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Preface

This work was accepted as a PhD thesis by the Faculty of Mathematics
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In particular researchers and engineers who work in the field of biomedical
engineering might profit from reading this text. A new approach of image
encoding in magnetic resonance imaging is described: The fundamental
principle of gradient linearity is challenged by investigating the possibilities
of acquiring anatomical images with the help of nonlinear gradient fields.
Besides a thorough theoretical analysis with a focus on signal encoding and
image reconstruction, initial hardware implementations are tested using
phantom as well as in-vivo measurements. Several applications are pre-
sented that give an impression about the implications that this technological
advancement may have for future medical diagnostics.

Without the help of a great number of people, it would not have been
possible to accomplish this piece of work.

Prof. Dr. Jürgen Hennig has given me the opportunity to become part of
the amazing Medical Physics Group in Freiburg. It was his idea to combine
parallel reception with nonlinear encoding fields, and I feel very fortunate
that I could base my thesis on this intriguing and inspiring idea. He has
given guidance and gave me abundant freedom to follow my own research
interests, which he has always supported and promoted. Creativity at work
and a vivid social life, most of what I have learned about science and many
of the new friendships that I have found I owe to this unique working
atmosphere. Thank you.

I deeply thank Dr. Maxim Zaitsev for his extensive support. I was very lucky
to have him as teacher and advisor; he has contributed to this thesis with
uncountable ideas and he has invested many hours in closely reviewing
abstracts, papers and this dissertation, thereby helping me to get more
and more familiar with scientific working. It is amazing how hard it is to
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confront him with problems he wouldn’t understand; even harder to see
him say “no!”, no matter how many emails are waiting to be answered...

It was a pleasure working on a team project together with Anna Masako
Welz, Hans Weber, Chris Cocosco, Dr. Daniel Gallichan, Dr. Walter Witschey,
Sebastian Littin and lately also Dr. Feng Jia. I could fill pages here, but
I force myself to be brief. We have achieved a lot together. It has been
fantastic with you guys!

I could also always rely on the support of my other colleagues, be it on
scientific, work-related or personal issues. Jakob Assländer, Sébastien Bär,
Dr. Simon Bauer, Stefanie Buchenau, Dr. Martin Büchert, Dr. Peter Gall,
Daniel Giese, Dr. Martin Haas, Dr. Matthias Honal, Dr. Jan-Bernd Hövener,
Dr. Thimo Hugger, Dr. Valerij Kiselev, Dr. Thomas Lange, Dr. Julian Ma-
claren, Matthias Pfefferle, Dr. Wilfried Reichardt, Dr. Marco Reisert, Cris
Lovell-Smith, Dr. Felix Staehle, Dr. Aurélien Stalder, Frederik Testud, Dr.
Matthias Weigel, Ara Yeramian, Dr. Benjamin Zahneisen, and many others.
You have made my PhD a great time. Especially I wish to mention Dr. Nico
Splitthoff with whom I have shared offices for more than four years; I had
never thought that late-night (or rather early-morning) ISMRM conference
deadlines can be so much fun!

Commitment to the PatLoc project of many people from partners in industry
and academia was also essential for this thesis. I highly acknowledge the
work of Heinrich Lehr, Stéphanie Ohrel, Dr. Hans Post, Johannes Schneider
and Dr. Peter Ullmann from Bruker BioSpin GmbH, and the on- and off-site
assistance provided by Dr. Andrew Dewdney from Siemens Healthcare with
support from Dr. Franz Schmitt. It has been very interesting to perform com-
mon PatLoc projects with Dr. Zhenyu Liu and Prof. Dr. Jan G. Korvink from
the Department of Microsystems Engineering at the University of Freiburg,
with Prof. Dr. Oliver Speck from the University of Magdeburg, with Fa-
Hsuan Lin, PhD, from the Massachusetts General Hospital in Boston, USA,
and with Dr. Florian Knoll and co-workers from the University of Graz,
Austria. It has also been an honor to welcome guests who perform research
on nonlinear encoding at the cutting edge, like Kelvin Layton from the
University of Melbourne, Australia, and Jason Stockmann, PhD, from Yale
University, USA.

Also the financial support of the Wissenschaftliche Gesellschaft Freiburg to
cover publishing costs is greatly acknowledged.
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Introduction

“ANY sufficiently advanced technology is indistinguishable from magic.”
The British writer Arthur C. Clarke, famous for his science-fiction

novel 2001: A Space Odyssey, formulated his “third law” in 1973 [23], the
very same year Paul Lauterbur published the first image [92] acquired with
a technology which later has come to be known as magnetic resonance imaging
(MRI, Fig. 1a). This technology allows physicians to literally see what is
going on inside the human body - and this in a completely non-invasive
way.

Figure 1: Medical imaging: a look inside. (a) The very first MR image. (b) X-ray
of von Kölliker’s hand, acquired 1896 by Wilhelm Conrad Röntgen. (c) Typical
anatomical MR image acquired on a modern system.

MRI is not the first non-invasive medical imaging technology. Already in the
late 19th century, X-rays were discovered and it definitely must have been a
magical moment for the audience when Wilhelm Conrad Röntgen presented
an X-ray image of Albert von Kölliker’s hand on January 23rd, 1896, in a
public lecture (Fig. 1b taken from [202]). Compared to plain X-rays and
computed tomography, MRI does not involve high-energy radiation and it
is much more versatile, offering a range of different contrasts and diagnostic
applications that can hardly be catalogued nowadays. If anyone would
have shown a typical state-of-the-art MR image with all its fine anatomical
details (Fig. 1c) to Arthur C. Clarke, he (and probably also Paul Lauterbur)
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would have called this image to be magical. The author Clarke might have
used this image right away in some of his novels. On the other hand, the
scientist Lauterbur would have had to face yet another huge challenge.
In fact, there is a decisive difference between science-fiction and objective
science: The collective work of hundreds, even thousands of scientists and
engineers was required to be able to routinely acquire images like the one
shown in Fig. 1c. The novelist can describe a phenomenon and call it magic,
the scientist, however has to explain this phenomenon. To the scientist,
the third law therefore comes along rather prosaic: “A scientist should be
able to understand any technology.” Nevertheless, most MRI scientists will
probably confirm that even though we (sometimes) understand nowadays
how an image like the one shown in the above figure is formed, the effect
still has not lost its magical aura.

What about the two first laws of Arthur C. Clarke? The author formulated
them in this way:

1. When a distinguished but elderly scientist states that something is
possible, he is almost certainly right. When he states that something
is impossible, he is very probably wrong.

2. The only way of discovering the limits of the possible is to venture a
little way past them into the impossible.

There is much truth in these laws also for non-fictitious science. It is un-
disputed that each researcher bases his insight on knowledge gained by,
maybe not elderly, but often elder and more experienced scientists. As the
history of science has shown even the brightest minds can be mistaken,
and declare something that is in fact possible to be impossible; but to quote
Albert Einstein: “Only the one who does not question is safe from making
a mistake”. Also, science and technology would not have evolved as they
have if no one would have questioned established concepts, if no one would
have ventured a little way past what had already been discovered before.

Milestones of Magnetic Resonance Imaging MRI is based on a physical
phenomenon which seemed impossible at first: the observation that an
atomic nucleus has an intrinsic magnetic moment, caused by the nuclear
spin. Gerlach and Stern observed in 1922 an unusual line spreading which
could not be explained with the classical physical theory [45]. Several bril-
liant scientists, among them Wolfgang Pauli, dared to think the impossible
and elaborated, starting in the 1920s, the quantum theory, which could



Introduction 3

consistently describe the observed effect. More than one decade later, in
1938, Isidor I. Rabi designed an experiment for the precise measurement of
nuclear magnetic moments by applying a transverse radio frequency (RF)
field at the Larmor frequency, thereby discovering the nuclear magnetic res-
onance (NMR) phenomenon [140]. In 1946, Edward Purcell [137] and Felix
Bloch [11] independently detected an NMR signal from bulk matter. Only a
few years later the first commercial NMR spectrometers were available and
could be used with success to analyze chemical compositions of fluids and
solids.

The birth of MRI finally came in 1973, when Paul Lauterbur [92] and Peter
Mansfield [108] realized independently that additional gradient fields can
encode information about the location of the signal sources. In the follow-
ing years, significant improvements in hardware design were made and a
prolific research activity started - which is still growing nowadays - in con-
trolling the hardware components to enhance the efficiency and variety of
methods for the extraction of diagnostic information. An excellent example
is the fast RARE (turbo spin echo) sequence developed by Jürgen Hennig
and co-workers in 1986 [60]. About the mid-1980s, MRI technology had
advanced to a point where scanners became routinely available for medical
diagnostics.

A further important technological improvement came with the realization
of parallel imaging (PI) in the 1990s, especially by Peter B. Roemer [145],
Dan Sodickson [173] and Klaas Prüssmann [135]. Originally, scanners had
been equipped with only one RF coil for the reception of MR signals. It was
later realized that MR signals from receiver coils with non-homogeneous
sensitivity bear encoding information supplementary to the information
obtained from gradient encoding. Instead of using only one volume coil,
several smaller surface coils are placed close to the measured object in PI.
The advantage of this technique is that the additional information provided
by the several coils is recorded in parallel in contrast to the time-intensive
sequential gradient encoding. Since the advent of PI, major research activity
has been conducted - and is being conducted - in evaluating how this
additional information can be exploited to improve image acquisitions.
Important benefits are the increase of the signal-to-noise ratio (SNR) and
especially the acceleration of image acquisitions by reducing the amount of
gradient encoding steps while retaining full image resolution.
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PatLoc1 At the time the PatLoc project started, PI had an influence on the
gradient encoding schemes, but not on the gradient hardware itself.2 Gra-
dient coils are usually designed to produce linear spatial encoding magnetic
fields (SEMs). Benefits of strongly curvilinear SEMs or even SEMs with loca-
tions of vanishing field gradients inside the imaging region had occasionally
been discussed before [193, 110, 208, 131]; however, no general approach
had been presented up to that point which had tackled the question if the
advent of PI would allow gradient systems to be more effective under cer-
tain circumstances if designed to generate such nonlinear and non-bijective
SEMs (NB-SEMs3) instead of linear SEMs.

The PatLoc project, part of the larger INUMAC4 project, was intended to fill
this gap. PI offered the possibility to compensate for encoding deficiencies
introduced by ambiguous SEMs. Initial investigations suggested already
interesting implications to MRI [62], [[61]]5. The non-rectilinear geometry
of the NB-SEMs seemed to be better adapted to the anatomical structures,
for example, cortical imaging would profit from such geometries.

Another interesting property was hypothesized: NB-SEMs should reduce
the problem of peripheral nerve stimulation (PNS). Typically, PNS mani-
fests as an involuntary muscle twitching and is therefore displeasing for the
patient. In extreme cases, stimulation with gradients can even be dangerous,
when heart muscle fibers are stimulated. PNS is caused by the time-varying
magnetic fields generated by the gradient coils. NB-SEMs offer the possi-
bility to reduce the magnetic field variations while preserving high local
gradients, thus reducing the problem of PNS. These hypotheses were very
promising and it could be expected that research with NB-SEMs would
open new perspectives to MRI which made PatLoc a very exciting project.

When I entered the PatLoc project in spring 2007, it had just been started a
couple of months earlier with Prof. Dr. Jürgen Hennig as project initiator,

1Acronym for Parallel Imaging Technique using Localized Gradients.
2There are only rare exceptions like the publication of Dennis L. Parker and J. Rock Hadley

[126]. In this publication, applications for a novel type of gradient hardware are analyzed. The
hardware generates non-bijective encoding fields; the field geometry is, however, very special:
Modifications occur only along one spatial dimension with alternating, quasi-linear regions. A
general investigation of MRI with non-bijective encoding fields is not presented.

3In this thesis, the acronym NB-SEM is used in opposition to the term linear SEM. In a
broad sense, it denotes any magnetic gradient field which intentionally deviates from linearity
in order to achieve a certain encoding effect.

4Acronym for Imaging of Neuro Disease Using high field MR And Contrastophores.
5Double brackets, [[·]], indicate own (co-)authorship throughout this thesis.



Introduction 5

Dr. Maxim Zaitsev as project leader and one other PhD student, Anna
Masako Welz working on the project. The timing was perfect because little
had been explored up to that point, and much was to be discovered in this
exciting research field of using strongly curvilinear SEMs in MRI.

Concerning the Research Carried Out During the Course of This Thesis
Retrospectively, Arthur Clarke’s three laws might have served as a guideline
for my PhD research. For the situation of a PhD student, it appears not
unreasonable that the following three rules can be inferred from Clarke’s
laws:

1. A PhD student should learn from his colleagues, but, most impor-
tantly, learn to pave his own way.

2. A PhD thesis should cover unexplored material.
3. A PhD thesis should be written to be understandable by a scientist.6

At the beginning of the project, we had to solve the most urgent problems of
designing a first PatLoc prototype coil and performing initial experiments.
This first period was basically shared work, where I focused more on theo-
retical issues and Anna Masako Welz more on the technical problems. We
decided on building a coil with two orthogonal quadrupolar SEMs, fields
which are flat at the center and steep at the periphery. From my rather
theoretical point-of-view, those fields seemed to be the natural generaliza-
tion to the linear SEMs. But also from the technical point-of-view, those
fields seemed useful because they provided more encoding efficiency at
the periphery where the fields have steep gradients. Encoding with such
quadrupolar fields is ambiguous, but Prof. Dr. Jürgen Hennig anticipated
that the additional information obtained from several RF-receiver coils
should be sufficient to resolve these ambiguities. And indeed, it turned
out that a reconstruction algorithm could be developed which was capable
of resolving these ambiguities under realistic imaging conditions. In 2008,
we had finished a first prototype coil with support from Dr. Zhenyu Liu,
Dr. Feng Jia and Prof. Dr. Jan G. Korvink from the Department of Microsys-
tems Engineering at the University of Freiburg and in collaboration with
Bruker BioSpin GmbH in Ettlingen, Germany, where Dr. Peter Ullmann,
Heinrich Lehr, Stéphanie Ohrel and Dr. Hans Post were involved and in

6Follows from the third law in its form adapted here to the situation of real science: “A
scientist should be able to understand any technology”.
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collaboration with Siemens Healthcare, Erlangen, Germany. We successfully
performed the first experiments in the first half of 2008.

The initial experiments were promising; the next steps were even more
ambitious. It would have been a long way for our small team to bring the
project to the next level alone and therefore I am grateful that more peo-
ple entered the project: Hans Weber, Dr. Daniel Gallichan, Chris Cocosco,
Dr. Walter Witschey and recently also Sebastian Littin. The increased team
size allowed us to divide the work more clearly between us without giving
up close collaboration. One sub-group was concerned with the develop-
ment of a powerful PatLoc coil for multi-channel in vivo brain imaging.
Others aimed at developing innovative imaging sequences. Another long-
term goal was the development of medical applications for PatLoc imaging.
We decided that I should extend my initial, more theoretically-oriented,
studies and focus primarily on the elaboration of adequate image recon-
struction techniques. This focus allowed me not only to pave my own way
in research and be in line with the above second rule that “a PhD thesis
should cover unexplored material,” but also to have a distinctive portion of
purely individual work inside this collective project.

The initial image reconstruction seemed to work well; however, further
insight had to be gained for the elaboration of a first ambitious high-quality
publication. The reconstruction was very fast, but it was restricted to one
specific imaging situation. It turned out that an iterative reconstruction
method applicable to a broad range of imaging situations could be imple-
mented. Such a method is, however, very slow and therefore we decided
that algorithms should be developed tailored to other, more or less specific,
imaging situations. The most important of those methods are discussed in
this thesis. Especially when the PatLoc head insert, designed for human
brain imaging, was available during the course of 2009 on, these methods
could be tested on data generated with a powerful SEM system. An impor-
tant date marked May 2010 when the Ethics Committee of the University
of Freiburg approved measurements on human volunteers for Cartesian
trajectories. With this approval, we could finally start to perform imaging
in vivo. The data allowed us to evaluate the performance of the system and
we could start developing new applications for medical imaging. A lot has
been achieved so far, but there is much work to be done in the future to
further explore the capabilities of NB-SEMs.
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Concerning This Dissertation The third rule, stating that “a PhD thesis
should be written to be understandable by a scientist,” immediately con-
cerns this text and I hope to have succeeded in adequately conveying the
most relevant information of the performed work. At first, this seemed to
be a difficult task because I had worked on a multitude of projects myself
and contributed work to other projects. Apart from recent and/or less
significant work, contributions from my part were published (or are to be
published) in scientific journals [[61, 156, 158, 42, 207, 101, 43, 86, 189]], in
conference proceedings, mainly at ISMRM, [[155, 159, 199, 105, 161, 162, 100,
213, 121, 160, 157, 44, 24, 190, 102, 154, 153, 191, 103, 25, 205, 206]] and in
patent applications. Two patents have been granted already [[63, 192]]. Two
more patent applications with co-inventorship contribution are currently
under review at the European Patent Office. At second sight, I realized that
not all, but most of these contributions could be considered in this thesis
while maintaining unity of presentation without giving the impression of
concatenating unrelated individual projects.

In this thesis, fundamental implications that the usage of NB-SEMs might
have on MRI are presented with a special emphasis on adequate image
reconstruction methods. While planning the present text, it was particularly
important to me to present my own contributions not isolated from state-of-
the-art MRI, but to link this work to what has been known before. It seemed
obvious to me how the linking should be performed. PatLoc imaging uses
PI hardware, but the restrictions of the conventional gradient hardware are
relaxed to NB-SEMs. In this regard, PatLoc imaging generalizes conven-
tional parallel imaging. Therefore, I tried to identify a theoretical formalism
which was capable of explaining the most important state-of-the-art image
reconstruction methods for conventional PI, while being abstract enough to
be useful for PatLoc imaging.

Fortunately, a similar situation had occurred before because PI effectively
generalizes standard single-coil imaging. Klaas Prüssmann presented in
his seminal SENSE publication [135] a mathematically reliable image recon-
struction framework abstract enough to be in principle applicable also to
PatLoc imaging. In this thesis, this framework is extended to non-rectilinear
reconstruction grids to be able to derive particular reconstructions for Pat-
Loc. The relation of conventional imaging, PatLoc and the reconstruction
framework is depicted in Fig. 2. The framework effectively describes image
reconstruction as a simple matrix-vector multiplication and is therefore
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Figure 2: Hierarchy of imaging modalities and reconstruction framework. Whereas
parallel imaging generalizes single-coil imaging, PatLoc imaging can be interpreted
as a generalization of state-of-the-art parallel imaging because it also makes use of
several receiver coils, but the encoding fields are not required to have linear spatial
variations. The reconstruction theory used in this thesis is abstract enough to be
applicable to all of these imaging modalities.

the basis for direct linear reconstruction methods. This matrix approach
is closely linked to existing iterative reconstruction methods and it is also
linked to methods which incorporate prior knowledge. I therefore believe
that the matrix method concerns a fundamental approach to MR image
reconstruction, and consequently this thesis is based on this framework as
far as possible.

The presentation of this dissertation benefits from this abstract approach
because, having a common background, the different reconstruction meth-
ods do not have to be presented independently from each other. There
are basically only four fundamental equations in this thesis. These are the
signal equation (Eq. 4.9) from which the encoding matrix is derived (Eq.
4.18). The reconstruction matrix is then found with the help of Eq. 4.20,
basically by inverting the encoding matrix, and the image is reconstructed
by evaluating the matrix-vector multiplication of the reconstruction matrix
with the signal data (Eq. 4.16).

The main problem of image reconstruction is that the encoding matrix is
very large and direct inversion is only feasible for very special situations.
It is therefore important to analyze the structure of the encoding matrix
in detail for each imaging situation. If inversion is not practical it can be
beneficial to use iterative methods instead based on the insight gained from
the performed matrix analysis. The same matrix approach was used to
present reconstruction methods for PatLoc as well as for state-of-the-art
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methods. Strict adherence to this matrix approach might be unusual and
it partly involves mathematical technicalities. I believe, however, that
the attempt to link all presented methods to one common principle is
worthwhile because it adds clarity to the overall presentation and it might
help to better understand the implications that the generalization of linear
SEMs to NB-SEMs has to MRI.

Brief Outline The thesis is conceptually divided into two main parts. The
first part presents conventional state-of-the-art MRI where linear SEMs are
employed (chapters 1 and 2). The second part from chapter 3 on deals with
PatLoc imaging and the usage of NB-SEMs.

Chapter 1: Physical and Technical Background The purpose of the first
chapter is to derive the fundamental signal equation in conventional imag-
ing (Eq. 1.31) from the ground up. The derivation reveals basic physical
and technical concepts relevant to this work.

Chapter 2: Basics of MR Image Reconstruction The basics of linear image
reconstruction are presented using a matrix approach and the most common
reconstruction methods are introduced from single-coil acquisitions as well
as from multi-coil acquisitions.

Chapter 3: Overview of PatLoc Imaging and Presentation of Initial Hard-
ware Designs The concept of PatLoc imaging is introduced, some of the
expected benefits are discussed, and the hardware measurement environ-
ment is presented.

Chapter 4: Signal Models and Basics of Image Reconstruction in PatLoc
Imaging The PatLoc signal model (Eq. 4.9) is derived, in parallel to chapter
1, and the basics of image reconstruction in PatLoc imaging are presented.
This chapter provides principles that are common to the individual methods
that are discussed in chapters 5, 6 and 7.

Chapter 5: Direct Reconstruction for Cartesian PatLoc Imaging Image
space and k-space image reconstruction for a two-dimensional Cartesian
PatLoc k-space trajectory is presented in this chapter. Conceptually, the
image space reconstruction method is probably the most fundamental recon-
struction in PatLoc imaging. Therefore, this method and its consequences
are analyzed in thorough detail.
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Chapter 6: Direct Reconstruction for Radial PatLoc Imaging The topic
in this chapter is a non-Cartesian radial PatLoc trajectory. Its properties are
analyzed and efficient direct image reconstruction methods are presented.

Chapter 7: Iterative Reconstruction in PatLoc Imaging In this chapter,
several iterative image reconstruction methods are developed and analyzed
with the Cartesian and the radial trajectories of the two previous chapters
as well as with a more complex multi-dimensional imaging trajectory.

Chapter 8: Summary and Outlook The final chapter summarizes the main
results of the thesis, some conclusions are drawn and open problems are
addressed that need to be solved in the future.

Appendix Besides remarks on notation and abbreviations, some supple-
mentary material is given, in particular proofs whose results are of particular
interest to this thesis.

Common Knowledge, Team Contributions and Own Contributions Al-
most all contents of Chapter 1 are common knowledge. The image recon-
struction methods that are introduced in Chapter 2 are also well-known; a
significant contribution of this thesis is the attempt to use a unified matrix
approach as a point of reference for all methods, thereby establishing inter-
esting connections between them. The second part of the thesis (chapters 3
to 7), where PatLoc imaging and reconstruction is described, entirely forms
original scientific work, including the appendix (except for section A.2).
PatLoc is a team-oriented project and therefore it is impossible to completely
isolate individual contributions. Chapter 3 serves as introduction to PatLoc
imaging with work presented also performed by other group members.
This is different for the subsequent chapters, which only have little overlap
with others’ work. The individual contributions are acknowledged in detail
at the location of occurrence.



Chapter 1

Physical and Technical Background

THE fundamental physical phenomenon of magnetic resonance is the
existence of nuclear spin. With each spin a magnetic moment is asso-

ciated making it sensitive to its magnetic environment. In MR(I) a very
large ensemble of spins exists. Therefore quantum statistics describes well
the behavior of the macroscopic quantities. Whereas the local magnetic
interactions are responsible for the large amount of available diagnostic
information, it is the external fields which allow one to retrieve this infor-
mation and make it observable for the diagnosing physician in modern
medical examinations.

This dissertation is based on the development of an external hardware
component and therefore the focus of this thesis are interactions with the
external magnetic fields and local interactions are ignored unless neces-
sary to understand the discussed imaging behavior. To this end, the spin
ensemble is mostly treated as non-interacting. Based on this assumption,
the basic equation of motion for the magnetization vector in an external
magnetic field is derived. This equation is purely classical and therefore the
further physical treatment can be performed with classical electromagnetic
theory. To produce image contrast, relaxation effects are exploited, which
are the result of spins interacting with their magnetic neighborhood. At
some places in this thesis, these effects are considered by extending the
equation of motion for the magnetization to the famous Bloch equations.

MRI signals are created by first magnetizing the object under examination
with a constant, strong magnetic field, then perturbing the equilibrium
magnetization with a transverse RF field before encoding the object with
magnetic gradient fields and finally receiving the signal with RF-receiver
coils. The frequency and phase content of the received signals strongly
depends on the geometric and temporal characteristics of the magnetic
fields involved. This implies that a very high standard of coil design and
electronic integration is required for high-quality spectra or images in MR(I),
one reason among others, which make MR(I) an extremely powerful, but
also challenging technology.

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5_1, © Springer Fachmedien Wiesbaden 2013



12 Chapter 1. Physical and Technical Background

The basic physical principles of MR(I) are well understood. Far from being
complete, only the most important results are reviewed here. For a detailed
physical treatment of the magnetic resonance phenomenon consult [95].
Similarly, only the basic technical features of those hardware components
are presented, which are used to generate the required external magnetic
fields. A thorough description of the technical realization of an MR scanner
is presented in chapter 15.1 of [123], page 540 - 598. Considering that
within the PatLoc project a different kind of encoding hardware has been
developed, special emphasis is placed on the gradient system and its main
purpose: signal localization. In PatLoc, signal localization with a modified
gradient hardware is not sufficient in general and should therefore be
accompanied with parallel image acquisition; this topic is therefore also
touched at the end of this chapter.

1.1 Nuclear Magnetic Resonance

In this section, the physical principles of MR are presented and the basic
NMR experiment, fundamental to MR spectroscopy and MR imaging, is
analyzed involving

• magnetization of the object under examination with the main magnet,
• excitation of the magnetization with an RF-transmit pulse and
• signal reception with the RF-receiver unit.

1.1.1 Physical Principles

The physics of MR is based on the physics of the nuclear spin. The spin is
a non-classical property and therefore quantum mechanics is the correct
framework for describing its dynamics. The basic observation is that a
spin can be regarded as an intrinsic angular momentum of the nucleus. A
nucleus consists of charged particles and therefore with the spin a mag-
netic moment μ̂1 is associated, which points along the direction of the spin
angular momentum Ŝ:

μ̂ = γŜ. (1.1)

1The hat indicates quantum mechanical operators.
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The proportionality constant γ is termed gyromagnetic ratio. This ratio is
different for each nucleus. For the most important nucleus in MR, hydrogen,
with spin 1/2, it has the value γ = 267.52 106 rad/Ts, also denoted as γ- =

γ/(2π) = 42.58MHz/T.

Having a magnetic moment, the spin interacts with the magnetic field �B at
its location. The interaction energy is described by the Hamiltonian:

Ĥ = −μ̂ �B. (1.2)

In the NMR experiment, a macroscopic voltage is measured in the receiver
chain. The voltage is induced by the magnetization of the measured ob-
ject, which can itself be regarded as a macroscopic (spatially-dependent)
property. Quantum statistics can be used to bridge the gap between micro-
scopic quantum theory and macroscopic measurements. In NMR, quantum
statistics gives very accurate results because the (local) sample sizes involve
around 1022 spins.

These large spin ensembles exhibit a macroscopic magnetization under the
influence of external magnetic fields. But what is the exact effect of those
fields onto the magnetization?

To answer this question, a non-interacting spin ensemble is assumed, which
is a very good assumption within the scope of this thesis. The relevant
findings can be deduced based on the density operator formalism. The
density operator is defined as σ̂ := |ψ〉 〈ψ|, where the overbar indicates
averaging over all independent sample quantum states.

The (macroscopic) magnetization density �M at location �x and time t is then
found by calculating

�M(�x, t) = n(�x)· < μ̂ >= n(�x) · Tr {σ̂(�x, t)μ̂} , (1.3)

where n(�x) is the spin density. The dynamics of the magnetization is there-
fore entirely defined by the dynamics of the density operator. The time
evolution of this operator is described by the von Neumann equation:

dσ̂

dt
= − i

�
[Ĥ, σ̂]. (1.4)
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In this equation, � denotes the reduced Planck constant, which has a value
of 1.05× 10−34 Js. The time derivative of the individual components of the
magnetization is found by combining Eqs. 1.2 - 1.4:

Ṁi

n
=

d

dt
T r {σ̂μ̂i} = − i

�
Tr

{
[Ĥ, σ̂]μ̂i

}
= +

i

�

∑
j

Tr {σ̂[μ̂i, μ̂j ]Bj}.

According to Eq. 1.1, the commutator relations of the magnetization opera-
tor follow the common relations of the spin angular momenta:

[μ̂i, μ̂j ] = γ2[Ŝi, Ŝj ] = i�γ2
∑
k

εijkŜk = i�γ
∑
k

εijkμ̂k,

where εijk is the Levi-Civita symbol. The time derivative of Mi is therefore
found to be:

Ṁi = −n
∑
j,k

εijkTr {σ̂μ̂k} (γBj) = −
∑
j,k

εijkMk(γBj) = ( �M × (γ �B))i,

and the dynamics of the magnetization vector is described with a simple
equation:

�̇M = �M × (γ �B). (1.5)

This equation is the macroscopic equation of motion of the magnetization
vector. This equation is also known from classical physics. Most results
in this thesis are based on this classical equation, and therefore mostly a
quantum mechanical treatment can be omitted and established techniques
from classical electrodynamics are employed instead.

1.1.2 Main Magnetic Field

Starting from an initial state, the equation of motion presented in Eq. 1.5
can be integrated for known magnetic fields. However, the initial state
requires at least some magnetization. The most important purpose of the
main magnetic field B0�ez is to polarize the object under examination.
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Figure 1.1: This MR scanner (MAGNETOM Trio, A Tim System 3T, Siemens Health-
care, Erlangen, Germany) was equipped with a PatLoc insert coil while this thesis
was conducted. The scanner is shown during delivery to the site of installation.
Visible from outside is the vacuum chamber that contains the main magnet, the
largest component of the scanner.

a) Main Magnet

The magnetic field is generated with the large main magnet (cf. Fig. 1.1).
The field strength determines the precession frequencies of the magneti-
zation. A major engineering criterion is spatio-temporal homogeneity of
the precession frequencies. Therefore, the magnet design is based on a su-
perconducting solenoid which generates very homogeneous fields with an
accuracy of around 0.1− 10ppm in the typical imaging region. Typical field
strengths for imaging patients range from 0.2T− 3T. An 11.75T system
(Iseult/INUMAC project) is planned to be delivered in April 2013 to the
Neurospin site in Saclay, France [187]. It will be largest and strongest whole-
body system ever built. Experimental or pre-clinical scanners often have
even stronger fields of up to 20T. One advantage of such strong systems
is an increase in SNR. Most clinical magnets are shielded with a second
superconducting coil. The shield reduces efficiency in favor of enhanced
patient safety and siting costs resulting from fast decaying magnetic fields
outside of the examination area.

b) Polarization

With the main magnet, the measured object is polarized. But how does
the generated constant magnetic field B0�ez actually create the nuclear mag-
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netization in the sample? In order to find a reliable value of the initial
magnetization methods from quantum statistics should be used. The ini-
tial magnetization is established in the thermodynamic equilibrium. In
this equilibrated state, the off-diagonal elements (coherences) of the den-
sity operator are zero. The diagonal elements (populations) are weighted
according to their corresponding Boltzmann factors:

σeq
mm =

1

Z
exp(−E(m)/kBT). (1.6)

The value Z =
∑

m exp(−E(m)/kBT ) represents the canonical partition
function, kB is the Boltzmann constant with value kB = 1.38× 10−23JK−1,
T is the temperature and E(m) is the energy of the corresponding Zee-
man quantum state. For a constant field B0�ez the energy levels E(m) are,
according to Eqs. 1.1, 1.2, given by:

E(m) = m�γB0,

where m is the quantum number of the z-angular momentum Ŝz . In NMR,
the Boltzmann factor B = �γB0/kBT is typically only about 10−5. Therefore,
the exponentials in Eq. 1.6 can be simplified using a Taylor series expansion
and for a spin 1/2 system with only two Zeeman states (m = ±1/2) the
equilibrium density operator reduces to:

σ̂eq =

(
1
2 + 1

4B 0

0 1
2 − 1

4B

)
.

The initial magnetization �Meq is then found with the relations presented in
Eqs. 1.1, 1.3:

Meq
x = Meq

y = 0,

Meq
z = n · γ · Tr

{
σ̂eqŜz

}
=

1

4

�2γ2

kBT
nB0

B0=1.5T≈ 5× 10−3 J/Tm3

≈ 4× 10−9B0/μ0, μ0 = 4π · 10−7 Tm/A.

(1.7)

The resulting nuclear paramagnetism of water has a susceptibility of only
4× 10−9. It is about 2000 times weaker than the actual diamagnetism of wa-
ter. The contribution of the nuclear spins to the longitudinal magnetization
is therefore negligible. Nevertheless, it is strong enough to be detected once
being moved out of equilibrium as shown below.
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c) Precession

In the thermodynamic equilibrium, �Meq does not change in magnitude and
direction. If the thermodynamic equilibrium is disturbed, a magnetization
vector �M0 might result with non-zero transverse components. For a constant
magnetic field B0�ez the equation of motion, given by Eq. 1.5, can be solved
analytically. With an initial magnetization �M0 the solution is simply:

�M(t) = R(�ez, ωLt) �M0.

The matrix R is just a standard 3D rotation matrix that describes a rotation
by the angle ωLt around the z-axis (cf. definition of R(·, ·) in Appendix A.1
on page 291). As the angle increases linearly with time, the motion of the
magnetization is indeed a precessional motion around the z-axis (cf. Fig.
1.2) with the Larmor frequency ωL:

ωL = −γB0. (1.8)

Figure 1.2: Precession of the magnetization vector around the direction of the static
main magnetic field.
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d) Relaxation and the Bloch Equations

For the assumed non-interacting spin ensemble, the precessional motion
goes on forever. In reality, however, the spins interact with each other and
their charged neighborhoods. The magnetization therefore slowly relaxes
toward its equilibrium value �Meq . The longitudinal relaxation gives rise to
the diagnostically very important T1-contrast and the transverse relaxation
to the T2-contrast. This macroscopic relaxation effect is described by the
Bloch equations [11], which modifies the basic equation of motion presented
in Eq. 1.5:

�̇M = �M × (γ �B)− T−1
2 (Mx�ex +My�ey)− T−1

1 (Mz −Meq
z )�ez. (1.9)

There are many other interaction effects, like for example chemical shift or
diffusion, which can correctly be treated with an appropriate model. These
effects give rise to a modification of the above Bloch equations [182]. Within
the scope of this thesis, these effects are, however, irrelevant and therefore
they are ignored.

e) Rotating Frame Formalism

Consider a reference frame, which rotates with �ω compared to the labora-
tory frame. If ∂rot

t describes the time derivative in the rotating frame, the
equation of motion (Eq. 1.5) takes the following form:

∂rot
t

�M = �M × (γ �B + �ω). (1.10)

For a reference frame which follows exactly the precessional motion of the
magnetization, i.e., �ω = ωL�ez = −γB0�ez , the effect of the constant main
magnetic field �B = B0�ez is formally eliminated: Equation 1.10 reduces
to ∂rot

t
�M = 0; the magnetization vector in the rotating reference frame is

therefore fixed in time.

1.1.3 RF Excitation

The RF-transmit system serves to “excite” the magnetization by moving it
out of thermodynamic equilibrium. RF excitation is essential
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• because the static longitudinal magnetization is very weak and cannot
be measured effectively. It is the dynamic motion in the transverse
plane, which induces measurable currents in the RF-receiver coils.

• because the return of the magnetization back to thermodynamic equi-
librium is tissue-dependent and provides image contrasts with a high
relevance for medical diagnostics.

a) RF-Transmit System

The object is excited by irradiating appropriate RF pulses into this object.
Fig. 1.3 schematically shows the hardware typically involved in the signal
transmission process and the caption explains the purpose of the individual
components of the transmit chain.

Figure 1.3: Typical RF-transmit chain. An RF synthesizer generates a continuous
waveform typically oscillating at the Larmor frequency, from which pieces of the
desired pulse duration are cut. A waveform modulator adjusts the pulse in amplitude
and phase according to the digital instructions of the sequence programmer and
sends it to the RF-power amplifier. Finally, the amplified pulse is coupled to the
RF-transmit coil, which irradiates the RF field into the object under examination.

b) Excitation

Consider on-resonance excitation with a transmitting RF field �B1(t). On-
resonance means that the field rotates with the Larmor frequency, given
by Eq. 1.8, in the direction of the rotating reference frame. Even if the
transmit field has a longitudinal component along the z-axis or an opposing
rotational component, it is sufficient to only consider the rotation along the
rotating Larmor frame as those other components have a negligible impact
on the dynamics of the magnetization under normal imaging conditions (cf.
note 7 of chapter 8 in [95]). The transmit field can therefore be assumed to
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be directed in the transverse plane. With an initial direction along the x-axis
it is given by:

�B1(t) = B1(t)(cos(ωLt)�ex + sin(ωLt)�ey) = B1(t)R(�ez, ωLt)�ex = B1(t)�e
′
x.

The vector �e′x describes the fixed x′-axis in the rotating reference frame
and the vector �ex describes the fixed x-axis in the laboratory frame. The
latter equality holds because the two vectors �e′x and �ex are linked via �e′x =

R(�ez, ωLt)�ex. In the rotating reference frame, the transmit field therefore
points along the �e′x-direction. The magnetic field envelope B1(t) might have
a time-dependency, which is assumed to be slowly varying compared to the
Larmor frequency. When the transmit field is added to the main magnetic
field, the equation of motion (Eq. 1.10) reduces to:

∂rot
t

�M = γB1(t)( �M × �e′x).

The dynamics described by this equation is just a precessional motion a-
round the x′-axis with the Rabi frequency |ωR| = γB1. If the on-resonance
transmit field is switched on for a duration τ , the magnetization is therefore
flipped away from the z′-axis around the x′-axis by the flip angle α given
by:

α = γ

∫ τ

t=0

B1(t)dt. (1.11)

This flip affects the magnetization vector accordingly:

�M(α, t) = Meq
z

(
cos(α)�e′z + sin(α)�e′y

)
= Meq

z (cos(α)�ez + sin(α)R(�ez, ωLt)�ey) .
(1.12)

The same applies to any initial magnetization �M0 other than the equilibrium
magnetization. The resulting flip of the magnetization vector is the physical
interpretation of what is normally referred to as “excitation”. Off-resonance
excitations, where the transmit field rotates with a slightly different fre-
quency than the Larmor frequency, lead to more complicated motions of
the magnetization vector. The dynamics are, however, fully described by
the Bloch equations. Closed-form solutions to these equations exist only
under special imaging conditions (an example is discussed in section 1.2.3,
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page 32ff). In general, the dynamics of the magnetization vector is found by
numerical integration.2

1.1.4 NMR Signal Detection

The final step in acquiring an NMR signal is to detect the excited magnetiza-
tion. This is done with receiver coils which are sensitive to the fast magnetic
field variations caused by the precessing magnetization.

a) RF-Detection System

A typical RF-detection system is schematically depicted in Fig. 1.4 and
explained in detail in the caption. Consult the textbook [111] for a detailed
presentation of RF coil and circuit design.

Figure 1.4: Typical RF-receiver chain. First, the signal is received with one or more
receiver coil probeheads. The small signals are amplified before being sent to the
quadrature receiver. In this hardware component, the signals are multiplied with
sinusoidal waveforms from an RF synthesizer having a reference carrier frequency
of the same frequency as used for signal transmission. There are two reference
signals, shifted by 90 ◦. The outgoing signals form, after low-pass filtering and
digitization in an analog-to-digital converter (ADC), real and imaginary part of the
NMR signal, which is finally stored using appropriate hardware.

b) Free Induction Decay

The influence of the individual components of the RF-detection system onto
the NMR signal can also be quantified, which is the topic of this section.

First, consider that the precessing magnetization generates a magnetic field
which is induced in an RF-receiver coil. Based on Faraday’s law of induction

2Nice animations of spin dynamics can found at [150].
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and a reciprocity law [68]3, it can be shown that the induced voltage U in
the receiver coil is given by:

U(t) = −Φ̇(t) = − d

dt

∫
V

�Bre(�x) �M(�x, t)d�x. (1.13)

Here, Φ is the magnetic flux through the receiver coil, V is the excited
volume and �Bre is the magnetic field generated by the receiver coil per
unit current.4 The time derivative of Mz can be neglected because the
precessional motion is restricted to the xy-plane. Therefore, introduction of
Eq. 1.12 into the above equation leads to a voltage of:

U(t) = ωL

∫
V

Meq
z (�x) sin(α)

(
Bre

x (�x) cos(ωLt)−Bre
y (�x) cos(ωLt+

π

2
)
)
d�x.

(1.14)
The signal is amplified by a factor βA, it is split in two and modulated in the
quadrature receiver. The effect of the quadrature receiver can be explained
with a multiplication of the signal, represented by Eq. 1.14, with a sinusoid
tuned at the transmit frequency. The output therefore consists of two signals
s1 and s2, where s1 has been multiplied with 2 cos(ωLt) and s2 has been
multiplied with the phase-shifted reference signal 2 cos(ωLt+ π/2). After a
low pass filter, the two signals are formally combined to form a complex
signal s(t):

s(t) = s1(t) + is2(t) =

∫
V

m(�x)c(�x)d�x, (1.15)

m(�x) := ωLβAM
eq
z (�x) sin(α),

c(�x) := Bre
x (�x)− iBre

y (�x).
(1.16)

The quantity c(·) is usually termed RF-coil sensitivity. Spin density is a
common term to denote the quantity m(·). This definition is problematic,

3The used model is valid for field strengths of up to about 1.5T on whole-body systems.
The model assumes that the magnetic field generated by the excited magnetization has an
immediate effect on the magnetic flux in the receiver coil (near-field). For higher field strengths
however, time lags must be considered [67]. Consult for example [66] for a correct treatment
beyond the near field or Appendix E in [163], where a formula for the induced voltage is
presented.

4Here, too, the limited validity of Eq. 1.13 becomes apparent. The derivation of Eq. 1.13
models the receiver coil as a simple wire loop and not as a resonant structure, as it should
correctly be done [163]. It is assumed that the coil’s DC sensitivity equals its RF sensitivity.
Interactions with the measured object are ignored. In practice the RF sensitivity depends on
the electromagnetic properties of the object and the frequency (also cf. [201]), and therefore the
RF sensitivity is typically determined for each scan separately (also cf. chapter 2.1.2b, page 48).
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but might be justified because, according Eqs. 1.7, 1.16, m is actually pro-
portional to the spin density. However, small deviations occur when the
transmit field is not homogeneous because, in this case, the flip angle is not
constant over the entire excitation volume (cf. Eq. 1.11). Though not exact
as well, it is also common to denote m(·) as magnetization. In this thesis
both terms, spin density and magnetization, are used to describe m(·). In the
following, the dependency of m on the amplification βA will be suppressed
by assuming w. l. o. g. βA := 1.

The signal presented in Eq. 1.15 is the measured signal of the NMR experi-
ment. This signal is constant because relaxation effects have been ignored
in these calculations. In reality the presence of transverse relaxation causes
the signals to decay. This decaying signal is called the free induction decay, or
in short, the FID.

c) Signal-to-Noise Ratio

Physical measurements are always of a statistical nature. The main sources
of noise for MRI are thermal motions of charged particles. It is obvious that
the electrons in the receiver electronics add to the resulting noise. However,
in NMR, it is the charged ions of the objects under examination, which
typically form the dominant part of the resulting noise. Whereas elaborate
designs of the receiver electronics can lead to a significantly reduced noise
contribution, thermal motion of the ions of the measured object cannot be
influenced by the experimenter. Noise in the electronic devices might pose
a problem with micro-architectures [55]. However, in this work, micro-coils
were not used and therefore the discussion of noise is uniquely restricted to
thermal noise originating from the object under examination.

How does it happen that the sample contributes noise to the measured
signal? The principle can be understood in a fairly simple way: The human
body mainly consists of water, in which different ions like for example
Na+,K+ or Ca2+ are dissolved. These ions are thermally agitated and
move. This motion is responsible for a fluctuating current density which is
accompanied by an electromagnetic field. The resulting electric field gen-
erates a fluctuating voltage across the terminals of the receiver electronics,
and is considered as noise.

This noise, in a basic situation, has been described quantitatively by Johnson
in 1928 already [77]. Basic theoretical work considering AC-currents has
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elucidated the basic principle in the same year by Nyquist in [116]. More
suitable for NMR reception is, for example, the theoretical description as
presented in the section A conducting sample in Appendix A in a publication
by Hoult [67]. The derivation is based on the Langevin equation and the
law of equipartition of energy from statistical mechanics leading to the
following result for the noise squared < η2 >:

< η2 >= 4kBTBWR, (1.17)

where T is the temperature of the measured object, BW the bandwidth of
the receiver, and R is the resistance of the measured object seen from the
terminals of the receiver electronics. This resistance expresses a principle of
reciprocity: The effect of moving ions in the sample onto the noise in the
received signal is analyzed by considering the resistance of the sample to a
current flowing in the circuit of the receiver!

The macroscopic resistance of the measured object can be calculated with
the help of Ohm’s law: Because of Ohm’s law, the resistance R is equivalent
to the power P deposited in the body per unit current in the receiver coil
(U = RI ⇒ R = P/I2). The dissipated power can be calculated also on
a local scale, where Ohm’s law states that the current density �j generated
by an electric field �E depends on the electric conductivity σ: �j = σ �E.
The electric field caused by the current in the receiver has two effects: On
the one hand, it is responsible for local currents flowing with the velocity
�v = �j/ρ = σ �E/ρ, where ρ is the electric charge density. On the other hand,
the field exerts a Lorentz force �f = ρ �E onto the moving particles. This force
acts on the local currents and performs the work a = �f ·�v = ρ �E· �Eσ/ρ = σ �E2.
By considering that this work is dissipated the resistance can be calculated
by integrating over the volume V of the measured object:

R =
P

I2
=

∫
V

σ(�x)| �E(�x)|2d�x
/

I2 =

∫
V

σ(�x)|E(�x)/I|2d�x

=

∫
V

σ(�x)|�E(�x)|2d�x,
(1.18)

where �E is the electric field �E per unit current, denoted as electric sensitivity
of the receiver coil in this thesis. Note that in the derivation of the latter
equation, it has been disregarded that, in MRI, the electromagnetic quan-
tities are high-frequency RF signals. Nevertheless, the latter equation is
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still valid (see e.g. Eq. 3 in [200]) with the electric sensitivity �E being a
complex-valued quantity (just as the magnetic sensitivity �B).

The signal-to-noise ratio of the acquired signal can then, within the limits
of the used model, be expressed with the electromagnetic properties of the
receiver coil and the measured object by combining Eqs. 1.7, 1.15, 1.16, 1.17,
1.18:

SNR =
|s|√

(< η2 >)
= C ·

|
∫
V
n(�x)(Bre

x (�x)− iBre
y (�x))d�x|√∫

V
σ(�x)|�E(�x)|2d�x

,

with C =
1

8

�2γ3| sin(α)|
(kBT )3/2

B2
0

B
1/2
W

.

(1.19)

1.2 Magnetic Resonance Imaging

With the main magnet and the RF-transmit/receive system, a signal is ob-
tained which has information about the whole object. However, according
to Eq. 1.15, all locations are encoded nearly equivalently. Therefore signal
localization is not achieved with these hardware components; it cannot be
differentiated whether the signal originates from one location or another. In
MR imaging, the bulk part of spatial encoding is obtained by an additional
hardware component: the gradients.

1.2.1 The Gradients

The purpose of the three gradients is to encode information about the
locations of the individual signal sources. This task is traditionally solved
by generating three spatial magnetic encoding fields (SEMs), whose Bz-
components vary linearly along the three different axes of the magnet. An
important result of this section is that it is possible to apply these linear
SEMs such that the signal data and the spatial distribution of the excited
magnetization form a simple Fourier pair. Such a strategy is often used
by imaging sequences like the gradient echo or the spin echo, which differ
from each other in the way how signal relaxation is exploited to produce a
different image contrast (also cf. section 1.2.4, page 33f).
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The involved electronics is schematically depicted in Fig. 1.5. The wire
windings of gradient coils are typically supported by a cylindrical structure.
This geometry is advantageous for hardware integration and especially
useful in handling patient scans. The basic gradient coil design, along with
one more realistic fingerprint design of an x-gradient coil, is depicted in Fig.
1.6. For practical designs, the wire windings are optimized to compromise
between gradient linearity, efficiency, minimal Bx and By field strength
(=concomitant fields), inductivity, power dissipation and other important
coil characteristics.

Figure 1.5: Typical gradient driving electronics. The sequence programmer defines
the trapezoidal pulse shapes for each gradient channel. The digital instructions are
converted to an analog voltage level using a digital-to-analog converter. This voltage
is amplified with gradient power amplifiers and finally sent to the gradient coils. The
coils generate the linear encoding fields with magnetic field time-courses according
to the programmed pulse shapes.

Figure 1.6: Simple and more practical gradient coil wire designs. (a) The basic
z-gradient is a Maxwell pair. (b) The basic x- and y-gradients are double-saddle coils
(= Golay coils). (c) Fingerprint design of a linear x-gradient coil. The pattern has
been optimized using a stream function method with high order smoothness (see
chapter 4 in [76]). The image shown is courtesy of Dr. Feng Jia and corresponds to
Fig. 4.15a in [76].
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1.2.2 Gradient Encoding: Signal Equation for a Single
Receiver Coil

The physical principle, which eventually makes localization possible, is sim-
ple: The additional linear gradient field changes the precession frequency
of the spins along the direction of the field gradient. The received signal
therefore has a broadened frequency distribution with a one-to-one corre-
spondence between frequency and location along the direction of the field
gradient. With three orthogonal gradients, it is therefore possible to extract
the spin density at each location in a unique way. The physical relation
between gradient encoding and localization is sketched in Fig. 1.7.

Figure 1.7: The principle of gradient encoding. (a) Without a gradient the magnetic
field is constant over the entire object. Therefore the magnetization precesses at
the same frequency in the whole object and the frequency content of the signal is
represented by a very narrow peak. There is a finite line width in reality because of
chemical shift, susceptibility effects and T ∗

2 -relaxation, among others (the line width
shown is vastly exaggerated for reasons of illustration). (b) With a linear gradient field
applied along one axis, magnetization vectors perpendicular to that axis still precess
with the same frequency. However, along the gradient axis the Larmor frequency is
different for each location. This results in a broadened frequency distribution with a
one-to-one-correspondence to the spatial coordinate of the signal source.

A rigorous derivation of this result may begin with the dynamics of the
magnetization in the fixed frame system, mathematically described by Eq.
1.5. The effective encoding field �Benc, resulting from the superposition of
the applied gradient fields, disturbs the main magnetic field. The fields
vary slowly in comparison to the precessional motion. The gradient field
dynamics can therefore be treated as being static in the equation of motion,
given by Eq. 1.5. The resulting motion is a precessional motion with a
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frequency corresponding to the magnitude of the overall external magnetic
field:

ω = −γ
∣∣∣B0�ez + �Benc

∣∣∣ = ωL + (−γBz
enc) + (−γB⊥)O

(
B⊥
B0

)
≈ ωL + (−γBz

enc).

(1.20)

For a scanner with a B0 on the order of 1 − 3T, the gradient field Bz
enc

is typically below 10mT. The magnitude of the concomitant fields B⊥ =

[(Bx
enc)

2 + (By
enc)

2]1/2 is of the same order as Bz
enc; in the region of interest

(ROI), it is most often even below Bz
enc. As a consequence of the large differ-

ence between gradient field strengths and main magnetic field strength, the
approximation of Eq. 1.20 is very good. Therefore, only the z-components
of the gradient fields have a significant impact on the precession frequency
of the magnetization vector and the direction of the precessional motion is
almost not affected by the gradient fields.

With gradient encoding, the precession frequency of the magnetization (cf.
Eq. 1.12) gets a spatial dependency that deviates from the Larmor frequency
ωL in most parts of the object. After the quadrature receiver the complex
signal is then modulated with a time and space dependent phase factor
φ(�x, t):

s(t) =

∫
V

m(�x)c(�x)e−iφ(�x,t)d�x. (1.21)

This phase factor can be manipulated by the gradient fields in two different
ways: application of a gradient field during signal readout or before. Recon-
sider Fig. 1.7b. There, it is shown that the application of a SEM during signal
readout alters the frequency content of the signal. Therefore, this strategy is
denoted as frequency encoding. The frequency content is different only for
spins experiencing a different field strength - therefore localization with
pure frequency encoding is only feasible along one spatial direction. Several
signal readouts, each encoded with a different gradient direction, could be
used to complete signal localization. However, it is also possible to combine
frequency encoding with a strategy, where SEMs are applied before signal
readout. These SEMs do not affect the frequency content of the received
signals directly, but spins at different locations acquire a different phase
during the application of the SEMs and this phase information modulates
the signal when being read out. In this thesis, the term phase encoding is
used to describe such an encoding strategy.5

5Note that this definition is broader than often encountered in the MR literature.
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Based on Eq. 1.13, it can be shown that, when both strategies are combined,
the phase factor in Eq. 1.21 consists of an initial phase from phase encoding
and a time-dependent part resulting from frequency encoding:

φ(�x, t; r) = φ(�x, 0; r) + γ

∫ t

t̃=0

Bz
enc(�x, t̃; r)dt̃. (1.22)

The index r has been added because typically (apart from single-shot imag-
ing) a number of signal readouts (r = 1, . . . , Npe) are acquired. The mag-
netic gradient encoding field Bz

enc(�x) is a superposition of the three linear
gradient fields Bz

j (�x):

Bz
enc(�x, t̃; r) =

3∑
j=1

Bz
j (�x, t̃; r) =

3∑
j=1

Gj(t̃; r)xj = �G(t̃; r)�x. (1.23)

The introduced parameters Gj , j = 1, 2, 3, are the gradient strengths of the
corresponding gradient field.

The latter equation shows that the effective encoding field decomposes into
a spatial and a temporal component. The spatial component is predefined
by the geometries of the gradient fields.6 However, the temporal component
can be influenced freely by defining the time-courses of the gradient pulse
shapes. These temporal degrees of freedom are captured by the introduction
of k-space. With the k-space notation the phase distribution of Eq. 1.22
reads:

φ(�x, t; r) =
(
�kr + �k(t; r)

)
�x, (1.24)

where the initial k-space position �kr and the k-space traversal during read-
out �k(t; r) are defined as:7

�kr := γ

∫ τ

t̃=0

�G(t̃; r)dt̃ and �k(t; r) := γ

∫ t

t̃=0

�G(t̃; r)dt̃. (1.25)

6This is where PatLoc imaging becomes interesting: The generalization to arbitrary field
geometries introduces new spatial degrees of freedom for MRI signal encoding (cf. chapter 4,
page 135ff).

7In the literature, it is also not uncommon to define k-space slightly differently with γ
replaced by (γ/2π), see for example [7, 12, 125]. Depending on which definition is used, the
factor 2π may, or may not, occur in other equations related to k-space.
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In this definition, it was assumed w. l. o. g. that the duration of phase
encoding τ is the same for each readout r. Introducing the k-space notation
(Eqs. 1.24, 1.25) into the signal equation (Eq. 1.21) leads to:

s(t; r) =

∫
V

m(�x)c(�x)e−i(�kr+�k(t;r))�xd�x. (1.26)

In the general case, the temporal dimension of the sampling trajectory is
important. For example, image contrast, caused by relaxation, is determined
by the timing of data sampling. However, in the latter equation explicit
time-dependent effects like relaxation have been ignored to focus on spatial
encoding rather than temporal effects. Under these assumptions, the signal
does not change if the k-space trajectory is traversed differently as long
as the set K = {�kr + �k(t; r); t ∈ [0;T ], r = 1, . . . , Npe} of acquired k-space
locations remains the same. Thus, it is possible to eliminate the temporal
dependency from the signal equation and Eq. 1.26 adopts a simpler form by
only considering the signal values at the sampled k-space location �k ∈ K:

s(�k) =

∫
V

m(�x)c(�x)e−i�k�xd�x. (1.27)

This equation is one of the most important equations in the field of MRI.
It shows that signal and spin density, modulated by the RF-coil sensitivity
have a Fourier relation. There is only one caveat: The set of sampled k-space
locations K is only a one-dimensional trajectory of finite length within the
d-dimensional full k-space K = Rd required for a true Fourier relation. In
chapter 2.2.1c it is shown on page 61 that the finite length of the trajectory is
closely linked to image resolution. More subtle is the problem that a true d-
dimensional (d = 2, 3) image is to be reconstructed from a one-dimensional
trajectory. It turns out that for sufficiently dense sampling, it is possible
to treat the one-dimensional trajectory K as a d-dimensional subset K of
Rd. The reason for this surprising result is described in the paragraph
“Completeness of k-Space Encoding” on page 64 in the following chapter.
In this thesis, the extended subset K ⊃ K, K ⊂ Rd is called effective k-
space coverage, or simply effective k-space, whereas K is called sampled k-space
(coverage). The concepts of k-space trajectory, sampled k-space coverage and
effective k-space coverage are illustrated in Fig. 1.8.
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Figure 1.8: k-space trajectory and k-space coverage. (a) Cartesian trajectory.
Shown are 16 phase-encodes. The effect of phase encoding, according to how this
term is defined in this thesis, is to define the initial k-space position before readout.
With the x-gradient, the initial k-space location is shifted along the kx-axis (often
denoted as a prewinder ) and with the y-gradient along the ky-axis (phase encoding
in the narrow sense). During acquisition, the x-gradient is switched, and k-space is
traversed along the corresponding direction. The direction of k-space traversal is
indicated by the arrows accompanying the trajectory. When time-dependent effects
like signal relaxation are ignored, the direction of k-space traversal can be ignored.
The sampled k-space is given by the black lines. However, the effective k-space
extends around the black lines and is indicated by the gray area. In chapter 2.2.1c
it is shown under which conditions this extension occurs. (b) Radial trajectory. By
combining x-and y-gradients, the initial k-space positions define locations on a circle
in k-space. During readout, the same combination of the gradients, with opposite
flow of the coil currents, is used. The trajectory leads to a higher sampling density
at the center. A sufficient number of readouts ensures a gap-free effective circular
k-space coverage.

For simplicity, consider here complete k-space coverage K = Rd, and a
homogeneous RF-coil profile c(�x) = 1 for all �x ∈ V . Under these special
conditions, signal s(�k) and spin density m(�x) form a Fourier transform pair:

s(�k) =

∫
V

m(�x)e−i�k�xd�x = FT {m}(�k),

m(�x) =

∫
K

s(�k)ei
�k�xd�k = FT −1{s}(�x).

(1.28)

The latter equation mathematically expresses the effect of gradient encoding
as the capability to uniquely localize an MRI signal: Under the assumption
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of infinitely long sampling, the spin density of the measured object can be
retrieved exactly and uniquely at each location. The effect of finite sampling
in realistic measurements on the reconstructed images is discussed in the
next chapter.

1.2.3 Slice Selection

Without gradients, a large three-dimensional volume V ⊂ R3 is excited after
application of an on-resonance RF pulse. In many situations, it is useful
to excite only thin slices and use two orthogonal gradients for in-plane
encoding. This process is called slice selection and is achieved by applying a
gradient field during transmission of the RF pulse.

Consider a gradient field Bz
enc(�x) = Gzz along the z-axis (= z′-axis) swi-

tched during an RF pulse �B1(t) = B1(t)�e
′
x. According to Eq. 1.10, the

motion of the magnetization in the rotating reference frame is given by:

∂rot
t

�M = �M × γ(B1(t)�e
′
x +Gzz�e

′
z). (1.29)

In general, a closed-form solution to this equation does not exist and must be
found numerically [26, 129]. Under the small-tip-angle assumption8 Mz(t) =

Mz(0) = const a closed-form solution exists, revealing insight into the
relationship between excited magnetization and pulse shape. With the
initial condition �M(0) = M0

z�e
′
z , in Eq. 1.29 only the transverse components

of the magnetization need to be considered further. For symmetric pulse
envelopes B1(t) of duration τp, the complex-valued solution M⊥ = Mx +

iMy to Eq. 1.29 right after the pulse is found to be:

M⊥(τp, �x) = iγM0
z (�x)e

−iγGzzτp/2FT −1{B1}(γ-Gzz). (1.30)

The main result from this equation is that slice profile and pulse envelope
form a Fourier transform pair - under the small-tip-angle assumption. In
theory, this assumption seems to be good only for flip angles below 20 ◦;
notwithstanding, the above Fourier relation is in practice often acceptable
for flip angles up to 90 ◦ [96]. An approximately rectangular-shaped slice of
thickness Δz is therefore excited with an apodized pulse envelope mimick-
ing a sinc-function of frequency f = γ-/2GzΔz. This result is depicted in Fig.

8described for example in chapter 5.1.3.2 of [96].
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1.9. When slice selection is performed, it is useful to reduce the signal equa-
tion (Eq. 1.28) to a two-dimensional (2D) problem with �x ∈ V ⊂ R2, �k ∈ R2

and m̄(x, y) =
∫
z
m(x, y, z)dz. When the bar over m̄ is ignored 2D and 3D

imaging problems can be handled with the same notation.

Figure 1.9: Relationship of slice profile and pulse shape. Under the small-tip-angle
assumption and linear gradient fields employed, slice profile and pulse envelope
form a Fourier transform pair. Note that the Fourier relation is not valid for high flip
angles. In this case, no analytic solution to the Bloch equations exists and therefore
numerical methods must be used to establish the exact relationship between pulse
shape and slice profile.

1.2.4 Basic Imaging Sequences

An important part of MRI research is devoted to the development of various
imaging sequences; i.e., the definition of RF and gradient pulse shapes and
the timing of signal reception. In the context of this thesis, only two of the
most basic imaging sequences are considered: the gradient echo [53] and the
spin echo [56, 59]. Extensive information regarding sequence design is found
in the textbook of Bernstein et al. [10].

a) Gradient Echo

The (two-dimensional) gradient echo is a very simple imaging sequence.
With Cartesian sampling, k-space is traversed as depicted in Fig. 1.8a.
The corresponding pulse sequence is presented in Fig. 1.10a: After slice
selection, a phase encoding step brings the k-space vector to the desired
position. From this position a line in k-space is read out with a gradient
of a fixed amplitude. In contrast to single-shot imaging, an RF-transmit
pulse is played out for each acquired k-space line with the repetition time
TR. This ensures reduced signal dephasing, which is due to magnetic field
inhomogeneities, mainly caused by susceptibility differences, which have
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been ignored in the signal equation (cf. Eq. 1.27). For long echo times TE

(i.e., the time between RF pulse and center of signal readout) and long TR,
the resulting contrast is often referred to as the T ∗2 -contrast.

b) Spin Echo

An important advantage of a spin echo is that the effect of static magnetic
field inhomogeneities is eliminated. Whenever magnetic field inhomo-
geneities would deteriorate the image quality, a spin echo will produce
superior image quality. The imaging sequence is depicted in Fig. 1.10b.
In contrast to a gradient echo, two RF pulses are played out prior to data
acquisition. The effect of the second pulse is to reverse the signal dephasing
taken place since the application of the first pulse. Repetition time TR and
echo time TE (i.e., the time between the first RF pulse and the center of
signal readout) are chosen according to the desired imaging contrast. For
long TE and long TR the contrast is often referred to as the T2-contrast.

Figure 1.10: Two basic imaging sequences. (a) Gradient echo. (b) Spin echo.
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1.3 Parallel Imaging9

In the early years, only a single RF coil was used for MRI measurements.
From about 1990 on, initial experiments were performed with multi-coil
receiver arrays. Initially, such arrays were used to improve SNR [145]. The
potential of multi-coil arrays to accelerate MR image sequences [173, 135]
was recognized only in the late 1990s and since then research in the field of
parallel imaging has exploded. In this section, imaging with an RF array is
introduced, some of the most important implications of parallel imaging to
MRI are briefly discussed and the signal equation for multi-coil acquisitions
is presented.

1.3.1 RF-Receiver Array

Before the advent of multi-coil RF arrays, MRI scanners were typically
equipped with one large RF-volume coil. Such a volume coil is typically
designed to have a homogeneous sensitivity. This is beneficial because then
the coil is equally sensitive to all parts of a measured object. In contrast
to such homogeneous large volume coils, small RF coils, placed near the
surface of the object under examination, are not sensitive to the whole object.
Nevertheless, Roemer et al. realized in 1990 that such surface coils can be
useful in MRI when several of those surface coils are combined to an array
of coils surrounding the measured object (cf. Fig. 1.11a). Even though the
individual elements are only sensitive to a limited region of the imaging
volume (cf. Fig. 1.11b), the combination of all coils is sensitive to the whole
volume with a tendency of a higher sensitivity near the surface of the object,
and for field strengths above about 1T for human systems a high sensitivity
can also be observed at the center; this phenomenon is sometimes termed
dielectric resonance (see for example the root-sum-of-squares10 sensitivity
image in Fig. 1.11c). Fortunately, the sensitivity variations have proven to
be rather unproblematic in practice.

9In this thesis, the term parallel imaging (PI) is used in a broad sense. Sometimes, PI is
used in a narrower sense comparable to the term partially parallel imaging (PPI), typically used
to denote accelerated imaging with the help of an RF array. Here, however, PI refers to all
imaging experiments where data are acquired with several RF coils. PI is therefore defined
here as multi-coil imaging opposed to single-coil imaging.

10The root-sum-of-squares involves: (a) multiplication of each voxel value with its complex-
conjugate and (b) formation of a single image from the several coil images by summing up the
(squared) voxel values and (c) taking the square root of the formed single image.
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Figure 1.11: RF-receiver coil array with sensitivity maps. (a) Twelve-channel head
receiver coil array for a MAGNETOM Trio, A Tim System 3T, Siemens Healthcare,
Erlangen, Germany. (b) Four RF-coil sensitivity maps at 3T of the coil shown in (a),
where each map has been combined from three others. The maps were determined
by dividing images of each receiver channel, acquired with a homogeneous phantom,
by the corresponding RF-transmit field maps, which were measured similar to the
method described in [34]. (c) Root-sum-of-squares image of the RF-sensitivity
profiles.

It is an important feature of a receiver array that it consists of several coils,
each of which generating a separate signal - in parallel. Each signal channel
should provide as much independent information as possible. Thus, it is
important that the individual coils are not strongly coupled to each other.
RF-coil decoupling strategies (see e.g. chapter 3.4.2 in [90]) are therefore
of great interest to the RF engineer with important consequences for the
optimal coil geometries. At the same time, the coils should be placed as
near as possible to the measured object in order to enhance the SNR. These
and other concerns explain why modern whole-body MR scanners are often
equipped with a multitude of different RF-receiver arrays, where each array
is optimized for a different medical application. For example, there are
cardiac, spine or knee arrays. Another example is Fig. 1.11a, where a head
coil array is shown.

1.3.2 Implications of Parallel Imaging

Signal reception with several coils has the advantage over single-coil mea-
surements that each RF coil is sensitive in different object regions; thus,
an RF-receiver array provides spatial information in addition to gradient
encoding. And this additional information is not generated sequentially as
done with gradients, but in parallel; i.e., at the same time. Therefore, the
information gained with an array almost comes “for free”. The additional
information can be used in various ways. Some of the most important
implications to MRI are presented here.
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a) Increased SNR

In 1990, Roemer et. al presented in their seminal publication [145] that
parallel acquisition can significantly enhance the SNR of the reconstructed
images. The basic idea relies on an optimal combination of the different coil
images. An adequate optimization can be formulated as a reconstruction
problem and is therefore discussed in more detail in the next chapter, see in
particular the Remark on page 78.

b) Acceleration of MR Measurements

Even more important is that PI can be used to significantly accelerate MRI
scans. The duration of patient examination is not only a question of suffi-
cient resources or patient comfort. Among others, shorter measurements
significantly reduce motion artifacts. For single-shot techniques, such as EPI
[109] (also cf. chapter 3.4.2 in [212]), it is advantageous to shorten measure-
ments in order to reduce susceptibility artifacts. Also functional MRI [113]
profits from a higher temporal resolution such that even 3D single-shot
acquisitions become feasible.11 The usage of PI in this context has already
been suggested in the late 1980s and early 1990s [18, 70, 82, 88, 139]. Fur-
ther technological and theoretical developments in the late 1990s [173, 135]
leveraged the original ideas to the wide-spread acceptance of PI in research
and clinical environments. The role of PI for the acceleration of MR mea-
surements is best understood in the context of image reconstruction and is
therefore discussed in chapter 2.3, page 72ff.

c) Further Applications

Further applications of PI are reviewed in [90] including artifact removal
caused by coherent k-space inconsistencies and the reduction of motion
artifacts. Another interesting application of PI is the fast determination of
B0-inhomogeneities [175, 174]. In the context of parallel imaging, the pre-
sented PatLoc imaging concept can also be regarded as a further interesting
application of PI.

11A modern example of an ultra-fast 3D trajectory is found in [211].
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1.3.3 Signal Equation for Several Receiver Coils

When several receiver coils are considered in an RF array, cross-talk between
the coils can occur. With modern decoupling techniques, this cross-talk is
often reduced to a negligible level in high-quality receiver arrays and the
received signals behave nearly independently from each other. Therefore,
the signal equation derived for the single-channel case in Eq. 1.27 is valid
also in multi-coil arrangements. An array with Nc signal channels then
generates separate signals sα(�k):

sα(�kκ) =

∫
V

m(�x)cα(�x)e
−i�kκ�xd�x for all α = 1, . . . , Nc. (1.31)

The index κ has been introduced to indicate that only a finite number of
data points at �k = �kκ are stored for post-processing. The difference between
the individual signals results from the different spatial distributions cα(�x)
of the RF-coil sensitivities. Note that, even when the individual channels
cannot be regarded as being completely decoupled, the above equation is
still valid. If needed, the RF-coil sensitivities are measured in a separate
scan using the same hardware configuration. Therefore the cross-talk is
implicitly accounted for when the sensitivities are extracted from the data.
A detailed analysis of the effects that coupled RF coils have on MRI signals
and reconstructed images is found in [118], chapter 3, page 73ff.



Chapter 2

Image Reconstruction in MRI

WHEREAS the first chapter has described the basics of MRI signal forma-
tion, the present chapter deals with the reverse process: the problem

of recovering the object information from the acquired signals. This is a dif-
ficult task because MRI measurements only indirectly represent the object,
and there is only a finite amount of measurement data available for the vast
amount of object information.

This inherently inverse problem has been solved for standard multi-coil
acquisitions with a rigorous mathematical framework for linear image
reconstruction [135]. In the preface, it has already been mentioned that
conventional multi-coil imaging has more stringent imaging requirements
than PatLoc because, conventionally, field linearity is required for gradi-
ent encoding; notwithstanding, the rigorous mathematical framework can
easily be extended to be applicable also to PatLoc imaging (see chapter 4.2,
page 140ff). Therefore this linear reconstruction framework is important
for this thesis and it is reviewed at the beginning of the present chapter.
The most important image reconstruction methods for single-coil imaging
as well as multi-coil imaging are derived in this chapter using the same
abstract framework.

Though this approach is more technical than standard descriptions of the
different algorithms, it has the advantage of a unified portrayal of some of
the most important reconstruction methods currently used in MRI. As a
consequence, relations between individual methods can be elaborated (such
as between SENSE and GRAPPA or between gridding reconstruction and
the general matrix inversion approaches). The presentation tries to use a
mathematical language which is as precise as possible. One consequence
is for example the description of the SENSE reconstruction matrix with
the help of the Kronecker product. New is also the explanation of the
superresolution effect for certain PI reconstructions.

This chapter focuses on the essentials of MR image reconstruction. Not
covered are dynamic imaging modalities like for example cardiac imaging,
where several frames are recorded within the cardiac cycle (see e.g. [176]). A

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5_2, © Springer Fachmedien Wiesbaden 2013
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good description of spatio-temporal reconstruction methods is found in [5].
Also not covered are nonlinear reconstruction methods. Such methods have
proven advantageous in special situations like for example reconstruction
from sparse data [28, 106] or reconstruction from subsampled radial imaging
data [13, 83]. A problem with such nonlinear algorithms is that image
properties are not easy to predict. This is different for linear reconstruction
methods, where concrete results can be derived. Image properties like
image resolution, aliasing and SNR can be calculated explicitly, and this is
done in the present chapter for the general case and some of the discussed
image reconstruction methods.

2.1 Basics of Linear Image Reconstruction

Linear image reconstruction is particularly beneficial because reconstruction
can be described as a simple matrix-vector operation. Image reconstruction
involves the inversion of the encoding matrix, which comprises the relevant
information of the imaging process. With known gradient encoding scheme
and RF-coil sensitivity data, the encoding matrix can easily be calculated.
After presentation of the image reconstruction framework, a short section
is devoted to the problem of obtaining reliable data from gradient and RF
sensitivity encoding. After that, it is shown how basic image properties like
image resolution, aliasing artifact and SNR can be calculated if reconstructed
with the presented matrix approach.

2.1.1 Fundamental Reconstruction Algorithms

The basic principles of linear reconstruction theory for standard PI [135] are
reviewed below before special imaging situations are discussed in later sec-
tions. The reconstruction theory is based on the signal equation presented
in Eq. 1.31, which describes the general imaging process of PI. It is repeated
here:

sα(�kκ) =

∫
V

m(�x)cα(�x)e
−i�kκ�xd�x for all α = 1, . . . , Nc. (2.1)
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The encoding basis for parallel imaging at measured k-space positions �kκ
(κ = 1, . . . , Nκ) is defined as:

encα,κ(�x) = cα(�x)e
−i�kκ�x. (2.2)

With this definition signal formation can be interpreted as the projection of
the magnetization onto the encoding functions:

sα,κ := sα(�kκ) =

∫
V

m(�x)encα,κ(�x)d�x. (2.3)

The linear relationship between signal and magnetization favors linear re-
construction methods, where the magnetization, collected in a vector m of
length Nρ,1 is reconstructed by adequately weighting the signal measure-
ments sα,κ. The reconstruction is therefore described by a matrix F, often
termed reconstruction matrix:

m = Fs. (2.4)

The reconstruction problem can then be formulated as finding a reconstruc-
tion F, which produces a magnetization vector m with elements mρ that
approximate the magnetization at the corresponding position as closely as
possible:

mρ =
∑
α,κ

Fρ,(α,κ)sα,κ ≈
∫
V

m(�x)iρ(�x)d�x. (2.5)

The reconstructed values mρ might represent the total magnetization within
the voxel of interest or the average density of the magnetization within the
voxel. In the following, it is assumed that the goal of the reconstruction is the
latter. The right hand side of Eq. 2.5 is the desired value for mρ. It depends
on the chosen ideal voxel shape iρ. Often Dirac delta functions are chosen
as ideal voxel shapes. This choice simplifies the involved calculations. Even
though box functions are a better representation of image voxels it is usually
acceptable to use delta functions because, typically, reconstruction grids are

1The one-to-one procedure of mapping a matrix to a vector is often denoted as vectorization.
The inverse mapping from the vector back to the matrix is termed in this thesis de-vectorization.



42 Chapter 2. Image Reconstruction in MRI

chosen not coarser than the encoded image resolution. Inserting Eq. 2.3 into
the latter equation yields:

mρ =

∫
V

m(�x)fρ(�x)d�x. (2.6)

where the voxel function fρ is given by:

fρ(�x) =
∑
α,κ

Fρ,(α,κ)encα,κ(�x). (2.7)

The voxel function fρ can also be interpreted as the spatial response function.
The spatial response function and its relationship to the point spread func-
tion is explained in section 2.1.3, page 50ff. The reconstruction problem is
thus reduced to finding good approximations of the voxel functions to the
ideal voxel shapes:

fρ(�x) ≈ iρ(�x).

Two different approaches are considered here. These approaches have been
termed weak and strong reconstructions in [135].

a) Weak Matrix Approach

The weak approach only requires that ideal voxel shapes and voxel func-
tions satisfy the orthogonality relation:2∫

V

i∗ρ(�x)fρ′(�x)d�x = (ΔV )−1δρ,ρ′ . (2.8)

In chapter 4.2.2b, page 148ff, it is shown that the quantity ΔV represents
the nominal voxel volume.3 For 2D imaging, it is given by (Δx)2, where

2If the goal of the reconstruction is to find the total magnetization within the reconstructed
voxels, (ΔV )−1 must be replaced by its inverse ΔV .

3This dependency on the voxel volume has not been observed in [135]. For standard
rectilinear reconstruction grids, this dependency on the voxel volume can usually be ignored
because the diagnostic value of MR images lies in relative intensity differences. Note however,
that, without the introduction of the voxel volume in the latter equation, the physical units of
that equation are no longer consistent. Under certain circumstances, the dependency on the
voxel volume becomes important in PatLoc imaging, for example in chapter 5.1, page 155ff.
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Δx is the discretization distance of the reconstruction grid.4 The entries of
the encoding matrix are defined as:

E(α,κ),ρ :=

∫
V

i∗ρ(�x)encα,κ(�x)d�x = encα,κ(�xρ) = cα(�xρ)e
−i�kκ�xρ . (2.9)

In the latter equation the ideal voxel shapes were assumed to be delta
functions (i∗ρ(�x) := δ(�x− �xρ)). With the definitions of voxel functions and
encoding matrix the orthogonality relation of Eq. 2.8 reduces to a matrix
equation:

FE = (ΔV )−11. (2.10)

Solving this matrix equation for the reconstruction matrix F solves the re-
construction problem. Typically, the Moore-Penrose pseudo-inverse (MPPI)
is taken as the solution:

F = (ΔV )−1E+. (2.11)

Note that the MPPI has different interpretations under different circum-
stances. Three different situations may occur:

1. Equation 2.10 has infinitely many solutions. This is generally the case
when NcNκ ≥ Nρ, i.e., when a reconstruction grid is chosen which is
not much finer than the corresponding grid of acquired data points.5

The MPPI then takes the solution with the smallest Euclidian norm.
Problems like for example an underestimation of the spin density may
therefore occur when the reconstruction grid is chosen too coarsely.
The explicit solution then reads:

F = (ΔV )−1(EHE)−1EH . (2.12)

4For 2D imaging it would be more precise to talk about pixels rather than voxels. In this
thesis this imprecise terminology is accepted in favor of a unified presentation suited for 2D
as well as 3D imaging. Also consider that, in reality, a 2D slice has a finite thickness. The
discrepancy of calling quantities like (Δx)2 “volumes” is therefore also resolved by simply
multiplying such areas with the slice thickness.

5For NcNκ ≥ Nρ, the condition FE = (ΔV )−11 represents an underdetermined system
of equations. Notwithstanding, this situation is usually considered as an overdetermined
acquisition in the MRI literature because the amount of signal data exceeds the number of
image voxels to be solved for. This terminology is also justified because the corresponding
discretized signal equation s = Em represents an overdetermined system of equations, used
for example for iterative CG reconstructions, cf. section 2.3.1f, page 89ff. In order to avoid
confusion in this regard, only rare use of the terms overdetermined/underdetermined is made in
this thesis.
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2. No solution exists. This is the case when a very fine reconstruction grid
is chosen. The MPPI is then the minimizer of a least-squares problem
‖[ΔV · FE− 1]W‖2F , where the diagonal matrix W is a weighting
function and the subscript F denotes the Frobenius matrix norm.
Equal weighting for all image voxels is ensured if W is chosen to be
the unity matrix. Then the explicit solution is given by:

F = (ΔV )−1EH(EEH)−1.

3. There is exactly one solution. This is a very special case. In this
case, the two explicit solutions stated above are equivalent: F =

(ΔV )−1(EHE)−1EH = (ΔV )−1EH(EEH)−1.

The solutions to the three cases rely on the property that either the matrix
EHE or EEH is invertible. Invertibility is ensured only if E has full rank.
This can, however, not always be guaranteed. One example would be
an image acquisition, where some k-space locations are sampled several
times and subsequent reconstruction is performed onto a dense grid. It
is therefore necessary to use a reconstruction, which can cope with this
potential problem. And the MPPI can! To show this, consider the singular
value decomposition (SVD) of a matrix A: A = PΣQH , where P and Q are
unitary and Σ is a potentially non-square matrix with entries only along
the main diagonal. These entries form the singular values of A. Then, the
MPPI of A is given by: A+ = QΣ+PH . The MPPI solution Σ+ is simply
defined as the transpose of Σ with inverted singular values. In [170] it is
recalled that the MPPI of a matrix A has two different kinds of expansions,
which are mathematically equivalent to the MPPI6:

A+ = (AHA)+AH = AH(AAH)+.

The first expansion reduces to the first case above if EHE is invertible and
the second expansion reduces to the second case above if EEH is invertible.
These equivalences show that all discussed cases are covered by the MPPI.

Remark: In the MRI literature, one often encounters reconstructions based
on the discretization of the forward model using a Riemann sum approx-
imation. The resulting equation s = Em is then solved using the MPPI
with solution m = E+s. Such a “forward” approach is problematic because

6That result can be proved easily with the help of the SVD of A.
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reconstruction solves an inverse problem; however, the discussion above
shows that the forward discretization is justified because the more sophisti-
cated inverse approach has the same solution under the conditions of (a)
weak reconstruction (b) delta functions as ideal voxel shapes (c) Cartesian
reconstruction grids.7

b) Strong Matrix Approach

In the strong reconstruction approach voxel shapes are chosen to represent
the least-squares approximation to the ideal voxel shapes. In Appendix B in
[135] it is shown that this approach results, with ΔV := 1, in the solution:

F = EHB+, (2.13)

where B is the correlation matrix of the encoding functions:

B(α,κ),(α′,κ′) =

∫
V

encα,κ(�x)enc
∗
α′,κ′(�x)d�x. (2.14)

and V is the volume over which the least-squares approximation of the
voxel function to the ideal voxel shape is calculated. For comparison, the
concepts of weak and strong reconstruction are illustrated in Fig. 2.1.

Remark: If additional factors are added to the encoding functions, defined
in Eq. 2.2, this formalism can incorporate effects such as relaxation, field
inhomogeneities due to non-uniform B0-field, susceptibility differences,
or, in a slightly modified form, chemical shift imaging. Interesting in the
context of this thesis is also that RF pulses can be designed to influence
the phase of the magnetization. This effect can also be considered with an
additional factor in the encoding functions. In chapter 4 it is shown that this
formalism can also be used in PatLoc imaging with a modified encoding
matrix.

c) Relationship Between Weak and Strong Reconstruction

Both reconstruction methods have in common that the solution is deter-
mined from a comparison with an ideal reconstruction. The strong recon-
struction aims at approximating the ideal voxel shapes in a least-squares

7This approach of discretizing the forward model prior to inversion is also justified for
non-Cartesian reconstruction grids. The discretization (see Eq. 4.25) results in Eq. 4.20.
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Figure 2.1: The concepts of weak and strong reconstruction. Illustrated are voxel
functions (black) and ideal voxel shapes (gray); in the shown example, a delta
function (δ(·)) has been chosen as ideal voxel shape for the weak approach, and, a
box function (Π(·)) for the strong approach. With both approaches a voxel function
is sought that resembles the ideal voxel shape as closely as possible. (a) The weak
reconstruction requires that, for a delta function as ideal voxel shape, the voxel
function is unity at the voxel center and zero at the centers of the neighboring voxels.
No conditions are imposed on the behavior in-between. (b) The strong reconstruction
aims at minimizing the least-squares deviation from the ideal voxel shape; thus,
a reconstruction is chosen which minimizes the (square of the) gray-shaped area.
Close inspection shows that, in the depicted example, both approaches lead to voxel
functions which differ only very slightly from one another.

sense, whereas the weak reconstruction only requires that the voxel function
is defined at a finite number of grid points.8 For the weak reconstruction,
no condition is stated for what happens in between the grid points. The
strong approach is therefore more convincing and should in general provide
higher reliability than the weak approach.

But also the weak approach normally leads to reliable reconstructions:
The reconstruction grid is typically chosen dense enough to avoid loss
of acquired image information. Correspondingly, the encoding functions
vary smoothly on a voxel scale and high amplitude variations of the voxel
function are unlikely between the undefined grid points. This is particularly
true when FE = 1 can be fulfilled. If not (i.e., for dense reconstruction
grids) the minimum-norm solution serves a similar purpose.

Both approaches are in fact closely related to each other. In the limit of
infinitely dense reconstruction grids both methods are equivalent because
in this case B = EEH and therefore the strong approach has the recon-

8At least when delta functions are chosen as ideal voxel shapes.
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struction F = EH(EEH)+, which corresponds to the MPPI solution of the
weak reconstruction. This perfect congruence of the weak and the strong
approach is technically broken, once realistic reconstruction grids of finite
density are considered. However, note that in most cases the correlation
matrix B cannot be calculated analytically, but has to be determined by
means of numerical integration. If a Riemann-sum is chosen with a step-size
corresponding to the voxel size of the (sufficiently dense) reconstruction
grid, the correlation matrix is again given by B = EEH , and both, weak
and strong reconstruction, yield exactly the same results once again. Closely
related to this discussion is the minimum-norm reconstruction presented in
[170].

d) Conclusion

With sufficiently dense reconstruction grids, it is appropriate to consider
only delta functions as ideal voxel shapes in favor of minimizing reconstruc-
tion time. Owing to the fact that in this case, weak and strong approach
have similar solutions, the following presentation is oriented toward the
solution of the weak approach, unless stated otherwise:

F = E+, with E(α,κ),ρ = encα,κ(�xρ) = cα(�xρ)e
−i�kκ�xρ , (2.15)

where the E must be replaced by ΔV ·E if the volume information is of inter-
est. This reconstruction is denoted in this thesis as the MPPI reconstruction
or MPPI solution.

In theory, the MPPI approach is straightforward. Once the encoding matrix
is determined, images can be reconstructed by simply inverting this matrix.
In practice, however, two issues must be addressed: The first has already
been mentioned above and concerns the problem that the large dimensions
of the encoding matrix complicate direct inversion. One focus of this chapter
is to tackle this inversion problem for different situations. Depending on
the structure of the encoding matrix, direct inversion can be an option. If
not, iterative methods often lead to acceptable results. The second issue
relates to the fact that image reconstruction is based on accurate knowledge
of the encoding matrix. This issue is the topic of the following section.
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2.1.2 Determination of the Encoding Matrix

The correct determination of the encoding matrix is crucial for image re-
construction. According to Eq. 2.15, this matrix consists of two factors:
the gradient encoding factor e−i�kκ�xρ and the RF-sensitivity encoding factor
cα(�xρ). The determination of these two factors is treated separately here.

a) Gradient Encoding

The gradient encoding part e−i�kκ�xρ of the encoding matrix is based on two
assumptions: First, it is assumed that the trajectory �kκ matches the true
trajectory. Second, it is assumed that the gradients generate exactly linear
encoding fields (cf. Eq. 1.23).

The hardware of state-of-the-art MRI systems is particularly well optimized
for accurate control of the k-space trajectories. For many standard imaging
sequences and applications it can therefore be assumed that the desired
k-space trajectory is accurate. If a certain application requires a higher
accuracy, established calibration methods (see e.g. chapter 2.2.4 of [211])
or promising new methods like for example magnetic field monitoring [4]
could be considered to improve the reliability of gradient encoding.

Typically less demanding are the requirements on gradient linearity. Lin-
earity is very accurate only at the isocenter of the MRI bore. Outside of the
center, non-linearities occur. The non-linearities are often accepted in order
to permit improvements in other performance measures such as power con-
sumption or especially switching speed of the gradients. Typical artifacts
resulting from gradient non-linearities are image distortions. The distor-
tions can be corrected if the spatial distributions of the magnetic gradient
fields are known. The spatial distributions can be measured indirectly with
the help of calibration phantoms [149] or directly by acquiring field maps
of the gradient fields (cf. chapter 5.1.2c, page 178ff, and 6.2.1b, page 220f;
further references may be found in [29]). These methods are particularly
important in the context of PatLoc imaging, where strong deviations from
gradient linearity are generated intentionally.

b) Sensitivity Encoding

Reconstruction also requires the determination of the complex-valued (cf.
Eq. 1.16) spatial distributions c(·) := (c1(·), . . . , cNc

(·))T of the RF-coil
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sensitivities. These can be estimated by acquiring a gradient echo image.
Typically, a 64× 64-acquisition is sufficient to capture the spatial variations
of the sensitivities. If the RF-coil sensitivities are estimated directly from
the gradient echo images, they will be corrupted by the magnetization
m = |m|eiΦ of the object: c(est) = mc. One therefore has to adopt a method
to suppress the influence of the object in the estimated sensitivity maps.

One possibility is to acquire an additional image with a homogeneous
volume coil and divide the individual components by this image [135]. This,
however, requires one additional scan. Another disadvantage is the noise
amplification of the resulting estimate. A different method is to calculate the
sum-of-squares of the acquired images (c(est))Hc(est) = c2m2 and divide the
individual coil images by the square-root of those. The resulting sensitivity
estimate is then: c(est) = f · c, where f = eiΦ/c. The coil estimates are
weighted with the root-sum-of-squares of all coil sensitivities and a phase
factor. All coil sensitivities are affected by the same variation f . The only
consequence of using these coil estimates instead of the unknown true
coil sensitivities is that the reconstructed image will be weighted by 1/f .
For typical industrial coil geometries, the root-sum-of-squares of the coil
sensitivities is fairly homogeneous (cf. e.g. Fig. 1.11c). Therefore, these coil
estimates are generally good enough for adequate image reconstruction.

The coil estimates can be improved by averaging over neighboring voxels,
which is often possible because the coil sensitivities contain only low spatial
frequencies. A similar result with improved SNR is achieved with a method
based on the stochastic matched filter presented in [188]. This method
has been used to generate the RF-coil sensitivity maps in this thesis. With
the technological progress in the computer industry more computation-
intensive methods become feasible such as the nonlinear iterative recon-
struction method proposed in [184].

Note that there is a fundamental difference to the gradient fields: For
higher field strengths (> 1.5T for human systems), wave effects cannot
be neglected any more and the RF-coil sensitivities depend on the object
under investigation - in contrast to the gradient fields. Therefore, it is not
sufficient to measure the profiles only once, but the sensitivity maps should
be reacquired for separate examinations.
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2.1.3 Image Resolution and Aliasing Artifacts

Image resolution and aliasing artifacts can be analyzed with the spatial
response function (SRF). The SRF has already been introduced above in a
different context, where it was interpreted as a voxel function (cf. section
2.1.1, page 40ff); the SRF is calculated from Eq. 2.7, which is repeated here:

fρ(�x) =
∑
α,κ

Fρ,(α,κ)encα,κ(�x). (2.16)

Following Eq. 2.6, the SRF describes the (continuous) spatial distribution
of the magnetization that contributes signal to the voxel of interest. As a
consequence, image resolution and aliasing artifacts are fully described with
the SRF. Apart from very fundamental situations such as standard Fourier
imaging, the SRF varies from voxel to voxel. Therefore, the SRF should
be calculated for several voxels whenever possible. This is not always an
easy task and it is often more convenient to analyze image resolution and
aliasing alternatively with the point spread function (PSF), which can be
determined straightforwardly by data simulation.

The PSF is in some respect the opposite of the SRF: The PSF p�x0
(ρ) describes

the effect of a single source point δ(�x− �x0) at a certain location �x0 onto the
intensities of each voxel in the reconstructed image. However, it is closely
related to the SRF:

p�x0
(ρ)

(2.6)
=

∫
V

δ(�x− �x0)fρ(�x)d�x = fρ(�x0) = [Fs(δ(�x− �x0))]ρ . (2.17)

The vector s(δ(�x− �x0)) is the signal generated by a point source located at
�x0. The concepts of SRF and PSF may be explained with the help of Fig. 2.2.

The PSF approach can be useful for sufficiently high-resolved image recon-
structions.9 An interesting relationship between SRF and PSF is established
with the following lemma: Consider evaluation of the SRF only on the recon-
struction grid G and evaluation of the PSF only for source locations on G. Then, the
SRF is given by the rows of the matrix product FE, whereas the PSF is described
by the columns of that product. This lemma follows directly from the above
definitions of SRF and PSF. Crucial is the observation that FE is Hermitian

9The condition of sufficient resolution should generally be fulfilled when FE = 1 cannot
be satisfied exactly.
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Figure 2.2: Concepts of SRF and PSF. (a) The SRF describes the signal contribu-
tions of the object to a certain reconstructed image voxel. (b) The PSF describes
the contribution of a single source point to the different reconstructed image voxels.
SRF and PSF therefore describe - in some way - opposite processes. In practice,
however, they are often very similar.

for both the weak and the strong reconstruction approach.10 The SRF of a
voxel ρ evaluated at the grid points is therefore equivalent to the Hermitian
of the PSF evaluated for a source located at �xρ and it is sufficient to analyze
either of them.

Most measures of image resolution focus on the width of the main peak of
the absolute value of the SRF or, alternatively, of the PSF [53]. The width
of the main peak may be estimated in various ways. In this thesis, the
width is defined as the full width at half maximum (FWHM) of the SRF. If
numerical simulations are performed the FWHM of the PSF is determined
instead. This definition is useful whenever image resolution is not the focus
of an analysis because it allows an estimation of image resolution with only
one single number. The effect of a finite width of the main peak is image
blurring.

A secondary criterion for image resolution is signal contamination from
neighboring voxels. Neighboring voxels contribute when the main peak
of the SRF is broader than one voxel. Also, the sidelobe behavior of the
SRF leads to signal contamination. The sidelobe contribution is normally
classified as an artifact (truncation artifact, Gibbs ringing artifact) rather
than a feature of image resolution. Note, however, that it is possible to

10Such a Hermitian relation between PSF and SRF has been observed in [170] for a similar
reconstruction method. A corresponding relation also exists for the weak and the strong
reconstruction: For the weak reconstruction, this statement follows from the fact that FE =
E+E, which is Hermitian. For the strong reconstruction, FE = EHB+E, which is also
Hermitian.
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reduce the height of sidelobes at the expense of the width of the main lobe
by filtering the data. On the other hand, it is also possible to reduce the
width of the main lobe at the expense of the sidelobes. To some degree, it
is even possible to design reconstructions with heavily asymmetric SRFs.
The sidelobe behavior and width of the main peak can therefore be traded
against each other, giving flexibility in designing adequate reconstructions
depending on the application. In order to inspect image resolution in detail,
it is therefore necessary to explore not only the width of the main peak, but
the complete shape of the SRF (or alternatively of the PSF), for example by
analyzing function plots of the SRF of several voxels.

Especially when undersampling is driven to its limit, the well defined
main peaks are deteriorated with high sidelobes in the SRF, which might
even evolve into secondary aliasing peaks. The effect is often denoted as
the aliasing artifact. Depending on the trajectory, the aliasing artifact can
be very prominent with a perfectly coherent structure (for example for
Cartesian trajectories), with a less pronounced coherency (for example for
radial trajectories), or even rather noise-like with an incoherent structure
(for example for random undersampling).

An academic example of an SRF and the corresponding reconstructed image
is shown in Fig. 2.3. In this figure, also the relation of characteristic features
of the SRF like width of main peak, sidelobe behavior and secondary aliasing
peaks with artifacts consisting of blurring, Gibbs ringing and aliasing are
depicted. In particular, it is shown that Gibbs ringing and aliasing artifacts
are not always clearly differentiable by analyzing a single SRF of one image
location.

2.1.4 Signal-to-Noise Ratio

Image reconstruction may enhance noise in the reconstructed image voxels.
Two important methods for the analysis of noise propagation are discussed
here.

Condition Number The condition number describes the worst case effect
of a small change in the signal to the image after reconstruction. More
specifically, the relative condition number κrel of a general reconstruction
algorithm f(·) for a measured signal s is the maximum ratio of the frac-
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Figure 2.3: Analysis of image artifacts with the help of the SRF. (a) 2D plot of the
SRF for a certain image location. (b) A 1D cross section through the main peak as
indicated by the grid in subplot (a). (c) Image reconstruction of an example numerical
phantom. The finite width of the main peak leads to a finite image resolution. The
example shown represents an unusual reconstruction: Two types of sidelobes with
different frequencies occur. The resulting Gibbs ringing also exhibits two different
frequencies. In the SRF, a very small aliasing peak is visible. In conformity to this
fact, the reconstructed image shows no visible aliasing in most parts of the image.
However, at the top part of the image, substantial aliasing results. In the 2D function
plot of the SRF several small peaks occur, which cannot be classified exactly as
pronounced Gibbs ringing sidelobes or secondary aliasing peaks.

tional change in the image f(s) to any fractional change in the signal s (cf.
definition 2.4.6 on page 131 in [27]):

κrel(s) = lim
ε→0+

sup
‖δs‖<ε

[
‖f(s+ δs)− f(s)‖

‖f(s)‖

/
‖δs‖
‖s‖

]
=

‖∂f/∂s‖‖s‖
‖f(s)‖

f(s)=Fs
=

‖F‖‖s‖
‖Fs‖ =

σmax(F)

‖Fs‖/‖s‖ .

The result on the right hand side has been derived based on the assumption
that the reconstruction is linear; i.e., f(s) = Fs. The value σmax(F) is the
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maximum singular value of the reconstruction matrix F. Depending on the
signal, the condition number of the reconstruction is therefore limited by:

1 ≤ κrel(s) ≤
σmax(F)

σmin(F)
. (2.18)

The worst case signal with a condition number equaling the eigenvalue
spread of the reconstruction is often simply denoted as the condition num-
ber κ(F) of the reconstruction matrix F.

(Co-)Variance Analysis Often, it is useful to have information about the
noise propagation on a voxel-by-voxel basis. As MRI measurements are
statistical processes, the resulting image voxel values can be regarded as
random variables, whose variances and correlations with respect to other
image voxels are in general adequately described with a covariance matrix,
occasionally denoted as the image noise matrix X [135]. Assuming zero-mean
noise in the individual receiver channels (which is generally the case) and a
linear reconstruction F it is straightforward to show that

X = FΨ̃FH , with Ψ̃ = ηηH . (2.19)

The vector η represents the noise contribution of the acquired signal data.
The sample noise matrix Ψ̃ has a very sparse structure: Note that the temporal
correlations of the signal data have the time scale of collisions between
the charged particles in the object, thus they are very short, such that
there are no correlations between different signal acquisitions κ. Moreover,
each signal acquisition of the same receiver coil has the same statistical
properties. Therefore, the signal noise matrix can be decomposed into the
product Ψ̃ = 1Nκ

⊗ Ψ. The matrix Ψ = ηrη
H
r is of size Nc × Nc only. It

is often referred to as the receiver noise matrix. The subscript r indicates
that in contrast to the much larger matrix Ψ̃, there is only one entry in
the noise vector ηr for each receiver channel. The receiver noise matrix
Ψ is determined by simply acquiring noise on each coil channel and then
averaging over the outer product. This might be done, for example, by
playing out a gradient echo sequence without exciting the sample.

The matrix Ψ̃ describes the noise covariances of the individual signal chan-
nels sα. But what is the theoretical relation of the noise to the physical
properties of the sample and the receiver coil? In chapter 1.1.4c, page 23ff,
such a relation (Eq. 1.18) is established for a single channel based on the
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principle of reciprocity. The principle also holds for several receiver chan-
nels and Roemer presents in [145] how the noise is related to sample and
coil properties. This relation can be explained with a concept similar to the
elegant “net” coil combination presented by Wiesinger et al. [200]. Consider
a linear signal combination s =

∑
α wαsα = wT s. As discussed in the

previous paragraph, the variance of the combined signal is s2 = wΨwH .
Consider now a single virtual coil, which would generate exactly the same
signal. Because of the linearity of the Maxwell equations the electric sensi-
tivity �E would simply be �E(�x) =

∑
α wα

�Eα(�x). According to Eq. 1.18, the
resistance R of the sample seen by this virtual coil would then equal to:

R =

∫
V

σ(�x)|�E(�x)|2d�x =

∫
V

σ(�x)|
∑
α

wα
�Eα(�x)|2d�x = wRwH ,

Rjk =

∫
V

σ(�x)�Ej(�x)�E∗k (�x)d�x.
(2.20)

Combining this result with Eq. 1.17, it can be concluded directly that the
noise covariance matrix is related to the physical properties of sample and
receiver in the following way:

Ψ = 4kBTBWR. (2.21)

Signal-to-Noise Ratio The signal-to-noise (SNR) ratio measures how
strongly the reconstructed magnetization is affected by noise. It is cal-
culated by dividing the absolute value of the signal mρ in a voxel ρ by
the standard deviation

√
Xρ,ρ of the noise in that voxel. Recall that the

reconstructed signal mρ represents the “average” magnetization mavg
ρ in

the corresponding voxel (where “average” is defined by Eq. 2.6). It can
therefore often be considered as being independent of the reconstruction.
The SNR is then given by:

SNR =
|mρ|√
Xρ,ρ

(2.19)
=

|mavg
ρ |√

(FΨ̃FH)ρ,ρ

(2.6,2.21)
=

∣∣∫
V
m(�x)fρ(�x)d�x

∣∣√
4kBTBW (F(1 ⊗R)FH)ρ,ρ

.

(2.22)
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2.1.5 SNR-Optimized Reconstructions

The MPPI reconstruction F = E+, presented in Eq. 2.15, is only one out of
several possibilities to solve the weak reconstruction condition FE = 1 if
the number of reconstruction points is less than the number of signal data,
which is often the case when several receiver coils provide separate data.
This ambiguity leaves room to improve the SNR in the reconstructed image
while still fulfilling the condition of weak reconstruction. Keep in mind that
the reconstructed image values should represent the magnetization density
of the object independent of the type of reconstruction. Therefore, instead of
maximizing SNR, it is also possible to simply minimize the noise propagated
to the reconstructed image voxels. The reconstruction weights Fρ,(α,κ) are
determined independently for each voxel and therefore the optimization
can be performed for all voxels at the same time by minimizing the trace of
the image noise matrix:

min
F

Tr{FΨ̃FH} subject to FE = 1.

The optimization problem represents a complex-valued quadratic program
with very good properties: There are no inequality constraints and the image
noise matrix X = FΨ̃FH is a positive-definite, Hermitian matrix (cf. Eqs.
2.20, 2.21), for which an inverse always exists. The above problem can be
solved with the help of the corresponding Lagrange function. This function
is formed by multiplying the left hand side of the constraint FE − 1 = 0
with Lagrange multipliers Λ and adding this term to the cost function. Then,
the derivative of the Lagrange function is set to zero. Together with the
constraint FE = 1, a set of two equations have to be fulfilled at the same
time:

2FΨ̃+ΛEH = 0 and FE = 1.

Solving the first equation for F, inserting the result in the second equation,
the Lagrange multipliers can be determined and inserted back in the first
equation resulting in the solution:11

F = (EHΨ̃
−1

E)−1EHΨ̃
−1

. (2.23)

11For the real-valued problem of this kind, compare chapter 10.4.2 in [15]. A different, but
elegant proof that makes use of the Cholesky factorization of the image noise matrix is found
in Appendix A of [200].
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The inverse of EHΨ̃
−1

E should usually exist whenever the amount of signal
data exceeds the number of image voxels. In [134] Prüssmann et al. point
out that the reconstruction formally reduces again to the simpler standard
form as presented in Eq. 2.15 by virtue of the Cholesky factorization Ψ̃ =

LLH and by redefinition of the encoding matrix and the signal data: E →
L−1E and s → L−1s. The advantage of this redefinition is that uncorrelated
signals result. This process is therefore sometimes denoted as decorrelation
[134]. This discussion also shows that SNR optimization is only useful
when significant signal correlations between different channels exist. Many
state-of-the-art RF coils show only minor correlations and therefore SNR
optimization does often not improve image quality significantly and can
often be neglected.

2.2 Image Reconstruction from a Single
Receiver Coil

The development of image reconstruction methods for PatLoc imaging
benefits a lot from an understanding of the basic methods that are used
to reconstruct imaging data acquired with a single RF-receiver coil. When
spatial encoding is done exclusively with linear gradient fields, the term
Fourier imaging is often used.12 Some of the most commonly used recon-
struction methods are presented and analyzed for Cartesian imaging, radial
imaging and arbitrary sampling trajectories. The presentation follows an
unconventional approach. The properties of Cartesian image reconstruction
are typically described by analyzing the properties of the discrete Fourier
transform (DFT) [53, 96]. Despite the undisputed effectiveness of such an
approach, the context of this thesis requires taking on a more abstract point
of view. Therefore the most important image properties from Cartesian
sampling are derived directly from the general matrix approaches presented
in the previous section. Then, it is demonstrated for radial trajectories that
direct matrix inversion results in feasible reconstructions also for other sorts
of trajectories as well. However, for non-Cartesian trajectories such an
approach is not efficient, and the section concludes with the presentation

12In this thesis, the term Fourier imaging is used in a broad sense. The term shall not
only encompass Cartesian trajectories, but any trajectory like for example a radial acquisition
scheme.
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of two useful algorithms that are often encountered in practice: filtered
back-projection and gridding reconstruction.

2.2.1 Standard Cartesian Method

a) Image Reconstruction

The most basic and also most wide-spread imaging modality is Fourier
imaging with Cartesian k-space traversal (see Fig. 1.8a). Assume an acqui-
sition with N phase-encoding lines and constant k-space increment 2πΔk

from one phase-encode to the next. For quadratic images the same parame-
ters, N samples at distance 2πΔk, are typically chosen along the frequency
encoding direction.13 Image reconstruction in Cartesian Fourier imaging
is straightforward: The desired images are found by simply applying an
inverse 2D discrete Fourier transform (DFT) to the signal data, implemented
as a fast Fourier transform (FFT). In order to conform to later notation, the
reconstruction is written as a matrix equation. To this end, the 2D signal
data as well as the reconstructed images are represented as vectors s ∈ RN2

and m ∈ RN2

respectively, and the inverse 2D-DFT operation is described
with the matrix iDFT. The reconstructed image is then found according to:

m = iDFT · s. (2.24)

The entries of the matrix14 iDFT describe a shifted and scaled version of
the standard inverse 2D-DFT:

(iDFT)(p,p′),(q,q′) = (Δk)2 · e 2πi
N (pq+p′q′). (2.25)

b) Conformity with Linear Reconstruction Theory

It is shown here under which circumstances the same reconstruction is
found with the general matrix approaches presented in section 2.1. Explicit
calculations are shown only for the weak approach. It is left to the interested
reader to show that the strong approach gives exactly the same results in
the case of Cartesian Fourier imaging.

13On some MRI scanners the frequency direction is oversampled by a factor of two in order
to avoid wrapping artifacts in this direction.

14The indices p, p′, q, q′ are defined to run from −N/2 to N/2− 1.
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From Eq. 2.11 it is known that the reconstruction matrix F for the weak
approach is related to the encoding matrix via F = (ΔV )−1E+. On the other
hand, the reconstruction matrix should conform to F = iDFT, according
to Eq. 2.24. Comparison of the two expressions immediately shows that
the imaging process must be designed to generate an encoding matrix
E = (ΔV )−1 ·DFT. The matrix DFT is the inverse of iDFT and can be
described as its Hermitian scaled with N−2(Δk)−4. Also consider that all
voxels have the same size ΔV = (Δx)2. The (reference) encoding matrix
therefore has the following entries:

E(p,p′),(q,q′) = b · e− 2πi
N (pq+p′q′), where b = (NΔxΔk)−2. (2.26)

The encoding matrix is linked to the physical conditions of the acquisition
process via Eq. 2.9. This equation is repeated here:

E(α,κ),ρ =

∫
V

i∗ρ(�x)encα,κ(�x)d�x, with encα,κ(�x) = cα(�x)e
−i�kκ�x. (2.27)

In Fourier imaging, only one receiver coil with homogeneous sensitivity is
used. Therefore, the index α can be skipped. Ignoring correct physical units
it is assumed w. l. o. g. that c(�x) = 1. The k-space trajectory �kκ forms the
Cartesian sampling grid K:

K = 2πΔk · (IN × IN ) , where IN := [−N/2,N/2 − 1] . (2.28)

Under these conditions, it is helpful to identify the index κ with the ordered
pair (p, p′) ∈ IN × IN and the encoding functions of Cartesian Fourier
imaging (cf. Eq. 2.27) are given by:

encp,p′(�x) = e−2πiΔk(px+p′y). (2.29)

The calculation of the corresponding encoding matrix involves an integra-
tion over the support of the ideal voxel shape. As mentioned above, a
realistic voxel would have a square-shaped support. Comparison with the
reference encoding matrix (2.26) shows, however, that the ideal voxel shapes
of standard Fourier reconstruction are delta functions iρ(�x) = δ(�x− �xρ). As
a consequence the integration is just an evaluation of the encoding func-
tion at the voxel centers of the reconstruction grid G. Take into account
that the image is reconstructed on a Cartesian grid G = Δx · (IN × IN )

with the same number of grid points as K. The voxel centers are there-
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fore described by �xρ = Δx · (q, q′)T when the voxel position ρ is identified
with the pair (q, q′) ∈ IN × IN . Then, the entries of the encoding matrix
E(α,κ),ρ → E(p,p′),(q,q′) read:

E(p,p′),(q,q′) =

∫
V

δ(�x− �xρ)encp,p′(�x)d�x = e−2πiΔkΔx(pq+p′q′).

Finally, the comparison with Eq. 2.26 reveals that the weak reconstruction
(under the discussed assumptions) is equivalent to standard Cartesian
Fourier reconstruction if the following relation between k-space distance
Δk and voxel size Δx holds:

ΔxΔk = 1/N. (2.30)

This relation discloses what k-space sampling distance Δk should be chosen
for the object under investigation: First, it often makes sense to choose
a reconstruction grid, which covers the whole object. Assume that the
object lies inside the square-shaped region V = [−a/2, a/2] × [−a/2, a/2].
Then, the object is covered by the reconstruction if and only if NΔx > a.
Correspondingly, according to Eq. 2.30, the k-space sampling distance
should be chosen smaller than

Δk < 1/a. (2.31)

Summary With the assumption of delta functions as ideal voxel shapes,
both strong (not explicitly shown here) and weak reconstruction approaches
are equivalent to the standard reconstruction of Cartesian Fourier imaging.
The reconstruction is a scaled and shifted version of the standard inverse
DFT. This result is found by choosing a k-space sampling distance Δk,
which equals the inverse of the desired extent NΔx of the image.

c) Image Properties

The most important image properties - resolution, field-of-view (FOV) and
image noise - are the topic of this section. They are analyzed in detail
with the general theoretical considerations presented above, sections 2.1.3
and 2.1.4, page 50ff. It is shown that, for Cartesian Fourier reconstruction,
the investigated image properties are characterized by simple analytical
expressions.
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Spatial Response Function and Point Spread Function Image resolution
and the concept of FOV can be analyzed with the SRF or, alternatively, with
the PSF. First, a definition is made in order to simplify the calculations:

gN (x) :=
1

N

N/2−1∑
p=−N/2

e
2πi
N px =

1

N
· e−πi

N x sin(πx)

sin(πx/N)
. (2.32)

The definition involves a geometric sum and can thus be transformed
according to the equality on the right hand side. Note that the factor 1/N
has been chosen to ensure that gN (0) = 1.

The SRF of Cartesian Fourier reconstruction can be derived by combining
the definition above with Eqs. 2.7, 2.24, 2.25, 2.29, 2.30:

fq,q′(�x) =
1

(Δx)2
· gN

(
q − x

Δx

)
gN

(
q′ − y

Δx

)
. (2.33)

According to Eq. 2.17, the PSF of a source located at �x0 reads correspond-
ingly:

p�x0
(q, q′) =

1

(Δx)2
· gN

(
q − x0

Δx

)
gN

(
q′ − y0

Δx

)
. (2.34)

SRF and PSF of Cartesian Fourier reconstruction are illustrated in Fig. 2.4
for the parameters Δk = 1 and N = 32. Whereas the SRF is shift-invariant,
the PSF changes depending on where the source location lies within a
particular voxel. This is considered in the figure, where PSFs are shown for
two different source locations, whereas only a single SRF plot is depicted.
The figure confirms the statement that the SRF should be preferred over the
PSF for image analysis whenever possible. An explanation is found in the
figure caption.

Resolution For Cartesian Fourier imaging, the FWHM of the main peak
of the SRF, a primary measure for image resolution (cf. page 51 in section
2.1.3), can be calculated from Eq. 2.33. High-resolution applications have a
FWHM of ≈ 1.21 voxels. In low-resolution applications the FWHM is only
negligibly larger. The actual image resolution (as defined here) is therefore
slightly lower than suggested by the voxel dimensions of the reconstructed
image. The reason for this fact is that the voxels share object information
resulting from convolution with the SRF. The fundamental relation between
voxel size and k-space sampling distance, as presented in Eq. 2.30, casts
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Figure 2.4: SRF and PSF of Fourier imaging. (a) SRF. (b) PSF with source location
between two voxel centers. (c) PSF with source location exactly at a voxel center.
The comparison of SRF and PSFs shows that only the SRF exhibits the correct
Gibbs ringing oscillations. In the shown magnitude images, the PSFs only show
smoothly decaying envelope functions. On-center source locations even give the
wrong impression that no voxel contamination from neighboring voxels occurs. From
these examples it can be concluded that the SRF should be analyzed and not the
PSF if possible, unless justified otherwise.

image resolution into the realm of signal acquisition: Image resolution is
defined by the extent NΔk of the acquired k-space.

What about the sidelobe behavior? The SRF oscillates with zero-crossings at
intervals of exactly one voxel. It is anisotropic; near the peak, the envelope
of the SRF decreases as 1/r along the main coordinate axes and as 1/r2

along the diagonal direction. Along the main axes, the minimum value is
N/2 voxels away from the main peak with value N−1. Along the diagonal,
the minimum value is N/2 voxels away from the center of the peak in each
direction with a minimum value of N−2. The envelope increases again for
locations farther away than N/2 voxels from the central peak.

Field-of-View Whereas image resolution is a consequence of the finiteness
of signal acquisition, a finite FOV is a direct consequence of the discrete
nature of signal sampling. It has been argued above that the sampling
interval Δk should be chosen smaller than the inverse of the extent of the
measured object (cf. Eq. 2.31). Otherwise, the image reconstruction grid
would be too small to cover the whole object. This is true, but it only
describes part of what actually happens: Those image areas which fall
outside of the reconstruction window are not merely cut out, but they wrap
back into the image. Therefore, the size of the reconstruction grid is often
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referred to as the field-of-view and the wrapping behavior is denoted as the
fold-over artifact. This artifact is illustrated in Fig. 2.5.

Figure 2.5: Fold-over artifact. (a) Sufficiently dense sampling results in non-aliased
images. (b, c) If the sampling distance is chosen larger, the FOV becomes smaller
and the image folds over. The aliased image is typically centered as in (b). The
circularly shifted representation (c) is equivalent. It clearly shows that top half of the
image and bottom half are aliased.

The argumentation above shows that the FOV equals the inverse of the k-
space sampling distance. This is confirmed by a further analysis of the SRF
and is a direct consequence of the fact that gN (·) (cf. Eq. 2.32) is periodic:

gN (x+N) = sign(N)gN (x) = ±gN (x).

W. l. o. g. N is assumed to be even. Therefore, gN is periodic with period
N . According to Eqs. 2.33, 2.34, SRF and PSF are periodic with periodicity
of exactly N voxels or equivalently with a periodicity of FOV := NΔx in
image space. Therefore, the SRF has a minimum at half distance between
the periodic main peaks and increases again after half a FOV. The SRF
indicates that magnetization vectors, located at positions with a distance
FOV are superimposed, i.e., folded on top of each other. Therefore, it can
be concluded that aliasing is avoided as long as the region W covered by
the object lies within a square �FOV having an edge length FOV in both
directions:

W ⊂ �FOV . (2.35)

This equation is the mathematical formulation of the famous Nyquist limit
in the context of MR imaging. It conforms to Eq. 2.31, which establishes a
relationship between image fold-over and signal acquisition. Whereas im-
age resolution depends on the extent of the k-space sampling grid, fold-over
occurs when the k-space sampling distance is chosen larger than the inverse
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of the width of the object under investigation. In practice, fold-over arti-
facts occur only along the phase encoding direction because oversampling
the frequency encoding direction mainly just enlarges the amount of data
handling; it does not, however, prolong the acquisition time.

Completeness of k-Space Encoding In MRI, only a one-dimensional path
�k(t), t ∈ R through a higher-dimensional k-space �k ∈ Rd can be acquired.
In the first chapter it has already been mentioned that it is nevertheless
possible to treat the acquisition as though a finite higher-dimensional subset
K ⊂ Rd of the higher-dimensional k-space had been acquired (effective
k-space). This astonishing result can be understood with the concept of
FOV: The discrete nature of sampling leads to a finite FOV. Denser sampling
would only increase the size of the FOV with an infinitely large FOV if
d-dimensional continuous sampling was possible. However, as measured
objects are always of finite size, it is sufficient to acquire one-dimensional
k-space trajectories without losing image quality by leaving out data points
in-between. Of course, the same applies for the sampling along the path,
such that only a finite number of data points need to be stored. In case
of Fourier sampling, the Whittaker-Shannon interpolation formula [168]
goes one step further in that the formula gives an exact mathematical rule
of how the discrete signal data can be combined to “fill” the omitted k-
space between the data samples. With supplementary RF-encoding, the
density of k-space sampling can be reduced even further (cf. section 2.3,
page 72ff). The k-space sampling density is of uttermost importance in
MRI because gradient encoding is done in a time-consuming sequential
manner. Therefore a large amount of literature deals with the problem
of undersampling k-space as much as possible without losing significant
image information, among others [173, 135, 3, 200, 52, 112, 99, 69, 210].

Image Noise The noise in the reconstructed images is analyzed here with
the two methods presented in section 2.1.4, page 52ff: Condition number
and (co-)variance analysis.

First, consider the condition number of the reconstruction matrix F = iDFT.
This matrix is a scaled version of the normalized DFT. The normalized DFT
is unitary and therefore its singular values all equal unity. The singular
values of F are therefore also all equal and, according to Eq. 2.18, the
condition number of F is unity. The condition number cannot be below
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unity, thus Cartesian Fourier reconstruction is the optimal reconstruction in
terms of noise propagation.

Second, consider the statistical analysis using the image noise matrix. From
Eq. 2.19 it can be concluded that the image noise matrix is proportional to
the identity matrix:

X = FΨ̃FH = ψFFH = ψ(Δk)4N21N2 .

The value ψ is the signal noise. It can be calculated from Eqs. 2.20, 2.21,
and is a scalar because only one receiver coil is used for signal acquisition.
The parameter N is the number of voxels in each dimension and Δk is
the k-space sampling distance. The intensities of the image voxels are
therefore not correlated and the variance is the same for all image voxels.
The reconstructed image can therefore be regarded as being optimal in
terms of statistical image properties.

With Eq. 2.22, the SNR of an image voxel ρ is given by:

SNRρ =
|mavg

ρ |
√
ψ

(Δx)2N. (2.36)

The SNR is therefore proportional to the voxel size. The linear dependency
on the number of acquisition points refers to incoherent signal averaging
via the FFT.

d) Conclusion

The general matrix approach can be used to derive the most important re-
sults for Fourier reconstruction. Strong and weak approach lead to the same
reconstruction. The analysis of image properties like resolution and im-
age noise shows that Cartesian Fourier imaging has remarkable properties.
The image properties are the same for each voxel. Fourier reconstruction
leads to uncorrelated voxels with optimal noise variance. The main reason
for the beneficial properties of Fourier reconstruction is that it is basically
the discrete Fourier transform. There is also a practical advantage: Even
though the discrete Fourier transform matrix is dense, very fast reconstruc-
tion algorithms exist which solve the reconstruction with a complexity of
O(N2 ln(2N)) for 2D imaging - much faster compared to direct computation
of the Fourier transform, requiring O(N4) elementary operations.
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2.2.2 Reconstruction Methods for Radial Imaging

The first MRI images were acquired with a radial acquisition trajectory
[92]. Such a trajectory is sketched in Fig. 1.8b, page 31; a typical sequence
diagram is shown in Fig. 2.6. Nowadays, radial imaging plays an important
role in MRI, especially in clinical research settings. It offers unique and fast
encoding options [151, 10, 141] and there are ongoing efforts to develop
advanced imaging techniques [3, 47, 112] and investigate interesting appli-
cations [143, 214, 39]. One drawback of radial MRI is its susceptibility to
gradient timing errors. However, effective techniques exist to bring these
errors under control [130]. Other recent developments in improving acqui-
sition and reconstruction methods add to the importance of radial imaging
for MRI [148, 13]. If the k-space is traversed as in Fig. 1.8b, an initial k-space
location has to be reached prior to frequency encoding similar to Cartesian
imaging. In contrast to Cartesian imaging, however, the center of k-space
(=echo) is acquired each readout. This results in oversampling of the center,
which can be exploited in various advantageous ways (cf. e.g. chapter 2.3.4
in [210]).

Figure 2.6: Basic sequence diagram for spin echo radial imaging. The mathematical
formulas represent the gradient strengths of the x-gradient and the y-gradient for
the different projection angles Θj . For reference, compare the diagram with the
Cartesian analogue in Fig. 1.10b, page 34.

Radial measurements may be reconstructed in several ways. It is shown
below that MPPI reconstruction is feasible, but computationally demand-
ing. Faster alternatives are filtered back-projection and especially gridding
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reconstruction. Gridding reconstruction is also used for arbitrary sampling
trajectories and discussed separately in section 2.2.3, page 69ff.

a) Direct Matrix Inversion

With the general matrix approach a matrix F can be derived that solves the
reconstruction problem. The encoding functions are given by:

enc(p,j)(�x) = e−2πiΔkpBj(�x) , where Bj(�x) = cos(Θj)x+ sin(Θj)y.

Bj(�x) is proportional to the magnetic field sensitivity during the jth signal
readout (j = 1, . . . , Np), taken at the projection angle Θj , where the angles
are typically distributed equidistantly on a semicircle. The index p denotes
the pth sampling point along the corresponding readout of length Nr. The
encoding matrix then has the following entries:

E(p,j),(q,q′) = e−
2πi
N pBj(q,q

′).

In the derivation, it has been assumed that �q = (q, q′) = �x/Δx by making
use of the fact that with linear SEMs Bj(�x) = Bj(Δx ·�q) = Δx ·Bj(q, q

′). It is
useful to describe the reconstructions in the projection space, by taking the
inverse one-dimensional DFT along the temporal dimension of the individual
readouts: ŝ = iDFTt · s. With the definition F̂t = N−1 · F · DFTt one
finds m = Fs = F̂tŝ. Then, w. l. o. g. setting ΔV := 1, the equation F = E+

transforms accordingly:

F̂t = N−1 · F ·DFTt = N−1E+DFTt = (iDFTt ·E)+ = Ê+
t .

According to Eq. 2.32, the entries of Êt = iDFTt ·E are given by:

(Êt)(ω,j),(q,q′) = gN (ω −Bj(q, q
′)).

In the limit N → ∞ and for sufficiently dense sampling, the encoding
matrix Êt, having been transformed to frequency space, becomes very
sparse; it approaches a delta function. In this case, the signal acquisitions
ŝ ∝ Êtm represent projections along the isocontour lines of the projecting
field (Fig. 2.7), and calculation of the forward operation Êm can be acceler-
ated by a factor of Nr. However, this does not immediately imply also fast
calculation of the inverse operation. Another problem is that, in reality, the



68 Chapter 2. Image Reconstruction in MRI

Figure 2.7: Radial projection imaging: an example of a projection and an example
of back-projection. (a) For high-resolution readouts, the encoding matrix nearly
represents exact projections along the field contour lines of the encoding field. The
encoding matrix is therefore very sparse. (b) For low-resolution readouts, it is visible
that the projections are in reality convolved with a sinc-function. Thus, the encoding
matrix is not sparse for low-resolution imaging applications. (c) The back-projection
operator projects the one-dimensional projections onto a two-dimensional plane.

number of samples N is finite and therefore gN (·) cannot be approximated
through a delta function. The encoding matrix is not sparse, thus direct in-
version is impractical requiring O(N3

rN
3
p ) elementary operations.15 Explicit

calculation of the correlation matrix B (cf. Eq. 2.14) shows that B is also
dense and therefore the strong reconstruction has the same high numerical
complexity as the weak reconstruction for radial imaging.

b) Filtered Back-Projection

Faster reconstructions are achieved with filtered back-projection (FBP). FBP
is a well-established reconstruction technique in medical imaging [96, 32,
74], whose theory and discretization effects are well known. Because of
the abundant literature on this topic, FBP is here given only a cursory
discussion. There are several different possibilities for implementing filtered
back-projection [32, 74]. A common implementation for MRI consists of

15For a more general case, that also includes standard radial imaging, it is shown in chapter
7.1.2, page 240ff, that it is possible to sparsify the encoding matrix with an appropriate filter,
thereby significantly speeding up the forward operation. This can be exploited to accelerate
iterative image reconstruction based on the CG method.
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three steps. First, the Np signal projections s(k,Θj) are multiplied by a
filter function H(k), which can be chosen as H(k) = |k|. Other filters and
their properties are presented in [74], chapter 10. After filtering, an inverse
1D-FFT is performed on each filtered signal projection resulting in filtered
projections P̄ :

P̄ (p,Θj) =

Nr/2−1∑
l=−Nr/2

s(kl,Θj)H(kl)e
2πilp/Nr ,

where Nr is the number of readout points per projection. Finally, the recon-
structed image m(x, y) is found by back-projecting the filtered projections
P̄ (·,Θj) onto a Cartesian grid (x, y) ∈ Σcart:

m(x, y) =

Np∑
j=1

B(P̄ (·,Θj))(x, y)ΔΘ,

where ΔΘ is the angle increment between each projection and the back-
projection operator B(·) is defined as:

B(P̄ (·,Θj))(x, y) = P̄ (x cos(Θj) + y sin(Θj),Θj).

The operator B(·) thus back-projects a one-dimensional ray onto a two-
dimensional plane. The discrete nature of the data has two effects. First,
it is necessary to interpolate the projection data onto the positions p =

x cos(Θj) + y sin(Θj) [96, 74]. Typically, linear interpolation is used. This is,
however, not compulsory and other methods like cubic spline interpolation
may be employed. The second effect is that the target set of B must be a
discrete subset Σ ∈ R2. Typically, a Cartesian grid Σcart is chosen large
enough to cover the whole object. The FBP approach is illustrated in Fig. 2.8.
The numerical complexity of the FBP approach is governed by the back-
projection step, which has a complexity of O(N3

p ). Lookup tables may be
used to speed up the reconstruction [146].

2.2.3 Further Non-Cartesian Methods

Not only radial imaging, but any non-Cartesian sampling strategy can
be combined with the general matrix approaches of section 2.1. Similar
to the special radial case, numerically much faster algorithms exist also



70 Chapter 2. Image Reconstruction in MRI

Figure 2.8: Typical filtered back-projection algorithm. (a) The signal projections
are first multiplied with a filter along the readout direction. (b) The filtered signal
projections are then Fourier transformed along the dimension of readout. (c) Finally,
the image is reconstructed by back-projecting each filtered projection along the
direction of the corresponding projection angle. The formulas correspond to the
notation used in the main text.

for this more general situation of arbitrary sampling trajectories, among
them implementations of the non-uniform FFT (nuFFT) such as gridding
reconstruction or the min-max interpolation method of Fessler et al. [36]. An
overview of nuFFT reconstruction is found in [69]; also cf. paragraph Non-
Uniform FFT in chapter 7.1.3, page 248f. Here, only gridding reconstruction
is roughly presented because of its fundamental relevance, simplicity and
frequent use in MR image reconstruction. Consult [73, 132, 142, 8] for a
deeper discussion of this method.

The idea of the gridding approach is simple: The signal data are interpolated
(gridded) onto a grid with regular spacing in order to allow for an FFT.
Crucial to this approach is a convolution with a gridding kernel. Associated
with the convolution are two issues: First, the discrete implementation of
the convolution operation requires that the non-uniform sampling density
must be corrected in advance (“density compensation”). Second, as stated
by the convolution theorem, the signal after the FFT-operation is weighted
with the Fourier transform of the gridding kernel and this “roll-off” has
to be corrected. After presentation of a typical gridding algorithm, the
relationship of gridding to the MPPI solution is demonstrated here.

Gridding Algorithm A typical gridding algorithm consists of 4 steps

1. Density compensation. Several methods exist to measure the local
sampling density. Commonly used 2D and 3D methods include
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Voronoi diagrams [2] or weight determination with the help of a
convolution operation [78].

2. Convolution with gridding kernel and resampling onto a regular grid.
In theory, the sinc-function would be an optimal kernel [124]. It is,
however, impractical because of its infinite extent. Therefore, kernels
with finite support are used in practice. One consequence is that
it should be resampled onto an oversampled grid to avoid artifacts
resulting from data fold-over [124, 73, 8]. A very common kernel is
the Kaiser-Bessel kernel fkb(x;α) whose effectiveness depends on the
filter parameter α (also cf. [57]); with J0 being the zero-order modified
Bessel function of the first kind fkb(·) is defined as:

fkb(x;α) = J0(απ ·
√
1− x2)

/
J0(απ), where x ∈ [−1, 1]. (2.37)

3. Performing an inverse FFT to the convolved and regularly resampled
signal data.

4. “Roll-off” correction: division with the apodization function. The
apodization function is the Fourier transform of the convolution ker-
nel.

The individual steps are illustrated in Fig. 2.9. Gridding is very fast because
the convolution can be performed with kernels of finite support. The com-
plexity of the convolution is just O(NkerN) and for the FFT an additional
O(N ln(N)) operations are required, where Nker is the size of the kernel and
N the number of sampling points. For radial datasets, assuming Nr ∝ Np ,
gridding therefore has an improved complexity of O(N2

p ln(Np)) compared
to O(N3

p ) for standard FBP, which is not optimized via lookup tables [146].

Relationship to Direct Matrix Inversion It is useful to analyze the re-
lationship of gridding reconstruction to an optimal solution via matrix
inversion (cf. the above section 2.2.2a, page 67f). Such a relation can be
established for the optimal sinc gridding kernel [164]. Consider that grid-
ding reconstruction is a linear operation and can thus be represented by a
reconstruction matrix Fgrid = iDFT · THD. In this equation, iDFT rep-
resents the usual inverse DFT, T the sinc-kernel and the diagonal matrix
D the density compensation weights. The strong matrix approach, on the
other hand, has the solution Fls = EHB+ (cf. Eq. 2.13). Optimally, recon-
struction is performed on an infinitely dense grid. In this case, it can easily
be shown that EH = iDFT · TH and gridding reconstruction becomes
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Figure 2.9: Typical gridding reconstruction algorithm. Starting at the top left of
the image, the signal is multiplied with the density compensation weights. Then,
the irregularly spaced signal values are convolved with the gridding kernel and
resampled on a regular grid. The convolved signal is Fourier transformed and finally,
the “roll-off” artifact is corrected by division with the apodization function. This
illustration generalizes naturally to 2D and 3D gridding reconstructions.

Fgrid = EHD as opposed to the “least-squares” solution F = EHB+. It
follows immediately, that optimal gridding reconstruction approximates
the “least-squares” solution by approximating the correlation matrix B with
a diagonal matrix D. From this matrix perspective, it is astonishing that
this approximation does often not lead to image deterioration. However,
situations have occurred in which gridding reconstruction fails and more
accurate reconstruction methods must be used [107].

2.3 Image Reconstruction from Several
Receiver Coils

Abundant literature is available on the topic of image reconstruction from
several RF-receiver coils (cf. review article [90]). The most important reason
for this major interest is certainly the significance attributed to PI: Many
modern MRI systems are equipped with hardware for parallel reception.
But also from a purely algorithmic perspective, the high level of ongoing
research activity is not a surprise. Parallel image reconstructions are non-
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unitary. As a consequence, noise enhancement and artifacts introduced by
the reconstruction become even more problematic than before.

Another key problem in PI image reconstruction is the amount of extra data
to be handled from multiple receiver coils, thus making the inversion of the
encoding matrix even more demanding than for single-coil acquisitions.

In Fourier imaging this problem could be solved with the application of the
FFT. The simplest way of proceeding with several coil images is to perform
an FFT separately for each coil. Then, the only problem that remains is
how to combine the different coil images. Roemer et al. [145] have found a
combination with optimal SNR of the resulting image; similar results were
found by Walsh [188] based on statistical arguments. Also undersampled
datasets are resolved on a coil-by-coil basis with Cartesian SENSE, a method
developed by Prüssmann et al. [135].

Coil-by-coil approaches are very fast, however, the application of the DFT
for each data channel bounds the image resolution according to the Nyquist
criterion. In order to achieve “superresolution”, simultaneous treatment
of the coil images is required. In this section it is briefly explained that
for low-resolution applications the general matrix approach can lead to
higher-resolved image reconstruction.

PI image reconstruction methods are often divided into two large classes:
image space algorithms, such as the optimal coil combination of Roemer
et al. [145], PILS [50] or SENSE [135, 134], and k-space algorithms, such
as SMASH [173], (Cartesian) GRAPPA [49] or pseudo-Cartesian GRAPPA
[165]. In this section only the most common methods are presented. Special
attention is given to Cartesian SENSE. The algorithm is derived from linear
reconstruction theory and, as a by-product, the optimal coil combination
of Roemer et al. [145] is found. Also, the most important image properties
like image resolution, aliasing artifacts and image noise are analyzed in
detail. Apart from Cartesian SENSE, iterative SENSE [134], often used to
process non-Cartesian data, is presented and discussed. As representative
for the k-space based reconstructions GRAPPA is described. It is shown that
SENSE and GRAPPA are closely related to each other, thereby demonstrat-
ing that image space and k-space based reconstructions share a common
background.

The analysis of the algorithms often reveals block-diagonal and block-
circulant matrix structures. Such structures can be described with the
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Kronecker product. The reader not used to this mathematical concept is en-
couraged to consult Appendix A.2, page 293f. A more detailed presentation
can be found in chapter 13 of the textbook [91].

2.3.1 Image Space Reconstruction

Even though, historically, reconstruction in k-space was developed first in
the context of PI, the presentation begins here with image space methods.
Introduced in 1999, Cartesian SENSE (SENSitivity Encoding) [135] has since
then gained supreme importance for image reconstruction in PI besides the
k-space based GRAPPA [49] algorithm (see section 2.3.2a, page 97ff). SENSE
is very well suited to introduce into image reconstruction in PI because of
its clarity and direct relationship to the general matrix approach presented
above in section 2.1, page 40ff. The presentation begins with the basic Carte-
sian SENSE algorithm and an analysis of fundamental image properties
like image resolution and aliasing as well as image noise. Then, capabilities
of the general matrix approach to further improve image resolution are
discussed. The presentation of image space reconstructions closes with a
common adaptation of SENSE to non-Cartesian sampling trajectories.

a) Cartesian SENSE (SENSitivity Encoding)

Similar to Cartesian Fourier reconstruction, Cartesian SENSE is used to
reconstruct images that are encoded with regular sampling trajectories.
Therefore, the derivation of the encoding matrix follows arguments that are
similar to those used in section 2.2.1, page 58ff, where standard Cartesian
Fourier imaging is presented. The derivation is different because signal ac-
quisition is accelerated along the phase encoding direction by skipping some
of the encoding steps. Also, in contrast to Fourier reconstruction, SENSE is
designed to cope with signals from several receiver coils α = 1, . . . , Nc. This
methodological extension is reflected by labeling the encoding functions
with the additional index α: encp,p′(·) → encα,p,p′(·):

encα,p,p′(�x) = cα(�x)e
−2πi(Δkfpx+Δkphp

′y). (2.38)

In the previous section, it has been shown that without acceleration a
quadratic FOV and isotropic resolution results when the same amount of
data points are collected in the phase encoding direction as well as the
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frequency encoding direction with equal k-space sampling distances Δkph
and Δkf (cf. Eqs. 2.28, 2.29). Crucial with SENSE is that less encoding steps
are acquired. Correspondingly, the k-space distance is increased along the
phase encoding direction: Δkph = R ·Δkf , with R > 1 (typically, integer
acceleration factors R = 2, 3, 4 are used). Setting Δk := Δkf , a reduced set
of sampled k-space locations results: K = 2πΔk ·

(
IN ×R · IN/R

)
, where

the discrete intervals IN , IN/R are defined as in Appendix A.1, on page
291. Similar to Cartesian Fourier reconstruction, the entries E(α,p,p′),(q,q′)

of the encoding matrix are given by the encoding functions evaluated
at the voxel centers of the (quadratic) Cartesian reconstruction grid G =

{Δx · (q, q′)T |(q, q′) ∈ IN × IN}. Making use of the fact that ΔkΔx = 1/N ,
the encoding matrix becomes:

E(α,p,p′),(q,q′) = cα(qΔx, q′Δx)e−
2πi
N (pq+Rp′q′).

The weak approach requires the (pseudo-)inversion of the encoding ma-
trix. However, the acceleration in the phase encoding direction makes the
Fourier-terms non-bijective. They are periodic in q′ as can be seen from
the fact that e−

2πi
N (Rp′q′) = e−

2πi
N (Rp′(q′+N/R)). Fourier-inversion of the un-

dersampled data therefore leads to aliasing: R voxels with distance N/R

are equally encoded (cf. Fig. 2.10). It is therefore useful to divide the re-
construction grid G = Δx · (IN × IN ) into R equidistant non-overlapping
sub-grids Gl = Δx ·

(
IN × (IN/R + (l − 1) ·N/R

)
, l = 1, . . . , R. The image

space variable q′ is then replaced by q′ → (q′, l) (see Fig. 2.10). The Fourier-
terms are then independent of l and the encoding matrix decomposes into
two matrices:

E = D̃FT · C̃, where (2.39)

D̃FT(α,p,p′),(α′,q′′,q′′′) = δα,α′e−
2πi
N pq′′e−

2πi
N/R

p′q′′′ ,

C̃(α,q′′,q′′′),(q,q′,l) = δq′′,qδq′′′,q′cα(qΔx, (q′ + (l − 1)N/RΔx),

or, equivalently, where (with Iq,q′ being zero except for one position, where
the row and the column index is (q, q′), cf. the definition on page 293 in
Appendix A.2):

D̃FT = DFT⊗ 1 and C̃ =
∑
q,q′

Iq,q′ ⊗C(q,q′). (2.40)
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Figure 2.10: Aliasing in SENSE imaging. Shown is a situation with acceleration
factor R = 2. The image illustrates that magnetizations at two different locations
q′ and q′′ are equally encoded and cannot be differentiated. These positions are
aliased to a common location q. The two locations are therefore denoted as (q, 1)
and (q, 2) depending on if the location belongs to the top region G1 or to the bottom
region G2.

The matrix C̃ is block-diagonal (cf. Eq. A.2, page 293) with very small
blocks C(q,q′) of size Nc × R. These blocks have the elements C

(q,q′)
α,l =

cα(qΔx, (q′ + (l − 1)N/RΔx). From these equations it can be seen that C̃
represents different sensitivity weighting on each sub-region Gl. Consider
the matrix D̃FT. With the commutation rule presented in appendix A.2,
page 293f, one finds D̃FT = DFT⊗1 = PH(1⊗DFT )P. The permutation
P swaps the coil dimension and k-space dimension. According to Eq. A.3,
1 ⊗DFT is block-diagonal and it follows that D̃FT simply represents a
coil-wise 2D-DFT.

For Cartesian SENSE NcNκ ≥ Nρ and therefore, with Eq. 2.23 and with
E → (Δx)2 ·E, the SNR-optimized weak reconstruction approach yields:16

F = (Δx)−2 · C̃+ ĩDFT = (Δx)−2 · (C̃HΨ̃−1C̃)−1C̃HΨ̃
−1

ĩDFT. (2.41)

This result is found because Ψ̃ and ĩDFT commute with each other. The
block-diagonal structure (and thus sparsity) of the involved matrices is not

16For simplicity the symbol C̃+ not only denotes the standard MPPI, but also the decorre-
lated MPPI for SNR-optimized reconstructions, described in this section (cf. section 2.1.5, page
56f).
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Figure 2.11: Structure of the SENSE reconstruction matrix. The reconstruction
matrix is decomposable into two block-diagonal matrices and a permutation matrix.
One block-diagonal matrix represents coil-wise inverse DFTs. The second block-
diagonal matrix is formed by inverting a matrix, which contains the sensitivity profiles
of the receiver coils. It is very sparse and can be structured voxel-group-wise.
The block-diagonal structures of the matrices occur along different dimensions.
Therefore, it is necessary to permute coil dimension and spatial dimension in
between.

affected by the inversion: The matrix ĩDFT = iDFT⊗ 1 represents a coil-
wise inverse 2D-DFT and the MPPI of the sensitivity matrix separates to:

(C̃HΨ̃−1C̃)−1C̃HΨ̃
−1

=
∑
q,q′

Iq,q′⊗
[
((C(q,q′))HΨ−1C(q,q′))−1(C(q,q′))HΨ−1

]
.

The matrix C(q,q′))HΨ−1C(q,q′) is only of size R×R. The inversion of the
sensitivity matrix is therefore very fast: Instead of having to invert one large
matrix of size Nρ ×Nρ , it is sufficient to invert only very small matrices of
size R×R for each voxel (q, q′) ∈ IN × IN/R independently. The structure
of the reconstruction matrix, particularly of ĩDFT and C̃+, is illustrated in
Fig. 2.11 (cf. the PatLoc analogue, Fig. 5.2, page 161).

The reconstruction algorithm is therefore very simple: First a coil-wise
discrete 2D Fourier transform is performed. Then, for each voxel, the
aliased signals are collected in a vector of length Nc and multiplied with the
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inverse of the sensitivity matrix consisting of the sensitivity values at the
corresponding aliased locations. The algorithm is depicted in Fig. 2.12 in a
form that shows the similarity to Cartesian PatLoc reconstruction as good
as possible (cf. Fig. 5.3, page 163).

Figure 2.12: SENSE reconstruction algorithm. (a) Signals are acquired with several
receiver channels. (b) A coil-wise inverse 2D-FFT is performed. (c) For each aliased
voxel group a small matrix (pseudo-)inversion is performed in encoding space. (d)
Finally, the unaliased image parts are pieced together. Typically, steps (c) and (d)
are implemented as one single step. The reconstruction steps depicted are based
on data simulated for four channels of a real-world RF-surface coil array and an
acceleration factor of 2.

The reconstruction algorithm is very fast. The discussion of the latter para-
graph has shown that the inversion of the sensitivity matrix has a numerical
complexity of only O(N2), which is less than the coil-wise Fourier inversion,
that requires O(N2 ln(2N)) operations.

Remark: For R = 1 the SNR-optimized reconstruction, presented in Eq.
2.41, reduces to the optimal complex-valued coil combination found by
Roemer et al. in [145], Eq. 27, denoted as a single uniform sensitivity image
with optimized SNR at all points:

mρ =
cHρ Ψ−1

cHρ Ψ−1cρ
aρ. (2.42)

This equivalence is established by considering that the Nc×R matrix C(q,q′)

is for R = 1 actually a Nc × 1 vector cρ, whose elements are the sensitivity
values of the individual coil channels at a certain image location ρ. The
vector aρ is also of length Nc; it consists of the image intensities in the ρ-th
voxel from the different RF channels after Fourier transformation.
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b) Image Resolution and Aliasing Artifacts

With Eqs. 2.7, 2.38, 2.41 and Δkpe = R ·Δkf = R ·Δk, the SRF of SENSE
reconstruction is given by:

f(q,q′,l)(�x) =
∑
α,p,p′

F(q,q′,l),(α,p,p′)enc(α,p,p′)(�x)

=
∑

α,α′,q′′,q′′′
C̃+

(q,q′,l),(α′,q′′,q′′′)cα(�x)× . . .

. . .× (Δx)−2 ·
∑
p,p′

ĩDFT(α′,q′′,q′′′),(α,p,p′)e
−2πiΔk(px+Rp′y)

=

[∑
α

C̃+
(q,q′,l),(α,q,q′)cα(�x)

]
fFourier
q,q′,l (�x)

= cvirtq,q′,l(�x) · fFourier
q,q′,l (�x).

(2.43)

The SRF is therefore a combination of the aliased Fourier SRF and a weight-
ing function due to sensitivity encoding. The individual terms are given
by:

fFourier
q,q′,l (�x) =

1

(Δx)2
· gN

(
q − x

Δx

)
gN/R

(
q′ − y

Δx

)
, (2.44)

cvirtq,q′,l(�x) =
∑
α

C̃+
(q,q′,l),(α,q,q′)cα(�x) (2.45)

with C̃(α,q,q′),(q,q′,l) = cα(qΔx, (q′ + (l − 1)N/RΔx). (2.46)

The Fourier SRF has a reduced FOV and leads to aliasing in the phase
encoding direction. According to the condition of weak reconstruction (Eq.
2.10), the sensitivity weighting17 has the important property that

cvirtq,q′,l(qΔx, (q′ + (l′ − 1)N/RΔx) = δl,l′ . (2.47)

This relation expresses the fact that the sensitivity weighting suppresses the
unwanted aliasing peaks in the Fourier SRF. In other words: The lack of gra-
dient encoding in PI is compensated by sensitivity encoding. However, the
SRF in SENSE is just an amplitude-modulated Fourier SRF. The frequency

17The notation as virtual coil sensitivity cvirt becomes comprehensible in section 2.3.1d,
page 82ff, where ultimate SNR of SENSE images is discussed.
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of the SRF, and therefore the primary measure for image resolution, is not
affected by the reconstruction.

The latter equation states that the sensitivity weighting is defined exactly
only at a small number of discrete positions. Complete suppression of the
Fourier sidelobes between those positions is not demanded and also not
possible, leading to residual aliasing. However, a beneficial property of the
sensitivity weighting function ensures that residual aliasing does not pose
a problem under normal imaging conditions and when acceleration is not
driven to its limit: The MPPI solution C̃+ is the solution to an underdeter-
mined system and it therefore represents a feasible solution with minimum
norm. This property ensures that the weighting is as small as possible in
between the exactly defined values and excessive sidelobe amplification is
avoided. Only under low-resolution conditions, as in spectroscopic imaging
[17], residual aliasing might pose a problem in Cartesian SENSE recon-
struction. Numerical examples of the Fourier SRF, the effective sensitivity
weighting function and the resulting SENSE SRF are shown in Fig. 2.13.
The examples show the SRF of a random voxel position for two different
acceleration factors R = 2 and R = 4 and 32/R phase encodes.

c) Image Noise

Image noise is analyzed here with the covariance analysis, presented on
page 54f in section 2.1.4. For the SNR-optimized reconstruction of Eq. 2.41,
the image noise matrix is calculated as:

X = FΨ̃FH = R · (Δk)4N2 · (C̃HΨ̃−1C̃)−1

= R · (Δk)4N2 ·
∑
q,q′

Iq,q′ ⊗
[
(C(q,q′))HΨ−1C(q,q′)

]−1

.

It is block-diagonal with blocks of size R×R. The spatial sensitivity varia-
tions of the RF-receiver coils introduce spatial variations of SNR in the
image. Following Eq. 2.22, the SNR of voxel ρ = (q, q′, l) located at
Δx · (q, (q′ + (l − 1)N/R) is then given by:

SNRred
ρ =

1√
R

|mavg
ρ |√[

(C(q,q′))HΨ−1C(q,q′)
]−1

l,l

(Δx)2N.
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Figure 2.13: SRF of SENSE reconstruction. Top row: Acceleration factor R =
2. Bottom row: Acceleration factor R = 4. (a,d) Undersampling results in a
reduced FOV with R aliasing peaks along the phase encoding direction for pure
Fourier encoding. (b,e) “Virtual” sensitivity weighting (from 8 RF coils) ensures
zero weighting at the aliased image positions and unity weighting at the location of
interest. Outside of these discrete locations, the sensitivity weighting is as small
as possible. For R = 2 and the chosen coil geometry, the weighting is almost
everywhere below unity. This is not the case for the higher acceleration factor R = 4.
(c,f) The SRF of SENSE reconstruction is formed by the multiplication of the Fourier
SRF and the sensitivity weighting. All aliasing peaks are effectively suppressed. The
beneficial behavior of the sensitivity weighting for R = 2 also improves the sidelobe
behavior of the Fourier SRF. This is not everywhere the case for R = 4. However,
the adverse effect is negligible.

It is useful to compare the SNR in the image voxels resulting from under-
sampling with the optimal SNR achievable without undersampling (i.e., for
R = 1, where C(q,q′) → cρ):

SNRfull
ρ =

|mavg
ρ |√

(cHρ Ψ−1cρ)−1
(Δx)2N = |mavg

ρ |
√
cHρ Ψ−1cρ(Δx)2N

= |mavg
ρ |

√[
(C(q,q′))HΨ−1C(q,q′)

]
l,l
(Δx)2N.

(2.48)
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The noise figure SNRfull
ρ corresponds to the SNR resulting from Roemer’s

optimal coil combination (also cf. Eq. 2.42). The SNR of SENSE reconstruc-
tion then reads:

SNRred
ρ =

SNRfull
ρ√

Rgρ
. (2.49)

In this formula, the g-factor has been introduced:

gρ =
√[

(C(q,q′))HΨ−1C(q,q′)
]−1

l,l

[
(C(q,q′))HΨ−1C(q,q′)

]
l,l

≥ 1. (2.50)

The g-factor describes the spatial variations of loss of SNR caused by under-
sampling. It is not below unity.18

d) Ultimate SNR

In the previous section, it has been shown how the SNR in the image
depends on the geometry of one certain RF-receiver coil array. This problem
may be taken a step further: What is the best SNR that can be achieved with
an optimal coil geometry? It turns out that an optimal coil geometry for one
image voxel is generally sub-optimal for a different voxel. Nevertheless, it is
useful to analyze the best possible SNR for each image voxel independently
because this procedure allows one to define an upper bound of SNR for
each image voxel. By comparing the optimal “ultimate” SNR with the SNR
of a particular RF-receiver coil array, non-optimal properties of the coil can
be identified.

The concept of ultimate intrinsic SNR was introduced to MRI in [117] and
extended to parallel imaging a few years later [119, 200]. The solution found
by Wiesinger et al. [200] shows that the ultimate SNR can be described
simultaneously for fully sampled datasets as well as undersampled datasets.
The main ideas are described in this section.

18This can be proven with the Cauchy-Schwarz inequality: For notational convenience
set A := (C(q,q′))HΨ−1C(q,q′). It is to be shown that (A)l,l · (A−1)l,l ≥ 1. Note that A
is Hermitian. Therefore it only has real eigenvalues and can be diagonalized such that A =
UHΛ2U, where Λ2 contains the eigenvalues and U is a unitary matrix. Defining u as the l-th
column of U, it is straightforward to show that (A)l,l = ‖Λu‖2 and (A−1)l,l =

∥∥Λ−1u
∥∥2.

With the Cauchy-Schwarz inequality it follows that (A)l,l · (A−1)l,l = ‖Λu‖2 · ∥∥Λ−1u
∥∥2 ≥

|(Λu)H(Λ−1u)|2 = |uH(ΛΛ−1)u|2 = |uH1u|2 = ‖u‖4 = 1. The latter equality holds
because U is unitary.
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Recall that in SENSE the sensitivity weighting suppresses aliasing from
reduced gradient encoding by ensuring that the constraint cvirtρ (�xρ′) = δρ,ρ′

(cf. Eq. 2.47) is satisfied, where ρ and ρ′ are members of a group of aliased
voxels at the locations �xρ, �xρ′ . According to Eq. 2.46, cvirtρ is a linear combi-
nation of the individual sensitivities of the RF-receiver array. The weighting
factors are determined in post-processing. The sensitivity cvirtρ is therefore
not physically implemented; it is a sensitivity from a virtual coil. In the
context of ultimate SNR, it is important to realize that the linearity of the coil
combination entails that it would actually be possible - at least in principle -
to physically construct a single coil which would have the very same sensi-
tivity cvirtρ . This procedure would not be practical because a different coil
configuration would be necessary for each reconstructed image voxel [145].
However, for the analysis of ultimate SNR it is sufficient to know that such
a configuration could in fact be built. Thus, the constraint cvirtρ (�xρ′) = δρ,ρ′

has a concrete physical interpretation; according to the definition of the
RF-coil sensitivity in Eq. 1.16, page 22, this constraint can be expressed in
terms of the magnetic properties of the coil:[

�Bvirt,ρ
x − i�Bvirt,ρ

y

]
(�xρ′) = δρ,ρ′ . (2.51)

The noise received with this virtual coil is, with Eqs. 1.17, 1.18, proportional
to its sample resistance:

ψρ ∝
∫
V

σ(�x)|�Evirt
ρ (�x)|2d�x. (2.52)

The important result from the two latter equations is that noise and con-
straints imposed by the reconstruction are expressed in terms of electromag-
netic quantities only: the noise by the coil’s electric fields and the constraints
by the coil’s magnetic fields. The Maxwell equations couple the electric
field with the magnetic field. Therefore, noise and the demanded magnetic
constraints have to be treated simultaneously. There are many virtual coils
which fulfill the constraint of Eq. 2.51 and it is the task of ultimate SNR
to find that particular virtual coil which has the lowest noise resistance in
the sample. But how can such a virtual coil be characterized? A virtual
coil is characterized by the fact that a physical counterpart might exist. In
order to keep the discussion simple, it is assumed that the virtual coils are
represented by any current distribution outside of a spherical volume of
radius r. The object to be imaged is assumed to (a) fill the sphere completely
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(b) to be source-free and (c) to have scalar, homogeneous dielectric constant
ε, magnetic permeability μ and conductivity σ. These assumptions are
fairly well met under typical imaging conditions, more deeply discussed in
[200]. Under these conditions, the set of all virtual coils is equivalent to the
solution space of the source-free Maxwell equations:

∇ · �E(�x, t) = 0, ∇× �E(�x, t) = −∂ �B(�x, t)

∂t
,

∇ · �B(�x, t) = 0, ∇× �B(�x, t) = με
∂�E(�x, t)

∂t
+ μσ�E(�x, t).

Considering that the solutions oscillate at the Larmor frequency, the spatial
distribution can be separated from the temporal evolution leading to the
following set of time-independent equations:

(Δ + k20)
�B(�x) = 0, ∇ · �B(�x, t) = 0, where k20 = ωμ(ωε+ iσ),

and �E(�x) = 1

μ(σ − iωε)
∇× �B(�x).

(2.53)

The solution space of these equations is a vector space. The basis functions
that span the magnetic solution space are denoted here as �vMj (·) with j ∈ N.
The corresponding electric basis functions �vEj (·) can be calculated from their
magnetic counterparts by virtue of the third formula in Eq. 2.53. Electric
and magnetic sensitivity of the virtual coil are then described as a linear
combination of those basis functions:

�Evirt
ρ (�x) =

∑
j

wρ,j�v
E
j (�x) and �Bvirt

ρ (�x) =
∑
j

wρ,j�v
M
j (�x).

Finding the optimal virtual coil is equivalent to finding an optimal weight-
ing matrix W whose elements are the weights wρ,j . Ocali et al. [117] used a
set of linear basis functions. Wiesinger et al. [200] later argued that many
fewer basis functions (typically < 105) need to be considered for fairly
accurate results when a multipole expansion of the fields is used.19 With
the basis functions, the constraint formulated above in Eq. 2.51 can be
expressed in a form more suited for numerical treatment:

WS = 1, where Sj,ρ = μ
[
(�vMj )x − i(�vMj )y

]
(�xρ).

19Consult Appendix B in [200] for a detailed presentation of the multipole basis functions.
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According to Eq. 2.52, the noise present in voxel ρ becomes:

ψρ = (WΨWH)ρ,ρ, where Ψj,j′ ∝ σ

∫
V

�vEj (�x)�v
E
j′ (�x)

∗d�x.

Following the same arguments that are used in section 2.1.5, page 56f, the
optimal SNR can then be found for all voxels independently by solving
the problem minW Tr(WΨ̃WH) subject to WS = 1. This optimization
problem has a structure that also is known from section 2.1.5, page 56f, with
the solution:

W = (SHΨ−1S)−1SHΨ−1.

With the optimal weights, the quantity of interest can be calculated; for
example, ultimate noise, SNR or g-factor. As an example, the solution to the
ultimate g-factor is presented here:

gultρ =
√[

(SHΨ−1S)−1
]
ρ,ρ

(SHΨ−1S)ρ,ρ ≥ 1.

Note that this formula is very similar to the formula found for the g-factor
of a certain coil geometry in Eq. 2.50. In Fig. 2.14 ultimate g-factor maps
are compared to g-factor maps of a typical industrial RF-receiver coil with
eight elements.

Figure 2.14: Ultimate g-factor for SENSE imaging at 3T. (a) For SENSE imaging
with acceleration factor 4, the ultimate g-factor has values of only up to 1.25 with a
maximum at the center. (b) Compared to the ultimate g-factor, a typical state-of-the-
art eight-channel head receiver array has a g-factor of up to 3.5. Comparison with
the ultimate g-factor can be useful to detect sub-optimal behavior in certain regions.
(c) The ultimate SNR (normalized to unity), however, has a very sharp increase in
feasible SNR toward the edge of the object. The reason for this increase is that
higher-order field components vanish quickly toward the center of the object with
increasing distance from the hypothetical conductors. Note the log-scale in (c) and
the different scaling in (a-c).
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e) Superresolution Reconstruction

Recall from section 2.3.1b, page 79f, that, in Cartesian SENSE, the sensitivity
weighting suppresses aliasing, but has no influence on image resolution. In
SENSE, image resolution is uniquely determined by the gradient encoding
scheme. Sánchez-González et al. [170] observed that an increase in image
resolution (termed “superresolution” in [125]) is achieved when SENSE is
replaced by a method called minimum-norm reconstruction.

Why is superresolution achieved with the minimum-norm reconstruction
and not with SENSE? How can the superresolution effect be quantified? The
goal of this section is to give answers to these questions and to draw some
conclusions. An analysis of the quantification problem has been presented
previously in [[160]].

Explanation of Superresolution To understand why superresolution is
achieved with the minimum-norm reconstruction and not with SENSE, it is
useful to analyze the differences between both methods. Recall that SENSE
reconstruction is based on the weak matrix approach. On the other hand,
the minimum-norm reconstruction is basically a practical implementation
of the strong matrix approach (cf. section 2.1.1b, page 45). The question
to be answered is therefore rather: Why does the strong approach lead to
superresolution and not the weak approach? In section 2.1.1c, page 45ff,
it has been argued that the strong approach is more convincing than the
weak approach. Whereas the strong approach determines the reconstruction
weights by demanding an optimal SRF, the weak approach suffers from the
problem that the weights are determined by simply predefining the SRF at
a finite number of grid points.

Being based on the weak approach, in SENSE, the SRF is defined to be unity
at its voxel center and zero at the centers of all neighboring voxel. The
voxel size is chosen to match exactly the voxel size that would result from
pure gradient encoding. In SENSE, sensitivity encoding is used to suppress
aliasing, but it does not take into account that the variations in the RF-coil
sensitivities can also be exploited to improve the SRF on a local scale. This
is different when the strong approach is applied because this approach uses
all available encoding information to optimize the SRF, thereby suppressing
aliasing as well as improving image resolution as far as possible. SENSE
may not lead to an improved resolution; however, this does not imply
that superresolution could not be achieved with the weak approach. In
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fact, as shown in section 2.1.1c, page 45ff, weak and strong approaches
converge if small voxels are chosen to reconstruct on. Otazo et al. [125]
could recently show a superresolution effect for spectroscopic imaging data,
if reconstructed with the weak approach onto a finer reconstruction grid
than usual.

Quantification How can the superresolution effect be quantified? A good
measure for image resolution is the SRF (cf. Eq. 2.16). In the context of
superresolution, it is useful to analyze the Fourier-domain representation
of the SRF:

f̂ρ(�k) =
∑
α,κ

Fρ,(α,κ)ĉα(�k − �kκ) =
∑
κ

ĉeffρ,κ (�k − �kκ).

The k-space representation of the SRF is a weighted sum of the RF-coil
sensitivities represented in k-space and shifted by the k-space locations, en-
coded with the gradients. A wider k-space support of the SRF corresponds
to a narrower SRF with improved resolution. Consider the 1D examples
of Fig. 2.15. For Fourier encoding with a homogeneous coil the k-space
extent is restricted to the acquired k-space grid (Fig. 2.15, left). In PI with
non-homogeneous coil sensitivities, the finite k-space footprint of the sen-
sitivities allows an extension of the k-space support of the SRF (Fig. 2.15,
middle and right).20 This is achieved by determining the reconstruction
weights for example with the strong approach.

The plots of Fig. 2.15 clearly show that resolution (defined here as the
distance between zero-crossings in the SRF) increases with increasing SRF
k-space support. Moreover, there even is a decrease in sidelobe intensity
corresponding to a reduced Gibbs ringing artifact. For the simulated finite-
support sensitivity profiles, k-space support and image resolution both
increase by exactly the same amount (50%). The k-space extent of the mea-
sured sensitivity profiles cannot be exactly determined because there is no
clearly defined cut-off frequency. However, within the limits of accuracy
of determining the k-space extent, the increase in image resolution (32%)
matches well the increase in k-space (> 25%) also for the measured sensitiv-
ity profiles. Considering the simplicity of the method - the k-space SRF only

20This k-space perspective allows a comparison of superresolution with GRAPPA (see
section 2.3.2a, page 97ff): Whereas in GRAPPA, the finite k-space footprint of the receiver coil
sensitivities is used to fill the space between acquired k-space lines, in superresolution, it is
used to extrapolate the acquired k-space beyond its borders.
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Figure 2.15: 1D Illustration of superresolution. Top row: Sensitivity maps. Central
row: Corresponding SRF k-space support for 8 gradient encoding steps. Bottom
row: Corresponding image space SRF. Left: Homogeneous profile. Middle: 8
simulated profiles with finite support in k-space. Right: 1D profiles of typical real-
world sensitivity maps. The central row illustrates that the width of k-space support
for the resulting SRF increases with higher variations of the sensitivity profiles. With
the increase in spatial support of the corresponding SRF, the width of the main
lobe and numbers of sidelobes scale accordingly. This results in a higher image
resolution.

provides a global measure and ignores local properties of the sensitivities -
this is a fairly good estimation.

Consider now Fig. 2.16, where 2D measurement results are shown. For
the measurements, only a small voxel was excited and encoded with 8× 8

and 16× 16 k-space locations. The analysis of subfigure (b) illustrates the
limitations of superresolution: For 8× 8 k-space points, the resolution gain
is 32.7%, for 16 × 16 points, the resolution gain is halved (16.2%). The
reason for the decreased efficiency is that the ratio of k-space extension by
sensitivity encoding and k-space support from gradient encoding decreases
with more gradient encoding steps. For high-resolution imaging (256×256),
the expected resolution increase is therefore not expected to be much higher
than 1%. The effect is nearly negligible for high-resolution applications.
Considering that the increased image resolution also comes at the expense
of increased reconstruction time (and also increased noise [170]), it can be
concluded that superresolution is restricted to low-resolution applications
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like spectroscopic imaging. The superresolution effect can be significant
also in the context of PatLoc imaging (cf. chapter 7, page 235ff).

Figure 2.16: (a) Left: PSF for 2D conventional coil-by-coil reconstruction. Right:
PSF for superresolution reconstruction. 8x8 k-space points were measured. There
is some resolution improvement visible in the right image. (b) Left: 1D profiles
through the center of the 2D PSF of subfigure (a). Right: Corresponding 1D profiles
for a 16x16 acquisition. The superresolution effect on image resolution is higher for
smaller k-space grids.

f) Non-Cartesian Methods

In contrast to Cartesian SENSE, where a regular sampling grid is acquired,
non-Cartesian SENSE [134] is a method to reconstruct data encoded with
non-Cartesian sampling trajectories. The non-Cartesian sampling destroys
the coherent aliasing of Cartesian SENSE with the consequence that the
encoding matrix does not have an MPPI which can be calculated sufficiently
fast for practical image reconstructions. In Fourier imaging, the problem
can be solved, for example, with the gridding method (cf. section 2.2.3,
page 69ff). This method is not directly transferable to PI because, with
gridding, only small gaps in k-space can be bridged [166]; gridding alone is
therefore not suited for undersampled k-space data. Larger k-space shifts
can be induced by combining data from several RF channels immediately
in k-space. This technique is often used in combination with Cartesian
trajectories and is discussed below in section 2.3.2, page 96ff; for non-
Cartesian trajectories, such a k-space reconstruction is less efficient, but
often still feasible [165].

In the present section, a different, well-established approach is taken, where
maximum data consistency of measurement data and the reconstructed
image in the l2-norm sense is ensured. For numerical treatment, the signal
equation (Eq. 1.31, page 38) is discretized resulting in the data-consistency
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constraint s ≈ Em.21 Depending on the accuracy of the discretization, this
constraint can be fulfilled exactly or only approximately.22:

1. For coarse discretizations (i.e., Nρ < NκNc), data consistency can-
not be ensured. In this case, an image vector m is sought, which
minimizes the data-inconsistency ‖s−Em‖2. The first order neces-
sary conditions to this minimization problem result in the equation
(EHE)m = EHs.

2. For fine discretizations (i.e., Nρ > NκNc), an infinite number of image
vectors is often consistent with the measurement data. Therefore,
an image vector might be sought with minimum norm. Following
equivalent arguments as used in section 2.1.5, page 56f, the solution
would be found by first solving for the (redefined) Lagrange multipli-
ers (EEH)λ = s and then using these to find the reconstructed image:
m = EHλ.

Even with fine reconstruction grids, data consistency is only ensured if full
rank encodings E are considered. Well-chosen encoding schemes should
have this property; however, very low eigenvalues often occur, and therefore
poorly conditioned equations result. As a consequence, it is often useful
to regularize the reconstruction [31]. A well-known regularization method
is Tikhonov regularization, where the solution is found by minimizing
‖Em− s‖2 + ζ2 ‖m‖2. The parameter ζ is called Tikhonov regularization
parameter. This approach is feasible for both coarse and fine discretizations
and has the solution:

(A+ ζ21)m = s̃ with A = EHE and s̃ = EHs.

A very good presentation of Tikhonov regularization and the problem of
finding adequate regularization parameters is found in [69].

Note that it can always be ensured that the matrix A is Hermitian and
positive definite. Very well suited for the solution of large-scaled Hermitian,
positive definite linear systems is the linear conjugate gradient method (CG
method). The CG method was also used in this thesis several times and
is briefly presented in the next section. Other methods are occasionally

21W. l. o. g. the matrix ΔV ·E is simply written as E here.
22This property is very similar to the different interpretations of the MPPI, cf. page 43f in

section 2.1.1.
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encountered in the MRI literature, among them a method called algebraic
reconstruction technique, which makes use of the Kaczmarz iterations [19,
178].

Remark: There is a fundamental difference between the iterative method and
the matrix approach: Whereas the matrix approach solves the reconstruction
problem by inverting the encoding matrix (which can be problematic), the
iterative method seeks to find a solution by several consecutive forward
evaluations of the encoding model, an approach that is often less demanding.
As a consequence, the reconstruction matrix F is actually never determined
with the iterative approach. On the one hand, the matrix approach has the
advantage that once the reconstruction matrix is determined reconstruction
reduces to a mere matrix-vector multiplication: m = Fs. The iterative
method on the other hand has the advantage that inversion of the very large
matrix EHE is avoided by solving the least-squares problem ‖Em− s‖2.
Note that for the matrix approach F is determined independent from the
data s. Therefore, an abstract approach involving the concept of voxel
functions (see section 2.1.1, page 40ff.) is used to derive F. The iterative
method depends inherently on the data and therefore the approach taken is
less abstract only involving the data-consistency constraint s ≈ Em, whose
meaning can easily be grasped.

In spite of the differences of the matrix approach and the iterative method,
these methods are closely related to each other. Such a close relationship has
already been declared in the Remark on page 44f in section 2.1.1. Concerning
the data consistency, the relationship manifests as follows: Consider the
first case above with Nρ < NκNc and assume full rank encodings E. Then
EHE is invertible and the data-consistency constraint (EHE)m = EHs has
the unique solution m = (EHE)−1EHs = E+s. This is, however, also the
MPPI solution found with the matrix approach. Similar arguments show
the equivalence of the two approaches also for the case Nρ > NκNc.

Linear Conjugate Gradient Method The linear conjugate gradient me-
thod (CG method) was proposed by Hestenes and Stiefel in 1952 [65]. It is a
conjugate direction method with interesting properties, well described in
[169] and theoretically analyzed in [115] for real-valued quantities. Equiva-
lent formulations exist also for complex-valued variables as already pointed
out by Hestenes and Stiefel in [65].
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The key point about the CG method is that minimization of the quadratic
function φ(m) := 1/2 · mTAm − s̃Tm is equivalent to solving the linear
system Am = s̃. The square matrix A should be Hermitian and positive
definite.

The rough procedure of the algorithm is the following: Starting from an
initial guess m0, a series of intermediate solutions m1,m2, . . . is calculated.
The next intermediate solution mk+1 is found by the vector sum of only the
previous solution mk and the previous conjugate direction pk, characterized
by pT

i Apj = 0 for all i �= j:

mk+1 := mk + αkpk.

The step length αk ∈ R is chosen to be the one-dimensional minimizer
of φ(mk + αkpk) resulting in αk = ‖rk‖ · ‖pk‖−1

A .23 The next conjugate
direction pk+1 is constructed as a linear combination of the current steepest
descent direction −rk+1 := −∇φ(mk+1) = −Amk+1 + s̃ = −rk − αkApk

and the last conjugate gradient direction: pk+1 = −rk+1 + βk+1pk, where
βk+1 = ‖rk+1‖ · ‖rk‖−1. An efficient version of the linear conjugate gradient
algorithm is given below in pseudo-code. For more details, refer to the
textbook [115] or to the publication [134].

As initial conjugate direction p0, the steepest descent direction r0 is chosen.
Without useful prior information, it is a good initial guess to set m0 = 0.
In this case, the first iteration yields m1 = s̃ = EHs, which represents the
back-projection of the image and therefore an approximation to the solution
of the problem.24

It is a well-known theoretical result that without noise the CG method
converges at latest after Nρ iterations. In MRI Nρ is very large (≈105 for 2D
imaging) and therefore the CG method seems to be unpractical. Even worse,
convergence breaks down for noisy data, and MRI data are inherently
noisy. In practice, however, the best result is typically found after about
20− 40 iterations already. The reason for this fast “practical convergence” is
that the CG method has a self-regularizing property [138]: The low spatial
frequencies converge faster than the high spatial frequencies, noise included.

23The expression ‖·‖A represents a weighted norm, defined as ‖v‖A := vHAv for an
arbitrary vector v. It is straightforward to verify that, for the matrix A, assumed to be
Hermitian and positive definite, ‖·‖A is a well-defined vector norm.

24Another advantage of the zero image as initialization of the algorithm is that correct
scaling of the initial image guess is not an issue.
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Algorithm 2.1 Linear conjugate gradient algorithm

1: Choose the initial vector m0 = 0.
2: and set r0 → Am0 − s̃, p0 → −r0, k → 0;
3: for k = 0, 1, 2, . . . do
4: Set qk = Apk;
5: Set αk → rTk rk

pT
k qk

;
6: Set mk+1 → mk + αkpk;
7: Set rk+1 → rk + αkqk;

8: Set βk+1 → rTk+1rk+1

rTk rk
;

9: Set pk+1 → −rk+1 + βk+1pk;
10: Set k → k + 1;
11: if convergence test satisfied then
12: stop with approximate solution mk+1.
13: end if
14: end for

It is therefore useful to just stop the algorithm before noise accumulation
occurs, be it after a certain number of iterations or based on the fulfillment
of a suitable stopping criterion.25 Refer to [134] to get more information
on useful stopping criteria and practical ways of implementing adequate
preconditioners to improve the convergence behavior. Fig. 2.17 illustrates
the self-regularizing property of the CG method.

Practical Implementation of the CG Method for Iterative SENSE The
bottleneck of the algorithm is the matrix-vector multiplication qk = Apk

with A = EHE. The time-consuming and - depending on the actual imple-
mentation - also memory intensive operation is the matrix-vector multipli-
cation of E and its adjoint EH with the corresponding vectors. However, E
is structured in SENSE imaging and the matrix-vector multiplication can
be accelerated. In order to find an efficient implementation, consider that,
according to Eq. 2.9, the encoding matrix separates into two sparse matrices,

25Note that early termination makes the linear CG method a nonlinear reconstruction;
however, the introduced nonlinearities diminish with more iterations, and are typically almost
negligible when the algorithm is terminated in practice, usually after 20− 40 iterations.
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Figure 2.17: Self-regularizing property of the CG method. Shown are intermediate
images for a non-Cartesian SENSE reconstruction. The brain imaging data have
been acquired with a twofold undersampled radial trajectory. The first iteration
corresponds to a simple back-projection resulting in a blurred image. It is clearly
visible that the image resolution enhances with increasing iterations. After 32
iterations roughly, the blurring does not diminish any more, however, noise and
reconstruction artifacts from setting the RF-sensitivity data to zero outside the object
border (also cf. [170]) increase resulting in visibly degraded image quality after 64
iterations.

whose entries are easily calculated when delta functions are chosen as ideal
voxel shapes:

E = GC,

with G(α,κ),(α′,ρ′) = δα,α′e−i�kκ�x
′
ρ and C(α,ρ′),ρ = δρ′,ρcα(�xρ).

(2.54)

The matrix-vector multiplication of C with the corresponding vector is
actually only an Nc-fold vector-vector multiplication and therefore very
quick. The gradient encoding matrix G is sparse only in that sense that
each coil image can be treated separately. For each single coil image, G
is densely populated. However, fast algorithms exist at least for regular
reconstruction grids Gcart. One possibility are standard gridding algorithms
(cf. the paragraph Gridding Algorithm on page 70f in section 2.2.3), which
have been proposed to be used in the original publication dealing with
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non-Cartesian SENSE [134]. Other efficient implementations of the nuFFT
such as the min-max interpolation method of Fessler et al. [36] may be used
instead. The adjoint operation GH can be performed in a similar manner
[134, 36] and CH is also effectively only a vector-vector multiplication. It
can therefore be concluded that the structure of the encoding matrix in
non-Cartesian SENSE imaging enables fairly quick implementations of the
CG algorithm. Moreover, the presented algorithms are vastly parallelizable.
This feature can be exploited to speed up the reconstruction even further. A
practical reconstruction algorithm using linear CG and the nuFFT approach
is depicted in Fig. 2.18.

Figure 2.18: SENSE reconstruction for non-Cartesian trajectories with the CG method. The
CG method is an iterative method. After initialization, the CG loop is iterated until a stopping
criterion is met. The CG loop has three input variables: The first variable is the intermediate
image mk. The second variable is the residuum rk, which measures the data consistency of
intermediate image with the measurement data and the third variable is the current conjugate
direction pk. There are some advantages to using a zero-image as the initial guess. In this
case, the first conjugate direction is found by multiplying the signal measurement data with the
Hermitian of the encoding matrix E and the initial residuum is calculated as its negative value.
These initial variables are fed into the CG loop. Numerically the most demanding part of the
CG loop is the matrix-vector multiplication of EHE with the conjugate direction pk. This matrix-
vector multiplication can be accelerated by exploiting the structure of the SENSE encoding
matrix. The matrix-vector multiplication reduces to 2Nc vector-vector multiplications comprising
the vectorized RF-coil sensitivity data and Nc nuFFT operations plus the computation of their
adjoints. At last, the individual vectors are summed up. The resulting vector together with the
intermediate image mk, the residuum rk and the conjugate direction pk are then subject to
additional fast vector-vector multiplications. Typical 2D image reconstruction require about
kmax = 20− 40 iterations until the stopping criterion is met and the final image is found by
de-vectorizing mkmax.
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2.3.2 k-Space Reconstruction

In 1997, at the 5th Scientific Meeting of the ISMRM26, Daniel Sodickson
presented (cf. [172]) a new imaging technique that marked a milestone in
the history of MRI: He demonstrated cardiac in vivo images which were
acquired very fast by replacing some of the sequential gradient encoding by
parallel encoding with a multi-coil receiver array. His technique, which he
gave the name SMASH (SiMultaneous Acquisition of Spatial Harmonics)
[173], is based on the idea that low spatial harmonics can not only be
generated by the gradients, but also approximately by a weighted sum of
the RF-sensitivity profiles. Different weighting of the coil array signals can
therefore induce small shifts in k-space; as a consequence, the sampling
density of gradient encoding can be reduced with the advantage that the
whole encoding process is accelerated.

It is evident that the RF coils cannot exactly mimic spatial harmonics, but
only approximately. The original method therefore suffered from residual
aliasing. These initial problems could be reduced significantly within the fol-
lowing years. An important improvement marked AUTO-SMASH [75, 58]
where explicit acquisition of RF-coil sensitivity maps was avoided and re-
placed by the acquisition of a restricted amount of additional auto-calibration
k-space signal (ACS) lines. This method was then improved even further
and resulted in 2002 in GRAPPA (GeneRalized Autocalibrating Partially
Parallel Acquisitions) by Griswold et al. [49]. GRAPPA and variants thereof
are often used in the clinical routine today. Also in this thesis, GRAPPA
plays a role and therefore the GRAPPA algorithm is presented in this section
without going into the details.

GRAPPA [49] and SENSE are similar because both solve the same problem:
image reconstruction from an undersampled Cartesian27 trajectory. How-
ever, there are also fundamental differences between the two methods: In
contrast to SENSE, which solves the problem in image space, GRAPPA is
formulated in k-space. Another difference is that in SENSE RF-sensitivity
profiles are explicitly determined, whereas in GRAPPA, sensitivity informa-
tion is only used implicitly by the incorporation of additional ACS-lines.
Also consider that the approximate approach taken with GRAPPA is re-

26International Society for Magnetic Resonance in Medicine
27Non-Cartesian GRAPPA is not treated here. Consult [48, 166, 165, 167] for more informa-

tion on this topic.
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Figure 2.19: GRAPPA reconstruction algorithm. GRAPPA consists of two steps.
In a first step, the GRAPPA weights are determined from the fully sampled auto-
calibration lines. More details on how the weights are determined is found in the main
text. In a second step, the magnetization is reconstructed. First, the missing k-space
lines are filled in by convolving the measured signals with the precalculated GRAPPA
weights. Then a coil-wise Fourier transform is performed and a root-sum-of-squares
coil combination finalizes the reconstruction.

sponsible for (often beneficial) differences in image properties compared
to the stringent SENSE-matrix approach. In spite of these differences both
methods are closely related to each other and this chapter ends with linking
both methods to one another by establishing a connection between the
GRAPPA weights and the SENSE reconstruction matrix.

a) GRAPPA (GeneRalized Autocalibrating Partially Parallel
Acquisitions)

GRAPPA uses a subsampled Cartesian imaging trajectory as input. Some
additional, fully sampled k-space lines are acquired at the center of k-space
(i.e., ACS-lines).28 In a first step, so-called GRAPPA weights are calculated
from the ACS lines. In a second step, the missing lines are filled in using
the precalculated GRAPPA weights, then a coil-wise inverse 2D-FFT is
performed and finally the coil images are combined, for example using a
root-sum-of-squares (defined in fn. 10 on page 35). These reconstruction
steps are illustrated in Fig. 2.19. The two decisive operations, reconstruction

28The optimal number of lines depends on many parameters (e.g. reduction factor, kernel
size); typical are 24 ACS lines for 256× 256-measurements (omitted k-space lines included).
More on optimal selection of parameters for GRAPPA can be found in [114] or [6].
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of the missing k-space lines and determination of the GRAPPA weights, are
briefly described in the following two paragraphs. A detailed presentation
of the GRAPPA algorithm is found for example in [5].

Reconstruction of Missing k-Space Lines The basic assumption in
GRAPPA is that the signal sα of each coil at a certain k-space position
�kκ can be represented by a weighted sum of all coil signals at nearby
k-space positions:

sα(�kκ) =
∑
α′,β

w
(α)
α′,βsα′(�kκ − �kβ). (2.55)

The (shift-invariant) weighting factors are often called GRAPPA weights. In
GRAPPA, this relation between the signals of neighboring k-space locations
is exploited to accelerate Cartesian k-space trajectories by only acquiring
each R-th k-space line. The m = 1, . . . , R − 1 missing lines are then re-
constructed based on the latter equation. Only the closest neighbors are
considered, i.e., a small GRAPPA kernel L is chosen, for example 4 values
along the y-direction and 5 along the x-direction. For further treatment, it is
useful to write Eq. 2.55 in matrix-vector form:

sα = w(m)
α Ê(m)

s , where (Ê(m)
s )(α′,β),κ := sα′(�kκ − �k

(m)
β ). (2.56)

Here, the superscript m indicates that for each of the m = 1, . . . , R − 1

missing k-space lines a separate set of GRAPPA weights needs to be con-
sidered: For β = (βx, βy) ∈ L the relative k-space shifts �k

(m)
β = 2πΔk·

(βx�ex + (βyR−m)�ey) are different for each line.

Weight Determination The reconstruction is only feasible when the
GRAPPA weights w

(m)
α are known in advance. To this end, a sufficient

number of ACS-lines sACS
α is acquired at the k-space center; these fully

sampled lines are then used to estimate the weights w
(m)
α by solving the

following least-squares problem for each α and m independently:

min
w

(m)
α

∥∥∥w(m)
α Ê(m,ACS)

s − sACS
α

∥∥∥2

. (2.57)

In this equation, the matrix Ê
(m,ACS)
s is formed for the ACS-lines only. Note

that there is a fundamental difference to the reconstruction problem: In
the reconstruction problem, the weights are known and the signal data are
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determined. In the weight determination step, the weights are not known
and they are determined from known measurement data. The solution of
the above minimization problem is given by:

w(m)
α = sACS

α (Ê(m,ACS)
s )+. (2.58)

b) Relationship of GRAPPA and SENSE

The relationship of GRAPPA and SENSE has been a topic of discussion for
quite a while and new aspects are still being discovered (e.g. [104]). In most
publications, only specific aspects of the problem are analyzed; an overall
picture is formed by bringing the different aspects together. The approach
taken here merges ideas presented in [135, 49, 209, 147, 136, 104].

How can the problem of relating two methods to one another be ap-
proached? For an exact analysis, a mathematical point of view is often
useful. Compare the latter equation (Eq. 2.58) with the solution of the
matrix approach taken for SENSE, represented by Eq. 2.15. In both cases,
GRAPPA and SENSE, a matrix is inverted. The reconstruction result is
very similar, therefore also the involved matrices E for SENSE and Ês for
GRAPPA should be closely related to each other. But what is the exact
relation between E and Ês?

First, it is useful to also describe the encoding matrix E in k-space by
defining Ê := E · iDFT. Interestingly, the k-space encoding matrix Ê is
built uniquely from the k-space representation of the RF-coil sensitivities
ĉα(·):

Ê(α′,b),l = (ĉα′)l−Rb. (2.59)

Here, only the index along the accelerated dimension is specified. The
matrix Ê is block-circulant. The inversion preserves the block-circulant
property [104] and therefore many fewer reconstruction weights need to
be determined than the reconstruction matrix F̂ = Ê+ has entries.29 In

29A direct consequence of this block-circulant structure is that the reconstruction weights
are shift-invariant. As a result of the effective weighting of the coil sensitivities with the object
information in GRAPPA, the shift-invariance property is not exact in GRAPPA; notwithstand-
ing, it is a useful assumption for image reconstruction. Also note that algorithms exist that
invert a block-circulant very fast. Such algorithms typically make use of the fact that a square
block-circulant matrix is block-diagonal in the Fourier-domain (cf. [104]); each block can then
be inverted independently, thus accelerating the overall inversion. This is, however, exactly
what is done in Cartesian SENSE reconstruction. Both approaches are in fact equivalent.
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particular, it can be shown (see Appendix A.3.1, page 295f) that SENSE is
equivalent to solving the expression

w(m)
α = ĉα(Ê

(m))+, (2.60)

where the superscript m = 0, . . . , R− 1 indicates a shift of the index l −Rb

to l − (Rb−m) in Eq. 2.59. The latter equation allows direct comparison of
SENSE with GRAPPA. There are only two differences between this equation
and Eq. 2.58:

1. In GRAPPA, fewer weights are considered compared to SENSE and
less data are used for their determination (ACS-lines).

2. In GRAPPA, the weights are determined directly from the signal data,
whereas in SENSE, the weights are determined from measured RF-coil
sensitivity profiles.

The first difference is related to the discussion of an optimal (see e.g. chapter
2 in [114]) GRAPPA kernel. In Appendix A.3.2, page 297ff, it is proven that
truncation of the SENSE encoding matrix does indeed not lead to significant
loss of information if not driven too far. Often, the noise characteristics of
the reconstructed images are even improved. It is shown that two factors
are responsible that small kernels can be used in practice without image
deterioration: the small k-space footprint of the RF-coil sensitivities, but also
the fact that the SENSE g-factors are limited for high-quality coil designs
and low acceleration factors.

The second difference gives rise to the question of how the usage of signal
data in GRAPPA instead of RF-sensitivity data in SENSE for weight deter-
mination affects the reconstructed images. To answer this question consider
that the signal of a particular RF channel can be interpreted as being the
Fourier transform of the RF-coil sensitivity profiles weighted with the mag-
netization of the measured object, sometimes (e.g. in [171]) therefore termed
in vivo coil sensitivities . With this interpretation, the only difference between
GRAPPA and SENSE - apart from truncation of the encoding matrix - is that
in GRAPPA, in vivo sensitivity data and in SENSE, pure sensitivity data are
used.

It has been pointed out [183, 147] that there is a subtle difference between
reconstruction with (low resolution) in vivo coil sensitivities or with pure
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sensitivities: When pure sensitivities are used, uniform reconstruction accu-
racy is ensured for each voxel. If in vivo sensitivities are used, the recon-
struction accuracy is higher for voxels with increased image intensity. This
means that aliasing from high-intensity voxels is suppressed, thus reducing
the overall artifact power in the image.30

In summary, the close relationship between GRAPPA and SENSE has been
reviewed in this section. The used matrix approach reveals that truncation
of the SENSE matrix to the size of the GRAPPA problem is feasible without
introducing significant errors. One difference between the two methods is
that SENSE immediately yields a single reconstructed image, whereas in
GRAPPA, unfolded images are determined for each RF channel first; finally,
these images are combined with a root-sum-of-squares or other combina-
tion techniques. Another difference is that in SENSE, explicit information
about the RF-sensitivity profiles is required, whereas in GRAPPA, this infor-
mation is used only implicitly, thus eliminating problems associated with
inaccuracies of the sensitivity determination. In contrast to SENSE, not
pure sensitivity data, but in vivo sensitivity data are effectively used in
GRAPPA with the effect of reduced artifact power in the images. This is
beneficial in the context of PI because aliasing poses a particular problem
with subsampled trajectories.

30To be precise: The “in vivo” weighting only has an influence on the images if an overdeter-
mined system of equations is solved for image reconstruction, as for example done in SENSE
after matrix truncation (or implicitly also in GRAPPA). For the standard SENSE reconstruc-
tion, the weighting has in principle no influence. This is closely related to the fact that the
condition FE = 1 can be satisfied exactly in situations where this condition represents an
underdetermined system of equations.



Chapter 3

Overview of PatLoc Imaging and
Presentation of Initial Hardware Designs

THE acronym PatLoc = Parallel Imaging Technique using Localized Gradients
covers the two main aspects of this novel imaging modality: In PatLoc,

signals are encoded with a new type of gradient system and received with
several RF-receiver coils in parallel. The acronym implies that the PatLoc
project included significant efforts in hardware development. This is cer-
tainly an important aspect, but the primary relevance of PatLoc for MRI is a
conceptually new approach to MRI signal encoding with the ultimate goal
of providing new means to generate innovative applications for medical
diagnosis. The concept of PatLoc and arising applications are illustrated in
this section and two hardware implementations are presented, which were
developed during the course of the PatLoc project.

This chapter is special in that the presented material is based on work that
has been performed by several members of the PatLoc team. The emphasis
is placed on topics with significant own contributions, documented through
(co-)authorship in various publications, among the most relevant to this
chapter are [[61, 156, 42, 207, 63, 199, 24]].

3.1 The Concept

Since the advent of MRI, gradients were built with preferably linear field
geometries. The PatLoc approach breaks with this tradition by intention-
ally introducing nonlinear and non-bijective spatial encoding magnetic fields
(NB-SEMs). This conceptual extension of the signal encoding process has
dramatic consequences for MRI signal localization.

Interestingly, some of the most fundamental effects of non-bijective encod-
ing can be understood with a simple 1D example. Consider Fig. 3.1. In
this example, a magnetic encoding field with quadratic geometry ψ(x) ∝ x2

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5_3, © Springer Fachmedien Wiesbaden 2013
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Figure 3.1: Concept of PatLoc imaging. (a) Conventional gradient encoding (cf.
Fig. 1.7). (b) PatLoc encoding with a quadratic field. It is shown how the frequency
content of the MR signal is linked to the location of origin via the magnetic encoding
fields. The notation conforms to the main text. The comparison reveals differences to
conventional encoding: First, as indicated by the thin dashed lines, the nonlinearity
of the encoding field has the consequence that the voxel size (Δx) and therefore also
image resolution is not homogeneous. Second, as indicated by the orange lines, the
non-bijectiveness of the encoding fields has the consequence that different locations
of the image are encoded with the same frequency. One advantage is a doubling
of image resolution (on average). However, it is not possible to unambiguously
determine the source location of the signal if encoding is solely done with such a
non-bijective field.

instead of the traditional linear geometry ψgrad(x) ∝ x is considered. The
quadratic function differs in two ways from the linear function:

First, it is nonlinear. This nonlinearity has the consequence that image
resolution is spatially dependent in PatLoc. The resolution increases with
increasing steepness of the SEM. More subtle is the observation that the
SNR is expected to decrease, where the encoding fields are steeper. This can
be concluded from the low signal energy resulting from those steep regions
as indicated by the m(ω)-plots in Fig. 3.1. This behavior is in agreement
with conventional Fourier imaging (cf. Eq. 2.36, page 65), where increased
image resolution comes at the expense of loss of SNR.

The second property of x2 is that it is non-bijective. This means that, except
for x = 0, there are always two locations, which are mapped onto one single
frequency. A measurement from a single coil is therefore not sufficient to
uniquely determine the location of the signal origin. This ambiguity is
similar to what is known from conventional accelerated parallel imaging
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(cf. for example Fig. 2.10, page 76). In PatLoc, the encoding ambiguities are
resolved with the help of several receiver coils with different sensitivity at
the ambiguous locations. Note that after unfolding twice as many voxels are
reconstructed. Correspondingly, the average image resolution is doubled.
Fig. 3.2 motivates that signal discrimination is feasible with several RF-
receiver coils.

Figure 3.2: Determination of source locations with parallel acquisition. (a) and (b)
show the situation for two RF-receiver coils with different spatial sensitivity. Coils
(a) and (b) are sensitive on opposite sides of the example object. The signal paths
are in red or blue color depending on from which side of vertex of the parabolic
encoding field the signal emanates. The highlighted signal paths in (a) show that
almost the complete signal energy originates from the left of the vertex, whereas the
signal paths in (b) show that the opposite is the case for the second coil. For this
particular frequency, the difference in RF-coil sensitivities therefore allows one to
uniquely determine the locations of the signal sources. The signal plots indicate that
this is also true for most frequencies. At the center, however, there is a significant
sensitivity overlap and more insight into the problem is necessary to answer the
question to what extent signal discrimination is possible.

These properties – non-homogeneous, but on average increased image reso-
lution, spatially varying SNR, and the necessity to supplement encoding
with RF arrays – are also inherent to 2D imaging with two NB-SEMs (see
e.g. chapter 5.1, page 155ff), and typical if more than two SEMs are used for
signal encoding (see e.g. chapter 7.2.2, page 255ff). These and other prop-
erties of NB-SEMs offer new degrees of freedom for MRI signal encoding.
The next section gives examples how these new degrees of freedom can be
exploited to develop interesting new applications for MRI.
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3.2 Applications

3.2.1 Background: New Encoding Options

There are very good arguments to use linear gradient fields in MRI. These
fields allow signal encoding in the Fourier domain of the object. For single-
channel Cartesian acquisitions, image reconstruction is fast (FFT) and results
in images with constant spatial resolution (cf. Eq. 2.33) and optimal, ho-
mogeneous SNR (cf. Eq. 2.36). These properties are very advantageous in
many ways, yet not the only measure for diagnostic usability.

A good example is parallel imaging, where the homogeneous and opti-
mal SNR properties of the reconstructed images are sacrificed in favor of
imaging speed; many other useful applications have evolved with the de-
velopment of PI. The main reason for this tremendous impact of PI has
been the extension of encoding capabilities compared to single-channel
acquisitions.

In this sense, PatLoc has a similar target: extending the encoding capabilities
of current imaging hardware. This task is achieved by making the gradient
system itself more flexible. This approach is promising because the gradients
provide the major part of the overall encoding information. A PatLoc
encoding system offers new encoding options by not restricting encoding
to linear SEMs; curvilinear and non-bijective SEMs are also available for
signal localization.

The relevance of PatLoc is augmented by the availability of parallel recep-
tion on many modern scanners. Reconsider that the additional information
provided by an array of RF coils has shown that gradient encoding can be
reduced to an extent, which would normally lead to non-unique encod-
ing. PI therefore allows incomplete gradient encoding that can also be a
consequence of non-bijective SEMs. Despite the various possibilities that
PI offers to use non-complete gradient encoding strategies, the existing
gradient hardware has remained the same, while the research concentrated
on modifying k-space sampling schemes. In PatLoc it is reviewed whether
modifications of the gradient system lead to more efficient signal encoding
especially in the context of PI. Novel encoding strategies are investigated,
adequate reconstruction methods are developed and new applications in
medical diagnostics are explored.



3.2 Applications 107

Potential benefits of PatLoc were already discussed in the initial conceptual
publication [[61]]. It was motivated therein that PatLoc is useful because it
allows customization of the encoding fields to the underlying anatomical
structures. Also, it has been hypothesized in [[61]] that the problem of
peripheral nerve stimulation (PNS) could be reduced with PatLoc. Soon, it
has been realized that PatLoc can be efficient in the context of RF reception
[[156]] (low g-factor) as well as in the context of RF transmission [54, 152],
[[191]] (shorter pulses, more efficient acquisitions of functional MRI data).
Particularly interesting are the options, which PatLoc offers for reduced
field-of-view imaging [[213, 207]]. One example is the elimination of bal-
anced SSFP1 banding artifacts [[206]]. PatLoc is still a very new technology.
The wide range of possible applications is promising and the increasing in-
terest in PatLoc and related approaches [178, 80, 98, 97, 93], [[100, 101]], will
undoubtedly lead to many new and creative ideas for medical diagnosis.
I have selected a few interesting applications, which are described in the
following three sections in more detail.

3.2.2 Improved Encoding Efficiency

With modern gradient hardware a linear SEM can be switched fast and
accurately. Moreover, the three available channels allow arbitrary spatial
orientation of the linear SEM. However, there is no possibility to deviate
from the linear geometry. One of the major incentives for the development
of a PatLoc system has been the observation that alternative SEM geome-
tries are often better adapted to the anatomical shapes of the measured
objects. Also, alternative field geometries have different effects on technical
as well as physiological restrictions. It is therefore to be expected that im-
provements in encoding efficiency can be achieved with PatLoc resulting
in reduced scan times or increased diagnostic information. This aspect is
further motivated in this section by discussing situations with increasing
flexibility; a single SEM, then two SEMs and finally more than two SEMs
are considered.

Encoding with One SEM As an example, consider the MR-Encephalog-
raphy project [64, 69, 211]. The aim of this project is to map brain physiology
with a maximum temporal resolution. Image resolution on the other hand

1Acronym for Steady-State Free Precession. More information on balanced SSFP imaging
sequences can be found in [53], page 796.
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is not of major interest. In this context, the idea came up to encode with
only one gradient coil and replace the encoding of the second gradient coil
entirely by RF-sensitivity encoding (also cf. [[61]]). This approach would
significantly lower the achievable image resolution. On the other hand, the
signal acquisitions would be much faster because slow sequential gradient
encoding would be replaced by fast simultaneous RF-sensitivity encoding.
In this situation, the question arose if a linear encoding field is really always
the optimal choice; in cortical imaging for example, information is required
from the periphery of the brain only. However, linear gradient fields also
encode the center of the brain and, due to the rectangular shape of the fields,
also significant parts outside of the brain are encoded. In this situation,
elliptical encoding fields would be better suited because the geometrical
shape of these fields would cause magnetic field variations to be significant
almost exclusively within the region of interest. This claim is supported by
Fig. 3.3.

Figure 3.3: Encoding with one SEM. An example for cortical imaging. (a) Encoding
with a conventional linear gradient field (field isolines are shown). (b) Efficient depth-
encoding with elliptical SEMs having a high spatial derivative at the periphery. For
cortical imaging, it is important to retrieve information from the periphery of the brain.
In fast imaging modalities, where a gradient is used only for depth-encoding, and
encoding along the circumferential direction is done with RF coils, elliptically-shaped
encoding fields are better adapted to the anatomy of the cortex than linear fields.

Encoding with Two SEMs Not only ultra-fast imaging modalities, where
a single gradient field is used, would profit from optimized field designs.
Also encoding modalities, where two SEMs are used for in-plane imaging
profit from the additional flexibility that PatLoc offers. In the 1D example
of Fig. 3.1, it is motivated that image resolution depends on the spatial
derivative of the encoding fields. The dependency of image resolution to the
field derivatives can be exploited in the following way: Suppose that not the
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Figure 3.4: Contour plots of several orthogonal hypothetical SEMs. Size and shape
of the small areas between the contour lines reflect the local image resolution. (a)
Standard linear SEMs have homogeneous resolution. (b) For quadrupolar SEMs,
there is a clear resolution gradient toward the periphery. Note that with the same
number of isocontour lines (i.e., for the same amount of acquired data), there are
twice as many voxels compared to linear encoding fields. (c) For multipolar SEMs
with even higher polarity, the number of voxels is higher, however, also the resolution
gradient is more pronounced. (d) Shown is an arbitrary SEM. It has an almost
arbitrary resolution pattern. At the periphery, a tendency toward an increased image
resolution is visible. (e) Especially for ROIs at the periphery (gray circle), encoding
can be highly efficient if optimized for those ROIs only.

whole object, but only a sub-volume is important for a certain measurement.
Then, fields with strong spatial derivatives are required for this sub-volume
and outside of this region it is sufficient to have flat field geometries. PatLoc
can be used to design SEMs such that encoding is more efficient in the ROI
while restricting loss of encoding efficiency to regions of minor interest. For
more homogeneous resolution inside the ROI, a method has been developed,
which allows one to partially homogenize image resolution by sacrificing
some of the abundant SNR of the low-resolution image parts [[190]]. A
nice way of visualizing image resolution is to plot contour lines of both
encoding fields on top of each other. Some theoretical examples of different
orthogonal field geometries are shown in Fig. 3.4.2 These examples show

2Consult Appendix A.4, page 299ff, for an elegant way of describing orthogonal fields in
2D with complex-valued analysis. More information is found in [[159]].
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that there is a high flexibility in field design. Even more flexibility exists
when the requirement of orthogonality is relaxed.

The quadrupolar field design, which corresponds to Fig. 3.4b, has been
realized experimentally (see section 3.3, page 121ff). If those fields are
used instead of the linear encoding fields, the encoding efficiency differs
throughout the image. Because of the nonlinearities, almost no information
of the image is encoded at the center, whereas at the periphery, a high
resolution results (cf. Fig. 3.5). Analogous to the 1D example of section 3.1,
page 103ff, the non-bijectiveness of the fields is responsible for a doubling
of the average image resolution compared to standard gradient encoding
for the same amount of acquired data.

Figure 3.5: Image resolution with quadrupolar SEM encoding. (a) With standard
linear gradient fields image resolution is homogeneous. (b) With quadrupolar SEMs,
almost no image information is available at the center. Image resolution improves
however toward the periphery. Some pronounced streaking artifacts are visible,
which originate from the center. (c) and (d) Comparison of two similar zoomed-in
sections show that image resolution is indeed higher with PatLoc within the peripheral
region. Both images have been acquired with the same imaging parameters to allow
fair comparison.

The contour plots shown in Fig. 3.4 and the experimental results shown in
Fig. 3.5 reveal that encoding is typically more efficient near the coil surfaces
(at the periphery). The reason for this property is obvious: The influence of
the currents in the coils decreases with increasing distance. Especially at
the periphery, there is room to improve the encoding efficiency as indicated
by Fig. 3.4e.3 Hence, a more flexible field design would profit from coil
arrangements, which can be adapted to the anatomical shape of the imaged

3The example shown in subfigure (e) has been found using complex-valued analysis (cf.
Appendix A.4, page 299ff) by minimizing |f ′(s)| (f and s are defined here as in Appendix
A.4) outside of the ROI under the constraint that (

∑
s∈ROI |f ′(s)|2)1/2 is constant within

the ROI. Note that |f ′(s)| is equivalent to the Jacobian determinant of the corresponding
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part of the body. In summary, an encoding system with two NB-SEMs
of adequate geometry is useful to locally improve image resolution or to
accelerate image acquisitions. The effects are enhanced considering that an
intrinsic acceleration is associated with non-bijective encoding.

Encoding with More than Two SEMs It is clear that effective field design
is only possible with a flexible encoding system. Such a system would
preferably consist of a large amount of coil channels. In Freiburg, a six
channel system has recently been established, which allows simultaneous
switching of the three linear channels and the two quadrupolar SEMs [[42]].
Also, a planar three-channel coil is currently being tested [[103]]. In the
future, efforts will be focused on the development of a much more flexible
multi-channel system.

The variations in image resolution resulting from such multi-channel sys-
tems depend not only on the field geometry, but also on the chosen time
courses of the coil currents. The impact of such multi-dimensional encoding
strategies on image properties like image resolution is therefore much more
complex than if only two SEMs are involved. The local k-space concept,
developed by Dr. Daniel Gallichan, has proven very helpful in this regard.
The idea of local k-space has fruitfully been used to design and analyze
complex multi-dimensional trajectories [[42]]; moreover, it is useful in re-
lated topics like GradLoc [[207]]. A discussion of this important concept
should therefore not be spared, and is explained with further detail at the
end of this section.

An interesting example in the present context is the 4D-RIO4-trajectory
[[42]] that makes use of linear SEMs as well as NB-SEMs. On the one
hand, images encoded with this multidimensional (4D) trajectory have
properties that resemble those which are typically associated with linear
gradient fields; for example, an extended portion of the image exhibits
a homogeneous resolution (cf. Fig. 7.12, page 265). On the other hand,
fundamental differences to conventional imaging arise; for example, image
contrast is heavily affected by the 4D encoding.

two-dimensional real-valued vector field and thus approximates image resolution very well
(cf. chapter 5.1.1e, on page 169, in combination with Eq. 5.8).

4Acronym for 4-Dimensional Radial In/out vs. Out/in. This trajectory is briefly presented in
chapter 7.2.1b, page 254f.
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4D-RIO illustrates the capabilities of multi-dimensional trajectories to create
new imaging effects, made possible by the additional spatial and temporal
degrees of freedom that become available to redefine the magnetic field
evolution within the measured object. These additional degrees of freedom
may also be exploited to reduce scan time; to understand this, it is crucial
to note that any encoding strategy is subject to many different limitations.
There are restrictions of technical nature. For example, the SEMs cannot
be switched infinitely fast because the coils that generate the SEMs have
a finite inductivity. Also, there are restrictions of physiological nature,
notably peripheral nerve stimulation caused by switched magnetic fields.
These technical and physiological restrictions have the effect that there is
a minimum execution time associated with a particular encoding strategy.
One encoding strategy can be faster, i.e., more efficient, than a different
strategy. Multi-dimensional PatLoc trajectories offer the possibility to design
fast encoding strategies that are less demanding for certain restrictions than
if encoded with purely linear SEMs, without necessarily having to cut back
on relevant image information (like for example image resolution in the
ROI).

The relationship between restrictions and encoding strategy is very complex
and far from being understood. A thorough analysis of this important
topic is still to be undertaken. In the following section, after a short note
on local k-space, at least qualitative arguments are presented which show
that NB-SEMs have the potential to reduce the problem of peripheral nerve
stimulation.

The Concept of Local k-Space The concept may be understood by com-
paring it to standard k-space. Recall that k-space corresponds to the space
of encoded spatial frequencies. When k-space is sampled, different spatial
frequencies of the object are acquired. The achieved image resolution is
related to the highest sampled spatial frequencies, and aliasing occurs if the
distance between the sampled spatial frequencies is too high (cf. paragraph
Field-of-View on page 62ff in chapter 2.2.1c). In contrast to conventional
imaging, where the spatial frequencies of the encoding functions do not
change throughout the image, in PatLoc, each location encounters mod-
ulations with different spatial frequencies during the acquisition process.
Therefore, each position has its own local distribution of encoded spatial
frequencies; these local spatial frequencies define the spatial information
that is available about the measured object at each location; in other words:
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the encoded information at location �xρ is defined by the distribution of the
local k-space variable:

�kloc(�xρ, t) := (∇φ)(�xρ, t). (3.1)

Here, φ(·) represents the encoded phase distribution at location �xρ at time-
point t, and ∇φ, the corresponding local spatial frequency distribution.
Some examples of local k-space distributions are depicted in Fig. 3.6.

Figure 3.6: Local k-space (a-c) and examples of corresponding reconstructed
images (d-f). (a,d) Conventional imaging. Local k-space is the same everywhere.
Therefore, image resolution is constant throughout the image. (b,e) PatLoc imaging
with two orthogonal quadrupolar SEMs. At the periphery, local k-space is enlarged,
whereas it collapses to a single point at the center. Correspondingly, image resolution
is high at the periphery, whereas it degrades toward the center. (c,f) Complex 4D
trajectory, where linear and quadrupolar fields are involved. The trajectory is the
4D-RIO trajectory presented in [[42]]. The extent of local k-space is more evenly
distributed compared to the pure quadrupolar PatLoc example. Therefore, also
image resolution does not deteriorate toward the center (also see Fig. 7.13, page
267). The images are courtesy of Dr. Daniel Gallichan. Similar images have been
published in [[42]].

The figure also illustrates that the extent of local k-space is closely related
to the local image resolution. This observation can also be substantiated
by theoretical means as shown in Appendix A.5.1, page 303ff. This shows
that the relation between k-space extent and image resolution, that is well-
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known from conventional imaging, can immediately be adopted on a local
level as well. Interestingly, this is not possible for the aliasing artifact: From
the local sampling density alone no precise conclusions concerning aliasing
at a certain location can be drawn because the aliasing artifact is not a local
effect. Also note that, in the basic formulation of the concept, supplementary
RF encoding is disregarded.

In the context of PatLoc imaging, it is particularly useful to link local k-
space to what is actually done in the experiment. The exact relationship
between the user-defined PatLoc acquisition trajectory and local k-space
distribution is presented in Appendix A.5.2, page 305f, and illustrated for
the three examples of Fig. 3.6.

3.2.3 Reduction of Peripheral Nerve Stimulation

A problematic side-effect of gradient switching is the possibility of periph-
eral nerve stimulation. PNS is a physiological reaction often perceived as a
tingling sensation. It can, however, also cause significant pain and in the
worst case, cardiac arrest might be triggered [46]. Gradient technology has
advanced significantly in terms of field strength and switching rate, such
that PNS has become a patient safety issue on many modern MR systems.
This implies that nowadays gradient trajectory performance is often not
restricted by gradient technology, but rather by physiological restrictions.
The PatLoc approach offers possibilities to speed up the encoding process
without exceeding the PNS limits. To understand this, a quick review of the
causes for PNS is given in the next two paragraphs. A detailed presentation
of this topic with further references is found in [46].

The term peripheral nerve stimulation correctly reveals that involuntary nerve
activation can be triggered by switched gradients, i.e., by magnetic fields,
which vary in the audio-frequency range. PNS is not a direct magnetic
effect because it is a well-known fact from electrophysiology that nerve
activation is triggered by the electric field and not the magnetic field itself
[46]. However, basic electromagnetic theory states that an electrical field is
generated by a time-varying magnetic field and therefore also a switched
gradient field can cause nerve stimulation. More concretely, the integral of
the electric field along a certain path (= voltage) is proportional to the time
derivative of the magnetic flux flow through an enclosed area (Faraday’s
law):

∮
�Ed�l =

∫∫
�̇Bd �A. Consider now a simple an idealistic situation
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[144], where the human body is modeled as a cylinder with homogeneous
tissue parameters and where the encoding field is assumed to have a pure
constant gradient in the z-direction.5 It can easily be shown that under these
assumptions, the above equation has the solution: E ∝ r · dB/dt, where
r is the distance from the z-axis. From this equation, it can be concluded
that the current flows inside the human body are proportional to dB/dt.
And indeed, stimulation occurs primarily at the periphery of the body like
shoulders and arms [33], where dB/dt is typically very high. However, the
currents are also proportional to the size r of the current loops. This is the
main reason, why patients should avoid folding their hands during a scan
[38].

The model is especially useful to predict current flows in the human body.
These current flows can lead to nerve stimulation. It has been observed
and analyzed a long time ago by Weiss and Lapicque [195, 89] that currents
must flow for a certain amount of time τ to build up sufficient potential
differences to cause cell depolarization. Irnich et al. have shown in [71] that
the stimulation model of Weiss and Lapicque can be combined with the
model presented in the previous paragraph. They derive a formula (Eq. 9
in [71]), which is of particular interest also in the context of PatLoc imaging,
for the minimum magnetic field strength B(τ) required to cause nerve
stimulation: B(τ) = Bmin · (1 + τ/τc). In this formula, τ can be interpreted
as the pulse duration, τc is the chronaxie [89], a tissue dependent time
constant, and Bmin is the minimum, physically not realizable, instantaneous
field change required to cause stimulation. Apart from the dependency
on pulse duration, the formula is very interesting because it suggests that
it is rather the absolute value of the peak-to-peak magnetic field change,
which matters and peak dB/dt is not of primary interest. This result has
been substantiated in [71] and also the results evaluated from different
publications [33] support the claim that it might be reasonable for legal
regulations to determine switching limits rather on B itself than on dB/dt.

Why is this interesting in the context of PatLoc? Consider Fig. 3.7. In
this figure, a switched quadratic gradient is compared to a switched linear
gradient. The comparison of Fig. 3.7a with Fig. 3.7b shows that the non-
bijectiveness of the fields can indeed lead to reduced peak-to-peak magnetic
field variations during switching. Note that the reduction depends on

5In reality, a gradient field is necessarily accompanied by concomitant field components
(cf. e.g. [9]; also see chapter 1.2.2, on page 28).



116 Chapter 3. PatLoc Imaging. Initial Hardware Designs.

Figure 3.7: PNS in PatLoc: a 1D example. (a) Shown is a linear gradient field,
which is switched from one extreme to the other. (b) The peak-to-peak variation is
halved for a quadratic encoding field. This has beneficial consequences for PNS.
Note that the average encoding efficiency, given by the derivative of the SEM, is
preserved. (c) Care must be taken how the switching is performed, otherwise no
gain might result.

how the fields are actually switched. If they are switched as indicated in
Fig. 3.7b, the amplitude is halved; if, however, switched as in Fig. 3.7c,
the amplitude is the same! It is clear that the 1D example of Fig. 3.7 can
only give a rough understanding about the PNS capabilities of practical
PatLoc measurements. Concomitant fields must be considered and, what is
even more intricate, it is important to consider that the different geometric
shapes of the encoding fields influence the non-local effects (for example
current loops, influence of differing tissue properties), which are important
for PNS. Initial investigations have been performed to ensure that safety
margins are not exceeded by the used experimental setup [[24]]. This
was necessary to get ethical approval from the Ethics Commission of the
University of Freiburg. Further investigations with more flexible SEM
systems are indispensable to evaluate the PNS capabilities of PatLoc under
realistic conditions. This will also involve patient studies and therefore
safety considerations will be of primary importance in this regard.

3.2.4 Applications Involving Nonlinear Phase Preparation

Particularly promising are applications with nonlinear phase preparation
added to conventional gradient encoding. Nonlinear phase preparation is a
method, where a nonlinear PatLoc-SEM is switched before signal reception.
The nonlinearity of the SEM causes signal echoes to be formed at different
time points, depending on the location of the signal source. This spatio-
temporal correlation of echo formation is exploited by a method that has
been termed GradLoc to perform reduced FOV-imaging [[213, 207]] and by
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STAGES6 [[206]] to enhance the homogeneity of the B0 field during signal
acquisition. The lion’s share for the development of these two applications
can be attributed to Dr. Walter Witschey. Relevant prior art is referenced
and briefly discussed in the above publications. The basic ideas and initial
results are reviewed in this section. For simplicity, only SEMs with quadratic
terms are considered for phase preparation.

a) GradLoc: Reduced Field-of-View-Imaging

In conventional imaging, the k-space signal energy is typically focused at
the center of k-space (echo). This behavior changes dramatically, when a
quadratic SEM is applied during phase encoding in addition to the linear
gradients: The k-space echo spreads out over a region that becomes larger
with increasing field strength of the quadratic field. This effect is often
denoted as phase-scrambling (also see [131]) and is illustrated in Fig. 3.8. This
figure also reveals an astonishing property of quadratic phase preparation:
With increasing quadratic phase, the k-space progressively resembles the
actual image. When the quadratic field is increased even further, parts of
the echoes leave the acquired region and, consequently, peripheral parts of
the image are cropped (also visible in Fig. 9d in [72]), whereas the central
part of the image remains almost unaffected.

What is the reason for this strong correlation between image space and
k-space? Recall that in conventional imaging, the gradients impose a phase
φ ∝ kx onto the magnetization, where k is the k-space variable and x is
the source location.7 The quadratic SEM is responsible for an additional
phase accumulation proportional to αx2 resulting in the overall phase of
φ ∝ (k+ kq(x))x, where kq(x) = αx. Quadratic phase preparation therefore
leads to a splitting of the echo into individual components, where the
echo of each source location x is not centered around k = 0, but shifted
to −kq(x) = −αx. Most signal energy of each individual component is
therefore located at −αx in k-space. This is the reason for the one-to-one
correspondence of k-space signal echo shift and image space source location
and why (a) k-space and reconstructed image look similar and why (b)
for large values of α, those parts of the reconstructed image vanish which
correspond to k-space values that have been shifted outside of the acquired

6Acronym for Steady-STAte Gradient Echo Shimming.
7The explanation is in 1D. It can be extended to 2D and 3D in a straightforward manner

[[207]].
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Figure 3.8: Effect of quadratic phase preparation. (a) Geometry of a 2D quadratic
encoding field. (b) Bottom: Reconstructed image. Top: Corresponding k-space
signal. From left to right: Without phase preparation, there is a single central k-
space echo. With increasing quadratic phase, the echoes originating from different
parts of the object separate. For large quadratic phase, peripheral echoes are not
acquired anymore and signal loss in the reconstructed images occurs. According
to the square-shaped acquisition window, the shape of the localized image is also
square-shaped. Some residual aliasing from high-frequency components remains
visible.

k-space region. More precisely, if the k-space region K has been acquired,
only those parts of the image are visible, which lie in the region V ∝ αK.

This relation is also valid in 2D and 3D [[207]] and has a direct application:
The user can select a ROI V within the object, perform standard imaging
supplemented with quadratic phase preparation, and acquire the k-space
region with the same shape as the ROI: K ∝ V/α. This procedure allows
reduced FOV-imaging because the fold-over artifacts otherwise encountered
along the phase encoding direction (Fig. 3.9a) are avoided. A similar result
may be found with selective excitation pulses. Such pulses are, however,
typically long and often a significant amount of energy is deposited in the
measured objects. These negative effects are avoided with GradLoc.
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Note that the localized boundary in V is not perfectly sharp. The reason for
this unwanted effect is that most, but not all signal energy is located at the
center locations of the individual echoes. High-frequency information may
result in artifacts, for example some residual artifacts are visible outside of
the localized square in Fig. 3.9a. Surprisingly, these artifacts do not seem to
be problematic under in vivo imaging conditions (see Fig. 3.9b).

Figure 3.9: GradLoc measurement results. (a) Phantom measurements. Left:
No aliasing occurs with full k-space sampling. Right, top: Undersampling along
the vertical direction results in the typical fold-over artifact. Right, bottom: With
a quadratic phase, a high-resolution image without aliasing results. (b) These
advantages are also visible under in vivo conditions. Note the comparably weak
high-frequency artifact compared to the simulations in Fig. 3.8. The images are
courtesy of Dr. Walter Witschey. The images in (a) have been taken from [[205]] and
the image in (b) was part of the corresponding poster presentation at the ISMRM
conference 2011 in Montreal. The phase of the acquired data was prepared with a
quadrupolar SEM provided by the available PatLoc hardware. This SEM and the
quadratic SEM used in Fig. 3.8 both result in linear k-space echo shifts and are
therefore equivalent in the context of GradLoc [[205]].

b) STAGES: Dynamic Intra-Slice Shimming

STAGES [[206]] is a novel dynamic shim updating technique; similar to
GradLoc, it is based on the localization properties resulting from nonlinear
phase preparation. Shimming comprises methods to enhance the homogene-
ity of the B0-field, which is perturbed by susceptibility differences between
tissue borders. Active shimming is typically performed with a set of shim
coils that are designed to generate the lowest orders of solid harmonics.
Shimming may be divided into static shimming and dynamic shimming
methods. In static shimming, B0-inhomogeneity maps are acquired and
the currents in the shim coils are adjusted before the actual measurement
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to optimize the shim for the whole excited region or also for a particular
ROI. In dynamic shimming, several shim updates are performed during the
acquisition. A problem with existing shimming methods is that they are
restricted to shimming between successive excitations; i.e., the shims may
be updated from slice to slice. It is however not possible to shim during the
acquisition of a single slice if encoding is done with only linear gradients.
That is, where STAGES comes into play: It is possible to perform not only
inter-slice shimming, but also intra-slice shimming.

This is possible because of the k-space relocalization properties of the non-
linear phase preparation. Recall that k-space is actually traversed in the
temporal domain along a user-defined k-space trajectory (cf. chapter 1.2.2,
page 27ff). Relocalization of MR signals in k-space is therefore, from the
perspective of the concrete measurement, a temporal rearrangement of
the individual MR echoes, which originate from different locations of the
measured object. In the previous section, where GradLoc is explained, it
is shown that a quadratic SEM leads to a one-to-one correspondence of
k-space and source location. In the temporal description this means that
at each instant of time, signal echoes are recorded, which originate from a
very localized region within the excited slice. Thus, it is possible to optimize
the shim for that localized region only. While traversing k-space, the region
that contributes signal changes. It is therefore possible to update the shims
to the currently contributing region with the consequence of significantly
enhanced image quality. Note that such an intra-slice shim updating pro-
tocol requires a nonlinear SEM. With linear SEMs, the signal echoes occur
all at the same time. Therefore all image parts are equally affected by the
shimming parameters. If these are optimized at one instant for a certain
region, the quality may be enhanced at that location, however, only at the
expense of image deterioration elsewhere. This problem is avoided with
nonlinear phase preparation.

The dynamic shimming capabilities have been demonstrated for a problem,
which is known to result from B0-inhomogeneities: In balanced SSFP se-
quences (cf. [53], page 796), banding artifacts with unwanted signal loss
occur (see Fig. 3.10a). Fig. 3.10b shows that these banding artifacts could
be eliminated with STAGES. More information about the concrete update
scheme and the used sequence parameters is found in [[206]].
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Figure 3.10: Banding artifact suppression with STAGES. (a) Images acquired with
balanced SSFP sequences are typically corrupted with such a banding artifact. (b)
With STAGES this artifact is eliminated. The images are courtesy of Dr. Walter
Witschey and have been taken from [[206]].

3.2.5 Summary

These examples show that PatLoc has potential benefits in various areas
of MRI. Some of these benefits could already be verified with the current
PatLoc hardware, others still wait for ethical approval to be evaluated. Some
benefits like improved encoding efficiency call for a more flexible gradient
system. PatLoc is still a young imaging modality with many open questions.
It is very probable that further investigations will create new ideas about
how the gained flexibility in signal encoding can be used to solve current
problems in MRI and generate new applications for medical imaging.

3.3 Initial Experimental Setups

In this section, the first two hardware designs of a PatLoc imaging system
are presented that were constructed during the course of the PatLoc project.
Another, high-performance system is currently being installed and is not
presented here. The first PatLoc prototype coil has been built to fit into a
9.4T BioSpec research system for small animal MRI (Bruker BioSpin MRI
GmbH, Ettlingen, Germany). The second PatLoc coil was constructed signif-
icantly larger as an insert coil for human head imaging on a MAGNETOM
Trio, A Tim System 3T (Siemens Healthcare, Erlangen, Germany). Both Pat-
Loc gradient coils were designed to generate two orthogonal quadrupolar
encoding fields. These fields are introduced in the following section before
the animal and the human systems are presented in more detail.



122 Chapter 3. PatLoc Imaging. Initial Hardware Designs.

3.3.1 Multipolar Encoding Fields

The orthogonal quadrupolar SEMs realized in the experiments form spe-
cial types of orthogonal multipolar SEMs [[63]]. These two fields are best
described in polar coordinates, where they are represented by ψ1(r, ϕ) ∝
rL cos(Lϕ) and ψ2(r, ϕ) ∝ rL sin(Lϕ). The fields of lowest order L = 1

are just the standard x- and y-gradients. The fields with L = 2 are the
quadrupolar fields which are generated with the custom-made PatLoc hard-
ware. The field geometry of the two quadrupolar fields is shown in Fig.
3.11; it is equivalent to the geometry of the fields generated by shim coils of
order (L := 2, L := 2).

Figure 3.11: Quadrupolar SEMs. The two orthogonal quadrupolar SEMs form
hyperbolic paraboloids, which are rotated against each other by 45◦. They are flat
at the center and the field strength increases quadratically in the radial direction.
Along the circumferential direction, the field changes sinusoidally with two poles on
opposite sides of the center.

Both fields are also orthogonal to the z-gradient ψ3(·) ∝ z. Orthogonality
means in this case that the gradients of the magnetic fields are perpendicular.
The orthogonality of the fields can easily be computed by verifying that
(∇ψi) · (∇ψj) = 0 for all i �= j. Orthogonal multipolar SEMs have the
remarkable property that appropriate combinations of them generate all
feasible magnetic encoding fields under the condition that the gradients of
these two fields plus the z-gradient are globally orthogonal to each other.
This statement is proven in Appendix A.4, page 299ff. One important result
of the proof is that it identifies the linear gradient fields as the most basic
encoding fields, followed by orthogonal quadrupolar SEMs. From this
mathematical point of view, the realized PatLoc hardware is the first and
most basic step toward encoding fields with a virtually arbitrary geometry,
and PatLoc imaging can be regarded as a natural generalization of standard
Fourier imaging.
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The requirement of orthogonality is not a necessary condition for imaging,
however, it ensures maximal encoding efficiency because encoding along
orthogonal directions adds complementary information, whereas encoding
along the same direction does not yield new information. Fig. 3.12 illustrates
that the angle of encoding directions has consequences for the shapes of
the voxels and therefore also for image resolution. Within the accuracy of
the voxel model as used in the figure, the voxels form parallelograms for
linear SEMs whose area is given by f = |(∇ψ1)| · |∇ψ2)|/ sin(φ), where φ

is the angle between the gradient fields of the two SEMs. For given field
strengths, image resolution is therefore maximized when the field gradients
approach orthogonality. Another advantage of orthogonal SEMs is that the
voxels form compact squares instead of anisotropic parallelograms. For
small voxels, the same is true for nonlinear SEMs.

Figure 3.12: Voxel shapes and local encoding directions. (a) Two linear SEMs. Left:
Orthogonal SEMs. Right: Non-orthogonal SEMs. The areas enclosed by the contour
lines roughly approximate size and shape of the voxels within the reconstructed
images. Within this approximation, voxels have the highest quality with orthogonal
encoding directions. (b) At the periphery, an optimal voxel shape is preserved with
quadrupolar orthogonal SEMs. Only at the center, deviations from the optimal shape
are visible. (c) The shown example of two nonlinear SEMs illustrates that the angle
of the encoding directions is an important parameter in determining the image quality
also for the case of general nonlinear SEMs.
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Figure 3.13: Experimental setup of the first PatLoc measurements. (a) The mea-
surements were performed on a Bruker BioSpec 94/30 USR system. (b) From
the 30 cm of the scanner bore only 12 cm could be used for the PatLoc insert and
6 cm were available for the measurements. (c) The PatLoc coil was manufactured
manually based on an optimized octagonal wire topology. The optimal field geometry
was between the 3rd and 4th rung at the opposite side of the cabling.

Note, however, that the voxel volume is for example only diminished by
13% when the field directions form an angle of only 60 ◦ with each other:
The sinusoidal relationship of voxel size and angular encoding directions
has the consequence that fairly large deviations from orthogonality can be
tolerated in practice without a strong impact on encoding efficiency and
image quality. Deviations from exact orthogonality can even be useful; for
engineering reasons, but also from a theoretical perspective. For example, it
might be useful to flatten out the multipolar fields toward the edges because
the volume very near to the coil surface can often not be used for imaging
and strong gradients in regions not being covered by the object should be
avoided in order to guarantee a high level of encoding efficiency.

3.3.2 Animal System

The very first PatLoc experiments were performed on a 9.4T BioSpec system
for preclinical MRI (Bruker BioSpin MRI GmbH, Ettlingen, Germany, see
Fig. 3.13a). The basic experimental setup has been presented in [[199]].
The results relevant to this thesis are reviewed here and information is
added where necessary. The scanner bore had a diameter of 30 cm, but only
a volume of 6 cm in diameter could be used for phantom measurements
because several hardware components like standard gradient hardware and
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Figure 3.14: Generation of quadrupolar SEMs with the small-bore PatLoc prototype
coil. (a) Two times four elements were connected with each other. (b) The four
elements from each group were driven with alternating currents, which could flow in
both directions. (c) One quadrupolar SEM was generated by driving both groups
with equal currents. The second, orthogonal SEM was produced by reversing the
current direction in one of the two element groups (shown is a slice at z = 0). The
two quadrupolar fields could therefore be switched independently with the same
controller normally used for the x- and y-gradients.

PatLoc coil insert used up the space in between. A cross section through
the coil arrangement inside the scanner bore is depicted in Fig. 3.13b.

The PatLoc coil itself is shown in Fig. 3.13c. The coil was constructed
manually with a length of 35 cm from which only about 6 cm could be used
for imaging. The wire arrangement was based on a topology that had
already been used for PatLoc simulations before [[61]]. The coil consisted
of eight identical elements, arranged in an octagonal structure. In the
simulations, the individual elements had imitated the symmetric design
published in [21]. For the prototype coil, this design was optimized based
on the method presented in [[105]] and for practical reasons, an asymmetric
design was chosen for the individual elements with the current return paths
all on the same side of the coil (cf. Fig. 3.13c).

In order to get two orthogonal quadrupolar SEMs, the eight elements were
divided into two groups. Each group consisted of four elements, which
were connected as shown in Fig. 3.14a. The first quadrupolar field was
generated by applying equal currents in both element groups. The second
quadrupolar field was generated by applying currents with reversed direc-
tion through the second element group. This procedure is depicted in Fig.
3.14b,c. The PatLoc coil could therefore be integrated into an existing hard-
ware environment and the two channels, normally used for the switching of
the x- and y-gradients were used to switch the two orthogonal quadrupolar
SEMs instead. Fig. 3.15 shows that the design of the PatLoc prototype
coil generated SEMs that were fairly similar to the exact quadrupolar coun-
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Figure 3.15: PatLoc SEMs generated by the small-bore prototype coil. (a) Top row
and bottom row show the two different quadrupolar SEMs. On the left, measured
PatLoc fields are shown. From these fields, exact hyperbolic paraboloids are sub-
tracted resulting in a difference map. This map indicates that the true SEMs deviate
from the exact counterparts by up to 10% referred to the maximum field strength
at the edge of the FOV. (b) Distribution of the angles between the two encoding
directions. Note that all angles are between 60 ◦ and 120 ◦ indicating fairly high
encoding efficiency.

terparts, at least in the central slice. In the relevant volume, the encoding
directions were always between 60 ◦ and 120 ◦, which is sufficient to ensure
efficient encoding in the whole volume of interest (see last paragraph of the
latter section 3.3.1, on page 124).

One of the first images acquired with this hardware is shown in Fig. 3.16a.
Signal data of a kiwi fruit were acquired with a 128 × 128 spin echo se-
quence (TE = 50msec, TR = 2 sec). For the reference measurement the
same parameters were used. The most obvious difference between the two
images is the resolution gradient toward the outer parts of the kiwi fruit in
the PatLoc image. Considering that the PatLoc prototype coil could only
be driven with a maximum of 8.25A, which is two orders of magnitude
smaller than what modern gradient amplifiers achieve, the image quality is
not perfect, but surprisingly good. The image quality could be improved
significantly with an industrially manufactured high-performance gradient
coil integrated into a comparable Bruker system [120]. One 256× 256 image
is shown in Fig. 3.16b.

3.3.3 Human System

After the initial PatLoc measurements on the Bruker hardware, a second
PatLoc coil was developed and integrated into a MAGNETOM Trio, A Tim
System 3T (Siemens Healthcare, Erlangen, Germany). The goal was to



3.3 Initial Experimental Setups 127

Figure 3.16: Measurement results with the small-bore system. (a) On the left, one
of the very first reconstructed images is shown acquired with the PatLoc prototype
coil. Shown is the image of a kiwi fruit. On the right, a reference image is shown
acquired with the standard gradient system. The same imaging parameters were
chosen. (b) With the second-generation small-bore PatLoc coil, the image quality
could be improved significantly. Shown is a cross-section of a corn cob acquired with
a spin echo sequence. On the left, the PatLoc image, and on the right, a reference
image. The images in (b) were produced by Stéphanie Ohrel at Bruker BioSpin MRI
GmbH, Ettlingen, Germany, and presented at the Annual Meeting of the ISMRM
2010 in Stockholm. The presentation was directly related to the abstract [120].

perform in vivo imaging of the human head with a PatLoc gradient coil
having a reasonable performance.

The intended design was first described in [198]. Coil design and coil
characteristics are described in [196, 197] and some information about coil
integration into the scanner hardware is given in [[42]]. The safety consid-
erations, evaluated in [[24]], formed the basis for obtaining formal ethics
approval for research measurements on human volunteers by the institu-
tional review board of the University of Freiburg. Written consent was
obtained from each volunteer prior to all in vivo measurements performed
for this thesis.
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Figure 3.17: Construction of the PatLoc human head insert coil. From left to
right, top row: The new coil consisted of several identical wire elements, which
differentiated significantly from the elements of the PatLoc prototype coil. These
elements were mounted on a cylindrical former, water cooling was added and the
components were fixed with epoxy resin. Bottom row: With the RF coils inside, the
coil was then introduced into the scanner bore.

The basic construction steps of the PatLoc coil are depicted in Fig. 3.17 and
described in the figure caption. Although the shape of the SEMs, which
could be generated with the new coil, was very similar to the fields of the
initial PatLoc prototype coil, the approach to achieve this was different. The
first PatLoc coil was equipped with a single layer of eight elements. With
this design, all eight elements had to be used to generate both quadrupolar
SEMs (cf. Fig. 3.14). The new design consisted of two layers, each with four
elements. This is depicted in Fig. 3.18a, b. Each layer directly represented
one of the quadrupolar SEMs. Fig. 3.19 shows that the generated fields
were very similar to exact quadrupolar encoding fields. Note that not only
the arrangement of the coil elements, but also the single elements were
redesigned. More on the optimization of the design of the elements and the
coil itself can be found in [196, 76], [[105]].
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Figure 3.18: The PatLoc human head insert and its integration into the scanner
environment. (a) Design of the PatLoc insert. The two-layer structure, with one
layer for each SEM, was constructed to generate two orthogonal quadrupolar SEMs
by alternating the current directions between adjacent elements. Placed inside,
RF-transmit and receiver coils were sized to provide enough space for a human
head. (b) The main components of the insert are visible in this photograph. (c)
The standard gradient system was complemented with additional channels for
independent operation of the gradient coils and the PatLoc head insert.
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Figure 3.19: PatLoc SEMs generated by the human head insert. (a) Deviation from
an exact quadrupolar field geometry. (b) Angle between the two encoding directions.
The scaling is the same as used for the prototype small-bore insert coil (cf. Fig.
3.15). Compared to the SEMs of the prototype coil, the SEMs of the human head
insert resemble their exact counterparts even more. Deviations are below 2% and
the encoding directions are almost everywhere close to 90 ◦ indicating very high
encoding efficiency.

In contrast to the first PatLoc prototype coil, the standard functionality of
the scanner was not restricted during PatLoc measurements. The hardware
was modified such that the quadrupolar SEMs could be controlled simulta-
neously and independently from the standard gradient system. The new
coil integration approach enhanced the flexibility of the system because
more channels were available (with the quadrupolar PatLoc coil, 5 instead
of 3) for signal encoding (also cf. Fig. 3.18c).

The most important coil parameters for the small-bore PatLoc prototype
coil and the large human head insert are compared with each other in Table
3.1. The comparison of the two coils reveals significant differences. Most
obvious, the human head insert is much larger than the prototype insert
coil. This explains the better performance of the small-bore prototype coil in
terms of resistance, inductance and rise time. More important, however, is
that larger objects (like the head) could be measured with the human head
insert. Larger objects provide more signal with positive consequences for
SNR. Despite the much higher field sensitivity of the small-bore prototype
coil, the maximum gradient strength and especially the maximum magnetic
field strength achievable with the human head insert is higher; these prop-
erties of the head insert are beneficial for image quality, but are still not
optimal because the design of the coils allowed only a maximum current of
80A, much less than the amplifiers could have provided (625A). Problem-
atic with the measurements on the small-bore system was that the PatLoc
prototype coil could only be driven with a low current of 8.25A. Therefore,
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Table 3.1: Comparison of important coil parameters of the first small-bore prototype
insert and the human head insert.

Parameter Insert: Small-Bore Human Head

usable diameter (with RF inside) [cm] 6 20
usable length [cm] 6 > 20

maximum current [A] 8.25 80
inductance [μH] 30 2200

resistance [mΩ] 400 510
rise time [μs] 24 200

dwell time [μs] 100 10
field sensitivity8 [mT/Am2] 26.1 1.44/1.36
max. gradient at the periphery [mT/m] 12.9 22.5
max. field strength at the periphery [mT] 0.2 1.1

the dwell time had to be chosen fairly large, setting a considerable lower
bound on the choice of the echo time. Also, the large dwell times and SNR
restrictions hindered the acquisition of high-resolution images with the first
small-bore prototype coil.

The overall assessment of these parameters reveals that measurements with
the human head insert should be more flexible and a higher image quality
is to be expected. Measurements performed with the human insert confirm
this assessment. As an example, an image of a fruit basket, which has
been acquired with the head insert, is compared in Fig. 3.20 to the PatLoc
prototype kiwi image shown in Fig. 3.16a.

Once the system had been set up correctly, it was not problematic to acquire
high-resolution images with the human head insert. The image of the fruit
basket has no geometric distortions; only some residual aliasing artifacts
are visible, which are related to inaccuracies in the determination of the
RF-sensitivity profiles. These artifacts are tolerable because they appear
only at the low-resolution center.

8Field sensitivity of the outer and inner layer (cf. Fig. 3.18). With a different method,
1.42mT/Am2 was measured for the inner layer and 1.30mT/Am2 for the outer layer.
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Figure 3.20: Comparison of PatLoc images acquired with the human head insert (a)
and with the older small-bore prototype coil (b). The fruit basket was reconstructed
from 3842 data points. In compliance with the specifications of the prototype coil,
only 1282 data points were acquired for the kiwi fruit. The comparison of the zoomed-
in sections of the PatLoc acquisition and an identical measurement, but encoded
with the standard gradient system, shows that the image quality could be enhanced
significantly compared to the first prototype system.

The problems associated with the first small-bore prototype coil could
be solved with the second-generation small-bore PatLoc coil [120] and
an image quality was achieved that is in no way inferior to the images
found with the human head insert (cf. Fig. 3.16b). Currently, a high-
performance coil is being manufactured also for the human system. The new
coil will allow detailed assessment of image quality and fair comparison
with conventional state-of-the-art gradient systems integrated into human
systems.



Contributions of this Thesis and Current
State of Research

THIS is a brief overview. More details about the major findings of this
thesis are found in the summary, chapter 8.1, page 277ff, and important

literature is presented where it seems most appropriate.

Contributions of This Thesis Before this thesis was conducted concep-
tual ideas about PatLoc imaging had existed, and initial numerical simula-
tions had substantiated the feasibility of MRI with NB-SEMs if combined
with parallel image acquisition techniques [62]. A simplified encoding
model had been used with non-overlapping RF-coil sensitivities that al-
lowed straightforward image reconstruction. PatLoc measurement hard-
ware had not yet been designed.

The main goal of this thesis was to elaborate the theoretical basis of PatLoc
signal encoding, to develop efficient image reconstruction methods, and
to evaluate these with numerical as well as experimental data, including
in vivo measurements. In chapter 4 common principles of PatLoc encod-
ing and reconstruction are presented. In chapters 5 to 7, reconstruction
algorithms and imaging results are analyzed in detail for several PatLoc
encoding strategies. The subsequent chapters therefore reflect the scientific
outcome that is in line with the main focus of this thesis; also, the two
primary own publications [[156, 158]] concern this part of the thesis.

A significant part of the scientific output also concerns other topics; among
others, hardware, methods, applications. However, the main responsibility
for these topics rested with other members of the PatLoc team; the PatLoc
overview in chapter 3 is presented with a focus on topics that have resulted
in (co-)authorship1 contributions, for example [[61, 156, 42, 207, 63, 199, 24]].

Also the introductory chapter 2 contains material of scientific value. Its main
impact lies on the conceptual level; some of the most important state-of-the-
art MR image reconstruction methods are related to a common principle,

1It is repeated here that double brackets, [[·]], indicate own (co-)authorship.
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thereby establishing interesting connections between them - as well as
between existing methods and PatLoc image reconstruction, as shown in
chapter 4. Moreover, in chapter 2.3.1e the superresolution effect of RF
encoding is quantified. Further contributions are found in the appendix,
sections A.3 to A.5.

A full list of own publications is included below on page 329ff.

Current State of Research Prior to the PatLoc project, benefits from us-
ing NB-SEMs had rarely been discussed in the literature; among the few
publications are [193, 110, 208, 131, 128, 126]. Each of these publications
presents very interesting ideas; however, only specific aspects with very
special field geometries are discussed therein. No attempt had been under-
taken to develop a general imaging concept - like PatLoc imaging. These
publications have had an impact on this thesis in some places; the major
influence, however, comes from literature that deals with standard parallel
image acquisition, most notably [173, 135, 134, 49].

In the meantime, several research groups have contributed important ideas
to the growing field of imaging with NB-SEMs. Especially the group of
Todd Constable (for example [22, 178, 41, 181]) from Yale university, USA,
has to be mentioned, and Fa-Hsuan Lin (for example [97], [[101]]) from
the Massachusetts General Hospital, USA. Recently, Layton et al. [93]
from the university of Melbourne, Australia, have published interesting
research results; actively involved is the research group of Rudolf Stollberger
from the University of Graz, Austria, [[86]]. Noteworthy is also [87] by
Kopanoglu et al. from Bilkent University, Ankara, Turkey, and the excellent
work of Peter Jakob’s group from the University of Würzburg, Germany,
[203, 1].



Chapter 4

Basics of Signal Encoding and Image
Reconstruction in PatLoc Imaging

TWO topics are treated in this chapter. On the one hand, it is discussed
how the PatLoc imaging process can be modeled; on the other hand,

the chapter deals with the problem of how images can be reconstructed in
PatLoc. A common treatment of both topics in one chapter is useful because
an approach of image reconstruction is taken here that makes immediate
use of the imaging model. This chapter is based on work published in
[[156]].

After derivation of the PatLoc signal equation, an introductory 1D recon-
struction example is presented. Then, the matrix approach of chapter 2 is
analyzed in the context of PatLoc imaging and extended to non-Cartesian
reconstruction grids. After discussing how basic image properties can be in-
vestigated, the adaptation of iterative CG reconstruction to PatLoc imaging
is discussed.

In the present chapter, a general perspective is adopted and the introduced
material is the starting point for the development of efficient reconstruction
algorithms for specific imaging modalities like Cartesian (chapter 5) or
radial (chapter 6) PatLoc imaging and more general modalities (chapter 7).

4.1 The Fundamental Signal Model for PatLoc
Imaging

A physical model should map the relevant information and ignore what
can be neglected in a particular context. In this thesis, the context is PatLoc
imaging; in other words, spatial encoding with nonlinear SEMs. From a
theoretical point of view, the description of signal encoding in PatLoc is
certainly interesting; from a practical point of view, it is also necessary
because the reconstruction algorithms that are developed in this thesis rely

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5_4, © Springer Fachmedien Wiesbaden 2013
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on signal models which adequately describe the spatial encoding properties
of PatLoc SEMs. In the first section of the present chapter a minimal model
is presented; i.e., it maps only those features of the imaging process which
are absolutely essential for the development of basic and useful reconstruc-
tion algorithms for PatLoc imaging. Model refinements are only briefly
discussed.

In chapter 1 fundamental models were presented, which have proven to be
useful and sufficient to describe the basic characteristics of Fourier imaging
and parallel imaging. Many established reconstruction algorithms have
been developed based on those models of signal encoding. The fundamental
signal equation is Eq. 1.21; it is repeated here:

s(t) =

∫
V

m(�x)c(�x)e−iφ(�x,t)d�x. (4.1)

This equation expresses the fact that the recorded signal s(t) results from
an ensemble of non-interacting spins with density m(·) excited within a
volume V . The equation also takes into consideration that the spin density
is modulated by the sensitivity c(·) of the RF-receiver coils and by a phase
factor φ(·), which is normally influenced by the linear gradient fields. Other
effects are ignored here. Particularly, in Eq. 1.22 it has been shown that
the phase of the r-th readout is influenced by phase encoding and then by
frequency encoding:

φ(�x, t; r) = φ(�x, 0; r) + γ

∫ t

t̃=0

Bz
enc(�x, t̃; r)dt̃. (4.2)

In this formulation, the only difference of PatLoc to standard imaging is that the
magnetic encoding field Benc does not result from the linear gradient fields, but
from SEMs with arbitrary1 geometry. It can be concluded from this observation
that this model of signal encoding is also useful in the context of PatLoc
imaging.

Recall that (cf. chapter 1.2.2, page 27ff), with the introduction of a k-space
variable, signal and magnetization can be expressed by a simple Fourier re-
lation, as long as a maximum of three orthogonal linear SEMs are involved.
This Fourier relation is no longer valid in PatLoc, where nonlinear SEMs are

1In practice, fundamental restrictions exist, like for example compatibility with Maxwell’s
equations, and practical issues like wire topology, power consumption, thermal limitations,
acoustic noise or nerve stimulation must be considered.
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applied, and, what makes things even more complicated, where more than
three SEMs might be available for signal encoding. It is shown here that the
introduction of a “k-space” variable is also useful in the context of PatLoc
imaging. The formal structure of this section follows the presentation on
page 29f in chapter 1.2.2, and a comparison of the two sections clarifies that
the “PatLoc k-space” variable, as it is defined here, is analogous to the stan-
dard k-space variable. It is shown here that, with this analogous definition
of k-space, the signal equation for PatLoc imaging formally generalizes the
signal equation known from conventional PI (cf. Eq. 1.31, page 38).

Comparable to conventional imaging, also in PatLoc, the magnetic encoding
field Bz

enc(�x) can be a superposition of several SEMs. Depending on the ex-
perimental setup, the number of SEMs is, however, not necessarily restricted
to three. In the general case, Ng SEMs are used for encoding. Each coil j
generates a different SEM with field strength Bz

j (�x, t̃; r) = Ij(t̃; r)bj(�x). It
consists of the spatially varying SEM sensitivity bj(x) and the time-varying
current Ij(t̃; r) through coil j, which can be influenced according to the
dynamic restrictions of the hardware. For such an experimental setup, the
effective encoding field is then given by:

Bz
enc(�x, t̃; r) =

Ng∑
j=1

Bz
j (�x, t̃; r) =

Ng∑
j=1

Ij(t̃; r)bj(�x). (4.3)

The important result from Eq. 4.3 is that the magnetic field decomposes into
the user-defined time-courses of the coil currents and a spatial component
which is defined by the geometries of the SEMs. As a consequence, the
phase distribution in Eq. 4.2 can be specified with the introduction of an Ng-
dimensional PatLoc k-space variable analogous to the conventional k-space
variable and with the definition of an Ng-dimensional encoding function
ψ(·):

φ(�x, t; r) = (kr + k(t; r))
T
ψ(�x), (4.4)

where the components j = 1, . . . , Ng of the initial PatLoc k-space position
kr - with τr being the duration of phase encoding belonging to the r-th
signal readout - and the k-space traversal during readout k(t; r) are defined
as:

(kr)j := β

∫ τr

t̃=0

Ij(t̃; r)dt̃ and kj(t; r) := β

∫ t

t̃=0

Ij(t̃; r)dt̃. (4.5)
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and where the components of the encoding function ψ(·) are proportional
to the applied SEMs:

ψj(�x) := γ/β · bj(�x). (4.6)

β is a scaling factor, which can be chosen freely. In conventional imaging
with linear gradient fields, for practical reasons, β is set to be γg, where
g is the gradient strength with unit coil current (cf. Eq. 1.25, page 29).
This definition is problematic in the context of PatLoc, where the gradient
strength is a quantity that varies along the spatial dimensions. If - as done
here - the PatLoc k-space variable is defined to vary only along the temporal
dimension, it is not advisable to refer to any spatial property of the SEMs in
the definition of β, including the gradient strength (or its average). However,
as β is just a scaling factor, it can be defined as unity or 2π, as in Eq. 5.15, or
by any other value, depending on what is most convenient in a particular
situation. For simplicity, when scaling is not of particular interest, the term
“SEMs” is also used to denote the individual components ψj of the encoding
function.

Introducing the k-space notation (Eqs. 4.4, 4.5) into the signal equation (Eq.
4.1) leads to:

s(t; r) =

∫
V

m(�x)c(�x)e−i(kr+k(t;r))Tψ(�x)d�x. (4.7)

For the determination of image contrast, the temporal order of data sam-
pling along the imaging trajectory is important. However, just like in
the linear case presented above (chapter 1.2.2, on page 30), explicit time-
dependent effects like relaxation are ignored here. Under these assumptions,
the exact time of data sampling can be disregarded, and it is sufficient to
define the set of acquired PatLoc k-space locations K = {kr + k(t; r); t̃ ∈
[0;T ], r = 1, . . . , Npe}.2 Thus, also in the context of PatLoc imaging, it is

2Note that in the general case and in contrast to conventional imaging, it is no longer
possible to densely sample (PatLoc) k-space (cf. the paragraph Excursion: Completeness of
k-Space Encoding on page 64); only a sparse trajectory through a high-dimensional PatLoc
k-space is traversed. Therefore, the trajectory K cannot be treated as a subset of the potentially
very large vector space RNg . For multi-dimensional encoding the PatLoc k-space trajectory
loses its meaning as the Fourier analogue of the image in favor of the local k-space with
consequences for image reconstruction. Adequate reconstruction methods are presented in
chapters 7.1.1 and 7.1.2, page 237ff.



4.1 The Fundamental Signal Model for PatLoc Imaging 139

useful to simplify the signal equation by only considering the signal values
at the sampled k-space locations kκ ∈ K. The signal is then given by:

s(kκ) =

∫
V

m(�x)c(�x)e−ikT
κψ(�x)d�x. (4.8)

Depending on the PatLoc k-space trajectory and the encoding function ψ(·),
encoding might be insufficient for non-ambiguous reconstruction. In this
case, it is necessary to complement SEM encoding with parallel acquisition
using Nc receiver coils with sensitivities cα(·). The acquired signals sα(·)
are then given by:

sα(kκ) =

∫
V

m(�x)cα(�x)e
−ikT

κψ(�x)d�x. (4.9)

In the subsequent chapters derivations of reconstruction algorithms will be
presented which are based on this fundamental signal equation of PatLoc
imaging.

Consider the comparison of the signal equation in standard parallel imaging
(Eq. 1.31) with the corresponding equation in PatLoc imaging:

sα(�kκ) =

∫
V

m(�x)cα(�x)e
−i�kκ�xd�x︸ ︷︷ ︸

Standard PI

sα(kκ) =

∫
V

m(�x)cα(�x)e
−ikT

κψ(�x)d�x︸ ︷︷ ︸
PatLoc

(4.10)
The two equations differ only in the phase factor. The phase �kκ�x must be
replaced by kT

κψ(�x). There are basically two differences:

1. The spatial variable �x is replaced by a general encoding function ψ(�x),
thereby introducing new spatial degrees of freedom to MRI signal
encoding.

2. The dimensions of k and ψ correspond to the number Ng of SEMs
used for imaging. In conventional imaging Ng is 2 for in-plane en-
coding and 3 for volume encoding. In PatLoc, Ng can be any natural
number. The possibility to use multi-dimensional trajectories also
adds new temporal degrees of freedom to MRI signal encoding.

Remark: The term nonlinear and non-bijective SEMs may be misleading be-
cause it is rather the combination of the used SEMs, which can make encod-
ing ambiguous. It is therefore clearer to say that the encoding function ψ has
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the property of being nonlinear and non-bijective. For multi-dimensional
trajectories, it also seems appropriate to simply use the term nonlinear SEMs.

The signal model represented by Eq. 4.9 is very basic; only the most fun-
damental implications are reflected by the model that PatLoc encoding has
on MR images. Two effects are considered: SEM encoding, supplemented
by RF-receiver sensitivity encoding. All other factors that may influence
the acquired signals are disregarded. For example, when, in PatLoc, more
than three SEMs are used for signal encoding, T1 and T2 relaxation can
have unusual effects on image contrast. Not considered is the possibility to
encode information into the phase of the magnetization with adequate RF-
transmit pulses. Hardware imperfections are ignored and it is not discussed
that the spins do not form, in reality, an isolated mono-nuclear ensemble of
non-interacting spins.

The list of important effects that are not considered is actually very long
and research in this regard is still in the early stages. One example in this
context is [[121]], where it has been shown that it is possible to integrate
B0-inhomogeneities into the signal equation without the necessity to signif-
icantly modify image reconstruction. In this thesis, these and other model
refinements are usually disregarded.

4.2 Basics of Linear Image Reconstruction in
PatLoc Imaging

Based on the signal equation for PatLoc imaging, derived in the previous
section, general approaches to linear image reconstruction are treated here.
Nonlinear image reconstruction methods are excluded from the discussion.
Before the general theory is presented, a basic introductory example of
image reconstruction is discussed.

4.2.1 A Simple 1D Example

Reconsider the simple introductory example of chapter 3.1, page 103ff, with
the idealized assumption that the sensitive volume of different RF coils do
not overlap. This example is very simple and most probably not useful in
practice; nevertheless, the reconstruction from this example already shares
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important aspects with the reconstruction algorithms which are derived in
the subsequent chapters with the help of the general matrix theory of the
present chapter, without the use of restrictive and unrealistic assumptions.
The introductory example of chapter 3.1 may not be particularly practical,
but, in theory, it may result from a feasible experiment with the following
assumptions:

• The excitation volume V is a very thin and long bar-shaped region,
which extends along the x-axis.

• Only one readout of very long duration and continuous sampling is
acquired with the echo formed at t = 0.

• A single SEM with field strength B(x) = hx2 along the excited x-axis
is used.3 W. l. o. g. assume h = γ−1.

• The encoding field remains constant during readout.

With these assumptions, the signal equation (Eq. 4.7) can be specified
accordingly:

• Similar to the formal reduction from 3D to 2D for slice selection (cf.
chapter 1.2.3, on page 33), the present problem with a bar-shaped
excitation volume can be reduced to 1D. Therefore the variable �x ∈ R3

can be replaced by x ∈ R.
• There is only a single readout; therefore, the dependency of the sig-

nal s(t; r) on r, which normally marks different readouts, can be
neglected.

• In the phase factor (kr + k(t; r))
T
ψ(�x), the first summand can be

ignored because it is assumed that no additional phase encoding is
performed (kr = 0).

• With the definitions of Eqs. 4.5, 4.6, the phase k(t; r)Tψ(�x) reduces to
x2t.

Incorporating these issues into the signal equation yields:

s(t) =

∫ ∞

−∞
m(x)c(x)e−ix2tdx. (4.11)

Consider now two RF-receiver coils with idealized coil sensitivities. The
first coil shall have a homogeneous sensitivity on the positive part of the
x-axis, and no sensitivity on the negative part of the axis (i.e., c1(x) = 1 for

3Such a field is for example generated by a quadrupolar encoding field for y = 0 and
z = 0, cf. chapter 3.3.1, page 122ff.
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x > 0 and c1(x) = 0 otherwise). As opposed to this, the second coil shall be
sensitive to the negative part of the axis and insensitive to the positive part
(i.e., c2(x) = 1 for x ≤ 0 and c2(x) = 0 otherwise). It is therefore assumed
that the coil sensitivities do not overlap and complementarily cover the
whole object. Consider now the signal of the first coil:

s1(t) =

∫ ∞

−∞
m(x)c(x)e−ix2tdx =

∫ ∞

0

m(x)e−ix2tdx. (4.12)

This equation can be transformed with the variable transformation ω = x2.
This transformation is bijective because x is restricted to the positive arc of
the parabola. The transformed equation is then given by:

s1(t) =

∫ ∞

0

m̃(ω)√
ω

e−iωtdω. (4.13)

As presumed above, the readout is of very long duration. For simplicity,
the assumption is made here that the readout is even of infinite length.
Therefore, signal data is available for all t ∈ R. With this assumption,
multiplication of the Fourier transform of the signal data with

√
ω yields:

m̃(ω) =
√
ω · FT {s1}(ω). (4.14)

Finally, the spin density m(x) is recovered for x > 0 by transforming m̃

back to the image space variable x =
√
ω. The signal of the second coil can

then be used to reconstruct the spin density for x ≤ 0: For the second signal,
the variable transformation ω = x2 is also bijective because only the left arc
of the parabola is considered. By first calculating m̃(ω) =

√
ω · FT {s2}(ω)

and then back-transforming m̃(ω) with x = −
√
ω, the spin density is indeed

regained for all x ≤ 0. The results from the first signal and the second signal
can then be combined to find the spin density m(x) for all locations x. This
reconstruction procedure is visualized in Fig. 4.1.

The three reconstruction steps - Fourier transformation, intensity correc-
tion and variable transformation - also form fundamental steps for a more
practical situation, where a 2D slice is encoded with two NB-SEMs (see
next chapter). The similarity of the 1D example and the more practical 2D
problem of the following chapter becomes even more obvious when the
assumptions of the 1D example are formulated more realistically.
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Figure 4.1: Signal acquisition (a) and reconstruction (b) for a simple 1D example. (a)
A thin bar-shaped volume is excited and signals are recorded with two RF-receiver
coils. One RF coil has a sensitivity only at those positions which correspond to the
right arc of the quadratic SEM (red). The other RF coil is sensitive only on the left
arc of the SEM (blue). The signal recorded with the RF coil on the right therefore
contains only image information from the right half of the spin density m(x), whereas
the signal recorded with the other RF coil results from the left side of the spin density.
(b) First, the recorded signals are Fourier transformed. After that, the signal is
intensity-corrected by multiplication with

√
ω. Then, the signal from the right RF coil

is mapped back to the positive x-axis and the signal from the other coil is mapped to
the negative x-axis. Finally, the two reconstructed signals are pieced together.
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First, consider that in practice, readouts have a restricted duration; conse-
quently, image resolution is finite and the variable transformation leads
to a non-homogeneous distribution of image resolution. Second, take into
account that only a discrete amount of data can be acquired. This problem
is especially important for 2D or even 3D imaging. Aliasing can result
that can be resolved with additional RF-sensitivity encoding. And third,
observe that in reality, the sensitivities of the RF coils overlap with each
other. In the next chapter, it will be shown that an additional SENSE-like
matrix inversion step must be added to the reconstruction to cope with
these overlaps.

The 1D example and the more practical 2D reconstruction of the following
chapter share many characteristics with each other. The main reason for
the similarity is that in the 1D example a single SEM is used to encode a
single spatial dimension. In the 2D reconstruction two SEMs are available
to encode two spatial dimensions. In both cases, the number of SEMs is
equal to the number of encoded spatial dimensions. More complicated
is the situation when more than two SEMs are used to encode a 2D slice.
The problem with such multi-dimensional encoding strategies is that the
2D Fourier transform generally does not have a useful meaning. Notwith-
standing, the 1D example and multi-dimensional encoding strategies also
have similar fundamental properties in many regards. Under certain cir-
cumstances a 1D Fourier transform along the temporal dimension has a
useful meaning (cf. chapter 7.1.2, page 240ff); also for the most general
case of multi-dimensional imaging, image resolution is typically not a ho-
mogeneous property of the reconstructed images (cf. e.g. Fig. 7.11, page
264). Despite these similarities, the 1D example cannot explain all prop-
erties of PatLoc imaging, especially not the possibilities that PatLoc offers
in the temporal domain; the example should not be overinterpreted and
care should be taken when generalizations to higher dimensions are made
without further examination.

4.2.2 Matrix Inversion Approaches in PatLoc

A general framework for linear reconstruction methods was presented
in chapter 2.1, page 40ff. Recall that two approaches were discussed in
chapter 2.1.1, page 40ff: the weak and the strong approach. Both require
the inversion of a large matrix, thus explaining the term matrix inversion
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approaches in the section title. The framework had originally been proven
useful in the context of parallel imaging with linear SEMs; however, the
theory is not restricted to standard PI. Of central importance in the context of
this reconstruction framework are the encoding functions encα,κ(�x). These
functions map the spatial distribution of any encoding scheme that can
be described by a finite amount of values; nothing more is demanded;
also PatLoc falls under this imaging category, which shows that the matrix
approaches can also be applied to PatLoc imaging data. According to Eq.
4.9, the encoding functions in PatLoc are given by:

encα,κ(�x) = cα(�x)e
−ikT

κψ(�x). (4.15)

With these encoding functions, the encoding matrix E and the correlation
matrix B can be built following Eqs. 2.9, 2.14. W. l. o. g. assuming normal-
ized voxel volumes (ΔV := 1), the weak reconstruction matrix is found,
according to Eq. 2.11, by taking the MPPI solution F = E+, and the strong
reconstruction matrix is given by F = EHB+, according to Eq. 2.13. The
image is reconstructed by calculating the matrix-vector product

m
(2.4)
= Fs. (4.16)

The presented mathematical framework is therefore in principle applicable
to PatLoc. It has, however, one restriction, which should be relaxed to
permit a flexible development of reconstruction methods in PatLoc imaging:
In PatLoc, it can be useful under certain conditions to reconstruct images
onto non-equidistant reconstruction grids. There is typically no need to
take such irregular grids into consideration when linear SEMs are used
for encoding. This can be different in PatLoc, where nonlinear SEMs are
applied. For example, a non-regular grid is chosen in the fundamental
Cartesian reconstruction method, presented below in chapter 5.1, page 155ff.
The extension to irregular reconstruction grids requires some changes in
the general theory; these are delineated here, and it is discussed separately
that a precise definition of the term nominal voxel volume is important in this
regard. Also, it is presented how image properties, such as image resolution
or SNR, can be determined in PatLoc imaging.
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a) Extension to Non-Rectilinear Reconstruction Grids

The consequences for the weak (cf. chapter 2.1.1a, page 42ff) and the strong
(cf. chapter 2.1.1b, page 45) reconstruction approach are discussed here.

Weak Reconstruction As was already pointed out in chapter 2.1.1a, page
42ff, the size of the reconstructed voxels is typically ignored in the calcula-
tions even though correct mathematical treatment has to consider the voxel
size. This imprecision is acceptable and harmless for regular reconstruc-
tion grids, which are typically chosen. Non-regular reconstruction grids
necessitate a more exact treatment.

Reconsider the condition of weak reconstruction, given by Eq. 2.8, page 42.
It has been argued why it is necessary to introduce the voxel volume ΔV on
the right hand side of Eq. 2.8. When non-regular reconstruction grids are
considered, this voxel volume can vary from voxel to voxel. Therefore, ΔV

should be replaced by a different symbol (vρ) to indicate this dependency.
Equation 2.8 then becomes:4∫

V

i∗ρ(�x)fρ′(�x)d�x = v−1
ρ δρ,ρ′ . (4.17)

The encoding matrix can still be defined in the same way as before (cf. Eq.
2.9). Similar to the conventional case, the shape of the ideal voxel function
is of minor interest if, for all data points (α, κ), the encoding functions
encα,κ(�x) do not vary significantly over the size of a voxel. This criterion
is fulfilled for sufficiently dense reconstruction grids. The local nominal
voxel volume (defined in the next section on page 148) should be chosen
smaller than an oscillation of the encoding function with the highest spatial
variation at the corresponding location. If done so, it is sufficient to simply
consider delta functions i∗ρ(�x) := δ(�x− �xρ) as ideal voxel shapes. With delta
functions and Eqs. 2.9, 4.15, the entries of the encoding matrix are given by:

E(α,κ),ρ := cα(�xρ)e
−ikT

κψ(�xρ). (4.18)

4The equation is valid for reconstructions that aim at finding the average density of the
magnetization within a voxel; if the total magnetization within the reconstructed voxels is of
interest, the values vρ must be replaced by their inverses v−1

ρ and in subsequent equations,
also the matrix V := diag (v1, . . . , vNρ ) must be replaced by its inverse V−1.
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With this definition and Eq. 2.7, the condition of weak reconstruction can
be rewritten as a matrix equation:

F(EV) = 1, (4.19)

where V is a diagonal matrix V = diag (v1, . . . , vNρ), which deviates from
a multiple of the unity matrix if non-equidistant reconstruction grids are
chosen. The MPPI solution of this equation is then given by:

F = (EV)+. (4.20)

According to the discussion following Eq. 2.11, page 43, the MPPI solution
covers overdetermined as well as underdetermined situations. Nevertheless,
it is useful to analyze two special cases in more detail.

1. Consider a coarse grid such that the condition of weak reconstruction
can be satisfied. Moreover, assume that E has full rank. Then, the
reconstruction matrix is given by:

F = V−1(EHE)−1EH = V−1E+. (4.21)

After multiplication of the signal with the MPPI of the encoding
matrix, the intermediate image must therefore be multiplied with
V−1. This multiplication corresponds to an intensity correction as
final reconstruction step, which is necessary whenever non-rectilinear
reconstruction grids are used.

2. Next, consider a fine grid such that the condition of weak recon-
struction cannot be satisfied everywhere. Again assume a full rank
encoding matrix. Then, a feasible solution is found by minimizing
the least-squares problem ‖[F(EV)− 1]W‖2F . Set W := 1 to ensure
equal weighting for all image voxels (cf. page 44 in chapter 2.1.1a).
Then the explicit solution is given by:

F = VEH(EV2EH)−1. (4.22)

Strong Reconstruction The usage of non-rectilinear reconstruction grids
has no effect on the formal structure of the solution from the strong recon-
struction because the correlation matrix B is determined by integration
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along the spatial dimension. The solution is therefore also given by Eq. 2.13,
which is repeated here:

F = EHB+. (4.23)

As already pointed out before, the integration has to be discretized in
practice. Typically, a Riemann sum with equidistant node locations is
chosen. If the integration is approximated by the usage of the encoding
matrix with entries on non-equidistant locations along the spatial dimension,
the correlation matrix should rather be approximated by B ≈ EVEH . Then,
the solution of this discretized version of the strong reconstruction approach
is given by F = EH(EVEH)−1. This reconstruction is the solution to
minF

∥∥[F(EV)− 1]V−1/2
∥∥
F

. Such a reconstruction would therefore weight
errors in small voxels more than in large voxels. This should be avoided
by introducing the weighting matrix V1/2. That solution then conforms
exactly to the solution from weak reconstruction, presented in Eq. 4.22.

b) Nominal Voxel Volume

According to Eqs. 4.17 - 4.20, the reconstruction depends on the quantities vρ.
In the previous section, these quantities were treated as being identical to the
nominal voxel volume, which simply describes the volumes that are actually
covered by the reconstructed image voxels. The validity of this approach is
examined in this section. In a first step, several methods are presented that
show how the nominal voxel volume can be determined. In a second step, it
is shown that it is reasonable to use the nominal voxel volume to describe vρ.
For simplicity, the presentation is restricted to 2D; notwithstanding, pixels
are denominated as “voxels”, in conformity with the rest of this dissertation.
Extension to 3D does not require major modifications.

Methods for the Determination of the Nominal Voxel Volume There
is no unique way of determining the nominal voxel volume. However,
an appropriate method is required for non-homogeneous distributions of
image voxels because, typically, only the voxel centers are given, not the
corresponding voxel volumes. Three methods are described here.

• Voronoi diagrams [2]. The same method is used to determine the
density compensation function in non-Cartesian MRI (also cf. chapter
2.2.3 on page 70f).
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• Contour plots. This method can be used if a continuous function
�ψ : R2 → R2 is known that transforms the non-rectilinear grid to a
rectilinear grid. The enclosed area formed by the contour lines of
the two components ψ1(·) and ψ2(·) gives similar results than the
Voronoi method. These two first methods are illustrated in Fig. 4.2
for a homogeneous and a non-homogeneous distribution of image
voxels.

• Local volumetric deformation. The voxel volumes can also be approx-
imated by the local volumetric deformation induced by the function
�ψ(�u) at the voxel centers. This approximation is typically fairly ac-
curate except for extreme cases, for example in the vicinity of local
extrema, where very large voxels occur (also cf. the Remark on page
166).

Figure 4.2: Determination of the nominal voxel volume. (a) Locations of a rectilinear
reconstruction grid. (b) The Voronoi diagram can be used to define the nominal
voxel volume. (c) Also the enclosed area of the contour lines can serve to determine
the nominal voxel volume. For rectilinear grids both methods produce the same
result. (d-f) The analogous situation is depicted for a non-rectilinear grid. Deviations
of the two methods are visible for the large voxels at the center.
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The Jacobian determinant describes the deformation,5 and transforms
a voxel with volume ΔU according to:

Vol(Vρ) ≈
∣∣∣∣∣det

(
∂ �ψ−1(�uρ)

∂�u

)∣∣∣∣∣ ·ΔU. (4.24)

Here, Vol(Vρ) denotes the nominal voxel volume. Keep in mind that
the voxel volume solely depends on the chosen reconstruction grid.

Relationship Between vρ and the Nominal Voxel Volume It rests to be
shown that vρ is closely related to the nominal voxel volume Vol(Vρ). To
show this, assume an ideal voxel shape that is zero except for all �x ∈ Vρ,
where it is given by iρ(�x) = 1/Vol(Vρ), according to Eq. 2.5. Consider first
a coarse reconstruction grid such that the weak condition of Eq. 4.17 can
be satisfied. In this case fρ(·) is localized in relation to the voxel volume Vρ

and most signal energy results from within Vρ. According to Eq. 2.6, page
42, it is reasonable to assume that the integration of the SRF over the object
volume V is approximately unity. Therefore, it is plausible to conclude that

1 ≈
∫
V

fρ(�x)d�x ≈
∫
Vρ

fρ(�x)d�x = Vol(Vρ)

∫
V

iρ(�x)fρ(�x)d�x = Vol(Vρ)v
−1
ρ .

It follows immediately that vρ ≈ Vol(Vρ). For coarse grids, it is therefore
useful to define vρ by the nominal voxel volume. For fine grids, the same is
true: Based on Eqs. 2.6, 2.7, it can be shown that a useful reconstruction is
found by approximating the unity matrix by FEV and not by FE to get the
correct intensity and a balanced weighting for all voxels. Also very convinc-
ing is the argument that the solution obtained from the data-consistency
constraint and the matrix approach solutions should be consistent with each
other. From the Remark presented below on page 153, it can be concluded
that consistency is ensured if vρ is defined equivalent to the nominal voxel
volume.

It is not critical that the nominal voxel volume cannot be determined in a
unique way; for coarse grids, a bad guess of vρ will have an effect on the
intensity of the reconstructed images only and minor intensity variations
generally do not affect the diagnostic usability of an image. For fine grids,

5With complex-valued notation (see Appendix A.4, page 299ff), the fields can be repre-
sented by a holomorphic function f(s). The deformation is then simply described by the
magnitude of the complex derivative |f ′(s)|.
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a bad guess of vρ will also affect optimal balance of the voxel weighting,
which is, however, not crucial either.

Remark: In general, the nominal voxel volume is not related to image
resolution; by definition, it is a property of the chosen image reconstruction
grid only. It can be useful, however, to define a reconstruction grid with a
density proportional to the effective spatial resolution of the reconstructed
images. This is done in standard Fourier imaging as well as in the Cartesian
PatLoc reconstruction algorithm, presented below in chapter 5.1, page 155ff.

c) Analysis of Fundamental Image Properties

In chapter 2.1.3 and 2.1.4, page 50ff, methods were described that can be
used to determine fundamental image properties for any linear reconstruc-
tion method. The matrix inversion approaches are linear, and applicable to
imaging with NB-SEMs; therefore, the described methods are also useful
for PatLoc imaging. For example, image SNR can be calculated with the
help of Eq. 2.22, page 55, or spatial resolution can be analyzed with the
SRF based on Eq. 2.16, page 50. The approaches require evaluation of the
reconstruction matrix F and are therefore only useful in situations, where
F can be calculated accurately and fast enough. This is not often possible,
an example is the Cartesian PatLoc reconstruction method presented in
chapter 5.1, page 155ff.

For linear reconstruction algorithms it is also possible and usually faster to
simply rely on reconstructions based on simulated input data. SNR may be
determined by evaluating the statistics of several reconstructions from pure
noise data. Image resolution might be determined by evaluating several
PSFs (cf. Eq. 2.17, page 50), reconstructed from data with signal from single
source locations. Such an analysis requires repeated application of the
reconstruction algorithm and may still be very time-consuming. Matters
are aggravated because these methods provide only a descriptive picture
of the image properties making it difficult to systematically analyze their
causes.

A third and fast option is to rely on approximate methods. For two nonlinear
SEMs image resolution may be estimated from the extent of the acquired
PatLoc k-space in combination with the deformation induced by the field
nonlinearities (cf. e.g. paragraph Resolution – Sampling Window Approach
in chapter 5.1.1e on page 168ff). When more than two SEMs are applied,
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image resolution is still determined by the PatLoc k-space trajectory and
the spatial derivatives of the SEMs; the local k-space combines these two
effects (cf. Eq. A.23, page 305), and from its extent the spatial resolution
may directly be estimated (cf. Appendix A.5.1, page 303ff). The distribution
of image resolution can also serve as a quick estimate for SNR variations (cf.
e.g. Fig. 7.12); another approximate method for SNR is described in [93].

4.2.3 Consequences of Non-Rectilinear Reconstruction
Grids for Iterative Reconstruction

Similar to non-Cartesian PI, where reconstruction with the CG method has
proven to be useful, iterative methods are also of interest in the context
of PatLoc imaging as an alternative to the matrix inversion approaches.
Also for such CG-based algorithms the usage of non-rectilinear reconstruc-
tion grids requires modifications of the standard approach. Recall that the
iterative CG method is based on the compliance to the data-consistency con-
straint, which is given by s ≈ Em. This is true for rectilinear reconstruction
grids. If, however, non-equidistant locations are chosen for the reconstruc-
tion, the data-consistency constraint must be modified. Remember that
the constraint results from the discretization of the signal equation. In Pat-
Loc, the signal is given by Eq. 4.9, page 139. Typically, the discretization
is described by a Riemann sum with equidistant nodes, whose positions
are given by the reconstruction grid. The same is true for non-rectilinear
reconstruction grids. Note that, in this case, the integrand evaluated at the
nodes must be multiplied by the nominal voxel volume vρ:

sα,κ =

∫
V

m(�x)encα,κ(�x)d�x ≈ encα,κ(�xρ)vρm(�xρ). (4.25)

In matrix notation, the data-consistency constraint then reads s ≈ EVm,
where V is the diagonal matrix as introduced above. In the iterative recon-
struction, the matrix E therefore has to be replaced by EV. For example, for
Nρ < NκNc ,6 the l2 minimization of the data-consistency error then results
in the matrix equation

(EHE)Vm = EHs. (4.26)

6For Nρ > NκNc and/or Tikhonov regularization, the modifications presented in chapter
2.3.1f, page 89ff, apply correspondingly.
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This equation represents a matrix equation which can be solved for example
with the CG method described on page 93 in chapter 2.3.1f. The computation
time is almost not affected by the additional multiplication with V because
this matrix is diagonal. On the contrary: In chapter 7.1.3, page 247ff, it
is shown that under certain circumstances image reconstruction can be
speeded up significantly because non-rectilinear reconstruction grids can
lead to faster computations of E.

Remark: The discretization approach is also consistent with the weak matrix
inversion method presented above. Assume Nρ < NκNc and full rank
encodings E. Then EHE is invertible and the minimization of the data-
consistency constraint (EHE)Vm = EHs has the unique solution m =

V−1(EHE)−1EHs = V−1E+s. This is, however, also the MPPI solution
F = V−1E+ found with the weak matrix approach (see Eq. 4.21, page 147).
Similar arguments show the consistency of the two approaches also for the
case Nρ > NκNc.

4.2.4 Tailoring Reconstruction to Specific Encoding
Strategies: An Outline

In the present chapter, two different approaches to reconstruct images from
general PatLoc-encoded datasets were presented (matrix inversion, iterative
solution) and it was shown how fundamental image properties like SNR or
image resolution can be analyzed. With these methods – at least in principle
– all tools necessary for image reconstruction in PatLoc are available.

Yet, whether NB-SEMs are applied or linear gradient fields, the problem
remains that, under practical conditions, the matrix inversion approach is
usually not an option without further acceleration because the matrix to
be inverted is just too large. To be useful, also the iterative method needs
to be speeded up. Fortunately, a profound analysis of the structure of the
encoding matrix reveals that algorithmic improvements are possible for all
PatLoc encoding strategies.

The following three chapters are devoted to the problem of finding and
analyzing fast and accurate reconstructions for several specific encoding
strategies. The most basic situation of 2D Cartesian encoding with two
NB-SEMs is the topic of the next chapter. A non-Cartesian radial encoding
strategy with two NB-SEMs is discussed in chapter 6. For such acquisitions,
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performed with two NB-SEMs, direct reconstruction algorithms are prac-
tical and it is often not necessary to rely on iterative algorithms. Iterative
methods are analyzed in chapter 7, where it is shown that these methods are
especially useful for subsampled as well as for multi-dimensional encoding
strategies.



Chapter 5

Direct Reconstruction for Cartesian
PatLoc Imaging

FOR good reason, Cartesian sampling trajectories are the most important
acquisition strategies in MRI: Robust acquisition and reconstruction go

hand in hand with this Cartesian method. In this chapter, it is shown that the
same is true in PatLoc imaging. Though being applicable to only a particular
encoding strategy, the methods developed in this chapter may be regarded
as the most fundamental methods in PatLoc imaging. Special emphasis
is placed on an image space oriented reconstruction. The presentation is
based on work published in [[155, 161, 162, 156]]. The shorter, second part
of this chapter sheds light on the possibilities of k-space oriented image
reconstruction in PatLoc imaging by editing the work presented in [[154]].

5.1 Direct Image Space Reconstruction

The Cartesian image space method introduced in this section is of particular
relevance for this thesis. The first PatLoc measurements were performed
with Cartesian trajectories encoded with two NB-SEMs and, consequently,
various images are depicted in this thesis which were reconstructed with the
Cartesian image space method (see e.g. Figs. 3.5, 5.13 or 7.7). In chapter 3.2.2
it was argued on page 108f that such Cartesian PatLoc encoding strategies
are useful to enhance the image quality for example in cortical imaging.
Cartesian trajectories were also used in chapter 3.3, page 121ff, to test
and evaluate the performance of the different imaging hardware designs.
One reason was the high reproducibility of the Cartesian PatLoc imaging
sequence, but also its straightforward implementation, which can be based
on a conventional sequence.

Also from a purely algorithmic point of view the Cartesian image space
method has advantages over other reconstructions. It turns out that the
Cartesian image space reconstruction is a very fast, robust and simple

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5_5, © Springer Fachmedien Wiesbaden 2013
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implementation of the weak matrix approach presented in the previous
chapter. The matrix approach is non-iterative and it is beneficial because
it can accurately be analyzed; for example, image properties are clearly
defined and can readily be calculated.

Noteworthy is the similarity of the Cartesian image space reconstruction
with Cartesian SENSE (see chapter 2.3.1a, page 74ff). The nonlinearities of
the SEMs are, however also responsible for some differences compared to
what is known from SENSE image reconstruction. An intensity-correction
step must be added to the reconstruction and distortions have to be cor-
rected. Another important feature of the Cartesian PatLoc approach is that
aliased voxels are not equidistantly distributed as in SENSE imaging. In
PatLoc, the aliasing pattern depends on properties of the SEMs. For two
orthogonal quadrupolar fields, pairs of aliased voxels exist and they are
rotated by 180◦ around a common center. The reason for this different prop-
erty is that aliasing in PatLoc and SENSE have different physical sources. In
PatLoc, it is the non-bijectiveness of the encoding fields that causes aliasing,
whereas in SENSE, k-space undersampling is responsible for the observed
behavior. Nonetheless, this difference does not affect the standard theo-
retical model of signal encoding. Both effects can be treated alike in the
reconstruction and it is possible to reconstruct subsampled PatLoc datasets
by combining PatLoc and SENSE reconstruction in a straightforward man-
ner.

In this section, the theoretical background of the Cartesian method is thor-
oughly described. Simulation and experimental results are presented and
discussed, demonstrating the effectiveness of the proposed reconstruction.

5.1.1 Theory

The Cartesian image space reconstruction is applicable to an encoding
strategy that has the following two assumptions:

1. Two nonlinear and non-bijective SEMs for 2D imaging are applied;
i.e., the z-gradient is used for slice selection, and the two NB-SEMs,
for in-plane encoding.1

2. Cartesian sampling trajectories are used.

1The calculations can easily be extended to 3D imaging.
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Based on these assumptions, the Cartesian reconstruction is derived with
two different approaches. First, the weak matrix approach of the previous
chapter is analyzed by taking into account the above assumptions. It is
shown that the encoding matrix becomes very structured with the con-
sequence that this matrix can be inverted with low computational cost.
Second, an intuitive approach is taken by referring directly to the PatLoc
signal equation.

In order to clarify fundamental implications of nonlinear and non-bijective
encoding to the reconstructed images, the two NB-SEMs are specialized
to orthogonal quadrupolar SEMs in accordance with the realized PatLoc
hardware design. By describing the two NB-SEMs as a non-bijective vector
field, it becomes obvious that the Cartesian image space method indeed
represents a generalized version of SENSE image reconstruction. The vec-
tor field description also facilitates investigation of image properties like
image resolution and SNR, and the similarity to SENSE also shows that the
ultimate g-factor can be calculated with the same method that is used in
chapter 2.3.1d, page 82ff.

a) General Matrix Inversion Approach

For the matrix approach the relevant information about signal encoding is
collected in the encoding matrix E. Its general form (Eq. 4.18) is repeated
here:

E(α,κ),ρ := cα(�xρ)e
−ikT

κψ(�xρ). (5.1)

With the two assumptions (Cartesian sampling, two SEMs), this matrix
has a special structure. The first assumption, application of exactly two
NB-SEMs, results in a vector field description of ψ, where ψ is of the kind
ψ : V −→ U with both U, V ⊂ R2; i.e., the encoding space U has the
same dimension (i.e. 2) as the excited region V , which represents a 2D
area after integration along the direction of slice selection. Also the PatLoc
k-space vector k is then in R2. It is therefore useful to use the same symbols
for the image space variable �x and the vector field, as well as for the k-
space variable, by writing �k and �ψ instead of k and ψ. The elements of the
encoding matrix then become:

E(α,κ),ρ = cα(�xρ)e
−i�kκ

�ψ(�xρ). (5.2)



158 Chapter 5. Direct Reconstruction for Cartesian PatLoc Imaging

The second assumption means that a trajectory is chosen which is also
typical for conventional Fourier imaging. According to Eq. 2.28, �kκ ∈ K =

2πΔk · (IN × IN ), where Δk is the PatLoc sampling distance, which can be
found with Eq. 4.5, and where IN is a discrete interval as defined on page
291 in Appendix A.1.2 Again, it is helpful to identify the index κ with the
ordered pair (p, p′) ∈ IN × IN . The encoding matrix then has the following
entries:

E(α,p,p′),ρ = cα(�xρ)e
−2πiΔk(pψ1(�xρ)+p′ψ2(�xρ)). (5.3)

These entries differ from the conventional analogue only in one aspect: The
equidistant image space variables x and y are replaced by the locations given
by ψ1(�xρ) and ψ2(�xρ). Typically, the set of locations �xρ form a rectilinear
grid Σcart with the consequence of a non-rectilinear distribution of the
target set �ψ(Σcart). The problem with this non-rectilinear distribution is
that the SEM phase term of the encoding matrix does not consist of pure
planar waves as in conventional imaging. Note however, that it is not
compulsory to use a rectilinear reconstruction grid Σcart. The locations
where the magnetization is reconstructed can be chosen freely. The idea of
accelerating the reconstruction is to use a non-rectilinear grid Σnrec such
that E consists of planar waves. The imposed structure allows fast inversion
of the encoding matrix with the FFT. From a numerical point of view, this is
beneficial because calculation of the FFT is fast, accurate and has a condition
number of unity, therefore it does not enhance the noise level.

The special structure of the encoding matrix is found by choosing a recti-
linear grid not in image space V , but in a different space representation,
termed here the PatLoc encoding space U , defined by U := �ψ(V ). The problem
with this approach is that the function �ψ(·) is not necessarily bijective in
PatLoc imaging. Nevertheless, knowing the shape of the SEMs, it is possible
to find a partition {Vl; l = 1, . . . , L} of V with the property that �ψ is bijective
on each subregion Vl.3 In this context, it is useful to define the bijective

2For simplicity, it is assumed here that an N ×N dataset with equal PatLoc k-space sam-
pling distance along both dimensions is acquired. The calculations can easily be generalized to
unequal parameters.

3From a strictly formal mathematical perspective �ψ can be regarded as a covering map; i.e.,
a map whose inverse has the property of mapping an open set onto a number of disjoint open
sets bijectively and continuously [40]. For magnetic fields the number of disjoint open sets is
in general low. This interpretation is possible by defining �ψO := �ψ|VO

, VO := V \O, where
O := {x ∈ V, |det(∂ �ψ/∂�x)| = 0}. The restriction onto VO is unproblematic in non-degenerate
situations, where O is of lower dimensionality than V .
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functions �ψl := �ψ|Vl
for all l = 1, . . . , L. Note that �ψl �= ψl. Each image

space location �xρ then belongs to exactly one region Vl. Therefore, it is also
useful to introduce a new index l to indicate the subregion to which the
image space location belongs, so �xρ → �x(l,ρ). Let �u(l,ρ) := �ψ(�x(l,ρ)). With
this notation, the inverse function is well-defined: �x(l,ρ) := (�ψl)−1(�u(l,ρ))

and a bijective mapping from image space grid locations to encoding space
grid locations can be constructed. If now all locations �u(l,ρ) are chosen the
same for each l = 1, . . . , L, the index l can be dropped from the encoding
space variable: �u(l,ρ) → �uρ.

This approach shows that it is indeed possible to choose a rectilinear re-
construction grid ΣPatLoc

cart := Δu · (IN × IN ) in the PatLoc encoding space
instead of the image space with the consequence that the FFT can immedi-
ately be applied for image reconstruction. Figure 5.1 visualizes the trans-
formation from image space locations to PatLoc encoding space locations
for the example of orthogonal quadrupolar fields (also cf. Fig. 5.5 for a
visualization of the corresponding continuous transformation).

Figure 5.1: Reconstruction grid in image space and PatLoc encoding space. The
example corresponds to the situation encountered with orthogonal quadrupolar
SEMs. The image space is subdivided into two regions (V1, V2). Each region is
mapped bijectively (�ψ1, �ψ2) to a corresponding region in PatLoc encoding space
(U1, U2). The regions V1, V2 have a characteristic shape, that depends on the used
SEMs if both U1 and U2 are chosen to have the same rectilinear geometry. Instead
of choosing a rectilinear reconstruction grid in image space, a rectilinear grid is
chosen in PatLoc encoding space, with coinciding regions U1 and U2. Therefore
the grid locations �u1,ρ and �u2,ρ are the same and the first index can be dropped.
With the back-transformation, it is then possible to map each location �uρ onto
two corresponding locations �x1,ρ and �x2,ρ in image space. The resulting grid of
reconstruction locations is non-rectilinear.
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Similar to the conventional analogue (Eq. 2.30) the distance Δu is chosen
such that

ΔuΔk = 1/N. (5.4)

For rectilinear grids, it is useful to identify the index ρ with the ordered pair
(q, q′), and, by defining c̃lα := cα ◦ (�ψl)−1 for all l = 1, . . . , L, the encoding
matrix of Eq. 5.3 reads:

E(α,p,p′),(l,q,q′) = c̃lα(qΔu, q′Δu)e−
2πi
N (pq+p′q′). (5.5)

The latter equation rewritten in matrix form results in:

E = D̃FT ·C̃, with D̃FT = DFT⊗1 and C̃ =
∑
q,q′

Iq,q′⊗C(q,q′), (5.6)

and where C
(q,q′)
α,l = clα(qΔu, q′Δu). Exactly this formal structure is known

from Cartesian SENSE image reconstruction (cf. Eqs. 2.39, 2.40, page 75).
There is only one difference compared to SENSE: The PatLoc reconstruction
grid is non-rectilinear in image space variables. Therefore, the nominal
voxel volume vl,q,q′ (and therefore the intensity correction) is not the same
for all voxels with consequences for the calculation of the reconstruction
matrix F (see chapter 4.2.2a, page 146ff). It is reasonable to assume Nc > L

because the number of receiver coils should exceed the number of bijective
regions. According to Eq. 4.21 and Eq. 5.6 the reconstruction matrix is then
given by:

F = V−1E+ = V−1C̃+ · ĩDFT, where C̃+ =
∑
q,q′

Iq,q′ ⊗ (C(q,q′))+. (5.7)

The structure of F is depicted in Fig. 5.2. Also compare this figure to
Fig. 2.11 on page 77, where the Cartesian SENSE reconstruction matrix is
depicted.

b) Cartesian PatLoc Reconstruction Algorithm

For the reconstruction each matrix factor of F (i.e., ĩDFT, C̃+ and V) is
successively applied to a vector. Each of these matrix-vector multiplications
are fast operations:
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Figure 5.2: Structure of the reconstruction matrix of the Cartesian PatLoc method.
The reconstruction matrix is decomposable into two block-diagonal matrices, a
permutation matrix and a diagonal matrix. One block-diagonal matrix represents
coil-wise inverse 2D-DFTs. The second block-diagonal matrix is formed by inverting
a matrix which contains the sensitivity profiles of the receiver coils represented in
PatLoc encoding coordinates. It is very sparse and can be structured voxel-group-
wise. The block-diagonal structures of the matrices occur along different dimensions.
Therefore, it is necessary to permute coil dimension and spatial dimension in
between. The diagonal matrix contains the volumetric correction factors. The
occurrence of this matrix is the only difference to Cartesian SENSE what the
structure of the reconstruction matrix is concerned.

1. Equivalent to Cartesian SENSE, the reconstruction begins with a coil-
wise inverse 2D-FFT (ĩDFT) applied to the signal data sα resulting in
Nc coil images ηα represented in PatLoc encoding space.

2. The aliased images are unfolded by inverting the sensitivity matrix
C̃ and by applying C̃+ to the coil images ηα. The matrix C̃ is sparse
with small blocks of dimension (Nc · L) on its diagonal, which can
be inverted quickly and independently from each other. Note that
the sensitivity matrix C̃ is constructed from sensitivity maps trans-
formed to PatLoc encoding space coordinates, for example by bicubic
interpolation.

3. In contrast to Cartesian SENSE, a voxel-wise intensity correction (V−1

is diagonal) must be performed. In chapter 4.2.2, page 144ff, it is
shown that the intensity correction is given by the nominal voxel
volume of the reconstruction grid. In chapter 4.2.2b, page 148ff, sev-
eral methods are discussed how the nominal voxel volume can be
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determined. Here, the approximate continuous method could simply
be used because, by definition, the encoding function �ψ(·) maps the
non-rectilinear reconstruction grid onto a rectilinear grid. By formu-
lating the induced deformation (also cf. Eq. 4.24) not with the inverse,
but with the forward function, the entries of V are given by:

vl,q,q′ = | det(∂ �ψ/∂�x)|−1 · (Δu)2, (5.8)

where �x is evaluated at �x = (�ψl)−1(qΔu, q′Δu).

In order to finally visualize the reconstructed magnetization, the image must
be interpolated onto a Cartesian grid because the magnetization m = Fs is
reconstructed on non-equidistant image locations �xl,ρ. Bicubic interpolation
might be used or other methods like the multilevel b-spline approach [94].
For the interpolation, a grid (with grid locations �xrc) should be chosen
fine enough to capture the highest local resolution within the image. The
algorithm, with the three reconstruction steps plus the final interpolation
step, is illustrated in Fig. 5.3. The images shown after the coil-wise inverse
2D-FFT are represented in PatLoc encoding space where the grid locations
�uρ form a rectilinear grid. These locations are distributed differently in
image space following the relation �xl,ρ = (�ψl)−1(�uρ). The final interpolation
step can therefore also be interpreted as rewarping the image from PatLoc
encoding space back to image space (cf. Fig. 5.3e).

The numerical complexity of the Cartesian PatLoc method is of the order
O(NcNκ logNκ+Nρ(NcL

2+1). It is much lower compared to a complexity
of4 O(NcNκN

2
ρ ) for direct computation without exploiting the structure of E

or of O(NcNκNρ) for each loop of the iterative CG method. This represents
an improvement in computation time by several orders of magnitude. As
an example, with Nc = 8, L = 2, Nκ = 2562 and Nρ = Nκ untreated direct
inversion would require more than 1015 operations, one loop of the iterative
CG method more than 1010 operations whereas the structured inversion
requires only about 107 operations.

4For NcNκ ≥ Nρ.
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Figure 5.3: Cartesian image space PatLoc reconstruction algorithm. (a) Based
on a numerical phantom, data acquisition is simulated. (b) The first reconstruction
step consists in a coil-wise application of the 2D-FFT resulting in aliased, intensity-
modulated and highly distorted coil images. (c) The matrix inversions remove the
aliasing. (d) An intensity correction is performed. (e) The object is visualized in
image space. The basic reconstruction steps are depicted based on simulated
data with quadrupolar SEMs and profiles of a real-world RF-surface coil array. The
simulated signal data were filtered with a Kaiser-Bessel window to remove Gibbs
ringing. Images and reconstruction steps are labeled with the variables as they
occur in the text. Compare with Fig. 2.12, page 78, where the SENSE algorithm is
depicted, to see that the Cartesian PatLoc algorithm generalizes SENSE.

c) Equivalent Fourier Transform Approach

Consider here an equivalent, more intuitive, approach. The starting point
of this Fourier transform approach is the expression for individual coil data
(Eq. 4.9), represented for the time being for a continuous k-space variable:

sα(�k) =

∫
V

m(�x)cα(�x)e
−i�k�ψ(�x)d�x. (5.9)

As above (cf. Eq. 5.2), the variable k is written as �k and ψ as �ψ in this equa-
tion to indicate that for the case of two SEMs, the dimension of these vectors
conforms to the dimension of the image space variable �x. According to the
discussion following Eq. 5.3 on page 158, the region of integration V can be
split into L different subregions Vl, on which �ψ is bijective. The integration
over V can then be described as a sum of integrations over the individual
subregions. For each individual integral, the variable transformation to
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�u = �ψl(�x), l = 1, . . . , L can be performed. After swapping the summation
and the integral one finds:

sα(�k) =

∫
U

[
L∑

l=1

m̃l(�u)c̃lα(�u)ṽ
l(�u)

]
ei
�k�ud�u (5.10)

=

∫
U

η̃α(�u)e
i�k�ud�u. (5.11)

Here U := �ψ(Vl) has been set, where, w. l. o. g. , U does not depend on
the choice of a subregion Vl. Depending on the method used to determine
the nominal voxel volume (see chapter 4.2.2b, page 148ff), the geometric
distortion factors ṽl(�u) = | det(∂(�ψl)−1/∂�u)| are equivalent or at least very
similar to the intensity correction used in the matrix inversion approach (cf.
Eq. 5.8, page 162). In the latter equation (Eq. 5.11), the Fourier transformed
coil image η̃α(�u) is defined as:

η̃α(�u) =

L∑
l=1

m̃l(�u)c̃lα(�u)ṽ
l(�u). (5.12)

This result shows that in encoding space the intensity of a voxel is a
weighted sum of at most L different values. Unfolding can be performed
voxel-wise in PatLoc encoding space, and therefore only very small matrices
must be inverted. Unfolding can be described as a matrix equation upon
assembling η̃α(�u), α = 1, . . . , Nc and m̃l(�u), l = 1, . . . , L to vectors η̃(�u) and
m̃(�u) and upon combining c̃lα(�u) to matrix C�u and the quantities ṽl(�u) to a
diagonal matrix V�u. The magnetization can then be calculated as:

m̃(�u) = (V�u)−1(C�u)+η̃(�u). (5.13)

Discretizing this equation on a Cartesian grid Σcart in PatLoc encoding
space shows that this approach is equivalent to the reconstruction presented
in the previous section (cf. Eq. 5.7). It is straightforward to show that the dis-
cretized version of Eq. 5.13 reduces to the Cartesian SENSE equation [135]
by defining �ψ(xj , yj , z0) := id(xj , yj modN/L, z0) = (xj , yj modN/L, z0),
where N is the number of elements of Σcart along the second dimension, L
is the acceleration and z = z0 is the slice position. For arbitrary SEMs the
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discretized version of Eq. 5.13 is more general than Cartesian SENSE, but be-
comes formally equivalent by defining m̄(�uρ) := V(�uρ)m̃(�uρ), �uρ ∈ Σcart:

m̄(�uρ) = (Cρ)+η̃(�uρ). (5.14)

In this abstract formulation there is no inherent difference between
PatLoc and SENSE reconstruction and so intensity-modulated PatLoc-
reconstructed images should have similar properties to SENSE-reconstruc-
ted images as long as they are represented in encoding space. If nonlinear,
yet bijective, fields were also considered with SENSE imaging, both recon-
structions would even be exactly equivalent. Interestingly, in PatLoc, the
non-bijectiveness of the SEMs has the same effect that undersampling has
in conventional SENSE imaging.

d) Reconstruction with Multipolar Encoding Fields

The Cartesian reconstruction algorithm presented above shows that the
Fourier transform of the PatLoc k-space has a precise meaning that is ex-
pressed by Eq. 5.12. The meaning of this mathematical expression is demon-
strated here under the assumption that the standard x- and y-gradient
fields are generalized to orthogonal multipolar SEMs; these fields have
already been introduced with further detail in chapter 3.3.1, page 122ff. The
SEM-vector field generated by the two multipolar SEMs with sensitivities
bf and bp together with the linear z-gradient with sensitivity bz is three-
dimensional; however, according to the assumptions presented above on
page 156 in section 5.1.1, the z-gradient is only used for slice selection and
therefore the vector field can formally be reduced to 2D:

�ψ(�x) =
γ

β

⎛⎝bf (�x)

bp(�x)

bs(�x)

⎞⎠ =
γ

β

⎛⎝hLr
L cos(Lϕ)

hLr
L sin(Lϕ)

gzz

⎞⎠ 2D imaging−−−−−−→
β:=γhL

�ψ(r, ϕ) =

(
rL cos(Lϕ)

rL sin(Lϕ)

)
.

(5.15)
The quantity gz is the gradient strength per unit current and hL describes
the corresponding characteristic property of the multipolar fields. The
encoding fields are shown in Fig. 5.4a, c for the case L = 2.

The transformation �ψ induced by the multipolar SEMs is illustrated in
Fig. 5.5 for the case L = 2. It consists of L “pie-shaped” bijective regions.
Two independent distortions occur via this mapping: In the azimuthal
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Figure 5.4: (a) and (c) Ideal quadrupolar encoding fields rotated by 45◦. (b) The
superimposed contour lines of the encoding fields represent the reconstructed voxel
volume in image space. Voxels, rotated by 180◦ around a common center, are
equally encoded by the two SEMs.

direction, an Lth fraction of a full circle is mapped onto a complete closed
circle; in the radial direction, the inner regions are contracted, whereas the
periphery is expanded. Fig. 5.4b illustrates (for quadrupolar SEMs) that
voxels, which are rotated in image space by 360◦/L around the center of the
SEMs, are mapped onto the same voxel in encoding space. Interestingly, an
analogy to the Riemann surface [37] of the complex valued root function
can be established. Orthogonal ideal multipolar fields with 2L poles can be
described as real and imaginary parts of the complex-valued holomorphic
function f(s) = sL (cf. Appendix A.4, Eq. A.16 on page 302). This function
is ambiguous on the complex plane. However, by introducing L leaves
of the complex plane, i.e., the Riemann surface of the L-th complex root
function, the function can be made unambiguous. More encoding fields,
which can (and cannot) be described using this complex-valued formalism
can be found in [[159]].

For orthogonal multipolar fields the volumetric correction ṽj(�u) does not
depend on the subregion Vj and depends only on the modulus of �u; it can
be calculated explicitly using Eq. 5.8:

ṽj(�u) = (L−2r2−2L)|u=rL = L−2u2/L−2. (5.16)

Remark: For central voxels, especially where �ψ(�x) = 0, the local defor-
mation at the voxel center overestimates the nominal voxel volume (cf.
chapter 4.2.2b, page 148ff). According to Eq. 5.7, the nominal voxel volume
affects the intensity correction, and therefore, it is to be expected that a
signal dropout should occur at the center if the nominal voxel volume is
approximated with the local deformation. This behavior is indeed observed
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Figure 5.5: Visualization of the induced mapping generated by two orthogonal qua-
drupolar encoding fields. The circular contour lines indicate that the center is shrunk
whereas the periphery is expanded by this transformation. The distance of the radial
contour lines and the grayscale in between indicate how the encoding fields act in
the circumferential direction: After a half circle, encoding becomes ambiguous. This
is indicated by the two leaves in encoding space, which are mapped bijectively onto
a half plane in image space.

(see e.g. Fig. 5.13, top left). The dropout is, however, not relevant because
at the center, almost no image information is encoded (see next section).
With multipolar encoding fields, it is therefore acceptable to use the local
deformation to estimate the nominal voxel volume; more precise, however,
are the other approaches of chapter 4.2.2b, such as the Voronoi method.

The singularity in Eq. 5.16 at �u = 0 is not problematic because the integral
in Eq. 5.10 does not change when this single point is neglected. Equation
5.12 then becomes:

η̃α(�u) = L−2u2/L−2
L∑

j=1

m̃j(�u)c̃j,α(�u). (5.17)

This equation describes how the magnetization is deformed by multipolar
SEMs; In Fig. 5.6 the original magnetization weighted with the sensitivity
of one receiver channel of an RF-coil array is compared to its deformed
analogue for the case L = 2.
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Figure 5.6: Deformed coil image with quadrupolar encoding. (a) Original magneti-
zation weighted with the sensitivity of an RF-surface coil element. (b) Corresponding
deformed image. The nonlinearities of the SEMs cause intensity modulation (in-
crease toward the center) and severe image distortions. The non-bijectiveness
of the encoding function is responsible for the fold-over. The effects - increasing
information at the periphery and fold-over along the azimuthal direction correspond
to the transformation induced by the encoding function, presented in Fig. 5.5.

e) Basic Image Properties

A detailed analysis of image resolution, Gibbs ringing, aliasing and image
noise is presented in this section. Image resolution and Gibbs ringing are
investigated with two different approaches. The first approach is related
to the traditional method of using the FT of the sampling window. The
second approach is directly based on the computation and evaluation of
the SRF. This second approach is also used to analyze the aliasing artifact.
Finally, it is shown that image noise can be determined either using general
matrix theory (see chapter 2.1.4, page 52ff) or by referring to the analogy of
Cartesian PatLoc reconstruction and SENSE.

Resolution In general, the nominal voxel volume and image resolution
– measured by the width of the main peak – are different. Here, it is shown
that image resolution and nominal voxel volume are closely linked to each
other in Cartesian PatLoc reconstruction.

Sampling Window Approach The problem of defining image resolution
can be tackled by investigating Eq. 5.11. It states that the coil signal sα and
the distorted magnetization η̃α form a Fourier transform pair. Sampling
PatLoc k-space on a finite grid is equivalent to a convolution of η̃α with a
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truncation window consisting of a sinc-function hs and a comb-function hc.
Although the following calculations are performed in 2D it should be noted
that the same reasoning also applies to the 3D case. The value of η̃α at voxel
location (q, q′) is given by:

(η̃α)q,q′ = (η̃α ∗ hs ∗ hc)(qΔu, q′Δu). (5.18)

According to Eq. 5.4, the value Δu depends on the sampling distance Δk

between adjacent k-space locations:

Δu = 1/(NΔk), (5.19)

where N is the number of measured k-space values in each dimension. The
convolution of η̃α with hs leads to a finite resolution of magnitude Δu in
the image after performing the FFT-operation. According to Eqs. 5.13, 5.14,
the same applies to the reconstructed image as long as it is represented in
encoding space under the assumption of smoothly varying coil sensitivity
profiles and smoothly varying intensity correction in encoding space. Im-
age resolution is therefore homogeneous in PatLoc encoding space with a
FWHM of ≈ 1.21 voxels in units of Δu = 1/(NΔk). For a more detailed
analysis see paragraph Resolution in chapter 2.2.1c, page 61f. However, the
rewarping to image space (cf. Fig. 5.3e) has two important effects.

The first effect is an increase of the average image resolution compared to
standard gradient encoding, caused by the non-bijectiveness of the SEMs
(also cf. paragraph Encoding with Two SEMs in chapter 3.2.2, page 108ff). To
be more precise, depending on the shape of the object, the average voxel
volume is approximately by a factor L smaller than in conventional imaging,
when the same number of k-space lines are acquired. In other words, the
acquisition can be accelerated by a factor of L with respect to conventional
imaging to achieve the same average resolution. In situations where the ROI
is restricted to the periphery of the imaged region, the effective acceleration
factor can be very high.

The second effect is a non-homogeneous image resolution, caused by the
nonlinearities of the SEMs. The transformation to image space coordinates
locally deforms the voxels according to the derivatives of �ψ in the corre-
sponding voxel. Image resolution is therefore approximately described
by Eq. 5.8, page 162, which has already proven useful in estimating the
nominal voxel volume (also cf. chapter 4.2.2b, page 148ff). Size and shape
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of the deformed voxels can be visualized by plotting N + 1 contour lines
of both encoding fields in a single image; this is shown in Fig. 3.4, page
109.5 These voxels define image resolution even more accurately than the
local deformation. It is remarkable that for the Cartesian PatLoc method,
nominal voxel volume (property of the reconstruction grid) and effective
voxel volume (image resolution) are the same. The reason for this equality
is that the FFT automatically leads to a reconstruction grid that is rectilinear
not in image space, but in PatLoc encoding space.

Analysis of the SRF With the reconstruction matrix for Cartesian PatLoc
imaging, defined in Eq. 5.7, calculations equivalent to those performed for
SENSE reconstruction in Eq. 2.43 lead to an SRF of:

f(l,q,q′)(�x) = cvirtq,q′,l(�x) · fFourier
q,q′,l (�x). (5.20)

The individual terms are given by:

fFourier
q,q′,l (�x) = v−1

l,q,q′ · gN
(
q − ψ1(�x)

Δu

)
gN

(
q′ − ψ2(�x)

Δu

)
,

cvirtq,q′,l(�x) =
∑
α

C̃+
(q,q′,l),(α,q,q′)cα(�x),

with C̃(α,q,q′),(q,q′,l) = cα(�xq,q′,l) = c̃lα(qΔu, q′Δu).

As for conventional PI, the SRF is therefore a combination of the aliased
Fourier SRF and a weighting function due to sensitivity encoding.

Recall that image resolution is mainly determined by the width of the
main peak of the SRF (see chapter 2.1.3, page 50ff). As coil sensitivities
and intensity correction only represent a weighting, the width of the main
peak is determined almost uniquely by the Fourier SRF. Image resolution is
better analyzed in PatLoc encoding space variables �u = �ψ(�x), where it is,
according to Eqs. 2.6, 5.8, given by:

fFourier
q,q′,l (�u) =

1

(Δu)2
· gN

(
q − u1

Δu

)
gN

(
q′ − u2

Δu

)
. (5.21)

5Note the similarity to Fig. 4.2f, page 149, where the nominal voxel volume is visualized
with the help of contour lines.
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In the PatLoc space representation, the Fourier SRF is equivalent to the
SRF of standard Cartesian Fourier imaging (cf. Eq. 2.33). Image resolution
is therefore homogeneous in PatLoc encoding space with a FWHM of ≈
1.21 voxels in units of Δu. Note that this is exactly the result that has
been obtained with the sampling window approach above. The above
explanations regarding image resolution therefore apply accordingly.

Gibbs Ringing It is presented here how the Gibbs ringing artifact can be
determined. It is shown that the nonlinearities of the SEMs are typically
not troublesome; problems in this regard occur, however, when signal is
encoded in regions with very low or even vanishing local field gradients.

Sampling Window Approach The Gibbs ringing artifact results from the
convolution of the distorted magnetization with the sinc-truncation win-
dow hs in PatLoc encoding space. After the FFT, the ringing therefore
falls off with O(1/u) along the main axes in PatLoc encoding space (see
paragraph Resolution in chapter 2.2.1c, page 61f). This fall-off behavior is
typically not heavily influenced by the unfolding operation; however, there
is one problem which does not occur in standard imaging: The nonlineari-
ties of the encoding fields may lead to signal accumulation in regions where
the SEMs are very flat. The Gibbs ringing originating from those regions
can extend over the complete image and mask the true magnetization at
locations far away from the source. From a different perspective, the non-
linearities have the consequence that the image must be intensity-corrected;
this correction can have a significant influence on the O(1/u) Gibbs ringing
behavior.

For example, with multipolar SEMs, where u = rL, intensity correction
is given by r2L−2 (see Eq. 5.16). The Gibbs ringing originating from the
central voxel at r = 0 therefore behaves like O(rL−2). Observe that for
L > 2 the Gibbs ringing does not diminish with increasing distance from
the center; it is even increased toward the periphery! Fortunately, these
cases are very rare and can be circumvented with an appropriate encoding
scheme, for example by just avoiding regions with vanishing SEM encoding.
Note that the final back-transformation to image space coordinates has a
predictable effect for Cartesian trajectories: In PatLoc encoding space, the
Gibbs ringing primarily occurs along the main axes u1 and u2 in encoding
space. Correspondingly, the Gibbs ringing artifact occurs along isocontour
lines of the SEMs in image space because �u = �ψ(�x).
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Analysis of the SRF The SRF presented in Eq. 5.20 also describes the
Gibbs ringing artifact. As stated in the previous paragraph, the sensitivity
weighting cvirtq,q′,l(�x) has some influence on the ringing, it is, however, typ-
ically not decisive. Therefore, this factor is ignored here. The factor v−1

l,q,q′

is constant and can therefore also be neglected for the analysis of relative
variations of the SRF. Relevant for the Gibbs ringing artifact is therefore
again only the Fourier SRF term:

fFourier
q,q′,l (�x) = v−1

l,q,q′ · gN
(
q − ψ1(�x)

Δu

)
gN

(
q′ − ψ2(�x)

Δu

)
. (5.22)

From this equation it can be deduced immediately that the Gibbs ringing
artifact occurs mainly along the isocontours of the SEMs. It can also be
followed from this equation that the ringing oscillates faster where the field
variations are high; on the other hand, extended sidelobes occur in flat
SEM regions. In the previous paragraph, it has been argued that Gibbs
ringing might extend from regions with flat field geometries. Analysis of
the SRF reveals that such a pronounced Gibbs ringing artifact can indeed
occur. Recall that the SRF describes the spatial distribution of relative signal
contributions to a particular voxel of interest (Eq. 2.6):

mρ =

∫
V

m(�x)fρ(�x)d�x. (5.23)

A problem might therefore occur if (a) fρ(�x) is large for some �x apart from
the location of the main peak, and if (b) fρ(�x) may have a moderate value,
but over a large volume. The Fourier SRF indeed has peaks of equal height
with the main lobe; this effect is, however, not responsible for Gibbs ringing,
but for aliasing (see below). Therefore, only effect (b) can be responsible
for significant signal contributions from distant regions. As stated above,
extended sidelobes occur, where the SEMs are flat. If such a region lies
along one of the two isocontours passing through the voxel, significant
signal contamination might result from that region. Such situations should
therefore be avoided when setting up an encoding scheme. The 1D example
shown in Fig. 5.7 illustrates the signal contamination issue.

Aliasing In conventional imaging the sampling window approach can
be used to analyze the aliasing artifact because aliasing is related to the
violation of the Nyquist criterion (cf. paragraph Field-of-View in chapter
2.2.1c, page 62ff). Also in PatLoc, k-space subsampling results in aliasing;
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Figure 5.7: Signal contamination from regions with low field gradients. (a) Shown is
the absolute value of the sinc-function, the (shift-invariant) SRF belonging to linear
gradient encoding. It is shown that the sidelobes contribute some signal to the voxel
of interest without overly contaminating the signal. The signal contamination leads
to the well-known Gibbs ringing artifact. (b) Shown is the absolute value of the SRF
for a strongly nonlinear SEM that is proportional to x6. At x = 0, the gradient of
the SEM is zero. The gradient increases toward the edges. It is shown that the
nonlinearity of the SEM causes sidelobes to be broader where the field gradients
are low (center); on the other hand, sidelobes are narrower where the field gradients
are high (right). The main lobe and one broad sidelobe are shaded in gray. In
this (extreme) example, the area covered by the sidelobe is larger than the area
covered by the main peak of the SRF. This indicates that the signal at the location of
interest is strongly contaminated by unwanted signal from the central region. As a
consequence, it is to be expected that the Gibbs ringing artifact emanating from the
central voxel appears heavily increased in the reconstructed data.

however, also field ambiguities cause multiple locations to be identically en-
coded. This effect cannot be captured with the sampling window approach;
consequently, aliasing is investigated here solely via evaluation of the SRF.

Aliasing Caused by the Non-Bijectiveness of the SEMs Consider first only
the Fourier SRF factor in Eq. 5.20, fFourier

q,q′,l (�x). It is striking that this factor
is the same for all (up to L) locations �x, which are mapped onto the same
location u in PatLoc encoding space via �ψ(·). The SRF therefore has up to L

main peaks, one for each subregion Vl, with the property that the aliased
locations do not have the regular spacing of conventional PI, but a spatial
distribution that depends on the geometries of the SEM subregions.
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Also in PatLoc, parallel reception offers a possibility to suppress these
multiple peaks. According to the condition of weak reconstruction (Eq. 4.20,
page 147), the sensitivity weighting has the important property that

cvirtq,q′,l(�xq,q′,l′) = δl,l′ . (5.24)

The weak reconstruction therefore demands that the central locations of
the aliased Fourier peaks are fully suppressed. Differences to SENSE occur
because the locations where the sensitivity weighting is defined are not
equidistant, but have a varying distance from one another. Problems may
occur in regions where the aliased locations are close to each other, because it
is not possible to generate high spatial frequencies, required to differentiate
between two close-by locations, by RF-coil sensitivities, which always have
smooth spatial variations. This has especially consequences for SNR (see the
paragraph Image Noise on the next page), but also for not well-suppressed
sidelobes that are distant to the aliased locations.

Aliasing Caused by Subsampling Parallel reception is not only useful in
suppressing aliasing that results from the non-bijectiveness of the encoding
fields as shown in the previous section, but also in suppressing aliasing that
results from k-space subsampling. This approach corresponds to the typical
approach in accelerated conventional PI. Again, consider the Fourier SRF
represented in PatLoc coordinates:

fFourier
q,q′,l (�u) =

1

(Δu)2
· gN

(
q − u1

Δu

)
gN

(
q′ − u2

Δu

)
. (5.25)

As already stated above, this function has exactly the same dependency
on the PatLoc space variable �u as the Fourier SRF has on the image space
variable �x. Therefore, the results from the analysis of the Fourier SRF (see
paragraph Field-of-View in chapter 2.2.1c, page 62ff) can be translated di-
rectly to PatLoc: It is useful to introduce the concept of FOV also in PatLoc.
Suppose the object covers the region W in image space. In PatLoc space,
the region �ψ(W ) is then covered by the object. Aliasing is avoided as long
as �ψ(W ) lies within the region �PatLoc

FOV , where the superscript PatLoc in-
dicates that the FOV is measured in PatLoc space coordinates. �PatLoc

FOV is
rectangularly shaped with an edge length of NΔu. If the object is larger
than the FOV, fold-over occurs as known from conventional imaging. More
important for the actual experiment is, however, the Nyquist relation ex-
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pressed in image space coordinates. Assume that �ψ−1(U) describes the set
of locations, which are mapped onto U by �ψ. Then the “PatLoc Nyquist
criterion” has two alternative descriptions:

�ψ(W ) ⊂ �PatLoc
FOV or W ⊂ �ψ−1(�PatLoc

FOV ). (5.26)

This equation generalizes the corresponding equation of Fourier imaging
(cf. Eq. 2.35, page 63).

PatLoc-SENSE Consider now the case where a FOV is chosen smaller
than the object in order to accelerate image acquisition. In this case, aliasing
occurs. This aliasing can, however, also be suppressed by combining SENSE
reconstruction with PatLoc reconstruction. Assume a PatLoc ambiguity of
L and a SENSE acceleration of R. Then there are up to L ·R aliased locations
in the Fourier SRF. These locations must be suppressed by ensuring that
cvirtq,q′,l(�xq,q′,l′) = δl,l′ , where l, l′ run over all L ·R aliased locations. To this
end, the aliased locations must be determined, for example, by calculating
the multiple locations by evaluating �ψ−1[�ψ(�x)+ �d], where �d is zero or a shift
of one (PatLoc) FOV along the phase encoding direction.

Remark concerning ultimate SNR in Cartesian PatLoc: The condition repre-
sented by Eq. 5.24, i.e. cvirtq,q′,l(�xq,q′,l′) = δl,l′ , imposed on the virtual coil
sensitivity, is formally equivalent to the corresponding condition in PI (see
Eq. 2.47, page 79). Recall from chapter 2.3.1d, page 82ff, that this condition
is also required to formulate the constraints for the calculation of ultimate
SNR or ultimate g-factor. It can therefore be concluded that, once the loca-
tions of aliased voxels are determined, exactly the same algorithm which
is used to determine ultimate quantities in PI can be applied to find the
corresponding quantities for Cartesian PatLoc reconstruction.

Image Noise It is crucial to determine the error propagation properties
of the applied reconstruction algorithm to calculate the SNR in the recon-
structed images. In chapter 2.1.4, page 52ff, it is shown that the diagonal
matrix elements of X = FΨ̃FH represent the variance of the noise in the
reconstructed image. When more receiver coils are available for signal acqui-
sition than strictly necessary to uniquely solve the reconstruction problem
represented by Eq. 4.19 this additional information can be used to optimize
the SNR. Following the arguments of chapter 2.1.5, page 56f, where a rec-
tilinear reconstruction grid is assumed, it is straightforward to show that
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the SNR-optimized reconstruction matrix for non-rectilinear reconstruction
grids is given by:

F = V−1(EHΨ̃
−1

E)−1EHΨ̃
−1

. (5.27)

With this reconstruction matrix, the image noise matrix X can immediately
be determined. Then, using the formula of Eq. 2.22 on page 55, it is possible
to calculate the SNR, and a “g-factor” for PatLoc imaging can be defined in
analogy to SENSE. (cf. chapter 2.3.1c, page 80ff).

In the Cartesian case, another approach serves the same purpose: Compared
to SENSE, image reconstruction only differs by the necessity to perform
intensity correction. The final back-transformation to image space coordi-
nates should not have a significant impact on SNR. Therefore, the g-factor
calculations performed above for SENSE reconstruction (cf. Eq. 2.49, page
82) are also valid for Cartesian PatLoc with the exception that the SNR must
be divided by the intensity correction v−1

ρ :

SNRPatLoc
ρ = SNRlinear

ρ

vρ√
Lgρ

. (5.28)

In this formula, the g-factor is defined exactly as for SENSE reconstruction:

gρ =
√[

(C(q,q′))HΨ−1C(q,q′)
]−1

l,l

[
(C(q,q′))HΨ−1C(q,q′)

]
l,l

≥ 1. (5.29)

SNRlinear is the optimized SNR when linear gradient fields are used for
encoding. L, the number of bijective regions of �ψ, describes the intrinsic ac-
celeration of PatLoc over conventional imaging. Similar to the conventional
case, the g-factor is calculated from groups of voxels which are mapped
onto the same point by �ψ. Contrary to parallel encoding with linear fields,
where these groups are formed by equidistant positions in image space,
ambiguously encoded voxels are distributed depending on the shapes of
the bijective sub-regions (see previous section). In analogy to SENSE, the g-
factor describes the spatial variations of loss of SNR caused by subsampling
and/or the non-bijectiveness of the SEMs. As shown above, the correc-
tion factor vρ describes an intensity correction to account for the nonlinear
nature of the SEMs; it is proportional to the nominal voxel volume. Note
that by this nonlinear correction, the SNR can be improved compared to
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conventional imaging in regions of low resolution and it degrades in regions
where the resolution is very high. As usual, SNR is traded for resolution.

5.1.2 Methods

a) Simulations

Simulations were performed with Matlab (The Mathworks Inc., Natick,
MA, USA). A high-resolution Shepp-Logan head phantom as spin density
was used to simulate the signal on a Cartesian k-space trajectory. Ideal
orthogonal quadrupolar fields (L = 2 in Eq. 5.15) were chosen as SEMs,
and, to suppress the Gibbs ringing artifact, the k-space data were multiplied
with a Kaiser-Bessel window with appropriately chosen parameters. The
sensitivity profiles were based on measured sensitivity data of an eight
channel receiver coil array. They were determined as explained in chap-
ter 2.1.2b, page 48f. The images were reconstructed with the presented
Cartesian algorithm; intensity-correction was approximated by the local
deformation at the voxel centers (cf. chapter 4.2.2b, page 148ff). Interpola-
tion is involved at several steps in the reconstruction process, so the choice
of an adequate interpolation method should be made carefully. For the
performed simulations and experiments, it was sufficient to use a standard
bicubic interpolation method to interpolate the sensitivity data and the
derivative information of the SEMs on the image space reconstruction grid.
For the final interpolation of the image values onto a high-resolution (typ-
ically 512 × 512) Cartesian grid, the multilevel b-spline method [94] was
implemented.

b) Experiments

Experimental data of a kiwi fruit and a phantom consisting of several tubes
filled with doped water were acquired on a 9.4 T BioSpec system (Bruker
BioSpin MRI GmbH, Ettlingen, Germany) using the PatLoc prototype coil,
which generated nearly-orthogonal quadrupolar SEMs. Details about the
coil and its integration into the scanner hardware environment are pre-
sented in chapter 3.3.2, page 124ff. A standard spin echo and a gradient
echo sequence (see chapter 1.2.4, page 33f) with Cartesian trajectories were
applied to the modified PatLoc hardware.
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According to Eq. 4.5, the applied currents through the PatLoc coils must
be known for correct determination of the k-space variables. In the mea-
surements, the current strengths could be controlled, and they were set
as high as the coils could safely tolerate. The dwell time Δt was chosen
such that the object was completely covered by the field-of-view. This is
the case when the condition of Eq. 5.26 holds. According to that equation
and Eq. 5.19, as well as Eqs. 4.5, 4.6, and considering that adjacent k-space
locations have the distance 2π · Δk, the condition is met for the readout
SEM if Δωf |W < 2π/IfΔt. Here If denotes the current through the read-
out coil and Δωf |W is the (angular) frequency dispersion per unit current
generated by the readout coil. It is measured over the region W , covered by
the object. With an estimate of object size and position, it can be calculated
from measured SEM sensitivity profiles. The maximum SEM sensitivity
of the coil was 23.5μT/A at 3 cm from the center (also cf. table 3.1, page
131). Recall from chapter 3.3, page 121ff, that highly-resolved images could
not be acquired with the PatLoc prototype coil because of SNR restrictions
and large dwell times. With If = 8.25A, the dwell time was set to 100μs

for the measurement of the kiwi fruit. As the sensitivity of the amplifiers
was actually not calibrated in the controlling software, dummy values for
the FOV needed to be specified to realize the above settings. Such issues
and other problems associated with the first PatLoc prototype coil could be
solved with subsequent coil designs, resulting in a superior image quality
(cf. the last paragraph in chapter 3.3.3 on page 132).

For the determination of the sensitivity profiles of the eight-channel Tx/Rx
coil array and for the acquisition of the SEM field maps the standard linear
gradient coil setup was used. In order to assess the quality of the PatLoc-
encoded images, reference images with the conventional linear gradient
system were obtained. All relevant imaging parameters could then be
calculated based on the above experimental settings.

c) Determination of the Encoding Fields

For PatLoc imaging, it is crucial to correctly determine the SEMs. In the
Cartesian algorithm the following issues have to be considered:

• PatLoc reconstruction involves an intensity correction step. This cor-
rection is determined here approximately by calculating derivatives of
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�ψ. The calculation of derivatives is in general very sensitive to noise,
so the SNR needs to be high in the numerical representation of �ψ.

• In the final reconstruction step, the image has to be transformed
to image space coordinates. Errors in �ψ result in distortions of the
reconstructed image, similar to nonlinearities of conventional gradient
fields.

• As the RF-coil sensitivity maps are known in image space variables,
but have to be calculated for values in encoding space, erroneous �ψ

results in erroneous coil sensitivity information. The robustness of
the reconstruction against errors in the sensitivity maps is similar to
SENSE reconstruction (cf. Eq. 5.14). Fortunately, SENSE has proven
to be robust against moderate errors in the sensitivity profiles of the
receiver coil array.

An adequate estimate of �ψ was found based on raw field maps of the encod-
ing fields. Raw field maps of the SEMs were acquired using two standard
single-echo gradient echo measurements with identical TE for each SEM
with the PatLoc coil placed inside the magnet bore and connected to a DC

current source. One measurement was performed without current through
the PatLoc coil and a second one with a positive DC current IDC . The
purpose of the second measurement was to create an additional inhomo-
geneity indicating the field strength Braw

1,2 of the magnetic field generated
by PatLoc coil 1, 2. The field strength Braw

1,2 was calculated by taking the
phase difference map of both measurements:

Braw
1,2 (�x) =

Δφ1,2(�x)

γTE
. (5.30)

The current IDC was set sufficiently low to avoid voxel shifts in the readout
direction. Noise-free field maps BSEM

1,2 (�x) were modeled by fitting a low
number Nb of solid harmonics Bj(�x), j = 1, . . . , Nb evaluated at the polar
angle θ = 90◦ to the raw field maps:

BSEM
1,2 (�x) =

Nb∑
j=1

aijBj(�x), with i = 1, 2. (5.31)

This model allows gridding to arbitrary positions and the calculation of
reliable derivatives. The coefficients aij were determined by a standard
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least-squares fitting approach. According to the discussion following Eq.
4.5 on page 137, �ψ is then given by ψ1,2(�x) = (γ/βIDC)B

SEM
1,2 (�x).

In principle, the inverse of �ψ has to be determined in order to calculate
the positions in image space corresponding to the grid points in each leaf
of multiple encoding space. This is simple for ideal quadrupolar fields,
especially when the encoding fields are derived using complex-valued alge-
bra (see discussion of Fig. 5.5 on page 165). However, measured sensitivity
maps deviate from exact quadrupolar fields, and the problem becomes more
intricate. Therefore, a different approach was taken. In fact, the problem can
be simplified because the Cartesian algorithm makes use of the fact that the
same grid in each leaf of encoding space is chosen. In this case, it is sufficient
to determine the multiple points �xl,ρ in image space corresponding to a
single grid location �uρ in encoding space (cf. Fig. 5.1, page 159). Newton’s
method was used to determine those ambiguous locations by solving the
nonlinear equation �ψ(�xl,ρ) = �uρ for each location �uρ. This approach also
avoids the problem of defining cutting lines through each encoding space
leaf joining the neighboring leaves (cf. Fig. 5.5, page 167). In order to ensure
correct convergence to the two different solutions, the method was initial-
ized twice with points in the vicinity of the true solutions. This was possible
because of the similarity of the experimental SEMs to ideal quadrupolar
fields, where the two solutions can be determined analytically.

It should be recalled here that unlike receiver coil sensitivities, SEMs do not
depend on coil loading. It is therefore sufficient to determine �ψ only once
after coil installation (also compare with last paragraph of chapter 2.1.2b on
page 49).

5.1.3 Results

The topics discussed in the theory section (reconstruction algorithm and
resulting image properties like resolution, Gibbs ringing, aliasing and SNR)
are verified here for quadrupolar PatLoc SEMs with numerical simulations
and experimental data.

a) Simulations

Simulation results based on a numerical phantom are schematically shown
in Fig. 5.3. The workflow in this figure confirms, in accordance with Eqs.
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Figure 5.8: Simulated images of a numerical phantom for conventional gradient
encoding (top) and for PatLoc encoding using quadrupolar fields (bottom). (a) and (b):
Uniform receiver coil sensitivity. (c) and (d): Non-uniform receiver coil sensitivity of a
surface coil placed at the top left of the object. (e) and (f): Similar surface coil placed
at the bottom right. A deformation is visible in the radial direction. The circles at the
periphery are numbered in order to indicate that, for the quadrupolar fields, the object
appears aliased because the azimuthal angle is doubled compared to conventional
encoding. The intensity of neighboring circles in (d) and (f) is very different such that
very weak aliasing occurs when multiple, circumferentially-distributed surface coils
are used.

5.12, 5.17, and Fig. 5.6, that a coil-wise FFT of the signal data leads to aliased,
intensity-modulated and highly distorted coil images. It is depicted that the
matrix inversion step resolves aliasing, the subsequent intensity correction
removes the intensity modulation and the final visualization step unwarps
the severe distortions.

Fig. 5.8 illustrates the transformation described by Eq. 5.17 for an example
test object in detail. In this figure, simulated coil images are shown for
a numerical phantom using conventional gradient encoding and PatLoc
encoding with quadrupolar fields. Reconstructed images are compared both
assuming a single homogeneous sensitivity as well as a set of real-world
surface coil sensitivity maps. Fig. 5.8 clarifies in particular two properties
of encoding with quadrupolar fields: First, aliasing occurs because the
multipolarity of the encoding fields causes a doubling of the angle in the
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azimuthal direction in the coil images. At the same time, the quadratic
dependency of the field strengths in the radial direction causes shrinking
at the center and expansion at the periphery. These properties are a direct
consequence of the properties of �ψ (see Fig. 5.5). Second, for realistic surface
coils aliasing is weak at the periphery. This can be understood by realizing
that the sensitive region of surface coils is often restricted to only a part of
the object. Superimposed voxels belong to opposite sides of the object and
therefore the surface coil basically only “sees” one of the two voxels.

Resolution and Gibbs Ringing According to Fig. 3.4b, page 109, the res-
olution in each dimension increases linearly with the radial distance from
the center. This result is verified by simulating and analyzing the PSF
at different locations in the image. The results are shown in Fig. 5.9a-c.
Figure 5.9a,b shows the PSF at two example locations. One can clearly ap-
preciate that the resolution is higher for the voxel which is farther off-center.
In Fig. 5.9c, this result is quantified for a large set of voxel locations. The
double logarithmic plot of Fig. 5.9c was generated in the following way:
The PSF was calculated for locations belonging to a regular grid in image
space. An area was selected, where the PSF’s intensity was higher than half
the maximum value. The resolution was than defined as the square root
of this area. Some scattering of the data is introduced with this method
because the resolution only takes discrete values and because gridding
the data to image space coordinates introduces some deviations from the
theoretical value. A linear least-squares fit of the data points resulted in
the slope m = 0.99 ≈ 1 thus confirming a proportionality of resolution and
radial distance from the center.

Before applying the 2D-FFT, the signals in Fig. 5.3 and Fig. 5.9a-c were ac-
tually multiplied by a Kaiser-Bessel filter with window parameter α = 1.5

and α = 2.0 respectively, as defined in Eq. 2.37, page 71. This filtering
operation was used to suppress the Gibbs ringing artifact. Fig. 5.9d,e indi-
cate what happens if the reconstruction is performed without this filtering
operation. According to Fig. 5.9d, for a source voxel located close to the
center, a pronounced Gibbs ringing artifact appears as streaks going from
the center to the edges of the images. The images were simulated on a
low-resolution 64× 64 grid to emphasize the effect. At higher resolution,
these artifacts are much less prominent. Fig. 5.9d also indicates that the
PSF is aliased outside its central position. The reason for this artifact is that
the reconstruction algorithm assumes a coil sensitivity depending on the
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Figure 5.9: Resolution and Gibbs ringing for quadrupolar fields by point spread
function (PSF) analysis. The top row shows results with filtered data, the bottom row
without filtering. (a) and (b): The resolution is lower toward the center than at the
periphery. (c) A quantitative analysis based on a simple numerical evaluation of the
width of the PSF at different locations shows that the resolution is proportional to
the radius. (d) Without filtering the PSF has long-reaching Gibbs ringing tails which
even show some aliasing. (e) Both artifacts are less prominent farther away from
the center. The Gibbs ringing behavior is quantified in (f). For each voxel location,
the main tails fall off differently. In this plot, F indicates the distance in voxels in
encoding space, until which the ringing has fallen off to 10%. These values are
plotted against the radial image space distance from the center. All values remain
between an upper and a lower bound, which converge at the periphery toward
the fall-off behavior for conventional imaging, represented by the dotted line. The
convergence expresses the fact that at the periphery the imaging properties are
similar to conventional imaging.

corresponding position in the image. The weighting is therefore only correct
for the central position of the PSF. The more distant the ringing extends
from the central position, the more the weighting deteriorates.

For voxels at the periphery like the one chosen in Fig. 5.9e, aliasing is much
weaker because the interplay of more distant aliased points along with
less extended ringing leads to a close-to-exact reconstruction also outside
the central lobe of the PSF. The ringing toward the edge of the image is
less extended in image space for voxels at the periphery because of two
reasons. First, in image space the voxel volume is smaller and therefore
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the same fall-off behavior per voxel has smaller extent. Second, this fall-off
behavior varies with distance from the center and with its direction because
the reconstructed image is not adequately intensity corrected outside the
PSF’s center. This behavior is sketched in Fig. 5.9f. The number of voxels
F in encoding space, where the intensity of one of the main tails of the
PSF has fallen off to less than 10%, varies throughout the image. However,
all values are restricted to an upper and a lower bound. At the periphery,
these bounds converge toward a common value. This value is the same
as in Fourier imaging, which can be found by analyzing the properties of
the sinc-function. At the periphery, the ringing artifact is similar to the
conventional artifact because locally the gradient fields are constant and
so the signal distribution is locally well-behaved. Toward the center the
nonlinearity of the fields must be taken into account, the intensity of the
signal distribution becomes strongly non-uniform and therefore deviations
to the conventional case occur. In the limit r → 0, where r is defined as
the distance to the center, the tails toward the edges remain constant in
intensity, whereas the tails toward the center fall off faster, proportional
to r−2 instead of r−1 compared to conventional imaging. This result is in
conformity with the theoretical considerations performed on page 171 in
the paragraph Gibbs Ringing of section 5.1.1e.

Spatially Undersampled Datasets Fig. 5.10 illustrates the undersam-
pling artifact and presents reconstruction results of a combined PatLoc-
SENSE reconstruction. In Fig. 5.10a the acquisition space is fully sampled;
the object lies within the rectangular FOV in encoding space. The image
can be reconstructed correctly as shown in Fig. 5.10b. The shape of the FOV
in image space is given by the inverse mapping �ψ−1 of the SEMs applied to
the rectangular FOV in encoding space. In Fig. 5.10c the acquisition is accel-
erated by a factor of 2 by undersampling the PatLoc k-space. In encoding
space, a similar fold-over artifact as in conventional imaging is produced. In
the PatLoc-reconstructed image, shown in Fig. 5.10d, the aliasing appears
at several locations depending on the number of bijective subregions of the
SEMs. The mapping to image space yields a reduced intensity of the artifact
in regions where the encoding fields are flat because the back-folded artifact
is spread out. If the readout SEM and the accelerated phase encoding SEM
were swapped, the artifacts would occur at 45◦ with respect to the aliasing
shown. Fig. 5.10e demonstrates that aliasing can be removed by combining
PatLoc reconstruction with SENSE reconstruction. The combination of the
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Figure 5.10: Illustration of the concept of FOV in PatLoc imaging, the aliasing
artifact and combined PatLoc-SENSE reconstruction. (a) The area U of the FOV
is a rectangle in encoding space. (b) In image space, the area V of the FOV is
given by the inverse mapping of the SEM vector field applied to this rectangular
region; i.e., V = �ψ−1(U). No aliasing occurs because the covered area of the object
W lies within the borders of V . (c) In encoding space undersampling leads to the
conventional fold-over artifact. (d) The non-unique mapping to image space leads
to a fourfold appearance of the aliasing artifact in image space. (e) This aliasing
can be resolved by combining PatLoc and SENSE reconstruction. This combination
effectively leads to an extension of the reduced FOV (white) to the full FOV (gray).

two methods is possible because both rely on the fact that spins at different,
yet known, positions are identically encoded by the SEMs, but differently
weighted by the sensitivity profiles of the receiver coils. Once the aliased
positions are determined,6 an adequate matrix inversion leads to the desired
recovery of the original spin density, provided that the sensitivity matrix is
well-conditioned.

SNR The simulation results shown in Fig. 5.11a represent a validation
of theoretical predictions for the SNR as given by Eq. 5.28. The images

6A method is described in the paragraph Aliasing – PatLoc-SENSE in chapter 5.1.1e on
page 175.
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of Fig. 5.11 show results along a line, which crosses the common center
of the quadrupolar fields. According to Eq. 5.28, it is useful to separate
the SNR into three contributions apart from the factor

√
L describing the

intrinsic acceleration. These contributions are depicted in Fig. 5.11b-d. As a
reference, Fig. 5.11b depicts the optimal SNR when linear gradient fields
are applied. The SNR is calculated according to Eq. 2.48, page 81, under
the assumption of a homogeneous magnetization. The SNR should be
given by the root-sum-of-squares of the coil sensitivities. Recall that these
were estimated with a method that results in sensitivities that are weighted
with the root-sum-of-squares of those. Therefore, the plot shown in Fig.
Fig. 5.11b is nearly constant, with a minor deviation from unity at the center,
where not enough signal intensity was available for reliable sensitivity
estimation. The g-factor is shown in Fig. 5.11c. It is inverse to the SNR
divided by voxel size because the reference SNR for linear gradients is
nearly constant. In Fig. 5.11d the volumetric correction factor is visualized.
The combination of Fig. 5.11b-d indicates that at the periphery, the SNR is
mainly determined by the volumetric correction factor and therefore the
SNR almost exclusively depends on the voxel volume at the corresponding
location. At the center, the SNR-benefit resulting from the large voxel
size outweighs any SNR-degradation toward the center resulting from an
ill-condition of the sensitivity matrix.

Fig. 5.12 shows a comparison of g-factor maps for SENSE imaging, PatLoc
imaging using quadrupolar fields and a combination of both. In addition,
ultimate g-factor maps are depicted. Fig. 5.12a-d show the results for
a circular receiver coil arrangement with eight channels. As depicted in
Fig. 5.12a,b, the g-factor for such a circular arrangement is much lower at
the periphery (g < 1.01) compared to SENSE with acceleration 2 (Fig. 5.12b),
which has a peak value of more than 1.25 at the periphery. At the center,
where image resolution is low, the g-factor is higher than that for SENSE
imaging. Combining PatLoc imaging using quadrupolar fields with a
SENSE acceleration of 2 results in up to fourfold aliasing. In Fig. 5.12c
the resulting g-factor map is shown. Although the SENSE acceleration
introduces non-circular aliasing, the overall g-factor is still considerably
lower than the g-factor for a SENSE acceleration of 4 with the conventional
gradient system, which is depicted in Fig. 5.12d.

Whereas in Fig. 5.12a-d one particular receiver coil geometry was used,
which might be non-optimal in either case, Fig. 5.12e,f show results of the
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Figure 5.11: Example SNR and its components (cf. Eq. 5.28) for quadrupolar fields
and an eight-channel receiver coil array. Shown is a profile through the center of
the 2D imaging data. (a) Calculated (solid line) and simulated (discontinuous line)
SNR. The lines lie on top of each other, a difference is barely visible. Numbers on
the y-axis above unity indicate higher SNR compared to the SNR for fully-encoded
Fourier images. Spatial variations in SNR are in this case not dominated by the
g-factor, but rather by the correction due to varying voxel size. (b) Optimal SNR
for Fourier imaging. The SNR has been normalized to unity at the edges. It is
nearly constant for the method that was used to estimate the coil sensitivities. (c)
Calculated g-factor. The g-factor is very near to unity except at the center. It is
proportional to noise amplification and SNR degradation. (d) Calculated correction
factor. For quadrupolar fields, it has an adverse effect on SNR as a consequence to
the enhanced resolution toward the periphery.
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Figure 5.12: g-factor maps for PatLoc imaging using quadrupolar fields (top) and
pure SENSE imaging (bottom). An eight-coil receiver array with circular arrangement
has been used in (a)-(d). (e) and (f) show ultimate g-factor maps. (a) For a fully
acquired dataset the g-factor is very near to unity (lower than 1.01) at the periphery.
Only at the center, the g-factor is unfavorable (also cf. Fig. 5.11c). (b) For the same
coil arrangement the g-factor for SENSE, accelerated in the vertical direction (2x)
has peak values of more than 1.25. (c) Apart from the central region, the g-factor of
the accelerated (2x) PatLoc-encoded image is below 2 almost in the whole image. (d)
For pure SENSE (4x) the g-factor reaches values of more than 2.5. (e) The ultimate
g-factor for accelerated PatLoc imaging (2x) reveals that the noise enhancement at
the center cannot be overcome for purely quadrupolar SEMs. However, an optimal
coil array might be capable of reducing the g-factor close to unity in the major part
of the object. (f) For conventional imaging with SENSE (4x) the ultimate g-factor is
limited to a certain range, but it remains significant farther away from the center of
the object. Note the different scaling in (a) and (b) as well as in (e) and (f).

ultimate geometry factor. The ultimate geometry factor is derived from the
ultimate SNR in each position, i.e., the highest possible SNR compatible with
Maxwell’s equations. It depends on the frequency of the RF field, material
properties, object size and its shape and also on the imaging method and
the applied reconstruction algorithm. The concept of ultimate SNR has been
introduced in [117] with an extension to parallel imaging in [119]. In this
investigation, the ultimate SNR was calculated in analogy to [200] using a
multipole expansion of the electromagnetic field to create an approximately
complete basis of the solution space to Laplace’s equation involving 2 · 712
basis functions of lowest order. The theoretical background of ultimate SNR
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is reviewed in chapter 2.3.1d, page 82ff. The Remark on page 175 clarifies
that the concept of ultimate SNR can immediately be used in Cartesian
PatLoc imaging. As the presented PatLoc design is particularly relevant to
brain imaging, a homogeneous sphere with diameter of 12 cm was chosen
and material properties of average brain tissue at 3T were taken from
Table 1 in [200], i.e., relative dielectric constant εr = 63.1 and conductivity
σ = 0.46/Ωm. The relative magnetic permeability μr was assumed to be
unity.

In addition to the 2D images, Fig. 5.12e,f also sketches profiles along the
dotted lines. The same imaging setup was used as in Fig. 5.12c,d. The
profile in Fig. 5.12e indicates that the ultimate g-factor diverges toward
the center of the quadrupolar fields. The disadvantage toward the center
is compensated by a reduced ultimate g-factor toward the periphery. For
the largest part of the object, the ultimate g-factor is very close to unity.
Fig. 5.12f shows that for conventional imaging with SENSE-acceleration of
4, the ultimate g-factor is bound to the interval [1.0, 1.23] in the complete
object. In contrast to quadrupolar SEMs however, the ultimate g-factor
remains above unity also farther away from the center of the object. It is to be
noted, however, that ultimate g-factors are rarely achieved experimentally
(cf. for example Fig. 5.12c,d with Fig. 5.12e,f).

b) Experiments

Measurement of a phantom consisting of several tubes filled with doped
water and a kiwi fruit are shown on the left in Fig. 5.13;7 these measure-
ments were performed with the PatLoc prototype coil. PatLoc images are
compared to reference measurements using the conventional gradient sys-
tem with comparable sequence parameters. The tube phantom data were
acquired using a spoiled gradient echo sequence. For the PatLoc experiment,
TE = 11.2ms and TR = 0.5 s were chosen. For the reference measurement,
TE = 7.2ms and TR = 0.1 s were used. The kiwi fruit data were acquired
using a spin echo sequence. For both, the PatLoc experiment and the ref-
erence measurement, TE = 50ms and TR = 2 s were used. The PatLoc and
the reference measurement results show a fairly good agreement.

The PatLoc images clearly have a resolution gradient toward the periph-
ery. Aliasing is barely visible in the reconstructed images and intensity is

7The images of the kiwi fruit are also depicted in Fig. 3.16a, page 127.
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Figure 5.13: Experimental results. Top left: Reconstructed images of a 64 × 64
spoiled gradient echo PatLoc-experiment with a phantom consisting of several tubes
filled with doped water and of a 128× 128 spin echo experiment with a kiwi fruit. The
data were acquired with the first PatLoc prototype coil. Bottom left: Corresponding
reference images acquired using the conventional gradient system. Right: PatLoc
image and reference of a lemon acquired with a 256× 256 RARE sequence using a
second-generation high-performance PatLoc coil developed at Bruker BioSpin MRI
GmbH, Ettlingen, Germany. The images on the right were presented at the Annual
Meeting of the ISMRM 2010 in Stockholm (cf. [120]) and are courtesy of Stéphanie
Ohrel from Bruker BioSpin MRI GmbH.

correctly represented - apart from the central region, where signal dropout
occurs caused by having used an approximate continuous method to esti-
mate the intensity correction (cf. the Remark on page 166f). Some geometric
distortions are visible in the images; these can be attributed to inaccurate
calibration data (cf. section 5.1.2c, page 178ff). Overall, a robustness of the
reconstruction algorithm with imperfect input can be appreciated.

On the right-hand side of Fig. 5.13, an image of a lemon is shown that
has been acquired using a 256 × 256 RARE sequence [60] with TR = 5 s,
TE = 14ms and RARE factor of 8. The image has been acquired with an
improved second-generation small-bore PatLoc coil developed at Bruker
BioSpin MRI GmbH, Ettlingen, Germany. No geometric distortions are
visible in the reconstructed image. It can also be seen that, at the periphery,
image resolution is improved compared to the reference image. The image
of the lemon verifies that fast, accurate and robust reconstruction is possible
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with the Cartesian image space reconstruction method presented in this
chapter also under realistic experimental conditions.

5.1.4 Discussion

The results presented in the previous section show that the Cartesian re-
construction algorithm is suitable for performing the reconstruction of 2D
images using orthogonal non-bijective quadrupolar encoding fields. Aliased
voxels are unfolded and the intensity is correctly determined, despite the
strong nonlinearities of the involved encoding fields. With the first PatLoc
prototype coil, some image deformations were visible; this problem could
be eliminated with an optimized second-generation coil design. Similar
high-quality results could be achieved with the larger human system (see
e.g. Fig. 7.7, page 258). The quality of the reconstructed images presented
here is remarkable considering the simplicity of the used signal model,
where only the influence of the SEMs onto the phase factor is considered.
It was therefore not a priority to enhance the image quality of the recon-
structed images by refining the model; for example, by also considering
field inhomogeneities of the main magnetic field, as has been done in [121].
Also, typical measurement errors of RF and SEM sensitivities affect the
reconstructed images only moderately.

The Cartesian PatLoc reconstruction algorithm is similar to Cartesian SENSE
reconstruction [135]. However, the strong nonlinearities of the SEMs require
some modifications of this method and cause alterations of image properties.
In contrast to conventional SENSE imaging, where the g-factor has only
moderate variations, the g-factor for PatLoc imaging using quadrupolar
fields is very high at the center, whereas it is close to unity at the periphery
(Fig. 5.12). This behavior can be understood qualitatively by investigating
the relative distance of aliased voxels with respect to each other. In conven-
tional SENSE imaging the distance of aliased voxels is constant, whereas for
quadrupolar fields, the distance is high at the periphery and low toward the
center. The variations in the coil sensitivity profiles therefore allow discrim-
ination of voxels with almost no SNR decrease at the periphery, whereas at
the center the variations are low and so discrimination is only possible with
a high g-factor penalty, which is, however, negligible compared to the SNR
enhancement due to the large voxels at the center (Fig. 5.11).
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The benign behavior of SNR at the periphery remains partly preserved
when the PatLoc dataset is accelerated by a factor of two. In SENSE imaging
aliased points lie equidistantly along one single line, whereas in accelerated
PatLoc imaging, the points are distributed over the image. This is similar
to 3D SENSE imaging with acceleration in two directions. PatLoc imaging
might therefore be used with possibly higher acceleration factors than
conventional imaging. A circular receiver coil arrangement naturally seems
to exploit the inherently radially symmetric aliasing pattern of images fully
encoded with quadrupolar fields (Fig. 5.12a), whereas much effort was
required to optimize RF-coil arrangements for SENSE imaging (e.g. [194]).
However, when PatLoc-encoded data are accelerated, some room for RF-
coil optimization remains: The ultimate g-factor indicates that acceleration
by a factor of two does not necessarily lead to a significant decrease in
SNR (cp. Fig. 5.12a,c,e.) An optimal RF-coil arrangement depends on many
parameters, such as object size, acceleration factor and application. In
PatLoc, an optimal arrangement also depends on the SEMs. Therefore, it
can be expected that PatLoc imaging will profit from the current trend of
continually increasing the number of receiver coil elements.

In PatLoc, image resolution is a local property depending on the spatial vari-
ations of the gradient fields of the SEMs. In this chapter, quantitative results
have been derived based on the choice of a regular grid in encoding space
rather than in image space, the natural choice for conventional imaging.
This is almost optimal in terms of resolution because it allows direct appli-
cation of the FFT at the first step of the reconstruction and no information is
lost using the FFT operation. The image resolution is in principle defined by
the corresponding pattern given by the local gradient strength. Deviations
might result because local variations in the RF-sensitivity maps include
information, which can be used to locally improve resolution ([170], [125],
also cf. chapter 2.3.1e, page 86ff). This effect is often negligible; it should be
considered, however, when the RF variations are considerable compared to
the intra-voxel variations produced by the SEM system. Such a situation oc-
curs in low-resolution imaging such as spectroscopic imaging ([170], [125]).
In the context of PatLoc imaging, RF-sensitivity variations gain considerable
value in regions, where the SEMs become very flat. An example is shown
later, in Fig. 7.7, page 258, where PSFs are depicted that indicate improved
resolution at the center of a quadrupolar SEM-combination if an iterative
method is used for image reconstruction.
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In terms of the computation time, it is a crucial advantage of the direct
Cartesian PatLoc reconstruction algorithm that an FFT is performed because
it results in a numerical complexity of only O(N logN) for each coil and
each dimension. With the FFT the aliased image is represented in encoding
space. It is also possible to reconstruct directly onto a regular grid in image
space with a non-uniform FFT of type 2 (an explanation of this operation
is found in the paragraph Non-Uniform FFT in chapter 7.1.3, page 248f).
This has the advantage that the RF-coil sensitivities do not need to be
interpolated on the PatLoc encoding space grid, and it is no longer required
to finally rewarp the image back to image space. As shown later, in chapter
7, page 235ff, the main advantage of choosing a regular grid in image space
rather than in encoding space is that the pronounced Gibbs ringing artifact is
suppressed - if iterative reconstruction algorithms are applied. However, for
the direct reconstruction, that is the topic of the present chapter, this benefit
is not observed; the artifact can even be intensified by the non-uniform FFT.

The PatLoc image properties are similar to those found in conventional
imaging except for regions where no field gradients are generated during
the entire measurement. In such regions, a pronounced Gibbs ringing
artifact results that lacks symmetry and aliasing is observed. This problem
can be addressed in several ways:

• Via image reconstruction: At the expense of image resolution, the
artifact is diminished by data filtering. There are also some limited
possibilities to use intra-voxel RF-receiver variations to improve the
localization of the signal, for example with the iterative CG recon-
struction, see chapter 7, page 235ff.

• Via excitation: Additional object information can be encoded with
multiple tailored RF-excitation profiles. Alternatively, the problem
can simply be circumvented by only selectively exciting those regions
where the gradients are sufficiently strong. Prolonged pulses can be
shortened by parallel excitation [81, 215, 185]; however, additional
energy deposition in tissue has to be taken into consideration.

• Via modification of the sampling trajectory: In the next chapter, it is
shown that radial instead of Cartesian sampling can have beneficial
properties. Also other sampling strategies combined with an adequate
reconstruction technique may be useful [190].
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• Via additional SEM Encoding: To avoid a priori that regions of vanish-
ing gradient fields occur. This may be achieved by phase preparation
(for example, signal contamination from low gradient regions would
be reduced by adding a linear field prior to signal acquisition) or by
appropriately varying the effective gradient field during the encoding
process (an example is the 4D trajectory described in [[42]]). Such
approaches require that the linear gradient fields are not merely re-
placed by NB-SEMs, but that a multi-channel system is available that
combines a multitude of linear and nonlinear SEMs.

Such extensions, that add flexibility to the encoding process, have been
subject to recent research activities. A theoretical approach is presented in
[[100, 101]], where different field modes of a PatLoc gradient coil array are
determined based on the SVD of the fields that are generated by the indi-
vidual array elements. A technological improvement is the multi-channel
PatLoc hardware configuration for head imaging, described in chapter 3.3.3,
page 126ff. A very interesting approach is the “O-Space” parallel imag-
ing technique, where a quadratic SEM is applied in addition to the linear
gradient fields [177]. With the signal equation of Eq. 4.9, this imaging
modality uses ψ(�x) := γβ−1(b0, gxx, gyy, 1/2(x

2 + y2))T and m projections
km(t) := −2πGtβγ−1(b−1

0 (x2
m + y2m),−2g−1

x xm,−2g−1
y ym, 2h−1)T , where

G is a common “gradient strength” and t the time. The quantities b0, gx,
gy and h describe the characteristic properties of the constant linear and
quadratic fields, and (xm, ym)T are different center placements. Several
center placement patterns are described in [22]. Important is the work pre-
sented in [204], where linear and high-order field gradients are generated
with a common matrix gradient coil design.

Such multi-channel designs introduce new options for MRI signal encoding;
however, images cannot be reconstructed with an FFT as described in this
chapter because the number of SEMs exceeds the number of encoded spatial
dimensions. Reconstruction methods suitable for such multi-dimensional
encoding strategies are explained in detail in chapter 7.1.1 and 7.1.2, page
237ff.

5.1.5 Conclusions

It has been shown that the image space PatLoc reconstruction algorithm pre-
sented above is an efficient and robust implementation of the general weak
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matrix approach (see chapter 4.2.2, page 144ff.); it is applicable to Cartesian
sampling trajectories for an experimental setup where the gradient coils are
replaced by coils capable of producing nonlinear and non-bijective magnetic
encoding fields. By solving the reconstruction problem in encoding space,
the reconstruction becomes a generalized version of SENSE reconstruction.
This formal relationship is exploited to quantitatively analyze basic image
properties by adapting established techniques to the usage of nonlinear
and non-bijective encoding fields. The theoretical investigations were veri-
fied in numerical simulations and experiments for orthogonal quadrupolar
SEMs only; however, note that the presented algorithm is not restricted
to quadrupolar SEMs. Images generated with arbitrary field geometries
can be reconstructed and the resulting image properties can be described
quantitatively.

A k-space based reconstruction method also suitable for Cartesian trajec-
tories is briefly presented in the following section. The two subsequent
chapters deal with image reconstruction beyond Cartesian encoding.

5.2 Direct k-Space Reconstruction

The analysis of the previous section has shown that a modified version of
SENSE can be used to reconstruct PatLoc images that have been encoded
with a Cartesian trajectory. Here, it is discussed to what extent it is also
possible to apply GRAPPA for image reconstruction in PatLoc. It seems
natural to assume that GRAPPA is a feasible method regarding the close
relationship of GRAPPA and SENSE (cf. chapter 2.3.2b, page 99ff). However,
it is demonstrated here that it is not valid to draw this conclusion. In
PatLoc, partial unfolding is possible with GRAPPA, but it is problematic
to acquire sufficient calibration data needed for complete GRAPPA image
reconstruction. Different reconstruction strategies are compared to each
other and the results are discussed to gain further insight into k-space based
image reconstruction from Cartesian PatLoc measurement data.

5.2.1 Physical Limitation: Calibration Data

Why does a SENSE-variant work, but not a GRAPPA-variant? First, examine
Fig. 5.14. The figure depicts the analogy of SENSE and the Cartesian PatLoc
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algorithm presented in the previous section (also cf. Eq. 5.14, page 165).
The figure also illustrates that the perfect image space analogy is not perfect
in k-space: In conventional imaging, the fold-over artifact does not occur, if
k-space is not undersampled; in PatLoc, however, voxels are aliased even
for a densely sampled PatLoc k-space (cf. Fig. 5.14h).

Figure 5.14: Analogy of image space Cartesian PatLoc reconstruction and SENSE
and limited analogy for pure k-space based approaches. Depicted are examples
encoded with linear SEMs (top) and quadrupolar SEMs (bottom). Top row: Increas-
ing acceleration leads to increased aliasing. The image can be unfolded using
SENSE. Bottom row: The situation is similar in PatLoc. If the image is represented in
PatLoc encoding space (see subfigures (g - j)), the analogy becomes perfect: In this
case, aliased image locations are also equidistantly distributed as in SENSE. This
analogy is not perfect in k-space: Whereas an R-fold aliased image corresponds
to an R-fold subsampled k-space in conventional imaging, PatLoc k-space is only
R/2-fold subsampled, if R voxels are aliased. No physical, but rather a “virtual”
k-space corresponds to the unfolded image in PatLoc.

Recall that GRAPPA uses calibration data to fill unsampled regions of k-
space. If, however, k-space is densely sampled, there are no unsampled
regions in k-space to be filled. Therefore, GRAPPA can (generally) not be
applied to resolve all ambiguities in PatLoc imaging. One solution would
be to introduce a “virtual” k-space that corresponds to the unfolded image
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displayed for example in Fig. 5.14g. This space is, however, only “virtual” in
that sense that it is not a physical space, and therefore it is not (immediately)
possible to acquire adequate calibration lines (more on this issue in the
discussion section below, page 203ff).

But why does a SENSE-variant work properly? In SENSE, calibration data
are not acquired; instead, a separate scan is performed to explicitly measure
RF-sensitivity data, and this scan is done with the conventional gradient sys-
tem also in PatLoc. Therefore, full information about the RF data required
for voxel unfolding is available. On the other hand, from the calibration
data in GRAPPA, only aliased RF-sensitivity maps can be retrieved (as
also shown in the following two paragraphs), and voxel unfolding is not
completely possible with GRAPPA.

In chapter 2.3.2b, page 99ff, a relationship of SENSE and GRAPPA is estab-
lished by directly analyzing the corresponding encoding matrices. It was
found that the “GRAPPA encoding matrix” Ês is basically a truncated ver-
sion of the SENSE encoding matrix E, where the pure RF-sensitivity maps
are replaced by the signal data, or, equivalently, by in vivo RF-sensitivity
data. Both differences - truncation and in vivo version of the sensitivity data
- were proven to merely modify the reconstruction without introducing a
profound difference: SENSE and GRAPPA are very similar in conventional
imaging.

This seems to be different in PatLoc, and therefore a fundamental difference
should also be found by analyzing the corresponding encoding matrices.
For the image space reconstruction, the encoding matrix still contains pure
RF-sensitivity data (see Eq. 5.5, page 160). The k-space reconstruction
matrix, does, however, not contain in vivo sensitivity data any more. Recall
that the encoding GRAPPA matrix actually contains signal data. According
to Eqs. 5.11, 5.12, the signal data in PatLoc is the k-space version of the
aliased and distorted magnetization, and not of the magnetization simply
weighted with the RF sensitivities. It can be concluded that the image space
encoding matrix contains unaliased sensitivity information, whereas the
k-space encoding matrix does not. It has been demonstrated above, that
this is exactly the reason, why a SENSE-variant can be applied in PatLoc,
but (generally) not a GRAPPA-variant.

In the remainder of this chapter, it is shown that, despite the general problem
associated with GRAPPA in PatLoc, k-space based reconstruction can still be
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a powerful tool for image reconstruction also in the context of non-bijective
encoding.

5.2.2 Applicability to Subsampled PatLoc k-Space Data

It may not be possible to acquire calibration data for the reconstruction of
a completely unfolded image in PatLoc; however, if the PatLoc data are
subsampled, a densely sampled set of calibration data can be acquired -
and it is possible to use this calibration data to fill missing lines of PatLoc
k-space using GRAPPA without modification to the original algorithm. But is
this a valid method?

Theory Reconsider Fig. 5.14. This figure illustrates the fact that an R×
subsampled PI dataset is fully equivalent to an R/2-fold subsampled PatLoc
dataset (acquired with quadrupolar SEMs). This analogy allows one to
replace the problem whether densely sampled calibration data can be used
to reconstruct an image from R/2-fold subsampled PatLoc data by the
following problem: In the context of conventional imaging, is it possible
to use 2× subsampled calibration data to reconstruct a 2× subsampled
image from an R× subsampled dataset? This unusual situation, of using
subsampled calibration data for image reconstruction, is depicted in Fig.
5.15, and it is compared to the equivalent situation in PatLoc in the same
figure.

Consider the more general situation of an (R·L)-times subsampled Cartesian
trajectory, encoded with linear SEMs, and L-times subsampled calibration
data. It is shown here that it is possible to calculate appropriate GRAPPA
weights w(m)

α that can be used to fill in each L-th k-space line, thus leading
to an L-fold aliased image.

Recall that the GRAPPA weights w(m)
α are determined by minimizing the

l2-norm of the following expression (cf. Eq. 2.57, page 98):∥∥∥w(m)
α Ê(m,ACS)

s − sACS
α
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Figure 5.15: Equivalent GRAPPA reconstruction problems for subsampled PatLoc
imaging and its linear analogue: It is valid to apply GRAPPA to 2× subsampled Pat-
Loc data if and only if GRAPPA can be used in conventional imaging to reconstruct
2× aliased images from 4× subsampled data using 2× subsampled calibration data.
It can be shown that this is indeed possible, and therefore the GRAPPA algorithm
can be applied without any modification to the subsampled PatLoc dataset.

This equation implies that the weights are found by approximating the
signal of each coil at k-space locations �kκ by a weighted sum of all sig-
nals at different k-space locations, defined by the GRAPPA kernel L: For
β = (βx, βy) ∈ L the relative k-space shifts are given by �k

(m)
β = 2πΔk·

(βx�ex + (βyR · L−m)�ey), where R ·L is the assumed acceleration factor (cf.
chapter 2.3.2a, page 97ff).

In Fig. 5.16 it is illustrated that for a subsampled set of calibration data,
it is not possible to determine the GRAPPA weights for each m. To be
precise, only each L-th set of GRAPPA weights (i.e., m = {L, 2L, (R− 1)L})
can be determined with an L× subsampled set of ACS-data. Fig. 5.16
also illustrates that the fitting for each possible m = {L, 2L, (R − 1)L} is
the same, whether the ACS-data are subsampled or not. Observe that the
GRAPPA weights are determined independently for each m. Therefore, it is
not problematic to determine a reduced set of valid GRAPPA weights from
the subsampled ACS-data.

This shows that it is indeed possible to calculate appropriate GRAPPA
weights w

(m)
α that can be used to reconstruct each L-th k-space line, thus

leading to an L-fold aliased image after performing an inverse 2D-FFT to
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Figure 5.16: Determination of GRAPPA weights from densely sampled (left) and 2×
subsampled (right) calibration data. The k-space locations of the ACS-data are in
gray. Weights are determined for a 4× subsampled trajectory using a 5×4-GRAPPA
kernel. Left: It is illustrated that the relative k-space locations (colored circles) used
to fit for a particular k-space location (black circle) are different for each m = 1, 2, 3.
Right: If only a subsampled set of ACS-data is available, fitting for m = 1, 3 is not
possible. However, for m = 2, fitting is not affected by subsampling of the ACS-data.

the reconstructed k-space data. Because of the analogy to PatLoc imaging,
this result can be applied correspondingly to non-bijective encoding with
the important consequence that the original GRAPPA algorithm can be used
in conjunction with a subsampled PatLoc dataset, as long as a sufficient
amount of densely sampled calibration data are acquired. The PatLoc image,
reconstructed with GRAPPA, will still exhibit aliasing that is caused by the
non-bijectiveness of the SEMs. The Cartesian PatLoc reconstruction method
presented above can then be used to finalize image reconstruction.

Methods Several algorithms for the reconstruction of subsampled imag-
ing data were tested with numerical simulations and experiments. The
reconstruction algorithms are presented in Fig. 5.17; the algorithms de-
picted in Fig. 5.17a-d are applicable to data encoded with linear SEMs,
and Fig. 5.17e,f illustrates reconstruction from PatLoc data encoded with
quadrupolar SEMs. A detailed description of the methods is found in the
figure caption. The involved image space reconstruction was performed
as explained in chapter 2.3.1a, page 74ff, and section 5.1.1b, page 160ff.
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Figure 5.17: Different reconstruction methods for undersampled Cartesian imaging
data. (a-d) Encoded with linear SEMs. (e,f) Encoded with quadrupolar SEMs. (a) All
calibration lines are used to calculate the GRAPPA weights required to reconstruct
the individual missing lines. (b) In a first step, only each second calibration line is
used to calculate half of the missing lines. Then, ACS-lines are added and the re-
maining aliasing is unfolded using GRAPPA again. (c) SENSE is used to reconstruct
the image from a 4× subsampled dataset. (d) First, GRAPPA is used as in method
(b), but the remaining aliasing is resolved with SENSE and not with GRAPPA. (e) A
2× subsampled PatLoc dataset is reconstructed using the Cartesian PatLoc image
space method. (f) First, standard GRAPPA is applied to the subsampled PatLoc
dataset using additional calibration lines. In a second step, the remaining aliasing
is reconstructed using the Cartesian PatLoc image space method. Observe the
similarity of approaches (c,e) as well as (d,f).
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GRAPPA image reconstruction was done according to chapter 2.3.2a, page
97f.

Matlab (The Mathworks Inc., Natick, MA, USA) was used to program the
algorithms and to perform simulations. Two densely sampled 256 × 256

datasets, one for linear SEM encoding, the other for quadrupolar SEM
encoding, were generated using a Shepp-Logan head phantom and RF-coil
sensitivities mimicking an eight-channel real world coil array. White noise
was added to the coil data. Subsampled data were simulated by extracting
every fourth k-space line of the linear data and every second line of the
PatLoc data. For the linear dataset, 32 densely sampled, and 16 subsampled
calibration lines were taken for 2× and 4× GRAPPA reconstruction. For the
PatLoc dataset, 16 calibration lines were used. GRAPPA was based on a
7× 2-kernel to reduce subsampling by a factor of 2 as well as 4. The data
were reconstructed with the algorithms illustrated in Fig. 5.17.

In vivo imaging data from the head of a volunteer were acquired with the
human system presented in detail in chapter 3.3.3, page 126ff. A fourfold
subsampled 256×64 dataset with 32 ACS-lines was measured with the linear
gradients, and a twofold undersampled 256×128 dataset with 16 ACS-lines
was acquired with the PatLoc coil. The data were then reconstructed using
the algorithms shown in Fig. 5.17.

Results Fig. 5.18 shows simulation results as well as experimental data;
depicted are reconstructed images that were encoded with the standard
linear SEMs. Two 4× subsampled k-space datasets served as input data for
the four algorithms illustrated in Fig. 5.17a-d. The presented images verify
that it is indeed possible to use subsampled calibration data to partially
unfold the image in a first step. In a second step, the remaining aliasing is
well resolved using SENSE, or, with additional ACS-lines, using GRAPPA a
second time. Comparison with the images reconstructed using SENSE and
standard GRAPPA demonstrates that the two algorithms which assume
subsampled calibration data lead to very similar results. Close inspection
shows that the two-step approaches seem to yield images with less artifacts,
especially compared to pure SENSE reconstruction (see figure caption for
more details). It is a counterintuitive result that, at least for the simulated
data, the two-step GRAPPA reconstruction yields images with less noise
than the one-step GRAPPA reconstruction. This aspect should be further
explored in the future.



5.2 Direct k-Space Reconstruction 203

Figure 5.18: Reconstruction results for conventional PI. One simulated, and one
measured, subsampled dataset is reconstructed with the four algorithms that are
illustrated in Fig. 5.17a-d. All algorithms lead to similar results. Some differences
are visible concerning residual aliasing and SNR. The worst result concerning both
artifacts yields 4× SENSE reconstruction, where the artifacts have sharp boundaries
(also cf. Fig. 2.14b, page 85). In the numerical simulations, the one-step GRAPPA
reconstruction seems to be a little bit worse concerning SNR with respect to the
two-step reconstructions. Such a difference is not visible in the measured data. No
significant differences are to be seen between both two-step reconstructions.

Based on this result and the analogy to PatLoc imaging, established above,
it is to be expected that GRAPPA effectively resolves the fold-over artifact
also for a subsampled PatLoc dataset. This is confirmed by Fig. 5.19. The
reconstruction is then finalized using the PatLoc image space method. The
reconstruction results are compared to pure image space reconstruction
in Fig. 5.19. Differences can hardly be seen. Though less prominent, but
in conformity with linear encoding (Fig. 5.18), image quality seems to be
slightly improved with the two-step approach.

5.2.3 Discussion

It has been shown above that aliasing cannot be removed completely in Pat-
Loc by applying GRAPPA without any modification. However, it has been
demonstrated that it is possible to use GRAPPA for partial unfolding. Theo-
retically, this has been proven by referring to an analogy to conventional
PI.
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Figure 5.19: Reconstruction results for PatLoc-encoded images. For a simulated
and a measured dataset, pure image space reconstruction is compared to partial
GRAPPA reconstruction in combination with finalizing image space reconstruction
(cf. Fig. 5.17e,f). The two-step reconstruction seems to yields slightly better results
than the one-step approach. The data were not filtered; therefore, a pronounced
streaking artifact is visible (cf. Fig. 5.9, page 183).

The k-space analysis has clarified that, physically, there is a fundamental dif-
ference, whether aliasing is caused by field ambiguities or by subsampling.
The two artifacts can be separated from each other with GRAPPA, and it has
been demonstrated that this property is essential for k-space based PatLoc
image reconstruction because only the latter can actually be unfolded with
GRAPPA. Interestingly, this is different with SENSE. For SENSE, both alias-
ing artifacts are equivalent and cannot be differentiated. Interestingly, with
SENSE, partial unfolding is not possible at all: The two different kinds of
aliasing artifacts must be unfolded simultaneously involving the inversion
of a single combined sensitivity matrix.

The theoretical analysis of k-space based PatLoc reconstruction could also
be verified with numerical simulations and in vivo measurement results.
The findings have shown that the reconstructions are very similar, be they
purely image space based or k-space/image-space hybrids. The hybrid
k-space/image-space reconstruction seems to slightly outperform pure
image space reconstruction, mainly because the partial usage of GRAPPA
avoids sharp artifact boundaries that are a typical feature of pure image
space reconstructions like SENSE or PatLoc-SENSE (cf. for example Fig.



5.2 Direct k-Space Reconstruction 205

5.12a-d). However, also the overall artifact power seems to be reduced in
conformity with GRAPPA theory (see chapter 2.3.2, page 96ff). Overall, it
can be concluded that a hybrid GRAPPA-SENSE-like reconstruction can
compete with, if not even excel, pure image space reconstruction in terms
of image quality.

Especially interesting is such a hybrid k-space/image-space method for
accelerated non-Cartesian acquisition trajectories, where direct image space
reconstruction is often problematic (dense encoding matrix, cf. e.g. chapter
2.2.2a, page 67f; artifacts, cf. e.g. Fig. 6.9b, page 227); therefore, iterative
reconstruction is often used instead (see chapter 7, page 235ff). In k-space, a
GRAPPA-variant, pseudo-Cartesian GRAPPA [165], has shown to be useful
in the context of conventional PI. This method or variations thereof should
also be applicable to subsampled non-Cartesian PatLoc trajectories and
would allow non-iterative image reconstruction in combination with the
Cartesian PatLoc image space method. Assessment of such a reconstruction
is still work in progress.

A hybrid k-space/image-space method still requires a separate scan for
the acquisition of RF-sensitivity profiles. It can be useful to purely rely on
calibration data (cf. chapter 2.3.2, page 96ff.). Calibration data can, however,
only be acquired in PatLoc k-space, and are therefore not available to unfold
the aliasing resulting from the non-bijectiveness of the SEMs. Complete
unfolding would require “virtual” k-space calibration data belonging to
the completely unfolded image; such a k-space has been found to exist not
physically, but only “virtually” (cf. Fig. 5.14g), thus preventing acquisition
of adequate calibration data.

However, if it would be possible to give the virtual k-space a physical
background, purely k-space based reconstruction should be feasible. One
possibility is to use a separate low-resolution scan with the standard gra-
dient system to synthesize adequate calibration data. However, such a
scan would be similar to the additional RF-sensitivity scan required for the
hybrid method, and not much would be gained. It is probably more useful
to supplement non-bijective SEM encoding with RF-transmit encoding such
that acquisition of calibration lines in the virtual k-space becomes possible.
The feasibility of such an approach is also part of ongoing research.
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5.2.4 Conclusions

In the second part of this chapter, it could be shown that a k-space ori-
ented reconstruction of PatLoc imaging data forms a valuable alternative
to the Cartesian image space method, which has been the topic of the first
part. The above analysis has revealed fundamental differences between the
image space SENSE-like reconstruction and the k-space based reconstruc-
tion involving GRAPPA. Whereas in image space, the nonlinearities of the
PatLoc-SEMs necessitate modifications to SENSE reconstruction, in k-space,
no modifications are required to the GRAPPA algorithm. This is different
with respect to the non-bijectiveness of the SEMs. Image-space reconstruc-
tion can cope with subsampling as well as non-bijective encoding alike; on
the other hand, pure k-space reconstruction can only handle subsampling
and must be supplemented with the Cartesian PatLoc image-space method
to resolve the remaining aliasing. Non-bijective PatLoc encoding is problem-
atic in k-space because calibration data cannot readily be acquired. Initial
ideas were presented how this problem can be circumvented in k-space;
however, more research has to be performed to substantiate those ideas
and algorithms have to be implemented to verify the effectiveness of the
proposed methods.



Chapter 6

Direct Reconstruction for Radial PatLoc
Imaging

THE previous chapter has shown that the fundamental character of Carte-
sian acquisition trajectories is preserved when moving from linear to

nonlinear and non-bijective encoding. Also non-Cartesian trajectories play
an important role in standard MRI; of particular interest is radial imaging
(cf. chapter 2.2.2, page 66ff). In the present chapter, such radial acquisitions
are analyzed in the context of PatLoc imaging. This chapter is based on
work published in [[157, 158]].

The examination is facilitated by the fact that PatLoc imaging with two
SEMs and standard accelerated PI were found to be analogous in the last
chapter. Therefore, most principles that govern PI are also valid in PatLoc
imaging. Recall, however, that the analogy requires that the magnetization
is represented in PatLoc encoding space. This space is interesting because
it allows separation of trajectory-dependent effects from those that are
caused by the nonlinearities of the SEMs: First, consider that the PatLoc
encoding space is the Fourier space of the PatLoc k-space; such a Fourier
relation also exists in standard imaging, and therefore many similarities
and differences between conventional radial and Cartesian imaging have an
analogous counterpart in PatLoc imaging. Second, consider that in PatLoc
encoding space the magnetization is intensity-modulated and distorted,
and these effects are caused solely by the nonlinearities of the SEMs. It
is clear that these arguments are not, by themselves, sufficient to derive
exact quantitative results; however, some interesting aspects can already be
noted:

• Radial sequences can show a high tolerance to undersampling in situ-
ations with high imaging contrast and have inherent self-navigating
properties, resulting from oversampling of the k-space center (cf. e.g.
[10], page 899). These advantages are primarily related to the man-
ner of how k-space is traversed; these and other trajectory-related

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5_6, © Springer Fachmedien Wiesbaden 2013
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properties make radial imaging useful for medical imaging also in the
context of PatLoc imaging.

• In conventional MRI, image contrast is the same for Cartesian and
radial trajectories as long as equal sequence parameters like TE , TR or
flip angle are used. With these parameters, the same image contrast
also results in PatLoc imaging, whether PatLoc k-space is traversed
on a Cartesian grid or following a radial pattern.

• In standard PI, image resolution is mainly determined by the extent of
k-space. The particular type of k-space traversal only has secondary
effects like deviations in Gibbs ringing or aliasing behavior. Thus,
the particular sampling pattern of PatLoc k-space should not have
a significant effect on image resolution. Spatial variations of image
resolution from radially encoded PatLoc data should be similar to
Cartesian data and are therefore mainly defined by the gradients of
the SEMs; problems can be expected in regions, where the gradients
vanish.

These aspects are in principle valid for any reconstruction method from
radial acquisitions. However, an exact quantitative analysis of image prop-
erties is possible only for a concrete image reconstruction algorithm. A fast
and easy-to-interpret direct reconstruction method for radial acquisition
schemes is developed and investigated in this chapter.

The basic observation is that, whereas in conventional imaging a projection
is taken along one straight line, in PatLoc imaging projections are also taken
along two or more curved lines. Standard back-projection of the data can
therefore not directly result in a reconstructed image, but this observation
is useful for the development of efficient reconstruction algorithms. The
iterative reconstruction methods presented later in chapter 7.1.1 to 7.1.3,
page 237ff, may be used to solve the problem. Under certain circumstances,
for example for undersampled datasets, iterative methods are indeed the
methods of choice. Iterative methods can be used to significantly reduce a
prominent star-shaped artifact that is a particular feature of radial PatLoc
imaging with quadrupolar SEMs. However, such iterative approaches are
more computation-intensive and other problems are associated with them
(more details are found in the next chapter, page 235ff). These problems are
avoided here with a direct reconstruction method.



6.1 Presentation of Image Reconstruction Methods 209

It is shown that the direct Cartesian algorithm, presented and thoroughly
analyzed above, can be incorporated into the reconstruction from radially
acquired data by first performing standard reconstruction from projection
data before applying the Cartesian PatLoc reconstruction algorithm. In
view of the special designs of the realized PatLoc hardware (cf. chapter 3.3,
page 121ff), the present chapter focuses again on a set of two orthogonal
multipolar SEMs. It is demonstrated that for such fields, the reconstruction
is simpler and more elegant in a polar coordinate representation. The
resulting image properties are compared to Cartesian PatLoc acquisitions.
Then, the polar algorithm and its properties are verified and evaluated
with simulated and in vivo imaging data. One interesting result is that the
isotropy of the radial PSF leads to a significantly reduced Gibbs ringing
artifact at the imaging center compared to Cartesian encoding. At the
end of this chapter a few remarks are given concerning generalizations of
radial PatLoc imaging including arbitrary non-Cartesian trajectories and
generalized projections.

6.1 Presentation of Image Reconstruction
Methods

The reconstruction methods presented in this chapter are applicable to an
imaging modality with the following two assumptions:

1. Two nonlinear and non-bijective SEMs for 2D imaging are applied.
2. Radial sampling trajectories are used.

The encoding strategy treated in this chapter is therefore similar to the
imaging situation that is discussed in the previous chapter. However, not a
Cartesian trajectory, but a radial trajectory is assumed for image acquisition.

The Cartesian image space method turned out to be an efficient implemen-
tation of the general weak matrix approach, which is presented in chapter
4.2.2, page 144ff. Both, the strong as well as the weak matrix approach can in
principle be used for image reconstruction also when the image is encoded
with a radial trajectory. In radial Fourier imaging, it was shown that the
matrix approaches were not practical because the encoding matrix is dense
in that case (see chapter 2.2.2a, page 67f); it can be shown that the same
problem hinders direct application of the general matrix approaches also
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in the context of radial PatLoc imaging. An alternative represents radial
GRAPPA [48] in combination with the Cartesian image space reconstruction
method (see chapter 5.2,page 195ff).

In this chapter, a different approach is taken that has been shown to be
effective also for Cartesian trajectories (cf. chapter 5.1.1c, page 163ff). An
efficient image reconstruction method is developed by directly analyzing
the signal equation. Based on this signal equation, a reconstruction is for-
mulated that can be applied to arbitrary SEMs. Then, an efficient algorithm
for multipolar SEMs is developed and analyzed in detail.

Recall that for Cartesian trajectories, this approach, based on the analysis
of the signal equation, has turned out to yield the same reconstruction as
the weak matrix approach. For non-Cartesian trajectories, this is different.
It was demonstrated in paragraph Relationship to Direct Matrix Inversion in
chapter 2.2.3, page 71f, that gridding reconstruction in conventional non-
Cartesian imaging is a useful and efficient approximation of the strong
matrix approach. It is left to the interested reader to show that the recon-
structions presented below for radial PatLoc imaging are also closely related
to the general matrix approaches.

6.1.1 Signal Equation in Radial PatLoc Imaging

In compliance with the previous chapter, also here, 2D imaging with two
NB-SEMs is assumed. Therefore, the PatLoc signal equation has the same
continuous form (cf. Eq. 5.9, page 163):

sα(�k) =

∫
V

m(�x)cα(�x)e
−i�k�ψ(�x)d�x. (6.1)

The explicit form of the phase factor �k �ψ(�x) is given by k1ψ1(�x) + k2ψ2(�x).
Recall that, except for a scaling factor, the two components of �ψ are equiv-
alent to the SEM sensitivities (cf. Eq. 4.6, page 138). The PatLoc signal
equation as described by Eq. 6.1 generalizes the signal equation known
from standard radial imaging. In conventional radial imaging, ψ1(�x) ∝ x

and ψ2(�x) ∝ y. In PatLoc, ψ1,2 take different shapes, depending on the
architecture of the SEM system.
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6.1.2 Interpretation of PatLoc Projection Data

In conventional radial acquisition, the inverse one-dimensional Fourier
transform of the signal projections (= readouts) are projections of the mag-
netization taken at different angles (also cf. Fig. 2.7, page 68). This is a
direct consequence of the projection-slice theorem. However, with arbitrary
encoding fields, the situation is more complicated and the question arises
how the signal projections can then be interpreted. This question can be
answered by looking at the effective encoding field ψres during readout:

ψres(�x; Θj) = cos(Θj)ψ1(�x) + sin(Θj)ψ2(�x). (6.2)

It consists of a superposition of the two individual SEMs (Fig. 6.1). These
SEMs are differently mixed for each projection angle Θj , j = 1, . . . , Np.
Signal projections sα(k,Θj) are typically acquired with the Np projection
angles equidistantly distributed in the interval [0◦, 180◦].

Figure 6.1: Radial encoding with orthogonal quadrupolar SEMs. (a) and (b) The
two orthogonal encoding fields are rotated against each other by 45◦. The field
strength of the individual SEMs depends on the projection angle. Higher magnetic
field strength is indicated by brighter grayscale and extension along the vertical axis.
(c) The effective encoding field is a superposition of the SEMs. The resulting field
shares the quadrupolar geometry of the two individual SEMs.

If linear gradient fields are used for encoding, the effective encoding field
is also linear. This linear field rotates incrementally from one projection to
the next. This geometrical similarity property of the effective encoding field
does not hold for the general case of arbitrary SEMs. However, it is pre-
served if quadrupolar (or multipolar) encoding fields are used (cf. Fig. 6.1c)
with the property that a field rotation of 90◦ - instead of 180◦ for the stan-
dard case - is sufficient to cover all necessary projection angles. From Eq. 6.1
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it can be deduced that the projections Pα(p,Θj) = FT −1
k {sα(k,Θj)}(p,Θj)

are given by:

Pα(p,Θj) =

∫
V

m(�x)cα(�x)δ (p− ψres(�x; Θj)) d�x. (6.3)

As ψres is proportional to the magnetic field strength, the projections are
taken along isocontour lines of the encoding field applied during the acqui-
sition.

The presentation of the previous chapter has shown that the variable trans-
formation �u := �ψ(�x) simplifies the mathematical treatment of the Cartesian
reconstruction problem. The reason for this fact is that, with U := �ψ(V ), the
signal data

sα(�k) =

∫
U

ηα(�u)e
−i�k�ud�u (6.4)

and ηα(�u) form a Fourier transform pair. As shown in the previous chapter,
the coil images ηα(�u) represent highly distorted, intensity modulated and
aliased versions of the true image. Because of the Fourier pair property the
coil images are given by:

ηα(�u) =

∫
U

sα(�k)e
i�u�kd�k. (6.5)

According to Eqs. 6.4, 6.5, the variable transformation �u := �ψ(�x) also leads
to a different interpretation of the PatLoc projection data: In the distorted
coordinate system, represented by �u, projections are formed by just taking
ordinary projections of ηα(�u) in the same way as image projections are taken
in conventional imaging. The theoretical justification lies in the application
of the projection-slice theorem, which is equivalent to formulating Eq. 6.3
in �u-coordinates:

Pα(p,Θj) =

∫
U

ηα(�u)δ (p− cos(Θj)u1 + sin(Θj)u2)) d�u. (6.6)

The practical justification, however, lies in the fact that in the distorted
coordinate system, the encoding fields are linear fields - like the gradient
fields in conventional imaging - as can be seen from the latter equation.
In this space representation not the geometry of the encoding field, but
rather the object itself is distorted. Moreover, the effective linear field shows
exactly the same behavior as the encoding field in standard radial imaging.
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In this regard, PatLoc imaging and standard imaging are equivalent. The
meaning of “image” projections in the context of PatLoc SEMs is illustrated
in Fig. 6.2a-c.

Figure 6.2: Analysis of a single projection with linear and quadrupolar encoding. (a)
For linear gradient fields a projection is found by integrating along straight isocontour
lines parallel to each other. (b) For quadrupolar encoding fields, the isocontour lines
along which the projections are taken are bent and occur on two distinct positions
on opposite sides of the image. (c) In PatLoc encoding space, the magnetization
overlaps with itself and is heavily distorted. The magnetic field, however, forms
equidistant and straight isocontour lines equivalent to linear gradient fields. (d) The
linear gradient field is represented in polar coordinates along with the encoded
object. (e) In polar coordinates, the quadrupolar encoding field has a similar shape,
however, distorted in the radial direction and with four sign changes along the
azimuthal direction. (f) The transformation to PatLoc encoding space is simpler than
in the Cartesian representation. Quadratic stretching along the radial direction and
linear stretching along the azimuthal direction can be observed.

6.1.3 Reconstruction from Projection Data with Arbitrary
Encoding Fields

The variable transformation �u := �ψ(�x) also offers a profound basis for for-
mulating adequate direct reconstruction methods in radial PatLoc imaging.
For Cartesian acquisitions, ηα(�u) is found by the inverse 2D-FFT of the
acquired signal data. For radial acquisitions, as a result of the variable
transformation to �u, the reconstruction can be realized equivalently to con-
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ventional reconstruction from projection data using linear gradient fields:
According to Eq. 6.6, conventional reconstruction from radial data results in
ηα(�u) on a Cartesian grid. Thus, the image can be reconstructed by applying
the Cartesian PatLoc Reconstruction algorithm to ηα(�u).

Filtered back-projection (FBP) (cf. chapter 2.2.2b, page 68f) may be used
to determine ηα(�u). With multipolar SEMs it is recommended to use the
more accurate cubic spline interpolation method because the faster linear
interpolation can result in small intensity variations across the image. Even
better image quality might be achieved by using more elaborate back-
projection methods [122, 180], which typically require more computing
time. The FBP approach along with subsequent Cartesian image space
PatLoc reconstruction corresponds to the reconstruction steps shown at the
top part of Fig. 6.3. Alternatively, instead of FBP, gridding reconstruction
(cf. chapter 2.2.3, page 69ff) may be employed to find ηα(�u).

Figure 6.3: Reconstruction algorithms for 2D PatLoc with radial acquisition schemes.
Upper path: Standard FBP can be combined with the Cartesian PatLoc reconstruc-
tion algorithm. Lower path: If the back-projection is not performed onto a Cartesian
grid, but onto a polar grid, the Cartesian reconstruction algorithm must be modified
(cf. Fig. 6.4). The images back-projected onto different grids are linked to each
other by a simple coordinate transformation from Cartesian to polar coordinates.
The images shown are based on simulations. The images are accompanied with
nomenclature as used in the text body.
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6.1.4 Reconstruction from Projection Data with Multipolar
Encoding Fields

The situation is particularly interesting when orthogonal multipolar SEMs
are used for encoding because this allows one to simplify image reconstruc-
tion. An efficient algorithm is discussed in this section.

a) Reconstruction Algorithm

Multipolar SEMs are best described in polar coordinates. With adequate
scaling, they are represented by ψ1(r, ϕ) = rL cos(Lϕ) and ψ2(r, ϕ) =

rL sin(Lϕ), see Eq. 5.15, page 165. Consider quadrupolar fields with L = 2;
the calculations shown in this section can be generalized to SEMs with
different multipolarity L in a straightforward manner. The polar coordinate
representation of the combined encoding function is given by:

�ψ0(r, ϕ) =

(
ψ1(r, ϕ)

ψ2(r, ϕ)

)
= r2

(
cos(2ϕ)

sin(2ϕ)

)
. (6.7)

This representation better reveals the symmetry of the fields than the Carte-
sian analogue, where

�ψ0(x, y) =

(
ψ1(x, y)

ψ2(x, y)

)
=

(
x2 − y2

2xy

)
. (6.8)

Note the multiplicative separability of the two variables r and ϕ. In the
polar representation, linear and quadrupolar fields are very similar (Fig.
6.2d-f). This is different for Cartesian coordinates, where the transformation
from image space coordinates to PatLoc encoding space coordinates is not
obvious (Fig. 6.2a-c). Expressed in polar coordinates, the signal projections
for quadrupolar fields take the following concrete form:

sα(k,Θj) =

∫ ∞

r=0

∫ 2π

ϕ=0

rm(r, ϕ)cα(r, ϕ)e
−ikr2 cos(Θj−2ϕ)drdϕ. (6.9)

The expression can be derived from Eq. 6.1 using addition theorems for
trigonometric functions. Substituting u = r2 and ϕ′ = 2ϕ gives:

sα(k,Θj) =

∫ ∞

u=0

∫ 4π

ϕ′=0

m(u, ϕ′/2)cα(u, ϕ′/2)e−iku cos(Θj−ϕ′)dudϕ′. (6.10)
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In the variable ϕ′ two rotations must be evaluated; it is, however, possible
to evaluate both rotations at the same time:

sα(k,Θj) =

∫ ∞

u=0

∫ 2π

ϕ′=0

uηα(u, ϕ
′)e−iku cos(Θj−ϕ′)dudϕ′, (6.11)

with

ηα(u, ϕ
′) =

1

u
[m(u, ϕ′/2)cα(u, ϕ′/2) +m(u, ϕ′/2 + π)cα(u, ϕ

′/2 + π)] .

(6.12)

Equation 6.11 is equivalent to the standard formula, expressed in polar
coordinates, known from conventional radial imaging. ηα is the same as
presented in Eq. 6.5, where (u1, u2) has been replaced by its polar coor-
dinate representation (u, ϕ′). In this case, it is advantageous to alter the
back-projection step. Normally, the projections are back-projected onto a
Cartesian grid Σcart (cf. chapter 2.2.2b, page 68f). Instead of using this
Cartesian grid, a polar back-projection grid (u, ϕ′) ∈ Σpolar can be chosen.
If the same number of grid points is chosen, there is no influence on the
reconstruction time and the implementation of the back-projection is done
equivalently to back-projecting onto a Cartesian grid. The only difference
is that the back-projected data are directly represented in a different coor-
dinate system. According to Eq. 6.12, and using the fact that ϕ = ϕ′/2,
ϕ ∈ [0, π], one therefore finds:

m(u, ϕ)cα(u, ϕ) +m(u, ϕ+ π)cα(u, ϕ+ π) = u

Np∑
j=1

B(P̄α(·,Θj))(u, ϕ)ΔΘ.

(6.13)
In this polar representation, PatLoc reconstruction is particularly simple.
The left hand side of the latter equation is just the Cartesian SENSE equation
(cf. Ref. [135] or Eq. 5.14, page 165) with acceleration along the ϕ-direction.
Apart from the final transformation from polar coordinates to Cartesian
coordinates, image intensity and distortion need to be corrected only along
the direction of the u variable. In Fig. 6.3 the two different back-projection
methods are shown together with their mutual relationship. Based on Eq.
6.13, Fig. 6.4 presents each step of the algorithm that is termed direct polar
reconstruction in this chapter.
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Figure 6.4: Proposed direct reconstruction algorithm for radial PatLoc data encoded
with quadrupolar SEMs. (a) First, for each coil, the radially acquired signal projection
data are filtered. (b) Then, an inverse 1D-FFT is applied to each signal projection.
(c) The resulting filtered projections are back-projected onto a polar grid. (d) The
different coil images are intensity-corrected by multiplication with a linear intensity
ramp. (e) The Cartesian SENSE algorithm is applied with the azimuthal direction
corresponding to the accelerated direction. To this end, the RF-coil sensitivity
information is represented in the same space as the coil data by describing the
sensitivity profiles in polar coordinates and quadratically stretching them in the radial
direction. (f) The distortions are undone by reversing the quadratic stretching of
the image in the radial direction. (g) Finally, the image is again represented in
Cartesian coordinates. Note the similarity to the algorithm shown in Fig. 5.3, page
163, applicable to Cartesian trajectories.
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b) Image Properties

Image resolution and SNR resulting from reconstruction with the algorithm
that is described in the previous section are discussed here. More details
are found in [[158]].

Image Resolution In the introduction to this chapter it has already been
argued that radial PatLoc acquisitions should yield a distribution of spatial
resolution similar to Cartesian acquisitions. This claim can be substantiated
through a precise analysis of the polar reconstruction algorithm. As shown
in Fig. 6.3, the reconstruction can be decomposed into two steps: First, the
image is back-projected and second, the aliased images are unfolded. The
equivalence of the second step to the Cartesian algorithm of the previous
chapter shows that differences may occur only as a result of the first step,
where the FBP is applied instead of the DFT. However, both operations
lead to homogeneous resolution patterns; the conclusion can be drawn that
image resolution is indeed the same for radial and Cartesian sampling with a
resolution gradient that is proportional to r1−L, where L is the multipolarity
of the encoding fields. Differences occur, however, in the sidelobe behavior
of the PSF because the FBP and the DFT have different properties in this
regard.

Signal-to-Noise Ratio Also the SNR that results from Cartesian and polar
reconstruction is expected to have the same spatial distribution because
both, FBP and FFT, lead to a uniform noise distribution which is altered
in the same way by the subsequent reconstruction steps. Analogous to
Cartesian sampling (cf. Eq. 5.28), the SNR is given by:

SNRPatLoc = SNRlinearr2−2L
/√

Lg, (6.14)

where g describes the g-factor and SNRlinear the SNR that results from FBP
applied to a standard radial dataset.
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6.2 Application to Simulated and Measured
Imaging Data

The image reconstruction methods of the previous section were imple-
mented, imaging data were generated and reconstructed. The first part
of this section (Methods) gives more details on how these steps were per-
formed and the second part (Results) gives an overview of the most impor-
tant findings.

6.2.1 Methods

Numerical simulations as well as in vivo measurements were performed to
verify the properties of a particular implementation of the polar reconstruc-
tion algorithm. Below, a special emphasis is placed on the determination
of the SEMs and their approximation by exactly orthogonal quadrupolar
fields, the geometry that is assumed by the polar reconstruction algorithm.

a) Simulations

Image resolution and SNR analysis was performed with Matlab (The Math-
Works Inc., Natick, MA, USA). The spatial resolution of the reconstructed
images was analyzed with PSF-plots. The PSF analysis was performed in
three steps: First, the signal (Eq. 6.1) was evaluated at predefined locations.
Then, the evaluated signals were reconstructed and finally visualized with
a surface plot. In particular, the evaluation of the signal equation requires
RF-coil sensitivity profiles, SEMs and the k-space trajectory. The RF-coil
sensitivity profiles were designed to mimic an eight-channel receiver coil
whose elements were positioned symmetrically around the object. Orthog-
onal quadrupolar SEMs were chosen according to Eq. 6.8. A Cartesian
(64 phase-encodes) and a radial (103 projections) trajectory with 64 read-
out samples were generated, where the k-space sampling distance Δk was
selected such that the (centered) field-of-view (FOV) of the projections coin-
cided with the (centered) FOVs of the coil sensitivity profiles and the SEMs.
According to Eqs. 5.19, 5.26, this is ensured when:

1/Δk = 2 · ‖�ψ0(�xedge)‖ = 2 · ‖�xedge‖2, (6.15)
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where �xedge is a location at the edge of the FOV. The factor 2 takes into
account that the SEMs have positive as well as negative field strengths. The
Cartesian dataset was reconstructed with the Cartesian PatLoc method and
the radial dataset was reconstructed with the direct polar method.

SNR was investigated by simulating the noise propagation properties of
the direct polar reconstruction algorithm. For the analysis, 100 images were
reconstructed from assumed white Gaussian noise in the RF channels and
then the images were averaged. Further investigations were performed
by comparing the resulting noise distribution with the noise generated by
standard FBP and the Cartesian method.

b) Experiments

In vivo measurements of a volunteer were performed on a MAGNETOM
Trio, A Tim System 3T (Siemens Healthcare, Erlangen, Germany). The
scanner was equipped with a modified encoding hardware for head imaging
using quadrupolar PatLoc coils. The PatLoc hardware and its integration
into the scanner environment is described in detail in chapter 3.3.3, page
126ff.

For reception, a conventional eight-channel head RF-coil array was used
and sensitivity data were acquired and processed with standard methods,
explained in chapter 2.1.2b, page 48f. The quadrupolar SEM-profiles were
mapped with an improved variation of the protocol that was used to de-
termine the SEMs of the smaller PatLoc prototype coil (see chapter 5.1.2c,
page 178ff). For the in vivo experiments, a more flexible hardware configu-
ration permitted simultaneous switching of linear and PatLoc SEM gradient
pulses (cf. Fig. 3.18c, page 129). In the new SEM-mapping pulse sequence, a
spoiled gradient echo was played out with 8 echoes acquired each TR. The
first four echoes were used to map the heterogeneity of the static B0 field.
Between each of the last four echoes, a SEM-gradient pulse with predefined
current and duration was applied to induce a small phase accumulation
between each echo. With the B0 field determined, the phase accumulation
caused by the SEMs was calculated and the SEM profiles were derived.

Spin echo images were acquired with a radial sequence (cf. Fig. 6.5), which
was programmed similar to a conventional radial sequence with the obvious
difference that instead of the linear gradient coils, the quadrupolar PatLoc
coils were switched during the encoding process. The projection angles
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Figure 6.5: Radial measurement protocol. A radial spin echo protocol was used with
the standard gradient system for reference measurements (cf. Fig. 2.6, page 66).
The protocol was slightly modified for the PatLoc measurements to allow for operation
of the PatLoc coils instead of the linear gradient coils. The only difference (apart
from a different base current I0) between reference and PatLoc measurements was
that different encoding fields were applied resulting in images of the same contrast.
The formulas on the right describe how the applied currents in the corresponding
PatLoc coils changed depending on the projection angle.

were determined to cover a full circle. In order to distribute the effects of
trajectory inaccuracies like switching delays of the SEMs more evenly in
PatLoc k-space, alternating encoding directions were selected from one pro-
jection to the next. According to Eq. 6.15, the k-space distance was chosen to
match the FOVs of acquired RF-coil profiles and PatLoc measurement data.
For comparison, a Cartesian spin echo image was acquired with the same
hardware as well as radial spin echo images with the standard hardware.
For all measurements, the same imaging parameters of TR = 500ms and TE
= 11ms were assumed. 256 phase-encodes were acquired for the Cartesian
trajectory and 410 projections for the radial trajectory. Each readout com-
prised 256 samples. For a separate investigation, fourfold undersampling
was mimicked by only retaining 64 phase-encodes and 103 projections. The
direct polar algorithm and the image space Cartesian method were used to
reconstruct images from the acquired datasets.
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c) Reconstruction

The reconstruction algorithms require information about (a) the PatLoc
measurement data (b) the RF-coil sensitivity profiles and (c) the SEMs. The
data were provided as described in section 6.2.1a and 6.2.1b.

Implementation The Cartesian PatLoc algorithm was programmed as
explained in the previous chapter. The polar reconstruction algorithm is
described in detail in the caption of Fig. 6.4. A standard implementation of
SENSE reconstruction (cf. Ref. [135]) was used and FBP was implemented
with a Ram-Lak filter [96] and cubic spline interpolation for back-projection.
The distortion correction was implemented in the following way: The
equidistant grid IN = {0, 1/(N − 1), . . . , 1} was transformed to a new grid
JN = f(IN ), where f(u) =

√
u for all u ∈ IN . Then, JN was regridded on

the regular grid I2N with cubic interpolation. Cubic interpolation was also
used for image transformations between polar and Cartesian coordinates.

SEM Approximation for In Vivo Measurements In order to simplify the
direct polar reconstruction, the acquired SEMs were approximated by two
identical ideal orthogonal quadrupolar SEMs. It was assumed that the fields
could sufficiently be modeled by the standard form �ψ0(�x) (see Eq. 6.7) and
only a few additional parameters:

�ψm(�x) = h�ψ0(R(−ϕ0)(�x− �x0)). (6.16)

The parameters describe (a) the magnetic field sensitivity h in [T/(m2A)]

(b) a field rotation ϕ0 and (c) the position of the common field centers �x0.
The parameters were found by a least-squares fit to the measured fields.
The modeled fields deviated from the measured fields nowhere more than
1.5% compared to the field strength at the edge of the FOV. The RF-coil
sensitivity maps were acquired centered around �x0. Therefore, �x0 = 0

could be assumed in the reconstruction. The magnetic field sensitivity was
h = 1.4mT/m2A (also cf. table 3.1, page 131) and the field rotation was
ϕ0 = 21.95◦.

The SEMs have the interesting property that it is possible to rotate k-space
instead of the SEMs because �ψ0(R(−ϕ0)�x) = R(−2ϕ0)�ψ0(�x). The charac-
terizing properties h, ϕ0 can therefore be absorbed in an effective k-space
vector �̃k := hR(2ϕ0)�k such that the effective encoding function is just the
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standard form �ψ0(�x). The phase factor in Eq. 6.1 is then modeled by two
equivalent expressions: φ(�k, �x) = �k �ψm(�x) = �̃k �ψ0(�x).

The advantage of this redefinition for the reconstruction is that images can
be reconstructed exactly with the same implementation as used for the
simulated datasets without having to introduce additional data rotations. In
practice, 2ϕ0 is just formally added to the projection angles before starting
the reconstruction. With the latter equation, the SEM-sensitivity parameter
h can also be interpreted as a k-space scaling factor. It does not influence
the back-projection. However, according to Eqs. 4.5, 4.6 and Eq. 6.15, the
sensitivity scaling h influences the acquisition. With the two-layer coil
structure (cf. Fig. 3.18a, page 129), the SEM sensitivities of the two PatLoc
coils differed significantly from each other. This was compensated for by
using slightly different coil currents for a unit step in k-space when the
sequence was played out.

It is obvious that the model does not fully represent the geometry of the
experimental encoding fields. The model does not consider that the indi-
vidual fields are not just equivalent versions from each other rotated by
45◦. However, for the experimental setup the individual fields resembled
each other to a high degree. The measured fields were rotated by 44.2◦

and the centers of the individual fields were less than one millimeter apart
from each other. Small asymmetries in the coil design also lead to a finite
field strength at the field centers. Compared to the field strength at the
edge of the FOV the field offset was far less than 1%. The effect is almost
negligible and only visible at the center of the reconstructed images, where
small frequency offsets become noticeable. This effect was corrected by
considering its linear influence on the phase of the acquired signals.

6.2.2 Results

In vivo reconstruction results are presented here, image resolution and
SNR are analyzed, and the consequences are illustrated that are caused by
subsampling image acquisitions.

a) Radial Images with Linear and Quadrupolar Fields

For better visualization, a larger version of the reconstructed image of Fig.
6.4, found with the direct polar algorithm, is depicted in Fig. 6.6b. It is



224 Chapter 6. Direct Reconstruction for Radial PatLoc Imaging

Figure 6.6: Measurement results. (a) Radial acquisition with the standard linear
gradient system reconstructed with filtered back-projection. (b) Radial acquisition
with the PatLoc SEM system reconstructed with the direct polar method. The images
were encoded with a 90◦ − 180◦-spin echo sequence using TR = 500ms, TE = 11ms
and a slice thickness of 4mm. 410 projections were acquired with a 256-readout.
(c) The zoomed section corresponds to the rectangle in plot (a). A homogeneous
resolution can be appreciated. (d) The corresponding section for the PatLoc image
shows a resolution gradient from the center (arrow in plot (b)) toward the periphery.
From about half way on toward the periphery, the resolution is higher in the PatLoc
image compared to the image acquired with linear gradients.

compared to an equivalent radial image acquired with the standard linear
gradient system (Fig. 6.6a). Apart from the obvious resolution gradient
toward the periphery (Fig. 6.6d), the images look very similar. In particular,
no significant geometric distortions can be noted and the PatLoc recon-
structed image shows no visible unfolding artifact. This is similar to the
results obtained in the previous chapter with a Cartesian trajectory. Some
signal relocalization is visible at the center with a nearly circularly shaped
region of low intensity.
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Figure 6.7: PSF analysis and Gibbs ringing. Top: Direct polar reconstruction for a
radial trajectory. Bottom: Cartesian PatLoc reconstruction for a Cartesian trajectory.
(a) The PSFs for a peripheral source location are well-behaved for both algorithms.
(b) The PSFs for a central location are problematic and depend significantly on the
chosen reconstruction method. For the Cartesian reconstruction the main peak
vanishes because of the intensity correction. The polar reconstruction shows that the
resolution is very low at the center compared to the peripheral PSFs. The destructive
sidelobe behavior of the Cartesian method cannot be observed with direct polar
reconstruction. (c) The dominant PSFs from the central locations are clearly visible
in the reconstructed in vivo data as pronounced Gibbs ringing artifacts. The PSFs
have lower resolution than the acquired in vivo images to show the ringing effect
more clearly.

b) PSF and Noise Analysis

Fig. 6.7 presents PSFs for two different source locations and reconstructed
brain images. The PSFs for the polar reconstruction method (Fig. 6.7, top
row) are compared to PSFs of the direct image space Cartesian reconstruc-
tion method (Fig. 6.7, bottom row). As reported in the previous chapter,
for Cartesian trajectories, the signal accumulation at the center leads to
pronounced Gibbs ringing appearing as clearly defined streak artifacts (Fig.
6.7c, bottom) with origins at the center of the multipolar encoding fields
separated by 45◦. For radial trajectories, the polar reconstruction method
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shows strongly suppressed Gibbs ringing artifacts (Fig. 6.7c, top). More
details are found in the figure caption.

Fig. 6.8 presents simulation results for the noise behavior of the direct polar
reconstruction method. In particular, Fig. 6.8b illustrates that Cartesian
and radial PatLoc have the same SNR distribution. Fig. 6.8c shows that
the theoretical predictions of Eq. 6.14 are accurate. These statements to Fig.
6.8b and c are valid apart from low radii, where differences occur because
of the special implementations of the intensity and distortion correction
steps. However, this difference can be ignored because of the low image
information in this region.

Figure 6.8: Noise propagation of the direct polar reconstruction method. (a) The
noise level is very low at the center and increases toward the periphery. The plot
shows that the noise distribution has an azimuthal symmetry. (b) The SNR of polar
and Cartesian reconstructions are proportional except for very low radii. Shown are
simulation results. The presentation of a 1D plot is sufficient because of the radial
symmetry. (c) Apart from very low radii, the theoretical predictions for the SNR of
the polar reconstruction match the simulated results. The oscillations are due to
statistical effects and interpolation errors.

c) Reconstruction from Undersampled Datasets

Undersampled datasets are shown in Fig. 6.9a-c. For Cartesian trajectories,
fourfold undersampling leads to a characteristic fold-over behavior (also
cf. Fig. 5.10d, page 185) appearing at four positions in the image (Fig.
6.9a). In contrast to standard radial imaging with linear encoding fields,
undersampled PatLoc encoding with quadrupolar fields results in coherent
undersampling artifacts: star-shaped stripes, which run from the center
toward the edge of the image, starting at some distance from the source
(Fig. 6.9b).
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Figure 6.9: Undersampling artifact. (a) For Cartesian trajectories with fourfold
undersampling, parts of the image are folded in at four different positions. (b) For
radial trajectories, star-shaped stripes appear at some distance from the center
when the polar reconstruction method is used.

6.3 Evaluation

In concordance with the developed theory, the results show that an elegant
direct reconstruction from PatLoc encoded projection data exists, which pro-
duces high-quality images. An unusual star-shaped stripe artifact is caused
by undersampling. The algorithms and the resulting image properties are
discussed here in detail, and generalizations of the presented algorithms
are briefly addressed.

6.3.1 Reconstruction Algorithms

Algorithms for arbitrary field geometries were presented as well as a partic-
ular implementation applicable to multipolar SEMs.

a) Arbitrary Encoding Fields

A method for the reconstruction of radial data with arbitrary encoding
fields has been presented above: a direct reconstruction, which combines
standard projection reconstruction methods with an algorithm originally
developed for Cartesian PatLoc trajectories. This approach works because
in PatLoc encoding space a combination of two arbitrary magnetic encoding
fields appear as a linear field, which rotates from projection to projection.
Such field rotations are also known from conventional radial imaging with
linear gradients. Therefore, standard projection reconstruction methods can
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be used. However, they result in the warped encoding space representation
of the magnetization (Fig. 6.2c). This representation is also known from
Cartesian acquisitions (cf. e.g. Fig. 5.3, page 163) and therefore the image
space algorithm, developed for Cartesian trajectories, is also applicable to
radial trajectories.

b) Multipolar Encoding Fields

A simplified version of the Cartesian reconstruction algorithm for multipo-
lar SEM encoding has been derived in this chapter. The crucial point about
the Cartesian algorithm is that it transforms the image from PatLoc encod-
ing space back to natural image space coordinates. For multipolar SEMs,
this back-transformation can be done more easily when polar coordinates
are used. The reason for this simplification is that in polar coordinates the
transformation takes a simple form, resulting in a separation of distortion
(radial axis) and aliasing (azimuthal axis). Moreover, aliasing is equidistant
and therefore Cartesian SENSE is applicable to remove the fold-over artifact
that arises from the non-bijectiveness of the SEMs.

These considerations have beneficial consequences in setting up the re-
construction algorithm because, in contrast to a general implementation,
presented in chapter 5.1, page 155ff, it allows one to use only very basic
or common reconstruction operations. It is a significant advantage that
Cartesian SENSE can be applied directly without having to perform the
difficult search for image locations, which are aliased. This search must be
done with more general encoding fields by performing a detailed analysis
of the field geometries.

Besides Cartesian SENSE, intensity correction and image rewarping are
very simple operations with quadrupolar encoding fields. Intensity cor-
rection corresponds to a linear intensity ramp and rewarping is done by
first stretching the images to undo the quadratic distortions in the radial
direction and then transforming the images from polar to Cartesian coordi-
nates. The situation does not become much more difficult when arbitrary
multipolar fields of order L are considered. The simplicity of these recon-
struction operations therefore favors the usage of polar coordinates instead
of Cartesian coordinates whenever multipolar fields are used for encoding.

For radial trajectories, standard FBP and subsequent transformation to polar
coordinates can be combined by directly choosing a polar back-projection
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grid. This simplifies the reconstruction, however, a stretching in the radial
direction is still necessary. It is, in fact, also possible to perform the distortion
correction within the back-projection step, by just choosing a back-projection
grid, which directly accounts for the distortions, given by u = r2. This
advantage comes, however, at the expense of longer reconstruction times:
In this case, distortion correction and SENSE are swapped with the conse-
quence that more voxels must be unfolded because of finer discretization
(see paragraph Implementation in the above section 6.2.1c, page 222).

6.3.2 Influence of Field Approximations

The experimental fields deviated from the exact quadrupolar shape. These
deviations have in general well-behaved effects on the resulting image qual-
ity for the direct polar reconstruction: Geometric distortion can occur and
inaccurate RF-coil sensitivity information might lead to incorrect unfold-
ing. However, the smoothness of the RF-coil sensitivities tolerates minor
displacement errors. These errors were small in the measurement data, and
therefore the reconstructed images are only slightly affected. This result is
supported by Fig. 6.6, where the PatLoc image is compared to an image
acquired with the standard system. Note that deviations from the exact
multipolar field geometry can be considered with iterative methods (see
following chapter) if accurate measurement data of the SEMs are available.

6.3.3 Image Properties and Artifacts

The properties of the images reconstructed with the direct method can
generally be predicted by combining experience from standard projection
reconstruction and Cartesian PatLoc reconstruction because image recon-
struction is basically a concatenation of both methods.

Image Resolution The r1−L-law of image resolution not only holds for
Cartesian, but also for radial trajectories. In fact, this law is independent of
the chosen trajectory: Spatial variations of image resolution are primarily
caused by spatial variations of the Jacobian of the SEMs. The r1−L-law
is exact in the continuous formulation. Deviations occur because of the
discreteness of the reconstruction. The effect is negligible except for the
center, where resolution is finite and not infinite as suggested by the law. For
example, the circularly shaped, low-intensity region in Fig. 6.6b is related
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to the size of the central image voxel (also cf. the PSF image on the top of
Fig. 6.7b).

Gibbs Ringing The chosen trajectory does, however, have a significant in-
fluence on the sidelobe behavior of the PSF. In particular, major differences
in the Gibbs ringing artifact resulting from Cartesian and radial trajectories
could be observed. The most obvious differences are observed at the SEM
center, where the fields flatten out (Fig. 6.7b). The Cartesian method suffers
from destructive streaking artifacts, which extend over the complete image.
The artifact can be avoided, however, not without sacrificing image resolu-
tion (cf. previous chapter). In contrast to the Cartesian PSF, the radial PSF is
much more localized. The unwanted signal relocalization is restricted to the
center and does therefore not influence the utility of the proposed methods
in applications. The cause for this beneficial property can be understood
with a different k-space coverage of Cartesian and radial acquisitions. The
first has the shape of a square, the latter the shape of a disc. The Fourier
transform (FT) of these shapes have a significant influence on the sidelobe
behavior: The FT of a square is the product of two sinc-functions along the
two spatial dimensions. The PSF is therefore highly anisotropic with a very
slow sidelobe fade-out of 1/r along the main axes. On the other hand, the
FT of a disc is proportional to k/r · J1(kr), where J1 is the Bessel function of
the first kind of order one. The PSF is therefore isotropic and fades off faster
than 1/r. The subsequent intensity correction in the reconstruction does
therefore not enhance the sidelobes to a degree, which leads to significant
image deterioration as in the Cartesian method.

Image Noise In this chapter, the noise propagation properties of the direct
polar algorithm have been investigated. Note that the results also apply
to the SNR because of the linear nature of the direct reconstruction algo-
rithms. The image noise is dominated by the varying voxel size and is
therefore very similar for Cartesian and radial trajectories. It was shown
in this work that the noise variations are actually equivalent for the two
direct reconstruction methods (Fig. 6.8b). Apart from the varying voxel
size, the SENSE reconstruction introduces spatial noise variations. In the
previous chapter (cf. e.g. Fig. 5.12a, page 188), it has been shown that the
g-factor is very low for PatLoc SENSE unfolding. In the polar representation,
this fact can be motivated well with the visual impression of the RF-coil
sensitivity maps sketched in Fig. 6.4e. Apart from the center, the maps
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show very sharp intensity bands, which resemble the optimal RF maps
needed for Partially-Parallel-Imaging-with-Localized-Sensitivities(PILS)-
reconstruction [50]. PILS with optimal RF maps does not result in noise
enhancement. This similarity of polar PatLoc reconstruction and optimal
PILS reconstruction explains the low g-factor penalty for PatLoc.

Undersampling Artifact It could be observed in this work that, as ex-
pected, the undersampling artifact for Cartesian trajectories is not compara-
ble to the artifact resulting from radial undersampling (Fig. 6.9). Similar to
conventional imaging the presented projection reconstruction method is not
suitable for the reconstruction of undersampled datasets (cf. Fig. 6.9b). In
PatLoc, there is an additional problem: For illustration consider the filtered
projections in Fig. 6.4 after step (b): Each projection has significant intensity
at the zero-frequency. This central intensity can be explained by the fact
that a narrow frequency band is generated over an extended region near the
SEM center, where the field variations are low. The back-projection results in
a coherent star-shaped stripe artifact not known from conventional imaging.
This artifact is enhanced toward the periphery by the intensity correction.
The stripes appear at a certain distance from the center, where the spatial
distance between individual rays exceeds their width.

It has been shown in the literature that iterative reconstruction methods
reduce the undersampling artifact in standard radial imaging [186, 13]. In
the following chapter, it will be demonstrated that this is also true for under-
sampled PatLoc data (cf. e.g. Fig. 7.10, page 263). The main reason for this
favorable impact on image quality is that iterative methods make full use
of the available RF-coil sensitivity information, having positive effects on
the point spread function. It remains to be investigated under which condi-
tions k-space based methods like radial GRAPPA [48] or pseudo-Cartesian
GRAPPA [165] adapted to PatLoc perform well with undersampled imaging
data.

The analysis of the image properties shows that radial acquisitions can be
useful in handling the problems which arise from flat encoding regions.
Note that these problems do not occur if such flat regions are avoided with
additional gradient encoding (see next chapter).
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6.3.4 Generalizations Beyond Multipolar Field Encoding
and Projection Reconstruction

Two different kinds of generalization are discussed here: acquisition with
arbitrary non-Cartesian trajectories and encoding with generalized image
projections.

Non-Cartesian Trajectories In this chapter, reconstruction from a radial
imaging sequence has been discussed. Radial acquisition is a special type
of non-Cartesian imaging, and the question might arise how arbitrary non-
Cartesian imaging sequences can be reconstructed. It has been shown above
that a radial PatLoc acquisition cannot only be reconstructed by combining
FBP with the Cartesian PatLoc image space reconstruction, but also by
using gridding. Recall that gridding reconstruction is feasible with any non-
Cartesian trajectory (cf. chapter 2.2.3, page 69ff). It is therefore, in principle,
possible to first grid the non-Cartesian PatLoc imaging data onto a Cartesian
grid and then apply the Cartesian PatLoc reconstruction algorithm. Keep in
mind, however, that, depending on the trajectory, violation of the Nyquist
criterion can have a significant impact on the resulting image quality.

Generalized Projections In this chapter, most of the analysis was based
on image projections that were formed by superimposing orthogonal multi-
polar SEMs. It has been shown that these fields are particularly suited for
extended ROIs at the periphery of the object under examination. The result-
ing resolution gradient is also very well matched with the characteristics of
ultrafast imaging techniques like MR-Encephalography [64, 51] and inverse
imaging [99]. However, the ROI varies with the application, and other
field geometries might be required to maximize the relevant information
content. Flexible gradient coil designs [80, 203] seem to be appropriate for
the generation of flexible resolution patterns. PatLoc may thus be used to
further improve image quality and/or imaging speed with such techniques.

Such a flexible gradient system would allow one to not only superimpose
two different SEMs with obvious restrictions on the realizable field geome-
tries during the acquisition of image projections, but to define a nearly
arbitrary effective magnetic field geometry ψres(·) that is different for each
projection. For such general projections, image reconstruction, as done
in this chapter, is not possible. At least two issues must be considered:
First, the effective encoding field ψres(·) cannot be written as a superposi-
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tion of two SEMs (cf. Eq. 6.2), a property that has been exploited in this
chapter. More subtle is a second issue: For radial trajectories, it is possible
to back-project each signal value of a one-dimensional projection along a
single ray onto a two-dimensional plane. This operation is sparse and fast
implementations exist. However, for general projections, it must be consid-
ered that a projection is, to be correct, the projected signal data convolved
with a sinc-function [178], and therefore a signal value cannot merely be
back-projected along a single ray, but must be mapped onto the complete
2D plane. Image reconstruction is therefore much more challenging. The
development of efficient generalized projection reconstruction methods for
PatLoc imaging beyond radial encoding with arbitrary SEM designs is a
natural generalization of the work presented in this chapter and is a topic
of the next chapter, section 7.1.2, page 240ff.

6.3.5 Conclusions

In this chapter, it has been shown that conventional radial imaging method-
ology is applicable to PatLoc imaging without requiring major modifications
to the acquisition protocols. Images can be reconstructed by combining
standard projection reconstruction methods with Cartesian PatLoc recon-
struction. Also other non-Cartesian trajectories can in principle be recon-
structed by concatenating standard gridding with the Cartesian PatLoc
algorithm. For multipolar encoding fields, the reconstruction from radial
imaging data is simpler and more straightforward when polar coordinate
representations of the images are used instead of conventional Cartesian
coordinates. The evaluation of simulated data as well as data measured
in vivo has illustrated that the k-space isotropy of the radial trajectory sig-
nificantly reduces the pronounced Gibbs ringing artifact that may occur
in PatLoc imaging with Cartesian sampling. A star-shaped artifact, with
no direct counterpart in conventional imaging, was found to result from a
subsampled set of projections. In the next chapter it will be shown that this
artifact is effectively suppressed by iterative image reconstruction.



Chapter 7

Iterative Reconstruction in PatLoc
Imaging

TWO specific modalities of PatLoc imaging were analyzed in the previous
chapters; Cartesian and radial acquisition with two NB-SEMs, for which

highly efficient reconstruction is possible, yielding images with clearly
defined properties. In the present chapter, more general imaging modalities
are considered, and adequate reconstruction methods are discussed.

Unfortunately, the approaches taken in the previous chapters cannot be used
in more general imaging situations. The reconstructions presented above
were closely related to the general approaches of chapter 4.2.2, page 144ff,
where the encoding matrix is directly inverted. The developed algorithms
were efficient either because the encoding matrix was highly structured and
could be inverted fast and robustly, or because it was possible to efficiently
approximate the inverse with a related method. Such direct solutions to the
inverse problem are, in principle, still possible for more general imaging
modalities; however, direct inversion can be very inefficient; and it can
be problematic because of ill-conditioning of the encoding matrix. One
indirect solution – the approach taken here – is to model the imaging process
through a linear operation, and to iteratively minimize the error between
the measured and the modeled signal data by variation of the unknown
spin density. This approach merely involves repetitive evaluation of the
forward model, thereby avoiding direct inversion of the encoding matrix.

Typically, the solutions of iterative methods and the properties of the recon-
structed images are less well-defined compared to direct solutions because,
with noisy data, the algorithms usually do not converge and are often
stopped after a relatively small number of iterations; if stopped too late,
image quality begins to degrade because artifacts, which result from in-
accuracies of the encoding matrix, are enhanced and SNR degradation is
observed caused by ill-conditioning of the reconstruction. Nevertheless,
iterative methods have proven extremely useful in MR image reconstruc-
tion. One reason is that such iterative methods can often be applied to a
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broad range of encoding strategies. For example, whereas basic SENSE
is restricted to Cartesian trajectories, iterative SENSE can be applied to
any sort of sampling trajectories. Another advantage of iterative methods
is that the reconstruction problem is solved by successive evaluation of
the forward operation only. The forward operation directly represents the
imaging process. Therefore, it is often easier to appropriately incorporate
refined signal models into the reconstruction. Other advantages include the
extension of the image reconstruction by constraining the solution to certain
prior knowledge [83]. These advantages often come at the expense of a dra-
matic increase in reconstruction time. Also the possibility to derive image
quality measures in a clear manner as for direct reconstruction methods is
lost. However, because of their flexible applicability, it is indispensable to
develop such iterative methods also in the context of PatLoc imaging.

In this chapter, several iterative reconstruction methods are developed and
their properties are compared with each other by evaluating several example
datasets. Very relevant is chapter 2.3.1f, page 89ff, where an approach
is presented that is applicable whenever the signal is modeled using a
linear operation. The approach involves the CG method to update the
intermediate quantities for each iteration. The same approach is used in
conventional PI [134], and it can also be applied in PatLoc imaging, as done
in this chapter; if necessary, an extension to non-equidistant reconstruction
grids is considered (cf. chapter 4.2.3, page 152f).

7.1 Presentation of Image Reconstruction
Methods

Iterative methods are presented for three different imaging situations. The
first situation is the most general, with no restrictions imposed on the
encoding strategy; however, the reconstruction is also the slowest of all
presented methods. Initial examples of this time-domain reconstruction
were presented in [[100]]1. Much progress in this regard has been achieved
by the work published in [[42]]. Other relevant work within the context of
this thesis is [[158]] where images, reconstructed with the iterative method

1This ISMRM abstract has been further elaborated in [[101]].
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and with the direct polar method of the previous chapter, are compared to
each other.

The second situation involves MRI with generalized projections, where the
magnetic field is constant during signal readout, but where the field may
change between successive projections by combining an arbitrary number
of SEMs without any restrictions imposed. This situation has been the
topic of [[153]]. By formulating the problem not in the time domain, but in
the frequency domain, it is possible to sparsify the forward operator with
positive consequences for reconstruction time.

The last two methods naturally extend the direct reconstruction algorithms
of the two previous chapters to arbitrary and subsampled trajectories. Initial
steps toward the development of appropriate reconstructions have been
presented in [[156]], where it has been observed that the similar structure of
the encoding matrix allows one to base reconstruction on previous imple-
mentations of the iterative SENSE algorithm. A decisive step forward forms
recent work [[86]], where a fast implementation is presented and combined
with an adequate regularization term.

7.1.1 Reconstruction in the Time Domain

This section is important because the presented reconstruction method can
be applied to any PatLoc encoding strategy (and even beyond PatLoc); no
restrictions are demanded. In particular, the imaging situation considered
here comprises:

1. An arbitrary number of SEMs.

2. Arbitrary sampling trajectories.

The applicability to any PatLoc encoding scheme makes the time-domain
method the most flexible of all reconstruction methods that are discussed
in this thesis. The downside of the method is that it is at the same time the
slowest with high computational cost and/or memory requirements.

As already stated above, images encoded with a general PatLoc encoding
strategy can be reconstructed using the iterative CG method, explained
in the context of PI in chapter 2.3.1f, page 89ff, with an extension to non-
equidistant reconstruction grids in chapter 4.2.3, page 152f. The main
aspects are quickly reviewed here for general PatLoc encoding strategies.
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In PatLoc, the signal s (see Eq. 4.9, page 139) is approximately given by
s ≈ EVm, where m is the magnetization, V is a diagonal matrix that
contains the nominal voxel volume of each voxel (cf. chapter 4.2.2b, page
148ff) and E is the encoding matrix. According to Eq. 4.18, page 146, the
elements of E are given by:

E(α,κ),ρ := cα(�xρ)e
−ikT

κψ(�xρ). (7.1)

A feasible image m is found by minimizing the difference between the
measured signal s and the estimated signal EVm in the l2-norm. According
to Eq. 4.26, page 152, the minimization leads to the following problem:

(EHE)Vm = EHs (7.2)

for Nρ < NκNc. For Nρ > NκNc as well as for Tikhonov regularization,
the modifications presented on page 89f in chapter 2.3.1f apply correspond-
ingly. The latter equation can be solved iteratively with the CG method. A
typical algorithm is presented on page 93. Other methods like the algebraic
reconstruction technique exist to solve this equation. Here, however, only
the CG method is considered, and a reconstruction algorithm, analogous to
iterative SENSE (cf. chapter 2.3.1f, page 89ff), is depicted in Fig. 7.1.

Recall from chapter 2.3.1f, on page 93ff, that the bottleneck of the recon-
struction is the matrix-vector multiplication of the encoding matrix E and
its adjoint EH with vectors of compatible lengths. It is therefore crucial to
perform these matrix-vector multiplications as fast as possible. According
to Eq. 7.1, the encoding matrix decomposes into two matrices E = GC,
where C describes RF-sensitivity encoding and G SEM encoding. The ap-
plication of the RF-sensitivity encoding matrix C can be implemented as
a vector-vector multiplication for each RF channel and is therefore very
quick. Problematic is the multiplication with the Fourier terms e−ikT

κψ(�xρ)

that form the matrix G. Recall that, for iterative SENSE, this multiplication
can be accelerated with implementations of the nuFFT. The same is true as
long as only two SEMs are used for 2D encoding (cf. section 7.1.3, page
247ff). This possibility to accelerate the reconstruction is not available in the
general case with dramatic consequences for reconstruction time.

2This step is only required if irregular reconstruction grids are used. Alternatively, intensity
correction can be performed as part of the matrix-vector multiplication, immediately before
the multiplication of the conjugate direction vector with the coil sensitivity data.
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Figure 7.1: General iterative time-domain reconstruction with the CG method. The
reconstruction is very similar to iterative SENSE, see Fig. 2.18, page 95. Initial-
ization and termination of the algorithm are the same. A final intensity correction,
division by the nominal voxel volume, has been added in this figure.2 By far the
most computation-intensive part of the algorithm is the matrix-vector multiplication.
Multiplication with the RF-coil sensitivities cj(·) and their complex conjugates c∗j (·) is
fast. Very problematic in PatLoc imaging is the multiplication with the matrix G or its
adjoint GH . These matrices contain the phase terms resulting from SEM encoding.
When, in PatLoc imaging, more than two SEMs are applied, these operations cannot
be accelerated with fast nuFFT algorithms as is done in iterative SENSE. Note,
however, that a matrix-vector multiplication is highly parallelizable, thus offering
options to reduce reconstruction time.

To give an example, the first quick-and-dirty Matlab implementation of
the iterative time-domain method required about half a week for the re-
construction of a Nκ = 256 × 256 acquisition with Nc = 8 coils using a
reconstruction grid with Nρ = 320 × 320 lattice points. Simple optimiza-
tions like changing the summation order or avoiding repetitive evaluations
of expressions that may be reused diminished the computation time almost
by a factor of 10. More elaborate multi-core implementations with Matlab
reduced the reconstruction time even further by another factor of 10. Initial
GPU-implementations resulted in yet another improvement of almost a
factor of 20 such that the overall speedup is currently around 1400 for a
dataset of the size as assumed above, resulting in a total reconstruction
time of a few minutes for 25 iterations. Compared to several days, this is a
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tremendous acceleration, making 2D reconstructions practical at least for
research; however, it will be difficult to achieve high-resolution 2D image re-
constructions in the range of seconds in the near future; three-dimensional
datasets are currently almost not tractable, even with highly optimized
parallelization.

Despite the flexibility of the CG method, its practical usability is limited by
the long computation time for the evaluation of the non-optimized matrix-
vector multiplication. It is, however, often optimizable. The two previous
chapters have already shown that, for Cartesian and radial encoding, fast
and robust direct image reconstruction algorithms can be formulated. Simi-
larly, in the following two sections, fast iterative image reconstructions are
presented that use optimized matrix-vector multiplications. Their scope of
applicability may be more restrictive than that of the general time-domain
method; however, the algorithms discussed below offer opportunities to
deal with datasets that are too large to be handled with the general time-
domain CG method, and are therefore preferable in many situations.

7.1.2 Reconstruction from Generalized Image Projections
in the Frequency Domain

The temporal evolution of the MR signal is very complicated because a very
large number of spins create time-varying contributions that are all mixed
up and received at the same time. It is often much simpler to describe not
the temporal, but the frequency content of the MR signal, considering that
each spin has a precession frequency that is directly proportional to the
applied magnetic field. For a magnetic field that is not time-varying, the
precession frequency of each spin does not change over time. Consequently,
not all spins contribute to a particular frequency of the MR signal, but only
those which lie on the corresponding isosurface of constant magnetic field
strength. Thus, the signal is found by simply integrating the spin density
over the isocontours of the encoding field.

Such a projection can be regarded as a sparse operation and it is to be
expected that also image reconstruction is faster when formulated in the
frequency domain. This hypothesis is analyzed in detail in this section
under a general imaging condition that involves NB-SEMs and also phase
encoding. To be precise, the imaging situation considered in this section has
these assumptions:



7.1 Presentation of Image Reconstruction Methods 241

1. An arbitrary number SEMs is used for encoding.
2. The sampling trajectories are subject to only one restriction: During

signal readout, the effective encoding field is assumed to be constant.3

On the one hand, the case treated in this section is very general because an
arbitrary number of encoding fields is considered. On the other hand, it
may appear restrictive because the effective encoding field is required not to
change during readout. Note however, that virtually all multi-dimensional
trajectories for PatLoc presented in the literature so far (e.g. [178], [[42]])
fall under this category. Some, like the trajectories shown in [[101]] can
even be reduced to the 2D case discussed below in section 7.1.3, page 247ff.
The case treated here therefore covers a large class of important trajectories.
Not covered are trajectories where the encoding field continuously changes
during readout; an example from standard imaging are spiral trajectories.

After formulating the signal equation in the frequency domain, it is pre-
sented that the frequency-domain signal can be interpreted as a generalized
projection. It is shown that the original magnetization can be recovered
from the generalized projections using a method that is equivalent to the
time-domain algorithm of the previous section. Finally, faster variants of
the frequency-domain reconstruction are discussed that make use of an
appropriate window function.

Signal Equation in the Frequency Domain First, reconsider the PatLoc
signal equation represented in the time-dependent formulation of Eq. 4.7.
Assume equitemporal signal recording at time points tj ∈ Δt · IN . Then,
the signal is given by:

sα(tj ; r) =

∫
V

m(�x)cα(�x)e
−i(kr+k(tj ;r))

Tψ(�x)d�x. (7.3)

According to the definition of PatLoc k-space and encoding function in Eqs.
4.5, 4.6, the phase contribution from frequency encoding for constant coil
currents is given by φ(tj , �x; r) = k(tj ; r)

Tψ(�x) = ωr(�x)tj , where ωr(�x) =

γBr(�x) is the frequency offset generated by the effective magnetic encoding
field Br during readout r; i.e., the superposition of the individual SEMs,
driven with the currents Ij(r): Br(�x) =

∑
j Ij(r)bj(�x). By abbreviating the

3Piece-wise constant trajectories like the 4D-RIO trajectory presented in [[42]] are also
covered by sub-dividing the readout into several segments, where each of which is treated as a
separate readout.
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phase resulting from phase encoding with φr(�x) = kT
r ψ(�x), the signal can

then be written as:

sα(tj ; r) =

∫
V

m(�x)cα(�x)e
−i(φr(�x)+ωr(�x)tj)d�x. (7.4)

In the context of the following derivations, it is useful to formally extend
the signal, technically defined only at discrete time points, to a continuous
signal, where the time t can take any real number (t ∈ R; s → sR) by
introducing a window function w(t). To a good approximation, this window
function can typically be assumed to be unity if data are recorded and zero
if no recording occurs. The signal then reads:

sα(t; r) = w(t)sR
α(t; r) =

∫
V

m(�x)cα(�x)e
−iφr(�x)

[
w(t)e−iωr(�x)t

]
d�x. (7.5)

In this formulation, the signal has the natural temporal dependency. An
equivalent frequency-domain formulation is found by taking the inverse
FT (or, in a discrete formulation, the inverse DFT) of the signal along each
readout:

Pα(ω; r) =

∫
V

m(�x)cα(�x)e
−iφr(�x)ŵ(ω − ωr(�x))d�x, (7.6)

where ŵ denotes the inverse (discrete) FT of the sampling window w. This
frequency-domain representation Pα(·) of the signal is termed generalized
projection in this thesis; this concept is explained in more detail the next
section.

Generalized Projections In conventional radial imaging (cf. chapter 2.2.2,
page 66ff), a projection is the 1D Fourier transform of the corresponding
signal readout and describes the integration of the excited magnetization
(weighted with the sensitivity of the receiver coil) along the isocontour lines
of the gradient field. The opposite process - back-projection of a 1D signal
onto the 2D plane - does not directly represent the inverse operation; it does,
however, play an important role in image reconstruction. Both, projection
and back-projection in conventional radial imaging, are illustrated in Fig.
7.2a. Also in radial PatLoc imaging, as shown in the previous chapter, the
Fourier analogues of the individual readouts can still be interpreted as
image projections, where, however, the integration may be performed along
multiple, bent isocontour lines of the effective encoding field (see Fig. 6.2,
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page 213). Observe that radial imaging, with linear SEMs as well as with
NB-SEMs, has a special feature: The k-space center is acquired every signal
readout. From a theoretical point of view, radial imaging can therefore be
regarded as being a pure frequency encoding strategy.4

Figure 7.2: Generalized projections: projection and back-projection. (a) In conven-
tional radial imaging, a projection corresponds to the integration of the magnetization
along the isocontour lines of the linear gradient field. In practice, the signal is con-
volved with a sinc-function. The opposite operation, back-projection, cannot directly
recover the original magnetization; nevertheless, it often forms a decisive step of
image reconstruction. (b) Also for nonlinear field geometries, an image projection is
found by integrating along the isocontour lines of the field, and back-projection is
still a well-defined mathematical operation. (c) Sometimes, an image projection is
defined to result from pure frequency encoding. This concept can be generalized to
also include phase encoding performed with a SEM of different geometry prior to
frequency encoding. Comparison of the images with and without phase encoding
illustrates that the additional phase distribution added by phase encoding has a
significant influence on the frequency content of the projected signal. In the depicted
example, low-frequency information is strongly suppressed by phase encoding,
whereas positive high-frequency information is well displayed in the signal spectrum.

4Note that, in the actual experiment, pre-phasers are typically involved, cf. Fig. 1.8, page
31.
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The notion of image projections is generalized by Eq. 7.6. First, consider
pure frequency encoding (i.e., φr(�x) = 0) and assume idealized imaging
with a readout of infinite duration and continuous sampling. Then, the
frequency-domain window ŵ(·) is a delta function, which contributes signal
if ω = ωr(�x) = γBr(�x). This means that the frequency content of the signal
is found by integrating the spin density weighted with the RF sensitivity
along the isocontour lines of the effective magnetic field. In other words,
Pα(·) describes an image projection as conventionally defined. In contrast
to conventional imaging, the field geometry can change nearly unrestrict-
edly between successive projections. Also for such generalized projections,
back-projection is still well-defined. One projection and the corresponding
back-projection for an arbitrary field geometry is illustrated in Fig. 7.2b.
With additional phase encoding (i.e., φr(�x) �= 0 for some projection r) the
frequency content can be modified even further. Fig. 7.2c,d shows an exam-
ple for a quadrupolar encoding field, where phase encoding shifts the signal
contribution from central frequencies to the edge of the acquired spectrum.

According to the previous paragraph, generalized projections are character-
ized in that the projections are taken for field geometries of any shape, and
in that phase encoding is also considered. Actually, there is a third issue
that must be taken into account: Under practical imaging conditions, it is
not valid to assume continuous acquisitions of infinite duration. Typically,
the data acquisitions are oversampled, such that continuous sampling is
a good approximation. However, the finiteness of data sampling is cru-
cial. The window function w(t) has a finite width, and therefore its Fourier
representation ŵ(ω) is not a delta function, but a sinc-function. The image
projections are therefore blurred with primary contributions from the cen-
tral contour line, but with signal contamination from other frequencies (cf.
Fig. 7.2a). In MRI, the projection is therefore not perfect; this has important
consequences for image reconstruction as will be shown in the following
sections.

Frequency-Domain Reconstruction In contrast to the time-domain me-
thod, where the data-consistency error between measured signal and mod-
eled signal is minimized, the frequency-domain method minimizes the
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difference between the projection data and an estimate that is found by
discretizing Eq. 7.6:

min
m

∥∥∥ŝ− Êtm
∥∥∥2

, where (Êt)(α,j,r),ρ := cα(�xρ)e
−iφr(�xρ)ŵ(ωj − ωr(�xρ)),

(7.7)

and where ŝα,j,r = Pα(ωj ; r), with ωj ∈ Δω · IN and Δω = 1/(NΔt). In the
latter equation the hat symbol is used to indicate that reconstruction is based
on the frequency-domain formulation of the signal equation. Assuming
a regular, normalized, reconstruction grid, i.e., V = 1, the minimization
yields the linear system (ÊH

t Êt)m = ÊH
t ŝ. It is proposed here to solve this

system also with the CG method as described above.

The transformed encoding matrix Êt = iDFTt ·E (the subscript t indicates
taking an inverse 1D-DFT along the temporal dimension) can be interpreted
as a projection operator (cf. the latter section Generalized Projections), its
adjoint operation ÊH

t ŝ as the sum of the back-projected projection data.
A fast reconstruction would result by simply (back-)projecting along the
isocontour lines of the encoding field (cf. Fig. 7.2). This would correspond to
a Fourier-domain window ŵ(·) of a delta function or a box-shaped function
(see Fig. 7.3a,b, top row). However - as already stated above - the correct
window is a sinc-function (see Fig. 7.3c, top row) and therefore each point
must be projected not only along one line, but the complete image must
be taken into consideration for the computation of the projection. This
implies a dense encoding matrix Êt. Reconstruction is feasible with this
method, but there is no improvement in computation time compared to the
time-domain reconstruction.

Equivalence to the Time-Domain Method It is important to note that the
frequency-domain reconstruction using a sinc-window gives exactly the
same results that are found with the time-domain reconstruction. The rea-
son for this equivalence is that the inverse DFT is unitary. The inverse DFT
does not change the norm ‖ŝ − Êtm‖ = ‖iDFTt(s−Em)‖ = ‖s−Em‖.
In the frequency-domain method, the term on the left hand side is min-
imized, whereas the right hand side is the norm which is minimized to
solve the corresponding time-domain problem. Both norms are the same,
and therefore the reconstruction solves exactly the same problem. Also
from a numerical point of view, the inverse DFT has no influence because
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Figure 7.3: Time-domain filter of the signal readout (bottom) and corresponding
frequency-domain filter (top). (a) The perfect frequency-domain filter would be a
delta function, corresponding to an unrealistic, infinitely long, readout. (b) A fast and
simple back-projection algorithm could be implemented assuming a box-shaped
frequency-domain support; the corresponding filter in the time domain is a sinc-
function that is, however, not useful to be implemented in practice. (c) The natural
filter in the time domain is box-shaped with a width that corresponds to the time
duration of signal readout. The corresponding frequency-domain filter is a sinc-
function with non-local support. (b) With a Kaiser-Bessel filter, both, time-domain
and frequency-domain supports, are localized.

it does not change the condition of the reconstruction. Therefore, both,
time-domain and frequency-domain reconstruction, yield the same results.

Acceleration of the Frequency-Domain Reconstruction The computa-
tion time can be reduced when the encoding matrix is approximated by a
sparser version of it. A straightforward method to achieve sparsity is to
simply disregard values of the encoding matrix that fall below a certain
threshold [178]. Recently, this method has successfully been demonstrated
for 4D-RIO [[43]]; the downside of this approach is that systematic errors
are introduced that may lead to severe artifacts. A similar approach is
presented here (also cf. [[153]]) that results in a fast, but also much more
consistent, reconstruction.

The problems that arise with a threshold can be approached by reconsid-
ering Eq. 7.5; from this equation, it follows immediately that a temporal
filter acts on the signal data as well as on the encoding matrix. As implicitly
stated above, signal acquisition can be modeled with a rectangular tem-
poral window; correspondingly, the projection data are convolved with
a sinc-function. Thresholding the sinc is problematic because it has fairly
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extended sidelobes, and therefore inconsistencies with the measurement
data are generated.

The idea here is to apply, in addition to this natural rectangular filter, a sec-
ond, artificial filter, in order to suppress the sidelobes, thereby transforming
the encoding matrix into a sparser representation, with the consequence
that thresholding becomes less problematic. Two methods are described
here:

• The encoding matrix is constructed not with the sinc, but with a
different filter function. Also the data are filtered in order to ensure
consistency. This can be done in the time domain (cf. Eq. 7.5), for
example, using a Kaiser-Bessel window. The corresponding window
in the frequency domain has significantly suppressed sidelobes (cf.
Fig. 7.3d). When these sidelobes are ignored, data consistency is only
moderately affected. The consequence is a sparse encoding matrix
and significantly accelerated image reconstruction. The downside of
this approach is that more CG iterations are required than usual to
reach an optimal image resolution.

• In accordance with the first method, the encoding matrix is con-
structed with an appropriate window function. However, the signal
data are not filtered; consistency is guaranteed by applying the inverse
of the filter to the filtered encoding matrix instead. It can easily be
shown that this method - before thresholding - is equivalent to the
unaccelerated time-domain reconstruction.5 With this method, not
more CG iterations are required than usual. The downside is that re-
construction is much more sensitive to data reduction via thresholding
compared to the first method.

7.1.3 Fast Reconstruction with Non-Uniform FFT
Algorithms

Much faster reconstructions are possible if the number of independent SEMs
does not exceed the dimension of the excited imaging volume. In particular,
the following assumptions are made in this section:

1. Two nonlinear and non-bijective SEMs for 2D imaging are applied.

5When the encoding matrix is calculated as E = 1/w ·DFTtÊw
t , where Êw

t is the filtered
frequency-domain representation of the encoding matrix, i.e. Êw

t := iDFTtwE.
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2. Arbitrary sampling trajectories are used.

The case treated in this section is similar to the imaging situation that has
been discussed in the previous chapters in that, again, only two SEMs are
applied during acquisition; it is more general because the reconstruction is
not restricted to a specific type of sampling trajectory (Cartesian, radial), but
the signal can be encoded with any kind of acquisition trajectory. However,
it is also more restrictive than the iterative methods presented above because
the methods cannot be applied to encoding strategies that involve any
number of SEMs.

The previous chapter has revealed that gridding in combination with the
Cartesian image space reconstruction method of chapter 5.1 should be
useful for densely sampled, arbitrary, trajectories. Gridding is not an appro-
priate method to fill unsampled portions of PatLoc k-space. However, as
discussed in chapter 5.2, pseudo-Cartesian GRAPPA in combination with
the Cartesian image space reconstruction might yield useful results.

An alternative, involving the iterative CG method, is presented here. Good
results are to be expected because this method makes efficient use of RF-
sensitivity encoding. The non-Cartesian nature of the imaging trajectories
hinders usage of the FFT. Nevertheless, fast image reconstruction is possible
because the nuFFT can be applied instead. The nuFFT is briefly reviewed
below before two different reconstruction methods are presented.

Non-Uniform FFT In conventional MRI there is a Fourier relation be-
tween the signal data and the magnetization. Also in PatLoc imaging with
two NB-SEMs, the Fourier domain of the signal data is an important space,
which has been termed PatLoc encoding space in chapter 5 on page 158.

In MRI, only a finite amount of signal data, measured at k-space locations
�kκ is available, and for numerical reasons, also the reconstruction grid
must have a finite spacing with locations �xρ. For numerical calculations, the
continuous Fourier terms must therefore be replaced in practice by a discrete
number of terms: e−i�k�x → e−i�kκ�xρ . In Cartesian Fourier imaging, the
discrete version of the FT is termed the discrete Fourier transform (DFT), and
a fast algorithm to calculate the DFT is the well-known FFT. However, the
FFT requires that both, �kκ and �xρ, lie on grids with equidistant spacing. If
one or both grids are not equidistantly spaced, the DFT must be replaced by
a non-uniform DFT, for which also fast non-uniform FFT implementations
exist.
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In general, the nuFFT can be subdivided into three different types; these
types, together with the FFT, are illustrated in Fig. 7.4 and explained in the
figure caption. Note that gridding is effectively a realization of a nuFFT of
type 1. A typical gridding algorithm is presented on page 70f in chapter
2.2.3. For more information on the nuFFT and fast algorithms for each of
the three types, consult the abundant literature on this topic, for example
the tutorial [133].

Figure 7.4: FFT and different types of the nuFFT. The FFT and the nuFFT are
fast implementations of discrete versions of the continuous FT. Whereas the FFT
requires equidistant grids in both Fourier domains, the nuFFT can cope with non-
equidistant data samples (the dots represent the distribution of source and target
locations). Three different types of the nuFFT can be distinguished with respect to
the distribution of the source and target data.

Reconstruction Using the nuFFT of Type 1 and 2 It has been shown
above that the matrix-vector multiplication in the CG method is very prob-
lematic when more than two SEMs are used. For two SEMs, further ac-
celeration is possible. Recall that, with two SEMs, the general form of the
encoding matrix is given by Eq. 5.2, page 157; it is repeated here using a
notation which clarifies that the locations �xl,ρ belong each to a separate
bijective region l = 1, . . . , L of the encoding function �ψ (cf. Fig. 5.1, page
159):

E(α,κ),(l,ρ) = c̃lα(�ul,ρ)e
−i�kκ�ul,ρ , with �ul,ρ := �ψ(�xl,ρ), (7.8)

where c̃lα := cα ◦ (�ψl)−1. The problematic part is the multiplication with the
Fourier terms. Recall that the fast reconstruction achieved with the Cartesian
PatLoc image space method is a consequence of choosing a rectilinear
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reconstruction grid not in image space, but in PatLoc encoding space. In
this case it is possible to drop the index l from �ul,ρ because these locations
lie on a rectilinear grid with L identical layers (cf. Fig. 5.1, page 159).

This idea of using a rectilinear grid in PatLoc encoding space can also be
applied to iterative reconstruction. The Fourier terms e−i�kκ�uρ then have a
form suited for the application of a nuFFT of type 2 because the locations
�uρ of the source data are distributed equidistantly, whereas the locations �kκ
of the target data are irregularly sampled (also cf. Fig. 7.4c). The opposite
is the case for the adjoint EH , which maps the irregularly-spaced data at
locations �kκ to the regularly-spaced data at locations �uρ. Also this mapping
can be performed rapidly, this time with a nuFFT algorithm of type 1 (cf.
Fig. 7.4b).

For the design of a particular reconstruction algorithm, it is useful to com-
pare the problem with iterative SENSE. This approach is promising because,
as has been shown for Cartesian trajectories already, SENSE and the image
space PatLoc method are also closely related to each other. The reason
for the similarity is that the encoding matrix has an equivalent structure.
This is also true with non-Cartesian trajectories; let Epat denote the PatLoc
encoding matrix and Elin the corresponding matrix that occurs in iterative
SENSE (see Eq. 2.15, page 47). The entries of the encoding matrices are then
given by:

(Epat)(α,κ),(l,ρ) = c̃lα(�uρ)e
−i�kκ�uρ︸ ︷︷ ︸

PatLoc

and (Elin)(α,κ),ρ = cα(�xρ)e
−i�kκ�xρ︸ ︷︷ ︸

Standard PI

.

(7.9)

Observe that, regarding the structure of the encoding matrix, the only dif-
ference between the two matrices is the additional index l = 1, . . . , L in the
RF-coil sensitivity maps. For convenience of notation, let w. l. o. g. L := 2.
With the latter equation, Epat can formally6 be expressed in terms of Elin

via Epat =
(
Elin,1 Elin,2

)
. This equation relates the iterative PatLoc recon-

struction with iterative SENSE such that it should be possible to perform the
matrix-vector multiplication in PatLoc using matrix-vector multiplications
of the corresponding PI analogue. To be more concrete, let s be a formal
signal space vector and let mpat =

(
mlin,1 mlin,2

)T
, where mpat is a for-

6Formal means here that the expressions are not equal in the usual sense because c̃α �= cα
for nonlinear SEMs, but merely in a formal sense that only relates to the structure of the
matrices.
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mal PatLoc image space vector and mlin the corresponding PI vector. The
matrix-vector multiplication in PatLoc can then be calculated according to:

Epatmpat = Elin,1mlin,1 +Elin,2mlin,2 and EH
pats =

(
EH

lin,1s

EH
lin,2s

)
. (7.10)

These equations show explicitly that the matrix-vector multiplications for
the iterative PatLoc method can each be performed by applying L-times the
matrix-vector multiplications programmed for iterative SENSE reconstruc-
tion.

Close inspection of the latter equation shows that there is even room for
optimization. Recall from Eq. 2.54, page 94, that the encoding matrix in
iterative SENSE can be written as Elin = GC, where G contains the time-
intensive Fourier terms (which can be implemented as a nuFFT) and where
the application of the sensitivity matrix C can be realized as a quick vector-
vector multiplication. Then, Epat can be written as Epat =

(
Elin,1 Elin,2

)
=(

GC1 GC2

)
= G

(
C1 C2

)
and the matrix-vector multiplication evaluates

to:

Epatmpat = G(C1mlin,1 +C2mlin,2) and EH
pats =

(
CH

1

CH
2

)
GHs. (7.11)

The optimized PatLoc reconstruction therefore requires only a single nuFFT
of type 2 to be applied for the forward operation, and a single nuFFT of
type 1 for the adjoint operation. This is exactly what needs to be done in
iterative SENSE reconstruction. It is to be expected, however, that PatLoc
reconstruction is faster than iterative SENSE for a comparable number of
image voxels because, in PatLoc, the encoding space grid, which is relevant
for the nuFFT, only consists of an L-th fraction (�uρ) of all image voxels (�xl,ρ).

Reconstruction Using the nuFFT of Type 3 Instead of reconstructing on
a regular grid in PatLoc encoding space, it is also possible to choose equidis-
tant locations �xl,ρ directly in image space. In this case, however, the loca-
tions �ul,ρ = �ψ(�xl,ρ) are no longer regularly spaced with the consequence
that the Fourier terms e−i�kκ�ul,ρ (see Eq. 7.8) are not suited any more for
reconstruction with the nuFFT of type 1 or type 2.7 However, this situation

7Only for Cartesian trajectories in PatLoc k-space, the nuFFT of type 1 or type 2 can still
be applied. Note however, that, this time, the locations �kκ lie on a regular grid and �uρ on an
irregular grid, whereas in the previous section, it was �uρ that laid on a regular grid, and �kκ
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can be tackled with a nuFFT of type 3 when applying E as well as EH (cf.
Fig. 7.4d). To be precise, the encoding matrix Epat can still be written using
two components (for L = 2) as Epat =

(
E1 E2

)
=

(
G1C1 G2C2

)
, where

G1 and G2 describe the application of the nuFFT of type 3 for l = 1 and
l = 2. Note that in general, G1 �= G2, even though both operations can
be the same, for example when exact quadrupolar SEMs are used. The
matrix-vector multiplication then yields:

Epatmpat = G1C1m1 +G2C2m2 and EH
pats =

(
CH

1 GH
1 s

CH
2 GH

2 s

)
. (7.12)

The matrix-vector multiplication therefore normally requires that the nuFFT
of type 3 is applied L-times for the forward as well as for the adjoint
operation. Note that further acceleration by applying a single nuFFT on the
combined vector mpat is not always possible; the result might be different
to a separate application of the nuFFT on each of the sub-vectors ml. Also
note that a nuFFT algorithm of type 3 is typically not as fast as the nuFFT
algorithms of types 1 or 2. However, the difference is often not very high
(cf. e.g. [30]).

Considering that iterative PatLoc reconstruction with a nuFFT of type 3
is not much slower than reconstruction with the nuFFT of type 1 and 2,
and especially taking into account that a higher image quality can be ex-
pected with a nuFFT of type 3 (see discussion below), in many situations,
this approach seems to be superior to the approach that uses a rectilinear
reconstruction grid in PatLoc encoding space.

7.2 Application to Simulated and Measured
Imaging Data

The properties of the reconstruction methods, that were described on a
theoretical basis in the previous section, are verified here with simulated
as well as experimental data. In this section, it is first explained how the

on an irregular grid. As a result, this time, the nuFFT of type 1 can be used in the forward
operation and the nuFFT of type 2 for the adjoint operation - which is the opposite of the
situation treated in the previous section.
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data were generated, reconstructed and analyzed. Then, the corresponding
results are presented.

7.2.1 Methods

Further details about the implemented reconstruction algorithms and the
generated datasets are given in this section, and it is shown how image
resolution and SNR were analyzed.

a) Reconstruction Algorithms

Several iterative reconstruction methods were implemented in addition to
the direct methods that have been presented in the previous chapters.

Time-Domain Reconstruction The time-domain reconstruction was im-
plemented as shown in Fig. 7.1 and a standard implementation of the
CG method similar to the algorithm presented on page 93 was used. The
algorithm was stopped after a fixed number of iterations, typically after
25 or 30 iterations. An option was added to enable Tikhonov regulariza-
tion. The matrix-vector multiplication of the matrix G, which contains
the phase terms, or its adjoint with compatible vectors was programmed
in two different ways for CPU computations: For small datasets, where
the matrix could be stored entirely in the memory, G was precomputed
once in order to ensure quick accessibility of the relevant information. For
large datasets, the matrix-vector multiplication was performed line by line.
This approach reduces the memory requirements drastically, however, as
each line has to be recomputed multiple times, this approach is also much
slower than if the matrix could be stored completely in the memory. In
order to ensure acceptable reconstruction times also for larger datasets, the
line-by-line approach was also programmed for GPU-computation using
CUDA (Compute Unified Device Architecture; Nvidia, Santa Clara, CA,
USA).

Frequency-Domain Reconstruction The equivalent frequency-domain
method was programmed similar to the time-domain method. It differed
only in that an FFT was applied to the signal data and that the encoding
matrix was not constructed based on Eq. 7.1, but on the frequency-domain
analogue, given by Eq. 7.6, with a sinc-filter of appropriate width. For
the accelerated reconstructions, a Kaiser-Bessel window with filter param-
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eter α = 2 was used, and the encoding matrix was constructed using the
corresponding Fourier-domain window. The window was thresholded by
setting all values below 0.1% of the maximum value to zero. For compari-
son, two additional, inconsistent, reconstructions were tested. In the first
reconstruction, the encoding matrix was filtered, but no inverse filter was
applied, nor were the signal data filtered. In the second example, the signal
data were also not filtered and back-projection was implemented according
to the box-shaped frequency-domain window shown in Fig. 7.3b.

nuFFT Implementations An iterative method was implemented that was
based on the nuFFT of type 1/2. The implemented method used a regular
reconstruction grid in PatLoc encoding space, and was applicable to a
non-Cartesian PatLoc k-space grid. For the nuFFT of type 1/2, the image
reconstruction toolbox of Jeffrey A. Fessler was used. The toolbox contains
a fast implementation of the min-max interpolation method [36] with a
Matlab interface, downloadable for free on Fessler’s website [35]. A fast
implementation for the PatLoc reconstruction based on the nuFFT of type 3
has recently been developed by Dr. Florian Knoll in a joint project [[86]]. The
results shown here, however, have not been accelerated using this method;
instead, the accurate, but slow, nuDFT (time-domain reconstruction) was
applied without further numerical optimization.8

b) Data

The implemented reconstruction algorithms were tested with three different
encoding strategies:

1. 2D Cartesian PatLoc trajectory as presented in chapter 5.
2. 2D radial PatLoc trajectory, densely sampled as well as subsampled

as presented in chapter 6.
3. 4D PatLoc trajectory as explained below.

Numerical data were generated by discretization of the PatLoc signal equa-
tion (cf. Eq. 4.9, page 139). The Shepp-Logan head phantom served as
spin density, exact linear and quadrupolar SEMs were assumed and the RF-
sensitivity profiles of a real-world eight-channel RF-coil array were taken
as input data.

8The same applies to the Cartesian method described in footnote 7, page 251, that makes
use of a nuFFT reconstruction with the types 1 and 2, but with the order reversed compared to
the implementation that has actually been applied to generate the results for this chapter.
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Measurement data were acquired with the PatLoc hardware, which is de-
scribed in chapter 3.3.3, page 126ff. Phantom measurements were per-
formed with a cylindrically-shaped object with a diameter of 190 mm. The
object contained plexiglass tubes filled with water that had been doped with
nickel sulfate and sodium chloride. In vivo head imaging was performed in
volunteers. RF-sensitivity profiles and maps of the SEMs were determined
as described in the previous chapter (cf. 6.2.1b, page 220f).

The tested 4D PatLoc encoding strategy was the 4-Dimensional Radial
In/out vs. radial Out/In (4D-RIO) trajectory developed by Dr. Daniel Gal-
lichan. 4D means here that 4 SEMs, two linear and two quadrupolar fields,
are used to encode a 2D slice. For 4D-RIO, the linear and the quadrupolar
SEMs both follow a separate radial trajectory. The trajectories are, however,
not synchronous, but shifted by half a readout such that when the linear
trajectory passes through the center of k-space (in/out), the quadrupolar
trajectory approaches the edge of k-space and moves back inward on the
next radial spoke (out/in), and vice versa. The temporal delay between the
linear and the quadrupolar trajectory leads to complex, but very interesting
imaging properties. Here, only a few aspects are presented; for a detailed
analysis consult [[44, 42]].

c) Image Quality Analysis

Image resolution and image noise were analyzed based on numerical simu-
lations.

Image Resolution PSF plots were generated for different source locations,
different encoding strategies, and different reconstruction algorithms. For
quantitative results, the area of the main peak at FWHM was calculated.
For the 4D trajectory, image resolution was also estimated from the extent
of its local k-space.

Image Noise The noise propagation properties of the algorithms were
determined by first reconstructing 100× pure, white Gaussian noise, and
then calculating the standard deviation at each location.

7.2.2 Results

Reconstruction results are presented for the Cartesian, the radial and the
4D-RIO trajectory. The 2D datasets were reconstructed with the direct
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image space methods presented in the two previous chapters as well as
with the iterative methods described above. The 4D-RIO trajectory was
reconstructed with the (accelerated) frequency-domain and the time-domain
method.

a) Cartesian PatLoc Trajectory

Above, it has been shown theoretically that the iterative frequency-domain
and time-domain reconstructions are equivalent methods. Also, it has been
shown that an artificial filter function can be added to the reconstruction
without affecting consistency if appropriately included. These claims are
supported by Fig. 7.5.

Figure 7.5: Reconstructed images for a Cartesian trajectory with quadrupolar Pat-
Loc encoding. All reconstructions were stopped after 30 CG iterations. (a) Unfiltered
time-domain and (b) frequency-domain reconstructions give equivalent results. (c)
Also the filtered reconstruction yields an identical image. In this example, the encod-
ing matrix was constructed with a Kaiser-Bessel window, Fourier transformed, and
divided by the time-domain analogue of the filter to undo the filtering. Thresholding
was omitted. (d) Not dividing by the time-domain window leads to an inconsistent re-
construction. (e) Back-projection along box-shaped bands does also not correspond
to a consistent reconstruction.

The figure shows images from a simulated 64×64-acquisition reconstructed
on a 128×128-grid. It is clearly demonstrated that an appropriate frequency-
time-domain filter combination must be chosen to guarantee data consis-
tency (cf. Fig. 7.5c-e). Time-domain, frequency-domain and filtered recon-
struction (no threshold) yield identical images, Fig. 7.5a-c.

Fig. 7.6 illustrates that there is a fundamental difference, whether the filter-
ing is undone after application of the filtered encoding matrix or whether
the filtering is not undone, but considered by also filtering the signal data.
For the depicted very simple unaccelerated PI example, the final image
resolution is achieved with the former method right from the start. When
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the filtering is not undone, however, more than 100 iterations are required
to reach the optimal image resolution. Note that only the frequency encod-
ing direction is affected by the intermediate loss of resolution because the
encoding matrix is filtered only along the readout direction.

Figure 7.6: Effect of a window function on image resolution. (a) Filtering is undone
after application of the encoding matrix. (b) Filtering is not undone, but considered
instead by filtering the signal data along the readout direction. Shown are the
central parts of a PSF for different numbers of CG iterations reconstructed from
unaccelerated Cartesian PI data. Frequency encoding is from left to right. It can be
observed in this example that the optimal image resolution is achieved right from the
start when filtering is undone. If not, the filtering (here with a Kaiser-Bessel window,
filter parameter α = 2) reduces the spatial resolution along the frequency encoding
direction. The effect becomes smaller with an increasing number of iterations. After
about 100 iterations the difference to an optimal reference PSF (obtained from an
unfiltered reconstruction) becomes almost negligible. The plot on the right depicts a
quantitative evaluation of the resolution loss along the frequency encoding direction.
In the presented example, 90% of the optimal resolution is reached after about 45
iterations.

Further details about image resolution and Gibbs ringing for a 2D quadrupo-
lar Cartesian PatLoc trajectory are presented in Fig. 7.7, where these prop-
erties are analyzed with the help of PSFs, and where phantom images are
shown that were reconstructed with different methods.

The PSFs in Fig. 7.7 were simulated for two different source locations with
64 × 64 samples. Iterative reconstruction was performed on a grid with
256×256 lattice points. Relaxation effects were ignored. The measurement of
the tube phantom, shown in the bottom part of Fig. 7.7, was higher resolved
with 128× 128 samples and a 256× 256-reconstruction grid. The acquisition
protocol was a gradient echo with the following sequence parameters:
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Figure 7.7: PSF analysis and Gibbs ringing of a Cartesian trajectory for quadrupolar
PatLoc SEMs. The results for five different reconstruction methods are shown: direct
Cartesian; direct Cartesian where the data have been filtered with a Kaiser-Bessel
window; iterative nuFFT reconstruction (type 1 and 2); sparse iterative frequency-
domain reconstruction, with filtering of the signal data; and iterative time-domain
reconstruction. Top row: The PSFs for a central location are problematic and depend
significantly on the chosen reconstruction method. Direct Cartesian, but also the
nuFFT reconstruction exhibit prominent Gibbs ringing, which is significantly sup-
pressed by a window function at the expense of reduced image resolution. The
iterative time-domain (30 iterations), and accelerated frequency-domain reconstruc-
tion (60 iterations) give almost exactly the same results, with the highest spatial
resolution and no destructive sidelobes. Middle row: The PSFs for a peripheral
source location are well-behaved for all algorithms. Some loss of resolution is visible
for the filtered direct reconstruction, but not for the filtered iterative frequency-domain
method. Bottom rows: The dominant PSFs from the central locations are clearly
visible as corresponding pronounced Gibbs ringing artifacts in the reconstructed
measurement data. These artifacts are effectively suppressed by the time-domain
method and the filtered reconstructions. The PSFs have a lower resolution than the
acquired phantom images to show the ringing effect more clearly.
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TE = 8.7ms, TR = 100ms, slice thickness Δz = 5mm, flip angle α = 20◦.
The results shown in Fig. 7.7 are discussed in detail in the figure caption.

In this figure, the results from the iterative methods are compared to those
found with the direct image space method of chapter 5.1, page 155ff, whose
properties were analyzed in detail above. All images clearly have the
expected resolution gradient resulting from the increased SEM variations
at the periphery of the FOV. The direct reconstruction from filtered data
shows significantly reduced image resolution because a fairly high Kaiser-
Bessel window parameter of α = 2 was chosen to accentuate the effect.
The figure illustrates that the nuFFT implementation reconstructed onto a
regular grid in PatLoc encoding space outperforms the direct reconstruction
only slightly. Thresholding the frequency-domain reconstruction resulted
in a significant improvement in reconstruction time, approximately factor
20 for each CG iteration. Shown in the figure is a result from filtering the
signal data. The number of CG iterations was tripled compared to the
time-domain reconstruction. This resulted in an image with no increase in
noise, and no blurring or PSF anisotropies. Also, the pronounced Gibbs
ringing artifact is effectively suppressed by this method.

b) Radial PatLoc Trajectory

In the previous chapter, it has been shown that the main characteristics
of PatLoc imaging, for example non-homogeneous image resolution, are
very similar for radial trajectories and Cartesian trajectories. Significant
differences occur, however, in the sidelobe behavior of the PSFs. Different
reconstruction methods also affect the PSF and therefore it is interesting
to analyze how iterative methods alter the PSF and thus Gibbs ringing
and aliasing. Here, results for a densely sampled and a 4× undersampled
radial PatLoc trajectory, encoded with quadrupolar SEMs, are shown. The
same dataset has already been analyzed in detail in the previous chapter
with the direct reconstruction method. This has the advantage that it is
possible to focus here on those aspects, which are caused by choosing
iterative reconstruction methods instead of the previously discussed direct
reconstruction.

Densely Sampled Trajectory In Fig. 7.8 image resolution and Gibbs ring-
ing is analyzed. PSFs are shown for two source locations, using 103 simu-
lated projections and 64 samples per readout line. The iterative methods use
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Figure 7.8: PSF analysis and Gibbs ringing; similar to Fig. 7.7, however, with a
radial trajectory. Top row: For the central location, direct reconstruction with FBP
performs very well. Only the iterative nuFFT algorithm (type 1/2) has significant
sidelobes; they quickly vanish with increasing distance from the center - in contrast
to the corresponding artifact resulting from Cartesian encoding. Middle row: In this
example, the same number of CG iterations (30) was used for all reconstructions.
For peripheral locations, the filtered frequency-domain method has a reduced spatial
resolution. This shows that more iterations are required to reach optimality when
the signal data are filtered prior to iterative reconstruction. Bottom row: The in
vivo images support the simulation results: Direct reconstruction gives an excellent
image, the nuFFT exhibits prominent Gibbs ringing at the center, and the filtered
reconstruction yields reduced resolution when reconstruction is stopped already
after 30 iterations.
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a 256×256-reconstruction grid and all reconstructions were stopped after 30
iterations. Besides the PSF plots, 2D brain slices are depicted, reconstructed
on a 512×512-grid from 410 projections, each consisting of 256 data points.9

The figure illustrates that, overall, the image quality with the radial trajec-
tory seems to be higher than the quality that is achieved with the Cartesian
PatLoc trajectory. In contrast to Cartesian encoding, the direct reconstruction
can, with respect to image quality, compete with the iterative reconstruc-
tions. The direct reconstruction exhibits almost no Gibbs ringing, and also
image resolution appears to be fairly high. A noisy image with pronounced
Gibbs ringing at the center is found with the nuFFT implementation of type
1/2, where the image is intermediately reconstructed onto a regular grid in
PatLoc encoding space. Recent results [[86]] show that significantly better
results are found with a nuFFT implementation that reconstructs onto a
regular grid in image space, resulting in images that have almost the same
quality than those that are reconstructed with the computation-intensive
time-domain reconstruction method. Thresholding the frequency-domain
reconstruction was more effective than for the lower-resolved Cartesian
phantom image, with a speedup factor of approximately 40 instead of 20.
Comparison to the time-domain image clearly shows the effect that, af-
ter 30 iterations, optimal resolution is almost reached for the unfiltered
reconstruction, whereas more iterations are required for the filtered version.

The noise characteristics of the different reconstructions are shown in Fig.
7.9. Again, all iterative methods were stopped after 30 iterations. From the
nonlinearities of the SEMs, a quadratic dependency of noise and radius is
to be expected. This dependency is less well reproduced with the iterative
methods compared to the direct reconstruction. The lowest SNR is found
with the nuFFT implementation. With Tikhonov regularization, however,
the quadratic dependency can almost be recovered. Interestingly, the time-
domain reconstruction shows a slightly increased noise level compared to
the direct method, whereas the filtered frequency-domain reconstruction
yields images with higher SNR. This behavior is related to the reciprocal
property that image resolution is the highest with the time-domain method,
and the lowest with the accelerated frequency-domain method, if stopped
too early.

9For details about the acquisition consult the previous chapter, where the same data were
used.
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Figure 7.9: Noise propagation for several different reconstruction methods applied
to radial PatLoc data. (a, b) repeat Fig. 6.8a,c. (a) With pure quadrupolar encoding,
the noise level increases almost quadratically toward the periphery for the direct
method. (b) This is in conformity with theoretical calculations. (c) Also the images
reconstructed with the different iterative methods (all stopped after 30 iterations)
have a higher noise level with increasing radius. There are, however, significant
differences, with a more than quadratic increase of noise for the nuFFT implementa-
tion. (d) Tikhonov regularization seems to be appropriate to recover the quadratic
dependency of the noise also for the nuFFT implementation.

Subsampled Trajectory The previous chapter has shown that direct re-
construction is problematic if subsampled radial trajectories are used. As
iterative methods have the potential to process RF-sensitivity data more
effectively, it can be expected that the undersampling artifact is diminished
with iterative methods. Fig. 7.10 shows that this is indeed the case for a
fourfold subsampled radial trajectory. One aspect of the filtered reconstruc-
tion should not be overlooked: In contrast to Fig. 7.8, image resolution
is not reduced, even though the reconstruction was stopped earlier than
the time-domain method (25 instead of 30 iterations). The reason for this
positive effect is that no window function was applied to the signal data,
but the filtering was undone after application of the filtered encoding ma-
trix. For this radial trajectory, the slight data inconsistency resulting from
thresholding manifests as a prominent Gibbs ringing at the center, similar to
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Figure 7.10: PSF analysis and Gibbs ringing; similar to Figure 7.8, but with a
4× subsampled radial trajectory. Top row: For the central PSF, a star-shaped
artifact appears along the radial direction. Compared to the direct method, signal
contamination is less pronounced, yet still present, for the nuFFT reconstruction,
and does almost not occur with the sparse frequency-domain reconstruction and
the time-domain method. Middle row: The peripheral PSFs indicate that signal
contributions from distant voxels should usually not pose a problem; only direct
reconstruction exhibits slight leakage. Bottom row: The star-shaped artifact resulting
from the central region corrupts the image for the direct and the iterative nuFFT
method. The artifact is almost entirely suppressed with the other two methods. Note
that the data were not filtered for the frequency-domain reconstruction as in Fig. 7.8.
Consequently, already after 25 iteration, an optimal image resolution is reached;
however, a Gibbs ringing artifact appears at the center.
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Figure 7.11: PSFs for the time-domain reconstruction simulated with a 4D-RIO
PatLoc trajectory. The PSFs indicate that the reconstruction is generally well-
behaved; only some minor signal contamination to distant voxels is observed. Shown
are PSFs at nine locations from the bottom left quadrant of the FOV. Therefore,
the PSF at the top right is actually at the center of the FOV. For the other three
quadrants, the PSFs look very similar (not depicted). It is clearly visible that near
the center, the PSFs are slightly broader than at the periphery. This is in conformity
with the corresponding extent of the local k-space shown in Fig. 3.6c.

the artifact that occurs with the nuFFT reconstruction, yet less pronounced.
This ringing is not observed when the signal data are filtered (cf. Fig. 7.8).

c) Multi-Dimensional PatLoc Trajectory

An exciting further development of the PatLoc hardware has been the ex-
tension to multiple gradient channels. The 4D-RIO trajectory is an excellent
example, which makes full use of the new hardware configuration. The
time-domain and the accelerated frequency-domain method are evaluated
here using this trajectory.

PSF Analysis Fig. 7.11 represents a PSF analysis of the 4D-RIO trajectory
with 24 readouts, each having 24 data points, reconstructed on a 256 ×
256-grid with the time-domain method. The PSFs are in conformity with
the local k-space of the trajectory, shown in Fig. 3.6c, page 113, with a
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Figure 7.12: Noise distribution for a 4D-RIO trajectory. (a) The noise level in the
reconstructed image has a nearly radially symmetric distribution. (b) A similar
distribution has the inverse of the voxel volume, estimated from the extent of the
local k-space at the corresponding position. (c) The 1D plot illustrates that noise
(black) and estimated inverse voxel volume (blue) deviate moderately from each
other. Interestingly, there is almost no difference if the voxel volume is determined
more exactly by measuring the 2D-FWHM of the 2D-PSFs for locations with different
distance from the symmetry center (red). Note that only relative deviations are
plotted, normalized at r = 0.

nearly constant spatial resolution at the center, and a higher resolution
at the periphery. The PSFs are generally well-behaved. The frequency-
domain reconstruction yields results that are very similar; a separate figure
is therefore not shown. It has to be noted that it would be possible to
improve image resolution (width of main peak) with the same amount of
data points by moving farther out in PatLoc k-space; this would, however,
reduce the sampling density with adverse consequences for the quality of
the PSF sidelobes, very similar to conventional PI, but in a more sensitive
way than usual.

Noise Analysis Results of an SNR analysis for the 4D-RIO trajectory and
the time-domain reconstruction (25 iterations) are illustrated in Fig. 7.12.
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The graph shows that - similar to 2D PatLoc (cf. Fig. 7.9) - variations in SNR
are dominated by differences in image resolution. According to subfigure
7.12c, almost no difference between the spatial variations of noise and image
resolution can be appreciated if the voxel size is measured from the 2D-
FWHM of the PSF at the corresponding location. The figure also verifies that
the extent of local k-space can serve as a quick (but only rough) estimate
of local image resolution, and therefore also of the noise distribution in
the image. In the shown example, the extent of the local k-space was
estimated by calculating the length of the largest local k-space vector. This
approximate method seems to overestimate the spatial resolution once the
central regime of constant resolution is abandoned toward the periphery of
the FOV.

Experimental Results Reconstruction results of a phantom consisting of
tubes filled with doped water and results of an in vivo slice of a human
head are shown in Fig. 7.13. All measurements were performed using
4D-RIO with 2562 data points and a reconstruction grid with 320 × 320

lattice points. The images verify the capability of the time-domain and the
accelerated frequency-domain method (with filtering of the signal data) to
consistently reconstruct a magnetization distribution that has been encoded
with a multi-dimensional PatLoc trajectory.10 In the depicted example, the
frequency-domain reconstruction needed about twice as many iterations
to reach a comparable image resolution than the time-domain method. As
the image could be reconstructed approximately 20-times faster, a total
speedup factor of one order of magnitude could be achieved. The images
are not higher resolved than typical 256× 256 acquisitions performed with
linear gradients. Moving out farther in PatLoc k-space would significantly
improve image resolution (thereby, however, reducing the sampling density
that might negatively affect image quality). In this example, one of the
very first 4D-RIO in vivo acquisitions, optimization of image resolution
was not the focus. On the contrary, a high sampling density was chosen in
order to ensure that no artifacts would be introduced that are caused by
insufficient sampling, thereby facilitating the detection of other causes for
residual image artifacts.

In fact, the reconstructed phantom images are almost artifact-free. Close
inspection of the in vivo image shows some ringing-like artifacts originating

10For the frequency-domain method, each readout was divided into two segments because,
in 4D-RIO, the effective encoding field changes abruptly at the center of the signal readout.
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from the center. This artifact shows a problem that seems to be related to
multi-dimensional encoding: Already very small differences between the
SEM sensitivities that are assumed in the reconstruction and the actual
SEMs that are applied during signal encoding cause significant artifacts.
The images shown in subfigures 7.13a,b and d have been reconstructed from
data, where the SEMs have been calibrated as explained in [[42]]. Subfigure
7.13c demonstrates that severe artifacts indeed occur if SEM calibration
is not adequately performed prior to image reconstruction. The effects of
miscalibration are currently being investigated.

Figure 7.13: Reconstruction from phantom and in vivo measurements using a 4D-
RIO PatLoc trajectory. (a) Time-domain reconstruction (30 iterations) of a phantom
consisting of parallel tubes filled with doped water. (b) Sparse frequency-domain
reconstruction with data filtering (60 iterations) for the same dataset. Almost no
difference to the unfiltered reconstruction is visible. The good image quality of the
images (a,b) are a result of exact calibration of the SEMs. (c) If the calibration is
performed with less care, deterioration of image quality occurs. (d) Time-domain
reconstruction for an in vivo brain slice. The brain slice is well depicted. Only some
extended Gibbs ringing-like artifacts are visible which may be attributed to non-exact
SEM calibration.
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7.3 Evaluation

Several image reconstruction methods were tested with a Cartesian, a radial
and a 4D-RIO PatLoc encoding trajectory. Results were presented that
allow assessment of the methods regarding image resolution, SNR and
the capability to suppress aliasing artifacts. In this chapter, the emphasis
has been given to a CG-based method that circumvents direct inversion
of the encoding process by iterated forward evaluation of a linear signal
model. This approach is very general, but also very computation-intensive,
and therefore several approaches were investigated to accelerate image
reconstruction. These and related topics are further evaluated below, and
alternatives beyond linear image reconstruction are briefly discussed.

7.3.1 Image Properties: Encoding and Reconstruction

One may ask to what extent image properties are predetermined by the
chosen encoding strategy, and to what extent they can further be influenced
by the particular image reconstruction method. Note that the iterative CG
reconstruction algorithms, that are the subject of the present chapter, can
be treated as linear methods.11 Therefore, this problem can be approached
with the tools of chapter 4.2.2c, page 151f.

Image Resolution The spatial resolution of the reconstructed images can
be analyzed with the SRF; the SRF naturally separates encoding from recon-
struction because it is, according to Eq. 2.16, page 50, given by a weighted
sum of the encoding functions, and, whereas the encoding functions ex-
clusively depend on the chosen encoding strategy, it is the reconstruction
method that determines the weighting.

Note that the encoding functions have spatial oscillations whose frequency
varies significantly over the FOV for nonlinear encoding. These frequencies
are primarily caused by SEM encoding and are described by the local k-
space (cf. paragraph The Concept of Local k-Space in chapter 3.2.2, on page
112ff). Image resolution is bounded by the largest spatial frequency of the
local k-space, or, correspondingly, by the maximum oscillation frequency
of the encoding functions. The encoding strategy therefore defines the
maximum resolution that is achievable at a certain location.

11However, pay attention to fn. 25, page 93.
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Depending on the reconstruction method, the weighting of the encoding
functions can be more, but also less efficient, and therefore it is decisive to
apply a reconstruction method that is capable of recovering the highest of all
encoded spatial oscillations. RF-sensitivity variations can even - especially
in regions with weak SEM encoding - enhance the oscillation frequency
of the encoding functions. Image reconstruction algorithms can make use
of this effect that has been termed superresolution in chapter 2.3.1e, page
86ff. And indeed, the results show a superresolution effect for the iterative
time-domain reconstruction, especially in regions of very weak gradient
encoding.

In some situations, it can be useful to low-pass filter the signal data, for
example, in order to reduce Gibbs ringing or to accelerate image recon-
struction. If, in this case, the reconstruction remains unaltered, high spatial
frequencies are disregarded, and some loss of image resolution occurs. This
behavior is observed with the filtered direct reconstructions. If, however,
also the reconstruction algorithm is appropriately modified, the high spatial
frequencies can be recovered. This is achieved with the filtered frequency-
domain reconstruction.

SNR The results, especially Fig. 7.12, have shown that SNR is strongly
coupled to the local image resolution, and is therefore primarily determined
by the chosen encoding strategy. In the previous two chapters, the propor-
tionality of SNR and effective voxel volume could be proven explicitly for
the direct Cartesian and radial PatLoc reconstruction (cf. Eq. 5.28 and Eq.
6.14). The results suggest that this is also the case for multi-dimensional
PatLoc trajectories, expressing a general law that local image resolution and
local SNR are inversely related to each other, a property that is well-known
from conventional imaging with linear SEMs (cf. Eq. 2.36).

This relationship between resolution and SNR also explains, at least to some
extent, unequal noise levels in images that are reconstructed from the same
dataset, but with a different method. For example, consider Fig. 7.8 and Fig.
7.9; there it is shown that, if the iterative algorithms are stopped at an early
stage, the time-domain reconstruction has already recovered higher spatial
frequencies than the accelerated frequency-domain reconstruction with data
filtering. Consequently, also the noise level is higher for the time-domain
reconstruction. However, the noise level of the reconstructed images is
not uniquely determined by the resulting image resolution. In Fig. 7.9c
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it is shown that the iterative nuFFT reconstruction, type 1/2, has a high
noise level which does not come along with a corresponding increase in
image resolution (cf. Fig. 7.8). Fig. 7.9d illustrates that with Tikhonov
regularization the expected relationship of image SNR and image resolution
can be recovered. As regularization is related to the numerical condition
of the encoding matrix, numerical effects seem to have a crucial influence
on the noise distribution of the reconstructed images when iterative CG
methods are used for reconstruction.

Aliasing In this chapter, aliasing was only investigated for fourfold sub-
sampled radial trajectories. The PSF plots shown in Fig. 7.10 reveal that the
star-shaped undersampling artifact exists for all reconstruction methods.
However, compared to the direct and type 1/2 nuFFT reconstruction, the
artifacts are nearly entirely suppressed by the time- and frequency-domain
reconstructions such that no undersampling artifact is visible in the shown
in vivo images. The artifact suppression is achieved by a similar mechanism
that is also responsible for superresolution: The time-domain method and
its frequency-domain analogue efficiently incorporate RF-sensitivity infor-
mation into the reconstruction. The results show that artifact suppression
is typically much more effective than the superresolution effect. This is in
conformity with standard PI. The reasons for this behavior are similar for
PatLoc and standard PI. Image resolution is a local effect, where (apart from
extreme locations) SEM encoding generates much higher spatial frequencies
than RF encoding. Aliasing, on the other hand, is a non-local effect, where
accrued RF variations can effectively compensate for deficiencies in SEM
encoding.

7.3.2 “Gold Standard”: Time-Domain Reconstruction

The results have demonstrated that, overall, the time-domain reconstruction
outperforms the other reconstruction methods regarding image quality. Im-
age resolution and artifact suppression are highly optimized, and also SNR
is near-to-optimal. Only occasionally, other methods perform better (for
example, increased SNR and reduced Gibbs ringing by direct reconstruction
from radial PatLoc data in Fig. 7.8). Therefore, the time-domain method
may be regarded as a sort of “gold standard”. Keep in mind, however, that
the time-domain method is an iterative method that cannot converge under
the presence of noise. This is problematic because the algorithm must be
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stopped at the right time to find a good compromise between image reso-
lution and noise/artifact level (cf. Fig. 2.17, page 94). For ill-conditioned
problems, Tikhonov regularization might be required to control the noise.
By far the largest problem with the time-domain method is its unfavorable
numerical complexity of typically about O(N4) for each CG iteration and
2D imaging, where N ≈ 256 for high-resolution anatomical images. As
a result, the reconstruction time can already be prohibitively long for 2D
imaging, not to mention the time required for 3D imaging sequences.

7.3.3 Methods to Accelerate Image Reconstruction

To overcome the problem of long reconstruction times several strategies
were suggested in this chapter to accelerate the time-domain reconstruction.

Brute Force: Parallel Computing Recall that the time-consuming step of
the reconstruction is a matrix-vector multiplication involving the very large
encoding matrix E and its adjoint EH . For high-resolution 2D imaging, E
cannot be stored in memory. For example, consider a 2562 acquisition with
8 receiver coil reconstructed onto a 5122 lattice. Even with single precision,
explicit storage of E would require more than 1 TB of memory capacity,
which is currently far beyond from being acceptable for standard image
processing. Therefore, it is useful to break down the matrix-vector multipli-
cation to less than 106 vector-vector multiplications with almost no storage
needs. These vector-vector multiplications are ideally performed simultane-
ously with an enormous potential for the reduction of reconstruction time
through parallel computation. In the last few years CPUs have begun to
being equipped with several cores, thus allowing a small amount of paral-
lelization. Much more useful in this regard are GPUs, which have many
more processing units. Compared to an initial Matlab implementation of
the time-domain method for CPU processing, an acceleration of three orders
of magnitude could already be achieved with an optimized code that has
also been parallelized using CUDA (Compute Unified Device Architecture;
Nvidia, Santa Clara, CA, USA), thereby reducing reconstruction time from
several days to a few minutes only for typical high-resolution 2D datasets.

Sparsification of the Encoding Matrix Parallel computing may reduce
the reconstruction time, however, the number of computed operations
remains the same. All multi-dimensional imaging sequences that have been
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discussed so far in the literature form generalized projections, for which the
computation load can be reduced by approximating the encoding matrix
by a sparser frequency-domain version of it. This approximation leads
to artifacts. In this chapter, methods were presented, which reduce these
artifacts by applying an appropriate filter function. With the developed
methods, computation time becomes independent from the amount of data
that is acquired along the signal readout. In fact, the numerical complexity
reduces from O(N4) to O(kN3), k � N , for each CG loop. This means that
the speedup factor scales linearly with the length of the readout. In the
shown examples, a readout of length 64, 128, 256 resulted approximately in
a speedup of 10, 20, 40, respectively. The exact acceleration depends on the
used computer hardware and implementation.

It has been shown that data consistency is affected by the filter, and needs to
be restored. Two methods were described. One method corrects the filtering
in the forward operation after application of the encoding matrix. It could be
verified that not more CG iterations are required than if filtering is omitted.
The reconstruction has worked very well for the radial PatLoc trajectory, but
the ringing artifact at the center was less effectively suppressed compared
to the unfiltered reconstruction. The ringing might be further suppressed
by using an adaptive threshold level, with a more precise modeling at
the center; with a similar method, the artifact power could be reduced for
4D-RIO [[43]].

The ringing did not appear with an alternative method, also discussed in
this chapter, where the signal data are filtered to ensure data consistency.
It was shown that this method is less sensitive to inconsistencies that are
introduced by thresholding, yielding a high image quality also for the Carte-
sian PatLoc dataset and the 4D-RIO trajectory. The results have shown
that this approach requires 2− 3× more iterations than usual to achieve an
optimal image resolution; nevertheless, a speedup factor of 10 to 20 seems
realistic also for this method in high-resolution applications, but numerical
options should be evaluated in the future to reduce the number of iterations.
No image degradation (e.g. higher noise level) by the increased number
of iterations was observed. Finally, note that the filtering only affects fre-
quency encoding, not phase encoding. As a consequence, an anisotropic
image resolution may occur during the first iterations (for example, for
Cartesian trajectories). The anisotropy vanishes with an increasing number
of iterations, and is typically not even observable during the first iterations
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because the spatial direction of frequency encoding typically changes in
PatLoc imaging between successive projections (for example, for radial
trajectories or for 4D-RIO).

nuFFT For encoding with only two SEMs, image reconstruction can be
accelerated by several orders of magnitude because SEM encoding can
then be described as a nuDFT for which fast nuFFT implementations exist
that reduce the numerical complexity of each CG iteration from O(N4) to
O(k2N2 logN2), k � N , thus permitting sub-second calculations for each
iteration. For the nuFFT of type 3, k is typically higher than for the nuFFT
of the other two types (cf. e.g. [30]). Note that the nuFFT has the same
dependency on the problems size as the FFT, however, with a constant k > 1

for the nuFFT.

Latest results [[86]] show that acceleration of the iterative time-domain
method with the type 3 nuFFT does almost not affect image quality. The
examples above have shown that the same is typically true for the type 1/2
nuFFT – with one exception: Problems may occur at locations, where the
SEMs have vanishing spatial gradients. Conceptually, type 3 and type 1/2
nuFFT reconstructions differ in that the former uses a regular distribution
of image voxels and the latter a non-regular, with larger and fewer image
voxels in regions where the SEMs are flat. The type 3 nuFFT therefore has
the advantage that a higher voxel density exists in problematic regions.
Consequenty, RF encoding is more efficient in those regions, and a superres-
olution effect with better image quality can be observed. An exact analysis
of this effect, and whether other effects are involved, is part of ongoing
work.

7.3.4 Beyond Matrix Inversion Approaches

The iterative reconstruction methods that were analyzed in this chapter
use the CG method to solve a linear signal model without additional con-
straints. From a numerical point of view, the two properties - linearity and
absence of constraints - make the methods of this chapter some of the most
fundamental and also best-behaved reconstruction problems that one may
encounter. Nevertheless, experience with conventional imaging has shown
that under certain circumstances it can be useful to formulate and solve
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more complex reconstruction problems. Some approaches that might be
useful also in the context of PatLoc imaging are given below.

Nonlinear Reconstruction Very interesting is the method developed by
Uecker et al. [184] to determine the magnetization distribution without
the need of having to provide predetermined RF-coil sensitivity profiles as
inputs to the iterative reconstruction. In this method, magnetization and RF-
coil sensitivity profiles are jointly estimated. Then, the forward operation is
not a linear system any more, but a nonlinear problem. Therefore, the linear
CG method is not appropriate and other, nonlinear, optimization algorithms
must be employed like the (iteratively regularized) Gauss Newton method
[184]. This method might be extended in PatLoc to reduce the problem of
accurate SEM calibration by estimating additional calibration parameters.

Nonlinear reconstruction has found even more attention when prior knowl-
edge is added. For example, Block et al. [13] have included an l1-total-
variation regularization term into the forward model yielding reduced
artifacts for subsampled conventional radial imaging data. Noteworthy
is the approach pursued by Knoll et al. [85, 84] who use a generalized
total variation regularization term of second order [16], and a primal-dual
optimization algorithm [20] to further improve image quality. Initial inves-
tigations with this regularization term in combination with radial PatLoc
data are very promising [[86]].

Learning from the Fractional Fourier Transform A very different ap-
proach has recently been introduced [127], and was adapted in [179] for
O-space imaging [178], where a quadratic field is applied in conjunction
with two gradient fields for in-plane encoding. Motivated by the special
nature of the used encoding strategy, a reconstruction was proposed that is
based on the fractional Fourier transform.

For the three-dimensional O-space trajectory a similar problem occurs with
CG-based reconstructions that is also encountered with 4D-RIO: Slight sys-
tematic errors between the encoding model and the actual encoding process
can lead to signal loss, even signal voids, that destroy the diagnostic usabil-
ity of the reconstructed images if not adequately accounted for by applying
a well-tuned calibration method prior to reconstruction. Stockmann et al.
observed in [179] that the fractional Fourier transform can transfer the prob-
lem of generating signal voids to mere geometric distortions, which are far
more acceptable than signal voids. Unfortunately, the fractional Fourier
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transform is not suited for a general encoding scheme, and was even not
exactly suited for the O-space model (therefore introducing significant ar-
tifacts). Nevertheless, the approach points in the right direction and is a
first indication that the calibration issue might ultimately be overcome by
making use of alternative reconstruction methods beyond simply inverting
the encoding matrix directly, or indirectly with the help of iterative solvers.
However, adequate methods that can be used for a large class of encoding
strategies are still waiting to be discovered.

7.3.5 Conclusions

For 2D encoding with two SEMs, iterative reconstruction offers a valuable
alternative to direct image reconstruction, especially for subsampled trajec-
tories. Reconstruction can be performed efficiently because the calculations
can be accelerated with nuFFT algorithms. The faster nuFFT type 1/2 re-
construction yields images represented in PatLoc encoding space. While
this approach should often be acceptable, problematic encoding strategies
(like those with locally very weak SEM encoding) are better handled with a
nuFFT of type 3 with reconstruction immediately into the final image space.

For 2D encoding with more than two SEMs, acceleration with the nuFFT
is not possible. The time-domain CG reconstruction can be speeded up
through parallel processing of the imaging data. Further acceleration is
possible for generalized projections, where the encoding process can be
modeled with a filtered and sparser frequency-domain version of the en-
coding matrix. This approach is feasible because the filtering does not
affect consistency with the measurement data if appropriately accounted for.
For high-resolution 2D imaging, image reconstruction can be performed
in the range of seconds with an optimized implementation of the filtered
frequency-domain method, which would allow image reconstruction im-
mediately on the imaging hardware while the examination is being carried
out.

Further reduction of computing time and lower requirements for the fi-
delity of the SEM-sensitivity data are two major objectives that should
guide the development of alternative ways of signal encoding and image
reconstruction in the future.



Chapter 8

Summary and Outlook

THe thesis is summarized in this concluding chapter, and some directions
for future research are suggested.

8.1 Summary

The goal of this thesis was to contribute to the research field of encoding with
nonlinear magnetic fields in MRI, a topic of increasing interest that has only
received scant attention in the past. The conducted work has been part of
PatLoc, a research direction that combines nonlinear encoding with parallel
imaging, initiated by Prof. Dr. Jürgen Hennig within the INUMAC project.
PatLoc offers new options to improve the encoding efficiency, to reduce
peripheral nerve stimulation and to develop other interesting applications
such as those that arise from advances in shimming methodology with
nonlinear phase preparation, with many more applications expected to
arise (see chapter 3.2); research in this field is still at the beginning.

During the course of this thesis the theoretical foundations of PatLoc en-
coding and image reconstruction were elaborated. Efficient reconstruction
algorithms were developed, and the effectiveness of several encoding and
reconstruction strategies was theoretically discussed and assessed by evalu-
ating imaging results.

The algorithms were applied to simulated data, but also to experimental
data. The experimental part resulted from team work, in total conducted by
not fewer than ten researchers, mainly members of the Freiburg MR-Physics
group, but also employees from industrial partners. The experiments re-
quired:

• Design and manufacturing of hardware for the generation of NB-
SEMs and integration into existing MR scanner environments.

• Development and implementation of useful encoding strategies.
• Data acquisition and pre-processing.

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5_8, © Springer Fachmedien Wiesbaden 2013
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In this thesis, only those topics were presented with significant own con-
tributions that have resulted (or will result) at least in a co-authorship of a
publication or a co-inventorship of a patent application.

Generalizing Parallel Imaging For this work, it has been extremely use-
ful to realize that PatLoc generalizes state-of-the-art imaging technology
that makes use of parallel reception devices. Parallel imaging has been the
subject of intensive research activities for more than ten years now, and
therefore mature know-how was available on which this thesis could be
based on, even though not much knowledge had been generated up to that
point on nonlinear encoding. The generalization to nonlinear encoding
favored the adoption of a rather abstract theoretical point of view; this
approach facilitated the detection of principles that are common to conven-
tional imaging and PatLoc imaging, and the analysis of effects which are
specifically caused by the nonlinearities and/or non-bijectiveness of the
encoding fields. While writing this thesis and reviewing existing recon-
struction methods, it became apparent that this abstract point of view also
sheds new light onto conventional image reconstruction by revealing con-
nections between established methods like SENSE and GRAPPA or between
gridding reconstruction and the general matrix approach (see chapter 2).

The theoretical background of encoding with nonlinear fields was elabo-
rated in chapter 4. A generalized k-space concept was introduced that loses
its meaning as the Fourier space of the encoded object. The advantage of the
introduced concept is that it leads to a separation of the temporal degrees
of freedom (k-space trajectory) and the spatial degrees of freedom (SEM
geometries). Despite the nonlinearity of the SEMs, the encoding process is
still described as a linear operator that allows application of linear image
reconstruction methods. Image reconstruction reduces therefore to a simple
matrix inversion and image properties can be calculated easily with linear
algebra. Unfortunately, this approach normally only works in 1D. In higher
dimensions, the matrix to be handled is huge, in 2D almost as large as
one million entries along each of the two dimensions. Therefore, it was
essential to develop efficient reconstruction algorithms. Due to the inverse
nature of the reconstruction a high degree of accuracy is required for the
formulation of adequate reconstruction methods. It could be shown that, in
this regard, the requirements can be less demanding for the determination
of fundamental image properties; an acceptable accuracy is often ensured
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with approximate methods. For example, image resolution can be predicted
well with the concept of local k-space.

In this thesis, the possibilities of PatLoc were explored by analyzing en-
coding strategies of increasing complexity, thereby developing a number
of methods for accurate image reconstruction. To focus on the essentials,
only static anatomical imaging was dealt with (thus excluding for example
cardiac imaging), where a 2D slice was excited with the standard z-gradient.

Encoding and Reconstruction with Two SEMs The most basic 2D situ-
ation one might think of when dealing with NB-SEMs is an experiment
where the x- and y-gradients are replaced by a PatLoc coil that generates
two orthogonal quadrupolar SEMs. There is evidence (see Appendix A.4)
that these fields represent a first natural generalization from linear SEMs
toward arbitrarily-shaped NB-SEMs.

Such a setup was put into practice (see chapter 3.3); this had the advantage
that conventional sequences could be reused, thus allowing to purely focus
on the additional spatial degrees of freedom that come along with PatLoc
imaging. Image properties that depend on the time-courses of the applied
SEMs, such as image contrast, are not affected compared to conventional
imaging as long as the same sequence parameters are used. In standard
imaging, the most basic sequence is a Cartesian trajectory. This sequence
was adapted for PatLoc imaging. Encoding and reconstruction with this
trajectory was analyzed in detail in chapter 5. The same experimental setup
was then driven with a non-Cartesian (radial) trajectory and formed the
subject matter of chapter 6.

It is remarkable that for the Cartesian trajectory, image resolution and
noise propagation can be described by simple analytical expressions, thus
allowing a precise analysis of this basic PatLoc experiment. The main
result was that the application of NB-SEMs basically leads to a spatial
relocalization of the magnetization in the Fourier domain of the signal data.
The non-bijectiveness of the encoding has the positive effect of an intrinsic
acceleration, however, also aliasing is observed. This artifact is resolved
in PatLoc by supplementing SEM encoding with RF-sensitivity encoding.
Undersampling typically results in reduced noise amplification in PatLoc
compared to Cartesian SENSE because aliased locations are distributed
over the image and not along a single direction. It could also be shown
that the nonlinearities of the SEMs lead to image distortions and intensity
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modulations. These SEM-dependent effects are corrected by rewarping the
image and multiplying the final image with an intensity correction factor,
thus introducing variations in image resolution and SNR.

These effects are therefore directly related to variations of the gradient
strength of the SEMs. This property can be exploited to improve the encod-
ing efficiency by increasing the gradient strength in a ROI. Due to the fact
that magnetic fields are the strongest near the coil surfaces, the encoding
information can be enhanced most efficiently at the periphery of the imag-
ing volume. This could be verified also with the quadrupolar design that
showed a higher spatial resolution at the periphery of the imaging volume
compared to standard imaging and a lower resolution at the center, which
is useful for example in cortical imaging.

Image properties are determined by the SEM geometry to a high degree,
but also the trajectory and the chosen reconstruction method can have
a significant influence. Three different reconstruction approaches were
discussed for Cartesian as well as non-Cartesian trajectories:

1. Direct Reconstruction in the image domain.
2. Direct Reconstruction in the PatLoc k-space domain.
3. Iterative reconstruction using the CG method.

It turned out that all reconstructions could be formulated in a way that is
similar to the corresponding counterparts in PI. Methods which are based
on k-space, such as GRAPPA, can be applied to subsampled PatLoc data
without any modification. In the image domain, Cartesian SENSE must be
slightly modified to account for the nonlinearities of the SEMs (intensity-
correction, rewarping). An interesting difference between the two methods
is that aliasing can be resolved in the image domain, whether resulting
from subsampling or from the non-bijectiveness of the SEM encoding. In
the k-domain, it is, however, a much more intricate process to resolve the
ambiguities that are caused by the non-bijectiveness of the SEMs.

Not much less efficient than those direct methods is iterative CG reconstruc-
tion because, with two SEMs, the time-domain reconstruction algorithm
can be accelerated by applying the nuFFT in the forward operation. Al-
most no compromise regarding image quality has to be made with such a
nuFFT-based reconstruction. In extreme cases of vanishing gradients, an
implementation that uses the nuFFT of type 3 with a homogeneous distri-
bution of image voxels should be preferred to the nuFFT of type 1/2 with
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an inhomogeneous distribution. This is different for direct reconstruction,
which does not profit from using a homogeneous reconstruction grid.

To be precise, the number of required elementary computations is the least
for the Cartesian direct method with O(N2 logN2), where N ≈ 256 de-
scribes the problem size, followed by O(k2N2 logN2), k � N , for the
fastest direct non-Cartesian method to O(lk2N logN) for iterative nuFFT
reconstruction, where l describes the number of iterations and where k � N

is larger for the nuFFT of type 3 than for the nuFFT of type 1/2. Direct
image space reconstruction is therefore faster than any of the presented
iterative algorithms. However, the dependency on the problem size N is the
same, and even equivalent to the FFT; this ensures that the reconstruction
times do not differ by several orders of magnitude and can compete with
the fastest image reconstruction algorithms used in standard MRI.

In most situations, the faster methods guarantee a similar image quality than
the more computation-intensive methods. Only at locations with heavy
SEM-encoding deficiencies (vanishing local gradients) significant differ-
ences may occur. It has been shown that radial imaging trajectories are less
problematic than Cartesian trajectories because the isotropic shape of the
radial PSF reduces pronounced Gibbs ringing artifacts that emanate from
regions with vanishing gradients. Iterative reconstruction makes more effi-
cient use of the additional information provided by the RF sensitivities than
the direct methods and are therefore superior, especially for subsampled tra-
jectories; for example, a star-shaped undersampling artifact, resulting from
radial quadrupolar encoding, could be reduced significantly with iterative
reconstruction. With respect to image quality, the unaccelerated iterative
time-domain algorithm may serve as a “gold standard” reconstruction
technique.

It can be concluded that the presented direct reconstruction methods are
typically a good choice, also under strongly nonlinear and non-bijective
imaging conditions. They are very fast and do not suffer from the problem
of having to define a proper stopping criterion. In extreme cases, however,
iterative image reconstruction can be superior to direct reconstruction.

Encoding and Reconstruction with More than Two SEMs The last en-
coding strategy that was analyzed marked an important step toward more
flexible encoding. When only two SEMs are available combinations of those
can be formed, but tight restrictions on the achievable field geometry exist.
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For example, with pure quadrupolar encoding, the superimposed field
still has a quadrupolar geometry. With more than two SEMs, driven to its
extreme, the effective magnetic encoding field can take a great variety of
shapes and can change from one instant of time to the next almost without
restriction.

The experimental setup did not provide such flexible encoding, but it al-
lowed superposition of the two quadrupolar SEMs with the standard linear
gradient fields. The resulting field is also a quadrupolar field, whose center,
however, is not bound to one location, thus eliminating the problem of
extreme encoding deficiencies. Signal encoding and image reconstruction
was investigated with 4D-RIO, a particularly efficient sequence.

A problem with multi-dimensional trajectories, such as 4D-RIO, is that direct
inversion of the encoding matrix with a complexity of O(N6) is intractable,
and iterative CG-based reconstruction cannot be accelerated with a nuFFT
and therefore requires O(lN4) elementary operations. Image reconstruction
is therefore a challenging problem for multi-dimensional PatLoc trajectories.
Reconstruction time can be reduced significantly by exploiting the highly-
parallelizable structure of the reconstruction. Even further acceleration is
possible by making the problem sparser. For example, it was shown that
a large class of multi-dimensional sequences, among them 4D-RIO, form
generalized image projections that are sparse in the frequency domain if
adequately filtered, thereby reducing the numerical complexity to O(lkN3),
with k � N . With this method, the computation time does not increase
for longer signal readouts. For high-resolution 2D-imaging applications,
the additional speedup is typically well above one order of magnitude,
and reconstruction time is brought down to the range of seconds, fast
enough to be applicable during the examination, provided that the imaging
hardware is equipped with processing units that are specialized for parallel
computing.

With the iterative CG method high-quality images from 4D-RIO phantom
and in vivo data could be reconstructed. However, successful reconstruc-
tion required extremely well-calibrated data, thus showing a very high
sensibility to systematic errors of the used signal model.

The performed analysis has shown that multi-dimensional encoding offers
more degrees of freedom for trajectory design than encoding with only two
SEMs. At the same time, the imaging problem becomes more complex,
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but it could be shown that tools are available that help to get the problems
under control. Especially helpful in this regard is the local k-space concept,
which has proven useful in estimating spatial encoding properties such as
local image resolution or in assessing if the encoding strategy ensures that
the bulk part of the relevant signal energy is acquired.

Overall Assessment Table 8.1 lists several reconstruction algorithms that
were discussed in this thesis and compares their numerical complexity with
the range of encoding strategies that are compatible with the corresponding
algorithm. The table clearly shows a rule that often appears in practice: The
smaller the scope of a method, the more optimization is possible concerning
computing time. In practice, this means that the Cartesian reconstruction
can be performed in the range of milliseconds whereas the iterative time-
domain method requires at least several minutes to reconstruct a single 2D
image on a modern desktop PC equipped with a GPU. As a rule of thumb,
image reconstruction is fast and also robust as long as only two SEMs are
used to encode a 2D slice; the situation becomes much more challenging
for multi-dimensional encoding strategies, where some problems could be
solved already, yet by far not all.

Within the scope of this thesis, only three encoding strategies could be
analyzed in detail. Bringing the results of these three examples together can
only explain a small part of what can actually be done with PatLoc. How-
ever, the encoding strategies were chosen with care and give an overview of
the implications that PatLoc may have on MRI. Nevertheless, caution must
be taken when generalizing to other trajectories without a closer analysis.
A goal of this thesis was to provide insight and tools for future research in
this direction.

The presented material appears to be a good starting point for further gener-
alizations, for example, to nonlinear encoding also during RF transmission,
a topic that is part of a separate PhD project that has been termed ExLoc
by Hans Weber. The general approach taken in this thesis may also serve
to quantify further specializations such as the briefly discussed imaging
with nonlinear phase-preparation that has generated useful applications
already like reduced field-of-view imaging or the elimination of balanced
SSFP banding artifacts.

Despite its extent, this thesis has only treated static effects; it has largely
been disregarded that MRI is a dynamic process, where temporal effects play
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Table 8.1: Reconstruction algorithms: numerical complexity and scope of applicabil-
ity (N ≈ 256, k � N, l ≈ 20− 40)

����������property
method direct

Cartesian
direct

non-Cartesian
iterative
nuFFT

operations required O(·) N2 logN2 k2N2 logN2 lk2N2 logN2

number of SEMs 2 2 2

direct/iterative direct direct iterative
works with undersampling + - +
trajectory Cartesian non-Cartesian non-Cartesian

iterative
frequency-

domain

iterative
time-domain

matrix
inversion

operations required O(·) lkN3 lN4 N6

number of SEMs arbitrary arbitrary arbitrary
direct/iterative iterative iterative direct
works with undersampling + + +

trajectory generalized
projection arbitrary arbitrary

a fundamental role. However, a variety of new options also for dynamic
encoding become available with PatLoc imaging, especially when multiple
magnetic fields are used for signal encoding. As an example may serve a
comparison of conventional Fourier imaging with 4D-RIO. The results have
shown that static image properties, such as image resolution or SNR, are
similar over an extended region; however, the temporal evolution of the
applied magnetic fields is very different. Therefore, physiological reactions
like PNS will be different. Another example is the separation of signal
echoes with a quadratic field that allows dynamic shimming during the
acquisition of a single slice. This thesis may have shown the capabilities
of PatLoc imaging for spatial encoding; however, these examples illustrate
that a great potential also lies in the temporal domain, an aspect that needs
to become a focus of future research.
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8.2 Ongoing and Future Research

In the course of the PatLoc project, a novel type of gradient hardware has
been built, sequences with interesting properties have been realized, ad-
equate reconstruction methods have been implemented and initial medical
applications have been developed. This work is currently being continued
and future research will also follow these four directions: hardware design,
sequence design, image reconstruction and medical applications.

Hardware Design A high-performance PatLoc coil for in vivo imaging is
currently under development. The coil will be similar to the existing PatLoc
hardware, but with significantly improved specifications. The industrially
manufactured new system will allow a fair comparison with state-of-the-art
gradient hardware, and it will be possible to evaluate the imaging results
also from a clinical perspective. One drawback will, however, persist: As
before, the new system will be equipped with a very limited amount of SEM
channels. We have therefore begun to develop also other PatLoc coils with
completely different geometries. Sebastian Littin has recently completed
construction of a three-channel planar surface coil [[103]]. The next step has
to be and will be the development of a much more flexible gradient coil.
Christoph Juchem has recently shown that impressive improvements for B0-
homogeneity can be achieved with a flexible shimming system [79]. Initial
steps toward a flexible gradient system have been undertaken by Stefan
Wintzheimer [203]. This system has interesting properties, however, there
is much room for improvement. The insight we have gained so far in the
PatLoc project will enable us to build a gradient system that is as powerful,
but much more flexible than our current hardware implementations.

Sequence Design In this thesis, 2D PatLoc imaging modalities were con-
sidered, where slice selection was performed with the linear z-gradient.
Very interesting encoding strategies have recently been tested or are being
elaborated in the PeXLoc [54, 152] and ExLoc [[191]] projects, where the
implications of NB-SEM encoding during RF transmission on the magneti-
zation are explored.

The current PatLoc hardware requires that all developed sequences de-
fine time-courses of a maximum of six independent gradient channels. A
flexible gradient design will particularly have implications to sequence de-
sign. A more flexible system will have many more channels that can all be
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controlled independently from each other, thus increasing the complexity,
most probably to a degree which will be difficult to be handled without the
introduction of new concepts.

The local k-space concept [[42]] may help to design appropriate trajectories.
In its current form the local k-space distribution only gives a vague esti-
mate of how much aliasing is to be expected, but generally it provides an
excellent measure of how the acquired spatial information is distributed
over the ROI (thus defining for example image resolution in the ROI). It
will be crucial in the future to extend this concept also along the temporal
dimension to be able to reliably assess the temporal encoding efficiency
and other dynamic properties of the trajectory such as the resulting image
contrast or the probability to cause PNS. Novel performance measures also
need to be developed that allow one to assess if the trajectory can meet
other requirements; for example, the hardware constrains magnetic field
amplitudes, as well as spatial and temporal derivatives thereof, and encod-
ing strategies have to be designed such that inevitable calibration errors
can be tolerated by the method that is used for image reconstruction. The
definition of such performance measures will be essential to facilitate the
design of useful PatLoc encoding strategies in the future.

Image Reconstruction In this thesis, unconstrained linear image recon-
struction was shown to be effective in PatLoc imaging. This is especially
the case when only two SEMs are involved; in this regard, only occasionally,
the presentation has remained vague. For example, evidence still has to be
provided that a direct reconstruction is not only partially, but also entirely,
feasible in PatLoc k-space, including non-Cartesian trajectories. Also, it is
yet not fully clear why iterative reconstruction yields better results with
a nuFFT of type 3 than with a nuFFT of type 1/2. These few problems
need to be solved in the future, but much more challenging are the un-
solved problems of multi-dimensional encoding. It has been shown that the
time-domain reconstruction can be applied almost universally, most often
resulting in images of high quality. The method can also easily incorporate
model refinements. However, the time-domain reconstruction has shown
to be problematic with regard to several aspects that need to be tackled in
the future.

1. The time-domain algorithm could already be accelerated by more
than a factor of 1000 compared to an initial implementation; yet, it is
currently still not fast enough to be useful in the clinical routine.
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2. Artifacts like Gibbs ringing or those resulting from undersampling,
amplified by weak SEM encoding, may not be suppressed sufficiently
by linear unconstrained image reconstruction.

3. For multi-dimensional PatLoc trajectories, image reconstruction re-
quires very accurate knowledge of the applied encoding fields in order
to yield images of sufficient quality.

It will be an important aspect of future work to further accelerate the com-
puting time by optimizing parallel computing implementations and by
further exploiting any encoding sparsity. This thesis has shown that a
close analysis of a specific encoding strategy can lead to accelerations of
reconstruction time up to several orders of magnitude. For the success of
imaging with NB-SEMs, it will be essential to achieve orders-of-magnitude
acceleration also under general conditions of imaging with matrix gradient
coils that have a multitude of encoding elements.

Problems associated with weak encoding gradients can be circumvented
by ensuring sufficient encoding over the whole excited volume. However,
this reduces the encoding efficiency, and therefore improvements in this
regard are important and are currently being pursued in a collaboration
with Dr. Florian Knoll from the University of Graz, where it could be shown
that nonlinear image reconstruction with regularization using total general-
ized variation effectively eliminates the star-shaped artifact that occurs in
quadrupolar radial PatLoc imaging up to very high undersampling factors.
It will also be tested to what extent nonlinear signal modeling and nonlinear
reconstruction will help to reduce the calibration problem, one of the most
urgent problems that need to solved in the near future.

Medical Applications The aim of this thesis was not to develop medical
applications, but to elaborate fundamental theoretical principles of MR
signal encoding with nonlinear magnetic fields, to contribute solutions to
technical problems, and to develop practical image reconstruction methods.
Up to this point, also the whole PatLoc project was rather technologically-
oriented. Notwithstanding, we have already demonstrated that the in-
creased encoding efficiency at the periphery has implications to cortical
imaging. Other applications like reduced field-of-view imaging and advan-
tages for dynamic shimming have been evaluated, showing the potential of
PatLoc for a variety of medical applications.
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With state-of-the-art gradient hardware, magnetic field gradients are gener-
ated homogeneously across a large volume, in human systems allowing to
faithfully image large portions of the human body. Very often, diagnostic or
functional information is required only from small ROIs. With nonlinear
fields encoding can be focused onto the location of interest with flexible
volume coverage. Thus, organ-specific applications will profit most from
the additional degrees of freedom offered by PatLoc imaging. Reduced
scan-time, mitigation of problems like acoustic noise or PNS are just a few
examples that are noted here. However, it has to be admitted that the range
of possibilities that multi-dimensional encoding strategies offer are not yet
foreseeable at the current stage of research, and it will be exciting to observe
what medical applications will eventually be developed. Undoubtedly,
there is work for many future PhD students in this interesting research field
that involves nonlinear encoding fields.

I am very happy to see that a new large project, RANGEmri1, lead by
Dr. Maxim Zaitsev, has recently been funded by the European Research
Council. This will guarantee that the work performed in PatLoc will be
continued in Freiburg for at least five additional years with radically fresh
ideas about technological and methodological advancements and prospec-
tive diagnostic and functional applications in such different medical areas
like neuroscience, neurology and oncology.

1Acronym for Rapid Adaptive Nonlinear Gradient Encoding for Magnetic Resonance Imaging.
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A.1 Notation and Abbreviations

A.1.1 Notation

Throughout this thesis, scalars and scalar functions are written with non-
bold letters; variable quantities or running indices are typically written
in lowercase (a, j, c(·)), whereas fixed parameters or constants are nor-
mally written with capital letters (C,R,L); lowercase letters with an ar-
row (�a, �u, �ψ(·)) describe vectors or vector fields in 2D or 3D; lowercase
letters in boldface (a,kκ,ψ(·)) represent multi-dimensional vectors or multi-
dimensional functions, and capital letters in boldface (A,B,C) denote ma-
trices.

Standard notation for matrix operations is used. MT ,MH ,M+ denote
transpose, conjugate transpose and Moore-Penrose pseudo-inverse, the
trace of a matrix is given by Tr{M} and L ⊗M describes the Kronecker
product (see Appendix A.2 for more details). If not otherwise stated, the
norm v := ‖�v‖ indicates the standard Euclidian norm (or induced norm for
matrices).

Only those symbols that are not necessarily self-explanatory and/or that
are used in several chapters are listed below:

Concerning the Measurement

�B, �Bre magnetic field, field generated by the receiver coil
per unit current

BW bandwidth of the receiver
c, cα(·) RF-coil sensitivity
�E, �E electric field and field per unit current (electric sen-

sitivity)
�k,�kκ,k,kκ standard and PatLoc k-space vector
Δk k-space sampling distance

G. Schultz, Magnetic Resonance Imaging with Nonlinear Gradient Fields,
DOI 10.1007/978-3-658-01134-5, © Springer Fachmedien Wiesbaden 2013
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K sampled k-space coverage; i.e., the set of all sampled
k-space locations

K effective k-space coverage; i.e., all frequencies which
are effectively covered by the acquisition (including
the information from the RF-sensitivity profiles)

encα,κ(�x) the (α, κ)-th encoding function evaluated at location
�x

m(·) magnetization
R acceleration factor
s, sα received signal
T1, T2 time constants of the longitudinal and transversal

relaxation
TE , TR echo time, repetition time
U, I voltage, current
ω, �ω (angular) frequency

Concerning Image Reconstruction

B correlation matrix of the encoding functions
DFT, iDFT matrices that describe the 2D-DFT and its inverse
DFTt, iDFTt DFT (and inverse DFT) taken along the readout di-

rection only
F,E reconstruction matrix, encoding matrix
fρ(·) voxel function (= spatial response function) for

voxel location ρ

gρ g-factor for voxel location ρ

G that part of the encoding matrix that contains the
phase information from gradient encoding for non-
Cartesian trajectories

G,Σcart reconstruction grid, Cartesian grid
s received signal, collected in a vector
mρ,m reconstructed magnetization
Nc number of RF-receiver coils
Nκ number of acquired k-space data points
Nρ number of reconstructed voxels
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Npe number of phase encodes
Np number of projections for a radial trajectory
Nr number of samples along the readout direction for

a radial trajectory
Ψ̃ := 1Nκ ⊗Ψ noise covariance matrix of the signal measurements

Miscellaneous

[a, b] = ab− ba commutator of a and b

f(N) = O(g(N)) “big O notation”; means that the function f has the
same asymptotic behavior as the function g with
respect to N

f̂, v̂, F̂ a hat may indicate a continuous or discrete, forward
or inverse Fourier operation

FT ,FT −1 continuous Fourier transform and its inverse
γ- = γ/(2π) gyromagnetic ratio of hydrogen (= 42.58MHz/T)
� = h/(2π) Planck constant (= 1.05× 10−34 Js)
kB Boltzmann factor (= 1.38× 10−23 JK−1)
1, 0 unity matrix, zero matrix
IN set of N equidistantly spaced locations

(IN := [−N/2,N/2 − 1])
Iq square matrix that has a non-zero entry only at loca-

tion q, q, where it is defined to be unity
gN (·) a function, defined in Eq. 2.32 on page 61, that is

used to describe the truncation window of Cartesian
Fourier imaging

R(�ez, φ) :=

⎛⎝cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

⎞⎠ 3D rotation around the z-
axis by an angle φ

R(δ) :=

(
cos(δ) − sin(δ)

sin(δ) cos(δ)

)
2D rotation by an angle δ
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A.1.2 Abbreviations

ACS auto-calibration k-space signal
ADC analog-to-digital converter
CG conjugate gradient
(D)FT (discrete) Fourier transform
FBP filtered back-projection
FFT fast Fourier transform
FOV field-of-view
FWHM full width at half maximum
MPPI Moore-Penrose pseudo-inverse
MR(I) magnetic resonance (imaging)
NB-SEM nonlinear and non-bijective SEM
NMR nuclear magnetic resonance
nuFFT non-uniform fast Fourier transform
PI parallel imaging
PSF point spread function
RF radio frequency
ROI region of interest
SEM spatial encoding magnetic field
SNR signal-to-noise ratio
SRF spatial response function
SSFP steady-state free precession
SVD singular value decomposition
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A.2 Kronecker Product

Here, only those aspects of the Kronecker product are presented which are
relevant to this thesis. Definitions are introduced and some properties of
the Kronecker product are listed. Consult, for example, the textbook [91],
chapter 13, for more information on this topic.

Definition of the Kronecker product The Kronecker product of an m× p

matrix A and an n× q matrix B is an mn× pq matrix A⊗B with entries:

A⊗B =

⎛⎜⎝A11B · · · A1pB
...

. . .
...

An1B · · · AnpB

⎞⎟⎠ . (A.1)

Definition of a block-diagonal matrix A block-diagonal matrix D is a
diagonal matrix where the diagonal elements D(1), . . . ,D(n) are block ma-
trices. Such a matrix is typically written as the direct sum of the individual
matrices D(j), j = 1, . . . , n. In the context of this thesis, the sub-matrices
D(j) are all equal in size; in this case, it can be useful to write the block-
diagonal matrix with the help of the Kronecker product:

D =

⎛⎜⎜⎜⎜⎝
D(1) 0 · · · 0

0 D(2)
...

...
. . . 0

0 · · · 0 D(n)

⎞⎟⎟⎟⎟⎠ =
n∑

j=1

Ij ⊗D(j). (A.2)

In this definition, Ij represents a square matrix of size n × n that is unity
at index j, j and otherwise zero. If the blocks D(j) are all equal, i.e., if
D(j) := D(1) for all j, the expression of the block-diagonal matrix can be
simplified considering that the sum of all matrices Ij is just the unity matrix:

D =

n∑
j=1

(
Ij ⊗D(1)

)
=

⎛⎝ n∑
j=1

Ij

⎞⎠⊗D(1) = 1n ⊗D(1). (A.3)

Definition of a block-circulant matrix A block-circulant matrix is a circu-
lant matrix where the elements are block matrices. Such a matrix can also be
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written with the help of the Kronecker product involving a circulant matrix
Π and the individual blocks A(j):

⎛⎜⎜⎜⎝
A(1) A(2) · · · A(n)

A(n) A(1) · · · A(n−1)

...
. . .

...
A(2) A(3) · · · A(1)

⎞⎟⎟⎟⎠ =
n∑

j=1

Πj⊗A(j); Π =

⎛⎜⎜⎜⎜⎝
0 1 0 · · ·
... 0 1 0 · · ·

. . .
1 0 · · ·

⎞⎟⎟⎟⎟⎠ .

(A.4)

Properties of the Kronecker Product The following properties are impor-
tant in the context of this thesis:

• The Kronecker product is bilinear and associative:

A⊗B+A⊗C = A⊗ (B+C),

A⊗C+B⊗C = (A+B)⊗C,

(kA)⊗B = A⊗ (kB) = k(A⊗B), where k is a scalar,

(A⊗B)⊗C = A⊗ (B⊗C).

• The Kronecker product is not commutative. In general A ⊗ B �=
B⊗A. However, there exist permutation matrices P and Q such that
A⊗B = P(B⊗A)Q. If A and B are square, then P = QT .

• (A⊗B)(C⊗D) = (AC⊗BD).

• (A⊗B)−1 = A−1 ⊗B−1.

• (A⊗B)+ = A+ ⊗B+.

A.3 On the Relationship Between GRAPPA and
SENSE

In chapter 2.3.2b, page 99ff, the relationship between GRAPPA and SENSE
is reviewed. In this appendix, two aspects are covered in greater detail;
the main conclusions of this appendix are used in chapter 2.3.2b. The first
issue is an equivalent formulation of the weak reconstruction condition.
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The second issue concerns the property of the encoding matrix that it can
be truncated without causing significant reconstruction errors. The presen-
tation is very detailed because these issues are not sufficiently discussed in
the reviewed literature (particularly [135, 49, 209, 147, 136, 104]). In order
to avoid confusion by extensive notation, the mathematical treatment only
considers explicitly one variable along the accelerated dimension. Keep in
mind, however, that GRAPPA and SENSE actually deal with 2D datasets.

A.3.1 Equivalent Formulation of the Weak Reconstruction
Condition

It is proven here that the weak condition FE = 1, from which the SENSE
algorithm is derived, is equivalent to the expression ĉα′ = w

(m)
α′ Ê(m), where

Ê
(m)
(α′,b),l = (ĉα′)l−(Rb−m). This equivalence is used in chapter 2.3.2b, page

99ff, to establish a relationship between GRAPPA and SENSE.

The proof starts with representing the weak condition FE = 1 in k-space
by defining F̂ := DFT · F and Ê := E · iDFT. Then, the weak condition
reads F̂Ê = 1. Define the diagonal matrix Cα′ with the coil sensitivity
values on the diagonal evaluated at the center of the image voxels and Ĉα′

as the k-space analogue: Ĉα′ := DFT ·Cα′ · iDFT with (Ĉα′)l,l′ = (ĉα′)l′−l.
Multiplication of F̂Ê = 1 from left with Ĉα′ yields:

F̂α′
Ê = Ĉα′ , (A.5)

where F̂α′
:= Ĉα′F̂ = DFT ·Cα′F.2 Recall from the main text that Ê has

a block-circulant structure. Liu et al. show in [104] that F̂ has the same
block-circulant structure. It is straightforward to show that also Ĉα′ and F̂α′

are block-circulant. With definition (A.4) the transformed weak condition
(Eq. A.5) has the following explicit form:[∑

b′
Πb′

N/R ⊗ (Wα′
)
(b′)
R,Nc

]
︸ ︷︷ ︸

F̂α′

·
[∑

b′
Πb′

N/R ⊗ Ĉ
(b′)
Nc,R

]
︸ ︷︷ ︸

Ê

=

[∑
b′

Πb′
N/R ⊗ (Ĉα′

)
(b′)
R,R

]
︸ ︷︷ ︸

Ĉα′

.

(A.6)
2The matrix F̂α′

represents the MPPI reconstruction corresponding to the GRAPPA k-
space filling operation because, with the signal data s, one finds that sα′ = F̂α′

s is the k-space
of the reconstructed image weighted with the corresponding RF-coil sensitivity map.
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The blocks (Wα′
)
(b′)
R,Nc

represent analogues of the GRAPPA weights. Re-
sorting the double summation and making use of the fact that Πb′Πk =

Π[(b′+k) mod N/R] the above expression can be simplified to:

∑
b′

Πb′
N/R ⊗

[∑
b

(Wα′
)
(b)
R,Nc

Ĉ
(b′−b)
Nc,R

− (Ĉα′
)
(b′)
R,R

]
= 0, (A.7)

where all superscripts are evaluated modulo N/R; i.e., (b′ − b) := (b′ −
b) mod N/R. This equation is valid if and only if the expression in the
brackets is zero for all b′. This equivalence therefore results in:∑

b

(Wα′
)
(b)
R,Nc

Ĉ
(b′−b)
Nc,R

= (Ĉα′
)
(b′)
R,R. (A.8)

This is a decisive result: It states that the number of reconstruction weights,
which actually need to be determined, can be vastly reduced (compare Eq.
A.8 with Eq. A.5). Explicitly evaluating this equation at matrix element
(m,m′) results in:∑

α,b

(w
(m)
α′ )α,b(ĉα)R(b′−b)+m′ = (ĉα′)Rb′+m′−m, (A.9)

with (w
(m)
α′ )α,b := (Wα′

)
(b)
m,α. Set l = Rb′ + m′.3 The latter equation then

yields: ∑
α,b

(w
(m)
α′ )α,b(ĉα)l−Rb = (ĉα′)l−m

or, equivalently∑
α,b

(w
(m)
α′ )α,b(ĉα)l−(Rb−m) = (ĉα′)l.

The sought expression is finally found by writing the two latter equations
in matrix form with right and left swapped:

ĉ
(m)
α′ = w

(m)
α′ Ê or, equivalently, ĉα′ = w

(m)
α′ Ê(m). (A.10)

3Note that this definition is well-defined: The assignment (b′,m′) �→ l = Rb′ + m′ is
bijective.
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A.3.2 Truncation of the Encoding Matrix

It is shown here that it is possible to truncate the encoding matrix without
introducing significant reconstruction errors. This property justifies the
usage of small GRAPPA kernels and the acquisition of a limited amount of
ACS-lines.

Limited kernel size Reconsider the untruncated problem, represented
by Eq. A.10. Here, the version on the left hand side, ĉ(m)

α′ = w
(m)
α′ Ê, is

used. This equation can be satisfied exactly. Therefore, no residual error is
produced:

(r
(m)
α′ )2 =

∥∥∥w(m)
α′ Ê− ĉ

(m)
α′

∥∥∥2

=
∑
l

∣∣∣∣∣∣(ĉα′)l−m′ −
∑
α,b

(w
(m′)
α′ )α,b(ĉα)l−Rb

∣∣∣∣∣∣
2

= 0.

(A.11)
For limited kernel sizes, not all values of b are considered, but only the
smallest. What residual error is produced with limited kernel sizes? In this
regard, it is important that the k-space footprint of the RF-coil sensitivity
profiles is typically very localized with ĉl vanishing rapidly with increasing
l. The residual error for large values of l is therefore almost negligible. But
also for small values of l, the residual error is low: As shown at the end of
this appendix, also the weights (w

(m′)
α′ )α,b quickly vanish with increasing

values of b. Therefore, for small l, the product in Eq. A.11 of the weights with
the sensitivities is mainly determined by the smallest values of b. Altogether,
it can be concluded that the residual error is low if the sum is truncated
to a few values of b only.4 The amount of how much the solution can be
truncated depends on the k-space extent of the RF-sensitivity profiles, but
also on the k-space extent of the reconstruction weights.

Restricted amount of ACS-lines In GRAPPA, only a restricted amount
of ACS-lines is acquired. Correspondingly, the encoding matrix is further
truncated. In particular, this means that in Eq. A.11, not only fewer values
of b are considered, but also fewer values of l. This is not problematic
because the k-space extent of the sensitivities is restricted and - as mentioned

4As shown here, this is true if weights are used that are determined from the untruncated
encoding matrix. Note that the reconstruction weights are actually determined by minimizing
the residual error for the truncated encoding matrix. The weights determined via this mini-
mization will result in a residuum, which is even smaller. Thus, the solution to the truncated
problem will lead to even better data consistency.
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above - large values of l do not contribute significant information for the
determination of optimal weights. On the contrary; note that the ACS-
lines are typically acquired at the k-space center, where the highest SNR
is available. The inclusion of additional ACS-lines with low SNR does
therefore not always ensure higher image quality. Significant deterioration
of image quality is not expected, if the encoding matrix is truncated to the
smallest values of l.

k-space extent of the reconstruction weights It remains to be shown that
the k-space extent of the reconstruction weights is restricted. This is the
case if the weights inherit this property from the RF-coil sensitivity profiles.
According to Eq. A.10, the weights of the untruncated problem are deter-
mined via w

(m)
α′ = ĉ

(m)
α′ [ÊHÊ]−1ÊH . The weights are therefore found by

first multiplying the k-space coil sensitivities with the inverse of R̂ = ÊHÊ

and then with ÊH . The encoding matrix Ê has a restricted k-space extent
because it is formed from the RF sensitivities; also, it is straightforward
to show (cf. e.g. [104]) that the k-space support remains restricted, if two
quantities of limited k-space extent are multiplied with each other. The
weights are therefore limited in k-space if the inversion of the correlation
matrix R̂ does not significantly increase its own k-space support. Such
a conservative property is not usual for a matrix inversion and therefore
thorough justification must be established.

The problem can also be tackled in the image domain, where limited k-
space extent manifests as smooth spatial variations. According to Eq. 2.39,
page 75, the image-domain analogue of the correlation matrix is given by
R = iDFT · R̂ ·DFT = EHE = C̃H · ĩDFT · D̃FT · C̃ = C̃HC̃. The inverse
of R then has the explicit form:5

R−1 =
∑
q

Iq ⊗
[
A(q)

]−1

, with A(q) = (C(q))HC(q). (A.12)

The inverse of R varies smoothly along the spatial dimension q if each
component [A(q)]−1 does not jump heavily from one location q to the next
location q̃. Typical reconstruction grids are dense enough such that the finite
difference [A(q̃)]−1 − [A(q)]−1 can be approximated by the derivative dA−1

dq .
Matrix theory shows that the derivative of a matrix can be expressed by its

5In order to simplify the notation, (q, q′) is simply written as q.
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inverse: dA−1

dq = −A−1 dA
dq A

−1. With this relation, it is possible to calculate
an upper bound for the derivative of each component of [A(q)]−1:∣∣∣∣∣

(
dA−1

dq

)
l,l′

∣∣∣∣∣ ≤
∥∥∥∥dA−1

dq

∥∥∥∥ ≤
∥∥∥[A(q)]−1

∥∥∥2
∥∥∥∥dAdq

∥∥∥∥ = . . .

. . . = λ2
max([A

(q)]−1)

∥∥∥∥dAdq
∥∥∥∥ = λ−2

min(A
(q))

∥∥∥∥dAdq
∥∥∥∥ .

(A.13)

The variations of the correlation matrix R−1 are therefore bound by the
square-inverse of the minimum eigenvalue of A(q) multiplied with the
variations of A(q). According to Eq. A.12, these variations correspond
to the spatial variations of the RF coils, which are typically very low in
image space. These variations are enhanced by the inversion. However, the
enhancement should often be moderate because the eigenvalues are closely
related to the g-factor,6 and the g-factor has proven to be fairly well-behaved
as long as acceleration is not driven to its limit.

It can therefore be concluded that the reconstruction weights w
(m)
α′ of the

untruncated problem have a limited k-space extent that is often not much
higher than the extent of the RF-coil sensitivities. Examples for acceleration
factors 2 and 4, simulated with sensitivity data of a head coil with eight
channels (Siemens Healthcare, Erlangen, Germany) are depicted in Fig. A.1.

A.4 Significance of Multipolar Magnetic Fields
for Spatial Encoding

The following statement is proven: The orthogonal multipolar SEMs
(rL cos(Lϕ) and rL sin(Lϕ), with multipolarity L = 1, . . . ,∞) form a set of
encoding fields which can be combined to generate each possible set of two

6The relationship is the following: Consider w. l. o. g. that the sum-of-squares of the RF
sensitivities is constant and that the noise in the receiver channels is uncorrelated; then, it
follows from Eq. 2.50, page 82, that the square of the g-factor at location ρ = (q, l) is given by
(A(q))−1

l,l . The matrix (A(q))−1 is Hermitian and therefore it is diagonalizable and has only
positive eigenvalues λi. Also consider that the trace of a diagonalizable matrix equals the sum
of the eigenvalues. If ḡ is defined to be the average g-factor for the voxel group at the locations
(q, l), l = 1, . . . , R, it follows that λmax <

∑
i λi = R · ḡ2. The average g-factor squared

(and multiplied with the acceleration factor) is therefore an upper bound for the maximum
eigenvalue of the matrix (A(q))−1.
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Figure A.1: The purpose of this figure is to illustrate the limited k-space extent
of the reconstruction weights. This extent is mainly determined by the k-space
footprint of the inverse of the correlation matrix R−1. The k-space extent of the
correlation matrix R and its inverse R−1 are compared in this figure for two different
acceleration factors. (1) Acceleration factor 2. (2) Acceleration factor 4. (1a) The
four components of the block-diagonal matrix R only have low spatial frequencies.
(1b) Correspondingly, the k-space footprint of the Fourier-domain analogue R̂ is
narrow. (1c) Also the inverse R−1 only has low spatial frequency components.
(1d) Correspondingly, R̂−1 is not more spread out in k-space than R̂. (1e) The
g-factor of the reconstruction. (1f) The distribution of the maximum eigenvalue of
the diagonal blocks of R is similar to the distribution of the corresponding g-factor.
For this acceleration of only two the maximum eigenvalues are all below 1.5. As
a consequence, the k-space extent of the correlation matrix is not broadened by
the inversion. (2a) For an acceleration of 4, the maximum eigenvalues rise up to
20. (2b) However, the spatial variations of the inverse of the correlation matrix are
still fairly smooth (Shown is one of the 16 = 4× 4 components of R−1). (2c,d) For
this acceleration, the k-space footprint of the inverse correlation matrix is slightly
broadened, but its extent is still limited. (Fig. (2c) shows the component with
maximum k-space extent of R̂, whereas Fig. (2d) shows the component with
maximum extent of R̂−1).
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magnetic encoding fields where the local gradient fields of the two SEMs
and the z-gradient are orthogonal to each other at all spatial locations. This
proof has been published previously in the appendix of [[158]].

1. For three-dimensional imaging, exactly three encoding fields are
needed to fulfill the requirement of mutual orthogonality. Two fields
must be orthogonal to the z-gradient. This means that they cannot
have a gradient along the z-direction. They must therefore necessarily
be constant along the z-axis and the problem can be reduced to 2D.

2. Basic complex analysis can be used to solve the 2D problem. First it is
shown that the real and imaginary part of a holomorphic function can
be interpreted as magnetic fields which have the desired properties.
Consider an arbitrary holomorphic function f(s) with s ∈ C and
f(s) ∈ C. This function can then be decomposed into its real and
imaginary part:

f(s) = u(s) + iv(s) = u(x, y) + iv(x, y), with s = x+ iy. (A.14)

The real and imaginary components of s can therefore be interpreted
as spatial components x, y in two-dimensional Euclidian space. As
f(s) is holomorphic, the functions u and v satisfy the Cauchy-Riemann
differential equations. Two important properties can be derived di-
rectly from those differential equations:

a) u and v satisfy Laplace’s equation Δu(x, y) = 0 and Δv(x, y) = 0.

b) The gradient fields of u and v are orthogonal everywhere; i.e.,
(∇u(x, y)) · (∇v(x, y)) = 0.

With the definition of B1(x, y, z) := real (f(s)) = u(x, y), B2(x, y, z) :=

imag (f(s)) = v(x, y) and Bz(x, y, z) := z a set of three magnetic fields
is constructed, which are all mutually orthogonal and which are
feasible magnetic fields as they fulfill Laplace’s equation.

3. It remains to be proven that there is no set of fields which cannot be
represented by a holomorphic function. This is ensured by a well-
known mathematical theorem stating: An arbitrary function satisfy-
ing Laplace’s equation on a simply-connected region (that is an arbitrary
magnetic encoding field) can be written as the real or imaginary part of a
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holomorphic function (cf. e.g. [14], page 585). Therefore all mutually or-
thogonal encoding fields can be found by just analyzing holomorphic
functions.

4. Around the location of expansion, a holomorphic function f(s) is
represented by its Taylor series. If f(s) is expanded about the origin,
f(s) can be written as:

f(s) =
∑
L

aLs
L. (A.15)

The important observation is that the monomials sL generate the
orthogonal multipolar encoding fields:

real sL = real
(
rLeiLϕ

)
= rL cos(Lϕ),

imag sL = imag
(
rLeiLϕ

)
= rL sin(Lϕ).

(A.16)

5. In order to prove the original statement, it is therefore sufficient to
show that the real and imaginary parts of any holormophic function
can be generated using the real and the imaginary parts of the mono-
mials. This is shown here for the real part of f(s). The same also
applies to the imaginary part.

real (f(s)) = real

(∑
L

aLs
L

)
=

∑
L

real
(
aLs

L
)
= . . .

. . . =
∑
L

real (aL) real
(
sL

)
− imag (aL) imag

(
sL

)
.

(A.17)

The multipolar SEMs along with the z-gradient are therefore suffi-
cient to generate arbitrary encoding fields which have the desired
properties. The magnitude of the complex-valued weighting factor
aL corresponds to the magnetic field strength to be applied and the
angular part of aL represents a rotation of a multipolar field, which is
achieved by adequately superimposing the two orthogonal fields of
order L.

6. The monomials of lowest order generate the most basic fields. The two
lowest orders are discussed here. For low orders of L, Cartesian and
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polar coordinates can both be used just as easily to do the calculations.
For L = 1, one finds:

s1 = (x+ iy), (A.18)

and therefore B1(x, y, z) = x and B2(x, y, z) = y; i.e., the monomial s
generates the linear gradient fields. For L = 2, one finds:

s2 = (x+ iy)2 = (x2 − y2) + i(2xy), (A.19)

and therefore B1(x, y, z) = x2 − y2 (= r2 cos(2ϕ)) and B2(x, y, z) =

2xy (= r2 sin(2ϕ)); i.e., the monomial s2 generates the quadrupolar
SEMs used for the experimental realizations. Some practical conse-
quences of the proven statement are presented in [159].

A.5 Local k-Space: Image Resolution and
Relation to PatLoc k-Space

This appendix supplements the paragraph The concept of local k-space in
chapter 3.2.2, page 112ff. Two separate topics are treated here. The first
topic substantiates the claim that local image resolution is described by the
extent of local k-space. The second topic concerns the relationship between
local k-space and the “global” PatLoc k-space trajectory.

A.5.1 Theoretical Background Concerning Image
Resolution

Here, a relationship between local k-space and reconstructed image voxels
is established and some conclusions are drawn. Suppose the magnetization
mρ is reconstructed at location �xρ. Then, according to Eq. 2.6, the recon-
structed magnetization is related to the true magnetization via a weighting
with the SRF. Note that the SRF is spatially highly localized for faithful re-
constructions, where the image is not corrupted by aliasing. Therefore, the
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reconstructed magnetization is well described by restricting the integration
to a local region Wρ which contains �xρ:

mρ =

∫
V

m(�x)fρ(�x)d�x ≈
∫
Wρ

m(�x)fρ(�x)d�x = . . .

. . .
(2.7)
=

∑
α,κ

Fρ,(α,κ)

∫
Wρ

m(�x)cα(�x)e
−iφ(�x;kκ)d�x.

(A.20)

Here, the temporal variable t has been replaced by the PatLoc k-space
variable kκ (defined by Eq. 4.5, page 137). Consider now the Taylor series
expansion of the phase distribution φ(·) about �xρ:

φ(�x,kκ) = φ(�xρ,kκ) + �kloc(�xρ,kκ)(�x− �xρ) +O(‖�x− �xρ‖2). (A.21)

The restriction of the region of integration on Wρ allows the truncation of
this series after the first order term with minor influence for the voxel of
interest as long as the voxel is small enough, which is typically the case
for high-resolution imaging apart from degenerate locations. Then, the
reconstructed magnetization is well approximated by:

mρ ≈
∑
α,κ

F̃ρ,(α,κ)

∫
Wρ

m(�x)cα(�x)e
−i�kloc(�xρ,kκ)�xd�x, (A.22)

where F̃ρ,(α,κ) = Fρ,(α,κ)e
−i(φ(�xρ,kκ)−�kloc(�xρ,kκ)�xρ). According to Eq. A.23,

local k-space patterns cannot vary abruptly on a local scale. It can be
followed that the local k-space variable �kloc plays a similar role in PatLoc
imaging as the standard k-space variable in conventional imaging with
linear SEMs.

Some concrete conclusions may be drawn from this result. First, local image
resolution is described approximately by the extent of the local k-space
sampling grid (cf. e.g. Fig. 7.12, page 265). Second, signal voids will occur
in regions, where the local k-space center is not acquired. This behavior has
been observed for a variant of the 4D-RIO trajectory [42] and is the basic
principle that underlies GradLoc (cf. chapter 3.2.4a, page 117ff).

Note that Eq. A.22 has been derived based on the assumption that aliasing
does not pose a problem for the reconstruction. Therefore, it would not be
correct to draw a conclusion with respect to aliasing. In fact, ambiguous
locations from non-unique SEM encoding cannot be detected and, especially
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for multi-dimensional PatLoc trajectories, the relationship between aliasing
and sampling density is more complicated than in conventional imaging.

A.5.2 Relation to PatLoc k-Space

The relationship between local (�kloc) and “global” (kκ) k-space is established
and illustrated with examples.

Theory Recall from Eq. 3.1, page 113, that the local k-space variable is
given by �kloc(�xρ, t) := (∇φ)(�xρ, t), where φ(·) represents the encoded phase
distribution. In PatLoc imaging, the temporal dependency is described by
the k-space variable kκ, and, with Eq. 4.9, the phase distribution is given by
φ(�xρ,kκ) = kT

κψ(�xρ). Therefore the local k-space can be specified:

�kloc(�xρ,kκ)
(3.1)
= ∇�x(k

T
κψ(�xρ)) = JT (�xρ)kκ, (A.23)

where J is the Jacobian matrix ∂ψ/∂�x. This equation illustrates that the
spatial derivates of the SEMs links the encoding trajectory with its local
k-space distribution.

2D examples Consider first conventional imaging with two linear gradi-
ent fields. In this case �ψ(�x) = (x, y)T and therefore J = 1. It follows that
�kloc = �k. In conformity with the results from conventional imaging, the
local k-space variable is therefore independent from the spatial location.
Conventional k-space, PatLoc k-space and local k-space are equivalent. An
illustration of this example (and the following two examples) is found on
page 113 in chapter 3.2.2, Fig. 3.6. The local k-space of a Cartesian trajectory
is depicted in Fig. 3.6a. A reconstructed numerical example is shown in Fig.
3.6d.

Next, consider two orthogonal quadrupolar fields. According to chapter
3.3.1, page 122ff (also cf. Eq. 6.8, page 215), the encoding function is
described by ψ1(�x) = x2 − y2 and ψ2(�x) = 2xy. By defining the 2D rotation
matrix R(δ) in conformity with Appendix A.1, page 291, local k-space is
calculated as �kloc = 2rR(δ), where r is the distance from the rotation center
of the SEMs and δ the angle in relation to the x-axis. The local k-space is
therefore broad at the periphery of the image and reduces to a point at the
center. Correspondingly, image resolution is high at the periphery and very
low at the center. The angle δ means that the main axes of the local k-space
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are rotated according to the angular location of the position of interest. The
local k-space of a Cartesian PatLoc trajectory is depicted in Fig. 3.6b with a
reconstruction shown in Fig. 3.6e.

As last example, consider 4D encoding with linear and quadrupolar SEMs.
Then, it is easy to show that �kloc = �klin + 2rR(δ)�kquad, where �klin describes
the two components of the linear PatLoc k-space variables and �kquad the
corresponding components of the quadrupolar SEMs. The local k-space of
a complex four-dimensional PatLoc trajectory is depicted in Fig. 3.6c with a
reconstruction shown in Fig. 3.6f.
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