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Supervisor’s Foreword

The analysis of the cosmic microwave background (CMB) radiation has led to
major breakthrough discoveries in Cosmology. The mere discovery of this relic
radiation in 1964 by Penzias and Wilson (Nobel Prize in 1978) originating from a
hot and dense era of the Universe in the very distant past became one of the first
and major proofs for the standard Big Bang cosmological model. The first full-sky
observations of the CMB with the COBE satellite in the 1990s of the last century
(Nobel Prize for Mather and Smoot in 2006) revealed the amazing homogeneity of
this radiation—though the shape of detected fluctuations in the temperature (being
as small as of the order of 0(1075 ) °C) could corroborate the assumption of an
inflationary period right after the Big Bang.

Higher precision measurements of the CMB as performed nowadays with, e.g.,
the WMAP and PLANCK satellite have helped to make Cosmology a precision
science and to further constrain inflationary scenarios by investigating possible
higher order correlations, i.e., non-Gaussianities (NGs), in the field of temperature
and polarization fluctuations.

Testing for higher order (nonlinear) correlations has also become a rich field of
research in the analysis of complex (chaotic) systems, where it became immedi-
ately obvious that a linear description of the complex dynamics of still comparably
simple deterministic chaotic systems is already insufficient. Rather, one had to find
new ways to describe the behavior of the system. One very successful approach
turned out to be the quantification of the phase space portrait, e.g., the strange
attractor, formed by the trajectory of the system.

The work presented by Dr. Rossmanith deals with the adaptation and appli-
cation of two key concepts of complex systems theory, namely estimators for local
scaling properties and the method of surrogates, for the search of non-Gaussia-
nities in the CMB.

For calculating so-called scaling indices as estimators for the scaling properties
of a CMB map, the idea of embedding a data set in a higher dimensional artificial
representation space has been employed. This technique has its origins in Whit-
neys, Takens, and Sauers embedding theorems, which state that the topology of the
phase space structure of a dynamical system is preserved when its dynamics (e.g.
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the attractor) is reconstructed in an artificial embedding space by using the method
of delay-coordinates. Applying these ideas less formally to image processing tasks
allows for the combination of the spatial and intensity (or color) information of the
image pixels by representing these physically diverse quantities as points in a
common embedding space. The definition of highly sensitive nonlinear local filters
relying on the calculation of the local scaling of the point set is thus made possible.

Mostly, tests for NG in Cosmology are performed using models for either
Gaussian density fluctuations or special types of non-Gaussianity like NGs of the
local type, which can be deduced from special shapes of the potential of the
inflaton field.

To develop complementary and model-independent tests for NGs that are able to
investigate any deviation from Gaussianity, the method of surrogates was adapted
and applied to the case of CMB data analysis. The basic idea of this approach—first
having been presented in the seminal paper by Theiler et al., 1992—is to wipe out
the higher order correlations by shuffling or replacing the Fourier phases, while
exactly preserving the linear properties, i.e., the power spectrum. A comparison of
the original data with its surrogates—here using scaling indices as test statistics—
then reveals whether higher order correlations have led to phase correlations that
were then destroyed or not. Since the phase shuffling can also be restricted to
previously selected ranges of scales, the development for dedicated tests for scale-
dependent NGs is made possible for the first time.

Dr. Rossmanith performed for the first time a dedicated band-wise analysis with
scaling indices using the five-year WMAP data. He found significant signatures for
NGs and asymmetries. Further, no dependences on the chosen frequency band
were detected, which suggests that the signatures cannot be attributed to yet not
understood foreground effects.

The applicability of the method of surrogates for CMB analyses was demon-
strated for the largest scales using foreground-reduced full-sky maps derived from
the WMAP five-year data release. Highly significant signatures for both non-
Gaussianities and asymmetries were once again found. In fact, these detected
scale-dependent NGs represent the most significant detection of NGs in the
WMAP data to date.

It is also desirable to be able to use the surrogate approach for a cut sky, where
the Galactic plane with possible foreground residuals is masked. However, when
applying a sky cut, orthonormality of the spherical harmonics no longer holds on
this new incomplete sky—making a naive phase shuffling impossible. On the other
hand, one can transform the spherical harmonics into a new set of harmonics,
which forms an orthonormal basis on the incomplete sky, where phase manipu-
lation can then take place again.

This thesis combines the transformation of the spherical harmonics into a new
set of harmonics with the idea of phase shuffling, thus enabling investigations by
means of surrogates on an incomplete sky. The feasibility of this approach was
once again first demonstrated for the case of large-scale NGs, which also allows
for a direct comparison of the full sky and cut sky results.



Supervisor’s Foreword vii

A scaling index analysis then showed strong non-Gaussianities and pronounced
asymmetries, which are consistent with the full sky results and persist even when
removing larger parts of the sky. This result confirms that the influence of the
Galactic plane is not responsible for these deviations from Gaussianity and isot-
ropy. In the absence of an explanation in terms of Galactic foregrounds or known
systematic artifacts, the signatures must so far be taken to be cosmological at high
significance. These findings would strongly disagree with predictions of isotropic
cosmologies with single-field slow-roll inflation and might even point to a vio-
lation of the Cosmological principle.

Of course, those results need further confirmation. Currently, the much more
precise CMB data taken with the PLANCK satellite are analyzed with the meth-
odologies outlined in this thesis and results about the large-scale anomalies are
expected in the very near future.

A more detailed investigation of the presence and absence of phase correlations
as identified in observational CMB data may, on the other hand, also shed more
light on the meaning of Fourier phases for complex structures in general. Those
findings are of great interest in many (interdisciplinary) fields of research—namely
whenever the Fourier representation of sufficiently complex data sets plays a
crucial role in the representation and analysis of the data.

Madrid, February 2013 Prof. Dr. Dr. h.c. Gregor Morfill

Reference
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Preface

One of the key challenges in Cosmology today is to probe both statistical isotropy
and Gaussianity of the primordial density perturbations, which are imprinted in the
cosmic microwave background (CMB) radiation. While single-field slow-roll
inflation predicts the CMB to fulfill these two characteristics, more complex
models may give rise to anisotropy and/or non-Gaussianity. A detection or non-
detection allows therefore to discriminate between different models of inflation
and significantly improves the understanding of the basic conditions of the very
early Universe.

In this work, a detailed CMB non-Gaussianity and isotropy analysis of the five-
and seven-year observations of the WMAP satellite is presented. On the one hand,
these investigations are performed by comparing the data set with simulations,
which is the usual approach for these kinds of analyses. On the other hand, a new
model-independent approach is developed and applied in this work. Starting from
the random phase hypothesis, so-called surrogate maps are created by shuffling the
Fourier phases of the original maps for a chosen scale interval. Any disagreement
between the data and these surrogates points towards phase correlations in the
original map, and therefore—if systematics and foregrounds can be ruled out—
towards a violation of single-field slow-roll inflation.

The construction of surrogate maps only works for an orthonormal set of
Fourier functions on the sphere, which is provided by the spherical harmonics
exclusively on a complete sky. For this reason, the surrogate approach is for the
first time combined with a transformation of the full sky spherical harmonics to a
cut sky version. Both the single surrogate approach as well as the combination
with the cut sky transformation are tested thoroughly to assess and then rule out
the effects of systematics. Thus, this work not only represents a detailed CMB
analysis, but also provides a completely new method to test for scale-dependent
higher order correlations in complete or partial spherical data sets, which can be
applied in different fields of research.

In detail, the applications of the above methods involve the following analyses:
First, a detailed study of several frequency bands of the WMAP five-year data
release is accomplished by means of a scaling index analysis, whereby the data are
compared to simulations. Special attention is paid to anomalous local features, and

ix
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ways to overcome the problem of boundary effects when excluding foreground-
influenced parts of the sky. After this, the surrogate approach is for the first time
applied to real CMB data sets. In doing so, several foreground-reduced full sky
maps from both the five- and seven-year WMAP observations are used. The
analysis includes different scale intervals and a huge amount of checks on possible
systematics. Then, another step forward is taken by applying the surrogate
approach for the first time to incomplete data sets, again from the WMAP five- and
seven-year releases. The Galactic Plane, which is responsible for the largest
amount of foreground contribution, is removed by means of several cuts of dif-
ferent sizes. In addition, different techniques for the basis transformation are used.

In all of these investigations, remarkable non-Gaussianities and deviations from
statistical isotropy are identified. In fact, the surrogate approach shows by far the
most significant detection of non-Gaussianity to date. The band-wise analysis
shows consistent results for all frequency bands. Despite a thorough search, no
candidate for foreground or systematic influences could be found. Therefore, the
findings of these analyses have so far to be taken as cosmological, and point on the
one hand towards a strong violation of single-field slow-roll inflation, and question
on the other hand the concept of statistical isotropy in general.

Future analyses of the more precise measurements of the forthcoming
PLANCK satellite will yield more information about the origin of the detected
anomalies.
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Chapter 1
Introduction and Theoretical Background

1.1 A Short Sketch of the Standard Model of Cosmology

The recent years are often referred to as the “Golden Age of Cosmology”: Many
new experiments, carried out with telescopes on the ground, with balloon missions
in the sky, or with satellites and probes in space, lead to a wide range of new results
at an unprecedented accuracy. It was possible to establish what is referred to as
the “Standard Model of Cosmology” (see e.g. [1-3]): The birth of the Universe
occurring by means of a hot Big Bang, followed by an extremely short time period
called inflation, in which the Universe grows by an unbelievable factor between
103 and 10°° during less than 10730s. A few minutes after inflation, primordial
nucleosynthesis takes place, where the combination of protons and neutrons creates
the first nuclei, that again unite with electrons to form atoms around 400,000 years
later in the process of recombination. From this time on, radiation can travel nearly
freely through space due to much less free electrons that could scatter it, and therefore
it forms what we call today the cosmic microwave background (CMB). The Big
Bang Cosmology hypothesises a flat, homogeneous and isotropic universe, which is
represented in the Friedmann-Lemaitre-Robertson-Walker metric. The development
of structure formation is described by the ACDM-Model. It assumes the Universe to
be filled with cold dark matter, and makes use of the cosmological constant A. This
constant is often referred to as some kind of “vacuum energy”, and is responsible for
the accelerated expansion of our Universe today.

This combination of theories offers indeed an elegant explanation to a multiplicity
of observations. For example, the observed linear correlation between the redshift
and distance of supernovae is a strong indication of an expanding universe [4—7]. This
relation is today represented by means of the Hubble-Parameter H (¢). Furthermore,
the measured abundance of light elements, that is 'H 2H 3He,*He and " Li, in the
Universe can be successfully explained by nucleosynthesis [8—12]. But one of the
strongest arguments for the Standard Model is the measurement of the CMB radia-
tion. Not only the detection itself, but also the fact that its spectrum describes a nearly
perfect black body supports the whole concept of modern Cosmology (e.g. [13]).

G. Rossmanith, Non-linear Data Analysis on the Sphere, Springer Theses, 1
DOI: 10.1007/978-3-319-00309-2_1, © Springer International Publishing Switzerland 2013



2 1 Introduction and Theoretical Background

Despite this good agreement to many observations, some parts of the Standard
Model are not yet confirmed by detections. Two well-known examples are the ques-
tion of the existence of Dark Matter as well as Dark Energy, and—after a positive
answer—its nature and origin. This open issue leaves some space for alternative
ideas (e.g. modified gravity [14, 15] instead of these two quantities, or the local
void model [16-18] as an alternative to Dark Energy). Moreover, some results of
cosmological analyses seem to disagree to some of the above mentioned theories.
For instance, a couple of investigations question the Gaussianity of the CMB and
with it the present model of inflation. This challenge is in fact one of the most inter-
esting issues of today’s Cosmology. In general, one is bound to say that the Standard
Model still offers various open questions. However, the strongly increasing amount
of new experiments and analyses as well as the number of people involved shows
that we reached a period of high-precision Cosmology like never before. Therefore,
we might be able to solve the majority of these open questions in the near future.

This thesis carries out two main tasks: On the one hand, this work accomplishes
a detailed search for anisotropies and non-Gaussianities in the CMB. On the other
hand, a completely new model-independent approach of data analysis is developed,
which allows to test for scale-dependent higher order correlations in complete as well
as partial spherical data sets. This method is—for the first time—applied to CMB
data, although it can also be used beyond the scope of Cosmology.

The outline of this work is as following: In this Chapter, we will give a short review
about the theoretical background of CMB investigations, including the important
role of inflation, the basic characteristics of the microwave background itself, and
an overview of the current status of CMB observations. The methods and statistics,
that form the basis of the CMB analysis in this thesis, will be outlined in detail in
Chap. 2. In particular, the attention will be drawn towards the scaling index statistics,
the fundamentals of the method of surrogates as well as the construction of an ortho-
normal basis for a cut sky analysis. Chapter 3 will inform about the measurements and
observational difficulties of the WMAP satellite, whose data will be used throughout
the whole work. In the following Chap.4, an analysis by means of the scaling index
method examing the WMAP five-year data will be performed. The implementation
of the surrogate approach, in combination with the scaling index method, will be
accomplished in Chaps.5 and 6. The analyses include different scale intervals and
a large amount of checks on possible systematics. The results will be given for the
WMAP five- as well as seven-year data. In Chap. 7, the surrogate approach is for the
first time applied to incomplete WMAP data sets. In doing so, the Galactic Plane,
which is responsible for the largest amount of foreground contribution, is removed
by means of several sky cuts of different sizes. In addition, different techniques for
the construction of an orthonormal basis on these partial data sets are used. Finally,
we conclude in Chap. 8.
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1.2 The Role of Inflation

1.2.1 Inflation as an Improvement of the Standard Model

Inflation was introduced to remove some of the weaknesses that Big Bang theory
did suffer from, whereupon the most important one is the horizon problem. In the
following, we will give a short overview on every problem and the way inflation
solves it (cf. [19-22]).

The Horizon Problem

The distance that light can cover since the Big Bang (+ = 0) up to today (t = #) is
expressed by the comoving horizon

1o
7'=/ a(n)"ldr ,
0

which also sets the constraints for causal contact between particles. Here, a(r)
describes the scale factor. In combination with the Hubble-Parameter H (¢), this for-
mula can as well be expressed by means of the comoving Hubble radius (a(t) H )~

7__/aod—a—/aoallntl(Cl(l‘)lLI(f))_1
“Jo Hwaxn) ~ Jo

Without inflation, the comoving Hubble radius increases monotonically ([21, 22]),
hence leading to a growing 7. In this case, CMB radiation, which travels through
space nearly since the Big Bang, could not be in causal contact if arriving at the
earth from two opposite directions. In contrary to that, the measurements of the
microwave background show that it is very close to perfect isotropy (e.g. [23], see
also the following Chapter). These measurements are very difficult to explain if there
was no causal contact that could bring the radiation into equilibrium. This challenge
is known as the horizon problem.

Inflation offers a solution to that problem, since it describes a short period, in
which the comoving Hubble radius drastically shrinks with time. In other words, the
Hubble scale remains constant while the Universe grows dramatically. The observ-
able Universe, being consistent with the comoving horizon, is suddenly completely
contained in a blown up region that has been very small before inflation occurred.
In this small region, causal contact was of course taking place, which offers an elegant
explanation for the isotropy of the CMB.
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The Flatness Problem

The Friedmann equations rank among the most important equations of Cosmology
since they describe the fundamental issue of expansion (or contraction) of the
Universe. The first of the two equations,

a\’> _ 8rG kA
a) T3P 2T

where G, p, k, a and A refer to the gravitational constant, the energy density, the
curvature parameter, the scale factor and the Cosmological Constant, can also be
written including the density parameters

A
Q = ﬁ 9 A= 575
Pe 3H?
at which
_ 3H?
Pe= %76

describes the critical density. Note that both density parameters are time dependent,
though this notation is left out for this Chapter due to simplicity reasons. After some
simple algebraic transformations, we obtain [22]

k
(aH)?

Q2+ Q-1 = (1.1)

This equation accurately identifies the departure of the Universe from flatness,
©Q 4+ QA = 1, and shows that only the term on the right side is responsible for
any deviation. Taking a closer look reveals that, once again, the comoving Hubble
radius appears in this equation. As stated above, without inflation the expression
(aH)~!' would monotonically grow with time, and therefore also any departure
|2 + QA — 1]. It turns out that the setting 2 + Q4 = 1 marks an unstable fixed
point [22], meaning that any non-flatness of the Universe increases. Turning this
argument upside down, we obtain the fact that any deviation from flatness today
must have been even smaller in the past. The constraints are extremely tight, e.g.
for the time of nucleosynthesis we obtain an upper limit of 107® [22]. This strict
limitation of selectable curvature settings is called the flatness problem.

With the implementation of inflation, the comoving Hubble radius (aH)~!
decreases during this time period and the above constraints do not hold anymore. In
fact, the Universe is significantly moved towards flatness, and the value Q24 Q5 = 1
now describes an attractor [22]. A multiplicity of curvature values is appropriate
again, thereby solving the flatness problem.
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The Abundances of Magnetic Monopoles

Models of the Grand Unified Theory (GUT) predict the creation of nonrelativistic
magnetic monopoles in great number, caused by spontaneous symmetry breaking
at an energy scale of about 10'®GeV [19, 20]. Up to today, these (hypothetical)
particles could not be detected [24-26], putting a challenge to the Big Bang model.

Again, this problem can be easily solved by introducing inflation. The rapid expan-
sion of the Universe lowers the frequency density of the magnetic multipoles signif-
icantly, and brings theory and observation together.

Structure Formation

In addition to a solution for the problems from above, inflation offers an elegant expla-
nation for the formation of the large scale structure in the Universe today [21, 22].
During the early Universe, microscopic density perturbations appear, generated by
quantum fluctuations of the inflaton field, which is the scalar field responsible for
the inflationary expansion, as we will see in the next section. Since the Universe
grows dramatically during the time of inflation, the size of these density perturba-
tions increases to large scales. Through gravitational instability, more and more mass
accumulates in the regions of higher density. This leads at first to single stars and
in the end to a distribution of galaxy clusters, and therefore to a structure formation
just as we observe it today. The density perturbations are reflected in the CMB (see
also Sect. 1.3.2), which is therefore often referred to as the seed of the large scale
structures.

In the standard single-field slow-roll inflation, the primordial perturbations are
assumed to be Gaussian and scale-invariant, which implies a nearly scale free power
spectrum P (k) (see also below) that completely describes these pertubations. How-
ever, this implies that no higher-order correlations exist and the phases of the Fourier
coefficients are random. In fact, the latter assumption will be the main interest of this
work, and will be discussed below in more detail.

1.2.2 Basic Concept of Inflation

Inflation describes an extremely short time period taking place at around 10734 s after
the Big Bang, in which the Universe is thought to expand by a factor between 103°
and 10°° at an energy scale of around 101 GeV (for reviews see e.g. [19-22]). Itis
part of the theories characterising the very early Universe, and has still to be taken
as speculative. But, as shown above, it matches perfectly to a lot of observations and
removes some of the major weaknesses of Big Bang theory.

The inflation scenario was first proposed in [27] and pursued in [28] and [29]
to today’s standard concept, which is often denoted as single-field slow-roll infla-
tion. However, there exists a large number of different inflation theories nowadays,
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often including multiple fields: inflation based on supersymmetry, superstring and
supergravity models, F-Term or D-Term inflation, brane model inflation, curvaton
scenarios, warm inflation, DBI inflation, and many more (for an overview see e.g.
[30-32] and references therein). In this Chapter, we will only focus on the classical
design of [28, 29], because it is still the most accepted one in Cosmology today and
its basic concepts described here already form a groundwork for many of the alter-
native inflation theories. According to the usual notation in Cosmology, we define
the speed of light equal to unity: ¢ = 1.

A starting point for the inflation scenario is the request for a shrinking comoving
Hubble radius (a(r)H (1))~

d H®) '<0 12
E(a(t) @) < (1.2)
where (1)
a
H([) = %

represents the Hubble-Parameter. As we have seen in the previous section, this con-
dition is the bottom line for solving a couple of main problems of the original Big
Bang theory. It can be shown with the help of the Einstein equations that requirement
(1.2) corresponds to an accelerated expansion realized by an universe with negative
pressure p [22]:

d%a(r)

P
0 = ~=
d[ > p >

3

j—t(a(t)H(t))_l <0

Hereby, p denotes the energy density. It is possible to construct such a situation by
implementing a scalar field ¢, called the inflaton field, whose dynamics is described
by the action

1 1
$= [ dtey~dwgm (ER + 50" 000,06 - V<<z>>)

with R, g"¥ and V (¢) corresponding to the Ricci Scalar, the metric tensor and the
potential of the scalar field ¢. The latter is illustrated in Fig.1.1. Two so called
slow-roll parameters
H é
€e=—— =—-——

Ho

set constraints to inflation: The accelerated expansion only takes place if the condition
€ < 1 holds, while the requirement || < 1 provides the acceleration to retain for a
sufficiently long period [20-22].

This generation of a time period with rapid expansion, by introducing the inflaton
scalar field, is the basic framework of inflation. The episode of inflation takes place
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Fig. 1.1 The potential V (¢) Vv ( ¢)
of the inflaton field ¢. Inflation
takes place in the flat part of the [} o

potential. At ¢cpp, the CMB " .
fluctuations are created, while (]

at ¢eng, inflation ends when

the kinetic energy equals the

potential energy in the steeper
part of V (¢). After that, the

scalar is oscillating around
the minimum of the potential. \/

Figure taken from [22]

écmB Pend reheating
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during the time the scalar is located in the flat part of the potential V (¢). It ends when
the field enters the steeper part of the potential and oscillates around the minimum.

An important aspect of this framework is the connection to the characteristics of
the CMB (see also Sect. 1.4): It is possible to set a relation between the slow-roll
parameters ¢, v and the amount of non-Gaussianity in the primordial fluctuations [33].
It was shown in [33-37] that non-Gaussianities are highly suppressed by the slow-
roll parameters in the standard model of inflation. Therefore, if the model accurately
represents the true conditions of the early Universe, there should be no detectable
primordial non-Gaussianity in the CMB. The question if the current measurements
agree with the last statement is one of the main topics in this work.

1.3 The Cosmic Microwave Background Radiation

1.3.1 Origin

Shortly after inflation, the Universe was still extremely hot, but was cooling down
with time because of its expansion. At a time of approximately ¢+ = 380 000 years,
the temperature dropped to 7 = 3000 K, which was cool enough for atomic nuclei
and electrons to unite and form the first helium and hydrogen atoms [21, 23], which
is referred to as recombination. This process can be described formally by means of
the Saha equation, which puts the fraction of ionized atoms X—here for hydrogen
only—into a relation with temperature [1]:

1-X  4J23) (T\? 13.6 eV
X2 Jx 77(—) exP( T )

me
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Hereby, 13.6¢V is the ionization energy of hydrogen. The parameters n and m,
represent the ratio of baryons to photons and the electron mass.

Before recombination, the free electrons were preventing the existing photons to
travel freely by means of a rapid Thomson scattering [20]. In other words, the mean
free path of a photon was much smaller than the Hubble length H ' [21], which
expresses the distance a photon would have to travel to reach an observer today.
After recombination, the amount of free electrons dropped significantly, leading to a
mean free path much longer than the Hubble length [21]. From this time period on,
the photons travel nearly freely from every point in space and into every direction.
This radiation is termed Cosmic Microwave Background (CMB) or surface of last
scattering, and the moment when the photons were not scattered anymore is referred
to as decoupling or time of last scattering.

1.3.2 Characteristics

The COBE satellite, launched in November 1989, provided for the first time a full-
sky measurement of the CMB anisotropies (for the corresponding figure see p. XxX).
It also measured for the first time the frequency spectrum of the microwave back-
ground radiation. The observation revealed the CMB spectrum to be a nearly perfect
black body [13, 38]. The remarkably high agreement is illustrated in Fig. 1.2. One
can draw the conclusion that before recombination, the Universe was in thermal
equilibrium due to the rapid collisions of photons with free electrons, since under
these conditions, the frequency spectrum of electromagnetic radiation is represented
by the one of a black body [20]. This was maintained in the photons also during and
after recombination.

While the CMB has a high energy in the beginning, it features today a temperature
of only 2.725K [40]. This seems to be an odd fact at first sight, since we stated the
photons to travel nearly freely through space. But it can easily be explained with
the help of its characteristics noticed above: Since it represents a black body, the
temperature of the radiation is inverse proportional to the wavelength \ at the peak
of the spectrum [41]:

T oc A7}
This wavelength ) of the photons is in turn directly proportional to the scale factor,
since it is naturally part of the Universe and gets affected by the expansion as well
(201,

Aocal(r).

In summary, we obtain a direct relation between the temperature ratio and the scale
factor ratio from today ¢y and the time of decoupling z,:
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Cosmic MICROWAVE BACKGROUND SPECTRUM FROM COBE

THEORY AND OBSERVATION AGREE

|
:
;
£
g
g

10
Waves / centimeter

Fig. 1.2 The CMB frequency spectrum as measured by the COBE satellite. Uncertainties are only
a small fraction of the line thickness. The spectrum represents a nearly perfect black body. Figure
taken from [39] with acknowledgements to the COBE team

T(t) _ al)
Tw) ~ al)

To express spatial (from the observer) as well as chronological (from today) distances
in Cosmology, the redshift z is a commonly used parameter. It can be defined via the
scale factor [20] as

alto)
a(t)

With the help of the above mentioned dependencies, the redshift of decoupling z.
can be obtained by using the calculated temperature of the CMB during this time
period and the observed temperature of the CMB today [21]:

_T@)
-~ T(to)

Tx

Latest observations determine this parameter to z, ~ 1090 [23].

Since the process of decoupling happened in every point in space at the same time,
the CMB is said to be highly isotropic. Observations confirm these considerations:



10 1 Introduction and Theoretical Background

—=0.40 m—— s (.40

Fig. 1.3 CMB anisotropy AT in mK as measured by the WMAP team [42]. The map shows the
V-band of the first year results, and is arranged in galactic coordinates in form of a mollweide
projection. The red region in the centre corresponds to the galactic centre, which strongly distorts
the measurements of the background radiation

The temperature fluctuations AT of the measured radiation are around five magni-
tudes smaller than its mean [42],

AT

— ~107°.

T

However, this only holds if one has subtracted the dipole from the CMB measure-
ments. This dipole is induced by the Earth’s motion with reference to the microwave
background and is around a hundred times larger than the usual temperature fluctu-
ations [21],

ATDipole
T

~ 1073,

Figure 1.3 presents the CMB anisotropies AT in form of a full sky map as measured
by the WMAP probe after the first year observations. Except for the part in the centre,
the temperature seems indeed to be highly isotropic at first sight. However, small
anisotropies can be measured, which represent the seed points of structure formation,
as already mentioned above. These anisotropies are mainly a consequence of the tiny
density fluctuations during the time of recombination, whose gravitational potentials
the photons have to overcome [22].

The very high temperatures in the centre of Fig. 1.3 are due to foreground contam-
inations caused by our galaxy. In Sect. 3.2, we will examine the technical difficulties
of the observations of the microwave background in more detail.
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In contrast to that any other intrinsic anisotropy of the CMB would be of immense
cosmological interest [21, 43—45] and is also the main subject throughout this work.
We will discuss the basic principles of anisotropies of the CMB in more detail in
Sect. 1.4.

1.3.3 Notations

There is more than one possibility of expressing the CMB anisotropies in a for-
mal way. On the one hand, we can describe the temperature fluctuations by writing
AT (X) = T(X) — (T (X)) as above, here with X representing the direction in which
the temperature is measured. As we will see in Sect. 3.1, the WMAP data is available
as a pixelised sky, AT (x;),i =1, ..., Npjx, Where Np;, denotes the pixel number.

On the other hand, one can remember the fact that the photons reach the observer
from every direction, therefore can the microwave background be seen as the sur-
face of a sphere S. Hence, the temperature map AT (X) can as well be expressed
via the spherical harmonics Yy, : S — C and their coefficients ay , with £ > 0,
- <m <¢,[20-22]:

00 4
TE =D D amYin(¥) (1.3)

=0 m=—+{

In addition, the direction vector X is often replaced by a combination of latitude and
longitude, X = (0, ). The harmonics are the spherical analogue of a Fourier series.
The first sum in (1.3) theoretically ranges to infinity, but it is usual to set a maximum
£ < Lax. Hence, we obtain (£,,4x + 1)? different harmonics Yy, in total.

The Yy, represent a set of orthonormal, complex valued basis functions on the
sphere (see e.g. [41, 46]). They are defined via the Legendre polynomials P;" (x) as

. o
ng(ﬁ, QD) = ?m Pg (COS 9) e
with -
(_1)m 2\m/2 a" 2 14
Pem(x)zw(l—x )m W(x —1)

The index m specifies the angular orientation of the spherical harmonic, while the
index £ is responsible for the characteristic angular size and is therefore isotropic [47].

Each Yy, comes up with a parameter ay,,, which can be calculated as an integral
over the complete sphere S, [22]

o = / V@ T dS, (14)
S
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with Yy, denoting the complex conjugate of Yy,,. The parameters ay,, are complex
valued as well, and can be written as ag, = |ag,| ¢'?¢* with an amplitude |ay,,| and
a phase ¢y,,. Since the resulting map 7 (X) only contains real values, it holds:

Yo = (=D"Y n(x) (1.5)
which, in combination with (1.4), also leads to
agm = (=" _p(x). (1.6)

Disregarding the simplification due to £,,,y, the set of ay,’s contains the entire
information of the temperature fluctuation map 7T (X).
Another very important quantity in this context is the power spectrum,

1
Cp= — 2 1.7
¢ %H;mm (1.7)

which is a sum of the amplitudes of the Fourier coefficients, and describes the Fourier
transform of the two-point correlation function. The underlying idea of the power
spectrum is the above mentioned assumption that the microwave background radi-
ation is isotropic. Thus, the distribution of the ay,;,’s should be independent of the
index m. This assumption is reflected in Eq. (1.7).

The power spectrum is a very useful tool in Cosmology and offers a multitude
of applications. The main reason for this is the fact that if the CMB is Gaussian,
the power spectrum completely characterises all the information of the temperature
anisotropies T (X) (see the following Sect. 1.4). This would of course represent an
immense simplification: The entire information about the structural properties of the
CMB map would be compressed in only ¢,,, values. However, the Gaussianity of
the CMB is controversial and its investigation the main topic of this work.

In addition, the shape of the power spectrum is connected to the physics of the
beginnings of our Universe. In the existing baryon-photon plasma, the gravitational
attraction of and the radiation repulsion in the density enhanced regions acted together
to produce acoustic oscillations [21, 43]. These created temperature fluctuations in
the CMB, which are again reflected as a wave-shaped profile in the power spectrum.
The most recent WMAP data detect three peaks at £ ~ 200, 550, 800, whereupon the
first is clearly the most pronounced [48]. By measuring the shape and the location of
these peaks, a plenitude of conclusions for cosmological parameters can be drawn
[44, 45, 47]. This is mostly done by assuming a flat adiabatic ACDM model, and
adjusting its parameters in a way that the resulting power spectrum agrees with
the measurements [49]. In doing so, constraints can be drawn about e.g. the cosmic
baryon and matter densities €2, and €2,,,, the age #p and the curvature k of the Universe,
the epoch of matter-radiation equality z., and the primordial helium mass fraction
Yue [48, 49].
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1.4 The Challenge of Anomalies in the CMB

One of the key questions in Cosmology today is the question, if the measured
microwave background satisfies the requirements that the theoretical framework is
demanding for: Isotropy and Gaussianity, both already mentioned above. Although
these two properties often appear in combination, they describe different effects:

e (Statistical) Isotropy demands that there is no preferred direction with partic-
ular structural characteristics. In combination with the Copernican Principle—
presuming that our spatial position in space is not exceptional—this would lead
to homogeneity (see e.g. [50]). One would speak of anisotropy, if there exists at
least one direction with significant deviations from the usual structural behaviour.

e Gaussianity refers in this context to the assumption, that the coefficients of the
spherical harmonics are independent Gaussian random variables [44],

aj
exp(—3 &) datn

1
P(agm) dagn = 720,
The variance is expressed by the respective value of the power spectrum. Therefore,
if Gaussianity holds, the power spectrum characterises all the information that is
contained in the CMB. From the equation it follows that the amplitudes |ag,, | ought
to be Rayleigh distributed, while the phases ¢y, follow a uniform distribution in
the interval [—m, ]. In contrast to that, there is no specific definition for non-
Gaussianity, except for the request for a deviation from Gaussianity in any possible
way.

As already mentioned in Sect. 1.2.2, both characteristics are a consequence of the
physics of single-field slow-roll inflation [21, 22, 37, 44, 45, 51-54]. However, other
inflationary theories [33, 34, 55-68] could induce anisotropies or non-Gaussianities.
Also, models leading to a scale-dependent non-Gaussianity are conceivable [69, 70].
Besides, there could exist topological defects like cosmic strings [71-74] or particular
phenomenons as the occurrence of large voids [75-79], that could generate devia-
tions from the above statements. Thus, a detection or non-detection of anisotropies
and non-Gaussianities is of highest interest, since it allows to discriminate between
different models of inflation and sheds light on basic conditions of the Universe.

However, there are also some known effects that have influence on Gaussianity and
isotropy [21, 43-45, 47, 53]. Those can be roughly divided into effects concerning
the physics of the very early Universe—and therefore the primordial CMB—and
interactions with the microwave background during the flight of the photons; so-
called secondary anisotropies. Both types induce anisotropies, whereupon only the
latter can significantly influence Gaussianity as well [43].

The primordial CMB is affected by the Sachs-Wolfe effect [80], which describes
the already above stated existence of density fluctuations in the early Universe, whose
different potential wells the photons have to escape. In addition, silk damping [81]
takes place since recombination is not happening instantaneously.
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In contrast to that, there are the effects on the CMB after decoupling, like e.g. the
integrated Sachs-Wolfe effect (ISW) [80], which refers to the time-dependent gravi-
tational fields. Their potential wells decrease due to the expansion of the Universe,
leading to a blueshift in the photons that pass through these fields. In some literature,
early ISW ranks among the primordial effects instead of the secondary anisotropies.
Another effect is the Sunyaev-Zel’dovich (SZ) effect [82, 83], which can be divided
into a thermal part, that denotes the Compton scattering of the CMB photons by hot
electron gas in galaxy clusters, and a kinetic part, which describes diverse scattering
due to the motion of the gas in these clusters. As a result of gravitational interac-
tions with matter, gravitational lensing [84] is an important part of the secondary
anisotropies as well.

Apart from all those effects, there are foregrounds and other technical difficulties
distorting the CMB signal and therefore maybe biasing the measured isotropy and
Gaussianity. These will be discussed in more detail in Sect.3.2.

Nowadays, it is still accepted by a large part of the cosmological community
that the CMB is both isotropic and non-Gaussian. As stated above, the measured
fluctuations AT (X) of the background radiation seem to agree with the theoretical
prediction at first sight. However, there is also a growing number of analyses that
nevertheless detect inconsistencies in the data. In the following, we will point out
some of these inconsistencies. The methods that were used to analyse the CMB, as
well as the basic principles and problems of a non-Gaussianity analysis will then be
discussed in more detail in Chap. 2.

There is a plethora of analyses that discovered deviations from Gaussianity in a
general sense, as for example [85-104].

But there are also some more specific anomalous features in the CMB, that were
subject to a lot of investigations. The most important ones are the alignment of the
large multipoles, the power asymmetry of the temperature fluctuations, and the Cold
Spot. We will discuss these in more detail in the following.

The detection of an anomalous alignment of the quadrupole (¢ = 2) and the octo-
pole (¢ = 3) was first reported in [108] and [109]. In [110], this alignment was found
to involve the entire multipole range £ = 2 — 5, and is since then a topic of various
investigations [105, 111-123]. The upper left plot of Fig. 1.4 shows the temperature
anisotropies of the quadrupole and the octopole of the WMAP seven-year measure-
ments in combination with the ecliptic plane. The probability for the obvious align-
ment to happen by chance is around 0.1 % [105]. In addition, the ecliptic plane seems
to be correlated to this alignment, and separates a hot spot in the northern sky and a
cold spot in the south. Up to today, there is no explanation for this correlation [105].

Another anomalous feature that puts isotropy into question is the discovery of
power asymmetries in the CMB [106, 124—141]. In the upper right plot of Fig. 1.4,
the results of an investigation of a combination of two bands of the WMAP seven-year
data is presented. Several separate sets of 100 multipole blocks inside the interval
£ € [2,600] were analysed individually. The directions of the dipoles of each of
these multipole blocks are indicated by the coloured discs. Obviously, all of these lie
very close to each other, but also close to the southern ecliptic pole and to the dipole
of the full interval ¢ € [2, 600], that are indicated by a cross and the white hexagon,
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Fig. 1.4 Three different anomalous and currently still unexplained features in the CMB that were
detected in the recent years: On the upper left, the anomalous alignment of the quadrupole and the
octopole that is shown as a plot of the temperature anisotropies of only these two multipoles. The
black curve marks the position of the ecliptic plane. The projection on the upper right refers to
the power asymmetry, which is illustrated by the directions of the dipoles of the estimated power
distributions when considering blocks of 100 multipoles each. The colours of the discs specify the
centres of the multipole ranges, while the white hexagon indicates the dipole direction of the full
interval £ € [2, 600], and the crosses mark the northern and southern ecliptic poles, respectively.
In the lower column, the Cold Spot is shown as it appears in the temperature map of the WMAP
seven-year release (left) and in the response map of the applied wavelet analysis (right). Figures
taken from [105-107]

respectively. This implies that the hemisphere centred in these directions contains
more power than the opposite hemisphere. In addition, the different multipoles seem
to be correlated to each other. No known systematic effects or foregrounds are found
to be able to explain this asymmetry [106].

Finally, local features—first and foremost the famous Cold Spot [130]—were
detected and confirmed by several analyses [77, 78, 133, 136, 142—153]. The original
detection of the Cold Spot was accomplished by means of a wavelet analysis of
the CMB temperature anisotropies, and is shown in the lower column of Fig. 1.4.
Especially in the wavelet response map on the right, the Cold Spot is clearly visible.
Systematics or foreground effects were ruled out to be responsible for this local
feature, and its chance to happen accidentally is around or less then 1 %, depending
on the type of the analysis [107].

To which extent all these analysis are significant is still subject to discussion,
though [154-156].
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Chapter 2
Methods for Testing the Non-Gaussianity
of the CMB

2.1 Statistical Tests for Non-Gaussianity

2.1.1 Basic Framework

Cosmologists searching for non-Gaussianity in the CMB have to deal with two major
fundamental statistical problems. First, it is not clear what to look for and which
way is the best for doing that. Let us recall that non-Gaussianity—which an analyst
intends to find or to rule out—can occur in various ways, since it is only defined
as anything except Gaussianity (see Sect. 1.4). Therefore, there is a nearly infinite
number of thinkable investigations. Besides, any analysis resulting in a non-detection
of anomalous behaviour does not prove the CMB to be Gaussian, but just rules out a
single type of non-Gaussianity corresponding to the characteristics of the analysis.

However, also the detection of peculiarities in the data does not immediately imply
intrinsic non-Gaussianities in the microwave background, because the high amount
of foreground contributions could leave hidden imprints in particular in the results
of more complex analyses.

The second fundamental statistical problem of the CMB is the fact that there is
only one realisation. Irrespective from foregrounds or technical difficulties, there is
in theory no way to tell if a possibly detected anomalous behaviour is due to different
underlying physics or just a statistical fluke. There is the idea of using the polarisation
of the CMB as a new independent sample (e.g. [1-3]), however this strongly depends
on the characteristics of the investigation and can not be seen as a solution in general.

The first of the two problems lead to an amazingly large amount of different
measures for non-Gaussianity. A short overview over some of these measures will
be given in Sect.2.2.1. The second problem yields the fact that one has to interpret
the results of the different analyses with great caution. Since any kind of possible
measure is “allowed” to be used, its choice could sometimes be motivated by the
characteristics of the data itself. The choice would therefore be an a posteriori one
(cf. [4, 5]). The fact that all analyses naturally focus on anomalous features in the
data, combined with a plethora of different measures used today, could lead to some

G. Rossmanith, Non-linear Data Analysis on the Sphere, Springer Theses, 21
DOI: 10.1007/978-3-319-00309-2_2, © Springer International Publishing Switzerland 2013
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sort of preselection and therefore lowers the validity of possible anomalies. However,
this does not mean that all analyses working on non-Gaussianity become redundant.
In fact, every investigation claiming deviations from the theoretical properties of the
microwave background is supposed to obtain a very significant result, that is in the
best case confirmed by different measures. Apart from that, checks on systematics
and ruling out foreground effects as a cause for the deviations is always necessary.

A common technique to search for non-Gaussianity in the microwave background
is to construct simulated maps, that are Gaussian random fields which mimic the
properties of the ACDM model. The analysis is then performed on both the data and
a set of these simulations. Eventually, a comparison of the results gives information
about how well the measured CMB corresponds to the theoretical demands (e.g.
[6-8]). This is also accomplished in this work in Chap.4 for the WMAP five-year
data set. On the other hand, some investigations make use of particular assumptions
about the nature of the non-Gaussianities by parametrising it with e.g. the non-linear
coupling parameter fyr (e.g. [2, 9, 10], see also below).

Clearly, both procedures depend on the model or the assumptions that are imple-
mented. However, it might be favourable to rely on as few requirements as possible.
A complementary and elegant way to investigate the non-Gaussianity of the CMB
is an analysis that is completely model-independent. In the following Chapter, we
will introduce the surrogate method, that describes one possibility of a thorough
data-driven, i.e. model-independent investigation.

2.1.2 Surrogates on the Complete Sky

The concept of constructing surrogates from a given data set originates from the
field of non-linear time series analysis. The basic idea was introduced in the paper
of Theiler et al. [11] and subsequently applied to several different data sets, like
fluid convection, sunspots, as well as electroencephalograms [12], and was continu-
ously developed [13, 14]. Further, constrained randomisation has already been used
before to generate CMB data sets with random phases as a technique for analysing
the effect of cosmic strings. This was combined with a multifractal formalism in
[15] for detecting cosmic string induced non-Gaussianity on synthetic CMB data
sets. The surrogate method can be applied on nearly all complex systems, as outlined
in [16] for the climate, stock-market and the heart-beat variability. In combination
with scaling indices, which is the measure used throughout this work and will be pre-
sented in Sect. 2.2.2 below, surrogates were applied for large scale structure analysis
[17] and non-Gaussianity investigations on simulated two-dimensional temperature
maps [18].

The starting point for the surrogates technique is a given data set and some null
hypothesis, whose validity in the data set is to be tested. The fundamental idea is then
to generate surrogate data sets from the original data, which are consistent with the
null hypothesis. Apart from the characteristics that are affected by the hypothesis,
these surrogates share exactly the same properties as the original data set. Next, the
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data as well as the surrogates are tested by means of some measure that is sensitive
to characteristics, which could be induced by deviations from the null hypothesis.
If different results are obtained for the original and the set of surrogates, the null
hypothesis is rejected. If not, the hypothesis is confirmed.

We apply this basic concept to CMB non-Gaussianity analysis. As null hypothesis,
we take the random phase hypothesis, which is the assumption that the phases ¢y, of
the spherical harmonic coefficients ay,, are independent and identically distributed in
terms of a uniform distribution in the interval [—7, 7] (see Sect. 1.4). This assumption
is on the one hand a very important and fundamental statement. Only if the random
phase hypothesis holds, the construction of the power spectrum, which represents a
compression of the information of a complete CMB map with several million data
points to only around one thousand values, is lossless and therefore fully justified
[19]. On the other hand, the statement of random phases is a direct consequence of
the presumed Gaussianity of the CMB. Since the power spectrum only takes into
account the linear correlations in the map, possible higher-order correlations can
only be contained in the phases and the correlations among them. Thus, the presence
of phase correlations would clearly disagree with Gaussianity. Any detection of
inconsistencies between a CMB data set and surrogates, whose phases do not have
any correlations, would therefore directly identify non-Gaussian behaviour of the
CMB data. For this reason, the method of constructing surrogates used in this work
is based on a phase shuffling technique, which destroys possible phase correlations
of the original data set, and which is consistent with the stated null hypothesis.

Phases were already subject to analyses concerning the formation of the large
scale structure in the Universe [20]. Also, a close look at the quadrupole of the CMB
[21] as well as its foregrounds [22, 23] is possible in terms of a phase analysis.
Investigations searching for phase correlations—and therefore non-Gaussianity—of
the CMB were performed in [24-31] (see also Sect.2.2.1 for a closer look at the
results).

The method for generating surrogates by shuffling the phases is as follows: As
described in detail in Sect. 1.3.3, a temperature map 7 (X), X € S, on the complete
sphere S can be expressed by means of spherical harmonics Yy,

enmx

14
TE =Y > amYen().

=0 m=—1
The sum consists of i;qc = (Cpax + 1)2 different summands. The coefficients ay,,
are complex-valued, and can therefore be written in polar coordinates,

i ¢Zm
K

aem = lagm| e

in which the phases ¢, can be computed as

Im(agm)

= arctan .
bum Re(agm)
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To ensure that possible outliers in the data, which do not follow the assumed
probability distributions as given in Sect. 1.4, are not affecting the results of the further
process, one has to implement the following preprocessing. However, possible phase
correlations are not affected by these two steps.

o First, the temperature values T (X) are replaced by a Gaussian distribution in a rank-
ordered remapping. We use the expressions T4 (X) and Ty, (X) for denoting the
temperature values before and after the remapping. Formally, we obtain:

Thew ()_é!) = D(k)

with D(x) ~ N'(u, o) for x = 1, ..., Npix, and DV < D@ < . < DWpix),
Hereby, 1 and o denote the mean and the standard deviation of T,;4(X), respec-
tively, while k characterises the position of T,;;(x;) in the rank ordering

(D) 2) (Npix)
Torg < Toig < <Ty4"

e A similar rank ordering is applied to the values of the phases ¢(i) = @;(¢,m):

Gnew(i) = DP

with D(x) ~ U([—=, 7]) for x = 1, ..., imax, and DD < D® < .. < DUmax),
Similar to above, k describes the position of ¢4 (i) in the rank ordering

(n 2) (imax)
Dot < Pora < = < Poig " -

Hence, all detected deviations between the underlying map and the constructed sur-
rogates can only be due to possible phase correlations inside the original data set.

To perform the surrogates method, one has at first to choose a shuffling interval
[£1, €2] containing the scales that are of interest in the analysis. This interval may
be chosen arbitrarily inside the possible range of all multipoles, [0, £,,,]. However,
since in data maps for CMB investigations, the monopole and dipole are often sub-
tracted, the lower bound should in this case be larger than one, ¢; > 2. After a
convenient interval was chosen, one applies two shuffling steps onto the underlying
data map, to generate two kinds of surrogates:

The first step is a shuffling of the phases of all coefficients ay,,, m > 0, outside
the range [£1, €>]. In doing so, all phase correlations that correspond to scales that
are not of interest, are destroyed. The resulting map with the shuffled phases is
termed first order surrogate. The second step is to shuffle the phases of the first
order surrogate inside the range of interest [£1, £;], to create a map with no phase
correlations at all. This step is to be performed multiple times to obtain several data
sets. The resulting maps are denoted second order surrogates. In Fig.2.1, the two
phase shuffling steps are illustrated on a £-m-diagram. In each step of this process,
the phases with a negative m-value, ¢¢,,, m < 0, have to be shuffled in the same way
as the corresponding phases with the positive m-value, since otherwise the imaginary
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[

exact same shuffling
for negative values

Fig. 2.1 A ¢-m-diagram for illustration purposes of the two phase shuffling steps: At first, the
phases outside [, ¢7] are shuffled to obtain the first order surrogate, and afterwards, the phases
inside the interval are shuffled multiple times to create several second order surrogates

parts of the coefficients ay,, and spherical harmonics Yy, would not cancel each other.
Note that all surrogates possess by definition exactly the same linear properties, that
is the power spectrum, as the underlying map, since the amplitudes |ay, | were left
unchanged.

The first order surrogate is then compared with the set of second order ones by
means of some measure (see the following Sect. 2.2 for a overview of currently used
measures in the field of CMB non-Gaussianity). Since the preprocessing steps from
above ensure the correct distributions for the temperature values and the phases, any
detected discrepancies have to be traced back to the phase correlations inside the
first order surrogate, and are therefore a sign of non-Gaussianity inside the chosen
multipole range of the initial map. Hence, the surrogate method presents a technique
to search for deviations from Gaussianity in a range of scales which can be chosen
arbitrarily.

A special case of the shuffling technique occurs if one chooses the range
[£1,£2] = [0, £,4x] (or [£1, £2] = [2, £14x] in case of a mono- and dipole reduced
map, see above). Since this interval covers the complete range of available multipoles,
generating a first order surrogate becomes dispensable. In this case, a comparison
between the original map and the second order surrogates shows deviations from
Gaussianity on all scales.

In Fig. 2.2, first and second order surrogates of the seven-year ILC map are illus-
trated with an underlying scale range of interest [¢1, £2] = [20, 60].

Despite the advantage of analyses on all arbitrary scales, the surrogates method
also possesses a disadvantage: It requires a complete sphere, to ensure that the spher-
ical harmonics are orthogonal. Otherwise, the phases of the underlying map would
be coupled, which leads to induced phase correlations. For this reason, the surrogates
method is performed on maps, where the foreground influences—especially those
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Fig. 2.2 An example of the phase shuffling method: The phases of the underlying seven-year
ILC map (upper left) are shuffled outside the interval [£1, £2] = [20, 60] to obtain the first order
surrogate (upper right). Two realisations of an additional shuffling of the phases inside the interval
leads to the two second order surrogates (lower row). Note that the structural behaviour of the large
scales differs between the maps in the upper row, but is similar for all the first as well as the second
order surrogates

due to the Galactic plane—are reduced to a minimum. This is provided by the ILC or
the NILC maps (see Sect.3.2.2). The results of these investigations are presented in
Chaps. 5 and 6. But to accomplish an even more thorough analysis, it is better to mask
out highly foreground affected regions like the Galactic plane, which hence puts a
problem to the method. However, as a main part of this work, new ways to construct
anew set of orthogonal harmonics for incomplete skies were developed, thus solving
this problem. These techniques will be presented in detail in the following section,
and are applied to data sets in Chap. 7.

2.1.3 Surrogates on an Incomplete Sky

The spherical harmonics form an orthonormal basis set on the complete sphere S.
This statement is expressed formally by the equation

- - 1 ford =¢ andm =m’
/Yem(x) Yo (xX)d2 = 2.1
s 0 else

where Yy, Yy, characterise two harmonic functions with £, £/ > 0, —£ < m < ¢,
—¢' < m’ < {'. This equation describes a fundamental condition. Only if orthogo-
nality holds, the coefficients agy, of a map f(X) are unique.


http://dx.doi.org/10.1007/978-3-319-00309-2_3
http://dx.doi.org/10.1007/978-3-319-00309-2_5
http://dx.doi.org/10.1007/978-3-319-00309-2_6
http://dx.doi.org/10.1007/978-3-319-00309-2_7

2.1 Statistical Tests for Non-Gaussianity 27

If one replaces the complete sphere S in Eq. (2.1) by some incomplete sky S°*?,
the orthogonality of the spherical harmonics obviously vanishes. This leads to severe
problems, since in this case the coefficients ag,, would be coupled. Hence, the random
phase hypothesis no longer holds, and the surrogates technique from the previous
Sect.2.1.2 becomes inapplicable.

Incomplete skies often appear in CMB non-Gaussianity analyses: Highly fore-
ground affected regions, in the first place the Galactic plane, strongly influence the
Gaussianity of the map. Even the foreground-reduced maps, as provided by the
WMAP team, still have obvious artefacts in the Galactic plane (cf. Fig.3.4 on p.
XXX). The best way to deal with this, is to apply a sky cut on these regions (cf.
Sect. 3.2). The usage of full-sky maps with minimal Galactic foreground contribu-
tion, like the ILC [32] or the NILC map [33], is another solution to the problem, which
avoids the sky cut. But the map-making process of these maps could induce phase
correlations, which can then not be distinguished from the intrinsic higher-order
correlations of the CMB.

However, there are ways to overcome this problem: In [34, 35], a method was
presented, which transforms the real-valued spherical harmonics to a new set of har-
monics, thatis orthonormal on an user-defined cut sky. This method was improved and
extended in [36]. In the present work, we adopt these techniques onto the complex-
valued spherical harmonics, and combine it with the surrogates analysis, to enable
investigations by surrogates on an arbitrary cut sky.

Our goal is to express any CMB temperature map

Zmax 14

fE =D amYm(®), X €5,

=0 m=—¢

on an incomplete sky S/ by means of new coefficients aj' and new cut sky har-
monics Yju': S — C,

max

f()_é) z z Lutycut(x)7 ie Scut’

=0 m=—¢L

where Y is an orthogonal basis set on S/, and thus aj' being unique.

At first, we write the spherical harmonics and the orlgmal coefficients of the
underlying map, as well as the harmonics and the coefficients that we would like to
obtain, into one vector each. In doing so, we only consider the modes with m > 0:

Y(X) = [Y0,0(%), Y1,0(0), Yi,1(X), ey Yerar e 17,
YU (X) = Y5 (%), Y5 (X)), Y“"(X) S G 17,
a = [a0,0, @1,0, Q1,14 ooy Qe b ]

acut — [a(L)Mé’ aiué’ a?u]l’ o agzix,gww]T
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All vectors have the length of i},4x := (£inax + 1) (Cmax +2) /2. With the help of these
terms, we can express our goal in a different way: We would like to determine two
matrices By, By € CimaxXimax that transform the vectors of the spherical harmonics
and the original coefficients into the cut sky vectors of above, which is characterised
formally by the following equations:

YU (¥) = By Y (¥) (2.2)

a" =Bya (2.3)

It is possible to evaluate these two matrices by applying several matrix com-
putations onto the vector Y (x). The first step, important for both the calculation

of B and By, is the definition of the coupling matrix and its cut sky counterpart
C Ccut c (Cimax Ximnx:

c = fR Y(X)Y*(X)dR
Ccut = fR Ycut()'c’)(ycut)*()?)dg

where R characterises an area on the sphere, and Y* denotes the hermitian transposed
of Y. When working with a pixelised sky, like e.g. in the HEALPix environment
used for the WMAP data set, one has to replace the integral with a sum over all
pixels that belong to R. The coupling matrices can be treated as positive definite
for 1ow £,,4. In addition, C and C*' are hermitian by definition: For the diagonal
of C, the components read as ¢;,m),i(t.m) = fR YemY emd 2, which is obviously
real-valued. Outside the diagonal, we obtain c;( m)ic.m) = [ YomY prdQ2 =

Jo (YemYerm )dS2 = Ci(¢ i, m)- The equivalent holds for C*'.

To evaluate Bj, we have to recall the orthonormality condition (2.1) from above.
Applying an adequate condition to the incomplete cut sky S/, it follows that a set
of harmonics Y;", which is orthonormal on the cut sky, needs to fulfil the equation

CCut — Ii .
Hereby, /;,,,. denotes the unit matrix of size i,,,. We can use Eq.(2.2) to change
this condition to

BICBf =1, (2.4)

It is possible to decompose the coupling matrix and to calculate a matrix A €
ClmaxXimax which fulfills C = A A*. Hereby, different matrix decomposition methods
can be used, as for example the Cholesky or the eigenvalue decomposition. We will
discuss this important step of the calculation in more detail below. Applying this
decomposition to the above equation leads to
(B1A)(B1A)" =1

Imax



2.1 Statistical Tests for Non-Gaussianity 29

which offers the simple solution By = A~!. Note that this does not have to be the
only possible solution: In general, every matrix Bj that fulfils Eq. (2.4) is applicable.

For B;, we rewrite Eq. (1.4), which offered a formula for the computation of ag,,,,
into a vectorial form,

a= / Y (X) f(X)dQ
S

or correspondingly

at = / Y R) f(F)d .
SCMI
By inserting (2.2) and replacing the map by means of f(x) = a’ Y (x), we obtain
cut __ n bnd k=21 ) T
a = Bi(Y(x)Y*(x))'ad2=B|C"a.
Scut

Again, we make use of the above introduced matrix decomposition and apply addi-
tionally the result of the first transformation matrix from above, B = A~1, which
leads to

a =B (AATa=ATa.

Thus, it follows B, = AT,
So far, we ignored the cut sky harmonics Y%/ (x) and coefficients aj' for m <
0. For their computation, we make use of Eqgs.(1.5) and (1.6). We assume these
equations to be valid also in the cut sky regime,
Yo = (—Dyyt, )
aghy, = (=HMag ),

and can thus easily get the missing terms. Nevertheless, the above equations could
in general lead to a non-orthogonal set of cut sky harmonics, since each Y ;“j . 18 by
definition only orthogonal to its counterpart Y[C"f;, but possibly not to the rest of the
harmonics. Still, for all sky cuts and £-ranges that were used throughout this work,
the cut sky harmonics were tested and confirmed to be orthogonal.

In summary, both transformation matrices By, B> can be easily determined once
the decomposition of the coupling matrix C = AA* was successful, and we obtain

YU x) = A" Y (%) (2.5)
a“ =ATa. (2.6)

However, the matrix decomposition is—from a numerical point of view—the most
difficult part of the cut sky procedure, since the matrix C grows exponentially with
the fourth power of £, . The choice of which decomposition technique one uses has
a strong influence on the characteristics of the cut sky harmonics Y, ;,Zt. In this work,
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we will apply three different decomposition methods, the Cholesky, the eigenvalue,
and the singular value decomposition (cf. e.g. [37]). All three techniques require the
coupling matrix to be positive definite, which holds up to some ¢,,,,, that depends on
the applied sky cut. The differences between the three decompositions are explained
in the following.

Cholesky Decomposition

The easiest approach is the Cholesky decomposition, which was already used for the
real-valued cut sky harmonics in [34] and [36]. It defines the matrix A to be lower
triangular (and therefore A* to be upper triangular), and calculates then step by step
a solution for each row of A. For example, the first three diagonal elements of A
have to fulfil

(c11) = (an)?
(c22) = (a21) + (an2)?

(c33) = (a31)* + (a32)* + (@33)? , ...

which can be solved in combination with similar (but more complex) equations
for the off-diagonal terms. The Cholesky decomposition is implemented in nearly
every mathematical software today and provides the fastest results of all three matrix
decompositions used in this work. Another advantage is the fact that A is lower
triangular. Having a look a Eq.(2.6), one can see that this leads to a comfortable
situation: In this case, all cut sky coefficients aﬂ‘(le,m) only depend on the full sky
coefficients of higher multipoles, a;(,m), i > i*. Therefore, a monopole and dipole
reduction is still possible, since these are only contained in the first four cut sky
coefficients.

Eigenvalue Decomposition

Another possibility is to apply the eigenvalue decomposition, which was also used
in [36] (identified there as “singular value decomposition”, which is not necessarily
wrong, as we will see below). The basic idea relies on the possibility to rewrite the
coupling matrix in the following way [37]:

C=VWVv*,

where the columns of V contain the eigenvectors of C, and the diagonal matrix W
contains the corresponding eigenvalues. For a positive definite and hermitian C, these
eigenvalues are real-valued and larger than zero, and can therefore be used to divide
the above term into

c=vw\2vw!/2),
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which leads to the solution A = VW2, Hereby, W1/2 denotes the matrix that
contains the square roots of the elements of W.

Singular Value Decomposition

A method very similar to the eigenvalue decomposition is the singular value decom-
position. This is based on the fact that one can write [37]

C=UWV*.

Hereby, in contrast to above, U contains the eigenvectors of CC*, V the eigenvectors
of C*C, and the diagonal matrix W the eigenvalues of either CC* or C*C, which
leads to the same result. These eigenvalues are also termed singular values of the
matrix C. Since C is hermitian, it follows CC* = C*C and therefore U = V. Hence,
we obtain

C=UWU*=UWUuw!/?*

and thus the result A = UW!/2. When applying this method, it is important to
consider the following: For a hermitian matrix like the used coupling matrix C,
it can be shown that the resulting matrices A of eigenvector and singular value
decomposition are theoretically exactly consistent with each other (cf. e.g. [37]).
However, this does not hold in practice: The decomposition by means of the singular
values yields numerically far better results than the eigenvector decomposition, since
it can be applied onto larger coupling matrices (and therefore higher ¢,,,,) and
provides a faster calculation.

There exist two technical procedures that improve the decomposition processes
from above:

First, the Cholesky decomposition has the advantage of a triangular transformation
matrix. This does not hold for the other two decompositions, but in this case it is
again possible to decompose the matrix A into a triangular matrix A’ and an unitary
matrix U with the same size each,

A=AU,

by applying a Householder transformation. The unitary matrix can then be ignored,
since it does not change the decomposition equation C = AA*, and therefore one
can use A’ instead of A. See the Appendix for a more detailed description of this
technique.

Second, when applying a constant latitude cut, the majority of the terms of the
coupling matrix C becomes trivial. This simplifies its calculation as well as its decom-
position. See again the Appendix for more details.

Examples of the new cut sky harmonics for two different constant latitude cuts
are illustrated in Fig.2.3.
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Fig. 2.3 Examples of the original spherical (first column) and the new cut sky harmonics for
€, m) = (20,0), (20, 10) and (20, 20) (from top to bottom). The harmonics were constructed
by means of the singular value decomposition with additional householder transformation for
Imax = 20 and a constant latitude cut of |b| < 30° (second column) and |b| > 30° (third col-
umn), respectively. Only the real part of the complex-valued harmonics is shown in each plot

After the calculation of the new sets of cut sky harmonics Y;,’:l’ (¥) and coefficients

af'! = |ag"| ¢'%n corresponding to the underlying map f(¥), one can finally apply

the surrogates method. Similar to the previous Sect.2.1.2, the phases

Im(acut

cut Im
¢€m = arctan Rar Culy
Re(ay,,

are shuffled, while the amplitudes |a£”jf| are preserved. Each shuffling results in a
new set of a§'’s, which corresponds to one cut sky surrogate map. Special care has to
be taken when choosing the shuffling range [£1, £>], since the scales of the structural
behaviour of the map might no longer be preserved in the cut sky coefficients. For
low £,,4x, a rough scale similarity still holds, though. An example of a surrogate
set of the WMAP seven-year ILC map with a multipole limit of ¢,,,, = 40 and a
shuffling range of [£1, £2] = [2, 40] is presented in Fig.2.4.

But this result is not satisfying yet because of one remaining problem: By applying
the cut sky transformation, the phases of the underlying data map additionally get
correlated due to Eq. (2.6). This effect is shown in Fig.2.5, which illustrates the
results of anaive cut sky analysis of a simulated Gaussian CMB map with independent
phases by means of scaling indices (see Sect.2.2.2 below), for a series of increasing
constant latitude cuts, that remove |b| < 10°, |[b| < 20° and |b| < 30° of the
Galactic plane. The colour-coded pixels show the o-normalised deviations between
each hemisphere of the original and the surrogate data sets around this pixel. The
details of this investigation are not important for the moment and will be discussed in
more detail in Chap. 4. While the full sky analysis—correctly—detects no significant


http://dx.doi.org/10.1007/978-3-319-00309-2_4

2.1 Statistical Tests for Non-Gaussianity 33

~0.40 s (1,400 ~0.40

s (1401

Fig. 2.4 A set of second order surrogates for the WMAP seven year ILC map (upper left) for a
constant latitude cut, that removes |b| < 20° of the Galactic plane. Here, the multipole limit is
Lmax = 40 (also for the original ILC map) and the shuffling range is chosen as [¢1, £2] = [2, 40].
This represents the special case, where a shuffling outside the range is unnecessary, and therefore
no first order surrogate exists
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Fig. 2.5 The o-normalised deviations between a simulated CMB map and its surrogate data sets.
The colour of each pixel illustrates the mean deviation for the hemisphere around that pixel

deviations between the simulation and its surrogates, a clear shift to negative values,
and therefore phase correlations, are identified for the cut sky cases. This shift is
getting larger for increasing cuts, which clearly points towards a systematic effect.

A convincing analysis should therefore be able to remove these systematic effects.
In Chap.7, we will return to this problem and present an appropriate solution, thus
enabling investigations by means of surrogates on an incomplete sky.
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2.2 Measures for Non-Gaussianity

2.2.1 Overview Over Currently Used Measures

As soon as simulations or surrogates are created, one needs a measure being sensitive
to some characteristics of the input maps and providing output values that can then
be used for a comparison with the original data set. As we stated in Sect.2.1.1, any
kind of possible deviation from as well as consistency with Gaussianity marks an
interesting result. Thus, one could think of a large amount of reasonable measures
that could be used for the comparison. In fact, a plethora of different measures has
been applied in CMB analysis until today. In general, these can be separated into
global and local measures.

Global Measures

Measures of global type are related to the characteristics of the map as a whole. One
of the currently most used measures is the angular bispectrum (e.g.[2, 9, 10]), which
is the harmonic transform of the three-point correlation function. Three different con-
figurations of the bispectrum are favoured. These depend on the shape of the triangle
describing the three-point correlation function, and are termed “local” (referring to
a “squeezed” triangle with two sides much larger than the third, [38]), “equilateral”
[39] and “orthogonal” [40]. The result for each configuration can be expressed as
one single value, the so-called non-linear coupling parameter fy, which describes
the amount of non-Gaussianity of the primordial gravitational potential: fy; = 0
would refer to the Gaussian case, while any larger or smaller value points towards
deviations from Gaussianity. Both the parameter fx as well as the bispectrum can
be used in combination with other techniques, e.g. the bispectrum with the help of the
needlet coefficients (see also below), which is then referred to as needlet bispectrum
[41-43]. Another global measure is the power spectrum, which we defined already
on p. XXX, or the corresponding 2-point correlation function in real space. These
measures were applied in [44-50]. Although the power spectrum is not a measure
for non-Gaussianity (since it only analyses the Gaussian part of the temperature
anisotropies, see Sect. 1.3.3), it is listed here due to the important results concerning
asymmetries in the CMB sky: The power spectrum can be estimated using parts of
the sky only, hence modifying it to a measure of local type, which enabled the first
detection of power asymmetries in [46] (cf. Sect. 1.4). The next example for global
measures are Minkowski functionals. These are three related measures, which can be
interpreted as area, perimeter, and Euler parameter, that focus on geometrical struc-
tures in the data [9, 51]. In doing so, the map is grouped into active and inactive pixels
that are defined as pixels with lower/higher values than some given threshold. Then,
the structural behaviour of these two kinds of pixels is observed for different thresh-
old values. In Chap. 7, we will use the Minkowski functionals on cut sky surrogates
parallel to an analysis by means of the scaling indices, that are described in more
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detail in the following Sect.2.2.2. Similar to the Minkowski functionals, the length
of the sceleton describes an analysis that examines the length of the zero-contour
line of the map, which is defined by derivatives of the field in different directions
[51]. Another two global measures are the genus analysis [52] and multipole vectors
[53-59]. The former investigates the different quantities of hot and cold spots, while
the latter forms a set of unit vectors, that can be used to describe and analyse a given
multipole £. Finally, phase mapping techniques are a useful tool to detect deviations
of the map from a Gaussian random field [24-31]. The basic assumption for this kind
of analysis—that is independent and identically distributed phases—is the same as
we used above for the construction of surrogates.

Local Measures

In contrast to the global measures, local measures investigate the behaviour of the
maps in a direction-dependent way. This offers the possibility to identify the position
of anomalies, which can then for example be compared with a large-scale structure
survey. In addition, for investigations by means of local measures, one can simply
exclude heavily foreground-affected regions like the Galactic plane.

A very famous example for a local measure in CMB analysis are wavelets.
A wavelet is a filter function, that is used to transform the underlying map into
wavelet space, where the structural behaviour of the data becomes more pronounced.
For CMB analysis, directional spherical wavelets [8, 60, 61], steerable wavelets [1],
and spherical mexican hat wavelets [62—-66] have been applied, in which the inves-
tigation in [62] lead to the first detection of the famous Cold Spot (cf. Sect. 1.4).
A very recently developed form of wavelets are spherical needlets, which allow to
focus on a specific set of multipoles [7, 41-43]. As already stated above, needlets
can also be used to construct the needlet bispectrum.

An analysis by means of local curvature classifies the map points by their type of
curvature, that s hills, saddles and lakes [67]. Their distribution on the sphere can then
be analysed and compared to that of simulations or surrogates. Similar to the power
spectrum estimation from above, some measures have in general a global behaviour,
but can be used as a local one by focusing on smaller regions on the sphere. While
this usage is an exception for the power spectrum, it is common for the so-called
large-angle non-Gaussianity indicators [68—70] and the Kolmogorov stochasticity
parameter [71-73]. The former is based on skewness and kurtosis of the temperature
values inside large-angle patches of CMB maps, while the latter examines the largest
difference between theoretical and empirical cumulative distribution function. The
technique of considering small caps on the sphere to transform a global measure
to a local one was also applied for analyses of the angular two-point correlation
function in [6].
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2.2.2 The Scaling Index Method

The measure for non-Gaussianity of the CMB which is applied throughout this work
is the scaling index method (SIM) [17, 18]. This measure has the ability of reveal-
ing the topological behaviour of an input map by detecting different structures in
the data, as for example cluster-like or sheet-like structures, as well as filaments or
walls. While wavelets are more sensitive to structures, which offer intensity vari-
ations of significant magnitude with respect to the existing noise, scaling indices
also detect structural features which possess variations within the noise level, but not
significantly higher or lower intensity values [74].

Scaling indices have already been used for texture discrimination [75] and feature
extraction [76, 77], time series analysis of stock exchanges [78] and active galactic
nuclei [79, 80], as well as structure analysis of bone images [81] and other different
medical data, like biological specimens, skin cancer, computed tomographic images,
and beat-to-beat sequences from electrocardiograms [16]. Investigations concerning
the Gaussianity of the CMB by applying the SIM to simulated CMB maps and the
WMAP three-year data were performed in [74] and [18], respectively, where the
method turned out to be of great usefulness.

The basic ideas of the SIM stem from the calculation of dimensions of strange
attractors in nonlinear time series analysis. If an attractor has a non-integer dimen-
sion, it is termed strange [82]. These attractors play an important role in the field
of dynamical systems, since systems exhibiting chaotic behaviour often possess a
strange attractor in phase space [82—85]. The dimension hereby provides information
about the topological characteristics of the attractor [§6—88].

The basis for the calculation of the dimension of attractors from a time series
is to perform a transformation of the time series into a point distribution in d-
dimensional Euclidian space [89]. This transformation and the d-dimensional space
are also denoted embedding and embedding space, respectively. The most common
example for such an embedding are the so-called delay-coordinates [90]. These are
constructed from a time series x;, i = 1, ..., N, of a single observed quantity from
some experiment. The information of d data points can be combined to a vectors p;
in d-dimensional Euclidian space in the following way:

Di = (Xiy Xitrs ooy Xitdr) » 1 €{1,..., N —dT}

Here, the time interval 7 which specifies the distance between the data points is termed
delay time or lag. The resulting point set provides the analyst a completely new access
for investigations of the data set. It was proven in [90], that the transformation to
delay-coordinate maps is a diffeomorphism, that is a smooth invertible isomorph
function with a smooth inverse that maps one differentiable manifold to another.
Therefore, all the information of the time series is preserved. This result was extended
to fractal sets in [89]. We use an approach analogously to this concept to enable the
usage of the SIM on CMB data below.



2.2 Measures for Non-Gaussianity 37

After transforming the original data by means of such an embedding, and there-
fore obtaining a point set P with points p;, i = 1, ..., N, in Euclidian space, one
can estimate the local scaling properties of this point set. In [83], this is done by
counting the number of system states around one point p; by means of the Heaviside
function H (x):

Np
NG, pi) =D HE— 15 — il 27)
j=1

where the Heaviside function is defined as H(x) = 1 for x > 0 and H(x) = O else.
The parameter ¢ is used to set a boundary: If the distance || p; — p ;|| is larger than 9,
the resulting H (x) becomes zero. The basic idea behind the setup of Eq. (2.7) is the
following fact: For small r and a large amount of points N, the measure behaves as
a power of r, with an exponent v [16, 83]:

lim
Np—o00

%N(é, pi) o & (2.8)

P
The exponent v is again closely related to the dimensionality of the strange attractor
[83, 91]. Therefore, by calculating v, one can obtain information about the topo-
logical characteristics of the attractor. This statement is also the crucial point for
the scaling index approach, as we will see below. However, due to the discontinuity
of the Heaviside function, the derivate of H (x), and therefore also the exponent v,
cannot be evaluated analytically. One can only approximate v by averaging over a
chosen range [41, 92]:

log N (62, pi) — log N (41, pi)

VR (2.9)
log 62 — log 1

The method explained above is not the only possible approach. Similar studies were
considered e.g. in [86], where a one-dimensional return map was constructed from the
embedding space. From this return map, one can evaluate the characteristic exponent
of the attractor. In [92], the spectrum of singularities of scaling functions is computed,
in order to describe the complex scaling of the attractor.

One can now modify these ideas to apply the scaling index approach to the CMB.
Here, the fluctuations of the temperature map are characterised by the values of the
pixelised sky on a sphere S. Thus, the analogue of an embedding for a CMB analysis,
is atransformation of the combined temperature information and the two-dimensional
spatial information on the sphere into a three-dimensional point set, which includes
all the information of the original map as spatial information only. Here, the pixels
i, ¢i),i =1,..., Npjx, of S, where N;, denotes the number of pixels and (6;, ¢;)
latitude and longitude of the pixel i on the sphere, are converted to a point distribution
in a three-dimensional space in the following way: Each temperature value T (6;, ¢;)
is assigned to one point p;, which is located in the radial direction through its pixel’s
centre (6;, ¢;), that is a straight line perpendicular to the surface of the sphere. Thus,



38 2 Methods for Testing the Non-Gaussianity of the CMB

the three-dimensional position vector of the new point p; reads as

xi = (R + dR) cos(¢;) sin(6;) (2.10)
yi = (R 4+ dR) sin(¢;) sin(6;) (2.11)
zi = (R + dR) sin(6;) (2.12)
with
or

where R denotes the radius of the sphere and a describes an adjustment parameter.
In addition, (T') and o characterise the mean and the standard deviation of the
temperature fluctuations, respectively. The normalisation is performed to obtain for
dR zero mean and a standard deviation of a. A transformed CMB map appearing
as a three-dimensional point distribution is illustrated in Fig. 2.6. Here, two different
values for a were used in the embedding process.

In general, the SIM is—like v in Eq.(2.8)—a mapping that calculates for every
point p; of the point set P a single value, which depends on the spatial position of p;
in the group of the other points. P is three-dimensional for this chosen embedding
of CMB data. For every point p;, we define the local weighted cumulative point

distribution as
Npix

p(Bir) = s @d(pi p)))

j=1

with r describing the scaling range (similar to ¢ in Eq.(2.7)), while s, (e) and d(e)
denote a differentiable shaping function and a distance measure, respectively. To
obtain the scaling index o(p;,r), we assume the following scaling law, which is
similar to Eq. (2.8): ;

p(pi.r) ocrin) (2.14)

One important difference to the above concept is the request for a differentiable
shaping function s,(e), which leads also to a differentiable cumulative point dis-
tribution p(p;, r). Therefore, in contrast to Eq.(2.8) above, the scaling law (2.14)
becomes analytically solvable. The scaling index, corresponding to the exponent v
in Eq. (2.8), can therefore be computed as the logarithmic derivative of p(p;, r). If
we choose e.g. Gaussian shaping functions

sr(x) = e 7"

the scaling index reads as
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Fig. 2.6 WMAP 3-year data after application of the transformation into a three-dimensional point
distribution. On the left side the full set of points is presented, while the right side shows an x, z-
projection of only the points with |y| < 0.05. In other words, the plots show the “roughness” of
the last scattering surface. Two different values for a were used, namely a = 0.075 (above) and
a = 0.225 (below). The black circles represent the scaling ranges r = 0.075 and r = 0.225. Figure
taken from [74]

dlog (i) _ Tilt n(TF)e (72)

dlogr

P 7) = Ny —(“PLEDY"

Zj:] e 4

In general, one can freely choose s,(e) and d(e), apart from the requirement that
sr (o) has to be differentiable. For the analysis in this work, we make use of a set of
quadratic Gaussian shaping functions and the isotropic Euclidian norm as distance
measure:
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5r(0) = e’
d(pi. pj) = |pi — pjll2

Taking this into account, and using in addition the abbreviation d;; := || pi—p ill2,
we obtain the final formula of the scaling indices:

ZNpix 2(ﬁ)e_(d_ii)2

- =1 r
alpi,r)y ==L — (2.15)
s e ()

In the resulting map a(p;,r), i = 1,..., N pix» the structural behaviour of the
underlying point set P becomes apparent, and different types of structure can be
detected very easily. The values of « are related to structural characteristics in the
following way: A point- or cluster-like structure leads to scaling indices o = 0,
filaments to o & 1 and sheet-like structures to a &~ 2. A uniform distribution of
points would result in o ~ 3. In between, curvy lines and curvy sheets produce
1l <a <2and 2 < a < 3, respectively. Underdense regions in the vicinity of
point-like structures, filaments or walls feature o > 3. An example of a simulated
CMB map and its scaling index response is shown in Fig.2.7.

2.0

2.0 e 3.5

e 3.5

Fig.2.7 A simulated CMB map, in which the central regions were masked out and filled with noise
whose variance corresponds to the noise characteristics of the WMAP satellite (upper left), and the
scaling index responses a( p;, r) for three different scaling ranges: r = 0.05 (upper right),r = 0.15
(lower left) and r = 0.25 (lower right). Different values of c(p;, r) correspond to different types of
structure in the underlying map. Small scaling ranges examine the behaviour of the small structures,
while the characteristics of the larger structure is displayed by the higher scaling ranges. Note the
different structures inside and outside the masked region of the simulated map, and also the different
structures in the mask itself due to the noise characteristics. Both is clearly identified by the scaling
indices
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From Eq.(2.15), one can see that the scaling range parameter » can be chosen
arbitrarily. This parameter weights the distances between our point of interest p;
and the remaining points p j (cf. definition of s, (x)). Therefore, we can make use of
smaller or larger values for r to examine the different behaviour of the small-scale
or large-scale structural configuration in the underlying map. For the analysis in
the following Chapters, we mostly make use of the ten scaling range parameters
rr = 0.025,0.05, ...,0.25, k = 1,2, ...10. Table 4.1 on p. XXX illustrates how the
positions of the resulting 90 % and 10 % weighting of the quadratic Gaussian shaping
function s, (x) correspond to the angular scale ¢ in Fourier space. In Fig.2.7, three
different values of r were applied to the simulated CMB map.

In addition, both R and a from the Egs.(2.10) and (2.13) should be chosen in a
proper way to ensure a high sensitivity of the SIM with respect to the temperature
fluctuations at a certain spatial scale. For CMB analysis, it turned out that this require-
ment is provided using R = 2 for the radius of the sphere and setting the parameter
a, which describes the standard deviation of the normalised temperature values, to
the value of the scaling range parameter r [74]. Thus, in this case the distance 1r
corresponds to 1o of the temperature distribution.

When we apply the scaling index method to CMB data sets, there are different
methods of how to compare the results with those from simulations or surrogate
maps. On the one hand, one can carry out a global analysis by calculating statistics
like the mean or the standard deviation,

Npix
() = > apinr)
Npix i35
1 Npix 1/2
~ 2
0o, = | ——— > [a(pi.r) — ()] :
Npix =13

of the scaling index response for the complete set of pixels. On the other hand, it
is also possible to perform a local analysis by focusing on a particular area, as for
example a hemisphere that is located in some chosen direction on the sphere. These
methods will be repeatedly applied throughout Chaps.4-7.
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Chapter 3
Observations of the CMB
with the WMAP Satellite

3.1 Framework of the Observation

The academic history of the CMB is a rather young story: The existence of a relic
radiation was first proposed by George Gamov in 1946 [1], and the evaluation of
its temperature was done by Ralph Alpher and Robert Herman in 1950 [2]. The
discovery of the radiation by Arno Penzias and Robert Wilson in 1965 represents
a milestone in the history of Cosmology [3]. The first measurement with a full-sky
coverage was realised with the satellite Cosmic Background Explorer (COBE) that
was launched in 1989. This space mission also detected—for the very first time—the
small anisotropies of the CMB [4]. Although there are a lot of ground based projects,
like e.g. the South Pole Telescope [5], the Saskatoon [6] and Python [7] teleskopes,
the Tenerife Experiment [§], COSMOSOMAS [9], the Very Small Array [10] or the
Boomerang balloon [11], the most commonly used data sets to date stem from the
Wilkinson Microwave Anisotropy Probe (WMAP) [12], which measures the CMB
with a very high accuracy. Some ground based observations like ACBAR [13] or the
Cosmic Background Imager [14] feature a higher resolution at smaller scales. The
PLANCK probe, launched in 2009, will soon succeed WMAP by providing even
more precise full-sky measurements of the microwave background [15]. Figure 3.1
illustrates the different maps of the full-sky surveys up to today.

The WMAP satellite was launched in June 2001 and orbits the Sun-Earth Lagrange
point L2 at a distance of around 1.5 million kilometers from Earth [16]. The probe
contains 20 differential radiometers that are passively cooled to around 90 K by solar
panels, which are always orientated towards the sun. The radiometers cover the five
frequency bands 20-25 GHz, 28-36 GHz, 35-46 GHz, 53—-69 GHz, and 82-106 GHz,
which are denoted as K-, Ka-, Q-, V-, and W-band, respectively. Two radiometers
are arranged in the former two bands K and Ka each, while both the Q- and V-band
contain four radiometers. The remaining eight radiometers belong to the W-band. In
turn, each two radiometers form one differencing assembly. Eventually, we obtain
ten differencing assemblies which are identified as K, Ka, Q1, Q2, V1, V2, W1, W2,
W3 and W4. The WMAP team provides the data as full-sky temperature maps per
band (as shown in Fig.3.1) and also per differencing assembly [17].
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Fig. 3.1 Four different full-sky maps of the CMB anisotropies: As it would have been seen by the
observers Penzias and Wilson in 1965 (upper left), as it was measured by the COBE satellite in
1992 (upper right), and as it is measured today by the WMAP satellite for the low-frequency K-
(lower left) and the high-frequency W-band (lower right), respectively. Both WMAP figures are
based on the current seven-year data. The colour-coded temperature values range from —100 nK
to 100 wK for the COBE and —200pK to 200 wK for the WMAP data. The map of Penzias and
Wilson is for demonstration purposes only, and hence possesses no colour-coding. All figures were
taken from [17] with acknowledgements to the WMAP team

The WMAP observations are accomplished with a resolution of <13.8 arcmin
FWHM [18]. The resulting data are provided as pixelised sky maps. The ordering fol-
lows the HEALPix scheme [19, 20]. Thereby, the sky is divided into twelve squares
covering the same size: Four attached to the Galactic north pole, four attached to the
according south pole, and four arranged around the equatorial line. Each square is
then again filled with Nz, X Nige equal-sized pixels, with Nz being an arbitrary
power of 2. Hence, the total number of map pixels N,;, is obtained as N, = 12stl. o
The standard maps of the WMAP team feature a resolution of Ng;z, = 512, which
corresponds to a pixel number of Ny, = 3,145,728. However, a couple of analyses
are carried out by using only a reduced resolution of Nz, = 256 or even less, most
of the times for computational reasons or to easily remove noise effects that appear
on very small scales (e.g. [21-23]).

The earliest data release of the WMAP team was made publicly available in 2003
and contained the observations of the first year. Since then, there were another three
releases, including the current seven-year data set published in 2010.
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Fig. 3.2 The three primary foreground effects as measured by WMAP, from left to right: Syn-
chrotron emission, free-free radiation, and dust emission. Every plot represents the effect on the
band that it affects the most, see also Fig.3.3. Therefore, the former two represent the foreground
influences on the K-band, while the latter one the effect on the W-band. Note that the scale (in mK)
for the dust emission is smaller

3.2 Foreground and Systematic Effects

3.2.1 Origin and Characteristics

The WMAP probe measures the microwave background radiation at a very high
accuracy. These measurements get distorted by foreground effects. There are basi-
cally three primary mechanisms [24]: Synchrotron emission, free-free radiation (also
known as thermal Bremsstrahlung) and dust emission. The intensities of each of the
three foreground effects are illustrated in Fig.3.2. The WMAP satellite observes at
frequencies that are very close to the interval, where the CMB anisotropies are the
highest in comparison with the fluctuations due to distortions [24]. Nevertheless, the
effects of the foregrounds are still significant. The strongest influences of this type
are caused by diffuse emission due to the Galactic plane.

When relativistic electrons interact with the Galactic magnetic field, Synchrotron
emission is produced [24, 25]. The magnetic field forces the electrons to spiral and is
thus changing their velocity, which causes the emission of radiation. Typical values
of such a magnetic field are a few micro-Gauss. Synchrotron emission dominates in
the low frequency band K, which is therefore the best band to detect it. The intensity
of this emission decreases when going to higher frequency values. In the V and W
bands, synchrotron emission is already very weak. A similar behaviour occurs for
the free-free radiation. This radiation appears due to less energetic electrons, which
scatter with ions or with each other. The electrons are decelerated, thus radiation
is produced. I can be approximated with the use of Ha emission [26]. The free-
free radiation is never the dominant source in the measurements. While the two yet
mentioned effects appear mainly at the lower frequencies, the contrary holds for
the dust grains, which influences primarily the high frequency band W. Dust can
be heated by ambient radiation, which is then re-emitted as radiation. In addition,
dust could emit radiation due to rotational modes or excitations of their vibrational
modes [27-29]. Due to these excitations, dust grains can also lead to a modified
blackbody spectrum [30]. The effects of dust can be estimated by extrapolation
based on dust models at higher frequencies. The frequency dependence of all these
different foregrounds is shown in Fig.3.3.
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Fig. 3.3 The influence of the three primary foreground effects onto the different frequency bands
of WMAP. Figure taken from [17] with acknowledgements to the WMAP team

In addition to foreground effects, artificial effects can distort the measurements,
e.g. caused by possible systematic errors in the rather complex map-making process.
While this is of course tried to be ruled out, and therefore subject to a multiplicity
of analyses of the WMAP team [31], there are indeed doubts about the correctness
of some details of the systematics, as for example about the proper way of removing
the Doppler effect induced by the joint motion of the solar system and the space-
craft [32-34]. These claims are again in parts questioned, but to some extend also
confirmed in [35, 36].

3.2.2 Methods of Foreground Reduction

There are different techniques on how to handle and overcome the problem of fore-
ground effects in the CMB signal. A very direct approach is to create templates for
the three different foreground effects from above. This is done for the WMAP data
by means of the foreground template model of [37, 38]. After establishing the fore-
ground templates, one can subtract them from the original measurements. Thereby,
the noise effects remain in the map. These foreground-cleaned maps are provided by
the WMAP team [17]. Since the K-band and most of the time also the Ka-band are
used in the foreground reduction process, the cleaned maps are mostly only available
for the remaining Q-, V- and W-bands. Two of them are shown in the upper row of
Fig.3.4.



3.2 Foreground and Systematic Effects 49

=040 — e (.40 =040 — e 0.40

0.0 e 1.0 =040 m— e 0.40

Fig. 3.4 Three different techniques of handling distortions in the CMB: Foreground reduction by
means of template models, here illustrated by the resulting cleaned Q- and W-band maps (upper
row), the KQ75 mask (lower left), which attempts to cut out all foreground-affected regions, and
the ILC map (lower right), which is a weighted linear combination of the different frequency bands.
All maps are based on the current seven-year data. Except for the lower left plot, the scale is in mK

However, the behaviour of contortions inside and close to the Galactic plane is
still not completely understood. On the other hand, the major part of the measured
sky can be taken as not affected by foregrounds [24]. Thus, the idea of just cutting out
the highly distorted regions around the Galaxy is sometimes a much more helpful
possibility of dealing with the foreground problem. For this reason, the WMAP
team provides two masks: The KQ85 and the KQ75 masks, that—in their current
version corresponding to the seven year data release—cut out 78.3 % and 70.6 %
of the whole sky, respectively. The latter KQ75 mask is shown in the lower left
plot of Fig.3.4. The marginal difference between the two masks is simply due to
different settings on how conservative the foregrounds should be treated. Although
the foreground contribution is most intense in the Galactic plane, point sources affect
the observation as well. In the current seven year data release, WMAP measured 471
point sources [24]. These are included into the masks as a circular cut-out of 1°
for each source, except for the Centaurus A galaxy, which is cut out by a 3° circle.
For analyses of the CMB that need a signal as clean as possible but do not suffer
that much from a lower sky coverage, the use of masks is more advantageous than
foreground reduction. In particular, this situation often occurs for investigations that
search for non-Gaussianities with the help of a local measure, like the ones listed in
Sect.2.2.1 above. These analyses can simply leave out the masked parts of the sky.
However, this approach can still lead to distorting effects at the border of the mask,
which can again be compensated with techniques like a mask-filling method, as we
will see in more detail in the following Chap.4.


http://dx.doi.org/10.1007/978-3-319-00309-2_2
http://dx.doi.org/10.1007/978-3-319-00309-2_4

50 3 Observations of the CMB with the WMAP Satellite

Other analyses prefer or even need a full-sky coverage, though. Especially
investigations dealing with the spherical harmonics often require a complete sphere:
As it can be seen in Fig. 3.4, the reduction process by means of foreground templates
not always leads to satisfying results, since the Galactic plane is still apparent. For
this reason, there is another technique of obtaining a more realistic CMB signal with
low foreground influences, namely the Internal Linear Combination (ILC) method
[24]. The basic idea is to combine the measurements of all frequency bands. The
sky is divided into twelve fractions, whereupon eleven are located in the Galactic
plane and only one in the minor foreground-affected remains. Different weights for
the different bands are determined so as to minimise the variance of the temperature
fluctuations at one degree resolution. For every fraction of the sky, a separate set of
weights is estimated. For the final ILC map, the boundaries between these fractions
are smoothed with a 1.5° kernel. One obtains a map with low foreground influence
and a reliable CMB estimation for large-scale analyses.

The ILC map provided by the WMAP team is not the only map based on the
concept of combining the different bands. An example for a related map with even
lower amount of foreground effects is the Needlet-based Internal Linear Combination
(NILC) map of [39], which is based on the WMAP five-year data. For the NILC
map, the contamination by noise and foregrounds is minimised by means of a (one-
dimensional) Wiener filtering. The important point is that the localisation not only
takes places in pixel space but also in harmonic space. While in the ILC case the modes
at higher £ get a very sub-optimal weighting as they do not contribute significantly
to the total variance of the one degree map, these modes are weighted much more
appropriate in the NILC map. The approach allows to favour foreground rejection
on large scales, where foregrounds dominate the total error, and noise rejection on
small scales, where foregrounds are negligible but the relative noise level between
the various WMAP channels significantly varies. In summary, the NILC map offers
a better rejection of Galactic foregrounds than the ILC map and can be considered as
the most precise full sky CMB temperature map of the according data release [39].
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Chapter 4
Scaling Indices Applied to the WMAP
5-Year Data

4.1 Introduction

The Wilkinson Microwave Anisotropy Probe (WMAP) satellite, launched in June
2001, measures the temperature anisotropy of the cosmic microwave background
(CMB) radiation with surpassing accuracy, hence providing the best insight on the
beginnings of our universe until now. From the first data release on, many inves-
tigations were made concerning the Gaussianity of the CMB, since such analyses
give information about the nature of the primordial density fluctuations, which are
the seeds of those temperature anisotropies. The statistical properties of the den-
sity fluctuations are again an important observable for testing cosmological models,
especially models of inflation. Standard inflationary models predict the temperature
fluctuations of the CMB to be a Gaussian random field which is isotropic and homoge-
nous [1-3]. Still, there also exist more complex models that allow non-Gaussianity
in a scale-independent [4-10] or in a scale-dependent way [11, 12]. For a detailed
overview of the different models and a more specific survey on scale-dependent ones,
see [13] and [14], respectively, as well as enclosed references. In addition, topologi-
cal defects like cosmic strings can induce local non-Gaussianities and influence the
power spectrum [ 15—18]. Considering this plethora of possible physical mechanisms,
which may induce non-Gaussianity, studies of Gaussianity of the CMB are strongly
required for testing predictions of fundamental physical theories. By comparing the
results with theoretical predictions, we can evaluate which model e.g. of inflation
can be accepted or rejected.

Non-Gaussianity implies the presence of any higher order correlations. Therefore,
a concrete description of the characteristics of non-Gaussianity is not possible, and
one has to state that it can occur in various forms. One can carry out a global analysis
to search for deviations from Gaussianity [19-27]. But one can also concentrate on

Original publication: G. Rossmanith, C. Rith, A. J. Banday and G. Morfill, Non-Gaussian
Signatures in the five-year WMAP data as identified with isotropic scaling indices, MNRAS,
399, 1921 (2009).
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more specific investigations (this is most often performed in addition to a general
analysis), whereas we want to point out the following two:

Investigations concerning asymmetries in the CMB data were accomplished with
linear [28—34] as well as non-linear methods [28, 35—-41]. With those methods, studies
of the differences between the northern and southern hemisphere of the galactic
coordinate system, naturally given by the absent region of the outmasked galactic
plane, as well as a search for a preferred direction of maximum asymmetry were
performed. In almost all investigations, significant asymmetries between the north
and the south were detected. Thereby, it depended on the type of analysis, which
hemisphere featured the larger deviations from Gaussianity and which hemisphere
agreed better with the standard model. The preferred direction of maximal disparity
was in most investigations found to lie close to the ecliptic axis.

Local features are another particular form of non-Gaussianity being of growing
importance, e.g. for the search of topological defects like cosmic strings. Since the
first detection of the famous cold spot by [37], many investigations tried to find new,
or re-detect known spots with various methods [40, 42-51]. In doing so, several
significant spots have been detected up to now.

In [52], all mentioned investigations were accomplished by applying, for the
first time, the scaling index method on the WMAP 3-year data. In this paper, we
continue these analyses by applying the scaling index method on the WMAP 5-year
observations. We search for global non-Gaussianities and asymmetries in the data
and use a modified approach to detect local features.

This chapter is structured as follows: In Sect.4.2 we present the preprocessing
of the WMAP data and the modality of creating the simulations. In Sect.4.3, the
scaling index method is introduced as well as a technique to cope with boundary
effects. With these requisites, we are ready to perform our calculations, whose results
are presented in Sect.4.4. In this chapter, we first discuss the global investigations
as well as asymmetries and focus on local features later on. All these findings are
summarised in Sect.4.5. Finally, we draw our conclusions in Sect. 4.6.

4.2 WMAP Data and Simulations

For our investigations we use the Q-, V- and W-band five-year-data of the WMAP-
satellite as it is provided by the WMAP-Team.! We work with the foreground-reduced
maps, which use the Foreground Template Model proposed in [53] and [54] for
foreground reduction. To obtain a co-added VW-map as well as single V-, W- and
Q-maps, we accumulate the differencing assemblies Q1, Q2, V1, V2, W1, W2, W3,
W4 via a noise-weighted sum [55]:

2ieaTi(0, ¢)/U(2),i

1e.0= ieallog;

.1

! http://lambda.gsfc.nasa.gov


http://lambda.gsfc.nasa.gov

4.2 WMAP Data and Simulations 55

In this equation, A characterises the set of required assemblies, e.g. for the co-added
VW-map A = {V1, V2, W1, W2, W3, W4}. The parameters 6 and ¢ correspond
to the co-latitude and the longitude on the sphere, while the five-year noise per
observation of the different assemblies, given by [56], is denoted by oy.

We decrease the resolution of the maps to 786432 pixels, which equals to Ng;q. =
256 in the employed HEALPix-software” [57] and cut out the heavily foreground-
affected parts of the sky using the KQ75-mask [58], which has to be downgraded as
well. We choose a conservative downgrading of the mask by taking only all pixels
at Nyige = 256 that do completely consist of non-mask-pixels at Ny;jq, = 512. All
downgraded pixels at N4, = 256, for which one or more pixels at Ny;jgo = 512
belonged to the KQ75-mask, are considered to be part of the downgraded mask as
well. In doing so, 28.4 % of the sky is removed (see upper left part of Fig. 4.1). Finally,
we remove the residual monopol and dipol by means of the appropriate HEALPix
routine applied to the unmasked pixels only.

To accomplish a test of non-Gaussianity, we also need simulations of Gaussian
random fields. We create 1000 simulations for every band and proceed hereby as
follows: We take the best fit AC DM power spectrum Cy, derived from the WMAP
5-year data only, and the respective window function for each differencing assembly
(Q1-Q2, V1-V2, W1-W4), as again made available on the LAMBDA-website (see
footnote 1). With these requisites, we can create Gaussian random fields mimicing

3.2 22

2.2

s 3.2

Fig. 4.1 The two plots on the left hand side illustrate the original 5-year WMAP-map of the co-
added VW-band (above) and the related colour-coded a-response (below). The equivalent plots for
the mask-filling technique are arranged on the right hand side. These maps (and all following ones)
are shown in a conventional scheme, namely the Mollweide projection in the Galactic reference
frame with the Galactic Centre at the centre of the image and the longitude increasing from there
to the left-hand side

2 http://healpix.jpl.nasa.gov
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the Gaussian properties of the best fit AC DM-model and including the WMAP-
specific beam properties by convolving the C;’s with the window function. For every
assembly, we add Gaussian noise to these maps with a particular variance for every
pixel of the sphere. This variance depends on the number of observations N; (6, ¢)
in the respective direction and the noise dispersion per observation, o ;. After this
procedure, we summarize the Q-, V- and W-bands and the co-added VW-band using
Eq. (4.1), decrease the resolution to Ny;4. = 256, cut out the KQ75-mask and remove
the residual monopol and dipol, just as we did with the WMAP-data.

4.3 Weighted Scaling Index Method

4.3.1 Formalism

We perform our investigations using the scaling index method (SIM) [59, 60], which
enables a characterisation of the structure of a given data set. It has already been used
in time series analysis of active galactic nuclei (AGN) [61, 62] as well as in structure
analysis for 2D and 3D image data, e.g. in [63—65]. In the following, we only present
a short overview of the calculation of scaling indices. For a more detailed formalism
of using the SIM in CMB analysis we refer to [52].

The fluctuations of the temperature maps are characterized by the values of the
pixelised sky of a sphere with radius R. We transform this representation to variations
in the radial direction around the sphere by applying a jitter depending on the intensity
of the fluctuation. Thereby we obtain a point-distribution in the three-dimensional
space. Thus, given Np,;, as the number of pixels on the sphere, the value of every
pixel (8;, ¢;), i = 1, ..., Npix corresponds to a vector pi in the three-dimensional
space. We then define for every point p; its scaling index by

N

Z.pixz d# 2 (L
j=1 r e

a(pi,r) = (4.2)

where d;; denotes the euclidian distance measure
dij = lpi — pjll2

between the points p; and p j, while r characterizes a scale parameter. This parameter
does not draw a clear-cut line between the pixels that are included in the calculations
and those that are excluded; it rather influences how each single pixel is taken into
consideration for the calculation, in relation to its distance from the centre pixel:
For lower r, only the closest pixels are important in the calculation of «(p;, r),
whereas for larger r, the farther distant pixels are considered as well, even though
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Table 4.1 The angular scales corresponding to the position of the 90% (£1) and the 10% (€>)
weighting in the scaling index formula when using a given scale parameter r

Radius 0.025 0.050 0.075 0.100 0.125
(01, €] (83,387] [41,193] [28,129] [21,97] [17,77]
Radius 0.150 0.175 0.200 0.225 0.250
(01, €3] [14,65] [12,55] [10,48] [9.43] (8,39]

with a still lower weight than the close pixels. In our study, we use the ten scales
ri = 0.025,0.05,...,0.25,i = 1,2,..., 10 and the radius R = 2 for the sphere.
Table 4.1 shows for each radius r the corresponding angular scales at the position of
the 90 % and the 10 % weighting, thus giving an estimate on how the r-values relate
to £-bands in Fourier space.

The value of « characterises the structural components of a point distribution. For
example, points in a cluster-like, filamentary or sheet-like structure lead to o =~ 0,
a &~ 1 or a & 2, respectively. A uniform distribution of points results in o & 3,
while points in underdense regions in the vicinity of point-like structures, filaments
or walls have o > 3.

On the basis of these scale-dependent a-values, we compute simple measures such
as moments and empirical probability distributions. We make use of the following
scale-dependent statistics, namely the mean, the standard deviation and a diagonal
x2-statistics, to compare the results of the original WMAP data with the results of
the simulations:

1Y
(a(ry)) = NZO&(pj,rk) (4.3)
=1
N 1/2
1 3
Gaiy = | 7 2o [0 = (atri))]’ (44)
j=1
y [ M) — (M) is
Yoo = 2| T (45)

i=1

where My (ry) = (a(rk)), M2(rk) = 0a(r) and N denotes the number of pixels in
consideration. For all analyses we will only consider the non-masked pixels of the
full sky or of (rotated) hemispheres, as it will be outlined in Sect.4.4.1. Note that
we follow the reasoning of [35] and choose a diagonal and not the full y>-statistics
involving the inverted cross-correlation matrix, because also in our case the moments
are highly correlated leading to high values in the off-diagonal elements of the cross-
correlation matrix. Therefore, the matrix would converge very slowly and numerical
stability would not be given. If however the chosen model is a proper description of
the data, any combination of measures should yield statistically the same values for
the observations and the simulations.
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To obtain scale-independent variables as well, we also use three diagonal
x2-statistics, derived from (o) and o, which sum over all utilised length scales r:

N, 2
5 Ml(rk)—<M1(Vk)>]
- (4.6)
X{a) kz=:‘|: OM; (ry)
N, 2
- Mo (rg) — <Mz(rk)>} 4.7
X ;[ O My () -
2 N, 2
M;(ri) — (M;(ry))
X%O(),O'n = ZZ[ OM; () i| -

i=1 k=1

Hereby denotes M1 (ry) = (a(rx)) and M2 (ri) = 0a(r). The number of different
scale parameters r is named N,. Throughout all subsequent investigations, N, equals
ten.

Finally, to be able to access the degree of difference between the data and the
simulations and hence a degree of the non-Gaussianity of the data, we use the o-
normalised deviation of the WMAP results of the above-mentioned statistics:

M — (M)

§=— 4.9)
oM

where in this case M refers to one of the variables defined in Egs. (4.3)—(4.8) respec-
tively. M itself is calculated by using the WMAP data, while its moments result from
the simulations. Note that we pass on the absolute value in this general definition
to obtain positive as well as negative deviation. Although we will use the absolute
value in the global investigations, the sectioning into positive and negative deviation
is useful for the analysis of north—south asymmetry by means of rotated hemispheres
in Sect.4.4.1. It also allows a better interpretation of the character of difference, since
e.g. a higher mean of the scaling indices implies a more ‘unstructured’ arrangement
of the ‘pixel cloud’ and vice versa. Similarly, a higher standard deviation of the
indices indicates a larger structural variability.

In the tables, we also included the fraction p of the simulations that have higher
(lower) values than the data in terms of the respective calculated statistics. This
percentage corresponds to a empirical significance level of the null hypothesis that
the observation belongs to a Gaussian Monte Carlo ensemble.

4.3.2 Coping with Boundary Effects

The regions in the direction of the galactic plane as well as many small spots all over
the WMAP map are masked out since they represent heavily foreground-affected
areas which would not allow a reasonable analysis of the intrinsic background
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Fig. 4.2 A slice of the three-dimensional representation of the VW-band WMAP data, illustrated
as a x,z-projection of all points with |y| < 0.05. The plot on the left illustrates the original, the one
on the right the mask-filling method. The black circles indicate the scaling range r = 0.2

fluctuations. But this operation spoils the results of the scaling index method: Instead
of a more or less uniform distribution, the a-values in the regions around the mask
now detect a sharp boundary with no points in the masked area, into which the scal-
ing regions extends (see Fig.4.2). This results in lower values of «.. The effect can
clearly be seen in the a-response of the masked VW-band WMAP-data in the lower
left corner of Fig.4.1. A solution to this problem is to fill the masked areas with
suitable values, that prevent the low outcome at the edges of the mask. We accom-
plish this by filling in (nearly) white Gaussian noise with adjusted parameters. This
is performed by applying the following two steps:

At first, we fill the masked regions with Gaussian noise, whose standard deviation
for each pixel corresponds to the pixel noise made available on the LAMBDA-
website?:

T sk 0, 0) ~ N0, 0 )

Here, 09, ) denotes the pixel noise of the pixel which is located in the direction (0, ¢).
Then, we scale the expectation value and the variance as a whole to the empirical

mean [ye;, and variance U,zem of the remaining regions of the original temperature
map:
o2
e
Tmaxk(ev (b) = Zcm y:;ask(97 (b) + Hrem
mask
with

3 http:/lambda.gsfc.nasa.gov
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Hrem = NL Z T(H, (b)

R 0.0er
1
O = T D (T, ¢) = pirem)
0,9)eR
1
Omask = ———— 2, Tragt (0, 6)
M=, Sem

where R and M stand for the non-masked and masked region of the map respec-
tively, and N as well as N denote their number of pixels. Thus, we filled the
mask with (nearly) white Gaussian noise whose mean and standard deviation equal
the respective terms of the remaining map, whereby the spatial noise patterns are
preserved.

With this filling technique, we obtain a complemented data set instead of just
excluding the masked regions. Figure4.2 shows a slice of the three-dimensional
representation of the temperature fluctuations of both techniques, representing a 2D
projection of the 3D point distribution used for the calculation of the scaling indices.
The centre region of the filled sphere now highly resembles the appearance of the
remaining area, although a more uniform arrangement is visible. In the form of a
mollweide projection, the filling method as well as the corresponding c-response are
displayed in the right column of Fig.4.1.

The filling strategy shows obvious success in the adjustment of the scaling indices
map (see the lower right panel of Fig.4.1): The white noise leads to higher values in
the a-response for the pixels close to the mask as compared to the masking method.
The regions around the edges of the mask feature now a-responses that match far
better the values of the remaining regions. Still these a-values are calculated with the
help of an artificial environment, but now the contortions are lower compared to the
original approach. Since we apply this method to both the original WMAP data as
well as to the simulations, the now smaller systematic errors in the a-calculation for
the ‘edge’-pixels are the same for both kinds of maps. Thus any significant deviation
found in the WMAP data is due to intrinsic effects.

The most important advantage of the filling strategy arises if one considers local
features in the CMB map: For a search of local anomalies (e.g. cold spots), the filled
map provides a better underlying than the original map: In a point distribution, spots
as well as points at the border of the distribution show similarly low a-values. Thus,
by cutting out the mask, it is difficult to decide whether a detected local feature
really exists or whether it originates from a masked area nearby. But by using the
filling technique, there is no longer an edge between the masked and the non-masked
regions, and anomalies in the Gaussian noise of the mask are highly improbable.
Thus, any detected local feature must then originate from the data itself. Considering
the amount of masked areas outside the galactic plane, this technique describes a
considerable improvement for the whole sky. Due to these advantages we will only
use the mask-filled maps in Sect.4.4.2.
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4.4 Results

4.4.1 Band-wise and Co-added Map Analysis

In Fig.4.3, the empirical probability densities P («) of the scaling indices (calculated
withr = 0.2) are displayed for the WMAP data and for the simulations, evaluated for
the original and the filling method from Sect.4.3.2. For clarity reasons we only used
the first 50 simulations in these plots. For both methods, a shift of the WMAP data
to higher values can be detected, that becomes particularly apparent in the northern
hemisphere of the galactic coordinate system. This indicates a more ‘unstructured’
arrangement of the underlying temperature fluctuations of the CMB data in compar-
ison to the simulations. In addition, the histograms of the simulations are slightly
broader and therewith containing a larger structural variability than the one of the
WMAP data.

Comparing the non-filling and the filling method, the histograms of the latter
feature a higher maximum as well as higher values for large «, but lower probabilities
for a € [2.0, 2.5]. The obvious reason for this shift is the fact that the filled mask
does not reduce the a-values of its surroundings as it was the case with the former
method. Now, the outcome of these regions is influenced by the white noise and is
therefore allocated at higher values.

If we focus on the mean values («(ry)) of the scaling indices, and compare the
results of the simulations with the WMAP data, the above mentioned shift to higher
values becomes yet clearer. This can be seen in Fig.4.4, where the distribution of
(au(ry)) for the simulations as well as the data is displayed for the five different scale
parameters r2, 14, 16, g and rjo. These results were obtained using the full sky.
For all applied scales, the distance between the average over all simulations and the
result of the original WMAP map is notably similar. If we perform this analysis for
the northern hemisphere only, the deviations of the original data as compared to the
simulations become significantly larger.

Both the shift to higher values of the WMAP data in comparison to the simulations
as well as its broader density are reflected in the o-normalised deviations S(r) of the
scale-dependent statistics of the Egs. (4.3)—(4.5): The former is reflected in the mean
and the latter in the standard deviation (and therefore both aspects in the diagonal x>-
statistics). Figure 4.5 shows these deviations for the coadded VW-band as a function
of the scale parameter r for the original and the mask filling method, while Fig.4.6
displays only the latter method, but for the three single bands. As above, the results are
illustrated for the full sky as well as for the separate hemispheres. The shift to higher
values of the WMAP data in the northern hemisphere in Fig. 4.3 appears now as an
increased S(r), especially for higher scales (» > 0.125), where the deviations of the
two moments range between 2¢ and 3.5¢, and the y?-combination nearly reaches a
60-level. In the southern hemisphere, only the lowest scales show a namable S(r). On
larger scales, no signatures for deviations from Gaussianity are identified. Looking
at the single bands Q, V and W, the overall qualitative behaviour of the images is
quite similar, while the o-normalised deviations itself are slightly lower in most cases.
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Fig. 4.3 The probability distributions P () of the scaling indices for the WMAP data (dark lines)
and for 50 simulations (fainter lines) by using the scale parameter r = 0.2, computed for the original
(red) and the mask filling method (blue). The upper histogram shows the distribution of the full sky
data set, while the middle and the lower ones show the distribution of the northern and southern
hemisphere respectively
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Fig. 4.4 The histograms of the mean values («(ry)) of the 1000 simulations for the five different
scale parameters ry, r4, rg, rg and ryo (starting from upper left), calculated for the full sky. The red
lines denote the corresponding results of the WMAP data, while the black and grey lines characterise
the average over all simulations and the 1o regions, respectively

A remarkable fact is the appearance of the highest S(r) (5.20 for the x2-combination
in the northern hemisphere at » = 0.15) in the frequency band which is considered
to be the least foreground-contaminated one, namely the V-band. Comparing the
co-added VW-band of the original approach and of the mask filling method, the
o-normalised deviations of the mean are almost identical. The standard deviation
of the latter method in comparison to the former one shows a slightly lower S(r)
for higher scales, which is also reflected in the graph of the y?-combination, yet the
profile remains the same.

We also calculated the o-normalised deviations S and the percentages p of the sim-
ulations with higher (lower) results of the scale-independent diagonal y>-statistics
from the Egs. (4.6) to (4.8), which are listed in Table4.2. Although the results are
damped by a few unimportant scales, high deviations are still found, particularly
in the northern hemisphere. For a better comparison to separate scale lengths, the
respective results of the scale-dependent statistics (4.3)—(4.5) are listed in Table 4.3,
for which we used the single scale r = 0.2.

In general, all occurring characteristics of the Figs. 4.3 and 4.5 match the findings
of the analysis of the WMAP 3-year data in [52]. This indicates that the results are
not based on some time-dependent effects. Since the 5-year data features lower error
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Fig.4.5 The o-normalised deviations S(r) of the statistics of the Egs. (4.3)—(4.5) in absolute values
for the VW-band, plotted as a function of the scale parameter r. The lines with “4” denote the mean,
“s” the standard deviation and the boxes the y2-combination, each for the original (red) and the
mask filling method (blue). As in Fig. 4.3, the upper diagram shows the results of a full-sky analysis,
while the middle and the lower ones show the results when only concerning the northern or southern
hemisphere respectively
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Fig. 4.6 Same as Fig. 4.5 but applied to the Q- (red), V- (green) and W-band (blue). Only the results
of the mask-filling method are shown while the original method is left out
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Table4.2 The o-normalised deviations S and the empirical probabilities p of the scale-independent
diagonal Xz—statistics from the Eqgs. (4.6) to (4.8) for the different bands and methods as well as for
the Full Sky and the single hemispheres

Full sky (S/%) Northern sky (S/%) Southern sky (S/%)

Xia)

VW (original) 2.2/97.3 2.7/198.5 1.7/96.6
VW (mask-filled) 2.2/97.3 2.7/98.3 1.7/96.6
Q (mask-filled) 2.1/97.4 2.7/98.3 1.5/95.8
V (mask-filled) 2.0/97.4 2.6/98.1 1.5/96.2
W (mask-filled) 2.1/97.5 2.6/98.2 1.7/96.6
Xz,

VW (original) 2.0/95.6 5.5/99.7 0.1/68.5
VW (mask-filled) 1.6/93.4 4.3/99.3 0.3/72.9
Q (mask-filled) 0.7/83.1 2.3/96.0 1.2/89.4
V (mask-filled) 1.2/90.5 4.0/98.9 0.6/79.2
W (mask-filled) 1.4/92.3 2.8/96.7 1.9/71.6
a0

VW (original) 2.3/97.4 4.2/99.1 1.3/93.5
VW (mask-filled) 2.1/97.1 3.7/98.8 1.3/94.2
Q (mask-filled) 1.8/96.3 2.9/98.3 1.6/95.5
V (mask-filled) 1.9/96.6 3.5/98.8 1.3/94.1
W (mask-filled) 2.0/96.4 3.0/98.5 1.3/93.7

Table 4.3 Same as Table4.2, but for the scale-dependent statistics from the Egs. (4.3) to (4.5) for
the single scale r = 0.2

Full sky (S/%) Northern sky (S/%) Southern sky (S/%)

((0.2))

VW (original) 2.3/99.7 2.7/199.8 1.7/97.1
VW (mask-filled) 2.3/99.7 2.3/98.7 1.7/97.6
Q (mask-filled) 2.2/99.6 2.6/99.8 1.6/96.6
V (mask-filled) 2.2/99.6 2.6/99.8 1.7/97.2
W (mask-filled) 2.2/99.6 2.6/99.8 1.8/98.2
Ta(0.2)

VW (original) 1.3/90.7 2.7/199.8 0.5/68.9
VW (mask-filled) 1.1/85.6 4.3/99.3 0.6/69.8
Q (mask-filled) 0.4/64.2 1.7/95.6 1.1/85.8
V (mask-filled) 1.1/84.9 2.4/99.0 0.6/71.4
W (mask-filled) 1.0/83.9 1.9/96.4 0.2/55.9
Xi(oa)

VW (original) 1.8/95.3 5.2/99.4 0.5/81.6
VW (mask-filled) 1.7/94.5 4.4/99.1 0.6/82.6
Q (mask-filled) 1.2/90.9 3.4/98.6 0.8/97.1
V (mask-filled) 1.6/94.2 4.2/99.2 0.5/81.9

W (mask-filled) 1.5/93.7 3.3/98.6 0.5/81.0
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bars than the 3-year data, it is also improbable that both results are induced by noise
effects only.

Evidence for north—south asymmetry in the WMAP data was already detected
using the angular power spectrum [29, 30] and higher order correlation functions
[28], spherical wavelets [37], local curvature analysis [38], two-dimensional genus
measurements [36] as well as all three Minkowski functionals [35], correlated com-
ponent analysis [31], spherical needlets [40], frequentist analysis of the bispectrum
[39], two-point correlation functions [32, 33] and Bayesian analysis of the dipole
modulated signal model [34]. To take a closer look at asymmetries in the WMAP
five-year data in our investigations, we perform an analysis of rotated hemispheres,
as it was done for the three-year data in [52]: For 3072 different angles, we rotate
the original and simulated maps and then compute S(r) for the above statistics
(mean, standard deviation and y%>-combination) by only using the data in the resulting
new upper hemisphere. Thus, the colour of each pixel in the corresponding Fig.4.7
expresses the positive or negative o-normalised deviation S(r) of the hemisphere
around that pixel in the WMAP-data compared to the hemispheres around that pixel
in the simulations. We apply this analysis for the co-added VW-band as well as for
the single bands, whereas for the VW-band we use both the original and the mask
filling method, but for the single bands the filling method only. In all charts of Fig. 4.7
we can detect an obvious asymmetry in the data: The largest deviations between the
data and the simulations are exclusively obtained for rotations pointing to northern
directions relative to the galactic coordinate system. The maximum value for S(r) of
the x> analysis (right column of Fig.4.7) using the mask-filling method on the co-
added VW-band is obtained in the reference frame pointing to (6, ¢) = (27°, 35°),
which is close to the galactic north pole. This proximity to the pole is consistent to
the results of [38] and [52], as well as to those findings of [29] and [28] that consid-
ers large angular scales. For the standard deviation (central column of Fig.4.7), the
northern and southern hemispheres offer different algebraic signs. The negative S(r)
of the north implies a lower variability than the simulations in this region, while the
south shows a converse behaviour. The fact that the plots using the new method show
slightly lower values for S(r) than the ones using the old method may be explained
by the fraction of pure noise values within every rotated hemisphere, that diminish
the degree of difference between the data and the simulations.

Another remarkable feature of Fig.4.7 is the high correlation between the differ-
ent bands, that is visible to the naked eye but also confirmed mathematically: By
calculating correlations ¢ among all combinations of those bands where the mask
filling method was applied, we obtain for the mean ¢ > 0.99 and for the stan-
dard deviation as well as the y>-statistics ¢ > 0.95. While the Q-band is heavily
foreground-affected, first of all by synchrotron radiation as well as radiation from
electron-ion scattering (“free-free emission’), the W-band is mainly distorted by Dust
emission. The V-band is affected by all these foregrounds, even though less than the
other bands. As mentioned in Sect. 4.2, we use the foreground-reduced maps in our
analysis, but one could still expect some small interferences. Despite the different
influences on the different bands, we obtain the same signatures of non-Gaussianity
in all single bands as well as in the co-added VW-band. Therefore we conclude that
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— 2.8

Fig.4.7 The o-normalised deviations S(r) of the rotated hemispheres at the scale parameter r = 0.2
for the mean (left column), the standard deviation (central column) and the diagonal Xz—statistics
(right column) for the co-added VW-Band without (fop row) and with (second row) the appliance of
the mask filling method, as well as for the single Q-, V- and W-bands (third to fifth row), for which
the mask filling method was always applied. Notice the different colour scaling for each plot

the measured asymmetry is very unlikely the result of a foreground influence but has
to be concluded of thermal origin.

4.4.2 Local Features

An interesting anomaly in the CMB data is that there are small regions which show
very high or very low values in some local structure analysis. Vielva et al. (2004)
detected the first of these regions, the well-known cold spot at (0, ¢) = (147°,209°)
a few years ago by using a wavelet analysis. This Spot was re-detected several
times using amongst others wavelet analysis [32, 44-47], scaling indices [52] or
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the Kolmogorov stochasticity parameter [42]. Furthermore, there have been some
investigations which, in addition to the re-detection of the first spot, detected sec-
ondary spots via directional [48-50] or steerable wavelets [51], needlets [40] and
again the Kolmogorov stochasticity parameter [43]. These spots could be the result
of some yet not fully understood physical process. For the cold spot lots of theories
already exist which try to explain its origin by second-order gravitational effects [66,
67], a finite universe model [68], large dust-filled voids [69-72], cosmic textures
[73], non-Gaussian modulation [74], topological defects [75], textures in a brane
world model [76] or an asymptotically flat Lemaitre-Tolman-Bondi model [77, 78].

For our investigations concerning spots in the WMAP data we only use the mask-
filling method of Sect.4.3.2 due to the reasons already explained above. We extend
the analysis of scaling indices by applying two different approaches to detect anom-
alies: The first one is to calculate the o-normalised deviation of every pixel on the
a-response of the CMB map. For a given scale parameter r, this is achieved by com-
paring the scaling index a(p;, r) of each vector p;,i = 1, ..., Npix, of the original
data with the mean of the corresponding values oy (p;, r), £ = 1, ..., Ngjmm, of the
simulations depending on their standard deviation, where Nj;;,, denotes the number
of the simulations. Formally, this reads as:

a(pi,r) — pir
Oi,r '

Siy = (4.10)

with

1 Nsim

iy = > aupinr)
=1

Nsim

1 Nsim

o7y = N1 ; (e r) = pi)’

The results are illustrated in the upper left part of Fig.4.8.

The second approach smoothes the c-maps of the original and simulated data
by computing for every pixel the mean value of its surroundings given by some
specified maximum distance, which equals 3° in our analysis. We apply the pixel-
wise deviations S; , again on the resulting maps. The outcome of this procedure is
shown in the upper right part of Fig.4.8. In the lower left plot of the same figure
only the deviations S; , < —3.0 are illustrated to gain yet another clearer view on
the interesting areas.

The first approach clearly shows the cold spot and indicates some secondary
spots in the southern as well as in the northern hemisphere. These get confirmed in
the plot of the smoothing method, where we obtain a deviation of up to —7¢ for
several clearly visible areas: In the southern hemisphere we detect a cold spot at
(0, ¢) = (124°,320°) and another one at (0, ¢) = (124°, 78°). Both were already
detected with the above mentioned directional and steerable wavelet as well as with a
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Fig. 4.8 The pixel-wise deviations S; , of the primal (upper left) and of the smoothed scaling
indices map (upper right), both based on the VW-band and the scale parameter » = 0.2. The plot
in the lower left only shows the values < — 3.0 of the smoothed method. Except for the very small
spots in the right part of this mapping, these regions are added to the KQ75-mask. The result is
illustrated in the lower right plot

needlet analysis. The former one is a kot spot in these investigations. In our analysis,
the latter spot actually appears as two spots close to each other, which is in agreement
with [40]. We discover another southern cold spot at (6, ¢) = (120°, 155°) which is
very close to the mask. This spot represents a good example for the use of the mask
filling method since it is situated at the edge of the non-masked region: The influence
of the mask is diminishing the results of the calculation of the scaling indices in the
area of this spot. This becomes obvious if one recalls the lower left plot of Fig. 4.1, in
which the coordinates of the spot would be completely located in a “blue” region with
low a-values. Since the results of the scaling indices of local features show a similar,
namely lower-valued, behaviour, an overlapping like that could prevent the detection
of such spots close to the mask. By using the mask filling method, the detection of
this cold spot on the edge of the mask is equivalent to a detection in an unmasked
region, and therefore reliable. The spot at (6, ¢) = (136°, 173°), described by [48]
and [40], is not traced in our analysis. In the northern hemisphere, our investigation
shows two other cold spots at (6, ¢) = (49°, 245°) and (0, ¢) = (68°, 204°), which
do not correspond with the so-called northern cold spot of [43], but with the results
of [48], where again one of them is a hot spot. Also [40] locates one of these two
spots. All these results were achieved with an analysis of the VW-band, but we find
similar results in a single band analysis.

It is possible to define a new coordinate frame, including a new direction of the
“north pole”, such that all of these spots are contained in the “southern” hemisphere.
This new north pole would then be located at (6, ¢) = (51°, 21°).
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Fig.4.9 The o-normalised deviations of the mask-filling method for the original KQ75-mask (blue)
and for the modified mask of the previous figure (green) in absolute values, plotted as a function of
the scale parameter, whereby as above “+” denotes the mean, “x” the standard deviation and the
boxes the y?-combination. The full sky as well as again the single hemispheres are considered. The
blue lines exactly correspond to the blue lines of Fig.4.5
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Fig. 4.10 Same as Fig.4.9 but exclusive for the modified mask of Fig. 4.8 applied to the Q- (red),
V- (green) and W-band (blue). This plot is associated with Fig.4.6
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If the considered spots really depend on some yet not completely understood,
maybe secondary, physical effect, they should not be implemented in a testing for
intrinsic non-Gaussianity. For this reason, we modify the KQ75-mask by additionally
excluding all above mentioned spots. A small peculiarity at the edge of the mask next
to the cold spot as well as three very small blurs in the right half of the lower left
mollweide projection in Fig. 4.8 are not considered, since we regard their appearance
as insufficient for being a distinctive feature. The modification of the KQ75-mask is
illustrated in the lower right part of Fig.4.8.

We now apply this new mask to the a-response of both the WMAP data as well as
the simulations and repeat the analysis of Sect. 4.4.1. The results are illustrated in the
Figs.4.9 and 4.10 as well as in Table 4.4. A clear increase of S(r) in comparison to the
former analysis is evident. This heightening is in particular present in the southern
hemisphere, where we detected more local features than in the north. The largest
increase takes place in the co-added VW-band, where we now reach deviations of up
to 4.0 for the y2-combination in a full-sky analysis (former maximum: 2.9) and to
the extend of 6.0 in an analysis of the northern hemisphere (former maximum: 5.5).
But also the single bands in Fig.4.10 as well as all scale-independent diagonal x-
statistics in Table 4.4 show without exception a greater evidence for non-Gaussianity.

One could have expected to obtain higher values for S(r) since the a-response of
the WMAP data in comparison to the one of the simulations featured a shift to higher
values (see Fig.4.3): By now cutting out the local features, that exclusively consist
of cold spots in terms of pixel-wise deviations, one excludes spots that showed lower
values than the average of the simulations (see Eq. 4.10). Therefore, the shift to higher
values becomes even larger, hence leading to a higher S(r). Still, the exclusion of
the spots is helpful and necessary, since these local anomalies could origin in some
independent physical process, as mentioned above.

Table 4.4 Same as Table4.2, but after excluding the cold spots via the modified KQ75-mask

Full sky (S/%) Northern sky Southern sky

X<2a)

VW (mask-filled) 2.4/97.6 2.8/98.4 2.0/97.2
Q (mask-filled) 2.3/97.5 2.8/98.3 1.8/96.9
V (mask-filled) 2.3/97.6 2.7/98.1 1.9/97.1
W (mask-filled) 2.4/97.7 2.6/98.2 2.0/97.4
Xz,

VW (mask-filled) 2.6/96.7 4.8/99.8 0.2/97.2
Q (mask-filled) 1.3/90.6 2.5/97.0 0.6/82.1
V (mask-filled) 2.0/94.9 4.4/99.4 0.4/74.1
W (mask-filled) 2.2/96.2 3.1/98.0 0.4/78.9
Xia).oa

VW (mask-filled) 2.7/198.0 4.0/99.1 1.6/96.2
Q (mask-filled) 2.2/97.1 3.0/98.6 1.6/95.6
V (mask-filled) 2.4/97.3 3.7/98.9 1.5/95.3

W (mask-filled) 2.5/97.9 3.2/98.7 1.6/95.5
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4.5 Summary

We performed a scaling index analysis of the WMAP 5-year data following up the
investigations of [52]. For more realistic results around the mask, we additionally
implemented a mask-filling method. By comparing the Q-, V-, W- and the co-added
VW-band of the WMAP data with 1000 simulated maps per band, we (re)detected
strong deviations from Gaussianity as well as asymmetries in the data, which can be
summarized and interpreted as follows:

The scaling index values of the WMAP data are shifted to higher values and
feature a higher variability than those of the simulations, especially in the northern
hemisphere. This effect can be interpreted as less structure as well as more structural
variations in the CMB signal compared to the corresponding Gaussian model. The
results are confirmed by several statistics, that show deviations from Gaussianity of up
to 5.9¢ in the scale-dependent, and 5.5¢ in the scale-independent case. These results
are slightly lower applying the mask-filling method, and show high similarities within
the different bands. In addition, we detected strong asymmetries by performing an
analysis of rotated hemispheres: rotations pointing to northern directions show by far
higher deviations from Gaussianity for the mean and the y2-analysis than rotations
pointing to the south. Observing the standard deviation, we obtained a negative
outcome in the north and a positive in the south. This implies that the north possesses
a more consistent pattern than the simulations, while the south shows the converse
behaviour. This feature is in line with later investigations of local features, where we
detected more local anomalies in the southern than in the northern hemisphere.

Furthermore, we performed an analysis of local features by studying pixel-wise
deviations from Gaussianity with and without a previous smoothing of the a-
responses. For these investigations, we exclusively applied the mask filling method
which can reduce the distorting effects on measurements like the scaling indices that
appear when cutting out the masked regions. This mask-filling method eliminates the
diluting effects on the border and therefore allows for an analysis of local features,
which show a similar behaviour of lower outcome in the scaling index method. We
detected the well-known cold spot and three additional spots in the southern as well
as two spots in the northern hemisphere. Except for one single spot in the south,
all findings are in agreement with former results of different investigations. Since
these spots could origin on some yet not completely understood physical effect, we
excluded them from the data set and repeated the former analysis. Instead of obtain-
ing lower deviations, the results show an increase of non-Gaussianity in all bands.
Therefore, the discovered local anomalies are not the reason of the global detection
of non-Gaussianity, but were actually dampening the deviations on average. In for-
mer isotropic wavelet-based analyses, an exclusion of detected spots lessened the
significance level of indications of non-Gaussianity [37]. Our new findings indicate
in contrast, that the isotropic scaling index method can detect several different yet
complementary aspects of the structural composition of the underlying data. The
results of our investigation are in agreement with the steerable wavelet-based analy-
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sis in [79], where the non-Gaussianites were conserved after excluding the detected
local anomalies.

4.6 Conclusions

The redetection of indications for non-Gaussianity of the WMAP 3-year data analysis
leads to the conclusion that the observed results are not time-depending. In contrary,
we can detect even higher deviations from the simulations which mimic the Gaussian
properties of the best fit AC DM-model. Therefore, it is highly improbable for the
results to be caused by effects related to short-term measurements.

In addition, the coherence between the different analysed bands implies that the
foreground influence plays only a minor role but that the results are very unlikely to
be truly of thermal origin.

Finally, the agreement of the detected spots with former investigations confirms
the existence of these local anomalies.

The two most important tasks for future studies are: First, to identify possible
reasons for the indications of non-Gaussianity, which could be possible with the
attainment of more and more precise data, e.g. with the upcoming PLANCK-mission.
Second, to figure out possible sources of the observed local features and thereby
solving the question, if these anomalies are due to systematics or foreground effects
or indeed represent variations in the CMB signal itself.

References

A H. Guth, Phys. Rev. D 23, 347 (1981)

A. Linde, Phys. Lett. 108B, 389 (1982)

A. Albrecht, P. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)

V. Acquaviva, N. Bartolo, S. Matarrese, A. Riotto, Nucl. Phys. B 667, 119 (2003)

A.H. Linde, V. Mukhanov, Phys. Rev. D 56, R535 (1997)

PJ.E. Peebles, ApJ Lett. 438, L1 (1997)

F. Bernardeau, J.-P. Uzan, Phys. Rev. D 66, 103506 (2002)

N. Bartolo, S. Matarrese, A. Riotto, Phys. Rev. D 65, 103505 (2002)

D.H. Lyth, D. Wands, Phys. Lett. B 524, 5 (2002)

D.H. Lyth, C. Ungarelli, D. Wands, Phys. Rev. D 67, 023503 (2003)

. J. Garriga, V. Mukhanov, Phys. Lett. B 458, 219 (1999)

. C. Armendariz-Picon, T. Damour, V. Mukhanov, Phys. Lett. B 458, 209 (1999)

. N. Bartolo, E. Komatsu, S. Matarrese, A. Riotto, Phys. Rep. 402, 103 (2004)

M. LoVerde, A. Miller, S. Shandera, L. Verde, JCAP 4, 14 (2008)

. N. Kaiser, A. Stebbins, Nature 310, 391 (1984)

. N. Turok, D. Spergel, Phys. Rev. Lett. 64, 2736 (1990)

. N. Turok, ApJ Lett. 473, L5 (1996)

. R.Jeannerot, J. Rocher, M. Sakellariadou, Phys. Rev. D 68, 103514 (2003)

. E. Komatsu, N. Afshordi, N. Bartolo, D. Baumann, J.R. Bond, E.I. Buchbinder, C.T. Byrnes,
X. Chen, D.J.H. Chung, A. Cooray, P. Creminelli, N. Dalal, O. Dore, R. Easther, A.V. Frolov,

-
CPORXNANE LN~

=
O oAU AW~



76

20.
21.

22.
23.

24.
25.

26.
217.
28.
29.
30.
31.

32.
33.
34.

35.
36.
37.
38.
39.
40.

41.
42.
43.

44,
45.
46.
47.
48.
49.
50.
51.
52.
. G. Hinshaw, M.R. Nolta, C.L. Bennett, R. Bean, O. Dor, M.R. Greason, M. Halpern, R.S. Hill,

4 Scaling Indices Applied to the WMAP 5-Year Data

K.M. Gérski, M.G. Jackson, J. Khoury, W.H. Kinney, L. Kofman, K. Koyama, L. Leblond, J.-L.
Lehners, J.E. Lidsey, M. Liguori, E.A. Lim, A. Linde, D.H. Lyth, J. Maldacena, S. Matarrese,
L. McAllister, P. McDonald, S. Mukohyama, B. Ovrut, H.V. Peiris, C. Raeth, A. Riotto, Y.
Rodriguez, M. Sasaki, R. Scoccimarro, D. Seery, E. Sefusatti, U. Seljak, L. Senatore, S. Shan-
dera, E.P.S. Shellard, E. Silverstein, A. Slosar, K.M. Smith, A.A. Starobinsky, P.J. Steinhardt,
F. Takahashi, M. Tegmark, A.J. Tolley, L. Verde, B.D. Wandelt, D. Wands, S. Weinberg, M.
Wyman, A.P.S. Yadav, M. Zaldarriaga, Astro2010, The Astronomy and Astrophysics Decadal
Survey. Science White Papers 158 (2009)

L.-Y. Chiang, P.D. Naselsky, O.V. Verkhodanov, M.J. Way, ApJ Lett. 590, L65 (2003)

E. Komatsu, A. Kogut, M.R. Nolta, C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, M.
Limon, S.S. Meyer, L. Page, D.N. Spergel, G.S. Tucker, L. Verde, E. Wollack, E.L. Wright,
ApJS 148, 119 (2003)

P. Coles, P. Dineen, J. Earl, D. Wright, MNRAS 350, 989 (2004)

L.J. O’Dwyer, H.K. Eriksen, B.D. Wandelt, J.B. Jewell, D.L. Larson, K.M. Gérski, A.J. Banday,
S. Levin, P.B. Lilje, ApJ Lett. 617, L99 (2004)

L.-Y. Chiang, P.D. Naselsky, P. Coles, ApJ 664, 8 (2007)

H.K. Eriksen, G. Huey, A.J. Banday, K.M. Goérski, J.B. Jewell, .J. O’Dwyer, B.D. Wandelt,
ApJ 665, 1L (2007)

0. Rudjord, F.X. Hansen, X. Lan, M. Liguori, D. Marinucci, S. Matarrese, ApJ 701, 369 (2009)
K.M. Smith, L. Senatore, M. Zaldarriaga, JCAP 0909, 006 (2009)

H.K. Eriksen, F.K. Hansen, A.J. Banday, K.M. Goérski, P.B. Lilje, ApJ 605, 14 (2004)

FK. Hansen, A.J. Banday, K.M. Gorski, MNRAS 354, 641 (2004)

F.K. Hansen, A.J. Banday, K.M. Gérski, H.K. Eriksen, P.B. Lilije, ApJ 704, 1448 (2009)

A. Bonaldi, S. Ricciardi, S. Leach, F. Stivoli, C. Baccigalupi, G. De Zotti, MNRAS 382, 1791
(2007)

A. Bernui, Phys. Rev. D 78, 063531 (2008)

A. Bernui, W.S. Hipolito-Ricaldi, MNRAS 389, 1453 (2008)

J. Hoftuft, H.K. Eriksen, A.J. Banday, K.M. Gérski, FK. Hansen, P.B. Lilje, ApJ 699, 985
(2009)

H.K. Eriksen, D.I. Novikov, P.B. Lilje, A.J. Banday, K.M. Gérski, ApJ 612, 64 (2004)

C.-G. Park, MNRAS 349, 313 (2004)

P. Vielva, E. Martines-Gonzalez, R.B. Barreiro, J.L. Sanz, L. Cay6n, ApJ 609, 22 (2004)
F.K. Hansen, P. Cabella, D. Marinucci, N. Vittorio, ApJ Lett. 607, L67 (2004)

K. Land, J. Magueijo, MNRAS 357, 994 (2005)

D. Pietrobon, A. Amblard, A. Balbi, P. Cabella, A. Cooray, D. Marinucci, Phys. Rev. D 78,
103504 (2008)

C. Rith, G. Morfill, G. Rossmanith, A.J. Banday, K.M. Gorski, PRL 102, 131301 (2009)
V.G. Gurzadyan, A.A. Kocharyan, A&A Lett. 492, .33 (2008)

V.G. Gurzadyan, A.E. Allahverdyan, T. Ghahramanyan, A.L. Kashin, H.G. Khachatryan, A.A.
Kocharyan, H. Kuloghlian, S. Mirzoyan, E. Poghosian, G. Yegorian, A&A 497, 343 (2009)
P. Mukherjee, Y. Wang, ApJ 613, 51 (2004)

L. Cayo6n, L. Jin, A. Treaster, MNRAS 362, 826 (2005)

M. Cruz, E. Martines-Gonzalez, P. Vielva, L. Cayon, MNRAS 356, 29 (2005)

M. Cruz, L. Cayén, E. Martines-Gonzélez, P. Vielva, J. Jin, ApJ 655, 11 (2007)

J.D. McEwen, M.P. Hobson, A.N. Lasenby, D.J. Mortlock, MNRAS 359, 1583 (2005)

J.D. McEwen, M.P. Hobson, A.N. Lasenby, D.J. Mortlock, MNRAS Lett. 371, L50 (2006)
J.D. McEwen, M.P. Hobson, A.N. Lasenby, D.J. Mortlock, MNRAS 388, 659 (2008)

P. Vielva, Y. Wiaux, E. Martines-Gonzélez, P. Vandergheynst, MNRAS 381, 932 (2007)

C. Rith, P. Schuecker, A.J. Banday, MNRAS 380, 466 (2007)

N. Jarosik, A. Kogut, E. Komatsu, M. Limon, N. Odegard, S.S. Meyer, L. Page, H.V. Peiris,
D.N. Spergel, G.S. Tucker, L. Verde, J.L. Weiland, E. Wollack, E.L. Wright, ApJS 170, 288
(2007)



References 1

54.

55.

56.

57.

58.

59.
60.
61.

62.
63.

64.

65.

66.
67.
68.
69.
70.
71.
72.
73.
74.

75.
76.
71.
78.
79.

L. Page, G. Hinshaw, E. Komatsu, M.R. Nolta, D.N. Spergel, C.L. Bennett, C. Barnes, R. Bean,
O. Dor, J. Dunkley, M. Halpern, R.S. Hill, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, N.
Odegard, H.V. Peiris, G.S. Tucker, L. Verde, J.L. Weiland, E. Wollack, E.L. Wright, ApJS 170,
335 (2007)

C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, L. Page,
D.N. Spergel, G.S. Tucker, E. Wollack, E.L. Wright, C. Barnes, M.R. Greason, R.S. Hill, E.
Komatsu, M.R. Nolta, N. Odegard, H.V. Peirs, L. Verde, J.L. Weiland, ApJS 148, 1 (2003)
G. Hinshaw, J.L. Weiland, R.S. Hill, N. Odegard, D. Larson, C.L. Bennett, J. Dunkley, B. Gold,
M.R. Greason, N. Jarosik, E. Komatsu, M.R. Nolta, L. Page, D.N. Spergel, E. Wollack, M.
Halpern, A. Kogut, M. Limon, S.S. Meyer, G.S. Tucker, E.L. Wright, ApJS 180, 225 (2009)
K.M. Gérski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M. Bartelmann,
ApJ 622, 759 (2005)

B. Gold, C.L. Bennett, R.S. Hill, G. Hinshaw, N. Odegard, L. Page, D.N. Spergel, J.L. Weiland,
J. Dunkley, M. Halpern, N. Jarosik, A. Kogut, E. Komatsu, D. Larson, S.S. Meyer, M.R. Nolta,
E. Wollack, E.L. Wright, ApJ Suppl. Ser. 180, 265 (2009)

C. Rith, W. Bunk, M.B. Huber, G.E. Morfill, J. Retzla, P. Schuecker, MNRAS 337, 413 (2002)
C. Rith, P. Schuecker, MNRAS 344, 115 (2003)

M. Gliozzi, W. Brinkmann, C. Rith, L.E. Papadakis, H. Negoro, H. Scheingraber, A&A 391,
875 (2002)

M. Gliozzi, L.E. Papadakis, C. Riith, A&A 449, 969 (2006)

F. Jamitzky, R.W. Stark, W. Bunk, S. Thalhammer, C. Rith, T. Aschenbrenner, G.E. Morfill,
W.M. Heckl, Ultramicroscopy 86, 241 (2001)

R. Monetti, H. Bohm, D. Miiller, D. Newitt, S. Majumdar, E. Rummeny, T.M. Link, C. Rith,
Proc. SPIE 5032, 1777 (2003)

C. Rith, R. Monetti, J. Bauer, I. Sidorenko, D. Miiller, M. Matsuura, E.-M. Lochmiiller, P.
Zysset, F. Eckstein, New J. Phys. 10, 125010 (2008)

K. Tomita, Phys. Rev. D 72, 10 (2005)

K. Tomita, K.T. Inoue, Phys. Rev. D 77, 103522 (2008)

R.J. Adler, J.D. Bjorken, J.M. Overduin, gr-qc/0602102 (2006)

K.T. Inoue, J. Silk, ApJ 648, 23 (2006)

K.T. Inoue, J. Silk, ApJ 664, 650 (2007)

L. Rudnick, S. Brown, L. Williams, ApJ 671, 40 (2007)

B.R. Granett, M.C. Neyrinck, I. Szapudi, ApJ 683, L99 (2008)

M. Cruz, N. Turok, P. Vielva, E. Martines-Gonzalez, M. Hobson, Science 318, 1612 (2007)
P.D. Naselsky, PR. Christensen, P. Coles, O. Verkhodanov, D. Novikov, J. Kim, Astrophys.
Bull. 65, 101 (2010)

R.A. Battye, B. Garbrecht, A. Pilaftsis, JCAP 809, 20 (2008)

J.A.R. Cembranos, A. de la Cruz-Dombriz, A. Dobado, A.L. Maroto, arXiv:0803.0694 (2008)
J. Garcia-Bellido, T. Haugbolle, JCAP 04, 003 (2008)

1. Masina, A. Notari, JCAP 09, 028 (2010)

Y. Wiaux, P. Vielva, R.B. Barreiro, E. Martines-Gonzélez, P. Vandergheynst, MNRAS 385,
939 (2008)



Chapter 5
Surrogates and Scaling Indices Applied

to the WMAP 7-Year Data

Inflationary models of the very early universe have proved to be in very good
agreement with the observations of the linear correlations of the cosmic microwave
background (CMB). While the simplest, single field, slow-roll inflation [1-3] pre-
dicts that the temperature fluctuations of the CMB correspond to a (nearly) Gaussian,
homogeneous and isotropic random field, more complex models may give rise to
non-Gaussianity [4—7]. Models in which the Lagrangian is a general function of the
inflaton and powers of its first derivative [8, 9] can lead to scale-dependent non-
Gaussianities, if the sound speed varies during inflation. Similarily, string theory
models that give rise to large non-Gaussianity have a natural scale dependence [10].
If the scale dependence of non-Gaussian signatures plays an important role in theory,
the conventional (global) parametrisation of non-Gaussianity via fy is no longer
sufficient to describe the level of non-Gaussianity and to discriminate between dif-
ferent models. fy; must at least become scale dependent—if this parametrisation is
sufficient at all. But first of all such scale-dependent signatures have to be identified.
Possible deviations from Gaussianity have been investigated in studies based on
e.g. the WMAP data of the CMB (see [11] and references therein) and claims for
the detection of non-Gaussianities and other anomalies (see e.g. [12-20]) have been
made. These studies have in common that the level of non-Gaussianity is assessed
by comparing the results for the measured data with a set of simulated CMB-maps
which were generated on the basis of the standard cosmological model and/or specific
assumptions about the nature of the non-Gaussianities.
On the other hand, it is possible to develop model-independent tests for higher order
correlations (HOCs) by applying the ideas of constrained randomisation [21-23],
which have been developed in the field of nonlinear time series analysis [24]. The
basic formalism is to compute statistics sensitive to HOCs for the original data set
and for an ensemble of surrogate data sets, which mimic the linear properties of the

Original publication: C. Rith, G. E. Morfill, G. Rossmanith, A. J. Banday, K. M. Gérski, A
model-independent test for scale-dependent non-Gaussianities in the cosmic microwave back-
ground, PRL, 102, 131301 (2009).
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DOI: 10.1007/978-3-319-00309-2_5, © Springer International Publishing Switzerland 2013
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original data. If the computed measure for the original data is significantly different
from the values obtained for the set of surrogates, one can infer that the data contain
HOCs.

Based on these ideas we present in this Letfer a new method for generating surrogates
allowing for probing scale-dependent non-Gaussianities.

Our study is based on the WMAP data of the CMB. Since our method in its present
form requires full sky coverage to ensure the orthogonality of the set of basis functions
Y we used the five-year “foreground-cleaned” Internal Linear Combination (ILC)
map (WMAPS5) [25] generated and provided! by the WMAP-team. For comparison
we also included the maps produced by Tegmark et al. [26, 27], namely the three
year cleaned map (TOHc3) and the Wiener-filtered cleaned map (TOHwW3),2 which
were generated pursuing a different approach for foreground cleaning. Since the
Gaussianity of the temperature distribution and the randomness of the set of Fourier
phases are a necessary prerequisite for the application of our method we performed
the following preprocessing steps. First, the maps were remapped onto a Gaussian
distribution in a rank-ordered way. By applying this remapping we automatically
focus on HOCs induced by the spatial correlations in the data while excluding any
effects coming from deviations of the temperature distribution from a Gaussian one.
To ensure the randomness of the set of Fourier phases we performed a rank-ordered
remapping of the phases onto a set of uniformly distributed ones followed by an
inverse Fourier transformation. These two preprocessing steps result in minimal
changes to the ILC map (the maps remain highly correlated with cross-correlations
¢ > 0.95). The main effect is the removal of significant outliers in the temperature
distribution.

To test for scale-dependsent non-Gaussianities in a model-independent way we
propose the following two-step procedure. Without loss of generality we restrict the
description of the method and all subsequent analyses to the case of non-Gaussianities
on large scales. Consider a CMB map T (0, ¢), where T (0, ¢) is Gaussian dis-
tributed and calculate its Fourier transform. The complex valued Fourier coeffi-
cients aj,,, ag, = fdQnT(n)Yl’fn(n) can be written as a;,;, = |a1m|ei¢lm with
¢ = arctan (Im(ayy)/Re(any)). The linear or Gaussian properties of the under-
lying random field are contained in the absolute values |a;;,, |, whereas all HOCs—if
present—are encoded in the phases ¢y, and the correlations among them. First,
we generate a first order surrogate map, in which any phase correlations for the
scales, which are not of interest (here: the small scales), are randomised. This is
achieved by a random shuffle of the phases ¢y, for I > [.,;,0 < m < I, where
Lo = 10, 15,20, 25, 30 in this Letter and by performing an inverse Fourier trans-
formation (Fig.5.1). Second, N (N = 500 for l.,; = 20, N = 100 otherwise)
realisations of second order surrogate maps are generated for the first order surro-
gate map, in which the remaining phases ¢y, with 1 < < l.;,0 < m <[ are
shuffled while the already randomised phases for the small scales are preserved.

! http://lambda.gsfc.nasa.gov/
2 http://space.mit.edu/home/tegmark/wmap.html
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Fig. 5.1 ILC map after remapping of the temperatures and phases (left). First order (middle) and
respective second order surrogate (right) for I, = 20. Note the resemblance of the first order
surrogate with the ILC map at large scales

Figure 5.1 shows a realisation of a second order surrogate map after inverse Fourier
transformation. Note that the Gaussian properties of the remapped ILC map, which
are given by |ay,, |, are exactly preserved in all surrogate maps. Finally, for calculating
higher order statistics the maps were degraded to N;4. = 256 and residual monopole
and dipole contributions were subtracted. To compare the two classes of surrogates,
we calculate local statistics in the spatial domain, namely scaling indices (SIM) as
described in Rith et al. [18]. In brief, scaling indices estimate local scaling properties
of a point set P. The spherical CMB data can be represented as a three-dimensional
point distribution P = p; = (x;, yi,zi), i = 1,..., Npixels by transforming the
temperature fluctuations into a radial jitter. For each point p; the local weighted
&
cumulative point distribution p is calculated p(p;, r) = Zivi Xf” G2 di;
| pi — Pj|l. The weighted scaling indices «(p;, r) are then obtained by calculating the

logarithmic derivative of p(p;, r) withrespecttor, a(p;, r) = %§+gpr”r). For each
pixel we calculated scaling indices for ten different scales, r; = 0.025,...,r10 = 0.25
in the notation of [18]. For each scale we calculate the mean ({«)) and standard devi-
ation (o) of the scaling indices a(p;, r) derived from a set of pixels belonging to
rotated hemispheres or the full sky. To investigate the correlations between the scal-
ing indices and temperature fluctuations, we also considered the standard deviation
(or) for the mere temperature distribution of the respective sky regions.

The differences of the two classes of surrogates are quantified by the o-normalised
deviation

SY) = Ysurrot = Ysurro2)) /0¥ urrer »

Y =o7, (o), 04, X2 (surrol: first order surrogate, surro2: second order surrogate)
and the significance levels SL = 1 — p, where p is the fraction of second order
surrogates, which have a higher (lower) Y than the first order surrogate. y? denotes
diagonal y>-statistics, which we obtain by combining (cv), o, for a given scale r;, i.e.

2
X;(r) = (X))
P =3 | B Xt
=1 OX;(ri)
with X; = (a), X2 = 04 and (X ), ox; derived from the N realisations of second
order surrogates. As scale-independent measure we also consider y2 as obtained by
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Fig. 5.2 Deviation S as derived from rotated upper hemispheres for o7 (left) and {a(r19)) (right)
for the WMAPS map and /.,,; = 20. The z-axis of the respective rotated reference frame pierces the
centre of the respective colour-coded pixel. 768 rotated hemispheres, which correspond to number
of coloured pixels, were considered. (For a more detailed description of this visualisation technique
see e.g. [14, 18])

summing over the scales (N, = 10),

LG | X () — (X ()
zz[ ]

o
i=1j=ji Xj(rl)

for one single measure (j; = 1, jo = 1; j1 = 2, j» = 2) and the two measures
(j1 = 1, jo = 2). Figure5.2 shows S(or) and S({c(r19))) derived from pixels
belonging to the respective upper hemispheres for 768 rotated reference frames.
Statistically significant signatures for non-Gaussianity and ecliptic hemispherical
asymmetries become immediately obvious, whereby these signatures can solely
be induced by large scale HOCs. Although S(or) and S({«(rip))) are spatially
highly (anti-)correlated (¢ = —0.95), the two effects are nevertheless complemen-
tary to each other in the sense that a systematically lower/higher o7 would lead to a
lower/higher (a(r19)) and not to the observed higher/lower value for the first order
surrogate map. These systematically shifted scaling indices are a generic feature
present in all three maps (Fig.5.3). Although the probability densities P («(r1o)) are
different due to the smoothing or Wiener-filtering for the three maps, the shifts of
the first order surrogate relative to its second order surrogates can be found in all
three cases. We also cross-correlated the deviation maps shown in Fig.5.2 derived
from the three input maps and always obtained ¢ > 0.98 for the correlation coeffi-
cient. These systematic deviations lead to significant detections of non-Gaussianities
which are shown in Fig. 5.4 and summarised for /., = 20 in Tables 5.1 and 5.2. The
most significant and most stable results are found for () at larger radii, where for all
three maps none of the 500 second order surrogates had a higher (upper hemisphere)
or lower (lower hemisphere) value than the respective first order surrogate, leading
to a significance level SL > 99.8 % for (a(r19)). Also the combined measure x> (@)
yields deviations S ranging from 5.2 up to 7.9, which represent one of the most
significant detection of non-Gaussianity in the WMAP data to date. We estimated
how varying [.,; values affect the results and found that both the non-Gaussianities
and asymmetries are detected for all considered /.,;, where the highest deviations
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Fig. 5.3 Probability density P (a(ryp)) for the surrogates of the WMAPS (blue), TOHwW3 (yellow)
and TOHc3 (red) map for the rotated upper and lower hemisphere and /.,; = 20. The black lines
denote the respective first order surrogate. The reference frame is chosen such that the difference
AS = S,p— Sjow between the upper and lower hemisphere becomes maximal for (a(r10)) regarding
the WMAPS surrogates

are obtained for /., = 20. Although S becomes considerably smaller for /.,,; = 10,
we can still detect the non-Gaussianities with SL > 99.0 %, which is larger than the
results reported in [28] (SL = 95 %), where also [.,; = 10 was used. We performed
the same analyses for the coadded WMAP foreground template maps and for simu-
lations using the best fit ACDM power spectrum and WMAP-like noise and beam
properties. We found in none of these cases significant signatures as reported above.
Details about these studies are deferred to a longer forthcoming publication.

In conclusion, we demonstrated the feasibility to generate new classes of surrogate
data sets preserving the power spectrum and partly the information contained in the
Fourier phases, while all other HOCs are randomised. We found significant evidence
for both asymmetries and non-Gaussianities on large scales in the WMAP data of the
CMB using scaling indices as test statistics. The novel statistical test involving new
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Fig. 5.4 Deviations |S(r)| for the rotated upper and lower hemisphere for (a) (black), o, (blue)
and a Xz-combination of (a) and o, (red) (Io; = 20, N = 500). The solid (dashed, dashed-dotted)
lines denote the WMAPS (TOHw3, TOHc3) map. The shaded region indicates the 30 significance
interval. The insets show the results for (a/(r10)), (a(r9)) and («(rg)) (solid, dashed, dashed-dotted)
as a function of /., for the WMAPS map (here: N = 100)
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Table 5.1 S/SL upper

hemontere WMAPS TOHc3 TOHwW3
(SISL) (SISL) (SISL)
or —28/99.8  —3.0/>99.8 —2.9/>998
(a(rio))  35/>998  3.5/>998 3.6/>99.8
o 5.7/99.8 52/99.6 7.0/>99.8
- 3.1/992 —0.7/74.4 2.1/954
oo 61/>998  3.6/99.0 64/> 998
::1:’111‘: psﬁzreS/ SL lower WMAPS TOHC3 TOHW3
(SISL) (SISL) (SISL)
or 2.7199.8 2.9/>99.8 2.8/99.8
(a(ri0))  —3.9/>998 —39/>998 —3.7/>998
Xy 7.9/>99.8 5.4/99.8 73/>99.8
% —0.7/76.4 447996 ~0.6/67.0
oy 581998 6.3/>99.8 5.2/>99.8

classes of surrogates allows for an unambigous relation of the signatures identified in
real space with scale-dependent HOCs, which are encoded in the respective Fourier
phase correlations. Our results, which are consistent with previous findings [12-16,
18, 28] but also extend to smaller scales than those reported in [17] (Io,; = 3),
[28] (Icyr = 10) and [20] (Icyr < 3), point towards a violation of statistical isotropy
and Gaussianity. Such features would disfavour canonical single-field slow-roll
inflation—unless there is some undiscovered systematic error in the collection or
reduction of the CMB data or yet unknown foreground contributions. Thus, at this
stage it is too early to claim the detected HOCs as cosmological and further tests are
required to elucidate the true origin of the detected anomalies. Their existence in the
three maps might, however, be suggestive.

In either case the proposed statistical method offers an efficient tool to develop
model-independent tests for scale-dependent non-Gaussianities. Due to the gener-
ality of this technique it can be applied to any signal, for which the analysis of
scale-dependent HOC:s is of interest.

Many of the results in this paper have been obtained using HEALPix [29].
We acknowledge the use of LAMBDA. Support for LAMBDA is provided by the
NASA Office of Space Science.
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Chapter 6
Extending the Analysis of the WMAP 7-Year
Data

6.1 Introduction

The Cosmic Microwave Background (CMB) radiation represents the oldest observable
signal in the Universe. Since this relic radiation has its origin just 380000 years after
the Big Bang when the CMB photons were last scattered off electrons, this radiation
is one of the most important sources of information to gain more knowledge about
the very early Universe. Estimating the linear correlations of the temperature fluctu-
ations in the CMB as measured e.g. with the WMAP satellite by means of the power
spectrum has yielded very precise determinations of the parameters of the standard
ACDM cosmological model like the age, the geometry and the matter and energy
content of the Universe [1, 2].

Analyzing CMB maps by means of the power spectrum represents an enormous
compression of information contained in the data from approx. 10® temperature
values to roughly 1000 numbers for the power spectrum. It has often been pointed
out ([3] and references therein) that this data compression is lossless and thus fully
justified, if and only if the statistical distribution of the observed fluctuations is a
Gaussian distribution with random phases. Any information that is contained in the
phases and the correlations among them, is not encoded in the power spectrum, but
has to be extracted from measurements of higher-order correlation (HOC). Thus,
the presence of phase correlations may be considered as an unambiguous evidence
of non-Gaussianity (NG). Otherwise, non-Gaussianity can only be defined by the
negation of Gaussianity.

Primordial NG represents one way to test theories of inflation with the ultimate
goal to constrain the shape of the potential of the inflaton field(s) and their possible
(self-)interactions. While the simplest single field slow roll inflationary scenario
predicts that fluctuations are nearly Gaussian [4—6], a variety of more complex models

Original publication: C. Rith, A. J. Banday, G. Rossmanith, H. Modest, R. Siitterlin, K. M.
Gorski, J. Delabrouille and G. E. Morfill, Scale-dependent non-Gaussianities in the WMAP
data as identified by using surrogates and scaling indices, MNRAS, 415, 2205 (2011).

G. Rossmanith, Non-linear Data Analysis on the Sphere, Springer Theses, 87
DOI: 10.1007/978-3-319-00309-2_6, © Springer International Publishing Switzerland 2013
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predict deviations from Gaussianity [7—10]. Models in which the Lagrangian is a
general function of the inflaton and powers of its first derivative [11, 12] can lead
to scale-dependent non-Gaussianities, if the sound speed varies during inflation.
Similarly, string theory models that give rise to large non-Gaussianity have a natural
scale dependence [13, 14]. Also, NGs put strong constraints on alternatives to the
inflationary paradigm [15, 16].

Given the plethora of conceivable scenarios for the very early Universe, it is
worth first checking what is in the data in a model-independent way. Further, such a
model-independent approach has a large discovery potential to detect yet unexpected
fingerprints of nonlinear physics in the early universe. Thus, a detection of possibly
scale-dependent non-Gaussianity being encrypted in the phase correlations in the
WMAP data would be of great interest. While a detection of non-Gaussianity could
be indicative of an experimental systematic effect or of residual foregrounds, it could
also point to new cosmological physics.

The investigations of deviations from Gaussianity in the CMB (see [1] and refer-
ences therein) and claims for the detection of non-Gaussianitiy and a variety of other
anomalies like hemispherical asymmetries, lack of power at large angular scales,
alignment of multipoles, detection of the Cold Spot etc. (see e.g. [17-30]) have
been made, where the statistical significance of some of the detected signatures is
still subject to discussion [31, 32]. These studies have in common that the level of
non-Gaussianity is assessed by comparing the results for the measured data with sim-
ulated CMB-maps which were generated on the basis of the standard cosmological
model and/or specific assumptions about the nature of the non-Gaussianities as para-
metrised with e.g. the scalar, scale-independent parameter f;,;. Other studies focused
on the detection of signatures in the distribution of Fourier phases [33-36] represent-
ing deviations from the random phase hypothesis for Gaussian random fields. These
model-independent tests also revealed signatures of NGs. Pursuing this approach one
can go one step further and investigate possible phase correlations and their relation
to the morphology of the CMB maps by means of so-called surrogate maps.

This technique of surrogate data sets [37] was originally developed for nonlinear
time series analysis. In this field of research complex systems like the climate, stock-
market, heart-beat variability, etc. are analyzed (see e.g. [38] and references therein).
For those systems a full modelling is barely or not possible. Therefore, statistical
methods of constrained randomization involving surrogate data sets were developed
to infer some information about the nature of the underlying physical process in a
completely data-driven, i.e. model-independent way. One of the first and most basic
question here is whether a (quasiperiodic) process is completely linear or whether
also weak nonlinearities can be detected in the data. The basic formalism to answer
this question is to compute statistics sensitive to HOCs for the original data set and
for an ensemble of surrogate data sets, which mimic the linear properties of the
original time series while wiping out all phase correlations. If the computed measure
for the original data is significantly different from the values obtained for the set of
surrogates, one can infer that the data contain HOCs.

Extensions of this formalism to three-dimensional galaxy distributions [39] and
two-dimensional simulated flat CMB maps [40] have been proposed and discussed.
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By introducing a more sophisticated two-step surrogatization scheme for full-sky
CMB observations it has become possible to also test for scale-dependent NG in
a model-independent way [41]. Probing NG on the largest scales (I < 20) yielded
highly significant signatures for both NG and ecliptic hemispherical asymmetries.

In this chapter, we apply the method of constrained randomization to the WMAP
five year and seven year data in order to test for scale-independent and scale-
dependent non-Gaussianity up to / = 300 as encoded in the Fourier phase cor-
relations. Further, this work fully recognises the need to rule out foregrounds and
systematic artefacts as the origin of the detections (as advised by [32]). Therefore, a
large part of our analyses is dedicated to various checks on systematics to single out
possible causes of the detected anomalies.

The chapter is organized as follows: In Sect. 6.2 we briefly describe the observa-
tional and simulated data we use in our study. The method of constrained random-
ization is reviewed in some detail in Sect. 6.3. Scaling indices, which we use as test
statistic, and the statistics derived out of them are discussed in Sect.6.4. In Sect. 6.5
we present our results and we draw our conclusions in Sect. 6.6.

6.2 Data Sets

We used the seven years foreground-cleaned internal linear combination (ILC) map
[42] generated and provided by the WMAP team! (in the following: ILC7). For
comparison we also included the map produced by [43], namely the five years needlet-
based ILC map, which has been shown to be significantly less contaminated by
foreground and noise than other existing maps obtained from WMAP data (in the
following: NILCS).

To check for systematics we also analyzed the following set of maps:

(1) Uncorrected ILC map
The ILC map is a weighted linear combination of the 5 frequency channels
that recovers the CMB signal. The weights are derived by requiring minimum
variance in a given region of the sky under the constraint that the sum of the
weights is unity. Such weights, however, cannot null an arbitrary foreground
signal with a non-blackbody frequency spectrum, thus some residuals due to
Galactic emission will remain. The WMAP team attempts to correct for this
“bias” with an estimation of the residual signal based on simulations and a model
of the foreground sky. Our uncorrected map (UILC7 in the following) is simply
the ILC without applying this correction, computed from the weights provided
in [42] and the 1-degree smoothed WMAP data.

(2) Asymmetric beam map
Beam asymmetries may result in statistically anisotropic CMB maps. To asses
these effects on the signatures of scale-dependent NGs and their (an-)isotropies

! http://lambda.gsfc.nasa.gov
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we make use of the publicly available CMB sky simulations including the effects
of asymmetric beams [44]. Specifically we analyse a simulated map of the V1-
band, because this band is considered to have the least foreground contamination.
Simulated coadded VW-band map

To make sure that neither systematic effects are induced by the method of con-
strained randomization nor the WMAP-like beam and noise properties lead to
systematic deviations from Gaussianity we include in our analysis a co-added
VW-map as obtained using the standard ACDM best fit power spectrum and
WMAP-like beam and noise properties. Note that this map did not undergo the
ILC-map making procedure.

Simulated ILC map

Simulated sky maps result from processing a simulated differential time-ordered
data (TOD) stream through the same calibration and analysis pipeline that is
used for the flight data. The TOD is generated by sampling a reference sky that
includes both CMB and Galactic foregrounds with the actual flight pointings,
and adding various instrumental artefacts. We have then processed the individual
resulting data into 7 separate simulated yearly ILC maps, plus a 7-year merge.
It is worth noting that, if the yearly frequency-averaged maps are combined into
ILCs using the [42] 7-year weights per region, then the resulting ILCs show
clear Galactic plane residuals. This reflects the fact that the simulated data has
a different CMB realisation to the observed sky, and may additionally represent
a mismatch between the simulated foreground properties and the true sky in the
Galactic plane. Instead, we analyse the 7-year merged simulated data to compute
the ILC weights for the simulations, then apply to all yearly data sets separately.
However, the derived weights are quite different from the WMAP7 ones, which
would imply different noise properties in the simulated ILC data compared to
the real data. Care should be exercised for any results that are sensitive to the
specific noise pattern.

Difference ILC map

Finally, we consider the difference map (year 7—year 6) from yearly ILC-maps
computed using the same weights and regions as the 7-year data set from [42].
No debiasing has been applied. With this map we estimate what effect possible
ILC-residuals may have on the detection of NGs.

6.3 Generating Surrogate Maps

To

test for scale-dependent non-Gaussianities in a model-independent way we apply

a two-step procedure that has been proposed and discussed in [41]. Let us describe
the various steps for generating surrogate maps in more detail:

Consider a CMB map T(0, ¢), where T (6, ¢) is Gaussian distributed and its

Fourier transform. The Fourier coefficients aj,, can be written as az, = |y |e'%m
with ¢;,, = arctan (Im(a;;,)/Re(a,)). The linear or Gaussian properties of the
underlying random field are contained in the absolute values |aj;;|, whereas all
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HOCs—if present—are encoded in the phases ¢, and the correlations among
them. Having this in mind, a versatile approach for testing for scale dependent non-
Gaussianities relies on a scale-dependent shuffling procedure of the phase correla-
tions followed by a statistical comparison of the so-generated surrogate maps.

However, the Gaussianity of the temperature distribution and the randomness of
the set of Fourier phases in the sense that they are uniformly distributed in the interval
[—m, 7], are a necessary prerequisite for the application of the surrogate-generating
algorithm, which we propose in the following. To fulfil these two conditions, we per-
form the following preprocessing steps. First, the maps are remapped onto a Gaussian
distribution in a rank-ordered way. This means that the amplitude distribution of the
original temperature map in real space is replaced by a Gaussian distribution in a
way that the rank-ordering is preserved, i.e. the lowest value of the original distrib-
ution is replaced with the lowest value of the Gaussian distribution etc. By applying
this remapping we automatically focus on HOCs induced by the spatial correlations
in the data while excluding any effects coming from deviations of the temperature
distribution from a Gaussian one.

To ensure the randomness of the set of Fourier phases we performed a rank-
ordered remapping of the phases onto a set of uniformly distributed ones followed
by an inverse Fourier transformation. These two preprocessing steps only have mar-
ginal influence to the maps. The main effect is that the outliers in the temperature
distribution are removed. Due to the large number of temperature values (and phases)
we did not find any significant dependence of the specific Gaussian (uniform) real-
ization used for remapping of the temperatures (phases). The resulting maps may
already be considered as a surrogate map and we named it zeroth order surrogate
map. The first and second order surrogate maps are obtained as follows:

We first generate a first order surrogate map, in which any phase correlations for
the scales, which are not of interest, are randomized. This is achieved by a random
shuffle of the phases ¢y, for I ¢ Al = [Lpin, lnax], 0 < m < [ and by performing
an inverse Fourier transformation.

In a second step, N (N = 500 throughout this study) realizations of second
order surrogate maps are generated for the first order surrogate map, in which the
remaining phases ¢y, with [ € Al,0 < m < [ are shuffled, while the already
randomized phases for the scales, which are not under consideration, are preserved.
Note that the Gaussian properties of the maps, which are given by |ay,, |, are exactly
preserved in all surrogate maps.

So far, we have applied the method of surrogates only to the /-range Al = [2, 20].
In this chapter we will repeat the investigations for this /-interval but using newer
CMB maps. Furthermore, we extend the analysis to smaller scales. Namely, we
consider three more /-intervals Al = [20, 60], Al = [60, 120] and Al = [120, 300].
The choice of 60 as I,,;,, and ;4. 1s somewhat arbitrary, whereas the /,;,;, = 120 and
Imax = 300 for the last /-interval was selected in such a way that the first peak in
the power spectrum is covered. Going to even higher /’s doesn’t make much sense,
because the ILC7 map is smoothed to 1 degree FWHM. Some other maps which
we included in our study—especially NILC5—are not smoothed and we could in
principle go to higher I’s. But to allow for a consistent comparison of the results
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obtained with the different observed and simulated input maps we restrict ourselves
to only investigate /-intervals up to 4, = 300 in this study.

Besides this two-step procedure aiming at a dedicated scale-dependent search
of non-Gaussianity, we also test for non-Gaussianity using surrogate maps without
specifying certain scales. In this case there are no scales, which are not of interest,
and the first step in the surrogate map making procedure becomes dispensable. The
zeroth order surrogate map is to be considered here as first order surrogate and the
second order surrogates are generated by shuffling all phases with 0 < m </ for all
available [’s, i.e. in our case Al = [2, 1024].

Finally, for calculating scaling indices to test for higher order correlations the
surrogate maps were degraded to Nyijg. = 256 and residual monopole and dipole
contributions were subtracted. The statistical comparison of the two classes of sur-
rogates will reveal, whether possible HOCs on certain scales have left traces in the
first order surrogate maps, which were then deleted in the second order surrogates.
Before the results of such a comparison of the surrogate maps are shown in detail,
we review the formalism of scaling indices.

6.4 Weighted Scaling Indices and Test Statistics

As test statistics for detecting and assessing possible scale-dependent
non-Gaussianities in the CMB data weighted scaling indices are calculated [39,
40]. The basic ideas of the scaling index method (SIM) stem from the calculation of
the dimensions of attractors in nonlinear time series analysis [45]. Scaling indices
essentially represent one way to estimate the local scaling properties of a point set in
an arbitrary d-dimensional embedding space. The technique offers the possibility of
revealing local structural characteristics of a given point distribution. Thus, point-like,
string-like and sheet-like structures can be discriminated from each other and from
a random background. The alignment of e.g. string-like structures can be detected
by using a proper metric for calculating the distances between the points [46, 47].

Besides the countless applications in time series analysis the use of scaling indices
has been extended to the field of image processing for texture discrimination [48] and
feature extraction [46, 49] tasks. Following further this line we performed several
non-Gaussianity studies of the CMB based on WMAP data using scaling indices in
recent years [24, 26, 40, 41].

Let us review the formalism for calculating this test statistic for assessing HOCs:

In general, the SIM is a mapping that calculates for every point p;,i =
1,..., Npix of a point set P a single value, which depends on the spatial posi-
tion of p; relative to the group of other nearby points, in which the point under
consideration is embedded in. Before we go into the details of assessing the local
scaling properties, let us first of all outline the steps of generating a point set P
out of observational CMB-data. To be able to apply the SIM on the spherical CMB
data, we have to transform the pixelised sky S with its pixels at positions (6;, ¢;),
i =1, ..., Npix, on the unit sphere to a point-distribution in an artificial embedding
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space. One way to achieve this is by transforming each temperature value 7' (6;, ¢;)
to aradial jitter around a sphere of radius R at the position of the pixel centre (6;, ¢;).
Formally, the three-dimensional position vector of the point p; reads as

xi = (R + dR) cos(¢;) sin(6;) 6.1)
vi = (R + dR) sin(¢;) sin(6;) (6.2)
zi = (R + dR) cos(6;) (6.3)
with
dR =a (—T(ai’ ¢i) = (T>) . (6.4)
ar

Hereby, R denotes the radius of the sphere while a describes an adjustment parameter.
The mean temperature and its standard deviation are characterised by (T') and o7,
respectively. By the use of the normalisation we obtain for d R zero mean and a
standard deviation of a. Both R and a should be chosen properly to ensure a high
sensitivity of the SIM with respect to the temperature fluctuations at a certain spatial
scale. For the analysis of WMAP-like CMB data, it turned out that this requirement
is provided using R = 2 for the radius of the sphere and coupling the adjustment
parameter a to the value of the below introduced scaling range parameter r viaa = r
[24]. Now that we obtained our point set P, we can apply the SIM. For every point
pi we calculate the local weighted cumulative point distribution which is defined as

Npix

p(pi.r) =D s (d(pi. p))) (6.5)

j=1

with r describing the scaling range, while s, (e) and d(e) denote a shaping function
and a distance measure, respectively. The scaling index «o(p;, r) is then defined as
the logarithmic derivative of p(p;, r) with respect to r:

_ Olog p(pi,r)

a(pi,r) = Dlogr (6.6)

As mentioned above, s,(e) and d(e) can in general be chosen arbitrarily. For our
. . . . . —(2)2 . .
analysis we use a quadratic gaussian shaping function s, (x) = ¢~(+)" and anisotropic

euclidian normd(p;, p;) = || pi — p;| as distance measure. With this specific choice
of s (e) and d(e) we obtain the following analytic formula for the scaling indices

s 2% ()

j=1 r

a(pi,r) = - : (6.7)
ZNpix e—(d;f_l)2

j=1
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where we used the abbreviationd;; := d( Dis D 7). As becomes obvious from Eq. (6.7),
the calculation of scaling indices depends on the scale parameter r. Therefore,
we can investigate the structural configuration in the underlying CMB-map in a
scale-dependent manner. For our analysis, we use the ten scaling range parameters
ry = 0.025,0.05, ...,0.25, k = 1,2, ...10, which (roughly) correspond to sensitive
[-ranges from Al = [83; 387], Al = [41; 193], ..., Al = [8; 39] [26].

In order to quantify the degree of agreement between the surrogates of different
orders with respect to their signatures left in distribution of scaling indices, we
calculate the mean

N
1 <& .
(@) = - > alpi,re) 6.8)

i=1
and the standard deviation

1 N, 1/2

7 2 (@i ) — ()’ 6.9)
p

i=1

Oa(ry) =

of the scaling indices «; derived from N, considered pixels for the different scal-
ing ranges rx. N, becomes the number of all pixels N,; for a full sky analysis.
To investigate possible spatial variations of signatures of NG and to be able to mea-
sure asymmetries we also consider the moments as derived from the pixels belonging
to rotated hemispheres. In these cases the number N, of the pixels halves and their
positions defined by the corresponding ¢- and #-intervals vary according to the part
of the sky being considered. Furthermore, we combine these two test statistics by
using x? statistics. There is an ongoing discussion, whether a diagonal y? statistic
or the ordinary x? statistic, which takes into account correlations among the dif-
ferent random variables through the covariance matrix is the better suited measure.
On the one hand it is of course important to take into account correlations among
the test statistics, on the other hand it has been argued [18] that the calculation of the
inverse covariance matrix may become numerically unstable when the correlations
among the variables are strong making the ordinary 2 statistic sensitive to fluctu-
ations rather than to absolute deviations. Being aware of this we calculated both x>
statistics, namely the scale dependent diagonal x> combining the mean and the stan-
dard deviation at a given scale 7y, and the scale-independent x> combining the mean
or/and the standard deviation calculated at all scales i, k = 1, ..., 10 (see [26]).

Further, we calculate the corresponding ordinary x? statistics, which is obtained
by summing over the full inverse correlations matrix C 1. In general, this is expressed
by the bilinear form

X2 =M — (M)TCc™\(M — (M), (6.10)

where the test statistics to be combined are comprised in the vector M and C is
obtained by cross correlating the elements of M. Specifically, for obtaining the scale
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dependent xfuu (@), Tat) combining the mean and the standard deviation at a given

scale r¢ the vector M7 becomes M7 = (M1 M) with M, = (a(rk)) My = 0oy
Similarly, the full scale-independent x? statistics Xfuu Xfuu o, and X%ull (@).00

are derived from the vectors M7 consisting of M7 = ((a(rl)) ,Aa(rio))),
MT (o'a(rl)v .- Ua(rlo)) and MT = ({a(r1)), . <a(r10)> Ta(ry)s -+« Ua(rlo)),
respectively. For all our investigations we calculated both x> statistics and found out
that the results are only marginally dependent from the chosen 2 statistics. Thus, in
the following we will only list explicit numbers for the full x? statistics, if not stated
otherwise, because this measure yielded overall slightly more conservative results.

6.5 Results

To test for NGs and asymmetries in the ILC7 map and the NILC5 map, we compare
the different surrogate maps in the following way:

For each scale we calculate the mean («(r¢)) and standard deviation o) of the
map of scaling indices (6, ¢; ry) of the full sky and a set of 768 rotated hemispheres.
The northern pole of the different hemispheres is located at every pixel centre of the
full sky with Ns;g. = 8 in the HEALpix2 [50] pixelisation scheme. The differences
of the two classes of surrogates are quantified by the o-normalized deviation S

Ysurro1 — ( Ysurro2 )

S(Y) = (6.11)

0y, surro2

with, ¥ = (a(r)), oaey)s 2. Every hemisphere of the set of 768 hemispheres
delivers one deviation value S, which is then plotted on a sky map at that pixel
position where the z-axis of the rotated hemisphere pierces the sky. Figure 6.1 shows
the deviations S for the mean value S((a(r¢))), kK = 2, 6, 10 for the ILC7 map as
derived from the comparison of the different classes of surrogates for the scale-
independent surrogate test and for the four selected /-ranges. The following striking
features become immediately obvious:

First, various deviations representing features of non-Gaussianity and asymme-
tries can be found in the S-maps for the ILC7 map. These features can nearly exactly
be reproduced when the NILCS map is taken as input map (results not shown).

Second, we find for the scale-independent surrogate test (first row in Fig. 6.1) large
isotropic deviations for the scaling indices calculated for the smallest scale shown
in the figure. The negative values for S indicate that the mean of the scaling indices
for the first order surrogate is smaller than for the second order surrogate maps. This
systematic trend can be interpreted such that there’s more structure detected in the
first order surrogate than in the second order surrogate maps. Obviously, the random

2 http://healpix.jpl.nasa.gov/
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Fig. 6.1 Deviations S({a(rx))) of the rotated hemispheres for three scales r, k = 2, 6, 10 (from
left to right) for the ILC7 map and for (from fop to bottom) the shuffling intervals Al = [2, 1024],
Al = [2,20], Al = [20,60], Al = [60, 120] and Al = [120, 300]. The expected correspondence
between the shuffling range Al and the scales r; of the scale-dependent higher order statistics
(a(rg)), for which the largest deviations are detected, becomes apparent. While the ecliptic hemi-
spherical asymmetries for Al = [2, 20] are most pronounced for the largest scaling range rig
(second row), the deviation S becomes largest for r, when shuffling the phases of the smallest
scales Al = [120, 300] (last row)

shuffle of all phases has destroyed a significant amount of structural information at
small scales in the maps.

Third, for the scale-dependent analysis we obtain for the largest scales (Al =
[2, 20]) highly significant signatures for non-Gaussianities and ecliptic hemispher-
ical asymmetries at the largest r-values (second row in Fig.6.1). These results are
perfectly consistent with those obtained for the WMAP 5 yr ILC map and the fore-
ground removed maps generated by [51] on the basis of the WMAP 3 year data (see
[41]). The only difference between this study and our previous one is that we now
obtain higher absolute values for S ranging now from —4.00 < §' < 3.72 for the ILC7
map and —4.36 < § < 4.50 for the NILCS map as compared to —3.87 < § < 3.51
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for the WMAP 5 yr ILC map. Thus, the cleaner the map becomes due to better signal-
to-noise ratio and/or improved map making techniques the higher the significances
of the detected anomalies, which suggests that the signal is of intrinsic CMB origin.

Fourth, we also find for the smallest considered scales (Al = [150, 300]) large
isotropic deviations for the scaling indices calculated for a small scaling range r very
similar to those observed for the scale-independent test.

Fifth, we do not observe very significant anomalies for the two other bands
(Al =[20, 60] and Al = [60, 120]) being considered in this study. Thus, the results
obtained for the scale independent surrogate test can clearly be interpreted as a super-
position of the signals identified in the two /-bands covering the largest (Al = [2, 20])
and smallest Al = [120, 300]) scales. Let us investigate the observed anomalies in
more details. We begin with a closer look at the most significant deviations. Figure 6.2
shows the probability densities derived for the full sky and for (rotated) hemispheres
for the scaling indices at the largest scaling range rg for the first and second order
surrogates for the /-interval Al = [2, 20]. We recognize the systematic shift of the
whole density distribution towards higher values for the upper hemisphere and to
lower values for the lower hemisphere. As these two effects cancel each other for the
full sky, we do no longer see significant differences in the probability densities in this
case. Since the densities as a whole are shifted, the significant differences between
first and second order surrogates found for the moments cannot be attributed to some
salient localizable features leading to an excess (e.g. second peak) at very low or high
values in otherwise very similar P («)-densities. Rather, the shift to higher (lower)
values for the upper (lower) hemisphere must be interpreted as a global trend indicat-
ing that the first order surrogate map has less (more) structure than the respective set
of second order surrogates. The seemingly counterintuitive result for the upper hemi-
sphere is on the other hand consistent with a linear hemispherical structure analysis
by means of a power spectrum analysis, where also a lack of power in the northern
hemisphere and thus a pronounced hemispherical asymmetry was detected [19, 29].
However, it has to be emphasised that the effects contained in the power spectrum
are—by construction—exactly preserved in both classes of surrogates, so that the
scaling indices measure effects that can solely be induced by HOCs thus being of
a new, namely non-Gaussian, nature. Interestingly though, the linear and nonlinear
hemispherical asymmetries seem to be correlated with each other.

Figure 6.3 is very similar to Fig.6.2 and shows the probability densities for the
scaling indices calculated for the second smallest scaling range r, for the first and
second order surrogates for the /-interval Al = [120, 300]. The systematic shift
towards smaller values for the first order surrogate for both hemispheres and thus
for the full sky is visible. It is interesting to note that all densities derived from the
ILC7 and NILCS map differ significantly from each other. These differences can be
attributed to e.g. the smoothing of the ILC7 map. However, the systematic differ-
ences between first and second order surrogates induced by the phase manipulations
prevailed in all cases—irrespective of the input map.

The results for the deviations |S(7)| for the full sky and rotated upper and lower
hemisphere are shown for all considered /-ranges and all scales r in Fig.6.4. The
corresponding values for rp and rq¢ are listed in the Tables 6.1 and 6.2. In Table 6.3
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Fig. 6.2 Probability density P(«) of the first and second order surrogates for the scaling indices
calculated for the largest scaling range r1o and for the /-interval Al = [2, 20]. Yellow (green) curves
denote the densities for 20 realizations of second order surrogates derived from the ILC7 (NILC5)
map. The black lines are the corresponding first order surrogates. The reference frame for defining
the upper and lower hemispheres is chosen such that the difference AS = S, — Sjou becomes
maximal for (c) of the respective map and respective scale r

we further summarize the results for the scale-independent y2-measures X%ﬂ)’ Xgu

and x? .
(a),00

The main results which were already briefly discussed on the basis of Fig. 6.1

become much more apparent when interpreting Fig. 6.4 and Tables 6.1-6.3. We find

stable 3.7 — 120 deviations for all r-values for S({a(r))) and the scale-independent
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Fig.6.3 Same as Fig. 6.2 but the second smallest scaling range r and the /-interval Al = [120, 300]

surrogate test when considering the full sky. This yields S-values of S({(a(r2))) =
7.73 (ILC7 map) and S({a(r2))) = 11.06 (NILC5 map) for the scaling indices cal-
culated for the small value r, and S({«(r10))) = 3.75 ILC7 map) and S({«(710))) =

5.77 (NILCS map) for the largest radius r1¢. This stable r-independent effect leads to

very high values of the deviations S for the scale-independent y2-statistics S (X<2a>)’
where we find S(x,)) = 5.73 (ILC7 map) and S(x{,)) = 27.93 (NILC5 map).
It is interesting to compare these results with those obtained for the diagonal y>-

statistics. In this case we find S(Xiy)) = 57.32 (ILC7 map) and S(X@) ) = 119.16
(NILCS5 map), which is up to an order of magnitude larger than the values for the
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Fig. 6.4 Deviations |S(r)| for the ILC7 (left) and NILCS5 (right) map as a function of the scale
parameter r for the full sky (black) and the upper (red) and lower (blue) hemisphere. The plus
signs denote the results for the mean (c(ry)), the star-signs for the standard deviation oy, ) and the
boxes for the xz-combination of (a(ry)) and 04 (). The shaded region indicates the 3¢ significance
interval

full y>-statistics. These results are very remarkable, since they represent—to the best
of our knowledge—by far the most significant detection of non-Gaussianities in the
WMAP data to date. Note that we used here only the mean value of the distribution
of scaling indices, which is a robust statistics not being sensitive to contributions of
some spurious outliers. Further, the scale-independent statistics X%a) calculated for
the full sky represents a rather unbiased statistical approach.

The hemisperical asymmetry for NGs on large scale (Al = [2,20]) finds its
reflection in the results of S(r). While we calculate significant and stable deviations
S for the upper and lower hemispheres separately (red and blue lines) in Fig. 6.4, the
results for the full sky (black lines) are not significant, because the deviations detected
in the two hemispheres are complementary and thus cancel each other. Therefore,
we obtain only for the hemispheres high values for S ranging from § = 3.24 up to
S=7.10(§S =4.11upto S = 10.82) for the ILC7 (NILCS) map when considering
the statistics derived from the scaling indices for the largest scales rj0 and S = 4.01
up to § = 9.76 for the scale-independent x>-statistics.

For the smallest scales considered so far (Al = [120, 300]) we also find significant
deviations from non-Gaussianity being much more isotropic and naturally more
pronounced at smaller scaling ranges r < 0.15. Thus, we obtain § = 6.97 (ILC7
map) and § = 5.30 (NILC5 map) for S({a(r2))) considering the full sky. For the
scale-independent y2-statistics the most significant signatures of NGs are detected
for the respective upper hemispheres ranging from S = 5.16 to § = 10.53. To test
whether all these signatures are of intrinsic cosmic origin or more likely due to
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Table 6.1 Deviations S and empirical probabilities p of the mean, standard deviation and their
x2-combination as derived for the scaling indices at the second smallest scale 5

Al Full sky (S/%) Upper hemisphere (S/%) Lower hemisphere (S/%)
(a(r2))

[2, 1024] 7.73/> 99.8 4.53/>99.8 1.87/96.0
[2,20] 0.14/56.6 3.54/>99.8 3.44/>99.8
[20, 60] 0.88/80.6 1.84/96.4 1.08/85.2
[60, 120] 0.26/60.4 0.32/64.8 0.64/71.6
[120, 300] 6.97/>99.8 5.36/>99.8 0.92/83.0
Oa(r)

[2, 1024] 4.16/>99.8 3.77/>99.8 0.25/61.8
[2,20] 0.48/69.2 0.48/69.8 0.19/58.0
[20, 60] 1.70/95.2 3.18/>99.8 1.02/84.8
[60, 120] 0.88/80.0 2.35/98.8 1.25/88.2
[120, 300] 3.54/>99.8 1.03/83.4 3.69/>99.8
X%a(rz».oﬂ(,.z)

[2, 1024] 24.55/>99.8 14.44/>99.8 0.94/84.4
[2,20] 0.90/85.2 7.67/>99.8 8.47/99.8
[20, 60] 0.82/83.4 4.03/99.2 0.31/50.4
[60, 120] 0.51/61.4 3.63/98.6 1.00/85.2
[120, 300] 19.62/>99.8 17.17/>99.8 4.15/99.2

The results of the ILC7 map are shown for the different /-bands as well as for the full sky and
the upper and lower hemispheres. Corresponding to the small scale r; the largest values for S are
calculated for small scale non-Gaussianities in the /-range [120, 300] and for the scale-independent
NGs, where the phases of all I’s (Al = [2, 1024]) are included

foregrounds or systematics induced by e.g. asymmetric beams or map making, we
performed the same surrogate and scaling indices analysis for the five additional
maps described in Sect.6.2. Figures 6.5 and 6.6 show the significance maps for the
two [-ranges Al = [2,20] and Al = [120, 300], for which we found the most
pronounced signatures in the ILC7 and NILC5 map. For the large scale NGs we find
essentially the same results for the UILC7 map. The difference map, shows some
signs of NGs and asymmetries, especially for large r-values. A closer look reveals,
however, that both the numerator and denominator in the equation for S are an order
of magnitude smaller than the values obtained for the ILC7 (NILCS5) maps. Thus the
signal of the difference map can be considered to be subdominant. And even if it
were not subdominant, the signal coming from the residuals would rather diminish
the signal in the ILC map than increase its significance, because the foreground
signal is spatially anticorrelated with the CMB-signal. Both the asymmetric beam
map and the simulated coadded VW-map do not show any significant signature
for NGs and asymmetries. Finally, the simulated ILC map does show some signs of
(galactic) north—south asymmetries which become smaller and therefore insignificant
for increasing r, where we find the largest signal in the CMB maps.

For the small scale NGs (Al = [120, 300]) we also find that the UILC7-map yields
similar results as the ILC7 and NILC5 map with smaller significance. Once again the
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Table 6.2 Same as Table 6.1 but for the scaling indices at the largest scale rg

Al Full sky (S/%) Upper hemisphere (S/%) Lower hemisphere (S/%)
(a(r10))

[2,1024] 3.75/>99.8 3.53/>99.8 1.72/95.4
[2,20] 0.64/74.2 3.24/>99.8 3.41/>99.8
[20, 60] 0.67/74.2 1.41/91.6 2.04/98.0
[60, 120] 0.01/50.5 2.28/99.0 2.19/98.6
[120, 300] 2.45/99.4 3.58/>99.8 1.38/92.2
Oa(rio)

[2,1024] 0.66/74.4 3.60/>99.8 2.90/>99.8
[2,20] 0.84/80.0 3.09/>99.8 1.79/96.4
[20, 60] 2.27/98.6 2.94/99.8 0.13/55.0
[60, 120] 0.77/79.0 1.63/94.6 0.47/67.6
[120, 300] 0.60/73.6 1.61/95.8 0.81/79.6
X%(!(rlo))you(rm)

[2,1024] 1.46/90.4 9.83/>99.8 3.15/98.0
[2,20] 0.21/54.8 7.10/>99.8 6.77/99.8
[20, 60] 2.74/97.2 5.27/99.6 0.29/73.6
[60, 120] 0.38/50.2 2.09/94.2 0.43/75.8
[120, 300] 0.26/57.2 2.23/96.2 0.19/60.4

The largest values for S are found for large scales non-Gaussianities in the /-range [2, 20]

Table 6.3 Same as Table 6.1 but for the scale-independent y2-statistics

Al Full sky (S/%) Upper hemisphere (S/%) Lower hemisphere (S/%)
2
X{a)
[2,1024] 5.73/>99.8 9.35/>99.8 0.33/55.2
[2,20] 0.97/95.0 4.57/99.6 4.01/99.2
[20, 60] 1.81/94.2 2.57/97.4 2.42/97.0
[60, 120] 1.41/99.0 1.53/99.6 0.91/83.8
[120, 300] 3.17/92.8 10.53/>99.8 1.19/87.8
2
O
[2,1024] 5.50/>99.8 11.50/>99.8 0.66/79.6
[2,20] 0.32/52.8 4.03/98.6 4.04/99.6
[20, 60] 2.15/95.8 4.00/99.8 2.18/96.4
[60, 120] 1.40/98.2 3.26/99.4 2.01/95.6
[120, 300] 3.10/99.0 8.90/>99.8 1.90/95.8
X<2a)<,aa
[2,1024] 1.89/94.2 8.38/>99.8 3.03/98.8
[2,20] 0.73/77.4 5.64/>99.8 6.01/99.8
[20, 60] 1.60/92.8 3.42/99.2 1.49/91.0
[60, 120] 0.26/52.4 2.15/96.6 0.53/75.6
[120, 300] 1.68/92.8 5.34/99.8 0.22/63.2

Also for this statistics the largest values for S are found for the largest Al = [2, 20] and smallest
scales Al = [120, 300] and for the scale-independent NGs
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Fig. 6.5 Deviations S({a(r))) for the three scales ry, k = 2,6, 10 (from left to right) for Al =
[2, 20]. The results are shown for (from top to bottom) the UILC7 map, the difference map 7yr ILC—
6yr ILC map, the asymmetric beam map, the coadded V and W-band from a standard simulation
and the simulated ILC-like map (for more detailed information about the different maps see text)

asymmetric beam map and the simulated coadded VW-map do not show significant
signature for NGs and asymmetries. This is not the case for the simulated ILC map.
Here, we find highly significant signatures for NGs and asymmetries, which show
some similarities with significance patterns observed in the ILC7 (NILCS5) map.
Even much more striking features are detected in the difference map, where we find
deviations as high as |S| &~ 15 forming a very peculiar pattern in the significance
maps for all r. One of us (G.R.) named this pattern ‘Eye of Sauron’, which we think
is a nice and adequate association. It is worth noticing that we found the same pattern
when analyzing other difference maps, e.g. year 7—year 1 or year 2—year 1.

To better understand, where these features may come from we had a closer look
at the zeroth, first and second order surrogate maps. It became immediately obvious
that for the difference maps the fluctuations are systematically smaller in the regions
in the galactic plane used for the ILC-map making than in the rest of the sky. This
effect persists in the first order surrogate map and is only destroyed in the second
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D e— 5

Fig. 6.6 Same as Fig.6.5 but for Al = [120, 300]. Note that the scale for the color coding has
significantly changed for the difference map (second row)

order surrogates. This more (less) structure in first order surrogate map leads to lower
(higher) values for the scaling indices, which can qualitatively explain the observed
patterns in the significance maps.

A much more detailed study of these high / effects and their possible origins
is part of our current work but is beyond the scope of this chapter. The results for
the difference map shown here point, however, already towards a very interesting
application of the surrogate technique. It may become a versatile tool to define
criteria of the cleanness of maps in the sense of e.g. absence of artificially induced
(scale-dependent) NGs in the map of the residual signal. Such a criterion may then
in turn be implemented in the map making procedure so that ILC-like maps are not
only minimizing the overall quadratic error in the map, but also e.g. the amount of
unphysical NGs of the foregrounds.
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6.6 Conclusions

To the best of our knowledge this work represents the first comprehensive study
of scale-dependent non-Gaussianities in full sky CMB data as measured with the
WMAP satellite. By applying the method of surrogate maps, which explicitly relies
on the scale-dependent shuffling of Fourier phases while preserving all other prop-
erties of the map, we find highly significant signatures of non-Gaussianities for very
large scales and for the /-interval covering the first peak in the power spectrum.
In fact, our analyses yield by far the most significant evidence of non-Gaussianities
in the CMB data to date. Thus, it is no longer the question whether there are phase
correlations in the WMAP data. It is rather to be figured out what the origin of
these scale-dependent non-Gaussian signatures is. The checks on systematics we
performed so far revealed that no clear candidate can be found to explain the low-/
signal, which we take to be cosmological at high significance. These findings would
strongly disagree with predictions of isotropic cosmologies with single field slow
roll inflation.

The picture is not that clear for the signatures found at smaller scales, i.e. at higher
I’s. In this case we found that NGs can also easily be induced by the ILC map making
procedure so that it is difficult to disentangle possible intrinsic anomalies from effects
induced by the preprocessing of the data. More tests are required to further pin down
the origin of the detected high / anomalies and to probably uncover yet unknown
systematics being responsible for the low / anomalies. Another way of ruling out
effects of unknown systematics is to perform an independent observation preferably
via a different instrument as we are now able to do with the Planck satellite.

In any case our study has shown that the method of surrogates in conjunction with
sensitive higher order statistics offers the potential to become an important tool not
only for the detection of scale-dependent non-Gaussianity but also for the assessment
of possibly induced artefacts leading to NGs in the residual map which in turn may
have important consequences for the map making procedures.
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Chapter 7
Applying the Surrogate Approach
to Incomplete Skies

Introduction.—The search for primordial non-Gaussianities in the Cosmic
Microwave Background (CMB) is one of the most important yet challenging tasks
in modern cosmology. Any convincing detection of intrinsic non-Gaussianities as
well as their characteristics and scaling behaviour would directly support or reject
different models of inflation, and therefore affect a fundamental part of the standard
cosmological model.

The currently still favoured inflationary model is single-field slow-roll inflation
[1-3], which should result in (nearly) Gaussian and isotropic temperature fluctuations
of the CMB. However, preferred directions and other kinds of asymmetries have been
repeatedly detected [4—17], already questioning the simplest picture of inflation.
It is under discussion, if these asymmetries are connected to foreground influences
[18, 19], which appear particularly in the direction of the Galactic plane.

For investigations of CMB data sets, e.g. WMAP data, the analysis of Fourier
phases has proven to be a useful method [20-23], since all potential higher order
correlations, which directly point to non-Gaussianities, are contained in the phases
and the correlations among them. The method of surrogate maps with shuffled Fourier
phases [11, 12] represents one way of analysing the phases. Originally, this idea stems
from the field of time series analysis [24-27] and describes the construction of data
sets, so-called surrogates, which are similar to the original, except for a few modified
characteristics. The validation of these characteristics in the original data can then
be tested by comparing them to the set of surrogates with appropriate measures. The
method used in [11, 12] tests the hypothesis that the coefficients a;, = |agy| et dim
of the Fourier transform of the temperature values 7 (6, ¢) have independent and
uniform distributed phases ¢y, € [—m, 7] calculated for the complete sphere S.
The phases of the original map are shuffled, which can be done within some previ-
ously chosen interval of interest, AL = [£1, £»], or simply for the complete range

Original publication: G. Rossmanith, C. Rith, A. J. Banday, H. Modest, K. M. Gérski, G. E.
Morfill, Probing non-Gaussianities in the CMB on an incomplete sky using surrogates, PRL,
submitted (2011). Figure 7.3 was added to this version.

G. Rossmanith, Non-linear Data Analysis on the Sphere, Springer Theses, 109
DOI: 10.1007/978-3-319-00309-2_7, © Springer International Publishing Switzerland 2013
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ALl = [2, lpqx] for some given ¢,,,,. Every realisation of this shuffling results in
a new set of agy,’s, which then represents (after transforming back) one surrogate
map. Note that every surrogate still has by construction exactly the same power spec-
trum as the original map. If the original map contained any phase correlations, these
are now destroyed due to the shuffling. Thus, any detected differences between the
original and a set of surrogate maps reveals higher order correlations and therefore
deviations from Gaussianity.

One major problem in CMB analyses is the treatment of the Galactic plane, which
strongly influences the microwave signal. It is possible to cut out the foreground
affected regions [28], but this procedure itself can affect the subsequent analyses
as well. When applying a sky cut, orthonormality of the spherical harmonics no
longer holds on this new incomplete sky, which leads to a coupling of the ag,, ‘s,
making a naive phase shuffling impossible. However, one can transform the spherical
harmonics into a new set of harmonics, which forms an orthonormal basis on the
incomplete sky [29-31], where phase manipulation can then take place again.

The problem of incomplete data also occurs in time series analysis by means
of surrogates. Here, gaps can be overcome e.g. by the use of simulated annealing
[32, 33]. Still, the quality of surrogates constructed with this method seems to be
questionable, since it is not ensured that no phase correlations are induced.

In this Letter, we combine the cut sky methods with phase shuffling, thus enabling
investigations by means of surrogates on an incomplete sky. Our method can also be
extended for the usage on incomplete data sets in general.

Methods.—On a complete sphere S, an orthonormal basis is given by the spherical
harmonics Yy, (s) with £ > 0, —¢ < m < £ and s € S. Let the number of harmonics
be limited by some given £,,,,, € NT. Now, for any map

Zmax
F& =" amYen(s). Vs €S

with ag, € C, and for any new incomplete sky S, we want to know the corre-
sponding agh' and Y;4' for representing the map on the remaining regions of the
sphere:

@max t t t
f(s) = Ze ag YE(s), Vs € 5,

with Y{*" being orthonormal on §“* and thus "' being unique. For real valued
spherical harmonics, this was performed in [29] and [30], and later on extended
in [31]. The methods presented there can be easily adopted to the complex valued
spherical harmonics as well.

At first, we define the vectors

) T
Y (s) :=[Y0,005), Y1,0(5), Y1,1(8)s - - -, Yerur e (S)17 s

) T
a = [ao,0,a1,0, a1,1, - - -, Ay, lnax )
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containing all harmonics and coefficients with m > 0, respectively, of the given
map on the complete sphere. Both have a lenght of i, (= (Cnax + 1) Emax +
2)/2. Analogously, we define Y*(s) and a“*'. Our objective is to determine two
transformation matrices B, By € CimaxXimax | that fulfil the following equations:

YU (s) = B Y(s) (7.1)
aCul = Bz a (72)

To identify them, we need to define the coupling matrix
C ::/ Y($)Y*(s)dQ2
R

as well as analogously its counterpart C*!, with R being a given region on the sphere.
Hereby, Y* denotes the hermitian transposed of Y. When working with a pixelised
sky, one uses a sum over the pixels of R instead of the integral. For R = S, an
orthonormal set of harmonics Y;' needs to fulfill the condition C*** = ;. , with
I;,,.. being the unit matrix of size i,ya,. We can use Eq.(7.1) on C*' to change this
condition to BiC B} = I;,,,,. It is possible to apply different matrix decompositions
to obtain C = AA* with A € Cimax*imax Consequently, the above equation now
reads as (B A)(B1A)* = I;,, and offers the simple solution B; = A~!

For the evaluation of Bs, let us recall that the coefficient vector a can be expressed
by

= / Y (s) f(s)dS
S

or, respectively,

at = / Y () f(5)dS2.
SL'M[

Inserting (7.1) and the expression f(s) = aT Y (s) into the latter leads to a*! =
B1CTa. Now we use the above matrix decomposition again and obtain ¢ =
B1(AA"Ta = AT . Thus, it follows that B, = AT.

To obtain the agn”f and Y ;};‘1’ with m < 0, we make use of the following equations,
that hold for full sky and that we assume to be valid also on incomplete skies:

Yec'” _( 1)\m|YCW

and

azuim = (- DW'EEZLI .
For the sky cuts and £-ranges used throughout this Letter, the cut sky harmonics were
tested and confirmed to be orthogonal.
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For constructing C = A A* as above, one can make use of different matrix decom-
position methods. Since the coupling matrix C is hermitian and can be treated as
positive definite for low £ by construction, a Cholesky decomposition is applica-
ble. This is the easiest and fastest way, although numerical problems only allow
usage for lower £,,,, [31]. Another possibility is the eigendecomposition (ED): We
obtain C = VWV*, with the columns of V containing the eigenvectors, and W
being diagonal and containing the eigenvalues of C. Because of the properties of
the coupling matrix, these values are real and positive, allowing therefore a simple
decomposition of W by taking the square root of every element, W = W1/2(W*)!/2,
Thus, we obtain A = VW2, Since C is hermitian, the ED is formally similar to a
singular value decomposition (SVD), which is also applied in this Letter, with the
eigenvalues corresponding to the singular values. For both the ED and the SVD we
apply a householder transformation similar to [31] to make A lower triangular. For the
Cholesky decomposition, this is already the case by definition. Thus, due to Eq. (7.2),
it is ensured that the mono- and dipole contributions of the underlying maps—often
considered as non-cosmological—are kept separate from the £ > 2 modes.

With the help of the new cut sky harmonics Yfr‘:f, we can now generate the sur-
rogates on a cut sky S as well. Similar to above, we shuffle the phases ¢¢' of

the cut sky coefficients ajn', which is in this work performed for the full cut sky

range AL = [2, €,;4x]. We obtain new sets of a%’j ’s, which are transformed back
to pixel space to form the cut sky surrogate (CSS) maps. As we did in the case of a
complete sphere, we now search for deviations between the original data as well as
its surrogates. However, one has to take care about the above mentioned properties.
While the uniform distribution still holds for ¢zzf , the single phases in the sets are no
longer independent from each other due to Eq. (7.2). In other words, the cut sky trans-
formation induces phase correlations to the underlying map. To account for these
systematic effects, we create for each of the input maps 20 full sky surrogate (FSS)
maps as explained above, with ¢,,,, = 1024 and by shuffling the phases within
Af¢ = [2,1024]. By comparing the results of the surrogate analysis for an input
map and its FSS, we evade systematically induced phase correlations and search for
additional signatures possibly contained in the phases.

In general, the comparison of the original data and its surrogate maps can be
accomplished with any higher order statistics. In this Letter, we chose the scaling
index method (SIM) [10, 12] as well as Minkowski functionals [4, 34] as test statistics.

The SIM is a local measure that is able to detect structural characteristics of a given
data set by estimating its local scaling properties. Briefly, the temperature anisotropies
T (6, ¢) are transformed to variations in radial direction around the sphere, therefore
leading to a point distribution p;,i = 1,..., N pix»in three-dimensional space. Then,
the weighted cumulative point distribution p(p;, r) is calculated for every point p;
and a freely chosen scaling parameter r. Since we will only investigate the large scales
in this Letter, we choose the free parameter r to be 1o = 0.25, which is appropriate
for these scales [10]. Eventually, the scaling indices are obtained by calculating the
logarithmic derivative of p(p;, r) with respect to r.

The three Minkowski functionals measure the behaviour of a given map with
respect to different threshold values v. The fraction of the sky where the temperature
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value is larger than v is denoted as the excursion set R(v), its smooth boundary is
identified by OR(v), and da and d!I describe the surface element of R(v) and the line
element of R (v), respectively. Then, we can define the three Minkowski functionals
as

Marea (V) =/ da
R(v)

Mperim(l/) =/ dl
IR (V)

Meyier (v) = / dlrk,
JR(v)

with k being the geodesic curvature of R (v). For more details, we refer to [4, 34].
Eventually, we sum up over all thresholds with the help of the appropriate cut sky
surrogates by means of a y?-measure,

&= X [(M2r @) — mESwn) Joygssi |

v

for Murea(V), Mperim (V) and My e (v), Tespectively.

The results for the different maps of both the scaling indices and the Minkowski
functionals are then evaluated in terms of rotated hemispheres: For 768 different
angles we rotate the underlying maps and calculate the o-normalised deviations

Si(Y) = (Y’”“P - (YCSS>) Joycss

of the pixels included in the new upper hemisphere between the input map and
its cut sky surrogates, by means of the measure Y. In our case, ¥ = («a), 04,
Xroas Ximm, X2, jor» With (@) and o, being the mean and the standard deviation
of the scaling index response a(s), respectively. The result is then shown as colour-
coded pixel, whose centre is pierced by the z-axis of the respective rotated reference
frame (see [10-12]). To separate traces of possibly intrinsic phase correlations from
those induced by the transition to incomplete sky, we calculate the statistics

$20) = (S{waqr) = (sF55 () fogrssy,
for comparing the results of S1(Y) for the original and the full sky surrogate maps.
To investigate possible deviations from statistical isotropy, we introduce an asym-

metry statistics AS>(Y). For the scaling indices, we define the difference in Y between
each pair of opposite hemispheres as

ASy(Y) = |S;7(Y) — S (Y)
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for Y = (a), o,. This statistics is appropriate for the SIM, since the sign of the
deviations is preserved in S>(Y). This is not the case for the quadratic measure x>
used on the Minkowski functionals. Therefore, we have to include the difference
between opposite hemispheres already in the y?-measure by computing

a2 = S [(aMzrw) — AMES ) foanessin ]

with
AM,(v) = M (1) — MV (v) .

We can then define the asymmetry statistics for the Minkowski functionals as
AS(Y) = S2(AY)

forY = X%rea’ X%}erim’ Xguler'

We construct the cut sky harmonics for three different central latitude sky cuts,
that remove |b| < 10°, 20° and 30° of latitude in the centre of the maps. While the
smallest cut (|b| < 10°) removes already a large amount of the highly foreground
affected regions but retains nearly all non-affected regions, the largest (|b| < 30°)
excludes almost the entire Galactic plane, with only minor point sources remaining.
We choose an upper bound of ¢,,,, = 20 and set as,, = 0 for £ > £,,,x. To check
for consistency with [11, 12], we applied the cut sky formalism also to the complete
sphere with no points excluded. To compare the different matrix decomposition
methods, all three approaches (Cholesky, ED, SVD) were applied. For every sky
cut, the phases of the coefficients af’ were shuffled to generate N = 100 cut sky
surrogates for each input map. The same was done for the corresponding FSS maps.
For computational reasons, the resolution of the input maps in the corresponding
HEALPix scheme [35, 36] was chosen to be Nz = 256 for the scaling index
analysis and Ny;4. = 64 for the Minkowski functionals. By testing several subsets,
we assured ourselves that the results are only marginally affected when choosing a
lower resolution.

Validation.—To test the new approach, we generate a Gaussian simulation of the
coadded VW-band of the WMAP satellite via a noise-weighted sum. The proce-
dure is the same as in [10], but note that we now apply the more recent WMAP
7-year parameters. In addition, we applied the cut sky surrogate approach to another
simulated Gaussian map, to which we added typical foreground residuals that are
still present after the template cleaning of the WMAP data. Those residuals were
computed by subtracting the WMAP ILC map from the full seven-year foreground
reduced coadded VW-band. This is done to examine the impact of possible aliasing
effects due to the chosen ¢,,,, that could be caused by strong foregrounds which are
cut out.

For the clean simulated Gaussian map, the significances S> (o) calculated for the
rotated hemispheres are illustrated in Fig.7.1. The differences between the original
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Fig. 7.1 The o-normalised deviations S2(c,) comparing a simulated map and its 20 full-sky
surrogates for the complete sphere (upper left) and the three different central latitude sky cuts
|b] < 10° (upper right), |b| < 20° (lower left), and |b| < 30° (lower right), that were constructed
by means of the singular value decomposition

and the FSS maps are insignificant (S2(Y) < 3) for the complete sphere and all sky
cuts. The same holds for the assembled map, except for the full sky, where phase
correlations are obviously present. These results clearly demonstrate the practicality
of the approach. The results of the assembled map show that the impact of aliasing
effects, even when strong foregrounds are present in the Galactic plane, is negligible.

Only minimal differences were detected for the three used matrix decomposition
methods, that are likely to be due to the random shuffle of the phases. When going to
larger ¢-ranges or more irregular sky cuts, this technical part of the investigation will
become more important, especially for making the transition to the cut sky possible.

Application to WMAP data.—For the application of the cut sky method to obser-
vational data, we make use of two different maps, which are both linear combinations
of the different frequency bands and based on the WMAP results [37, 38]: First, the
7-year Internal Linear Combination (ILC7) map provided by the WMAP team [28]
and second the 5-year needlet based ILC map (NILCS) [39]. For both maps, the
monopole and dipole were removed.

The significances S»(o,) determined for the rotated hemispheres of the NILCS
map for the different sky cuts are shown in Fig.7.2 while the findings for AS>(Y)
are illustrated in Fig.7.4. When looking at the deviations S$>({c)) and S>(o,) for
the |b| < 10° cut of both the ILC7 and NILCS maps, we detect significant non-
Gaussianities and an asymmetry. Both features were already found in corresponding
full-sky analyses [11, 12]. The signal for S>({«)) becomes more unarticulate for
larger cuts. Still, the maximum difference AS>({)) between opposite hemispheres
remains significant. For S>(0,,), a significant asymmetry with a clear north-south
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Fig. 7.3 Same as Fig.7.2 but for $3(x2,,,)

direction persists for both the ILC7 and the NILC5 maps when excluding the Galactic
plane, which is also reflected by a constant AS> (o).

The Minkowski functionals show similar results: For M., (v), one detects sim-
ilar deviations between the data sets and its full sky surrogates. This is illustrated
for the NILC5 map in Fig.7.3. Again, these findings are reflected in the asymmetry
statistics ASZ(XZMZ), as shown in Fig.7.4. For M peyim (v) and My er (v), the results
agree for the full sky, but get less definite for larger cuts, which is likely to be due to
the limited amount of pixels.
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Fig. 7.4 The difference between the results of opposite hemispheres A S, (Y), for the ILC7 (solid)
and the NILCS5 (dashed) maps. The reference frame for defining the upper and lower hemispheres
is chosen such that AS,(Y) becomes maximal. The blue lines with the boxes and the star-signs
denote the results of («) and o, respectively, while the red lines mark the results of Xlzm,a

The results of the data clearly indicate that both the detected non-Gaussianity and
asymmetry cannot mainly be attributed to foreground influences. In combination
with the multitude of checks on systematics performed for the surrogates technique
in [11, 12], one has to conclude that the signatures are of cosmological origin. This
represents a strong violation of the Gaussian hypothesis and of statistical isotropy.
Both assumptions are fundamental parts of single-field slow-roll inflation, which
is therefore rejected at high significance by this analysis. In addition, due to the
fact that all cuts remove a notable amount of pixels from the sphere (for the largest
cut |b| < 30° it is already half of the sky), the decreasing significance for the
incomplete skies can at least in parts be explained by less input points, which leads
to an increasing influence of noise and a lower effect of the intrinsic signal. This
especially holds for the two Minkowski functionals M ;i (V) and Meyjer (v), which
examine complex pixel formations and thus need enough data points to produce
statistically reliable results.

Conclusion.—We demonstrated the feasibility of generating surrogates by Fourier-
based methods also for an incomplete data set. This was worked out for the case
of a CMB analysis on an incomplete sphere. Three different constant latitude sky
cuts were applied. For this purpose, three different cut sky transformations were
calculated. We generated 100 cut sky surrogates for every input map, sky cut and
matrix decomposition method, which were analysed by means of scaling indices and
Minkowski functionals. To remove systematic effects, a second analysis compared
the results of the original with the ones of 20 full sky surrogate maps for each of
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the input maps. For simulated maps, no anomalies could be detected. The findings
for the ILC7 and the NILCS5 maps show strong signatures of non-Gaussianities and
pronounced asymmetries, which persist even when removing larger parts of the sky.
This confirms that the influence of the Galactic plane is not responsible for these
deviations from Gaussianity and isotropy. Together with former full-sky analyses,
the results point towards a violation of statistical isotropy. Similar tests with the forth-
coming PLANCK-data will yield more information about the origin of the detected
anomalies.

Many of the results in this chapter have been obtained using HEALPix [35].
We acknowledge the use of LAMBDA. Support for LAMBDA is provided by the
NASA Office of Space Science.
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Chapter 8
Conclusions

In this work, the five- and seven-year observations of the CMB by the WMAP
satellite were analysed in detail by means of the scaling index method. The basic
ideas for this method stem from the calculation of dimensions of strange attractors in
nonlinear time series analysis. Scaling indices are able to identify and characterise the
structural components of a given data set. One the one hand, the tests for deviations
from the standard model were performed by comparing the data sets to simulations
of Gaussian random fields mimicking the properties of the ACDM model, which
represents the standard approach in CMB investigations. On the other hand, a novel
approach, namely the method of surrogates, was developed in this work, which offers
the possibility to analyse the CMB in a completely data-driven way. Here, the basic
idea is the construction of surrogate data sets, which are generated by dedicated
shuffling of the Fourier phases of the original data map.

Foregrounds, in particular present in the Galactic plane, lead to strong distortions
of the CMB measurements. The best way to handle these distortions is to mask the
respective regions, which causes in turn problems concerning the analysing proce-
dure. First, it affects the evaluation of the scaling indices close to the mask. For this
reason, a mask-filling method was developed in this work that prevents these bound-
ary effects. Second, the orthonormality of the Fourier basis set is violated, which is
required for the applicability of the surrogates approach. In this work, the method of
surrogates was—for the first time—successfully combined with a basis transforma-
tion that creates a set of orthonormal Fourier functions on cut skies, thus enabling
the surrogates approach on an incomplete sphere. This method was carefully tested
to assess and then rule out the effects of systematics.

The different analyses of the WMAP data performed with the scaling index method
lead to the following results:

e For the WMAP five-year data, an analysis by means of simulated CMB maps
showed strong evidence for non-Gaussianity, detected an obvious asymmetry, and
revealed several local features in the data, whereupon all results were in agreement
with former investigations. All examined bands lead to consistent findings.
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e Aninvestigation of different available five- and seven-year full-sky maps by means
of surrogates—representing the first application of this method—Iead to the by far
most significant detection of non-Gaussianity to date. Detailed checks on system-
atic found no non-cosmological origin for these anomalies.

e The combination of surrogate approach and cut sky transformation was applied
to data sets for the first time. The analysis identified once more highly significant
non-Gaussianities and asymmetries, now even for incomplete sky coverage where
the entire Galactic plane was removed. This confirms that the strong foreground
effects present in the Galactic plane are not responsible for the deviations from
Gaussianity and isotropy. In addition to scaling indices, this investigation was
also performed with Minkowski functionals. Different techniques for the basis
transformation were applied as well. Both statistics showed consistent results for
all different basis transformation techniques.

Summarising all these results, the standard picture of single-field slow-roll
inflation is strongly questioned. In addition, the findings point towards a violation
of statistical isotropy in general. The techniques that were developed in this work
are ready to be used on upcoming data sets. Independent and even more precise
measurements, in particular with the current PLANCK satellite, will possibly reveal
the true nature of the beginnings of our Universe.



Appendix
Simplifications of the Cut Sky Approach

In this appendix, two technical approaches are introduced, that can significantly
simplify the transformation of the spherical to the cut sky harmonics from Sect.
2.1.3. The first method describes an optional way to calculate the coupling matrix
C if a constant latitude cut is applied to the sphere. This method is numerically
preferable to the usual direct computation, since for these type of cuts many
components of C become trivial. The second method described here is the
Householder transformation. With its help, we can modify the matrix A to be lower
triangular. The advantage of such a matrix is that the potentially non-cosmological
mono- and dipole are kept separate from the other modes during the transformation
to the cut sky regime, and can therefore easily be removed. For the Cholesky
decomposition, a Householder transformation is obsolete since in this case A is
already lower triangular by definition.

Both the simplification of the constant latitude cuts as well as the Householder
transformation described in this appendix are complex-valued extensions of the
real-valued methods used in [1], and were applied throughout this work.

A.1 Constant Latitude Cuts

For the construction of the coupling matrix
c- / YE)Y (F)d92 (A1)
R

in Sect. 2.1.3, one needs to define the remaining surface R of the sphere S. If this
area is exclusively defined by one latitude interval of the form 6; <0 <6, or a
combination of several of those intervals, but independent of the longitude ¢, with
0<0<m, 0<¢<2m, the applied sky cut is denoted constant latitude cut. In this
case, only the components Cy(gm) (¢ )y With m = m’ are non-zero. This simplifies
the computation of C significantly. In addition, C is real-valued for the constant
latitude cuts.

A proof for both of these statements is given in the following, where the
remaining surface is defined as R = {(0, ¢)|6) <0< 0,} for simplicity reasons.
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Equation (A.1) in the component-wise form reads as
Cittm)item) = /R Yictmy,ie ) )Y igem) icer oy (X)d 82

and can be rewritten by means of latitude and longitude as

271‘ 62
Citom),ie ) = /0 /9 Yty ite m) (0, 0) Y itomy it ) (0, ) sin OdOdp .
1

By inserting the definition of the spherical harmonics (see Sect. 1.3.3), one can
separate these two integrals, which leads to

2T . L, 92 .
Ciemy,item) =k /0 e " ¥dyp /9 P (cos 0) Py (cos ) sin 0d6
1

whereupon we made use of the definition

ko 1 20+1(—m)! 20+ 10 —m')!
T ow 2 (L+m) 2 (0 +m)
Both the factor k as well as the second integral are real-valued. Therefore, it is

sufficient to show that the first integral is zero for m # m/, and real-valued
otherwise. This can be done by applying Euler’s formula:

2w ) » 2w ) ,
/ oM g im \pd(p _ / ez(mfm )pd(p
0 0

27 27
= / cos((m —m')p)pdp + i/ sin((m — m')p)pdyp
0 0

For m # ', the term (m — m’) is some non-zero integer. Thus, one integrates over
one or more complete oscillations of the sinus or cosinus function, respectively,
which leads to the annihilation of the positive and negative parts. For m = n?/, the
first integral is 27, and the second zero. In summary, one can write

0,
Ci(l,m) iem) = 27k 6m,m’ /9 Pém(COS G)P(’m’ (COS 9) sin 6d0 .
1

and therefore the above statements are proven.

A.2 The Householder Transformation

For the Cholesky decomposition, the matrix A € C*e from Sect. 2.1.3 is
lower triangular. This is advantageous for two reasons: One the one hand, it
slightly simplifies the computation of the cut sky harmonics Y; and its
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coefficients aj. On the other hand, due to Eq. (2.6), the mono- and dipole have no
influence on the other modes when the transformation to the cut sky regime is
applied. Therefore, these potentially non-cosmological modes can easily be
removed in the cut sky, too.

For the eigenvalue and singular value decompositions, A is not triangular in
general. But it is possible to transform A into a lower triangular matrix A’ by means
of the Householder transformation (e.g. [2]). Since the transformation itself creates
an upper triangular matrix, we need to focus on the transposed counterpart A7 in
the following. Formally, the transformation of AT into an upper triangular matrix

AT ! due to multiplication with an unitary matrix P reads as
p y
(AT) = PAT . (A2)

Both the matrices (A7) and P; have the same size as A”. This procedure is
iterative: In step i, the multiplication (A7) = P;(AT)' shall set the last (ipq — i)
components of the ith column of the matrix (AT)' to zero:

ap
0
. /
i 1,1
!
0 a;
/
0 0 @i
!
L0 0 0 a1 - )
ag
0
. ai—1,i—1
:Pi 0 aii
0 iyl Aiglitl
L0 - 0 dipi Giggit

Here, a;; denotes the components of (A7) and a;; the ones of (AT)™*!. The
transformation can be accomplished by means of the matrix

o Ii—l 0
bi= { 0 p,}

whereby I;_; denotes the unit matrix of size (i —1), and the matrix p; €
Clima=i+1)X (=1 ig defined as
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T
m;m;
pi = liy—iv1 —2——,
m; m;
with
imax _ .
i+ 4/ E caar;  for j=1,
m;). .= ? k=i T
( l)]
aj; for j > 1.

In summary, we obtain

P=PP,...P

imax_l °
Due to the fact that P is unitary, Eq. (A.2) can be written as
A=AU

with U=P ' and A’ = (ATY" . The matrix U is unitary as well, and does
therefore not affect the decomposition equation C = AA* from Sect. 2.1.3. Thus,
one is able to make use of a triangular transformation matrix even in the case of an
eigenvalue or singular value decomposition.
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