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Preface

There is no doubt that the computer has revolutionized the practice of
statistics in recent years. Computers allow us to analyze data more quickly using clas-
sical techniques, to analyze much larger data sets, to replace classical data analytic
methods—whose assumptions may not be met—with more flexible computer inten-
sive approaches, and to solve problems with no satisfactory classical solution.

Nor is there doubt that undergraduate mathematics and statistics courses could
benefit from the integration of computer technology. Computer laboratories can be
used to illustrate and reinforce important concepts; allow students to simulate exper-
iments and visualize their results; and allow them to compare the results of classical
methods of data analysis with those using alternative techniques. The problem is
how best to introduce these techniques in the curriculum.

This book introduces an approach to incorporating technology in the mathe-
matical statistics sequence, with an emphasis on simulation and computer intensive
methods. The printed book is a concise introduction to the concepts of probability
theory and mathematical statistics. The accompanying electronic materials are a
series of in-class and take-home computer laboratory problems designed to reinforce
the concepts and to apply the techniques in real and realistic settings.

The laboratory materials are written as Mathematica Version 5 notebooks [112]
and are designed so that students with little or no experience in Mathematica will be
able to complete the work. Mathematica notebooks contain text, data, computations,
and graphics; they are particularly well suited for presenting concepts and problems
and for writing solutions.

Laboratory problems, custom tools designed to enhance the capabilities of
Mathematica, an introduction to using Mathematica for probability and statistics,
and additional materials are included in an accompanying CD. An instructor's CD is
available to those who adopt the book. The instructor's CD contains complete solu-
tions to all laboratory problems, instructor guides, and hints on developing additional
tools and laboratory problems.

The materials are written to be used in the mathematical statistics sequence
given at most colleges and universities (two courses of four semester hours each or
three courses of three semester hours each). Multivariable calculus and familiarity
with the basics of set theory, vectors and matrices, and problem solving using a
computer are assumed. The order of topics generally follows that of a standard
sequence. Chapters 1 through 5 cover concepts in probability. Chapters 6 through 10
cover introductory mathematical statistics. Chapters 11 and 12 are on permutation

xv
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and bootstrap methods. In each case, problems are designed to expand on ideas from
previous chapters so that instructors could choose to use some of the problems earlier
in the course. Permutation and bootstrap methods also appear in the later chapters.
Chapters 13, 14, and 15 are on multiple sample analysis, linear least squares, and
analysis of contingency tables, respectively. References for specialized topics in
Chapters 10 through 15 are given at the beginning of each chapter.

The materials can also be used profitably by statistical practitioners or consul-
tants interested in a computer-based introduction to mathematical statistics, especially
to computer intensive methods.

Laboratory problems

Each chapter has a main laboratory notebook, containing between five and seven
problems, and a series of additional problem notebooks. The problems in the main
laboratory notebook are for basic understanding and can be used for in-class work or
assigned for homework. The additional problem notebooks reinforce and/or expand
the ideas from the main laboratory notebook and are generally longer and more
involved.

There are a total of 238 laboratory problems. Each main laboratory notebook
and many of the problem notebooks contain examples for students to work before
starting the assigned problems. One hundred twenty-three examples and problems
use simulation, permutation, and bootstrap methods. One hundred twenty-five prob-
lems use real data.

Many problems are based on recent research reports or ongoing research—for
example, analyses of the spread of an infectious disease in the cultured oyster popu-
lation in the northeastern United States [18], [42], [100]; analyses of the ecological
effects of the introduction of the Asian shore crab to the eastern United States [19],
[20]; comparison of modeling strategies for occurrences of earthquakes in southern
California [35]; comparison of spatial distributions of earthquakes [60] and of animal
species [105]; comparison of treatments for multiple sclerosis [63], [8]; and anal-
yses of associations between cellular telephone use and car accidents [88], between
genetics and longevity [114], and between incidence of childhood leukemia and
distance to a hazardous waste site [111]. Whimsical examples include comparisons
of world-class sprinters [108] and of winning baseball players and teams [98].

Note to the student

Concepts from probability and statistics are used routinely in fields as diverse as actu-
arial science, ecology, economics, engineering, genetics, health sciences, marketing,
and quality management. The ideas discussed in each chapter of the text will give
you a basic understanding of the important concepts. The last section in each chapter
outlines the laboratory problems.

Although formal proofs are not emphasized, the logical progression of the ideas
in a proof is given whenever possible. Comments, including reminders about topics
from calculus and pointers to where concepts will be applied, are enclosed in boxes
throughout the text.
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The accompanying CD contains two folders:

1. The PDFFiles folder contains documents in Acrobat PDF format. You will
need a current copy of Adobe Acrobat Reader to open and print these files.
Adobe Acrobat Reader is available for free from adobe. com.

2. The MMAFiles folder contains Mathematica files. You will need a copy of
Mathematica Version 5 to work with these files.

The PDFF lies folder includes two appendices to the printed text and 15 labo-
ratory workbooks. Appendix A is an introduction to the Mathematica commands used
in the laboratory problems. Print Appendix A and keep it for reference. Appendix
B contains tables of probabilities and quantiles suitable for solving problems when
you are not using the computer. Print Appendix B and keep it for reference. There
is one laboratory workbook for each chapter of the text. Print the ones you need for
your course.

The MMAFiles folder includes 15 folders of laboratory problems and a folder
of customized tools (StatTools). The StatTools folder should be placed in
the user base directory or other appropriate directory on your system. Consult the
online help within the Mathematica system for details, or speak to your instructor.

Note to the instructor

The material in the text is sufficient to support a problem-oriented mathematical
statistics sequence, where the computer is used throughout the sequence. In fact, the
first lab can be scheduled after three or four class meetings. Students are introduced
to parametric, nonparametric, permutation, and bootstrap methods and will learn
about data analysis, including diagnostic methods. (See the chapter outlines below.)

The text does not include exercises intended to be done by hand. You will
need to supplement the text with by-hand exercises from other books or with ones
that you design yourself. Suggestions for by-hand exercises that complement certain
laboratory problems are given in the instructor's CD.

In addition, the printed text does not include Mathematica commands. Step-
by-step instructions for using Mathematica commands are given in examples in the
electronic materials. Online help is available, and Appendix A on the CD can be used
as a reference.

Chapter outlines
Chapter 1 covers counting methods, axioms of probability, conditional probability,
and independence. The first laboratory session is intended to be scheduled early in
the term, as soon as the counting methods, axioms, and first examples are discussed.
Students become familiar with using Mathematica commands to compute and graph
binomial coefficients and hypergeometric probabilities (called "urn probabilities" in
the lab) and get an informal introduction to maximum likelihood and likelihood ratio
methods using custom tools. The additional problem notebooks reinforce these ideas
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and include problems on frequency generating functions, conditional probability, and
independence.

Chapters 2 and 3 are on discrete and continuous families of probability distribu-
tions, respectively. In the laboratory sessions, students become familiar with using
Mathematica commands for computing probabilities and pseudorandom samples
from univariate distributions, and with using custom tools for graphing models and
samples. The additional problem notebooks reinforce these ideas, give students an
informal introduction to goodness-of-fit, and include problems on probability gener-
ating functions, bivariate distributions, and transformations.

Chapter 4 is on mathematical expectation. In the laboratory and additional
problem notebooks, students work with Mathematica commands for model and
sample summaries, use sample summaries to estimate unknown parameters, apply
the Chebyshev and Markov inequalities, and work with conditional expectations.

Chapter 5 is on limit theorems. In the laboratory session, students use custom
tools to study sequences of running sums and averages, and answer a variety of
questions on exact and approximate distributions of sums. The additional problem
notebooks reinforce and expand on these ideas, and include several problems on
probability and moment generating functions.

Chapter 6 serves as a transition from probability to statistics. The chi-square,
Student t, and f ratio distributions are defined, and several applications are introduced,
including the relationship of the chi-square distribution to the sampling distribution
of the sample variance of a random sample from a normal distribution and the appli-
cation of the chi-square distribution to the multinomial goodness-of-fit problem. In
the laboratory session, students become familiar with chi-square and multinomial
distributions, and use a custom tool for carrying out a goodness-of-fit analysis using
Pearson's test (including analysis of standardized residuals). The additional problem
notebooks contain simulation studies and applications of Pearson's goodness-of-fit
test, and introduce students to minimum chi-square and method of moments esti-
mates. The chapter is intended to precede formal statistical inference.

Chapters 7 and 8 are on estimation theory and hypothesis testing theory, respec-
tively. In the first laboratory session, students become familiar with Mathematica
commands for constructing confidence intervals for normal means and variances,
and use custom tools to study the concepts of confidence interval and maximum
likelihood estimation. In the second laboratory session, students become familiar
with Mathematica commands for carrying out tests for normal means and variances,
construct power curves, use a custom tool to construct tests and compute power at
fixed alternatives, and compute sample sizes. The additional problem notebooks
reinforce and expand on these ideas, contain simulation studies, introduce the idea
of inverting tests to produce confidence intervals, and include applications of the
likelihood ratio goodness-of-fit test.

Chapter 9 is on order statistics and quantiles. In the laboratory session, students
apply custom tools for visualizing order-statistic distributions, for quantile estimation,
and for constructing box plots in a variety of problems. The additional problem
notebooks reinforce and expand on these ideas, introduce probability plots, study
order statistics for uniform models, and contain simulation studies.
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Chapter 10 is on parametric and nonparametric two sample analysis. In the
laboratory session, students apply Mathematica commands for analyzing indepen-
dent random samples from normal distributions and custom tools for the Wilcoxon
rank sum test in a variety of problems. Normal probability plots of standardized
observations are used to determine whether parametric methods should be used. The
additional problem notebooks reinforce and expand on these ideas, contain simu-
lation studies, introduce custom tools for quantile-quantile plots and inverting the
Wilcoxon rank sum test under the shift model, and consider the randomization model
for two sample analysis.

Chapter 11 is an introduction to permutation analysis, using nonparametric
analyses of two samples and paired samples as first examples. In the laboratory
session, students apply the rank sum, Smirnov, correlation, and signed rank tests
in a variety of problems. The additional problem notebooks introduce a variety
of different applications of permutation methods (using a variety of different test
statistics) and use frequency generating functions to construct certain permutation
distributions. Custom tools are used throughout, including tools for signed rank
analyses, for constructing random reorderings of data, and for visualizing random
reorderings of data.

Chapter 12 is an introduction to parametric and nonparametric bootstrap anal-
ysis. In the laboratory and additional problem notebooks, students consider the
performance of the bootstrap and apply bootstrap estimation and testing methods
in a variety of situations. Custom tools are used to construct random resamples, to
visualize random resamples, to summarize the results of bootstrap analyses, and to
construct approximate bootstrap confidence intervals using Efron's BCa method in
the nonparametric setting.

Chapter 13 is on parametric, nonparametric, and permutation methods for
analysis of multiple samples. In the laboratory session, students use simulation
to study analysis of variance for one-way layouts and blocked designs and to study
Kruskal-Wallis and Friedman tests and apply these techniques in a variety of situa-
tions. Normal probability plots of standardized residuals are used to check analysis
of variance assumptions. The additional problem notebooks reinforce these ideas and
contain simulation studies and problems on analysis of variance in the balanced two-
way layout setting. Custom tools are used throughout, including tools for analysis
of variance, Bonferroni analysis, and Kruskal-Wallis and Friedman tests.

Chapter 14 is on linear least squares, including simple and multiple linear
regression, permutation and bootstrap methods, and regression diagnostics. In the
laboratory session, students use simulation to study the components of a linear regres-
sion analysis and apply the techniques in a variety of situations. The additional
problem notebooks reinforce these ideas and contain problems on goodness-of-fit for
simple linear models, analysis of covariance, model building, and locally weighted
regression. Custom tools are provided for permutation analysis of slope in the simple
linear setting, locally weighted regression, and diagnostic plots.

Chapter 15 is on large sample and small sample analyses of contingency tables,
including diagnostic methods. In the laboratory session, students apply custom tools
for large sample analyses of I-by-J tables and for constructing large sample confi-
dence intervals for odds ratios to data from four studies. The additional problem
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notebooks reinforce these ideas, consider the relationship between odds ratios and
risk ratios, introduce McNemar's test for paired samples, and contain problems on
permutation methods for fourfold and I-by-J tables.
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Chapter 1

Introductory
Probability
Concepts

Probability is the study of random phenomena. Probability theory can be applied, for
example, to study games of chance (e.g., roulette games, card games), occurrences
of catastrophic events (e.g., tornados, earthquakes), survival of animal species, and
changes in stock and commodity markets.

This chapter introduces probability theory. The first three sections are concerned
with the definitions, axioms, and properties of probability and with counting methods
used to compute probabilities. The concepts of conditional probability and inde-
pendence are introduced in Sections 4 and 5, respectively. Section 6 outlines the
laboratory problems for this chapter.

1.1 Definitions
The term experiment (or random experiment) is used in probability theory to describe
a procedure whose outcome is not known in advance with certainty. Further, experi-
ments are assumed to be repeatable (at least in theory) and to have a well-defined set
of possible outcomes.

The sample space S is the set of all possible outcomes of an experiment. An
event is a subset of the sample space. A simple event is an event with a single
outcome. Events are usually denoted by capital letters (A, B, C,...) and outcomes
by lowercase letters (x, v, z,...). If x e A is observed, then A is said to have
occurred. The favorable outcomes of an experiment form the event of interest.

Each repetition of an experiment is called a trial. Repeated trials are repetitions
of the experiment using the specified procedure, with the outcomes of the trials
having no influence on one another.

Example: Coin-tossing experiment

For example, suppose you toss a fair coin 5 times and record h (for heads) or t (for
tails) each time. The sample space for this experiment is the collection of 32 = 25
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Chapter 1. Introductory Probability Concepts

sequences of 5 h's or t's:

S = {hhhhh, hhhht, hhhth, hhthh, hthhh, thhhh, hhhtt, hhtht, hthht, thhht,
hhtth, hthth, thhth, htthh, ththh, tthhh, ttthh, tthth, thtth, httth, tthht,
ththt, httht, thhtt, hthtt, hhttt, htttt, thttt, tthtt, tttht, tttth, ttttt}.

If you are interested in getting exactly 5 heads, then the event of interest is the simple
event A = {hhhhh}. If you are interested in getting exactly 3 heads, then the event
of interest is

A — {hhhtt, hhtht, hthht, thhht, hhtth, hthth, thhth, htthh, ththh, tthhh}.

1.2 Kolmogorov axioms

The basic rules (or axioms) of probability were introduced by A. Kolmogorov in the
1930's. Let A c. S be an event, and let P(A) be the probability that A will occur.

A probability distribution, or simply a probability, on a sample space S is a
specification of numbers P(A) satisfying the following axioms:

1. P(S) = 1.

2. If A is an event, then 0 < P(A) < 1.

3. If AI and AI are disjoint events (that is, if AI n AI = 0), then

3'. More generally, if AI, A2, ... are pairwise disjoint events (thatis, if A,-DA; = 0
when i ^ 7), then

If the sequence of events is infinite, then the right-hand side is understood to
be the sum of a convergent infinite series.

Since <S is the set of all possible outcomes, an outcome in S is certain to occur; the
probability of an event that is certain to occur must be 1 (axiom 1). Probabilities
must be between 0 and 1 (axiom 2), and probabilities must be additive when events
are pairwise disjoint (axiom 3).

Relative frequencies

The probability of an event can be written as the limit of relative frequencies. That
is, if A c <S is an event, then

where #(A) is the number of occurrences of event A in n repeated trials of the
experiment. If P(A) is the probability of event A, then nP(A) is the expected number
of occurrences of event A in n repeated trials of the experiment.

2
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1.2. Kolmogorov axioms

Example: Equally likely outcomes

If S is a finite set with N elements, A is a subset of S with n elements, and each
outcome is equally likely, then

3

For example, if you toss a fair coin 5 times and record heads or tails each time,
then the probability of getting exactly 3 heads is 10/32 = 0.3125. Further, in 2000
repetitions of the experiment you expect to observe exactly 3 heads:

Example: Geometric sequences and series

Geometric sequences and series are used often in probability. A typical setup is as
follows: the sample space S is a countably infinite set of outcomes,

and the probabilities of the simple events form a geometric sequence,

where p is a proportion (0 < p < 1). The sum of the sequence is 1.
For example, if you toss a fair coin until you get tails and record the sequence

of h's and t's, then the sample space is

The probabilities of the simple events form a geometric sequence with p = 1/2.
Further, the probability that tails is observed in three or fewer tosses is

Recall that the n* partial sum of the geometric sequence a, ar, a r2,... is

and that its sum is

In the application above, a = p, r = I — p, and the sum is 1.
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Chapter 1. Introductory Probability Concepts4

Properties following from the axioms

Properties following from the Kolmogorov axioms include the following:

1. Complement rule. Let Ac = S — A be the complement of A in S. Then

In particular, P(0) = 0.

2. Subset rule. If A is a subset of B, then P(A) < P(B).

3. Inclusion-exclusion rule. If A and B are events, then

To demonstrate the complement rule, note that the sample space S can be
written as the disjoint union of A and Ac:

Thus, P(S} = P(A) + P(AC) by axiom 3. Since P(S) = 1 by axiom 1, the additive
rule then implies that P(AC) = 1 - P(A).

To demonstrate the subset rule, note that event B can be written as the disjoint
union of A and B n Ac:

Thus, P(B) = P(A) + P(B U Ac) by axiom 3. Since P(B n Ac) > 0 by axiom 2, the
additive rule then implies that P(A) < P(B).

To demonstrate the inclusion-exclusion rule, note that event A U B can be
written as the disjoint union of A and B D Ac,

and that event B can be written as the disjoint union of B D A and B n Ac,

Axiom 3 applied twice implies the inclusion-exclusion rule:
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1.3. Counting methods

1.3 Counting methods
Methods for counting the number of outcomes in a sample space or event are important
in probability. The multiplication rule is the basic counting formula.

Theorem 1.1 (Multiplication Rule). If an operation consists ofr steps of which the
first can be done in n\ ways, for each of these the second can be done in n^ ways,
for each of the first and second steps the third can be done in nj ways, etc., then the
entire operation can be done in n\ x ni x • • • x nr ways.

Two special cases of the multiplication rule are as follows:

1. Sampling with replacement. For a set of size n and a sample of size r, there
are a total ofn r = n x n x - - - x n ordered samples, if duplication is allowed.

2. Sampling without replacement. For a set of size n and a sample of size r, there
are a total of

5

ordered samples, if duplication is not allowed.

If n is a positive integer, the notation n\ ("n factorial") is used for the product

For convenience, 0! is defined to equal 1 (0! = 1).

Example: Birthday problem

For example, suppose there are r unrelated people in a room, none of whom was
born on February 29 of a leap year. You would like to determine the probability that
at least two people have the same birthday.

(i) You ask for, and record, each person's birthday. There are

possible outcomes, where an outcome is a sequences of r responses,
(ii) Consider the event "everyone has a different birthday." The number of outcomes

in this event is

(iii) Suppose that each sequence of birthdays is equally likely. The probability that
at least two people have a common birthday is 1 minus the probability that
everyone has a different birthday, or
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6 Chapter 1. Introductory Probability Concepts

In particular, if r = 25 and A is the event "at least two people have a common
birthday," then P(A) = 0.57.

1.3.1 Permutations and combinations

A permutation is an ordered subset of r distinct objects out of a set of n objects. A
combination is an unordered subset of r distinct objects out of the n objects. By the
multiplication rule (Theorem 1.1), there are a total of

permutations of r objects out of n objects. Since each unordered subset corresponds
to r! ordered subsets (the r chosen elements are permuted in all possible ways), there
are a total of

combinations of r objects out of n objects.
For example, there are a total of 5040 ordered subsets of size 4 from a set of

size 10 and a total of 5040/24 = 210 unordered subsets.
The notation (") (read "n choose r") is used to denote the total number of

combinations. Special cases are as follows:

Further, since choosing r elements to form a subset is equivalent to choosing the
remaining n — r elements to form the complementary subset,

Example: Simple urn model

Suppose there are M special objects in an urn containing a total of N objects. In a
subset of size n chosen from the urn, exactly m are special.

(i) Unordered subsets. There are a total of

unordered subsets with exactly m special objects (and exactly n — m other
objects). If each choice of subset is equally likely, then for each m
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1.3. Counting methods 7

(ii) Ordered subsets. There are a total of

ordered subsets with exactly m special objects. (The positions of the special
objects are selected first, followed by the special objects to fill these positions,
followed by the nonspecial objects to fill the remaining positions.) If each
choice of subset is equally likely, then for each m

Interestingly, P(m special objects) is the same in both cases. For example, let N = 25,
M = 10, n — 8, and m = 3. Then, using the first formula,

Using the second formula, the probability is

Binomial coefficients

The quantities ("), r = 0,1, . . . , n, are often referred to as the binomial coefficients
because of the following theorem.

Theorem 1.2 (Binomial Theorem). For all numbers x and y and each positive
integer n,

The idea of the proof is as follows. The product on the left can be written as a
sequence of n factors:

The product expands to 2" summands, where each summand is a sequence of n letters
(one from each factor). For each r, exactly (") sequences have r copies of x and n — r
copies of y.

1.3.2 Partitioning sets

The multiplication rule (Theorem 1.1) can be used to find the number of partitions
of a set of n elements into k distinguishable subsets of sizes r\, rz , . . . , rfc.
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8 Chapter 1. Introductory Probability Concepts

Specifically, r\ of the n elements are chosen for the first subset, Y2 of the
remaining n — r\ elements are chosen for the second subset, etc. The result is the
product of the numbers of ways to perform each step:

The product simplifies to

(read "n choose r\, TI, ..., ?>")• For example, there are a total of

ways to partition the members of a class of 15 students into recitation sections of
size 5 each led by Joe, Sally, and Mary, respectively. (The recitation sections are
distinguished by their group leaders.)

Permutations of indistinguishable objects

The formula above also represents the number of ways to permute n objects, where
the first r\ are indistinguishable, the next r2 are indistinguishable,..., the last r*
are indistinguishable. The computation is done as follows: r\ of the n positions are
chosen for the first type of object, ri of the remaining n — r\ positions are chosen for
the second type of object, etc.

Multinomial coefficients

The quantities (r r
n
 r) are often referred to as the multinomial coefficients because

of the following theorem.

Theorem 1.3 (Multinomial Theorem). For all numbers x\,X2, . . . , X k and each
positive integer n,

where the sum is over all k-tuples of nonnegative integers with ^f r, = n.

The idea of the proof is as follows. The product on the left can be written as a
sequence of n factors,

The product expands to k" summands, where each summand is a sequence of n letters
(one from each factor). For each r\, r z , . . . , r*, exactly ( r" r) sequences have r\
copies of x\, TI copies of *2, etc.

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

1.4. Conditional probability

1.3.3 Generating functions

The generating function of the sequence OQ, a\, 02,... is the formal power series
whose coefficients are the given sequence:

If an = 0 and a, = 0 for i > n for some n, then the generating function reduces to
a polynomial of degree n. For example, the generating function of the sequence of
binomial coefficients is the polynomial

The following important property of generating functions can be proven using
series (or polynomial) multiplication.

Theorem 1.4 (Convolution Theorem). If GFi(f) is the generating function of the
sequence ao, a\, 02,..., and GF2(t) is the generating Junction of the sequence
bo, b1,b2,..., then GFi(t)GF2(f) is the generating junction of the sequence whose
fc* term is

The convolution theorem can be applied to counting problems. For example,
suppose an urn contains 10 slips of paper—four slips with the number 1 written
on each, five slips with the number 2, and one slip with the number 3. The urn
is sampled with replacement twice; the ordered pair of numbers and their sum are
recorded. Among the 100 ordered pairs, the frequency with which the sum of k
appears is the coefficient of tk in the following polynomial expansion:

For example, a sum of 4 can be obtained in 33 ways: 25 ways from ordered pairs of
the form (2,2), 4 ways from ordered pairs of the form (1,3), and 4 ways from ordered
pairs of the form (3,1).

The polynomial above is called the frequency generating Junction (FGF) of
the sequence of sums. More generally, (4t + 5t2 + f3)r is the FGF of the sequence
of sums when the urn is sampled with replacement r times. That is, the coefficient
of tk is the number of times a sum of k appears among the 10r ordered sequences.

1.4 Conditional probability
Assume that A and B are events and that P(B) > 0. Then the conditional probability
of A given B is defined as follows:

9
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10 Chapter 1. Introductory Probability Concepts

Event B is often referred to as the conditional sample space. P(A\B) is the relative
"size" of A within B.

For example, suppose that 40% of the adults in a certain population smoke
cigarettes and that 28% smoke cigarettes and have respiratory problems. Then

is the probability that an adult has respiratory problems given that the adult is a
smoker (70% of smokers have respiratory problems).

Note that if the sample space S is finite and each outcome is equally likely,
then the conditional probability of A given B simplifies to the following:

Multiplication rule for probability

Assume that A and B are events with positive probability. Then the definition of
conditional probability implies that the probability of the intersection, A n B, can be
written as a product of probabilities in two different ways:

More generally, the following theorem holds.

Theorem 1.5 (Multiplication Rule for Probability). If A\, AI, ..., Ak are events
and P(Ai n A2 n • • • A*-i) > 0, then

For example, suppose that 4 slips of paper are sampled without replacement
from a well-mixed urn containing 25 slips of paper: 15 slips with the letter X written
on each and 10 slips of paper with the letter Y written on each. Then the probability
of observing the sequence XYXX is P(XYXX) =

(The probability of choosing an X slip is 15/25; with an X removed from the urn, the
probability of drawing a Y slip is 10/24; with an X and Y removed from the urn, the
probability of drawing an X slip is 14/23; with two X slips and one Y slip removed
from the urn, the probability of drawing an X slip is 13/22.)
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1.4. Conditional probability 11

1.4.1 Law of total probability

The law of total probability can be used to write an unconditional probability as the
weighted average of conditional probabilities. Specifically, the following theorem
holds.

Theorem 1.6 (Law of Total Probability). Let A\, A 2 , . . . , Ak and B be events -with
nonzero probability. If A\, A2,..., A* are pairwise disjoint with union S, then

To demonstrate the law of total probability, note that if AI, A 2 , . . . , Ak are
pairwise disjoint with union 5, then the sets B n A\, B fl A a , . . . , B n Ak are pairwise
disjoint with union B. Thus, axiom 3 and the definition of conditional probability
imply that

For example, suppose that 70% of smokers and 15% of nonsmokers in a certain
population of adults have respiratory problems. If 40% of the population smoke
cigarettes, then

is the probability of having respiratory problems.

Law of average conditional probabilities

The law of total probability is often called the law of average conditional proba-
bilities. Specifically, P(B) is the weighted average of the collection of conditional
probabilities {P(B\ A;-)}, using the collection of unconditional probabilities {P(Aj}}
as weights.

In the respiratory problems example above, 0.37 is the weighted average of
0.70 (the probability that a smoker has respiratory problems) and 0.15 (the probability
that a nonsmoker has respiratory problems).

1.4.2 Bayes rule

Bayes rule, proven by the Reverend T. Bayes in the 1760's, can be used to update
probabilities given that an event has occurred. Specifically, the following theorem
holds.

Theorem 1.7 (Bayes Rule). Let A1, A.2, ..., Ak and B be events with nonzero prob-
ability. IfAi,A2,...,Ak are pairwise disjoint with union S, then
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12 Chapter 1. Introductory Probability Concepts

Bayes rule is a restatement of the definition of conditional probability: the
numerator in the formula is P(Aj n B), the denominator is P(B) (by the law of total
probability), and the ratio is P(Aj\B).

For example, suppose that 2% of the products assembled during the day shift
and 6% of the products assembled during the night shift at a small company are
defective and need reworking. If the day shift accounts for 55% of the products
assembled by the company, then

is the probability that a product was assembled during the day shift given that the
product is defective. (Approximately 28.9% of defective products are assembled
during the day shift.)

In applications, the collection of probabilities (P(Aj)} are often referred to as
the prior probabilities (the probabilities before observing an outcome in B), and the
collection of probabilities (P(Aj\B)} are often referred to as the posterior probabil-
ities (the probabilities after event B has occurred).

1.5 I ndependent events
Events A and B are said to be indevendent if

Otherwise, A and B are said to be dependent.
If A and B are independent and have positive probabilities, then the multipli-

cation rule for probability implies that

(The relative size of A within B is the same as its relative size within S\ the relative
size of B within A is the same as its relative size within <S.)

If A and B are independent, 0 < P(A) < 1, and 0 < P(B) < 1, then A and Bc are
independent, A° and B are independent, and Ac and Bc are independent.

More generally, events A1 , A2, ..., Ak are said to be mutually independent if

• for each pair of distinct indices (i'i, /2)> P(A^ n A,-2) = P(Ai}) x P(Ai2);

• for each triple of distinct indices (i'i, 12, i$),

• and so forth.

For example, suppose that 4 slips of paper are sampled with replacement from
a well-mixed urn containing 25 slips of paper: 15 slips with the letter X written on
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Further, since Q = 4 sequences have exactly 3 As, the probability of observing a
sequence with exactly 3 X's is 4(0.0864) = 0.3456.

1.5.1 Repeated trials and mutual independence

As stated at the beginning of the chapter, the term experiment is used in probability
theory to describe a procedure whose outcome is not known in advance with certainty.
Experiments are assumed to be repeatable and to have a well-defined set of outcomes.
Repeated trials are repetitions of an experiment using the specified procedure, with
the outcomes of the trials having no influence on one another. The results of repeated
trials of an experiment are mutually independent.

1.6 Laboratory problems
The first set of laboratory problems introduce basic Mathematica commands and
reinforce introductory probability concepts.

1.6.1 Laboratory: Introductory concepts

In the main laboratory notebook (Problems 1 to 6) you are asked to compute and graph
binomial coefficients; choose random subsets and compute probabilities related to the
subsets; choose random card hands and compute probabilities related to the hands;
and estimate unknown parameters in the simple urn model using an event of maximum
probability or a range of events with probability ratio greater than or equal to a fixed
constant.

Note that computer algorithms called pseudorandom number generators are
used to simulate the results of experiments, such as choosing random subsets or
choosing random card hands. Computer simulation will be used in many laboratory
problems in this book.

1.6.2 Additional problem notebooks

Problems 7 and 8 use frequency generating functions to compute probabilities related
to roulette and dice games, respectively. Problem 9 applies the simple urn model to
state lottery games.

Problems 10, 11, and 12 are additional applications of the simple urn model
and model estimation. Problem 10 uses data from a study on mercury contamination
in Maine lakes [54]. Problem 11 uses data from a study on estimating the size of
a fish population [92]. Problem 12 uses data from a breast cancer study [9], [47].
Note that Problems 11 and 12 are applications of a method known in ecology as the
capture-recapture method.

1.6. Laboratory problems 13

each and 10 slips of paper with the letter Y written on each. Then the probability of
observing the sequence XYXX is
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14 Chapter 1. Introductory Probability Concepts

Problems 13,14, and 15 involve computing and graphing probabilities. Problem
13 uses conditional probabilities to study polygraph tests [45]. Problem 14 uses
mutually independent events to study best-of-seven series. Problem 15 uses mutu-
ally independent events to study an alternating shots game.
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Chapter 2

Discrete
Probability
Distributions

Researchers use random variables to describe the numerical results of experiments.
For example, if a fair coin is tossed five times and the total number of heads is
recorded, then a random variable whose values are 0,1, 2, 3,4,5 is used to give a
numerical description of the results.

This chapter focuses on discrete random variables and their probability distri-
butions. The first two sections give the important definitions and example families of
distributions. Section 3 generalizes the ideas to joint distributions. Section 4 outlines
the laboratory problems.

2.1 Definitions
A random variable is a function from the sample space of an experiment to the real
numbers. The range of a random variable is the set of values the random variable
assumes. Random variables are usually denoted by capital letters (X, Y, Z,...) and
their values by lowercase letters (x, v, .z , . . .)•

If the range of a random variable is a finite or countably infinite set, then the
random variable is said to be discrete; if the range is an interval or a union of intervals,
the random variable is said to be continuous; otherwise, the random variable is said
to be mixed.

If X is a discrete random variable, then P(X = x) is the probability that an
outcome has value x. Similarly, P(X < x) is the probability that an outcome has
value x or less, P(a < X < b) is the probability that an outcome has value strictly
between a and b, and so forth.

Example: Coin-tossing experiment

For example, suppose that you toss a fair coin eight times and record the sequence
of heads and tails. Let X equal the difference between the number of heads and the
number of tails in the sequence. Then X is a discrete random variable whose range

15
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16 Chapter 2. Discrete Probability Distributions

is -8, -6, -4,..., 8. Further, P(X > 3) = P(X = 4, 6, 8) equals the probability of
6 or more heads:

(There are a total of 256 sequences, 37 of which have either 6, 7, or 8 heads.)

2.1.1 PDF and CDF for discrete distributions

If X is a discrete random variable, then the frequency junction (FF) or probability
density function (PDF) of X is defined as follows:

PDFs satisfy the following properties:

1 • f ( x ) > 0 for all real numbers x.

2. ^2X€R f ( x ) equals 1, where R is the range of X.

Since /(*) is the probability of an event, and events have nonnegative probabilities,
/(x) must be nonnegative for each x (property 1). Since the events X = x for x € R
are mutually disjoint with union S (the sample space), the sum of the probabilities
of these events must be 1 (property 2).

The cumulative distribution function (CDF) of the discrete random variable X
is defined as follows:

CDFs satisfy the following properties:

1. lim^-oo F(x) = 0 and lim^+oo F(x) = 1.

2. If X! < x2, then F(x1) < F(x2).

3. F(x) is right continuous. That is, for each a, limx_>a+ F(x) = F(a).

F(x) represents cumulative probability, with limits 0 and 1 (property 1). Cumulative
probability increases with increasing x (property 2) and has discrete jumps at values
of x in the range of the random variable (property 3).

Plotting PDF and CDF functions

The PDF of a discrete random variable is represented graphically by using a plot
of pairs (x, f(x)) for x e R, or by using a probability histogram, where area is
used to represent probability. The CDF of a discrete random variable is represented
graphically as a step function, with steps of height f ( x ) at each x e R.

For example, the left plot in Figure 2.1 is the probability histogram for the
difference between the number of heads and the number of tails in eight tosses of
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2.2. Univariate distributions 17

Figure 2.1. Probability histogram (left plot) and CDF (right plot) for the
difference between the number of heads and the number of tails in eight tosses of a
fair coin.

a fair coin. For each x in the range of the random variable, a rectangle with base
equal to the interval [x — 0.50, x + 0.50] and with height equal to f(x) is drawn.
The total area is 1.0. The right plot is a representation of the CDF. Note that F(x) is
nondecreasing, F(x) = 0 when x < —8, and F(x) = 1 when x > 8. Steps occur at
x = -8, -6,..., 6, 8.

2.2 Univariate distributions
This section defines several important families of distributions and states properties
of these distributions.

2.2.1 Example: Discrete uniform distribution

Let n be a positive integer. The random variable X is said to be a discrete uniform
random variable, or to have a discrete uniform distribution, with parameter n when
its PDF is as follows:

For example, if you roll a fair six-sided die and let X equal the number of dots on the
top face, then X has a discrete uniform distribution with n = 6.

2.2.2 Example: Hypergeometric distribution

Let N, M, and n be integers with 0 < M < N and 0 < n < N. The random variable
X is said to be a hypergeometric random variable, or to have a hypergeometric
distribution, with parameters n, M, and N, when its PDF is

for integers, x, between max(0, n + M — N) and min(n, M) (and zero otherwise).
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18 Chapter 2. Discrete Probability Distributions

Hypergeometric distributions are used to model urn experiments. Suppose
there are M special objects in an urn containing a total of N objects. Let X be the
number of special objects in a subset of size n chosen from the urn. If the choice
of each subset is equally likely, then X has a hypergeometric distribution. See the
simple urn model example on page 6.

2.2.3 Distributions related to Bernoulli experiments

A Bernoulli experiment is an experiment with two possible outcomes. The outcome
of chief interest is often called "success" and the other outcome "failure." Let p
equal the probability of success.

Imagine repeating a Bernoulli experiment n times. The expected number of
successes in n independent trials of a Bernoulli experiment with success probability
p is np.

For example, suppose that you roll a fair six-sided die and observe the number
on the top face. Let success be a 1 or 4 on the top face and failure be a 2, 3, 5, or
6 on the top face. Then p = 1/3 is the probability of success. In 600 trials of the
experiment, you expect 200 successes.

Example: Bernoulli distribution

Suppose that a Bernoulli experiment is run once. Let X equal 1 if a success occurs
and 0 if a failure occurs. Then X is said to be a Bernoulli random variable, or to have
a Bernoulli distribution, with parameter p. The PDF of X is as follows:

For each x, f(x) is the probability of the event "exactly x successes in n independent
trials." (There are a total of (") sequences with exactly x successes and n — x failures;
each sequence has probability px(\ — p)n~x.)

For example, if x = 2 and n = 5, then

where 5 represents success and F represents failure.

The binomial theorem (Theorem 1.2) can be used to demonstrate that the sum of probabilities
f(O) + f(I) + • • • + f(n) equals one.

A Bernoulli random variable is a binomial random variable with n = 1.

Example: Binomial distribution

Let X be the number of successes in n independent trials of a Bernoulli experiment
with success probability p. Then X is said to be a binomial random variable, or to
have a binomial distribution, with parameters n and p. The PDF of X is as follows:
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2.2. Univariate distributions 19

Example: Geometric distribution on 0,1, 2,...

Let X be the number of failures before the first success in a sequence of independent
Bernoulli experiments with success probability p. Then X is said to be a geometric
random variable, or to have a geometric distribution, with parameter p. The PDF of
X is as follows:

For each x, /(jc) is the probability of the sequence of x failures (.F) followed by a
success (5). For example, f(5) = P({FFFFFS}) = (1 – p)5p.

The probabilities /(O), /(I),... form a geometric sequence whose sum is 1.

An alternative definition of the geometric random variable is as follows: X is the trial
number of the first success in a sequence of independent Bernoulli experiments with success
probability p. In this case,

In particular, the range is now the positive integers.

Example: Negative binomial distribution on 0,1, 2,...

Let r be a positive integer and X be the number of failures before the r* success in
a sequence of independent Bernoulli experiments with success probability p. Then
X is said to be a negative binomial random variable, or to have a negative binomial
distribution, with parameters r and p. The PDF of X is as follows:

For each x, f ( x ) is the probability of the event "exactly x failures and r successes
in x + r trials, with the last trial a success." (There are a total of (x*^1) sequences
with exactly k failures and r successes, with the last trial a success; each sequence
has probability (1 — p)xpr.)

For example, if r = 3 and x = 2, then

wnere o represents success ana f represents taiiure.

An alternative definition of the negative binomial random variable is as follows: X is the
trial number of the r* success in a sequence of independent Bernoulli trials with success
probability p. In this case,

For each x, f(x) is the probability of the event "exactly x — r failures and r successes in x
trials, with the last trial a success."
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20 Chapter 2. Discrete Probability Distributions

2.2.4 Simple random samples

Suppose that an urn contains N objects. A simple random sample of size n is a
sequence of n objects chosen without replacement from the urn, where the choice of
each sequence is equally likely.

Let M be the number of special objects in the urn and X be the number of
special objects in a simple random sample of size n. Then X has a hypergeometric
distribution with parameters n, M, N. Further, if N is very large, then binomial
probabilities can be used to approximate hypergeometric probabilities.

Theorem 2.1 (Binomial Approximation). If N is large, then the binomial distribu-
tion with parameters n and p = M/N can be used to approximate the hypergeometric
distribution with parameters n, M, N. Specifically,

Note that if X is the number of special objects in a sequence of n objects chosen
with replacement from the urn and if the choice of each sequence is equally likely,
then X has a binomial distribution with parameters n and p = M/N. The theorem
says that if N is large, then the model where sampling is done with replacement can
be used to approximate the model where sampling is done without replacement.

Survey analysis

Simple random samples are used in surveys. If the survey population is small, then
hypergeometric distributions are used to analyze the results. If the survey population
is large, then binomial distributions are used to analyze the results, even though each
person's opinion is solicited at most once.

For example, suppose that a surveyor is interested in determining the level of
support for a proposal to change the local tax structure and decides to choose a simple
random sample of size 10 from the registered voter list. If there are a total of 120
registered voters, one-third of whom support the proposal, then the probability that
exactly 3 of the 10 chosen voters support the proposal is

Note that in the approximation you do not need to know the exact number of registered
voters.

If there are thousands of registered voters, the probability is
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2.2. Univariate distributions 21

2.2.5 Example: Poisson distribution

Let y be a positive real number. The random variable X is said to be a Poisson random
variable, or to have a Poisson distribution, with parameter A if its PDF is as follows:

The idea for the Poisson distribution comes from a limit theorem proven by the
mathematician S. Poisson in the 1830's.

Theorem 2.2 (Poisson Limit Theorem). Let /I be a positive real number, n a positive
integer, and p = 1/n. Then

Theorem 2.2 can be used to estimate binomial probabilities when the number
of trials is large and the probability of success is small. For example, if n = 10000,
p = 2/5000, and x = 3, then the probability of 3 successes hi 10000 trials is

The values are very close.

Poisson process

Events occurring in time are said to be generated by an (approximate) Poisson process
with rate A when the following conditions are satisfied:

1. The number of events occurring in disjoint subintervals of time are independent
of one another.

Recall that the Maclaurin series for y = ex is as follows:

Thus, the sequence f(O), f ( I ) , . . . has sum 1:

and Poisson's approximation is
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22 Chapter 2. Discrete Probability Distributions

2. The probability of one event occurring in a sufficiently small subinterval of
time is proportional to the size of the subinterval. If h is the size, then the
probability is kh.

3. The probability of two or more events occurring in a sufficiently small subin-
terval of time is virtually zero.

In this definition, A represents the average number of events per unit time.
If events follow an (approximate) Poisson process and X is the number of events

observed in one unit of time, then X has a Poisson distribution with parameter L
Typical applications of Poisson distributions include the numbers of cars passing

an intersection in a fixed period of time during a workday or the number of phone
calls received in a fixed period of time during a workday.

The definition of Poisson process allows you to think of the PDF of X as the limit of a
sequence of binomial PDFs. The observation interval is subdivided into n nonoverlapping
subintervals; the i th Bernoulli trial results in success if an event occurs in the Ith subinterval,
and failure otherwise. If n is large enough, then the probability that two or more events
occur in one subinterval can be assumed to be zero.

The idea of a Poisson process can be generalized to include events occurring
over regions of space instead of intervals of time. ("Subregions" take the place of
"subintervals" in the conditions above. In this case, A represents the average number
of events per unit area or per unit volume.)

2.3 Joint distributions
A probability distribution describing the joint variability of two or more random
variables is called a joint distribution.

For example, if X is the height (in feet), Y is the weight (in pounds), and Z is
the serum cholesterol level (in mg/dL) of a person chosen from a given population,
then we may be interested in describing the joint distribution of the triple (X, Y, Z).

A bivariate distribution is the joint distribution of a pair of random variables.

2.3.1 Bivariate distributions; marginal distributions

Assume that X and Y are discrete random variables. The joint frequency function
(joint FF) or joint probability density function (joint PDF) of (X, Y) is defined as
follows:

where the comma is understood to mean the intersection of the events. The notation
fxY(x, y) is sometimes used to emphasize the two random variables.

If X and 7 are discrete random variables, then the joint cumulative distribution
function (joint CDF) of (X, Y) is defined as follows:

where the comma is understood to mean the intersection of the events. The notation
FXY(X, y) is sometimes used to emphasize the two random variables.
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2.3. Joint distributions 23

Table 2.1. A discrete bivariate distribution.

* = 0
x= 1
x = 2
x = 3

I v = o
0.05
0.04
0.01
0.00

|| 0.10

y=l
0.04
0.16
0.09
0.01
0.30

y = 2
0.01
0.10
0.20
0.03
0.34

Y = 3
0.00
0.10
0.10
0.06

1
0.10
0.40
0.40
0.10

0.26 || 1.00

The marginal frequency function (marginal FF) or marginal probability density
function (marginal PDF) of X is

where the sum is taken over all y in the range of 7. The marginal FF or marginal
PDF of Y is defined similarly:

where the sum is taken over all x in the range of X.

Example: Finite joint distribution

For example, Table 2.1 displays the joint distribution of a pan- of random variables
with values 0, 1,2,3. The marginal distribution of X is given in the right column:

/jf (0) = /x(3) = 0.1, /x(l) = fx(2) = 0.4, and fx(x) = 0 otherwise.

Similarly, the marginal distribution of Y is given in the bottom row. Further,

2.3.2 Conditional distributions; independence

Let X and Y be discrete random variables. If P(Y = y) = 0, then the condi-
tional frequency function (conditional FF) or conditional probability density function
(conditional PDF) of X given Y = y is defined as follows:

Similarly, if P(X = x) = 0, then the conditional PDF of Y given X = x is
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24 Chapter 2. Discrete Probability Distributions

Note that in the first case, the conditional sample space is the collection of outcomes
with Y = y; in the second case, it is the collection of outcomes with X = x.

Conditional PDFs are often used as weights in weighted averages. See Chapter 4.

Given the joint distribution in Table 2.1, for example, the conditional PDF of
Y given X = 1 is as follows:

and is equal to zero otherwise.

Independent random variables

The discrete random variables X and Y are said to be independent if

Otherwise, X and Y are said to be dependent.

X and Y are independent if the probability of the intersection is equal to the product of the
probabilities

for all events of interest (for all x, y).

The random variables X and Y whose distributions are shown in Table 2.1 are
dependent. For example, f(I, 2)= fx(l)/y(2).

2.3.3 Example: Bivariate hypergeometric distribution

Let n, M1, M2, and M3, be positive integers with n < MI + M2 + M3. The random
pah" (X, Y) is said to have a bivariate hypergeometric distribution with parameters n
and (Mi, A/2, MS) if its joint PDF has the form

when x and y are nonnegative integers with x < min(n, MI), y < min(n, MI), and
max(0, n — M$) < x + y < min(n, MS) and is equal to zero otherwise.

Bivariate hypergeometric distributions are used to model urn experiments.
Specifically, suppose that an urn contains N objects, MI of type 1, MI of type 2,
and MS of type 3 (N = M\ + A/2 + MS). Let X equal the number of objects of type 1
and Y equal the number of objects of type 2 in a subset of size n chosen from the urn.
If each choice of subset is equally likely, then (X, Y) has a bivariate hypergeometric
distribution with parameters n and (Mi, M2, MS).

Marginal and conditional distributions

If (X, Y) has a bivariate hypergeometric distribution, then X has a hypergeometric
distribution with parameters n, M\, and N; and Y has a hypergeometric distribu-
tion with parameters n, M^, and N. In addition, each conditional distribution is
hypergeometric.
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2.3.4 Example: Trinomial distribution

Let n be a positive integer, and let p\, p2, and pi be positive proportions with sum 1.
The random pair (X, Y) is said to have a trinomial distribution with parameters n and
G*i. P2, £3) when its joint PDF has the form

when x = 0, 1,..., n; y = 0,1, ...,n',x + y <n and is equal to zero otherwise.
Trinomial distributions are used to model experiments with exactly three out-

comes. Specifically, suppose that an experiment has three outcomes which occur
with probabilities p\, p2, and p^, respectively. Let X be the number of occurrences
of outcome 1 and Y be the number of occurrences of outcome 2 in n independent
trials of the experiment. Then (X, Y) has a trinomial distribution with parameters n
and(p1p2,p3).

Marginal and conditional distributions

If (X, Y) has a trinomial distribution, then X has a binomial distribution with parame-
ters n and p\, and Y has a binomial distribution with parameters n and pi. In addition,
each conditional distribution is binomial.

2.3.5 Survey analysis

The results of Section 2.2.4 can be generalized. In particular, trinomial probabilities
can be used to approximate bivariate hypergeometric probabilities when N is large
enough, and each family of distributions can be used in survey analysis.

For example, suppose that a surveyor is interested in determining the level
of support for a proposal to change the local tax structure and decides to choose a
simple random sample of size 10 from the registered voter list. If there are a total
of 120 registered voters, where one-third support the proposal, one-half oppose the
proposal, and one-sixth have no opinion, then the probability that exactly 3 support,
5 oppose, and 2 have no opinion is

If there are thousands of registered voters, then the probability is

As before, you do not need to know the exact number of registered voters when you
use the trinomial approximation.
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26 Chapter 2. Discrete Probability Distributions

2.3.6 Discrete multivariate distributions

A multivariate distribution is the joint distribution of k random variables.
Ideas studied in the bivariate case (k = 2) can be generalized to the case

where k > 2. In particular, if Xi, Xi,..., Xk are discrete random variables, then the
following hold:

1. The joint frequency function (joint FF) or joint probability density Junction
(joint PDF) of (Xi, X-z,..., X^) is defined as follows:

for all real A>tuples (x1, x2 , . . . , xk), where X = (X\ ,X2,... , X k ) and commas
are understood to mean the intersection of events.

2. The random variables X\, Xi,..., Xk are said to be mutually independent (or
independent) if

for all real k-tuples (x1, x 2 , . . . , xk, where /,•(*(•) = P(Xt = jc,-) for / = 1,2,
..., k. (The probability of the intersection is equal to the product of the prob-
abilities for all events of interest.)

If the discrete random variables X\, X2 , . . . , Xk are mutually independent and
have a common distribution (each marginal PDF is the same), then X\, Xi,..., Xk
are said to be a random sample from that distribution.

2.3.7 Probability generating functions

Let X be a discrete random variable with values in the nonnegative integers and
Pi = P(X = /) for each /. The probability generating function of X is the following
formal power series:

If the range of X is finite, then the probability generating function reduces to a
polynomial. For example, the probability generating function of a binomial random
variable is the polynomial

An important property of probability generating functions is the following
convolution theorem.
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2.4. Laboratory problems 27

Theorem 2.3 (Convolution Theorem). Let PGFiO) be the probability generating
functionofXi anrfPGF2(0 be the probability generating function of X2- IfX\ andX-i
are independent, then the probability generating function of the sum W = X\ + Xi is

2.4 Laboratory problems
The laboratory problems for this chapter introduce Mathematica commands for
working with discrete probability distributions and reinforce ideas about discrete
distributions.

2.4.1 Laboratory: Discrete models

In the main laboratory notebook (Problems 1 to 7), you are asked to compute probabil-
ities using the PDF and CDF functions, use graphs to describe distributions, compute
and summarize simulated random samples from distributions, and use graphs to
compare simulated random samples to distributions. Binomial, Poisson, geometric,
negative binomial, and hypergeometric models are used.

Note that the graphical method used to display samples is called an empirical
histogram (or histogram). To construct a histogram, (1) the range of observed values
is subdivided into a certain number of subintervals and the number of observations
in each subinterval is counted; and (2) for each subinterval, a rectangle with base
equal to the subinterval and with area equal to the proportion of observations in that
subinterval is drawn. The sum of the areas is 1.

2.4.2 Additional problem notebooks

Problems 8 and 9 consider expected numbers in negative binomial and Poisson distri-
butions. Both problems use a political campaign setting.

Problem 10 is an inverse problem. For a binomial random variable with success
probability p and a fixed x0> find the smallest n so that P(X > x0) > 0.95. The
problem uses a college admissions setting.

Note that since

the convolution theorem follows from Theorem 1.4.

Corollary 2.4. More generally, ifX\, X2,..., Xn are mutually independent random
variables whose values are in the nonnegative integers and W is their sum, then the
probability generating function ofW is

PGF(0 = PGFi(OPGF2(0 • • • PGFn(f),

where PGF,(0 is the probability generating Junction ofXj.
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28 Chapter 2. Discrete Probability Distributions

Problems 11 and 12 are informal goodness-of-fit problems. Relative errors
(defined as the ratio of the difference between observed and expected numbers to
an expected number) are computed using the given sample data and are compared
to relative errors computed using simulated data. Problem 11 compares data from
a study on the numbers of boys and girls in German families with exactly eight
children to a binomial distribution [46], [80]. Problem 12 compares data from a
study on outbreaks of war over a 400-year period to a Poisson distribution [91], [65].

Problem 13 uses independence and probability generating functions to construct
the distribution of the number of school-age children in a town and to answer ques-
tions about the distribution.

Problems 14 and 15 consider the trinomial and bivariate hypergeometric distri-
butions, respectively. In the introduction and initial parts of each problem, you are
asked to graph distributions, compute and summarize simulated random samples,
and work with conditional distributions (Y given X = x). The last part of Problem
14 applies trinomial models in a veterinary science setting; the last part of Problem
15 applies bivariate hypergeometric models in a company benefits setting.
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Chapter 3

Continuous
Probability
Distributions

Researchers use random variables to describe the numerical results of experiments.
In the continuous setting, the possible numerical values form an interval or a union of
intervals. For example, a random variable whose values are the positive real numbers
might be used to describe the lifetimes of individuals in a population.

This chapter focuses on continuous random variables and their probability
distributions. The first two sections give the important definitions and example fami-
lies of distributions. Section 3 generalizes the ideas to joint distributions. Section 4
outlines the laboratory problems.

3.1 Definitions
Recall that a random variable is a function from the sample space of an experiment to
the real numbers and that the random variable X is said to be continuous if its range
is an interval or a union of intervals.

3.1.1 PDF and CDF for continuous random variables

If X is a continuous random variable, then the cumulative distribution function (CDF)
of X is defined as follows:

F(x) = P(X < x) for all real numbers x.

CDFs satisfy the following properties:

1. lirnx–>oo F(x) = 0 and limx_^+00 F(x) = 1.

2. If xi < x2, then F(JCI) < F(x2).

3. F(x) is continuous.

F(x) represents cumulative probability, with limits 0 and 1 (property 1). Cumula-
tive probability increases with increasing x (property 2). For continuous random
variables, the CDF is continuous (property 3).

29
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30 Chapter3. Continuous Probability Distributions

Figure 3.1. PDF (left plot) and CDF (right plot) for a continuous random
variable with range x > 0.

The probability density function (PDF) (or density function) of the continuous
random variable X is defined as follows:

PDFs satisfy the following properties:

1- /(*) > 0 whenever it exists.

2. fR f(x)dx equals 1, where R is the range of X.

f ( x ) represents the rate of change of probability; the rate must be nonnegative (prop-
erty 1). Since /(AC) is the derivative of the CDF, the area under y = f ( x ) must be 1
(property 2).

If R is the range of X and / is an interval, then the probability of the event
"the value of X is in the interval /" is computed by finding the area under the density
curve for x e I n R:

Note, in particular, that if a e R, then P(X = a) = 0 since the area under the curve
over an interval of length zero is zero.

Example: Distribution on the nonnegative real numbers

For example, let X be a continuous random variable whose range is the nonnegative
real numbers and whose PDF is

The left part of Figure 3.1 is a plot of the density function of X, and the right part is
a plot of its CDF:
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Further, for this random variable, the probability that X is greater than 8 is

3.1.2 Quantiles; percent!les

Assume that 0 < p < I. The p& quantile (or 100 p^ percentile) of the X distribution
(when it exists) is the point, xp, satisfying the equation

To find xp, solve the equation F(x) = p for x.
Important special cases of quantiles are as follows:

1. The median of the X distribution is the 50th percentile.

2. The quartiles of the X distribution are the 25th, 50th, and 75th percentiles.

3. The deciles of the X distribution are the 10th, 20 th,..., 90th percentiles.

The median is a measure of the center (or location) of a distribution. Another measure of
the center of a distribution is the mean, introduced in Chapter 4.

The interquartile range (IQR) is the difference between the 75th and 25th

percentiles: IQR = xo.75 — xo.25-

The IQR is a measure of the scale (or spread) of a distribution. Another measure of the
scale of a distribution is the standard deviation, introduced in Chapter 4.

For the distribution displayed in Figure 3.1, a general formula for the /7th quan-
tile is xp = —10 + 10/Vl — P, the median is (approximately) 4.142, and the IQR is
(approximately) 8.453.

3.2 Univariate distributions
This section defines several important families of distributions and states properties
of these distributions.

3.2.1 Example: Uniform distribution

Let a and b be real numbers with a < b. The continuous random variable X is said
to be a uniform random variable, or to have a uniform distribution, on the interval
[a, b] when its PDF is as follows:

Note that the open interval (a, b), or one of the half-closed intervals [a, b) or (a, b],
can be used instead of [a, b] as the range of a uniform random variable.
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Uniform distributions have constant density over an interval. That density is
the reciprocal of the length of the interval. If X is a uniform random variable on the
interval [a, b], and [c, d] c [a, b] is a subinterval, then

Also, P(c < X < d) = P(c < X < d) = P(c < X < d) = (d - c)/(b - a).

Computer commands that return "random" numbers in the interval [0,1] are simulating
random numbers from the uniform distribution on the interval [0,1].

3.2.2 Example: Exponential distribution

Let A be a positive real number. The continuous random variable X is said to be an
exponential random variable, or to have an exponential distribution, with parameter
A when its PDF is as follows:

Note that the interval jc > 0 can be used instead of the interval x > 0 as the range of
an exponential random variable.

Exponential distributions are often used to represent the time that elapses before
the occurrence of an event—for example, the time that a machine component will
operate before breaking down.

Relationship with the Poisson process

If events occurring over time follow an approximate Poisson process with rate /L,
where A is the average number of events per unit time, then the time between succes-
sive events has an exponential distribution with parameter L To see this, note the
following:

1. If you observe the process for t units of time and let Y equal the number of
observed events, then Y has a Poisson distribution with parameter /U. The PDF
of Y is as follows:

2. An event occurs, the clock is reset to time 0, and X is the time until the next
event occurs. Then X is a continuous random variable whose range is x > 0.
Further,

P(X > r) = P(0 events in the interval [0,t]) = P(Y = 0) = e~h

and P(X < t = 1 - e~kt.

3. Since f ( t ) = d /d t t P(X <t) = j-t(l- e~il) = Xe~Xt when t > 0 (and0otherwise)
is the same as the PDF of an exponential random variable with parameter A, X
has an exponential distribution with parameter L

Continuous Probability DistributionsChapter 3.
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3.2.3 Euler gamma function

Let r be a positive real number. The Euler gamma function is defined as follows:

If r is a positive integer, then T(f) = (r — 1)!. Thus, the gamma function is said to
interpolate the factorials.

The property F(r) = (r — 1)! for positive integers can be proven using induction. To start
the induction, you need to demonstrate that F(l) = 1. To prove the induction step, you
need to use integration by parts to demonstrate that F(r + 1) = r x F(r).

3.2.4 Example: Gamma distribution

Let a and /? be positive real numbers. The continuous random variable X is said to
be a gamma random variable, or to have a gamma distribution, with parameters a
and /? when its PDF is as follows:

Note that if a > 1, then the interval x > 0 can be used instead of the interval x > 0
as the range of a gamma random variable.

This function is a valid PDF since f ( x ) > 0 for all x and

(By dividing by the gamma function F(a), the area under the curve becomes 1.)

The parameter a is called a shape parameter; gamma distributions with the
same value of a have the same shape. The parameter ß is called a scale parameter;
for fixed a, as ft changes, the scale on the vertical and horizontal axes change, but
the shape remains the same.

If the shape parameter a = 1, then the gamma distribution is the same as the exponential
distribution with 1 = 1//5.

Relationship with the Poisson process

If events occurring over time follow an approximate Poisson process with rate A,
where A is the average number of events per unit time and if r is a positive integer,
then the time until the rth event occurs has a gamma distribution with a = r and
ft = I/A. To see this, note the following:
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Since f ( t ) is the same as the PDF of a gamma random variable with parameters
a = r and ft = 1/1, X has a gamma distribution with parameters a. = r and
ß=\/L

3.2.5 Distributions related to Poisson processes

In summary, three distributions are related to Poisson processes:

1. If X is the number of events occurring in a fixed period of time, then X is a
Poisson random variable with parameter /I, where 1 equals the average number
of events for that fixed period of time. The probability that exactly x events
occur in that interval is

3. The PDF /(t) = d / d t f P ( X < t) is computed using the product rule:

2. Let X be the time you observe the r* event, starting from time 0. Then X is a
continuous random variable whose range is x > 0. Further, P(X > t) is the same
as the probability that there are fewer than r events in the interval [0, t]. Thus,

1. If you observe the process for t units of time and let Y equal the number of
observed events, then Y has a Poisson distribution with parameter It. The PDF
of Y is as follows:

andP(X<t) = l-P(X> t).
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2. If X is the time between successive events, then X is an exponential random
variable with parameter A, where A is the average number of events per unit
time. The CDF of X is

3. If X is the time to the r* event, then X is a gamma random variable with
parameters a = r and ß = I/A, where A is the average number of events per
unit time. The CDF of X is

If a = r and r is not too large, then gamma probabilities can be computed by hand using
the formula for the CDF above. Otherwise, the computer can be used to find probabilities
for gamma distributions.

3.2.6 Example: Cauchy distribution

Let a be a real number and b be a positive real number. The continuous random
variable X is said to be a Cauchy random variable, or to have a Cauchy distribution,
with parameters a and b when its PDF is as follows:

Recall that the family of antiderivatives of f ( x ) above is as follows:

Using this fact, it is easy to demonstrate that /(x) is a valid PDF.

The parameter a is called the center of the Cauchy distribution since the graph of
the Cauchy PDF is symmetric around x = a. The median of the Cauchy distribution
is a. The parameter b is called the scale (or spread) of the Cauchy distribution. The
IQR of the Cauchy distribution is 2b.

3.2.7 Example: Normal or Gaussian distribution

Let u be a real number and a be a positive real number. The continuous random
variable X is said to be a normal random variable, or to have a normal distribution,
with parameters u and a when its PDF is as follows:
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where exp() is the exponential function. The normal distribution is also called the
Gaussian distribution, in honor of the mathematician Carl Friedrich Gauss.

The graph of the PDF of a normal random variable is the famous bell-shaped
curve. The parameter fi is called the mean (or center) of the normal distribution,
since the graph of the PDF is symmetric around x = ft. The median of the normal
distribution is /i. The parameter a is called the standard deviation (or spread) of the
normal distribution. The IQR of the normal distribution is (approximately) 1.35<7.

Normal distributions have many applications. For example, normal random
variables can be used to model measurements of manufactured items made under
strict controls; normal random variables can be used to model physical measurements
(e.g., height, weight, blood values) in homogeneous populations.

The PDF of the normal distribution cannot be integrated in closed form. Most computer
programs provide functions to compute probabilities and quantiles of the normal distribution.

Standard normal distribution

The continuous random variable Z is said to be a standard normal random variable,
or to have a standard normal distribution, when Z is a normal random variable with
H = 0 and a = 1. The PDF and CDF of Z have special symbols:

The notation zp is used for the Pth quantile of the Z distribution.

A table of cumulative probabilities of the standard normal random variable, suitable for
doing problems by hand without using the computer, is given in Appendix B on the CD.
The table can be used to estimate quantiles and to find probabilities and quantiles of other
normal distributions.

3.2.8 Example: Laplace distribution

Let in be a real number and /? be a positive real number. The continuous random
variable X is said to be a Laplace random variable, or to have a Laplace distribution
with parameters u and f3 when its PDF is as follows:

where exp() is the exponential function.
The parameter u is called the mean (or center) of the Laplace distribution,

since the graph of the PDF is symmetric around x = u. The median of the Laplace
distribution is u. The parameter ß is called the scale (or spread) of the Laplace
distribution. The IQR of the Laplace distribution is 21n(2)/? « 1.39/f.

3.2.9 Transforming continuous random variables

If X and Y = g(X) are continuous random variables, then the CDF of X can be used
to determine the CDF and PDF of Y.
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Figure 3.2. PDFs of a continuous random variable with values on 0 < x <
2 (left plot) and of its reciprocal with values on y > 0.5 (right plot).

Example: Reciprocal transformation

For example, let X be a continuous random variable whose range is the open interval
(0,2) and whose PDF is

and the CDF of Y is

The left part of Figure 3.2 is a plot of the density function of X, and the right
part is a plot of the density function of Y.

Example: Square transformation

Let Z be the standard normal random variable and W be the square of Z, W = Z2.
Then for w > 0,

and let Y equal the reciprocal of X, Y = l/X. Then for y > 1/2,

Since the graph of the PDF of Z is symmetric around z = 0, <£(—z) = 1 — ̂ (z) for
every z. Thus, the CDF of W is
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and the PDF of W is

W — Z2 is said to have a chi-square distribution with one degree of freedom. The chi-square
family of distributions is introduced in Chapter 6.

Location-scale distributions

The continuous uniform, Cauchy, normal, and Laplace distributions are examples o
location-scale families of distributions. In each case, if X is a member of the famil
and Y is a linear transformation of X,

then Y is a member of the same family of distributions.
Note, in particular, that if X is a normal random variable with parameters u

and a, and Z is the standard normal random variable, then X = aZ + p.

3.3 Joint distributions
Recall that a probability distribution describing the joint variability of two or more
random variables is called a joint distribution and that a bivariate distribution is the
joint distribution of a pair of random variables.

3.3.1 Bivariate distributions; marginal distributions

Assume that X and Y are continuous random variables. The joint cumulative distri-
bution Junction (joint CDF) of the random pair (X, Y) is defined as follows:

where the comma is understood to mean the intersection of the events. The notation
F X Y ( X , y) is sometimes used to emphasize the two random variables.

The joint probability density function (joint PDF) (or joint density function) of
the random pair (X, Y) is defined as follows:

whenever F has continuous second partial derivatives. The notation f x v ( x , y) is
sometimes used to emphasize the two random variables.

The marginal probability density Junction (marginal PDF) (or marginal density
function) of X is
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Figure 3.3. Joint PDF for a random pair (left plot) and region of nonzero
density in the xy-plane (right plot).

and 0 otherwise, where the integral is taken over all y in the range of Y. The marginal
PDF (or marginal density function) of Y is defined similarly:

The left part of Figure 3.3 is a graph of the surface z = f(x, y), and the right part
shows the region of nonzero density in the xy-plane. The total volume under the
surface and above the rectangular region in the jry-plane is 1.

For this random pair, the marginal PDF of X is

Further, the probability that X is greater than Y is

and 0 otherwise, where the integral is taken over all x in the range of X.

Example: Joint distribution on a rectangle

For example, assume that the continuous pair (X, Y) takes values in the rectangle
[-1,2] x [–1,1] with joint PDF

and the marginal PDF of Y is
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3.3.2 Conditional distributions; independence

Let X and Y be continuous random variables with joint PDF f ( x , y) and marginal
PDFs fx(x) and fy(y), respectively. If /y(y) = 0, then the conditional probability
density function (conditional PDF) (or conditional density Junction) ofX given Y = y
is defined as follows:

Similarly, if fx(x) = 0, then the conditional PDF (or conditional density function)
of Y given X = x is

The function fx\Y=y(x\y) is a valid PDF since fx\Y-y(x\y) > 0 and

Similarly, the function fy\x=x(y\x) is a valid PDF.

Conditional PDFs are often used as weights in weighted averages. See Chapter 4.

For the joint distribution pictured in Figure 3.3, for example, the area under the
curve z = f ( x , 0) is /y (0) = 3/8, and the conditional distribution of X given 7 = 0
has PDF

Independent random variables

The continuous random variables X and Y are said to be independent if the joint CDF
equals the product of the marginal CDFs for all real pairs

or, equivalently, if the joint PDF equals the product of the marginal PDFs for all real
pairs

Otherwise, X and Y are said to be dependent.
The random variables X and Y whose joint distribution is shown in Figure 3.3

are dependent. For example, /(0,0) = fx(0)fy(0).
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3.3.3 Example: Bivariate uniform distribution

Let R be a region of the plane with finite positive area. The continuous random pair
(X, Y) is said to have a bivariate uniform distribution on the region R if its joint PDF
is as follows:

Bivariate uniform distributions have constant density over the region of nonzero
density. That constant density is the reciprocal of the area. If A is a subregion of R
(A C R\ then

That is, the probability or the event the point (x, y) is in A is the ratio or the area
of the subregion to the area of the full region.

If (X, Y) has a bivariate uniform distribution, then X and Y may not be uniform
random variables. Consider, for example, the bivariate uniform distribution on the
triangle with vertices (0,0), (1,0), (1,1). Since the area of the triangle is 1/2, the
PDF of X is

Similarly, /y(y) = 2y when 0 < y < 1 and 0 otherwise. Since the PDFs are not
constant on each range, the random variables X and Y are not uniformly distributed.

3.3.4 Example: Bivariate normal distribution

Let ux and uy be real numbers, ax and ay be positive real numbers, and p be a number
in the interval — 1 < p < 1. The random pair (X, Y) is said to have a bivariate
normal distribution with parameters ux, uy, ox, ay, and p when its joint PDF is as
follows:

where

and exp() is the exponential function.

Standard bivariate normal distribution

The random pair (X, Y) is said to have a standard bivariate normal distribution with
parameter p when (X, Y) has a bivariate normal distribution with ux = uy = 0 and
ffx m= ffy = 1. The joint PDF of (X, Y) is as follows:
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Marginal and conditional distributions

If (X, Y) has a bivariate normal distribution, then each marginal and conditional distri-
bution is normal. In particular, if (X, Y) has a standard bivariate normal distribution,
then

(i) X and Y are standard normal random variables,
(ii) the conditional distribution of Y given X = x is normal with parameters u = px

and a = ^/l — p2, and
(iii) the conditional distribution of X given Y = y is normal with parameters \i = py

and a = -y/1 — p2.

If (X, Y) has a bivariate normal distribution, then

has a standard bivariate normal distribution.

3.3.5 Transforming continuous random variables

If X, Y, and W = g(X, Y) are continuous random variables, then the joint PDF of
(X, Y) can be used to determine the PDF and CDF of W.

Example: Product transformation

For example, let X be the length, Y be the width, and W = XY be the area of a
random rectangle. Specifically, assume that X is a uniform random variable on the
interval (0, 2), Y is a uniform random variable on the interval (0, 1), and X and Y
are independent.

Since the joint PDF of (X, Y) is

(X, Y) has a bivariate uniform distribution. For 0 < w < 2,

and d/dw P(W <w) = 1/2 (ln(2) – ln(w)) = ± In(2/iw). Thus,

The left part of Figure 3.4 shows the region of nonzero joint density with
contours corresponding to w = 0.2,0.6, 1.0, 1.4 superimposed. The right part is a
plot of the density function of W = XY.
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Figure 3.4. The region of nonzero density for a bivariate uniform distri-
bution on the rectangle (0, 2) x (0,1) (left plot) and the PDF of the product of the
coordinates with values in (0,2) (right plot). Contours for products equal to 0.2,
0.6, 1.0, and 1.4 are shown in the left plot.

3.3.6 Continuous multivariate distributions

Recall that a multivariate distribution is the joint distribution of k random variables.
Ideas studied in the bivariate case (k = 2) can be generalized to the case where

k > 2. In particular, if X\, Xi,..., Xk are continuous random variables, then the
following hold:

1. The joint cumulative distribution Junction (joint CDF) of (X1, X2, . . . , Xk) is
defined as follows:

for all real k-tuples (x\,X2,..., Xk), whereX = (Xi, Xa, . . . , Xk) and commas
are understood to mean the intersection of events.

2. The joint probability density function (joint PDF) (or joint density junction)

is obtained from the joint CDF by taking multiple partial derivatives.

3. The random variables X\, X2,..., Xk are said to be mutually independent (or
independent) if

or, equivalently, if

for all real fc-tuples (X1, X2, . . . , xk, where F,(JC,-) is the CDF and fi(xi) is the
PDF of X/for i = l, 2, . . . , k.

If the continuous random variables X\, X2,..., Xk are mutually independent
and have a common distribution (each marginal distribution is the same), then
Xi, X2,..., Xk are said to be a random sample from that distribution.
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3.4 Laboratory problems
The laboratory problems for this chapter introduce Mathematica commands for
working with continuous probability distributions and reinforce ideas about contin-
uous distributions.

3.4.1 Laboratory: Continuous models

In the main laboratory notebook (Problems 1 to 7), you are asked to compute probabil-
ities using the PDF and CDF functions, use graphs to describe distributions, compute
and summarize simulated random samples from distributions, and use graphs to
compare simulated random samples to distributions. Normal, exponential, gamma,
and uniform models are used. A relationship between the geometric and exponential
distributions is demonstrated graphically.

3.4.2 Additional problem notebooks

Problem 8 considers the inverse relationship between the average rate of a Poisson
process and the expected waiting time until the r* event occurs. The problem uses
a backup system setting.

Problem 9 considers Cauchy random variables as transformations of uniform
random variables. Simulation, graphing, and calculus techniques are used.

Problems 10 and 11 are informal goodness-of-fit problems. Relative errors
(defined as the ratio of the difference between observed and expected numbers to
an expected number) are computed using the given sample data and are compared
to relative errors computed using simulated data. Problem 10 compares data from a
genetics study to a uniform distribution [70], [79]. Problem 11 compares data from
an IQ study to a normal distribution [106], [80].

Problems 12 through 15 consider transformations of the form W = g(X, Y),
where X and Y are independent continuous random variables. Simulation, graphing,
and calculus techniques are used. Problem 12 (on ratios of exponentials) and Problem
13 (on differences of exponentials) apply the ideas to a waiting time setting. Problem
14 is on sums of gamma random variables. Problem 15 is on sums of uniform random
variables.

Problem 16 considers the standard bivariate normal distribution. You are asked
to describe how the joint PDF changes as the parameter p varies; compute simulated
random samples, compare the samples to the joint distribution, and summarize the
samples; and compute joint probabilities.
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Chapter 4

Mathematical
Expectation

Mathematical expectation generalizes the idea of a weighted average, where proba-
bility distributions are used as the weights.

The first two sections of this chapter define mathematical expectation for
univariate distributions and introduce several important special cases. Sections 3
and 4 extend the ideas to bivariate and multivariate distributions. Section 5 outlines
the laboratory problems for the chapter.

4.1 Definitions and properties
This section considers mathematical expectation for random variables and real-valued
functions of random variables, and properties of expectation.

4.1.1 Discrete distributions

Let X be a discrete random variable with range R and PDF /(jc). The mean or
expected value or expectation of X is defined as

45

provided that ]C*eJ? IxI f(x) < °° (mat *s' Provided that the series converges abso-
lutely). Similarly, if g(X) is a real-valued function of X, then the mean or expected
value or expectation of g(X) is

provided that J x e r g ( x ) \ f ( x ) < oo.
If the range of X is infinite, the absolute convergence of a series is not guaran-

teed. In cases where a series with absolute values diverges, we say that the expectation
is indeterminate.
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Example: Hypergeometric distribution

For example, assume you have 3 dimes and 5 nickels in your pocket. You choose a
subset of 4 coins; let X equal the number of dimes in the subset and

be the total value (in cents) of the chosen coins. If each choice of subset is equally
likely, then X has a hypergeometric distribution with parameters n = 4, M = 3, and
N = 8; the expected number of dimes in the subset is

and the expected total value of the chosen coins is

Note that E(g(X) )= g(E(X)).

Example: Greatest integer transformation

Let U be a continuous uniform random variable on the open interval (0,1), and let
X be the greatest integer less than or equal to the reciprocal of U (the "floor" of the
reciprocal of U), X = 1/U\. For x in the positive integers,

P(X = x) = 0 otherwise. The expectation of X is

Since the series diverges, the expectation is indeterminate.
The left part of Figure 4.1 is a plot of the PDF of U with the vertical lines

M = 1/2, 1/3,1/4,... superimposed. The right part is a probability histogram of
the distribution of X = \l/U\. Note that the area between u = 1/2 and u = 1 on
the left is P(X = 1), the area between u = 1/3 and u = 1/2 is P(X = 2), etc.

4.1.2 Continuous distributions

Let X be a continuous random variable with range R and PDF f(x). The mean or
expected value or expectation of X is defined as
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Figure 4.1. PDF of the uniform random variable on the open interval
(0,1) (left plot) and of the floor of its reciprocal (right plot). The range of the floor
of the reciprocal is the positive integers. Vertical lines in the left plot are drawn at
u = 1/2, 1/3,1/4,....

provided that fx€R \x\ f(x) dx < oo (that is, provided that the integral converges
absolutely). Similarly, if g(X) is a real-valued function of X, then the mean or
expected value or expectation of g(X) is

4.1.3 Properties

Properties of sums and integrals imply the following properties of expectation:

provided that fx€R \g(x)\ f(x) dx < oo.
Note that the absolute convergence of an integral is not guaranteed. In cases

where an integral with absolute values diverges, we say that the expectation is indeter-
minate.

Example: Triangular distribution

For example, let X be a continuous random variable whose range is the interval [1,4]
and whose PDF is

and let g(X) = X2 be the square of X. Then

and

Note that E ( g ( X ) £ g(E(X».
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1. If a is a constant, then E(a) = a.

2. If a and b are constants, then E(a + bX) = a-\- bE(X).

3. If Ci is a constant and gi(X) is a real-valued function for i = 1,2,... ,k, then

Fhe first property says that the mean of a constant function is the constant itself. Th
second property says that if g(X) = a + bX, then E(g(X)) = g(E(X)). The thin
property generalizes the first two.

Note that if g(X) ^a + bX, then E(g(X)) and g(E(X)) may be different.

4.2 Mean, variance, standard deviation
Let X be a random variable, and let \i = E(X) be its mean. The variance of X
Var(X), is defined as follows:

The notation a2 = Var(X) is used to denote the variance. The standard deviation of
X, ff = SD(X), is the positive square root of the variance.

The symbols used for mean (/*) and standard deviation (a) are the same as the symbols used
for the parameters of the normal distribution.

The mean is a measure of the center (or location) of a distribution. The variance
and standard deviation are measures of the scale (or spread} of a distribution. If X
is the height of an individual in inches, say, then the values of E(X) and SD(X) are
in inches, while the value of Var(X) is in square inches.

Table 4.1 lists the values of the mean and variance for the univariate families of
distributions from Chapters 2 and 3. Note, in particular, that the mean and variance
of the Cauchy distribution do not exist.

4.2.1 Properties

Properties of sums and integrals can be used to prove the following properties of the
variance and standard deviation:

1. Var(X) = E(X2) – (E(X))2.

2. If Y = a + bX, then Var(Y) = b2Var(X} and SD(Y) = \b\SD(X).

The first property provides a quick by-hand method for computing the variance.
For example, the variance of the triangular distribution discussed on page 47 is
19/2 – 32 = 1/2.

The second property relates the spread of the distribution of a linear trans-
formation of X to the spread of the distribution of X. In particular, if Y = a + X
(the values are shifted), then the standard deviation remains the same; if Y = bX
with b > 0 (the values are rescaled), then the standard deviation of Y is b times the
standard deviation of X.
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Table 4.1. Model summaries for the univariate families of distributions.

Distribution

Discrete Uniform n

Hypergeometric n, M, N

Bernoulli p

Binomial n, p

Geometric p

Negative Binomial r, p

Poisson A

Uniform a, b

Exponential A

Gamma a, /?

Cauchy a, b

Normal p., a

Laplace u, ft

E(X)

n+l
2

n^-nN

P

np

lz£
P

rjl-p)
P

A

a+b
2

1
/I

<*/*

indeterminate

V

u

Var(X)

n2 –!
12

M /i M\(N-n\
nN \L N) \N-l)

P ( I – P )

np(l -p)

*?

*$*
X

(b-a)2

12
1

1?

ap2

indeterminate

(T2

2ß2

Standardization

If X is a random variable with mean u and standard deviation a, then the random
variable Z = (X — u ) / a is called the standardization of X. By the properties above,
the standardization of X has mean 0 and standard deviation 1.

Note that if X is a member of a location-scale family, then the standardization
of X is a member of the same family. In particular, if X is a normal random variable,
then Z = (X — n)/a is the standard normal random variable.

4.2.2 Chebyshev inequality

The Chebyshev inequality illustrates the importance of the concepts of mean, vari-
ance, and standard deviation.

Theorem 4.1 (Chebyshev Inequality). Let Xbea random variable with finite mean
fi and standard deviation a, and let k be a positive constant. Then
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For example, if k = 2.5, then the Chebyshev inequality states that at least 84%
of the distribution of X is concentrated in the interval \x — fj,\ < 2.5a and that at most
16% of the distribution is in the complementary interval \x — u| > 2.5a.

4.2.3 Markov inequality

For random variables with nonnegative values and finite positive mean, the Markov
inequality can be used to give a bound on certain probabilities.

Theorem 4.2 (Markov Inequality). Let X be a random variable with values in the
nonnegative reals and finite positive mean jU, and let k be a positive constant. Then

For example, if k = 4, then the Markov inequality states that at most 25%
of the distribution of X is in the interval x > 4u and that at least 75% is in the
complementary interval x < 4/z.

4.3 Functions of two or more random variables
Let X\, X2,..., Xk be discrete random variables with joint PDF f(x\, x 2 , . . . , xki),
and let g(X1, X2, . . . , Xk) be a real-valued function. The mean or expected value or
expectation of g(X\, Xi,..., X^} is

provided that the sum converges absolutely. The multiple sum is assumed to include
all ^-tuples with nonzero joint PDF.

Similarly, let X\, X^,..., -X* be continuous random variables with joint PDF
/(k, *2,... ,Xk), and let g(X\, X^,..., Xk) be a real-valued function. The mean or
expected value or expectation of g(X\, X2,..., Xk) is

provided that the integral converges absolutely. The multiple integral is assumed to
include all fc-tuples with nonzero joint PDF.

Example: Finite joint distribution

For example, if (X, Y) has the discrete bivariate distribution displayed in Table 2.1
and g(X, Y) = \X — Y\ is the absolute difference in the variables, then

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

4.3. Functions of two or more random variables 51

Example: Bivariate uniform distribution on a triangular region

Similarly, if (X, Y) has a bivariate uniform distribution on the triangle with vertices
(0,0), (3,0), (3, 5) and g(X, Y) = XY is the product of the variables, then

4.3.1 Properties

The following properties of expectation can be proven using properties of sums and
integrals and the fact that the joint PDF of mutually independent random variables
equals the product of the marginal PDFs:

1. If a and b\, b2» • • •, bn are constants and gi(Xi, X2,..., X^) are real-valued
functions for i = 1,2,. . . , n, then

2. If Xi, X2,..., Xk are mutually independent random variables and g,(^«) are
real-valued functions for i = 1, 2, . . . , k, then

The first property generalizes the properties given in Section 4.2.1. The second prop-
erty, for mutually independent random variables, is useful when studying associations
among random variables.

4.3.2 Covariance, correlation

Let X and Y be random variables with finite means (px, fj,y) and finite standard
deviations (ax, ay). The covariance of X and Y, Cov(X, Y), is defined as follows:

The notation axy = Cov(X, Y) is used to denote the covariance. The correlation of
X and Y, Corr(X, Y), is defined as follows:

The notation p = Corr(X, Y) is used to denote the correlation of X and Y; p is called
the correlation coefficient.

The symbol used for the correlation coefficient (p) is the same as the symbol used for the
correlation parameter of the bivariate normal distribution.

Covariance and correlation are measures of the association between two random
variables. Specifically, the following hold:
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Table 4.2. Correlations for the bivariate families of distributions.

Distribution

Trinomial n, (p1,p2, P3)

Bivariate Hypergeometric n, (M\, A/2, M3^)

Bivariate Normal nx, fiy, ax, ay, p

Corr(X, Y)

7 Pi P2

1-P1 1-P2

/ MI M2
V M2+M3 M,+M3

p

1. The random variables X and Y are said to be positively associated if as X
increases, Y tends to increase. If X and Y are positively associated, then
Cov(X, Y) and Corr(X, Y) will be positive.

2. The random variables X and Y are said to be negatively associated if as X
increases, Y tends to decrease. If X and Y are negatively associated, then
Cov(X, Y) and Corr(X, Y) will be negative.

For example, the height and weight of individuals in a given population are posi-
tively associated. Educational level and indices of poor health are often negatively
associated.

Table 4.2 lists correlations for the trinomial, bivariate hypergeometric, and
bivariate normal distributions. Note that if the random pair (X, Y) has a trinomial or
bivariate hypergeometric distribution, then X and 7 are negatively associated.

Properties of covariance

The following properties of covariance are important:

1. Cov(X, X) = Var(X).

2. Cov(X, Y) - Cov(Y, X).

3. Cov(a + bX, c + dT) — bdCov(X, Y), where a, b, c, and d are constants.

4. Cov(X, Y) = E(XY) - E(X)E(Y).

5. If X and Y are independent, then Cov(X, Y)=Q.

The first two properties follow immediately from the definition of covariance. The
third property relates the covariance of linearly transformed random variables to the
covariance of the original random variables. In particular, if b = d = 1 (values are
shifted only), then the covariance is unchanged; if a = c = 0 and b, d > 0 (values
are rescaled), then the covariance is multiplied by bd.

The fourth property gives an alternative method for calculating the covariance;
the method is particularly well suited for by-hand computations. Since E(XY) =
E(X)E(Y) for independent random variables, the fourth property can be used to
prove that the covariance of independent random variables is zero (property 5).
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In particular, Corr(X, a + bX) equals 1 if b > 0 and equals — 1 if b < 0.

3. If X and Y are independent, then Corr(X, Y) = 0.

Correlation is often called standardized covariance since, by the first property, its
values always lie in the [—1,1] interval. If the correlation is close to —1, then there
is a strong negative association between the variables; if the correlation is close to 1,
then there is a strong positive association between the variables.

The second property relates the correlation of linearly transformed variables
to the correlation of the original variables. Note, in particular, that the correlation is
unchanged if the random variables are shifted (b = d = 1) or if the random variables
are rescaled (a = c = 0 and b,d> 0). For example, the correlation between
the height and weight of individuals in a population is the same no matter which
measurement scale is used for height (e.g., inches, feet) and which measurement
scale is used for weight (e.g., pounds, kilograms).

If Corr(X, Y) = 0, then X and Y are said to be uncorrelated; otherwise, they
are said to be correlated. The third property says that independent random vari-
ables are uncorrelated. Note that uncorrelated random variables are not necessarily
independent. For example, if (X, Y) has a bivariate uniform distribution on the
diamond-shaped region with vertices (—1, 0), (0, 1), (1,0), (0, —1), then X and Y
are uncorrelated but not independent.

Example: Bivariate uniform distribution on a triangular region

Assume that (X, Y) has a bivariate uniform distribution on the triangle with vertices
(0,0), (3,0), (3,5). Then

(See page 51 for the computation of E(XY).) Using properties of variance and
covariance.

Finally, p = Corr(X, Y) = 1/2.

4.3. Functions of two or more random variables 53

Properties of correlation

The following properties of correlation are important:

1. -1 < Corr(X, Y)<L

2. If a, b, c, and d are constants, then
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4.3.3 Sample summaries

Recall that a random sample of size n from the X distribution is a list of n mutually
independent random variables, each with the same distribution as X.

If X\, X2,..., Xn is a random sample from a distribution with mean n and
standard deviation a, then the sample mean, X, is the random variable

In statistical applications, the observed value of the sample mean is used to estimate an
unknown mean /i, and the observed value of the sample variance is used to estimate an
unknown variance a2.

Sample correlation

A random sample of size n from the joint (X, Y) distribution is a list of n mutually
independent random pairs, each with the same distribution as (X, Y).

If (X\, YI), (Xa, 12). • • • » ( % n , rn) is a random sample of size n from a bivariate
distribution with correlation p = Corr(X, Y), then the sample correlation, R, is the
random variable

vhere X and Y are the sample means of the X and Y samples, respectively.

In statistical applications, the observed value of the sample correlation is used to estimate
an unknown correlation p.

the sample variance, S2, is the random variable

and the sample standard deviation, S, is the positive square root of the sample vari-
ance. The following theorem can be proven using properties of expectation.

Theorem 4.3 (Sample Summaries). IfX is the sample mean and S2 is the sample
variance of a random sample of size nfrom a distribution with mean \JL and standard
deviation a, then the following hold:

1. E(X) = fiand Var(X) = a2/n.

2. E(S2) = a2.
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4.3.4 Conditional expectation; regression

Let X and Y be discrete random variables with joint PDF f ( x , y). lffx(x) = 0, then
the conditional expectation (or the conditional mean) of Y given X = x,E(Y\X = x),
is defined as follows:

where the integral is over all y with nonzero conditional PDF (/Y\x=x(y\x) =- 0),
provided that the integral converges absolutely.

Definitions for the conditional expectation of X given Y = y, E(X\Y = y), in
the discrete and continuous cases are similar to those given above.

Regression of Yon X

The formula for the conditional expectation E(Y\X — x) as a function of jc is often
called the regression equation of Y on X.

An important problem in statistical applications is to determine the formula for the condi-
tional mean E(Y\X = x) as a function of x. See Chapter 14.

Example: Finite joint distribution

For example, the following table gives the values of E(Y\X = x) for the discrete
bivariate distribution given in Table 2.1:

X

E(Y\X = x)
0

0.60
1

1.65 1
2

.975
3

2.50

Example: Joint distribution on a quarter plane

Assume the continuous pair (X, Y) takes values in the quarter plane [1, oo) x [0, oo)
with joint PDF

where the sum is over all y with nonzero conditional PDF (/Y\x=x(y\x) ^ 0), provided
that the series converges absolutely.

Let X and Y be continuous random variables with joint PDF f ( x , y). If fx (x) ^
0, then the conditional expectation (or the conditional mean) of Y given X = x,
E(7|X = ;t), is defined as

For jc > 1, the marginal PDF of X is fx(x) = l/(2x3/2), and the conditional PDF of
Y given X = x is
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Figure 4.2. Graph ofz = f(x, y) for a continuous bivariate distribution (left
plot) and contour plot with z = 1/2, 1/4, 1/6,..., 1/20 and conditional expectation
ofY given X = x superimposed (right plot).

Since the conditional distribution is exponential with parameter A = jc, the formula
for the conditional mean is E(Y\X = x) = l/x for x > 1.

The left part of Figure 4.2 is a graph of z = f(x, y), and the right part is
a contour plot with z = 1/2,1/4, 1/6,..., 1/20 (in gray). The formula for the
conditional mean, y = l/x, is superimposed on the contour plot (in black).

Linear conditional expectation

Let X and Y be random variables with finite means (ux, uy), standard deviations
(ax, 0-y), and correlation (p). If the conditional expectation E(Y\X = x) is a linear
function of x, then the formula is of the form

The trinomial, bivariate hypergeometric, and bivariate normal distributions
have linear conditional means.

4.4 Linear functions of random variables
Let Xi, X2,..., Xn be random variables with

1. ui = E(Xi) and cr, = 5D(X,) for i = 1, 2 , . . . , n and

2. ffitj = Cov(Xt, Xj) for i = j.

This section considers properties of linear functions of X\, X2,..., Xn.

If the conditional expectation E(X\ Y = y) is a linear function of y, then the formula
is of the form
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Theorem 4.4 (Mean and Variance). Let X\, X2,..., Xn be random variables with
summary measures given above and Y = a + ]CILi bi%i> wnere a ana b\, fa,..., bn

are constants. Then

If, in addition, X\, Xi,..., Xn are mutually independent, then

For example, if X\, Xi,..., Xn is a random sample from a distribution with
mean /i and standard deviation a and Y = Y^=i %f *s me sample sum, then the mean
of Y is E(Y) = n\i and the variance of Y is Var(Y) = na2.

Theorem 4.5 (Covariance). Let X\, X2,..., Xn be random variables with summary
measures given above, V = a + Y^=i biXi ana W = c + 52"_i aiXt, where a, c,
b\, bi,..., bn and d\, di,. •., dn are constants. Then

If, in addition, X\, X2,..., Xn are mutually independent, then

For example, if X\, X2, X3, X4 is a random sample of size 4 from a distribution
with mean 3 and standard deviation 5,

then Cov(V, W) = -50 and Corr(V, W) = ^ « -0.18.

4.4.1 Independent normal random variables

Theorem 4.4 can be used to determine summary measures of a linear function of
random variables, but it says nothing about the distribution of the linear function. If
X\, X2,..., Xn are independent normal variables, then the distribution is known.

Theorem 4.6 (Independent Normal Random Variables). Let Xi, X2,..., Xn be
mutually independent normal random variables, and let Y = a + ]Ci=i biXi. Then
Y is a normal random variable.

In particular, if X\, J^,..., Xn is a random sample from a normal distribution,
then the sample sum and the sample mean are normal random variables.
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Theorem 4.6 can be proven using the method of moment generating functions. Moment
generating functions are discussed in Chapter 5.

4.5 Laboratory problems
The laboratory problems for this chapter introduce Mathematica commands for
summarizing distributions and summarizing samples from distributions. The prob-
lems are designed to reinforce mathematical expectation concepts.

4.5.1 Laboratory: Mathematical expectation

In the main laboratory notebook (Problems 1 to 6), you are asked to compute model
summaries and probabilities; apply the Chebyshev inequality; compute and summa-
rize simulated random samples from distributions; use the sample mean and sample
standard deviation to estimate the parameters in a model for percent body fat in men
[59] and to estimate model probabilities; and work with conditional expectation.
Exponential, uniform, negative binomial, gamma, Poisson, normal, and trinomial
models are used.

4.5.2 Additional problem notebooks

Problem 7 considers the Markov inequality and applies the Markov and Chebyshev
inequalities in an advertising setting.

Problem 8 uses expectation to study the potential advantages of pooled blood
testing when screening for a particular disease. Different implementation strategies
are considered.

In Problems 9 and 10, sample summaries are used to estimate unknown para-
meters in models; the estimated models are then used to compute probabilities.
Problem 9 uses a Poisson distribution to model bombing patterns during the second
world war [27]. Problem 10 uses an exponential distribution to model the time
between successive coal mining disasters [71], [57].

Problems 11,12, and 13 consider bivariate distributions with linear conditional
means. Bivariate uniform distributions on parallelograms are used in Problem 11.
The distribution of outcomes in a dice and coin experiment is used in Problem 12.
In Problem 13, bivariate normal distributions are applied to height-weight data for
athletes [28].

Problems 14 and 15 consider bivariate discrete distributions, their corresponding
marginal and conditional distributions, and the law of total expectation. Problem 14
uses data from a marriage study [22], [80]. Problem 15 uses data from an eyesight
study [102].

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Chapter 5

Limit Theorems

This chapter considers properties of sample sums and sample means as the sample
size n approaches infinity. Definitions are given in Section 1. The law of large
numbers is stated in Section 2, and an outline of its proof is given. The central
limit theorem is stated in Section 3. Section 4 introduces the concept of moment
generating functions and shows how moment generating functions can be used to
prove the central limit theorem. Section 5 outlines the laboratory problems for this
chapter.

5.1 Definitions
Let Xi, X2, X,... be a sequence of mutually independent random variables, each
with the same distribution as X. Two related sequences are of interest:

31. The sequence of running sums:

Example: Independent Bernoulli trials

For example, if X is a Bernoulli random variable with parameter p, then Sm is the total
number of successes, and Xm is the average number of successes, in m repeated trials
of the experiment. Sm is a binomial random variable with mean mp and variance
mp(\ — p). The distribution of Xm has mean p and variance p(l — p)/m. Further,

59

2. The sequence of running averages:
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60 Chapters. Limit Theorems

5.2 Law of large numbers
For distributions with finite mean and standard deviation, the law of large numbers
says that the sample mean, X, is unlikely to be far from the true mean, fi, when the
sample size is large enough. Formally, the following theorem holds.

Theorem 5.1 (Law of Large Numbers). Let X be a random variable with finite
mean ju and standard deviation a, and let Xm, m = 1, 2, 3,. . . , be the sequence of
running averages. For every positive real number e,

The law of large numbers can be proven using Chebyshev's inequality
(Theorem 4.1). An outline of the proof is as follows:

(i) Using complements, it is sufficient to demonstrate that

(ii) Since SD(Xm) = ff/^/m, if e = frer/v/w (correspondingly, k = €*/m/ff) is
substituted into the Chebyshev inequality, then we get the following lower
bound on probability:

(iii) As m —> oo, the quantity on the right in (ii) approaches 1, implying that the
limit in (i) is greater than or equal to 1. Since probabilities must be between 0
and 1, the limit must be exactly 1.

5.2.1 Example: Monte Carlo evaluation of integrals

An interesting application of the law of large numbers is to the approximation of
multiple integrals. For example, consider evaluating the double integral

and let R be the region of integration (the [0,1] x [0, 2] rectangle). Assume that
(X, Y) has a bivariate uniform distribution on /?, and let W = e~XY. Since the area
of R is 2, the expected value of W,

is exactly one-half the value of the integral above. For a given sample size n, the
sample mean W = £ £"=1 e~x'Yi is an estimate of u, and twice the sample mean is
an estimate of the integral of interest.
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5.3. Central limit theorem 61

Figure 5.1. The surface w = e~xy over the [0, 1] x [0, 2] rectangle (left
plot) and Monte Carlo estimates of the volume under the surface using samples of
size 1000m for m = 1, 2,. . . , 100 (right plot). A horizontal dashed line is drawn in
the right plot at the numerical value of the volume.

The left plot in Figure 5.1 shows the surface w = e xy over R. The right plot
shows an observed sequence of running estimates

based on simulations from the joint (X, Y) distribution. The final estimate of 1.31743
is based on a sample of size 100,000. Each estimate is called a Monte Carlo estimate
of the double integral. (In a Monte Carlo analysis, simulation is used to estimate a
quantity of interest.)

Monte Carlo methods are used often in statistical applications. Chapters 11 through 15
contain many examples of these methods.

5.3 Central limit theorem
The most important theorem in a probability course is the central limit theorem. Its
proof is attributed to P. Laplace and A. de Moivre.

Theorem 5.2 (Central Limit Theorem). Let X be a random variable with finite
mean p and standard deviation a. Let Sm and Xm, m= 1, 2, 3,. . . , be the sequence
of running sums and averages, respectively, and let

be the sequence of standardized sums (or averages). Then for each real number x,

where <!>(•) is the CDF of the standard normal random variable.
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For distributions with finite mean and standard deviation, the central limit
theorem implies that the distributions of the sample sum and the sample mean are
approximately normal when the sample size n is large enough.

In statistical applications, the central limit theorem is used to answer questions about an
unknown mean n. See Chapters 7 and 8.

5.3.1 Continuity correction

Let X be a discrete random variable with values in the integers and with finite mean
u and standard deviation a, and let S be the sample sum of a random sample of size n
from the X distribution. The normal approximation to the distribution of the sample
sum can be improved using the correction for continuity,

X

f(x)
1

0.10
2

0.20
3

0.30
4

0.40

Then E(X) = 3 and Var(X) — 1. If 5 is the sample sum of a random sample of size
50 from the X distribution, then S takes integer values in the range 50, 51,. . . , 200,
and its summary measures are

where N is the normal random variable with mean n\i and standard deviation a*/n.
For example, let X be the discrete random variable with PDF

By the central limit theorem (with continuity correction),

where N is a normal random variable with mean 150 and standard deviation V50.

5.3.2 Special cases

The central limit theorem implies that the distributions of certain binomial, negative
binomial, Poisson, and gamma random variables can be approximated by normal
distributions. Specifically, the following hold:

1. Binomial distribution. Let X be a binomial random variable with parameters
n and p. If n is large, then the distribution of X is approximately normal.

2. Negative binomial distribution. Let X be a negative binomial random variable
with parameters r and p. If r is large, then the distribution of X is approximately
normal.

3. Poisson distribution. Let X be a Poisson random variable with parameter L If
A is large, then the distribution of X is approximately normal.
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4. Gamma distribution. Let X be a gamma random variable with parameters a
and ft. If a is large, then the distribution of X is approximately normal.

In each case, the random variable X can be written as a sample sum. In the first three
cases, the correction for continuity can be used to improve the normal approximation.

5.4 Moment generating functions
If X is a random variable and k is a nonnegative integer, then E(Xk) is known as the
£* moment of the random variable. The notation Uk = E(Xk) is used to denote the
fc* moment.

For a given X, jUo = 1, u\ is the mean of X, and \ii — n\ is the variance of X.
The value of ^ is related to the skewness (lack of symmetry) of the X distribution;
the value of U4 is related to the kurtosis (peakedness) of the X distribution; etc.

The higher-order moments of X are similar in application to the higher-order derivatives of
a function y = f(x) at x — a.

The sequence of summary measures fik, k = 0,1, 2 , . . . , can often be obtained
quickly using moment generating functions. The moment generating function of X,
where it exists, is defined as follows:

For example, the moment generating function of a binomial random variable is

Similarly, the moment generating function of a normal random variable is

Note that, in general, MGF(O) equals 1. For binomial and normal random variables
MGF(f) exists (has a finite value) for all real numbers t.

Theorem 5.3 (Moment Generating Function). Let MGF(f) be the moment gener-
ating function of the random variable X. IfMGF(t) exists for all t in an open interval
containing t = 0, then the kth moment ofX is equal to the k& derivative ofMGF(t)
at t = 0:

fork = 0, 1,2,.. . .

An outline of the proof of Theorem 5.3 when X takes values in the nonnegative
integers is as follows:

(i) Let pi = P(X = i). Then
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(ii) If k = 0, then MGF(0)(0 = MGF(0 and

(iii) If k > 0, then MGF(*>(f) = £~ ikeupi and

Note that the existence of the moment generating function in an open interval containing
t = 0 ensures the existence of the sequence of summary measures.

For example, consider the moment generating function of the standard normal
random variable: MGF(f) = ef /2. The first two derivatives of MGF(f) are

and the evaluations when t = 0 are

The following theorems can be proven using properties of expectation.

Theorem 5.4 (Linear Functions). Let MGFi(f) be the moment generating function
ofX and MGF2(0 be the moment generating function ofY. lfY = aX + b, where
a 7^ 0 and b are constants, then

Theorem 5.5 (Convolution Theorem). Let MGFi (t) be the moment generating
function ofX\ am/MGF2(0 be the moment generating function ofX^. IfX\ andXi
are independent, then the moment generating function of W = X\ + X^ is

Corollary 5.6. More generally, ifX\ ,X2,...,Xn are mutually independent random
variables and W is their sum, then the moment generating function ofW is

where MGF,-(?) is the moment generating function ofXi.

Finally, when the moment generating function exists in an open interval containing
t = 0, it uniquely defines the distribution of the random variable.

Theorem 5.7 (Uniqueness Theorem). Let MGFi (t) be the moment generating
function ofX\ andMGF2(t) be the moment generating function ofX^. 7jfMGFi(0
= MGF2(0 m an open interval containing t = 0, then X\ and X2 have the same
probability distribution.
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5.4.1 Method of moment generating functions

Moment generating functions can be used to determine the distribution of a random
variable. For example, the moment generating function of a Poisson random variable
with parameter A is

where exp() is the exponential function. If X and Y are independent Poisson random
variables with parameters fa and fa, respectively, and W = X + Y is their sum, then
the convolution theorem (Theorem 5.5) implies that the moment generating function
ofWis

Since the form of MGF(t) is the same as the form of the moment generating function
of a Poisson random variable with parameter fa + fa and MGF(t) exists for all
real numbers t, the uniqueness theorem (Theorem 5.7) implies that W has a Poisson
distribution with parameter A1 + A2.

The method of moment generating functions can be used to prove the last two special cases
in Section 5.3.2.

5.4.2 Relationship to the central limit theorem

It is possible to sketch a proof of the central limit theorem (Theorem 5.2) when the
moment generating function of X exists in an open interval containing t = 0. Let
Zm be the standardized form of the sum Sm,

and Wi = (Xi = ) / ( a ^ f m ) for i = 1, 2, . . . , m. Then £(ZW) = 0, Var(Zm) = 1,
and, for each i, E(Wt) = 0 and Var( W,-) = E(Wf) = l/m.

If MGFm(0 is the moment generating function of Zm and MGF(f) is the
moment generating function of each W,, then by Corollary 5.6

where the expression in parentheses on the right is the Maclaurin series expansion of
MGF(0- For values of t near zero, it can be shown that

The formula on the right is the moment generating function of the standard normal
random variable.
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Finally, it can be shown that if the sequence of moment generating func-
tions (MGFm(t)) approaches the moment generating function of the standard normal
random variable for values of t in an open interval containing 0, then the sequence of
cumulative distribution functions must approach the cumulative distribution function
of the standard normal random variable.

Recall that the Maclaurin series for f(x) is the Taylor expansion around a = 0:

5.5 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for visual-
izing sequences of running sums and averages, and moment generating functions of
sums. The problems are designed to reinforce ideas related to the limit theorems.

5.5.1 Laboratory: Sums and averages

In the main laboratory notebook (Problems 1 to 6), you are asked to generate and
graph simulated sequences of running sums and running averages; compute exact and
approximate probabilities for sample sums and sample means; and study errors in
using the normal approximation to a discrete random variable. Uniform, exponential,
Poisson, normal, and Cauchy models are used.

5.5.2 Additional problem notebooks

Problems 7 and 8 relate running sums to random walks. In Problem 7, uniform steps
are used to model the ups and downs of the stock market. In Problem 8, theoretical
and sample random walks in the plane are considered.

Problem 9 considers errors in using the normal approximation to the binomial
distribution as n varies and as p varies.

Problems 10 and 11 use probability generating functions to find exact probabil-
ities for sample sums and compare exact probabilities with normal approximations.
Problem 10 uses a poker game setting. Problem 11 uses a coupon collecting setting.

In Problem 12, simulation is used to determine if the distributions of summary
statistics other than the sample sum and sample mean are approximately normal when
the sample size n is large. Exponential and uniform models are used.

In the application above, f(O) = 1, /'(O) = 0, and /"(O) = l/m.

Recall that for each constant a

In the application above, the terms of the Maclaurin expansion of degree 3 or more are small
enough to be "ignored" in the limit process; the remaining part has limit e'/2.

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

5.5. Laboratory problems 67

Problems 13, 14, and 15 concern moment generating functions and sums. In
each case, the functions are studied using both computational and graphical tools.
Problem 13 uses a dice setting. Problem 14 uses a roulette game setting. Problem 15
considers the rate of convergence of the moment generating function of the standard-
ized sum to the moment generating function of the standard normal random variable
when X is Bernoulli, geometric, or exponential.
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The normal distribution is the most widely used model in statistical applications. In
the first two sections of this chapter, three families of distributions related to sampling
from normal distributions are introduced. Applications of these three families will
appear throughout the rest of the book. Section 3 is an informal introduction to one of
these applications: the problem of testing the goodness-of-fit of a probability model
to sample data. Section 4 outlines the laboratory problems.

6.1 Distributions related to the normal distribution
This section introduces three families of distributions related to the normal distribu-
tion and states properties of these distributions.

6.1.1 Chi-square distribution

Let Zi, Z2, . . . , ZOT be independent standard normal random variables. Then

The number of independent summands, m, is called the degrees of freedom (df) of
the chi-square distribution. The notation ^ is used to denote the pth quantile of the
distribution.

The chi-square distribution with m degrees of freedom is the same as the gamma distribution
with parameters a = m/2 and ß = 1/2.

69

Chapter 6

Transition to
Statistics

is said to be a chi-square random variable, or to have a chi-square distribution, with
parameter m. The PDF of V is as follows:
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A table of selected quantiles of chi-square distributions, suitable for doing problems by hand
without using the computer, is given in Appendix B on the CD.

Properties of the chi-square distribution

Properties of the chi-square distribution are as follows:

1. If V is a chi-square random variable with m degrees of freedom, then E( V) = m
and Var(V) = 2m.

2. If m is large, then, by the central limit theorem, the distribution of V is appro-
ximately normal.

3. If V\ and Vi are independent chi-square random variables with m\ and mi
degrees of freedom, respectively, then the sum V\ + Vi has a chi-square distri-
bution with mi+rtii degrees of freedom.

4. If X\, X2,..., Xn is a random sample of size n from a normal distribution with
mean JJL and standard deviation a, then

is a chi-square random variable with n degrees of freedom.

Recall that if X is a normal random variable with mean ju and standard deviation
ff, then Z = (X — n)/a is a standard normal random variable. Thus, the random
variable V given in property 4 is the sum of squares of n independent standard normal
random variables.

6.1.2 Student t distribution

Assume that Z is a standard normal random variable, V is a chi-square random
variable with m degrees of freedom, and Z and V are independent. Then

is said to be a Student t random variable, or to have a Student t distribution, with
parameter m. The PDF of T is as follows:

The parameter m is called the degrees of freedom (df) of the Student t distribution.
The notation tp is used to denote the pth quantile of the distribution.

If T is a Student t random variable with 1 degree of freedom, then T has a Cauchy distribution
with center a = 0 and scale b = 1.

A table of selected quantiles of Student t distributions, suitable for doing problems by hand
without using the computer, is given in Appendix B on the CD.
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Properties of the Student t distribution

Let T be a Student t random variable with m degrees of freedom. Then the following
hold:

1. The distribution of T is symmetric around x = 0.

2. If m > 1, then E(T) = 0. If m > 2, then Var(T) = m/(m - 2).

3. If m is large, then the distribution of T is approximately standard normal.

6.1.3 F ratio distribution

Let U and V be independent chi-square random variables with n\ and n2 degrees of
freedom, respectively. Then

is said to be an / ratio random variable, or to have an / ratio distribution, with
parameters n\ and n2. The PDF of F is as follows:

when x > 0 and 0 otherwise.
The parameters n\ and HI are called the degrees of freedom (df) of the f ratio

distribution. The notation fp is used to denote the pth quantile of the distribution.

A table of selected quantiles of f ratio distributions, suitable for doing problems by hand
without using the computer, is given in Appendix B on the CD.

Properties of f ratio distributions

Let F be an f ratio random variable with n\ and n2 degrees of freedom. Then the
following hold:

1. If n2 > 2, then E(F) = n2/(n2 – 2). If n2 > 4, then

2. The reciprocal of F, l/F, is an f ratio random variable with n2 and n\ degrees
of freedom.

6.2 Random samples from normal distributions
Let X\, X2,..., Xn be a random sample from a normal distribution with mean \i and
standard deviation a. Recall that the sample mean, X, and sample variance, S2, are
the following random variables:
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In addition, the sample standard deviation, S, is the positive square root of the sample
variance.

6.2.1 Sample mean, sample variance

The following distribution theorem states important properties of the sample mean
and variance.

Theorem 6.1 (Distribution Theorem). Let X be the sample mean and S2 be the
sample variance of a random sample of size nfrom a normal distribution with mean
\i and standard deviation a. Then the following hold:

1. X is a normal random variable with mean ju and standard deviation yo^/n.

2. V = (n — l)S2/a2 is a chi-square random variable with (n — 1) degrees of
freedom.

3. X and S2 are independent random variables.

The distribution theorem can be proven using moment generating functions. The first part
of the theorem is a special case of Theorem 4.6.

Note that since V = (n — l }S2/o2 is a chi-square random variable with (n — 1)
degrees of freedom,

Application: Interval estimation

Knowledge of the distribution of a sample summary is important in statistical appli-
cations. For example, suppose that the sample mean and sample variance of a random
sample of size n from a normal distribution are used to estimate the unknown n and
a2. Let x2, and x2 be the pth and (1 — p)th quantiles of the chi-square distribution
with (n — l) degrees of freedom, respectively. Then

If the observed value of the sample variance is s2 = 8.72, n = 12 and p = 0.05, then
the interval

is an estimate of an interval containing a with probability 0.90.

The estimated interval above is an example of a confidence interval for the variance. Confi
dence intervals for variances are introduced in Chapter 7.
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6.2.2 Approximate standardization of the sample mean

Since the sample mean, X, is a normal random variable with mean \JL and standard
deviation <Jff2/n, the standardized sample mean

is a standard normal random variable. An approximation is obtained by substituting
the sample variance S2 for the true variance a2.

Theorem 6.2 (Approximate Standardization). Let X be the sample mean and S2

be the sample variance of a random sample of size nfrom a normal distribution with
mean \L and standard deviation a. Then

has a Student t distribution with (n — 1) degrees of freedom.

Note that, by Theorem 6.1, Z = (X — /j)/^/a2/n is a standard normal random variable,
V = (n — l)S2/a2 is a chi-square random variable with (n — 1) degrees of freedom, and Z
and V are independent. Thus,

Application: Interval estimation

The distribution of the approximate standardization of the sample mean is important
in statistical applications. For example, suppose that the sample mean and sample
variance of a random sample of size n from a normal distribution are used to estimate
the unknown \i and o2. Let tp and t\-p be the pth and (1 — p)th quantiles of the
Student t distribution with (n — 1) degrees of freedom, respectively. Then

is an estimate of an interval containing u with probability 0.90.

The estimated interval above is an example of a confidence interval for the mean. Confidence
intervals for means are introduced in Chapter 7.

has a Student t distribution with n — 1 degrees of freedom.

If the observed values of the sample summaries are x = 36.5 and s2 = 3.75, n = 15,
and p — 0.05, then the interval
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6.2.3 Ratio of sample variances

Assume that

are independent random samples from normal distributions with parameters ux and
ffx, and ny and ay, respectively. Let X and S2, be the sample mean and variance of
the X sample, and let Y and Sy be the sample mean and variance of the Y sample.

The ratio of sample variances, S2/S2, can be used to estimate ff^/ffy. Further,
the following theorem holds.

Theorem 6.3 (Distribution Theorem). Let S2. and Sy be the sample variances of
independent random samples of sizes n and m, respectively, from normal distribu-
tinnv Thpn

has an/ratio distribution with (n — 1) and (m — 1) degrees of freedom.

Note that, by Theorem 6.1, U = (n - l)S2
x/a

2
x and V = (m - \)S2/o2

y are independent
chi-square random variables with (n — 1) and (m — 1) degrees of freedom, respectively.
Thus,

is an f ratio random variable with (n — 1) and (m — 1) degrees of freedom.

Application: Interval estimation

The distribution of the ratio of S2/S2 to <?2/(r2 is important in statistical applications.
For example, suppose that all four parameters (ux, GX, [Ly, ay) are unknown. Let fp

and fi-p be the pth and (1 — p)th quantiles of the f ratio distribution with (n — 1)
and (m — 1) degrees of freedom, respectively. Then

If the observed sample variances are s2 = 18.75 and s2 = 3.45, n = 8, m = 10, and
p = 0.05, then the interval

is an estimate of an interval containing o2
x/a

2 with probability 0.90.

The estimated interval above is an example of a confidence interval for the variance ratio.
Confidence intervals for variance ratios are introduced in Chapter 10.
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6.3 Multinomial experiments
A multinomial experiment is an experiment with exactly k outcomes. The probability
of the ith outcome is pt,i = 1,2, . . . , k. The outcomes of a multinomial experiment
are often referred to as categories or groups.

6.3.1 Multinomial distribution

Let Xi be the number of occurrences of the ith outcome in n independent trials of a
multinomial experiment, / = 1, 2, ...,k. Then the randoms-tuple (X\, X2,..., X3)
is said to have a multinomial distribution with parameters n and (pi, P2, • • • ? Pk)-
The ioint PDF for the fc-tuple is

For each i, the observed frequency, X,-, is compared to the expected frequency,
E(Xi) = npi, under the multinomial model. If each observed frequency is close to
expected, then the value of X2 will be close to zero. If at least one observed frequency

when x1, x 2 , . . . , Jtfc = 0, 1,..., n and £^ *,- = n (and zero otherwise).
The multinomial distribution generalizes the binomial and trinomial distribu-

tions. Specifically, the following hold:

1. If X is a binomial random variable with parameters n and p, then (X, n — X)
has a multinomial distribution with parameters n and (p, 1 — p).

2. If (X, Y) has a trinomial distribution with parameters n and (P\,P2,P3),
then (X, Y, n — X — Y) has a multinomial distribution with parameters n and
(Pl,P2,Pl)-

Properties of the multinomial distribution

If (X\, X2,..., X/,) has a multinomial distribution, then the following hold:

1. For each i, X, is a binomial random variable with parameters n and pi.

2. For each i ^ j, (X,-, Xy) has a trinomial distribution with parameters n and
(Pi, PJ, I — pi — PJ). In particular, X, and X, are negatively associated.

6.3.2 Goodness-of-fit: Known model

In 1900, K. Pearson developed a quantitative method to determine if observed data
are consistent with a given multinomial model.

If (Xi, X2, . . . , Xfc) has a multinomial distribution with parameters n and
(Pi»P2, • • •, Pk), then Pearson's statistic is the following random variable:
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is far from expected, then the value of X2 will be large and the appropriateness of
the given multinomial model will be called into question. A test can be set up using
the following distribution theorem.

Theorem 6.4 (Pearson's Theorem). Under the assumptions above, ifn is large, the
distribution ofX2 is approximately chi-square with (k — 1) degrees of freedom.

Note that the chi-square approximation is adequate when E(Xf) = npi > 5 for
i = l , 2 , . . . , J k .

Pearson's goodness-of-fit test

For a given fc-tuple, (x\, X2,..., *#)> let

be the observed value of Pearson's statistic. Use the chi-square approximation to the
distribution of X2 to compute P(X2 > x2

bs). Then the following hold:

(i) If P(X2 > x2
bs) > 0.10, the fit is judged to be good (the observed data are

judged to be consistent with the multinomial model),
(ii) If 0.05 < P(X2 > x2

bs) < 0.10, the fit is judged to be fair (the observed data
are judged to be marginally consistent with the model),

(iii) If P(X2 > x2
bs) < 0.05, the fit is judged to be poor (the observed data are

judged to be not consistent with the model).

The probability P(X2 > x2
bs) is called theP value of the test. The p value measures

the strength of the evidence against the given multinomial model.

Analysis of standardized residuals

For a given k-tuple, (x\, X2,..., Xk), the list of standardized residuals,

serve as diagnostic values for the goodness-of-fit test.
When n is large, the r,'s are approximate values from a standard normal distri-

bution. Values outside the interval [—2, +2] are considered to be unusual and deserve
comment in a statistical analysis.

Example: Survey analysis

For example, assume that the table below gives age ranges for adults and approximate
proportions in each age range according to the 1980 census.

Age Group
1980 Proportion

18-24
0.18

25-34
0.23

35^4
0.16

45–64
0.27

65+
0.16
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Assume also that in a recent survey of 250 adults, there were 40, 52,43, 59, and 56
individuals in ranges 18-24,25-34,35-44,45-64, and 65+, respectively. Of interest
is whether the recent survey results are consistent with the 1980 census model.

Observed and expected frequencies, and standardized residuals are as follows:

Observed Frequency
Expected Frequency
Standardized Residual

40
45

-0.745

52
57.5

-0.725

43
40

0.474

59
67.5

-1.035

56
40

2.530

The observed value of Pearson's statistic is 8.778 (the sum of squares of the standard-
ized residuals) and the p value, based on the chi-square distribution with 4 degrees of
freedom, is 0.067. The recent survey data are judged to be only marginally consistent
with the 1980 census model. In particular, the observed number of adults in the 65+
group was much larger than expected.

Note that the analysis above assumes that the 250 individuals chosen for the
survey are a simple random sample of adults in the United States. Since the total
number of adults is quite large, a multinomial distribution can be used to analyze the
results of the survey (generalizing ideas introduced in Sections 2.2.4 and 2.3.5).

Pearson's goodness-of-fit procedure is an example of a hypothesis test. Hypothesis tests are
studied in detail in Chapter 8.

is approximately chi-square with (k — 1 — e) degrees of freedom, where pt is an
appropriate estimate ofpf, for i = 1, 2, . . . , k.

The smoothness conditions mentioned in the theorem, and methods for estimating free
parameters in models, are studied in detail in Chapter 7. The method of minimum chi-square
is often used to estimate the free parameters in goodness-of-fit problems (see laboratory
Problems 10 and 11).

Pearson's goodness-of-fit test is conducted in the same way as before, with
estimated expected frequencies taking the place of expected frequencies and with
(k — 1 — e) degrees of freedom taking the place of (k — 1) degrees of freedom.

6.3.3 Goodness-of-fit: Estimated model

In many practical situations, certain parameters of the multinomial model need to be
estimated from the sample data. R. A. Fisher proved a generalization of Theorem 6.4
to handle this case.

Theorem 6.5 (Fisher's Theorem). Assume that (X\, X2,..., X*) has a multinomial
distribution with parameters n and (pi, P2, • • •, Pk), and that the list of probabilities
has e free parameters. Then, under smoothness conditions and when n is large, the
distribution of the statistic
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Table 6.1. Goodness-of-fit analysis oflQ scores data.

Event
IQ < 77.63

77.63 < IQ < 83.55
83.55 < IQ < 87.55
87.55 < IQ < 90.73
90.73 < IQ < 93.45
93.45 < IQ < 95.90
95.90 < IQ < 98.17
98.17 < IQ < 100.32
100.32 < IQ < 102.41
102.41 < IQ < 104.46
104.46 < IQ < 106.50
106.50 < IQ < 108.59
108.59 <IQ< 110.74
1 10.74 <IQ< 113.01
113.01 <IQ< 115.46
1 15.46 < IQ < 118.18
118.18 < / < 2 < 121.36
121.36 <IQ< 125.36
125.36 <IQ< 131.28

/G > 131.28

Observed
Frequency

5
7
6
5
6
2
9
4
7
3
4
6
9
8
6
3
8
5
5
4

Expected
Frequency

5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6

Standardized
Residual

-0.25
0.59
0.17

-0.25
0.17

-1.52
1.44

-0.68
0.59

-1.10
-0.68

0.17
1.44
1.01
0.17

-1.10
1.01

-0.25
-0.25
-0.68

Component
ofX2

0.06
0.35
0.03
0.06
0.03
2.31
2.06
0.46
0.35
1.21
0.46
0.03
2.06
1.03
0.03
1.21
1.03
0.06
0.06
0.46

Example: Analysis of IQ scores

A study was conducted using the Stanford-Binet intelligence scale to determine the
intelligence quotients (IQ scores) of children in five kindergarten classes in San Jose
and San Mateo, California [106], [80, p. 387]. There were 112 children (64 boys and
48 girls), ranging in age from 3.5 to 7 years old. The majority of the kindergarteners
were from the middle class, and all were native born. A sample mean of x = 104.455
and a sample standard deviation of s = 16.3105 were observed. Of interest was
whether a normal distribution could be used to model IQ scores.

Let X be the IQ score of a randomly chosen kindergarten student. To obtain a
multinomial model, the observations are grouped as follows:

where xp is the pth quantile of the normal distribution with mean 104.455 and standard
deviation 16.3105. The multinomial model has 20 equally likely outcomes (Pi, = 0.05
for i = 1,2,. . . , 20); two free parameters have been estimated.

Table 6.1 summarizes the important information needed in the analysis. The
observed value of Pearson's statistic is 13.3571, and the p value, based on the
chi-square distribution with 17 degrees of freedom, is 0.712. The IQ scores data
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are judged to be consistent with a normal distribution. There are no unusual stan-
dardized residuals.

Note that the analysis above assumes that the 112 children chosen for the study
are a simple random sample of kindergarten children in the United States and that
the total number of kindergarten children is large enough that a multinomial model
can be used to analyze the results of the experiment.

A standard rule of thumb for using a multinomial approximation is that the number of
individuals in the simple random sample is less than 5% of the total population size.

6.4 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for working
with chi-square and multinomial models, and for conducting goodness-of-fit tests.
The problems are designed to reinforce the ideas of this chapter.

6.4.1 Laboratory: Transition to statistics

In the main laboratory notebook (Problems 1 to 6), you will use simulation to
study chi-square distributions and multinomial distributions; compute probabilities
in multinomial models; use simulation to study Pearson's goodness-of-fit procedure;
and apply the goodness-of-fit method to data on major coal mining accidents in Great
Britain in the nineteenth century [71], [57].

6.4.2 Additional problem notebooks

Problems 7 through 13 are applications of Pearson's goodness-of-fit method. Problem
7 uses data on computer-shuffled and hand-shuffled bridge hands [13], [33]; of interest
is whether the data are consistent with a model for well-shuffled decks. Problem 8
uses data on the numbers of boys and girls in German families with exactly 12
children [46], [90]; of interest is whether the data are consistent with a binomial
model. Problem 9 uses data on radioactive decay [93], [50]; of interest is whether
the data are consistent with a Poisson model.

Problems 10 and 11 introduce the method of minimum chi-square. Problem
10 applies the method to data from a memory study [109], [48]. Problem 11 applies
the method to data from a genetics study [24], [65].

Applications of gamma distributions are presented in Problems 12 and 13. In
each case, sample values are used to estimate the parameters of the gamma distri-
bution. Problem 12 uses data on the lifetimes of machine components subjected to
repeated alternating stress [15]. Problem 13 uses data on rainfall amounts [66], [90].

In Problem 14, simulation is used to determine if the distribution of the random
variable (n — l)S2/a2 is approximately chi-square when sampling from distributions
other than the normal distribution. Exponential, gamma, and uniform models are used.

In Problem 15, simulation is used to study the quality of the chi-square approx-
imation to the distribution of Pearson's statistic when some expected frequencies are
small.
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Chapter 7

Estimation Theory

Statistical inference, which includes estimation theory and hypothesis testing theory,
refers to a broad collection of methods for analyzing random samples from probability
distributions. If the family of distributions from which the data were drawn is known
except for the values of one or more parameters, then estimation theory can be used
to make probabilistic statements about the unknown parameters.

This chapter introduces estimation theory. The first three sections give impor-
tant definitions and examples. Method of moments estimation and maximum likeli-
hood estimation are introduced in Sections 4 and 5, respectively. Section 6 outlines
the laboratory problems.

7.1 Definitions
Recall that a random sample of size n is a list of n mutually independent random
variables, each with the same probability distribution.

A statistic is a function of one or more random samples. The probability
distribution of a statistic is known as its sampling distribution.

An estimator (or point estimator) is a statistic used to estimate an unknown
parameter. An estimate is the value of an estimator for a given set of data.

Example: Sampling from a normal distribution

For example, let X and S2 be the sample mean and sample variance of a random
sample of size n from a normal distribution.

Then X is an estimator of \L and S2 is an estimator of a2. By Theorem 6.1, the
sampling distribution of X is normal with parameters // and ff/^/n, and the sampling
distribution of (n — l)S2/<r2 is chi-square with (n — 1) degrees of freedom.

Further, if the numbers 90.8, 98.0, 113.0, 134.7, 80.5, 97.6, 117.6, 119.9 are
observed, then an estimate of /i is x = 106.513 and an estimate of a2 is s2 = 316.316.

81
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7.2 Properties of point estimators
Let X\, X2,..., Xn be a random sample from a distribution with parameter 9, The
notation

Given two unbiased estimators, we would prefer to use the more efficient one.

For example, let X\, Xi, ^3, X* be a random sample of size 4 from a distribution
vith mean \JL and standard deviation a. Consider two estimators of u:

Each statistic is an unbiased estimator of \L. Since Var (//i) = G /3 and Viar (^2) =
<72/4, /i2 is more efficient then //i. Note that ̂ 2 is the sample mean.

is often used to denote an estimator of 9. (9 is a function of the random sample,
although the arguments are often suppressed.)

7.2.1 Bias; unbiased estimator

The bias of the estimator 9 is the difference between the expected value of the
estimator and the true parameter:

If E(9) = 9, then 9 is said to be an unbiased estimator of 9; otherwise, 9 is said to
be a biased estimator of 9.

For example, let X, S2, and S be the sample mean, sample variance, and sample
standard deviation of a random sample of size n from a normal distribution. Since
E(X) = n, X is an unbiased estimator of /x. Since E(S2} = a2, S2 is an unbiased
estimator of a2. Since

S is a biased estimator of a.

Asymptotically unbiased estimator

The estimator 9 is said to be asymptotically unbiased if lim,,_KX> E(9) = 9. For
example, the sample standard deviation of a random sample from a normal distribu-
tion is an asymptotically unbiased estimator of a.

7.2.2 Efficiency for unbiased estimators

Let 0i and QI be two unbiased estimators of 9, each based on a random sample of
size n from the X distribution. 9\ is said to be more efficient than #2 if
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MVUE estimator

The unbiased estimator 6 is called a minimum variance unbiased estimator (MVUE)
of B if it has the minimum variance among all unbiased estimators of 0.

An interesting and difficult problem in the field of statistics is that of determining when an
MVUE exists. Criteria for the existence of an MVUE are given in Section 7.5.2.

7.2.3 Mean squared error

The mean squared error (MSB) of an estimator is the expected value of the square
of the difference between the estimator and the true parameter:

MSB is the average squared distance between B and B. It is possible for a biased estimator
of B to have a smaller MSE than an unbiased estimator. Based on the mean squared error
criterion, the biased estimator would be preferred to the unbiased estimator.

Consistent estimators are not necessarily unbiased but are generally asymptot-
ically unbiased. For unbiased estimators, the following theorem gives a criterion for
consistency.

Theorem 7.1 (Consistency Theorem). If 9 = 9 (X\, X2,..., Xn) is an unbiased
estimator of 6 based on a random sample of size nfrom the X distribution and

Thus, in particular, if 6 is an unbiased estimator of 6, then MSE(0) = Var(9).

Efficiency

Let 6\ and 02 be two (not necessarily unbiased) estimators of 9, each based ona random
sample of size n from the X distribution. Q\ is said to be more efficient than 02 if

Properties of expectation can be used to show that

7.2.4 Consistency

A consistent estimator of 0 is one that is unlikely to be far from 0 when the sample
size n is large. The formal definition is as follows.

The estimator 0 = 0 (X\, ^2,.. . , Xn) is said to be a consistent estimator of 0
if, for every positive number e,

then 0 is a consistent estimator of 9.
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7.3.1 Example: Normal distribution

Let X be the sample mean and S2 be the sample variance of a random sample of size
n from a normal distribution with mean fj. and standard deviation a.

Confidence intervals for \L

If the value of a2 is known, then Theorem 6.1 can be used to demonstrate that

is a 100(1 - a)% confidence interval for n, where z(a/2) is the 100(1 - a/2)%
point of the standard normal distribution.

If the value of a2 is estimated from the data, then Theorem 6.2 can be used to
demonstrate that

84 Chapter 7. Estimation Theory

For example, the sample mean and sample variance of a random sample from
a normal distribution are consistent estimators of n and a2, respectively.

Note that the law of large numbers (Theorem 5.1) is a special case of the
consistency theorem. Like the law of large numbers, the consistency theorem can
be proven using Chebyshev's inequality (Theorem 4.1). Further, the consistency
theorem can be extended to include asymptotically unbiased estimators.

7.3 Interval estimation
Let Xi, X2,..., Xn be a random sample from a distribution with parameter 6. The
goal in interval estimation is to find two statistics

with the property that 9 lies in the interval [L, U\ with high probability.
It is customary to let a (the error probability) denote the probability that 9 is

not in the interval and to find statistics L and U satisfying

The probability (1 — a) is called the confidence coefficient, and the interval [L, U]
is called a 100(1 — a)% confidence interval for 9.

Sample data are used to estimate the lower (L) and upper (U) endpoints of the confidence
interval [L, V\. 100(1 — a)% of the estimated intervals will contain 0.

is a 100(1 - <x)% confidence interval for p, where fn_i(a/2) is the 100(1 - a/2)%
point of the Student t distribution with (n — 1) degrees of freedom.

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

7.3. Interval estimation 85

For example, if n = 12, a = 0.10, x = 81.282 is used to estimate \JL and
s2 = 11.833 is used to estimate <r2, then

is a 100( 1 — a)% confidence interval for <r2, where xl-i (p) is the 100( 1 — /?)% point
of the chi-square distribution with (n — 1) degrees of freedom.

Confidence intervals for a

If[L, U\ is a 100(l-a)% confidence interval for a2, then [>/L, VZ7]isalOO(l-a)%
confidence interval for a.

For example, if n = 12, a = 0.10, x = 81.282 is used to estimate n and
s2 = 11.833 is used to estimate a2, then

is a 100(1 — a)% confidence interval for a2, where #;(/>) is the 100(1 — p)% point
of the chi-square distribution with n degrees of freedom.

If the value of /i is estimated from the data, then Theorem 6.1 can be used to
demonstrate that

is a 90% confidence interval for fi.

Confidence intervals for a2

If the value of ju is known, then

and [2.572,5.337] are 90% confidence intervals for a2 and a, respectively.
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7.3.2 Approximate intervals for means

Let X be the sample mean and S2 be the sample variance of a random sample of size
n from a distribution with unknown (but finite) mean and variance. If n is large, then
the central limit theorem (Theorem 5.2) can be used to demonstrate that

s an approximate 100(1 — a)% confidence interval for /z, where z(a/2) is th
100(1 — a/2)% point of the standard normal distribution.

This large sample method for n is useful because it does not require precise knowledge of
the X distribution. Approximate methods for other parameters are given in Section 7.5.3.

7.4 Method of moments estimation
The method of moments (MOM), introduced by K. Pearson in the 1880's, is a general
method for estimating one or more unknown parameters. In general, MOM estimators
are consistent but are not necessarily unbiased.

Recall that fa = E (Xk) is called the kth moment of the X distribution for
k = 1,2, The kth sample moment is the random variable

where Xi, X2,..., Xn is a random sample of size n from the X distribution. For
example, if the numbers 1.57, -2.41, 2.42, 0.80, 4.20, -2.97 are observed, then
0.602 is the first sample moment (the sample mean), 6.872 is the second sample
moment, and 8.741 is the third sample moment.

Note that for each k, the kth sample moment is an unbiased estimator of Hk.

7.4.1 Single parameter estimation

If X\, X2,..., Xn is a random sample from a distribution with parameter 6, and
fik = E (Xk) is a function of 6 for some k, then a method of moments estimator (or
MOM estimator) of 6 is obtained using the following procedure:

Solve jit* = jTk for the parameter 9.

For example, let X be a uniform random variable on the interval [0, b], and
assume that b > 0 is unknown. Since E(X) = b/2, a MOM estimator is obtained as
•firvl I r̂ iuc •

n
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Suppose instead that X is a uniform random variable on the interval [—b, b] and
that b > 0 is unknown. Since E(X) = 0 and E(X2) = Var(X) = b2/3, a MOM
estimator is obtained as follows:

7.4.2 Multiple parameter estimation

The procedure can be generalized to any number of unknown parameters. For
example, if the X distribution has two unknown parameters (say Q\ and 62), then
MOM estimators are obtained using the procedure

Note that /£ is an unbiased estimator of ju, but a2 is a biased estimator of a2.

7.5 Maximum likelihood estimation
The method of maximum likelihood (ML), introduced by R.A. Fisher in the 1920's,
is a general method for estimating one or more unknown parameters. In general, ML
estimators are consistent but are not necessarily unbiased.

7.5.1 Single parameter estimation

Let X\, X2,..., Xn be a random sample from a distribution with parameter 6 and
PDF /(*). The likelihood function is the joint PDF of the random sample thought of
as a function of 0:

The log-likelihood function is the natural logarithm of the likelihood function:

for appropriately chosen k\ and k^.

Example: Normal distribution

For example, let X be a normal random variable with unknown mean \i and variance
a2. Since E(X) = n and E(X2) = Var(X) + (£(X))2 = a2 + V2, MOM estimators
are obtained by solving two equations in two unknowns:
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Figure 7.1. Likelihood functions for samples from a Bernoulli distribution
(left plot) and from a uniform distribution (right plot).

Note that the symbol log is used to represent the natural logarithm function, not the
common logarithm function.

The maximum likelihood estimator (or ML estimator) of 9 is the value that
maximizes the likelihood function (or the log-likelihood function).

The ML estimator is the value of 9 that maximizes the likelihood of the observed sample.

Example: Bernoulli distribution

Let X be a Bernoulli random variable with parameter p. Since the Bernoulli random
variable is a binomial random variable with n = 1, its PDF can be written as follows:

Further, the second derivative test can be used to demonstrate that p = Y/n maximizes
the likelihood function on 0 < p < 1.

The left part of Figure 7.1 shows the Bernoulli likelihood function when two
successes are observed in six trials. The function is maximized at the ML estimate
of the success probability, 'p = 1/3.

Note that if the observed value of Y is 0, then the ML estimate is p = 0, and if the observed
value of y is n, then the ML estimate is /? = 1.

The likelihood function is

where Y = £],. ^i is me sample sum, and the log-likelihood function is

Assume that 0 < Y < n. The ML estimator can be obtained by solving the derivative
equation t'(p) = 0 for p:
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Example: Uniform distribution

Let X be a uniform random variable on the interval [0, b]. Since the PDF of X is
/(jc) = I/b for 0 < x < b and 0 otherwise, the likelihood function is

^and 0 otherwise). Likelihood is maximized at b = max(Xi, ^2,..., Xn).
The right part of Figure 7.1 shows the uniform likelihood function when th

lumbers 1.80, 1.89, 2.14, 3.26,4.85, 7.74 are observed. The function is maximize
it the ML estimate of the upper endpoint, b = 7.74.

7.5.2 Cramer-Rao lower bound

rhe theorem below gives a formula for the lower bound on the variance of an unbiase
jstimator of 9. The formula is valid under what are called smoothness conditions o
:he X distribution.

If the three conditions

1. the PDF of X has continuous second partial derivatives (except, possibly, at a finite
number of points),

2. the parameter 6 is not at the boundary of possible parameter values, and

3. the range of X does not depend on 9

hold, then X satisfies the smoothness conditions of the theorem. The theorem excludes, for
example, the Bernoulli distribution with p = 1 (condition 2 is violated) and the uniform
distribution on [0, b} (condition 3 is violated).

Many important models are excluded from the theorem. Additional tools, not covered here,
are needed to study these models.

Theorem 7.2 (Cramer-Rao Lower Bound). Let X\, X2,... ,Jtn be a random
sample of size n from a distribution with parameter 0, and let 9 be an unbiased
estimator of 9 based on this sample. Under smoothness conditions on the X distri-
bution.

where nl(9) can be computed as follows:

In this formula, t"(Q) is the second derivative of the log-likelihood Junction, and the
expectation is computed using the joint distribution of the X, 's for fixed 9.

The quantity n/(0) is called the information in a sample of size n. The Cramer-
Rao lower bound is the reciprocal of the information, l/(+n/(0)).
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Efficient estimator

The estimator?is said to be efficient if £(?) = 9 and Var(6) = l/(«/(0)).

If the X distribution satisfies the smoothness conditions and 9 is an efficient estimator, then
Theorem 7.2 implies that 6 is a minimum variance unbiased estimator of 9.

For the Bernoulli example from page 88, the information is

(E(Y) = nE(X) = np), and the Cramer-Rao lower bound is p(l — p)/n. Since

the ML estimator p is an efficient estimator of p.

7.5.3 Approximate sampling distribution

R. A. Fisher proved a generalization of the central limit theorem (Theorem 5.2) for
ML estimators.

Theorem 7.3 (Fisher's Theorem). Let 6n be the ML estimator of B based on a
random sample of size nfrom the X distribution, let nI(B) be the information, and

Under smoothness conditions on the X distribution,

where <£(•) is the CDF of the standard normal random variable.

Fisher's theorem says that if the X distribution satisfies smoothness conditions
and the sample size is large, then the sampling distribution of the ML estimator is
approximately normal with mean 6 and variance equal to the Cramer-Rao lower
bound. Thus, under smoothness conditions, the ML estimator is asymptotically
efficient.

Approximate confidence intervals

Under the conditions of Theorem 7.3, an approximate 100(1 — a)% confidence
interval for 6 has the form

where z(a/2) is the 100(1 — a/2)% point of the standard normal distribution, and
nl(9) is the estimate of nl(6) obtained by substituting the ML estimate for 9.
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Example: Bernoulli/binomial distribution

Let Y be the sample sum of a random sample of size n from a Bernoulli distribution
with parameter p. If n is large and 0 < Y < n, then an approximate 100(1 — a)%
confidence interval for p has the following form:

and z(a/2) is the 100(1 — a/2)% point of the standard normal distribution.
The sample sum Y is a binomial random variable with parameters n and p. The

estimator /> = Y/n is called the sample proportion.
For example, suppose that in a recent national survey of 1570 adults in the

United States, 30% (471/1570) said they considered the most serious problem facing
the nation's public schools to be drugs. An approximate 95% confidence interval
for the proportion p of all adults in the United States who consider the most serious
problem facing public schools to be drugs is

Note that the analysis above assumes that the 1570 individuals chosen for the
survey are a simple random sample of adults in the United States. Since the total
number of adults is quite large, the results can be assumed to summarize a random
sample from a Bernoulli distribution.

In survey applications, the halfwidth of the confidence interval

is often called the margin of error. Unless otherwise specified, the confidence level is
assumed to be 0.95 (that is, a = 0.05).

Example: Poisson distribution

Let Y be the sample sum of a random sample of size n from a Poisson distribution with
parameter L If n is large and Y > 0, then an approximate 100(1 — a)% confidence
interval for A has the form

and z(a/2) is the 100(1 — a/2)% point of the standard normal distribution.
The sample sum Y is a Poisson random variable with parameter nL The statistic

A = Y/n is the ML estimator of L Further, Theorem 7.2 can be used to show that A
is an efficient estimator of A.

For example, suppose that traffic accidents occurring during the workday in a
large metropolitan area follow an approximate Poisson process and that an average
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of 7.1625 (573/80) accidents per day were observed in 80 workdays. If this infor-
mation summarizes the values of a random sample from a Poisson distribution with
parameter A (the average number of traffic accidents per workday in the area), then
an approximate 95% confidence interval for A is

The model above can be used in survival analysis. Let 9 equal the probability of surviving
one unit of time, and assume that survival is independent of time period. Then p\ is the
probability of dying in the first period, p2 is the probability of surviving the first period but
dying in the second, p^ is the probability of surviving the first two periods but dying in the
third, and p4 is the probability of surviving three or more time periods.

Example: Multinomial distribution

Assume that (X\, ̂ 2,..., Xk) has a multinomial distribution with parameters n and

Then the likelihood function can be written as follows:

Since the random &-tuple summarizes the results of n independent trials of a multi-
nomial experiment, the results of Theorem 7.3 can be applied in many situations.

For example, let k = 4 and

where 9 is a proportion. If n is large and each X, > 0, Theorem 7.3 can be used to
demonstrate that an approximate 100( 1 — a)% confidence interval for 6 has the form

and z(a/2) is the 100(1 — a/2)% point of the standard normal distribution.
In particular, if n = 1000 and (*i,jc2, Jc3,Jt4) = (363,205, 136,296) is

observed, then the ML estimate of 6 is 0.660 and an approximate 95% confidence
interval for 6 is
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The ML estimators can be obtained by solving the partial derivative equations i\(n,a2) =
0 and £2(1*, cr2) = 0 simultaneously for \a and cr2:

Note that ML and MOM estimators are the same in normal distributions.

Example: Gamma distribution

Let X be a gamma random variable with parameters a and ft. The likelihood function
is

ana tne log-iiKeiinooa tunction is

5artial derivatives with respect to a (^i(a, ft)) and ft (€2(01, /?)) are

7.5. Maximum likelihood estimation 93

7.5.4 Multiple parameter estimation

If the X distribution has two or more unknown parameters, then ML estimators are
computed using the techniques of multivariable calculus.

Example: Normal distribution

Let X be a normal random variable with mean \L and variance a2. The likelihood
function is

and the log-likelihood function is

Partial derivatives with respect to \a (t\(n, a1}) and cr2 (l2(H> <r2)) are
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Figure 7.2. Contours z = -39.6, -40.0, -40.4, -40.8fora, gamma log-
likelihood Junction z = £(«, j8). ML estimates are a = 5.91075 and']} = 2.84609.

Since the system of equations £i(a, /?) = 0 and €2(01, /?) = 0 cannot be solved
exactly, the computer is used to analyze specific samples.

For example, Figure 7.2 is a contour plot of the gamma log-likelihood function
when the observations are 8.68,8.91,11.42,12.04,12.47,14.61,14.82,15.77,17.85,
23.44, 29.60, 32.26. Log-likelihood is maximized when a equals 5.91075 and ft
equals 2.84609. Thus, the ML estimates are a = 5.91075 and ft = 2.84609.

7.6 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for working
with the Student t distribution, for computing confidence intervals for normal means
and variances, and for constructing plots of likelihood functions and simulated confi-
dence intervals. The problems are designed to reinforce ideas related to estimation
theory.

7.6.1 Laboratory: Estimation theory

In the main laboratory notebook (Problems 1 to 5), you are asked to use graphics and
simulation to study Student t distributions; use simulation from normal distributions
to study confidence interval procedures; apply confidence interval procedures to data
from an IQ study [106], [80]; use simulation and graphics to study the concepts of
confidence interval and ML estimation; and apply large sample methods to a hospital
infection setting and to data from a spatial distribution study [85], [75], Normal,
binomial, and Poisson models are used.

7.6.2 Additional problem notebooks

Problems 6 and 7 are applications of estimation methods for samples from normal
distributions. Problem 6 uses data from a study of forearm lengths [83] and includes
a goodness-of-fit analysis. Problem 7 uses data from a physical anthropology study
[107] and includes comparisons of three estimated models.
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Problem 8 considers ML estimation and confidence interval procedures for
subfamilies of the normal distribution where either the mean is known or the variance
is known.

Problems 9 through 12 consider ML estimation methods in models with a single
unknown parameter. Problem 9 applies the exponential distribution to data on major
earthquakes [50]. Problem 10 applies the exponential distribution to data on major
coal mining accidents in Great Britain in the nineteenth century [71], [57]. Problem
11 applies the negative binomial distribution in a political campaign setting. Problem
12 applies the gamma distribution with known shape parameter in a backup systems
setting.

Problems 13 and 14 consider MOM and ML estimation for gamma distribu-
tions. Problem 13 uses data from a fuel leakage study [67], Problem 14 uses data on
cholesterol levels in two groups of male patients [95], [50]. Both problems include
goodness-of-fit analyses and comparisons of different estimated models.

In Problem 15, simulation is used to determine if the sample mean and sample
variance are uncorrelated when sampling from distributions other than the normal.
Exponential, gamma, and uniform models are used.

In Problem 16, simulation is used to determine if confidence interval procedures
designed for samples from normal distributions remain valid when sampling from
distributions other than the normal. Exponential, gamma, and uniform models are
used.
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Chapter 8

Hypothesis
Testing Theory

Statistical inference, which includes estimation theory and hypothesis testing theory,
refers to a broad collection of methods for analyzing random samples from probability
distributions. If the family of distributions from which the data were drawn is known
except for the values of one or more parameters, then hypothesis testing theory can
be used to determine if the unknown parameters lie in one subset of the set of possible
parameters or in its complement.

This chapter introduces hypothesis testing theory. The first six sections give
important definitions and examples. Likelihood ratio tests are introduced in Section
7, and Section 8 discusses the relationship between hypothesis tests and confidence
intervals. Section 9 outlines the laboratory problems.

8.1 Definitions
An hypothesis is an assertion about the distribution of a random variable or a random
fc-tuple. A simple hypothesis specifies the distribution completely. A compound
hypothesis does not specify the distribution completely. For example, the hypothesis

H: X is an exponential random variable with parameter A = 1/5

is simple, and the hypothesis

H: X is an exponential random variable with parameter /I > 1/5

is compound.
A hypothesis test is a decision rule allowing the user to choose between compe-

ting assertions.

8.1.1 Neyman-Pearson framework

In the Neyman-Pearson framework of hypothesis testing, there are two competing
assertions: the null hypothesis, denoted by H0, and the alternative hypothesis,
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98 Chapter 8. Hypothesis Testing Theory

denoted by Ha. The null hypothesis is accepted as true unless sufficient evidence is
provided to the contrary; then the null hypothesis is rejected in favor of the alternative
hypothesis.

For example, suppose that the standard treatment for a given medical condition
is effective in 45% of patients. A new treatment promises to be effective in more than
45% of patients. In testing the efficacy of the new treatment, the hypotheses could
be set up as follows:

H0: The new treatment is no more effective than the standard treatment.
Ha: The new treatment is more effective than the standard treatment.

Ifp is the proportion of patients for whom the new treatment would be effective, then
the hypotheses above could be written as follows:

Similarly, in testing whether an exponential distribution is a reasonable model
for sample data, the hypotheses would be set up as follows:

H0: The distribution of X is exponential.
Ha\ The distribution of X is not exponential.

If Pearson's goodness-of-fit test is used, then the data would be grouped (using k
ranges of values for some k) and the hypotheses would be set up as follows:

H0: The data are consistent with the grouped exponential model.
Ha: The data are not consistent with the grouped exponential model.

Test setup

Let X\, X2,..., Xn be a random sample from the X distribution. To set up a test, the
following is done:

1. A test statistic, T = T(X\,..., Xn), is chosen.

2. The range of T is subdivided into the rejection region and the complementary
acceptance region.

3. If the observed value of T is in the acceptance region, then the null hypothesis is
accepted. Otherwise, the null hypothesis is rejected in favor of the alternative.

The test statistic and acceptance and rejection regions are chosen so that the
probability that T is in the rejection region is small (close to 0) when the null hypoth-
esis is true. Hopefully, although it is not guaranteed, the probability that T is in the
rejection region is large (close to 1) when the alternative hypothesis is true.

Upper tail test example

Let Y be the sample sum of a random sample of size 25 from a Bernoulli distribution
with parameter p. Consider the following decision rule for a test of the null hypothesis
p = 0.45 versus the alternative hypothesis p > 0.45:

Reject p = 0.45 in favor of p > 0.45 when 7 > 16.
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Figure 8.1. Graphs of distributions under null and alternative hypotheses
for an upper tail test (left plot) and a two tailed test (right plot).

If the null hypothesis is true, then P(7 > 16 when p = 0.45) = 0.044. If the actual
success probability is 0.70, then P(7 > 16 when p = 0.70) = 0.811.

The test statistic Y is a binomial random variable with n = 25. The left part
of Figure 8.1 shows the distribution of Y under the null hypothesis when p = 0.45
(in gray) and under the alternative hypothesis when p = 0.70 (in black). A vertical
dashed line is drawn at y = 16.

This is an example of an upper tail test. In an upper tail test, the null hypothesis
is rejected if the test statistic is in the upper tail of distributions satisfying the null
hypothesis.

A test that rejects the null hypothesis when the test statistic is in the lower tail
of distributions satisfying the null hypothesis is called a lower tail test. Upper tail
and lower tail tests are also called one sided tests.

Two tailed test example

Let X be the sample mean of a random sample of size 16 from a normal distribution
with standard deviation 10. Consider the following decision rule for a test of the null
hypothesis u = 85 versus the alternative hypothesis u = 85:

If the null hypothesis is true, then P(X < 80.3 or X > 89.7 when n = 85) = 0.06. If
the actual mean is 78,_then P(X < 80.3 or X > 89.7 when u = 78) = 0.821.

The test statistic X is a normal random variable with standard deviation 10/VT6 =
2.5. The right part of Figure 8.1 shows the distribution of X under the null hypothesis
when u = 85 (in gray) and under the alternative hypothesis when u = lS (in black).
Vertical dashed lines are drawn at x = 80.3 and x = 89.7.

This is an example of a two tailed test. In a two tailed (or two sided) test, the
null hypothesis is rejected if the test statistic is either in the lower tail or in the upper
tail of distributions satisfying the null hypothesis.

8.1.2 Equivalent tests

Consider two tests, each based on a random sample of size n: (1) a test based on
statistic T with rejection region RRr and (2) a test based on statistic W with rejection
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region RRW. The tests are said to be equivalent if

That is, given the same information, either both tests accept the null hypothesis or
both reject the null hypothesis. Equivalent tests have the same properties.

For example, let X be the sample mean of a random sample of size 16 from
a normal distribution with standard deviation 10, and let Z = (X — 85)/2.5 be the
standardized mean when n = 85. Then the two tailed test given in the last example
is equivalent to the test with decision rule:

8.2 Properties of tests
Let X be a distribution with parameter 9. Assume that the null and alternative
hypotheses can be stated in terms of values of 6 as follows:

^ test of size a is often called a "100a% test."

The size or significance level is the maximum type I error (or the least upper bound of type
I errors, if a maximum does not exist).

For example, the upper tail test on page 98 is a 4.4% test of the null hypothesis
p = 0.45 versus the alternative hypothesis p > 0.45. If the actual success probability
is 0.55, then the type H error is P(F < 16 when p = 0.55) = 0.758.

where fl represents the full set of parameter values under consideration, and a>0 is a
subset of H. For example, if X is a Bernoulli random variable with parameter p, the
null hypothesis is p < 0.30, and the alternative hypothesis is p > 0.30, then

8.2.1 Errors, size, significance level

When carrying out a test, two types of errors can occur:

1. An error of type I occurs when a true null hypothesis is rejected.

2. An error of type n occurs when a false null hypothesis is accepte<

The size or significance level of the test with decision rule

Reject 0 e co0 in favor of 9 e ft - a>0 when T e RR

is defined as follows:

a = sup06co P(r e RR when the true parameter is 0).

Chapter.8 Hypothesis Testing Theory
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Statistical significance

If the significance level is a and the observed data lead to rejecting the null hypothesis,
then the result is said to be statistically significant at level a. If the observed data do
not lead to rejecting the null hypothesis, then the result is not statistically significant
at level a.

Observed significance level, p value

The observed significance level or p value is the minimum significance level for
which the observed data indicate that the null hypothesis should be rejected.

Note that the p value measures the strength of evidence against the null hypoth-
esis. For a size a test, if the p value is greater than a, then the null hypothesis is
accepted; if the p value is less than or equal to a, then the null hypothesis is rejected
in favor of the alternative hypothesis.

For example, in the upper tail test on page 98, if y = 14 is observed, then
the p value is P(F > 14 when p = 0.45) = 0.183 and the result is not statistically
significant at level 0.044.

In the two tailed test on page 99, if x = 90.5 is observed, then the p value is
2P(X > 90.5 when n = 85) = 0.0278 and the result is statistically significant at level
0.06. If x = 80.6 is observed, then the p value is 2P(X < 80.6 when \i — 85) =
0.0784 and the result is not statistically significant at level 0.06.

8.2.2 Power, power function

The power of the test with decision rule

at 9 e fl is the probability P(T e RR when the true parameter is B). The power
function of the test is the function

If 9 e (00, then the power at 6 is the same as the type I error. If 9 e SI — a>0, then the
power corresponds to the test's ability to correctly reject the null hypothesis in favor of the
alternative hypothesis.

For example, in the upper tail test on page 98, the power when p = 0.70 is
0.811; in the two tailed test on page 99, the power when \i = 78 is 0.821.

Figure 8.2 shows power functions for the upper tail (left plot) and two tailed
(right plot) examples. In the left plot, which has been extended to include all p
between 0 and 1, power increases as p increases. In the right plot, power increases
as fl gets further from 85 in either direction.

Uniformly more powerful test

Consider two 100a% tests of the null hypothesis 9 e co0 versus the alternative
hypothesis 6 e fl — co0, each based on a random sample of size n: (1) a test based
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Figure 8.2. Power curves for an upper tail test (left plot) and for a two
tailed test (right plot).

on statistic T with power function Powerr(0) and (2) a test based on statistic W
with power function PowerPC0). The test based on T is said to be uniformly more
nnwerful than the test based on W if

It is possible that the test based on T is more powerful than the one based on W for some
values of 9 e Q — co0 and that the test based on W is more powerful than the one based
on T for other values of 9 e q — a>0. If the test based on T is uniformly more powerful
than the one based on W, then T has a greater (or equal) chance of rejecting the false null
hypothesis for each model satisfying the alternative hypothesis. Thus, we would prefer to
use the test based on T.

Uniformly most powerful test

The test based on T is a uniformly most powerful test (UMPT) if it is uniformly more
powerful than all other (nonequivalent) tests.

An interesting and difficult problem in the field of statistics is that of determining when a
UMPT exists. This problem is considered in Section 8.7.1.

with strict inequality (>) for at least one 9 e n — a>0.
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8.3 Example: Normal distribution

Let X be the sample mean and S2 be the sample variance of a random sample of size
n from a normal distribution with mean n and standard deviation a.

8.3.1 Tests of fi = \LO

If the value of a2 is known, then the standardized mean when n = \LO,

can be used as test statistic. The following table gives the rejection regions for one
sided and two sided 100a% tests:

Alternative Hypothesis Rejection Region

where z(p) is the 100(1 — /?)% point of the standard normal distribution.

These are examples of z tests. A z test is a test based on a statistic with a standard normal
distribution under the null hypothesis.

If the value of a2 is estimated from the data, then the approximate standard-
ization when /i = \i0,

can be used as test statistic. The following table gives the rejection regions for one
sided and two sided 100a% tests:

Alternative Hypothesis Rejection Region

where tn-\(p) is the 100(1 — /?)% point of the Student t distribution with (n — 1)
degrees of freedom.

These are examples of t tests. A t test is a test based on a statistic with a Student t distribution
under the null hypothesis.

For example, consider testing the null hypothesis jU = 120 versus the alternative
hypothesis fi < 120 at the 5% significance level using a sample of size 16.

(i) If_the distribution has standard deviation 5, then the test statistic is Z =
(X - 120)/1.25 and the rejection region is Z < -1.645.

(ii) If the standard deviation is not known, then the test statistic is T =
(X - 120)/(5/4) and the rejection region is T < -1.753.
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8.3.2 Tests of cr2 = al

If the value of n is known, then the sum of squared deviations from n divided by the
hypothesized variance,

can be used as test statistic. The following table gives the rejection regions for one
sided and two sided 100ct% tests:

Alternative Hypothesis Rejection Region

where y^(p) is the 100(1 — p)% point of the chi-square distribution with n degrees
of freedom.

If the value of fl is estimated from the data, then the sum of squared deviations
from the sample mean divided by the hypothesized variance,

can be used as test statistic. The following table gives the rejection regions for one
sided and two sided 100a% tests:

Alternative Hypothesis Rejection Region

where X n ~ _ i ( p ) is the 100(1 — p)% point of the chi-square distribution with n — 1
degrees of freedom.

These are examples of chi-square tests. A chi-square test is a test based on a statistic with
a chi-square distribution under the null hypothesis.

For example, consider testing the null hypothesis a2 = 16 versus the alternative
hypothesis a2 / 16 at the 5% significance level using a sample of size 20.

(i) If the distribution has mean 80, then the test statistic is V = ^(Xt - 80)2/16
and the rejection region is V < 9.59 or V > 34.17.

(ii) If the mean is not known, then the test statistic is V = ^(Xt — X)2/16 and
the rejection region is V < 8.91 or V > 32.85.
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8.4 Example: Bernoulli/binomial distribution
Let Y be the sample sum of a random sample of size n from a Bernoulli distribution
with parameter p. Y is a binomial random variable with parameters n and p.

Small sample tests of p = p0

Rejection regions for one sided and two sided 100a% tests are as follows:

Alternative Hypothesis Rejection Region

where z(p) is the 100(1 — /?)% point of the standard normal distribution.
For example, consider testing the null hypothesis p = 0.45 versus the alterna-

tive hypothesis p > 0.45 at the 1% significance level using a sample of size 250. The
test statistic is Z = (Y - 112.5)/V61.875, and the rejection region is Z > 2.326.

can be used as test statistic. Since, by the central limit theorem (Theorem 5.2), the
distribution of Z is approximately standard normal when n is large, rejection regions
for approximate one sided and two sided 100a% tests are as follows:

Alternative Hypothesis Rejection Region

For example, consider testing the null hypothesis p = 0.30 versus the alterna-
tive hypothesis p =£ 0.30 at a significance level close to 5% using a sample of size
18. Since P(Y < 1 when p = 0.30) = 0.014 and P(Y > 10 when p = 0.30) = 0.021,
the rejection region for a 3.5% test is Y < 1 or Y > 10.

Large sample tests of p = p0

The standardized sample sum when p = p0,
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8.5 Example: Poisson distribution
Let Y be the sample sum of a random sample of size n from a Poisson distribution
with parameter A. 7 is a Poisson random variable with parameter nA.

Small sample tests of A, = X0

Rejection regions for one sided and two sided 100a% tests are as follows:

Alternative Hypothesis Rejection Region

can be used as test statistic. Since, by the central limit theorem (Theorem 5.2), the
distribution of Z is approximately standard normal when n is large, rejection regions
for approximate one sided and two sided 100a% tests are as follows:

Alternative Hypothesis Rejection Region

where z(p) is the 100(1 — p)% point of the standard normal distribution.
For example, consider testing the null hypothesis A. = 2 versus the alternative

hypothesis A =£ 2 at the 5% significance level using a sample of size 80. The test
statistic is Z = (Y - 160)/Vl60, and the rejection region is |Z| > 1.960.

For example, consider testing the null hypothesis A = 2 versus the alternative
hypothesis A < 2 at a significance level close to 2% using a sample of size 5. Since
P(F < 4 when A = 2) = 0.0294, the rejection region for a 2.94% test is Y < 4.

Large sample tests of X = X0

The standardized sample sum when A = A0,
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8.6 Approximate tests of fi = fi0

Let X be the sample mean and S2 be the sample variance of a random sample of size
n from a distribution with unknown (but finite) mean and variance. The approximate
standardization of the sample mean when n = jU0,

can be used as test statistic. Since, by the central limit theorem (Theorem 5.2), the
distribution of Z is approximately standard normal when n is large, rejection regions
for approximate one sided and two sided 100a% tests are as follows:

Alternative Hypothesis Rejection Region

where z(p) is the 100(1 — p)% point of the standard normal distribution.

This large sample method for /* = jU0 is useful because it does not require precise knowledge
of the X distribution. Additional approximate methods are given in Section 8.7.3.

8.7 Likelihood ratio tests
The likelihood ratio method, introduced by J. Neyman and E. Pearson in the 1930's,
is a general method for constructing tests.

In many practical situations, likelihood ratio tests are uniformly most powerful.
In situations where no uniformly most powerful test (UMPT) exists, likelihood ratio
tests are popular choices because they have good statistical properties.

8.7.1 Likelihood ratio statistic; Neyman-Pearson lemma

Let Xi, X2,..., Xn be a random sample from a distribution with parameter 6, and
let Lik(B} be the likelihood function based on this sample. Consider testing the
null hypothesis 6 = 90 versus the alternative hypothesis 6 = 0a, where 90 and 6a

are constants. Then the likelihood ratio statistic, A, is the ratio of the likelihood
functions,

Note that if the null hypothesis is true, then the value of the likelihood function in
the numerator will tend to be larger than the value in the denominator. If the alternative

and a likelihood ratio test based on this statistic is a test whose decision rule has the
following form:
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hypothesis is true, then the value of the likelihood function in the denominator will
tend to be larger than the value in the numerator. Thus, it is reasonable to "reject
when A is small."

The following theorem, proven by Neyman and Pearson, states that the like-
lihood ratio test is a UMPT for a simple null hypothesis versus a simple alternative
hypothesis.

Theorem 8.1 (Neyman-Pearson Lemma). Given the situation above, ifc is chosen
so that P(A < c when 6 = 60) = a, then the test with decision rule

is a UMPT of size a.

In general, a likelihood ratio test is not implemented as shown above. Instead,
an equivalent test (with a simpler statistic and rejection region) is used.

Example: Bernoulli distribution

Let Y be the sample sum of a random sample of size n from a Bernoulli distribution,
and consider testing the null hypothesis p = p0 versus the alternative hypothesis
p = pa, where pa > p0. Since Lik(p) = pY(l — p)n~Y (see page 88), the likelihood
ratio statistic is

Assume that P(A < c when p = p0) = a. for some a. Since

the likelihood ratio test is equivalent to the test with decision rule

where k is chosen so that P(7 > k when p = p0) = a. Thus, by Theorem 8.1, the
test based on the sample sum is a uniformly most powerful test of size a.

The inequality switches in the last equivalence above since pa > p0 implies that the ratio
(p0(l — Pa)}/(pa(l — Po)) is less than 1, and its logarithm is a negative number.
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Application: One sided tests in single parameter families

The Neyman-Pearson lemma can sometimes be used to derive UMPTs for composite
hypotheses in single parameter families of distributions.

Continuing with the Bernoulli example above, suppose that k is chosen so that
P(7 > k when p = PO) = a, and consider the test with decision rule

Since Theorem 8.1 implies that P(F > k when p = pa) is maximum possible for
each pa > PO, the test based on Y is a uniformly most powerful size a test for the
simple null hypothesis p = p0 versus the composite alternative hypothesis p > p0.

8.7.2 Generalized likelihood ratio tests

The methods in this section generalize the approach of Theorem 8.1 to compound
hypotheses and to multiple parameter families. Generalized likelihood ratio tests are
not guaranteed to be uniformly most powerful. In fact, in many situations (e.g., two
tailed tests) UMPTs do not exist.

Let X be a distribution with parameter 9, where 6 is a single parameter or a
fc-tuple of parameters. Assume that the null and alternative hypotheses can be stated
in terms of values of 6 as follows:

where Ii represents the full set of parameter values under consideration, and a>0 is
a subset of fl. For example, if X is a normal random variable with unknown mean
\i and unknown variance a2, the null hypothesis is \i = 120, and the alternative
hypothesis is ju ̂  120, then 6 = (ju, a2),

Let Xi, X2,..., Xn be a random sample from a distribution with parameter
6, and let Lik(O) be the likelihood function based on this sample. The generalized
likelihood ratio statistic, A, is the ratio of the maximum value of the likelihood
function for models satisfying the null hypothesis to the maximum value of the
likelihood function for all models under consideration,

and a generalized likelihood ratio test based on this statistic is a test whose decision
rule has the following form:

Reject 9 € co0 in favor of 9 G fl — a>0 when A < c.

Note that the value in the denominator of A is the value of the likelihood at
the ML estimator, and the value in the numerator is less than or equal to the value
in the denominator. Thus, A < 1. Further, if the null hypothesis is true, then the
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numerator and denominator values will be close (and A will be close to 1); otherwise,
the numerator is likely to be much smaller than the denominator (and A will be close
to 0). Thus, it is reasonable to "reject when A is small."

In general, a likelihood ratio test is not implemented as shown above. Instead,
an equivalent test (with a simpler statistic and rejection region) is used.

Example: Normal distribution

Let X be the sample mean and S2 be the sample variance of a random sample of
size n from a normal distribution with unknown mean \i and variance a2. Consider
testing the null hypothesis fj, = \LO versus the alternative hypothesis \i ^ \LO, where
Ho is a constant.

(i) The numerator in the likelihood ratio statistic

is the value of the likelihood when (/i, a2) is (fj,0, £ ]C"=1(X( — Ho}2}- After
cancellations, the numerator becomes

(See page 93 for the normal likelihood function.)

(ii) The denominator in the likelihood ratio statistic

is the value of the likelihood when (/i, a2) is (X, ± £"=1(X,- - X)2). After
cancellations, the denominator becomes

(the middle sum is zero)

and the ratio simplifies to
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and since ]C"=1(X( — X)2 = (n — 1)S2, the likelihood ratio statistic can be
further simplified as follows:

Since P(\X — u0/^/S2/n\ > k when ji = u0) = a, the test with decision rule

is a (generalized) likelihood ratio test of size a. Thus, the two sided t test is
equivalent to a likelihood ratio test.

The tests given in Section 8.3 for samples from normal distributions are examples of likeli-
hood ratio tests (or approximate likelihood ratio tests).

8.7.3 Approximate sampling distribution

In many situations, the exact distribution of A (or an equivalent form) is not known.
The theorem below, proven by S.S. Wilks in the 1930's, provides a useful large sample
approximation to the distribution of —21og(A) (where log is the natural logarithm
function) under the smoothness conditions of Theorems 7.2 and 7.3.

Let Xi, X2 , . . . , Xn be a random sample from a distribution with parameter
6, and let Lik(6) be the likelihood function based on this sample. Consider testing
the null hypothesis 9 € co0 versus the alternative hypothesis 0 e fl — o}0 using the
likelihood ratio test.

Theorem 8.2 (Wilks Theorem). Given the situation above, under smoothness condi-
tions on the X distribution and when n is large, the distribution of —2 log(A) is
approximately chi-square with r — r0 degrees of freedom, where r is the number of
free parameters in fl, r0 is the number of free parameters in a>0, and log() is the
natural logarithm function.

Approximate tests

Under the conditions of Theorem 8.2, an approximate 100a% test of 9 e co0 versus
6 € fl — co0 has the following decision rule:

Reject B e a>0 in favor of 6 e fl — a>0 when —21og(A) > ^_ro(a),

(iv) Assume that P(A < c when \i = ii0} = a. for some a. Then
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where ;£_ro(a) is the 100(1 — a)% point on the chi-square distribution with r — r0

degrees of freedom, r is the number of free parameters in O, and r0 is the number of
free parameters in a>0.

Rejecting when A is small is equivalent to rejecting when —2 log(A) is large.

Example: Comparing Bernoulli parameters

Let Y{ be the sample sum of a random sample of size n, from a Bernoulli distribution
with parameter p, for z = 1, 2, . . . , k.

Consider testing the null hypothesis that the k Bernoulli parameters are equal
versus the alternative that not all parameters are equal. Under the null hypothesis, the
combined sample is a random sample from a Bernoulli distribution with parameter
p = v\ = p?. = • • • = fit. The parameter sets for this test are

and log() is the natural logarithm function. If each n, is large, then —21og(A) has
an approximate chi-square distribution with (k — 1) degrees of freedom.

For example, assume the table below summarizes the values of independent
random samples from four Bernoulli distributions, and consider testing the null
hypothesis p\ = pi = p$ = p* at the 5% significance level.

The estimated common proportion is /? = 97/465 = 0.2086, and the observed
value of —21og(A) is 10.156. The observed significance level, based on the chi-
square distribution with 3 degrees of freedom, is P(-21og(A) > 10.156) = 0.0173.
Since the p value is less than 0.05, the null hypothesis that the parameters are equal is
rejected. Notice, in particular, that the largest sample proportion is more than twice
the smallest proportion.

There are k free parameters in fl and 1 free parameter in cac

The statistic —21og(A) simplifies to

where 'p is the estimate of the common parameter under the null hypothesis,
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Example: Comparing Poisson parameters

Let Y( be the sample sum of a random sample of size n, from a Poisson distribution
with parameter A,- for i = 1, 2, . . . , k.

Consider testing the null hypothesis that the k Poisson parameters are equal
versus the alternative that not all parameters are equal. Under the null hypothesis,
the combined sample is a random sample from a Poisson distribution with parameter
A = AI = A2 = • • • = Afc. The parameter sets for this test are

a = {(Ai, A 2 , . . . , At) : AI, A 2 , . . . , A* > 0} and a>0 = {(A, A , . . . , A) : A > 0).

There are k free parameters in Q and 1 free parameter in co0,
The statistic —2 log( A) simplifies to

and log() is the natural logarithm function. If each mean (E(Yf) = n,A) is large,
then —21og(A) has an approximate chi-square distribution with (k — 1) degrees of
freedom.

For example, as part of a study of incidence of childhood leukemia in upstate
New York, data were collected on the number of children contracting the disease in
the 5-year period from 1978 to 1982 [111]. The table below summarizes results using
geographic regions, running from west to east, of equal total population.

Let Ar be the average number of new cases in Region i for a 5-year period
and n, = 1 for i = 1, 2, . . . , 6. Assume the information above are the values of
independent Poisson random variables with parameters A,, and consider testing the
null hypothesis AI = fa = AS = A4 = AS = ̂  at the 5% significance level.

The estimated common 5-year rate is A = 98.33 cases, and the observed value
of —21og(A) is 7.20. The observed significance level, based on the chi-square
distribution with 5 degrees of freedom, is P(–2 log(A) > 7.20) = 0.2062. Since the
p value is greater than 0.05, the null hypothesis that the 5-year rates for geographic
regions running from west to east are equal is accepted.

Example: Multinomial goodness-of-fit

Assume that (X\, Xi,. . . , X*) has a multinomial distribution with parameters n and
(Pi, P2, • • •, Pk)- Consider testing the null hypothesis P, = p-lo for i = 1,2,.. . ,k
versus the alternative that the given model for probabilities does not hold. Then

and r = k — 1. There are two cases to consider.

where A is the estimate of the common parameter under the null hypothesis,
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Case 1. If the model for probabilities is known, then <DO contains a single
fc-tuple and has 0 free parameters. The statistic —2 log(A) simplifies to

where log() is the natural logarithm function. If n is large, then —21og(A) has an
approximate chi-square distribution with (k — 1) degrees of freedom.

Case 2. If e parameters need to be estimated (co0 has e free parameters), then
the statistic —21og(A) simplifies to

when n = 1000 and (Jti,*2»*3>*4) = (363,205, 136,296) is observed. (See
page 92.) The ML estimate of 9 is 0.660, and the observed value of —21og(A) is
4.515. The observed significance level, based on the chi-square distribution with 2
degrees of freedom, is P(—21og(A) > 4.515) = 0.105. Since the p value is greater
than 0.05, the null hypothesis that the probabilities have the form above is accepted.

Note that the value of Pearson's statistic for these data is 4.472, which is quite
close to the value of —2 log(A).

Multivariable calculus can be used to demonstrate that Pearson's statistic is a second-order
Taylor approximation of —2 log(A). Thus, Pearson's goodness-of-fit test is an approximate
likelihood ratio test when ML estimates are used for free parameters.

8.8 Relationship with confidence intervals
Confidence intervals can sometimes be used as an alternative method to report the
results of a hypothesis test. For example, consider testing the null hypothesis that
/i = 120 versus the alternative hypothesis that u = 120 at the 5% significance level
using a random sample of size n from a normal distribution with standard deviation
5. Then, the null hypothesis would be accepted if and only if the value of 120 is in
the 95% confidence interval for \i constructed using the sample data.

Similarly, hypothesis tests can sometimes be inverted to produce confidence
interval procedures. Some examples are given in the laboratory problems, and others
examples will be discussed in later chapters.

where log() is the natural logarithm function and pio is the estimated value of pt0

for / = 1, 2 , . . . , k. If n is large, then —21og(A) has an approximate chi-square
distribution with (k — 1 — e) degrees of freedom.

For example, consider testing the goodness-of-fit of the survival model
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8.9 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for conducting
tests for normal means and variances, for designing tests and computing power in
single parameter families, and for constructing plots of simulated test statistics. The
problems are designed to reinforce ideas related to hypothesis testing theory.

8.9.1 Laboratory: Hypothesis testing

In the main laboratory notebook (Problems 1 to 5), you are asked to use simulation to
study test procedures for normal samples; apply test procedures for normal samples
to data from a physical anthropology study [11] and answer questions about the
estimated model; construct tests for single parameter models and display power
at fixed alternatives; construct power curves; and find sample sizes for a proposed
cholesterol-reduction study and a proposed traffic-pattern study. Normal and Poisson
models are used.

8.9.2 Additional problem notebooks

Problem 6 applies test and confidence interval methods for normal samples to data
from a study on treatments for anorexia [50].

Problem 7 is a study design question for samples from the subfamily of normal
distributions with known mean. An industrial setting is used.

Problems 8, 9, and 10 concern constructing confidence intervals by inverting
hypothesis tests. Problem 8 considers binomial distributions and the anorexia treat-
ment data from Problem 6. Problem 9 considers hypergeometric distributions and
data from an EPA study on mercury contamination in Maine lakes [54]. Problem
10 considers hypergeometric distributions and data from a study of incidence of the
disease spina bifida [89].

Problems 11 and 12 apply large sample test and confidence interval methods
for means to differences data. Problem 11 uses differences in calcium content using
two different measurement techniques [52], [90]. Problem 12 uses differences in
daily maximum ozone levels in two different cities in the northeast [25].

In Problem 13, simulation is used to study the power of the t test for normal
means and the chi-square test for normal variances.

In Problem 14, simulation is used to determine if t tests and chi-square tests
remain valid when samples are drawn from distributions other than the normal. Expo-
nential, gamma, and uniform models are used.

Problems 15 and 16 are applications of the likelihood ratio goodness-of-fit test
method. Problem 15 uses data on memory and stressful events [109], [48]. Problem
16 uses data from a genetics study [24], [65].
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Chapter 9

Order Statistics
and Quantiles

In many statistical applications, interest focuses on estimating the quantiles of a
continuous distribution or conducting hypothesis tests about the quantiles. For
example, a medical researcher might be interested in determining the median lifetime
of patients with a serious illness, or a geophysicist might be interested in determining
the 90th percentile of the distribution of earthquake magnitudes in a region.

This chapter introduces methods for estimating quantiles of continuous distri-
butions. Order statistics are defined and studied in the first section. Procedures for
estimating quantiles and for constructing confidence intervals for quantiles based on
order statistics are given in the next two sections. Two graphical methods are also
introduced. Section 4 outlines the laboratory problems.

9.1 Order statistics
Let Xi, X2,..., Xn be a random sample of size n from a continuous distribution with
PDF /(x) and CDF F(JC), and let k be an integer between 1 and n. The *'* order
statistic, X(k), is the kth observation in order:

Sample median =

The largest observation, X(n), is called the sample maximum and the smallest obser-
vation, X(i), is called the sample minimum.

Sample median

The sample median is the middle observation when n is odd and the average of the
two middle observations when n is even:

when n is odd,

when n is even.

117
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Distribution of the sample maximum

Let X(n) be the sample maximum. The CDF and PDF of X(n) are as follows:

To demonstrate that the formula for F(n) (x) is correct, observe that

(The maximum value is x or less if and only if all n values are x or less.) The formula for
the PDF is obtained by applying the chain rule.

For example, if X is a uniform random variable on the interval [a, b], then

Distribution of the sample minimum

Let X(i) be the sample minimum. The CDF and PDF of X(i) are as follows:

To demonstrate that the formula for Fw(x) is correct, observe that

(The minimum is greater than x if and only if all n values are greater than x.) The formula
for the PDF is obtained by applying the chain rule.

For example, if X is an exponential random variable with parameter /I, then

and /(!>(*) = nke n*x when x > 0 and 0 otherwise. Note that the sample minimum
is an exponential random variable with parameter nL
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Figure 9.1. PDF of an exponential random variable with parameter 1/10
(left plot) and the 9th order statistic of a random sample of size 11 from the exponential
distribution (right plot).

Distribution in the general case

Let X(k) be the kth order statistic with 1 < k < n. The CDF and PDF of X(k) are as
follows:

and the formula for F(k)(x) is the sum of binomial probabilities. The formula for /(*)(*) is
obtained using the product and chain rules for derivatives.

For example, if X is an exponential random variable with parameter ^, an
£(9) is the 9th order statistic of a random sample of size 11 from the X distributior
hen the CDF of X(9) is

The left part of Figure 9.1 is a graph of the PDF of X, and the right part is a graph or
the PDF of X(9). Further, P(X < 12) = 0.699 and P(X(9) < 12) = 0.310.

To demonstrate that the formula for F^ (x) is correct, first note that

The orobabilitv that exactlv / observations are < x is a binomial orobabilitv.

and the PDF is
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Figure 9.2. Normal probability plot (left plot) and empirical histogram
(right plot) for a simulated sample from a normal distribution. The empirical
histogram is superimposed on a plot of the normal density function.

9.1.1 Approximate mean and variance

Finding the mean and variance of a kth order statistic can sometimes be difficult. The
following theorem gives useful approximate formulas for these summary measures.

Theorem 9.1 (Approximate Summaries). Let X be a continuous random variable
with PDF f(x), X(k) be the kth order statistic of a random sample of size nfrom the
X distribution, and 9 be the pth quantile of the X distribution, where p = -^. If
/(0) / 0, then

The formulas given in the theorem are exact for uniform distributions. For
example, let X be a uniform random variable on the interval [0, 10], n = 4, and
k = 3. Then p = 0.6, 9 = x0.6 = 6, E(X(3)) = 6, and Var(X(3)) = 4.

Probability plots

Theorem 9.1 implies that order statistics can be used as estimators of quantiles. In
particular, the kth order statistic can be used to estimate the (k/(n +1 ))st quantile for
k = 1, 2 , . . . , n. An interesting graphical comparison of a model with sample data
uses this result.

A probability plot is a plot of pairs of the form

where x$) is the observed kth order statistic for each k.
For example, let X be a normal random variable with mean 0 and standard

deviation 10. The left part of Figure 9.2 is a normal probability plot of a simulated
sample of size 195 from the X distribution. Observed order statistics (vertical axis)
are paired with approximate expected values (horizontal axis). The gray line is the
line y = x. Since the sample was drawn from the X distribution, the points are close
to the Une.
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The right part of Figure 9.2 is another graphical comparison: an empirical
histogram of the simulated data is superimposed on a graph of the density function
of X (filled plot). Once again, the comparison is good.

If n is large, then both plots give good graphical comparisons of model and data. If n is
small to moderate, then the probability plot may be better since the shapes of the empirical
histogram and density curve may be quite different.

9.2 Confidence intervals for quantiles
This section presents an approximate confidence interval method for the median of
a continuous distribution and exact confidence interval methods for pth quantiles.

9.2.1 Approximate distribution of the sample median

Let X be a continuous random variable with median B. The following theorem says
that, under certain conditions, the sampling distribution of the sample median is
approximately normal with mean 0.

Theorem 9.2 (Approximate Distribution). Let Xbea continuous random variable
lAii+li mrtAifiit* (\ nin/1 ]**+

and z(a/2) is the 100(1 — a/2)% point of the standard normal distribution. In this
formula, /(0) is the estimate of /(0) obtained by substituting the sample median
for0.

Example: Cauchy distribution

Let X be a Cauchy random variable with center (and median) 0 and scale 1. The PDF
ofXis

be the sample median of a random sample of size n, where n is odd. Ifn is large and
f(0) ^ 0, then the distribution of the sample median is approximately normal with
mean 6 and variance l/(4«(/(0))2).

Approximate confidence interval for the median

Under the conditions of Theorem 9.2, an approximate 100(1 — a)% confidence
interval for the median 0 has the form

and/(0) = l/n.
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Figure 9.3. Simulated sample from a Cauchy distribution.

Figure 9.3 is a dot plot of a simulated sample of size 75 from a Cauchy distri-
bution with scale 1. The observed sample median is 5.985, and an approximate 90%
confidence interval for 9 is computed as follows:

5.985 ± 1.645Vrc2/(4(75)) =>• [5.687,6.283].

9.2.2 Exact confidence interval procedure

Let X\, X2,..., Xn be a random sample of size n from a continuous distribution, and
let 0 be the pth quantile of the distribution.

The order statistics, X(k), divide the real line into n + 1 intervals

then the interval [X^), X(*2>] is a 100(1 — a)% confidence interval for 6.

In applications of Theorem 9.3, k\ and ki are chosen so that

(ignoring the endpoints). The probability that 6 lies in a given interval follows a
binomial distribution with parameters n and p. Specifically,

These facts can be used to prove the following theorem.

Theorem 9.3 (Quantile Confidence Interval). Under the assumptions above, ifk\
and ki are chosen so that
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Table 9.1. Confidence intervals for quartiles of a continuous distribution.

Table 9.1 displays confidence intervals for the quartiles of a continuous distri-
bution using the simulated sample of size 75 displayed in Figure 9.3 and the methods
of this section. The intervals were constructed to have confidence level as close to
0.90 as possible. Note that the confidence interval for the median is close to the one
computed in the Cauchy example on page 121.

9.3 Sample quantiles
Let X\, X2, . . . , Xn be a random sample from a continuous distribution, and let 6 be
the pth quantile of the distribution, where ^ < p < ^. Then the pth sample
quantile, 0, is defined as follows:

Note that when p = 0.50, the definition given above reduces to the definition of the
sample median given earlier.

9.3.1 Sample quartiles, sample IQR

Estimates of pth quantiles, where p = 0.25,0.50,0.75, are called the sample quar-
tiles and are denoted by q\, qi, and q3, respectively (q2 is also the sample median).
The difference q3 — q\ is called the sample interquartile range (sample IQR).

where X(*> is the kth order statistic for k = 1, 2, . . . , n.
Whenp = k/(n+l), the pf/l sample quantile is thefc"1 order statistic; otherwise,

it is defined so that the following three points lie on a single line:

Quantile Confidence Interval Confidence Level
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Table 9.2. Lifetimes (in days) of guinea pigs exposed to an infectious disease.

Low Exposure:

33 44 56 59 74 77 93 100 102 105 107 107 108 108 109

115 120 122 124 136 139 144 153 159 160 163 163 168 171 172

195 202 215 216 222 230 231 240 245 251 253 254 278 458 555

Medium Exposure:

10 45 53 56 56 58 66 67 73 81 81 81 82 83 88

91 91 92 92 97 99 99 102 102 103 104 107 109 118 121

128 138 139 144 156 162 178 179 191 198 214 243 249 380 522

High Exposure:

15 22 24 32 33 34 38 38 43 44 54 55 59 60 60

60 61 63 65 65 67 68 70 70 76 76 81 83 87 91

96 98 99 109 127 129 131 143 146 175 258 263 341 341 376

For example, as part of a study on the effects of an infectious disease on the
lifetimes of guinea pigs, more than 400 animals were infected [16], [90, p. 349].
Table 9.2 gives the lifetimes (in days) of 45 animals in each of three exposure groups.
In the low exposure group, the sample median is 153 days and the sample IQR is 112
days. In the medium exposure group, the sample median is 102 days and the sample
IQR is 69 days. In the high exposure group, the sample median is 70 days and the
sample IQR is 63.5 days.

9.3.2 Box plots

A box plot is a graphical display of a data set that shows the sample median, the
sample IQR, and the presence of possible outliers (numbers that are far from the
center). Box plots were introduced by J. Tukey in the 1970's.

Box plot construction

To construct a box plot, the following is done:

1. A box is drawn from the first to the third sample quartiles (q\ to #3).

2. A bar is drawn through the box at the sample median (q2).

3. A whisker is drawn from q3 to the largest observation that is less than or equal
to #3 + 1.50(^3 — q\). Another whisker is drawn from q\ to the smallest
observation that is greater than or equal to q\ — 1.50(^3 — q\).
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are drawn as separate points. These observations are called the outliers.

Figure 9.4 shows side-by-side box plots of the data on lifetimes of guinea pigs
from Table 9.2. The plot suggests a strong relationship between level of exposure
and lifetime. For the low, medium, and high exposure groups, the estimated median
lifetimes are 153 days, 102 days, and 70 days, respectively. In each case, there are
large outliers. In addition, as exposure increases, the sample distributions become
more skewed. (In each case, the distance between the first and second sample quartiles
is smaller than the distance between the second and third sample quartiles. As the
exposure increases, the differences are more pronounced.)

9.4 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for plotting
the distributions of order statistics, for computing quantile confidence intervals and
sample quantiles, and for constructing probability plots and box plots. The problems
are designed to reinforce ideas related to order statistics and quantiles.

9.4.1 Laboratory: Order statistics and quantiles

In the main laboratory notebook (Problems 1 to 5), you will use graphics, simulation,
and probability computations to study order statistic distributions; apply quantile
estimation methods to data on daily maximum ozone levels in two cities in the
northeast [25]; use simulation to study the components of box plots; and apply
quantile estimation methods and box plots to data from a cholesterol-reduction study
[36]. Gamma, normal, and exponential models are used.

9.4.2 Additional problem notebooks

Problems 6, 7, and 8 are on uniform distributions. Problem 6 considers the mean
and mode (point of maximum density) of order statistics of a random sample from a

4. Observations outside the interval

Figure 9.4. Side-by-side box plots of the lifetimes data.
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uniform distribution. Problem 7 uses simulation to study ML estimation and confi-
dence procedures in subfamilies with known lower endpoint or with known upper
endpoint. Problem 8 is a study design question for samples from the subfamily of
uniform distributions with known lower endpoint. A traffic-pattern setting is used.

Problem 9 compares several methods for constructing median confidence inter-
vals. Data from a study on plasma retinol levels in women is used [104]. The problem
includes a goodness-of-fit analysis.

The center of the normal distribution is both the mean and the median of
the distribution. Problem 10 uses simulation to determine how confidence interval
procedures for the center change as one sample value changes. Normal probability
plots are used to visualize the changes.

Problem 11 applies several computational and graphical methods, including
box plots and gamma probability plots, to two data sets from a study on lifetimes of
components under sustained pressure [10], [6].

Problem 12 uses simulation to determine if normal probability plots can be
used as diagnostic tools. Exponential, gamma, uniform, and Laplace models are
considered.

Problem 13 uses quantile methods and box plots to study factors related to
mercury contamination in Maine lakes [54]. Problem 14 uses quantile methods and
box plots to study factors related to plasma levels of beta-carotene in women [104].

Problems 15 and 16 consider properties of the sign test for medians. In Problem
15, upper tail tests of the null hypothesis a = a0 of a Cauchy distribution when the
scale parameter is known are studied. In problem 16, two tailed tests of the null
hypothesis fj, = [i0 of a normal distribution when the standard deviation is known are
studied.
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Chapter 10

Two Sample
Analysis

In many statistical applications, interest focuses on comparing two probability distri-
butions. For example, an education researcher might be interested in determining if
the distributions of standardized test scores for students in public and private schools
are equal, or a medical researcher might be interested in determining if mean blood
pressure levels are the same in patients on two different treatment protocols.

This chapter considers statistical methods for comparing independent random
samples from two continuous distributions. Methods for samples from normal distri-
butions are given in the first two sections. Large sample methods for the difference
in means are given in Section 3. Methods applicable to a broad range of distributions
are given in Section 4. Section 5 considers sampling and study design questions, and
Section 6 outlines the laboratory problems for this chapter. A general reference for
the material in Section 4 is [68].

10.1 Normal distributions: Difference in means
Let Xi, X2,..., Xn and Y\, ¥2,..., Ym be independent random samples, of sizes n
and m, from normal distributions with parameters

127

This section focuses on answering statistical questions about the difference in means,
Hx — fiy. Note that the difference in sample means, X — Y, can be used to estimate
the difference in means. By Theorem 4.6, X — Y is a normal random variable with

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

128 Chapter 10. Two Sample Analysis

10.1.1 Known variances

Assume that ax and ay are known.

Confidence intervals for fix — fiy

If fx and ffy are known, then

can be used as test statistic. The following table gives the rejection regions for one
sided and two sided 100a% tests:

Alternative Hypothesis Rejection Region

where z(p) is the 100(1 — p)% point of the standard normal distribution.
For example, consider testing the null hypothesis \LX — \iy = 4 versus the

alternative hypothesis \ix — ny ^ 4 at the 5% significance level using samples of
sizes n = 8 and m = 12. The rejection region is |Z| > 1.960. If ax — ay = 2 and
the observed difference in means is x — y = 3.27, then the observed value of Z is

Since |z0bsl < 1.960, the null hypothesis is accepted. Further, a 95% confidence
interval for fj.x — \iy is

Note that the confidence interval contains 4.

is a 100( 1 — a)% confidence interval for nx — ny, where z(a/2) is the 100( 1 — a/2)%
point of the standard normal distribution.

Tests of ILX — fiy = 80

If ffx and ffy are known, then the standardized difference when fj,x — ny = 60,
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10.1.2 Pooled t methods

Pooled t methods are used when X and Y have a common unknown variance. Let
a2 = a2 = a2 be the common variance. The pooled estimate of a2, S2, is defined as
follows:

where S2 and S2 are the sample variances of the X and Y samples, respectively.

ThestatisticSpisaweightedaverageoftheseparateestimatesofff2. Ifn = m, then the weights
are equal; otherwise, the estimate based on the larger sample is given the larger weight.

S2 is an unbiased estimator of a2. The following theorem says that the approx-
imate standardization of the difference in sample means has a Student t distribution.

Theorem 10.1 (Approximate Standardization). Under the assumptions of this
section, the statistic

is a 100(1 — a)% confidence interval for fix — fiy, where fw+m_2(a/2) is the 100(1 —
a/2)% point on the Student t distribution with (n + m — 2) degrees of freedom.

Tests of ILX — iny — 80

If the value of a2 = a2
x = a2 is estimated from the data, then the approximate

standardization when \ix — \iy = 60,

can be used as test statistic. The following table gives the rejection regions for one
sided and two sided 100ot% tests:

Alternative Hypothesis Rejection Region

has a Student t distribution with (n + m — 2) degrees of freedom.

Confidence intervals for \LX - fiy

If the value of a2 = a2
x = a2 is estimated from the data, then Theorem 10.1 can be

used to demonstrate that
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where tn+m-2(p) is the 100(1 —p)% point of the Student t distribution with (n+m—2)
degrees of freedom.

10.1.3 Welch t methods

Welch t methods are used when X and Y have distinct unknown variances. The
following theorem, proven by B. Welch in the 1930's, says that the approximate
standardization of the difference in sample means has an approximate Student t
distribution.

Theorem 10.2 (Welch Theorem). Under the assumptions of this section, the statistic

To apply the formula for df, you would round the expression to the closest whole number.
The computed <#" satisfies the following inequality:

is an approximate 100(1 — a)% confidence interval for jux — jj.y, where ^/(a/2)
is the 100(1 — a/2)% point on the Student t distribution with degrees of freedom
computed using Welch's formula.

Approximate tests of \LX — fiy = 80

If the values of a^ and a^ are estimated from the data, then the approximate stan-
dardization when ur — u,, = <5^.

has an approximate Student t distribution with degrees of freedom as follows.

A quick by-hand method is to use the lower bound for df instead of Welch's formula.

Approximate confidence intervals for fix — iiy

If the values of a2
r and a*, are estimated from the data, then Theorem 10.2 can be usedA y

to demonstrate that
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can be used as test statistic. The following table gives the rejection regions for
approximate one sided and two sided 100a% tests:

Alternative Hypothesis Rejection RegionAlternative Hypothesis

Hx ~ Hy < &o

Hx - Hy > d0

Vx-Vy^ &o

Rejection Region

T < -tdf(a)

T > tdf(a)

\T\ > tdf(a/2)

where tdf(p) is the 100(1 — p)% point of the Student t distribution with degrees of
freedom computed using Welch's formula.

Comparison of pooled t and Welch t methods

To illustrate the differences in using pooled t and Welch t methods, consider constructing
a 95% confidence interval for fj,x — ny using samples of sizes n = 8 and m = 12.
Assume that the observed difference in means is ~x — y = 3.27 and that the observed
sample variances are s2

x = 4.672 and Sy = 2.435.

(i) If the distributions have a common unknown variance, then the pooled estimate
of the common variance is 3.305 and the confidence interval is

(ii) If the distributions have distinct unknown variances, then the degrees of freedom
formula yields df = 11 and the approximate confidence interval is

The interval produced using Welch t methods is slightly wider than the interval
produced using pooled t methods.

has an f ratio distribution with (n — 1) and (m — 1) degrees of freedom.

10.2 Normal distributions: Ratio of variances
Let Xi,Xi, ...,Xn and Y\, ¥2,..., Ym be independent random samples, of sizes n
and m. from normal distributions with narameters

The ratio of sample variances, S^/Sy, is used to answer statistical questions about
the ratio of model variances ff^/ffy when the means are estimated from the data. By
Theorem 6.3, the statistic
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Confidence intervals for oj/oj

can be used as test statistic. The following table gives the rejection regions for one
sided and two sided 100a% tests:

Alternative Hypothesis Rejection RegionAlternative Hypothesis

a2
x/a

2
y < r0

a2
x/<*y > r0

*X / r0

Rejection Region

^</«-i ,m-i(l-a)
F >/n-l,m-l(a)

F < /n-i,m-i(l - a/2) or F > /„_i,»-i(a/2)

where fn-\,m-\(p) is the 100(1 — p}% point of the f ratio distribution with (n — 1)
and (m — 1) degrees of freedom.

These tests are examples of f tests. An f test is a test based on a statistic with an f ratio
distribution under the null hypothesis.

For example, consider testing the null hypothesis that the variances are equal
(r0 = 1) versus the alternative hypothesis that the variances are not equal (r0 ^ 1) at
the 5% significance level using samples of sizes n = 8 and m = 12. The rejection
region is F < 0.212 or F > 3.759. If the observed sample variances are s2

x = 4.672
and s2 = 2.435, then the observed value of the f statistic is /Obs = 1.919. Since
0.212 < /Obs < 3.759, the null hypothesis is accepted. Further, a 95% confidence
interval for ff^/ff2 is

Note that the confidence interval contains 1.

Example: Comparison of plasma beta-carotene distributions

Several studies have suggested that low plasma concentrations of beta-carotene (a
precursor of vitamin A) may be associated with increased risk of certain types of

If nx and ny are estimated from the data, then Theorem 6.3 can be used to demonstrate
that

is a 100(1 —a)% confidence interval for a^/ffy, where fn-\,m-\ (p) is the 100( 1 —p)%
point of the f ratio distribution with (n — 1) and (m — 1) degrees of freedom.

Tests of <rj/oj = r0

If nx and ny are estimated from the data, then the ratio when ff^/ffy = r0,
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Figure 10.1. Side-by-side box plots of plasma beta-carotene levels (in log-
ng/ml)for women who used vitamin supplements regularly and for women who did
not use supplements regularly (left plot) and an enhanced normal probability plot of
standardized residuals (right plot).

cancer. As part of a study to investigate the relationship between personal character-
istics (including diet) and levels of beta-carotene in the blood, measurements were
made on over 300 subjects [104]. This example uses a subset of their data.

The left plot in Figure 10.1 shows side-by-side box plots of plasma levels
of beta-carotene for 108 women who regularly used vitamin supplements and 163
women who did not use supplements regularly. The scale is the natural logarithm of
nanograms per milliliter (log-ng/ml). The right plot is an enhanced normal proba-
bility plot of standardized residuals. Construct the plot as follows:

(i) Each observation in the first group, x, is replaced by its standardized value,
(x — x)/sx, where x is the observed value of the sample mean and sx is the
observed value of the sample standard deviation.

(ii) Similarly, each observation in the second group, y, is replaced by (y — y}/sy.
(iii) The combined list of 271 standardized values is compared to the standard

normal distribution using a normal probability plot (black dots),
(iv) The normal probability plot is enhanced using the results of 100 simulations

from the standard normal distribution (gray dots). Specifically, 100 random
samples of size 271 are generated and the points

(k/212 quantile, minimum of 100 kth order statistics) and
(k/272 quantile, maximum of 100 kth order statistics)

for k = 1,2,... , 271 are drawn.

If these data are the values of independent random samples, then the right plot suggests
that methods for samples from normal distributions can be used to analyze plasma
levels of beta-carotene on the log scale.

Let X be the plasma beta-carotene level (in log-ng/ml) for women who use
vitamin supplements regularly, and let Y be the corresponding level for women who
do not regularly use supplements. Assume that X and Y are normal random variables
and that the data shown in Figure 10.1 are the values of independent random samples
from the X and Y distributions.
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Since both endpoints are greater than 1, there is evidence that the variance of plasma
levels of beta-carotene for women who use supplements is greater than the variance
for women who do not use supplements.

The observed difference in sample means is ~x—y = 0.275, and an approximate
95% confidence interval for p.x — ny, using Welch t methods, is

Since both endpoints are positive, there is evidence that the mean plasma level of
beta-carotene for women who use supplements is greater than the mean for women
who do not use supplements.

Welch t methods are used to construct the confidence interval for the difference in means
since there is evidence that the variances are not equal.

10.3 Large sample: Difference in means
Let X\, X2,..., Xn and Y\, ¥2,..., Ym be independent random samples, of sizes n
and m, from continuous distributions with unknown (but finite) means and variances.
Let X and Y be the sample means, and let Sj and Sy be the sample variances computed
from these samples.

Approximate confidence intervals for \LX — fiy

If n and m are large, then Theorem 5.2 can be used to demonstrate that

can be used as test statistic. The following table gives the rejection regions for
approximate one sided and two sided 100a% tests:

134 Chapter 10. Two Sample Analysis

The observed ratio of sample variances is s^/Sy = 0.710/0.409 = 1.736, and
a 95% confidence interval for ff^/ffy is

is an approximate 100(1 — a)% confidence interval for \JLK — ny, where z(ct/2) is the
100(1 — ct/2)% point on the standard normal distribution.

Approximate tests of fix — ny = 80

If M and m are large, then the approximate standardization when p,x — \iy — S0,
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Alternative Hypothesis

Hx - l*y < <50

Px ~ Hy > &o

Hx-Hy£ 60

Rejection Region

Z < -z(ct)

Z > z(a)

\Z\ > z(a/2)

where z(p) is the 100(1 — /?)% point of the standard normal distribution.
Consider comparing the plasma beta-carotene distributions from page 132,

using measurements in ng/ml instead of log-ng/ml. An approximate 5% test of the
null hypothesis that the means are equal versus the alternative that they are not equal
has rejection region \Z\ > 1.960. The observed difference in sample means is
jc — y = 88.334, the observed sample variances are s2

x = 65420.1 and Sy = 13250.4,
and the observed value of the test statistic is z0bs = 3.37. Since |z0bsl > 1.960, the
null hypothesis is rejected. Further, an approximate 95% confidence interval for the
difference in means is

The mean level of plasma beta-carotene for women who use vitamin supplements
regularly is estimated to be between 36.960 ng/ml and 139.708 ng/ml higher than for
women who do not use supplements regularly.

10.4 Rank sum test
A distribution-free (or nonparametric) method is a statistical procedure applicable
to a broad range of distributions.

In the 1940's, F. Wilcoxon, H. Mann, and D. Whitney developed equivalent
nonparametric methods for testing the null hypothesis that the X and Y distributions
are equal versus alternatives that one distribution is stochastically larger than the
other (see below). In some situations, confidence procedures for the difference in
medians can be developed.

Stochastically larger; stochastically smaller

Let V and W be continuous random variables. V is stochastically larger than W
(correspondingly, W is stochastically smaller than V) if

FV(X) < Fw(x) for all real numbers jc.

with strict inequality (P(V > *) > P(W > x)) for at least one x.
The definition is illustrated in Figure 10.2, where the V distribution is shown

in gray and the W distribution in black. Note, in particular, that if Fv and Fw are the
CDFs of V and W, respectively, then
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Figure 10.2. PDFs (left plot) and CDFs (right plot) of two distributions.
The distribution pictured in gray is stochastically larger than the distribution pictured
in black.

10.4.1 Rank sum statistic

Let X\, X2,..., Xn and Y\, ¥2,..., Ym be independent random samples, of sizes n
and m, from continuous distributions. The Wilcoxon rank sum statistics for the X
sample (R1) and for the Y sample (.#2) are computed as follows:

1. Pool and sort the n + m observations.

2. Replace each observation by its rank (or position) in the sorted list.

3. Let /?i equal the sum of the ranks for observations in the X sample, and let RI
equal the sum of the ranks for observations in the Y sample.

For example, let n = 9andm = 5. If the observations in the first sample are 8.3,
8.8,10.8,12.3,13.5,14.4,27.6,31.4,35.0, and the observations in the second sample
are 17.2, 18.1, 21.6, 35.5, 39.9, then the sorted combined list of 14 observations is

8.3, 8.8, 10.8,12.3, 13.5,14.4, 17.2, 18.1, 21.6, 27.6, 31.4, 35.0, 35.5, 39.9,

the observed value of R\ is 54, and the observed value of B2 is 51.

Note that the sum of the statistics is/?i+/?2 = (n + m)(n + m+l ) /2 and that tests based
on /?i and /?2 are equivalent. We will use R\.

The following theorem gives information about the sampling distribution of R\
when the distributions of X and Y are equal.

Theorem 10.3 (Rank Sum Distribution). Assume that the X and Y distributions
are equal, and let R\ be the Wilcoxon rank sum statistic for the first sample. Then
the following hold:

1. The range ofR\ is n(n + l)/2, 1 + n(n + l)/2,. . . , nm + n(n + l)/2.

2. E(Ri) = n(n + m + l)/2 and Var(Ri) = nm(n + m+ 1)/12.

3. The distribution of R\ is symmetric around its mean. In particular,

P(Rl = x) = P(Ri = n(n + m+l)- x) for each x.

4.1fn and m are large, then the distribution ofR\ is approximately normal.
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Theorem 10.3 can be proven, in part, using counting methods. The ideas are
as follows. If the X and Y distributions are equal, then each ordering of the n + m
random variables is equally likely. This fact implies that each choice of the n ranks
used to compute a value of R\ is equally likely. There are a total of (n+

n
m) such

choices to consider when tabulating the distribution of rank sums.

Rank sum test: Observed significance level

Let r0bs be the observed value of R \. Large values of R i support the alternative hypoth-
esis that X is stochastically larger than Y. Small values of RI support the alternative
hypothesis that X is stochastically smaller than Y. Thus, the following hold:

(i) The observed significance level (p value) for a test of the null hypothesis that
the X and Y distributions are equal versus the alternative hypothesis that X is
stochastically larger than Y is P(R\ > r0bs).

(ii) The observed significance level (p value) for a test of the null hypothesis that
the X and Y distributions are equal versus the alternative hypothesis that X is
stochastically smaller than Y is P(Ri < robs).

The p value for a two tailed test is twice the p value for a one tailed test.
If n > 20 and m > 20, then the normal approximation to the R\ distribution

can be used to compute p values. Otherwise, the exact sampling distribution should
be used. It is best to let the computer do the work.

Example: n = 9, m = 5

If n = 9 and m = 5, then RI takes integer values between 45 and 90. The R\
distribution has mean 67.5 and variance 56.25.

Consider the test of the null hypothesis that the X and Y distributions are equal
versus the alternative hypothesis that one of the distributions (either the X or the Y
distribution) is stochastically larger than the other using the 5% significance level. If
the observed value of R\ is 54, then the observed significance level, obtained using
the computer, is 2P(R\ < 54) = 0.083. Since the p value is greater than 0.05, the
null hypothesis that the distributions are equal is accepted.

Example: n = 45, m = 27

If n = 45 and m = 27, then RI takes integer values between 1035 and 2250. The RI
distribution has mean 1642.5 and variance 7391.25.

Consider the test of the null hypothesis that the X and Y distributions are equal
versus the alternative hypothesis that one of the distributions (either the X or the Y
distribution) is stochastically larger than the other using the 5% significance level.
If the observed value of RI is 1859, then the observed significance level, based on
the normal approximation to the RI distribution, is 2P(R\ > 1859) = 0.012. Since
the p value is less than 0.05, the null hypothesis that the distributions are equal is
rejected. There is evidence that the X distribution is stochastically larger than the Y
distribution.
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Table 10.1. Midranksfor samples of sizes 12 and 8.

1
2
3
4
5
6
7
8
9

10

Observation
10.3
11.4
17.5
17.5
17.5
17.5
20.8
20.8
22.9
22.9

Midrank ||
1.0
2.0
4.5
4.5
4.5
4.5
7.5
7.5
10.5
10.5

11
12
13
14
15
16
17
18
19
20

Observation
22.9
22.9
24.4
24.4
24.4
24.4
27.5
27.5
27.5
29.9

Midrank
10.5
10.5
14.5
14.5
14.5
14.5
18.0
18.0
18.0
20.0

10.4.2 Tied observations; midranks

Continuous data are often rounded to a fixed number of decimal places, causing two
or more observations to be equal. Equal observations are said to be tied at a given
value. If two or more observations are tied at a given value, then their average rank
(or midrank) is used in computing the rank sum statistic.

For example, let n = 12 and m = 8. Suppose that the observations in the
first sample are 17.5, 20.8, 22.9, 22.9, 22.9, 24.4, 24.4, 24.4, 27.5, 27.5, 27.5, 29.9
and that the observations in the second sample are 10.3, 11.4,17.5, 17.5, 17.5, 20.8,
22.9, 24.4. Table 10.1 shows the combined sorted list of 20 observations and their
midranks. (The midrank for 17.5, for example, is the average of the 4 positions with
values of 17.5: (3 + 4 + 5 + 6)/4 = 4.5.) The observed value of RI is 161.

Rank sum distribution and test

If the X and Y distributions are equal, then counting methods can be used to compute
the sampling distribution of RI for a given list of midranks. Observed significance
levels can be computed as described earlier.

For example, for the midranks in Table 10.1 and n = 12, RI takes integer and
half-integer values between 78.0 and 174.0. The R\ distribution has mean 143.0 and
variance 186.333. For the example above, the p value for a two tailed test of the null
hypothesis of equality distributions is 2P(R\ > 161) = 0.005.

To compute the exact distribution, imagine writing the n + m midranks on
separate slips of paper and placing the slips in an urn. A subset of n slips is chosen,
and the sum of midranks is recorded. If each choice of subset is equally likely, then
the R\ distribution is the resulting distribution of midrank sums. It is best to let the
computer do the work.
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10.4.3 Mann-Whitney U statistic

Let X\, X2,..., Xn and YI, ¥2,..., Ym be independent random samples, of sizes n
and m, from continuous distributions. The Mann-Whitney U statistic for the first
sample, U\, is the number of times an X observation is greater than a Y observation.
Similarly, the Mann-Whitney U statistic for the second sample, 1/2, is the number
of times a Y observation is greater than an X observation. Note that the sum of the
statistics is U\ + 1/2 = nm.

For example, let n = 4 and m = 6. Suppose that the observations in the first
sample are 1.1, 2.5, 3.2, 4.1 and the observations in the second sample are 2.8, 3.6,
4.0, 5.2, 5.8, 7.2. Then the sorted combined list of observations (with the jc-values
underlined) is

U., 2,5, 2.8, 32, 3.6, 4.0, 4J., 5.2, 5.8, 7.2.

Since jC(i) and JC(2> are each greater than 0 y-values, *(3) is greater than 1 y-value,
and *(4) is greater than 3 y-values, the observed value of U\ is 0 + 0 + 1 + 3 = 4.
Similarly, since y<i) is greater than 2 jc-values, y<2> and yp) are each greater than 3
jc-values, and y(4), y<5), and y<6) are each greater than 4 x-values, the observed value
of 1/2 is 2 + 3 + 3 + 4 + 4 + 4 = 20. The sum of the two statistics is the total number
of comparisons, 24 = 4 x 6.

Sum of Bernoulli random variables

The Mann-Whitney U statistic for the first sample can be written as the sum of nm
dependent Bernoulli random variables:

Since £(£/,;) = P(X > Y) for each / and j, E(Ui) = nmP(X > Y). Thus, the ratio
U\/(nm) is an unbiased estimator of P(X > Y).

Similarly, Ui can be written as the sum of nm dependent Bernoulli random
variables, and the ratio Uil(nm) is an unbiased estimator of P(Y > X).

For the example above, the estimates of P(X > Y) and P(Y > X) are 1/6 and
5/6, respectively.

The collection {£/;,;} are dependent random variables because each X, is used in m compar-
isons (correspondingly, each Yj is used in n comparisons).

Relationship to Wilcoxon rank sum statistic

The U\ and R\ statistics are related. Specifically, U\ = R\ — n(n + l)/2. The
following distribution theorem can be proven using Theorem 10.3.

Theorem 10.4 (U Statistic Distribution). Assume that the X and Y distributions
are equal, and let U\ be the Mann—Whitney U statistic for the first sample. Then the
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Figure 10.3. Normal distributions satisfying a shift model (left plot) and
shifted exponential distributions (right plot).

following hold:

1. The range ofU\ is 0, 1, 2 , . . . , nm.

2. £(£/i) = nm/2andVar(Ui) = nm(n + m+ 1)/12.

3. The distribution of U\ is symmetric around its mean. In particular,

P(Ui = x) = P(Ui=nm- x)for each x.

4.1fn and m are large, then the distribution ofU\ is approximately normal.

Since U\ = R\ — n(n + l)/2, tests based on U\ are equivalent to tests based on R\.

10.4.4 Shift models

The random variables X and Y are said to satisfy a shift model if

X — A and Y have the same distribution,

where A is the difference in medians, A = Median(X) — Median(F). The parameter
A is called the shift parameter.

Assume that X and Y satisfy a shift model and A ^ 0. If A > 0, then X is stochastically
larger than Y; otherwise, X is stochastically smaller than Y.

For example, if X is a normal random variable with mean 3 and standard
deviation 4, and Y is a normal random variable with mean 8 and standard deviation
4, then X and Y satisfy a shift model with shift parameter A = —5. The left part of
Figure 10.3 shows the distribution of X in gray and the distribution of Y in black.

If X has the shifted exponential distribution with PDF

and Y is an exponential random variable with parameter 1/10, then X and Y satisfy
a shift model with A = 8. The right part of Figure 10.3 shows the distribution of X
in gray and the distribution of Y in black.
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If X and Y satisfy a shift model, then their distributions differ in location only.
In studies comparing a treatment group to a no treatment group, where the effect of
the treatment is additive, the shift parameter is referred to as the treatment effect. Note
that if X and Y have finite means, then the shift parameter A is also the difference in
means, A = £(X) - E(Y).

Hodges—Lehmann estimator

If X and Y satisfy a shift model with shift parameter A, then the Hodges-Lehmann
(HL) estimator of A is the median of the list of nm differences

4.9
7.3
9.2

11.0
17.3

4.4
6.8
8.7

10.5
16.8

4.2
6.6
8.5

10.3
16.6

3.4
5.8
7.7
9.5

15.8

2.2
4.6
6.5
8.3

14.6

-0.7
1.7
3.6
5.4

11.7

-3.8
-1.4

0.5
2.3
8.6

-8.5
-6.1
-4.2
-2.4

3.9

(ignoring the endpoints). The following theorem relates the probability that A is in
one of these intervals (or in a union of these intervals) to the null distribution of the
Mann-Whitney U statistic for the first sample, U\.

Theorem 10.5 (Shift Confidence Intervals). Under the assumptions of this section,
ifk is chosen so that the null probability P(U\ <k) = f, then the interval

The differences are often referred to as the Walsh differences.
For example, let n = 5 and m = 7. Suppose that the observations in the first

sample are 4.9, 7.3, 9.2, 11.0, 17.3 and that the observations in the second sample
are 0.5, 0.7, 1.5, 2.7, 5.6, 8.7, 13.4. The following 5-by-7 table gives the 35 Walsh
differences (row value minus column value):

For these data, the HL estimate is 5.4.

Confidence interval procedure for shift parameter

The ordered Walsh differences

divide the real line into nm + 1 intervals

is a 100(1 —a)% confidence interval for the shift parameter, A.
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An outline of the proof is as follows:

(i) Since X and Y satisfy a shift model, the samples

The procedure given in Theorem 10.5 is an example of inverting a hypothesis test: A value
S0 is in a 100(1 — a)% confidence interval if the two sided rank sum test of

H0 : The distributions of X — 50 and Y are equal

is accepted at the a significance level.

For example, assume the data in the previous example are the values of inde-
pendent random samples from distributions satisfying a shift model. Since P(U\ <
6) = 0.024, a 95.2% confidence interval for the shift parameter is

Since this interval contains 0, the possibility that the X and Y distributions are equal
cannot be ruled out.

are independent random samples from the same distribution. Thus, the distri-
bution of

can be tabulated, assuming that each assignment of n values to the first sample
is equally likely, where U\ is the number of times a shifted X observation is
greater than a Y observation; equivalently, U\ is the number of times a Walsh
difference is greater than A.

(ii) The following statements are equivalent:

• Exactly k differences of the form Xt — Yj are less than A, and exactly
nm ~ k differences are greater than A.

And, by symmetry of the U\ distribution,

(iii) The statement in the theorem corresponds to choosing k so that

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

10.5. Sampling models 143

Figure 10.4. Side-by-side box plots of cholesterol levels (in mg/dl)for men
with no evidence of heart disease and for men with evidence of disease (left plot) and
a QQplot of the data (right plot). The dashed line in the right plot is y = x + 25.

Example: Comparison of cholesterol distributions

As part of a study to identify risk factors for coronary artery disease, cholesterol levels
in milligrams per deciliter (mg/dl) were measured in more than 300 male patients
complaining of chest pain [95], [50, p. 221]. This example uses a subset of their
data.

The left part of Figure 10.4 shows side-by-side box plots for 51 men with no
evidence of heart disease and 150 men with evidence of disease. The right plot is
a quantile-quantile (QQ) plot of the data. A QQ plot is constructed by pairing the
k/(N + 1) sample quantile of the first sample with the k/(N -f- 1) sample quantile
of the second sample, for k = 1, 2 , . . . , N, where N = min(n, m). The solid line in
the plot is y = x, and the dashed line is y = x + 25.

Assume these data are the values of independent random samples. Since the
points are close to a line parallel to y = x, the QQ plot suggests that the cholesterol
distributions satisfy a shift model.

Let X be the serum cholesterol level (in mg/dl) for male patients experiencing
chest pain but with no evidence of heart disease and Y be the corresponding level
for men with evidence of disease. Assume that the X and Y distributions satisfy a
shift model and that the data shown in Figure 10.4 are the values of independent
random samples from these distributions. The HL estimate of A = Median(X) —
Median(T) is —25.0, and an approximate 95% confidence interval is [—38.0, —13.0].
The median serum cholesterol level for men with no evidence of disease is estimated
to be between 13 mg/dl and 38 mg/dl lower than for men with evidence of disease.

10.5 Sampling models

The methods of this chapter assume that the measurements under study are the values
of independent random samples from continuous distributions.

In most applications, simple random samples of individuals are drawn from
finite populations, and measurements are made on these individuals. If population
sizes are large enough, then the resulting measurements can be treated as if they were
the values of independent random samples.
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10.5.1 Population model

If simple random samples are drawn from sufficiently large populations of individuals,
then sampling is said to be done under ̂ .population model. Under a population model,
measurements can be treated as if they were the values of independent random samples.

When comparing two distributions, sampling can be done separately from two
subpopulations or from a total population. For example, a researcher interested
in comparing achievement test scores of girls and boys in the fifth grade might
sample separately from the subpopulations of fifth-grade girls and fifth-grade boys
or might sample from the population of all fifth-graders and then split the sample
into subsamples of girls and boys.

A third possibility in the two sample setting is sampling from a total population
followed by randomization to one of two treatments under study. For example, a
medical researcher interested in determining if a new treatment to reduce serum
cholesterol levels is more effective than the standard treatment in a population of
women with very high levels of cholesterol might do the following:

1. Choose a simple random sample of n + m subjects from the population of
women with very high levels of serum cholesterol.

2. Partition the n + m subjects into distinguishable subsets (or groups) of sizes n
andm.

3. Administer the standard treatment to each subject in the first group for a fixed
period of time and the new treatment to each subject in the second group for
the same fixed period of time.

By randomly assigning subjects to treatment groups, the effect is as if sampling was
done from two subpopulations: the subpopulation of women with high cholesterol
who have been treated with the standard treatment for a fixed period of time and the
subpopulation of women with high cholesterol who have been treated with the new
treatment for a fixed period of time. Note that, by design, the subpopulations differ
in treatment only.

10.5.2 Randomization model

The following is a common research scenario:

A researcher is interested in comparing two treatments and has n +
m subjects willing to participate in a study. The researcher randomly
assigns n subjects to receive the first treatment; the remaining m subjects
will receive the second treatment.

Treatments could be competing drugs for reducing cholesterol (as above) or competing
methods for teaching multivariable calculus.

If the n+m subjects are not a simple random sample from the study population,
but the assignment of subjects to treatments is one of (n+

n
m] equally likely assignments,

then sampling is said to be done under a randomization model.
Under a randomization model for the comparison of treatments, chance enters

into the experiment only through the assignment of subjects to treatments. The results
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of experiments conducted under a randomization model cannot be generalized to a
larger population of interest but may still be of interest to researchers.

The Wilcoxon rank sum test is an example of a method that can be used to
analyze data sampled under either the population model or the randomization model.
Additional methods will be discussed in Chapter 11 and in later chapters.

10.6 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for working
with the f ratio distribution, for analyzing samples from normal distributions, for
analyzing samples using rank sum methods, and for constructing QQ plots. The
problems are designed to reinforce ideas related to the analysis of two samples.

10.6.1 Laboratory: Two sample analysis

In the main laboratory notebook (Problems 1 to 5), you will use simulation to study
methods for comparing samples from normal distributions and apply graphical and
formal inference methods to data from four studies: (1) stamina in lizards with and
without disease [94], [44]; (2) calories and sodium levels in beef and poultry franks
[56], [78]; (3) diets of two types of lizards [86], [73]; and (4) Olympic marathon
finishing times for men and women [81].

10.6.2 Additional problem notebooks

Problems 6 and 7 are applications of methods for samples from normal distributions.
Problem 6 uses data on body temperatures of healthy men and women [97]. Problem
7 uses data from a physical anthropology study [11].

Problems 8 and 9 focus on shift models. Problem 8 uses the Olympic marathon
finishing times from the main laboratory notebook. Problem 9 uses data from a cloud-
seeding experiment [99], [25].

In Problem 10, a variety of graphical and computational methods are applied
to several data sets from an ecology study [87]. In Problem 11, a variety of graphical
and computational methods are applied to several data sets from a study of factors
related to mercury contamination in Maine lakes [54].

Problem 12 considers data generated under the randomization model. Wilcoxon
rank sum methods are applied to study military drafting procedures during the
Vietnam War [38].

In Problems 13 and 14, simulation is used to determine if there is an advantage to
using a balanced study design (n = m), assuming that the total number of observations
(n + m) is fixed. Problem 13 considers pooled t tests. Problem 14 considers f ratio tests.

In Problem 15, simulation is used to compare the power of two tailed pooled t tests
and rank sum tests when sample sizes are equal and when sample sizes are not equal.

In Problem 16, simulation is used to determine if f ratio methods remain
valid when sampling is done from distributions other than the normal. Exponen-
tial, gamma, and uniform models are considered.
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Chapter 11

Permutation
Analysis

In many statistical applications, the null and alternative hypotheses of interest can be
paraphrased in the following simple terms:

H0: Any patterns appearing in the data are due to chance alone.

Ha: There is a tendency for a certain type of pattern to appear.

Permutation methods allow researchers to determine whether to accept or reject a
null hypothesis of randomness and, in some cases, to construct confidence intervals
for unknown parameters. The methods are applicable in many settings since they
require few mathematical assumptions.

This chapter introduces permutation analysis. The first two sections give the
important definitions and applications in the two sample and paired sample settings.
The third section is on correlation analysis. Additional applications are given in
Section 4. Section 5 outlines the laboratory problems. General references for this
chapter are [68], [74].

11.1 Introduction
As an introduction to permutation methods, consider the analysis of two samples,
introduced in Chapter 10. Let {jci , ;t2, ...,*„} and {yi, y2,..., ym} be the observed
samples, where each is a list of numbers with repetitions.

The data could have been generated under one of two sampling models.

Population model

Data generated under a population model can be treated as the values of independent
random samples from continuous distributions. For example, consider testing the null
hypothesis that the X and Y distributions are equal versus the alternative hypothesis
that X is stochastically smaller than Y. If n = 3, m = 5, and the observed lists are

147
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then the event

has occurred. Under the null hypothesis, each permutation of the n + m = 8 random
variables is equally likely; thus, the observed event is one of (n + m)! = 40, 320
equally likely choices. Patterns of interest under the alternative hypothesis are events
where the X,'s tend to be smaller than the 7/s.

Randomization model

Data generated under a randomization model cannot be treated as the values of
independent random samples from continuous distributions but can be thought of as
one of N equally likely choices under the null hypothesis.

In the example above, the null hypothesis of randomness is that the observed
data is one of N = 40, 320 equally likely choices, where a choice corresponds to a
matching of the 8 numbers to the labels x\, #2, x^, yi, yi, 73, y*, ys.

11.1.1 Permutation tests

Conduct a permutation test using a test statistic T as follows:

1. The sampling distribution of T is obtained by computing the value of the
statistic for each reordering of the data.

2. The observed significance level (or p value) is computed by comparing the
observed value of T to the sampling distribution from step 1.

The sampling distribution from the first step is called the permutation distribution of
the statistic T, and the p value is called a permutation p value.

In some books, the term permutation test is used when sampling is done under a population
model, and the term randomization test is used when sampling is done under a randomization
model.

Continuing with the example above, let S be the sum of numbers in the x
sample. Since the value of 5 depends only on which observations are labeled ;c's,
and not on the relative ordering of all 8 observations, the sampling distribution of 5
under the null hypothesis is obtained by computing its value for each partition of the
8 numbers into subsets of sizes 3 and 5, respectively.

Table 11.1 shows the values of S for each of the (3) = 56 choices of observations
for the first sample. The observed value of 5 if 5.4. Since small values of 5 support
the alternative hypothesis that x values tend to be smaller than y values, the observed
significance level is P(S < 5.4) = 13/56.

Conditional test nonparametric test

A permutation test is an example of a conditional test, since the sampling distribution
of T is computed conditional on the observations.

For example, the Wilcoxon rank sum test is a permutation test where the obser-
vations have been replaced by ranks. The test is conditional on the pattern of ties in
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Table 11.1. Sampling distribution of the sum of observations in the first sample.

Sum
3.9
4.2
4.3
4.4
4.8
4.9
5.0
5.2
5.3
5.3
5.4
5.4
5.4
5.5
5.5
5.6
5.7
5.8
5.8

x sample || Sum
{1.2, 1.3, 1.4}
{1.2,1.3,1.7}
{1.2, 1.4, 1.7}
{1.3, 1.4, 1.7}
{1.2,1.3,2.3}
{1.2,1.4,2.3}
{1.3,1.4,2.3}
{1.2,1.7,2.3}
{1.2,1.3,2.8}
{1.3,1.7,2.3}
{1.2,1.4,2.8}
{1.4,1.7,2.3}
{1.2,1.3,2.9}
{1.2,1.4,2.9}
{1.3,1.4,2.8}
{1.3,1.4,2.9}
{1.2,1.7,2.8}
{1.2,1.7,2.9}
{1.3,1.7,2.8}

5.9
5.9
6.0
6.2
6.3
6.3
6.4
6.4
6.4
6.5
6.5
6.6
6.6
6.7
6.8
6.8
6.9
6.9
7.0

x sample || Sum

{1.4,1.7,2.8}
{1.3,1.7,2.9}
{1.4,1.7,2.9}
{1.2,1.3,3.7}
{1.2,1.4,3.7}
{1.2,2.3,2.8}
{1.3,2.3,2.8}
{1.2,2.3,2.9}
{1.3,1.4,3.7}
{1.3,2.3,2.9}
{1.4,2.3,2.8}
{1.2,1.7,3.7}
{1.4,2.3,2.9}
{1.3,1.7,3.7}
{1.4,1.7,3.7}
{1.7,2.3,2.8}
{1.2,2.8,2.9}
{1.7,2.3,2.9}
{1.3,2.8,2.9}

7.1
7.2
7.3
7.4
7.4
7.7
7.7
7.8
7.8
7.9
7.9
8.0
8.0
8.2
8.3
8.8
8.9
9.4

x sample

{1.4,2.8,2.9}
{1.2,2.3,3.7}
{1.3,2.3,3.7}
{1.4,2.3,3.7}
{1.7,2.8,2.9}
{1.2,2.8,3.7}
{1.7,2.3,3.7}
{1.2,2.9,3.7}
{1.3,2.8,3.7}
{1.4,2.8,3.7}
{1.3,2.9,3.7}
{1.4, 2.9, 3.7}
{2.3,2.8,2.9}
{1.7,2.8,3.7}
{1.7,2.9,3.7}
{2.3,2.8,3.7}
{2.3, 2.9, 3.7}
{2.8, 2.9, 3.7}

the observations. If there are no ties in the observations, then integers between 1 and
n + m are used to construct the permutation distribution of R\\ if some values are
tied (see, for example, Table 10.1), then the observed midranks are used to construct
the permutation distribution of R\.

Note that the term nonparametric test is often used to describe permutation
tests where observations have been replaced by ranks.

Monte Carlo test

If the number of reorderings of the data is very large, then the computer can be used
to approximate the sampling distribution of T by computing its value for a fixed
number of random reorderings of the data. The approximate sampling distribution
can then be used to estimate the p value.

A test conducted in this way is an example of a Monte Carlo test. (In a Monte
Carlo analysis, simulation is used to estimate a quantity of interest. Here the quantity
of interest is a p value.)

11.1.2 Example: Difference in means test

This section considers permutation tests based on the difference in means statistic

D = Mean of x sample — Mean of y sample.
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Tests based on D are appropriate in the following situations:

1. Population model. The observed data are the values of independent random
samples from distributions differing in mean only. The null hypothesis is that
the distributions are equal, equivalently that ux = uy. Alternatives of interest
are that the mean of one distribution is larger than the mean of the other.

2. Randomization model. The data are measurements taken on n + m individuals
in distinguishable groups of sizes n and m. The null hypothesis is that the
observed difference in means is due to chance alone. Alternatives of interest
are that values in one group tend to be larger (but not more variable) than values
in the other group.

The sampling distribution of D under the null hypothesis of randomness is
obtained by computing the difference in means for each partition of the n + m
observations into subsets of sizes n and ra, respectively. The following theorem
gives summary measures of the resulting distribution.

Theorem 11.1 (Difference in Means). Conditional on the observed values in the
two samples, the permutation distribution ofD has the summary measures

where Zi, Z2» • • •» zn+m is the combined list (with repetitions) of the n + m observa-
tions, and z is the mean of the n-\-m observations.

For example, let n = 8 and m = 10. If the observations in the first sample are
9.4, 22.9, 14.6, 7.9, 0.7, 19.2, 16.9, 5.6 and the observations in the second sample
are 18.7,19.5,15.0,17.4, 22.6,26.0, 31.5, 8.8, 8.5,10.6, then the permutation distri-
bution of D has mean 0 and variance 13.8617. Consider testing the null hypothesis of
randomness using a two sided alternative and the 5% significance level. The observed
difference in means is —5.71, and the observed significance level is

(There are (g8) = 43, 758 partitions to consider.) Since the p value is greater than
0.05, the null hypothesis that the observed difference in means is due to chance alone
is accepted.

Comparison of tests

Permutation tests based on the difference in means (D) and on the sum of observations
in the first sample (5) are equivalent.

In situations where both the pooled t test of the null hypothesis of equality of
means and the difference in means tests are appropriate, the pooled t test is preferred.
However, it is interesting to note that the tests give similar results.

In situations where both the difference in means test and the rank sum test are
appropriate, if the samples are highly skewed or have extreme outliers, then the rank
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Tests based on 5 are appropriate in the following situations:

1. Population model. The observed data are the values of independent random
samples. The null hypothesis is that the distributions from which the data were
drawn are equal versus the general alternative that the distributions are not
equal.

2. Randomization model. The data are measurements taken on n + m individuals
in distinguishable groups of sizes n and m. The null hypothesis is that observed
differences in the empirical CDFs are due to chance alone. Alternatives of
interest are that the samples differ in some way.

Values of S lie in the interval [0, 1]. Observed values near 0 support the null
hypothesis; large observed values support the alternative.

For example, suppose that 45 Australian consumers and 48 Japanese consumers
were asked to rate a particular brand of cholocate on a 10-point scale (where a score
of 10 indicates the consumer liked the sweetness, while a score of 1 indicates a
consumer did not like the sweetness at all), with results summarized in the following
table:

Score || 1 2 3 4 5 67 8 9 10 || Suni|
Australian
Japanese

0
3

0
3

11
12

7
0

15
3

4
3

2
7

2
13

2
1

2
3

45
48
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sum test is preferred; otherwise, the difference in means test is preferred. In practice,
the rank sum test is used almost exclusively since it is easy to implement.

11.1.3 Example: Smirnov two sample test

The empirical cumulative distribution function (or empirical CDF) of a sample of n
numbers, (x\, X2,..., xn}, is defined as follows:

ECDF(jt) = Proportion of Jt,'s < x for all real numbers x.

For example, if n = 10 and the ordered observations are

then ECDF(jt) is a step function with values

In the 1930's, Smirnov proposed a two sample test based on a comparison
of empirical CDFs. Let ECDFi and ECDF2 be the empirical CDFs of the x and y
samples, respectively. The Smirnov statistic, S, is the maximum absolute difference
in the empirical CDFs:

0 when ;c <
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Empirical CDFs for the Australian (in gray) and Japanese (in black) samples are
shown in Figure 11.1. The observed value of the Smirnov statistic is 0.32, occurring
when the score is 6.

Consider testing the null hypothesis of randomness using the 5% significance
level. In a Monte Carlo analysis using 2000 random partitions (including the observed
partition of the 93 scores), 0.55% (11/2000) of S values were greater than or equal
to the observed value. Thus, there is evidence that observed differences in responses
by Australian and Japanese consumers were not due to chance alone. Although the
mean scores in both groups were close (5.07 for the Australians versus 5.63 for the
Japanese), most Australians gave scores in the 3^4—5 range, while most Japanese
gave scores of 3 and 8.

The sampling distribution of S depends on the ranks (or midranks, in case of ties) of the
observations and not on the observations themselves. The relationship is quite complicated.
Using simulation to estimate p values is a good approach.

Paired samples arise in many experimental settings. Examples include the following:

(i) Before-and-after experiments. For each of n individuals, the x value is a
measurement made before a treatment begins, and the v value is the corre-
sponding measurement after a fixed treatment period.

(ii) Randomized pairs experiments. For each of n pairs of individuals, where each
pair is matched on important factors (for example, age, sex, severity of disease),
one member of the pair is randomly assigned to treatment 1 and the other to
treatment 2. After a fixed period of time, measurements are taken on each
individual.

Figure 11.1. Empirical CDFs for the taste test example.

11.2 Paired sample analysis
This section considers several approaches to analyzing lists of pairs of numbers,

or corresponding lists of differences,
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Table 11.2. Proportions of women in the labor force in 1972 (x) and 1968
(y), and the difference in proportions (x — y), for women living in 19 U.S. cities.

City
Baltimore
Boston
Buffalo
Chicago
Cincinnati
Hartford
Dallas
Detroit
Houston
Los Angeles

x y x — y || City
0.57 0.49 0.08
0.60 0.45 0.15
0.64 0.58 0.06
0.52 0.52 0.00
0.53 0.51 0.02
0.55 0.54 0.01
0.64 0.63 0.01
0.46 0.43 0.03
0.50 0.49 0.01
0.50 0.50 0.00

Minneapolis/St. Paul
Newark
New York
Patterson
Philadelphia
Pittsburgh
San Francisco
St. Louis
Washington, D.C.

x y x — y
0.59 0.50 0.09
0.53 0.54 -0.01
0.45 0.42 0.03
0.57 0.56 0.01
0.45 0.45 0.00
0.49 0.34 0.15
0.55 0.55 0.00
0.35 0.45 -0.10
0.52 0.42 0.10

Researchers use paired designs to reduce the variability of the results. In paired
designs, individuals within each pair are expected to respond similarly to treatment,
while individuals in different pairs are expected to respond differently to treatment.

Paired t methods

If D = X — 7 is a normal random variable, the differences data are the values of a
random sample from the D distribution, and questions about E(D) = E(X) — E(Y)
are of interest, then methods discussed in Chapters 7 and 8 can be applied.

For example, consider the data in Table 11.2 on the proportions of women in
the labor force in 19 cities in the United States in 1968 and 1972 [30]. Of interest
is whether the mean labor force participation rate for women in 1972 has changed
from the mean rate in 1968. Assuming these data are the values of a random sample
from a normal distribution, a 95% confidence interval for the mean difference is

Since both endpoints are positive, there is evidence that the mean rate increased over
the 4-year period.

11.2.1 Example: Signed rank test

In the 1940's Wilcoxon developed a nonparametric test for the analysis of paired
data. The test is appropriate in the following situations:

1. Population model. The paired data are the values of a random sample from
a bivariate continuous distribution. The null hypothesis of interest is that
the distribution of differences D = X — Y is symmetric around zero versus
alternatives that the values of D tend to be positive or tend to be negative.
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2. Randomization model. The paired data are measurements taken on n individ-
uals (or n pairs of individuals). The null hypothesis is that the signs (positive or
negative) of the observed differences are due to chance alone versus alternatives
that observed differences tend to be positive or tend to be negative.

Consider the population model. Under the null hypothesis,

Signed rank statistic

The Wilcoxon signed rank statistics for positive differences (W+) and for negative
differences (W_) are computed as follows:

1. Sort the list of absolute differences.

2. Replace each observed difference by its rank (or position) in the sorted list.
Use midranks in case of ties in the absolute differences.

3. Let W+ equal the sum of the ranks for positive differences, and let W- equal
the sum of the ranks for negative differences.

For example, let n = 10, and assume that the differences are —3.54, —3.05, —0.66,
0.65, 1.66, 2.16, 2.75, 3.23, 4.24, 5.15. The ordered list of absolute differences is

0.65, 0.66, 1.66, 2.16, 2.75, 3.05, 3.23, 3.54, 4.24, 5.15,

the observed value of W+ is 39, and the observed value of WL is 16.

Tests based on W+ and W- are equivalent. We will use W+.

Permutation distribution

The permutation distribution of W+ is computed as follows. For each assignment
of signs to absolute differences, the sum of the ranks for positive differences is
computed. Absolute differences of zero (|d,-| =0) drop out of the analysis of signed
ranks. Thus, the total number of assignments of signs is 2m, where m is the number
of nonzero differences.

The following theorem gives information about the sampling distribution of
W+ when there are no ties and no zeros in the list of differences.

Theorem 11.2 (Signed Rank Distribution). Consider the permutation distribution
ofW+ under the null hypothesis. If there are no ties in the absolute differences, and
all differences are nonzero, then the following hold:

where £>, = Xf ~Yt. By independence, each of the 2" events of the form

is equally likely. (Choose either £>, > 0 or D, < 0 in each bracket.)
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Table 11.3. Differences in labor force participation and midranks.

1
2
3
4
5
6
7
8
9
10

dt 1 141
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01

-0.01
0.02

0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.02

Midrank ||

2.5
2.5
2.5
2.5
5.0
7.5
7.5
7.5
7.5
10.0

11
12
13
14
15
16
17
18
19

dt

0.03
0.03
0.06
0.08
0.09

-0.10
0.10
0.15
0.15

141
0.03
0.03
0.06
0.08
0.09
0.10
0.10
0.15
0.15

Midrank

11.5
11.5
13.0
14.0
15.0
16.5
16.5
18.5
18.5

4.1fn is large, then the distribution ofW+ is approximately normal.

For example, if n = 10 and there are no ties and no zero differences, then
W+ takes integer values between 0 and 55. The W+ distribution has mean 27.5 and
variance 192.5.

Signed rank test: Observed significance level

Large values of W+ support the alternative that differences tend to be positive, and
small values support the alternative that differences tend to be negative.

If n > 20 and there are no tied observations and no zeros, then the normal
approximation to the W+ distribution can be used to estimate p values.

Table 11.3 shows the differences in labor force participation data from Table 11.2
and corresponding midranks. To determine if the observed differences between the
1968 and 1972 proportions of women participating in the labor force are due to chance
alone versus an alternative that the values in one of these years tend to be higher than
the other, a two sided test will be conducted at the 5% significance level. There are
15 nonzero differences. The W+ distribution has mean 90 and variance 608.375. The
observed value of W+ is 156, and the observed significance level is

1. The range ofW+ is 0,1, 2 , . . . , n(n + l)/2.

2. E(W+) = n(n + I)/4 and Var(W+) = n(n + l)(2n + l)/24.

3. The distribution ofW+ is symmetric around its mean. In particular,
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(there are 215 = 32, 768 assignments of signs). Since the p value is less than 0.05,
the null hypothesis that differences in sign are due to chance alone is rejected. In
fact, there is evidence that the participation of women in the labor force has increased
over time.

11.2.2 Shift models

Assume the paired data are the values of a random sample from a bivariate continuous
distribution. The difference D = X — Y is said to satisfy a shift model if the
distribution of D is symmetric around A, where A = Median(D) = Median(X — Y).
The parameter A is called the shift parameter.

Assume that D satisfies a shift model and A ^ 0. If A > 0, then the values of D tend to be
positive; otherwise, the values of D tend to be negative.

Note that in experiments comparing a treatment group to a no treatment group,
A corresponds to an additive treatment effect.

Hodges-Lehmann estimator

If D satisfies a shift model with shift parameter A, then the Hodges-Lehmann (HL)
estimator of A is the median of the list of n(n + l)/2 averages

rhe averages are often referred to as the Walsh averages.

The list of Walsh averages includes the original differences (when j = i) and averages of
each pair of differences (when j ^ /).

For example, let n = 6. Suppose that the observed differences are— 8.09, —7.7,
-7.4, -5.7, 2.13, 9.3. The following 6-by-6 table gives the 21 Walsh averages:

J| -8.090
-8.090
-7.700
-7.400
-5.700

2.130
9.300

-8.090
-7.895
-7.745
-6.895
-2.980

0.605

-7.700

-7.700
-7.550
-6.700
-2.785

0.800

-7.400

-7.400
-6.550
-2.635

0.950

-5.700

-5.700
-1.785

1.800

2.130

2.130
5.715

9.300

9.300

For these data, the HL estimate is —2.980.

Confidence interval procedure for shift parameter

The ordered Walsh averages
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divide the real line into n(n+1) + 1 intervals

:s a 100(1 — a)% confidence interval for A.

The procedure given in Theorem 11.3 is an example of inverting a hypothesis test: A value
60 is in a 100(1 — a)% confidence interval if the two sided signed rank test of

H0 : The distribution of (X — Y) — 50 is symmetric around 0

is accepted at the a significance level. The proof is similar to the proof of Theorem 10.5.

For example, assume the differences data in the previous example are the value
rfa random sample from a distribution satisfying a shift model. Since P(W+ < 3) =
).047, a 90.6% confidence interval for the shift parameter is

Since this interval contains 0, the possibility that the median of the differences distri-
bution is zero cannot be ruled out.

11.2.3 Example: Fisher symmetry test

R. A. Fisher, who pioneered the use of permutation methods, proposed a test for
paired samples using the sum of differences statistic, S = Y^=i di- Tests based on S
are appropriate in the following situations:

1. Population model. The paired data are the values of a random sample from a
bivariate continuous distribution. D = X — Y satisfies a shift model with A =
E(D) = E(X — Y). The null hypothesis is that the mean is zero. Alternatives
of interest are that the mean is positive or negative.

2. Randomization model. The paired data are measurements taken on n individ-
uals (or n pairs of individuals). The null hypothesis is that the signs (positive
or negative) of observed differences are due to chance alone. Alternatives of
interest are that the observed differences tend to be positive or negative.

(ignoring endpoints). The following theorem relates the probability that A is hi one
of these intervals (or a union of these intervals) to the null distribution of W+.

Theorem 11.3 (Shift Confidence Intervals). Under the assumptions of this section,
ifk is chosen so that the null probability P(W+ < k) = |, then the interval
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Permutation distribution

The sampling distribution of S under the null hypothesis of randomness is obtained
by computing the sum for each assignment of signs to the observed differences. The
following theorem gives information about the resulting distribution.

Theorem 11.4 (Sum of Differences). Conditional on the observed differences, the
permutation distribution of the sum of differences statistic, S, has the following
summary measures:

CF
SF

CF-SF

92
43
49

0
67

-67

72
64
8

80 57
64 51
16 6

76
53
23

81
53
28

67 50
26 36
41 14

77
48
29

90 72
34 48
56 24

81
6

75

88 0
28 48
60 -48

For these data, the observed sum is 314.
To determine if observed differences between cross-fertilized and self-fertilized

plants are due to chance alone, versus the alternative that cross-fertilized plants
produce taller offspring, a one sided test will be conducted at the 5% significance
level. The observed significance level is

If n is large enough, then the S distribution is approximately normal.

For example, if n = 6 and the observed differences are —8.09, —7.7, —7.4,
-5.7, 2.13, 9.3, then 26 = 64 sums of the form

would be computed. (Choose either + or — in each summand.) The resulting
distribution has mean 0 and variance 303.015.

Symmetry test: Observed significance level

Large values of 5 support the alternative that differences tend to be positive, and
small values support the alternative that differences tend to be negative.

For example, in a classic experiment on plant growth [41], [73], Charles Darwin
took 15 pairs of the plant Zea mays, where the two plants in each pair were

of exactly the same age, were subjected from the first to last to the same
conditions, were descended from the same parents.

One individual was cross-fertilized (CF), and the other was self-fertilized (SF).
Darwin hypothesized that cross-fertilized plants produced taller offspring than self-
fertilized plants. The heights of offspring of the 15 pairs were then measured to the
nearest eighth of an inch; the table below gives the results in eighths of an inch over
12 inches. The first row is the value for the cross-fertilized plant, the second row
gives the value for the self-fertilized plant, and the last row is the difference (CF—SF).
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Since the p value is less than 0.05, there is evidence supporting Darwin's hypothesis
that cross-fertilized plants produce taller offspring than self-fertilized plants.

Comparison of tests

In situations where both the paired t test of the null hypothesis that the mean is zero
and the sum of differences test are appropriate, the paired t test is preferred. However,
it is interesting to note that the tests give similar results.

In situations where both the sum of differences test and the signed rank test are
appropriate, if the differences data are highly skewed or have extreme outliers, then
the signed rank test is preferred; otherwise, the sum of differences test is preferred. In
practice, the signed rank test is used almost exclusively since it is easy to implement.

11.3 Correlation analysis

This section considers permutation methods for analyzing lists of pairs of numbers

11.3.1 Example: Correlation test

The sample correlation statistic

in one of the following situations:

1. Population model. The paired data are the values of a random sample from
a bivariate continuous distribution. The null hypothesis of interest is that X
and Y are independent versus alternatives that there is a positive or negative
association between the variables.

2. Randomization model. The paired data are measurements of two characteristics
in each of n individuals. The null hypothesis of interest is that there is no
relationship between the characteristics. Alternatives of interest are that the
characteristics are positively or negatively associated.

Consider the population model. If the observations are indexed so that

and if X and Y are independent (the null hypothesis of interest), then each of the n! orderings
of the l/'s is equally likely. Thus, an observed matching of Y values to ordered X values can
be thought of as one of n! equally likely choices. This fact forms the basis of the permutation
methods below.

can be used to test the null hypothesis of randomness.
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Table 11.4. Permutation distribution of sample correlations.

r

-0.90
-0.88
-0.86
-0.84
-0.50
-0.44
-0.43
-0.37
-0.27
-0.23
-0.21
-0.16

Permutation of y's \\ r

{ 0.7, -0.2, -0.8, -1.1}
{ 0.7, -0.2, -1.1, -0.8}
{–0.2, 0.7, –0.8, –1.1}
{–0.2, 0.7, –1.1, –0.8}
{ 0.7, -0.8, -0.2, -1.1}
{-0.8, 0.7, -0.2, -1.1}
{ 0.7, -0.8, -1.1, -0.2}
{-0.8, 0.7, -1.1, -0.2}
{ 0.7, -1.1, -0.2, -0.8}
{ 0.7, –1.1,– 0.8, –0.2}
{–1.1, 0.7, –0.2, –0.8}
{-1.1, 0.7, -0.8, -0.2}

0.14
0.16
0.27
0.30
0.36
0.40
0.47
0.51
0.83
0.84
0.90
0.91

Permutation of y's
{-0.2, -0.8, 0.7, -1.1}
{-0.8, -0.2, 0.7, -1.1}
{-0.2, -0.8, -1.1, 0.7}
{-0.8, -0.2, -1.1, 0.7}
{-0.2, -1.1, 0.7, -0.8}
{-1.1, -0.2, 0.7, -0.8}
{-0.2, -1.1, -0.8, 0.7}
{-1.1, -0.2, -0.8, 0.7}
{-0.8, -1.1, 0.7, -0.2}
{-1.1, -0.8, 0.7, -0.2}
{-0.8, -1.1, -0.2, 0.7}
{-1.1, -0.8, -0.2, 0.7}

Values of R lie in the interval [— 1, 1]. Positive values favor the alternative that
the characteristics under study are positively associated. Negative values favor the
alternative that the characteristics under study are negatively associated.

Note that under the population model, R is an estimate of the correlation coef-
ficient p = Corr(X, T). Technically, tests based on R are tests of the null hypothesis
that p = 0 and not tests of the null hypothesis that X and Y are independent.

Permutation distribution

The permutation distribution of R is obtained by computing the sample correlation
for each matching of a permutation of the _y values to the ordered x values. The
following theorem gives information about the resulting distribution.

Theorem 11.5 (Sample Correlations). Conditional on the observed pairs, the
permutation distribution ofR has the following summary measures:

Ifn is large enough, then the R distribution is approximately normal.

For example, let n = 4. Suppose the observed pairs are as follows:

Table 11.4 shows the value of R (with two decimal places of accuracy) for each
of the 4! = 24 permutations of y values. Consider testing the null hypothesis of
randomness using a two sided alternative. The observed value of R is 0.36, and the
observed significance level is P(\R\ > |0.36|) = 16/24.
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Table 11.5. Cholesterol (x) and triglycerides (y)for the 51 men with no
evidence of heart disease.

Example: Analysis of cholesterol-triglycerides pairs

Cholesterol and triglycerides belong to the class of chemicals known as lipids (fats).
As part of a study to determine the relationship between high levels of lipids and coro-
nary artery disease, researchers measured plasma levels of cholesterol and triglyc-
erides in milligrams per deciliter (mg/dl) in more than 300 men complaining of chest
pain [95], [50, p. 221].

Table 11.5 gives the cholesterol (x) and triglycerides (y) measurements for the
51 men with no evidence of disease. The observed correlation is 0.325. To determine
if the observed association is due to chance alone, a permutation test will be conducted
using a two sided alternative and a 5% significance level.

In a Monte Carlo analysis using 5000 random permutations (including the
observed permutation of the y values), 1.96% (98/5000) of \R\ values were greater
than or equal to |0.3251. Thus, there is evidence that the observed association between
cholesterol and triglycerides in men complaining of chest pain but with no evidence
of disease is not due to chance alone.

11.3.2 Example: Rank correlation test

In the early 1900's, Spearman proposed a test based on the ranks of the x and y values.
Spearman's rank correlation statistic, Rs, is computed as follows:

1. Replace each x by its rank (or midrank) in the ordered x values.

2. Replace each y by its rank (or midrank) in the ordered y values.

3. Let Rs equal the sample correlation of the paired ranks.

For example, if n = 6 and the list of paired data is

{{10.42,13.18}, {11.43,14.03}, {11.79,13.24}, {13.17,12.03}, {13.4,11.75}, {13.53,11.83}},

then the list of paired ranks is

and the observed value of Spearman's statistic is —0.771429.

x 116 130 147 149 150 155 156 157 158 160 167 168 168
y 87 64 95 146 167 48 126 134 87 116 177 71 100
x 168 169 170 178 178 178 180 187 190 190 190 193 194
y 227 86 90 116 157 166 82 109 85 108 132 210 121
x 195 200 201 201 205 206 207 207 208 209 210 217 219
y 348 154 72 171 158 99 160 195 139 97 91 114 98
x 221 222 228 234 234 237 238 243 251 265 266 289
y 156 284 119 116 143 174 172 101 211 73 486 120
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Permutation tests using Rs are conducted in the same way as permutation tests
using the sample correlation. Unless there are many ties in the data or n is very small,
the large sample normal approximation to the Rs distribution can be used to estimate
p values.

For example, consider the cholesterol-triglycerides data in Table 11.5. The
observed value of Spearman's statistic is 0.288, and the observed significance level
for a two sided test is

where N is the normal random variable with mean 0 and variance 1/50. Once again,
the null hypothesis that the observed association between cholesterol and triglycerides
is due to chance alone is rejected at the 5% significance level.

Comparison of tests

Permutation tests based on the sample correlation and rank correlation statistics are
valid in the same situations. If the data are highly skewed or have extreme outliers,
then the rank correlation test is preferred; otherwise, the sample correlation statistic
should be used.

It is interesting to note that the rank correlation statistic is unchanged if either
the jc values or the y values are transformed using an increasing function (such as
square or square root).

11.4 Additional tests and extensions
This section introduces additional permutation tests and ways in which the ideas of
this chapter can be extended. Other methods will be presented in the laboratory
problems and in later chapters.

11.4.1 Example: One sample trend test

Consider the analysis of a single sample, {x\, X 2 , . . . , xn], where the index corre-
sponds to time. That is, x\ is the first observed measurement, xi is the second
observed measurement, etc.

Of interest is whether there is a linear trend over time. For example, a manufac-
turer may be interested in determining whether a critical measurement has increased
or decreased over time. If a systematic change has occurred, then the manufacturing
process would need to be adjusted.

In the 1940's, Mann proposed a simple approach to testing for trend. Let

A total of (2) comparisons are made. If the n observations are strictly increasing,
then the value of 5 is (£); if the n observations are strictly decreasing, then the value
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is —(2)- If there is no trend over time, then the +l's and — 1's will roughly balance
and the value of 5 will be near zero.

Tests using the S statistic are appropriate in the following situations:

1. Population model. The data are the values of independent continuous random
variables. The null hypothesis is that the X,-'s have the same distribution:

Consider the population model. Under the null hypothesis, the list Xi, X2 , . . . , Xn is a
random sample from a continuous distribution. Thus, each of n\ orderings of the n obser-
vations is equally likely. This fact forms the basis of the permutation method.

Permutation distribution

The sampling distribution of 5 is obtained by computing the value of 5 for each
permutation of the jc values. The distribution depends on the ranks (or midranks,
in case of ties) of the observations and not on the observations themselves. The
following theorem gives information about the distribution when there are no ties in
the data.

Theorem 11.6 (Trend Statistic). Consider the permutation distribution ofS under
the null hypothesis. If there are no ties in the observed data, then the following hold:

1. S takes integer values between —n(n — l)/2 and n(n — l)/2.

2. E(S) = Qand Var(S) = n(n - l)(2n + 5)/18.

3. The distribution ofS is symmetric around 0:

where F, is the CDF of X,-, for i = 1, 2 , . . . , n. Alternatives of interest are

(values tend to decrease with time) or

(values tend to increase with time).

2. Randomization model. The data are measurements taken at n time points.
The null hypothesis is that there is no relationship between the measurements
and time. Alternatives of interest are that measurements tend to increase or
decrease with time.

4.1fn is large, then the distribution ofS is approximately normal.
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For example, if n = 8 and there are no ties in the data, then S takes integer
values between —28 and 28. The S distribution has mean 0 and variance 65.33. If
the observations (in time order) are

Tests of the null hypothesis that the distributions are equal (A = 1) versus
alternatives that one distribution is more variable than the other can be conducted
using a simple test proposed by Siegel and Tukey (and modified by Ansari and
Bradley) in 1960.

Specifically, the (symmetrized) Siegel-Tukey statistics for the X sample (Wi)
and the Y sample (Wj) are computed as follows:

1. Pool and sort the n + m observations.

2. Assign rank 1 to the smallest and largest observations, rank 2 to the second
smallest and second largest observations, rank 3 to the third smallest and third
largest observations, and so forth. Use midranks in case of ties.

3. Let W\ equal the sum of the ranks for observations in the X sample, and let W2
equal the sum of the ranks for observations in the Y sample.

For example, let n = 6 and m = 8. If the observations in the first sample
are 5.71, 5.94, 5.95, 6.05, 6.38, 6.63 and the observations in the second sample are
1.17, 2.42,4.18,4.72,4.78, 5.07, 11.39, 12.32, then the ordered combined list of 14
observations is

then the observed value of S is —16 and the observed significance level for a two
sided trend test is

(there are 8! = 40, 320 permutations to consider).

11.4.2 Example: Two sample scale test

Consider again the analysis of two samples, { x \ , X 2 , . ..,xn} and {yi, yi,..., ym},
where the data are the values of independent random samples from continuous distri-
butions.

Let X and Y be continuous random variables with common median 6 =
Median(X) = Median(7), and let A be a positive constant. Assume that

(X — 0) and A(7 — 9) have the same distribution.

That is, assume that the distributions differ in scale only.

Note that if A > 1, then X is more variable than 7; if A < 1, then Y is more variable than
X; and if A = 1, the distributions are equal.
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1.17 and 12.32 would each receive rank 1, 2.42 and 11.39 would each receive rank
2, etc. The observed value of W\ is 32, and the observed value of W2 is 24.

Tests based on W\ and W^ are equivalent. For tests based on W\, large values of
W\ support the alternative that the X distribution is less variable than the Y distribution
(A < 1); small values support the opposite alternative.

Permutation distribution

The sampling distribution of Wi is obtained by computing the value of the statistic
for each partition of the combined list of n + m observations (with repetitions) into
sublists of lengths n and m.

For the example above, W\ takes integer values between 12 and 36. The
distribution of W\ is symmetric, with mean 24 and variance 14.7692. The observed
significance level for a two sided test of the null hypothesis is

(there are (!
6
4) = 3003 partitions to consider).

11.4.3 Stratified analyses

Researchers use stratified samples when they expect individuals in different sub-
populations (or strata) to respond differently to treatment. This section presents two
general examples of how permutation methods can be applied to analyze data from
stratified studies.

Example: Stratified two sample analysis

Suppose that a researcher is interested in comparing two methods for teaching multi-
variable calculus and expects students at different schools to respond differently to
the teaching methods.

If the researcher is interested in comparing the two methods at each of four
schools using 20 students at each school, for example, then a simple design would
be as follows:

At each school, randomly assign 10 of the 20 students to a class using the
first teaching method, with the remaining 10 assigned to a class using
the second teaching method.

Assume that the measurement of interest is a score on a standardized final exam, and
let

be the nested list of scores. For school i, 5,-ti is the list of scores for students using
the first teaching method, and s^ is the list of scores for the second method.

Under the null hypothesis that the teaching methods are equivalent, the scores
for each school may be randomly partitioned into subsets of sizes 10 (for the first
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method) and 10 (for the second method). Since there are four schools, there are a
total of (jg) choices to consider.

Example: Paired sample analysis

Paired sample analyses are examples of stratified analyses. In addition to the methods
of Section 11.2 for analyses of the differences list, the list of pairs can be analyzed
directly.

Suppose that a researcher is interested in comparing different treatments for a
serious medical condition and expects individuals of different age, sex, and disease
status to respond differently to the proposed treatments.

If the researcher is interested in comparing the two treatments using 30 pairs
of individuals matched on sex, age group, and disease status score, for example, then
a simple design is as follows:

For each pair of individuals, randomly assign one individual to receive
the first treatment and the other individual to receive the second treat-
ment.

Assume that the measurement of interest is the disease status score after a fixed period
of time, and let

be the nested list of scores. For pair i, xi is the score for the individual assigned to the
first treatment, and yf is the score for the individual assigned to the second treatment.

Under the null hypothesis that the treatments are equivalent, the scores for each
pair may be randomly permuted. Since there are 30 pairs, there are a total of 230

choices to consider.

11.5 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for using
simulation to estimate p values; for analyzing samples using signed rank, trend, and
rank correlation methods; and for constructing plots of empirical cumulative distri-
bution functions. The problems are designed to reinforce ideas about permutation
analysis.

11.5.1 Laboratory: Permutation analysis

In the main laboratory notebook (Problems 1 to 5), you will use simulation and
graphics to study two sample rank sum and Smirnov tests and apply the Smirnov
test to data from a study of earthquake locations from historical and current records
[60]; use simulation and graphics to study the correlation test and apply the test to
data from a study comparing overseas and domestic stock market returns [78]; and
use simulation and graphics to study the signed rank test and apply the test to data
from two studies: (1) a study to determine if the labeling of so-called health foods is
accurate [2], [30] and (2) a study to determine if a diet containing oat bran can help
reduce serum cholesterol levels [4], [82].
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11.5.2 Additional problem notebooks

Problems 6, 7, and 8 are applications of permutation methods for two samples. In
Problem 6, two woodlands areas are compared using a variety of biodiversity indices
[72], [101]. In Problem 7, treated and control multiple sclerosis patients are compared
using stratified two sample methods [63], [8]. In Problem 8, consumption rates for
male and female Asian shore crabs are compared using stratified two sample meth-
ods [19].

Problem 9 applies the rank correlation test to data on factors related to death
rates in large metropolitan areas [49]. Problem 10 applies the trend test to data on
manganese content of iron ore [90].

Problems 11 and 12 are applications of permutations methods forpaired samples.
In Problem 11, a cloud-seeding experiment is analyzed using a double-ratio statistic
[76]. In Problem 12, spatial distributions of cod are studied using two-dimensional
Cramer-von Mises statistics [105].

Problems 13 and 14 concern tests for frequency data. In Problem 13, the goal
is to study the association between genetics and longevity using data on female twins
and the number of twin pairs alive at certain ages as test statistic [114]. In Problem
14, the goal is to study the association between incidence of childhood leukemia and
distance to a hazardous waste site using data from an area in upstate New York and
the Stone statistic [111].

Problem 15 uses frequency generating functions to study properties of the
Wilcoxon signed rank statistic. Problem 16 demonstrates how frequency generating
functions can be used to construct the sampling distribution for the Fisher symmetry
test quickly; the method is applied to the data on the accuracy of health-food labeling
from the main laboratory notebook.
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Chapter 12

Bootstrap Analysis

In many statistical applications, interest focuses on estimating a quantity using a
random sample from a probability distribution, the distribution from which the data
were drawn is not known exactly, and the sampling distribution of the statistic used
to estimate the quantity is not known exactly (or approximately). Bootstrap methods
allow researchers to make approximate probability calculations in these situations by
using the computer to simulate the original experiment many times.

This chapter introduces bootstrap analysis. The first three sections introduce
bootstrap estimation methods and give many applications. Section 4 considers
bootstrap hypothesis testing methods. Section 5 outlines the laboratory problems.
General references for this chapter are [31], [36].

12.1 Introduction
Let X\, .X"2, . . . , Xn be a random sample from a distribution with parameter 9, and let
T = T (Xi ,X2,...,Xn)bea statistic used to estimate 0. The computer can be used
to approximate the sampling distribution of T and to estimate the mean and standard
deviation of the T distribution.

Two types of computer analysis will be discussed.

Nonparametric bootstrap analysis

If the n observations are x\, X2,..., xn, then the observed distribution of the sample
data is the discrete distribution with PDF

169

For each observed x, f(x) is the proportion of times x appears in the sample; other-
wise, f(x) equals 0.

In nonparametric bootstrap analysis, the sampling distribution of T is approx-
imated using replicate data sets of size n created by sampling from the observed
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Figure 12.1. Observed distribution of a random sample of size 78 (left plot)
and bootstrap approximate sampling distribution of the sample variance using 5000
resamples from the observed distribution (right plot).

distribution of the sample data. Each replicate data set is called a random resample
of the original data.

A useful way to think about sampling from the observed distribution is as follows.
Imagine writing the n observations on n slips of paper and placing the slips in an urn.
The following experiment is repeated n times: Thoroughly mix the urn, choose a
slip, record the value, return the slip to the urn. Thus, each replicate data set is the
result of sampling with replacement n times from the original list of n observations.

For example, let X be a continuous random variable with unknown variance, and
let S2 be the sample variance of a random sample of size n from the X distribution.
Assume that the left part of Figure 12.1 is a line plot representing the observed
distribution of a random sample of size 78 from the X distribution. (In a line plot of
an observed distribution, a segment from (x, 0) to (x, /(*)) is used to represent each
observation and its probability.) The observed sample variance is 264.54.

The right part of Figure 12.1 is a histogram of 5000 sample variances, where
each sample variance is based on a random sample of size 78 from the observed
distribution. The histogram is an approximation of the sampling distribution of S2

when n = 78. The mean of the approximate sampling distribution is 260.51, and the
standard deviation is 65.18.

Parametric bootstrap analysis

In parametric bootstrap analysis, the observations are used to fit a model to the X
distribution. The sampling distribution of T is approximated using replicate data sets
of size n created by sampling from the estimated model.

Continuing with the example above, if X is a gamma random variable, then the
parameters of the gamma model can be fit using maximum likelihood. For the data in
Figure 12.1, the ML estimate of a is 1.84 and the ML estimate of ß is 11.91. The left
part of Figure 12.2 shows the estimated gamma model superimposed on an empirical
histogram of the data; the right part is a histogram of 5000 sample variances, where
each sample variance is based on a different random sample of size 78 from the
estimated gamma distribution. The right part is an approximation of the sampling
distribution of S2 for samples of size 78 from a gamma distribution. The mean of the
approximate sampling distribution is 263.19, and the standard deviation is 69.15.
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Figure 12.2. Empirical histogram of a random sample of size 78 with esti-
mated gamma model superimposed (left plot) and bootstrap approximate sampling
distribution of the sample variance using 5000 resamples from the estimated gamma
distribution (right plot).

Note that the two methods (nonparametric and parametric bootstrap) produced
roughly equivalent results in this case because the gamma model fits the sample data
well.

12.1.1 Approximate conditional estimation

A bootstrap analysis is an example of a conditional analysis, since the distribution
used to create replicate data sets is constructed conditional on the observed data.

Since simulation is used to approximate the sampling distribution of T and to
estimate its summary measures, a bootstrap analysis is also an example of a Monte
Carlo analysis. (In a Monte Carlo analysis, simulation is used to estimate quantities
of interest.)

Sources of error

There are two sources of error in a bootstrap analysis:

1. the error in using the observed distribution or an estimated model instead of
the X distribution itself and

2. the error in using a fixed number of replicate data sets to approximate the
sampling distribution of T and to estimate its summary measures.

If the sample size n is large, the sample data approximate the X distribution
well, and the resampling scheme does not rely strongly on a small subset of the
observed data, then the results of bootstrap analyses are generally good.

To illustrate a situation where the approximate T distribution is not close to its
true distribution, let X be a continuous random variable, let 9 be the 90th percentile
of the X distribution, and let X(72) be the 72nd order statistic in a random sample of
size 79 from the X distribution. X(72) can be used to estimate 6. (See Theorem 9.1.)
Assume that the left part of Figure 12.3 is a line plot representing the observed
distribution of a random sample of size 79 from the X distribution. The observed
72nd order statistic is 9.14.
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Figure 12.3. Observed distribution of a random sample of size 79 (left plot)
and bootstrap approximate sampling distribution of the 72nd order statistic using
5000 resamples from the observed distribution (right plot).

The right part of Figure 12.3 is a histogram of 5000 sample 72nd order statistics,
where each order statistic is based on a random sample of size 79 from the observed
distribution. For the data on the right, the mean is 9.13 and the standard deviation
is 0.26.

Although 9.13 and 0.26 are reasonable estimates of E(X^2)) and 5D(X(72>),
respectively, the shape of the distribution on the right is not close to the shape of the
distribution of an order statistic from a continuous distribution.

In the resampling step of the example above, the values of the 72nd order statistic are
restricted to the 79 observed values of X. 94.9% (4746/5000) of the simulated values were
equal to one of 10 numbers from the original list of 79 numbers. Thus, the histogram does
not approximate a continuous curve very well. This problem would not be alleviated by
using a larger number of resampled values.

Number of bootstrap resamples

The idea behind the bootstrap is very simple and attractive: the computer is used to
estimate properties of a sampling distribution. However, it is difficult to assess the
reliability of results from a bootstrap analysis. Thus, bootstrap results should be used
with caution.

One way to reduce the second type of error above is to use a large number
of resamples. In the examples below, 5000 resamples are used. In general, 5000
resamples are sufficient to give reasonable estimates of the quantities of interest in
this chapter.

12.2 Bootstrap estimation
Let 6 be a parameter of interest, T be a statistic used to estimate 6 from sample data,
and f0bs be the observed value of T. Assume the sample data are the values of a
random sample or of independent random samples.

In the resampling step of a bootstrap analysis, either the observed distribution
or an estimated model is used to produce simulated data and simulated values of T,
say ?*, as illustrated in the right column of Figure 12.4. This process is repeated a
large number of times, say B, to produce an approximate sample from the sampling
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Figure 12.4. Illustration of bootstrap resampling.

distribution of T:

12.2.1 Error distribution

Recall that the bias of an estimator T is the difference between its expected value
and the parameter of interest, BIAS(T) = E(T) - 6. The standard error (SE) of an
estimator T is the same as the standard deviation of T, SE(T) = SD(T).

The error distribution is the distribution of T — 6. Its mean and standard
deviation are equal to the bias and standard error of 7", respectively:

E(T - 0) = E(T) -6 = BIAS(T) and SD(T - B} = SD(T) = SE(T).

(The error distribution is a shift of the T distribution.)
Bias and standard error are estimated using the mean and standard deviation

of the B approximate errors, where f0bs takes the place of 6:

12.2.2 Simple approximate confidence interval procedures

This section presents two simple approximate confidence interval procedures for 9.

Standard bootstrap confidence intervals

If the error distribution is approximately normal when n is large, then an approximate
100(1 — a)% confidence interval for 6 has the form

where b is the estimated bias, se is the estimated standard error, and z(a/2) is the
100(1 — a/2)% point of the standard normal distribution.
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Figure 12.5. Observed distribution of a random sample of size 110 (left
plot) and bootstrap approximate error distribution based on 5000 resamples from
the observed distribution (right plot). The approximate error distribution is super-
imposed on a normal distribution with the same mean and standard deviation.

Basic bootstrap confidence intervals

If the error distribution is not approximately normal, then approximate confidence
intervals can be based on sample quantiles. Specifically, an approximate 100(1—a)%
confidence interval for B has the form

where t* is the sample /7th quantile of the list of B estimated errors.

Demonstrations

To demonstrate the approximate confidence procedures, note that

where ta/2 and ?i_a/2 are quantiles of the error distribution.

(i) If sample quantiles are used to estimate ta/2 and t_a/2> then the estimated
lower endpoint is f0bs — fi-a/2

 an(^ ^e estimated upper endpoint is t0bs — f£/2-
(ii) If the normal approximation is used, then

The estimated lower endpoint is /Obs — b — z(a/2)se, and the estimated upper
endpoint is t0bs — b + z(ct./T)se.

Example: Simple confidence intervals for variance

To illustrate the approximate procedures, assume that the left part of Figure 12.5 is a
line plot representing the observed distribution of a random sample of size 110 from
a distribution with unknown variance a2. For these data the sample variance is 92.51.
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The right part of Figure 12.5 is a histogram of 5000 estimated errors, s2—92.51,
superimposed on a normal density curve. Each error is based on a random sample
of size 110 from the observed distribution. The normal density has mean equal to
the estimated bias (—0.74) and standard deviation equal to the estimated standard
error (21.92). An approximate 95% confidence interval for a2 based on a normal
armroximation to the error distribution is

The 0.025 and 0.975 sample quantiles of the estimated error list are —38.71 and
46.43, respectively, and an approximate 95% confidence interval for a2 using the
basic bootstrap procedure is

The graphic suggests that the second interval is the better choice in this case.

12.2.3 Improved intervals: Nonparametric case

Recall that the interval [L, U\ is a 100(1 — a)% confidence interval for 9 if

A method for computing intervals is said to be approximately accurate when

Confidence intervals are transformation-preserving. That is, if [L, U\ is a
100(1 — <x)% confidence interval for 9 and

(i) g is an increasing function, then [g(L), g(U)] is a 100(1 — a)% CI for g (0);
(ii) g is a decreasing function, then [g(U), g(L)] is a 100(1 — a)% CI for g(0).

The approximate procedures described in the last section are not true approxi-
mate confidence procedures. The methods are not transforming-preserving, and the
endpoints are not approximately accurate.

B. Efron, who pioneered the use of the bootstrap, proposed an improved proce-
dure known as the bias-corrected and adjusted (or BCa) percentile method (see,
for example, [36, p. 184]). In general, Efron's improved method produces inter-
vals whose endpoints are approximately accurate and which are transformation-
preserving. The details for the improved method will not be discussed here. The
algorithms have been implemented in the nonparametric case.

For example, Efron's improved method (with 5000 resamples) applied to the
data in Figure 12.5 produced the following approximate 95% confidence interval for
the variance a2: [57.27,163.47].
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Figure 12.6. Scatter plot of cholesterol-triglycerides pairs (left plot) and
bootstrap approximate error distribution based on 5000 resamplesfrom the observed
distribution (right plot). The approximate error distribution is superimposed on a
normal distribution with the same mean and standard deviation.

12.3 Applications of bootstrap estimation
This section considers applications of bootstrap estimation when the observed data
are the values of a single random sample and when they are the values of two or
more independent random samples. Three example analyses are presented. Other
examples will be considered in the laboratory problems and in later chapters.

12.3.1 Single random sample

In addition to using the bootstrap to study the sampling distribution of the sample
variance, bootstrap methods can be used to study the sampling distributions of the
following:

1. MOM and ML estimators. In particular, the bootstrap can be used to check
if the large sample approximate normal distribution of an ML estimator is
adequate in a particular situation.

2. HL estimators of shift in the paired sample setting.

3. Correlation estimators (see the example below).

4. Estimators of location, such as the trimmed mean (see the example below).

Example: Correlation analysis

Consider again the data on cholesterol and triglycerides levels in 51 men complaining
of chest pain but with no evidence of heart disease (see Table 11.5). Assume these data
are the values of a random sample from a joint cholesterol-triglycerides distribution
with correlation coefficient p, and let R be the sample correlation.

The left part of Figure 12.6 is a scatter plot of the data. The observed sample
correlation is 0.325. The right part is a histogram of 5000 estimated errors, r—0.235,
superimposed on a normal density curve. Each error is based on a random sample
of size 51 from the observed distribution. The normal density has mean equal to
the estimated bias (—0.012) and standard deviation equal to the estimated standard
error (0.140). Using Efron's method (with 5000 resamples), an approximate 95%
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confidence interval for p is [0.043,0.641]. Since both endpoints are positive, this
analysis suggests a positive association between levels of cholesterol and triglycerides
in the population from which these men were sampled.

Example: Trimmed mean analysis

Let X be a continuous random variable with mean n and PDF /(jc), and let a be a
proportion in the interval 0 < a < ^. The lQQa.% trimmed mean of X is the expected
value of the middle 100(1 - 2a)% of the X distribution:

ivhere xp is the /?* quantile of the X distribution.

As a approaches 0, the 100a% trimmed mean approaches fj.. As a approaches 1/2, the
100ct% trimmed mean approaches the median of the distribution.

The sample 100a% trimmed mean is the sample mean of the middle
100(1 — 2a)% of the sample data. For example, if n = 10 and the ordered data
are

2.16, 6.26, 8.64, 8.82, 11.82, 13.61, 17.39, 27.84, 29.40, 58.42,

then the sample 20% trimmed mean is the mean of the middle six numbers, 14.6867.
If the X distribution is symmetric around x = /x, then ju is the mean, median, and

100a% trimmed mean for each a. Researchers often use sample 100a% trimmed
means to estimate the mean in the symmetric case when there are outliers in the
data, since outliers do not affect these estimators as much as they do sample means.
(Sample trimmed means are examples of robust estimators of location. A robust
estimator is one that is not sensitive to outliers.)

If the X distribution is not symmetric, then the mean, the median, and the
100a% trimmed mean (for each a) are different measures of the center of the X
distribution. When distributions are extremely skewed, a 100a% trimmed mean may
be a better measure of center than either the mean or the median.

For example, the left part of Figure 12.7 is a line plot representing the observed
distribution of 227 rainfall measurements (in inches). The measurements were made
at a series of rain gauges in southern Illinois in the summers of 1960 through 1964
[66], [90, p. 249]. For these data, the mean is 0.224 inches, the median is 0.07 inches,
and the 20% trimmed mean is 0.106 inches.

Assume these data are the values of a random sample from a distribution with
20% trimmed mean 9, and let 6 be the sample 20% trimmed mean. The right part
of Figure 12.7 is a histogram of 5000 estimated errors, 9 — 0.106, superimposed on
a normal density curve. Each error is based on a random sample of size 227 from
the observed distribution. The normal density has mean equal to the estimated bias
(0.0008) and standard deviation equal to the estimated standard error (0.015). Using
Efron's method (with 5000 resamples), an approximate 95% confidence interval for
the 20% trimmed mean 6 is [0.078,0.144].

100a% Trimmed Mean =
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Figure 12.7. Observed distribution of rainfall data (left plot) and bootstrap
approximate error distribution based on 5000 resamples from the observed distribu-
tion (right plot). The approximate error distribution is superimposed on a normal
distribution with the same mean and standard deviation.

12.3.2 Independent random samples

If the observed data are the values of two or more independent random samples, then
resampling is done separately from each estimated distribution. In the two sample set-
ting, applications of bootstrap methods include studying the sampling distributions of

1. variance ratio estimators when X and Y are not normal random variables,

2. IQR ratio estimators (see the example below),

3. mean or median ratio estimators,

4. HL estimators of shift in the two sample setting,

5. estimators of P(X < Y) or P(X > Y).

Example: Ratio of IQRs analysis

Let X and Y be continuous random variables with interquartile ranges IQR* and
IQRy, respectively, and let 9 = lQRx/lQRy be the ratio of IQRs. Let?be the ratio
of sample IQRs, based on independent random samples of sizes n and m from the X
and Y distributions. 6 can be used to estimate 6.

In the resampling step of a nonparametric bootstrap analysis, resamples are
taken separately from the observed X and Y distributions. For example, the left part
of Figure 12.8 shows side-by-side box plots of the finishing times (in hours) of the
65 women and 111 men who completed the 1996 Olympic marathon competition in
Atlanta, Georgia [81]. For these data, the sample IQR for women is 0.163 and for
men is 0.209. The sample IQR ratio is 0.163/0.209 = 0.779.

Assume the marathon data are the values of independent random samples.
The right part of Figure 12.8 is a histogram of 5000 estimated errors, 6 — 0.779,
superimposed on a normal density curve. Each error is based on independent random
samples of sizes 65 and 111 from the observed distributions. The normal density
has mean equal to the estimated bias (0.065) and standard deviation equal to the
estimated standard error (0.208). Using Efron's method (with 5000 resamples), an
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Figure 12.8. Side-by-side box plots of the finishing times (in hours) of
Olympic finishing times data (left plot) and bootstrap approximate error distribution
based on 5000 resamples from the observed distributions (right plot). The approxi-
mate error distribution is superimposed on a normal distribution with the same mean
and standard deviation.

approximate 95% confidence interval for the IQR ratio 0 is [0.477,1.349]. Since 1
is in the interval, the results suggest that the IQRs of the two distributions are equal.

12.4 Bootstrap hypothesis testing
Bootstrap resampling methods can be adapted to conduct approximate hypothesis
tests. This section introduces two examples.

Example: Difference in means test

Let X and Y be continuous nonnormal random variables with unknown (but finite)
means and variances. Consider testing the null hypothesis

H0: The means of the X and Y distributions are equal

versus alternatives that the mean of one distribution is larger than that of the other
distribution using independent random samples of sizes n and m, respectively, from
the X and Y distributions, and Welch's t statistic,

Large values of T favor the alternative that the mean of X is larger than the mean of
Y; small values of T favor the opposite alternative.

A test of the equality of means is not the same as a test of equality of distributions. For
example, X and Y may be members of different families of distributions.

Nonparametric bootstrap analysis can be used to approximate the sampling
distribution of T under the null hypothesis of equality of means and to estimate p
values [36, p. 212]. To carry out the analysis, the observed data need to be adjusted
to satisfy the null hypothesis.
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180 Chapter 12. Bootstrap Analysis

Specifically, let {*i, x2,..., xn} and {yi, yi , . . . , ym} be the observed samples
and fobs be the observed value of the T statistic.

(i) The samples used in the resampling step are

ivhere L0 is the maximum value of the likelihood function under the null hypoth
jsis, and La is the maximum value of the likelihood function under the alternativ
lypothesis. Large values of T favor the alternative hypothesis.

The null family of distributions may be easier to work with than a "better" alternative family
of distributions. Thus, the null family is preferred unless evidence is provided to say that
the alternative family should be used.

Parametric bootstrap analysis can be used to approximate the sampling distri-
bution of T under the null hypothesis and to estimate p values [31, p. 148].

Specifically, let {x\, X2,..., xn} be the observed sample and t0bs be the observed
value of the T statistic.

(i) Use the observed data to compute ML estimates under the null hypothesis.
(ii) Replicate data sets are sampled from the estimated model under the null hypoth-

esis. For each replicate data set, the value of T is computed.
(iii) The estimated p value is the proportion of resampled T statistics greater than

or equal to tobs.

Adjusted x sample:

Adjusted y sample:

where z is the mean of all n + m observations. The adjusted samples have a
common mean of z (as required by the null hypothesis). In addition, they retain
the approximate shapes of the X and Y distributions.

(ii) Replicate data sets are constructed by resampling separately from the adjusted
x and y samples. For each replicate data set, the value of T is computed.

Iii) If the alternative hypothesis is fj.x > /zy, then the estimated p value is the propor-
tion of resampled T statistics greater than or equal to t0bs- If the alternative
hypothesis is ux < \iy, then the estimated p value is the proportion of T statis-
tics less than or equal to t0bs- For a two tailed test, the estimated p value is the
proportion of \T\ statistics greater than or equal to t0bsl-

Example: Separate families test

Let X be a continuous random variable. Consider testing

H0: The PDF of the X distribution has form f0(x) versus

Ha: The PDF of the X distribution has form fa(x)

using a random sample of size n from the X distribution and a log-likelihood ratio
statistic of the form
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Note that the setup for a separate families test is different from the setup of
the usual goodness-of-fit test. In the goodness-of-fit test, the alternative hypothesis
is that the null family of models should not be used; in the separate families test, the
alternative hypothesis is that a specific alternative family of models should be used.
In general, a separate families test is applied when goodness-of-fit tests would not
reject the use of either family.

12.5 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for construct-
ing and summarizing bootstrap approximate sampling distributions and for applying
Efron's improved confidence procedure in the nonparametric setting. The problems
are designed to reinforce ideas related to bootstrap analyses.

12.5.1 Laboratory: Bootstrap analysis

In the main laboratory notebook (Problems 1 to 5), you will use simulation from
exponential distributions to study the performance of nonparametric bootstrap tech-
niques applied to the reciprocal-mean estimator of A; apply a variety of methods to
study the rate of minor-to-light earthquakes in the northeastern United States and
eastern Canada [35]; apply bootstrap methods to study the sampling distribution
of the sample correlation using data from a study of blood fats [95], [50]; apply a
variety of methods to a study on ozone levels in two cities in the northeast [25]; and
apply bootstrap methods for independent random samples to two data sets: the first
uses a weighted-mean statistic to estimate gravity [29], [31], and the second uses a
Mann-Whitney estimator to estimate P(X < Y) from a visual perception study [25].

12.5.2 Additional problem notebooks

The delta method is a commonly used technique for estimating bias and standard error.
Problem 6 uses bootstrap and delta methods to study properties of the reciprocal-
mean estimator of A in exponential distributions. Problem 7 uses bootstrap and
delta methods to study properties of the reciprocal log-mean estimator of the shape
parameter in Pareto distributions.

Problem 8 is on correlation in bivariate normal distributions. A variety of
techniques (including nonparametric bootstrap methods) are applied to height-weight
data of athletes [28].

Problem 9 is on paired sample analysis. A variety of techniques (including
nonparametric bootstrap methods) are applied to data from a study comparing methods
for estimating the percent of calcium in animal feed [52], [90].

Problem 10 is on nonparametric bootstrap analysis of trimmed means. Data
from a study of trends in catch-per-unit effort of Alaskan king crabs over a 14-year
period is used [32], [58].

Problem 11 applies parametric bootstrap methods to data on earthquakes in
southern California [35]. Problem 12 applies nonparametric bootstrap methods to
data comparing Olympic marathon finishing times for men and women [81].
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182 Chapter 12. Bootstrap Analysis

Problems 13 and 14 are on bootstrap hypothesis testing. Problem 13 applies the
separate families test to data on levels of plasma retinol in women [104]. Problem 14
applies the mean difference test to data from a study comparing the spending patterns
of single men and women in Hong Kong [50].

Problems 15 and 16 apply bootstrap methods to nonlinear least squares estima-
tors. In Problem 15, nonparametric bootstrap methods are applied to study the effects
of herbicides on the reproductive ability of microscopic animals [7]. In Problem 16,
parametric bootstrap methods are applied to a whimsical comparison of world-class
sprinters [62], [108].

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Chapter 13

Multiple Sample
Analysis

This chapter considers methods for comparing more than two samples, under both
population and randomization sampling models. Methods introduced in the first two
sections generalize methods from Chapters 10 and 11. Section 3 introduces methods
for analyzing how two factors affect an outcome of interest (for example, how diet
and exercise programs affect weight). Section 4 outlines the laboratory problems.
References for this chapter are [17], [68].

13.1 One-way layout
This section considers methods for / samples

where n, is the number of observations in the Ith sample, and xfj is the y* observation
in the /* sample. Let N = ]T,. n, be the total number of observations.

13.1.1 Example: Analysis of variance

The data are assumed to be the values of / independent random samples

from normal distributions with a common unknown standard deviation a. The
samples are often referred to as groups and the mean of the Ith sample, /*,•, as the
Ith group mean.

Of interest is a test of the null hypothesis that the / group means are equal
versus the general alternative that at least two means differ.

Linear model

Let )U equal the expected value of the average of all N observations,
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184 Chapter 13. Multiple Sample Analysis

and let a; = //,• — /i be the difference between the z>th group mean and u. \L is called
the overall mean and a, is called the differential effect of the z* group (or the Ith

group effect) for / = 1, 2 , . . . , / . Then the general assumptions imply that X{j can
be written in the linear form

where the collection {€,-,_/} is a random sample of size N from a normal distribution
with mean 0 and standard deviation CT, and the weighted sum of the group effects is
zero (^j n,a, = 0). Further, if the null hypothesis is true, then the / group effects
are identically zero.

The random variable X,-j can be written as the sum of the overall mean, the differential
effect of the Ith group, and an error term. Error terms have a common variance.

Theorem 13.1 (Parameter Estimation). Given the assumptions and definitions
above, the following are ML estimators of the parameters in the linear model:

1. Overall mean:

2. Group effects:

is an unbiased estimator of a2.

To illustrate the computations, consider the data in Table 13.1 on lung cancer
rates (per 100000 individuals per year for 1950-1969) for women in 26 counties in
the northeastern United States [49, p. 93]. The data are grouped by each county's
proximity to a bedrock area known as the Reading Prong. Group 1 corresponds to
counties on the area, group 2 to counties on the fringe of the area, and group 3 to
"control" counties (counties that are nearby but not on the prong). Bedrock areas such
as the Reading Prong are suspected of emitting radon gas, a potential carcinogen.

Sample sizes, means, and standard deviations are given in the table. The mean
of all 26 observations is 5.577, the estimated group effects are 1.423, —0.105, and
—0.600, respectively, and the pooled estimate of the common variance is 1.319.

3. Error terms:

Each is an unbiased estimator. Further, the pooled estimate of the common variance
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Table 13.1. Lung cancer rates data.

1
2
3

»,
6
7
n

*u
6.0,10.5,6.7,6.0,6.1,6.7
5.2, 5.6, 5.8, 4.5, 5.5, 5.4, 6.3
6.3, 4.3, 4.0, 5.9, 4.7, 4.8, 5.8,
5.4, 5.2, 3.6, 4.3, 3.5, 6.9

fii = XL

7.000
5.471

4.977

Si

1.746
0.553

1.051

Sources of variation

The formal analysis of the null hypothesis of equality of means is based on writing
the sum of squared deviations of the observations from the estimated overall mean
(known as the total sum of squares),

as the sum of squared deviations of the observations from the appropriate estimated
group means (known as the error sum of squares),

MSe is equal to the pooled estimate of the common variance. Theorem 6.1 can be
used to demonstrate that (N — f)MSe/a

2 is a chi-square random variable with (N—F)
degrees of freedom.

The group mean square, MSg, is defined as follows:

Properties of expectation can be used to demonstrate that

Error and group mean squares

The error mean square, MSe, is defined as follows:

plus the weighted sum of squared deviations of estimated group means from the
estimated overall mean (known as the group sum of squares),
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Table 13.2. Analysis of variance table for the lung cancer rates data.

Source

Group
Error
Total

df
2
23
25

SS
16.91
30.34
47.25

MS
8.45
1.32

F
6.41

p value

0.006

If the null hypothesis that the group means are equal is true, then the expected value
of MSg is <r2; otherwise, values of MSg will tend to be larger than a2.

The following theorem relates the error and group mean squares.

Theorem 13.2 (Distribution Theorem). Under the general assumptions of this
section and if the null hypothesis of equality of group means is true, then the ratio
F = MSg/MSe has an f ratio distribution with (I — 1) and (N—l) degrees of freedom.

Test of equality of means: Observed significance level

Large values of F = MSg/MSe support the alternative hypothesis that some means
differ. For an observed ratio, fObs, the p value is P(F > /Obs)-

For example, assume the data displayed in Table 13.1 are the values of indepen-
dent random samples from normal distributions with a common variance. Table 13.2
shows the results of the test of equality of group means, organized into an analysis
of variance table. The observed ratio of the group mean square to the error mean
square is 6.41. The observed significance level, based on the f ratio distribution with
2 and 23 degrees of freedom, is 0.006. Since the p value is small, there is evidence
that at least two means differ.

Informal model checking

The ratio of the maximum to the minimum sample standard deviation can be used to
check the assumption of equality of variances. The usual rule of thumb is that ratios
of 2 or less are fine. With small sample sizes, like the samples in the lung cancer
rates data, ratios up to about 4 are considered reasonable.

Normal probability plots of the estimated errors (or residuals), Xij — jc/., can
be used to check if the error distribution is approximately normal.

Bonferroni method of multiple comparisons

If the null hypothesis of equality of means is rejected, then it is natural to try to
determine which means differ. In the Bonferroni method of multiple comparisons, a
total of m = Q two sided tests of equality of means of the form

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com
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are conducted using pooled t statistics of the form

where S2
p is the pooled estimate of the common variance. In each case, 71,,* has a

Student t distribution with (N — f) degrees of freedom under the null hypothesis.
If the significance level for each test is ct/m, then the overall type I error for

all m tests is at most a. That is, if all means are actually equal, then the probability
of rejecting at least one of the m null hypotheses is at most a.

To demonstrate that the overall type I error is at most ot, let Ritk be the event that the null
hypothesis /*, = fj.k is rejected. Then

(The probability of the union is less than or equal to the sum of the probabilities.)

Continuing with the lung cancer rates example, a Bonferroni analysis with an
overall 5% significance level uses decision rules of the form

Reject fa = /^ in favor of ft ^ ^ when 7^ < ?23(-025/3) = 2.582

for (i, k) = (1,2), (1,3), (2,3). Using these decision rules, only the hypothesis that
Hi = jUa is rejected. In fact, there is evidence that n\ > ^3, suggesting a link between
radon and lung cancer.

13.1.2 Example: Kruskal-Wallis test

In the 1950's, Kruskal and Wallis developed a nonparametric version of the analysis
of variance test appropriate in one of the following situations:

1. Population model. The data are the values of / independent random samples.
The null hypothesis is that the distributions from which the data were drawn
are equal.

2. Randomization model. The data are measurements on N individuals in distin-
guishable groups of sizes n\, n^,...,«/. The null hypothesis is that observed
differences in the groups are due to chance alone.

The form of the test statistic is similar to the form of the group sum of squares.

Test statistic: No tied observations

Let R{j be the rank of observation Jt,j in the combined sample, and let /?,-. be the
average rank of observations in the Ith sample. The Kruskal-Wallis statistic, K, is
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defined as follows:

The average of all N ranks is (N + l)/2. The statistic is a weighted sum of squared
deviations of average group ranks from the overall average rank.

The sampling distribution of K is obtained by computing its value for each
partition of the N ranks into distinguishable groups of sizes n\, HI, . . . ,«/ . There
are a total of (n n

N
 n ) partitions to consider. The following theorem gives a large

sample approximation to the distribution.

Theorem 13.3 (Kruskal-Wallis Statistic). If there are no ties in the observations,
then under the null hypothesis of randomness and when N is large, the distribution
ofK is approximately chi-square with (I — 1) degrees of freedom.

Test statistic when some observations are tied

Midranks replace ranks when there are ties in the data. The Kruskal-Wallis statistic
becomes

where the weights, wt, in the weighted sum are chosen to make the approximate
sampling distribution of K under the null hypothesis as close to the chi-square distri-
bution as possible.

Most computer programs automatically use the appropriate weights.

Test of randomness: Observed significance level

Large values of K support the alternative hypothesis that the values in at least one
sample tend to be larger or smaller than those in another. The observed significance
level is P(K > fc0bs)» where fc0bs is the observed value of the Kruskal-Wallis statistic.
In most practical situations, the chi-square approximation to the sampling distribution
of K is used to compute p values.

For example, Table 13.3 gives the midranks and average group ranks for the
lung cancer rates data from Table 13.1. For these data, the observed value of the test
statistic is 9.62. The observed significance level, based on the chi-square distribution
with 2 degrees of freedom, is 0.00817. Since the p value is small, there is evidence
that differences in the samples are not due to chance alone.

Multiple comparisons

If the Kruskal-Wallis test suggests that differences are not due to chance alone, then
m = (0 two sided Wilcoxon rank sum tests can be conducted to determine which
samples differ. If each test is conducted at the a/m level, then the overall type I error
will be at most a.
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Table 13.3. Midranks and average group ranks for the lung cancer rates data.

For the lung cancer rates data and a = 0.05, there are significant differences
between the first and second groups and between the first and third groups.

13.1.3 Example: Permutation f test

A permutation version of the analysis of variance f test is appropriate in one of the
following situations:

1. Population model. The observed data are the values of independent random
samples from distributions differing in mean only. The null hypothesis is that
the distributions are equal (equivalently, all means are equal) versus the general
alternative that at least two means differ.

2. Randomization model. The data are measurements taken on N individuals
in distinguishable groups of sizes n\, n-i,..., n/. The null hypothesis is that
observed differences in means are due to chance alone versus the alternative
that at least one sample has values that tend to be larger or smaller (but not
more variable) than the values in another sample.

The sampling distribution of F is obtained by computing its value for each
partition of the N observations into distinguishable groups of sizes n\, ni,..., n/.
There are a total of (ni n^ ) partitions to consider. Since this number can be quite
large, Monte Carlo analysis is generally used to estimate a p value.

For example, consider testing the null hypothesis of randomness using the 5%
significance level and the lung cancer rates data (Table 13.1). In a Monte Carlo
analysis using 5000 random partitions (including the observed partition of the 26
rates), 0.3% (15/5000) of F values were greater than or equal to /Obs = 6.41. Thus,
there is evidence that observed differences in mean rates are not due to chance alone.

Comparison of tests

In situations where both the analysis of variance f test and the permutation f test are
appropriate, the analysis of variance f test is preferred. However, it is interesting to
note that the tests give similar results.

In situations where both the permutation f test and the Kruskal-Wallis test
are appropriate, if the samples are highly skewed or have extreme outliers, then
the Kruskal-Wallis test is preferred; otherwise, the permutation f test is preferred.

I

1
2
3

nj
18.5, 26.0, 23.5, 18.5, 20.0, 23.5
9.5, 14.0, 15.5, 6.0, 13.0, 11.5, 21.5
21.5, 4.5, 3.0, 17.0, 7.0, 8.0, 15.5,
11.5,9.5,2.0,4.5,1.0,25.0

ri.
21.67
13.00

10.00
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where the Ith sample is the list [xtj :j = 1, 2,...,/}, and the y* block is the list
[xitj :i = 1,2,..., I}. Let TV = // be the total number of observations.

Blocked samples arise, for example, in randomized block experiments:

(i) There are / treatments under study and J blocks of / subjects each, where
subjects in a given block are matched on important factors (such as age, sex,
and general health measures).

(ii) The subjects within each block are randomly matched to the / treatments. The
subject receiving the i± treatment is in the z<th experimental group.

Blocked designs generalize paired designs. Researchers use blocked designs to
reduce the variability of the results since individuals within each block are expected
to respond similarly to treatment, while individuals in different blocks are expected
to respond differently to treatment.

13.2.1 Example: Analysis of variance

The data are assumed to be the values of N independent normal random variables
satisfying the linear model

where

1. ju is the overall mean: p = ^ £^.; jU/j, where ju,-j = E(Xij);

2. a.i is the differential effect of the z>th group: a, = /i,r. — p = j ^. //,-j — ft;

3. fij is the differential effect of the y* block: /?, = \JLj — \i = j £V ju,-j — /z;

4. the collection {e,j} is a random sample of size N from a normal distributio
with mean 0 and standard deviation a.

The random variable Xij can be written as the sum of the overall mean, the differential
effect of the Ith group, the differential effect of the 7th block, and an error term. The errors
have a common variance.

The sum of the group effects is zero (^ a, = 0), and the sum of the block
effects is zero (£. /?7 = 0). The null hypothesis of primary interest is that the group
effects are identically zero. The null hypothesis that the block effects are identically
zero can also be tested.

190 Chapter 13. Multiple Sample Analysis

In practice, the Kruskal-Wallis test is used almost exclusively since it is easy to
implement.

13.2 Blocked design
This section considers methods for matrices of observations of the form
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Table 13.4. Penicillin manufacturing data.

II 7=1
/= 1
i = 2
f = 3
i = 4

89
88
97
94

|| jc.i = 92

7 = 2

84
77
92
79

3c.2 = 83

7 = 3

81
87
87
85

Jc.3 = 85

y = 4

87
92
89
84

jc.4 = 88

7 = 5 II
79
81
80
88

XL = 84
x2. = 85
*3. = 89
x4. = 86

Jc.5 = 82 ||

Theorem 13.4 (Parameter Estimation). Givew /fe assumptions and definitions
above, the following are ML estimators of the parameters in the linear model:

1. Overall mean:

2. Group effects:

3. Block effects:

To illustrate the computations, consider the data in Table 13.4 on the amount
of penicillin produced using four different manufacturing processes (the groups) and
five different blends of raw materials (the blocks) [17, p. 209]. Interest focuses on
potential differences in manufacturing processes. A block design was used because
different blends of raw materials could produce different results. For each blend
of raw materials, the order in which the manufacturing processes were tested was
randomized.

4. Error terms:

Each is an unbiased estimator. Further, the pooled estimate of the common variance

is an unbiased estimator of a1
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Sample group and block means are shown in the table. For these data, the
overall mean is 86 (units of penicillin), the differential effects of the four manufac-
turing processes are —2, —1, 3,0, the differential effects of the five blends are 6, —3,
— 1,2, —4, and the pooled estimate of the common variance is 18.83.

Sources of variation

Formal analyses are based on writing the sum of squared deviations of the observa-
tions from the estimated overall mean (known as the total sum of squares),

as the sum of squared deviations of the observations from their estimated means
(known as the error sum of squares),

plus the weighted sum of squared deviations of estimated group means from the
estimated overall mean (known as the group sum of squares),

Properties of expectation can be used to demonstrate that

plus the weighted sum of squared deviations of estimated block means from the
estimated overall mean (known as the block sum of squares),

Error, group, and block mean squares

The error mean square, MSe, is defined as follows:

MSe is equal to the pooled estimate of the common variance. Theorem 6.1 can be
used to demonstrate that ( /—!) ( /— l)MSe/a

2 is a chi-square random variable with
(/ — !)(/ — 1) degrees of freedom.

The group mean square, MSg, is defined as follows:

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

13.2. Blocked design 193

Table 13.5. Analysis of variance table for the penicillin manufacturing data.

Source

Group
Block
Error
Total

df

3
4
12
19

SS

70.0
264.0
226.0
560.0

MS

23.33
66.00
18.83

F

1.24
3.50

p value

0.339
0.041

If the null hypothesis that the group effects are identically zero is true, then the
expected value of MSg is the common variance <r2; otherwise, values of MSg will
tend to be larger than a2.

Similarly, the block mean square, MSb, is defined as follows:

If the null hypothesis that the block effects are identically zero is true, then the
expected value of MSb is the common variance cr2; otherwise, values of MSb will
tend to be larger than a2.

The following theorem relates the error, group, and block mean squares.

Theorem 13.5 (Distribution Theorem). Under the general assumptions of this
section, the following hold:

(i) If the null hypothesis that the group effects are identically zero is true, then the
ratio F = MSg/MSe has an f ratio distribution with (I — 1) and (7 — 1) (/ — 1)
degrees of freedom.

(ii) If the null hypothesis that the block effects are identically zero is true, then the
ratio F = MSb/MSe has anfratio distribution with (J — 1) and (7 — 1) (7 — 1)
degrees of freedom.

Observed significance levels

Large values of F = MSg/MSe support the alternative hypothesis that some group
effects are not zero, and large values of F = MSb/MSe support the null hypothesis
that some block effects are not zero.

For example, assume the data displayed in Table 13.4 are values of independent
random variables satisfying the assumptions of this section. Table 13.5 shows the
results of the two significance tests, organized into an analysis of variance table.

Properties of expectation can be used to demonstrate that
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(i) The observed ratio of the group mean square to the error mean square is 1.24;
the observed significance level, based on the f ratio distribution with 3 and 12
degrees of freedom, is 0.339.

(ii) The observed ratio of the block mean square to the error mean square is 3.50;
the observed significance level, based on the f ratio distribution with 4 and 12
degrees of freedom, is 0.041.

The results of the analysis of variance suggest that once differences in raw mate-
rial blends have been taken into account, mean levels of production for the four
manufacturing processes are equal.

In the analysis of variance for blocked designs, potential group and block effects are sepa-
rated. The effects can then be tested separately.

Bonferroni method of multiple comparisons

If the null hypothesis that the group effects are identically zero is rejected, then it is
natural to try to determine which groups differ. In the Bonferroni method of multiple
comparisons, a total of m = Q two sided tests of equality of group means of the form

where S* is the pooled estimate of the common variance. In each case, T1,̂  has a
Student t distribution with (7—!)(./— 1) degrees of freedom under the null hypothesis.

If the significance level for each test is a/m, then the overall type I error for
all m tests is at most a. That is, if all means are actually equal, then the probability
of rejecting at least one of the m null hypotheses is at most a.

Tests of the equality of group means in the blocked design setting are equivalent to tests of
the equality of group effects. The Bonferroni analysis in the blocked design setting uses
paired sample methods, while the analysis in the one-way layout setting uses two sample
methods.

13.2.2 Example: Friedman test

In the 1930's, Friedman developed a nonparametric test for comparing groups in
blocked designs appropriate in the following situations:

1. Population model. The data are the values of N = IJ independent random vari-
ables. The null hypothesis is that for each j, the distributions ofX\j, X2j,...,
Xij are equal.

are conducted using paired t statistics of the form
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2. Randomization model. The blocked data are measurements on J individuals
(or J blocks of 7 individuals each). The null hypothesis of interest is that
observed differences in measurements within each block are due to chance
alone.

The form of the test statistic is similar to the form of the group sum of squares.

Test statistic: No ties within blocks

Let RIJ be the rank of observation jc,-j in the 7th block, and let /?,. be the average rank
of observations in the z-th sample. The Friedman statistic, Q, is defined as follows:

The average of all N ranks is (/ + 1 )/2. (There are / copies of each integer between
1 and /.) The statistic is a weighted sum of squared deviations of average group ranks
from the overall average rank.

The sampling distribution of Q is obtained by computing its value for each
matching of the / ranks in each block to the / treatments. There are a total of (7!)7

matchings to consider. The following theorem gives a large sample approximation
to the distribution.

Theorem 13.6 (Friedman Statistic). If there are no ties within blocks, then under
the null hypothesis of randomness and when N is large, the distribution of Q is
approximately chi-square with (I — 1) degrees of freedom.

Test statistic when there are ties within blocks

Midranks replace ranks when there are ties in a given block. The Friedman statistic
becomes

where the weights, w,, in the weighted sum are chosen to make the approximate
sampling distribution of Q under the null hypothesis as close to the chi-square distri-
bution as possible.

Most computer programs automatically use the appropriate weights.

Test of randomness: Observed significance level

Large values of Q support the alternative hypothesis that the values in at least one
group tend to be larger or smaller than those in another. The observed significance
level is P(Q > #0bs), where <?0bs is the observed value of the Friedman statistic. In
most practical situations, the chi-square approximation to the sampling distribution
of Q is used to compute p values.
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Table 13.6. Midranksfor the penicillin manufacturing data.

II j = 1
1 = 1
i = 2
i = 3
i = 4

2.0
1.0
4.0
3.0

7 = 2

3.0
1.0
4.0
2.0

7 = 3

1.0
3.5
3.5
2.0

7 = 4

2.0
4.0
3.0
1.0

7 = 5 || r.
1.0
3.0
2.0
4.0

1.8
2.5
3.3
2.4

For example, Table 13.6 gives the midranks and average group ranks for the
penicillin manufacturing data from Table 13.4. For these data, the observed value
of the test statistic is 3.49. The observed significance level, based on the chi-square
distribution with 3 degrees of freedom, is 0.322. Since the p value is large, the results
suggest that once differences in raw material blends are taken into account, observed
differences in the manufacturing processes are due to chance alone.

Multiple comparisons

If the Friedman test suggests that group differences are not due to chance alone, then
m = (2) two sided Wilcoxon signed rank tests can be conducted to determine which
groups differ. If each test is conducted at the a/m level, then the overall type I error
will be at most a.

13.3 Balanced two-way layout
This section considers methods for matrices of samples of the form

i is used to index the / levels of the first factor of interest (the row factor), and j is
used to index the / levels of the second factor of interest (the column factor). The
total number of observations is N = UK.

There are a total of // samples (or groups). The layout is called balanced
because the sample sizes are equal.

13.3.1 Example: Analysis of variance

The data are assumed to be the values of IJ independent random samples

where each S{j is a list of K observations:

from normal distributions with a common unknown standard deviation a. Let utj be
the mean of observations in the (i, j) sample: Uij = E(Xijtk) for all k.
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Linear model

The general assumptions imply that X,i7ijt can be written in the linear form

where

1. n is the overall mean: \L = (£ijik fr,j) /N - (Z,j Hi.j) /W>

2. a,- is the differential effect of the Ith level of the first factor,

3. )8; is the differential effect of the 7th level of the second factor,

4. djj is the interaction between the Ith level of the first factor and the 7* level of
the second factor,

5. the collection {ey,*} is a random sample of size N from a normal distribution
with mean 0 and standard deviation a.

The random variable X, j^ can be written as the sum of the overall mean, the differential
effects of each factor, the interaction between factors, and an error term. The errors have a
common variance.

The sum of the differential effects of each factor is zero (£,. a, = 0, £^ fa =
0), and the sum of the interaction terms is zero at each fixed level of the first and
second factors (£, <5,->7- = 0 for all i, £^ <5y = 0 for all j). Null hypotheses of
interest are as follows: the differential effects of the first factor are identically zero;
the differential effects of the second factor are identically zero; the interaction terms
are identically zero.

Note that if the (5, j = 0 for all i, j, then the means satisfy the simple additive
model: /iy = \i + a,- + fa.
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Theorem 13.7 (Parameter Estimation). Given the assumptions and definitions
above, the following are ML estimators of the parameters in the linear model:

\. Overall mean:

is an unbiased estimator of a1.

To illustrate the computations, consider the data in Table 13.7 on the times (in
1/100 minutes) needed to drill a hole through 5 feet of rock. Drilling was started
at three different depths (row factor), using two different methods to drill each hole
(column factor). Three holes were drilled at each combination of depth and drilling
method [50, p. 204]. Row levels correspond to starting depths of 10, 30, and 50
feet; column levels correspond to dry drilling (where compressed air is used to flush
cuttings) and wet drilling (where water is used to flush cuttings).

For these data, the overall mean is 773.5, and the pooled estimate of the common
variance is 12612.6. The bottom table shows the estimated interactions, as well as
the estimates of the differential effects of each factor.

Each is an unbiased estimator. Further, the pooled estimate of the common variance

5. Error terms:

4. Interactions (row-by-column effects):

3. Column effects:

2. Row effects:
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Table 13.7. Mining data (top table) and parameter estimates (bottom table).

i = l

i = 2

i = 3

7 = 1

816,813,771

827, 1022, 975

989, 814, 727

7 = 2

855, 662, 507

795, 634, 742

772, 599, 603

i = l

i = 2

i = 3

7 = 1

-25.39

20.78

4.61

0i = 88.06

7 = 2

25.39

-20.78

-4.61

02 = -88.06

al = -36.17

cT2 = 59.00

6T3 = -22.83

Sources of variation

Formal analyses are based on writing the sum of squared deviations of the observa-
tions from the estimated overall mean (known as the total sum of squares),

plus the weighted sum of squared deviations of estimated group means from estimated
means under the simple additive model (known as the interaction or row-by-column
sum of squares),

as the sum of squared deviations of the observations from their estimated group means
(known as the error sum of squares),

plus the weighted sum of squared deviations of estimated row means from the esti-
mated overall mean (known as the row sum of squares),

plus the weighted sum of squared deviations of estimated column means from the
estimated overall mean (known as the column sum of squares),
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Error, row, column, and interaction mean squares

The error mean square, MSe, is defined as follows:

MSe is equal to the pooled estimate of the common variance. Theorem 6.1 can be
used to demonstrate that IJ(K — \}MSe/a

2 is a chi-square random variable with
IJ(K — 1) degrees of freedom.

The row mean square, MSr, is defined as follows:

Properties of expectation can be used to demonstrate that

If the null hypothesis that the row effects are identically zero is true, then the expected
value of MSr is the common variance a2; otherwise, values of MSr will tend to be
larger than a2.

The column mean square, MSC, is defined as follows:

Properties of expectation can be used to demonstrate that

If the null hypothesis that the column effects are identically zero is true, then the
expected value of MSC is the common variance a2; otherwise, values of MSC will
tend to be larger than a2.

Finally, the interaction or row-by-column mean square, MSrxc, is defined as
follows:

Properties of expectation can be used to demonstrate that
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Table 13.8. Analysis of variance table for the mining data.

Source

Row
Col

Row-by-Col

Error

Total

df

2
1
2
12
17

SS

31862.3

139568.0

6585.4

151351.0

329367.0

MS

15931.2

139568.0

3292.7

12612.6

F

1.263

11.066

0.261

p value

0.318

0.006

0.774

If the null hypothesis that the interaction effects are identically zero is true, then the
expected value of MSrxc is the common variance a2; otherwise, values of MSrxc will
tend to be larger than a2.

The following theorem relates the mean square random variables.

Theorem 13.8 (Distribution Theorem). Under the general assumptions of this
section, the following hold:

(i) If the null hypothesis that the row effects are identically zero is true, then the
ratio F = MSr/MSe has an f ratio distribution with (7-1) and IJ(K - 1)
degrees of freedom.

(ii) If the null hypothesis that the column effects are identically zero is true, then
the ratio F = MSc/MSe has an f ratio distribution with (J - 1) andIJ(K - 1)
degrees of freedom.

(iii) // the null hypothesis that the interaction effects are identically zero is true,
then the ratio F = M5rxc/M5c has an f ratio distribution with (I — 1)(J — 1)
and IJ(K — 1) degrees of freedom.

For example, assume the data displayed hi Table 13.7 are values of independent
random variables satisfying the assumptions of this section. Table 13.8 shows the
results of the three significance tests, organized into an analysis of variance table.

(i) The observed ratio of the row mean square to the error mean square is 1.263;
the observed significance level, based on the f ratio distribution with 2 and 12
degrees of freedom, is 0.318.

(ii) The observed ratio of the column mean square to the error mean square is
11.066; the observed significance level, based on the f ratio distribution with 1
and 12 degrees of freedom, is 0.006.

(iii) The observed ratio of the row-by-column mean square to the error mean square
is 0.261; the observed significance level, based on the f ratio distribution with
2 and 12 degrees of freedom, is 0.774.

The results of the analysis of variance suggest that starting depth (10,30, or 50 feet) is
not a significant factor in determining the time to drill a 5-foot hole, drilling method
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(either dry or wet) is a significant factor, and the simple additive model holds. The
wet method appears to be superior to the dry method, since the mean drilling times
are smaller.

In the analysis of variance for balanced two-way layouts, potential row, column, and inter-
action effects are separated. The effects can then be tested separately.

Unbalanced two-way layouts can be analyzed using the more general linear regression
methods. Linear regression is studied in Chapter 14.

13.3.2 Example: Permutation f tests

Permutation versions of the analysis of variance f tests for zero row or column effects
can be developed. The analysis for column effects, for example, is appropriate in
one of the following situations:

1. Population model. The observed data are the values of IJ independent random
samples from distributions differing in mean only. The null hypothesis is that
for p.flr.h /

13.4 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for analysis
of variance, Bonferroni analysis of multiple comparisons, and the Kruskal-Wallis

(the means are equal within each level of the row factor) versus the general
alternative that at least two means differ in some level of the row factor.

2. Randomization model. The data are measurements taken on N individuals in
IJ distinguishable groups of size K each. The null hypothesis is that observed
differences in means are due to chance alone versus the alternative that at least
one sample has values that tend to be larger or smaller (but not more variable)
than the values in another sample at the same level of the row factor.

The sampling distribution of F = MSc/MSe is obtained by computing its value
for each partition of the J samples at each level of the row factor into distinguishable
groups of size K each. There are a total of (K ^K ^.) partitions to consider. Since
this number can be quite large, Monte Carlo analysis is generally used to estimate a
p value.

For example, consider testing the null hypothesis of zero column effects using
the 5% significance level and the mining data (Table 13.7). In a Monte Carlo analysis
using 5000 random partitions (including the observed partition of the 18 drilling
times), 0.62% (31/5000) of F values were greater than or equal to /Obs = 11.066.
Thus, there is evidence that observed differences in mean drilling times using the dry
and wet drilling methods are not due to chance alone.

Note that permutation analyses of zero row or column effects are examples of
stratified analyses, where the strata correspond to the levels of the other factor.
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and Friedman tests. The problems are designed to reinforce ideas related to analyses
of multiple samples.

13.4.1 Laboratory: Multiple sample analysis

In the main laboratory notebook (Problems 1 to 7), you will use simulation and
graphics to study analysis of variance for one-way layouts and blocked designs and
to study the Kruskal-Wallis and Friedman tests; apply methods for one-way layouts
to an antibiotics study [65], [115]; and apply methods for blocked designs to data on
tobacco yield [51], [110].

13.4.2 Additional problem notebooks

Problems 8, 9, and 10 are applications of methods for one-way layouts. Problem
8 uses data from a physical anthropology study [50]; Problem 9 uses data from a
manufacturing study [64], [30]; and Problem 10 uses data from a study of factors
related to plasma levels of beta-carotene in women [104].

Problems 11 and 12 are applications of methods for blocked designs. Problem
11 uses data from the 1996 Atlanta Olympics on running times for sprinters [81], and
Problem 12 uses data from an ecology study [18], [42], [100].

Methods for balanced two-way layouts are applied in Problems 13 through 16.
Problem 13 uses simulation to introduce analysis of variance for balanced two-way
layouts and applies analysis of variance methods to data from a study of cardiovascular
risk factors [78]. Problem 14 uses data from a survival study [17]. Problem 15
uses data from a marketing study [61], [78]. Problem 16 uses data from a niacin-
enrichment study [23], [90]. In Problem 16, a method for adjusting for missing
observations is introduced.

In Problem 17, simulation is used to study the validity of one-way analysis of
variance when standard deviations are not all equal and to develop a rule of thumb
for determining when the ratio of the maximum to the minimum sample standard
deviation is small enough to use analysis of variance methods.
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Chapter 14

Linear Least Squares
Analysis

Linear least squares methods allow researchers to study how variables are related.
For example, a researcher might be interested in determining the relationship between
the weight of an individual and such variables as height, age, sex, and general body
dimensions.

Sections 1 and 2 introduce methods used to analyze how one variable can be
used to predict another (for example, how height can be used to predict weight).
Section 3 introduces methods to analyze how several variables can be used to predict
another (for example, how the combination of height, age, sex, and general body
dimensions can be used to predict weight). Bootstrap applications are given in
Section 4. Section 5 outlines the laboratory problems. References for regression
diagnostic methods are [12], [28], [49].

14.1 Simple linear model
A simple linear model is a model of the form

where X and e are independent random variables, and the distribution of e has mean
0 and standard deviation a. Y is called the response variable, and X is called the
predictor variable, e represents the measurement error.

The response variable Y can be written as a linear function of the predictor variable X plus
an error term. The linear prediction function has slope ft and intercept a.

The objective is to estimate the parameters in the conditional mean formula

using a list of paired observations. The observed pairs are assumed to be either
the values of a random sample from the joint (X, Y) distribution or a collection of

205
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independent responses made at predetermined levels of the predictor. Analysis is
done conditional on the observed values of the predictor variable.

14.1.1 Least squares estimation

Assume that

Formulas for a and /? can be written in many different ways. The method used here empha-
sizes that each estimator is a linear combination of the response variables.

Example: Olympic winning times

To illustrate the computations, consider the following 20 data pairs, where x is the
time in years since 1900 and y is the Olympic winning time in seconds for men in
the final round of the 100-meter event [50, p. 248]:

X

y
X

y

0
10.8
52
10.4

4
11.0
56
10.5

8
10.8
60
10.2

12
10.8
64
10.0

20
10.8
68
9.95

24
10.6
72
10.14

28
10.8
76
10.06

32
10.3
80
10.25

36
10.3
84
9.99

48
10.3
88
9.92

The data set covers all Olympic events held between 1900 and 1988. (Olympic games
were not held in 1916, 1940, and 1944.) For these data, x = 45.6, y = 10.396, and

are independent random variables with means E(Yt) = a. + /fof, that the collection
{e,} is a random sample from a distribution with mean 0 and standard deviation a,
and that all parameters (a, /?, and cr) are unknown.

Least squares is a general estimation method introduced by A. Legendre in the
early 1800's. In the simple linear case, the least squares (LS) estimators of a and
j8 are obtained by minimizing the following sum of squared deviations of observed
from expected responses:

Multivariable calculus can be used to demonstrate that the LS estimators of slope and
intercept can be written in the form

where x and Y are the mean values of predictor and response, respectively, and Sxx

is the sum of squared deviations of observed predictors from their sample mean:
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Figure 14.1. Olympic winning time in seconds for men's 100-meter finals
(vertical axis) versus year since 1900 (horizontal axis). The gray line is the linear
least squares fit, y = 10.898 - 0.01 Ix

the least squares estimates of slope and intercept are /? = —0.011 and a = 10.898,
respectively. Figure 14.1 shows a scatter plot of the Olympic winning times data pairs
superimposed on the least squares fitted line. The results suggest that the winning
times have decreased at the rate of about 0.011 seconds per year during the 88 years
of the study.

Properties of LS estimators

Theorem 4.4 can be used to demonstrate the following:

1. £(0)=0andVarOS) = <72/^.

2. E(a) = a and Var(a) = (£, xf) <t2/ (N S«).

In addition, the following theorem, proven by Gauss and Markov, states that
LS estimators are best (minimum variance) among all linear unbiased estimators of
intercept and slope.

Theorem 14.1 (Gauss-Markov Theorem). Under the assumptions of this section,
the least squares (LS) estimators are the best linear unbiased estimators of a. and ft.

For example, consider estimating /? using a linear function of the response
variables, say W = c + ]T\ d{Yi for some constants c and d\, di,..., d^. If W is an
unbiased estimator of /?, then

is minimized when df = (jc, — x)/Sxx and c = 0. That is, the variance is minimized
when W is the LS estimator of p.

Although LS estimators are best among linear unbiased estimators, they may not be ML
estimators. Thus, there may be other more efficient methods of estimation.
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14.1.2 Permutation confidence interval for slope

Permutation methods can be used to construct confidence intervals for the slope
parameter /? in the simple linear model. Let

is a 100(1 - 2k/Nl)% confidence interval for p.

The procedure given in Theorem 14.2 is an example of inverting a hypothesis test: A value
Po is in a 100( 1 — y)% confidence interval if the two sided permutation test of

H0 : The correlation between Y — f}0X and X is zero

is accepted at the y significance level. For a proof, see [74, p. 120].

Since the number of permutations can be quite large, Monte Carlo analysis is
used to estimate endpoints. For example, assume the Olympic times data (page 206)
are the values of random variables satisfying the assumptions of this section. An
approximate 95% confidence interval for the slope parameter (based on 5000 random
permutations) is [-0.014, -0.008].

14.2 Simple linear regression

In simple linear regression, the error distribution is assumed to be normal, and, as
above, analyses are done conditional on the observed values of the predictor variable.
Specifically, assume that

be the observed pairs and n be a permutation of the indices 1, 2 , . . . , N other than
the identity. Then the quantity

is an estimate of /?, and the collection

{b(n) : n is a permutation other then the identity}

is a list of N\ — 1 estimates. The ordered estimates

are used in constructing confidence intervals.

Theorem 14.2 (Slope Confidence Intervals). Under the assumptions of this section,
the interval
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are independent random variables with means E(Yt) = a+/fa,, that the collection {e,}
is a random sample from a normal distribution with mean 0 and standard deviation
<r, and that all parameters are unknown.

In this setting, LS estimators are ML estimators.

Theorem 14.3 (Parameter Estimation). Given the assumptions and definitions
above, the LS estimators of a and ft given on page 206 are ML estimators, and the
statistics

is an unbiased estimator of the common variance a2.

14.2.1 Confidence interval procedures

This section develops confidence interval procedures for the slope and intercep
parameters, and for the mean response at a fixed value of the predictor variable.

Hypothesis tests can also be developed. Most computer programs automatically include
both types of analyses.

Confidence intervals for ft

Since the LS estimator ft is a normal random variable with mean ft and variance
02/Sxx> Theorem 6.2 can be used to demonstrate that

are ML estimators of the error terms for i = 1, 2, . . . , N. Each estimator is a normal
random variable, and each is unbiased. Further, the statistic

is a 100(1 — y)% confidence interval for ft, where S2 is the estimate of the common
variance given in Theorem 14.3 and f^_2(y/2) is the 100(1 — y/2)% point on the
Student t distribution with (N — 2) degrees of freedom.

Confidence intervals for a

Since the LS estimator a is a normal random variable with mean a and variance
a2 (£,. x2} I (N Sxx), Theorem 6.2 can be used to demonstrate that
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is a 100(1 — y)% confidence interval for a, where S2 is the estimate of the common
variance given in Theorem 14.3 and fw-2(y/2) is the 100(1 — y/2)% point on the
Student t distribution with (N — 2) degrees of freedom.

For example, if the Olympic times data (page 206) are the values of random
variables satisfying the assumptions of this section, then a 95% confidence interval
for the slope parameter is [—0.013, —0.009], and a 95% confidence interval for the
intercept parameter is [10.765, 11.030].

Confidence intervals for mean response

The mean response E(Y0) = a + fix0 at a new predictor-response pair, (x0, Y0), can
be estimated using the statistic

This estimator is a normal random variable (by Theorem 4.6) with mean a + f$x0 and

Thus, Theorem 6.2 can be used to demonstrate that

is a 100(1 — y)% confidence interval for a + (3x0, where S2 is the estimate of the
common variance given in Theorem 14.3 and f#-2(y/2) is the 100(1 — y/2)% point
on the Student t distribution with (N — 2) degrees of freedom.

Example: Percentage of dead or damaged spruce trees

For example, as part of a study on the relationship between environmental stresses
and the decline of red spruce tree forests in the Appalachian Mountains, data were
collected on the percentage of dead or damaged trees at various altitudes in forests
in the northeast. The paired data were of interest because concentrations of airborne
pollutants tend to be higher at higher altitudes [49, p. 102].

Figure 14.2 is based on information gathered in 53 areas. For these data, the
least squares fitted line is y = 8.24* — 33.66, suggesting that the percentage of
damaged or dead trees increases at the rate of 8.24 percentage points per 100 meters
elevation.

An estimate of the mean response at 1000 meters (x0 = 10) is 48.76% damaged
or dead. If these data are the values of independent random variables satisfying the
assumptions of this section, then a 95% confidence interval for the mean response at
1000 meters is [48.44,49.07].
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Figure 14.2. Percentage dead or damaged red spruce trees (vertical axis)
versus elevation in 100 meters (horizontal axis) at 53 locations in the northeast. The
gray line is the linear least squares fit, y = 8.24* — 33.66.

Comparison of procedures

The confidence interval procedure for /? given in this section is valid when the error
distribution is normal. When the error distribution is not normal, the permutation
procedure given in Theorem 14.2 can be used.

The confidence interval procedures given in this section assume that the values
of the predictor variable are known with certainty (the procedures are conditional
on the observed values of the predictor) and assume that the error distributions are
normal. Approximate bootstrap confidence interval procedures can also be developed
under broader conditions; see Section 14.4.

14.2.2 Predicted responses and residuals

The Ith estimated mean (or predicted response) is the random variable

The Ith estimated standardized residual is defined as follows:

and the i* estimated error (or residual) is

Each random variable is a linear function of the response variables. Theorem 4.5 can
be used to demonstrate that Cov(Yi, el) = 0.

Although the error terms in the simple linear model have equal variances, the
estimated errors do not. Specifically, the variance of the Ith residual is
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Figure 14.3. Enhanced normal probability plot of standardized residuals
(left plot) and scatter plot of residuals versus estimated means (right plot) for the
spruce trees example.

where S2 is the estimate of the common variance given in Theorem 14.3 and c, is the
constant in brackets above.

Predicted responses, residuals, and estimated standardized residuals are used in
diagnostic plots of model assumptions. For example, the left plot in Figure 14.3 is an
enhanced normal probability of the estimated standardized residuals from the spruce
trees example (page 210), and the right plot is a scatter plot of residuals (vertical
axis) versus predicted responses (horizontal axis). The left plot suggests that the
error distribution is approximately normally distributed; the right plot exhibits no
relationship between the estimated errors and estimated means.

The scatter plot of residuals versus predicted responses should show no relationship between
the variables. Of particular concern are the following:

1. If ti « h(y~i) for some function h, then the assumption that the conditional mean is
a linear function of the predictor may be wrong.

2. If SD(e^) « h(yl) for some function h, then the assumption of equal standard devi-
ations may be wrong.

14.2.3 Goodness-of-fit

Suppose that the N predictor-response pairs can be written in the following form:

(There are a total of n, observed responses at the Ith level of the predictor variable for
/ = 1, 2 , . . . , / , and N = ^«,.) Then it is possible to use an analysis of variance
technique to test the goodness-of-fit of the simple linear model.

Assumptions

The responses are assumed to be the values of / independent random samples

from normal distributions with a common unknown standard deviation a.
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Let HI be the mean of responses in the /* sample: ju, = E(Yij) for all 7. Of
interest is to test the null hypothesis that /i, = a + /fa:, for i = 1, 2,...,/.

Sources of variation

The formal goodness-of-fit analysis is based on writing the sum of squared deviations
of the response variables from the predicted responses using the linear model (known
as the error sum of squares),

as the sum of squared deviations of the response variables from the estimated group
means (known as the pure error sum of squares),

plus the weighted sum of squared deviations of the group means from the predicted
responses (known as the lack-of-fit sum of squares),

Pure error and lack-of-fit mean squares

The pure error mean square, MSD, is defined as follows:

MSP is equal to the pooled estimate of the common variance. Theorem 6.1 can be
used to demonstrate that (N—I)MSp/a

2 is a chi-square random variable with (N—F)
degrees of freedom.

The lack-of-fit mean square, MSi, is defined as follows:

Properties of expectation can be used to demonstrate that

If the null hypothesis that the means follow a simple linear model is true, then the
expected value of MSt is a2; otherwise, values of MSt will tend to be larger than a2.
The following theorem relates the pure error and lack-of-fit mean squares.

Theorem 14.4 (Distribution Theorem). Under the general assumptions of this
section and if the null hypothesis is true, then the ratio F = MSi/MSp has an f ratio
distribution with (I — 2) and (N — I) degrees of freedom.
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Table 14.1. Goodness-of-fit analysis of the spruce tree data.

Source

Lack-of-Fit
Pure Error
Error

df

4
47
51

SS

132.289
12964.3
13096.5

MS

33.072
275.835

F

0.120

p value

0.975

Goodness-of-fit test: Observed significance level

Large values of F = MSt/MSp support the alternative hypothesis that the simple
linear model does not hold. For an observed ratio, /0bS, the p value is P(F > fobs)-

For example, assume the spruce trees data (page 210) satisfy the general
assumptions of this section. Table 14.1 shows the results of the goodness-of-fit
test. There were 6 observed predictor values. The observed ratio of the lack-of-fit
mean square to the pure error mean square is 0.120. The observed significance level,
based on the f ratio distribution with 4 and 47 degrees of freedom, is 0.975. The
simple linear model fits the data quite well.

14.3 Multiple linear regression
A linear model is a model of the form

where each X, is independent of e, and the distribution of e has mean 0 and standan
deviation a. Y is called the response variable, each Xf is a predictor variable, and
represents the measurement error.

The response variable Y can be written as a linear function of the (p — 1) predictor variables
plus an error term. The linear prediction function has p parameters.

In multiple linear regression, the error distribution is assumed to be normal,
and analyses are done conditional on the observed values of the predictor variables.
Observations are called cases.

14.3.1 Least squares estimation

Assume that

are independent random variables with means

that the collection of errors {e,} is a random sample from a normal distribution with
mean 0 and standard deviation cr, and that all parameters (including a) are unknown.

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com
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The least squares (LS) estimators of the coefficients in the linear prediction
function are obtained by minimizing the following sum of squared deviations of
observed from expected responses:

The first step in the analysis is to compute the partial derivative with respect to
/?, for each i. Partial derivatives have the following form:

The next step is to solve the p-by-p system of equations

or, equivalently,

In matrix notation, the system becomes

where f$ is the p-by-l vector of unknown parameters, Y_ is the JV-by-1 vector of
response variables, X is the N-by-p matrix whose (/, f) element is Jt/i(, and Xr is the
transpose of the X matrix. The X matrix is often called the design matrix. Finally,
the p-by-l vector of LS estimators is

Estimates exist as long as (XrX) is invertible.

The rows of the design matrix correspond to the observations (or cases). The columns
correspond to the predictors. The terms in the first column of the design matrix are identically
equal to one.

For example, in the simple linear case, the matrix product

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

216 Chapter 14. Linear Least Squares Analysis

has inverse

and the LS estimators are

The estimators here correspond exactly to those given on page 206.

Model in matrix form

The model can be written as

where Y_ and e are N-by-l vectors of responses and errors, respectively, /? is the
p-by-l coefficient vector, and X is the N-by-p design matrix.

Theorem 14.5 (Parameter Estimation). Given the assumptions and definitions
above, the vector ofLS estimators of ft given on page 215 is a vector of ML esti-
mators, and the vector

!=Z-X/? = (I-H)7,

where H = X (XTX) XT and I is the N-by-N identity matrix, is a vector of ML
estimators of the error terms. Each estimator is a normal random variable, and each
is unbiased. Further, the statistic

where Y{ is the Ith estimated mean, is an unbiased estimator of a2.

The Ith estimated mean (or predicted response) is the random variable

Further, the matrix H = X (XrX) XT is often called the hat matrix since it is the
matrix that transforms the response vector to the predicted response vector

(the vector of 1 '̂s is transformed to the vector of Y{ hats).
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14.3. Multiple linear regression 217

Figure 14.4. Change in weight in grams (vertical axis) versus dosage level
in 100 mg/kg/day (horizontal axis) for data from the toxicology study. The gray curve
is the linear least squares fit, y = 10.2475 + 0.053421* - 0.2658*2.

Variability of LS estimators

If y is an m-by-1 vector of random variables and W is an n-by-1 vector of random
variables, then X( V, W) is the ra-by-n matrix whose (/, y) term is Cov(V{, Wj). The
matrix S( V, W) is called a covariance matrix.

Theorem 14.6 (Covariance Matrices). Under the assumptions of this section, the
following hold:

1. The covariance matrix of the coefficient estimators is

where H = X (XrX) Xr is the hat matrix, I is the N-by-N identity matrix, and 0
is the N-by-N matrix of zeros.

The diagonal elements of ̂  ( ft, f$ \ and ^ (f»"f) are the variances of the coef-
ficient and error estimators, respectively. The last statement in the theorem says that
error estimators and predicted responses are uncorrelated.

Example: Toxicology study

To illustrate some of the computations, consider the data pictured in Figure 14.4,
collected as part of a study to assess the adverse effects of a proposed drug for the
treatment of tuberculosis [40].

Ten female rats were given the drug for a period of 14 days at each of five
dosage levels (in 100 milligrams per kilogram per day). The vertical axis in the plot

2. The covariance matrix of the error estimators is

3. The covariance matrix of error estimators and predicted responses is
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Figure 14.5. Partial regression plots for the data from the timber yield study.
The left plot pictures residuals of log-volume (vertical axis) versus log-diameter (hori-
zontal axis) with the effect of log-height removed. The right plot pictures residuals
of log-volume (vertical axis) versus log-height (horizontal axis) with the effect of
log-diameter removed. The gray lines are y = 1.983* in the left plot and y = 1.117*
in the right plot.

shows the weight change in grams (WC), defined as the weight at the end of the
period minus the weight at the beginning of the period; the horizontal axis shows the
dose in 100 mg/kg/day. A linear model of the form

was fit to the 50 (dose,WC) cases. (The model is linear in the unknown parameters
and quadratic in the dosage level.) The LS prediction equation is shown in the plot.

Example: Timber yield study

As part of a study to find an estimate for the volume of a tree (and therefore its yield)
given its diameter and height, data were collected on the volume (in cubic feet),
diameter at 54 inches above the ground (in inches), and height (in feet) of 31 black
cherry trees in the Allegheny National Forest [50, p. 159], Since a multiplicative
relationship is expected among these variables, a linear model of the form

was fit to the 31 (log-diameter,log-height,log-volume) cases, using the natural loga-
rithm function to compute log values.

The LS prediction equation is

Figure 14.5 shows partial regression plots of the timber yield data.

(i) In the left plot, the log-volume and log-diameter variables are adjusted to
remove the effects of log-height. Specifically, the residuals from the simple
linear regression of log-volume on log-height (vertical axis) are plotted against
the residuals from the simple linear regression of log-diameter on log-height
(horizontal axis). The relationship between the adjusted variables can be
described using the linear equation y = 1.983*.
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(ii) In the right plot, the log-volume and log-height variables are adjusted to remove
the effects of log-diameter. The relationship between the adjusted variables can
be described using the linear equation v = 1.111 x.

The slopes of the lines in the partial regression plots correspond to the LS estimates
in the prediction equation above. The plots suggest that a linear relationship between
the response variable and each of the predictors is reasonable.

14.3.2 Analysis of variance

The linear regression model can be reparametrized as follows:

and Xj. is the mean of the y<th predictor for all j. The difference E(Yi) — \L is called th
z* deviation (or the Ith regression effect). The sum of the regression effects is zero.

This section develops an analysis of variance f test for the null hypothesis ths
the regression effects are identically zero (equivalently, a test of the null hypothesi
that fr•,= 0 for i = 1, 2 , . . . , p - 1).

If the null hypothesis is accepted, then the (p — 1) predictor variables have no predictive
ability; otherwise, they have some predictive ability.

where n is the overall mean

Sources of variation; coefficient of determination

In the first step of the analysis, the sum of squared deviations of the response variables
from the mean response (the total sum of squares),

is written as the sum of squared deviations of the response variables from the predicted
responses (the error sum of squares),

plus the sum of squared deviations of the predicted responses from the mean response
(the model sum of squares),
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The ratio of the model to the total sums of squares, R2 = SSm/SSt, is called the
coefficient of determination. R2 is the proportion of the total variation in the response
variable that is explained by the model.

In the simple linear case, R2 is the same as the square of the sample correlation.

Analysis of variance f test

The error mean square is the ratio MSe = SSe/(N—p), and the model mean square is
the ratio MSm = SSm/(p—\). The following theorem relates these random variables.

Theorem 14.7 (Distribution Theorem). Under the general assumptions of this
section and if the null hypothesis is true, then the ratio F — MSm/MSe has an f ratio
distribution with (p — 1) and (N — p) degrees of freedom.

Large values of F = MSm/MSe support the hypothesis that the proposed
predictor variables have some predictive ability. For an observed ratio, /Obs, the p
value is P(F > /obs).

For the toxicology study example (page 217), /Obs = 82.3 and the p value,
based on the f ratio distribution with 2 and 47 degrees of freedom, is virtually zero.
The coefficient of determination is 0.778; the estimated linear model explains about
77.8% of the variation in weight change.

For the timber yield example (page 218), /Obs = 613.2 and the p value, based
on the f ratio distribution with 2 and 28 degrees of freedom, is virtually zero. The
coefficient of determination is 0.978; the estimated linear model explains about 97.8%
of the variation in log-volume.

It is possible for the f test to reject the null hypothesis and the value of R2 to be close to
zero. In this case, the potential predictors have some predictive ability, but additional (or
different) predictor variables are needed to adequately model the response.

14.3.3 Confidence interval procedures

This section develops confidence interval procedures for the (1 parameters and for the
mean response at a fixed combination of the predictor variables.

Hypothesis tests can also be developed. Most computer programs automatically include
both types of analyses.

Confidence intervals for /?/

Let Vi be the element in the (/, i) position of (XrX)~ , and let S2 be the estimate
of the common variance given in Theorem 14.5. Since the LS estimator /?, is a
normal random variable with mean /?, and variance <72v,, Theorem 6.2 can be used
to demonstrate that
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is a 100(1 - y)% confidence interval for /?,-, where tN-p(y/2) is the 100(1 - y/2)%
point on the Student t distribution with (N — p) degrees of freedom.

For example, if the data in the toxicology study (page 217) are the values of
random variables satisfying the assumptions of this section, then a 95% confidence
interval for /fe is [—0.43153, —0.10008]. Since 0 is not in the confidence interval,
the result suggests that the model with the dose2 term is significantly better than a
simple linear model relating dose to weight change.

Confidence intervals for mean response

The mean response E(Y0) = Y^=o Pixt,o at a new predictors-response case can be
estimated using the statistic

where *Q = (1, *i,o, *2,o> • • •. *p-i,o)- This estimator is a normal random variable
with mean E(Y0) and variance

Thus, Theorem 6.2 can be used to demonstrate that

is a 100(1 — y)% confidence interval for E(Y0), where S2 is the estimate of the
common variance given in Theorem 14.3 and tN-p(y/2) is the 100(1 — y/2)% point
on the Student t distribution with (N — p) degrees of freedom.

For example, an estimate of the mean log-volume of a tree with diameter
11.5 inches and height 80 inches is 3.106 log-cubic inches. If these data are the
values of random variables satisfying the assumptions of this section, then a 95%
confidence interval for the mean response at this combination of the predictors is
[3.05944,3.1525].

14.3.4 Regression diagnostics

Recall that the hat matrix H = X (XrX) ~ Xr is the matrix that transforms the vector
of observed responses Y_ to the vector of predicted responses Y_. Each predicted
response is a linear combination of the observed responses:

where hij is the (i, j) element of H. In particular, the diagonal element /z,,, is the
coefficient of Yt in the formula for Yf.
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Leverage

The leverage of the z-th response is the value h{ = hij. Leverages satisfy the following
properties:

1. For each /, 0 < ht < 1.

2. Y^f=i hi — P* where p is the number of parameters.

Ideally, the leverages should be about p/N each (the average value).

Residuals and standardized residuals

Theorem 14.6 implies that the variance of the z<th estimated error (or residual) is
VarCei) = a2(I — hi), where hi is the leverage. The Ith estimated standardized
residual is defined as follows:

where S2 is the estimate of the common variance given in Theorem 14.5.
Residuals and standardized residuals are used in diagnostic plots of model

assumptions. See Section 14.2.2 for examples in the simple linear case.

Standardized influences

The influence of the Ith observation is the change in prediction if the Ith observation
is deleted from the data set.

Specifically, the influence is the difference Yf — Y{(i), where YI is the predicted
response using all N cases to compute parameter estimates, and 7;(/) is the prediction
at a "new" predictor vector x{, where parameter estimates have been computed using
the list of N — I cases with the /th case removed.

For the model estimated using N — I cases only, linear algebra methods can
be used to demonstrate that the predicted response is

The Ith standardized influence is the ratio of the influence to the standard devi-
ation of the predicted response,

and the i* estimated standardized influence is the value obtained by substituting S2 (i)
fora2:

and the estimated common variance is
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Figure 14.6. Scatter plots of example pairs (left plot) and altered example
pairs (right plot). The gray line in both plots has equation y = 3.11 + 1.55jt. The
black line in the right plot has equation y = 4.90 + 0.63;c.

Ideally, predicted responses should change very little if one case is removed
from the list of N cases, and each <5j should be close to zero. A general rule of thumb
is that if \di\ is much greater than 2*Jp/N, then the Ith case is highly influential.

Illustration

To illustrate the computations in the simple linear case, consider the following list of
10 (jc, y) pairs:

0.47 0.69 1.17 1.28 1.64 2.02 2.08 3.88 6.50 14.86
1.30 2.50 2.90 5.20 5.70 5.80 4.50 21.00 11.50 24.50

The left plot in Figure 14.6 shows a scatter plot of the data pairs superimposed
on the least squares fitted line, y = 3.11 + 1.55*. The following table gives the
residuals, leverages, and standardized influences for each case:

/
€,'

hi

&<

1
-2.54

0.15

-0.25

2
-1.68

0.14

-0.16

3
-2.03

0.13

-0.18

4
0.10
0.13

0.01

5
0.04
0.12

0.00

6
-0.45

0.11
-0.04

-1
0

-0

7
85
11

14

8
11.86
0.10

4.15

9
-1.72

0.15
-0.17

10
-1.72

0.85

-2.33

Based on the rule of thumb above, cases 8 and 10 are highly influential. Case 8 has
a very large residual, and case 10 has a very large leverage value.

The right plot in Figure 14.6 illustrates the concept of leverage. If the observed
response in case 10 is changed from 24.5 to 10.5, then the predicted response changes
from 26.2 to 14.32. The entire line has moved to accommodate the change in case 10.

Different definitions of <5, appear in the literature, although most books use the definition
above. The rule of thumb is from [12], where the notation DFFTTS, is used for <5,-.

14.4 Bootstrap methods
Bootstrap resampling methods can be applied to analyzing the relationship between
one or more predictors and a response. This section introduces two examples.

X

J_
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Figure 14.7. Scatter plots of weight in pounds (vertical axis) versus waist
circumference in inches (horizontal axis) for 120 physically active young adults. In
the left plot, the curve y = —252.569 + 20.322* — 0.225*2 is superimposed. In the
right plot, the 25% lowess smooth is superimposed.

Example: Unconditional analysis of linear models

If the observed cases are the values of a random sample from a joint distribution,
then nonparametric bootstrap methods can be used to construct confidence intervals
for parameters of interest without additional assumptions. (In particular, it is not
necessary to condition on the observed values of the predictor variables.) Resampling
is done from the list of N observed cases.

For example, the left plot in Figure 14.7 is a scatter plot of waist-weight
measurements for 120 physically active young adults (derived from [53]) with a
least squares fitted quadratic polynomial superimposed. An estimate of the mean
weight for an individual with a 33-inch waist is 174.6 pounds. If the observed (x, y)
pairs are the values of a random sample from a joint distribution satisfying a linear
model of the form

then an approximate 95% confidence interval (based on 5000 resamples) for the mean
weight when the waist size is 33 inches is [169.735, 176.944].

Example: Locally weighted regression

Locally weighted regression was introduced by W. Cleveland in the 1970's. Analysis
is done conditional on the observed predictor values. In the single predictor case,

are assumed to be independent random variables, the function g is assumed to be a
differentiable function of unknown form, and the collection {e,} is assumed to be a
random sample from a distribution with mean 0 and standard deviation a.

The goal is to estimate the conditional mean function, y = g(x). Since g(x)
is differentiable, and a differentiable function is approximately linear on a small
jc-interval, the curve can be estimated as follows:

(i) For a given value of the predictor, say x0, estimate the tangent line to y = g(x)
at x = x0, and use the value predicted by the tangent line to estimate g(x0).

(ii) Repeat this process for all observed predictor values.
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For a given x0, the tangent line is estimated using a method known as weighted
linear least squares. Specifically, the intercept and slope of the tangent line are
obtained by minimizing the weighted sum of squared deviations

where the weights (w,) are chosen so that pairs with Jt-coordinate near x0 have weight
approximately 1; pairs with jc-coordinate far from x0 have weight 0; and the weights
decrease smoothly from 1 to 0 in a "window" centered at x0.

The user chooses the proportion p of data pairs that will be in the "window"
centered at x0. When the process is repeated for each observed value of the predictor,
the resulting estimated curve is called the 100/?% lowess smooth.

The right plot in Figure 14.7 shows the scatter plot of waist-weight measure-
ments for the 120 physically active young adults with a 25% lowess smooth superim-
posed. The smoothed curve picks up the general pattern of the relationship between
waist and weight measurements.

Lowess smooths allow researchers to approximate the relationship between
predictor and response without specifying the function g. A bootstrap analysis can
then be done, for example, to construct confidence intervals for the mean response
at a fixed value of the predictor.

For the waist-weight pairs, a 25% smooth when x — 33 inches produced an
estimated mean weight of 175.8 pounds. A bootstrap analysis (with 5000 random
resamples) produced an approximate 95% confidence interval for mean weight when
the waist size is 33 inches of [168.394,182.650].

The lowess smooth algorithm implemented above uses tricube weights for smoothing and
omits Cleveland's robustness step. For details about the algorithm, see [25, p. 121].

14.5 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for linear
regression analysis, permutation analysis of slope in the simple linear case, locally
weighted regression, and diagnostic plots. Problems are designed to reinforce the
ideas of this chapter.

14.5.1 Laboratory: Linear least squares analysis

In the main laboratory notebook (Problems 1 to 5), you will use simulation and
graphics to study the components of linear least squares analyses; solve a problem on
correlated and uncorrelated factors in polynomial regression; and apply linear least
squares methods to three data sets from a study of sleep in mammals [3], [30].

14.5.2 Additional problem notebooks

Problems 6,7, and 8 are applications of simple linear least squares (and other) meth-
ods. Problem 6 uses several data sets from an ecology study [32], [77]. Problem 7
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uses data from an arsenic study [103]. Problem 8 uses data from a study on ozone
exposure in children [113].

Problems 9,10, and 11 are applications of multiple linear regression (and other)
methods. In each case, the adjusted coefficient of determination is used to help choose
an appropriate prediction model. Problem 9 uses data from a hydrocarbon-emissions
study [90]. Problem 10 uses data from a study of factors affecting plasma beta-
carotene levels in women [104]. Problem 11 uses data from a study designed to find
an empirical formula for predicting body fat in men using easily measured quantities
only [59].

Problem 12 applies the goodness-of-fit analysis in simple linear regression to
several data sets from a physical anthropology study [50].

Problems 13 and 14 introduce the use of "dummy" variables in linear regression
problems. In Problem 13, the methods are applied to a study of the relationship
between age and height in two groups of children [5]. In Problem 14, the methods
are applied to a study of the pricing of diamonds [26]. Problem 13 also introduces a
permutation method for the same problem.

Note that the use of dummy variables in Problem 13 is an example ofacovari-
ance analysis and the use of dummy variables in Problem 14 is an example of the
analysis of an unbalanced two-way layout.

Problems 15 and 16 are applications of locally weighted regression and boot-
strap methods. Problem 15 uses data from a study of ozone levels in the greater Los
Angeles area [28]. Problem 16 uses data from a cholesterol-reduction study [36].
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Chapter 15

Contingency Table
Analysis

This chapter introduces methods for analyzing data structured as I-by-J tables of
frequencies. The row and column designations in the tables correspond to levels of
two factors, and analyses focus on relationships between these factors.

Methods introduced in the first three sections generalize goodness-of-fit and
permutation methods from Chapters 6,11, and 13. Section 4 gives additional methods
appropriate for tables with 2 rows and 2 columns. Section 5 outlines the laboratory
problems. General references for this chapter are [1], [39], [69].

15.1 Independence analysis
This section considers methods appropriate for a single sample of size N, cross-
classified as follows:

1
/ = 1
i = 2

i = I

\

; = i
x\,\
X2,l

Xl,l

X!

7 = 2 •

Xl,2
X2,2

Xl,2

X.2

• J = J\

• xitJ

• x2,j

• xi,j
• x.j

\
x\.
X2-

Xl-

N

In this table, xtj is the number of observations at level / of factor 1 (the row factor)
and level j of factor 2 (the column factor) for all i and 7, and the numbers in the
margins correspond to observed row and column totals.

15.1.1 Example: Pearson's chi-square test

The data are assumed to summarize N independent trials of a multinomial experiment
with IJ outcomes and probabilities

227
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where ptj is the probability that an observation is at level / of factor 1 and level j of
factor 2. Of interest is a test of the null hypothesis that the row and column factors
are independent or, equivalently, a test of the null hypothesis

where /?,. = £)j=i Pf,j and/?.; = 2~Zt=i Pij for each i, j, versus the general alternative
that equality does not hold in at least one case.

Theorem 15.1 (Parameter Estimation). Given the assumptions and definitions
above, the following are ML estimators of model parameters:

1. Row probabilities:

2. Column probabilities:

where Xtj is the number of observations at level i of the row factor and level j of the
column factor, for each i and j.

Pearson's test

Pearson's goodness-of-fit test, introduced in Section 6.3, can be used to test the null
hypothesis that the row and column factors are independent. Since E(Xtj) = Nptj =
Npi.p.j under the null hypothesis, the form of the statistic is as follows:

Since £],•/?,-. = 1 anc^ Y^jP-j = 1» there are (/ — !) + (/— 1) free parameters in
the model. If N is large enough, the sampling distribution of X2 is approximately
chi-square with IJ — 1 — ((/ — 1) + (/ — 1)) = (/—!)(/- 1) degrees of freedom.

Pearson's test can be shown to be an approximate likelihood ratio test.

Example: Alcohol-nicotine study

For example, as part of a study on factors affecting early childhood development,
information was collected on 452 young mothers [78, p. 649]. The left part of
Table 15.1 classifies the women by their alcohol intake before pregnancy (row factor)
and their nicotine intake during pregnancy (column factor). Alcohol intake has four
levels: no alcohol used, 0.01-0.10 ounces per day, 0.11-0.99 ounces per day, and 1

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

15.1. Independence analysis 229

Table 15.1. 4-by-3 contingency table (left) and standardized residuals table
(right) for the 452 women in the alcohol-nicotine study.

II 7 = i
i = 1
i = 2
i = 3
i = 4

105
58
84
57

7 = 2
7
5
37
16

7 = 3
11
13
42
17

11 J=l

/ = !
i = 2
i = 3
i = 4

2.45
0.96

-2.45
-0.45

7 = 2
-2.54
-1.79

2.80
0.85

7 = 3
-2.44
-0.26

2.21
0.12

or more ounces per day; nicotine intake has three levels: none, 1-15 milligrams per
day, and 16 or more milligrams per day.

For these data, the observed value of Pearson's statistic is 42.25. The observed
significance level, based on the chi-square distribution with 6 degrees of freedom,
is virtually zero, suggesting a strong association between alcohol intake prior to
pregnancy and nicotine intake during pregnancy.

The right part of Table 15.1 displays the standardized residuals for the test.
The unusually high standardized residuals in the no alcohol/no nicotine group, and
in the groups with 0.01-0.99 ounces per day of alcohol and 1 or more milligrams of
nicotine per day, and unusually low standardized residuals in the remaining groups
on the first and third rows, suggests that alcohol intake before pregnancy and nicotine
intake during pregnancy are positively associated.

Note that the analysis above assumes that the 452 women chosen for the study
are a simple random sample from the population of young mothers and that the popu-
lation size is large enough to allow the table to be analyzed as a random observation
from a multinomial model.

A standard rule of thumb for using a multinomial approximation is that the number of
individuals in the simple random sample is less than 5% of the total population size.

15.1.2 Example: Rank correlation test

In some studies, the levels of the row and column factors have a natural ordering. For
example, in the alcohol-nicotine study above, the levels of the row factor correspond to
increasing use of alcohol and the levels of the column factor correspond to increasing
use of nicotine.

If the levels of the row and column factors are ordered, then the table can be
analyzed using Spearman's rank correlation statistic, introduced in Section 11.3.2.
For the first factor, jci. observations are assumed to be tied at the lowest level, xi. at
the next level, etc. Similarly, for the second factor, jt.i observations are assumed to
be tied at the lowest level, x.2 at the next level, etc.

The rank correlation test is appropriate under both population and randomiza-
tion models (as discussed in Section 11.3). The null hypothesis is that any observed
association between the factors is due to chance alone versus alternatives that the
factors under study are positively or negatively associated.
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230 Chapter 15. Contingency Table Analysis

For the alcohol-nicotine study example (page 228), the observed value of the
rank correlation statistic is 0.218. The observed significance level for a two sided
test of the null hypothesis of randomness is virtually zero. Since the observed rank
correlation is positive, the results suggest a positive association between the factors.

15.2 Homogeneity analysis
This section considers methods appropriate for / row samples of sizes r\, ri,
and total sample size N = ^ rf. The cross-classification is as follows:

1
i= 1
i = 2

i = I

; = i
x\,\
*2,1

Xl,l

[ X.l

7 = 2 •

*1,2

*2,2

Xl,2

X.2

• J = J

• xitj
• X2,J

Xl,J

' *v

1
r\
r2

ri
\N

The / row samples correspond to the levels of the first factor, jc(J is the number of
observations in sample i at level j of the second factor for all i and j, and the numbers
in the bottom row correspond to observed column totals.

Equivalently, the table can be set up with J column samples of sizes c\, GI, ..., Cj and
total sample size N = ]T. Cj- The numbers along the bottom row would correspond to the
fixed column totals, and the numbers along the right column (*,. for i = 1, 2, . . . , / ) would
correspond to the observed row totals.

15.2.1 Example: Pearson's chi-square test

The data are assumed to summarize 7 independent random samples. For the /*
sample, the data summarize r, independent trials of a multinomial experiment with
J outcomes and probabilities

versus the general alternative that, for at least one level of the second factor, some
probabilities differ.

Let (pi, p2,..., PJ) be the model probabilities under the null hypothesis.

Theorem 15.2 (Parameter Estimation). Given the definitions and assumptions
above, the following are ML estimators of the model probabilities under the null

where ptj is the probability that an observation in sample i is at level j of the second
factor. Of interest is a test of the null hypothesis that the / row models are equal or,
equivalently, that
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15.2. Homogeneity analysis 231

Table 15.2. 2-by-4 contingency table (upper) and standardized residuals
table (lower) for the 253 men in the chemotherapy study.

U=!
f = l
i = 2

/= 1
i = 2

28
41

7 = 1
-1.17

1.18

7 = 2
45
44

7 = 2
0.00
0.00

7 = 3
29
20

7 = 3
0.85

-0.86

7 = 4
26
20

7 = 4
0.57

-0.57

hypothesis:

where X{j is the number of observations in sample i at level j of the second factor.

Pearson's test

An extension of Pearson's goodness-of-fit test can be used to test the null hypoth-
esis that the row models are equal. Since E(Xtj) = npij = rfpj under the null
hypothesis, the form of the statistic is as follows:

Since £,•/>/ = 1, there are (7 — 1) free parameters. Theorem 6.5 can be used to
demonstrate that if N is large enough, the sampling distribution of X2 is approxi-
mately chi-square with 7(7 — 1) — (J — !) = (/— 1) (7— 1) degrees of freedom.

Pearson's test can be shown to be an approximate likelihood ratio test.

Example: Chemotherapy study

For example, as part of a study designed to compare treatments for small cell lung
cancer, 253 male patients were randomized to one of two treatments [55]. The upper
part of Table 15.2 classifies the men by the treatment received (row factor) and their
response to treatment (column factor). A total of 128 men received the first treatment,
where the same combination of drugs was administered at fixed times during the study
period, and a total of 125 men received the second treatment, where three different
combinations of drugs were alternated throughout the study period. The four levels
of the response correspond to disease progression (the tumor increased in size), no
change, partial regression (the tumor decreased in size), and complete remission (the
tumor was not detectable).

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

232 Chapter 15. Contingency Table Analysis

For these data, the observed value of Pearson's statistic is 4.86. The observed
significance level, based on the chi-square distribution with 3 degrees of freedom,
is 0.182, suggesting that the response distributions for the two different treatment
protocols are equal.

The lower part of Table 15.2 displays the standardized residuals for the test.
There are no unusual standardized residuals.

Note that the analysis above assumes that the 253 men chosen for the study
are a simple random sample from the population of men with small cell lung cancer
and that the population size is large enough to allow the table to be analyzed as
independent observations from two multinomial models.

If the number of individuals in the simple random sample is less than 5% of the total
population size, and if randomization is used to determine treatment assignments, then the
table can be treated as independent observations from two multinomial models.

Comparison of Pearson statistics and tests

Given an /-by-/ table of frequencies, the value of Pearson's statistic for the test
of independence, equality of / row models, and equality of J column models is th
same. In each case, the estimate of E(X;,) reduces to the following:

Further, if the null hypothesis is true and N is large, each statistic has an approximate
chi-square distribution with (/ — !)(/ — 1) degrees of freedom.

For these reasons, most computer programs do not distinguish among these
three types of tests for /-by-/ contingency tables.

15.2.2 Example: Kruskal-Wallis test

In some studies, the levels of the column factor have a natural ordering. For example,
in the chemotherapy study above, the levels are ordered by the change in tumor size
during the study period.

If the levels of the column factor are ordered, then the table can be analyzed
using the Kruskal-Wallis statistic, introduced in Section 13.1.2. In the test, x.\
observations are assumed to be tied at the lowest level of the second factor, x.2 at the
next level, etc.

The Kruskal-Wallis test is appropriate under both population and randomiza-
tion models. The null hypothesis is that observed differences in the / samples are
due to chance alone versus the alternative that, for at least two samples, the values in
one tend to be larger or smaller than those in the other.

For the chemotherapy study example (page 231), the observed value of the
Kruskal-Wallis statistic is 4.26. The observed significance level, based on the chi-
square distribution with 1 degree of freedom, is 0.039, suggesting that the response
distributions differ. Since about 43% (55/128) of the men in the first treatment group
had partial to full remission, compared to about 32% (40/125) of the men in the
second treatment group, the first treatment protocol appears to be better.
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15.3. Permutation chi-square tests 233

By including the ordering of the response factor, the Kruskal-Wallis test was able to demon-
strate a significant difference in the treatments at the 5% significance level, although the
observed differences are not large.

15.3 Permutation chi-square tests
The chi-square approximation to the sampling distribution of Pearson's statistic is
adequate when all estimated cell expectations are 5 or more. When some expectations
are less than 5, permutation methods can be used to estimate a p value.

Independence analysis

When the data are a single sample of size N, the idea is to think of the observations
as a list of N pairs,

(The paired data are ordered by the levels of the row factor.) Let v be the list of first
coordinates and w be the list of second coordinates.

The permutation distribution of X2 is obtained as follows: for each matching
of a permutation of the w list to the ordered v list, an /-by- J table is constructed, and
the value of X2 is computed.

The permutation chi-square test is appropriate under both population and ran-
domization models. The null hypothesis is that any observed association between
the factors is due to chance alone versus the general alternative that the association
is not due to chance alone. Monte Carlo analysis is used to estimate p values in most
situations.

Homogeneity analysis

When the data are / samples of sizes r\, r<i,..., r/, the idea is to think of the obser-
vations in the Ith sample as a list of r, values,

for each i. The permutation distribution of X2 is obtained as follows: for each partition
of the 7 samples into distinguishable groups of sizes r\, r-i,..., r/, an /-by-/ table is
formed, and the value of X2 is computed.

The permutation chi-square test is appropriate under both population and ran-
domization models. The null hypothesis is that any observed differences in the /
samples are due to chance alone versus the general alternative that observed differ-
ences are not due to chance alone. Monte Carlo analysis is used to estimate p values
in most situations.

A similar analysis is possible if the data are a collection of / column samples.
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234 Chapter 15. Contingency Table Analysis

Table 15.3. 2-by-2 contingency tables for the red dye study. The left table
corresponds to animals who died before the end of the study period. The right table
corresponds to animals who were sacrificed at the end of the study.

IU = i
/ = 1
1 = 2

4
7

7 = 2
26
16

1 = 1
i = 2

7 = 1
0
7

7 = 2
14
14

Fixed row and column totals

In all three cases (the data are a single sample of size N, a collection of / row samples,
or a collection of / column samples), each reordering of the data will produce an
/-by- J table with the same row and column totals as the original table.

Most computer programs do not distinguish among the three types of permu-
tation tests for /-by-/ contingency tables.

Example: Red dye study

To illustrate the computations, consider the data in Table 15.3, collected as part of
a study to determine if the food additive red dye 2 was a carcinogen [39, p. 53], A
total of 88 rats were randomly assigned to two different dosage groups: 44 were fed
a low dosage of the food additive and 44 were fed a high dosage. The left part of the
table corresponds to the 53 animals who died before the end of the study period and
the right part to the remaining 35 animals who were sacrificed at the end of the study.
In each part of the table, the levels of the row factor correspond to dosage level (low
dosage, high dosage), and the levels of the column factor correspond to the presence
or absence of tumors.

One way to determine if the information in the tables can be combined is to
conduct a test of the homogeneity of row models in the following 2-by-4 table, where
the rows correspond to the left and right parts of Table 15.3:

II (1 .
t\
h

1)
4
0

(1, 2)
26
14

(2, 1)
7
7

(2, 2)
16
14

Since the estimated cell expectations in the first column are quite small, a permutation
chi-square test was conducted. The observed value of Pearson's statistic is 4.23, and
the permutation p value is 0.242, suggesting that the tables can be combined.

The left part of the table below classifies all 88 animals by low or high dosage
group (row factor) and the presence or absence of tumors (column factor), and the
right part shows the standardized residuals for a test of the equality of row models.

II 7 = 1
i= 1
i = 2

4
14

7 = 2
40
30

i = 1
i = 2

7 = 1
-1.67

1.67

7 = 2
0.85

-0.85
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All estimated cell expectations in the combined table are greater than 5. The observed
value of Pearson's statistic is 6.98. The observed significance level, based on the chi-
square distribution with 1 degree of freedom, is 0.008, suggesting that red dye 2 is
a carcinogen. Note that 9.1% (4/44) of the rats in the low dosage group developed
tumors, compared to 35.0% (14/44) in the high dosage group.

15.4 Fourfold tables
This section considers additional methods for 2-by-2 contingency tables.

15.4.1 Odds ratio analysis

Assume that the levels of the first factor correspond to whether or not event A has
occurred and the levels of the second factor correspond to whether or not event B has
occurred, where A and B are events with 0 < P(A) < 1 and 0 < P(B) < 1.

Positive and negative association

A and B are said to be positively associated if one of the following equivalent condi-
tions holds:

Similarly, A and B are said to be negatively associated if

Otherwise, A and B are independent.

Odds; odds ratio

If E is an event with 0 < P(E) < 1, the odds of event E is defined to be the ratio of
the probability of the event to the probability of its complement:

If A and B are events satisfying 0 < P(A) < 1 and 0 < P(B) < 1, the odds
ratio (OR) is defined as the ratio of the odds of B given A to the odds of B given Ac

(equivalently, the ratio of the odds of A given B to the odds of A given Bc):

Using the definition of conditional probability, each expression on the right above
reduces to
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236 Chapter 15. Contingency Table Analysis

The odds ratio can be used to measure the strength of the association between
two events. Specifically, if the events are independent, then OR = 1; if the events
are positively associated, then OR > 1; and if the events are negatively associated,
then OR < 1.

For example, the following table shows values of the odds ratio for events with
P(A) = 0.30, P(B) = 0.40, and P(A n B) = 0.03, 0.06,..., 0.21:

P(A n B)
OR

0.03
0.10

0.06
0.26

0.09
0.54

0
1

12
00

0
1

15
80

0
3

18
27

0
6

21
26

Note that A and B are independent when P(A n B) = P(A)P(B) =0.12.

Estimation

The odds ratio is an important measure of the association between events because it
can be estimated in each of the following situations:

1. The data summarize a random sample of size N from a model with four
outcomes. The four probabilities are

2. The data summarize independent random samples of sizes r\ and r^. The first
row model has probabilities

and the second row model has probabilities

3. The data summarize independent random samples of sizes c\ and C2. The first
column model has probabilities

and the second column model has probabilities

Let X\,i, Xi,2, X2,i, and ^2,2 be the number of observations in each cell of the
2-by-2 table.

Theorem 15.3 (Odds Ratio Estimation). Under the assumptions of this section and
if each Xij > 0, then the ML estimator of the odds ratio is

Further, if each Xfj is large, then the distribution of the natural logarithm of the
ML estimator, log (OR^, is approximately normal with mean log(OR) and standard
deviation equal to the square root of the sum of the reciprocals
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15.4. Fourfold tables 237

The odds ratio is often called the cross-product ratio. In each of the sampling situations
above, OR = {p\,\p^,'l)|(p\,^p^,\)• The ML estimate of OR follows the same pattern. That
is, the estimate is the ratio of the product of the numbers on the main diagonal of the 2-by-2
contingency table to the product of the numbers on the off diagonal.

Approximate confidence intervals for odds ratio

Theorem 15.3 can be used to demonstrate that an approximate 100(1 — a)% confi-
dence interval for the odds ratio has the form

where log() is the natural logarithm function, exp() is the exponential function, and
z(a/2) is the 100(1 — a/2)% point on the standard normal distribution.

Example: Alcohol-nicotine study

Consider again the alcohol-nicotine study from page 228. Let A be the event that a
mother did not use alcohol before becoming pregnant and B be the event that a mother
did not smoke during pregnancy. The left part of the table below classifies the women
using a 2-by-2 contingency table, and the right part shows the standardized residuals
for a test of independence of events A and B.

II B
A
Ac

105
199

Bc

18
130

B Bc

A
Ac

2.45
-1.50

-3.51
2.15

For these data, the observed value of Pearson's statistic is 25.16. The observed
significance level, based on the chi-square distribution with 1 degree of freedom, is
virtually zero. The unusually large standardized residuals hi the upper left and lower
right corners suggest that the events are positively associated. Note that the estimate
of P(A) is 0.272 (123/452), of P(B) is 0.673 (304/452), and of P(A n 5) is 0.232
(105/452).

The observed odds ratio is 3.90. An approximate 95% confidence interval for
the odds ratio is [2.21, 6.58].

Example: Vitamin C study

As part of a study to determine the therapeutic value of vitamin C for treating the
common cold, 279 skiers were randomized to one of two study groups: 139 received
1 gram of vitamin C per day during the study period, and 140 received "placebo"
tablets (with no active ingredients) each day during the study period. Of interest is
the relative frequencies of colds for the two groups [39, p. 8]. Let A be the event
that the skier was in the vitamin C group and B be the event that the skier got a cold.
The left part of the table below classifies the skiers using a 2-by-2 contingency table,
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and the right part shows the standardized residuals for a test of the equality of row
models.

II B

A
Ac

17
31

Bc

122
109

_1 B

A
Ac

-1.41
1.41

Bc

0.64
-0.64

For these data, the observed value of Pearson's statistic is 4.81. The observed signif-
icance level, based on the chi-square distribution with 1 degree of freedom, is 0.028.
Although none of the standardized residuals is unusually large or small, the pattern
of signs suggests that the events are negatively associated (equivalently, that vitamin
C has some therapeutic value). Note that the estimate of P(B\A) is 0.122 (17/139)
and of P(B\AC) is 0.221 (31/140).

The observed odds ratio is 0.49. An approximate 95% confidence interval for
the odds ratio is [0.26, 0.93].

15.4.2 Small sample analyses

This section introduces a permutation method, developed by R. A. Fisher in the
1930's, appropriate for tests of independence (or equality of row models or equality
of column models) when sample sizes are small, and a small sample odds ratio
confidence procedure. Analyses are done conditional on the row and column totals.
Let ri, r2, c\, €2 be the fixed totals.

Fisher exact test

Following the general permutation strategy of Section 15.3, 2-by-2 tables can be
constructed conditional on the row and column totals. The possible tables can be
indexed using a single variable, X, as follows:

II B
A
A°

X
Cl-x

II Cl

Bc ||

ri-X
N-^-ci+X

r\
r2

\\N

Under all three sampling situations listed on page 236, the conditional distribution
of X is hypergeometric with PDF

for all * in the range of the random variable (and 0 otherwise).
Fisher's test uses the PDF itself as test statistic. The p value for the test is the

probability of observing a table as likely or less likely than the observed table,

where jc0bs is the number of observations in the upper left corner of the table.
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15.5. Laboratory problems 239

For example, the table below is based on information from a retrospective study
of risk factors for cervical cancer [50, p. 247]. A total of 90 women ages 50 to 59
are represented: 14 women with cervical cancer (event fl) and 76 women without
the disease (event Bc). The rows of the table are related to levels of a potential risk
factor, age at first pregnancy, where A corresponds to age at first pregnancy of 25
years or younger, and Ac corresponds to age at first pregnancy after age 25.

1 II *
\A
\A°

13
1

Bc

46
30

A total of 15 tables have row totals 59, 31 and column totals 14, 76. Conditional
on these totals, the probability of the observed table is 0.014 and the p value is
P(f(X) < 0.014) = 0.029, suggesting a link between age at first pregnancy and
cervical cancer. Note that the estimate of P(A\B) is 0.93 (13/14) and P(A\BC} is 0.61
(46/76).

Odds ratio confidence procedure

Let X be the number in the upper left corner of the table and A be the odds ratio.
Assume that all row and column totals are positive.

Theorem 15.4 (Distribution Theorem). Given the definitions and assumptions
above, the conditional PDF ofX has the form

for all x in the range of the random variable (and 0 otherwise), where X is the odds
ratio and the denominator, D, is a sum of terms

taken over all possible values ofX. This conditional distribution is valid under all
three sampling situations listed on page 236.

Confidence intervals are obtained using computer estimation and the condi-
tional distribution above. The process is outlined in [1, p. 67] and has been imple-
mented. For the cervical cancer example, a 95% confidence interval for the odds
ratio is [1.14, 372.1], suggesting a positive association between A and B.

15.5 Laboratory problems
Laboratory problems for this chapter introduce Mathematica commands for analyzing
contingency tables using both large sample and permutation methods. Problems are
designed to reinforce the ideas of this chapter.
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15.5.1 Laboratory: Contingency table analysis

In the main laboratory notebook (Problems 1 to 7), you will use simulation to study
Pearson's chi-square, rank correlation, and Kruskal-Wallis tests for /-by-/ tables;
solve a problem involving odds ratios and probabilities in fourfold tables; and apply
a variety of computational and graphical methods to four data sets: (1) data on the
relationship between employment and marriage in men ages 25 to 44 [43], (2) data
on the relationship between age at diagnosis and frequency of breast self-exam in
women with breast cancer [96], (3) data from an experiment on treatments for nausea
following surgery [68], and (4) data on smoking habits in male patients with lung
cancer and with diseases other than lung cancer [1], [34].

15.5.2 Additional problem notebooks

Problems 8 through 13 are applications of large sample contingency table (and other)
methods. Problem 8 uses data from a study on the relationship between disease and
nutritional status in poor children [78]. Problem 9 uses data from a study on effects of
smoking during pregnancy [21]. Problem 10 is a whimsical application of a variety
of methods to the 1998 home run race between Mark McGwire of the St. Louis
Cardinals and Sammy Sosa of the Chicago Cubs [98]. Problem 11 uses data from
a study of factors influencing self-esteem in high school students [39]. Problem 12
uses data from a study of factors influencing hypertension in medical patients [69].
Problem 13 applies a variety of methods to study potential sex bias in graduate school
admissions [14], [43]. The application in Problem 13 is an example of Simpson's
paradox.

Problem 14 introduces the risk ratio and applies odds ratio and risk ratio
methods to data from the Physicians' Health Study [84]. Problem 15 introduces
McNemar's test for paired samples and applies the method to data from a study of
the relationship between cellular telephone use and motor vehicle collisions [88].

Problem 16 considers small sample methods for fourfold tables and applies
these methods to data on insulin dependence in diabetic patients [85].

Problem 17 introduces a method to construct the complete permutation distri-
bution of Pearson's statistic in 2-by-/ tables and applies a variety of methods to
data from an ecology study [20]. Problem 18 demonstrates the general permutation
strategy for analysis of I-by-J tables and applies a variety of methods to data from
an ecology study [37].
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