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Norman J.M. Horing
(Editors)

Low Dimensional

Semiconductor

Structures
Characterization, Modeling
and Applications

123

With 87 Figures



Editors:
Hilmi Ünlü
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Preface

The modern world has witnessed the exceptionally rapid development of both
our theoretical understanding and the technological advancement of semiconductor
devices, following the invention of the first transistor in 1949. Improved techniques
for growing semiconductor thin films of differing structural and electronic prop-
erties, even with layer thickness approaching atomic dimensions, have provided
new opportunities for basic scientific studies and device applications. Such new
fabrication technologies have made it possible to reduce device dimensions to the
point where quantum size effects play a significant role in any realistic description
of device operation and are required to reliably predict their performance in elec-
tronic and optical applications. Contemporary transistors operate much faster than
conventional ones and have led to a many-thousand-fold increase in speed, which is
crucial to the electronic and optical communication and computer industries.

Today’s electronic and optical communications and information technology is
still silicon- semiconductor-based and can, thus far, meet the current needs by either
increasing the production rate or by developing new production technologies. As
a result of intensive research and development activities, the size of the existing
silicon semiconductor devices is expected to be about 10–20 nm in the year 2020.
Accordingly, a new technology is needed for the production of electronic and
optoelectronic devices that are smaller in size and volume and faster in speed. This
will involve many new scientific and technological problems requiring solution
before such a new technology is actually put into use to meet consumers’ needs
for better and faster electronics- and computer-based communications. In order to
overcome these problems, the world’s leading scientists and engineers have been
carrying out intensive research on low dimensional/nanoscience and nanotechnol-
ogy to create future information and communication technologies. Nanoscience and
nanotechnology refer to the comprehensive interdisciplinary body of knowledge on
the nanometer size scale involving the science (physics, chemistry, biology, and
materials science) and engineering (electronics, computer, mechanical, chemical,
construction, textiles, environment, etc.) fields.

Low dimensional/nanoscience and nanotechnology was put forward as a concept
by Richard Feynman in a seminar called “There is plenty of room at the bottom”,
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vi Preface

which he gave at an American Physical Society meeting at the California Institute
of Technology (Caltech) on December 29, 1959. The meaning of the word “nano”
is small, and 1 nm is equal to one billionth of a meter (1 nm D 1=1;000;000;000m).
The physical and chemical properties of materials on that scale depend upon size
and may be controlled using it. Indeed, the production of new low-dimensional
materials is possible at the nanoscale. Feynman described a process to manipulate
atoms and molecules to organize and operate devices and/or systems at lower
dimensions, as needed. He also noted that scaling issues can arise due to possible
changing of the magnitudes of physical phenomena, such as surface tension, van der
Waals attraction, etc.

Since that first proposal of nanotechnology by Feynman in 1959, intensive
research and development activities have gained momentum in the last 30 years.
Nanotechnology and nanoscience had two major developments in the early 1980s:
(1) cluster science and the discovery of the scanning tunneling microscope (STM),
which led to the discovery of fullerenes in 1985 and carbon nanotubes just a few
years later, and (2) further major developments in the area of the synthesis and
properties of semiconductor nanocrystals, such as metal-oxide nanoparticles and
quantum dots. Rapid development continued in the area of structural characteriza-
tion of materials. The discovery of atomic force microscopy (AFM) took place just
6 years after the STM was invented.

In recent years, a truly extraordinary volume of research has been carried
out all over the world on low-dimensional semiconductors, metals, ceramics,
polymers, and composites containing nanostructured materials for applications in
health/disease, pharmacology, energy, agriculture/food, electronics and communi-
cation, information processing and storage using the multiple functionality of the
recently developed nanomaterials. This has spurred new industry in various fields,
including defense technology. Newly created and improved technologies, including
electronic communications, have intensified scientific research and technological
development involving structures composed of atoms and molecules, as well as
biological structures. Indeed, some recent scientific studies have been carried
out on colloidal quantum dots. Since quantum dots have carriers confined in all
directions (zero dimensions), they have a sharper density of states than that of higher
dimensional (two- and three-dimensional) structures. Correspondingly, quantum
dots have superior charge transport and optical properties and, consequently, much
intensive research has been done to use them in making diode lasers, transistors, and
biological sensors.

It was a great pleasure to host the International Conference on Nanomaterials
and Nanosystems (NanoMats2009; http://www.nanomats.itu.edu.tr) and the Fourth
National Conference on Nanoscience and Nanotechnology (NanoTr4; http://www.
nanotr4.itu.edu.tr) at İstanbul Technical University, İstanbul, Turkey. In these
conferences, all aspects of low dimensional/nanoscience and nanotechnology were
addressed. The NanoMats2009 conference was endorsed by the European Mate-
rials Research Society (E-MRS; http://www.emrs-strasbourg.com/) and was orga-
nized in collaboration with scientists from İstanbul Technical University, İstanbul
University, Stevens Institute of Technology, and the University of Essex. Both

http://www.nanomats.itu.edu.tr
http://www.nanotr4.itu.edu.tr
http://www.nanotr4.itu.edu.tr


Preface vii

NanoMats2009 and NanoTr4 have successfully brought together researchers from
over a dozen countries in the areas of physics, chemistry, biology, materials science,
and engineering to review the current status of the field. The participants of both
NanoMats2009 and NanoTr4 had the opportunity to learn about the latest results
and cutting-edge advances in all major areas of nanomaterials and nanosystems from
leading international academic and industrial experts in the field. In NanoMats2009,
2 Plenary Lectures, 26 Invited Oral Presentations, 60 Oral Presentations, and
126 Poster presentations took place at the conference. Similar remarks pertain to
NanoTr4. Participants addressed fundamental issues and solutions in nanomaterials
and nanosystems involving a wide range of problems, sharing new ideas and results
to delineate outstanding problems and guiding future research.

The focus of the conference presentations was concentrated on fundamental
phenomena at the nanoscale, including in its scope the synthesis, properties,
characterization and modeling of nanomaterials, nanotechnologies involving nan-
odevices and nanosystems, imaging, measuring, modeling, and manipulating low-
dimensional matter at the nanoscale. The topics covered at the NanoMats2009
and NanoTr4 conferences are of vital importance in a wide range of modern
technologies employed in most industries, communication, healthcare, energy
conservation, biology, food, environment, and education, and thus will have a broad
impact on our society. NanoMats2009 and NanoTr4 also had a strong educational
and student outreach component that provided opportunities for young investigators
to present their research findings and to learn about the most recent developments
in this rapidly moving field. On the one hand, this was intended to facilitate fruitful
and constructive discussions among the participants, leading to future collaborations
between them. On the other hand, the strength of the educational component
has led us to feel that its tutorial benefit to the larger body of students and
uninitiated is best enhanced by publication in book form, rather than as a superficial
conference proceedings of very short research reports. Nevertheless, the cutting-
edge conference research papers selected for inclusion here are certainly of interest
to all workers in the field.

This book covers a broad range of selected papers presented at NanoMats2009
and NanoTr4. On behalf of the Organizing Committee, we would like to thank
all of the participants for their contributions to both NanoMats2009 and NanoTr4
with oral and/or poster presentations, as well as all other attending participants.

Istanbul Hilmi Ünlü
Hoboken, NJ Norman J. Horing
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Chapter 1
Advances in Low-Dimensional Semiconductor
Structures

Hilmi Ünlü, Mohamed Rezaul Karim, H. Hakan Gürel, and Özden Akıncı

Abstract Improved technologies for growing semiconductor thin films of different
structural and electronic properties, and even with layer thickness approaching
atomic dimensions, have provided new opportunities for basic scientific studies
and device applications. New fabrication technologies have also made it possible
to reduce device dimensions to the point where quantum size effects must be
considered in order to realistically describe the device operation and reliably predict
their performance for electronic and optical applications. In this chapter, we shall
present a partial summary of advances in low-dimensional semiconductor materials
and their device applications.

1.1 Introduction

The theoretical understanding and technology of semiconductor devices have
developed with great rapidity since the first transistor was invented in 1949 [1].
Improved technologies for growing semiconductor thin films of different structural
and electronic properties, and even with layer thickness approaching atomic di-
mensions, have provided new opportunities for basic scientific studies and device
applications [2]. In this matter, new fabrication technologies have also made it
possible to reduce device dimensions to the point where quantum size effects must
be considered in order to realistically describe the device operation and reliably
predict their performance for electronic and optical applications. Contemporary
transistors operate much faster than conventional ones and have led to a many
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thousand-fold increase in speed, which is very crucial to the electronic and optical
communication and computer industries.

An unexpected increase in the speed of transistors has resulted, partially, from
a reduction of charge transit time between terminals. Shorter charge transit time
implies minimum time delay of input signals to the output. Charge transit time
has been shortened very effectively by choosing semiconductor materials and
device structures in which signals propagate faster by employing semiconductors
having high electron mobility and velocity. Intense research on silicon (Si)-based
semiconductor devices over the decades has resulted in a detailed theoretical
understanding of the operation of these devices and introduction of the new ones.
Modern semiconductor growth and device fabrication technologies have made
it possible to integrate Si and gallium arsenide (GaAs) devices for high-speed
electronic and optoelectronic applications. Groups III–V compounds such as GaAs
are formed by specific mixtures of elements (e.g., Ga and As) and have electronic
and optical properties much superior to those of Si. For example, the mobility
of bulk GaAs is about six times larger than that of Si for a donor density of
1 � 1017 cm�3. Furthermore, the maximum electron drift velocity in bulk GaAs is
almost twice that in Si and occurs at much lower electric fields (see Ref. [2]) making
GaAs devices operate faster and at lower voltages.

Advances in multilayer thin-film growth techniques, particularly molecular beam
epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD), have made
it possible to produce semiconductor heterojunctions between IV–IV, III–V, and
II–VI compounds, shown in Fig. 1.1, with tailored electronic and optical properties
that do not occur in nature [1–3]. One can now control the alloy composition and
doping in ternary and quaternary IV–IV, III–V, and II–VI semiconductor compounds
over atomic distances.

Despite the fact that these artificial heterostructures do violate steady-state
chemical thermodynamics principles, they are easily grown on GaAs and Si
substrates [4, 5] by nonequilibrium crystal growth techniques such as MBE and
MOCVD. When these advanced growth techniques are combined with advanced
characterization techniques and analysis, it is possible to fabricate high-performance
devices for fast signal processing, as well as some novel structures that are of interest
to solid-state scientists and device engineers. The epitaxial layers are so thin that
quantum mechanical effects, which are important in the operation of heterostructure
devices, have been realized.

1.2 Superlattices and Quantum Wells

The impact of heterostructures on charge carriers can be summarized as follows.
First of all, one can make bipolar transistors with high injection efficiency based
on a heterostructure formed between semiconductors (with different physical
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Fig. 1.1 Energy gap versus lattice constant for some semiconductors (often used as a reference in
designing electronic and optoelectronic heterostructure devices)

properties) for carriers flowing from the wide-bandgap semiconductor emitter to
the narrow-bandgap semiconductor base. Because this injection efficiency is related
exponentially to the difference in the bandgap energies across the heterointerface,
it can be made almost independent of doping levels [6]. To illustrate this, the
equilibrium energy band diagram is shown in Fig. 1.2 for an N/p AlGaAs/GaAs
heterostructure emitter of an npn AlGaAs/GaAs heterostructure bipolar transistors
(HBT) in which the injection factor for electrons (holes) is related to the conduction
(valence) band discontinuity but is often further enhanced by the electric field
induced by charge transfer. There are other applications of heterostructures in
making electronic and optical devices. In some cases, a particular compound can
be grown on top of the original material as an ohmic (or Schottky) contact.
For example, in GaAs/(Al,Ga)As laser diodes or modulation-doped field effect
transistors (MODFETs), a GaAs layer is always used on top of the (Al,Ga)As layer
in order to facilitate ohmic contacts since it is easier on smaller bandgap materials.

Advances in heteroepitaxial growth technologies have made it possible to realize
potential wells for electrons and holes that have dimensions of the order of the
mean free path of charged particles. Periodic extension of thin-layer pairs, so-
called superlattices, causes an artificial perturbation of the crystal structure and
modifies the bulk properties (1.3). Quantum wells and superlattices may have
already stimulated much research in high-speed electronic devices and optical
devices. In the case of modulation-doped heterostructure field effect transistors
(MODFETs), the wide-gap semiconductor is doped, from which charge carriers
diffuse to the nominally undoped narrow-gap semiconductor.



4 H. Ünlü et al.

Fig. 1.2 The energy band diagram of an N-AlGaAs/p-GaAs heteroemitter in thermal equilibrium.
When forward biased (wide-gap N-AlGaAs is connected to the negative terminal of the power
supply), electrons injected by the N-AlGaAs emitter diffuse across the p-GaAs base. Some
electrons recombine with holes at defect sites located at the heterointerface and some of the
electrons diffusing in the base recombine with holes there

Semiconductor superlattices and multiple quantum wells (MQWs) are artificially
grown structures formed by epitaxial deposition of alternating semiconductor layers
or by introducing impurities into individual layers of a single semiconductor with
layer thickness smaller than the carrier (electron or hole) mean free path. There
are two kinds of superlattices: heterostructure superlattice, first proposed by Esaki
and Tsu [10], and doped superlattices in which the dopant-type alternates between
n- and p-type in close proximity, as proposed by Dohler [11]. The compositional
superlattices can be grouped as: (1) Type I superlattices, where the bandgap of the
barrier overlaps (straddles) that of the well (e.g., (Al,Ga)As/GaAs); and (2) Type II
superlattices, where the bandgap of the barrier partially overlaps (straddles) that of
the well (e.g., InGaAs/GaSbAs) or does not overlap at all (e.g., GaSb/InAs).

Superlattices are made of lattice-matched thin layers of two semiconductors with
different electronic properties in alternation (Fig. 1.3). The thickness of alternate
layers is less than approximately 10 nm so that the spatial variation of the electronic
properties of the constituent materials leads to complex alignment of energy levels.
Similar to the case of a periodic crystalline solid, there exist certain energy levels
called “subbands” in a superlattice, as shown in Fig. 1.4 (see Ref. [1] for a detailed
discussion of the structure and its applications). In superlattices, the energy levels of
potential wells can be adjusted by the proper choice of the material and thickness.
For example, by decreasing the barrier layer thickness, one can increase the subband
energy levels. Therefore, the electronic structure of the artificially made superlattice
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Fig. 1.3 Schematic energy band diagrams of single and multiple layer heterostructure (called
superlattices on far right) samples

Fig. 1.4 Schematiciagram of an (Al,Ga)As/GaAs multiple quantum well (left). Carriers are
confined to the GaAs well, leading to many interesting quantum phenomena. Details of the discrete
energy levels (subbands) and wave functions are shown for a single interface structure (right). The
triangular energy diagram also leads to quantization of the allowed energy levels near the interface.
The first level E0 (ground subband) and to some extent the second level E1 (excited subband) are
occupied. The wave function penetration into the larger bandgap material is apparent because the
potential barrier is not infinite

crystal differs from that of the bulk crystal. The propagation of conducting electrons
in the plane perpendicular to the layers is modified by the superlattice potential
barriers. The total energy of electrons becomes quantized if their energy is below
the continuum threshold. Such structures are called MQWs. The motion of carriers
parallel to the layers is not affected much by the potential barrier of the superlattice.
Assuming parabolic bands and infinite barriers, the conduction band subband energy
levels, with respect to the bottom of the conduction band, can be described by:
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where m�
n is the effective mass of electrons in the conduction band and Lz is the

quantum well thickness. The situation for holes is much more complex because of
the presence of heavy and light holes.

With the present state of epitaxial technology, a large bandgap semiconductor
and a narrow-bandgap semiconductor, such as AlGaAs and GaAs, respectively, can
be easily grown alternately on one another. Favorable bandgap alignment gives a
potential energy well in the conduction band is formed confining electrons in the
GaAs. Quantum confinement of charge carriers (electrons or holes) in the well is
analogous to that of a particle in a box where the confinement leads to quantized
discrete energy states in the wells. Therefore, any electron and hole recombination
yields radiation with larger energies than expected from the bulk material.

1.3 Strained Superlattices and Quantum Wells

It is well known that the performance of electronic and optical semiconductor
devices depends on their specific electronic properties, such as energy gaps and
refractive index discontinuities between the heterostructure constituents. In general,
heterostructures are composed of semiconducting materials with identical lattice
constants and thermal expansion coefficients. Many of the III–V compounds meet
the former requirement, as illustrated in Fig. 1.1 where the variation of energy gap
is shown as a function of lattice constant for several ternary and quaternary systems.
Among them, the GaAs/AlGaAs ternary heterostructure system in particular has
been extensively used in the fabrication of many electronic and optical devices due
to the relative ease with which this high-quality lattice-matched structure can be
grown and processed.

In heterostructures where lattice matching is achieved only over a limited range
of alloy compositions, the quality of epitaxial layers depends critically on the
degree of matching and on the compositional uniformity over the substrate area.
The maximum mismatch percentage that can be accommodated by elastic strain in
the layers lies below 1 � 10�2 depending on the application. For larger mismatches
beyond this level, device degradation and extensive arrays of misfit dislocations
take place. Figure 1.1 indicates the lattice-matching requirement for many III–V
compounds. In nature, there are materials that cannot provide lattice matching and
therefore do not have dislocation-free interfaces needed for device applications. This
limitation on the choice of materials can be overcome by using thin layers made
of mismatched materials, so-called strained-layer heterostructures (Fig. 1.3). The
advent of such structures has greatly increased the number of materials suitable
for electronic and optoelectronic device applications. Thus, with strained-layer
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Fig. 1.5 Strained heterolayer epitaxy is a result of a stack of materials with dissimilar lattice
constants. To accommodate the misfit strain, the individual layers contract or expand in the plane
of the layers and in the plane of the growth, respectively

structures, an additional degree of freedom is obtained in the design of devices,
leading to better tailoring of transport and optical properties [9].

The use of strained layers allows one to grow alternate layers with smaller or
larger lattice constant than that of the substrate, such that the total stress on the
substrate is 0. Depending on the needs of the device designer, the energy gaps of
components and conduction and valence band offsets at heterointerfaces can be
engineered using the strained layers. This is something that cannot be achieved
with most of the lattice-matched materials in which the energy gaps and band
offsets have fixed values. Furthermore, the anisotropy of the strain removes the
degeneracy of the valence band. For example, biaxial compressive strain splits the
heavy and light hole components of degenerate valence bands into two subbands:
(1) a light hole band with a small mass in the plane of the layer and (2) a heavy hole
band with large mass along the direction perpendicular to the plane of the layer,
respectively.

Advances in experimental and theoretical work on superlattices have grown fast
and in new directions. Using epitaxial techniques such as MBE, one can grow
both heterostructures and doped superlattices from semiconductors with lattice
mismatches of several percent as long as the constituent layer thicknesses are
kept sufficiently small (Fig. 1.5). Since the lattice mismatch is accommodated by
coherent elastic strain, there is no misfit dislocation generated at the heterointerfaces
of a superlattice. The advantage of using a strained-layer superlattice (SLS) is that
by adjusting the layer thickness, one can increase flexibility in the choice of layer
materials. They lead to a wide range of adjustable electronic and optical properties,
such as the change in energy gap and effective masses for light and heavy holes.
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For example, under certain conditions, a direct-bandgap SLS can be produced from
indirect-bandgap layer materials if the indirect-bandgap minimum is zone-folded to
the zone center in the superlattice (1.6).

1.4 Modulation-Doped Field Effect Transistors

When the carriers are confined between two barriers in a thin semiconductor
quantum well, as shown in Figs. 1.4 and 1.6, one observes a new “quantum
phenomenon.” Since the de Broglie wavelength of electrons needs to fit into the
quantum well (or channel), there exist discrete energy levels, E0, E1, . . . , called
“quantum subband levels.” When the separation of two subband energies (e.g.,
E0 � E1) is larger than thermal energy, kbT (kb is the Boltzmann constant and T
is the lattice temperature), the energy in the z-direction is a constant forcing the
carriers to move in the xy-plane only. In this sense, the motion of the carriers is
two dimensional, and the resultant system is called the two-dimensional electron
gas (2DEG), which can easily be obtained in a semiconductor heterostructure made
of two wide-bandgap semiconductors and one narrow-bandgap semiconductor, as
shown in Fig. 1.6 for a 2DEG (Al,Ga)As/GaAs heterostructure.

The wide-gap (Al,Ga)As plays the role of a potential barrier, whereas the
narrow-gap GaAs plays the role of a quantum well (confining the electrons to
the heterointerface). Since both AlGaAs and GaAs have nearly the same lattice
constants, and similar elastic properties, the interface quality is much better than
in the conventional Si=SiO2 system. The potential barrier in both conduction and
valence bands at the (Al,Ga)As/GaAs heterointerface arises from the abrupt change
in composition and leads to the depletion of electrons from the wide-bandgap barrier
(Al,Ga)As and an accumulation of electrons in the narrow-bandgap channel GaAs.

Fig. 1.6 Typical band profile
for an SLS consisting of two
semiconductors. The tensile
and compressive elastic
strains remove the degeneracy
of the valence band and
therefore modify the effective
potential seen by carriers
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used for FETs. The diagram on the right shows the conduction electrons and valence holes

The potential “notch” at the interface confines the electrons to a quasi-triangular
quantum well (or channel) about 5–10 nm thick (Fig. 1.7).

Quantized energy levels, or subbands, are formed in this channel, with the lowest
generally filled by electrons and the second partially or fully filled, depending on
the electron density. Thus, the Fermi level lies between the first and the second
subbands. Free electrons confined in the channel conduct current parallel to the
heterointerface between the source and drain of the field effect transistor (FET)
when an electric field is applied parallel to the heterointerface. The current is
proportional to the electron density, electron velocity (for submicron devices), or
electron mobility. A negative bias applied to a metal gate on the surface of the
(Al,Ga)As reduces the areal electron concentration and therefore channel current.
When the gate voltage is sufficiently large, the entire channel region under the gate
is depleted of electrons and the current is “pinched-off.” When the gate is biased
positively with respect to the channel, the current flow occurs.

1.5 Heterostructure Bipolar Transistors

The concept of a Heterostructure bipolar transistor (HBT) was theoretically pro-
posed by Kroemer [7, 8] and experimentally explored and developed over the last
three decades with the advancement of crystal growth techniques such as MBE. The
HBT structure is different from FETs; a bipolar structure is a three-layer structure
(either n/p/n or p/n/p) and consists of both n- and p-type semiconductor layers,
whereas the unipolar structure consists of a doped barrier layer and undoped channel
layer. In an n/p/n HBT structure, current is carried by minority electrons whereas



10 H. Ünlü et al.

Fig. 1.8 Conduction and valence band edge profile of an n/p/n heterostructure bipolar transistors
under normal bias conditions. The emitter–base junction is forward-biased (emitter connected to
the negative terminal of the battery) and the base–collector junction is reverse-biased (collector is
connected to the positive side of a different battery). Electrons injected from the emitter diffuse
across the base and are collected by the collector. Along the way, some of them recombine with
hole in the interior of the base and some recombine with holes at defect sites at the heterointerface

in p/n/p HBT structures current is carried by minority holes. Since the electron
effective mass is smaller than that of the hole, minority electron transport is superior
to minority hole transport, and npn HBTs are much superior over pnp HBTs. A
schematic energy band diagram of a discrete HBT under normal biasing conditions
is shown in Fig. 1.8.

In addition, the emitter doping can also be reduced, thereby decreasing the
intrinsic base–emitter capacitance. Thus, it is possible to greatly increase current
gain through the virtual elimination of the hole component of emitter current and
to improve high-frequency performance at the same time by reducing the base
resistance and base–emitter capacitance. Realization of the full potential of het-
erostructure bipolar devices (such as np (pn) diodes and npn (pnp) Heterostructure
bipolar transistors (HBTs)) for electronic device technologies requires reliable and
precise predictive process and performance simulation models that are consistent
with the fundamental principles of solid-state physics and quantum mechanics.

1.6 Developments at Nanoscale

Today’s electronic communications and information technology is Si semiconductor-
based and can so far meet the current need by either increasing the production rate
and/or developing new production technologies. As a result of intensive research
and development activities, the size of existing Si semiconductor devices in 2020
is expected to be around 10–20 nm in size. This means that a new technology is
needed for the production of electronic and optoelectronic devices that are smaller
in size and volume and faster in speed. This will then create many new scientific and
technological problems to be solved before the new technology is actually put in
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force to meet the customer’s needs for a better and faster electronics and computer-
based communications. In order to overcome these problems, the world’s leading
scientists and engineers have been carrying out intensive work in nanoscience and
nanotechnology to create future information and communication technologies.

Nanoscience and nanotechnology refer to the comprehensive interdisciplinary
research involving science (physics, chemistry, biology, materials science) and
engineering (electronics, computer, mechanical, chemical, construction, textiles and
environment, etc.) fields. Nanoscience and nanotechnology was put forward as a
concept by Richard Feynman in a seminar called There is Plenty of Room at the
Bottom, which he gave at an American Physical Society meeting at California
Institute of Technology (Caltech) on December 29, 1959. The meaning of the
word “nano” is small and one nanometer is equal to one billionth meter (1 nm D
1=1000;000;000m).

The physical and chemical properties of materials on that scale may change and
may be controlled using size. Indeed, the production of new materials is possible
at nanoscale. Feynman described a process to be able to manipulate atoms and
molecules to organize and operate devices and/or systems at lower dimensions,
as needed. He also noted that scaling issues can arise due to possible changing of
the magnitudes of physical phenomena, such as surface tension and van der Waals
attraction, etc.

Since the first proposal of nanotechnology by Feynman in 1959, intensive
research and development activities have gained momentum in the last 30 years.
Nanotechnology and nanoscience had two major developments in early 1980s: (1)
cluster science and discovery of scanning tunneling microscope (STM) that led
to the discovery of fullerenes in 1985 and carbon nanotubes just few years later
and (2) further major developments in the area of the synthesis and properties of
semiconductor nanocrystals, such as metal oxide nanoparticles and quantum dots.
Rapid development continued in the area of structural characterization of materials.
The discovery of atomic force microscopy (AFM) took place just 6 years after the
STM was invented.

In recent years, a large amount of research has been carried out all over the
world on metals, semiconductors, ceramics, polymers, and composites containing
nanostructured materials for applications in health/disease, pharmacology, energy,
agriculture, electronics and communication, and information processing and storage
using the multifunctionality of the newly developed materials. This has spurred
new industry in various fields, including defense technology. Rapidly changing
technologies, including electronic communications, have intensified the scientific
research and technological development involving structures composed of atoms
and molecules—as well as biological structures. Indeed, some recent scientific
studies have been carried out on colloidal quantum dots. Since quantum dots
have zero dimensions, they have a sharper density of states than that of higher
dimensional (two and three dimensional) structures. Correspondingly, quantum
dots have superior charge transport and optical properties and, consequently, much
intensive research has been carried out to use them in making diode lasers,
transistors, and biological sensors.
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Fig. 1.9 TEM characterization of CdSe colloidal quantum dots prepared at 130ıC and 160ıC for
5 min of reaction time

Colloidal quantum dots are semiconductor nanocrystals that are synthesized
from precursor compounds dissolved in chemical solutions that involves precur-
sors, organic surfactants, and solvents. The precursors chemically transform into
monomers when heating a reaction medium to a sufficiently high temperature. The
nanocrystal starts to grow with a nucleation process when the monomers reach a
high enough supersaturation level. The temperature during the growth process is one
of the critical factors in determining optimal conditions for nanocrystal growth and
determines the size and shape of the nanocrystal. Control of monomer concentration
is another critical issue in nanocrystal growth. When the monomer concentration is
high enough, the size distribution results in nearly mono-disperse particles. The
colloidal quantum dots, with a diameter of 10–50 atoms, can contain as few as
100–100,000 atoms within the related volume, which corresponds to about 2–
10 nm. Transmission electron microscopy (TEM) characterization of CdSe colloidal
quantum dots is shown in Fig. 1.9.

Colorization of colloidal quantum dot is their immediate optical characteristics.
While the bulk material that makes up a quantum dot defines its intrinsic energy
property, the quantum confined size of a nanocrystal is more significant at energies
near the fundamental bandgap of the material. Therefore, quantum dots formed
from the same semiconducting material with different sizes can emit light of
different colors, as shown in Fig. 1.10. This is due to the quantum confinement
effect that occurs at nanoscale. The size of the quantum dot determines its color
and fluorescence spectrum. When the dot size is large, the color of its fluorescence
spectrum is red (lower energy). On the other hand, when the dot size is small, its
color is bluer (higher photon energy). The color of quantum dots is directly related
to its energy levels. The bandgap energy that determines the energy (or color) of the
fluorescent light is inversely proportional to the size of the quantum dot.

Quantum dots with larger size have more closely spaced energy levels (in
which electron–hole pairs can be trapped) that allows the quantum dot to absorb
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Fig. 1.10 Colloidal CdSe nanoparticles prepared at 150ıC during 1, 5, 10, 15, 20, 25, 30, and
35 min of reaction times

Fig. 1.11 Optical fluorescence spectrum of colloidal CdSe nanoparticles prepared at 150ıC
during 1, 5, 10, 15, 20, 25, 30, and 35 min of reaction times

photons with less energy (i.e., those closer to the red end of the spectrum). Since
electron–hole pairs stay longer in quantum dots of larger size, these dots exhibit
longer lifetime. The physical characteristics of quantum dots are related to the
shape and size of the semiconductor crystal. The smaller the size of the crystal, the
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Fig. 1.12 Optical absorption spectrum of colloidal CdSe nanoparticles prepared at 150ıC during
1, 5, 10, 15, 20, 25, 30, and 35 min of reaction times

larger the fundamental bandgap between the conduction and valence band energy
levels. Therefore, more energy is necessary to excite the quantum dot and more
energy is released when the crystal returns to its equilibrium state. Figures 1.11
and 1.12, respectively, show the fluorescence and absorption spectra of colloidal
CdSe nanoparticles prepared in our laboratory at İstanbul Technical University.
Absorption peaks in Fig. 1.12 show that the first, second, third, and fourth excited
states obtained are temperature-dependent. Based on the first excitonic absorption
peak, the average bandgap energy and size of CdSe nanoparticles at 150ıC are
2.7 eV and 3.82 nm, respectively.

The quantum theory of charged particles whose motions are confined in all three
space dimensions can be used to discuss the physics behind the measured peak
values in Fig. 1.12. The Hamiltonian for charged particles in the nanocrystal is
written as [12–15]

H D „2
2m� r2 C „2

2m� r2 C Ve.Ere/C Vh.Erh/� e2

"
ˇ
ˇEr � Er ˇˇ (1.2)

The first and second terms in (1.2) represent the kinetic energies of electrons and
holes, the third and fourth terms are confinement potential energies, and the last
term is the electron–hole Coulomb interaction energy. There are other terms such
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Fig. 1.13 Excitation energy (eV) of colloidal CdSe quantum dots as a function of growth
temperature, obtained by using optical absorption spectrum for samples prepared at 110ıC, 120ıC,
130ıC, 140ıC, 150ıC, and 160ıC

as exchange interaction energy and interaction energy between the charges in the
nanocrystal and their image charges in the dielectric host (polarization energy). The
solution of the Schrödinger equation for a particle in a spherical box (representing
a nanocrystal) yields the quantized energy levels as

E.ne;le/;.nh;lh/.d / D EgC2„2�2
d2

"
x2ne;le

m�
e

C x2nh;lh

m�
h

#

�3:572e
2

"d
�0:124e

4

„2"2
�
m�

em
�
h

m�
e Cm�

h

�

(1.3)
Here, Ef.ne;le/;.nh;lh/g.d/ is the excitation energy, Eg is the fundamental band gap
of bulk CdSe, m�

e D 0:13m0 and m�
h D 0:43m0 are the electron and hole effective

masses with free electron mass m0 in vacuum, and " D 5:8"0 is the optical dielectric
constant. d is the radius of CdSe quantum dots and “2D” is the size of quantum dot,
and xn;l is the root of first-order Bessel function j1.xn;l / D 0.

Normal and spin–orbit split valence band and conduction band transitions
involves excitations between (1s, 1s) (1p, 1p), (1d, 1d), (1f, 1f), and (2s, 2s)
energy levels. Thus, it is then possible to calculate the valence and conduction band
transitions between the (1s, 1s) (1p, 1p), (1d, 1d), (1f, 1f), and (2s, 2s) transition
energies. Shown in Fig. 1.13 is the effect of temperature on the first excitation
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Fig. 1.14 Size (nm) of colloidal CdSe quantum dots as a function of growth temperature for
samples prepared at 110ıC, 120ıC, 130ıC, 140ıC, 150ıC, and 160ıC

energy between the (2s, 2s) and (1s, 1s) transition, extracted from an optical
absorption measurement by an ultraviolet visible spectrometer at room temperature.
As Fig. 1.13 shows that the excitation energy decreases with increasing the growth
temperature for colloidal CdSe nanoparticles. Solving the Schrödinger equation for
d in terms of the first excitation energy level, one obtains the size (2d) of the CdSe
quantum dot as a function of growth temperature. As shown in Fig. 1.14, the size
of CdSe colloidal nanoparticles increases with growth temperature. Reaction time
does not play a crucial role in the change of nanoparticle size.

1.7 Conclusion

Realization of the full potential of heterostructures for electronic and optoelec-
tronic device technologies requires a reliable and precise predictive process and
performance simulation models that are consistent with the fundamental principles
of solid-state physics and quantum mechanics. In this chapter, we have presented
a partial summary of advances in low-dimensional semiconductor materials and
their device applications. Prediction of the performance of these low-dimensional
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semiconductor devices requires a general methodology, atomistic materials theory-
based modeling [16–25] that can proceed relatively independently of experiment.
The features that must be incorporated within this general approach are extended
tight-binding theory and density functional theories of band structure modeling,
incorporated into the current transport theory of charge carriers to achieve accurate
design and simulation of low-dimensional semiconductor devices.
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22. H.H. Gürel, Ö. Akıncı, H. Ünlü, Superlattices Microstruct. 40(4–6), 588 (2006)
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Chapter 2
Modeling of Low-Dimensional Semiconductors

Hilmi Ünlü, H. Hakan Gürel, Özden Akıncı, and Mohamed Rezaul Karim

Abstract In this chapter, we discuss the general methodology to carry out qualita-
tively reliable and quantitatively precise calculations of electronic band structure
of heterostructures that are essential in the realistic modeling and prediction of
device performance in technologically important semiconductor devices, which can
proceed relatively independently of experiment.

2.1 Introduction

Realization of the full potential of low-dimensional semiconductor structures for
making bipolar and unipolar electronic devices (such as heterostructure bipolar
transistors (HBTs) and modulation-doped field effect transistors (MODFETs)) and
optical devices (including heterostructure lasers and light-emitting diodes) requires
a reliable, precise predictive process and performance simulation models based
on the fundamental principles of solid-state physics and quantum mechanics.
Among the key issues are the understanding of the formation and determination
of the magnitude of conduction and valence band offsets at heterointerfaces, which
dominate various device properties such as injection efficiency in HBTs and carrier
confinement in MODFETs. These issues have received considerable attention
among device scientists and engineers over the years [1, 2].

The use of low-dimensional semiconductor structures in device design enables
device engineers to locally modify the energy band structure of the constituents
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Fig. 2.1 Schematic energy band diagram of an n-AlGaAs/p-GaAs heterojunction in thermal
equilibrium. When the semiconductor composition changes abruptly at the interface between
constituents, the difference in their energy bands is accommodated by discontinuities in the
conduction and valence bands

in order to control the motion of charge carriers [3, 4]. When two semiconductors
having different physical and chemical properties and thicknesses are grown upon
each other, the lattice mismatch and thermal expansion gradient at the growth
temperature gives rise to interface strain that modifies the electronic properties of
both materials near the interface, including the band offsets (as shown in Fig. 2.1 for
an n-AlGaAs/p-GaAs heterojunction in thermal equilibrium) and consequently the
energy profile experienced by moving charge carriers at the conduction and valence
band edges. This facilitates the control of device performance [2–10].

In this chapter, we discuss the general methodology to carry out qualitatively
reliable and quantitatively precise calculations of electronic band structure of
heterostructures that are essential in the realistic modeling and prediction of
device performance in technologically important semiconductor devices, which can
proceed relatively independently of experiment. The models we shall discuss in
this chapter are (1) the semiempirical sp3 tight-binding (TB) theory in comparison
with (2) density functional theory (DFT) of band structure modeling, which can be
very easily implemented in extended current transport modeling in low-dimensional
semiconductor structures.

When a wide-gap semiconductor is grown on a narrow-gap semiconductor base,
the interface strain, caused by the lattice mismatch, modifies the structural and
electronic properties of the constituent semiconductors in directions parallel and
perpendicular to the interface [1]. The macroscopic observable consequences of
lattice mismatch and thermal strains are the change in the bandgap, effective mass,
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intrinsic carrier density, and dielectric constant as a function of temperature. The
interface strain splits the heavy-hole, light-hole, and split-off valence band edges
by its uniaxial component and shifts the position of the conduction and valence
band edges, and the hydrostatic strain component alters the magnitude of the energy
levels of the constituent semiconductors [11], as shown in Fig. 1.1. The positions of
the heavy-hole, light-hole, and split-off valence band energies relative to the average
valence band edge Ev are given by the following equations:

Evh."/ D Ev."/C 1

3
� � 1

2
ıE (2.1)

Ev1."/ D Ev."/ � 1

6
�C 1

4
ıE C 1

2

r

�2 C�ıE C 9

4
ıE2 (2.2)

Evs."/ D Ev."/ � 1

6
�C 1

4
ıE � 1

2

r

�2 C�ıE C 9

4
ıE2 (2.3)

where ıE D 2b."zz � "xx/ D 2b."? � "k/ and b is the shear deformation potential
that describes the splitting in the valence band energy due to the [001] uniaxial
strain. Ev."/ is the average valence band maximum that is under the hydrostatic
component of the biaxial strain. Evh."/ is the heavy-hole band, Evl."/ is the light-
hole band, and Evs."/ is the split of band defined with respect to average valence
band maximum.

Compressive or tensile strain .."xx < 0/ or ."xx > 0// on the epilayer results in
an increase or decrease in its conduction and valence band energy levels (Fig. 2.2).
Therefore, any interface strain will modify the band offsets that determine carrier
transport across the interface of electronic or optical devices. Reliable and precise
determination of the effects of strain on the electronic band structure is essential for
the reliable design and precise performance predictions of HBTs as high speed, high
power, and low noise bipolar transistors. In the following subsections, temperature,
pressure, strain, and alloy composition effects on energy bandgaps and band offsets
will be discussed by using the sp3 TB theory of semiconductors [12–20].

Quantitatively reliable and numerically precise modeling and simulation of
electronic properties of compound semiconductors and their ternary alloys permits
better prediction of their material properties [12–20]. First-principles calculations
are known to be computationally intensive and cannot be easily implemented for
some optoelectronic devices [10]. In contrast, the semiempirical TB model is known
to be not only simple but also reliable and easily implemented, and has great
advantages over first-principles calculations in determining electronic properties
such as band structure, density of states (DOS), and bandgaps of low-dimensional
semiconductor structures. The semiempirical TB model is an atomistic approach
and well suited to calculate the electronic band structure of low-dimensional
semiconductor structures, including quantum wells and quantum dots [10]. In the
following section, we discuss the use of second nearest neighbor (2NN) sp3s�
[21] and nearest neighbor (NN) sp3d5s� [22, 23] TB models to calculate the
composition, temperature, pressure, and strain effects on electronic properties (e.g.,



22 H. Ünlü et al.

Fig. 2.2 The tensile strain ("xx > 0) (on left) results in the modification of the semiconductor
energy band structure (e.g., bandgap decreases). On the other hand, compressive strain ."xx< 0/ (on
right) results in the modification of semiconductor energy band structure (e.g., bandgap increases).
HH, LH, and SO, respectively, represent the heavy-hole, light-hole, and split-off band energies

band structure, DOS, bandgaps, and band widths) of semiconductor binaries and
their ternaries.

2.2 TB View of Semiconductor Structures

Within the framework of Slater–Koster-type semiempirical sp3 TB theory [24–26],
one first writes the Schrodinger equation in matrix form as

X

ˇ

�
H˛ˇ.k/� S˛ˇ.k/E

�
uˇ D 0; (2.4)

where E is the energy eigenvalue of the 10 � 10 Hamiltonian matrix H˛ˇ D
h�˛.k/jH j�ˇ.k/i and S˛ˇ D h�˛.k/j�ˇ.k/i is the overlap integral between the
atomic-like orbitals, with ˛ and ˇ that correspond to cation (c) and anion (a)
s(p) atomic orbitals, respectively. �.k/ is the basis function formed by the linear
combination of cation and anion s(p) atomic orbitals and uˇ is the wave function
coefficient. Considering a compound semiconductor having a zinc blende crystal
structure, shown in Fig. 2.3, the interaction between sa ile sc orbits is written as

hscjH jsai D Ess

4X

nD1
eik;rn D Ess

�
eik;r1 C eik;r2 C eik;r3 C eik;r4

	
(2.5)

where
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a1
a2

a3

Fig. 2.3 Unit cell of zinc
blende crystal structure

r1 D .a=4/.C1;C1;C1/;
r2 D .a=4/.C1;�1;�1/;
r3 D .a=4/.�1;C1;�1/;
r4 D .a=4/.�1;�1;C1/

are the displacement vectors of NNs. The interaction between the s, px, py , pz

orbitals of the first cation atom and second NN anion atoms can be described by
the following integral expressions:

hscjH jsai D Ess
�
eik;r1 C eik;r2 C eik;r3 C eik;r4

	 D EssB0.k/; (2.6)

hscjH jpaxi D Esp
�
eik;r1 C eik;r2 C eik;r3 C eik;r4

	 D EspB1.k/; (2.7)

hscjH jpayi D Esp
�
eik;r1 C eik;r2 C eik;r3 C eik;r4

	 D EspB2.k/; (2.8)

hscjH jpaz i D Esp
�
eik;r1 C eik;r2 C eik;r3 C eik;r4

	 D EspB3.k/: (2.9)

The interactions between the same p-orbitals of cation and anion atoms are called
diagonal matrix elements and are calculated by the following integral expressions:

hpcxjH jpaxi D ExxB0.k/; (2.10)

hpcyjH jpayi D ExxB0.k/; (2.11)

hpcz jH jpaz i D ExxB0.k/: (2.12)

The interactions between different p-orbitals of cation and anion atoms are called
off-diagonal matrix elements and are calculated by the following integral expres-
sions:

hpcx jH jpayi D hpcy jH jpaxi D ExyB3.k/; (2.13)

hpcxjH jpaz i D hpcz jH jpaxi D ExyB2.k/; (2.14)

hpcy jH jpaz i D hpcz jH jpayi D ExyB1.k/: (2.15)
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The matrix of semiempirical SP3 TB Hamiltonian that includes all interaction
elements is given by

H D

2
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6
6
6
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6
6
6
6
6
6
6
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where Ess; Exx; Esapc ; Escpa ; Exy; Es�p , and Eps� are known as hopping terms
(transfer matrix elements). The values of B0.k/, B1.k/, B2.k/, and B3.k/ are:
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where B�
i is the complex conjugate of Bi matrix element. It should be noted that

although the Slater–Koster-type sp3 TB approach [24–26] yields a good description
of valence band dispersion curves, the conduction band dispersion curves are not
accurately given, especially the indirect bandgap at the X symmetry point is not
well reproduced. In order to overcome this obstacle, Vogl et al. [21] introduced
an sp3s� TB model in order to include the influence of excited d-states. In this
model, each atom is described by not only its outer valence s orbital and three p
orbitals but also the fictitious excited s� orbital to take into account the effect of
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higher states. The inclusion of spin–orbit coupling of p-states to the sp3s� basis set
reproduces the splitting between split-off band and the light- and heavy-hole bands.
Accounting for 2NN interactions of cation and anion atoms improves the accuracy
of the sp3s� ETB model in determining the conduction band structure features at
X and L high symmetry points. It is possible to accurately calculate the conduction
band dispersion curves at the X high symmetry point by adding the excited s� state
with spin–orbit coupling to the sp3s� orbital basis. Moreover, inclusion of the 2NN
interactions of cation and anion atoms in the basis set yields a better fit for the
conduction band dispersion curve at the L symmetry point.

2.3 Semiempirical sp3s� TB Model

In the semiempirical sp3s� TB model Hamiltonian matrix, each cation atom and
anion atom are described by their outer valence s orbital, the three outer p orbitals,
and a fictitious excited s� orbital added to mimic the effects of higher lying d-states.
The inclusion of second (2NN) interactions in the sp3s� TB model introduces two
additional interaction parameters [10] and the Hamiltonian matrixH˛ˇ is written as
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where Ea
s ; E

c
s ; E

a
p;E

c
p; E

a
s� , and Es�c in H˛ˇ are known as the on-site atomic

energies of cation and anion atoms; Ess; Exx; Esapc ; Escpa ; Exy; Es�p; and Eps� are
known as hopping terms (transfer matrix elements); and "sx D ".sc.a/; pxc.a// and
"xy D ".pxc.a/; pyc.a// are the two 2NN transfer matrix elements for the cation
and anion atoms. Here, s and p refer to the basis states, and a and c refer to anion
(e.g., As, Sb, and N) and cation (e.g., Al, Ga, and In) atoms, respectively. Here,
each cation and anion atoms are described by its outer valence orbitals for each
spin: s; px; py; pz and an additional s* orbital, which is an excited state of s orbital
that accounts for higher lying states. B0, B1, B2, and B3 are given by (2.17) and
others B4, B5, and B6 are written as

B4.kx; ky; kz/ D 4 sin.kxa/ sin.kya/;
B5.kx; ky; kz/ D 4 sin.kxa/ sin.kza/;

B6.kx; ky; kz/ D 4 sin.kya/ sin.kza/:
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Table 2.1 Bandgaps at high symmetry points of GaAs, InAs, GaP,
GaN, and InN compounds [28–30] used as input parameters to produce
2NN sp3s� TB parameters in Table 2.2

(eV) GaAs InAs GaP GaN InN

E�
g 1.519 0.430 2.878 3.287 0.872

EX
g 1.980 2.278 2.330 4.691 2.827

EL
g 1.818 1.605 2.563 6.258 3.810

Table 2.2 The 2NN sp3s� TB parameters for GaAs, InAs, GaP, GaN, and InN compounds
obtained by using the fundamental bandgaps in Table 2.1

(eV) GaAs InAs GaP GaN InN

Es;a �8:4399 �9:5381 �8:1124 �12:915 �12:860
Ep;a 0:9252 0:7733 1:0952 3:1697 1:9800

Es;c �2:6569 �2:7219 �2:1976 �1:5844 �0:3994
Ep;c 3:5523 3:5834 4:0851 9:0302 8:0200

Es� ;a 6:6235 7:2730 8:4796 12:2000 10:6300

Es� ;c 7:4249 6:6095 7:1563 12:2000 13:0000

4Vs;s �6:4210 �5:6052 �7:4909 �8:8996 �4:2285
4Vx;x 1:9850 1:8398 2:1516 5:3500 3:9800

4Vx;y 4:9100 4:3977 5:1213 8:6200 7:4100

4Vsa;pc 4:2390 3:0205 4:2724 6:4000 3:8100

4Vpa;sc 5:15358 5:3894 6:3075 7:2400 6:1900

4Vs�a;pc 3:80624 3:2191 4:6184 7:0600 6:8800

4Vpa;s�c 4:7009 3:7234 5:0534 1:8200 3:3600

"sx 0:2459 0:1441 0:2325 0:9500 0:6150

"xy �0:1050 0:0249 �0:22 1:0100 0:7100

�a 0:0553 0:1385 0:0578 0:0035 0:0035

�c 0:1338 0:1290 0:0222 0:0410 0:1100

The inclusion of spin–orbit coupling in the sp3s� TB model increases the size of
the 10 � 10 Hamiltonian matrix to 20 � 20 matrix, which is diagonalized for each
k vector to obtain the semiconductor band structure. The spin–orbit effects are
included by coupling different spin states of different on-site p orbitals through the
spin–orbit interaction. A TB parameterization of the matrix elements for the sp3s�
2NN interaction are obtained by fitting the obtained bandgaps given in Table 2.1
to those produced by pseudopotential theory [27], as verified by experimental data
[28–30]. The optimized TB parameters are listed in Table 2.2 for GaAs, InAs, GaP,
GaN, and InN with cubic crystal structures.

Having reliable diagonal matrix elements allows one to make a realistic TB
parametrization of the off-diagonal matrix elements representing the first NN and
the 2NN interactions in the calculations of binary and ternary semiconductor
electronic band structures. As a first test of the accuracy of the 2NN sp3s� TB
model, calculated electronic band structures of GaAs and InAs are shown in Fig. 2.4,
which exhibit the reproduced conduction and valence band structures, including the
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Fig. 2.4 Energy band structures of GaAs and InAs bulk semiconductors along � � L and � � X
directions, obtained by using the 2NN sp3s� TB orbital basis sets

heavy-hole band, light-hole band, and spin–orbit splitting bands, of GaAs and InAs.
In obtaining Fig. 2.4, TB interaction parameters 4Vs�;p and 4Vp;s� were adjusted to
fit the X bands, and the 2NN interaction parameters "sx and "xy were chosen to get a
good fit to the L bands in reproducing the pseudopotential energy bands [27].

Figure 2.5a, b, and c display the results of the 2NN sp3s� TB model for the
conduction band and valence band electronic structures of GaP, GaN and InN
compounds. As shown in Figs. 2.4 and 2.5 for bulk GaAs, InAs, GaP, GaN, and
InN, adding the excited s� state to the sp3 basis set on the cation and anion atoms,
with the 2NN interactions and spin–orbit coupling of p-states, makes it possible
to better simulate the conduction band structure of III–V compounds, reproducing
the pseudopotential bands [27] and measured bandgaps [28–30] at high symmetry
points of the energy dispersion curve, which cannot be performed with NN or 2NN
sp3 ETB models. We should point out that the accuracy of our 2NN sp3s� TB model
calculations depends on a good description of the band structures of GaAs, InAs,
GaP, GaN, and InN compounds by the pseudopotential theory and/or accuracy of
the experimental data.
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Fig. 2.5 Energy band structure of GaP, GaN, and InN compounds along � � L and � � X
directions, obtained by using the 2NN sp3s� TB orbitals basis set listed in Table 2.2

2.4 Band Structure of Ternary Semiconductors

Within the framework of the 2NN sp3s� TB model, the effects of alloy compo-
sition and interface strain on the electronic band structure of heterostructures are
calculated by using the so-called modified virtual crystal approximation (MVCA)
[12–20]. The MVCA allows us to accurately take into account the disorder-
induced nonlinear variation of the lattice constant and TB parameters in calculating
electronic band structure properties such as bandgaps, conduction, and valence band
offsets at the interface and, in turn, the effective masses of charge carriers. One
first formulates the compositional dependence of bond length (or lattice constant)
of ternary semiconductors ABC of an ABC/AC heterostructure written as the sum
of undistorted bond length, dVCA D .1 � x/d0AC C xd0BC, obtained by using the
virtual crystal approximation (VCA), and the distortion in bond length, drelax D
x.1 � x/ıc.dBC.x/ � dAC.x//, due to cation–anion relaxation of binary in ternary
[12–20]:

d.x/ D dVCACdrelax D .1�x/d0ACCxd0BC Cx.1�x/ıc.dBC.x/�dAC.x//; (2.19)
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where dAC.x/ and dBC.x/ are the bond lengths of AC and BC binaries, respectively,
in A1�xBxC ternary:

dBC.x/ D .1 � x/d0AC C xd0BC C .1 � x/�BCWA.d 0BC � d0AC/; (2.20)

dAC.x/ D .1 � x/d0AC C xd0BC C x�ACWB.d 0AC � d0BC/ (2.21)

where d0AC and d0BC are the undistorted bond lengths of host materials AC and BC.
ıc in (2.19) is the difference between two dimensionless relaxation parameters �BCWA
and �ACWB [31].

ıc D �ACWB � �BCWA D 1

1C ˛AC
6˛BC



1C 10

ˇAC
˛AC

� � 1

1C ˛BC
6"AC



1C 10

ˇBC
˛BC

� : (2.22)

The effect of compositional disorder on the 2NN sp3s� TB Hamiltonian matrix
elements is then described in terms of the host bond length and the distorted bond
length by the substitutional impurity without any adjustable parameter [12–20]. The
diagonal elements in the 2NN sp3s� TB Hamiltonian matrix for an A1�xBxC ternary
semiconductor are expressed as a nonlinear function of composition [12–20]:

E˛=ˇ.x/ D .1 � x/E˛=ˇ.AC/C xE˛=ˇ.BC/C x.1 � x/ıc�E˛=ˇ; (2.23)

where �E˛=ˇ D E˛=ˇ.AC/ � E˛=ˇ.BC/, with ˛ and ˇ representing the fitted
energies of the s, p, and s� states of anion and cation atoms forming the AC and
BC bulk semiconductors. The optimized TB parameters given in Table 2.2 are used
in the calculations of the electronic structures of bulk GaPN, InAsN, and GaAsN
nitride ternaries in k-space for various ternary alloy compositions, displayed in
Fig 2.6a, b, and c showing the expected trend in band structures.

Note that there is a considerable lattice mismatch across ternary/binary het-
erointerfaces. Interface strain due to lattice mismatch causes a shift in the lattice
constant of the epilayer: a D .1 C "/a0, where " is the symmetric strain tensor.
Therefore, the bond lengths and off-site TB matrix elements are modified with
strain. Consequently, the electronic properties of heterostructure constituents will
be modified with respect to their unstrained values. The off-site TB matrix elements
representing the NN interactions, known as the hopping strength, are correspond-
ingly modified with respect to their unstrained values and are often determined by
assuming that they obey the Harrison scaling law [26]: V s

ll0m
D Vll0m.a=a0/

�	llm ,
where V s

ll0m
is the strained and Vll0m the unstrained values of interaction potentials

for anion and cation atoms. The exponents 	llm are determined so as to reproduce the
strain variations of the band structure of relevant semiconductors under hydrostatic
pressure, namely, the volume deformation potential agl D �B.@Egl=@P / for the
corresponding bandgap energies at � , L, and X high symmetry points, which depend
on the experimental values. This suggests that in order to obtain reliable and accurate
TB parameters, one must go through a difficult fitting process that depends on the
mapping of a large number of orbital coupling parameters on the set of observables



30 H. Ünlü et al.

Fig. 2.6 Electronic band structures of GaPN (left), InAsN (middle), and GaAsN (right) bulk
nitride semiconductors obtained by using 2NN sp3s� TB orbitals basis sets

and, in many cases, there are not many analytical expressions available. In such a
process, an accurate and reliable determination of the strain effects on the energy
levels by fitting the off-site TB matrix elements to set of observables is difficult.
One can overcome this difficulty by using the statistical thermodynamic model [32]
to study the interface strain effects on the electronic structure of heterostructure at
symmetry points.

In determining the effects of interface strain on the energy band structures
of heterostructures within the so-called statistical thermodynamic model of semi-
conductors [32], in which the conduction electrons and valence holes are treated
as electrically charged chemical particles, one first expresses the shifts in the
conduction and valence band edges at the � , L and X high symmetry points obtained
by using the 2NN sp3s� TB orbitals basis sets as given by (2.7), (2.8) and (2.9).
One then writes the shifts in the conduction and valence band energy levels and
consequently, the bandgap energies of the heterojunction constituents as a function
of temperature and pressure as
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Eci.T; P / D Eci C C0
ciPT .1 � 1nT /� aci

B

�

P � P2

2B
� .1C B 0/P 3

6B2

�

; (2.24)

Ev.T; P / D Ev C C0
vPT .1 � 1nT/� av

B

�

P � P2

2B
� .1C B 0/P 3

6B2

�

; (2.25)

where Ev is the top of valence band at k D 0 (� symmetry point) and av D
�B.@Ev=@P / is its deformation potential. The index i corresponds to the � ,
L, and X symmetry points in the first Brillouin zone: Ec1 D Ec� , EcL, and
EcX are the conduction band minima at the � , L, and X symmetry points with
deformation potentials ac
 D �B.@Ec
 =@P /, acL D �B.@EcL=@P /; and acX D
�B.@EcX=@P /:B is the bulk modulus and B 0 D @B=@P is its pressure derivative.
CO

cP D Co
nP � CO

oP D �Co
pP C � CO

P and Co
vP D Co

pP are the standard state
heat capacities of electron in conduction band valley Eci and that of the valence
hole at the top of the valence band energy Ev at constant pressure, with �CO

P D
CO

cP C Co
vP D Co

nP C Co
pP � CO

oP as the change in the standard heat capacity of
reaction.Co

nP D Co
pP D .5=2/kB for bare electrons and holes, kB is the Boltzmann’s

constant.
Figure 2.6a, b, and c displays the lowest bandgap energies at the � , L, and X high

symmetry points of the GaPN (left), InAsN (middle), and GaAsN (right) nitride-
based ternary alloy components of GaAsN/GaAs, InAsN/InN and GaPN/GaP
heterostructures. These figures clearly indicate that interface strain effects on the
bandgaps points can be quite large when the bandgap deformation potential is
large. As one can see from Fig. 2.7a, b, and c, the predicted principal bandgaps
of nitride-based ternary alloys at � , L, and X high symmetry points, especially at
� , are in excellent agreement with experimental data [28–30]. The bandgaps of
the GaPN, InAsN, and GaAsN nitride-based ternary semiconductors first decrease
with alloy composition (for N composition) roughly 25%, showing a negative
slope, and increase gradually with alloy composition, having a large positive
slope, in close agreement with experiments carried out on these materials. This
observation suggests that by using the optimized 2NN sp3s� TB parameters for
bulk GaAs, GaN, InAs, and GaP binary compounds, given in Table 2.2, the 2NN
sp3s� TB model allows one to determine the nonlinear composition dependence of
principal bandgaps of nitride-based ternary semiconductors without any empirical
fitting and/or any adjustable parameters. This conclusion suggests that the 2NN
sp3s� TB model can be a useful design tool for electronic and optoelectronic
devices.

A comparison of predictions with experimental bandgap data for nitride ternaries,
shown in Figs. 2.6, indicates that the proposed form of the 2NN sp3s� TB model
predicts that the fundamental bandgaps of ternary semiconductors vary with alloy
composition as

Egl.x/ D .1 � x/EglAC C xEglBC ��E.x/;
�E.x/ D x.1 � x/ŒEgl .AC /�Egl.BC/l �; (2.26)



32 H. Ünlü et al.

Fig. 2.7 Fundamental bandgaps of ternaries in GaPN/GaP (left), InAsN/InAs (middle), and
GaAsN/GaAs (right) heterostructures calculated using the 2NN sp3s� TB orbitals basis set

where �E.x/ represents the nonlinear effects of alloy composition on the funda-
mental bandgap energies of ternary semiconductors. Bandgap energies of GaPN,
InAsN, and GaAsN appear to have positive bowing over the entire alloy composition
range (0 � x � 1).

2.5 Band Offsets in Ternary/Binary Structures

The key feature involved in understanding the impact of nitride-based ternary/binary
low-dimensional semiconductor structures on the performance of electronic and
optical devices is the effect of alloy composition and strain variation on their energy
band structure across the interface. Conduction and valence band offsets across
the interface, shown in Fig. 2.8, control the electronic properties of heterostructure
devices. In the context of the 2NN sp3s� TB model, the valence band offset across
an ABC/AC ternary/binary heterostructure can be obtained by taking the difference
between the valence band energies of the constituent bulk semiconductors screened
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Fig. 2.8 Valence and conduction band offsets of GaPN/GaP (left), InAsN/InAs (middle), and
GaAsN/GaAs (right) heterostructures calculated using the 2NN sp3s� TB model

with their optical dielectric constant, and then the conduction band offset for a given
� , L, and X high symmetry point of the Brillouin zone is given as the difference
between the bandgap difference, written as [32]:

�Ev D
�
Ev

"1

�

BC
�
�
Ev

"1

�

ABC
;

�Eci D EciABC �EciBC D �Egi ��Ev; (2.27)

where Ev D Ev.�15/ is the top of the valence band at the � high symmetry
point and Eci D E�6c ; EL6c , and EX6care the bottom of the conduction bands at
the � , L, and X high symmetry points, determined with the proposed form of
the 2NN sp3s� TB model discussed in “TB View of Semiconductor Structures”
section using the optimized TB parameters listed in Table 2.2. Here, �Egi D
Egi.ABC/ � Egi.BC/ is the difference between bandgaps of the bulk ABC ternary
and BC binary compound semiconductors with bandgaps Egi.ABC/ and Egi.BC/,
where Egi D Eg�;EgL, and EgX are the principal bandgaps at the � , L, and X
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symmetry points. "1.ABC/ and "1.BC/ are the optical dielectric constants of bulk
ABC ternary and BC binary semiconductors. The band offsets in III–V nitride-
based ternary/binary heterostructures are shown in Fig. 2.7 for GaPN/GaP (left),
InAsN/InAs (middle), and GaAsN/GaAs (right) as a function of interface strain for
the entire composition range (0 � x � 1).

As shown in Fig. 2.8, the interface strain effect on the valence band offsets in the
GaPN/GaP, InAsN/InAs, and GaAsN/GaAs nitride-based heterostructures is rather
small because of the smaller valence band deformation potentials. However, the
interface strain effects on conduction band offsets at � , L, and X high symmetry
points can be quite large because of the large conduction band deformation
potentials. Furthermore, the conduction band offset of the InAsN/InAs structure
at the X high symmetry point has a negative slope and is fairly nonlinear with
composition. When we analyze the compositional variations of conduction band
offsets at the � high symmetry point of the first Brillouin zone, we note that
they are mostly negative at lower compositions 0:0 < x < 0:50 and become
positive for larger compositions, 0:50 < x < 1. We can say that GaPN/GaP,
InAsN/InAs, and GaAsN/GaAs nitride-based heterointerfaces are type II for smaller
alloy compositions (0:0 < x < 0:50) and become type I as the alloy composition
increases (0:50 < x < 1:0).

2.6 Semiempirical sp3d5s� TB Model

From comparison of electronic band structures calculated with pseudopotential
theory and sp3 and sp3s� ETB models, Jancu et al. [21] realized that the excited
d-states make a critical contribution to both the valence band maximum at the �
high symmetry point and to the conduction band dispersion curves at the X and L
symmetry points; and he developed an NNsp3d5s� semiempirical TB model with
NN interactions to calculate the electronic band structure of group IV and III–V
semiconductors. The valence band and conduction band dispersion curves obtained
with the NNsp3d5s� model are found to overcome most of the limitations of the
earlier TB models. This accurate description of the second conduction band and the
transverse effective masses at the X- and L-symmetry points are found to be in good
agreement with experimental data, leading to a reliable TB model for the calculation
of the optical properties involving high symmetry points at the edge of the first
Brillouin zone of tetrahedral semiconductors. Figure 2.9 shows the comparison of
the electronic band structure and DOS of GaAs calculated using the 2NN sp3s� and
NN sp3d5s� TB methods. Correspondingly, Fig. 2.10 exhibits the band structure and
DOS of GaN calculated using the NN sp3d5s� TB method [21] and DFT [22].

In the framework of the NN sp3d5s� TB models, the effects of alloy composition
on the electronic band structure of ternary/binary heterostructures are calculated
using MVCA [14–16,20]. This MVCA approximation makes it possible to calculate
the disorder nonlinear variation of the lattice constant and TB parameters in the
determination of the electronic structure properties (such as bandgaps and band
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Fig. 2.9 Electronic band structure and DOS of GaAs calculated using the 2NN sp3s� (dashed)
and NN sp3d5s� (solid) TB methods

offsets as shown in Fig. 2.11 for AlGaAs/GaAs heterostructures at 300 K) from
fundamental bandgap energy and conduction and valence band offsets compared in
Fig. 2.11 with results of DFT calculations carried out by our group and experiment.

2.7 Conclusion

The realization of the full potential of low-dimensional semiconductor structures
for electronic device technologies requires a reliable and precise predictive process
and performance simulation models that are consistent with the fundamental princi-
ples of solid-state physics and quantum mechanics. The use of low-dimensional
semiconductor structures in device design allows the device engineer to locally
modify the energy band structure of the constituents in order to control the motion
of charge carriers. When two semiconductors with different physical and chemical
properties and thicknesses are grown upon each other, the lattice mismatch and
thermal expansion gradient over the growth temperature causes interface strain that
modifies the electronic properties of both materials, including the band offsets,
and consequently, the energy of the moving charge carriers at the conduction and
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Fig. 2.10 Electronic band structure and DOS of AlAs calculated using the NN sp3d5s� TB method
(solid) and DFT (dashed)

valence band edges must change across the heterointerface, influencing the device
performance. Key issues involved are understanding the formation and determining
the magnitude of the conduction and valence band offsets at the interfaces of low-
dimensional structures, which dominate various device properties and has received
considerable attention among the device scientists and engineers over the years.

In this chapter, we presented a general methodology for a qualitatively reliable
and quantitatively precise calculation of the electronic band structure of low-
dimensional semiconductor heterostructures. The models discussed in this chapter
include the semiempirical sp3 TB theory and DFT of band structure modeling,
which can be implemented very easily in current transport modeling for low-
dimensional semiconductor structures to insure accurate design and simulation of
electronic and optoelectronic devices.
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Fig. 2.11 Composition effects on bandgaps and band offsets in an AlGaAs/GaAs heterostructure
calculated using the NN sp3d5s� TB method (solid) and DFT (dashed)
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equations for DC and AC conductivity. Device applications are also discussed.
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3.1 Graphene

3.1.1 Device-Friendly Material Properties

• High mobility at room temperature
• High electron density: 1013 cm�2 in single subband
• Long mean free path at room temperature – facilitates ballistic transport
• Temperature stability of graphene
• Exhibits quantum hall effect at room temperature

3.1.2 Applications

• Convenience of planar form (not tube) for commercial device fabrication
• Sensors-detection of single adsorbed molecule
• Actuator for electromechanical resonator
• Spin valve
• Graphene-based FET

3.1.3 Introduction: Sample Preparation Techniques: Original
Experiments

• In 2004, a group of physicists from Manchester University, UK, led by A. Geim
and K. Novoselov, obtained graphene starting with 3D graphite and extracting
a single sheet using a technique called micromechanical cleavage [Science 306,
666 (2004)].

• Recently, Walt de Heer’s group at Georgia Institute of Technology demonstrated
a new method to obtain graphene: exfoliation of intercalated graphitic com-
pounds and Si sublimation from SiC substrates [J. Phys. Chem. B 108, 19912
(2004)].
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3.1.4 Introduction: Structure

• Graphene is composed of a single 2D layer of carbon atoms in a hexagonal
honeycomb lattice

The honeycomb lattice is a superposition of two triangular sublattices. The basic
vectors are Ea1 D .

p
3=2;�1=2/a and Ea2 D .0; 1/a, and the sublattice is connected

by Eb1 D .1=2
p
3; 1=2/a, Eb2 D .1=2

p
3;�1=2/a, and Eb3 D .�1=p3; 0/a.

3.1.5 Introduction: Structure, Massless Dirac Spectrum

• In graphene, low-energy electrons behave as massless relativistic fermions due
to their linear energy spectrum around two nodal, zero-gap points (K and K 0/ in
the Brillouin zone. Electron/hole energies are proportional to C=� momentum.

Ek = –gk

ek
Ek = gk

Fig. 3.1 Schematic of graphene band structure

[�2 D 3˛2a2=4, ˛ is the hopping parameter in tight-binding approximation and a is
the lattice spacing; note that � also plays the role of a constant Fermi velocity (i.e.,
independent of carrier density).]

3.2 Graphene Hamiltonian I

• Hamiltonian
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The graphene Hamiltonian of free electrons/holes with 2D momentum p near s D K

or s D K 0 (Dirac points) in pseudospin basis is given by (E D 1; 2 represents the
Pauli spin matrices; � is the Fermi velocity)

^

h
.s/
0 D � Ep � E D �

�
0 px � sgn.s/ipy

px C sgn.s/ipy 0

�

sgn.s/ D
�
1 s D K

�1 s D K 0:

3.3 Graphene Hamiltonian II

• In our study, two basis sets are used: the pseudospin basis above and the
pseudohelicity basis.

• The unit cell of graphene contains two nonequivalent carbon atom structures
(two triangular sublattices), which can be represented as two different states.
In pseudospin representation, these two atom structures correspond to the two
states in a spin 1/2 system.

• The pseudohelicity basis is the basis of Hamiltonian eigenstates (diagonal);
helicity is the component of pseudospin in the momentum direction.

• The pseudospin of carriers in graphene near Dirac points is parallel or antiparallel
to momentum. Correspondingly, the pseudohelicity of carriers, equal to 1 or �1,
is characterized as a left-handed or right-handed state in the pseudohelicity basis.
This feature enables us to describe the low-energy electrons in graphene as
massless relativistic fermions.

• Relativistic phenomenology follows: “zitterbewegung”, Klein tunneling, etc.

3.4 Graphene Hamiltonian III

Introducing a unitary transformation to go from a pseudospin basis to a pseudohe-
licity basis

U .s/
p D 1

�p

�
px � sgn.s/ipy px C sgn.s/ipy

�p �p

�

;

^

h0 can be diagonalized as Œ"� D .�1/�C1�p�

Oh.s/0 D
h
U .s/
p

iC ^

h
.s/
0 U .s/

p D diagŒ"1.p/; "2.p/�:

The carriers experience scattering by impurities. In the pseudohelicity basis, the
corresponding potential takes the form:

T .p;k/ D UC
p V .jp � kj/Uk:
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3.4.1 Graphene: Green’s Functions for Null Field
and Finite Magnetic Field

Hamiltonian–Pseudospin Representation

^

h
s
0 D � E � EpI „ ! 1I �v D �sign.v/

Green’s Functions

.i
$

I @ = @t � ^

h
s
0/

$

G . Ep; t/ D $

I ı .t � t 0/:

In position–frequency representation, the 2�2matrixG-equation is Œ ER D Er� Er 0;
X D x � x0; Y D y � y0; T D t � t 0 ! !�,

$

G. ER;!/ D
"
G11. ER;!/ G12. ER;!/
G21. ER;!/ G22. ER;!/

#

D
Z
d2 Epei Ep� ER

.2�/2

$

G. Ep;!/;
�

$

I ! � �x
1

i

@

@X
� �vy

1

i

@

@Y

�
$

G.R; !/ D $

I ı.X/ı.Y /:

A. Retarded Green’s function (in momentum representation, Ep; ! ! ! C i0C)

GR
11. Ep;!/ D GR

22. Ep;!/ D !=.!2 � �2p2/I
GR
12. Ep;!/ D GR�

21 . Ep;!/ D �.px � ipy/=.!2 � �2p2/I

Spectral weight
$

A. Ep;!/ D �2ImŒ
$

G. Ep;!/�.
Spectrum: ! D ˙�p(C for electrons; � for holes).
B. Thermodynamic Green’s function

$

G

˚
<

>



. Ep;!/ D i

�
f0.!/

�1C f0.!/

�
$

AP. Ep;!/:

3.4.1.1 Landau-Quantized Graphene Green’s Function in Magnetic
Field I

. Ep ! Ep � e

2
EB � Er/

G.Er; Er 0I t; t 0/ D C.Er; Er 0/G0.Er � Er 0I t � t 0/;

where C.Er; Er 0/ D exp
h
ie
2„c Er � EB � Er 0

i
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and. ER D Er � Er 0I X D x � x0I Y D y � y0/

G0.Er � Er 0I t � t 0/ is determined by

Œ! � �x…XY � �vy…YX �G
0.R; !/ D Iı.X/ı.Y /:

Here; „ ! 1I c ! 1I �v D �sign.�/ and

…XY � 1

i

@

@X
C eB

2
Y and …YX � 1

i

@

@Y
� eB

2
X;

which yields G0
11 in a magnetic field in frequency representation as

G0
11.RI�/ D �M�c

4�

Z 1

0

d�
ei��

sin.�c�=2/
exp

�
iM�cŒX

2 C Y 2�

4 tan.�c�=2/

�

:

3.4.1.2 Landau-Quantized Graphene Green’s Function in Magnetic
Field II

The identifications for � D K are

� D K W � D ! C ���

!
eB D ! C �2

!
eBI M D !

2�2
I �c D 2�2

!
eB:

Expanding the � integrand as a generator of Laguerre polynomials,Ln, we obtain

G0
11.

ERI!/K D G0
22.

ERI!/K D

D G0�
11.RI!/K D eB

2�
! exp

�

�eB

4
ŒX2 C Y 2�

� 1X

nD0

Ln
�

eB
2
ŒX2 C Y 2�

	

!2 � 2n�2eB

and !G0
21 D Œ� …XY C i�v…YX �G

0
11:

3.4.1.3 Landau-Quantized Graphene Green’s Function
in Magnetic Field III

For v D K 0, the identifications are

� D K 0 W � D ! C ���

!
eB D ! � �2

!
eBI M D !

2�2
I �c D 2�2

!
eB;

and in this case,
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G0
11.R; !/K0 D G0

22.R; !/K0 D eB

2�
! exp

�

�eB

4
ŒX2 C Y 2�

�

�
1X

nD0

Ln
�

eB
2
ŒX2 C Y 2�

	

!2 � 2.nC 1/�2eB
:

SPECTRA

• � D KI !0 D ˙p2n�2eB;
• � D K 0I ! D ˙p2.nC 1/�2eB:

3.4.1.4 Landau-Quantized Graphene Green’s Function
in Magnetic Field IV

Another representation in circular coordinates:
The Bessel wave equation

�
@2

@R2
C 1

R

@

@R
� M2�2

cR
2

4
C 2M�

�

G0
11.RI�/ D M

�

ı.R/

R

yields G0
11.RI�/ D G0

22.RI�/ D M
2�
Z2.iM�c=2;

p
2M�;R/;

where Z2 is the second Bessel wave function�.

3.4.2 Graphene Quantum Dot in Magnetic Field

Green’s Function for Dot Region,G0
dot, in Terms of Full-Sheet Green’s Function,G0

Characterize dot by potential dip, U.Er/ D ˛ı.2/ .Er/
(˛ < 0 is the product of Q-well depth times dot area):

G0
dot .r1; r2I!/ D G0.r1; r2I!/
C˛G0.r1; 0I!/ ŒI � ˛G0.0; 0I!/��1G0.0; r2I!/;

where G0.0; 0I!/ ! G0.jEr1 � Er2j ! a, !) and “a” is dot width.

Dispersion relation

� D Œ.1 � ˛G0
11/.1 � ˛G0

22/ � ˛2G0
12G

0
21� D 0:

Approximate energy solutions: !K; !K0 ; ŒLn.x/ D Laguerre poly�

�P. Moon, E. Spencer, Field Theory Handbook, 2nd edn. (Springer, 1971), pp. 171ff.
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!K D ˛eB

4�
e�eBa2=4Ln

�
eBa2

2

�

˙1

2

s
�
˛eB

2�

�2
e�eBa2=2

�

Ln

�
eBa2

2

��2

C 8n�2eB;

!K0 D ˛eB

4�
e

�eBa2

4 Ln

�
eBa2

2

�

˙1

2

s
�
˛eB

2�

�2
e

�eBa2
4

�

Ln

�
eBa2

2

��2

C 8.nC 1/�2eB:

Exact numerical solutions are provided in Figures 3.2, 3.3, 3.4 below:
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Fig. 3.2 Density of states for
K, K0 nodes as function of
energy ! in meV
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Fig. 3.3 Energy levels for K
node splintered by Landau
quantization as function
of B1=2

Fig. 3.4 Same as Fig. 3.3,
but for K0 node (instead of
K node)

3.4.3 More about Graphene Quantum Dots

Graphene Q-Dots: Matulis and Peeters [arXiv 0711.446v1 [cond-mat.mes-hall]28
Nov. 2007] found that Dirac fermions in a cylindrical quantum dot potential are not
fully confined, but form quasibound states. Their line broadening decreases with
orbital momentum. It decreases dramatically for energies close to barrier height due
to total internal reflection of electron wave at the dot edge.

3.5 Dielectric Screening Function, K, (on the 2D Graphene
Sheet)

K. Np;! C i0C/ D "�1. Np;! C i0C/ D �
1C ˛. Np;! C i0C/

��1
;

where K is inverse of the dielectric function "; polarizability ˛ is given by
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˛. Np;! C i0C/ D � 2�e2

p
R. Np;! C i0C/, where R D ı� =ıVeff is the density

perturbation response function (“ring” diagram): R. Np;! C i0C/ D =< � =�
>, and

=> D
1Z

0

dte�i.!�ioC/t

Z
d2q

.2�/2
Tr:

�
$

G<. NqI �t/$

G>. Nq � NpI t/
�

;

=< D
0Z

�1
dte�i.!CioC/t

Z
d2q

.2�/2
T r:

�
$

G>. NqI �t/$

G<. Nq � NpI t/
�

:

[“Tr.” denotes the trace (“spur”) of the matrix.]

3.5.1 Graphene Polarizability: Degenerate Limit (T = 0ıK,
No Magnetic Field)

Density Perturbation Response Function, “Ring” Diagram R

R.x; �/ D ı�=ıVeff D D0
QR.x; �/I D0 � 1

�

r
gsg�n

�
;

where QR.x; �/ D QRC.x; �/ C QR�.x; �/ and QRC.x; �/ D QRC
1 .x; �/�.� � x/ C

QRC
2 .x; �/�.x��/ (dimensionless variables; „ ! 1; v D !=EF; x D p=kF; gs;v D 2

are pseudospin and valley degeneracies; �.z/ is the Heaviside unit step function),
where the real parts are (notation: QR � � Q…/,

Re Q…C
1 .x; �/ D 1 � 1

8
p
�2 � x2

ff1.x; �/�.j2C �j � x/

Csgn.� � 2C x/f1.x;��/�.j2� �j � x/

Cf2.x; �/Œ�.x C 2 � �/C �.2� x � �/�g ;

Re Q…C
2 .x; �/ D 1 � 1

8
p
x2 � �2

ff3.x; �/�.x � j� C 2j/

Cf3.x;��/�.x � j� � 2j/

C�x2

2
Œ�.j� C 2j � x/C �.j� � 2j � x/�

�

;



3 Graphene: Properties and Theory 49

and the imaginary parts are

Im Q…C
1 .x; �/ D �1

8
p
�2 � x2

�

f3.x;��/�.x � j� � 2j/C �x2

2
Œ�.x C 2 � �/

C�.2 � x � �/�

�

;

Im Q…C
2 .x; �/ D �.� � x C 2/

8
p
x2 � �2 Œf4.x; �/� f4.x;��/�.2 � x � �/�;

and � QR�.x; �/ D �x2�.x � �/
8
p
x2 � �2 C i

�x2�.� � x/
8
p
�2 � x2 :

Here,

f1.x; �/ D .2C �/
p
.2C �/2 � x2 � x2 ln

p
.2C �/2 � x2 C .2C �/

jp�2 � x2 C �j ;

f2.x; �/ D x2 ln
� � p

�2 � x2
x

;

f3.x; �/ D .2C �/
p
x2 � .2C �/2 C x2 sin�1 2C �

x
;

f4.x; �/ D .2C �/
p
.2C �/2 � x2 � x2 ln

p
.2C �/2 � x2 C .2C �/

x
:

[B. Wunch et al., New J. Phys. 8, 318 (2006); E.H. Hwang, S. Das Sarma, Phys.
Rev. B 75, 205418 (2007); K.W.-K. Shung, Phys. Rev. B 34, 979 (1986)]

3.5.2 Graphene Plasmon

Low wave number plasmon

".p ! 0I!/ D 0

� ) ! D Q!0p1=2Œ1 � qop=8p2F �;

where Q!0 D .gsg�e
2EF=2�/

1=2 ! n1=4 (not n1=2 as in normal 2D plasma)
n D 2D equilibrium carrier density of graphene
� is background dielectric constant
qo D gsgve

2pF=�� is the graphene Thomas–Fermi wave number; with the
graphene Fermi energy given by EF D ��pF and pF D Œ4�n=gsgv�

1=2.
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3.5.3 New Graphene Transverse Electric Mode in Terahertz
Range

[Mikhailov & Ziegler, Phys. Rev. Lett.99, 016803 (2007)]

• New Graphene TE Mode

1:667 < „!=EF < 2

15THz � f � 18THz

• TM Mode: 2D Graphene plasmon–polariton

„!=EF < 1:667

3.5.4 Coupling of Graphene and Surface Plasmons

• Screening function,K , of coupled system

(suppress lateral wave number Nq and frequency !; z0 is separation)

K.z1; z2/ D Ksemi.z1; z2/� ˛2De
j Nqjz0J.z1/Ksemi.z0; z2/

1C ˛2Dej Nqjz0J.z0/
;

where ˛2D is the graphene polarizability above and

Ksemi.z1; z2/ D �.�z1/

�

ı.z1 � z2/C ı.z2/e
j Nqjz1

�
1 � "0.!/

1C "0.!/

��

C�.z1/
�
ı.z1 � z2/

"0.!/
C ı.z2/e

�jNqjz1 1

"0.!/

�
"0.!/ � 1

"0.!/C 1

��

;

with J.z0/ D R
dz3Ksemi.z0; z3/e�jNqjz3 ;

and "0.!/ D 1 � !2p=!2; !p is the semi-infinite bulk plasmon frequency.

Fig. 3.5 Schematic of a
graphene sheet near the
surface of a semi-infinite bulk
plasma



3 Graphene: Properties and Theory 51

• Coupled graphene and surface plasmon dispersion relations

(!2D � Q!0q1=2 for the graphene 2D plasmon and !s D !p=
p
2 for the surface

plasmon of the semi-infinite bulk)

ı Two coupled modes

!2˙ D
�
!22D C !2s .1C ˇ�/

�

2.1C ˇ/

˙
q
.!22D C !2s Œ1C ˇ��/2 � 4.1C ˇ/!22D!

2
s �

2.1C ˇ/

contain the graphene interband correction

ˇ D .„!=2EF/
2 << 1

for acoustic plasmon roots and

� D 1 � e2j Nqjz0

exhibits z0 dependence on separation.

3.6 Graphene Energy Loss Spectroscopy and van der Waals
Interaction

• Power loss = Ef � E�.K(z1, z2; Np,!) is the screening function; E� is the velocity of
the energetic passing particle):

Ef D �4�.Ze/2
�

r1

Z

d z2

Z
d2 Np
.2�/2

ei Np�Nr1
Z
dpz

2�
eipzz2e�i.p�N�Cpz�z/t1e�i. Np� NR0Cpzz0/

�K.z1; z2; NpI! D Np � Nv C pzvz/

Np2 C p2z

�

r1D�t1CR0
:

• Parallel: stopping power—high velocity

Charge Ze moves with speed E� parallel to graphene plane at height above it:

Œ� � .�e2
p
n�gsg�=�„/1=2�

ı dW

dt
D �Z

2e2�4

2v3
e�.�2H=v2/

�

K0

�
�2H

v2

�

CK1

�
�2H

v2

��

[K0.x/ andK1.x/ are modified Bessel functions].
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Perpendicular: total work done by charge passing through graphene sheet

ı jW j D �z
�D0pF

�

�
Ze2

�

�2 �

c0� � 4 � 2.c02�2/p
c02�4 cos�1. 2

c0
/
�

(c0 D 2�e2D0=�pF; D0 defined on slide 18).

3.6.1 Atom/Graphene van der Waals Interaction I

vdW interaction energy to second order in Coulomb potential:

E
.2/

�dW D 4

3„"0
X0

n

1Z

0

du

2�

!n0j ED0nj2
u2 C !2n0

1Z

0

dpp2e�2pjZj ˛2D.p; iu/

"0 C ˛2D.p; iu/
;

where jZj D distance between the atom and the 2D graphene sheet; !n0 is the
energy difference of the atomic electron levels; !n0 D Ea

n � Ea
0I ED0n is the matrix

element of the atom’s dipole moment operator between atomic electron levels n, 0;
and ˛2D.p; !) is the dynamic, nonlocal polarizability of the graphene sheet. The
prime on

P0 denotes omission of the n D 0 term; "0 is the background dielectric
constant.

3.6.2 Atom/Graphene van der Waals Interaction II

Undoped W ˛2D.p; iu/ D �
�
gsgv�e

2

8"0„
�

p
p

u2 C �2p2
:

Expansion of Evdw in inverse powers of jZj is not available since it would involve
expanding the p-integrand in powers of p=u, causing divergences in the final
u-integration. However, for atomic frequencies (!a

n0/, the polarizability is small,
˛2D.p; iu/ << 1, and we have the p-integral as

Z 1

0

dp : : : Š �
�
gsgv�e

2

8"0„
�Z 1

0

dpe�2pjZj p3
p

u2 C �2p2

Š �
�
gsgv�e

2

8"0„
�

u�

8�2
@2

@jZj2
�

H1

�
2jZj
�

u

�

� Y1

�
2jZj
�

u

��

;

where H1.x/ is the Struve function and Y1.x/ is the Bessel function of the second
kind.
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3.6.3 Graphene Double Layer van der Waals Interaction

E
.2/

�dW

area
D 1

�

Z 1

0

du
Z

d2 Nq
.2�/2

Z

dz2

Z

dz3KA.z2; z3I Nq; iu/KB.z3; z2I Nq; iu/

with

KA;B.z1; z2; Nq; !/ D �ı.z2 ˙ z0/e
�jNqjjz1˙z0j ˛2D.q; iu/Œ1C ˛2D.q; iu/�

�1;

where ˛2D.q; !/ is the graphene single sheet 2D polarizability. In the plasma-pole
approximation, this yields

E
.2/
�dW

area
D .gsg�/

2e4

4096�2�„jz0j3
"

ı

.ı2 � 1/ � 1

.ı2 � 1/3=2
ln

 
ı C 1C p

ı2 � 1

ı C 1� p
ı2 � 1

!#

;

and ı D gsgv�e
2=8��„ D 1:432 W z0 is the separation of the two sheets of graphene.

(The quantity in square brackets is approximately 0.528.)
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Fig. 3.6 Plasmon (solid line) and electron–hole (dashed line) contributions to graphene double
layer vdW energy as functions of separation, z0
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Fig. 3.7 Ratio of plasmon to electron–hole Evdw contributions, as a function of z0 � Z

3.6.4 Graphene Quasiparticle Self-Energy,
P

A. Screened Coulomb self-energy,
P

Coul
, due to electron–electron (e–e) Coulomb

interaction, UCoul :
X

Coul

.1; 2/ ) �iVeff.1 � 2/G.1; 2/;

where the screened e–e Coulomb potential is

Veff.1 � 2/ D
Z

d3K.2� 3/UCoul.3� 1/:

Conclusions:

[Das Sarma, Hwang & Tse, Phys. Rev. B75, 121406(R)(2007)]
Intrinsic graphene is a marginal Fermi liquid (quasiparticle spectral weight vanishes
near Dirac point).
Extrinsic graphene is a well-defined Fermi liquid (doping induces Fermi liquid
behavior).
B. Phonon-induced self-energy

QVeff.1; 2/ D �ep.
*

x1/D
ı.t1I t2/�ep.

*

x2/;
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�ep.
*

x1/ measures electron–ion interaction strength; Dı.t1; t2/ is the free phonon
Green’s function, and

X

phonon

.1; 2/ ) �i QVeff.1; 2/G.1; 2/:

Conclusions:

[Tse & Das Sarma, Phys. Rev. Lett.99, 236802(2007)]
Phonon-mediated e–e coupling has a large effect on graphene band structure
renormalization.

3.6.5 Electronic Superlattices in Corrugated Graphene

Isacsson et al., arXiv:0709.2614v1[cond-mat.mes-hall]17Sep.(2007)
Theory of electron transport in corrugated graphene ribbons, with ribbon curva-

ture inducing an electronic superlattice (SL) having its period set by the corrugation
wavelength. Electron current depends on SL band structure, and for ribbon widths
with transverse level separation comparable to band edge energy, strong current
switching occurs.

3.7 Graphene Transport: Experimental Background

• In experiments involving graphene, many intriguing transport phenomena have
been observed. Plot of conductivity as a function of gate voltage (Vg/:

–100 –50 50 100
Vg (V)

0
0

1

2
10 k

σ(
kΩ

–1
)

3
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Science 306, 666 (2004)
Nature 438, 197 (2005)
Nature 438, 201 (2005)

• The existence of a “residual” conductivity at zero gate voltage

min � 4e2=h:

• Conductivity varies almost linearly with the electron density, high mobility at
room temperature.

• Quantum Hall Effect at room temperature

Science, 315, 1379 (2007).

3.8 Graphene Transport: Theoretical Background-A

• In terms of theoretical calculations, there has been some confusion about the
actual value of the minimum “residual” conductivity:

3.9 Graphene Transport: Theoretical Background-B

• Ziegler demonstrated that, within the Kubo formalism, the magnitude of residual
conductivity is sensitive to the order in which the dc (zero frequency) and
dissapationless limits are taken[cond-mat/0701300]

• Adam et al. showed that the minimum “residual” conductivity arises from
nonvanishing electron density at zero gate voltage which may be induced by
impurity potentials. Analyzing random fluctuations of gate voltage, they gave a
quantitative explanation of the experimentally observed “residual” conductivity
[cond-mat/0705.1540].
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3.10 Kinetic Equation for Graphene

• In the present work, we propose a kinetic equation to investigate transport
in graphene in the diffusive regime. The effect of interband polarization on
conductivity is incorporated.

• We find that the conductivity has a minimum for the electron density Ne �
0:11Ni (Ni is the impurity density). The value of this minimum is about 4:42e2/h
for RPA-screened electron–impurity scattering.

• For Ne < 0:11Ni, the conductivity is proportional to (Ne/
�1.

• However, the conductivity,  , varies almost linearly with Ne for Ne > 0:11Ni.

3.10.1 Kinetic Equation Formulation for Current and
Distribution Function

• The current is expressed in terms of elements of the distribution function, �, as
(n is the unit normal vector to the graphene plane)

• The kinetic equation for the linear electric field part of the distribution function,
O�.s/1 .p/, is given by

3.10.2 Kinetic Equation: Solution I

• Solution of the kinetic equation

Œv.s/� .p/ D rp"
.s/
� .p/ D .�1/�C1�p=p�;

h
O�.s/1
i

��
.p/ D eE � v.s/� .p/ƒ

.s/
� .p/;

h
O�.s/1
i

12
.p/ D e�

p
ŒE � p � n�ˆ.s/.p/:
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• Diffusive regime of validity (l D diffusion length)— kFl > 1.
• Definitions of ƒ.s/

� .p/, ˆ.s/.p/ follow.

3.10.3 Kinetic Equation: Solution II

The functions ƒ.s/
� and ˆ.s/.p/ can be expressed in terms of microscopically

calculated relaxation times as

ƒ.s/
� .p/ D ��.a/� .p/

@

�h
O�.s/0
i

��
.p/

�

@"
.s/
� .p/

C sgn.s/ImŒˆ.s/.p/�;

ReŒˆ.s/.p/� D � sgn.s/

4�2p2

X

�

(

�p
@fŒ O�.s/0 ���.p/g
@"
.s/
� .p/

)

;

ImŒˆ.s/.p/� D � sgn.s/

16�3p3

"
1

�
.b/
1 .p/

C 1

�
.b/
2 .p/

#

�
X

�

"

�p
@fŒ O�.s/0 ���.p/g
@"
.s/
� .p/

#

:

3.10.4 Kinetic Equation: Conductivity I

• We finally arrive at the microscopically determined conductivity:

 D �e
2

2
gs�

2
X

p;�;s

8
<

:

�

�.a/� .p/C 1

4�2p2�.b/.p/

� @
n
Œ O�.s/0 ���.p/

o

@"
.s/
� .p/

9
=

;
;

where

Œ� .a;b/� .p/��1 D �Ni
X

k
jV.p � k/j2ıŒ"�.p/� "�.k/�A

.a;b/.�k/;

A.a/.�/ D sin2 �; and A.b/.�/ D .1 � cos�/2;

Œ� .b/.p/��1 � Œ�
.b/
1 .p/��1 C Œ�

.b/
2 .p/��1:

Conductivity involves not only a term proportional to (Ni/�1, but also a term linear
in impurity density.
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3.10.5 Static Screening Dielectric Function

• RPA-screened model

".q/ D 1C qs

q

8
<

:

1 if q � 2kF

1C �q

8kF
� 1

2

r

1 �


2kF
q

�2 � q

4kF
sin�1



2kF
q

�
if q > 2kF

;

qs D 4e2kF=.„Q��/ is the Thomas–Fermi screening wave vector ( Q� is the static
background dielectric constant)
[Kenneth W.-K. Shung, Phys. Rev. B34, 979 (1986); T. Ando, J. Phys. Soc. Jpn. 75,
074716 (2006); B. Wunsch et al. New J. Phys. 8, 318(2006); E.H. Hwang et al. PRL
98, 186806 (2007)]

3.10.6 Conductivity Results and Discussion I

• At zero temperature, kF D p
4�Ne=gsgv,

 jTD0 D e2�gsgv�kF

�

�
.a/
1 .kF/C 1

4�2k2F�
.b/.kF/

�

;

where gv characterizes the valley degeneracy and gs the spin degeneracy.
Obviously, there is a minimum in the dependence of conductivity on the impurity
density; consequently, there is also a minimum in the charge carrier density
indicated here.

3.10.7 Conductivity Results and Discussion II

• For a short-range scattering model [PRL 92,256602(2006)],

V.p � k/ � ��=.2kF/

 jTD0 D e2

�

�
16Ne

�Ni
C 3�Ni

32Ne

�

:

RESULTS:

• Minimum conductivity at zero temperature

 jTD0 	 min D e2
p
6=� D 2

p
6e2=h � 4:9e2=h:
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• Carrier density at minimum conductivity

 jTD0 D min ifNe D Nc
e D Ni�

p
6=32 � 0:24Ni;

when Ne>N
c
e , the first term in  jTD0 is important, giving rise to a linear

dependence of conductivity on electron density.

3.10.8 Conductivity Results and Discussion III

• RPA-screened Coulomb scattering model

V.q/ D e2

2"0�".q/q
:

• Zero temperature conductivity

 jRPA
TD0 D e2

�

�
Ne

NiG.2rs/
C NiF.2rs/

4Ne

�

;

.rs D e2=.4�"0��//:

• G.x/, F.x/ are specified below.

3.10.9 Conductivity Results and Discussion IV

Above,

G.x/ D x2

8

Z 2�

0

d�
sin2 �

.sin �
2

C x/2

D x2

8
<̂

:̂

�
4

C 3x � 3�
2
x2 C jxj.3x2 � 2/ arccos.1=x/Œx2 � 1��1=2 forjxj > 1

�
4

C 3x � 3�
2
x2 C x.3x2 � 2/ReŒarctanh.1=

p
1� x2/�Œ1� x2��1=2 for 0 � x � 1

;

and

F.x/ D x2

8

Z 2�

0

d�
.1� cos �/2

.sin �
2

C x/2

D x2

8
<

:

�
2

� 4x C 3x2� � 2x3

x2�1
C jx3j.8� 6x2/ arccos.1=x/.x2 � 1/�3=2 for jxj > 1

�
2

� 4x C 3x2� � 2x3

x2�1
� x3.8� 6x2/ReŒarctanh.1=

p
1� x2/�.1� x2/�3=2 for 0 � x � 1
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3.10.10 Conductivity Results and Discussion V

• Our results are in good agreement with the experimental data: The observed
minimum conductivity is about 4e2/h, while we obtain min � 4:42e2=h for
RPA-shielded Coulomb scattering with Ne � 0:11Ni.

• We also find almost linear dependence of the conductivity on carrier density for
Ne > 0:11Ni.

3.10.11 Conductivity Results and Discussion VI

• We find that conductivity increases with decreasing electron density for Ne <
0.11Ni in the diffusive regime. Actually, random fluctuations of gate voltage
may cause an increase of residual carrier density, leading to Ne > 0.11Ni . In
this situation, it would be difficult to observe the increase of conductivity with
decreasing electron density.

3.10.11.1 Conclusions I

• We have investigated transport in graphene in the diffusive regime using a kinetic
equation approach. The contribution from electron–hole interband polarization to
conductivity was included (it was ignored in all previous studies).

• We found that the conductivity of electrons in graphene contains two terms: one
of which is inversely proportional to impurity density, while the other one varies
linearly with the impurity density.

3.10.11.2 Conclusions II

• Our numerical calculation for the RPA-screened Coulomb scattering potential
and our analytical results for a short-range scattering potential indicate that
the minimum (rather than “residual”) conductivity in the diffusive regime is in
the range 4–5e2=h. We also obtained linear dependence of the conductivity on
electron density for higher Ne=Ni values.

3.11 Dynamic AC Conductivity

• We have also developed a kinetic equation to investigate the dynamic AC
conductivity of graphene due to impurity scattering in the diffusive regime. The
effect of interband coherence on conductivity is incorporated.
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• We find that, when the frequency of the AC electric field is less than a critical
value, !0, of order of THz, the conductivity has a minimum as a function of
electron density.

• For ! > !0, the dynamic AC conductivity varies monotonically with electron
density.

3.11.1 AC Kinetic Equation Formulation for Current and
Distribution Function ! O�

• The current is expressed in terms of elements of distribution function O� as (n is
unit vector normal to graphene sheet)

• In the presence of a dynamic AC electric field, E.T / D E0e�i!T , the kinetic
equation for the linear electric field part of the distribution function, O�.v/1 .!; p/,
in frequency representation, is determined by

3.11.1.1 AC Kinetic Equation: Solution I

• Solution of the kinetic equation

Œv.v/� .p/ D rp"
.v/
� .p/ D .�1/�C1�p=p�;

ı
h

O�.v/1
i

��
.!; p/ D eE0 � v.v/� .p/ƒ

.v/
� .!; p/;

ı
h

O�.v/1
i

12
.!; p/ D e�

p
ŒE0 � p � n�ˆ.v/.!; p/:

• Diffusive regime of validity, kFl >> 1 (l is diffusion length).
• Definitions of ƒ.s/

� and ˆ.s/.p/ follow.
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3.11.1.2 AC Kinetic Equation: Solution II

The functions ƒ.s/
� and ˆ.s/.p/ can be expressed in terms of microscopically

calculated relaxation times �.a;b/� .p/ as

ƒ.v/
� .!; p/ D � 1

i!�
.a/
� .p/� 1

8
ˆ̂
<

ˆ̂
:
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O�.v/0
i

��
.p/

�

@"
.v/
� .p/
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X
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� .p/Œi!�.a/� .p/� 1�

#�1
:

• Thus, the conductivity is given by

J.!/ D e2

2
gs�

2E0
X

p;v

fŒƒ.v/
1 .!; p/Cƒ

.v/
1 .!; p/�C 2sgn.v/ImŒˆ.v/.!; p/�g;

where

Œ� .a;b/� .p/��1 D �Ni
X

k
jV.p � k/j2ıŒ"�.p/� "�.k/�A

.a;b/.�k/;

A.a/.�/ D sin2 �; and A.b/.�/ D .1� cos�/2;

Œ� .b/.p/��1 � Œ�
.b/
1 .p/��1 C Œ�

.b/
2 .p/��1:

3.11.1.3 AC Results and Discussion I

• At zero temperature, kF D p
4�Ne=gsgv

• For a short-range impurity scattering potential model [PRL 92,256602(2006)]

V SR.q/ D ��=.2kF/:
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• Maximum frequency for occurrence of a minimum: !0 
 5THz

Graphene
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Dynamic AC conductivity as a function of Ne=Ni for several frequencies in the
terahertz range (Ne D carrier density, Ni D impurity density).

3.11.1.4 AC Results and Discussion II

• We find that, for ! < !0 D 5 THz, there is a minimum in the electron-density
dependence of real part of conductivity in the case of a short-range scattering
potential.

• For ! > !0, the real part of conductivity monotonically decreases with
decreasing electron density.

3.11.2 Dynamic AC Conductivity

• Sum rules for the optical conductivity have been analyzed by Gusynin et al.
[Phys. Rev. B 75, 165407 (2007)].

• Mishchenko has examined the effect of electron–electron interactions on optical
conductivity [Phys. Rev. Lett. 98, 216801 (2007)].
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3.11.2.1 AC Results and Discussion III

• For a RPA-screened model, V.q/ D e2

2"0 Q� ".q/q ,

where

".q/ D 1C qs

q

8
<

:

1 if q � 2kF

1C �q

8kF
� 1

2

r

1 �


2kF
q

�2 � q

4kF
sin�1



2kF
q

�
if q > 2kF

:

Here, qs D 4e2kF=.„Q��/ is the Thomas–Fermi screening wave vector ( Q� is the static
background dielectric constant).
[K.W.-K. Shung, Phys. Rev. B34, 979 (1986); T. Ando, J. Phys. Soc. Jpn. 75, 074716
(2006); B. Wunsch et al., New J. Phys. 8, 318 (2006); E.H. Hwang et al., PRL 98,
186806 (2007)]

3.11.2.2 AC Results and Discussion IV

• For long-range RPA-screened impurity scattering potential, !0 � 3THz.
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w0 ≈ 3THz

w

Dynamic AC conductivity as a function of Ne=Ni for several frequencies in the
terahertz range, calculated with RPA-screened scattering.

• Maximum frequency for occurrence of a minimum: !0 
 3THz.
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3.11.3 AC Conclusions

• We have analyzed the dynamic AC conductivity of graphene in the diffusive
regime using a kinetic equation approach. Both short-range and long-range
RPA-screened electron–impurity scatterings have been considered. The role of
electron–hole interband coherence in conductivity has been taken into account.

• When the frequency of the AC electric field is less than a critical value, ! < !0,
of order of several THz, the conductivity has a minimum as function of electron
density. For ! > !0, the dynamic AC conductivity monotonically decreases with
decreasing electron density.

3.12 Device-Friendly Features of Graphene I

• Because carbon nanotubes conduct electricity with very low resistance, they have
attracted strong interest for use in transistors and other devices.

• But serious obstacles remain for volume production of nanotubes:

ı Inability to produce nanotubes of consistent sizes and consistent electronic
properties

ı Difficulty of integrating nanotubes into electronic devices
ı High electrical resistance that produces heating and energy loss at junctions

between nanotubes and the metal wires connecting them

3.12.1 Device-Friendly Features of Graphene II

• In graphene, the carrier mobilities at room temperature can reach 3,000–
27,000 cm2=Vs [Science 306, 666 (2004); 312, 1191 (2006)], making graphene
an extremely promising material for future nanoelectronic devices. Graphene
mobilities up to 200,000 cm2/Vs have been reached. [P.R.L. 100, 016602 (2008)
“Electron-Phonon scattering is so weak that, if extrinsic disorder is eliminated,
room temperature mobilities 
200;000 cm2 /Vs are expected over a technologi-
cally relevant range of carrier concentration.”]

• Since the mean free path for carriers in graphene can reach L D 400 nm at room
temperature, graphene-based ballistic devices seem feasible, even at relaxed
feature sizes compared to state-of-the-art CMOS technology.

• Stable to high temperatures 
3,000 K; great strength
• Graphene’s flatness makes it likely to be amenable to commercial fabrication

techniques in the style of the highly developed top-down CMOS compatible
process flows, a substantial advantage over carbon nanotubes.
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3.12.2 Device-Friendly Features of Graphene III

• Schedin et al. reported that graphene-based chemical sensors are capable of
detecting minute concentrations (1 part per billion) of various active gases and
allow us to discern individual events when a molecule attaches to the sensor’s
surface [cond-mat/0610809].

ı High 2D surface/volume ratio maximizes role of adsorbed molecules as
donors/acceptors.

ı High conductivity.
ı Low noise.
ı High sensitivity, detects single molecule.

3.12.3 Device-Friendly Features of Graphene IV

• A simple spin valve structure has already been fabricated using graphene to
provide the spin transport medium between ferromagnetic electrodes [cond-
mat/0704.3165].

ı Long spin lifetime, low spin/orbit coupling, high conductivity
ı Inject majority spin carriers, increase chemical potential of majority spins
ı Resistivity changes, signal varies with gate voltage [Hill, Geim, Novoselov

and Cho, Chen, Fuhrer].
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3.12.4 Device-Friendly Features of Graphene V

• J. Scott Bunch et al. demonstrated that graphene in contact with a gold electrode
can be used to electrostatically actuate an electromechanical resonator [Science
315, 490 (2007)].

ı 2D graphene sheet suspended over trench in SiO2 substrate
ı Motion activated by rf gate voltage superposed on dc-Vg (dc gate voltage),

applied to graphene sheet
ı Electrostatic force between graphene and substrate results in oscillation of

graphene sheet
ı Also, optical actuation by laser focused on sheet, causing periodic contrac-

tion/expansion of graphene layer

3.12.5 Device-Friendly Features of Graphene VI

• Using graphene, “proof-of-principle”FET transistors, loop devices, and circuitry
have already been produced by Walt de Heer’s group [http://gtresearchnews.
gatech.edu/newsrelease/graphene.htm] [Also, Lemme et al.].

• Quantum interference device using ring-shaped graphene structure was built to
manipulate electron wave interference effects.
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Chapter 4
Functionalization of Graphene Nanoribbons

Haldun Sevinçli, Mehmet Topsakal, and Salim Ciraci

Abstract With the synthesis of a single atomic plane of graphite, namely, graphene
honeycomb structure, a new perspective for carbon-based electronics is opened.
The one-dimensional graphene nanoribbons (GNRs) have different band-gap values
depending on their edge shape and width. In this contribution, we report our results
showing that repeated heterostructures of GNRs of different widths form multiple
quantum-well structures. The widths of the constituent parts as well as the bandgap,
and also the magnetic ground state of the superlattices are modulated in direct
space. We provide detailed analysis of these structures and show that superlattices
with armchair edge shapes can be used as resonant tunneling devices and those
with zigzag edge shape have unique features for spintronic applications. We also
discuss another route of functionalizing 2D graphene, 1D GNR, and superlattices
with 3d-transition metal (TM) atom adsorption.

4.1 Introduction

Carbon plays a unique role in nature by forming a number of very different
structures. It is not only because it is capable of forming complex networks, which
are fundamental to organic chemistry, but also due to the seldom properties of its
zero-, one-, two-, and three-dimensional allotropes, which are subjects of solid state
physics. Its 3D structures (diamond and graphite) have been known since ancient
times, whereas the zero (fullerenes) and 1D (carbon nanotubes and linear atomic
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Fig. 4.1 Graphitic carbon allotropes of three, two, one, and zero dimensions (a–d), respectively

chains) were discovered within the last 10–20 years. The experimental observation
of 2D carbon (graphene) has been accomplished only recently [1].

Observation of truly 2D graphene made it necessary to reconsider the existing
theories on low-dimensional crystals [2–4]. Despite earlier theories against the
existence of perfect 2D crystals, a detailed analysis of the problem beyond the
harmonic approximation has led to the conclusion that the interaction between
bending and stretching long-wavelength phonons could, in principle, stabilize
atomically thin membranes through their deformation in the third dimension.
Analysis of the phonon dispersions within the quasi-harmonic approximation shows
that 2D and 1D honeycomb structures of Si, Ge, and BN are also stable [5, 6].

The 2D honeycomb structure of graphene plays a crucial role for understanding
other graphitic forms (Fig. 4.1), and the electronic properties of graphene are
governed by the binding characters of its orbitals. A  bond is formed between
neighboring carbon atoms by sp2 hybridization between one s-orbital and two
p-orbitals. The remaining p-orbitals are perpendicular to the graphene plane and
they form covalent bonds leading to a �-band.

Graphene is a zero bandgap semiconductor with linear dispersion of bands near
the Fermi level. This particular dispersion gives rise to the lower energy excitations
to behave as massless Dirac fermions with an effective speed of light �F–106 m=s.
Hence, at low energies, unusual properties of quantum electrodynamics are expected
to be observed on graphene lattice. One of the interesting features of Dirac fermions
is the deterministic (unit probability) transmission through tunneling barriers of
arbitrary width and height when incident normally. This counterintuitive property of
ultra-relativistic particles, known as Klein paradox, was previously attributed only
to exotic phenomena such as black hole evaporation; now graphene serves as a basis
to verify these [7].

Besides its unusual properties, graphene is a candidate for a large number of
applications and has the potential to offer new concepts in materials research
and fundamental science [8, 9]. A variety of methods have been proposed or
demonstrated in order to functionalize graphene-based materials for new device
applications [10–20] such as hydrogen storage media [10, 11], gas sensors [12],
spin-valve devices [13–17], transistors [18,19], and resonant tunneling devices [20].

In this chapter, we present our work on functionalization of graphene nanorib-
bons (GNRs). The methods used are the empirical tight binding method and density
functional theory (DFT) [29] (see Appendix A for details of DFT calculations).
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Below, we first present a review of fundamental electronic and magnetic properties
of graphene and GNRs, which will form a basis for the following sections, where we
analyze the superlattice structures of armchair and zigzag GNRs. We also discuss the
effects of adsorbed Ti atoms on the electronic and magnetic properties. We conclude
this chapter with our findings.

4.2 Electronic and Magnetic Properties of 2D and 1D
Graphene

4.2.1 Electrons in Honeycomb Lattice

The hexagonal lattice of graphene and its reciprocal lattice are shown in Fig. 4.2a
and b. The lattice vectors are a1 D a.

p
3=2; 3=2/ and a2 D a.�p

3=2; 3=2/ with
a D 1:42 Å being the nearest neighbor distance. Correspondingly, the reciprocal
lattice vectors are b1 D 2�=3a.

p
3; 1/ and b2 D 2�=3a.�p

3; 1/. The corners of
the first Brillouin zone, K D 2�=3a.1=

p
3; 1/ and K 0 D 2�=3a.�1=p3; 1/ are of

particular importance for the physics of graphene. These points are called the Dirac
points close to which the energy dispersion becomes linear as it will be discussed
below.

The tight-binding Hamiltonian has the simple form

HTB D �t
X

<i;j>˛ 

.cC
i ˛  cj ˛0  CH:c:/;

Fig. 4.2 (a) The lattice structure and the unit cell vectors of graphene. A and B atoms belong to
different sublattices. (b) The corresponding Brillouin zone and the special k-points r, M, K, and K0
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Fig. 4.3 The full band structure of graphene for –�=a < kx; ky < �=a (a), and a zoom in of the
band structure close to one of the Dirac points (b). (c) Two dimensional map of the conduction
band. Darker regions indicate lower energy. (d–e) The full band structure from special view points
corresponding to the band structures along the kx- and ky -directions. The kx-direction can be
named as the zigzag direction, and the ky-direction as the armchair direction, and the ky-direction
as the armchair direction in accordance with Fig. 4.2a (See also Figs. 4.5 and 4.6)

where cC
i ˛  .ci ˛  ) creates (annihilates) an electron on site Ri with spin ¢ on the

’ sublattice, with ’ D A or B. The nearest neighbor (hi; j i) hopping energy is
t ' 2:7 eV [21]. The energy bands obtained from this Hamiltonian have the form

E˙k D ˙t
p
3C f .k/

with

f .k/ D 2 cos .
p
3kxa/C 4 cos

 p
3

2
kxa

!

cos

�
3

2
kya

�

;

where the plus sign applies to  �, and the minus sign to the  �-bands. Evidently,
the above bands satisfy electron-hole symmetry by being symmetric around the zero
of the energy. The full band structure of graphene obtained from the tight-binding
Hamiltonian is shown in Fig. 4.3a. In Fig. 4.3b a zoom-in of the band structure to
one of the Dirac points is shown. Figure 4.3d and e shows the band structure from
two special view points.

The energy dispersions can be expanded around K (or K 0) as E˙ 
 ˙hvFjqj
[22,23]. Here, the Fermi velocity is vF D 3ta=2„ and k D K C q with jqj << jKj,
which enables us to write f .k/ D �3 C 9a2.q2x C q2y/=4. In contrast to the

usual case where � D p
2E=m, the Fermi velocity of low-energy electrons of

graphene does not depend on energy or momentum, which is the source of unusual
effects.
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Fig. 4.4 Lattice structures of (a) AGNR(9) and (b) ZGNR(6). Unit cells of the structures are
delineated, x-axis points the growth direction. The number Na D 9 stands for the number of dimer
lines while Nz D 6 stands for the number of zigzag chains along the x-direction

4.2.2 Electronic and Magnetic Properties of GNRs

The electronic structure and magnetic properties of GNRs are primarily determined
by their edge shapes and their widths [24–28]. Their electronic structures also
depend on whether the dangling bonds of the edge atoms are passivated or not.
In this section, all the GNRs considered are those passivated with hydrogen. In
Fig. 4.4a and b, the lattice structures and the unit cells of GNRs with armchair and
zigzag edge shapes, respectively, are shown. Following the current literature, we
denote GNRs having armchair edge shape with Na dimer lines in the unit cell as
AGNR(Na), and those having zigzag edge shape with Nz zigzag chains in the unit
cell as ZGNR(Nz).

DFT calculations show that AGNRs are direct bandgap semiconductors and their
band gaps follow three curves depending on their width, namely, Na [17]. For a
given nonnegative integer n, Na D 3n C 1 yields the highest bandgap whereas
Na D 3n � 1 yields the lowest, Na D 3n lying in between as shown in Fig. 4.5. As
n increases, all three curves approach zero without crossing each other.

Although tight-binding calculations predict a zero bandgap for all ZGNRs [24]
[e.g., Fig. 4.6a], DFT calculations show that all ZGNR are semiconductors and their
bandgaps decrease monotonically with Nz, for Nz > 4 [45]. For all Nz values the
highest valence band and the lowest conduction band give rise to a high density of
states near the Fermi energy. These states are localized at the edges of the ZGNR and
this give rise to an antiferromagnetic (AFM) ground state. Eventually, it is possible
to express this magnetic transition by adding an on-site Hubbard term to the tight-
binding Hamiltonian as

HTB D �t
X

<i;j>˛ 

.cC
i ˛  cj ˛0  CH:c:/C U

X

i;˛

cC
i ˛  ci ˛  c

C
i˛ 0ci˛ 0

where is the on-site repulsion energy (26).
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Fig. 4.5 Band structures of AGNRs belonging to different families: (a) Na D 3n � 1 D 8,
(b) Na D 3n D 9, and (c) Na D 3nC 1 D 10. (d) Bandgaps of the families as a function of Na .
Band structures are obtained using plane-wave DFT calculations, zero of the energy is set to EF

(Reproduced from Ref. [20])

Fig. 4.6 Band structures of ZGNR(8) calculated by using three different methods: (a) tight-
binding bands, (b) tight-binding bands including Hubbard correction within mean field approx-
imation, where U D 1:3 eV, and (c) bands obtained from plane-wave DFT calculations. Zero of
the energy axis is set to EF

This Hamiltonian can be solved in the mean field approximation numerically.
While the tight binding solution of the ZGNR Hamiltonian in the absence of
Hubbard term yields a zero band gap semiconductor, upon inclusion of the Hubbard
term ZGNR is found to be a direct band gap semiconductor (Fig. 4.6b) with edge
states localized at the opposite edges having opposite spins. Such a magnetic
solution of the Hubbard Hamiltonian for bipartite lattices was previously proved
by Lieb [30], and these results are also verified by DFT calculations as shown in
Fig. 4.6c.
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4.3 Functionalization Through Superlattice Formation

The remarkable properties of GNRs discussed above, especially their bandgaps
varying with their widths, suggest that the heterostructures formed by the segments
of GNRs with different widths may have interesting electronic and magnetic
properties. Here, the crucial issues to be addressed are how the electronic structure
will be affected from the discontinuity of crystal potential at the junction; what
the character of the band discontinuity and the resulting band alignment will be;
and whether these discontinuities will result in confined states. In this section, we
address these questions for both armchair and zigzag GNR superlattices (AGSL
and ZGSL, respectively), and investigate the new functions which graphene-based
materials can acquire upon size modulation.

4.3.1 Superlattices of Armchair Graphene Nanoribbons

Relative to the longitudinal axis in the armchair direction, one can distinguish three
possible angles to make junctions with armchair or zigzag edge shapes as shown in
Fig. 4.7a. A 60ı angle gives rise to the armchair edge at the interface, whereas 30ı
and 90ı angles result in zigzag edges. Some of the possible superlattice shapes are
given in Fig. 4.7b–d.

Fig. 4.7 (a) Crystallographic directions giving rise to armchair and zigzag edge shapes. Possible
junction angles leading to armchair or zigzag edge shapes are indicated. 60ı angle with the
horizontal (armchair) axis results in armchair edge at the interface, whereas 30ı and 90ı give
zigzag edges. Some of the possible superlattice shapes are shown, namely, (b) sharp rectangular,
(c) smooth, (d) and sawtooth-like
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Fig. 4.8 Atomic structure of AGSL (n1 D 5, n2 D 7; s1 D 3, s2 D 3). The superlattice unit cell
and primitive unit cell of each segment are delineated (Reproduced from Ref. [20])

Fig. 4.9 Electronic structure of AGSL(5,7,3,3). (a) Band structure with flat bands corresponding
to confined states. (b) Isosurface charge density of propagating and confined states. (c) Variation
of various superlattice gaps with s1 D s2. (d) Confinement of states versus s1 D s2 calculated
by ETB. All data except those in (d) are calculated by using first-principles method within DFT
(Reproduced from Ref. [20])

In order to avoid mixed edge shapes, we focus on the junctions with smooth
interfaces making 60ı angle with the armchair axis. We first consider a superlattice
AGSL(n1,n2;s1,s2) made by the segments of AGNR(n1) and AGNR(n2). Here,
s1 and s2 specify the lengths (in terms of the number of GNR unit cells) of the
segments having different widths. Figure 4.8 shows the superlattice AGSL(5,7;3,3).
AGNR(5) and AGNR(7) are direct bandgap materials with bandgaps of 0.39 and
1.57 eV, respectively. The combined heterostructure with a symmetric junction has
a bandgap of 0.65 eV. The band structure of segments and the supercell is shown
in Fig. 4.9. Junction formation by these constituents gives rise to dramatic changes
in the band structure of the superlattice. While the highest valance and the lowest
conduction bands are dispersive, the bands below and above the dispersive ones are
simply flat. The isosurface charge density plots distinguish the different characters
of these bands. For example, as highest valence band states propagate across the
superlattice, the states of the second (flat) band are confined to the wider part of
AGSL(5,7;3,3) consisting of AGNR(7) segment. These flat band states are identified
as confined states.
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The confined states have been treated earlier in commensurate or pseudomorphic
junctions of two different semiconductors, which form a periodically repeating
superlattice structure. These superlattices have grown layer by layer and they form
a sharp lattice matched interface [31–33]. Owing to the band discontinuities at the
interface, they behave as a multiple quantum-well structure, obeying the effective
mass theory. Generally, a particular state, which is propagating in one region (or
segment), is confined if it cannot find a matching state in the adjacent region having
the same energy. For a superlattice of small n1 or n2, spacings between energy
levels are significant and, hence, localization of states in one of the regions is
more frequent. This argument, which is relevant for superlattices of long constituent
segments, may not be valid for short segments (i.e., small s2 and s2/.

2D conduction band electrons (valence band holes), confined to the well, display
a number of electronic and optical properties. In the present case, both the bandgap
and the size (width) of the graphene ribbon are periodically modulated in direct
space and the carriers are 1D. On the other hand, the atomic arrangement and lattice
constants at both sides of the junction are identical; the heterocharacter concerns
only the width of the ribbons at different sides. Electronic and transport properties
of graphene multiple quantum-well structures can be controlled by a number of
structural parameters. In addition to n1, n2, s1, s2, symmetry of the junction,
�n D n2 � n1, even–odd disparity of n1=2 and n2=2, type of the interface between
two different ribbons and the shape of the superlattice (namely sharp rectangular or
smooth wavy) influence the properties. As shown in Fig. 4.10, superlattice bandgaps
decrease as s1 increases from 3 to 8. This is a clear evidence for quantum size
effect. In terms of the weight of the states in the segment s2, i.e.,

R
s2

j‰.r/j2dr ,
we see that the confinement of states increases with increasing s1; but it disappears
for s1 D s2 D 1. Confinement increases with increasing s1 D s2, and hence with
increasing barrier width, since the penetration of states into the barrier decreases).
For example, AGSL(5,7;s1,s2) has Eg D 0:66, 0.48, 0.38, 0.32, 0.27 eV for s2 D 3

and s1 D 3, 4, 5, 6, 7, respectively. Conversely, Eg D 0:72, 079, 0.83, 0.84 eV
for s1 D 3 and s2 D 4, 5, 6, 7, respectively. On the other hand, the energy of the
flat-band states confined to s2 and their weight are practically independent of s1.

We also investigate the effects of changing n1 from 7 to 9. Two nanoribbons
containing 10 and 18 carbon atoms in their unit cell are merged. Variation of
�n D n1 � n2 results in a wide variety of electronic structures. For example,
in contrast to AGSL(5,7;3,3), the highest valence and lowest conduction bands of
AGSL(5,9;3,3) are flat bands with Eg D 0:70 eV; dispersive bands occur as second
valence and conduction band, having a gap of 1.18 eV between them. Since the first
valence and conduction bands are confined in a wider region of the structure, this
ribbon can act as a resonant tunneling double barrier (RTDB) device. The narrow
regions act as a barrier and wider region as a quantum well. We have complete
confinement of charges for some of states in the wider region. On the other hand,
the states that are mostly confined in narrower region can penetrate to the wider
regions. The variation of s1 for AGSL(5,9;s1,s2) family has similar consequences
to the AGSL(5,7;s1,s2). Again, we see that the confinement of states increase
with increasing s1. As shown in Fig. 4.11a–c superlattice bandgaps decrease as s1
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Fig. 4.10 The effect of the
variation of length of the
narrower region s1 of AGSL
(5,7; s1,3) from s1 D 3–8.
Note that the narrower region
is acting like a barrier for the
confined state. (a) Atomic
structure and superlattice unit
cell. (b) The variation of band
structures. (c) The numerical
values for energy gaps Eg,
�1, and �2. Eg is the actual
bandgap of the structure,
which comes from a
dispersive state. �1 is the
bandgap of highest localized
state while�2 is the bandgap
for the next dispersive state.
The energy of the flat-band
states related to�1 is
confined to s2 and their
weights are practically
independent of s1.
Calculations are carried out
by using first-principles
plane-wave methods within
DFT (see Appendix A)
(Reproduced from Ref. [20])

increase from 3 to 7. On the other hand, the energy of the flat-band states confined to
s2 and their weight are practically independent of s1. As shown in Fig. 4.11d–f, the
band gaps of localized conductance and valence states decrease with the increase in
s2. These findings reveal that charge confinement in size-modulated GNRs is closely
related with the structural parameters of heterostructure.

In Fig. 4.12, we demonstrate that the confined states can occur not only in narrow
(small n1 and n2) but also in wide superlattices having significant modulation
of the width. The above trends corresponding to small n1 and n2 become even
more interesting when n1 and n2 increase. The electronic band structure of
AGSL(n1,n2;s1,s2) with n1 D 21 or 41, but n2 > n1 and s1 D s2 > 3

calculated using ETB method shows that for small �n, confinement is weak and
bands are dispersive, but confinement increases as �n increases. Interestingly, Eg

of AGSL(n1 D 21; n2I 3; 3) is, respectively, 0.46, 0.12, 0.49, and 0.04 eV for
n2 D 23, 25, 27, and 29. In ETB method used here, the Bloch states having
band index 1 and wave vector k are expressed in terms of the linear combination
of the orthonormalized Bloch sums �i .k; r/ constructed for each atomic orbital
pz localized at different carbon atoms, i , with the proper phase of k, namely,
‰l.k; r/ D P

i

ai;l .k/�i .k; r/. Accordingly, the contribution of the orbital at site
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Fig. 4.11 Variation of energy band structure with superlattice parameters for AGSL(5,9,s1 ,s2) is
investigated. s2 D 3 is kept fixed while s1 is varied from 3 to 7 (a–c), and then s1 D 3 is kept fixed
while s2 is varied from 3 to 7 (d–f). Highest valence and lowest conduction bands of AGSL(5,9;3,3)
are confined at the wider region. So their energies are practically insensitive to the length s2 of the
narrow region (b). But the spatial extend of the wave functions of these states influence their
energies so that the band gap closes as s2 is increased (e). Calculations have been performed using
DFT method (see Appendix A).

i to the normalized charge density of ‰l.k; r/ is given by �i D
ˇ
ˇ
ˇ
ˇ
P

l

ai;l .k/

ˇ
ˇ
ˇ
ˇ

2

. In

Fig. 4.12, �i is scaled with the radius of circles located at atomic site i .
The electronic properties are also strongly dependent on whether the geometry

of the superlattice is symmetric (having a reflection symmetry with respect to the
superlattice axis along the x-direction) or saddle (one side is straight, other side
is periodically carved), all having the same �n. While the saddle structure of
AGSL(5,9;3,3) has the largest direct gap between dispersive conduction and valence
bands, its symmetric structure has the smallest gap, but with the largest number of
confined states. Horn-like smooth connection between wide and narrow segments
(where the ribbon is carved from both sides smoothly and symmetrically) may give
rise to adiabatic electron transport and focused electron emission [34].

4.3.1.1 Resonant Tunneling Double Barrier Device

In this section, we focus on a finite segment (flake) of GNR and calculate its
transport properties. In accordance with the results of the previous section, we
investigate the effect of confinement on transport properties upon modulation of the
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Fig. 4.12 Energy band structure of the AGSL(17,35;11,9) superlattice and the charge densities of
selected bands. As seen clearly, states associated with flat bands 1, 3, and 4 are confined but the
state with dispersive band indicated by 2 is propagating. Calculations have been performed using
ETB method (Reproduced from Ref. [20])

Fig. 4.13 Resonant tunneling double barrier device consisting of AGNR(5) and AGNR(9)
segments. Parts of electrodes are included at both sides of AGNR segment as parts of the central
device (Reproduced from Ref. [20])

ribbon width. We consider a finite armchair graphene nanoribbon with AGNR(5)
and AGNR(9) as constituent parts having a total length of 8 unit cells, as shown in
Fig. 4.13. Such a device is relevant for applications and uses the highest occupied
molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO)
confined in the wide region.

Recently, patterning of GNRs [35], and also GNRs with varying widths [36,
37] are achieved, and it is shown experimentally that transport through GNRs
is primarily influenced by the boundary shape [35]. These experiments reveal
the importance of charge confinement effects on the conductance. Moreover, a
suppression of conductance of GNRs by Coulomb blockade due to formation of
multiple quantum dots in series, which are likely to form during the etching process,
is also reported [37]. These facts support our idea that construction of a double
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Fig. 4.14 (a) Transmission coefficient versus energy calculated under zero bias. Zero of the energy
axis is set to the Fermi level. Solid curve stands for the DFT-based calculation whereas the dashed
curve represents the ETB-based result within Landauer approach. (b) The energy spectrum of the
uncoupled AGNR segment. (c) Charge densities of selected energy levels of the uncoupled AGNR
segment indicating confined versus extended states (Reproduced from Ref. [20])

barrier device by modulating the width of a nanoribbon is realizable experimentally.
For our quantum transport calculations, we consider generic metallic electrodes of
two widely separated (weakly coupled) monatomic carbon chains. Carbon chains
are known to have high cohesive energy and axial strength, and exhibit stability
even at high temperatures [42]. Because of their flexibility and reactivity, carbon
chains are suitable for structural and chemical functionalizations, and they are good
metals with two quantum conductance channels, which make 4 units of quantum
conductance at the Fermi level for the electrodes that we consider. Six principal
layers of electrodes are included at both sides of resonant tunneling double barrier
(RTDB) as parts of the central device. Metallic electrodes make perfect contacts
with the central RTDB device. The transmission coefficient T reflects the combined
electronic structure of central RTDB device, electrodes, and their contacts as shown
in Fig. 4.14a.

The HOMO, LUMO and other confined states are identified through the energy
level diagram [see Fig. 4.14b] and the isosurface charge density plots, obtained
from plane wave ab initio calculations [see Fig. 4.14c]. The confined states give
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rise to sharp peaks originating from resonant tunneling effect. States extending to
the whole RTDB are coupled with the states of electrodes, and they are shifted and
contributed broader structures in the transmission curve.

The resonant tunneling effect is not affected by the width of the barrier regions
[namely, narrow AGNR(5) segments in Fig. 4.13a], considerably. The confined
LUMO and HOMO states are weakly sensitive to the length of the barriers. This
feature of confined states can also be observed from the energies of confined states
(flat bands) of Fig. 4.11; for tunneling transport, wider barriers mean exponentially
lower coupling between the quantum well region and the electrodes, which result in
even sharper peaks at approximately the same energies.

4.3.2 Superlattices of Zigzag Graphene Nanoribbons

In this section, first-principles plane wave calculations [50] within DFT [29] using
projector augmented wave (PAW) potentials [47] are performed (see Appendix A)
to show that periodically repeated junctions of segments of zigzag ribbons with
different widths can form stable superlattice structures. The energy bandgap and
magnetic state of the superlattice are modulated in the real space. Edge states with
spin polarization can be confined in alternating quantum wells occurring in different
segments of ribbons. Even more remarkable is that the AFM ground state can be
changed to ferrimagnetic (FRM) one in asymmetric junctions.

Zigzag graphene ribbons, i.e., ZGNR(Nz) with Nz zigzag chains in its unit
cell, are characterized by the states at both edges of ribbon with opposite spin
polarization [24]. These edge states attribute an AFM character (see Sect. 4.2).
Under applied electric field the ribbon can become half-metallic [16].

We consider segments of two zigzag ribbons of different widths and different
lengths, namely ZGNR(Nz1) and ZGNR(Nz2), which can make superlattice struc-
tures [32] with atomically perfect and periodically repeating junctions. Normally,
the superlattice geometry can be generated by periodically carving small pieces
from one or both edges of the nanoribbons [43]. Typical superlattices and their struc-
tural parameters are schematically described in Fig. 4.15. ZGNR(Nz1/=ZGNR.Nz2)
superlattices can be viewed as if a thin slab with periodically modulated width in
the xy-plane. The electronic potential in this slab is lower (V < 0) than outside
vacuum (V D 0). Normally, states in this thin potential slab propagate along the
x-axis; but the propagation of specific states in ZGNR(Nz2) is hindered by the
potential barrier above and below the narrow segment, ZGNR(Nz1). Eventually,
these states are confined to the wide segments, and in certain cases also to the
narrow segments. Here, the confinement of the states has occurred due to the
geometry of the system. Defining the confinement in a segment i as

R
i
j‰.r/j2dr ,

the sharper the interface between ZGNR(Nz1) and ZGNR(Nz2) the stronger becomes
the confinement.
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Fig. 4.15 Typical superlattice structures of zigzag graphene ribbons, ZGNR.Nz1/=ZGNR.Nz2/.
Nz1 and Nz2 are the number of zigzag chains in the longitudinal direction; l1 and l2 are lengths
of alternating ZGNR segments in numbers of hexagons along the superlattice axis. a is the angle
between the x-axis and the edge of the intermediate region joining ZGNR(Nz1) to ZGNR(Nz2).
a D 120ı or 90ı for (b–g). Dark-large balls and small-light balls indicate carbon and hydrogen
atoms, respectively (Reproduced from Ref. [14])

We show a symmetric superlattice ZGNR(4)/ZGNR(8) in Fig. 4.16. Spin-up and
spin-down edge states at the top of the valence band of AFM superlattice are
confined to the opposite edges of the narrow segments of the superlattice. Normal
flat band states near -1.2 eV are confined to the wide segments of ZGNR(8). The
energy band structure of the superlattice is dramatically different from those of the
constituent nanoribbons. If the lengths of the segments are sufficiently large, these
segments display the bandgap of the corresponding infinite nanoribbon in real space.
The total magnetic moment of spin-up and spin-down edge states is zero in each
segment, but the magnetic moment due to each edge state is different in adjacent
segments. As a result, the superlattice remains to be an AFM semiconductor, but
the magnitudes of the magnetic moments of the edge states are modulated along the
x-axis. The coupling between the magnetic moments localized in the neighboring
segments is calculated to be 15 meV per unit cell. The modulation of magnetic
moments can be controlled by the geometry of the superlattice. For example, as
shown in Fig. 4.16d, the magnetic moments of the atoms in the wide segment are
practically zero and, hence, the superlattice is composed of AFM and nonmagnetic
(NM) segments. However, as l2 ! 10 the magnetic moments of the edge atoms at
the wide segment become significant.
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Fig. 4.16 (a) A schematic description of the symmetric ZGNR(4)/ZGNR(8) superlattice with
relevant structural parameters. Magnetic moments on the atoms are shown in the left cell by dark
and light circles and arrows for positive and negative values. lsc is the length of the superlattice
unit cells in terms of number of hexagons along the x-axis. (b) Energy band structures of
antiferromagnetic (AFM) ZGNR(4), ZGNR(8) ribbons and AFM ZGNR(4)/ZGNR(8) superlattice.
(c) Charge density isosurfaces of specific superlattice states. Zero of the energy is set to Fermi
level, EF. The gap between conduction and valence bands are shaded. (d) A specific form of
superlattice ZGNR(4)/ZGNR(12) with alternating AFM and nonmagnetic (NM) segments in real
space. Calculations have been performed using DFT method (see Appendix A) (Reproduced from
Ref. [14])
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Fig. 4.17 (a) A schematic description of an asymmetric ZGNR(4)/ZGNR(10) superlattice. Total
majority and minority spins shown by light and dark circles (for spin-up and spin-down,
respectively) attribute a ferrimagnetic (FRM) behavior. (b) Energy band structure of the FRM
semiconductor and charge density isosurfaces of specific propagating and confined states of
different spin polarization. Calculations have been performed using DFT method (see Appendix A)
(Reproduced from Ref. [14])

Asymmetric superlattice structure shown in Fig. 4.17 is even more interesting.
While the spin-down states remain propagating at the flat edge of the superlattice,
spin-up states are confined predominantly at the opposite edge of the wide segments.
Confinement of states and absence of reflection symmetry breaks the symmetry
between spin-up and spin-down edge states. Hence, the superlattice formation ends
up with a FRM semiconductor having different bandgaps for different spin states. In
agreement with Lieb’s theorem [30,44], the net magnetic moment calculated to be 2
is equal to the difference of the number of atoms belonging to different sublattices.
Flat bands at the edges of spin-up valence band and spin-down conduction band are
of particular interest. The spin states of these bands are confined to the discontinuous
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edges of the wide segment, which behave as a quantum well. Since a device
consisting of a finite size superlattice connected to two electrodes from both ends has
high conductance for one spin direction, but low conductance for the opposite one,
it operates as a spin valve. Moreover, spin-down electrons injected to this device are
trapped in one of the quantum wells generated in a wide segment. As a final remark,
we note that the DFT method underestimates the bandgaps found in this work [45].
However, this situation does not affect our conclusions in any essential manner.

4.4 Functionalization Through TM-Atom Doping

Another route in functionalization of graphene-based materials is adsorbing TM
atoms on them. In this section, we present results of ab initio total energy
DFT calculations concerning the equilibrium geometries, electronic and magnetic
properties of 3d TM atom adsorbed graphene, AGNR, and AGSL.

We first investigate the binding energies and minimum energy geometries of
either (2 � 2) or (4 � 4) unit cell of graphene when a Ti, Co, Fe, Cr, or Mn atom
adsorbed. Three different sites are considered for adsorption to a (2 � 2) unit cell
which are the hollow site (H) above the center of a hexagon, the bridge site (B)
over a carbon–carbon bond, and the top site (T) over a carbon atom. H-site is the
minimum energy site for Ti, Co, Fe, and Mn, whereas Cr prefers the B-site. We
check the magnetic state of the structure by doubling the previous geometry in both
lattice vector directions and setting the initial magnetic state as AFM. The minimum
energy geometries, magnetic states, binding energies, and total magnetic moments
of adsorption to (2� 2) graphene cell are given in Table 4.1. Comparison of binding
energies of adsorption on (2�2) cell with that of (4�4) cells indicates that bindings
to the smaller one are weaker. This is because TM–TM coupling is more significant
in (2 � 2) case and this coupling energy is subtracted from the binding energy (see
Appendix A).

We calculate the charge accumulation for majority (") and minority (#) spins for
Ti adsorption on .4�4/ cell as��".#/ D �".#/ [grapheneCTi] ��".#/Œgraphene��

Table 4.1 Minimum energy adsorption sites and magnetic states (either ferromagnetic (FM) or
antiferromagnetic(AFM)) for single-sided adsorption of one TM atom adsorbed per .2� 2/ cell

Ti Co Fe Cr Mn

H AFM H FM H FM B AFM H AFM

Eb.eV/ 1.58 1:20 0:66 0:18 0.10
(1.95) .1:27/ .1:02/ .0:20/ (0.17)

�tot.�B/ 0.0 1:31 3:02 0:0 0.00

d (Å) 2.32 2:12 2:21 2:39 2.47
The binding energies .Eb/, the total magnetic moments �tot, and the distances to the nearest C
atom (d ) are also listed. The binding energy of a single TM atom adsorbed on a .4 � 4/ cell is
given in parentheses for the sake of comparison
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Fig. 4.18 Spin resolved charge accumulation (i.e. ��".#/ > 0) obtained from the charge
density difference calculation for one Ti atom adsorbed to each .4 � 4/ cell of graphene (see
the text). Dark and light regions indicate the isosurfaces of majority and minority spin states,
respectively. Calculations have been performed using DFT method (see Appendix A) (Reproduced
from Ref. [46])

�".#/ [Ti]. Here �".#/ [grapheneCTi] is the total charge of the majority and minority
spin states of one Ti atom adsorbed to each (4�4) cell of graphene. �".#/ [graphene]
and �".#/ [Ti] are the charge densities of noninteracting bare graphene and Ti
atom having the same positions as in the case of graphene and adsorbed Ti. The
accumulation of spin-dependent charge densities due to adsorption are shown with
the isosurface plot in Fig. 4.18. An increase in the majority spin density between
graphene and Ti is accompanied with a net increase in minority spin density on
Ti. The difference in majority and minority spin densities demonstrate the induced
magnetization on 2pz orbitals of the carbon atoms.

We also examine the variation of electronic and magnetic properties of TM-
adsorbed AGNR’s with different widths. We define the TM atom coverage � as
the number of TM atoms per unit cell and study the cases with � D 1 and 2.
In the � D 1 case, we examine all the hollow sites for adsorption for AGNR’s
with Na D 4, 5, 6, 7, 8, and 9. For all TM species and all Na edge, hollow site is
found to have the minimum energy. Transition state analysis for the species with the
strongest binding is given in Fig. 4.19. The energy barrier for a Ti atom to hop from
the middle hexagon of a AGNR(7) unit cell to the edge hexagon is 0.48 eV, whereas
the barrier height is 0.97 eV in the reverse direction [see Fig. 4.19c] These results
suggest that the diffusion of Ti atoms to form clusters is hindered by a significant
energy barrier. We further examine the TM-adsorbed AGNRs by considering � D 2

case. We keep the first TM atom at the hollow of the edge hexagon and check all
the possible adsorption sites for the second TM atom. We calculate three cases with
Na D 4, 5, and 6 to sample the three families of AGNR band structures. The energy
is lowered by TM–TM interaction, so the second TM atom prefers the hexagon,
which is closest to both the first TM atom and the ribbon edge [see Fig. 4.20a].
Consequently, a zigzag chain of TM atoms is formed at the edge of the AGNR.
Such a chain formation either metallizes the system or it gives to half-metallicity.
For example, zigzag chain of Fe on AGNR(5) is half-metallic with an energy gap
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Fig. 4.19 Transition state analysis of Ti adsorbed on AGNR(7) between H0 and H1 sites above
the bridge site. (a) Top view of three adsorption sites of Ti on AGNR(7) from H0 to H1, i.e., H0
bridge and H1 sites are shown. (b) Side view for these three adsorption sites. Adsorption to the
C–C bridge gives the farthest position to the AGNR plane. (c) Total energy per unit cell for Ti
adsorption on the path from H0 to H1 as explained in the text. Calculations have been performed
using DFT method (see Appendix A) (Reproduced from Ref. [46])

Fig. 4.20 Zigzag chains are formed at the AGNR edge for � D 2 coverage (a). Band structures
of (b) bare AGNR(5) and � D 2 coverage of AGNR(5) (c) with Fe, and (d) with Ti. Fermi Energy
is set to zero. In (c) and (d), dark-dashed curves are the bands with majority spin, and light-solid
curves are the bands of the minority spin. Fe adsorption opens a gap of 0.10 eV for the minority
spin while the majority spin is metallic. Adsorption of Ti makes the minority spin metallic while
the majority spin has an energy gap of 0.16 eV at the Fermi energy (Reproduced from Ref. [46])



4 Functionalization of Graphene Nanoribbons 89

Fig. 4.21 (a) Atomic configuration of Ti-adsorbed AGSL(5,7;3,3). The primitive unit cells are
delineated by dashed lines. The possible adsorption sites are labeled by letters A–G. (b) Isosurface
of difference charge density of spin-up and spin-down states, �� D �."/ � �.#/. Light regions
correspond to positive and dark regions correspond to negative difference. (c) Energy band
structure and isosurface charge density of selected spin states. ‰."/ is for spin-up component
and ‰.#/ is for spin-down component

of 0.10 eV for minority spin electrons [Fig. 4.20c]. Similarly, Ti zigzag chains at the
edges of AGNR(4) and AgNR(5) are half-metallic with energy gaps of 0.05 and
0.16 eV for the majority spin electrons [Fig. 4.20d].

These results show that the ribbon width and the interaction of the TM atom
with ribbon edge play important roles in the electronic properties of GNRs. We
furthermore investigated Ti atom adsorption on armchair graphene superlattice
structures that are studied in Section 4.3. For Ti adsorption, we have chosen
AGSL(5,7;3,3) superlattice whose atomic configuration is presented in Fig. 4.8. All
the hexagons from (A)–(G) in Fig. 4.21a has been checked and we found that (B)
site corresponds to the minimum energy configuration. Ti atoms prefer to stay in
narrower parts of the superlattice. This result is predictable when our previous
results about adsorption on AGNR are analyzed. Binding energy is higher for
adsorption on AGNR(5) compared to adsorption on AGNR(7) [46]. The magnetic
configuration of two Ti atoms was investigated and we found that antiferromagnetic
arrangement of the spins of two Ti atoms is 8 meV, energetically more favorable than
ferromagnetic arrangement. The exchange energy is calculated from the difference
of EAFM (antiferromagnetic state) and EFM (ferromagnetic state) and is related
to J in the Heisenberg Hamiltonian. The relatively small exchange energy shows
that indirect exchange coupling between Ti atoms is small when mediated through
superlattice structures of graphene ribbons. Isosurface plots of difference in charge
density between up-spin and down-spin states, �� D �."/ � �.#/ in Fig. 4.21b
clearly reveals the antiferromagnetism in the system.
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The electronic structure of AGSL(5,7;3,3) in Fig. 4.9a is dramatically affected
upon Ti adsorption. Figure 4.21c shows the electronic band structure and band-
decomposed charge density analysis of the new structure in Fig. 4.21a. Each band
consists of one spin-up and one spin-down state, which are located on different
regions of the superlattice. The flat bands around Fermi level corresponds to
confined states. The first valence band (V1) and second conduction band (C2) have
their charge densities mostly confined in narrow regions of the superlattice. First
conduction (C1) and second valence (V2) bands are d-states of titanium. The fifth
valence band states (V5) propagate throughout the superlattice.

4.5 Conclusions

We reviewed two routes for functionalization of GNRs, which are superlattice
formation through width modulation and adding modifying magnetic properties
through TM atom doping. Various types of quantum structures made by size
modulation of graphene-based nanoribbons are examined. The confinement of spin-
unpolarized and spin-polarized electron and hole states can lead to interesting
effects such as resonant tunneling and spin confinement. Variation of the bandgaps,
confined state energies, and the strength of confinement with the width and length
and composition of the constituent nanoribbons are the key features for future
applications. Also, the variations in electronic and magnetic properties upon TM
atom adsorption are analyzed depending on the adsorbate concentration, adsorption
site, and the species of the adsorbent. We show that it is possible to obtain half-
metallic GNRs through TM atom adsorption.

Appendix A: Details of density functional theory calculations

In calculating the electronic and magnetic properties using density functional theory
[29], projector augmented wave (PAW) [47] approach within a PW91 [48]-GGA
[49] approximation for the exchange and correlation functional is used as currently
implemented in the VASP [50] software. Geometry optimizations are performed
by allowing all atomic positions to vary; for bulk structures all cell parameters are
optimized as well. The atomic positions are optimized by the conjugate gradient
method, and the system is considered to be at equilibrium when Hellman–Feynman
forces are below 10 me V/A. Monkhorst–Pack meshes with sufficient number of k-
points are used to converge the energies. For 1D and 2D structures, the minimum
size of the implemented k-point meshes are (21,1,1) and (11,11,1), respectively.
Periodic boundary conditions are implemented in all directions, where sufficiently
large vacuum (minimum of 10 Å) is inserted in directions without crystal symmetry
to prevent artificial interactions. The kinetic energy cutoff for the plane wave basis
set is chosen as „2jk C Gj2=2m D 500 eV when using PAW potentials and 350 eV
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when using ultrasoft pseudopotentials. The convergence criterion for electronic
relaxations has been set to 10�5 eV for all cases. The binding energies of TM atoms
are calculated as Eb D EŒgraphene� C EŒTM� � EŒ.graphene C TM/� in terms
of the total energies of the host cell, EŒgraphene�, the free TM atom in its ground
state E[TM], and one TM atom adsorbed on a host cell, EŒgraphene� C EŒTM�.
Total energies are calculated in the same supercells keeping other parameters of the
calculations fixed.
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Chapter 5
Atom/Molecule van der Waals Interaction
with Graphene

Norman J. Morgenstern Horing, Vassilios Fessatidis, and Jay D. Mancini

Abstract We examine the van der Waals interaction between Graphene and an
atom/molecule to the second order in the Coulomb interaction between the electrons
of the two systems involved. Our analysis extends to dipole–dipole terms of the
mutually polarized systems, including plasma nonlocality of the Graphene.

5.1 Introduction: Atom–Graphene van der Waals
Interaction and the Plasma Image

The van der Waals interaction between an electrically neutral atom/molecule and
a 2D-Graphene sheet is based on mutual polarization of the two systems by the
Coulomb interaction between the atomic electrons and the mobile electrons on the
sheet, excluding the possibility of sharing or exchanging electrons by penetration
of the atomic electron wave functions into the sheet and vice versa. Moreover, the
theory of van der Waals attraction assumes that the atom and its electrons are far
enough from the mobile electrons of the sheet so that exchange effects are negligibly
small. These qualitative statements apply to all van der Waals (vdW ) interactions,
including atom–atom as well as atom–surface.

To second order in the Coulomb interaction between the adatom electrons and
the mobile electrons of the Graphene sheet, the van der Waals interaction energy
may be expressed as [1]:

EvdW Š�
Z

d3x0
Z

d3x00
Z

dt 00Vimage.x0; x00; t 0 � t 00/Ga
2.x

00t 00; x0t 0I x00t 00C; x0t 0C/:
(5.1)
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Here, Ga
2 is the two-particle Green’s function of the atomic electrons, including

the full complement of intra-atom electron–electron interactions averaged in the
ground state of the atom jˆa

0i, but with no effects from the Graphene electrons. The
image potential, Vimage, due to the polarization of the Graphene electron plasma
by the Coulomb field of a point charge outside may be written in terms of the Gm

2

two-particle Green’s function of the plasma of mobile Graphene electrons using the
inverse dielectric (screening) function,Km, of the Graphene plasma. DiscardingGm

1

terms and ı-terms, which are not pertinent to this discussion, we have:

Km.1; 2/ ! i

Z

d43V.1 � 3/Gm
2 .3; 2I 3C; 2C/ D i

Z

d3xivV.x0 � xiv/

�Gm
2 .x

ivt 0; x00t 00I xivt 0C; x00t 00C/:

(5.2)

Here, Gm
2 includes the effects of mobile electron–electron interactions within the

Graphene sheet, and V is the unscreened Coulomb potential. The corresponding
image potential given by, Vimage.1/ D Veff.1/� V.1/, is:

Vimage.x0; x00; t 0 � t 00/ D
Z

d3x000 �Km.x0; x000I t 0 � t 00/V.x000 � x00/
� � V.x0 � x00/

D i

Z

d3x000
Z

d3xivV.x0 � xiv/ (5.3)

�Gm
2 .x

ivt 0; x000t 000I xivt 0C; x00t 000/V.x000 � x00/

�V.x0 � x00/;

which yields EvdW in an alternative form as:

EvdW D �i
Z

d3x0
Z

d3x00
Z

d3x000
Z

d3xiv
Z

dt 00V.x0 � xiv/

�Gm
2 .x

ivt 0; x000t 000I xivt 0C; x00t 000C/V.x000 � x00/ (5.4)

�Ga
2.x

00t 00; x0t 0I x00t 00C; x0t 0C/

�Œdirect non-image counterpart�:

This result can be obtained [1] using a straightforward perturbation theory to the
second order in the Coulomb interaction between the electrons of the adatom and
those of the Graphene plasma. As in perturbation theory, Gm

2 and Ga
2 (alternatively,

Km and Ga
2/ are to be determined in the absence of atom–surface coupling. It is

convenient to write the result in the form of (5.1), which suggests interpreting
EvdW in terms of a self-energy of the atomic electrons due to screening of their
Coulomb interaction by the Graphene electrons. Here, we can fruitfully employ
the determination of Vimage in the presence of dynamic, nonlocal screening by the
Graphene electrons as discussed below.
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The effective potential Veff.1/ at a space–time point 1 D .r1; t1/, generated by
the Coulomb potential V.2/ impressed at 2 D .r2; t2/ by an atomic electron, is
associated with polarization of the 2D mobile Graphene electrons as:

Veff.1/ D
Z

d42Km.1; 2/V.2/; (5.5)

where Km.1; 2/ is the 3D screening function of the 2D plasma, inverse to its direct
dielectric function ".3; 2/ in a 3D space–time matrix sense:

Z

d43Km.1; 3/".3; 2/D ı4.1; 2/: (5.6)

Here, ".3; 2/ is the direct dielectric function of the 2D plasma in 3D real space–time
representation. One must also recognize that there is a density perturbation involved
in the Graphene response dynamics, such that

�.1/ D
Z

d43R.1; 3/ Veff.3/

D
Z

d43

Z

d44 R.1; 3/Km.3; 4/V.4/; (5.7)

withR.1; 3/D ı�.1/=ıVeff.3/ as the density-perturbation response function. Writing
".3; 2/ in terms of the polarizability ˛.3; 2/; (5.6) becomes an RPA-type integral
equation:

Km.1; 2/ D ı4.1 � 2/�
Z

d43 ˛.1; 3/Km.3; 2/: (5.8)

The polarizability ˛.1; 3/ can be expressed in a form that describes both the free-
electron Graphene response and an additive static background contribution (V is the
interelectron Coulomb interaction of the 2D Graphene sheet, and ˛0 D "0 � 1 is the
additive background polarizability):

˛.1; 3/ D �
Z

d44V.1� 4/R.4; 3/C ˛0ı
4.1 � 3/: (5.9)

This yields

Km.1; 2/ D 1

"0
ı4.1 � 2/ (5.10)

C 1

"0

Z

d43

Z

d44V.1 � 4/R.4; 3/Km.3; 2/:

In the RPA, R.4; 3/ is the lowest ring diagram and the integral (5.10) is just the
sum of ring diagrams. Considering translational invariance in the r D .x; y/ plane
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of the planar 2D-graphene sheet and in time (but not for z), we obtain the Fourier
transform:

Km .1; 2/ D Km .r1 � r2; z1; z2I t1 � t2/ ! Km .p; z1; z2I!/ ; (5.11)

with respect to space r1 � r2 ! p and time t1 � t2 ! !.
To determine the 3D screening functionKm.p; z1; z2I!/ that is the inverse of the

2D plasma dielectric function ".p; z1; z2I!/ in 3D space, we employ the inversion
condition of (5.6) in the form:

Z

d z2K.p; z1; z2I!/ ".p; z2; z3I!/ D ı.z1 � z3/; (5.12)

which may be applied by writing ".p; z1; z2I!/ as:

".p; z1; z2I!/ D ı.z1 � z2/C ˛.p; z1; z2I!/; (5.13)

in terms of the Graphene sheet polarizability ˛.p; z1; z2I!/. For electron motion
confined to a single 2D-plane sheet, the density-perturbation response function has
its z arguments localized to the sheet by positional ı-functions of the form:

R.p; z1; z2I!/ D ı.z1/ı.z2/R
2D.p; !/: (5.14)

Here, R2D.p; !/ describes the response properties of the electron density perturba-
tion on the 2D Graphene sheet, such that the 2D electron polarizability on the sheet
is given by ˛2D.p; !/ D �R2D.p; !/=p (where, in (5.9), we introduced the 2D
Fourier transform in the Coulomb potential). With this in view, we have:

".p; z1; z2I!/ D "0ı.z1 � z2/C ı.z2/˛
2D.p; !/e�pjz1j; (5.15)

where p D jpj and "0 D 1 C ˛0 for the background. We attempt inversion in the
form:

Km.p; z1; z2I!/ D 1

"0
ı.z1 � z2/

C 1

"0
ı.z2/e

�pjz1jŒeK2D.p; !/ � 1�: (5.16)

The determination of eK2D.p; !/ is carried out by requiring satisfaction of the
inversion condition in the form of (5.12). Equating coefficients of like positional
delta functions, we obtain:

eK2D.p; !/ D
�

1C ˛2D.p; !/

"0

��1
� �
e" 2D.p; !/

��1
: (5.17)
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5.2 Nonlocal Dipolar van der Waals Interaction of an
Atom/Molecule and Graphene

The atomic electron Ga
2-function involved in EvdW has the form:

Ga
2 ! ˝

ˆa
0

ˇ
ˇ�a.x00; t 00/�a.x0; t 0/

ˇ
ˇˆa

0

˛
; (5.18)

where �a.x; t/ is the density operator for the atomic electrons. Recognizing that the
atom has a fixed number of electrons and is electrically neutral (in the absence of
ionization), we denote the energy eigenstates of the atomic electrons by jˆa

ni, with
ground state jˆa

0i. These states of the atomic electrons bear the full complement of
correlations due to electron–electron interactions of the electrons within the atom.
Their completeness is expressed by:

1 D
X

n

jˆa
nihˆa

nj; (5.19)

so that

Ga
2.x

00t 00; x0t 0I x00t 00C; x0t 0C/ D
X

n

hˆa
0j�a.x00; t 00/jˆa

nihˆa
nj�a.x0; t 0/jˆa

0i: (5.20)

Employing an atomic electron time-translation operator e�iHa.t
0�t 00/ to bring the

times of the two density operators into coincidence, we have:

Ga
2.x

00t 00; x0t 0I x00t 00C; x0t 0C/ D
X

n

hˆa
0j�a.x00; t 00/jˆa

nihˆa
njeiHa.t

0�t 00/

��a.x0; t 00/e�iHa.t
0�t 00/jˆa

0i (5.21)

and, since the energies of the atomic electron eigenstates are denoted by:

Hajˆa
ni D Ea

njˆa
ni; (5.22)

we have

Ga
2.x

00t 00I x0t 0I x00t 00CI x0t 0C/ D
X

n

D
ˆa
0j�a.x00; t 00/jˆa

n

E

�
D
ˆa
nj�a.x0; t 00/jˆa

0

E
ei.E

a
n�Ea

0/.t
0�t 00/: (5.23)

Understanding that both the density operators and the energy eigenstates are now
evaluated at the same time such that the matrix elements are independent of time,
we write:

hˆa
0j�a.x00; t 00/jˆa

ni D h�a.x00/i0n
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and with
!a
n0 D Ea

n � Ea
0;

we have

Ga
2.x

00t 00I x0t 0I x00t 00CI x0t 0C/ D
X

n

0h�a.x00/i0nh�a.x0/in0ei!a
n0.t

0�t 00/: (5.24)

(The prime on the † ! †0 indicates that the n D 0 term is excluded, since it has
no time dependence and yields a constant, static contribution, which is irrelevant to
the van der Waals interaction.) Substitution of this into (5.1) yields EvdW in terms
of the Fourier time transform of Vimage.t

0 � t 00/ ! Vimage.!/ as:

EvdW D
Z

d3x0
Z

d3x00
1Z

�1

d!

2�i
Vimage.x0; x00I!/

X

n

0
� h�a.x00/i0nh�a.x0/in0

! � !a
n0

�

;

(5.25)
where we have taken account of nonlocality in time in performing the time
integration. Considering spatial-translational invariance in the lateral plane Nx D
.x; y/ ! Np and using Vimage.z0; z00I Np;!/ obtained from (5.16) and (5.17), we obtain
the result forEvdW using a multipole expansion, mandated by the spatially confined
distribution of the atomic electrons. To dipole–dipole terms, it is given by:

EvdW D 4

3„"0
X

n

0
1Z

0

du

2�

!a
n0jD0nj2

u2 C .!an0/
2

1Z

0

dpp2e�2pjZj ˛2D.p; iu/="0
1C ˛2D.p; iu/="0

; (5.26)

where jZj is the distance of the atom from the 2D-planar quantum well (D0n is
the matrix element of the atom’s dipole moment operator between its electronic
eigenstates 0, n).

Equation (5.26) is a useful point of departure to determine both local and nonlocal
structures of the van der Waals interaction. ˛2D.p; !/ was determined for Graphene
[2–6] for null magnetic field (division by "0 corresponds to putting V ! eV D V="0
or e2 ! Qe2 D e2="0/: For the undoped case, ˛2D.p; iu/ is presented in Ref. [6]
(5.10) as:

˛2D.p; iu/ D �
�
gsgv�e

2

8"0„
�

p
p

u2 C �2p2
; (5.27)

where � is the Graphene Fermi velocity and gs; gv are its spin and valley degenera-
cies. It should be noted that an expansion of Evdw in inverse powers of jZj is not
available since it would involve expansion of the p-integrand of (5.26) in powers of
p=u, which would cause divergences in the final u-integration. However, for atomic
frequencies (!a

n0/, the polarizability is small, ˛2D.p; iu/ � 1, and we have the p-
integral of (5.26) as:
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This integral may be rewritten using [7]:

Z 1
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x2 C ˇ2

dx D ˇ�

2
ŒH1.ˇ�/ � Y1.ˇ�/� � ˇ; (5.29)

where H1.x/ is the Struve function and Y1.x/ is the Bessel function of the second
kind, with the result:
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Chapter 6
Optical Studies of Semiconductor Quantum Dots

H. Yükselici, Ç. Allahverdi, A. Aşıkoğlu, H. Ünlü, A. Baysal, M. Çulha,
R. İnce, A. İnce, M. Feeney, and H. Athalin

Abstract Optical absorption (ABS), steady-state photoluminescence (PL), resonant
Raman, and photoabsorption (PA) spectroscopies are employed to study quantum-
size effects in II–VI semiconductor quantum dots (QDs) grown in glass samples.
We observe a size-dependent shift in the energetic position of the first exciton peak
and have examined the photoinduced evolution of the differential absorption spectra.
The Raman shifts of the phonon modes are employed to monitor stoichiometric
changes in the composition of the QDs during growth. Two sets of glass samples
were prepared from color filters doped with CdSxSe1�xand ZnxCd1�xTe. We an-
alyze the optical properties of QDs through the ABS, PL, resonant Raman, and
PA spectroscopies. The glass samples were prepared from commercially available
semiconductor doped filters by a two-step thermal treatment. The average size
of QDs is estimated from the energetic position of the first exciton peak in the
ABS spectrum. A calculation based on a quantized-state effective mass model
in the strong confinement regime predicts that the average radius of QDs in
the glass samples ranges from 2.9 to 4.9 nm for CdTe and from 2.2 to 9.3 nm
for CdS0:08Se0:92. We have also studied the nonlinear optical properties of QDs
by reviewing the results of size-dependent photoinduced modulations in the first
exciton band of CdTe QDs studied by PA spectroscopy.

6.1 Introduction

The first observation of quantum size effects in zero-dimensional entities was made
by Ekimov and Onushchenko in 1981 [1], who reported a blueshift in the optical
absorption (ABS) edge of nanometer-sized CuCl semiconductors. This marked
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the beginning of an era of new physics called nanophysics or nanotechnology.
Semiconductor nanocrystals, often called quantum dots (QDs) have been studied
extensively for a quarter century due to their potential applications as nonlinear
optical devices in optoelectronics, fluorescent labels in bioengineering, and window
materials in solar cells [2–5]. Nanometer-sized crystals have distinctive optical prop-
erties due to the confinement of charged particles in all three space dimensions. The
bandgap can be modified to optimize the optical properties of the nanostructure by
controlling its size. The most commonly used method for growing QDs is thermally
or chemically controlled precipitation in solid or liquid matrices. CdSxSe1�x QDs
in glass have been most widely studied in a model system for quantum-confinement
effects through linear/nonlinear optical methods and structural characterizations
such as TEM and SAXS [2, 3, 6–8]. CdTe, another member of group II–VI QDs,
is especially important because its bandgap is close to the optimum wavelength for
the conversion of solar radiation into electricity. Studies show that it is possible to
grow CdTe QDs in glass with high-quality optical properties comparable to those of
CdSxSe1�x QDs.

It has recently been demonstrated through pump-probe spectroscopy that CdTe
nanocrystals in glass can be employed as a nonlinear optical switch with a response
time less than 1 ps when the pump beam is chopped at a frequency of 3.1 kHz [9].
Optical studies on group II–VI QDs mostly model the first exciton peak in ABS
spectra to estimate the size and dispersion of nanocrystals [1,10,11], while a steady-
state photoluminescence (PL) spectroscopy has been reserved for investigating
trap states [12–15]. Raman scattering measurements are used to obtain direct
information about the local composition of the QDs and to eliminate competing
crystal stoichiometry effects from the confinement-induced shift of optical spectra.
We have studied variously sized samples of CdSxSe1�x and CdTe QDs in glass,
precipitated by solid-phase precipitation. We report the results of our ABS, steady-
state PL, and resonant Raman spectroscopies in the study of the growth kinetics
of QDs.

There are three size regimes depending on the bulk exciton Bohr radius, as
depicted in Fig. 6.1. In the strong confinement regime, all the potentials can be
neglected with respect to the kinetic energy and the confinement potential. The
electron and hole motions are decoupled and they reduce to those of free particles
of effective masses me* and mh*, respectively. In the weak confinement regime,
the bulk properties of the semiconductor dominate to a large extent. The Coulomb
interaction should not be neglected when the radius R approaches the exciton Bohr
radius aB.

6.2 Solid-Phase Precipitation in Glass

The starting material for growing the nanoparticles was a commercially available
color filter glass. The glass as received was first melted at about 1; 000ıC for 15 min
to dissolve the particles and quench the melt rapidly to room temperature. Then
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Fig. 6.1 Various size regimes for semiconductor quantum dots depending on the radius R.
Exciton Bohr radii are given for typical II–VI semiconductors; ah.e/ is exciton Bohr radius for
a hole (electron), m�

h.e/ the effective mass for a hole (electron), and 2 is dielectric constant of the
semiconductor

the glass samples were heat-treated at a temperature below the glass transition
temperature to initiate nucleation. Finally, the glass samples were heat-treated at a
temperature higher than the glass transition temperature to grow the nanoparticles.

There are three stages identified for the growth of nanocrystals; nucleation takes
place by random fluctuations in the local concentration of reactants, followed by
diffusion-limited growth in which the radius of the average nanocrystal increases
with the square root of heat-treatment time (Rave / t1=2/. Finally, after the available
concentration of reactants has dropped below a critical level, Ostwald ripening
or coarsening sets in: larger particles grow at the expense of smaller particles
with the radius of the average nanocrystal proportional to the cubic root of heat-
treatment time (Rave / t1=3/ [10, 16–19]. It is possible to separate the nucleation
and growth stages by a two-step heat-treatment procedure. In general, it may be
said that the longer the heat-treatment time or the higher the temperature, the larger
the nanocrystals grow. The driving force for fluctuation in the concentration of the
local reactant is the difference in Gibbs free energy of the initial and final states. If
any fluctuation is able to lower the free energy, then the initial condition is unstable.
Thus, the only barrier to such fluctuation is the limiting atomic movement. Heat
treatment at the glass transition temperature overcomes this barrier and the final
stable state is reached [20–22].

After quenching the melt to room temperature, the samples appear colorless.
Primary heat treatment below the glass transition temperature does not produce
color. The secondary heat treatment above the glass transition temperature produces
color. The color progresses to yellow then light orange, brown, and finally red, as
the heat treatment time and/or temperature increases. The color is a sign of the
production of nanocrystals or QDs. When the samples turn from transparent to a
dark-reddish color, it indicates that QDs have formed. In Fig. 6.2, ABS spectra are
presented for as-received color filter glass doped with CdSe. This was then melted at

 1000ıC for 15 min to dissolve the particles, heat-treated at 450ıC for 5 h, and then
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Fig. 6.2 Optical absorption spectra for CdS0:08Se0:92 QDs heat-treated at 450ıC for 5 h (primary
annealing) and then at different temperatures for different periods of time. Details for the samples
are given in Table 6.1 below

heat-treated at different temperatures for various periods of time (secondary heat
treatment). Details of the samples are given in Table 6.1. As the color progresses
or as the QDs grow, an absorption peak appears. The peak is due to the absorption
of light by nanocrystals. Its height is proportional to the volume fraction; its shift
is proportional to the size of the QDs; and its sharpness is proportional to the size
dispersion. The lowest transition energy for the bulk crystal is blueshifted when the
size is reduced, indicating a quantum confinement effect.

6.3 Particle-in-a-Box Model to Determine the Average
Nanocrystal Radius and Size Distribution

The quantum theory of charged particles whose motions are confined to all three
space dimensions within a semiconductor QD embedded in a host matrix has been
extensively studied [23–28] and a detailed model presented. Here, a simplified
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Table 6.1 Experimental details for CdSxSe1�x QDs in glass samples

Sample Color Radius (nm) FWHM (nm) Secondary
Annealing

1 – – 600ıC 1=2 h

2 2.2 – 625ıC 1 h
3 2.4 0.33 625ıC 2 h
4 2.8 0.38 625ıC 4 h
5 3.1 0.39 625ıC 8 h
6 4.5 – 650ıC 8 h

Average radii were determined from the energetic position of the first
transition energy. The particle size distribution was determined by simulating
the first exciton peak with a Gaussian absorption band

version of this model is presented to determine the quantized energy levels. The
Hamiltonian for charged particles in the nanocrystal is as shown below:

H D „2
2m�

e.h/

r2 C Ve.h/.Ere.h// � e2

©
ˇ
ˇEre � Erh

ˇ
ˇ

C � � �

The first term is the combined kinetic energy of an electron and a hole, the second
term represents confinement potential energies, and the third term is the Coulomb
interaction energy between the hole and an electron. There are other terms called
surface polarization energy; they represent the self-energy of an electron and hole
due to their image charges and the mutual interaction energy between an electron
and hole via image charges such as exchange interaction energy and interaction
energy between the charge in the nanocrystal and its image charge in the dielectric
host (polarization energy). Assuming strong confinement or infinite potential well
height, all the interaction terms are negligible except the first two terms in the
Hamiltonian, thus the Schrödinger equation for a particle in a spherical box enables
quantized energy levels to be found as

H� D E�

E.ne;le/;.nh;lh/ D Eg C „2
2R2

"
x2ne;le

m�
e

C x2nh;lh

m�
h

#

The particle in a spherical box model (or quantized-state effective mass model for
charged particles in a spherical potential well) predicts a linear relation between
1=R2 andE1s1s . If xnIl is the root of the first-order Bessel function j1.xnIl / D 0, the
first exciton peak position is given by the relation [29]:

E1s;1s.eV/ D Eg.eV/C 0:376

�ŒR.nm/�2
; (6.1)
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Ebulk ≈ 1.6 eV for CdTe
1.8 eV for CdSe

2×R=2-10nm
Nanocrystal
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E1s1s

electron
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Fig. 6.3 A schematic representation of the energy band diagram for semiconductor quantum dots
in glass matrix. The lowest transition energy between a hole and an electron level is denoted by
E1s1s. Vo is the finite potential well height

where Eg is the bulk bandgap energy of the semiconductor, � the reduced mass
of an electron–hole pair in units of electron rest mass mo(kg), and R the average
radius of the nanoparticles. The expression for the dielectric confinement energy of
an exciton depends on the quantum dot shape. Glass is the dielectric material within
which nanoparticles are embedded. The bandgap is approximately 5 eV for glass,
1.6 eV for bulk CdTe, and 1.8 eV for bulk CdSe. A schematic of the energy band
diagram is shown in Fig. 6.3. The height of the potential well confining the charged
particles (electrons and holes) is finite and may vary depending on the dielectric
host.

Employing Mie scattering and effective-medium theory to calculate the ABS co-
efficient at an energy of h� D E for the composite (QDs/glass), the ABS coefficient
can be expressed as:

˛obs.h�/ D
RmaxX

Rmin

.2l C 1/


p
�

N.R/ exp

(

� ŒE �E.R/�2
22

)

;

where N.R/ is a Gaussian weighting function for the particle size distribution,
(2l C 1) is the oscillator strength of the transition, and  the standard deviation
of the homogeneous broadening.

Each absorption spectrum was analyzed separately and the best fit parameters for
average radius and size dispersion were determined. In Fig. 6.4, the average radius
is plotted against the heat-treatment time for n D 1=2 and 1/3, and in Fig. 6.5, the
size dispersion against average radius for CdTe QDs in glass is plotted [30].

The straight line in Fig. 6.4 is the linear fit for the heat treatment times up to 16 h.
This is consistent with the diffusion-limited growth, which predicts a linear relation
between the average radius and the square root of heat-treatment time. In the second
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Fig. 6.4 Average nanocrystal radius is plotted against the square root of heat-treatment time in (a)
and the cubic root of heat-treatment time in (b) for CdTe quantum dots in glass. The straight line
in (a) is the linear fit for heat-treatment times up to 15 h and in (b) the linear fit for heat-treatment
times greater than 40 h
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graph on the right, the average nanocrystal radius is plotted against the cubic root of
heat-treatment time. The straight line is the linear fit for heat-treatment times greater
than 40 h, consistent with Ostwald ripening which predicts a linear relation between
the radius and the cubic root of the heat-treatment time. The slope of the straight line
is proportional to the growth rate. The growth rate decreases slowly as one goes from
15 to 40 h of heat-treatment time. At that intermediate stage, nanocrystals appear to
undergo diffusion-limited growth and ripening simultaneously.

As shown in the figure, the size dispersion increases almost linearly with radius
above the average nanocrystal radius of around 3.5 nm indicating, perhaps, that
growing nucleation centers may be influenced by nearest neighbor QDs so that they
spread out dynamically

6.4 Raman and Photoluminescence Spectroscopies

Resonant Raman measurements can determine phonon energy for specific lattice
vibrations. Raman scattering measurements were used to directly obtain information
about the local composition of the QDs, enabling competing crystal stoichiometry
effects to be eliminated from the confinement-induced shift of optical spectra [31].
Resonant Raman spectra excited by an ArC laser at 514.5 nm are shown in Fig. 6.6
[32]. Heat-treatment times and/or temperature increase are displayed from top to
bottom. The ternary compound of CdSSe crystal displays a two-mode behavior in
the Raman spectra. The peak near 200 and 300 cm�1 wave numbers are due to
zone-center longitudinal optical (LO) phonons of CdSe- and CdS-like modes in
nanocrystals, respectively. The peak at 206 cm�1 in Fig. 6.6 is due to a zone-center
LO phonon made of CdSe and the peak position does not shift with time or/and
temperature. Therefore, we conclude that the composition does not change with the
growth of QDs for CdSe in glass.

In Fig. 6.7, Raman spectra for CdTe QDs in glass are shown. The Raman spectra
for doubly heat-treated samples possess a two-peak structure: a lower intensity peak
between 157–160 cm�1 and a higher intensity peak between 190 and 195 cm�1 [33].
Raman peak positions, determined by fitting the experimental data to Gaussian line
shapes and linear backgrounds, against heat-treatment time show that the higher
intensity peak is blueshifted from 
190 to 
195 cm�1 during the first 16 h of
secondary heat-treatment time and then redshifted slowly back to its initial value of

190 cm�1. Previous studies show that Raman peaks shift due to three mechanisms:
phonon confinement, lattice contraction, and/or zinc incorporation into nanocrystals
[34–40]. Phonon confinement leads to a redshift and lattice contraction to a blueshift
in the Raman peak position. Therefore, neither phonon confinement nor lattice
contraction alone can explain both the blueshift during the first 16 h and the
redshift afterward, observed in Fig. 6.7 for the higher intensity Raman peak during
the secondary heat-treatment process. However, zinc incorporation (ejection) into
(out of) the nanocrystal during precipitation can alter significantly the LO phonon
vibrational frequency.
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Fig. 6.6 Resonant Raman spectra excited at 514.5 nm for CdSe QDs in glass

Nanocrystals can also be obtained in liquid solutions by the so-called interrupted
precipitation method, but the average size cannot be varied easily due to the flexibil-
ity of the surrounding medium. Following a previously reported method [41], CdSe
QDs in liquid have also been synthesized from a crude/precursor solution containing
cadmium acetate, oleic acid, phenyl ether, and triocthylphosphine selenide heated at
170ıC for 1 min, under stirring and nitrogen flow. Steady-state PL and absorption
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Fig. 6.7 Raman spectra for as-received color filter glass samples doped with CdTe melted at
1; 000ıC for 15 min (marked ‘melted’), heat-treated at 550ıC for 16 h, and then at 590ıC from
2 to 126 h

spectra for CdTe QDs in glass and CdSe QDs in liquid are presented in Fig. 6.8. On
the left graph, we present steady-state PL and absorption spectra for CdTe QDs in
glass. The samples marked “Melted” and “One-step” have no PL peaks because QDs
are not yet present. On the right graph, steady-state PL spectra for CdSe QDs are
presented. The PL spectra display a two-peak structure. PL measurements provide
information on trap states [42], which may elucidate the microscopic structure
formed in the glass and aqueous solution samples. The PL spectrum has a two-peak
structure: the peak close to the asymptotic absorption edge is presumed to be due
to surface-assisted electron–hole recombination because it is redshifted by 
100
meV from the absorption edge and the other low-energy peak is due to deep trap
levels.

An average radius of 
3.7 nm for CdSe QDs is estimated from the energetic
position of the asymptotic absorption edge. The CdTe QDs display a one-peak
structure in the PL spectra close to the asymptotic absorption edge of absorption
spectrum. The PL structure observed in Fig. 6.8 is identified in terms of surface-
assisted electron-hole recombination band because (1) it is slightly redshifted from
the first exciton band and (2) the size of the redshift decreases with the dot radius
from 166 meV for Rave D 3:40 nm to 92 meV for Rave D 4:65 nm [30].
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Fig. 6.8 Photoluminescence (PL) spectra of two different size CdTe nanocrystals on the left-hand
side of the graph. The optical absorption spectra also are included on the right-hand side to better
interpret the PL spectra

6.5 Photoabsorption spectra

A schematic view of the pump-and-probe experimental setup is presented in
Fig. 6.9. A particular spot of the sample is excited with an Ar-ion pump beam at
488 nm and a tungsten-probe beam. The intensities of transmitted probe light with
the pump beam, both on and off, were measured and the differential ABS coefficient
was calculated according to

�˛ D �
In.Iwith pump=Iwithout pump/

d

where I is the intensity of probe light and d the thickness of the sample.
In Fig. 6.10, the negative of the differential absorption coefficient versus light

energy is represented for three different size samples. The main feature observed
here is the three-lobed structure. The positive peak is due to the bleaching of the
absorption.

There are three possible explanations for the three-lobed structure observed in
Fig. 6.10: (1) the thermal effects, which might be induced by the use of a continuous
laser source as the pump in the experiments, (2) absorption saturation by state filling,
and (3) static electric field (Stark effect). Most notably the modulation of the 1s1s
absorption band observed disappears immediately after the pump beam is turned off.
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Fig. 6.10 Differential optical absorption (photomodulation) spectra obtained by taking the differ-
ence between the optical absorption spectra with laser pump beam (at intensity 100 mW at 488 nm)
on and off for three different radii of CdTe QDs in glass [30]

The effect is transient. Therefore, the explanation may be excluded, since thermal
effects have long relaxation times [43].

State filling contributes to the redshift to some extent, as discussed in the previous
section. It is proposed that the dominant mechanism for the redshift observed here
is induced by the electric field of the trap charges at surface states. As observed
in Fig. 6.8, the difference between 1s1s and PL bands, and its decrease with size,
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support this proposal. As reported in previous studies [44, 45], nanocrystals with
large surface-to-volume ratio have surface states to trap charge carriers. The
nanocrystal within the electric field of the trapped charges will have a redshifted
Gaussian absorption band, as in the electroabsorption spectra of CdSxSe1�xnanopar-
ticles in glass reported in the literature [46–48].

6.6 Quantum Dots in Solution Phase

The QDs can also be synthesized in solution phase. Due to the fact that the emission
and absorption properties of QDs can be tuned by changing their size or core size
and shell thickness in a core-shell structure, the customized QDs can be prepared
for a specific application. They are excellent fluorescing structures that can be used
for imaging and detection applications. Since they are semiconducting materials,
they resist photodecomposition upon their exposure to laser light for a longer
period of time compared to that of molecules used in fluorescence-based detection
schemes and imaging applications. Besides, their quantum yield is much higher
than that of molecules, making fluorescence much brighter. With these properties,
they are excellent candidates for biomedical, cellular imaging, and many other
fluorescence applications. However, their toxicity and low water solubility is their
major limitation, especially for biomedical and cellular applications. Therefore,
there is an effort to eliminate these limitations by coating the QD surface using
several different approaches. The first water-soluble QDs were synthesized in
1998 [49, 50]. In later years, polymer-coated [52], protein- [51, 53], peptide- [54],
oligonuclotide- [55], carbohydrate- [56, 57] attached QDs were synthesized. In
recent literature, there are reports of a number of ways to overcome the toxicity
and water-solubility problems [53, 58, 59].

Since the synthesis temperature for the QD synthesis is very high, the solvents
such as -n-octylphosphine oxide (TOPO) and hexadecylamine with high boiling
points are used. These solvents also help to stabilize and prevent the uncontrolled
growth of the QDs, as they are synthesized by their adsorption onto the QDs.

In our laboratories, the synthesis and surface modifications of CdSe/ZnS core-
shell QDs are in progress. First, the CdSe QDs are synthesized in TOPO by using
Cd(CH3COO)2 and Se as precursors. The influence of temperature and reaction time
on QD size has been investigated. Figure 6.11 shows the evolution of fluorescence
emission of QDs formed at different time intervals at 130ıC (A), and the size
distribution (B) of the CdSe QDs synthesized at three different temperatures:
130ıC, 140ıC, and 160ıC. The size measurements were formed using dynamic light
scattering (DLS) (Zeta Sizer Nano SZ, Malvern Instruments Ltd, UK). Figure 6.12
shows the atomic force microscopy (AFM) image of a single CdSe QD. The next
step shows coating of the CdSe core with a ZnS shell, which facilitates chemical
attachment of biological molecules through the ZnS-S-bond.
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Fig. 6.11 The emission profiles (a) of CdSe QDs at different time intervals as they are synthesized
at 130ıC. The size distribution (b) of CdSe QDs at three different temperatures: 130ıC (�2 nm)
(a), 140ıC (�2.7 nm) (b), and 160ıC (�3.6 nm) (c)

Fig. 6.12 AFM image of the QDs synthesized at 160ıC

6.7 Interferometric Analysis of QD Samples

Using a homemade interferometric system, which determines the refractive indexes
to within an uncertainty of 10�3 [1], the QDs grown in glass samples were analyzed.
The UV-VIS spectra of the QD samples determined the approximate size of the QDs.
Three such samples of similar QD density were analyzed along with an undoped
glass sample to determine a relationship between quantum dot size and refractive
index.
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Fig. 6.13 QD absorption profiles showing tail absorption of QD at radius of approximately 2.1 nm

Two of the samples had significantly reduced the refractive indexes compared to
the undoped material. Their radii were such that their active absorption range was
well away from the laser wavelength. In this case, the QDs act as opaque defects
within the sample and depress the refractive index of the glass, depending on the
overall density and size of the QDs. Since they operate in the normal dispersion
regime, their refractive indexes vary very slowly with the absorption wavelength
and, thus, the size (radius).

The other sample, however, was near enough to the laser resonance (632.8 nm)
to undergo tail absorption (Fig. 6.13).

Anomalous dispersion (absorption) occurred here causing uncertainty in the
refractive index to increase to tenfold compared to that of the previous two samples,
and a significant absorption of laser intensity occurred. Absorption wavelengths
of the samples are shown schematically in Fig. 6.13 compared to that of the laser
resonance.

In Fig. 6.14, the refractive indexes of the samples are shown, compared to their
radii, which appears to show a slight decrease in the refractive index with increasing
radius; however, more work is required to accurately determine whether this is an
accurate description [60].
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Chapter 7
Friedel Sum Rule in One-
and Quasi-One-Dimensional Wires

Vassilios Vargiamidis, Vassilios Fessatidis, and Norman
J. Morgenstern Horing

Abstract We consider the Friedel sum rule (FSR) in the context of scattering
in one- and quasi-one-dimensional ballistic wires with a double ı potential. In
particular, we analyze the relation between the density of states (DOS) obtained
from the energy derivative of the Friedel phase (or the scattering matrix) and that
obtained from the Green’s function. We show that the local FSR is valid when a
correction term is included. Various properties of the one-dimensional local DOS
are also discussed.

7.1 Introduction

Densities of states (DOS) are of great relevance and importance in calculations of
various physical properties. For example, the thermodynamic properties and elec-
tron conduction phenomena depend on the DOS of the system under consideration.
The concept of the DOS and its decomposition into partial DOS (PDOS) proved
to be useful in studies of electron transport through phase-coherent mesoscopic
systems [1–7]. Noise properties, pump current, and heat flow of an adiabatic
quantum pump can also be expressed in terms of PDOS [8].

In one-dimensional (1D) or quasi-one-dimensional (Q1D) problems, the local
PDOS can be obtained via functional derivatives of the scattering matrix [3–5], the
elements of which are calculated from the Fisher-Lee relation [9]. The total local
DOS at a given energy can either be obtained by the summation of the local PDOS
or by the imaginary part of the diagonal elements of the Green’s function. The global
DOS, associated with an entire segment of the system, can then be calculated by
spatial integration of the local quantity.

N.J.M. Horing (�)
Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken,
NJ 07030, USA
e-mail: nhoring@stevens.edu
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However, the global DOS is also related to the elements of the scattering matrix
via the Friedel sum rule (FSR) [10,11]. Although it is approximately valid in certain
regimes [3, 6, 12, 13], the FSR can lead to the exact DOS when a correction term is
included. The deviation between the DOS and the energy derivative of the Friedel
phase was discussed previously for several model systems [3, 12, 13].

The aim of this chapter is to investigate the range of validity of the FSR in 1D and
Q1D scattering, using the simple model of a double ı-function potential. The DOS
is first calculated directly from the Green’s function and then from the derivative of
the Friedel phase with respect to particle energy. It is shown that the FSR is perfectly
valid in both 1D and Q1D wires when a correction term is included. In addition, it
is shown that the peaks of the DOS coincide with the peaks of the transmission
probability. Some important properties of the local DOS are also analyzed in the
1D case. Although the 1D scattering is a simple textbook problem; it, nevertheless,
serves the purpose of illustrating important aspects of the local DOS, which are in
direct connection with present-day modeling of experimental data of mesoscopic
samples [14]. It also serves the purpose of testing the validity of the FSR in a simple
model potential.

The chapter is organized as follows. In Sect. 7.2, the local and integrated local
DOS are examined in a 1D ballistic wire with two ı-function scatterers and the
FSR is analyzed. In Sect. 7.3, we investigate the validity of the FSR in a Q1D wire.
Section 7.4 summarizes the relevant results.

7.2 Local Density of States and Friedel Sum Rule
for the One-Dimensional Wire

We consider a ballistic 1D conducting channel with two ı barriers of equal strength,
which are placed symmetrically with respect to the origin. The scattering matrix S
in the particle energy E is represented as a 2 � 2 symmetric matrix with elements
S’“. The indices ’ and “ label the outgoing and incoming scattering channels,
respectively. They take the values 1 and 2 to designate the left and right asymptotic
regions. Specifically, S11.S22/ is the reflection amplitude back into the left (right)
region for carriers incident from the left (right) asymptotic region. Also, S21.S12/ is
the transmission amplitude from the left (right) lead to the right (left) lead. Due to
symmetry, S11 D S22 and S21 D S12. The reflection and transmission probabilities
are determined as R D jS11j2 and T D jS21j2, respectively.

The elements of the scattering matrix can be obtained from the Fisher-Lee
relation [9] as:

S˛ˇ.E/ D �ı˛ˇ C i„p
v˛vˇG.x˛; xˇIE/ (7.1)

where v˛ D „k˛=m is the particle velocity in lead ˛ and vˇ is the velocity in lead
ˇ, while G.x˛; xˇIE/ is the retarded single-particle Green’s function. Since the
potential is uniform (except for the two ı-barriers), the wave numbers are equal,
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jk˛j D jkˇj D jkj, and related to the energy by E D „k2=2m. The local PDOS,
v˛ˇ.x;E/, are calculated in terms of the scattering-matrix elements and the Green’s
function [3] as:

v˛ˇ.x;E/ D �„p
v˛vˇ
4�

h
S �̨̌ .E/G.x˛; xIE/G.x; xˇIE/CH:c:

i
; (7.2)

Together with (7.1), the last equation expresses the local PDOS fully in terms of the
Green’s function. Having obtained the local PDOS, we can calculate the total local
DOS, v.x;E/, by adding the local PDOS over all scattering channels of the system:

v.x;E/ D
X

˛ˇ

v˛ˇ.x;E/ (7.3)

However, the total local DOS can also be calculated from the imaginary part of the
diagonal elements of the Green’s function:

v.x;E/ D � 1
�

Im fG.x; xIE/g ; (7.4)

The DOS, �.E/, can then be obtained by spatially integrating over the region
confined by the two ı-barriers:

�.E/ D
Z a

�a
dx v.x;E/ D � 1

�

Z a

�a
dx ImfG.x;X; IE/g: (7.5)

On the other hand, the DOS is related to the scattering matrix via the FSR as:

�.E/ D 1

�

@�f .E/

@E
C Im

�
S11.E/C S22.E/

4�E

�

(7.6)

where �f.E/ is the Friedel phase defined by:

�f.E/ D 1

2i
ln DetfS.E/g (7.7)

In the following, we will denote the right-hand side of (7.6) by �f.E/, i.e.,
.1=�/.@�f=@E/C Imf.S11 C S22/=4�Eg D �f.E/.

Note that in the usual formulation of the FSR [15–17] only the first term appears
on the right-hand side of (7.6). This is due to the fact that the FSR measures the
variation of the DOS of the whole space due to the presence of a scattering potential
in a finite interval of space. However, here we consider the local DOS integrated in
the scattering region, Œ�a; a�.

Before presenting an analysis of the FSR, we first discuss the local DOS as
derived from the Green’s function.
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7.2.1 Local Density of States

The scattering problem defined above is associated with the Hamiltonian

H D � „2
2m

d2

dx2
C U.x/; (7.8)

where U.x/ is the scattering potential given by:

U.x/ D V ı.x C a/C V ı.x � a/; (7.9)

with V 	 0, and ı.x/ is the Dirac ı-function. For the above Hamiltonian, the
retarded Green’s operator, G D .E � H C i0C/�1, can be expressed in position
representation [18] as a linear integral equation:

G.x; x0IE/ D G.0/.x; x0IE/C
Z

dx00G.0/.x; x00IE/U.x00/G.x00; x0IE/: (7.10)

The Green’s function can be interpreted as the quantum mechanical probability
amplitude for the propagation of the particle from x0 to x. Since we are interested
only in scattering states, we focus on the continuous part of the spectrum ofH . The
free particle Green’s function is given byG.0/.x; x0IE/ D .�i=„�/eikjx�x0j with the
particle velocity v D „k=m. The solution of (7.10) proceeds in a straightforward
manner and the resulting expression is:

G.x; x0IE/ D
�
1

i„v

�

eikjx�x0j �
�
1

i„v

�

eikjxCaj w.i � w/eikjaCx0jC w2e2ikaeikja�x0j

.1C iw/2 C w2e4ika

�
�
1

i„v

�

eikjx�aj w2e2ikaeikjaCx0j C w.i � w/eikja�x0j

.1C iw/2 C w2e4ika
;

(7.11)

where we introduced the dimensionless quantity w D V=„�. With the help of the
Green’s function, we can easily obtain the transmission and reflection amplitudes
from the Fisher-Lee relation (7.1) as:

t.E/ D S21.E/ D e2ika

.1C iw/2 C w2e4ika
; (7.12)

and

r.E/ D S11.E/ D w.w � i/� w.w C i/e4ika

.1C iw/2 C w2e4ika
(7.13)
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With the help of (7.11), (7.12), and (7.13) the diagonal elements of the Green’s
function in the three regions can be expressed as:

G.x; xIE/ D
�
1

i„�
�

�
8
<

:

1C r.E/e�2ik.xCa/; .x � �a/
1 � t.E/Œ2w.i � w/ cos.2kx/C2w2e2ika�; .�a < x < a/
1C r.E/e2ik.x�a/; .x 	 a/:

(7.14)

It is interesting to mention here that from the knowledge of the Green’s function,
one can not only calculate the local DOS from (7.4) and the scattering amplitudes
from (7.1), but also other quantities, such as the characteristic times (i.e., traversal,
reflection, and dwell times) for the motion of a particle in the presence of a scattering
potential.

The local DOS can be obtained from (7.4) but the resulting expression is lengthy.
However, in the region between the two ı-barriers, it simplifies considerably and is
given by:

v.x;E/ D 2

h�
T .1C 2w2/ � 4w

h�
T Œw cos.2ka/� sin.2ka/� cos.2kx/; (7.15)

where h D 2�„ is Planck’s constant and T D jt j2 is the transmission probability.
In the numerical calculations, we set „ D 1 and m D 1=2, yielding [19] an

energy unit "0 D 17:7meV and a length unit l0 D 5:7 nm.
In Fig. 7.1a, we show the transmission probability plotted versus the incident

electron energy for V D 2:5"0l0 and aD 2:5l0. Note that the energies of the trans-
mission peaks can be found by solving, numerically, the transcendental equation:

cot z D � z0
z
; (7.16)

where z D kL, z0 D VL=2, and we have set L D 2a for the distance between the
ı-barriers.

In Fig. 7.1b, we show the local PDOS and total local DOS [v˛ˇ and v, in units of
."0l0/

�1] plotted versus x=�. In this calculation, we set E D 0:2823"0 for which
T D 0:5, while the rest of the parameters are the same as in (a). For this energy
value, the particle wavelength is � D 2:36L. The two vertical arrows, located at
x D ˙L=2, are schematic representations of the two ı potentials. The behavior
of the local PDOS and total local DOS between the two barriers is different from
their behavior in the region outside the barriers. On the left (right) of the barriers,
the shape of v˛ˇ and v is determined only by left (right)-injected states, which give
rise to Friedel-like oscillations. In fact, on the left (right) of the barriers, the right
(left)-injected states contribute as a constant to v˛ˇ and v. We remark here that the
diagonal PDOS, v˛˛ , which are associated with reflection, can be negative. But the
off-diagonal elements, v˛ˇ .˛ ¤ ˇ/, which are associated with transmission, are
positive. Note that due to symmetry, v˛ˇ D vˇ˛ .
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Fig. 7.1 (a) Transmission
probability T through a
double ı-barrier system vs
incident electron energy
(E , in units of "0). The
ı-barriers (shown
schematically by the vertical
arrows) are placed
symmetrically at
a D ˙2:5l0 , having equal
strengths V D 2:5"0l0.
(b) Local partial densities of
states v˛ˇ (˛ D 1; 2 and
ˇ D 1; 2), and total local
DOS v [in units of ."0l0/�1]
vs. the dimensionless
parameter x=�, where � is
the wave length. We have
used the energy value
E D 0:2823"0 for which
T D 0:5

In the region between the barriers, there is a contribution both from left- and
right-injected states, which may produce oscillatory behavior due to interference
effects. This is illustrated in Fig. 7.2, in which the total local DOS [v, in units of
."0l0/

�1] is plotted versus the dimensionless parameter x=L for several values of
energy. The rest of the parameters are the same as in Fig. 7.1. The solid (green)
line corresponds to the energy of the first transmission peak in Fig. 7.1a .E D
0:2981"0/ for which the wavelength is � D 2:3L. The long-dashed (red) line,
which exhibits oscillatory behavior between the barriers, corresponds to the second
transmission peak .E D 1:23"0/ for which � D 1:12L. In fact, the number of
these oscillations increases by one at every consecutive transmission peak. When
a perfect transmission occurs, we note that the Friedel-like oscillations, which are
associated with reflection, vanish. On the other hand, the short-dashed (blue) line
corresponds to the first transmission minimum [T D 0:1 in Fig. 7.1a], which occurs
at E D 0:49"0. As expected, the total local DOS between the ı-barriers is greatly
suppressed at the transmission minimum. However, outside the barriers, it exhibits
oscillations due to large reflection.
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Fig. 7.2 Total local density of states [v, in units of ."0l0/�1] vs. the dimensionless parameter x/L,
where L = 2a is the distance between the two ı-barriers. The ı-barriers are shown schematically
by the vertical arrows. The values of V and L are those used in Fig. 7.1. The solid (green)
line corresponds to the energy of the first transmission peak, while the long-dashed (red) line
corresponds to the energy of the second transmission peak in Fig. 7.1a. The short-dashed (blue)
line corresponds to the energy of the first transmission minimum

7.2.2 Friedel Sum Rule

As mentioned above, one way to obtain the DOS is via the Green’s function of the
system, i.e., (7.5). Since we are interested in the DOS between the two barriers, a
simple integration of the expression given in (7.15) yields

�.E/ D 2L

h�
T .1C 2w2/� wT

�E
sin.2ka/Œw cos.2ka/ � sin.2ka/�: (7.17)

On the other hand, the DOS is related to the energy derivative of the Friedel
phase via the FSR, i.e., (7.6). The essence of the FSR is to count the number of
states in the scattering region by counting the resonant peaks of the phase derivative
[10–12,20]. Although the validity of the FSR has been demonstrated for several 1D
model systems [12] in the WKB limit, there are cases in which it fails to count the
states correctly; for example, in the case of certain graphs [20], the FSR fails due to
the degeneracies in the spectrum.

We compare now the exact expression for the DOS as derived from the Green’s
function (i.e., 7.17) with the DOS obtained from the FSR. We demonstrate below
that, if the correction (second) term is retained in (7.6), the FSR is perfectly valid.
If the correction term is omitted, the FSR still holds, except for a small deviation at
the low-energy transmission minima.

In order to be more precise, we first write the scattering matrix as:

S.E/ D
�
r.E/ t 0.E/
t.E/ r 0.E/

�

: (7.18)
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Fig. 7.3 Transmission probability T [solid (black) line], density of states � [dotted (red) line], �f

[short-dashed (blue) line], and �f without the correction term [long-dashed (green) line] in units
of "�1

0 vs incident electron energy (E , in units of "0) for the double ı-barrier model. Note that the
Friedel sum rule is valid. If the correction term is omitted, there is a small deviation between �
and �f at the low-energy transmission minima, which, as the energy increases, becomes negligible.
Here, V D 3"0l0 and a D 3l0

Since time-reversal and inversion symmetries hold, one has additionally t.E/ D
t 0.E/ and r.E/ D r 0.E/. It can then easily be shown that the Friedel phase can be
expressed in terms of the transmission amplitude as:

�f.E/ D 1

2i
ln

�

� t.E/

t�.E/

�

: (7.19)

With the help of (7.19), one can write the right-hand side of (7.6) as:

�f.E/ D t�.E/
2�it.E/

@

@E

�
t.E/

t�.E/

�

C Im

�
r.E/

2�E

�

: (7.20)

In Fig. 7.3 we show the exact DOS, �.E/, given by (7.17) [dotted (red) line],
�f.E/, given by (7.20) [short-dashed (blue) line], and �f.E/ with the correction
term omitted [long-dashed (green) line] as functions of energy. The solid (black)
line shows the transmission probability plotted versus energy. The parameter values
are V D 3"0 and a D 3l0. We notice that the FSR is valid over the whole energy
range. Note also the generally good agreement between the exact DOS, �.E/, and
the DOS, �f.E/, calculated from the FSR with the correction term omitted. The only
deviation occurs at the low-energy transmission minima. However, as the energy
increases the deviation becomes gradually negligible. In addition, the energy values
of the transmission peaks coincide with the energies of the peaks in the DOS. We
also remark that, from the DOS, one can also obtain the dwell time, �D.E/, in the
scattering region as �D.E/ D �„�.E/. Thus, a peak in the DOS essentially implies
a peak in the dwell time.
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7.3 Friedel Sum Rule in a Quasi-One-Dimensional Wire

We consider now a ballistic uniform quantum wire in which electrons are confined
along the y direction (transverse direction) but are free to propagate along the x
direction. The Hamiltonian can be written as:

H D � „2
2m

�
@2

@x2
C @2

@y2

�

C Vc.y/C U.x; y/; (7.21)

where Vc.y/ is the confining potential taken to be an infinite square well (i.e.,
Vc.y/ D 0 for 0 � y � W and infinite otherwise). The scattering potential is that
of two ı-function scatterers with equal strengths � , which are located at x D ˙a,

U.x; y/ D �ı.y � yi /Œı.x C a/C ı.x � a/�; (7.22)

where yi is the lateral position of the scatterers.
The energy eigenvalues of the unperturbed HamiltonianH0 D H � U are given

by E D En C .„2k2n=2m/, where n is the subband index, and En D n2E1 are the
subband energies with E1 D „2�2=2mW2 and n D 1; 2; 3; : : :.

For the above Hamiltonian, the retarded Green’s operator,G D .E�HCi0C/�1,
can be expressed as an integral equation:

G.x; yI x0; y0IE/ D G.0/.x; yI x0; y0IE/

C
Z

dx00
Z

dy00G.0/.x; yI x00; y00IE/U.x00; y00/

G.x00; y00I x0; y0IE/; (7.23)

where G.0/.x; yI x0; y0IE/ is the Green’s function of the unperturbed Hamiltonian.
The solution of (7.23) proceeds similarly to the 1D case. The resulting expression
takes the form:

G.x; yIx0; y0IE/ D G.0/.x; yIx0; y0IE/

C �G.0/.x; yI �a; yi IE/.1�„1/G
.0/.�a; yi Ix0; y0IE/C„2G

.0/.a; yi Ix0; y0IE/
.1 �„1/2 �„2

2

C �G.0/.x; yI a; yi IE/„2G
.0/.�a; yi Ix0; y0IE/C .1 �„1/G

.0/.a; yi Ix0; y0IE/
.1 �„1/2 �„2

2

(7.24)

where we introduced the quantities„1 and„2 defined by:

„1 D �i
X1

nD1 jˆn.yi /j2 wn; (7.25)
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and

„2 D �i
X1

nD1 jˆn.yi /j2 wne2ikna; (7.26)

which depend on the number of channel modes ˆn.y/ included in the calculation.
Also, wn D �=„vn is a dimensionless quantity with vn the particle velocity in
channel mode n.

We will be interested in the single-subband regimeE1 < E < E2, in which only
the first mode propagates along the wire while the higher (evanescent) modes may
contribute via tunneling. This contribution becomes especially important when the
electron energy E approaches the bottom of the second subband E2. In this single-
channel transport regime, the transmission amplitude is found to be:

t11.E/ D e2ika
�

1C 2m�

ik1„2 jˆ1.yi /j2 1 �„1 C„2 cos.2k1a/

.1 �„1/2 �„2
2

�

(7.27)

The lowest four modes have been kept in the numerical calculation. However, one
can either explicitly include higher evanescent modes in „1 and „2, or incorporate
their effect into a renormalized value of the scattering strength [21]. We found that
the validity of the FSR is independent of the number of evanescent modes.

In the following, the width of the wire is taken to be W D 3l0 and, for
convenience, we express all energies in units of E1.

The DOS between the two ı-function scatterers is now given by:

�.E/ D � 1
�

Z a

�a
dx
Z W

0

dyImfG.x; yI x; yIE/g; (7.28)

which is a generalization of (7.5). On the other hand, the scattering matrix is still a
2�2 symmetric matrix, i.e., it is identical to that given in (7.18) with the replacement
r ! r11 and t ! t11. The Friedel phase can then be written as in (7.19) with t ! t11.

In Fig. 7.4 we show the exact DOS, �.E/, obtained from (7.28) [dotted (red)
line], �f.E/ [short-dashed (blue) line], and �f.E/ with the correction term omitted
[long-dashed (green) line] as functions of the incident electron energy. The solid
(black) line shows the transmission probability of the Q1D wire plotted versus the
electron energy over the first subband. Here, we chose � D 9"0l

2
0 , a D 5:3l0, and

yi D .5=12/W . We notice that, as in the 1D case, the FSR is valid in the Q1D wire.
However, when the electron energy approaches the second subband minimum (i.e.,
E ! E2) both � and �f grow rapidly. This is due to the fact that the scattering
properties of a quantum wire are determined primarily by the shape of the lowest
evanescent mode around the scattering centers [21]. In fact, in the limitE ! E2, the
decay length 1=k2 of the evanescent mode (where k2 D Œ2m.E2 � E/�1=2=„ is the
evanescent wave vector) and the evanescent DOS both become infinite due to the
rapid population of the second subband. This is a general characteristic of Q1D
scattering and has also been found in the particular case of one ı-function scatterer
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Fig. 7.4 Transmission probability T [solid (black) line], density of states � [dotted (red) line], �f

[short-dashed (blue) line], and �f without the correction term [long-dashed (green) line] in units
of E�1

1 vs incident electron energy (E , in units of E1) for two repulsive ı-function scatterers in
a ballistic quantum wire. The width of the wire is W D 3l0, while the ı-function scatterers are
placed symmetrically at a D ˙5:3l0, having equal strengths, � D 9"0l

2
0 , and equal transversal

positions yi D .5=12/W . Similarly to the 1D case, the FSR is valid while, if the correction term is
omitted, there is a small deviation at the low-energy transmission minima

in a ballistic Q1D wire [21]. We also note that, even if the correction term is omitted,
�f.E/ is still in good agreement with �.E/ except at the low-energy transmission
minima. In addition, the energies at which the transmission probability has peaks
coincide with the energies of the peaks in the DOS.

The above-mentioned behavior of the DOS is in fact the main difference from the
1D case; namely, if the electron energy is away from the second subband threshold
in a Q1D wire with two repulsive scatterers, the behavior of the DOS is similar to
that in the 1D case.

7.4 Summary

We have investigated various features of the local FSR in 1D and Q1D ballistic
wires with a double ı-potential. In both cases, the exact DOS was compared with
the energy derivative of the Friedel phase. The 1D local DOS was also discussed.

In both 1D and Q1D wires with repulsive scatterers, our analysis revealed that:
(1) the FSR is valid when the correction term is included and (2) the energy values
that determine the peaks in the transmission probability coincide with the energies
of the peaks in the DOS. We remark that, in the absence of the correction term,
the FSR is still valid except for small deviations at the low-energy transmission
minima.

The 1D local DOS and its partial contributions were also examined. The
vanishing of the Friedel-like oscillations was demonstrated for energies at which
the transmission probability becomes unity. To this end, we emphasize that the FSR
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plays an important role in mesoscopic physics because it allows us to express, for
instance, the charge distribution in terms of the scattering properties. In this context,
local electronic properties (probed by scanning tunneling microscopy) can be used
to relate the conductance correction due to the charged scanning tip with the local
DOS in mesoscopic structures [14].
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Chapter 8
Effects of Temperature on the Scattering Phases
and Density of States in Quantum Wires

Vassilios Vargiamidis, Vassilios Fessatidis, and Norman J. Morgenstern
Horing

Abstract We investigate the effects of temperature on the scattering phases in a
quantum wire with an attractive scatterer. We consider two bound states, belonging
to different subbands, which couple to a scattering channel and give rise to two Fano
resonances. In this context, we first demonstrate the deviation of the transmission
phase from the Friedel phase at the zeros of the transmission. It is then shown that
temperature effects tend to smear sharp features of the transmission phase; namely,
the phase drops become less than � and acquire finite widths, which increase
linearly in the low-temperature regime. The influence of temperature on the Friedel
phase and density of states is also examined.

8.1 Introduction

In electron transport through mesoscopic systems, the phase plays an important role.
Interest in the behavior of the wave function phase in quantum transport devices
started with experiments addressing the phase shift of an electron transmitted
through a quantum dot [1–4]. These important experiments demonstrated the
presence of a coherent component in the current while, at the same time, a strange
behavior of the transmission phase was revealed; namely, the transmission phase
drops suddenly by � in the conductance valleys.

In relation to these experiments, the behavior of the various phases that appear
in the scattering matrix were investigated theoretically [5–9] and the existence of
two important phases with different behavior was emphasized [5, 6]; namely, the
phase of the transmission amplitude and the phase that appears in the Friedel sum
rule [10]. The Friedel sum rule relates the density of states to the charge of the
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H. Ünlü and N.J.M. Horing (eds.), Low Dimensional Semiconductor Structures,
NanoScience and Technology, DOI 10.1007/978-3-642-28424-3 8,
© Springer-Verlag Berlin Heidelberg 2013

131



132 V. Vargiamidis et al.

system via the phase of the eigenvalues of the scattering matrix [11, 12]. Being
related to the charge of the system, the Friedel phase is a continuous function of
energy, and cannot exhibit an abrupt behavior.

On the other hand, it was shown [5, 6] that the phase of the transmission
amplitude may deviate from the Friedel phase and exhibit sharp drops of � at
energies where the transmission probability becomes zero. The co-occurrence of a
transmission zero and a sharp phase drop were interpreted in terms of the properties
of a Fano resonance, i.e., the destructive interference between a resonant and a
nonresonant transmission channels leads to a transmission zero and an associated
abrupt jump of the transmission phase. The Fano resonance-based theory offers a
simple explanation of the experimental results and was further examined in Refs.
[8, 9].

The above-mentioned behavior of the transmission phase may also appear in
a quantum wire with some type of coupling potential; for example, coupling due
to an attractive scatterer (or embedded quantum dot) [13–17] and local spin–orbit
coupling [18], to name a few. In the presence of coupling potential, a bound state
in one subband (imaginary wave number in the wire leads) can coexist with an
unbound state in another subband. A Fano resonance, in this case, arises when the
closed and the open channels are coupled, the channels being the propagating and
cutoff subbands. The behavior of the wave function phase in a quantum wire has
been briefly treated [17, 19]. However, the relation of the transmission phase to
the Friedel phase was not discussed, while temperature effects were not taken into
account. One important issue, therefore, is how the scattering phases in a quantum
wire are influenced by temperature.

In this chapter, we extend our previous work [17, 19] and investigate the
temperature dependence of scattering phases in a quantum wire with an attractive
scatterer. We consider the case of one open and two closed channels, the latter two
being dominated by their bound states. First, we perform a general analysis without
making specific assumptions concerning the shape of the scattering and confining
potentials. Such an analysis is able to capture the main physical features, which
are independent of the details of the potentials and reveal the relation between the
scattering phases. We then employ a specific model scatterer of the short-range type
in a parabolically confined quantum wire and examine the effects of temperature
on the scattering phases and density of states. It is shown that temperature effects
tend to smear sharp features of the phase of the transmission amplitude; namely, the
phase drops become less than � , and they are no longer abrupt but acquire finite
widths. Furthermore, for a narrow Fano resonance, the Friedel phase and density
of states react more sensitively with increasing temperature than for a broad Fano
resonance.

The chapter is organized as follows. In Sect. 8.2, we first outline briefly the
coupled-channel model and then, by employing the scattering matrix, we discuss the
relation of the Friedel phase to the phase of the transmission amplitude. In Sect. 8.3,
we examine the effects of temperature on the scattering phases, and a summary of
our results is presented in Sect. 8.4.
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8.2 Formulation

8.2.1 Local Density of States

We consider a ballistic uniform quantum wire in which electrons are confined along
the y direction (transverse direction) but are free to propagate along the x direction,
as shown in Fig. 8.1.

In the presence of a scattering potential, the Schrödinger equation describing the
electron motion in the wire can be written as:

�

� „2
2m

r2 C Vc.y/C V.x; y/

�

‰.x; y/ D E‰.x; y/; (8.1)

where Vc.y/ is the confining potential and V.x; y/ is the scattering potential. The
confining potential gives rise to channel modes �n.y/,

�

� „2
2m

d2

dy2
C Vc.y/

�

�n.y/ D En�n.y/ (8.2)

where En is the threshold energy for mode n. Expanding ‰.x; y/ in terms of the
channel-mode wave functions

‰.x; y/ D
1X

nD0
 n.x/�n.y/; (8.3)

we obtain from (8.1) coupled-channel equations for  n.x/,

.E � En � _

K/ n.x/ D
1X

lD0
Vnl .x/ l .x/; (8.4)

where
_

K D �.„2=2m/d2=dx2 and Vnl.x/ D R
dy��

n .y/V .x; y/�l .y/ are the
coupling matrix elements, which form effective potentials for the longitudinal
electron motion. These coupling potentials also provide the interaction between
channels.

In order to solve (8.4), we first consider the decoupling limit (i.e., Vnl D 0) and
assume that only the first channel mode (i.e., the mode with n D 0) can be found in
some scattering state. From (8.4), these scattering states can be obtained as solutions

of Œ
_

K C V00.x/ C E0��k̇ .x/ D E�k̇ .x/, where �C
k .x/ and ��

k .x/ represent the
states for which the incident wave comes from �1 and C1, respectively. These
states describe the background (nonresonant) scattering, which is the scattering
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Fig. 8.1 Schematic illustration of a uniform quantum wire with a scatterer. We assume infinite
leads and W denotes the effective width of the wire. The incident wave is partly transmitted and
partly reflected by the scattering potential V .x; y/

in a hypothetical system in which the channel interaction is switched off [20]. In
particular, their asymptotic form is given as:

�k̇ .x/ D
(
tbge˙ikx .x ! ˙1/

e˙ikx C r
bg
˙ e	ikx .x ! �1/

(8.5)

where the upper signs correspond to an incident wave from the left. In (8.5)
tbg and rbg

˙ denote the background transmission and reflection amplitudes in the
wire, while k is the wave vector for the propagating mode given as k D Œ2m

.E �E0/�1=2=„.
In addition to the open channel n D 0, we consider two closed ones n D 1

and 2, which are dominated by their bound states ˆ01.x/ and ˆ02.x/, respectively.
The equations for the bound states are obtained from (8.4) by setting Vnl D 0 (for
n ¤ l),

. QEj �Ej � _

K/ˆ0j .x/ D Vjj .x/ˆ0j .x/ .j D 1; 2/ (8.6)

where QEj are the bound state energies.
We now make the approximation of truncating the sum in (8.4) at n D 2.

The resulting system of three equations is solved in Ref. [17]. The transmission
amplitude can, finally, be extracted from the asymptotic form of  0.x/ D teikx as:

t.E/ D tbg .E � QE1/.E � QE2/ � N"


E �E.1/

R C i�1

� 

E � E

.2/
R C i�2

�
�W 2

12

; (8.7)

where N" is real and proportional to the coupling potential jV12j, E.j /
R D QEj C ıj are

the shifted quasibound-state (resonant) energies, and �j are the widths of the two
resonances. Also,W12 is a matrix element, which represents the indirect coupling of
the bound states via the open channel. Note that (8.7) yields two Fano line shapes in
the transmission probability, jt j2, one in the first and one in the second subband.

We now discuss the relation between the phase of the transmission amplitude and
the Friedel phase.



8 Effects of Temperature on the Scattering Phases 135

8.2.2 Scattering Phases

For a single transport channel the scattering matrix is represented as a 2 � 2 unitary
matrix at an energy E:

S.E/ D
�
r.E/ t 0.E/
t.E/ r 0.E/

�

(8.8)

We assume that both time-reversal and inversion symmetries hold and, in this case,
one has additionally t D t 0 and r D r 0. In terms of the scattering matrix, the Friedel
phase is defined by:

�f.E/ D 1

2i
ln DetfS.E/g; (8.9)

where, for a time-reversal symmetric system, DetfS.E/g D �t.E/=t�.E/. The
derivative of the Friedel phase with respect to the energy of the incident electron is
related to the density of states via [5, 6]:

�.E/ D 1

4�i
Tr

�

SC.E/
dS.E/

dE
� dSC.E/

dE
S.E/

�

D 1

�

d�f.E/

dE
: (8.10)

Integrating (8.10) over the energy interval [E 0; E 00] yields the generalized Friedel
sum rule �N.E 00; E 0/ D �f.E

00/� �f.E
0/, which states that the number of electrons

N multiplied by � , in the system, equals the difference of the Friedel phase at E 0
and E 00.

With the help of (8.7), (8.8), and (8.9), we can express the Friedel phase as:

�f.E/ D �
bg
f .E/C � r

f .E/ (8.11)

where

�
bg
f .E/ D 1

2i
ln

�
tbg

.tbg/�

�

; (8.12)

and

� r
f .E/ D 1

2i
ln

 

�
Y2

jD1
E �E.j /

R � i�j
E �E.j /

R C i�j

!

(8.13)

�
bg
f .E/ originates from the background contribution and varies slowly with energy

across a resonance. For simplicity, we assumed the weak coupling regime [15, 17,
19], in which the interaction between the bound states is small and W12 can be
neglected. The Friedel phase can, finally, be determined as:

�f.E/ D �
bg
f .E/C

X2

jD1 arctan

 
E � E

.j /
R

�j

!

� �

2
(8.14)
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Using (8.14), we obtain the density of states as:

�.E/ D 1

�

X2

jD1
�j



E �E.j /

R

�2 C �2j

(8.15)

which is a superposition of two Lorentzians with peak positions at the resonant
energies. It is worth mentioning here that, in a Fano resonance, the relation between
the peak positions of the conductance and the density of states may provide
important information about the characteristics of the transmission phase through
a quantum dot [21].

On the other hand, the phase of the transmission amplitude can be obtained by
expressing (8.7) as t D jt jei�t .E/ where

�t .E/ D �
bg
t .E/C �rt .E/: (8.16)

It can be verified that �bg
t D �

bg
f , which will henceforth be denoted as �bg. However,

the particular form of �bg depends on the specific type of scattering potential.
Concerning �rt .E/, the result of a lengthy but straightforward algebra gives:

tan �rt .E/ D �2.E �E.1/
R /C �1.E �E.2/

R /

�1�2 � .E �E.1/
R /.E � E

.2/
R /

(8.17)

With the help of (8.14) and (8.17) one can obtain the relation between the Friedel
phase and the phase of the transmission amplitude as:

�t .E/ D �f.E/ � �

2
C �‚.x.E// (8.18)

where x.E/ D tan �t .E/ and�.x/ are the unit step functions. It is seen from (8.18)
that �t .E/ changes abruptly by � every time x.E/ changes the sign. In fact, it can
be shown that the energies for which x.E/ is discontinuous and changes sign are
determined as the solutions of

1 � tan �bg.E/ tan �rt .E/ D 0 (8.19)

At these energies the transmission probability vanishes (see below) and the trans-
mission phase deviates from the Friedel phase.

8.2.3 Simple Model Scatterer

The behavior of the scattering phases is illustrated now by employing a scattering
potential described by:
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V.x; y/ D �„2ˇ
2m

ı.x/ exp

�

� .y � yi /2
˛2

�

; (8.20)

which is a ı-function along the propagation direction and having a Gaussian shape
in the transverse direction with decay length ˛ and center at y D yi . The lateral
extent of the scatterer, quantified by ˛, may provide an extra parameter for fitting
experimental data. The magnitude of ˇ determines the strength of the scattering
potential (ˇ>0). This type of potential can be used to model, for example,
the negative electrostatic influence of a scanning probe microscope (SPM) tip
in experiments studying the imaging of coherent electron flow through a narrow
constriction in a two-dimensional (2D) electron gas [22, 23]. For such a potential,
the coupling matrix elements are given by:

Vnl.x/ D �
�„2ˇ
2m

�

ı.x/vnl ;

where

vnl D
Z

��
n .y/ exp

�

� .y � yi /
2

˛2

�

�l.y/dy (8.21)

The confining potential is chosen to be parabolic, Vc.y/ D .1=2/mw20y
2 and,

therefore, the mode eigenfunctions �n.y/ are the well-known harmonic-oscillator
wave functions with eigenenergiesEn D „!0.nC 1=2/; n D 1; 2; : : :.

In the following numerical calculations, we set .„2=2m/ D 1 and take the energy
unit as "0 D 17:7meV. The length unit is then L0 D 5:7 nm. The magnitude of ˇ
has dimension of inverse length, so that .„2ˇ/=2m is expressed in meV.

In Fig. 8.2a, we show the transmission probability, jt j2, and the density of
states, �, plotted versus the incident electron energy. Note that the transmission
probability exhibits two Fano resonances, one in the first and one in the second
subband, both of which have positive asymmetry parameters (i.e., the resonance
energies occur after the energies of the transmission zeros). Note also that the
peak positions of the density of states are different from the peak positions of
the transmission probability. The values of the parameters in this calculation are
ˇ D 4L�1

0 , ˛ D 0:68L0, and yi D 0:28L0.
In Fig. 8.2b, we show the Friedel phase and phase of the transmission amplitude

plotted versus the incident electron energy. The values of the parameters are the
same as those used in (a). As expected, the Friedel phase shows a steplike behavior,
i.e., it is nearly constant as a function of energy and increases by � continuously
as the energy crosses a Fano resonance. The transmission phase also evolves
continuously with increasing energy, except at the transmission zeros where sharp
phase drops of � occur. This type of phase behavior is similar to that found in
other mesoscopic systems [5, 6, 8, 9]. The physical origin of this behavior lies in
the existence of quasibound states in the attractive scatterer, which interact with
the continuum of states in the quantum channel, resulting in Fano-type resonant
interference.
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Fig. 8.2 (a) Transmission
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8.3 Finite Temperature Effects

To consider thermal effects, we have to convolute the transmission probability and
transmission amplitude with the derivative of the Fermi function. The transmission
probability is given as:

jt.�; T /j2 D �
Z

dEf 0.E/ jt.E/j2 ; (8.22)

where t.E/ is the zero-temperature transmission amplitude, and f .E/ is the Fermi
distribution function given as f .E/ D Œexp..E � �/=kBT /C 1��1,

where � is the chemical potential. Also, the transmission phase is calculated as:

�t .�; T / D arctan

 
Im
˚� R dEf 0.E/t.E/



Re
˚� R dEf 0.E/t.E/



!

: (8.23)
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We define a dimensionless parameter Td D kBT="0, which is a measure of
temperature. Then Td D 0:01 corresponds to T D 2:06K. The type of integrals
involved in (8.22) and (8.23) can be performed analytically with the help of partial
fraction expansion, presentation of the Fermi function in terms of the digamma
function, and a contour integration. However, the analytical calculation will not be
presented in this chapter.

In Fig. 8.3a we show the transmission probability plotted versus the incident
electron energy (chemical potential) for increasing values of the parameter Td. Here,
the scatterer parameters are ˇ D 4L�1

0 , yi D 0:28L0, and ˛ D 0:68L0. Note that by
increasing the temperature, it causes rapid smearing of the resonance structure. The
physical origin of such a behavior lies in the thermal broadening, via the smooth
peak in f 0.E/, which obscures the resonance as kBT becomes comparable to the
resonance width. Note also that the effect of temperature on the first (narrower)
resonance is stronger. In fact, the amplitude of the first resonance reduces drastically
with increasing temperature compared to that of the second resonance.

In Fig. 8.3b, we show the phase of the transmission amplitude plotted versus
the incident electron energy (chemical potential) for the same parameter values as
in (a). It can be seen that, at finite temperature, the phase discontinuities are lifted
as a consequence of the fact that no transmission zeros occur. Specifically, one can
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observe that smearing due to finite temperature tends to average out sharp features
of the transmission phase, i.e., the phase drops become less than � , and they are no
longer sharp but have finite widths.

The effects of temperature on the Friedel phase and density of states plotted
versus the incident electron energy (chemical potential) are shown in Fig. 8.4a and b,
respectively, for the same parameter values as those in Fig. 8.3. They are calculated
as:

�f.�; T / D �
Z

dEf 0.E/�f.E/; (8.24)

and

�.�; T / D �
Z

dEf 0.E/�.E/; (8.25)

where �f.E/ and �.E/ are given in (8.14) and (8.15), respectively. Note that the
steplike structure of the Friedel phase is smeared out with increasing temperature,
while the peaks in the density of states become broader but the peak positions remain
unaffected. Note also that, for the narrow Fano resonance, the Friedel phase and
density of states exhibit enhanced sensitivity with increasing temperature.

To this end, we remark that the resonance width, which is a measure of the
strength of the coupling between the quasibound level and the continuum, can be
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varied by means of shifting the position of the scatterer with respect to the ‘walls’ of
the wire. However, since the coupling strengths, V01 and V02, to the two quasibound
levels strongly depend on the scatterer’s position, by displacing the scatterer across
the channel, one can produce a very narrow Fano resonance in one subband and a
very broad one in the second subband. This will lead to gradually sharper features
of the scattering phases near the first resonance, and smoother phase evolution near
the second resonance. As a consequence, the temperature dependence will be much
stronger in the first resonance than that in the second resonance. The displacement
of the scatterer can be achieved by, for example, applying different gate voltage to
the two parts of a split gate, which can be thought of as an applied electric field in
the transverse direction of the quantum channel. In other words, the electric field
causes shifting of the confining potential, which is equivalent to a ‘shift’ of the
scatterer in the opposite direction. This tunability of the scattering phases may prove
experimentally useful in electronic transport through narrow channels.

8.4 Summary

In this chapter, we analyzed the behavior of scattering phases and density of states in
a quantum wire with an attractive scatterer, focusing on finite temperature effects. In
this context, we first showed that the transmission phase deviates from the Friedel
phase and exhibits sharp drops of � at the zeros of the Fano resonances. At finite
temperature, the sharp drops become less than � and acquire finite widths, which
increase linearly in the low-temperature regime. The important role played by the
resonance widths was pointed out. The behavior of the Friedel phase and density of
states with increasing temperature was also illustrated.

To this end, we point out that our analysis was restricted to a single transport
channel. This is an assumption that has been used implicitly in most theoretical
studies of similar systems and is also experimentally relevant [2–4]. Besides, it
provides a good approximation for modeling a narrow quantum channel. It is also
worth noting that the present analysis can also be useful for investigating transport
properties and phase behavior through a mesoscopic open ring connected to current
leads with an embedded scattering center in one of its arms. In this case, the arm with
the scatterer can be treated using the present analysis while the junctions between
the leads and the ring can easily be described via a scattering matrix with a coupling
parameter.
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Chapter 9
Fabrication of Low Dimensional
Nanowire-Based Devices using Dieletrophoresis

Ramazan Kizil

Abstract Bottom-up assembly of nanostructured materials, such as metallic
nanowires and carbon nanotubes, has proven to be a facile way of building
electronic devices or sensing platforms with unparallel ease of device dimension
control. Electric field assisted manipulation of roughly 320 nm diameter 6�m long
nanowires with composition of Au–Ag–Au under ac bias across the lithographi-
cally defined parallel electrodes forms the basis of bottom-up assembly approach
followed in this study. Nanowires were first aligned electrofluidically under ac bias
of 10 Vpp and 1 kHz across 5 and 6�m separated electrodes. Chemical etching of
the Ag segment in the nanowires aligned across the predefined electrodes resulted
in reduction of the dimension of the electrode separation from 5�m to 50–100 nm.
The alignment yield of 6�m Au–Ag–Au striped nanowires across gold electrodes
was as high as 70%. The nanowires-based device was employed to the capture
and electrical characterization of preferably a single 100 nm Au nanosphere in the
nanogap.

9.1 Introduction

The famous Austrian physicist Erwin Schrödinger stated in 1952 that mankind
would never experiment with just one electron, atom, or molecule. However,
eight years later, Feynman envisioned that there are no limitations to arranging
atoms as we wish. This dream was realized with the introduction of the proximal
probe method in early 1980s. Engineering operations on single molecules became
accessible with the advent of scanning probe microscopes that sets the ultimate limit
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Fig. 9.1 Trends in the methods of miniaturization of material systems and devices in science and
technology

of current nanofabrication technology [13]. One of the most facile way of studying
electronic behavior of a single metalic or semiconducting particle, (bio)molecules
is to create nanometer scale separated electrodes that enables electrical I-V readout.
The central feature of such single molecule studies by electronic measurements
involves the fabrication of nanometer scale electrodes in which molecules can be
accommodated.

Nanotechnology, for many scientists and technologists, is regarded as a process
of ultra-miniaturization, by means of which the behavior of matter and transport
phenomena at the nanoscale can be investigated. Miniaturization of microsystems
through nanotechnology offers new applications, involving challenges along with
innovation at each step. Miniaturization, as a critical thrust of nanotechnology, can
be accomplished by two different approaches: top-down or bottom-up assembly.
The top-down approach is almost at the limits in terms of resolution, while the
bottom-up strategies offer the convenience of integrating more layers, molecules,
or nanoparticles into a unit with less expense and enabling enhanced precision and
resolution. The trends and progressions in system miniaturization are summarized
in Fig. 9.1.

The bottom-up assembly approaches of these nanomaterials provide a new
dimension to miniaturization of microsytems. Bottom-up strategies incorporating
various functionalized nanostructured interface materials contribute significantly to
the ever increasing endeavor of shrinking the macroworld to create devices with im-
proved performance and minimize the positional mismatches in existing top-down
technologies. Moreover, the integration of one-dimensional (1D) nanostructured
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objects, such as carbon nanotubes, metallic or hybrid nanowires, quantum dots and
nanoparticles, with microelectrodes provides such systems with unique physical
effects due to quantum confinement, a common feature in existing technology.

One of the mainstream applications of the bottom-up approach is to create
nanometer scale separated gaps on integrated microsystems to prepare molecular
junctions that can be employed for nanosensing molecules or molecular electronics.
Nanogap electrodes facilitate the study of electronic transport phenomena in organ-
ics and biomolecules, as well as the tailoring of electronic behavior of molecules
by means of organic chemistry. However, there are still major challenges and
obstacles facing such nanoscale integration of molecules with microcomponents
into nanometer scale separated gaps across a pair of electrodes. Most of the current
test beds for molecular electronics are not suitable for mass production, and the
reliability of these platforms is generally poor. In addition, assembling molecular
scale devices on silicon chips at high yield is still a technological challenge.
Incorporation of nanosized materials, in general 1D nanostructures, into micro-
electrodes, that integrate the whole system to the macroscopic world at the wafer
scale is still one of the challenges in nanotechnology.

9.2 NanoGap Electrodes

Recent interest in nanotechnology has enabled scientists to fabricate microdevices
that can be used for probing single molecules [40]. The main motivation for
developing devices wherein a single particle is incorporated arises from the need
of fabricating electronic devices with a core part of just one or a few molecules.
The other motivation that led scientists to design such microdevices is to investigate
electron transport phenomenon in single molecules.

Notwithstanding the keen interest in probing the electrical properties of single
molecules, only a few studies have been performed regarding electrical transport in
an individual single molecule [1, 40]. This is mainly because the intrinsically small
size of a single molecule offers a major challenge when attempting its electrical
integration with the external macroscopic world. For this reason, the fabrication
of electrodes with nanometer scale gaps is essential for probing single particles
electronically.

However, such fabrication of electrodes separated by nanometer size gaps in a
controlled manner has proven to be a very challenging task [26]. It first requires
nanoscale resolution for definition of the gap locations. Integration of the gap to
the macroscopic circuit is another important concern. As summarized in Table 9.1,
a variety of techniques to fabricate nanogap electrodes have been addressed by
scientists.
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Table 9.1 Bottom-up and top-down approaches to fabricate nanometer-scale gap electrodes

Fabrication techniques for creating nm
scale separated electrodes

References

Electromigration [40, 41]; [27]; [51]
Breaking thin wires [48]
Electron beam lithography [31, 33]
Tip of a STM [45]
Metal oxidation on electron beam defined

structures
[4, 45]; [28]

Electrochemical narrowing [23, 31]
Selective etching of molecular beam epitaxy

layer
[30]

Use of conducting DNA-based network [6]

9.3 Nanotechnology Applied to Bio/Molecular Detection
and Nanogap Electrodes

Since nanoelectrode sensors having ultra-small width and thickness expressing
low dimensions are expected to exhibit high sensitivity and short response time,
there is an emerging endeavor to fabricate these kind of sensors for the detection
of chemical and biological targets. One of the main challenges in nanobiotech-
nology is the analysis of biomolecular interactions using microdevices in order
to develop a comprehensive understanding about basic mechanisms of life at the
gene level. Currently, biomolecular interaction is usually studied using optical
markers as used in fluorescence observation [59] and surface plasmon resonance
[20]. These optical techniques require excitation and detection sources for the light
which are not easily compatible with interdigitated circuits. However, electrical
detection of receptor-analyte interactions may facilitate the analysis of biomolec-
ular interactions. Although the electrical detection of biomolecular interactions
seems attractive, only a few microsensors, such as an ion-sensitive field-effect
transistor (FET) [7], and micrometer-sized gaps in the range of 5–20�m [42]
have been proposed. Cui et al. [7] used a silicon nanowire solid-state FET to
fabricate a real-time detection biosensor. The conductance of the nanowire FET
was gated by the protonation or deprotonation of the nanowire surface. The
surface was modified to facilitate ligand–receptor interactions. The conductance
changes due to biotin–streptavidin or biotin–antibiotin interactions were detected
using their FET-based sensor. Micrometer-sized gap sensors use receptor labeled
gold nanoparticles to bind the ligand on the microdevices. The drawback of
the micrometer-sized gaps was that, due to the large gap, the current was not
detectable unless a silver enhancer solution was employed to produce a significant
conductance change [42, 55]. Recently, Haguet et al. [15] used a 100 nm gap
sensor prepared by lithographic techniques to electrically detect biotin–streptavidin
interactions on APTMS grafted electrodes sweeping the applied voltage from �0:1
to C0:1V.
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Even though gaps were successfully created in all of the works listed in
Table 9.1, most of the research was devoted to investigate electron transport of
model molecules, such as organic molecules exhibiting room temperature negative
differential resistance [1]. Hartzel et al. (2003) and Porath et al. [46] used their
nanoelectrodes for measuring electrical transport in DNA molecules. However,
the research showed that the conductivity of DNA was affected by many factors,
such as humidity of the measurement environment, sequence of DNA, surface of
the substrate, the nature of the electrical contact, counterions, and the secondary
structure of DNA molecules (Hartzel et al. 2003). Still the electrical behavior of
DNA remains controversial. In this matter, one of the useful approaches to the study
of electronic behavior of DNA is the rapid hybridization of DNA on electrically
activated electrodes ([14]; Heller et al. 2002). Reversal of the electric field (negative
bias) at the test site can cause rapid removal of unhybridized DNA, so electrical
response after DNA hybridization can be characterized.

9.4 Dielectrophoresis

Dielectrophoresis (DEP) is defined as the translational motion of a neutral matter
triggered by polarization effects in a nonuniform electric field [44]. The force
tending to produce this kind of response is simply called as the dielectrophoretic
force. The word dielectrophoresis refers to both the distortional response/strain
resulting from an externally imposed electrical stress and the Greek word phoresis
meaning movement.

When a dielectric particle is suspended in a liquid medium under an electrical
field, a dipole moment is induced in the particle as a result of electrical interfacial
polarizations. Here, polarization refers to the blocked or restricted motion of the
charges. The magnitude and the direction of the induced dipole moment depend
upon the frequency and extent of the imposed electric field [25]. The magnitude of
the dielectrophoretic force, FDEP (in Newton), for a spherical particle of radius R
in an imposed AC electric field E (V/m) of angular velocity ¨ is expressed as
follows [25]:

FDEP D 2�"R3Re.K�/�E2
.rms/

where complex quantities are indicated with asterisks, andK� refers to the complex
Clausius-Mossotti factor, given by the expression

K D


"�
p � "�

m

�
=


"�
p C 2"�

m

�

with " D  C i!" ( represents the conductivity, and " the absolute permittivity).
The Clausius-Mossotti factor defines the strength of the effective polarization of

a spherical particle as a function of particle and medium permittivity. The subscripts
p and m refer to the particle and the medium, respectively. Re denotes the real
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part of the Clausius-Mossotti factor. The term �E2
.rms/ represents the average

local nonuniform field strength and gradient. Either positive or negative, the sign
real part of the Clausius-Mossotti factor, Re.K�/, determines the direction of the
dielectrophoretic force exerted on the particle. For metallic nanoparticles in aqueous
suspensions the value of Re(K�) is near unity (Re.K�/ � 1) [5]. If the real part of
the Clausius-Mossotti factor is positive, the particle experiences a translational force
directed toward the regions of high electric field strength, such as the electrode edge.
On the other hand, the particle is pushed toward weak field regions, when the sign
of the Clausius-Mossotti factor takes negative values.

9.5 Applications of DEP

DEP has been successfully employed in biology, such as microorganism and cell
manipulation and discrimination [11, 23, 34, 35, 43], DNA positioning and trapping
on microfabricated structures [2,9,12,19,57,58], and even in the separation of sim-
ulants of biological warfare [22]. Hughes [23] investigated the frequency-dependent
polarization of a yeast cell suspended in an aqueous solution (conductivity is
100 mS/cm) and showed that cells experience positive dielectrophoretic forces
between 104 and 108 Hz. Using DEP and flow channels he was able to separate
yeast cells but the process was slow. In addition, the process was not suitable for
highly concentrated samples, because particle–particle interactions can take place.

Since a strong dipole can be induced in DNA due to the surrounding counterion
clouds, DNA has been one of the attractive biomolecules for dielectrophoretic
manipulations [2]. If an alternating electric field is imposed on a DNA solution,
both the DNA backbone and the counterion cloud become distorted, leading to a
charge separation. DNA in a nonuniform electric field is supposed to undergo a
dielectrophoretic force and an orientational torque as a result of interaction between
the induced polarity in DNA and the electric field [58]. Most of the dielectrophoretic
trapping of DNA has been developed for free DNA in an aqueous solution [12].

Nanowires and other 1D nanostructures can also be electrically addressed
employing dielectrophoretic force. Smith et al. [50] investigated AC field assisted
manipulation of metallic nanowires across interdigitated electrodes. Following this
pioneering work, metallic or semiconducting nanoparticles, carbon nanotubes, and
nanowires have precisely aligned into predefined electrically activated regions
on chips.

9.6 Nanowire Synthesis and Characterization

The most popular technique to synthesize metallic nanowires is electrodeposition of
metals from electrolyte solutions into uniform pores of alumina membranes under
either constant current (galvonastatically) or constant potential (potenstiostatically).
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Fig. 9.2 Synthesis stages of template grown Au–Ag–Au nanowires: (a) Electrochemical cell for
metal deposition into the pores of the alumina membrane, the cathode is silver backed alumina, the
anode is platinum mesh. (b) Alumina membrane with nanometer scaled uniform cylindrical holes.
(c) Backside Ag-coated (sputter coating or thermal evaporator) alumina membranes. (d) Sequential
electrodeposition of metals; the first segment is Au (3�m), the mid section is Ag (50–100 nm),
and the last strip is Au (3�m). (e) Dissolution of alumina membrane in 3 M NaOH and release of
nanowires

The alumina membrane is used as the hard template and metals are grown in the
holes in cylindrical shape. The size of the electrodeposited nanowires is determined
by the pore radius and the current passed through the cathode (length). Keating
and coworkers have exhibited sequential metallic segment-grown nanowires for the
first time and characterize the stripped nanowires under an optical microscope in
the reflection mode with various one-wavelength pass filters [38, 49]. The synthesis
route is illustrated in Fig. 9.2.

Nanowires of 6–7�m length and 220 or 320 nm diameter were synthesized by
sequential galvanic deposition of Au for the first strip, then a short Ag (50–100 nm
long) segment in the middle, and Au as the third strip attached to the Ag segment as
depicted in Fig. 9.2.

It has been shown that due to the intrinsic light reflection behavior of Au, Ag,
and other metals (Ni, Pt, Co, etc.), each metallic segment of the nanowires can be
selectively identified at a proper wavelength. The size of template-grown nanowires
is sufficient enough to make a connection of the nanosystems with macroscopic
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measurement devices. For this reason, there is a growing interest in developing a
nanowire-based nanodevice or nanosensor that can provide multiplexed and high
throughput operation.

9.7 Integration of Nanowires with a Microsystem

1D nanostructures such as nanowires and carbon nanotubes hold great promise
for a variety of device applications, including biological and chemical sensors
[7, 17, 29, 32], field effect transistors [8, 54], light emitting diodes [52], and
lasers [60]. The most critical step in developing nanowire-based devices is the
post-growth manipulation and positioning of nanowires in a coherent and useful
fashion. Integration of nanowires with a microsystem continues to be a challenge
that must be overcome by employing high precision, parallel and high yield
assembly techniques. Assembly techniques, such as Langmuir-Blodgett films [56],
dry transfer printing with layer by layer assembly [24], and fluidic directed assembly
[21], can be used to line up nanowires, but do not offer the ability to align nanowires
precisely in desired locations. Electrofluidic assembly by means of DEP [37,47,50]
and magnetic directed assembly [3, 39, 53] are becoming popular techniques for
parallel alignment and precise positioning of single conducting and semiconducting
nanowires and carbon nanotubes onto electrically or magnetically activated sites at
the wafer scale.

Nanowires of Au–Ag–Au having 6 or 7�m length and 320 nm diameter can be
used to interconnect nanosystems to the macroscopic world, providing ease of tar-
geting and characterization biorecognition mechanisms for even single molecules.
These nanowires are becoming attractive materials employed to fabrication of
nanodevices and sensors.

9.8 Microchip Design

A cross-sectional view of a microchip is illustrated in Fig. 9.3. In its fabrication, the
first step is to develop a SiO2 layer as an electrical insulator using either dry or wet
oxidation.

Dry oxidation W Si C O2 �! SiO2

Wet oxidation W Si C 2H2O.v/ �! SiO2 C 2H2

A thin titanium (50 nm)/palladium (100 nm) layer sits above the SiO2 layer to
facilitate electrical contact, serving as the busbar of the microchip. A protective
dielectric called spin on glass of about 1�m (SOG, a Si–O polymer with attached
methyl groups) coats the overall surface of the silicon substrate. Lastly, a two-part
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Silicon Substrate

SiO2

Ti/Pd

Ti/Au

Ti/Pd

Ti/Au
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Fig. 9.3 Schematic illustration of a cross-sectional view of a microchip used for nanowire
alignment and electrical measurements

Fig. 9.4 Electric field assisted electrofluidic assembly of nanowires; left: a cartoon representa-
tion; right: optical image of dielectrophoretically aligned nanowire across a pair of electrodes
(the 06� 08’th electrode pair of a 10 � 10 array)

titanium (50 nm)/gold (150 nm) layer stands above the SOG, functioning as the
electrodes of the microchip. The microchip used in this study consists of 100 planar
micrometer-spaced (3–5�m) electrodes. The left arms of the palladium busbar
connect to a gold pad called top left pad, and the right arms connect to the other pad
located at the bottom right corner of the chip in order to establish an electrical bias
between the electrodes.

9.9 Nanowire Alignment by DEP

Alignment of the nanowires between the microelectrodes was carried out using
a two-point alignment station. An alternating electric field was applied to the
electrodes using a signal generator. A nanowire solution (in ethanol) was spread
over the microchip, and a 10 V bias with sinusoidal frequency-time dependence was
applied to the left and right connection pads of the chip. In order to determine the
best alignment condition, the frequency of the ac field was varied between 1 kHz and
1 MHz, as the voltage bias was kept constant at 10 V. The cartoon representation
and optical microscope image of nanowire alignment across the planar electrodes
are illustrated in Fig. 9.4.
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Fig. 9.5 Optical microscope examination of alignment of nanowires on the electrode arrays (10 V
AC bias with 1 kHz sinusoidal frequency; the nanowires have diameter 320 nm and length 6�m)

Fig. 9.6 FESEM image of a 50 nm gap between the 320 nm diameter by 6�m long nanowires
formed by chemical etching of the Ag layer in the nanowires. Left: Nanogap in a single nanowire.
Right: Nanogaps from a forked single nanowire (the fork-like structure is due to electrodeposition
in the nonregular (forking) pores)

The alignment yield of nanowires on the top electrode-pairs of the chip was
tested using optical microscopy. The imposed alternating current at an appropriate
frequency induces polarity in the nanowires, and the resultant dielectrophoretic
forces push the nanowires toward the high electric field region. Precise alignment of
tri-segmented Au–Ag–Au nanowires that are 320 nm diameter by 6�m long on the
chip with yields of 70% is shown in Fig. 9.5.
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Fig. 9.7 Clamping of etched aligned nanowires using SU8 photoresist (1�m). Left and middle:
electron microscope images; right: optical microscope image

The Ag segment in the Au–Ag–Au nanowires aligned between the micro-
electrodes was etched using 0.1 M potassium ferricyanide solution. One milliliter
of the etchant was poured on the chip and remained for 2 h to remove the Ag
segment from the wires. Potassium ferricyanide selectively attacks the Ag, etching
it out of the wire aligned between the electrodes. Then, the chip was rinsed
with excess deionized (DI) water and dried with compressed air. The removal of
Ag segments results in separations of 50–100 nm between the Au edges of the
nanowires. This approach facilitates fabrication of nanometer size separated gaps on
the lithographically defined 3–5�m separated electrode pairs. Figure 9.6 illustrates
nearly 50 nm sized gap formation by chemical etching of the Ag segment from the
Au–Ag–Au nanowire.

However, this chemical treatment for etching Ag in the aligned nanowires leads
to movement of the nanowire halves upon drying such that the gaps are no longer nm
scale and in some cases the wires had been removed entirely from the electrodes.
In order to prevent this effect, we attempted to clamp the nanowires down to the
electrode surface either with photoresist coating or metal deposition.

Photoresist clamping prevented aligned nanowires from moving away from the
electrodes, but there is still a subtle tilt in the longitudinal axis of the wires (Fig. 9.7)
after etching. Fortunately, the gap sizes appear largely unchanged; thus, this effect
should not create a major problem in the fabrication of nanowire-based nanogap
devices capable of performing electrical characterization.
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Fig. 9.8 I-V measurements of the Au–Ag–Au nanowires after alignment (short wire), and
nanogaps after chemical etching of Ag (after etch response)

Fig. 9.9 The electromigration effect on Au–Ag–Au nanowires with voltage sweeping from 0 to
2.5 V

In addition to FESEM characterization, nanowires aligned between pairs of gold
electrodes at the top of the microchip were characterized by I-V measurements.
The resistance of Au–Ag–Au nanowires precisely aligned and clamped onto
electrodes was found to be almost similar to that of the bulk resistance of Au.
Typical I-V readings from the aligned nanowires showed that the resistance of these
nanostructures is between 15 and 50 ohms. The IV results from nanowires were
considered to be short measurements (Fig. 9.8). After the removal of the central Ag
segment from the wire, sweeping the DC potential between 0 and 1 V the current
level changes around the leakage current (in the order of 10�13 amp). It appears that
nanogap structures formed by Ag removal from the aligned nanowires no longer
exhibit conducting behavior. Figure 9.8 shows two different measurements from the
same nanogap.
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Fig. 9.10 Electron microscopy images of a single 100 nm Au nanoparticle captured in the nanogap
device at 12 K and 65 K magnifications

Fig. 9.11 Capture of a 250 nm Au nanoparticle by the nanogap device

It is noteworthy that voltages higher than 1.3 V create currents high enough
to melt the nanowire aligned across the electrodes. This phenomenon is known
as electromigration. Electromigration is the biased movement of atoms under
the influence of an electric field [10], which is responsible for failures in most
microelectronic devices. This effect is well characterized in the current-voltage
(I-V) readings (the units of ampere and volt) with the current sharply decreased
to the leakage current at 1.3 V when sweeping the voltage from 0 to 2.5 V (Fig. 9.9).

Nanogap (50–100 nm in size) based devices fabricated by precise alignment
of Au–Ag–Au nanowires on planar electrode pairs were used to capture metallic
nanoparticles using dielectrophoretic forces. Au nanoparticles with 100 or 250 nm
diameter in ethanol were spread over the microchip and captured in the nanogaps
under an AC field.
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Fig. 9.12 Electron microscope image of a 100 nm Au nanoparticle in the gap and its I-V (units of
Ampere (I) and Volts (V)) results, maximum current allowed, the compliance, is 100 mA)
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Fig. 9.13 Single nanoparticle capture in the nanogap and I-V characterization of the nanoparticles
(compliance, maximum allowed current, is 100 mAmp, scan is cut when current reaches 100 mA)
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Fig. 9.14 Capture of multiple 100 nm Au nanoparticles in the nanogap and its I-V (units are
Ampere and Volts) characterization (3 measurements)

The device having 100 nm gap used to capture Au nanoparticles is illustrated in
Fig. 9.10. Applying up to a 2 V AC bias with 1 kHz frequency, a single 100 nm Au
nanosphere was captured in the gap. Figure 9.11 illustrates capture of a 250 nm Au
nanoparticle in gap.

The capture of spherical Au nanoparticles in the gap is characterized by I-V
readings (units are Ampere for current and Volt for voltage). Such electrical
responses from captured nanoparticles and the electron microscope images of
these captures are illustrated in Figs. 9.12 and 9.13. The I-V results from single
nanoparticles capture showed that the electrical conduction is good, resembling bulk
electrical resistance. However, it appears that capturing multi-nanoparticles in the
gap does not guarantee good electrical contact, resulting in I-V response that differs
from that of single nanowire capture.
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Figure 9.14 illustrates the multiple capture of 100 nm Au nanoparticles in a
100 nm separated nanogap. The electrical contact is poor, so I-V measurements
differ from that of the single nanoparticle response.

In summary, our studies present a simple and powerful approach to facilitate
the production of a tunable submicron gap array between electrodes. This research
could lead to highly integrated nanosystems using bottom-up assembly technique.
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