐴,𝑛𝑈(𝜙) =
( 𝑛∑
𝑗=1

(𝐵Π(𝑆
∗
Π)
𝑖−1𝐴(𝑆Π)𝑗−1𝐵Π)(𝜙𝑗)

)𝑛
𝑖=1

=

( 𝑛∑
𝑗=1

𝑇(𝑆∗
Π)

𝑖−1𝐴(𝑆Π)𝑗−1 (𝜙𝑗)

)𝑛
𝑖=1

=
(
𝑇(𝑆∗

Π)
𝑖−1𝐴(𝑆Π)𝑗−1

)𝑛
𝑖,𝑗=1

𝜙. □

Since 𝑇(𝑆∗
Π)

𝑖−1𝐴(𝑆Π)𝑗−1 ∈ 𝐵Πℛ(ℂ;𝑆Π, 𝑆∗
Π)𝐵Π, by Theorem 4.4 we have that

𝑇(𝑆∗
Π)

𝑖−1𝐴(𝑆Π)𝑗−1 = 𝑚𝑖,𝑗(𝐴)𝐵Π, where 𝑚𝑖,𝑗(𝐴) ∈ ℂ. Hence we have the following
corollary.

Corollary 6.2. Let 𝐴 be an element of ℛ(ℂ;𝑆Π, 𝑆∗
Π). Then the Toeplitz operator

𝑇𝐴,𝑛 acting on 𝒜2
𝑛(Π) is unitarily equivalent to the matrix 𝑀𝐴,𝑛 = 𝑈∗𝑇𝐴,𝑛𝑈 acting

on
⊕𝑛
𝑚=1 𝒜2(Π), where 𝑈 and 𝑈∗ are given by (6.1) and (6.2) respectively. The

entries of the matrix 𝑀𝐴,𝑛 are given by

𝑀𝐴,𝑛(𝑖, 𝑗) = 𝑚𝑖,𝑗(𝐴)𝐵Π, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

where
𝑚𝑖,𝑗(𝐴) = ⟨𝐴𝑆𝑗−1Π 𝑓0, 𝑆

𝑖−1
Π 𝑓0⟩,

and 𝑓0 is any function from 𝒜2(Π) having norm 1.
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Moreover, the operator 𝑇𝐴,𝑛 = 𝑈𝑀𝐴,𝑛𝑈
∗ has the following form

𝑇𝐴,𝑛 =
𝑛∑

𝑖,𝑗=1

𝑚𝑖,𝑗(𝐴)(𝑆𝜋)
𝑖−1𝐵Π(𝑆

∗
Π)
𝑗−1.

To get an alternative formula for 𝑚𝑖,𝑗(𝐴) we proceed as follows. Analogously
to Corollary 3.3 and Lemma 4.5 we have

Lemma 6.3. For Toeplitz operators 𝑇𝑡 and 𝑇𝑡 from the algebra 𝒯 (𝐶(𝑆1)) and for
𝑖, 𝑗, 𝑛,𝑚 ∈ ℤ+, we have

𝑇 𝑖𝑡 (𝐼 − 𝑇𝑡𝑇𝑡)𝑇
𝑖
𝑡 𝑇𝑚𝑡 𝑇 𝑛𝑡 𝑇 𝑗𝑡 (𝐼 − 𝑇𝑡𝑇𝑡)𝑇

𝑗

𝑡
=

{
𝑇 𝑖𝑡 (𝐼 − 𝑇𝑡𝑇𝑡)𝑇

𝑗

𝑡
, 𝑖+𝑚 = 𝑛+ 𝑗

0, 𝑖+𝑚 ∕= 𝑛+ 𝑗
,

while

𝑇 𝑖𝑡 (𝐼 − 𝑇𝑡𝑇𝑡)𝑇
𝑖
𝑡 𝑇 𝑛𝑡 𝑇

𝑚
𝑡 𝑇 𝑗𝑡 (𝐼 − 𝑇𝑡𝑇𝑡)𝑇

𝑗

𝑡

=

{
𝑇 𝑖𝑡 (𝐼 − 𝑇𝑡𝑇𝑡)𝑇

𝑗

𝑡
, 𝑖+𝑚 = 𝑛+ 𝑗 and 𝑚 ≤ 𝑗

0, 𝑖+𝑚 ∕= 𝑛+ 𝑗 or 𝑚 > 𝑗
.

We note that the operator 𝐾𝑛 = 𝐼 − 𝑇 𝑛𝑡 𝑇
𝑛
𝑡
is the 𝑛-dimensional projection

onto the subspace of 𝐻2(𝑆1) generated by 1, 𝑡, . . . , 𝑡𝑛−1, and that 𝐼 − 𝑇 𝑛
𝑡
𝑇 𝑛𝑡 = 0,

which implies (𝐼 − 𝑇 𝑛
𝑡
𝑇 𝑛𝑡 )𝑇 (𝐼 − 𝑇 𝑛

𝑡
𝑇 𝑛𝑡 ) = 0, for all 𝑇 ∈ 𝒯 (𝐶(𝑆1)).

The Bergman projection 𝐵Π,𝑛 = 𝐼 − (𝑆Π)
𝑛(𝑆∗

Π)
𝑛 belongs to the algebra

ℛ(ℂ;𝑆Π, 𝑆∗
Π), and by Corollary 2.4, under the isomorphic inclusion

𝜎 : ℛ(ℂ;𝑆Π, 𝑆∗
Π) −→ 𝒯 (𝐶(𝑆1))⊕ 𝒯 (𝐶(𝑆1)),

the image of the Bergman projection 𝐵Π,𝑛 has the form (𝐾𝑛, 0).

Now, given 𝐴 ∈ ℛ(ℂ;𝑆Π, 𝑆∗
Π), consider the Toeplitz operator

𝑇𝐴 = (𝐼 − (𝑆Π)
𝑛(𝑆∗

Π)
𝑛)𝐴(𝐼 − (𝑆Π)

𝑛(𝑆∗
Π)
𝑛) ∈ ℛ(ℂ;𝑆Π, 𝑆∗

Π).

Let 𝜎(𝐴) = (𝜎0(𝐴), 𝜎∞(𝐴)) ∈ 𝒯 (𝐶(𝑆1)) ⊕ 𝒯 (𝐶(𝑆1)), then we have 𝜎(𝑇𝐴,𝑛) =
(𝐾𝑛 𝜎0(𝐴)𝐾𝑛, 0), and thus, being considered as acting on the poly-Bergman space
𝒜2
𝑛(Π), the Toeplitz operator 𝑇𝐴,𝑛 has the form

𝑇𝐴,𝑛 =

𝑛∑
𝑖,𝑗=1

𝑚𝑖,𝑗(𝐴)(𝑆Π)
𝑖−1𝐵Π(𝑆

∗
Π)
𝑗−1,

with the following alternative formula for 𝑚𝑖,𝑗(𝐴):

𝑚𝑖,𝑗(𝐴) = ⟨𝐾𝑛 𝜎0(𝐴)𝐾𝑛𝑡
𝑗−1, 𝑡𝑖−1⟩𝐻2(𝑆1) = ⟨𝜎0(𝐴)𝐾𝑛𝑡𝑗−1,𝐾𝑛𝑡𝑖−1⟩𝐻2(𝑆1)

= ⟨𝜎0(𝐴)𝑡𝑗−1, 𝑡𝑖−1⟩𝐻2(𝑆1). (6.3)
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7. Toeplitz operators on the poly-Bergman space
with defining symbols in 퓡(𝑪(𝔻);𝑺𝔻, 𝑺

∗
𝔻
)

Given 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
), we consider the Toeplitz operator on the poly-Berg-

man space 𝒜2
𝑛(𝔻) with pseudodifferential defining symbols 𝐴:

𝑇𝐴,𝑛 : 𝒜2
𝑛(𝔻) −→ 𝒜2

𝑛(𝔻),

𝜑 �−→ 𝐵𝔻,𝑛(𝐴𝜑),

where 𝐵𝔻,𝑛 is the orthogonal projection of 𝐿2(𝔻) onto the poly-Bergman space
𝒜2
𝑛(𝔻).

Introduce now the 𝐶∗-algebra 𝒯𝑛 = 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)) which is generated

by all Toeplitz operators 𝑇𝐴,𝑛 with symbols 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
). Given 𝐴 ∈

ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
), consider its Fredholm symbol (see Theorem 2.5):

sym𝐴 =

⎧⎨⎩
𝑐(𝑧, 𝑡) ∈ ℂ, (𝑧, 𝑡) ∈ 𝔻× 𝑆1

𝜎0(𝐴, 𝑧) = 𝑇𝑐(𝑧,𝑡) +𝐾0(𝑧) ∈ 𝒯 (𝐶(𝑆1)), (𝑧, 0) ∈ 𝑆1 × {0,∞}
𝜎∞(𝐴, 𝑧) = 𝑇𝑐(𝑧,𝑡) +𝐾∞(𝑧) ∈ 𝒯 (𝐶(𝑆1)), (𝑧,∞) ∈ 𝑆1 × {0,∞}.

Combining the local description of Corollary 2.4 with formula (6.3) and the global
description provided by Theorem 2.5, we arrive to the following result.

Theorem 7.1. The Fredholm symbols algebra

Sym 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻)) = 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻))/𝒦

of the algebra 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)) is isomorphic and isometric to the algebra

𝑀𝑛×𝑛(𝐶(𝑆1)) of all 𝑛 × 𝑛 matrix-functions continuous on 𝑆1. Under their iden-
tification the symbol homomorphism

sym : 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻)) −→ 𝑀𝑛×𝑛(𝐶(𝑆1))

is generated by the following mapping of generators of 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
)): for

any 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
),

sym𝑇𝐴,𝑛 = {𝑚𝑖,𝑗 [𝐴](𝑧)}𝑛𝑖,𝑗=1
= {⟨𝜎0(𝐴, 𝑧)𝑡𝑗−1, 𝑡𝑖−1⟩𝐻2(𝑆1)}𝑛𝑖,𝑗=1 ∈ 𝑀𝑛×𝑛(𝐶(𝑆1)).

Remark 7.2. Given 𝐴 ∈ ℛ(𝐶(𝔻);𝑆𝔻, 𝑆
∗
𝔻
), denote by 𝑚̃𝑖,𝑗 [𝐴](𝑧) an extension of

the function 𝑚𝑖,𝑗 [𝐴](𝑧) continuous on 𝑆1 to a function continuous on the closed

unit disk 𝔻. Then the Toeplitz operator 𝑇𝐴,𝑛 with pseudodifferential symbol 𝐴 ∈
ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
) is nothing but a compact perturbation of the Toeplitz operator

𝑇𝐴1,𝑛 whose defining symbol has the form

𝐴1 =

𝑛∑
𝑖,𝑗=1

𝑚̃𝑖,𝑗 [𝐴](𝑧)(𝑆𝔻)
𝑖−1𝐵𝔻(𝑆

∗
𝔻)
𝑗−1,
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where 𝑚̃𝑖,𝑗 [𝐴](𝑧) are the above functions continuous on 𝔻. We calculate now the
Fredholm symbol sym𝑇𝐴1,𝑛.

sym𝑇𝐴1,𝑛 =

⎛⎝〈 𝑛∑
𝑙,𝑠=1

𝑚̃𝑙,𝑠[𝐴](𝑧)(𝑇𝑡)
𝑙−1(1− 𝑇𝑡𝑇𝑡)(𝑇𝑡)

𝑠−1𝑡𝑗−1, 𝑡𝑖−1
〉
𝐻2(𝑆1)

⎞⎠𝑛
𝑖,𝑗=1

=

⎛⎝ 𝑛∑
𝑙,𝑠=1

𝑚̃𝑙,𝑠[𝐴](𝑧)
〈
(1− 𝑇𝑡𝑇𝑡)(𝑇𝑡)

𝑠−1𝑡𝑗−1, (𝑇𝑡)𝑙−1𝑡𝑖−1
〉
𝐻2(𝑆1)

⎞⎠𝑛
𝑖,𝑗=1

=

(
𝑛∑
𝑙=1

𝑚̃𝑙,𝑗 [𝐴](𝑧)
〈
1, 𝑡𝑖−𝑙

〉
𝐻2(𝑆1)

)𝑛
𝑖,𝑗=1

= (𝑚̃𝑖,𝑗 [𝐴](𝑧))
𝑛
𝑖,𝑗=1 = sym𝑇𝐴,𝑛.

Therefore, from the above equation we have that

𝑇𝐴,𝑛 = 𝑇𝐴1,𝑛 +𝐾,

where 𝐾 is a compact operator.
At the same time the Toeplitz operator 𝑇𝐴,𝑛 is unitarily equivalent (via 𝑈 of

the form (6.1)) to the following matrix-operator

𝑇
𝑀 [𝐴](𝑧)

+𝐾 ∈ 𝒯 (𝐶(𝔻))⊗ 𝑀𝑛×𝑛(ℂ),

where 𝐾 is compact, and 𝑀 [𝐴](𝑧) = {𝑚̃𝑖,𝑗 [𝐴](𝑧)}𝑛𝑖,𝑗=1 ∈ 𝑀𝑛×𝑛(𝐶(𝔻)). Moreover,
contrary to the Bergman space case, for 𝑛 ≥ 2 the algebra 𝒯𝑛(ℛ(𝐶(𝔻);𝑆𝔻, 𝑆

∗
𝔻
)) is

unitarily equivalent to the matrix algebra 𝒯 (𝐶(𝔻))⊗ 𝑀𝑛×𝑛(ℂ).

Remark 7.3. Let us consider the operator

𝐴0 =

𝑛∑
𝑖,𝑗=1

𝑎𝑖,𝑗(𝑧)(𝑆𝔻)
𝑖−1(𝑆∗

𝔻)
𝑗−1,

and calculate the Fredholm symbol sym𝑇𝐴0,𝑛,

sym𝑇𝐴0,𝑛 =

⎛⎝〈 𝑛∑
𝑙,𝑠=1

𝑎𝑙,𝑠(𝑧)(𝑇𝑡)
𝑙−1(𝑇𝑡)𝑠−1𝑡𝑗−1, 𝑡𝑖−1

〉
𝐻2(𝑆1)

⎞⎠𝑛
𝑖,𝑗=1

=

(
𝑖∑
𝑙=1

𝑗∑
𝑠=1

𝑎𝑙,𝑠(𝑧)⟨𝑡𝑗−𝑠, 𝑡𝑖−𝑙⟩𝐻2(𝑆1)

)𝑛
𝑖,𝑗=1

=

(
𝑖∑
𝑙=1

𝑗∑
𝑠=1

𝑎𝑙,𝑠(𝑧)𝛿𝑗−𝑠,𝑖−𝑙

)𝑛
𝑖,𝑗=1

=

(
𝑖−1∑
𝑢=0

𝑗−1∑
𝑘=0

𝑎𝑖−𝑢,𝑗−𝑘(𝑧)𝛿𝑘,𝑢

)𝑛
𝑖,𝑗=1

=

⎛⎝min{𝑖,𝑗}−1∑
𝑘=0

𝑎𝑖−𝑘,𝑗−𝑘(𝑧)

⎞⎠𝑛
𝑖,𝑗=1

,

here 𝛿𝑘,𝑢 is the Kronecker symbol.
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Consider now the functions 𝑚̃𝑖,𝑗 [𝐴](𝑧) as in the above remark. If we take

𝑎𝑖,𝑗(𝑧) = 𝑚̃𝑖,𝑗 [𝐴](𝑧)− 𝑚̃𝑖−1,𝑗−1[𝐴](𝑧),

where 𝑚̃𝑖,𝑗 [𝐴](𝑧) = 0 if 𝑖 ≤ 0 or 𝑗 ≤ 0, then

sym𝑇𝐴0,𝑛 = {𝑚̃𝑖,𝑗 [𝐴](𝑧)}𝑛𝑖,𝑗=1 = sym𝑇𝐴,𝑛.

Thus we have that

𝑇𝐴,𝑛 = 𝑇𝐴0,𝑛 +𝐾,

where 𝐾 is compact operator.
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Introduction

Let 𝑋 be a Banach space and 𝑙𝑝 = 𝑙𝑝(ℤ, 𝑋) denote the set of all 𝑝-summable se-
quences (𝑥𝑖)𝑖∈ℤ ⊂ 𝑋 , that is all functions 𝑥 : ℤ → 𝑋 , 𝑖 �→ 𝑥𝑖 with

∑
𝑖∈ℤ

∥𝑥𝑖∥𝑝 < ∞.

Provided with pointwise defined operations and the norm ∥(𝑥𝑖)∥ :=
(∑

𝑖∈ℤ
∥𝑥𝑖∥𝑝

) 1
𝑝 ,

𝑙𝑝 becomes a Banach space for every 1 ≤ 𝑝 < ∞. Analogously, one introduces
the space 𝑙∞ = 𝑙∞(ℤ, 𝑋) of all bounded sequences (𝑥𝑖) ⊂ 𝑋 with the norm
∥(𝑥𝑖)∥ := sup𝑖∈ℤ ∥𝑥𝑖∥.

Define the linear and bounded shift operators 𝑉𝑘 and the operators 𝑎𝐼 of
multiplication with a function 𝑎 ∈ 𝑙∞(ℤ,ℒ(𝑋)) by the rules

𝑉𝑘(𝑥𝑖) := (𝑥𝑖−𝑘) and (𝑎𝐼)(𝑥𝑖) := (𝑎𝑖𝑥𝑖), respectively.

Here ℒ(𝑋) denotes the Banach algebra of all bounded linear operators on 𝑋 .
Every finite sum of the form

∑
𝑎𝑘𝑉𝑘 is said to be banded and all operators which

are limits of sequences of band operators in the operator norm are referred to as
band-dominated operators. Notice that the set𝒜𝑙𝑝 of all band-dominated operators
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depends on 𝑝 but always forms a closed and inverse closed subalgebra of ℒ(𝑙𝑝) (cf.
[12, Section 2.1]).

Let 𝒫 = (𝐿𝑛)𝑛∈ℕ be the sequence of the projections 𝐿𝑛 := 𝜒{−𝑛,...,𝑛}𝐼,
where 𝜒𝑈 stands for the characteristic function of the set 𝑈 . In [11, 12] and [18] the
Fredholm properties and the finite sections 𝐿𝑛𝐴𝐿𝑛 of band-dominated operators𝐴
have been of particular interest. For this, in the latter paper the authors introduce
certain sequence algebras which contain the finite section sequences, as well as
homomorphisms on these algebras which provide snapshots of a given sequence
carrying crucial information on its asymptotic behavior. More precisely, this setting
is as follows:

Firstly, let ℱ denote the Banach algebra of all bounded sequences 𝔸 = {𝐴𝑛}
of bounded linear operators 𝐴𝑛 ∈ ℒ(im𝐿𝑛) equipped with entry-wise defined
operations and the norm ∥𝔸∥ := sup𝑛 ∥𝐴𝑛∥. The sequence 𝔸 is said to be stable if
lim sup𝑛 ∥𝐴−1

𝑛 ∥ < ∞, where we set ∥𝐴−1
𝑛 ∥ := ∞ if 𝐴𝑛 is not invertible. It is well

known that stability is equivalent to invertibility of the coset 𝔸+𝒢 in the quotient
ℱ/𝒢, where 𝒢 stands for the closed ideal in ℱ of all sequences {𝐺𝑛} with ∥𝐺𝑛∥ → 0
as 𝑛 → ∞. If ℎ = (ℎ𝑛)𝑛∈ℕ is a strictly increasing sequence of positive integers then
we analogously define ℱℎ and 𝒢ℎ as algebras of (sub)sequences 𝔸ℎ = {𝐴ℎ𝑛}.

Of course, the finite section sequence {𝐿𝑛𝐴𝐿𝑛} of a band-dominated operator
always belongs to ℱ and we let ℱ𝒜𝑙𝑝

denote the smallest closed subalgebra of ℱ
containing all of these {𝐿𝑛𝐴𝐿𝑛} with so-called rich band-dominated operators (see
Definition 1.3). Due to the special structure of the elements 𝔸 = {𝐴𝑛} ∈ ℱ𝒜𝑙𝑝

one
easily finds that the sequence (𝐴𝑛𝐿𝑛) converges in ℒ(𝑙𝑝) in the sense of 𝒫-strong
convergence (a precise definition will also be given later on). Denote the limit by
𝑊 0(𝔸). Further, at least for certain subsequences 𝔸ℎ of 𝔸, also the shifted copies
(𝑉∓ℎ𝑛𝐴ℎ𝑛𝐿ℎ𝑛𝑉±ℎ𝑛) of 𝔸ℎ converge. Their limits can be considered as operators
acting on 𝑙𝑝(ℤ∓, 𝑋) and will be denoted by 𝑊±1(𝔸ℎ). They somehow capture the
asymptotic behavior of 𝔸 at the edges of the truncation process.

One of the main results of [11, 12] and [18] states that the stability of a
sequence 𝔸 ∈ ℱ𝒜𝑙𝑝

is equivalent to the invertibility of all snapshots 𝑊 𝑡(𝔸ℎ) with
𝑡 ∈ {−1, 0, 1} and suitable ℎ.

After repeating some important notions and results from [18] in Section 1 we state
this theorem exactly.

In Section 2 we turn our attention to the main goal of the present paper,
the convergence of the norms ∥𝐴𝑛∥ and condition numbers cond(𝐴𝑛) for a class of
sequences 𝔸 = {𝐴𝑛} ∈ ℱ . Besides that we even determine the convergence of the
𝜖-pseudospectra sp𝜖𝐴𝑛. Such results on pseudospectral approximation have been
proved in [12], Sections 6.3 and 6.4 in the case 𝑙2, based on an abstract 𝐶∗-algebra
approach. The case 𝑙𝑝, which is subject of the present text, is much more involved
and requires advanced techniques.

The final section is devoted to the application of our results to ℱ𝒜𝑙𝑝
.
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1. 퓟-notions and the algebraic framework

For the treatment of the given approximation method it turned out to be valuable
to replace compactness, the usual Fredholm property, and strong convergence by
the following similar concepts of 𝒫-compactness, 𝒫-Fredholmness and 𝒫-strong
convergence. For details and proofs we refer to [18] and, under additional restric-
tions, its predecessors [12, 16] and [11]. The major benefit of these substitutes is
the unified treatment of all cases 𝑝 ∈ [1,∞].

1.1. 퓟-compact and 퓟-Fredholm operators

We say that an operator 𝐴 ∈ ℒ(𝑙𝑝) is 𝒫-compact if the norms ∥(𝐼 − 𝐿𝑛)𝐴∥ and
∥𝐴(𝐼 −𝐿𝑛)∥ tend to zero as 𝑛 → ∞. In what follows let 𝒦(𝑙𝑝,𝒫) denote the set of
all 𝒫-compact operators and ℒ(𝑙𝑝,𝒫) the set of all operators 𝐴 ∈ ℒ(𝑙𝑝) for which
𝐾𝐴 and 𝐴𝐾 are 𝒫-compact whenever 𝐾 is so. Then ℒ(𝑙𝑝,𝒫) is a Banach algebra
and 𝒦(𝑙𝑝,𝒫) forms a closed ideal in ℒ(𝑙𝑝,𝒫).

An operator 𝐴 ∈ ℒ(𝑙𝑝,𝒫) is said to be 𝒫-Fredholm if the respective coset
𝐴+𝒦(𝑙𝑝,𝒫) is invertible in the quotient algebra ℒ(𝑙𝑝,𝒫)/𝒦(𝑙𝑝,𝒫). The elements
in (𝐴+𝒦(𝑙𝑝,𝒫))−1 are called 𝒫-regularizers for 𝐴.

Let us mention that the picture which one obtains with these modifications is still
surprisingly similar to what we know from the classical setting, as the following
theorem reveals.

Theorem 1.1 ([18, Theorem 1.28]).

∙ ℒ(𝑙𝑝,𝒫) is an inverse closed subalgebra of ℒ(𝑙𝑝) and 𝒦(𝑙𝑝,𝒫) forms a closed
ideal in ℒ(𝑙𝑝,𝒫).

∙ Let 𝐴 ∈ ℒ(𝑙𝑝,𝒫). Then the following are equivalent.
– 𝐴 is 𝒫-Fredholm.
– There is an operator 𝐵 ∈ ℒ(𝑙𝑝) with 𝐼 − 𝐴𝐵, 𝐼 − 𝐵𝐴 ∈ 𝒦(𝑙𝑝,𝒫).
– There is an operator 𝐵 ∈ ℒ(𝑙𝑝,𝒫) with 𝐼 − 𝐴𝐵, 𝐼 − 𝐵𝐴 ∈ 𝒦(𝑙𝑝,𝒫).

∙ If 𝐴 ∈ ℒ(𝑙𝑝,𝒫) is Fredholm then 𝐴 is 𝒫-Fredholm. In case dim𝑋 < ∞
𝒫-Fredholmness also implies Fredholmness.

Also the band-dominated operators perfectly fit into that framework.

Theorem 1.2 ([18, Theorem 1.30]). The set 𝒜𝑙𝑝 of band-dominated operators forms
a closed and inverse closed subalgebra of ℒ(𝑙𝑝,𝒫) containing 𝒦(𝑙𝑝,𝒫) as a closed
ideal. Furthermore 𝒜𝑙𝑝/𝒦(𝑙𝑝,𝒫) is inverse closed in ℒ(𝑙𝑝,𝒫)/𝒦(𝑙𝑝,𝒫).
1.2. 퓟-strong convergence

A sequence (𝐴𝑛) ⊂ ℒ(𝑙𝑝) is said to converge 𝒫-strongly to 𝐴 ∈ ℒ(𝑙𝑝) if, for all
𝐾 ∈ 𝒦(𝑙𝑝,𝒫), both ∥𝐾(𝐴𝑛 − 𝐴)∥ and ∥(𝐴𝑛 − 𝐴)𝐾∥ tend to zero as 𝑛 → ∞. We
write 𝐴 = 𝒫-lim𝑛𝐴𝑛 in this case. From [12, Proposition 1.1.17] we learn that the
𝒫-strong limit 𝐴 of a sequence (𝐴𝑛) ⊂ ℒ(𝑙𝑝,𝒫) is uniquely determined, belongs
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to ℒ(𝑙𝑝,𝒫) and fulfills
∥𝐴∥ ≤ lim inf

𝑛→∞ ∥𝐴𝑛∥.

Definition 1.3. Let ℋ± denote the set of all strictly increasing (decreasing) se-
quences ℎ = (ℎ𝑛) of positive (negative) integers ℎ𝑛 and set ℋ := 𝐻+ ∪ ℋ−. For
𝐴 ∈ ℒ(𝑙𝑝,𝒫) and ℎ ∈ ℋ the operator 𝐴ℎ is called limit operator of 𝐴 with respect
to ℎ if 𝐴ℎ = 𝒫-lim𝑛 𝑉−ℎ𝑛𝐴𝑉ℎ𝑛 . Further we say that an operator 𝐴 ∈ ℒ(𝑙𝑝,𝒫) is
rich if every sequence ℎ ∈ ℋ has a subsequence 𝑔 ⊂ ℎ such that the limit operator
𝐴𝑔 exists.

Notice that in case dim𝑋 < ∞ all band-dominated operators are rich by
[12, Corollary 2.1.17].

1.3. Sequences and snapshots

Set 𝑇 := {−1, 0, 1}, 𝐼0 := 𝐼, 𝐼±1 := 𝜒ℤ∓𝐼, and for 𝑡 ∈ 𝑇 and 𝑛 ∈ ℕ introduce
𝐿𝑡𝑛 := 𝑉−𝑛𝑡𝐿𝑛𝑉𝑛𝑡 together with 𝐸𝑡𝑛 : ℒ(im𝐿𝑡𝑛) → ℒ(im𝐿𝑛) being the isometric
isomorphism given by 𝐸𝑡𝑛(𝐵𝑛) := 𝑉𝑛𝑡𝐵𝑛𝑉−𝑛𝑡.

Let ℱ𝑇 denote the set of all sequences 𝔸 = {𝐴𝑛} ∈ ℱ for which the 𝒫-strong
limits

𝑊 𝑡(𝔸) := 𝒫-lim
n→∞ 𝐸−𝑡

𝑛 (𝐴𝑛)𝐿
𝑡
𝑛, 𝑡 ∈ 𝑇,

exist. Notice that 𝑊+1(𝔸)𝜒ℤ+𝐼 = 𝜒ℤ+𝑊+1(𝔸) = 0, hence 𝑊+1(𝔸) can be consid-

ered as operator acting on E+1 := 𝑙𝑝(ℤ−, 𝑋). Similarly, 𝑊−1(𝔸) can be regarded
as operator on E−1 := 𝑙𝑝(ℤ+, 𝑋), whereas 𝑊 0(𝔸) acts on E0 := 𝑙𝑝(ℤ, 𝑋). With
the definition 𝒫𝑡 = (𝐿𝑡𝑛)𝑛∈ℕ we analogously get the notions of 𝒫𝑡-compact and
𝒫𝑡-Fredholm operators on E𝑡, 𝑡 ∈ 𝑇 .

Moreover we let 𝒥 𝑇 stand for the set{∑
𝑡∈𝑇

{𝐸𝑡𝑛(𝐿𝑡𝑛𝐾𝑡𝐿𝑡𝑛)}+𝔾 : 𝐾𝑡 ∈ 𝒦(E𝑡,𝒫𝑡), 𝔾 ∈ 𝒢
}

.

It can be easily derived that ℱ𝑇 is a closed subalgebra of ℱ containing 𝒢 and
𝒥 𝑇 as closed ideals. If ℎ ∈ ℋ+ we write 𝔸ℎ for the subsequence {𝐴ℎ𝑛} and we
analogously introduce the respective algebras ℱℎ, 𝒢ℎ, ℱ𝑇ℎ and 𝒥 𝑇ℎ . Following [18]
we call a sequence 𝔸ℎ ∈ ℱ𝑇ℎ 𝒥 𝑇ℎ -Fredholm if 𝔸ℎ+𝒥 𝑇ℎ is invertible in the quotient
ℱ𝑇ℎ /𝒥 𝑇ℎ .

In the sequel, for given 𝔸 ∈ ℱ and ℎ ∈ ℋ+, we let ℋ𝔸ℎ stand for the set of all
subsequences 𝑔 ⊂ ℎ such that 𝔸𝑔 ∈ ℱ𝑇𝑔 , and we call the operators𝑊 𝑡(𝔸𝑔), 𝑔 ∈ ℋ𝔸

snapshots of 𝔸. Also notice that the mappings which send a sequence 𝔸𝑔 ∈ ℱ𝑇𝑔 to

a snapshot are unital algebra homomorphisms on ℱ𝑇𝑔 .

1.4. An example

Consider the space 𝑙𝑝(ℤ,ℂ) and the bounded linear operator 𝐴 = 𝐼 + 𝑎𝑉−1 with
a sequence 𝑎 = (𝑎𝑖) ∈ 𝑙∞. Its matrix representation (with respect to the standard
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basis) is

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

1 𝑎−2
1 𝑎−1

1 𝑎0
1 𝑎1

1 𝑎2

1
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Further suppose that 𝑎𝑛 tends to zero as 𝑛 goes to ∞, whereas, for 𝑛 ≤ 0, 𝑎2𝑛 = 1
and 𝑎2𝑛+1 = 0 hold. Clearly, the finite sections 𝐿𝑛𝐴𝐿𝑛 can be regarded as finite
matrices in the above sense. With 𝑔 (and ℎ) being the increasing sequence of all
positive odd (even) numbers, we get the following snapshots of 𝔸 = {𝐿𝑛𝐴𝐿𝑛}:
𝑊 0(𝔸) = 𝐴, 𝑊 1(𝔸𝑔) =𝑊 1(𝔸ℎ) = 𝑊 1(𝔸) = 𝐼1,

𝑊−1(𝔸𝑔) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0
1 1

1 0

1
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑊−1(𝔸ℎ) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1
1 0

1 1

1
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠
and there are no further ones.

1.5. The snapshots of 𝔸 ∈ 퓕퓐𝒍𝒑

Recall that ℱ𝒜𝑙𝑝
stands for the smallest closed subalgebra of ℱ containing the

finite section sequences {𝐿𝑛𝐴𝐿𝑛} of rich band-dominated operators 𝐴. While for
𝔸 = {𝐴𝑛} ∈ ℱ𝒜𝑙𝑝

the 𝒫-strong limit 𝑊 0(𝔸) = 𝒫-lim𝐴𝑛𝐿𝑛 always exists, this is
in general not guaranteed for 𝑊±1(𝔸). However, the following holds.

Proposition 1.4 ([18, Proposition 3.1]). Let 𝔸 ∈ ℱ𝒜𝑙𝑝
and ℎ ∈ ℋ+. Then there

exists a subsequence 𝑔 of ℎ such that 𝔸𝑔 ∈ ℱ𝑇𝑔 , that is ℋ𝔸ℎ is not empty.

Here comes the announced criterion for the stability.

Theorem 1.5 ([18, Corollary 3.4]). A sequence 𝔸 ∈ ℱ𝒜𝑙𝑝
is stable if and only if all

of its snapshots 𝑊 𝑡(𝔸ℎ), 𝑡 ∈ 𝑇 , ℎ ∈ ℋ𝔸 are invertible in ℒ(E𝑡), respectively.

2. Localizable sequences and their properties

The aim of this section is to identify a class of sequences 𝔸 = {𝐴𝑛} ∈ ℱ𝑇 which
offer stronger connections between the operators𝐴𝑛 and the snapshots𝑊

𝑡(𝔸). The
main tools for this are the local principle of Allan and Douglas and the concept of
KMS-algebras which is due to Böttcher, Krupnik and one of the authors [3].
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2.1. Localization and the KMS property

Let 𝒜 be a Banach algebra with identity and 𝒞 be a closed 𝐶∗-subalgebra of the
center of 𝒜 which contains the identity. By the Gelfand-Naimark Theorem, 𝒞 is
isomorphic to the algebra of continuous functions on the maximal ideal space ℳ𝒞
of 𝒞. Therefore the elements of 𝒞 will be called functions. For each maximal ideal
𝑥 ∈ ℳ𝒞 we introduce 𝒥𝑥, the smallest closed ideal in 𝒜 containing 𝑥, and let 𝜙𝑥
denote the canonical mapping from 𝒜 to 𝒜/𝒥𝑥. In the case 𝒥𝑥 = 𝒜 we define
that 𝜙𝑥(𝐴) is invertible in 𝒜/𝒥𝑥 for each 𝐴 ∈ 𝒜. The local principle of Allan and
Douglas [12, Theorem 2.3.16] states that 𝐴 ∈ 𝒜 is invertible if and only if 𝜙𝑥(𝐴)
is invertible in 𝒜/𝒥𝑥 for every 𝑥 ∈ ℳ𝒞 .

Definition 2.1. The algebra 𝒜 is a KMS-algebra with respect to 𝒞 1 if for every
𝐴 ∈ 𝒜 and 𝜑, 𝜓 ∈ 𝒞 with disjoint supports

∥(𝜑 − 𝜓)𝐴∥ ≤ max(∥𝜑𝐴∥, ∥𝜓𝐴∥).
From [3, Theorem 5.3] we know that 𝒜 is a KMS-algebra w.r.t. 𝒞 if and

only if
∥𝐴∥ = max

𝑥∈ℳ𝒞
∥𝜙𝑥(𝐴)∥ for every 𝐴 ∈ 𝒜. (2.1)

Also notice that, by Proposition 5.1 in [3],

∥𝜙𝑥(𝐴)∥ = inf{∥𝜑𝐴∥ : 𝜑 ∈ 𝒞, 0 ≤ 𝜑 ≤ 1, 𝜑 ≡ 1 in a neighborhood of 𝑥}. (2.2)

2.2. A family of central (sub)algebras of sequence algebras

For our concrete setting of 𝑙𝑝-spaces and within the algebra ℱ𝑇 we introduce
central subalgebras 𝒞𝛾 as follows. Let 𝛾 : ℕ → ℝ+ be a non-decreasing sequence
of positive numbers 𝛾𝑛 ≤ 1

2𝑛 with 𝛾𝑛 → ∞ as 𝑛 → ∞ and let 𝑏𝛾𝑛 : ℝ → [−1, 1]
denote the continuous piecewise linear spline which is given by 𝑏𝛾𝑛(±𝑛) = ±1
and 𝑏𝛾𝑛(±(𝑛 − 𝛾𝑛)) = ± 1

2 and constant outside the interval [−𝑛, 𝑛], for every 𝑛,
respectively. For every continuous function 𝜑 ∈ 𝐶[−1, 1] we let 𝜑𝛾𝑛 stand for the
restriction of the inflated copy 𝜑 ∘ 𝑏𝛾𝑛 of 𝜑 to ℤ. It straightforwardly follows that
the set

𝒞𝛾 := {{𝜑𝛾𝑛𝐿𝑛} : 𝜑 ∈ 𝐶[−1, 1]}
forms a Banach subalgebra of ℱ𝑇 with 𝑊 𝑡({𝜑𝛾𝑛𝐿𝑛}) = 𝜑(𝑡)𝐼𝑡, 𝑡 ∈ 𝑇 . At this point
we mention that the sequence 𝛾 provides a certain flexibility in the inflation process
which will permit to adapt it to the sequence 𝔸 under consideration. This will play
a crucial role in the application to the finite section sequences of band-dominated
operators.

Introduce the Banach algebra ℬ𝛾 of all sequences 𝔸 ∈ ℱ for which the com-
mutator [𝔸,ℂ] := 𝔸ℂ − ℂ𝔸 belongs to 𝒢 for every ℂ ∈ 𝒞𝛾 . Let ℬ𝛾,𝑇 denote the
Banach algebra ℬ𝛾 ∩ ℱ𝑇 and notice that ℬ𝛾,𝑇 includes 𝒞𝛾 as well as 𝒥 𝑇 .
Proposition 2.2. The set 𝒞𝛾/𝒢 := {ℂ + 𝒢 : ℂ ∈ 𝒞𝛾} forms a closed central 𝐶∗-
subalgebra of both ℬ𝛾/𝒢 and ℬ𝛾,𝑇/𝒢, and it is isometrically isomorphic to 𝐶[−1, 1].
1In recent literature (e.g., [15]) such pairs (𝒜, 𝒞) are also called “faithful localizing pairs”.



FSM for Band-dominated Operators – Spectral Approximation 381

Proof. Let 𝜑 ∈ 𝐶[−1, 1]. Then we obviously have
∥𝜑∥∞ = ∥{𝜑𝛾𝑛𝐿𝑛}∥ℱ ≥ ∥{𝜑𝛾𝑛𝐿𝑛}+ 𝒢∥ℱ/𝒢 .

On the other hand ∥𝜑∥∞ = sup𝑥∈[−1,1] ∣𝜑(𝑥)∣ ≤ ∥{𝜑𝛾𝑛𝐿𝑛}+ 𝒢∥ℱ/𝒢 follows from
∣𝜑(𝑥)∣ = ∥𝜑(𝑥)𝐼∥ = ∥𝒫-lim

𝑛→∞ 𝑉−⌊(𝑏𝛾𝑛)−1(𝑥)⌋𝜑
𝛾
𝑛𝐿𝑛𝑉⌊(𝑏𝛾𝑛)−1(𝑥)⌋∥

≤ lim inf
𝑛→∞ ∥𝑉−⌊(𝑏𝛾𝑛)−1(𝑥)⌋𝜑

𝛾
𝑛𝐿𝑛𝑉⌊(𝑏𝛾𝑛)−1(𝑥)⌋∥

≤ lim sup
𝑛→∞

∥𝜑𝛾𝑛𝐿𝑛∥ = ∥{𝜑𝛾𝑛𝐿𝑛}+ 𝒢∥ℱ/𝒢,

with (𝑏𝛾𝑛)
−1 being the inverse of the bijective function 𝑏𝛾𝑛 : [−𝑛, 𝑛] → [−1, 1], and

⌊⋅⌋ the floor function. Thus, 𝒞𝛾/𝒢 ∼= 𝐶[−1, 1] and the rest easily follows. □

Corollary 2.3. The set 𝒞𝛾/𝒥 𝑇 := {ℂ + 𝒥 𝑇 : ℂ ∈ 𝒞𝛾} is a closed central 𝐶∗-
subalgebra of ℬ𝛾,𝑇/𝒥 𝑇 , and it is isometrically isomorphic to 𝐶[−1, 1].
Proof. Clearly, 𝒞𝛾/𝒥 𝑇 is commutative and inherits the involution from 𝒞𝛾/𝒢.
We only need to show that ∥{𝜑𝛾𝑛𝐿𝑛} + 𝒢∥ = ∥{𝜑𝛾𝑛𝐿𝑛} + 𝒥 𝑇 ∥ holds for every
𝜑 ∈ 𝐶[−1, 1]. The estimate “≥” is obvious. Assume that it is even proper, which
means that there is an 𝜖 > 0 and a sequence 𝕁 ∈ 𝒥 𝑇 such that ∥{𝜑𝛾𝑛𝐿𝑛} + 𝒢∥ >
∥{𝜑𝛾𝑛𝐿𝑛} + 𝕁∥ + 𝜖 ≥ ∥{𝜑𝛾𝑛𝐿𝑛} + 𝕁 + 𝒢∥ + 𝜖. WLOG we can also assume that
∥{𝜑𝛾𝑛𝐿𝑛} + 𝒢∥ = 1. Fix 𝑥0 ∈ (−1, 1) ∖ {0} such that ∣𝜑(𝑥0)∣ ≥ 1 − 𝜖 and choose a
function 𝜓 ∈ 𝐶[−1, 1] equal to 1 in a neighborhood of 𝑥0, equal to zero on 𝑇 and
of norm one. Then 𝔹 + 𝒢 := 𝜑(𝑥0)𝕀 − {𝜓𝛾𝑛𝐿𝑛}({𝜑𝛾𝑛𝐿𝑛} + 𝕁) + 𝒢 is invertible in
ℱ𝑇 where its inverse is given by a Neumann series. Further, {𝜓𝛾𝑛𝐿𝑛}𝕁 ∈ 𝒢, hence
𝜙𝑥0(𝔹+ 𝒢) is zero, a contradiction. □
Proposition 2.4. The set ℬ𝛾/𝒢 is a KMS-algebra with respect to 𝒞𝛾/𝒢, hence for
every 𝔸 = {𝐴𝑛} ∈ ℬ𝛾

lim sup
𝑛→∞

∥𝐴𝑛∥ = max
𝑥∈[−1,1]

∥𝜙𝑥(𝔸+ 𝒢)∥.

Proof.2 Choose 𝜑, 𝜓 ∈ 𝐶[−1, 1] with disjoint supports, define 𝑌𝑛 := 𝐴𝑛𝜑
𝛾
𝑛𝐿𝑛 and

𝑍𝑛 := 𝐴𝑛𝜓
𝛾
𝑛𝐿𝑛, as well as 𝑁𝑛 := supp𝜑𝛾𝑛, 𝑀𝑛 := supp𝜓𝛾𝑛, and prove that

lim sup ∥𝑌𝑛𝜒𝑁𝑛𝐿𝑛 + 𝑍𝑛𝜒𝑀𝑛𝐿𝑛∥ ≤ max(lim sup ∥𝑌𝑛∥, lim sup ∥𝑍𝑛∥).
For this and in case 𝑝 ∈ [1,∞) let 𝑥 ∈ 𝑙𝑝 and observe

∥(𝜒𝑁𝑛𝑌𝑛𝜒𝑁𝑛𝐿𝑛 + 𝜒𝑀𝑛𝑍𝑛𝜒𝑀𝑛𝐿𝑛)𝑥∥𝑝
= ∥𝜒𝑁𝑛𝑌𝑛𝜒𝑁𝑛𝐿𝑛𝑥∥𝑝 + ∥𝜒𝑀𝑛𝑍𝑛𝜒𝑀𝑛𝐿𝑛𝑥∥𝑝
≤ max(∥𝑌𝑛∥, ∥𝑍𝑛∥)𝑝[∥𝜒𝑁𝑛𝐿𝑛𝑥∥𝑝 + ∥𝜒𝑀𝑛𝐿𝑛𝑥∥𝑝]
≤ max(∥𝑌𝑛∥, ∥𝑍𝑛∥)𝑝∥𝑥∥𝑝.

(2.3)

Thus, for every 𝜖 > 0 there is an integer 𝑁 such that

∥𝜒𝑁𝑘𝑌𝑘𝜒𝑁𝑘𝐿𝑘 + 𝜒𝑀𝑘
𝑍𝑘𝜒𝑀𝑘

𝐿𝑘∥ ≤ max(lim sup ∥𝑌𝑛∥, lim sup ∥𝑍𝑛∥) + 𝜖

2This idea already appeared in [3].
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for every 𝑘 > 𝑁 . Consequently, lim sup ∥𝜒𝑁𝑛𝑌𝑛𝜒𝑁𝑛𝐿𝑛 + 𝜒𝑀𝑛𝑍𝑛𝜒𝑀𝑛𝐿𝑛∥ is not
greater than max(lim sup ∥𝑌𝑛∥, lim sup ∥𝑍𝑛∥). From 𝔸 ∈ ℬ𝛾 we deduce that

𝜒𝑁𝑛𝑌𝑛𝜒𝑁𝑛𝐿𝑛 − 𝑌𝑛𝜒𝑁𝑛𝐿𝑛 and 𝜒𝑀𝑛𝑍𝑛𝜒𝑀𝑛𝐿𝑛 − 𝑍𝑛𝜒𝑀𝑛𝐿𝑛

belong to 𝒢 and thus the assertion follows. For the case 𝑝 = ∞ simply replace
(2.3) by

∥(𝜒𝑁𝑛𝑌𝑛𝜒𝑁𝑛𝐿𝑛 + 𝜒𝑀𝑛𝑍𝑛𝜒𝑀𝑛𝐿𝑛)𝑥∥
= max(∥𝜒𝑁𝑛𝑌𝑛𝜒𝑁𝑛𝐿𝑛𝑥∥, ∥𝜒𝑀𝑛𝑍𝑛𝜒𝑀𝑛𝐿𝑛𝑥∥)
≤ max(∥𝑌𝑛∥, ∥𝑍𝑛∥)max(∥𝜒𝑁𝑛𝐿𝑛𝑥∥, ∥𝜒𝑀𝑛𝐿𝑛𝑥∥)
≤ max(∥𝑌𝑛∥, ∥𝑍𝑛∥)∥𝑥∥. □

2.3. Localizable sequences

Roughly speaking, we call a sequence 𝔸 ∈ ℬ𝛾,𝑇 localizable, if its snapshots describe
𝔸 locally sufficiently well and our aim is to replace the local cosets in Proposition
2.4 by the snapshots. For the precise definition recall the local homomorphisms 𝜙𝑥
which were defined in the beginning of this section.

Definition 2.5. Let ℒ𝛾,𝑇 denote the set of all sequences 𝔸 ∈ ℬ𝛾,𝑇 such that for
every 𝑥 ∈ [−1, 1] and 𝜑 ∈ 𝐶[−1, 1]

∙ ∥[𝑊 𝑡(𝔸), 𝑉−𝑡𝑛𝜑𝛾𝑛𝑉𝑡𝑛𝐼𝑡]∥ → 0 as 𝑛 → ∞
∙ 𝜙𝑥(𝔸+ 𝒢) = 𝜙𝑥({𝐸𝑡𝑛(𝐿𝑡𝑛𝑊 𝑡(𝔸)𝐿𝑡𝑛}+ 𝒢),

where 𝑡 := 𝑥 if 𝑥 ∈ {±1}, and 𝑡 := 0 otherwise. In what follows, the sequences in
ℒ𝛾,𝑇 are said to be localizable (with respect to 𝒞𝛾).
Proposition 2.6. We have

1. ℒ𝛾,𝑇 is a Banach algebra containing 𝒢 and 𝒥 𝑇 as closed ideals.
2. ℒ𝛾,𝑇 /𝒢 is inverse closed in ℱ/𝒢, and ℒ𝛾,𝑇 /𝒥 𝑇 is inverse closed in ℱ𝑇 /𝒥 𝑇 .
3. A sequence 𝔸 ∈ ℒ𝛾,𝑇 is stable if and only if its snapshots are invertible. It is

𝒥 𝑇 -Fredholm iff its snapshots are 𝒫𝑡-Fredholm, respectively.

Proof. The first assertion is quite obvious and from [18] we know that all snapshots
of a 𝒥 𝑇 -Fredholm sequence are 𝒫𝑡-Fredholm and further that a sequence in ℱ𝑇
is stable if and only if it is 𝒥 𝑇 -Fredholm and all snapshots are invertible.

Let 𝜑 ∈ 𝐶[−1, 1], 𝑥 ∈ [−1, 1] with 𝑡 ∈ 𝑇 as in Definition 2.5, further set
𝑊𝑛 := 𝑉−𝑡𝑛𝜑𝛾𝑛𝑉𝑡𝑛𝐼𝑡 and suppose that the operator 𝐴 := 𝑊 𝑡(𝔸) is 𝒫𝑡-Fredholm
with 𝐵 one of its 𝒫𝑡-regularizers. Then 𝑇1 := 𝐵𝐴 − 𝐼𝑡, 𝑇2 := 𝐴𝐵 − 𝐼𝑡 and
𝐾 := 𝐵 − 𝐵𝐴𝐵 are 𝒫𝑡-compact and

𝐵𝑊𝑛 = (𝐵(𝑇2 + 𝐼𝑡) +𝐾)𝑊𝑛 =𝒢 𝐵𝑊𝑛(𝑇2 + 𝐼𝑡) +𝐾𝑊𝑛

= 𝐵𝑊𝑛𝐴𝐵 +𝐾𝑊𝑛 =𝒢 𝐵𝐴𝑊𝑛𝐵 +𝐾𝑊𝑛

=𝒢 𝑊𝑛𝐵𝐴𝐵 +𝑊𝑛𝐾 = 𝑊𝑛𝐵,

where =𝒢 means equality up to a sequence of operators tending to zero in the norm.
Fix a function 𝜑𝑥 ∈ 𝐶[−1, 1] with ∥𝜑𝑥∥∞ = 1, which equals 1 in a neighborhood
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of 𝑥 and which is equal to zero in a neighborhood of every 𝜏 ∈ 𝑇 , 𝜏 ∕= 𝑡. Then,
both sequences

𝔸𝑥 := {𝜑𝑥,𝛾𝑛 𝐸𝑡𝑛(𝐿
𝑡
𝑛𝐴𝐿𝑡𝑛)𝜑

𝑥,𝛾
𝑛 𝐿𝑛} and 𝔹𝑥 := {𝜑𝑥,𝛾𝑛 𝐸𝑡𝑛(𝐿

𝑡
𝑛𝐵𝐿𝑡𝑛)𝜑

𝑥,𝛾
𝑛 𝐿𝑛}

belong to ℬ𝛾,𝑇 and
𝜙𝑥(𝔸

𝑥𝔹𝑥 − 𝕀+ 𝒢)
= 𝜙𝑥({𝜑𝑥,𝛾𝑛 𝐸𝑡𝑛(𝐿

𝑡
𝑛𝐴𝑉−𝑡𝑛𝜑𝑥,𝛾𝑛 𝜑𝑥,𝛾𝑛 𝑉𝑡𝑛𝐼

𝑡𝐵𝐿𝑡𝑛)𝜑
𝑥,𝛾
𝑛 } − 𝕀+ 𝒢)

= 𝜙𝑥({(𝜑𝑥,𝛾𝑛 )3𝐸𝑡𝑛(𝐿
𝑡
𝑛𝐴𝐵𝐿𝑡𝑛)𝜑

𝑥,𝛾
𝑛 } − 𝕀+ 𝒢)

= 𝜙𝑥({𝐸𝑡𝑛(𝐿𝑡𝑛(𝑇2 + 𝐼𝑡)𝐿𝑡𝑛} − 𝕀+ 𝒢)
= 𝜙𝑥({𝐸𝑡𝑛(𝐿𝑡𝑛𝑇2𝐿𝑡𝑛}+ 𝒢),

as well as 𝜙𝑥(𝔹
𝑥𝔸𝑥 − 𝕀+ 𝒢) = 𝜙𝑥({𝐸𝑡𝑛(𝐿𝑡𝑛𝑇1𝐿𝑡𝑛}+ 𝒢).

From Corollary 2.3 we know that we can apply the local principle of Al-
lan/Douglas to the elements in the algebra ℬ𝛾,𝑇/𝒥 𝑇 . Let Φ𝑥, 𝑥 ∈ [−1, 1] denote
the respective local homomorphisms. Since for the localizable sequence 𝔸 the cosets
Φ𝑥(𝔸+ 𝒥 𝑇 ), Φ𝑥(𝔸𝑥 + 𝒥 𝑇 ) coincide and since Φ𝑥(𝔸𝑥𝔹𝑥 + 𝒥 𝑇 ), Φ𝑥(𝔹𝑥𝔸𝑥 + 𝒥 𝑇 )
both equal Φ𝑥(𝕀+𝒥 𝑇 ) we find that 𝔸+𝒥 𝑇 is invertible in ℬ𝛾,𝑇/𝒥 𝑇 if all snapshots
are 𝒫𝑡-Fredholm. This particularly yields that 𝔸 is 𝒥 𝑇 -Fredholm in this case.

So, let 𝔸 ∈ ℒ𝛾,𝑇 be 𝒥 𝑇 -Fredholm and 𝔹 ∈ ℱ𝑇 be a regularizer. We show
that 𝔹 ∈ ℒ𝛾,𝑇 . The operator 𝐴 := 𝑊 𝑡(𝔸) is 𝒫𝑡-Fredholm and 𝐵 := 𝑊 𝑡(𝔹) is one
of its 𝒫𝑡-regularizers [18, Theorem 2.4]. Check that

𝜙𝑥(𝒥 𝑇 ) = 𝜙𝑥(𝒥 𝑡) := 𝜙𝑥({{𝐸𝑡𝑛(𝐿𝑡𝑛𝐾𝐿𝑡𝑛)}+ 𝒢 : 𝐾 ∈ 𝒦(E𝑡,𝒫𝑡)}).
With the notions as above we get 𝜙𝑥(𝔸

𝑥𝔹− 𝕀+𝒢), 𝜙𝑥(𝔸𝑥𝔹𝑥− 𝕀+𝒢) ∈ 𝜙𝑥(𝒥 𝑡) and
then we successively deduce that 𝜙𝑥(𝒥 𝑡) further contains the following elements:
𝜙𝑥(𝔸

𝑥(𝔹−𝔹𝑥)+𝒢), 𝜙𝑥(𝔹𝑥𝔸𝑥(𝔹−𝔹𝑥)+𝒢), 𝜙𝑥(𝔹−𝔹𝑥+𝒢). Consequently, there is a
𝒫𝑡-compact operator𝑀 on the space E𝑡 such that 𝜙𝑥(𝔹−𝔹𝑥−{𝐸𝑡𝑛(𝐿𝑡𝑛𝑀𝐿𝑡𝑛)}+𝒢)
equals zero, and hence the respective snapshot 𝑊 𝑡(𝔹 − 𝔹𝑥 − {𝐸𝑡𝑛(𝐿𝑡𝑛𝑀𝐿𝑡𝑛)}) is
zero as well. Since 𝑊 𝑡(𝔹𝑥) =𝑊 𝑡(𝔹) and 𝑊 𝑡({𝐸𝑡𝑛(𝐿𝑡𝑛𝑀𝐿𝑡𝑛)}) =𝑀 , this operator
𝑀 equals zero and we see that 𝜙𝑥(𝔹−𝔹𝑥+𝒢) = 0. This proves that 𝔹 ∈ ℒ𝛾,𝑇 . □

Following many standard references such as [4, 5, 8] or [12] we now slightly
change the perspective, consider the Cartesian product

𝒮 := ℒ(E−1)× ℒ(E0)× ℒ(E+1)
and equip it with componentwise defined algebraic operations as well as the norm

∥(𝐴,𝐵,𝐶)∥ := max{∥𝐴∥, ∥𝐵∥, ∥𝐶∥}
to obtain a Banach algebra. For a sequence 𝔸 ∈ ℒ𝛾,𝑇 we denote by smb𝔸 the
triple

smb𝔸 := (𝑊−1(𝔸),𝑊 0(𝔸),𝑊+1(𝔸)) ∈ 𝒮
and call it the symbol of 𝔸.
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Proposition 2.7. The mapping

Smb : ℒ𝛾,𝑇 /𝒢 → 𝒮, 𝔸+ 𝒢 �→ smb𝔸

is an isometric (and hence injective) algebra homomorphism. Moreover,

∥𝔸+ 𝒢∥ = lim
𝑛→∞ ∥𝐴𝑛∥

holds for every 𝔸 = {𝐴𝑛} ∈ ℒ𝛾,𝑇 .
Proof. Obviously, the mapping ℒ𝛾,𝑇 → 𝒮, 𝔸 �→ smb𝔸 is an algebra homomor-
phism and 𝒢 belongs to its kernel, hence Smb proves to be a homomorphism as
well. For every 𝑥 ∈ [−1, 1], the respective local homomorphisms 𝜙𝑥 and 𝑡 chosen
as in Definition 2.5 we have

∥𝜙𝑥(𝔸+ 𝒢)∥ = ∥𝜙𝑥({𝐸𝑡𝑛(𝐿𝑡𝑛𝑊 𝑡(𝔸)𝐿𝑡𝑛)}+ 𝒢)∥
≤ ∥{𝐸𝑡𝑛(𝐿𝑡𝑛𝑊 𝑡(𝔸)𝐿𝑡𝑛)}+ 𝒢∥
= lim sup

𝑛→∞
∥𝐸𝑡𝑛(𝐿𝑡𝑛𝑊 𝑡(𝔸)𝐿𝑡𝑛)∥ ≤ ∥𝑊 𝑡(𝔸)∥.

On the other hand, Theorem 1.13. in [18] and Equation (2.1) together with Propo-
sition 2.4 yield

∥𝑊 𝑡(𝔸)∥ ≤ lim inf
𝑛→∞ ∥𝐸−𝑡

𝑔𝑛 (𝐴𝑔𝑛)𝐿
𝑡
𝑔𝑛∥

≤ lim sup
𝑛→∞

∥𝐴𝑔𝑛∥ ≤ lim sup
𝑛→∞

∥𝐴𝑛∥
= ∥𝔸+ 𝒢∥ = max

𝑥∈[−1,1]
∥𝜙𝑥(𝔸+ 𝒢)∥

for every 𝑡 ∈ 𝑇 and every subsequence (𝐴𝑔𝑛) of (𝐴𝑛). Thus, we have proved that
lim sup ∥𝐴𝑔𝑛∥ equals max𝑡∈𝑇 ∥𝑊 𝑡(𝔸)∥ for every subsequence (𝐴𝑔𝑛), and therefore
the limit lim ∥𝐴𝑛∥ exists and has the same value. □

Now we can prove the announced asymptotic behavior for localizable se-
quences. For this we introduce the notation ∥𝐵−1∥ := ∞ if 𝐵 is not invertible.

Corollary 2.8. Let 𝔸 = {𝐴𝑛} ∈ ℒ𝛾,𝑇 . Then the norms ∥𝐴𝑛∥ and ∥𝐴−1
𝑛 ∥ converge

and

lim
𝑛→∞ ∥𝐴𝑛∥ = max

𝑡∈𝑇
∥𝑊 𝑡(𝔸)∥, lim

𝑛→∞ ∥𝐴−1
𝑛 ∥ = max

𝑡∈𝑇
∥(𝑊 𝑡(𝔸))−1∥.

Proof. The limit lim ∥𝐴𝑛∥ is already supplied by the previous proposition, and
we now consider the “inverses”. Suppose that one snapshot of 𝔸 = {𝐴𝑛} is not
invertible. Then Theorem 3.2. in [18] yields that 𝑠𝑟1(𝐴𝑛) or 𝑠𝑙1(𝐴𝑛) tend to zero as
𝑛 → ∞ and by Corollary 2.11. in [18] it follows that lim ∥𝐴−1

𝑛 ∥ = ∞. Conversely,
if all snapshots are invertible then the sequence is stable. Set 𝐵𝑛 := 𝐴−1

𝑛 if 𝐴𝑛 is
invertible and 𝐵𝑛 := 0 otherwise. Then {𝐵𝑛} proves to be a 𝒢-regularizer for 𝔸,
hence belongs to ℒ𝛾,𝑇 by Proposition 2.6, and its snapshots are (𝑊 𝑡(𝔸))−1. This
provides the second asserted limit as well. □
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Corollary 2.9. Let 𝔸 = {𝐴𝑛} ∈ ℒ𝛾,𝑇 be stable. Then the condition numbers of the
operators 𝐴𝑛 which are defined by cond(𝐴𝑛) := ∥𝐴𝑛∥∥𝐴−1

𝑛 ∥ converge and their
limit is

lim
𝑛→∞ cond(𝐴𝑛) = max

𝑡∈𝑇
∥𝑊 𝑡(𝔸)∥ ⋅max

𝑡∈𝑇
∥(𝑊 𝑡(𝔸))−1∥.

Remark 2.10. We want to point out that the idea to study an extension of the nat-
ural finite section algebra (arising from a certain class of operators) by additional
sequences of “inflated functions” in order to obtain an algebra with a well-suited
center which permits to employ the KMS-techniques of [3] goes back to Roch [14].

2.4. Approximation of pseudospectra

Within this paragraph we suppose 𝑋 to be a (complex) space of the type
𝐿𝑝(𝑆,Σ, 𝜇), with (𝑆,Σ, 𝜇) being a measure space such that 𝜇(𝑆) < ∞. This partic-
ularly includes 𝑋 = ℂ𝑁 , 𝑁 ∈ ℕ, equipped with the 𝑝-norm and the usual counting
measure, as well as 𝑋 = 𝐿𝑝([0, 1)). The latter is important for the treatment of
band-dominated operators over the real axis (see [18, Section 3.3]).

Then X := 𝑙𝑝(ℤ, 𝑋) can be identified with 𝐿𝑝(𝑆, Σ̂, 𝜇̂) where the measure

space (𝑆, Σ̂, 𝜇̂) is given by 𝑆 := ℤ × 𝑆, Σ̂ := {∪𝑘∈ℤ
{𝑘} × 𝐴𝑘 : 𝐴𝑘 ∈ Σ} and

𝜇̂(
∪
𝑘∈ℤ

{𝑘} × 𝐴𝑘) :=
∑
𝑘∈ℤ

𝜇(𝐴𝑘). For the following result see the discussion in
[20], preliminary to Theorem 2.5 and Theorem 2.6.

Theorem 2.11. Let Ω be a connected open subset of ℂ and 𝐴 : Ω → ℒ(X) an
analytic operator-valued function. Suppose that there exists 𝜆0 ∈ Ω such that the
derivative 𝐴′(𝜆0) of 𝐴 in 𝜆0 is invertible.
If ∥𝐴(𝜆)∥ ≤ 𝑀 for all 𝜆 ∈ Ω then ∥𝐴(𝜆)∥ < 𝑀 for all 𝜆 ∈ Ω.

This theorem stands in the end of a series of results dealing with the question
“Can the resolvent norm of an operator be constant on an open set?” As some
milestones in this development we further refer to Globevnik [7], Böttcher [2] and
Daniluk [6], and Shargorodsky [20].

Definition 2.12. For 𝑁 ∈ ℕ0 and 𝜖 > 0 the (𝑁, 𝜖)-pseudospectrum of a bounded
linear operator 𝐴 is defined as the set (we again use the convention ∥𝐵−1∥ = ∞
if 𝐵 is not invertible)

spN,𝜖𝐴 := {𝑧 ∈ ℂ : ∥(𝐴 − 𝑧𝐼)−2
𝑁∥2−𝑁 ≥ 1/𝜖}.

Let 𝑀1,𝑀2, . . . be a sequence of nonempty subsets of ℂ. The uniform (partial)
limiting set

u-lim
𝑛→∞𝑀𝑛

(
p-lim
𝑛→∞

𝑀𝑛

)
of this sequence is the set of all 𝜆 ∈ ℂ that are (partial) limits of a sequence (𝜆𝑛)
with 𝜆𝑛 ∈ 𝑀𝑛.

Remark 2.13. Notice that (for 𝑁 = 0) this definition of the (𝑁, 𝜖)-pseudospectrum
includes the definition of the (classical) 𝜖-pseudospectrum

sp𝜖𝐴 := {𝑧 ∈ ℂ : ∥(𝐴 − 𝑧𝐼)−1∥ ≥ 1/𝜖}.
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This has gained attention after it was discovered in [13] and [2] that, on the
one hand the 𝜖-pseudospectra approximate the spectrum but are less sensitive to
perturbations, and on the other hand the pseudospectra of discrete convolution
operators mimic exactly the pseudospectra of an appropriate limiting operator,
which is in general not true for the “usual” spectrum. See also [1, 5, 8] and the
references cited there.

Later on, Hansen [9, 10] introduced the (𝑁, 𝜖)-pseudospectra for linear opera-
tors on separable Hilbert spaces and pointed out that they share the nice properties
with case 𝑁 = 0, but offer a better approximation of the spectrum. Furthermore,
it was shown how the spectrum can be approximated numerically, based on the
consideration of singular values of certain finite matrices. Recently, one of the
authors extended this to the Banach space case [17].

Here, we restrict our considerations to the asymptotic connection between the
(𝑁, 𝜖)-pseudospectra of the operators 𝐴𝑛 and the respective snapshots. In analogy
to [5, Theorem 3.17] we prove

Theorem 2.14. Let 𝑋 = 𝐿𝑝(𝑆,Σ, 𝜇) with (𝑆,Σ, 𝜇) being a measure space such that
𝜇(𝑆) < ∞. For 𝔸 = {𝐴𝑛} ∈ ℒ𝛾,𝑇 and every 𝑁 ∈ ℕ0, 𝜖 > 0

u-lim
𝑛→∞ spN,𝜖𝐴𝑛 = p-lim

𝑛→∞
spN,𝜖𝐴𝑛 =

∪
𝑡∈𝑇

spN,𝜖𝑊
𝑡(𝔸).

Proof. Suppose 𝑧 ∈ sp𝑊 𝑡(𝔸), that is 𝑊 𝑡(𝔸 − 𝑧𝕀) and hence 𝑊 𝑡((𝔸 − 𝑧𝕀)2
𝑁

) are
not invertible. Then by Proposition 2.6 𝔸 − 𝑧𝕀 is not stable and Proposition 2.7

yields that lim ∥(𝐴𝑛 − 𝑧𝐿𝑛)
−2𝑁 ∥ = ∞ which implies 𝑧 ∈ spN,𝜖𝐴𝑛 for sufficiently

large 𝑛. Thus 𝑧 ∈ u-lim𝑛 spN,𝜖𝐴𝑛.
So, now suppose that 𝔸 − 𝑧𝕀 is stable, but 𝑧 ∈ spN,𝜖𝑊

𝑡(𝔸), which means

that ∥(𝑊 𝑡(𝔸) − 𝑧𝐼)−2
𝑁∥ ≥ 𝜖−2

𝑁

. Let 𝑈 be an arbitrary open ball around 𝑧 such

that 𝑊 𝑡(𝔸) − 𝑦𝐼 is invertible for all 𝑦 ∈ 𝑈 . If ∥(𝑊 𝑡(𝔸) − 𝑦𝐼)−2
𝑁∥ would be

less than or equal to 𝜖−2
𝑁

for every 𝑦 ∈ 𝑈 then Theorem 2.11 would imply that

∥(𝑊 𝑡(𝔸) − 𝑧𝐼)−2
𝑁∥ < 𝜖−2

𝑁

, a contradiction. For this notice that the function

𝑦 �→ (𝑊 𝑡(𝔸) − 𝑦𝐼)−2
𝑁

is analytic on 𝑈 and its first derivative in 𝑧 is invertible.

Hence there is a 𝑦 ∈ 𝑈 such that ∥(𝑊 𝑡(𝔸)− 𝑦𝐼)−2
𝑁 ∥ > 𝜖−2

𝑁

, that is we can find
a 𝑘0 such that

∥(𝑊 𝑡(𝔸)− 𝑦𝐼)−2
𝑁∥ >

(
𝜖 − 1

𝑘

)−2𝑁
for all 𝑘 ≥ 𝑘0.

Because 𝑈 was arbitrary we can choose a sequence (𝑧𝑚)𝑚∈ℕ of complex numbers

𝑧𝑚 ∈ sp𝑁,𝜖−1/𝑚𝑊 𝑡(𝔸) such that 𝑧𝑚 → 𝑧. Since lim𝑛 ∥(𝐴𝑛−𝑧𝑚𝐿𝑛)
−2𝑁 ∥ exists and

equals max𝑡∈𝑇 ∥(𝑊 𝑡(𝔸) − 𝑧𝑚𝐼)−2
𝑁 ∥, due to Proposition 2.7, it is greater than or

equal to (𝜖− 1/𝑚)−2
𝑁

. Consequently, for sufficiently large 𝑛, ∥(𝐴𝑛− 𝑧𝑚𝐼)−2
𝑁 ∥ ≥

𝜖−2
𝑁

and thus 𝑧𝑚 ∈ spN,𝜖𝐴𝑛. This shows that 𝑧 = lim𝑚 𝑧𝑚 belongs to the closed
set u-lim𝑛 spN,𝜖𝐴𝑛.
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Finally consider the case that ∥(𝑊 𝑡(𝔸)−𝑧𝐼)−2
𝑁∥ < 𝜖−2

𝑁

for all 𝑡 ∈ 𝑇 . Then

lim
𝑛→∞ ∥(𝐴𝑛 − 𝑧𝐿𝑛)

−2𝑁 ∥ = max
𝑡∈𝑇

∥(𝑊 𝑡(𝔸)− 𝑧𝐼)−2
𝑁∥ < 𝜖−2

𝑁

,

hence there are a 𝛿 > 0 and an 𝑛0 ∈ ℕ such that ∥(𝐴𝑛− 𝑧𝐿𝑛)
−2𝑁∥ ≤ 𝜖−2

𝑁 − 𝛿 for
all 𝑛 ≥ 𝑛0. If ∣𝑦 − 𝑧∣ is sufficiently small and 𝑛 ≥ 𝑛0 we then get

∥(𝐴𝑛 − 𝑦𝐿𝑛)
−2𝑁 ∥ = ∥((𝐴𝑛 − 𝑧𝐿𝑛)(𝐼 + (𝑧 − 𝑦)(𝐴𝑛 − 𝑧𝐿𝑛)

−1))−2
𝑁 ∥

= ∥(𝐴𝑛 − 𝑧𝐿𝑛)
−2𝑁 (𝐼 + (𝑧 − 𝑦)(𝐴𝑛 − 𝑧𝐿𝑛)

−1)−2
𝑁 ∥

≤ ∥(𝐴𝑛 − 𝑧𝐿𝑛)
−2𝑁 ∥

(1 − ∣𝑧 − 𝑦∣∥(𝐴𝑛 − 𝑧𝐿𝑛)−1∥)2𝑁

≤ 𝜖−2
𝑁 − 𝛿

(1 − ∣𝑧 − 𝑦∣∥(𝐴𝑛 − 𝑧𝐿𝑛)−1∥)2𝑁

< 𝜖−2
𝑁

.

Thus, 𝑧 /∈ p-lim𝑛 spN,𝜖𝐴𝑛. Since u-lim𝑛 spN,𝜖𝐴𝑛 ⊂ p-lim𝑛 spN,𝜖𝐴𝑛 this completes
the proof. □

Proposition 3.6 in [8] states that for compact sets 𝑀𝑛 the limits u-lim𝑀𝑛
and p-lim𝑀𝑛 coincide if and only if 𝑀𝑛 converge w.r.t. the Hausdorff distance (to
the same limiting set). Thus, we can reformulate the preceding theorem as follows.

Corollary 2.15. For a sequence 𝔸 = {𝐴𝑛} ∈ ℒ𝛾,𝑇 the (𝑁, 𝜖)-pseudospectra of the
elements 𝐴𝑛 converge with respect to the Hausdorff distance to the union of the
(𝑁, 𝜖)-pseudospectra of all snapshots 𝑊 𝑡(𝔸).

Remark 2.16. It is not hard to check that the previous results remain true, if one
considers subsequences 𝔸𝑔 of 𝔸 and the respective algebras ℒ𝛾,𝑇𝑔 .

3. Finite sections of band-dominated operators

Now, we reap the fruit of our labor and we recover and extend the results of
[12, Section 6.3] on the finite sections of band-dominated operators on 𝑙2.

Proposition 3.1. Let 𝔸 = {𝐴𝑛} ∈ ℱ𝒜𝑙𝑝
. Then

lim sup
𝑛→∞

∥𝐴𝑛∥ = max
𝑔∈ℋ𝔸

max
𝑡∈𝑇

∥𝑊 𝑡(𝔸𝑔)∥
lim inf
𝑛→∞ ∥𝐴𝑛∥ = min

𝑔∈ℋ𝔸

max
𝑡∈𝑇

∥𝑊 𝑡(𝔸𝑔)∥.

Proof. The idea is simple and straightforward: Given 𝔸 and 𝑔 ∈ ℋ𝔸 we are going
to construct a sequence 𝛾 such that 𝔸𝑔 is localizable with respect to 𝒞𝛾 , and
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apply the abstract results of the previous section. Choose 𝑔 ∈ ℋ𝔸, set 𝑖1 := 1 and
construct a subsequence 𝑖 = (𝑖𝑘) of 𝑔 such that

max
{∥(𝐸−𝑡

𝑔𝑛 (𝐴𝑔𝑛)𝐿
𝑡
𝑔𝑛 − 𝑊 𝑡(𝔸𝑔))𝐿𝑘∥,

∥𝐿𝑘(𝐸−𝑡
𝑔𝑛 (𝐴𝑔𝑛)𝐿

𝑡
𝑔𝑛 − 𝑊 𝑡(𝔸𝑔))∥ : 𝑡 ∈ 𝑇, 𝑔𝑛 ≥ 𝑖𝑘

}
<
1

𝑘

for every 𝑘 ≥ 2. This is possible, since 𝐸−𝑡
𝑔𝑛 (𝐴𝑔𝑛)𝐿

𝑡
𝑔𝑛 tend 𝒫𝑡-strongly to 𝑊 𝑡(𝔸𝑔).

Now, for 𝑘 ∈ ℕ, define 𝛾𝑛 := 𝑘/2 for all 𝑛 ∈ {𝑖𝑘, . . . , 𝑖𝑘+1 − 1} and consider 𝒞𝛾 ,
ℬ𝛾 with respect to 𝛾 = (𝛾𝑘)𝑘.

Firstly, let 𝑥 ∈ (−1, 1) and 𝑡 = 0, and check that for every 𝜑 ∈ 𝐶[−1, 1] and
every operator 𝐵 ∈ 𝒜𝑙𝑝 we have that ∥[𝐵,𝜑𝛾𝑛𝐼]∥ → 0 as 𝑛 → ∞. Indeed, this is eas-
ily seen if 𝐵 is a shift or an operator of multiplication, hence it is clear for band op-
erators and follows for band-dominated ones by a simple approximation argument.
Consequently, [{𝐿𝑛𝐵𝐿𝑛}, {𝜑𝛾𝑛𝐿𝑛}] ∈ 𝒢 for all 𝐵 ∈ 𝒜𝑙𝑝 and all 𝜑 ∈ 𝐶[−1, 1]. Since
𝔸 can be approximated (in the norm) by sequences 𝔸𝑚 which consist of finite sums
and products of pure finite section sequences {𝐿𝑛𝐵𝑚𝛼 𝐿𝑛}, and since 𝒢 is a closed

ideal, we even find that [𝔸, {𝜑𝛾𝑛𝐿𝑛}] ∈ 𝒢. Thus, 𝔸𝑖 ∈ ℬ𝛾,𝑇𝑖 . Moreover, for every
continuous function 𝜑 being equal to one in a neighborhood of 𝑥 and vanishing in
the endpoints ±1, we conclude that (𝐼−𝐿𝑛)𝐵𝜑𝛾𝑛𝐼 and 𝜑𝛾𝑛𝐵(𝐼−𝐿𝑛) tend to zero in
the norm as 𝑛 → ∞ and therefore {𝜑𝛾𝑛𝐿𝑛}({𝐿𝑛𝐵𝐿𝑛}{𝐿𝑛𝐶𝐿𝑛}−{𝐿𝑛𝐵𝐶𝐿𝑛}) ∈ 𝒢
for every 𝐵,𝐶 ∈ 𝒜𝑙𝑝 . Applying this observation to the sequences 𝔸𝑚 and utilizing
the approximation ∥𝔸𝑚 − 𝔸∥ → 0 as 𝑚 → ∞, we easily get that the sequence
{𝜑𝛾𝑛𝐿𝑛}(𝔸 − {𝐿𝑛𝑊 0(𝔸)𝐿𝑛}) belongs to the ideal 𝒢, hence 𝜙𝑥(𝔸𝑖 + 𝒢𝑖) equals
𝜙𝑥({𝐸0

𝑖𝑛(𝐿
0
𝑖𝑛𝑊

0(𝔸𝑖)𝐿
0
𝑖𝑛)} + 𝒢𝑖). Here 𝜙𝑥 is the local homomorphism on ℬ𝛾,𝑇𝑖 /𝒢𝑖

in the point 𝑥.
For 𝑥 = 𝑡 = 1 (and similarly for 𝑥 = 𝑡 = −1) we note that the snap-

shot 𝑊 1(𝔸𝑖) is always (the compression to the space E
1 of) a band-dominated

operator, and therefore it follows that ∥[𝑊 1(𝔸𝑖), 𝑉−𝑛𝜑𝛾𝑛𝑉𝑛𝐼
1]∥ → 0 as 𝑛 → ∞, by

the same arguments as above. In order to verify the relation

𝜙𝑥(𝔸𝑖 + 𝒢𝑖) = 𝜙𝑥({𝐸1
𝑖𝑛(𝐿

1
𝑖𝑛𝑊

1(𝔸𝑖)𝐿
1
𝑖𝑛)} + 𝒢𝑖)

we simply fix a continuous function 𝜑 being equal to one in 𝑥 = 1, having its
support in [1/2, 1] and derive from the choice of 𝔸𝑖 and the construction of the
blowing-up process for 𝜑 that

∥𝜑𝛾𝑖𝑘(𝐴𝑖𝑘 − 𝐸1
𝑖𝑘 (𝐿

1
𝑖𝑘𝑊

1(𝔸𝑖)𝐿
1
𝑖𝑘)∥ = ∥𝜑𝛾𝑖𝑘𝐿𝑘(𝐴𝑖𝑘 − 𝐸1

𝑖𝑘(𝐿
1
𝑖𝑘𝑊

1(𝔸𝑖)𝐿
1
𝑖𝑘)∥ → 0

as 𝑘 → ∞. Thus 𝔸𝑖 belongs to ℒ𝛾,𝑇𝑖 and, by Proposition 2.7, the limit of ∥𝐴𝑖𝑛∥
exists and

lim sup
𝑛→∞

∥𝐴𝑛∥ ≥ lim
𝑛→∞ ∥𝐴𝑖𝑛∥ = max

𝑡∈𝑇
∥𝑊 𝑡(𝔸𝑖)∥ = max

𝑡∈𝑇
∥𝑊 𝑡(𝔸𝑔)∥.

Since 𝑔 is chosen arbitrarily, we see that this estimate holds for every 𝑔 ∈ ℋ𝔸. On
the other hand, choose ℎ such that the sequence (∥𝐴ℎ𝑛∥) converges and realizes
the lim sup, that is lim𝑛 ∥𝐴ℎ𝑛∥ = lim sup𝑛 ∥𝐴𝑛∥. Pass to a subsequence 𝑔 ∈ ℋ𝔸ℎ

to deduce the asserted equality. The lim inf can be tackled analogously. □
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In the same way we get

Corollary 3.2. Let 𝔸 = {𝐴𝑛} ∈ ℱ𝒜𝑙𝑝
be stable. Then

lim sup
𝑛→∞

cond(𝐴𝑛) = max
𝑔∈ℋ𝔸

(
max
𝑡∈𝑇

∥𝑊 𝑡(𝔸𝑔)∥ ⋅max
𝑡∈𝑇

∥(𝑊 𝑡(𝔸𝑔))
−1∥

)
lim inf
𝑛→∞ cond(𝐴𝑛) = min

𝑔∈ℋ𝔸

(
max
𝑡∈𝑇

∥𝑊 𝑡(𝔸𝑔)∥ ⋅max
𝑡∈𝑇

∥(𝑊 𝑡(𝔸𝑔))
−1∥

)
.

Finally, again by considering suitable subsequences, one obtains

Corollary 3.3. Let 𝑋 = 𝐿𝑝(𝑆,Σ, 𝜇) with (𝑆,Σ, 𝜇) being a measure space such that
𝜇(𝑆) < ∞. For 𝔸 = {𝐴𝑛} ∈ ℱ𝒜𝑙𝑝

and every 𝑁 ∈ ℕ0, 𝜖 > 0

p-lim
𝑛→∞

spN,𝜖𝐴𝑛 =
∪

𝑔∈ℋ𝔸, 𝑡∈𝑇
spN,𝜖𝑊

𝑡(𝔸𝑔).

Remark 3.4. If for the whole sequence 𝔸 = {𝐴𝑛} ∈ ℱ𝒜𝑙𝑝
the snapshots 𝑊±1(𝔸)

already exist then these relations simplify to

lim
𝑛→∞ ∥𝐴𝑛∥ = max

𝑡∈𝑇
∥𝑊 𝑡(𝔸)∥ and

lim
𝑛→∞ cond(𝐴𝑛) = max

𝑡∈𝑇
∥𝑊 𝑡(𝔸)∥ ⋅max

𝑡∈𝑇
∥(𝑊 𝑡(𝔸))−1∥

and we again get that p-lim spN,𝜖𝐴𝑛 and u-lim spN,𝜖𝐴𝑛 coincide and equal to the
union of the (𝑁, 𝜖)-pseudospectra of all snapshots. This result particularly includes
the sequences in the algebra generated by the finite sections of Toeplitz or block
Toeplitz operators with continuous symbol by the construction as in Section 2.4.5
of [19]. These have been considered in lots of papers. A comprehensive survey is
given in the book [5]. See, in particular, its Sections 3.2 and 7.3.

If we consider 𝑋 = 𝐿𝑝[0, 1) the above results can be applied to convolution
type operators on 𝐿𝑝(ℝ). For more details see [18] and the references cited there.
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Abstract. The main topic of this work is the investigation of operator relations
which appear during the reduction of linear systems, particularly in the study
of boundary value problems. The first objective is to improve formulations like
“equivalent reduction” by the help of operator relations. Then we describe how
some of these operator relations can be employed to determine the regularity
class and effective solution of boundary value problems. Furthermore operator
relations are used to put boundary value problems into a correct space setting,
e.g., by operator normalization.
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1. Introduction

In many applications problems are “reduced” to simpler problems. So it happens,
e.g., in linear boundary value problems for partial differential equations of mathe-
matical physics by potential methods leading to boundary integral equations or to
semi-homogeneous boundary value problems where either the differential equation
or the boundary condition is homogeneous. It is quite common to speak about
“equivalent reduction”, see [41, p. 174], for instance. Sometimes it is mentioned
that there exists a one-to-one correspondence (substitution) between the solution
spaces and another one between the given data spaces, see [16, Theorem 5.6.7] and
connected remarks. Clearly, if these mappings are linear homeomorphisms, then
well-posed problems are transformed into well-posed problems and ill-posed into
ill-posed problems.

In the present paper we would like to illuminate the situation a little more.
Typically an elliptic linear boundary value problem is written in the form

𝐴𝑢 = 𝑓 in Ω (pde in nice domain) (1.1)

𝐵𝑢 = 𝑔 on Γ = ∂Ω (boundary condition). (1.2)
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More precisely the problem is: Determine the (general*) solution of the system
(1.1)–(1.2) (in a certain form**) where the following are given: Ω is a Lipschitz
domain in ℝ𝑛 (e.g.), 𝐴 ∈ ℒ(𝒳 , 𝑌1), 𝐵 ∈ ℒ(𝒳 , 𝑌2) are bounded linear operators
in Banach spaces of function(al)s living on Ω or Γ = ∂Ω. The data (𝑓, 𝑔) are
arbitrarily given in the (known) space 𝑌 = 𝑌1 ⊕ 𝑌2 (denoting the direct sum
considered as a Banach space). It is even more precise to mention that: *We
are looking for all solutions for any given data in those indicated spaces and in
a specific form that is **explicit, closed analytic, of series expansion, numerical
(plenty possible choices), with error estimate etc., or just in any form. As a rule
it is expected that the more detailed formulation is guessed by the reader.

The situation becomes a bit more transparent if we consider the operator
associated with the boundary value problem

𝐿 =

(
𝐴
𝐵

)
: 𝒳 → 𝑌 = 𝑌1 ⊕ 𝑌2 (1.3)

where the data space 𝑌 and the solution space 𝒳 are usually assumed to be known
(eventually modified later for practical reasons and in contrast to free bound-
ary problems or certain inverse problems). As a standard situation we shall work
only with Banach spaces; other interesting frameworks could be topological vector
spaces or Hilbert spaces. It is clear that a linear boundary value problem in the
abstract setting (1.1)–(1.2) is well posed if and only if the operator 𝐿 is bound-
edly invertible (a linear homeomorphism). Thus the main problem is: Find (in a
certain form) the inverse (resolvent) of the associated operator 𝐿 (or a generalized
inverse etc.). Associated operators were systematically used, e.g., in the work of
[5, 9, 10, 14–16, 27, 29, 34, 36, 41].

Who is not interested in the determination of the resolvent operator but only
in the (unique) solution 𝑢 for a single data set 𝑓, 𝑔 may become more interested by
the question if the solution depends continuously on the data, i.e., in the proof of
the problem to be well posed and therefore the existence of a continuous resolvent
operator (for continuity one needs to know the topologies).

This paper aims at discovering relations between associated operators, de-
scribing their properties in view of so-called “equivalent reduction” to simpler
situations. Precise operator theoretical formulations allow the discovery of odd
situations (like ill-posedness) and of convenient strategies for normalization (like
inclusion of compatibility conditions or the identification of transmission proper-
ties). We prove that the reduction of linear systems to semi-homogeneous linear
systems can be seen as an operator relation (Section 3). This kind of operator
relation has strong transfer properties in what concerns (a) common regularity
properties of operators (like invertibility, the Fredholm property etc.) and (b) the
mutual computation of generalized inverses (Section 4). Finally three well-known
classes of examples are discussed (Section 5) in order to underline the usefulness
of the employment of operator relations.
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If the reader is interested to see the explicit and efficient solution of concrete
boundary value problems by the help of operator relations, we refer to further
recent publications of the author and his collaborators [6, 8–10, 30, 40].

2. Some operator relations appearing in potential methods

The classical idea to present the possible solution 𝑢 ∈ 𝒳 by surface and/or volume
potentials can be seen as an operator factorization:

𝐿 =

(
𝐴
𝐵

)
𝒳 −−−−→ 𝑌

𝒦↖ ↗𝑇
𝑍

If 𝒦 is a linear homeomorphism, then 𝐿 is “equivalently reduced” to 𝑇 = 𝒦𝐿
in the sense that the two operators are (algebraically and topologically) equivalent,
i.e., by definition that 𝑇 is representable as

𝑇 = 𝐸 𝐿 𝐹 (2.1)

where 𝐸,𝐹 are linear homeomorphisms. This defines an equivalence relation in the
genuine mathematical sense (reflexive, symmetric and transitive) and practically
it includes the idea of a substitution in the solution and in the data space. For the
existence of a relation (2.1) we write 𝑇 ∼ 𝐿.

Obviously 𝑇 has all the good properties that 𝐿 has and vice versa. More
precisely: the relation (2.1) implies the transfer property TP1: Both operators
belong to the same regularity class of bounded linear operators in Banach spaces
in the sense of the following classification, which was stimulated by [28, 32] and
introduced in [38]:

ker𝑇 ker𝑇
𝛼(𝑇 ) = 0 𝛼(𝑇 ) < ∞ complemented closed

boundedly right invertible right
𝛽(𝑇 ) = 0 invertible Fredholm invertible surjective

left invertible right semi-Fredholm
𝛽(𝑇 ) < ∞ Fredholm Fredholm regularizable ℱ−

im𝑇 left left generalized no
complem. invertible regularizable invertible name

im𝑇 semi-Fredholm no normally
closed injective ℱ+ name solvable

Herein 𝛼(𝑇 ) = dimker𝑇 and 𝛽(𝑇 ) = codim im𝑇 = dim𝑌/ im𝑇 . An operator 𝑇
is said to be generalized invertible if there exists another bounded linear operator
𝑇− such that 𝑇𝑇−𝑇 = 𝑇 . This is equivalent to the fact that ker𝑇 and im𝑇 are
complemented. For more details see [8, 28, 38]. The reason for TP1 to be valid
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is simply that equivalent operators have isomorphic kernels, cokernels and iso-
morphic related quotient spaces, as well. But there is another important transfer
property TP2: Pseudo-inverses can be computed from each other, provided 𝐸,𝐹
or 𝐸−1, 𝐹−1 are known. The word pseudo-inverses stands here for the collection of
inverses, one-sided inverses, generalized inverses and Fredholm regularizers (yield-
ing one-sided inversion up to compact or finite rank operators). TP2 is doubtless
of particular interest in applications. Surely one finds plenty of further transfer
properties such as possible normalization methods or asymptotic expansion of 𝐿
and 𝑇 .

Now let us think, instead of (2.1) about operator relations in more generality.
Beside of the common definition of a relation between elements 𝑆 ∈ ℒ1 , 𝑇 ∈ ℒ2

in two classes of operators ℒ1 and ℒ2 as a subset of ℒ1 ×ℒ2 one concretely meets
relations defined

∙ by common properties (such as shown in the diagram),
∙ by isomorphic subspaces (like kernels etc.),
∙ by operator matrix identities.

For instance it makes sense in a certain context to consider two operators to be
“equivalent” if and only if they are both Fredholm operators and have the same
defect numbers [4] (which is quite different from the present notation). Also “local
equivalence” [37] is an operator relation but does not directly fall into one of these
categories.

Some important operator matrix identities are the following: Two operators
acting in Banach spaces are called equivalent after extension, in brief 𝑆 ∼∗ 𝑇 [1], if
there are Banach spaces 𝑍1, 𝑍2 and linear homeomorphisms 𝐸,𝐹 such that(

𝑆 0
0 𝐼𝑍1

)
= 𝐸

(
𝑇 0
0 𝐼𝑍2

)
𝐹. (2.2)

The relation (2.1) can be seen as a special case. Further the two operators are
called Δ-related operators, in brief 𝑆 Δ 𝑇 [6, 8], if there is a companion operator
𝑆Δ and linear homeomorphisms 𝐸,𝐹 such that(

𝑆 0
0 𝑆Δ

)
= 𝐸 𝑇 𝐹. (2.3)

If 𝐸 or 𝐹 are only linear bijections (not necessarily bi-continuous), then 𝑆 and 𝑇
are called algebraically equivalent, etc., writing

𝑆 ∼
𝑎𝑙𝑔 𝑇 , 𝑆 ∼∗

𝑎𝑙𝑔 𝑇 , 𝑆 Δ
𝑎𝑙𝑔 𝑇 . (2.4)

Properties of these relations are described in [3, 6, 8]. In the present context
the most important relation is (2.2) as we shall see. A remarkable known result is
the following

Theorem 2.1 (of Bart and Tsekanovskii [3]). Let 𝑇 ∈ ℒ(𝑋1, 𝑋2) and 𝑆 ∈ ℒ(𝑌1, 𝑌2)
be bounded linear operators in Banach spaces and assume 𝑇 ∼∗ 𝑆. Then ker𝑇 ≃
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ker𝑆. Also im𝑇 is closed if and only if im𝑆 is closed, and in that case 𝑋2/ im𝑇 ≃
𝑌2/ im𝑆.

Assume moreover that 𝑇 and 𝑆 are generalized invertible*. Then 𝑇∼∗𝑆 if and
only if ker𝑇 ≃ ker𝑆 and 𝑋2/ im𝑇 ≃ 𝑌2/ im𝑆.

This assumption* is essential. There are cases where sufficiency fails oth-
erwise, see Example 6 in [3]. The following result is known from [6, 8], the last
conclusion was already observed in [3], Theorem 3.

Corollary 2.2. If 𝑇 ∼∗ 𝑆, then the two operators have the two above-mentioned
transfer properties TP1 and TP2.

In case of Fredholm or semi-Fredholm operators the corresponding finite-
dimensional defect spaces have the same dimension.

3. Reduction to semi-homogeneous systems

Consider the semi-homogeneous (abstract) boundary value problem

𝐿0𝑢 =

(
𝐴
𝐵

)
𝑢 =

(
0
𝑔

)
∈ {0} ⊕ 𝑌2 ≃ 𝑌2 (3.1)

with associated operator

𝐵∣ker𝐴 : 𝑋0 = ker𝐴 −→ 𝑌2. (3.2)

How is this operator related to the full thing

𝐿 =

(
𝐴
𝐵

)
: 𝒳 −→ 𝑌 = 𝑌1 ⊕ 𝑌2 ?

In general, they will not be equivalent operators, since 𝑌 and 𝑌2 may not be
isomorphic. But, if 𝐴 is surjective and ker𝐴 is complemented, i.e., 𝐴 : 𝒳 −→ 𝑌1
is right invertible, then we have the following relation:

Lemma 3.1. Let 𝐿 =

(
𝐴
𝐵

)
∈ ℒ(𝒳 , 𝑌1⊕𝑌2) be a bounded linear operator acting

in Banach spaces. Further let 𝑅 be a right inverse of 𝐴, i.e.,

𝑅 ∈ ℒ(𝑌1,𝒳 ) , 𝐴𝑅 = 𝐼∣𝑌1 . (3.3)

Then the following operator factorization holds

𝐿 = 𝐸 𝑇 𝐹 =

(
0 𝐴∣𝑋1

𝐼∣𝑌2 𝐵∣𝑋1

)(
𝐵∣𝑋0 0
0 𝐼∣𝑋1

)(
𝑃
𝑄

)
(3.4)

where 𝑃 = 𝐼 − 𝑅𝐴 , 𝑄 = 𝑅𝐴 are continuous projectors in 𝒳 , 𝑋0 = ker𝐴 =
im𝑃 = ker𝑄 , 𝑋1 = im𝑄 = ker𝑃 . The first and third factor in (3.4) are
(boundedly) invertible as

𝐸 = 𝑌2 ⊕ 𝑋1 −→ 𝑌1 ⊕ 𝑌2

𝐹 = 𝒳 −→ 𝑋0 ⊕ 𝑋1 .

Proof. This lemma is proved by verification. □
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Obviously there is an analogous result for the semi-homogeneous (abstract)
boundary value problem

𝐿0𝑢 =

(
𝐴
𝐵

)
𝑢 =

(
𝑓
0

)
∈ 𝑌1 ⊕ {0} ≃ 𝑌1 .

The following conclusion is known in special form from applications, see [16, 41]
for instance, however never seen in this way, namely as an operator relation.

Theorem 3.2. Let 𝐿 =

(
𝐴
𝐵

)
∈ ℒ(𝒳 , 𝑌1 ⊕ 𝑌2) be a bounded linear operator in

Banach spaces. Then

∃𝑅∈ℒ(𝑌1,𝒳 )𝐴𝑅 = 𝐼 ⇒ 𝐿 ∼∗ 𝐵∣ker𝐴,
∃𝑅∈ℒ(𝑌2,𝒳 )𝐵𝑅 = 𝐼 ⇒ 𝐿 ∼∗ 𝐴∣ker𝐵 .

Proof. The first statement follows from the lemma before, since the first and the
third factor of (3.4) are invertible. Obviously, in the formulation of the lemma,
𝐴 and 𝐵 are interchangeable through a composition with permutation matrices.
Hence an analogous relation holds also in the second case. For convenience we
mention the corresponding formula: If 𝐵𝑅 = 𝐼∣𝑌2 , then(

𝐴
𝐵

)
=

(
𝐼∣𝑌1 𝐴∣𝑋1

0 𝐵∣𝑋1

)(
𝐴∣𝑋0 0
0 𝐼∣𝑋1

)(
𝑃
𝑄

)
(3.5)

where we put now 𝑃 = 𝐼 − 𝑅𝐵 , 𝑄 = 𝑅𝐵 which are continuous projectors in 𝒳 ,
𝑋0 = ker𝐵 = im𝑃 = ker𝑄 , 𝑋1 = im𝑄 = ker𝑃 . □
Remark 3.3. Formula (3.4) holds also, if 𝑅 is a generalized inverse of 𝐴, i.e., 𝐴
is not necessarily right invertible. However, in this case, the first factor in (3.4)
is not invertible, since 𝐴∣𝑋1 is not surjective. Therefore (3.4) is not anymore an
equivalent after extension relation. Anyway, the two operators 𝐿 and 𝐿0 can be
equivalent after extension. For instance, Fredholm operators 𝐴,𝐵,𝐿, where 𝐵∣ker𝐴
is invertible and both 𝐴∣ker𝐵 and 𝐿 have the same defect numbers, satisfy a relation
like (2.2), as a consequence of Theorem 2.1. It is not quite clear under which
(interesting) conditions the inverse conclusions in Theorem 3.2 are valid.

Theorem 3.4. Let 𝐿 be defined as before. Then

I. 𝐿 is boundedly invertible (and the abstract boundary value problem is well
posed) if and only if
1. the two semi-homogeneous problems are well posed,
2. the solution of the abstract boundary value problem splits uniquely as

𝑢 = 𝑢0 + 𝑢0 where

𝐿0𝑢0 =

(
𝑓
0

)
, 𝐿0𝑢0 =

(
0
𝑔

)
,

3. 𝐴 and 𝐵 are right invertible;
II. Each of the three conditions for its own is not sufficient for the boundary

value problem to be well posed;
III. The first two or the last two conditions imply that 𝐿 is invertible.
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Proof. I. If 𝐿 is invertible, then it is surjective, the two semi-homogeneous problems
are solvable for any data and the solutions are unique. Thus 𝐿0 and 𝐿0 are also
bijective bounded linear mappings and boundedly invertible because of the inverse
mapping theorem. This implies the properties 1 and 2. It further implies that 𝐴
and 𝐵 are surjective, since 𝐿0 and 𝐿0 are invertible, and that their kernels are
complemented because of

ker𝐴 + ker𝐵 = 𝒳 , ker𝐴 ⊕ ker𝐵 ≃ 𝒳 .

The latter norm equivalence follows from the fact that 𝐿0𝑢1 = 𝑓 , 𝐿0𝑢0 = 𝑔 yields

∣𝑢1∣+ ∣𝑢0∣ =
∣∣𝐿−1

0 𝑓
∣∣+ ∣∣(𝐿0)−1𝑔

∣∣ ≤ 2
∣∣𝐿−1(𝑓, 𝑔)

∣∣
≤ 2

∣∣𝐿−1∣∣ ∣𝐿𝑢∣ ≤ 2
∣∣𝐿−1∣∣ ∣𝐿∣ ∣𝑢∣

beside of the triangular inequality ∣𝑢∣ ≤ ∣𝑢1∣+ ∣𝑢0∣ in 𝒳 . Therefore 𝐴 and 𝐵 are
surjective and both have complemented kernels, i.e., they are right invertible.

The reverse implication is evident.

II. Condition 1 and 3 are both not sufficient, see Example 6.2 later on. Condition
2 is not sufficient, since there exist non-complemented, closed subspaces of Banach
spaces, if they are not Hilbert spaces [20]. Thus, if 𝒳 = 𝑋1 +𝑋0 is an algebraic
and not topologic decomposition, then

𝐿 =

(
𝐼𝑋1

𝐼𝑋0

)
: 𝒳 → 𝑋1 ⊕ 𝑋0

is not boundedly invertible, because the norms in 𝒳 and𝑋1+𝑋0 are not equivalent.

III. Both cases (if 1 and 2 or 2 and 3 are satisfied) imply the surjectivity of 𝐿 and
𝐿0 ∼∗ 𝐿 ∼∗ 𝐿0. Further 𝐿0 and 𝐿0 are injective. Thus 𝐿 is bijective and equivalent
after extension to a boundedly invertible or right invertible, injective operator, i.e.,
also boundedly invertible. □

Remark 3.5. What happens if 𝐴 or 𝐵 is not right invertible?

1. If 𝐴 is not right invertible, then either
(a) 𝐴 is not surjective, the boundary value problem is not solvable for all

data 𝑓 ∈ 𝑌1, i.e., 𝑌1 is chosen too large for a well-posed problem; or
(b) 𝐴 is surjective but ker𝐴 is not complemented, in which case it helps to

change the topology of 𝑌1 or of 𝒳 .
2. The right inverses 𝑅 of 𝐴 or 𝐵 in applications are often a volume or surface
potential or an extension operator, left invertible to a trace operator, see
[16, 41].

3. Each of the formulations (corresponding with 𝐿,𝐿0 and 𝐿0, respectively) has
advantages in certain situations, see the examples in Section 5. A motivation
for the consideration of the full problem (1.1)–(1.2) can be found in the theory
of boundary-domain integro-differential equations [27].
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4. Transfer properties

First we look at a consequence motivated by examples given in [3] which seems to
be important if we think about formulations like “equivalent reduction” of linear
boundary value problems or other linear systems.

Proposition 4.1. Let 𝑇 and 𝑆 be two bounded linear operators in Banach spaces.
If 𝑇 ∼∗𝑎𝑙𝑔 𝑆 but not 𝑇 ∼∗ 𝑆, then 𝑇, 𝑆 do not necessarily belong to the same
regularity class of operators.

Proof. This follows from techniques with non-complemented subspaces which allow
to construct operators with closed image, isomorphic kernels and co-kernels but
only one of them being generalized invertible, see [3], Section 4. Further examples
were given in [18]: convolution operators in Sobolev spaces on finite intervals. □

Hilbert spaces are of particular interest in applications, because of the energy
norm, for instance. Here we have:

Proposition 4.2. Let 𝑇 and 𝑆 be two normally solvable operators in Hilbert spaces.
Then 𝑇 ∼∗ 𝑆 if and only if

ker𝑇 ≃ ker𝑆 , coker𝑇 ≃ coker𝑆.

If this is fulfilled, 𝑇, 𝑆 have the transfer properties TP1 and TP2: they do belong
to the same regularity class and generalized inverses can be computed from each
other provided the mappings 𝐸,𝐹 or 𝐸−1, 𝐹−1 in (2.2) are known.

Proof. Normally solvable operators are linear and bounded by definition and their
images are closed according to a Lemma of Hausdorff [28]. In Hilbert spaces all
closed subspaces are complemented [20]. Therefore 𝑇 and 𝑆 are generalized invert-
ible (see the diagram), hence the second part of Theorem 2.1 applies. □

Proposition 4.3. Let 𝑇 and 𝑆 be two bounded linear operators with closed image in
separable Hilbert spaces. Then 𝑇∼∗𝑆 if and only if their defect numbers coincide:

𝛼(𝑇 ) = 𝛼(𝑆) , 𝛽(𝑇 ) = 𝛽(𝑆).

Proof. This is a consequence of the previous proposition since closed subspaces of
separable Hilbert spaces are isomorphic if and only if they have the same dimen-
sion, finite or infinite. □

Remark 4.4. The stronger relation 𝑇 ∼ 𝑆 yields moreover

ker𝑇 ≃ ker𝑆 , coker𝑇 ≃ coker𝑆

𝑋1/ ker𝑇 ≃ 𝑌1/ ker𝑆 , im𝑇 ≃ im𝑆

(also in the Banach space case) and these conditions are obviously characteristic
for the relation 𝑇 ∼ 𝑆 provided 𝑇 and 𝑆 are generalized invertible, i.e., if both
kernels and both images are complemented, cf. Theorem 2.1.
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According to the second transfer property (see Corollary 2.2) we have a kind
of reverse order law [31] which reads in its simplest form: If 𝑇 = 𝐸𝐹 and 𝐸,𝐹 are
invertible, then 𝑇−1 = 𝐹−1𝐸−1. Now we have:

Theorem 4.5 (Reverse order law). If the inverses of the operators 𝐸,𝐹 in the
relation 𝑆 ∼∗ 𝑇 (see (2.2)) are known and if 𝑆 is generalized invertible, a generalized
inverse 𝑇− of 𝑇 can be computed from a generalized inverse 𝑆− of 𝑆, by the formula

𝑇− = 𝑅11 𝐹−1
(

𝑆− 0
0 𝐼𝑍1

)
𝐸−1 (4.1)

where 𝑅11 denotes the restriction to the first block of the operator matrix.

Proof. See [8] or verify directly that 𝑇𝑇−𝑇 = 𝑇 . □

Similarly one obtains the following:

Corollary 4.6. Assume again 𝑆 ∼∗ 𝑇 .

1. If the operators 𝑇, 𝑆 belong to the smaller class of invertible, left invertible or
right invertible operators, a generalized inverse is automatically the inverse,
a left or right inverse, respectively.

2. Regularizers of Fredholm operators or one-sided regularizers of semi-Fredholm
operators (up to compact or finite rank operators) are obtained by the reverse
order law (4.1) in the same way.

Remark 4.7. In Theorem 4.5 it suffices even to assume only that 𝐸 is left invertible
and 𝐹 is right invertible. However this case is less relevant for applications. If the
order of the two factors is inverse: 𝑇 = 𝐹𝐸 where 𝐸−𝐸 = 𝐼 , 𝐹𝐹− = 𝐼, the
operator 𝑇 is not necessarily generalized invertible.

5. Normalization

If an operator 𝐿 (associated to a boundary value problem) is not normally solvable,
the question is: How to change the space setting (𝒳 , 𝑌 ) such that the modified

operator 𝐿̃ (defined by restriction and/or extension) is normally solvable or even of
higher regularity in the sense of the diagram? We speak then about normalization.
Somehow one likes to do this in a “natural way” by a “minimal change of spaces”.

The idea is to normalize another, related operator 𝑇 ∼∗ 𝐿 (for instance) which
belongs to a class of operators where the question can be answered more easily,
and to transfer the normalization of 𝑇 to a normalization of 𝐿.

Certainly there exist plenty of different normalization methods in various for-
mulations, see [12, 17, 33] for instance. Here we shall describe only one representa-
tive concept called minimal normalization. It was realized in Sommerfeld diffrac-
tion problems and their reduction to Wiener-Hopf equations in Sobolev spaces
[26, 39] with Fourier symbols in the class of invertible Hölder continuous functions

with a possible jump at infinity 𝒢𝐶𝜇(ℝ̈) [30]. Actually the special form of the
operator 𝑆 = 𝐿 is not relevant.
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Proposition 5.1. Let 𝑇 : 𝑋1 → 𝑌1 and 𝑆 : 𝑋2 → 𝑌2 be bounded linear operators in
Banach spaces and 𝑆 ∼∗ 𝑇 (see (2.2)). Further assume that

(i) 𝑇 is not normally solvable,
(ii) 𝑇 admits a minimal image normalization, i.e., there exists a linear subspace

𝑌 ≺
1 ⊂ 𝑌1 which is dense in 𝑌1 and a Banach space with respect to a different

norm such that the (image) restricted operator

𝑇≺ = Rst𝑇 : 𝑋1 → 𝑌 ≺
1

is normally solvable, and moreover 𝑇≺ is Fredholm with

dim(𝑌 ≺
1 / im𝑇≺) = dim(𝑌1/ im𝑇 ).

Then
(j) 𝑆 is not normally solvable,
(jj) admits a minimal image normalization

𝑆≺ = 𝑅11𝐸

(
𝑇≺ 0
0 𝐼

)
𝐹 : 𝑋2 → 𝑌 ≺

2

where 𝑌 ≺
2 = 𝑅1𝐸(𝑌

≺
1 ⊕𝑍2) is equipped with the norm topology induced by 𝑌 ≺

1

and 𝑅1 denotes restriction to the first component, further (𝛾) 𝑆≺ is Fredholm
with

𝛼(𝑆≺) = 𝛼(𝑇≺) = 𝛼(𝑇 ) = 𝛼(𝑆)

𝛽(𝑆≺) = 𝛽(𝑇≺) = dim(𝑌1/ im𝑇 ).

Proof. All statements are direct consequences of the relation 𝑆 ∼∗ 𝑇 and results of
the previous section. Note that the last equality is not a definition but a statement.

□
Corollary 5.2.

I. A generalized inverse or Fredholm regularizer of 𝑆≺ can be computed from a
corresponding one of 𝑇≺ by the reverse order law.

II. Roughly speaking: If 𝑇≺ is invertible, the problem 𝑆𝑢 = 𝑔 is well posed in the
modified setting (𝒳 , 𝑌 ≺

2 ).

Remark 5.3. 1. The formulation of Proposition 5.1 is a little long-winded but hits
exactly the situation in Sommerfeld type and wedge diffraction problems [9, 10,
14, 26, 38] where the image of related Wiener-Hopf operators is made smaller by
the postulation of so-called compatibility conditions between two given data.

2. There is a dual method called “minimal domain normalization” where the
domain of 𝑇 is enlarged to a space 𝑋≻

1 ⊃ 𝑋1 = dom𝑇 such that 𝑋1 is dense in
𝑋≻
1 , 𝑇

≻ = Ext𝑇 : 𝑋≻
1 → 𝑌1 a continuous extension of 𝑇 etc., see [30].

Example. The Sommerfeld type diffraction problem with two (possibly different)
impedance conditions on the two banks of the boundary (which is a half-line in
ℝ2) leads to a Wiener-Hopf operator in the standard setting of [15]

𝑊 = 𝑟+𝐴𝜙 : 𝐻
1/2
+ → 𝐻1/2(ℝ+)
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where 𝜙(𝜉) = 1 − 𝑖𝑝(𝜉2 − 𝑘2)−1/2 ∕= 0, 𝜉 ∈ ℝ, and 𝑝 is a suitable constant, see

[22, 25, 29]. Here 𝑊 maps the space 𝐻
1/2
+ (of 𝐻1/2 functions supported on ℝ+)

onto the space 𝐻̃1/2(ℝ+) (of𝐻
1/2(ℝ+) functions extensible by zero to a function in

𝐻1/2(ℝ)). As 𝐻̃1/2(ℝ+) is a proper dense subspace of 𝐻
1/2(ℝ+), and the operator

𝑊 restricted on 𝐻̃1/2(ℝ+) is also bounded (with respect to a new norm) and
injective, as well, the problem becomes well posed by minimal image normalization.

6. Examples of boundary value problems

Let us consider three well-known sceneries of elliptic boundary value problems with
different functional analytic structure, however fitting the present framework, i.e.,
working with the operators associated to the boundary value problems, in contrast
to more classical formulations, e.g., in [19].

6.1. Semi-classical formulation of an elliptic boundary value problem

The first class of boundary value problems is taken from the book of Wloka [41]. We
call it a semi-classical formulation because the orders of the differential operators
are not greater than the differentiability order of the solution space. Here the
domain Ω ⊂ ℝ𝑛 is bounded with (2𝑚 + 𝑘, 𝜅)-smooth boundary where 𝑚, 𝑘 ∈
ℕ , 𝑘 + 𝜅 ≥ 1. The spaces and operators are given by

𝒳 = 𝑊 2𝑚+𝑙
2 (Ω) , 𝑌1 = 𝑊 𝑙

2(Ω) , 𝑌2 =

𝑚∏
𝑗=1

𝑊
2𝑚+𝑙−𝑚𝑗−1/2
2 (∂Ω)

𝐴 =
∑

∣𝑠∣≤2𝑚
𝑎𝑠(𝑥)𝐷

𝑠

𝐵𝑗 =
∑

∣𝑠∣≤𝑚𝑗

𝑏𝑗,𝑠(𝑥)𝑇0𝐷
𝑠

where 𝐴 is uniformly elliptic and 𝐵 = (𝐵1, . . . , 𝐵2𝑚−1) has 2𝑚-smooth coeffi-
cients, ord𝐵𝑗 ≤ 2𝑚 − 1 and the Lopatinskii-Shapiro condition is fulfilled, see
[41, Section 11.1].

The main theorem is about the equivalence of (a) the boundary value problem
is elliptic, (b) 𝐿 is smoothable, (c) 𝐿 is Fredholm, (d) an a priori estimate holds,
see [41], Theorem 13.1. Surely, in general a (constructive) reduction to a semi-
homogeneous problem is not possible. However, if the coefficients of 𝐴 are constant
and if an extension operator is known as

𝐸ℓΩ : 𝑊 𝑙
2(Ω) → 𝑊 𝑙

2(ℝ
𝑛)

which is right invertible by the corresponding restriction operator, then a right
inverse of 𝐴 is given by

𝑅 = 𝑟Ω ℱ−1Φ−1 ⋅ ℱ 𝐸ℓΩ where Φ(𝜉) =
∑

∣𝑠∣≤2𝑚
𝑎𝑠(𝑖𝜉)

𝑠 , 𝜉 ∈ ℝ,

and Theorem 3.2 is applicable. We find a relation 𝐿 ∼∗ 𝐿0 = 𝐵∣ker𝐴.
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This indeed is the strategy to construct resolvent operators in special situa-
tions, particularly for certain geometrical configurations [23, 26].

Conversely, for special boundary conditions such as Dirichlet, Neumann and
others with constant coefficients it is often possible to find an extension operator
that is left invertible by 𝐵. In this case we obtain an equivalent after extension
relation between 𝐿 and 𝐿0 = 𝐴∣ker𝐵 as explained in Theorem 3.2.

6.2. Weak formulation of an elliptic boundary value problem

This class can be found in the book of Hsiao and Wendland [16], Chapter 5. The
boundary value problems are put in a so-called variational or weak formulation.
Here Ω ⊂ ℝ𝑛 is a strong Lipschitz domain,

𝐴𝑢 = −
𝑛∑

𝑗,𝑘=1

∂

∂𝑥𝑗
(𝑎𝑗𝑘(𝑥)

∂𝑢

∂𝑥𝑘
) +

𝑛∑
𝑗=1

𝑏𝑗(𝑥)
∂𝑢

∂𝑥𝑗
+ 𝑐(𝑥)𝑢 = 𝑓 in Ω

is an elliptic differential equation with 𝑓 given in 𝐻̃−1(Ω) and solution 𝑢 wanted
in 𝒳 = 𝐻1(Ω). We consider the Dirichlet problem in the following sense. Defining
the sesquilinear form:

𝑎Ω(𝑢, 𝑣) =

∫
Ω

{ 𝑛∑
𝑗,𝑘=1

(
𝑎𝑗𝑘(𝑥)

∂𝑢

∂𝑥𝑘

)⊤
∂𝑣

∂𝑥𝑗
+

𝑛∑
𝑗=1

(
𝑏𝑗(𝑥)

∂𝑢

∂𝑥𝑗

)⊤
𝑣 + (𝑐(𝑥)𝑢)⊤𝑣

}
𝑑𝑥

we look (in the sense of the formulation in Section 2) for 𝑢 ∈ 𝒳 such that

𝑎Ω(𝑢, 𝑣) = ⟨𝑓, 𝑣⟩Ω for all 𝑣 ∈ 𝐻1
0 (Ω)

𝑇0,Γ𝑢 = 𝑔 ∈ 𝐻1/2(Γ).

Note that 𝐻̃−1(Ω) is the space of 𝐻−1(Ω) functionals 𝑢 extensible by zero to a
functional ℓ0𝑓 ∈ 𝐻−1(ℝ𝑛) and 𝑔 ∈ 𝐻1/2(Γ) is arbitrarily given.

To make the solution unique, one has to exclude functionals 𝑓 ∈ 𝐻̃−1
Γ (Ω)

supported on Γ = ∂Ω, which is possible by considering a smaller data space instead
of 𝑌1: the orthogonal complement of 𝐻̃

−1
Γ (Ω) in 𝐻̃−1(Ω) written as

𝐻̃−1
0 (Ω) = 𝐻̃−1(Ω)⊖ 𝐻̃−1

Γ (Ω).

It turns out that in this setting the problem is Fredholm or even well-posed (see
[16], Chapter 5) and the previous results are applicable, if the corresponding right
inverses can be constructed (for special configurations).

6.3. A class of canonical diffraction problems

The third class of problems is devoted to applications in the theory of wave prop-
agation, see Meister et al. [9, 23]. There are plenty of so-called canonical prob-
lems which can be solved explicitly by Wiener-Hopf and related methods. One
of the subclasses that admitted complete explicit solution consists of boundary
value problems for the Helmholtz equation with a complex wave number 𝑘 where
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ℑ𝑚𝑘 > 0 in a quadrant Ω = {𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 : 𝑥𝑗 > 0}
(Δ + 𝑘2)𝑢 = 0 in Ω

𝑇0(𝛼𝑢+ 𝛽 ∂𝑢/∂𝑥+ 𝛾 ∂𝑢/∂𝑦) = 𝑔 on Γ = ∂Ω.

We are interested in weak solutions 𝑢 ∈ 𝐻1(Ω) for given 𝑔 ∈ 𝐻−1/2(ℝ+)
2 identi-

fying Γ ∖ {(0, 0)} with ℝ+ × ℝ+ and admitting different sets (𝛼, 𝛽, 𝛾) of constant
coefficients on the two half-lines.

The resulting boundary pseudo-differential operators (denoted by 𝑇 in the
beginning of Section 2) have the form [10]

𝑇 =

(
𝑇1 𝐾1

𝐾2 𝑇2

)
(6.1)

where 𝑇𝑗 are convolution type operators with symmetry (alias Wiener-Hopf plus/
minus Hankel operators acting in Sobolev spaces) and 𝐾𝑗 are very special Fourier
integral operators (appearing as compositions of certain extension and trace op-
erators), provided the ansatz potentials satisfy some minimal assumption (kind of
non-vanishing Fourier symbols called normal type). Precisely they have the form

𝑇𝑗 = 𝑟+𝐴𝜙𝑗 ℓ
𝑜 : 𝐻−1/2(ℝ+) → 𝐻−1/2(ℝ+)

𝐾𝑗 = 𝐶0𝐴𝜓𝑗 ℓ
𝑜 : 𝐻−1/2(ℝ+) → 𝐻−1/2(ℝ+).

Here ℓ𝑜 denotes odd extension from ℝ+ to ℝ, 𝐴𝜙 is the convolution operator with
Fourier symbol 𝜙 as before, and 𝐶0 is given by

𝐶0𝑓(𝑥) = (2𝜋)
−1

∫
ℝ

exp[−𝑡(𝜉)𝑥]𝑓(𝜉) 𝑑𝜉 , 𝑥 > 0

where 𝑓 denotes the Fourier transform of 𝑓 and 𝑡(𝜉) = (𝜉2 − 𝑘2)1/2 , 𝜉 ∈ ℝ , with
𝑡(𝜉) ≈ 𝜉 at +∞ .

In brief, it is always possible to obtain generalized inverses of the (scalar)
operators 𝑇𝑗 by factorization methods provided the Fourier symbols do not vanish
in ℝ [9, 10]. Thus, if the matrix (6.1) is triangular with one of the 𝐾𝑗 = 0, there
is a chance to invert (in the generalized sense) the operator matrix (6.1). So it
happens in all those boundary value problems (of normal type), but depending on
a tricky choice of the ansatz, i.e., of the potential 𝒦. For certain boundary value
problems, e.g., the impedance problem with two different impedances on the two
half-lines, it is only possible to obtain a triangular operator matrix 𝑇 with a choice
of 𝒦 that is not a linear homeomorphism, but a left invertible Fredholm operator
with index 𝛼(𝑇 )−𝛽(𝑇 ) = −1. Thus the operator relations in Section 2 have to be
modified by including a rank one operator, see [10, Section 5].

Beside of this, there appear compatibility conditions in most of the boundary
value problems, up to the case where the two boundary conditions have different
order: one is of order one (Neumann, Robin, oblique derivatives, etc.), the other of
order zero (Dirichlet type). The compatibility conditions are automatically discov-
ered via operator relations and sometimes they are of subtle nature, particularly
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in multimedia and interface problems (where more than two domains touch each
other in a singular point), see [24, 30] for further study.

There are plenty of other sceneries where operator relations play a fundamen-
tal role, for instance in system theory [1], the theory of Wiener-Hopf plus Hankel
operators [13], convolution equations on finite intervals [4, 7] and other singular
equations [6, 8]. In this sense the following bibliography is kept short. Several other
books and papers are relevant in the context of the present work. For instance,
from the area of operator theory we should emphasize also the work of H. Bart, I.
Gohberg, M. Kaashoek and collaborators where the notion of matricial coupling
and Schur coupling is considered and its interaction with the notion of equivalence
after extension, see [2].

The area of boundary value problems is so large that we can only refer indi-
rectly to the bibliographies of the encyclopaedic work such as the books of O.A.
Ladyzhenskaya [19] or G. Hsiao and W. Wendland [16]. It would be also interesting
to know how the present idea can be applied in cases of general boundary value
problems in the sense of [5, 35] and boundary value problems for pseudo-differential
equations in non-Lipschitz domains [11, 36], for instance.

Conclusion

Operator relations in general and the equivalent after extension relation in partic-
ular represent a powerful tool for investigations in the theory of linear boundary
value problems and other linear systems. The transfer property TP1 joins plenty of
statements about common properties of two related operators such as to be Fred-
holm, semi-Fredholm etc. which were often listed separately in former publications,
see [21] for instance.

TP2 enables results about explicit solution, simultaneously for different kinds
of pseudo-inverses, i.e., in quite different functional analytic situations. Suitable
normalization methods are discovered from the reduced systems, sometimes in
a “natural way” like compatibility conditions in the image space of the related
operators.

In the authors opinion, a remarkable value of the employment of operator
relations consists in the possibility of a compact and clear formulation of results
concerning the solution of linear systems. With the words of Albert Einstein: Make
things as simple as possible, but not simpler.
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