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Preface

Metallic magnetism has a long history because there have been continuous discov-
eries of many intriguing phenomena and difficulties in their theoretical description.
One of the long-standing problems has been known as the itinerant vs localized
behavior of the magnetism. The ground-state properties of Fe, Co, and Ni such as
magnetization and the T -linear specific heat at low temperatures, for example, are
explained by the band model, while their finite temperature properties such as the
paramagnetic susceptibility and the large specific heat anomaly at the Curie temper-
ature are explained well by the localized model.

The dual property of metallic magnetism led to two paths in theoretical investiga-
tions. One is to develop the band theory at the ground state taking into account corre-
lation effects on the one electron potential for electrons. There the density functional
theory (DFT) has played an important role. Theoretical improvement of metallic
magnetism at the ground state has been achieved as a part of the developments of
the DFT in the electronic structure calculations.

Another direction of the development has been to take into account the spin fluc-
tuations in order to describe local-moment behaviors of metallic magnetism at fi-
nite temperatures. Theoretical results in this direction until 1980 are summarized in
the book by Moriya (Spin Fluctuations in Itinerant Electron Magnetism (Springer,
Berlin, 1985)). Although spin fluctuation theories have succeeded in describing the
local moment behavior at finite temperatures in metallic magnetism, the underlying
electronic structure related to the magnetism of a certain individual material seems
to be oversimplified. A book which unifies the two paths on the same footing would
be valuable for readers to understand the metallic magnetism.

This book aims to describe the theories of metallic magnetism from both view-
points, namely spin fluctuations and the electronic structure. It attempts to clarify
the magnetism from metals to disordered alloys to amorphous alloys.

The book covers most of the traditional topics of metallic magnetism such as
electron correlation effects on the ferromagnetism, magnetic excitations, as well
as the stability of antiferromagnetism and spin density waves. But it also includes
topics which have been developed in the past three decades. The first is the devel-
opment of the dynamical CPA (coherent potential approximation), which describes
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vi Preface

the dynamical spin and charge fluctuations on the basis of the microscopic electronic
structure within the single-site approximation. In particular, the first-principles dy-
namical CPA has reduced the gap between the spin fluctuation theory and the band
theoretical approach to a large extent, thus allowing the investigation of the relation-
ship between metallic magnetism and electronic structure. We elucidate this theory
in Chap. 3. We also point out in the same chapter that the dynamical CPA is equiv-
alent to the dynamical mean-field theory (DMFT) in the metal-insulator transition.

The second topic is the theory of local environment effects (LEE) in disordered
alloys, which goes beyond the single-site CPA theory of magnetism. In Chap. 8, we
describe the theory and clarify the magnetic behavior in the vicinity of the mag-
netic instability of Fe–Ni, Ni–Mn, and Ni–Cu alloys. This chapter also includes the
molecular dynamics approach, which automatically determines the complex mag-
netic structure in metals and alloys. The third topic is the theoretical development
of magnetism in amorphous metals and alloys. The finite-temperature theory sheds
light on the amorphous magnetism from the viewpoint of spin fluctuations and the
LEE, and clarifies how structural disorder drastically changes the magnetic prop-
erties of metals and alloys. This development is discussed in Chap. 9. Chapter 1
presents an introduction for the readers who are not familiar with the magnetism.

The frustrated system with heavy effective mass (e.g., YMn2 and LiV2O4) is
not described in this book, because it is still under development. Recent topics on
the spintronics are also omitted for the same reason. Non-local theory of dynamical
spin fluctuations which goes beyond the dynamical CPA is left as a problem of
future concern.

I would like to express my sincere thanks to Professor Peter Fulde, Professor
Matin C. Gutzwiller, and Professor Hiroshi Miwa for their continuous support and
encouragement over 30 years. I would like to thank Professor Takashi Uchida and
Professor Ming Yu for their critical reading of the manuscript as well as their valu-
able comments; Professor Shi-Yu Wu and Professor Sung G. Chung for their valu-
able suggestions for improvement; and Professor Takeo Fujiwara and Professor Mo-
jmir Sob for their kind comments. Dr. M.A.R. Patoary kindly prepared useful figures
to whom I am most indebted. Thanks are also given to Mr. K. Chung for his help in
proofreading the manuscript. Finally, I am grateful to Dr. C. Ascheron, Publishing
Editor of Springer Verlag for his support towards the publication of this book.

Y. KakehashiOkinawa
July 2012



Contents

1 Introduction to Magnetism . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Magnetic Moments . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Formation of Atomic Moments . . . . . . . . . . . . . . . . . . . 6
1.4 Metal and Insulator in Solids . . . . . . . . . . . . . . . . . . . . 11
1.5 Quenching of Orbital Magnetic Moments . . . . . . . . . . . . . . 18
1.6 Heisenberg Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Magnetic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Metallic Magnetism at the Ground State . . . . . . . . . . . . . . . . 29
2.1 Band Theory of Ferromagnetism . . . . . . . . . . . . . . . . . . 29
2.2 Electron Correlations on Magnetism . . . . . . . . . . . . . . . . 36

2.2.1 Stoner Condition in the Correlated Electron System . . . . 36
2.2.2 Stability of Ferromagnetism in the Low Density Limit . . . 37
2.2.3 Gutzwiller Theory of Electron Correlations . . . . . . . . . 40

2.3 Density Functional Approach . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Slater’s Band Theory . . . . . . . . . . . . . . . . . . . . 47
2.3.2 Density Functional Theory . . . . . . . . . . . . . . . . . 48
2.3.3 Tight-Binding Linear Muffin-Tin Orbitals . . . . . . . . . 53
2.3.4 Ferromagnetism in Transition Metals . . . . . . . . . . . . 58

3 Metallic Magnetism at Finite Temperatures . . . . . . . . . . . . . . 63
3.1 Stoner Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Functional Integral Method . . . . . . . . . . . . . . . . . . . . . 67
3.3 Single-Site Theory in the Static Approximation . . . . . . . . . . . 74
3.4 Dynamical CPA Theory . . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Dynamical CPA with Harmonic Approximation . . . . . . . . . . 90
3.6 Dynamical CPA and Dynamical Mean-Field Theory . . . . . . . . 95

3.6.1 The Many-Body CPA and Its Equivalence
to the Dynamical CPA . . . . . . . . . . . . . . . . . . . . 95

3.6.2 The DMFT and Its Equivalence to the Dynamical CPA . . . 96

vii



viii Contents

3.6.3 The Projection Operator Method CPA and Summary
of Relations . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.7 First-Principles Dynamical CPA and Metallic Magnetism . . . . . 104

4 Magnetic Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.1 Spin Waves in the Local Moment System . . . . . . . . . . . . . . 115
4.2 Spin Waves in Itinerant Ferromagnets . . . . . . . . . . . . . . . . 118
4.3 Dynamical Susceptibility . . . . . . . . . . . . . . . . . . . . . . 124
4.4 Dynamical Susceptibility in the RPA and Spin Wave Excitations . . 129

5 Spin Fluctuation Theory in Weak Ferromagnets . . . . . . . . . . . . 135
5.1 Free-Energy Formulation of the Stoner Theory . . . . . . . . . . . 135
5.2 Self-Consistent Renormalization Theory . . . . . . . . . . . . . . 140

6 Antiferromagnetism and Spin Density Waves . . . . . . . . . . . . . 149
6.1 Antiferromagnetism in Metals . . . . . . . . . . . . . . . . . . . . 149
6.2 Generalized Static Susceptibility and Antiferromagnetism . . . . . 157
6.3 Molecular Dynamics Theory for Complex Magnetic Structures . . 162
6.4 Phenomenological Theory of Magnetic Structure . . . . . . . . . . 169

6.4.1 Multiple SDW with Commensurate Wave Vectors . . . . . 172
6.4.2 Multiple SDW with Incommensurate Wave Vectors . . . . 177

7 Magnetism in Dilute Alloys . . . . . . . . . . . . . . . . . . . . . . . 181
7.1 Magnetic Interactions and Spin Glasses in Dilute Alloys . . . . . . 181
7.2 Magnetic Impurity in Noble Metals . . . . . . . . . . . . . . . . . 193

8 Magnetism of Disordered Alloys . . . . . . . . . . . . . . . . . . . . 203
8.1 Slater–Pauling Curves . . . . . . . . . . . . . . . . . . . . . . . . 203
8.2 Single-Site Theory of Disordered Alloys . . . . . . . . . . . . . . 206
8.3 Theory of Local Environment Effects in Magnetic Alloys . . . . . 217
8.4 Computer Simulations for Disordered Magnetic Alloys . . . . . . 242

9 Magnetism of Amorphous Metals and Alloys . . . . . . . . . . . . . 253
9.1 Introduction to the Amorphous Metallic Magnetism . . . . . . . . 253
9.2 Amorphous Structure and Electronic Structure . . . . . . . . . . . 255
9.3 Theory of Amorphous Metallic Magnetism . . . . . . . . . . . . . 258
9.4 Magnetism of Amorphous Transition Metals . . . . . . . . . . . . 266

9.4.1 General Survey . . . . . . . . . . . . . . . . . . . . . . . 267
9.4.2 Magnetism of Amorphous Fe, Co, and Ni . . . . . . . . . . 270
9.4.3 Degree of Structural Disorder and Nonunique Magnetism . 276

9.5 Theory of Magnetism in Amorphous Alloys . . . . . . . . . . . . 280
9.6 Magnetism of Amorphous Transition Metal Alloys . . . . . . . . . 287

9.6.1 TM–TM Amorphous Alloys . . . . . . . . . . . . . . . . . 287
9.6.2 The Other TM Alloys . . . . . . . . . . . . . . . . . . . . 295

Appendix A Equivalence of the CPA Equations (3.83), (3.85),
and (3.89) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Appendix B Dynamical CPA Based on the Multiple Scattering Theory . 305



Contents ix

Appendix C Derivation of the Single-Site Spin Fluctuation Theory
from the Dynamical CPA . . . . . . . . . . . . . . . . . . . . . . . . 309

Appendix D Expansion of Dνσ with Respect to Dynamical Potential . . 313

Appendix E Linear Response Theory . . . . . . . . . . . . . . . . . . . 319

Appendix F Isothermal Molecular Dynamics and Canonical
Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Appendix G Recursion Method for Electronic Structure Calculations . 325

Appendix H An Integral in the RKKY Interaction . . . . . . . . . . . . 329

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339



Chapter 1
Introduction to Magnetism

Magnetic properties originate in the spin degrees of freedom of electrons and their
associated motion in solids. We first describe the microscopic magnetic moments of
electrons, and the formation of atomic magnetic moments due to strong Coulomb
interactions in an atom with unfilled shell. Atomic magnetic moments change their
nature when the atoms form a solid. The key to understanding the behavior of mag-
netic moments in solids is the degree of electron localization. We briefly introduce
the concept of the metal and the insulator (i.e., the Mott insulator). Electrons in the
latter are localized on each atom, so that their magnetic properties are described
by the atomic magnetic moments and the magnetic interactions between them. We
present in this chapter only a minimal discussion on the magnetism in insulators.
On the other hand, electrons move from site to site over the entire crystal in metals,
so that the magnetic properties are connected to the whole degrees of freedom of
correlated electrons. Needless to say, the main theme of this book is the magnetism
of metals and alloys. In the last section, we elucidate various magnetic structures in
solids to provide a basic knowledge on magnetism.

1.1 Magnetic Moments

Magnetic moment M in the electromagnetics is defined by the torque N on a magnet
under the magnetic field H as

N ≡M ×H . (1.1)

It originates in electrons in the magnet. According to the classical electromagnetics,
the coil-type local current i(r) due to electron motion causes a magnetic moment.
It is given in the CGS-Gauss unit as [1]

ML = 1

2c

∫
r × i(r) d3x. (1.2)

Y. Kakehashi, Modern Theory of Magnetism in Metals and Alloys,
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2 1 Introduction to Magnetism

Here c is the speed of light. i(r) is the current density of electrons, given by i(r)=
−∑

i eviδ(r − r i ) with vi being the velocity of the electron and −e the charge of
the electron at r i . Substituting the expressions into (1.2), we obtain

ML =−
∑
i

e

2mec
li . (1.3)

Here me is the mass of an electron and li denotes the angular momentum of elec-
tron i. Equation (1.3) indicates that an electron with angular momentum l generates
a magnetic moment,

ml =− e

2mec
l. (1.4)

This is called the orbital magnetic moment for an electron.
According to the quantum mechanics, an electron has its own magnetic moment

called the spin magnetic moment [2]. It is given by

ms =−ge
e

2mec
s. (1.5)

Here s is the spin angular momentum of an electron with spin s = 1/2. The constant
ge = 2.0023 is referred as the g-value of electron. The deviation from 2 is caused by
the interaction with electro-magnetic fields. The spin magnetic moment was found
first experimentally by Stern and Gerlach in 1922, and was established theoretically
in 1928 by Dirac in his relativistic theory of electrons [3]. In the following we as-
sume that ge = 2 for simplicity.

As seen from (1.5), the spin of an electron leads to the magnetic moment

μB = e�

2mec
= 0.9274× 10−20 emu. (1.6)

Here � is the Planck constant divided by 2π . The magnetic moment μB denotes the
Bohr magneton, and is often used as a unit of the magnetic moment in atomic scale.

Equations (1.4) and (1.5) indicate that an electron has the following magnetic
moment in the atomic scale.

m=ml +ms =−(l + 2s)μB, (1.7)

and the total magnetic moment is given by

M =−
〈∑

i

(li + 2si )μB

〉
. (1.8)
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Here the angular momenta l and s are measured in units of � = 1. The li and si
at the right-hand-side (r.h.s.) of the above equation should be regarded as quantum
mechanical operators, and 〈∼〉 means a quantum mechanical expectation value. In
the following, we omit the minus sign at the r.h.s. of (1.8) for convenience bearing
in mind that the real magnetic moments are opposite in direction.

It should be noted that the nuclei in the magnet also have magnetic moments
because they have their own spins. The size of their magnetic moments is however
characterized by the nuclear magneton μN, which is defined by

μN = e�

2mpc
. (1.9)

Heremp denotes the mass of proton. The nuclear magnetonμN is only 1/1800 of the
Bohr magneton μB because μN/μB = me/mp. Therefore the magnetism in solids
is dominated by the magnetic moments of electrons. In the following equations, we
adopt a unit of μB = 1 for simplicity.

1.2 Basic Hamiltonian

Magnetic moments and magnetic properties are governed by the Hamiltonian of
the system. The basic Hamiltonian of electrons in solids is given as follows in the
second quantization.

H =
∫
ψ†(r)

(
−1

2
∇2 + vN(r)

)
ψ(r) dr

+ 1

2

∫
ψ†(r)ψ†(r ′) 1

|r − r ′|ψ
(
r ′
)
ψ(r) dr dr ′

+
∫
ψ†(r)

[
1

2
∇vN(r)× (−i∇) · 1

2
σ

]
ψ(r) dr

−
∫
ψ†(r)(l + 2s)ψ(r) dr ·H . (1.10)

Here we have adopted the units me = 1, � = 1, and e = 1 for simplicity. ψ(r) =
(ψ↑(r),ψ↓(r)) is the electron field operator. vN(r) is the one electron potential en-
ergy due to nuclei, and is given by vN(r)=−∑

i Zi/|r−Ri |. Zi is the atomic num-
ber of the atom at position Ri . H denotes the magnetic field, and σ = (σx, σy, σz)

denote the Pauli spin matrices given by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.11)

The first term in the Hamiltonian (1.10) consists of the kinetic energy and the
attractive potential due to nuclei, and describes the independent motion of electrons.
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The second term denotes the electron–electron interaction, the third term denotes the
spin–orbit interaction, and the last term is the Zeeman interaction due to magnetic
field. Note that in the above expression we have omitted the diamagnetic term which
is proportional to the square of the magnetic field [2], because we do not consider
the diamagnetism in this book.

In solids, we may express the field operators by means of a basis set of wave-
functions {ϕi(r)} as follows.

ψσ (r)=
∑
i

aiσ ϕi(r). (1.12)

Here ϕi(r) are orthonormal basis functions. The suffix i stands for a set of the
atomic position i (quantum number n) and orbital L (momentum k) when we adopt
atomic orbitals (one-electron eigen functions in solids) as the basis functions.

Using the orthonormal basis set, we can express the Hamiltonian (1.10) as fol-
lows.

H =
∑
ijσ

εij a
†
iσ ajσ +

1

2

∑
ijklσσ ′

Vijkla
†
iσ a

†
jσ ′akσ ′alσ +HSO +HZeeman. (1.13)

Here εij (Vijkl) are the matrix elements for the independent electron (the Coulomb
interaction) part of the Hamiltonian (1.10). They are given by

εij =
∫
dr ϕ∗i (r)

(
−1

2
∇2 + vN(r)

)
ϕj (r), (1.14)

Vijkl =
∫
dr dr ′

ϕ∗i (r)ϕ∗j (r ′)ϕk(r ′)ϕl(r)
|r − r ′| . (1.15)

The third and last terms at the r.h.s. of (1.13) are the spin–orbit interaction term
and the Zeeman term, respectively.

HSO =
∑
iαjγ

ζiαjγ a
†
iαajγ , (1.16)

HZeeman =−
∑
iαjγ

(l + 2s)iαjγ a
†
iαajγ ·H . (1.17)

Here the spin–orbit interaction matrix elements ζiαjγ are given by

ζiαjγ =
∫
dr ϕ∗i (r)

[
1

2
∇v(r)× (−i∇)

]
ϕj (r) · (s)αγ . (1.18)

In molecules and solids, atomic orbitals are often useful as the basis functions.

ϕ
(atom)
i (r)= φinl

(|r −Ri |
)
Ylm(r −Ri ). (1.19)

Here φinl(|r−Ri |) is a radial wave function for an atom located at Ri , the subscripts
n and l denote the principal quantum number and the azimuthal quantum number,
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respectively. Ylm(r − Ri ) is the spherical harmonics located at atom Ri , and m

denotes the magnetic quantum number.
In the application to solids, it is convenient to make use of real functions {Plν}

instead of complex basis functions {Ylm}. The former called the cubic harmonics
are constructed by linear combinations of spherical harmonics. Defining the orbital
L= (l, ν), the atomic functions for solids are written as follows.

ϕinL(r)= φinl
(|r −Ri |

)
Plν(r −Ri ). (1.20)

The cubic harmonics are constructed to yield the irreducible representation for
the cubic symmetry of the point group in crystal. The s (l = 0) function belonging
to the A1g representation for the cubic point symmetry is a constant function.

Pa1g (r)= Y00 = 1√
4π

. (1.21)

The p (l = 1) functions belonging to the T1u representation are defined as follows.

Pt1uα(r)=
1√
2
(−Y11 + Y1,−1)=

√
3

4π

x

r
, (1.22)

Pt1uβ(r)=
i√
2
(Y11 + Y1,−1)=

√
3

4π

y

r
, (1.23)

Pt1uγ (r)= Y10 =
√

3

4π

z

r
. (1.24)

The d (l = 2) orbitals form the Eg (dγ ) and T2g (dε) representations. The d
functions belonging to the Eg representation are given by

Pegu(r)= Y20 =
√

5

4π

1

2

3z2 − r2

r2
, (1.25)

Pegv (r)=
1√
2
(Y22 + Y2,−2)=

√
5

4π

√
3

2

x2 − y2

r2
. (1.26)

The remaining d (l = 2) functions belonging to the T2g representation are given by

Pt2gξ (r)=
i√
2
(Y21 + Y2,−1)=

√
5

4π

√
3
yz

r2
, (1.27)

Pt2gη (r)=
1√
2
(−Y21 + Y2,−1)=

√
5

4π

√
3
zx

r2
, (1.28)

Pt2gζ (r)=
i√
2
(−Y22 + Y2,−2)=

√
5

4π

√
3
xy

r2
. (1.29)
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Fig. 1.1 Atomic orbitals from s to d symmetry. The sign of wave functions is shown by + and −
in the figure

The angular dependence of the cubic harmonics is shown in Fig. 1.1. The spatial
distribution of the atomic wave functions governs the electron hoppings in solids,
thus determining the electronic and magnetic properties of solids.

1.3 Formation of Atomic Moments

The electronic structure and related properties of an atom may be understood by an
independent-electron picture. The spin–orbit interaction in the Hamiltonian (1.13) is
smaller than the Coulomb interaction in the ‘light’ elements such as the 3d transition
metals. We first neglect the former, and treat the latter by means of the following
approximation.

a
†
iσ a

†
jσ ′akσ ′alσ =

〈
a

†
iσ alσ

〉
a

†
jσ ′akσ ′ + a†

iσ alσ
〈
a

†
jσ ′akσ ′

〉

− 〈
a

†
iσ akσ ′

〉
a

†
jσ ′alσ − a†

iσ akσ ′
〈
a

†
jσ ′alσ

〉

− 〈
a

†
iσ a

†
jσ ′akσ ′alσ

〉
. (1.30)

Here the average 〈 〉 is taken with respect to an independent particle system which
will be chosen later. Note that the two particle operator has been decoupled so that
(1.30) exactly holds true when we take the average. This is called the Hartree–Fock
approximation.

In the Hartree–Fock approximation, the Hamiltonian (1.13) is reduced to

H =
∑
ijσ

hijσ a
†
iσ ajσ −

1

2

∑
ijklσσ ′

(Vijkl − Vijlkδσσ ′)
〈
a

†
iσ alσ

〉〈
a

†
jσ ′akσ ′

〉
. (1.31)
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Here hijσ is given as follows.

hijσ =
∫
ϕ

†
iσ (r)

(
−1

2
∇2 + vN(r)+

∫
dr ′ 〈n(r

′)〉
|r − r ′|

)
ϕjσ (r)

−
∫
dr dr ′ϕ†

iσ (r)
〈ψ†

σ (r
′)ψσ (r)〉

|r − r ′| ϕjσ
(
r ′
)
. (1.32)

The Hartree–Fock one-electron wave functions {ϕiσ (r)} are determined by solv-
ing the following self-consistent equations.

(
−1

2
∇2 + vN(r)+

∫
dr ′ 〈n(r

′)〉
|r − r ′|

)
ϕiσ (r)

−
∑
j

〈njσ 〉
∫
dr ′

ϕ∗jσ (r ′)ϕiσ (r ′)
|r − r ′| ϕjσ (r)= εiσ ϕiσ (r). (1.33)

Here εiσ is the Hartree–Fock energy eigen value. When we apply the Hartree–Fock
independent particle Hamiltonian in the average 〈 〉, 〈njσ 〉 is given by the Fermi dis-
tribution function f (εjσ ) and 〈n(r)〉 =∑

jσ f (εjσ )ϕ
∗
jσ (r)ϕjσ (r) denotes a charge

density in the Hartree–Fock approximation. The third term at the l.h.s. of (1.33)
gives the electrostatic potential due to electrons. The last term also originates in
the Coulomb interaction, but the wave functions have been exchanged due to the
anti-symmetric property of the Slater determinant. It is referred as the exchange po-
tential. The Hartree–Fock wave function is the best Slater determinant at the ground
state according to the variational principle [4].

Taking the Hartree–Fock wavefunctions as the basis functions, one can express
the Hartree–Fock Hamiltonian (1.31) as follows.

H =
∑
iσ

εiσ niσ − 1

2

∑
ijσσ ′

(Vijji − Vijij δσσ ′)〈niσ 〉〈njσ ′ 〉. (1.34)

Here Vijji (Vijij ) is known as the Coulomb integral (exchange integral). (Note that
Vijkl should more precisely be Viσjσ ′kσ ′lσ .) The second term at the r.h.s. is to elim-
inate the double counting of Coulomb interaction in the Hartree–Fock one-electron
energy.

The exchange potential in the Hartree–Fock equation (1.33) is nonlocal. Slater
proposed an approximate local exchange potential, using the free-electron wave
functions. It is given as follows [4].

vexσ (r)=−3

(
3

4π

)1/3

nσ (r)
1/3, (1.35)

where nσ (r) is the electron density with spin σ .
The effective potential in the Hartree–Fock self-consistent equation is spherical

in the atomic system when we apply the potential (1.35). We can express the atomic
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wave function for an electron as

ϕnlmσ (r)= φnlσ (r)Ylm(r̂). (1.36)

Here φnlσ (r) is the radial wave function, and Ylm(r̂) is the spherical harmonics. n,
l, and m denote the principal quantum number, the azimuthal quantum number, and
the magnetic quantum number, respectively. Orbitals l = 0,1,2,3, . . . are called s,
p, d, f, . . . , respectively. The nl shells are therefore written as ns, np, nd, nf, etc. In
each shell, there are 2l + 1 degenerate orbitals.

With the use of the Hartree–Fock atomic orbitals, a many electron state of an
atom is expressed in the form of the Slater determinant. The ground-state electronic
structure of an atom is constructed according to the Pauli principle. For example,
in the case of Ar, we have the ground state 1s22s22p63s23p6. Since the outermost
electron shell of Ar is closed, the magnetic moment of Ar vanishes.

For an atom with an unfilled shell, the magnetic moment may appear. Since the
total number of electrons (N ), the total spin (S), and the total orbital moment (L) of
an atom commute with the Hamiltonian, the eigen function Ψ should be specified by
the set (NLMSMs): Ψ (NLMSMs), whereL (S) andM (Ms) denote the magnitude
and z component of orbital moment L (spin S), respectively. The eigen energy,
on the other hand, should depend only on N , L, and S because of the rotational
symmetry: EA(NLS).

The ground state of electrons in an atom should be obtained by minimizing the
Coulomb energy. The Coulomb interaction of the Hamiltonian for the unfilled shell
is written as follows according to (1.13).

HCoulomb =
∑
ν

Uννnν↑nν↓ +
∑
ν>ν′

(
Uνν′ − 1

2
Jνν′

)
nνnν′ − 2

∑
ν>ν′

Jνν′sν · sν′ .

(1.37)

Here ν denotes an orbital lm (m=−l . . . l). nν (sν ) denotes the charge (spin) density
operator for electrons in the orbital ν. We have taken into account the Hartree–Fock
Coulomb and exchange interactions, Uνν′ = Vνν′ν′ν and Jνν′ = Vνν′νν′ , and omitted
the other types of interactions. The first term at the r.h.s. of (1.37) denotes the intra-
orbital Coulomb interaction, the second term expresses the inter-orbital interaction,
and the third term the exchange interaction between the spins on different orbitals.
Note that Uνν > Uνν′(ν �= ν′) > Jνν′ > 0. Typical values of Coulomb interactions
are Uνν ≈ 20 eV, Uνν − Uνν′ ≈ 2 eV, and Jνν′ ≈ 0.9 eV for 3d transition-metal
elements [5]. Note that N stands for the total number of electrons in the unfilled
shell when the Hamiltonian (1.37) is applied.

The intra-orbital Coulomb interaction (i.e., the first term at the r.h.s. of (1.37))
acts to reduce the doubly occupied states on the same orbital so that it creates active
spins on the orbitals of an unfilled shell. The third term in (1.37) aligns the active
spins on the orbitals because Jνν′ > 0. These effects suggest that the magnitude of
the total spin S is maximized at the ground state. This is known as Hund’s first rule,
and therefore Jνν′ are often called the Hund-rule couplings. On the other hand, the
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second term in (1.37) is the energy associated with the configuration of electrons
on different orbitals. One might expect that such an interaction energy is reduced
when electrons move around the nucleus in the same direction avoiding each other.
Thus we expect that the magnitude of the total angular momentum L should be
maximized at the ground state under the maximum magnitude of total spin. This is
referred as Hund’s second rule. The first and second Hund rules are verified by the
full Hartree–Fock numerical calculations.

The maximum S and L at the ground state are obtained by using the Pauli
principle and the Hund rule, especially from the conditions S = Ms(Max) and
L=M(Max) under the maximum S that corresponds to the state Ψ (NLLSS):

S =

⎧⎪⎨
⎪⎩

N

2
for N ≤ 2l + 1,

4l + 2−N
2

for N > 2l + 1,
(1.38)

L=
{

1
2N(2l + 1−N) for N ≤ 2l + 1,
1
2 (N − 2l − 1)(4l + 2−N) for N > 2l + 1.

(1.39)

The ground state Ψ (NLMSMs) is (2L + 1)(2S + 1)-fold degenerate. The mul-
tiplet is written as 2S+1LJ where L takes S, P, D, F, G, H, . . . according to
L = 0,1,2,3,4,5, . . . , and J (= |L ± S|) is the total angular momentum. These
properties are summarized in Fig. 1.2 for 3d transition metal atoms.

The value of J at the ground state is determined by the spin–orbit interaction.
The spin–orbit interaction (1.16) in the atomic system can be written as

HSO =
∑
ναν′γ

ζnl (l)νν′ · (s)αγ a†
ναaν′γ . (1.40)

Here

ζnl = 1

2

∫ ∞

0

∣∣φnl(r)∣∣2 dV
dr

r dr > 0. (1.41)

Assume that the ground state is determined by the Hund rule, and the temperature
is such that the corresponding thermal energy is much lower than that of the first ex-
cited state of the Coulomb interaction, i.e., the Hund-rule coupling JH: kBT � JH.
Here JH is an average value of {Jνν′ }, and kB denotes Boltzmann’s constant. More-
over the spin–orbit interaction energy is much smaller than JH in 3d transition
metals. In this case, we can neglect all the excited state of the Coulomb interac-
tions, and limit the states to the (2L+ 1)(2S+ 1) dimensional Hund-rule subspace:
{Ψ (NLMSMs)}. We can then verify the following relation in the subspace.

〈
Ψ (NLMSMs)

∣∣HSO
∣∣Ψ (

NLM ′SM ′
s

)〉
= λ(NLS)〈Ψ (NLMSMs)

∣∣L · S∣∣Ψ (
NLM ′SM ′

s

)〉
. (1.42)
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Fig. 1.2 The ground state of atoms with 3d unfilled shell. N and mz denote the d electron number
and the orbital magnetic quantum number, respectively. Electron configuration for each N in the
upper row of the figure shows the state Ψ (NLLSS) leading to the total spin S and the orbital
angular momentum L at the ground state. J denotes the total angular momentum. The ground
state multiplets (GS) are expressed as 2S+1LJ . The experimental values of the spin–orbit coupling
constant λ are given. Examples of the 3d transition metal ions are also given in the bottom row

Thus we have an effective Hamiltonian for the spin–orbit interaction in the Hund-
rule subspace as follows.

HSO = λ(NLS)L · S. (1.43)

The coefficient λ(NLS) is obtained by comparing the diagonal matrix element of
HSO for the state Ψ (NLLSS) obtained from (1.40) with that of the r.h.s. of (1.43).

λ(NLS)=

⎧⎪⎨
⎪⎩
ζnl

N
for N ≤ 2l + 1,

− ζnl

4l + 2−N for N > 2l + 1.
(1.44)

Because ζnl > 0, λ(NLS) > 0 for N ≤ 2l + 1 and λ(NLS) < 0 for N > 2l + 1.
Thus, J = |L− S| is realized for N ≤ 2l+ 1, and J = |L+ S| for N > 2l+ 1 at the
ground state among possible states J = |L+S|, |L+S−1|, . . . , |L−S|. Therefore
J = |L− S| is the ground-state in the light transition-metal elements and the light



1.4 Metal and Insulator in Solids 11

rare-earth elements, and J = |L + S| is the ground state in the heavy transition-
metal elements and the heavy rare-earth elements. Note that the typical value of the
spin–orbit coupling is only one tenth of the Hund rule coupling (JH ∼ 1 eV) in the
case of 3d transition metal ions as shown in Fig. 1.2. When the spin–orbit coupling
is significant as in the rare-earth atoms, the ground-state should be (2J + 1)-fold
degenerate instead of (2S + 1)(2L+ 1) fold.

Ions such as Ti2+, V3+, and Cr4+, for example, have two electrons in the d shell
(see the N = 2 column in Fig. 1.2). The Hund rule tells us that the total spin and
orbital angular momenta at the ground state are S = 1 and L= 3, respectively. Be-
cause the spin–orbit coupling λ > 0 in the light atoms, the total angular momentum
at the ground state is given by J = 3− 1. Thus we have the ground-state multiplet
3F2 according to the notation 2S+1LJ . In the same way, the ion Co2+ has 7 elec-
trons in the d shell. According to the Hund rule, we find the ground-state spin and
orbital momenta S = 3/2 and L= 3, respectively. Because the spin–orbit coupling
λ < 0 in the heavy atoms, the total angular momentum is given by J = 9/2. Thus
we obtain the ground-state multiplet 4F9/2 for Co2+ ion.

When the external magnetic field H is applied to the atoms, the energy due to the
magnetic field is given by −gJμBJzH . Here gJ is Landé’s g factor and is given by
gJ = 3/2+ [S(S + 1)−L(L+ 1)]/2J (J + 1). The susceptibility which is defined
by the induced magnetization divided by H is then given by

χ = g2
Jμ

2
BJ (J + 1)

3kBT
. (1.45)

The above temperature dependence is referred as the Curie law, and C ≡
g2
Jμ

2
BJ (J + 1)/3kB is called the Curie constant. The observation of the Curie law

in the susceptibility measurement is regarded as an indication of the existence of
local magnetic moments.

1.4 Metal and Insulator in Solids

When atoms form a solid, electrons in the outermost shell of atoms start to hop from
atom to atom via overlap between atomic orbitals. The question then is whether
electrons tend to remain in each atom or to itinerate in the solid. In the case of the
former, atomic magnetic moments are well defined in solids and their properties are
expected to be explained from the atomic point of view. In the case of the latter,
magnetic properties may be quite different from those expected from atomic ones
and one has to start from the itinerant limit in order to explain their magnetism.

Whether electrons in solids are movable or not is governed by the detailed bal-
ance between the energy gain due to electron hopping and the loss of Coulomb in-
teraction. The simplest example may be the case of the hydrogen molecule H2. Ac-
cording to the molecular orbital picture, the 1s atomic orbitals split into the bonding
state with energy ε0 − |t | and the anti-bonding state with energy ε0 + |t | when hy-
drogen atoms form a molecule. Here ε0 denotes the atomic ground state, and t is the
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electron hopping integral which is defined by atomic potential v(r) and wave func-
tion ϕ(r) as t = ∫

ϕ(r − R)v(r − R)ϕ(r) dr . The bonding orbital is occupied by
two electrons according to the Pauli principle. It leads to the total energy gain 2|t |.
This is the covalent bond in the hydrogen molecule. In this state, electrons hop from
one atom to another, and thus they are movable. The covalent bond is stabilized by
the kinetic energy gain of independent electrons. It consists of the polarized state in
which the 1s orbital of an atom is doubly occupied and the orbital of another atom
is unoccupied, and the neutral state in which each atomic orbital is occupied by an
electron.

When the Coulomb interaction between electrons are taken into account, the
covalent bonding state is not necessarily stable because it contains the polariza-
tion state with double occupancy on an atomic orbital. Assume that the loss of
the intraatomic Coulomb interaction energy in the covalent bonding state is given
by U , and consider the neutral-atom state as the state in which each electron is
localized on an atom. The total energy in the covalent bonding state is given by
E(covalent) = 2ε0 − 2|t | + U , while the energy in the neutral atom state is given
by E(neutral) = 2ε0. Thus, the neutral atom state is realized when the following
condition is satisfied.

2|t |<U. (1.46)

This condition is satisfied when the interatomic distance goes to infinity because |t |
goes to zero. Thus the neutral atom state in which electrons are localized on each
atom and each atom has a well defined local magnetic moment s = 1/2 is realized
in the atomic limit.

In solids, we expect the same behavior as found in the hydrogen molecule. Let us
consider the behavior of electrons when atoms form a solid. Electrons in solids move
in a potential obtained by a superposition of the atomic potentials

∑
i v(r − Ri ).

Here v(r −Ri ) denotes the atomic potential on site i. When we adopt the atomic
orbitals {ϕiν(r −Ri )} as the basis functions and assume the orthogonality between
the orbitals, the Hamiltonian for electrons on the outermost shells in solids may be
obtained from (1.13) as

H =H0 +HCoulomb, (1.47)

H0 =
∑
iν

εiνniν +
∑
iνjν′

tiνjν′a
†
iνσ ajν′σ , (1.48)

HCoulomb =
∑
iν

Uiννniν↑niν↓ +
∑
i

∑
ν>ν′

(
Uiνν′ − 1

2
Jiνν′

)
niνniν′

− 2
∑
i

∑
ν>ν′

Jiνν′siν · siν′ . (1.49)

Here εiν is the atomic level for the orbital ν of site i, and tiνjν′ the transfer integral
between the orbital ν at site i and the orbital ν′ at site j . The latter is expressed in
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the two-center approximation as

tiνjν′ =
∫
ϕ∗iν(r −Ri )v(r −Ri )ϕiν′(r −Rj ) dr. (1.50)

Note that we have taken into account in HCoulomb only the intra-atomic Coulomb
interactions and omitted the inter-site Coulomb interaction contributions for sim-
plicity.

It is not easy to treat the electrons in solids described by the Hamiltonian (1.47)
because both the electron hoppings and the Coulomb repulsions have to be taken
into consideration. In order to discuss both the itinerant and localized behaviors of
electrons in solids, we can consider a simpler Hamiltonian consisting of one orbital
per site as follows.

H =
∑
iσ

ε0niσ +
∑
ijσ

tij a
†
iσ ajσ +

∑
i

Uni↑ni↓. (1.51)

Here ε0, tij , and U denote the atomic level, the transfer integral between sites i
and j , and the intra-atomic Coulomb interaction energy, respectively. The Hamilto-
nian (1.51) is known as the Hubbard model, and was proposed by Gutzwiller and
Hubbard independently [6–10].

The Hubbard model (1.51) is the simplest Hamiltonian which describes the
motion of interacting electrons in solids. Nevertheless it describes the localiza-
tion of electrons as well as their itinerant behavior in solids. Let us consider the
atomic limit of the model. For an atom, we have 4 atomic states: the empty state
(n↑ = 0, n↓ = 0), the single electron states (n↑ = 1, n↓ = 0) and (n↑ = 0, n↓ = 1),
and the doubly occupied state (n↑ = 1, n↓ = 1). Associated energies are given as 0,
ε0, ε0, and 2ε0 +U , respectively. An unfilled shell with spin S = 1/2 appears only
for the n = 1 state. Note that there is no Hund’s rule arrangement for spin in this
case.

In the atomic limit for a solid where tij = 0, electron number ni on each atom is
no longer constant, though the total number of electrons N is given; N =∑

iσ niσ .
The eigenstates are given by |Ψ 〉 = |{niσ }〉, i.e., a set of the electron numbers with
spin σ on site i. The eigenenergy for the state is given by

E
({niσ })=∑

i

(ε0ni +Uni↑ni↓). (1.52)

It should be noted that the energy of the system increases by U when the number
of doubly occupied states D is increased by one. The ground-state energy E0 of the
atomic limit is obtained by minimizing the energy with respect to the number of
double occupancy in solid. Assume that the number of lattice points is given by L.
When N <L, the ground-state energy is obtained as E0 = ε0N by choosing D = 0.
Magnetic moments on the sites with an electron are active in this case as shown in
Fig. 1.3. Because there are L!/N !(L−N)! electron configurations on the L lattice
points, the ground state is [2NL!/N !(L−N)!]-fold degenerate.
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Fig. 1.3 Electron configurations for less than half filling (upper figure) and for more than half
filling (lower figure) in the atomic limit

At half filling, all the atoms are occupied by an electron so that spin de-
grees of freedom by 2N remain; the degenerated wave functions are given by
|1s1z1s2z1s3z . . . 〉 when the wave function |{niσ }〉 is written as |n1s1zn2s2zn3s3z . . . 〉
by using the charge ni = ni↑ + ni↓ and the spin siz = (ni↑ − ni↓)/2.

When the electron number N is larger than L, it is no longer possible to keep
D = 0; the minimum value of D is given by D =N −L. The ground state energy is
then given byE0 = ε0N+U(N−L). The ground state is [22L−NL!/(2L−N)!(N−
L)!]-fold degenerate because there are L!/(2L − N)!(N − L)! configurations for
choosing 2L−N(< L) sites with the single electron from L lattice sites and there
are 22L−N spin degrees of freedom for each configuration. Note that the spins on
2L−N sites are active in this case.

Let us consider the case that electron hopping tij is small but finite. WhenN �= L,
electrons are mobile at T = 0 because electrons can move from site to site without
increasing the double occupation number D. Thus the system is a metal. However,
at half-filling, electron hopping creates a doubly occupied state, thus creating a finite
excitation energy by the amount of Coulomb interaction energy U . Therefore elec-
trons cannot move under the infinitesimal electric field. We have then an insulator
with local magnetic moments at each site in this case.

When there is no Coulomb interaction (U = 0), on the other hand, electrons are
generally itinerant. The Hamiltonian is given as

H =
∑
ijσ

(H 0)ij a
†
iσ ajσ . (1.53)

Here (H 0)ij = ε0δij + tij (1− δij ). The noninteracting Hamiltonian is diagonalized

by a unitary transformation aiσ =∑
k akσ 〈i|k〉 (a†

iσ =
∑

k a
†
kσ 〈i|k〉∗) so that

H =
∑
kσ

εknkσ , (1.54)

where εk =∑
ij 〈k|i〉(H 0)ij 〈j |k〉 is an eigen value for the tight-binding one-electron

Hamiltonian matrix H 0, and the set {〈j |k〉} (j = 1, . . . ,L) is the eigen vector for εk .
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The eigen states for noninteracting Hamiltonian H are given by |Ψ 〉 = |{nkσ }〉,
i.e., a set of electrons with momentum k and spin σ . The eigenenergy is given by

E
({nkσ })=∑

kσ

εknkσ , (1.55)

where the c-number nkσ takes on the value of 0 or 1. The ground state is obtained
by putting electrons on the energy levels from the bottom to the Fermi level εF

according to the Pauli principle,

|φ0〉 =
[
εk<εF∏
kσ

a
†
kσ

]
|0〉, (1.56)

so that the ground-state energy is given by

E0
({nkσ })=

εk<εF∑
kσ

εk. (1.57)

Alternatively, defining the density of states per atom per spin as

ρ(ε)= 1

L

∑
k

δ(ε− εk), (1.58)

we can express the ground-state energy per atom as

E0 = 2
∫ εF

−∞
ερ(ε) dε. (1.59)

A non-interacting electron system is in general metallic unless the electrons in
the atom form a closed shell. The electrons in such systems are mobile. This is
because one can add an electron at the energy level just above the Fermi level by
applying infinitesimal electric field. Note that spins of itinerant electrons are also
mobile. We may expect that there is a transition from metal to insulator at half
filling when the intra-atomic Coulomb interaction is increased. Assume that there
is a band for a non-interacting system whose band width is W . The center of the
gravity of the noninteracting band is assumed to be located at ε0. When the Coulomb
interaction U is increased, each atom tends to be occupied by one electron, and
electron hopping to neighboring sites tends to be suppressed in order to reduce the
on-site Coulomb interaction energy. In the strongly correlated region, an electron
should have a potential ε0 + U on a site having an opposite-spin electron because
of the increment of the Coulomb interaction energy due to double occupation, while
an electron has a potential ε0 on an empty site. We then expect one more band with
the band width of order of W around ε0 + U . The density of states as excitation
spectrum is expected to split into two bands at Uc ∼W (see Fig. 1.4). The formation
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Fig. 1.4 The upper and
lower Hubbard bands created
by on-site Coulomb
interaction U

Fig. 1.5 NaCl type structure
in NiO

of a gap at the Fermi level implies the existence of an insulator. The insulating state
therefore may be realized by the electron correlations when

U >W. (1.60)

This is Hubbard’s alloy analogy picture to the metal–insulator transition [9, 10].
The metal–insulator transition due to electron correlations as mentioned above is
commonly known as the Mott transition. The split bands are named the upper and
lower Hubbard bands, respectively. The insulator caused by the electron correlations
is referred as the Mott insulator.

The concept of the Mott insulator was first proposed by Mott [11]. He consid-
ered the case of NiO. NiO has the NaCl structure in which Ni–O chain network is
formed along [100] direction (see Fig. 1.5). The electronic configuration of the Ni28

(O8) atom is given by 1s22s22p63s23p63d84s2 (1s22s22p4). The oxygen atoms are
considered to form a closed shell in the compound taking electrons from Ni atoms,
so that we have

Ni2+: 1s22s22p63s23p63d8 O2−: 1s22s22p6.

In this case, the Fermi level should be on the d bands in the crystalline system, and
we can expect a metal because the 5-fold d bands overlap each other in general (see
Fig. 1.6).
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Fig. 1.6 Density of states for
NiO in the paramagnetic state
obtained by the band
calculation [12]. The vertical
dashed line shows the Fermi
level

Experimental results however indicate that NiO is an insulator. To clarify the
insulating behavior, Mott considered the electron hopping on the NiO network. Let
us estimate an excitation energy �Eg when an electron moves to the neighboring
Ni2+ site. This process is similar to an excitation of the H2 molecule to a polarized
state. (

Ni2+O2−)
2 −→Ni3+O2− +Ni+O2−.

Assume that the intra-atomic Coulomb interaction is given by
∑

i

∑
(νσ,ν′σ ′) U ·

niνσ niν′σ ′ for simplicity. There an electron is coupled to the remaining 7 electrons
via the on-site Coulomb interaction. After the hopping, the electron is coupled to 8
electrons at the neighboring site, so that the Coulomb interaction is increased by U .
On the other hand, the kinetic energy gain due to electron hopping at Ni3+ and Ni2+
sites may be given by

2z|t | ∼W, (1.61)

because electrons in surrounding Ni sites can enter into the Ni3+ ions and the elec-
trons in Ni2+ ions can jump to the surrounding Ni sites. Here z is the number of Ni
nearest neighbors, and t is an effective electron hopping between Ni atoms. Note
that |t | corresponds to an energy gain for the formation of the bonding state due to
electron hopping in the H2 molecule, while U corresponds to the Coulomb energy
loss in the polarized state. The excitation energy of an electron hopping is therefore
given by

�Eg ∼U −W. (1.62)

Thus, we again have the same criterion for the formation of the Mott insulator (1.60)
from the condition �Eg > 0.

The magnetic materials in the insulator are considered to be the Mott-type insu-
lator in which the atomic magnetic moments are built up in the unfilled shell. CrO2
and CrBr2 are typical ferromagnetic insulators, while MnO, FeO, CoO, and NiO
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are known as antiferromagnetic insulators in which the atomic magnetic moments
change their direction alternatively from site to site.

On the other hand, there are many magnetic metals where the polarized electrons
are mobile. These materials are referred as the metallic magnets or itinerant electron
magnets. The magnetic properties of these systems are known as the metallic mag-
netism or itinerant magnetism. Fe, Co, and Ni are typical examples of the metallic
ferromagnet, while Cr and Mn alloys show the antiferromagnetism. We describe in
this book the itinerant magnetism of metals and alloys.

1.5 Quenching of Orbital Magnetic Moments

The expectation value of the total orbital magnetic moment 〈ML〉 = 〈L〉 is usu-
ally quenched in the crystalline system due to the crystalline potential of electrons.
Let us consider the case where the spin–orbit interactions are negligible as in the
3d transition metals, and that the magnetic field is not applied. Moreover we may
assume in solids that the ground state is nondegenerate. One can then choose the
ground-state wave function to be real; Ψ ∗ = Ψ .

The angular momentum 〈L〉 is real because it is a physical quantity:

〈L〉 = 〈L〉∗. (1.63)

Using the relation Ψ ∗ = Ψ , the r.h.s. of the above equation is written as

〈L〉∗ = −〈Ψ |L|Ψ 〉. (1.64)

Therefore (1.63) indicates that

〈L〉 = 0. (1.65)

Thus, one can expect in metals with sufficiently small spin–orbit interactions that
only spin magnetic moments contribute to the magnetization.

〈M〉 = 〈2S〉. (1.66)

This is referred as the quenching of orbital magnetic moments.
In the atomic system, electrons are bound by the nuclei, and the orbital angular

momentum is finite in general according to Hund’s second rule. In the crystalline
system, the Coulomb energy gain leading to Hund’s second rule is not expected be-
cause electrons can hop to the neighboring sites to reduce the Coulomb energy, and
electrons can move turning around to right and left (see Fig. 1.7). It may lead to
〈L〉 = 0. This is a physical reason for the quenching of orbital moments in solids. In
the 3d transition metals and alloys which we will discuss, the orbital magnetic mo-
ments are usually quenched. In the system with a large spin–orbit coupling such as
the rare-earth metals or the system with a strong magnetic field, the orbital moments
remain.
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Fig. 1.7 Concept of orbital
magnetic moments in atom
(L �= 0: left) and solids
(L= 0: right)

1.6 Heisenberg Model

In the insulator, magnetic behaviors are often described by a simple Hamiltonian
known as the Heisenberg model. We briefly discuss the Hamiltonian and related
properties of the insulator magnetism in this section.

Let us consider the hydrogen molecule. We assume one orbital for each hydrogen
atom, ϕ1 for atom 1 and ϕ2 for atom 2, and neglect the overlap integrals for simplic-
ity, i.e., 〈ϕ1|ϕ2〉 = 0. The Hamiltonian for the hydrogen molecule is obtained from
(1.13) as we derived (1.47).

H =
∑
iσ

ε0niσ +
∑
ijσ

tij a
†
iσ ajσ +

∑
i

Uni↑ni↓ +
(
K − 1

2
J

)
n1n2 − 2J s1 · s2.

(1.67)

Here K and J denote the intersite Coulomb and exchange integrals given by

K =
∫
dr dr ′

ϕ∗1 (r)ϕ∗2 (r ′)ϕ2(r
′)ϕ1(r)

|r − r ′| , (1.68)

J =
∫
dr dr ′

ϕ∗1 (r)ϕ∗2 (r ′)ϕ1(r
′)ϕ2(r)

|r − r ′| . (1.69)

In the atomic subspace where n1 = n2 = 1 and the electron hopping is sup-
pressed, the Hamiltonian (1.67) reduces as follows.

H = 2ε0 +K − 1

2
J − 2J s1 · s2. (1.70)

It is diagonalized with the use of the total spin S (in the representation of S and
Sz) as

H = 2ε0 +K − J
[
S(S + 1)− 1

]
. (1.71)

Therefore the hydrogen molecule has the energy 2ε0 +K − J for the triplet state
and 2ε0 +K + J for the singlet state when the inter-site atomic distance is large.
This is the Heitler–London theory for the hydrogen molecule.

The last term in (1.70) denotes an interaction between the atomic spins s1 and s2.
In general, the following Hamiltonian showing the interactions between atomic
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spins {Si} is known as the Heisenberg model.

H =−
∑
(i,j)

JijS1 · S2. (1.72)

The interaction Jij = 2J in the Heitler–London theory is the inter-site exchange
integral due to the Coulomb interaction. This coupling in the Heisenberg model
is referred as the direct exchange interaction. The direct exchange interaction is
generally positive in sign (i.e., ferromagnetic).

Another type of the Heisenberg model with effective exchange coupling is pos-
sible in the insulator. In order to derive the effective Hamiltonian, we first derive
the perturbative effective Hamiltonian from a more general point of view [13]. The
effective Hamiltonian is constructed such that it yields the same energy eigen values
in a subspace as in the original Hamiltonian acting on the full Hilbert space.

Let us consider a subspace P spanned by a set of states {|s〉}, and introduce a
projection operator P =∑

s |s〉〈s| which projects any state onto subspace P . The
projection operator which chooses the complementary subspace Q is defined by
Q= 1− P . Note that P 2 = P , Q2 =Q, and PQ=QP = 0.

The eigen value problem of the original Hamiltonian H is written as

(H −E)ψ = 0. (1.73)

Inserting the identity 1= P +Q into the above equation as (P +Q)(H −E)(P +
Q)ψ = 0 and multiplying P from the l.h.s. of the equation, we obtain

[
(PHP −E)P + PHQ]

ψ = 0. (1.74)

In the same way, we can derive the following equation

[
QHP + (QHQ−E)Q]

ψ = 0. (1.75)

In (1.74) and (1.75), the wave function ψ is separated into two components be-
longing to different subspaces, Pψ and Qψ . From both equations, one can elim-
inate the wave function Qψ that leads to the eigenvalue equation in subspace P ,
namely,

[
PHP − PHQ(QHQ−E)−1QHP

]
Pψ =EPψ. (1.76)

The above equation indicates that the following Hamiltonian Hp(E) acting on the
wave function Pψ in the subspace P is regarded as an effective Hamiltonian which
yields the same eigen value E as in the original Hamiltonian H , where

Hp(E)= PHP − PHQ(QHQ−E)−1QHP. (1.77)

The effective Hamiltonian depends on the energy which should be obtained self-
consistently. Taking the subspace spanned by a subset of the eigenfunctions of an
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unperturbed Hamiltonian, one can derive the effective Hamiltonian which is cor-
rect up to the second order of the interaction Hamiltonian. Assume that the Hamil-
tonian consists of a noninteracting part H0 and an interaction part HI such that
H =H0+HI. The eigenvalues {E0

k } and eigenfunctions {φk} for H0 are assumed to
be known. We define the subspace P spanned by a part of {|φk〉}. The projection op-
erator is then defined by P =∑P

μ |φμ〉〈φμ|. We have the relation QHP =QHIP ,
and thus obtain the effective Hamiltonian which is correct up to the second order
in interaction, after having replaced the Hamiltonian H and the energy E in the
denominator of (1.77) with the zeroth-order ones, H0 and E0

k , i.e.,

Hp = PHP − PHIQ
(
QH0Q−E0

k

)−1
QHIP. (1.78)

The effective Hamiltonian depends on the eigen state k explicitly. Therefore we
rewrite the second term as follows.

(
QH0Q−E0

k

)−1
QHIPφk =

P∑
μ

Q∑
ν

(
E0
ν −E0

μ

)−1|φν〉〈φν |HI|φμ〉〈φμ|φk〉.

(1.79)

Thus the perturbative Hamiltonian (1.78) is expressed as follows.

Hp = PHP − PHIQ
(
E0
Q −E0

P

)−1
QHIP. (1.80)

Here E0
P (E0

Q) denotes the eigenvalues belonging to subspace P (Q). The eigen
value equation for the perturbative effective Hamiltonian is then given by

HpPψk =EkPψk. (1.81)

We can derive the effective Heisenberg model in the strong Coulomb interac-
tion regime at half-filling using the formula (1.80). Let us consider the Hubbard
model (1.51). As found in Sect. 1.4, the ground state of the atomic limit at half-
filling is specified by {ni = 1} states. The ground state is 2L-fold degenerate, L
being the number of sites. We start from the ground state in the atomic limit at
half filling, i.e., the {ni = 1} states, and define the subspace P from them. The
complementary subspace Q consists of the subspace containing empty states and
the subspace containing the doubly occupied states. In the strongly correlated re-
gion, the electron hopping rate |tij | is much smaller than the Coulomb interac-
tion strength U , so that the Hamiltonian H is separated into the atomic state
H0 =∑

iσ ε0niσ +∑
i Uni↑ni↓ and the ‘interaction’ term HI =∑

ijσ tij a
†
iσ ajσ .

The first term at the r.h.s. of (1.80) is given by PLε0P . In the calculations of
the second term, we have QHIP =∑

ijσ tij a
†
iσ ajσP because a†

iσ ajσP belong to

the space Q. Moreover, E0
Q − E0

P = U when it is operated on the single doubly-
occupied stateQHIP . Thus we obtain the expression for the second term at the r.h.s.
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of (1.80) as follows.

PHIQ
(
E0
Q −E0

P

)−1
QHIP =

∑
ijklσσ ′

tlktij

U
Pa

†
lσ ′akσ ′a

†
iσ ajσP . (1.82)

Among the summation at the r.h.s. of (1.82) only the k = i and l = j terms
remain. Rearranging the creation and annihilation operators, we obtain the relation.

∑
σσ ′

a
†
jσ ′aiσ ′a

†
iσ ajσ = nj −

1

2
ninj − 2si · sj . (1.83)

Substituting the above relation into (1.82), we obtain the following effective Hamil-
tonian.

Hp = P
[
L

(
ε0 − 1

2

∑
j

|tij |2
U

)
+

∑
(i,j)

4|tij |2
U

si · sj
]
P. (1.84)

Apart from the constant term, we arrive at the following effective Heisenberg model
in the strong Coulomb interaction regime at half filling, which operates on the sub-
space P .

H =−
∑
(i,j)

Jij s1 · s2. (1.85)

Here

Jij =−4|tij |2
U

. (1.86)

The effective exchange integral (1.86) is known as the super exchange interaction
because it is caused by a virtual exchange of electrons belonging to different atoms
via transfer integrals. The super exchange interaction is antiferromagnetic, while the
direct exchange interaction (1.69) is ferromagnetic. Note that the subspace on which
the Hamiltonian (1.85) acts is given by {P |n1s1z, n2s2z, . . .〉} = {|1s1z,1s2z, . . .〉}.
This can be simplified as {|s1z, s2z, . . .〉}. In many magnetic insulators, anions are
often located between the magnetic ions. In such a case, the super exchange interac-
tion becomes dominant. The Heisenberg model (1.85) is not justified in the metallic
system where the band width W ∼U . Nevertheless, we often find the same type of
the intersite magnetic interactions, which are useful for qualitative understanding of
the magnetism (see Sects. 6.4 and 8.3 for examples).

1.7 Magnetic Structure

Magnetic materials have their microscopic structure for arrangement of atomic mag-
netic moments. This is called the magnetic structure. The structure characterizes the



1.7 Magnetic Structure 23

magnetic property as well as the electronic structure. In this section, we introduce
the Fourier representation of the magnetic structure and explain briefly the magnetic
structures in solids.

The magnetic structure is characterized by the magnetic moment density which
is given by

M(r)= 〈
ψ†(r)mψ(r)

〉
. (1.87)

Here ψ(r)= (ψ↑(r),ψ↓(r)) is the field operator of electrons. m denotes the mag-
netic moment for an electron as given by (1.7).

In a crystalline system, we may divide the space into the Wigner–Seitz cells for
each atom. Then we can define a magnetic moment of atom i as follows.

mi =
∫
i

M(r) d3x. (1.88)

Here the integration is over the Wigner–Seitz cell belonging to atom i. In a non-
crystalline system we may adopt the Voronoi polyhedra instead of the Wigner–Seitz
cells.

In the case of the crystalline system, the atomic position Rl is expressed by using
the primitive translational vectors a,b, c as

Rl = l1a + l2b+ l3c. (1.89)

The atomic magnetic moment is expanded with use of the Fourier lattice series as
follows.

ml =
∑
q

m(q)eiq·Rl . (1.90)

Here q is the wave vector in the first Brillouin zone. The Fourier components of the
magnetic moments are given as

m(q)= 1

L

∑
l

mle
−iq·Rl , (1.91)

L being the number of lattice points. Note that m(−q) = m(q)∗ because ml are
real. Moreover we assumed that there is only one atom per unit cell. When there are
more than one atom per unit cell, we have to add the atomic position in a unit cell
ηλ to (1.89). Accordingly, the magnetic moments (1.90) and (1.91) are specified by
the type of atom λ as m

(λ)
l (m(λ)(q)). Hereafter we consider the crystalline system

with one magnetic atom per unit cell.
The microscopic magnetic structure of magnetic materials is specified by a set of

{ml} or {m(q)}. The simplest structure is that all of the atomic magnetic moments
have the same direction. It is realized when all the Fourier components vanish except
m(q = 0)=m, and is known as the ferromagnetic structure (see Fig. 1.8). Typical
transition metals such as Fe, Co, and Ni exhibit the ferromagnetism.
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Fig. 1.8 Ferromagnetic
arrangement

Fig. 1.9 Antiferromagnetic
arrangement

The antiferromagnetic structure (AF) is defined by alternative arrangement of the
atomic magnetic moments along a direction, e.g., the z direction (see Fig. 1.9). It is
specified by a set, m(±Q)=mk exp (±iα) and m(q �= ±Q)= 0, where Q consists
of half a reciprocal lattice vectors, and k denotes a unit vector along the z axis, and
α denotes a phase of the structure. In the case α = 0, we have

ml =mk cos(Q ·Rl ). (1.92)

When the position Rl moves along Q vector, Q · Rl changes by π . Accordingly,
the magnetic moment ml changes its sign.

The AF structure on the simple cubic lattice as shown in Fig. 1.10(a) is expressed
by the wave vector Q= (K1+K2+K3)/2= (1,1,1)π/a, a being the lattice con-
stant. The AF structure on the body-centered cubic lattice as shown in Fig. 1.10(b)
is expressed by the wave vector Q= (−K1 +K2 +K3)/2= (0,0,1)2π/a. In the
case of the face-centered cubic lattice (fcc) structure, two kinds of AF structures are
known. The AF structure of the first-kind as shown in Fig. 1.10(c) is described by a
wave vector Q= (K2 +K3)/2= (0,0,1)2π/a. The atomic moment alternatively
changes the direction with a translation by (0,0,1)a/2. It is also possible to change
direction alternatively along 〈1 1 1〉 axis. This is referred as the AF structure of the
second-kind, and is characterized by Q= (K1 +K2 +K3)/2= (1,1,1)π/a (see
Fig. 1.11). Cr with 1 at% Mn on the bcc lattice shows the AF structure, and γ -Mn
on the fcc lattice shows the AF structure of the first-kind according to the neutron
diffraction experiments.

It should be noted that the network consisting of the up-spin atoms (or the down-
spin atoms) forms a lattice referred as the sublattice. There are two sublattices in
the antiferromagnetic structures shown in Fig. 1.10. Each sublattice forms the fcc
lattice with the lattice constant 2a in the case of the sc structure (Fig. 1.10(a)), the
sc lattice with the lattice constant a in the case of the bcc structure (Fig. 1.10(b)),
and the simple tetragonal structure with the lattice constants a/

√
2 and a in the case

of the fcc structure (Fig. 1.10(c)), respectively.
The sinusoidal spin density wave (SDW) structure is expressed by

ml =mk sin(Q ·Rl + α), (1.93)

where Q vector is neither equal to 0 nor to the AF wave vectors. The magnetic
moment sinusoidally changes with a period λ= 2π/|Q| along the Q direction (see
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Fig. 1.10 Antiferromagnetic arrangements on the simple cubic lattice (a), body-centered cubic
lattice (b), and face-centered cubic lattice (c). The lattice constants are shown by a

Fig. 1.11 The
antiferromagnetic structure of
the second-kind on the
face-centered cubic lattice

Fig. 1.12 Spin density wave
structure

Fig. 1.12). Note that the period is not necessarily commensurate with the lattice
spacing in general. Cr is a well-known example of the SDW.

It is also possible that the magnetic moment rotates with a translation (see
Fig. 1.13). This is known as the helical structure, and is expressed as

ml =m
[
e1 cos(Q ·Rl + α)+ e2 sin(Q ·Rl + α)

]
. (1.94)

Here e1 and e2 are the unit vectors being orthogonal to each other. The magnetic
moment with amplitude m rotates on the e1–e2 plane with the translation along the
Q vector.

The above expression (1.94) can also be written as

ml =m(Q)eiQ·Rl +m(Q)∗e−iQ·Rl , (1.95)

with

m(Q)= m

2
(e1 − ie2)e

iα. (1.96)

It indicates that the helical structure is specified by the Q vector and the condition

m(Q)2 = 0. (1.97)
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Fig. 1.13 Helical structure (left) and conical structure (right)

Fig. 1.14 2Q multiple-
spin-density wave structure

It is known from the neutron experiments that Au2Mn, MnO2, CrO2, Eu, Tb, Dy,
Ho etc. show the helical structure.

So far the magnetic structures are characterized by only one Q vector. One can
also consider the helical type structure with the bulk magnetization as follows.

ml =mzk+m
(
i cos(Q ·Rl + α)+ j sin(Q ·Rl + α)

)
. (1.98)

The above expression is alternatively written as

ml =mzk+m(Q)eiQ·Rl +m(Q)∗e−iQ·Rl , (1.99)

with

m(Q)2 = 0. (1.100)

This is referred as the conical magnetic structure (see Fig. 1.13). The magnetic mo-
ment rotates for example on the x–y plane when the moment translates along the
direction of Q.
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Fig. 1.15 3Q multiple-
spin-density wave structure

One can also consider a magnetic structure consisting of two wave vectors, Q1
and Q2. For example, we can consider a structure such as

ml =m(Q1)e
iQ1·Rl +m(Q2)e

iQ2·Rl + c. c. (1.101)

Assuming that m(Q1)=mxi/2 and m(Q2)=mxj/2, we have

ml =mxi cos(Q1 ·Rl )+myj cos(Q2 ·Rl ). (1.102)

This is known as a double Q multiple SDW (2Q-MSDW) (see Fig. 1.14). In the
case of the fcc lattice, we may consider the wave vectors Q1 = (1,0,0)2π/a and
Q2 = (0,1,0)2π/a. Then the x(y) component changes the sign with a translation
Rl = (1,0,0)a/2 (R2 = (0,1,0)a/2) as shown in Fig. 1.14.

We can also consider the magnetic structure consisting of three wave vectors
Q1, Q2 and Q3, which is the so-called triple Q multiple SDW (3Q-MSDW). For
example, we have a 3Q-MSDW such that

ml =mxi cos(Q1 ·Rl)+myj cos(Q2 ·Rl )+mzk cos(Q3 ·Rl), (1.103)

with Q1 = (1,0,0)2π/a, Q2 = (0,1,0)2π/a, and Q3 = (0,0,1)2π/a. Each com-
ponent changes sign after the translation by a/2 along the same direction as shown
in Fig. 1.15.

In the substitutional disordered alloys, we have more complicated structures
which cannot be described by a small number of wave vectors. When we take a
configurational average of the atomic magnetic moments, we can define the aver-
age magnetization [ml]c. Here [∼]c denotes the configurational average. In some

Fig. 1.16 Spin glass arrangement
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cases, an ordered state with randomly oriented magnetic moments referred as the
spin glass (SG) appears (see Fig. 1.16). The SG is considered to be characterized by
the condition such that

[ml]c = 0 and
[
m2
l

]
c = 0. (1.104)

The disordered dilute alloys such as Cu1−xMnx (x � 0.1) and Au1−xFex (x � 0.1)
are known to show a SG at low temperatures (see Sect. 7.1).

Experimentally most magnetic structures of crystalline systems are determined
by the neutron elastic scattering experiments. The readers who are interested in the
experimental determination of the magnetic structure are recommended to refer to
the books by Marshall and Lovesey [14, 15].



Chapter 2
Metallic Magnetism at the Ground State

We deal with the ferromagnetism in metals at the ground state in this chapter. The
stability of ferromagnetism is one of the fundamental problems in magnetism. Since
the spin polarization is carried out by itinerant electrons in metals, we start from
the band model to consider the stability. The Hartree–Fock approximation overes-
timates the magnetic energy gain due to spin polarization. We clarify the effects
of electron correlations on the ferromagnetic instability by using the low density
approximation and the Gutzwiller variational theory. These theories lead to the no-
tion of an effective Coulomb interaction. The density functional theory (DFT) pro-
vides us with a quantitative description of the ground-state magnetism in metals. We
present the band theory of ferromagnetism based on the DFT in the second half of
the chapter, and discuss quantitative aspects of the ferromagnetism of 3d transition
metals at the ground state.

2.1 Band Theory of Ferromagnetism

When atoms form a solid, most of the elements on the periodic table lose the atomic
magnetic moments and show a simple paramagnetism. Only a few metals such as
Fe, Co, and Ni in 3d transition metal series and heavy rare earth metals from Gd to
Tm show the ferromagnetism. In the case of the rare-earth system, the 4f orbitals are
well localized so that the atomic magnetic moment on each atom remains. The ferro-
magnetism of rare-earth metals is realized by the ferromagnetic couplings between
these atomic magnetic moments [16]. On the other hand, in the 3d metal system,
electrons in the 3d unfilled shell are considered to be itinerant and to form bands
near the Fermi level. In fact, the atomic moment model does not explain the experi-
mental observations that the ground-state magnetizations of Fe, Co, and Ni show the
non-integer values of 2.2, 1.7, and 0.6 μB per atom, respectively. The Sommerfeld
coefficients of specific heat show large values of 5–7 mJ/K2 mol in these ferro-
magnets, indicating the formation of narrow d bands. The ferromagnetism in 3d
transition metals is therefore considered to be caused by the 3d itinerant electrons.

Y. Kakehashi, Modern Theory of Magnetism in Metals and Alloys,
Springer Series in Solid-State Sciences 175, DOI 10.1007/978-3-642-33401-6_2,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 2.1 Spin polarization in
bands

A way to clarify the origin of the itinerant magnetism at the ground state is to
start from the band limit and to take into account the electron–electron interactions.
Let us consider the ferromagnetism in metals, and assume that the itinerant band
electrons are polarized. The polarization gives the magnetization per atom as 〈m〉 =
〈n↑〉 − 〈n↓〉. Here 〈nσ 〉 denotes the average number of electrons with spin σ per
atom. The spontaneous spin polarization cannot be explained without the Coulomb
interaction. Let us assume that the down-spin electrons in a small energy range [εF−
Δ,εF] just below the Fermi level εF move to the up-spin band on the Fermi level as
shown in Fig. 2.1. The number of moved electrons δN is given by δN =Δ ·Lρ(0),
where ρ(0) is the density of states (DOS) per atom and per spin at the Fermi level
in the paramagnetic state. L denotes the number of lattice points. Therefore, we
have the energy width Δ as Δ= δN/Lρ(0). The change of the band energy �E1 is
given by

�E1 =Δ · δN = (δN)2

Lρ(0)
> 0. (2.1)

Thus the ferromagnetic spin polarization in the noninteracting system always in-
creases the energy irrespective of details of the band structure.

One needs the intraatomic Coulomb interaction U to stabilize the ferromag-
netism. In order to understand the mechanism, we consider the energy change �E2
of Coulomb interactions due to small polarization 2δN . Consider the single band
model with the intra-atomic Coulomb interaction U . In a mean-field approxima-
tion, the intra-atomic Coulomb interaction energy may be given by

LU 〈n↑n↓〉 ∼ LU 〈n↑〉〈n↓〉. (2.2)

Then, the Coulomb energy change is given by

�E2 ∼−LU
(
δN

L

)2

< 0. (2.3)
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The total energy change �E =�E1 +�E2 is given by

�E ∼
(

1

ρ(0)
−U

)
(δN)2

L
. (2.4)

Therefore the ferromagnetism is stabilized when �E < 0, i.e.,

ρ(0)U > 1. (2.5)

The above condition for the appearance of the ferromagnetism is called the
Stoner condition. The ferromagnetism is stabilized when the energy gain of the
Coulomb interaction due to small spin polarization overcomes the band energy loss.
In the case of the single band model, the spin polarized state can be stabilized by
reducing the double occupancy 〈n↑n↓〉.

The Stoner criterion and the magnetization are obtained by the Hartree–Fock
approximation more clearly. Let us consider first the single band for a qualitative
argument, and adopt the Hubbard model (1.51). In the Hartree–Fock approximation,
the interaction term is decoupled as

Un↑n↓ ≈U
(
n↑〈n↓〉 + 〈n↑〉n↓ − 〈n↑〉〈n↓〉

)
. (2.6)

The approximation neglects the fluctuation term Uδn↑δn↓. Here δnσ = nσ − 〈nσ 〉.
Using the approximation, we obtain the Hartree–Fock Hamiltonian as follows.

H̃ =
∑
iσ

(
ε0 +U 〈ni−σ 〉

)
niσ +

∑
ijσ

tij a
†
iσ ajσ −

∑
i

U 〈ni↑〉〈ni↓〉. (2.7)

Here U 〈ni−σ 〉 is the Hartree–Fock potential for an electron with spin σ .
The total energy in the Hartree–Fock approximation is given by

E =
∑
i

ε0〈ni〉 +
〈∑
ijσ

tij a
†
iσ ajσ

〉
+

∑
i

U 〈ni↑〉〈ni↓〉. (2.8)

At the ground state, the energy is written as

E =
∑
k

εk〈nkσ 〉 +LU 〈n↑〉〈n↓〉. (2.9)

Here εk is the band energy obtained by diagonalizing the noninteracting Hamilto-
nian matrix (H 0)ij = ε0δij + tij (1 − δij ). nkσ is the electron occupation number
for an electron with momentum k and spin σ , and 〈nσ 〉 =∑

kσ 〈nkσ 〉/L. The first
(second) term at the r.h.s. of (2.9) is the kinetic energy E1 (interaction energy E2)
discussed in (2.1) and (2.3).

When the potential is spatially uniform, one can obtain a self-consistent equa-
tion for the average electron number using the Hartree–Fock Hamiltonian (2.7) as
follows.

〈niσ 〉 =
∫
dωf (ω)ρ0(ω−U 〈ni−σ 〉 +μ). (2.10)
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Here f (ω) = 1/(eβω + 1) is the Fermi distribution function, β being the inverse
temperature. ρ0(ω) is the DOS per atom per spin for the noninteracting Hamilto-
nian, and μ denotes the Fermi level.

The above equations are expressed by the local charge 〈n〉 =∑
σ 〈niσ 〉 and mag-

netization 〈m〉 =∑
σ σ 〈niσ 〉 as follows.

〈n〉 =
∑
σ

∫
dωf (ω)ρ0

(
ω− 1

2
U 〈n〉 + 1

2
U 〈m〉σ +μ

)
, (2.11)

〈m〉 =
∑
σ

σ

∫
dωf (ω)ρ0

(
ω− 1

2
U 〈n〉 + 1

2
U 〈m〉σ +μ

)
. (2.12)

The first equation determines the Fermi level μwhen the electron number n is given,
while the second one determines the magnetization 〈m〉 self-consistently.

In the same way one can also express the Hartree–Fock energy per atom as fol-
lows.

E/L= μ〈n〉 +
∫
dωf (ω)ω

∑
σ

ρ0
(
ω− 1

2
U 〈n〉 + 1

2
U 〈m〉σ +μ

)

− 1

4
U
(〈n〉2 − 〈m〉2). (2.13)

Here we omitted the site suffix for simplicity assuming uniform charge and spin
polarization.

Appearance of the ferromagnetism may be characterized by an instability of the
paramagnetic state. The latter is obtained from the uniform susceptibility. Let us ap-
ply an infinitesimal magnetic field h. We then have additional potential −hσ in the
Hartree–Fock self-consistent equations. The uniform paramagnetic spin susceptibil-
ity χ is given by χ = [∂〈m〉/∂h]h=0. Using (2.12) with additional potential −hσ ,
we obtain the Hartree–Fock susceptibility at the ground state as follows.

χ = 2ρ(0)

1− ρ(0)U . (2.14)

Here ρ(0) is the DOS per atom per spin at the Fermi level in the nonmagnetic
state. When ρ(0)U = 1, the susceptibility diverges, and we again obtain the Stoner
condition (2.5).

In order to obtain the magnetization we have to solve the self-consistent equa-
tions (2.11) and (2.12). There are two types of the ferromagnetism in general. When
the Coulomb interaction strength is large enough, we can expect that the up-spin
band is below the Fermi level so that the magnetization is not changed by the mag-
netic field. Another case is that holes remain in the up-spin band so that both the
up and down bands are laid on the Fermi level as shown in Fig. 2.2. The former is
called the complete ferromagnetism or the strong ferromagnetism, while the latter
is called the incomplete ferromagnetism or the weak ferromagnetism.
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Fig. 2.2 The strong (left) and weak (right) ferromagnets

To describe the ferromagnetism in 3d transition metals in more detail, we have to
take into account five d orbitals. The Hartree–Fock approximation to the degenerate-
band Hamiltonian (1.47) yields the following effective Hamiltonian (see (1.34)).

H̃ =
∑
iLσ

εiLσ niLσ +
∑
iLjL′

tiLjL′a
†
iLσ ajL′σ − 〈H1〉, (2.15)

〈H1〉 =
∑
i

[
1

4

∑
m

Umm〈niL〉2 + 1

2

∑
mm′

′(
Umm′ − 1

2
Jmm′

)
〈niL〉〈niL′ 〉

− 1

4

∑
m

Umm〈miL〉2 − 1

4

∑
mm′

′
Jmm′ 〈miL〉〈miL′ 〉

]
. (2.16)

Here L (L′) denotes the atomic orbital lm (lm′) with l = 2. εiLσ is the atomic level
with the Hartree–Fock potential, and is given by

εiLσ = εiL − 1

2

(
Umm〈miL〉 +

∑
m′ �=m

Jmm′ 〈miL′ 〉
)
σ, (2.17)

εiL = ε0
L −μ+

1

2
Umm〈niL〉 +

∑
m′ �=m

(
Umm′ − 1

2
Jmm′

)
〈niL′ 〉. (2.18)

Note that ε0
L is the atomic level and we have introduced the chemical potential for

convenience.
The local charge and magnetization for orbital L are given by

〈nL〉 =
∑
σ

〈nLσ 〉, (2.19)

〈mL〉 =
∑
σ

σ 〈nLσ 〉, (2.20)
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and

〈nLσ 〉 =
∫
dωf (ω)ρLσ (ω). (2.21)

We have omitted the site indices i in the above expressions for simplicity. ρLσ (ω)
is the Hartree–Fock DOS for orbital L and spin σ .

ρLσ (ω)=
∑
k

∣∣〈iL|k〉∣∣2δ(ω− ε̃kσ ). (2.22)

Here ε̃kσ is the eigen value for the Hamiltonian matrix (H̃ 0)iLjL′ = εLσ δij δLL′ +
tiLjL′ , and 〈iL|k〉 is the overlap integral between the local orbital iL and the one-
electron eigen state k.

For simplicity, we neglect in the following the orbital dependence of the Coulomb
and exchange integrals as

Umm′ =U0δmm′ +U1(1− δmm′), (2.23)

Jmm′ = J (1− δmm′). (2.24)

Here U0 (U1) is the average intraorbital (interorbital) Coulomb interaction and J is
the average exchange interaction. Moreover we assume that the orbitals form a basis
set of the irreducible representation of point symmetry. We have then

εiLσ = εL − 1

2

[
U0〈mΓ 〉 + J

(〈m〉 − 〈mΓ 〉
)]
σ, (2.25)

εL = ε0
L −μ+

1

2
U0〈nΓ 〉 +

(
U1 − 1

2
J

)(〈n〉 − 〈nΓ 〉). (2.26)

Here 〈nΓ 〉 (〈mΓ 〉) denotes the average electron number of orbital L, i.e., 〈nL〉 (mag-
netic moment 〈mL〉) belonging to the point symmetry representation Γ . Moreover,
〈n〉 =∑

Γ dΓ 〈nΓ 〉 (〈m〉 =∑
Γ dΓ 〈mΓ 〉) denotes the total charge (magnetization)

on a site, and dΓ is the number of orbitals belonging to the point symmetry Γ .
When all the magnetic moments on each orbital are assumed to make the same

contribution, we have 〈mΓ 〉 = 〈m〉/D, with D =∑
Γ dΓ being the number of or-

bital degeneracy. In this case, the atomic level is given by

εLσ = εL − 1

2
J̃ 〈m〉σ − hσ, (2.27)

and

J̃ = 1

D
U0 +

(
1− 1

D

)
J. (2.28)
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We added the magnetic field h for convenience. The average electron number is then
given by

〈nLσ 〉 =
∫
dωf (ω)ρL

(
ω+ 1

2
J̃ 〈m〉σ + hσ

)
. (2.29)

Here ρL(ω) is the DOS for orbital L per spin in the nonmagnetic state. Taking the
same step as in the single band case, we obtain the uniform susceptibility as

χ = 2ρ(0)

1− ρ(0)J̃ . (2.30)

Here ρ(0) =∑
Γ dΓ ρΓ (0) is the DOS per atom per spin, and J̃ is the effective

exchange interaction given by (2.28).
When there is only one symmetry band Γ on the Fermi level and the other bands

are below it, we have the atomic level (2.27) in which the effective exchange inter-
action J̃ has been replaced by

J̃ = 1

dΓ
U0 +

(
1− 1

dΓ

)
J. (2.31)

Therefore we have again the same form of susceptibility (2.30).
The susceptibility (2.30) indicates that the Stoner condition to the degenerate-

band system is given by

ρ(0) J̃ > 1. (2.32)

As seen from (2.28) and (2.31), the intraorbital Coulomb interaction U0 which is
much larger than J remains in the effective exchange interaction J̃ even in the
degenerate bands system in the Hartree–Fock approximation. According to the
Hartree–Fock atomic calculations, the intra- and inter-orbital Coulomb interactions
in Fe are U0 = 25 eV and J = 0.9 eV, respectively [5]. Using (2.28), we obtain
J̃ = 5.8 eV. The band width of Fe is estimated from a band calculation as W ≈ 5 eV
[17], and consequently we expect ρ(0) ∼ 1 assuming a rectangular DOS. There-
fore we expect that ρ(0)J̃ ∼ 6, and the Stoner condition (2.32) explains the fer-
romagnetism of Fe. The same arguments are also possible for Ni. There we have
U0 = 28 eV and J = 1.0 eV, respectively. Using (2.31) in this case, we obtain
J̃ = 10 eV. The band width of Ni is estimated to be W ≈ 4 eV, and thus ρ(0)∼ 0.75
assuming a rectangular DOS consisting of the t2g bands at the Fermi level. We have
then ρ(0)J̃ ∼ 10, which is consistent with the ferromagnetism in Ni. However the
Stoner condition in the Hartree–Fock approximation (2.32) also predicts the ferro-
magnetism for the nonmagnetic transition metals. For example, in the case of Ti
we have U0 = 18 eV and J = 0.6 eV, and thus we obtain J̃ = 10 eV using (2.28).
The band width of Ti is estimated to be W ≈ 5.5 eV, and thus ρ(0)∼ 0.9. We have
then ρ(0)J̃ ∼ 4 for Ti, which satisfies again the Stoner condition (2.32). The in-
consistency suggests strong electron correlations in transition metals, which are not
described by the Hartree–Fock approximation.
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2.2 Electron Correlations on Magnetism

2.2.1 Stoner Condition in the Correlated Electron System

The Hartree–Fock approximation used in the last section for explaining the ferro-
magnetism takes into account the effects of electron–electron interactions only via
the Hartree–Fock potential. The fluctuations neglected in the approximation in gen-
eral tend to destroy the ordered state realized by the mean-field approximation. The
effects of correlated motion of electrons leading to quantum fluctuations, which are
not described by the Hartree–Fock approximation, are called electron correlations.

As mentioned before in the physics of metal–insulator transition (see Sect. 1.4),
electron correlations suppress electron hopping when the on-site Coulomb interac-
tion U is large. In a simple approximation, the electron hopping energy might be
renormalized as follows.

〈∑
ijσ

tij a
†
iσ ajσ

〉
= q

〈∑
ijσ

tij a
†
iσ ajσ

〉
0
. (2.33)

Here q is a phenomenological band-narrowing factor (<1), and 〈∼〉0 denotes the
Hartree–Fock average. Moreover, electron correlations reduce the double occupa-
tion number 〈n↑n↓〉 on each site. We may express it as

〈n↑n↓〉 = r〈n↑n↓〉0. (2.34)

Here r is a phenomenological reduction factor (<1). The total energy is then ex-
pressed as

E =
∑
i

ε0〈ni〉 + q
〈∑
ijσ

tij a
†
iσ ajσ

〉
0
+ r

∑
i

U 〈ni↑ni↓〉0. (2.35)

One can examine the stability of the ferromagnetism taking the same steps as in
the Hartree–Fock approximation (see (2.1–2.5)). When there is an infinitesimal spin
polarization on the Fermi level, the change in the kinetic energy �E1 is given by

�E1 = q (δN)
2

Lρ(0)
> 0. (2.36)

On the other hand, the change in the interaction energy is given as

�E2 =−rLU
(
δN

L

)2

< 0. (2.37)

Thus the condition (2.5) for the spin polarization (�E =�E1 +�E2 < 0) is mod-
ified as

ρ(0)Ueff > 1. (2.38)
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Here Ueff denotes an effective Coulomb interaction defined by

Ueff = rU

q
. (2.39)

Needless to say, it is not possible to conclude whether or not electron correlations
stabilize the ferromagnetism, without knowing the band narrowing factor q and the
reduction rate of the double occupancy r . In the following subsections we introduce
two types of theories of electron correlations at the ground state which provide us
with the correlation factors q and r .

2.2.2 Stability of Ferromagnetism in the Low Density Limit

In the low density limit, electron correlations between two particles become dom-
inant. In this subsection, we consider the correlation energy in the two electron
system, and derive the effective Coulomb interaction in the low density limit [18].

Let us adopt the single-band Hubbard model (1.51) on a lattice.

H =H0 +HI. (2.40)

The noninteracting Hamiltonian H0 and the on-site Coulomb interaction HI are ex-
pressed in the momentum representation as follows.

H0 =
∑
kσ

εknkσ , (2.41)

HI = U

2L

∑
kk′qσ

a
†
k+qσ a

†
k′−q−σ ak′−σ akσ . (2.42)

Here εk is the one electron energy eigen value for the noninteracting Hamiltonian
matrix (H 0)ij = ε0δij + tij (1 − δij ), and nkσ is the electron occupation number
operator for an electron with momentum k and spin σ . The creation (annihilation)
operator in the momentum representation are defined by a†

kσ =
∑

i a
†
iσ 〈k|i〉∗ (akσ =∑

i aiσ 〈k|i〉), where 〈k|i〉 = exp(ik ·Ri )/
√
L.

We now consider the two-electron state |k1σ1k2σ2〉 in a solid such that

|k1σ1k2σ2〉 = a†
k1σ1

a
†
k2σ2
|0〉. (2.43)

Note that the creation operator at the r.h.s. of the equation is ordered so that
the two electron states are orthogonal to each other; 〈k1σ1k2σ2|k′1σ1k

′
2σ2〉 =

δk1k
′
1
δσ1σ

′
1
δk2k

′
2
δσ2σ

′
2
. Applying the Hamiltonian (2.40) to the two electron state, we

find

H |k1σ1 k2σ2〉 = (εk1 + εk2)|k1σ1 k2σ2〉

+ U

L
δσ1−σ2

∑
q

|k1 + q σ1k2 − q σ2〉. (2.44)
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When σ1 = σ2, we have HI|k1σ1 k2σ1〉 = 0. Thus |k1σ1 k2σ1〉 becomes the eigen
state with no correlations.

H |k1σ1 k2σ1〉 = (εk1 + εk2)|k1σ1 k2σ1〉. (2.45)

The result is based on the Pauli principle that two electrons with the same spin
cannot occupy the same site, so that there is no on-site Coulomb repulsion energy.

When σ1 =−σ2, the interaction term in (2.44) remains. In this case, we introduce
the triplet and singlet states defined by

|k1 k2〉 = 1√
2

(|k1 ↑ k2 ↓〉 ± |k1 ↓ k2 ↑〉
)
. (2.46)

Note that {|k1 k2〉} are orthogonal to each other; 〈k1k2|k′1k′2〉 = δk1k
′
1
δk2k

′
2
. Applying

the Hamiltonian (2.40) onto the state {|k1 k2〉} and adopting (2.44), we obtain

H |k1 k2〉 = (εk1 + εk2) |k1 k2〉 + U

L

∑
q

|k1 + q k2 − q〉. (2.47)

The above equation indicates that the singlet (triplet) state |k1 k2〉 is scattered into
{|k1 + q k2 − q〉}.

In order to solve the energy eigen value equation, we assume that the eigen state
is given as

|Ψ 〉 =
∑
k1k2

Γ (k1k2) |k1 k2〉. (2.48)

The eigen states are classified by the total spin states. The triplet states correspond
to the ferromagnetic state, while the singlet state corresponds to the nonmagnetic
state. Note that |k2 k1〉 = ∓|k1 k2〉. Thus one can verify that Γ (k2k1) = −Γ (k1k2)

for the triplet state and Γ (k2k1) = Γ (k1k2) for the singlet state. Substituting the
wave function (2.48) into the eigen value equation

H |Ψ 〉 =E|Ψ 〉, (2.49)

we obtain

(εk1 + εk2 −E)Γ (k1k2)+ U

L

∑
q

Γ (k1 + q k2 − q)= 0. (2.50)

In the case of the triplet state, we can verify that
∑

q Γ (k1+ q k2− q)= 0 using the
relation Γ (k2k1)=−Γ (k1k2). Thus there is no Coulomb energy contribution to the
triplet state.

E(k1k2 : triplet)= εk1 + εk2 . (2.51)
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Next we consider the solution for the singlet state. Starting from the singlet state
|k1 k2〉, we take into account the scatterings due to Coulomb interactions. Putting
Γ (k1k2)= 1 and defining the Coulomb energy contribution as

�E(k1 k2)=E − εk1 − εk2 , (2.52)

we obtain from (2.50) the following energy.

�E(k1 k2)= U

L

(
1+

∑
q

′
Γ (k1 + q k2 − q)

)
. (2.53)

The equation for Γ (k1 + q k2 − q) at the r.h.s. of the above equation is obtained
from (2.50) as

(εk1+q + εk2−q −E)Γ (k1 + q k2 − q)+ U

L

(
1+

∑
k′′ �=0

Γ
(
k1 + k′′ k2 − k′′

))= 0.

(2.54)

Dividing the above equation by (εk1+q + εk2−q − E) and taking summation with
respect to q , we obtain

∑
q

′
Γ (k1 + qk2 − q)=− UG(k1k2)

1+UG(k1k2)
, (2.55)

where

G(k1k2)= 1

L

∑
q

1

εk1+q + εk2−q − εk1 − εk2 −�E(k1k2)
. (2.56)

Substituting (2.55) into (2.53), we obtain the interaction energy as follows.

�E(k1 k2)= U

L

1

1+UG(k1k2)
. (2.57)

Alternatively,

E = εk1 + εk2 +
U

L

1

1+UG(k1k2)
. (2.58)

The above result indicates that the Coulomb interaction U has been renormal-
ized by the electron–electron scatterings as U/(1+UG(k1k2)), since the Hartree–
Fock energy in the singlet state is given by εk1 + εk2 + U/L. We then find the
band narrowing factor q = 1 and the renormalization factor of Coulomb energy
r = 1/(1 + UG(k1k2)). Note that there is no band narrowing in the low density
limit because there is no electron on the surrounding sites which interrupts the mo-
tion of an electron. In conclusion, multiple scatterings of two electrons yield the
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Fig. 2.3 Effective Coulomb
interaction
Ueff =U/(1+U/W) as a
function of U , where W is the
band width. Ubare is defined
by the Hartree–Fock value
Ubare =U

following effective Coulomb interaction U .

Ueff = U

1+UG(k1k2)
. (2.59)

In the quantity G(k1k2), we may omit �E(k1k2) in the denominator because �E ∼
O(1/L). Moreover εk1+q + εk2−q − εk1 − εk2 is of order of the band width W . Thus
we obtain

Ueff ≈ U

1+ U

W

. (2.60)

Since ∂Ueff/∂U = 1/(1 + U/W)2 > 0, the effective Coulomb interaction Ueff
monotonically increases with increasing U , but it is saturated to W as shown in
Fig. 2.3. Consequently, the effective Coulomb interaction cannot exceed the band
width, and the Stoner condition (2.38) is not satisfied irrespective of U for a moder-
ate band with the band width W because ρ(0)∼W .

ρ(0)Ueff � 1

W
·W = 1. (2.61)

The result indicates that the ferromagnetism is suppressed by electron correlations.
Only for the system with large DOS at the Fermi level ρ(0), the ferromagnetism is
possible.

Nickel which has about 9 d-electrons per atom is regarded as a low density sys-
tem according to the hole picture. The ferromagnetism of Ni is considered to be
stabilized by this mechanism because of the high density of states at the Fermi level
(see Fig. 2.6).

2.2.3 Gutzwiller Theory of Electron Correlations

When electron number is increased, one cannot apply the low density approxima-
tion. In this subsection, we introduce the Gutzwiller variational method for electron
correlations at the ground state [6–8], which is useful for any electron density.
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The Hartree–Fock ground state is expressed by an independent particle state as
follows.

|φ〉 =
(N↑∏

k

a
†
k↑

)(N↓∏
k

a
†
k↓

)
|0〉. (2.62)

Here Nσ denotes the total electron number for spin σ . Making use of a unitary
transformation such as a†

kσ =
∑

i a
†
iσ eikRi /

√
L, we obtain the wavefunction in the

real space representation as follows.

|φ〉 =
∑

C(N↑,N↓)
det

(
1√
L

eiki ·Rl(j)

)
det

(
1√
L

eiki ·Rm(j)

)(N↑∏
i

a
†
l(i)↑

)(N↓∏
i

a
†
m(i)↓

)
|0〉.

(2.63)

Here L denotes the number of lattice. ki is a momentum of the i-th electron below
the Fermi level. A set of sites (l(1), l(2), . . . , l(N↑)) ((m(1),m(2), . . . ,m(N↓)))
denote a configuration of electrons with up (down) spin on the lattice, and
(Rl(1),Rl(2), . . . ,Rl(N↑)) denote the positions of the sites. The determinants are

defined for the matrices whose (i, j) element is given by (1/
√
L) exp(iki · Rl(j))

and (1/
√
L) exp(iki ·Rm(j)), respectively. Furthermore,

∑
C(N↑,N↓) means the sum

over all the configurations of electrons on a lattice when electron numbers of up
and down spins are given. It should be noted that the {l(i)} ({m(i)}) are ordered as
l(1) < l(2) < · · ·< l(N↑) (m(1) < m(2) < · · ·<m(N↑)) in the Fock space.

In the Hartree–Fock wavefunction, doubly occupied sites appear irrespective of
the Coulomb interaction strength U in various electron configurations on a lattice.
Such a state with doubly occupied sites causes a loss of Coulomb interaction energy.
In the correlated electron system, the probability amplitudes of doubly occupied
states must be reduced to decrease the total energy. In order to describe the on-site
electron correlations, Gutzwiller introduced a correlated wavefunction as follows.

|Ψ 〉 =
[

L∏
i

(
1− (1− g)ni↑ni↓

)]|φ〉. (2.64)

Here ni↑ni↓ is a projection operator that chooses the doubly occupied state on site
i, and g is a variational parameter controlling the amplitudes of doubly occupied
states in the Hartree–Fock wavefunction. Note that the g = 1 state corresponds to
an uncorrelated state, and the g = 0 state corresponds to the atomic state in which
all the doubly occupied states have been removed.

Substituting (2.63) into the Gutzwiller wave function (2.64), we obtain the real-
space representation as follows.



42 2 Metallic Magnetism at the Ground State

|Ψ 〉 =
∑
D

gD
∑

C(D,N↑,N↓)
det

(
1√
L

eiki ·Rl(j)

)
det

(
1√
L

eiki ·Rm(j)

)(N↑∏
i

a
†
l(i)↑

)

×
(N↓∏

i

a
†
m(i)↓

)
|0〉. (2.65)

Here D is the number of doubly occupied sites, and C(D,N↑,N↓) denotes the
electron configurations on a lattice when D, N↑, and N↓ are given.

The energy for the Hubbard Hamiltonian (1.51) with ε0 = 0 is then given as
follows.

E(g)=
∑

ijσ tij 〈Ψ |a†
iσ ajσ |Ψ 〉 +U 〈Ψ |

∑
i ni↑ni↓|Ψ 〉

〈Ψ |Ψ 〉 . (2.66)

Each term at the r.h.s. is given as follows.

〈Ψ |Ψ 〉 =
∑
D

g2D
∑

C(D,N↑,N↓)

(
w↑

(
R −R′)

∣∣∣∣Rl(1) Rl(2) · · · Rl(N↑)
Rl(1) Rl(2) · · · Rl(N↑)

)

×
(
w↓

(
R −R′)

∣∣∣∣Rm(1) Rm(2) · · · Rm(N↓)
Rm(1) Rm(2) · · · Rm(N↓)

)
, (2.67)

〈
Ψ

∣∣∣∣
∑
i

ni↑ni↓
∣∣∣∣Ψ

〉

=
∑
D

Dg2D
∑

C(D,N↑,N↓)

(
w↑

(
R −R′)

∣∣∣∣Rl(1) Rl(2) · · · Rl(N↑)
Rl(1) Rl(2) · · · Rl(N↑)

)

×
(
w↓

(
R −R′)

∣∣∣∣Rm(1) Rm(2) · · · Rm(N↓)
Rm(1) Rm(2) · · · Rm(N↓)

)
. (2.68)

Here the function wσ (R −R′) is defined by

wσ
(
R −R′)= 1

L

Nσ∑
kn

eikn·(R−R′). (2.69)

The Gutzwiller overlap function with wσ (R−R′) in (2.67) and (2.68) is defined by

(
f (x, y)

∣∣∣∣x1 x2 · · · xn
y1 y2 · · · yn

)
=

∣∣∣∣∣∣∣∣

f (x1, y1) f (x1, y2) · · · f (x1, yn)

f (x2, y1) f (x2, y2) · · · f (x2, yn)

· · · · · · · · · · · ·
f (xn, y1) f (xn, y2) · · · f (xn, yn)

∣∣∣∣∣∣∣∣
. (2.70)

In order to calculate the electron hopping term in the numerator of (2.66), we
classify the configuration C(D, N↑, N↓) into 4 parts according to the 4 electron
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configurations on sites i and j ; C(D, N↑, N↓, i↑= j↑= 0), C(D, N↑, N↓, i↑=
0, j↑= 1), C(D, N↑, N↓, i↑= 1, j↑= 0), and C(D, N↑, N↓, i↑= j↑= 1). When
the electron hopping operator a†

i↑aj↑ is applied to Ψ , the configuration C(D, N↑,
N↓, i↑= 0, j↑= 1) remains among 4 types of configurations. The number of doubly
occupied states in each configuration of a†

i↑aj↑|Ψ 〉 can changes from D according
to the configuration of the down spin electrons on sites i and j . When we express
the configuration as (i, j) = ( i↑ j↑

i↓ j↓
)
, the number of the doubly occupied states of

a
†
i↑aj↑|Ψ 〉 is given by D for (i, j) = ( 0 1

0 0

)
, D − 1 for (i, j) = ( 0 1

0 1

)
, D + 1 for

(i, j)= ( 0 1
1 0

)
, and D for (i, j)= ( 0 1

1 1

)
. We therefore obtain

〈
Ψ
∣∣a†
i↑aj↑

∣∣Ψ 〉

=
[∑
D

g2D
∑

C
(
D,N↑,N↓,(i,j)=

(
0 1
0 0

))+
∑
D

g2D−1
∑

C
(
D,N↑,N↓,(i,j)=

(
0 1
0 1

))

+
∑
D

g2D+1
∑

C
(
D,N↑,N↓,(i,j)=

(
0 1
1 0

))+
∑
D

g2D
∑

C
(
D,N↑,N↓,(i,j)=

(
0 1
1 1

))
]

×
(
w↑

(
R −R′)

∣∣∣∣Ri Rl(1) · · · Rl(N↑)
Rj Rl(1) · · · Rl(N↑)

)

×
(
w↓

(
R −R′)

∣∣∣∣Rm(1) Rm(2) · · · Rm(N↓)
Rm(1) Rm(2) · · · Rm(N↓)

)
. (2.71)

The configuration in the above expression (2.71), for example, C
(
D, N↑, N↓, (i, j)

= ( 0 1
0 0

))
means the electron configuration when D, N↑, and N↓ are given, and there

is no electron on site i, but site j is occupied by an up-spin electron.
The difficulty in the Gutzwiller variational method is how to take the sums with

respect to the electron configurations in each term of the energy containing the over-
lap functions of wσ (R−R′). Gutzwiller replaced these overlap functions with their
average values. This is called the Gutzwiller approximation. For example, in the
calculation of the norm 〈Ψ |Ψ 〉, we make the following approximation.

〈Ψ |Ψ 〉 ≈
∑
D

g2D
∑

C(D,N↑,N↓)

[
1

(
∑

D

∑
C(D,N↑,N↓))

∑
D

∑
C(D,N↑,N↓)

]

×
(
w↑

(
R −R′)

∣∣∣∣Rl(1) Rl(2) · · · Rl(N↑)
Rl(1) Rl(2) · · · Rl(N↑)

)

×
(
w↓

(
R −R′)

∣∣∣∣Rm(1) Rm(2) · · · Rm(N↓)
Rm(1) Rm(2) · · · Rm(N↓)

)
. (2.72)
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We then obtain

〈Ψ |Ψ 〉 ≈ W0(g)

W0(1)
〈φ|φ〉. (2.73)

Here 〈φ|φ〉 = 1. W0(g) is a sum over all configurations of correlation weight g2D

for double occupation number. It is defined by

W0(g)=
∑
D

∑
C(D,N↑,N↓)

g2D. (2.74)

In the same way, we obtain

〈
Ψ
∣∣a†
i↑aj↑

∣∣Ψ 〉≈ W1↑(g)
W1↑(1)

〈
φ
∣∣a†
i↑aj↑

∣∣φ〉, (2.75)

〈Ψ |ni↑ni↓|Ψ 〉 ≈ W2↑(g)
W2↑(1)

〈φ|ni↑ni↓|φ〉. (2.76)

Here

W1↑(g)=
∑
D

∑
C
(
D,N↑,N↓,(i,j)=

(
0 1
0 0

))g
2D +

∑
D

∑
C
(
D,N↑,N↓,(i,j)=

(
0 1
0 1

))g
2D−1

+
∑
D

∑
C
(
D,N↑,N↓,(i,j)=

(
0 1
1 0

))g
2D+1 +

∑
D

∑
C
(
D,N↑,N↓,(i,j)=

(
0 1
1 1

))g
2D,

(2.77)

W2(g)=
∑
D

∑
C(D,N↑,N↓)

D g2D. (2.78)

The weighting functions W0(g), W1(g), and W2(g) are expressed by the follow-
ing type of the hypergeometric functions.

F
(
α −N↑, β −N↓,L−N + γ ;g2)

=
∞∑
D=0

(L−N + γ − 1)!(α −N↑ +D− 1)!(β −N↓ +D− 1)!g2D

D!(L−N + γ +D − 1)!(α −N↑ − 1)!(β −N↓ − 1)! . (2.79)

Here N is the total number of electrons. α, β , and γ are integers of order of 1. In
the evaluation of the sums over D in these functions, we can adopt the maximum
term approximation because D is a macroscopic variable. The weights for each D
term is proportional to

(α −N↑ +D− 1)!(β −N↓ +D− 1)!g2D

D!(L−N + γ +D− 1)! . (2.80)
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The representative value of D that maximizes the above factor is given by

g2 = D(L−N↑ +D)
(N↑ −D)(N↓ −D). (2.81)

By making use of the representative value D, we can express the total energy as
follows.

E(g)=
∑
σ

qσ

(
Nσ∑
k

εk

)
+UD. (2.82)

Here the band narrowing factor qσ is given as

qσ =
(√
(Nσ −D)(L−N +D)+

√
D(N−σ −D)

)2

Nσ (L−Nσ ) . (2.83)

In the nonmagnetic state at half-filling (N = L), the energy per site is simplified
as follows.

ε(g)=−q|εb| +Ud. (2.84)

Here

q = 16

(
1

2
− d

)
d, (2.85)

g = d

1
2 − d

, (2.86)

and d =D/L denotes the double occupation number per site. εb is the band energy
per site, and is given by the noninteracting density of states per atom and per spin
ρ(ε)= L−1 ∑

k δ(ε− εk) as follows.

εb = 2
∫ 0

−∞
ερ(ε) dε. (2.87)

Minimizing the energy (2.84) with respect to g (i.e., d), we obtain

q = 1− U2

U2
c
, (2.88)

d = 1

4

(
1− U

Uc

)
, (2.89)

and

g =
1− U

Uc

1+ U

Uc

. (2.90)
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Here Uc = 8|εb| is a critical Coulomb interaction at which q and d vanish. The
ground-state energy is given by

ε(g)=−1

8
Uc

(
1− U

Uc

)2

. (2.91)

When U >Uc, there is another solution: g = 0 or d = 0 which yields the minimum
energy ε(g)= 0. Note that electrons are completely localized at U =Uc; q = d = 0.
This implies that the metal-insulator transition occurs at U =Uc.

Equation (2.89) means that the rate of double occupation r = d/(〈n↑〉0〈n↓〉0) is
given by

r = 1− U

Uc
. (2.92)

By making use of (2.88) and (2.92), we obtain the effective Coulomb interaction for
the ferromagnetic instability which is defined by (2.39), i.e., Ueff = rU/q .

Ueff = U

1+ U

Uc

. (2.93)

Since Uc = 2W for the rectangular DOS with the band width W , the expression
above is essentially the same as the effective Coulomb interaction (2.60) in the low
density approximation. We therefore again find that the electron correlations sup-
press the ferromagnetism in the case of usual electron density as well.

In the above analysis, we omitted the polarization via qσ and r . More detailed
calculations of spin susceptibility yield [19]

χ =
2ρ(0)

m∗

me

1− ρ(0)Ũeff
. (2.94)

Here m∗/me = q−1 is the effective mass of electrons and Ũeff is defined by

Ũeff =
U

(
1+ U

2Uc

)

(
1+ U

Uc

)2
≈ U

1+ U

Uc

. (2.95)

Note that the susceptibility diverges at the metal-insulator point U = Uc via effec-
tive mass due to the formation of the atomic state with spin s = 1/2 in the Gutzwiller
approximation. The effective Coulomb interaction Ũeff is associated with the forma-
tion of the ferromagnetism via the denominator in (2.94), and is essentially the same
as Ueff given by (2.93).

The theory mentioned above is based on the single band model. More realistic
calculations on the stability of the ferromagnetism have been made on the basis of
the five d band model and the local ansatz variational method; the latter takes into
account the on-site Hund’s rule correlations as well as the density correlations [20].
The degeneracy of the bands in general increases the channel of electron hopping,
so that the correlation effects tend to be reduced. The effective Coulomb interac-
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tions for the stability of the ferromagnetism are typically reduced by 30–40 % as
compared with the bare values in the case of 3d transition metals. One of the im-
portant results of the theory is that the energy difference between the ferromagnetic
state and the nonmagnetic state is much reduced by electron correlations. In case
of Fe, for example, the difference is 0.56 eV per atom in the Hartree–Fock theory,
reduced to 0.22 eV when the density correlations are taken into account, and re-
duced even further to 0.15 eV when both density and spin correlations are taken
into account [21].

2.3 Density Functional Approach

2.3.1 Slater’s Band Theory

Towards a realistic description of magnetic properties in metals and alloys, it is
desirable to calculate one electron state in solids quantitatively. A reasonable one
electron state may be the Hartree–Fock wave function. As we have mentioned in
Sect. 1.3, the wavefunctions are determined by the following Hartree–Fock self-
consistent equation at the ground state.(

−1

2
∇2 + vN(r)+

∫
dr ′ n(r ′)

|r − r ′|
)
ϕiσ (r)

−
occ∑
j

∫
dr ′

ϕ∗jσ (r ′)ϕiσ (r ′)
|r − r ′| ϕjσ (r)= εiσ ϕiσ (r). (2.96)

Here εiσ is the Hartree–Fock one-electron energy eigen value.
∑occ

j denotes a sum-
mation over occupied Hartree–Fock orbital {j}, and n(r)=∑occ

jσ ϕ
∗
jσ (r)ϕjσ (r) de-

notes a charge density in the Hartree–Fock approximation. The third term at the
l.h.s. expresses the electrostatic potential due to electrons. The last term called the
exchange potential originates in the Coulomb interaction and the anti-symmetric
property of the Slater determinant. The Hartree–Fock total energy is given by

〈HHF〉 =
occ∑
iσ

εiσ − 1

2

∑
ijσσ ′

(Vijji − Vijij δσσ ′)〈niσ 〉〈njσ ′ 〉. (2.97)

Here Vijji (Vijij ) is the Coulomb (exchange) energy integral.
Because of the exchange potential, the self-consistent equation is non-linear, so

that it is not easy to solve the equation in solids. In order to simplify the exchange
term, Slater rewrote it as

−
occ∑
j

∫
dr ′

ϕ∗jσ (r ′)ϕiσ (r ′)
|r − r ′| ϕjσ (r)

=−
[

occ∑
j

∫
dr ′

ϕ∗jσ (r ′)ϕiσ (r ′)ϕ∗iσ (r)ϕjσ (r)
ϕ∗iσ (r)ϕiσ (r)|r − r ′|

]
ϕiσ (r). (2.98)
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The term [∼] at the r.h.s. of the above equation is regarded as an effective potential.
Slater [4] took an average of the effective potential with respect to the orbital i with
a weight ϕ∗iσ (r)ϕiσ (r)/(

∑occ
l ϕ∗lσ (r)ϕlσ (r)), so that the exchange term is written as

−
occ∑
j

∫
dr ′

ϕ∗jσ (r ′)ϕiσ (r ′)
|r − r ′| ϕjσ (r)≈−

∫
dr ′ ñexσ (r, r

′)
|r − r ′| ϕiσ (r), (2.99)

ñexσ
(
r, r ′

)=
∑occ

i

∑occ
j ϕ∗iσ (r ′)ϕjσ (r ′)ϕ∗jσ (r)ϕiσ (r)∑occ

j ϕ∗jσ (r)ϕjσ (r)
. (2.100)

The Hartree–Fock equation is then reduced to a linear equation as follows.

(
−1

2
∇2 + vN(r)+

∫
dr ′ 〈n(r

′)〉
|r − r ′| + v

(HFS)
exσ (r)

)
ϕiσ (r)= εiσ ϕiσ (r). (2.101)

Here v(HFS)
exσ (r) is the Hartree–Fock–Slater exchange potential defined by

v(HFS)
exσ (r)=−

∫
dr ′ ñexσ (r, r

′)
|r − r ′| . (2.102)

Slater simplified further the potential by using the free electron wave functions
as follows [4].

vexσ (r)=−3

(
3

4π

)1/3

nσ (r)
1/3, (2.103)

where nσ (r) is the electron density for spin σ . For more practical use, Slater pro-
posed the following potential with an adjustable parameter α.

vXα σ (r)=−3α

(
3

4π

)1/3

nσ (r)
1/3. (2.104)

This is known as the Xα potential. Numerical calculations suggest that α = 1/2–2/3
is suitable for explaining various experiments.

2.3.2 Density Functional Theory

As discussed before, the orthodox approach to the electronic structure and mag-
netism in solids may be to first apply the Hartree–Fock theory leading to the best
one electron wavefunction at the ground state, and then taking into account the cor-
relation corrections. This scheme however seems to be inconvenient for quantitative
calculations, firstly because the Hartree–Fock equation is too complicated due to
nonlinear exchange potentials, secondly because the Hartree–Fock approximation
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is not necessarily a good starting point to describe the magnetism as mentioned
before in Sect. 2.2.

We have discussed a simplified Hartree–Fock–Slater potential for practical use
of the Hartree–Fock approach in the last subsection. Kohn, Sham, and Hohenberg
proposed the density functional theory (DFT) which justifies Slater’s idea for the
exchange potential [22–25]. The theory allows us to include electron correlations in
solids in a simple manner.

The DFT is based on the Hohenberg–Kohn theorem [22, 24]. It states that the
ground state energy E0 is given by the minimization of a density functional E[n]:

E0 �E[n], (2.105)

E[n] = F [n] +
∫
vext(r)n(r) dr, (2.106)

F [n] = 〈
Ψmin
n

∣∣(T̂ + V̂ee)
∣∣Ψmin

n

〉
, (2.107)

vext(r)=−
∑
l

Zl

|r −Rl | . (2.108)

Here n(r) is an electron density. T̂ (V̂ee) is the kinetic energy (electron–electron
interactions). Ψmin

n is the wave function that minimizes the energy under a given
density n(r), and vext(r) is the electron-nuclear interaction as an external field. Note
that the energy of the electron system F [n] is a universal functional which does not
depend on vext(r).

In order to verify the inequality in (2.105), let us express the ground state en-
ergy as

E0 =Min{Ψ }
(〈
Ψ
∣∣(T̂ + V̂ee)

∣∣Ψ 〉+
∫
vext(r)n(r) dr

)
. (2.109)

Here Min{Ψ } means to choose from possible Fermion wave functions {Ψ }, the
ground-state wavefunction that minimizes the total energy. When the N electron
Hilbert space is partitioned by the wave functions with the same density n, the above
expression is written as follows (see Fig. 2.4).

E0 =Min{n}
(

Min{Ψ |n}
〈
Ψ
∣∣(T̂ + V̂ee)

∣∣Ψ 〉+
∫
vext(r)n(r) dr

)
. (2.110)

The notation Min{Ψ |n} means to minimize the following term by choosing a wave-
function among those which yield the same density n. The first term at the r.h.s. of
(2.110) is given by F [n], which is defined by (2.107), thus the above equation leads
to the inequality (2.105).

Kohn and Sham [23] assumed that the many-body electron density is reproduced
by the density of noninteracting electrons with an effective potential v(r), and wrote
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Fig. 2.4 The N electron
Hilbert space is partitioned by
the wave functions with the
same density n

the energy F [n] as follows.

F [n] = Ts[n] + 1

2

∫
n(r)n(r ′)
|r − r ′| dr dr

′ +EXC[n]. (2.111)

The first term Ts[n] at the r.h.s. is a kinetic energy for a noninteracting system

Ts[n] =
occ∑
i

〈
ψi

∣∣∣∣
(
−1

2
∇2

)∣∣∣∣ψi
〉
=

occ∑
i

εi −
∫
v(r)n(r) dr. (2.112)

Here n(r) =∑occ
i |ψi(r)|2 is a density of noninteracting electrons, and ψi(r) is a

one-electron eigen function for the eigen value εi .(
−1

2
∇2 + v(r)

)
ψi(r)= εiψi(r). (2.113)

It should be noted that the kinetic energy Ts[n] is not identical with T [n] =
〈Ψ |T̂ |Ψ 〉; Ts[n] − T [n] has been included in the exchange correlation energy
EXC[n]. The electron number is given by

∫
n(r) dr =N. (2.114)

When the universal functional EXC[n] is assumed to be known, one can deter-
mine the effective potential v(r) from the variational principle.

δ
(
E[n] −μN)= 0, (2.115)

where μ is the chemical potential. Substituting (2.106) and (2.111) into the above
equation and taking the variation, we obtain

v(r)= vext(r)+
∫
n(r ′) dr
|r − r ′| + vxc(r)−μ, (2.116)

and the exchange-correlation potential vxc(r) is defined by

vxc(r)= δEXC

δn(r)
. (2.117)
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Equations (2.113) and (2.116) are referred as the Kohn–Sham equations. Using
(2.116), the total energy is given by

E[n] =
occ∑
i

εi − 1

2

∫
n(r)n(r ′)
|r − r ′| dr dr

′ +EXC[n] −
∫
vxc(r)n(r) dr +μN.

(2.118)

The Kohn–Sham theory provides us with a method to calculate the density and
the total energy of correlated electron system by solving one-electron Schrödinger
equation once we know a universal exchange-correlation energy EXC[n].

The Hohenberg–Kohn–Sham method can be extended to the spin polarized case.
In this case, we introduce a magnetic field H (r) coupled to the spin density m(r).
The energy becomes a functional of the charge and spin densities: E[n,m], and

E0 �E[n,m], (2.119)

E[n,m] = F [n,m] +
∫ (

vext(r)n(r)−m(r) ·H (r)
)
dr. (2.120)

The universal functional F [n,m] in the Kohn–Sham method is expressed as

F [n,m] = Ts[n,m] + 1

2

∫
n(r)n(r ′)
|r − r ′| dr dr

′ +EXC[n,m]. (2.121)

Introducing the wave function ψk(r)= (ψk↑(r),ψk↓(r)) and the spin dependent
potential Δ(r)= (Δx(r),Δy(r),Δz(r)), the Kohn–Sham one-electron eigen value
equation is given by

(
−1

2
∇2 + v(r)−Δ(r) · σ

)
ψk(r)= εkψk(r). (2.122)

The charge and spin densities are obtained by n(r) =∑occ
kσ |ψkσ (r)|2 and m(r) =∑occ

kσσ ′ ψ
∗
kσ (r)(σ )σσ ′ψkσ ′(r), respectively. The potentials obtained by the varia-

tional principles are given by (2.116) and

Δ(r)=Δxc(r)+H (r). (2.123)

The exchange correlation potentials vxc(r) and Δxc(r) are defined by

vxc(r)= δEXC[n,m]
δn(r)

, Δxc(r)= δEXC[n,m]
δm(r)

. (2.124)

The ground-state energy in the Kohn–Sham scheme is then given by

E[n,m] =
occ∑
k

εk − 1

2

∫
n(r)n(r ′)
|r − r ′| dr dr

′ +EXC[n,m]

−
∫ (

vxc(r)n(r)−Δxc(r) ·m(r)
)
dr +μN. (2.125)



52 2 Metallic Magnetism at the Ground State

Actual expressions of the exchange correlation potentials have been obtained by
many investigators. The simplest way is to assume that the exchange correlation en-
ergy is a function of the electron densities and adopt an approximate form obtained
from the homogeneous electron gas system.

EXC[n] =
∫
n(r)εxc

(
n(r)

)
. (2.126)

Here εxc(n(r)) is the exchange correlation energy per electron for a homogeneous
electron gas. This is called the Local Density Approximation (LDA). The LDA is
referred as the Local Spin Density Approximation (LSDA) when spin polarization
is taken into account.

The exchange-correlation energy εxc(n) consists of the exchange energy part
εx(n) and the correlation part εc(n); εxc(n)= εx(n)+ εc(n). The exchange energy
in the electron gas is given by

εx(n)=−3

4

(
3n

π

)1/3

. (2.127)

This yields the exchange potential in the paramagnetic state.

vP
x (n)=−

(
3n

π

)1/3

=−0.611

rs
[a.u.]. (2.128)

where rs denotes a radius for the sphere with the volume per electron, i.e., rs =
(4πn/3)−1/3. When the correlation term is neglected, the potential reduces to the
Slater exchange potential (2.103) with the difference by a factor α = 2/3.

Barth and Hedin [26] proposed the exchange correlation potential with use of
the result of the random phase approximation for electron gas. Assuming the fer-
romagnetic spin polarization, the potential vxc

σ (r) = vxc(r) − Δz(r)σ is given as
follows.

vxc
σ (r)= vx

σ (r)+ vc
σ (r). (2.129)

The exchange part is given by

vx
σ (r)= vP

x +
(
vF

x − vP
x

)
f

(
nσ

n

)
. (2.130)

Here vF
x =−0.770/rs is the exchange potential for the complete polarization state

(n↑ = n) and the function f (x) is defined by

f (x)= 1

1− 2−1/3

[
x4/3 + (1− x)4/3 − 2−1/3]. (2.131)

Note that f (1/2)= 0 in the paramagnetic state and f (0)= 1 in the complete ferro-
magnetic state.
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Fig. 2.5 Exchange and correlation energies (�εx = εx − εP
x and �εc = εc − εP

c ) per electron as a
function of spin polarization ζ = (n↑ − n↓)/n (case of rs = 2) [27]. VWN: �εc by Vosko et al.,
GL: �εc by Gunnarsson et al.

The correlation potential vc
σ (r) is expressed as

vc
σ (r)= vP

c +
(
vF

c − vP
c

)
f

(
nσ

n

)
. (2.132)

The correlation potentials in the paramagnetic and ferromagnetic states are de-
fined by

vP
c =−

0.0504

2
ln

(
1+ 30

rs

)
, vF

c =−
0.0254

2
ln

(
1+ 75

rs

)
. (2.133)

Figure 2.5 shows the energy gain of correlation energy per electron as a func-
tion of spin polarization ζ = (n↑ − n↓)/n. As expected from our discussions in
the previous sections, the spin polarization is caused by the exchange energy gain,
but the correlation energy acts to suppress polarization. This is the same physics as
discussed in the last subsection. It should be noted that in the local orbital represen-
tation the on-site Coulomb interaction was very large (∼20 eV). In the LSDA based
on the homogeneous electron gas the contribution from the Coulomb integral on the
same orbital is negligible because the wave functions for electron gas are extended
over the crystal.

2.3.3 Tight-Binding Linear Muffin-Tin Orbitals

In the LDA scheme, calculations of the ground-state properties in solids are reduced
to an eigen-value problem for one electron HamiltonianH =−∇2/2+v(r) as given
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by (2.113):

Hψi(r)= εiψi(r). (2.134)

Among various methods to solve the eigen value equation in solids, the Tight-
Binding Linear Muffin-Tin Orbital (TB-LMTO) method [28–30] is compatible with
the tight-binding model which has been used in the previous sections, and allows us
the first-principles calculations of the Hamiltonian matrix elements in real space. In
this subsection, we describe the TB-LMTO method for electronic structure calcula-
tions.

The basic idea of the TB-LMTO method is found in the one electron eigen value
problem of a hydrogen molecule. The eigen states are approximately given by a
linear combination of atomic orbitals ϕ(r) at the origin and ϕ(r − R) at another
position of hydrogen atom R.

ϕB(r)= ϕ(r)+ ϕ(r −R), (2.135)

ϕA(r)= ϕ(r)− ϕ(r −R). (2.136)

Here ϕB(r) (ϕA(r)) is the bonding (antibonding) orbital of the hydrogen molecule
leading to the eigen value EB (EA). Solving the above equations with respect to
ϕ(r) and ϕ(r −R), we can express the atomic orbitals as

ϕ(r)= 1

2

(
ϕB(r)+ ϕA(r)

)
, (2.137)

ϕ(r −R)= 1

2

(
ϕB(r)− ϕA(r)

)
. (2.138)

We introduce here an energy-dependent wave function for the hydrogen molecule
ϕE(r) such that HϕE(r)=EϕE(r) where H is the one-electron Hamiltonian of the
molecule, and rewrite the above equations as

ϕ(r)� ϕE0(r)+ c1ϕ̇E0(r), (2.139)

ϕ(r −R)� c2ϕ̇E0(r). (2.140)

Here E0 is an energy such that EB ≤ E0 ≤ EA, and ϕ̇E0(r) = ∂ϕE0(r)/∂E. The
above expressions of atomic orbitals suggest that the atomic orbitals as the basis
functions for solids can be expressed by a linear combination of the energy depen-
dent wave functions ϕE0(r) and their derivatives ϕ̇E0(r).

Let us assume that the crystalline potential consists of the spherical potentials
centered at each nucleus and the flat potential in the interstitial region. The former
potentials are called the muffin-tin (MT) potentials. We then define the following
atomic orbital on site i and orbital L= (l,m) as a basis function of solid.

χαiL(r −Ri )= ϕiL(r −Ri )+ χiiL(r −Ri )+
∑
jL′

ϕ̇αjL′(r −Rj )h
α
jL′iL, (2.141)
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ϕ̇αiL(r −Ri )= ϕ̇iL(r −Ri )+ ϕiL(r −Ri )o
α
iL. (2.142)

The wave functions χαiL(r −Ri ) are called the LMTO. Here the spin part has been
omitted for simplicity. The atomic wave function ϕiL(r −Ri ) is defined to satisfy
the Schrödinger equation with an energy EνiL inside the MT sphere i with radius
siR ; (H −EνiL)ϕiL(r −Ri )= 0, and vanishes outside the sphere i. Because of the
spherical potential inside the MT sphere, it is written as ϕiL(r)= φiL(EνiL, r)YL(r̂)
using the cubic harmonics YL(r̂). φiL(E, r) is determined by the radial Schrödinger
equation with energy E. The energy EνiL is usually chosen to be the center of the
gravity of energy eigen values below the Fermi level for each orbital. Note that ϕiL’s
are normalized in the MT sphere as 〈ϕiL|ϕjL′ 〉 = δij δLL′ .

The second term at the r.h.s. of (2.141), i.e., χiiL(r − Ri ) is an atomic wave
function for the interstitial region that satisfies the Schrödinger equation in the in-
terstitial region; (∇2 + k2)χiiL = 0 with k = 0, so that the function is expressed by
the irregular solution of the Laplace equation as follows.

χiiL(r −Ri )=KiL(r −Ri )=
( |r −Ri |

siR

)−l−1

YL(r̂ −Ri ). (2.143)

The wave function χiiL(r −Ri ) inside the MT spheres is defined to be zero.
Inside each MT sphere (j �= i), the basis wave function is described by the

third term at the r.h.s. of (2.141) where ϕ̇αiL(r − Ri ) is defined by (2.142).
ϕ̇iL(r−Ri ) is the energy derivative of ϕiL(r−Ri ) atEνil ; ϕ̇iL(r−Ri )= [∂ϕiL(r−
Ri )/∂E]E=EνiL , and 〈ϕiL|ϕ̇jL′ 〉 = 0. Note that the wave function ϕ̇αiL(r −Ri ) de-
scribing the tails of the LMTO contains an arbitrary parameters oαiL which allows us
to control the localization of the basis function.

The coefficients hα
jL′iL in the tail part of (2.141) are determined so that the wave

function χiiL(r −Ri ) in the interstitial region is smoothly connected to those inside
the MT spheres. This can be performed by using an envelope function

K∞iL(r −Ri )=KiL(r −Ri )−
∑
jL′

JαjL′(r −Rj )S
α
jL′iL, (2.144)

which smoothly connects the interstitial wave function χiiL(r − Ri ) inside all the
MT spheres. JαiL is a linear combination of the regular solution JiL and the irregular
solution KiL of the Laplace equation being defined by

JαiL(r −Ri )= JiL(r −Ri )−KiL(r −Ri )αiL. (2.145)

The matrix Sα
iLjL′ in (2.144) is the so-called screened structure constant which is

expressed by the canonical structure constant SiLjL′ as

SαiLjL′ =
[
S(1− αS)−1]

iLjL′ . (2.146)
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Here SiLjL′ is given by

SjL′iL =
√

4πgl′m′ lm

( |r −Rj |
sw

)−l−l′−1

Y ∗l+l′m′−m(R̂i −Rj ),

gl′m′ lm = (−)l+1
√

4π
2(2l′′ − 1)!!

(2l − 1)!!(2l′ − 1)!!Clml′m′ l′′m′′, (2.147)

Clml′m′ l′′m′′ being the Gaunt coefficient, and sw is an arbitrary length such as the
average Wigner–Seitz radius of the lattice.

The parameters αiL screen the structure constant Sα
jL′iL as seen from (2.146).

With the use of the matching condition on each muffin-tin sphere, we obtain the
relation between αiL and oαiL via ϕ̇αiL as

αiL = (siR/sw)
2l+1

2(2l + 1)

D{ϕ̇α} − l
D{ϕ̇α} + l + 1

. (2.148)

Alternatively oαiL is expressed by αiL as

oαiL =−
wiL{J, ϕ̇} −wiL{K, ϕ̇}αiL
wiL{J, ϕ̇} −wiL{K,ϕ}αiL . (2.149)

Here wiL{a, b} is the Wronskian defined by

wiL{a, b} = siRaiL(siR)biL(siR)
[
D{biL} −D{aiL}

]
,

D{a} = siRa′(siR)/a(siR). (2.150)

Finally the tail function hα
iLjL′ is obtained from the global matching between χαiL

and K∞iL on the muffin-tin spheres.

hαiLjL′ = −
wiL{K,ϕ}
wiL{K,ϕα}δij δLL′ +

√
2

sw
wiL

{
Jα,ϕ

}
SαiLjL′wjL′

{
Jα,ϕ

}√ 2

sw
.

(2.151)

According to (2.148), the choice oαiL = 0 corresponds to the choice of αiL = γiL
such that

γiL = (siR/sw)
2l+1

2(2l + 1)

D{ϕ̇} − l
D{ϕ̇} + l + 1

. (2.152)

The choice of αiL = γiL is called the nearly orthogonal representation (or
γ -representation) because in this case the MTO’s become orthogonal to each other
up to the second order in h

γ

iLjL′ . Andersen et al. [28] showed that the follow-
ing choice of αiL yields well localized basis set {χαiL(r − Ri )}; αis = 0.34850,
αip = 0.05303, αid = 0.010714, and αi l(�3) = 0.0. The MTO’s with such a set of
{αiL} are called the TB-LMTO.
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In the atomic sphere approximation (ASA) in which the Wigner–Seitz cells are
replaced by the atomic spheres with the same volume, the interstitial region disap-
pear, so that the basis function reduces to

χαiL(r −Ri ) = ϕiL(r −Ri )+
∑
jL′

ϕ̇αjL′(r −Rj )h
α
jL′iL. (2.153)

In the γ representation, we have

χ
γ

iL(r −Ri ) = ϕiL(r −Ri )+
∑
jL′

ϕ̇jL′(r −Rj )h
γ

jL′iL. (2.154)

The coefficients hα
iLjL′ and oαiL are parameterized by the position poten-

tial parameter cαiL defined by cαiL = 〈χαiL|H |χαiL〉, and the parameter Δα
iL =

−(2/sw)1/2wiL{Jα,ϕ} as follows.

hαiLjL′ =
(
cαiL −EνiL

)
δij δLL′ +

(
Δα
iL

)1/2
SαiLjL′

(
Δα
jL′

)1/2
, (2.155)

oαiL =−
γiL − αiL

Δα
iL + (γiL − αiL)(cαiL −EνiL)

. (2.156)

In the next step, we construct the Hamiltonian matrix. Using the basis set of γ
representation (2.154), we obtain the matrix elements of the Hamiltonian HiLjL′
and overlap integral OiLjL′ as follows.

H
γ

iLjL′ =
〈
χ
γ

iL

∣∣H ∣∣χγ
jL′

〉= hγ
iLjL′ +EνiLδij δLL′ +

∑
kL′′

h
γ

iLkL′′EνkL′′p
γ

kL′′h
γ

kL′′jL′ ,

(2.157)

O
γ

iLjL′ =
〈
χ
γ

iL

∣∣χγ
jL′

〉= δij δLL′ +
∑
kL′′

h
γ

iLkL′′p
γ

kL′′h
γ

kL′′jL′ . (2.158)

Here pγiL = 〈ϕ̇2
iL〉 ≡ 〈ϕ̇iL|ϕ̇iL〉. In the matrix form, they are written as

H γ = hγ +Eν + hγEνp
γhγ , (2.159)

Oγ = I + hγpγhγ . (2.160)

Similarly, the matrix elements of the Hamiltonian HiLjL′ and overlap integral
OiLjL′ in the α representation are given as follows.

H α = (
I + hαoα

)
hα + (

I + hαoα
)
Eν

(
I + oαhα

)+ hαEνp
αhα, (2.161)

Oα = (
I + hαoα

)(
I + oαhα

)+ hαpαhα. (2.162)

Note that we can switch the basis set {χα} into the set {χγ } via the following
relations,

χ
γ

iL =
∑
jL′

χαjL′
[(

I + oαhα
)−1]

jL′iL, (2.163)
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and

hγ = hα
(
I + oαhα

)−1 = hα − hαoαhα + · · · . (2.164)

Using the above expressions, the Hamiltonian in the completely orthogonal rep-
resentation is given by

H =Oγ −1/2H γOγ −1/2 =Oα−1/2HαOα−1/2. (2.165)

The Hamiltonian matrix element in this representation is given as follows to the
second order in E −EνiL.

HiLjL′ =EνiLδij δLL′ + hγiLjL′ =EνiLδij δLL′ + hαiLjL′ −
(
hαoαhα

)
iLjL′ .

(2.166)

Thus, the Hamiltonian in the nearly orthogonal basis set has the same form as
Slater’s two-center tight-binding Hamiltonian [31].

HiLjL′ = εiLδij δLL′ + tiLjL′(1− δij δLL′). (2.167)

Here εiL =EνiL+ hγiLiL and tiLjL′ = hγiLjL′ = hαiLjL′ − (hαoαhα)iLjL′ . This is the
first-principles TB-LMTO Hamiltonian.

In the actual band calculations, we solve the eigen value equation in the α repre-
sentation.

∑
jL′

Hα
iLjL′ujL′(k) = εn(k)

∑
jL′

Oα
iLjL′ujL′(k). (2.168)

Here εn(k) is the energy eigen value for the momentum k and the quantum num-
ber n. uiL(k) is the eigen vector in the α representation. The self-consistent cal-
culations of potential are also possible by recalculating the charge (as well as spin)
density within the atomic sphere after we obtain eigen values and the wave functions
in the atomic sphere.

2.3.4 Ferromagnetism in Transition Metals

Using the TB-LMTO and ASA, one can obtain the effective exchange energy pa-
rameter called the Stoner parameter. Let us assume that one-electron energy eigen
values for spin σ are given by εnσ (k). The exchange splitting for the electron with
quantum number (n,k) is given by �εnσ (k) = εn↓(k) − εn↑(k). The average ex-
change splitting near the Fermi level is therefore given by

�ε = 1

Nρ(εF)Δ

εF≤εnσ (k)≤εF+�∑
nk

�εnσ (k). (2.169)
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Here N is the number of atoms. ρ(εF) is the total DOS per atom per spin at the
Fermi level, and Δ is an infinitesimal width of energy at the Fermi level.

The exchange splitting is caused by the exchange correlation potential vxc
σ (r)=

δEXC/δnσ (r). In the LDA, the exchange correlation potential has the form EXC =∫
sR
nεxc(n,m)dr . Defining G(n,m) by

G(n,m)= nεxc(n,m), (2.170)

the exchange correlation potential is given as follows for a small polarization m(r).

vxc
σ (r)=G′n(n,0)+G′′m(n,0)mσ. (2.171)

Here G′n(n,m)= ∂G/∂n and G′′m(n,m)= ∂2G/∂m2. Then we obtain the splitting
�εnσ (k) as

�εnσ (k)=−2
〈
ψn(k)

∣∣G′′m(n,0)m(r)
∣∣ψn(k)〉. (2.172)

Substituting �εnσ (k) from (2.172) into (2.169) and using the ASA, we obtain

�ε = 1

N

∑
il

Iil mi

ρil(εF)

ρ(εF)
, (2.173)

Iil =−
∫ sR

0
2G′′m(n,0)

mi(r)

mi

φil(εF, r)
2r2 dr. (2.174)

Here mi(mi(r)) is the magnetic moment (the spin density) on site i. ρil(εF) is the
partial DOS for the orbital l per spin in the nonmagnetic state, and is defined by
ρil(εF) =∑

m

∑
nk〈χiL|ψn(k)〉δ(ε − εn(k))〈ψn(k)|χiL〉. The Stoner parameter Ii

on site i may be defined by

�ε = 1

N

∑
i

Iimi. (2.175)

Comparing (2.175) with (2.173), we find

Ii =
∑
l

Iil
ρil(εF)

ρ(εF)
. (2.176)

This is the exchange energy parameter derived from the DFT-LDA theory, i.e., the
Stoner parameter.

The spin density mi(r) on site i in (2.174) is given by mi(r)= ni↑(r)− ni↓(r),
and each niσ (r) is given by

niσ (r)= 1

4π

∫ εF

dε
∑
l

φilσ (ε, r)
2ρilσ (ε). (2.177)

For small polarization, we have a polarized wave function φilσ (ε, r) = φil(ε +
�εσ/2, r) and the polarized DOS ρilσ (ε) = ρil(ε + �εσ/2) according to the



60 2 Metallic Magnetism at the Ground State

Table 2.1 Stoner parameters
and Stoner criterions in
transition metals [32]

Metal V Fe Co Ni Pd Pt

I (eV) 0.80 0.92 0.99 1.01 0.70 0.63

ρ(εF)I 0.9 1.6 1.7 2.1 0.8 0.5

Schrödinger equation with constant exchange splitting �ε. We therefore obtain the
magnetization mi(r)= ni↑(r)− ni↓(r) from (2.177) as follows.

mi(r)

mi

= 1

4π

∑
l

φil(εF, r)
2 ρil(εF)

ρi(εF)
. (2.178)

Here ρi(ε) is the local DOS per spin on site i.
Substituting (2.178) into (2.174), we obtain

Iil =
∑
l′

[∫ siR

0

1

4π

(−2G′′m(n,0)
)
φil′(εF, r)

2φil(εF, r)
2r2 dr

]
ρil′(εF)

ρi(εF)
. (2.179)

In transition metals, the d component is dominant in the total DOS at the Fermi
level, so that we obtain

I =− 1

2π

∫ sR

0
G′′m(n,0)φil(εF, r)

4r2 dr. (2.180)

The Stoner condition for the ferromagnetism in the LDA-DFT is therefore given by

ρ(εF)I > 1. (2.181)

Here ρ(εF) is the total DOS per atom per spin.
Gunnarsson calculated the Stoner parameters of transition metals [32]. The re-

sults are presented in Table 2.1. Calculated Stoner parameters for Fe, Co, and Ni
are 0.92, 0.99, and 1.01 eV, respectively. These values are close to the exchange en-
ergy parameters in atoms obtained by the Hatree–Fock calculations: 0.88, 0.94, and
0.99 eV, but they are much smaller than the effective exchange energy parameters in
the Hatree–Fock approximation J̃ =U0/5+ 4J/5 (see (2.28)): 5.7, 6.0, and 6.4 eV,
respectively, according to the Hatree–Fock atomic calculations. The discrepancy is
due to a large intra-atomic Coulomb interaction energy between the same orbitals
(U0 ∼ 20 eV). The Hartree–Fock approximation is not a good starting point for
such a condition. The electron correlations reduce this to Ueff ∼W as discussed in
Sect. 2.2, so that one can expect that the effective J̃ becomes comparable to those
obtained from the DFT-LDA. It should be noted that the intra-orbital Coulomb in-
teractions are negligible in the free electron gas, so that the large U0 term as found
in the atomic calculations does not appear in the DFT-LDA scheme.

The densities of states (DOS) in the paramagnetic state of 3d transition metals
are presented in Fig. 2.6. The bcc DOS is characterized by a two-peak structure
and a deep valley between the main peaks. The Fermi level of V is near the top of
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Fig. 2.6 Densities of states of bcc Fe (solid curve) and fcc Ni (dotted curve). The Fermi levels of
bcc V, bcc Cr, fcc Mn, and fcc Co are shown by the arrows

Table 2.2 Theory vs. experiment of the ground-state magnetizations M for Fe, Co, and Ni [34].
Theoretical results are the spin contribution to the magnetizations calculated at the experimental
lattice constant. The values in the parentheses in the experimental data denote the spin contribution

M (μB) Fe Co Ni

LDA 2.15 1.51 0.59

Expt. 2.22 (2.12) 1.74 (1.71) 0.62 (0.60)

the second peak. The Fermi level of Cr is near the bottom of the valley. The Fermi
level of the bcc Fe is located on the main peak, so that bcc Fe is favorable to the
ferromagnetism. The fcc DOS is characterized by a high DOS in the main peak,
which is caused by the t2g d bands. The Fermi level of the fcc Ni is on the peak, and
thus it is favorable for the strong ferromagnetism.

The Stoner parameters as well as the DOS at the Fermi level obtained by the
LSDA explain the ferromagnetism in bcc Fe, Co, and Ni, and the paramagnetism
in V, Pd, and Pt as shown in Table 2.1. Janak [33] performed the spin susceptibility
calculations for 32 metallic elements from Li to In on the basis of the DFT-LDA,
and demonstrated that the other elements do not satisfy the Stoner criterion as they
should.

Moruzzi et al. [34] calculated the ground-state magnetization of transition-metal
ferromagnets. As shown in Table 2.2, the LDA quantitatively explains the ground-
state magnetization in Fe, Co, and Ni. The LDA, however, does not explain the crys-
tal structure of Fe correctly; the nonmagnetic fcc structure is stabilized for Fe in the
LDA. Perdew et al. [35–37] developed a method which self-consistently takes into
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account the gradient terms of the spin and charge densities being neglected in the
LDA. The method called the generalized gradient approximation (GGA) improves
the structural properties of solids. The GGA yields the ground-state magnetizations
2.17 μB for bcc Fe, 1.66 μB for fcc Co, and 0.66 μB for Ni at calculated lattice
constants [38]. The ground-state magnetization in Ni is somewhat overestimated. In
general the GGA enhances the magnetization as compared with the LDA.



Chapter 3
Metallic Magnetism at Finite Temperatures

When temperature is elevated, various excited states of electrons appear in the
ensemble average of magnetic moments. In this chapter, we present the theories
of metallic ferromagnetism at finite temperatures. We first deal with the finite-
temperature ferromagnetism by means of the Hartree–Fock approximation called
the Stoner theory, and point out that the theory overestimates the Curie temperature
due to the lack of spin fluctuations. The single-site spin fluctuation theory (SSF) de-
scribes thermal spin fluctuations, and significantly improves the Stoner theory. We
introduce in Sect. 3.2 the functional integral method (FIM) which describes spin
fluctuations at finite temperatures with use of the auxiliary exchange fields, and de-
rive the SSF in Sect. 3.3 on the basis of the FIM. The SSF yields the Curie–Weiss
susceptibility, and explains various properties of metallic magnetism at finite tem-
peratures qualitatively. But dynamical spin and charge fluctuations are not taken
into account in the theory because it is based on the high temperature approxima-
tion called the static approximation. We present the dynamical CPA in Sects. 3.4
and 3.5, which completely takes into account the dynamical spin as well as charge
fluctuations at finite temperatures within the single-site approximation. We discuss
the dynamical effects on the metallic magnetism. The dynamical CPA is an exten-
sion of the SSF to the dynamical case, and equivalent to the dynamical mean field
theory in the metal–insulator transition. This equivalence is discussed in Sect. 3.6. In
the last section, we extend the theory to the first-principles dynamical CPA and dis-
cuss the quantitative aspects of the finite-temperature magnetism in Fe, Co, and Ni.

3.1 Stoner Theory

The Hartree–Fock–Stoner theory is useful to understand the origin of the ferromag-
netism at the ground state in itinerant-electron system. The Stoner condition (2.5)
shows that the ferromagnetism is caused by a balance between the energy gain due
to Coulomb interaction and the band energy loss of electrons via the Fermi level,
though electron correlations play a significant role in its stabilization. We will dis-
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cuss in this section the Stoner theory at finite temperatures to understand the nature
of the mean-field theory of magnetism.

Finite-temperature properties of the Stoner theory are obtained from the self-
consistent equations (2.11) for average charge n per atom and (2.12) for magnetiza-
tion m per atom.

n =
∑
σ

∫
dωf (ω)ρ(ω+Δ · σ +�μ), (3.1)

m =
∑
σ

σ

∫
dωf (ω)ρ(ω+Δ · σ +�μ). (3.2)

Here we introduced the Hartree–Fock density of states (DOS) in the nonmagnetic
state as ρ(ω) = ρ0(ω − Un/2+ εF), the exchange potential Δ = Um/2+ h, and
the change of chemical potential �μ due to spin polarization. εF and h denote the
Fermi level in the nonmagnetic state and the uniform magnetic field, respectively.
Note that the DOS ρ(ω) satisfies the following relation by definition.

n=
∫
dωf (ω)

∑
σ

ρ(ω). (3.3)

In the weak ferromagnetic limit (Δ� 1), we can obtain the explicit expressions
of magnetization and susceptibility in the Stoner theory as follows. Let us take the
difference between (3.1) and (3.3) to obtain �μ.

∫
dωf (ω)

∑
σ

[
ρ(ω+Δ · σ +�μ)− ρ(ω)]= 0. (3.4)

Expanding the above equation with respect to small Δ, we obtain �μ as follows.

�μ= aΔ2
[

1+
(
a2 + 3b+ c

a

)
Δ2 + · · ·

]
. (3.5)

The coefficients a, b, and c are defined as

a =− 1

2a0

∫
dωf (ω)ρ(2)(ω), b=− 1

6a0

∫
dωf (ω)ρ(3)(ω),

c=− 1

24a0

∫
dωf (ω)ρ(4)(ω).

(3.6)

Here ρ(n)(ω) means that ρ(n)(ω) = ∂nρ(ω)/∂ωn, and the coefficient a0 is defined
by

a0 =
∫
dωf (ω)ρ(1)(ω). (3.7)
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In the same way, (3.2) is expressed as

m=
∫
dωf (ω)

∑
σ

σ
[
ρ(ω+Δ · σ +�μ)− ρ(ω)]. (3.8)

Expanding the r.h.s. of the above equation with respect to small Δ and �μ, and
substituting the relation (3.5) into the equation, we obtain

m= 2a0Δ
[
1− (

2a2 + b)Δ2 + · · · ]. (3.9)

At T = 0, we have a0 = ρ, a = −ρ(1)/2ρ, and b = −ρ(2)/6ρ, where ρ, ρ(1),
and ρ(2) stand for ρ(0), ρ(1)(0), and ρ(2)(0) at T = 0, respectively. When h= 0 and
T = 0, (3.9) yields the ground state magnetization,

m(0)=
√

8(ρU − 1)

ρUF1U2
. (3.10)

Here F1 = (ρ(1)/ρ)2 − ρ(2)/3ρ.
The paramagnetic susceptibility is obtained by taking the linear term in Δ at the

r.h.s. of (3.9).

χ(T )= 2a0(T )

1− a0(T )U
. (3.11)

At T = 0, we have a0 = ρ, thus (3.11) reduces to (2.14), the susceptibility in the
Hartree–Fock approximation at the ground state.

At finite temperatures, we may adopt the low temperature expansion for the
Fermi distribution function because here we are considering very weak ferromag-
netism. Furthermore it should be noted that ρ(ω), the DOS in the nonmagnetic
state, depends on temperature T via �εF, the change of εF due to temperature. Here
we express its temperature dependence explicitly as ρ(ω,T ). The change �εF and
ρ(ω,T ) are determined by (3.3) as

�εF =−π
2

6
T 2 ρ

(1)

ρ
, (3.12)

ρ(ω,T )= ρ(ω,0)− ρ(1)(ω,0)π
2

6
T 2 ρ

(1)

ρ
+ · · · . (3.13)

Then a0(T ) defined by (3.7) is expanded as

a0(T )=
∫
dω

(
−∂f (ω)

∂ω

)
ρ(ω,T )= ρ

[
1− π2

6
RT 2 + · · ·

]
. (3.14)

Here

R =
(
ρ(1)

ρ

)2

− ρ(2)

ρ
. (3.15)
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The Curie temperature is obtained from the condition that the denominator in
(3.11) vanishes, a0(TC)U = 1. With use of (3.14), it is given as

TC =
√

6(ρU − 1)

π2RρU
. (3.16)

Note that 0 < ρU − 1 � 1 because we are considering the very weak ferromag-
netism. Therefore, we may replace ρU in the denominator of the above expression
by one. Substituting (3.14) into (3.11) and using the expression of TC, we obtain

χ(T )−1 = π2R(ρU)2

12ρ

(
T 2 − T 2

C

)
. (3.17)

The inverse susceptibility in the Stoner theory is proportional to T − TC near TC,
i.e., the susceptibility follows the Curie–Weiss law. But it deviates from it at higher
temperatures.

The magnetization at finite temperatures is obtained from (3.9):

m
(
A+ 2Bm2 + · · · )= 0, (3.18)

with

A = 1− a0U

4a0
= 1

2χ
, (3.19)

B = 1

32

(
2a2 + b)U3. (3.20)

Solving (3.18), we obtain

m(T )=
√
− A(T )

2B(T )
. (3.21)

Substituting (3.17) of χ(T ) into A(T ) and replacing B(T ) with B(0) in the above
expression, we reach

m(T )=m(0)
√

1−
(
T

TC

)2

. (3.22)

Here m(0) is given by (3.10).
The temperature dependence of magnetization and susceptibility in the very

weak ferromagnet, which is based on the Stoner theory is summarized in (3.22)
and (3.17), respectively. The change of the magnetization Δm(T )=m(T )−m(0)
follows the T 2 law at low temperatures. In the actual transition metals, we have an
additional term being proportional to T 3/2. This is explained by the spin wave ex-
citations as will be discussed in Sect. 4.2. Near TC, the magnetization vanishes as
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Table 3.1 The LDA+Stoner
theory vs. experiment of the
Curie temperatures for Fe,
Co, and Ni [39, 40]

Metal Fe Co Ni

LDA+Stoner TC (K) 6000 4000 2900

Expt. TC (K) 1040 1390 630

(TC − T )1/2. This is characteristic of the mean-field theory (see also the Ginzburg–
Landau theory in Sect. 6.4). However the T 2 dependence of the inverse susceptibil-
ity in (3.17) seems to be inconsistent with the experimental data of weak ferromag-
nets which indicate the Curie–Weiss law in a wide range of temperature. It suggests
that one has to take into account the spin fluctuations neglected in the Stoner theory.

In the above analysis, we assumed a very weak ferromagnetism where
0< ρU − 1, m� 1. When the magnetization is large, we have to solve (3.1) and
(3.2) self-consistently. In the realistic calculations, one can adopt the tight-binding
LMTO Hamiltonian (2.167) and the first-principles Stoner parameter I (2.180) ob-
tained by the DFT-LDA theory in Sect. 2.3.4. The Stoner model is then described
by the following Hamiltonian.

H =
∑
iLσ

(
εiL − 1

2
Im · σδld

)
niLσ +

∑
iLjL′σ

tiLjL′a
†
iLσ ajL′σ +

1

4
Im2. (3.23)

Gunnarsson et al. [39, 40] calculated the Curie temperatures of Fe, Co, and Ni on
the basis of the Stoner theory and the DFT-LDA Stoner parameters. The results are
presented in Table 3.1. Calculated values are overestimated by a factor of 3–6 as
compared with the experimental result. This is because the Stoner theory does not
take into account the spin fluctuations at finite temperatures. The spin fluctuations
reduce the magnetic energy and produce the magnetic entropy at finite temperatures.
We will present the theory at finite temperatures in the following sections.

3.2 Functional Integral Method

We have discussed that the Hartree–Fock type independent-particle approximation
overestimates magnetic energy and underestimates magnetic entropy because it ne-
glects charge and spin fluctuations. The approximation therefore overestimates the
Curie temperatures as well as the magnetic order. Figure 3.1 shows various pictures
of spin fluctuations in metallic magnetism. In the Hartree–Fock–Stoner theory (top
panel), the magnetic moments on each site show no spin fluctuations with increasing
temperature. The moments uniformly decrease only via Fermi distribution function
due to single-particle excitations of independent electrons with exchange splitting.
In the local moment system (middle panel), the amplitudes of local moments on each
site are well defined, but the transverse spin fluctuations take place with increasing
temperatures. In the metallic systems, in general, one can expect fluctuations in
both the amplitude and the direction as shown in the bottom panel of Fig. 3.1. One
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Fig. 3.1 The Hartree–
Fock–Stoner picture (top),
local-moment picture
(middle), and the
spin-fluctuations expected in
the metallic system (bottom)

has to explicitly take into account the spin fluctuations mentioned above to reduce
the magnetic energy and to describe the magnetic entropy. The functional integral
method is a suitable technique for this purpose, because auxiliary exchange fields
introduced in the method can describe spin fluctuations in a simple way [41, 42].

In the functional integral method we transform the two-body interactions into a
time-dependent random potential using the Hubbard–Stratonovich transformation.

eAÔ
2 =

√
A

π

∫
dξ e−Aξ2+2AÔξ . (3.24)

Here Ô is an operator, and A denotes an interaction strength.
Let us consider the Hubbard model (1.51) for simplicity. We divide the Hamilto-

nian into two parts, the noninteracting Hamiltonian H0 and the interaction part HI,
as follows.

H =H0 +HI, (3.25)

H0 =
∑
i,j,σ

tij a
†
iσ ajσ , (3.26)

HI =
∑
i,σ

(ε0 −μ)niσ +
∑
i

Uni↑ni↓. (3.27)

Here ε0 and tij are the atomic level and the transfer integrals between sites i and j ,
respectively. U denotes the intraatomic Coulomb interaction energy parameter on
each site. The chemical potential μ has been inserted for convenience.

It should be noted that there are various representations of the interaction part
because of the Pauli principle n2

iσ = niσ . For example,

ni↑ni↓ = 1

4

(
n2
i −m2

i

)
, (3.28)
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ni↑ni↓ = 1

2
ni − 1

2
m2
i , (3.29)

or using the relation s2
x = s2

y = s2
z , we have

ni↑ni↓ = 1

2
ni − 1

6
m2
i . (3.30)

Here mi = 2si is the spin magnetic moment on site i, andmi =miz. Among various
forms of interactions, we adopt the form (3.28) in the following, because in this case
the simplest approximation to the functional integral method, which is called the
static approximation, yields the Hatree–Fock approximation at the ground state.

The free energy F is expressed in the interaction representation as follows [43].

e−βF = Tr

(
e−βH0T exp

(
−
∫ β

0
HI(τ ) dτ

))
. (3.31)

Here β denotes the inverse temperature (i.e., 1/kBT , kB being the Boltzmann con-
stant), T denotes the time-ordered product (T product), and HI is the interac-
tion (3.27). Note that the interactions HI(τn) and HI(τn′) between different times
commute each other under T product, because they are the Bose type operators
consisting of the even products of creation and annihilation operators. Discretizing
the integral with respect to time τ , we have the following relation under T product.

exp

(
−
∫ β

0
HI(τ ) dτ

)
= exp

[
− β

N ′
N ′∑
n=1

N∑
i=1

(ε0 −μ)niσ (τn)
]

×
N ′∏
n=1

N∏
i=1

exp

[
− πβU

4πN ′
n2
i (τn)+

πβU

4πN ′
m2
i (τn)

]
. (3.32)

Here N ′ is the number of segments of time interval [0, β].
Applying the Hubbard–Stratonivich transformation (3.24) to the above interac-

tion terms of n2
i (τn) (m2

i (τn)) at each time τn, we reach

e−βF =
∫ [

N∏
i=1

δξi(τ )δηi(τ )

]
Z0[ξ, η]

× exp

[
−1

4
U

N∑
i=1

∫ β

0
dτ

{
η2
i (τ )+ ξ2

i (τ )
}]
. (3.33)

Here the functional integral
∫
δξ(τ ) for the auxiliary field ξ(τ ) is defined by

∫
δξ(τ )≡

∫ [
N ′∏
n=1

√
βU

4π

dξ(τn)√
N ′

] (
N ′ →∞)

, (3.34)



70 3 Metallic Magnetism at Finite Temperatures

and Z0[ξ, η] is the partition function for noninteracting electrons under time-
dependent random fields ξ(τ ) and η(τ).

Z0[ξ, η] = Tr

(
T exp

[
−
∫ β

0
dτ H

(
τ, ξ(τ ), η(τ )

)])
. (3.35)

Note that H(τ, ξ(τ ), η(τ )) denotes the one-electron Hamiltonian in the random
charge and exchange fields, which is defined by

H
(
τ, ξ(τ ), η(τ )

)=∑
iσ

viσ
(
ξi(τ ), ηi(τ )

)
niσ (τ )+

∑
i,j,σ

tij a
†
iσ (τ )ajσ (τ ), (3.36)

where the time-dependent potential viσ (ξi(τ ), ηi(τ )) is defined by

viσ
(
ξi(τ ), ηi(τ )

)= ε0 −μ∓ i 1

2
Uηi(τ )− 1

2
Uξi(τ )σ. (3.37)

Defining the energy functional E[ξ, η] by

E[ξ, η] ≡ − 1

β
lnZ0[ξ, η] +

∑
i

U

4β

∫ β

0
dτ

{
η2
i (τ )+ ξ2

i (τ )
}
, (3.38)

the free energy F given by (3.33) is expressed as follows.

F =− 1

β
ln
∫ [∏

i

δξiδηi

]
e−βE[ξ,η]. (3.39)

In order to obtain a more explicit form of the partition function Z0[ξ, η], we
separate the time-dependent Hamiltonian (3.36) as follows.

Hλ(τ, ξ, η)=H0(τ )+ λH1(τ, ξ, η). (3.40)

Here we defined H0(τ ) by the second term at the r.h.s. of (3.36), and defined
H1(τ, ξ, η) by the first term. We introduced arbitrary interaction strength param-
eter λ for convenience. Then the logarithmic derivative of the partition function is
expressed by a Green function Gλ

ijσ (τ, τ
′) as follows.

∂ lnZ0
λ

∂λ
=−

∑
j,σ

∫ β

0
dτ vjσ (τ )G

λ
jjσ

(
τ, τ+

)
, (3.41)

where τ+ means τ plus an infinitesimal positive number. The Green function for
the time-dependent potentials viσ (τ ) is defined by

Gλ
ijσ

(
τ, τ ′

)≡−Tr(T aiσ (τ )a
†
jσ (τ

′)e−
∫ β

0 Hλ(τ
′′) dτ ′′)

Tr(T e−
∫ β

0 Hλ(τ ′′) dτ ′′)
. (3.42)
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The Green function is obtained by solving the following Dyson equation [43, 44].

Gλ
ijσ

(
τ, τ ′

) = gijσ
(
τ − τ ′)

+
∫ β

0
dτ ′′

∑
k

gikσ
(
τ − τ ′′)λvkσ (τ ′′)Gkjσ

(
τ ′′, τ ′

)
. (3.43)

Here gijσ (τ − τ ′) is the Green function for noninteracting Hamiltonian H0. The
Dyson equation is solved in the matrix form as follows.

Gλ = (
g−1 − λv)−1

, (3.44)

where (Gλ)iτσjτ ′σ ′ = Gλ
ijσ (τ, τ

′)δσσ ′ . Substituting the expression into (3.41) and
integrating it with respect to λ from 0 to 1, we obtain

lnZ0 = lnZ0
0 + Sp ln(1− vg). (3.45)

Here Z0
0 is the partition function for the noninteracting system H0, and Sp means a

trace over site, time, and spin. Substituting (3.45) into (3.38), we obtain

E[ξ, η] = − 1

β

(
lnZ0

0 + Sp lng + Sp ln
(
g−1 − v))

+
∑
i

U

4β

∫ β

0
dτ

{
η2
i (τ )+ ξ2

i (τ )
}
. (3.46)

Equations (3.39) and (3.46) indicate that the statistical mechanics of two-body inter-
action have been transformed into those of classical integrals of determinants with
infinite dimensions.

Note that the Green function (3.42) for the time-dependent dynamical poten-
tials viσ (τ ) differs from the temperature Green function for the interacting Hamil-
tonian (3.25). The latter is defined by

Giσjσ ′
(
τ − τ ′)=−〈T aHiσ (τ )a

†
Hjσ ′

(
τ ′
)〉
. (3.47)

Here aHiσ (τ ) (a†
Hiσ (τ )) is the Heisenberg representation of the annihilation (cre-

ation) operator of an electron on site i with spin σ ; aHiσ (τ ) = eτKaiσ e−τK
(a†

Hiσ (τ ) = eτKa†
iσ e−τK ), where K = H − μN , μ being the chemical potential.

We can prove that the temperature Green function is given by the Green function
(3.42) as

Giσjσ ′
(
τ − τ ′)= 〈

Giσjσ ′
(
τ, τ ′

)〉=

∫ [∏
i

δξiδηi

]
Giσjσ ′(τ, τ

′)e−βE[ξ,η]

∫ [∏
i

δξiδηi

]
e−βE[ξ,η]

. (3.48)

To prove the above relation, we express the temperature Green function (3.47) with
use of the interaction representation as follows.

e−βF Giσjσ ′
(
τ − τ ′)=−Tr

(
T aiσ (τ )a

†
jσ ′

(
τ ′
)
e−

∫ β
0 HI(τ

′′) dτ ′′). (3.49)
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Since terms with different times in the integral of HI(τ
′′) at the r.h.s. commute

each other under T product, we can apply the Hubbard–Stratonovich transforma-
tion (3.24) discretizing the integral as (3.32), so that we obtain the formula (3.48).

The charge and magnetic moment on site i are obtained by taking the derivatives
of (3.39) with respect to the atomic level ε0

i and the local magnetic field hi on site i
as ∂F/∂ε0

i and −∂F/∂hi .

〈ni〉 =
∑
σ

〈
1

β

∫ β

0
dτ Giiσ

(
τ, τ+

)〉
, (3.50)

〈mi〉 =
∑
σ

σ

〈
1

β

∫ β

0
dτ Giiσ

(
τ, τ+

)〉
. (3.51)

The average 〈∼〉 at the r.h.s. of (3.50) and (3.51) is defined by a thermal average
with respect of the energy functional E[ξ, η].

〈∼〉 ≡

∫ [∏
i

δξiδηi

]
(∼)e−βE[ξ,η]

∫ [∏
i

δξiδηi

]
e−βE[ξ,η]

. (3.52)

We can obtain alternative expressions with use of the auxiliary fields. To de-
rive the expressions, we write the local charge as 〈ni〉 = 〈∂E[ξ, η]/∂ε0

i 〉. Since
ε0
i appears in the energy E[ξ, η] via the time-dependent energy εi(τ ) ≡ ε0

i − μ∓
Uiηi(τ )/2 according to (3.38), we take the derivative for every time segment τn as

〈ni〉 =
∑
n

〈
∂

∂εi(τn)
E[ξ, η]

〉
. (3.53)

We can rewrite ∂E/∂εi(τn) in the above equation using ∂E/∂ηi(τn) via the relation
∂E/∂ηi(τn) = ∓i(U/2)∂E/∂εi(τn) + (Δτ/2β)Uηi(τn). By integration by parts,
we obtain an alternative expression as follows.

〈ni〉 = 〈±iηi〉. (3.54)

For the local magnetic moment, we make use of the time-dependent magnetic field
hi(τn) ≡ Uξi(τn)/2 + hi instead of the time-dependent energy εi(τn). Taking the
same steps, we obtain the following formula.

〈mi〉 = 〈ξi〉. (3.55)

Here ξi and ηi are the time-averaged static field variables defined by

ξi = 1

β

∫ β

0
ξi(τ ) dτ, ηi = 1

β

∫ β

0
ηi(τ ) dτ. (3.56)

The results (3.54) and (3.55) indicate that the averages of the zero frequency
components of the charge and exchange fields determine local charge and magneti-
zation on the same site. In particular, (3.55) suggests that a ‘magnetic moment’ ξi
on site i thermally fluctuates as shown in the bottom panel of Fig. 3.1.
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In the functional integral method, one has to evaluate the energy functional
E[ξ, η] (i.e., (3.46)) first, and then perform the functional integrals as found in (3.39)
and (3.52). In order to obtain the free energy describing spin fluctuations, we make
use of the time-averaged static variables (3.56). Using the identity

1 =
∫
dξi δ

(
ξi − 1

β

∫ β

0
ξi(τ ) dτ

)

=
∫ √

βU

4π
dξi

∫
dxi exp

[
−2πixi

√
βU

4π

(
ξi − 1

β

∫ β

0
ξi(τ ) dτ

)]
, (3.57)

one can express the free energy (3.32) by means of the static variables ξi and ηi as
follows.

e−βF =
∫ [

N∏
i=1

βU

4π
dξi dηi

]∫ [
N∏
i=1

δξi(τ )δηi(τ ) dxi dyi

]
Z0[ξ, η]

× exp

[
N∑
i=1

(
−1

4
U

∫ β

0
ξi(τ )

2 dτ + ixi
√
βπU

β

∫ β

0

(
ξi(τ )− ξi

)
dτ

)]

× exp

[
N∑
i=1

(
−1

4
U

∫ β

0
ηi(τ )

2 dτ + iyi
√
βπU

β

∫ β

0

(
ηi(τ )− ηi

)
dτ

)]
.

(3.58)

The simplest approximation is to replace the time-dependent fields ξi(τ ) and
ηi(τ ) in the Hamiltonian of Z0[ξ, η] with the static ones, i.e., ξi and ηi , as
H(τ, ξ(τ ), η(τ ))→ H(τ, ξ, η). This is called the static approximation. The par-
tition function (3.35) then reduces to the following form.

Z0
st(ξ, η)= Tr

(
exp

[−βHst(ξ, η)
])
, (3.59)

and

Hst(ξ, η)=
∑
i

viσ (ξi, ηi)niσ +
∑
i,j,σ

tij a
†
iσ ajσ . (3.60)

Here viσ (ξi, ηi) is a random static potential (3.37) in which the dynamical-field
variables ξi(τ ) and ηi(τ ) have been replaced by the static ones.

viσ (ξi, ηi)= ε0 −μ∓ 1

2
iUηi − 1

2
Uξiσ. (3.61)

The remaining functional integrals can be performed with use of the Gaussian
integrals, and we obtain the following expression for the free energy Fst in the
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static approximation.

e−βFst =
∫ [

N∏
i=1

√
βU

4π
dξi

√
βU

4π
dηi

]
Z0

st(ξ, η) exp

[
−1

4
βU

N∑
i=1

(
η2
i + ξ2

i

)]
.

(3.62)

Here Z0
st(ξ, η) is the partition function (3.59) for the Hamiltonian Hst with the ran-

dom static potential viσ (ξi, ηi). The free energy (3.62) is also written as follows.

Fst = − 1

β
ln
∫ [∏

i

√
βU

4π
dξi

√
βU

4π
dηi

]
e−βEst(ξ,η), (3.63)

Est(ξ, η) = −β−1 ln Tr
(
e−βHst(ξ,η)

)+ 1

4
U

N∑
i=1

(
η2
i + ξ2

i

)
. (3.64)

Needless to say, the static approximation is exact in the noninteracting limit.
It is also exact in the atomic limit because the Hamiltonian H0 commutes with
the interaction HI there, so that the replacement H(τ, ξ(τ ), η(τ ))→ H(τ, ξ, η) is
justified. Also, the approximation becomes exact in the high temperature limit where
the time interval [0, β] becomes zero. At T = 0, on the other hand, one can take the
saddle point of Est(ξ, η) to calculate the free energy. The ground state energy is then
given by

〈H 〉 = μN + 〈Hst(ξ
∗, η∗)〉0 + 1

4
U

∑
i

(
η∗i

2 + ξ∗i 2)
. (3.65)

Here 〈(∼)〉0 means the average with respect to the Hamiltonian Hst(ξ
∗, η∗) at

T = 0. The saddle point values ξ∗i and η∗i are determined from the conditions,
∂Est/∂ξi = 0 and ∂Est/∂ηi = 0, i.e.,

ξ∗i = 〈mi〉0
(
ξ∗, η∗

)
, ∓iη∗i = 〈ni〉0

(
ξ∗, η∗

)
. (3.66)

These coupled equations for ξ∗i and η∗i are nothing but the Hartree–Fock equations,
and the potential viσ (ξ∗, η∗) reduces to the Hartree–Fock one, ε0−μ+U 〈ni〉0/2−
U 〈mi〉0σ/2. Therefore, the energy (3.65) is identical with the Hartree–Fock energy
at the ground state.

3.3 Single-Site Theory in the Static Approximation

The static approximation to the functional integral method yields a physical picture
of spin fluctuations as indicated in Fig. 3.1, though it is a rather crude approxi-
mation at low temperatures. In this section we present a single-site theory of spin
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fluctuations based on the static approximation, which is known as the single-site
spin fluctuation theory (SSF) [45–49].

We adopt here the saddle point approximation to the charge fields, ζi ≡∓iη∗i =〈ni〉0(ξ,±iζ ), and express the free energy (3.63) and the energy potential (3.64) as
follows.

Fst =− 1

β
ln
∫ [∏

i

√
βU

4π
dξi

]
e−βEst(ξ), (3.67)

Est(ξ)=
∫
dωf (ω)

1

π
Im Tr

[
ln(z−Hst)

]+ 1

4
U

∑
i

(
ξ2
i − ζ 2

i

)
. (3.68)

Here z = ω+ iδ, δ being the infinitesimal positive number. Hst is the one-electron
Hamiltonian matrix defined by

(Hst)iσjσ ′ =
[
viσ (ξ)δij + tij (1− δij )

]
δσσ ′ . (3.69)

The random static potential is now given by

viσ (ξ)= ε0 −μ+ 1

2
Uζi(ξ)− 1

2
Uξiσ, (3.70)

and ζi(ξ) = 〈ni〉0(ξ) denotes the Hartree–Fock charge on site i when the random
exchange fields {ξj } are given.

The Hamiltonian matrix Hst in (3.68) consists of the random potential (v)iσjσ ′ =
viσ δij δσσ ′ and the transfer integral matrix (t)iσjσ ′ = tij δσσ ′ ; Hst = v+ t . In order to
reduce the number of integrations in the free energy (3.67), we introduce an energy-
dependent complex potential called the coherent potential Σσ (z) into the potential
part as Hst = Σ + t + δv. δv denotes a scattering potential from a medium Σ ;
δv = v−Σ .

The energy (3.68) is then expressed as follows.

Est(ξ)= F̃ +
∫
dωf (ω)

1

π
Im Tr

[
ln(1− δvG̃)]+ 1

4
U

∑
i

(
ξ2
i − ζ 2

i

)
. (3.71)

Here F̃ is the coherent part of the free energy given by

F̃ =
∫
dωf (ω)

1

π
Im Tr

[
ln(z−Σ − t)]. (3.72)

The second term at the r.h.s. of (3.71) is a contribution from the scattering potential
δv. The coherent Green function G̃ is defined by

(G̃)iσjσ ′ =
[
(z−Σ − t)−1]

iσjσ
δij δσσ ′ . (3.73)

The last term of the r.h.s. of (3.71) is the Gaussian contribution to the free energy.
In order to expand the second term in (3.71) with respect to sites, we divide the
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Green function G̃ into the diagonal part F and the off-diagonal F ′ as follows.

G̃= F + F ′, (3.74)

where

(F )iσjσ ′ = Fiσ (z)δij δσσ ′ =
[
(z−Σ − t)−1]

iσ iσ
δij δσσ ′, (3.75)

(
F ′

)
iσjσ ′ = (G̃)iσjσ (1− δij )δσσ ′ . (3.76)

We can then expand the energy (3.71) with respect to the site as follows.

E(ξ)= F̃ +
∑
i

Ei(ξi)+�E(ξ). (3.77)

The second term at the r.h.s. of (3.77) consists of the single-site energies on each
site.

Ei(ξi)=
∫
dωf (ω)

1

π
Im

∑
σ

ln
(
1− δviσ (z, ξ)Fiσ (z)

)+ 1

4
U
(
ξ2
i − ζ 2

i

)
. (3.78)

Here

δviσ (z, ξ)= viσ (ξ)−Σσ (z). (3.79)

The last term in (3.77) describes the inter-site interaction.

�E(ξ)=
∫
dωf (ω)

1

π
Im Tr

[
ln
(
1− t̃F ′)]. (3.80)

Here t̃ is the single-site t matrix for the scattering δv.

t̃ = (1− δvF )−1δv. (3.81)

In the single-site approximation (SSA), we neglect the last term in (3.77), and obtain
the free energy as follows.

FSSA = F̃ − β−1
∑
i

ln
∫ √

βU

4π
dξi e−βEi(ξi ). (3.82)

The coherent potential Σσ (z) is determined so that the contribution from the
inter-site corrections (3.80) becomes as small as possible. This implies that

〈t̃iσ 〉 =
〈

δviσ

1− δviσFiσ
〉
= 0. (3.83)
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Here the average 〈∼〉 means a classical average with respect to the impurity energy
Ei(ξi).

〈∼〉 =

∫ √
βU

4π
dξi (∼)e−βEi(ξi )

∫ √
βU

4π
dξi e−βEi(ξi )

. (3.84)

Equation (3.83) is equivalent to the following condition (see Appendix A).

〈G(i)
iσ (z, ξ)〉 = Fiσ (z). (3.85)

Here

G
(i)
iσ (z, ξ)=

1

Fiσ (z)−1 − δviσ (z, ξ) . (3.86)

The function G
(i)
iσ (z, ξ) is an on-site Green function for a system with an impu-

rity potential viσ embedded in an effective medium Σσ (z), whose Hamiltonian is
given by

(
H(i)(z)

)
j lσ
= [

viσ (z, ξ)δij +Σσ (z)(1− δij )
]
δjl + tj l(1− δjl). (3.87)

The coherent Green function Fiσ (z) is defined by (3.75), and expressed by the den-
sity of states ρ(ε) for the noninteracting Hamiltonian tij as

Fiσ (z)=
∫

ρ(ε) dε

z−Σσ (z)− ε . (3.88)

The form is known as the Lehmann representation of the Green function.
The single-site approximation with use of a site-diagonal effective potential

Σσ (z) is known as the coherent potential approximation (CPA), and (3.83) and
(3.85) are called the CPA equation. These equations are also verified to be equiva-
lent to the stationary condition of the free energy (3.82) with respect to the coherent
potential (see Appendix A).

δFSSA

δΣσ (z)
= 0. (3.89)

The CPA was first introduced as a method to treat the electronic structure of dis-
ordered alloys [50, 51], which will be discussed in more detail in Sect. 8.2. The
schematic picture of the CPA equation is given in Fig. 3.2. We have replaced the
random potentials {vjσ } of the one-electron Hamiltonian Hst (i.e., (3.69)) with the
coherent potential Σσ (z) at the surrounding sites in order to reduce the number of
field variables. We then have an impurity system described by an effective Hamil-
tonian (3.87), and obtain the impurity Green function (3.86). The l.h.s. in Fig. 3.2
shows the thermal average of such a system. On the other hand, we can consider
a coherent system in which all the random potentials are replaced by the coherent
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Fig. 3.2 Physical picture for the coherent potential approximation (CPA). The left-hand side
(l.h.s.) shows an impurity system with a random potential viσ on site i, which is embedded in
the effective potential Σσ . The right-hand side shows a uniform system with the effective potential
only. When the average is taken at the l.h.s. with respect to a random potential viσ , it should be
identical with the r.h.s

ones, as shown at the r.h.s. in Fig. 3.2. We then obtain the coherent Green function
(3.88). The CPA equation (3.85) indicates that these states should be identical when
the effective medium is chosen to be best.

One can rederive the formula (3.54) of local charge on site i from the single-site
free energy (3.82) by using the stationary conditions (3.89) and ∂Ei(ξi)/∂ζi = 0, as
well as the relations 〈ni〉 = ∂FSSA/∂ε

0
i .

〈ni〉 =
〈
ζi(ξ)

〉
, (3.90)

ζi(ξ)=
∫
dωf (ω)

∑
σ

ρiσ (ω, ξ). (3.91)

Here ρiσ (ω, ξ) is the single-site density of states (DOS) given by

ρiσ (ω, ξ)=− 1

π
ImG

(i)
iσ (z, ξ). (3.92)

In the same way, we can rederive the formula (3.55) of the local magnetic moment
on site i using the relation 〈mi〉 = −∂FSSA/∂hi .

〈mi〉 = 〈ξi〉. (3.93)

The average at the r.h.s. is now taken with respect to the single-site energy Ei(ξi)
(see (3.84)). Equation (3.93) indicates that the magnetic moment at finite tempera-
tures is determined by a thermal average of a flexible local moment ξi with respect
to the energy potential Ei(ξ).

The amplitude of local moment is obtained from the relations 〈m2
i 〉 = 〈ni〉 −

2〈ni↑ni↓〉 and 〈ni↑ni↓〉 = ∂FSSA/∂Ui [52].

〈m2
i 〉 = 〈ni〉 −

1

2

(
〈ζ 2
i (ξ)〉 − 〈ξ2

i 〉 +
2

βU

)
. (3.94)
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The second term at the r.h.s. of the equation shows that the amplitude of local mo-
ment is flexible and can vary with elevated temperature.

The entropy S per atom is also obtained from the relation S =−∂FSSA/∂T /L,
where L denotes the number of atoms [52].

S =−
∫
dω ρ̃(ω)

[(
1− f (ω)) ln

(
1− f (ω))+ f (ω) lnf (ω)

]

+ ln
∫ √

βU

4π
dξ e−β(Ei(ξ)−〈Ei(ξ)〉) − 1

2
. (3.95)

Here ρ̃(ω) is the DOS per atom for the coherent state, which is given by ρ̃(ω) =
−π−1 Im

∑
σ Fiσ (z). The first term expresses an entropy for the independent par-

ticle system. This is essentially the same as in the Stoner theory. The second term
causes a magnetic entropy associated with the local magnetic moment ξ . The last
term is a constant which originates in the prefactor

√
βU/4π of the integral. The en-

ergy per atom in the SSA is obtained from the relation 〈H−μN〉 =FSSA+β−1S as

〈H 〉 = μn+
∫
dωf (ω)ωρ̃(ω)− 1

4
U

(
〈ζ 2
i (ξ)〉 − 〈ξ2

i 〉 +
2

βU

)
. (3.96)

Here n is the electron number per atom. The energy in the static approximation
has the same form as the Hartree–Fock one (2.13), though the DOS ρ̃(ω) and the
amplitude 〈ξ2

i 〉 shows a strong temperature dependence.
It should be noted that the coherent potential Σσ (z) and the chemical potential

μ are self-consistently determined in the single-site theory of spin fluctuations by
means of the CPA equation (3.85) and the condition (3.90) for a given charge n.
The noninteracting DOS ρ(ε) for the Hamiltonian matrix tij is assumed to be given
in the theory. We first assume Σσ and μ, and calculate the coherent Green func-
tion (3.88). Then we obtain the Hartree–Fock charge ζi(ξ) for each ξ solving the
self-consistent equations (3.70) and (3.91). Using these solutions, we can calculate
the energy potential Ei(ξ) according to (3.78), therefore the l.h.s. of the CPA equa-
tion (3.85) taking the thermal average with respect toEi(ξ). When the CPA equation
(3.85) is not satisfied, we may renew the coherent potential, for example, using the
following equation.

Σ(new)
σ (z)=Σ(old)

σ (z)−
[ 〈G(i)

iσ (z, ξ)〉 − Fiσ (z)
〈G(i)

iσ (z, ξ)〉Fiσ (z)

]
old
. (3.97)

The above equation was found in the averaged t-matrix approximation to the CPA
[51] (see also Appendix B). The renewed potential Σ(new)

σ (z) improves the self-
consistency, and after several iterations we may find the CPA solution Σσ (z) for
each z. Next we calculate the average charge according to (3.90). When the ob-
tained charge is not consistent with the given charge n, we can renew the chemical
potential μ, for example, by using Newton’s method, and return to the beginning of
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Fig. 3.3 Energy potential curves �Ei(ξ) = Ei(ξ) − Ei(0) calculated at half-filling for
U/W = 0.5,1.0,1.5,2.0 in the paramagnetic state at T/W = 0.06 [53], where W denotes a half
the band width. Semi-elliptical model density of states ρ(ε) = 2

√
W 2 − ε2/πW 2 is assumed for

noninteracting electrons

the procedure mentioned above. When the self-consistency for both Σσ (z) and μ is
achieved, we can calculate various physical quantities.

The basic behavior of local magnetic moments is determined by the single-
site energy Ei(ξ) (see (3.78)). Let us consider the paramagnetic state at half-
filling, where ζi(ξ) = 1 irrespective of ξ . When ξ is small, we have Ei(ξ) =
Ei(0)+ Aξ2/2. For small U , the Gaussian term in Ei(ξ) (i.e., the second term at
the r.h.s. of (3.78)) is dominant because it is proportional to U , so that A> 0, while
A< 0 for large U because the kinetic energy term (i.e., the first term at the r.h.s. of
(3.78)) decreases as ξ increases and its magnitude is proportional to U2. When ξ
is large, the Gaussian part again becomes dominant. Therefore Ei(ξ) shows a sin-
gle minimum structure for small U , while it shows a double-minimum structure for
large U as shown in Fig. 3.3.

When the system shows a single minimum structure in energy potential Ei(ξ)
(see the curve for U/W = 0.5 in Fig. 3.3), the magnetic moment ξ vanishes at
T = 0. In this case, it may appear with the polarization of the effective medium.
The magnetic moment fluctuates around the minimum point with elevating tem-
perature. When the system shows a double-minimum structure (see the curves for
U/W = 1.5 and U/W = 2.0 in Fig. 3.3), the magnetic moment given by the con-
dition ∂Ei(ξi)/∂ξi = 0 appears at T = 0, and thermally fluctuates between the two
minima. In this case, large spin fluctuations which changes their direction are pos-
sible. Accordingly, the magnetic entropy of ln 2 occurs. We call such a system the
local moment system.

Various model calculations for the ferromagnetism have been performed with
use of the single-site theory in the static approximation. In the single-site the-
ory, the ferromagnetism is defined as a polarized state of the effective medium;
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Fig. 3.4 Energy potential curves �Ei(ξ) = Ei(ξ) − Ei(0) calculated at a temperature below
(solid curve) and above (dashed curve) the Curie temperature for n = 1.44 and 2U/W = 2.29
(‘bcc Fe’) [54], W being a width of the model band shown in the inset

Σ↑(z) �= Σ↓(z). The ferromagnetic solution is usually found in the system with
non-half-filled bands and a large Coulomb interaction. Figure 3.4 shows a numeri-
cal example for electron number n= 1.44 which corresponds to bcc Fe when elec-
tron number n is multiplied by 5 (number of d orbitals) [54]. In the paramagnetic
state, we have double minima in energy curve Ei(ξ). Below the Curie tempera-
ture TC, we have an energy-dependent molecular fieldΣ↑(z)−Σ↓(z), consequently
the energy potential curve becomes asymmetric as shown by the solid curve in the
figure, and the ferromagnetism with the magnetization at the minimum is stabi-
lized.

Figure 3.5 shows another example of the energy potential curves for a system
with n= 1.8 on the fcc lattice, which might correspond to fcc Ni. In this case, we
find the single minimum structure both above and below TC. With the appearance
of the energy-dependent molecular field Σ↑(z)−Σ↓(z), the minimum point shifts
to the positive region of ξ , and the ferromagnetism is realized.

Temperature dependence of calculated magnetic moments is presented in
Fig. 3.6. In the case of n= 1.44 and 2U/W = 2.29 (‘bcc Fe’), the ground-state mag-
netization is m0 = 0.511 (= 2.56/5) μB. With increasing temperature the magneti-
zation decreases and vanishes at TC/W = 0.0253 (TC = 900 K forW = 0.45 Ry). In
the case of n= 1.80 and 2U/W = 3.43 (‘fcc Ni’), we obtain the ground-state mag-
netization m0 = 0.146 (= 0.73/5) μB and the Curie temperature TC/W = 0.0192
(TC = 530 K for W = 0.35 Ry). In both cases, we find the paramagnetic suscep-
tibilities which follow the Curie–Weiss law, χ = (m2

eff/3)/(T − TC). Here the ef-
fective Bohr magneton numbers are obtained as meff = 1.75m0 for ‘bcc Fe’ and
meff = 3.20m0 for ‘fcc Ni’, respectively, while the experimental data indicate that
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Fig. 3.5 Energy potential curves �Ei(ξ) calculated below (solid curve) and above (dashed curve)
the Curie temperature for n= 1.80 and 2U/W = 3.43 (‘fcc Ni’) [54]. The inset shows the model
density of states for fcc Ni

Fig. 3.6 Magnetization vs. temperature curves, inverse susceptibilities, amplitudes of local
moments for ‘bcc Fe’: n = 1.44, 2U/W = 2.29 (solid curves), and for ‘fcc Ni’: n = 1.80,
2U/W = 3.43 (dotted curves) [54]

meff = 1.44m0 for bcc Fe and meff = 2.68m0 for fcc Ni. These results show that the
SSF qualitatively explains the metallic ferromagnetism, and significantly improve
the Hartree–Fock results.
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3.4 Dynamical CPA Theory

The single-site theory of spin fluctuations (SSF) discussed in the last section is based
on the static approximation, i.e., the high-temperature approximation. The theory
reduces to the Hartree–Fock approximation at the ground state and thus it does not
take into account electron correlations at zero temperature. More important is that
it does not describe the Fermi liquid state as found in metals and alloys at low
temperatures. It is also expected that the dynamical spin fluctuations which are not
taken into account further reduce the magnetization and the Curie temperature. In
order to overcome these difficulties, we extend here the theory to the dynamical
case [54–57]. The theory is called the dynamical coherent-potential approximation
(CPA).

We introduced the energy dependent effective mediumΣσ (z) to the static energy
potential (3.68) in the SSF. In the dynamical CPA, we introduce a time-dependent
effective medium Σ defined by

(Σ)iτσjτ ′σ ′ ≡Σiσ

(
τ − τ ′)δij δσσ ′, (3.98)

and insert it into the potential part of the energy functional (3.46) as follows.

Sp ln
(
g−1 − v)= Sp ln

(
g−1 −Σ − δv)= Sp ln G̃−1 + Sp ln(1− δvG̃). (3.99)

Here δv = v −Σ , and the coherent Green function is defined by

(G̃)iτσjτ ′σ ′ =
[(
g−1 −Σ)−1]

iτσjτ ′σ δσσ ′ . (3.100)

The energy functional E[ξ, η] (see (3.46)) is then divided into the coherent part and
the remaining correction term as

E[ξ, η] = − 1

β

[
ln Z̃0 + Sp ln(1− δvG̃)]

+
∑
i

U

4β

∫ β

0
dτ

(
η2
i (τ )+ ξ2

i (τ )
)
. (3.101)

The partition function Z̃0 is defined by ln Z̃0 = lnZ0
0 + Sp ln(1−Σg).

Defining the diagonal coherent Green function F and the off-diagonal F ′ as

G̃= F + F ′, (3.102)

(F )iτσjτ ′σ ′ =
[(
g−1 −Σ)−1]

iτσ iτ ′σ ′ = (G̃)iτσ iτ ′σ δij δσσ ′, (3.103)
(
F ′

)
iτσjτ ′σ ′ = (G̃)iτσjτ ′σ (1− δij )δσσ ′, (3.104)

one can expand the scattering potential δv in the energy functional with respect to
sites as follows.

E[ξ, η] = F̃ [Σ] +
∑
i

Ei[ξi, ηi] +�E[ξ, η]. (3.105)
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Here the first term at the r.h.s. of the above equation is the coherent part of the free
energy defined by

F̃ [Σ] = −β−1 ln Z̃0 =−β−1 lnZ0
0 − β−1Sp ln(1−Σg). (3.106)

The impurity contribution to the energy functional is given by

Ei[ξi, ηi] = −β−1 tr ln(1− δviFi)+ U

4β

∫ β

0
dτ

(
η2
i (τ )+ ξ2

i (τ )
)
, (3.107)

where tr means a trace over time and spin, and we used the notation (Fi)τστ ′σ ′ ≡
(F )iτσ iτ ′σ ′ is used. The last term in (3.105) is the off-diagonal contribution to the
energy functional, which is given by

�E[ξ, η] = −β−1Sp ln
(
1− t̃F ′). (3.108)

Here t̃ is the single-site t matrix defined by

t̃ = (1− δvF )−1δv. (3.109)

Substituting (3.105) into (3.39), we obtain the following expression of the free
energy.

F = F̃ [Σ] −
∑
i

1

β
ln
∫
δξiδηie

−βEi [ξi ,ηi ] − 1

β
ln
〈
e−β�E

〉
0. (3.110)

Here 〈∼〉0 means the single-site average with respect to its energy functionals.

〈∼〉0 ≡

∫ [∏
i

δξiδηi

]
(∼)e−β

∑
i Ei [ξi ,ηi ]

∫ [∏
i

δξiδηi

]
e−β

∑
i Ei [ξi ,ηi ]

. (3.111)

The single-site approximation (SSA) is to neglect the inter-site term (the last
term) in the free energy expansion (3.110). We choose the effective medium so that
the corrections from the last term becomes minimum. As expected from (3.108), the
condition is given by 〈t̃i〉0 = 0; that is,

〈t̃i〉 = 0. (3.112)

Here 〈∼〉 stands for the single-site average as

〈∼〉 =

∫
δξiδηi(∼)e−βEi [ξi ,ηi ]∫
δξiδηie

−βEi [ξi ,ηi ]
. (3.113)

The matrix t̃i in (3.112) denotes the single-site t matrix due to a local poten-
tial δvi .

t̃i = (1− δviFi)−1δvi, (3.114)
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and

(δvi)τστ ′σ ′ =�τδviσ
(
τ, τ ′

)
�τδσσ ′

=�τ
(
viσ (τ )δ

(
τ − τ ′)−Σiσ

(
τ − τ ′))�τδσσ ′ . (3.115)

Here �τ = β/N , N being the number of mesh in the time interval [0, β]. Equa-
tion (3.112) means that the single-site t matrix due to the scattering potential from
the effective medium should vanishes in average.

One can rewrite the condition (3.112) as

〈(F−1
i − δvi)−1〉 = Fi. (3.116)

Equations (3.112) and (3.116) are referred as the dynamical CPA equation. The r.h.s.
of (3.116) is the diagonal part of the coherent Green function, i.e., (3.103). The l.h.s.
is an impurity Green function for the system with impurity potential vi embedded
in the effective medium Σ . One can verify the fact as follows. The Hamiltonian in
the interaction representation is given by

H(i)(τ )= H̃ (τ )+
∑
σ

∫ β

0
dτ ′ a†

iσ (τ )
{
viσ (τ )δ

(
τ − τ ′)−Σiσ

(
τ − τ ′)}aiσ (τ ′).

(3.117)

Here H̃ (τ ) is the time-dependent Hamiltonian for the coherent potential.

H̃ (τ )=H0(τ )+
∑
iσ

∫ β

0
dτ ′ a†

iσ (τ )Σiσ

(
τ − τ ′)aiσ (τ ′). (3.118)

The impurity Green function for the Hamiltonian H(i)(τ ) is defined as follows
(see (3.42)).

G
(i)
j lσ

(
τ, τ ′

)≡−Tr(T ajσ (τ )a
†
lσ (τ

′)e−
∫ β

0 H(i)(τ ′′) dτ ′′)

Tr(T e−
∫ β

0 H(i)(τ ′′) dτ ′′)
. (3.119)

The Dyson equation for the Green function G(i)
j lσ (τ, τ

′) is given by [43, 44]

G
(i)
j lσ

(
τ, τ ′

) = gjlσ
(
τ − τ ′)+

∫ β

0
dτ1 dτ2

∑
k

gjkσ (τ − τ1)

× {
Σkσ (τ1 − τ2)+ δviσ (τ1, τ2)δik

}
G
(i)
klσ

(
τ2, τ

′). (3.120)

The above equation yields the following solution in the matrix representation.

G(i) = (
F−1
i − δvi

)−1
. (3.121)
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This is identical with the inside of the average at the l.h.s. of (3.116). Therefore the
CPA equation (3.116) is expressed as

〈G(i)〉 = Fi. (3.122)

The dynamical CPA equations (3.112) and (3.122) have the same form as (3.83)
and (3.85) in the static approximation. Thus the physical picture of the dynamical
CPA equation is the same as given in Fig. 3.2. We have replaced the dynamical
potentials {vjσ } with dynamical coherent potential Σ at the surrounding sites in
order to reduce the number of field variables. We have then an impurity system
described by an effective Hamiltonian (3.117), thereby obtaining the impurity Green
function (3.121). The l.h.s. in Fig. 3.2 shows such a system. On the other hand, we
can consider a coherent system in which all dynamical potentials have been replaced
by coherent ones as shown at the r.h.s. in Fig. 3.2. Corresponding Green function is
the coherent Green function (3.103). The CPA equation (3.122) indicates that these
states should be identical when the effective medium is chosen to be best.

The free energy in the dynamical CPA is obtained from (3.110) as follows.

FCPA = F̃ [Σ] −
∑
i

1

β
ln
∫
δξiδηie

−βEi [ξi ,ηi ]. (3.123)

One can verify that the dynamical CPA equations (3.112) and (3.122) are also equiv-
alent to the following stationary condition for the CPA free energy.

δFCPA

δΣiσ (τ − τ ′) = 0. (3.124)

In order to verify the above relation, we express the functional derivative of
δFCPA/δΣnσ (τ − τ ′) as

δFCPA

δΣnσ (τ − τ ′) =
〈

δ

δΣnσ (τ − τ ′)
(

F̃ +
∑
i

Ei[ξi, ηi]
)〉
. (3.125)

Substituting (3.106) and (3.107) into (3.125), we obtain

δFCPA

δΣnσ (τ − τ ′) = −β
−1

〈
−(Fn)τ ′τσ +

[
Fn(1− δvnFn)−1]

τ ′τσ

−
∑
i

tr

[
(1− δviFi)−1δvi

δFi

δΣnσ (τ − τ ′)
]〉
. (3.126)

Here tr means taking the trace over time and spin. The first and the second terms at
the r.h.s. of the above equation are written by the single-site t-matrix on site n, so
that we obtain

δFCPA

δΣnσ (τ − τ ′) =
[
Fn〈t̃n〉Fn

]
τ ′τσ −

∑
i

tr

[
〈t̃i〉 δFi

δΣnσ (τ − τ ′)
]
. (3.127)
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Using the CPA condition (3.112), we reach (3.124).
The formulae (3.50), (3.51), (3.54), and (3.55) of the local charge and mag-

netic moment on site i can be rederived by taking the derivatives ∂FCPA/∂ε
0
i and

−∂FCPA/∂hi , after having introduced a site-dependent atomic level ε0
i and a mag-

netic field hi acting on site i. The Green function Giiσ (τ, τ
+) in (3.50) and (3.51),

however, should be replaced by the coherent Fiiσ (τ, τ+).

〈ni〉 =
∑
σ

1

β

∫ β

0
dτ Fiiσ

(
τ, τ+

)
, (3.128)

〈mi〉 =
∑
σ

σ
1

β

∫ β

0
dτ Fiiσ

(
τ, τ+

)
. (3.129)

In actual calculations of physical quantities, the Fourier representation is more
convenient. The Green function for noninteracting Hamiltonian H0 is expressed as

gijσ
(
τ − τ ′)= 1

β

∑
l

gijσ (iωl)e
−iωl(τ−τ ′). (3.130)

Here ωl is the Matsubara frequency for the anti-periodic function, ωl = (2l+1)π/β .
The Fourier transform gijσ (iωl) is obtained as

gijσ (iωl)=
∑
k

〈i|k〉〈k|j 〉
iωl − εk . (3.131)

In the same way, the Fourier representations of the coherent Green function and the
coherent potential are given as follows.

Fiσ
(
τ − τ ′)= 1

β

∑
l

Fiσ (iωl)e
−iωl(τ−τ ′), (3.132)

Σiσ

(
τ − τ ′)= 1

β

∑
l

Σiσ (iωl)e
−iωl(τ−τ ′). (3.133)

Here Fiσ (iωl) is given by (3.88) with z = iωl and Σiσ (iωl) should be determined
by the dynamical CPA equation.

For the field variables associated with the dynamical potential, it is suitable to
adopt the Fourier transform as the periodic function (i.e., v(τ < 0)= v(τ + β)).

ξi(τ )=
∑
l

ξi(iωl)e
−iωlτ , (3.134)

where ωl = 2lπ/β . The dynamical potential is therefore expressed as

vi(τ )=
∑
l

vi(iωl)e
−iωlτ . (3.135)
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Here the Fourier representation of the potential is given by

vjσ (iωl)= (ε0 −μ)δl0 − 1

2
U
{±iηj (iωl)+ ξj (iωl)σ}. (3.136)

The free energy in the Fourier representation has the same form as (3.123):

FCPA = F̃ [Σ] −
∑
i

1

β
ln
∫
δξiδηie

−βEi [ξi ,ηi ]. (3.137)

The coherent part F̃ [Σ] defined by (3.106) is now given by

F̃ [Σ] = − 1

β
ln tr

(
e−βH0

)− 1

β
Sp ln(1−Σg)

= − 1

β

∑
k,l,σ

ln
{
iωl − εk −Σσ (iωl)

}
. (3.138)

Here Sp stands for a trace over site, frequency, and spin. The functional integral in
(3.137) is given by

∫
δξ =

∫ √
βU

4π
dξ(0)

[ ∞∏
l=1

βU

2π
d2ξ(iωl)

]
, (3.139)

where d2ξ(iωl)= d Re ξ(iωl) d Im ξ(iωl).
The energy functional defined by (3.107) is expressed in the frequency represen-

tation as follows.

Ei[ξi, ηi] = − 1

β
tr ln(1− δviFi)+ 1

4
U

∑
l

{∣∣ηi(iωl)∣∣2 + ∣∣ξi(iωl)∣∣2}. (3.140)

Here tr stands for a trace over frequency and spin. It should be noted that δvi is not
diagonal in the frequency representation because it contains the Fourier transform
of the time dependent potential.

(δvi)ilσjmσ ′ = δviσ (iωl, iωm)δij δσσ ′, (3.141)

δviσ (iωl, iωm) = viσ (iωl − iωm)−Σiσ (iωl)δlm. (3.142)

The Fourier transform of the dynamical CPA equation (3.122) is given by

〈G(i)
iσ (iωl, iωl)〉 = Fiσ (iωl), (3.143)

G
(i)
iσ (iωl, iωl)=

[(
F−1
i − δvi

)−1]
lσ lσ

. (3.144)

The stationary condition (3.124), which is equivalent to the dynamical CPA equa-
tion, is expressed in the frequency representation as follows.

δFCPA

δΣiσ (iωl)
= 0. (3.145)
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The dynamical CPA is also obtained from the Dyson equation (3.43) for a time-
dependent Green function by making use of the multiple scattering theory (see Ap-
pendix B). The dynamical CPA completely takes into account the single-site spin
and charge fluctuations. Thus the theory is the best single-site approximation. As
will be shown in Sect. 3.6, the dynamical CPA is equivalent to the many-body CPA
in the disordered alloys [61], the dynamical mean-field theory (DMFT) in the metal–
insulator transition [62, 63], and the projection operator method CPA in the excita-
tion problem [64].

When we approximate the dynamical potential with the static one: viσ (iωl −
iωm) ≈ viσ (0)δlm, we can perform the integration with respect to the dynami-
cal variables {ξ(iωl), η(iωl)}(l �= 0) using the Gaussian integrals. The free energy
(3.137) then reduces to

FCPA = F̃ [Σ] − β−1
∑
i

ln
∫ √

βU

4π
dξi

√
βU

4π
dηi e−βEi(ξi ,ηi ), (3.146)

and

Ei(ξi, ηi)=−β−1 tr ln
(
1− δvi(0)Fi

)+ 1

4
U
(
ξ2
i + η2

i

)
. (3.147)

Here (δvi(0))lσmσ ′ = (viσ (0)−Σσ (iωl))δlmδσσ ′ . ξi = ξi(0) and ηi = ηi(0) are the
static field variables defined by (3.56).

When all the sites are equivalent to each other one can omit the subscript i.
Making use of the saddle-point approximation to the charge field (∂Ei/∂ηi = 0),
we obtain the free energy per atom in the static approximation as follows.

FCPA = F̃ [Σ] − β−1 ln
∫ √

βU

4π
dξ e−βEi(ξ). (3.148)

Here FCPA (F̃ ) now denotes the free energy (coherent free energy) per site, and the
static energy potential is expressed as follows.

Ei(ξ)=−β−1
∑
lσ

ln
(
1− δvσ (iωl, ξ)Fσ (iωl)

)+ 1

4
U
(
ξ2 − ζ 2(ξ)

)
. (3.149)

Here δvσ (iωl, ξ) is defined by (3.79), and

ζ(ξ)= 1

β

∑
lσ

G
(i)
iσ (iωl, ξ). (3.150)

The static Green functionG(i)
iσ (z, ξ) is defined by (3.86). In the same approximation,

the dynamical CPA equation (3.143) reduces to the static one as

〈G(i)
iσ (iωl, ξ)〉 = Fiσ (iωl). (3.151)
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The frequency sums in (3.149) and (3.150) can be transformed into the integrals
on the real axis of the complex z plane, so that one can verify that the free energy
(3.148), the energy potential (3.149), the self-consistent equation for the charge field
(3.150) and the CPA equation (3.151) are identical with those obtained in the single-
site spin fluctuation theory (SSF) presented in the last section (see (3.82), (3.78),
(3.91), and (3.85)). That is, the dynamical CPA reduces to the SSF when the static
approximation is made. The derivation is given in Appendix C.

3.5 Dynamical CPA with Harmonic Approximation

We have seen in Sect. 3.3 that the single-site theory based on the static approxi-
mation (i.e., SSF) describes well the high temperature properties of metallic mag-
netism. Thus it is reasonable to take into account the dynamical corrections starting
from the static limit, i.e., from the high temperature limit. In this section we present
such an approach based on the harmonic approximation [54].

We assume that all the sites are equivalent, and express the free energy (3.137)
as follows.

FCPA = F̃ − β−1 ln
∫ √

βU

4π
dξ e−βEeff(ξ). (3.152)

Here we omitted the site indices for simplicity. FCPA (F̃ ) denotes the free energy
(coherent part of the free energy) per site. The effective potential Eeff(ξ) projected
onto the static field variable ξ is defined by

e−βEeff(ξ) =
∫ [ ∞∏

l=1

βU

2π
d2ξ(iωl)

βU

2π
d2η(iωl)

]
e−βE[ξ,η]. (3.153)

Note that we have taken the saddle point η∗ for static charge field η = η(0) for
simplicity.

In order to start from the static limit, we divide the dynamical potential (3.136)
into the static part v0 and the dynamical part ṽ as v = v0 + ṽ, where

(v0)lσmσ ′ ≡ viσ (0)δlmδσσ ′, (3.154)

(ṽ)lσmσ ′ ≡
(
viσ (iωl − iωm)− viσ (0)δlm

)
δσσ ′ . (3.155)

Accordingly, the first term in the single-site energy functional (3.140) can be divided
into two parts as follows.

tr ln(1− δvF )= tr ln(1− δv0F)+ tr ln(1− ṽg̃). (3.156)

Here δv0 = v0 −Σ , and the static Green function g̃ is defined by

(g̃)lσmσ ′ ≡
[(
g−1 − v0

)−1]
lσmσ ′ = g̃σ (iωl)δlmδσσ ′, (3.157)
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g̃σ (iωl)=
(
Fσ (iωl)

−1 − δvσ (iωl, ξ)
)−1

. (3.158)

Here δvσ (iωl, ξ) is defined by (3.79). Note that the diagonal part g̃σ (iωl) is identical
with (3.86) with z= iωl .

Substituting the single-site energy functional (3.140) with the relation (3.156)
into (3.153), we can divide the effective potential into two parts as follows.

Eeff(ξ)=Est(ξ)+Edyn(ξ). (3.159)

The first term Est(ξ) is the static energy potential given by (3.149). The second term
is the dynamical contribution Edyn(ξ) given by

e−βEdyn(ξ) =
∫ [ ∞∏

l=1

βU

2π
d2ξ(iωl)

βU

2π
d2η(iωl)

]
D↑D↓

× e

−βU
2

∞∑
l=1

(|ξ(iωl)|2 + η(iωl)|2)
. (3.160)

Here we used the relation tr ln(1 − ṽg̃) = ln det(1 − ṽg̃). The determinant Dσ is
defined by

Dσ = det
[
δlm − ṽσ (iωl − iωm)g̃σ (iωm)

]
. (3.161)

The r.h.s. of (3.160) is a Gaussian average of D↑D↓ with respect to the dynamical
variables {ξ(iωl), η(iωl)}. Thus we express the dynamical contribution as

e−βEdyn(ξ) =D↑D↓. (3.162)

Here the upper bar denotes the Gaussian average.
It should be noted that the dynamical CPA equation (3.143) is obtained from the

stationary condition (3.145) and the free energy (3.152). Making use of the station-
ary condition, we find that the dynamical Green function (3.144) is obtained from
the dynamical part of the effective potential as follows.

〈G(i)
σ (iωl, iωl)〉 =

〈
g̃σ (iωl)− β δEdyn(ξ)

κσ (iωl)δΣσ (iωl)

〉
eff
. (3.163)

Here κσ (iωl) = 1 − Fσ (iωl)
−2δFσ (iωl)/δΣσ (iωl) and the average 〈∼〉eff at the

r.h.s. denotes a classical average with respect to the effective potential Eeff(ξ).
In this reformulation of the dynamical CPA with the use of the effective potential,

the problem reduces to how to obtain the dynamical contribution Edyn(ξ) in (3.162)
and (3.163). In order to calculate the dynamical contribution, we expand here the
determinant with respect to the frequency modes of the dynamical potential ṽσ (iων)
as follows.

Dσ = 1+
∑
ν

(Dνσ − 1)+
∑
(ν,ν′)

(Dνν′σ −Dνσ −Dν′σ + 1)+ · · · , (3.164)
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Dνσ = det
[
δlm −

(
ṽσ (iων)δl−m,ν + ṽσ (iω−ν)δl−m,−ν

)
g̃σ (iωm)

]
, (3.165)

Dνν′σ = det
[
δlm −

(
ṽσ (iων)δl−m,ν + ṽσ (iω−ν)δl−m,−ν

)
g̃σ (iωm)

− (
ṽσ (iων′)δl−m,ν′ + ṽσ (iω−ν′)δl−m,−ν′

)
g̃σ (iωm)

]
. (3.166)

The first term in (3.164) corresponds to the zeroth approximation (i.e. the static
approximation), the second term expresses the independent scattering due to each
dynamical potential vσ (iων), and the higher order terms express the mode-mode
couplings. We neglect here the mode-mode coupling terms and only take into ac-
count the independent frequency terms. This is known as the harmonic approxima-
tion (HA) [58, 59].

The approximation is exact up to the second order of U in the weak Coulomb
interaction region. Numerical studies also indicate that it describes well the strong
Coulomb interaction limit [60]. The approximation is independent of the Coulomb
interaction strength, so that the HA is considered to be suitable for description of
the intermediate region.

The determinant Dνσ can be expanded with respect to the dynamical potential as

Dνσ =
∞∑
n=0

1

n!
(
4βṽσ (ν)ṽσ (−ν)

)n( i

8πν

)n
B(n)νσ . (3.167)

Here we adopted a simplified notation ṽσ (ν) = vσ (iων). B
(n)
νσ consists of a linear

combination of 2n products of the static Green function (see Appendix D).
Because Dνσ = 1 and DνσDν′σ ′ = DνσDν′σ ′ = 1 for ν′ �= ν, we obtain from

(3.162) the dynamical part of effective potential in the harmonic approximation as

Edyn(ξ, η)=− 1

β
ln

[
1+

∞∑
ν=1

(Dν↑Dν↓ − 1)

]
. (3.168)

Here Dν↑Dν↓ is calculated by using the Gaussian integrals as follows.

Dν↑Dν↓ =
∞∑
l=0

U2l
(

i

2πν

)2l

B
(l)
ν↑B

(l)
ν↓. (3.169)

Substituting (3.168) into (3.163), we obtain the impurity Green function as

〈
G(i)
σ (iωl, iωl)

〉=
〈
g̃σ (iωl)+

∞∑
ν=1

δ(Dν↑Dν↓)
κσ (iωl)δΣσ (iωl)

1+
∞∑
ν=1

(Dν↑Dν↓ − 1)

〉

eff

. (3.170)

In the actual calculations of Dν↑Dν↓, we make use of the exact expression up
to 2l-th order. For higher orders, we adopt an asymptotic approximation, which is



3.5 Dynamical CPA with Harmonic Approximation 93

exact in the high frequency limit [54].

Dν↑Dν↓ =
l∑

n=0

U2n
(

i

2πν

)2n

B
(n)
ν↑ B

(n)
ν↓ +

∞∑
n=l+1

U2n
(

i

2πν

)2n

B̃
(n)
ν↑ B̃

(n)
ν↓ . (3.171)

Here B̃(n)νσ denotes the coefficient B(n)νσ in the asymptotic approximation.
The local charge and moment in the harmonic approximation are derived from

the free energy (3.152) as

〈n〉 = 〈
ζ(ξ)

〉
eff, (3.172)

〈m〉 = 〈ξ 〉eff. (3.173)

The above expressions are consistent with the general formula, (3.54) and (3.55).
Note that ζ(ξ), the electron number under static exchange field ξ , is not defined by
(3.150) now. Instead it is given by the impurity Green function for the dynamical
potential (3.170) as

ζ(ξ)= 1

β

∑
lσ

G(i)
σ (iωl, iωl). (3.174)

The expression of the amplitude of local moment is obtained with use of the relation
〈ni↑ni↓〉 = ∂FCPA/∂U .

〈
m2〉= 〈n〉 − 1

2

〈
ζ(ξ)2

〉
eff +

1

2

(〈
ξ2〉

eff −
2

βU

)
− 2

〈[
∂Edyn(ξ)

∂U

]
v

〉
eff
. (3.175)

Here [∼]v means to take the derivative fixing the static potential vσ (0).
The harmonic approximation (HA) takes into account the dynamical contribu-

tions successively starting from the high temperature limit (i.e., the static limit). Fig-
ure 3.7 shows examples of effective potentials in the paramagnetic ‘bcc Fe’, which
are calculated by means of the dynamical CPA + HA and the same model DOS
as in the static case (see Fig. 3.4). The potential curve in the static approximation
shows a double-minimum structure, and hardly depends on the temperature. The
dynamical corrections are small at high temperatures (see the dot-dashed curve),
so that the effective potential is close to the static one. The dynamical corrections
increase with decreasing temperature, and become significant near the Curie tem-
perature TC as shown by dotted curve, so that the effective potential shows a single
minimum at ξ = 0, indicating a disappearance of ‘local moment’. The same fea-
ture is obtained below TC. This indicates that the thermodynamics of the metallic
ferromagnets in the intermediate region of the Coulomb interaction are dominated
by the quantum fluctuations rather than the thermal spin fluctuations, though the
orbital degeneracy plays an important role in the real system as will be discussed
in Sect. 3.7.

The dynamical effects strongly influence the magnetic properties. Figure 3.8
shows the result of model calculations for temperature variation of magnetic mo-
ments and susceptibility for ‘bcc Fe’. Both the static and dynamical CPA lead to the
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Fig. 3.7 Effective potentials of the paramagnetic ‘bcc Fe’ calculated with use of the dynamical
CPA+ HA and the model DOS given in Fig. 3.4 [54]. W denotes the d band width for noninteract-
ing system. The static contribution (dotted curve) has double minima. The dynamical correction is
small at T/TC = 24 (dot-dashed curve), while it is significant at T/TC = 2.4 (thin dotted curve),
so that the total effective potential (solid curve) shows a single minimum structure

Fig. 3.8 Magnetization vs. temperature curves, inverse susceptibility curves, and the amplitude of
local moment of ‘bcc Fe’ calculated with use of the model DOS given in Fig. 3.4 [54]. Solid curves
(dotted curves): the results obtained by the dynamical CPA+HA (the static approximation)

Curie–Weiss susceptibility. The Curie temperature, however, is reduced by a factor
of two due to dynamical spin and charge fluctuations.
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3.6 Dynamical CPA and Dynamical Mean-Field Theory

The dynamical CPA presented in Sects. 3.4 and 3.5 is equivalent to some single-
site theories of electron correlations. We clarify in this section the basic ideas of
these theories, i.e., the many-body CPA (MB-CPA) in the disordered alloys [61],
the dynamical mean-field theory (DMFT) in the metal–insulator transition [62, 63],
and the projection operator method CPA (PM-CPA) in the excitation problem [64],
and verify that the dynamical CPA is equivalent to these theories.

3.6.1 The Many-Body CPA and Its Equivalence to the Dynamical
CPA

The many-body CPA (MB-CPA) is an extension of the CPA in disordered alloys to
the correlated electron system. The theory has been applied to the Ni-based alloys to
elucidate the electron-correlation effects on magnetism [61]. To clarify the relation
of the MB-CPA to the dynamical CPA, we consider here a pure metal and adopt the
Hubbard model with an intra-atomic Coulomb interaction. The theory starts from
the temperature Green function in the interaction representation as

Giσ
(
τ − τ ′)=−Z−1 Tr

[
T aiσ (τ )a

†
iσ

(
τ ′
)
e−

∫ β
0 H(τ ′′) dτ ′′]. (3.176)

Here Z denotes the partition function of the system.
The Hamiltonian H(τ) in the interaction representation is approximated by an

effective Hamiltonian H̃ (τ ), i.e., (3.118) with the time-dependent coherent potential
Σiσ (τ − τ ′):

H̃ (τ )=H0(τ )+
∑
iσ

∫ β

0
dτ ′ a†

iσ (τ )Σiσ

(
τ − τ ′)aiσ (τ ′). (3.177)

Note that we defined here the noninteracting Hamiltonian as H0 =∑
iσ ε

0
σ niσ +∑

ijσ tij a
†
iσ ajσ , and ε0

σ = ε0 − μ, so that the interaction is given by HI =∑
i Uni↑ni↓. The diagonal Green function Fiσ (τ − τ ′) for H̃ (τ ) is given as fol-

lows according to the Dyson equation.

Fiσ
(
τ − τ ′)= [(

g−1 −Σ)−1]
iτσ iτ ′σ . (3.178)

Here gijσ (τ − τ ′) is the Green function for the noninteracting Hamiltonian H0.
To find the best coherent potential, we consider an impurity Hamiltonian embed-

ded in the effective medium as follows.

H(i)(τ )= H̃ (τ )−
∫ β

0
dτ ′

∑
σ

a
†
iσ (τ )Σiσ

(
τ − τ ′)aiσ (τ ′)+Uni↑(τ )ni↓(τ ).

(3.179)
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Fig. 3.9 Schematic picture
showing the many-body CPA.
The left-hand side shows an
impurity with a real Coulomb
interaction Ui on site i and
the surrounding effective
potential Σσ . The right-hand
side shows a uniform system
with the effective potential
only

Here the coherent potential on site i has been replaced by the real Coulomb inter-
action Uni↑(τ )ni↓(τ ). Note that (3.179) corresponds to (3.117) in the dynamical
CPA, but the time-dependent random potential viσ (τ ) has been replaced by the real
interaction HI(τ ) in the MB-CPA (see Fig. 3.9). The on-site Green function for the
impurity system is given by

G (i)
iσ

(
τ − τ ′)=−Z−1

i Tr
[
T aiσ (τ )a

†
iσ

(
τ ′
)
e−

∫ β
0 H(i)(τ ′′) dτ ′′]. (3.180)

Here Zi denotes the partition function of the system.
The coherent potential in the many-body CPA is determined so that the diagonal

impurity Green function agrees with the coherent Green function (see Fig. 3.9).

G (i)
iσ

(
τ − τ ′)= Fiσ (τ − τ ′). (3.181)

Note that the impurity Green function G (i)
iσ (τ − τ ′) has to be obtained separately by

using one of the many-body techniques.
In order to clarify the equivalence of the MB-CPA to the dynamical CPA, we

discretize the integral of H(i)(τ ′′) in (3.180) as in (3.32), and apply the Hubbard–
Stratonovich transformation (3.24) directly to the impurity Green function (3.180).
We obtain then the following relation.

G (i)
iσ

(
τ − τ ′)= 〈G(i)

iσ (ξ, η, τ, τ
′)〉. (3.182)

HereG(i)
iσ (ξ, η, τ, τ

′) is identical with the diagonal part of the time-dependent Green
function (3.119) in the dynamical CPA. The above relation indicates that the CPA
equation (3.181) in the many-body CPA is identical with the CPA equation (3.122)
in the dynamical CPA. Thus the many-body CPA is equivalent to the dynamical
CPA.

3.6.2 The DMFT and Its Equivalence to the Dynamical CPA

The dynamical mean field theory (DMFT) was developed to clarify the metal–
insulator transition in infinite dimensions, and has extensively been applied to vari-
ous problems in strongly correlated electron systems [62, 63]. It is equivalent to the
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MB-CPA thus to the dynamical CPA as well. In order to introduce the DMFT and
to prove its equivalence to the MB-CPA, we employ the temperature Green function
which is expressed by the path integral method as follows [65].

Giσ
(
τ − τ ′)=−Z−1

∫ [∏
jσ

Da∗jσDajσ

]
e−Saiσ (τ )a∗iσ (τ ), (3.183)

S =
∫ β

0
dτ

[∑
iσ

a∗iσ (τ )
(
∂

∂τ
−μ

)
aiσ (τ )+H

({a∗}{a})
]
. (3.184)

Here Z denotes the partition function to the action S. The Hamiltonian operator
H({a∗}{a}) in the action S is defined by the same form as the original Hamiltonian
in the interaction representation, though a∗iσ and aiσ are now the Grassmann vari-
ables being conjugate to the creation and annihilation operators on the same site.
Da∗iσDaiσ (= ∏N ′

n=1 da
∗
iσ (τn)daiσ (τn)) denotes the path integrals for these vari-

ables.
It is well-known that the Feynman diagram rule obtained in the path integral

formulation is exactly the same as in the usual Green function technique [65], so
that we can derive the same Dyson equation as follows.

Gijσ
(
τ, τ ′

)= gijσ (τ − τ ′)

+
∫ β

0
dτ1

∫ β

0
dτ2

∑
kl

gikσ (τ − τ1)Σklσ (τ1 − τ2)Gljσ
(
τ2, τ

′).
(3.185)

Here gijσ (τ − τ ′) is the Green function for the noninteracting Hamiltonian H0.
Σijσ (τ − τ ′) denotes the self-energy which should be obtained from the Feynman
diagrams.

Furthermore, we note that the same Dyson equation (3.185) is also obtained from
the following effective action according to the diagrammatic technique.

S′ =
∫ β

0
dτ

[∑
iσ

a∗iσ (τ )
(
∂

∂τ
−μ

)
aiσ (τ )+H ′({a∗}{a})

]
, (3.186)

H ′({a∗}{a})=H0
({a∗(τ )}{a(τ)})

+
∑
ijσ

∫ β

0
dτ ′ a∗iσ (τ )Σijσ

(
τ − τ ′)ajσ (τ ′). (3.187)

The DMFT has been developed in infinite dimensions [62]. There, the hopping
integrals |tij | on the hyper-cubic lattice for example are scaled as |t |/√2d , so that
the band width becomes finite for any dimensions d . Accordingly, the off-diagonal
Green function in the noninteracting system becomes of order of 1/

√
2d . Since the

Feynman diagrams to the off-diagonal self-energy have at least three electron in-
ternal lines between the different sites, the contribution from all the off-diagonal
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self-energy diagrams to the Dyson equation becomes of order of 2d(1/
√

2d)3 =
1/
√

2d . Therefore the contribution from the off-diagonal self-energy Σijσ (iωl)

(i �= j) vanishes in the limit d =∞ [66].
The DMFT determines the site-diagonal self-energy (or the momentum indepen-

dent self-energy) Σσ (iωl) by using the following diagonal Green function in the
path integral representation.

G (i)
iσ

(
τ − τ ′)=−Z(i)−1

∫ [∏
σ

Da∗iσDaiσ

]
e−Si aiσ (τ )a∗iσ

(
τ ′
)
, (3.188)

Si =−
∫ β

0
dτ

∫ β

0
dτ ′

∑
σ

a∗iσ (τ )
(
F (i)−1)

σ

(
τ − τ ′)aiσ (τ ′)

+
∫ β

0
dτ Uni↑(τ )ni↓(τ ). (3.189)

Here niσ (τ ) = a∗iσ (τ )aiσ (τ ). Si is an impurity action with an effective field and
the local Coulomb interaction. Z(i) denotes the partition function to the action Si .
Da∗iσDaiσ denotes the path integrals for these variables. F (i)

σ (τ − τ ′) in (3.189)
is called the Weiss-field function. According to the Dyson equation of the Green
function (3.188), it is given in the Fourier representation as follows.

F (i)
σ (iωl)

−1 =Σσ (iωl)+ G (i)
iσ (iωl)

−1. (3.190)

Since the site-diagonal Green function G (i)
iσ (iωl) should be equal to the average

of the Green function of the momentum representation (1/(iωl − ε0
σ −Σσ (iωl)−

εk)), we have the relation,

G (i)
iσ (iωl)=

∫
ρ(ε) dε

iωl − ε0
σ −Σσ (iωl)− ε , (3.191)

where ρ(ε) is the one-electron density of states for tij . This means that

iωl − ε0
σ −Σσ (iωl)=R

[
G (i)
σ (iωl)

]
. (3.192)

Here R denotes the reciprocal function to the Hilbert transform (i.e., x =R[y] when
y = ∫

dε ρ(ε)/(x − ε)). Eliminating Σσ (iωl) from (3.190) and (3.192), we obtain
the expression of the Weiss function by means of the impurity Green function as

F (i)
σ (iωl)

−1 = iωl − ε0
σ + G (i)

σ (iωl)
−1 −R[G (i)

σ (iωl)
]
. (3.193)

Equations (3.188), (3.189), and (3.193) form the self-consistent equations in the
DMFT. Note that the Green function (3.188) for an impurity action has to be solved
by using one of the many-body theories (e.g., the quantum Monte-Carlo method
[62] and the numerical renormalization group method [67]).
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In order to clarify the relation between the DMFT and the MB-CPA, we note that
the Green function (3.183) and the Hamiltonian H({a∗}{a}) in the action S, i.e.,
(3.184), have the same form as those in the interaction representation in the Fock
space (see (3.176)). Thus we can construct the MB-CPA using the path integral
method taking the same steps as in the original MB-CPA. To realize it, we approx-
imate the self-energy Σijσ (τ − τ ′) in (3.187) by the diagonal Σiσ (τ − τ ′), and
consider the following coherent action with the effective Hamiltonian H̃ ({a∗}{a}).

S̃ =
∫ β

0
dτ

[∑
iσ

a∗iσ (τ )
(
∂

∂τ
−μ

)
aiσ (τ )+ H̃

({a∗}{a})
]
, (3.194)

H̃
({a∗}{a})=H0

({a∗(τ )}{a(τ)})+∑
iσ

∫ β

0
dτ ′ a∗iσ (τ )Σiσ

(
τ − τ ′)aiσ (τ ′).

(3.195)

Note that the Hamiltonian H̃ ({a∗}{a}) is the same as (3.177) in which the cre-
ation and the annihilation operators have been replaced by their conjugate variables
a∗iσ (τ ) and aiσ (τ ).

The action S̃ describes the r.h.s. of Fig. 3.9, and its Green function is given by

Fiσ
(
τ − τ ′)=−Z̃−1

∫ [∏
jσ

Da∗jσDajσ

]
e−S̃aiσ (τ )a∗iσ

(
τ ′
)
, (3.196)

where Z̃ is the partition function to action S̃. The Green function Fiσ (τ − τ ′) is
identical to the one obtained from the Hamiltonian (3.177) because both satisfy the
same Dyson equation (3.178).

The impurity action describing the l.h.s. of Fig. 3.9 is expressed as

S(i) =
∫ β

0
dτ

[∑
iσ

a∗iσ (τ )
(
∂

∂τ
−μ

)
aiσ (τ )+H(i)

({a∗}{a})
]
, (3.197)

H(i)
({a∗}{a})= H̃ ({a∗}{a})−

∫ β

0
dτ ′

∑
σ

a∗iσ (τ )Σiσ

(
τ − τ ′)aiσ (τ ′)

+Uia∗i↑(τ )a∗i↓(τ )ai↓(τ )ai↑(τ ). (3.198)

The impurity Green function of effective action S(i) is given by

G (i)
iσ

(
τ − τ ′)=−Z(i)−1

∫ [∏
jσ

Da∗jσDajσ

]
e−S(i)aiσ (τ )a∗iσ

(
τ ′
)
, (3.199)
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where Z(i) is the partition function to action S(i). The impurity Green function sat-
isfies the following Dyson equation.

G (i)
iσ

(
τ − τ ′)= F (i)

iσ

(
τ − τ ′)

+
∫ β

0
dτ1

∫ β

0
dτ2F

(i)
iσ (τ − τ1)Λiσ (τ1 − τ2)G

(i)
iσ

(
τ2 − τ ′

)
.

(3.200)

Here Λiσ (τ − τ ′) is the self-energy for the impurity Hamiltonian (3.198).
The cavity Green function F (i)

iσ (τ − τ ′) in (3.200) is defined by

F
(i)
iσ

(
τ − τ ′)=−Z̃(i)−1

∫ [∏
jσ

Da∗jσDajσ

]
e−S̃(i)aiσ (τ )a∗iσ

(
τ ′
)
, (3.201)

S̃(i) =
∫ β

0
dτ

[∑
iσ

a∗iσ (τ )
(
∂

∂τ
−μ

)
aiσ (τ )+ H̃ (i)

({a∗}{a})
]
. (3.202)

Here Z̃(i) is the partition function for action S̃(i), and H̃ (i)({a∗}{a}) is the cavity
Hamiltonian defined by the first two terms at the r.h.s. of (3.198). The Green function
satisfies the Dyson equation.

F
(i)
iσ

(
τ − τ ′)= Fiσ (τ − τ ′)

−
∫ β

0
dτ1

∫ β

0
dτ2Fiσ (τ − τ1)Σiσ (τ1 − τ2)F

(i)
iσ

(
τ2 − τ ′

)
.

(3.203)

In the Fourier representation it is expressed as

F
(i)
iσ (iωl)

−1 = Fiσ (iωl)−1 +Σiσ (iωl). (3.204)

The CPA equation corresponding to Fig. 3.9 is then given by

G (i)
iσ

(
τ − τ ′)= Fiσ (τ − τ ′). (3.205)

The impurity Green function in (3.199) is identical with that of the original MB-
CPA, i.e., (3.180), because the path integral method to the Green function leads to
the same Feynman diagram scheme as in the usual Green function method, and the
same unperturbed Green function and the same Coulomb matrix elements appear
there. This means that the CPA equation (3.205) derived by the path integral formu-
lation is identical with the CPA equation (3.181) in the MB-CPA.

Let us rewrite the self-consistent equations for the MB-CPA based on the path
integral method. The impurity Green function G (i)

iσ (τ −τ ′) given by (3.199) can also
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be expressed by an effective local action Si as follows.

G (i)
iσ

(
τ − τ ′)=−Z(i)−1

∫ [∏
σ

Da∗iσDaiσ

]
e−Si aiσ (τ )a∗iσ ′

(
τ ′
)
, (3.206)

Z(i) =
∫ [∏

σ

Da∗iσDaiσ

]
e−Si . (3.207)

Here Si is defined by

e−Si =
∫ [∏

j �=i

∏
σ

Da∗jσDajσ

]
e−S(i) . (3.208)

Alternatively,

Si = S̃(i) −
∫ β

0
dτ ′

∑
σ

a∗iσ (τ )Σiσ

(
τ − τ ′)aiσ (τ ′)+

∫ β

0
dτ Uini↑(τ )ni↓(τ ),

(3.209)

e−S̃(i) =
∫ [∏

j �=i

∏
σ

Da∗jσDajσ

]
e−S̃ . (3.210)

The path integral at the r.h.s. of (3.210) can be performed exactly by using the
Gaussian formula after the Fourier transform of the Grassmann variables, so that we
obtain an explicit form of the local effective action Si as

Si =− 1

β

∑
lσ

a∗iσ (iωl)
[
Fiσ (iωl)

−1 +Σiσ (iωl)
]
aiσ (iωl)

+
∫ β

0
dτ Uini↑(τ )ni↓(τ ). (3.211)

Here we have omitted the constant term, which is canceled by the same factor in
Z(i) in (3.206).

Using the Dyson equation (3.204), the action (3.211) reduces to the following
form.

Si =−
∫ β

0
dτ

∫ β

0
dτ ′

∑
σ

a∗iσ (τ )
(
F
(i)−1
i

)
σσ

(
τ − τ ′)aiσ (τ ′)

+
∫ β

0
dτ Uini↑(τ )ni↓(τ ). (3.212)

Here (F (i)−1
i )σσ (τ − τ ′) is defined by

(
F
(i)−1
i

)
σσ

(
τ − τ ′)= 1

β

∑
l

F
(i)
iσ (iωl)

−1e−iωl(τ−τ ′). (3.213)
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When the coherent potential is site-independent and all the sites are crystallo-
graphically equivalent, the frequency representation of the CPA equation (3.205)
can be simplified as

G (i)
σ (iωl)= Fσ (iωl). (3.214)

Here the subscript i has been omitted for simplicity. The r.h.s. of (3.214) is given by

Fσ (iωl)=
∫

ρ(ε) dε

iωl − ε0
σ −Σσ (iωl)− ε . (3.215)

Introducing the reciprocal function R[F ] of the Hilbert transform, we can rewrite
(3.215) as

Σσ (iωl)= iωl − ε0
σ −R

[
G (i)
σ (iωl)

]
. (3.216)

From (3.204), (3.214), and (3.216), we can express the cavity Green function by
means of the impurity Green function G (i)

σ (iωl) as follows.

F
(i)
iσ (iωl)

−1 = iωl − ε0
σ + G (i)

σ (iωl)
−1 −R[G (i)

σ (iωl)
]
. (3.217)

Equations (3.206), (3.212), and (3.217) form the self-consistent equations in the
MB-CPA, and are identical with (3.188), (3.189), and (3.193) in the DMFT. Thus
we have verified the equivalence between the DMFT and the MB-CPA.

3.6.3 The Projection Operator Method CPA and Summary
of Relations

The MB-CPA and DMFT are based on the temperature Green function. These ap-
proaches often require the numerical analytic continuation on the complex energy
plane for the calculation of the single-particle excitation spectra. The projection op-
erator method CPA (PM-CPA) [64] is a single-site theory based on the retarded
Green function, and is equivalent to the theories mentioned above.

The retarded Green function GR
iσjσ ′(t − t ′) is defined by

GR
iσjσ ′

(
t − t ′)=−iθ(t − t ′)〈[aHiσ (t), a

†
Hjσ ′

(
t ′
)]
+
〉
. (3.218)

Here θ(t) is the step function, a†
Hiσ (t) (aHiσ (t)) is the creation (annihilation) oper-

ator in the Heisenberg representation which is defined by a†
Hiσ (t) = eiH ta†

iσ e−iH t
(aHiσ (t)= eiH taiσ e−iH t ), and [ , ]+ denotes the anticomutator between the Fermion
operators. The average 〈∼〉 is taken over the grand canonical ensemble. Note that
the Heisenberg representation of operator A is expressed by means of the Liou-
ville operator L as A(t)= exp(iLt)A. The Liouville operator L is a super-operator
defined by LA= [H,A]−, where [ , ]− is the commutator between operators.
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The PM-CPA starts from the Fourier transform of the retarded Green function
with the projection technique [68]. By making use of a Laplace transform, the
Fourier transform of (3.218) is expressed by an inner-product in the operator space
as follows.

GR
ijσ (z)=

(
a

†
iσ

∣∣∣∣ 1

z−La
†
jσ

)
. (3.219)

Here z = ω + iδ with δ being an infinitesimal positive number. The inner product
between the operators A and B is defined by (A|B)= 〈[A+,B]+〉.

A basic idea of the PM-CPA is to approximate the Liouville operator by means of
an energy dependent effective Liouville operator L̃(z). It is defined for an operator
A as

L̃(z)A= [
H̃ (z),A

]
−, (3.220)

H̃ (z)=H0 +
∑
iσ

Σσ (z)niσ . (3.221)

Here Σσ (z) is a coherent potential or a single-site self-energy.
The coherent potential is determined as follows. We introduce a Liouville opera-

tor L(i)(z) for an impurity system such that

L(i)(z)A= [
H(i)(z),A

]
−, (3.222)

H(i)(z)= H̃ (z)−
∑
σ

Σσ (z)niσ +Uni↑ni↓. (3.223)

According to the equation of motion we obtain the diagonal Green function for the
Liouville operator L(i)(z) as

G (i)
σ (z)= (

Fσ (z)
−1 −Λ(i)

σ (z)+Σσ (z)
)−1

. (3.224)

Here Fσ (z) is the diagonal coherent Green function defined by (3.215) in which iωl
has been replaced by z.Λ(i)

σ (z) is the self-energy for the impurity system, consisting

of the Hartree–Fock potential and the reduced memory function G
(i)

σ (z).

Λ(i)
σ (z)=U 〈ni−σ 〉 +U2G

(i)

σ (z), (3.225)

G
(i)

σ (z)=
(
A

†
iσ

∣∣ (z−L(i)(z))−1
A

†
iσ

)
. (3.226)

Note that the operator space of the memory function has been expanded from {|a†
jσ )}

to {|A†
jσ ) = |a†

jσ δnj−σ )}, where δnj−σ = nj−σ − 〈nj−σ 〉. The Liouville operator

L
(i)
(z) is defined by L

(i)
(z)=QL(i)(z)Q with use of the projection operator Q=

1−P and P =∑
j |a†

jσ )(a
†
jσ |. L

(i)
(z) operates on the operator space orthogonal to

the original space {|a†
jσ )}.
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Fig. 3.10 Schematic diagram
showing the equivalence
among the many-body CPA
(MB-CPA), the dynamical
CPA (Dyn. CPA), the
dynamical mean-field theory
(DMFT), and the projection
operator method CPA
(PM-CPA)

The coherent potential or the energy dependent Liouville operator is determined
from the CPA equation (see Fig. 3.9)

G (i)
σ (z)= Fσ (z), (3.227)

or equivalently Λ
(i)
σ (z) = Σσ (z). The CPA equation (3.227) in the PM-CPA has

the same form as the one obtained from an analytic continuation of the tempera-
ture Green function in the MB-CPA (see (3.214)). Thus it is essentially the same
as the MB-CPA when a suitable single-site approximation has been made for the
static averages in the self-energy (3.225). (Note that the projection method treats
the dynamics and the static averages independently.) The PM-CPA is extended to
the nonlocal case [69].

Figure 3.10 summarizes the relation among various single-site theories. The
dynamical CPA, the MB-CPA in disordered alloys, and the DMFT in the metal–
insulator transition are equivalent. The single-site spin fluctuation theory (SSF) [45–
49] is obtained from the dynamical CPA as a high-temperature approximation, and
the variational approach (VA) [52], which makes use of an effective potential ob-
tained by a variational energy at low temperatures, is an adiabatic approximation
to the dynamical CPA. The three equivalent theories are based on the temperature
Green function. The PM-CPA in the excitation problem is based on the retarded
Green function, and also equivalent to them. These relations imply that the single-
site theories developed in the magnetism and those developed in the strongly corre-
lated electron system are unified.

3.7 First-Principles Dynamical CPA and Metallic Magnetism

The dynamical CPA theory presented in Sects. 3.4 and 3.5 is based on the single-
band Hubbard model. We have to take into account the realistic band structure and
associated inter-orbital Coulomb interactions in order to compare theoretical results
with experimental data and to discuss quantitative aspects of the theory. In the case
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of transition metals and their alloys, electrons on the five d orbitals are responsi-
ble for the magnetism. The orbital degeneracy increases the degree of freedom on
electron motion and causes different types of Coulomb interactions. Especially, the
intraatomic exchange interaction parallels the spins on an atom and tends to form
an atomic magnetic moment as well as associated magnetic entropy. The transverse
spin fluctuations as shown in Fig. 3.1 are also realized. We introduce in this section
a realistic model Hamiltonian obtained by the first-principles local density approx-
imation (LDA) band theory [70], and outline the dynamical CPA applied to the
realistic Hamiltonian [71, 72]. We will also discuss the ferromagnetism of Fe, Co,
and Ni at finite temperatures on the basis of the realistic theory.

We apply here the following tight-binding model Hamiltonian.

H =H0 +HI. (3.228)

The Hamiltonian for noninteracting system H0 is given by

H0 =
∑
iLσ

ε0
iLn̂iLσ +

∑
iLjL′σ

t0iLjL′a
†
iLσ ajL′σ . (3.229)

Here ε0
iL is the atomic level on site i and orbital L(= lm) for the noninteracting

system. t0
iLjL′ is the transfer integral between iL and jL′. a†

iLσ (aiLσ ) is the creation
(annihilation) operator for an electron with orbitalL and spin σ on site i, and n̂iLσ =
a

†
iLσ aiLσ is a charge density operator. We added the hat sign on the charge and spin

density operators in this section in order to distinguish these operators with those in
the density functional theory (DFT).

In the transition metal system, for example, the 3d electrons form narrow bands
as compared with the 4s and 4p electron bands. The 4s–4p electrons behave like free
electrons, and may screen the Coulomb interactions between 3d electrons. Therefore
we may apply the following interaction HI consisting of the intra-atomic Coulomb
interactions between d electrons.

HI =
∑
i

[∑
m

U0n̂ilm↑n̂ilm↓ +
∑
m>m′

(
U1 − 1

2
J

)
n̂ilmn̂ilm′

−
∑
m>m′

J ŝilm · ŝilm′
]
. (3.230)

Here U0 (U1) and J are the intra-orbital (inter-orbital) Coulomb interaction and the
exchange interaction, respectively. n̂ilm (ŝilm) with l = 2 is the charge (spin) density
operator for d electrons on site i and orbitalm, which is defined by n̂ilm =∑

σ n̂ilmσ

(ŝilm =∑
αγ a

†
iLα(σ/2)αγ aiLγ ), σ being the Pauli spin matrices.

As shown earlier in Sect. 2.3.3, we can derive the first-principles tight-binding
(TB) Hamiltonian on the basis of the LDA to the DFT and the tight-binding linear
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muffin-tin orbital (TB-LMTO) method. The Hamiltonian is written as (see (2.167))

HLDA =
∑
iLjL′σ

HiLjL′a
†
iLσ ajL′σ , (3.231)

HiLjL′ =
〈
χiL

∣∣∣∣
(
−1

2
∇2 + v(r)

)∣∣∣∣χjL
〉
= εiLδij δLL′ + tiLjL′ . (3.232)

Here χiL’s are the nearly orthogonal basis functions for orbital L on site i. v(r)
is a LDA potential, εiL is an atomic level, and tiLjL′ is a transfer integral between
orbitals χiL and χjL′ .

When we construct the tight-binding parameters for noninteracting system from
the TB-LMTO LDA Hamiltonian, we have to take into account the fact that the one-
electron Hamiltonian (3.232), especially the atomic level εiL, contains the effects
of strong intraatomic Coulomb interactions. We therefore subtract the contribution
of electron–electron interactions from the LDA Hamiltonian (3.232) via the relation
〈H0〉 =ELDA−EU

LDA. Here ELDA is the ground-state energy in the LDA, and EU
LDA

is a LDA functional to the intra-atomic Coulomb interactions. The atomic level ε0
iL

for the noninteracting system is then obtained from the relation [63],

ε0
iL =

∂ELDA

∂niLσ
− ∂EU

LDA

∂niLσ
. (3.233)

Here niLσ is the charge density at the ground state. For the transfer integral, we
adopt the approximation t0

iLjL′ = tiLjL′ expecting small corrections.

Several forms of EU
LDA have been proposed. Among them, we adopt here the

Hartree–Fock type form [70], since we are considering an itinerant electron system
where the ratio of the Coulomb interaction to the d band width is not larger than
one.

EU
LDA =

1

2

∑
j

∑
mm′σ

Unjdnjd + 1

2

∑
j

∑
mm′

′∑
σ

(U − J )njdnjd . (3.234)

Here njd =∑
mσ njlmσ /2(2l + 1) with l = 2. U and J are the orbital-averaged

Coulomb and exchange interactions defined by

U = 1

(2l + 1)2
∑
mm′

Umm′, (3.235)

(U − J )= 1

2l(2l + 1)

∑
mm′

′
(Umm′ − Jmm′), (3.236)

where Umm′ and Jmm′ are orbital dependent intra-atomic Coulomb and exchange
integrals for d electrons. From (3.233) and (3.234), we obtain the atomic level ε0

iL
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for the noninteracting system as

ε0
iL = εiL −

[(
1− 1

2(2l + 1)

)
U − 1

2

(
1− 1

(2l + 1)

)
J

]
ndδl2. (3.237)

Note that nd denotes the total d electron number per atom.
The Coulomb and exchange energy parameters, U and J , may be obtained by

the following steps. We introduce an orbital dependent energy functional ELDA+U
as follows.

ELDA+U =ELDA +EU −EU
LDA. (3.238)

Here ELDA is the LDA total energy, EU
LDA is the Hartree–Fock type LDA contribu-

tion given by (3.234), and EU is the orbital-dependent contribution due to d elec-
trons, which is given by

EU = 1

2

∑
j

∑
mm′σ

Unjdmσnjdm′σ ′ + 1

2

∑
j

∑
mm′

′∑
σ

(U − J )njdmσnjdm′σ . (3.239)

Note that ELDA+U reduces to the original LDA energy when njdmσ = njd .
The variational principle δELDA+U − μδN = 0 yields the Kohn–Sham poten-

tial as

vdmσ (r)= vLDA(r)−μ+
∑
m′
U(njdm′−σ − nj )

+
∑′

m′
(U − J )(njdm′σ − nj ). (3.240)

Here vLDA(r) is the LDA potential given by (2.116). A method to take into account
the orbital dependence of the LDA potential with use of the intra-atomic Coulomb
interactions is called the LDA+U method [63]. The above potential suggests that
the following atomic levels in the TB-LMTO (see (2.167)) are orbital dependent,

εjLσ =
〈
χjLσ

∣∣∣∣
(
−1

2
∇2 + vLσ (r)

)∣∣∣∣χjLσ
〉
, (3.241)

and ∂εjL↑/∂njL′↓ = ∂εjL↓/∂njL′↑ = U , ∂εjL↑/∂njL′↑ = ∂εjL↓/∂njL′↓ =
(U − J )(1− δmm′) for l = 2.

For the evaluation of U and J , we remove the charge transfer between the d
orbitals and the other orbitals, and change the d electron number njdmσ or the spin
density mjdm = njm↑ − njm↓ as δnjdmσ ′ or δmjdm. Then we can calculate the self-
consistent change of the LDA atomic level as {δεjdmσ }. The U and J , which are
screened by the other electrons, may be obtained as

U = δεjdm↑
δnjdm′↓

, (3.242)
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J = δ(εjdm↑ − εjdm↓)
δmjdm′

. (3.243)

The method mentioned above to obtain U and J is known as the constraint
LDA [70]. The intraatomic Coulomb and exchange interaction energy parameters
U0,U1, and J in the Hamiltonian (3.228) are obtained fromU and J in the LDA+U
via the relations: U0 = U + 8J/5, U1 = U − 2J/5 and J = J , where we adopted
the relation U0 =U1 + 2J obtained from the rotational invariance.

We can apply the dynamical CPA to the first-principles model Hamiltonian
(3.228). The Hubbard–Stratonovich transformation (3.24) is then extended as fol-
lows.

e
∑

mm′ amAmm′am′ =
√

detA

πM

∫ [∏
m

dxm

]
e−

∑
mm′ (xmAmm′xm′−2amAmm′xm′ ). (3.244)

Here {aμ} are the Bose-type operators which commute each other.Amm′ is aM×M
matrix, and {xm} are auxiliary field variables.

Discretizing the time in the free energy in the interaction representation
(see (3.31)) and applying the Hubbard–Stratonovich transformation (3.244) to the
Bose-type operators at each time under the T -product, one can obtain the functional
integral form of the free energy to the Hamiltonian (3.228) as follows.

e−βF =
∫ [

N∏
i=1

2l+1∏
m=1

δξ im(τ )δζim(τ )

]
Z0(ξ(τ ), ζ(τ ))

× exp

[
−1

4

∑
i

∑
mm′

′ ∫ β

0
dτ

(
ζim(τ )Aimm′ζm′(τ )

+
xyz∑
α

ξimα(τ )B
α
imm′ξim′α(τ )

)]
. (3.245)

Here ζim(τ ) and ξ im(τ ) denote the time-dependent charge and exchange fields act-
ing on site i and orbital m. Z0(ξ(τ ), ζ(τ )) is a partition function given by (3.35) in
which the Hamiltonian H(τ, ξ(τ ), η(τ )) has been replaced by

H
(
τ, ξ(τ ),−iζ(τ ))=∑

iL

[(
ε0
iL −μ−

1

2

∑
m′
iAimm′ζim′(τ )δl2

)
n̂iL(τ )

−
∑
α

(
1

2

∑
m′
Bαimm′ξim′α(τ )+ hαim

)
δl2m̂

α
iL(τ )

]

+
∑
iLjL′σ

tiLjL′a
†
iLσ (τ )ajL′σ (τ ). (3.246)
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Here Aimm′ and Bα
imm′ (α = x, y, z) are the Coulomb and exchange energy matrix

elements defined by

Aimm′ =U0δmm′ + (2U1 − J )(1− δmm′), (3.247)

Bαimm′ = J (1− δmm′) (α = x, y), (3.248)

Bz
imm′ =U0δmm′ + J (1− δmm′). (3.249)

We express in the next step the free energy with use of the Matsubara frequen-
cies, introduce the coherent potential (Σ)iLnσjL′n′σ ′ = ΣLσ (iωn)δij δLL′δnn′δσσ ′ ,
and make the single-site approximation in order to reduce the number of variables.
Neglecting the out-of-phase thermal spin fluctuations between different orbitals on
a site, we obtain the free energy per site as follows.

FCPA = F̃ − β−1ln
∫ [∏

α

√
βJ̃α

4π
dξα

]
e−βEeff(ξ). (3.250)

Here ξα ≡∑
m ξimα is the static exchange field. The effective exchange energy pa-

rameters are defined by J̃x = J̃y = J̃⊥ = [1− 1/(2l+ 1)]J , J̃z =U0/(2l+ 1)+ J̃⊥.
The effective potential consists of the static part and the dynamical part; Eeff(ξ)=
Est(ξ)+Edyn(ξ). The former is given by

Est(ξ)=− 1

β

∑
mn

ln

[(
1− δvL↑(0)FL↑(iωn)

)(
1− δvL↓(0)FL↓(iωn)

)

− 1

4
J̃ 2⊥ξ2⊥FL↑(iωn)FL↓(iωn)

]

+ 1

4

[
−(U0 − 2U1 + J )

∑
m

ñL(ξ)
2 − (2U1 − J )ñl(ξ)2 + J̃⊥ξ2⊥ + J̃zξ2

z

]
.

(3.251)

Here δvLσ (0) = vLσ (0) − ΣLσ (iωn), and vLσ (0) is the static potential for elec-
trons with orbital L and spin σ . FLσ (iωn) denotes the coherent Green function
for orbital L and spin σ . The charge densities, ñL(ξ) and ñl(ξ) are defined by
ñL(ξ) =∑

σ ñLσ (ξ) and ñl(ξ) =∑
m ñL(ξ), respectively. Note that the spin-flip

contributions as well as the inter-orbital contributions characterized by the param-
eters 2U1 − J and J̃⊥ now appear in the energy expression. Equation (3.251) is an
extension of the static potential (3.149) to the degenerate case.

The dynamical contribution to the effective potential is given by

e−βEdyn(ξ)

=D ≡
∫ ∞∏

n=1

[{∏
α

β2l+1 detBα

(2π)2l+1

∏
m

d2ξmα(iωn)

}
β2l+1 detA

(2π)2l+1

∏
m

d2ζm(iωn)

]
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×D exp

[
−β

4

∑
n�=0

∑
mm′

(
ζ ∗m(iωn)Amm′ζm′(iωn)

+
∑
α

ξ∗mα(iωn)Bαmm′ξm′α(iωn)
)]
, (3.252)

and

D = det

(
δnn′δLL′δσσ ′ −

∑
σ ′′

ṽLσσ ′′(iωn − iωn′)g̃Lσ ′′L′σ ′(iωn′)
)
. (3.253)

Here ζm(iωn) (ξmα(iωn)) denotes the dynamical charge (exchange) field for or-
bital m. The matrices Amm′ and Bα

mm′ (α = x, y, z) have been defined by (3.247),
(3.248), and (3.249). ṽLσσ ′(iωn− iωn′) is the dynamical potential, and g̃LσL′σ ′(iωn)
is the Green function in the static approximation.

The dynamical CPA equation is obtained from the stationary condition of the free
energy δFCPA/δΣiLσ (iωn)= 0 as follows.

〈G(i)
Lσ (iωn)〉 = FLσ (iωn), (3.254)

〈G(i)
Lσ (iωn)〉 =

〈
g̃LσLσ (iωn)+

∑
ν

δDν

κLσ (iωn)δΣLσ (iωn)

1+
∑
ν

(Dν − 1)

〉

eff

. (3.255)

Here 〈G(i)
Lσ (iωn)〉 is the Green function with an impurity dynamical potential em-

bedded in the effective medium. Dν is the determinant for the scattering matrix
due to dynamical potential ṽLσσ ′(±iων). κLσ (iωn) = 1 − FLσ (iωn)

−2HLσ (iωn)

and HLσ (iωn)= δFLσ (iωn)/δΣLσ (iωn). The average 〈∼〉eff at the r.h.s. of (3.255)
denotes a classical average with respect to the effective potential Eeff(ξ ).

The local charge and magnetic moment are derived from the free energy (3.250)
as follows.

〈n̂L〉 = 1

β

∑
nσ

FLσ (iωn), (3.256)

〈m̂z
L〉 =

1

β

∑
nσ

σFLσ (iωn). (3.257)

In particular, the l = 2 components of local charge and magnetic moment (i.e.,
〈n̂l〉 =∑

m〈n̂L〉 and 〈m̂l〉 =∑
m〈m̂L〉) are expressed as

〈n̂l〉 = 〈ñl(ξ)〉eff, (3.258)

〈m̂l〉 = 〈ξ 〉eff. (3.259)
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Fig. 3.11 Effective potential
for bcc Fe at the temperature
T/TC = 0.5 on the ξx–ξz
plane [72]

The last expression of magnetic moment indicates a physical picture as shown in
Fig. 3.1 that both the longitudinal and transverse components of local moments
fluctuate in the metallic system with elevating temperature.

Typical Coulomb and exchange interactions calculated by the LDA + U con-
straint method are reported to be U = 0.17 Ry and J = 0.066 Ry for bcc Fe, and
U = 0.22 Ry and J = 0.066 Ry for fcc Ni [73]. These values considerably de-
pend on the method of calculations. Recent calculations based on the random phase
approximation report that the exchange interaction energy parameters can be re-
duced by 30 % irrespective of transition metal elements [74]. According to the full
Hartree–Fock calculations for solids, on the other hand, the averaged bare Coulomb
and exchange interactions are 1.55 Ry and 0.060 Ry (1.66 Ry and 0.065 Ry) for
bcc Fe (fcc Ni) [75]. The results imply that the LDA+U Coulomb interaction en-
ergy parameters are screened by 4s–4p electrons by a factor of five or ten, while the
screening on the exchange interactions is negligible.

Figure 3.11 shows the effective potential of ferromagnetic Fe calculated by the
first-principles dynamical CPA. We adopted here the interaction energy parameters,
U = 0.17 Ry and J = 0.066 Ry. Dynamical corrections are taken into account up to
the 4-th orders in Coulomb interaction strength in the calculations. The dynamical
potential Edyn(ξ) acts to reduce the longitudinal amplitude of magnetic moments
and enhance the transverse spin fluctuations. The calculated potential for ferromag-
netic Fe has a double minimum structure. This implies that the local magnetic mo-
ments of Fe show large thermal spin fluctuations which change the magnetic mo-
ments in direction. The behavior differs from the case of the single-band model
where quantum spin fluctuations are more significant so that the potential shows a
single minimum structure (see Fig. 3.7).

The magnetization vs. temperature curves of Fe are presented in Fig. 3.12. Ob-
tained ground-state magnetization 2.58 μB is considerably larger than the experi-
mental value 2.22 μB. Calculated Curie temperatures are summarized in Table 3.2.
The Curie temperature in the Hartree–Fock approximation is 12200 K. The static
approximation reduces TC by a factor of 6. Dynamical corrections in the HA further
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Fig. 3.12 Magnetization vs. temperature curves (M − T ), inverse susceptibilities (χ−1), and
the amplitudes of local magnetic moments (〈m2〉1/2) for bcc Fe in the dynamical CPA (solid
curves) [72]. The magnetizations calculated by the DMFT without transverse spin fluctuations
are shown by open squares [73]. Experimental M − T curve is shown by + points [76]

reduce TC and yield TC = 1930 K [72]. The DMFT calculations without transverse
spin fluctuations also yield approximately the same value T = 1900 K [73]. These
values are still higher than the experimental value (1040 K) by a factor of 1.8. The
first-principles dynamical CPA also overestimates the Curie temperature of fcc Co
by a factor of 1.8 as found on Table 3.2.

The inverse susceptibility above TC follows the Curie–Weiss law. The dynamical
CPA yields the effective Bohr magneton number 3.0 μB, which agrees with the ex-
perimental value 3.2 μB [77]. The amplitudes of local magnetic moments 〈m2〉1/2
show a weak temperature dependence and take a value 3.1 μB at 2000 K; the calcu-
lated effective Bohr magneton number approximately agrees with the amplitude of
local moment, so that the Rhodes–Wohlfarth ratio (meff/〈m2〉1/2) is 1 in agreement
with the experimental fact.

An alternative example of ferromagnetic metals is the fcc Ni. The effective po-
tential for Ni shows a single minimum in both the ferro- and para- magnetic states as
shown in Fig. 3.13. It indicates small thermal spin fluctuations around the equilib-
rium point. The dynamical contribution to the effective potential acts as an effective
magnetic field which weakens the spin polarization. Calculated ground-state magne-
tization 0.63 μB is close to the experimental value 0.62 μB. Here the Coulomb and
exchange energy parameters are chosen to be U = 0.22 Ry and J = 0.066 Ry. The
magnetization vs. temperature curve is presented in Fig. 3.14. We find the Curie tem-
perature TC = 620 K. As summarized in Table 3.2, calculated Curie temperatures of
Ni in the Hartree–Fock approximation is 4940 K, the static approximation reduces
TC by a factor of 3 or 4 (1420 K), and the first-principles dynamical CPA with use
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Fig. 3.13 Effective potential
of Ni at T/TC = 0.8 [72]

of the HA yields TC = 620 K [72], being in good agreement with the experimental
value 630 K.

The calculated inverse susceptibility for Ni follows the Curie–Weiss law, and
shows an upward convexity in the high-temperature region, being in agreement
with the experimental data. The effective Bohr magneton number calculated at
T ∼ 2000 K is 1.6 μB in the dynamical CPA. The result is in good agreement
with the experimental value 1.6 μB [81]. Calculated amplitude of local moment
〈m2〉1/2 slightly increases with increasing temperature and takes a value 1.97 μB
at 1000 K, which is larger than 1.27 μB, the value in the local moment model.
Note that the d electron number in the metallic state is nd = 8.7 because of the hy-

Fig. 3.14 Magnetization vs. temperature curves (M − T ), inverse susceptibilities (χ−1), and the
amplitude of local magnetic moments (〈m2〉1/2) for Ni in the dynamical CPA [72]. Experimental
data of magnetization curve are shown by + [82]. The magnetizations calculated by the DMFT
without transverse spin fluctuations are shown by open squares [73]
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Fig. 3.15 Effective Bohr magneton numbers in various 3d transition metal alloys as a function of
conduction electron number per atom. Large closed circles show the theoretical values of Fe, Co,
and Ni obtained by the dynamical CPA [72]

Table 3.2 Curie temperatures TC for Fe, Co, and Ni calculated by the Hartree–Fock approxima-
tion (HF), the dynamical CPA with static approximation (SA), and the dynamical CPA with the
harmonic approximation (HA) [72]. The experimental data (Expt.) are shown on the bottom line
[78–80]

TC (K) Fe Co Ni

HF 12200 12100 4940

SA 2070 3160 1420

HA 1930 2550 620

Expt. 1040 1388 630

bridization of the d bands with the sp bands. It is smaller than nd = 9.4 expected
from a d-band model with strong ferromagnetism. The amplitude of the local mag-
netic moment is therefore larger than the value expected from the local moment
model, 1.27μB (=√M(0)(M(0)+ 2), where M(0) is the ground-state magnetiza-
tion 0.62 μB).

Although the quantitative agreement of TC is not obtained in the single-site the-
ory, the paramagnetic susceptibilities at high temperatures are quantitatively de-
scribed by the first-principles dynamical CPA. Experimental data of effective Bohr
magneton numbers in 3d transition metal alloys continuously change with the con-
duction electron number per atom as shown in Fig. 3.15. Calculated effective Bohr
magneton numbers, 3.0 μB (Fe), 3.0 μB (Co), and 1.6 μB (Ni) are in the experi-
mental data.



Chapter 4
Magnetic Excitations

The ferromagnetic ground state is excited by applying a time-dependent magnetic
field or elevating temperature. These excited states are observed by various exper-
imental methods such as neutron scattering and nuclear magnetic resonance tech-
niques. Here we consider the low-energy excitations from the ferromagnetic ground
state in both metals and insulators. We introduce first the spin wave excitations in
the local moment system which are instructive for understanding the nature of the
excitations. Next, we will show that itinerant electron ferromagnets cause the same
type of collective excitations, as well as the spin-flip excitations of each electron
called the Stoner excitations. Finally, we introduce the dynamical susceptibility in
order to generalize the theory of magnetic excitations, and treat the same topics with
use of the susceptibility in the random phase approximation (RPA).

4.1 Spin Waves in the Local Moment System

We consider in this section the local moment system described by the Heisenberg
model, and clarify the basic concept of spin waves as low-energy excitations.

In the atomic system with n electrons in the unfilled shell, the atomic moment is
built up according to the Hund rule (see Sect. 1.3). It consists of the spin magnetic
moment with spin S and its z component M , as well as the orbital moment with
the angular momentum L and its z component ML. In the crystalline system in
which the spin-orbit interaction is negligible, the crystal field removes the orbital
degeneracy, so that the orbital moments are quenched (see Sect. 1.5). We may then
express the magnetic states of the insulator by means of a set of {Mi}, where Mi

denotes the z component of the spin of magnetic ion i. The atomic spin on site i is
given by

Si = 1

2

∑
mσσ ′

a
†
imσ (σ )σσ ′aimσ ′, (4.1)
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where a†
imσ (aimσ ) denotes the creation (annihilation) operator for an electron on

orbital m in the unfilled shell. The eigen states |SMi〉 of S2
i and Siz are defined by

Si |SMi〉 = S(S + 1)|SMi〉 and Siz|SMi〉 =Mi |SMi〉. Mi takes 2S + 1 values from
−S to S.

We assume that the ferromagnetic state of the insulator is expressed by a Heisen-
berg model as follows.

H =−2J
NN∑
(i,j)

Si · Si =−2J
NN∑
(i,j)

[
S2
iz +

1

2

(
S+i S

−
j + S−i S+j

)]
. (4.2)

Here the sum is taken with respect to the nearest-neighbor (NN) pairs for simplicity.
S±i (= Six± iSiy) are the raising and lowering operators of spin on atom i, satisfying
the relation S±i |SMi〉 =√S(S + 1)−Mi(Mi ± 1)|SMi±1〉. Note that J > 0 since
we assume the ferromagnetic ground state.

As in the case of the Hund-rule coupling, the magnitude of total spin Stot =∑
i Si should be maximized at the ground state: Stot = NS. Here N is the number

of magnetic ions. The ground state wave function is therefore given by

Ψ0 =
∣∣{Mi = S}

〉
. (4.3)

The state Ψ0 is in fact verified to be the ground state, and its energy is given by
E0 =−NJzS2 where z is the number of the nearest neighbors.

HΨ0 =E0Ψ0. (4.4)

Note that the ground-state energy E0 agrees with what is expected from the classical
Heisenberg model.

The low-energy excitations from the ground state may be created by the one-spin
flipped states defined by

|i〉 = 1√
2S
S−i Ψ0 = |S, . . . , S,Mi = S − 1, S, . . .〉. (4.5)

Note that these states are orthogonal to the ground state; 〈i|Ψ0〉 = 0, and are also
orthogonal to each other; 〈i|j 〉 = δij . The Hamiltonian is diagonalized in the sub-
space {|i〉}. In fact, we can verify that

H |i〉 = (−NJzS2 + 2JzS
)|i〉 − 2JS

NN of i∑
l

|l〉. (4.6)

Therefore we have

〈i|H |j 〉 = (E0 + 2JzS)δij − 2JijS. (4.7)

Here we have defined Jij as Jij = J for the NN pair (i, j), and otherwise Jij = 0.
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Since (4.7) is the same type of Hamiltonian matrix as the one-electron tight-
binding model (1.53), we can diagonalize it with use of the Bloch wave function |k〉
as follows.

|k〉 = 1√
N

∑
j

e−ik·Rj |j 〉, (4.8)

and

H |k〉 = (E0 +ωk) |k〉. (4.9)

Here ωk is the eigen value for excited states,

ωk = 2JzS
(
1− γ (k)), (4.10)

and γ (k) = z−1 ∑NN
j exp(ik ·Rj ). The excitation energy ωk is known as the spin

wave energy because the dynamics associated with the excitations form a wave of
transverse spin components. Note that ωk→ 0 as k approaches 0, so that the exci-
tation energy approaches the ground state energy.

The eigen state |k〉 is obtained from the ground state Ψ0 by applying the spin-flip
operator S−k as follows.

|k〉 = 1√
2S

S−k Ψ0, (4.11)

where

S−k =
1√
N

∑
j

e−ik·Rj S−j . (4.12)

Let us verify that the dynamics associated with low-energy excitation are spin
waves. In the Heisenberg representation, the spin dynamics is determined by the
equation of motion as follows.

i
dS−k
dt

= [
S−k , H

]
. (4.13)

For a low energy state Ψ0 such as the ground state, we have [S−k , H ]Ψ0 =
−ωkS−k Ψ0. We have then

i
dS−k
dt

≈−ωk S−k . (4.14)

Thus,

S−k (t)= S−k (0) eiωkt = 1√
N

∑
j

S−j (0) e−i(k·Rj−ωkt). (4.15)
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Fig. 4.1 Spin-wave motion associated with the low-energy excitations in the local moment system

In the real space, this means that

S−j (t)=
1√
N

∑
k

S−k (0) ei(k·Rj+ωkt). (4.16)

Since S−j = Sjx − iSjy , we obtain

Sjx(t)= 1√
N

∑
k

S−k (0) cos(k ·Rj +ωkt),

Sjy(t)=− 1√
N

∑
k

S−k (0) sin(k ·Rj +ωkt).
(4.17)

Thus the motion of spins associated with low-energy excitations in the ferromagnets
behaves as a wave of transverse spins (see Fig. 4.1).

4.2 Spin Waves in Itinerant Ferromagnets

The spin wave excitations are also possible in the itinerant ferromagnets. We exam-
ine in this section the low-energy magnetic excitations in itinerant electron systems.
We adopt the Hubbard model (1.51) in the following:

H =
∑
iσ

ε0niσ +
∑
ijσ

tij a
†
iσ ajσ +

∑
i

Uni↑ni↓. (4.18)

We assume that the ground state is ferromagnetic, and that it is approximately de-
scribed by the Hartree–Fock wave function Ψ0, for simplicity.

Ψ0 =
[

occ∏
k

a
†
k↑

][
occ∏
k

a
†
k↓

]
|0〉. (4.19)

The Hartree–Fock ground state Ψ0 and the ground-state energy E0 then approx-
imately satisfy the following equation as previously discussed in Sect. 2.1.

H Ψ0 ≈E0Ψ0. (4.20)
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Here

E0 =
occ∑
kσ

εkσ − 1

4
NU

(〈n〉20 − 〈m〉20). (4.21)

Here εkσ = ε0+U 〈n〉0/2−U 〈m〉0σ/2+εk is the Hatree–Fock one-electron energy,
εk being the eigenvalue for the transfer integral matrix tij . N denotes the number of
lattice points.

As in the local moment case, we may introduce the spin-flip operator S−i = Six−
iSiy = a†

i↓ai↑. In the momentum representation, it is written as

S−i =
1√
N

∑
q

eiq·Ri S−q =
1

N

∑
q

eiq·Ri
∑
k

S−qk. (4.22)

Here S−q is given by S−q =
∑

k S
−
qk/
√
N , and S−qk is the spin-flip operator defined by

S−qk = a†
k+q↓ak↑. (4.23)

Since S−q Ψ0 described a spin-wave excited state in the case of the insulator model
(see (4.11)), we assume here that the low energy excitations in the itinerant system
are described by a superposition of the spin-flip states {S−qkΨ0} as follows.

Ψq =
∑
k

ck S
−
qk Ψ0. (4.24)

The eigen value equation is written as

H Ψq = (E0 +ωq)Ψq. (4.25)

Here {ck} and ωk are coefficients and excitation energy to be determined. Note that
〈Ψ0|S−qk Ψ0〉 = 0 and 〈S−

q ′k′Ψ0|S−qk Ψ0〉 = nk↑(1 − nk+q↓)δqq ′δkk′ . Here nkσ is the

electron occupation number for an electron with momentum k and spin σ .
In order to examine the excited states, we express the Hamiltonian in the mo-

mentum representation as follows.

H =H0 +HI, (4.26)

H0 =
∑
kσ

ε0
knkσ , (4.27)

HI = U

2N

∑
k1k2qσσ

′
a

†
k1+qσ a

†
k2−qσ ′ak2σ

′ak1σ . (4.28)

Here ε0
k = ε0 + εk is the one-electron energy for the noninteracting Hamiltonian.
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In the calculation of H Ψq at the l.h.s. of (4.25), we have

H S−qkΨ0 =
([
H,S−qk

]+ S−qkH
)
Ψ0. (4.29)

In the second term at the r.h.s. of the above equation, we may adopt (4.20);
S−qkHΨ0 ≈ E0S

−
qkΨ0. The commutation relation [H,S−qk] in the first term at the

r.h.s. is obtained as follows by using (4.27) for H0 and (4.28) for HI, respectively.
[
H0, S

−
qk

]= (
ε0
k+q − ε0

k

)
S−qk, (4.30)

[
HI, S

−
qk

]= U

N

∑
k′q ′σ ′

(
a

†
k+q+q ′↓a

†
k′−q ′σ ′ak′σ ′ak↑ − a†

k+q↓a
†
k′−q ′σ ′ak′σ ′ak−q ′↑

)
.

(4.31)

The interaction part [HI, S
−
qk] expands the Hilbert space when it is applied to

the ground state Ψ0. We take the diagonal part among the k′ scattering terms, and
neglect the other terms that expand the space. This is called the Random Phase
Approximation (RPA). For example,

∑
q ′
a

†
k+q+q ′↓

(∑
k′
a

†
k′−q ′↑ak′↑

)
ak↑Ψ0 ≈

∑
q ′
a

†
k+q+q ′↓a

†
k↑ak+q ′↑ak↑Ψ0

=−nk↑
(∑

k′
S−
qk′

)
Ψ0, (4.32)

taking only one term k′ = k + q ′ among various k′ terms, which is conjugate
with ak↑. Here nkσ is the electron occupation number at the ground state.

Making use of the RPA, we obtain

H S−qkΨ0 =
(
ε0
k+q − ε0

k

)
S−qkΨ0

+ U

N

∑
k′
(nk′↑ − nk′+q↓)S−qkΨ0

− U

N
(nk↑ − nk+q↓)

∑
k′
S−
qk′Ψ0 +E0S

−
qkΨ0. (4.33)

Substituting the wave function (4.24) into the eigen value equation (4.25)
and applying the above relation (4.33) as well as the orthogonality relation
〈S−
qk′ Ψ0|S−qk Ψ0〉 = nk↑(1− nk+q↓)δkk′ , we obtain the eigen value equation for {ck}

as follows.

(
ε0
k+q − ε0

k +U 〈m〉 −ωq
)
ck = U

N

∑
k′
(nk′↑ − nk′+q↓)ck′ . (4.34)
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Fig. 4.2 Stoner excitations
ωqk = εk+q↓ − εk↑ in
itinerant electron system

(1) Stoner excitations

Equation (4.34) has the simple solutions ck �= 0 and ck′ = 0 for the other k′, which
correspond to individual electron excitations. The wave function is given by

Ψqk = S−qk Ψ0 = a†
k+q↓ak↑Ψ0. (4.35)

The excitation energy as the eigen value is given by

ωqk = ε0
k+q − ε0

k +U 〈m〉 = εk+q↓ − εk↑, (4.36)

where εkσ is the Hartree–Fock one-electron energy for σ spin electron.
This is an individual excitation which excites one electron from k ↑ to k + q ↓,

and is known as the Stoner excitation (see Fig. 4.2). Stoner excitations ωqk yield the
exchange splitting ωq=0 ≡Δ= U 〈m〉 at q = 0, and form a band for a given q �= 0.
In the free-electron model band, we have

�

2m

(−2kFq + q2)+Δ≤ ωqk ≤ �

2m

(
2kFq + q2)+Δ. (4.37)

The region of the Stoner excitations as a function of q is schematically shown in
Fig. 4.3 by hatched lines.

(2) Spin wave excitations

There are alternative solutions of low energy excitations with {ck �= 0} in the
eigen value equation (4.34). After having divided the eigenvalue equation (4.34)
by (ε0

k+q − ε0
k + U 〈m〉 − ωq), we multiply nk↑ − nk+q↓ and sum up the equation

with respect to k. We then find the equation for excitation energy ωq as follows.

1= U

N

∑
k

nk↑ − nk+q↓
ε0
k+q − ε0

k +U 〈m〉 −ωq
. (4.38)

There are many solutions in the case of the strong ferromagnet (large U and
nk↑ = 1), because ε0

k+q − ε0
k +U 〈m〉> 0 and we have each solution between neigh-

boring zero points of the denominator. These solutions correspond to the Stoner
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Fig. 4.3 Spin wave
excitations (thick line which
starts from ωq=0 = 0) and
Stoner excitations (hatched
region) as a function of the
wave vector q in itinerant
electron system

excitations. However, we have one more solution below the Stoner continuum solu-
tions as shown in Fig. 4.3. This solution ωq satisfies ε0

k+q − ε0
k +U 〈m〉> ωq , and

ωq −→ 0 as q goes to zero, as verified from (4.38). For small q , ε0
k+q − ε0

k − ωq
is small as compared with Δ(= U 〈m〉). Thus expanding the r.h.s. of (4.38) with
respect to ε0

k+q − ε0
k −ωq , we obtain the solution for small q as

ωq = 1

N〈m〉
∑
k

(nk↑ − nk+q↓)
(
ε0
k+q − ε0

k

)
. (4.39)

For the system with cubic symmetry, we obtain

ωq =Dq2, (4.40)

D = 1

2M

∑
k

(nk↑ + nk↓)∂
2εk

∂k2
x

. (4.41)

This is the same dispersion as the one found in the spin wave in the Heisenberg
model. The coefficient D is called the spin wave stiffness constant.

The wave function for ωq =Dq2 is obtained by substituting the eigenvalue into

(4.34) and expanding the coefficients ck as ck = c
(0)
k + c

(1)
k + c

(2)
k + · · · according

to the magnitude of q . Up to the first order, we have c(0)k = 0 and c(1)k = const. Thus
we obtain

Ψq = S−q Ψ0. (4.42)

This is the same form as the wave function of the spin wave in the Heisenberg model
(see (4.11)). In the spin-wave excited state Ψq , total magnetization is reduced by two
in unit of the effective Bohr magneton number as compared with that in the ground
state.

Taking the same steps as in the spin wave of the Heisenberg model, we can verify
that the motions of transverse spins associated with such low energy excitations are
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given as follows (see (4.17)).

Sjx(t)= 1√
N

∑
|q|<qc

S−q (0) cos(q ·Rj +ωqt),

Sjy(t)=− 1√
N

∑
|q|<qc

S−q (0) sin(q ·Rj +ωqt).
(4.43)

Here we introduced a cut-off frequency qc, below which the spin wave excitation
energy ωq =Dq2 is obtained. In conclusion, the spin-wave excitations exist in the
long-wave limit even in the itinerant-electron ferromagnet. They correspond to the
corrective motion given by (4.43).

It should be noted that the Stoner excitations are included in the eigen states
of the Hartree–Fock Hamiltonian (2.7). Associated temperature dependence of the
magnetization is obtained from the self-consistent equations (2.11) and (2.12), or
(3.1) and (3.2). At low temperatures, one can obtain the temperature dependence of
the magnetization per atom as follows solving the self-consistent equations.

m(T )=m(0)+ π2

3

ρ
(1)
↑ ρ−1

↑ − ρ(1)↓ ρ−1
↓

ρ−1
↑ + ρ−1

↓ −U T 2 + · · · . (4.44)

Here ρσ (ρ(1)σ ) denotes the density of states (DOS) at the Fermi level in the ferro-
magnetic ground state (the first derivative of the DOS at the Fermi level). The above
expression indicates that the Stoner excitations yield the temperature variations be-
ing proportional to T 2. The same conclusion is also verified from (3.22) for the
weak ferromagnet.

In the spin wave excitations in the strong ferromagnets, we have the eigen-value
equation (4.25) with the energy ωq = Dq2 and the excited state Ψq = S−q Ψ0 for
small |q|< qc. The equation is written as [H,S−q ]Ψ0 = ωqS−q Ψ0. It implies that the
following commutation relations are satisfied for low-energy excited states in the
strong ferromagnets.

[
H,S−q

]≈ ωqS−q . (4.45)

Then we can find the higher excited states Ψnq = (S−q )nΨ0 such thatH Ψnq = (E0+
nωq)Ψnq . These are the higher-order excited states of spin waves called magnon ex-
citations, and the associated magnetization is reduced as MzΨnq = (M0 − 2n)Ψnq .
Here M0 denotes the ground-state magnetization. We can generalize these results as

H Ψ
({nq})=

(
E0 +

|q|<qc∑
q

nqωq

)
Ψ
({nq}), (4.46)

MzΨ
({nq})=

(
M0 − 2

|q|<qc∑
q

nq

)
Ψ
({nq}). (4.47)
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Here the spin-wave excited states are given by

Ψ
({nq})=

[|q|<qc∏
q

(
S−q

)nq
]
Ψ0. (4.48)

Associated temperature dependence of the magnetization is calculated from
(4.47) as

〈Mz〉 =M0 − 2
|q|<qc∑
q

〈nq〉. (4.49)

Here the thermal average of the magnon number 〈nq〉 is obtained as 〈nq〉 =
1/(eβωq − 1). Thus we find the magnetization per atom m(T )= 〈Mz〉/L as follows.

m(T )=m(0)− Ω

2
ζ

(
3

2

)(
T

πD

)3/2

+ · · · . (4.50)

Here Ω is the volume of the unit cell and we used the relation ωq =Dq2. ζ(3/2) is
Riemann’s ζ function defined by

∫ ∞

0
dx

x2

ex − 1
=
√
π

2

∞∑
n=1

1

n3/2
= ζ

(
3

2

)
. (4.51)

Note that the spin wave excitations are not included in the single-site theory
presented in Chap. 3, but govern the temperature dependence of the magnetization
in the low temperature limit since the spin wave excitations yield the T 3/2 law while
the Stoner excitations yield the T 2 law, as seen from (4.50) and (4.44).

4.3 Dynamical Susceptibility

Magnetic excitations are described by the dynamical susceptibility. This implies
that one can describe the excitations discussed in the last section by means of the
susceptibility. In this section we introduce dynamical susceptibility on the basis of
the linear response theory and clarify its properties.

Let us assume that the system is perturbed by a time-dependent force F(t), whose
interaction is given by

H1(t)=−AF(t). (4.52)

Here A is an operator of a physical quantity. According to the linear response theory
[83], the linear change of the physical quantity 〈B〉(t) due to the external time-
dependent perturbation H1(t) is expressed as follows (see Appendix E).

�B(t)=
∫ t

−∞
χBA

(
t − t ′)F (

t ′
)
dt ′. (4.53)
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The linear response function χBA(t) is given by a time correlation function at equi-
librium state as follows.

χBA(t)= i

�
〈[BH(t),A]〉. (4.54)

HereBH(t) is the Heisenberg representation of the physical quantityB , i.e.,BH(t)=
exp(iH t/�)B exp(−iH t/�).

We consider here the response of the magnetic moments mi on site i under the
time-dependent magnetic fields {hj (t)}. The interaction (4.52) is then given by

H1(t)=−
∑
j

mj · hj (t). (4.55)

The response (4.53) of the magnetic moment on site i is given by

�miα(t)=
∑
jγ

∫ t

−∞
χ
αγ

ij

(
t − t ′)hjγ (t ′)dt ′. (4.56)

The response function χαγij (t) (α,γ = x, y, z) is given by

χ
αγ

ij (t)=
i

�
〈[mHiα(t),mjγ ]〉. (4.57)

When we apply the magnetic field oscillating with a frequency ω as

hj (t)= hj e−i(ω+is)t , (4.58)

we have the following response from (4.56).

�miα(t)=
∑
jγ

χ
αγ

ij (ω+ is)hjγ e−i(ω+is) t . (4.59)

Here s is the positive-definite infinitesimal number. It implies that we apply the
infinitesimally small field at t =−∞, and increase it continuously up to t = 0. The
response function χαγij (ω+ is) is given as

χ
αγ

ij (ω+ is)=
∫ ∞

0
χ
αγ

ij (t) ei(ω+is)t dt. (4.60)

The magnetic field and the magnetic moments are expressed by the Fourier lattice
series as follows.

hj =
∑
q

h(q,ω) eiq·Rj , (4.61)

�mi (t)=
∑
q

�m(q,ω) ei(q·Ri−ω t). (4.62)
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Substituting the above expressions into (4.59), we obtain the linear response in
Fourier representation as follows.

�mα(q,ω)=
∑
γ

χαγ (q,ω+ is)hγ (q,ω). (4.63)

Here we assumed the translational symmetry of the system in the equilibrium state.
The response function χαγ (q,ω+ is) is defined as

χαγ (q,ω+ is)=
∑
i

χ
αγ

ij (ω+ is)e−iq·(Ri−Rj ). (4.64)

Substituting (4.60) with (4.57) into (4.64), we obtain

χαγ (q,ω+ is)= L i

�

∫ ∞

0

〈[
mHα(q, t),mγ (−q)

]〉
ei(ω+is) dt. (4.65)

Here L is the number of lattice points. The operator m(q) is the Fourier component
of the local magnetic moment mi .

mα(q)= 1

L

∑
i

miα e−iq·Ri . (4.66)

The response function χαγ (q,ω + is) is called the dynamical susceptibility and
determines the linear response to the time-dependent perturbation

H1(t)=−L
∑
γ

mγ (−q)hγ (q,ω) e−i(ω+is)t . (4.67)

Here hγ (q,ω) is the Fourier transform of the magnetic field hi .

hγ (q,ω)= 1

L

∑
i

hiγ e−iq·Ri . (4.68)

It should be noted that the interaction H1(t) can be written by the spin-flip mag-
netic moments m±i =mix ± imiy and conjugate magnetic fields h±i = hix ± ihiy as
follows.

H1(t)=−L
∑
q

[
1

2

(
m+(−q)h−(q,ω)+m−(−q)h+(q,ω)

)

+mz(−q)hz(q,ω)

]
e−i(ω+is)t . (4.69)

Here m±(q) and h±(q,ω) are the Fourier transform of m±i and h±i , respec-
tively. The interaction (4.69) indicates that we can introduce a transverse response
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�m±(q,ω) to the time-dependent magnetic field h±(q,ω) exp(−i(ω+ is)), instead
of �mα(q,ω) (α = x, y). The linear response relation is then written as follows.

�m±(q,ω)=
∑
γ

χ±∓(q,ω+ is)h±(q,ω). (4.70)

The transverse dynamical susceptibility χ±∓(q,ω+ is) is given by

χ±∓(q,ω+ is)= L i

�

∫ ∞

0

〈[
m±H(q, t), m

∓(−q)
]〉

ei(ω+is) dt. (4.71)

The dynamical susceptibilities describe magnetic excitations. In order to under-
stand the properties of χ−+(q,ω+ is), for example, we express the time correlation
function in (4.71) with use of the eigenstates |α〉 and eigenvalues Eα of the Hamil-
tonian H . The dynamical susceptibility is then given as follows.

χ−+(q,ω+ is)= L
∑
αγ

e−βEα
Z

( |〈γ |m−(q)|α〉|2
�ω+ is +Eγ −Eα −

|〈γ |m+(−q)|α〉|2
�ω+ is −Eγ +Eα

)
.

(4.72)

Here β is the inverse temperature and Z denotes the partition function of the system.
The spin-flip magnetic moment m−(q) is expressed as

m−(q)= 2

L

∑
k

a
†
k+q↓ak↑ =

2

L

∑
k

S−qk. (4.73)

In the same way, m+(q) is given by

m+(q)= 2

L

∑
k

a
†
k+q↑ak↓ =

2

L

∑
k

S+qk. (4.74)

Note that the spin-flip operator S−qk has been introduced by (4.23), and S+qk is defined

by S+qk = a†
k+q↑ak↓.

The expression (4.72) indicates that the poles of χ−+(q,−ω− is) give the exci-
tation energies associated with the spin-flip processes {S−qk}. The imaginary part of
dynamical susceptibility describes the excitation spectra. In fact,

Imχ−+(q,ω+ is)= πL

�

(
M+− (q,ω)−M−(q,−ω)

)
. (4.75)

Here

M+− (q,ω)=
∑
αγ

e−βEα
Z

∣∣〈γ ∣∣m−(q)†∣∣α〉∣∣2δ(ω−ωγα), (4.76)
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M−(q,ω)=
∑
αγ

e−βEα
Z

∣∣〈γ ∣∣m−(q)∣∣α〉∣∣2δ(ω−ωγα), (4.77)

and ωγα = (Eγ −Eα)/�.
We can verify the following relation by regarding exp(−βEα) as exp(−βEγ +

β(Eγ −Eα)) in (4.77).

M−(q,ω)= eβ�ωM+− (q,−ω). (4.78)

Substituting the above relation into (4.75), we find that

Imχ−+(q,ω+ is)= πL

�

(
1− e−β�ω

)
M+− (q,ω). (4.79)

This relation is known as the fluctuation-dissipation theorem. The same relation
holds true for the other susceptibilities χαγ (q,ω + is) (α, γ = x, y, z), where the
correlation function M+− (q,ω) at the r.h.s. of (4.79) should be replaced by

M αγ (q,ω)=
∑
μν

e−βEμ
Z

〈
μ
∣∣mα(q)

∣∣ν〉〈ν∣∣mγ (−q)
∣∣μ〉δ(ω−ωνμ). (4.80)

The following static spin fluctuation is also expressed by the dynamical suscep-
tibility.

〈[
m+(q), m−(−q)

]
+
〉=∑

αγ

e−βEα
Z

(∣∣〈γ ∣∣m−(−q)
∣∣α〉∣∣2 + ∣∣〈γ ∣∣m−(−q)†

∣∣α〉∣∣2).
(4.81)

In fact, the r.h.s. is expressed by M−(−q,ω) and M+− (−q,ω) as follows.

〈[
m+(q), m−(−q)

]
+
〉=

∫ ∞

−∞
dω

(
M−(−q,ω)+M+− (−q,ω)

)
. (4.82)

Making use of the relation (4.78) and the fluctuation-dissipation theorem (4.79), we
obtain the relation between the static spin correlation function and the dynamical
susceptibility as follows.

πL

�

〈[
m+(q), m−(−q)

]
+
〉=

∫ ∞

−∞
dω coth

β�ω

2
Imχ−+(−q,ω+ is). (4.83)

Finally, let us examine the static limit of the dynamical susceptibility. The rela-
tion (4.70) for q = 0 and ω= 0 is expressed as follows.

�mx(0,0)− i�my(0,0)= χ−+(0,0)1

2

(
hx(0,0)− i

(
hy(0,0)

)
. (4.84)

In the static limit (ω→ 0), χ−+(q,0) is real according to the fluctuation dis-
sipation theorem (4.79). Moreover in the limit q → 0, �mα(q = 0,ω = 0) and
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hα(q = 0,ω = 0) are real (see (4.61) and (4.62)). Thus (4.84) yields the following
identity.

χxx(0,0)= χyy(0,0)= 1

2
χ−+(0,0). (4.85)

The dynamical susceptibilities are measured directly by means of the neutron
magnetic scattering. The neutron has no charge but does have the spin sn = 1/2 and
the magnetic moment μn = 1.913μnσ n, where μn is the nuclear magneton num-
ber defined by μn = e�/2m0c. m0 denotes the mass of neutron, and approximately
equals that of proton mp (m0 = 1.00138mp). σ n denotes the Pauli spin matrix for a
neutron. When neutrons enter a solid, they interact with electrons via the magnetic
dipole–dipole interaction as an electro-magnetic interaction. A neutron with wave
vector k is then scattered to the state k′ = k+ q with the energy ε = �

2k′2/2m0 and
energy loss �ω = �

2k2/2m0 − �
2k′2/2m0. Here q is called the scattering vector.

The number of scattered neutrons per energy range �ε around energy ε and per
solid angle fraction �Ω in the direction of k′ is given as follows [14, 15].

d2σ

dΩ dε
=−

(
1.913

e2

mec2

)2∣∣f (q)∣∣2 k′
k

×
∑
αγ

(δαγ − q̂αq̂γ ) �L/π

1− e−β�ω
Imχαγ (q,−ω+ is). (4.86)

Hereme is the mass of electron. f (q) is the magnetic form factor defined by f (q)=∫
dr ρ

(m)
i (r) exp(−iq · r), and ρ(m)i (r) is the normalized spin density defined by

the spin density on atom i as mi (r)= ρ(m)i (r)mi , mi being the total spin magnetic
moment on atom i. Furthermore q̂ is the normalized scattering vector. Energy loss of
a neutron by �ω implies that magnetic excitations with energy �ω exist in the solid.
They are connected with spin fluctuations of solids via the fluctuation-dissipation
theorem.

4.4 Dynamical Susceptibility in the RPA and Spin Wave
Excitations

We have shown in the last section that the dynamical susceptibility describes the
magnetic excitations. We calculate here the dynamical susceptibility of the Hub-
bard model (4.26) using the equation of motion method combined with the Random
Phase Approximation (RPA) [84]. We demonstrate that the spin-wave excitation
spectra and the Stoner excitations are obtained from the poles of χ−+(q,−ω− is).
We also discuss the numerical results of the spin wave stiffness constants in Fe and
Ni in comparison with the experimental data.
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In the equation of motion method, we express the dynamical susceptibility
χ−+(q,ω+ is), i.e., (4.71) by means of its retarded Green function χ−+(q, t) as

χ−+(q,ω+ is)=
∫ ∞

−∞
χ−+(q, t) ei(ω+is)t dt. (4.87)

The retarded Green function is defined by

χ−+(q, t)= L i

�
θ(t)〈[m−H(q, t),m+(−q)]〉. (4.88)

Because of the relations m−(q) = (2/L)
∑

k S
−
qk and S−qk = a

†
k+q↓ak↑, we can

express χ−+(q, t) as a sum of the individual components χqk(t) as follows.

χ−+(q, t)= 2
∑
k

χqk(t). (4.89)

Here

χqk(t)= i

�
θ(t)〈[S−qkH(t),m

+(−q)]〉. (4.90)

The Fourier transform of (4.89) is given by

χ−+(q,ω+ is)= 2
∑
k

χqk(ω+ is), (4.91)

and

χqk(ω+ is)=
∫ ∞

−∞
χqk(t) ei(ω+is)t dt. (4.92)

By differentiating (4.90) with respect to t , we obtain the equation of motion for
χqk(t) as follows.

i�
∂χqk(t)

∂t
=−δ(t)〈[S−qk, m+(−q)]〉

+ i

�
θ(t)〈[e i

�
Ht [S−qk,H ] e−

i
�
Ht , m+(−q)]〉. (4.93)

The commutation relation of the first term at the r.h.s. is given as follows.

[
S−qk, m

+(−q)
]= 2

L
(nk+q↓ − nk↑). (4.94)
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We have obtained in Sect. 4.2 the commutation relation in the second term at the
r.h.s. of (4.93) (see (4.30) and (4.31)).

[
S−qk, H

]=−(ε0
k+q − ε0

k

)
S−qk

− U

L

∑
k′q ′σ ′

(
a

†
k+q+q ′↓a

†
k′−q ′σ ′ak′σ ′ak↑ − a†

k+q↓a
†
k′−q ′σ ′ak′σ ′ak−q ′↑

)
.

(4.95)

A difficulty arises from the interaction terms at the r.h.s. of the above equation
because they are not expressed by the operators {S−qk}. As we have mentioned in
Sect. 4.2, the RPA simplifies these terms taking the diagonal part among various k′
scattering terms and neglecting the other terms. For example, in the second term at
the r.h.s. of (4.95), we make the RPA as follows.

∑
q ′
a

†
k+q+q ′↓

(∑
k′
a

†
k′−q ′↑ak′↑

)
ak↑ ≈

∑
q ′
a

†
k+q+q ′↓a

†
k↑ak+q ′↑ak↑

=−nk↑
(∑

k′
S−
qk′

)
. (4.96)

Making the same approximation to the other terms, we obtain the approximate
form as

[
S−qk, H

]=−(ε0
k+q − ε0

k

)
S−qk

− U

L

∑
k′

(〈nk′↑〉 − 〈nk′+q↓〉)S−qk + U

L

(〈nk↑〉 − 〈nk+q↓〉)∑
k′
S−
qk′ .

(4.97)

Here we have replaced the number operators which appeared after the RPA with
their average.

Substituting (4.94) and (4.97) into (4.93), we obtain the equation of motion for
S−qk in a closed form.

i�
∂χqk(t)

∂t
=−δ(t) 2

L

(〈nk+q↓〉 − 〈nk↑〉)− (
ε0
k+q − ε0

k

)
χqk(t)

− U

L

∑
k′

(〈nk′↑〉 − 〈nk′+q↓〉)χqk(t)

+ U

L

(〈nk↑〉 − 〈nk+q↓〉)∑
k′
χqk′(t). (4.98)

The above equation can be solved by the Fourier transform as follows. Multiplying
exp(i(ω + is)t) in the above equation and integrating both sides with respect to t ,
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we find that
[
�ω+ is + ε0

k+q − ε0
k +

U

L

(〈n↑〉 − 〈n↓〉)
]
χqk(ω+ is)

= 2

L

(〈nk↑〉 − 〈nk+q↓〉)+ U

L

(〈nk↑〉 − 〈nk+q↓〉)∑
k′
χqk′(ω+ is). (4.99)

Dividing both sides by the coefficient of the l.h.s. and taking the sum with respect
to k, we obtain

∑
k χqk(ω+ is). Substituting the expression into (4.91), we obtain

the dynamical susceptibility in the RPA.

χ−+(q,ω+ is)= χ−+0 (q,ω+ is)
1− U

4 χ
−+
0 (q,ω+ is) . (4.100)

Here χ−+0 (q,ω+ is) is the dynamical susceptibility for the noninteracting system
given by

χ−+0 (q,ω+ is)= 4

L

∑
k

〈nk↑〉 − 〈nk+q↓〉
�ω+ is + εk+q↓ − εk↑ . (4.101)

As mentioned in the last section (see (4.72)), the poles of the dynamical sus-
ceptibility χ−+(q,−ω − is) give the excitation energies �ωq associated with the

spin-flip excitations a†
k+q↓ak↑. According to the RPA susceptibility (4.100), the ex-

citation spectra are obtained from the condition

χ−+0 (q,−ω− is)=∞, (4.102)

or

1− U

4
χ−+0 (q,−ω− is)= 0. (4.103)

The first equation (4.102) yields excitations due to the spin-flip processes of in-
dividual electrons, which are known as the Stoner excitations (see (4.36)).

ωqk = εk+q↓ − εk↑ = ε0
k+q − ε0

k +U 〈m〉. (4.104)

Another type of excitations is given by (4.103). As we analyzed in Sect. 4.2, (4.103)
yields the spin wave excitation energies as well as the energies of the Stoner excita-
tions in the strong ferromagnetic state at zero temperature (see (4.40)).

ωq =Dq2. (4.105)

Here D is the spin wave stiffness constant defined by (4.41). The wave functions of
the excited states are not obtained in this method. The dynamical susceptibility is
also useful for obtaining the free energy due to spin fluctuations as will be seen in
the next chapter.
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Detailed calculations of the spin wave stiffness constant D have been made on
the level of the LDA + RPA. The results are rather sensitive to the details of the
bands and the exchange splitting Δ. For bcc Fe, D = 280 meV Å2 was obtained for
Δ= 1.94 eV [85] and is consistent with the value D = 280 meV Å2 obtained by the
neutron scatterings [86] and 314 meV Å2 obtained by the low temperature behavior
of the magnetization [87]. In the case of Ni, Wako et al. [88] obtained 285 meV Å2

for Δ= 0.47 eV, while the neutron experiments [89] show D = 395± 20 meV Å2.
The latter value is obtained theoretically when Δ= 0.40 eV is adopted [90].



Chapter 5
Spin Fluctuation Theory in Weak Ferromagnets

The single-site theory of magnetism allows us to understand the finite temperature
magnetism qualitatively or semiquantitatively, starting from the microscopic Hamil-
tonian. We can analyze the magnetic properties from metals to insulators on the
basis of the theory. The first-principles dynamical CPA can explain quantitatively
high-temperature properties such as the Curie constant in the paramagnetic suscep-
tibility. The single-site theory, however, neglects inter-site spin correlations. The
latter influences the Curie temperature and the other quantities related with mag-
netic short range order. In particular, long-wave spin fluctuations are indispensable
for understanding the weak ferromagnetism in ZrZn2, Sc3In, and Ni3Al, which is
characterized by a small Curie temperature (∼10 K) and a large Rhodes–Wohlfarth
ratio (�1). Here the Rhodes–Wohlfarth ratio is defined by the ratio of the observed
Curie constant to the one based on the local moment model. In this chapter, we
present a method which takes into account long-range intersite spin correlations at
finite temperatures in the weak ferromagnets [91–96].

5.1 Free-Energy Formulation of the Stoner Theory

We have described in Sect. 3.1 the Stoner theory in the weak Coulomb interac-
tion region on the basis of the Hartree–Fock self-consistent equations, as well as
the single-site spin fluctuation theories which go beyond the Stoner theory. In this
section, we rederive the Stoner theory using the free energy at finite temperatures.

We have constructed the dynamical CPA on the basis of the grand canonical en-
semble in Chap. 3. There we treated the free energy F(μ,H,T ) for given chemical
potential μ, external magnetic field H , and temperature T . Magnetization is then
obtained from the thermodynamic relation as

M =−∂F (μ,H,T )
∂H

. (5.1)
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The uniform susceptibility is therefore obtained from the relation,

χ =−∂
2F(μ,H,T )

∂H 2
. (5.2)

We can also make use of the free energy F(N,M,T ) for given electron number
N , magnetization M , and temperature T when we discuss the thermodynamics of
the system. In fact, the free energy F(μ,H,T ) is written as follows.

e−βF(μ,H,T ) =
∑
αNM

e−β(Eα(M,N)−μN−MH) =
∑
N

e−βF(N,H,T )+βμN . (5.3)

Here we assumed that magnetization M̂ commutes with the Hamiltonian Ĥ .
Eα(M,N) is the energy eigen value when the electron numberN and magnetization
M are given. The free energy F(N,H,T ) is defined by

e−βF(N,H,T ) =
∑
αM

e−β(Eα(M,N)−MH) =
∑
M

e−βF(N,M,T )+βMH . (5.4)

In the same way, the free energy F(N,M,T ) is given by

e−βF(N,M,T ) =
∑
α

e−βEα(M,N). (5.5)

We can omit fluctuations of the macroscopic variables N and M , so that we
obtain from (5.3) and (5.4) the relations F(μ,H,T ) = F(N,H,T ) − μN and
F(N,H,T ) = F(N,M,T ) −MH as well as the associated thermodynamic re-
lations due to stationary conditions. Therefore we find that

F(N,M,T )= F(μ,H,T )+μN +MH. (5.6)

This is a Legendre transformation from F(μ,H,T ) to F(N,M,T ). When we adopt
the free energy F(N,M,T ) we can derive from (5.6) the following thermodynamic
relation.

H = ∂F (N,M,T )

∂M
. (5.7)

The uniform susceptibility is therefore obtained by

χ−1 = ∂2F(N,M,T )

∂M2
. (5.8)

The Stoner theory, i.e., the Hartree–Fock theory can be reformulated with use of
the free energy F(N,M,T ). In the following, we make use the notation m and h
instead ofM andH for convenience. The Hartree–Fock Hamiltonian to the Hubbard
model has been obtained in (2.7). In the momentum representation, it is written as



5.1 Free-Energy Formulation of the Stoner Theory 137

follows.

H̃ =
∑
kσ

(
ε0 + 1

2
U 〈n〉 −Δ · σ + εk

)
nkσ − 1

4
U

∑
i

(〈n〉2 − 〈m〉2). (5.9)

Here εk is the Fourier transform of the transfer matrix tij . Δ=U 〈m〉/2+h denotes
an exchange splitting of the electron, 〈n〉 and 〈m〉 are the average electron number
and the average magnetization per atom, respectively. The Hartree–Fock free energy
F0(μ,h,T ) per atom is then given by

F0(μ,h,T )=− 1

βL

∑
kσ

ln
(
1+ e−β(ε̃0+εk−�μ−Δ·σ))− 1

4
U
(〈n〉2 − 〈m〉2). (5.10)

Here ε̃0 = ε0 + U 〈n〉/2 − εF and �μ = μ − εF, εF being the Fermi level in the
nonmagnetic state.

Introducing the density of states per atom per spin in the nonmagnetic state by

ρ(ε)= 1

L

∑
k

δ(ε− ε̃0 − εk), (5.11)

the free energy F0(μ,h,T ) is expressed as

F0(μ,h,T )=Φ0(μ,h,T )− 1

4
U
(
n2 −m2), (5.12)

Φ0(μ,h,T )=−β−1
∑
σ

∫
dε ρ(ε) ln

(
1+ e−β(ε−�μ−Δ·σ)

)
. (5.13)

Here the electron number per site 〈n〉 and magnetization per site 〈m〉 have been
written by n and m for convenience, so that ε̃0 and Δ stand for ε0+Un/2− εF and
Um/2+ h, respectively.

The stable configuration of electron number n and magnetization m under given
μ and h is obtained by minimizing the free energy F0(μ,h,T ); ∂F0(μ,h,T )/∂n=
0 and ∂F0(μ,h,T )/∂m = 0. These equations reproduce the Hartree–Fock equa-
tions (3.1) and (3.2); n= 〈n〉 and m= 〈m〉. Here the average at the r.h.s. means the
Hartree–Fock average.

The Hartree–Fock free energy for given n, m, and T is obtained from the follow-
ing Legendre transformation (see (5.6)).

F0(n,m,T )= F0(μ,h,T )+μn+mh. (5.14)

We can then verify the thermodynamic relations such as

∂F0(n,m,T )

∂n
= μ, (5.15)

∂F0(n,m,T )

∂m
= h. (5.16)
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The explicit form of the free energy F0(n,m,T ) is calculated as follows. One
electron part of the free energy (5.13), i.e., Φ0(μ,h,T ) is expressed by �μ and Δ.
�μ is expanded by Δ according to the Hartree–Fock equation n= 〈n〉 (see (3.5)).

�μ= a0Δ
2
[

1+
(
a2 + 3b+ c

a

)
Δ2 + · · ·

]
. (5.17)

Here a0, a, and b are defined by (3.7) and (3.6). Therefore we can expand
Φ0(μ,h,T ) given by (5.13) with respect to Δ as follows.

Φ0(μ,h,T ) =
[
Φ0(μ,h,T )

]
m=0 − n�μ− a0Δ

2 + a0

(
a2 + 1

2
b

)
Δ4

+ · · · . (5.18)

Thus we obtain

Φ0(n,m,T )≡Φ0(μ,h,T )+μn+mh

= [
Φ0(n,m,T )

]
m=0 +mΔ−

1

2
Um2 − a0Δ

2

+ a0

(
a2 + 1

2
b

)
Δ4 + · · · . (5.19)

On the other hand, with use of the Hartree–Fock equation m= 〈m〉, we can ex-
pand m with respect to Δ as follows, as has been shown in (3.9).

m= 2a0Δ
[
1− (

2a2 + b)Δ2 + · · · ]. (5.20)

Solving (5.20) with respect to Δ, we find

Δ= 1

2a0
m+ 2a2 + b

8a3
0

m3 + · · · . (5.21)

From (5.12), (5.14), (5.19), and (5.21) we obtain the free energy F0(n,m,T )

expanded by m as follows.

F0(n,m,T )= F0(n,0, T )+ 1

2χHF
m2 + 1

64
g(T )m4 + · · · . (5.22)

Here F0(n,0, T ) is the Hartree–Fock free energy in the nonmagnetic state given by

F0(n,0, T )= nεF − 2

β

∫
dε ρ(ε) ln

(
1+ e−βε

)− 1

4
Un2. (5.23)

The coefficient χHF in the 2nd order term in (5.22) is given by

1

χHF
= 1

2

(
1

a0
−U

)
= 1

χ0
− U

2
. (5.24)
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The coefficient g(T ) in the 4th-order term of (5.22) is given by

g(T )= 2(2a2 + b)
a3

0

. (5.25)

Note that the coefficient a0 in (5.24) and (5.25) depends on temperature T via
the Fermi distribution function and the Fermi level εF. It has been obtained before,
as shown in (3.14),

a0(T )= ρ
[

1− π2

6
RT 2 + · · ·

]
, (5.26)

and R is defined by (3.15); R = (ρ(1)/ρ)2 − ρ(2)/ρ. Here ρ, ρ(1), and ρ(2) denote
ρ(0), ρ(1)(0), and ρ(2)(0), respectively. The coefficient g(T ) in the 4th-order term
is obtained in the same way as

g(T )= F1

ρ

(
1+ π2

6
RT 2 + · · ·

)
, (5.27)

and F1 = (ρ(1)/ρ)2 − ρ(2)/3ρ.
Equation (5.22) is the Hartree–Fock free energy for given n, m, and T in weak

ferromagnets. From the thermodynamical relation (5.8), we find that χHF given by
(5.24) is the uniform susceptibility in the Hartree–Fock approximation. It agrees
with (3.11). The parameter χ0 denotes the susceptibility for a noninteracting system.
We obtain from the susceptibility (5.24) the Curie temperature in the Stoner theory
as follows.

TC =
√

6(ρU − 1)

π2RρU
, (5.28)

which agrees with the expression (3.16).
The spontaneous magnetizationm is obtained from the thermodynamical relation

(5.7) with h= 0.

∂F0(n,m,T )

∂m
= 1

χHF(T )
m+ 1

16
g(T )m3 + · · · = 0. (5.29)

For small magnetization we obtain

m(T )=
√
− 16

χHF(T )g(T )
. (5.30)

This is equivalent to (3.21). Therefore we can derive (3.22) again:

m(T )=m(0)
√

1−
(
T

TC

)2

. (5.31)
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Here the ground-state magnetization m(0) is given by (3.10); m(0)=√8(ρU − 1)/√
ρUF1U2.
We have rederived from the Hartree–Fock free energy (5.22) all the results of

the Stoner theory obtained in Sect. 3.1. The free energy (5.22) provides us with a
starting point to take into account the nonlocal spin fluctuations on the basis of the
free energy.

5.2 Self-Consistent Renormalization Theory

The Hartree–Fock free energy which we derived in the last section is valid only
for a small U limit. It overestimates the Curie temperature and does not lead to
the Curie–Weiss law in the paramagnetic susceptibility as we have mentioned in
Sects. 3.1 and 5.1. In this section, we express the free energy with use of the dynam-
ical susceptibility, and take into account the higher-order contribution in U which
yields the nonlocal spin fluctuations [91, 92].

We adopt the Hubbard model in the momentum representation as follows (see
(4.26)–(4.28)).

H =H0 +HI, (5.32)

H0 =
∑
kσ

ε0
knkσ , (5.33)

HI = U

2L

∑
k1k2qσ

a
†
k1+qσ a

†
k2−q−σ ak2−σ ak1σ . (5.34)

Here ε0
k = ε0 + εk is the one-electron energy for noninteracting Hamiltonian. L

denotes the number of the lattice points.
The free energy F(μ,h,T ) for the grand canonical ensemble is given by

F(μ,h,T )=−β−1Tr
(
e−β(H−μN)

)
. (5.35)

Taking the derivative of F with respect to the interaction parameter U , we have
∂F (μ,h,T )/∂U = 〈HI/U 〉. Integration of both sides with respect to parameter U
leads to the following relation.

F(μ,h,T )=−β−1Tr
(
e−β(H0−μN))+

∫ U

0
dU ′

〈
HI

U ′

〉
U ′
. (5.36)

Here 〈∼〉U ′ denotes the thermal average for the Hamiltonian with coupling param-
eter U ′.

In the Hartree–Fock approximation, we replace the thermal average 〈∼〉U ′ with
that of a Hamiltonian for independent particle system 〈∼〉0, so that

∫ U
0 dU ′ ·
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〈HI/U
′〉U ′ ≈ LU 〈n↑〉0〈n↓〉0. Therefore we can express the free energy (5.36) as

F(μ,h,T )= F0(μ,h,T )+ 1

L

∫ U

0
dU ′

(〈
HI

U ′

〉
U ′
−

〈
HI

U ′

〉
0

)
. (5.37)

Here we redefined F(μ,h,T ) as the free energy per site. F0(μ,h,T ) is the free
energy per site in the Hartree–Fock approximation and was given by (5.10) in the
last section.

F0(μ,h,T )=− 1

βL

∑
kσ

ln
(
1+ e−β(ε̃0+εk−�μ−Δ·σ))− 1

4
U
(
n2 −m2). (5.38)

The free energy for given electron number per site n, magnetization per site m,
and the temperature T is then obtained by the Legendre transformation (5.6):

F(n,m,T )= F(μ,h,T )+μn+mh. (5.39)

Substituting (5.37) into (5.39), we obtain

F(n,m,T )= F0(n,m,T )+�F. (5.40)

Here F0(n,m,T ) is the free energy in the Hartree–Fock approximation defined by
(5.14),

F0(n,m,T )= F0(μ,h,T )+μn+mh, (5.41)

and �F is the correlation correction to the Hartree–Fock free energy.

�F = 1

L

∫ U

0
dU ′

(〈
HI

U ′

〉
U ′
−

〈
HI

U ′

〉
0

)
. (5.42)

To calculate the interaction part �F in (5.40), we express the interaction HI by
means of the spin-fluctuation operators m+(q)= (2/L)∑k a

†
k+q↑ak↓ and m−(q)=

(2/L)
∑

k a
†
k+q↓ak↑ as follows.

HI = 1

2
UN − 1

8
LU

∑
q

[
m+(q), m−(−q)

]
+. (5.43)

Substituting (5.43) into (5.42), we obtain

�F =−1

8

∫ U

0
dU ′

∑
q

(〈 [
m+(q), m−(−q)

]
+
〉− 〈 [

m+(q), m−(−q)
]
+
〉
0

)
.

(5.44)

The spin fluctuation terms are given by dynamical susceptibility according to the
relation (4.83).
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Fig. 5.1 The contour C0 (left), contour C (center), and contour Cε on the complex plane. Note
that the contour C0 is chosen to pass just on the origin of the complex plane

〈 [
m+(q), m−(−q)

]
+
〉= �

πL

∫ ∞

−∞
dω coth

β�ω

2
Imχ−+(−q,ω+ is). (5.45)

Thus, we can express the interaction part by means of the dynamical susceptibility
as follows.

�F =− �

8πL

∫ U

0
dU ′

∫ ∞

−∞
dω coth

β�ω

2

×
∑
q

Im
(
χ−+(q,−ω− is)− χ−+0 (q,−ω− is)). (5.46)

Here we made the transformation q → −q , ω → −ω and used the relation
Imχ−+(q,−ω+ is)=−Imχ−+(q,−ω− is) for convenience.

The integral of the dynamical susceptibility with respect to ω in the interaction
(5.46) is expressed by a sum of Matsubara frequencies on the imaginary axis as
follows.

I = �

2π

∫ ∞

−∞
dω coth

β�ω

2
Imχ−+(q,ω+ is)= 1

β

∞∑
n=−∞

χ−+(q, iωn). (5.47)

Here ωn = 2πn/β�. In order to verify the above relation we rewrite the integral at
the l.h.s. as

I = �

4πi

[∫ ∞

−∞
dω coth

β�ω

2
χ−+(q,ω+ is)

+
∫ −∞

∞
dω coth

β�ω

2
χ−+(q,ω− is)

]
. (5.48)

These are expressed as an integral along the contour C0 around the real axis as
shown in Fig. 5.1. Note that the integral should pass the origin because the function
cothβ�ω/2 is singular there. We can consider the contour C0 as the superposition of
the contours C and Cε . The contour C can be changed to C′, the sum of the contour
around the upper imaginary axis and that around the lower imaginary axis as shown
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Fig. 5.2 The contour C′ on
the complex plane and
singular points zn = iωn on
the imaginary axis leading to
the residues

in Fig. 5.2. Because the susceptibility is analytic on the upper and lower complex
planes, the contributions from C′ and Cε are calculated by summing up all residues
of cothβ�ω/2 at zn = iωn along the imaginary axis, so that we reach the relation
(5.47). Making use of the formula (5.47), we obtain alternative expression of �F .

�F =− 1

4βL

∫ U

0
dU ′

∑
qn

(
χ−+(q,−iωn)− χ−+0 (q,−iωn)

)
. (5.49)

For the calculation of �F , we need an explicit form of the dynamical suscepti-
bility. The general form of the dynamical susceptibility is written as follows.

χ−+(q,ω+ is)= χ−+0 (q,ω+ is)
1− U

4 χ
−+
0 (q,ω+ is)+ λ(q,ω+ is) . (5.50)

χ−+0 (q,ω+ is) is the dynamical susceptibility in the Hartree–Fock approximation
given by (4.101). The second term in the denominator is the RPA correction (see
(4.100)), and the last term λ(q,ω+ is) describes corrections beyond the RPA.

The RPA susceptibility is insufficient to describe finite temperature properties,
though it explained the spin wave excitations at zero temperature as discussed
in Sect. 4.4. We assume here that λ(q,ω + is) = 0 at zero temperature, but that
λ(q,ω + is)≈ λ(0,0)= λ(T ) at finite temperatures, expecting low energy excita-
tions and fluctuations around q = 0 to be important for the weak ferromagnetism.
We also assume λ(T )� 1. Finally, we adopt the following dynamical susceptibility.

χ−+(q,ω+ is)= χ−+0 (q,ω+ is)
1− U

4 χ
−+
0 (q,ω+ is)+ λ(T ) . (5.51)

The Hartree–Fock dynamical susceptibility is given as follows as we have obtained
in (4.101).

χ−+0 (q,ω+ is)= 4

L

∑
k

f (εk −Δ)− f (εk+q +Δ)
�ω+ is + εk+q − εk + 2Δ

. (5.52)
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Here f (ω) is the Fermi distribution function, Δ= Um/2+ h, and we redefined εk
as εk = ε0

k −μ+Un/2. ε0
k is the one-electron energy eigen value for noninteracting

electrons.
Substituting (5.51) into (5.49) and performing the integral on parameter U ′, we

obtain

�F = 1

βL

∑
qn

[
ln

(
1− U

4
χ−+0 (q,−iωn)+ λ

)
− U

4
χ−+0 (q,−iωn)

]
. (5.53)

Here we have neglected an additional term ln(1+ λ), assuming that |λ| � 1.
The final form of the free energy for given n, m, and T is expressed by

(5.40), (5.41), and (5.53). We have obtained in the last section an explicit form
of F0(n,m,T ) (see (5.22)). The free energy correction (5.53) is given as a function
of Δ, therefore we can regard �F as a function of m. The correction λ(T ) due to
thermal spin fluctuations has not yet been determined. In order to determine λ(T )
we make use of a sum rule in the static limit.

In the paramagnetic state, the system is magnetically uniform. Therefore χxx =
χyy = χzz = χ . According to the relation (4.85), this implies that

χ = 1

2
χ−+(q = 0,ω= 0). (5.54)

For a noninteracting limit (i.e., the Hartree–Fock limit), we have

χ0 = 1

2
χ−+0 (q = 0,ω= 0). (5.55)

Below TC, the relation χxx = χyy = χzz is no longer satisfied because the z direc-
tion is not magnetically equivalent to the other directions. Instead, χxx = χyy =
χ−+(q = 0,ω = 0)/2 should diverge below TC because the Hamiltonian is rota-
tionally invariant. For the susceptibility (5.51), this implies that

1− 1

4
U χ−+m0 (q = 0,ω= 0)+ λm = 0. (5.56)

Here the subscript m means that the magnetization m is finite, and it is assumed to
be given in the above equation.

In the following, we consider the paramagnetic state for simplicity. Substituting
(5.51) and (5.55) into (5.54), we obtain

χ = χ0

1− 1
2U χ0 + λ

, (5.57)

i.e.,

1

χ
= 1

χ0
− 1

2
U + λ

χ0
. (5.58)
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On the other hand, the uniform susceptibility is obtained from the thermody-
namic relation of the free energy via (5.8) independently of the sum rule (5.58).

1

χ
=

(
∂2F(n,m,T )

∂m2

)
m=0

=
(
∂2F0(n,m,T )

∂m2

)
m=0

+
(
∂2�F(n,m,T )

∂m2

)
m=0

. (5.59)

Here we added the subscript m= 0 because of being in the paramagnetic state. The
Hartree–Fock part at the r.h.s. is obtained from the expression of the free energy
(5.22) as

(
∂2F0(n,m,T )

∂m2

)
m=0

= 1

χHF
= 1

χ0
− 1

2
U. (5.60)

Therefore the susceptibility (5.59) is expressed as

1

χ
= 1

χ0
− 1

2
U +

(
∂2�F(n,m,T )

∂m2

)
m=0

. (5.61)

From the sum rule (5.58) and the thermodynamic susceptibility (5.61), we obtain
the self-consistent equation to determine the spin fluctuation parameter λ(T ) as

λ(T )= χ0

(
∂2�F(n,m,T )

∂m2

)
m=0

. (5.62)

The r.h.s. is obtained from (5.53) as

∂2�F(n,m,T )

∂m2
=− U2

16βL

∑
qn

[
χ−+0 (q,−iωn)− 4λ

U

1− U
4 χ

−+
0 (q,−iωn)+ λ

∂2χ−+0 (q,−iωn)
∂m2

+ 1

(1− U
4 χ

−+
0 (q,−iωn)+ λ)2

(
∂χ−+0 (q,−iωn)

∂m

)2 ]
.

(5.63)

Solving the self-consistent equation (5.62), we obtain λ(T ) at each temperature T ,
thus obtain the susceptibility χ via (5.57) or (5.58). This self-consistent scheme
based on the RPA is known as the self-consistent renormalization theory (SCR) [93].

The Curie temperature TC is obtained from (5.57) with the condition 1/χ = 0.

1− 1

2
Uχ0(TC)+ λ(TC)= 0. (5.64)

The above equation shows that the RPA (λ= 0) does not improve the Curie temper-
ature of the Hartree–Fock approximation. In the SCR, λ > 0 at finite temperatures,
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Fig. 5.3 The Curie temperature in the SCR theory (solid line) and the Hartree–Fock theory
(dashed line) as a function of the Stoner parameter α =Uχ0(T = 0)/2 [91, 92]

therefore the renormalization λ can reduce TC. According to the numerical calcula-
tions based on the free electron gas model, the Curie temperature obtained by (5.64)
reduces the Hartree–Fock (Stoner) TC by a factor of 10 (see Fig. 5.3). Since the
single-site spin and charge fluctuations reduce the Hartree–Fock TC by a factor of 5
according to Table 3.2 in the last section, the results suggest that the nonlocal spin
fluctuations can reduce TC by a factor of 2. But the theory based on the realistic
Hamiltonian which allows us to make quantitative calculations of TC has not yet
been developed.

Equation (5.64) is equivalent to (5.58) with χ−1 = 0.

0= 1

χ0(TC)
− 1

2
U + λ(TC)

χ0(TC)
. (5.65)

Taking the difference between (5.58) and (5.65) near TC, we find

1

χ
= λ(T )− λ(TC)

χ0(TC)
. (5.66)

Expanding λ(T ) with respect to T near TC, we find the Curie–Weiss law.

1

χ
= λ(TC)

′

χ0(TC)
(T − TC). (5.67)

The expression above indicates that the Curie–Weiss law is caused by the self-
consistent renormalization of spin fluctuations beyond the Hartree–Fock approx-
imation. The numerical calculations verify that the susceptibilities approximately
follow the Curie–Weiss law as shown in Fig. 5.4. It should be noted that the Curie
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Fig. 5.4 Inverse susceptibility vs. temperature curves for various Stoner parameters
α = Uχ0(T = 0)/2. Note that TC = 0.005,0.010,0.015 for α = 1.008,1.021, and 1.036, respec-
tively. The curve in the Stoner theory is also presented for TC = 0.01 [91, 92]

constant is determined by the spin fluctuations in the long-wave regime as seen
from (5.67). The theory explains the small TC and the large Rhodes–Wohlfarth ratio
in the weak ferromagnets such as ZrZn2 and Sc3In.

The same type of theory was also developed by Cyrot [94], and Hertz and
Klenin [95, 96]. Cyrot took into account Onsager’s reaction field in the calcula-
tion of the susceptibility. The spin correlation function was calculated with use of
the fluctuation-dissipation theorem. In the theory by Hertz and Klenin, they started
from the variational principle for the free energy in the functional integral method,
and adopted the RPA type trial functional. Making use of the self-consistent phonon
approximation, they obtained the free energy. Both theories yield essentially the
same results as those obtained by the self-consistent renormalization theory of the
weak ferromagnetism in metals.



Chapter 6
Antiferromagnetism and Spin Density Waves

As we have mentioned in Sect. 1.7, magnetic metals and compounds show a variety
of magnetic structures. These include the ferromagnetic structure, the antiferromag-
netic (AF) structure, the spin density waves (SDW), and more complex magnetic
structures. In this chapter we clarify the microscopic mechanism for the formation
of the antiferromagnetism as well as the SDW, and describe theoretical approaches
to the complex magnetic structures in metals. We treat in Sect. 6.1 the antiferromag-
netism at half filling with use of the Hartree–Fock approximation and the dynamical
CPA, and argue the stability of the AF on the U–n plane. In Sect. 6.2, we derive the
generalized static susceptibility, and explain the stability of the antiferromagnetism
as well as the SDW in 3d transition metals. The susceptibility is not useful for un-
derstanding more complex magnetic structures in the itinerant electron system. We
present in Sect. 6.3 the molecular dynamics approach which automatically finds
the stable magnetic structure at finite temperatures. In the last section, we present
a phenomenological theory which is useful for understanding complex magnetic
structures in weak itinerant electron magnets, and discuss the multiple spin density
waves (MSDW).

6.1 Antiferromagnetism in Metals

The 3d transition metals in the vicinity of the middle on the periodic table and their
alloys show various antiferromagnetic states. The bcc-base Cr alloys with a few
percent of Mn, for example, show the antiferromagnetic state with a simple cubic
sublattice as shown in Fig. 6.1. The fcc-base Mn alloys also show the antiferromag-
netic structure of the first-kind in which the (001) ferromagnetic plane alternatively
changes the magnetization in direction along the c-axis (see Fig. 1.10(c)). The α-
Mn shows more complex noncollinear antiferromagnetic structure in which 29 Mn
atoms in the primitive unit cell have magnetic moments different in size and direc-
tion [97]. We present in this section the Hartree–Fock theory of the antiferromag-
netism at half filling on the basis of the Hubbard model, and clarify the so-called
nesting mechanism for the formation of the antiferromagnetism.

Y. Kakehashi, Modern Theory of Magnetism in Metals and Alloys,
Springer Series in Solid-State Sciences 175, DOI 10.1007/978-3-642-33401-6_6,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 6.1 Magnetic phase diagram of Cr–V and Cr–Mn alloys showing the longitudinal spin density
wave state (LSDW), the transverse spin density wave state (TSDW), the antiferromagnetic state
(AF), and the paramagnetic state (P) [97]

The Hubbard Hamiltonian in the Hartree–Fock approximation is written as (see
(2.7))

H =
∑
ijσ

(H σ )ij a
†
iσ ajσ −

∑
i

U 〈ni↑〉〈ni↓〉. (6.1)

Here (H σ )ij = εiσ δij + tij (1− δij ) and εiσ = ε0+U 〈ni〉/2−U 〈mi〉σ/2. The self-
consistent local charge and magnetic moment on site i are then given by

〈ni〉 =
∫
dωf (ω−μ)

∑
σ

ρiσ (ω), (6.2)

〈mi〉 =
∫
dωf (ω−μ)

∑
σ

σρiσ (ω). (6.3)

Here f (ω) is the Fermi distribution function,μ is the chemical potential, and ρiσ (ω)
is the density of states on site i and spin σ in the Hartree–Fock approximation. The
latter is given by the Green function Giiσ (z) as follows.

ρiσ (ω)=− 1

π
ImGiiσ (z), (6.4)

Giiσ (z)=
∑
κ

〈i|κ〉σ 〈κ|i〉σ
z− εκσ = [

(z−H σ )
−1]

ii
. (6.5)
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Here z= ω+ iδ with δ being the infinitesimal positive number, εκσ is the Hartree–
Fock one-electron energy eigen value, and the eigen state is assumed to be given by
φκσ =∑

i φiσ 〈i|κ〉σ .
We consider here the antiferromagnetic (AF) state with two sublattices η = ±

on the simple cubic (sc) lattice with the lattice constant a (see Fig. 1.10(a)) for
simplicity. The following arguments are also applicable to the AF structure on the
bcc lattice (see Fig. 1.10(b)). Note that each sublattice forms the fcc lattice in the
case of the sc structure. We adopt the unit cell with 2 atoms, one with an up magnetic
moment belonging to the sublattice (+), and another with a down magnetic moment
belonging to the (−) sublattice. The primitive translational vectors are given by
a = a(1,1,0), b= a(0,1,1), and c= a(1,0,1). The volume of the unit cell is 2a3.
These vectors form the fcc lattice with lattice constant 2a. The Bloch functions |kη〉
are given by

|k±〉 = 1√
L/2

fcc∑
l

φ(r −Rl − η±) e−ik·(Rl+η±). (6.6)

Here k denotes a wave vector in the first Brillouin zone of the fcc lattice. L denotes
the number of simple-cubic lattice points. The atomic position vectors η± are given
by η+ = 0 and η− = a(1,1,1), respectively. The atomic levels belonging to the
sublattice η(=±1) are given by εησ = ε0 +U 〈n〉/2−U |〈m〉|ησ/2.

When there is no electron hopping between the atoms in the same sublattice and
only the nearest-neighbor electron hoppings exist between different sublattices, we
have the following 2× 2 Hamiltonian matrix.

〈
kη

∣∣Hσ

∣∣kη′〉=
(
ε+σ εk
εk ε−σ

)
. (6.7)

Here εk reduces to the energy eigenvalue for simple cubic lattice; εk = t∑sc
i exp(ik ·

Ri)=−2|t |(coskxa+ coskya+ coskza), t being the nearest neighbor hopping ma-
trix element. The eigenfunction is expanded by |kη〉 as

ψkνσ =
∑
η

|kη〉uηνσ (k). (6.8)

Solving the 2 × 2 eigenvalue problem for uηνσ (k) we have the eigen values
ενσ (k) as follows.

ενσ (k)= ε0 + ν
√
Δ2 + ε2

k . (6.9)

Here ν takes±. ε0 = (ε+σ +ε−σ )/2= ε0+U 〈n〉/2 andΔ=U |〈m〉|/2. Note that k
is a point in the Brillouin zone (BZ) of the fcc sublattice. The eigen vectors uηνσ (k)
are given by

uηνσ (k)
2 = 1

2

(
1− ηνσ Δ√

Δ2 + ε2
k

)
. (6.10)
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Note that the Brillouin zone (BZ) of the sc lattice with lattice constant a is twice
as large as that of the fcc. We can express the eigen values using all the k points in
the BZ of the sc lattice. In fact, any k′ point of the BZ for the sc lattice which is
outside the BZ of the fcc lattice is expressed as k′ = k +Q by using a k point in
the fcc sublattice and a Q vector such that Q= (π/a)(±1,±1,±1), resulting with
the relation εk′ = εk+Q =−εk . Therefore when the eigen value inside the BZ of the

fcc lattice is given by ε0 + (εk/|εk|)
√
Δ2 + ε2

k , another eigen value on the same k

point is given as ε0 + (εk′/|εk′ |)
√
Δ2 + ε2

k′ with use of the k′ = k +Q point in the
BZ of the sc lattice. This means that the energy eigenvalue is expressed by using the
k points of the BZ of the sc lattice as

εσ (k)= ε0 + εk

|εk|
√
Δ2 + ε2

k . (6.11)

Its eigenfunction is expressed by (6.8) in which uηνσ (k) has been replaced by
uησ (k) such that

uησ (k)
2 = 1

2

(
1− ησ εk

|εk|
Δ√

Δ2 + ε2
k

)
. (6.12)

The Green function on the (+) sublattice is given by

G
(+)
iiσ (z)=

2

L

sc∑
k

u+σ (k)2

z− εσ (k) =
∫
dε ρ(ε)

1− sgn(ε)σ Δ√
Δ2+ε2

z− ε0 − sgn(ε)
√
Δ2 + ε2

. (6.13)

Here ρ(ε) is the density of states per atom per spin for the noninteracting sc system.
It is worth mentioning that the Green function is alternatively written as

G
(+)
iiσ (z)=

√
z− ε−σ
z− εσ

∫
ρ(ε) dε√

(z− εσ )(z− ε−σ )− ε
, (6.14)

where ε−σ = ε0 +�εσ is the Hartree–Fock potential on the (+) sublattice.
The density of states ρ(+)σ (ε) on a (+) sublattice site is given by ρ

(+)
σ (ε) =

−π−1ImG(+)
iiσ (z) according to the formula (6.4). With use of (6.2), (6.3), and (6.13),

we obtain the local charge and local magnetic moment on the (+) sublattice as fol-
lows.

〈n〉 = 2
∫
dε ρ(ε)f

(
ε0 −μ+ sgn(ε)

√
Δ2 + ε2

)
, (6.15)

〈m〉 = 2�
∫
dε ρ(ε)

sgn(ε)√
Δ2 + ε2

f
(
ε0 −μ+ sgn(ε)

√
Δ2 + ε2

)
. (6.16)

It should be noted that the self-consistent equations (6.15) and (6.16) can be
derived for any antiferromagnets with two sublattices in which there is no elec-
tron hopping between atoms belonging to the same sublattice. For example, in the
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case of the AF on the bcc lattice as shown in Fig. 1.10(b), each sublattice forms
a simple cubic lattice, so that the lattice sum in the Bloch function (6.6) is taken
over the sc lattice instead of the fcc one. The atomic position vectors in this case
are defined by η+ = 0 and η− = (a/2)(1,1,1). The energy eigen value εk in (6.7)
should be read as εk = t

∑bcc
i exp(ik·Ri) = −8|t | coskxa/2 coskya/2 coskza/2.

The BZ of the sc sublattice is expanded to that of the bcc lattice by Q vectors
(2π/a)(±1,0,0), (2π/a)(0,±1,0), and (2π/a)(0,0,±1). Thus, taking the same
steps, we reach (6.15) and (6.16).

At half-filling and T = 0, the chemical potential satisfying (6.15) is given by
μ= ε0. The self-consistent equation (6.16) reduces to the following one.

1

U
=

∫ W/2

0

ρ(ε) dε√
Δ2 + ε2

. (6.17)

Here W denotes the band width and we made use of the relation ρ(ε) = ρ(−ε).
Note that the function 1/

√
Δ2 + ε2 is positive and monotonically increases with

decreasing Δ = U 〈m〉/2. Consequently, the r.h.s. of (6.17) also monotonically in-
creases, and diverges at Δ = 0 because

∫∞
0 dε ρ(ε)/|ε| ∼ −ρ(0) ln |0|. Thus the

self-consistent equation (6.17) has a nonzero solution irrespective of the Coulomb
interaction energy strength U ; the antiferromagnetic state exists at half-filling for
any finite value of U(> 0).

Equation (6.17) has the same form as the BCS gap equation for the super con-
ducting state. There the band widthW/2 is replaced by the Debye cut-off frequency,
the Coulomb interaction parameter U is replaced by the electron–electron attractive
interaction V caused by the electron–phonon interaction, and Δ corresponds to the
super-conducting order parameter.

When U �W/2, we have Δ�W/2. Thus the integral of the r.h.s. of (6.17) is
evaluated as

∫ W/2

0

ρ(ε) dε√
Δ2 + ε2

k

≈
∫ �

0

ρ(ε) dε

Δ
+

∫ W/2

�

ρ(ε) dε

|ε| ≈ ρ(0)+ ρ(0) ln
W/2

Δ
.

(6.18)

We then obtain the ground-state sublattice magnetization as

〈m〉 = W

U
e−

1
ρ(0)U . (6.19)

In the case of the completely flat band ρ = 1/W , one can directly perform the
integral in (6.17) and obtain the sublattice magnetization as

〈m〉 = W/U

sinhW/U
. (6.20)

For largeW/U , we obtain 〈m〉 = (2W/U) exp(−1/ρ(0)U), which is essentially the
same as (6.19) though the prefactor differs from that of (6.19) by a factor of two.
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It should be noted that the antiferromagnetism at half-filling mentioned above
is accompanied by a gap 2Δ on the Fermi surface according to (6.11). The kinetic
energy gain due to the formation of the gap is the origin of the antiferromagnetism.
This type of the AF is known as the gap-type antiferromagnetism or the nesting-
type antiferromagnetism because the gap is caused by a nesting of the energy eigen
values which are connected each other via Q vectors.

At finite temperatures, the chemical potential μ= ε0 satisfies (6.15). Using the
relation f (−ε) − f (ε) = tanh(βε/2), the self-consistent equation (6.16) is writ-
ten as

1

U
=

∫ W/2

0

ρ(ε) dε√
Δ2 + ε2

tanh
β
√
Δ2 + ε2

2
. (6.21)

The Néel temperature TN at which the antiferromagnetism disappears is obtained
from the condition Δ= 0 in the above equation.

1

U
=

∫ W/2

0
dε

ρ(ε)

ε
tanh

ε

2TN
. (6.22)

Here the r.h.s. is approximately obtained by replacing the DOS with its value at the
Fermi level and making integration by parts as follows.

ρ(0)
∫ W/4TN

0
dx

tanhx

x
≈ ρ(0)

(
[lnx tanhx]W/4TN

0 −
∫ W/4TN

0
lnx sech2x

)
.

(6.23)

WhenW/4TN � 1 (i.e., the case of weak antiferromagnet), we can replace the upper
bound of the integral in the second term with the infinity and make use of the for-
mula − ∫∞

0 lnx sech2x dx = ln 4γ /π . Here lnγ is Euler’s constant lnγ ≈ 0.5772.
Therefore (6.22) is written as 1/U = ρ(0) lnγW/πTN. Solving the equation with
respect to TN we obtain

TN = γW

π
e−

1
ρ(0)U ≈ 1.13

W

2
e−

1
ρ(0)U . (6.24)

The ground-state magnetization (6.19) and the Néel temperature (6.24) are ap-
plicable in the small U limit because the Hartree–Fock approximation is exact in
the limit. The situation is quite different from the ferromagnetic case. There the
Hartree–Fock approximation predicted that the magnetic state appears in the region
ρ(0)U > 1 where the approximation is not justified in general.

When the Coulomb interaction becomes large, the expression (6.24) of TN is
no longer applicable. For larger values of U , we can apply the single-site theory at
finite temperatures presented in Chap. 3. Let us adopt the static approximation to the
functional integral method for simplicity. Introducing the site-dependent coherent
potential Σiσ (z)=Σ(±)

σ (z), where (+) or (−) denotes the type of sublattice on site
i, into the potential part of the free energy (3.67), we expand the correction terms
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with respect to the site. We reach again the free energy (3.82) in the SSA as well as
the CPA equation (3.85).

In the antiferromagnetic (AF) state with two sublattices, we have a symmetric
relation Σ(−)

σ (z)=Σ(+)
−σ (z) for the coherent potential. Accordingly we have the re-

lations F (−)
σ (z) = F

(+)
−σ (z) for the coherent Green function Fiσ (z) = F

(±)
σ (z) and

E(−)(ξ) = E(+)(−ξ) for the impurity energy Ei(ξ) = E(±)(ξ). Thus, the free en-
ergy (3.67) as well as the other physical quantities can be expressed by those on the
(+) sublattice. The free energy per site is finally written as

FCPA = F̃ − β−1 ln
∫ √

βU

4π
dξ e−βE(+)(ξ), (6.25)

and the CPA equation (3.85) for the AF state is expressed as

〈G(+)
σ (z, ξ)〉 = F (+)

σ (z). (6.26)

Here G(+)
σ (z, ξ) is the impurity Green function (3.86) on the (+) sublattice. As seen

from (6.14), the coherent Green function is expressed by

F (+)
σ (z)=

√√√√z−Σ(+)
−σ (z)

z−Σ(+)
σ (z)

∫
ρ(ε) dε√

(z−Σ(+)
+ (z))(z−Σ(+)

− (z))− ε
. (6.27)

Figure 6.2 shows the calculated Néel temperatures as a function of the Coulomb
interaction parameter U for the half-filled band Hubbard model [53]. The results of
the quantum Monte-Carlo method are also shown there. The density of states for the
noninteracting state is assumed to be semielliptical: ρ(ε) = (2/πW 2)

√
W 2 − ε2,

which is known to be realized on the Bethe lattice in infinite dimensions. In the weak
interaction regime, the Néel temperature (TN) exponentially increases with increas-
ing U in accordance with the Hartree–Fock formula (6.24). It shows the maximum
around U/W = 2. When U becomes stronger, the Néel temperature approaches
to the result of the molecular-field approximation in the Heisenberg model with
the super exchange interaction, i.e., H =−∑

(i,j) JijSi · Sj with Jij =−4|tij |2/U
(see (1.86)). In the case of the Bethe lattice in infinite dimensions it is given by
TN =W 2/4U assuming the nearest-neighbor electron hopping. In finite dimensions,
this should be reduced by the magnetic short-range order. It is obtained accurately
by the high-temperature expansion. Note that there is the metal–insulator crossover
above TN in general, so that the paramagnetic metal (PM) changes to the paramag-
netic insulator (PI) with increasing Coulomb interaction (see Fig. 6.2).

When the electron number is deviated from the half-filling, one has to solve both
equations (6.15) and (6.16) self-consistently. In general the kinetic energy gain due
to the gap formation becomes smaller as the electron number deviates from n= 1,
and the antiferromagnetism becomes unstable. Figure 6.3 shows a typical magnetic
phase diagram obtained by the Gutzwiller approximation to the Hubbard model
[98]. For small Coulomb interactions, there is the transition from the AF to the para-
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Fig. 6.2 Néel temperature (TN) vs. Coulomb interaction curves in the half-filled Hubbard model
on the Bethe lattice in infinite dimensions [53]. The solid curve is based on the static approximation
(SA) to the dynamical CPA. The closed circles are the results of the Quantum Monte-Carlo method
(QMC). The energy unit is chosen to be W = 1. Below TN the antiferromagnetic state (AF) is
stabilized. Above TN there are the paramagnetic metal (PM) and the paramagnetic insulator (PI)
regimes. The open squares indicate a crossover line between the two states

Fig. 6.3 Typical magnetic phase diagram on the U–n plane. The result is calculated with use of
the Gutzwiller approximation for the Hubbard model on the hyper-cubic lattice in infinite dimen-
sion [98]

magnetic state (P) with increasing electron number from n= 1. When the Coulomb
interaction is large enough, the transition from the AF to the ferromagnetic state (F)
occurs with increasing electron number. It should be noted that the phase diagram
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is symmetric around the n = 1 axis when the electron-hole particle symmetry is
present.

In the above theoretical treatment of the AF state, we assumed that there is no
electron hopping between two sublattices. Furthermore we used a symmetric prop-
erty of the DOS in the nonmagnetic state. These assumptions are not satisfied in
general. For example, in the case of the first-kind AF state on the fcc lattice as
shown in Fig. 1.10(c), the transfer integrals between atoms belonging to the same
sublattice are not negligible because of the same interatomic distance. Moreover the
DOS is not symmetric in the case of the fcc lattice. In this case, the energy gap on
the Fermi level is not expected to appear, and the kinetic energy gain due to alter-
native exchange splitting is not so effective; we do not expect the appearance of the
gap-type AF ordered state. The antiferromagnetic metals which are not accompa-
nied by the band gap are referred as the band-type antiferromagnets. The critical
Coulomb interaction for the appearance of the AF state is expected to be finite even
at half filling in this case.

6.2 Generalized Static Susceptibility and Antiferromagnetism

An alternative way to understand the stability of magnetic structure is to analyze the
generalized susceptibility. Let us assume that a metal is in the paramagnetic state
when there is no external field. We then consider a linear polarization due to site-
dependent magnetic fields {hi}. The linear polarization of magnetic moment on site
i is given by

〈mi〉 =
∑
j

χijhj . (6.28)

The above expression defines the nonlocal static susceptibility χij . The susceptibil-
ities in the real space give us the magnetic couplings between the local magnetic
moments in metals, and are useful for understanding the complex magnetic struc-
ture.

In order to obtain the susceptibility in the Hartree–Fock approximation, we
add the Zeeman energy to the atomic level of the Hamiltonian (6.1) as εiσ =
ε0 +U 〈ni〉/2− (U 〈mi〉/2+ hj )σ , and express the Green function (6.5) by means
of the locator matrix Lijσ such that (L−1

σ )ij = (z−ε0+μ−U 〈ni〉/2+ (U 〈mi〉/2+
hi)σ )δij as

Giiσ (z)=
[
(Lσ − t)−1]

ii
. (6.29)

Here t denotes the transfer integral matrix tij . Note that the energy is measured from
the Fermi level here.

The linear change of the locator due to spin polarization is given by δL−1
iσ =

(U
∑

j χijhj /2+hi)σ , and that of the Green function is given by−[GσδL
−1
σ Gσ ]ii .

Substituting the Green function and the linear change of magnetic moment (6.28)
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into the self-consistent equation (6.3), we find the equation for nonlocal susceptibil-
ity as follows.

χij = χ0
ij +

∑
l

1

2
Uχ0

il χlj . (6.30)

Here χ0
ij is the susceptibility for the noninteracting system given by

χ0
ij =

∫
dωf (ω)

(−)
π

Im
∑
σ

Gijσ (z)Gjiσ (z). (6.31)

The Green function for the noninteracting system is given by

Gijσ = 1

L

∑
k

1

z− ε̃k e−ik·(Ri−Rj ). (6.32)

Here ε̃k = ε0 −μ+U 〈n〉/2+ εk .
The magnetic coupling in metals and alloys are generally long range, so that

their Fourier representations are often useful. The Fourier transform of the linear
response (6.28) is given by

m(q)= χ(q)h(q). (6.33)

Herem(q) (h(q)) is defined by 〈mi〉 =∑
q m(q) exp(iq ·Ri ) (hi =∑

q h(q) exp(iq ·
Ri )). The susceptibility χ(q) for the wave vector q is defined by

χij = 1

L

∑
q

χ(q) e iq·(Ri−Rj ). (6.34)

Substituting (6.34) into (6.30), we find the Fourier representation of the Hartree–
Fock susceptibility.

χ(q)= χ0(q)

1− 1
2Uχ0(q)

. (6.35)

The susceptibility for the noninteracting system is obtained from (6.31) as

χ0(q)= 2

L

∑
k

f (ε̃k+q)− f (ε̃k)
εk − εk+q . (6.36)

The result agrees with χzz0 (q,ω= 0)= χ−+0 (q,ω= 0)/2 of (4.101) as it should be.
At half-filling (μ = ε0 + U 〈n〉/2) and for Q such that εk+Q = −εk (e.g., Q =

(π/a)(±1,±1,±1) for the sc lattice and Q=±(2π/a)(0,0,1) for the bcc lattice),
we obtain

χ0(Q)=
∫
dε ρ(ε)

tanh(βε/2)

ε
. (6.37)
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Here ρ(ε) is the noninteracting DOS per atom per spin. The r.h.s. has the same form
as that of (6.22). Making the approximation (6.23), we find

χ0(Q)= 2ρ(0) ln
βγW

π
. (6.38)

The above expression shows that the susceptibility for the noninteracting system
diverges as T goes to zero, thus according to (6.35) the susceptibility χ(Q) also di-
verges at a certain temperature TN with decreasing temperature. This means that the
antiferromagnetic state with a sublattice magnetization m(Q) should be stabilized
below TN. The Néel temperature TN in the Hartree–Fock approximation is obtained
from the condition 1= Uχ0(Q)/2. Using (6.38), we obtain the following gap-type
Néel temperature.

TN = γW

π
e−

1
ρ(0)U ≈ 1.13

W

2
e−

1
ρ(0)U . (6.39)

The result agrees with (6.24).
The generalized susceptibility χ(q) is extended to the multi-band case. Let us

adopt the nearly orthogonal basis set {χiL} for tight-binding linear muffin-tin or-
bitals (TB-LMTO) (see (2.154)), and assume a system with one atom per unit cell
for simplicity. The eigen state ψnk(r) to the Hamiltonian (2.167) is given by

ψnk(r)=
∑
il

χiL(r)〈iL|nk〉, (6.40)

〈iL|nk〉 = ûLn(k) 1√
N

e−ik·Ri . (6.41)

Here i (L) denotes site (orbital), and N is the number of unit cells. ûLn(k) is the
eigen vector for a given momentum k.

When we insert infinitesimal magnetic field hjL′ on each site j and orbitalL′ into
the TB-LMTO Hamiltonian (2.167), we have a linear polarization of the magnetic
moment on site i and orbital L as

〈miL〉 =
∑
jL′

χ
(0)
iLjL′ hjL′ . (6.42)

Here χ(0)
iLjL′ is the nonlocal susceptibility for the noninteracting system. In order to

obtain the nonlocal susceptibility as shown in (6.28), we have to apply the magnetic
field hjL′ = hj . We have then

χ
(0)
ij =

∑
LL′

χ
(0)
iLjL′ . (6.43)



160 6 Antiferromagnetism and Spin Density Waves

Taking the same steps as in the single band model, we find the unenhanced sus-
ceptibility at zero temperature as follows.

χ0(q)= 2

N

∑
n′

∑
nk

(
f
(
ε̃n(k)

)− f (ε̃n′(k + q)
)) |∑L û

∗
Ln(k)ûLn′(k + q)|2

εn′(k + q)− εn(k) .

(6.44)

Here ε̃n(k)= εn(k)− μ. The full susceptibility χ(q) is enhanced by the exchange
potential (−I 〈mi〉σ/2) as follows.

χ(q)= χ0(q)

1− 1
2Iχ0(q)

. (6.45)

Here I is the Stoner parameter defined by (2.176).
The ferromagnetic structure (F) may be realized when

χ0(0)= 2ρ(0) >
2

I
, (6.46)

where ρ(0) is the total density of states per atom per spin at the Fermi level in the
nonmagnetic state. This is the Stoner criterion (2.181) discussed in Sect. 2.3.4. The
antiferromagnetic state (AF) is realized when

χ0(Q) >
2

I
. (6.47)

Here Q= (0,0,1)2π/a in the case of the bcc and fcc structures, a being the lattice
constant. χ0(0) (χ0(Q)) is called the uniform (staggered) susceptibility. Whether
the AF or F is stable might be determined by comparing the uniform susceptibility
χ0(0) with the staggered χ0(Q).

Figure 6.4 shows the susceptibilities χ0(0) and χ0(Q) as a function of the con-
duction electron number (n) [99, 100]. In the case of the bcc Cr (n = 6), we find
a huge χ0(Q), indicating the appearance of a gap-type AF. The uniform suscepti-
bilities of bcc Fe (n = 8) and fcc Ni (n = 10) show a large value, which indicates
the ferromagnetism in these systems in agreement with the experimental fact. The
ferromagnetism of fcc Co is not clear from the figure because χ0(0) of fcc Co is
not so high. Note that Co shows the hcp structure at T = 0, though it shows the fcc
structure above 700 K. It is interesting that χ0(Q) > χ0(0) in the case of the fcc Fe,
while χ0(0)� χ0(Q) in the case of bcc Fe. The result suggests the AF in fcc Fe.

Experimentally, the pure bcc Cr shows the spin density waves (SDW) structure
with the wave vector Q = (0,0,0.95)2π/a [101], though Cr with a few atomic
percent of Mn does show the AF structure (see Fig. 6.1). The fcc Fe is reported to
show the SDW with Q= (1,0,0.15)2π/a [102], though it shows the first-kind AF
when Mn is added by several percent [103].

A large enhancement of χ0(Q) at Cr in Fig. 6.4 is considered to be a Fermi-
surface nesting effect. According to the expression (6.44), the susceptibility χ0(Q)
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Fig. 6.4 Non-interacting spin susceptibilities χ0(0) (solid curves) and χ0(Q) (dashed curves) as a
function of the conduction electron number for bcc transition metals (left) and fcc transition metals
(right) [99, 100]. The wave vector is given by Q= (0,0,1)2π/a for both structures, a being the
lattice constant

is enhanced when there are many electron k points in the vicinity of Fermi surface
and at the same time the k +Q hole points are also in the vicinity of the Fermi
surface, because the denominator εn′(k +Q) − εn(k) almost vanishes for such k

points. Such an enhancement is expected when there are a large electron Fermi sur-
face and a hole Fermi surface with the same shape which are distant from each other
by Q. In this case the Fermi surfaces are called ‘being nested’, and the enhancement
of the susceptibility due to the nesting mechanism is called the Fermi surface nest-
ing effect. Note that the divergence of the susceptibility in (6.38) at T = 0 for the
single-band Hubbard model at half-filling is also due to the complete nesting be-
cause εkF+Q = εkF = 0 for the Fermi wave vector kF.

Figure 6.5 shows a schematic Fermi surface of Cr on the (001) intersection of
the Brillouin zone [104]. According to the electronic structure calculations, there is
an electron Fermi surface of a nearly octahedral shape around the  point (0,0,0),
and there is a hole Fermi surface around the H point (1,0,0)2π/a which is also
octahedral in shape, though slightly larger than the former around the  point. These
Fermi surfaces are approximately nested with the wave vector Q = (0,0,1)2π/a.
This is the reason why χ0(Q) is high for Cr in Fig. 6.4. However, we may expect
that 50 percent of complete nesting of the Fermi surface using the wave vector Q=
(0,0,0.95)2π/a may be more favorable for the enhancement of χ0(Q), because the
hole Fermi surface is slightly larger than the electron one as shown in Fig. 6.5. This
is why the SDW state with Q = (0,0,0.95)2π/a, instead of the AF structure, is
realized in Cr.
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Fig. 6.5 Schematic (001)
intersection of chromium
Fermi surface

When we add Mn atoms to Cr, the average electron number is increased, so
that the octahedral electron Fermi surface grows up in size, while the hole Fermi
surface around H point becomes smaller. This implies that the nesting wave vector
increases in magnitude, and the AF state is realized as found in the phase diagram,
Fig. 6.1. On the other hand, if the neighboring element V is added to Cr, the average
electron number decreases, so that the electron Fermi surface shrinks and the hole
Fermi surface expands. As the result the enhancement of χ0(Q) due to the nesting is
weakened and the paramagnetic state is realized in agreement with the experimental
data (see Fig. 6.1).

In the case of the first-kind AF structure in fcc Mn, the Fermi surface nesting is
not found. For the fcc structure, neither the gap type of AF as mentioned in Sect. 6.1
nor equivalently the nesting type of AF as have been explained in this section are
expected because the hole-particle symmetry of the band is not expected even at
half-filling. One has to consider the stability based on the total energy calculation for
such a system. Instead of uniform polarization in the ferromagnetism, the local spin
polarization as expressed by (6.3), thus the local densities of states (6.4) are essential
there. When the Coulomb energy gain due to the local polarization overcomes the
band energy loss, the AF is stabilized [105]. The antiferromagnets based on this
mechanism are called the band-type AF.

6.3 Molecular Dynamics Theory for Complex Magnetic
Structures

As we have seen in Fig. 6.3, the ferromagnetic state (F) is stabilized in the region
of few electrons or nearly filled shell, while the antiferromagnetic state (AF) is
stabilized in the half-filled region. Near the boundary between the F and the AF
regions, we can expect competition between the ferro- and the antiferro-magnetic
interactions, and thus the appearance of various complex magnetic structures. It is
not easy however to find intuitively the complex magnetic structures which yield
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the global minimum of the free energy. In this section, we present a molecular
dynamics method which automatically determines the complex magnetic struc-
ture [108, 109].

We adopt the tight-binding LMTO Hamiltonian (3.228) and the functional inte-
gral method. The free energy F is then given by (3.245), and the time-dependent
Hamiltonian H(τ, ξ(τ ),−iζ(τ )) in the free energy is given by (3.246). Since we
are considering the complex magnetic structure due to the competition between the
long-range ferro- and antiferromagnetic couplings, we should take into account in-
tersite correlations. Instead, we adopt in this section the static approximation which
neglects the dynamical spin and charge fluctuations. As shown in Sect. 3.2, we ap-
proximate the time-dependent Hamiltonian H(τ, ξ(τ ),−iζ(τ )) given by (3.246)
with the static one H(τ, ξ ,−iζ ), where ξ im (ζim) are the static exchange (charge)
field variables defined by ξ im =

∫ β
0 ξ im(τ ) dτ (ζim =

∫ β
0 ζim(τ ) dτ ). Then the par-

tition function Z0(ξ(τ ), ζ(τ )) is given by

Z0(ξ , ζ )= Tr
(
e−βH(0,ξ ,−iζ )

)
. (6.48)

The remaining Gaussian integrals in the free energy can be performed in the same
way as in Sect. 3.2 (see (3.57) and (3.58)). Applying the saddle point approximation
to the charge fields, we obtain the free energy as follows.

F =−β−1 ln
∫ [∏

iα

√
β2l+1detBα

(4π)2l+1

∏
m

dξimα

]
e−βE(ξ). (6.49)

Here and in the following l stands for l = 2 assuming the 3d electron system. The
effective potential in the static approximation is given by

E(ξ)=−β−1 ln tr
(
e−βH(ξ)

)

− 1

4

∑
i

∑
mm′

(
ñilm(ξ)Aimm′ ñilm′(ξ)−

∑
α

ξimαB
α
imm′ξim′α

)
. (6.50)

The Hamiltonian H(ξ) is given by

H(ξ)=
∑
iL

[(
ε0
iL −μ+

1

2

∑
m′
Amm′ ñilm′(ξ)δld

)
niL

− 1

2

∑
α

∑
m′
Bαimm′ξim′αm

α
ilmδld

]
, (6.51)

and ñilm(ξ) denotes the charge density on site i and orbital lm in the static approxi-
mation when the exchange fields {ξ im} are given. μ denotes the chemical potential.
The Coulomb and exchange interaction matrices Amm′ and Bα

imm′ are defined by
(3.247), (3.248), and (3.249), respectively.
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In order to reduce the number of variables, we replace the orbital-dependent
charge densities {ñilm(ξ)} (exchange field ξimα) in the free energy with an av-
eraged ñil(ξ)/(2l + 1) (ξiα/(2l + 1)). Here ñil(ξ) and ξiα denote the d-electron
charge density on site i and the total exchange field on the same site, respectively;
ñil(ξ) =∑

m ñilm(ξ) and ξiα =∑
m ξimα . The simplified free energy is then ex-

pressed as

F =−β−1 ln
∫ [∏

iα

√
βJ̃α

4π
dξiα

]
e−βE(ξ), (6.52)

E(ξ)=−β−1 ln tr
(
e−βH(ξ)

)− 1

4

∑
i

(
Ũ ñil(ξ)

2 −
∑
α

J̃αξ
2
iα

)
, (6.53)

H(ξ)=
∑
iL

[(
ε0
iL −μ

)
niL +

(
1

2
Ũ ñil(ξ )nilm − 1

2

∑
α

J̃αξiαm
α
ilm

)
δld

]

+
∑
iLjL′σ

tiLjL′a
†
iLσ ajL′σ . (6.54)

Here Ũ = U0/(2l + 1) + [1 − 1/(2l + 1)](2U1 − J ) and J̃α = U0δαz/(2l + 1) +
[1− 1/(2l + 1)]J .

The free energy (6.52) does not satisfy the rotational invariance in spin space
because of the anisotropic exchange interaction J̃α inherent in the Hartree–Fock
type static approximation. In order to avoid the problem within the static approx-
imation, we introduce the locally rotated coordinates at each site. The interac-
tion term of the Hamiltonian in the locally rotated coordinates has the same form
as the original (3.230) due to the rotational invariance. But the operators have
been replaced by those on the rotated coordinates; n̆ilm =∑

σ n̆ilmσ and s̆ilm =∑
αγ ă

†
ilmα(σ/2)αγ ăilmγ . Here ă†

iLα and ăiLα are the creation and annihilation op-

erators on the rotated coordinates, which are given by ă†
iLα =

∑
γ a

†
iLγDγα(Ri) and

ăiLα =∑
γ aiLγD

∗
γα(Ri) with use of the rotation matrix Dαγ (Ri) for a spin on site

i. Here Ri denotes a rotation of the z axis.
We apply the functional integral technique to the Hamiltonian on locally rotated

coordinates. Taking the same steps as before we obtain the counterpart of the free
energy (6.52). We then neglect the transverse static spin fluctuations on the rotated
coordinates and take the average of the free energy over the z direction of the locally
rotated coordinates, so that we obtain the free energy as follows.

F =−β−1 ln
∫ [∏

i

√
βJ̃

4π
dξi dei

]
e−βE(ξ), (6.55)

E(ξ)=−β−1 ln tr
(
e−βH(ξ)

)− 1

4

∑
i

(
Ũ ñil(ξ)

2 − J̃ ξ2
i

)
, (6.56)
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H(ξ)=
∑
iL

[
ε0
iL −μ+

(
1

2
Ũ ñil(ξ)nil − 1

2
J̃ ξ i ·mil

)
δld

]

+
∑
iLjL′σ

tiLjL′a
†
iLσ ajL′σ . (6.57)

Here J̃ = U0/(2l + 1)+ [1− 1/(2l + 1)]J , ei is the unit vector on site i showing
the direction of rotated z axis, and ξi is the z component of the exchange fields on
the rotated coordinates. Furthermore ξ i = ξiei and dei = (4π)−1 sin θi dθi dφi . θi
and φi denote the zenith and azimuth angles of vector ei .

Since ñilm(ξ) is a saddle point value of the charge field ζilm (see (3.66)), it is
given by

ñilm(ξ)= 〈nilm〉0 = tr(nilme−βH(ξ))
tr(e−βH(ξ))

. (6.58)

The local charge and magnetic moment are obtained by taking the derivative of F
with respect to the atomic level ε0

iL and the local magnetic field hi acting on site i.

〈ñi〉 =
∑
L

〈
ñiL(ξ)

〉
, (6.59)

〈mi〉 =
〈(

1+ 4

βJ̃ ξ2
i

)
ξ i

〉
. (6.60)

Here the average 〈∼〉 at the r.h.s. of the equations is defined by

〈∼〉 =

∫ [∏
i

dξ i

]
(∼) e−βΨ (ξ)

∫ [∏
i

dξ i

]
e−βΨ (ξ)

, (6.61)

Ψ (ξ)=E(ξ)+ 2β−1
∑
i

ln ξi . (6.62)

Note that we have adopted the spherical coordinates in the above average, and thus
dξ i = ξ2

i sin θi dξi dθi dφi .
An alternative way to recover the rotational invariance of the free energy within

the static approximation is to take the limit l→∞ (see (6.52)). We obtain in this
case J̃α = J and the free energy (6.55) in which dξi dei has been replaced by dξ i .
The magnetic moment 〈mi〉 is given by (6.60) in which the prefactor (1+ 4/βJ̃ ξ2

i )

has been replaced by 1, and the potential Ψ (ξ) (i.e., (6.62)) reduces to E(ξ). In
any case, the Coulomb and exchange energies, Ũ and J̃ , have to be regarded as
effective ones since we adopted the static approximation which neglects the electron
correlations at low temperatures.

Equation (6.60) indicates that the thermal average of local magnetic moment
(LM) is given by a semiclassical average with respect to the potential energy
Ψ (ξ). In this case, we can apply the isothermal molecular-dynamics method (MD)
[106, 107] in order to treat a large number of atomic magnetic moments {〈mi〉}.
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In the MD method we express the magnetic moment (6.60) by means of the time
average assuming the ergodicity of the system as follows.

〈mi〉 = lim
t0→∞

1

t0

∫ t0

0

(
1+ 4

βJ̃ ξ2
i (t)

)
ξ i (t) dt. (6.63)

The dynamics of the ‘time-dependent magnetic moment’ {ξ i (t)} which yields
the thermal average (6.60) are given by the following equations of motion (see Ap-
pendix F) [108].

ξ̇iα = piα

μLM
, (6.64)

ṗiα = −∂Ψ (ξ)
∂ξiα

− ηα · piα, (6.65)

η̇α = 1

Q

(∑
i

p2
iα

μLM
−NT

)
. (6.66)

Here piα is a fictitious momentum conjugate to the exchange field variable ξiα .
μLM is an effective mass for the LM on site i. The first term at the right-hand-side
of (6.65) is a magnetic force, and the second term is the friction force which keeps
temperature T constant according to (6.66). Q in (6.66) denotes a constant param-
eter, and N is the number of atoms in the system. Note that we have introduced
the anisotropic friction variables ηα(α = x, y, z) to guarantee the ergodicity of the
system even if N = 1.

The magnetic force in (6.65) is obtained from (6.56) and (6.62) as

−∂Ψ (ξ)
∂ξiα

= 1

2
J̃
(〈miα〉0 − ξiα

)− 2T ξiα
ξ2
i

. (6.67)

Here 〈miα〉0 is the average magnetic moment with respect to the Hamiltonian (6.57)
in the random exchange fields. It is given by the Green function G(z) for the Hamil-
tonian as

〈miα〉0 =
∫
dωf (ω)

(−)
π

Im
∑
mσ

(
σαG(ω+ iδ)

)
ilmσ ilmσ

, (6.68)

Gilmσ jl′m′σ ′(z)=
[(
z−H (ξ)

)−1]
ilmσ jl′m′σ ′ . (6.69)

Here l = 2, and H (ξ) is the one-electron Hamiltonian matrix of (6.57). The Green
functions coupled with the Pauli spin matrices in (6.68) are expressed as follows
with use of the new basis functions which diagonalize the Pauli spin matrices σα
(α = x, y, z).

∑
σ

(σxG)iLσ iLσ =GiL1iL1 −GiL2iL2, (6.70)
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Fig. 6.6 The MD unit cell
embedded by the
site-dependent effective
medium ΣiLσσ ′ and
site-independent effective
medium ΣLσ

∑
σ

(σyG)iLσ iLσ =GiL3iL3 −GiL4iL4, (6.71)

∑
σ

(σzG)iLσ iLσ =GiL↑iL↑ −GiL↓iL↓. (6.72)

Here the local basis functions at the r.h.s. are defined by

|iL1〉 = 1√
2

(|iL ↑〉 + |iL ↓〉), (6.73)

|iL2〉 = 1√
2

(|iL ↑〉 − |iL ↓〉), (6.74)

|iL3〉 = 1√
2

(|iL ↑〉 + i|iL ↓〉), (6.75)

|iL4〉 = 1√
2

(|iL ↑〉 − i|iL ↓〉). (6.76)

It should be noted that the exchange fields {ξ i} randomly change in space and time
in the MD method, so that the system does not satisfy in general the translational
symmetry at each time step in the MD. Therefore, the recursion method is used for
the calculation of the Green functions in (6.70), (6.71), and (6.72) (see Appendix G).

In numerical calculations, we have to consider the MD unit cell with the finite
number of atoms N . The ‘magnetic moment’ ξ i is centered in the MD unit cell. In
order to simulate the system with N =∞, the MD unit cell is usually embedded
in a site-dependent effective medium ΣiLσσ ′ . It is further surrounded by a site-
independent medium as shown in Fig. 6.6. They are determined self-consistently by
the CPA equations (3.254) in which the dynamical correction has been omitted and
iωl has been replaced by z.

The fcc transition metals are expected to form complex magnetic structures
around the d electron numbers nd between 6.0 and 7.0 due to competing interac-
tions. Some numerical results of the model calculations are presented in Figs. 6.7,
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Fig. 6.7 Magnetic structures
of the fcc transition metals at
50 K obtained by the MD
with 108 atoms per unit cell:
case of the d electron number
n= 6.2 [109]

Fig. 6.8 Magnetic structures
of the fcc transition metals
obtained by the MD with 108
atoms per unit cell: case of
the d electron number
n= 6.4 [109]

6.8, and 6.9 [108, 109]. The Slater–Koster d band model [31] and N = 108 atoms
per MD unit cell (3× 3× 3 fcc lattice) are adopted there. The band width and effec-
tive exchange energy parameter were fixed to be the values of γ -Mn: W = 0.443 Ry
and J̃ = 0.060 Ry. Starting from a random configuration of LM’s {ξ i (0)}, we solve
(6.64)–(6.66) and obtain the magnetic moments 〈mi〉 by taking the time average in
the equilibrium state.

The calculated magnetic structure for nd = 6.2 shows the AF structure of the first
kind in accordance with the magnetic structure of γ -Mn as shown in Fig. 6.7. The
calculated magnetic moment |〈mi〉| = 2.5 μB is also consistent with the experimen-
tal value 2.3 μB and the theoretical one 2.32 μB [105]. The MD method yields the
Néel temperature TN = 510 K for γ -Mn [110] which is in good agreement with the
experimental result TN = 500 K.

When the d electron number nd is increased, the AF structure changes to the
helical structures due to competition between the ferro- and antiferro-magnetic in-
teractions. For n = 6.4, the LM’s in an antiferromagnetic plane rotate by 240◦
with a translation by the lattice constant a along the axis perpendicular to the
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Fig. 6.9 Magnetic structures
of the fcc transition metals
obtained by the MD with 108
atoms per unit cell: case of
the d electron number
n= 6.6 [109]

plane as shown in Figs. 6.8. The wave vector of the helical structure is given by
Q = (0,1/3,1)2π/a and |〈mi〉| = 2.0 μB. A further increase in d electron num-
ber reduces the average magnetic moments and leads to the helical structure with
amplitude modulations as shown in Fig. 6.9; the wave vector Q is the same as in
n = 6.4, but the magnitudes of LM |〈mi〉| are spatially modulated from 0.75 μB
to 1.30 μB. The modulated structure is characteristic of itinerant electron systems
because such a modulation should be suppressed by a large energy loss of Coulomb
interactions in the insulator system. It is stabilized by the energy gain due to the
break of a frustrated magnetic structure with equal amplitudes of LM’s.

The MD approach is useful for theoretical study of the magnetic structure in com-
peting magnetic interaction system. The size of the MD unit cell is however limited
to be finite and thus the SDW with wave length larger than the lattice constant of
the MD unit cell are not described.

6.4 Phenomenological Theory of Magnetic Structure

Competing magnetic interactions often form the complex magnetic structures whose
unit cells are huge or which are described by incommensurate wave vectors. Micro-
scopic theories of magnetic structure are often faced with the difficulty in descrip-
tion for such systems because the system size which one can treat is limited to
rather small number (�104). Furthermore the accuracy of the microscopic theories
is often not enough to describe the stability of magnetic structures when the en-
ergy difference between structures is too small. In such cases we have to rely on
the phenomenological theory to understand the structure. We present in this section
the Ginzburg–Landau phenomenological theory, and discuss possible multiple spin
density waves (MSDW) in γ -Fe [111, 112]. The theory is also useful for finding
general properties of the magnetic structure determined by crystal symmetry.

Let us consider a system with a magnetic atom per unit cell and assume that
it shows a cubic crystal symmetry for simplicity. Assuming small size of magnetic
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moments, we expand the free energy F with respect to the local magnetic moments.
Because of the time reversal symmetry in the absence of the external magnetic field,
the free energy consists of even-order terms of the magnetic moments. We consider
here the terms up to the fourth order. Because of cubic symmetry the free energy
should be invariant with respect to the symmetry operations for magnetic moments:
rotation mRl

→R(mRl
), inversion mRl

→m−Rl
, and translations mRl

→mRl+T .
Here Rl is the position vector of site l, and mRl

≡ml is the thermal average of the
local magnetic moment on site l. R denotes either the rotation C4[100] or C3[111],
and T denotes an arbitrary lattice translation vector. The free energy of the system
per lattice site is then expressed as follows.

F = 1

N2

∑
l, l′

A
(
l, l′

)
ml ·ml′ + 1

N4

∑
l, l′, l′′, l′′′

[
B
(
l, l′, l′′, l′′′

){ml ·ml′ }{ml′′ ·ml′′′ }

+C(l, l′, l′′, l′′′)(mlyml′yml′′zml′′′z +mlzml′zml′′yml′′′y +mlzml′zml′′xml′′′x

+mlxml′xml′′zml′′′z +mlxml′xml′′yml′′′y +mlyml′yml′′xml′′′x)
]
. (6.77)

Here N is the number of lattice sites. A(l, l′), B(l, l′, l′′, l′′′), and C(l, l′, l′′, l′′′)
are expansion coefficients. The second-order terms and the fourth-order terms with
B(l, l′, l′′, l′′′) in the free energy (6.77) are isotropic since they are expressed in
terms of the scalar products of magnetic moment vectors. On the other hand,
the fourth-order terms with coefficients C(l, l′, l′′, l′′′) are anisotropic. Such an
anisotropy is caused by the spin–orbit interactions. Here we restrict ourselves to
the transition metals where the spin–orbit coupling effects are negligibly small, and
neglect the anisotropic terms; C(l, l′, l′′, l′′′)= 0.

It is convenient to use the Fourier representation of the local magnetic moment
in order to describe the spin density wave (SDW).

ml =
EBZ∑
q

m(q)eiq·Rl . (6.78)

Here
∑EBZ

q means a summation with respect to q over the extended first Brillouin

zone (EBZ), which is defined to include all zone boundary points. This form has the
merit that one can argue the structures in both commensurate and incommensurate
cases on the same footing.

The Fourier representation of the isotropic free energy is then given by

F =
EBZ∑
q

A(q)

[∣∣m(q)∣∣2 +∑
K �=0

δq,K/2 m2(q)

]

+
∑
K

∑
q+q ′+q ′′+q ′′′=K

B
(
q,q ′,q ′′,q ′′′

){
m(q) ·m(

q ′
)}{

m
(
q ′′

) ·m(
q ′′′

)}
.

(6.79)
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Fig. 6.10 Phenomenological Landau free energy F of ferromagnet as a function of the magneti-
zation M below and above the Curie temperature (TC)

Here K is the reciprocal lattice vector. A(q) and B(q,q ′,q ′′,q ′′′) are coefficients of
the free energy expansion in the Fourier representation.

In the ferromagnetic state, only m ≡ |m(q = 0)| component remains. We have
then the free energy,

FF = Am2 +Bm4 −mh. (6.80)

Here A ≡ A(0), B ≡ B(0,0,0,0), and the term of uniform magnetic field h is
added. The free energies below and above the Curie temperature are depicted for
h= 0 in Fig. 6.10. Equilibrium magnetization is obtained from the stationary con-
dition.

m
(
2A+ 4Bm3)= h. (6.81)

Above the Curie temperature TC and for small h, we have m = h/2A. Thus A =
1/2χ , χ being the paramagnetic susceptibility. At TC the susceptibility χ diverges.
When we expand A as A = (T − TC)/2C above TC, we obtain the Curie–Weiss
law χ = C/(T − TC). Below TC and for h= 0, (6.81) is identical with (3.18). We
have the magnetization (3.21);m=√−A/2B under the condition−A/2B > 0. The
stability condition for the ferromagnetic solution is given by ∂2FF/∂

2m< 0 at the
equilibrium m, and yields A< 0. From the conditions −A/2B > 0 and A< 0, we
obtain B > 0. ExpandingAwith respect to T −TC below TC, we findm∝√TC − T
near TC. The free energy in the equilibrium state is given by FF =−A2/4B . This
is the phenomenological theory of ferromagnetism known as the Landau theory.
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The same argument is applicable to the antiferromagnetic structure (AF) which
is given by

ml =m(Q)k
(

eiQ·Rl + e−iQ·Rl
)
. (6.82)

Here Q is a wave vector leading to the AF structure (see Sect. 1.7). k is a unit vector
along the z axis. The free energy of the AF is given by

FAF = A(Q)m(Q)2 +B(Q)m(Q)4 −m(Q)h(Q). (6.83)

Here A(Q) and B(Q) are coefficients, and h(Q) is the staggard field. Min-
imizing the free energy, the sublattice magnetization is obtained as m(Q) =√−A(Q)/2B(Q) when A(Q) < 0 and B(Q) > 0. The free energy in the equi-
librium state is given by FAF =−A(Q)2/4B(Q).

It is also worthwhile to mention the long-wavelength limit of the free energy
(6.79). There only the q components around |q| = 0 are important there, so that one
can replace B(q,q ′,q ′′,q ′′′) with a constant γ /4(= B(0,0,0,0)).

F =
EBZ∑
q

1

2χ(q)

∣∣m(q)∣∣2 + 1

4
γ

∑
q+q ′+q ′′+q ′′′=0

{
m(q) ·m(

q ′
)}{

m
(
q ′′

) ·m(
q ′′′

)}
.

(6.84)

Here χ(q) is the generalized susceptibility defined by (6.33): m(q) = χ(q)h(q).
The form (6.84) is used in the phenomenological spin-fluctuation theory for the
weak ferromagnets [113].

6.4.1 Multiple SDW with Commensurate Wave Vectors

In the itinerant electron system with high crystalline symmetry, the multiple spin
density wave (MSDW) structure becomes possible. We consider in this subsection
the commensurate multiple MSDW structures (see Fig. 1.15). We consider the fcc
lattice here as an example. The magnetic moments for the MSDW are expressed by

ml =
3∑

n=1

[
m(Q̂n) eiQ̂n·Rl +m(Q̂n) e−iQ̂n·Rl

]
. (6.85)

Here the wave vectors are given by Q̂1 = (1,0,0)(2π/a), Q̂2 = (0,1,0)(2π/a),
and Q̂3 = (0,0,1)(2π/a). Each wave vector forms the antiferromagnetic struc-
ture of the first kind (AF-I) on the fcc lattice. m(Q̂1), m(Q̂2), and m(Q̂3) are real
and assumed to be orthogonal to each other: m(Q̂2) ·m(Q̂3)=m(Q̂3) ·m(Q̂1)=
m(Q̂1) ·m(Q̂2)= 0.
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Taking the terms related with {Q̂i} in the free energy (6.79), we obtain

F =
3∑
i=1

[
ÃQ

∣∣m(Q̂i )
∣∣2 + (B1Q + B̃2Q)

∣∣m(Q̂i )
∣∣4]

+
(2,3)(3,1)(1,2)∑

(i,j)

B̃1QQ
∣∣m(Q̂i )

∣∣2∣∣m(Q̂j )
∣∣2. (6.86)

The coefficients ÃQ, B1Q, B̃2Q, and B̃1QQ are expressed in terms of linear combi-
nations of the coefficients {A(q)} and {B(q,q ′,q ′′,q ′′′)}, where q , q ′, q ′′, and q ′′′
are chosen to be one of ±Q̂1, ±Q̂2, and ±Q̂3.

As mentioned before, the AF-I structure (m(Q̂1) �= 0, m(Q̂2)=m(Q̂3)= 0) is
stable in the region

ÃQ < 0, (6.87)

B1Q + B̃2Q > 0. (6.88)

We obtain the magnetic moment

∣∣m(Q1)
∣∣=

[
− ÃQ

2(B1Q + B̃2Q)

]1/2

, (6.89)

as well as the free energy

F1Q̂ =−
Ã2
Q

4(B1Q + B̃2Q)
. (6.90)

The double Q MSDW (2Q̂) state is characterized by m(Q̂1), m(Q̂2) �= 0 and
m(Q̂3) = 0 (see Fig. 1.14). The stationary condition of the free energy yields the
equations for magnetic moments as

ÃQ + 2(B1Q + B̃2Q)
∣∣m(Q̂1)

∣∣2 + B̃1QQ
∣∣m(Q̂2)

∣∣2 = 0, (6.91)

ÃQ + 2(B1Q + B̃2Q)
∣∣m(Q̂2)

∣∣2 + B̃1QQ
∣∣m(Q̂1)

∣∣2 = 0. (6.92)

When

D2Q̂ ≡ 4(B1Q + B̃2Q)
2 − B̃2

1QQ �= 0, (6.93)

equations (6.91) and (6.92) are solved as

∣∣m(Q̂1)
∣∣= ∣∣m(Q̂2)

∣∣=
[
− ÃQ

2(B1Q + B̃2Q)+ B̃1QQ

]1/2

, (6.94)
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under the condition

− ÃQ

2(B1Q + B̃2Q)+ B̃1QQ
> 0. (6.95)

The stability condition to the solution (6.94) is given by

δ2F = 1

2

2∑
i=1

2∑
j=1

∂2F

∂{|m(Q̂i )|2}∂{|m(Q̂j )|2}
δ
∣∣m(Q̂i )

∣∣2δ∣∣m(Q̂j )
∣∣2 > 0. (6.96)

It is equivalent to

f11 > 0,

∣∣∣∣f11 f12
f21 f22

∣∣∣∣> 0, (6.97)

where fij is defined by fij ≡ ∂2F/∂{|m(Q̂i )|2}∂{|m(Q̂j )|2} (i, j = 1,2). The
condition (6.97) yields the inequalities,

2(B1Q + B̃2Q) > 0, (6.98)

4(B1Q + B̃2Q)
2 − B̃2

1QQ > 0. (6.99)

Conditions (6.93), (6.95), (6.98), and (6.99) reduce to

ÃQ < 0, (6.100)

B1Q + B̃2Q >
|B̃1QQ|

2
. (6.101)

Inequalities (6.100) and (6.101) yield the stability condition for the 2Q̂ structure.
The equilibrium free energy is obtained by substituting (6.94) and m(Q̂3)= 0 into
(6.86):

F2Q̂ =−
Ã2
Q

2(B1Q + B̃2Q)+ B̃1QQ
. (6.102)

In the same way, we obtain magnetic moments of the triple Q MSDW (3Q̂)
structure by minimizing free energy (6.86) with respect to |m(Q̂1)|2, |m(Q̂2)|2,
and |m(Q̂3)|2.

∣∣m(Q̂1)
∣∣= ∣∣m(Q̂2)

∣∣= ∣∣m(Q̂3)
∣∣=

[
− ÃQ

2(B1Q + B̃2Q + B̃1QQ)

]1/2

, (6.103)

under the condition

− ÃQ

2(B1Q + B̃2Q + B̃1QQ)
> 0. (6.104)
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The thermodynamical stability condition for the 3Q̂ structure and inequality (6.104)
lead to the following condition:

ÃQ < 0, (6.105)

B1Q + B̃2Q >
B̃1QQ

2
for B̃1QQ > 0, (6.106)

B1Q + B̃2Q >−B̃1QQ for B̃1QQ < 0. (6.107)

The equilibrium free energy is obtained by substituting (6.103) into (6.86):

F3Q̂ =−
3Ã2

Q

4(B1Q + B̃2Q + B̃1QQ)
. (6.108)

It is characteristic of the itinerant electron system that the amplitudes of the mag-
netic moments are variable. The amplitude M per site is given by

M2 ≡ 1

N

∑
l

ml ·ml =
EBZ∑
q,q ′

m(q) ·m(
q ′
)∑

K

δq+q ′,K . (6.109)

In the commensurate case, this becomes

M2 = 4
(∣∣m(Q̂1)

∣∣2 + ∣∣m(Q̂2)
∣∣2 + ∣∣m(Q̂3)

∣∣2), (6.110)

and we have the amplitude M1Q̂ for the 1Q̂, M2Q̂ for the 2Q̂, and M3Q̂ for 3Q̂ as
follows.

M2
1Q̂
=− 2ÃQ

B1Q + B̃2Q
, (6.111)

M2
2Q̂
=− 8ÃQ

2(B1Q + B̃2Q)+ B̃1QQ
, (6.112)

M2
3Q̂
=− 6ÃQ

B1Q + B̃2Q + B̃1QQ
. (6.113)

From these expressions, we find that

M1Q̂ <M2Q̂ <M3Q̂, (6.114)

when the 3Q̂ state is stable.
It is common for the three structures that the condition ÃQ < 0 is required. By

comparing stability conditions (6.88), (6.101), and (6.106)–(6.107), and equilibrium
free energies (6.90), (6.102), and (6.108), we obtain the magnetic phase diagram as
shown in Fig. 6.11. In the AF phase (0< B1Q + B̃2Q < |B̃1QQ|/2), the AF state is
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Fig. 6.11 Magnetic phase
diagram for commensurate
structures with |Q̂| = 2π/a
for ÃQ < 0 [111]. The
first-kind antiferromagnetic
(AF), the 2Q̂, and the 3Q̂
phases are shown in the space
of expansion coefficients
B̃1QQ/B1Q and B̃2Q/B1Q,
where B1Q > 0 for
B̃2Q/B1Q >−1 and B1Q < 0
for B̃2Q/B1Q <−1

the only stable structure. In the 2Q̂ phase (0<−B̃1QQ/2<B1Q+B̃2Q <−B̃1QQ),
the AF and 2Q̂ structures are stable, and

F1Q̂ >F2Q̂. (6.115)

In the 3Q̂ phase (0< B̃1QQ/2<B1Q+ B̃2Q, 0<−B̃1QQ <B1Q+ B̃2Q), all three
commensurate structures are stable, and we find that

F1Q̂ >F2Q̂ >F3Q̂. (6.116)

We observe that the MSDW states with higher multiplicity are always more sta-
ble than the other states with lower multiplicity. The physical reason for this fact is
as follows. First consider the free energy for the MSDW states (6.86) without the
mode–mode coupling term (the term with B1QQ). The free energy for the 3Q̂ state
is three times smaller than that for the 1Q̂ state, as seen from (6.90) and (6.108).
This free energy gain is caused by the increase in amplitudes of local magnetic mo-
ments as seen from (6.111) and (6.113), and is characteristic of the itinerant electron
system. In the localized model such a mechanism of energy gain is forbidden be-
cause of the constraint of the constant amplitudes of local magnetic moments, so
that only the 1Q̂ state is realized.

When the mode–mode coupling term B̃1QQ is positive, it suppresses the increase
in amplitudes of local moments of the 3Q̂ state (see (6.111) and (6.113)). As a
result, the 3Q̂ MSDW is stable only when B̃1QQ is smaller than a critical value.

In the band theory [114], three possible ground states are found for γ -Fe using
the LMTO method and the von Barth–Hedin LDA potential: the first-kind AF, and
the 2Q̂ and 3Q̂ structures. It is found numerically that the 3Q̂ structure is the most
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Table 6.1 Energy differences E −E(3Q̂) and amplitudes M of magnetic moments of fcc Fe for
1Q̂, 2Q̂, and 3Q̂ MSDW states which are calculated by the LDA-DFT theory [114]. E (E(3Q̂))
denotes the ground state energy for each structure (3Q̂ structure)

1Q̂ 2Q̂ 3Q̂

E −E(3Q̂) (mRy) 3.3 0.8 0.0

M (μB) 1.18 1.24 1.24

stable among the three at the equilibrium lattice constant a = 6.8 a.u. As shown
in Table 6.1, their results of the energy at T = 0 follow the inequality (6.116) ob-
tained by the phenomenological theory. It is interesting to note that the amplitudes
of their magnetic moments for the 3Q̂ and 2Q̂ structures were found to be the
same and larger than that for the AF structure: M3Q̂ =M2Q̂ > M1Q̂. According to

(6.112) and (6.113), this implies that B1Q+ B̃2Q = B̃1QQ/2; γ -Fe calculated by the
band theory is located in the vicinity of the AF-3Q̂ boundary in the 3Q̂ phase of
Fig. 6.11.

6.4.2 Multiple SDW with Incommensurate Wave Vectors

We consider next the multiple spin density waves (MSDW) with three incommen-
surate wave vectors Q1, Q2, and Q3. These wave vectors satisfy the condition
q + q ′ + q ′′ + q ′′′ �=K for q , q ′, q ′′, and q ′′′ being one of {Qn} (see (6.79)). The
linearly polarized MSDW is one of the possible MSDWs. It is described by

ml =
3∑

n=1

[
m(Qn) eiQn·Rl +m∗(Qn) e−iQn·Rl

]
, (6.117)

with

m(Qn)=
(
mx(Qn),my(Qn),mz(Qn)

)
eiαn (n= 1,2,3). (6.118)

Here mx(Qn), my(Qn), and mz(Qn) (n = 1,2,3) are assumed to be real. α1,
α2, and α3 are phase factors. Additionally we consider the case in which m(Q1),
m(Q2), and m(Q3) are orthogonal to each other.

The free energy for the linear MSDW has the same form as the commensurate
case, i.e., (6.86).

FL =
3∑
i=1

[
AQ

∣∣m(Qi )
∣∣2 + (B1Q +B2Q)

∣∣m(Qi )
∣∣4]

+
(2,3)(3,1)(1,2)∑

(i,j)

B1QQ
∣∣m(Qi )

∣∣2∣∣m(Qj )
∣∣2. (6.119)
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We therefore obtain the same results in which ÃQ, B̃2Q, and B̃1QQ have been re-
placed by AQ, B2Q, and B1QQ, respectively. The phase diagram is the same as
Fig. 6.11 in which B̃2Q and B̃1QQ have been replaced by B2Q and B1QQ, and AF,
2Q̂, and 3Q̂ have been replaced by 1Q, 2Q, and 3Q, respectively. Thus we find
the 3Q state in a wide range in the magnetic phase diagram.

It is found in the band calculations that there is the incommensurate 3Q MSDW
solution with Q= (0.6,0,0)(2π/a), (0,0.6,0)(2π/a), and (0,0,0.6)(2π/a) in the
fcc Fe at lattice constant 6.8 � a � 7.0 [115]. Furthermore it is verified to be stable
as compared with the 1Q SDW state irrespective of the lattice constant, and the am-
plitude of the magnetic moment for the 3Q state is larger than that for the 1Q state.
These results are consistent with those of the phenomenological theory obtained in
the last and present subsections; the 3Q MSDW is always stabilized when the 3Q

solution exists, and has a larger amplitude of the magnetic moment as compared
with the 1Q and 2Q SDW.

Alternative MSDW are the helically polarized SDWs whose magnetic moments
are described by (6.117) with

m(Qj )=
|m(Qj )|√

2
(ejk − iejm)

(
(j, k,m)= (1,2,3)(2,3,1)(3,1,2)). (6.120)

Here ejk and ejm are unit vectors being perpendicular to the wave vector Qj , and
orthogonal to each other (see (1.94) and (1.96)).

The free energy for the helical MSDW is given as follows.

FH =
3∑
i=1

[
AQ

∣∣m(Qi )
∣∣2 +B1Q

∣∣m(Qi )
∣∣4]

+
(2,3)(3,1)(1,2)∑

(i,j)

(B1QQ +B2QQH)
∣∣m(Qi )

∣∣2∣∣m(Qj )
∣∣2. (6.121)

Note that the coefficient B2Q of the linear MSDW in (6.119) disappears and an
additional coefficient B2QQH appears in the mode–mode coupling term in the case
of the helical MSDW. However, the free energy (6.121) is again identical to (6.86)
in which ÃQ, B1Q+ B̃2Q, and B̃1QQ have been replaced by AQ, B1Q, and B1QQ+
B2QQH, so that we can easily obtain the results for the helical MSDW by exchanging
the coefficients in the results of the last subsection.

By comparing the free energy among the incommensurate linear 1Q, 2Q, 3Q

MSDW, and the helical 1Q, 2Q, 3Q MSDW, we obtain the phase diagram for the
incommensurate MSDW. An example is shown in Fig. 6.12. Note that the condi-
tion that both the linear and helical SDWs are stable is AQ < 0 and B1Q > 0. We
find that the 3Q linear (3Q) and 3Q helical (3QH) MSDWs occupy most of the
region −2<B1QQ/B1Q < 1. This arises from the fact that the 3Q states are stable
when the mode–mode coupling term B1QQ or B1QQ + B2QQH is relatively small.
Since the stability of the helical 3Q is accompanied by the increase in amplitude
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Fig. 6.12 Magnetic phase diagram for the incommensurate SDWs for the expansion coefficients
AQ < 0, B1Q > 0 and B2QQH/B1Q = 1 [112]. The phases of the 1Q linear SDW (1Q), the 2Q
linear MSDW (2Q), the 3Q linear MSDW (3Q), the 1Q helical SDW (1QH), the 2Q helical
MSDW (2QH), and the 3Q helical MSDW (3QH) are shown in the space of expansion coefficients
B1QQ/B1Q and B2Q/B1Q. Coexistence lines between the linear and helical SDWs are indicated
by solid lines. The phases shown with parenthesis are metastable states in which the ground state
cannot be determined within the fourth-order Ginzburg–Landau theory. The gray regions indicate
that the magnetic moment amplitude in the phase becomes so large that the fourth-order theory is
not applicable

of the magnetic moment as shown in (6.114), it is characteristic of the itinerant
electron magnetism. In the Heisenberg model, only the 1Q helical structure is sta-
bilized by the competition between intersite exchange interactions. Experimentally,
the 3Q MSDW is considered to be realized in γ -FexMn1−x (0.4 < x < 0.8) al-
loys [103].

Neutron diffraction experiments on the cubic γ -Fe100−xCox (x < 4) alloy pre-
cipitates in Cu show a magnetic satellite peak at wave vector Q= (0.1,0,1)2π/a
[102]. The magnetic structure was suggested to be a helical SDW, but has not yet
been determined precisely. This is because the neutron diffraction analysis can-
not distinguish between 1Q and 3Q states when the crystal structure of the γ -
Fe precipitates is properly cubic and the distribution of domains is isotropic. The
present result based on the Ginzburg–Landau phenomenological theory tells us that
the 3Q helical MSDW is always stable as compared with the 1Q and 2Q SDWs
when the 3Q solution exists. It is desirable to investigate the relative stability be-
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tween 3Q linear and helical MSDWs in the first-principles ground-state calculations
of γ -Fe.

The same type of the helical 3Q MSDW has been found to be possible in MnSi
system [116]. There we must take into account the spin–orbit coupling called the
Dzyaloshinskii–Moriya interaction which appears in the noncentrosymmetric crys-
tal structure.



Chapter 7
Magnetism in Dilute Alloys

Dilute magnetic alloys such as the transition metals dissolved in a simple metal show
a unique magnetic property. In these alloys the oscillating long-range interactions
appear via the conduction electrons, and the spin glass state in which the local mag-
netic moments are randomly oriented forms due to the competition between long-
range ferro- and antiferro-magnetic interactions. We present the theoretical aspects
of these properties in Sect. 7.1. In Sect. 7.2, we deal with the impurity limit. There
the impurity magnetic moment disappears at low temperatures due to the formation
of the singlet state. Because of the crossover from the local moment behavior to
the Fermi liquid behavior with decreasing temperature, various anomalies called the
Kondo effects appear. We briefly describe the formation of the singlet state known
as the Kondo singlet.

7.1 Magnetic Interactions and Spin Glasses in Dilute Alloys

The noble metal based alloys containing less than several percent of magnetic tran-
sition metals such as Cu–Mn and Au–Fe alloys form the substitutional disordered
alloys. Susceptibilities of these alloys show a cusp at a temperature Tg indicating
a magnetic phase transition as shown in Fig. 7.1. A remarkable point is that Tg
showing a phase transition continues up to 0.005 at% impurity concentration in
many cases [117]. The average inter-site distance between magnetic impurities at
0.005 at% is about 30 times that of the nearest-neighbor. Such a long-range mag-
netic interaction is explained neither by the super-exchange interaction nor by the
direct exchange interaction as discussed in Sect. 1.6 because both interactions are
caused by the overlap between neighboring atomic orbitals. In this section, we de-
rive such a long-range magnetic interaction and briefly discuss the magnetism of
dilute alloys.

Let us consider the Cu–Mn dilute alloys as an example to derive the model
Hamiltonian. The electronic structures of constituent Cu and Mn atoms are given
by 3d104s and 3d54s2, respectively. When these atoms form dilute alloys, electron

Y. Kakehashi, Modern Theory of Magnetism in Metals and Alloys,
Springer Series in Solid-State Sciences 175, DOI 10.1007/978-3-642-33401-6_7,
© Springer-Verlag Berlin Heidelberg 2012

181

http://dx.doi.org/10.1007/978-3-642-33401-6_7


182 7 Magnetism in Dilute Alloys

Fig. 7.1 Susceptibilities of
Au–Fe dilute alloys as a
function of temperature [118]

hoppings to the 3d orbitals of Cu atoms are suppressed because these orbitals form
almost closed shells even in alloys. Electron hoppings between 4s orbitals must be
fast since these atomic wave functions are extended in space. Since 3d orbitals on
Mn atoms form unfilled shells, electron hoppings from the 3d orbitals to the 4s or-
bitals on the surrounding Cu atoms and the hopping backs to the Mn 3d orbitals are
possible. We can neglect the direct electron hoppings between 3d orbitals on differ-
ent Mn atoms because we are considering the dilute alloys less than 10 at% Mn. The
Hamiltonian of the system is therefore described by the following two-band model.

H =Hs +Hsd +Hd, (7.1)

Hs =
∑
iσ

εsniσ +
∑
ijσ

tij c
†
iσ cjσ , (7.2)

Hsd =
∑
ijσ

(
t
(sd)
ij c

†
iσ ajσ + t (ds)

ij a
†
iσ cjσ

)
, (7.3)

Hd =
∑
iσ

εdndiσ +
∑
i

Undi↑ndi↓. (7.4)

Here εs (εd) is the atomic level of the s (d) orbital. tij (t (sd)
ij ) is the transfer integral

between the s orbital on site i and s (d) orbital on site j . We assumed a single d
orbital instead of five d orbitals on each magnetic atom for simplicity. Moreover we
have introduced the on-site Coulomb interaction U between d electrons because the
d electrons are localized as compared with the 4s electrons.
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Since 4s electrons form a wide band, the momentum representation may be
more suitable. We can construct the Bloch wave function ϕk from the atomic
4s wave functions φi as ϕk = ∑

j φj 〈j |k〉 =
∑

j φj exp(−ik · Rj )/
√
L. Mak-

ing use of the Bloch functions {ϕk}, we can diagonalize the Hamiltonian matrix
(H s)ij = εsδij + tij (1− δij ) as

∑
ij 〈k|i〉(H )ij 〈j |k′〉 = εkδkk′ . Accordingly we can

define the creation (annihilation) operator c†
kσ (ckσ ) in the momentum representa-

tion, as c†
kσ =

∑
i c

†
iσ 〈i|k〉 (ckσ =∑

i ciσ 〈k|i〉). The 4s conduction band Hamilto-

nian Hs is then expressed as Hs =∑
kσ εknkσ . Here nkσ = c

†
kσ ckσ is the number

operator for 4s electrons with momentum k and spin σ . The hybridization term Hsd
is also written by the creation and annihilation operators of conduction electrons in
the momentum representation, so that the total Hamiltonian (7.1) is expressed as
follows.

H =
∑
kσ

εknkσ +
∑
jkσ

(
eik·Rj Vkdc

†
kσ ajσ + e−ik·Rj Vdka

†
jσ ckσ

)

+
∑
iσ

εdndiσ +
∑
i

Undi↑ndi↓. (7.5)

Here Vkd(= V ∗dk) is the hybridization matrix element defined by

Vkd =
∫
ϕ∗k (r)V (r)φd(r) dr, (7.6)

and V (r) is the atomic potential for an electron on the impurity site.
The Hamiltonian (7.5) for dilute alloys is referred as the Anderson lattice Hamil-

tonian. Note that the Hamiltonian is derived without using the translational symme-
try of magnetic impurities, so that it is applicable to disordered alloys.

The Hamiltonian for the system with only one impurity at the origin is a special
case of (7.5) and is given by

H =
∑
kσ

εknkσ +
∑
kσ

(
Vdka

†
dσ ckσ + Vkdc

†
kσ adσ

)+∑
σ

εdndσ +Und↑nd↓. (7.7)

Here we omitted the site index 0 in the subscripts for simplicity and expressed the
creation (annihilation) operator for d electron as a†

dσ (adσ ) to make the d character
clearer. The Hamiltonian is called the Anderson model for the magnetic impurity in
conduction band [119].

The Anderson lattice Hamiltonian has the eigen states {|{nkσ }, {ndj = 1, sjz}〉} in
the zero-mixing limit (i.e., Vkd = 0) and at half-filling. Here {nkσ } denotes a config-
uration of the Fermi sea states for conduction electrons, while {ndj = 1, sjz} denotes
the atomic states of magnetic impurities with the d electron number ndj = 1 and ‘lo-
cal magnetic moment’ sjz(=±1/2). Even for the system with a finite hybridization,
the local magnetic moments on the impurity atoms should remain and may couple
with the conduction electrons via the hybridization Vdk and Vkd. In order to obtain
such a picture, we derive an effective Hamiltonian assuming a small hybridization.
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Fig. 7.2 Two possible virtual excitations via hybridization parameters Vkd and Vdk

We apply the second-order perturbation formula based the projection technique,
i.e., (1.80) to obtain the effective Hamiltonian:

Hp = PHP − PHIQ
(
E0
Q −E0

P

)−1
QHIP. (7.8)

Here we adopt the Hamiltonian in the zero-mixing limit as the noninteracting Hamil-
tonian H0, and treat the hybridization term as an interaction HI assuming small
parameters:

HI =
∑
jkσ

(
eik·Rj Vkdc

†
kσ ajσ + e−ik·Rj Vdka

†
jσ ckσ

)
. (7.9)

The eigen values of H0 are given by E0
λ =

∑
kσ εknkσ +

∑
iσ εdndiσ +∑

i Undi↑ndi↓. Corresponding eigen states are given by {|{nkσ }, {ndj , sjz}〉}.
We choose the {ndj = 1} states as subspace P on which the effective

Hamiltonian Hp operates, and define the projection operator P such that P =∑
{nkσ }{sjz} |{nkσ }, {ndj = 1, sjz}〉〈{nkσ }, {ndj = 1, sjz}|. Then we have PHP =

P(
∑

kσ εknkσ +
∑

j εd)P . When we apply HI in subspace P , we have two kinds
of excited states as shown in Fig. 7.2, the states with an empty d site and a particle
above the Fermi level in the conduction band which is caused via Vkd, and the states
with a doubly-occupied d site and a hole below the Fermi level in the conduction
band, which is caused via Vdk . Associated excitation energies E0

Q−E0
P are εk − εd

for the former and εd + U − εk for the latter, respectively. After the virtual exci-
tations, the system returns to the original state via operator PHI. Thus the second
term of (7.8) is written as
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PHIQ
(
E0
Q −E0

P

)−1
QHIP

= P
( ∑
j lkk′σσ ′

eik·Rj−ik′·Rj Vdk′Vkd

εk − εd
a

†
lσ ′ck′σ ′c

†
kσ ajσ

+
∑

j lkk′σσ ′

eik
′·Rl−ik·Rj Vk′dVdk

εd +U − εk ck′σ ′a
†
lσ ′ajσ c

†
kσ

)
P. (7.10)

Arranging the expressions, we finally obtain the effective Hamiltonian as follows.

HKL =
∑
kσ

εknkσ +
∑
j

(
εd +

∑
k

VdkVkd

εd − εk
)
+

∑
jkk′

ei(k
′−k)·RjWk′kc

†
k′σ ckσ

−
∑
jkk′

ei(k
′−k)·Rj Jk′k

∑
αγ

Sj · c†
k′α(σ )αγ ckγ . (7.11)

Here we have omitted the projector P for simplicity assuming that the Hamiltonian
operates on the subspace P . The potential scattering parameter Wk′k and effective
exchange energy parameter Jk′k between the local magnetic moment Sj and con-
duction electron spins σ are defined by

Wk′k = 1

2
Vk′dVdk

(
1

εk − εd −U − 1

εd − εk′
)
, (7.12)

Jk′k = Vk′dVdk

(
1

εk − εd −U + 1

εd − εk′
)
. (7.13)

The effective Hamiltonian HKL consisting of the conduction band and the local
magnetic moments is called the Kondo lattice Hamiltonian, and the exchange cou-
pling between the local magnetic moment Sj and conduction electrons is known as
the Kondo exchange coupling.

We can omit the potential scattering term and the constant term of d levels
for magnetic phenomena. Moreover we neglect the momentum dependence of the
Kondo coupling by assuming the constant hybridization parameter Vdk ≈ V and by
taking the average of the coupling Jk′k with respect to the conduction band energy.
We obtain then a simplified Kondo lattice Hamiltonian as follows.

HKL =
∑
kσ

εknkσ − JK

L

∑
jkk′

ei(k
′−k)·Rj ∑

αγ

Sj · c†
k′α(σ )αγ ckγ . (7.14)

Here Sj is the local magnetic moment on the magnetic impurity site j , which is

given by Sj =∑
αγ a

†
jα(σ )αγ ajγ /2. The Kondo coupling constant JK(= 〈Jk′k〉) is

expressed as follows.

JK = |V |2
∑
k

(
f (εk −μ)
εk − εd −U + 1− f (εk −μ)

εd − εk
)
. (7.15)
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Here f (εk − μ) is the Fermi distribution function, and μ is the chemical potential.
Note that JK < 0 for εd � εk ∼ μ� εd + U (case of the strong U and the half
filling).

Using the local-orbital representation of the conduction electrons, we obtain the
Kondo lattice Hamiltonian in the real space as follows.

HKL =
∑
kσ

εknkσ − 2JK

∑
j

Sj · sj . (7.16)

Here sj is the spin density of conduction electrons on site j , given by sj =∑
αγ c

†
jα(σ )αγ cjγ /2. The Kondo lattice Hamiltonian manifests the interaction be-

tween the conduction electrons and magnetic impurities. It is useful for analyzing
the transport properties and the spin polarization phenomena of dilute magnetic al-
loys.

In the dilute limit, the Hamiltonians (7.14) and (7.16) reduce to the following
Hamiltonian, which is called the Kondo Hamiltonian or the sd Hamiltonian.

HK =
∑
kσ

εknkσ − JK

L

∑
kk′

∑
αγ

S · c†
k′α(σ )αγ ckγ . (7.17)

The sd Hamiltonian was often used to clarify thermal and transport properties of
magnetic alloys in the dilute limit [120].

In the Kondo lattice Hamiltonian, the degree of freedom for conduction electrons
remains so that the nature of magnetic interactions between magnetic impurities is
not clear in this form. In the following, we consider the sub-subspace in which con-
duction electrons are in the ground state and only the degree of freedom on the
local magnetic moments {Sj } remains. To avoid confusion, we redefine the sub-
space P0 for the Kondo lattice Hamiltonian by {|{nkσ }, {ndj = 1, sjz}〉} and the
projector P0 by P0 =∑

{nkσ }{sjz} |{nkσ }, {ndj = 1, sjz}〉〈{nkσ }, {ndj = 1, sjz}|. Then
we define the sub-subspace P by {|{nkσ }G, {ndj = 1, sjz}〉} and the projector P by
P =∑

{sjz} |{nkσ }G, {ndj = 1, sjz}〉〈{nkσ }G, {ndj = 1, sjz}|. Here {nkσ }G denotes
the ground-state Fermi-sea configuration. We again make use of the projection tech-
nique for the second order perturbation, i.e., (7.8) to obtain the effective Hamiltonian
in sub-subspace P where only the degree of freedom for magnetic impurity spins
remains.

We adopt the Kondo coupling term in (7.14) as the interaction part HI, and ex-
press it as follows.

HI =−JK

L

∑
jkk′

ei(k
′−k)·Rj

(
Sj−c†

k′↑ck↓ + Sj+c†
k′↓ck↑ + Sjz

∑
σ

σc
†
k′σ ckσ

)
. (7.18)

Here Sj± are the spin-flip operators defined by Sj± = Sjx ± iSjy . We have then
PHKLP =∑occ

kσ εk . When we apply HI to P in sub-subspace P , we have three
kinds of excited states: spin-flipped state sjz + 1 accompanied by the particle–hole
pair excitations in conduction band via the Kondo coupling JK as shown in Fig. 7.3,
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Fig. 7.3 Three possible virtual excitations via the Kondo coupling JK

a spin-flipped state sjz−1 accompanied by the particle–hole pair excitations in con-
duction band, and the non spin-flipped state sjz accompanied by the particle–hole
pair excitations in conduction band. Associated excitation energies are now εk′ −εk .
Taking into account the possible paths via PHI, we obtain the effective Hamiltonian
in which the degree of freedom of conduction electrons has been eliminated as fol-
lows.

HRKKY = P
[

2
occ∑
k

εk −
∑
j

1

2
J (0)S(S + 1)−

∑
(i,j)

J (Ri −Rj )Si · Sj
]
P. (7.19)

Here J (Ri −Rj ) is defined by

J (Ri −Rj )= 2

(
JK

L

)2 ∑
kk′

nk − nk′
εk′ − εk cos

[(
k− k′

) · (Ri −Rj )
]
, (7.20)

and nk denotes the electron occupation number per spin of conduction electrons
with momentum k (i.e., the Fermi distribution function at T = 0 for electrons with
momentum k).

The effective Hamiltonian (7.19) has a form of the Heisenberg model as follows
when we omit the constant terms.

HRKKY =−
∑
(i,j)

J (Ri −Rj )Si · Sj . (7.21)

Here the projector P has been omitted by promising that the Hamiltonian is applied
on the subspace of the magnetic moments. Equation (7.21) is called the RKKY
(Ruderman–Kittel–Kasuya–Yosida) interaction, and the coupling constant J (R) is
known as the RKKY interaction coupling constant [121–123].
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The RKKY interaction between the magnetic moments of impurity atoms is
caused by a polarization of conduction electrons due to the local magnetic mo-
ments via the Kondo coupling. In fact, the RKKY interaction is expressed by the
susceptibility of conduction electrons as follows.

J (Ri −Rj )= J 2
K

L

∑
q

χ(q) cosq · (Ri −Rj ). (7.22)

Here χ(q) is the generalized static susceptibility defined by (6.33), i.e., m(q) =
χ(q)h(q), and has been given as follows (see (6.36)).

χ(q)= 2

L

∑
k

nk+q − nk
εk − εk+q . (7.23)

The RKKY interaction is obtained by a simple interpretation of the Kondo lat-
tice Hamiltonian. According to the real-space representation of the Kondo lattice
Hamiltonian (7.16), the conduction electrons feel a ‘magnetic field’ hj = JKSj on
site j . The field causes a conduction electron spin polarization mi = χijhj on site
i according to the linear response. The local moment Si has the Kondo interaction
−JKSi ·mi =−J 2

KχijSi · Sj according to the Hamiltonian (7.16). Summing up the
interactions with respect to all the pairs, we obtain the Hamiltonian (7.21) with a
coupling constant

J (Ri −Rj )= J 2
Kχij . (7.24)

Substituting the Fourier transform χij =∑
q χ(q) exp iq · (Ri −Rj ) into the above

expression, we find that the coupling constant (7.24) is identical with (7.22).
The RKKY interaction is long-range since it is based on the interaction between

the local magnetic moments via conduction electron polarization. In order to under-
stand its long-range nature, let us consider the free electron model. In this case, the
susceptibility (7.23) is expressed as

χ(q)= 4Ω

(2π)3

∫
|k|<kF

dk

(
1

(k − q)2 − k2
+ 1

(k+ q)2 − k2

)
. (7.25)

Here Ω is the volume of the unit cell, and kF denotes the Fermi wave vector.
For each integral at the r.h.s. of (7.25), we can perform the integral with respect to

the azimuthal and polar angles after introducing the polar coordinates. Furthermore,
with use of the integration by parts, we obtain

∫
|k|<kF

dk

(
1

(k ± q)2 − k2

)
= πkF

2
F

(
q

2kF

)
. (7.26)

The function F(x) is defined by

F(x)= 1+ 1− x2

2x
ln

∣∣∣∣1+ x
1− x

∣∣∣∣. (7.27)
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Note that F(x) is an even function, F(0)= 2, and F(x)→ 2/3x2 (x→∞). Using
the integral (7.26), we obtain

χ(q)= χPauli
1

2
F

(
q

2kF

)
. (7.28)

Here χPauli = 2ρ(εF) is the Pauli uniform susceptibility in the free electron model,
and ρ(εF) is the density of states at the Fermi level εF.

Substituting the expression (7.28) into (7.22) and extending the integration range
from the first Brillouin zone to the whole region for convenience, we obtain

J (R)= J 2
KΩ

(2π)2
χPauli

R

∫ ∞

0
dq qF

(
q

2kF

)
sinqR. (7.29)

Since F(x) is an even function, the above expression is written as follows.

J (R)= J 2
KΩ

(2π)2
χPauli

2iR
I (R), (7.30)

and the integral I (R) is given by

I (R)=
∫ ∞

−∞
dq qF

(
q

2kF

)
eiqR. (7.31)

As shown in Appendix H, the integral I (R) is obtained as follows.

I (R)= πi

kFR3
(−2kFR cos 2kFR + sin 2kFR). (7.32)

Substituting (7.32) into (7.30), we obtain the RKKY interaction in the free elec-
tron model.

J (R)= 6πneJ
2
KχPauli

−2kFR cos 2kFR + sin 2kFR

(2kFR)4
. (7.33)

Here ne is the electron number per unit cell given by ne = k3
FΩ/π , Ω being the

volume of the unit cell. Thus, the RKKY interaction oscillates with the wave length
π/kF as a function of R and decays as 1/R3 as shown in Fig. 7.4. Note that the
nearest-neighbor distance and the second nearest-neighbor distance correspond to
2kFR = 6.95 and 9.82, respectively, when we assume ne = 1 and the fcc lattice
bearing in mind the Cu–Mn dilute alloys. The RKKY interaction is of long range
because of the 1/R3 dependence.

Oscillatory long-range interactions are expected to cause a complex magnetism
in the dilute alloys. We consider here the RKKY interactions Jij between the Ising-
type spins with S = 1/2 for simplicity. The molecular field Hamiltonian acting on
a spin on site i is given by Hi = −∑

j Jij 〈Sjz〉Siz. Therefore the thermal average
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Fig. 7.4 The RKKY interaction J/J0 as a function of 2kFR. Here J0 = 6πneJ 2
KχPauli

of the magnetic moment on site i (〈mi〉 = 2〈Siz〉) is given in the molecular-field
approximation as

〈mi〉 = tanh

(
β

4

∑
j

Jij 〈mj 〉
)
. (7.34)

For small magnetic moments near the critical temperature, we can expand the
r.h.s. of the above self-consistent equation as follows.

〈mi〉 = β

4

∑
j

Jij 〈mj 〉 + · · · . (7.35)

Taking the configurational average, we obtain

〈mi〉 ≈ β

4

∑
j

Jij 〈mj 〉 + · · · . (7.36)

Here the upper bar denotes the configurational average on magnetic impurities, and
we have decoupled the correlation between the interaction constant and the sur-
rounding magnetic moment for simplicity. From (7.36), we may obtain the Curie
temperature TC.

TC = 1

4

∑
j

Jij . (7.37)
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In the disordered system, we have another transition temperature. Taking first
square of both sides in (7.35) and next taking the configurational average, we find

〈mi〉2 ≈
(
β

4

)2∑
lj

Jij Jil〈mj 〉〈ml〉 + · · · . (7.38)

When 〈mi〉 = 0 and we neglect the correlation between local magnetic moments on
different sites, we have 〈mj 〉〈ml〉 = 〈mi〉2δjl . Then (7.38) reduces to

〈mi〉2 ≈
(
β

4

)2∑
j

J 2
ij 〈mj 〉2 + · · · . (7.39)

Therefore we have one more transition temperature Tg at which 〈mi〉2 vanishes.

Tg = 1

4

∑
j

J 2
ij . (7.40)

From the simple analysis mentioned above, we find at least two order parameters
in dilute magnetic alloys: 〈mi〉 and 〈mi〉2. The system is in the ferromagnetic state
(F) when 〈mi〉 �= 0 and 〈mi〉2 �= 0. It is in the paramagnetic state (P) when 〈mi〉 = 0
and 〈mi〉2 = 0. In addition to these cases we can also consider the case

〈mi〉 = 0 and 〈mi〉2 �= 0. (7.41)

This case may correspond to a state such that there is no magnetization but the ran-
domly oriented spins remain (see Fig. 1.16). It is called the spin-glass state (SG).
The SG may be realized when magnetic interactions compete each other in the dis-
ordered alloys and there is no long-range order being found as the magnetic Laue
spots. The transition temperature Tg is called the SG temperature. The cusps in the
susceptibilities found in Au–Fe dilute alloys as shown in Fig. 7.1 are considered to
show the spin glass transition [124].

The coupling constants
∑

j Jij and
∑

j J
2
ij in TC and Tg are expressed by the

parameters for atomic configuration. Note that the summations at the r.h.s. in (7.37)
and (7.40) are taken with respect to the magnetic impurity sites. In order to express
these summations as the sum over all the lattice sites, we introduce an occupation
number αi of the impurity atom A on site i which takes 1 when site i is occupied
by the atom A and takes 0 otherwise. In order to distinguish the two kinds of sum-
mations, we write them in (7.37) and (7.40) as

∑
j∈A. Then

∑
j∈A

Jij =
∑
j

αiαjJij =
∑
j

αiαjJij . (7.42)

Here pAA
ij ≡ αiαj is the probability of finding the type of atom A on site j when

site i is occupied by the same atom A. Using the probability pAA
ij , we can express
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Fig. 7.5 Magnetic ordering
temperature vs. concentration
curves for Au–Fe alloys
obtained by various
methods [118]

∑
j Jij in (7.37) and

∑
j J

2
ij in (7.40) as

∑
j p

AA
ij Jij and

∑
j p

AA
ij J 2

ij , respectively.
Thus we have

TC = 1

4

∑
j

pAA
ij Jij , (7.43)

Tg = 1

4

∑
j

pAA
ij J 2

ij . (7.44)

When there is no short-range atomic order, we have pAA
ij = cA, cA being the

impurity concentration. Thus,

TC = cAJ̃0, (7.45)

Tg =√cAJ̃ . (7.46)

Here J̃0 = (∑j Jij )/4 and J̃ = (∑j J
2
ij )

1/2/4.
Figure 7.5 shows the ordering temperature vs. concentration curve in Au–Fe al-

loys. The linear concentration dependence of TC at cFe > 12 at% Fe and the con-
centration dependence of Tg at cFe < 12 at% Fe are explained by (7.45) and (7.46),
respectively.

The theory of spin glasses (SG) in the dilute alloys has been developed as a part
of the disordered spin systems in the insulators because their Hamiltonian can be
mapped into the RKKY spin Hamiltonian (7.21). Details of the advanced SG theory
as a model of statistical mechanics can be found in the books by Parisi et al. [125]
and by Fisher and Hertz [126].
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Fig. 7.6 Susceptibility of pure Au (�) and a Au 0.0054 at.% Fe dilute alloy (•) as a function of
temperature [129]

7.2 Magnetic Impurity in Noble Metals

In the dilute limit, the RKKY interaction is infinitesimally weak, and a magnetic
impurity system is realized in the nonmagnetic metal. Such a small system shows a
unique property which is quite different from the other systems. Figure 7.6 shows
the temperature dependence of the susceptibility in Au–Mn dilute alloys as an ex-
ample. The impurity contribution follows the Curie law at high temperatures in-
dicating the existence of a local magnetic moment on Mn atom. With decreasing
temperature, the susceptibility tends to saturate around a few Kelvin, indicating the
disappearance of local magnetic moment of the impurity atom. The low temperature
behavior and the related ground state cannot be understood by a simple picture of
local magnetic moment. In this section we will briefly explain the basic properties
of magnetic impurity dissolved in a simple metal.

The magnetic impurity is described by the Anderson Hamiltonian as derived in
the last section.

H =
∑
kσ

εknkσ +
∑
kσ

(
Vdka

†
dσ ckσ + Vkdc

†
kσ adσ

)+∑
σ

εdndσ +Und↑nd↓. (7.47)

In order to obtain a physical insight to the magnetic impurity in the noble metals,
we consider first a simplified model in which the number of sites in the conduction
band has been reduced from infinity to one. This is called the ligand model or the
zero-band-width model [127, 128]. The Hamiltonian is written as

H =
∑
σ

εlnlσ +
∑
σ

V
(
a†
σ cσ + c†

σ aσ
)+∑

σ

εdndσ +Und↑nd↓. (7.48)



194 7 Magnetism in Dilute Alloys

Here εl denotes a ligand level, nlσ is the number operator of the ligand electrons
with spin σ . We have omitted the subscripts d and l of the creation and annihilation
operators for simplicity.

We assume that the ligand level εl is higher than the d level εd, and the Coulomb
energy U is large enough as compared with the difference Δ0 ≡ εl − εd; U �Δ0.
Moreover we consider the case that the hybridization |V | is small as compared with
the difference, so that |V | � εl − εd � U . When we put two electrons in this sys-
tem, the doubly occupied state on the impurity site is suppressed due to the strong
Coulomb repulsion U , so that the magnetic impurity with one electron is realized
and the d electron hybridizes with the ligand electron via V .

In the case that V = 0, we have a ligand electron (nl = 1) and a d electron
(nd = 1), so that the ground-state energy is given by E = εl + εd and associ-
ated 4 states are degenerate; |nl↑nl↓nd↑nd↓〉 = |1010〉, |1001〉, |0110〉, |0101〉. Al-
ternatively, degenerate 4 states are chosen to be the eigen states of the total spin
S = sd + sl.

∣∣Φ(s)〉= 1√
2

(
a

†
↑c

†
↓ − a†

↓c
†
↑
)|0〉,

∣∣Φ(t)
1

〉= a†
↑c

†
↑|0〉,

∣∣Φ(t)
0

〉= 1√
2

(
a

†
↑c

†
↓ + a†

↓c
†
↑
)|0〉,

∣∣Φ(t)
−1

〉= a†
↓c

†
↓|0〉.

(7.49)

Here |Φ(s)〉 (|Φ(t)
α 〉) denotes the singlet (triplet) state with total spin S = 0 (S = 1).

When V �= 0, we have additional configuration with no d electron.

∣∣Φ(0)〉= c†
↑c

†
↓|0〉. (7.50)

The Hamiltonian matrix for the 5 states (Φ(0), Φ(s), Φ(t)
−1, Φ(t)

0 , Φ(t)
1 ) is given as

follows.

H =

⎛
⎜⎜⎜⎜⎝

2εl
√

2V 0 0 0√
2V εl + εd 0 0 0
0 0 εl + εd 0 0
0 0 0 εl + εd 0
0 0 0 0 εl + εd

⎞
⎟⎟⎟⎟⎠ (7.51)

Note that the d0 state |Φ(0)〉 is not coupled to the triplet states |Φ(t)〉 because the
hybridization

∑
σ a

†
σ cσ which is operated on the d0 state creates the singlet state.

The singlet state is coupled to the d0 state because of the same reason. Diagonalizing
the {Φ(0),Φ(s)} sub-block, we find the eigenvalues

E = εl + εd + 1

2

(
Δ0 ±

√
Δ2

0 + 8|V |2
)
, (7.52)



7.2 Magnetic Impurity in Noble Metals 195

Fig. 7.7 The energy spectra of the ligand model for V = 0 (left) and for V �= 0 (right)

where Δ0 ≡ εl− εd. For small |V |2/Δ0, we have E = 2εl+2|V |2/Δ0 and εl+ εd−
2|V |2/Δ0.

In summary, we have (i) the ligand electron state

∣∣Ψ (0)〉=
(

1− |V |
2

Δ2
0

)∣∣Φ(0)〉+√2
V

�0

∣∣Φ(s)〉, (7.53)

with the energy E0 = 2εl + 2|V |2/Δ0 and the total spin S = 0, (ii) the singlet state

∣∣Ψ (s)〉=−√2
V

Δ0

∣∣Φ(0)〉+
(

1− |V |
2

Δ2
0

)∣∣Φ(s)〉, (7.54)

with the energy Es = εl + εd − 2|V |2/Δ0 and the spin S = 0, and (iii) the triplet
states |Φ(t)

−1〉, |Φ(t)
0 〉, |Φ(t)

1 〉 with energyEt = εl+εd and spin S = 1. The eigenvalues
of the ligand model with V = 0 and V �= 0 are summarized in Fig. 7.7.

The ligand model suggests that the ground state of the Anderson model with
strong U is a singlet at half filling. This means that the magnetic dilute alloys lose
the magnetic moment at the ground state even in the strong U limit. The second
point is that there is a characteristic temperature T ∗ = 2|V |2/Δ0 above which the
magnetic moment of the impurity state recovers and thus the susceptibility follows
the Curie law, because the triplet states are located above the singlet ground state
and the former is higher than the latter by 2|V |2/Δ0.

Let us now return to the Anderson model, and obtain the singlet ground state in
large U limit. According to the singlet ground state (7.54), we assume the following
ground state wave function of electrons [130].

|Ψ 〉 =A
[
|Φ0〉 +

occ∑
k

Bk
(
a

†
d↑ck↑ + a†

d↓ck↓
)|Φ0〉

]
. (7.55)

Here A is a normalization factor, and {Bk} are the amplitudes to be determined
variationally. The first term at the r.h.s. of (7.55), |Φ0〉 is the Fermi sea state with no
d electron, which is defined by

|Φ0〉 =
occ∏
k

[
c

†
k↑c

†
k↓
]|0〉. (7.56)
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Fig. 7.8 Three states |Φ0〉 (left), a†
d↑ck↑|Φ0〉 (middle), and a†

d↓ck↓|Φ0〉 (right) in the variational
wave function

It corresponds to the ligand electron state |Φ(0)〉 with no d electron in the ligand
model. On the other hand, each state in the second term of (7.55) has one d electron
and forms a singlet state consisting of a d electron and a conduction electron with
momentum k.

|Φk〉 ≡ 1√
2

(
a

†
d↑ck↑ + a†

d↓ck↓
)|Φ0〉 = 1√

2

(
a

†
d↑c

†
k↓ − a†

d↓c
†
k↑
) occ∏
k′ �=k

[
c

†
k′↑c

†
k′↓

]|0〉.
(7.57)

These states are depicted in Fig. 7.8.
The wavefunction (7.55) with A= 1 is written with use of {|Φk〉} as follows.

|Ψ 〉 = |Φ0〉 +
√

2
occ∑
k

Bk|Φk〉. (7.58)

Note that {|Φ0〉, |Φk〉} are orthonormal. The amplitudes Bk are determined from the
variational principle of the energy,

E = 〈Ψ |H |Ψ 〉〈Ψ |Ψ 〉 . (7.59)

Here

〈Ψ |Ψ 〉 = 1+ 2
occ∑
k

B∗k Bk, (7.60)

〈Ψ |H |Ψ 〉 =E0 + 2
occ∑
k

(
VdkB

∗
k + VkdBk

)

+ 2
occ∑
k

(E0 + εd − εk)B∗k Bk, (7.61)

and E0 = 2
∑occ

k εk is the energy for the conduction band.
Taking the variation of the energy, we have

(
δ〈Ψ |H |Ψ 〉)〈Ψ |Ψ 〉 − 〈Ψ |H |Ψ 〉δ〈Ψ |Ψ 〉 = 0. (7.62)
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Calculating the variations δ〈Ψ |Ψ 〉 and δ〈Ψ |H |Ψ 〉, and substituting them into (7.62),
we find the self-consistent equation for Bk as follows.

(�E + εk)Bk = Vdk. (7.63)

Here �E = E − E0 − εd, and the energy E − E0 is obtained from (7.59), (7.60),
and (7.61) as follows.

E −E0 = 2
∑occ

k VkdBk + 2
∑occ

k B∗k [Vdk + (εd − εk)Bk]
1+ 2

∑occ
k B∗k Bk

. (7.64)

Substituting Vdk of (7.63) into the second term of the numerator in (7.64) and mul-
tiplying 1+ 2

∑occ
k B∗k Bk to both sides, we find the following equation.

�E =−εd + 2
occ∑
k

VkdBk. (7.65)

Substitution of Bk from (7.63) into the above equation yields the self-consistent
equation for �E as follows.

�E =−εd + 2
occ∑
k

|Vkd|2
�E + εk . (7.66)

Note that the above equation reduces to the solution (7.52) in the ligand model limit
(εk→ εl).

Assuming the flat band with the band edge −D at the bottom for conduction
electrons, (7.66) is expressed as follows.

�E =−εd + 2ρ(0)|V |2 ln
|�E|
D

. (7.67)

Here ρ(ε) is the density of states per spin for conduction electrons which is defined
by ρ(ε) =∑

k δ(ε − εk). Moreover we assumed that the band width D is large as
compared with |�E|. We have a solution of (7.67) at �E < 0 as seen from Fig. 7.9
in which the curves of both sides of (7.67) are depicted. Since |�E| → 0 when
|V |→ 0, we obtain an approximate solution for a small |V | as

|�E| =D exp

(
− |εd|

2ρ(0)|V |2
)
. (7.68)

The characteristic temperature associated with the formation of the singlet
ground state is called the Kondo temperature; TK ≡ |�E|. In the present case, it
is given by

TK =D exp

(
− |εd|

2ρ(0)|V |2
)
. (7.69)
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Fig. 7.9 Graphical analysis
of the self-consistent equation
(7.67) for �E

Note that the Kondo exchange coupling constant in the Kondo Hamiltonian is given
by (7.13):

Jkk′ = Vk′dVdk

(
1

εk − εd −U + 1

εd − εk′
)
. (7.70)

For large U and the symmetric case (εd =−U/2), we have a simplified expression
of the Kondo exchange coupling JK (= 〈Jk′k〉< 0) as follows.

JK =−2|V |2
|εd| . (7.71)

Here we have omitted the momentum dependence of the hybridization parameter.
The Kondo temperature (7.69) is expressed in terms of the Kondo exchange cou-
pling as follows.

TK =D exp

(
1

ρ(0)JK

)
. (7.72)

In the same way, we can calculate the d electron number as

〈nd〉 = 1− πTK

Δ
. (7.73)

Here Δ= 2πρ(0)|V |2. The expression indicates that 〈nd〉 approaches 1 as TK → 0.
When the magnetic field h is applied on the impurity atom, the impurity d level is

modified from εd to εdσ = εd− hσ , so that the variational parameter Bk is expected
to be spin-dependent. The wave function is then modified as

|Ψ 〉 =A
[
|Φ0〉 +

occ∑
k

(
Bk↑a†

d↑ck↑ +Bk↓a†
d↓ck↓

)|Φ0〉
]
. (7.74)
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Table 7.1 The Kondo
temperatures in the typical
dilute alloys [133]

Alloys Cu–Cr Cu–Mn Cu–Fe Au–Fe Al–Mn

TK (K) 2 0.01 30 0.8 500

Taking the same steps as before we reach the self-consistent equation for the ground
state energy.

�E(h)=−εd + 2
occ∑
k

|Vkd|2
�E(h)+ hσ + εk . (7.75)

The impurity susceptibility χimp is obtained from −(∂2�E(h)/∂h2)h=0 by using
the above self-consistent equation as follows.

χimp = 1

TK
. (7.76)

The results shows that the susceptibility is finite even in the strong Coulomb inter-
action limit because of the formation of the singlet state. The magnitude is scaled
by the inverse Kondo temperature. As expected from the arguments so far, all the
related physical quantities are scaled by the Kondo temperature TK. The Kondo tem-
peratures for typical dilute magnetic alloys which are determined experimentally are
given in Table 7.1.

The finite-temperature properties of the susceptibility in the Anderson model
have been obtained accurately by using the numerical renormalization group tech-
nique [131, 132]. Figure 7.10 shows the temperature dependence of the suscepti-
bilities of the Anderson model for strong (case A) and weak (case B) Coulomb
interactions. In the strong Coulomb interaction regime, the Curie constant defined
by C = T χimp vanishes at T = 0 because the ground state is the singlet. With in-
creasing temperature, the local magnetic moment recovers above TK, and the Curie
constant C approaches to a constant value which is close to the atomic value 1/4
(i.e., S(S+ 1)/3 with S = 1/2). When the temperature is further elevated, the Curie
constant starts to decrease around a temperature U and approaches to the free or-
bital value 1/8 where the empty and doubly occupied states as well as the spin-up
and spin-down states are excited equally on the impurity site. In the case of B where
the Coulomb interaction is close to the value of the Hartree–Fock magnetic insta-
bility point U/πΔ= 1, the ground state is again singlet, so that the Curie constant
again vanishes at the ground state. However the Kondo temperature is very large
(TK ∼ D) in this case and the local moment regime does not appear any more as
seen in Fig. 7.10.

It should be noted that the Hartree–Fock approximation does not lead to the sin-
glet ground state. The approximation tells us that the local magnetic moment is
stabilized when ρd(0)U > 1 [119]. Here ρd(ε) is the d density of states per spin on
the impurity site. Figure 7.10 suggests that this condition is qualitatively applicable
only when the temperature is in the regime TK � T �U .
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Fig. 7.10 The impurity susceptibility of the symmetric Anderson model for U/D = 0.001;
U/πΔ= 12.66 (A) and U/πΔ= 1.013 (B) [131]

The stability of the Kondo singlet is often influenced by the other degrees of free-
dom such as the inter-site interactions. For example, the RKKY interaction |JRKKY|
becomes stronger with increasing impurity concentration. When the formation en-
ergy of the spin glass per magnetic atom exceeds the Kondo temperature TK, the
spin glass state is stabilized with the appearance of local magnetic moments.

The many-body problem in the dilute magnetic alloys is called the Kondo prob-
lem, and associated anomalies are called the Kondo effects. Historically the Kondo
effect was first found in the resistivity [120]. Resistivity usually decreases as the
temperature decreases as is well known as Matthiessen’s law. In fact it consists of
the impurity scattering term and the phonon term. The former is independent of
temperature, while the latter monotonically decreases with decreasing temperature.
In the dilute magnetic alloys such as Cu–Mn and Au–Fe alloys, it was found that the
resistivity shows a minimum at low temperatures. Kondo explained first the anomaly
on the basis of the sd model (7.17) [120]. He showed that the second-order Born ap-
proximation to the resistivity R due to magnetic impurities contains the logarithmic
term.

R =RB

(
1+ 4JKρ(0)

L
ln
T

D

)
. (7.77)

Here RB is the resistivity in the first Born approximation. D is the band width of
conduction electrons. Although the logarithmic term explains the resistance min-
imum, it leads to the divergence of the resistivity at zero temperature, which is
unphysical. Higher order perturbation expansions at finite temperatures again led
to the divergence of the resistivity at T ∼ TK [134]. The same behaviors were also
found in the susceptibility and specific heat.

Yosida investigated the ground-state properties of the magnetic impurity, and
found that the singlet state consisting of the localized electron and a conduction
electron is stabilized at the ground state [135]. The binding energy was found to
be TK. Low temperature properties of the sd model were examined by Wilson on the
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basis of the renormalization group theory [136]. He found that the ratio of the impu-
rity susceptibility χimp to the Sommerfeld coefficient due to impurity Cimp/T , Cimp
being the impurity contribution to the specific heat, is a temperature-independent
constant RW(= 2):

T χimp

Cimp
=RW. (7.78)

The same result was obtained by Nozières on the basis of a phenomenological Fermi
liquid theory [137]. Yamada and Yosida derived the relation exactly by means of
the perturbation expansion approach to the symmetric Anderson model [138, 139].
Later the exact solution to the sd model was obtained by Andrei with use of the
Bethe ansatz method [140]. The exact solution to the Anderson model was also
obtained by Wiegmann [141], and Kawakami and Okiji [142] with use of the same
method. The readers who are interested in the details of the Kondo problems are
recommended to refer to the books by Yosida [143], and by Fulde [127].

The Kondo anomalies as the bulk properties are also found in rare-earth com-
pounds containing Ce and U compounds. Low temperature specific heats of these
compounds, for example, show a huge value which is typically 100–1000 times
those of the usual metals, indicating the existence of electrons with heavy effective
mass. These materials are called the heavy fermion system. Details on the topic are
found in the books by Hewson [128] and by Fulde [144, 145].



Chapter 8
Magnetism of Disordered Alloys

Substitutional disordered alloys show a variety of magnetic properties with changes
in composition and temperature, which clarify the formation of magnetic moments
in metals. In this chapter, we present the theories of itinerant magnetism in disor-
dered alloys, and clarify the magnetic properties of 3d transition metal alloys. We
first overview in Sect. 8.1 the magnetization vs. concentration curves in transition
metal alloys which are known as the Slater–Pauling curves, and present a simple
picture based on the rigid band model and Friedel’s virtual bound state. In Sect. 8.2,
we introduce the coherent potential approximation (CPA) to treat the configurational
disorder within the single-site approximation (SSA). We then present the Hartree–
Fock (HF) CPA theory at the ground state and extend the finite-temperature theory
presented in Sect. 3.3 to disordered alloys. Since the SSA does not consider the
inter-site correlations of the magnetic moments due to configurational disorder, we
present in Sect. 8.3 the ground-state theory of the local environment effects (LEE)
which goes beyond the HF-CPA. Next we present the theory of the LEE at finite tem-
peratures. In the last Sect. 8.4, we extend the molecular dynamics theory presented
in Sect. 6.3 to the disordered alloys to describe more complex system, and argue the
magnetism of Fe–Cr alloys showing the ferromagnetism, the antiferromagnetism,
and the spin glass.

8.1 Slater–Pauling Curves

The substitutional disordered alloys containing 3d transition metals have been much
investigated to understand the formation of metallic magnetism and to clarify the
effects of disorder on their magnetism. Experimentally the ground-state magneti-
zation vs. concentration curves in 3d transition metal alloys are well-known as the
Slater–Pauling curves [146]. Understanding of the systematic change of their mag-
netizations has been one of the central issues of magnetism in disordered alloys. We
briefly explain in this section a global behavior of the magnetism.

Figure 8.1 shows the Slater–Pauling curves in various transition metal alloys. The
curves consist of the line with the slope −45◦ from Cu to Fe which includes Ni–Cu,
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Fig. 8.1 Slater–Pauling curves in transition metal alloys as a function of atomic number [146]

Ni–Co, Co–Fe, and Fe–Ni alloys, the 45◦ line from Fe to Cr which includes Fe–V
and Fe–Cr, and the other branches showing a rapid decrease of magnetization with
adding the second elements.

The ground-state magnetizationM per atom is given by the up-spin valence elec-
tron number N↑ minus the down-spin valence electron number N↓: M =N↑ −N↓.
Since the total valence electron number Z is given by Z = N↑ +N↓, the magneti-
zation is expressed as

M = 2N↑ −Z. (8.1)

The zeroth approximation is to assume that electrons feel a common potential so
that they occupy a common band as in the case of the pure metal. This is referred
as the rigid-band model. In the rigid band model, Ni and Co alloys are considered
to be strong ferromagnets in which the up spin band is filled as shown in the left of
Fig. 8.2. In this case,N↑ is constant and the magnetization increases with decreasing
Z according to (8.1). This explains the −45◦ line in the Slater–Pauling curves. It is
interpreted that the Fermi level touches the top of the up-spin band around Z = 8.25
and the atomic level for down spin electron ε↓ starts to decrease due to the Hartree–
Fock type potential ε↓ = ε0 + UN↑, so that N↓ is kept constant with decreasing
Z (see the right of Fig. 8.2). Then the magnetization decreases with decreasing Z
along the 45◦ line according to the expression M = Z−2N↓ as found in the Slater–
Pauling curves of Fe–Cr and Fe–V alloys (see Fig. 8.1).

For a more detailed explanation, we can take into account explicitly the concen-
tration dependence of N↑ and Z as N↑ =Nd↑ +Nsp↑, Nd↑ = cNA

d↑ + (1− c)NB
d↑,

and Z = cZA+ (1− c)ZB. Here Nd↑ (Nsp↑) is the d (sp) electron number per atom,
NA

d↑ (NB
d↑) is the d electron number for atom A (B), ZA (ZB) is the valence elec-

tron number of atom A (B), and c denotes the concentration of atom A. Substituting
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Fig. 8.2 Schematic densities of states for the strong ferromagnet (left) and the weak ferromagnet
(right)

Fig. 8.3 Systematic change in atomic d levels of 3d transition metals (left) and the virtual bound
states above the Fermi level εF (right)

these relations into (8.1) and using the magnetization MB of the matrix B, we obtain
the following expression.

M =MB − c
[
ZA −ZB − 2

(
NA

d↑ −NB
d↑
)]
. (8.2)

The Ni–Cu, Ni–Co, and Ni1−cFec (c < 0.75) alloys are strong ferromagnets so
that NA

d↑ =NB
d↑ = 5. Equation (8.2) then reduces to M =MNi − c(ZA − 10). Thus

we again obtain the curve with the −45◦ slope in agreement with the experimental
data shown in Fig. 8.1. The same argument is applicable to the Co–Ni and Co–Fe
alloys.

The concentration dependence of the magnetization in Ni–Cr alloys is quite dif-
ferent from those following the −45◦ line. Note that the atomic d level εd decreases
with increasing the atomic number because the attractive interaction between elec-
tron and nucleus becomes stronger (see the l.h.s. of Fig. 8.3). Thus the difference in
atomic level �εd between Cr and Ni is expected to be large as compared with the
d band width, so that an impurity bound state called the virtual bound state [147]
may appear above the Fermi level as shown in the r.h.s. of Fig. 8.3. We have then
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NA
d↑ = 0 and NB

d↑ = 5. The magnetization (8.2) is then expressed as

M =MB − c(ZA −ZB + 10). (8.3)

Thus we have M −MB = −6c for Ni–Cr, and M −MB = −5c for Ni–V. These
results explain the branches at Ni in the Slater–Pauling curves (Fig. 8.1). In the
same way we obtain M −MB =−7c for Co–Cr, and M −MB =−8c for Co–Mn.
The results explain the branches at Co in the Slater–Pauling curves [148].

8.2 Single-Site Theory of Disordered Alloys

Although a simple interpretation of the Slater–Pauling curves is presented in the last
section and it is easy to understand the global behavior of the curves on the basis
of a simple interpretation, the role of the electronic structure of disordered alloys
behind the phenomena is not clear. In order to understand the magnetic properties
of the alloys one must know their electronic structure from a microscopic point of
view. Electronic structure calculations in disordered alloys, however, is not easy.
The difficulty is that there is no translational symmetry in the system so that we
cannot apply the Bloch theory. We present in this section the coherent potential
approximation (CPA) [51] to calculate the electronic structure of alloys in the single-
site approximation, and demonstrate how the Hartree–Fock CPA theory can explain
the Slater–Pauling curves [149, 150]. Furthermore we extend the finite-temperature
theory presented in Sect. 3.3 to the disordered alloys.

Let us consider the A–B substitutional binary alloys showing the ferromag-
netism, which is described by the Hubbard model in the Hartree–Fock approxi-
mation as follows (see (2.7)).

H =
∑
iσ

εiσ niσ +
∑
ijσ

tij a
†
iσ ajσ . (8.4)

Here εiσ = ε0
i +U 〈ni〉/2−U 〈mi〉σ/2 is the Hartree–Fock atomic potential on site i.

tij is the transfer integral between sites i and j . Note that the atomic level ε0
i as well

as the charge and spin densities (〈ni〉 and 〈mi〉) are now site-dependent.
The local charge and magnetic moment on site i are given by

〈ni〉 =
∫
dωf (ω−μ)

∑
σ

ρiσ (ω), (8.5)

〈mi〉 =
∫
dωf (ω−μ)

∑
σ

σρiσ (ω). (8.6)

Here f (ω) is the Fermi distribution function, and μ denotes the chemical potential.
ρiσ (ω) is the density of states on site i for an electron with spin σ in the Hartree–
Fock approximation. It is given by the Green function Giiσ (z) with z = ω + iδ as
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Fig. 8.4 Schematic representation of the coherent potential approximation [151]. The central site
is occupied by an atom α (=A or B). The hatched sites are occupied by a coherent potentialΣσ (z).
〈 〉AV at the l.h.s. means a configurational average on the central site

follows.

ρiσ (ω)=− 1

π
ImGiiσ (z), (8.7)

Giiσ (z)=
[
(z−H σ )

−1]
ii
. (8.8)

Here H σ is the Hartree–Fock one-electron Hamiltonian matrix defined by (H σ )ij =
εiσ δij + tij (1− δij ).

In the binary alloys, the atomic levels εiσ take a value: εAσ (εBσ ) when site i is
occupied by atom A (B). We neglect the disorder of transfer integrals called the off-
diagonal disorder. Because the atomic levels εiσ are random variables, the Bloch
theory is not applicable for the calculation of the Green function. We make use of
the coherent potential approximation (CPA) here to obtain the Green function with
use of the locator expansion [151]. Introducing the locator matrix L by means of
(L)ij = Liδij = (z−εi)−1δij , we express the Green function matrix asG= (L−1−
t)−1 = (1−Lt)−1L where t denotes the transfer integral matrix tij . Expanding the
Green function with respect to t , we obtain

Gii(z)= Li +
∑
j �=i

Li tijLj tjiLi +
∑
j �=i

∑
k �=j,i

LitijLj tjkLktkiLi + · · · . (8.9)

Here we have omitted the spin suffix for simplicity. The r.h.s. of (8.9) consists of
the contribution from all the paths which start from site i and end at the same site i.
They are expressed as follows by using the sum of all the paths Si which start from
site i end at site i without returning to site i on the way.

Gii(z)= Li +LiSiLi +LiSiLiSiLi + · · · =
(
L−1
i − Si

)−1
. (8.10)

In the above expression, all the information outside the central atom i is in the
self-energy Si . To obtain the Green function Gii(z) in a single-site approximation,
we approximate the random potentials on the surrounding sites with an energy-
dependent coherent potential Σ(z) (see the l.h.s. of Fig. 8.4). Note that the same
idea was used in the metal-insulator transition [9, 10] and the single-site theory of
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spin fluctuations (see Sects. 3.3 and 3.4). We have then an impurity Green function
for atom α on site i from (8.10) as follows.

Gασ (z)=
(
L−1
ασ −Sσ

)−1
. (8.11)

Here L−1
ασ = z− εασ is the inverse locator on the central site with a type of atom α.

Sσ is the self energy in which all the atomic levels have been replaced by the co-
herent potential Σσ (z). Note that we have omitted the site indices for simplicity and
have recovered the spin suffix.

The self-energy Sσ is obtained from the coherent Green function Fσ (z) in which
all the sites are occupied by the coherent potential (see the r.h.s. of Fig. 8.4).

Fσ (z)=
(
L −1
σ −Sσ

)−1
. (8.12)

Here L −1
σ (z) = z −Σσ (z). Substituting Sσ obtained from (8.12) into (8.11), we

obtain the impurity Green function as follows.

Gασ (z)=
(
L−1
ασ (z)−L −1

σ (z)+ F−1
σ (z)

)−1
. (8.13)

Since the coherent Green function Fσ (z) is defined by Fσ (z) = [(z − Σσ (z) −
t)−1]ii , it is obtained from the following formula.

Fσ (z)=
∫

ρ(ε) dε

L −1
σ (z)− ε . (8.14)

Here ρ(ε) is the density of states (DOS) for the energy eigen values of transfer
matrix tij .

The coherent potential Σσ (z) (or coherent locator Lσ (z)) is obtained from the
condition that the configurational average of the impurity Green function (8.13)
should be identical with the coherent Green function (see Fig. 8.4).

∑
α

cαGασ (z)= Fσ (z). (8.15)

Here cα denotes the concentration of atom α. The above equation is known as the
CPA equation. The same type of self-consistent equation was obtained in (3.85).
There the random potential was produced by thermal spin fluctuations, and the ther-
mal average was taken at the l.h.s. of the CPA equation.

When the off-diagonal disorder in transfer integrals is significant, we can take
into account the effects assuming that the transfer integral tAB between atoms A and
B is given by the geometrical mean of tAA and tBB. This means that the transfer
integrals are expressed with use of the parameters ri and rj as

tij = r∗i tBBrj . (8.16)

Here |ri | = √|tAA|/|tBB| for i = A and 1 for i = B. In this case the off-diagonal
disorder reduces to the diagonal disorder by considering r∗i Gii(z)ri ; r∗i Gii(z)ri re-
duces to (8.9) in which {Li} have been replaced by {Li = |ri |2/(z− εiσ )}. Equation
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Fig. 8.5 Concentration dependences of average magnetic moment (AV: 〈m〉), and the local mo-
ments of Fe and Cr atoms, 〈mFe〉 and 〈mCr〉 of FexCr1−x alloys [152]. The solid lines show the
result calculated by the Hartree–Fock CPA theory with use of the model density of state depicted
in the lower-left corner. Experimental data are shown by •, ◦ [153–155], �, � [156–158]

(8.13) is then replaced by

Gασ (z)= |rα|−2(L−1
ασ (z)−L −1

σ (z)− F−1
σ (z)

)−1
, (8.17)

where L−1
ασ = (z− εασ )/|rα|2. The CPA equation (8.15) should be replaced by

∑
α

cα|rα|2Gασ (z)= Fσ (z). (8.18)

The atomic level εασ in the impurity Green function Gασ (z) is given by εασ =
ε0
α +U 〈nα〉/2−U 〈mα〉σ/2. The impurity charge 〈nα〉 and magnetic moment 〈mα〉

are calculated from Gασ (z) via the Hartree–Fock equations (8.5) and (8.6) self-
consistently. In actual applications the Coulomb interaction U in the Hartree–Fock
CPA theory has to be regarded as an effective interaction parameter which is renor-
malized due to electron correlations (see Sect. 2.2). In the self-consistent calcula-
tions, the noninteracting model DOS ρ(ε) in the coherent Green function (8.14) is
usually taken from band calculations.

The Hartree–Fock CPA theory explains the basic properties of the Slater–Pauling
curves presented in Fig. 8.1. Figure 8.5 shows the magnetic moments vs. concentra-
tion curves of Fe1−xCrx alloys calculated by the theory [152]. Because of the single
band model, we multiplied the results by a factor of 5, and compared them with
the experimental data. The averaged magnetic moment monotonically decreases
with increasing Cr concentration in agreement with the experimental data. The Fe
magnetic moments are parallel to the bulk magnetization and build up the ferro-
magnetism. The atomic level of Cr is above the Fermi level, and the down-spin
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Fig. 8.6 Calculated densities of states of Ni1−cCrc [149, 150]

bands of Cr sites more hybridize with those of Fe sites. This increases the down-
spin states of Cr sites below the Fermi level. Thus, the average Cr magnetic moment
is antiparallel to the bulk magnetization. The Cr atoms lose the magnetic moment
around 70 at% Cr. These results explain the neutron data for the magnetic moments
[154–157].

Figure 8.6 shows the calculated DOS in Ni1−xCrx alloys [149, 150]. In the small
Cr concentrations, we find the virtual bound state above the Fermi level which was
assumed in the last section. It develops with increasing Cr concentration. The strong
ferromagnetism collapses around 5 at% Cr, and the alloy loses the average magnetic
moment around 10 at% Cr in agreement with the experimental data as shown in
Fig. 8.7.

At finite temperatures we need to extend the single-site theory presented in
Sects. 3.3 and 3.7 to the disordered alloys. Since the disordered alloys are complex
system, we apply a simplified model; we adopt the 5-fold equivalent band model
(i.e., 5 times the single band model). Furthermore we adopt the static approximation
(i.e., the high-temperature approximation) and omit the transverse spin fluctuations.
The free energy (6.52) is then written as

F =−β−1 ln
∫ [∏

i

√
βJ̃i

4π
dξi

]
e−βE(ξ). (8.19)

In the above expression, J̃i is the effective exchange energy defined by J̃i =U0/D+
(1− 1/D)J , D being the orbital degeneracy (D = 5). The effective potential E(ξ)
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Fig. 8.7 Calculated magnetic
moments of Ni and Cr as well
as the average in Ni1−cCrc
alloys [149, 150]. The
experimental average
moments are shown by
� [159], © [160], and
� [161]

is obtained from (6.53) as

E(ξ)=−β−1 ln tr
(
e−βH(ξ)

)− 1

4

∑
i

(
Ũi ñi(ξ)

2 − J̃i ξ2
i

)
. (8.20)

Here the effective Coulomb interaction Ũi is defined by Ũi = U0/D + (1 −
1/D)(2U1 − J ). ñi (ξ) is the Hartree–Fock charge on site i when the ‘magnetic
moments’ {ξj } are given (see (6.58)).

ñi (ξ)=
∑
m

〈nim〉0 = tr(
∑

m nime−βH(ξ))
tr(e−βH(ξ))

. (8.21)

The Hamiltonian H(ξ) is given as follows (see (6.57)).

H(ξ)=
∑
m

[∑
iσ

(
ε0
i −μ+

1

2
Ũi ñi(ξ)− 1

2
J̃i ξi σ

)
nimσ +

∑
ijσ

tij a
†
imσ ajmσ

]
.

(8.22)

In order to treat the disorder of alloys, we rewrite the energy potential E(ξ) as

E(ξ)=
∫
dωf (ω)

D

π
Im tr

[
ln(z−H )

]− 1

4

∑
i

(
Ũi ñi(ξ)

2 − J̃i ξ2
i

)
. (8.23)

Here the Hamiltonian matrix H is defined by

(H )iσjσ ′ =
[(
ε0
i −μ+

1

2
Ũi ñi(ξ)− 1

2
J̃i ξi σ

)
δij + tij

]
δσσ ′ . (8.24)
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We assume again the geometrical mean for the transfer integral; tij = r∗i t0ij rj . Intro-
ducing the r matrix by means of (r)iσjσ ′ = riδij δσσ ′ , we can express the integrand
of the first term in (8.23) as

Im tr
[
ln(z−H )

]= Im tr
[
ln
(
r†L−1r − r†t0r

)]= Im tr
[
ln
(
L−1 − t0)]. (8.25)

Here the locator is defined by

(
L−1)

iσjσ ′ = L−1
iσ δij δσσ ′ =

z− ε0
i +μ− 1

2 Ũi ñi(ξ)+ 1
2 J̃i ξi σ

|ri |2 δij δσσ ′ . (8.26)

Introducing an effective locator Lσ (z) into the r.h.s. of (8.25), we expand it with
respect to the site as

tr
[
ln
(
L−1 − t0)]= tr ln

(
L −1 − t0)+ tr ln

[
1+ (

L−1 −L −1)F ]+ tr ln
(
1− t̃F ′).

(8.27)

Here F and F ′ are the diagonal and the off-diagonal coherent Green functions de-
fined by Fijσ = [(L −1 − t0)−1]iiσ δij and (F ′)ijσ = [(L −1 − t0)−1]ijσ (1− δij ),
respectively. t̃ is the single-site t matrix defined by

t̃ =−[1+ (
L−1 −L −1)F ]−1(

L−1 −L −1). (8.28)

Substituting (8.27) into (8.23) and neglecting the nonlocal term (i.e., F ′ term),
we obtain the free energy per site in the single-site approximation as follows.

FCPA =
∫
dωf (ω)

1

N

D

π
Im tr ln

(
L −1(z)− t0)

− β−1
∑
α

cα ln
∫ √

βJ̃α

4π
dξ e−βEα(ξ), (8.29)

Eα(ξ)=
∫
dωf (ω)

D

π
Im

∑
σ

ln
[
1+ (

L−1
ασ (z, ξ)−L −1

σ (z)
)
Fσ (z)

]

− 1

4
Ũα ñα(ξ)

2 + 1

4
J̃α ξ

2. (8.30)

Here Fσ (z) is the coherent Green function given by (8.14). L−1
ασ (z, ξ) is defined by

the diagonal part of (8.26) in which site i is occupied by atom α.

Lασ (z, ξ)
−1 = z− ε0

α +μ− 1
2 Ũαñα(ξ)+ 1

2 J̃α ξ σ

|rα|2 . (8.31)

The local charge on atom α, ñα(ξ) at the r.h.s. of (8.30) and (8.31) is given by

ñα(ξ)=
∫
dωf (ω)

∑
σ

ρασ (ω, ξ), (8.32)
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and the density of states ρασ (ω, ξ) is obtained from the Green function as

ρασ (ω)=−D
π

ImGασ (z, ξ). (8.33)

The Green function Gασ (z, ξ) is given by (8.17) in which Lασ (z)−1 has been re-
placed by (8.31).

The effective medium L −1
σ (z) is determined by the condition that the t matrix

vanishes in average so that the nonlocal correlations at the r.h.s. of (8.27) become
minimum.

〈t̃ (z, ξ)〉 ≡
∑
α

cα

∫
dξ pα(ξ) t̃α(z, ξ)= 0. (8.34)

Here pα(ξ) is the probability of finding a ‘magnetic moment’ ξ on atom α, and is
given by

pα(ξ)= e−βEα(ξ)∫
dξ e−βEα(ξ)

. (8.35)

Note that (8.34) is equivalent to the following equation, which is known as the CPA
equation.

∑
α

cα

∫
dξ pα(ξ)|rα|2Gασ (z, ξ)= Fσ (z). (8.36)

This is the extension of the Hartree–Fock CPA equation (8.18) to the finite tem-
perature [162], and it reduces to the Hartree–Fock CPA equation (8.18) when
T → 0. Equations (8.32) and (8.36) form the self-consistent equations for ñα(ξ)
and L −1

σ (z).
The local charge and magnetic moment of atom α are obtained as (see (3.258)

and (3.259))

〈nα〉 = 〈ñα(ξ)〉 =
∫
dξ pα(ξ)ñα(ξ), (8.37)

〈mα〉 = 〈ξα〉 =
∫
dξ pα(ξ) ξ. (8.38)

In the actual calculations, it is convenient to introduce a charge neutrality poten-
tial {wi(ξ)}. The potential due to the spin polarization is defined by

wi(ξ)= 1

2
Ũi

(
ñi (ξ)− ñi (0)

)
. (8.39)
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With use of the relation ñi (ξ) = 2wi(ξ)/Ũi + ñi (0), we can rewrite the effective
potential as

E(ξ)=−β−1 ln tr
(
e−βH(ξ)

)

−
∑
i

(
1

4
Ũi ñi(0)

2 +wi(ξ) ñi(0)+ 1

Ũi
wi(ξ)

2 − 1

4
J̃i ξ

2
i

)
, (8.40)

H(ξ)=
∑
m

[∑
iσ

(
ε̃i +wi(ξ)− 1

2
J̃i ξi σ

)
nimσ +

∑
ijσ

tij a
†
imσ ajmσ

]
. (8.41)

Here the atomic level in the nonmagnetic state is defined by ε̃i = ε0
i − μ +

Ũi ñi(0)/2.
Eliminating the constant term Ũi ñi(0)2/4 from (8.40), and taking the large

Coulomb interaction limit (Ũi→∞), we obtain the effective potential as

E(ξ)=−β−1 ln tr
(
e−βH(ξ)

)−∑
i

(
wi(ξ)ni − 1

4
J̃i ξ

2
i

)
. (8.42)

Here ni = ñi (0) is the d electron number of each atom which is usually taken to be
the value of the constituent metal in the pure limit because of the charge neutrality
on each atom.

The self-consistent equation to determine wi(ξ) is obtained from (8.39) with
Ũi→∞ as follows.

ni = ñi
({
ε̃i +wi(ξ)− 1

2
J̃iξiσ

})
. (8.43)

The above equation implies that we can determine the charge potential εi +wi(ξ)

from the charge neutrality condition on each site. Equation (8.43) reduces the num-
ber of adjustable parameters such as the atomic levels and the effective Coulomb
interaction parameters Ũα , and allow us to determine automatically the chemical
potential.

When we adopt the charge neutrality potential, the energy potential (8.30) should
be replaced by

Eα(ξ)=
∫
dωf (ω)

D

π
Im

∑
σ

ln
[
1+ (

L−1
ασ (z, ξ)−L −1

σ (z)
)
Fσ (z)

]

−wα(ξ)nα + 1

4
J̃α ξ

2
α. (8.44)

The effective inverse locator L−1
α (z, ξ) in (8.36) and (8.44) should be replaced by

L−1
ασ (z, ξ) = (z − ε̃α − wα(ξ) + J̃α ξ σ/2)/|rα|2. The charge potentials wα(ξ) are

determined by the charge neutrality condition (8.43) in which the suffix for site i
has been replaced by the atom α.
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Fig. 8.8 Concentration
dependence of magnetic
moments at T = 0 K in
FecNi1−c alloys [162]. The
solid curves are the local
moments for each atom. The
dot-dashed curve is the total
magnetization. The dashed
curve shows the magnitude of
the local moment on Fe site in
the paramagnetic state. The
arrows means the transition
to the paramagnetic state.
Experimental data are shown
by ◦ (average magnetization),
� (Fe magnetic moment),
and � (Ni magnetic moment)
[163, 164]

The FecNi1−c alloys form the fcc lattice in the range 0≤ c < 0.7, and show the
ferromagnetic instability around 65 at% Fe where various anomalies called the Invar
effects occur. We show in Fig. 8.8 the concentration dependence of magnetic mo-
ments calculated by the single-site theory of disordered alloys as an example [162].
With increasing Fe concentration, the Ni local moment (LM) hardly changes due
to strong ferromagnetism, while the Fe LM gradually decreases. Calculated results
explain the experimental data obtained by the neutron scattering up to 65 at% Fe.
Around c = 0.6, the Fermi level reaches the top of the up-spin d band so that the
instability of the ferromagnetism is induced. The single-site theory predicts the first-
order transition from the ferromagnetic state to the paramagnetic state at c∗ = 0.65,
while the experimental data indicate the second-order transition. It is remarkable
that the Fe LM remains even beyond c∗ as shown in the figure. It suggests the ex-
istence of an ordered state after collapse of the ferromagnetism. Experimentally,
the spin glass state is found beyond c∗ [163], which will be discussed in the next
section.

Figure 8.9 shows the concentration dependence of the Curie temperature cal-
culated by the single-site theory of disordered alloys. The Curie temperature
first increases with increasing Fe concentration, and shows the maximum around
20 at% Fe. It implies a strong ferromagnetic coupling between Fe and Ni LM as
compared with Ni–Ni and Fe–Fe couplings. The result explains the experimental
curve of TC qualitatively. The temperature dependences of Fe and Ni LM are shown
in Fig. 8.10. The Fe LM in pure Ni (i.e., c = 0) hardly changes with increasing
temperature and rapidly decreases near TC, indicating a strong magnetic coupling
between Fe and Ni LMs. On the other hand, both curves for Fe0.5Ni0.5 alloys almost
linearly decrease near TC. The result is consistent with the downward deviation from
the S = 1/2 Brillouin curve near c∗ found in the experimental data.
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Fig. 8.9 Concentration
dependence of the Curie
temperature in FecNi1−c
alloys [162]. The solid
(dashed) curve is the
calculated result (observed
one [146])

Fig. 8.10 Temperature
dependences of the local
magnetic moments of each
atom [162]. The Fe
concentration is denoted by c

Calculated paramagnetic spin susceptibility follows the Curie–Weiss law except
in the case of pure Ni in which the inverse susceptibility shows upward convexity.
Calculated effective Bohr magneton number monotonically increases with increas-
ing Fe concentration as shown in Fig. 8.11, and the Weiss constant becomes negative
beyond c= 0.65 in agreement with the experimental data.
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Fig. 8.11 Calculated
effective Bohr magneton
number meff (dashed curve)
and the Weiss constant Θ
(solid curve) [165].
Experimental values are
shown by � [166] and
© [167], respectively

8.3 Theory of Local Environment Effects in Magnetic Alloys

The magnetic properties of disordered alloys are often influenced strongly by the
local electronic and magnetic configurations. In particular magnetic moments in the
system with holes in the up-spin electron band change their magnitudes and di-
rections depending on their local environments. The behaviors associated with the
change of local electronic and magnetic states due to surrounding atomic configura-
tions are known as the local environment effects (LEE). Since the effects are related
with the intersite correlations, they are not described by the single-site theories pre-
sented in the last section. One needs a theory beyond the CPA. In this section we
will present the theories of the LEE at zero temperature [168, 169] as well as at
finite temperatures [170–172], and elucidate the LEE in the magnetism of Ni–Cu,
Ni–Mn, and Fe–Ni alloys. Finally we summarize the numerical results on the Curie
temperature Slater–Pauling curves as well as the Slater–Pauling curves in 3d transi-
tion metal alloys.

Let us start again from the local magnetic moment in the Hartree Fock approxi-
mation (8.6):

〈mi〉 =
∫
dωf (ω−μ)

∑
σ

σρiσ (ω). (8.45)

The density of state ρiσ (ω) is given by the Green function Giiσ (z) as follows in the
D-fold equivalent band model.

ρiσ (ω)=−D
π

ImGiiσ (z). (8.46)
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Fig. 8.12 A cluster
embedded on a lattice. The
central atom is connected
with z neighboring atoms via
transfer integral t . Sj (Tji )
denotes the contribution of all
the paths which start from j

and end at j (i) without
returning to the cluster on the
way

In the Hartree–Fock approximation, the Green function is given by (8.8):

Gijσ (z)=
[
(z−H σ )

−1]
ij
. (8.47)

Here (H σ )ij = εiσ δij + tij (1 − δij ) is the one-electron matrix element for the
Hartree–Fock Hamiltonian (8.4) and εiσ is the Hartree–Fock atomic potential on
site i given by εiσ = ε0

i + Ũi〈ni〉/2− J̃i〈mi〉σ/2.
We consider the binary alloys and adopt the geometrical-mean model for the

transfer integrals; tij = r∗i t0rj . Here |ri | = (|tAA|/|t0ij |)1/2 (|ri | = (|tBB|/|t0ij |)1/2)
when site i is occupied by atom A (B). The Green function r∗i Gij (z)rj is then
expressed as

r∗i Gij (z)rj =
[(
L−1 − t0)−1]

ij
. (8.48)

Here we have omitted the spin suffix for simplicity. The locator matrix L is defined
by (L)ij = |ri |2/(z− εiσ )δij . Equation (8.48) indicates that the Green function with
the off-diagonal disorder is obtained from that of the diagonal disorder by replacing
Gij (z)with r∗i Gij (z)rj and (L)ij = δij /(z−εiσ )with the locator (L)ij = |ri |2/(z−
εiσ )δij , respectively. Because of this we assume in the following the system with the
diagonal disorder and use t instead of t0 for simplicity.

The Green function operator is expanded as G = (L−1 − t)−1 = L + LtG =
L+LtL+LtLtG. Thus it is expressed as follows.

Gij (z) = Liδij +LitijLj +
∑
k �=i

Li tikLktkjLj

+
∑
k �=i

∑
l �=k,j

LitikLktklLltljLj + · · · . (8.49)

This means that the Green function in the site representation is given by the contri-
butions associated with all the paths which start from site i and end at site j .

We consider a cluster consisting of the central atom on site 0 and the z neigh-
boring atoms which are connected with the central site 0 via the nearest-neighbor
transfer integral t . The cluster is embedded on a lattice as shown in Fig. 8.12. Using
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Fig. 8.13 The paths which start from j and end at 0 (left), and the paths which start from j and
end at j ′ (right). The former corresponds to (8.51), the latter corresponds to (8.52)

the relation G= L+LtG, we obtain the Dyson equation as

G00 = L0 +L0

∑
j

t0jGj0. (8.50)

Classifying the terms in the locator expansion (8.49) according to the paths to the
inside and outside of the cluster as shown in the left and the right of Fig. 8.13, we
obtain the following equations

Gj0 = Lj tj0G00 +LjSjGj0 +Lj
∑
i �=0,j

TjiGi0, (8.51)

Gjj ′ = Ljδjj ′ +Lj tj0L0t0jGjj ′ +Lj
∑
i �=j

tj0L0t0iGij ′ +LjSjGjj ′

+Lj
∑
i �=j

TjiGij ′ . (8.52)

Here Sj (Tji ) denotes all the paths which start from j and end at j (i) without
returning to the cluster on the way.

Now we consider the disordered alloys and replace the random potentials outside
the cluster by a uniform effective potential Σ(z) called the coherent potential. This
implies that the locators {Lj } outside the cluster have been replaced by an effective
locator L (z). Accordingly, the self-energy Sj and the effective transfer integral Tji
are replaced by S and T , respectively. The Dyson equations (8.51) and (8.52) then
reduce to the following ones.

Gj0 = Lj tG00 +LjSGj0 +LjT
∑
i �=0,j

Gi0, (8.53)

Gjj ′ = Ljδjj ′ +Lj
(
L0t

2 +S
)
Gjj ′ +Lj

(
L0t

2 +T
)∑
i �=j

Gij ′ . (8.54)

In the simplest approximation called the Bethe approximation, we neglect the
effective transfer integral T assuming the Bethe lattice outside the cluster. We then
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obtain the off-diagonal Green function Gj0 from (8.53). Substituting the expression
into (8.50), we obtain the diagonal Green function as

G00 =
(
L−1

0 −
∑
j

t2

L−1
j −S

)−1

. (8.55)

In the same way, we obtain the diagonal Green function Gjj on the boundary site
from (8.54) without T as

Gjj = 1

L−1
j −S

+ 1

(L−1
j −S )2

t2G00. (8.56)

Here we used the relation (8.53).
The effective self-energy S is obtained from (8.55) in which the random poten-

tials on all the sites have been replaced by the coherent potential:

F =
(

L −1 − z t2

L −1 −S

)−1

. (8.57)

Here z denotes the number of the nearest neighbors (NN). The coherent Green func-
tion F is given by (8.14). In the following equations, we express the energy variable
on the complex energy plane as ω+ iδ when the number of the NN cannot be dis-
tinguished with the energy ‘z= ω+ iδ’. Solving the above equation with respect to
the effective self-energy S , we obtain

S =L −1 − z t2

L −1 − F−1
. (8.58)

The diagonal Green function (8.55) in the Bethe approximation is useful for taking
into account the LEE on the magnetic moments because of its simplicity. But it does
not include the effects of electron hoppings making a loop via outside of the cluster.

The second approximation [168] takes into account both S and T . Solving
(8.50) and (8.53) with respect to the diagonal Green function, we obtain

G00 =
(
L−1

0 − t2

M−1 −T

)−1

. (8.59)

Here M is defined by

M =
∑
n

(
L−1
n −S +T

)−1
. (8.60)

The boundary-site Green function is obtained from (8.54) as

Gjj = 1

L−1
j −S +T

− 1

(L−1
j −S +T )2

1

M − 1
L0t

2+T

. (8.61)
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Note that (8.59) and (8.61) reduce to (8.55) and (8.56), respectively when T is
omitted.

The effective self-energy S and the transfer integral T are obtained as functions
of L from (8.59) and (8.61) in which all random potentials have been replaced by
the coherent ones, i.e., from those in which G00, Gjj , and Lj have been replaced by
F(L ), F(L ), and L , respectively. The coherent potential or the effective locator
L (ω+ iδ) is determined by the self-consistent condition

〈G00〉 = F, (8.62)

or

〈Gjj 〉 = F. (8.63)

Here 〈∼〉 at the l.h.s. of the above equations means the configurational average. It
is numerically shown that the self-consistent condition (8.63) at the shell boundary
has better analytic property than the condition (8.62) at the central site [169].

The configuration of the cluster is specified by the number of surrounding atoms
n of type α in the case of binary alloys. Here α denotes the type of the central atoms
(i.e., A or B). The probability of finding n atoms of type α on the surrounding sites
are given by the binomial distribution function.

Γ
(
n, z,pαα

)= [
z!/n!(z− n)!](pαα)n(1− pαα)z−n. (8.64)

Here pαα is the probability of finding an atom α at a neighboring site of an atom α,
and is given by Cowley’s atomic short-range order parameter τ as

pαα = cα + (1− cα)τ, (8.65)

cα being the concentration of atom α. (Note that the parameter τ can vary from
−cα/(1− cα) to 1). With use of the binomial distribution (8.64), the configurational
average of the Green function G00 in (8.62) is given by

〈G00〉 =
z∑

n=0

Γ
(
n, z,pαα

)
G00(ω+ iδ, n). (8.66)

In the Hartree–Fock self-consistent scheme, the potential εiσ changes as εiσ =
ε0
i +Ũi〈ni〉/2− J̃i〈mi〉σ/2 depending on their environments. Thus, we have to solve

self-consistently (8.45) and (8.63), as well as the equation of the charge potential
〈ni〉 =

∫
dωf (ω − μ)

∑
σ ρiσ (ω) for each environment. This is the Hartree–Fock

cluster CPA theory. The theory can describe the LEE on the local magnetic moment
self-consistently.

We discuss in the following the LEE in Ni–Cu alloys as an example. Exper-
imentally, the magnetization in Ni–Cu alloys monotonically decreases along the
Slater–Pauling curve as shown in Fig. 8.1. The magnetic diffuse-scattering data of
polarized neutron experiments however indicate a strong disturbance of Ni local
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Fig. 8.14 Magnetic moments as a function of Cu concentration in Ni–Cu alloys [173]. (a) The
total magnetization and average Ni and Cu moments in the Hartree–Fock cluster CPA (solid lines)
and in the Hartree–Fock CPA (dashed lines). The experimental values are represented by • [174],
� [175], � [174], and © [176] for the total magnetization, and by � [176] for the average Ni
moment. The average Cu moment is essentially zero. (b) The Ni atomic moments in various local
environments (dashed lines) and the average Ni moment (solid line). Vertical bars represent the
root-mean square deviations of the Ni moments from the average values. The local environment is
specified by the number of Cu atoms on the NN shell

magnetic moments around 50 at% Cu [176]. Figure 8.14 shows the magnetization
vs. concentration curves in Ni–Cu alloys and the local magnetic moment for Ni
atom in various environments, which are calculated by the Hartree–Fock cluster
CPA based on (8.59) and (8.61) [173]. In the case of Ni–Cu alloys, one has to take
into account the hybridization of d electrons with sp electrons, whose effects are
phenomenologically taken into account in the model.

The critical concentration of the disappearance of the ferromagnetism is in-
creased by the self-consistent local environment calculations as shown in
Fig. 8.14(a); the LEE increase the ferromagnetic region. Figure 8.14(b) indicates
that the Ni local moments (LM) are subject to strong local environment effects; the
Ni LM surrounded by 12 Cu atoms almost lose the magnetic moment, while the Ni
LM surrounded by 12 Ni atoms shows the full moment (see Fig. 8.15). These behav-
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Fig. 8.15 Schematic pictures
showing the local magnetic
moments (LM) of Ni in the
environment n= 0 and
n= 12 where n is the number
of Ni nearest neighbors. In
the former, the central LM of
Ni disappears, while the LM
recovers in the latter

Fig. 8.16 (a) The average
DOS of Ni atom and (b) the
local DOS of Ni atom in three
local environments, which are
specified by the number of Cu
atoms on the nearest-neighbor
shell at 30 at% Cu [173].
Long vertical lines are the
Fermi level

iors are verified from the local densities of states (DOS) as shown in Fig. 8.16. The
average DOS in Fig. 8.16(a) shows that the Ni70Cu30 alloys are near the boundary
between strong and weak ferromagnetism because the top of the up-spin DOS just
touches on the Fermi level. The local DOS of a Ni atom with 12 Ni atoms on the
NN shell has a sharp peak for both spins showing the strong magnetic moment aug-
mented by surrounding Ni atoms. The DOS of a Ni atom with 12 Cu atoms on the
NN shell has a Lorentzian type broad peak below the Fermi level so that Ni loses
the magnetic moment.

In Ni–Cu alloys all the local magnetic moments are in the same direction so that
we can solve the Hartree–Fock self-consistent equations under a given direction of
LMs. On the other hand, the Mn LMs in the Ni–Mn alloys are expected to change
their direction depending on their environment because the coupling between Mn
LMs is antiferromagnetic while the coupling between Mn and Ni LMs is ferromag-
netic. It is not easy in this case to determine the direction of the LMs with use of the
Hartree–Fock cluster CPA.

The finite-temperature theory of the local environment effects [170–172] allows
us to automatically determine the LM configuration, and describe the magnetic
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properties of alloys at finite temperatures. We start from the free energy (8.19) and
the effective potential (8.23). Inserting the local magnetic field on site 0 and tak-
ing the derivative of the free energy F with respect to the field, we can derive the
magnetic moment on the central site 0 (see (3.55)):

〈m0〉 = 〈ξ 〉. (8.67)

Here ξ denotes the exchange field variable on site 0.
In the same way, we obtain the local charge on the central site 0 taking the deriva-

tive of F with respect to the atomic level on the same site as follows.

〈n0〉 = 〈ñ0(ξ, ξ1, ξ2, . . .)〉. (8.68)

Here we defined the field variables ξ1, ξ2, . . . acting on the surrounding site 1,2, . . . ,
respectively, bearing in mind that a cluster is centered at the site 0. The local charge
ñ0(ξ, ξ1, ξ2, . . .) at the central site 0 is defined by (8.21):

ñ0(ξ, ξ1, ξ2, . . .)=
∫
dωf (ω)

∑
σ

ρiσ (ω, ξ, ξ1, ξ2, . . .). (8.69)

The local densities of states ρiσ (ω, ξ, ξ1, ξ2, . . .) are calculated from the Green func-
tion for the Hamiltonian (8.24). Note that the average 〈∼〉 at the r.h.s. of (8.67) and
(8.68) is a classical average with respect to the effective potential E(ξ, ξ1, ξ2, . . .).
For any quantity A(ξ, ξ1, ξ2, . . .), it is defined by

〈
A(ξ, ξ1, ξ2, . . .)

〉=

∫
dξ

∫ [
N∏
i

dξi

]
A(ξ, ξ1, ξ2, . . .) e−βE(ξ,ξ1,ξ2,...)

∫
dξ

∫ [
N∏
i

dξi

]
e−βE(ξ,ξ1,ξ2,...)

. (8.70)

We introduce here the effective medium Lσ into the energy (8.23) and express it
using the relation (8.27) as

E(ξ, ξ1, ξ2, . . .)=
∫
dωf (ω)

D

π
Im tr

[
ln(L − t)]+E0(ξ, ξ1, ξ2, . . .)

+
N∑
i=1

Ei(ξi)+�E(ξ, ξ1, ξ2, . . .). (8.71)

Here Ei(ξi) are the single-site effective potentials (see (8.30)).

Ei(ξi)=
∫
dωf (ω)

D

π
Im

∑
σ

ln
[
1+ (

L−1
iσ (z, ξ)−L −1

σ (z)
)
Fσ (z)

]

− 1

4
Ũi ñi(ξi)

2 + 1

4
J̃i ξ

2
i . (8.72)

Here ñi (ξi) is assumed to depend only on ξi . E0(ξ, ξ1, ξ2, . . .) is defined by
(8.72) in which the subscript i has been replaced by 0. Note that the second term
E0(ξ, ξ1, ξ2, . . .) at the r.h.s. of (8.71) may depend on the surrounding variable
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ξ1, ξ2, . . . via the charge potential Ũ0ñ0(ξ, ξ1, ξ2, . . .)/2 which is determined self-
consistently.

The last term of the r.h.s. of (8.71) is the nonlocal term defined by

�E(ξ, ξ1, ξ2, . . .)=
∫
dωf (ω)

D

π
Im tr

[
ln
(
1− t̃F ′)]. (8.73)

Expanding �E with respect to the sites, we obtain the following expression in the
lowest order.

�E(ξ, ξ1, ξ2, . . .)=
∑
(i,j)

Φij (ξi, ξj ). (8.74)

Here Φij (ξi, ξj ) is the pair energy defined by

Φij (ξi, ξj ) =
∫
dωf (ω)

D

π

× Im
∑
σ

ln
[
1− Fijσ (z)Fjiσ (z) t̃iσ (z) t̃jσ (z)

]
, (8.75)

and Fijσ is the off-diagonal component of the coherent Green function given by

Fijσ =
[
(L − t)−1]

ijσ
, (8.76)

t̃iσ is the diagonal component of the single-site t matrix (8.28):

t̃iσ =− (L−1
iσ −L −1

σ )

1+ (L−1
iσ −L −1

σ )Fσ
. (8.77)

Substituting (8.71) into (8.70), we obtain an alternative form of the average as
follows.

〈A(ξ, ξ1, ξ2, . . .)〉

=

∫
dξ

∫ [
N∏
i

pi(ξi) dξi

]
A(ξ, ξ1, ξ2, . . .) e−β[E0(ξ,ξ1,ξ2,...)+�E(ξ,ξ1,ξ2,...)]

∫
dξ

∫ [
N∏
i

pi(ξi) dξi

]
e−β[E0(ξ,ξ1,ξ2,...)+�E(ξ,ξ1,ξ2,...)]

.

(8.78)

Here pi(ξi) = exp(−βEi(ξi))/
∫
dξi exp(−βEi(ξi)) is the single-site probability

of finding the field ξi on site i.
A simple way to reduce the integrals of the surrounding sites in (8.78) is to adopt

the decoupling approximation which is correct up to the second moment in the mo-
ment expansion;

∫
dξi pi(ξi)ξ

2n+k
i ≈ x2n

i 〈ξi〉k0 where xi = 〈ξ2
i 〉1/20 . Then for any

function y(ξi), we have

〈y(ξi)〉0 =
∫
pi(ξi)y(ξi) dξi ≈

∑
ν=±

piνy(νxi). (8.79)
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Here piν = (1+ ν〈ξi〉0/xi)/2. It is interpreted as a probability that a local moment
with an amplitude xi points up.

Applying the decoupling approximation (8.79) successively in (8.78) and adopt-
ing the pair approximation (8.74), we obtain [177]

〈A(ξ, ξ1, ξ2, . . .)〉

=

∫
dξ

(∑
s1=±

∑
s1=±

· · ·
)
A(ξ, s1x1, s2x2, . . .) e−βΨ (ξ,s1x1,s2x2,...)

∫
dξ

(∑
s1=±

∑
s1=±

· · ·
)

e−βΨ (ξ,s1x1,s2x2,...)

. (8.80)

The effective potential Ψ (ξ, s1x1, s2x2, . . .) is expressed as

Ψ (ξ, s1x1, s2x2, . . .)=E0(ξ, s1x1, s2x2, . . .)+
∑
j

Φ
(a)
0j (ξ)

−
∑
i �=0

[
Φ
(e)
0i (ξ)+ β−1 tanh−1 〈ξ 〉0

xi
+

∑
j �=0,i

Kij

]
si

−
∑
(i,j)

′
Jij sisj . (8.81)

Here the pair interactions Φ(a)
0j (ξ), Φ

(e)
0i (ξ), Kij , and Jij are defined as

Φ
(a)
0j (ξ)=

1

2

∑
ν=±

Φij (ξ, νxj ), Φ
(e)
0i (ξ)=−

1

2

∑
ν=±

νΦij (ξ, νxj ), (8.82)

Kij =−1

4

∑
λ=±

∑
ν=±

λΦij (λxi, νxj ), Jij =−1

4

∑
λ=±

∑
ν=±

λνΦij (λxi, νxj ).

(8.83)

As seen from (8.81), Jij is the exchange interaction between local magnetic mo-
ments (LM’s) in the decoupling approximation and reduces to the super-exchange
interaction in the strong Coulomb interaction limit (see (1.86) and note that Jij =
4Jij by definition when D = 1). Φ(e)

0i (ξ) defined by (8.82) is the exchange energy

potential for the flexible central LM ξ . Φ(a)
0j (ξ) is an atomic potential which changes

the amplitude of LM ξ according to the surrounding atomic configuration. Kij is an
effective nonlocal magnetic field induced by the polarization of the medium. Note
that the latter vanishes in the paramagnetic state.

It should be emphasized that the exchange couplings Jij provide us with the
magnitude and sign of the couplings between the LMs in the itinerant electron sys-
tem, thus they are useful for understanding the magnetic couplings between con-
stituent magnetic atoms. The exchange couplings Jij are essentially the same as
the Alexander–Anderson–Moriya interaction [178, 179], though the latter is based
on the Anderson model (7.5).

Equation (8.80) indicates that we can approximate the surrounding spins {ξi}
with the Ising type of effective spins {sixi} with the amplitude {xi}. We consider
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now a cluster consisting of the central atom and the surrounding nearest-neighbor
(NN) atoms, and calculate the central LM (8.67) on the basis of (8.80). The simplest
approximation to the effective potential Ψ (ξ, s1x1, s2x2, . . .) is a molecular-field
type in which the surrounding spins {si} are replaced by their averages 〈mj 〉/xj . In
this case the effective potential is given by

Ψ (ξ)=E0(ξ)+
∑
j

Φ
(a)
0j (ξ)−

∑
j �=0

Φ
(e)
0j (ξ)

〈mj 〉
xj

. (8.84)

In the disordered alloys, the intersite interactions are expected to be rather short
range because of the damping effects due to random potentials. Equations (8.84)
and (8.67) indicate that the central LM 〈m0〉 is specified by the type of the central
atom (α), the number of the NN (z), the types of the surrounding atoms ({γj }), and
the surrounding LM ({〈mj 〉}).

〈m0〉 = 〈mα〉
({γj },{〈mj 〉

})=
∫
dξ ξe−βΨ (ξ)

∫
dξ e−βΨ (ξ)

. (8.85)

In order to determine the LMs in the cluster self-consistently, we introduce
a distribution function gα(m) such that the probability of finding the LM of
type α between m and m + dm is given by gα(m)dm. Then the probability
that the surrounding atomic configuration {γj } is realized and each LM on site
j with a type of atom γj has a value between mj and mj + dmj is given by
[∏z

j=1 p
αγj ][∏z

j=1 gγj (mj ) dmj ]. Here pαγ is the probability of finding atom γ

at the neighboring site of atom α. It is given by (8.65) for γ = α and pαα = 1−pαα
for γ = α. The LM on the central atom α is then given by 〈m0〉 = 〈mα〉({γj }, {mj }).
Thus the probability that the central LM of the type of atom α is between M and
M +�M is given by

gα(M)�M =
∑
{γj }

∫
M≤〈mα〉≤M+�M

[
z∏

j=1

pαγj

][
z∏

j=1

gγj (mj ) dmj

]
. (8.86)

Inserting the identity
∫
dM ′ δ(M ′ − 〈mα〉) and making use of the binomial distribu-

tion function (8.64), the above equation is written as follows.

gα(M)=
z∑

n=0

Γ
(
n, z,pαα

)∫
δ
(
M − 〈mα〉

)

×
[

n∏
i=1

gα(mi) dmi

][
z∏

j=n+1

gα(mj ) dmj

]
. (8.87)

This is known as the distribution function method [180, 181].
The self-consistent integral equation (8.87) for gα(M) is not easy to solve for

large z (e.g., 8 for the bcc, 12 for the fcc alloys). A way to solve the equation
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is to apply the decoupling approximation of the type of (8.79) to the distribution
functions {gγ (mj )} at the r.h.s. of (8.87).

∫
m2n+kgγ (m)dm≈

[〈mγ 〉2
]n

c

[〈mγ 〉
]k

c (k = 0,1), (8.88)

where [∼]c denotes the configurational average. This implies that we can make the
following approximation for any function f (m) at the r.h.s. of (8.87).

∫
f (m)gγ (m)dm≈

∑
ν=±

1

2

(
1+ ν [〈mγ 〉]c

[〈mγ 〉2]1/2c

)
f
(
ν
[〈mγ 〉2

]1/2
c

)
. (8.89)

After making the decoupling approximation, we substitute the approximate dis-
tribution gα(M) (i.e., (8.87)) into the equations [〈mα〉]c =

∫
Mgα(M)dM and

[〈mα〉2]c =
∫
M2gα(M)dM , and obtain the self-consistent equations for [〈mα〉]c

and [〈mα〉2]c as follows.

[ [〈mα〉]c
[〈mα〉2]c

]
=

z∑
n=0

Γ
(
n, z,pαα

)[[〈mα〉n]c
[〈mα〉2n]c

]
. (8.90)

The magnetic moments [〈mα〉kn]c (k = 1,2) at the r.h.s. of the above equations are
the LM’s for a given environment n. They are given by

[〈mα〉kn
]

c =
n∑
l=0

z−n∑
m=0

Γ (l, n, qα+)Γ (m, z− n,qα+)〈ξα〉knlm. (8.91)

Here qα± = (1± [〈mα〉]c/([〈mα〉2]c)1/2)/2 is the probability that the LM of type α
points up or down. 〈ξα〉nlm is the LM of an atom of type α at the central site when l
of the LMs among the surrounding n atoms of type α point up, and in addition, m
LMs of the remaining z− n atoms of type α also point up:

〈ξα〉nlm =
∫
pαnkl(ξ)ξ dξ, (8.92)

pαnlm(ξ)= e−βΨαnlm(ξ)∫
dξ e−βΨαnlm(ξ)

, (8.93)

Ψαnlm(ξ)=Eα(ξ)+ nΦ(a)
αα (ξ)+ (z− n)Φ(a)

αα (ξ)− (2l − n)Φ(e)
αα (ξ)

[〈mα〉2]1/2c

xα

− (2m− z+ n)Φ(e)
αα (ξ)

[〈mα〉2]1/2c

xα
. (8.94)

Equation (8.90) determines [〈mα〉]c and [〈mα〉2]c self-consistently when the
medium L −1

σ is given, because Eα(ξ), Φ
(a)
αγ (ξ), and Φ

(e)
αγ (ξ) are the functionals
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of the medium L −1
σ . We determine in principle the latter from the CPA equation

(8.34) or (8.36). However, in the present case, the thermal average of the single-site
Green function depends on the surrounding environment {γj } and {〈mj 〉} via the
effective potential (8.84), so that the CPA equation is expressed as

∑
α

cα
[〈[L−1

ασ (z, ξ)−L −1
σ (z)+ F−1

σ (z)]−1〉]c = Fσ (z). (8.95)

Here the average 〈∼〉 should be taken with respect to the effective potential (8.84).
Applying again the decoupling approximation of the type (8.79) for the average

[〈∼〉]c, we obtain a simplified CPA equation as follows.

∑
α

cα
∑
ν=±

1

2

(
1+ ν [〈ξα〉]c

[〈ξ2
α〉]1/2c

)[
L−1
ασ

(
z, ν

[〈ξ2
α〉
]1/2

c

)−L −1
σ (z)+ F−1

σ (z)
]−1

= Fσ (z). (8.96)

Here [〈ξkα〉]c (k = 1,2) is defined by

[〈ξkα〉]c =
z∑

n=0

Γ
(
n, z,pαα

) n∑
l=0

z−n∑
m=0

Γ (l, n, qα+)Γ (m, z− n,qα+)〈ξkα〉nlm, (8.97)

〈ξkα〉nlm =
∫
ξkpαnlm(ξ) dξ. (8.98)

Equations (8.90) and (8.96) determine [〈mα〉]c, [〈mα〉2]c, and L −1
σ self-consistently.

It is worth to mention that the self-consistent equations (8.90) contain the spin-
glass solution, [〈mα〉]c = 0 and [〈mα〉2]c �= 0 (see (1.104)). To see the fact, we
consider the case [〈mα〉]c = 0, and write the second equation of (8.90) for vα =
[〈mα〉2]1/2c /xα as follows after making the decoupling approximation (8.79) for the
central-site variable ξ .

v2
α =

z∑
n=0

n∑
l=0

z−n∑
m=0

Γ (n, z, cα)Γ (l, n,1/2)Γ (m, z− n,1/2)

× tanh2[β(2k − n)Jααvα + β(2l − z+ n)Jααvα
]
. (8.99)

Here we assumed the complete disorder pαα = cα . Expanding the r.h.s. of (8.99)
with respect to vα and assuming that Jαγ is independent of temperature, we obtain
the transition temperature Tg at which vα vanishes.

T 2
g =

1

2
z
[
cAJ 2

AA + cBJ 2
BB +

√(
cAJ 2

AA − cBJ 2
BB

)2 + 4cAcBJ 4
AB

]
. (8.100)

The above expression of Tg reduces to the spin-glass temperature (7.46) for the
insulator system in the dilute limit.
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Fig. 8.17 Various local magnetic moments (LM) in Ni–Mn alloys as a function of Ni concentra-
tion at 150 K [172]. Solid curves are calculated results of [〈mMn〉]c (upper curve) and [〈mNi〉]c
(lower curve). Corresponding experimental values at T = 4.2 K (room temperatures) are denoted
by � and � (� and �) [187], respectively. The dotted curve represents the calculated magneti-
zation. The experimental values are shown by ◦ (4.2 K) and • (room temperatures) [187, 188].
The root mean square values of the thermal average of Mn and Ni LM’s [〈mα〉2]1/2c are shown by
dot-dashed curves

The magnetic properties of Ni–Mn alloys cannot be explained by the single-
site approximation as mentioned before. The magnetization vs. concentration curve
shows a deviation from the Slater–Pauling curve as shown in Fig. 8.1. The sys-
tem is characterized by the strong atomic short range effects on magnetic moment
[182–184], and the existence of spin glasses [185, 186]. Finite temperature calcu-
lations based on the LEE theory mentioned above allows us to explain these prop-
erties of Ni–Mn alloys. Calculated magnetic moments vs. concentration curves are
presented in Fig. 8.17. The magnetization curve shows a maximum at 10 at% Mn in
agreement with the experimental data. The deviation from the linear Slater–Pauling
curve is caused by the rapid decrease of average Mn local magnetic moment (LM)
with increasing Mn concentration. The Mn atoms have well-defined LM with a large
amplitude more than 3μB, and the magnetic couplings in Ni–Mn alloys are verified
to be JMnMn < 0, |JMnMn| �JNiNi > 0, and JNiMn > 0. Thus it is expected
that the rapid decrease of average Mn LM is accompanied by the reversal of the Mn
LM with the increase in Mn concentration.

Figure 8.18 shows the calculated concentration dependences of Mn and Ni LMs
in various local environments. At low Mn concentrations, Mn LM are parallel to the
magnetization when the number of surrounding Mn LM n is less than n= 3, while
they are antiparallel when n are equal to or larger than 3. Such behavior explains the
concentration dependence of the magnetization by taking into account the binomial
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Fig. 8.18 Concentration
dependences of the LM in
various environments,
[〈mα〉n]c [172]. The solid
(dashed) curves show the Mn
(Ni) LM. Integers n in the
figure show the coordination
number of Mn

distribution via (8.90). Beyond 10 at% Mn, the Mn LM with critical environments
n = 2,3,4 rapidly reduce their magnitudes with decreasing average polarization.
This is because the Mn LM with critical environments feel a weak molecular field.
Due to the same reason, they lose rapidly their magnetic moment with increasing
temperature.

The Ni LM, on the other hand, do not change their directions irrespective of their
local environments as seen in Fig. 8.18, so that the average Ni LM monotonically
decreases with increasing concentration as shown in Fig. 8.17. Note that [〈mα〉2]c
remain beyond 27 at% Mn after the disappearance of the ferromagnetism, indicat-
ing the existence of the spin glass state in agreement with the experimental data
[185, 186].

The Ni–Mn alloy forms the Cu3Au ordered alloy at 25 at% Mn. Experimen-
tally the degree of order is controlled by quenching. The degree of atomic order
is specified by the atomic short-range order (ASRO) parameter τ defined by (8.65);
the Cu3Au ordered state is characterized by τ =−cMn/cNi =−0.33, while the com-
plete disorder is characterized by τ = 0. It is found that the magnetization is strongly
influenced by the ASRO at 25 at% Mn; it increases from 0.1μB to 1.0μB when the
ASRO decreases from τ = 0 to τ =−0.33 [184].

Figure 8.19 shows the local densities of states (LDOS) in various environments
at 25 at% Mn for complete disorder. The up-spin electrons on Mn atoms with no Mn
NN hybridize with surrounding electrons on Ni atoms with the same spin, while the
down-spin electrons on Mn atoms are localized above the Fermi level. The Mn LMs
with 12 Mn NN are subject to the ferro- and antiferro-magnetic molecular fields
depending on the surrounding Mn configurations in direction, so that the LDOS
hardly depend on the spin component. On the other hand, the Ni LDOS with no Mn
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Fig. 8.19 Local densities of states (LDOS) in various environment at 25 at% Mn and 150 K [172].
Solid curves show the LDOS in the environment with no nearest neighbor (NN) Mn atoms. Dashed
curves, LDOS with n= 6 Mn NN. Dotted curves, LDOS with n= 12 Mn NN

NN is well polarized due to the Ni cluster. With increasing Mn NN, the polarization
of Ni LM decreases and the peak of the DOS sinks below the Fermi level. In the Ni
LDOS with 12 Mn NN, we find considerable DOS above the Fermi level due to the
hybridization with the electrons on Mn sites.

Calculated magnetization vs. temperature curves at 25 at% Mn are presented in
Fig. 8.20 for various ASRO. At low temperatures, it is verified that there are the
low-spin state and high-spin state depending on the ASRO, and the first-order tran-
sition from the former to the latter takes place between τ =−0.18 and τ =−0195
due to the change in magnetic couplings with decreasing the number of surrounding
Mn LM. The high LM states rapidly decrease with increasing temperature because
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Fig. 8.20 (a) Calculated magnetization vs. temperature curves for various ASRO parameters τ
at 25 at% Mn [172]. (b) Experimental magnetization vs. temperature curves for various ASRO
parameters τ at 23.7 at% Mn [184]

of larger magnetic entropy. When the number of Mn NN decreases with decreas-
ing τ , the Ni–Mn ferromagnetic couplings JNiMn become dominant, so that high
magnetization and high TC are realized at τ =−0.33.

As a second example showing strong LEE, we consider the Fe–Ni alloys. The
alloys show a rapid deviation from the Slater–Pauling curve at c∗ = 66 at% Fe as
shown in Fig. 8.1. The ferromagnetic instability takes place when the up-spin band
touches the Fermi level, as discussed in the last section. The ferromagnetic instabil-
ity with strong LEE causes various anomalies such as the broad internal-field distri-
bution in Möbauer experiment [189], the downward deviation of the magnetization
vs. temperature curve from the Brillouin curve [190], the large magneto-volume ef-
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Fig. 8.21 Concentration
dependence of various local
moments (LM) in FecNi1−c
alloys calculated for the bcc
(c≥ 0.65) and fcc (0≤ c ≤ 1)
structures at T = 150 K
[192]. Dotted curves: average
magnetizations, solid curves:
partial magnetization
[〈mα〉]c, dashed curves:
amplitudes of LM [〈m2

α〉]1/2c ,
dot-dashed curves:
[〈mα〉2]1/2c . Experimental
magnetizations are shown by
◦ [190, 193, 194].
Experimental LM [〈mα〉]c at
4.2 K are shown by � (α =
fcc Fe), � (α = fcc Ni)
[155, 156, 193], � (α = bcc
Fe), and � (α = bcc Ni) [193]

fects called the Invar effects [191], and the appearance of spin glasses (SG) after the
disappearance of ferromagnetism [163]. The finite-temperature theory of the LEE
explains these characteristics of Fe–Ni alloys.

Figure 8.21 shows the concentration dependence of various magnetic moments
calculated by the theory of LEE [192]. Calculated magnetization linearly increases
with increasing Fe concentration and starts to decrease rapidly at 66 at% Fe, where
the top of the up-spin band touches the Fermi level. Calculated magnetic moments
[〈mα〉2]1/2c remain even after the disappearance of ferromagnetism, showing the ex-
istence of the SG. Experimentally, the SG are found in the fcc (FecNi1−c)92C8 al-
loys, because the Fe–Ni alloys cause the structural phase transition to the bcc after
the disappearance of ferromagnetism beyond 70 at% Fe [163].

The strong LEE found in Fe–Ni alloys originate in a nonlinear magnetic coupling
between Fe LMs. Figure 8.22(a) shows various atomic and exchange pair energies
of the central LM of type α when the neighboring LM of type γ with amplitude
xγ points up. If the exchange interaction Φ(ξi, ξj ) follows the bilinear form like

the Heisenberg model (−Jij ξi · ξj ), exchange energy potential −Φ(e)
αγ (ξ) should

be linear with respect to ξ and there is no anomaly in the vicinity of ferromagnetic
instability. However, the exchange potential −Φ(e)

FeFe(ξ) in the fcc structure shows
an S-shape curve. It implies that Fe LMs with the average amplitude (〈ξ2〉1/2) less
than about 1.7μB couple antiferromagnetically to the neighboring Fe LMs, while
the Fe LMs with the amplitude more than 1.7μB couple ferromagnetically to the
surrounding Fe LMs. Since the pair-energy functionalsΦ(a)

FeFe(ξ) andΦ(a)
FeNi(ξ) show

downward and upward convex curves, respectively, the amplitude of the central LM
varies from 2.6μB to 1.5μB with the increasing number of Fe NN. This means
that the Fe LMs with a small number of Fe NN show ferromagnetic coupling to
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Fig. 8.22 Pair-energy potentials Φ(a)
αγ (ξ) and −Φ(e)

αγ (ξ) for fcc (upper) and bcc (lower) Fe65Ni35
alloys calculated at 900 K [192]. The notation αγ (at) (αγ (ex)) indicates the atomic (exchange)
coupling between atom α and atom γ

the neighboring Fe LM, while the Fe LMs with a large number of Fe NN show
the antiferromagnetic coupling to the neighboring Fe LM’s (see Fig. 8.23). The
antiferromagnetic coupling of Φ(e)

FeFe(ξ) does not appear for any value of ξ in the
bcc lattice as shown in Fig. 8.22(b).

The Fe LMs in Fe–Ni alloys decrease their amplitudes (〈ξ2〉1/2) with increasing
Fe concentration due to the downward-convex coupling Φ(a)

FeFe(ξ) and the upward-

convex coupling Φ(a)
FeNi(ξ). Near the critical concentration of ferromagnetic instabil-

ity, amplitudes of LM with more than 10 Fe NN become less than 1.7μB and the Fe
atoms with such local environments reverse their LM, leading to the ferromagnetic
instability.
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Fig. 8.23 Nonlinear
coupling between Fe LM’s in
the fcc Fe–Ni alloys. Fe LM’s
with less than ten Fe NN have
large amplitudes 〈ξ2〉1/2
more than 1.7μB and
therefore show the
ferromagnetic coupling, but
Fe LM’s with more than ten
Fe NN have small amplitudes
less than 1.7μB, thus the
antiferromagnetic coupling

Fig. 8.24 Distribution
functions gFe(M) of Fe LM
in Fe–Ni alloys at 150 K for
various Fe
concentrations [192]

The nonlinear coupling between Fe LMs and its LEE yield a broad distribution
of Fe LM near the critical concentration as shown in Fig. 8.24. Note that even after
the disappearance of ferromagnetism, a broad LM distribution remains. It implies
the existence of the SG specified by [〈mα〉]c = 0 and [〈mα〉2]c �= 0.

Strong disturbance of Fe LM due to the LEE is also caused by thermal exci-
tations. As shown in Fig. 8.23, the Fe LMs with more than 10 Fe NN decrease
their amplitudes with increasing temperature near the critical concentration, and
thus cause the reversal of their LM. Figure 8.25 shows this behavior (see the distri-
bution at 0.53 TC). With further increase of temperature, the distribution shrinks and
merges into zero value at TC.
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Fig. 8.25 Temperature
dependence of the
distribution functions for Fe
LM at 62.5 at% Fe in Fe–Ni
alloys [192]

We can calculate the internal field distribution of 57Fe in Mössbauer experiments
with use of an empirical expression Hi = ai〈mi〉 +∑z

j=1 bij 〈mj 〉 [196]. Here ai
and bij are constants. By making use of the distribution functions gα(M), we obtain
the distribution of the internal field on atom α as follows.

Pα(H)=
z∑

n=0

Γ
(
n, z,pαα

)∫
δ
(
H −Hα

(
n, z, {mi}

))

×
[

n∏
i=1

gα(mi) dmi

][
z∏

j=n+1

gα(mj ) dmj

]
.

(8.101)

Here Hα(n, z, {mi}) is the internal field under a given configuration, and is ex-
pressed by

Hα

(
n, z, {mi}

)= aα〈ξα〉(n, z, {mi}
)+ bαα

n∑
i=1

mi + bαα
z∑

j=n+1

mj . (8.102)

Figure 8.26 shows the calculated temperature dependence of the internal-field
distribution function PFe(H) at 62.5 at% Fe. With increasing temperature, the dis-
tribution rapidly broadens in accordance with the broadening of gFe(M) at the same
temperature. The results agree with the experimental data depicted in the inset [189].
A peak atH ≈ 0.7μB in the distribution functions for 0.53 TC and 0.74 TC originates
in the Fe LM with 9 or 10 Fe NN.

Near the critical concentration of ferromagnetic instability, the magnetization
vs. temperature curves deviate downward from the Brillouin curve experimen-
tally [190]. Both the single-site theory and the theory of LEE can explain the fact
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Fig. 8.26 Temperature
dependence of the
internal-field distribution
functions for 57Fe at
62.5 at% Fe [192]. The inset
shows the experimental
results at 65 at% Fe [189]

Fig. 8.27 Reduced
magnetization curves near the
critical concentration of the
ferromagnetic instability
[171]. The solid (dot-dashed)
curve is the result of the
finite-temperature theory of
the LEE (the SSA) at
50 at% Fe. The dashed curve
is the S = 1/2 Brillouin
curve. The open circles are
the experimental data at
67 at% Fe

as shown in Fig. 8.27. The theory of LEE yields the smoother curve being close
to the experimental data because the fluctuations of the surrounding configurations
are favorable to the second order transition. Note that the other type of excitations
also becomes important near the critical concentration of ferromagnetic instability.
The low-energy spin wave excitations and the electron excitations coupled to the
spin waves may also contribute to the smooth magnetization vs. temperature curve
at low temperatures.

The calculated magnetic phase diagram of Fe–Ni alloys is summarized in
Fig. 8.28. The result explains the experimental data semi-quantitatively as shown
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Fig. 8.28 Calculated magnetic phase diagram showing the ferromagnetic (F), spin-glass (SG),
and paramagnetic (P) states [192]. The Curie temperatures for the bcc structure are shown by the
dashed curve. The inset shows the experimental result [146]

Fig. 8.29 Theory (dashed curves) vs. experiment (solid curves) for the Slater–Pauling curves. The
calculations are performed at 150 K [195]

in the inset. The Curie temperature of Fe–Ni alloys shows a maximum with increas-
ing Fe concentration because the ferromagnetic coupling JFeNi is stronger than
JNiNi and the antiferromagnetic coupling JFeFe(< 0) is weaker than the others in
magnitude.

Magnetization vs. concentration curves in 3d transition metal alloys, which are
calculated by the theory of LEE and the d band model, are summarized in Fig. 8.29.
As discussed in Sect. 8.1, the straight line with−45◦ slope at the r.h.s. of the Slater–
Pauling curves is explained by the increase of holes in the down-spin band of the
strong ferromagnet with decreasing average d electron number n. The Fermi level
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reaches the top of the up-spin band around n = 7.5. When the d electron number
becomes smaller than around 7.5, holes are created in the up-spin band. In Fe–V
alloys the V local moments are antiparallel to the magnetization. The magnitudes of
both Fe and V LMs decrease with increasing V concentration.

Although the concentration dependence of the magnetization curve in Fe–V al-
loys is explained by a simple dilution picture, it does not necessarily mean that the
LEE are not important. Since the number of holes in the d bands increases with
adding V atoms, Fe LMs become more flexible, so that they show the broad distri-
bution of LMs. The distribution is caused by the LEE, i.e., the strong fluctuations
in amplitudes due to the fluctuation of the surrounding atomic configuration. These
LEE explain the broad distribution of the internal field seen by 57Fe in Mössbauer
experiments [197].

The Fe–Cr alloys show the behaviors similar to that of the Fe–V alloys with
strong LEE. The theory explains the concentration dependence of magnetization.
It also explains the concentration and temperature dependences of the distribution
of the internal field in Mössbauer experiments. The Cr-rich Fe–Cr alloys show the
antiferromagnetic state at less than 19 at% Fe. The theory of LEE is extended to
the antiferromagnetic case under the assumption of the two sublattices [198]. In
this case, we introduce two kinds of effective media, L (+)

σ on the (+) sublattice
and L (−)

σ on the (−) sublattice. Accordingly, we have the distribution functions
g
(+)
α (M) and g(−)α (M) on the (+) and (−) sublattices, respectively. Because of the

symmetric relations L (−)
σ =L (+)

−σ and g(−)α (M) = g
(+)
α (−M), we have the same

type of integral equation (8.87) in which the distribution functions {gγi (mi)} at the
r.h.s. of the equation have been replaced by {gγi (−mi)}.

The upward deviation of the calculated curve in Ni–Cu alloys originates in the ne-
glect of the sd hybridization. The hybridization delocalizes Ni LMs therefore yields
smaller magnetization in Cu-rich Ni alloys, so that the linear-concentration depen-
dence is realized (see Fig. 8.14). The branch in Ni–Cr alloys has been explained by
the formation of the virtual-bound state in the up-spin band above the Fermi level
when the Cr atoms are dissolved in the host Ni (see Fig. 8.7).

The deviation from the straight line in Ni–Mn alloys has been shown to be caused
by the reversal of Mn LMs with more than 3 Mn NN atoms with increasing Mn
concentration (see Fig. 8.17). It is also worth to remind that the SG state appears
after the disappearance of ferromagnetism, in agreement with the experiment [185],
since the ferromagnetic exchange couplings between Ni LMs and between Ni and
Mn LMs compete with the antiferromagnetic couplings between Mn LMs.

Rapid but continuous decrease of the curve in Fe–Ni alloys is not described by
the single-site theory. The second-order transition with increasing Fe concentration
is caused by nonlinear magnetic couplings between Fe LMs and the LEE on both
the magnetic moments and their amplitudes of Fe LMs, as we have discussed be-
fore (see Fig. 8.21). The nonlinear couplings and the LEE on Fe LMs also describe
the SG in Fe–Ni alloys [163] after the disappearance of ferromagnetism. The same
type of strong LEE is found in fcc Co–Fe alloys [199], though the alloys change the
structure from the fcc to the bcc at 30 at% Fe. According to the theoretical calcula-
tions, the fcc Co–Fe alloys show the ferromagnetic instability around 78 at% Fe and
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Fig. 8.30 Theory (dashed curves) vs. experiment (solid curves) for the Curie-temperature Slater–
Pauling curves [195]. Calculated results are renormalized at the pure metals

the SG behavior after the disappearance of ferromagnetism due to the same reason
as in the case of Fe–Ni alloys. These behaviors are verified in the fcc Fe–Co particle
system precipitated in a Cu matrix [200].

It is well-known that the Curie temperatures (TC) in 3d transition metals show
the curves being similar to the Slater–Pauling curves. The Curie-temperature Slater–
Pauling curves calculated by the theory of the LEE are presented in Fig. 8.30 with
the experimental data. Since TC are determined by thermal excitations, the curves
are not directly related to the ground-state magnetizations. It should be noted that
theoretical values of TC remain qualitative or semi-quantitative due to various ap-
proximations, so the curves in Fig. 8.30 are renormalized by TC for one of the con-
stituent metals.

Calculated Curie-temperature Slater–Pauling curves explain overall features of
the experimental data. In qualitative discussions on the concentration dependence of
TC, the effective exchange interactions {Jαγ } defined by (8.83) are useful. In the
case of Fe–V alloys, TC shows a maximum with increasing V concentration. In this
system, calculated exchange interactions show that JFeFe ∼ |JFeV| � |JVV|> 0,
and JFeV,JVV < 0 in the bcc pure Fe. With increasing V concentration, JFeFe

rapidly increases due to alloying and shows a maximum at 25 at% V, while |JFeV|
monotonically decreases. These concentration dependences of magnetic couplings
cause a maximum in TC around 20 at% V in agreement with the experiment. The
same type of alloying effect on TC is seen in the bcc Fe–Ni alloys. There the ex-
change coupling JFeFe rapidly decreases up to 10 at% Ni with increasing Ni con-
centration. The effects decrease TC in spite of the fact that JFeNi >JFeFe > 0. On
the other hand this alloying effect is not found in the bcc Fe–Co alloys. There the
magnetic couplings satisfy an inequality JCoCo >JFeCo >JFeFe > 0 and JFeFe

gradually increases with increasing Co concentration, so that TC in the bcc Fe–Co
alloys monotonically increases.
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The maximum in the curve for fcc Fe–Ni alloys and the curves in Fe–Co–Ni al-
loys are explained basically by a rigid band theory with thermal spin fluctuations.
More detailed analyses indicate that the Fe–Ni pairs JFeNi (>JNiNi) increase TC
first and the Fe–Fe pairs JFeFe(< 0) decrease TC next with increasing Fe concen-
tration.

The Curie temperature in Ni–Mn alloys monotonically decreases with increas-
ing Mn concentration, while the magnetization vs. concentration curve shows a
maximum. The former is explained by the fact that JNiNi > JNiMn > 0 up to
10 at% Mn. The latter is explained by the fact that the small Ni LMs are replaced
first by the large Mn LMs parallel to the magnetization, but the Mn LMs become an-
tiparallel to the magnetization when the number of neighboring Mn atoms become
larger than 3, as discussed before.

8.4 Computer Simulations for Disordered Magnetic Alloys

The finite-temperature theory of local environment effects (LEE) self-consistently
determines the distribution of the local moments (LM) of constituent atoms in disor-
dered alloys going beyond the single-site approximation, and allows us to calculate
their temperature dependences. The method however relies on the distribution of
LM, and therefore does not provide us with details on the magnetic structure in real
space. In addition, it is not easy to take into account the effects of inter-site cor-
relations going beyond the nearest-neighbor approximation because the number of
integrals rapidly increases with increasing the correlation length in the integral equa-
tion for distribution functions. The molecular dynamics (MD) approach presented
in Sect. 6.3 allows us to clarify the spatial structure of magnetic moments and to
take into account the second, third, and further distant neighbor correlations in dis-
ordered alloys. In this section we describe the MD approach to the disordered alloys
in greater details and present its application to the Fe–Cr alloys [108, 109, 201].

In the MD approach, we calculate the thermal average of LMs 〈mi〉 by means
of the time average given by (6.63). The spin dynamics leading to the thermal av-
erage (6.60) is obtained by solving the equations of motion (6.64)–(6.66). At each
time step, we calculate the magnetic forces −∂Ψ (ξ)/∂ξiα . The latter is obtained
from (6.67) via the temporal LM 〈mi〉0 as −∂Ψ (ξ )/∂ξiα = (J̃ /2)(〈miα〉0 − ξiα)−
2T ξiα/ξ2

i , where the average 〈(∼)〉0 is taken with respect to the Hamiltonian (6.57).
For simplicity we consider here the d band model Hamiltonian obtained from

(6.57), and assume the alloys with off-diagonal disorders described by the geomet-
rical mean model:

timjm′ = r∗αt0imjm′rγ , (8.103)

where α (γ ) denotes the type of atom A or B on sites i (j ) (see (8.16)).
The random atomic configuration for a given concentration cα and the ASRO

parameter τα is made on the computer as follows. Let us consider a cubic unit cell
consisting of a large number of N atoms with periodic boundary condition. The
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ASRO parameter is connected with the probability of finding an atom α on the
nearest-neighbor of atom α as pαα = cα + (1− cα)τα (see (8.65)). We first create
an A or B atom on each site of the MD unit cell with the probability cA or cB using
random numbers. Next, we replace an A atom with a B atom (or a B atom with
an A atom) at randomly chosen sites until the given concentration cA is realized.
We then calculate the probability p̃AA =∑

i∈ANAA(i)/NAz, i.e., the probability of
finding another A atom at the neighboring site of an A atom. Here NAA(i) denotes
the number of A atoms at the nearest-neighbor sites of the A atom at site i, z is the
number of nearest-neighbor sites, and NA is the total number of A atoms in the MD
unit cell. If the probability p̃AA is smaller (larger) than pAA, we exchange the A
atom with the B atom in a randomly chosen A–B NN pair, and accept the exchange
if the new p̃AA is larger (smaller) than the old one. We obtain the requested alloy by
repeating the procedure until |p̃AA − pAA| ≤ ε(= 2/NAz) is satisfied.

The magnetic moment on site i in the magnetic force is expressed by means of
the Green function G(z) as follows.

〈miα〉0 =
∫
dωf (ω)

(−)
π

Im
∑
mσ

(
σαG(z)

)
imσ imσ

, (8.104)

Gimσ jm′σ ′(z)=
[(
z−H (ξ)

)−1]
imσ jm′σ ′ . (8.105)

Here H (ξ ) is the one-electron Hamiltonian matrix of (6.57) in which the matrix
elements for the sp electrons have been dropped.

When we calculate the Green function on site i in (8.104), we consider a MD unit
cell in which site i is centered. We surround the MD unit cell with 27 MD unit cells
in which all atomic levels or locators have been replaced by an effective medium
(see Fig. 6.6). As we have discussed in Sect. 6.3, the Green functions in (8.104) are
expressed as follows by using the new basis representations which diagonalize the
Pauli spin matrices σα (α = x, y, z).

∑
σ

(σxG)imσimσ =Gim1im1 −Gim2im2, (8.106)

∑
σ

(σyG)imσimσ =Gim3im3 −Gim4im4, (8.107)

∑
σ

(σzG)imσimσ =Gim↑im↑ −Gim↓im↓. (8.108)

Here the local basis functions at the r.h.s. are defined by |im1〉 = (|im ↑〉 +
|im ↓〉)/√2, |im2〉 = (|im ↑〉 − |im ↓〉)/√2, |im3〉 = (|im ↑〉 + i|im ↓〉)/√2, and
|im4〉 = (|im ↑〉 − i|im ↓〉)/√2.

The diagonal Green functionGimαimα (α = 1–4,↑,↓) can be calculated by using
the recursion method as follows (Appendix G).
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Gimα imα(z, ξ )

= 1

z− a1imα(ξ)− |b1imα(ξ)|2

z− a2imα(ξ )− |b2imα(ξ )|2

· · · · · ·

· · · − |bl−1imα(ξ)|2
z− alimα(ξ)− Tlimα(z, ξ )

.

(8.109)

Here animα(ξ) and bnimα(ξ ) are the recursion coefficients of the n-th order.
Tlimα(z, ξ ) is called the terminator. When the recursion coefficients begin to contain
the matrix elements outside the MD unit cell at the l-th level, we approximate the
terminator Tliνα(z, ξ ) with an effective terminator for the coherent Green function
[(L −1 − t)−1]imα imα/|ri |2: Tlimα(z, ξ ) ≈ |rα|2Tlmα . Here Tlmα is the terminator
of the lth level obtained from the coherent Green function.

In Sect. 8.2, we have discussed the ferromagnetic FexCr100−x alloys (20 � x ≤
100) in the ferromagnetic region within the single-site approximation, and in the
last section we briefly discussed the LEE of Fe–Cr alloys in the same region. The
Fe–Cr alloys are reported to show the antiferromagnetism (AF) in the Cr-rich region
(x � 5 at% Fe), while in the Fe-rich region (90 at% Fe � x), they show a simple
ferromagnetism (F) with Cr local magnetic moments (LM) being antiparallel to the
bulk magnetization. The actual Fe–Cr alloys however show more complex features
due to long-range competing magnetic interactions. In fact, the system shows in the
concentrated regions complex magnetic structures and its phase diagram has not
been established yet. In particular, in the range 10 at% Fe � x � 30 at% Fe where
the phase boundary of the F in Fe-rich region encounters with that of the Cr-rich
AF, two kinds of phase diagrams are proposed experimentally: the phase diagram
proposed by Loegel [202] and Rode et al. [203] in which the F and the AF overlap
(coexistence of F and AF) at zero temperature, and the phase diagram proposed by
Burke et al. [204, 205] which shows up the existence of the spin-glass (SG) like
phases between the F and the AF. Also, in the region above the F phase boundary
(20 at% Fe � x � 25 at% Fe), temperature dependent complex magnetic structures
are suggested in neutron [206] and Mössbauer experiments [207, 208]. Furthermore,
the real microscopic magnetic structures of Fe–Cr alloys in the range 30 at% Fe
� x � 70 at% Fe are expected to be rather complex because of the competition
between the ferro- and antiferro-magnetic couplings, although the composition de-
pendence of the average magnetic moment in the Fe-rich region was explained by
a constant number of holes in the down spin band in the rigid band picture (see
Sect. 8.1). In what follows, we elucidate the complex magnetic structure obtained
by the MD method [201] to see how much information one can obtain from a com-
puter simulation.

The magnetic structures based on the molecular dynamics method are presented
in Figs. 8.31–8.36. In the computer simulations, N = 250 atoms are put in a MD
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Fig. 8.31 Magnetic structure
of Fe80Cr20 alloy obtained by
the MD calculations at 25 K
[201]. The bright (dark)
spheres represent the Cr (Fe)
atoms. The Cr clusters are
shown by the
nearest-neighbor Cr networks
which are represented by
lines and dots on the Cr atoms

unit cell which corresponds to the 5×5×5 bcc lattice, and the temperature has been
kept at 25 K. When the Cr atoms are added to the ferromagnetic Fe, the calculated Cr
LMs are aligned to be antiparallel to the bulk magnetization; the number of the down
spin states on Cr atoms below the Fermi level becomes larger than that of the up spin
states due to more hybridization of former electrons with the same spin bands of the
host Fe. The impurity states of Cr atoms continue to exist until 90 at% Fe, where
small clusters consisting of the nearest-neighbor (NN) Cr bonds begin to appear in
the ferromagnetic Fe matrix. At 80 at% Fe, about two thirds of all Cr atoms belong
to small clusters and the others are still isolated as shown in Fig. 8.31. The isolated
Cr LMs are antiparallel to the bulk magnetization, while the Cr LMs in the clusters
are declined due to the AF couplings between NN Cr LMs.

The Cr clusters develop with increasing Cr concentration; most Cr atoms belong
to a big cluster and only a small number of Cr atoms are isolated at 70 at% Fe. The
Cr LMs of the cluster are disordered in directions due to the frustration caused by the
competition between the AF Cr–Cr NN couplings and the AF Cr–Fe NN couplings,
although the Fe LMs still show the ferromagnetic alignment. The developed Cr
clusters form a network consisting of the NN Cr bonds around 60 at% Fe, which
spreads throughout the MD unit cell as shown in Fig. 8.32. There the Cr LMs of
the network are highly disordered in directions. The Fe LMs, on the other hand, are
aligned ferromagnetically, though they are slightly fluctuated in directions by the
coupling to the disordered Cr LMs. The disorder of Cr LMs in both direction and
amplitude continues until 50 at% Fe as shown in Fig. 8.33. The distribution of LMs
becomes wider with increasing Cr concentration due to more competition between
the F and AF magnetic interactions. At 50 at% Fe, the partial distribution of the Cr
LMs is spread from −1.5μB to 1.5μB, and the distribution of the Fe LMs (around
2.0μB) is also spread, though less broad as compared with the Cr LMs’ at this
concentration. These distributions originate mainly in the local-environment effects
(LEE), since it is observed from Fig. 8.33 that Cr LMs surrounded by a few Cr
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Fig. 8.32 Magnetic structure
of Fe60Cr40 alloy obtained by
the MD calculations at 25 K
[201]. The bright (dark)
spheres represent the Cr (Fe)
atoms

Fig. 8.33 Magnetic structure
of Fe50Cr50 alloy obtained by
the MD calculations at 25 K
[201]. The bright (dark)
spheres represent the Cr (Fe)
atoms

LMs have large amplitudes, while those surrounded by a few Fe LMs tend to have
small amplitudes. The broad distribution of the ferromagnetic Fe LMs continues
until 20 at% Fe, where the ferromagnetic order of Fe atoms terminates.

At 40 at% Fe, the Cr magnetic moments start to develop the long-range AF order,
although some LMs are still fluctuated in directions (broken AF). The ferromagnetic
long-range order (LRO) of the Fe coexists with the broken AF of the Cr there. Be-
low 40 at% Fe, the large ferromagnetic Fe NN network which spreads throughout
the unit cell starts to split into finite clusters. We find that Fe atoms still form the
ferromagnetic LRO at 30 at% Fe. At this concentration, the distribution of Cr LMs
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Fig. 8.34 Magnetic structure
of Fe20Cr80 alloy obtained by
the MD calculations at 25 K
[201]. The bright (dark)
spheres represent the Cr (Fe)
atoms. The Fe clusters are
shown by the
nearest-neighbor (NN) Fe
networks drawn by lines and
dots on the Fe atoms

are separated into those of up-spin and down-spin sublattices due to the long-range
AF order.

At 20 at% Fe, the coexistence of the collinear F of Fe and the AF of Cr are ob-
served as shown in Fig. 8.34, where the Cr LMs of up-spin and down-spin sublattices
are distributed rather symmetrically. All the magnetizations of separated Fe clusters
are oriented in the same direction, due to the long-range ferromagnetic interactions
between the Fe LMs. Therefore the effective interaction between the Fe clusters
is also ferromagnetic at this concentration. The coexistence of the two long-range
orders around 20 at% Fe is consistent with the phase diagram proposed by Loegel
[202] and Rode et al. [203].

The AF LRO of the Cr is developed with further increase in Cr concentration.
At 15 at% Fe, about one third of the Fe atoms are isolated while the others form
ferromagnetic clusters. However, the effective ferromagnetic interactions between
the Fe clusters seem weak, because some magnetizations of Fe clusters are opposite
to those of the other clusters, as shown in Fig. 8.35. It should be noted that the MD
simulations lead to different magnetizations in direction for some Fe clusters when
we start with different initial configurations at this concentration. This means that
the cluster spin glass (SG) state is possible due to the existence of many degenerate
quasi-stable states around this concentration. Moreover, the cluster SG in this con-
centration region is collinear due to the existence of AF LRO in the present calcu-
lations. With increasing further the Cr concentration, the ferromagnetic Fe clusters
shrink and most Fe atoms become isolated. At 10 at% Fe, the isolated Fe LMs are
mostly aligned not to violate the AF LRO of the Cr matrix, though the Fe LMs are
modulated in direction due to long-range Fe–Fe magnetic interactions, as shown in
Fig. 8.36.

In the range between 5 and 20 at% Fe, every isolated NN Fe pair in the AF Cr
sublattices stays in a quasi-stable state in which Fe LMs with different amplitudes
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Fig. 8.35 Magnetic structure
of Fe15Cr85 alloy obtained by
the MD calculations at 25 K
[201]. The bright (dark)
spheres represent the Cr (Fe)
atoms. The Fe clusters are
shown by the NN Fe
networks drawn by lines and
dots on the Fe atoms

Fig. 8.36 Magnetic structure
of Fe10Cr90 alloy obtained by
the MD calculations at 25 K
[201]. The bright (dark)
spheres represent the Cr (Fe)
atoms. The Fe clusters are
shown by the NN Fe
networks drawn by lines and
dots on the Fe atoms

are ferromagnetically coupled. One of the LMs of the Fe pair points in the same
direction with that of the corresponding sublattice LM and has a larger amplitude,
while another LM points in the opposite direction and has a smaller amplitude, as
shown in Figs. 8.35 and 8.36. These isolated NN Fe pairs may correspond to the free
spin-pairs with equal amplitudes proposed by Friedel and Hedman [209] to explain
the Mössbauer line spectra of free rotating iron moments reported at low tempera-
tures. Each isolated Fe pair state with non-equal amplitudes must have a degenerate
state whose LMs are exchanged and flipped simultaneously. The potential barrier
between these degenerate states in the antiferromagnetic matrix must be low, be-
cause no potential barrier arises when we rotate a pair of isolated NN Fe LMs with
the same amplitudes, and the energy difference between the isolated NN pairs with
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Fig. 8.37 Concentration
dependence of various
average magnetic moments in
Fe–Cr alloys calculated by
the MD approach at 25 K
[201]. The dashed line with �
represents the average
magnetization [〈m〉]c, and the
dash-dotted (dotted) line with
� (•) represents the average
Fe (Cr) magnetic moments
[〈mzFe〉]c ([〈mzCr〉]c).
Experimental data of these
quantities are shown by �, �,
and © with error bars
[157, 158, 210–212]

equal LMs and those with non-equal LMs must be small. The NN Fe pairs with
non-equal amplitudes are also found in the Fe clusters consisting of more than three
atoms (see Figs. 8.34, 8.35, and 8.36).

Average magnetic moments of Fe–Cr alloys calculated by the MD approach are
presented in Fig. 8.37. The calculated magnetization [〈m〉]c decreases gradually as
the Fe concentration x is decreased and vanishes at x ≈ 15 at% Fe in good agree-
ment with the experimental data and the Hartree–Fock CPA results (see Fig. 8.5)
in the wide range of concentration (30 � x ≤ 100 at% Fe). Average amplitudes of
Fe and Cr LMs in the pure Cr limit are 1.0μB and 0.7μB, respectively, while in the
pure Fe limit, they are 2.35μB and 1.9μB. As the Fe concentration is reduced, the
average moment of Fe atoms [〈mFe〉]c increases slightly until 2.4μB at 90 at% Fe,
and decreases very slowly to 2.3μB at 60 at% Fe. Below 60 at% Fe, the Fe LMs
are subject to the strong LEE, and [〈mFe〉]c changes to slightly smaller values in the
range 20 � x � 60 at% Fe.

The calculated average moment of Cr atoms [〈mCr〉]c, on the other hand, starts
to gradually increase from the value −1.8μB in the pure Fe limit and vanishes at
x ≈ 40 at% Fe. [〈mCr〉]c agrees semi-quantitatively with the experimental results.
It should be noted that the vanishing of [〈mCr〉]c in the range 0 � x � 40 at% Fe
is accompanied by the formation of antiferromagnetic or broken antiferromagnetic
states, as mentioned before. The average magnitude of the sublattice moments of
Cr atoms, in our MD calculation, is small, but does not vanish in the concentration
region around x = 20 at% Fe. In the range 25 � x � 40 at% Fe, Cr LMs contin-
uously change their configurations from the antiferromagnetically ordered state to
less ordered states with increasing Fe concentration.

The phase diagram of Fe–Cr alloys obtained from the MD calculations at low
temperatures is summarized in Fig. 8.38. The alloys are characterized by a persis-
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Fig. 8.38 The magnetic phase diagram of Fe–Cr alloys as a function of Fe concentration obtained
from the MD calculations at 25 K [201]. The upper row shows the diagram based on the simple
category: the Ferromagnetism (F) and the antiferromagnetism (AF). AF+ F denotes the coexis-
tence of the AF and the F. The middle and lower rows are the diagram showing various magnetic
structures of each component

Fig. 8.39 The magnetic
structure of Fe20Cr65Mn15
alloys obtained by the MD
calculations at 25 K. The
blue, green, and red spheres
represent the Fe, Cr, and Mn
atoms, respectively. The
arrows show their LM’s in
arbitrary unit

tence of the magnetic LRO of the constituent atoms up to high concentrations; they
show the ferromagnetic LRO of Fe atoms up to 80 at% Cr, and the antiferromag-
netic LRO of Cr atoms up to 30 at% Fe. In the narrow region around 20 at% Fe,
the F LRO due to Fe LMs coexists with the AF LRO of Cr LMs. The result is con-
sistent with the experimental phase diagram proposed by Loegel [202] and Rode
et al. [203]. The wide range of the F state is divided into three regimes, i.e., (i) F
with isolated antiparallel Cr LMs (80 at% Fe � x), (ii) F with Cr clusters whose
LMs are non-collinearly disordered (50 � x � 75 at% Fe), and (iii) F with broad
distributions of Fe LMs and with non-collinear or broken antiferromagnetic Cr LMs
(25 � x � 45 at% Fe). Furthermore, in the Cr rich regions, the cluster SG states ex-
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ist around 15 at% Fe in the antiferromagnetic LRO of Cr. The SG behaviors around
15 at% Fe are verified experimentally [204, 205].

The MD calculations of ternary alloys are also straightforward. There we con-
struct the random atomic configuration for a given concentration and atomic short
range order, and solve the iso-thermal MD equations (6.63). Taking the time average
in the equilibrium state, we obtain the average magnetic moment at each site. The
magnetic structure of bcc Fe20Cr80−xMnx (0≤ x ≤ 40) ternary alloys for example
has been calculated at 25 K with use of 432 atoms in the MD unit cell (6× 6× 6
bcc lattice) [213]. As we have mentioned, Fe20Cr80 alloys show the coexistence
of the Cr AF LRO and the Fe ferromagnetic clusters (see Fig. 8.34 and AF + F
in Fig. 8.38). When Cr or Fe atoms are replaced by Mn atoms, the Mn LMs are
arranged to enhance the Cr AF LRO, so that the AF structure is stabilized with in-
creasing Mn concentration (see Fig. 8.39). The couplings between the Fe clusters
and the Cr–Mn system with the AF LRO are rather weak, so that they form the
cluster SG. The MD calculations show that the SG order of Fe ferromagnetic clus-
ters is collinear due to the weak AF coupling between Fe and Cr LMs, and thus the
isotropic SG is suppressed in this system.



Chapter 9
Magnetism of Amorphous Metals and Alloys

Amorphous metals and alloys are characterized by the structural disorder which
breaks the Bravais lattice. Their magnetic properties are well defined once the
quenching method and rate are specified, though their structures are metastable ther-
modynamically. The amorphous metals and alloys provide us with a fundamental
problem of the structure vs. magnetism in the condensed matter physics. In this
chapter, we present the theoretical aspects on the magnetism of amorphous metals
and alloys. We first give an introduction to the amorphous metallic magnetism in
Sect. 9.1. Next we explain how to make the structure model of amorphous met-
als and alloys, and describe the method to calculate their electronic structure in
Sect. 9.2. In Sect. 9.3, we present the finite-temperature theory of magnetism for
amorphous metals, and clarify in Sect. 9.4 the basic properties of amorphous transi-
tion metals. These properties include the spin glass in amorphous Fe, the enhance-
ment of the Curie temperature of amorphous Co, and the weak ferromagnetism of
amorphous Ni. We extend the theory to amorphous alloys in Sect. 9.5, and eluci-
date in Sect. 9.6 the magnetism of amorphous transition metal alloys as well as the
rare-earth transition metal amorphous alloys.

9.1 Introduction to the Amorphous Metallic Magnetism

Amorphous alloys are obtained by rapid quenching techniques such as vapor
quenching and liquid quenching typically with the cooling rate 106 K/s. Their
X-ray diffraction patterns show a halo, indicating the microscopic structural disor-
der which violates the Bravais lattice [214, 215]. Historically amorphous transition
metal alloys containing considerable amounts of metalloids (typically 20 at.% B
or P) were investigated at early stage [216–218]. These alloys show a uniform re-
duction of the magnetization and Curie temperature (TC) as compared with those of
the crystalline alloys. Amorphous Fe80B10P10 alloy [218], for example, shows the
ferromagnetism with the ground-state magnetization M = 2.1μB and TC = 640 K,
while the bcc Fe has M = 2.2μB and TC = 1040 K. Amorphous Co80B10P10 al-
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Fig. 9.1 Generalized Slater–Pauling plot of magnetization per atom for amorphous Co1−xBx al-
loys. Experimental data are shown by open circles [219] and closed circles [220]. The solid line
shows the curve obtained from (9.1) with 2Nsp↑ = 0.85

loy also shows the ferromagnetism with M = 1.1μB and TC = 770 K, which are
compared with M = 1.7μB and TC = 1388 K in the fcc Co.

Magnetization vs. concentration curves were analyzed by using a generalized
Slater–Pauling curve picture, which was explained in Sect. 8.1. There we expressed
the magnetization M by means of the up-spin valence electron number N↑ and
the total valence electron number Z as M = 2N↑ − Z (see (8.1)). These quantities
may be expressed by those of constituent atoms as N↑ =∑

α cαN
α
d↑ + Nsp↑ and

Z =∑
α cαZα . Here cα , Nα

d↑, and Nsp↑ are the concentration of atom α, the d elec-
tron number with up spin of atom α, and the averaged sp electrons with up spin,
respectively. Zα denotes the chemical valence for constituent atom α. Substituting
the expressions of N↑ and Z into M = 2N↑ −Z, we obtain

M = Zm + 2Nsp↑. (9.1)

Here Zm is the averaged magnetic valence defined by Zm =∑
α cα(2N

α
d↑ − Zα).

Since Zm has a simple concentration dependence for the transition metal alloys with
strong ferromagnetism, we can expect a linear relation between M and Zm. Fig-
ure 9.1 shows the experimental data vs. theoretical curves for amorphous Co1−xBx

alloys. We find a linear relation with the slope one between M and Zm as expected
from (9.1). Many amorphous transition metal (TM) metalloid alloys follows a sim-
ple generalized Slater–Pauling curve given by (9.1).

On the other hand, amorphous transition metal alloys containing early transi-
tion metals (ETM) or rare-earth (RE) metals show a dramatic change in their mag-
netism. In Fe-rich amorphous alloys, the ferromagnetism collapses with increasing
Fe concentration, and the spin glass (SG) appears beyond 90 at% Fe as shown in
Fig. 9.2 [221]. It is remarkable that the SG appear irrespective of the second el-
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Fig. 9.2 Magnetic phase
diagram showing the Curie
temperatures (solid curves)
and spin-glass temperatures
(dotted curves) of amorphous
FecM1−c alloys (M= La, Zr,
Ce, Lu, and Y) [221]

ements, suggesting the SG in amorphous pure iron, which is quite different from
the ferromagnetism in bcc Fe. In Co-rich Co–Y amorphous alloys, the Curie tem-
peratures TC are enhanced as compared with those in crystalline counterparts, and
rapidly increase with decreasing Y concentration as shown in Fig. 9.3. Extrapo-
lated value of TC to amorphous pure Co reaches 1850 K, which is 450 K higher
than that of the fcc Co [222]. These drastic changes of magnetism in the vicinity of
amorphous pure metals have revealed the significance of the structural disorder in
the amorphous metallic magnetism. One needs microscopic theories of amorphous
metallic magnetism to understand these anomalies. In the following section, we will
briefly clarify the characteristics of amorphous structure and explain the theoretical
approach to calculate the electronic structure of amorphous metals and alloys.

9.2 Amorphous Structure and Electronic Structure

In crystalline systems, we obtain the crystal structure and lattice constants from the
Bragg peaks in X-ray diffraction, and thus we can calculate the electronic structure
with use of the Bloch theorem. This procedure is no longer applicable to amorphous
metals and alloys due to the lack of the data on amorphous structure. The X-ray
experimental techniques give us only the pair distribution function (PDF), gαγ (R),
which is defined by

gαγ (R)= ραγ (R)

ργ
. (9.2)
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Fig. 9.3 Curie temperatures
in crystalline (solid circles)
and amorphous (open circles)
CocY1−c alloys [222]. The
dotted line is an extrapolation
to amorphous pure Co

Here ραγ (R) is the density of γ atom at the distance R from an α atom and ργ
is the density of γ atom. The distribution function gαγ (R) converges to one as
R goes to infinity. Although we can obtain further information on the amorphous
structure from EXAFS (extended X-ray absorption fine structure) and neutron mea-
surements, it is not possible to determine experimentally all the atomic positions in
the amorphous structure, which are indispensable for electronic-structure calcula-
tions of amorphous systems and microscopic understanding of magnetic properties.
Thus we have to construct a reasonable model for amorphous structure.

Theoretical determination of the amorphous structure is based on the thermody-
namical molecular-dynamics (MD) method [107]. In this method, the constituent
atoms are distributed in a box with a periodic boundary condition, and the New-
ton equations of atomic motion are solved by assuming appropriate short-range in-
teratomic pair potentials. A rapid quenching is simulated by reducing the kinetic
energy, which is proportional to the temperature, every constant time length, un-
der the condition that either pressure or volume is constant. In the ab-initio MD
method [223], we calculate the interatomic forces directly from electronic and
atomic structures without any empirical parameters. The ab-initio MD calculations
are accelerated by simultaneously solving the equations of motions for both atoms
and electrons. The method is called the Car–Parrinello method, and it is most ef-
ficient when combined with the pseudo-potential technique and the plain wave or-
bitals [224].

A more conventional method to construct the amorphous structure for metals is
the static method. There we construct the dense random packing of hard spheres
(DRPHS) model using the computer, and calculate the PDF. When the calculated
PDF does not agree with the experimental one, we relax successively the structure
through the atomic force produced by appropriate pair potentials until the agreement
is achieved. This is called the relaxed DRPHS model.
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Fig. 9.4 Pair-distribution function of computer-generated amorphous iron [225]

Figure 9.4 shows an example of a pair distribution function for amorphous Fe ob-
tained by the relaxed DRPHS method [225]. We see that the first peak at r1 = 2.54 Å
is sharp, and well separated from the second and third ones. This means that there
exists a well-defined nearest-neighbor (NN) shell even in amorphous systems. The
ratio of the fluctuation of the NN interatomic distance to the average NN distance is
estimated from the width of the first peak to be 0.067, which is in agreement with
the experimental data for Fe-rich amorphous alloys. The second peak at r2 = 1.67r1
is considered to originate in the local structures of the rhombi which consist of two
regular triangles with a side r1 and the hexahedra which consist of two tetrahedra
with the same sides r1. The third peak at r3 = 2r1 is associated with three contact
atoms on a line.

Although the amorphous metals and alloys do not form the Bravais lattice, it is
possible to construct the tight-binding linear muffin-tin orbital (TB-LMTO) Hamil-
tonian (2.167) for a given amorphous structure within the density functional theory
(DFT) because it is derived without assuming translational symmetry.

HiLjL′ = εiLδij δLL′ + tiLjL′(1− δij δLL′). (9.3)

Here the atomic level εiL on site i and orbital L and the transfer integral tiLjL′
between iL and jL′ are defined by (2.166).

The first-principles electronic structure calculations were made by combining the
TB-LMTO method with the recursion method because the latter does not require any
translational symmetry for electronic structure calculations (see Appendix G). Fig-
ure 9.5 shows the calculated density of states (DOS) for amorphous iron [226]. Note
that the DOS for amorphous Fe shows the two-peak structure, and the valley near
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Fig. 9.5 Density of states for amorphous iron [226]

the center of the DOS found in bcc Fe disappears (see the DOS in Fig. 2.6), so that
the Fermi level is not on the peak of the DOS. This suggests that the ferromagnetism
is not necessarily stable in the amorphous Fe.

9.3 Theory of Amorphous Metallic Magnetism

The finite-temperature theory of the LEE presented in Sect. 8.3 can be extended
to the amorphous metals. In this section, we describe the theory of magnetism in
amorphous metals on the basis of the functional integral method [227–230].

The amorphous metals form a structure close to the dense random packing one,
and have a well-defined nearest-neighbor (NN) shell, as we discussed in the last
section. The magnetic interactions between the local moments (LM’s) in amorphous
metals are expected to be rather short-range because the electron scatterings due to
structural disorder cause a strong damping of interaction strength as a function of
the interatomic distance. Thus we have a physical picture that the central LM is
directly influenced by the LMs on the NN shell, but the effect of more distant atoms
and their LMs may be treated as an effective medium.

In order to construct a theory based on the physical picture mentioned above, we
start from the tight-binding Hamiltonian (3.228) and adopt the free energy (8.19) in
the static approximation:

F =−β−1 ln
∫ [∏

i

√
βJ̃i

4π
dξi

]
e−βE(ξ). (9.4)
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Here we have omitted the transverse spin fluctuations for simplicity, and J̃i =
U0/D + (1− 1/D)J , D being the orbital degeneracy (D = 5). In the 5-fold equiv-
alent d band model (8.22), the effective potential E(ξ) is given by (8.23):

E(ξ)=
∫
dωf (ω)

D

π
Im tr

[
ln
(
L−1 − t)]− 1

4

∑
i

(
Ũi ñi(ξ)

2 − J̃iξ2
i

)
. (9.5)

In the above expression, the effective Coulomb interaction Ũi is given by Ũi =
U0/D + (1 − 1/D)(2U1 − J ). ñi (ξ) is the Hartree–Fock charge on site i given
by (8.21). The locator matrix L is defined by

(
L−1)

iσjσ ′ = L−1
iσ δij δσσ ′ =

(
z− ε0

i +μ−
1

2
Ũi ñi(ξ)+ 1

2
J̃i ξi σ

)
δij δσσ ′ . (9.6)

The magnetic moment on site i is obtained by taking the derivative of the free energy
F with respect to the magnetic field hi on the same site.

〈mi〉 = 〈ξi〉 =

∫ [∏
j

dξj

]
ξi e−βE(ξ)

∫ [∏
j

dξj

]
e−βE(ξ)

. (9.7)

The energy potential E(ξ) in (9.7) determines the local moment (LM) on site
i. In the amorphous magnetic metals, the energy contains two types of disorder.
One is the spin disorder which is caused by the thermal spin fluctuations via ran-
dom exchange potentials {J̃iξiσ/2} in (9.6). Another is the structural disorder be-
ing characteristic of amorphous metallic systems. The latter appears via the atomic
potentials {ε0

i −μ+ Ũi ñi(ξ)/2} and transfer integral integrals {(t)ij = tij }. Conse-
quently, the diagonal disorder in the locator includes both types of disorder, while
the off-diagonal disorder in the transfer integral matrix is caused by the structural
disorder only.

The diagonal disorder is treated in the same way as in the substitutional disor-
dered alloys, by introducing the inverse effective locator L −1

σ (z) into the first term
at the r.h.s. of (9.5). The deviation from the medium is expanded with respect to
the sites as has been made in Sect. 8.3 (see (8.71)). The zeroth order in the ex-
pansion of the effective potential E(ξ) is described by the effective medium only.
The first-order correction consists of the sum of single-site energy potentials Ei(ξi),
i.e., (8.72):

Ei(ξi)=
∫
dωf (ω)

D

π
Im

∑
σ

ln
[
1+ (

L−1
iσ (z, ξ)−L −1

σ (z)
)
Fiiσ (z)

]

− 1

4
Ũi ñi (ξi)

2 + 1

4
J̃iξ

2
i . (9.8)

Here the coherent Green function Fijσ is defined by (8.76):

Fijσ =
[(

L −1 − t)−1]
ijσ
. (9.9)
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Note that Fijσ is influenced by the structural disorder via the transfer integrals {tij }.
The second-order correction to the effective medium is the pair-interaction terms∑
(i,j) Φij (ξi, ξj ) (see (8.74)). The pair energy between sites i and j , Φij (ξi, ξj ) is

given by (8.75):

Φij (ξi, ξj )=
∫
dωf (ω)

D

π
Im

∑
σ

ln
[
1− FijσFjiσ t̃iσ (ξi)t̃jσ (ξj )

]
. (9.10)

Here t̃iσ (ξi) is the single-site t matrix defined by (8.77):

t̃iσ (ξi)=− L−1
iσ −L −1

σ

1+ (L−1
iσ −L −1

σ )Fiiσ
. (9.11)

The t matrix describes the impurity scattering when the impurity potential ε0
i −μ+

Ũi ñi(ξ)/2− J̃ ξiσ/2 is embedded in the effective medium L −1
σ .

The higher-order terms in the expansion of E(ξ) are neglected by assuming a
small deviation from the effective medium. The energy potential E(ξ) is then writ-
ten as follows.

E(ξ)=
∑
i

Ei(ξi)+
∑
(i,j)

Φij (ξi, ξj ). (9.12)

Note that the zeroth term has been dropped, since it does not make any contribution
to the thermal average (9.7).

Next, one neglects the direct pair interactions between the central LM and the
LMs outside the NN shell according to the physical picture discussed at the begin-
ning of this section. By making use of the decoupling approximation as well as the
molecular-field approximation for the LMs on the NN shell, the magnetic moment
(9.7) is written as follows, as have been made in Sect. 8.3 (see (8.85)).

〈m0〉 =

∫
dξ ξ e−βΨ (ξ)

∫
dξ e−βΨ (ξ)

. (9.13)

The effective potential Ψ (ξ) for the central LM is given by (8.84):

Ψ (ξ)=E0(ξ)+
z∑

j=1

Φ
(a)
0j (ξ)−

z∑
j=1

Φ
(e)
0j (ξ)

〈mj 〉
xj

. (9.14)

Here z on the summation denotes the number of atoms on the NN shell. The atomic
and exchange pair energies Φ(a)

0j (ξ) and Φ(e)
0j (ξ) are defined by (8.82):

[
Φ
(a)
0j (ξ)

Φ
(e)
0j (ξ)

]
= 1

2

∑
ν=±

[
1
−ν

]
Φ0j (ξ, νxj ). (9.15)
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The quantity xj in (9.14) and (9.15) is an amplitude in the single-site approximation,

which is defined by xj = 〈ξ2
j 〉1/20 , where the average 〈∼〉0 is taken with respect to

E0(ξ).
Equations (9.13) and (9.14) show that a flexible central LM ξ is directly influ-

enced by the molecular fields from the LMs {〈mj 〉} on the NN shell (the third term
in (9.14)) and indirectly by the average molecular field from the LMs outside the
NN shell via the spin-dependent effective medium L −1

σ which appears in E0(ξ),
Φ
(a)
0j (ξ), and Φ(e)

0j (ξ).

The effective medium L −1
σ is chosen so that the correction to the single-site

energies in E(ξ) (see (8.73)) becomes as small as possible. This is an extension of
the CPA to the structural disorder, and there is a condition that the averaged single-
site t matrix should vanish.

[〈t̃iσ (ξ)〉]s = 0. (9.16)

Here the single-site t matrix t̃iσ (ξ) has been given by (9.11). 〈 〉 ([ ]s) denotes the
thermal (structural) average. As we have mentioned in (8.34), the above condition
is equivalent to the following CPA equation.

[〈(L−1
iσ −L −1

σ + F−1
00σ )

−1〉]s = Fσ . (9.17)

Here Fσ denotes a structural average of the coherent Green function.
The central LM (9.13) depends on the structural disorder outside the NN shell via

the coherent Green functions F00σ , F0jσ (= Fj0σ ), and Fjjσ in (9.14) and (9.17).
These Green functions are treated within the Bethe approximation presented in
Sect. 8.3. Applying (8.50) and (8.51) on the locator expansion of coherent Green
functions with structural disorder, we obtain

F00 =L +L
∑
j �=0

t0jFj0, (9.18)

Fj0 =L tj0F00 +L SjFj0 +L
∑
i �=j,0

TjiFi0. (9.19)

Here we have omitted the spin suffix σ for brevity and neglected the transfer inte-
grals between the central atom and the atoms outside the NN shell. The self-energy
Sj (Tji ) expresses the contribution of the sum of all the paths which start from site
j and end at site j (i) without returning to the cluster on the way (see Fig. 9.6).
It should be noted that all the information outside the cluster is included in Sj
and Tji .

When we take the structural average outside the cluster, we neglect the last term
at the r.h.s. of (9.19) (i.e., the Bethe approximation), and replace Sj with S , i.e.,
the self-energy of the effective medium for structural disorder. We then obtain (see
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Fig. 9.6 Schematic
representation of the
irreducible path Sj and Tji

(8.55) and (8.53))

F00σ =
(

L −1
σ +

z∑
j=1

t2j0

L −1
σ −Sσ

)−1

, (9.20)

Fj0σ = tj0

L −1
σ −Sσ

F00σ . (9.21)

The diagonal Green function Fjjσ on the NN shell, on the other hand, is approx-
imated by the averaged one.

Fσ = [Fjjσ ]s =
∫ [ρ(ε)]s dε

L −1
σ − ε . (9.22)

Note that the averaged DOS [ρ(ε)]s for noninteracting systems can be calculated
by using the ground-state theories described in the last section (see, for example,
Fig. 9.5).

The effective medium Sσ is determined from the condition that the structural
average of the central coherent Green function F00σ should be identical with the
neighboring one.

[F00σ ]s =
∫ [ρ(ε)]s dε

L −1
σ − ε . (9.23)

The central LM in (9.13) is now determined as follows by the number of NN
z, the neighboring LM’s {〈mj 〉} on the NN shell, the transfer integrals yj = t2j0

between the central atom and the neighboring atoms, the effective medium L −1
σ due

to the spin fluctuations, and the effective medium Sσ due to the structural disorder
outside the NN shell.

〈m0〉 = 〈m0〉
(
z,
{〈mj 〉

}
,
{
t2j0

}
,
{
L −1
σ

}
, {Sσ }

)
. (9.24)

The structural disorder causes the distribution of LM g(〈mj 〉) at the neighboring
site j , the distribution of the number of NN p(z), and the distribution ps(yj ) for the
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square of the transfer integral. These distributions determine the LM distribution at
the central site via relation (9.13). Since the distribution should be identical with
those of the surrounding LMs, we obtain the following integral equation for the LM
distribution, taking the same steps as in Sect. 8.3 (see (8.87)).

g(M)=
∑
z

p(z)

∫
δ
(
M − 〈m0〉

) z∏
i=1

[
ps(yi) dyi g(mi) dmi

]
. (9.25)

The effective mediums L −1
σ and Sσ are self-consistently determined from (9.17)

and (9.23):

∑
z

p(z)

∫ (
L−1
iσ −L −1

σ + F−1
00σ

)−1
z∏
i=1

[
ps(yi) dyi g(mi) dmi

]= Fσ , (9.26)

∑
z

p(z)

∫
F00σ

z∏
i=1

[
ps(yi) dyi

]= Fσ . (9.27)

The LM distribution g(M), and the effective mediums L −1
σ and Sσ are self-

consistently determined by solving (9.25), (9.26), and (9.27). This is the finite tem-
perature theory of the local environment effects for amorphous metals.

The average magnetization [〈m〉]s and the SG order parameter [〈m〉2]s are ob-
tained from the distribution g(M) as follows.

[〈m〉]s =
∫
Mg(M)dM, (9.28)

[〈m〉2]s =
∫
M2g(M)dM. (9.29)

Since self-consistent equations (9.25), (9.26), and (9.27) include 2z-fold integrals, it
is not easy to solve the equations. We adopt the following decoupling approximation
in the self-consistent equations, which is correct up to the second moment:

∫
M2n+kg(M)dM ≈ [〈m〉2]ns

[〈m〉k]s, (9.30)

∫ (
y − [y]s

)2n+k
ps(y) dy ≈

[
(δy)2

]n
s 0k. (9.31)

Here k = 0 or 1. These are the lowest approximations which take into account fluc-
tuations. [y]s is a mean square of a transfer integral, and [(δy)2]s is the fluctuation
around [y]s.

After making the decoupling approximations (9.30) and (9.31) at the r.h.s. of
(9.25), one can substitute the approximate distribution function g(M) into (9.28)
and (9.29). We then obtain the self-consistent equations for [〈m〉]s and [〈m〉2]s as
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follows.

[ [〈m〉]s
[〈m〉2]s

]
=

∑
z

p(z)

z∑
n=0

Γ

(
n, z,

1

2

)[[〈m〉n]s
[〈m〉2n]s

]
, (9.32)

[[〈m〉n]s
[〈m〉2n]s

]
=

n∑
k=0

z−n∑
l=0

Γ (k,n, q)Γ (l, z− n,q)
[ 〈ξ 〉(z, n, k, l)
〈ξ 〉2(z, n, k, l)

]
, (9.33)

〈ξ 〉(z, n, k, l)=

∫
dξ ξ e−βΨ (ξ,z,n,k,l)

∫
dξ e−βΨ (ξ,z,n,k,l)

, (9.34)

Ψ (ξ, z, n, k, l)=E(ξ,n)+ nΦ(a)
+ (ξ, n)+ (z− n)Φ(a)

− (ξ, n)

− [
(2k − n)Φ(e)

+ (ξ, n)+ (2l − z+ n)Φ(e)
− (ξ, n)

] [〈m〉2]1/2s

x
,

(9.35)

q = 1

2

(
1+ [〈m〉]s

[〈m〉2]1/2s

)
. (9.36)

Here Γ (n, z,p) is the binomial distribution function defined by [z!/n!(z− n)!]
pn(1− p)z−n.

In the present approximation, the local environments inside the NN shell are de-
scribed via the NN transfer integrals by the contraction (−[(δR)2]1/2s ) of the NN
interatomic distance R from average value [R]s and the stretch ([(δR)2]1/2s ) of dis-
tance R. Thus, the local structure for a given z is specified by means of the number
of contracted pairs (n) between the central atom and the atoms on the NN shell.
Since a local structure is realized with the probability Γ (n, z,1/2), the averaged
LMs are given by (9.32). The magnetic moments in each local structure (n), [〈m〉n]s
and [〈m〉2n]s are given by (9.33). The single-site energy and pair energies are also

characterized by n, so that the notations E(ξ,n), Φ(a)
± (ξ, n), andΦ(e)

± (ξ, n) are used
in (9.35). Here the subscript +(−) denotes the contracted (stretched) pair.

The parameter q defined by (9.36) is interpreted as the probability that the ficti-
tious spin [〈m〉2]1/2s points up on a site of the NN shell. The probability of finding
up spins of k among n contracted atoms on the NN shell is then given by Γ (k,n, q),
and the probability of finding up spins of l among z − n stretched atoms is given
by Γ (l, z− n,q). Therefore, the average LM in the local environment n, [〈m〉n]s is
obtained by averaging 〈ξ 〉(z, n, k, l) over the spin configurations (see (9.33)). Here,
〈ξ 〉(z, n, k, l) denotes the central LM in the (z, n, k, l) configuration. Note that the
LMs 〈ξ 〉(z, n, k, l) are strongly influenced by their local environments (z, n, k, l) in
transition metals and alloys. Such effects are referred as local environment effects
(LEE) in amorphous metals.
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In the same way, one obtains from (9.26) a simplified CPA equation,
∑
ν=±

1

2

(
1+ ν [〈ξ 〉]s

[〈ξ 〉2]1/2s

)[
L−1
σ

(
ν
[〈ξ 〉2]1/2

s

)−L −1
σ + F−1

σ

]−1 = Fσ , (9.37)

and the following equation from (9.27).

∑
ν=±

1

2

[
L −1
σ − z∗[y]s

(
1+ ν [(δθ)

2]1/2s

[θ ]s
)(

L −1
σ −Sσ

)−1
]−1

= Fσ . (9.38)

Here z∗ is an effective coordination number, δθ = θ − [θ ]s , and θ =∑z
j yj . Adopt-

ing a simple form p(z) = ([z∗] + 1 − z∗)δz,[z∗] + (z∗ − [z∗])δz,[z∗]+1, [ ] being

Gauss’s notation, and Heine’s law t (R) ≡ tj0 ∝ R−κ , we obtain [(δθ)2]1/2s /[θ ]s =
(z∗ − [z∗])([z∗] + 1 − z∗)/z∗ + 4κ2Δ/z∗ and [(δy)2]1/2s /[y]s = 2κΔ. Here Δ =
[(δR)2]1/2s /[R]s. The average coordination number z∗, the average interatomic dis-
tance [R]s, and its fluctuation [(δR)2]1/2s are obtained from the theoretical model or
the experimental PDF.

The input parameters in the present theory are the d electron number, effective ex-
change energy parameter J̃ , the DOS [ρ(ε)]s, average coordination number z∗, and
the fluctuation of the interatomic distance [(δR)2]1/2s /[R]s. The input DOS [ρ(ε)]s
are presented in Fig. 9.7. [〈m〉]s, [〈m〉2]s, L −1

σ , and Sσ are obtained by solving
(9.32), (9.37), and (9.38) self-consistently. The theory describes the ferromagnetism
([〈m〉]s �= 0 , [〈m〉2]1/2s �= 0), the SG ([〈m〉]s = 0, [〈m〉2]1/2s �= 0), and the paramag-
netism ([〈m〉]s = 0, [〈m〉2]1/2s = 0).

In the theory mentioned above, we assumed the collinear magnetic moments.
When we take into account the noncollinear spin arrangements, we start from the
magnetic moment (6.60) [231].

〈mi〉 =

∫ [∏
j

dξ j ξ
−2
j

](
1+ 4

βJ̃ ξ2
i

)
ξ i e−βE(ξ)

∫ [∏
j

dξ j ξ
−2
j

]
e−βE(ξ)

. (9.39)

Here the energy potential E(ξ) is given by (6.56).
Taking the same steps we obtain the central magnetic moment corresponding

to (9.13) as

〈m0〉 =

∫
dξ ξ−2

(
1+ 4

βJ̃ ξ2

)
ξe−βΨ (ξ)

∫
dξ ξ−2e−βΨ (ξ)

, (9.40)

Ψ (ξ)=E0(ξ)+
z∑

j=1

[
Φ
(a)
0j (ξ )−

∑
α

Φ
(e)
0jα(ξ)

〈mjα〉
ãjα

+
∑
(α,γ )

Φ
(b)
0jδ(ξ)

〈mjα〉〈mjγ 〉
ãjαãjγ

+Φ(c)
0j (ξ )

〈mjx〉〈mjy〉〈mjz〉
ãjx ãjy ãjz

]
. (9.41)
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Here E0(ξ) is the single-site energy, and Φ(a)
0j (ξ) is the atomic type of energy. There

are three types of exchange energies,Φ(e)
0jα(ξ), Φ

(b)
0jδ(ξ), andΦ(c)

0j (ξ). The amplitude

ãjα is defined by ãjα = (1+4/βJ̃ 〈ξ2
j 〉0)〈ξ2

jα〉1/20 , 〈∼〉0 being the average taken with
respect to the single-site energy E0(ξ ).

Equation (9.40) indicates that the central LM is determined by the coordi-
nation number z on the NN shell, neighboring LM’s {〈mj 〉}, square of trans-
fer integrals {yj = t2j0}, effective medium L −1

σ due to spin fluctuations, and the
effective medium Sσ due to structural disorder outside the NN shell: 〈m0〉 =
〈m0〉(z, {〈mj 〉}, {yj }, {Sσ }, {L −1

σ }). Thus, the self-consistent equation to deter-
mine the distribution function (9.25) is extended as

g(M)=
∑
z

p(z)

∫
δ
(
M − 〈m0〉

) z∏
j=1

[
ps(yj ) dyj g(mj ) dmj

]
. (9.42)

Here g(m) is the distribution function for the vector magnetic moments {〈mi〉}.
The average magnetization [〈mz〉]s and the SG order parameters for each direc-

tion [〈mα〉2]1/2s (α = x, y, z) are obtained from the distribution g(M) as follows:

[〈mz〉
]

s =
∫
Mzg(M) dM, (9.43)

[〈mα〉2
]

s =
∫
M2
αg(M) dM. (9.44)

By making use of the decoupling approximation such as (9.30) and (9.31) at the
r.h.s. of (9.42) and substituting the approximate expression of g(M) into (9.43)
and (9.44), we obtain the self-consistent equations to determine the magnetization
[〈mz〉]s, and the SG order parameters [〈mz〉2]1/2s and [〈mx〉2]1/2s (= [〈my〉2]1/2s ).
Since the transverse components of local moments are taken into account, the the-
ory describes the noncollinear ferromagnetism ([〈mz〉]s �= 0, [〈mα〉2]1/2s �= 0 (α =
x, y, z)), the collinear ferromagnetism ([〈mz〉]s �= 0, [〈mz〉2]1/2s �= 0, [〈mα〉2]1/2s = 0
(α = x, y)), the noncollinear SG ([〈mz〉]s = 0, [〈mα〉2]1/2s �= 0 (α = x, y, z)), the
collinear SG ([〈mz〉]s = 0, [〈mz〉2]1/2s �= 0, [〈mα〉2]1/2s = 0 (α = x, y)), and the para-
magnetism ([〈mz〉]s = 0, [〈mα〉2]1/2s = 0 (α = x, y, z)). In numerical calculations
we apply the Monte-Carlo sampling method because there are too many configura-
tions in the self-consistent equations [231].

9.4 Magnetism of Amorphous Transition Metals

Amorphous pure transition metals have not yet been realized in experiments. Nev-
ertheless theoretical results of their magnetism are indispensable for understanding
the effects of structural disorder on the metallic magnetism as well as the experi-
mental data of amorphous alloys. In this section, we elucidate the theoretical results
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Fig. 9.7 Input DOS per atom for the amorphous (solid curve), bcc (dot-dashed curve), and fcc
(dotted curve) structures

obtained by the finite-temperature theory of amorphous metals and discuss on the
consistency of the results with experimental data [227, 228, 230, 231].

9.4.1 General Survey

The crystalline Fe, Co, Ni transition metals are well-known to show a simple ferro-
magnetism with uniform magnetization. There the Stoner condition for the stability
of the ferromagnetism provides us with a useful criterion as discussed in Sect. 2.3.4:
ρ(0)J̃ /2 > 1, where ρ(0) denotes the noninteracting density of states (DOS) per
atom at the Fermi level. Note that we adopted here the DOS per atom instead of
the DOS per atom per spin for convenience. Figure 9.7 shows the DOS for the
amorphous, bcc, and fcc structures. The ferromagnetism of bcc Fe, for example,
is stabilized by the main peak near the Fermi level. The fcc Ni shows the strong
ferromagnetism for the same reason.

A characteristic feature of the DOS for amorphous transition metals is that the
main peak is located just between the bcc and fcc peaks. The d electron num-
bers N∗ with the Fermi level at each main peak are N∗(bcc) = 7.44 for the bcc,
N∗(amor) = 8.35 for amorphous structure, and N∗(fcc) = 9.05 for the fcc. They
indicate the strong ferromagnetic region in each structure. The Stoner criterion for
amorphous Fe is estimated to be ρ(0)J̃ /2= 0.96 < 1 with use of the effective ex-
change energy parameter J̃ = 0.068 Ry (see Table 2.1) and the first-principles DOS
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Fig. 9.8 Calculated magnetization vs. d-electron number curves at 75 K for the amorphous (solid
curve), bcc (dot-dashed curves), and fcc (dotted curve) structures [228]. The effective exchange
energy parameter is fixed to that of the bcc Fe. The dashed curve shows the spin-glass (SG) order
parameter. The d-electron numbers N∗ integrated up to the main peak of each DOS in Fig. 9.7
are indicated by the arrows. The inset shows the experimental data for amorphous (Fe–M)90Zr10
alloys. Here, M = Mn (�), Co (�), and Ni (◦) [232]

for amorphous Fe [226]. The result suggests that amorphous Fe does not develop
a uniform magnetization. In the same way, the ferromagnetism in amorphous Co
is expected to be enhanced because the main peak is near the Fermi level, while
amorphous Ni may not maintain strong ferromagnetism because its Fermi level is
located above the peak position of the amorphous DOS.

Another characteristic of the DOS for amorphous structure is their similarity
to the fcc DOS rather than the bcc ones, particularly near the top of the d bands,
because the amorphous structure is close to the close-packed structure. The amor-
phous transition metals and alloys are therefore expected to show anomalous mag-
netic properties similar to those found in the fcc ones. For example, we have seen
in Sect. 8.3 that the Fe-base fcc alloys have nonlinear magnetic couplings: the fer-
romagnetic couplings when the amplitudes of Fe LM’s are large and the antifer-
romagnetic couplings when the amplitudes are small. This peculiarity may explain
the SG states in Fe-rich amorphous alloys. The Invar anomalies as found in Fe-base
amorphous alloys are also expected because of the similarity in electronic structure.

The Stoner model is based on the assumption of the uniform magnetization which
is not generally satisfied in the amorphous metallic system. To examine the existence
of the ferromagnetism, one needs to perform numerical calculations using the theory
presented in the last section. Figure 9.8 shows the calculated magnetization vs. d-
electron number curves. There the input parameters are set as those of amorphous
iron except for the d electron number (N) to see the qualitative feature. We find that
the N∗, which are indicated by arrows, correspond well to the magnetic regions of
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Fig. 9.9 Curie temperature vs. d-electron number curves calculated with use of the same input pa-
rameters as in Fig. 9.8 [228]. The SG temperatures are shown by the dashed curve. The d-electron
numbers N∗ are indicated by arrows

the d electron number for each structure. It verifies that the 3d ferromagnetism is
stabilized by the magnetic energy gain associated with the main peak in the DOS
for each structure.

The Curie temperature maxima are also characterized by N∗, as shown in
Fig. 9.9. According to thermodynamic considerations, the Curie temperature TC

is roughly given by TC ∼Emag/Smag. Here Emag is the magnetic energy defined by
the energy difference between the ground state and the paramagnetic state, and Smag

is the magnetic entropy. The result in Fig. 9.9 indicates that the Curie temperatures
for transition metals showing strong ferromagnetism are dominated by the magnetic
energy gain associated with the main peak for each structure. This explains quali-
tatively why the Curie temperature of amorphous Co is enhanced. It is found that
the paramagnetic susceptibility at high temperatures for each structure also shows
the enhancement near the electron number N∗(bcc)= 7.44, N∗(amor)= 8.35, and
N∗(fcc) = 9.05, respectively. It implies that the susceptibility enhancement due to
the magnetic energy gain associated with the DOS at the Fermi level remains even
above TC, in spite of large thermal spin fluctuations. The experimental data for liq-
uid transition metal alloys support such a physical picture [233, 234].

One of the important features of the magnetism in amorphous transition metals
is that the SG solution ([〈m〉2]s �= 0 and [〈m〉]s = 0) appears, as shown in Figs. 9.8
and 9.9. Although the SG solutions exist even for Co (N ≈ 8.0), they are not re-
alized because the ferromagnetic state is more stable. The SG state is expected to
be stabilized in the region N � 7.35, where the ferromagnetism disappears. In the
region N � 6.7 we find antiferromagnetic NN interactions irrespective of the local
environment, so that the antiferromagnetism should be stabilized there, though their
magnetic structure is not well known.
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Fig. 9.10 Magnetic phase diagram as a function of the d-electron number N around amorphous
Fe showing the ferromagnetic (F), paramagnetic (P), and spin-glass (SG) states [228]. The cluster
SG (CSG) phase is expected to fall in the region 7.2<N < 7.385

9.4.2 Magnetism of Amorphous Fe, Co, and Ni

As expected from the general survey of amorphous transition metals, the amorphous
Fe shows the SG. Figure 9.10 shows the magnetic phase diagram obtained by the
finite-temperature theory (collinear case) presented in Sect. 9.3. The SG states with
the transition temperatures Tg = 100–200 K are extended to a reasonable range of
amorphous Fe (6.7 �N � 7.35). The transition temperature Tg = 117 K is obtained

for N = 7.0 when the experimental value [(δR)2]1/2s /[R]s = 0.067 is applied. It is
consistent with the observed Tg = 120 K.

The formation of SG’s is understood from the behavior of the exchange pair
energy −Φ(e)

0j (ξ) in Ψ (ξ) in the nonpolarized medium (see (9.14)). The energy

−Φ(e)
j0 (ξ) is interpreted as the magnetic pair-energy gain for the flexible central local

moment (LM) ξ when the neighboring LM with average amplitude xj points up, as

seen from (9.35). Figure 9.11 shows the exchange pair energies−Φ(e)
0j (ξ) in various

environments in the SG state. In contrast to the bcc Fe (see Fig. 8.22(b)), neighbor-
ing Fe LMs show nonlinear magnetic couplings for the environments 3 � n � 12;
the Fe LMs with large amplitudes couple ferromagnetically with their neighbors,
while the Fe LMs with small amplitudes couple antiferromagnetically with the
neighboring ones. This behavior has also been found in fcc Fe crystalline alloys
(see Fig. 8.22(a)). Since the amplitudes of LM depend strongly on the surrounding
environments via the single-site energy E(ξ,n) as shown in Fig. 9.11, the sign of
the magnetic couplings changes with the local environments. The picture obtained
for Fe LMs in various environments is shown in Fig. 9.12. The competition be-
tween these ferro- and antiferro-magnetic couplings produces the itinerant-electron
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Fig. 9.11 Single-site energy E(ξ,n) (dotted curves) and exchange pair energy −Φ(e)
+ (ξ, n) (solid

curves) of amorphous Fe in various environments (n) at T = 35 K [228]. Here n denotes the
number of contracted pairs

Fig. 9.12 Schematic
representation showing the
local environment effect on
the central local moment
(LM) in amorphous Fe.
n denotes the number of
contracted atoms on the NN
shell

SG in amorphous iron. The mechanism mentioned above is characteristic of amor-
phous metallic magnetism, since neither the local environment effects (LEE) on the
amplitude of LM nor the non-linearity of the magnetic couplings are seen in the
insulators.

Numerical calculations show that anomalous nonlinear magnetic couplings ap-
pear in the region 6.7 � N � 7.2. When the d electron number N is increased
further, the NN couplings do not show any non-linearity irrespective of the lo-
cal environments at 7.2 � N . Nevertheless, the SG state is found in the region
7.2 �N � 7.385. This is explained as follows. The LM’s form local ferromagnetic
orders according to the NN ferromagnetic couplings. If these ferromagnetic orders
developed a long-range ferromagnetic order, the effective medium would have a
polarization consistent with the ferromagnetic clusters. However, the antiferromag-
netic couplings between the central LM and the medium occur when the medium
is polarized. These couplings reverse the central LM’s, so that a long-range fer-
romagnetic order cannot be developed. This implies that the competition between
the short-range ferromagnetic couplings and the long-range antiferromagnetic cou-
plings produces the SG in the region 7.2 �N � 7.35. Since the SG is accompanied
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Fig. 9.13 The LM
distributions g(M) as a
function of the d-electron
number at 35 K

by the ferromagnetic clusters, it is referred to as a cluster SG. As the d-electron
number is increased, the size of the clusters is expected to increase more and more.
Finally, a long-range ferromagnetic order is realized in the region 7.35 � N . Such
a physical picture is consistent with the neutron experiments on reentrant Fe90Zr10
amorphous alloys showing a coexistence of propagating spin-wave excitations and
spin-freezing phenomena [235].

Calculated LMs show broad distributions in the vicinity of the ferromagnetic in-
stability and the SG region, as shown in Fig. 9.13. They are caused by the LEE
on both the amplitudes and directions of LMs. The results are consistent with
the broad distributions of the hyperfine field found in amorphous Fe93Zr7 [238],
Fe92La8 [239], and Fe92Hf8 [240] alloys.

The most intriguing feature in the calculated magnetic phase diagram of Fig. 9.10
is the reentrant SG behavior in the narrow region 7.350 � N � 7.385. The mag-
netic states in this region are determined by a detailed balance between the short-
range ferromagnetic interactions and the long-range antiferromagnetic interactions.
Theoretical calculations showed that the reentrant SG behavior is caused by the
temperature-induced enhancement of the short-range ferromagnetic couplings with
increasing temperature [228]. The reentrant SG produced by the structural disor-
der is considered to be realized in Fe-rich amorphous alloys around 90 at.% Fe
(see Fig. 9.2).

The noncollinear theory of amorphous metallic magnetism given in the second
half of the last section yields similar results [231]. Figure 9.14 shows the calcu-
lated magnetic moments as a function of d electron number N . The magnetization
[〈mz〉]s shows a maximum at a d electron number around N = 7.6 and rapidly de-
creases with decreasing d electron number towards amorphous Fe (N ∼ 7.0). The
ferromagnetism becomes noncollinear in the region 7.38 ≤ N ≤ 7.43 as shown in
Fig. 9.15. There the transverse SG order parameter [〈mx〉2]1/2s becomes finite in the
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Fig. 9.14 Total spin glass order parameter [〈m〉2]1/2s , the transverse spin glass order parameter
[〈mx〉2]1/2s , and the magnetization [〈mz〉]s as functions of d electron number N at 30 K [231]

Fig. 9.15 Distribution of
local moments at 30 K for d
electron numbers N = 7.00
(left) and N = 7.42 (right)
[231]. Here 4000 data points
among 32000 Monte Carlo
samplings are shown

presence of the magnetization [〈mz〉]s. At N = 7.38, the magnetization disappears
while both total and transverse SG order parameters ([〈m〉2]1/2s and [〈mx〉2]1/2s ) re-
main finite, showing the second-order transition from the noncollinear ferromag-
netism (F) to the noncollinear SG.

The SG region is divided into two regimes as in the collinear theory. In the re-
gion 7.2 � N ≤ 7.38, the cluster SG accompanied by the ferromagnetic clusters is
realized, while the SG due to the nonlinear magnetic coupling between NN LMs
are realized in the region 6.9 � N � 7.2. The SG in amorphous Fe (N ∼ 7.0) is
caused by this mechanism. The LM distribution is nearly spherical as shown in
Fig. 9.15. It should be noted that the distribution of LMs deviates from the spherical
one with decreasing N and shows nearly two-dimensional disc shaped distribution
in the vicinity of N = 6.9 where the SG order parameter shows a minimum.

The magnetic phase diagram obtained by the noncollinear theory is presented in
Fig. 9.16. The Curie temperature TC rapidly decreases with decreasing the d electron
number and reaches the multicritical point at N = 7.38 and T = 104 K. Note that
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Fig. 9.16 Magnetic phase diagram as a function of temperature T and d electron number N ,
showing the paramagnetic (P), the collinear ferromagnetic (coll. F), the noncollinear ferromagnetic
(noncoll. F), and the spin glass (SG) states [231]

both TC and Tg in the noncollinear theory are reduced approximately by a factor
of two as compared with the collinear ones because of the semi-classical treatment
of spins in the theory. In the noncollinear theory, the re-entrant F–SG transition
is not found. Instead in the narrow region around N = 7.42, there is a transverse
spin freezing temperature Tf at which the transverse SG order parameter [〈mx〉2]1/2s
appears. The SG transition temperature Tg shows a minimum as a function of N
around N = 6.9, where the average NN magnetic interactions change the sign. The
noncollinear SG is stable in the region 6.9 � N ≤ 7.38 while the collinear and the
noncollinear SG are almost degenerate for N � 6.9. Experimental phase diagrams
seem to be consistent with that of the collinear theory (i.e., Fig. 9.10), suggesting
the existence of local anisotropy in the real systems.

The first-principles ground-state calculations for amorphous Co have been per-
formed on the basis of the tight-binding LMTO-recursion method [241]. It is verified
that the Fermi level of nonmagnetic amorphous Co is just at the main peak as shown
in Fig. 9.17, so that strong ferromagnetism is realized, as discussed before. The cal-
culated ground-state magnetizations are 1.63μB for amorphous Co, 1.58μB for fcc
Co, and 1.55μB for hcp Co. The experimental values are reported to be 1.72μB for
both amorphous and hcp Co. Subtracting the orbital contribution 0.15μB from the
experimental data, we find the spin contribution 1.57μB, being in good agreement
with the theoretical results.

As mentioned before, the Curie temperature of amorphous Co obtained by an
extrapolation of the data for amorphous Co–Y alloys amounts to 1850 K, which
is 450 K higher than that of crystalline Co (see Fig. 9.3). The spin wave stiffness
constant is also enhanced by 330 [meV·Å2] as compared with that of the hcp Co
(510 [meV·Å2]), indicating the enhancement of the magnetic coupling due to the
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Fig. 9.17 The up and down DOS for amorphous Co at the ground state. The dotted curve shows
the DOS per spin in the nonmagnetic state [241]

Fig. 9.18 Calculated magnetizations, inverse susceptibilities, and amplitudes of LM’s for amor-
phous (solid curves) and fcc (dotted curves) Co (N = 8.1 and J̃ = 0.100 Ry) as a function of
temperature [228]

structural disorder [222]. The finite-temperature theory of amorphous metallic mag-
netism allows us to understand the anomaly qualitatively or semiquantitatively as
shown in Fig. 9.18. The calculated TC are overestimated by a factor of 1.8 due to
the single-site approximation. Theoretical result of TC for amorphous Co is 490 K
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Fig. 9.19 Ferro- (F) and
para-magnetic (P) phase
boundaries for the amorphous
(solid curve), bcc (dot-dashed
curve), and fcc (dotted curve)
structures on the J̃ –N plane,
which are obtained by making
use of the Stoner theory [229]

higher than that of fcc Co. This is because the magnetic energy gain due to the main
peak at the Fermi level enhances TC in amorphous Co, while the ground-state mag-
netization is approximately the same for fcc Co because of strong ferromagnetism
in both amorphous and fcc Co. The same type of enhancement of TC is verified to
occur in the range 7.9 �N � 8.5 in accordance with N∗(amor)= 8.35.

The strong ferromagnetism in Ni is expected to be weakened with the intro-
duction of structural disorder, since the main peak near the top of the d band is
broadened and shifts down to the lower energy region so that the Fermi level is
located above the peak. Figure 9.19 shows a diagram for the Stoner ferromag-
netism near Ni as a function of the d electron number N , which is obtained
with use of the DOS in Fig. 9.5 after a scaling of the band width by a factor of
W(Fe)/W(Ni) = 0.393/0.364. A weak ferromagnetism or paramagnetism is ob-
tained around N = 9.0 and the LDA value J̃ = 0.074 Ry (see Table 2.1).

Experimentally, the ground state magnetization, 0.45μB, and TC = 480 K are
obtained by an extrapolation of the data for amorphous NixY1−x(0.75 � x � 0.97)
[236, 237]. The data, however, do not converge to the same value beyond 90 at.%
Ni when Y is replaced by La [239]. On the other hand, the negative value of the
experimental Weiss constant obtained from the inverse susceptibility in liquid Ni
suggests that Ni with the liquid structure would be paramagnetic at zero temperature
[233, 234]. These scattered data indicate the importance of the degree of structural
disorder which will be discussed in the next subsection.

9.4.3 Degree of Structural Disorder and Nonunique Magnetism

It is obvious that different microscopic random structures are possible for the same
amorphous metal. Therefore the magnetic properties may change depending on the
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degree of structural disorder. Experimentally, different structures can be created by
the size difference between the transition metal atom and the second elements, the
difference in chemical bond with the second elements, and the different preparation
techniques. In fact, the magnetization of amorphous Fe obtained by an extrapola-
tion of the magnetization vs. concentration curve is 2.2μB in amorphous FecB1−c
alloys [242, 243], though the Fe-rich amorphous alloys containing early transition
metals (ET) show the SG beyond 90 at% Fe (see Fig. 9.2). Amorphous Fe powders
containing 2 wt% H, 3 wt% C, and 1 wt% O show the ferromagnetism having the
magnetic moment about 1.4μB at the ground state [244].

The same controversial results are also found in amorphous Ni. The Curie tem-
peratures TC in Ni–Y [236, 237], Ni–La [239], sputtered Ni–Zr [245], and melt-
quenched Ni–Zr amorphous alloys [246] do not agree with each other even beyond
90 at% Ni, and yield different values when they are extrapolated to amorphous
pure Ni. From the analysis of Ni–B amorphous alloys, the pure amorphous Ni is
expected to be ferromagnetic with a saturation magnetization of about 60 % of that
of the crystalline counterpart and to have the TC lower by about 60 K [247].

The finite temperature theory of amorphous metallic magnetism presented in the
last section allows us to investigate the nonunique magnetism mentioned above as
a function of the average coordination number z∗ and the fluctuation of the inter-
atomic distance Δ1/2 = [(δR)2]1/2s /[R]s. This is understood from the fact that we
can obtain the magnetic moments [〈m〉]s and [〈m〉2]s by solving (9.32) and (9.37)
self-consistently, once we know the coordination number z∗, the fluctuation of inter-
atomic distance Δ1/2, the average band width z∗[y]s, and the effective self-energy
outside the cluster {Sσ }. The latter two quantities are obtained from the average
densities of states (DOS) [ρ(ε)]s for the noninteracting system via (9.38) and the
following relations (see (9.22)).

Fσ =
∫ [ρ(ε)]s dε

L −1
σ − ε , (9.45)

z∗[y]s =
∫
ε2[ρ(ε)]s dε. (9.46)

A remarkable point of the theory is that it describes the magnetism in both amor-
phous and crystalline structures. In order to describe the magnetism in the interme-
diate regime of the degree of structural disorder, we adopt a simple interpolation
scheme for z∗[y]s and Sσ .

z∗[y]s =A+B
(
z∗ − z∗a

)+CΔ, (9.47)

Sσ =Aσ +Bσ
(
z∗ − z∗a

)+CσΔ. (9.48)

The coefficients are determined from the values at three points on the z∗ −Δ plane:
the crystalline bcc (z∗b = 8, Δb = 0), the fcc (z∗f = 12, Δf = 0), and an amorphous

structure (z∗a = 11.5, Δ1/2
a = 0.067), for which the DOS [ρ(ε)]s are known. These

points b (= bcc), f (= fcc), and a (= amor) are shown in Fig. 9.20 by closed circles.
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Fig. 9.20 Magnetic phase diagram of Fe on the z∗ −Δ plane at 50 K [230]. F, SG, and P indicate
the ferromagnetism, the spin glass, and the paramagnetism, respectively. The bcc, fcc, sputtered
amorphous Fe, and powder amorphous Fe are shown by closed circles and open circles. Note that
calculations are not made in the right-triangle region at the upper left corner, since the region is far
from the reference points specified by the closed circles

Figure 9.20 shows the calculated magnetic phase diagram of Fe on the z∗ −Δ

plane at 50 K [230]. Three magnetic phases are possible in the present calcula-
tions: the ferromagnetic (F), the SG, and the paramagnetic (P) states depending on
the degree of structural disorder. The phase boundary between F and SG may be
characterized by a line z∗ ≈ 10.5, because the average ferromagnetic couplings are
mainly governed by the coordination number z∗. A paramagnetic region appears
around z∗ ≈ 11.0 and Δ≈ 0, because the average magnetic coupling vanishes and
fluctuations due to structural disorder are small there. The complex magnetic struc-
tures such as spin-density waves are expected near the fcc Fe (z∗ = 12, Δ= 0) due
to long-range competing magnetic interactions, though the present theory does not
describe them since the long-range magnetic couplings are not taken into account.

The magnetic phase diagram explains some of the non-unique experimental data
of magnetic moment and TC of amorphous Fe. The Fe-rich early-transition metal
(ET) amorphous alloys with more than 90 at.% Fe are reported to have z∗a ≈ 11.5 and

Δ
1/2
a ≈ 0.067 [225, 248]. These values lead to the SG of amorphous Fe according to

the phase diagram, Fig. 9.20, in agreement with the experimental result. We obtain
Tg = 125 K at this point, which is comparable to the experimental value 110 K (see
Fig. 9.2).

Figure 9.21 shows various magnetic moments of amorphous Fe and static spin
correlations between the NN LMs at 50 K as a function of Δ along the straight
line between the bcc point and the amor point (see Fig. 9.20). Calculated magne-
tization gradually decreases first with introducing structural disorder. It begins to
show the ferromagnetic instability beyond Δ1/2 ≈ 0.05, and finally disappears at
Δ1/2 = 0.058. At this point, Fe shows the transition from the ferromagnetism to the
SG, since the SG order parameter [〈m〉2]1/2s remains beyond Δ1/2 = 0.058 as seen
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Fig. 9.21 Various magnetic
moments of Fe ([〈m〉]s: the
lower solid curve, [〈m〉2]1/2s :
dotted curve, [〈m2〉]1/2s : the
upper solid curve) at 50 K,
and the effective Bohr
magneton number (meff:
dotted curve) along the
bcc-amor line in Fig. 9.20
[230]. The nearest-neighbor
(NN) static spin correlation at
50 K ([〈m0〉〈m1〉]s/[〈m〉2]1/2s )
is also presented by the thin
solid curve

in Fig. 9.21. These behaviors are explained by the gradual decrease of noninteract-
ing DOS at the Fermi level caused by the shift of the main peak to the higher energy
region. Note that the ferromagnetic instability occurs before the Stoner instability
point (Δ1/2 = 0.0635) where the condition [ρ(0)]s J̃ /2 = 1 is satisfied. This indi-
cates that the disappearance of the ferromagnetism is realized by the reversal of LMs
with increasing Δ.

The ferromagnetism with the ground state magnetization M = 1.4μB and
TC/TC(bcc) 	 0.557 is reported for amorphous Fe powder containing H, C, and
O impurities [244]. Experimental data of the radial distribution function yield the
values z∗ ≈ 10.5 and Δ1/2 ≈ 0.075 [244]. These values lead to the ferromagnetism
according to the phase diagram (Fig. 9.20). We obtain thereM = 2.02μB and TC/TC
(bcc)= 0.437, which are consistent with the experimental data mentioned above.

The amorphous Fe expected from Fe–metalloid alloys seems to show the ferro-
magnetism. Since the metalloid atoms are much smaller than Fe atoms, they tend to
occupy the interstitial position between Fe atoms, so that the packing fraction may
be smaller than that expected from Fe–ET amorphous alloys. This means that amor-
phous Fe obtained from the Fe–metalloid alloys are rather close to the bcc structure
in coordination number z∗. The theoretical phase diagram and these structural con-
siderations explain the ferromagnetism of the ‘pure’ amorphous Fe obtained by an
extrapolation from the amorphous Fe–metalloid alloys, though the volume effect
and the change of electronic structure due to the metalloid are also significant in
this system.

In the case of Ni, the phase diagram consists of the paramagnetic (P) and fer-
romagnetic (F) states as shown in Fig. 9.22 [249]. The phase boundary is located
around z∗ ≈ 11.0, though the results are rather sensitive to the d electron number N .
Since the average coordination numbers z∗ in typical amorphous Ni are expected to
be around 11.0, the magnetism of amorphous Ni is sensitive to the degree of struc-
tural disorder as well as the other parameters. Detailed numerical calculations verify
that both the ground-state magnetization and TC in disordered Ni are smaller than
those of fcc Ni. The result is consistent with experimental facts.
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Fig. 9.22 Magnetic phase diagram of Ni on the z∗ −Δ plane at 50 K for the d electron number
N = 9.0 (solid curve) and 9.1 (dot-dashed curve) [249]. Note that the calculations are not made in
the right-triangle region at the upper left

The ground-state magnetization [〈m〉]s and TC of amorphous pure Ni obtained
from the Ni–B amorphous alloys are [〈m〉]s ≈ 0.37μB and TC ≈ 580 K [247]. With
use of the estimated structural parameters, z∗ ≈ 11.75 and Δ1/2 ≈ 0.060 for amor-
phous Ni, we obtain the theoretical result [〈m〉]s = 0.40μB and TC = 380 K, being
consistent with the experimental data. The Curie temperatures of the melt-quenched
amorphous Ni91Zr9 alloy [246] and its counterpart in the bcc phase are practically
identical and are much smaller than those obtained by the sputtering method [245].
We can explain the behavior from the phase diagram as a difference in coordina-
tion numbers between the two: z∗ (melt-quenched) < z∗ (sputtered), though one
has to take into account the other factors such as the effects of second elements,
atomic volume and the chemical short-range order. The concentration dependence
of the Weiss constants in liquid Fe–Ni alloys suggests that Ni with liquid structure
is nonmagnetic at the ground state. As is well-known, the structure of liquid Ni is
characterized by z∗ ≈ 10.5 andΔ1/2 ≈ 0.083. The phase diagram (Fig. 9.2) explains
the paramagnetism of liquid Ni if Δ1/2 ≈ 0.083 and z∗ � 10.5.

9.5 Theory of Magnetism in Amorphous Alloys

It is remarkable that all the metallic glasses are realized in amorphous alloys where
both structural and configurational disorders play an important role on their mag-
netic properties. In this section, we extend the finite-temperature theory of amor-
phous metallic magnetism to the amorphous alloys in order to understand the mag-
netism of amorphous transition metal (TM) alloys.

The structure of amorphous alloys is characterized by structural disorder and ran-
dom atomic configuration of the constituent atoms. To specify the local structure of
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these amorphous alloys, we need more detailed microscopic parameters. The aver-
age coordination number on the nearest-neighbor (NN) shell depends on the type
of the central atom α as z∗α , due to the difference in atomic size of the constituent
atoms. We expect that for example z∗A < z∗B when the atomic size of atom A is
smaller than that of B. Accordingly the atomic short-range order (ASRO) parame-
ters also depend on the type of atom α as τα , so that the probability of finding atom
α at the neighboring site of atom α is given by

pαα = cα + (1− cα)τα. (9.49)

The consistency for the number of neighboring A–B pairs (i.e., cAz
∗
Bp

AB =
cBz

∗
Ap

BA) yields the following relation among {z∗α} and {τα}.
z∗A(1− τA)= z∗B(1− τB). (9.50)

In the DRPHS-like model we have an approximate but simple relation as follows.

z∗α = z∗α(0)+ pαα
[
z∗α(1)− z∗α(0)

]
. (9.51)

Here z∗α(1) (z∗α(0)) is the average coordination number for pαα = 1 (pαα = 0).
When the relations mentioned above are accepted, the independent parameter

which controls the degree of atomic short-range order is either τA or τB. Note that
choice of a random configuration τA = τB = 0 is not allowed because of the relation
(9.50). The most random configuration is obtained by minimizing the mean square
of deviation taken over all the NN pairs Φ = (N/2)

∑
α cα

∑
γ z
∗
αp

αγ (pαγ − cγ )
2

under the condition (9.50), so that the following condition is obtained [250].

cAτB + cBτA = 0. (9.52)

Equations (9.50), (9.51), and (9.52) determine the parameters {τα, z∗α} in the most
random configuration.

The Green function theory of electronic structure calculations for substitu-
tional alloys, which was presented in Sect. 8.3, can be extended to the amor-
phous alloys [250, 251]. We adopt the Hartree–Fock tight-binding Hamiltonian
(8.4) and assume the geometrical mean model for the transfer integral model tij =
r
(c)∗
α t ′ij r

(c)
γ (see (8.16)). We then consider the Green function G′ij = r

(c)
α Gij r

(c)∗
γ =

(L′−1 − t ′)−1
. Here (L′−1)ij = L′−1

j δij = δij (ω+ iδ−εi)/|r(c)i |2 and we have omit-
ted the spin indices for simplicity. By making use of the Dyson equations (8.50) and
(8.51) for G′, and making the Bethe approximation (see (8.55)), the site-diagonal
Green function is obtained as follows.

G00 = 1

|r(c)α |2

(
L′−1
α −

z∑
j �=0

t ′2ij
L′−1
j − S′j (L′)

)−1

. (9.53)

Here z is the coordination number on the nearest neighbor shell. S′j (L′) is the sum
of all the paths which start from site j and end at the same site without returning to
the cluster on the way.
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It should be noted that the transfer integral t ′ij still depends on the atomic config-

uration on sites i and j via the interatomic distance Rij =Rαγij in the case of amor-

phous alloys. Experimentally the geometrical-mean relation Rαγij = (Rααij R
γγ

ij )
1/2

holds true within a few percent error [251]. Thus, using the relation and assuming
the same power law relation t ′ij ∝R−κij , we find

t ′ij = r(s)∗α t̂ij r
(s)
γ . (9.54)

Here t̂ij is the transfer integral between sites i and j for an amorphous metal as a
reference system. When amorphous pure metals A and B have the same structure
except for the interatomic distance, the factor r(s)α does not depend on sites i and j .
Adopting (9.54), we obtain the Green function G00 as follows.

G00 = 1

|rα|2
(
L−1
α −

z∑
j �=0

t̂2j0

L−1
j − S′j (L)/|r(s)j |2

)−1

. (9.55)

Here rα = r
(c)
α r

(s)
α . It is given by rA = √μ2(A)/μ2(B) and rB = 1, μ2(α) being

the second moment for the average DOS for amorphous pure metal α: μ2(α) =∫
ε2[ρ0

α(ε)]s dε. Moreover L−1
j = (ω+ iδ − εj )/|rj |2.

When we take the structural and configurational average outside the cluster, we
replace the self-energy S′j (L̂)/|r(s)j |2 with an effective S , so that we obtain

Gαα = 1

|rα|2
(
L−1
α −

z∑
j �=0

yj

L−1
j −S

)−1

. (9.56)

Here yj = t̂2j0. Introducing the probability pα(z) of finding z sites on the NN shell

of atom α and the probability ps(yj ) dyj of finding t̂2j0 between yj and yj + dyj ,
we obtain the averaged Green function for the type of atom α as follows.

[[Gαα]s
]

c =
∑
z

pα(z)

z∑
n=0

Γ
(
n, z,pαα

)∫ [
z∏
j

ps(yj ) dyj

]
Gαα. (9.57)

Here [ ]c ([ ]s)means the configurational (structural) average. Γ (n, z,p) is the bino-
mial distribution function [z!/n!(z− n)!]pn(1−p)z−n, and Γ (n, z,pαα) expresses
the probability of finding n atoms of type α on the NN shell of atom α with z sites.

By making use of the decoupling approximation (9.31), we obtain

[[Gαα]s
]

c =
∑
z

pα(z)

z∑
n=0

Γ
(
n, z,pαα

)

×
n∑
i=0

z−n∑
j=0

Γ

(
i, n,

1

2

)
Γ

(
j, z− n, 1

2

)
Gαα(z,n, i, j), (9.58)
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Gαα(z,n, i, j)= 1

|rα|2
[
L−1
α −

(
n+ (2i − n) [(δy)

2]1/2s

[y]s
)
[y]sKα

−
(
z− n+ (2i − z+ n) [(δy)

2]1/2s

[y]s
)
[y]sKᾱ

]−1

. (9.59)

Here [y]s is obtained from the second moment and the average coordination number
z∗ as [y]s = μ2(B)/z∗. Moreover [(δy)2]1/2s /[y]s = 2κΔ, Δ being defined by Δ=
[(δR)2]1/2s /[R]s. The quantity Kα is defined by Kα = (L−1

α −S )−1.
To obtain the effective self-energy S outside the cluster, we consider the co-

herent Green function in which the locators of the Green function r∗αG00rα =
[(L−1− t̂ )−1] have been replaced by the effective one L , i.e., F(L −1)= [[(L −1−
t̂ )−1]00]s. In the Bethe approximation it is given as

F
(
L −1)= [(

L −1 − θK)−1]
s. (9.60)

Here θ =∑z
j yj and K = (L −1−S )−1. We thus obtain K and S from the above

equation because the l.h.s. is given by (9.22). Kα in (9.59) is obtained from K as

Kα =
(
L−1
α −L −1 −K−1)−1

. (9.61)

The effective locator L −1 should be determined by the self-consistent equations
for the shell boundary condition which corresponds to (8.63) for substitutional al-
loys.

[[
r∗j Gjj rj

]
s

]
c = F

(
L −1). (9.62)

Here the Green function r∗j Gjj rj is given by (8.56):

r∗j Gjj rj = 1

L−1
j −S

+ 1

(L−1
j −S )2

yj r
∗
αG00rα. (9.63)

In a more simple version, the medium L −1 is determined by the CPA equation
(8.18):

∑
α

cα
[
L−1
α −L −1 + F (

L −1)−1]−1 = F (
L −1). (9.64)

In order to describe the different shapes of the DOS in both pure amorphous metal
limits, it is suitable to adopt a common band model such as t̂ij = λt̃ij = λ[cAtij (A)+
cBtij (B)]. Here tij (α) is the transfer integral for the pure amorphous metals α. The
parameter λ is determined as λ=√

μ2(B)/μ̃2 by taking the second moment at both
sides of equation t̂ij = λt̃ij . μ̃2 is the second moment of the average DOS for the
common band {t̃ij } and is given by μ̃2 = [cAμ2(A)1/2 + cBμ2(B)1/2]2. When we
adopt the common band model, K in (9.61) is modified as K = (L −1 − λS̃ )−1,
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Fig. 9.23 Calculated DOS for amorphous Fe65Zr35 alloys with the use of the Bethe-type approx-
imation (solid curve) and the tight-binding LMTO recursion method (dotted curve) [251]. The
numbers for the solid curves denote the average coordination numbers of Fe atoms (z∗Fe)

and S̃ for the transfer integral t̃ij is approximated as S̃ = cAS (A) + cBS (B).
Each S (α) or K0

α = (L −1−λS (α))−1 for amorphous pure metal α is determined
from the following condition corresponding to (9.60).

Fα
(
L −1)= [(

L −1 − λ2θαK
0
α

)−1]
s. (9.65)

Thus K in the common band model is obtained from K0
α as

K = (
cA

(
K0

A

)−1 + cB
(
K0

B

)−1)−1
. (9.66)

Finally, (9.60), (9.64), and (9.66) form the self-consistent equations to obtain L −1

and K at each energy ω+ iδ. Once we obtain them, we obtain Kα via (9.61). Thus
we can calculate the Green function [[Gαα]c]s from (9.58) and (9.59).

The densities of states (DOS) of the amorphous Fe65Zr35 alloy calculated by the
above-mentioned Bethe-type theory are shown in Fig. 9.23 [251]. Calculated DOS’s
show a two-peak structure near the Fermi level. The low energy peak is higher
than the high-energy peak when z∗Fe = 12. The high-energy peak on the Fermi level
rapidly develops with decreasing z∗Fe and becomes dominant at z∗Fe = 8.0. The cal-
culated DOS agrees well with the first-principles DOS when z∗Fe = 9.0. The amor-
phous Fe65Zr35 alloy is known to show the ferromagnetism with the ground state
magnetization of 0.95μB. Since the high DOS at the Fermi level is important for
the appearance of the ferromagnetism according to the Stoner criterion, the results
indicate that the ferromagnetism in amorphous Fe65Zr35 alloy originates in the for-
mation of the high-energy peak due to the atomic-size difference, which is not seen
in the substitutional alloys.
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The finite-temperature theory of amorphous metallic magnetism is extended to
the case of amorphous alloys [250]. In the theory for amorphous alloys, we start
from the expression of the magnetic moment on site i given by (9.7). The energy
potential E(ξ) is given by (9.5) in which the locator matrix L has been replaced by

(
L−1)

iσjσ ′ = L−1
iσ δij δσσ ′

=
(
ω+ iδ − ε0

i +μ−
1

2
Ũi ñi(ξ)+ 1

2
J̃iξiσ

)/|rj |2δij δσσ ′, (9.67)

and the transfer integral (t)ij with (t̂)ij . The latter is defined by tij = r∗i t̂ij rj .
Taking the same steps as in Sect. 9.3, we introduce the effective medium L −1

σ

and expand the energyE(ξ)with respect to the site in the medium. After making the
decoupling approximation for surrounding field variables as well as the molecular-
field type approximation, we reach (9.13) for the central local moment (LM):

〈m0〉 = 〈ξ 〉 =

∫
dξ ξ e−βΨ (ξ)

∫
dξ e−βΨ (ξ)

. (9.68)

Here Ψ (ξ) is given by (9.14):

Ψ (ξ)=E0(ξ)+
z∑

j=1

Φ
(a)
0j (ξ)−

z∑
j=1

Φ
(e)
0j (ξ)

〈mj 〉
xj

. (9.69)

E0(ξ), Φ
(a)
0j (ξ), and Φ

(e)
0j (ξ) are given by (9.8), (9.10), and (9.15) in which the

locators L have been replaced by (9.67) and coherent Green functions Fijσ have
been replaced by

Fijσ =
[(

L −1
σ − t̂)−1]

ij
. (9.70)

In the Bethe approximation, they are given by (9.20) and (9.21) in which {tij } have
been replaced by {t̂ij }.

The central LM in (9.68) is regarded as a function of the surrounding LM’s
{〈mj 〉} on the NN shell, the squares of transfer integrals {yj = t̂2j0}, the atomic con-
figuration on the NN shell {γj }, and the coordination number z. These variables
randomly change because of the structural and configurational disorders. Thus we
introduce a probability gγj (mj ) dmj of finding LM on the atom of type γj between
mj and mj +dmj , a probability ps(yj ) dyj of finding t̂2j0 between yj and yj +dyj ,
a probability pαα of finding an atom of type α at the neighboring site of the central
atom α, and a probability pα(z) of finding z sites on the NN shell of the central
atom α. These determine the distribution function of the central LM 〈mα〉 via (9.68)
and the latter should be identical with those of the neighboring sites. Then the self-
consistent equation for the distribution function is obtained as follows (see (9.25)).
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gα(M)=
∑
z

pα(z)

z∑
n=0

Γ
(
n, z,pαα

)∫
δ
(
M − 〈mα〉

)

×
n∏
i=1

[
ps(yi) dyi gα(mi) dmi

] z∏
i=n+1

[
ps(yj ) dyj gᾱ(mj ) dmj

]
. (9.71)

By making use of the decoupling approximations (9.30) and (9.31) for the
distribution functions gγ (mj ) and ps(yj ) at the r.h.s. of (9.71) and substi-
tuting the approximate expression of gα(M) into [[〈mα〉]s]c =

∫
Mgα(M)dM

and [[〈mα〉2]s]c =
∫
M2gα(M)dM , we obtain the self-consistent equations for

[[〈mα〉]s]c and [[〈mα〉2]s]c as follows.
[ [[〈mα〉]s]c
[[〈mα〉2]s]c

]
=

∑
z

pα(z)

z∑
n=0

Γ
(
n, z,pαα

) n∑
i=0

Γ

(
i, n,

1

2

)

×
z−n∑
j=0

Γ

(
j, z− n, 1

2

)[ [[〈ξα〉(z, n, i, j)]s]c
[[〈ξα〉2(z, n, i, j)]s]c

]
. (9.72)

In the approximate expression, the central LM of atom, i.e., [[〈ξα〉k(z, n, i, j)]s]c
(k = 1,2) at the r.h.s. of (9.72) are specified by the coordination number (z), the
number of α atoms on the NN shell (n), the number of contracted atoms among n
atoms of type α on the shell (i), and the number of contracted atoms among the
remaining z− n atoms of type ᾱ(j). The distribution function pα(z) is given in the
simplest form as follows.

pα(z)=
([
z∗α

]+ 1− z∗α
)
δz[z∗α] +

(
z∗α −

[
z∗α

])
δz[z∗α]+1, (9.73)

where [ ] denotes Gauss’ notation.
The LMs [[〈ξα〉k(z, n, i, j)]s]c (k = 1,2) are obtained by taking the average over

the configurations of fictitious spins {[[〈mα〉2]s]1/2c } on the NN shell with use of the
probability qα of finding an up spin [250]. Here qα is given by

qα = 1

2

(
1+ [[〈mα〉]s]c

[[〈mα〉2]s]1/2c

)
. (9.74)

The theory covers a wide range of amorphous and liquid magnetic alloys, from
metals to insulators within a molecular-field approximation. In the limit of the pure
amorphous metal, it reduces to the theory presented in Sect. 9.3. The theory reduces
to the finite-temperature theory of the LEE presented in Sect. 8.3 in the case of
substitutional alloys. There numerical investigations revealed the following points:
(1) the magnetizations at low temperatures are semi-quantitatively described by
the effective exchange energy parameters J̃α ; (2) the concentration dependences
of Curie temperatures are reproduced, but the absolute values are overestimated
by a factor of 1.5–2.0 due to the molecular-field approximation and the neglect of
transverse spin fluctuations; and (3) the effective Bohr magneton numbers obtained
from the Curie–Weiss susceptibilities are generally underestimated by about 25 %
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because of the overestimated itinerant character due to the use of reduced J̃α and
static approximation.

The theory takes into account the fluctuations of the LM’s with respect to the
structural and configurational disorders. This leads to the spin-glass (SG) solution
([[〈mα〉]s]c = 0 and [[〈mα〉2]s]c �= 0), in addition to the ferromagnetic ([[〈mα〉]s]c �=
0 and [[〈mα〉2]s]c �= 0) and paramagnetic ([[〈mα〉]s]c = [[〈mα〉2]s]c = 0) solutions.

In the local-moment limit, the SG transition temperature reduces to (8.100) for
the case of substitutional alloys:

T 2
g =

1

2
z
{
cAJ 2

AA + cBJ 2
BB +

[(
cAJ 2

AA − cBJ 2
BB

)2 + 4cAcBJ 4
AB

]1/2}
.

(9.75)

For amorphous metals, it is given by

T 2
g =

1

2
z∗
(
J 2+ +J 2−

)
. (9.76)

Here z∗ is the average coordination number, Jαγ is the exchange coupling energy
between α and γ atoms, and J+(J−) is the exchange coupling for a contracted
(stretched) pair. Equation (9.75) is in agreement with the SG temperature Tg for an
insulator model in the molecular field approximation (see (7.46)). Equation (9.76)
reduces to Tg for the ±J model, i.e., Tg =

√
z∗|J | when J =J+ = −J−.

These facts show that the theory describes both types of SG on the same footing,
i.e., the SG due to configurational disorder and the SG due to structural disorder.
Needless to say, the latter is essential for amorphous magnetism.

9.6 Magnetism of Amorphous Transition Metal Alloys

Amorphous transition metal (TM) alloys show a variety of magnetic properties due
to structural and configurational disorders. In this section, we elucidate their prop-
erties on the basis of their electronic structure and the finite-temperature theory of
magnetism for amorphous alloys.

9.6.1 TM–TM Amorphous Alloys

Amorphous TM–TM alloys are significant from the theoretical point of view be-
cause they enable us to clarify the effects of structural disorder by comparing
their magnetic properties with those of substitutional alloys. We first discuss the
magnetism of Fe–Ni amorphous alloys. Experimentally these alloys are found in
rather narrow concentration regime 0.64 ≤ cFe ≤ 0.72 [252]. In the crystalline
Fe–Ni alloys, the saturation magnetization abruptly decreases around 65 at% Fe
(see Sect. 8.3). There the Invar anomalies such as the zero thermal expansion and
a broad hyperfine field distribution occurs. In contrast to the crystalline case, the
hyperfine field in amorphous Fe–Ni films was found to show no anomaly around
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Fig. 9.24 Concentration
dependence of the magnetic
moment at 150 K and the
Curie temperature calculated
by a single-site theory for
amorphous (solid lines), fcc
(dashed lines), and bcc
(dot-dashed lines) Fe–Ni
alloys [254]. The inset is the
corresponding hyperfine field
observed
experimentally [252]

the Invar concentration range in contrast to the crystalline case. Instead it increases
along the Slater–Pauling curve with increasing Fe concentration, as shown in the
inset of Fig. 9.24.

Magnetic properties of amorphous Fe–Ni alloys have been calculated by means
of the single-site theory of amorphous magnetic alloys with use of the geometrical
mean model [254]. The results are shown in Fig. 9.24. A remarkable point is that
the critical concentration of the ferromagnetic instability shifts to the Fe side by
about 30 at% Fe, so that the strong ferromagnetism is realized around 70 at% Fe. It
originates from the change of electronic structure. In fact, the shift of the main peak
to the lower energy region in the nonmagnetic DOS, which was found in amorphous
pure metals (see Fig. 9.7), remains even in amorphous alloys, therefore amorphous
Fe–Ni alloys have the Fermi level at the main peak around 70 at% Fe, whereas
their crystalline fcc counterparts have the Fermi level below the peak in the same
concentration region. The change of the main peak due to structural disorder leads
to the strong ferromagnetism in the Invar concentrations in amorphous Fe–Ni alloys.
The shift of the Curie temperature maximum to the higher Fe concentration due to
structural disorder is also explained by the magnetic energy gain associated with the
shift of the main peak in the DOS.

Most of the TM–TM magnetic alloys are formed by adding 4d and 5d early tran-
sition metals (ET = Y, Zr, Nb, Mo, La, Hf, Ta, and W) to 3d magnetic transition
metals (TM= Fe, Co, and Ni). These alloys are characterized by a large difference
in atomic size between the ET and the 3d TM, so that the NN atomic distance de-
pends strongly on the type of the NN pair and that the coordination number depends
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Fig. 9.25 Concentration
dependencies of ASRO
parameters {τα} (solid lines)
and the average coordination
numbers {z∗α} (dashed lines)
in amorphous Fe–Zr alloys,
which are obtained from the
condition of the most random
atomic configuration (see
(9.52)) and a linear equation
for {z∗α} (see (9.51)) [250]

strongly on the type of the central atom as well as the atomic short-range order
parameters.

Figure 9.25 shows the average coordination number {z∗α} as well as the atomic
short range order (ASRO) parameters for amorphous Fe–Zr alloys in the most ran-
dom atomic configuration (see (9.52)) [250]. Here the coordination numbers in the
pure limits, z∗Fe(0) = 7.0, z∗Zr(0) = 16.0, and z∗Fe(1) = z∗Zr(1) = 11.5 are estimated
on the basis of the DRPHS model. The average coordination numbers z∗α simply
decrease with decreasing Fe concentration.

An example of calculated DOS for the amorphous Fe75Zr25 alloy is presented
in Fig. 9.26 [250]. The DOS calculated with use of the finite temperature theory
at low temperatures agree well with those of the tight-binding LMTO supercell
method [253]. The latter leads to the magnetization 1.27μB at T = 0 K and the
former to the magnetization 0.9μB at 75 K. These values are compared with the
experimental data 0.96μB. Note that Zr atoms are also polarized to be anti-parallel
to the magnetization because of the strong hybridization of Zr 4d bands with 3d Fe
minority-spin bands. The appearance of the ferromagnetism is explained by a large
difference in atomic size between Fe and Zr atoms, as discussed in the last section
(see Fig. 9.23).

The atomic short range order is also important for the magnetism of amorphous
Fe–Zr alloys. Figure 9.27 shows the calculated phase diagram on the pFeFe–cFe
plane at 75 K. When we decrease the Fe concentration along the line of the most
random atomic configuration, we have the spin glass (SG) to the ferromagnetic state
(F) and to the paramagnetic state (P) transition. However, we have no ferromagnetic
region when pFeFe 	 0.8, and the SG to P transition is expected with decreasing
the Fe concentration in the region pFeFe 	 0.8. The disappearance of the ferromag-
netism is caused by the formation of amorphous Fe clusters accompanied by the 3d
band broadening. Experimentally the Curie temperatures TC in the sputtered Fe–Zr
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Fig. 9.26 Calculated average local DOS of amorphous Fe75Zr25 alloy for Fe (solid curves) and
Zr (dashed curves) atoms at 75 K [250]. Dotted curves show the local DOS at zero temperature
obtained by the tight-binding LMTO supercell method with 64 atoms in a unit cell [253]

amorphous alloys are larger than those in the melt-span Fe–Zr amorphous alloys.
The result is explained by pFeFe(sputtered) < pFeFe(melt-spun) according to the
diagram.

The calculated magnetic phase diagram on the temperature-concentration plane
is shown in Fig. 9.28 [250]. The phase diagram is obtained for the most random
atomic configuration. It consists of the three different phases: P, F, and SG. In the
narrow range of concentration between the F and the SG, the re-entrant SG (RSG)
appears. In the amorphous pure Fe limit, the SG is stable as has been discussed in
Sect. 9.4. With decreasing Fe concentration, the ferromagnetism appears because
of the atomic-size effects as mentioned in the last section. Calculated TC shows the
maximum at 70 at% Fe in agreement with the experimental data (see the inset of
Fig. 9.28), and decreases with decreasing Fe concentration. The transition temper-
atures (TC and Tg) are overestimated by a factor of 1.5–2.0 as compared with the
experimental ones because of the molecular-field approximation.

The SG in the Fe-rich region are partly caused by the nonlinear magnetic cou-
plings between the NN Fe LM’s and partly by the competition between short-range
ferromagnetic coupling and long-range antiferromagnetic coupling as discussed in
the amorphous pure Fe (see Fig. 9.11). In fact in the former case the central Fe
LM with more than 5 contracted Fe NN (l > 5) couples antiferromagnetically with
the neighboring Fe LMs via −Φ(e)

FeFe+(ξ, l), but the central Fe LM with l < 5 fer-
romagnetically couples to the neighboring Fe LMs. On the other hand, the corre-
lation between the central Fe LM 〈m0Fe〉 and the neighboring Fe LM 〈m1Fe〉, i.e.,
[[〈m0Fe〉〈m1Fe〉]c]s is 0.15 at 90 at% Fe and 75 K. This means that the NN ferro-
magnetic interactions are rather strong as compared with the NN antiferromagnetic
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Fig. 9.27 The magnetic
phase diagram on the
pFeFe–cFe plane at 75 K
obtained by the
finite-temperature theory
[255]. The dot-dashed line
denotes the most random
atomic configuration (see
(9.52)), and the solid curves
denote the phase boundaries
among the spin glass (SG),
the ferromagnetism, and the
paramagnetism (P). The
dotted line shows the lower
bound; pFeFe = 1−
cZrz

∗
Zr/cFez

∗
Fe

Fig. 9.28 Calculated
magnetic phase diagram of
amorphous Fe–Zr alloys
showing the
paramagnetism (P),
ferromagnetism (F), spin
glass (SG), and the re-entrant
spin glass (RSG) [255]. The
phase boundary below 50 K
are extrapolated by dashed
lines. The inset shows the
experimental result [221, 256]

ones. The SG near the phase boundary therefore should be formed by the competi-
tion between short-range ferromagnetic couplings and long-range antiferromagnetic
interaction.

The Co–Y amorphous alloys show the ferromagnetism and it is enhanced as com-
pared with their crystalline counterparts in a wide range of Co concentrations, as
shown in Fig. 9.3. Enhancement of the ferromagnetism at more than about 80 at%
Co is explained by the high DOS of the main peak at the Fermi level as found in
amorphous pure Co (see Fig. 9.17). However, the enhancement around 50 to 80 at%
Co is attributed to the differences in local atomic structure, especially, the small
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Fig. 9.29 Change in DOS for amorphous Co67Y33 alloy with varying the coordination number
around a Co atom, z∗Co, from 8 to 12 [251]. z∗Y is fixed to be 12. The inset shows the result based
on the tight-binding d orbital model [258]. The DOS at the Fermi level is developed with decreas-
ing z∗Co

atomic coordination number of Co due to the difference in the atomic sizes between
Co and Y atoms. We discuss here the Co2Y alloys as an example.

The amorphous Co2Y alloy shows the ferromagnetism with the average magne-
tization 0.7μB per atom, while the crystalline Laves-phase Co2Y shows the param-
agnetism (see Fig. 9.3). The first-principles band calculations show that the Fermi
level of the Laves-phase Co2Y is pinned in a local minimum of the DOS, so that the
compound does not satisfy the Stoner criterion [257]. On the other hand, the DOS
in amorphous Co2Y alloy show the peak at the Fermi level as shown in the inset of
Fig. 9.29 [258]. The DOS for various average coordination number of Co, i.e., z∗Co,
which are calculated by means of the theory of the LEE of amorphous alloys pre-
sented in the last section are shown in Fig. 9.29 [251]. The peak near the Fermi level
strongly depends on z∗Co. The DOS at the Fermi level increases with decreasing z∗Co,
and satisfies the Stoner criterion between z∗Co = 10 and 9. The coordination number
around a Co atom is 12 in the Laves phase Co2Y, whereas it is about 9.5 in its amor-
phous counterpart. Since the latter satisfies the Stoner criterion, one concludes that
the atomic-size difference causes the ferromagnetism in the amorphous Co2Y alloy.

Calculated Curie temperature vs. concentration curves of both amorphous and
compound Co–Y alloys are given in Fig. 9.30. The Curie temperatures for the
crystalline counterparts are calculated as the close-packed Co–Y alloys having the
same average local atomic configurations {z∗α} and {τα} as those in the crystalline
counterparts (i.e., Co2Y, Co3Y, Co5Y, Co17Y2, and fcc Co) and no fluctuations of
Δ= [(δR)2]1/2s /[R]s (i.e., Δ= 0). Calculated TC’s explain qualitatively the differ-
ence between the amorphous structure and its Laves phase crystalline counterpart
as well as their concentration dependence, though the calculated TC for crystalline
Co2Y alloy is still finite in this approach.
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Fig. 9.30 Calculated Curie
temperature (TC) vs.
concentration curve [259].
Closed circles show the Curie
temperatures for close-packed
alloys with the same average
local atomic configurations as
in the crystalline fcc Co,
Co17Y2, Co5Y, Co3Y, and
Co2Y compounds. The inset
shows the experimental
results [222, 260]

The TM–Y alloys form amorphous alloys with all the magnetic TM from Mn to
Ni in a wide range of concentration. Their magnetic phase diagrams are obtained ex-
perimentally as shown in Fig. 9.31 [261]. Amorphous MncY1−c (0.18≤ c ≤ 0.76)
alloys show the SG with SG transition temperatures (Tg) less than 60 K [262, 263].
Amorphous FecY1−c (0.32 ≤ c ≤ 0.925) alloys are reported to have two different
phase diagrams: the sputtered Fe—Y alloys show the SG in the whole concentra-
tion [264–266], while the melt-spun Fe–Y alloys show the ferromagnetism with the
reentrant SG behavior in the range 0.5 � c � 0.8 [267–269]. Amorphous CocY1−c
(0.38≤ c ≤ 0.90) alloys show the enhancement of TC as compared with their crys-
talline counterparts as has been mentioned. The NicY1−c (0.65 ≤ c ≤ 0.97) alloys
show a weak ferromagnetism beyond 83 at% Ni [236, 270]. Both alloys cause the
F–P (paramagnetism) transition at 50 at% Co and 83 at% Ni, respectively.

The overall feature of the magnetic phase diagrams of TM–Y amorphous alloys
is explained by the finite temperature theory of the LEE for amorphous alloys as
shown in Fig. 9.32 [261]. There the most random atomic configuration is assumed.
Calculated TC in amorphous Ni–Y alloys is 500 K for amorphous pure Ni, which is
smaller than the TC in fcc Ni (630 K), and monotonically decreases with increasing
3d–4d hybridization. As discussed before, the main peak at the Fermi level in amor-
phous Co enhances the magnetic coupling, therefore TC. The atomic-size effects
tend to keep this enhancement when Co concentration is decreased. The calculated
SG temperature in amorphous Mn–Y alloys, on the other hand, linearly increases
with increasing Mn concentration, and show a maximum at 80 at% Mn because of
the band broadening with increasing Mn concentration.

Calculated phase diagram in amorphous Fe–Y alloys shows the SG beyond
87 at% Fe and the re-entrant SG behavior in a very small region near the
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Fig. 9.31 Experimental magnetic phase diagrams in amorphous TM–Y (TM =Mn, Fe, Co, Ni)
alloys [222, 262, 263, 267–270]. Solid (dashed) curves denote the Curie (spin-glass) temperature
TC (Tg). The SG temperatures in Mn–Y alloys are multiplied by a factor of 2. The inset shows
different phase diagrams for the melt-spun Fe–Y [267–269] and sputtered Fe–Y amorphous al-
loys [264, 265]

Fig. 9.32 Calculated magnetic phase diagrams in amorphous TM–Y alloys [230]. The solid line
in Fe–Y beyond 87 at% Fe and the dotted line show the SG temperature. The other solid curves
show the Curie temperature

F–SG boundary. Calculated Tg changes from 240 K (amorphous Fe) to 165 K
(86.5 at% Fe). Below 86 at% Fe, the alloys show the ferromagnetism. The Curie
temperature rapidly increases with decreasing Fe concentration, and show a max-
imum (TC = 740 K) around 60 at% Fe. These results qualitatively agree with the
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Fig. 9.33 The DOS for amorphous Fe80B20 alloys (solid curve), and for crystalline Fe2B com-
pound (dashed curve) [272]

magnetic phase diagram in melt-spun Fe–Y alloys (see Fig. 9.31), though the re-
entrant SG behaviors are not found in a wide range of concentration.

The sputtered amorphous Fe–Y alloys do not show the ferromagnetism in whole
concentrations according to the experiments. It is explained by the ASRO effects. In
fact, theoretical calculations verify that the amorphous Fe–Y alloys show the SG ir-
respective of concentration when the condition pFeFe 	 0.8 is satisfied. Since the ex-
perimental values of pFeFe seem to satisfy the condition (for example, pFeFe = 0.845
for the sputtered Fe85Y15 alloys), the SG in sputtered Fe–Y alloys are explained by
the formation of small Fe clusters due to strong ASRO.

9.6.2 The Other TM Alloys

The transition metal metalloid amorphous alloys have also been intensely investi-
gated from the earliest stage of investigations [216–218]. Their local structures are
shown to be similar to those of the crystalline counterparts. For example, there is no
direct contact between metalloid P atoms in Co–P amorphous alloys from 0 at% P to
about 20 at% P, and metalloid atoms are captured in the interstitial positions called
the Bernal holes in the DRPHS model [271]. The local structure is quite similar to
that of trigonal-prismatic crystalline Fe3P and Fe2P compounds.

Figure 9.33 shows the calculated DOS for the amorphous Fe80B20 alloy and
the crystalline Fe2B [272]. The characteristic feature of these DOS is that they are
almost the same. Their electronic structure based on the first-principles calculations
is summarized as follows. The B sp states hybridize strongly with Fe d states. The
hybridization splits B sp states into bonding and antibonding states, and shifts the
main peak of DOS for Fe d states toward the low energy side. The Fermi level
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Fig. 9.34 The average magnetization per TM atom for the pseudo-binary transition metal amor-
phous alloys as a function of valence electron number [273]. The crystalline Slater–Pauling curves
are also plotted by dashed lines

becomes close to the main peak position of the DOS. The Fe–Fe distances increase,
and the coordination numbers of Fe–Fe pairs decrease with the addition of B atoms,
so that the d band width of Fe narrows. These effects are common for TM-metalloid
alloys. In particular, the peak shift of the DOS toward the low energy side enhances
the DOS of Fe at the Fermi level, so that the ferromagnetism is stabilized according
to the Stoner criterion in the Fe–metalloid amorphous alloys.

The effects of the peak shift of the DOS are also found in the other TM-metalloid
amorphous alloys. Figure 9.34 shows the average magnetization vs. d electron
number curves for pseudo-binary transition metal metalloid alloys in the form
(TM1

xTM2
1−x)80B10P10 [273]. It is remarkable that the curves for amorphous al-

loys are obtained simply by shifting the corresponding curves for crystalline alloys
by 0.5 electrons to lower d-electron numbers. The shift of the electron number cor-
responds to that of the peak position of the DOS with the addition of metalloids. We
have discussed the same kind of systematic change of the magnetism in amorphous
TM metals in Sect. 9.4. The origin of the shift of the DOS here, however, is different
from the case of amorphous pure metals; the shift of the DOS in the TM-metalloid
system is caused by the change in chemical bondings between TM and metalloid
atoms, while the shift in pure TM amorphous metals is caused by structural disor-
der.

The rare-earth transition metal (RE–TM) amorphous alloys have also exten-
sively been investigated. Their atomic structures are similar to those obtained by the
DRPHS model, which are different from the crystalline counterparts. The valence
electron configurations and atomic radii of RE atoms are quite similar to those of a
Y atom. The itinerant-electron contributions to the magnetic properties are similar
to those of Y-TM amorphous alloys. The RE atoms on the other hand have unfilled
f-electron shell inside 6s2 filled shell, so that they have well-defined atomic LMs
even in solids [16]. The magnetic moment of an RE atom is given by M =L+ 2S
(μB), while the total angular momentum J is given by J = L+ S. Here L and S
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denote the total atomic orbital and spin angular momenta of f electrons, respectively.
These atomic moments are built up by the Hund’s rule coupling, i.e., the Coulomb
interactions between f electrons, except for Ce showing the valence fluctuations. In
the case of RE atoms, the spin–orbit coupling λL ·S is significant, and the coupling
constant λ takes plus (minus) sign for the f electron number less (more) than half in
filling (see (1.44) in Sect. 1.3). Therefore the atoms form the multiplet ground state
with J = L− S for the RE atoms with less than half-filled f electrons (i.e., light RE
atoms) and J = L+ S for the RE atoms with more than half-filled f electrons (i.e,
heavy RE atoms).

Between the 3d TM atomic spin STM and the RE atomic spin S, there is an effec-
tive interatomic interaction of the type −JRTS · STM. To derive the interaction, as-
sume that the 3d bands are ferromagnetically polarized. Since the broad 5d up-spin
band electrons strongly hybridize with the 3d down-spin band electrons as com-
pared with the hybridization with 3d up-spin bands, the 5d electrons are polarized
antiferromagnetically. The latter electrons polarize f electrons in the same direction
due to the direct exchange interaction on RE sites. This implies that the effective
coupling between TM spin STM and RE spin S is antiferromagnetic; JRT < 0.

The crystalline-field effects on the RE LM are usually assumed to be described
by the single-ion anisotropy such as −Di(ni · J i )

2 [214, 215]. Here the random
unit vector ni denotes a local ‘easy axis’ on site i and Di (> 0) is the anisotropy
constant. Since the local easy axis is random, this interaction is favorable for the
noncollinear magnetic structure.

Because of the magnetic interactions mentioned above, the RE-TM amorphous
alloys are classified into the following three groups.

Light RE–TM amorphous alloys
The local moment (LM) of TM (TM = Fe, Co, and Ni) atoms couples antiferro-
magnetically to the spin S of the RE atoms and the latter antiferromagnetically
couples with the orbital LM L (λ > 0). Since the orbital LM exceeds the spin LM
in magnitude, it turns out that the total LM of RE atoms ferromagnetically couple
to those of the TM atoms. The random single-ion anisotropic interactions cant the
RE LM to some extent. Therefore this system shows non-collinear ferromagnetism
as shown in Fig. 9.35(left). The Nd–Fe and Nd–Co amorphous alloys belong to this
category.

Heavy RE–TM amorphous alloys
The LM of TM (TM= Fe, Co, and Ni) atoms couples antiferromagnetically to the
spin S of the RE atoms and the latter ferromagnetically couples with the orbital
LM L (λ < 0). Thus the total LM of the RE atoms antiferromagnetically couple
to those of the TM atoms. The random single-ion anisotropic interactions cant the
RE LM to some extent. Therefore this system shows non-collinear ferrimagnetism
as shown in Fig. 9.35(right). Amorphous Dy–Fe and Dy–Co alloys for example
belong to this category.

Gd–TM amorphous alloys
The LM of TM (TM = Fe, Co, and Ni) atoms couples antiferromagnetically to
the spin S of Gd atoms. Since the orbital LM L for Gd atoms disappear, the total
LM (i.e, spin S) of the RE atoms antiferromagnetically couple to those of the TM
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Fig. 9.35 Three types of
magnetic configurations in
amorphous RE–TM alloys:
light RE–TM alloys (left),
Gd–TM alloys (middle), and
heavy RE–TM alloys (right).
The solid (dashed) arrows
denote the TM (RE) LM

atoms. This system therefore shows the ferrimagnetism as shown in the middle of
Fig. 9.35. Amorphous Gd–Fe, Gd–Co, and Gd–Ni alloys show the ferrimagnetism.

The first-principles calculations have been performed for some RE–TM amor-
phous alloys with the use of the density functional theory (DFT) with the local
density approximation (LDA). Figure 9.36 shows the densities of states (DOS) for
the amorphous Gd33Fe67 alloy [274]. The Fe 3d states ferromagnetically polarize as
in the case of bcc Fe and the projected DOS show the two-peak structure. The two-
peak structure originates in the local atomic structure which is rather more similar
to the closed packed structure than the crystalline bcc or the Laves structure. The Gd
5d states extend from −3 eV to 8 eV and strongly hybridize with the minority spin
3d band because the latter is energetically closer to the 5d states than the majority
3d states, as seen in Fig. 9.36. Consequently, the 5d electrons polarize to be antipar-
allel to the 3d LM’s. The localized Gd 4f states form the narrow up and down bands.
Since the polarized 5d electrons ferromagnetically couple to the 4f electrons via the
intraatomic d–f exchange interaction, the 4f electrons antiparallely couple to the 3d
Fe LM’s as mentioned before. Note that the DFT-LDA theory underestimates the

Fig. 9.36 Projected DOS’s of amorphous Gd33Fe67 alloy [274]
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binding energy of the occupied f states; the calculated value 4.3 eV is much smaller
than the experimental value 9.4 eV [275].

The calculated magnetic moments in the amorphous Gd33Fe67 alloy are 7.2μB
for the Gd site and −2.0μB for the Fe site. The average magnetic moment per atom
is 1.1μB, which is in good agreement with the experimental value 1.2μB. In the case
of the crystalline Laves phase GdFe2 compound, calculated magnetic moments of
the Gd site are 7.5μB, which is larger than in the amorphous alloy, and −1.9μB for
Fe site. The average magnetic moment per atom is 1.2μB, which is also in good
agreement with the experimental value (0.9–1.2μB) [276].

In order to discuss the temperature dependence of magnetic properties of the
RE–TM amorphous alloys, one has to rely on the model Hamiltonian. A possible
effective Hamiltonian which takes into account the itinerant character of d electrons
as well as the localized f electrons may be written as follows [277–279].

H =
∑
iσ

εiniσ +
∑
ij

tij a
†
iσ ajσ +

∑
i

Uini↑ni↓ − J̃RT

∑
i

J i · sj

−
∑
i

Di(ni · J i )
2. (9.77)

Here the first three terms denote the d-band Hubbard model (see (1.51)). εi , tij , and
Ui denote the atomic level on site i, the transfer integrals between sites i and j , and
the intraatomic Coulomb interaction between d electrons on site i, respectively. The
fourth term at the r.h.s. of (9.77) expresses the exchange couplings between the RE
moment J i and the TM spin si . The last term represents random anisotropy. The
spin fluctuation theories of amorphous alloys based on the Hamiltonian (9.77) are
left for future investigations.



Appendix A
Equivalence of the CPA Equations (3.83), (3.85),
and (3.89)

We verify here the equivalence of three equations on the CPA, (3.83), (3.85), and
(3.89). We start from the CPA equation (3.83) showing the disappearance of the
single-site t matrix in average.

〈t̃iσ 〉 =
〈

δviσ

1− δviσFiσ
〉
= 0. (A.1)

Here δviσ = viσ −Σiσ (z), viσ and Σiσ (z) being the impurity potential and the co-
herent potential, respectively. Note that we have generalized the coherent potential
to be site-dependent. Fiσ (z) is the coherent Green function defined by

Fiσ (z)=
[
(z−Σσ − t)−1]

ii
. (A.2)

The average 〈∼〉 in (A.1) is a classical average defined by (3.84).
Since the t-matrix in (A.1) is written as

t̃iσ =
(

F−1
iσ

F−1
iσ − δviσ

− 1

)
F−1
iσ , (A.3)

we obtain an alternative expression for the CPA condition as

〈G(i)
iσ (z)〉 = Fiσ (z). (A.4)

This is identical with the CPA equation (3.85), and the Green function G(i)
iσ (z) is

defined by

G
(i)
iσ (z)=

1

F−1
iσ (z)− δviσ

. (A.5)

The Green function G(i)
iσ (z) is the on-site Green function for an impurity embed-

ded in the effective medium, of which the Hamiltonian is given by
(
H(i)
σ (z)

)
j l
= [

viσ (z, ξ)δij +Σσ (z)(1− δij )
]
δjl + tj l(1− δjl). (A.6)
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To verify this fact, we rewrite the Hamiltonian as H
(i)
σ (z) = H̃σ (z) + δviσ .

Here H̃σ (z) is the coherent Hamiltonian defined by (H̃σ (z))jl = Σjσ (z)δjl + tj l
(1− δjl). δviσ is defined by (δviσ )jl = (viσ −Σiσ (z))δij δjl . We then expand the
Green function on the impurity site as

[(
z−H(i)

σ (z)
)−1]

ii
= [

G̃σ (z)+ G̃σ (z)viσ (z)G̃σ (z)+ · · ·
]
ii
. (A.7)

Here G̃σ (z) is the resolvent of the Hamiltonian H̃σ (z), i.e., G̃σ (z)= (z− H̃σ (z))
−1.

Equation (A.7) means that

[(
z−H(i)

σ (z)
)−1]

ii
= G̃iiσ (1− δviσ G̃iiσ )

−1. (A.8)

Since Fiσ = G̃iiσ (z), we find the relation:

G
(i)
iσ (z)=

[(
z−H(i)

σ (z)
)−1]

ii
. (A.9)

The CPA equations (A.1) and (A.4) are expressed as the stationary condition for
the free energy (3.82):

FSSA = F̃ − β−1
∑
i

ln
∫ √

βU

4π
dξi e−βEi(ξi ). (A.10)

Here the coherent part of the free energy F̃ is defined by (3.72):

F̃ =
∫
dωf (ω)

1

π
Im

∑
σ

tr
[
ln(z−Σ − t)]. (A.11)

Note that tr at the r.h.s denotes the trace over sites. The single-site energy Ei(ξi) is
given by (3.78):

Ei(ξi)=
∫
dωf (ω)

1

π
Im

∑
σ

ln
(
z− δviσ (z)Fiσ (z)

)+ 1

4
U
(
ξ2
i − ζ 2

i

)
. (A.12)

To derive the stationary condition, we rewrite the free energy (A.10) as follows.

FSSA =−β−1 ln
∫ [∏

j

√
βU

4π
dξj

]
e−β(F̃+∑i Ei (ξi )). (A.13)

Here

F̃ +
∑
i

Ei(ξi)=
∫
dωf (ω)

1

π
Im

∑
σ

Xσ (z)+ 1

4

∑
i

Ui
(
ξ2
i − ζ 2

i

)
, (A.14)

and Xσ (z) is defined by

Xσ (z)= tr ln(z−Σσ − t)+
∑
i

ln
[
z− δviσ (z, ξ)Fiσ (z)

]
. (A.15)
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Taking the variation of FSSA with respect to the coherent potential Σiσ (z), we
have

δFSSA =
〈
δ

(
F̃ +

∑
i

Ei(ξi)

)〉
=

∫
dωf (ω)

1

π
Im

∑
σ

〈δXσ (z)〉. (A.16)

Note that we have used here the stationary condition for ζi(ξ); ∂Ei(ξ)/∂ζi(ξ)= 0.
The variation of Xσ (z) is obtained as

δXσ (z) = −
∑
i

Fiσ (z)δΣiσ (z)+
∑
i

(
z− δviσ (z, ξ)Fiσ (z)

)−1
Fiσ (z)δΣiσ (z)

−
∑
i

(
z− δviσ (z, ξ)Fiσ (z)

)−1
δviσ (z, ξ)δFiσ (z). (A.17)

Thus the average is obtained as follows

〈δXσ (z)〉 =
∑
i

[−Fiσ (z)+ 〈G(i)
iσ (z)〉

]
δΣiσ (z)−

∑
i

〈t̃iσ (z)〉δFiσ (z). (A.18)

By making use of the CPA equations (A.1) and (A.4), we find the stationary
condition as follows.

〈δXσ (z)〉 = 0. (A.19)

From (A.16) and (A.19), we obtain the stationary condition.

δFSSA

δΣiσ (z)
= 0. (A.20)

This is identical with (3.89), so that we have verified that (3.83), (3.85), and (3.89)
are equivalent to each other.



Appendix B
Dynamical CPA Based on the Multiple
Scattering Theory

The dynamical CPA theory presented in Sect. 3.4 is also obtained by using the mul-
tiple scattering theory in the disordered alloys [51]. We derive in this appendix the
dynamical CPA equation on the basis of the temperature Green function and the
multiple scattering theory.

The temperature Green function Gijσ (τ − τ ′) is given by an average of the time-
dependent Green function Gijσ (τ, τ

′) with respect to the energy functional E[ξ, η]
as shown in (3.48):

Gijσ
(
τ − τ ′)= 〈

Gijσ

(
τ, τ ′

)〉=

∫ [∏
i

δξiδηi

]
Gijσ (τ, τ

′)e−βE[ξ,η]

∫ [∏
i

δξiδηi

]
e−βE[ξ,η]

. (B.1)

The time-dependent Green function is determined by solving the Dyson equa-
tion (3.43):

Gijσ

(
τ, τ ′

)= gijσ (τ − τ ′)+
∫ β

0
dτ ′′

∑
k

gikσ
(
τ − τ ′′)vkσ (τ ′′)Gkjσ

(
τ ′′, τ ′

)
.

(B.2)

Here gijσ (τ − τ ′) is the Green function for noninteracting Hamiltonian H0, and
viσ (τ ) is the time-dependent random potential given by (3.37). The Dyson equation
is written in matrix form as

G= g+ gvG= (
g−1 − v)−1

. (B.3)

The matrices are for example defined as (G)iτσjτ ′σ ′ =Gijσ (τ, τ
′)δσσ ′ .

Now, we consider a scattering from an effective potential Σ ′. Inserting potential
Σ ′ into the potential part in the above expression, we expand the Green function
with respect to the scattering potential δv = v−Σ ′ as

G= G̃+ G̃δvG̃+ G̃δvG̃δvG̃+ · · · . (B.4)
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Here G̃ is the coherent Green function defined by

G̃= (
g−1 −Σ ′)−1

. (B.5)

The Green function (B.4) is expressed with use of the T matrix as

G= G̃+ G̃T G̃. (B.6)

Here the T matrix is defined by the potential scattering as

T = δv+ δvG̃δv + · · · = δv(1+ G̃T ). (B.7)

On the other hand the real self-energy Σ for the temperature Green function
(B.1) is defined by

G = 〈G〉 = (
g−1 −Σ)−1

. (B.8)

This is nothing but the Dyson equation for the temperature Green function. To obtain
the expression of Σ with use of the T matrix, we solve the above equation as Σ =
g−1 − 〈G〉−1, and substitute the expression 〈G〉−1 = G̃−1(1+ G̃〈T 〉)−1, which is
obtained from (B.6), into 〈G〉 at the r.h.s., so that we obtain

Σ = g−1 − G̃−1(1+ G̃〈T 〉)−1
. (B.9)

According to the definition of the coherent Green function (B.5), we have the rela-
tion g−1 =Σ ′ + G̃−1. Thus we can express the self-energy (B.9) as

Σ =Σ ′ + 〈T 〉(1+ G̃〈T 〉)−1
. (B.10)

This is the exact self-energy expression when we start from an effective mediumΣ ′.
The correction is given by the T matrix caused by the scattering potential δv.

In order to obtain the averaged T matrix, i.e., 〈T 〉 at the r.h.s. of (B.9), we solve
(B.7) with respect to T as

T = (1− δvG̃)−1δv. (B.11)

Next, we divide G̃ into the diagonal part F and the off-diagonal part F ′; G̃= F +F ′
to make the single-site approximation (SSA). Substituting the expression into (B.11)
and expanding T with respect to F ′, we obtain

T = (
1− t̃F ′)−1

t̃ , (B.12)

and t̃ is given by

t̃ = (1− δvF )−1δv =
∑
i

t̃i . (B.13)
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Here t̃i denotes the single-site t matrix on site i, which is given by

t̃i = (1− δviFi)−1δvi, (B.14)

and Fi = G̃ii .
Making the SSA we obtain 〈T 〉 from (B.12) as

〈T 〉 ≈ 〈t̃〉. (B.15)

Substituting (B.15) into (B.10) and making the single-site approximation G̃≈ F in
the denominator, we find the self-energy in the SSA as

Σ =Σ ′ + (
1+ 〈t̃〉F )−1〈t̃〉, (B.16)

or

Σ =Σ ′ +
∑
i

(
1+ 〈t̃i〉Fi

)−1〈t̃i〉. (B.17)

Note that the second term depends on the effective medium Σ ′. When we choose
Σ ′ = 〈v〉 (i.e., the Hartree–Fock value), we call (B.17) the average t-matrix approx-
imation (ATA). The best choice of the effective mediumΣ ′ should be obtained from
the condition:

〈t̃i〉 = 〈(1− δviFi)−1δvi〉 = 0. (B.18)

This is identical with the dynamical CPA equation (3.112). The present method indi-
cates that the medium Σ ′ =Σ is the self-energy of the temperature Green function.

Equation (B.17) is often used to obtain the CPA solution. Assuming that we start
from the Hartree–Fock value Σ ′ = 〈v〉, we calculate the corrections according to
the second term at the r.h.s. of (B.17). If the obtained self-energy Σ(1) does not
agree with Σ ′, we renew as Σ ′ = Σ(1) and repeat the procedure until the self-
consistency Σ =Σ ′ is achieved. Equation (B.17) is identical with (3.97) when iωl
in the frequency representation is replaced by z= ω+ iδ.



Appendix C
Derivation of the Single-Site Spin Fluctuation
Theory from the Dynamical CPA

We verify in this Appendix that the dynamical CPA presented in Sect. 3.4 reduces
to the single-site spin fluctuation theory (SSF) given in Sect. 3.3 in the static limit.

The free energy per atom in the dynamical CPA is given by (3.148) in the static
approximation:

FCPA = F̃ − β−1 ln
∫ √

βU

4π
dξ e−βEi(ξ). (C.1)

The static energy potential Ei(ξ) is given by (3.149).

Ei(ξ)=−β−1
∑
lσ

ln
(
1− δviσ (iωl, ξ)Fiσ (iωl)

)+ 1

4
U
(
ξ2 − ζ 2

i (ξ)
)
. (C.2)

Here δviσ (iωl, ξ) is defined by (3.79), the coherent Green function Fiσ (iωl) is given
by (3.88), and ζi(ξ) by (3.150):

ζi(ξ)= 1

β

∑
lσ

G
(i)
iσ (iωl, ξ). (C.3)

The static Green functionG(i)
iσ (z, ξ) is defined by (3.86);G(i)

iσ (z, ξ)= 1/(Fiσ (z)−1−
δviσ (z, ξ)). The dynamical CPA equation to determine the coherent potential is
given by (3.143):

〈G(i)
iσ (iωl, ξ)〉 = Fiσ (iωl). (C.4)

The CPA equation on the real axis is obtained by direct replacement iωl → z

(= ω+ iδ) as follows.

〈G(i)
iσ (z, ξ)〉 = Fiσ (z). (C.5)

The frequency sums in (C.2) and (C.3) can also be transformed into the integrals on
the real axis of the complex z plane. To prove this we adopt the Lehmann represen-
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tation of the Green function.

G
(i)
iσ (iωl, ξ)=

∫
ρiσ (ω, ξ) dω

iωl −ω . (C.6)

Here ρiσ (ω, ξ) is the single-particle density of states of interacting electrons, and is
given by

ρiσ (ω, ξ)=− 1

π
ImG

(i)
iσ (ω+ iδ, ξ). (C.7)

Substituting (C.6) into (C.3), we find

ζi(ξ)=
∑
σ

∫
dωρiσ (ω, ξ)

1

β

∑
l

eiωlη

iωl −ω . (C.8)

Here we explicitly wrote a convergence factor with an infinitesimal positive num-
ber η. Using the following formula [43] on the Fermi distribution function at the
r.h.s. of (C.8),

f (ω)= 1

eβω + 1
= 1

β

∑
l

eiωlη

iωl −ω, (C.9)

we find the expression with use of the Green function on the real axis.

ζi(ξ)=
∫
dωf (ω)

∑
σ

ρiσ (ω, ξ). (C.10)

Next, we rewrite the energy potential (C.2). In this case, we consider the follow-
ing function.

Φσ = 1

2πi

∫
C

dz
eηz

eβz + 1
ln
(
1− δviσ (z, ξ)Fiσ (z)

)
. (C.11)

Here contour C is given in Fig. C.1. Note that the same contour was used to prove
the formula (C.9) [43]. Counting the residues along the imaginary axis, we find

Φσ =− 1

β

∞∑
l=−∞

eiωlη ln
(
1− δviσ (iωl, ξ)Fiσ (iωl)

)
. (C.12)

Next, we change the contour in (C.11) from C to C′ + Γ1 + Γ2 in Fig. C.1,
assuming that the integrand is analytic except for the real and imaginary axes, and
evaluate the contribution from each path. We find that the contribution from the
paths Γ1 and Γ2 vanishes, and only the contribution from C′ remains, so that we
obtain

Φσ =
∫ ∞

−∞
dω

1

π
Im ln

(
1− δviσ (z, ξ)Fiσ (z)

)
. (C.13)
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Fig. C.1 Contour for
calculation of frequency sums
on the complex plane

Using (C.2), (C.12), and (C.13), we find the expression which is written by the
quantities in the real axis.

Ei(ξ)=
∑
σ

∫ ∞

−∞
dω

1

π
Im ln

(
1− δviσ (z, ξ)Fiσ (z)

)+ 1

4
U
(
ξ2 − ζ 2

i (ξ)
)
. (C.14)

The equations (C.1), (C.14), (C.10), and (C.5) are identical with (3.82), (3.78),
(3.91), and (3.85) in the SSF, so that we have verified that the dynamical CPA in the
static approximation reduces to the SSF.



Appendix D
Expansion of Dνσ with Respect to Dynamical
Potential

The determinant Dνσ in the harmonic approximation is defined by (3.165):

Dνσ = det
[
δlm −

(
ṽσ (ν)δl−m,ν + ṽσ (−ν)δl−m,−ν

)
g̃σ (m)

]
. (D.1)

In this appendix, we derive an alternative expression of the determinant Dνσ which
is expanded with respect to the dynamical potentials ṽσ (±ν), i.e., (3.167).

The determinant Dνσ has the following form.

Q
({bi}{ci})=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 c1 0 · · ·
0 1 0 · · · 0 0 c2 0 · · ·

· · · · · ·
b1 0 0 1 0 0 · · · cν+1 0
0 b2 0 · · · 0 1 0 · · · 0 cν+2 · · ·
0 0 b3 · · · 0 0 1 · · · . . .

· · · · · · · · · 0 0 1 0

· · · . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(D.2)

Application of the Laplace expansion to the first column of Q yields the relation,

Q
({bi}{ci})=Q(N−1) − b1c1Q

(N−2). (D.3)

Here Q(N−1) (Q(N−2)) is the (N − 1)× (N − 1) ((N − 2)× (N − 2)) matrix with
the same structure as Q, assuming that Q is the N ×N matrix. Repeating the same
expansions for Q(N−1) and Q(N−2), we find that Q is the function of {bici}. Thus
we have the relation

Q
({bi}{ci})=Q({bici}{1}). (D.4)
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Thus we can consider Q({bi}{1}) as follows.

Q
({bi}{1})=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 1 0 · · ·
0 1 0 · · · 0 0 1 0 · · ·

· · · · · ·
b1 0 0 1 0 0 · · · 1 0
0 b2 0 · · · 0 1 0 · · · 0 1 · · ·
0 0 b3 · · · 0 0 1 · · · . . .

· · · · · · · · · 0 0 1 0

· · · . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (D.5)

We move the b1 row to the 2nd row, the bν+1 row to the 3rd row, the b2ν+1 row
to the 4th row, and so on. Next, we move the bν+1 column to the 2nd column, the
b2ν+1 column to the 3rd column, the b3ν+1 column to the 4th column, and so on.
We have then

Q
({bi}{1})

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · ·
b1 1 1 0 · · ·
0 bν+1 1 1 0 · · ·
· · · 0 b2ν+1 1 1 0 · · ·

· · · · · ·
0 · · · · · · 0 1 1 0 · · ·
0 · · · · · · 0 b2 1 1 0
0 · · · · · · 0 0 bν+2 1 1 · · ·

0 b2ν+2 0 · · ·
· · · · · ·

· · · . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(D.6)

Thus the determinant Q is given by the products of the sub-determinants
Applying the properties of the determinant Q to Dνσ , we find that Dνσ is written

by the product of tridiagonal matrices as follows.

Dνσ =Dνσ (0)Dνσ (1) · · ·Dνσ (ν − 1), (D.7)

Dνσ (k)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .

1 1 0
a−ν+kσ (ν) 1 1

akσ (ν) 1 1
aν+kσ (ν) 1 1

0 a2ν+kσ (ν)
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (D.8)
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Here Dνσ (k) is the determinant of the tridiagonal matrix consisting of the Green
functions with frequency remainder k for modulus ν, and anσ (ν) is defined by

anσ (ν)= ṽσ (ν)ṽσ (−ν)g̃σ (n− ν)g̃σ (n). (D.9)

Here we used the notation ṽσ (ν)= ṽσ (iων) and g̃σ (n)= g̃σ (iωn), for simplicity.
Note that according to the Laplace expansion theorem Dνσ (k) is expressed by

the determinants of the sub-matrices as

Dνσ (k)=D(0)
νσ (ν, k)D

(0)
νσ (−ν, k)− akσ (ν)D(1)

νσ (ν, k)D
(1)
νσ (−ν, k), (D.10)

D(m)
νσ

(
ν′, k

)=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0
a(m+1)ν′+kσ (ν) 1 1

a(m+2)ν′+kσ (ν) 1 1
a(m+3)ν′+kσ (ν) 1 1

. . .

0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(D.11)

Furthermore the determinant D(m)
νσ (±ν, k) is expanded as follows.

D(m)
νσ (±ν, k)=

∞∑
n=0

(−)n(ṽσ (ν)ṽσ (−ν))nA(m)n±νkσ . (D.12)

Here

A
(m)
0±νkσ ≡ 1, (D.13)

A
(m)
n±νkσ =

∞∑
l1=m+1

l1−2∑
l2=m+1

· · ·
ln−1−2∑
ln=m+1

âl1(±ν)+kσ (ν)âl2(±ν)+kσ (ν) · · · âln(±ν)+kσ (ν),

(D.14)

and

ânσ (ν)= g̃σ (n− ν)g̃σ (n). (D.15)

To prove (D.12), let us consider the determinant of a finite matrix as follows.

D(m,M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0
a(m+1)ν+k 1 1

a(m+2)ν+k 1 1
a(m+3)ν+k 1 1

. . .

0
aMν+k 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (D.16)
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By applying the Laplace expansion, we have the recursion relation as

D(m,M) = D(m,M−1) − aMν+kD(m,,M−2). (D.17)

In the same way, we obtain the following recursion relations in general.

D(m,n) =D(m,n−1) − anν+kD(m,n−2), (D.18)

D(m,m+1) = 1− a(m+1)ν+k, (D.19)

D(m,m) = 1. (D.20)

Now, we start from the following identity.

D(m,M) = 1+
M∑

l1=m+1

(
D(m,l1) −D(m,l1−1)). (D.21)

Substituting (D.18) into (D.21), we obtain

D(m,M) = 1−
M∑

l1=m+1

al1ν+kD(m,l1−2). (D.22)

Repeating the same procedure for D(m,l1−2), we have

D(m,M) = 1−
M∑

l1=m+1

al1ν+k

(
1−

l1−2∑
l2=m+1

al2ν+kD(m,l2−2)

)
, (D.23)

and finally we reach the following expansion.

D(m,M) = 1+
M∑
n=1

(−)n
l1−2∑

l2=m+1

· · ·
ln−1−2∑
ln=m+1

al1ν+k · · ·alnν+k. (D.24)

Substituting an = ṽσ (ν)ṽσ (−ν)g̃σ (n − ν)g̃σ (n) into (D.24) and taking the limit
M→∞, we obtain (D.12).

Substituting (D.12) for m = 0 and 1 into (D.10), we obtain an expression of
Dνσ (k) which is expanded with respect to the dynamical potential as follows.

Dνσ (k)=
∞∑
l=0

1

l!
(
iβṽσ (ν)ṽσ (−ν)

2πν

)l
B(l)νσ (k). (D.25)

Here

B(0)νσ (k)≡ 1, (D.26)
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B(l)νσ (k)= (−)l l!
(

2πν

iβ

)l

×
[
A
(0)
lνkσ +

l−1∑
m=0

(
A
(0)
mνkσA

(0)
l−m−νkσ + âkσA(1)mνkσA(1)l−1−m−νkσ

)]
. (D.27)

From (D.7) and (D.25) we obtain the expansion form of Dνσ as follows.

Dνσ =
∞∑
l=0

1

l!
(
4βṽσ (ν)ṽσ (−ν)

)l( i

8πν

)l
B(l)νσ , (D.28)

B(l)νσ =
∑

∑ν−1
k=0 lk = l

l!
[∏ν−1

k=0 lk!]

[
ν−1∏
k=0

B(lk)νσ (k)

]
. (D.29)

Equation (D.28) is identical with (3.167); the coefficient B(l)νσ is given by (D.29).



Appendix E
Linear Response Theory

We derive in this appendix the linear response formula (4.53) for the time dependent
perturbation [83], which was used in the calculation of the dynamical susceptibility
in Sect. 4.3.

�B(t)=
∫ t

−∞
χBA

(
t − t ′)F (

t ′
)
dt ′. (E.1)

Here F(t) is a time-dependent external force, �B(t) denotes the linear change of a
physical quantity 〈B〉, and χBA(t − t ′) is the linear response function.

Let us consider the ensemble in which each system was in the equilibrium state at
t =−∞ and assume that it develops according to the Hamiltonian H of the system,
neglecting a small perturbation from the outside during the time development. The
average of a physical quantity B̂ is then given by

〈B̂〉 =
∑
α

ρα
〈
Ψα(t)|B̂|Ψα(t)

〉
. (E.2)

Here ρα is the distribution in the equilibrium state at the beginning. The state Ψα(t)
develops according to the Schrödinger equation.

The time-dependent average (E.2) is expressed as

〈B̂〉 = tr
(
ρ(t)B̂

)
. (E.3)

Here ρ(t) is called the density matrix which is defined by

ρ(t)=
∑
α

∣∣Ψα(t)〉ρα 〈Ψα(t)∣∣. (E.4)

The time development of the density matrix operator ρ(t) is obtained from the
Schrödinger equation as follows.

dρ(t)

dt
= 1

i�
[H,ρ]. (E.5)
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320 E Linear Response Theory

Assume now that the system is perturbed by a time-dependent force F(t), whose
interaction is given by

H1(t)=−ÂF (t). (E.6)

Here Â is an operator of a physical quantity and the force F(t) is assumed to be
F(−∞)= 0. Accordingly we assumed that the Hamiltonian H consists of the orig-
inal Hamiltonian H0 and H1(t): H =H0 +H1(t). The density matrix is written by
the distribution in the equilibrium state ρ0 and the deviation �ρ(t) as follows.

ρ(t)= ρ0 +�ρ(t). (E.7)

With use of �ρ(t) the change of physical quantity B̂ is given as

�B(t)≡ 〈B̂〉(t)− 〈B̂〉0 = tr
(
�ρ(t)B̂

)
. (E.8)

Here 〈B̂〉0 denotes the thermal average of B̂ in the equilibrium state which is deter-
mined by the Hamiltonian H0.

The density matrix �ρ(t) is obtained from the equation of motion (E.5). By
making use of the relation [H0, ρ0] = 0 and linearizing the equation of motion with
respect to the perturbation, we obtain

d�ρ(t)

dt
=− 1

i�
[Â, ρ0]F(t)+ 1

i�

[
H0,�ρ(t)

]
. (E.9)

Integrating the above equation from −∞ to t and solving the equation iteratively,
we find that

�ρ(t)=− 1

i�

∫ t

−∞
dt ′ e

1
i�
H0(t−t ′)[Â, ρ0]e− 1

i�
H0(t−t ′)F

(
t ′
)
. (E.10)

Here we used the following formula for any operators S and T .

eST e−S = T + [S,T ] + 1

2!
[
S, [S,T ]]+ · · · . (E.11)

Substituting (E.10) into (E.8), we obtain the linear response formula.

�B(t)=
∫ t

−∞
χBA

(
t − t ′)F (

t ′
)
dt ′. (E.12)

Here the linear response function χBA(t) is given by a time correlation function at
equilibrium state as follows.

χBA(t)= i

�
〈[B̂H(t), Â]〉. (E.13)

Here we have omitted the suffix 0 in the average 〈 〉 for simplicity promising that
the average is taken in the equilibrium state. Accordingly, we have redefined H by
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the Hamiltonian H0 in the equilibrium state. B̂H(t) is the Heisenberg representation
of physical quantity B̂ , i.e., B̂H(t) = exp(iH t/�)B̂ exp(−iH t/�). Equations (E.1)
and (E.13) are identical with (4.53) and (4.54) in Sect. 4.3.



Appendix F
Isothermal Molecular Dynamics and Canonical
Distribution

We adopted in Sect. 6.3 the isothermal molecular dynamics method [106], and
solved the following equations of motion (6.64), (6.65), and (6.66) for a given tem-
perature T :

ξ̇iα = piα

μLM
, (F.1)

ṗiα = −∂Ψ (ξ)
∂ξiα

− ηα · piα, (F.2)

η̇α = 1

Q

(∑
i

p2
iα

μLM
−NT

)
. (F.3)

Here μLM, ξ i , and pi denote the mass, the position vector, and the momentum for
a fictitious particle i, respectively. Ψ (ξ) is the potential energy between particles,
so that −∂Ψ (ξ )/∂ξiα denotes the force acting on the particle i. ηα are the friction
variables, and Q is a constant. Moreover N is the number of particles of the system.

In this Appendix we will prove that the equations of motion (F.1), (F.2), and (F.3)
yield the canonical ensemble whose distribution in the {ξ ,p} space is given by

f (ξ ,p)= Ce−βH(ξ ,p). (F.4)

Here β is the inverse temperature and C is a constant. H(ξ ,p) is the Hamiltonian
for a classical system with the interaction potential Ψ (ξ).

H(ξ ,p)=
∑
i

p2
i

2μLM
+Ψ (ξ). (F.5)

Let us consider the ensemble of the system described by (F.1), (F.2), and (F.3)
and introduce the probability distribution f̃ (ξ ,p,η, t) in the 6N + 3 phase space.
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324 F Isothermal Molecular Dynamics and Canonical Distribution

The latter satisfies the equation of continuity as follows.

∂f̃

∂t
+ ∂

∂ξ
(f̃ ξ̇)+ ∂

∂p
(f̃ ṗ)+ ∂

∂η
(f̃ η̇)= 0. (F.6)

Alternatively,

df̃

dt
=−

(
∂

∂ξ
ξ̇ + ∂

∂p
ṗ+ ∂

∂η
η̇

)
f̃ . (F.7)

Substituting the equations of motion (F.1), (F.2), and (F.3) into (F.7), we find

df̃

dt
=N

(∑
α

ηα

)
f̃ . (F.8)

On the other hand, we consider the extended Hamiltonian defined by

H̃ (ξ ,p,η)=H(ξ ,p)+ 1

2

∑
α

Qη2
α. (F.9)

Taking the derivative of H̃ (ξ ,p,η)with respect to t and making use of the equations
of motion (F.1), (F.2), and (F.3), we obtain

dH̃ (ξ ,p,η)

dt
=−NT

(∑
α

ηα

)
. (F.10)

From (F.8) and (F.10), we find the relation

df̃

dt
=− 1

T

dH̃

dt
f̃ . (F.11)

Solving the equation, we obtain

f̃ (ξ ,p,η)= C̃e−βH̃ (ξ ,p,η). (F.12)

Here β = 1/T and C̃ is a constant. Thus the distribution f (ξ ,p) is given by the
canonical distribution as follows.

f (ξ ,p)=
∫
f̃ (ξ ,p,η) dη= Ce−βH(ξ ,p). (F.13)

The ergodic theorem tells us that the average of a physical quantity A(ξ (t),p(t))
is given by

∫
A(ξ ,p)f (ξ ,p) dξ dp = lim

t0→∞
1

t0

∫ t0

0
A
(
ξ(t),p(t)

)
dt. (F.14)

Thus we can calculate thermal average by taking the time average of the physical
quantity after we solve the equations of motion (F.1), (F.2), and (F.3). In the case of
magnetic moment (6.60), we obtain the thermal average from time average (6.63).



Appendix G
Recursion Method for Electronic Structure
Calculations

The recursion method allows us to calculate the Green function for the tight-binding
Hamiltonian without translational symmetry.

Let us assume that the Hamiltonian is given by

Hij = εiδij + tij (1− δij ). (G.1)

Here εi is the atomic level on site i and tij is the transfer integral between sites i
and j . The Green function Gij (z) (= (G(z))ij ) is defined by

Gij (z)=
[
(z−H)−1]

ij
. (G.2)

Here (H)ij =Hij denotes the Hamiltonian matrix.
Now, we make a unitary transformation of the Hamiltonian matrix H to a tridi-

agonal Hamiltonian matrix H ′.

H ′ =U†HU = (
u†
i Huj

)
. (G.3)

Here U = (uij ) = (u1,u2, . . . ,uN) is a unitary matrix such that U†U = 1 (or

u
†
i uj = δij ). The unitary column vectors {uj } are defined by (uj )i = uij (i =

1, . . . ,N). The Green function G′(z) = [(z − H ′)−1]ij for the Hamiltonian H ′ is
connected with the original Green function matrix G(z) as

u
†
i G(z)uj =G′ij (z). (G.4)

In particular, we have the following relation when i = j = 1 and the unit vector u1
is chosen such that (u1)i = 1 and (u1)m = 0 (m �= i).

Gii(z)=G′ii (z). (G.5)

The Hamiltonian is tridiagonalized by the Lanczos method. There we produce
both the unitary vectors and the tridiagonal matrix elements with use of the recur-
sive relations. We choose the starting vector to be a unit vector, and produce a new
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orthogonal basis set {ui} successively with use of the following relations.

b1u2 = Hu1 − a1u1, (G.6)

bnun+1 = Hun − anun − bn−1un−1. (G.7)

The unit vector un+1 is obtained by normalization of the r.h.s. of (G.6) or (G.7).
The coefficients an and bn are also successively obtained by using the orthogonality
u

†
i uj = δij .

an = u†
nHun, (G.8)

bn = un+1Hun. (G.9)

Note that u
†
l Hu1 = 0 for l > 2, u

†
n−1Hun = b∗n−1, and u

†
l Hun = 0 for l < n− 1

and l > n+ 1; thus the Hamiltonian H ′
ij = u

†
i Huj is tridiagonalized as follows.

H ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1 0 · · · 0
b∗1 a2 b2 0 · · · 0

0 b∗2 a3 b3 0
...

0
. . .

. . .
. . .

... 0 b∗N−2 aN−1 bN−1

0 · · · 0 b∗N−1 aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (G.10)

Choosing u1 so that (u1)i = 1 and (u1)m = 0 (m �= i), we can obtain the di-
agonal Green function Gii(z) via (G.5). The Green function G′ii (z) is expressed by
using Cramer’s formula and Laplace’s expansion as G′ii (z)=D1/D0 = 1/(z−a1−
|b1|2D2/D1). Here D0 = det(z−H ′), D1 is the cofactor of (z−H ′)11, and D2 is
the cofactor of (z−H ′)22 for the submatrix of D1. Repeating the same procedure,
we find that the Green function Gii(z) is given by a continued fraction as follows.

Gii(z)=G′ii (z)=
1

z− a1 − |b1|2

z− a2 − |b2|2

. . .

. . .

. . .− |bn−1|2
z− an − Tn(z)

. (G.11)

Here Tn(z) is a terminator at the n-th order recursion. The square-root terminator
with use of the asymptotic recursion coefficients a∞ and b∞ is usually applied.

Tn ≈ T∞ = 1

2

(
z− a∞ −

√
(z− a∞)2 − 4|b∞|2

)
. (G.12)
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The projected density of states is obtained as

ρi(ω)=− 1

π
ImGii(z). (G.13)

In some cases, we need the off-diagonal Green function Gij (z). In this case
we start from the unit vectors u1± such that (u1±)i = 1/

√
2, (u1±)j = ±1/

√
2,

and (u1±)m = 0 (m �= i, j ). We have then the relation Gij + Gji = u
†
1+Gu1+ −

u
†
1−Gu1−. When we start from the unit vectors v1± such that (v1±)i = 1/

√
2,

(v1±)j = ±i/
√

2, and (v1±)m = 0 (m �= i, j ), we have the relation Gij − Gji =
i(v

†
1−Gv1− − v

†
1+Gv1+). Thus we obtain the off-diagonal Green function as

Gij (z)= 1

2

[
G′11(z)−G′22(z)− i

(
G′33(z)−G′44(z)

)]
. (G.14)

Here G′11(z)= u
†
1+Gu1+, G′22(z)= u

†
1−Gu1−, G′33(z)= v

†
1+Gv1+, and G′44(z)=

v
†
1−Gv1−. These diagonal Green functions are obtained by the recursion method as

presented above.
In the MD calculation, we need to obtain the following off-diagonal Green func-

tions to calculate the magnetic forces (see (6.70) and (6.71)).

∑
σ

(σxG)iLσ iLσ =GiL↑iL↓ +GiL↓iL↑, (G.15)

∑
σ

(σyG)iLσ iLσ = i(GiL↑iL↓ −GiL↓iL↑). (G.16)

To obtain (G.15), we consider the unit vector u1± such that (u1±)iL↑ = 1/
√

2,
(u1±)iL↓ = ±1/

√
2, and (u1±)jL′σ = 0 (j �= i). Then we obtain GiL↑iL↓ +

GiL↓iL↑ = u
†
1+Gu1+ − u

†
1−Gu1−. Each term of the r.h.s. is given by a contin-

ued fraction. In the case of (G.16), we consider the unit vector u1± such that
(u1±)iL↑ = 1/

√
2, (u1±)iL↓ = ±i/

√
2, and (u1±)jL′σ = 0 (j �= i). We then obtain

i(GiL↑iL↓ −GiL↓iL↑)= u
†
1+Gu1+ − u

†
1−Gu1−.



Appendix H
An Integral in the RKKY Interaction

When we calculate the RKKY interaction in the free electron model, we employ the
formula (7.32) for the integral (7.31) in Sect. 7.1. We derive in this appendix the
formula (7.32):

I (R)= iπ

kFR3
(−2kFR cos 2kFR + sin 2kFR). (H.1)

The integral I (R) is defined by

I (R)=
∫ ∞

−∞
dq qF

(
q

2kF

)
eiqR. (H.2)

Here the function F(x) is given by (7.27):

F(x)= 1+ 1− x2

2x
ln

∣∣∣∣1+ x
1− x

∣∣∣∣. (H.3)

Note that F(x) is an even function, F(0)= 2, and F(x)→ 2/3x2 (x→∞).
By integration by parts, we can rewrite the integral (H.2) as follows.

I (R)=− 1

iR

∫ ∞

−∞
dq

d[(q/2kF)F (q/2kF)]
d(q/2kF)

eiqR. (H.4)

Here d[xF(x)]/dx = 2−x ln |1+x|/|1−x|. Making use of the integration by parts
again, we obtain

I (R)= 1

2kFR2

∫ ∞

−∞
dq

(
ln

∣∣∣∣2kF + q
2kF − q

∣∣∣∣+ 4kFq

4k2
F − q2

)
eiqR. (H.5)

The first term at the r.h.s. of (H.5) is expressed by integration by parts as

∫ ∞

−∞
dq ln

∣∣∣∣2kF + q
2kF − q

∣∣∣∣eiqR = 4kFi

R

∫ ∞

−∞
dq

eiqR

4k2
F − q2

. (H.6)
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Fig. H.1 Contour on the
complex plane to calculate
the integrals (H.8) and (H.11)

Thus we obtain

I (R)= 2

iR3

∫ ∞

−∞
dq

eiqR

q2 − 4k2
F

− 2

R2

∫ ∞

−∞
dq

qeiqR

q2 − 4k2
F

. (H.7)

Let us calculate the first term at the r.h.s. of (H.7):

A=
∫ ∞

−∞
dq

eiqR

q2 − 4k2
F

. (H.8)

In order to calculate the integral A, we consider the following integral along the
contour on the complex plane as shown in Fig. H.1, which vanishes according to the
Cauchy theorem.

A+
∫
C1+C2+C3

dq
eiqR

q2 − 4k2
F

= 0. (H.9)

Here the integral alongC1 (C2) is obtained as (iπ/4kF) exp(−i2kFR) ((−iπ/4kF)×
exp(−i2kFR)). The integral along C3 is proven to vanish. Thus we obtain

A=−π sin 2kFR

2kF
. (H.10)

In the same way, we obtain

∫ ∞

−∞
dq

qeiqR

q2 − 4k2
F

= iπ cos 2kFR. (H.11)

From (H.7), (H.10), and (H.11), we obtain

I (R)= iπ

kFR3
(−2kFR cos 2kFR + sin 2kFR), (H.12)

which is identical with (H.1), i.e., (7.32) in Sect. 7.1.
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Susceptibility, 11, 66
Symmetry operations, 170

T
Tb, 26
TB-LMTO, 106, 257
Temperature Green function, 71, 95
Terminator, 244, 326
Ternary alloys, 251
Thermal spin fluctuations, 93
Ti, 35
Tight-binding linear muffin-tin orbital

(TB-LMTO), 54, 106, 159
Tight-binding LMTO, 163
Tight-binding LMTO supercell method, 289
Time reversal symmetry, 170
Time-dependent coherent potential, 95
Time-dependent Green function, 96
Time-dependent Hamiltonian, 70
Time-dependent magnetic moment, 166
Time-dependent potential, 70
Time-ordered product, 69
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Tm, 29
Total angular momentum, 9
Transition metal metalloid, 295
Transverse dynamical susceptibility, 127
Transverse SG order parameter, 272
Transverse spin freezing temperature, 274
Tridiagonal matrices, 314
Triple Q MSDW, 174
Triple Q multiple SDW, 27
Triplet, 38, 194
Triplet states, 195
Two-band model, 182

U
U, 201
Unenhanced susceptibility, 160
Uniform susceptibility, 139

V
V, 60

Variational approach, 104
Very weak ferromagnetism, 65
Virtual bound state, 205, 210, 240
Voronoi polyhedra, 23

W
Weak ferromagnetism, 32
Weiss-field function, 98
Wigner–Seitz cells, 23

X
Xα potential, 48

Z
Zeeman interaction, 4
Zero-band-width model, 193
ZrZn2, 135, 147
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