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Preface First Edition

At least 10 years have elapsed since a comprehensive monograph concerned with
the broad subject of cryogenics has been published. During this time a considerable
quantity of research and development has been carried out in the field of cryogenics.
Furthermore, there has been a certain degree of redirection of effort within the field,
mostly driven by the variety of new applications, ranging from superconductive
magnet systems to microelectronics. Greater emphasis is now being placed on low-
temperature cryogenics, particularly that of liquid helium. Until now cryogenic
books have provided a broad survey of materials and fluid properties over the entire
cryogenic regime, T<120 K. This approach does not allow sufficient detail in any
particular area to bring the reader to the current level of understanding in the
subject. In addition, the behavior of helium has been lumped with that of other
cryogenic fluids, although the properties of helium are in many cases quite unique.
As a result, a clear relationship has not been established between the fundamental
understanding of helium fluids and their potential applications.

The present book has been written to fill this void. The approach is to survey the
field of cryogenics, specifically as it pertains to helium fluids. This approach is more
specialized than that contained in previous cryogenics books. Furthermore, the
level of treatment is more advanced and a certain knowledge of fundamental
engineering and physics principles has been assumed. Unlike previous books on
liquid helium, the present treatment contains both engineering and physical descrip-
tions. The goal throughout the work is to bridge the gap between the physics and
engineering aspects of helium fluids to encourage their use and enhance their
usefulness in low-temperature systems.

The content of the book is based on a course first offered at the University of
Wisconsin—Madison. Students who register for this course are almost exclusively at
the graduate level. As a result, a reasonable background knowledge of physics and
engineering has been assumed. Recommended prerequisites include a working
knowledge of thermodynamics and statistical physics, heat transfer and fluid
mechanics, and elementary solid-state physics. Without this background, the reader
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viii Preface First Edition

may find it necessary to review one or more of these subjects. A number of useful
references are given at the end of the book.

The material contained in this book is divided into nine chapters. Chapter 1
introduces the basic principles of cryogenics, including a discussion of applications.
Chapter 2 describes the properties of materials at low temperatures, concentrating
on solids. This is not only a useful background review but it also introduces some
fundamental physics, which is used in later chapters. Chapter 3 introduces helium
as a classical fluid, concentrating on its physical aspects as they can be described
using classical models. Chapter 4 then discusses helium as a quantum fluid,
emphasizing the theory and experimental evidence associated with superfluidity.
Chapter 5 turns to the engineering problem of heat transfer in superfluid helium, and
how the fundamental understanding of helium introduced in Chapter 4 can be used
to describe its characteristics. Chapter 6 concentrates on the problem of heat
transfer in pool boiling normal helium. Chapter 7 extends the discussion of helium
to fluid flow, including heat transfer and pressure drop. Chapter 8 discusses the
thermodynamic aspects of liquefaction and refrigeration systems, including a
discussion of actual refrigeration systems in use today. Finally, Chapter 9 sum-
marizes some special topics of interest to both helium cryogenics and related
disciplines. The goal here is to survey a few very specific areas of helium cryogen-
ics and related disciplines which, although slightly outside the main scope of the
text, are still important in low-temperature applications.

Throughout the writing of this book, I have received considerable assistance and
encouragement from colleagues, students, and friends. Their support should not go
unrecognized. I would like to particularly give thanks to two of my students,
D. Scott Holmes and John G. Weisend II, for their critical review of the partially
completed manuscript and for assisting in developing problems. A number of
colleagues read sections of the manuscript and made substantive suggestions on
improvements to be made. They are Drs. A. F. Clark, F. R. Fickett, and V. Arp, all
of the National Bureau of Standards; Dr. L. Dresner, Oak Ridge National Labora-
tory; Prof. O. E. Vilches, University of Washington; Prof. J. T. Tough, Ohio State
University; and Prof. R. F. Barron, Louisiana Tech University. Their help is greatly
appreciated. The conversion of my handwritten version to a readable typewritten
text was due to the efforts of Ms. Kay Ewers. This task was certainly second only to
the actual writing in terms of the amount of effort involved. Production of the
graphics must be credited to Ms. Helga Fack and her staff. Finally, I would like to
acknowledge the indirect help that my family has provided in terms of encourage-
ment and willingness to forego some leisure activities so that time could be devoted
to the effort of writing this book. In retrospect, it has been worthwhile.

Madison, WI, USA Steven W. Van Sciver



Preface Second Edition

A lot of cryogenic development has occurred in the 25+ years since the first edition of
Helium Cryogenics (1986) was published. The field has seen the completion of
the Large Hadron Collider (LHC) in Geneva, Switzerland with its associated enor-
mous helium cryogenic refrigeration system. Numerous superconducting fusion
engineering projects have been completed and the International Thermonuclear
Experimental Reactor (ITER) is under development. Also, a variety of space-based
cryogenic instruments have been successfully launched, many of which have
contained hundreds of liters of liquid helium in a near zero-g environment. On a
different plane, one of the most notable related developments has been the discovery
of and now applications for high temperature superconductors (HTS). This field has
impacted cryogenics in a fundamental way encouraging the development of cryo-
genic systems in the intermediate temperature regime (20-80 K). This along with
other applications such as space-based instruments has brought about a broad and
sustained effort at small scale cryocooler R&D with the most prominent being that of
pulse tube coolers.

The author has also aged over this period with the associated gains of experience
and somewhat different perspective on the subject. Given these changes and the
opportunity to incorporate them into a new edition, it seemed a good time to
undertake such a project. Before you is the result of this effort. Hopefully, it will
be viewed to be a significant improvement over the first edition and a useful
addition to the library of scientists and engineers interested in the field of low
temperature science and technology.

This edition of Helium Cryogenics has undergone considerable revision and
updating. Since the first edition was written prior to the widespread availability of
word processing, the first task was to convert the available hard copy to electronic
form. This task was ably assisted at FSU by Ms. Lindsay Hardy. Once the author
had access to a revisable document, the real work began. Much of the updating was
accomplished during the author’s sabbatical leave from FSU, which was spent as a
Visiting Erskine Fellow in the Mechanical Engineering Department at the Univer-
sity of Canterbury in Christchurch, New Zealand in fall (spring in the southern
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X Preface Second Edition

hemisphere) 2010. Without that opportunity it would have been very difficult to
carry out the project. Also, the author received help and suggestions from a number
of colleagues. Valuable suggestions and comments on the first draft were provided
by Dr. Dogan Celik, Dr. David Hilton, Ernesto Bosque and Mark Vanderlaan of
FSU, Prof. John Weisend II of Michigan State University, Dr. Ting Xu of Oak
Ridge National Laboratory, Prof. Andrew Rowe of the University of Victoria and
Prof. John Pfotenhauer of the University of Wisconsin.

The resulting second edition has been reorganized with several additions and a
few deletions. Chapters 1 through 3 have been revised to include a few new sections
and updated data. After that the book has undergone a major reorganization. Since
Chap. 3 concerns helium as a classical fluid it seemed appropriate to move the
classical transport properties of fluid mechanics and heat transfer to occupy the next
two chapters, Chaps. 4 and 5. Chapter 6 (formerly Chap. 4) then concerns helium as
a quantum fluid. This is followed by Chap. 7 (He II Heat and Mass Transfer). For
those familiar with the first edition, a most notable change is in the expanded and
enhanced discussion of He II heat and mass transfer owing to the considerable
research advances in the interim. Chapter 8 is again about liquefaction and refrig-
eration of helium and has been updated considerably from the first edition including
more discussions on cryocoolers and He II refrigeration technology. Chapter 9, now
titled “He’ and Refrigeration Below 1 K”, concentrates on the properties and
applications for the rare isotope of helium. Finally, a new Chap. 10 has been created
that incorporates a few special topics that do not fit easily within the content of the
first nine chapters. These include cryogenic insulation, helium adsorption and
magnetic refrigeration. The other generally noticeable enhancement is that the
questions and problems at the end of each chapter have been expanded and revised.
Also, within each chapter there are more short examples to illustrate the theory for
the reader.

This text has been used in a course primarily taught for graduate students in the
Mechanical Engineering Department at the FAMU-FSU College of Engineering. It
has also been used as a supplement to numerous short courses taught by the author
at various locations around the world. Through this process, many of the detailed
explanations have been clarified and supplemented. It is my hope that you will find
Helium Cryogenics, Second Edition to be a worthy improvement and a valuable
asset for your research and development activities.

Tallahassee, FL, USA Steven W. Van Sciver
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area, m>

Schottky specific heat coefficient, J K/kg ion
3He viscosity coefficient

Gorter—Mellink parameter, m s/kg
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coefficient of turbulence buildup, W32 m3?
radius, m
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third virial coefficient, m6/kg2

sound velocity, m/s

surface wave speed, m/s

density of states

diameter, m

thermal diffusivity, m/s

(continued)

Xvii



Xviii

Symbols

Symbols

SI units

d

Fo

§ peak

fourth virial coefficient, m("/kg3

diameter, m

film thickness, m

number of atomic layers

binding energy, J

energy flux, J/m?

electric field, V/m

internal energy, J

radiant energy flux, W/m?

Young’s modulus, N/m2

charge of electron, coulombs

specific internal energy, J/kg

spectral energy density, W/m?

force, N
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Fermi-Dirac distribution function
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Maxwell-Boltzmann distribution function
Fanning friction factor

He II heat conductivity function, W3/m> K
specific mass flux, kg/m? s
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Landé g-factor

specific Gibbs potential, J/kg
gravitational acceleration, m/s*

He II heat conductivity function fitting factor
He II heat conductivity function pressure factor
Hamiltonian

height, m

magnetic field, A/m

heat transfer coefficient, W/m? K
hydrostatic head, m

Planck’s constant, J/K

specific enthalpy, J/kg

He II heat conductivity fitting function
heat of vaporization, J/kg

exchange interaction

particle collision term

total angular momentum quantum number
momentum flux, kg/m2 S
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Symbols ST units
1 current, A
K numerical constant
Kp permeability, m?
K, He II forced convection parameter
k expansion parameter
thermal conductivity, W/m K
wave number
kg Boltzmann constant, J/K
L length, m
Lorenz number
orbital angular momentum quantum number
l mean free path, m
M magnetization, A/m
molecular weight, kg/kmol
Myon He II heat exchanger coefficient
m mass, kg
(dot) mass flow rate, kg/s
electron spin quantum number
Myerr He II heat exchanger coefficient
N number of particles
No Avogadro’s number, mol™!
Nu Nusselt number
n number density, m™
statistical distribution
P momentum, kg m/s
perimeter, m
polarization
refrigeration power, W
Pr Prandtl number
p Pressure, Pa
0 heat rate, W
q heat flux, W/m?
q. critical quality
qst isosteric heat, J
R gas constant, J/mol K
Ra Rayleigh number
Re Reynolds number
r radius, m
S entropy, J/K, J/m? K, J/mol K
slip ratio

spin quantum number
vortex line dimension, m
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Symbols SI units

s specific entropy, J/kg K
T temperature, K
t reduced temperature
time, S
transmission coefficient
U attractive potential, J

average approach velocity, m/s
overall heat transfer coefficient, W/m? K

u velocity component, m/s
V volume, m>
% velocity, m/s

specific volume, kg/m’
velocity component, m/s

Vi Fermi velocity, m/s
W work, J
w Bénard convection parameter
specific work, J/kg
width, m
X boiling heat transfer correlation coefficient
by molar concentration
coverage

expansion circuit flow fraction
position coordinate, m

y position coordinate, m
yield in a liquefier

V4 collision number, m> !
integrated heat conductivity function, W/m
impedance
partition function

z fugacity
position coordinate, m
compressibility factor

5/3

Greek letters
o accommodation coefficient
linear thermal expansion coefficient, K™!
porosity
Kapitza conductance parameter, W/m?> K"
void fraction
p bulk expansivity, K™
condensation coefficient
geometrical factor in Poiseuille flow
He II fin coefficient
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Symbols SI units
1/kgT
n efficiency
phase shift
0 angle
(] reduced temperature
Op Debye temperature, K
K compressibility, Pa~!
transient heat transfer parameter, W* s/m®
A wavelength, m
U viscosity, N s/m*
chemical potential, J
roton mass, kg
JIn isentropic expansion coefficient, K/Pa
Ly Joule Thomson expansion coefficient, K/Pa
Up magnetic moment
Lo permeability constant
v frequency, s~
kinematic viscosity, m?/s
14 coherence length, m
m reduced pressure
0 density, kg/m®
resistivity, 2m
OB electrical contact resistivity, Om?
o electrical conductivity, (Qm)~!
Kapitza conductance parameter, W/m?> K*
Lennard-Jones potential parameter, J
scattering cross section, m?
Stefan—Boltzmann constant, W/m? K*
stress, Pa
surface tension, J/m?
Y coefficient of the electronic specific heat, J/mol K>
reduced velocity
specific heat ratio
statistical parameter
He II heat exchanger coefficient
Ve Curie constant, K
VG Griineisen parameter
A roton energy gap, J
o thickness, m

level splitting in Stark effect, J
vortex line spacing, m
emissivity
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Xxii

Symbols

Symbols SI units
energy level, J
Lennerd-Jones potential parameter, J

T reduced temperature
time, S

[ potential, J
wave function
reduced equation of state

© standing pressure, N/m
azimuthal angle

% magnetic susceptibility
vortex interaction parameter

V] wavefunction
parameter in He II cylindrical heat transfer

Q collision integral
thermodynamic probability

w angular frequency, s~
tortuosity

Subscripts

a acceleration, absorbed

B Bohr

Bo Boyle

b bath, black body

bp boiling point

C cold, Curie

c critical

cl lower critical

c2 upper critical

CL classical

D Debye

e electronic, expansion, emitted

eff effective

exp experimental

F Fermi, Fanning

f final state, film

fb film boiling

fc forced convection

G Griineisen

GM Gorter Mellink

g gas

gen generation

er gravitational

H hot, constant field
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Symbols SI units

h hydraulic, constant enthalpy

1 initial state, incident

ic internal convention

int internal

inv inversion

j Joule-Thomson

K Kapitza

k index

L vortex line, liquid

LJ Lennerd-Jones

1 liquid

m maximum

n normal, normal fluid, index

nc normal fluid critical

ns normal-superfluid

P constant pressure, proton

ph phonon

pl constant pressure liquid

R reversible, recovery

r roton, reduced, radiant

S superconducting, superfluid, sound, constant entropy, surface,
substrate

sat saturated

sc superfluid critical

st isoteric

T constant temperature, thermal de Broglie

t transmitted, total

tt turbulent

u ultimate

\% constant specific volume

y yield

A lambda point

L perpendicular component

0 ambient, ground state, first

1 first excited state, first

2 second

3 of *He, third

4 of 4He, fourth

Superscripts

* critical, normalized parameter, effective

- average

time derivative
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acoustic mismatch

critical

empirical power law

empirical power law

phonon radiation, empirical power law
empirical power law

empirical power law

empirical power law

empirical power law




Chapter 1
Cryogenic Principles and Applications

Cryogenics is generally referred to as the science and technology of producing
a low-temperature environment for applications. The word cryogenics has its
origin in the Greek language where “kryos” means frost or cold and “gen” is a
common root for the English verb to generate. Strictly speaking, cryogenics means
to produce cold, yet the term has developed a more general connotation over years
of usage by engineers and scientists. Today, the word cryogenics is associated with
the production and study of low-temperature environments with a cryogenic engi-
neer being a person who specializes in these areas. The expertise of a cryogenic
engineer can vary considerably within this discipline. For example, he or she may
be concerned mostly with heat transfer aspects of low-temperature fluids such as
liquid hydrogen or helium or alternatively may be a specialist in methods of
producing low temperatures such as various refrigeration technologies. Expertise
in cryogenic engineering is in demand in a wide variety of technical fields including
advanced energy production and storage technologies, transportation and space
programs, and a wide variety of physics and engineering research efforts. As a
result, the field is very interdisciplinary consisting of essentially all engineering
fields focused on low temperature technology.

Over the years, the word cryogenics has developed several common usages.
A cryogenic fluid is one that is used in the production of cold, while cryogenic
machinery is the hardware used in achieving low-temperature environments.
At first it would appear that all machinery and fluids used in cooling would be
identified as cryogenic. However, it is generally accepted that the word cryogenics
is reserved for those processes that take place below about 120 K. This distinction is
somewhat arbitrarily established as it represents the point where permanent gases
such as N,, O,, Ar and methane (CH,) begin to liquefy. Sometimes cryogenics
is used in reference to higher temperature processes such as cryo-preservation or
cryo-surgery; however, these topics are outside the present discussion and therefore
will not be considered as part of traditional cryogenics.

S.W. Van Sciver, Helium Cryogenics, International Cryogenics Monograph Series, 1
DOI 10.1007/978-1-4419-9979-5_1, © Springer Science+Business Media, LLC 2012



2 1 Cryogenic Principles and Applications
1.1 Temperature Scale

Assuming it is possible to refer to a range of temperature as being the cryogenic
regime and that the range spans from absolute zero to about 120 K, one might ask
the following question: “Why all the excitement over a range of temperature
spanning only about a hundred kelvin?” The answer to this question lies in the
thermodynamic description of the temperature scale.

One normally thinks of the process of producing low temperatures as reduction
of entropy, where the entropy is a state function defined as,

T
SZJQ (1.1)
0

with T being the absolute temperature and the entropy is taken to be identically zero
at absolute zero. The third law of thermodynamics states that as absolute zero is
approached, not only does the entropy of a system go to zero, but the entropy
change associated with an adiabatic process must also go to zero. In other words,
the lower the absolute temperature the more difficult it is to obtain a unit tempera-
ture decrease. Among other phenomena, this principle manifests itself in the
thermodynamic efficiency of refrigerators decreasing with temperature.

It is therefore often more meaningful to identify temperature as having a
logarithmic rather than linear scale. On a logarithmic temperature scale, the cryo-
genic range occupies a very large portion of achievable temperatures. Plotted in
Fig. 1.1 is the temperature scale with the range of physical phenomena
superimposed.

It should be immediately clear that cryogenic temperature range occupies nearly
half of the achievable temperatures. From the physical point of view, this range
is interesting for the large number of phenomena that occur within it. A few
examples of these include: phase changes of many common elements, magnetic
ordering, solid-state transformations, and the quantum effects including the onset of
superconductivity and superfluidity.

A subfield of cryogenics is identified with the most permanent of all gases,
helium. Although helium is a fairly rare element, there is probably more known
about low temperature helium than any other fluid with the possible exception of
water. Helium has a number of important applications in welding and lighter than
air vehicles, but of greater interest to the present discussion is its use as a low
temperature coolant. The refrigeration and liquefaction of helium are somewhat
specialized fields because of the extremely low temperatures involved. However,
the existence of low temperature helium enables a wide variety of technological
applications. It is also a fluid with extremely interesting physical properties.
These topics will be discussed in later sections.

The field of helium cryogenics spans a smaller range of temperature than
classical cryogenics in part because the critical point of the most common isotope,
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Fig. 1.1 Logarithmic temperature scale with superimposed physical phenomena. Note that £ =
kgT and 1 eV is equivalent to 11,609 K

“He, is only 5.2 K. However, one of the more unique features of helium is that it
does not solidify except under an external pressure exceeding 2.5 MPa (~25 atm) at
low temperatures, thus allowing fluid properties to be studied to as low a
temperatures as physically possible. At the present time the minimum achievable
bulk temperature for liquid helium (in this case, the rare isotope *He) is below
100 pK. The technology of achieving these ultralow temperatures is special and
relevant primarily to fundamental studies of condensed-matter and astrophysics.
Since the emphasis of this book is on the technological applications of helium
cryogenics, the phenomena associated with ultralow temperatures are not consid-
ered in much detail. Thus, helium cryogenics as described here emphasizes the
range of temperature where the fluid has large scale potential applications as a
coolant, 1 K < T < 10 K. In Chap. 9 we will consider helium cryogenics for
temperatures below 1 K both in terms of the technology of achieving these
temperatures as well as the physical phenomena that occur in this range. However,
it is important to keep in mind that this regime is only accessible through the use of
the rare isotope of helium (3He).


http://dx.doi.org/10.1007/978-1-4419-9979-5_9
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1.2 Historical Background

Research and development into the field of cryogenics began more than 100 years
ago. Perhaps the most significant discovery in that time frame was the realization
that common fluids such as air and water have similar behavior when cooled to
temperatures near their respective critical points. In the early 1860s, substantial
theoretical and experimental evidence was put forth identifying the concepts of
phase separation and critical phenomena [1]. These ideas, which are mostly taken
for granted today, form essential background to the understanding and application
of the liquefaction and refrigeration processes.

To summarize phase separation and critical phenomena, reference is made to a
useful general figure (Fig. 1.2) showing the states of matter when temperature T
is plotted versus entropy S. Here the critical temperature T is the maximum of
the two-phase coexistence region, which for obvious reasons is often refer to as
“the dome”.

As a rule of thumb, the normal boiling point T,,, of a liquid is about T,/2,
although there is considerable deviation from this rule particularly for cryogenic
fluids like helium where T,,/T, ~ 0.8.

Three major scientific developments in the late nineteenth century provided the
essential framework for the successful liquefaction of helium and thus the begin-
ning of helium cryogenics. The first of these occurred during the study of low
temperature O, in 1877 by two separate investigators in Europe, Cailletet in France
and Pictet in Switzerland. Each of these workers demonstrated the concepts of
liquid—vapor coexistence in permanent gases near their normal boiling point.
Furthermore, Pictet’s method used the cascade principle to produce liquid O,
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where gases are successively cooled to lower temperature by exchanging heat with
a higher normal boiling point liquid. This method is later used in the first successful
liquefaction of helium by H. K. Onnes.

The second major development occurred in 1892 when Sir James Dewar of the
Royal Institution in London introduced the vacuum insulated flask as a storage
container for liquid cryogens. His concept, which consisted of a glass double-
walled vacuum vessel with inner walls silvered to reduce thermal radiation heat
transfer, finally allowed collection of a significant quantity of liquid cryogen.
A drawing of a simple “dewar” vessel that could be used for liquid helium is
shown in Fig. 1.3. In this case, liquid nitrogen shielding is provided to reduce
further the thermal radiation heat leak.

The dewar is essential for the storage of liquid helium because of the fluid’s
extremely small latent heat. Modern liquid helium dewars are significantly more
sophisticated than that shown in Fig. 1.3, but they still use vacuum and highly
reflective surfaces to achieve efficient thermal insulating systems.

Sir James Dewar made the final development that led the way to the liquefaction
of helium when he demonstrated the use of a Joule-Thomson valve to produce
liquefaction of hydrogen, the last of the permanent gases with boiling points above
that of helium. It is particularly significant that Dewar employed a Joule-Thomson
valve, which produces essentially an isenthalpic expansion, because this method
also can be used in the production of liquid helium. With liquid hydrogen available
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(with a normal boiling point 7,,, = 20.4 K), it became possible to consider
liquefying helium by a combination of the cascade principle and Joule-Thomson
expansion. The chief remaining difficulty was that helium gas was a rare
commodity around 1900.

It took another 10 years for helium to be successfully liquefied. At the time, two
laboratories were vying to be the first to accomplish the task: Sir James Dewar’s lab
in London and H. Kamerlingh Onnes lab at the University of Leiden. For a variety
of technical reasons, the Onnes group came out on top in the competition success-
fully achieving liquefaction of helium in 1908. At that time their total helium
inventory in their lab was only 360 STP gaseous liters (equivalent to about
0.5 liquid liter), and yet as a result of this early success the Leiden rapidly became
the world-wide center of liquid helium research. Among the achievements
attributed to Onnes’ group are included the discovery of superconductivity in
many of the elements.

For the next 30 years, production of liquid helium and its associated research and
applications were limited primarily to a few specialized laboratories. Researchers
actively investigated the properties of materials as well as those of liquid helium
down to temperatures below 1 K. Included among their discoveries are: super-
fluidity in *He, identification of numerous superconducting materials, and the use of
magnetic cooling to achieve temperatures below 1 K. At the same time, researchers
envisioned large-scale applications of helium cryogenics but lacked the motivation
and resources to develop these technologies.

In the 1940s commercial development of hydrogen and helium liquefaction
equipment began, owing to a large extent to the efforts of Prof. Samuel Collins of
MIT and the Arthur D. Little Company. For the first time, laboratories could
purchase helium liquefaction plants and liquid helium become available on the
open market. Liquid helium research became more widely practiced. This point in
time marked the beginning of large-scale cryogenic engineering, which required
individuals skilled at design and handling of cryogenic equipment. At first, military
and space applications led the field. Later major thrusts in applications of super-
conductivity began to dominate low temperature applications. As a result of this
growth, helium cryogenic engineering has developed into a substantial discipline.

Since the development of commercial helium refrigerators, major progress has
been made on the two fronts of research and development. In basic research, the
ready access to large quantities of liquid helium has freed the researchers to push
toward lower temperatures. Milestones in this progress must include: the develop-
ment of *He-*He dilution refrigeration technology permitting continuous cooling in
the millikelvin temperature range; the approach to submillikelvin temperatures
using techniques such as Pomaranchuk cooling and nuclear demagnetization;
and the discovery of superfluidity in *He at about 2 mK.

Commercial development has also progressed substantially since the 1940s.
Larger and larger liquefiers and refrigerators are being produced. Huge helium
liquefaction plants with capacities in the 1,000s of liters/hour operate in various
parts of the world separating helium from its primary source in natural gas wells.
Supplying liquid helium for superconductivity applications has similarly increased



1.3 Applications for Cryogenics 7

in scale and sophistication. Installations like the Large Hadron Collider particle
physics experiment at CERN in Geneva, Switzerland now have fully automated
refrigeration plants in the multi-kW range supplying liquid as well as cold gas
helium to a variety of thermal loads within the accelerator facility. In addition to
these larger-sized refrigerators, there has also been broad and extensive develop-
ment of small stand-alone refrigerators, or cryocoolers, with cooling capacities in
the 1-100 W range for cooling a wide variety of low-power applications including
superconductors and infrared detectors.

Overall, helium cryogenics has now evolved into a well-established discipline
providing the environment for a wide range of technologies. What is in store in
the future? Trends include development of a wider range of standard products
both from the very small refrigerators to the largest ones. New demands are being
placed on the systems being produced: higher thermodynamic efficiency, greater
reliability, and cleaner operation, and lower cost. Considerable research is aiding
this progress and new technologies such as applications of high temperature
superconductors are putting special demands on helium cryogenic systems. There
continues to be unique and challenging applications that require low temperatures
and cryogenic facilities. Thus, there is a steady demand for engineers and scientists
with cryogenic engineering skills.

1.3 Applications for Cryogenics

As motivation to the discussion of the properties and production of low-temperature
fluids, it is useful to identify the major applications for cryogenics technology
today. Some of these are commercial enterprises, while others are still primarily
in the stages of research and development. It is possible to separate these
applications into at least six major categories:

. Storage and transport of gases

. Separation of gases

. Biological and medical applications

. Altering material properties by reduced temperature
. Electronics

. Superconductivity

AN AW~

Large-quantity storage and transport of gases are best achieved with the help
of cryogenics. It is much more efficient from the standpoint of total weight,
to transport cryogenic fluids in the liquid state rather than as a pressurized gas.
Furthermore, the gases evolved from a storage dewar can maintain a lower impurity
content than is common in high-pressure gas storage. There are a number of
examples where cryogenic storage and transport are widely practiced. At relatively
high temperatures, liquid natural gas (LNG) is transported on a large scale in tanker
ships containing over 100,000 m® of liquid. Liquid oxygen is stored in large
quantities for applications in steel production as well as to provide high-purity
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gaseous oxygen supplies for hospitals. Another major application for cryogenic
storage and transport is in liquid fuel rockets where LO, and LH, are common
propellants. Even helium is often transported in the liquid state. This is not only
because many users do not possess the necessary liquefaction equipment but also
to save weight for transportation.

The separation of gas mixtures such as air or natural gas is a commercial
enterprise in which cryogenics plays a major role. By using the physical properties
of adsorption, that is, the tendency for gases to condense on cold surfaces,
it is possible to separate gas mixtures by differences in their adsorption rates.
This procedure is used commonly in extracting O, and N, from air, for purification
of LNG or separation of rare gases such as Ne or He. Related to gas separation is the
technology of cryopumping, where the physical process of adsorption provides a
mechanism for clean, oil free, high-speed pumping systems. For this process to be
effective, the pumping surfaces must be well below the critical temperature of
the gas to be pumped.

Biological and medical uses for cryogenics are extensive. In these applications
the goal is to store, modify, or destroy a biological structure by reducing its
temperature. Storage of cellular structures in liquid nitrogen is a common practice,
the largest of these being the storage of blood plasma. Other examples of this
technology include storing cattle semen for artificial insemination and the preser-
vation of food. Apart from cellular storage, medicine is making increasing use of
cryogenics. In a procedure known as cryosurgery, selected areas of tissue are frozen
and removed with less difficulty or trauma to the patient than by conventional
surgical methods. Such techniques are commonly experienced by almost anyone
who has visited a dermatologist.

The basic properties of materials change as the temperature is reduced and
these effects are used in several engineering applications of cryogenics. A good
application for material property variation is in the recycling industry. Cryogenic
recycling uses low temperatures to separate materials. The approach takes advan-
tage of differential thermal contraction and the increased brittle nature of materials
at low temperatures. There are numerous examples of composite materials that can
be recycled by this method. Thermal contraction can also be used in the construc-
tion of mechanical structures. The assembly of a close tolerance connection can be
facilitated if one of the components is first cooled in a cryogenic fluid to make it
slightly smaller. In these applications there is little need to reduce the temperature
below the normal boiling point of liquid nitrogen because very little thermal
contraction occurs below this temperature.

Besides mechanical properties, low temperatures also are used to change elec-
trical properties of materials. One of the major applications of this process is in the
cooling of detectors and other electronic sensors. The low temperature reduces
the thermal noise and provides an isothermal environment for the sensor. Examples
of devices that use low temperatures include infrared detectors for everything from
night vision equipment to large-scale astrophysical science experiments.

The technology of superconductivity warrants special attention as an application
that depends on cryogenics. The largest-scale application of superconductivity is in
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magnet technology. At present, superconducting magnets are an integral part of
high-energy physics accelerators, magnetic fusion confinement systems, energy
storage, magnetic levitation, whole-body magnetic resonance imaging (MRI)
scanners as well as specialized research magnets. Additionally, RF particle
accelerators us superconducting Nb cavities that must be cooled to low temperature
(T ~ 2 K) to achieve the required performance. Most of these systems operate at
low temperature (T < 10 K) and thus require fairly complex helium refrigeration
systems.

The discovery and development of high temperature superconductors has sig-
nificantly impacted the development of cryogenic systems. Large-scale HTS
superconducting applications such as are proposed for the power industry are
now contemplated to operate at significantly higher temperatures, T > 30 K.
Small-scale applications of HTS are also being developed many of which only
require a few watts of cooling. These applications have had a major impact on
the development of small-scale, intermediate temperature refrigeration systems.
The development of cryocoolers for such applications has been an active thrust area
of the field in recent years.

1.4 Thermodynamic Laws

Thermodynamic principles and concepts are of fundamental importance to the field
of cryogenics. Thermodynamics forms the basis for calculations of the properties of
cryogenic fluids as well as the performance of refrigeration and liquefaction
systems.

There are three basic laws of thermodynamics that apply to all systems and are of
particular interest to the discussion here. Although it is assumed that the reader
is familiar with these laws through a previous course in thermodynamics, for
completeness and commonality of notation a review of the subject is presented
here. For further details, the reader should consult one of many thermodynamics
text books.

1.4.1 First and Second Laws of Thermodynamics

The first law of thermodynamics involves conservation of energy in a closed
system. Consider two thermodynamic states characterized by their internal energy,
E; and E;. If we connect these two states by an adiabatic path, that is a process taking
the system from one thermodynamic state to another without the production or
absorption of heat, the work W needed is exactly equal to the change in the internal
energy. This statement can be considered a definition of work; that is, work done on
an adiabatic system is equal to the increase in the potential energy.



10 1 Cryogenic Principles and Applications

Fig. 1.4 Adiabatic paths f
between two thermodynamic 1
states

On the other hand, if the process is not adiabatic, an amount of heat Q is
produced during the process and conservation of energy demands that the amount
of extra heat be included in the total amount of work done. This statement leads to
the mathematical formulation of the first law of thermodynamics which is written,

OQ=E —E+W (1.2)

It is important to keep in mind that the internal energy is a state function and its
change only depends on the initial and final points of a path in thermodynamic
space. This is to be compared to the heat and work functions which are path
dependent.

Now consider a cyclic process where a system in question is taken from the
initial state through the final state and back to the initial state by some other path.
This process, shown schematically in Fig. 1.4, may be a heat engine or a cycle used
to refrigerate a cryogenic fluid. The principal distinction between an engine and a
refrigerator is with the sign of the work process. Since the cycle closes on itself, the
change in internal energy (4FE) around the cycle is zero and the first law (1.2)
demands that the difference between the heat and work for the two paths must be
equal in magnitude but opposite in sign. For the entire cycle, the sum of the heat and
work must be identically zero. However, the amount of work that must be done to
accomplish the cycle is proportional to the enclosed area in Fig. 1.4. The larger the
area, the more work that is done per cycle and in turn the larger amount of heat that
must be generated.

Before discussing the other thermodynamic laws, it is useful to go into a little
more detail about the work as part of a thermodynamic process. To make the first
law into a more useful form for application, the initial and final states can be
brought arbitrarily close together resulting in the differential form of the first law,

dQ = dE + dw (1.3)
For a thermodynamic process, the differential work term dW in (1.3) can take on

several forms, dependent on what type of system is of interest. Of particular interest
to cryogenics are:

Liquid—gas system:

dwW =pdv (1.4a)
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Fig. 1.5 Schematics of a heat engine and a refrigerator
Magnetic system:

dW = —u,H ¢ dM (1.4b)
Electric system:

dW = —E e dP (1.4¢c)

The pdV work term is the most common since most refrigerators use gas cycles.
However, magnetic refrigerators have special applications, which will be discussed
in later sections. Note that the latter two differentials are vector quantities depen-
dent on the direction of the applied fields, while the pdV product is directionally
independent. Fortunately, it is a rare occurrence for more than one type of work to
be important in a particular system or process. The differential form of the first
law is preferred in process calculations as the process variables usually change
continuously within the cycle.

Moving on, the second law of thermodynamics is concerned with the conversion
of heat into work and the efficiency with which this can take place. The second law
works in concert with the first law to describe correctly the behavior of an ideal
thermodynamic process. The second law is often defined in terms of heat engines
and their performance of work [1]:

It is impossible to construct an engine that does work while exchanging heat with only one
reservoir.

Thus, according to the second law, any engine that performs work must have at
least two reservoirs. By analogy, a refrigerator, which is simply an heat engine
running in reverse, also requires two reservoirs; the low temperature one from
which heat is absorbed and the high temperature one into which heat is rejected.
Schematic configurations of a heat engine and a refrigerator are shown in Fig. 1.5.
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The attached subscripts refer to the hot (H) and cold (C) reservoirs. Note that the
engine supplies work while the refrigerator requires work to complete the process.

The combined first and second law therefore require an engine or refrigerator
to operate between two reservoirs at different temperatures. For an engine, the
thermodynamic efficiency 7 for such a process is given in terms of the work
output W divided by the heat input, Q.

W 0On-0c
n= = _C

1.5
Oy On (15)

Note that we have used the first law for the thermodynamic cycle to replace W
with Oy — Oc, which explicitly shows why 1 must always be less than unity. It is
apparent that an efficiency of unity can never be achieved because the second law
requires two reservoirs and Q¢ is always finite.

For a refrigerator, the important quantity to optimize is the coefficient of
performance (COP), which is defined as the ratio of the heat extracted from the
low temperature reservoir to the work done on the system,

cop-2¢c_ Q¢ (1.6)

W Ouw—0c

Thus the COP is just the inverse of the efficiency. For the case of an engine, the
work done is given by the area enclosed by the cycle and the heat is expelled at 7.
On the other hand, for a refrigerator, the heat is expelled at Ty and the cycle uses
the work to extract heat at T.

The entropy S is a state function that is commonly used in cryogenic systems
because it better defines the process variable that one is trying to minimize. For
example, the most efficient process available for refrigeration is isentropic, 4S = 0
and this is only achievable if the processes are fully reversible. On the other hand, if
the process is done irreversibly (such as Joule-Thomson isenthalpic expansion)
or with exchange of heat, then A4S > 0 and there is entropy generated. The Clausius
theorem, which is part of the second law, refers to the entropy associated with a
closed cycle. If such a cycle follows reversible paths, the Clausius theorem states
that the entropy change through the cycle is identically zero.

Like all thermodynamic variables, entropy also has a definition based on statis-
tical mechanics. The statistical definition of entropy is associated with order in
the system. The greater the order the lower the entropy. Thus, a condensed liquid is
in a lower entropy state than its coexisting vapor. Normally, the solid state of a
substance is in a lower entropy state than the liquid state because the crystal
periodicity implies a more ordered system. In a magnetic system, if the spins are
all aligned with the applied magnetic field they are more ordered and in a lower
entropy state than if they are randomly oriented. This would suggest that if absolute
zero were attainable, the system would be completely ordered, i.e. all the spins
would be aligned and the solid would be perfectly periodic. Helium is an exception
to this general rule, as will be discussed later, because of its quantum nature the
lowest entropy state of helium is liquid.
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In statistical mechanics, the definition of entropy evolves from introduction of
a thermodynamic probability function €, which is a measure of the occupation
of the states in the thermodynamic system. Entropy is given mathematically by a
function of this probability,

S = kplnQ (1.7)

where kg, is the Boltzmann constant equal to 1.38 x 107> J/K molecule.
Incidentally, other state functions of the system are also defined in terms of Q.
The statistical definition of entropy leads to a natural physical understanding of
absolute zero temperature. At absolute zero, the system is in a ground state with the
probability of that state being occupied at unity. Consequently, the probability
function is equal to unity (2 = 1) and by the definition in (1.7) Sy = 0.

A useful application of the entropy concept is obtained by considering a Carnot
refrigerator. The Carnot cycle is shown schematically by the four-step process in
Fig. 1.6. The first step in the cycle takes the thermodynamic system isothermally
(at constant temperature) from (a) to (b), decreasing the entropy from S, to S;. This
process could be for example the isothermal compression of a gas at high tempera-
ture. The second step is an isentropic process (constant entropy) that reduces the
temperature of the system from T to T¢, taking it from (b) to (c). The third
step then heat exchanges with the low-temperature reservoir, a process (c) to (d)
that takes place isothermally. Finally, the cycle is completed by an isentropic return
to the original point (a). Since the Carnot cycle is reversible the work done is
equal to the area enclosed by the cycle. The amount of heat absorbed from the low-
temperature reservoir is Qc = T¢AS and the heat ejected in the hot reservoir is
QOny = Ty AS. Therefore, for a Carnot cycle the ratio of Q¢ to Q is simply the ratio
of absolute temperatures,

%:;—Z (1.8)
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From (1.6), it is easy to show that the COP of a Carnot refrigerator is,

Tc

cop=—C_
Ty — Tc

(1.9)

The ideal Carnot refrigerator is used as a comparative standard for practical
refrigeration systems. Any real refrigeration system operates at a fraction of Carnot
performance due to the non-ideal nature of the processes involved in the cycle.

1.4.2 Third Law of Thermodynamics

The unattainability of absolute zero, the third law of thermodynamics, has funda-
mental significance in numerous aspects of cryogenics. Since the difficulty in
achieving low temperatures increases as the temperature is decreased, cryogenics,
by definition, is an attempt to fight this thermodynamic law. Additionally, the third
law helps us understand the behavior of thermodynamic variables as absolute zero
is approached. For example, considering an isothermal change in pressure in a
liquid—gas system, we can express the entropy change as

POV
o \T/,

an expression obtained by integrating one of Maxwell’s relations [1]. Similarly, for

a magnetic system, an isothermal change in magnetic field leads to the following

expression:

H
S(T,H)—S(T,O):,uOJ (g—M) dH (1.11)
0 T H

where M is the magnetization of the material. By combining (1.10) and (1.11) with
the third law of thermodynamics a statement can be made about the behavior of V
and M as absolute zero is approached. Specifically, since A4S approaches zero as
T — 0, both the volume and magnetization must approach constant values.

In addition to the above conventional statement of the third law and
unattainability of absolute zero, the Nernst-Simon statement concerns itself specifi-
cally with entropy change [1]:

Entropy change associated with an isothermal reversible process in a condensed system
approaches zero as T — 0.

Since the Nernst-Simon statement deals only with the entropy change, the
absolute entropy of a system at 7 = 0 must be a universal constant. It can be
shown further that this constant can arbitrarily be set identical to zero.
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Fig. 1.7 Schematic 7-S diagram showing isothermal and isentropic properties

The unattainability of absolute zero can be demonstrated by a number of
examples. One useful example is based on the Nernst-Simon statement of the
third law (A4S — 0). Consider the schematic 7-S diagram in Fig. 1.7 showing two
isobars (constant pressure curves). For this type of system, it is fairly straight-
forward to achieve cooling and reduce the temperature by performing a constant
entropy (isentropic) expansion from 7; to Ty. It would appear possible to extend this
procedure toward absolute zero by a repeated application of isothermal compres-
sion from p; to p, and subsequently isentropic expansion from p, to p;. However,
the third law states that AS, = 0 so the two isobars must approach the same value of
the entropy at T — 0. Thus, it should take an infinite number of steps to reach
absolute zero by this process.

These concepts are integral to the processes and properties that make up cryogenic
systems. In engineering systems operating near room temperature, it is common to
treat many of the process variables as constants or at least as simple functions of
temperature. These kinds of simplifications are generally not suitable for cryogenic
system analysis as will become clear in subsequent sections of this book.

Questions

1. Why is it more efficient to store and transport industrial gasses as cryogenic
liquids?

2. What are the principal differences between a heat engine and a refrigerator?

3. What does the third law of thermodynamics tell us about the heat capacity of a
solid as T approaches 0 K?
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4. Show that the thermodynamic definition of entropy leads to a logarithmic
temperature scale.

5. Compare T,/T. for some common cryogenic fluids. Comment on the relative
values.

Further Readings

1. Absolute Zero, Public Broadcasting Special: http://www.pbs.org/wgbh/nova/zero/about.html

.R. de Bruyn Ouboter, Superconductivity: Discoveries during the Early Years of Low
Temperature Research at Leiden, IEEE Trans. on Magnetics, Vol. Mag-23, 355 (1987).

. K. Mendelssohn, Quest for Absolute Zero, World University Press, 1966.

. R. G. Scurlock, History and Origins of Cryogenics, Oxford Science Publications, 1992.

. T. Shachman, Absolute Zero and the Conquest of Cold, Houghton Mifflin Co. New York, 1999.

. K. D. Timmerhaus and R. P. Reed, Cryogenic Engineering: Fifty Years of Progress, Springer,
New York, 2007.

. M. W. Zemansky, Heat and Thermodynamics, McGraw Hill, New York, 1968.
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Chapter 2
Low-Temperature Materials Properties

Before delving into the fluids and processes associated with helium cryogenics, it is
important to first have a working knowledge of the relevant properties of other
materials at low temperatures. This knowledge is valuable in part because materials
have behavior that must be taken into account when considering the problems
of refrigeration, heat transfer, or storage of low temperature helium. In addition
as seen in subsequent chapters, many of the properties of helium are understood in
terms of physical models that were primarily developed to treat the properties of
different materials at low temperatures.

The study of material properties at low temperatures continues to be an active
field of research. Current investigations include studies of the properties of
materials at ultralow temperatures, 7~ 1 mK, new materials such as alloys and
composites as they depend on external variables such as temperature, pressure and
magnetic field, and new types of investigation on traditional materials. Much of this
work is fundamental in nature. On the other hand, since many material properties
play an important role in the design and construction of low-temperature systems,
it is essential to have a thorough knowledge of their behavior.

The present chapter is a survey of those properties that are of greatest importance
to cryogenic applications. Included in the discussion are the behavior of state
properties such as the internal energy and heat capacity, thermal expansion or
contraction, transport properties including the electrical and thermal conductivities,
and finally mechanical properties. The discussion concentrates on solid elements
and alloys. The special properties of superconductors will also be included although
the discussion is brief due to space limitations. Most of the descriptions are based
on either thermodynamic or solid-state physics principles. More extensive dis-
cussions of these topics may be found in textbooks on the relevant subjects [1, 2].
In addition, for applications there are a number of property databases [3, 4] and
books [5, 6] that collate available experimental data and can be useful in analysis
and design.

S.W. Van Sciver, Helium Cryogenics, International Cryogenics Monograph Series, 17
DOI 10.1007/978-1-4419-9979-5_2, © Springer Science+Business Media, LLC 2012
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2.1 Heat Capacity

The heat capacity is a fundamental state property of matter. It represents the amount
of energy needed to raise the temperature of a known quantity of a material one
degree. The heat capacity per unit mass is called the specific heat. In cryogenic
systems, the heat capacity of a material is integral to numerous calculations
including: the dynamics of cooling devices from superconducting magnets to
sensors, thermal energy storage, dynamic thermal loading on refrigeration systems,
and transient heat transfer.

As with many physical properties, the heat capacity is defined in terms of
other thermodynamic state variables. In particular, it can be written as a derivative
of either the entropy S or internal energy E. Because these state functions are
described in a liquid—gas system in terms of an equation of state relating
pressure p, temperature T, and specific volume v, one variable usually must be
held constant in the definition of the heat capacity or specific heat. For example,
the constant volume heat capacity is written in terms of a derivative of the entropy
or internal energy as,

oS OE
=7(zz), = (ar), &
while the constant pressure heat capacity may be written
os OE ov
=T|=) == — 2.2
& =1(ar), = (ar), (@), &

It is also possible to define the heat capacity with other external variables held
constant. For systems where magnetic properties are of importance, Cy or C;, may
be used to designate the heat capacity at constant applied magnetic field or
magnetization. This topic is of particular interest in magnetic cooling systems and
is discussed in Chap. 10.

A useful relationship between C,, and C, is obtained from thermodynamic
expressions and is given by

av\? Op Tvp?
C,—C,=—-T|— ) = 2.3
= (5) (7)< @
where ff = %(%)p is the volume expansivity and x = —1 (g—;)T is the isothermal
compressibility.

An extensive amount of experimental data exists for the heat capacity of solids
at low-temperatures. For simple solid materials such as metals and crystalline
insulators, there is a very good match between experiment and theory. For example,
measurements near and above room temperature give close correspondence with


http://dx.doi.org/10.1007/978-1-4419-9979-5_10

2.1 Heat Capacity 19

the classical model of harmonic oscillators due to Dulong and Petit for which
the heat capacity is equal to 3Npkz =3R, where N, is Avogadro’s number =
6.023 x 10** molecules/mole and kg is Boltzmann’s constant =1.38 x 1072y
molecule K. The gas constant R = 8.31 J/mol K. This classical model is based on
the equipartition of energy which assigns ¥2kpT to each of the three kinetic energy
and three potential energy degrees of freedom in the three-dimensional solid.

At low temperatures, there is markedly different behavior according to the type
of solid considered. Over most of the cryogenic range for crystalline solids, the
dominant temperature dependence is proportional to T°. At very low temperatures,
T < 10 K, crystalline insulators maintain the T°-dependence while metals have heat
capacities that become linearly proportional to temperature as 7 — 0.
Non-crystalline amorphous materials also have a heat capacity is proportional to
T" where n~3. Finally, the difference between C, and C, becomes negligible as
T — 0 for all solids. This fact can be used in conjunction with (2.3) to show that
the volume expansivity, 5, must also go to zero at very low temperatures.

2.1.1 Lattice Heat Capacity

Two relatively simple theories are available to describe the general behavior of
the heat capacity of metals and crystalline insulators over the entire temperature
range of interest [1]. The first such theory is based on the energy contained in the
quantized lattice vibrations or phonons that exist in a solid. For most solids, except
metals at very low temperatures, this phonon contribution to the heat capacity
dominates.

To calculate the phonon heat capacity, we begin with an expression for the
internal energy E,,;, of an ensemble of phonons as a function of their characteristic
frequencies w,

h

E,=—
Pl 2n

JD(a))n(cu)wdw (2.4)

In this case, D(w), the phonon density of states, describes the fraction of
phonons that occupy a particular energy level characterized by its frequency .
The function n(w) is the statistical distribution function, which for phonons obeying
Bose-Einstein statistics, is given by [7],

1

= eho/2nksT _ 1 2.5)

with 1 =6.63 x 10~% J s is Planck’s constant. The model-dependent choice in the
theory is included in the selection of the proper density of states function, D(w).
This problem can be quite complicated depending on the detailed nature of the
excitations within the solid. Fortunately, many materials at least approximately
obey the simplifying assumptions inherent in the Debye model.
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Fig. 2.1 Density of states
D(w) versus o for the Debye
model for a constant phonon
velocity

Density of States, relative scale

The Debye model assumes that the density of states is described by a continuum of
levels up to the characteristic frequency wp, referred to as the Debye frequency. The
density of states is then proportional to o and is shown schematically in Fig. 2.1.

Inserting the Debye density of states and distribution function into the equation
for the internal energy of the phonons, (2.4), a nearly closed-form solution for this

quantity is obtained,
T\3
E,, =9RT | —
" (QD)

where x = ho/2nkgT, xp = Op/T. The Debye temperature @, is defined in terms of
the maximum phonon frequency, wp, see Fig. 2.1. The Debye temperature is
characteristic to a particular material and has a simple form,

i 1/3
0, = (677:2 ]X) 2.7)

XD 3
J exx —dx (2.6)
.

~ 2nkp %

where c is the speed of sound in the material and N/V is the number of molecules
per unit volume. In real materials, the Debye temperature may be a function of more
variables than just the number density as described in (2.7), so the above description
is only an approximation [1].

The heat capacity in the Debye model can be calculated directly from differen-
tiation of the internal energy, (2.6), with respect to temperature

T\ [ et
Con =9R| — / ——dx 2.8)
P (@D> o (ef—1)* (
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The definite integration within (2.8) can be easily performed numerically once ®p
is known. However, one can obtain considerable insight be studying the limiting
form of Cp;,, which can be checked by evaluating (2.8) at either high or low
temperatures relative to @p.

In the high temperature limit, Xxp < 1, the exponentials within the integral may
be expanded as e* ~ / +x and simply integrated leading to a constant value for C,,,

Cpp =3R forT > Op (2.9)

which is the classical Dulong-Petit limit. Note that the heat capacity per mole is
constant in this range and on the order of 25 J/mole K. On the other hand, at low
temperatures, Xp > 1, the upper limit of the integral may be taken to be infinite,
which makes the exponential terms dominant. The result leads to constant value for
the definite integral and a cubic temperature dependence for the heat capacity,

127 /TN’
Cop = ——R(—) for T < Op (2.10)
5 \6p

which accurately reproduces the cubic temperature dependence of the heat capacity
observed for many materials at low temperatures. Thus, a measurement of the
heat capacity of a solid at low temperature is one way of determining the Debye
temperature. Note that (2.10) indicates that low Debye temperature materials will
have relatively larger heat capacities at low temperature, which is technically
significant for refrigeration.

The simplicity of the Debye model and the dominance of the phonon contribu-
tion to the heat capacity over most of the relevant temperature range makes it a
useful tool for approximate calculations in cryogenics. One can simply tabulate the
Cpn and E/T in terms of T/@p as is shown graphically in Fig. 2.2. These are
universal forms for the Debye phonon heat capacity and internal energy in Joules/
mole K that depend only on the value of ®p For most solid materials, the Debye
temperatures range from 100 to 1,000 K with examples listed in Table 2.1. This
simple analysis is usually accurate to within 20%.

Example 2.1

Using the Debye model, Fig. 2.2, estimate the change in internal energy of a 1 kg
copper block when it is cooled from 300 to 80 K.

Molar weight of copper is 0.0635 kg/mol. Thus, 1 kg =15.75 mol.
The Debye temperature of copper is 343 K (see Table 2.1).
At 300 K, /@5 =0.87 and at 80 K, 7/@ =0.23

From the graph, E,,;,/T (300 K) ~ 15 J/mol K; and E,,;/T (80 K) ~6 J/mol K
Thus, the internal energy is dominated by its 300 K value. For the 1 kg copper
block,
E,,~[15 J/mol K x 300 K+6 J/mol K x 80 K] x 15.75 mol =63 klJ.
Note: This problem could also be solved numerically by integration of (2.8).
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Fig. 2.2 Debye specific heat and internal energy functions

Table 2.1 Debye temperatures for com-
mon elements in cryogenics [1]

Element Op (K)
Al 428
Au 165
Cd 209
Cr 630
Cu 343
Fe 470
Ga 320
Hf 252
Hg 71.9
In 108
Nb 275
Ni 450
Pb 105
Sn 200
Ti 420
\" 380

Zn 327
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2.1.2 Electronic Heat Capacity

For metals at low temperatures, T < 10 K, there is an additional significant contri-
bution to the heat capacity due to the energy contained in the conduction electrons.
Fortunately, as with the phonon contribution, the electron contribution to the heat
capacity can also be approximately described by a simple theory. The free-electron
model treats the conduction electrons as a non-interacting gas of spin "2 particles.
Thus, as in the case of the Debye model, the internal energy of the electron gas E, is
written in terms of the density of states D(¢) [1],

E, = JD(a)f(a)ada (2.11)

where ¢ is the electron energy used as a variable in this case instead of frequency
in the Debye model. The density of states in the free-electron model is written,

Dle) = (m )3/251/2 (2.12)

T2 o

Since electrons are spin Y5, they must obey Fermi-Dirac statistics, which means
that each energy level can have no more than one electron. The Fermi — Dirac
distribution function is [7],

1

fe) =

e (2.13)

where p is the chemical potential, which is approximately equal to the Fermi
energy, &5, at low temperatures [1].

The free-electron model defines the Fermi energy ¢ in terms of the total number
of free electrons per unit volume, N,/V

2 AN
& —(3n2—> (2.14)

- 8n2m, Vv

where m, is the mass of an electron equal to 9.11 x 10! kg. Thus, the Fermi
energy only depends on the number density of electrons. One can also define a
characteristic temperature, called the Fermi temperature, Tr = ¢r/kg ~ 10* K.

Ordinarily and certainly in cryogenics, the electron temperature in a metal is far
below the Fermi temperature so that only a small fraction of the electrons near the
Fermi surface contribute to the thermal properties. Because T < T, the electrons in
a metal generally are referred to as a degenerate Fermi gas. For a degenerate Fermi
gas the internal energy (2.11) can be simply evaluated. The electronic contribution
to the heat capacity then turns out to be linearly proportional to the absolute
temperature,

C, =T 2.15)
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Table 2.2 Coefficient of the electronic specific heat
for various metallic elements of technical interest [1]

Element v(mJ/mol Kz)
Ag 0.646
Al 1.35
Au 0.729
Cr 1.40
Cu 0.695
Fe 4.98
Ga 0.596
Hg 1.79
In 1.69
Nb 7.79
Ni 7.02
Pb 2.98
Sn 1.78
Ti 3.35
\" 9.26
Zn 0.64

where y = %TEZD(SF)]CI% is sometimes called the Sommerfeld constant with D(er)
being the electron density of states evaluated at the Fermi energy (2.14). The
Sommerfeld constant has been measured for many metals and some typical values
are listed in Table 2.2. To give a rough idea of the importance of the electronic
contribution to heat capacity, one should note that for copper the electron and
phonon contributions are equal at about 3.8 K.

2.1.3 Heat Capacity of Special Materials

The above general trends in the heat capacity of solid materials are fairly universal.
However, they do not describe all materials and the usefulness of the Debye and
free electron models is limited. In other cases, the knowledge of the heat capacity of
materials is more empirical.

Figure 2.3 is a plot of the specific heat of a variety of materials used in
cryogenics [6]. Note that these materials display similar trends in C,, to the theory
discussed above. The pure metals (Fe, Cu, Al, Be) show a linear dependence at low
temperatures (T < 10 K) followed by a transition region where C), is proportional to
T° and finally appproach a near constant value above 100 K. The metallic alloys
(stainless steel, brass) generally do not display the linear region due to a smaller
contribution by free electrons otherwise their behavior is similar to that of pure
metals. Non-metals (Pyrex, glass resin) show only a 7" dependence (n~ 3) at low
temperatures due to the dominance of the phonon excitations.

Also, there are certain special materials that have anomalous low temperature
heat capacities that are unique and also significant for cryogenic applications.
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Fig. 2.3 Specific heat capacity of technical materials used in cryogenics (Reprinted from
Ekin [6])

One such class of materials are those that undergo magnetic ordering transitions
at low temperatures. These transitions produce a large peak in the specific heat,
see Fig. 2.4. Most of these materials consist of rare earth compounds where the
magnetic ions such as gadolinium (Gd**) undergo ordering at low temperatures.
These materials are useful as thermal capacity stores in low temperature cryocooler
regenerators, a topic discussed in that context in Chap. 8. They are also used in
magnetic refrigeration where the order — disorder transition can be driven by
application of a magnetic field. This topic is discussed in Chap. 10.

Finally, superconducting materials undergo phase transitions with a discontinu-
ity in the heat capacity at the onset of the superconducting state, T=T,. Below T,
the heat capacity of a superconductor decreases rapidly below that of the normal
state, particularly at very low temperatures where the phonon contribution is small.
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Fig. 2.4 Volumetric specific heat to metallic compounds with low temperature phase transitions
(Reprinted from Nageo, et al [8])

This behavior has to do with the very nature of superconductivity, a topic that is
discussed further in Sect. 2.5.

2.2 Thermal Contraction

All materials experience a change in physical dimension when cooled to low
temperatures. This effect, normally referred to as thermal contraction in the field
of cryogenics, is typically on the order of a few tenths of a percent change in volume
in most materials between room temperature and liquid helium temperatures.
Although the effect is not large in absolute magnitude, it can have a profound
impact on the design of engineering devices operating in a low-temperature envi-
ronment. The thermal contraction coefficients of different materials vary by as
much as an order of magnitude. Furthermore, since most devices constructed to
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operate in cryogenic systems are fabricated at room temperature out of a number of
different materials, one of the major concerns is the effect of the differential thermal
contraction and the associated thermal stress that may occur when two dissimilar
materials are bonded together. Differential contraction is especially important to the
design of low temperature vacuum seals, structural supports, and electrical insula-
tion systems. Thus, it is of considerable importance to understand this behavior of
technical materials. There are a number of good reviews in the literature on this
subject [9-12].

The thermal contraction or expansion has a thermodynamic definition, which
can be combined with other state properties to make predictions of the details of
the properties of materials at low temperatures. For liquids and gases, the most
meaningful form to consider is the volume expansivity defined as,

1 /[oV
B= v (ﬁ)p (2.16)

where f is in general a function of temperature. For solids, where the changes
in individual dimensions may be different due to anisotropic effects, the linear

thermal expansion coefficient,
1 /0L
=—|= 2.17
L <8T>p @17

is a more appropriate and common factor to consider and is the value that is
tabulated in the literature. For isotropic materials, =1/3p to first order. For many
common solids near room temperature, the linear expansion coefficient is approxi-
mately constant.

In a solid, the thermal expansion is caused by anharmonic terms in the restoring
potential between the individual molecules. Recall that the Debye model assumes
that a solid is comprised of a set of harmonic oscillators. Therefore, the Debye
model in its simplest form does not predict the existence of thermal expansion.
Anharmonic terms in the interaction potential are what cause the non-zero f3. For
molecules in a solid, the anharmonic terms can be represented as variations in the
Debye temperature ®p with the specific volume. This variation may be written,

o d(ln @D)
Y6 = — W (2.18)

where 75 is referred to as the Grineisen coefficient, values of which for a few
elements are listed in Table 2.3. The Griineisen coefficient, which is nearly constant
over a temperature range down to 7~ ®p/5, can be used along with other thermo-
dynamic properties to calculate the thermal expansion coefficient,

C,
oy = LGV

£ (2.19)
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Table 2.3 Values for the Griineisen
coefficient ys for common elements [1]

Element yG

Ag 2.40
Al 2.17
Cu 1.96
Fe 1.6

Ni 1.88
Pt 2.54

where Kk is the isothermal compressibility. For metals at low temperatures,
T < Op/25, the dominant temperature dependence of « is in the specific heat,
C,~7T + pT°.

At low temperatures, the expansion coefficient is far from linear and actually
approaches absolute zero with zero slope, a fact that can be understood in terms of
thermodynamics. In (2.3), the difference between the constant volume and constant
pressure heat capacity is shown to be proportional to the square of the volume
expansivity f5. Since according to the Third Law of Thermodynamics, the quantity
(C, — C,) must go to zero as T — 0, it follows that  also must do so. This effect
makes sense physically because the harmonic terms would be expected to dominate
the interatomic potential at such low temperatures.

Because of the nonlinear nature of o and f3, it is often more useful to have the
integrated thermal contraction for the purpose of design. Figure 2.5 displays the
integrated linear contraction of a number of common materials used in cryogenic
applications [6]. Note that metals typically have total contractions in the range of
0.5% or less with the lowest value being for Invar, which is a special metal designed
to have a low value of «. Polymers such as epoxy or Teflon contract about three
times as much as metals and can have a total contraction between 300 and 4 K as
high as 2%. Some amorphous materials, particularly Pyrex, have nearly zero or
sometimes negative thermal contraction coefficients.

Composite materials often can have their thermal contraction predicted based on
a linear combination of the two individual materials, taking into account the elastic
modulus of each constituent. This approach to estimating the thermal contraction of
a composite is referred to as the rule of mixtures. However, composite materials are
frequently anisotropic by design, which makes their linear contraction coefficients
dependent on the internal structure and orientation of the component materials.
A clear example of this behavior can be seen in the structural material, G-10, which
is a composite of epoxy and fiberglass. In this case, the thermal contraction of the
composite depends on the volume ratios of the two materials and the orientation of
the fibers within the composite. For example, the integrated AL/L from 300 to 4.2 K
is about 0.25% for G-10 in the fiber direction (wrap) and about 0.75% normal to the
fiber direction.
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Fig. 2.5 Total thermal expansion/contraction for materials commonly used in cryogenics:
(a) metals; (b) non-metals (Reprinted from Ekin [6])

2.3 Conductivities: Electrical and Thermal

The electrical and thermal conductivities are non-equilibrium transport properties
that determine, among other things, the heat generated due to current flow or the
heat flow due to a temperature difference. In general, the electrical and thermal
conductivity of pure metals is higher than that of alloys, which is why pure copper,
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aluminum and silver are common electrical conductors or thermal conduction straps
in cryogenic systems. On the other hand, insulating materials and composites do not
carry electrical current at all and for the most part have lower thermal conductivities,
which makes such materials best for thermal and electrical insulating supports.
Some special crystalline insulators have high thermal conductivities that are useful
for electrical insulating connections that require good thermal contact.

2.3.1 Electrical Resistivity of Metals

Near room temperature, the electrical resistivity of most pure metals decreases
monotonically with temperature following an approximately linear relationship.
This trend is the result of electron—phonon scattering and is the dominant tempera-
ture-dependent contribution to the resistivity p(T). At low temperatures, the resis-
tivity trends to a constant value, which is approached when the metal is near liquid
helium temperature. The constant value of low temperature is referred to as the
residual resistivity po and is strongly dependent on the purity and amount and
distribution of lattice imperfections in the metal. Generally, these two effects are
additive, obeying what is known as Matthiessen’s rule that the total resistivity is the
sum of two contributions,

p=po+p(T) (2.20)

As an example of the behavior of electrical resistivity consider Fig. 2.6, which is
a plot of p(T) for various purities of copper, defined in terms of the residual
resistivity ratio [RRR = p(273 K)/p (4.2 K)]. The more pure and defect free the
metal, the higher its RRR value. It should also be noted that the temperature at
which essentially constant resistivity is obtained decreases with increasing purity.
The other point of interest in the figure is that the high-temperature (T ~ 300 K)
resistivity is essentially independent of RRR, consistent with the dominance of
electron—phonon scattering. This universal form for the resistivity of pure metals
makes them very useful as temperature sensors. For example, platinum resistance
thermometers are often preferred for accurate measurements in the intermediate
temperature regime (30-300 K) where their sensitivity, dR/dT, is roughly constant.
The electrical resistivity is one of the easiest properties to measure and as a result
o(T) is known and tabulated for many elements and alloys of interest [13—18].

The theoretical interpretation of electrical conductivity of metals associates the
loss mechanism with scattering processes between the electrons and the lattice.
Considering a low-frequency transport of electrical current in a metal, we can relate
the conductivity to the mean scattering time, T = I/v;, where [ is the mean free path
between electron scattering events and vy = (ZEf/m)] "2 is the Fermi velocity. Ele-
mentary theory of electrical conductivity gives ¢ as,

I1€2‘E

o= 2.21)

me
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Fig. 2.6 Electrical resistivity versus temperature of differing purities of copper, p(273 K)
=15.45nQ m (Reprinted from Powell and Fickett [13])

where n=N,/V is the number of conduction electrons per unit volume and m, is
the electron mass.

As mentioned above, there are two principal types of electron-lattice scatter-
ing that determine the magnitude of the electrical conductivity. For fairly high
temperatures, T~ @p, the dominant mechanism is due to electron scattering
by quantized lattice vibrations, phonons. A simple way to see the temperature
dependence of this effect is to relate the magnitude of the phonon scattering with
the mean square displacement of the molecules in the lattice, <x*>. In a simple
harmonic solid, this quantity is proportional to kg7, the thermal energy of the
lattice. Assuming that the electrical resistivity is proportional to the magnitude of
phonon scattering, near room temperature the resistivity of metals should also
be proportional to T, a fact borne out at least approximately by the data.

For low temperatures, T << ©p, the phonon scattering decreases with T giving
way to scattering dominated by lattice imperfections. In this domain the resistivity
approaches a temperature-independent value determined primarily by the amount
of impurities and imperfections in the lattice. For metallic elements, a few parts
per million of impurities can have a profound effect on electron transport as can the
amount of cold work generated imperfections. At the lowest temperatures with
the purest samples, the mean free path of the electrons can become very large
approaching the sample size, such that scattering off the surface of the sample can
contribute a size effect dependence to the resistivity.
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Fig. 2.7 Kohler plot for magneto-resistance of copper (Reprinted from Fickett [19])

At intermediate temperatures, T ~ @ p/3, the resistivity varies smoothly between
the two regions. Many metals have a roughly 7° dependence in this regime which
can be attributed to the phonon population being proportional to T° and
the probability of scattering through large angle having a 7° dependence. The
resistivity is therefore proportional to the product of these two factors.

2.3.2 Magneto-Resistance in Metals

The electrical resistivity of pure metals generally increases with applied magnetic
field. This effect is most significant for pure metals at low temperatures because
of their relatively long mean free paths for electron scattering. Physically, magneto-
resistance comes about from the fact that the electrons in the metal are deflected
from a straight path in the presences of an applied magnetic field. Since the
deflected path will have a greater opportunity for the electrons to scatter, the
electrical resistivity would be expected to increase monotonically with applied
magnetic field. The magnitude of the effect depends on the type of metal, its purity
and the magnitude and orientation of the applied magnetic field.

No simple theory is available for calculating the magneto-resistance of a partic-
ular metal. However, a considerable amount of data exists and correlations are
available for calculating the magnitude of the effect in common metals. For copper,
the magneto-resistance is often tabulated in terms of what is known as a Kohler
plot [19], shown in Fig. 2.7. To utilize this plot one needs to know the RRR =
p(273 K)/p (4.2 K) of the copper sample, the applied magnetic field (uoH), in this
case transverse to the axis of the sample, and the desired operating temperature.
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Table 2.4 Electrical resistivity of various technical alloys (units of nQ-m) [3, 14]

Alloy 10K 20K 50K 100 K 200 K 300 K RRR
AL 5083 30.3 30.3 31.3 355 47.9 59.2 1.95
AL 6061-T6 13.8 13.9 14.8 18.8 30.9 41.9 3
304 SUS 490 491 505 545 640 720 1.46
BeCu 56.2 57 58.9 63 72 83 1.48
Manganin 419 425 437 451 469 476 1.13
Constantan 461 461 461 467 480 491 1.07
Ti-6%Al-4%V 1,470 1,470 1,480 1,520 1,620 1,690 1.15
PbSn (56-44) 4.0 5.2 16.8 43.1 95.5 148 37
Pt - 0.367 7.35 28 69.2 107 290

From this information, one can calculate the magneto-resistance contribution to the
total value of RRR, which in turn allows determination of the effective resistivity
of the metal. However, it is important to keep in mind that this is an approxi-
mate correlation and only suitable for copper. By contrast, magneto-resistance
measurements on pure aluminum do not yield a similar universal correlation.
In general, the magneto-resistance makes the largest contribution to the resistivity
at high field and low temperatures for pure metals.

Example 2.2

For an applied magnetic field of pyH =10 T, calculate the effective RRR for a
sample of copper, which has a RRR =100 at pyH =0.

In this example, the product, yyH x RRR =1,000 T. Using the Kohler plot
for transverse magnetic field, Fig. 2.7, the magneto-resistance contribution can
be estimated to be AR/R, = 3. This value must be added to the resistance of the
metal at zero field, which makes the ratio R;o/Ry~4. Thus, the sample has
approximately the same electrical resistivity as a RRR =25 sample on zero
background field. The resistivity of copper at 273 K is 15.6 nQ-m [3]. This
means that the resistivity of the copper at liquid helium temperature and B =10T
should be p ~0.62 nQ-m, which compares reasonably well with tabulated data,
which gives a value of 0.56 nQ2-m for these conditions.

The electrical resistivity of metallic alloys is generally higher than that of
corresponding pure metals. Also, the temperature dependence of the resistivity of
alloys is much weaker. Mostly these effects are due to the large amount of lattice
imperfection scattering that occurs in concentrated alloys. The electrical resistivity
of a variety of metallic alloys is given in Table 2.4. Note that the RRR for most
of these metals, which varies from approximately unity for Constantan (Cu57%
Ni43%) and Manganin (Cu84%Mn12%Ni4%) to 2 or 3 for aluminum alloys and
over 30 for PbSn solder is considerably smaller than that of pure metals. Also, the
room temperature resistivity can be very high up to two orders of magnitude greater
than that of pure metals. Both of these features make alloy metals particularly
useful for heaters and instrumentation leads in cryogenic applications.



34 2 Low-Temperature Materials Properties
2.3.3 Electrical Conductivity of Semiconductors

Semiconductors have electrical resistivities that typically range from 10~ *to 10’ Q-m,
which is many orders of magnitude higher than that of most metals (p ~ 10~ Q-m).
However, in the case of semiconductors, the low conductivity is due more to the
limited number of charge carriers that exist than impurity or phonon scattering.
Semiconductors possess properties that are dependent on the existence of an energy
gap E, in the electron density of states. Unlike pure metals, which do not have
an energy gap, the number of conduction electrons in a semiconductor varies
exponentially with temperature roughly as,

Eg
N, ~ e Tar (2.22)

This exponential dependence dominates the resistivity leading to an increasing
value as the temperature decreases. Such variation can be quite strong with the
resistivity increasing over several orders of magnitude between room temperature
and liquid helium temperature with the exact variation depending on the details of
the semiconductor.

Pure semiconductors are insulators at absolute zero because the electrons
cannot be excited above the energy gap, see (2.22). To overcome this limitation,
the conductivity of a semiconductor can be increased by doping it with impurities
that introduce additional charge carriers. Small concentrations of impurities can
change the conductivity of a semiconductor by several orders of magnitude. Due to
the strong temperature dependence of their resistivity, semiconductors are most
commonly encountered in cryogenic applications as temperature sensors with high
negative temperature coefficients. For example, high levels of sensitivity at liquid
helium temperatures can be achieved using doped germanium as a sensor.

2.3.4 Thermal Conductivity of Metals

The thermal conductivity is a material property that determines the temperature
gradient across a substance in the presence of a heat flow. In all materials there are
several contributions to the thermal conductivity k. For metals, the principal
conduction mechanisms are electronic and lattice, with the electronic contribution
being dominant for pure metals. The electronic thermal conductivity can be under-
stood by a similar model as used for electrical conductivity.

By analogy to the process of electrical conductivity, the behavior of k can be
understood in terms of a kinetic theory model for gases of electrons and phonons [20].
Such simple models work very effectively to explain the limiting behavior of the
thermal conductivity. In particular, the thermal conductivity may be written,

1
k= ngl (2.23)
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Fig. 2.8 Thermal conductivity versus temperature of differing purities of copper (Reprinted from
Powell and Fickett [13])

where C is the heat capacity per unit volume, v is the characteristic speed, and / is
the mean free path. Using the free-electron model, the electronic contribution to the
thermal conductivity can be calculated by inserting the electronic specific heat,
(2.15), and the Fermi velocity, vg = (2¢x/m)"?, into (2.23). Thus,

n’nkiTt

ke
3m

(2.24)

where 7 is the mean scattering time identical to that considered for electrical
conductivity. At high temperatures, T>®p, t~ T due to the increase in the
lattice vibrations so that the thermal conductivity approaches a constant value.
At low temperatures, T is approximately constant, since impurity scattering
dominates there, implying the thermal conductivity should be proportional to T.
As an example, Fig. 2.8 shows plots of the thermal conductivities of copper
analogous to Fig. 2.6 for the electrical resistivity. The limiting behavior near
room temperature gives a near constant value k=401 W/m K. With decreasing
temperature, the thermal conductivity rises through a maximum that depends on the
purity of the sample followed by a linear region (k~T) at the lowest temperatures.
This system is entirely consistent with the simplified theoretical picture.

Since the electronic thermal and electrical conductivities in pure metals have
similar scattering processes, a correspondence clearly should exist between these
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Fig. 2.9 Electronic Lorentz ratio for pure metals and defect-free metals (Reprinted from Sparks
and Hurst [21])

two properties. The Wiedemann-Franz Law generally assumes that for metals
the ratio of the thermal conductivity and electrical conductivity is a function of
temperature only. Furthermore, for the free-electron model, this ratio is a simple
expression,

k. (kg\?
== % (f) T = LyT (2.25)

where the quantity Lo= (M2/3)(kple)* =2.45x 1072 W Q/K? is the free
electron Lorenz number. L is totally independent of material properties and
temperature.

Experimental evidence indicates that the Wiedemann-Franz Law works only at
temperatures near room temperature and at very low temperatures (T << ®p) [21].
This fact is related to the asymmetry imposed on the Fermi surface when it is
subjected to a thermal gradient resulting in the transport of electrons. At intermedi-
ate temperatures, the experimentally defined Lorenz ratio (L =k/oT) is almost
always less than Lj. The amount of deviation is strongly dependent on the purity
of the sample, with the less pure having a smaller deviation. The overall behavior of
the Lorenz ratios with sample purity are plotted in Fig. 2.9. Considerable effort has
been applied to understanding these effects, the details of which are beyond the
scope of the present discussion.
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2.3.5 Lattice Thermal Conductivity

The lattice contribution to the thermal conductivity of metals, semiconductors and
insulators is also understood in terms of kinetic theory although the thermal carrier
in this case is a phonon gas of lattice vibrations. It is still possible to apply (2.23)
although the heat capacity must be that due to the lattice, C,,;,, which as we have
discussed above is proportional to T at low temperatures. Also, v is the speed of
sound and / is the phonon mean free path. Most insulators and semiconductors have
thermal conductivities that are several orders of magnitude lower than that of
common pure metals. At high temperatures their behavior is complicated by the
details of the phonon density of states, but generally the thermal conductivity
decreases monotonically with temperature. At low temperatures, where scattering
times become approximately independent of temperature, the thermal conductivity
decreases more rapidly, approaching zero as T" where n ~ 3.

The thermal conductivity of some technical materials are shown in Fig. 2.10 and
listed in Table 2.5. Because the list includes a wide variety of alloys and amorphous
insulators, a considerable range in values is displayed. These contain only a limited
number of technically interesting materials, indicating that an area of continuing
research is the determination of thermal conductivities of new materials. This
need is particularly evident with the growing use of composite materials for low
temperature applications.

Because the thermal conductivity of most materials used in cryogenic systems
varies with temperature, it is often necessary to integrate the thermal conductivity
over the temperature range of interest to obtain a total or integrated value,

T,

k(T), T,) = J k(T)dT (2.26)

T

which has units of W/m. If the temperature dependence of k is known, it is
straightforward to obtain k£ for a particular temperature range. One can then
calculate the total heat flux, Q by multiplying the integrated thermal conductivity

by the area to length ratio, A/L.

Example 2.3
Estimate the integrated thermal conductivity for BeCu between 1 and 300 K.

Looking at Fig. 2.10a, the thermal conductivity of BeCu is nearly linear on the
log-log plot and therefore can be represented as k ~aT", where it can be shown
that n=1.1 and a = 0.4 W/m K'*™ as determined from the data. It then follows
that the integrated thermal conductivity is,
300 . 300
k= J al"dT = ——T""'|  =0.19[300*' — 1*'] = 30,300[W /m]

n+1 |
1

Note that in this case, integrated thermal conductivity is mostly determined
by the upper temperature.
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Fig. 2.10 Thermal conductivity of various materials used in cryogenics: (a) metals; (b) non-
metals [3]. Symbols are used as identifiers for each material
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Table 2.5 Conductivity of various technical alloys (units are W/m K) [3]

Alloy 10K 20 K 50K 100 K 200 K 300 K
AL 5083 30.3 30.3 31.3 35.5 47.9 59.2
AL 6061-T6 23.8 50.1 100 120 135 160
304 SUS 0.77 1.95 5.8 9.4 13 14.9
BeCu 5.1 10.3 24 44.5 79.5 112
Manganin 1.7 4.1 10.1 14 17.2 22
Constantan 3.5 8.7 18.1 20 22.8 24.9
Ti-6%A1-4%V 0.87 1.5 2.6 4 5.9 7.7
PbSn (56-44) 20 28.5 40.7 45 48 51

2.3.6 Contact Resistance

Thermal and electrical contact between materials is a topic of considerable
importance in cryogenics and yet it is only qualitatively understood. Contract
resistance occurring at conductor joints in magnets or other high power applications
can lead to undesirable electrical losses. Poor thermal contact at the interface of a
heat strap can significantly decrease the efficiency of a thermal link in a conduction
cooled system. Thermal contact is also critical in the mounting of sensors for
accurate temperature measurement, where failure to carefully consider this issue
can lead to erroneous results. Thus, it is important to have a basic understanding of
this topic for a wide variety of cryogenic system designs.

Whenever two materials are joined together for the purpose of transporting heat or
electrical current a localized resistance occurs at the boundary. The magnitude of this
resistance depends on a number of factors, including the properties of the bulk materials,
the preparation of the interface between the two materials, whether there are bonding or
interface agents present, and external factors such as the applied pressure.

The electrical contact resistance is of greatest interest in the production of joints
between high purity metals such as copper, where its value can contribute or even
dominate the overall resistance of an electrical circuit. Generally, the contact
resistance in pure metals has a temperature dependence that scales with the
properties of the bulk material, displaying among other traits a purity dependent
RRR. For electrical contacts between pure metals without bonding materials like
solder, the value of the electrical contact resistance decreases with applied pressure
normal to the joint interface. This tendency results from an increase with pressure in
the effective contact area between the two bulk samples. To understand this effect,
consider that the two surfaces have microscale roughness due to how the surfaces
were prepared. As the pressure is increased normal to the surfaces, the asperities
tend to mechanically yield and deform increasing the effective area of contact.
As the bulk material has high conductivity, the contact resistance is mostly due to
the constriction of current flow that occurs at the small contact points [22]. As the
contact pressure is increased, the amount of constriction for current flow decreases,
thus reducing the contact resistance.

Figure 2.12 is a graphical summary of the measured electrical contact resistivity
for various unbonded samples as a function of applied pressure [23]. To obtain the



40 2 Low-Temperature Materials Properties

Fig. 2.11 Summary of low 10 T T T ——T—7310°
temperature electrical contact o c zan E
resistance versus pressure. a g §;;1ng:;;’” & ar ]
1 1 lean Jilver =
Dashed line is the fit (2.27) 105 O Oxidized Silver 1467
[23] & Clean Copper (Noterdaeme)
® Oxidized Copper =
® Clean Silver ]
@ Oxidized Silver ]
+ Clean Co (Nilles )
10° ® ® Thin Oxide. 10"
A ® Thick Oxide 3
= \0 —= Cold Weid (Cornish) 3
~ [ T~ i
~ —_
- 1
E 107 g 410" g
a E 0 N [ E (>
-~ - ~N 3 e
@ ~ . @
Q B ~ a
0L o NGE ¢ 6"
E o] ~N 3
E N
C 3 ~3
10° i 4 i 16™
3 . —
10 -14
0 0l Lol I 10
57 10 30 5070100 300 500
p(MPa)

contact resistance, the contact resistivity should be divided by the contact area,
Rp=pp/A. There are two things to observe in these results. First, at a particular
contact pressure, there is still a wide variation in the contact resistivity, a result that
is probably due to variations in sample preparation, treatment and oxidation.
Second, the contact resistance generally decreases with applied pressure. The line
in the graph is a rough correlation for the contact resistivity,

ps ~3/p @27)

where p the pressure is in Pa and py is in Q-cm?. This result is at least qualitatively
consistent with the expected increase in area with contact pressure.

For thermal contact resistance, there are two cases to consider. First is the
thermal contact resistance between metals, which would be expected correlate
with the electrical contact resistance much as with bulk metals. This correlation
is approximately correct for contacts between identical metals. However, if the
contact is between dissimilar metals or if there are solders or other interface metals
involved, the thermal contact resistance can no longer be scaled with pg. This latter
point is particularly significant at low temperatures where many soldiers are
superconducting (Fig. 2.12).

For thermal contact resistance between non-conducting materials, the funda-
mental limit even for ideal contacts is the mismatch in the phonon transport across
the interface [24]. Since the phonon spectra for the two materials are not the same
there is an impedance mismatch that leads to a resistance occurring within roughly
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Fig. 2.12 Thermal contact conductance as a function of temperature for a variety of contact
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(Reprinted from Ekin [6])

one phonon wavelength of the interface. This effect is known as Kapitza conduc-
tance and is also important for heat transfer in liquid helium, a topic that will be
revisited in Chap. 7. Overall, the theory of Kapitza conductance predicts a heat

transfer coefficient (A= I/R),
16 Wi\, 5
=(—=—==5|T 2.2
hx (15 h3c2) (228)

where c is the speed of sound. Note that the speed of sound is proportional to the
Debye temperature, so that low @p materials would be expected to have higher
thermal conductances than materials with high Debye temperature. For most solids,
the factor in parentheses is on the order of 1 kW/m? K*. Overall, (2.28) places an
upper bound on the magnitude of the thermal contact conductance for insulating
contacts. Real contacts between non-ideal surfaces are more complex and their
understanding is thus more qualitative.

For joints between real materials, the interface is irregular with intermittent
points of contact. In this case, the thermal contact conductance is more determined
by the constriction resistance at the asperities similarly to the electrical contact
resistance in metals. Thus, particularly for deformable materials without bonding
agents, the thermal contact conductance should increase with interface pressure.
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Experimentally, this correlation is born out with the thermal contact conductance
increasing with pressure as,

h = ap" (2.29)

where n =~ 1 and « is an empirical coefficient [23].

Thermal contact conductance varies over a wide range depending on whether
the contact is insulating or conducting. Figure 2.12 displays a compilation of data for
low temperature thermal contacts [25]. Some general trends can be observed. First, the
thermal contact conductance values at low temperatures can range over six orders of
magnitude, depending on materials and surface preparation. This large range is mostly
due to variations of actual contact area and surface preparation. Second, contacts that
are bonded with solder of similar agents that fill the asperities generally have higher
thermal conductances than bare contacts. However, the bonding agents can also
contribute to the interface resistance particularly if the bond region is thick or electri-
cally insulating. In the low temperature region (T < 5 K), most of the data correlate
with a power law, i ~ T", but there are two distinct characteristic behaviors. Pure metal-
metal contacts have a temperature dependence that correlates with that of the bulk
metal. Thus, at low temperature /2 ~ a7, with the coefficient of proportionality being
mostly determined by sample purity and contact pressure but varying between 10~
and 107> W/cm?K?2. On the other hand, if the contact is bonded with solder or indium,
the conductance can be much higher, but at low temperature such contacts may become
superconducting. As discussed in the next section, metallic superconductors
have lower thermal conductivities than in the normal state with k“.~T3, so that the
thermal conductance can in principle be reduced by introduction of bonding agents.
Finally, if the interface is between two non-conducting materials, then electron
transport is non-existent and the thermal conductance is generally lower following
the correlation scaling with the bulk thermal conductivity, 4= aT", where n~3.
However, in some special cases involving crystalline insulators, such thermal
conductances can be very high as is seen with the bulk materials, see Fig. 2.10.

2.4 Mechanical Properties

The mechanical properties of materials are also very important to consider when
designing cryogenic systems. Most cryogenic systems require mechanical supports
to carry the loads between ambient temperature and low temperature components.
Thermal transport through structural supports often significantly contribute to the
overall low temperature heat load. Since the thermal conductivity of a structural
material determines the heat load and the structural properties determine the required
dimensions of the support, both the structural and thermal properties must be consid-
ered when designing and optimizing structural components in cryogenic systems.

The two properties that are most often of interest in a mechanical system are the
stress ¢ = F'/A within the material and the modulus of elasticity E, = o/¢, where ¢ is
the linear material strain, dx/x. These material properties enter into calculations
such as mechanical deflection and failure modes in mechanical structures.
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Table 2.6 Yield stress o, of several materials (units are MPa) [26, 27]

Material ay (0 K) ay (80 K) ay (300 K)
304L-SS 1,350 1,300 1,150
6061-T6 Al 345 332 282
OFHC-Cu (Annealed) 90 88 75
Cu+2 Be 752 690 552
Brass (70% Cu, 30% Zn) 506 473 420
Inconel X-750 940 905 815
G10-CR 758 703 414
Teflon 130 65 20

Table 2.7 Ultimate stress of several materials (units are MPa) [26, 27]

Material o, (0K) 7, (80 K) 7, (300 K)
304 L-SS 1,600 1,410 1,200
6061-T6 Al 580 422 312
OFHC Cu (annealed) 418 360 222
Cu+2 Be 945 807 620
Brass (70% Cu, 30% Zn) 914 804 656
Inconel X-750 1,620 1,496 1,222
G-10-CR 758 703 414
Teflon 194 86 21

Most structural materials are characterized in terms of their uniaxial stress limits.
Typically, the yield stress of a material, ¢, is defined as the load that creates a 0.2%
permanent deformation; however, this definition is sometimes not meaningful
particularly if one is considering a brittle material. The yield stress sometimes
refers to the load that produces a distinct change in the slope of the stress—strain
curve. In any case, for the design of structural components in systems, it is
advisable to stay well below the specified yield stress of the material in use;
typically to a maximum stress not exceeding 2/3¢,. Furthermore, in an application
involving cyclic loading, this design value must be de-rated even further to take into
account the failure associated with repeated application of load.

The ultimate stress g, represents that level of stress necessary to cause failure
of a particular material under tensile load. In ductile materials, the ultimate stress
is considerably greater than ¢, and can be associated with substantial permanent
deformation. On the other hand, brittle materials have ¢, ~ ¢,,. Composite structural
materials such as fiberglass epoxy have even more complex behavior.

For most common structural materials, the yield and ultimate stresses increase
with decreasing temperature. The magnitude of this increase varies from around
10% in some metallic alloys to over 100% in polymeric materials. The increase in
strength is seen to result from the reduced thermal excitations within the lattice,
which inhibits the spread of dislocations. Listed in Tables 2.6 and 2.7 are respec-
tively the yield and ultimate stress values for several materials commonly used in
cryogenic applications. Values listed are typical and considerable variation can
occur depending on the treatment and form of the particular materials. More
detailed tabulations can be found from several sources in the literature [4, 6].
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Table 2.8 Young’s modulus E, of several materials (units are GPa) [26, 27]

Material E, (0 K) E, (80 K) E, (300 K)
304 -SS 210 214 199
6061-T6 Al 78 77 70
OFHC-Cu (annealed) 139 139 128
Cu+2 Be 134 130 118
Brass (70% Cu, 30% Zn) 110 110 103
Inconel(X-750) 252 223 210
G-10-CR 36 34 28
Teflon 0.7 2.8 4

Table 2.9 Figure of merit (c/k) for several different structural materials (units are MPa-m-K/W)

Material o/k (4 K) a/k (80 K) a/k (300 K)
304 ss 6,000 160 80
6061 T6 AL 36 3 2
G-10 12,000 1,600 500
Brass 150 9 3
Copper 2 2.5 3

The modulus of elasticity, or Young’s modulus E,, represents the change in
stress level needed to cause a unit change in strain while the material is in the elastic
region. Thus, Young’s modulus is simply the slope of the stress—strain curve for
small values of strain. As with the yield and ultimate stresses, Young’s modulus
also increases with decreasing temperature. A list of typical values for technical
materials is shown in Table 2.8. Unlike the limiting stress values, Young’s modulus
is not as strongly affected by material treatment and form.

Before leaving the subject of structural materials, it is worth mentioning a
method for determining the relative merits of different materials for structural
applications. In the simplest example, a figure of merit (FOM) can be constructed
based on the ratio of the allowable stress to the thermal conductivity (FOM = g/k)
of a particular material. Thus, high FOM materials have high strength and low
thermal conductivity, such as stainless steel or certain fiberglass composites (G-10).
On the other hand, a low FOM material would have high thermal conductivity and
low strength, e.g. pure metals like aluminum and copper.

Table 2.9 shows the figure of merit for several different materials as a function of
temperature. Note that the highest FOM is for G-10 composite due to its relatively
high strength. On the other hand, clearly pure copper is not suitable for structural
applications.

2.5 Superconductivity

Superconductivity occurs in a large number of elemental metals, alloys and
now in several classes of ceramic materials. This effect, which manifests itself
as an absence of electrical resistivity along with an expulsion of magnetic flux,
was first observed by H. Kamerlingh Onnes in 1911 as part of an investigation of
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the electrical resistance of pure metals at low temperatures. First performing such
experiments with mercury, Onnes observed a sharp transition from the normal
resistive state to one which had immeasurably small electrical resistance at a
temperature near the normal boiling point of helium, T~ 4.2 K. This new state,
termed by Onnes as “supraconductive,” has been the subject of much fundamental
theoretical and experimental research in the many years since its discovery [28].

In the 1960s, high-field superconductive materials, mainly as Nb3Sn and NbTj,
were discovered spawning a lot of activity in high current technical applications
[29]. In particular, superconductive magnets began to be developed for a wide
range of applications for everything from particle accelerators to magnetic reso-
nance imaging instruments. On a smaller scale, the high current densities in these
materials made possible superconductive electronics for sensors and computers.
Therefore, it is important to note that much of the interest in helium cryogenics is
brought about by the existence of these materials and their applications.

Late in the 1980s, the field of superconductivity was drastically changed with the
discovery of a new class of layered compounds that display superconductivity at
high temperatures, near the boiling point of liquid nitrogen. Today, these materials,
commonly referred to as high temperature superconductors (HTS), are actively
being studied for all sorts of applications as well as for their fundamental physical
properties. Their success still depends on cryogenic systems, but due to their higher
operating temperatures, more effort is being placed on the development of cryo-
genic refrigeration in the range from 20 to 80 K. However, large scale applications
of superconductivity for particle accelerators and fusion energy continue to utilize
NbTi and Nb;Sn and thus require liquid helium cryogenic systems.

In the present context, it is not possible to provide a thorough review of the physics
and properties of all superconductors. For this, the reader is encouraged to seek out
one of several monographs or texts on superconductivity and its applications. The
present discussion, therefore, provides only a brief review of the properties of
superconductors along with some discussion of their usefulness in applications.

2.5.1 Type I Superconductivity

There are two main types of superconductors with the distinction mainly associated
with their electromagnetic properties. Type I superconductors, which comprise
most of the pure elemental superconductors, have a sharp transition to the zero
resistance state and simultaneously a total screening of magnetic flux within
the bulk below T, the superconducting transition temperature. Thus, Type I
superconductors are often referred to as perfect diamagnetic materials. The normal
state in a Type I superconductor can be recovered by the application of an external
magnetic field greater than the critical field H,.. Unfortunately, for Type I super-
conductors and their potential applications, H. has a rather low value, uoH. <
100 mT, making Type I superconductors unsuitable for magnet and other high
field applications. Type II superconductors, which sustain the superconducting state
to high fields, are usable for high field applications as discussed in the next section.
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Table 2.10 Ciritical temperature and critical field of Type I superconductors [30]

Material T.(K) LoHy(mT)
Aluminum 1.2 9.9
Cadmium 0.52 3.0
Gallium 1.1 5.1
Indium 34 27.6
Iridium 0.11 1.6
Lead 7.2 80.3
Mercury o< 4.2 41.3
Mercury 4.0 34.0
Osmium 0.7 6.3
Rhenium 1.7 20.1
Rhodium 0.0003 4.9
Ruthenium 0.5 6.6
Tantalum 4.5 83.0
Thalium 24 17.1
Thorium 1.4 16.2
Tin 3.7 30.6
Tungsten 0.016 0.12
Zinc 0.9 53
Zirconium 0.8 4.7

The magnetic field-temperature boundary between the superconducting and
normal state in a Type I superconductor is given by an empirical relationship
between the critical temperature and field,

T 2
H.(T) = Ho|1 — (F) (2.30)

where H,, is the critical field at T=0 K. Listed in Table 2.10 are these parameters
for known Type I superconductors [30]. Note the range of transition temperatures
vary from the highest value of 7.2 K for Pb to 325 puK for Rh. A similar wide
variations in the critical field is evident. It is also interesting to note that metals that
are normally thought of as good conductors, copper, silver and gold, are not
superconductors. This fact is related to the fundamentals of the superconducting
state.

A Type I superconductor exposed to an external magnetic field H < H_. will
exclude the flux from penetrating into its bulk. This behavior, known as the
Meissner effect, is shown schematically in Fig. 2.13. There are essentially two
equivalent ways of looking at the Meissner state. The first is to note that because
the superconductor has no electrical resistance, persistent screening currents
are established on the surface opposing any change of the flux within the bulk.
These currents flow in a layer at the surface of thickness A= 50 nm, known as the
London penetration depth. The London penetration depth is one of two fundamental
characteristic lengths used to define the behavior of a superconductor. The alternate
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Fig. 2.13 Meissner effect in a superconducting sphere cooled in a constant applied field. Below
T., B =0 within the superconductor independent of the order of application of magnetic field and
low temperature environment

picture is to consider the superconductor as if it were a perfectly diagmagnetic body
such that its magnetization always equals the negative of the applied field, M = -H.
In the superconducting state, these two interpretations lead to equivalent physics.
Mainly, describing a superconductor as being a perfect diamagnet has the advan-
tage of always predicting the flux exclusion condition independent of the order of
the applied field and immersion in a low-temperature environment.

Superconductivity is brought about by the electrons in the metal forming what
are known as Cooper pairs with integer spin and thus obeying Bose — Einstein
statistics. This is a complex quantum mechanical phenomenon. However, one
can get an appreciation for the properties of Type I superconductors that does
not require advanced quantum mechanics by studying the thermodynamics of the
superconducting to normal transition. In the normal state, the thermodynamic and
transport properties of Type I superconductors are essentially the same as those of
other normal metals and are only weakly magnetic (M ~ 0). On the other hand, in the
superconducting state a metal is perfectly diamagnetic with M = -H. In follows that
at the transition between the superconducting and normal states, the Gibbs free
energies of the two states must be equal. The differential form for Gibbs free energy
for a magnetic material is written,

1
dg = —sdT + vdp — 3 toH? (2.31)

At the critical temperature, the phase transition occurs at constant temperature
and pressure so that g,(H.)=gy(H.). However, since the normal state is non-
magnetic g,(H.) = g,(0) while the superconducting state is diamagnetic, and g,(H.)
> g,(0) by the magnetic energy density, % UoH?. Thus, the difference between the
Gibbs free energies at zero field may be written as,

1
8(0) — £:(0) = 5 noH; (2.32)
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Combining (2.32) with the empirical relationship for the temperature
dependence of the critical field (2.30) yields a relationship for the entropy differ-
ence, S, — S, = — % (gn — g5) between the two states,

T\?| T
1— (F) ] T (2.33)

where S = ps refers to the entropy per unit volume of the superconducting material.
Note that at T,., AS =0, which means that the transition is second order and there is
no latent heat associated with the superconducting-normal transition at zero applied
field. The heat capacity difference, C, — C; = T%(Sn — S,) at the transition is
obtained from the derivative of the entropy,

| 2p0H} T\*| (T
C=Co== =31 ) |7 (2.34)

At T, this expression predicts a discontinuous change in the specific heat, C,, —
Cs = —4pyH3 /T, followed by a decrease proportional to T° below T.,. Also, recall
from Sect. 2.1.2 that the electronic contribution to the specific heat of metals
dominates at low temperature, C,=)T. Figure 2.14 displays these dependences.
Experiments have confirmed an approximately cubic temperature dependence of
the specific heat for T near T.. However, at lower temperatures, T <0.5 T,
an exponential temperature dependence is observed. Such behavior is indicative
of an energy gap in the electron density of states and is supporting evidence for the
microscopic theory of superconductivity.

The behavior of thermal conductivity of Type I superconductors can be of
considerable technical utility. Recall that the thermal conductivity of a metal has
two primary contributions due to the transport of electrons and phonons and that it
is proportional to the specific heat. For pure metals at low temperatures, the
electronic contribution tends to dominate. However, in a superconductor, some of
the electrons form Cooper pairs and undergo Bose-Einstein condensation into the
ground state, thus being unable to carry thermal energy. As a result, the thermal
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conductivity of a pure Type I superconductor is less than that of the normal state for
T < T.. In the vicinity of T, this dependence is approximately cubic in temperature
dropping off exponentially at low temperatures. This behavior is consistent with the
temperature dependence to the specific heat, see Fig. 2.14.

As the normal state can be restored by the application of a magnetic field greater
than H,, the thermal conductivity of a pure Type I superconductor at T < T, but
H > H_ should increase relative to that of the superconducting state. In particular, at
low temperatures the thermal conductivity should vary linearly with temperature,
k~T, consistent with the free electron model discussed in Sect. 2.3.4. Thus, the
thermal conductivity of a strip of Type I superconductor below T, can be switched
by several orders of magnitude by application of an external magnetic field of
greater than H.. This operating principle is useful as a thermal switch in very low
temperature refrigeration systems that cool samples to some very low temperature,
T <1 K. In this application, once cooled the sample can be thermally isolated by
switching off the magnetic field and returning the strip to the superconducting state.

Example 2.4

A superconducting switch, consisting of a strip of tin (T,. = 3.7 K) surrounded by a
small magnet capable of H > H,, connects the cold plate of a *He refrigerator
(T =0.5K) to a sample at the same temperature. Calculate the thermal conductivity
ratio (k,/k,) assuming k,, = T and k;= ae” ™D below T, in the superconducting
state.

To find the ratio of the thermal conductivities, it is not necessary to know the
absolute values. However at T, the thermal conductivities of the two states must
be equal: k,(T.) = ky(T,) or fT,.= ae~!. This means that /o= 0.1 K. Note that
these are not thermal conductivity units, but that is not a problem as again the
goal is a dimensionless result. The important boundary condition is that the ratio
plo at T.. be unity. At 0.5 K, the ratio of the thermal conductivities is,

ki(0.5K) BT 0.1K ' x0.5K .

ks(0.5K) o T/T e 12

So the switching ratio of the thermal link is nearly two orders of magnitude.

The critical current /. is the maximum current that a superconductor can carry in
the zero resistance state. This is generally a function of magnetic field. In the case of
Type I superconductors, /. is determined by the magnitude and direction of the
magnetic field at the surface of the conductor as compared to H. (Silsbee’s
hypothesis). In self field,

1. = 2naH, (2.35)

where a is the radius of the wire. Although H. is relatively low, Type I super-
conductors can have large currents. For example, a 1 mm radius lead wire at 4.2 K
in its self field can carry in excess of 260 A of resistanceless current. However, since
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H. is so low, Type I superconductors are not suitable for high field magnets.
For this, fortunately we have Type II superconductors. As seen in the next section,
I, in Type II superconductors results from an entirely different mechanism having
to do with the details of the microstructure.

Before leaving the subject of Type I superconductivity, it is worth mentioning a
few aspects of the microscopic theory of superconductivity. The complete theory of
superconductivity is based on microscopic interactions between the electrons and
phonons within the lattice, leading to correlated behavior of the electrons, known as
Cooper pairing. The mathematical treatment of this model is quite complex,
requiring a thorough knowledge of advanced quantum mechanics, and is well
beyond the scope of this brief survey. Nevertheless, there are some important
results of the microscopic theory which are helpful in understanding the general
behavior of superconductors.

One major success of the microscopic theory is its ability to predict the
superconducting transition temperature of a metal based on knowledge of the
electron and phonon energy distributions. The electron—phonon interaction which
produces Cooper pairing causes a gap in the density of electron states. This gap
is the origin of the exponential specific heat at low temperatures. The width of
the gap is directly proportional to the superconducting transition temperature. In the
microscopic theory the exact formula is derived for the critical temperature T,

—1
T, — 1.140p exp (uT@)) (2.36)
F

where 0@ p, is the Debye temperature, and D(ey) is the electron density of states a the
Fermi surface. The attractive potential U is due to the electron—phonon interaction
which leads to Cooper pairing of the superconducting electrons. Two interesting
conclusions follow from (2.35). First, metals with high resistances near room
temperature thus possessing large electron—phonon interactions and a high normal
state resistivity, will also be more likely to be superconductors. This result, which is
approximately borne out by experiment, explains why copper is not a superconduc-
tor. Second, metals with even numbers of valence electrons having a smaller D(¢f),
since they have fewer free electrons are less likely to be superconductors. Empiri-
cally, it is found that the transition temperatures of superconductors peak with
odd numbers of valence electrons in support of this theoretical conclusion [31, 32].
In its fully developed formalism, the microscopic theory of superconductivity is
considered to be one of the major triumphs of theoretical solid-state physics.

2.5.2 Type II Superconductivity

Most theories of superconductivity introduce a second characteristic length, known
as the coherence length, ¢. In the microscopic theory, the coherence length is
roughly the size of a Cooper pair, while in macroscopic theory it represents the
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Fig. 2.15 Typical
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Table 2.11 Critical temperature and upper critical field of common Type II superconductors [35]

Material T.(K) LoH +(T)
Nb 9.3 0.29

\% 5.4 0.7
NbTi 9.3 13

Nb; Sn 18 23

V,Ga 15 23

Nb; Ge 20.5 41

spatial distance over which the superconducting to normal transition occurs.
The coherence length is a strong function of the crystal structure and lattice
imperfections. Superconductors with large values of & > A are Type I, while Type
II superconductivity occurs for those materials where ¢ < /.

The fundamental distinction between Type II and Type I superconductors can be
seen by comparing their magnetic behavior. As we discussed above, in a Type I
superconductor the magnetic flux is totally excluded provided H <H.(T).
By comparison, in a Type II superconductor penetration of magnetic flux is allowed
under certain circumstances. In an ideal Type II superconductor, the magnetic
penetration is quantized in units of fluxons, ¢ o= h/2e, and forms a regular trian-
gular array, called a fluxon lattice, based on the magnitude of the external field. In
effect, this brings small regions of the superconductor into the normal state. Such
behavior, which is clearly a deviation from the perfectly diamagnetic Meissner
state, is referred to as the mixed state in Type II superconductivity.

Because of flux penetration, the Type II superconductor in the mixed state is no
longer a perfect diamagnet. A typical magnetization curve of a Type II supercon-
ductor is shown in Fig. 2.15. Also indicated is a magnetization curve for the same
material if it were Type [; however in the case of Type II superconductors H.. is only
defined in the thermodynamic sense and does not represent an actual magnetic
transition. In Type II superconductors there are two critical fields. The lower critical
field H, represents the transition from the Meissner state to the mixed state, while
the upper critical field H., marks the maximum field for which any superconduc-
tivity is present. Listed in Table 2.11 are the metallic Type II superconductors that
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were known prior to 1986 [32-34]. These materials are sometimes referred to as
low temperature superconductors (LTS) and continue to be the materials of choice
for most large superconducting magnet applications. Note that for these materials,
although the critical temperature is only slightly higher than that of some Type I
superconductors, H,, is often orders of magnitude higher than H..

The mixed state in a well annealed Type II superconductor has an equilibrium
condition consisting of a uniform fluxon lattice. In such a Type II superconductor,
these flux lines are free to move about within the crystal. If the superconductor is
subjected simultaneously to an external field and transport current, the flux lines
will move under the influence of the Lorentz force, F; = J x B, causing dissipation.
This is an undesirable condition leading to a relatively low value of the critical
current /... Fortunately, Type II superconductors have been developed that contain
imperfections and crystal defects to pin the individual flux lines and thus restrict
flux flow. Flux pinning by various forms of lattice imperfections is the dominant
mechanism that allows practical superconductors to carry substantial transport
currents in magnetic fields approaching H,. It is an interesting feature of super-
conductivity that the best properties in Type I superconductors are achieved with
high purity, defect free metals while Type II superconductors performance
improves by additions of impurities.

For high-field applications there are a limited number of commercially available
superconductors. The two materials that are employed most often in magnets are
NbTi and NbsSn. NbTi is a binary alloy of approximately equal weight percent of
each constituent. It has good mechanical properties, is easily processed in a
composite with copper, and has a reasonably high upH,~15 T and T.~ 10 K.
As a result, NbTi is the preferred superconductor for all magnetic devices with the
exception of those requiring the highest fields, ypH = 10 T. The other common
practical superconductor, Nb;Sn, is an intermetallic compound of the general class
known as the A-15 s. Its mechanical properties are not as good, being very brittle,
but Nb3Sn has superior high-field characteristics, pupH.,~28 T and T,.~ 18 K,
making it particularly well suited for very high-field magnetic devices. Both of
these materials can be made with sufficient flux pinning to achieve high critical
current densities. Also, they can be processed into multifilament wire form with
copper providing a reliable product that can be cabled and wound into a wide
variety of magnet designs.

Figure 2.16 shows schematically how the critical current density, J.. [A/mm?],
varies with magnetic field and temperature for NbTi and Nb3;Sn. The numerical
values given in this graph are not state of the art, but rather are shown here for
general trends with intrinsic variables. Also shown in the figure are the range of
temperatures obtainable by the two lowest-temperature cryogenic fluids, liquid
helium and liquid hydrogen. For reasonable current densities in high magnetic
fields, it is apparent that low temperature helium provides the only practical coolant
for these materials.

The discovery and rapid development of high temperature superconductors has
introduced new opportunities for applications. This class of materials are distinct
from most LTS because they are non-metals with very poor normal state conduc-
tivity. Their mechanical properties are poor and the superconducting properties are
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Fig. 2.16 Upper critical field, temperature, and current density for commercial superconducting
materials NbTi and NbsSn [35]

Table 2.12 Critical properties of HTS materials. Two
values of H,, indicate anisotropic material property [34]

Superconductor T.(K) LoH 2(T)
MgB, 39 16/2.5
LaSrCuO 40 50
YBCO 90 670/120
Bi,Sr,CaCu,Og 90 280/32
Bi,Sr,Ca,Cuz04¢ 110

TIBaCaCuO 110

TIBaCaCuO 125 ~120
HgBa,Ca,Cu304 133 ~160

more difficult to optimize due to complexities in their reaction heat treatment. Also,
in most cases, these superconductors are layered structures with anisotropic
properties that depend on their orientation with respect to the applied magnetic
field.

Table 2.12 is a list of materials that fall broadly into the class of HTS. Note that
all these materials superconducting properties are Type II. In most cases, ppH .o
is only approximately known since its value is so high that it is difficult to
measure. These materials are manufactured by different processes than LTS with
the procedures being too complex to discuss in the current review. Production
of HTS wire suitable for applications also depends on material selection.
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Some materials, such as the BSCCO based conductors, are produced in a silver
matrix, which provides the needed parallel path for electric current. Other materials
such as YBCO can be formed on a variety of substrate materials.

Overall, HTS materials have transition temperatures that are sufficiently high to use
other coolants such as liquid neon or nitrogen or by a closed cycle cryocooler.
However, since the superconducting properties (J., H,.,) of these materials all improve
with decreasing temperature, some HTS applications are still utilizing helium cooling
all be it at somewhat elevated temperatures. Certainly, HTS applications have
stimulated the development of small scale cryocoolers, a topic discussed in Chap. 8.

The problems of superconducting materials are of great concern to helium
cryogenics. Superconducting materials require helium temperature environments
to achieve their properties, but more importantly, the behavior of superconductive
devices are governed largely by problems of heat transfer, efficient cooling, and
safety. For example, the properties of a superconductor are conducive to carrying
electric current provided the material remains below the local critical temperature
and field. Thermal equilibrium is not always possible so superconductors must
be fabricated in a low-resistance matrix material like copper or aluminum to
provide the current-carrying capacity should the superconductor enter the normal
state. Proper analysis of this problem requires knowledge of the heat transfer
and fluid flow conditions present in the particular magnetic device.

Questions

1. Why does the electrical conductivity of a metal increase while that of a
semiconductor decrease with decreasing temperature?

2. Why do alloys generally have lower thermal conductivity than pure metals?
What does this say about material selection for structural supports in cryogenic
systems?

3. Explain using thermodynamic arguments why the thermal expansion coefficient,
o, of a material goes to zero as absolute zero is approached.

4. Why do materials normally get stronger as the temperature decreases?

5. Calculate the ratio oy/k for beryllium copper and Teflon at 300, 80 and 4 K.
Compare with values in Table 2.8. Comment on their relative usefulness as
structural materials.

Problems

1. Calculate the heat content in a two tonne (2,000 kg) iron magnet at 300 K. How
much liquid nitrogen is required to cool this magnet to 80 K? How much liquid
helium is required to cool this magnet from 80 to 4 K? (Hint: Assume that the
internal energy change is entirely absorbed by the liquid resulting is a mass of
vapor. Use the Debye model to calculate the change in internal energy, ®p(Fe)
=460 K; hy(He@ 4 K) =21 kJ/kg; he, (N, @ 80 K =200 kJ/kg)).

2. Calculate the difference between the constant pressure and constant volume
heat capacities of aluminum at 300 K.
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. Derive an expression for the temperature at which the electron and phonon

contributions to the heat capacity are equal. Of the elements listed in Tables 2.1
and 2.2, which has the highest value of this temperature?

. The thermal conductivity of 304 stainless steel varies with temperature as k

(T)=1.5 T4 [W/m K]. Calculate the total conduction heat transfer for a
10 mm diameter rod, 100 mm in length. One end of the rod is at 80 K and
the other is at 300 K.

. A Pt resistance thermometer consists of a 1 m long thin wire of pure annealed

platnium. Calculate the diameter of the wire based on the requirement that the
power dissipation not exceed 0.1 pW at room temperature and the current
be less than 10 pA. What is the sensitivity of this sensor, dR/dT?

. Derive (2.34) starting with the Gibbs free energy change and the empirical form

for the critical field of a Type I superconductor,

ol 3]

a. Adiabatic magnetization is the constant entropy application of the magnetic
field that brings the superconductor into the normal state. Derive an expres-
sion for the final temperature T as a function of Hy, T, and T;.

b. Choose a Type I superconductor and calculate the value of AT}, ., the maximum
value for the temperature difference occurring from adiabatic magnetization.

Hint: You may assume that the normal state specific heat C,, =yT and neglect
the phonon heat capacity.

. Thermal conductivity of copper

a. Determine the mean free path in a copper sample with a residual resistivity
ratio, RRR = 50 for temperatures below 10 K. Use the following values for
copper: Fermi velocity vg = 1.57 x 10° m/s and the electron concentration
n=845x10"m".

b. Estimate the thermal conductivity of the same copper at 2 K.

. The maximum electrical current that can be carried by a Type I superconductor

wire is limited to the current that produces the critical field H,. at the conductor
surface (Silsbee’s Law).

a. Derive an expression for the critical current of a cylindrical superconducting
wire of radius R as a function of temperature.

b. How much current can a 1 mm diameter indium wire carry at 1.8 K? [Hint:
Use Ampere’s Law to determine the magnetic field at the surface of the wire. ]

. A normal metal wire carrying an electrical current will produce heat, raising the

temperature of the wire. Estimate the time required for a copper wire carrying a
current density of 100 A/mm? to heat up from 4.2 to 300 K if it is thermally
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insulated from the environment. Assume C,,= C, and use approximations for
both the resistivity and the specific heat as functions of temperature.

A sample of wire is made by codrawing a copper tube over an aluminum rod. The
aluminum has a cross-sectional area A1 and the copper A2. The wire is stress free
at ambient temperature, T =293 K. Derive a relationship for the stress in either
component of the wire as a function of A1, A2, and material properties when the
wire is cooled to 4.2 K. For equal cross-sectional areas (Al = A2), calculate the
stress in the copper and compare it with the yield of annealed OFHC copper.

A temperature sensor located at 4.2 K requires four Manganin instrument leads
to 300 K. The length of the wires is 1 m and the sensor operating current
(for two of the leads) is I =10 pA. Calculate the required wire diameter such
that the thermal conduction heat load is equal to the Joule heat (I’R) when the
two leads are energized.

Consider a material that has a thermal conductivity varying with temperature as
k= BT and a constant thermal contraction coefficient, o.. Derive a relationship
for the overall change in length of a rod of initial length L as a function of
the temperature difference between the two ends of the rod. Show the result
for the special case where the low temperature end is at 0 K. Compare the
answer to that for k£ = constant.

Same as Problem 12 except let the thermal conductivity be a linear function of
temperature, k = fiT.

Calculate the Lorentz ratio (L = kp/T) for one of the materials in Tables 2.4 and
2.5. Compare to the free electron value, L.
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Chapter 3
Helium as a Classical Fluid

Of all the cryogenic fluids, helium exhibits behavior that most nearly approximates
that of an ideal fluid. This fact is caused mostly by the weak intermolecular
potential that helium enjoys. It further manifests itself in the fact that “He has
the lowest critical point of all fluids, 7. = 5.195 K, p. = 0.227 MPa and p. =
69.7 kg/m>. As a result of this near ideality, much of the behavior of gaseous and
even liquid helium above the superfluid transition can be treated in terms of
classical models. This is not to say that quantum effects do not contribute to the
behavior. Rather, certain features of helium in this temperature and pressure range
are controlled by a combination of physical phenomena, which can be qualitatively
if not quantitatively described in terms of classical physics models. Conversely,
certain characteristics of helium, most notably that of the liquid state below the
superfluid transition and also the solid state, have properties which are so deter-
mined by quantum mechanics that classical physics cannot be used in a meaningful
way to interpret their behavior. The present chapter focuses on those properties of
“He that are at least semi-classical. The quantum aspects, particularly superfluidity
and Bose-Einstein condensation are discussed separately in Chap. 4. This chapter
also does not consider the properties of the lighter isotope, “He, a subject that is
covered in Chap. 9. Therefore in the present discussion, we will use helium in a
generic sense to mean the abundant isotope, “He.

3.1 Helium Phase Diagram

As a beginning point to the description of liquid and gaseous helium, it is useful to
make reference to the p-T phase diagram, Fig. 3.1. In addition to the conventional
characteristics such as the critical point and two-phase coexistence, there are
several unique features to this phase diagram which should be noted. First, unlike
all other substances, the solid state of helium is not obtainable at any temperature
unless an external pressure in excess of 2.5 MPa is applied. This characteristic,
an artifact of the quantum nature of helium, is caused by the large zero point energy
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Fig. 3.1 “He phase diagram
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of the helium molecule. Thus, the lowest energy state of helium is that of the liquid,
albeit the superfluid state, He II.

Helium is also exceptional in that it has two liquid phases. He I is the normal
liquid with characteristics that are typical of classical fluids. In this region, helium
acts in many ways as a weakly interacting gas, which is at least in part due to its
weak intermolecular interaction and low viscosity. The dynamic viscosity of He I
is comparable to that of air at room temperature.

He II, or superfluid helium, has physical features that are truly exceptional.
Most notable of these features are the transport properties, with a vanishingly small
viscosity and an apparent thermal conductivity many orders of magnitude larger
than liquids or even high-conductivity solids. The line that separates the two liquid
states is termed the A-line. This designation was adopted because the specific
heat near the transition has the shape of the Greek letter 4. The /-transition
temperature is 2.178 K at saturated vapor pressure and decreases gradually with
increasing pressure until it intersects the solid coexistence boundary at 1.763 K,
p = 2.974 MPa [1].

The phase diagram of helium is also unique in that it lacks a triple point of
coexistence between liquid, vapor, and solid, because the solid state can exist only
under an external pressure. The intersection of the A-line with the two phase
coexistence regions of liquid and vapor or solid and liquid is not a triple point,
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although it occasionally is identified incorrectly as such. As is discussed in the next
chapter, the A-transition is a second-order phase transition, which means it has a
discontinuous slope in the temperature dependence of the entropy. There is no
latent heat of formation of the He II state and coexistence of He II and He I under
equilibrium conditions is not possible.

In the present chapter the properties of helium which are best described in terms
of classical models are surveyed. Thus, the subject matter is dominated by the
gaseous and normal liquid state, He I. Even with this somewhat arbitrary separa-
tion, it is not possible to analyze fully the properties of these “classical” fluids
without some reference to the effect of quantum statistics on their behavior.
Chapter 4 is reserved for the description of helium as a quantum fluid. Therefore,
the bulk of the quantum mechanical analysis of helium is presented there with
comparison to the quantum fluid, He II.

3.2 Gaseous Helium

Helium at temperatures substantially above its normal boiling point behaves more
like an ideal gas than any other commonly known fluid. This fact is the result of the
weak interatomic potential and the spherically symmetric molecular configuration.
Of course, at some point gaseous helium must deviate from ideality, otherwise
physical phenomena such as the Joule Thomson effect and liquefaction would not
occur. However, because of its similarity to an ideal gas, it is often most beneficial
to consider properties of gaseous helium in terms of extensions from the ideal
gas model.

The first goal of a physical model used to describe helium gas is the development
of an understanding of its state properties. From an experimental viewpoint, the
most common measurements are those of specific heat, C,, and C,, and the state
properties of pressure, temperature, and specific volume. The latter measurements
lead to the equation of state for the gas, which in its complete form can be combined
with the thermodynamic principles to determine the relevant state functions
including entropy and enthalpy.

The equation of state, which is a functional relationship among p, V, and T,
cannot be determined exactly for a particular real gas. However, there exist a
number of approximate relationships that also give considerable physical insight
into the processes involved. The most notable approximation to the equation of
state is known as the virial expansion, which is an expansion involving intermolec-
ular interactions. Furthermore, in developing a model to describe the interactions
between helium gas molecules, particularly near the critical point T, = 5.2 K,
a concern for quantum mechanical effects is needed. The most common isotope
of helium, 4He, obeys Bose-Einstein statistics, which must be taken into account in
the complete description of the gas.
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3.2.1 Intermolecular Interactions

Any microscopic model for the behavior of helium has as its basis an understanding
of the intermolecular potential [2, 3]. This interaction is exactly that which is
ignored in the ideal gas model. The intermolecular potential involves the forces
between the individual molecules caused by their finite size and mutual attraction.
If the helium molecule obeyed classical mechanics and the intermolecular potential
were known, then in principle it would be possible to compute the state properties
directly. However, in any real sample of gas, there are far too many molecules
(~ 10°°/m®) to realistically carry out this calculation. As a result, the normal
approach is to use empirical potentials which describe the average molecular
interactions. To properly model the problem, these potentials must contain the
physics of the molecular interaction, which is composed primarily of two terms:
(1) the hard core repulsive interaction and (2) the weaker attractive interaction
due to what is called the London-dispersion mechanism.

The hard core repulsive interaction can be understood in rather simple terms.
Molecules occupy volume and therefore collide with each other defining what
is known as a scattering cross section and a mean free path between collisions.
The details of this collision interaction are contained in the steepness of the
repulsive potential. The hard core interaction would ultimately be expected to
cause deviations from ideal gas behavior because the latter model assumes the
molecules are non-interacting point particles. Thus, the hard core repulsion makes
its largest correction to the equation of state at high density and temperature.

The attractive term in the molecular interactions is brought on by a mechanism
known as the London-dispersion interaction, so termed because it is the same
process responsible for light dispersion by molecules. To understand this inter-
action, it is important to note that a helium molecule is not truly inert. Actually, it is
composed of a nucleus containing the positive charge and a “sea” of negative
electrical charge surrounding the nucleus. The negative charge has a tendency to
oscillate about the nuclear center of the molecule causing a time varying dipole
moment. Because of this oscillating dipole, there is a momentary electrostatic
potential set up in the vicinity of the molecule which varies as Vy(r) ~ 1/r°.
When two molecules are in close proximity and have oscillating dipole moments
that are out of phase, there will be net attractive interaction. This interaction scales
as the product of the two oscillating dipole moments, ®,(r) ~ 1//°. Detailed
quantum mechanical analysis by London has suggested that the attractive interac-
tion is a sum of terms, the first of which is the dipole contribution. As with the hard
core potential, the attractive interaction causes deviations from the ideal gas
equation of state. It has the largest effect at low temperatures and high densities,
resulting in a tendency for the molecules to exhibit collective behavior which can
eventually lead to liquefaction.

Numerous examples of empirical potentials have been proposed to describe
the total interaction of inert spherically symmetric molecules such as helium.
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Table 3.1 Coefficients of the Lennard-Jones 12—6 potential for common cryogenic fluids [2]

ro (nm) ', (NM) eolkp
He 0.2556 0.2869 10.22
Ne 0.2789 0.3131 35.7
N, 0.3681 0.4132 91.5
0, 0.3433 0.3853 113.0
Ar 0.3418 0.3837 124.0

Probably the most successful, because of its mathematical simplicity and physical
basis, is the Lennard-Jones 12—6 potential. This potential has a mathematical form,

Oy (r) = 4eo {(C—?)lz— ('70)1 3.1)

that depends on the determination of two parameters: ¢;, which is a measure of the
depth of the potential well, and ry, which is a dimensional scale of the molecular
radius. Plotted in Fig. 3.2 is the Lennard-Jones potential for a helium molecule with
the quantities &y, ry, and r,,, the radius of the potential minimum, all indicated.
Listed in Table 3.1 are these parameters for some common cryogenic fluids as
comparison [2].
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Other examples of empirical intermolecular potentials that are occasionally used
to approximate real gas behavior include the hard sphere potential, square well
potential, and the Buckingham exp-6 [4].

3.2.2 Virial Expansion

Suitable selection of the intermolecular potential is insufficient in itself for
approximation of the equation of state. It is also necessary to adopt a form for the
equation of state which incorporates the preferred form of the intermolecular
potential. Such a relationship has numerous forms, but the best for physical
interpretations is the so-called virial expansion, which can be written as an expan-
sion in the specific volume v:

B C D
py=RT(1+=+—+=+.. (3.2)
A% V A%

The quantities B, C, D, and so on are called the second, third, fourth, and higher-
order virial coefficients. Note that a special case of the virial expansion is that of
the van der Waal equation of state, which will be discussed later.

The physical basis for the virial expansion in the form shown in (3.2) is for each
coefficient to describe a particular type of interaction. Thus, the second virial
coefficient B should incorporate corrections to the equation of state due to two-
body interactions. The third virial coefficient C incorporates corrections due to
three-body interactions, and higher-order terms follow the same sequence. The
requirement for any theoretical description of the virial coefficients is that it must
include the many-body interactions and use a physically realistic potential.

Based on this sequence it should be clear that the second virial coefficient is the
largest term in the expansion and therefore makes the largest correction to the ideal
gas law. For classical fluids, the second virial coefficient is written,

N (* -0
By = ‘EJ (%" — 1)dnrdr (3.3)
0

where @(r) is the interaction potential assumed to be spherically symmetric and N is
the total number of molecules per unit volume. By considering (3.3) it is easy to
see that the problem of analytical determination of B becomes quite difficult when
complex potentials are employed.

The virial expansion becomes even more difficult to evaluate when considering
gaseous helium at relatively low temperatures because of the need to include
quantum mechanical effects in the analysis. A complete description of the quantum
virial expansion problem is beyond the scope of this book [4]. However, it is
instructive to briefly survey the problem to understand better some of the difficulties.
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To determine the quantum virial expansion, the equation of state is expanded in
terms of a quantity known as the fugacity, z = e #/*7 where u is the chemical
potential. This is a fairly standard approach in quantum statistical mechanics [4, 5].
The result is an expression for the pressure in terms of this quantity,

o k
i ; bz (3.4)

where b, contains the physics of the problem. These coefficients must be deter-
mined by substitution in the time-independent Schrodinger equation,

h2
- [Vzrx// +
2m,

I(1+1)
7'2

114 +O(r)ry = Ery (3.5)

where m, = mymy/(m; + my) is the reduced mass, / is the angular momentum
quantum number, and is the spherically symmetric wave function. The solution
to the above problem leads to a set of energy levels, some of which are bound
states and some of which are in the continuum. Applying quantum mechanical
scattering methods, we calculate the phase shift 7,(q), where ¢ is the energy
parameter. The phase shift serves the purpose of incorporating interactions into
one parameter. The wave function solution to the Schrodinger equation includes
the phase shift as part of its argument,

1
W = sin(gr — inl +n) (3.6)

The virial coefficients are then found by summing over all states, bound and
continuum. For “He this exercise leads to the computed second virial coefficient
shown in Fig. 3.3. Also shown in the figure is the second virial coefficient obtained
from the classical calculation for comparison. Clearly, the two quantities are
different, particularly below the Boyle temperature, defined by the second virial
coefficient going to zero; for “He T, ~ 20 K. At temperatures below around 10 K,
there is about a factor of two difference between the classical and quantum second
virial coefficients. Also displayed in Fig. 3.3 are the experimentally determined
virial coefficient values, which show close agreement with the calculated quantum
coefficient using the Lennard-Jones potential [4].

In addition to virial expansion coefficient values obtained from basic principles,
there are also a number of empirical representations of the second virial coefficient
that are useful for calculations. A simple general form for the function is described
by McCarty [1],

B(T) = Z b T3=/2 (3.7)
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where on the order of nine terms in the expansion are required to fit adequately the
temperature dependence over the whole range. Also, a less cumbersome empirical
fit suitable below the Boyle temperature has been suggested by Keller [4],

B(T)=a——

T (3.8)

where, for 4He, a = 23.05 cm®/mol and b = 421.77 cm® K/mol.

Example 3.1

the Boyle temperature.

Use the empirical expression for the second virial coefficient (3.8) to estimate

The Boyle temperature is approximately that corresponding to B (Tg,) = 0.
From (3.8), this means that Tz, ~ b/a = 18.3 K.

Before leaving the subject of the Boyle temperature, it is useful to consider its
physical significance in terms of the equation of state. Since Tp, marks the tran-
sition between a positive and a negative virial coefficient, it indicates the regions
where different parts of the interaction potential dominate. Below Tg,, B is
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negative, implying that the pressure is less than would occur for a truly ideal gas.
Since the molecules must be attracted to each other to cause this behavior,
the London dispersion forces must be the more important in this regime. On the
other hand, above Tp,, B is positive, implying the gas pressure is actually greater
than that of an ideal gas. To have this effect requires an excess repulsion and
therefore the hard core potential must be the more important contribution to the
potential in this region. Thus, although the Boyle temperature does not represent
a true transition temperature for a particular gas, it does define the range of
dominance of the various contributions to the intermolecular interaction.

The third virial coefficient C is more difficult to calculate because it involves
three-body interactions. For the classical picture and the hard sphere potential,
C can be shown to vary as the square of the molecular volume [4]. Thus, this
coefficient is of little importance except at relatively high densities and low
temperatures. Efforts to calculate the third and higher virial coefficients for helium
have been hampered by the lack of experimental data. Furthermore, the exact
form of these coefficients is less important to application than the development of
an empirical equation of state suitable for modeling the helium properties over a
wide range of temperatures and pressures.

3.2.3 Empirical Equations of State

Development of the theory of quantum virial expansions is helpful for under-
standing the complexities of gaseous helium at low temperatures. However, for
applications, the above format is far too cumbersome to allow rapid calculation
of properties. For this reason, empirical equations of state have been developed
which make no attempt to fully understand the physical problem, but rather
provide a tool for calculation. With a closed-form solution for the equation of
state, it is a rather straightforward process to derive the other important thermo-
dynamic properties.

The simplest empirical equation of state takes into account the deviations from
ideal behavior in terms of a compressibility factor z. As defined, the compressibility
factor may be written

_pr

2= o7 (3.9)

which obviously is equal to unity for an ideal gas. In the virial expansion, z is
defined as the quantity in parenthesis in (3.2). Historically, the value of z is given
empirically in either graphical or tabular forms since it depends on state variables;
z for helium are displayed graphically in Appendix A.1.

The most common classical equation of state for a real gas is due to van der Waals,

(p—i—%) (v—b) =RT (3.10)
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Here @ and b are constants that depend on the particular gas. Physically, b is related
to the strength of the hard core potential so that even at T = 0, the fluid occupies a
finite volume. a is an effective reduction in pressure due to intermolecular
attraction.

The law of corresponding states [2, 6] is a useful tool to characterize a real fluid
particularly near its critical point. This law defines a general equation of state as a
function of the reduced variables: T/T,, p/p., and v/v, that is,

pﬁz O(T/T.,v/v.) G.11)

¢

where ¢ is an undetermined function that relates these quantities. The van der
Waals gas is a special case of (3.11). For the law of corresponding states to apply,
several assumptions are needed. First of all, the law ignores quantum effects. Since
helium has substantial quantum effects in its real gas behavior it would be expected
to deviate from the law of corresponding states. A second assumption has to do with
the symmetry of interaction. The law is established on the basis of symmetric
molecular potentials. In fact, many molecules have very asymmetric bonding and
configuration. A good example of an asymmetric potential is H,O, but others
include CO, and organic compounds like CH,. The law of corresponding states
ignores these effects.

The law of corresponding states can be used to determine numerical values for
the coefficients in a particular equation of state. In the vicinity of the critical point,
all isotherms have an inflection point; see, for example, Fig. 1.2. Thus, it follows
that the equation of state must have a zero in its first and second derivative when
evaluated at the critical point, i.e.:

op\ _ (9p\
), - (53), 0 @

This represents two equations which must be satisfied by the equation of state.
Consider for example the van der Waals equation of state, where there are two
coefficients, a and b, that must be determined for a particular gas. Differentiating as
in (3.10) these quantities are immediately determined in terms of critical pressure
and temperature,

27 R2T?
- 1
T h ©-15)
and
RT.
p— e (3.14)

8pe
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Table 3.2 Critical point coefficients to the van der Waals equation of state for various cryogenic
fluids [7]

Fluid T. (K) pe (MPa) a (m®kPa/kmol?) b (m>/kmol) Tgo (K)
He 5.195 0.2275 3.46 0.0237 17.6
H, 33.19 1.315 244 0.0262 112

Ne 44.49 2.678 21.5 0.0173 149

Air 133.0 3.867 133 0.0357 448

N, 126.2 3.396 137 0.0386 427

Ar 150.7 4.863 136 0.0322 508

0, 154.6 5.043 138 0.0318 522

Thus, to apply the van der Waals equation of state for a particular gas, one only
needs values for the critical pressure and temperature. Listed in Table 3.2 are values
of these coefficients appropriate for various gases of interest to cryogenics. These
values are calculated using known critical parameters and (3.13) and (3.14).

Finally, one can show by expanding the van der Waal equation of state that the

Boyle temperature can be written as,
a
Tpo = R (3.15)
which can be used to calculate values for common fluids. Table 3.2 lists the
calculated Boyle temperature for the listed fluids. For helium, the value of 17.6 K
is close to the value obtained from (3.8), see Example 3.1.

Several more complete empirical equations of state have been developed for
gaseous helium [1]. In general, it is not possible to describe adequately the entire
p-v-T surface using one equation. The forms of the expansions have pressure as a
dependent variable:

v = RT [1 + @] +3 (gjk@> (3.16)

where g,(T) is a complex summation function over temperature with empirically
determined coefficients. By this method, correlations to existing data have been
found. Properties derived from these correlations are readily available in tabular
form or computer data bases such as REFPROP® [7] and HEPAK®[8]. A sample
of these derived properties is reproduced in Appendix 2.

3.3 State Properties of Liquid He I

Helium has such a weak intermolecular interaction that it only liquefies at very low
temperatures; the normal boiling point of liquid helium is 4.2 K. In the liquid state it
has a relatively low density: the specific gravity of liquid helium at saturated vapor
pressure varies between 0.145 and 0.0675 at T, making it, next to hydrogen, the
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Fig. 3.4 Density of saturated liquid helium

lowest-density condensed fluid. Appendix 2 lists some of the thermodynamic and
transport properties of helium as obtained from HEPAK [8]. Provided here is a
summary of the properties of liquid helium with emphasis on those characteristics
that are unique compared to other fluids.

3.3.1 Density

The saturation density p is one of the more important thermodynamic properties
of He I because it can be used to derive the equation of state for the liquid. In the
He I regime, the liquid density increases continuously from 67.5 kg/m® at T, to
145 kg/m® just above T;. Plotted in Fig. 3.4 is the saturated density of liquid helium
from T, to below T';. Also shown for scale in the graph is the density of the saturated
vapor over the same temperature range. A useful quantity to keep in mind is that the
saturated liquid is about 7.4 times more dense than its vapor at the normal boiling
point, 4.2 K. This point is worth noting as in many cases, the helium vapor
mass makes a significant contribution to the total fluid mass in a system. Below
T, the liquid density is only weakly temperature dependent decreasing slightly
before becoming essentially constant for T < 2.0 K. This point will be discussed
further in Chap. 4.

The slope of the density profile is a direct measure of the volume expansivity f3.
Under saturated vapor pressure, this quantity is plotted in Fig. 3.5 from results of
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Kerr and Taylor [9]. By definition the volume expansivity at saturated vapor

pressure is given by,
1 (0p
=——|= 3.17
b= (3T> sat G0

where the magnitude and slope of the density along the saturated vapor pressure
curve are important. Note that not only does fis,, go through zero at T, but it has a
discontinuity in slope.

There exists a thermodynamic relationship between the expansion coefficient along
the saturated vapor pressure curve, fiq,, and the same quantity at constant pressure,

Op

By = Bea + K(@T) (3.18)
sat

where the bulk isothermal compressibility,

1 /oV

is an additional parameter that must be known to compute f3,,. The bulk isothermal
compressibility is not strongly temperature dependent except near the critical
temperature. Typical values for x are in the range of 10~/ Pa~'. However, the
compressibility does have a discontinuity at the 4 point which is consistent with
the signature of a second-order phase transition. For comparison, the compressibility
of water at 20 C is less than 10~° Pa™".



72 3 Helium as a Classical Fluid
3.3.2 Thermal Properties

Of the thermodynamic properties of liquid helium, the entropy, specific heat, and
latent heat of vaporization have some of the most unique behavior. Shown in
Fig. 3.6a—c are these three quantities as determined along the saturated vapor
pressure curve. The most pronounced changes in the behavior of the thermal
properties occur below T,. This region will be discussed in Chap. 4, which is
concerned specifically with the properties of He II.
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Fig. 3.6 (a) Specific heat of liquid helium at saturated vapor pressure. (b) Entropy of liquid
helium at saturated vapor pressure. (c¢) Latent heat of vaporization of liquid helium
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Fig. 3.6 (continued)

The entropy and specific heat above T, are not expected to have thermal
behavior strongly different from that of a gas. For example, the specific heat of
an ideal monatomic gas at constant volume is C,, = 3/2R and at constant pressure
is C,, = 5/2R. Anideal gas of mass 4 would therefore have a C, = 3.12kJ/kg K and
aC, = 5.19 kl/kg K, respectively. As can be seen in Fig. 3.6a, the specific heat of
liquid helium under saturated vapor pressure varies from 2.3 kJ/kg K just above T,
to 5.2 kJ/kg K at 4.2 K. At temperatures much below T, the volume expansivity is a
small contribution, making Cy,, approach that of C,. However, near T, the volume
expansion makes a substantial contribution, and the saturated values are more
similar to constant pressure, Csy; = C,. That the specific heat of liquid He I brackets
that of an ideal monatomic gas indicates that, in many instances, He I is treatable in
terms of modified gas laws. The importance of this statement will become evident
in the next section on transport properties.

The latent heat of vaporization hg, of liquid helium is displayed in Fig. 3.6c.
This quantity, which is only defined along the saturated vapor pressure curve,
is given by the Clausius-Clapeyron equation,

ap - . (3.20)
ar sat T(Vg - Vl) '

where v, and v, are the specific volumes of the gas and liquid, respectively.

The heat of vaporization represents the energy required to take a unit mass of
helium from the liquid to the vapor state. It is therefore an indirect measure of the
strength of the intermolecular bonds associated with the formation of the liquid
state. It is possible to compute /4, from intermolecular empirical potentials. This
problem is beyond the scope of the present treatment; however, on the experimental
side there is a somewhat useful relationship between the heat of vaporization and
the normal boiling point of many liquids. Trouton’s rule [10] suggests that the ratio
of hy, to T, should be approximately constant,
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Fig. 3.7 Vapor pressure and 10° ——
its slope for liquid helium
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where the constant has a value of about 75 J/mol K. This law, which is based
primarily on experimental evidence, is obeyed to within 20% for most common
liquids. However, it does not do as well for cryogenic liquids. The largest deviation
from Trouton’s rule occurs for helium where the ratio of /T, ~ 20 J/mol K.

3.3.3 Vapor Pressure

The vapor pressure of any fluid is related to the heat of vaporization through (3.20).
Furthermore, the vapor pressure is an important parameter as it is directly related to
the liquid temperature and can be used an absolute temperature standard as well as a
method of reducing the temperature of a liquid by evacuation of its coexisting vapor.
Figure 3.7 is a plot of the vapor pressure and derivative, dp/pdT for liquid helium.

Example 3.2

Use the data in Fig. 3.6 to estimate the heat of vaporization for liquid helium at
1K

Consider (3.20),
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Where we have used the fact the v, >> v,. Then assuming that the low density
helium vapor can be approximated as an ideal gas such that,

RT
Vg :M—p

In this case, M is the mole weight of helium, 4 kg/kJ and is necessary in the
above equation so that v, is in kg/m>. Substituting into the vapor pressure
derivative equation and rearranging,

_RT? dp
fe — p dar
1 dp 1 . . :
At 1K, — ¥Ta ~ 10K™". Substituting other values, one obtains /s, = 83 J/mole
» f;

(21 kJ/kg).

3.3.4 Surface Tension

Before leaving the discussion of He I state properties, it is useful to touch briefly on
the subject of surface tension. The surface tension has units of energy per area and is
associated with the increased energy of the liquid state caused by it having a free
surface. Microscopically, the surface tension results from the molecules at the
interface being at a higher energy because they have fewer nearest neighbors than
those in the bulk. The surface tension, as with the heat of vaporization, goes to zero
at T, where the distinction between the liquid and vapor vanishes.

For liquid helium, the surface tension is quite small again due to its weak
intermolecular binding. For classical liquids, the temperature-dependent relation-
ship for ¢ should take the form,

a(T) = a9 (1 - Tz) (3.22)

c

This expression when applied to He I gives a value for ¢, ~ 0.5308 mJ/m?, but
does not fit the data well below T,. An alternative polynomial fit to ¢ which
includes the He II regime follows the form,

o(T) = 6y — 01T + 0,T? (3.23)

where 0o = 0.3534 mJ/m?%, o, = 1.737 x 1072 mJ/m’K and o, = 2.154 x
1072 mJ/m?K?. Plotted in Fig. 3.8 is a fit to the surface tension of liquid helium
based on data from HEPAK [8]. The classical formulation (3.22) agrees well with
the data above the A-point where quantum effects become important. Below T,
the fit described by (3.23) seems to be in better agreement with the data.
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Fig. 3.8 Surface tension T T T T T
of liquid “He. Data from
HEPAK [8]
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3.4 Transport Properties of Gaseous and Liquid He I

To derive a model that describes the transport properties of helium, account must
be taken of the same effects introduced in the development of the equation of
state. More specifically, any complete transport theory must include particle-
particle interactions and quantum effects at low temperatures. This approach
involves the computation of transport coefficient, similar to virial coefficients in
the equation of state, which contain the physics of the interaction. Once these
transport coefficients are determined, they can be used to describe the deviation
from ideal classical behavior of a fluid such as helium. Several accounts of
the theory of the quantum mechanical transport coefficients exist in the literature.
Since a fundamental understanding of the derivation of this theory is not particu-
larly necessary for the use of helium transport properties in subsequent chapters,
only a cursory review of the principles is included here. For a more complete
description of the theory of transport coefficients the reader is encouraged to review
the appropriate references [4, 5].

Transport properties such as thermal conductivity and viscosity are set aside
from the state properties because they are associated with nonequilibrium phenom-
ena. In fact, these properties are fundamental to the understanding of how a system
returns to equilibrium through collision mechanics. Thus, the viscosity and thermal
conductivity are applied directly to the interpretation of the behavior of helium
under fluid flow and heat transfer conditions.
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Fig. 3.9 Maxwell- folv)
Boltzmann distribution
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3.4.1 Modeling Transport Properties

The beginning point for any model used to describe transport phenomena in a fluid is
usually the Maxwell-Boltzmann distribution function, which is the basis of kinetic
theory. This function, f,(v), is a measure of the probability of finding a molecule with
velocity v in a volume at constant temperature T with number density z:

m 3/2 N
fo¥v)=n <2nkBT) el /ksT (3.24)

where v, is the average velocity of the molecules in the gas. The distribution is
peaked at the most probable velocity, v = (2kgT /m) 1/2 a5 seen in Fig. 3.9. The root
mean square velocity is defined by taking the square root of the integral of
this function times v> over velocity space, with the result v,,; = (3kB,T/m)1/2.
The Maxwell-Boltzmann distribution function represents the equilibrium velocity
profile. Consequently, a good measure of the degree to which a particular system
deviates from equilibrium is through the difference between its true distribution
and the Maxwell-Boltzmann distribution.

Consider a system containing a fluid which is slightly out of equilibrium. The
important quantity to determine for this system is the rate at which it returns to
equilibrium through inter-particle collisions. To find this rate, it is first necessary
to evaluate the number of collisions that occur between molecules in the system.
The number of collisions per unit volume and time at a given position r is defined as

Z= JJatol|V_l - V_2|f(r7 Vi, t)f(ruV27 t)dSVIdSVZ (325)

where a new quantity has been introduced, o, the total scattering cross section,
which is an averaged quantity evaluated at the difference in the mean velocities
of the two distribution functions.

Before proceeding with the development of the transport coefficients, it is useful
to make some rough numerical estimates of quantities defined above. The number
of collisions per unit time can be estimated by assuming the scattering cross section
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Fig. 3.10 Unit volume in
particle space
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Ot ~ constant &~ 47ma”, the overlapping cross-sectional area of a two molecule
collision. It is then possible to take g, out of the integral making it easy to evaluate.
In this approximation, the total number of collisions becomes,

8 1/2
7= <) 0oV (3.26)
T

Considering helium gas at 4.2 K, 0.1 MPa, just below saturation pressure.

For these parameters, the most probable velocity ¥ = (2/<BT/m)l/2 = 132m/s and
n=251 x 10*m~3, which is approximately inversely proportional to T at
constant p. To estimate the cross section, it is necessary to know the molecular
radius. This quantity is not well defined for a quantum mechanical system such
as helium at low temperatures. For the present example, the hard core radius
defined by the zero of the Lennard-Jones potential is ry = 0.2556 nm, which
gives a value of g, ~ 80 x 1072° m?. This value leads to a particle collision
rate Z = 273 x 10¥ m > s L.

The number of collisions Z is not the most useful parameter to evaluate for
numerical estimate purposes. A more physically meaningful quantity to estimate is
the mean free path / between collisions. Consider a unit volume in space position r
as shown in Fig. 3.10, containing » molecules per unit volume. The total number of
collision paths is equal to the total number of collisions divided by two because
it requires two molecules to produce a collision. The mean free path can be written
in terms of these quantities, such that

n

l:iv

(3.27)

As with the example above, again considered helium gas at 4.2 K, 0.1 MPa. For
this case, the mean free path works out to be about 0.6 nm, which is only slightly
larger than the molecular diameter. The mean scattering time 7 is simply related to
the mean free path by t = [/7. For helium gas at 42 K, 1 ~ 4.6 x 10~'%s. Thus,
each helium molecule is undergoing nearly a trillion collisions every second.

To develop expressions for the transport coefficients, it is necessary to introduce
non-equilibrium features into the distribution function and then apply these to a
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relationship between the dynamic variables, such as mass flux, momentum, and
energy. The latter relationship is established in terms of the classical Boltzmann
integral differential equation,

of of
o —pa + J(ff) (3.28)

where f is the actual distribution function of the system, p is the momentum vector,
and J(ff) is a collision term. The collision term introduces some simplicity into the
problem because its argument restricts the dynamics of binary collisions.

Following the established correspondence between variables as given by (3.28),
the next step is to define a relationship between the actual distribution function and
the equilibrium form. One solution to this problem is to write the distribution
function as a power series such that

f=fo+ofi +.. (3.29)

where f, is the Maxwell-Boltzmann distribution. Inherent in this assumed form is
the requirement that the correction terms, o f1, and so on, be small compared to f,, so
the series will converge with a finite number of terms. If only the first term in (3.29)
is applied to the relationship between dynamic variables, the result is Euler’s
equation for ideal fluids. If the first two terms in the expansion are used, the ensuing
differential equation is the Navier—Stokes equation. The function f| is comprised of
the gradients in temperature and velocity.

To determine the transport coefficients and ultimately the transport properties,
such as thermal conductivity and viscosity, it is necessary to introduce a set of
temperature-dependent integrals Q" that describe the dynamics of the two-
particle collisions:

Q(n“v) o 27'CkBT
= py

where b is the impact parameter of the collision and m,. is the reduced mass; m, =
mymo/(m; + my) = m/2 for identical particles. The other terms contained in the
integral include 7y, the reduced velocity, and y the angle of deflection after collision,
which is a function of the inter-particle potential and impact parameter b. Obviously,
the evaluation of (3.30) is complicated and varies considerably between systems.

1/2 ro0 poo
J J e PP (L~ cos"y)bdbdy  (3.30)
0 0

3.4.2 Transport Properties

The transport properties of a pure gas such as helium are given in terms of the
integrals of the form in (3.30). In particular, the viscosity u can be determined by

(3.31)

5 kgT
8 022
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and the thermal conductivity k as

25 CykgT
=16 007 (3.32)
Note that the ratio k/u is independent of the behavior of Q% having a value equal
to % C,. At high temperature and low density, this ratio should approach the value
of % R =7.79 kJ/kg K, consistent with that of an ideal gas.

Before considering how these models apply to the example of helium, it is
worthwhile to discuss briefly the changes brought on by introducing quantum
mechanics into the treatment. The approach has a similar impact to that of the
quantum virial expansion. In particular, the integral expressions introduced in
(3.30) now must include the full quantum mechanical scattering process. As before,
this requires the development of a phase shift analysis for two-particle scattering.
This approach is beyond the scope of the present discussion. Ultimately, the full
quantum mechanical treatment can rely on the correspondence principle which
states that at high temperature and low density the classical limit should be reached,
giving way to agreement with the above described model.

For the specific case of helium in the gaseous or liquid state, the transport
properties are reasonably well-established experimental quantities. In Fig. 3.11a,
b are plotted the thermal conductivity and viscosity of helium for their applied
pressures, 1.0, 0.1, and 0.01 MPa. At low temperatures, the three cases represent
supercritical helium, normal helium at atmospheric pressure with associated change
of state at 4.2 K, and sub-atmospheric helium with a change of state near 2.5 K.
These two orders of magnitude in applied pressure represent the most interesting
region for applications involving gaseous or liquid He 1.

The first feature of these properties to note is their apparent insensitivity to
pressure above about 30 K. Below this temperature, the attractive part of the
potential contributes substantially to the interaction. At high temperatures, it is
mostly hard core potential which is important. The continuously increasing values
for k and u at high temperatures suggest a power law dependence that varies like 7"
for both quantities. In fact, the data above 30 K approximately follow this law with
n = 0.6. Referring to the temperature-dependent integrals (3.30). the leading terms
suggest that Q ~ T/, depending on the terms within the integral being weak
functions of temperature. Assuming this to be the case, it would be expected that
k ~ u ~ T"? which is not far from the experimental result for T > 30 K, where C,
is temperature independent.

Apart from the temperature dependence, the magnitude of the transport
properties of helium gas need to be compared to theoretical expressions. Consider-
ing the ratio of k/u as a function of temperature above 30 K, we see that this ratio
makes a gradual increase from 7.4 to 7.8 kJ/kg K at 300 K. According to theory,
klu = %C‘, = 7.79 kl/kg K for an ideal monatomic gas. Thus, helium at high
temperatures is a very good example of near ideality in a real gas. At low tempera-
ture, several factors cause a deviation from ideal behavior. The two main ones are
the effect of quantum statistics and inter-particle interactions. Both these have
increasing importance as the temperature is decreased.
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Fig. 3.11 (a) Thermal
conductivity “He as functions
of T and p. (b) Viscosity of
“He as functions of T and

p (Data from HEPAK [8])
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As can be seen from the above theoretical review of transport properties, first
principle calculations of the thermal conductivity and viscosity of a real fluid
are very difficult and must be conducted by various expansion techniques. For the
purposes of the user of helium gas or liquid, the fundamental approach is beyond
interest. Of much greater concern is the behavior of a given fluid, which may
be in the liquid or gaseous state, under certain sets of conditions. The approach
employed, which will be considered in greater detail in Chaps. 6 and 7, is to develop
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Fig. 3.12 Prandt]l number for “He as a function of T and p

sets of dimensionless numbers. These dimensionless numbers provide a fully
general method of analyzing experimental data.

The concept of dimensionless numbers is introduced here because one of them,
namely the Prandtl number Pr, is determined by a ratio of the transport properties.
Based on dimensional analysis, combining the three properties of viscosity,
heat capacity, and thermal conductivity yields the form

(3.33)

where the heat capacity is taken at constant pressure. The Prandtl number is a
measure of the relative importance of thermal diffusion and mass flow for the
transport of heat. For Pr ~ 1, the velocity and temperature profiles are similar
under conditions of a small pressure gradient.

For an ideal monatomic gas, the analyses developed in this section can be used to
predict the Prandtl number. Inverting the ratio of transport properties a numerical
quantity is obtained,

uc, 2

. 5 (3.34)

which is close to the form of the Prandtl number in (3.32) with the exception that the
specific heat is measured at constant volume. For an ideal monatomic gas C,/
C, = 5/3 where this ratio sometimes enters computations of gas expansion. The
above terms give a theoretical prediction of the Prandtl number for an ideal
monatomic gas, Pr ~ 2/3. Plotted in Fig. 3.12 is the Prandtl number for helium
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Table 3.3 Experimental value of the Prandtl number
for some common liquids under saturated conditions

Liquid T (K) Pr
N, 77 2.20
0, 90 2.21
H, 20.4 1.17
H,0 311 4.52
Hg 750 0.004
He 4.2 1.15

gas and liquid at 1.0, 0.1, and 0.01 MPa. At high temperature the experimental
values asymptotically approach 0.67 in agreement with prediction. For comparison,
listed in Table 3.3 are the Prandtl numbers for a variety of liquids at both cryogenic
and room temperatures. It is important to note that helium exhibits behavior nearest
to that of an ideal gas. Liquids that exhibit anomalously large thermal conductivity,
such as liquid metals, have correspondingly small Prandtl numbers.

Questions

1. What is the definition of supercritical fluid; two phase and subcooled liquid?
Sketch the p-v phase diagram for low temperature helium and show the super-
critical, two phase and subcooled liquid regimes.

2. Helium in large quantities is normally transported as a liquid. Explain why.

. Why does the phase diagram of helium lack a triple point?

4. What is the significance of the Boyle temperature in a real gas? How is it
determined?

W

Problems

1. Gas approximations

a. Calculate the classical second virial coefficient using the square well potential

o()kg =00 r < 0.25 nm
=—10K 0.25 < r < 0.5 nm
=0 0.5nm < r

b. Find the Boyle temperature, T},

2. Given a closed container of volume 1 L containing 50 g of helium gas, calculate
the following:

a. The pressure at T = 6 K, assuming that the gas is an ideal gas.

b. The pressure at T = 6 K, assuming that the gas obeys van der Waal’s equation
of state.

c. The pressure at T = 6 K, assuming that the gas obeys the virial equation of
state truncated after the second term.
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d. The state of the fluid at T = 4.2 K. (Hint: 4.2 K is below T, and 50 kg/m3 is
greater than p, @ 4.2 K.)

4. Compute the ratio of the surface tension, o, to the latent heat, hgs, for helium
between 2.2 K and T.. Comment on the behavior.

5. Calculate the mean free path and collision frequency for helium gas at 20 K,
0.1 MPa.

6. Estimate the magnitude of the third virial coefficient for helium at the critical point.
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Chapter 4
Classical Helium Fluid Mechanics

In many applications of cryogenics, cooling is best achieved by confining the
coolant to a tube or duct and circulating it through the system in a closed loop.
In this configuration, the fluid that circulates through the system may be a single
phase liquid, single phase gas or a two — phase flow of liquid and vapor. The
principal variables in a single phase system are the pressure, temperature and mass
flow rate. In two phase flows, additional variables are needed to characterize the
state and dynamics. From the engineering point of view, the main quantity of
interest is the pressure drop caused by the flowing fluid. In Chap. 5, we will consider
the heat transfer issues associated with flowing normal helium.

There are numerous examples where low temperature helium flow is used as
a coolant. These include but are not restricted to:

1. The flow of helium in refrigeration piping and heat exchangers. Refrigeration
systems that use helium include conventional *He cycles as well as special
devices such as *He—*He dilution refrigerators for very low temperature
research. In the former case, the helium is usually well above the critical
temperature and therefore single phase. The major consideration in this appli-
cation is the appropriate optimization of the trade-off between heat transfer and
pressure drop within the flow circuit. In the latter case, the flow may involve
passages containing porous media. This is a special case of interest.

2. The flow of liquid helium in transfer piping is also a common application.
It occurs whenever liquid is delivered from one storage or distribution system
to another. In this case, the flow is nearly adiabatic and heat transfer is not a
primary concern. However, since helium transfer usually occurs near the
saturated vapor pressure, the process often involves two-phase flow.

3. The use of forced flow helium as a coolant for superconducting magnet systems
is also a fairly common application. The general approach here is to force the
helium through a duct containing or attached to the composite superconductor.
The internal cooling of composite superconductors serves two purposes: to
remove steady heating and to thermally stabilize the conductor against electro-
magnetic disturbances. Thus, this application critically involves both pressure

S.W. Van Sciver, Helium Cryogenics, International Cryogenics Monograph Series, 85
DOI 10.1007/978-1-4419-9979-5_4, © Springer Science+Business Media, LLC 2012


http://dx.doi.org/10.1007/978-1-4419-9979-5

86 4 Classical Helium Fluid Mechanics

drop and heat transfer to the flowing coolant. An important example of this
technology is the Cable in Conduit Conductor (CICC), which consists of
many strands of composite superconductor within a metal conduit or jacket.
Such conductors are commonly used in high field magnets for fusion.

To understand the details of forced flow helium, it is necessary to be aware of the
physical principles associated with heat transfer and fluid flow. These principles
are common to a variety of fluid dynamics problems and are based on general
engineering science. Since space is limited and the scope of the present discussion
quite specialized, only a brief review of this subject is included here. For additional
detail, the reader is referred to more extended treatments in books on fluid mechanics.

4.1 Single Phase Internal Flow

Internal flow of classical Newtonian fluids has been studied extensively and is a
fairly well understood process. This does not mean that the problems have all
been solved because, in general, fluid dynamics is sufficiently complicated to be
exactly soluble only in very special cases or by complicated computer codes.
Rather, the mode of problem solving is based on a combination of theoretical
concepts and empirical evidence leading to semi-empirical correlating functions.
This is well established engineering practice.

4.1.1 General Considerations

The general problem to be discussed here concerns internal flow hydrodynamics
within a pipe or duct as shown schematically in Fig. 4.1. At any point within the
pipe, the state of the fluid is given by its thermodynamic relationship between
the local pressure p and temperature 7. However, the fluid is not in global equilib-
rium because it is being transported through the pipe at a mass flow rate, 7.
Assuming there are no sinks or sources of fluid, the mass flow rate can be related
to the local fluid velocity through the expression

m = pAv 4.1)

where the density p and velocity v are averaged locally in the direction of flow,
and the pipe cross section is given b A.

The fluid is transported through the duct under the influence of externally
imposed forces. One such force might be gravity, which is the most important
when considering natural convection cooling loops. In most circumstances, the
helium within the tube is forced under the influence of an externally imposed
pressure head produced by a pump or compressor. These external forces are needed
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Fig. 4.1 Schematic Q
representation of internal flow
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to induce flow since the existence of viscosity results in a pressure drop for any
finite mass flow rates. Furthermore, since heat transport is of primary concern
in forced flow helium, any heat flow in or out of the system must be determined.
This heat transfer rate may result from joule heating within the pipe such as for
superconducting cables in the normal state or heat transfer from an adjacent system
such as occurs during heat exchanger operation. Heat transfer causes the surface
temperatures T to be elevated above the local fluid temperature by an amount
dependent on the local transfer coefficient.

In general, there are three sets of equations which must be solved to determine
the behavior of a Newtonian fluid such as gaseous or liquid helium above T).
A complete development of these equations is available in numerous texts on
transport phenomena [1, 2]. The first is the continuity equation which is written

@ +V-(pv)=0 4.2)
ot

where v is a vector velocity and p is the local density. The continuity equation
is derived from conservation of mass in a fluid element. The second equation is
derived from conservation of momentum and is actually a tensor equation. How-
ever, for the special case of constant viscosity, the momentum equation reduces
to the fairly simple form,

d
p% = —Vp + uV2v + pF, 4.3)

where F,, is the body force, that is, the force per unit mass of liquid and pu is the
fluid viscosity. The total derivative of the velocity is given by

dv  Ov
—=—+4v-Vyv 4.4
dt Ot + 44
The combination of (4.2) and (4.3) is generally referred to as the Navier—Stokes
equations. The final conservation equation used to describe Newtonian fluids is
the energy equation, which simply states that a fluid system must conserve energy.
This energy equation may be written

d (1 1 .
(2V2+e)——pv-(pv)+q+F;,~v 4.5)
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where e is the specific internal energy and ¢ is the specific rate of heat input.
The term F; ¢ v is the work done by an external force. It follows that complete
solution to problems of Newtonian fluid mechanics requires simultaneous analysis
of (4.2), (4.3), and (4.5). With the fluid properties varying with temperature, this
process usually requires a numerical approach.

One case, which is treated extensively in elementary fluid mechanics texts,
is that of a fluid flowing within a tube or duct. It follows that the velocity can
be described by two principal components — u in the direction of the duct axis and
v normal to the duct axis and away from the wall. In the present context, it is also
assumed that the fluid is in a fully developed steady-state flow pattern and that
it is incompressible, that is, p = constant. This latter assumption is reasonable for
single phase liquid helium and helium gas at low velocity, but it is not suitable
for helium gas at high velocities as discussed in the next section.

The standard approach to developing approximate solutions to (4.5) is to invoke
what is known as the boundary layer approximation. This approach is based on
the following set of requirements for the velocities:

u >v and @>>@ @ @
Oy = Ox’0y’ox

In the boundary layer approximation the momentum equation (4.3) reduces to

ou Ou  10p 0u

4.1.2 One Dimensional Internal Flow

One problem that can be solved exactly for these conditions is laminar flow in the
fully developed region. Laminar fully developed flow implies that the velocity is
parallel to the axis of the duct and must obey the conditions

v =0 and @:0 4.7
Ox

The solution to the fluid equations in this regime predicts a parabolic velocity

profile proportional to the pressure gradient divided by the viscosity. For a circular
cross section channel the solution takes the form

Y —
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where rq is the radius of the tube. For this special condition, the average velocity
can be calculated by integration of (4.8) over the duct cross section,

ﬁ
8u

dp

o (4.9)

u=

To consider the more general problem of laminar or turbulent flow within a duct,
it is useful to define a friction factor f given in terms of the relevant quantities’

_ —(dp/dx)Dy

fr= (4.10)

2pii?

where i is the average velocity of the fluid along the duct axis. The hydraulic
diameter is given in terms of the duct geometry,

Dy="4% @.11)

for which P is the perimeter of the channel and A the cross-sectional area. This
quantity is referred to as the Fanning friction factor, and is literally the ratio of
the wall shear stress, T ~ u Ou/0y, divided by the kinetic energy density.

For the case of fully developed laminar flow in a circular duct, the Fanning
friction factor has an exact solution,

16

=— 4.12
Rep (4.12)

Ir

where Rep, = pit D/u. For non-circular cross section ducts, the friction factor is
similar to (4.12) although the numerical coefficient is slightly different and the
diameter must be replaced by the hydraulic diameter, D).

For turbulent flow, which occurs for Reynolds numbers in excess of about 1200,
no exact solution exists for the pressure drop. Rather, empirical values such as
those displayed in the Moody plot, Fig. 4.2, must be applied. These plots give the
friction factor as a function of Reynolds number for different surface roughness
conditions. For relatively smooth tubes for Reynolds numbers 1200 < Rep
< 10,000, the Blausius correlation is commonly used,

0.079
fr=—= (4.13)
Rej,

! Note that mechanical engineering books define the friction factor as being four times the value
given by (4.10).
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Fig. 4.2 Fanning friction factor for smooth and rough tubing compared to that of cable-in-conduit
configuration (From Lue et al. [3])

For higher Reynolds number (Rep > 10,000), the von Karman-Nikuradse
correlation is popular for smooth tubes,

1 1.2
1 iy (4.14)
f; ReDfpf

If the tube is rough with a characteristic dimension k, then the Colebrook
correlation adds to (4.14) a surface roughness term,

1 —1.7371n<L+ 1.25 ) (4.15)

=

fr 37D ' Re DfF%

For more complex geometries such as cable-in-conduit conductors (CICC), the
above correlations are not suitable [3—5]. An approximate curve for the friction
factor of CICC is shown in Fig. 4.2. Also, Katheder [5] developed an empirical
correlation for the friction factor of these conductors.

1 19.5
F =25 | ==z + 0.051 4.16
fr= 1 om <Re%§8 ) (4.16)

where v is the void fraction (area void/total cross sectional area of cable).
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Example 4.1

To calculate the pressure drop for liquid helium flow through a smooth tube we
need to know the dimensions of the tube and the flow rate. Consider here a tube
of length 30 m and diameter 10 mm with a flow of 10 g/s of helium at 4 K,
100 kPa. Under these conditions, helium can be assumed to be incompressible.
The relevant properties of helium are: p = 130 kg/m>; u = 3.3 pPa.s.

To calculate the pressure drop, we first need to determine the Reynolds number:

D
Rep = 22 = _ 386 x 10°
v nuD

This value of Reynolds number qualifies for the von Karman-Nikuradse
correlation of friction factor or it may be obtained from the Moody plot which
gives,

fr = 0.0035

The overall pressure drop is then obtained by integration of (4.10) over the
length of the tube and replacing the average velocity & = 4m/mpD to yield,

32 i’

m
szLﬁ

Ap == =258 kPa
T

Note that this pressure drop is small enough (Ap/p ~ 2.5%) so the incompress-
ible assumption is valid.
We assume in this example that the fluid is slightly subcooled, entering the tube at
4.0K, 100 kPa. It will exit at a lower pressure of 97.4 kPa, which corresponds to a
saturation temperature of 4.18 K. Therefore the fluid is still subcooled liquid.
Finally, we consider one further point in this example. Any fluid undergoing
a pressure drop is exerting friction on the tube. This work is being supplied by
the compressor or other prime mover. The friction produces heat that will result
in a temperature increase of the fluid. We estimate this as follows,

R nA
Wf:%:uAAp

which for the example at hand gives about 0.2 W. The friction work goes into
heat generation resulting in a temperature increase of the fluid. Since we have
assumed that the liquid is subcooled, no boiling occurs until the temperature
reaches T,(p) = 4.18 K. For this example, the temperature increase would
be only about 5 mK, which is therefore insufficient to result in boiling and the
associated two phase flow.
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4.2 Supercritical Helium

The discussion in Sect. 4.1 is intended to be a general introduction to the factors
affecting forced flow single phase helium cooling systems. The description is kept
simple intentionally so as to introduce the important physical quantities such as the
friction factor. However, the model presented is not particularly appropriate for
low-temperature helium mainly because of the incompressibility assumption.
Therefore, it is important to develop a more general fluid mechanics model to
treat the case where the helium is in the gaseous state. In developing this descrip-
tion, emphasis is placed on the special case of supercritical helium (p > 0.23 MPa)
where the fluid is single phase but at low temperature and therefore quite compress-
ible. It is assumed further that the temperature is above T, so that the fluid properties
are describable by classical hydrodynamics.

4.2.1 Compressible Fluid Mechanics

To model the fluid mechanics of supercritical helium, the Navier—Stokes equations
including the effect of finite compressibility are used [6]. Compressibility factors
can have profound impact on the observed behavior of supercritical helium. For
the steady one-dimensional case discussed in Sect. 4.1, the pressure change in the
direction of flow can be derived from (4.2) and (4.3),

2 2
dp = — fFD”” dx + 1dp 4.17)

where the first term is identical to that introduced for incompressible fluids while
the second term represents the fluid acceleration due to density changes. It is
desirable to replace dp by a function of the extrinsic variables p and T in order to
model the flow in terms of external variables. This can be achieved if the equation
of state is known. However, a more general form can be developed through
thermodynamic manipulations. Since the density is a function of p and T it can
be expanded in terms of these variables:

dp = (gp) dp + (g; ) T (4.18)

According to the thermodynamic definitions the bulk compressibility:

K= [1—) (g—ﬁ) and the bulk expansivity: f = ( {)T) . These quantities can be inserted

into (4.17) to give the relationship,

dp = px dp — pp dT (4.19)
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Due to density changes along the flow channel, the velocity of the compressible
fluid is not constant. However, in the steady state the mass flow is constant. It is
therefore convenient to replace the velocity in (4.17) with the specific mass flow
rate G = mfAg,,, = pu, where Ag,,, is the channel cross section. Substituting this
quantity and collecting terms between (4.17) and (4.19), we obtain a coupled
relationship between the temperature and pressure variation along the tube:

2 g 2
(1-5CY b Yo 0501

= 4.2
p ) dx pD p dx (4.20)

Note that for small k and f3, this expression simply reduces to the incompressible
form given by (4.10).

In addition to the fluid flow equation, we need to consider enthalpy conservation
in the fluid when it is subjected to a net heat flux per unit surface area of the tube, q.
This is achieved by evaluating the energy equation (4.5). The total heat input per
unit area of the tube is related directly to the time rate of change in the stagnation
enthalpy (enthalpy + kinetic energy). For a circular cross section with Ag,,, =
nD2/4, this expression is

GD 0 w\dp GD 0 u?\ dT
q_Ta_p(h+?>E+Tﬁ<h+?>E @21

which is simply a one dimensional version of (4.5). Using the definitions of the
compressibility and expansivity and noting that the Joule-Thomson coefficient,
which governs isenthalpic expansion, is defined by the relationship

1 (0n
0= g (@), w2

we can simplify (4.21) to provide a second coupled relationship between the
variation of p and T with position along the tube:

GD dp  GD

q:_T(,U_,'Cp‘FMzK)E-F n

dr

Cp—u’ 4.23
(Cr—u*B) (4.23)

Given the two relationships for the gradient 7 and p, it is a straightforward
calculation to eliminate variables by simultaneous solution, arriving at separate

equations for each gradient; that is,

dp _ —2rG*pD +44Gp/pD(C, — 1*f)
dx 1= (G*/p) (i + B)

(4.24)

and

dr _ 4q/GD(C, — u*B) — 2fG*¢/pD
e~ 1—(G2/p)(x+ p)

(4.252)
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where an additional parameter has been defined,

wCp + w’i
¢ = C, =2 (4.25b)

Needless to say the above expressions (4.23), (4.24), and (4.25) are difficult to
apply unless the physical properties have relatively simple behavior. Arp [6] has
shown that by approximating the fluid by an ideal gas, with k =~ 1/p and f§ =~ 1/T,
the above expressions are reduced in complexity. Furthermore, if the velocities are
fairly low, u < 10 m/s (4.24) and (4.25) take on more manageable forms:

dp 26  44Gp

4.26
dx pD pDC, ( )
and
dr 4 2G>
ar _ 4q G ([ L 2K 4.27)
dx  GDC, pD / C,

Note that the first two terms in (4.26) and (4.27) are identical to those for
incompressible fluids. It follows that the second term in (4.26) becomes important
at low velocities and high heat fluxes while in (4.27) the second term is significant at
high velocities and low heat fluxes.

4.2.2 Experimental Confirmation

The above analysis has been tested experimentally by Dean et al. [7] in a 500 m
long tube with an L/D ~ 10’ operating in supercritical helium. Two sets of results
from their investigation are shown in Figs. 4.3 and 4.4. The two cases show
significantly different behavior. The data displayed in Fig. 4.3 represent the regime
where the heat flux is large and the flow rate is small. As a result, the temperature
profile is monotonically increasing in response to the dominance of the enthalpy
flow term, 4g/GDC,,. At the same time, the pressure profile is linear owing to the
considerable impact of the incompressibility term in (4.26).

The second case, shown in Fig. 4.4, is an example of the regime where the heat
flux is not large but the mass flow is high. The pressure profile is only slightly
nonlinear since it is dominated by the friction-induced pressure drop. In this case,
the temperature profile actually has a negative slope owing to the Joule—Thomson
expansion effect. This process is well known and is applied in refrigeration systems
to achieve cooling. Isenthalpic expansion is discussed more extensively in Chap. 8.


http://dx.doi.org/10.1007/978-1-4419-9979-5
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Fig. 4.3 Pressure and temperature profiles with 3.2 bar (0.32 MPa) pressure loss. Computer data
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An analytical comparison of the above experiments with the compressible fluid
theory has been conducted and is shown by the solid curves in Figs. 4.3 and 4.4.
One adjustable parameter, the friction factor fr was used to fit both the pressure
drop and temperature profile data possibly due to minor losses in fittings within
the loop. Thus in both cases, the friction factor required to fit the data was above
that expected for turbulent flow at the Reynolds numbers corresponding to the
experimental system.

Supercritical helium represents a fairly good example of a simple, but relatively
high density compressible fluid. The hydrodynamic equations appropriate for
compressible flow adequately describe the pressure drop and heat transport char-
acter. However, the flow characteristics do not represent the entire problem.
In particular, it is also of interest to be able to predict the heat transfer coefficient
between the tube or duct and the helium stream. The conventional approach to this
problem demands the development of engineering correlations appropriate to
the particular configuration of interest discussed in Chap. 5.

Example 4.2

Use (4.26) to calculate the pressure gradient at the entrance to the tube in Dean’s
experiment for the case illustrated in Fig. 4.4. Compare the magnitudes of the
friction and acceleration contributions.

One needs to evaluate,

dp _ 2G%r  44Gp
dc  pD  pDC,

For the following conditions: T = 10 K: p = 1 MPa; p = 62 kg/m>; C,=
7.6 kl/kg K; p = 1/T = 0.1 K~'. The flow is 7z = 3 g/s, the heat flux/length is
Q = 0.062 W/m and the tube diameter is D = 4.8 mm; fz = 0.005. These values
correspond to a surface heat flux of ¢ = Q/zD = 4.1 W/m? and a mass flux
G = 4m/nD* = 165 kg/m®s.

The friction contribution to the temperature gradient is:

d, 2G2
ol _ _26Fr _ _gr3pajm
dx|, oD
The acceleration contribution is:
d, 4
dp| _ 4GB _ 19 pajm
dx|  pDC,

Therefore, the acceleration increases the total pressure drop by about 13% over
the incompressible case.
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4.3 Helium Two-Phase Flow

Whenever liquid helium is allowed to flow at pressures less than the critical
pressure, p. = 0.23 MPa, two-phase liquid vapor phenomena can occur. This
occurrence often is associated with boiling and heat transfer; however, adiabatic
systems can also experience two-phase flow simply as a result of pressure drop and
friction loss factors. Two-phase phenomena associated with heat transfer will be
discussed in Chap. 5. The present section is concentrated on flow phenomena.

Two-phase internal flow systems are very common and important in helium
cryogenic systems. Most often they are encountered in helium transfer systems
where the liquid helium is siphoned from one vessel to another through a vacuum
insulated line. Obvious factors of concern are the possibilities of excessive pressure
drop or flow oscillation, both of which contribute inefficiencies to the helium
transfer process. Another common application is for natural circulation cooling
loops on thermal shields and magnets. In this case, the two phase nature of the flow
can be used to achieve self sustaining flow without a prime mover.

Liquid helium transfer systems as well as other applications have made it
essential to be aware of the physical phenomena that commonly occur in flowing
subcritical liquid helium. Unfortunately, this subject has not received enough
attention from the research community and not a great deal is known. There are
several reasons for the incomplete understanding of two phase flowing helium.
First, a full understanding of this problem is an awesome task. It is a multi-valued
problem dependent on such factors as temperature, pressure, mass flow rate, system
configuration, and relationship between the two phases present (liquid and vapor).
Consequently, it would take a substantial quantity of empirical data to describe
the behavior even in a small number of special cases. Second, two-phase flow in
helium systems is very specialized because it is only occasionally used and in very
specific configurations. However, recently there has been a greater interest in
two phase helium in context of natural circulation loops for superconducting
magnet cooling systems [8]. By comparison, two-phase flow in water systems
has received a great deal of attention because of numerous engineering
applications [9].

4.3.1 Flow Regimes and Transitions

Consider the general character of two-phase flowing liquid and vapor helium. Based
on knowledge obtained from experiments with two-phase flows of non-cryogenic
fluids, some general statements can be made about the flow characteristics.
In conventional fluids, there are approximately seven different flow patterns that
can be obtained in a two-phase mixture [10]. These different patterns are shown
schematically in Fig. 4.5. The factors that determine which flow pattern is stable for
a particular set of conditions include the mass flow rate, densities of each of the
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Fig. 4.5 Sketches of flow patterns present in horizontal tubes (From Baker [10])

components, viscosity, heat of vaporization, and liquid surface tension. The
qualitative description of each of the flow regimes is as follows:

1.

2.

Bubble flow: Gas bubbles flow along with the liquid at approximately the same
velocity.

Plug flow: Gas bubbles coalesce to form plugs in the channel. This condition
usually occurs for higher mass flow rates and vapor volumes than in bubble flow.

. Stratified flow: Complete separation of liquid and gas occurs owing to density

differences. The vapor and liquid occupy unchanging fractions of the cross-
sectional area. This flow pattern occurs most commonly in large-diameter
channels at low mass flow rate.

. Wavy flow: Similar to stratified flow but due to higher mass flow rate, the

interface between liquid and vapor experiences an oscillatory motion.

. Slug flow: The wave amplitude increases until it touches the tube wall resulting

in a pattern of vapor slugs separated by totally liquid regions.

. Annular flow: At fairly high vapor fractions and velocities, the flow pattern

will overcome the gravitationally induced stratification causing the vapor to flow
through the center and the liquid to adhere to the walls. In this flow pattern,
the vapor velocity is much greater than that of the liquid.

. Dispersed flow: The liquid film becomes unstable and breaks up into small

droplets which are carried along with the vapor stream. This flow regime occurs
at the highest mass flow rates.
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The above list of flow patterns are at least approximately ordered in terms of
increasing flow rate and vapor fraction. Each of these flow patterns is potentially
present in liquid—vapor helium systems. Similar behavior is expected to occur in
vertically oriented tubes although with slightly different regimes of occurrence.
Based on empirical evidence from room temperature fluids, there have been several
attempts to correlate two-phase flow into a map which is dependent on system
parameters [10, 11]. Unfortunately, due to the limited existence of data on helium
systems, very few attempts have been made to compare the behavior of helium with
that of other common fluids [12-15].

To make a more qualitative discussion of the subject of two-phase flow, it is
necessary to define several physical quantities. The three main definitions
pertaining to two-phase flow are:

1. Void fraction a: Defined as the ratio of the local vapor volume to the total flow
volume. It is normally given in terms of the fraction of cross-sectional area
that is vapor, that is,

A,
A+ A,

(4.28)

2. Flow quality y: The ratio of vapor mass flow rate to total mass flow of both vapor
and liquid:

m,
= 4.29
my + m, ( )

L

By definition, y is always less than or equal to unity.
3. Slip ratio S: Defined as the ratio of the vapor to liquid velocity,

u,

S = (4.30)

u

In two-phase flow the slip ratio is almost always greater than or equal to unity
since the less-dense vapor can more easily travel through the duct than can the
bulk liquid.

These quantities can be shown to relate to each other through the condition,

()53 wa
1 — X o pv

The most important two-phase flow problem for any liquid—gas system is to
be able to measure and model the behavior of all three quantities as a function
of external parameters.
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4.3.2 Pressure Drop Correlations

The pressure drop in two-phase helium systems has been investigated in a number
of experiments [13—15]. Across a tube of length L this quantity can be written as
a summation of three terms,

Apr = Apg + Apa + Apy (4.32)

where Ap,, is the gravitational pressure drop due to change in elevation of the fluid;
Ap, is the acceleration contribution; and 4pyis that due to friction. . Unlike single-
phase incompressible flow, the pressure drop described by (4.32) must take into
account the variation in the fluid density along the channel. This contribution is
particularly important in flows involving heat transfer.

The gravitational pressure drop for vertically oriented tubes is given by the
relationship

L
Apgr = 7g/0 <p>dx (4.33)

where the average density (p) is defined in terms of the void fraction

(p) =ap, + (1 —a)p, (4.34)

Therefore, it is necessary to obtain the void fraction before the gravitational
pressure drop can be determined. The acceleration contribution to the pressure
drop, 4p,, also has an established form dependent on void fraction and flow quality.
It is given by

2 1-y)7-1
PeCY A Gt it (4.35)
ap, (1 - a)pl

where in this case it is necessary to have knowledge of both the void fraction and
flow quality. The final pressure drop contribution, Apy, in two phase flow is that due
to frictional interaction between the tube and wall. This term is expected to
be similar in form to that obtained for single phase fluids with the additional
complication associated with the two-fluid nature of the problem.

There are several theoretical developments which have been successful at
interpreting certain aspects of the pressure drop in two-phase cooling systems.
One such approach is known as the Lockhart—Martinelli correlation [16]. The
explicit assumptions of this model are as follows:

1. The static pressure drop in the vapor phase is equal to that in the liquid phase for
all mass flow rates.
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2. The two-phase fluid volume is made up of a linear combination of the vapor and
liquid volumes.

3. Friction losses are assumed to dominate, and the effect of momentum change
and hydrostatic head are ignored.

The Lockhart—Martinelli correlation for pressure drop introduces several
parameters which are functions of measurable quantities. The first of these is
the dimensionless two-phase pressure gradient,

(dp/dx),

where the subscript TP stands for two-phase. The reference pressure gradient is that
of the liquid and corresponds to the traditional incompressible flow equation given
by (4.10). The other parameter which is commonly used in relating data to the
Lockhart—Martinelli correlation is a ratio of the pressure gradients associated with
each phase,

1= (dp/dx), (4.37)

" (dp/dx),

where the subscript #f refers to both phases being turbulent, a situation that is
usually the case for low-temperature helium systems. This parameter can be
correlated against the properties of each of the two fluids in the form,

p q r
P\ (K 1 -y
= () )
Pi Ky X
where the coefficients take on values that are typically, for example, p ~ 0.6,
q ~ 0.1, and r ~ 1. Usually, correlations are indicated by plots of ¢, versus y,, [16].
Several simplified forms to the Lockhart—Martinelli correlation exist in the

literature. Levy [17] produced reasonable agreement when correlating experiments
to the form

1.75
Pl i (4.39)

(1 -2’

The above expression is based on a combination of the Lockhart—Martinelli corre-
lation and the relationship for void fraction.

Another rather direct model for pressure drop in two-phase systems that works
well for helium systems is referred to as the homogeneous model, which is based
on a similar set of assumptions as the Lockhart—Martinelli correlation. The homo-
geneous model describes a two-fluid system as having the following set of
characteristics:
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Fig. 4.6 Void fraction for helium flow as a function of vapor quality (From Khalil [13])

1. Equal liquid and vapor velocities (S = 1).
2. Thermodynamic equilibrium between phases.
3. Applicability of the single-phase friction factor to the two-phase flow.

Based on these assumptions, the two-phase friction multiplier qﬁlz can be

expressed as
)| TR
Py Hy

where based on use of the Blausius correlation the coefficient n is taken to be
approximately 0.25 in most analyses [18]. The above expression can be related to
experimental data if the variation of physical quantities with flow quality is known.

There have been only limited experimental investigations of two-phase pressure
drop in liquid helium. Khalil et al. [13] studied two-phase flow in a vertically
oriented tube with diameter 6.35 mm and pressures between 0.106 and 0.204 MPa.
This work included measurements of the pressure drop 4p, overall mass flow #1,
and local average void fraction (o). These measurements allowed determination of
both void fraction and slip ratio as they depend on vapor quality. The void fraction
was compared with the available theoretical developments. Plotted in Fig. 4.6 is the
variation of void fraction with vapor quality for different mass flow rates at
0.12 MPa. The theoretical developments do not predict a variation of o with G
and no systematic dependence is observed in the data. As can be seen in the figure,
the Levy and homogeneous models do a better job of modeling behavior than
the Lockhart—Martinelli correlation, which predicts a higher void fraction at low
vapor qualities.
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Fig. 4.7 Slip ratio as a function of vapor quality and mass flow rate at 0.12 MPa (From
Khalil [13])

Experimental results of the slip ratio variation with vapor quality are shown
in Fig. 4.7. The slip ratio is always greater than unity for finite mass flow rates,
with the biggest deviation occurring at the highest G.

Other measurements of two-phase pressure drop in helium confirm the analysis
based on the homogeneous model. Nakagawa et al. [19] studied the variation of the
two-phase friction multiplier (4.40) with vapor quality. This work was carried out
on two test loops of diameter 11.4 and 18.4 mm. A summary of these experimental
results is shown in Fig. 4.8. As with previous measurements of two-phase flow in
helium systems, the authors observed that the homogeneous model was better than
the Lockhart—Martinelli correlation for analyzing the data. It is surprising that the
homogeneous model, which assumes S = 1, adequately describes the pressure
drop, particularly in light of the slip ratio measurements displayed in Fig. 4.7.
However, it is fortuitous since the homogeneous model is fairly easy to apply.

4.3.3 Natural Circulation Loops

One of the important uses of two phase helium flow in cryogenics is in the operation
of a natural circulation loop or thermo-siphon. This device uses the natural behavior
of two phase flow in vertical channels to remove heat from a source such as a
radiation shield or superconducting magnet. It is therefore a passive cooling device
that does not depend on a prime mover to create flow through to the heat load.
Natural circulation loops work on the principle that a heat load on a vertical
channel produces a two phase flow that is on average less dense than the liquid phase.
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Thus, there is a gravitational instability lifting the two phase fluid and replacing
it with single phase liquid. For example, imagine a U-tube containing a liquid with
a free surface at the top such that the liquid is only subcooled by the hydrostatic
head (pgH), Fig. 4.9.

Now if one applies a heat load to one of the vertical legs of the U-tube the liquid
will increase in temperature until it reaches saturation after which vapor is formed
in the channel. Since the vapor is less dense than the liquid, the average density of
the two phase mixture will be less than that on the pure liquid side of the U-tube.
This will produce a net driving force for the flow given as,

H
App = pigH — gJ (p(2))dz (4.41)
0

Under steady operation, the driving force balances against the pressure drop
terms that are due to friction and fluid acceleration. The acceleration pressure
drop is caused by the decrease of the average density of the fluid as it circulates
through the loop. This acceleration may be related to the change in the vapor quality
from inlet to outlet.

1 1
Apa = G2 (_ - _> (Xex - Xin) (4.42)

v 1

At the inlet, y;, = 0 since it is pure liquid. At the outlet, ., > 0 but probably
less than unity to avoid dry-out of the return line. In (4.42) G = rh/AﬂUW the
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mass flux. The other contribution to the pressure drop is due to friction from both
the single phase liquid and the two phase flow. On the liquid side, the friction
pressure drop is given by the classical expression with the friction factor being
a function of Reynolds number. Written in terms of the mass flux, G, this
contribution is,

G’L,

(4.43)
2p,Dy

Api=f

where L; is the length of the loop that contains pure liquid. This may include part
of the return leg depending on where the heat load is applied and how much
subcooling of the liquid is occurring due to the hydrostatic head.

The pressure drop in the two phase portion of the loop can be determined from
the analysis presented in Sect. 4.3.2. However, under most circumstances there will
be two regimes. The adiabatic portion of the loop, where no heat is applied the void
fraction will be a constant value, y,.. In this region, the friction pressure drop is,

G’L,

2¢,
m 7 (ex) (4.44)

aph, =f
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Fig. 4.10 Flow rate through a model natural circulation loop as function of applied heat load
(Huang [20])

where ¢/ is the friction multiplier for the given vapor quality. If all the heat applied
to the return line goes into vaporizing the helium, then the vapor mass flow rate
and exit quality can be obtained from m, = 0 / hgy and y,, = m, /.

In the region of the loop that receives the heat load, the vapor quality changes
along the line and that change needs to be considered in calculating the pressure
drop. Over the corresponding channel length, L;, the diabatic pressure drop
contribution is,

Hex

G?Ly 1 J ,

— )d (4.45)
2p1Dh Xex 0 4)1 (y) *

aph =f

The variation of quality over the length of the section depends on the details of
the heat load. If the heat load is uniformly distributed along the line, then the quality
will increase approximately linearly.

To test the above theory, Huang et al. [20] constructed and operated a vertically
oriented natural circulation loop that contained a helium mass flow meter. The loop
had a vertical height of about 400 mm and tube diameter of 4.6 mm. A steady heat
load between zero and 20 W was applied over part of the length of the return line.
The results of this test are shown in Fig. 4.10. The solid line is the analysis based
on (4.41) through (4.45) applied to the particular conditions of the experiment.
Two results are worth noting. First, the analysis appears to agree to within 10% of
the experimental data. This is good confirmation of the theory and a suggestion that
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two phase thermo-siphon modeling and design are achievable. Second and of
greater practical importance is the noted behavior of the mass flow rate with
increasing heat load. In this case for heat loads greater that 2 W, the observed
mass flow rate is approximately constant. This shows that a natural circulation
loop is a very stable device for remote cooling as it can accept a range of heat loads,
from cooldown to steady operation without causing hydrodynamic instabilities
in the flow.

Figure 4.11 displays a typical configuration of the natural circulation loop in an
application. As discussed above, it is important to apply the heat load to the return
leg of the loop. In practice, this is done by insulating the supply line from the
bottom of the supply vessel to the bottom of the cryogenic system before making
contact with the heat load. Once the heat load is in contact with the line, it must
have ever increasing elevation avoiding traps until it returns to the supply vessel.
One additional feature is to return the two phase flow above the liquid level in the
supply vessel to allow it to phase separate, returning the vapor to the refrigerator
and allowing the liquid the flow back into the loop. The refrigerator thus only needs
to supply enough liquid to the vessel to make up for the liquid boiled away by the
heat load.
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4.4 Flow Through Porous Media

There are a number of situations in the practice of helium cryogenics where the
fluid is made to flow through a porous solid structure. In this context, by porous
structure we mean a solid matrix made up of finely meshed sub-elements such as
small particles or screens, bonded together into a monolithic component. Typically,
the dimensional scale of the pores is much less than that of the containing channel
and the fluid dynamics is dominated by the small scale. A few examples of where
porous media enter into helium cryogenics are:

» Regenerators and heat exchangers for helium refrigerators: These include the
regenerators needed for cryocoolers and heat exchangers for micro-scale
recuperative refrigerators.

» Porous insulation for superconducting magnets: An innovative technique for
providing active cooling to magnet windings is to support the windings with
porous solid insulation that allows some portion of the helium coolant to
penetrate the winding.

» Porous plug phase separators for space based liquid helium cooled experiments.
In this application, the porous plug provides a back pressure due to the fountain
effect in He II to contain the liquid within a container even in zero-g conditions.
This topic is discussed further in Chap. 7 on He II heat and mass transfer.

The physical characteristics of porous media are described by a set of
dimensions defined as follows:

Pore size: This is the average dimension of the pores within the structure, d,. Most
porous media have a distribution of pore sizes due to the complex interconnected
nature of the medium. Thus, d, is some suitable average for flow channel dimen-
sion. The pore size is usually measured by microscopic analysis.

Porosity: This is a dimensionless quantity that describes the fraction of the media
that is void. The porosity, e, is literally defined as the ratio of the void volume to the
total volume of the media. Porosity can be measured by a variety of means,
although the typical method is by determination of the average density compared
to that of the bulk material. The porosity is also given as the actual flow cross
sectional area divided by the cross sectional area of the porous media.

Permeability: This is the quantity that characterizes the flow through the media.
The permeability, Kp, is the physical quantity that relates the pressure drop to
the flow rate through the porous medium.

Specific surface area: This is the total particle surface area per unit volume of the
medium. S, is related to the equivalent particle size or pore size when modeling the
medium such as consisting of uniform size spherical particles. The specific surface
area can be measured by gas adsorption as is discussed in Chap. 10.

Tortuosity: This quantity is theoretically defined as the effective increase in
hydraulic path length in a porous medium compared to the linear dimension of
the medium. w = ¢/e is defined in Fig. 4.12 and is always > 1.
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Fig. 4.13 Sample of porous media subjected to a flow

Now consider a sample of porous material (PM) that is placed within a duct, see
Fig. 4.13. If the sample is subjected to a one-dimensional flow of a fluid a pressure
drop, 4p, is established across the sample. If the flow rate is low, the pressure drop
is linearly proportional to the flow rate much like laminar duct flow. This is referred
to as the Darcy flow regime and is one method for obtaining the permeability of the
medium by measuring,

A
Lty (4.46)

Where U is the velocity averaged over the entire cross section of the sample.
This value is considerably different from the velocity of the fluid within the pores
which is nominally U/«. If one compares (4.46) to the pressure drop expression for
laminar flow, it is easy to show that K, is proportional to the square of an effective
pore diameter, d,,. Equation (4.46) is a scalar relationship that drops the negative
sign associated with the pressure gradient through the sample.

As with flow in a one dimensional duct, the laminar flow regime in porous media
is limited to occur up to a certain value of the characteristic Reynolds number.
However, in porous media there are different Reynolds numbers. For example, one
can define a Reynolds number based on the permeability as,

Reg = %E (4.47)
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Fig. 4.14 Porous media pressure drop correlation (From Ergun [21])

Using this definition, the laminar regime is limited to flow rates with Regx < 1.
For higher Reynolds number, the pressure drop deviates from the linear relationship
adding a quadratic contribution that is associated with the form drag around the
particles that make up the porous medium. In this regime, the pressure drop is
correlated by the relationship,

Ap  u 2
=—U+ bpU 4.48
L =K + bp (4.48)

where b is empirically determined.

Ergun [21] confirmed the form of (4.48) by making measurements of the pressure
drop across beds of packed spheres. These results are shown in Fig. 4.14. In this case,
the Reynolds number is defined in terms of the particle diameter,

D
Rep, = % (4.49)

P

In this model D, ~ 10VK, indicating the transition Reynolds number for the
onset of inertial terms to be Rer ~ 10, as seen in Fig. 4.14.

The above discussion is completely general and based on the behavior of
classical fluids such as water and air. In the case of normal liquid helium flow
through porous media, there are only a limited number of reported measurements.
However, overall the behavior of liquid helium flow through porous media is not
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substantially different from that of other classical fluids. One potential quantitative
variation is in the measured values of the porosity and permeability. Since liquid
helium has a very small viscosity and surface tension, it is reasonable to expect the
liquid to easily penetrate into the smallest pores in the media. Thus measurements
of the permeability and porosity can give higher values with liquid helium than with
other fluids, in particular water. This result is at least qualitatively born out by
experiment [22].

Helium flow through fine mesh screens is also important technically as many
regenerators use this structure rather than packed spheres. Correlations for classical
fluid flow through such structures are available in the literature [23, 24]. Again
these correlations are mostly based on measurements with classical fluids near
room temperature.

By far the most interesting and unique behavior of porous media in helium
cryogenics concerns its application as a phase separator in He II storage containers
for zero-g applications. We will therefore return to this subject later in that
context.

Example 4.3

We need a porous plug pressure drop device for operating as part of a refrigera-
tor. The flow rate is to be 1 g/s of helium supplied at 2 MPa and 6 K. Such a flow
might be in part of a recuperative refrigerator with the porous plug acting as a
Joule Thomson valve. The outlet pressure is to be 0.3 MPa to avoid two phase
flow. We begin by calculating the required permeability assuming that the flow
follows Darcy’s Law. The assumed physical dimensions are: Diameter of plug
= 10 mm; Length of plug = 100 mm.

We first calculate the approach velocity, U,

4m
U:W:O.ll m/s

Rearranging Darcy’s law for these dimensions and values:

LU
Kp =2 —1.94 x 1074 m?
Ap

One can then confirm that Darcy’s law is appropriate if the Reynolds number
defined as,

Re K

VK
:pUu L_05

which is less than unity. The flow through the porous media is therefore not
affected by inertial terms in the friction factor.

(continued)
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Example 4.3 (continued)

What does it mean physically to have a permeability of order 10~'* m??
Returning to the comment above about similarity between laminar duct flow and
Darcy’s law, one can show that,

Depending on the porosity of the sample, u, can be larger than U by as much
as an order of magnitude. It follows then that D ~ /Kp ~ 0.1um. Such a pore
size would be obtained in a sample made of particles with diameters no greater
than 1 um.

Questions

1.

For adiabatic compressible fluid flow, the pressure will always decrease along
the tube, but the temperature can either increase or decrease. Explain how this
can occur.

. Explain how a natural circulation loop works. List the requirements to achieve

stable flow.

. List five applications for porous media in helium cryogenics. Discuss the overall

physical characteristics for each case.

Problems

. Derive the separate equations for the one-dimensional pressure and temperature

gradients in a compressible single-phase fluid. Show that for low velocities and
nearly ideal gas behavior these expressions reduce to the forms given by (4.26)
and (4.27). Determine a relationship for the pressure gradient under the
condition where dT/dx = 0.

. Consider single phase liquid helium at 4 K flowing through a 10 mm tube of

length 30 m at a mass flow rate of 1 g/s. The mean surface roughness is 10 pm.
Calculate the Reynolds number for this flow condition and the overall pressure
drop. How much lower would the pressure drop be if the tube were smooth,
k=07

. Using the homogeneous model, make a plot of the two-phase friction multiplier

d),z as a function of vapor quality x at 4.5 K and saturation conditions. Use the
following dimensions of the tube: L = 5 m; d = 5 mm; mass flow = 1 g/s.

. Consider the same tube as in problem 2, but in this case it receives a uniform

heat flux/length Q/L = 1.25 W/m. (a) Calculate the exit quality of the flow;
(b) Calculate the total pressure drop.

. A 10 mm diameter tube, 10 m in length has a constant flow of 3 g/s of helium.

The liquid helium enters as two phase liquid—vapor (y = 0.4) at 4.5 K and
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0.13 MPa. Calculate the pressure drop, Ap, using both the homogeneous model
and the Lockhart Martinelli model.

. Derive a relationship for the permeability of a porous plug made up of n parallel

channels of equal diameter, d, per unit area. Use Darcy’s law and the laminar
flow expression for duct flow.

. Consider a “cable in conduit conductor” (CICC) consisting of a square cross

section tube with inner dimension 10 x 10 mm? and containing 100 round wires
of 0.8 mm diameter. The flow rate of single phase liquid helium at 4.2 K is 3 g/s.
Calculate the hydraulic diameter and the pressure drop/m of conductor.
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Chapter 5
Classical Helium Heat Transfer

Normal helium (He I) is a simple liquid with state properties that can be described
reasonably well by classical models of the type introduced in Chap. 3. However, the
dynamics of heat and mass transfer are of particular interest to engineering
applications. Heat transfer, which is the subject of the present chapter, is probably
the most important single characteristic of cryogenic fluids. The subject has con-
siderable physical basis, and the models used to describe the phenomena are a
combination of fundamental physics and engineering correlations. Pool boiling heat
transfer is an often studied engineering problem related to cryogenic fluids includ-
ing liquid helium. Pool boiling is a common term used to describe an experimental
configuration consisting of a heater, either a plate or wire, immersed in a large bath
of the fluid. Normally, the bath has such an extent that it is possible to assume it to
be infinite in size relative to the heater sample. This problem is a classic in heat
transfer research; although more complex configurations are needed to model true
engineering systems. Heat transfer to forced flow helium is also an important topic
as it relates to the design of heat exchangers and superconducting magnets.
The fluid dynamics of forced flow helium was covered extensively in Chap. 4.
Here we concentrate on the processes of heat exchange. Of course, in the case of
forced flow helium the fluid dynamics problem and the heat transfer problem are
not completely separable.

There are a number of general characteristics of He I which are worth noting in
the context of heat transfer. First of all, it has a rather small thermal conductivity
and large specific heat, suggesting that conduction heat transport is of little signifi-
cance to the overall heat transfer picture. Particularly in the steady state, the heat
transport is dominated by convection mechanisms.

The traditional approach to the interpretation of heat transfer is best suited for
engineering applications. The general philosophy is to assume that the heat transfer
process is too complicated to understand from basic principles. A specific problem
requires solution of a complex set of equations which are only treatable in the
simplest geometries. Therefore, engineering problems are scaled on the basis
of dimensionless variables, which are functions of the properties of the system.
It is then possible to construct non-dimensional relationships which when fit to

S.W. Van Sciver, Helium Cryogenics, International Cryogenics Monograph Series, 115
DOI 10.1007/978-1-4419-9979-5_5, © Springer Science+Business Media, LLC 2012
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experimental data can be applied universally to other systems. The strength of this
approach is in its relative ease of application. These dimensionless relationships
have been explored extensively and their forms are available in the literature [1, 2].
Furthermore, the computation of the parameters for a given set of conditions allows
straightforward predictions for experimental data. When carried out correctly,
the correspondence between experiment and correlations is quite satisfactory. The
essential ingredient to this approach is sufficient quantity of experimental data, not
only for the particular fluid in question but also for other fluids with widely varying
properties. This need must be satisfied to instill reasonable confidence in the
particular correlation at hand. Fortunately, for most liquids this kind of ground
work has already been laid and the behavior of He I is in satisfactory agreement
with the accepted correlations. The quality of the agreement is in part the subject of
the present chapter.

For problems of heat transfer, the most important dimensionless quantity to
consider is the Nusselt number, Nu. It represents a dimensionless heat transfer
coefficient defined by the relationship

hL

Nu=—
u kf

(5.1

where h = g/(T — T},), the heat transfer coefficient of the surface, T, and T}, are the
local surface and bath temperatures, k¢ is the thermal conductivity of the fluid, and
L is the characteristic length scale in the problem. In pool boiling, L is the
dimension of the heater, that is, its diameter or width. In forced flow the length
scale is the diameter of the tube or cylinder. As we will see below, the Nusselt
number appears in correlations used to describe both free convection and forced
convection heat transfer.

In the case of free convection and pool boiling heat transfer the two relevant
dimensionless numbers are the Grashof number (Gr) and Prandtl number (Pr).
The Grashof number indicates the ratio of buoyancy forces relative to viscous
forces; it is represented by the relationship

gB(Ts — Ty)L?

Gr =
2

(5.2)

where g is the acceleration of gravity, f is the bulk expansivity, and v is the
kinematic viscosity. The Prandtl number, discussed in Chap. 3, is the ratio of
the mass to thermal diffusivities of the fluid

v uC,
Pr=—="—"¢ 53
T Dy & (5.3)
where D, = k/pC,. For systems that are dominated by natural convection
mechanisms, that is, with negligible forced flow, the Nusselt number is a function
of these two numbers,
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Nu = ¢(Gr) (Pr) (5.4)

where ¢ and  are functions that can be determined by the empirical correlation
of data.

Most empirical correlations for natural convection are given in terms of the
Rayleigh number, which is simply the product of the Grashof and Prandtl numbers,

gp(Ts — Tp)L?

Ra=Gr Pr= 5.5
a T Pr Dy (5.5)

Simplified correlations can then be written in the form
Nu = C Ra" (5.6)

where C is an empirically determined parameter. The coefficient n is dependent
mostly on the geometrical and flow conditions. For a vertically oriented plate in an
open bath, n =} and C = 0.59 when the flow is laminar while n =1 and C = 0.1
in the turbulent regime [2]. The type of heat transfer condition that exists in a
particular system can be described by the corresponding value of the Rayleigh
number. The critical Rayleigh number Ra. defines the transition between these
regimes. For flat plates, the transition between pure conduction and convection
occurs for Ra, =~ 103, while the transition between laminar and turbulent convec-
tion heat transfer usually occurs for Ra, ~ 10°. These concepts assume single-
phase heat transfer and consequently are not applicable in heat transfer processes
that involve change of phase.

5.1 Regimes of Heat Transfer

To obtain a better physical feeling for pool boiling heat transfer, it is helpful to
consider a hypothetical experimental system. Such an experiment, shown in
Fig. 5.1, consists of a flat heated plate with some arbitrary orientation exposed to
an effectively infinite bath of liquid helium. The experiment consists of heating the
plate from inside the insulated region and measuring the temperature difference
between the bath and surface, AT, as it varies with heat flux ¢g. There are a number
of variables that affect the results in this experiment. Among these are bath
temperature and pressure, surface orientation, physical characteristics of the heated
surface including coatings, and frequency of heat flux. The general impact of these
variables is described further below.

Given this experimental configuration, a measurement consists of determining
a relationship between the heat flux ¢ and AT,. A typical example of such a
relationship is shown in Fig. 5.2. There are principally three regimes of heat transfer
as indicated in the figure: (1) natural convection, (2) nucleate boiling, and
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Fig. 5.1 Schematic of pool
boiling heat transfer process
from a planar surface of
arbitrary orientation

Fig. 5.2 Typical heat
transfer relationship for pool
boiling liquid
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(3) film boiling. Each of these regimes has a characteristically different physical
description, a schematic representation of which is shown in Fig. 5.3. At the lowest
heat fluxes up to a few W/m?, heat is transferred by natural convection; see
Fig. 5.3a. No phase change is evident. This mechanism is characterized by den-
sity-driven convection currents near the heated surface. Surface temperature
differences can be determined by the type of correlation given in (5.6). As the
heat flux is increased, bubbles of helium vapor begin to form at preferred sites on
the surface. These are typically surface imperfections. In the natural convection
region, a certain amount of hysteresis in the heat transfer curve results from
the activation and deactivation of these nucleation sites.
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As the heat flux is increased further, the nucleation sites get fully activated,
meaning that each site contains one bubble. At this point the surface is referred to as
being “educated” since now increasing the heat flux only serves to accelerate the
rate of bubble growth and detachment. In the nucleate boiling regime, Fig. 5.3b,
there is a layer of superheated liquid adjacent to the heater surface. As a bubble
detaches, cold liquid from above rushes down to cool the surface. This bubble
growth and detachment causes macroscopic turbulence.

At still higher heat fluxes, the nucleate boiling bubbles get so large and are
detaching at such a great rate that they become unstable and coalesce into a
continuous vapor film; see Fig. 5.3c. The heat flux at which this occurs is referred
to as the peak nucleate boiling heat flux ¢*. This regime is called film boiling. The
condition is unstable and causes hysteresis in the heat transfer curve, as shown by
the upper region in Fig. 5.2. On decreasing the heat flux, it is necessary to go to a
value lower than ¢* for recovery to the nucleate boiling regime. This recovery value
is referred to as the minimum film boiling heat flux g, or recovery heat flux g.
In the film boiling regime, the surface temperature difference is typically an order of
magnitude higher than with nucleate boiling. The hysteresis in this regime of heat
transfer is associated with the stability of a vapor film below a higher-density liquid.
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Numerous factors affect these heat transfer characteristics. For example, the
surface condition of the heat transfer sample can affect both the peak heat flux g*
and ATy, in the nucleate boiling regime. It is possible to obtain variations in these
quantities by as much as a factor of 2-3 between samples. The mechanism by which
surface preparation affects the heat transfer characteristics is believed to be
associated with the number of available nucleation sites.

Surface orientation has a profound effect on the heat transfer behavior. Variation
of the surface orientation with respect to the gravitational force can cause signifi-
cant changes in the heat flux and minimum film boiling heat flux. The highest
values for both these quantities occur with the surface facing upward, because the
buoyancy force aids bubble detachment. This argument supports the observed result
that ¢* and g,,,5, are minimum with the surface facing downward.

The thermodynamic state of the liquid helium bath is also an important para-
meter in the heat transfer process. The bath temperature has a significant effect on
various heat transfer parameters, particularly the peak nucleate boiling heat flux g*.
Similarly, the bath pressure affects these values, particularly when considering the
subcooled or supercritical state. These variables can be taken into account through
the changes in the helium properties with temperature and pressure.

The frequency with which the heat transfer event occurs is also important for
both the peak heat flux and temperature difference. At low frequencies up to
perhaps 10 Hz, the behavior does not deviate significantly from that of the
steady-state process. Heat transfer is controlled largely by convection mechanisms.
However, at higher frequencies approaching the kilohertz range there is insufficient
time for the bubble nucleation to occur. Consequently, the behavior becomes
dominated by simple heat diffusion in the liquid adjacent to the solid. Then
temperature differences are caused by two physical mechanisms — the thermal
conductivity of the helium and interfacial conductance (Kapitza conductance).

Finally, variations in geometry can have a profound effect on the heat transfer.
Many engineering systems consist of channels, tubes, or other complex geometries,
which are vastly different from the open infinite bath configuration. Such factors
can cause differences in the heat transfer at least in part caused by the limited
coolant volume. Some of the physical phenomena that can occur include heat-
induced natural circulation and vapor locking in narrow channels. In the following
sections, these issues will be discussed in further detail.

5.2 Convective Heat Transfer

At very low heat fluxes in liquid helium, ¢ ~ 1 W/mz, heat is transferred by a
combination of conduction and convection. It is described by a heat transfer
coefficient h = q/AT,, where h is only weakly dependent on AT,. This regime of
heat transfer has only limited technological application in liquid helium because the
heat fluxes are quite small. However, the problems of low heat flux heat transfer and
of transitions between conduction and convection do have fundamental physical
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significance. Certain special cases of heat transfer fall in the general area of exactly
soluble classical physics problems.

A good example of such a special interest is the problem of convection onset in a
layer of fluid that is heated from below. The main difference between this problem
and similar ones concerning pool boiling heat transfer is that the fluid layer is
to have a thickness dimension d that enters into the problem in one of the
dimensionalized parameters. This problem is referred to as Bénard convection
and the instability associated with the transition is called the Rayleigh-Bénard
instability. The transition is between conductive heat transfer and steady convec-
tion. As the heat flux is increased, the condition where the fluid is at rest carrying
heat by conduction is transformed to that where a polygonal convective cell
structure occurs. This type of structure has been observed in visual experiments
with room temperature fluids. These flows exhibit regularity and structure that have
inspired considerable theoretical research into the dynamics of small perturbations
in fluids heated from below. Theoretical modeling is achievable because the
disturbances are assumed to be sufficiently small that their description, at most,
adds linear terms to the fluid equations.

The theoretical description of Bénard convection begins with the continuity
equation and the equations for conservation of momentum and energy. The growth
or decay of perturbations in the velocity and temperature fields is governed by
the following linearized equations [3]:

V-v=0 (5.7a)

o _ in +vV2v — gfT (5.7b)
ot Po

% =DV?T —wy (5.7¢)

Solutions to these equations establish the regions of convection growth or decay.
The boundary between these regions is defined by a “critical” Rayleigh number
which effectively is a nondimensional temperature difference. The most interesting
of the three equations is (5.7c) which describes the effect of motion on the
temperature gradient. Without the second term, wy, the expression is simply the
heat diffusion equation. The parameter y is defined as the undisturbed temperature
gradient due only to conduction (y = g/k). The physical meaning of the term wy is
that of the motion generator. Heat is swept upward while the cold fluid returns. Heat
conduction is necessary to generate the initial temperature gradient, but since mass
flow is involved, viscosity enters to resist the growth of the perturbation.

The problem of Bénard convection in He I has been studied by a number of
workers. Experimental measurements normally consist of determining the variation
of the Nusselt number with the normalized Rayleigh number (Ra/Ra.). For any
fluid, the Nusselt number represents the ratio of the effective thermal conductivity
to the actual thermal conductivity obtained without convection. Plotted in Fig. 5.4 is
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the normalized Nusselt number for one set of experiments on He I [4]. A number of
interesting facts can be gleaned from these data. For example, above Ra, the
Nusselt number increases quite strongly with Ra. This is to be expected because
the convection currents improve the heat transport. However, it is worth noting that
the behavior of the Nu versus Ra/Ra, plot appears to be somewhat universal in
form. Slight differences in the data displayed in Fig. 5.4 are attributed to geometri-
cal factors in the experiment.

The Rayleigh-Bénard instability is an interesting classical fluids problem.
Its connection with helium heat transfer in practical configurations is limited,
yet it does give fundamental insight into the fluid flow problem. As the heat flux
is increased above about 0.1 W/m? bubbles begin to nucleate on the surface and
simple convection is no longer the generally applicable solution. This problem is
discussed in the next section.

Free convection heat transfer in cold helium gas is a more practically significant
process because it can involve large heat fluxes. Helium near the critical point and
in the supercritical regime has been studied fairly extensively [5-7]. Near the
critical point, the heat transfer is seen to be enhanced considerably. For example,
near 0.224 MPa, heat transfer coefficients as high as 100 kW/m? K have been
observed. Such results correlate with the maxima in the thermodynamic properties
near the critical point. Away from the critical point, the results are correlated best as
a function of the Rayleigh number as (5.6). A reasonable fit to much of the helium
data in this regime can be obtained from the expression [8],

Nu = 0.615 Ra’>® (5.8)
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Fig. 5.5 Comparison of data and correlations on free convection heat transfer to supercritical
helium (From Hilal [8])

which is close to the form expected for laminar free-convection heat transfer.
A compilation of convective heat transfer results for supercritical helium is
shown in Fig. 5.5 along with several correlations. There is a characteristic trend
to the data; however, the agreement between various experiments is variable.

5.3 Nucleate Boiling Heat Transfer

Above a heat flux of a few W/m? in liquid helium the heat transfer surface begins to be
covered with a large number of small vapor bubbles. This heat transfer process is quite
different from that of natural convection because it is controlled mostly by the
hydrodynamics of bubble growth and detachment rather than convection in the liquid.

Two conditions must exist at or near the heat transfer interface before there can
be activation of bubble nucleation sites. First, there must be a boundary layer of
liquid adjacent to the surface which is in the superheated condition. The thickness
of this layer is determined by the thermal conductivity of the liquid, &, and the
allowable superheat, ATy = T — T},, where T is the maximum superheat tempera-
ture and T, is the bath temperature. The thermal boundary layer thickness can
therefore be written

k AT
q

o~

(5.9)
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Fig. 5.6 Bubble nucleation on an imperfect surface: (a) negative radius of curvature, (b) positive
radius of curvature, and (c) critical radius

Typically, ¢ is of the order of 1-10 pm for liquid helium near its normal boiling
point.

Second, local surface imperfections must exist. These imperfections are neces-
sary to provide preferential regions where bubbles can form. Shown schematically
in Fig. 5.6, these imperfections usually are envisioned to be grooves or slots which
allow a bubble to form with negative curvature, thus taking advantage of surface
tension to stimulate the bubble nucleation. There are two principal reasons why
the superheated boundary layer must form near the interface before substantial
vapor nucleation can occur. First, the liquid near the interface is subcooled by the
hydrostatic head (4p = pgh) such that the local temperature must increase above
ambient before the saturation condition can be attained. Second, and probably
more important, in order to have vapor bubbles of positive radius of curvature,
the surface tension of the liquid must be overcome.

5.3.1 Nucleation Theory

So far the discussion of nucleate boiling has been quite general and qualitative.
However, it is worth considering two specific questions of quantitative nature.
These concern the general vapor nucleation problem but are worked out as
examples for the case of boiling liquid helium. The first question pertains to the
growth of a vapor bubble on a nucleation site or actually anywhere in the bulk fluid.
For a given amount of superheat, a bubble will be stable against the surface tension
which is trying to collapse it. This problem involves consideration of the stability
of a vapor bubble immersed in the bulk liquid — a case similar to that shown
schematically in Fig. 5.6c.

The stability of a vapor bubble in the liquid can be evaluated in terms of the
Clausius—Clapeyron equation. Considering the change of state between the liquid and
vapor, thermodynamic stability requires that the vapor pressure derivative be given by

dp _AS_ hfg
dr|,, A4dv T 4v

(5.10)
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where /i, is the latent heat of the liquid and 4v = v, — v, is the difference between
the specific volumes of the vapor and liquid. For the interface of the bubble to be
stable, it must have a pressure inside, p,, which exceeds the local saturation
pressure, p,, by an amount related to the surface tension ¢. For a spherical bubble,
this requirement leads to the expression

20
Dy —Ds = — (5.11)

-
where r is the local bubble radius. Obviously, the smaller the bubble the larger must
be the pressure difference.

To get a feel for the order of magnitude of the quantities involved, assume that
helium vapor obeys the ideal gas law and that the specific volume of the vapor is
much greater than that of the liquid. These assumptions lead to the following
approximation:

Ay~ v = — (5.12)

Substituting (5.12) into (5.10) leads to a differential relationship

dp /’lfq dr
—_— = 5.13
) R (5.13)
This expression must be integrated between saturation (7, py) and the condition
inside the bubble (T, p,) as determined by the stability relationship (5.11). Such
a procedure yields a common relationship for the required vapor pressure within a
bubble.

py = pyes AT /RIS (5.14)

where a further approximation has been made that the temperature difference,
AT, = T, — Ty, is small compared to T§.

The present discussion is aimed at determining the minimum radius of a stable
vapor bubble in the bulk liquid. Substituting the expression for equilibrium of a
vapor bubble (5.11) and allowing the radius to be undetermined, we obtain an
expression for the critical radius,

2 2 -1
P (ewn/kn _ 1) (5.15)
Ps

which subsequently can be solved to determine the approximate value of r. for
any fluid.
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Example 5.1

Calculate the critical radius for a vapor bubble in liquid helium at 4.2 K,
100 kPa. Assume that the vapor is superheated by 0.3 K. Estimate the number
of helium molecules within the bubble.

Under the assumed conditions, 4z, = 82 J/mol and ¢ = 0.15 mJ /m? for a critical
temperature difference assume AT ~ 0.3 K. Inserting these numerical values
into (5.15)

o= 27 (e )
Ds

yields a critical radius 7. = 16.4 nm. The volume of the sphere is then,
43 23 3
V:§nr:1.8x10 m

But the number density of helium molecules at 4.2 K is about 2.6 x 10*"/m? so
the sphere contains approximately 10* atoms. It is reasonable to assume that the
bubble containing this many molecules represents a thermodynamic system.
Note that the above calculation is limited by the assumptions that v, > v, and the
ideal gas behavior for the vapor phase. These assumptions can lead to considerable
inaccuracies in calculations of both the critical radii and the nucleation temperature.

The above calculation contains an assumed value for the superheat required to
initiate the nucleation process, AT,. Experimentally determined superheats actually
vary by as much as half an order of magnitude. The highest values are obtained
for the most ideal surfaces where nucleation is assumed to be homogeneous. These
systems give nucleation superheats around 0.35 K at 4.2 K, 0.1 MPa. In fact,
homogeneous nucleation superheat has been measured over the entire He I range
and shown to agree with the empirical relationship [9]

T 1.534
AT, = 4.322(1 - T-”) (5.16)

c

An expression can be derived for the homogeneous nucleation temperature
based on a model suggested by Frenkel [10]. The analysis yields the rate of
formation of bubbles having the critical radius 7. as defined by (5.11). As a function
of the fluid properties, the rate is given by

R (0)1/2e 4narL2, 5.17)
=n = Xp 3 kBTS .

where 7, is the number density in the liquid and m is the mass of a helium atom. The
critical radius r.. is a function of the superheat AT, as well as other parameters such
as absolute temperature 7.
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The expression given by (5.17) can be used to calculate the critical radius r,. or
preferably the superheat AT. Such a calculation requires one arbitrary assumption:
that of the reaction rate for the onset of nucleation. However, since the critical
parameters enter into the exponential, the results are only weakly dependent on
the choice of R. Typical values for this quantity are assumed to be 1 cm™-s".
Furthermore, it is not possible to use the form developed above for the critical
radius because the nonideality of the vapor phase plays an important role. Flint and
Van Cleve [11] were able to obtain good agreement between experiment and theory
if they used the actual behavior of the helium vapor pressure curve. The results of
their calculation are shown in Fig. 5.7 along with experimental values for the
nucleation superheat. These results were obtained on polished silicon chips oriented
vertically in a bath of saturated liquid helium. The critical temperature differences
are determined by noting the point where the hysteresis ended in a g versus AT
curve; see Fig. 5.2. These data indicate a close correspondence between homo-
geneous nucleation theory and experiment. Typically, nucleation temperatures on
real roughened surfaces are lower than those indicated in Fig. 5.7.

5.3.2 Heat Transfer Correlations

Once nucleation has occurred and the bubbles are large enough to be stable
against collapse in the bulk fluid, the heat transfer becomes dependent on the
hydrodynamics of bubble detachment and growth. To model the nucleate boiling
heat transfer in this regime, it is necessary to know a number of quantities including
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the rate of bubble growth, frequency of detachment, and something of the
hydrodynamics of the two-phase fluid consisting of the liquid in the vicinity of
the bubble. A conceptual picture of the hydrodynamics of an individual bubble is
beneficial in understanding the heat transfer mechanisms.

In the vicinity of the nucleation site, it was observed by Hsu and Graham [12]
that a departing bubble took with it an area of superheated liquid equal to approxi-
mately twice the projected area of the bubble. Based on this hypothesis, shown
schematically in Fig. 5.8, it is possible to account for the heat removed by one
bubble as a sum of two quantities [13]

4
qp = ?nhfgpv / nfry dA + 2nAT,Cp;0 / nfry dA (5.18)
A A

where n is the number of nuclei per unit area of surface and the integrals are over the
entire heat transfer surface area. The first quantity on the right-hand side is that due
to the latent heat of the helium within the bubble, while the second is the heat
required to superheat a new layer of liquid that replenishes the layer taken away
with the departing bubble. The difficulties associated with applying (5.18) to real
problems are multifold. First, the frequency of detachment f is involved with both
terms in (5.18). The heat flux is proportional to f, which is largely an experimental
quantity. The quantity is dependent on n, the number of nucleation sites per area,
and r, the critical size of a departing bubble. The amount of superheat AT also
enters (5.18) in the second term. In principle, this quantity can be determined from
(5.17); however, for real surfaces it can vary considerably.

An additional complication enters when attempting to determine the total heat
transferred in the nucleate boiling regime. In an actual process, there are two
heat transfer terms: one due to bubble hydrodynamics, ¢;, and one due to natural
convection in the bulk fluid, ¢,

Gnb = qb + Gnc (5.19)

There may be an additional contribution due to the interaction between natural
convection and boiling, but it is unclear what form it would take. It is tempting to
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neglect the natural convection term, assuming it is small; however, this is not
always possible. Except in very special geometries, it is not possible to determine
qne €xactly. Therefore, engineering correlations are needed to describe the second
term in (5.19). In general, the natural convection heat transfer can be written as a
function of the dimensionless Rayleigh number as given by (5.6).

The above analysis has the potential of being able to describe the heat transfer in
the nucleate boiling region. However, difficulty arises when determining the
variables that enter (5.18) and (5.19). These variables mostly include the functional
form of the natural convection, the amount of superheat AT, the bubble density #,
and detachment frequency f. Since this analysis has limited practical usefulness,
the preferred approach is to characterize the total heat transfer in terms of an
engineering correlation.

The most popular and probably the best correlation used to describe the nucleate
boiling regime is due to Kutateladze [14]. It is based on theory and experimental
scaling of heat transfer to many different fluids:

h (i)l/z —325% 10 aCpip; (i) 2
hyep ki \&p;

E 8P
o\ o\ 0.125 » 0.7
X g<—’> <—> — (5.20)
M) \8Pi (ogp))

where g is the acceleration of gravity and Ay, is the latent heat of vaporization.
Although (5.20) is a complex expression, it does predict a reasonably correct
functional dependence for the nucleate boiling heat transfer. Rearranging (5.20)
into a more manageable form leads to the relationship

- 1,90 1079 g<pl> 2X3 (%)1.75 (pl>145
A\ o Py

@>ls(ﬁ> T —T 25 5.21
X <hfg 7 ( s h) (5.21a)

0.6

0.3125

where

o\ /2
L= (—) (5.21b)
8P

and T and T, are the surface and bath temperatures, respectively. The expression
given by (5.21) is evaluated more easily. For the case of He I at 4.2 K, 0.1 MPa,
the coefficient of proportionality can be calculated to equal 58 kW/m?K?.

The Kutateladze correlation is in reasonable accord with experimental measure-
ments of heat transfer in He 1. However, there is a wide variation in experimental
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Fig. 5.9 Nucleate boiling heat transfer to He I (Compilation of data and suggested correlation
from Schmidt [16])

data owing to the differences in sample preparation and surface material and
orientation [15]. It is not too surprising, based on the hydrodynamic arguments
above, that different surface preparations would yield much different results.

Figure 5.9 is a compilation of nucleate pool boiling data for flat copper surfaces
facing upward and experiencing an increasing heat flux. The data vary over at least
half an order of magnitude in AT with the smoothest surfaces apparently allowing
a larger superheat. The larger superheat seen in smooth surfaces is consistent with
the homogeneous nucleation arguments presented at the beginning of this section.
Finally, note that an empirical fit used by Schmidt [16] to describe the data is also
plotted in Fig. 5.9. This fit, which is quite close to the Kutateladze correlation with
the exception of the coefficient of proportionality, is a conservative form useful for
engineering applications.

5.3.3 Maximum Nucleate Boiling Heat Flux

The qualitative picture applied to the understanding of the maximum heat flux in
pool boiling He I is as follows. Imagine a surface populated with a number of
nucleation sites. At high heat fluxes, these sites are actively nucleating bubbles that
grow to a stable size and detach at a frequency f controlled by buoyancy forces.
With increasing heat flux, the number and size of these bubbles grow until a point
is reached where they cover a sizable fraction of the heater surface. At this point,
the individual bubbles are no longer the lowest-energy condition. They will prefer
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to coalesce into a continuous vapor film which will blanket the entire heat transfer
surface. This condition usually is referred to as the onset of film boiling. The
difficulty is in being able to understand and predict the value of heat flux at
which this event occurs, g*.

To obtain some physical feeling for the occurrence of the maximum heat
flux, consider an idealized surface facing upward as in Fig. 5.3b. The vapor bubbles
are departing at velocity v, while the replenishing liquid moves in the opposite
direction at velocity v,. These velocities are not independent variables because
the heat flow is determined by the rate of growth and departure of the vapor
bubbles.

The hydrodynamics of this process is described by the Helmholtz instability
[17], which pertains to the critical velocity of immiscible fluids moving relative
to each other. Assume the liquid and vapor phases represent these two immiscible
fluids. Then the boundary separating the two fluids would show an upward-moving
vapor and downward-moving liquid. For these two fluids to pass each other
undisturbed, the boundary that separates them must remain stable. The stability
of this boundary is a function of a number of parameters including the relative
velocities and densities of the two fluids. This is believed to be the condition that
imposes the peak heat flux limit in classical liquids including He I.

Because of the relative motion of each fluid, there can be a surface wave set
up at the interface. The velocity of this wave, cy, is dependent on a number of
factors including the surface tension and properties of the individual phases.
The relationship for the surface wave velocity is

am_ pp,

= vy —v)* (5.22)
prtee (pr+p,)

Cs

where m = 27/ is the wave number of the surface wave. Since (5.22) consists of a
difference between two positive quantities, it is possible for c§ to have either a
positive or negative value. For ¢3>0 the surface wave can exist. If ¢3>0 the surface
wave velocity is imaginary, implying an instability in the interface. Therefore, the
condition for maximum vapor velocity is obtained by equating c3 to zero. Using
conservation of mass flow, that is, p,v, + p,;v; = 0, a simple expression is obtained:

p,om 1/2
vi= <’> (5.23)
pv(pl + pv)

If the vapor velocity exceeds the value given by (5.23) there should be an unstable
two-phase flow. The result is destruction of the interface between the two phases,
which in turn leads to a condition where the vapor film blankets the heat transfer
surface. This condition occurs at the maximum heat flux.

Zuber et al. [18] used the above reasoning to predict analytically the maximum
heat flux g*. Assuming that the heat is transported primarily by the vapor velocity
and that the latent heat of the liquid that goes into the formation of the bubble is the
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dominant energy, Zuber and coworkers argued that the maximum heat flux can be
written as a product of these quantities, that is,

alpr— e\ (o \"?
¢+ = K pv< v ) ( ) (5.24)
% P2 P+ D,

where K is a numerical factor which in the case under consideration has a value of
7/24. It is possible to derive a similar relationship for ¢* from dimensionless group
analysis. Based on experimental evidence, a similar relationship has developed
acceptance [19, 20] that is,

qx = 0.16hs,p!*[og(p; — p )4 (5.25)

which is in close agreement with (5.24) with the exception of the last factor. The
numerical factor in (5.25) is determined by correlation of numerous experimental
results. For a numerical comparison, (5.25) predicts for liquid helium at 4.2 K,
0.1 MPa a value of ¢* = 8.5 kW/m?, which is in reasonable agreement with
experimental results ranging from 5 kW/m? to around 15 kW/m?. However, to test
the relationship represented by (5.25) for a particular fluid, it is necessary to make
measurements over a wide range of vapor densities or temperatures. Furthermore,
to determine whether the correlation is universally acceptable, measurements of g*
for a variety of fluids are required. These experimental investigations determine the
empirical constant of proportionality. Plotted in Fig. 5.10 are normalized measure-
ments of g*/hgp, versus the density function given in (5.25) [20]. Reasonable
agreement with the correlation is seen for the three cryogenic fluids considered.
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It is worthwhile considering the temperature and orientation dependencies of ¢* in
comparison to (5.25). At high temperatures, g* would be expected to decrease
because as the critical point is approached there is no phase change associated with
boiling and the latent heat vanishes. The theoretical expression indicates that the peak
heat flux should go as the latent heat times the fourth root of the density difference.
Both quantities vanish at the critical point. At low temperatures the latent heat
approaches a constant and the temperature dependence is determined by the square
root of the vapor density, which in turn decreases with temperature. Therefore, there
should be a maximum in the peak heat flux. Analogous although somewhat less
successful arguments can be used to describe the orientation dependence of g*. Since
the peak heat flux is proportional to the square root of the gravitational acceleration g,
the buoyancy effects should decrease as the surface is turned from facing upward to
facing downward. In fact, based on this simple argument, a surface facing downward
should have ¢g* = 0. Experimentally, ¢g* obtains a minimum value a 180° orientation
although its value is considerably greater than zero.

Measurements of the temperature and orientation dependence of g* have been
conducted most comprehensively by Lyon [20]. The orientation dependence of the
maximum nucleate boiling heat flux is shown in Fig. 5.11. Note that for these
experiments ¢g* = 8 kW/m? at 4.2 K which is quite close to the theoretical predic-
tion. Furthermore, for each orientation there is a maximum value in the temperature
dependence of ¢*. Experimentally, this maximum occurs around 3.6 K. Finally, the
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Fig. 5.12 Variation of the
peak nucleate boiling heat

flux with subcooling (From
Ibrahim et al. [21])
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orientation dependence is in qualitative agreement with theory. A minimum in g*
does occur at § = 180°, that is facing downward. However, the value of ¢* at
0 = 180° is still quite sizable, being about 25% of ¢* for 0 = 0°.

The above correlations do not apply when the helium is subcooled to a state
substantially off the saturated vapor pressure curve. In this case there can be no
coexisting vapor. Some work [21-23] on the effect of subcooling on heat transfer
has attempted to treat the peak heat flux correlation in terms of a subcooled
temperature difference AT, The subcooled temperature difference is defined as
the difference between the bath temperature 7}, and the temperature corresponding
to saturation T,,. As heat is applied from the heat transfer surface, the temperature
rises. However, in subcooled He I a larger temperature difference is required than in
saturated He 1. This is due to the need to bring the local environment first to
saturation followed by the amount of superheat needed to initiate nucleate boiling.
Therefore, the absolute temperature needed to cause boiling at a given pressure
should be independent of bath temperature. Such a hypothesis leads to a correlation
for the enhancement of peak heat flux ¢* with subcooling

q;ku]) 1+ anATsub
q;kat hfg

(5.26)

where a is an empirical parameter found to be close to 1.75. Comparison of
experimental results with the correlation given by (5.26) are shown in Fig. 5.12.
Agreement is reasonable although the theory has received only limited application.

5.4 Film Boiling

Once the film boiling condition has been established, normally by exceeding g¢*
under steady-state conditions, a wholly different heat transfer process takes place.
In the vicinity of the heat transfer interface the helium takes on a stable two-phase
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Fig. 5.13 Idealized film He I
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condition with a thin vapor layer blanketing the surface from the He I bath. For a
surface facing upward, this condition is gravitationally unstable since the density
of the liquid is considerably greater than that of the vapor. Experimentally, it is
found that return to the nucleate boiling state requires a decrease in heat flux to gg
OT ¢, Which can be substantially less than ¢* for most configurations. It follows
that there are two principal issues that should be addressed when evaluating the
film boiling state. First, given the conditions of film boiling, how is the recovery
process explained? In particular, is it possible to predict gz? This process has to
do with the stability of the He I-vapor interface. The second question pertains to
the need to correlate the heat transfer coefficient in the film boiling condition.
This process normally relies on dimensionless group analysis developed for
other liquids.

54.1 Minimum Film Boiling Heat Flux

The stability of the vapor film blanketing the heat transfer surface can be evaluated
in terms of a hydrodynamic condition referred to as the Taylor instability [17].
This interpretation is a standard approach to treating the interface between two
dissimilar fluids. Imagine the condition shown in Fig. 5.13 which is an idealized
film boiling heat transfer process. The liquid helium is heavier than the vapor so it
would prefer to rewet the surface; however, it is being maintained in the present
condition by the high-temperature vapor film. The stability of the liquid-vapor
interface is controlled by the behavior of surface wave oscillations. The wave can
be assumed to have an amplitude 79, and a wavelength A. Surface waves must be
damped for the interface to be stable, otherwise the amplitude would grow beyond
the vapor film thickness and rewet the surface. It is therefore reasonable to
construct a model based on the assumption that the stability of these waves controls
the recovery process.

To be more quantitative about the above argument, assume that the stability of a
surface wave is assured if the energy associated with surface tension exceeds the
combination of the kinetic and potential energies in the wave. Both these terms are
related to the amplitude of the surface oscillation 7, as well as physical parameters
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such as densities and surface tension. The kinetic and potential energies can be
related as

_slpr+p)m

> (5.27)

E
A
~lkp

where 4 is the wavelength of the surface oscillation and g is the gravitational
acceleration. Similarly, the surface term can be written

E 1[4
| R A 2
7 2/0 p n dx (5.28)

a

where A4p is taken to be the pressure difference and 7 is a sinusoidal varying wave,
that is n = 7, sin 27x/ . By integrating over the wavelength of the oscillation and
using the approximation that the surface wave oscillation is small compared to 1,
we can evaluate the integral (5.28): -

= (5.29)

~

E|  4non
A
~le

As already stated, the condition for stability demands that the surface energy
exceed the dynamic energy. This leads to a condition on 4 by demanding that
(5.29) not exceed (5.27), that is, -

) <2 (270) (5.30)
~ g(pr—py)

For liquid helium near 4.2 K, (5.30) is obeyed for wavelengths less than about
2 mm, a dimension that must be comparable to a characteristic distance in the heat
transfer problem, for example, the typical bubble dimension.

The minimum film boiling heat flux gz can be understood by application of the
Taylor instability theory to the film boiling heat transfer condition. Lienhard and
Wong [24] and Zuber [18] used this analysis, identifying the breakdown of film
boiling with the amplitude of the surface wave. The general relationship has one
empirical constant and an explicit diameter dependence. For the special case of a
flat plane, the correlation is simplified considerably:

1/4
g0(p; — M) (531)

q, =0.16 hfgpv<
(o1 +p,)°
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Fig. 5.14 Minimum film boiling heat flux for subcooled He I (from Ibrahim et al. [21])

It is interesting to compare (5.31) with (5.24), which predicts the peak heat flux
g*. Taking a ratio of these two expressions, the only important parameters turn out
to be the relative densities of the liquid and vapor,

q p, \'"7
R v
U R - (5.32)
q* (mﬂ%)

For example, considering liquid helium at 4.2 K, we find that the ratio described
by (5.32) has a value of 0.35 at atmospheric pressure. Therefore, assuming
g* = 8.5 kW/m? as measured by Lyon [21] we find that (5.32) predicts a minimum
film boiling heat flux of about 3 kW/m?” in close agreement with experimental
measurements.

The pressure dependence of the recovery heat flux is worth considering in light
of the noted behavior of ¢g*(p). As was observed in the previous section, subcooling
increases g* by about 50% per degree of AT, near atmospheric pressure. The
subcooling effect on g is greater, as can be seen in Fig. 5.14. Note that g increases
by about 90% per degree of AT, near atmospheric pressure [18]. The correlating
relationships for the minimum film boiling heat flux predict this effect. Subcooling
increases the ratio of the vapor to liquid density at saturation, which would result in
an increase in gg/q™*, as observed by experiment.
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5.4.2 Heat Transfer Correlations

Once stable film boiling is established, it is of interest to be able to predict the
magnitude of the film boiling heat transfer coefficient /4, or the rate of heat flux gy,
for a given AT. Experimentally, /14, has values that range over more than an order of
magnitude between about 0.3 kW/m? K and nearly 10 kW/m* K, with the latter
being achieved for fine wires with diameters of ~10 um. The film boiling heat
transfer also depends on fluid properties, being a function of the vapor and liquid
densities, latent heat, and surface tension o.

A number of semi-empirical correlations exist for prediction of heat transfer on
the film boiling condition. The best known and perhaps most accepted of those is
due to Breen and Westwater [25]. As in the case of the minimum film boiling heat
flux gg, these authors base their theory on the Taylor instability. They consider the
wavelength condition given by (5.30) as the minimum required to release vapor
bubbles into the bulk fluid from the boiling film. The correlation depends on the
thermal properties of the fluid including specific heat and viscosity in addition
to geometrical conditions such as the diameter of the heat transfer sample.
The correlation relates the film boiling heat transfer coefficient to these quantities
and a number of numerical constants:

/’lﬂ)( d )]/8( (T — Tp) )]/4
P\&lp; = p,) Kp,(p,— p,)gA

1/2

o

=0.37+0.28 (—) (5.33a)
gDZ(p[ - pv)

where

(e +0.34C,, (T, — Ty)]?

A=
hfg

(5.33b)

and represents an effective latent heat. T, and T, are the surface and bath
temperatures, respectively. D is the diameter of the heater surface, which for film
boiling has an effect on the heat transfer coefficient. For the special case where the
heater diameter is greater than a few millimeters, the second term on the right-hand
side is small and (5.33) may be approximated by the relationship

1/8 /13 N 1/4
g(p; — pv)) (kvpv(p/ —p,)8A )
hy = 0.37 5.34
o < o (T, —T)) 639

Furthermore, in helium for moderate temperature differences, that is AT = 5 K,
the second term in (5.33b) is dominant. Under these conditions, it can be shown
easily that film boiling heat transfer ¢ ~ (T — Tp)**
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Fig. 5.15 A summary of pool boiling heat transfer correlations for He I

In summary, Fig. 5.15 is a plot of the various predictive relationships for nucleate
and film boiling heat transfer [26]. A Comparison between data for nucleate boiling
and minimum film boiling has been made already. For the case of film boiling heat
transfer, the Breen—Westwater correlation is only moderately successful a predicting
experimental data [19]. In general, film boiling heat transfer coefficients measured
on fine wires has yielded consistently higher heat transfer coefficients than
calculated from the above correlation.

5.5 Surface Effects

For the most part, heat transfer analysis for He I takes little account of the character
of the surface. In steady-state heat transfer, the surface is discussed only qualitatively
in terms of activated nucleation sites. Heat transfer correlations used to describe
nucleate boiling and both critical heat fluxes make no attempt to include the surface
character in their treatment. This clearly is a weakness in the theory for there are
considerable surface-induced changes in these values. For transient heat transfer, a
greater effort is put forth to include the surface physics. As was discussed in Sect. 5.6
Kapitza conductance, which is a solid-state interfacial result, must be included when
attempting to understand the transient conduction heat transfer. Since surface
characteristics are not generally included in engineering correlations, it is of interest
to consider how variations in surface character affect experimental results.

There has not been a great deal of research conducted on surface-dependent
heat transfer in He I [27-29]. In the case of steady-state investigations, surface
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Fig. 5.16 Influence of H,O coatings on pool boiling heat transfer (From Cummings and Smith

[28])

roughness, as measured by the coarseness of the surface abrasive, strongly affects
the nucleate boiling regime. This effect can be understood qualitatively by consid-
ering arguments of activated nucleation sites. The smoother the surface, the fewer
active nucleation sites. Since activated sites induce convection, a polished surface
should have a larger surface temperature difference A7 for the same heat flux. This
result has been observed by Boissin et al. [27]. Chemical treatment also has shown
to affect the nucleate boiling regime [29]. These coatings combined with gross
surface roughness have been employed to enhance cooling of composite conductors
for large superconducting magnets.

Surface coatings also have been shown to affect the values of peak and recovery
heat fluxes, ¢* and gg. The correlations used to describe these events in heat transfer
do not include any of the surface characteristics. Cummings and Smith [28]
have shown a clear increase in both the peak heat flux ¢g* and recovery value gg
with increased surface coatings. In their results shown in Fig. 5.16, the coatings
were obtained by condensing H,O crystals on the surface. Similar behavior was
observed by Ogata and Nakayama [29] on chemically treated surfaces. These
results are not understood in terms of heat transfer models, but they represent
interesting and technically significant improvements.

5.6 Channel Heat Transfer

As a very interesting and technically significant special case of pool boiling heat
transfer, consider the channel heat transfer problem described schematically in
Fig. 5.17. A channel of width w is formed between a heat transfer surface and a
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Fig. 5.17 Schematic of a
heat transfer channel
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second adjacent surface. The channel may be oriented at any angle between vertical
and horizontal leading to variations of the heat transfer conditions. This particular
problem is significant because it models an open cooling channel in a technical
device such as a superconducting magnet. When heat is applied to the surface, the
liquid can circulate owing to the thermosiphon effect where bubbles are transported
under the influence of buoyancy forces, as discussed in Sect. 4.3.3.

If the channel is heated over its length, then the fluid accumulates vapor and
the quality increases. If a low-quality fluid enters a heated tube section from below.
Initially, nucleate boiling occurs at the fluid-tube interface. These bubbles are
stripped from the wall and produce local bubbly flow. As the fluid continues through
the tube more heat is transferred, increasing the vapor quality until slug flow and
finally annular flow occur. This sequence of events is illustrated in Fig. 5.18.

Also, as the heat flux from the surface is increased, film boiling may eventually
initiate at the top of the channel where the vapor quality is greatest. Because of
the induced flow, the peak heat flux at the channel bottom can be quite large.
The position dependence of the peak heat flux in one set of experiments is shown in
Fig. 5.19. For vertically oriented surfaces in an open bath at 4.2 K, the peak heat
flux is usually in the neighborhood of 6 kW/m? Therefore, the bottom of the
channel has ¢* quite close to that observed in an open bath. As the helium is
vaporized and transported up the channel, the local peak heat flux is depressed.
In the present example, the peak heat flux near the top approaches 3.4 kW/m?,
almost a 50% reduction.

Wilson [31] conducted one study of channel heat transfer in an experiment
having variable height and width. The following set of observations were made.
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Fig. 5.18 Flow patterns in
a vertical heated channel
(From Tong [17])

Fig. 5.19 Position
dependence of the peak heat
flux in a He I cooled channel
(Lehangre et al. [30])
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First, for small width w, the peak heat flux averaged over the entire surface area
was directly proportional to the heat flux in the helium channel and therefore
proportional to w. This suggests that the peak heat flux is governed by the bulk
fluid flow. Second, for constant w, the peak heat flux was found to be inversely
proportional to the square root of the channel height z. Based on the results as they
depend on w, this indicates that the bulk heat flow varies as z /. Finally, it was
found that for w/z > 0.1, the channel behaved effectively as an open bath with g*
approaching that of a vertically oriented surface, ¢* ~ 6 kW/m?.

Sydoriak and Roberts [32] derived a general relationship for frictionless homo-
geneous flow of a fluid in a evaporator, which Wilson applied to this channel heat
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Fig. 5.20 Critical power versus channel width for He I heat transfer (From Wilson [31]).

transfer problem. The prediction for the critical power per unit area of heated
surface, Q*/A,, is given by

Q" _ w lyp [ 5 (1 [l +4(8~ 1>]>] v 535)
AT VE 2 B aB—1) '
where f§ = p,/p, and ¢ is the “critical quality” — the mass ratio of vapor to total
(liquid plus vapor) at the channel top when film boiling initiates. This last quantity
must be determined empirically although in general it should be a scalable function
for different fluids.

A plot of the critical power versus channel width w for different channel lengths
z should give a linear plot from which the proportionality function Q*z"*/wA, can
be determined. Such a plot is displayed in Fig. 5.20 for four different channel
heights. The linear plot obtained yields a critical quality ¢ ranging from 0.33 to
0.26 in the case of the largest channel. Thus, for calculations, (5.35) should be a
reasonable approximation for Q*/A assuming a constant value for g ~ 0.3.

One difficulty with the above described analysis is that it does not naturally lead
into the open bath limit for w/z > 0.1. In an effort to develop a more general
equation for channel heat transfer, Lehangre et al. [30] suggested a correlation
based on a series of experiments of different configuration:

0* 10
o 0.88
Ay 1.740.125(z/Dy)

(5.36)
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Fig. 5.21 Variation of the peak heat flux with channel orientation and width at 4.2 K. Channel is
127 mm in length [33]

where 0*/A, is in kW/m?. The quantity D, is the hydraulic diameter which is
equal to four times the ratio of the flow cross section to the heated perimeter.
Equation (5.36) has the appropriate limit for w/z large; however, for channels other
than in the vertical orientation it is not applicable.

Chen and Van Sciver [33] noted that for wide channels the maximum heat flux
g* should correlate with the open bath pool boiling results by Lyon [20]
(see Fig. 5.11). The results of these experiments are shown in Fig. 5.21, where
the angle 6 is measured from the vertical orientation. There are two physical
processes that lead to the observed angular dependence of g*. The first process is
nucleate boiling associated with movement of vapor bubbles normal to the heated
surface. This effect, which is maximum at an angle of 90°, can be assumed to
control the heat transfer process for large w. The other process is associated with
the natural circulation of the heated fluid, where the movement is parallel to the
heated surface. The natural circulation process is a maximum at § = 0° and should
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Fig. 5.22 Parameters used to fit the variation of ¢* with 6 in (5.37)

dominate the heat transfer in the limit of small w. The combination of these two
processes is necessary to describe the variation of ¢* with 6 and w. In particular,
one would expect the maximum value of g* to vary continuously between 0° and
90° as the channel width is increased.

A general correlation used to describe the angle and width dependencies of g* is
of the form

0 +90°

g =b sin( ) + ¢(cos 0)'/? (5.37)

where b and c are adjustable parameters, which should be functions of w only.
The width dependence of these parameters is shown in Fig. 5.22. The basis for
(5.37) is purely empirical evidence. The first term is used to describe the nucleate
boiling heat transfer process. The angular dependence is in reasonable agree-
ment with Lyon’s pool boiling data. The second term represents the natural
circulation process. The (cos 0)'? angular dependence not only fits the experi-
mental data for small w but is consistent with the Wilson’s correlation which
predicts g* o g'>.
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As a final comment on channel heat transfer, the steady-state conditions as
described above generally take a considerable time to become established. This is
because the natural circulation requires a substantial temperature rise and vapor
production before it is fully established. Naturally, the time to reach steady state
depends on the magnitude of Q*/A;, but for significant heat fluxes, of the order of
1 kW/mz, this characteristic time can be as much as a second. The existence of a
characteristic time for the development of steady-state heat transfer has strong
impact on technical applications. Since many systems experience transient heat
transfer processes, which are on the millisecond time scale, it is important to
appreciate that these heat transfer processes are far from steady state.

5.7 Forced Convection Heat Transfer

The process of heat transfer to forced flow helium is closely tied to the dynamics of
the flow states, a topic covered in Sect. 4.1. In the present section, we would like to
extend that discussion to include solutions to the energy equation that can be used
to treat convective transfer.

5.7.1 General Considerations

The problem of interest involves heat transfer from a surface exposed to flowing
liquid helium. If the predominant flow is in the x-direction and the heat transfer is
in the direction perpendicular to that of the flow (y-direction), the energy equation
may be simplified by using the thermal boundary layer approximation,

or ot
dy = Ox

which is analogous to that assumed for the velocity profile. Assuming for simplicity
that the fluid possesses constant properties p, Cp, k, and 1, we obtain the corres-
ponding thermal boundary layer equation [2],

or  or  PT u [ou\*
v = S 5.38
u8x+v8y a(?yz pCp( ) (5.38)

- ay

where « = k/pC,, is the thermal diffusivity. The first term on the right-hand side
of (5.38) represents thermal diffusion. For most fluids of interest in cryogenics, this
term is not large and can be neglected.

By suitable normalization, (5.38) can be shown to lead to the definition of the
Nusselt number as a general function of Reynolds number and Prandtl number, that is,

Nu = f(Rep, Pr) (5.39)
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For internal flow, the Nusselt number is defined as:

(5.40)

where k is a suitably averaged fluid thermal conductivity. In fact, (5.40) is general
and not dependent on the boundary layer approximation. Most empirical heat
transfer correlations are constructed in a form consistent with (5.39).

5.7.2 Heat Transfer Correlations

Investigations of heat transfer to forced convection helium have shown that tradi-
tional engineering correlations are best at describing the data. Results of analysis of
the thermal boundary layer indicate that the average Nusselt number should be
couched in a form consistent with (5.39). As an aside, be aware that the local heat
transfer coefficient can be a considerable function of temperature and therefore
varies along the length of the tube. The local heat transfer coefficient is also defined
in terms of the local mean fluid temperature,

q

h=—"—
Ts_Tm

(5.41)

where T, is obtained by taking an appropriate average across the channel.

There are numerous single-phase fluid heat transfer correlations for internal
flow. Several important factors must be considered when selecting a correlation
to apply to a particular system. First, determine whether the fluid is in the laminar
or turbulent flow regime. The critical Reynolds number for single-phase internal
flow is around 1,200. Second, determine whether the entry region has significant
impact on either the hydrodynamics or temperature development. This requirement
demands fairly large L/D ratios. Helium has a Prandtl number of the order of unity,
so it is expected that these developments will occur almost simultaneously. Finally,
once the conditions of flow are established, it is necessary to select among several
possible correlations dependent on whether the range of parameters is appropriate
for the particular empirical fit.

In fully developed laminar internal flow, there are analytic solutions to the
thermal boundary layer equations of the form,

Nup = constant (5.42)

Where the constant depends on boundary conditions being 4.36 for constant heat flux
boundary conditions and 3.66 for constant wall temperature boundary conditions.
However, for most helium cryogenic problems, laminar flow almost never occurs.
One exception involves flow within porous media a topic discussed below.
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For turbulent flows, all engineering correlations are of the form of (5.39) where
the average Nusselt number is a function of the fluid Reynolds and Prandtl numbers.
In this regime, a number of good correlations exist for single-phase turbulent heat
transfer. The Dittos—Boelter expression is perhaps the most common such
heat transfer correlation [2],

Nu = 0.023Re} *Pr?/ (5.43)

where Nu represents the average Nusselt number over the tube length. Correct
application of this expression demands consideration of the temperature depen-
dence of the fluid properties. The appropriate properties must be evaluated at the
film temperature Ty, defined by

(5.44)

which is a simple average between the surface and mean fluid temperatures. The
Dittus-Boelter correlation has been used quite effectively for a variety of cryogenic
heat transfer problems [34].

In the case of supercritical helium, Giarratano et al. [35] have suggested
that a prefactor of 0.022 gives a better fit to their data with a standard deviation of
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Fig. 5.23 Experimental and predicted heat transfer results for supercritical helium using (5.45)
(From Giarratano et al. [35])
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14.8% obtained between experimental results and correlation. An improved fit to
the experimental data was achieved by use of a slightly modified correlation of
the form [13]

Ts —-0.716
Nu = 0.0259 Re}/ Pr?/3 (—) (5.45)

m

where now explicit temperature variation of the properties is taken into account
by the last factor. The relationship given by (5.45) correlated to a standard devia-
tion of 8.3% with several sources of experimental data. A normalized form of this
comparison is shown in Fig. 5.23, where the heat transfer coefficient is plotted
against reduced temperature T,/T., where T, is the critical temperature.

In general, heat transfer to fully developed forced flow single phase helium can
be assumed to have a well-established engineering basis. Since the fluid is single
phase, its hydrodynamics can be evaluated in terms of the Navier—Stokes equation
of motion including compressibility factors. This problem is quite difficult owing to
the variability of physical properties with pressure and temperature. Consequently,
its solution requires numerical integration of complicated nonlinear equations.
Be aware that this particular problem represents only one special case of forced
flow helium. Other problems concerning two-phase flow and transient effects,
subjects of subsequent sections in this chapter, are more complex in physical nature.

Example 5.2

Consider a thin walled copper tube of diameter 10 mm carrying liquid helium
at 1 g/s and subject to a surface heat flux of 0.1 kW/mz. The helium enters the
tube at 4.2 K and 0.2 MPa. Calculate the tube wall temperature.

At the given temperature and pressure, the properties of helium are: p = 125 kg/
m’; =3 x 10°Pas; ke = 0.018 W/m K; Pr = 0.792
For the given flow conditions, the Reynolds number is,

D 4
Rep = P12 = M _ 40 441
u nuD

Using the Dittus Boelter correlation,
Nu= 0.023Re}*Pr?/% = 105

And the heat transfer coefficient,

_Nu*kf

h
D

= 190W/m*K

For a surface heat flux of 1 kW/m?, this means that the tube surface is 0.526 K
above that of the fluid or 4.726 K.
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5.7.3 Two Phase Flow Heat Transfer

Two-phase flow in subcritical helium is a complex problem as was discussed in
section 4.3; however, the difficulty in understanding the processes involved in two
phase flow increases significantly when heat transfer is included. In addition to
mass flow rate, vapor quality, and void fraction determining the flow conditions, the
effect of heat flux into the fluid also must be considered. In particular, heat transfer
can lead to rapid variations of vapor quality along the tube section.

Experimental investigations of two-phase flow heat transfer have been carried
out by de La Harpe et al. [36] and Johannes [37]. These studies consist principally
of forced flow helium at 4.2 K confined to a tube of a few mm ID with temperature
and pressure probes necessary to determine the heat transfer coefficient and critical
heat flux for boiling. The latter quantity is strongly geometry dependent and cannot
be generalized easily in other systems.

The heat transfer coefficient obtained for two-phase helium is discussed best in
terms of classical correlating relationships. The approach is to determine first the
Nusselt number corresponding to the Dittus—Boelter equation for the liquid flow
only, that is,

Nu; = 0.023(Re))*®(Pr))"*(1 — 1)°® (5.46)

where the last multiplier is to indicate the contribution of only the liquid. Note
that Nu, = hD,/k;, where k; is the liquid thermal conductivity. Measurements
of the two-phase heat transfer coefficient have shown that the actual Nusselt
number normalized to (5.46) can be correlated to the Lockhart—Martinelli para-
meter, y, as

Nuexp —
—P — Ayt 5.47
Nt Tn (5.47)

where y, is discussed in Chap. 4 and repeated here for convenience,

th’ _ (dp/dx), (4.37)

(dp/dx),

The best fit to the data of Johannes [37] of the form of (5.47) are displayed in
Fig. 5.24 for which the appropriate values are A = 5.40 and n = 0.385. Results of
de La Harpe [36] are also displayed as the dashed line in the figure with agreement
in form to the data of Johannes, although possessing substantially different values
for the coefficient A. Although the above correlation seems appropriate for low to
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moderate values of the Lockhart—Martinelli parameter, in the limit of large y,,,
which occurs for small vapor quality, the ratio given by (5.47) must approach unity.
Therefore, to be universally applicable the correlation should reflect this fact.

Two-phase heat transfer as with two-phase flow is a complex process which is
very difficult to understand fully. If faced with a problem in this area, the best
approach is to apply one of the accepted correlations. However, these calculations
are only approximate and should be used only as a guide. If greater accuracy
is required, experimental modeling is the required approach.

5.8 Transient Heat Transfer

In the previous sections, it was assumed that the heat transfer process had been
underway for sufficient time that steady-state conditions existed. The characteristic
time required for the steady state to be achieved is equivalent to the time required
for convection to become fully established. For nucleate boiling, enough heat must
be transferred to vaporize bubbles and allow them to detach. In film boiling the
characteristic time is associated with sufficient energy flux to vaporize a layer of
helium. This can be represented approximately by

By
At~ P10 (5.48)

q

where 9 is the vapor film thickness. For an order-of-magnitude analysis assume that
0 ~ 10 um. Using the physical quantities for He I at 4.2 K, 0.1 MPa, (5.48) predicts
At = 3/q ms, where ¢ is in W/cm?. For a heat flux of a few W/sz, the steady-state
conditions are not established until well in excess of a few milliseconds. For times
shorter than this value, the heat transfer processes are governed by nonconvective
mechanisms such as conduction and radiation.

It is of considerable importance to be able to understand transient heat transfer in
liquid helium. Transient heat transfer is fundamental to the analysis of a number of
problems including the stability of superconducting magnets. There are several
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Fig. 5.25 Schematic V4
representation of the transient /]
heat transfer process

/]

q(t) —= He I

/

/]

/

!
40 [~
q(t)
t, t

aspects to this problem which are worth noting at the beginning. First, for very short
times, that is, 47 < 1 ms, heat transfer processes turn out to be controlled by
physical mechanisms similar to those developed for the case of He II, that is,
Kapitza conductance. Second, the transition between the region of heat transfer
space governed by conduction and that which resembles the steady-state process
is important. This transition occurs on time scales consistent with the rough
calculation in above. There are several parameters that are associated with transient
heat transfer. (1) the peak heat flux ¢*(¢) or critical energy AE* = g* At¥; (2) the
interfacial temperature difference AT,; and (3) the effective heat transfer
coefficient 4. These parameters are governed primarily by the physical properties
of helium and the rate of heat transfer.

The various regimes of transient heat transfer can be described best in terms of
an idealized experiment, which in fact is not very different from actual experiments
performed to investigate the problem. Imagine a solid heat transfer surface as
shown in Fig. 5.25, which in this particular case is oriented vertically. Recall that
the peak steady-state heat flux for this configuration is in the neighborhood of
6 kW/m?. In this experimental configuration, a step function heat flux ¢, beginning
at fy is applied to the sample. With suitable thermometry, which must have a
response time faster than a millisecond, the surface temperature is recorded as it
varies with time following the initiation of heat transfer.

As an example of the kind of data collected from this type of experiment,
measurements by Steward [38] are shown in Fig. 5.26. In this particular case, the
heat transfer surface is a thin carbon film which is both heater and thermometer.
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Note that for very short times, the surface temperature rise is not large, although it is
an increasing function of heat flux. This short time regime, which is generally much
less than 1 ms, is controlled by transient conduction mechanisms. As time
progresses, the nucleation of convective mechanisms begins. For low heat fluxes,
the heat transfer process eventually transforms to steady-state nucleate boiling.
At high heat fluxes, that is, ¢ > 10 kW/m? (1 W/cmz), there is a transition to the
film boiling state. This latter transition has associated with it an increase in AT of
about an order of magnitude, consistent with the steady-state film boiling heat
transfer characteristics. In the steady-state regime, the temperature differences
presumably can be described in terms of the correlations introduced in previous
sections of this chapter. There are, however, two effects in these data which need
further discussion: (1) the size of the heat transfer coefficient in the transient
conduction regime and (2) the time associated with the transition to steady-state
heat transfer mechanisms.

5.8.1 Surface Temperature Difference

Consider first the problem of the surface temperature difference during transient
conduction. Since this mechanism is conduction dominated, it should be possible
to understand in terms of diffusion theory. Returning to Fig. 5.25, imagine a steady
heat flux through the interface. There are two potential contributors to the
associated temperature difference. First, there is a thin fluid layer of thickness J
into which the heat diffuses. The temperature difference across the layer, defined as
ATy, should be determined exclusively by heat diffusion in the bulk fluid. Second,
there is an interfacial temperature difference that is due to the mismatch of phonon
heat transport between the two media. This mechanism, referred to as Kapitza
conductance, which will be discussed in Chap. 7. It is a truly interfacial process
occurring within a few atomic layers of the solid-helium boundary. The temperature
difference due to Kapitza conductance is given the designation ATy.

To evaluate the heat diffusion temperature difference, it is necessary to solve
the heat diffusion equation with the proper set of boundary conditions. In one
dimension this equation can be written

O* ATy 1 94Ty

o2 D Ot (5.49)
given a number of simplifying assumptions. In particular, it is assumed that the
thermal diffusivity, D = k/pC, is a constant independent of temperature or position.
Of course, this is not a particularly good assumption for liquid helium, however, it
simplifies the model considerably to do so. Furthermore, it is assumed that the solid
does not play a major role in the heat diffusion. This approximation has a negligible
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effect if the heat transfer surface has small heat capacity. The boundary conditions
which are applied to solve (5.49) include

AT(x,0) =0 (5.50a)
ATf(00,1) =0 (5.50b)
and
q= fk% (5.50¢)
X x=0

The last condition, being consistent with the constant flux assumption at the
interface, is true only if the heat capacity of the heat transfer surface is neglected.
The general solution to (5.49) with the above set of boundary conditions leads to

DA\ '/? —x2
ATy = % [2 <n> exp (4;) — x erfc (2(1))61)”2)] (5.51)

where x is the dimension measured into the fluid. At the solid-fluid interface, x = 0,
the relationship simplifies considerably to yield

2 [ 1\
Aty =24 (L 552
! ﬁ(ka> 552

For example, consider liquid helium at 4.2 K subjected to a heat flux of 1 W/cm?
for a time of 10 us, which is in the transient conduction regime. These conditions
lead to a computed value for ATy of about 0.3 K, which is approximately equal to
the superheat required to produce homogeneous nucleation computed in Sect. 5.3.
It is also worth noting that AT =~ 0.3 K corresponds to about 1/3 the measured AT
in Fig. 5.26.

The second mechanism which can lead to an interfacial temperature difference
during transient heat transfer is due to Kapitza conductance. The temperature
dependence of the Kapitza conductance is understood but the absolute value of
the heat transfer coefficient is not predictable. Assuming. that the mechanisms are
the same independent of whether the fluid is He I or He II, it is reasonable to write

ATy ~ L (5.53a)
hg

where /g ~ AT>, consistent with experimental measurements of Kapitza conduc-
tance. For a copper surface below T, A has been measured to have values around
0.1 W/em*-K*, but with considerable uncertainty. Using this value for T), = 4.2 K
in He I, the interfacial temperature difference due to Kapitza conductance should
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Fig. 5.27 Surface temperature difference for copper samples versus heat flux: (a) He I at 4.2 K and
(b) He II at 1.8 K. Numbers on the straight lines refer to 4 values in W/cm-K (From Schmidt [39])

vary as ATk =~ 0.13 g. Therefore, for copper, the Kapitza temperature difference
would be the same order as but somewhat smaller than that due to transient
conduction except at very short times, t < 1 us.

On a very short time scale the heat flux dependence of the heat transfer coefficient
in He I generally obeys the processes described above. Plotted in Fig. 5.27 is the
surface temperature difference for copper samples measured in He I compared to
that for He II [39]. On the right-hand side, the figure shows a typical AT versus g
dependence observed for He II. Initially, there is a linear region; however, as the heat
flux increases a considerable deviation from linearity occurs because the actual heat
transfer varies as T — T} where n =~ 3. A somewhat different effect is observed for
the case of He I. Here the dependence of AT versus ¢ for high heat fluxes is almost
linear, indicating a constant heat transfer coefficient. However, at low heat fluxes the
surface temperature does not appear to extrapolate to the origin, indicating some
failure in the linear modeling over the regime for which the linear relationship holds.
The Kapitza conductance appears to obey the cubic temperature dependence.

In principle, the temperature difference corresponding to a transient heat transfer
event can be determined by a series summation of the two contributions described
above. It follows that

AT = ATk + ATy (5.53b)
where, dependent on the choice of surface materials, one term can dominate the

process. For comparison with theory, it should be possible to separate the two
quantities in (5.53b) based on their different time dependencies.
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5.8.2 Transition to Film Boiling

The other fundamental question related to transient heat transfer concerns the onset
of film boiling. For a given heat flux ¢*, the time required to reach the film boiling
state, Ar*, is of interest. This quantity establishes the limits to which enhanced heat
transfer due to transient conduction can be credited in a heat transfer problem.
The problem is understandable by means of a rather simple picture. Given that the
transition is associated with the formation of a vapor film, a critical energy is
defined as that required to vaporize the helium adjacent to the heat transfer surface
and create the film.

A more quantitative model can be developed by assuming that AE* is the energy
needed to vaporize a layer of thickness d, which corresponds to the diffusion length.
Employing the transient diffusion model, we note that the diffusion length can be
approximated by

o ==(Dn)'? (5.54)

T
2
where again D is the thermal diffusivity. On a unit area basis, the critical energy
is written

AE® = ¢g* A" = Shy, (5.53)

where /iy, is the heat of vaporization of liquid helium at the existing temperature
and pressure conditions. Substituting (5.54) into (5.55), we find that the heat flux
needed to achieve film boiling is given by

. . 2 1/2

which for values associated with He I at 4.2 K, 1 bar, simplifies to

12 (5.57)

q" =0.07(4r%)
where ¢* is in W/cm? and Ar* is in seconds. Note that this correlating equation does
not contain any adjustable parameters. Plotted in Fig. 5.28 are numerous experi-
mentally determined values for ¢g* along with the simple diffusion model fit given
by (5.57). The correspondence is surprisingly good, which supports the basic
physical ingredients to the critical energy analysis included in the simple model.
A more precise empirical fit has been suggested [39]:

g% = 0.127(4r*) ™ (5.58)

This form is seen to agree with the data, particularly in the sub-millisecond regime.
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Fig. 5.28 Heat flux versus time for transition to film boiling (As compiled by Schmidt [39])

As a final comment, the transient heat transfer analysis given above is
oversimplified. Only two problems have been discussed, the heat transfer coeffi-
cient in the conduction regime and the critical energy for the onset of film boiling.
In between these two regimes is the transition to film boiling including the dyna-
mics of nucleation and the creation of the vapor film. These are considerably more
complex phenomena than can be discussed here. This regime has been analyzed to
some extent by Steward [38] by evaluating the orientation and pressure dependence
to the type of data displayed in Fig. 5.26. The observations gleaned from this
work are more qualitative but suggest that the transition regime is at least in part
controlled by conventional heat transfer phenomena. Further work is required to
grasp more fully the various aspects of the transient heat transfer problem.

Questions

1. For pool boiling liquids, why is the heat transfer coefficient in nucleate boiling
higher than the heat transfer coefficient in free convection?

2. In pool boiling heat transfer, q* depends on surface orientation. Discuss in terms
of the bubble formation and detachment picture, why surface orientation should
make a difference and what would be the expected trend. g* > 0 in pool boiling
heat transfer even for the face down condition, ® = 180. Why?

3. Discuss the trends in the He I nucleate boiling curve (Fig. 5.9). Is there any
correlation with surface roughness? If so, how would this trend be explained in
terms of bubble nucleation theory?

Problems

1. Calculate the critical radius of a vapor nucleus in He I at 4.2 and 2.5 K under
saturated vapor pressure. Assume a reaction rate of 1 cm-s~'. Compare this
value with the radius determined from (5.15). Estimate the reaction rate
consistent with the radius determined from (5.15).
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2. Determine the surface temperature at which the maximum in the peak nucleate
boiling heat flux ¢* in saturated He I occurs. What would be the change in this
value if the system we pressurized to p = 200 kPa?

3. A vertically oriented, circular cross section channel containing He I at 4.2 K is
exposed to a heat flux which varies linearly with height:

0(z) = 0u(5)

where H is the total channel height. Determine as a function of Q,, the position
where the peak heat flux is first exceeded.

4. The Schmidt model for the transition to film boiling during transient heat
transfer, (5.56), implies that the transition occurs when the surface reaches a
temperature that is a constant for a given helium bath. Find an expression for the
critical surface temperature in the Schmidt model and calculate its value for a
saturated He I bath at 4.2 K. Compare your answer with the homogeneous
nucleation temperature for the same conditions.

5. Consider film boiling heat transfer from a flat plate in He 1. Calculate the plate
surface temperature at the minimum film boiling heat flux gg.

6. A heat exchanger cools supercritical helium at 1 MPa from 6 to 4.5 K. The
design consists of a tube immersed in the saturated bath of He I at 4.2 K.
Determine the length and diameter of the tube consistent with the following
specification: 1 = 1 g/s and 4p = 0.01 MPa . For simplicity assume isothermal
conditions on the external surface of the tube.

7. A pool boiling cooled superconducting magnet uses a monolithic conductor
30 mm wide and 3 mm thick. The conductor is cooled on one face by liquid
helium in the gap between adjacent turns of 0.5 mm. Calculate the peak heat flux
for this conductor in helium at T = 4.6 K, 0.14 MPa, if the wide surface is
vertical. How would this result change if the conductor were exposed to an open
bath of liquid helium instead of a narrow channel?

References

1. See for example, E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer,
McGraw-Hill, New York, 1972.

2. See for example, F. P. Incropera and D. P. Dewitt, Fundamentals of Heat Transfer, Wiley,
New York, 1981.

3.J. A. Whitehead, Survey of Hydrodynamic Instabilities, in Fluctuations, Instabilities and
Phase Transitions, Tormad Riste (Ed.), pp. 153-180, Plenum Press, New York, 1975.

4. R P. Behringer and G. Ahlers, Heat Transport and Temporal Evolution of Fluid Flow Near the
Rayleigh-Bénard Instability in Cylindrical Containers, J. Fluid Mech. 125, 219 (1982).

5. F. Irie, G. Kippling, K. Uders, T. Matsushita, U. Ruppert, and M. Takeo, Heat Transfer to
Helium in the Near Critical Region, Adv. Cryog. Eng. 23, 326 (1978).

6. M. A. Hilal, R. W. Boom, and M. M. El-Wakil, An Experimental Investigation of Free
Convection Heat Transfer in Supercritical Helium, Int. J. Heat Mass Transfer 23, 697 (1980).



160

7.

8.

9.

10.
11.

12.

13.

14.

15.
16.

17.
18.

19.
20.

21

22.
23.

24.

25.

26.

27.

28.

29.

30.

31

5 Classical Helium Heat Transfer

G. Kippling and K. Kutzner, in Pure and Applied Cryogenics, Vol. 6, pp. 97-107, Pergamon
Press, Oxford, 1967.

M. A. Hilal, Analytical Study of Laminar Free Convection Heat Transfer to Supercritical
Helium, Cryogenics 18, 545 (1978).

D. N. Sinha, J. S. Semura, and L. C. Brodie, Homogeneous Nucleation in 4He:
A Corresponding States Analysis, Phys. Rev. A 26, 1048 (1982).

J. Frenkel, Kinetic Theory of Liquids, Chap. 7, Dover, New York, 1955.

E. Flint and J. Van Cleve, Heat Transport to He I from Polished Silicon Surface, Adv. Cryog.
Eng. 27, 283 (1982).

Y. Y. Hsuand R. W. Graham, An Analytical and Experimental Study of the Thermal Boundary
Layer and the Ebullition Cycle in Nucleate Boiling, NASA TN D-594 (1961).

W. B. Bald, Cryogenic Heat Transfer Research at Oxford, Part I, Nucleate Pool Boiling,
Cryogenics 13, 457 (1973).

S. S. Kutateladze, Statistical Science & Technical Publications of Literature on Machinery,
Atomic Energy Commission Translation 3770, Technical Information Services, Oak Ridge,
TN (1949), 1952.

W.B. Bald and T. V. Wang, The Nucleate Pool Boiling Dilemma, Cryogenics 16, 314 (1976).
C. Schmidt, Review of Steady State and Transient Heat Transfer in Pool Boiling Helium I, in
Stability of Superconductors, pp. 17-32, International Institute of Refrigeration Commission A
1/2, Saclay, France, 1981.

L. S. Tong, Boiling Heat Transfer and Two Phase Flow, Chap. 2, Wiley, New York, 1965.
N. Zuber, M. Tribes, and J. W. Westwater, The Hydrodynamic Crisis in Pool Boiling of
Saturated and Subcooled Liquids, in International Development in Heat Transfer, Part. 11,
pp. 230-234, ASME, New York, 1961.

R. V. Smith, Review of Heat Transfer to Helium I, Cryogenics 9, 11 (1969).

D. N. Lyon, Boiling Heat Transfer and Peak Nucleate Boiling Fluxes in Saturated Liquid
Helium Between A and Critical Temperatures, Adv. Cryog. Eng. 10, 371 (1965).

. E. Ibrahim, R. W. Boom, and G. E. McIntosh, Heat Transfer to Subcooled Liquid Helium,

Adv. Cryog. Eng. 23, 333 (1978).

R. Capri, Heat Transfer to Subcooled He I, Adv. Cryog. Eng. 29, 281 (1984).

Yu. Kirichenko, K. V. Rusanov, and E. G. Tyurina, Heat Transfer in Subcooled Liquid
Cryogens, Cryogenics 23, 209 (1983).

J. H. Lienhard and P. T. Y. Wong, The Dominant Unstable Wavelength and Minimum Heat
Flux During Film Boiling on a Horizontal Cylinder, J. Hear Transfer 86, 220 (1964).

B. P. Breen and J. W. Westwater, Effects of Diameter of Horizontal Tubes on Film Boiling
Heat Transfer, Chem. Eng. Prog. 58, 67 (1962).

E. G. Brentari, P. J. Giarratano, and R. V. Smith, Boiling Heat Transfer for Oxygen, Nitrogen,
Hydrogen, and Helium, NBS Technical Note 317, U.S. Government Printing Office,
Washington, DC, Sept. 20, 1965.

J. C. Boissin, J. J. Thibault, J. Roussel, and E. Faddi, Boiling Heat Transfer and Peak Nucleate
Boiling Flux in Liquid Helium, Adv. Cryog. Eng. 13, 607 (1967).

R. D. Cummings and J. L. Smith, Boiling Heat Transfer to Liquid Helium, Liquid Helium
Technology, Proceedings of the International Institute of Refrigeration, Commission 1,
Boulder, CO, Pergamon Press, Oxford, 1966, pp. 85-96.

H. Ogata and W. Nakayama, Boiling Heat Transfer to Helium from Machined and Chemically
Treated Copper Surfaces, Adv. Cryog. Eng. 27, 309 (1982).

Lehangre, J. C. Boissin, C. Johannes, and A. de La Harpe, Critical Nucleate Boiling of Liquid
Helium in Narrow Tubes and Annuli, Proceedings of the 2nd International Cryogenics
Engineering Conference, p. 274, Hiffe Science and Technology, Brighton, 1968.

M. N. Wilson, Heat Transfer to Boiling Liquid Helium in Narrow Vertical Channels, Liquid
Helium Technology, Proceedings of the International Institute of Refrigeration, Commission
1, Boulder, CO, Pergamon Press, Oxford, 1966, pp. 109-114.



Further Readings 161

32.

33.

34.
3s.

36.

37.

38.

39.

R. G. Sydoriak and T. R. Roberts, Study of Boiling in Short Narrow Channels and Its
Application to Design of Magnets Cooled by Liquid Hpand N,, J. Appl. Phys. 28, 143 (1956).
Z. Chen and S. W. Van Sciver, Channel Heat Transfer in He I-Steady State Orientation
Dependence, Adv. Cryog. Eng. 31, (1986).

R. F. Barron, Cryogenic Heat Transfer, Taylor Francis, Philadelphia, 1999.

P. Giarratano, V. D. Arp, and R. V. Smith, Forced Convection Heat Transfer to Supercritical
Helium, Cryogenics 11, 385 (1971).

A. de La Harpe, S. Lehongre, J- Mollard, and C. Johannes, Boiling Heat Transfer and Pressure
Drop of Liquid Helium I Under Forced Circulation in a Helically Coiled Tube, Adv. Cryog.
Eng. 14, 170 (1963).

C. Johannes, Studies of Forced Convection Heat Transfer to Helium 1, Adv. Cryog. Eng. 17,
352 (1972).

W. G. Steward, Transient Helium Heat Transfer Phase I-Static Coolant, Int. J. Heat Mass
Transfer 21, 863 (1978).

C. Schmidt, Transient Heat Transfer and Recovery Behavior of Superconductors, IEEE Trans.
Magnet. Mag-17, 738 (1981).

Further Readings

R. F. Barron, Cryogenic Heat Transfer, Taylor Francis, Philadelphia, 1999.
A. Bejan, Convection Heat Transfer, Wiley, New York, 1984.
E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer, McGraw-Hill, New York,

1972.

J. Frenkel, Kinetic Theory of Liquids, Chap. 7, Dover, New York, 1955.

W. Frost, Heat Transfer at Low Temperatures, Plenum Press, New York, 1975.

F. P. Incropera and D. P. Dewitt, Fundamentals of Heat Transfer, Wiley, New York, 1981.
L. S. Tong, Boiling Heat Transfer and Two Phase Flow, Wiley, New York, 1965.

P. B. Whalley, Two Phase Flow and Heat Transfer, Oxford Science, Oxford, 1996



Chapter 6
Helium as a Quantum Fluid

Some of the quantum mechanical aspects of gaseous and liquid helium have been
introduced in Chap. 3 to explain deviations from the traditional classical fluid
behavior. In particular, it was shown that the equation of state and transport
properties must be modeled in terms of quantum mechanical scattering theory
rather than relying on fully classical treatments. These are not the most dramatic
quantum features of helium. In fact, liquid helium below T, = 2.177 K at saturated
vapor pressure behaves in such a way that its physical properties can be understood
only by using a fully quantum mechanical model with a sizable fraction of the
particles in the “condensed” ground state. This condensed state is envisioned to
have a number of unique characteristics including zero entropy and viscosity.

In advance of discussing the quantum features of helium, it is worthwhile to
ask two related questions: (1) What makes helium behave as a quantum fluid and
(2) why don’t other fluids possess similar characteristics? To answer these
questions, it is helpful to consider the most obvious quantum mechanical charac-
teristic of liquid helium. This characteristic is not the existence of superfluidity, but
rather the fact that helium does not solidify even at absolute zero unless subjected to
a sizable external pressure (p =~ 2.5 MPa)! The explanation for this phenomenon
can only be satisfying if one includes the quantum mechanical interpretation of
matter. In this interpretation the position of a helium molecule cannot be defined
absolutely but rather is limited by the spread of its wave function. Furthermore, the
Heisenberg Uncertainty Principle describes the extent to which the position x of a
molecule and its momentum P can be defined simultaneously:

APAx ~ h 6.1)

where /i = h/2mand h = Planck’s constant = 6.63 x 10~>*J.s. Among other things,
the Heisenberg uncertainty principle can be used to estimate the zero point energy
of molecules.

An elementary application of the Heisenberg Uncertainty Principle can suggest
why the liquid is apparently the lowest energy state of helium at absolute zero.
The argument goes as follows. For the solid state to exist it must possess some
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degree of long-range order. To have this long-range order, the lattice structure must
be periodic with fixed positions for the helium molecules. The extent to which this
localization is required is somewhat ill-defined, but for the sake of the present
discussion assume that the position of a given molecule must be defined to within
10% of the inter-atomic spacing in the lattice. For the case of solid helium the inter-
atomic spacing is of the order of two atomic radii or 0.5 nm. Therefore, we will
require that the position of a molecule must be defined vis @’ vis (6.1) to within
4 0.05 nm. Uncertainty in the helium molecule position leads to an uncertainty
in the momentum, which is related to the zero point energy. The momentum
uncertainty is directly related to the kinetic energy uncertainty, AE ~ (AP)*/2 m,
which may be defined as the zero point energy. Therefore,

2
i_E L 6.2)
B 2mkg(Ax)

For the case of the common helium isotopes 4He, with a Ax =~ 0.05 nm, the zero
point energy in temperature units turns out to be AE/kp ~ 24 K. This energy
is considerably larger than the attractive potential energy well depth for helium,
¢lkg =~ 10 K, see Fig. 3.2. Therefore, based on this simple argument helium would
not be expected to solidify.

For comparison consider the case for hydrogen solidification. Since hydrogen is
a diatomic molecule with a total mass half that of helium, its zero point energy
should be about twice that of helium or AE/kp =~ 50 K. However, since it is
a diatomic molecule, hydrogen has a much stronger intermolecular potential,
¢/kp =~ 100 K, brought on by the non-spherical molecular symmetry. As a result
of this stronger potential, hydrogen is observed to solidify with a triple point
occurring around 14 K.

Thus, helium is the only molecule that can exist in the liquid state at absolute
zero. It is therefore an ideal system to study as a quantum fluid. Since the common
isotope of helium is “He, the molecule has integer spin and obeys Bose-Einstein
statistics. A fundamental premise of this statistical model is to allow a large fraction
of the population to be in the ground state, thereby affecting the physical behavior.
It is worth noting that the other stable isotope of helium, *He, obeys Fermi-Dirac
statistics because of the odd number of neutrons and would be expected to behave
very differently from “He. In particular, Fermi-Dirac statistics denies the existence
of a highly populated ground state by the Pauli exclusion principle. As can be
seen in a more detailed discussion of *He in Chap. 9, the lighter helium isotope
has physical properties that are quite different from those of “He although it too
does not easily solidify due to its large zero point energy.

In the present chapter, the concept of quantum fluids is introduced with helium
as the example. Where possible, the bridge between experimental evidence and
theory is described. The discussion focuses on the physical understanding of liquid
helium including its transport properties. In Chap. 7, the bulk heat and mass
transport of He II will be discussed more from an applications viewpoint.
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6.1 Ideal Quantum Gases

A system of non-interacting particles obeying quantum statistics is considered to be
an ideal quantum gas. There are a number of physical systems in nature that display
quantum gas behavior. Common examples include the behavior of electrons and
phonons in solids. Also, low density gas molecules at low temperatures can show
quantum mechanical behavior as we discussed in Chap. 3. Of most recent interest
are gases made up of Rb or H atoms that undergo Bose-Einstein condensation.

Helium is also a good example of a quantum gas; however, its gaseous state does
not exist at sufficiently low temperature or high density to show pronounced
quantum effects. Liquid helium below T, He II see Fig. 3.1, shows a number of
unique quantum features although it can hardly be considered a non-interacting
fluid. However, understanding the behavior of an ideal quantum gas in the same
temperature and density regime as that of He II can be a helpful tool in interpreting
the some of the behavior of the liquid. To appreciate more fully the physics of
quantum gases, particularly helium, the present section develops a theoretical
description of an ideal Bose gas. A number of physical properties are calculated
including entropy, specific heat, and phase transition thermodynamics. Several of
these features are remarkably similar to those of liquid He II.

The theory of an ideal quantum gas begins with the correct statistical picture.
For details on how to go about this development, the reader is referred to one of
numerous monographs on statistical mechanics [1, 2]. Since it is beneficial for
appreciation of different statistical systems, the general concepts of quantum
statistical mechanics as they apply to the helium problem are surveyed here.

Consider an ideal quantum gas consisting of N non-interacting point particles
where N is a large number on the order of 10%°. We define the Hamiltonian H
for this system:

H=Y L (6.3)

where P is the momentum of the ith particle and m is the particle mass. The
Hamiltonian is the kinetic energy operator for the wave equation that describes
the group of particles that make up the gas. In this case, it is independent of particle
position. In its present form (6.3) is cumbersome since it is a sum over all N
particles. To simplify the analysis it is necessary to introduce a complete set of
eigenfunctions to the Hamiltonian which are also eigenfunctions of the particular
statistical picture. These eigenfunctions must obey Bose statistics and are therefore
symmetric under the interchange of particles. By contrast, the eigenfunctions of
a Fermi system are anti-symmetric under particle interchange.

For the ideal non-interacting system, energy eigenvalues are defined according
to single-particle energy levels. It is possible to divide these single-particle
levels into groups containing g;, levels, with an assigned average energy e¢;
The occupation number of the ith cell is then given by n; where this value is
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assumed to be small compared to g;. It follows that the total particle number N and
total energy E are sums over these levels,

N = Zni (6.42)

and

E= Z nié; (6.4b)

The difference between statistical pictures becomes evident through the
allowable population density of each level within a given cell. For the Bose system
any number of particles may occupy a given state. In the Fermi system the
occupation number of a given state is restricted to being either O or 1.

The classical limit of either statistical picture must lead to the Boltzmann
statistical distribution. The correspondence principle is a formal statement of this
limit. For quantum gases, it is required that both Fermi and Bose gases obey
Boltzmann statistics in the limit of high temperature. As with a Bose gas, the
Boltzmann gas does not restrict the occupation number of a particular level.
However, the state that results from the interchange of particles is considered to
be new for the Boltzmann gas but is indistinguishable for the Bose gas.

For each statistical picture presented above, there is a distribution function that
describes the probability that a particle occupies a particular energy level. Since the
number of particles in a given state is large, the difference between the actual and
the most probable distribution functions is insignificant. The distribution function
for each of the statistical pictures can be written in terms of the energy of the
ith level:

1

where the particular statistical pictures determine the value of 7. For Bose-Einstein
statistics y = —1, for Fermi-Dirac y = +1, and for Boltzmann y = 0. In the above
equations z is referred to as the fugacity and is explicitly written z = P, where nis
the chemical potential and f = //kg T. Given the above expressions and description
it is possible to solve for the properties of any particular system once the
eigenvalues and boundary conditions are known.

Consider an ideal quantum gas confined to a cubical volume of linear dimension L.
Since the particles are non-interacting, the potential energy can be neglected.
The problem then reduces to solving the time-independent Schrodinger equation,

h2
— 5=V =, (6:6)
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where , are eigenfunctions of the system. Application of proper boundary
conditions including continuity of the wave function and its derivative leads to a
set of eigenvalues,

hn?

= L2 6.7)

&n

where the momentum is also quantized such that P = n(h/L) = n(oP). The quantity
OP = h/L can be considered to be the dimensions of the momentum space lattice.

The ideal gas problem deals with such a large number of particles that the
discreteness of the momentum lattice becomes unimportant. It is therefore possible
to make what is termed the continuum approximation which is equivalent to
making the lattice dimension go to zero, 0P — 0. The approximation replaces the
summation by an integral over momentum space. The total particle number may
then be written

Vv

N= Zn ~ an &P (6.8)

As is discussed below, care must be exercised when making this continuum
approximation for the Bose system. Because of the potentially large number of
particles in the zero momentum state, the discreteness of the lattice must be
maintained for this state.

The integral in (6.8) is written explicitly by including the distribution function in
the equation for the particle number density:

N 2=n 32 (% e'2dsg
Vom (2m) Jo Ty (6.9)

Often the density of energy states D(¢) in the particular statistical picture is defined
in terms of the proportionality factor in (6.9) such that

2
D(e) = %V (2m)*/21/2 (6.10)

A similar expression was introduced in Chap. 2 as part of the description of electron
and phonon gas models in solids.

As an example, consider the statistical expression for the particle density (6.9)
for a Boltzmann gas. For this special case, (6.9) can be simplified because y = 0:

N _2z(2m)*? ro 1/2,,~pe 1
—=—" 7| &/ePde=—z (6.11)
14 n 0 yEa

where Ay = (h2/27rkaT)1/ 2 is referred to as the thermal de Broglie wavelength.
At the very least, (6.11) explicitly defines the fugacity z as a function of temperature
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and density. This quantity is used in the computation of the total energy, entropy,
or other thermodynamic quantities of the Boltzmann gas.

The thermal de Broglie wavelength is a characteristic quantity that determines
when quantum mechanics becomes an important factor in the behavior of a system.
In the wave nature of matter, this quantity is the characteristic wavelength. There-
fore, an estimate can be made for the temperature at which quantum effects become
important by allowing A7 to be of the order of the particle size. For the helium
molecule, the thermal de Broglie wavelength is,

Jr(*He) ~ ——— (6.12)

Equating Ay with the particle diameter in liquid helium (d ~ 2r,, ~ 0.51 nm), we
find that the temperature at which quantum effects should become important is
around 2.9 K. Although this temperature is rather close to the superfluid transition
in liquid helium, T, = 2.177 K, it should not be construed as a prediction of this
effect. The thermal de Broglie wavelength being comparable to atomic dimensions
makes no prediction of Bose-Einstein condensation or the superfluid transition
in He II. Rather, it indicates approximately where to expect to observe the onset
of pronounced quantum effects. Because of its smaller mass, *He would have a
slightly higher temperature onset of quantum phenomena based on the above
argument, see Chap. 9.

6.1.1 Density of an Ideal Bose Gas

Now consider a Bose gas contained in a volume V. In a similar fashion to the
above discussion, an expression can be written for the number density subject to
Bose-Einstein statistics:

N NP 2 (™ 2 1/ z
N_ (1) = - 1
1% (xlT> \/EJO e 1V (l - z) 6.13)

Here it has been necessary to separate off the population of the zero momentum
state because of an anomaly that results when the discrete sum is taken to the
integral form. The second term in (6.13) is therefore introduced to take care of the
discontinuity when z — 1. The above expression is a complete representation of
the number density of an ideal Bose gas. It has the proper high-temperature limit
when e ¢ >> 1, which leads to the exact Boltzmann form of (6.11).

The integral contained in the first term of (6.13) is a general function,

2 Joo xM2dx

8,,(2) = 7 (6.14)

oz ler —1
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Fig. 6.1 Riemann zeta T

function for n = 3/2 2612——

93/2 (2)

that is a specific example of a Riemann zeta function. This function actually is
defined as a summation

!

| N

(6.15)

=3
=1

n

~

where it is only bounded for values of 0 < z < 1. The Riemann zeta function has
been studied extensively and is tabulated in the literature [2]. For the special case in
(6.14), Fig. 6.1 shows the form of this function. It is relatively well behaved,
monotonically increasing from zero to gz,(1) = 2.612.

Returning to the expression for the number density of a Bose gas, (6.13), the first
term on the right-hand side represents the number of particles in the non-condensed
state. The second term is the density of particles in the ground state, Ny/V.
Rearranging (6.13) to give an explicit expression for this quantity,

No N 1
V=73 8e0) (6.16)
T

In the above form, it is apparent that for the population of the zero momentum state
to be finite, the right-hand side must be greater than zero. This requirement predicts
a transition in a Bose gas. The transition temperature T, is defined as the highest
temperature that can sustain nonzero Ny/V, i.e. for g3,(1). Substituting this value
and rearranging to make an expression for 7., we obtain

2/3
h? 1
T, — - (6.17)
2nmkp \ Vcg,, (1)

where v. = (V/N)r. is the critical specific volume. Note that the population of
the zero momentum state is a continuous function and not until the system is at
absolute zero do all the particles occupy this state. By combining (6.16) and (6.17)
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Fig. 6.2 Fraction of particles I T T T
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it is easy to show that the ground state population is a temperature-dependent
quantity normalized only by the critical temperature:

N, T\ >
0y <—) for T<T, (6.18a)
N T,

=0 for T>T. (6.18b)

This result is shown graphically in Fig. 6.2. Note that although the actual
value for N, varies continuously through the transition, there is a discontinuity
in dNo/dT at T..

6.1.2 Internal Energy of an Ideal Bose Gas

The internal energy E of an ideal Bose gas can be computed similarly. In terms of
the discrete system, the expression for E is given in (6.4b) as a sum over the product
n;¢; for each of the particle states. This form is converted by means of the continuum
approximation to an integral over the density of states function D(¢):

_2n 320 e32de
E= ﬁ(2m) Vv =y (6.19)

Note that in this case there is no longer a problem with the continuum approxima-
tion because although the population of the p = 0 state may be finite the energy per
particle in that state is identically zero, by definition.

Because the internal energy has a different form dependent on whether it is
below or above T, it is useful to evaluate its behavior as a function of temperature.
Substituting the quantities introduced as part of the density expression into (6.19),
the internal energy may be written
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where gs,5(z) is the same Riemann zeta function defined in (6.15). In integral form,
4 > x*dx
852(2) = mjo e (6.21)
As with g3(z), the above quantity is a smoothly varying function from 0 to its
maximum value of 1.341 at z — 1 (Fig. 6.3).

At this point, it is instructive to check the correspondence principle as it applies
to the high-temperature limit of a Bose gas. Referring to the discrete form of the
Riemann zeta function (6.15), we see that at high temperatures g,(z) ~ z + - - - for
all n. Substituting only the leading term into the equations for the density and
internal energy of a Bose gas, we obtain the classical limiting form E/N = %kBT,
which is consistent with the principle of equipartition of energy, i.e. %kBT for each
degree of freedom. Therefore, the theory as developed to this point has the proper
high-temperature limit.

6.1.3 Specific Heat of an Ideal Bose Gas

The constant volume specific heat C, is related simply to the internal energy
through its temperature derivative, C, = (dE/dT),. Therefore, taking derivatives
of (6.20) with respect to temperature yields

c, 15 v
= "gipn(l)—= for T<T,
Nig 485/2( )i; or T<T, (6.22a)
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The shape of the constant volume specific heat is shown graphically in Fig. 6.4.
There are three notable features in the form of the specific heat of an ideal Bose gas.
First, at high temperatures T >> T,, g,(z) — z &~ A3/v, which asymptotes to the
classical result that C,, = 3/2Nkg. This is to be expected based on similar arguments
about the behavior of the internal energy. Second, below T, the Riemann zeta
function takes on a constant value and the specific heat is determined by the
temperature dependence of the thermal de Broglie wavelength. Therefore below
T., C, goes to zero as T>/%. It is possible to think of this behavior in a different way.
Since the ground state has no energy of excitation, C, is only a measure of the
fraction of molecules in the excited states. Since this fraction decreases as T°/2,
it follows directly that the specific heat should have a similar dependence. The third
aspect to the ideal Bose gas specific heat is that of its transition. The form as
developed above does not predict a discontinuity in value of C, but does show a
cusp characteristic of a discontinuity of slope. A similar set of calculations for the
constant pressure heat capacity C, yields results that are not altogether different.
As expected at high temperatures, the form of C,/Nkg approaches %, the classical
limit. However, at the transition the value of C,, shows a discontinuity consistent in
form to the behavior of a first-order phase transition.

6.1.4 Vapor Pressure of an Ideal Bose Gas

The discontinuity in specific heat is analogous to that of a first-order phase
transition. Another question to ask might be: What is the behavior of the pressure
over the same range of temperature? If there is a first-order phase transition, two
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Fig. 6.5 Vapor pressure isotherms of an ideal Bose gas

phases should coexist although the phases would be of different character to
classical liquid—gas coexistence. In the case of an ideal Bose gas the two phases
would be the normal vapor and the vapor that is in the BE condensed state.

To develop an expression for the equilibrium pressure for a Bose gas, it is best to
use the fact that the pressure-volume product is simply related to the internal energy
for all ideal gases through the expression

2k (6.23)
V== — .
PY=3N
It then follows that the equilibrium pressure can be written
P ! (1) for v<v (6.24a)
7+ 3852 V> Ve .24a
ksT 73
1
= 73&’5/2(2) for v>v, (6.24b)
‘r

where v, is the critical specific volume. Note that according to (6.24a) the pressure
of an ideal Bose gas is zero at absolute zero. A more subtle fact to consider is that
the pressure for v < v, (6.24a) is independent of the actual volume. This fact can
be seen in Fig. 6.5, which is a p-v diagram for an ideal Bose gas. The region below
the transition line at T, has a horizontal vapor pressure curve indicative of a two-
phase region. Two-phase coexistence normally implies the transition is first order;
however, a useful way of checking this fact is to compute the latent heat of
transformation.
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6.1.5 Latent Heat of an Ideal Bose Gas

If the phase transition associated with condensation in the ideal Bose gas is first
order, then it should have a latent heat. The latent heat /iy, of transformation is
defined in by the Clausius-Clapeyron equation,

dp hts
) o=k 6.25
<dT> . TAv 625

where the vapor pressure derivative is taken at the transition temperature and Av
represents the specific volume difference between the two phases. Since the
condensed phase can be assumed to occupy zero volume, the volume change is
the specific volume at the critical temperature,

23
Av=v, = L
g3/2(1)

(6.26)

Taking the derivative of the vapor pressure as given by (6.24a), the expression for
the Clausius-Clapeyron equation becomes

(d—p> _ ! FkBTgS/Z(l)] 6.27)
T,

dr Teve |2 83/2(1)

where the quantity in brackets is the latent heat of transformation, iy, = 1.284kz T,
on a per molecule basis. On an absolute scale, this energy is quite large, being
comparable to the internal energy of an ideal classical monatomic gas at the same
temperature.

The theory of an ideal Bose gas is instructive to consider because it shows how
quantum mechanics affects the behavior of an ideal non-interacting gas. In nature,
“He exists as a liquid at low temperatures and as one might expect its behavior is not
that close to that of an ideal gas. Liquid “He is known to undergo a phase transition
to superfluid state, referred to as He II, at a temperature T, = 2.177 K under
saturated vapor pressure. Substituting the specific volume of liquid “He in the
equation for T, (6.17), we can predict that an ideal Bose gas would have a transition
at 3.14 K. Although T, and T, are fairly close in value, the correspondence should
not necessarily be taken as indicating that 7, marks the beginning of Bose-Einstein
condensation in liquid *He. This is because there are several dissimilarities between
the behavior of an ideal Bose gas and liquid “He. First the transition in between He I
and He II is known to be second order with a discontinuity in slope of the entropy.
The specific heat has a logarithmic infinity in value at 7,. Consequently, the Bose-
Einstein interpretation of the A-transition appears to be an oversimplification in that
the order of the two transitions is not the same. The other noted difference occurs in
the low-temperature properties. Below T, the Bose gas has a specific heat that goes
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as T%* which is related to the changing population of the ground state. This is
markedly different as we will see from the behavior of liquid He II, which has a
specific heat that goes as T" where n varies from 3 at low temperatures, T<1 K,
to around 6 near T,. Further, in He II the temperature dependence to the specific
heat is due to the characteristics of the excitation spectrum in the fluid rather than
the changing population density in of the ground state.

Although there are several noted differences between the behavior of an ideal
Bose gas and that of liquid “He, there is little doubt that the transition between He I
and He II is affected by Bose-Einstein quantum statistics. He II has a number of
unique properties that make it very different from conventional fluids. As will be
seen in subsequent sections, many of these properties can be interpreted in terms of
physical models that rely heavily on the existence of a condensed phase. The
physics of this condensed phase is clearly more complex than that of the condensed
ideal Bose gas. This is due, at least in part, to the fact that the excitation spectrum
and interactions of the He II system are more complex than assumed in the ideal
Bose gas.

6.2 Liquid He II Properties

When considering theoretical descriptions of He II, it is necessary to extend the
models beyond that of the ideal gas. Two major features to the theory must
be included: (1) a description of the excitation spectrum which is relevant to the
state properties and (2) a fluid mechanics model that can be used to describe the
transport properties. The first component of the theory, although having relatively
little engineering application, is most effective at interpreting such physical
properties as specific heat and entropy. The latter model emphasizes understanding
of the transport properties such as viscosity and thermal conductivity. Both models
are useful for understanding the unique properties of He II.

To provide a better basis for the theoretical description, we begin with survey
of the properties of He II. In performing this survey, the emphasis is placed on
those properties that are particularly important for the applications. For a further
description of other He II properties, the reader should consult one of several
references on the physics of liquid helium.

As has already been discussed in the introduction to Chap. 3, liquid helium can
exist in either of two phases. Liquid helium above T is referred to as normal helium
or He I, and has properties similar to other monatomic liquids. Superfluid
helium as it is commonly called, or He 1II, is the equilibrium state below T, and
has a number of outstanding features particularly associated with its transport
properties. The A-line separates these two liquid states as shown in Fig. 3.1, the
phase diagram of helium. The Z-line stretches between the liquid—vapor phase
transition at low pressure and the solid-liquid phase boundary at high pressure
(p = 3 MPa). The actual values of the pressure, temperature, and density of liquid
helium at the A-transition are listed in Table 6.1 [3]. The transition between these
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Table 6.1 A-transition as a function of
temperature, pressure, and density [3]

T(K) p(MPa) p(kg/m?)
1.767 3.015 179.8
1.80 2.827 178.4
1.85 2.528 176.1
1.90 2211 173.5
1.95 1.876 170.5
2.00 1.52 167.1
2.05 1.141 163.0
2.10 0.733 158.0
2.15 0.282 151.3
2.177 0.005 146.2

two states of the liquid is associated with a change in slope of the entropy. Thus, the
A-transition is second-order as defined by Ehrenfest and has no latent heat of
transformation. The physical significance of a second-order phase transition here
is that the two phases cannot coexist in equilibrium. This fact has limited practical
significance because near the A-transition thermal relaxation times are long and
small deviations from equilibrium are achieved easily in actual experimental
systems.

It is the goal of the present section to survey the properties of He II which are
of greatest technical significance. These properties can be categorized into two
principal types: (1) state properties: specifically the density, entropy and specific
heat and (2) transport properties: viscosity and heat conductivity. As will become
evident, this is a natural separation of the properties in light of the theoretical
description of He II.

6.2.1 State Properties of He 11

The state properties that are particularly useful for practical applications are those
of specific heat, entropy, and density. The former two are also quite important for
further understanding of the He II excitation spectrum. Consider the specific heat,
shown graphically in Fig. 6.6 on a log-log plot. In presenting the specific heat in
this form, several interesting features can be seen in addition to the A-transition.
At very low temperatures, T 0.6 K, the specific heat obeys a cubic dependence as,

C=(204+04)T°J/kgK (6.28)

where C refers to the specific heat at saturated vapor pressure. In this temperature
regime, the differences between C, C,, and C, are insignificant. The physical
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Fig. 6.6 Specific heat of 10 1
liquid helium under saturated
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explanation for this dependence is presented in the next section; however, at this
point it is worth recalling that the low-temperature specific heat of a phonon gas is
also proportional to T°. This effect is important supportive evidence for the Landau
theory of He II, which is based on an excitation spectrum dominated by longitudinal
phonons for T < 0.6 K.

At higher temperatures, the apparent power law to the specific heat increases by
about a factor of two. Historically, the region has been divided into two segments
where the temperature dependence goes as

C=108T%7 J/kgk  for 0.6<T< 1.1K (6.29a)
= 11775 J/kgK for 1.1<T<217K (6.29b)

In the Landau theory a new excitation termed the “roton” is introduced to explain
the behavior of the heat capacity in this region, which is clearly unique to liquid
helium.

The entropy of liquid helium is shown in Fig. 6.7 also on a log-log scale. At the
A-transition, the discontinuity of slope can be seen quite clearly, indicating a
second-order phase transition. Based on the general theory of phase transitions
introduced by Ehrenfest, a first-order phase transition has associated with it both a
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Fig. 6.7 Entropy of liquid 10 .
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change in entropy and molar volume. These quantities are related through the
Clausius-Clapeyron equation,
d As
(_,;) =22 (6.30)

dT), — 4v

where the changes in s and v occur at the transition. The above expression
follows directly from the continuity of the Gibbs potential at the transition.
A second-order phase transition must have both continuity of Gibbs potential and
entropy. Therefore, the analogous expression to (6.30) becomes,

d’p AC,  AB
—_— = = — . 1
(de) r. TvAB  Ax 631)

where f is the bulk expansivity and « the bulk isothermal compressibility. It follows
that for a second-order phase transition C,, f5, and x are discontinuous. As discussed
in Chap. 3, these effects are observed in the properties of liquid helium near the
A-transition.

Finally, the density of He II as shown in Fig. 6.8 displays some interesting
characteristics. At saturated vapor pressure, the density goes through a broad
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maximumwith a discontinuity in slope at 6 mK above the A-transition. Below that
temperature, He II has a negative thermal expansion coefficient. The density of He
IT under saturated vapor pressure approaches a near constant value of 145.3 kg/m?
which is 0.55% less dense than at its maximum but is 16% more dense than He I
at its normal boiling point, 4.2 K, 0. MPa where p = 125 kg/m>. Thus, the
bulk expansivity of He II is near zero, which is required by the third law of
thermodynamics as the temperature approaches absolute zero.

The existence of a negative thermal expansion coefficient leaves open some
interesting potential applications. One possibility that has been investigated to some
degree is that of performing isentropic compression of the fluid to produce cooling.
Consider, as an example, the effectiveness of isentropic compressive cooling of
He 1II initially at 2.100 K and saturated vapor pressure. Isentropic compression is
achieved by reversibly applying pressure to a piston while the system is isolated
from the environment. For numerical calculations take the final pressure to be
pr=2 MPa. The statement of isentropic compression equates the specific
entropies:

s(Ty, 2 MPa) = 5(2.1 K, SVP) (6.32)

As a result of this compression, the final temperature should be 1.932 K, which
represents a 0.168 K reduction in temperature.

6.2.2 Transport Properties of He 11

The behavior of He II when subjected to a mass or heat flow clearly demonstrates
the unique character of the fluid since the observed effects are totally different from
that which would be expected based on classical fluid mechanics. In considering
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He II under mass flow conditions, the most obvious property to evaluate is the form
of the viscosity. Surprisingly however, for He II this property depends on the way it
is measured. One can measure the apparent viscosity of He II by essentially two
different methods: (1) by measuring the pressure drop in laminar flow through
capillaries and (2) by measuring damping of a rotating disk immersed in the liquid.
At the outset, it should be noted that both methods yield essentially the same results
for ordinary liquids including He 1.

To measure the viscosity of He II flowing through a capillary, a pressure gradient
must be established and a mass flow measured. Since the viscosity to be measured is
extremely small, ~1 pPa or 1/1000th that of water, the capillary must have a very
small diameter (d ~ pm) to ensure that the flow is laminar. For this case, experi-
mental evidence shows that almost independent of channel dimension the viscosity
becomes immeasurably small just below the A-transition. This result is contrary to
that obtained using a rotating viscometer. Here the measurement consists of a
change in moment of inertia of a disk rotated in the fluid. For He II, the viscosity
measured by a rotating viscometer obeys a more conventional form, actually
increasing with decreasing temperature. Thus, an important test of any theory of
He 1II is that it must be able to describe these very different mass transport results.

The heat transport character of He Il is also quite unique. In general, the apparent
thermal conductivity of He II is extremely large, being at least several orders of
magnitude greater than other liquids or even high-conductivity metals. Further-
more, the heat conductivity cannot simply be described as a property like the bulk
thermal conductivity. This behavior can be seen most clearly by reference to a
specific experimental measurement. For a channel containing He II and subjected to
an axial heat current, the temperature gradient displays two regimes, shown
schematically in Fig. 6.9. For low heat fluxes up to a critical value g, the helium
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Fig. 6.10 Experiment to
demonstrate the fountain
effect
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obeys a heat transport relationship with the temperature gradient being directly
proportional to heat flux. However, unlike the bulk thermal conductivity, the
proportionality constant in this regime has a very strong diameter dependence,
with the helium getting less conductive as the diameter decreases. Additionally, in
this heat flow regime a corresponding pressure difference is set up across the
channel with the value being proportional to the temperature difference such that,

Ap = psAT (6.33)

where the proportionality factor is the product of density p and specific entropy s.
This relationship between pressure and temperature gradients, known as London’s
equation, gives rise to the so-called fountain effect which causes He II to flow
through very small channels driven by a temperature difference.

Above the critical heat flux g., He II enters another heat transport regime where
the temperature gradient becomes roughly proportional to the cube of the heat flux
and independent of channel dimensions. For reasons that will become apparent later
in this chapter, this regime is generally associated with the onset of a unique kind of
turbulence in the He II. It should also be noted that the transition point between the
two heat flow regimes in He II is diameter dependent.

6.2.3 Fountain Effect

In addition to the above described heat flow behavior, there are other unique
features in the transport properties of He II. One, commonly referred to as the
fountain effect, results from the noted relationship between the pressure and
temperature difference in He II, London’s equation (6.33). This effect can have
quite spectacular results. Consider, for example, the idealized experiment shown in
Fig. 6.10. A vessel containing He II is placed in a bath also of He II initially at the
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Fig. 6.11 Schematic of a film flow experiment

same temperature. A porous material forms a semi-permeable separation between
the two vessels and the inner vessel is instrumented with a heater. In equilibrium, all
temperatures and pressures are equal. However, if heat is applied to the inner vessel,
its temperature rises. As a consequence of the unique properties of He II described
by (6.33), the pressure rises in the inner vessel and the helium level will increase
until it squirts out the top channel forming a fountain from which the effect gets its
name. Although this effect is quite fantastic, we will see shortly that it is based on
sound physical principles in the theory of He II.

Related to the fountain effect is the existence of what is known as helium film
flow. It is a known physical phenomenon that liquids at saturation will form
multilayer films adsorbed on surfaces in the vicinity of the bulk liquid. What is
unique about He II is that this saturated film, which is typically less than a
micrometer thick, is mobile. Mobility of the He II film permits the liquid to flow
under the influence of the fountain pressure. Again consider an idealized experi-
ment. Assume a bath of He II contains a separate, smaller vessel with an open top
above the bath surface; see Fig. 6.11. As the inner vessel is lowered into the liquid a
pressure difference is established due to hydrostatic head, 4p = pg 4h. But all
surfaces are coated with helium film, so that the fluid can flow between the two
reservoirs driven by the pressure difference. The flow rate depends on the details of
the experimental conditions; however, it is generally fast enough to see the inner
level increase. If the inner vessel is lifted out of the helium bath, the hydrostatic
pressure difference works in the opposite direction, causing the liquid to flow out
of the vessel.

The existence of helium film flow was first observed by H. Kamerlingh Onnes in
1922; however, he interpreted it in terms of an evaporation and condensation
mechanism. In 1937, Rollin and Simon were able to show that the mobility of the
helium film is based on the theory of He II. As a result, this film flow process is
sometimes referred to as the Rollin film. Considerable research has been conducted
to expand the understanding of He II film flow. Factors that affect the thickness of
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the film include height above the helium bath, substrate material, and temperature.
Empirical relationships have been suggested which relate the film thickness d with
the height H above the helium bath:

K

d=— 34
o (634)

where H is the film height in cm, K ~ 3 X 107% cm™! and 7 is between 0.3 and

0.45. For numerical values, note that the film at about 1 cm above the liquid is
approximately 30 nm (300 A) thick, which corresponds to around 80 atomic layers.
Mobility of He II films has been demonstrated down to thickness of a few atomic
layers, see Sect. 10.2.

The practical significance of the Rollin film is that in addition to mass flow
through the film there can also be heat flow. The existence of heat flow through the
mobile He II film can affect strongly the system performance. One particular
example is the pumping work required to maintain He II at constant temperature.
If the helium is contained in a vessel with an opening for pumping at the top, the
film will climb the walls of the container. Heat will be conducted between the point
on the container, which may be as high as T, and the bath. If the opening to the
container is large, this heat flow can cause a sizable load on the bath. The best
method to reduce this heat inflow is to restrict the free surface of helium on which
the pump is working. This will reduce proportionally the helium film flow.
This topic is discussed further in Chaps. 8 and 9.

6.3 Excitations in He 11

Until the 1930s, the unique properties of He II had little fundamental theoretical
understanding. London was the first to point out the close correspondence between
the behavior of a Bose gas and He II [4]. This observation resolved only part of the
problem because the gas models do not adequately describe the transport properties.
Furthermore as discussed above, the state properties of He II are quite different
from those predicted by the Bose gas model, both in terms of the order of the
transition and the low-temperature specific heat.

The first attempt to develop a more complete theory of He II was introduced by
Tisza [5]. Tisza suggested that liquid He II may be thought to consist of two
interpenetrating fluids, a concept which is similar to a model developed by Gorter
and Cashmir to qualitatively describe the behavior of superconductors [6].
Although the two-fluid model was chronologically the first theory to advance
significantly the understanding of He II, it did not satisfactorily address the behav-
ior of the state properties. The Landau theory [7] of excitations in He II both
explains the physics of properties such as the specific heat and entropy as well as
providing a more fundamental understanding of the two fluid nature of He IL
The latter topic is addressed in the next section.
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Landau approached the problem of He II by introducing an excitation spectrum
that might consist of a number of different modes. The spectrum is semi-empirical
in that it is adjusted to predict experimental data in a consistent manner. Two types
of excitation were introduced as part of the model, each having different regions of
significance. First, like all liquids, He II is envisioned to possess longitudinal
phonon excitations; transverse phonons can exist only in the solid state. These
longitudinal phonons are characterized by a velocity ¢;, such that its energy
spectrum can be written,

¢=cP (6.35)

where P is the momentum of the phonon given explicitly by P = hk with k being
the wave number.

The other excitation mechanism unique to He II is referred to as the “roton”.
The name “roton” originally was attached to this mechanism because of the feeling
that it may represent some form of quantized circulation. However, this suggestion
is of no practical significance. It is most important to note that the rotons bring
about a higher wave-number excitations in the He II spectrum. These are char-
acterized by a minimum in the spectrum and has the general form

(P — Py)?

=4
e + 2

(6.36)

where 4 is the minimum energy to excite one roton and P, and p are empirically
determined quantities. Based on experimental data, numerical values for these
parameters are [8]:

A

—=8.65K

kg

P

70 =0.191 nm™!
w=0.16my

where my is the atomic mass of a helium atom. Combining the two excitation
mechanisms into one continuous spectrum results in the dispersion curve, shown in
Fig. 6.12. The regions described by the two types of excitation are highlighted on
the curve. Note that 4 in particular is temperature dependent.

The test of the theory is in its ability to predict experimental data. It is relatively
easy to calculate the specific heat for the phonon part of the spectrum. Using the
Debye model for longitudinal phonons, the specific heat at low temperatures may
be written as,

2n2k§ 3

=B 6.37
P sphc (6:37)
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which can be evaluated for the properties of He II to give, C,,;, = 20.7T°3 J/kg K.
This value is an extremely good prediction of experimental results given by the
empirical correlation in (6.28).

A further check for the existence of phonon excitations in He Il is in the behavior
of the thermal conductivity at low temperatures. For T 0.6 K, the normal fluid
density is nearly zero so the heat cannot be transported by the internal convection
mechanism, which was briefly discussed in the introduction to this chapter and
is covered in more detail in the next section. Rather in this temperature regime,
the thermal conductivity of He II behaves like that of a dielectric solid at low
temperatures where,

1
kon = 5 0Coavil (6.38)

The velocity v; is the speed of first sound (longitudinal phonons) in liquid helium
~240 m/s and [ is the mean free path for the phonons. The phonon mean free path
at low temperatures is often dominated by boundary scattering so that / ~ d, the
tube diameter [8]. For a tube of 1 mm diameter, (6.38) predicts £k ~50 W/m K at
0.5 K with a temperature dependence of T°.

The roton excitations in He II dominate the physical behavior for high
temperatures, 7 21 K. As with phonons, rotons are collective excitations in the
liquid. Since the roton region of the dispersion curve is at high temperatures,
the physical processes obey Boltzmann statistics. Applying Landau’s dispersion
relationship to the He II, one can derive expressions for the thermodynamic
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properties. As expected, these expressions are exponential in the roton energy
gap 4. In particular, the entropy may be written,

_ z(kBﬂ)l/ZP?)A 3ksT\ _akyr
= 5 i 1 e (6.39)
(2n)*"?ph3TV/ 24
and the specific heat contribution,
2u1/2P2 A keT 3 (ksT\*
c, = H 70 14282 2 (2D e a/hT (6.40)
(27‘5)3/2phsk;/2T3/2 V| 4\ 4

All of which are functions of kgT/A. It is important to note that all expressions have
an exponential cutoff at low temperatures, indicating a relatively small roton
contribution for T <1 K. Also, although indicated as a constant in (6.39) and
(6.40), 4 decreases somewhat as T approaches T,.

The theoretical expression for the roton contribution to the specific heat (6.40)
does not obviously agree with the empirical expression (6.29) where C ~ T,
Since the specific heat is dominated by rotons only between 1.1 and 2.1 K,
the distinction between the power law and an exponential form is not large, see
problem 8. Nonetheless, it should be noted that the variation of specific heat near T,
is one method to measure energy gap associated with the roton minimum, A4,
indicating a fairly close correspondence with (6.40). The empirical expression
(6.29) is used mostly for calculations of an engineering and applied nature.

6.4 Two-Fluid Model

Although the theory of excitations in He II advanced by Landau and others has
considerable physical basis, it is not very useful for describing the transport
properties. The two fluid model, which was originally suggested by Tisza and
later refined by Landau, treats He II as if it were made up of two fully miscible
fluid components and takes the state properties of entropy and specific heat as given
quantities. This two-fluid model is then a description of the fluid mechanics of
He II, which is particularly successful at describing heat and mass transport.

The two-fluid model envisions the He II to be comprised of two interpenetrating
fluid components: normal fluid, which contains the excitations in the liquid, and the
superfluid. At this point it is worth making a comment about nomenclature. Often in
generic terms, He II is referred to as “superfluid” because this was the word used to
describe its behavior before the existence of the two-fluid model. Subsequent to the
introduction of the two-fluid model, it has been more correct to refer to liquid
helium below T, as He II and the component in the two-fluid model as superfluid.
This convention, which assumes some knowledge of the physics of He II, will be
used throughout this book.
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The normal fluid component to the He II is assumed to behave as an ordinary
liquid. It is described by having a density p,,, viscosity u,, and specific entropy s,,.
On the contrary, the superfluid component has density p,, no viscosity (u, = 0),
and no entropy (s; = 0). The properties of the fluid must be comprised of a linear
combination of the two components. Thus, the density is a sum of the two
component densities,

p=pstp, (6.41)

Since the superfluid has no entropy, it follows that the He II entropy can be
written in terms of the normal fluid component alone:

PS = P,Sn (642)

As was discussed in the previous section, the entropy of He II is strongly
temperature dependent, going approximately as 7% between 1.1 K and T,. For the
two-fluid model, it is assumed that s, = s,, the entropy at the A-point, and that all
the temperature dependence in (6.42) enters through the variation of the normal
fluid density. It is therefore possible to write

0 7\ 56
P _ <_> for T<T, (6.43)
p T
as the temperature dependence of the normal fluid density. The ratios of normal and
superfluid densities to that of the bulk liquid are shown in Fig. 6.13. Recall that for He
II the density has a rather weak temperature dependence so these curves closely
correspond to the total density profile for each component. Due to this strong temper-
ature dependence, the superfluid component composes about 99% of He Il at 1 K.
Concerning the viscosity, the model assumes that y; = 0 and the dissipative
interaction is due only to the normal fluid. This assumption corresponds to the
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physical fact that the superfluid experiences no resistance to flow and therefore no
turbulence. The superfluid can flow through a channel without viscous drag along
the boundaries. In other words, the velocity of the fluid will be the same at the
center of the channel as near the sides. The equivalent mathematical expression for
this statement is to say that the superfluid velocity can have no curl:

V xvs=0 (6.44)

This description of the superfluid viscous interaction is only partially correct.
Above a certain critical velocity v, the superfluid does transition to a turbulent
state but by itself remains an invicid fluid consistent with (6.44).

6.4.1 Equations of Motion

As described by the two-fluid model, He II can be thought to consist of two separate
interpenetrating fluids. This picture should not be taken too literally. It is only a
model and the existence of superfluid and normal fluid components is a hypothesis.
Nonetheless, the existence of this model allows equations of motion to be written
that describe the behavior of the fluid.

In particular, the momentum density j of He II can be written as a sum of the
momentum density components,

J = PsVs + PpVn (6.45)

where v, and v,, are the superfluid and normal fluid velocities. An interesting and
important special case of (6.45) is when there is no net mass flow and j = 0. Thus,
the bulk He II is static although the superfluid and normal fluid components can
flow in opposite directions consistent with the requirement that,

pSVS = _pnvf’l (6'46)

This expression leads to the notion of “internal convection” or “counterflow” where
the two fluids can flow and carry entropy in He II without experiencing macroscopic
mass flow.

In addition to the expressions for density (6.41) and momentum (6.45), the
two-fluid model relies heavily on conventional fluid mechanics which is used to
describe the behavior of each component. The continuity equation describes the
rate of change of the density in a given volume of space, that is,

ap

V=75

(6.47)
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Fig. 6.14 Schematic volume
containing He II
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where each component of He II must obey this relationship. Euler’s equation
describes the acceleration of an ideal fluid. An ideal fluid supports no shear stress
even in motion and has negligible viscosity. As a consequence, the only force acting
on the fluid is that due to its pressure gradients:

1
Noyvovv=—Lyp (6.48)
ot P

The above expression is analogous to Newton’s second law applied to fluids; stated
simply, it defines the rate of acceleration of a fluid subjected to a force per unit
volume Vp.

For the development of the two-fluid model we start by reducing (6.48) to a
linear expression. Since the second term on the left-hand side goes as v* for small
velocities, it is neglected and assuming an incompressible fluid leads to

i _
ETha Vp (6.49)
The suitability of Euler’s equation to describe the behavior of the superfluid
component should appear obvious. By definition the superfluid does not support
shear flow or have a viscous interaction. However, for the normal fluid there is an
important viscous term that enters a number of physical processes including heat
transport. In the description of these processes, more complex fluid mechanics are
required in the form of the Navier—Stokes equation applied to the normal fluid.
Finally, we need to develop an expression for the behavior of the entropy flow of
He II. Since fluids described by Euler’s equation experience no dissipative inter-
action, all processes are reversible. Reversibility of fluid flow processes implies
that entropy must be conserved. It is therefore possible to write an expression
for entropy conservation which is analogous to mass conservation in the continuity
equation. Consider a volume containing helium with density p and specific
entropy s; (see Fig. 6.14). Here the entropy per unit volume is ps = p,5, = p,S,
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since the normal fluid is the only component with nonzero entropy. Furthermore,
the rate of flow of entropy into the volume is determined by the flow of the normal
fluid at velocity v,. This process can be treated by an expression that relates the
entropy content to the entropy flow:

)
3 (P$) ==V - (psva) (6.50)

This expression is analogous to the continuity equation for mass conservation.

The first step in development of the equations of motion for He II is to consider
the superfluid component. To do this, it is helpful to imagine an idealized experi-
ment. Assume there exists a volume containing a number of helium atoms with a
total mass m. A conceptual picture of this system is shown in Fig. 6.15. The volume
is connected to another volume containing helium but there is a special valve
between these two volumes, which only allows the superfluid component to flow.
In practice, such a valve can be made by packing fine powder into the tube which
clamps the normal fluid by viscous interaction but allows the superfluid to flow.

The thermodynamic function that is useful in describing the change in the
internal energy of the system associated with a change in mass dm is the Gibbs
potential per unit mass, g. Assuming the system is open only to the addition of
superfluid, we can write the differential form of the first and second laws of
thermodynamics as

dE=T ds —p dv+ gdm (6.51)

Two initial assumptions can be used to simplify the (6.51). First, for a constant
volume process, dv = 0, so that the second term is eliminated. More importantly,
the entropy is constant, ds = 0, since the fluid that is being added to the box is only
superfluid with all particles in the ground state. Therefore, the change in internal
energy is proportional to the change in mass, that is,

dE = gdm (6.52)
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It is sometimes more helpful to think of this process in terms of a thermodynamic
driving force that is the gradient of the potential. The acceleration of the superfluid
is equal to the negative of the thermodynamic driving force:

dv
dt

= _Vg (6.53)

This expression can be written in terms of common thermodynamic quantities by
using the differential form of the specific Gibbs potential,

dg = —sdl +v dp (6.54)

and since this is a total differential, (6.53) can be inserted to provide an equation of
motion for the superfluid component:

ov,
ot

1
= sVT = Vp (6.55)

Note that between (6.53) and (6.55) the velocity derivative has been changed
from a total to partial derivative. This approximation, which is good to terms of
order v?, is useful in placing the equation in its well known form. The above
expression, (6.55), is of fundamental importance to understanding the behavior of
He II. Although its existence seems to be based on an idealized example, it is
extremely effective at predicting numerous physical aspects of He II including the
fountain effect and sound propagation both of which are discussed next.

6.4.2 Thermomechanical Effect

The thermomechanical effect, or fountain effect as it is more commonly known,
is predictable from the equation of motion for the superfluid component in the two-
fluid model. As has already been discussed in the properties section of this chapter,
there exists a relationship between temperature difference and pressure difference
in He II known as London’s equation, (6.33). Furthermore, the proportionality
factor is the volumetric entropy ps. To see how this relationship originates, consider
the experimental setup shown in Fig. 6.16. Two containers each filled with He II are
connected together through a superfluid filter or fine capillary having a diameter
<1 pm. The capillary allows superfluid component to flow from one container to
the other while the normal fluid is clamped by the viscous interaction to the walls of
the capillary.

In steady state, the two containers have equal Gibbs potentials, and, further-
more, the fluid will not be accelerating; that is dv,/9¢t = 0. It follows that by
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Fig. 6.16 Thermomechanical effect: He II reservoirs connected by a narrow capillary maintain
level difference due to temperature difference, Ap = psAT

setting the left-hand side of (6.54) to zero, the fountain pressure relationship is
derived:

dp
T oS (6.56)
If, as in Fig. 6.16, the temperature on either side of the capillary is not equal, there
will be a flow of helium under the influence of the induced pressure difference.
This process will continue until the hydrostatic head (pg 4h) equals the fountain
pressure (ps AT). It is worth noting the order of magnitude of this effect. At 1.8 K,
dp/dT = 80 Pa/mK or about 5% of the vapor pressure per millikelvin. Thus, a 1 mK
temperature difference between the two sides in Fig. 6.16 will, cause a 80 Pa
pressure difference which corresponds to about a 60 mm helium liquid level
difference.

A corollary to the thermomechanical effect is something called the
mechanocaloric effect, which relates the heat flow brought on by physically forcing
the helium from one side to the other. Consider the system as described above in
equilibrium where initially T4, = T and the two heights are the same. Now imagine
that a movable, insulating piston on the left-hand side pushes the helium down and
through the capillary; see Fig. 6.17. Since only the superfluid can pass through the
capillary, the effect of the flow will be to reduce the entropy per unit volume on the
right, B, and increase it on the left, A. In other words, the temperature on the right
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Fig. 6.17 Mechanocaloric A B
effect: He II forced to flow
between reservoirs connected
by a narrow capillary. Excess
heat content Q* is transferred
to the surroundings from A
and received from
surroundings to B
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will go down and on the left it will go up. The effect is similar to heating the fluid on
the left and cooling it on the right. The equivalent heat that it transferred is,

Q* = psTAV (6.57)

where AV is the volume of helium flowing between these two vessels.

To bring this system back to equilibrium the amount of heat O* must be
transferred between the two vessels through some other means than through the
capillary. One method would be if these two vessels were immersed in a constant
temperature bath of He II. In that case, the higher temperature side would liberate
heat into the bath and the low temperature side would absorb the same quantity of
heat. However since the process is isentropic, the final state would be identical to
the initial condition.

As a final comment, the above thought experiment is definitely idealized.
It requires two frictionless, insulating pistons. This is because if the helium is in
contact with its vapor, heat will also be transferred through the vapor phase by
evaporation and condensation processes. The lower-entropy fluid on the right will
absorb heat from the vapor by condensation while the higher-entropy fluid on the left
will reduce its temperature by evaporating some of the liquid into the vapor phase.

6.4.3 Sound Propagation

One of the most interesting characteristics of He II is ability to transmit more than
one type of sound wave. In addition to ordinary or first sound, which is a density
variation brought on by local pressure gradients, there is a mechanism called second
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sound, which is propagation of thermal waves as a result of fluctuations in the local
entropy. The existence of second sound is predicted by the two-fluid model.

To begin, we consider briefly the origin of ordinary first sound. Sinusoidal wave
propagation can be obtained analytically by combining the continuity equation
(6.47) with Euler’s equation for an ideal fluid with linear response (6.48). The
result is a wave equation that associates pressure and density:

_ P

2 [
vp‘aﬂ

(6.58)

This differential equation has the standard solution of a sine wave varying function.
The wave packet has a characteristic speed ¢, given by,

dp Y
2 pr— —_— = —
A= ( 8p)s o (6.59)

where the partial differentiation is taken at constant entropy and y is the ratio
of the specific heats, C,/C,. The speed of first sound in liquid helium is of the
order 200 m/s.

Second sound is the result of entropy fluctuation rather than density fluctuations
as in ordinary sound. Beginning with the entropy conservation equation (6.50) and
the equation of motion for the superfluid component (6.55) the pressure gradient
may be rewritten as

I,

_Vp= p( AL sVT> (6.60)
ot

The time rate of change of the momentum is equal to the negative of the pressure

gradient. Taking the derivative of (6.45) and dropping all except linear terms in

velocity, we obtain

0j Ov v,
5= VPP TPy

(6.61)
which combined with (6.60) results in an expression for the difference in the
acceleration of the two fluid components:

ov, Ov;

__Pr
5 o = VT (6.62)

Pn

The above expression can be used to illustrate some important physical facts.
In non-dissipative He II, a temperature gradient produces a relative acceleration of
the two fluid components. Because the relative densities of the two fluid components
are related to the entropy, a temperature gradient implies a variation in p/p,,.
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To make (6.62) approach more closely a wave equation, one can take the
divergence of each side and then replace the superfluid velocity with the continuity
equation. The results are simpler if it is assumed that the total density is constant,
0p/0t = 0. A relationship is then obtained for the normal fluid velocity in terms of
the second derivative of the temperature,

= (pV -v,) = —psVT (6.63)

The left-hand side may be written in terms of the fluid entropy by the conservation
of entropy equation, (6.50). This result is reduced to a fairly simple form if the
entropy does not vary significantly with time and position; that is,

82 2
87; — STP V2T (6.64)

which is referred to as the linearized second sound equation. It predicts a sine wave
varying function propagating with speed ¢, given by

s2p, (0T Ts?
c%:”’-‘( > o~ P 28 (6.65)
P

p, \0s) ~ p, C,

The expression for the speed of second sound turns out to be quite accurate and is
even used as a method of measuring the entropy of He II [9]. Typical values for ¢,
are around 20 m/s between 1 and 2 K.

It is worth noting at this juncture the different methods available for measure-
ment of second sound. As might be expected, these methods have analogues in the
measurement of first sound, except that a travelling temperature wave is detected
with a thermometer rather than a travelling pressure wave being detected with a
pressure transducer. There are principally two methods of measuring the velocity of
second sound. The most obvious is the time-of-flight method shown schematically
in Fig. 6.18a. A heater is located some distance away from the source providing a
pulse that travels the length of the channel. The pulse is detected at some time later,
t = L/c,. This method, although effective, is cumbersome since the channel must
be fairly long to have good resolution, but in that case there can be attenuation
of the pulse due to other considerations to be discussed below. Consequently, the
time-of-flight method is not the most convenient for measuring c,.

Second sound may also be measured by a resonance method. In this case, a
channel is constructed with a closed end, as in Fig. 6.18b. Within the channel there
is a heater that can be driven at variable frequency. Also installed in the channel
is a movable thermometer located between the heater and closed end of the tube.
The principle, which was originally employed by Peshkov [10] to determine c5, is to
drive the heater at a resonant frequency of the channel, v = n ¢,/2L, where n is an
integer. The temperature sensor is then moved along the tube, detecting the
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Fig. 6.18 Measurements of the velocity of second sound: (a) time-of-flight method and (b)
resonance method

resultant standing wave. Besides simplicity, there are other advantages of this
resonant method for detecting second sound. In such a device, one can continuously
monitor the amplitude of the second sound wave. As we will discuss below, the
amplitude of the second sound wave is attenuated by turbulence in a fairly well
understood manner. Therefore, a continuously operating second sound resonator
can be used as a local detector of turbulence in He II.

Another method for detecting second sound is based on the associated oscillating
relative motion of the two fluid components [11]. A thin metallic foil containing sub-
micron diameter holes and immersed in He II can deflect a time variation of p,/p,,.
This occurs because the normal fluid is unable to flow through the holes and thus will
exert a pressure on the foil, while the superfluid component will flow through the
sub-micron holes. Such a devise can be driven at a desired frequency to produce a
traveling wave of second sound. Similarly, the device can detect the arrival of the
second sound as a deflection of a detector foil of the same material. One advantage of
using such a second sound detector is that it does not generate as much entropy as the
heater-thermometer system.

Second sound has been measured extensively everywhere from 7T, to near
absolute zero and as a function of pressure. Values for ¢, at near saturated vapor
pressure are compared to ¢; in Fig. 6.19. Note that ¢, is approximately constant
(~20 m/s) over the range 1-2 K. At lower temperatures the second sound speed
increases rapidly as T — 0 K. Theory predicts that the limiting low-temperature
value of second sound speed is cl/\/§ ~ 137 m/s, although it is difficult to measure
below 1 K due to the very low normal fluid density.

In summary, the important factors controlling first sound and second sound are
listed in Table 6.2. For He II and the two-fluid model, first sound requires that the
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Fig. 6.19 Speeds of sound 400 T T T T
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Table 6.2 Comparison of sound propagation in He II
First sound Second sound
Driving force op oT
Propagator op Js
Density (p) Wavelike ~ constant (p,V, & —p,Vy)
Temperature (T) ~ constant (Vg & v,,) Wavelike
Speed L\ 1/2 2\ 1/2
pee ¢ = (p—K> ~ 240 m/s = (p'”— %) ~ 20 m/s
1 i > 27 _ Py P
Relationship V2p = Ze V2T = sz 2y

two component velocities be in the same direction, while second sound is
associated with a counterflow having v, in the opposite sense to v,.. The existence
of second sound in He II can be used as a diagnostic tool since it is attenuated by
forces of interaction between the two fluid components. Thus, the variation of the
second sound amplitude can give information about the local state of the helium.

6.4.4 Viscous Flow

Until now we have not fully considered the impact of viscosity in the two-fluid
model for He II. In the prediction of second sound the viscosity of each component
is assumed to be negligible, allowing the use of a linearized form of Euler’s
equation. On the other hand, in analyzing the thermomolecular fountain effect,
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the normal component has been given sufficient viscosity that it cannot flow at all
through a capillary with d < 1 um. In actual fact, neither of these assumptions are
correct since the normal fluid has a measurable viscosity which is of the order of
1 yPa-s in the regime of interest. The present section examines how the introduction
of the normal viscosity p, into the two-fluid model aids in the prediction of several
important physical phenomena.

To begin, a viscous term is introduced into the linearized Euler’s equation (6.49),
resulting in an expression for the rate of change of the momentum that includes
dissipation,

% =Vt v (6.66)

where the viscosity u enters along with the second-order derivative of the velocity.
Note that the superfluid viscosity is zero in the two-fluid model and that the
momentum can be written as a sum of the two components, j = p,v, + p,V,
(6.45). Combining these facts and keeping only terms which are linear we can
rewrite (6.66) a

0t 0, = b, T, (6.67)
where the left-hand side is simplified by the assumption that p; and p,, are weak
functions of time. Recall that a relationship for the time derivative of the superfluid
component has already been derived (6.55). Combining that relationship with
(6.67) gives the two linearized equations that describe the flow of He II including
the normal fluid viscosity,

Ovy

0. 2 — p st —Prvp (6.68)
0 P

and

p B0y T —Prp 4 R, (6.69)

ot P
The above expression (6.69) is generally referred to as the Navier—Stokes equation
for the normal fluid component. It is of interest here to determine how well these
equations predict the transport properties of He II.

As mentioned in Sect. 6.2.2, there are two principal methods for measuring the
viscosity of a fluid: Poiseuille type flow through a capillary and the damping of
an oscillating disk. For the case of ordinary liquids, these two methods yield
essentially identical results. However, in the case of He II, very different results
are obtained which can be understood only in terms of the two-fluid model.
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Fig. 6.20 Oscillating disk
for viscosity measurement

Let us first consider Poiseuille flow. If two vessels containing He II at different
temperatures are connected together through a capillary of very small diameter,
we have previously stated that the apparent viscosity of the helium is extremely
small if not zero. Some measurements have indicated that u < 10~ '* Pa-s, which is
about six orders of magnitude less than the viscosity of He I. A further surprising
feature of these measurements is the relationship between mass flow or fluid
velocity and pressure difference. To first order, the mass flow is independent of
Ap. These results can also be interpreted in terms of the two-fluid model. In the
channel, the normal fluid interacts strongly with the boundaries and is therefore
locked in place. The superfluid component has zero viscosity and thus can flow
through the channel without losses. The fluid in motion is the superfluid component
and the apparent viscosity should be extremely small. This result is consistent of
course with the fountain effect, requiring that the pressure difference be propor-
tional to temperature difference. If the above description were complete, the
superfluid component would be expected to accelerate indefinitely. However, this
does not occur and the superfluid appears to transport itself at constant velocity
nearly independent of the pressure difference. This velocity is termed the critical
velocity v, and also as we will see impacts the behavior of the heat transport.
Briefly, above the critical velocity the superfluid becomes turbulent, which brings
about new interactive mechanisms between the two fluid components.

The alternative method of measuring the viscosity of He I is to oscillate a disk in
the liquid and measure the damping; see Fig. 6.20. Since the damping of the
oscillation is a function of moment of inertia and drag with the fluid, the oscillatory
mass is related closely to the viscosity of the liquid. The results of this measure-
ment are substantially different from the Poiseuille experiment discussed above. In
fact, what is observed is more traditional behavior for the viscosity; see Fig. 6.21.
Below the Z-point the measured viscosity decreases, forming a broad minimum of a
nearly constant value around 1.4 yPa-s between 2.0 and 1.5 K. Below this temper-
ature the viscosity increases almost exponentially with decreasing temperature. It is
of primary interest to interpret these results in terms of the two fluid model.
Unlike Poiseuille flow, the oscillating disk technique forces the normal fluid to
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Fig. 6.21 Viscosity of He II 26 T T T T
as measured by oscillating
disk
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flow against its own viscous drag forces. Since the normal fluid interacts strongly
with the boundaries, the oscillating disk directly measures its viscosity. Therefore,
the results plotted in Fig. 6.21 actually represent the behavior of the normal fluid
viscosity i,,.

One of the landmark experiments involving rotating He II was performed by
E. Andronikashvili [12]. This work is of great significance for it clearly supports the
concept of the two fluid model and agrees very well with other measurements of He 11
properties. The basic idea of the experiment is shown in Fig. 6.22. It employs a
rotating viscometer; however, unlike the measurement described above, this device is
fitted with a large number of narrowly spaced parallel plates. The plate spacings were
chosen so that they were less than the viscous penetration length, d < (2u,/pw)">.
This condition requires all the viscous fluid to rotate with the plates. The two fluid
model demands that the only fluid in motion would be the normal fluid and thus
the moment of inertia would be proportional to p,,. Thus the Andronikashvili experi-
ment directly measures the normal fluid density. The results of this experiment are
shown in Fig. 6.23, which is a plot of p,/p versus temperature. Also indicated in the
graph are values of p,/p measured by second sound (6.65). The agreement between
the two experimental findings is remarkable and adds considerable support to the
physical basis of the two fluid model.

6.4.5 Heat Transport

The behavior of He II subjected to a heat flow can be interpreted similarly in terms
of the two-fluid model. Consider two reservoirs containing He II and connected by a
channel of diameter d. At this point it is important to require that d be small, of the
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Fig. 6.22 Schematic diagram
of Andronikashvili
experiment [12]
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order 10 um or less; however, the actual physical limitations are defined more
clearly in the next section. If heat Q is applied to one reservoir, the temperature will
rise and heat will be conducted through the connecting channel to the other
reservoir. As long as the helium obeys ideal two-fluid hydrodynamics, the relation-
ship between the temperature difference and pressure difference is established from
London’s equation, Ap = psAT.

To solve the heat flow problem in the steady state, the two fluid equations are
combined, noting that Ov,/0t = 0v,/0t = 0, to yield

Vp = 1, Vv, (6.70)

which is known as the Poiseuille equation. It is interesting to note that (6.70)
indicates a nonzero normal fluid velocity no matter how small the channel diameter.
Thus, the assumptions that lead to the fountain effect are oversimplified.

Given a one dimensional channel of constant diameter d, (6.70) can be simplified
to relate the normal fluid velocity along the channel axis v, to the pressure and
temperature gradients:

d_p_ Sd_T__ﬁ,unVn
ax P T2

6.71)

where x is the distance along the channel and f is a numerical constant determined
by the geometrical conditions. Note that § = 12 for parallel plates or large aspect
ratio rectangular cross sections and § = 32 for circular tubes.

Recall that in He II heat can only be carried by the normal fluid component.
Thus, for the case where the net mass flow is zero, v = 0, the heat flux density ¢ is
directly proportional to v,;:

q = psTv, (6.72)

Subsequently, (6.72) will be shown to have a more general form when considering
nonzero net mass flow. Eliminating v, from the Poiseuille equation, (6.71), we
obtain a heat conductivity equation that should describe the behavior of the
ideal He II:

- d2(ps)’T dr

- 6.73
1 Bu,  dx (©73)

Note that this expression has a form similar to pure conduction although the
function of proportionality, which is like an effective thermal conductivity kg
varies as the square of the diameter. Consider as an example heat flow in a 10 um
diameter circular tube containing He II at 1.9 K. By inserting the appropriate
physical properties for He II, we can calculate an effective thermal conductivity
of 49 kW/mK. This quantity increases strongly with temperature dominated by the
dependence of (ps)> T ~ T'2. Thus, although kg is around 100 times greater than
that of high-purity copper at 1.9 K it is only about 25 W/mK at 1 K.
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If (6.73) were the only expression determining the heat transport in He II,
it would be possible to increase the effective thermal conductivity indefinitely by
simply increasing the diameter, since keg ~ &. However, there is a physical
limitation resulting from the existence of a critical velocity in the superfluid
component. This critical velocity is the same one that limits the rate of helium
flow through a channel under Poiseuille flow. It marks the transition to turbulent
states in He II. This turbulence can occur in both the normal fluid and superfluid
components, and as we will see has significant impact on both heat and mass
transport behavior of He II.

Example 6.1

A 5 mm diameter circular cross section capillary contains He II at 1.8 K. For a
heat flux ¢ = 1 kW/m?, calculate the temperature gradient and pressure gradient
assuming the flow is ideal.

Inverting (6.72) solving for the magnitude of the temperature gradient,

dr 32u,
T a4
de d(ps)'T
Substituting numerical values for the various properties, gives a value of

dT/dx = 0.15 K/m. Then the pressure gradient is obtained from London’s
equation, dp/dx = psdT /dx = 12.2 kPa/m .

6.5 Vortices and Turbulence in He II

As outlined in the previous section, He II has a number of unique physical
properties, the most notable being its transport properties. However, the two fluid
model developed so far is incomplete because it contains no upper limit for the
special heat and mass flow processes. Such behavior is not observed experimen-
tally. Rather what is seen is a limiting critical velocity v, above which the He II
begins to exhibit viscous-like flow and nonideal heat transport. The subject of the
present section is to convey the significance of this critical velocity and how it
affects the unique properties of He II. In particular, we will show the origin of a new
dissipative mechanism that controls heat transport in large systems.

6.5.1 Helium II in Rotation

In considering the flow of He II in the two-fluid model, an assumption was made
that the superfluid component has zero viscosity, that is g, = 0. This assumption
leads to the requirement that superfluid velocity cannot have a gradient
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Fig. 6.24 Simple rotating 7 +~
bucket as used by Osborne
[13]
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perpendicular to the flow direction, that is V x vy = 0. An interesting contradiction
occurs when this condition is applied to He II in rotation.

Consider a vessel containing He II rotating with an angular frequency w. For the
case in discussion, the temperature of the fluid will be taken to be below 1 K so
there is hardly any normal fluid present and p, ~ p. Also to simplify the descrip-
tion, it will be assumed that the fluid is incompressible allowing p ~ constant and
dp/dt = 0. It follows from the continuity equation that V - j = 0, and since the
normal fluid density is essentially zero,

V-vy=0 (6.74)

or the divergence of the superfluid velocity must vanish also. Combining (6.74)
with V X vy = 0 requires that the superfluid obey Laplace’s equation, with the
curl-free relationship for the superfluid velocity,

Vv, =0 (6.75)

which for a simple rotating vessel like in Fig. 6.24 has only one solution: that the
He II must be at rest with v, = 0.

It is a straightforward argument to show that vy = O for any fluid that obeys
Laplace’s equation. Introducing the concept of circulation, we define

C= 1; v, - dl (6.76)

where the integral is taken around any simple path in the fluid. The circulation is a
measure of the rotation of the fluid. Stokes’ law can be applied to (6.76), yielding
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{)VS -dl = J V X v, - ds (6.77)

where ds is the integral over the surface enclosed by C. But for the superfluid,
V X vy = 0, which can be satisfied only by

?J;VS -dl =0 (6.78)

a condition that requires vy = 0.

The above conclusion is in contradiction to experiment. In 1950, Osborne [13]
reported an experiment that measured the rotation of a single bucket of He II as
shown in Fig. 6.24. The remarkable result is that he found under all conditions that
the helium rotated with a parabolic meniscus as with a classical fluid. Furthermore,
if all the helium rotated, the vertical height z of the meniscus should be given by
the simple relationship

2
w” ,

z:Er

(6.79)

where g is the acceleration of gravity, w is the rotation frequency and r is the radial
coordinate. Note that if only the normal fluid component rotated there would be a
ratio p,/p multiplying the right-hand side of (6.79). Osborne’s experiments were in
general agreement with (6.79), which leads to the conclusion that He II behaves
as an ordinary liquid when rotating in a simple bucket.

The explanation for the apparent contradiction between experiment and theory
of He II lies in the method by which turbulence is introduced into the liquid. The
qualitative picture of He II above its critical velocity imagines the existence of an
array of vortex lines brought on by the rotation of the fluid. Each vortex line
contains a unit of angular momentum and can be used to explain numerous physical
phenomena associated with He II. London first postulated the existence of vortex
lines, but their actual observation did not occur until nearly 30 years later.

The vortex line array exists as follows. Rotating He II contains vortex cores
shown in Fig. 6.25. The array is similar to the fluxoid array in a Type II super-
conductor. Each vortex core contains a unit of circulation. The behavior of this
array is governed by quantum mechanics to the extent that each unit of circulation is
determined by the quantization rule,

%P -dq = nh (6.80)

where P = mv is the momentum and dq = dl. It is apparent that the circulation C is
quantized based on (6.80) which may be rewritten as

h
i;vs -dl = nE (6.81)
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Fig. 6.25 Idealized vortex
array in rotating He II

where /i/m is a unit of circulation. For a regular array, each vortex core contains one
unit of circulation equal to h/m.

The existence of a regular array of vortex lines is helpful in resolving the
apparent contradiction between experiment and the two-fluid model. In particular,
if the array is as shown in Fig. 6.25, the circulation cancels locally because each
vortex borders another and the line separating the two has zero velocity. Therefore,
taking an arbitrary path containing numerous vortices, we find that the net circu-
lation within this path is zero. However, at the boundary of the container, the
circulation does not cancel, leaving a net value around this path consistent with
the entire fluid in rotation. Thus, the contradiction can be resolved by assuming
the existence of a vortex array.

The density of vortex lines depends on the angular frequency. To compute this
density ng, begin by determining the total circulation of a path of radius r in the
rotating He II. For the case with the rotation at constant angular frequency wy,
integration of (6.76) yields

C = 2wy (6.82)

Because this path contains a total number of vortex lines N = no(nr?), the total
circulation is N(h/m) or

C=ny h r? (6.83)
m

Equating (6.82) and (6.83), we can calculate density of vortex lines that depends
only on the angular frequency:

2
D 20 per mm? (6.84)

ngp =



6.5 Vortices and Turbulence in He II 207

where wy, is in rad/s. For a reasonable angular frequency of perhaps 1 rad/s, (6.84)
indicates a sizable vortex line density. It should therefore be possible to observe
vortex lines in rotating helium if they could somehow be made visible.

Visual observation of vortex lines in rotating helium was first achieved by
Williams and Packard in 1974 [14]. In their experiment, the vortex lines were
made visible by trapping electrons in the vortex core. It is an established character-
istic to the behavior of electrons in liquid helium that they will form small voids or
bubbles on the order of a few nanometers in diameter. These electron bubbles are
attracted to the vortex core as a result of the Bernoulli potential, caused by the
electron bubbles’ tendency to reduce its surface energy. In the vortex line visuali-
zation experiment, electrons emanating from a f-decay of a radioactive source were
trapped on the vortices in a rotating bucket of liquid He II. The electrons subse-
quently were accelerated through an electrostatic potential, striking a phosphorus
screen with the existence of a vortex line being recorded as a flash of light. One
aspect to these measurements, which was not predicted, was the mobility of the
vortex lines. A vortex appeared to be created and destroyed at the boundaries of the
rotating bucket. Also, the vortices moved throughout the fluid at a rate which made
it necessary to add some *He to the rotating bucket to produce viscous damping.
Figure 6.26 are images of the vortex line array seen by Williams and Packard [14].

More recently, Bewley et al. [15] performed a new series of vortex line visuali-
zation experiments in rotating He II using a different method. In these experiments
the lines were decorated with micron scale solid hydrogen particles, illuminated
with laser light and digitally recorded with a CCD camera. In this case, the vortex
lines were observed from the side, as seen in Fig. 6.27, as an array of parallel lines
with hydrogen particles approximately equally spaced along them. These
experiments were performed near T, presumably with sufficient normal fluid
present to dampen the vortex line motion.

The observations accrued from both these experiments on visualization of vortex
lines overall appear consistent with the description of the turbulent state. The
number of vortex lines were seen to be proportional to angular frequency wy, as
predicted by (6.84) and the spacing between lines was approximately equal to (A/
Zwom)” 2, both consistent with theory. As can be seen in these results, the turbulent
superfluid component in He II has unique characteristics.

6.5.2 Critical Velocities

At this point it may appear that there is a contradiction in the description of
experiments which involve rotating He II. Recall the Andronikashvili experiment
which consisted of rotating closely spaced disks in liquid helium. In that work only
the normal fluid component rotated with the device. This result appears to be in
contradiction with the rotating bucket experiments of Osborne where the entire
helium fluid is seen to be in motion. A distinction between these two observations
can be made in terms of the magnitude of rotation velocity. To put the entire bucket
of helium in rotation it is necessary to exceed a critical velocity to establish an
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interaction between the normal and superfluid components. This critical velocity is
also of prime importance in the development of a complete picture of the heat
transport of He II.

The critical velocities of the two components in He II have different origins.
For the superfluid, the critical velocity vy. is that which is necessary to create
quantized vortex lines, which are in the form of a random tangle characterized by
a line density per unit volume, L. The normal fluid component on the other hand
can be thought of as having a critical velocity v, associated with the transition
from ordinary laminar to turbulent flow. The normal fluid critical velocity can be
considered in terms of classical hydrodynamic principles such as exceeding a
critical Reynolds number. Finally, with the two-fluid model there exists the

Fig. 6.26 Photographic
reproduction of vortex line
array in rotating He II (from
Yarmchuk and Packard [14]):
(a) through (1) indicate
increasing angular frequency
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Fig. 6.27 Micron size solid hydrogen particles attached to superfluid vortex lines produced
by rotation at a frequency Q = 0.3 Hz. Measurements were made slightly below T;. (From
Bewley et al. [15])

possibility of a critical velocity associated with the relative motion of the two
components, Iv,~v.. It should be emphasized that all three of these critical
velocities may impact the behavior of mass and heat flow in He II.

First, consider the superfluid critical velocity v. Recall that the superfluid
velocity is more or less independent of pressure difference for flow within a
channel. The equation of motion for the superfluid component predicts an acceler-
ation of this component under the influence of a pressure gradient, Vp. Clearly, the
acceleration cannot go on indefinitely; the superfluid has some limiting or critical
velocity above which frictional forces may contribute. It is possible to under-
stand the concept of a superfluid critical velocity by invoking the following
semi-classical argument.

Imagine that the He II is confined to flow in a channel of dimension d. At very
small velocities, the flow will be laminar. However, with increasing v,, there
comes a point where the ideal laminar flow breaks down and turbulence is created.
Thus, the critical velocity is that which is necessary to create turbulence or vortices
in the channel. In He II the behavior of vortices is controlled to a large extent by
quantum mechanics where a vortex contains one quantum of circulation. One might
then ask, what is the characteristic size of a vortex? Employing the Heisenberg
uncertainty principle, 4p Ax =~ h, the position of a helium molecule in rotation
around the vortex must be defined to within some fraction of the radius.
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Furthermore, the vortex must fit within the channel which has a characteristic
dimension d. For the sake of discussion, we choose Ax =~ d/10 for the vortex to
exist. This numerical assumption leads to an equation for v,:

10n 1074
Voo % ~ 7 m/s (685)
where m is the mass of the helium molecule. Clearly, the above picture is
oversimplified. A more detailed theoretical development due to Feynmann [16]

however, results in a similar expression for v,,.:

h 4d
Ve = —— (ln— — K') (6.86)
nmd ap

where ay is the size of a vortex core (ay ~ 1 nm) and K’ is a numerical constant. It is
interesting to note that although the Feynmann equation (6.86) has a stronger
theoretical basis than (6.85) it still is dominated by an inverse diameter dependence.

Although the above theoretical arguments seem reasonable, the superfluid criti-
cal velocity is an empirically determined quantity. Plotted in Fig. 6.28 are different
theoretical expressions for v,. as well as an empirical fit to existing data in the
literature. The experimental data appears to roughly follow a d~'/* law,

Ve =~ d *in cm/s (6.87)

based on results in small diameter channels, with d in cm. It should be noted that
the measurement of critical velocity in the superfluid component is sometimes
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disturbed by the existence of a similar transition in the normal fluid. Consequently,
some discrepancy between theory and experiment may be attributed to experimental
variations.

In addition to superfluid turbulence it is possible to have turbulence in the normal
fluid component of He II. This effect can be described in terms of more con-
ventional fluid dynamic models. It is generally assumed that the nonzero normal
fluid viscosity (u, ~ 1 Pa s) that causes a transition from laminar to turbulent flow in
the normal fluid component. In this picture, there exists a critical velocity v,,. that
describes the unstable transition from laminar to turbulent flow. In classical fluids
this transition is defined in terms of a critical Reynolds number Re., which is a
dimensionless quantity made up of the ratio between inertial and viscous forces. For
most classical fluids, the critical Reynolds number for flow in a tube occurs near

d
Re, = % ~ 1200 (6.88)

For He II, the appropriate critical Reynolds number should be made up of the
normal fluid velocity and viscosity,

ned
Re(v,) = 2% (6.89)
M’l

Note that this expression contains the total density of He II and not just that of
the normal fluid component. Equation (6.89) predicts a fairly strong temperature
dependence of the normal fluid critical velocity. At low temperatures, T <1.5 K,
the temperature dependence of v, is dominated by the normal fluid viscosity p,
which goes as T7°.

Example 6.2

Consider a 1 mm diameter channel filled with He IT at 1.8 K and estimate the
critical velocities with the corresponding heat flux in thermal counterflow.

As a consequence, the helium is made to flow by the introduction of a heat flux
q. Since the superfluid component can carry no entropy, the normal fluid
velocity v, is determined entirely by the heat transport expression, (6.72). The
critical heat flux for the introduction of normal fluid turbulence can then be
given by the combination of (6.72) and (6.88) such that

Ha

Gne = ST d Re(vnc)

which for 1.8 K a tube diameter of 1 mm, and a critical Reynolds number
Re. ~ 1,200 yields ¢, ~ 1.50 kW/m”.

(continued)
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Example 6.2 (continued)

The value of the critical heat flux necessary to induce turbulence in the
superfluid component is determined by rearrangement of (6.72). Keeping in
mind that zero net mass flow implies p,v; = —p,v,, we calculate the critical
heat flux for the onset of superfluid turbulence as

qsc = MSTV“-

pn

For the empirically determined values for v, (6.86) gives ¢g,. ~ 3.6 kW/m? at
1.8 K. Of course, these numbers vary considerably with diameter and fluid
temperature.

AT
//
/
Ve
Ve
'
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//
2 Ap
-
Fig. 6.29 Typical behavior ="
’/
of the temperature and
pressure difference across a
channel as a function of heat
flux in counterflow He II.
Note the transition at q. q

The practical significance of both critical velocities is in their signaling transitions in
the behavior of v, and v,,. In particular, the onset of turbulence is expected to affect
both the heat transport and fluid flow. Above these critical velocities, additional
interactive terms must be included in the fluid flow equation which describes the
temperature and pressure gradients. The two contributions of greatest importance
are the turbulent pressure gradient and what is known as the mutual friction interac-
tion that determines the temperature gradient. Typical behavior of the pressure and
temperature difference across a channel is shown in Fig. 6.29.

The first issue to consider when introducing turbulence into the problem is how
its existence affects the pressure gradient measured within the fluid in counterflow.
As already noted, in the Poiseuille regime, the pressure gradient along a capillary is
proportional to the normal fluid velocity which in turn is proportional to the heat
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flux. This relationship is no longer accurate above the critical velocity of the normal
fluid, v,,., where turbulence contributes to the behavior of the fluid.

One way to look at the pressure gradient due to the flow of the normal fluid is
in terms of classical fluid mechanics. In the turbulent regime, the normal fluid
friction factor is greater than that in the laminar regime due to the thinning of the
boundary layer. If we assume that the Blausius correlation for the friction factor
f=0.079/ Re'/* applies for the turbulent normal fluid component, then the pressure
gradient is,

1/4 ,3/4

dp_ 0158, " (6.90)
dx ds’4 "

which in turn can be written in terms of the heat flux by substitution of ¢ = psTv,
(6.49). This relationship predicts a non-linear pressure dependence in counter-
flow above the critical heat flux, a result that has been shown to be accurate of
small diameter channels (d < 100 um) as is shown qualitatively in Fig. 6.29. How-
ever, as is discussed below, this picture is not entirely complete since the interaction
between the normal and superfluid components eventually dominates the behavior.

6.5.3 Mutual Friction

Referring to Fig. 6.29, one can see that the transition in the temperature difference
in turbulent He II is more pronounced. The new interaction that brings about this
change is hypothesized to be the result of a viscous-like drag between the normal
fluid component containing the excitations and the turbulent superfluid component
with vortices. The existence of this force was first introduced to help explain heat
transport data by Gorter and Mellink [17]. It has since been given a physical basis
by several experimental and theoretical studies.

The basic idea of the mutual friction interaction is as follows. In turbulent He II
there are two fluid components, a normal fluid containing excitations and the
superfluid component with associated quantized vortices. For the present
argument’s sake, these two components will be assumed to be travelling in opposite
directions in thermal counterflow. The vortex will be taken to be travelling at v,
vortex line velocity, which is of the order of v,. A schematic representation of this
situation is shown in Fig. 6.30.

The force per unit length on vortex is dependent on the relative velocities of v,
and v,, as well as the densities of each. Theoretical justification for the exact form of
this quantity is beyond the scope of the present discussion. However, using dimen-
sional analysis alone, one would expected that the force per unit length of the vortex
would be of the form,

f— p:),gn 1|V — Vs (6.91)
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Fig. 6.30 Schematic of the
normal fluid and superfluid
vortex interaction

Fig. 6.31 (a) Schematic representation of a vortex array with § ~ L2 being the average vortex
line spacing; (b) photo of vortex lines decorated with micron scale solid hydrogen particles [18]

where , is the only possibility relevant viscosity. It is assumed that f is propor-
tional to the product of pg and p,, so that the interaction would be a maximum where
these two quantities are approximately equal. Other arguments can be made to
justify f going as Iv, — vy, which are based on classical turbulent interactive
mechanisms.

To determine the total interaction per unit volume of He II, we consider the
macroscopic picture of the turbulent state. As envisioned, the He II consists of a
tangled mass of vortex lines schematically shown in Fig. 6.31a and displayed
visually by decorating the lines with solid hydrogen particles in Fig. 6.31b. Unlike
the picture of rotating He II with a regular matrix of vortex lines, heat-induced
vortex lines form an isotropic mass which is assumed to be spatially non-varying.
This assumption is not generally true but it simplifies the physical explanation. The
vortex array is described by two quantities: L, the vortex line length per unit volume
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of fluid, and ¢, the mean spacing between vortex lines. For a given set of conditions,
the vortex line length has one stable value. In the model first proposed by
Vinen [19], the steady-state length is seen as a balance between the rate of genera-
tion of vortex lines and the rate of decay. Therefore, in steady state,

dL
dt

dL

=— 6.92
- (6.92)

decay

and the line length takes on the constant value L. The total force per unit volume of
He II is the product of the line force f and the line length L.

Vinen used dimensional arguments to show the variation of the vortex line
length with velocity. For the two quantities defined in (6.92), the fundamental
dependencies may be written

dL

xBp, 3/2
—_— = - ns- 6.93
It Vsl ( )

2p

gen

where v,; =1Iv, — v, is the relative velocity of the normal and superfluid
components and y; and B are parameters describing the interaction between normal
fluid and a vortex. The decay of the vortex lines also has a simple functional form,

dL

nh o
- =22 6.94
i (6.94)

2nm

decay

where y, is of order unity and a function of temperature. Equating (6.93) and (6.94)
in the appropriate form, we obtain the steady-state vortex line length, to within
numerical constants, as

2
Ly=a(T) <pp” v> (6.93)

where a(T), which is of order 10"* s*/m* at 1.8 K, is a temperature dependent
coefficient that can be estimated from theory or measured experimentally [20].
Note that (6.95) indicates that Ly ~ lv,, — Vs|2. In thermal counterflow, p,,v, = —pvs
and g = psTv,, which can be substituted into (6.95) to predict the equilibrium

vortex line density,
0 2 q 2
Lo =a(T)| 6.96
o=an(52) (v, 9

At a heat flux of 10 kW/mz, (6.96) estimates L, ~ 1010/m2, which corresponds to a
vortex line spacing ~10 pm. It is worth pointing out that this distance is 3—4 orders
of magnitude larger than the vortex core size.
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Fig. 6.32 Gorter-Mellink 300 T T T —— 17173000
mutual friction parameter |
(Data are from Refs. [22-25])

200 2000

E 100 1000 %
~N
> »
2 80 800 ¢
< :
s 60 600 «
<
40 400
] 1 1 1 1 1 1 1 I'
.4 16 18 20 22
T(K)

Using the above form for the vortex line length and force per unit length, we can
write the total mutual friction force per unit volume of He II. The treatment
developed originally by Vinen and extended by Schwarz [21] includes a small
velocity offset vq, such that the final equation has the form

F,s = Lof = Agup,p, (Vv — Vs — V())z(Vn — ;) (6.97)

where Agy, is termed the Gorter-Mellink mutual friction coefficient. According to
the model presented above, Agy ~ pﬁ/pS, but because the physical quantities y;
and y, are undetermined, the coefficient must be evaluated empirically.

There have been a wide variety of measurements of the Gorter-Mellink parame-
ter with typical values displayed in Fig. 6.32. The theory presented by Vinen also
predicts a temperature and pressure dependence which should be dominated by
the square of the normal fluid density p,. The quantity p%/p3 has a strong tempera-
ture dependence going roughly as (T/T;)"3, while the experimentally determined
value for Agy, exhibits a much weaker temperature dependence, that is Agy, ~ T °.

The pressure dependence of the Gorter-Mellink coefficient is less well
established. Some work has shown that the variation of the heat conductivity of
turbulent He II with pressure can be interpreted only by a pressure dependence of
Aguy- Since this quantity varies as p,21/p3, its pressure variation is not a large effect
except near the A-transition. For example, at T = 2.0 K, the ratio between pﬁ/pz' at
0.25 MPa and saturated vapor pressure is 1.17. This should be compared to the
experimental ratio of Ag,(0.25)/Aga(0) of 1.19 £ 0.05 at 2 K. Such a comparison,
although within experimental error, does not established fully the pressure depen-
dence of Agyy.

Given the existence of this additional interactive mechanism between the two
components in He II, the two-fluid hydrodynamic equations can be modified to
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include these terms. The result of this modification are equations for each of the
two fluids:

ov,
Pn 5‘th - %VP — pSVT + 11,V Yy + A p,p Ve — Vel (6.98)
ov '
PSF: = —%Vp + ST — AGup,py|Va — Vsl (6.99)

which are similar to (6.56) and (6.70) except that they add the terms due to mutual
friction. The expressions as given above are somewhat simplified over those used
by Vinen and others. In particular, (6.98) and (6.99) lack any explicit indication of
either critical velocity, v,. or v,,.. Critical velocity can be taken into account by
introduction of a small velocity offset vy, as shown in (6.97). However, since this
correction is quite small, it is neglected in the present treatment of turbulent He II.

6.5.4 Steady-State Heat Transport

Consider the problem of steady-state heat transport, dv,/dt = dv,/dt = 0, in a one
dimensional channel containing He II. This problem, which has already been
discussed for the non-turbulent case, can be solved analytically to give an expres-
sion for the temperature gradient in terms of the velocities of each component:
dr ﬁﬂ Vn AGM Pn 3

— = -y, — v 6.100
dx psd? s [V =il ( )

where f is defined previously. Note that (6.100) is a scalar equation established with
the understanding that dT /dx is negative in the direction of v,,. If there is no net
mass flow, that is, counterflow is the only important transport mechanism, then
psVs = — p,V, and the temperature gradient may be written to depend only on the
heat flux:

dar _ — Bwg  Acup, 3
A~ 2(ps)r  peT !

(6.101)

where use has been made use of ¢ = psTv,,. Note that the first term in (6.101) is the
same as developed to describe the viscous flow of non-turbulent He II. The second
term describes the mutual friction contribution. Because it lacks diameter depen-
dence and goes as the cube of the heat flux, the second term dominates the
temperature gradient at high heat fluxes and large diameter channels, that is,
d 21 mm. For example, at 1.9 K, a 1 mm diameter circular cross-section channel
will have the largest contribution to the temperature gradient from the mutual
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friction for heat fluxes in excess in 100 W/m?. For many practical applications,
larger heat fluxes are of interest indicating that under these circumstances the first
term can be ignored in the description of heat transport in He II.

There is a fundamental assumption that enters into the description of He II heat
transport as given by (6.100). The concept of critical velocity has been introduced
to separate the regions of turbulent and non-turbulent heat transport. However,
simply adding the laminar and turbulent terms to describe heat transport in He II
assumes that the transition between these two regions is continuous. This is not
what is observed experimentally.

The actual situation concerning the heat flux dependence of the temperature
and pressure gradients in counterflowing turbulent and non-turbulent He II is
more complex. At very low heat fluxes, much less than that necessary to create
turbulence, the laminar expression suitably describes the heat transport and the
temperature and pressure gradients are proportional to g. Similarly, at very high
heat fluxes, the turbulent expression does an adequate job of explaining experimen-
tal data. However, the behavior in the transition region is more variable. Around ¢,
there is often hysteresis in the relationships between AT or Ap and g. Sometimes
the turbulent character is suppressed beyond ¢, because of the need to nucleate
vortices. Once the turbulent state exists, the vortices do not dissipate easily,
persisting below ¢g.. Hysteresis is common in the temperature gradient behavior
and sometimes two transitions are observed [20, 26]. Similar character is seen
often in the pressure gradient near g. At this point it is not clear whether a
simple addition of terms as in (6.100) is correct. Far enough away from g, either
the laminar or turbulent expression dominates so that the details of the transition
region are of small consequence. This is often the case in practical applications
of He II.

6.5.5 Forced Convection Heat Transport

Up to now, the heat transport has been assumed to occur in static He II; that is pure
thermal counterflow with zero net momentum (j = 0). This is an important
assumption leading to the derivation of the heat flow equations. It is of interest,
however, to consider the effect of net mass flow when the entire fluid is driven by a
pressure gradient, resulting in a total fluid velocity v. Pressure-gradient-induced
flow in He Il is really only possible if the thermo-mechanical effect is small because
the normal fluid velocity can be affected significantly by viscous drag. For small-
diameter channels where the thermo-mechanical effect is considerable, mass flow is
controlled essentially by the superfluid velocity. As this situation leads to consider-
able complication, it will not be discussed here. Rather, the other heat transport
regime will be considered, which is demonstrated by the mutual friction term.
There are numerous examples in the literature where v, and v,, are independently
controlled variables.
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Neglecting the laminar term in the temperature gradient expression (6.100) and
assuming one dimensional flow, we obtain a simplified expression that does not
depend on net mass flow:

dT  Acm

Pn 3
=z g 6.102
dx K v v ( )

Now since momentum conservation must be obeyed in the two-fluid model (6.46),
a more general relationship for ¢ as a function of velocity is:

q=psT(v, —V) (6.103)

which reduces to the previous form when v = 0. This relationship can be derived in
general by applying conservation of momentum and energy to the He Il in a moving
reference frame. It can also be shown to be the correct assumption when solving
the problem of forced flow with no net heat flux, that is, ¢ = 0.

Substitution of (6.102) into (6.101) leads to the somewhat surprising result
that the temperature gradient in forced flow He II is independent of velocity; that
is for all velocities,

df _ _Acmp, 3
dx psiT3 q

(6.104)

which is identical to the mutual friction term in (6.101). It should be emphasized
that this derivation has not included the potentially important term associated with
the net enthalpy transport of the flowing helium, pCvAT. Because enthalpy trans-
port is actually more relevant to the practical heat transfer character of forced flow
He 1I, this subject is considered further in the next chapter. It is the purpose of
the present discussion to principally identify the invariance of (6.104) with fluid
velocity.

6.5.6 Attenuation of Second Sound

An alternative method to study the turbulent state of He II is to measure the
attenuation of second sound. The principle is based on the fact that relative motion
of the two fluid components in second sound can be affected by the mutual friction
interaction. In the turbulent regime, the solution of the time-varying wave propa-
gation equation (6.65) is modified. It can be shown by using (6.98) and (6.99) that
second sound obeys the expression

o1
or?

2 Acupq® OT
222 O

=0 (6.105)
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where the second term on the right-hand side causes the attenuation and is
additional to the normal linearized second sound equation. The rate at which this
attenuation takes place leads to an exponential process with a coefficient

Acmpq’
= 6.106
2025T?c, ( )
The Gorter-Mellink coefficient Ag,, enters explicitly in (6.106), allowing its value
to be determined directly by measurement of o.
Experimentally, the amplitude of a traveling wave is proportional to ¢™'.
In thermal counterflow, the quantity « is found generally to consist of two terms,

o =day+ o' (q) (6.107)

where the first term is more or less independent of heat currents and the second
term is the result of the mutual friction interaction. The second term in (6.107)
is seen to vary as the square of the heat flux ¢, such that

o =Clg—qo)* (6.108)

where the proportionally factor, C, is a function of temperature and pressure.
Measurements by Vinen [27] which show the ¢° dependence to o are displayed in
Fig. 6.33. Quite apparent in these measurements is the onset of attenuation at the
critical velocity. Below ¢, there is no heat-flux-dependent attenuation. Also, note
the approximate magnitude of gy &~ 5 mW/cm? by extrapolation of the attenuation
coefficient to o’ = 0. This value is in close agreement with the critical heat flux ¢,
estimated from Fig. 6.28.

The second sound attenuation method is a powerful probe of the mutual friction
interaction. It represents an effectively independent method for determining the
mutual friction coefficient Agy,. This point was exploited by Vinen who made a



6.5 Vortices and Turbulence in He 11 221
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simultaneous measurement of Agy by both methods on the same channel.
The results of these measurements strongly demonstrate that the two methods are
for all practical purposes equivalent. However, the possibility of geometrical
factors affecting A is somewhat less well established.

6.5.7 Development of Turbulence

In the preceding development, it has been assumed generally that the He II is either
in the non-turbulent state, obeying isentropic laminar flow models, or in the turbu-
lent state with the additional mutual friction interaction. Here we consider the rate
at which the turbulent state is created when the fluid is initially in the ideal vortex-
free condition. This problem has received extensive experimental investigation. The
general approach is to measure the time rate of change of the second sound attenua-
tion after a steady heat flux is applied that is ¢ > g.. The general character of the
results indicates a characteristic time for the development of the fully turbulent state.
This characteristic time 7, has been shown to be both heat flux and temperature
dependent. Typical results for an experiment by Vinen are shown in Fig. 6.34.
An empirical fit to these data indicate that the time constant has the simple form,

T =aq? (6.109)
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Fig. 6.35 Coefficient of the 20
turbulence buildup expression

for different channels (From

Chase [28])
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where a is a temperature and geometry-dependent quantity. Chase [28] has
measured this coefficient for a number of channel configurations ranging from
open ducts to complex geometries. Figure 6.35 displays the empirically determined
coefficients a. The variation is between a factor of 3 and 5. It should be noted that
this quantity is not always reproducible and will be shorter if the helium is
not allowed to reach equilibrium without turbulence before a measurement. Full
recovery to the non-turbulent state can take on the order of hundreds of seconds.

6.5.8 Second Sound Shock

The above discussion of transient phenomena assumes that the turbulence develops
in a globally uniform, homogeneous fashion. However, highly transient thermal
counter flow does not allow the development in a uniform way because there is a
propagation velocity for the turbulent front. This propagation velocity is related to
the velocity of second sound just as the ordinary sound velocity determines the
propagation of pressure waves.

One can think about this process in terms of a small, short duration, At ~ 1 ms,
rectangular heat pulse applied at the end of a channel containing initially quiescent
He II. If the amplitude of the pulse is low, AT ~ 1 mK, it will propagate at the
second sound velocity. There may be some attenuation due to residual turbulence,
but generally speaking most of the energy will travel at c;.

If the amplitude of the pulse is significantly increased to AT ~ 100 mK, several
changes to the propagating pulse are observed [29, 30]. One is that the shape of the
pulse changes being no longer rectangular due to an amplitude dependence of
the second sound velocity. This effect can lead to either a forward or backward
sloping pulse.
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Fig. 6.36 Schematic of the Xr .
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However, of greater interest is the apparent limit to the allowable energy content
in the pulse. As the amplitude of the heat pulse that generates the second sound
is increased, the temperature change AT also increases up to a limit after which it
tends to plateau. Since the duration of the pulse is approximately constant, the
temperature plateau means that there is limit to the amount of energy that can be
carried by the second sound pulse. Experiments have shown this limit, sometimes
referred to as the breakpoint energy, to be of order 100 kJ/m? [31, 32]. An alternate
way to present this result is in terms of the energy transport fraction,

_ A, _ [ pcr,

1E, At (6.110)
where AE,, is the energy carries by the heat pulse and 4E, is the energy supplied to
the pulse by the heater. The behavior of the energy fraction is shown qualitatively in
Fig. 6.36. Below the breakpoint energy, the energy transport fraction is close to
unity. Above that value, the transport fraction decreases as E, ", where n ~1.

The physical interpretation of this result is suggest that the intense second
sound pulse produces such a large thermal gradient and counterflow relative
velocity that intense turbulence is generated, probably on the back side of the
front. This turbulence in turn produces strong attenuation of second sound by
mutual friction. This will in turn mean that the heat transport is now more of a
diffusive process. This diffusive process is what controls transient heat transport
in turbulent He II. Since this topic is of significant technical interest, it will be
discussed further in the next chapter along with the other more applied
characteristics to heat and mass transport in He II.

Questions

1. List and briefly discuss the properties of liquid helium below T, that make it a
superfluid?

2. How does the Two Fluid Model for He II differ from models for mixtures of
two classical fluids?

3. Can He II be modeled as an ideal Bose gas? If not, what properties of He II are
different from those of the Bose gas?

4. Why does He II remain in the liquid state at very low temperatures?
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Problems

1. Make a plot of the temperature and pressure gradients versus heat flux in a
50 um diameter tube containing He II at 1.8 K. Consider both the normal fluid
viscous and mutual friction interactions. Indicate the location of and the impor-
tance of critical velocities.

2. Starting with the equation for the vapor pressure of an ideal Bose gas (6.24a),
cast it in the form of the virial expansion as discussed in Chap. 3. Placed in this
form, the second term represents the ideal quantum gas correction which appears
as part of the second virial coefficient. Compare the value of this correction to
the difference between the classical and quantum second virial coefficients at
4 K (see Fig. 3.3).

3. Calculate the latent heat per mole of an ideal Bose gas at 2 and 4 K, Compare
these values with the latent heat of liquid helium at the same temperatures.

4. Using the empirical relationships for the entropy, specific heat, and normal and
superfluid densities, derive an expression for the temperature dependence of the
second sound velocity c;. Plot your result and compare it to Fig. 6.19.

5. Calculate the angular frequency at which one vortex could exist in a 1 cm
diameter tube containing He II and spinning about its longitudinal axis. One
method to prevent vortex formation in rotating He II is to subdivide the helium
pool into many cells, perhaps with a honeycomb structure or porous medium.
Calculate the cell radius necessary to prevent the formation of vortices in a
bucket rotating at an angular frequency of w = 1 rad/s.

6. Consider a rectangular cross section chamber containing He II. Second sound
can be generated and detected across the 10 mm width of the chamber, while a
steady-state heat can be applied perpendicularly down the length of the chamber.
Assume that the helium bath temperature is 1.8 K.

(a) Calculate the second sound velocity and the frequency of the lowest har-
monic standing wave which could be set up within the chamber;

(b) If the standing wave has an amplitude of 5 mK at the generator, what will be
the amplitude at the detector if a 10 kKW/m? steady-stare heat flux is applied
perpendicular to the second sound standing wave.

7. Consider a small capillary tube of length 10 mm and diameter 2 pm connecting
two reservoirs of He II. One reservoir is maintained at 1.8 K. The other reservoir
is heated to some temperature higher than 1.8 K but not greater than Tj.
Calculate the temperature difference, AT, and pressure difference, Ap, between
the two reservoirs as a function heat flow, Q. Hint: You may assume that the
flow is laminar, but you will need to consider the temperature dependent
properties of He II.

8. Make a graphical comparison between the roton contribution to the specific
heat, (6.40), and the empirical form for the specific heat (6.29) between 1.1
and 2.1 K.


http://dx.doi.org/10.1007/978-1-4419-9979-5_3
http://dx.doi.org/10.1007/978-1-4419-9979-5_3.3
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Chapter 7
He II Heat and Mass Transfer

Chapter 6 emphasized the physics of He II including heat transport in the laminar
flow and the turbulent mutual friction regimes. These mechanisms are fundamental
to the behavior of He II, although that discussion mostly described idealized
behavior. In the present chapter we will build on the fundamental understanding
of He II to treat practical heat and mass transfer problems that may occur in He II
systems. In doing so, the concepts already developed must be extended into regimes
that are more usable in engineering calculations. To be more specific, the emphasis
of Chap. 6 has been to understand the interactive mechanisms and the two fluid
nature of He II. Thus, of principal concern is the behavior of the transport properties
including mainly the normal fluid viscosity u, and the turbulent state with the
associated mutual friction parameter Ag,,. Of interest now is to use these concepts
in understanding such phenomena as the maximum heat flux, ¢*, the maximum
energy deposition, 4E*, and the corresponding temperature difference, which can
be either within the fluid or across a solid-fluid interface. The goal of the present
chapter is to establish a connection between the engineering parameters g*, AE*,
and AT and the physical properties of the fluid and solid-fluid boundaries.
In establishing this connection there are a number of subjects of practical interest
which must be addressed. These include steady-state heat transport, transient heat
transport, forced flow pressure drop and heat transport, surface Kapitza boundary
conductance, and film boiling. Some of these phenomena are also important in pool
boiling He I heat transfer, which is the subject of Chap. 5.

Before delving into these individual subjects, it is worth describing, in a general
way, the surface heat transfer character of liquid He II. This character in actuality is
quite similar qualitatively to that of He I or other conventional fluids, although as
we will see the numerical values and physical explanations are considerably
different. Figure 7.1 shows a typical steady-state heat transfer curve for a metal
surface at the end of a duct containing He II, see Fig. 7.2. As is discussed below, the
duct also may contain a temperature difference (7, — T)). Figure 7.1 is intended
only to display the regions of heat transfer. As is demonstrated in what follows,
actual numerical values of these regimes are strongly dependent on geometry,
temperature, pressure, and surface conditions. That the heat transfer surface is
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Fig. 7.1 A typical steady-state beat transfer curve for a metal surface at the end of a duct
containing He II

L

Fig. 7.2 Schematic of a horizontal duct of length L containing He II

located at the end of a channel rather than in an open bath is also important in
determining critical values. As we will see, the very high effective thermal conduc-
tivity of He II results in a thermal boundary layer that can take on the dimensions of
the duct, thus controlling much of the heat transfer process.

For small g up 7o g*, the surface temperature difference, AT, is governed by
interfacial phenomena having more to do with the character of the solid than that of
the liquid helium. This is called the Kapitza regime. In this regime, there is no
surface boiling, rather the temperature difference is a result of thermal impedance
between the two dissimilar materials, the metal or insulating solid and liquid He II.
Also, the maximum heat flux g* is strongly geometry and helium state dependent
and is characterized by the point where the helium adjacent to the interface exceeds
the local boiling point. The maximum heat flux is also time dependent, achieving
very high values for short-duration heat pulses. Once this maximum is exceeded, the
heat transfer transitions to a film boiling process where a film consisting of either He
I, vapor, or both blankets the surface. Finally, in some configurations there is
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observed a hysteresis in the heat transfer curve exemplified by the requirement to
reduce g below ¢* in order to return to the Kapitza regime. This process is reasonably
well understood in He I and other classical fluids, being described by a hydrody-
namic instability which leads to an engineering correlation. However, in He II the
problem is more complex and has received less attention, owing to the experimental
difficulty of achieving steady state and strong variations with configuration. It is the
physical understanding of this heat transfer curve that is the goal of the present
chapter. The description is based heavily on the physics of heat transport in He II
contained in Chap. 6.

7.1 Steady-State He II Heat Transport in Wide Channels

The first question to ask is: What are the limitations to heat transport in a channel
containing He II? Since the heat transport equations for He II have already been
developed, it should be straightforward to apply this theory to determine practical
heat transfer limitations. In doing so, it is assumed that the heat transport
equations can be applied over finite temperature differences simply by taking into
consideration the temperature dependence of the fluid properties. Note that He II
cannot exist above the A-transition, 2.177 K at SVP, which at least establishes
liquid temperature boundaries to the heat transfer problem. For a channel of finite
length L, as shown in Fig. 7.2, subjected to a constant heat flux ¢, there is a
temperature difference established across its length, that is ATy, ; = T,, — T).
In general, this temperature difference occurs because of two loss mechanisms
discussed in Chap. 6: (1) the normal fluid viscous interactions with the channel
walls and (2) the mutual friction between the two fluid components. We therefore
consider here two classes of problems. The first concerns the heat and mass
transfer in large systems such as occur in superconducting magnets and particle
accelerators. In this case, the channel diameters and heat fluxes are sufficiently
large to allow the mutual friction term to dominate the heat flow process. Thus, for
this class of problems, the normal fluid viscous contribution to the temperature and
pressure gradient can be neglected. The second class of problems which we will
discuss subsequently involve heat and mass transfer through very small diameter
capillaries or porous media. This heat transfer regime is mostly of interest in space
applications and small scale cooling channels such as occur in some high current
density magnets. In this latter case, at low heat fluxes, the flow is ideal and the
pressure and temperature gradients obey London’s equation with viscous flow
dominating the normal fluid. At moderate to high heat fluxes, both laminar and
turbulent contributions must be included in the analysis. Problems in this regime are
the most complex to analyze.
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Fig. 7.3 Heat conductivity function for turbulent He II

7.1.1 He Il Heat Conductivity Function

For wide channels, the normal fluid viscous term can generally be neglected so that the
He II temperature gradient equation (6.101) may be simplified in one dimension as,

i —f(T, p)q" (7.1)

where we define (T, p) = AG,\,,,()n/(pss“T3 ) with Agy, being the mutual friction
parameter and p, and p; are the normal and superfluid densities, respectively.
According to theory m ~ 3; however, experimentally m has been shown to vary
from about 3 to nearly 4 as the temperature approaches T, [1, 2]. A good mean value
for practical calculations is to set m = 3.4, which is consistent with experiment over
the temperature range from 1.7 K to T, [3-5]. The physics behind (7.1) is discussed
extensively in Sect. 6.5. The quantity f (T, p) behaves much like a thermal
conductivity in that it is a fluid property that controls the temperature gradient
in the presence of a heat flux. It is therefore of interest to understand the variation
of (T, p) with state variables. Plotted in Fig. 7.3 is this function as it depends on
temperature and pressure between 1.4 K and T, and p = SVP and 2.5 MPa for the
case where m = 3. Note that the temperature dependence is quite strong with a
maximum occurring around T ~ 1.9 K at SVP. The pressure dependence is weaker.
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In the data presented in Fig. 7.3, Vinen’s [ 1] values for the Gorter-Mellink parameter
have been used. Furthermore, it has been assumed that Agy ~ pp2/p? which is
based on theory [6]. Then based on an empirical fit to the Gorter-Mellink parameter,
it is possible to write an analytic expression for the heat conductivity function,

FUTp) = g(T) [P (1 - A7) (7.2)

where g(T)) = p2szf/A;_,t =T/T;,S; = 1559J/kg-K,and A; = Agu(T;) ~ 1450

m-s/kg. Note the maximum in (7.2) occurs at t = 0.885, which is 1.929 K at SVP.
The values presented in Fig. 7.3 are good to about +£10% at saturated vapor pressure
and have been compared to experiment up to about 0.7 MPa. Numerical values for
f7XT, p) are listed in Appendix A.3.

Recently, Sato et al. [7-10] performed extensive measurements of the average
heat conductivity in turbulent He II over a wider range of temperatures and
pressures up to 1.5 MPa. This work confirmed that the best fit to the heat conduc-
tivity function follows a power law m = 3.4 & 0.1. This extensive set of data was
then used by Sato to develop an improved correlation for the turbulent heat
conductivity function. The form of this correlation is similar to (7.1) where
m = 3.4 and the heat conductivity function is written as a product of two terms,

fﬁl(Tap) = h(t)gpeak 2 (7.3)

where the reduced temperature ¢ = T/T; and h(t,p) and g,..(p) are empirical
functions. The normalized empirical function A(¢, p) is shown in Fig. 7.4 indicating
a high quality correlation. This function has a peak at 7,,,+ = 0.882.

Sato fit this quantity to a polynomial function,

9
h(t) =1+ (t = teat)” > {an(t —1)"} (7.4)
n=0

where the polynomial coefficients are given in Table 7.1
The pressure dependent function was also fit to a polynomial as,

Speak(P) = exp(a + bp + cp?) (7.5)

where the coefficients (a, b and c¢) and the fit are shown in Fig. 7.5. This correlation
is clearly an improvement over (7.2) and Fig. 7.3 and is recommended for more
accurate numerical calculations. However, for approximate calculations particu-
larly when they involve analytic solution, it is often more convenient to use the
simplified form and keep the value of m = 3.
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Table 7.1 Polynomial ap — —71.818

coefficients for (7.4) @ — —1.4992321 % 10*
> = — 1.

(Sato [6) 4y = —2.9716249 x 10°

as = —3.8519949 x 107
ag = —1.2501488 x 10°

a; = 12172617 x 10°

as = —3.9491398 x 103
as = —1.2716045 x 107
a; = —8.6644230 x 107
ag = —8.1273591 x 10’

7.1.2 Peak Heat Flux in Wide Channels

We now consider the limits to steady state heat transport in a finite-length channel.
For a given steady heat flux, it is possible to determine the corresponding AT by
integration of (7.1) (or the more refined Sato correlation, 7.3) for specified boundary
conditions, e.g. T, = constant. The maximum heat flux g* is then established
according to the maximum allowable temperature difference the channel, which
for a given bath temperature T}, is AT, ~ (T, — T}). It follows that for a channel of

length L

*_(EJT"’ dr )”’"
T =\L)f(Tp)

(7.6)
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Fig. 7.5 Pressure dependence of the peak value of the thermal conductivity function (Sato [6])

This integral is mostly a function of T, and only weakly dependent on other
factors such as pressure. The integrated heat conductivity function is then defined as,

T 1/m
LYm = 7(T,) = (J T > 7.7
1 ( b) be(T7p> ( )

which should be independent of channel length. Plotted in Fig. 7.6 are experimentally
determined peak heat fluxes ¢* for different channel lengths varying everywhere from
0.1 to 3 m. Two different correlations of the data are displayed: Z’(T},) for m = 3 and
Z(T},) the other for m = 3.4. In either case, the agreement between data and correlation
is acceptable.

By a similar analysis it is possible to determine the pressure dependence of the
maximum heat flux ¢*. Integration of the corresponding heat conductivity function
fNT, p) predicts a decreasing maximum heat flux with elevated pressure. By
analytic integration of (7.2), a prediction can be made for the behavior of ¢* with
pressure. The results of this analysis for four bath temperatures are displayed in
Fig. 7.7. Also displayed are experimentally observed [4, 12] maximum heat fluxes
for short channels up to 0.3 MPa. The agreement is again reasonable for the
available data. As discussed above, an improved correlation can be obtained by
using m = 3.4 and the Sato form for the heat conductivity function.



234 7 He Il Heat and Mass Transfer

10
_ 10 a _ b
N T
E 8 § spayg
o~ v m=34 o ) m=3.0
E v E ¢ X
o © '
= 6‘! v Z(TC) = sl ® X A (Tc)
N v A
<
2 L O R L P ¥
- v 1 /,// e
o 4L Q o 41 s \\
A
L L o)
2t 2l
O N L L Il N 0 L " L " L
1.6 1.8 20 Ty .6 1.8 20 T
T(K) T(K)
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Fig. 7.7 Maximum heat flux in a He II-containing channel as a function of pressure (Data from
Refs. [4] and [12])
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It should be kept in mind that the form and physical explanation for heat transport
in He II place no fundamental limit to the maximum steady state value for g*.
Everything depends on the allowable temperature difference. For example, with
T, = 1.8 K and m = 3, Fig. 7.4 predicts a product ¢*L'? = 7.4 W/cm®?. Therefore,
for a channel of length 10 pm, this analysis would predict a ¢* in excess of 70 W/cm?
(700 kW/m?) truly a remarkable heat flux for liquid helium temperatures.

Example 7.1

Consider a 1 m long, 1 cm? cross section channel (see Fig. 7.2) containing He II
at 2 K but pressurized to 0.5 MPa. Calculate the maximum heat flux in the He II
channel.

To calculate the maximum heat flux, one needs to integrate the function. We use
the simplified correlation with m = 3.

nogr \"
(e

Between 2 K and T, (p = 0.5 MPa). Since the channel is pressurized to
0.5 MPa, however, the appropriate form for f/(T,p) must be used, see Fig. 7.3.
Fortunately, this integration has already been performed in Fig. 7.7. At 2 K and
0.5 MPa, q*Ll B = 3W/em’?. Thus, the a 1 m long, 1 cm? cross section channel,
Q* =0.65W.

7.1.3 Peak Heat Flux in Saturated He I1

In the discussion above, it has been assumed arbitrarily that the peak heat flux ¢* is
determined by the condition where the helium adjacent to the heater surface reaches
the A-point. This limit is not always met particularly in He II near its saturated vapor
pressure for reasons having to do with the helium temperature distribution and the
phase diagram, displayed in Fig. 7.8. We begin with the assumption that due to the
high effective thermal conductivity of He II, the helium within the heat transfer
region obeys equilibrium thermodynamics. This assumption allows the state of the
helium everywhere in an experiment or engineering system to be described by a
point on the equilibrium phase diagram.

Now consider a simple example, that of the heat transfer process occurring at the
bottom of a vertical channel containing saturated liquid helium at 1.8 K, 1.6 kPa
(12.5 torr). The heat transfer process is occurring at a certain depth, &, below the
liquid-vapor interface; see Fig. 7.9. Thus, without any heat being applied, the state
of the helium at the bottom of the channel can be described by location () on the
phase diagram in Fig. 7.8. The pressure applied at the heat transfer surface is
therefore p = py + pgh, where £ is the hydrostatic head of the liquid helium. If heat
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Fig. 7.8 Phase diagram of helium showing condition (1) of near saturation and condition (2)
of subcooled helium to p = 100 kPa

is applied to induce heat transfer in the system, there will be a local temperature
excursion AT that is determined by heat flow mechanisms as discussed above. The
local temperature increases but the pressure is fixed, unless the experimental
configuration is small enough for the thermomolecular effect to make a significant
contribution. Neglecting this complication for the time being, as an increasing heat
flux is applied, the temperature at the bottom of the channel will increase following
a horizontal line as shown in the inset of Fig. 7.8 until at a certain heat flux it meets
the liquid-vapor interface at which point boiling commences.

The value of the maximum temperature excursion is determined by the slope of
the vapor pressure curve such that for finite AT,

po+pgh dT
AT, = J () dp (7.8)
Po dp
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Fig. 7.9 Vertical channel
containing in near saturated
He I

T

Q

The slope of the pressure curve, (dT/dp),,, can be obtained from helium property
tables or database codes. However, it is also known from thermodynamics through
the Clausius-Clapeyron equation,

dp

hfg hfg
= ~ 7.9
a7 (7.9)

w  TAv T Ty,

which can be further simplified by assuming the helium vapor to be an ideal gas, that
is v, = RT/p. This results in an approximate form for the allowable temperature
increase,

RT? h
AT, ~ ln(l +%> (7.10)
By Po

This expression is suitable for AT,, < T,,. For larger values of AT it is better to
evaluate the saturation temperature at the pressure corresponding to the given
hydrostatic head.

Under saturation conditions, this means that the maximum A4T7,, the He II can
sustain may be less than that in pressurized liquid where T,, = T,. How does this
impact the maximum heat flux? Returning to (7.6) and replacing T, with T,,, we
note that the peak heat flux, ¢g* will be suppressed relative to the results shown in
Fig. 7.6 with the amount of suppression dependent on /4, the hydrostatic head.
Considering the example above and let 4 = 0.1 m, we can recalculate the quantity
g*L'” for is case. The result as a function of bath temperature is shown by the
dashed line in Fig. 7.6b. Note that the magnitude of the suppression is small near 7,
but becomes significant at lower temperatures since in that case, the maximum
temperature, T,, is well below T .
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It is worth noting that the pressure corresponding to the A-point is p; = 4.97 kPa
(37 torr), which is equivalent to a column of helium about 3.55 m high. This fact is
important because if a saturated vapor pressure He II system with vertical dimen-
sion larger than several meters is constructed, it would experience a heat transfer
limitation determined by T, rather than the saturation line.

Example 7.2

Consider a 0.1 m long vertical channel (see Fig. 7.9) containing He II boiling at
1.638 kPa corresponding to a saturated vapor pressure at 1.8 K. Thus, the liquid
free surface is at 1.8 K. If a heat flux is applied to the bottom of the channel, the
temperature at that point will increase until it reaches local saturation at which
point local boiling will occur. Calculate the maximum temperature of the He II
at the bottom of the channel.

Since the liquid level is not very large, we can use the approximate expression
for AT, (7.10),

RT? h
AT, =L ln(l +pi)
By, Po

Substituting values, & = 0.1 m, ks, = 23 kJ/kg, the resulting AT,, = 0.025 K and
T,, = 1.825 k. As indicated, this is an approximate result. The more accurate
result would be obtained by calculating the saturation temperature, Ty, corres-
ponding to the pressure p = po + pgh = 1,638 Pa + 145 kg/m> x 9.8 m/s* x
0.1 m = 1,780 Pa. Then referring to a data base code, one obtains T
(p = 1780 Pa) = 1.824 K. These values are very close, since the head is not
large. The result would not be as good if the level were significantly larger.

Alternatively, it is possible to create a subcooled liquid condition whereby the
pressure at the heat transfer surface is higher than that due to the hydrostatic head.
This condition can occur, for example, in a closed volume He II region cooled by a
saturated bath heat exchanger. In this case, the pressure on the closed volume can
take on any value between saturation and the solid line at 2.5 MPa. The subcooled
He II state is shown on the phase diagram, Fig. 7.8, by position (2). Here it is assumed
that the applied pressure is 100 kPa. A similar argument to that presented above
applies when determining the temperature excursion; however, in the subcooled
case the maximum temperature is governed by the A-transition (at p = 100 kPa,
T, = 2.168 K). In this case, the limit on maximum temperature relatively well fixed
and only weakly dependent on applied pressure.

The conditions that exist once the maximum heat flux is exceeded are of great
importance to understanding the heat transfer in this regime, a topic which is
discussed more extensively in Sect. 7.6. Generally, there are two cases that can
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occur, each of which is associated with one of the two conditions indicated on
the phase diagram in Fig. 7.8. For the saturation case, which applies to position (D),
g* corresponds to the helium adjacent to the interface achieving saturation
conditions. A schematic representation of the resulting physical condition for
q > q* is shown in Fig. 7.10a. Displayed is a solid heat transfer surface blanketed
by a vapor film which in turn is bounded by the He II at local saturation
temperatures. This phase boundary is defined clearly because the He II-vapor
transition is first order.

The alternative film boiling heat transfer situation occurs whenever g* is
exceeded under subcooled conditions, such as (2) in Fig. 7.8. For this case the
phase transition is between He II and normal liquid He I. Since, with rare
exception, the maximum heat flux in He I is substantially less than that in He II,
exceeding ¢* under subcooled conditions invariably results in a double transition,
first creating a film of liquid He I followed by boiling of the He I to form a vapor
film. This triple-phase phenomenon brings all three helium states in close proximity
to the heat transfer interface. A schematic representation of this process is shown
in Fig. 7.10b. Through the He II-He I interface, shown as a dotted line in the
figure, the density p and temperature 7 should be continuous. Visualization
experiments of boiling in saturated and subcooled He II have observed the
interfaces between the vapor-He I and the He I-He II phases [13]. This result
is shown in Fig. 7.11. Being able to observe the He I — He II phase boundary is
particularly significant since the physical properties of helium should be continuous
through the phase transition.

7.1.4 He II Heat Transfer in Cylindrical Geometries

Besides the simple linear geometry represented by a one-dimensional tube with
constantheat flux, there has been considerable work carried out on cylindrical
geometries consisting of a heated cylinder or wire immersed in a large bath of
He II [14-16]. It is easy to show, by assuming that the Gorter-Mellink equations
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Fig.7.11 Subcooled He II boiling showing the He I-vapor and He II — He I phase boundaries [13]

apply in cylindrical geometry, that the steady-state heat transport equation can be
written as

ar

= —mag ()" .10

r

where ¢ is the heat flux per unit area of the heated cylinder of radius ry. The
difference in (7.11) occurs because the heat flux decreases as the radius increases.
Comparison of (7.11) with experiment has given reasonable agreement, with
essentially the same heat conductivity function as applies in linear geometries
[17, 18]. In a similar fashion to that applied to (7.3), integration of (7.11) leads to

the maximum heat flux,
1/m
m—1 JT/‘« dt
aG=1—1 — (7.12)
0 (m J@)

b

The important observation to make about (7.12) is that the peak heat flux g; has
as its scaling length r( rather than L as in the linear system. This means that,
provided the radius of the container is much larger than that of the heater, the
boundary conditions far from the heater should not affect ¢* significantly. This is
certainly contrary to the behavior in linear geometries.
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Fig. 7.12 Empirical correlating function for heat transfer in cylindrical geometries [17, 18]

Unlike the linear one-dimensional system, there have been fewer attempts to
correlate the peak heat transport in cylindrical geometries with that of (7.12). This is
due in part to the lack of reliable data, which are more difficult to obtain in
cylindrical geometries. In one experiment, data were fit for small temperature
differences AT ~ 10 mK in the range of 7, = 1.8 K [17, 18]. It was found that
the expression given by (7.11) is not entirely suitable to correlate the experimental
values of ¢; without introducing a radius-dependent quantity ¥ defined by

2w (7 ar \"
o (2D L 7.13
o <i’0 JT,,]((T)> 719

where T’ ~ T, + 0.01 K. ¥ was found empirically to depend on radius, being
roughly proportional to r(l)/ *. The results of this correlation are shown in Fig. 7.12.
Note that ¥ is always less than 1, indicating that the peak heat flux is always less than
that predicted by the idealized theory. This fact is somewhat surprising because the
temperature gradients appear to be given accurately by (7.11).

7.1.5 Static Bath He II Heat Exchangers

He II heat exchangers are indispensable components for superconducting magnets
and other systems cooled with pressurized He II. However, because of the unusual
properties of He II, specifically the high effective heat conductivity and strong
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Fig. 7.13 Schematic of a
simple static He II heat
exchanger

Iy

temperature dependent heat capacity, conventional heat exchanger design methods,
such as effectiveness or NTU, are not suitable. In this section, we discuss the design
of He II heat exchangers based on the available transport equations.

There have been a number of He II heat exchangers designed and developed for
applications. The most common of these is the static bath type system, shown
schematically in Fig. 7.13. The principal component of this system is a saturated He
II reservoir of active length L and cross section A in thermal contact through its
surface to a surrounding pressurized He II reservoir. Any heat generated in the
pressurized He II reservoir must be transferred through the solid wall to the
saturated bath where it is removed by evaporation of the liquid. For this type of
system, there are three design criteria:

1. The surface area of the heat exchanger must be large enough to transfer the heat
with minimal AT between the two reservoirs. Normally, the surface heat transfer
process is controlled by the Kapitza conductance of the heat exchanger material
and possibly thermal conduction through the solid wall. These quantities com-
bine into an overall heat transfer coefficient, U. It is important to make the heat
exchanger of copper or other high conductivity material to avoid a significant
conduction thermal resistance.

2. Boiling in the bulk liquid within the heat exchanger should be avoided. This
means that the liquid should be subcooled by the hydrostatic head enough to
avoid surface boiling which could degrade performance.

3. There must be sufficient He II cross section in the saturated bath to transport the
heat by counterflow with a small temperature gradient.

The beginning point for the analysis of a static He II heat exchanger is the steady
state He II heat equation with surface heat transfer,

d ,IGT% PU B
a(f(T) E) —T(T—Tb)_o (7.14)
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where f(T)"" is the He II heat conductivity function appropriate for fully developed
turbulent conditions and T is the temperature of He II within the heat exchanger.
U is the overall heat transfer coefficient between the two reservoirs. Equation (7.14)
can be simplified by making the following change of variables:

T, —T
0=_" (7.15a)

T, — To

and
2371

PU(T, — T,
g = | L 0T = To)™ b ) (7.15b)

£

With the constant properties assumption the following dimensionless equation
results,
1/3
% (%) — My *@ = 0 (7.15¢)
Equation (7.15a) is analogous to the classical fin equation in conduction heat
transfer except for the non-linear thermal conduction feature of the He II. However,
the solution to (7.15a) is similar and can be preformed semi-analytically depending
on boundary conditions [19]. Just as in the case of the fin equation, the boundary
condition at the end of the heat exchanger determines the exact form of the solution.
If we define the origin at the surface of the He II, the boundary condition atx = 0
is ® = 1 by definition. The fluid temperature increases away from the free surface.
The boundary condition at the bottom of the heat exchanger (x = 1) can have
difference cases:

2
3

1. Convection heat transfer: (r! %)% =UOL(T, — Ty)’
2. Adiabatic: (42)7=0

3. Prescribed temperature: @(x = L) = O,

4. Infinite length: O (x = L)L:—oc> 0

and my;, ;L is dimensionless fin length. Each case has a slightly different form for
the solution. Typically, in a good design my,.;;,L ~ 1; however, it can take on any
value. If my,;L >> 1, then the heat transfer process is only weakly affected by the
boundary condition at x = L and the infinite length solution is a good approxima-
tion for all cases.

To calculate the total heat transfer through the heat exchanger, one integrates
(7.15¢) one time to obtain the temperature gradient, d®/dx. This quantity is then
evaluated at x = O such that,

0- —A( lﬂ)g (7.16)

dx x=0
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Table 7.2 Coefficients of (7.17) for different boundary conditions:
B = AU*(T, — To)*/2Pf~" (From Ref. [19])

Boundary condition Y o3

Convection heat transfer @ — p@7 | [L B 1—(Q/Mmu)4] 1/2
2p 452 B

Adiabatic e? 1 — (Q/Myan)*

Prescribed temperature + T

Infinite length 0 0

fValue is determined by implicit solution

The result of this calculation is an expression for the total heat transfer,

0 = Muen(1 — “/)% (7.17)

Where My = 1.19A[my.p f YTy, - Ty))"” which is analogous to the total heat
transfer expression obtained from the fin equation. The dimensionless quantity 7y is
a function of the particular boundary conditions imposed at x = L. The
corresponding form for v is listed in Table 7.2. Note that if y << 1, the total heat
transfer is only a weak function of the boundary conditions at x = L and the infinite
length heat exchanger is a good approximation with Q = My,

The temperature profile along the heat exchanger can be further calculated by
integrating (7.15c) a second time. This solution depends on the choice of boundary
condition at x = L. The resulting general solution for the temperature profile is
obtained by solving the integral,

1

doe

J A 1.68mya (7.18)
oy (@2 o V)Z

For all boundary conditions except the infinite heat exchanger, the solution of
(7.18) requires numerical methods. For the special case of the infinite channel,
y = 0 and Q; = 0, which leads to the closed form solution,

1 2
S I — 1
o) {0‘84mH€11x+ 1] (7.19)

One can compare the numerical solution for fixed boundary conditions at x = L
to that of the infinite channel. The results for adiabatic solution are shown in
Fig. 7.14.

The performance of a He II heat exchanger can also be treated in a fashion
similar to that of ordinary fins. Using the conventional expression for the effective-
ness of a fin, we obtain
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Fig. 7.14 Dimensionless temperature profile along a He II heat exchanger. The data points are
obtained by numerical solution of (7.15) for adiabatic boundary conditions with different values of vy.
Also shown by the solid line is the analytic solution for y = 0 (7.19)

2Pf'(1—9) :
U3A(T, — To)?

e — Qazrtual
T UA(T, — Ty)

(7.20)

Note that for typical values,f‘l = 10,000 kW?3/m’ K, U=2 kW/m? K and
(T, — Ty) = 50 mK we obtain & ~ 30 (P/A)"? in SI units. Therefore, for all
reasonable geometries, & >>I. For short heat exchangers with @, ~ 1, & is
simply equal to the ratio of the actual surface area to the base area. For long
heat exchangers, where @, <<1, the effectiveness is still generally much greater
than unity because of the high effective thermal conductivity of the He II.

In a similar fashion, the fin efficiency can be defined as,

0 A
- = @ = 7.21
T UA(Ty —To) 7 <Aﬁn> 72D

This quantity is almost always of order unity unless ©; << 1. Typically, 7y ~ 1
unless my L > 1.

Before leaving the subject of He II heat exchangers, it is important to comment
on one of the other limitations to the performance of static saturated bath heat
exchangers. This is related to item 2 above in the list of design considerations. For a
heat exchanger to perform well, the heat transfer process should be only governed
by Kapitza conductance at the heat exchange surface. However, if boiling occurs
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Fig. 7.15 Localized region
of the He II phase diagram
illustrating the boiling
condition that can occur in a
static, saturated bath heat
exchanger
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within the heat exchanger, it is possible that the performance will be degraded. To
avoid bulk boiling in the bath, we therefore need to ensure that nowhere the heat
exchanger does the He II reach saturation conditions. Such conditions can occur at
various points within the heat exchanger due to the non-linear temperature profile
and varying heat flux within the He II column.

Figure 7.15 illustrates this situation. The free surface of the heat exchanger is
assumed to be fixed at T), while below that point the liquid is subcooled by the
hydrostatic head (pgh). With no heat load, the temperature in the heat exchanger is
uniform at Ty. However, with a heat load, the temperature below the surface
increases due to the Gorter-Mellink heat transfer. The temperature profile is
steepest at the surface of the liquid due to the accumulation of heat flux (g(x))
along the channel. Two representative temperature profiles are shown in the figure.
Boiling will occur if the predicted temperature profile crosses the saturation line,
see T,»(x). In this case, the slope of the temperature profile at the surface is steeper
than the slope of the saturated vapor curve allowing the bulk liquid to boil locally. If
the heat flux is increases, the boiling region will expand within the heat exchanger.

The critical condition for boiling can be made more quantitative by equating the
slope of the temperature profile at the free surface (x = 0) to the slope of the
saturated vapor pressure line,

g
dx

dar

=P8

(7.22)
x=0 dp

svp

As before, the slope of the saturated vapor pressure line is given by the Clausius-
Clapeyron equation as,

dp

he  hyep
= I8 o TBRE 7.23
a7 (7.23)

- ~ 2
op TAv RT
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Fig. 7.16 Schematic of He II-vapor two phase flow system

where the last approximate form results from assuming the saturated helium vapor
obeys the ideal gas law. Substituting the form for the counterflow heat transport in
the He II (7.1) and assuming for simplicity that m = 3, the following expression
occurs,

1

RT2 —1\ 3

G = (282 f (7.24)
hgepo

This expression has a peak near 1.87 K at ¢,,,,, = 14 kW/m?>. It decreases from
the peak dominated by the temperature dependence of the heat conductivity func-

tion, (T, p).

7.1.6 He Il Two Phase Heat Transfer and Flow

In recent years, applications have emerged that use of He II in a horizontal tube in
co-existence with its saturated vapor. The first of these involves the use of a near
horizontal He II — vapor heat exchanger to cool subcooled He II for the LHC
accelerator magnets [20]. The other recent application involves the use of horizon-
tal two phase He II — vapor lines in large RF cavity accelerators [21]. Proper design
of these systems depends on a thorough picture of the relevant helium
hydrodynamics.

We begin by considering a long, horizontal tube that is partially filled with near
static He II, see Fig. 7.16. In such a system, there are three basic heat transfer
mechanisms: (1) Gorter-Mellink counterflow in the bulk liquid; (2) forced convec-
tion mass transport in the vapor phase; and (3) mass exchange by evaporation or
condensation between the two phases. The addition of the mass transfer between
the two phases makes the heat transfer process in two-phase He II far more complex
problem than that of single-phase He II.
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We first discuss the semi-analytic solution to this problem for which several
simplifying assumptions required. First, the liquid within the tube is assumed to be
in a stratified flow condition with a near horizontal interface between the liquid and
vapor. This is a reasonable assumption based on experiments. Next, thermal
gradients normal to the axis of the tube are assumed to be negligible so that the
problem becomes that of two coupled one-dimensional systems. Finally, the liquid
is assumed to be in local thermodynamic equilibrium with its vapor so that T;(z)
= T\,(z), where z is the axial dimension coordinate. The goal is to construct a model
to predict the behavior of the temperature profile, 7(z), liquid level or void fraction
(o = A,/A), and liquid, vapor mass flow rates, n,, i1, and total heat transfer, Q.

For most cases of interest the liquid is nearly static so that the pressure drop
along the tube is determined primarily by friction in the vapor phase, which is given
by the expression,

dp__ r ()" (7.25)
dz  p,Dy \0A )

where fr is the Fanning friction factor, o is the void fraction and A is the total cross
section of the tube. In (7.25), n1, and « will in general be functions of z so that dp/dz
is not a constant. In a stratified flow system, « is directly related to the liquid level.

At any point along the channel, the total heat flux is a combination of two terms:
the flux of vapor due to evaporation and the counterflow heat flux through the He II.
These two terms sum directly,

0(2) = vy, — (1 — o)A (fl ‘;—T) (1.26)

where the first term on the right is the heat carried by convection of the vapor and
the second is the liquid counterflow heat transport. /i, is the heat of vaporization. In
(7.26) there are three unknowns: 71, o and d7T/dz.

Since the He II and vapor are in thermodynamic equilibrium, it follows that the
pressure gradient may be written in terms of the derivative along the saturation line
of He II and the local temperature gradient,

d, d, dTr gy dT
ap _ap)  af P At (7.27)

dz dI|,,dz "~ T dz

where use has been made of the Clausius-Clapeyron equation, dp/dT),,, = As/Av =~
pyhg/T for an ideal gas which approximates low density helium vapor. Combining
(7.25) and (7.27), we obtain a relation for the temperature gradient in terms of the
vapor mass flux,

(7.28)

dr — =2fpT (i)’
oA

dz pihDn oA

which is again a relationship between three unknowns d77/dz, m, and o.
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Fig. 7.17 Configuration of the He II bayonet heat exchanger [24]
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The third relationship between the unknowns in the problem is obtained by
considering the He II to be essentially static, v; = 0 and using the hydrostatic head
condition on the pressure. In this case with the saturation condition, we can state
that the pressure at the bottom of the channel is a sum of the saturation pressure plus
the hydrostatic head, pyp = py(T) + pgy where y is the liquid level. Taking p, to be a
constant and differentiating, it follows that the pressure gradient is directly propor-
tional to the void fraction gradient or slope in the liquid/vapor interface,

dp dy
Xy 7.29
e Pig 4 (7.29)
Again making use of the chain rule and Clausius-Clapeyron equation for an ideal
gas, we obtain a relationship between the temperature and void fraction gradient,

d he, dT
ay _ _ Pl 4l (7.30)
dz p,8T dz

Equation (7.30) suggests that a large temperature gradient will result in a large
slope of the liquid/vapor interface as indicated in Fig. 7.16.

The above expressions has an analytic solution for a rectangular cross section
channel with a constant heat flux [22], which simplifies the problem of relating the
liquid level (y) to the void fraction, o.. The results of the analysis were successfully
compared to experiment. An important outcome of the analysis was to show that for
typical geometries of horizontal He II heat exchangers, the heat transported by the
coexisting vapor is roughly ten times as efficient as that carried by counterflow.
Thus, the benefits of horizontal two phase He II cooling systems are evident.
Numerical studies of near horizontal two phase He II-vapor systems has been
performed in the context of RF cavity accelerator development [23]. The goal of
this work was to be able to model the temperatures, flow rates and liquid levels in
existing cryogenic facilities. Such a modeling effort has been sufficiently successful
to add credence to the belief that similar two phase He II systems can be designed
and successfully operated.

An important application of a near horizontal He II — vapor system is the so
called bayonet heat exchanger developed for the LHC, shown schematically in
Fig. 7.17 [24]. This unique design uses a corrugated tube partially filled with He II
to extract the heat loads from the accelerator magnets. The two phase liquid from



250 7 He Il Heat and Mass Transfer

the refrigerator is expanded into the far end of the heat exchanger with the vapor
returning above the stratified liquid. The heat exchanger works by a similar
principle as discussed above, but in this case the heat flux is determined by the
heat exchange through the wall of the tube into the saturated two phase flow.

The heat transfer rate is determined by the overall heat transfer coefficient of
the heat exchanger, which is equal to the series thermal resistance of the two surface
heat transfer coefficients and the thermal resistance of the corrugated tube. Since
the saturated bath side of the heat exchanger is only partially filled with liquid,
the wetted surface area is not well defined. However, experiments have shown that
a combination of He II film flow and liquid droplet entrainment in the vapor
provides a very effective heat exchange process even for high void fraction [25].

A simplified analysis [24] of the bayonet heat exchanger is based on similar
assumptions as were discussed above in two phase He II flow modeling. In the case
of the heat exchanger, the following assumptions are made. First, the void fraction is
sufficiently high that the pressure drop is determined entirely by the vapor flow rate,

2 i\
dp_ _ o (m (7.31)
dz~ p.Dy \ A

Second, that the total heat transfer, 0 = gL, determines the overall change in the
vapor mass flow rate,

Q = qL = hyy(Mou — 1in) (7.32)

where g = UP(T,—T;), the heat removed per unit length of the heat exchanger.
Third, the vapor quality, y = #1,/r,, at the outlet is assumed to be unity, pure
vapor flow and y, = 1, /m,,. For these conditions, (7.31) can be integrated over
the length of the heat exchanger assuming a circular cross section tube of diameter
D, to yield the total pressure drop,

32 2 L3 1 —; 3
ap=2 ¢ L 2 (7.33)
3% puhe D7\ (1 = 7o)

This equation establishes the minimum diameter that meets the pressure drop
requirements. In addition, a criterion is suggested on the maximum vapor velocity
of 5 m/s to ensure that the flow is stratified. This leads to,

L 1
A> & (7.34)
hfgpvvmax I -

Depending on boundary conditions, the two criteria based on (7.33) and (7.34)
yield similar constraints on the heat exchanger design. For example, a 100 m long
bayonet heat exchanger with a 1 W/m heat load would need to have diameter of
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Fig. 7.18 Schematic
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about 50 mm for a AT of 50 mK. This is to be compared to 180 mm diameter tube
that would be required to carry the same heat load over the same temperature
difference in pure thermal counterflow in bulk He II.

7.2 Transient Heat Transport in Wide Channels

A thorough understanding of the time evolution of the temperature distribution in He
11 is of the utmost importance to fully describe the heat transfer process. Up until this
point, the assumption has been made that the heat transfer is steady-state and can be
interpreted by using equilibrium thermodynamic models and the helium phase
diagram. This assumption is certainly an oversimplification because there are a
number of time-dependent phenomena that affect the heat transport properties of
He II. To determine the relative significance of transient phenomena in a heat
transfer problem, the following questions must be asked: At what point in time
does a system exposed to some change in the heat flux reach steady state? What are
the physical processes that control this time development? To answer these
questions it is necessary to take account of the energy scales associated with heat
transport in He II.

We begin by considering a one-dimensional channel of length L cooled by a
constant temperature bath at one end, see Fig. 7.2. Initially, the temperature of this
system is uniform at 7). However, if a heat flux is applied at the end away from the
bath, a temperature distribution will evolve until eventually a steady-state condition
is achieved with the temperature at the heated end being 7,,, > T),. Typical transient
and steady-state temperature distributions are shown schematically in Fig. 7.18.

There are a number of energy inputs required to achieve the steady-state
temperature distribution in He II. The first of these we may associate with the
acceleration of the two fluid components, normal and superfluid, to v, and v,
respectively. Since the fluids are initially at rest, it is necessary to apply sufficient
kinetic energy for steady-state counterflow to be established. For typical heat
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fluxes, the normal fluid and superfluid velocities are of the order of a few tens of
mm/s. This value leads to a kinetic energy density of considerably less than 1 J/m®,
which we will see is very small on the scale of interest.

Since the He I is initially in the non-turbulent state, a second energy flux which
must be applied to the system is that necessary to create the turbulence. This process
has been described physically in Chap. 6 with an expression for the time required to
create turbulence in a channel being,

T =aq? (6.109)

The coefficient a is a temperature-dependent function of the order of 10° W*2-s/m”.
Equation (6.109) has no length dependence, presumably because the growth of
turbulence travels at the velocity of second sound and therefore would be essentially
uniform in a short channel at moderate heat flux. Rearranging (6.109) we can
determine the energy required to produce turbulence as,

gt =aq '? (7.35)

which for heat fluxes in the range of a few tens of kW/m? gives an estimated value
of about 1 kJ/m”. For a channel having a length of the order of 1 m, the energy
density associated with the creation of turbulence works out to be ¢t ~ 1 kJ/m>.

Also of concern is the energy carried by the second sound pulse itself. This
mechanism is probably most important at the highest values of heat flux. Second
sound shock was discussed in Chap. 6 and it was shown that depending on
conditions, an energy as large as 100 J/m? can propagate along a channel in advance
of the turbulent front. For very short times, this can be the dominant mechanism for
heat transfer and as was mentioned above is probably the mechanism for turbulence
propagation. Still this is not a large amount of energy compared to the heat content
of the He II itself.

The final principal energy input required to create the steady-state temperature
distribution in Fig. 7.18 is that of the enthalpy content of the He II itself. The heat
capacity of liquid helium is very large, particularly near the A-transition where on a
volumetric basis it is of the order of 1 MJ/m3 K. Therefore to establish the steady-
state temperature distribution sufficient heat must be applied to increase the fluid
temperature from that of the bath to its local steady-state value T(x). In practical
systems this increase is of the order of 0.1 K. The required energy density needed to
achieve a given temperature distribution can be written

p JL T(x) ( )
gc = —— de C,(T)dT (7.36)
ALy ), P

which is of the order of 100 kJ/m>. Furthermore, as the length of the channel
increases the dominance of this term increases, particularly for long channels with
L =z 1 m. Because the enthalpy profile dominates the transient heat input, other
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energies associated with this problem rarely are considered. Therefore, it is
assumed that at least for engineering systems experiencing moderate heat fluxes
(q ~ 10 kW/m?), the transient temperature distribution is controlled by heat trans-
port and enthalpy considerations. As a result, a diffusion like model has been shown
to describe the problem effectively.

7.2.1 He II Diffusion Equation

For background, we consider the time dependent heat transport in a conductive
solid. This process is described by a well-known diffusion equation, which in one
dimension is,

or o*T

T Dm@ (7.37)
where D, = k/pC is the thermal diffusivity having units of m*/s. The form of (7.37)
has the inherent assumption of constant properties, k, p, and C. Otherwise, the
equation is somewhat more complex. Equation (7.37) has been solved for a wide
variety of boundary conditions with non-dimensional results applicable to many of
the problems. However, without going through a specific solution for a particular
set of conditions, some physical discussion of its implications can be made.
In particular, it is possible to construct a characteristic time, called the diffusion
time tp, which is obtained by non-dimensionalizing (7.37) and has the form

L2

Tp = — (7.38)
"~ Dy

where the length L is the total length of the conduction path. For the case of the one-
dimensional rod heated at one end, L is the overall length. The diffusion time is a
measure of the thermal relaxation of the system. In most diffusion problems, the
solution is scaled in terms of the dimensionless Fourier number,

Fo=-" (7.39)
D

Since the conduction is dominated by exponential terms, Tp is not the actual
relaxation time but is proportional to the time required to reach the steady state. For
Fo >> 1, the problem is essentially in steady state, while for Fo < 1, the full
diffusion equation must be considered.

To achieve a high rate of heat diffusion it is necessary to have a high thermal
diffusivity. Solids possessing the largest values of D, are high-conductivity metals
at low temperatures, where not only if &k large, but the specific heat C is small.
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For example, high-purity copper near 4 K has pC ~ 1 kJ/m® and a thermal
conductivity k ~ 1 kW/m K which gives D,, ~ 1 m?/s. For high-purity metals at
low temperatures the diffusion time constant, assuming a characteristic length
L ~ 1 m, is of the order of seconds.

Although He II clearly does not obey the simple diffusion equation (7.37), it is
useful nonetheless for physical understanding to make some order-of-magnitude
comparisons. Since turbulent He II in one dimension obeys the nonlinear heat flow
equation given by (7.1), it is possible to define an effective thermal conductivity,
albeit dependent on heat flux,

1

. — 7.40
f(T.p)g? (7.40)

kefr =

As can be seen in Fig. 7.3, the quantity, f ~ (T, p) typically has a value around
10,000 kW?/m> K near 1.8 K and saturated pressure. Therefore, for a heat flux
g = 10 kW/m?, the effective thermal conductivity is of order 100 kW/m K, which
is about two orders of magnitude larger than for high-purity metals at low temper-
atures. Of course, the heat flux dependence of k¢ works against the transport of large
heat fluxes. At 100 kW/mz, ketr, 1s reduced by two orders of magnitude to around
1 kW/m K, which is comparable to that of copper in the same temperature range.

The effective thermal diffusivity of He II, D¢, can also be defined according to
the analogy with solid conduction. Around 1.9 K, pC ~ 0.5 MJ/m® K, which gives
avalue for D ¢ =~ 0.2 m?/s. For a characteristic length of 1 m, this effective thermal
diffusivity leads to a characteristic time constant T = 5 s. Furthermore, since the
diffusion time goes as the square of the characteristic dimension, larger systems
have time constants that can be very long compared to other time constants in
the problem.

To properly treat transient heat transfer problems in He II; however, it is necessary
to use a general heat diffusion equation. The derivation of the equation is analogous to
that of the ordinary diffusion equation although the thermal conduction relationship
must be replaced with the nonlinear Gorter-Mellink expression (7.1). The result may
be written in the form of a one-dimensional heat diffusion-like equation,

1/3
or o 1 8T> (7.41)

PCr 50 = ox \FIT) Ox

where again we assume for simplicity that m = 3 in the counterflow heat conduction
term. This expression has a very similar appearance to the ordinary diffusion
equation, with the one exception that it involves an unusual power of the temperature
gradient. Because of the nonlinear character of (7.41), it is apparent that extraordi-
nary efforts are needed to solve this equation. There are in fact several methods
available to treat this equation, here we will only consider approximate analytic
solutions. Numerical solution of the He II energy equation will be discussed in a
subsequent section.
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We begin by casting (7.41) into a dimensionless form by introducing the
variables,

T-T,
0" =1— 75’;, (7.422)
and
¥ =7 (7.42b)
= t 742
’ :fl/S,OC(Ti _ Tb)2/3L4/3 (7.42¢)
Which then reduces (7.41) to dimensionless form as,
97 9t 7.43
ot Oox* (8)(* ) ( )

By analogy to (7.37) one can interpret the quantity Dy,;; = 1/f'3pC(T; — T;,)z/3

like a thermal diffusivity for He II with the characteristic diffusion time being
proportional to L*”. This is a notable difference from classical heat diffusion. In that
case, doubling the characteristic length increases the thermal relaxation time by a
factor of four, while in He II the increase is by a factor of 243 = 252,

7.2.2 Analytic Solution Methods

One solution method for the nonlinear heat transport equation (7.43) employs a
technique known as similarity solutions [26—28]. This approach makes use of changes
of variables which reduce the nonlinear partial differential equation (7.43) to a
nonlinear ordinary differential equation that is inherently easier to solve. Then making
the approximation that the heat conductivity function and specific heat are constant
over the range of interest (7.43) can be integrated to obtain the solution. Note that the
constant properties assumption is only a good approximation for @* << 1.

The similarity solution method uses what are termed stretching transformations
which leave the partial differential equation unchanged. The solution of (7.43) is
then determined by choice of boundary conditions. We considered here two
problems of interest. The first problem concerns the application of a constant heat
flux g at x = 0, which is referred to as the clamped flux problem. It leads to
boundary conditions of the form

00" gL

o | _y  Ti—T,

forall ¢ (7.44a)
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Fig. 7.19 Calculated normalized temperature profile for clamped flux in He Il at T, = 1.8 K and
q=22 kW/m? model by Dresner [26] compared to experimental data (inset) [29]

and
0" (x,0)=0 (7.44b)
0" (0c0,7) =0 (7.44¢)

The first of these conditions originates from the requirement that the heat flux
q obey the nonlinear heat conductivity equation at x = 0.

It can be shown that the general solution for the temperature distribution should
take a functional form [26],

0/7'? = y(x/7'/?) (7.45)

Therefore, a plot of experimental data in this form should provide a universal curve
representing the function y. Displayed in Fig. 7.19 are interpolated results from the
long one-dimensional channel described earlier. The data do in fact follow a
universal curve. In addition, the magnitude of the general solution can be deter-
mined to have a simple form when evaluated at x = 0, that is

AT 22 (FN

[17 o =aq (p—c> (746)
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where a is a proportionality constant of order unity. At large values of x, the result
approaches an asymptotic dependence such that

3/2 1/2
_ (ﬁ) (L) (l) i (7.47)
9 pC f x2

This expression is exemplified by the linear region on a log-log plot for large x/t'".

The above analysis is also able to predict the critical energy flux AE* beyond
which the heat transfer enters film boiling. For the clamped flux problem, this
quantity has been measured experimentally by detecting the time to film boiling,
Ar*, for a given heat flux. A relationship that fits the experimental data has the
simple form

AT
17

At = kg™ (7.48)

where k is a temperature-dependent function [29]. The same relationship also
follows from the above theoretical analysis, and « is predicted to take the form

. _ 2
K = ’)‘(T}TT}’) (7.49)

where a is the same numerical coefficient as given in (7.46). By inserting average
values for the heat conductivity function and the volumetric specific heat into (7.49),
the predicted coefficient k agrees with experiment to within about 20%.

The other problem of interest in one-dimensional transient heat transfer is the
determination of the temperature profile resulting from a given energy deposition.
This pulsed-source problem, which can also be solved by the similarity solution
method, must obey the boundary conditions

J pC(T — Tp)dx =AE foralltime (7.50a)
Ox,0)=0 (7.50b)
O(c0,7) =0 (7.50¢)

where AE = gAt is the total thermal energy applied per unit channel area. Again
using the similarity solution method, it can be shown that the pulsed-source
problem has a general solution of the form [27],

0/ =y (x/?) (7.51)
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where y' is another undetermined function. As in the clamped flux problem, (7.51)
is a powerful result because it indicates the form in which to plot data. Plotted in
terms of these variables, the experimental data should follow a universal curve.

By substitution of (7.51) into (7.43), a solution to the temperature distribution
can be obtained with the simplifying assumption of constant properties. The
resulting equation takes the form

Vs 4 7 1/2 1 1/2
AT £ =~ _AE( L S 7.52
re(e) (75) 520
where
Z = xAE(pCf)"/*1 3/ (7.52b)
and
2[T(M)]?
_2r@)] = 2.855 (7.52¢)
3V3x

That this solution fits the original heat conductivity equation can be verified by the
reader.

Experimental verification of the above analysis is displayed in Fig. 7.20. The
inset shows the time variation of the temperature distribution after a discrete energy
pulse is applied. These data, plotted in the form suggested by the similarity solution,
map out the universal curve given by (7.52a). The universal curve plotted in the
figure has as its necessary input average values for the heat conductivity function
and heat capacity, but when AT is small, these properties do not vary substantially
over the range of interest. The agreement between experiment and theory is entirely
adequate for engineering applications.

7.2.3 Numerical Solution of the He Il Diffusion Equation

The above analytical treatment is useful for providing a physical description of the
problem as well as developing scaling relationships to correlate data. However, a
complete solution including the temperature dependence of the physical parameters
is only possible by numerical methods. The usual approach is to apply finite
difference methods. Here the exact differentials in 7, x, and ¢ are replaced by finite
differences with an appropriate choice of mesh size. These in turn lead to a set of
simultaneous equations for the temperature at the nodes in the mesh. Solutions of
this type have been carried out for two different boundary conditions [30]. In both
cases the clamped heat flux condition at x = 0 is assumed. However, different
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Fig. 7.20 Normalized temperature distribution for the helium channel subjected to a pulsed heat
source (From Dresner [27])

boundary conditions are applied at x = L where the channel contacts the reservoir.
These conditions have two forms,

de
— =0 adiabatic end (7.53a)
dx x=L
and
O|,_, =0 isothermal end (7.53b)

Particularly for the first case, it is useful to scale the data in terms of a ratio of
energies (4E*/AE(), where these quantities are defined individually as

AE* = q At (7.54)
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and (b) 2.0 K (as compiled by Seyfert et al. [30])

and

T)
AEy = LJ pC, dT (7.55)
Ty

Therefore, (7.55) represents the energy applied through the heat transfer surface
which is necessary to reach film boiling at A7*. The other energy, 4E, represents
the total enthalpy available within the constant cross section channel of length L.
Obviously, for the adiabatic end condition, the ratio AE*/AE <1. For short, high-
energy heat pulses such that the heat diffusion length is much shorter than the total
channel length L, the solution is independent of choice of boundary condition
established at x = L.

Plotted in Fig. 7.21 are the numerical solutions to the one-dimensional heat
transfer problem for two different bath temperatures, 1.8 and 2.0 K. In either case
the ratio of energy is plotted versus the scaling parameter gL', where in this case
m = 3.4 by selection of the authors [30]. The data give comparable agreement
for m = 3. Note that for values of qu/'34 in excess of 10 at 1.8 K and 5 at 2.0 K,
there is no significant difference between the two boundary conditions at x = L.
The steady-state limit corresponds to the results presented in Sect. 7.1.2.

In conclusion, a general comment is in order concerning transient heat transfer in
He II. As noted above the time constant to establish the steady state can be quite
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large, particularly in long one-dimensional system. Although this fact may be
surprising considering the extremely high effective thermal conductivity of He II,
it is due to the large heat capacity of He II resulting in a finite thermal diffusivity.
Therefore, care should be exercised when applying steady-state heat transfer
models. It is best first to estimate the thermal diffusion time to determine whether
the system is actually in the steady state. For transient problems, the heat diffusion
model is generally suitable. Unfortunately, it is not known whether there are limits
of this model, and extrapolation beyond the regions where experimental data exist
should be avoided.

7.3 Forced Convection Heat Transport in Wide Channels

We now extend the topic of turbulent He II heat transport to include the effect of
forced convection or net flow velocity. This subject is a somewhat more general
heat transport problem than has been considered so far because it includes an
additional variable, the net flow velocity, v. Forced convection was introduced in
Chap. 6 as part of the two-fluid model applied to He II heat transport.

A general configuration for a forced flow heat transfer problem is shown in
Fig. 7.22. A channel of constant cross section and length L connects two reservoirs
at temperatures 77 and T5. A steady state or transient heat ¢ flux is applied in this case
at one end of the channel and the temperature gradient within the fluid is established.
Breakdown of heat transfer occurs at a peak heat flux, ¢*, which depends on a
number of factors including the fluid velocity. In fact, this configuration is not easily
obtainable because a temperature difference normally corresponds to a pressure
difference under saturation conditions. However at least in principle, it is possible to
create the appropriate conditions with a frictionless piston that forces the liquid from
volume 1 to volume 2 at velocity v. Alternatively, one could establish these
conditions by forcing He II to flow through a channel of length 2L with both ends
in thermal contact with a reservoir at temperature 75.

E— T
TI
y——— —
| T2

q

Fig. 7.22 Schematic representation of configuration required to obtain forced flow He II


http://dx.doi.org/10.1007/978-1-4419-9979-5_6

262 7 He Il Heat and Mass Transfer
7.3.1 He Il Energy Equation

We begin by developing the heat balance equation that describes the forced flow He
II system [31]. In developing this equation, two fundamental assumptions are made
about the physical behavior of He II. These assumptions are not proved here but are
justified by the analysis of experimental data.

The first assumption is that the heat flow by internal convection mechanisms is
not affected by the net velocity of the fluid. This point has been discussed as part of
the two-fluid model in Chap. 6. As an aside, it is possible to understand physically
the invariance to velocity by analogy to an ordinary heat conduction mechanism. In
the latter case, heat transported by conduction in a moving medium is no different
from that of the medium at rest provided v < c, the speed of sound. Furthermore, by
making the normal set of simplifications to reduce the problem to one-dimensional
heat flow in turbulent He II, the nonlinear heat conductivity equation can be used to
describe the heat conducted by internal convection,

B ., dT\ '
Gic = (f (T,p) 5) (7.56)

where /(T p) is the same temperature-dependent heat conductivity function. The
power law dependence of (7.56) has been assumed to be 1/3 although the analysis
follows essentially the same procedure if a different coefficient is assumed.

The second assumption is that the heat carried by ordinary convection
mechanisms can be described by the flow of enthalpy between two points in the
system,

qr = pv 4h (7.57)

where dh = h; — h, represents the specific enthalpy difference between
temperatures 7, and T,. For simplicity (7.57) assumes the fluid density to be
constant, which is a reasonably good approximation for He II.

The above two assumptions lead to an equation that is appropriate for analyzing
the temperature profile in forced flow He II. This is achieved by combining
differential forms of (7.56) and (7.57) and equating them to the time rate of change
of the local enthalpy. The resultant equation is similar to the time-dependent heat
equation for static He II except that it contains the extra convection term. In one
dimension this expression takes the form,

oh o |[/1or\"? Oh
patafoaX) ]ervaxqo (7.58)

where the temperature and pressure dependence of the heat conductivity function
is implied. This equation is sometimes referred to as the He II energy equation.
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Given the boundary conditions for a channel containing He II, it is a straightforward
problem to integrate (7.58) and thus determine the temperature profile as a function of
flow velocity and time. Unfortunately, a general solution to (7.58) requires numerical
methods because the equation is nonlinear and the functions such as / and fhave rather
strong temperature dependencies.

7.3.2 Steady State Heat Transport: Analytic Solution

A good approximate solution to the steady-state problem, dh/0t =0, can be
obtained by assuming constant properties, f and C),, and neglecting pressure drop
effects such that dh = C, dT. This approximation leads to an exactly soluble one
dimensional differential equation. Making the following change of variables,

. T'—T
7.7 (7.59a)
X
= 7.59b
X =7 ( )
and defining the dimensionless variable,

K, = pC,v(fL)"*(T) — T,)*" (7.59¢)

an exactly soluble form of the Bernoulli equation results,

d |(do*\'’ 46"

_ —=0 7.60
dx* (dx* ) dx* (7.60)

where gy = 0 has been assumed. Equation (7.60) coupled with the appropriate
boundary conditions can determine the steady-state temperature profile in a one-
dimensional channel.

Before proceeding to the solution, the physical interpretation of the dimension-
less number K, deserves some comment. As it represents the ratio of the heat
carried by forced convection, pC,vAT, to that carried by counterflow, (f ‘ATIL)"",
K, is analogous to the classical Peclet number, Pe = pvaL/ k, that is the ratio of
forced convection to thermal conduction in classical liquids. Therefore, K, ~ 1
marks the boundary between thermal counterflow dominated heat transfer and
forced convection dominated heat transfer in He II.

The results of integrating (7.60) for a channel of length 2L with its center at T
and ends fixed at T, are displayed in Fig. 7.23. The left-hand side of the figure can
be interpreted as the case where the velocity of flow is in the opposite direction to
the heat flow by counterflow while the right-hand side refers to these quantities
working in parallel. Note that the limitations of to the accuracy of this solution are
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Fig. 7.23 Normalized temperature distribution in forced flow He II with fixed temperature
boundary conditions K, = pC,,v(fL)'/3(T1 - Tz)z/3

primarily in terms of the temperature dependence of the heat capacity C, and heat
conductivity function f/(T,p). The solution should be quite good for small AT = T
— T, such that AT/T < 1. The impact of this approximation is seen in the zero
velocity profile (K, = 0) which is linear, while in fact for large AT the profile has
considerable curvature. Also note that the nonzero velocity profiles for positive and
negative K, are symmetric about the line corresponding to K, = 0.

There have been several reports of measured temperature profiles within forced
flow He II which have been compared to numerical analyses based on the theory
described above [32-34]. In general, these measurements have shown temperature
profiles analogous to those displayed in Fig. 7.23. In those cases, (7.60) was solved
numerically and compared to experimental data with good agreement.

Given the solution to the temperature profile it is straightforward to determine
the total heat transport, ¢ = gy + ¢, by integration of (7.60). This result can be
normalized to the form

d@* 1/3
i _<dx*) +K,0" (7.61)
0
where K, is defined above and
T _T\'3
go = ( lfL 2) (7.62)

which represents the heat carried by the internal convection mechanisms for He II
having zero velocity (K, = 0). The results of this calculation are shown by the solid
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Fig. 7.24 Normalized peak heat flux for forced flow He II with K, = pC,v(fL)'"* (T, - To)*
(Data from Jones and Johnson [34])

curves in Fig. 7.24. The data points are from an experiment by Johnson and Jones [34].
Although there is considerable enhancement of heat transport in the direction of flow
even for small K,, values of K, greater than unity are required before the total heat
transport is enhanced significantly in a midpoint heated channel of length 2L. This
result occurs because forced flow suppresses the total heat transport when the velocity
and heat flux are anti-parallel.

7.3.3 Pressure Drop in Turbulent He 11

The above solution to the steady state He II energy equation neglected any effect
due to the pressure drop along the channel thus allowing the simplification, dh =
Cp, dT. However, in forced flow He II, there can be a significant pressure drop
associated with flow. The pressure drop in fully turbulent He II has been measured
for a variety of channel geometries with the most notable feature of these
measurements being the similarity of friction factor to that for classical fluids. In
other words, the pressure drop may be correlated with the expression,

Ap = 2f, pv? (g) (7.63)
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Fig. 7.25 Friction factor for He II forced flow compared to classical correlations (Fuzier [35])

where the Fanning friction factor, fr, is similar to that observed for classical fluids.
For example, for a smooth tube, the friction factors for He II in the Reynolds
number regime Rep > 2 x 10* appear to be fairly well described by the von
Karman-Nikuradse correlation,

L 737 2 (7.64)
fr Repfr?

=

where the Reynolds number is defined by Rep = pvD/y,. At high Reynolds
number, the tube surface roughness begins to play a role in the observed friction
factor tending to an almost constant value. In this regime, the Colebrook correlation
is preferred,

il =—1.737In <L+ 1'251> (7.65)
fi? 371D Repfy
Note that both these correlations were discussed in Chap. 4 in the context of
pressure drop in classical helium flow. For non circular cross section channels,
present evidence suggests that the friction factor may also be correlated by classical
correlations based on the Reynolds number.

Figure 7.25 shows measurements of the turbulent friction factor for He II
compared to the classical correlations above [35]. Similar results have been obtained
for other geometries [36—39]. One can easily see that the agreement is reasonable.
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This result can be understood in terms of the two fluid model. In relatively high
Reynolds number flows, both fluid components can be assumed to be fully turbulent
with the superfluid component containing a very high vortex line density that
interacts with the normal fluid component. In this case, the two fluids are strongly
coupled together in motion. On the other hand in the viscous boundary layer, the
normal fluid velocity profile is what controls the wall friction. Thus, the friction
factor should scale with the classical Reynolds number with the relevant density and
velocity being that of the total fluid while the viscosity scale is that of the normal
fluid component, (,,.

The above development for the most part assumes that the helium flow is fully
developed and turbulent. This allows both the use of the turbulent pressure drop
correlations and the turbulent heat transport relation. More complex phenomena
can occur particularly in flow systems consisting of narrow channels in laminar
flow, which can lead to fountain effect driven flows. We return to this topic in a later
section.

7.3.4 He Il Joule Thomson Effect

Walstrom considered the problem of steady state forced flow He II with pressure
drop [40]. In this case, the enthalpy gradient must include the pressure terms,

Oh _ (Oh\ 10T _(OT\ (Op\] _ . (0T _ Op
&(m)iax <8p)h(8x)]cp<3x “fax) (7.66)

where y; = % is the Joule Thomson coefficient with f§ being the bulk expansivity.

For He 11, 8 isprelatively small and negative (f ~ —0.01 K™) so that W; is negative
and dominated by the incompressible term. In addition, since the pressure gradient
may be large in this case, it is no longer possible to neglect that contribution to the
He II two fluid equations (6.98) and (6.99). If one further makes the assumption that
the pressure gradient can be replaced by Ap/L and replace u; by —1/pC,, then the
full energy equation results,

aT 91 [1 4p OT\|F or  Ap
Sl Y Rl A 7.67
P ot Ox (ps L * 8x>} Ve ox L (7.67)

The full solution to this equation requires numerical methods.

Before discussing the solution to (7.67), it is instructive to gauge the relative
importance of the pressure and temperature gradient terms. Obviously, if the pres-
sure drop is small, then (7.67) reduces to (7.58). On the other hand, if the pressure
drop approaches Ap ~ pC,AT, then its impact must be considered. A typical value
for pCp, ~ 1 MJ/m® K and AT ~ 0.1 K. Therefore, as long as Ap <<100 kPa (1 atm)
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the impact on the temperature profile will be small. For high velocity flows or very
long channels, this condition is not met and one must use the full energy equation.

In steady state He II flow, the above expression predicts a monatonically
increasing temperature profile along the channel. Walstrom solved the steady
state problem analytically by making the following substitutions,

1 (qoL
To=— ("L + Ap) (7.682)

pCp \ Vv

X
gyl .68b
X= (7.68b)
= TIO (7.68¢)
B =fL(pvC,)’T} (7.68d)

and

e Gols (7.68¢)

(14 qoL/vA4p)

Note that according to the empirical fit to the heat capacity of He II (6.29b), the
numerator in (7.68¢) can be approximated by a constant, C,,/s ~ 5.6.

Consider the case where g, = 0, such that the resulting temperature gradient is
entirely due to friction. In classical non-conductive fluids, this condition results in a
continuous temperature increase with the slope of the temperature profile is directly
proportional to the Joule-Thomson coefficient, y;. Figure 7.26 shows the calculated
temperature profile for fixed temperature boundary conditions.

7.3.5 Transient Heat Transport in Forced Flow He II:
Numerical Solution

There have been a number of efforts at modeling transient heat transport in forced
flow He II [41-44]. In the present context, there is insufficient space to discuss the
methods in detail and the reader is encouraged to consult the original references for
more information. Here we summarize the methods used by Fuzier to model this
problem [44].

The principal challenge to the numerical solution of (7.67) is the non-linear
nature of the partial differential equation. In particular, the fractional power to the
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Fig. 7.26 Dimensionless temperature profile due to the Joule Thomson effect in He II forced
flow with constant temperature boundary conditions. In this case, go = 0 and Ty = 4p/pC,, (From
Walstrom [40])

heat conductivity function must be handled with care to avoid numerical
instabilities. Fuzier used a semi-implicit finite difference scheme to discretize the
energy equation:

[ 1 < ap | TrY T;’+1> ]
2 n
n % AP -1 : ps’url/zL Ax
T"+1 _ 1 i+1/2 ﬂ5f+1/2L Ax
an i i
YAt Ax
~ 1 < ap 1! —T;”ﬂ)
2 n
n i|_4ap + T, ’ psi*l/zL Ax
i—-1/2° pst ol Ax i
T =T AP

where X/'represents the value of X at the node i after » time intervals. This scheme is
first order accurate in time and second order accurate in space. This model was used
to compare to transient heat transfer measurements on a 0.86 m long, 10 mm ID
channel at fluid velocities up to 20 m/s. A uniform grid consisting of 8,000 nodal
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points was used to represent the length of the test section. Time steps of order 10 us
were typically used for the solution. The initial condition before the generation of
the pulse corresponds to the steady-state, linearly increasing temperature profile in
the test section due to the Joule-Thomson effect.

A heat pulse that is deposited locally in a channel containing forced flow He II
will produce a temperature rise that propagates along the channel at approximately
the net flow velocity, v. As the thermal pulse moves along the channel, it will
experience an overall increase in its background temperature due to the Joule
Thomson effect. For example, at a velocity of 10 m/s and T = 1.7 K, forced flow
He Il increases its temperature at about 30 mK/m of channel length. In addition, the
pulse temperature profile will broaden due to diffusion in the He II. The time scale
for this process is similar to that discussed in Sect. 7.2, but is not generally
dependent on the fluid velocity.

As an example, Fig. 7.27 displays two cases of transient heat transfer experimental
results compared to the numerical model. Both are for the same base temperature,
T, = 1.7 K and the same heat pulse, 99 kW/m? for 20 ms. The only difference is the
fluid velocity which is 2 m/s in Fig. 7.26a and 16 m/s in Fig. 7.26b. It is quite apparent
that the He II energy equation does a good job of modeling the shape and propagation
of the heat pulse. One should note that this level of agreement is not always achieved.
In particular, at intermediate velocities (4 m/s < v < 14 m/s), the model deviates
from the experimental results. At present, this observation appears to be the result of
the formulation of the solution. In the case where there is significant pressure drop, the
heat flux in the He II is given by,

_ i1 ap or\]'
)

The problem occurs when the pressure drop and temperature gradient are of roughly
equal magnitude and opposite sign, which can occur in regions on the trailing edge
of the pulse. This is a physically unrealistic aspect of the model.

7.4 Heat and Mass Transfer in Porous Media

7.4.1 Steady Laminar Heat Transport in He I1

The problem of He II heat and mass flow through porous media is significantly
different from flow in wide channels. In particular, much of the porous media fluid
dynamics is in the laminar regime and the transition to turbulence. Further, the
geometry of porous media is not well characterized as one has with a one-dimensional
channel and involves multidimensional flow. Thus, we need to consider issues of how
to model the geometry of the porous media. These issues are similar to those
appropriate for classical fluids in porous media, a subject introduced in Sect. 4.4.
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Fig. 7.27 Experimental and numerical time evolution of the temperature profile at various
locations in a 0.86 m long, 10 mm ID channel. The smooth lines correspond to the numerical
model. A 20 m long, rectangular heat pulse of power density 99 kW/m? was generated at t = 0.
T, = 1.7 K. The flow velocity: (a) 2 m/s, (b) 16 m/s [44]

As was discussed in Chap. 6, laminar flow conditions occur in He II whenever
the fluid velocity is below the critical velocity. These conditions can occur even in
static He 1II, since heat transport causes a relative velocity of the two fluid com-
ponents. In He II there are two relevant critical velocities: v,. which is associated
with the onset of turbulence in the superfluid component and v,,.. for the normal fluid
component. vy depends strongly on the method by which it is measured. To remind
the reader from Chap. 6, most experimental data are correlated to the empirical
relationship,
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Fig. 7.28 Proportionality function in the He II laminar flow equation

Ve ~dV*  incgs units (6.86)

where d is the characteristic diameter of the channel. On the other hand, the normal
fluid critical velocity is interpreted in terms of classical turbulent onset such that,

(6.88)

where the critical Reynolds number is Re. /=~ 1,200. Note that this relationship
involves the normal fluid viscosity but the total density.

Laminar heat flow in He II, which occurs for low normal fluid velocities in narrow
channels, the heat conductivity equation may be written in a form similar to Fourier’s
law although the function of proportionality varies as the square of the diameter,

(psd)’T dT d* ar

R T Ok (7.71)

where g(T) = (ps)*T/u,. B is a numerical coefficient that depends on channel
geometry; f§ = 12 for parallel plates and § = 32 for circular tubes. The laminar
flow heat conductivity function, g(7T), increases strongly with temperature
dominated by the dependence of (ps)°T ~ T'*. Figure 7.28 displays g(T) between
1.2 K and T;. Appendix A.3 gives numerical values for this coefficient at saturated
vapor pressure.
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In the laminar flow regime, due to the isentropic nature of the system, the pressure
drop due to flow is related to the temperature gradient through London’s Equation,

dp  dT

= ps— 7.72
dx psdx ( )

The Fountain Effect, a unique feature of He II, can be understood in terms of this
expression. Specifically, in ideal superflow, a temperature gradient induces a
pressure gradient, which in practice can lead to net mass flow of the fluid.

In the laminar flow regime, the heat flow induced pressure gradient is related to
the temperature gradient through London’s equation. The result is given by,

d> dp

_ psd*T d_p B d” dp
pspP dx

Bu, dx

where f§ is the same geometrical factor as in (7.71). This relationship can be easily
integrated over finite lengths and temperature difference to give practical results.

—g(T) (7.73)

7.4.2 He Il Heat and Mass Transfer Through Porous Media

In porous media, the geometry is not as well defined and the characteristic dimen-
sion, d, is more difficult to know. In laminar (Darcy) flow, the pressure gradient is
related to the permeability K of the medium,

dp 7
L =——U 7.74
dx KD ( )

where U is the average approach velocity. Kp is proportional to the square of the
pore diameter times the porosity, «. For a typical pore diameter d,, = 1 pm and
porosity of 10%, that means the K, ~ 10™'? m?. By analogy in the case of He II flow
through porous media, one can write the laminar flow equation as,

dp _ _
dx K, Dn

U, (7.75)

where U, is the normal fluid velocity averaged over the sample cross section. This
equation also contains the tortuosity factor, @, to account for the increase in
effective path length compared to the overall thickness of the sample. By definition,
U, = av,, where v, is the normal fluid velocity in the pores. In pure counterflow,
q = psTv,, so one can substitute for the normal fluid velocity,

. .
D_ gyt (4 (7.76)
dx Kp, \psT

where as written ¢ is the heat flux averaged over the sample area, g = og.
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In the laminar regime, He II obeys London’s equation (7.72), so the temperature
gradient may simply be written,

. i
Iyt 4 (7.77)
dx Kpn \ (ps)°T

which can be rearranged to,

Kp, dT T) Kpy 4
iiz_giip (7.78)
o dx ps o dx

q=—g(T)
where Kp,, is the permeability for the normal fluid and g(7) is the temperature
dependent function in Fig. 7.27.

Equation (7.78) can be used to measure the permeability of a porous medium by
recording either the pressure or temperature difference across a sample subjected to
a heat flux [45, 46]. Note that the the value of K,/ may be different from the
permeability measured by other methods due to the unique properties of He II.
Baudouy et al. [47] even found Kp,, to be temperature dependent.

Above the critical velocity, the flow through the porous media is no longer ideal
and mutual friction begins to contribute to the temperature gradient. In that case, the
temperature gradient through the material should be described by a modified
version of (7.1),

ar

_ 3
E>—ﬂﬂMQ

which becomes,

=\ 3
o q
T —ortr (%) .19

where x is the dimension measured through the sample.

Equations (7.77) and (7.79) probably oversimplify the difficulty in calculating
the temperature gradient in He II counterflow through porous media. The quantities,
Kp,, o and o are at best approximately known and depend on the method of
measurement. In the turbulent regime, the situation is even more complex due to
the non-linear heat equation (7.1). In the porous medium, the channel cross section
can vary significantly through out the material. Since the temperature gradient is
proportional to ¢°, regions that constrict the flow will have an even larger effect on
the temperature difference. In fact, there is not much known about the behavior of
the Gorter-Mellink equation in regions of high gradient. Thus, this is a topic worthy
of continued study.
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Fig. 7.29 Schematic of a Fountain effect pump

7.4.3 He Il Fountain Pumps

Fountain Effect Pumps (FEPs), shown schematically in Fig. 7.29, are unique to
He II. Essentially, this type of pump uses the Fountain Effect to force He II to flow
through a porous plug. A heater at the outlet of the pump provides the chemical
potential difference to drive the fluid flow. Such a device, which has been devel-
oped and demonstrated for space based applications, usually consists of a sintered
ceramic disk or plug with a heater located on the downstream side. Typical pore
size of the material is of order 0.1 pm.

An ideal fountain pump obeys the London Equation and produces a pressure
head corresponding to the temperature difference produced by a heater down-
stream of the flow. If one integrates the London equation (7.72) along lines of
constant chemical potential the corresponding static pressure head is given in
Fig. 7.30. Thus, for an ideal fountain pump, the maximum pressure head is about
50 kPa for a bath at 1.8 K. Higher pump heads can be accomplished by running
several pumps in series. However, the pump head decreases significantly with
increasing mass flow rate.

For an ideal fountain pump, the corresponding mass flow rate is given by the
relationship,

0 = mS,T, (7.80)

where the subscript o applies to the conditions at the pump outlet. This relationship
suggests that the pump flow rate can be increased by simply adding more heat
downstream, but there are limitations [49]. In a FEP, the addition of heat increases
the temperature of the helium on the upstream side of the pump due to the removal of
the superfluid component. This heat must be extracted by a He II refrigeration system
to maintain low temperature at the pump inlet. Another important limit is the onset of
turbulence above the superfluid critical velocity. To avoid this limit the design a
fountain pump must have sufficient cross sectional area to ensure that the velocity
within the pores does not exceed v, typically about 100 mm/s for porous media.
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Fig. 7.30 He II phase diagram showing lines of constant chemical potential [48]

For a porosity of 30%, this velocity corresponds to an approach velocity of about
30 mm/s. Equation (7.80) can be rearranged in terms of the inlet conditions to yield,
: 0
m= 7.81
(1 +Cp/s)Ap/p+S,T, ( )

where s; is the entropy at the inlet to the fountain pump and 4p is the hydraulic
pressure head.

Another limitation to the application of FEP is the overall low thermodynamic
efficiency. For an ideal FEP, the ideal thermodynamic efficiency is given as,

Ap 1 1
"= 1+C,s 66 & (7.82)
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Fig. 7.31 Schematic of a vapor phase separator

However, this is an upper limit and real pumps have even lower performance. This
efficiency should be compared to typical mechanical pump efficiencies which is of
order 50%. Therefore, the main advantage of a fountain pump is in its ease of
application. The pump consists of a heater and porous plug. There are no moving parts.

The design of practical FEPs goes beyond the above discussion. To maintain
ideal flow conditions in the pump corresponding to an approach velocity below a
few 10s mm/s, the pump surface area is frequently much larger than the pipe cross
section in the attached flow circuit. If these conditions are exceeded, pump perfor-
mance will degrade; however, the FEP will continue to pump the helium until the
inlet temperature exceeds T).

7.4.4 He Il Vapor: Liquid Phase Separators

Another unique application for porous media is with He II- vapor phase separators
(VPS) that have been developed for containment of He II in space applications. A
VPS consists of a porous plug, frequently made from sintered stainless steel
powder, which extracts the heat from a He II reservoir by allowing evaporation at
the surface of the plug. In this application, the characteristic pore size is larger than
for the FEP, because it is required to have some flow of the normal fluid component
to ensure operation. A schematic of a VPS is shown in Fig. 7.31.

A He II-vapor phase separator provides a pressure difference across it given by
the London equation (7.72). In use, the upstream side of the phase separator is
wetted with He II while the downstream side is pumped to low pressure, lower than
the saturated vapor pressure of the liquid. The phase separator works in the
following way. Heat generated in the He II reservoir is carried through the porous
plug by thermal counterflow to the liquid-vapor interface, which preferably occurs
within the body of the plug. The heat is then removed by evaporation of the liquid at
low pressure. The associated temperature difference across the plug provides the
fountain pressure to hold the liquid within the He II reservoir. The total vapor mass
flow is determined by this rate of heat generation, n1 = Q /hg,. To supply the vapor,
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liquid must flow through the plug to the liquid-vapor interface. The heat flow in the
liquid is also given by,

Q = aApsT (v, —v) (7.83)

where A is the plug cross section and « is the void fraction. Setting the two forms of
the heat flow equal to each other and substituting v = m/paA one obtains an
expression for the pressure drop as a function of v,,. Then assuming purely laminar
flow in the phase separator, v < v, the critical velocity, the mass flow rate can then
be written as,

. pKp, sT Ap
= — 7.84

where Kp,, is defined in (7.75). This relationship appears to fit experimental data for
small mass flow rates. If the velocity within the plug exceeds v, turbulence in the
superfluid degrades the performance and the mass flow increases more slowly with Ap.
The design of a porous plug phase separator is dependent on first knowing the
mass flow needed to extract the heat load to the He II reservoir. The pressure drop
across the plug is determined by the desired operating temperature of that reservoir.
The physical dimensions and pore size of the porous plug follow by analysis of
(7.84). Most phase separators developed for space applications consist of a sintered
stainless steel structure with a typical pore size is between 1 and 10 um [50, 51].

7.5 Kapitza Conductance

A very different problem of heat transfer in He II relates to that which occurs at an
interface between a solid and the liquid. This process is in contrast to heat transport
in the bulk fluid, which has been the subject so far. Surface heat transfer is more
controlled by the interfacial character, including the properties of the solid state,
rather than that of the bulk He II. In general, there are two regimes of surface heat
transfer in He II as exemplified by the two positive slope portions of the heat
transfer curve; see Fig. 7.1. At low AT, no boiling occurs and the heat transfer is
controlled by a phenomenon called Kapitza conductance. At high AT and for heat
fluxes greater than ¢*, the surface is blanketed by a film of He I or vapor or both. In
this region, the heat transfer is determined primarily by the character of the vapor
film. The present section concerns itself with the first problem, that of heat transfer
directly from the solid surface into the liquid He II or Kapitza conductance.
Section 7.6 overviews the subject of film boiling heat transfer.

Thermal boundary conductance occurring at the interface between a solid and
liquid He II was first studied by Kapitza [52] in 1941 during an experiment on the
flow of heat around a copper block immersed in the liquid. Within the liquid helium
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Fig. 7.32 Schematic of Kapitza conductance experiment: (a) temperature sensors located in the
vicinity of a solid-He II interface and (b) temperature profile

the temperature gradients were seen to be negligible; however, a sizable temperature
difference did occur between the copper block and the He II. This discovery
spawned a considerable quantity of fundamental and applied research some of
which is discussed in the present section. However, Kapitza conductance is also of
great technical interest because it often results in the largest temperature differences
in a He IT heat transfer problem. For an order of magnitude comparison, a heat flux of
1 kW/m? can lead to a temperature difference of about 0.1 K across an interface due
to this effect. Within turbulent He II the same heat flux would require about 1,000 m
of one-dimensional channel to produce an equivalent temperature difference!

The general term Kapitza conductance has taken on much broader connotation
over the years since its discovery. In particular, it now refers to the interfacial
thermal boundary conductance which occurs between any two dissimilar materials
where electronic transport does not contribute. Thus, Kapitza conductance occurs at
the interface between a metal and water at room temperature. However, since the
effect is strongly temperature dependent it makes a negligible contribution to the
heat transfer coefficient except at low temperatures. For example, Kapitza conduc-
tance does contribute to the heat transfer process between a metal and He I at high
heat flux, as is discussed in Chap. 5, but in general is neglected in classical fluid heat
transfer because the thermal boundary layer dominates the process.

The measurement of Kapitza conductance is achieved by a method shown
schematically in Fig. 7.32a. A solid of some finite thermal conductivity is in
intimate contact with He II in a one-dimensional configuration. The temperature
at various points within the solid and He II are measured as they vary with applied
heat flux ¢. In the steady state, a temperature profile is obtained as shown
schematically in Fig. 7.32b. The profile can be extrapolated to the He II-solid


http://dx.doi.org/10.1007/978-1-4419-9979-5_5

280 7 He Il Heat and Mass Transfer

interface to determine the surface temperature difference A7T;. By this method, the
bulk properties of the two media can be eliminated from the measured temperature
differences.

Kapitza conductance usually is given an empirical definition; ideally defined in
the limit where ¢ and AT are vanishingly small,

. q
=
e, = Jim 2

(7.85)
where the 0 subscript refers to the limit as ATy — 0. This quantity has a fairly strong
temperature dependence going as T " with n varying anywhere between 2 and 4. A
more general definition of Kapitza conductance simply relates it to finite values of
q and AT:

(7.86)

Because of its nonlinear nature, definition (7.86) is of more practical interest to
engineering applications.

There are a number of applications for He II where knowledge of the Kapitza
conductance is of substantial importance. In refrigeration involving He II, its value
strongly impacts the proper design of components, particularly heat exchangers.
Because of the strong temperature dependence, the importance of Kapitza conduc-
tance to heat transfer problems increases with decreasing temperature. In very-low-
temperature dilution refrigeration the Kapitza conductance becomes the
dominating heat transfer process. Knowledge of the Kapitza conductance of
materials at higher temperatures, T > 1 K, is also important. Here the desire is to
cool large devices such as superconducting magnets or space instruments. For
proper design of these devices, it is necessary to have a good knowledge for the
effective heat transfer coefficient.

Although Kapitza conductance is an experimentally defined quantity, there has
been considerable theoretical work aimed at understanding this complex phenome-
non. Therefore, before discussing the empirical behavior of /g any further, a review
of the physical theories used to explain its behavior is presented.

7.5.1 Phonon Radiation Limit

The first theory to successfully characterize the qualitative features of Kapitza
conductance is referred to simply as the phonon radiation limit [53, 54]. The
model is an overestimate of the true Kapitza conductance because it includes too
many energy transport mechanisms. However, the theory does show the proper
temperature dependence of /.
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A body above absolute zero contains thermal energy, which in the case of
insulators is in the form of a phonon spectrum while for conductors it may be due
partially to the electrons. Phonons are quantized lattice vibrations and are analo-
gous to photons, which of course are quantized electromagnetic radiation. Ignoring
for the moment any effect electrons may have on these concepts, it is reasonably
straightforward to identify the phonon energy spectrum for a particular solid (see
Chap. 2). Since the Kapitza conductance is mainly of interest at low temperatures, it
is not a bad approximation to use the Debye theory to describe this energy
spectrum. In the Debye model, the internal energy may be written as a tempera-
ture-dependent quantity,

Epn = aT* (7.87)

where a =32n*(N/V)kg/O}, and T < ©p, the Debye temperature. For most
solids, the Debye temperature is in the range of several hundred Kelvin, making
this approximation quite reasonable for the Kapitza conductance at helium
temperatures.

To quantify the problem of phonon radiation between two media, assume there is
a unit interfacial area dA on which phonons are incident at velocity c. A schematic
of the hemispherical region surrounding this elemental area is shown in Fig. 7.33.
The angle of incidence of the phonon is given in spherical coordinates by 6 and ¥,
but only the perpendicular component of the incident phonon transmits the energy.
More detailed theory discussed later includes the coupling of transverse phonons at
the interface, but for simplicity the present treatment will neglect this effect. The
perpendicular component of the velocity can be writtenin terms of the angle 0 such
that

¢, =ccosf (7.88)

The heat flux into the area dA is the then product of the energy density and
perpendicular velocity component such that dg = ¢, E;,. It follows that the net heat
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flux per unit area is obtained by integration of dg over the hemisphere in 0 and Y.
This procedure yields

1> 1
q= i Jo cEpp sin 0 cos 0d0 = ZCEph (7.89)

In the Debye approximation, the speed of sound in a solid is given as

2 —1/3
¢ =2 (6” N ) (7.90)

h 14

where for solids c is of the order of 3 km/s while for He II the speed of sound never
exceeds 240 m/s. Substituting (7.90) and (7.87) into (7.89), we obtain an equation
for the total heat flux carried by phonon radiation:

qg=oT* (7.91a)

and

(kg \* (3N \??
=T () (22 7.91b
7~ 10n (@D) <4nv> (7.91b)

The reader who is familiar with radiation heat transfer should recognize this
form to be analogous to the heat transported by photon radiation. Note that (7.91b)
includes the variable material properties through the molar volume (N/V) and
Debye temperature. The quantity ¢ can vary considerably between materials,
which according to the theory leads to a quite different heat transfer coefficients.
For example, since ¢ is inversely proportional to ¢?, it follows that the ratio of heat
fluxes by phonon radiation should differ by a factor of 100 between He II and solids
at low temperatures. This is one of the major weaknesses of the phonon radiation
theory in that it only considers the thermal character of the solid.

Now consider the radiation of phonons between two different media, between
which there exists an interface. For the sake of discussion, assume there is no
appreciable temperature gradient occurring in either bulk material and that the flow
of heat from one side to the other produces an interfacial temperature difference
AT. In order for this interface to be defined as a boundary between two bulk media,
it must be confined to a thickness that is small compared to the characteristic
phonon wavelength, Ap = hc/kg®p. For solids Ap ~ 100 um, which is large
compared to most interfacial dimensions.

The net heat flux through the interface is actually a difference between two
values, the radiant energy incident on the high-temperature side, ¢(T + AT), minus
that incident from the low-temperature side, ¢(T'),

Gnet = (Z(T + AT) - q(T) (7.92)
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Assuming that both these quantities can be described in terms of the phonon heat
flux expression (7.91a) and also that the coefficient ¢ is the same in either media, it
follows that the net heat flux is a difference between the phonon radiation
expressions of the two media:

qnet = 0(T 4+ AT)* — o(T)* (7.93a)
which can be expanded to
=4 T3AT1+3AT+ AT2+1 AT\’ (7.93b)
et =20 2T T 4\ T ‘

In the limit of small AT, (7.93b) gives an explicit definition for the phonon
radiation limit Kapitza conductance in terms of a:

W = 46T? (7.94)

where the superscript p refers to the phonon radiation limit. The assumption that &
is independent of media clearly is not accurate, particularly when dealing with
interfaces between solids and He II. However, it is argued that the smaller value of
o (that of the solid) controls the heat transfer because the net heat flux ¢, must be
in the direction from high to low temperature. As a reference point, the phonon
radiation limit applied to copper (@ = 343 K, N/V = 0.86 x 10** cm™) predicts
a Kapitza conductance of

Wy = 4.4T° kW/m? - K (7.95)

or 30 kW/m” K at 1.9 K. We now compare the Kapitza conductance predicted by
the phonon radiation limit with experiment values.

Listed in Table 7.3 are calculated values from the phonon radiation limit and the
highest values obtained experimentally for typical metals and nonmetals. It is
important to note that the experimental values for the same material vary consider-
ably, in some cases by as much as an order of magnitude. However, since the
phonon radiation limit should represent an overestimate of /i, it is most appropriate
to compare it to the highest measured values. The first result gleaned from this
comparison is that the phonon radiation calculation always gives values for /i that
are higher than experiment, sometimes by as much as an order of magnitude. This
fact is consistent with the understanding that the phonon radiation limit overe-
stimates /sg. Second, although it is not apparent from the tabular data, the general
temperature dependence of /i predicted by the phonon radiation limit is borne out.
Recall that experiment yielded a form for ix ~ T" with 2 < n < 4. Finally, as with
the phonon radiation limit, there is a measurable dependence of /g on the value of
Op for the particular solid. This fact can be seen most clearly in Fig. 7.31, which is
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Table 7.3 Comparison of highest experimental values for the Kapitza conductance with the
phonon radiation limit (Compiled by Snyder [54])

Solid Op (K) e (1.9 K) (kW/m*K) h x (1.9 K) (kW/m>K)
Hg 72 440 30
Pb 100 190 32
In 111 171 11
Au 162 155 8.8
Ag 226 55 6
Sn 195 54 12.5
Cu 343 30 7.5
Ni 440 19 4.0
w 405 18 2.5
KCI 230 22 6.9
SiO, (quartz) 290 19 5.7
Si 636 6.4 4.2
LiF 750 5.1 4.5
Al1,03 1,000 1.5 1.6

a log plot of Ak versus @51. The linear interpolation indicates there is a coloration
of the form

hg o @ (7.96)

where the phonon radiation limit predicts n» = 2 and experiment, as shown in
Fig. 7.34, yields values of n =~ 1.

There are a number of problems with the phonon radiation limit, particularly
when it applies to solid—He II interfaces. It is clearly a crude approximation to a
complex problem and is limited by the numerous factors incorrectly accounted for
in the theory. These factors include:

1. A failure to distinguish adequately between the different media on either side of
the interface. The Debye temperatures that enter the problems are associated
with the solid media. Any correction to the theory should include the
characteristics of both media.

2. An assumed coupling between both longitudinal and transverse phonon modes.
This is particularly a problem for He II where transverse phonons cannot be
sustained.

3. Reflections at boundaries are not considered, implying a perfect transmission
coefficient. This assumption clearly overestimates the heat transport. A finite
reflection coefficient at the interface would be expected, particularly for
solid—He II interfaces where the phonon spectra are so different.

4. Crystal structure at the interface is ignored. This is potentially an important
factor owing to the solid having long-range order while the liquid is not periodic.

5. Phonons are assumed to be the only heat transport mechanism. However, some
experiments have shown that electrons in metals play a significant role in the
heat transfer at the interface.
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Fig. 7.34 Kapitza conductance at 1.5 K —largest values observed for each solid (Compiled by
Challis [55])

6. The existence of interfacial films or impurities is not considered. Layers of
adsorbed impurities can have substantial effect on the heat transfer from practi-
cal surfaces. However, even for clean surfaces the detailed character of the

helium adjacent to the interface must be considered.

The above factors are part of improved theories of Kapitza conductances. The
first such improvement was due to Khalatnikov in 1952 [56]. It basically addresses
the first three objections to the phonon radiation limit as listed above.

7.5.2 Acoustic Mismatch Theory

The first real advance in the theory of Kapitza conductance was made by the
development of the acoustic mismatch theory of Khalatnikov [56]. This theory is
based on an analogy with classical acoustics or boundary scattering in optics.
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In some ways the theory is similar to the phonon radiation limit except that it
includes a very important additional mechanism; that of the finite reflection coeffi-
cient at the boundary between the two media. The basic approach involves the
derivation of the phonon transmission coefficient using conservation of momentum
and energy at the boundary. Because the acoustic mismatch theory explicitly
accounts for the difference between the two media, it is expected to be a better
description for the solid—He II case where the speed of sound differs by an order of
magnitude on either side of the interface.

Consider an interfacial region between two media, for example, a solid and He
II. This example is of current interest so it will be emphasized throughout the
following discussion. The liquid is able to transmit only longitudinal phonons. A
schematic of the interface is shown in Fig. 7.35. By analogy with optics, these
regions can be thought of as a low-refractive-index solid adjacent to a high-
refractive-index liquid. Because of the difference in refractive index, a phonon
that is incident on the boundary from the liquid side would be reflected off the
interface unless its angle of incidence is less than a critical value, 0;. Within this
angle the transmitted phonons are diffracted to an angle 6, on the solid side. The
locus of maximum angles 0; forms a cone of transmission which is determined
solely by the speed of sound ratio in the two media:

0% = arcsin <CL) (7.97)

Cs

For interfaces between metals and He II, the ratio ¢;/c, is about 0.1, which
corresponds to a critical angle of about 6°. The acoustic mismatch theory assumes
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that phonons strike the interface between the two media at an angle 6, but only
those that are scattered into an angle less than 0; can be transmitted. All other
phonons are reflected internally.

The above argument can be extended to describe the phonon heat transport
across an interface. The total heat transport is determined by integration over the
cone of transmission, much as was accomplished above for phonon radiation
although now only angles less than 0; are allowed:

| R 0 1 a)
q= e L d¥v Jo crEpy sin 0 cos 0d0 = ZC‘YEPh <c> (7.98)

Note that (7.98) is similar in form to the phonon radiation limit result except that it is
modified by the ratio (CL/CS)s, which for solid—He II interfaces is of the order of 10~°.

The above expression theoretically predicts the heat transport carried by
phonons that are refracted into the angle 6;. However, not all phonons that fall
within this cone are actually transmitted, because there is a finite transmission
coefficient for phonons incident on the boundary. This transmission coefficient 7 is
given in terms of the acoustic impedance Z of each medium:

47, 7
L+ Zs

where Z; = p;c; and Z; = pyc,. For the case concerning the solid—He II interface it
is apparent that Z; > Z,; and (7.99) can be simplified such that

z
= 4%k — 4Pt
Zs PsCs

(7.100)
As an example, consider the interface between He II and copper. In this case
Z, ~ 10” Z,, which corresponds to a transmission coefficient of approximately 0.5%.
Combining the equations for the heat flux (7.98) and the transmission coefficient
(7.100), we find that an expression for the transmitted heat flux is

4
g =qgxt= (f)%) ¢:Epn (7.101)

sTs

which is similar to the phonon radiation limit except for the extra term in the
parentheses.

An additional aspect to the acoustic mismatch theory concerns the fact that the
fluid can sustain only longitudinal phonons. Instead of the expression for the energy
density used in the phonon radiation limit, in the acoustic mismatch theory the
expression must include only longitudinal phonons. Thus, the corresponding form
for the energy density is
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A kT
L B
= (7.102)
P 1sE e}
Combining the energy density equation for longitudinal phonons (7.102) with
the transmitted heat flux, we obtain ¢, given by (7.101), a temperature-dependent
expression for the transmitted heat flux:

A3 kEpLcL g
q: 157 p.c3 (7.103)
As with the phonon radiation limit it is possible to replace the prefactor in
(7.103) by 6.

The net heat flux across the interface is obtained by subtracting the incident flux
on either boundary. By suitably redefining o it is possible to use (7.93) and (7.94) to
predict the Kapitza conductance in the acoustic mismatch theory. For a small
interfacial temperature difference, the result is

A — 716”5]?” LCL 3 (7.104)

15/ pyc3
where the superscript A refers to the acoustic mismatch theory. Note that the
expression for the Kapitza conductance derived from the acoustic mismatch theory
is determined by the properties of both media, a dependence left out of the phonon
radiation limit. A more rigorous calculation in the acoustic mismatch theory
replaces the sound speed in the solid, c;, by its transverse component, c;,.

It is more convenient to have an expression for the Kapitza conductance in terms
of the Debye temperature and other properties of the media. By replacing the
transverse speed of sound ¢, by its expression in terms of the Debye temperature
Op, a simplified expression is obtained:

6n* RFp T3
W= — ) = 7.105
K ( 5 ) M6; ( )

where R = 8.31 J/mol K is the universal gas constant and M is the molecular
weight. The multiplicative factor F, which is a function of the ratio ¢,/c, is included,
but for most solids, F is of the order of unity and so is not a particularly important
factor in (7.105). For helium properties at saturation pressure and assuming
F = 1.6, we can simplify to a useful form,

3

T
hg = 5.5 x 107(M 3> (kW/m? - K) (7.106)

D
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where M is in units of g/mol. As is the case with the phonon radiation limit, the
acoustic mismatch theory predicts a variation of /7 with the Debye temperature as
hi ~ ©)°. This dependence is similar to that of the phonon radiation limit, 7% ~ © 7.
However, both theoretical approaches overestimate the experimentally determined
Debye temperature variation, hx ~ @," where n ~ 1.

7.5.3 Small Heat Flux Kapitza Conductance (AT < T)

Now consider the relationship between the above theoretical treatments and actual
experimental data. Plotted in Fig. 7.35 are model calculations and experimental data
for the Kapitza conductance of a He II-copper interface at temperatures above 1.3 K.
As can be seen in the figure, the phonon radiation limit forms an upper bound to
experimental data consistent with the model excluding boundary scattering effects.
Similarly, the Khalatnikov acoustic mismatch theory predicts a Kapitza conduc-
tance about 200 times smaller than the phonon radiation limit. Insertion of numerical
values for copper into (7.106) results in the expression for the Kapitza conductance,

hy = 0.021T° kW/m? - K (7.107)

The experimental data displayed in Fig. 7.35 show basically the same tempera-
ture dependence with some variations. The best fit to these data indicate hg
proportional to T" with n ranging between 2 and 4. Perhaps more surprisingly
from the experimental viewpoint is that the magnitude of /i at a given temperature
varies by at least an order of magnitude among samples. Part of this variation can be
attributed to surface morphology. The upper shaded region in the figure is for
copper surfaces that are cleaned carefully either chemically or mechanically and
perhaps recrystallized at room temperature to reduce surface strain. On the other
hand, lower values are generally obtained for dirty surfaces, indicated by the lower
shaded region, for which less effort was made to maintain surface cleanliness.
Based on the available experimental data, approximate forms for the Kapitza
conductance in this temperature range are suggested:

hg ~ 0.97% kW/m? - K for clean surface (7.108)

~ 0.4T° kW/m? - K for dirty surface (7.109)

with potentially as much as a factor of two variation in value.

It can be seen from Fig. 7.36 that although the theoretical treatments bracket the
experimental data, neither does a particularly good job of predicting the results.
Nevertheless, the physical interpretation contained in the acoustic mismatch theory
generally is believed to be correct. In fact, the theory does a much better job of
interpreting the magnitude of /g in the very-low-temperature regime, 7 < 0.3 K [57].
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Fig. 7.36 Experimental values for the Kapitza conductance of copper between 1.3 K and T,
(Compiled by Snyder [54])

Therefore, the problem with the theory appears to be that it does not include additional
thermal coupling mechanisms which can make a large contribution, particularly at
relatively high temperatures, T > 1 K.

A number of improvements to the acoustic mismatch theory have attempted to
bring the calculations in closer agreement with experiment. One such improvement
adds to the model a high-density helium layer at the interface between the solid and
bulk liquid [57-60]. The existence of this layer has been demonstrated in helium
adsorption studies, see Sect. 10.2. It occurs because the helium molecules are bound
tightly to the surface by van der Waal interactions. Since the interfacial region
consists of several components—the solid, perhaps two high-density atomic layers
of solid helium, and then the liquid — it is possible to have boundary scattering occur
at each of these interfaces. Finite phonon transmission and reflection coefficients
can be assumed to occur at each boundary. Defining the phonon absorption coeffi-
cient v as the fraction of incident phonons that are absorbed, we can make this an
adjustable parameter and fit the data to the best choice of 0 < v < 1. This approach
allows for a good fit to experimental data above 0.5 K [54].
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There are several additional features to the Kapitza conductance which are worth
noting, partly because they prove the existence of additional physical processes but
also because they relate to problems of applied interest. The first feature to consider
is the dependence of the Kapitza conductance on externally applied pressure.
Plotted in Fig. 7.37 are the ratio of the measured Kapitza resistance (1/hg) at
2 MPa to that at saturated vapor pressure [58, 62]. Also displayed in the figure
are two theoretical treatments, the Khalatnikov theory and the same theory
modified to include the dense helium layer without finite reflection coefficients.
Note first that the experimentally determined ratio is not much different from unity,
particularly in the range of technical interest, above 1 K. The unmodified
Khalatnikov theory on the contrary predicts a sizable effect for all temperatures,
mostly due to the variation of the fluid properties with pressure. For the modified
theory a smaller ratio is predicted, particularly at high temperatures, although it is
still above the experimental results. Because the pressure dependence of the
Kapitza conductance is not a large effect, it is generally not considered in practical
calculations.

A second factor that leads to variations in /g is the application of a magnetic
field. This is an important physical observation for it indicates that there must be
other heat transport mechanisms contributing at the interface. In particular, since
electrons in the solid are affected by a magnetic field, there must be a coupling
between electrons in the metal and phonons in the helium adding to the heat
transport. Two types of experiment have been performed to investigate this effect.
The first has shown a larger Kapitza conductance for a Type I superconductor for
fields above B. For lead the ratio /g (normal)/hg (superconductor) has been shown
to vary between 1.3 and 3 for different samples. This observation is probably the
most direct evidence of some type of electron-phonon coupling at the interface. For
normal metals such as copper, there have been fewer investigations of the effect of
magnetic field on Kapitza conductance. Some reports have indicated /g for normal
metals increases by about 10% in a 1 T magnetic field. However, there is insuffi-
cient data available to predict this effect to higher magnetic fields.
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Beyond the above two experimental features, there is evidence that the Kapitza
conductance is affected strongly by the application of interfacial coatings to the
solid, either in the form of applied materials or adsorbed gases. Generally, coatings
decrease the apparent Kapitza conductance because they tend to the insulating
materials with low thermal conductivities. The effect of a few monolayers of
adsorbed gas has not been investigated thoroughly, although it has little importance
for practical applications where the surfaces are not kept very clean.

7.5.4 Large Heat Flux Kapitza Conductance (AT ~ T)

Up until this point, the theory and experiments associated with the Kapitza conduc-
tance for small AT have been emphasized. However, in applications of He II large
heat fluxes can occur, which in turn result in large temperature differences across
the interface such that AT ~ T. Because of this occurrence, it is desirable to
develop a method of handling the heat transfer process for finite A7. Returning to
the simplest theories, either phonon radiation limit or acoustic mismatch for finite
AT, the heat flux through the interface may be written as a sum of terms involving
the ratio (A4T/T), (7.93). It follows that the Kapitza conductance for finite AT is
larger than /g, by the magnitude of this expansion,

3AT  [AT\? 1 /4AT\?
hK(AT) = hg, l1+§T+ (T) +Z<?> ] (7.110)

where for AT/T = 0.5, the bracketed quantity is approximately equal to 2. Note that
the expansion given by (7.110) makes the initial assumption of an explicit T°
dependence of /g consistent with theory. However, experimental measurements
vary considerably from this exact form, obeying power laws varying between T°
and T*. Some additional characteristic to the Kapitza conductance may also be
expected to occur when the surface temperature exceeds T ;.

There have been several attempts [62—67] to correlate the Kapitza conductance
for finite AT with the form of (7.110). These have not been entirely successful
largely because of the deviation between the theory and experimental temperature
dependence of this effect. An alternative correlation suggested [65] for practical
applications is:

qs = o(T! —T}) (7.111)

where a and n are adjustable parameters. Note that if one equation is able to fit the
experimental data for one sample over the whole temperature difference range, then
it should be possible to expand (7.111) consistent with the low heat flux temperature
dependence. Similar to the behavior of the experimental data for small A7, the high
AT Kapitza conductance also varies considerably with sample. Plotted in Fig. 7.38
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Fig. 7.38 Surface temperature versus heat flux for large AT Kapitza conductance

Table 7.4 High heat flux Kapitza conductance fitting parameters for metals at 1.8 K

Metal Surface condition T, at 10 kW/m2 o (kW/mZ-K“) n References
Cu As received 3.1 0.486 2.8
Brushed and baked 2.85 to
Annealed 2.95 0.2 3.8 [65]
Polished 2.67 0.455 345 [67]
Oxidized in air for 1 month 2.68 0.46 346 [67]
Oxidized in air at 200°C for 40 min 2.46 0.52 3.7 [67]
50-50 PbSn solder coated 243 0.76 3.4 [67]
Varnish coated 4.0 0.735 2.05 [67]
Pt Machined 39 0.19 3.0 [62]
Ag Polished 2.8 0.6 3.0 [62]
Al Polished 2.66 0.49 34 [63]

are measurements of T as it depends on ¢ for different materials. A range of results
for copper are shown which indicate the variation with surface preparation. Listed in
Table 7.4 is a summary of published data for Kapitza conductance of pure metals at
high AT. Displayed are the surface preparation, surface temperature at a heat flux
g = 10 kW/m?, and the best-fit functional form to these data. Note that most of the
fits give values of n = 3 + 0.5, which is systematically lower than the theoretical
value of n = 4. Also, the best fit to the coefficient in (7.111) is for « ~ 0.05
W/cm?K™*! but with substantial variation. Finally, it is interesting to note that the
variation in Kapitza conductances at large AT is not nearly as great as is obtained in
the limit AT — 0, where an order-of-magnitude deviation in /4y is seen.
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Example 7.3

Calculate the temperature of an “as received” copper surface when subjected to
a heat flux of 5 kW/m? at 2.1 K using both the small AT approximation and the
empirical correlation for large AT.

For small AT, the Kapitza conductance of as received (dirty) copper is given by
the expression (7.109),

kx = 0.473 kW/m? K = 3.7 kW/m? K
Ty=Ty+q/hxk =2.14+135=345K
For large AT, the empirical correlation is given by,
qs = a(T;’ - T,’,’) where for “as received” samples a = 0.486 kW/m? K" and

n=238.
Solving for T,

1
T, = (g + T;;)” —2.82K
a

Note that this is about a factor of two difference in AT, being 1.35 K in the
small AT approximation and 0.72 K in the large flux correlation.

In classical fluid heat transfer, the heat transfer coefficient usually increases with
fluid velocity or Reynolds number, see Chap. 5. This is because the net flow
velocity thins the boundary layer at the heater surface and induces convection. It
is therefore reasonable to ask whether non-boiling heat transfer in He II can
similarly be enhanced by flow. There have been several experimental investigations
on this topic [68, 69].

At first glance, one would not expect enhancement to heat transfer in the Kapitza
regime as long as the fluid remains below T;,. This is because the heat exchange is
controlled by phonon transport and that there is no significant thermal boundary
layer contribution the heat transfer coefficient. Experiments have generally
supported this position, however, the situation is not so simple when the helium
locally transitions to He I by exceeding T,. In that case, since the fluid near the
heater is either He I or vapor, the helium flow can significantly improve the process.
Furthermore for local heat transfer within a tube, the action of the fluid flow will
also tend to sweep the hot helium away from the heated region which will allow a
more rapid recovery to the non-boiling state once the heat flux is reduced. This
effect is in addition to the overall enhancement to the He II heat transport that can
occur for relatively high fluid velocities, see Sect. 7.3.
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Until now the existence of boiling phenomena in He II has been mentioned only as
the condition reached when the critical heat flux ¢* is exceeded. However, there are
a number of complicated heat transfer processes that can occur above g* that
deserve more discussion. This regime of heat transfer is of significant technical
importance for its occurrence can lead to catastrophic events in cryogenic systems
where good heat transfer must be maintained continuously. Unfortunately, boiling
heat transfer in He II is one of the least understood process in He II heat transfer.

In He IT above the peak heat flux, the fluid in the region of heat transfer can contain
several phases in coexistence. Consequently, the physical interpretation of the heat
transfer processes is more difficult than in single-phase He II. For heat fluxes above
g* there occurs a discontinuous jump in the surface temperature. This transition
marks the formation of a film of helium vapor, liquid He I, or both blanketing the heat
transfer surface. These general characteristics of the transition to film boiling are best
couched in the context of the surface heat transfer curve such as Fig. 7.1. In the film
boiling state, the heat transfer is much less effective because of the low thermal
conductivity vapor film insulating the surface from the bulk He II. Typical values for
the film boiling heat transfer coefficient hg, = g/AT are 10-100 times smaller than
the Kapitza conductance coefficient. However, these values are strongly dependent of
a number of physical parameters including heater configuration, bath temperature,
pressure, and saturated versus subcooled liquid state. An additional feature in the
heat transfer curve, also commonly observed in He 1, is the occurrence of a recovery
heat flux g that is less than g*. The existence of gr < g* causes hysteresis in the heat
transfer curve, see Fig. 7.1. However, unlike pool boiling He I, this hysteresis is not
observed universally in all He II heat transfer experiments.

There are three possible film boiling conditions that can exist in He II above g*.
To establish which condition is expected for a given set of externally imposed
factors, it is necessary to consider the helium state in the vicinity of the heat transfer
surface. The first condition corresponds to the local pressure at the heated surface
being less than the saturation pressure at the A-point, that is p; = 5.04 kPa. This is
referred to as the saturation boiling condition. It is achieved by having a local
temperature excursion above Ty, the saturation temperature at the local pressure.
The resulting boiling state is a coexistence of two phases; saturated vapor and He II.

The second condition occurs when the local pressure at the heat transfer surface
is large enough to exceed p, at the heat transfer surface. A consequence of
exceeding g* is the production of a film of low-thermal-conductivity He I which
covers the surface. If the heat flux ¢ is not greater than the corresponding critical
heat flux in He I for that configuration, the heat transfer process will be stable,
allowing nucleate boiling to occur in the He I film and heat conduction in He II.
Note that the boundary between the He Il and He I is not clearly defined in this case
because the phase transition from He I to He II is second order, allowing only a
continuous density profile. It is important to be aware that, because ¢* in He II is
under most circumstances much higher than that in He I, the limiting of this process
to two phases usually only occurs for temperatures near 7.



296 7 He Il Heat and Mass Transfer

The third boiling condition occurs at the solid-helium interface when ¢* is
exceeded in subcooled He II for temperatures well below T, that is T, < 2.1 K.
In this regime, the critical heat flux is greater than that in He I and the He I film
becomes unstable and enters film boiling. The result is a triple-phase process
consisting of vapor film blanketing the surface, a very thin He I film, and bulk He
II. As with the second condition, the He I-He II boundary is not sharply defined. It is
apparent that this third film boiling condition, although occurring commonly in
engineering systems employing subcooled He II, is the most complex to understand
because of the existence of multiphase processes.

There exists one additional type of boiling in He II which does not fall in any of
the three above categories. This type of boiling occurs in the bulk fluid rather than at
the interface. It can be achieved only in special configurations where the surface
heat flux does not exceed g* but the channel heat flux surpasses the local boiling
condition. For example, this condition was discussed in the context of the design of
static He II heat exchangers, Sect. 7.1.4. As a result, He I and vapor are nucleated in
the bulk and the heat transport properties of the fluid are modified. This process is
analogous to bulk boiling in ordinary fluids.

The fundamental description of the film boiling heat transfer clearly requires a
more complex theoretical description than considered so far. Furthermore, it appears
that there is no broadly applicable theory capable of handling the multiphase boiling
processes. As a result, most research on this problem is of the category of engineering
correlations combined with empirical evidence. Since the understanding of the
process relies heavily on suitable experimental data, a review of measurements of
film boiling heat transfer coefficients is presented first. Subsequently, a comparison is
made between the available theories and experimental results. Finally, a description
is included of some of the less understood heat transfer phenomena such as recovery
from the film boiling state and time-dependent effects.

7.6.1 Film Boiling Heat Transfer Experiments

The film boiling heat transfer process depends strongly on several factors. The first
of these has to do with the configuration of the heater. Experiments to date have
mainly focused on two heater configurations, flat surfaces and round wires. In the
case of the flat surfaces, some are placed at the end of a He II duct while others are
in an open bath. Round wire heat transfer experiments are almost all done within an
open bath. Recall that the onset of film boiling is determined by the integrated
thermal gradient in the He II, thus in a one-dimensional linear geometry the duct
length and cross section are important factors affecting g*. On the other hand, in a
cylindrical geometry, as discussed in Sect. 7.1.4, the thermal boundary layer is
restricted to occur within a few radii of the heater. Thus, the heat transfer from
cylinders can be studied in a large bath without loss of generality.

The experimental measurements of the film boiling heat transfer coefficient for
various heater configurations have been extensive; however, they have also been
rather restrictive in regime of investigation. The most obvious restriction is
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Fig. 7.39 Regimes of noisy and silent boiling from wire heaters in saturated He II (From Leonard [70])

associated with the total allowable heat transfer, which is a system limitation.
Therefore, film boiling heat transfer surfaces are usually much less than 1 cm? in
area, which places rather strict constraints on the sample. Historically, most
experiments have been carried out in near saturated He II, leading to a boiling
state consisting of vapor-He II coexistence. More recently, more measurements
have been performed in subcooled He II primarily due to the interest in its
application in large superconducting magnet systems. Thus, the second important
factor impacting the film boiling heat transfer process is the state of the He II bath;
mainly its temperature and pressure.

In near saturation He II, there exist two different regimes of film boiling heat
transfer. These are referred to as “noisy” and “silent” boiling. Noisy boiling is
apparent by the existence of audible sound emanating from the heat transfer region.
Silent boiling, on the other hand, is film boiling without this audible sound.
Frequencies observed in noisy boiling can vary anywhere from a few Hz to tens
of kHz. The frequency is generally a function of heat flux although in no well-
established pattern. The regions of noisy and silent boiling are seen to depend on
bath temperature and depth of immersion.

Plotted in Fig. 7.39 is a map of these two regimes based on one set of data on
wire heaters [70]. This map should not be construed as universally applicable.
It appears from these results that noisy boiling occurs for larger immersion depths
and lower temperatures. The occurrence of noisy or silent boiling also has a
significant effect on the heat transfer coefficient /. In regimes of overlap where
either noisy or silent boiling is seen to occur, it is usually the case that a slightly
higher heat transfer coefficient is measured during silent boiling. This effect, which
appears systematic in published experiments, is nonetheless only of the order of
10-20% in the majority of reported results [71-75].
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Recent experiments performed in saturated and subcooled He II have revealed
the existence of four film boiling regimes in He II [76]. These are the two saturated
boiling states, noisy and silent boiling and two new subcooled boiling states:
strongly and weakly subcooled boiling. A map showing the regime of existence
for these four states for a flate heater is given in Fig. 7.40. Note that the strongly and
weakly subcooled boiling states only exist at pressures above p,.

The existence of the four film boiling states have been confirmed by a variety of
measurement techniques including pressure and temperature fluctuations as well as
visualization. In particular, Takada et al. [77] performed a series of visualization
studies on film boiling on a 50 um diameter round wire. This work revealed clear
differences in the hydrodynamics of boiling as can be seen in Fig. 7.41. Of note is
the periodic nature of the film boundary for silent and subcooled boiling states
while the noisy boiling is more stochastic. These results can also be used to obtain
an average vapor film thickness that can be correlated with the heat transfer
coefficient.
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Fig. 7.41 Visualization of four boiling states in He II heat transfer from a round wire: (a) silent
boiling at 2 K under saturated vapor pressure, q = 19.3 KW/m?; (b) noisy boiling at 2.1 K and
5.3 kPa, q = 373 KW/m?; (c) weakly subcooled boiling at 2.1 K and 16 kPa, q = 601 KW/m?;
(d) strongly subcooled boiling at 2.1 K and 100 kPa, q = 396 kW/m? (From Takada et al. [77])

We now consider the film boiling heat transfer coefficient. Table 7.5 lists some
typical values for Ay, under different conditions and for different configurations.
There is a notable wide range of values of Ay, depending on surface temperature,
fluid pressure and heater configuration. However, a few trends are immediately
evident from the data in Table 7.5. First, iy, is generally largest for small diameter
wires such that there occurs approximately a factor of two increase in value with an
order-of-magnitude decrease in heater diameter, dy. As is discussed below, this
behavior can be interpreted in terms of a fairly simple vapor film conduction model.
In addition to the diameter dependence, /iy, for cylindrical heaters as well as for flat
plates is also a function of depth of immersion in the saturated helium or externally
applied pressure. Any theoretical effort to model the film boiling heat transfer
coefficient therefore must consider these issues.

As mentioned above, the film boiling heat transfer coefficient is seen to depend
on diameter in a significant way. Plotted in Fig. 7.42 is typical behavior of /g, for
fixed bath temperature and a specific hydrostatic head [72]. The general tendency is
for hy, to increase with decreasing diameter. Also, plotted in Fig. 7.43 are typical
heat transfer coefficients for heated wires as a function of hydrostatic head 4 and



300 7 He Il Heat and Mass Transfer

Table 7.5 Typical film boiling heat transfer coefficients

Sample T, (K) T, (K) Ap (kPa)* h (kW/mz-K) References
Wire (d = 25 pm) 1.8 150 0.56 2.2 [79]
Wire (d = 50 um) 2.1 80 100 3.6 [77]
2.1 50 10 6.2 «“
Wire (d = 76 um) 1.8 150 0.42 1.1 [79]
Wire (d = 200 um) 2.05 150 0.14 0.66 [74]
Cylinder (d = 1.45 mm) 1.78 80 0.06 0.22 [75]
Cylinder (d = 14.6 mm) 1.88 40 0.10 0.2 [73]
2.14 40 0.10 0.2 «“
Flat plate
Flat rectangular plate 1.8 75 0.14 0.22 [72]
(39 mm x 11 mm) 1.8 75 0.28 0.3 “
1.8 75 0.84 0.55 «“
Flat surface (d = 13.7 mm) 2.01 40 0.13 0.69 [4]
2.01 25 0.237 0.98 “

#1 kPa = 7.5 torr = 703 mm He II

hfb(kwlmzK )

0.5

| |
.0l o.l | 10
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Fig. 7.42 Film boiling heat transfer coefficients as a function of heater diameter for constant
hydrostatic head (4 = 10 cm)

surface temperature, T;. In general, the heat transfer coefficient increases with
helium head and decreases with surface temperature. At small depths, the relation-
ship is roughly linear with & [72].

The situation that occurs in subcooled He II, where the boiling is associated with
multiphase phenomena, is generally more complex. In addition, there have been
fewer experiments performed under these conditions so data are less prevalent.



7.6 Film Boiling Heat Transfer 301

T T T T T
0.8
0.08 ]
0.6
~ 0.06 7 —
X X
o 4 o
E €
‘\9 4 _0.4 ;
; O»O x
0 4 V-n
= 0.2 =
0.02 T
0
0 1 | | | 1 1
(0] 10 20 30 40 50 60
h(cm)

Fig. 7.43 Film boiling heat transfer coefficients versus immersion depth (From Betts and Leonard
[721)

However, in general it is observed that the film boiling heat transfer coefficient is
higher in the subcooled condition compared to that at saturation. Furthermore,
higher pressures on subcooled He II tend to increase &y, This latter effect may be
caused by the increased thermal conductivity of the helium vapor film for higher
pressures. Few investigations of the dependence of 4, on heater diameter have been
reported for subcooled He II.

7.6.2 Theoretical Models for Film Boiling Heat Transfer

A simple model can be constructed to show the origin of the diameter dependence
to the film boiling heat transfer. The model is based on an assumption that heat is
transported through the vapor film by thermal conduction only. The conceptual
picture therefore would represent a stable vapor film of constant thickness ¢
surrounding the heat transfer surface. Consider a cylindrical heater of radius r as
shown in Fig. 7.43. An estimate of the vapor film thickness d can be obtained from
the relationship

5= (7.112)

| =

where the mean thermal conductivity & is taken over the temperature range between
the bath T}, and surface T,. As an example, in Table 7.5 the heat transfer coefficient
for a 76 mm diameter wire is about 1.1 kW/m?> K, obtained for a surface tempera-
ture of 150 K. The average thermal conductivity of helium gas in this temperature
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Fig. 7.44 Schematic of
cylindrical beater surrounded
by a vapor film
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range is k ~ 0.06 W/m K, which corresponds to 6 ~ 50 um. This thickness is fairly
large compared to typical heater wire diameter. Also, note that the mean free path in
the vapor is of the order of 1 um, which is much shorter than the film thickness so
this thermal conduction model could provide a reasonable approximation.

The simple heat conduction model can be used to interpret the diameter depen-
dence of &g, shown in Fig. 7.42. Making one further assumption that the vapor film
thickness does not vary appreciably with heater radius, a relationship can be derived
for the ratio of heat transfer coefficients by simply integrating the conduction heat
transfer through the film (Fig. 7.44):

G| - (7.113)
ho 1 ln(l + 6 / r )

where A refers to the film boiling heat transfer coefficients obtained for flat plates.

Thus, as the radius of the heater decreases the film boiling heat transfer coefficient

is expected to increase purely as a result of radial heat conduction. Generally, such a

result is borne out by experiment, see Fig. 7.42.

An alternative model suggested by Takada et al. [77] is based on the steady state
heat transport equation in cylindrical coordinates (7.13). The basis of the model is
to assume that the heat flux through the surface of the vapor film is equal to the heat
conducted through the bulk He II. The stable thickness of the vapor film is then set
by the condition that the heat flux in the He Il is g*. Therefore, as the heat generated
in the wire increases, the outer radius of the vapor film must increase to limit the
heat flux. The thicker film would have a lower average thermal conduction, which
would translate to a lower overall heat transfer coefficient. Such a trend can be seen
in Fig. 7.43 as the average heat transfer coefficient decreases with increasing heater
temperature.

A more detailed theoretical attempt to correlate film boiling heat transfer is due
to Rivers and McFadden [78]. This work treats film boiling heat transfer in
saturated He II in terms of a boundary layer model. The equations that describe
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the problem are conservation of mass, momentum, and energy for two-dimensional,
steady-state heat transfer. In rectangular coordinates these equations may be written

Oou Ov
ou Lo _y 7.114
8x+ By ( )
Ju ov 1 K O*u
— —=—F - — 7.115
u8x+V8y o b+pf6x2 ( )

and

0T kO
ox Ay p;Cp Ox?

(7.116)

where the body force F, represents the buoyancy of the vapor film. The solution of
this set of equations has been accomplished by assuming fourth-order polynomials
for the temperature and velocity profiled and matching boundary conditions at the
wall and the vapor—He II interface. The result is a dimensionless form to the Nusselt
number,

Nu Gr™'* = £(Qy, Gr, H;, Pr) (7.117)

where the Prandtl number for the film is

C
e e (7.118)
k
and the Grashof number,
8 D3Pf (Pb - Pf)
Gr=—— 2~ (7.119)

1

describes the heat transfer process. To determine the exact form of (7.117) for a
given problem it is necessary to apply numerical integration. The end product of
this analysis is a solution for the Nusselt number and steady-state film thickness as a
function of the interfacial heat flux. Two regimes become evident in this result. The
transition between these two regimes occurs at a value of O, Gr “14 ~ 1, where Q)
is the dimensionless interfacial heat flux,

_ D
kAT,

Op (7.120)
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For values of 0, Gr ™* < 1, the heat transfer is dominated by convection. In

this regime, the heat transfer coefficient is a function of the integral enthalpy which
can be normalized to the form

Ah;
H; = (7.121)
Co ATy

For values of Q,, Gr BUAIS 1, the heat transfer is via conduction mechanisms.
Comparison between experiment and the theory described above is only partially
successful.

An alternative approach to the theory of film boiling heat transfer has been
suggested by Labuntzov and Ametistov [79]. This theory is based on the idea that
film boiling is a nonequilibrium process involving heat and mass transfer at the
vapor—He II interface. Thus, it is essential to account for the processes of vaporiza-
tion and condensation. These processes have been investigated theoretically in
detail; the following relationships for the dimensionless fluxes of mass, momentum,
and heat have been obtained:

1040 - _
Ap — ZﬁTﬁj = 0.44G (7.1222)
where
p'—p
Ap = s (7.122b)
Ps
_ q
Gg=— 1 (7.122¢)
ps(2R'T)"/?
j= / (7.122d)

ps(ZR/Ti) 2

In the above equations R’ is the gas constant for helium (R* = R/M = 2,079 J/kg +K),
T; is the temperature of the liquid helium at the interface, 5 is the condensation
coefficient, p; and p, are the equilibrium density and pressure corresponding to T;, and
p" is the vapor pressure corresponding to the helium vapor film at the interface. The
derivation of (7.122a) is beyond the scope of the present treatment although it is
obtained analytically from the Boltzmann kinetic equation [80]. Equation (7.122a)
can be applied to the solution of interface mass and heat transfer for ordinary liquids
as well as He II. However, for ordinary liquids heat transfer is controlled by convec-
tive processes in the bulk. For He II these convective processes are enhanced by two-
fluid internal convection which dominates the heat transfer in most cases. The form of
(7.122a) is approximate since it is assumed that AP < 1, < 1. If this is not the case,
it is necessary to use the full nonlinear solutions.
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Now consider the existence of a film boiling state as shown schematically in
Fig. 7.45. In the steady state the vapor film is of constant thickness J, and
consequently j = 0. There is no net mass flow across the He II-vapor interface.
Under these conditions, (7.122a) can be simplified to

Ap = 0.44¢q (7.123)
or for a given hydrostatic head
q = 2.27pgh(2RT;)"* (7.124)

The physical meaning of (7.124) is that it represents the heat flux necessary to
establish a stable vapor film in He II. Note that this is a considerably different
interpretation for the critical heat flux than that based on the peak temperature
difference within the bulk fluid. Thus, there is some contradiction between the
results of Sect. 7.1 and (7.124). There are several possible resolutions for this
contradiction.

The first explanation is to imagine conceptually that the film boiling state can be
obtained spontaneously anytime the condition described by (7.124) is satisfied.
However, this argument is contradictory to experiment, particularly for critical heat
fluxes in one-dimensional channels. On the other hand, there is some disagreement
between experiment and the He II peak heat flux predicted by turbulent heat
transport in cylindrical geometries. It is possible that the condition described by
(7.124) is a clue to this discrepancy; however, this point has yet to be analyzed.

As an alternate explanation [80], it is to suggest that the film boiling state once
established obeys the kinetic relationship derived above. This idea is not contradic-
tory to the peak heat flux being the point where the helium temperature near the
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Fig. 7.46 Comparison of calculations using the kinetic theory with experimental results (From
Kryukov and Van Sciver [81])

interface reaches T, or T,. However, once this film is established it will remain
stable against collapse until the heat flux falls below the value given by (7.124),
provided it is less than the applied heat flux. Thought of in this manner, the
molecular kinetic theory provides a mechanism of interpreting the minimum film
boiling heat flux in He II, that is gx.

The connection between these two alternate concepts for recovery from film
boiling has been investigated analytically for heated cylinders in saturated He II.
The comparison of this model with experiment has been carried out for the few
configurations where minimum film boiling heat flux data are available [81]. The
best agreement occurs with data acquired on small-diameter wires. Plotted in
Fig. 7.46 are the experimentally measured peak and minimum film boiling heat
fluxes versus temperature for a cylindrical wire of diameter 76.2 um [82]. The
theoretical plot for gg is also shown to provide quite close agreement with experi-
ment. Unfortunately, the correspondence between theory and experiment for other
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configurations of larger dimension is not nearly as close. Consequently, there is still
considerable disagreement as to the correct mechanism needed to describe the film
boiling state in He II.

An alternate approach for the recovery from the film boiling state has been
suggested by experiments that have shown a correlation between the minimum film
boiling heat flux and the film boiling heat transfer coefficient. For a specific configu-
ration consisting of a flat plate at the end of a duct, the value of gz was shown to
increase monotonically with /g, This condition was observed to prevail in both
saturated and subcooled He II. Furthermore, the ratio gg/hy, was found to take on an
essentially constant value of about 23 K, suggesting the existence of a critical
temperature difference for recovery from film boiling. This critical temperature
difference should be related in some fundamental way to the collapse of the vapor film.

7.6.3 Transient Film Boiling Heat Transfer

Typically, the heat transfer process to He II is transient in nature with associated
time dependent phenomena. This occurs when film boiling is caused by a rapid
transient disturbance such as might happen when a superconducting magnet
quenches or a He II cryostat has a loss of vacuum accident. Understanding the
heat transfer in this regime is helpful with the design and safe operation of large
scale He II systems.

We consider the case where film boiling has been established by exceeding the
critical heat flux followed by a reduction of the heat flux to some lower value. If the
heat flux is reduced below the minimum film boiling flux g, recovery to the
nonboiling state should begin. This dynamic process is governed by transient heat
transfer within the system.

We first consider the time dependent recovery from the film boiling state. It is
assumed that at time ¢t = 0 the film boiling state is initiated and that a steady heat
rate Q is applied for a time At Since Q is greater than the peak heat flux, the
temperature of the surface will increase dependent on the mass and heat capacity of
the heated section. For long times, this process would lead to a steady temperature
based on the balance between the heat rate and film boiling heat transfer. After Az,
the heat generation ceases (Q = 0) and the recovery process begins. Empirically,
the recovery process is found to take a length of time Atz which is a function of At,
before the vapor film collapses [83]. It is assumed further that the controlling
mechanism for recovery is the enthalpy stored within the heated sample and the
film boiling heat transfer coefficient is a constant, 4. The fluid simply acts as a
constant temperature bath. Using the Debye approximation to the specific heat, we
can show that the above assumptions lead to a correlation between At and Atg
which can be written explicitly as
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Fig. 7.47 Correlation between the energy applied to a film boiling heat transfer sample and the
time to recovery
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where o = hT,,,/QO < 1 with T, being the maximum temperature of the heat transfer
surface. The total mass of the heat transfer sample is m and its cooled surface has
area A. The properties of the heat transfer sample enter through its molecular weight
M and Debye temperature ©p.

The correlation suggested by (7.125) has shown reasonable agreement with
experiment. By allowing the heat transfer coefficient / to be a constant adjustable
parameter, one can fit experimental data for the relationship between Az and Atg.
This fit is shown in Fig. 7.47. By establishing the correlation based on only the
leading term in (7.125), the best-fit heat transfer coefficients are 7 = 0.18 kW/m? K
at SVP and & = 0.62 kW/m? K at 0.13 MPa. It is interesting to note that these
values of h are roughly 60% of typical steady-state film boiling heat transfer
coefficients for flat plates.

The other problem of interest is to the understand transient recovery in
subcooled He II. This problem has more to do with the time-dependent heat
transport in the bulk fluid than film boiling heat transfer. Rather than correlating
the time to recovery based on the thermal capacity of the heater, the approach here
is to determine the maximum steady-state heat flux which allows recovery after an
intense short-duration heat pulse is applied to a heat transfer sample. The short-
duration heat pulse is assumed to be larger than the maximum energy flux to locally
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Fig. 7.48 Schematic description of the transient recovery process in He II with post-heating
(From Seyfert [30])

bring the He II to T and thus break down heat transfer. Consequently, the heat
transfer at the solid-helium interface breaks down and further heat is stored in the
solid or in the helium adjacent to the heater. After the heat pulse, the excess heat can
be transferred through the He II by the established transient heat transfer
mechanisms. Now if the steady-state heat flux is not too large, the combination of
it with the remaining excess energy being released from the heat transfer sample
will not exceed the maximum transient energy flux in the He II. The result is a
temporary recovery to the non-boiling state. Recovery is temporary only if the
steady-state heat flux is larger than the maximum steady-state heat flux in He II for
that particular configuration.

The above set of conditions are illustrated graphically in Fig. 7.48, which is a
normalized transient heat transfer plot for He II at 1.8 K. The solid curve represents
the maximum heat flux that can be applied for a given time before breakdown of He
II heat transfer occurs. This condition is established according to Sect. 7.2. Now
consider a short-duration, high-level heat pulse applied to the heat transfer sample.
Since this energy is larger than that transferable by the He II, the excess is stored in
the heat transfer sample. The total energy contained in the pulse is shown by region
I'in the figure. Subsequent to the pulse, the heat flux is dropped to a lower level g,
which is still above the maximum steady-state meat flux ¢*. However, temporary
recovery will occur because the transient heat transfer mechanism can continue.
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Thus, the sum of the two areas I and P determines the length of time before
unrecoverable thermal breakdown occurs. This model has been compared success-
fully to transient heat transfer experiments in He II [60]. The problem is of
significant practical interest to superconducting magnet technology.

Example 7.4

For the rectangular flat plate film boiling heat transfer data at T = 1.8 K and
Ap = 0.14 kPa in Table 7.5, estimate the thickness of the vapor film assuming
that heat is carried only by gaseous conduction. Compare the calculated thick-
ness to the mean free path in the vapor.

In this case, the average thermal conductivity can be approximated byky,(40)K
= 0.4W/m K. The approximate thickness of the film is then,
t= E/hfh = 0.4 W/m K/220 W/m? K = 2 mm

The mean free path is calculated by
The mean free path is calculated by,

1 kT 1.38 x 1072J /K x 40K
I~ —~—— = 5 =1.67 um
no mdp  7(2.56 x 107%)" x 1600Pa

Questions

1.

2.

Heat transfer from a solid surface to a bath of He II does not have a nucleate
boiling regime. Why?

One method to increase the heat transfer coefficient in the Kapitza regime would
be to roughen the surface, thereby increasing the effective area. What are the
practical limits to this approach? [Two points to keep in mind are that the surface
material has a finite thermal conductivity and the phonon coupling is over a
certain range.]

. Assume that you wish to design a He II heat exchanger that consists of a U-tube

immersed in a pressurized He II reservoir. The upper ends of the tube empty into a
saturated bath of He Il maintained at a constant 1.7 K. For these conditions, draw a
sketch of the temperature profile along the U-tube from one end to the other.

. For Question 3 above, suppose that you wanted to enhance the performance of

the heat exchanger. Would there be a benefit to putting a pump in the line to
force the He II through the U-tube. List the design constraints on selecting the
parameters for the circulation system.

Problems

1

. Consider a sphere of radius rq in a large bath of He II. Derive an expression for

the steady-state temperature gradient as a function of radial coordinate r.
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Determine the peak heat flux as it depends on bath temperature. Assume that
mutual friction is the only important interaction and the ambient pressure is 0.1
MPa. [Hint: This problem is analogous to that of heat transfer in cylindrical
geometries discussed in Sect. 7.1.4.]

2. Estimate the maximum surface heat flux g, for a cylindrical wire of diameter 1
mm in He II at 1.8 K, 0.1 MPa. What would be the effect of increasing the
external pressure to 1 MPa?

3. Show that the transient heat transfer solution given by (7.52) for the fixed energy
deposition obeys the heat conductivity equation for He II.

4. Estimate the Kapitza conductance at 1.9 K of aluminum for small A7, by each of
the following methods:

a. Phonon radiation limit.
b. Acoustic mismatch theory.
c. Experimental results listed in Table 7.3.

5. Show that the variation of the film boiling heat transfer coefficient with heater
radius may be written in the form given by (7.113). For the data listed in
Table 7.5 from Ref. [79] (d = 25 and 76 pum), estimate the film thickness ¢
and the limiting heat transfer coefficient A for large radii.

6. A metallic copper heater is located at the bottom of a 50 cm long vertical channel
containing He II at 1.9 K. Assume the pressure at the top of the channel is
saturation and that heat flow is governed by mutual friction.

a. Find the peak heat flux ¢*. [Note: Although (7.10) is valid for this case, it is
more accurate to use tabulated vapor pressure of helium].
b. Estimate the heater surface temperature just below g*.

7. Consider a 2 m long, 5 mm ID smooth tube which contains 1.8 K He II flowing at
a mass flow rate of 20 gm/s. Calculate the total pressure drop across the tube
assuming the flow is fully developed and turbulent. Estimate the total tempera-
ture rise in the He II flow due to the Joule Thomson effect. [Hint: you may use
the simplified form for the JT coefficient of an incompressible liquid].

8. Derive (7.84) for the mass flow through an ideal vapor — He II phase separator.
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Chapter 8
Liquefaction and Refrigeration Systems

Although the emphasis of this book is on the development of a physical understanding
of helium as a cryogenic fluid, the discussion would be incomplete without at least an
overview of the various methods of obtaining low-temperature helium. Such
methods are based solidly in engineering thermodynamics and rely primarily on a
combination of processes that make up a thermodynamic cycle. A thermodynamic
cycle consists of a closed circuit where the working fluid, for example helium, is
compressed, expanded, and heat exchanged in such a way as to achieve cooling. The
most thermodynamically ideal cycle is the Carnot cycle which consists of a combi-
nation of isothermal and isentropic processes. However, the Carnot cycle is difficult,
if not impossible, to achieve in a practical system. Real refrigeration and liquefaction
systems are made up of similar processes and are usually compared in their perfor-
mance to that of the ideal Carnot cycle. These issues form the content of the present
chapter.

Here we will only consider cycles that use working fluids in their processes. The
topic of refrigeration using magnetic materials is discussed in Chap. 10. In most gas
refrigeration cycles, the cooling is achieved by an expansion process from high to
low pressure. There are mainly two types of gas expansion that we will consider.
Isentropic expansion is that where the fluid does work and expands slowly and
reversibly such that its entropy is constant (4S = 0). This is the best method of
expansion because there is no entropy generation and it therefore produces the
largest temperature change for a given pressure change. The other common gas
expansion process is isenthalpic expansion, where the fluid undergoes a pressure
change without heat transfer (40 = 0) but no work is done and the process is
irreversible. Isenthalpic expansion is common in practical refrigeration systems for
its ease of use. However, it is of lower thermodynamic efficiency because it is an
irreversible process resulting in an increase of entropy (4S5 > 0).

A further distinction between different refrigeration cycles has to do with
whether the cycle involves steady flows or oscillatory flows. In the former case,
the flow that initiates at the high pressure point at the exit of the compressor passes
continuously through a closed circuit consisting of heat exchangers and expansion
devices extracting the heat load and ultimately returning to the compressor inlet.

S.W. Van Sciver, Helium Cryogenics, International Cryogenics Monograph Series, 317
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Such cycles are referred to as recuperative. The other class of refrigeration cycles
involves oscillatory flows that intermittently expand and compress the gas exchang-
ing heat with a thermal reservoir or regenerator. In these cycles a unit of fluid moves
back and forth between regions of high and low pressure and temperature exchang-
ing heat with a regenerator. These cycles are therefore referred to as regenerative.

The present chapter begins with an ideal liquefaction process as a point of
comparison. A number of practical recuperative cycles commonly used for cryo-
genics are then discussed. A comparison between liquefaction and refrigeration is
given including some aspects of component non-ideality. This discussion is then
followed by an introduction to regenerative refrigeration cycles and their practical
embodiment in modern cryogenic refrigerators.

8.1 Ideal Liquefaction

The thermodynamic limitations of the liquefaction process can be demonstrated
best by consideration of an ideal system, that is, a cycle that performs at Carnot
efficiency and consequently consists of reversible isothermal and isentropic pro-
cesses. The purpose of this cycle is to cool a fluid from ambient to its normal boiling
point and then condense it into liquid.

We will first consider a Carnot refrigerator producing cooling to a low-temperature
reservoir. Furthermore, unlike the discussion in the previous section, we assume that
the refrigerator consists of a large number of cycles each producing an incremental
temperature decrease of the working fluid. This process can be thought to occur
physically by a large number of reservoirs operating at intermediate temperatures T;
as in Fig. 8.1. The total cycle is then the sum over all these cycles, the continuous
version of which becomes an integral between Ty and T¢.

Therefore, an ideal Carnot refrigerator achieves a certain amount of cooling at
T¢ by performing a continuous process [1]. The work done to carry out this process
can be approximated by an integral expression,

T (Ty —T) (8.1)

Tc do
w=-|
where each increment of refrigeration operates between Ty and T. To produce
liquefaction in a liquid—gas system, there are two contributions to the work that
must be included:

1. wy, is the work required to cool a unit mass of gas from ambient temperature to its
boiling point T,

2. wy is the work required to convert a unit mass of gas at T, to a unit mass of
liquid.
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The second term, which is the liquefaction work, always operates between T},
and Ty. For this term dQ =TAs = hy,, the latent heat per unit mass of liquefied gas.
The integral in (8.1) then collapses to its value at the low temperature end T,
yielding the second contribution to the work,

w; = hfg (77:—11 — 1) (82)

bp

It is quite apparent in (8.2) that the term in brackets simply represents the coefficient
of performance of a Carnot refrigerator operating between T}, and T},.

The total work w7 to liquefy a unit mass of gas is simply a sum of the above two
terms. Rearranging wr in a form that is easier to evaluate, we obtain

Ty h Th
w:hJ‘gﬂ+ﬁf—JZQW+% (8.3)
Tpp T pr Typ

Cast in this way, the total work can be seen to consist of two quantities. The first
represents the entropy difference between the gas at room temperature and the
liquid at T,. The second term is the heat or enthalpy difference between the gas at
room temperature and the liquid at T,. Note that this quantity enters as a negative
because it is thermodynamically recoverable.

The above definitions can be placed on clearer footing by consideration of a T-S
diagram for a real fluid. An idealized example of such a diagram is shown in
Fig. 8.2. Achievement of liquefaction as described above can be identified on this
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S

Fig. 8.2 T-S diagram showing ideal liquefaction process 1 — 3

diagram by the path 1-2-3. Here, step 1-2 is an isothermal process followed by step
2-3 which is an isentropic expansion of the fluid to the normal boiling point T},

In practical terms, the flow circuit used to achieve this process is shown in
Fig. 8.3. Here there are two principal components. An isothermal compressor brings
the fluid to high pressure, p,, at which point the entropy is the same as the liquid at
the normal boiling point. The isentropic expansion engine then reduces the fluid
temperature until it is converted to a liquid. The total work per unit mass of fluid
(8.3) is therefore given by the difference in the state functions evaluated at the end
points of the ideal liquefaction path,

Wy = TH(S1 — S3) — (]’l1 — hg) (84)

Typically, for real fluids, these quantities are tabulated, permitting the above
calculation to be performed trivially. However, for the case concerning helium,
which is nearly an ideal gas, these functions can also be calculated with reasonable
accuracy from (8.3). It is instructive to perform this calculation as an example to
appreciate better the numerical values associated with the liquefaction process.

The two contributions to the liquefaction work of helium are the enthalpy and
entropy terms. The enthalpy term is

Ty
Ah = J CodT + hy,. (8.5)
Ty
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Fig. 8.3 Flow circuit for ideal expansion liquefier

Since helium is a good approximation to an ideal monatomic gas, we substitute a
constant value for the heat capacity, C, ~ %R = 20.8 J/mol K. The latent heat of
helium is tabulated and is a temperature-dependent quantity but at its normal
boiling point of 4.2 K, hs = 84 J/mol. Combining these two contributions in

(8.5) the result is
Ah =20.87/mol K(300 — 4.2) K + 84J /mol = 6237J /mol

where the high temperature is set arbitrarily to 300 K. Note that helium has a very
small latent heat compared to other common fluids, a fact due to weak intermolec-
ular binding which is discussed further in Chap. 3; thus, the vast majority of the
work to liquefy helium goes into cooling the gas to the liquefaction temperature.
This is not necessarily the case for liquefaction of other cryogenic fluids.

The entropy contribution to the liquefaction of helium can be calculated
similarly,

T

HC h

s = J o gp 1 e (8.6)
Ty T Th[’

which for helium, as a nearly ideal gas, can also be evaluated directly between
ambient temperature and the normal boiling point as,
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Table 8.1 Ideal liquefaction work of cryogenic fluids

Fluid Ty, (K) Wr (kJ/kg) Wr (kW h/L)
0, 90 634 0.202
Ar 87 476 0.188
Air 80 722 0.176
N, 77 761 0.171
H, 20.4 11,890 0.231
He 4.2 6,850 0.236

J 300 84 J
As ~ 20'817107 In (E) + 12 molk 109 J/molK

Here it is useful to note that the latent heat contribution is significant, representing
about 20% of the entropy difference term. Combining the enthalpy and entropy
terms, we calculate that the ideal work to liquefy a unit of helium as 26,463 J/mol or
6615 kJ/kg. At saturated vapor pressure densities this work per unit volume of
liquid is 0.236 kW h/L. Thus, it appears that for an ideal liquefier the cost of
liquefaction in terms of electricity is not a major factor. It should be emphasized,
however, that real liquefiers of helium are far from ideal, typically operating at
between 2% and 25% Carnot efficiency, see Sect. 8.8.

As has already been indicated, the above calculation was performed to demon-
strate the importance of different terms in the liquefaction process. A simpler and
more accurate procedure uses tabulated values for entropy and enthalpy; then
calculates the work trivially by means of (8.4). T-S-H diagrams that give these
values for helium in graphical form are given in Appendix A.5. Also, there are
tabulated data available in the literature [2] and in database programs [3, 4]. To use
the T-S-H diagrams directly to calculate ideal liquefaction work, points (1) and (3) of
the liquefaction path must be located. Point (1) represents helium at a temperature
and pressure of 300 K and 0.1 MPa. At this point the entropy and enthalpy are [3],

sy =31.6kJ/kg K and hy = 1574k] kg
At point (3), the saturated liquid state at 4.2 K and 0.1 MPa,
s3 =3.55kJ kg K and h3 =9.9k] kg

Insertion of these values into (8.4) yields wy = 6850 kJ/kg, quite close to that
calculated using the ideal gas law above. This result is in part a demonstration of the
near ideality of helium gas.

In summary and for comparison, Table 8.1 lists most of the common cryogenic
fluids including helium with their ideal work to liquefy a unit mass and volume. In
each case, these values are obtained from the tabulated state properties of the
respective fluids. It is interesting to note that all these fluids have wy within 20%
of 0.2 kW h/L, a quantity that has no fundamental significance but is useful to keep
in mind for calculation purposes.
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8.2 First Law of Steady Flows

In advance of discussing the more practical aspects of helium liquefaction and
cooling, it is necessary to introduce the important concept known as the first law of
steady flows. This concept is useful because actual liquefaction processes occur in
the steady flow conditions through a cycle and not strictly at thermodynamic
equilibrium.

The first law of steady flows can be understood best by reference to Fig. 8.4.
Here a unit volume of helium is considered where the symbols are identified as
follows:

« Rate of heat removed from unit volume, O

« Rate of work done on the fluid in volume, w
* Mass flow rate, m

» Specific enthalpy of the fluid, 4

» Specific entropy of the fluid, s

For simplicity we neglect changes in the potential and kinetic energies. For
helium these terms are generally quite small and their inclusion would serve only to
complicate the derivations at hand. Now although the unit of fluid is in motion, it
still represents a thermodynamic system. One can understand this statement by
transforming into the frame of reference of the moving fluid. In the frame moving at
a velocity, u = ri1/pA, a unit mass of fluid moves throughout the cycle undergoing
various thermodynamic processes which can be calculated as if it were in thermo-
dynamic equilibrium. Of course, one additional requirement is that the fluid veloc-
ity be low compared to the sound speed to avoid compressibility effects.

It is reassuring to note that introduction of the above concept does not signifi-
cantly modify the thermodynamic relationship already introduced for the work
necessary to liquefy a unit mass of fluid (8.4). The only variation is to redefine
the work on a unit mass flow basissuch that (8.4) is rewritten in the form,

w
N Tuds — an (8.7)
m

where the entropy and enthalpy differences are per unit mass.

/d

/

f
z
Fig. 8.4 Unit volume
illustrating the first law of .
steady flows w
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To understand better the discussion of practical refrigeration systems, it is
helpful to define several quantities related to continuous flow refrigeration:

+ Work per unit mass compressed, W/ .
» Work per unit mass liquefied, W /my.
« Fraction of mass flow liquefied or yield, y = i /r1.

An optimized practical design endeavors to minimize W/n'z,, and maximize the
yield y. In addition, there are several terms useful in the identification of the
thermodynamic efficiency of a particular refrigeration cycle. It follows from (1.6)
that the coefficient of performance (COP) in a flow system is the ratio of the heat
removed at low temperature to the work at high temperature:
COP = % (8.8)
w
Obviously, for a Carnot cycle, COP = T¢/(Ty — T¢). As a measure of the
deviation from Carnot efficiency, a quantity referred to as the figure of merit
(FOM) is deﬁned as the ratio of the ideal Carnot work (Wi) and actual rate of
work done (W) such that
Wi
FOM = — (8.9)
w

Proper design will attempt to maximize FOM as much as is reasonable. Typically,
the highest efficiency helium refrigerators have FOM ~ 25%.

8.3 Isenthalpic Expansion

Up until now refrigeration or liquefaction has been considered only in terms of the
ideal processes involved. Furthermore, the methods by which this refrigeration occurs
have not been thoroughly identified. In an effort to approach more realistic refrigera-
tion systems, the present section considers one of the most common refrigeration/
liquefaction processes, that of isenthalpic expansion also known as the
Joule-Thomson effect. As will become evident, this process is most useful in refrig-
eration systems involving higher boiling point cryogens (e.g. LN,, LO5). Its use in
helium liquefaction is mainly in the final expansion stage of a more complex cycle.

8.3.1 Joule-Thomson Effect

The Joule-Thomson effect was one of the first methods used in liquefaction of
cryogenic fluids. The method consists of performing an isenthalpic expansion of the
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Fig. 8.5 Two types of Joule-Thomson valve: (a) porous plug and (b) controllable needle valve

fluid through a valve or other flow constriction capable of sustaining a relatively large
pressure drop. By definition there is no work done by the fluid but the process can be
made to be adiabatic by insulating the constriction; it is still irreversible. In practice,
there are several methods by which the Joule-Thomson effect is achieved. A simple
and direct method is to place a porous plug within an insulated channel such that the
pressure drop through the media is about right for the desired flow conditions. This
concept, illustrated in Fig. 8.5a, can be nearly isenthalpic because the channel is
insulated, giving adiabatic conditions (Q = 0). However, porous plugs are not
adjustable so care must be exercised in choosing the proper flow resistance for the
desired operating conditions. An alternative to the porous plug J-T valve is to use an
adjustable needle valve that restricts the pressure drop to occur over a small region
(Fig. 8.5b). For the needle valve, thermodynamic ideality is not strictly achieved
because the system is not totally insulated due at least to the conducted heat load down
the valve stem. However, this inefficiency must be weighted against the adjustability
and ease of operation that accompany the JT valve.

In either case, the J-T valve has one purpose and that is to allow isenthalpic
expansion of the fluid. Isenthalpic expansion means that the specific enthalpy of the
fluid entering the valve must equal that of the exiting fluid, which is at lower
pressure. It follows that differential cooling can only be achieved if the constant
enthalpy curve in p-T space has a positive slope. This requirement can be explained
in more common terms by introduction of what is called the Joule-Thomson
coefficient u;, which is simply the slope of a constant enthalpy curve in p-T space:

_(or
0= (5), w0

To achieve cooling by the Joule-Thomson effect, this quantity must be positive.
However, for real gases, u; can be either positive or negative depending on the state
of the fluid. Note that the Joule-Thomson coefficient was previously introduced in
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the discussion of real gas behavior in Chap. 3 and to explain the temperature profile
in forced flow compressible helium in Chap 4.

The form of y; as given in (8.10) is not particularly useful for understanding the
physical processes involved; however, it can be cast in more meaningful context by
some standard thermodynamic manipulations. Using a theorem of partial differen-
tiation, we can rewrite the Joule-Thomson coefficient as

or\ (oh
== (= 8.11
o= (@), (), o1
The enthalpy 4 is a state function that can be expanded in terms of p and T such
that
Oh Oh
dh = (—) dT + (—) dp (8.12)
orj, op) ¢

But the enthalpy also has a familiar differential form,
dh=T ds+vdp (8.13)

The first term on the right-hand side of (8.13) can be rearranged by use of a T ds
equation for single phase fluids,

ov
T ds = CpdT — T<ﬁ>pdp (8.14)

where the constant pressure specific heat is,

s
C, = T(a_T>,, (8.15)

and the second term was modified by the use of the Maxwell relation,

0 0
)
arj, op) ¢
Equating common terms in (8.12), (8.13), and (8.14), we can do a straightforward
calculation to produce the relationship for yu;, in terms of useful thermodynamic

functions:
1 ov
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Based on (8.17), the only additional information required to complete the form for
w; are the equation of state and the constant pressure specific heat C,,. In actual fact, the
most important issue is to determine the locus of points in p-T space below which the
Joule-Thomson coefficient is positive. The curve that describes these points is referred
to as the inversion curve and is defined by the location where p; = 0.

The inversion curve can be derived for any gas with an established equation of
state. The most simple of equations of state is that for an ideal gas, pv = RT, for
which the Joule-Thomson coefficient is always zero as can be seen by substitution
into (8.17). Therefore, there would be no cooling (or warming) of an ideal gas that
undergoes isenthalpic expansion. This is a clear statement that the Joule-Thomson
effect is a second-order process brought on by non-ideality of gases.

To understand physically how p; can be nonzero, we return to the original thermo-
dynamic relationship (8.11) and note that the specific enthalpy may be written

h=e+pv (8.18)

where e is the specific internal energy of the fluid. Substituting (8.18) into (8.11),
one obtains a different relationship for p;,

v=z|@), " (%) 69

The first term within the parentheses, (Oe/Op)r, represents the deviation from
ideal gas behavior of Joule’s law; since e = C,T. For an ideal gas this term is zero, but
for real gases where there are interactive potentials between molecules, (0e/0Op)r
is always negative. It is easy to understand why this is true. Consider a volume
containing a unit mass of gas at constant temperature. If the volume is reduced, a
result of increasing the external pressure, the average intermolecular spacing
decreases. Joule’s law is derived by assuming all the energy within the gas is in
the form of random kinetic energy of the molecules. However, as the real gas is
compressed, some of this kinetic energy is converted to potential energy, thus
decreasing the internal energy of the system and making (0e/0Op)r < 0.

The second term in (8.19) can be either positive or negative. In simple terms, it
measures the deviation from Boyle’s law, which states that pv = f{T) only, a
behavior obviously obeyed by an ideal gas. This term can be understood best by
taking limiting values. At high temperature and high pressure, the molecules in the
gas are brought close together but have large kinetic energies so that they are mostly
affected by the repulsive term in the potential. The temperature must be high so the
effect of the attractive term in the potential is negligible. This effect was discussed
in Chap. 3 and manifests itself in a compressibility factor, Z > 1. Therefore, since
the repulsive interaction makes the gas less compressible than an ideal gas,

(22
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Fig. 8.6 Variation of pv as a function of absolute pressure for a real gas (From Barron [5]).

The behavior of this term at relatively low pressures and temperatures is
considerably different. Specifically, this region is more strongly affected by the
attractive term of the potential. This term tends to make the gas effectively more
compressible because the fluid is approaching the condensation temperature and

0
( (PV)) <0
op )y
The behavior of both contributions to the pv term in (8.19) are summarized in
Fig. 8.6.

8.3.2 Joule-Thomson Coefficient of Real Gases

The thermodynamic properties of a real gas are described best in terms of an
empirical equation of state. In Chap. 3, several equations of state appropriate for
helium gas have been introduced. Here the Joule—Thomson coefficient is evaluated
using one of these classical equations of state.

The most common classical equation of state is that of a van der Waals gas, see
Sect. 3.2.3. As stated previously, this equation of state is given by the expression

(p + %) (v—b) =RT (8.20)

Here a and b are constants listed in Table 3.2 that depend on the particular gas being
approximated. For helium the values of these two constants are ¢ = 3.46 m® kPa/
kmol” and b = 0.0237 m>/kmol. For the van der Waals equation of state the form of
1; can be computed by differentiation and rearrangement of (8.20). Specifically, the
volume derivative can be shown to be
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av) R

— | = (8.21)
3

<6T , RT/(v—>0)—(2a/v*)(v—b)

Substituting into (8.15) yields the equation for the Joule—Thomson coefficient,

_ 1| (2a/RT)(1 = b/v)* = b
77 Cp |1 = (2a/yRT)(1 — b/v)?

(8.22)

The above equation can be used to compute values of y; for a van der Waals gas
as a function of temperature and specific volume, albeit a tedious process, see
problem 8.3. As has been mentioned above, one point of interest is the location of
the inversion temperature, below which the Joule-Thomson effect produces
cooling. Since the inversion temperature Ti,, is defined at p; = 0, its form for a
van der Waals gas can be determined by setting the numerator of (8.22) to zero.
This gives,

2a b\ >
Ty = bR (1 - ;) (8.23)

which appears to be a relatively simple solution except for the fact that v is coupled
to T through the equation of state. In p-T space the inversion curve of a van der
Waals gas is a polynomial function.

A useful value to compute from the inversion curve is that of the maximum
inversion temperatures 7 . This value can be easily calculated from (8.23) by
taking the low-density limit, i.e. taking p — 0 or v — oo. For a van der Waals gas

the solution for 77", is in terms of the constants ¢ and b:

m 2a
T, = %D (8.24)
Substituting the values for helium into (8.24) yields the value of T3}, = 35.2 K.
Plotted in Fig. 8.7 is the actual inversion curve for helium [6]. Because of the small
slope to the high-temperature isenthalps, it is difficult to determine accurately T; ;
however, for helium 77, ~ 45 K, a quantity reasonably close to that determined by
the van der Waals gas model.

There is practical significance to the fact that the helium inversion curve lies
below 45 K. To achieve cooling by isenthalpic expansion requires that the helium
entering the Joule-Thomson valve be at a temperature substantially below this
value. Hydrogen and neon are the only fluids with normal boiling points below
45 K, hydrogen being the most abundant of the two. Consequently, in the early
development of helium liquefaction capability it was necessary first to liquefy
hydrogen and then to use the hydrogen bath to precool the incoming helium flow.
Subsequently, other methods were developed to allow liquefaction without LH,
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Fig. 8.7 Inversion curve for helium

precooling. However, it still remains a challenge to precool the helium to below the
inversion curve so that the Joule—Thomson effect can be used.

Recall from Chap. 3 that the Law of Corresponding States and the van der Waals
equation of state indicate that the two coefficients, ¢ and b are given in terms of
critical properties as,

27 RT?
==_"¢ 8.25
a=c P (8.25)
and
RT,
= (8.26)
8pc

Since the Joule-Thomson coefficient is a function of the equation of state, the
Law of Corresponding States should also give the inversion curve as universal
function in terms of the reduced quantities, t = T/T. and = = p/p.. For a van der
Waals gas, the ratio of the maximum inversion temperature given by (8.24) to the
critical temperature has a constant value of 6.75. Furthermore, the entire curve can
be shown to obey a reduced form displayed in Fig. 8.8 [6]. This graph can be used to
determine an approximate inversion curve for most common gases. However, it
should be pointed out that the van der Waals equation of state is only one approxi-
mation to a real gas and others equations exist that give comparable shape to the
inversion curve, see for example problem 8.1. Listed in Table 8.2 are the critical
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Table 8.2 Ciritical point coefficients to the van der Waals equation of state and maximum
inversion temperature for various cryogenic fluids

Fluid T.(K)  p.(MPa) a (m® kPa/kmol?) b (m>/kmol) T (K) 1" /T.

inv

He 52 0.227 3.46 0.0237 45 8.3

H, 332 1.315 244 0.0262 202 6.1

Ne 44.5 2.678 21.5 0.0173 260 5.9

N, 126.2 3.396 137 0.0386 623 4.9

0, 154.6 5.043 138 0.0318 761 4.9
8 T T T T T T T T T

Fig. 8.8 Inversion curve for a van der Waals gas in terms of reduced pressure (1 = p/p.) and
temperature (t = T/T,) [6]

temperatures and maximum inversion temperatures for some cryogenic fluids. The
reduced inversion temperature is approximately constant, with an increase for the
case of helium where quantum effects would be expected to be largest.

Isenthalpic expansion for cooling of cryogenic fluids has advantages and
disadvantages. What makes the method so useful is its ease of application. No
moving parts are required and the J-T value is a relatively small, inexpensive
component. A further advantage is that there is no major problem with expanding
into the region of two-phase liquid vapor coexistence. Thus, the common application
of a J-T value is at the final stage of a helium liquefaction system where the liquid
actually is produced. However, as discussed above it is not possible to achieve
helium liquefaction with only the Joule-Thomson effect unless the incoming fluid is
somehow cooled to below 40 K. Thus, additional methods must be combined with
the J-T expansion stage to achieve liquefaction. These methods, which are discussed
below, may include precooling with another cryogenic fluid (like liquid hydrogen at
20 K) or adiabatic expansion of the incoming fluid requiring it to do work. The latter
method has definite advantages as it uses the same working fluid and can be more
efficient. This topic will be discussed further in Sect. 8.5.
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Fig. 8.9 Schematic diagram of Joule-Thomson liquefier

8.3.3 Joule-Thomson Liquefier

The simplest practical method to achieve liquefaction of helium is by direct appli-
cation of the Joule-Thomson effect. However as was discussed above, it is necessary
to begin this process inside the inversion curve, which for helium implies an initial
temperature below about 40 K. This requirement will be overlooked for the time
being. Future discussion will indicate how to bring the fluid below the inversion
temperature initially. The Joule-Thomson liquefier is sometimes referred to as a
simple Linde-Hampson system. This system provides a simple inexpensive method
for liquefaction of a gas whose inversion temperature is above ambient, i.e. all gases
except neon, hydrogen and helium. This method is also the basis for a wide range of
small scale cryocoolers operating at intermediate temperatures (T ~ 100 K).

The principal components of the Joule-Thomson liquefier are shown in Fig. 8.9.
In addition to the compressor stage, the system requires two components: a heat
exchanger and a Joule-Thomson value. The heat exchanger, schematically shown in
Fig. 8.9, is actually a rather complex component to design. A good heat exchanger
has a number of desirable traits, all of which require careful attention to detail:

1. Maximum surface area for heat transfer.
2. Minimum resistance to fluid flow (4p small).
3. Minimum mass (for cooldown).

Of the three characteristics listed, 1 and 2 are at least moderately counteractive,
and therefore good design involves trade-offs between these two characteristics. It
is necessary to be familiar with heat transfer and fluid flow characteristics of helium
before discussing heat exchanger design. Chapters 4 and 5 consider these topics for
helium in some detail. For the present discussion, it will be assumed that the heat
exchanger is an ideal component, meaning that there is only heat transfer between the
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Fig. 8.10 T-S diagram
showing isenthalpic
expansion processes

7 :

S

high and low pressure gas flows, otherwise the system is adiabatic, O = 0. Further-
more, friction pressure drop across the heat exchanger will be neglected. It should be
noted that the above assumptions can be substantially different from isothermal
conditions, where the temperatures of the two gas streams are the same. This distinc-
tion will be clearer as examples are considered. In the thermodynamic language of
cryogenic systems, heat exchangers are assumed to conserve enthalpy flow.

The other major component in the simple liquefier shown in Fig. 8.9 is the
Joule-Thomson valve. As described in the previous section, the J-T valve performs
an isenthalpic expansion of the high-pressure stream. Provided the inlet tempera-
ture is well below the inversion curve, the J-T expansion can produce a two-phase
mixture of liquid and vapor helium. The yield of this expansion stage is determined
by an enthalpy balance between the incoming high-pressure stream and the two
coexisting phases at ambient pressure.

Another way of looking at the yield of a Joule-Thomson refrigerator is by
reference to a T-S diagram; see Fig. 8.10. Here the points on the flow chart in
Fig. 8.9 are indicated. The compressor stage involves step (1)—(2). A truly
isothermal compression would follow a horizontal line on the 7-S diagram; how-
ever, this is not realistic. Also shown in the figure is the path of a five-stage real
compression process that consists of a series of isentropic compressions followed
by an isobaric heat transfer to the reservoir. The reasons for this multistage process
are discussed later.
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The compression stage is followed by an isobaric heat exchange process that
brings the gas from (2) to (3), reducing its temperature and entropy. The cooling
used to bring the gas from (2) to (3) is transferred from the return low-pressure
stream through the heat exchanger where the exiting gas is brought back to ambient
conditions. Point (3) represents the inlet to the J-T valve. Step (3)—(4) is then an
isenthalpic expansion into the two-phase coexistence region. In principle, it is easy
to determine the liquefaction yield y by balancing the enthalpy of the high pressure
fluid at the valve inlet to that of a mixture of the low pressure liquid plus vapor at the
outlet. The fraction of gas which is not liquefied follows the isobaric return stage (g)
to (1), where its enthalpy is used to cool the incoming fluid through the heat
exchanger. Finally, since the return gas has a smaller mass flow by the amount
liquefied, in advance of recompression there is a make-up flow added to the stream
to maintain 2 constant.

The above description is a qualitative indication of the type of analysis that is
necessary in the design of a Joule-Thomson liquefier. To make a more quantitative
determination of the liquefaction fraction or yield of this system, it is necessary to
invoke the first law of steady flows. For simplicity, we assume no work or external heat
is applied to the system and that the heat exchanger conserves enthalpy. With this set
of assumptions, the analysis requires writing down enthalpy conservation for the
combination of the heat exchanger, Joule-Thomson valve, and liquid yield, that is,

mhy = (m — I’i’l[)h[ + nyhy (8.27)

where my; is the liquid mass flow rate and 4, is the specific enthalpy of the liquid.
Defining the yield or fraction liquefied as y = n; /1, we can rearrange (8.27) to give
an expression for this value as,

Ch—hy
A —

(8.28)

It is apparent from (8.28) that the working fluid must be below the inversion curve
for the fluid to cool through the J-T valve. Unless the specific enthalpy of the high-
pressure stream, /15, is less than that of the low-pressure side, /4, the quantity described
by the right-hand side of (8.28) will always be negative, indicating that no liquid yield
is possible. Note that the yield is only a function of the fluid properties and the
compression ratio p,/p;. For a given fluid and initial temperature, the pressure is the
only quantity that may be varied in the optimization process. This is a standard
procedure for determining the best operating conditions of a particular system.

The maximum yield for the simple Joule-Thomson refrigerator occurs when /4,
in (8.28) is a minimum. This is a result of 4; and A; being fixed by boundary
conditions. The minimum in A, is found by taking its derivative with respect to
pressure and setting it equal to zero:

8h2>
—Z) =0 8.29
< op)r ( )
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Referring to the definition of the Joule-Thomson coefficient, (8.10), we note that
the above derivative can be written in terms of u;:

oh
(6_[7) v (8.30)
T

Therefore, the best place to begin an isenthalpic expansion is on the inversion
curve, i.e. where p; = 0.

Example 8.1

Calculate the yield for a simple Joule-Thomson system operating such that
points (1) and (2) are fixed at 20 K.

Although this seems like an unphysical system, in principle it could be achieved
by precooling the helium with a liquid hydrogen bath. The first question to ask is:
What is the best operating pressure for p,? The answer of course is derived by
reference to the inversion curve, Fig. 8.7. Here at 20 K, the pressure corresponding
to the inversion curve is about 3.8 MPa, a not unreasonable value for a helium
compressor. Given the initial temperature and pressure, it is a straightforward
process to determine the yield by substituting the tabulated values for the specific
enthalpies into (8.28):

hi(20 K, 0.1 MPa) = 118.6kJ /kg
hy(20K, 3.8 MPa) = 108.0k/ /kg

hi(4.2K,0.1 MPa) = 9.9/ /kg

The result of that calculation gives y = 0.098.

The yield of the liquefaction system is not the only factor to be considered when
evaluating the quality of design. In particular, it is important to have a thermody-
namically efficient process to minimize the work required. For an idealized system,
such as the one considered here, it is possible to evaluate the work required to
produce a unit mass of liquid and compare this value with the thermodynamically
ideal process described earlier. To perform this calculation, we again assume that
the various thermodynamic processes in the cycle are ideal. The work required for
liquefaction is entirely that of the compressor which operates at constant tempera-
ture. The first law of steady flows, when applied to the compressor in the
Joule-Thomson refrigerator, gives an expression for the compressor work

& = T(S] — S2) — (h] — ]’12) (831)
m
where m1 is the total mass flow. To cast (8.31) in a form that is better compared with
an ideal system, substitute the definition of yield,
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L h—hy
YT h—h

A general expression for the work per unit mass liquefied by this process is then

We  (hi—h
— = T(s1 —s2)—(h—h 8.32
e = () i —s0) = (= ) 832
Rather than work out the value for (8.32) given a particular system, it may be
more instructive to compare it with the ideal liquefaction system given by
Wi
- = T(Sl — S]) — (l’l] — h[) (833)
my
Then for the Joule-Thomson liquefier, the ratio of these two quantities, (8.32)
and (8.33), gives the figure of merit,

FOM = (hl - h2> (T(Sl =) = (i = h’)> (8.34)

/’ll — h[ T(Sl — Sz) — (h] — ]’12)

Example 8.2

Considered the above helium Joule—-Thomson liquefier (Example 8.1) and
calculate the figure of merit (FOM).

Since the system is initially at 20 K, with the high-pressure side at 3.8 MPa,
the entropy of each state is known:

51(0.1 MPa, 20 K) = 17.52kJ /kgK
52(3.8 MPa, 20 K) = 9.35k/ /kgK
53(0.1 MPa, 4.2 K) = 3.55k/ /kgK

Using these values gives a figure of merit of FOM = 11.4%. It should be noted
that this value only takes into consideration the liquefaction between 20 and
4.2 K. To consider the overall efficiency of the liquefaction process, it would be
necessary to include the stage operating between 300 K and 20 K. The above
proviso makes the calculation of the work per unit mass liquefied from (W, /r)
(8.32) incomplete as well.

A number of factors can contribute to inefficiencies in the system, tending to
reduce the FOM below what is calculated for an ideal system. With respect to the
compression stage, it must be borne in mind that a truly isothermal compressor is
not realizable. Real compressors actually operate in a two-step process, the first
being a near adiabatic compression followed by heat exchange with an isothermal
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reservoir. This process, which is sometimes referred to as polytropic, is shown
schematically in step (1)-(2) of Fig. 8.10. The isothermal compression is
approximated by a multistage two-step process. The necessity to provide a multi-
stage process occurs because the adiabatic compression causes rather large temper-
ature increases in the gas that can cause damage to the equipment. Furthermore, a
multistage process more closely approaches an isothermal process, as can be seen in
the T-S diagram, and consequently is more thermodynamically efficient.

The problem of temperature rise in the adiabatic compression stage is
demonstrated most dramatically by reference to an example. Assume it were
desirable to achieve a single-stage compression of helium between 0.1 and
1.0 MPa at 300 K. This would consist of an adiabatic compression stage followed
by an isothermal heat exchange. We can find out the result of this process by
equating the entropy before and after compression,

51(300 K, 0.1 MPa) = s5,(T5, 1 MPa)

which determines the maximum temperature 7,. The result gives a rather high
temperature at the end of compression, T, ~ 750 K. This condition can cause a
number of undesirable effects including physical damage to the compressor and its
lubricants. For efficiency as well as hardware limitations, it is therefore desirable to
carry out multistage compression.

The above discussion assumes that the liquefaction system already has achieved
the steady state and consequently all temperatures (1) through (4) are constant. In
practice, the cooldown process is of equal concern particularly for dynamic cooling
devices. The partial cooldown of a simple Joule-Thomson liquefier may be
represented on the T-S diagram by the cycle (1)—(2)—(3')—(4"). During this interme-
diate stage of operation, there would be no liquefaction and the mass flow would be
constant throughout. The net effect of continuing the cooldown would be to reduce
gradually (3)—(3) and (4') into the two-phase region to (4). Naturally, the rate at
which the cooldown takes place depends on the thermal capacity of the system,
mainly the heat exchangers. This fact points out the desirability of minimizing the
mass of the refrigeration components, which is trait 3 of the characteristics of good
refrigerator and heat exchanger design.

During the cooldown process, the fluid entering the JT expansion valve may
temporarily have a temperature and pressure corresponding to a point outside the
inversion curve. This would seem to imply a negative JT coefficient and thus no cooling.
However, it is important to note that it is the integrated value of the JT coefficient over a
finite pressure drop that determines whether cooling is achieved through a cycle. This
point has been studied for many different fluids and conditions by Maytal [7].

8.3.4 Cascade JT Liquefier

The use of the intermediate-temperature fluids in the liquefaction of low-temperature
liquids has been an established technique since the beginning of cryogenics. In fact the
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concept was used by Pictet in the first liquefaction of O,. The cascade liquefaction
system, which is a special case of this concept, consists of a series of closed-cycle
systems each using the change of state from liquid to gas to achieve cooling. Thus, a
true cascade system employs working fluids with overlapping two-phase coexistence
regions. The cascade system can have high thermodynamic efficiency but it is
generally cumbersome because of the number of stages required. Furthermore, it is
not possible to have a true cascade liquefier that produces liquid helium or even liquid
hydrogen and neon because the critical points of these fluids are below the triple point
of the next higher-temperature liquid. However, some aspects of the cascade system
can be applied in the liquefaction of helium. Precooling of the gas in a liquefier
consisting of heat exchangers, expansion engines, and a Joule-Thomson valve, cannot
be considered a true cascade system, but the benefits are similar [8].

Figure 8.11 displays a hybrid JT-cascade system for liquefaction of helium. The
flow diagram is for a helium liquefier using this method combined with a simple
Joule-Thomson liquefier. The system consists of several circuits, each containing a
different working fluid. All circuits, except the helium liquefier, operate in a closed-
cycle mode, where the liquid reservoir simply provides the refrigeration for the next
lower stage. Since this system uses the Joule—Thomson effect, it is only necessary
for the working fluid to be below its inversion temperature before cooling can
occur. Consequently, each working fluid can have a wider temperature span than
with a conventional cascade system. The working fluids must have inversion
temperatures above the boiling point of the next-higher working fluid in the system.
In the case displayed in Fig. 8.11, the helium is precooled by a closed-cycle
hydrogen liquefier. In turn, since the inversion temperature of hydrogen is 202 K,
it can be precooled by liquid nitrogen or a similar boiling fluid with T}, < 202 K. In
this circuit it is possible to produce the liquid necessary to precool the hydrogen
circuit with a simple nitrogen cycle, since Tj,, of nitrogen is above room tempera-
ture. In principle, the above described hybrid JT-cascade system could be expected
to produce liquid helium, although probably with low thermodynamic efficiency
because of the compounding effect of numerous Joule-Thomson liquefiers, all of
which operate at rather low figures of merit.

8.3.5 He Il JT Liquefier

Production of the low-temperature phase of liquid helium, He II, is an area of
special interest. Unlike normal helium liquefiers, these systems are not mass
produced, but with the developments around such projects as the Large Hadron
Collider, there is now considerable experience with large scale He II liquefaction
and refrigeration [9, 10].

In most cases, He II liquefaction systems exist as an addendum to a normal
helium closed-cycle refrigeration. Thus, the starting point for the low-temperature
(T = 1.8 K) stage is often an isothermal bath of liquid helium near atmospheric
pressure and about 4.2 K. This approach is not essential because it is equally
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Fig. 8.11 Flow diagram for a hybrid cascade system for liquefaction of helium [8]

possible to expand directly to corresponding low pressures (p < 5 kPa). However,
the existence of a normal helium bath allows its use in other parts of the system or to
intercept heat leaks at higher temperature with improved thermodynamic
efficiency.

A schematic of a He II liquefaction system using this concept is shown in
Fig. 8.12. A second J-T valve operates between the normal helium bath and the
low-temperature heat exchanger dropping the saturation pressure to p ~ 1.6 kPa
corresponding to T;, = 1.8 K. The return flow of helium vapor is then available to
precool the incoming fluid. This heat exchanger may be of an unconventional
design because the low-density vapor has considerably different heat transfer and
fluid flow characteristics [11].

Above the heat exchanger a compressor returns the flow to complete the circuit.
The simplest approach, suitable for relatively small systems (Q. < 100 W), is to
recompress the helium vapor at ambient temperature with a conventional high-
capacity vacuum pump operating between 1.6 and 100 kPa. Since the vacuum pump
output is near atmospheric pressure it can then feed into the return line of the
liquefier compressor. The disadvantage of this approach is that the vapor density is
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Fig. 8.12 Schematic of He II liquefaction/refrigeration system

too low to allow good heat exchange with incoming fluids, which works against the
thermodynamic efficiency of the cycle.

An alternative method that is in use with large He II liquefier/refrigeration
systems involves the use of cold compressors [12]. This method seems to contradict
thermodynamic principle by performing work on a fluid at low temperature.
However, the main advantage of improved heat transfer with the higher density
gas is more important than the added compressor work. Such cold compressors
typically have compression ratios (p,,,/p;,) of about 10 requiring that there be
multiple units in series to bring the gas pressure above ambient.

As a quantitative example of this technology, consider an isenthalpic expansion of
helium from 0.1 MPa, 4.2 K to 1.6 kPa corresponding to the saturated vapor pressure at
1.8 K. A low-temperature helium 7-S diagram is shown in Fig. 8.13. The expansion
follows along path (1)—(2). Determination of the yield for the process is analogous to
the methods applied above in conventional J-T helium liquefaction. By equating the
enthalpies before and after expansion, we obtain an expression for the yield,

b~y

= 8.35
y — (8.35)
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Fig. 8.13 Low temperature T-S diagram for helium showing both He I and He II regions and
isenthalpic expansion to 1.8 K

where the subscripts apply to the various locations on the 7-S diagram. For the
process under consideration, the yield y = 62%. Although this yield is fairly high it
can be improved considerably by precooling the incoming fluid with the return
vapor flow. For example if one is able to subcool the inlet to the J-T valve to 2.2 K,
just above the A-temperature, the isenthalpic expansion will follow path (1)—(2")
with a corresponding yield y = 89%. See problem 8.8.

Before leaving the current subject, it is worth mentioning one potentially unique
feature of a He II liquefaction/refrigeration system. As was discussed in Chap. 6,
the saturated He II film attached to the surfaces above the liquid level in a bath can
flow and carry heat as a result of a pressure or temperature difference. This film is
known as the Rollin film. A potential technical problem occurs if the Rollin film
reaches regions of higher than bath temperature and in turn conducts heat back into
the bath. Also, the saturated film will have a higher vapor pressure than that of the
bulk allowing preferential evaporation.

This problem is of greatest concern in small He II baths such as in laboratory size
systems designed to reach as low temperature as possible. Since the film thickness
is a function of the height above the liquid, small systems have a greater propensity
for this problem. It probably has a negligible influence on large He II refrigeration
systems such as for example are part of the LHC.
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8.4 Isentropic Expansion

A thermodynamically more efficient method to achieve cooling of a liquid—gas
system is to make the fluid do expansion work. If done carefully, this kind of
expansion can be nearly adiabatic and reversible, thereby approaching an isentropic
process, As = 0. Since the Carnot cycle is comprised of isothermal and isentropic
stages, it is clear that the expansion by the performance of work is a very good
method to produce cooling.

To determine the effectiveness of an expansion process for the production of
cooling it is useful to define a parameter similar to the Joule-Thomson coefficient.
This parameter, referred to as the isentropic expansion coefficient, u, is equal to the
slope of the constant entropy line in p-T space:

oT

As before, this quantity may be expressed in terms of other common thermody-
namic variables. By using an identity of partial differential equations and a Max-
well relation, the expression for p; becomes

T [0Ov
My = C_p (B_T)P (8.37)

where use has been made of the definition for the constant pressure specific heat,

C, = T(%) . Comparison of (8.37) with (8.17) produces a simple relationship
p

between the Joule-Thomson coefficient u; and the isentropic expansion coefficient y:

v
=y —— 8.38
W = Mg G, (8.38)

Recall that for an ideal gas, y; = 0, so in that case u; = v/C,. This latter
expression clearly shows that isentropic expansion always produces a temperature
drop since v/C, is always a positive quantity. Thus, the isentropic process is not
dependent on real gas behavior to achieve cooling.

Normally, one is interested in the change of the temperature caused by a finite
pressure drop. For an ideal gas, where pv = RT, one can easily show by integration of
(8.37) that the temperature ratio resulting from a given isentropic expansion pressure

ratio is,
T; R i
In (—> =—1In (p_> (8.39)
Iy) G f
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For helium, which is nearly an ideal gas above 30 K, R/C,, ~ 2/5. For a pressure
ratio of 10, the corresponding temperature ratio should be about 2.5; i.e. adiabatic
expansion of helium gas from 1 MPa and 300 K to 0.1 MPa should result in final gas
temperature of about 120 K.

For a real gas, y, and thus the temperature drop can be either greater or less than
the value computed above. In particular, for the case of a van der Waals gas,
applying the equation of state (8.20)—(8.37) yields an expression for p,

v 1—b/v
_v 8.40
b G, 1= @a/vRTY(1 = bJv)? (840

where consistent with the initial statement, the quantity in brackets can be either
greater or less than unity. However, unless the density and temperature are close to
the critical point, this value does not deviate markedly from that of an ideal gas.

8.4.1 Claude Liquefier

The present section summarizes how to employ isentropic expansion by the perfor-
mance of work as part of a helium liquefaction or refrigeration system. Since the
maximum inversion temperature for helium is about 40 K, allowing the gas to
performance work is an essential feature of a modern helium liquefier. Without this
procedure, it would only be possible to liquefy helium by using the Linde-Hampson
cycle with precooling the gas using either liquid hydrogen (T ~ 20 K) or liquid neon
(T = 27 K). Fortunately, by diverting some of the high-pressure gas flow stream
through an expansion engine, near-isentropic processes can instead be used to
precool the helium stream to below Ty,

It is most instructive to deal with this subject by way of a specific system. The
Claude cycle as it was first developed provides a good working example. A flow
scheme for the Claude liquefaction system is shown in Fig. 8.14. The system
consists of a compressor, three heat exchangers with an expansion engine operating
on the second, and a Joule-Thomson valve for the final expansion stage. The
purpose of the expansion circuit is to divert a fraction of the incoming high-pressure
gas stream through an engine performing work as the gas expands to the low-
pressure side. Modern liquefiers and refrigerators are more complex than the
Claude cycle but use similar combinations of expansion processes.

Two coupled expansion circuits, such as the Claude cycle provides, have several
advantages over the simple Linde-Hampson cycle. First, such a cycle has the
potential of being more efficient because part of the process stream is undergoing
isentropic expansion with inherently higher thermodynamic efficiency. Second, in
principle the overall efficiency of the cycle can be improved by taking advantage of
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Fig. 8.14 Flow scheme for Claude liquefaction system

the work produced by the expansion circuit, an option that makes sense particularly
for large systems. Finally, since there are now two or more coupled flow circuits,
the main cooling circuit and that through the expander, it is possible to vary the
fraction of the flow that is diverted in order to optimize the performance.

The Claude cycle is displayed on a 7-S diagram in Fig. 8.15. Note that the points
as indicated on the flow chart are also shown in Fig. 8.14. Point (3) is particularly
interesting because it indicates the position where the two circuits separate. The
isentropic expansion reduces the temperature to point (e). The higher-pressure
stream continues until point (5) where the J-T valve produces an isenthalpic
expansion into the two-phase region. Thus, in the Claude system there are two
free parameters to select, the high-pressure value, p,, and the fraction of gas through
the expansion engine circuit, 71, /m = x. To see how these parameters enter the
calculations of yield and net work, it is necessary to consider the thermodynamics
of both processes.

Applying the first law of steady flows to the entire system and assuming that the
expander work is recoverable; the energy balance through the main circuit then
yields,

W,
T (1 =y)hy 4 yhy — hy (8.41)

where as before y = my;/m. The expander work W, enters (8.41) in the negative
sense because the gas is doing work against an external load. In addition to the
above expression, one can obtain a separate independent equation by applying the
first law on the expansion circuit,
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Fig. 8.15 T-S diagram for operating Claude system

e e — o) (8.42)
m

where the fraction of flow through the expansion circuit, x = 1, /m, is an adjustable
parameter. The above two equations allow the determination of the net yield y and
the thermodynamic efficiency or FOM of the Claude cycle.

The yield is independent of whether the expander work is used in the thermody-
namic cycle. An expression for y can be established by simply equating (8.41) and

(8.42) which gives
hy — hy hy — h,
= 8.43
g <h1 —h1> +x<h1 —h,) #49)

Note that the first term in (8.43) is identical to the yield of the simple
Joule-Thomson liquefier. As has already been discussed, this quantity is only
positive when T < Tj,,. However, the second term is always positive and so it is
possible, based on suitable choices of x and p,, to have a positive yield at
temperatures above the inversion curve. Two cautionary steps must be exercised
when evaluating the yield from (8.43). First, conservation of mass is not a compo-
nent of this analysis. Based only on (8.43), it appears that to maximize the yield x
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should take on its maximum value; however, conservation of mass flow requires
that y + x < 1. Furthermore, it is unreasonable to set y + x = 1 because this would
allow no mass flow on the low-pressure side of the last heat exchanger, a physically
undesirable situation since the heat exchanged is cooled by this return flow.

Optimizing the Claude cycle requires fixing the mass flow fraction x at its
optimum value. However, determination of the optimum conditions can only be
achieved by analyzing the complete cycle on a component basis. This is done by
balancing the enthalpy flow through the heat exchangers, taking into consideration
inefficiencies, to obtain temperatures at each node in the cycle, see Fig. 8.14. As
these equations are coupled, they must be solved simultaneously to obtain the best
choice for flow through the expansion circuit for maximizing yield.

The second step that must be taken when evaluating the yield of a system that
includes an expander is to establish the absolute value of the enthalpy at either the
inlet or outlet of the engine. Since the pressure drop is given, the absolute values of
h, or h; must be known to establish /3 — &,. This quantity should be maximized to
achieve maximum yield. Obviously, 4, and/or /5 are not free parameters and are
established by absolute temperatures at (3) and (e). As can be seen in Fig. 8.14, T; is
always less than 7,. However, the value of T; cannot be established without
resorting to the more complex analysis of heat transfer and fluid flow for a particular
system, which is beyond the scope of the present discussion. The examples
presented below are based on assumptions for these values. A particular set of
assumptions can be checked for consistency against thermodynamic laws, such as
an efficiency value greater than that of a Carnot cycle, but these are only approxi-
mate calculations to show the overall framework of the analysis.

In addition to the yield of the Claude system, one can also determine the net work
involved in liquefying a unit mass of fluid. Assuming that the net work is equal to the
difference between the compressor work and expander work (W = W.—W,),
we obtain

= [T(S] — Sz) — (/’l] — ]’12)} —X(/’l3 — /’le) (844)

3=

The first term in (8.44) is identical to that of the Joule-Thomson refrigerator,
while the second term is the net gain achieved by using the expander work. As with
the yield, to minimize the net work the second term should be optimized. Clearly,
the net work for the Claude system must be greater than the ideal expansion system
allowing the assumptions applied to (8.44) to be checked for correctness.

To evaluate the practical aspects of the above discussion, consider the use of the
Claude cycle for liquefaction of helium. Here for the sake of clarity, we assume that
all processes are thermodynamically ideal, that is the expansion engine operates
isentropically, 4s = 0 and the J-T valve provides isenthalpic expansion. The Claude
cycle is as described above and displayed schematically in Fig. 8.14. The first
parameter that must be selected is the value of the compressor output pressure, p;.
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Two practical considerations enter here. First, whether the hardware can withstand
the pressure difference particularly in terms of compressor and expander pressure
drop. Second, since the last step of the process is through a J-T valve, it probably
makes little sense to have p, above the maximum inversion pressure. With these
factors under consideration, a realistic value to choose in this example is p, =
2.0 MPa. Therefore, the thermodynamic states at three points on the cycle are
established:

1. Low-pressure return side:
p1 = 0.1 MPa
T =300K
s; =31.6k]/kg K

hy = 1574 kJ [kg

2. High-pressure inlet side:
p2 =2MPa
T, =300K
s =254k kg K

hy = 1580 kJ kg

(I) Saturated liquid state:

p3 = 0.1 MPa
T; =42K

s3 =35kl kg K
hy =9.9kJ /kg

As has been stated above, there are two values to select in determining the yield and
net work, namely, x and T5. Based on (8.43), a desirable choice is a maximum value for
x; however, mass conservation sets an upper limit for y = 1 — x. For the present
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discussion we therefore somewhat arbitrarily assume x = 0.33 and 73 = 200 K. These
assumptions establish the thermodynamic state at point (3):

3. Inlet to expansion engine:

p3; = 2MPa

T; =200K

53 =23.3kJ kg K
hz = 1060kJ [ kg

The expansion engine performs an isentropic expansion on the gas, defining the
thermodynamic state of the exiting gas (s, = s3):
(e) Exit from expansion engine:

pe = 0.1MPa
T,=60.6K

s =23.3kJ /kg K
he = 326kJ [kg

With the above four thermodynamic states and the value of x fixed, it is a
straightforward computation to determine y by substitution of numerical values
into (8.43). This calculation results in a yield of y = 0.15. Note that once T3 is
selected, the yield is directly proportional to x. For this set of parameters x + y =
0.48, which seems reasonable but possibly not optimum.

It is also an easy calculation to determine the net work for the Claude system and
to compare this value with a thermodynamically ideal system. Since (8.44) is
written on a per unit mass compressed basis (W/m), we can simply divide it by
the yield from (8.43) to get the work per unit mass liquefied, which is more directly
comparable with an ideal system. For the example above, the net work per unit mass
of liquid can be determined as:

1
w_1 <K) = 10, 834kJ /kg
m; oy \m

This value has little physical significance by itself but does when compared with
the thermodynamically ideal case (W;/m1):
Wi
—=T(sy —s;) — (hy — hy) = 6866 kJ /kg

ny
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The ratio of these two values gives the figure of merit for this particular Claude
system:

Wi
FOM = —' = 64%
W

Determination of the figure of merit represents a thermodynamic check on the
correctness of the above assumptions. If the FOM computed above worked out to be
greater than unity, it would be in violation of the second law of thermodynamics.
Nothing in the analysis so far prevents this from happening. Clearly, a complete
calculation, which must be done numerically, has built into it a check to prevent this
unphysical condition from occurring. The above example indicates the advantages
of performance of work on an ideal liquefaction system. Although the Claude
system is very simple in its introduction of this concept, it accrues advantages. In
fact, modern refrigerators and liquefiers of helium use cycles employing the same
basic principles. As the systems evolve into complexity, the ability to evaluate their
performance analytically diminishes, leading to an increased number of numerical
assumptions.

8.4.2 Collins Helium Liquefaction System

In the 1940s the Collins helium liquefier evolved out of an effort to produce a
commercial system using expansion engines to precool several heat exchangers [13].
Today, the Collins cycle is the basis of virtually all large scale helium liquefiers. The
Collins system is actually quite similar to the Claude system except that the former uses
between two and five expansion engines rather than just one. A schematic diagram of a
two-engine Collins system is shown in Fig. 8.16. In designing the Collins system, there
are a greater number of degrees of freedom over that of the Claude system. Depending
on the number of expansion circuits, 7, there are an equal number of expansion circuit
mass flows to select, #1,;. Furthermore, the temperature at the inlet to each expansion
engine must be determined to compute the yield. Once these quantities are knownitisa
straightforward computation to determine the yield for the Collins system,

o hl - h2 +x Ahel +x AheZ +
yihl—hz "ho—h " Chy—h

(8.45)

where 4h,; is the enthalpy change through the ith expansion engine and x; is the mass
flow ratio through the ith circuit. Conservation of mass requires that y + Z; x; < 1.
The first Collins liquefiers were developed with two expansion engines. Typical
working temperature ranges for the expanders are from 60 to 30 K and 15 to 8 K,
respectively. During steady-state operation the approximate values for the expander
mass flow fractions are x; = 0.30 and x, = 0.55 at 1.5 MPa. Insertion of these



350 8 Liquefaction and Refrigeration Systems

A'AVAV
S . wel

P
AAA
VVv

AA
AA AL
AN

(=)

VVv
~AAA
\'4
(]

VVV
W

Fig. 8.16 Schematic diagram of Collins liquefaction system

numerical values into (8.45) leads to a yield of only 3.6%. However, it has been
demonstrated that the liquid yield could be improved by a factor of 2—3 by using a
liquid nitrogen precooler above the first heat exchanger. Precooling with liquid
nitrogen is a fairly common approach for moderate size systems. In addition to
improving the liquid yield, the liquid nitrogen can also be used to cool adsorption
beds for extracting impurities from the helium stream.

8.5 Closed—Cycle Refrigeration

Until this point, the discussion has concentrated on systems whose primary purpose
it is to liquefy helium. Thus, the principal questions that have been asked are: What
is the yield of a particular liquefaction cycle and what is the work per unit mass
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Fig. 8.17 Two different approaches to cooling a system with liquid helium

liquefied? In either case these questions relate only to the production of liquid
helium. It is assumed that the helium is used to cool some device. However, there
are many cases where it is more appropriate to integrate the helium supply with the
application whether it is to supply liquid or extract heat at low temperature. In
practice, many large systems have, as part of their standard operation, a closed-
cycle refrigerator to provide continuous cooling at low temperature, Q.. This
approach is desirable because it can achieve a higher thermodynamic efficiency
and dedicated operation with the closed-cycle nature reducing the probability of
helium vapor losses and contamination. The further advantage of a closed-cycle
refrigerator in terms of thermodynamic efficiency can be seen most clearly by a
single but instructive example.

Consider two different methods of cooling a system to liquid helium
temperatures. One method is shown schematically in Fig. 8.17a. Here the cooling
of the device is achieved in two stages. First, helium is liquefied and stored in a
container. Subsequently, or possibly simultaneously, helium is transferred from the
storage container to the system to be cooled. Heat generated in the system Q. and
absorbed at low temperatures is removed by the latent heat of the liquid helium. In
this case, the enthalpy of the evaporated helium is lost because the heat is being
generated at low temperatures and the cold gas escapes to be recovered and re-
liquefied later. Certainly, if Q. were the result of conduction from the external
environment, the situation would be considerably different. In that case, the vapor
can cool the structure continuously, thereby reducing the total heat absorbed by the
liquid helium. Liquid helium has a relatively small latent heat, iy ~ 21 kl/kg at
4.2 K. This value is equivalent to 0.73 W h/L at saturated vapor pressure densities.
A useful quantity to keep in mind is that 3/4 W dissipated in liquid helium for 1 h
will boil away 1 liquid liter. The work required to produce a unit mass of liquid in
an ideal Carnot cycle has been computed above to be 6,866 kJ/kg. The coefficient of
performance (COP) is defined in terms of the number of watts that must be
dissipated at 300 K to produce 1 W of cooling at low temperatures. For the above
open-cycle system, the COP = hy, /W; = 1/326 = 0.0031.
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Table 8.3 Power requirements for various ideal refrigeration modes

Closed-cycle

refrigeration Open-cycle refrigeration Ideal liquefaction
Fluid T(K) (W300 k/Wa2 ¥) (W00 k/Wa2 ¥) (W-h/L)
He 4.2 70.4 326.0 236
H, 20.4 13.7 31.7 278
Ne 27.1 10.1 15.5 447
N, 714 2.88 3.87 173
Ar 87.3 2.44 2.95 185
0O, 90.2 2.33 2.89 195

Now compare the above computation with a closed-cycle refrigerator, such as
shown schematically in Fig. 8.17b. Closed cycle means that the helium gas is
recovered cold through the refrigeration system. This approach allows the enthalpy
of the gas to be returned through the cycle to precool the incoming high-pressure
stream by means of one or more heat exchangers. The efficiency of such a device is
inherently much higher. If the system were based on an ideal Carnot refrigerator,
the COP would be given in terms of the absolute temperatures 7 and T that is,
COP =Tc/(Ty—-Tc) = 1/70.4 = 0.0142, about a factor of 4.6 higher than the open-
cycle system. Real systems that perform at less than Carnot efficiency have a
similar ratio of efficiency for closed versus open-cycle operation.

Listed in Table 8.3 are values for power requirements of open and closed-cycle
refrigeration assuming ideal thermodynamic efficiencies. Comparison of the second
and third columns indicates that helium accrues the greatest thermodynamic advan-
tage by operating as a closed cycle. This is because the latent heat of liquid helium
is small compared to the enthalpy of the gas between 300 K and 7},,. The ratio of
columns 2 and 3 decreases as the boiling point of the liquids increase. For the high-
temperature cryogenic fluids such as O, and N, the latent heat is larger than the
enthalpy of the gas between T}, and 300 K. The last column in Table 8.3 indicates
the minimum power requirements to liquefy a liter assuming an ideal process. This
quantity is computed by using (8.33) and dividing by the density of the liquid at
saturated vapor pressure.

As is the case for liquefaction systems, real low temperature refrigerators
operating on a particular cycle achieve a fraction of ideal thermodynamic efficiency.
That fraction is called the figure of merit (FOM). Thus, real refrigerators have a
similar makeup to real liquefiers. However, there exists a clear distinction between
refrigerators and liquefiers in that the refrigerator is to provide cooling while the
liquefier is to condense fluid. For liquid—gas refrigeration systems there are primarily
two methods of extracting the low-temperature heat load. With isothermal refriger-
ation the heat load is absorbed by a constant temperature liquid reservoir producing
saturated vapor that returns through the cycle. This approach is nearly identical to
liquefaction with the heat load being taken by the phase change. Alternatively, the
heat load may be absorbed over a range of temperatures not determined by the
boiling point of specified liquids. Such systems are not designed to produce liquid
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but rather are specified in terms of the low temperature refrigeration performance that
depends on the temperature, Q7). These systems include the regenerative
cryocoolers that operate on a different class of cycle than do the recuperative cycles
discussed so far. In this section, we begin with a discussion of isothermal refrigeration
system design. We next present the topic of isobaric refrigeration based on recupera-
tive cycles but where liquid is not produced and the gaseous enthalpy is used to absorb
the heat load. Finally, we discuss the entire subject of regenerative cycle design, which
is based on a totally different approach to low temperature refrigeration.

8.5.1 Isothermal Refrigeration

There is not a large difference between the system configuration for an isothermal
refrigerator and that of a liquefier. In fact, the only distinction is that heat QC is
applied to an evaporator bath rather than liquid being extracted. Consequently,
unlike a liquefier that requires makeup gas, the mass flow 7 in the isothermal
refrigerator is the same throughout the cycle. This distinction will result is slightly
different performance of heat exchangers, since the mass flow rate is now equal on
both sides. Beyond that one issue, the optimization of the cycle is identical to that of
a liquefier.

An example of an isothermal refrigerator based on the Claude cycle is displayed
in Fig. 8.18. Note the similarity between that figure and Fig. 8.14. Applying the first
law of thermodynamics to the isothermal Claude cycle, the rate of heat extraction at
low temperatures may be written

Oc _

P (hy — hy) + x(hs — h,) (8.46)
which is related to the yield equation for the liquefaction cycle. In fact, it is
generally true for isothermal refrigeration that

Oc

y iy — ) (8.47)
a quantity that is equal to the ratio of actual refrigeration to ideal refrigeration.
However, one should be careful in application of (8.46) and (8.47). Since the mass
flow is now conserved throughput the cycle, the condition applied to the return side
heat exchangers is somewhat different. This affects the low-temperature end of the
refrigerator and allows more latitude in the selection of mass flow through the
various parallel circuits. It should result in slightly higher yield than in a pure
liquefier and overall better performance.

Apart from this one fact, isothermal refrigeration is related directly to the
liquefaction process. Thus, the optimization procedure follows a set of criteria
similar to those outlined in Sect. 8.3.1.
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Fig. 8.18 Schematic of isothermal refrigerator based on Claude cycle

8.5.2 Isobaric Refrigeration

If refrigeration is needed at temperatures outside the liquid regime, then one
approach is to use an isobaric gas cycle refrigerator. Here the heat load is absorbed
in the vapor enthalpy at low temperatures producing a specific temperature
increase. There are several reasons why this mode of operation is useful as a type
of refrigeration. For one, it permits the operating temperature of the low end to be a
free parameter adjustable within design constraints and not restricted to the boiling
point of the cryogenic fluid. For helium, isobaric refrigerators are particularly
useful for systems operating above T,. = 5.2 K. Avoiding the two-phase coexistence
region permits the refrigerator to be constructed without a Joule-Thomson expan-
sion stage. This approach may permit higher thermodynamic efficiency.

A common cold gas isobaric refrigeration cycle is also known as the Reverse
Brayton cycle. This cycle is shown in Fig. 8.19 and its 7-S diagram in Fig. 8.20.
Actually, the cycle shown in the T-S diagram is not strictly a Brayton cycle because
the compression shown is isothermal. The system uses the expansion engine to
provide cooling to a low-temperature heat sink. The amount of heat absorbed at low
temperature is equal to the enthalpy change of the gas as it passes through the low-
temperature heat sink. This quantity may be written

O

m

= hs — hy (8.48)
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The various locations on the flow chart are also indicated on the 7-S diagram.
Note that (5) is at a temperature that is comparable to (3), the inlet to the expansion
engine.

As has been the case for the liquefier design, the isobaric refrigerator is not
determined fully by thermodynamic considerations. Applying the first law of steady
flows to the entire cycle gives an alternate expression for the refrigeration,

Oc _
Pl (h1 — h2) + (h3 — ha) (8.49)
where the first term is the isenthalpic contribution is only positive provided T < Tjp,.
The second term in (8.49) is the cooling produced by the isentropic expansion engine
and is always positive. For the presently considered cycle, (8.48) and (8.49) do not
determine fully the refrigeration power. However, if one additional constraint is

established such as the desired exit temperature to the load heat exchanger, there is
enough information to determine the performance.

Example 8.3

Calculate the cooling power per unit mass flow rate for a Reverse Brayton cycle
that is to provide refrigeration at 100 K. Assume that the compressor outlet pressure
is 2 MPa.

The refrigerator should operate such that the maximum temperature at the
exit of the low temperature heat exchanger not to exceed 100 K. Therefore, in
addition to (8.48) and (8.49), it is known that 75 = 100 K. Furthermore, let us
establish the usual set of starting conditions: at low pressure (1),

p1 = 0.1 MPa
T, =300 K
s; = 31.6kJ [kgK
hy = 1574kJ kg
at high pressure (2),
p2 = 2MPa
T, =300 K

52 = 25.2kJ JkgK

hy = 1580k] [kg
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and exiting the low-temperature heat exchanger (5),
ps = 0.1 MPa
Ts =100 K
ss =257 kI/kg -K
hs =534 kJ kg

Combining (8.48) and (8.49), an expression for conservation of enthalpy
through the first heat exchanger is obtained:

hy = hy — hy + hs = 540 kJ [kg
it then follows that state (3) is established:
p3; = 2MPa
T; = 100K
s3 = 19.5kJ [kgK
hy = 540kJ /kg
Finally, 44 and T, are fixed by isentropic expansion:
p4 = 0.IMPa
T, = 30K
sq = 19.5kJ [kgK
hy = 170kJ [ kg

Now returning to either (8.48) or (8.49) we obtain the cooling power of the
refrigerator:

QO _

364 kJ kg

(continued)
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Example 8.3 (continued)

To determine the efficiency of this cycle it is useful to compare the value of 0.
with the total work done. This exercise establishes the coefficient of performance.
The net work is computed by assuming the expansion engine work can be utilized:

w
E = Tz(Sl — S2) — (h1 — /’lz) — (/’l3 — h4) = 1496k.[//€g

These values are based on a specific example, however, it is still useful to
compare the coefficients of performance to that of an ideal cycle. For the above
example,

COP = % =0.243
m

While for an isothermal Carnot refrigerator operating between 100 K and
300 K the coefficient of performance is,

Tc

COP = ————
Ty —Tc

=0.50

That the above designed refrigerator operates at a figure of merit less than 50%
is due largely to the isobaric operation. Because the system must cool the gaseous
helium to 30 K and then heat it isobarically to 100 K, its efficiency would be lower
when compared to an isothermal system operating continuously at 100 K.

8.6 Regenerative Referigeration Cycles

Regenerative refrigeration cycles are distinguishable from recuperative cycles as they
involve cyclic processes that do work to extract heat from the cold point in the cycle
with the low temperature being stored in a refrigerator component known as the
regenerator. A regenerator is much like a recuperative heat exchanger with the
principal difference being that the former needs to have a large volumetric heat
capacity to store as much thermal energy as possible as the fluid streams alternately
flow through the matrix. During the cyclic process, a significant amount of heat is
alternately stored in, and released by, the regenerator, a feature that is different from
recuperative cycles where heat is continually transferred from one fluid stream
through the solid heat exchanger to the other fluid stream, while the solid components
remain at a steady state temperature. In general, cryogenic refrigerators based on
regenerative cycles are suitable for lower cooling power applications compared to the
larger recuperative cycle machines.

There are several regenerative refrigeration cycles of interest in helium cryogenics.
To cover this subject completely, however, would require far more space than is
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allocated here. Therefore, the present discussion is limited to presentation of the
Stirling cycle and the Gifford McMahon (GM) cycle, both of which are in common
and widespread use today in cryogenics. In addition, these two cycles have been the
main venue for development of what are commonly known as pulse tube cryocoolers.
The primary distinction between the conventional regenerative cryocoolers and the
pulse tube cryocoolers exists in the method used to produce the necessary phase shift
between the flow and pressure oscillations, and the optimum value of that phase shift.
In their conventional embodiment, the Stirling and GM cycles control the motion of a
displacer to move the refrigerated fluid through the regenerator. The timing of the
displacer motion with respect to the production of low and high pressures determines
the phase shift for the Stirling and GM cryocoolers. In the more modern pulse tube
refrigerators the necessary phase shift is achieved without the use of any cold moving
parts, such as a displacer. Instead, one of various room temperature mechanisms can
be used to optimize the phase shift. The lack of any cold moving parts and the
associated long-term reliability explain the attractiveness of pulse tube refrigerators.
A complete description of pulse tube refrigeration cycles is beyond the scope of the
present discussion, however a few of its salient features are provided below.

8.6.1 Stirling Cycle

The Stirling cycle refrigerator evolved from the heat engine cycle invented by
Robert Stirling in 1827 [1]. Operated in reverse, the Stirling engine produces
cooling. The Phillips Company was the first to commercially produce refrigerators
that operated on this cycle. The Stirling cycle may be approximated as consisting of
two isothermal and two isochoric (constant volume) processes. A schematic repre-
sentation of the cycle is shown in Fig. 8.21. Refrigeration is achieved by isothermal
expansion of the working fluid. There are three main components shown: regenera-
tor (R), compressor/expander, and displacer (D). The displacer works in concert
with the compressor during the compression, expansion, and shuttle processes to
move the alternately high- and low-pressure working fluid through the regenerator.

The four stages displayed in Fig. 8.21 outline a procedure whereby these
components produce cooling. Once the process has achieved the steady state it
can be described in terms of p-V and T-S diagrams as in Fig. 8.22. However it is
important to keep in mind that the fluid does not flow continuously around the cycle
as in a recuperative refrigerator.

The cycle is described as follows. At (1) a unit of helium is compressed but
resides in the upper compression chamber at high temperature since the displacer is
at its lowest position. From (1) to (2), the displacer is moved to its upper position
forcing the fluid through the regenerator into the expansion chamber. This process
takes place at constant volume. Since the expansion end of the regenerator is colder
than the helium the pressure of the gas decreases to (2). Step (2)—(3) is an isothermal
expansion of the fluid in the lower chamber achieved by moving the displacer
upward with the compressor. This process extracts heat from the regenerator at T..
Between (3) and (4) the displacer is returned to its lowest position, forcing the cold
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fluid back through the regenerator to the compression chamber. Heat is extracted
from the regenerator since the gas is now colder and the working fluid is then
recompressed to (1) isothermally. Because of the periodic nature of the cycle,
cooling is not continuous. However, if the regenerator has sufficient heat capacity,
temperature fluctuations at the low end can be minimized.

The regenerator is a component not present in most recuperative refrigeration
cycles. It performs a similar function to the counterflow heat exchanger in a
recuperative refrigerator with a few exceptions. A properly designed regenerator
should have the following characteristics:

1. Minimum flow resistance.
2. Minimum longitudinal heat conductance.
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3. Large surface area for maximum heat transfer between the fluid and the solid matrix.
4. Large volumetric heat capacity of the solid matrix.
5. Minimum void volume.

The characteristics of regenerators appear similar to those of good recuperative
heat exchangers, with the exception of the large heat capacity. This requirement is
particularly difficult in the application of the Stirling cycle to helium liquefaction or
refrigeration because, as discussed in Chap. 2, most solid materials have rather low
specific heats at liquid helium temperatures. As a result, metals with low Debye
temperature (®p) like lead or tin are often used in the lower end of a regenerator.
However, even these metals become unusable for regenerators below about 10 K.
To achieve refrigeration below 10 K, recuperative refrigerators use special
materials with specific heat anomalies that are associated with magnetic ordering
phase transitions. These materials are discussed further in Sect. 2.1.3.

For an ideal Stirling cycle, the total refrigeration resulting from the isothermal
expansion of a gas from p, to p; is given by the relationship

R
% =—T, ln@
m M D3

(8.50)
where T, is the expansion temperature, M is the molar mass of the working fluid
(4 kg/kmol for helium). Ideally, the cooling rate would be linearly proportional to
the cycle frequency. However, in actual applications frictional losses and other non-
idealities increase with frequency, providing optimum performance parameters for
practical refrigerators.

Example 8.4

Calculate the performance of a Stirling cycle refrigerator is to operate between
100 and 300 K with an inlet pressure of 0.1 MPa and compressor output at
2 MPa. This can be compared to the Reverse Brayton cycle refrigerator
discussed above.

Since these temperatures and pressures are far above the critical point for
helium, it is fair to approximate the helium gas as an ideal gas for the present
calculations. Since steps (1)—(2) and (3)—(4) are isochoric, we can use the ideal
gas law to calculate p, and py,

p1 = 2 MPa;p, = p,;(T,/T;) = 0.67 MPa; p; = 0.1 MPa;
P4 = p3(T4/T3) = 0.3 MPa

Then the isothermal heat removal rate at low temperature is,

. R
QR o 102~ 208 ki/kgK x 100 K x In(0.67/0.1) = 395 kI /kg
m M "~ ps

(continued)
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Example 8.4 (continued)
And the heat rejected into the high temperature reservoir is,

R
% =T 1n;ﬁ =2.08 ki/kg K x 300 K x In(0.33/2) = —1184 kJ /kg
1

Thus, the coefficient of performance for this cycle is,

0. 395 T.

COP = = =05=—°_
O,— 0. 1184 —395 T,—T,

Note that this is the same COP as for a Carnot cycle. Although the Stirling
cycle has theoretically the same COP as the Carnot cycle, there is an important
difference. Since the Stirling cycle has two isochoric processes, heat is stored (or
recovered) at constant volume during those stages of the cycle. Thus, the Stirling
cycle moves more heat for the same cooling power, which can result in further
inefficiencies in its practical application. On the other hand, as a Stirling cycle
refrigerator does not require such high compression ratios as Carnot it provides a
more practical approach for applications.

There are a number of factors that lead to less than ideal behavior in a Stirling
cycle refrigerator. One area of critical importance is in the regenerator design. It is
desirable to have the regenerator effectiveness be as high as possible meaning large
surface area and small flow passages, but this may not be possible in practice. Real
regenerators contain a non-zero void volume that traps gas during the cycle. The gas
in the void volume does not provide any cooling during expansion and reduces the
overall system efficiency. Also, the regenerators contribute to the overall pressure
drop of the cycle and axial conduction can lead to entropy generation.

8.6.2 Gifford McMahon Cycle

The Gifford—-McMahon cycle was originally proposed in the early 1960s as a
regenerative cycle that could potentially reach the helium temperature range [14, 15].
The GM cycle is similar to the Stirling cycle except that the oscillatory flow is achieved
by cycling valves that select where the flow distributes in the cycle, see Fig. 8.23.
The GM cycle description is shown in Fig. 8.24. At the beginning of the first
stage of the cycle, the displacer is at its lowest position with the outlet (return) valve
closed. The inlet (high pressure) valve is opened to allow high pressure helium gas
to fill the regenerator and space above the displacer at room temperature. Then, with
the inlet valve still open, the displacer is moved to its upper position. The high
pressure gas passes through the regenerator and is cooled isobarically by the matrix.
Cold gas then fills the space below the displacer. Next, with the displacer at its



8.6 Regenerative Referigeration Cycles 363

Fig. 8.23 Gifford-McMahon continuous l
cycle compressor
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Fig. 8.24 Cycle description for the GM refrigerator

upper position, the inlet valve is closed and the outlet valve is opened. The gas in
the regenerator and cold space below the displacer undergoes expansion, which
produces the refrigeration. Finally, with the outlet valve still open, the displacer
moves back to the lowest position. The low pressure cold gas is warmed
isobarically by the matrix refilling the space above the displacer at room tempera-
ture completing the cycle.

Thermodynamically, the GM cycle is slightly more complex than the Stirling
cycle. The cooling and warming processes are isobaric while the compression and
expansion processes are isothermal. However, neither the compression nor expan-
sion processes involve a constant mass since there is flow into and out of the system
through the valves. The significant pressure drop occurring at the valves reduces the
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Fig. 8.25 Typical cooling capacity of commercial Gifford McMahon cryocoolers

overall thermodynamic efficiency of the GM cycle compared with that of the
Stirling cycle.

Figure 8.25 displays typical cooling characteristics of large commercial single stage
GM cryocoolers. Performance is usually quoted in terms of cooling power at 80 K
(for which these machines are in the range of 300 W). Note that the cooling power
drops by about an order of magnitude at 10 K. Better low temperature (T < 10 K)
performance can be obtained with a two stage machine, but usually with reduced
cooling power at higher temperatures. Such machines require about 7 kW of compres-
sor power therefore operating at about 10% of Carnot efficiency.

8.6.3 Pulse Tube Cryocoolers

Pulse tube cryocoolers come in a variety of configurations and space does not
permit a complete explanation of all aspects of pulse tube technology [16]. Here we
consider two variations of the design. Both are based on the orifice pulse tube with
the distinction being in the compressor configuration. Figure 8.26 shows these two
configurations. For the Stirling type pulse tube cryocooler, the cycle frequency is
established by the compressor frequency, which is typically of order 100 Hz. On the
other hand, the GM cycle based pulse tube has a cycle frequency set by the cycling
of the valves and is generally of lower frequency, a few Hz.

As with the conventional Stirling and GM cycles, the pulse tube contains a
regenerator through which the cold and hot fluid is periodically cycled. The thermal
gradient in the regenerator is established in steady state with the low temperature
end in direct contact with the cold end of the pulse tube. However, a pulse tube does
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Fig. 8.26 Comparison of Stirling type and GM type pulse tube cryocoolers [16]

not have a displacer. Rather the pulse tube component, that is simply a tube with
heat exchangers at either end, produces a net amount of cooling over the cycle by a
work transfer of energy from the cold to warm end. The work transfer can be
envisioned to occur through the action of a ‘squishy’ gas piston in the open pulse
tube volume. In such a conceptualization, the gas piston is comprised of the gas that
never travels far enough during any part of the cycle to leave the pulse tube at either
end. During the compression portion of the cycle the gas at the cold end pushes on
the gas piston moving it toward the warm end, while during the expansion portion
of the cycle, the gas piston pushes back on the cold end gas. Since the pressure is
higher during the first part of this cycle, and lower during the latter, a net flow of
work occurs from the cold to the warm end.

Optimized cooling with a pulse tube requires a proper phase shift between the
pressure and flow oscillations. A variety of phase-shifting mechanisms have been
developed to accomplish this objective.

Currently, there are a number of pulse tube cryocoolers that can achieve cooling
powers in excess of 1 W at 4.2 K. Examples of their application include small
capacity liquefiers and conduction cooling of low temperature superconducting
magnets as well as helium temperature electronic systems.

8.6.4 Hybrid Helium Liquefiers

Although the regenerative refrigeration cycles are not primarily used for liquefaction,
systems are being developed based on combining a two-stage pulse tube cooler with
other cycles to produce small scale liquid helium plants. In this case, the cryocooler is
used in place of an expansion engine to reduce the helium temperature to a low enough
temperature so that isenthalpic expansion can produce liquid. Such a hybrid system
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Fig. 8.27 Helium liquefier based on a two stage cryocooler precooling the Linde-Hampson cycle

based on a modified Linde Hampson cycle is shown in Fig. 8.27. In this case, the
incoming helium stream is cooled by passing through three heat exchangers. Between
the first and second heat exchanger, the high pressure stream passes through a heat
exchanger attached to the first stage of the cryocooler. The flow then passes through
another heat exchanger before heat exchanging with the second stage of the
cryocooler. After the final heat exchanger, the flow expands through a JT valve. The
temperature of the helium stream at the inlet to the JT valve will depend on the mass
flow rate and the cooling power of the cryocooler.

A typical modern cryocooler may have a first stage cooling power of 50 W at
50 K and second stage power of 10 W at 10 K. This is generally a small capacity
compared to recuperative refrigerators and thus limits the liquefaction rate for such
systems to of order 1 liquid liter/h.
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8.7 Nonideal Refrigeration Components

Practical refrigeration components are not capable of operating ideally or
reversibly. Heat exchangers must always transfer heat across a finite temperature
difference and expanders always allow some heat transfer between the working
fluid and the device. Compressors are not fully isothermal as discussed above. The
net effect of irreversible operation is to increase the work required per unit of
refrigeration produced. The optimum operating parameters (e.g., pressure ratio,
inlet temperatures, and mass flow fractions for expanders) for a particular cycle are
critically dependent on the degree of reversibility in each component in the system.

The degree of reversibility of a component is usually expressed as a ratio of
actual performance to the ideal performance obtained by a reversible process. The
performance parameter of interest for an isentropic compressor or expander is the
change in enthalpy experienced by the fluid. The efficiency, 7, is defined as the
actual change in enthalpy divided by the maximum enthalpy change for a reversible
process:

_ A hactual
n

= 8.51
4 hreversible ( )

For example, the efficiency of the expander in the cycle depicted in Fig. 8.20 can
be expressed as

n 7/’13—/’14/
s —hy

(8.52)

where h; — hy is the enthalpy change produced by an isentropic expansion. Typical
expansion efficiencies are in the range of 70% for state-of-the-art machinery.

The thermal effectiveness is a similar measure of performance for heat
exchangers. According to the first law of thermodynamics for a flowing system,
enthalpy must be conserved in a heat exchanger. The second law requires that the
outlet temperature cannot be lower than the inlet temperature at the cold end of a
counterflow heat exchanger. At the hot end, the outlet temperature cannot be higher
than the inlet temperature. Using the points shown in Figs. 8.19 and 8.20, these
three constraints can be expressed as

mi(hy — h3) = m,(hy — hs) (8.53a)
Ts<Ts (8.53b)
and

T\ <T, (8.53¢)
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where #1; and 1, are the inlet and outlet mass flow rates. The maximum possible
enthalpy transferable is always the lesser of the enthalpy difference on the two sides
of the heat exchanger. The largest possible enthalpy difference occurs when the
fluid is at the maximum temperature occurring within the heat exchanger at one end
and at the minimum temperature at the other end. Note that a difference in mass
flow rates between the two heat exchanger legs can produce a large difference in the
maximum enthalpy change possible in each of the two legs. The thermal effective-
ness of the heat exchanger is defined as the ratio of the actual enthalpy change in a
leg of the heat exchanger divided by the maximum possible enthalpy change,

4 hactual

8.54
Ahmax ( )

As an example, consider the heat exchanger in the cycle depicted in Fig. 8.20.
For the high-pressure leg of the heat exchanger, the maximum possible enthalpy
drop would occur if the fluid entered at temperature T, and left at temperature T’s.
Therefore, the maximum possible enthalpy differences in the two legs of the heat
exchanger are

Ahmaxo—3 = h(p2,T2) — h(p3,Ts) (8.55a)
and
Ahmaxs—6 = h(p1,T2) — h(ps,Ts) (8.55b)

The maximum possible enthalpy change for either fluid stream is the lesser of these
two quantities. The thermal effectiveness can be written in terms of the actual
enthalpy change by inserting (8.54) into (8.55). The thermal effectiveness for heat
exchangers used in refrigeration systems typically ranges around 90%. Heat
exchangers with larger thermal effectiveness are large and expensive and must be
made with care to minimize the pressure drop.

8.8 Refrigeration Technology

When designing and constructing a helium cryogenic system for a particular
application, it is necessary to keep in mind a number of factors that are influenced
by economics and operational methods. Included among these are:

1. Duty cycle: Is the system to be operated on a short-term basis or is it part of a
dedicated, closed cycle system?

2. Owning and operating cost: A system may be costly to operate because of large
running costs including power, labor, or materials.

3. Overall size of the system.
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Fig. 8.28 Efficiency of cryogenic refrigeration systems (From Strobridge [17] and revised by
Burns and Green [19])

Within the context of the above factors there are several choices that can be
exercised when providing the helium coolant to a system. One of four methods is
appropriate for cooling the system to liquid helium temperatures.

1. Purchase liquid helium and vent the helium vapor that evolves.

2. Purchase helium gas, liquefy it on a batch basis, and vent the vapor.

3. Purchase helium gas, liquefy it on a batch basis, and recover the evolved vapor
which is then re-liquefied.

4. Purchase helium gas and a closed-cycle refrigerator. Run the system on a
continuous basis, recovering the gas cold.

Of the above four methods, the first is suitable only for small systems with low
duty cycles. Because helium is a rare and expensive commodity, this approach
should be limited in use. More typically, a combination of the second and third
methods is used in small research laboratories, where the percentage of helium
recovery depends on the care with which the system is operated. The last method,
although most efficient, is actually only suitable for systems that have the cryogen-
ics as an integral part. Clearly, economics is the major factor that determines the
cooling method best suited for a particular application.

Actual refrigeration systems operate far from the ideal efficiency. This fact occurs
because practical cycles deviate from Carnot and the system components operate at less
than ideal efficiency. Some of the non-idealities of components have been described
above; however, those components that have the greatest tendency for nonideal perfor-
mance are the moving parts, including compressors and expansion engines.

The usual way of displaying actual refrigerator efficiencies is to display them as
a fraction of Carnot efficiency, Tc/(Ty — T¢). Plotted in Fig. 8.28 are actual
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efficiencies (as a % of Carnot) of various cryogenic systems versus their 4.5 K
refrigeration capacity [18, 19]. This graph is revised from the original survey by
Strobridge [18]. It is significant to note that the most important factor in the
efficiency is the 4.5 K capacity of the machine. The reasons for the increase in
efficiency with size are twofold. For larger refrigerators, there is more to be gained
by making the system more efficient. The total power saved can be a significant cost
item and worth pursuing. Also, larger systems can justify more stages of refrigera-
tion and expansion, thus allowing the cycle to be tuned closer to ideal conditions.
An actual refrigeration system is made up of a number of individual components.

The cost of refrigeration components has been surveyed by a number of authors.
Plotted in Fig. 8.29 are costs as summarized by Burns and Green [18]. Plotted is the
capital cost in M$US versus that refrigeration capacity at 4.5 K based on the most
recent study. The graph suggests a relationship for the cost of refrigeration of
the form

C=gP" (8.56)

where ¢ is an empirical coefficient and n is an exponent less than unity. For C to be
the cost in millions of dollars and P be the 4.5 K cooling power in kilowatts, in 1997
Burns and Green found ¢ = 6000 and n = 0.7 to be the best-fit parameters. This
relationship appears to fit all the data to within a factor of two. Furthermore, as
standard units become available, the empirical relationship suggested by Fig. 8.29
has an exponent closer to unity. This fact is the result of certain fixed costs such as
engineering and design that enter in the development of a new system. The
nonlinearity of capital cost coupled with the costs of operation and maintenance
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are factors which must be considered when determining which cooling scheme is
appropriate for a particular system.

A schematic representation [20] of the way these components fit together in the
system is shown in Fig. 8.30. Besides the helium refrigerator or liquefier, there must
be storage of gaseous and liquid helium and nitrogen. Furthermore, in the helium
system, there must be some form of purifier to recycle the gas. Finally, there must
be a system of vacuum insulated transfer lines to take the fluids from storage or

liquefier to the system.

8.9 Summary

The foregoing chapter presents a survey of the principles of refrigeration and
liquefaction applied to helium. Greater detail can be considered particularly with
respect to real systems and components. However, as the goal of this book is the
emphasis of basic principles rather than hardware, no further discussion of this
subject is given here. For the reader who is particularly interested in this subject,
several of the references listed at the end this chapter will provide greater detail.

Questions

1. What is the primary difference between a cryogenic refrigerator and a liquefier?
How does that difference affect design of the flow circuit?



372 8 Liquefaction and Refrigeration Systems

2. Why does it take more energy to cool something from room temperature to 4 K,
than it does to warm the same thing from 4 K to room temperature?

3. What feature on a T-S diagram identifies the optimum discharge pressure for a
simple Linde-Hampson liquefier or refrigerator?

4. A cascade helium liquefier based on a Linde-Hampson cycle requires pre-cooling
with LH, and LN,. Why is this? Discuss the thermodynamic efficiency of such a
cycle compared to that of a simple Claude cycle, which may not require pre-
cooling.

5. Most practical refrigeration cycles have a Figure of Merit less than that of the
Carnot cycle. Why?

6. List as many sources as you can of inefficiency in a real refrigerator based on a
Claude cycle.

7. Discuss the difference between closed and open cycle isothermal refrigeration.
What are the principal advantages to closed cycle systems?

8. Discuss the design of a heat exchanger versus that of a regenerator. What is the
function of each? What are the primary differences?

9. Compare the thermodynamic efficiency of a Stirling cycle to that of a Gifford-
McMahon cycle. Why is one more efficient than the other?

Problems
1. An alternate equation of state for real gases is described by the relationship

p__ RT _a
P (1—b/av)* v

(a) Using the universal behavior of gases near the critical point, determine
the coefficients a and b as functions of critical parameters. Evaluate a and
b for helium.

(b) Derive a relationship for the inversion temperature T;,, and calculate its
reduced maximum value (77, /7).

(c) Derive an expression for the Joule-Thomson coefficient u; and determine its
value for helium at the critical point.

2. (a) Calculate the ideal liquefaction work for helium that is initially at liquid
nitrogen temperature, 77 K.
(b) Determine the minimum quantity of liquid nitrogen required to precool a
unit mass of helium gas from 300 to 77 K. (hg = 198 kl/kg for LN>).
(c) Compare the total work required for the liquid nitrogen precooling method
to that of an ideal liquefier.

3. Calculate the temperature corresponding to the maximum inversion pressure for
a van der Waals gas. Determine the corresponding temperature and pressure
for helium gas.
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4. Derive the following relationship for the entropy change for a van der Waals gas:

Tz Vz—b
Sy — 81 —C,,ln<T1> —|—Rln(v1 —b)

Begin from a total differential of the entropy. Find the relationship between
temperatures and specific volumes for an isentropic change in state.

5. A particular piston compressor can achieve a maximum pressure ratio of p,/p; =
100 by either isentropic or isothermal compression of a gas. The compressor is to be
used in one of two processes within a refrigeration cycle: (1) isentropic compres-
sion followed by isochoric cooling of the gas in the cylinder, or (2) isothermal
compression. Calculate the entropy change, heat removed from the gas, and the
maximum gas temperature for each process. Assume an ideal gas that begins at p =
0.1 MPa, T =300 K and ends up at 7= 300 K. Given that the pressure ratio and that
the maximum operating temperature will always be limited for real compressors,
which process should be used in the refrigeration cycle?

6. The Collins helium liquefaction system uses five heat exchangers and two
expanders, one cooling heat exchanger #2 and one cooling heat exchanger #4.
Draw the refrigeration cycle for this system showing the locations of all
components. Label the various stages of cooling on a helium 7-S diagram.
Assume the following:

p1 = 0.1 MPax; = 0.25T,; = 70K
p2:2MPa X2:0.5 Tel =10K
Ty =300K

Calculate the yield, compressor work, and figure of merit for an ideal liquefier.
7. Consider the ideal isothermal helium refrigerator based on the Claude cycle with
the first heat exchanger fixed by liquid nitrogen precooling at 77 K.

(a) Calculate the cooling per unit mass flow. Determine an optimum based on
varying m,.

(b) Estimate the liquid nitrogen consumption.

(c) Determine the effective FOM for the entire system. Assume that 7| =T, =
300 K and p; = 0.1 MPa; p, = 3 MPa.

8. For the simple He II refrigerator shown schematically in Fig. 8.12, assume the
inlet temperature to JT, is at 2.2 K, 0.1 MPa and the system is in steady-state
operation.

(a) Calculate the refrigeration capacity per unit mass flow.
(b) Estimate the temperature of the vapor which is exiting the heat exchanger on
the return side.
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9.

10.

11.

12.

13.
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A Stirling refrigerator is used to cool an infrared sensor. The working fluid is
helium gas which may be treated as ideal. 1f the pressure and temperature at
point 1 (see Fig. 8.16) are 0.5 MPa and 100 K, the volume ratio (V3/V5) is 10
and p, is 0.1 MPa, Find:

(a) The pressure, temperature, and volume at points 1 through 4.

(b) The temperature of the regenerator after steps 1 and 2 if it consists of 0.1 kg
of copper and has an initial temperature of 100 K.

(c) Repeat part b if the regenerator consists of 0.1 kg of lead.

(d) On the basis of thermodynamics alone, which of the above materials is
preferable for use in the regenerator?

(e) Find the coefficient of performance (COP).

An isobaric refrigerator is to be designed with an inlet temperature T} = T, =
300 K and an inlet pressure p; = 0.1 MPa to provide cooling at temperatures at
or below 18.5 K. Assume the refrigerator is too small to use the work produced
by the expander.

(a) For a heat exchanger effectiveness and an expander efficiency of unity, calcu-
late the compressor work per unit of cooling produced (W / Q() for isothermal
compressor outlet pressures of 0.5, 1, 2,4, and 10 MPa. Plot W / QC as a function
of the compression ratio p,/p; and fit the curve with an equation.

(b) Redo the calculation in part a assuming a heat exchanger effectiveness of
0.95 and expander efficiency of 0.7.

Starting with the relationship for the entropy of an ideal gas,
s=C,InT —RlInp + 59

estimate the pressure necessary to reduce the entropy of 300 K helium gas to

that of the liquid phase at 4.2 K, 0.1 MPa. Use the ideal gas equation of state to

estimate the inter-molecular spacing. Is this physically possible?
Use the typical cooling capacity for a GM cryocooler (Fig. 8.25) to calculate the
time needed to cool a 10 kg mass of copper from 80-10 K. Assume that the
copper and cryocooler are thermally insulated from the environment so that the
only heat to remove is the internal energy of the copper mass. Redo the
calculation for the case where the mass has a steady heat generation of 10 W.
A counterflow heat exchanger is to be used to cool high pressure (p;, = 2 MPa)
helium gas at 20 K and a mass flow rate of 1 kg/s. The low pressure return stream
is at 0.1 MPa and enters the heat exchanger at 5 K.

(a) Assuming the heat exchanger is 100% effective, what are the outlet fluid
stream temperatures?

(b) Calculate the same quantities for € = 90%. For this case, calculate the log-
mean temperature difference and the required UA.

(c) Make a sketch of the temperature profile along the heat exchanger for both
cases.
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Chapter 9
*He and Refrigeration Below 1 K

By far, the most abundant naturally occurring isotope of helium is *He. However,
there exists one other stable isotope, *He, which is only about 0.1 ppm of natural
helium but can be obtained readily as a byproduct of nuclear reactions. The physical
behavior of low-temperature *He is fundamentally quite different from that of the
common isotope and *He has application in a number of areas in cryogenics; most
notable of these is the role it plays in the achievement of temperatures below 1 K.
This temperature range is primarily of interest in the studies of basic physical
phenomena.

Interest in performing experiments with *He was not raised significantly until the
mid 1940s, when it was determined that *He was a by-product of the Li® neutron
capture reaction,

Li4+n—H4+ o«
*He + f

T = 12.5 year

and therefore could be isolated in quantities sufficient for low-temperature experi-
mentation. °Li is relatively abundant, occurring as 7.5% of natural lithium, and the
tritium f-decay reaction has a half-life of 12.5 year. Consequently, the wide
availability of neutrons in experimental fission reactors has made *He available to
numerous researchers in low-temperature physics. Although the gas is a relatively
expensive commodity, costing more than $ 100 to $1000US per STP liter, it is still
orders of magnitude less costly than it would be to separate *He from natural
helium. In recent years, the cost of *He has escalated significantly as a result of
increased demand mostly as a detector of neutrons [1]. This development has put
heavy financial and access burdens on low temperature physicists working in the
sub-Kelvin temperature range.

S.W. Van Sciver, Helium Cryogenics, International Cryogenics Monograph Series, 377
DOI 10.1007/978-1-4419-9979-5_9, © Springer Science+Business Media, LLC 2012



378 9 He and Refrigeration Below 1 K
9.1 Properties of Pure *He

Some properties of liquid *He are listed in Table 9.1. Note that the critical point is
below the normal boiling point of “He. This should not be surprising given the
lighter molecule. In fact, when *He was first discovered and separated there was
some doubt about whether it would liquefy at all due to the very high zero point
energy. Today *He is used in a number of low temperature experimental systems
and usually condensed by heat exchange with a boiling pot of boiling “He (He II) at
T~ 1K

The relatively low binding energy of *He also causes the vapor pressure to be
significantly higher than that of the common isotope. This fact is important for
distillation of *He—*He mixtures as well as reducing the pumping speed required for
very low temperature (T < 1 K) refrigerators. One other important feature of *He is
that is possesses a nonzero magnetic moment due to the unpaired nuclear spin. The
magnetic moment is responsible for a large spin entropy which contributes a major
fraction of the fluid entropy over much of its temperature range. For example, the
ratio of specific heats of *He and “He at 1 K is about 40, a ratio that increases with
decreasing temperature.

3He is observed to experience a superfluid transition at about 2.6 mK, about three
orders of magnitude in temperature below the J-point of *He. This ratio should also
not be surprising owing to the wholly different statistical character of the two fluids,
see Table 9.2. “He has integral nuclear spin and obeys Bose—Einstein statistics. *He,
on the other hand, has half-integer spin and a nuclear magnetic moment, and thus
obeys Fermi-Dirac statistics, similar to that of electrons. These two statistical
models predict very different physical behavior. Consider for example, the conden-
sation mechanisms associated with superfluid transitions in *He and “He. The
superfluid transition from “He is described approximately by Bose—Einstein (BE)

Table 9.1 Some properties of liquid *He [2]

Normal boiling point (K) 3.191
Critical constants

T. (K) 3.324

p. (MPa) 0.115

pe (kg/m’) 413
Density at 0 K (kg/m?) 82.3
Compressibility at 0 K (mm>/J) 361
Heat of vaporization at 0 K (J/mol) 20.56
Surface tension at 0 K (mJ/m?) 0.16
Velocity of sound at 0 K (m/s) 183
Thermal conductivity at 3.2 K (W/mK) 0.020
Viscosity at 3.2 K (pPa s) 1.9
Magnetic moment (nuclear magnetons) —-2.127
Vapor pressure at 1.7 K (kPa) 10.9
Specific heat at 1.0 K(J/mol - K) 4222

Superfluid transition (mK) 2.6
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Table 9.2 Statistical comparison of Helium isotopes

“He *He
Nuclear spin Integer Half integer
Statistics Bose—Einstein Fermi—Dirac
Magnetic moment None —2.127 pp
Condensation BE type BCS type
10°
10° e | —r
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Fig 9.1 Vapor pressure of *He and “He (From Huang [3])

condensation. In the case of *He, the condensation is more analogous to that
occurring in a superconductor which requires pairing of the Fermi particles to
create the Bose condensate.

The vapor pressure of *He is greater than that of “He, allowing a lower tempera-
ture to be achieved by simply pumping on the liquid. A graphical comparison of the
vapor pressure as a function of temperature for the two isotopes is shown in Fig. 9.1.
Note that the pressure is on a semi-log scale in this graph and that the *He vapor
pressure is between one and two orders of magnitude greater than that of *He for the
same bath temperature. Therefore, it is much more efficient to operate a pumped
*He refrigerator. However, since *He is a very expensive commodity, it is generally
only available in gaseous form. Therefore, the design a *He evaporative refrigerator
must include a boiling “He pot to provide the heat sink to condense the circulating
*He. This pot also offers a thermal barrier and heat sink to minimize the conductive
and radiative heat loading on the *He stage.

The practical embodiment of such a system is shown schematically in Fig 9.2.
The incoming *He is condensed to liquid by thermal contact with the boiling *He
bath. The operating temperature of this bath is normally in the 1-1.3 K range
depending on the overall heat loading and ultimate pressure of the pump or cold
compressor (0.1—1 torr). A separate pump loop circulates the *He at a pressure of
0.1 torr achieving temperatures in the range of 0.4 K. Unfortunately, even though
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this is significantly below the temperature achievable using “He, it still is not low
enough for many low temperature experiments of interest. Fortunately, there is
another refrigeration method that uses the characteristics of *He-*He mixtures to
achieve steady temperatures in a millikelvin range.

9.2 *He-'He Mixtures and Dilution Refrigeration

We now consider the behavior of mixtures of *He and *He. Before doing so, we
should keep in mind that the only difference between these two isotopes is that *He
has one fewer neutron in the nucleus. This means that the two isotopes obey
different statistical models, which clearly manifests itself in divergent behavior of
the two fluids. Otherwise, they are chemically identical. One should keep in mind
the significant difference between the behavior of mixtures of *He and “He versus
mixtures of soluble classical fluids like liquid O, and N,.

He and *He mixtures are technically important for they allow improved methods
of cooling at very low temperatures. How this works can be understood by reference
to the equilibrium phase diagram of the *He—*He mixture system is shown in
Fig. 9.3. The first thing to note in this diagram is that the A-point, which marks the
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of *He—*He mixtures 2.0

0 | ] 1 ]
0 20 40 60 80 100

x(mole % Hes)

phase transition between He I and He II, is depressed by the addition of *He. In fact,
this transition disappears at 66.9% He where it terminates at the tri-critical point
(TCP). Significant for refrigeration is the existence of a phase-separation region
below this point. *He—*He mixtures are the only systems that experience a separation
of phases due to isotopic mass differences!

In the temperature-concentration plane, the TCP occurs at T = 0.872 K and
Xx = 66.9%. The TCP is physically quite interesting because it represents the intersec-
tion of three phase boundaries, one being a second-order phase transition, the A-line.
Another feature apparent in Fig. 9.3 is the finite solubility of *He in the *“He-rich phase.
At absolute zero the phase boundary intersects the concentration axis at x = 6.4%.
This effect is contrary to classical physical arguments which would require a two-
phase region in equilibrium at absolute zero to be completely separated to achieve
minimum entropy. However, this is not a classical system. The occurrence of finite
solubility of *He in “He even at absolute zero is the result of the quantum statistical
character of the system. More important technically is that this feature allows dilution
refrigerators to operate achieving near absolute zero temperature.

The existence of a finite solubility allows heat to be removed from the system by
transferring *He from the pure component to the dilute component and thereby
extracting the entropy of mixing, which is finite even at absolute zero. In a two-
phase system, the entropy of mixing can be written

As:%[xlnx—i—(l—x)ln(l—x)} 9.1

where M, the molecular weight of *He, is equal to 3 kg/kmol. For *He—*He mixtures
atT ~ 50 mK, x = 0.064 and thus 4s = 0.66 kJ/kg K. At any finite temperature, a
very sizable amount of heat can be removed by this mechanism. The process forms
the basis for dilution refrigeration. The principles of which are described here only
briefly. The reader who is interested in further detail should consult one of various
books on low temperature physics [2, 4].
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Fig. 9.4 Principal parts of a continuously operating dilution refrigerator [2]

The principal components of a continuously operating dilution refrigerator are
shown in Fig. 9.4. The system consists of a closed-loop circulation system in which
*He is usually the circulating component. Refrigeration is obtained by locating the
phase boundary between the two fluid components in the mixing chamber at the
lower end of the system. Then by circulating the *He, the entropy of mixing is
removed from this region. The rate of cooling, independent of nonideal loss
mechanisms, is

Q:%TAS:%RT[xlnx—i— (1 —x)In(1 —x)] 9.2)

Based on (9.2) a mass flow rate of 0.3 mg/s is required to obtain a cooling power of
10 uW at 50 mK, a reasonable value for a moderate-size dilution refrigeration
system. The state-of-the-art in this technology is continuous cooling in the range of
a few millikelvin.
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In addition to the mixing chamber, there are several other important components
to the dilution refrigerator. The “He pot, which operates around 1.2 K, condenses the
circulating *He similarly as in a conventional *He refrigerator and provides a low-
temperature heat sink for heat leaks into the system. Usually a combination of
concentric counterflow and discrete heat exchangers are used in dilution
refrigerators. The latter type are more effective at obtaining the lowest temperatures.
The still is the point in the cooling circuit where the *He is preferentially evaporated
to produce the circulation. Due to its high value, the low pressure “He gas is
circulated through a special vacuum pump to prevent loss of product and then
returned to the refrigerator by condensation with the “He pot. Typically, the still
operates around 0.5 K where the *He vapor pressure is high enough to obtain sizable
mass flow easily. Often a special “He film flow inhibitor or orifice is installed in the
still pumping line so that the superfluid film will not creep up and cause significant
“He evaporation. Circulation of *He can result in degradation of the performance of a
*He—"He dilution refrigerator.

Dilution refrigerators are the best method of obtaining continuous cooling a
temperatures below 0.4 K and modern systems now reach below 10 mK. Also,
recently developed are dilution refrigerators that operate with cryocoolers to
replace the liquid “He bath [5]. Other options include adiabatic demagnetization
can be employed to reach the millikelvin regime using paramagnetic salts as
working elements. This topic is discussed in Sect. 10.3. It is also possible to
reach the micro-kelvin regime using adiabatic demagnetization of nuclear spins.
However, in both these cases, it is generally not possible to obtain continuous
cooling.

9.3 Statistical Models for Pure *He

We now delve briefly into the physics of *He to provide a better understanding of
the unique features of this fluid. By analogy to the treatment of pure *He in Chap. 6,
it is appropriate to discuss the physical models for *He in terms of deviations from
the ideal quantum gas model. In this case, we consider quantum statistical mechan-
ics applied to particles obeying Fermi—Dirac statistics. This problem is basically
similar to the free-electron model in metals with the relative temperature range and
densities being the main differences.

As is the case for the ideal Bose gas model, the properties of an ideal Fermi gas
are established in terms of a summation over discrete energy levels. The properties
of an ideal quantum gas can be obtained by taking these discrete levels in the
density of states to be infinitesimal and converting the summation to an integral.
The resulting expression for the number density can be written

9.3)

N 2=n o gl2ge
V:F(2m)3/zj

Vv 0271€ﬁ8+1


http://dx.doi.org/10.1007/978-1-4419-9979-5_10
http://dx.doi.org/10.1007/978-1-4419-9979-5_6

384 9 He and Refrigeration Below 1 K

N|w
|
I

C,/Nkg

kgT

Fig. 9.5 Specific heat of an ideal Fermi gas [5]

where, as in the case of the Bose gas, z = " is the fugacity, u the chemical
potential and = I/kgT. Equation (9.3) is an application of (6.9) for the special
case of a system of particles obeying Fermi—Dirac statistics. Note that an important
corollary to Fermi statistics is that the system of particles must obey the Pauli
exclusion and therefore can have energy level occupation numbers of O or 1. This
fact is important because there is no need to be concerned with substantial occupa-
tion numbers in the ground state as is the case in Bose statistics. By further analogy
with the discussion in Chap. 6, the energy density of a set of Fermi particles is

E 2n 32 [ e'/2deg
v = JO ZTePe+ 1 ©4)
which can be used in consort with (9.3) to derive the properties of the gas. Note that
for a set of Fermi particles having spin s, the energy levels have a (25 + 1)
degeneracy, which is only removed by splitting the levels in a magnetic held. At
T = 0, all levels are occupied up to the Fermi energy which is defined by the
expression

P 62 N\
= (oY) = kT, 5
T om <(2s—|—1) v) Bor ©-3)

Introducing numerical values appropriate to *He with spin %, the Fermi tempera-
ture T is computed to be 4.9 K. Therefore, considerable effects of degeneracy in
*He are expected at low temperatures. For a finite temperature, a fraction of the
particles are excited above the Fermi energy, the result of which is a smearing of the
distribution function é&g.

The specific heat of an ideal Fermi gas is obtained from the derivative of the
internal energy per particle:

c, 1 (OE
Nkp ~ Nkg (ﬁ) , ©-6)

The result of this calculation [5] is plotted in Fig. 9.5 for a range of energies
including ¢5. Note that at high temperatures, kgT > ¢; the specific heat asymptotically
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approaches the Boltzmann limit of C,, = 3/2Nkg. Atlow temperatures, kg T < &g; the
behavior of a degenerate Fermi gas is evident with a linear temperature dependence of
the specific heat,

c, n*T
~— — 9.7
Nkg 2 Tr ©-7)

which is the same result obtained for the free-electron model in Chap. 2.

The behavior of liquid *He is different from that of an ideal Fermi gas. This is
primarily the result of the sizable interparticle interactions which occur in the fluid.
Landau’s theory of Fermi liquids is a fairly straightforward approach to this
problem [5-7]. This theory, which is primarily a modification to the ideal quantum
gas model, calls for introducing an effective mass m*, which in turn modifies the
relationship for the physical properties of the Fermi liquid. The effective mass
should then be calculable and compared with experimental results for *He.

Considering the behavior of the specific heat at low temperatures, the Landau

theory predicts that
C, *(C, 2/T
_n ~T (L 9.8)
NkB m NkB ideal 2 TI*7

where in this case the modified Fermi temperature is given by the expression

T: = (ﬂ) s 9.9)

nx*

By comparing (9.8) with experiment it is possible to determine the effective mass
appropriate to *He. For example, plotted in Fig. 9.6 is the specific heat of liquid
*He compared to that of an ideal Fermi gas of liquid density, Tr = 4.9 K. Clearly,
the ideal gas model is a poor representation of the experimental data. A better fit
to the low-temperature specific heat is obtained with a choice of effective mass
about twice that of the *He nucleus, which indicates the Fermi temperature appro-
priate to the Landau model is closer to 2.5 K.

The transport properties of *He can also be understood in terms of Fermi liquid
theory. The theoretical development of this problem stems from a solution to the
semi-classical Boltzmann equation. In this model the viscous and thermal
interactions are associated with the scattering of quasiparticles at the Fermi surface.
For an isotropic fluid, the relationship for the viscosity may be written in the general
form for T < Ty

o~ (9.10)

where A is a function of the effective mass. At low temperatures, T < 0.1 K, the
viscosity of *He has been shown to be consistent with the inverse square relationship
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Fig. 9.6 Specific heat of liquid *He compared to curves for ideal Fermi gas [8]

0 ]

in (9.10) with A = 0.38 £ 0.06 pPa s K°. This means that the viscosity of *He is
about 100 mPa s at 3 mK, a value close to that of light machine oil.
The thermal conductivity according to Fermi liquid theory should go as,

©.11)

»
%
Nl

The inverse temperature dependence of the thermal conductivity comes from the
fact that a degenerate Fermi liquid has C, proportional to T which when coupled
with the form of the viscosity yields k ~ T~ '. Experimental results generally
support this conclusion although only at very low temperatures, 7 < 20 mK,
where C, is linear with temperature with B ~ 0.4 mW/m [9]. As a point of
reference, the thermal conductivity of liquid *He at 3 mK is approximately equal
to that of pure copper at the same temperature.

9.4 Submillikelvin Refrigeration

To study the behavior of *He or any other material below a few millikelvin, it has
been necessary to use additional cooling mechanisms beyond that of dilution
refrigeration. There are primarily two methods to achieve lower temperatures,
one being adiabatic demagnetization of nuclear spins and the other Pomeranchuk
cooling.
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Adiabatic demagnetization has been used extensively for very low temperature
refrigeration [10, 11]. It is usually a single-cycle process. To achieve cooling by
adiabatic demagnetization it is necessary to have a working magnetic material
which has weakly interacting spins so that the ordering temperature is below the
minimum temperature to be achieved. For submillikelvin refrigeration, the only
presently successful method is demagnetization of nuclear spins in materials such
as Cu or PrNis.

An alternative method used to cool *He to about 1 mK is adiabatic compression
of *He along its melting line. In fact, this was the method used to originally discover
the superfluid transition in *He. The method was first suggested by Pomeranchuk
[12], who predicted the existence of a minimum in the solid—liquid phase boundary
for pure *He (Tppin = 319 mK, Pmin = 2.913 MPa). The minimum exists because
the spin ordering in the liquid occurs at higher temperatures than that in the solid.
Therefore, between the ordering temperature of the liquid and that of the solid, the
entropy of the solid is greater and cooling can be achieved by adiabatically
compressing the liquid through the solid—liquid phase transition.

The thermodynamics of Pomeranchuk cooling are reasonably straightforward
given the existence of the minimum in the solid—liquid phase boundary in *He.
Using the Clausius—Clapeyron equation for the phase transition,

dp S1— S
aT v — v, (9.12)
for temperatures below the minimum the liquid state has a greater specific volume
than that of the solid. Below about 40 mK, the denominator in (9.12) takes on
approximately a constant value of 1.31 cm’/mol. The entropy of each phase is
dominated by the spin contribution. The liquid has an entropy that is approximately
linear with temperature,

R/(T
=— In2 1
Yl M(T;*) n (9.13)

where T* is the pressure-dependent magnetic Fermi temperature. The entropy of
the solid is nearly constant until its magnetic ordering temperature, Ty = 1.1 mK.
The relationship for the solid entropy is more complex, involving the nuclear
exchange interaction, J, that is,

R 1 J n+1
55 = (M) In2 -~ Z;An (kB—T> (9.14)

where A,, are weighting factors in the summation. The behavior of the entropy of
each phase is shown in Fig. 9.7.

Pomeranchuk cooling is achieved by first bringing the system to thermodynamic
equilibrium at a temperature below the minimum in the solid—liquid phase boundary.
This is best carried out by using a continuously operating dilution refrigerator. With
the fluid compressed to just below the melting line, the Pomeranchuk cell is then
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Fig. 9.7 Entropy of solid and liquid *He along the melting curve. Temperatures indicated include
Timin, the minimum in the melting curve and Ty, the spin ordering temperature in the solid

isolated from the dilution refrigerator and adiabatically compressed across the phase
boundary. Temperature reductions of at least an order of magnitude are possible. For
example, starting with the system at 30 mK, point (1) in Fig. 9.7, adiabatic compression
along line (D to (2) achieves a minimum temperature of about 1 mK. Obviously, as
with adiabatic demagnetization, this method is not suited to continuous refrigeration at
the lower temperature. Furthermore, the end product of the cooling stage is a two-
phase mixture of solid and liquid *He, which has the added difficulty of separating the
physical phenomena occurring in each phase. This situation can lead to confusion
when one of the phases is experiencing most unusual behavior as occurs in *He below
3 mK. As aresult of these complications and the interest in studying the magnetic field
dependence of *He, the most popular method for cooling *He to submillikelvin
temperatures is adiabatic demagnetization.

9.5 Superfluid *He

Predictions as early as the 1960s indicated that *He would become superfluid by a
mechanism similar to that occurring in superconductors. The uncertainty was based
mainly on determining the transition temperature. The physical basis known as
BCS-type interaction has a well established form for the transition temperature,

hP2 T  Pr
T.=228—F S A— 9.15
¢ 2B P <2 e <¢|U|PF>) ©-19

where U is the exchange interaction and ¢ is the particle wave function. It is
difficult to predict T, from first principles because m*, the effective mass, is
primarily an experimental quantity. Since m* enters in the denominator of the
exponential argument, small changes in its value can have profound effect on 7.
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Fig. 9.8 P-T-H phase diagram of very-low-temperature “He

However, with liquid helium research perpetually pursuing lower temperatures, it
was only a matter of time before superfluid He would be discovered.

The first observations attributed to a new phase transition in *He were made by
Osheroff, Richardson and Lee [13]. Their results were eventually shown to be the
first observation of the superfluid transition in *He for which they were awarded the
Nobel Prize. Their experiment was an investigation of the pressure variations along
the liquid—solid phase boundary using a Pomeranchuk cell. Two phase transitions
were observed. The first, referred to as the A-transition, occurred at 2.65 mK and
was associated with a slope change in the pressure variation of the cell, suggesting a
higher-order phase transition. The lower-temperature phase transition B, occurring
at 1.8 mK, was seen as a first-order transition with an associated latent heat. Since
that time, an enormous amount of research has been conducted on these new phases
of *He. In this brief review, it is not possible to do justice to the state-of-the-art in
superfluid *He research. Fortunately, a number of excellent reviews are available in
the literature [14]. The present section presents some of the interesting properties of
these new phases of “He.

To begin, consider the phase diagram of *He in the very-low-temperature regime
as it depends on pressure, temperature, and magnetic field; see Fig. 9.8. The
dependence on magnetic field is quite unique for pure liquids. The diagram
indicates the existence of primarily three phases in addition to the normal Fermi
liquid occurring above T.. The intersection point between the A, B, and normal
Fermi liquid phases at zero magnetic field is referred to as the polycritical point
(PCP). Note that the A phase takes precedence over the B phase with increasing
magnetic field, indicating A is more strongly magnetic than B.
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The theoretical description of superfluid *He is extremely complex and beyond
the scope of the present discussion. Evidence suggests that three phases occur in *He
because it is a magnetic superfluid that pairs in a triplet state. This fact establishes an
important difference between the interactions occurring in superfluid *He and those
in conventional superconductors. In the latter case the pairing is in the singlet state
and consequently only one phase is present. In *He three orientations are possible for
the nuclear spins, two with parallel and one with anti-parallel alignment. Since the A
phases are more strongly magnetic, it is expected that they contain mostly parallel
spin orientations. The B phase being less magnetic must contain a significant
fraction of anti-parallel aligned spins. This effect has been shown experimentally
through susceptibility measurements. The A and A, phases have magnetic properties
approximately the same as the normal Fermi liquid with a temperature-independent
susceptibility. The B phase has a decreasing susceptibility with temperature sugges-
tive of an anti-ferromagnetic ordering.

Perhaps the most interesting aspects of *He in this low-temperature regime are those
normally associated with superfluidity, that is, anomalous behavior in the energy
transport mechanisms. As discussed in Chap. 6, superfluid “He (He II) has a number
of very unique transport properties. Among these are new sound propagation
mechanisms (second sound), viscosity that depends on the mechanism used for mea-
surement, the existence of vortex lines in the bulk fluid, and extremely high heat
transport capability. The latter feature makes He II a technically useful fluid. Generally,
these properties are explained successfully in terms of the reasonably simple two-fluid
model. It is therefore of interest to consider similar characteristics of superfluid *He.

One property that makes a superfluid very different from ordinary fluids is its
unique sound propagation mechanisms. In addition to ordinary sound propagation,
there is second sound and fourth sound which is propagation through a superleak.
This latter sound propagation mechanism is one of several methods used to measure
the superfluid density. In fact, it can be shown from the two-fluid model that the
superfluid density p, is related directly to the fourth and first sound velocities:

2
Ps _ (C—“) (9.16)

p €1
Since p; is an important parameter in the theory of superfluidity, experimental
determinations of p can be compared with calculation. Such an analysis, based on a
renormalized theoretical calculation, is well beyond the scope of the present
discussion. However, it is important to be aware of the substantial difference
between the behavior of p, in *He and that for the same parameter in “He. These
properties have different temperature dependencies owing to the different conden-
sation mechanisms. In the BCS theory, which is appropriate for superfluid *He, the
superfluid density goes as the order parameter squared which is approximately

linear with temperature near T.:

~1—— 9.17
. ©.17)
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This equation is roughly consistent with experiment. By contrast, the temperature
dependence of p, for “He varies as 1 — (T'T)) 5, 6].

Now turn to the problem of viscous flow in superfluid *He. Above T, the
viscosity of *He is that of a normal Fermi liquid, which increases with decreasing
temperature as 1/T. Therefore, in the millikelvin range, the viscosity is very large.
The viscosity of *He decreases for temperatures below T,; it never becomes
vanishingly small. In fact, there is a minimum in the viscosity occurring around
1.6 mK for which the ratio to that of the Fermi liquid at the A transition is
approximately 0.2. Therefore, although superfluid *He has a decreasing viscosity,
it is still orders of magnitude more viscous than “He.

Heat transport in superfluid *He can be discussed in terms of two-fluid hydrodynamics.
Therefore, the mechanism which is appropriate for describing heat flow is internal
convection between the normal and superfluid components. For fine capillary tubes
of diameter d, at low heat fluxes and laminar flow conditions, the dominant mecha-
nism is the normal fluid viscous interaction with the tube walls. In this case, an
effective thermal conductivity k., may be defined as

2( 2

ps)T

ke =208 2 9.18
20, 19

where 1, is the normal fluid viscosity. However, in the case of *He the value of 1, is
about four orders of magnitude larger than y,, for “He around 1.5 K. Therefore, the
effective thermal conductivity of superfluid *He in small-diameter channels should
be much less than occurs in “He. To establish some rough numerical values for this
property, note that the thermal conductivity of the normal Fermi liquid increases
with decreasing temperature until it reaches a value of 0.1 W/m K just above T..
Below T, the effective thermal conductivity in a channel of diameter 3 mm, is
about 10 times higher or I W/m K. Although superfluid *He does not possess the
phenomenally high heat conductivity capability evident in superfluid “He, it exists
at much lower temperatures where its heat conductivity is comparable to that of
pure metals.

In the above brief description of the properties of *He, both normal and superfluid, a
number of interesting features have been reviewed. A great deal more is known about
*He, however, space and theoretical limitations do not permit further analysis of this
interesting system. There are a number of other unique properties of superfluid *He not
described heretofore. These properties include the anisotropic nature of the system.
Because of magnetic properties, the fluid can be oriented in a magnetic field. Also,
superfluid *He is believed to possess some spatial correlations called “textures,”
referring to correlated behavior of *He over dimensions long compared to the coher-
ence length. Needless to say, these are very new theoretical and experimental topics,
which explains the substantial research effort in this very exciting field.
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Questions

1. What are the unique features of the *He-*He phase diagram that make possible
dilution refrigeration at millikelvin temperatures?
2. Why does *He have a higher vapor pressure than “He?
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Chapter 10
Special Topics in Helium Cryogenics

In the preceding chapters, the emphasis has been on the properties of helium and its
applications. However, there are numerous other topics in cryogenics which do not
fall in this specific context but still have considerable relevance to the general
subject of helium cryogenics. In the present chapter, three such topics are
overviewed: (1) thermal insulation systems, (2) helium adsorption, and (3) mag-
netic refrigeration. The review of these subjects is not all-inclusive but rather
represents a few areas of potential interest to the general subject of low-temperature
phenomena important to the useful application of helium cryogenics.

10.1 Thermal Insulation

In the design of any cryogenic system, thermal isolation of the low-temperature
environment must be achieved effectively. This is particularly true for low temper-
ature helium systems owing to the small value of the latent heat of liquid helium and
high cost per watt of refrigeration in this temperature range.

No thermal insulation system is perfect. The level of insulation can vary
depending on the requirements of the application and the amount of effort applied.
For very long life liquid storage tanks, the insulation is complicated and optimized
to minimize the heat leak. Other systems that can tolerate a lower level of thermal
isolation can have much simpler thermal insulation. However in any cryogenic
application, the design and implementation of the thermal insulation system is a
critical task.

There are various modes of heat transfer at play in a thermal insulation system.
These involve different forms of the three principal modes of heat transfer:

1. Solid heat conduction through the structural supports, instrumentation wires and
any insulating material.

2. Heat transport through any residual gas that may exist in the insulating vacuum
space.

S.W. Van Sciver, Helium Cryogenics, International Cryogenics Monograph Series, 393
DOI 10.1007/978-1-4419-9979-5_10, © Springer Science+Business Media, LLC 2012
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3. Radiant heat transfer from the surrounding to the low temperature environment.

Each of these modes is discussed below in the context of how it affects cryogenic
insulation.

10.1.1 Solid Conduction

Solid conduction involves heat transport from high to low temperature through the
materials of the insulating vessel. Some of these materials may be structural
supports and others may be part of the insulation itself. This mode of heat transfer
can be minimized by use of materials with low thermal conductivity and if
necessary high strength. The relative importance of this mechanism depends on
design. If the system demands a great deal of load transfer to ambient temperature,
then the conduction heat leak will probably be an important contribution to the
overall performance of the cryogenic system.

The conduction heat transfer can be calculated by application of Fourier’s law
for heat conduction,

G=—k(T) VT (10.1)

where k(T) represents the temperature dependent material thermal conductivity
and VT represents the temperature gradient in the direction of the heat flux, q.
This property has been discussed for solid isotropic materials to a considerable
extent in Chap. 2. For insulating materials, which are often anisotropic, the thermal
conductivity will vary with direction as well as temperature.

Many practical problems involve one-dimensional conduction over a finite
temperature difference. A commonly useful quantity in this case is the integrated
or mean thermal conductivity, k, which can be used for determining the total heat
conduction between two fixed temperatures. The integrated thermal conductivity is

defined by the expression

_ 1 T2
k=———| k(T)dT 10.2
(Tz—T1)JT, 1) (102)

where T, and T are the two end temperatures. In general, k(T) is a complex function
of temperature making evaluation of (10.2) difficult. However, these thermal
conductivity integrals have been tabulated for many materials of interest in cryo-
genics [1, 2].

For many materials at low temperatures, k(T) can be approximated over a limited
temperature range by an expression of the form

k(T) = AT" (10.3)
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Table 10.1 Integrated thermal conductivity in W/m K of several materials
useful for low-temperature cryogenic storage applications [3]

— 4 — 77 — 300
Material kI 1 i 4 kI 77
Stainless steel 0.2 4.5 12.3
G-10 0.04 0.27 0.66
Teflon 0.02 0.18 0.25
Nylon 0.005 0.13 0.28
Polystyrene 0.02 0.036 0.075
Styrofoam 0.009 0.011 0.023

where for metals in the helium temperature range n ~ 1 and for insulators n ~ 3.
In that case, the integrated thermal conductivity (10.2) may be written

n+1 n+1
[ -1 (10.4)
m+1)\ T»—-T

Equation 10.4 indicates that as long as the thermal conductivity is a monotonically
increasing function of temperature, & is dominated by the high-temperature end.

Table 10.1 gives some typical k values for materials that are common in low-
temperature insulation systems. These are given for usual fixed boundary
temperatures. To determine the conduction heat leak between temperatures other
than those listed in Table 10.1, it is necessary to evaluate (10.2).

Some insulating foam materials have tabulated thermal conductivities that can
be used for design of moderate performance cryogenic storage vessels, but nor-
mally not for the helium temperature range. The average thermal conductivity for
two of these materials (polystyrene and Styrofoam) are also listed in Table 10.1.
Normally, these foam materials have lower thermal conductivities than monolithic
solids, with the possible exception of the very low temperature end. Note that the
thermal conductivity of foam materials is a very complicated process because it
involves solid conduction and conduction in the residual gas. Thus, the average
thermal conductivity can vary depending on the application. For example, the
thermal conductivity can increase by as much as 40% if air diffuses into the cells.
This effect is even larger if light gases such as helium or hydrogen replace the air in
the foam [4]. The thermal conductivity of foam can also be affected by moisture
content [S5]. Thus, the values for the foam insulations in Table 10.1 should be only
used for approximate calculations.

10.1.2 Gas Conduction

The second important mode of heat transfer in a cryogenic storage container is
conduction through the residual gas in the vacuum space surrounding the low-
temperature environment. In principle, this mode can be made arbitrarily small by
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reducing of the residual pressure to a very low value (typically <107 Pa); how-
ever, such conditions are not always achievable. It is therefore important to be able
to estimate the heat load due to a moderate vacuum condition.

To estimate the magnitude of the gas conduction heat leak, consider an ideal
planer system consisting of two flat surfaces at different temperatures with a
residual gas between them at pressure p. There are primarily two regimes of heat
transport in the residual gas. The first represents the case where the mean free path
! is short compared to the spacing between the two surfaces. Under this circum-
stance, the gas thermal conductivity and thus the heat leak is nearly independent of
pressure except at low temperatures and high pressures (see Sect. 3.4). Gaseous
conduction dominates the heat transfer for pressures in the range 1 Pa to 1 kPa. If
the pressure is higher that this range free convection may further enhance the heat
exchange with a process that is dependent on the geometry of the container, see
Chap. 5. Such a situation would be catastrophic for a cryogenic storage vessel as it
would result in a very high heat load.

For most applications pertaining to cryogenics, the residual pressure is considerably
lower than this value. For lower pressures (p < 0.1 Pa) the heat transfer process is
represented by a second regime, where the mean free path is greater than the distance
between the two surfaces. The mean free path of a gas is discussed in detail in Chap. 3.
This quantity is roughly equal to the inverse product of the number density, 7, and the
scattering cross section, g,

1 kgT
I~ ey wdp (10.5)
assuming ideal gas behavior with kp being Boltzmann’s constant. For a residual
pressure of 0.1 Pa, the mean free path for helium at 4.2 K is about 1 mm.

The regime where the mean free path is greater than the distance between the
two surfaces can be evaluated in terms of molecular kinetic theory. The physical
picture is that of molecules making several collision-free trips between the two
surfaces before interacting with other molecules in the volume. Thus, the rate of
heat transfer is more determined by the molecule-wall interaction than intermolec-
ular behavior. In this regime, the heat transfer is approximately proportional to the
absolute pressure. The molecule-wall energy exchange process is related to the
extent to which the molecules come into thermal equilibrium with the wall. This
process is measured in terms of an accommodation coefficient o given by [6]

= (10.6)

where T is the effective temperature of the incident molecule, T, that of the emitted or
reflected molecule, and T, the wall temperature. The maximum value for o is of course
unity, associated with the molecule coming into complete thermal equilibrium with
the wall.
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For parallel surfaces at temperatures 7 and 75, the heat flux by gas conduction at
low pressures is given by the relationship

ay+1 /2R \"?
=— — T, —T: 10.7
1= 51 (nMT p(Th —T) (10.7)

Here 7 is the ratio of the specific heats (y = 5/3 for helium), and R is the universal
gas constant in J/mol K, T = (T; + T,)/2 is the average temperature and M is the
molecular weight in kg/mole. The quantity o, is an averaged accommodation
coefficient dependent on the individual accommodation coefficient and surface
areas. For unequal values of « and A, the quantity o must be averaged over the
two surfaces, that is,

o o0
oy + (Az/Al)(l — 062)061

oo (10.8)

The difficulty with applying this theory is that the value of o is known only
approximately. For example, for very clean metallic surfaces near room tempera-
ture, the accommodation coefficient for helium gas is quite small because the
molecules make nearly elastic collisions. A good approximate value for this regime
is 0.025 [7]. At low temperatures, o increases approaching a value of about 0.6 at
20 K [8]. For many low-temperature applications, helium gas is the major contrib-
utor to gaseous conduction heat leak because most other gases condense or adsorb
on the cold surfaces. For helium gas a reasonably good value to assume for average
accommodation coefficients is around 0.5.

10.1.3 Radiation Heat Transfer

Thermal radiation represents the third mode of heat transfer which is of concern in
cryogenic insulation systems. This mechanism is independent of residual gas
pressure or structural supports. The usual method for reducing radiation heat
leaks is to use one of various forms of multilayer shielding, a topic which is
discussed later. In preparation for that discussion, the present section considers
the basic aspects of radiant heat transfer at low temperatures.

The starting point for the description of thermal radiation heat transfer is to
consider the spectral energy density associated with a black body, which is an
idealized concept that assumes a body radiates the maximum energy flux as a
function of wavelength. This energy flux is given by,

8nhe 1
ep(T, ) = 5 T (10.9)
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Fig. 10.1 Spectral energy density of black body radiation

where / is the wavelength of the thermal radiation. This relationship has a well-known
form shown in Fig. 10.1. At very high temperatures, the peak occurs in the range of
visible spectrum, while at low temperatures the peak is shifted to longer wavelengths
and has smaller amplitude. Wien’s displacement law quantifies the temperature
dependence of the peak wavelength:

T = 2898um - K (10.10)

Note that for surfaces at 4.2 K, the corresponding peak wavelength is 0.69 mm,
which is in the far infrared. Such long wavelengths can have potentially important
diffractive effects when the physical spacing between radiant surfaces approaches
that of the peak wavelength [9].

For a black body the total radiant energy flux can be obtained by integration of
(10.9) over all wavelengths. The integration produces what is known as the
Stefan—Boltzmann law,

E, = J ey(T, 2)d)\ = oT* (10.11)
0

where ¢ is the Stefan—Boltzmann constant taking the value 5.67 x 10~% W/m?.

Most surfaces encountered in cryogenics do not approximate black bodies. In
fact, the effort in cryogenics is usually one of minimization of the thermal radiation
heat leak. If a surface is not black, its spectral energy density is smaller in
proportion to its emissivity ¢;. The emissivity is actually dependent on wavelength
and is defined by the relationship

e, (A, T) = ¢eep(A,T) (10.12)
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where ¢ is less than unity for nonblack surfaces.

It is often possible to make an approximation for radiant heat transfer which
allows nonblack surfaces to be handled in a fairly straightforward manner. This
assumption is to characterize surfaces as having constant emissivity less than unity,
which is independent of wavelength. This is known as the gray body approximation
and allows the writing of the total radiant energy flux as

E, = ¢oT? (10.13)

where the emissivity is determined for the appropriate set of conditions for the
system of interest.

There are a number of implicit assumptions that enter into the gray body
approximation. The first, already mentioned above, is that the emissivity must be
wavelength independent over the range of wavelengths appropriate to the problem.
Second, it is necessary to be able to equate the emissivity with the absorptivity a,
which is a measure of the rate of energy absorption by the gray surface. The total
absorptivity is defined by the relationship

E, =akE; (10.14)

where E; is the incident energy flux usually defined according to (10.13). Finally,
for the gray body assumption to be reasonable, all surfaces must be diffuse
scatterers of radiation. This is certainly far from the case for highly polished shields
that often are present in cryogenic systems; however, it simplifies calculations
considerably.

There have been numerous attempts to measure and tabulate the emissivities of
different materials at low temperatures [10, 11]. Generally, these values are deter-
mined for radiant energy flux between ambient (273 or 300 K), liquid nitrogen
(77 K), and liquid helium temperatures (4.2 K). A compiled graphical representa-
tion of emissivity measurements is shown in Fig. 10.2 [11]. To achieve low values
of emissivity, it is necessary to have highly polished, high-conductivity surfaces
made from gold, silver, copper, or aluminum. It has also been indicated [7] that
since the emissivity is related to surface conductivity, it is best to polish the surfaces
with a strain-free technique such as chemical etches. Finally, to estimate the radiant
energy flux between surfaces of unknown emissivity, it is necessary to choose an
approximate average value for ¢. If the surface in question is dielectric, it is
reasonable to assume black body heat transfer. If, on the other hand, the surface
is a metal and polished, a conservative choice is ¢ ~ 0.1. However, as can be seen
in Fig. 10.2, to achieve emissivities much less than 0.1, special care must be taken
with the surface preparation.

The radiant heat transfer between parallel surfaces, shown schematically in
Fig. 10.3, is a function of the properties of both surfaces. The rate at which energy
is radiated from surface 1 is proportional to the emissivity ¢;, and the fourth power
of the temperature T;. A similar situation occurs for surface 2. In the simple case
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that the surfaces can be approximated as black bodies, that is, ¢; = &, = 1, the net
radiant heat flux is the difference between these two values:

g =o(T} —T3) (10.15)

In the general case where the emissivity is considerably less than unity, the
situation is more complicated. This is because the incident radiation from one
surface can either be absorbed by the other or reflected back to the original surface.
This problem can be solved by summing the infinite series of contributions to the
radiant energy flux. The result for the net radiant heat flux for gray surfaces is

4 = (8182>0(T14 — T4 (10.16)

&1+ & — €18

Note that in the special case often encountered in cryogenics where ¢; ~ & ~
¢ < 1, the quantity in brackets reduces to simply &/2.

Example 10.1

Consider the heat leak to a vacuum insulated liquid helium container both with
and without liquid nitrogen shielding. Assume that the residual vacuum is
sufficiently low to be able to neglect gas conduction heat leak. Assume a fairly
optimistic value for ¢ = 0.05 for both surfaces, and calculate the heat load/unit
area.

Solution: Equation 10.16 yields a radiant heat leak between 77 and 4.2 K of
g,77 K) ~ 50 mW/m? which for most systems is acceptable because it
represents about 60 mL/h or liquid helium consumption per square meter of
container surface area. If, on the other hand, the exterior surface is maintained at
ambient temperature, 300 K, the heat leak is increased by approximately a factor
of 300 which represents almost 3 L/h-m* of helium boil-off. Obviously, there is
considerable benefit in liquid nitrogen shielding of liquid helium containers.

The above situation can be generalized to multiple radiation shields, which
represents a fairly good approximation for aluminized mylar multilayer insulation
(MLI) at low packing density, discussed below. For the case of n shields between
two parallel surfaces, the radiant heat flux becomes

Eilk 4 4
" <m>°(T1 - T3) (10.17a)
where

&0&s

= 0 10.17b
S e ¥ e — tots ( )
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and

&s

2 — &

& = (10.17¢)

for which & is the emissivity of the two parallel surfaces and ¢, is that of the shields.
For the special case where ¢y = &; = ¢, (10.17) can be simplified considerably:

g = ((n+l)(2—8))a<T‘ -1 (10.18)

Note that for ¢ < 1, (10.18) predicts a heat leak reduced by the factor (n + 1)~
from that without the multilayer shields.

Example 10.2

Calculate the temperature of a thermally isolated radiation shield that is
suspended between two fixed surfaces (T; = 80 K and 7, = 300 K). Assume
that all surfaces have a constant emissivity of 0.1.

Solution: If the shield is isolated then the only mode of heat transfer is by
radiation. If we set the temperature of the shield as unknown, T, then the net
radiant heat flux from the high temperature wall (7, = 300 K) to the shield must
equal the net radiant flux from the shield to the low temperature wall
(T; = 80 K),

0= (5)ori-1!) = (5)o(ri - 1)

Solving for T,
1
T4 T4 4
Ts = <71 ; 2> =2526K

It is an exercise for the student to show that the shield temperature is nearly
independent of the 7.

10.1.4 Multilayer Insulation (MLI)

Aluminized mylar with low-density fibrous insulating spacers between many
layers, represents a special case of a multilayer insulation system. Since there is
interlayer material present, it is no longer possible to assume that each of the n
shields is isolated from the others except for the radiant heat transfer. This material
is sometimes referred to as superinsulation or simply MLI (multi-layer insulation).
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(Source: Leung et al. [13])

Combined with high vacuum, MLI is the best insulating medium for low tempera-
ture systems and has become the standard for almost all cryogenic systems that
operate in the liquid helium range.

With MLI there are two contributing heat transfer heat transfer mechanisms
which are both functions of density and total number of shields. On the one hand,
there is radiant heat transfer that decreases with increasing number of radiation
shields, that is, layers of aluminized mylar. However, on the other hand, as the
packing density increases, the heat transferred by conduction though the fibrous
insulating spacers begins to make a larger contribution to the total heat leak. These
two competing processes theoretically lead to an optimum layer density for practi-
cal multilayer insulations. Note that the solid-state conduction heat leak can be
reduced by increasing the spacing between walls for the same packing density while
the radiation contribution is only a function of number of layers. Therefore, the
optimum number of layers should also be a function of the total insulation thickness
or total number of layers.

The existence of a minimum in the layer density dependence of the heat transfer
through MLI has been demonstrated experimentally [12, 13]. Plotted in Fig. 10.4 is
one set of results for the heat flux through MLI between 4.2 and 77 K as a function of
the numbers of layers [13]. The existence of a broad minimum near 0.5 layers/mm
indicates the density where the solid-state conduction begins to play a substantial
role. Note that the exact position of the minimum is not critical since a factor of two
change in packing density increases the heat flux by less than 10%. Obviously, these
results are not universal because the conduction and radiation contributions scale
differently. However, MLI at low densities, less than 0.5 layers/mm, can be modeled
fairly accurately by pure radiant heat transfer. For these results, the best choice for
the emissivity of aluminized mylar is ¢ = 0.011 at 4.2 K and 0.03 at 77 K.
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Fig. 10.5 Apparent mean thermal conductivity of glass powder and multilayer insulation versus
residual gas pressure (Source: As compiled by Lady [15])

10.1.5 Powder Insulations

Glass powder insulation (the most common form is known as perlite) is also used to
fill spaces between vacuum walls in insulating cryogenic vessels although it is not
very common in helium systems [14]. This is because, in general, the performance
of these materials is inferior to MLI. These materials generally are comprised of
powders or glass microspheres with diameters in the range 10-1,000 um. They
have one clear advantage over MLI in that the material is easier to install, cheaper,
and the residual vacuum requirements are not generally as stringent. However, the
disadvantages of powder insulation technology are that it requires long and careful
pump-down procedures and that the residual effective thermal conductivity is
considerably greater than can be achieved with properly installed MLI at high
vacuum. It is because of these latter two factors that powder insulations are most
commonly used in large cryogenic storage tanks that contain the higher temperature
cryogenic (LN,, LNG).

The apparent thermal conductivity of perlite materials is a reasonably well-known
quantity. Measurements have been carried out on the variation of this quantity with
residual gas pressure. Most results are reported in the range of 77-300 K. Plotted in
Fig. 10.5 are typical values for the apparent thermal conductivity of perlite versus
residual gas pressure [15]. Note that minimum conductivity is achieved for pressures
around 102 torr (~1 Pa) so lower pressures are not needed. For comparison, the figure
also shows the apparent conductivity of superinsulation (MLI). In this case, a much
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value is achievable at low pressures (p =~ 10~* torr or 1072 Pa); however, at
intermediate pressures, the benefits of superinsulation are minimal. At high pressures,
p 2 10Pa, superinsulation actually has higher thermal conductivity than the powders.

Recently, there has been a considerable effort at developing other porous
insulations based on Aerogel, which is a very low density material containing a
nano-pore structure. Some evidence suggests that these materials even in the
intermediate pressure range have lower conductivities than perlite.

As a final comment, an additionally interesting problem concerns the refrigera-
tion of radiation shields in cryogenic systems [16]. In large systems where radiation
contributes substantially to the heat leak, it is possible to optimize the thermal
performance by actively cooling the radiation shields. There are two main
approaches to this problem. One approach, which is commonly used in cryostats
that contain a stored cryogen (liquid helium storage vessels, for example) is to use
the vented cryogen through tubes attached to the radiation shields. The vapor
leaving the liquid container is nominally at the boiling point of the liquid and
thus can intercept the radiant heat load at an intermediate temperature before
venting from the cryostat.

An alternative approach that works with systems that are actively cooled is to
again cool the radiation shields at intermediate temperatures but in this case with
closed-cycle refrigerators. The advantage here is that improved overall thermody-
namics can be achieved since radiation heat leaks from ambient temperature can be
absorbed at higher temperatures, thus taking advantage of higher refrigeration
efficiency. This approach often couples the conduction heat load to the intermediate
cooling station for the same reasons. The thermodynamic principles needed to carry
out this analysis are discussed in Chap. 8. For further details, the reader should
consult references in the literature.

10.2 Helium Adsorption

Another interesting and technically significant topic related to the field of helium
cryogenics is that of physical adsorption. Physical adsorption is a general term used
to describe the process whereby an inert molecule comes in contact with and
adheres to an inert surface or substrate. The inert character of each component is
important because if substantial chemical reaction occurs, the process is referred to
as chemisorption and the thermodynamics of the process are quite different. Since
helium is inert and does not bond chemically to any other element, the adsorption
process is described by physical mechanisms similar to those encountered in bulk
condensation. It is often possible to treat the adsorbed film as an independent
system, with the substrate forming the non-interactive boundaries much like walls
of a container form the boundaries to bulk fluids.

Studies of adsorbed gases over the past few decades have expanded the under-
standing of the basic physical processes. Growth in the field can be attributed primarily
to two factors. First, recent developments have introduced a number of experimental
techniques for surface investigation. Several of these techniques are sensitive to less
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than one atomic layer, allowing investigations of monolayer and submonolayer films.
Second, scientists have discovered substrates that are regular and homogeneous and
permit nearly ideal film behavior. Due to surface morphology, real surfaces tend to
have considerable variability in adsorption potential which can result in inhomoge-
neous films. Although this situation is realistic in practice, it gives little insight into the
detailed physical behavior of the film itself.

Physical adsorption has considerable technical importance in the field of cryogenics.
One application is in cryopumping, a process whereby a gas is pumped from a system
by exposing it to a large surface at low temperatures. This technology is used in
numerous cryogenic devices and naturally occurs in liquid helium systems because
the surfaces are so cold. When properly designed and used, cryopumps provide clean,
oil-free vacuum systems with high capacities and essentially no moving parts. Another
area of technical application for adsorption is in the separation of rarified gases. In this
method, more strongly interacting molecules are adsorbed onto the substrate leaving
the vapor phase enriched with the lighter more weakly bound molecules. Subse-
quently, the substrate can be “regenerated” by raising its temperature to desorb the
heavier species. A major sector of the technology of air separation is based on this
concept. Finally, adsorption is employed in a certain class of refrigerators that use the
alternate condensation and evaporation of a fluid by adsorption/desorption as a process
tool much like a compressor in a conventional cycle.

In addition to these technical uses, physically adsorbed layers can significantly
impact the behavior of cryogenic processes and systems. For example, boiling
surface heat transfer can be affected by the existence of adsorbed solid films
which can interfere with the bubble nucleation process. Surface films can also
impact the solid-liquid helium heat transfer process of Kapitza conductance by
modifying the phonon transport. Radiative heat transfer can also be affected by
variation of emissivity due to cryo-deposits on the surfaces. Finally, the adsorption
of gas onto cold surfaces can represent a significant heat load to the system that can
result in loss of stored cryogen. This topic was discussed in the context of the
accommodation coefficient for molecular-kinetic heat exchange. All these factors
make knowledge of the physical adsorption process important for proper under-
standing of the behavior of low-temperature systems.

10.2.1 Adsorption Thermodynamics

To begin, consider a simple thermodynamic description of the adsorption process.
A closed container, shown in Fig. 10.6a, has N, molecules in the vapor state at
temperature 7, and an equilibrium pressure p. Assume that 7, is high enough that
the molecules do not adhere in any significant numbers to the container walls,
which are also at T',. One of the container walls forms the adsorption substrate at a
temperature T that can be independently regulated relative to 7. Of interest are the
physical processes that take place as the substrate temperature is reduced below T,
Initially, as T, decreases, the pressure will decrease also in rough proportion
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Fig. 10.6 Schematic representation of adsorption. (a) A closed volume with N,, molecules in
the vapor phase. The number of molecules adsorbed, Ny, is small compared to N, because Ty > T..
(b) The same volume with T < T. so appreciable adsorption occurs

because the vapor temperature will be some thermodynamic average of T and T,.
However, once T, reaches a temperature of the order of the critical temperature of
the vapor species, ~5 K in the case of “He, a substantial quantity of the gas will
begin to adhere to the substrate.

The mechanism whereby this adherence occurs is the van der Waals interaction
between the oscillating electric dipoles. A number of approximate potentials exist to
model this interaction. One of these is the Lennard-Jones (LJ) 12-6 potential, which
was introduced in Chap. 3 to describe interactions in real gases. In the case of an ideal
two-dimensional planar surface comprised of substrate atoms, it is possible to write a
modified form of the LJ potential for a gas atom a distance d above the plane [17],

0.12 0.6

where ng represents the density of substrate atoms and ¢ and ¢ are the Lennard-Jones
parameters for the gas—substrate atom interaction.

Now consider the impact of introducing a small quantity of gas dN to the system.
This situation is illustrated in Fig. 10.6b. If T} is sufficiently low, some of the gas
will be adsorbed, increasing the total particle number on the substrate by dNy. The
remainder will stay in the vapor such that dN,, = dN — dNy. For a closed system in
which this extra gas is introduced reversibly, the chemical potentials of each phase
must be equal, uy = p,. This condition establishes a relationship between the

entropy of each phase:
oS oS,
(—f> — <—) (10.20)
aNf EAV ON, EAV
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Fig. 10.7 An adsorption
equilibrium surface. Lines of
constant surface coverage are
called isosteres

T

The behaviors of the two phases are related inherently through thermodynamics.
For example, detailed information about the state of the film can be extracted from
measurements of pressure of the equilibrium vapor phase.

In bulk matter, the behavior of the system is determined by an equation of state, a
relationship between pressure, temperature, and volume. By analogy, in a film
system an equation of state exists relating the three surface relevant parameters:
spreading pressure ¢, temperature 7, and coverage or capacity x. However, under
most conditions it is not possible to measure the film spreading pressure directly so
that it must be inferred from bulk vapor pressure determinations. The most common
situation is to construct an equation of state relating bulk vapor pressure, tempera-
ture, and capacity. Such a relationship is shown schematically in Fig. 10.7 which
represents a surface equilibrium of an adsorption system. Note that processes
occurring at constant capacity are referred to as “isosteric” by analogy with
isochoric or constant volume processes in bulk systems.

One of the most important parameters in an adsorption system is the isosteric heat
of adsorption, g,,. This quantity is defined as the amount of energy required to bring a
molecule from the film into its equilibrium vapor. In the limit of zero coverage and at
absolute zero, the isosteric heat is simply the single-particle binding energy to the
substrate. As the film grows, this value decreases until for very thick films g, — /g,
the heat of vaporization of a bulk condensate comprised of film molecules. These
values form the limits for g,,. However, the detailed structure of this quantity can
give considerable information about the thermodynamic state of the film.

The thermodynamic definition of ¢, is given in terms of the entropy change at
constant coverage:

oS
Gy = —T<—) (10.21)
t 6Nf T.p.A
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By holding T, p, and A constant the variation of g,, is essentially along a constant
coverage isostere; see Fig. 10.7. Substituting the relationship for equilibrium
between the film and vapor, (10.20), we can rewrite (10.21) as a function of

individual component entropies,
(@), (@)
ONt ) 1o ONv) 1,

An alternate definition for the isosteric heat is given in terms of a temperature
derivative of the equilibrium vapor pressure. This expression, which can be derived
explicitly from (10.22) and is analogous to the Clausius-Clapeyron equation, is a
function of easily measurable quantities:

qst = =T

(10.22)

(10.23)

o = kT2 (3(11117))

ar

In the simplest case where g, is a constant, integration of (10.23) establishes an
experimental form of the equilibrium vapor pressure,

L _ ettt (10.24)
Po

where py is a constant of integration. This expression identifies the importance that
the isoteric heat plays in determining the ultimate pressure of an adsorption system.

The traditional method used for measurement of ¢y is by vapor pressure
isotherms. The behavior of the isotherms depends strongly on the type of substrate
material and adsorbed gas. Substrate materials considered range from nearly ideal
single-crystal surfaces to more practical inhomogeneous surfaces composed by
polycrystalline metals or insulators. In addition, a given surface can be modified
by first pre-plating the substrate with a more strongly adsorbed gas which then
forms the new substrate for subsequent adsorption. Experimental data exist for
numerous systems including almost all commonly available gaseous elements and a
number of compounds. The temperature range of investigation in these studies is
determined mostly by the strength of the gas—substrate interaction.

Most substrates encountered in practical adsorption problems are inhomogeneous,
composed of polycrystalline or amorphous materials. Because of their non-unifor-
mity, only qualitative models are available to describe their behavior. For inhomoge-
neous substrates the vapor pressure isotherm follows the general form shown in
Fig. 10.8. Initially, the vapor pressure is quite low because the first layer is bound
strongly. However, as the film builds thickness, the pressure increases rapidly until it
asymptotically approaches that of the bulk liquid, p,. An expression can be derived to
compare with the results of Fig. 10.8 by assuming a layer-dependent form of ¢, in
(10.24). Considering only the attractive term in the van der Waals expression (10.19),
we obtain the Frenkel-Halsey—Hill equation [17].
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Fig. 10.8 An adsorption isotherm for a mylar substrate representing typical inhomogeneous
character. The curve is based on the Frenkel-Halsey—Hill expression (10.25) (Source: Reprinted
from Dash [17])

—o

P _exp (10.25)

Ps keTd

where o represents the strength of the attractive potential on the bare substrate and
should be approximately equal to ¢, at low coverage, and d is the number of atomic
layers. A comparison between the adsorption of “He on a mylar surface and that
derived from (10.25) is made in Fig. 10.8. Theory and experiment are in qualitative
agreement although the theory is not particularly sensitive to the detailed nature of g,,.

The limiting value of ¢, is determined from the slope of low-coverage
isotherms. One can also obtain information on the isosteric heat of adsorption by
measuring the temperature dependence of the vapor pressure at constant coverage.
For example, plotted in Fig. 10.9 is the absolute pressure versus 7' for “He
adsorbed on a copper sponge substrate. Note that the general form of (10.24) is
obeyed. Furthermore, by extrapolation to zero coverage, it is possible to deduce an
effective g, for the substrate. These data yield a value ¢,/kg ~ 160 K. A number of
different measurements of g, for “He at low coverage are listed in Table 10.2. Note
that the values of g, for submonolayer “He are at least an order of magnitude larger
than the latent heat of vaporization for helium, ~10 K. As a result, there can be a
significant amount of adsorption of *He even at temperatures above 7. However,
the total quantities adsorbed are strong functions of temperature and are small
because the process has an exponential dependence.
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Fig. 10.9 Temperature 102
dependence of the vapor
pressure for constant
coverage films on copper
sponge. x refers to fractional
monolayer coverage (Source:
Reprinted from Princehouse

[18])
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Table 1.0.2 Isosteric heat of Substrate gulks (K)  References
adsorption at low coverage
for “He on various substrates Copper ) 160 L18, 19]
Argon plated TiO, 230 [20]
Exfoliated graphite ~ 143-156 [21, 22]
Zeolite (13X) 220 [24]

As more gas is adsorbed on the surface the vapor pressure increases quite
strongly. This effect can be seen most clearly in Fig. 10.8. Initially, the equilibrium
vapor pressure is quite low due to the large value of g,. However, as Nyincreases,
qs: decreases until for films having an equivalent thickness of four to six atomic
layers the vapor pressure is essentially that of the bulk liquid or solid. The quantity
of adsorbed gas necessary to complete one monolayer is an important parameter.
Not only is this parameter an effective method of determining the surface area of
the substrate but it also can be used as a fiducial point for estimating the density of
submonolayer films. A number of methods exist for measuring monolayer comple-
tion. The most direct is to measure the vapor pressure isotherm. Above layer
completion, the average position of the next absorbed gas molecule must be further
from the substrate, and thus the molecule experiences a weaker binding. In an ideal
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Table 10.3 “He capacities of various adsorbent materials

Monolayer capacity ~ Area

Substrate (STP—cm3 /mz) (mz/g) References

Sintered Cu sponge 0.24 041 [18]
(~um? particles)

Zeolite 13X 0.29 527 [19, 23]

Exfoliated graphite 0.36 25 [22, 24]

Vycor glass 0.41 130 [25]

system the value of gy, would decrease discontinuously. However, most substrates
are inhomogeneous and the layers are compressible so that, more commonly, g,
undergoes a change in slope at layer completion. The precise value of layer
completion is also quite temperature dependent, owing to thermal excitations in
the film, and therefore is defined only approximately for any substrate.

Listed in Table 10.3 are measured values for monolayer capacities of different
substrates. Note that the capacity per unit area of substrate does not vary greatly
from substrate to substrate. This is because the surface area is determined primarily
by the hard sphere radius of the adsorbed molecule. On the other hand, there are
wide variations of effective surface areas per gram of substrate material. Consider-
able benefit for cryopumping can be obtained by use of one of the high-surface-area
materials. It should be pointed out that high adsorption capacity does not necessar-
ily imply good cryopumping characteristics because the latter is a rate-dependent
process. The rate at which adsorption occurs in high-surface-area materials is
mostly a function of gas flow hydrodynamics within the material, a characteristic
not necessarily desirable for high-speed cryopumps.

Vapor pressure isotherms are most commonly of the type described above,
having a smoothly varying relationship between Ny and p. However, for some
substrates that are very uniform this dependence is not observed. In these systems
a discontinuous slope change in the vapor pressure isotherm occurs at monolayer
completion. Further adsorption occurs on the second layer with a correspondingly
lower value of ¢. This process continues until layer completion where a second
step in the isotherm occurs. In the ideal case this mechanism for layer growth would
continue indefinitely until the thermal excitations of the molecule of the order of
kgT blur the distinction between individual layers.

10.2.2 Physical Properties of Helium Films

Through the introduction of large-surface-area uniform substrates, it has become
possible to investigate a number of interesting quasi-two-dimensional phases
occurring mostly in the first one or two layers. The models that describe the
physical processes emphasize the two-dimensional nature of the system. At low
densities, much less than one atomic layer, helium adsorbed on graphite behaves
much as a two-dimensional quantum gas. At high temperatures, its specific heat
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Fig. 10.10 Superfluid onset temperatures of “He films on different substrates and measured by
different techniques (Source: From Herb and Dash [26])

asymptotically approaches a constant value of C =~ Nkg, while at lower
temperatures, quantum effects brought on by statistical correlations reduce the
specific heat in a manner similar to the bulk fluids. At intermediate surface
coverages, behavior occurs which can be correlated with regularity in the adsorbed
gas. This effect is brought on by the adsorbed gas being affected by the periodicity
of the substrate. At still higher coverages up to layer completion, the adsorbed gas
sometimes behaves much as a two-dimensional solid with low-temperature specific
heat varying as T2, consistent with a two-dimensional Debye model. For these high
coverages, melting transitions in the specific heat are observed at intermediate to
high temperatures above which fluid-like behavior occurs. An interesting artifact of
surface phases in adsorption systems is the occurrence of two-dimensional solids
even though bulk helium does not solidify unless considerable external pressure is
applied. In this case, the adsorption interaction compresses the molecules on the
substrate to densities similar to those that occur in the bulk solid. These high
densities allow the formation of long range order and crystal structure.

Of interest in unsaturated *He films is the question of when does superfluidity
manifest itself. Clearly as was discussed in Chap. 6, thick saturated films display
superfluidity in the form of film mobility (Rollin Film) and heat transport. For the
case of unsaturated helium films of more than a few atomic layers, superfluidity is
observed both in the A-transition in the specific heat [24] as well as the onset of
mobility [26]. The latter case is displayed in Fig. 10.10, which is a plot of the onset
of superfluidity as a function of pressure ratio. Note the depression of the onset
temperature with reduced film thickness as measured by the vapor pressure.

As was stated early on in this section, gas separation, cryopumping and adsorption
refrigeration are the main applications for physical adsorption in cryogenic systems. In
the first case the desired characteristics of the adsorbent are light weight, small heat
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capacity, and large surface area. Typical materials used are activated charcoal, silica
gel, activated alumina, or molecular sieves. The specific area of these materials are in
the range 300—1,200 m?/g and bulk densities less than 1 g/cm>. No particular concern
is given to surface uniformity. Applications generally call for designing an adsorption
“bed” which provides good adsorption characteristics yet still allows for bulk flow.
This application depends strongly on details of design.

In terms of cryopumping applications of adsorption, the choice of substrate
material and configuration is more dependent on specific application. If high-
speed pumping is required, the surface must not restrict the flow of gas. Therefore,
the most common design is to use a planar metallic surface. To achieve substantial
total pumping capacity before regeneration, this type of surface is necessarily quite
large, a fact that leads to problems with reducing the radiation heat leak to warm
surrounding surfaces. A number of standard techniques are available for providing
radiation shields that allow high flow rates of gas. If high pumping speed is not
necessary, use can be made of numerous high-surface-area materials, called
“getters,” thermally well anchored to a low-temperature heat sink. Getters of this
type often are sealed into closed helium dewars to maintain good vacuum quality
over an extended period of time.

Example 10.3

Calculate the vapor pressure of a three layer helium film adsorbed on a copper
substrate at 4.2 K. Use the Frenkel-Halsey—Hill equation and assume qg/kg
= 160 K. Compare the result with Fig. 10.8. Now use the same expression to
estimate the vapor pressure of a monolayer film.

It is only necessary to calculate the ratio of the pressures,

P _ o (aftare)
Po

For three layers (d = 3), this expression yields p/po = 0.24, which is close to
the value in Fig. 10.8. Now for d = 1 film, one calculates p/p, = 2.8 x 10~"7,
which is a physically unrealistic value but still emphasizes the strength of the
adsorption process.

10.3 Magnetic Refrigeration

The use of the spin entropy of a magnetic system for cooling was first suggested in
1925 by Debye and Giauque [27-29]. It was then implemented by a number of groups
in the 1930s. Today, magnetic refrigeration has been developed into a well-established
technique for a number of specialized applications. The present section reviews this
topic. We begin with a description of the physics of magnetic materials that is relevant
to low temperature cooling. This discussion should provide the necessary understand-
ing of the relevant properties of this special class of low-temperature materials.
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Emphasis is given to the properties of some representative materials that have or are
being used in magnetic coolers. Finally, some discussion of the practical aspects of
magnetic refrigeration is presented with comments on the state of the art. The
treatment is intended to introduce the microscopic and macroscopic aspects of para-
magnetic cooling systems. For details, the reader should consult one of several recent
publications on the subject.

There are essentially two distinct classes of magnetic refrigerators. One type of
refrigerator operates down to the mK temperature range and is based on the electron
spin states of paramagnetic materials. This refrigerator type will be emphasized
here. The other type of magnetic refrigerator uses the nuclear spins of metallic
elements to achieve temperatures in the pK range and as a result is more an
expertise of low temperature physics.

10.3.1 Paramagnetic Materials

The paramagnetic salts are most commonly used in magnetic refrigerators. These
materials have a number of characteristics in common. They are comprised of
multi-component ionic molecules, one ion of which is magnetic. The magnetic ion
is sufficiently dilute within the material that at high temperature it approximates a
free non-interacting spin system. The strength of interaction determines the order-
ing temperature, below which the materials usually become diamagnetic. The
ordering temperature of most paramagnetic salts is in the range below 1 K.

The theory of paramagnetic spin systems is developed around the statistical
behavior of free magnetic ion systems. Any free magnetic molecule has two types
of magnetic moment associated with its electron orbital structure. The first, due to
orbital motion of the electron, is given the quantum number L. The other, resulting
from uncompensated electron spins, has a quantum number S. The total angular
momentum number J is the resultant of these two individual magnetic moments. In
general, atoms have nonzero values of L and S. However, certain ions, particularly
magnetic Fe®* and Cr** and Gd*", have effectively an inert-gas orbital structure, so
that L = 0, but they have uncompensated electron spins, such that / = S.

There are m; different quantum numbers associated with each spin state of the
atom, where m; can take on values from —/ to J. Therefore, within each atom there
are 2J + 1 individual energy levels. Without the application of an external magnetic
field, these levels are degenerate meaning that there is no distinction or energy level
difference between them. However, in an external field this degeneracy is lifted,
shifting the energy levels by an amount given by,

& = —glgloHm; (10.26)
where i is the Bohr magneton which is a ratio of fundamental constants, uz = eh/

4mm, = 0.927 x 1072 J/T with e/m, being the charge-to-mass ratio of an electron.
The magnetic field is that which is felt locally by the atom and can be substantially
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different from the applied magnetic field from external sources. The quantity g in
(10.26) is known as the Landé g factor [30]. For many paramagnetic coolants with
L=0,g=2.

For a material like gadolinium sulfate with g = 2, J = 7/2, the eight individual
energy levels within the magnetic system have a level separation, A¢ = 2upu, H,
directly proportional to the magnetic field. At absolute zero in an applied magnetic
field, all ions will occupy the lowest energy level. However, at finite temperature,
some of the ions will be excited into higher levels based on their statistical
distribution. Equating that energy level difference to the thermal energy of the
ions, kT, one can show the significance of thermal excitation to the population of
different levels.

luoH kB T
— =~ —~075|= 10.2
T 2y 0.75 {K} (10.27)

This relationship more or less establishes the boundary between the two regimes
of ordering in a magnetic ion subsystem. The low-field, high-temperature regime
occurs when the ratio poH/T < 0.75 T/K. In this regime, the magnetic ions
essentially are disordered with the level spacing being small compared to kpT.
Since this is a disordered state, it is of higher entropy. On the other end of the
spectrum, the high-field, low-temperature regime, uoH/T > 0.75 T/K, corresponds
to the majority of the spins occupying the lowest energy level. This is a lower
entropy state for the spins.

Since the magnetic ion system consists of indistinguishable particles, it is
appropriate to describe the behavior using Boltzmann statistics. The starting point
for statistical analysis is the definition of a partition function, Z. For a magnetic ion
system, the assumption is made that the total partition function is a product of the
internal nonmagnetic part and the magnetic contribution,

Ziotal = ZinZp (10.28)

In a magnetic ion system Zp essentially is due to the Zeeman effect, the magnetic
splitting in an external field. It can be shown that the Zeeman contribution to the
partition function is [28],

sinh (J + %) a

~ sinh(a/2) (10.29)

where the parameter a = guguoH/kgT is a measure of the ordering.
The low-temperature thermal properties of a magnetic ion system are consider-
ably different from other more ordinary materials. Although these systems possess
phonon excitations, a more dominant mechanism contributing to their thermal
behavior at low temperature is due to the crystal field splitting of the ionic energy
levels within the lattice [30]. Recall (Chap. 2) that the phonon specific heat is
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proportional to 7% at low temperatures. On the other hand the crystal field splitting,
also referred to as the Stark effect, is caused by the ionic electric fields establishing
different energy levels analogous to those from the magnetic Zeeman effect. The
level splitting is small, typically on the order of 10—100 mK, and consequently only
becomes important at low temperatures.

To derive an expression that adequately describes the Stark effect, we begin by
making some simplifying assumptions concerning the structure of the energy
levels. Often, crystal field splitting has associated with it two levels separated by
an energy 9, with each level having a degeneracy g, that is not lifted by the crystal
field. In this case, we can write the partition function associated with the internal
system as,

Zint = 80 + g1 /0T (10.30)

where gy and g, are the degeneracies of the ground and first excited states. The
product of the two contributions to the partition function can be used to calculate
the thermodynamic properties of the magnetic ion system.

The total entropy of such a system of spins is therefore made up of two terms,

0lnZ
= T
S = N,,kg ( a7

) + NpykgInZ (10.31)
H

where N,, is the number of magnetic ions. Equation 10.31 can be differentiated to
yield the specific heat and other thermodynamic variables. For example, the internal
energy of the magnetic ion system is a function of the total partition function,

0lnZ
oT

E= NkaT2< ) + pgHM (10.32)
H

The specific heat capacity at constant magnetization is just the temperature
derivative of the internal energy, C,, = (OE/OT)y;. It therefore follows from
(10.32) that the constant magnetization heat capacity is

2 (5//(BT
Cy 1 (8E) J (g0/81)e (10.33)
M

Nonkp B Nykp ﬁ B k%T2 [] + (go/gl)e(S/kBT]z

This expression, known as the Schottky equation, is plotted in Fig. 10.11 for
different ratios of go/g; Note that the maximum in the Schottky heat capacity is
approximately /2Nkg, which is very large compared to the other solid-state
contributions at low temperatures. Note that N,, is the number of magnetic ions,
which is generally much less than N, the total particle number. Also, typically,
0/kg =~ 100 mK so that this term dominates the zero field heat capacity at lower
temperatures, T < 1 K.
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Fig. 10.11 Schottky heat capacity of a magnetic ion sub-system whose lowest energy level in the
absence of any external magnetic fields is split into two states with degeneracies gy and g, (Source:
From Zemansky [30])

For many magnetic refrigeration applications, the operating temperature is
significantly above the Schottky anomaly temperature, §/kg. In this regime it is
possible to take a high-temperature limiting form of (10.33) which yields

Cv == (10.34)

where A, the specific heat coefficient, has a value

2
A = Nyl —S0/81_ <i> (10.35)
(1+g0/g1)" \ks

It is important to bear in mind that the above analysis applies to a system of N,,
magnetic ions. Typically, in paramagnetic salts the magnetic ion number is much
smaller than the total number of particles in the crystal. Therefore, if the heat
capacity per unit mass or unit volume is desired, it is necessary to take into
consideration the total molecular weight of the ionic salt.

The other important contribution to the specific heat of a magnetic ion system is
that due to phonon excitations which at low temperatures, see Chap. 2. At low
temperatures, this contribution may be approximated by the Debye model,

7\3

Cpn = 234Nkp <@) forT < ©p (10.36)
D

where N is the total atomic number and @) is the Debye temperature typically

>100 K.
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We can compare the relative importance of the phonon and Schottky heat
capacities based on the above discussion. Assuming for example that go/g; = 0.5
and taking the ratio of (10.34) to (10.36), we obtain

3 2
g—‘;‘; =936 (Nﬁ) (@%) <I€BTT) (10.37)

For a magnetic material like iron ammonium alum with J/kgp = 242 mK,
®p = 250 K, and N/N,,, ~ 50, the above ratio at T = 1 K takes on the numerical
value Cpp/Cys = 0.052. Therefore, the phonon contribution to the specific heat is
already a minor (~5%) contributor at 1 K and becomes smaller as the temperature
decreases, since the ratio goes as T°. As a consequence, it is possible to neglect the
phonon term for low temperature, T < 1 K applications. However, for many
systems it must be included, particularly at high temperatures.

We now consider the magnetic properties of the paramagnetic materials. These
are also given in terms of the magnetic partition function. For example, the
magnetization can be obtained from a derivative of Z with respect to the applied
magnetic field,

0lnZ
M = N, kgT =) = N,.gu,JB 10.38
B (aﬂoH) gupJBj(a) ( a)

where the quantity B (a) is the Brillouin function,

1 1 1 1 1
B == — h —)a — = coth— 10.
7(a) Vi [<]+2> cot (J+2>a 5 cot Za] (10.38b)

where as a reminder a = guguoH/kgT. In the limit of large a, there is a high degree
of magnetic ordering and the magnetization approaches a constant value,

M = NgugJ for guguoH > kgT (10.39)

while at small values of a, the magnetic system is weakly ordered and the Brillouin
function becomes linear with a. In this regime it is shown easily that the magneti-
zation can be expressed as

M= HoycH
T

for gupB < kgT (10.40a)

where )¢ is the Curie constant defined by expansion of the Brillouin function,

_ Nugupl(J + 1)

10.40b
Yc 3y ( )

Listed in Table 10.4 are specific heat coefficients for several paramagnetic
materials along with other relevant properties.
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Table 10.4 Selected properties of magnetic refrigerant materials®

Debye
Specific volume Curie constant yc temperature ®p

Material (cm*/g-ion) (JK/gionT?)  (K) A (J K/g-ion)
2Ce(NO5);3M g 366 0-3.17° 60 5% 1077

(NO;),-24H,0
Cry(S04)3-K,504-24H,0 273 18.4 - 0.15
Fe,(SO4);(NHy) 282 438 250 0.108

2504-24H,0
Gd,(SO04);-8H,0 124 78 105 -
Gd;GasO,, 48 78 203 0.13

“See Refs. [29-33]
® Anisotropic material

10.3.2 Thermodynamics of Magnetic Refrigeration

The thermodynamic principles by which magnetic cooling can be achieved are seen
easily by analogy with a fluid system. For the sake of simplicity, assume that the
magnetic system is composed of a solid material so that pressure—volume work is
negligible. In this case, the combination of the first and second laws of thermody-
namics can be written

T dS =dE — pyH dM (10.41)

where M is the magnetization of the material. Thus, the second term on the right-
hand side is magnetic work done on the system by direct analogy to p dV, the work
done in a fluid system.

Adiabatic demagnetization is analogous to isentropic expansion in a fluid sys-
tem. The important parameter that controls this process is the isentropic coefficient,
which for a magnetic system is the derivative of the temperature with respect to
applied field at constant entropy:

1 /0T
=— (= 10.42

Note the similarity between (10.42) and the isentropic expansion coefficient defined
in Chap. 8. Normally, u,, is referred to as the magneto-caloric coefficient.
Table 10.5 presents a comparison between parameters and coefficients relevant to
magnetic and fluid refrigeration systems.

It is straightforward to show that y,, is a function of the temperature dependence
of the magnetization of the spin system,

T (M
o=~ (ﬁ>y (10.43)
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Table 10.5 Comparison of parameters and
coefficients in magnetic and fluid refrigeration

systems

Fluid Magnetic
Extensive variable |4 M
Intensive variable p LoH
Work pdv —uoH dM
Isentropic coefficient = (%;)Y s = (35),

The application of (10.43) for a particular magnetic refrigeration system requires
knowledge of two quantities, Cy and the temperature dependence of M. where the
constant field heat capacity is

oS
Cy = T(a_T>H (10.44)

Returning to the relationship for the magneto-caloric coefficient and considering
a weakly interacting magnetic system obeying the Curie law, we find that y,, takes
on a simplified form,

M
- 10.45
My Ch ( )

which is analogous to the isentropic expansion coefficient for an ideal gas.

The other term needed to establish the behavior of a magnetic refrigeration
system is Cg, the specific heat at constant magnetic field. A relationship for this
quantity can be derived through application of the first and second laws of thermo-
dynamics for a magnetic system (10.41). Defining the constant magnetization

specific heat as
oS OE
=T(=) == 10.4
Cor <8T)M (aT)M (1040

then (10.41) can be recast into the form
T dS = CpydT — pugH dM (10.47)

Further restricting (10.47) to a constant magnetic field process, the expansion of
the temperature differential defines the specific heat at constant field:

oS
Cy = T(ﬁ)}{ (10.48)
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It follows that Cz; may be written

oM
Ch = Cy — ot (ﬁ>H (10.49)

As discussed above, the constant magnetization specific heat Cy, is made up to
several independent contributions. The relative importance of each contribution
depends on the type of magnetic material involved and the temperature range over
which cooling is to be achieved. Neglecting the phonon term, we obtain a simplified
expression for the magneto-caloric coefficient:

veHT
o = U (10.50)
A+ yepgH
Subject to the above set of assumptions, this expression can be employed to
determine the final temperature achieved by adiabatic demagnetization of a mag-
netic material. Here we simply integrate (10.50) over a finite change in field and
temperature,
Tr AT Hotly v~HT
J —:J LTI (o) (10.51)
r, T i A+ VeligH

i

which by demagnetization to zero applied field, Hy = 0, results in the expression

1/2
T VelioH;
L (YIS 10.52
- (+ i (1052)

Example 10.4

Calculate the final temperature due to demagnetization of iron ammonium alum
from 0.1 T initially at 1 K.

Inserting the appropriate values from Table 10.4: A = 0.108 J - K/mol and
ye = 43.8 J -K/mol into (10.52), the ratio of temperatures for uoH; = 0.1 T
becomes T;/T; = 2.25. Therefore, with the material initially at 1 K the final
temperature as a result of adiabatic demagnetization would be Ty = 0.45 K. In
practice, demagnetizing fields much larger than 0.1 T allow lower final
temperatures, but the simplified expression derived above does not apply in
that case since we have used the low field approximate solution.

Another way of approaching this problem is to consider the entropy in magnetic
ion systems. In the limit of small magnetic field, guguoH < kgT and for T > 6/kg
the spin entropy can be shown to obey the relationship [30]

(10.53)

2(A H?
S = N,kg (m(zj +1) — M)

RT?
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Fig. 10.12 Temperature— H=0 4/

entropy diagram for a
magnetic material

where J is the total angular momentum quantum number. Generally, except at very
low temperatures (T < 1 K), the first term in (10.53) is the dominant contribution
to the spin entropy. This situation is desirable for magnetic cooling because the
entropy change between the magnetized and demagnetized materials is what
produces the cooling.

In the high magnetic field limit, guguoH > kgT, a considerably different situa-
tion occurs. Here the magnetic moments of the dipoles approach complete align-
ment with the magnetic field. The magnetic field is imposing a greater degree of
order on the system, thus lowering the entropy. In the extreme case the spin entropy
approaches zero, leaving the only remaining term associated with the Stark effect
and the lattice, the latter of which can be neglected at low temperatures. In this
limit, the principal behavior of the entropy is obtained by integration of the heat
capacity (10.33). This analysis leads to an exponentially decaying entropy for the
limit where o/kg > T,

B
S = N,kg ( 1+ —) 80 g=o/ksT (10.54)
ksT ) g

As the exact calculation of the entropy in a magnetic ion subsystem is dependent
on choice of materials and operating range, it will not be carried out here. However,
in order to calculate the final temperature of an adiabatic demagnetization, one
needs to equate (10.53) with (10.54) and solve for the final temperature. This is a
tedious, but straightforward calculation.

A schematic representation of the entropy of a magnetic ion subsystem is shown
in Fig. 10.12. At high temperatures, T > 6/kg and T > guguoH/kp, the entropy
difference between the magnetized and unmagnetized state decreases because the
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magnetic field is not very effective at magnetizing the sample. On the other hand, at
very low temperatures, T < d/kg and T >> gugpoH/kp, the entropy difference
decreases because the crystal field orders the system independent of the applied
magnetic field. There is a range, indicated by the dashed lines in Fig. 10.12, over
which the entropy difference A4S ~ NkgIn(2 J +1), thereby allowing for efficient
magnetic cooling. Obviously, the exact temperature range over which this region
occurs depends on the particular paramagnetic material in question.

10.3.3 Continuous Magnetic Refrigerators

With the above survey of the thermodynamics of magnetic cooling, we now turn to
the practical problems associated with achieving continuous refrigeration with
magnetic materials. In this discussion emphasis is placed on continuous refrigera-
tion rather than single-cycle adiabatic demagnetization, which was outlined above.
The material that goes into a magnetic refrigerator must have a number of unique
characteristics which set it apart from materials for other applications. Some of
these characteristics have been introduced above, but a complete summary includes
the following:

1. Magnetic refrigeration materials should have a small electronic and lattice
specific heat. The energy used to cool the electrons and lattice is wasted and
only reduces the efficiency of the cycle.

2. The magnetic level splitting due to the crystal field Stark effect, d/kz, should be
below the range of operating temperatures. Otherwise, the entropy change with
magnetization is reduced.

3. The magnetic contribution to the entropy should be large to allow more thermal
energy to be cycled through the demagnetization process.

4. To achieve good thermal exchange with the systems to be refrigerated, it is
desirable that the magnetic material have good heat transfer characteristics.
Whenever possible, magnetic refrigeration materials should have a high thermal
diffusivity.

5. Any material to be used in a device must be able to be fabricated into the
configurations necessary for effective operation.

The principles of idealized closed-cycle magnetic refrigeration are similar to
those for systems using fluids as working media. The most thermodynamically
efficient cycle is the Carnot cycle which is a combination of isothermal and
isentropic processes. This cycle can be achieved in a magnetic ion subsystem by
a method shown schematically in Fig. 10.13, which is an actual 7-S diagram for
gadolinium sulfate. In this example, the Carnot cycle is shown as operating between
two isothermal reservoirs at 15 and 1.7 K. This particular temperature range is
attractive for magnetic refrigeration because helium gas—liquid cycles are limited to
rather low thermodynamic efficiencies compared to the Carnot cycle. Also the
maximum magnetization field of 10 T is a practical limitation because it allows
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Fig. 10.13 Thermodynamic T T
cycle executed by Gd,(SOy); -
8H,0 in a magnetic Carnot

cycle (from Steyert®®)

T(K)

for the use of state-of-the-art but not prohibitively expensive superconducting
magnet technology.

Consider the methods whereby Carnot refrigeration in a magnetic system can be
achieved. A schematic diagram of the system is shown in Fig. 10.14. Apart from the
reservoirs, the refrigerator consists of three principal components: the working
material made of a magnetic salt, a magnet for aligning the spins of this material,
and two thermal switches, one to either reservoir for exchange between the working
material and isothermal baths. The Carnot cycle is a four-step process of magneti-
zation, demagnetization, and heat exchange to the isothermal reservoirs.

The methods by which the Carnot cycle can be achieved are seen best by
referring to the cycle ABCD in Fig. 10.13. With the thermal switch 1 (TS 1) closed
and the working material in good contact with the heat reservoir (HR), the magnetic
field is applied up to a maximum of 10 T represented by point D. Here the spins
have the maximum alignment at this temperature.

Next, TS 1 is opened, isolating the magnetic material, and the field is decreased
slowly, cooling the working material to point A at 1.7 K. Note that this point is not
at zero field. Thermal switch 2 (TS 2) is then closed and the working material comes
into the thermal equilibrium with the heat source. This step, which occurs isother-
mally, must be accompanied by a further slight demagnetization of the material to
point B at which point all the heat has been transferred. Thermal switch 2 is then
opened and the working material is magnetized slowly back to the high temperature
represented by point C. Once the working material reaches the heat reservoir
temperature, TS 1 is closed and further magnetization occurs isothermally to
point D, completing the cycle. This process, as represented in Fig. 10.13, is able
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Fig. 10.14 Schematic diagram of magnetic Carnot refrigerator (Source: From Steyert [32])

to pump 27 J per liter of material per cycle, which if achievable at modest
frequencies around 1 Hz could provide a rather high cooling rate in a very small
volume. Of course, the difficulty in achieving this kind of cooling power lies in the
practical aspects of creating a magnetic refrigerator.

In recent years there have been several devices built that are intended to bring the
above concepts to realization on a practical scale [33—37]. In most cases the devices
were developed to operate in the low-temperature region, 7 < 4.2 K, and to provide
cooling power at the low end of the order of 1 W. Materials employed are either
gadolinium sulfate or gadolinium gallium garnet (GGG), Gd;GasO;,. The latter
material has shown superior thermal properties. In one particular case, a prototype
refrigerator has been operated between 1.8 and 4.2 K with a cooling power of 1.2 W
and an achieved figure of merit in the range of 45% [37].

10.3.4 Nuclear Demagnetization

To produce much lower temperatures with magnetic refrigeration it soon becomes
inefficient to use paramagnetic salts as the working media because their spins will
already be aligned. At these temperatures, which can span into the submillikelvin
regime, it is possible to use the unpaired magnetic moment associated with the
nuclei. The nuclear magnetic moment py is smaller than the Bohr magneton by the
ratio of nucleon to electron mass (m,/m, = 1,840). Thus, the nuclear spins can be
aligned only by very high magnetic fields at low temperatures. This method was
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first applied in 1956 by Simon and Kurti at Oxford where spin temperatures in the
neighborhood of 10 uK were achieved through adiabatic demagnetization of the
nuclei of a paramagnetic salt. However, the spin temperatures are not the same as
the lattice temperatures and entropy must be transferred from one system to the
other. The time constant that controls this process, called the spin—lattice relaxation
time, can be large at very low temperatures, providing a severe hindrance to the
ultimately achievable a microkelvin lattice temperature. In recent times, it has
become more advantageous to achieve nuclear demagnetization using nuclei of
metallic elements. In those systems the density of magnetic moments is much
greater and the spin—lattice relaxation time shorter, allowing for minimum actual
bulk temperatures. Record minimum bulk temperature of ~100 pK (10~ '° K) have
been achieved by multistage devices for which the last stage is nuclear demagneti-
zation [38].

Questions

1. Explain why the apparent thermal conductivity of MLI has a minimum at a
particular layer density. Sketch a graph of k,p,,, vs. layer density. How would the
graph be different if thickness of the MLI blanket were half as great, but the
same number of layers used? Be as quantitative as possible.

2. If you wanted to improve heat exchange between two surfaces at low tempera-
ture, what would be the best gas to use? Why?

Problems

1. A 100 L spherical liquid helium Dewar consists of an inner vessel with a liquid
nitrogen cooled shield surrounding the inner vessel. Both the helium vessel and
nitrogen shield are suspended in a vacuum vessel. Assume that the emissivity of
all surfaces is 0.1.

(a) Calculate the heat load and liquid nitrogen consumption at 77 K.
(b) Calculate the heat load at 4.2 K and liquid helium consumption.

Neglect any contribution to the heat leak due to structural supports.

2. A liquid helium vessel (outer surface = 300 K) is surrounded by two, thermally
insulated radiation shields. Assume that all surfaces have emissivities = 0.05.
Calculate the temperature of the two shields and the heat leak per unit area to 4.2 K.

3. Calculate the pressure corresponding to a mean free path of 10 mm for a helium
molecule at 80 K. Estimate the apparent thermal conductivity of helium gas
under these conditions (Hint: you may assume that this is a free molecular flow
condition). Let the spacing between walls be 10 mm.

4. Assume a monolayer of helium molecules forms a hexagonal closed packed
structure. Use the hard core radius of a helium molecule to calculate the amount
of gas at STP necessary to form one complete layer at low temperature. Compare
your result with the data in Table 10.3.
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Appendix A2.2 Pressure 0.1 MPa

T(K) pkg/m®) h(kIkg) skikgK) CpkikgK) Cy(kl/kg K) p(uPas) kmW/m K)
1.0 146.90 0.697 0.016 0.102 0.102

1.2 146.90 0.737 0.051 0.322 0.322

1.4 146.90 0.843 0.132 0.787 0.787

1.6 147.00 1.075 0.287 1.614 1.612

1.8 147.20 1.522 0.548 2.959 2.953

2.0 147.50 2.319 0.966 5.249 5.227

T, = 2.168 148.00 3.56 1.56 27.88 25.67

2.2 148.00 3.719 1.631 3.777 3.765 2.715 13.859
2.4 147.40 4.257 1.866 2.282 2.173 3.140 14.746
2.6 146.30 4.696 2.042 2.233 2.029 3.364 15.529
2.8 145.00 5.147 2.209 2.308 1.978 3.515 16.226
3.0 143.30 5.623 2.373 2.496 2.017 3.634 16.844
3.2 141.40 6.150 2.543 2.784 2.135 3.715 17.383
3.4 139.10 6.739 2.721 3.108 2.253 3.718 17.838
3.6 136.50 7.395 2.909 3.463 2.353 3.585 18.204
3.8 133.50 8.128 3.107 3.874 2.432 3.456 18.469
4.0 129.90 8.952 3.318 4.396 2.495 3.327 18.624
4.2 125.40 9.902 3.550 5.161 2.547 3.181 18.651
Tep = 4.2163 125.01 9.987 3.570 5.243 2.551 3.168 18.648
Tep = 4.2163  16.533 31.81 8.510 9.015 3.240 1.241 9.004
4.4 14.940 32.37 8.872 8.056 3.217 1.274 9.275
4.6 13.640 3392 9.215 7.436 3.194 1.312 9.586
4.8 12.620 3536 9.523 7.027 3.175 1.350 9.901
5.0 11.780 36.74 9.803 6.735 3.159 1.389 10.216
52 11.070 38.06 10.06 6.517 3.146 0.000 10.528
6 9.028 43.05 10.96 6.011 3.120 1.579 11.736
7 7.426 48.89 11.86 5.724 3.111 1.761 13.161
8 6.344 54.54 12.61 5.575 3.111 1.935 14.491
9 5.555 60.06 13.26 5.485 3.113 2.100 15.729
10 4.949 65.52 13.84 5.426 3.115 2.258 16.889
12 4.074 76.29 14.82 5.353 3.118 2.557 19.025
14 3.468 86.95 15.64 5.310 3.120 2.835 20.983
16 3.023 97.54 16.35 5.282 3.120 3.097 22.811
18 2.680 108.1 16.97 5.264 3.121 3.345 24.543
20 2.408 118.6 17.52 5.250 3.121 3.582  26.198
22 2.187 129.1 18.02 5.240 3.121 3.808 27.792
24 2.003 139.6 18.48 5.232 3.120 4.025 29.333
26 1.848 150.0 18.90 5.226 3.120 4.235 30.831
28 1.716 160.5 19.28 5.221 3.120 4.437 32.290
30 1.601 170.9 19.64 5.218 3.120 4.634  33.716
40 1.200 223.0 21.14 5.206 3.119 5.542  40.444
50 0.961 275.0 22.30 5.201 3.118 6.360  46.678
60 0.801 327.0 23.25 5.198 3.118 7.116  52.552
70 0.686 379.0 24.05 5.196 3.117 7.827 58.149

(continued)
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Appendix 2 Properties of Liquid Helium

TXK) p(kg/m’) h(k/kg) s(ki/kgK) CpkI/kgK) CukI/kg K) p(uPa s) kmW/m K)
80 0.601 431.0 2475 5.195 3.117 8.503 63.518
90 0.534 4829 2536 5.195 3.117 9.152  68.697
100 0.481 5349 25091 5.194 3.117 9.778  73.713
125 0.385 664.7  27.07 5.194 3.116 11.090  85.663
150 0.321 794.6  28.01 5.193 3.116 12.500  96.937
175 0.275 9244  28.81 5.193 3.116 13.850 107.679
200 0.241 1,054 29.51 5.193 3.116 15.140 117.982
225 0.214 1,184 30.12 5.193 3.116 16.390 127.917
250 0.193 1,314 30.66 5.193 3.116 17.600 137.535
275 0.175 1,444 31.16 5.193 3.116 18.780 146.877
300 0.160 1,574 31.61 5.193 3.116 19.930 155.973
Appendix A2.3 Pressure 0.2 MPa

TXK) p(kg/m*) h(kl/kg)  s(kJ/kgK) C,(klkgK) C,(kJ/kgK) p(uPas) k(mW/mK)
1.0 148.50 1.374  0.016 0.104 0.104

1.2 148.50 1.414  0.052 0.328 0.328

1.4 148.50 1522 0.134 0.797 0.796

1.6 148.60 1.757  0.290 1.631 1.628

1.8 148.90 2.208  0.554 2.990 2.979

2.0 149.30 3.015 0977 5.323 5.285

T; = 2.158 149.90 4.185  1.537 25.010 22.860

22 149.90 4375  1.625 3.419 3.406 2.846 14.135
24 149.30 4.885  1.847 2.195 2.097 3.260 15.048
2.6 148.30 5306 2.016 2.153 1.972 3.471 15.860
2.8 147.10 5.738  2.175 2.209 1.918 3.613 16.590
3.0 145.70 6.192 2332 2.387 1.966 3.733 17.247
32 143.90 6.695  2.494 2.653 2.087 3.834 17.830
3.4 141.90 7.255  2.664 2.943 2.209 3.881 18.337
3.6 139.70 7.874  2.841 3.246 2.310 3.809 18.710
3.8 137.10 8.555  3.025 3.570 2.390 3.675 19.053
4.0 134.10 9305  3.217 3.940 2.451 3.557 19.304
42 130.70 10.140  3.420 4.395 2.499 3.432 19.459
4.4 126.60 11.070  3.638 5.014 2.540 3.298 19.512
4.6 121.60 12.160  3.880 5.984 2.579 3.147 19.470
4.8 114.80 13.530  4.170 7.942 2.623 2.964 19.352
5.0 102.80 15.680  4.608 16.580 2.696 2.683 19.294
Tep = 5.0356  98.60 16.387  4.749 24.548 2.722 2.593 19.439
Tep = 5.0356  40.36 27.842  7.023 34.804 3.040 1.721 14.136
52 32.030 31.140  7.669 14.290 3.081 1.670 12.791
6 21.260 38.840  9.057 7.737 3.096 1.734 12.768
7 16.260 45.850 10.140 6.519 3.095 1.882 13.834
8 13.450 52.110 10.980 6.064 3.100 2.036 15.040

(continued)
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T(K) p(kg/m’) h(kl/kg)  s(ki/kgK) Cy(kl/kgK) C,(kJ/kgK) p(uPas) k(mW/mK)
9 11.560 58.050 11.680 5.828 3.106 2.188 16.203
10 10.180 63.800 12.280 5.685 3.112 2.337 17.308
12 8.271 74.990 13.300 5.520 3.119 2.622 19.368
14 6.994 85.930 14.150 5.429 3.123 2.891 21.274
16 6.071 96.720 14.870 5.372 3.125 3.146  23.066
18 5.370 107.400 15.500 5.334 3.125 3.380 24769
20 4.818 118.100 16.060 5.306 3.125 3.621 26.403
22 4.371 128.700 16.560 5.286 3.125 3.844  27.979
24 4.001 139.200 17.020 5.271 3.125 4.059  29.507
26 3.690 149.700  17.440 5.259 3.124 4266  30.993
28 3.424 160.300 17.830 5.249 3.124 4.467 32.443
30 3.194 170.700 18.190 5.242 3.124 4.661 33.861
40 2.395 223.000 19.700 5.219 3.122 5.564  40.563
50 1.916 275.200 20.860 5.209 3.120 6.379  46.783
60 1.598 327.200 21.810 5.203 3.119 7.134  52.650
70 1.370 379.200 22.610 5.200 3.119 7.843 58.242
80 1.199 431.200 23.310 5.198 3.118 8.518 63.608
90 1.066 483.200 23.920 5.197 3.118 9.165 68.785
100 0.960 535.100 24.470 5.196 3.118 9.791 73.799
125 0.768 665.000 25.630 5.194 3.117 11.100  85.746
150 0.641 794.900 26.570 5.194 3.117 12.510  97.019
175 0.549 924700 27.370 5.193 3.117 13.860 107.759
200 0.481 1,055.000 28.070 5.193 3.116 15.150 118.062
225 0.427 1,184.000 28.680 5.193 3.116 16.400 127.996
250 0.385 1,314.000 29.230 5.193 3.116 17.610 137.614
275 0.350 1,444.000 29.720 5.193 3.116 18.790  146.955
300 0.321  1,574.000 30.170 5.193 3.116 19.930  156.050

Appendix A2.4 Pressure 0.5 MPa

T(K) p(kg/m’) h(kl/kg)  s(kikg K) Cp(kikgK) Cu(k/kgK) p(uPas) k(mW/m K)
1.0 152.80 3365 0.016 0.109 0.109

1.2 152.80 3.407 0.054 0.346 0.346

1.4 152.90 3.520 0.140 0.838 0.836

1.6 153.10 3.767 0.304 1.705 1.697

1.8 153.40 4238 0.579 3.117 3.088

2.0 154.00 5.081 1.021 5.604 5.510

Ty = 2.127 154.80 6.024  1.477 39.540 30.460

22 154.80 6.301  1.605 2.696 2.681 3.308 15.561
2.4 154.20 6.743  1.798 1.985 1.900 3.685 16.538
2.6 153.50 7.125 1.951 1.976 1.830 3.852 17.424
2.8 152.50 7.513  2.095 1.993 1.774 3.962 18.236
3.0 151.40 7.920 2.235 2.151 1.839 4.075 18.982
32 150.10 8.373 2.381 2.385 1.972 4.209 19.665

(continued)
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Appendix A2.4 (continued)

T(K) pkg/m’) h(kl/kg) skikg K) Cy(ki/kgK) C(kl/kgK) p(uPas) k(mW/m K)
34 148.50 8.874 2.533 2.629 2.101 4.338 20.283
3.6 146.80 9424  2.690 2.864 2.208 4.387 19.937
3.8 145.00 10.020 2.851 3.093 2.291 4.244 20.421
4.0 142.90 10.660 3.016 3.321 2.354 4.133 20.836
4.2 140.60 11.350 3.183 3.558 2.402 4.020 21.180
4.4 138.10 12.090 3.355 3.815 2.439 3.909 21.453
4.6 135.40 12.880 3.531 4.104 2.470 3.797 21.655
4.8 132.40 13.730 3.712 4.440 2.497 3.685 21.789
5.0 129.00 14.660 3.901 4.846 2.523 3.573 21.861
5.2 125.20 15.680 4.101 5.354 2.548 3.458 21.879
6 102.10 21.420 5.121 10.040 2.689 2.942 21.179
7 59.44 33.930 7.047 11.650 2.946 2.443 17.870
8 41.34 43,780 8.366 8.505 3.031 2.412 17.670
9 32.87 51.560 9.285 7.241 3.068 2.488 18.308
10 27.76 58.470 10.010 6.635 3.090 2.592 19.111
12 21.60 71.080 11.160 6.065 3.116 2.824 20.810
14 17.89 82.920 12.080 5.796 3.129 3.061 22.495
16 15.35 94.340 12.840 5.641 3.135 3.294 24.131
18 13.49 105.500 13.500 5.541 3.137 3.520 25.717
20 12.05 116.500 14.080 5.472 3.138 3.740 27.259
22 10.90 127.400 14.600 5.422 3.138 3.952 28.762
24 9.957 138.200 15.070 5.384 3.137 4.159 30.229
26 9.171 149.000 15.500 5.354 3.137 4.359 31.664
28 8.503 159.600 15.890 5.331 3.136 4.554 33.071
30 7.929 170.300 16.260 5312 3.135 4.744 34.452
40 5.940 223.100 17.780 5.257 3.130 5.631 41.030
50 4.756 275.500 18.950 5.231 3.127 6.437 47.180
60 3.968 327.800 19.900 5.218 3.125 7.185 53.005
70 3.405 379.900 20.710 5.210 3.123 7.890 58.568
80 2.982 432.000 21.400 5.205 3.122 8.561 63.914
90 2.653 484.000 22.010 5.202 3.121 9.206 69.077
100 2.390 536.000 22.560 5.199 3.120 9.829 74.080
125 1914 665.900 23.720 5.196 3.119 11.130 86.010
150 1.597 795.800 24.670 5.195 3.118 12.540 97.272
175 1.370 925.700 25.470 5.194 3.118 13.880 108.005
200 1.199 1,056.000 26.160 5.193 3.117 15.170 118.303
225 1.066 1,185.000 26.780 5.193 3.117 16.420 128.233
250 0.960 1,315.000 27.320 5.193 3.117 17.620 137.847
275 0.873 1,445.000 27.820 5.193 3.117 18.800 147.184

300 0.801 1,575.000 28.270 5.193 3.117 19.940 0.156




Appendix 2 Properties of Liquid Helium 441
Appendix A2.5 Pressure 1.0 MPa
T(K) plkg/m*) h(kikg)  s(d/kg K) Cp(ki/kgK) Cy(kI/kgK) p(uPas) k(mW/m K)
1.0 158.70 6.578  0.020 0.133 0.133
1.2 158.80 6.627 0.064 0.393 0.391
1.4 159.00 6.753  0.160 0.919 0911
1.6 159.30 7.021 0.338 1.842 1.820
1.8 159.80 7.530 0.636 3.384 3.320
2.0 160.80 8471 1.128 6.538 6.243
T; = 2.068 161.40 9.020 1.398 39.200 25.520
22 161.40 9.388 1.571 2.026 2.003 4.215 15.604
2.4 160.80 9.753  1.730 1.730 1.652 4.497 16.671
2.6 160.20 10.09 1.868 1.777 1.661 4.569 17.655
2.8 159.60 10.44 1.997 1.761 1.602 4.607 18.574
3.0 158.70 10.80  2.121 1.900 1.683 4.689 19.433
32 157.70 11.20 2250 2.115 1.829 4.842  20.234
34 156.50 11.64 2385 2.331 1.967 5.039 20978
3.6 155.30 12.13 2.524 2.530 2.082 5217  21.508
3.8 153.90 12.65 2.665 2.712 2.171 5.090 22.134
4.0 152.40 13.21 2.809 2.882 2.238 4962  22.698
4.2 150.80 13.81 2.954 3.045 2.290 4.837  23.203
4.4 149.10 14.43 3.099 3.206 2.330 4716  23.648
4.6 147.30 15.09  3.245 3.369 2.363 4599  24.033
4.8 145.40 15.78 3.392 3.539 2.391 4.487  24.360
5.0 143.30 16.51 3.540 3.718 2.416 4379  24.631
52 141.10 17.27  3.690 3.909 2.439 4276  24.848
6 130.90 2075  4.311 4.849 2.531 3.901 25.217
7 114.10 26.41 5.180 6.584 2.659 3.506  24.643
8 93.31 33.93 6.181 8.248 2.806 3215 23462
9 74.62 42.33 7.170 8.341 2.932 3.083  22.862
10 61.35 50.42 8.023 7.819 3.013 3.066  22.888
12 45.58 65.06  9.361 6.898 3.094 3172 23.747
14 36.76 78.28 10.38 6.370 3.128 3345 24974
16 31.07 90.68 11.21 6.060 3.145 3.537 26308
18 27.04 102.6 11.91 5.863 3.153 3.735  27.671
20 24.02 114.2 12.52 5.728 3.156 3933 29.039
22 21.65 125.5 13.06 5.631 3.157 4129  30.399
24 19.73 136.7 13.55 5.558 3.156 4322 31.747
26 18.14 147.8 13.99 5.502 3.155 4512 33.081
28 16.81 158.7 14.40 5.458 3.153 4.698  34.401
30 15.66 169.6 14.77 5.422 3.152 4.880  35.706
40 11.72 2232 16.32 5.316 3.143 5.740  42.014
50 9.397  276.1 17.50 5.268 3.137 6.531 48.003
60 7.850  328.7 18.45 5.242 3.133 7269  53.721
70 6.743  381.0 19.26 5.226 3.130 7.967  59.211
80 5912 4332 19.96 5.217 3.128 8.633  64.504
90 5264 4853 20.57 5.210 3.126 9273  69.627
100 4.745 5374  21.12 5.206 3.125 9.892  74.600
125 3806  667.5 22.28 5.199 3.122 11.190  86.478

(continued)
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Appendix A2.5 (continued)

T(K) p(kg/m*) h(kJ/kg)  s(kl/kg K) Cp(kl/kgK) C,(kJ/kgK) p(uPas) k(mW/m K)
150 3.178 7974 23.23 5.196 3.121 12.590  97.709
175 2728 9273 24.03 5.195 3.120 13.930 108.421
200 2.390 1,057.0 24.72 5.194 3.119 15.210 118.704
225 2.126 1,187.0 25.34 5.193 3.119 16.450 128.623
250 1.915 1,317.0 25.88 5.193 3.118 17.650  138.228
275 1.742  1,447.0 26.38 5.192 3.118 18.820  147.558
300 1.597 1,576.0 26.83 5.192 3.118 19.960  156.645

Appendix A2.6 Pressure 1.5 MPa

T(K) p(kg/m?*) h(kJ/kg)  s(kl/kg K) Cp(kl/kgK) C,(kJ/kgK) p(uPas) k(mW/m K)
1.0 163.80 9.685 0.028 0.169 0.168
1.2 164.00 9.744  0.080 0.448 0.445
1.4 164.20 9.883  0.187 1.007 0.996
1.6 164.60 10.18 0.380 2.012 1.973
1.8 165.30 10.74 0.710 3.818 3.669
2.0 166.80 11.89 1.310 10.310 8.875
T, = 2.003 166.90 11.92 1.326 31.620 18.990
22 166.80 12.36 1.536 1.654 1.624 5.198 16.101
2.4 166.30 12.67 1.673 1.586 1.515 5.335 17.249
2.6 165.70 12.99 1.803 1.634 1.540 5.276 18.317
2.8 165.20 13.31 1.924 1.593 1.471 5.228 19.324
3.0 164.40 13.64 2.037 1.730 1.565 5.277 20.275
32 163.60 14.01 2.155 1.935 1.718 5.448 21.172
34 162.70 14.42 2.279 2.138 1.862 5702 22.012
3.6 161.70 14.86 2.406 2.322 1.981 5.993 22.792
3.8 160.50 15.34 2.536 2.486 2.074 5.903 23.519
4.0 159.40 15.85 2.668 2.634 2.146 5748  24.188
4.2 158.10 16.40 2.800 2.773 2.201 5.600  24.800
4.4 156.70 16.96 2.932 2.905 2.245 5457 25354
4.6 155.30 17.56 3.064 3.035 2.281 5.321 25.852
4.8 153.80 18.18 3.196 3.166 2311 5.192  26.295
5.0 152.20 18.82 3.328 3.299 2.339 5.070  26.685
52 150.50 19.50 3.460 3.436 2.365 4.953 27.023
6 143.00 22.48 3.992 4.040 2.462 4548  27.904
7 131.70 26.96 4.681 4.952 2.584 4.152  28.124
8 118.50 32.44 5.411 6.006 2.706 3.858  27.677
9 103.90 38.93 6.175 6.925 2.821 3.655 27.024
10 89.98 46.11 6.930 7.337 2.922 3.546  26.587
12 68.77 60.71 8.262 7.145 3.054 3.524  26.683
14 55.39 74.56 9.330 6.713 3.117 3.626  27.478
16 46.58 87.62 10.20 6.369 3.148 3776 28.535
18 40.37 100.10  10.94 6.121 3.163 3.945 29.698
20 35.75 112.20  11.57 5.943 3.170 4.122  30.909
22 32.15 123.90 12.13 5.812 3.172 4.302 32.140

(continued)
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Appendix A2.6 (continued)

T(K) p(kg/m*) h(kJ/kg)  s(kl/kg K) C,(kJ/kgK) C,(kJ/kgK) pw(pPas) k(mW/m K)
24 29.26 13540 12.63 5.711 3.172 4482 33378
26 26.88 146.80  13.09 5.634 3.171 4.661 34.618
28 24.88 158.00 13.50 5.572 3.169 4838  35.854
30 23.18 169.10  13.89 5.522 3.167 5.012  37.085
40 17.36 22340 1545 5.372 3.156 5.847  43.119
50 13.93 276.80 16.64 5.303 3.148 6.624  48.930
60 11.65 329.60 17.60 5.265 3.141 7.352  54.526
70 10.02 382.10 18.41 5.242 3.137 8.043  59.928
80 8.792 43450 19.11 5.228 3.133 8.704  65.156
90 7.834  486.70 19.73 5.219 3.131 9.339  70.228

100 7.066  538.80 20.28 5212 3.129 9.955  75.161

125 5.677  669.00 21.44 5.203 3.125 11.240  86.971

150 4.745  799.00 22.39 5.198 3.123 12.640  98.159

175 4.076 92890 23.19 5.195 3.122 13.970 108.842

200 3.572 1,059.00 23.88 5.194 3.121 15250 119.105

225 3.179 1,189.00 24.49 5.193 3.120 16.480  129.009

250 2.864 1,318.00 25.04 5.192 3.119 17.680 138.602

275 2.606 1,448.00 25.54 5.192 3.119 18.840 147.923

300 2391 1,578.00 25.99 5.192 3.119 19.980 157.003

Appendix A2.7 Pressure 2.0 MPa

T(K) pkg/m’) h(kikg)  s(ki/kg K) Cy(kJ/kg K) Cy(kJ/kg K) p(uPas) k(mW/m K)

1.0 168.40 12.70 0.035 0.198 0.197

1.2 168.50 12.77 0.095 0.503 0.500

1.4 168.70 12.92 0.214 1.126 1.112

1.6 169.20 13.25 0.433 2.290 2218

1.8 170.20 13.91 0.817 4.570 4216

T, = 1.932 171.60 14.74 1.258 31.000 15.730

2.0 171.80 14.92 1.351 1.926 1.926 5.664E-06 15.358

22 171.50 15.24 1.502 1.429 1.394 6.172E-06  16.654

24 171.00 15.52 1.624 1.511 1.447 6.111E-06 17.875

2.6 170.40 15.83 1.751 1.525 1.446 5.904E-06 19.021

2.8 169.90 16.14 1.867 1.463 1.367 5.776E-06 20.107

3.0 169.30 16.44 1.972 1.602 1.471 5.817E-06 21.139

32 168.50 16.78 2.082 1.799 1.627 6.035E-06 22.118

34 167.80 17.16 2.197 1.993 1.774 6.364E-06 23.043

3.6 166.90 17.58 2.316 2.167 1.895 6.774E-06 23.911

3.8 166.00 18.03 2.437 2.321 1.991 6.720E-06 24.723

4.0 164.90 18.51 2.560 2.459 2.065 6.534E-06 25.478

42 163.90 19.01 2.683 2.585 2.123 6.355E-06 26.176

4.4 162.70 19.54 2.806 2.704 2.170 6.186E-06 26.817

4.6 161.50 20.09 2.929 2.819 2.209 6.025E-06 27.403

4.8 160.20 20.67 3.051 2.933 2.242 5.874E-06 27.934

5.0 158.90 21.26 3.173 3.047 2.273 5.730E-06 28.412

(continued)
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Appendix A2.7 (continued)

T(K) pkg/m’) h(kikg)  s(kikg K) Cy(klkgK) Cy(ki/kgK) p(uPas) k(mW/m K)
52 157.50 21.89 3.295 3.163 2.301 5.596E-06 28.839
6 151.30 24.61 3.781 3.652 2.408 5.131E-06  30.080
7 142.30 28.59 4.394 4.333 2.539 4.690E-06 30.754
8 132.10 33.29 5.021 5.074 2.662 4.367E-06 30.738
9 120.90 38.74 5.662 5.814 2.773 4.137E-06 30.345
10 109.30 44.88 6.307 6.420 2.870 3.985E-06 29.875
12 88.17 58.35 7.534 6.892 3.016 3.866E-06 29.463
14 72.39 72.05 8.590 6.766 3.101 3.902E-06 29.847
16 61.22 85.34 9.478 6.517 3.146 4.010E-06 30.649
18 53.13 98.14  10.230 6.288 3.169 4.150E-06 31.639
20 47.04 110.50  10.880 6.101 3.180 4.307E-06 32.717
22 42.29 122.60 11.460 5.954 3.185 4.471E-06 33.841
24 38.48 13440 11.970 5.838 3.186 4.638E-06 34.989
26 35.34 14590 12.430 5.745 3.186 4.807E-06 36.148
28 32.71 157.30 12.860 5.671 3.184 4.975E-06 37.313
30 30.47 168.60  13.250 5.609 3.181 5.142E-06 38.480
40 22.84 223.70  14.830 5.424 3.168 5.953E-06 44.265
50 18.35 277.40  16.030 5.335 3.157 6.715E-06  49.905
60 15.37 330.50 17.000 5.287 3.149 7.435E-06 55.378
70 13.23 383.20 17.810 5.258 3.143 8.119E-06 60.687
80 11.62 43570 18.510 5.239 3.139 8.774E-06 65.844
90 10.36 488.00 19.130 5.227 3.136 9.405E-06 70.860
100 9.355 540.30 19.680 5.218 3.133 1.002E-05 75.749
125 7.526 670.50 20.840 5.206 3.128 1.129E-05 87.480
150 6.296 800.60  21.790 5.199 3.126 1.268E-05 98.618
175 5.412 930.50 22.590 5.196 3.124 1.401E-05 109.267
200 4746 1,060.0 23.290 5.194 3.122 1.528E-05 119.505
225 4226 1,190.0 23.900 5.193 3.121 1.651E-05 129.391
250 3.809 1,320.0 24.440 5.192 3.120 1.770E-05 138.971
275 3.466 1,450.0 24.940 5.192 3.120 1.886E-05 148.281
300 3.180 1,580.0 25.390 5.192 3.119 2.000E-05 157.352

Appendix A2.8 Pressure 2.5 MPa

T(K) p(kg/m*) h(ki/kg)  s(kikg K) Cp(ki/kgK) Cy(kl/kgK) p(uPas) k(mW/mK)
1.0 172.50 15.640  0.041 0.220 0.220

1.2 172.60 15.720  0.107 0.569 0.566

1.4 172.80 15.890 0.244 1.304 1.280

1.6 173.50 16.280  0.501 2.734 2.583

1.8 175.00 17.090 0.976 5.937 5.042

T, = 1.855 175.90 17.500  1.195 29.960 12.640

2.0 176.00 17.780  1.342 1.412 1.404 6.878 15.783
22 175.70 18.040  1.468 1.287 1.248 7.050 17.147
2.4 175.10 18.300  1.582 1.465 1.405 6.757 18.438
2.6 174.60 18.620  1.708 1.441 1.373 6.412 19.656

(continued)
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Appendix A2.8 (continued)

T(K) pkg/m®) h(ki/kg) ski/kg K) Cp(ki/kgK) Cy(ki/kgK) p(uPas) k(mW/mK)
2.8 174.00 18.920 1.821 1.365 1.287 6.243 20.816
3.0 173.50 19.200 1.919 1.501 1.393 6.329 21.923
3.2 172.80 19.520 2.022 1.690 1.549 6.645 22.977
34 172.10 19.880 2.130 1.877 1.696 7.088 23.977
3.6 171.40 20.270 2.242 2.044 1.818 7.608 24921
3.8 170.60 20.690 2.357 2.191 1.915 7.557 25.808
4.0 169.70 21.140 2473 2.321 1.992 7.334 26.639
4.2 168.70 21.620 2.589 2.440 2.052 7.122 27.412
4.4 167.70 22.120 2.705 2.551 2.102 6.922 28.128
4.6 166.70 22.640 2.821 2.657 2.143 6.733 28.788
4.8 165.60 23.180 2.936 2.762 2.179 6.555 29.393
5.0 164.40 23.740 3.051 2.866 2.213 6.387 29.945
5.2 163.20 24330 3.165 2971 2.244 6.230 30.445
6 157.80 26.880 3.620 3.405 2.361 5.693 31.974
7 150.10 30.570 4.188 3.984 2.501 5.189 32.991
8 141.60 34.850 4.759 4.588 2.631 4.824 33.280
9 132.30 39.740 5.335 5.189 2.746 4.562 33.115
10 122.50 45210 50911 5.740 2.843 4.379 32.743
12 103.30 57.520 7.030 6.461 2.992 4.194 32.111
14 87.03 70.680 8.044 6.627 3.087 4.171 32.122
16 74.51 83.850 8.924 6.528 3.142 4.239 32.657
18 65.02 96.750 9.684 6.362 3.173 4.351 33.473
20 57.72 109.30 10.35 6.198 3.189 4.487 34.430
22 51.97 121.60 10.93 6.055 3.196 4.636 35.461
24 47.32 13350 1145 5.935 3.199 4.791 36.531
26 43.49 14530 11.92 5.836 3.199 4.950 37.624
28 40.27 156.90 12.35 5.753 3.197 5.110 38.730
30 37.52 168.30 12.75 5.685 3.195 5.270 39.843
40 28.16 224,00 14.35 5.471 3.179 6.057 45413
50 22.66 278.10 15.56 5.366 3.167 6.806 50.897
60 19.00 331.40 16.53 5.308 3.157 7.516 56.251
70 16.38 384.30 17.34 5.273 3.150 8.193 61.469
80 14.40 436.90 18.05 5.250 3.145 8.843 66.553
90 12.86 489.40 18.66 5.235 3.140 9.470 71.512
100 11.61 541.70 19.22 5.224 3.137 10.080 76.354
125 9.353 672.10 20.38 5.209 3.132 11.350 88.000
150 7.832 802.20 21.33 5.201 3.128 12.730 99.083
175 6.738 932.10 22.13 5.197 3.126 14.050 109.694
200 5911 1,062.00 22.82 5.194 3.124 15.320 119.905
225 5.266 1,192.00 23.43 5.193 3.123 16.540 129.770
250 4747 1,322.00 23.98 5.192 3.122 17.730 139.334
275 4322 1,451.00 24.48 5.192 3.121 18.880 148.633

300 3.966 1,581.00 24.93 5.191 3.120 20.010 157.693




Appendix 3
He II Heat Conductivity Function

Appendix A3 Turbulent He II heat conductivity function, f~'(T,p), kW/m> K

TEMP
(K) SVP 0.1 MPa 025MPa 0.5MPa 1MPa [.5MPa 2MPa 2.5 MPa
1.4 396.88 389.91 37474  356.23 34323 32294 29198 279.18
1.42 492.09 483.16 464.00 440.23  421.71 394.09 352.60 331.46
1.44 607.04 595.63 571.54 541.13  515.08 477.78 422.59 389.82
1.46 745.02 730.50 70032  661.55 62536 575.38 502.50 453.88
1.48 909.64 891.23 853.58 80433  754.62 688.14 592.62 522.84
1.5 1,104.84 1,081.57 1,034.78 97245 904.87 817.11 692.86 595.36
1.52 1,334.81 1,305.52 1,247.60 1,169.02 1,078.03 963.05 802.68 669.54
1.54 1,603.96 1,567.21 1,495.81 1,397.13 1,275.74 1,126.23  920.88 742.74
1.56 1,916.77 1,870.84 1,783.17 1,659.73 1,499.25 1,306.30 1,045.52 811.63
1.58 2,277.66 222049 2,113.27 1,959.50 1,749.17 1,502.09 1,173.75 872.13
1.6 2,690.81 2,619.91 2,489.35 2,298.61 2,025.27 1,711.38 1,301.68 919.55
1.62 3,159.86 3,072.31 2914.01 2,678.47 2,326.23 1,930.69 1,424.35 948.79
1.64 3,687.69 3,580.03 3,388.95 3,099.42 2,649.33 2,155.11 1,535.63 954.68
1.66 4,27595 4,144.16 3,914.56 3,560.40 2,990.12 2,378.07 1,628.42 932.58
1.68 4,924.68 4,7764.10 4,489.55 4,058.54 3,342.20 2,591.24 1,694.78 879.06
1.7 5,631.79 5437.10 5,110.43 4,588.75 3,696.87 2,784.58 1,726.45 792.94
1.72 6,392.53  6,157.71 5,771.08 5,143.29 4,042.96 2,946.41 1,715.47 676.33
1.74 7,198.86 691720 6,462.18 5,711.32 4,366.75 3,063.84 1,655.15 535.73
1.76 8,038.89 7,703.03 7,170.71 6,278.62 4,652.08 3,123.42 1,541.29 382.86
1.78 8,896.31 8,498.36 7,879.58 6,827.27 4,880.66 3,112.10 1,373.74 234.57
1.8 9,749.90 9,281.59 8,567.29 7,335.65 5,032.79 3,018.70 1,157.98 111.09
1.82 10,573.23 10,026.21 9,207.86 7,778.62 5,088.44 2,835.73 906.67 31.12
1.84 11,334.63 10,700.85 9,771.03 8,128.11 5,028.94 2,561.60 640.58 1.49
1.86 11,997.49 11,269.75 10,222.94 8,354.22 4,839.10 2,203.13  388.07
1.88 12,521.14 11,693.80 10,527.32 8,426.88 4,510.05 1,777.95 181.76
1.9 12,862.33 11,932.24 10,647.41 8,318.24 4,042.50 1,316.21 50.37
1.92 12,977.62 11,945.21 10,548.69 8,005.91 3,450.25 860.57 2.39
1.94 12,826.67 11,697.28 10,202.53 7,476.91 2,763.44  462.82
1.96 12,376.63 11,161.98 9,590.84 6,732.33 2,030.59 174.52

(continued)
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Appendix A3 (continued)

Appendix 3 He II Heat Conductivity Function

TEMP

(K) SVP 0.1 MPa 025MPa 05MPa 1MPa 15MPa 2MPa 2.5MPa
1.98 11,607.65 10,327.35 8,711.42 5,792.32 1,317.94 27.72
2 10,519.24  9,202.22 7,583.96 4,700.74  703.69 0.00
2.02 9,137.17 7,822.67 6,255.61 3,528.19 263.46

2.04 7,520.03 6,257.67 4,805.26 2,371.58 41.55

2.06 5,763.86 4,612.16 3,344.14 1,347.17 0.00

2.08 4,002.59 3,024.66 2,009.69 572.35

2.1 2,400.26  1,655.30 947.80  129.50

2.12 1,129.61 657.73 276.12 1.99

2.14 328.41 125.60 18.18

2.16 21.57 0.35




Appendix 4
Temperature-Entropy Diagrams for Helium

Appendix A4 Normal fluid viscosity and laminar flow heat conductivity function

T(K) 1a(1077 Pa.s) g(T) (W/m* K) x 10713
1.20 21.35 3.08
1.22 20.35 4.03
1.26 18.67 6.77
1.28 17.97 8.67
1.30 17.35 11.03
1.32 16.80 13.94
1.34 16.33 17.47
1.36 15.91 21.77
1.38 15.54 26.96
1.40 15.22 33.18
1.44 14.70 49.30
1.46 14.48 59.71
1.48 14.30 71.88
1.50 14.13 86.16
1.52 13.99 102.85
1.54 13.86 122.20
1.56 13.74 144.94
1.60 13.54 201.08
1.62 13.45 235.78
1.64 13.37 275.56
1.66 13.29 321.19
1.68 13.22 373.07
1.70 13.16 432.22
1.72 13.11 499.82
1.74 13.06 576.22
1.76 13.03 661.50
1.78 13.00 758.24
1.80 13.00 865.32
1.82 13.02 984.22
1.84 13.05 1,118.40
(continued)
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Appendix A4 (continued)

T(K) 1a(1077 Pa.s) g(T) (W/m*K) x 10713
1.86 13.12 1,263.00
1.88 13.22 1,420.90
1.90 13.36 1,591.30
1.92 13.54 1,775.30
1.94 13.78 1,972.20
1.96 14.07 2,178.60
1.98 14.44 2,391.80
2.00 14.88 2,617.60
2.02 15.40 2,846.10
2.04 16.03 3,075.70
2.06 16.77 3,310.70
2.10 18.67 3,777.20
2.12 19.87 3,999.40
2.14 21.29 4,229.60
2.16 23.03 4,456.50

2.18 25.25 4,677.10




Appendix §
T-S Diagrams in He II Region
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Appendix 5 T-S Diagrams in He II Region
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Appendix 5 T-S Diagrams in He II Region
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456 Appendix 6 Helium T-S Diagrams
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Conversion Factors

Unit/unit system SI CGS English
Length Im 100 cm 3.281 ft
Area 1 m? 10* cm? 10.76 ft*
Volume 1m?(10°L) 10° cm? 35.31 ft®
Mass 1 kg 1,000 g 2.205 Iby,
Density 1 kg/m® 1073 g/em? 6.243 x 1072 Ib,/ft®
Velocity 1 m/s 100 cm/s 3.281 ft/s
Force IN 10° dynes 0.2248 1bg
Pressure 1Pa 10 dynes/cm® 1.45 x 107* Ibg/in®
107 bar 9.869 x 1075 atm
7.501 x 1073 torr
Temperature 1K 1K 9/5°R
Energy 17 107 erg 9.479 x 107 Btu
Heat transfer rate 1w 107 erg/s 3.412 Btu/hr
Heat transfer coefficient 1 W/m?> K 107* W/em® K 0.176 Btu/hr ft*°R
Viscosity 1Pas 10 poise 5.8 x 107 Iby hr/ft>
Thermal conductivity 1 W/mK 1072 W/cm K 0.578 Btu/hr ft°R
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Physical Constants

Universal gas constant
Speed of light in vacuum
Avogadro’s number
Boltzmann constant
Planck’s constant
Stefan-Boltzmann constant
Electron mass

Proton mass

Permeability constant
Permittivity constant
Bohr magneton
Elementary charge
Gravitational acceleration

R = 0.0823 L atm/mole K; 8.31 J/mole K
¢ =2998 x 10% m/s

N, = 6.024 x 10* molecules/mole
kg = 1.38 x 1072 J/K molecule

h = 6.625 x 107>*J s/molecule

o =5.67 x 1078 W/m? K*

m, =9.11 x 103" kg

m, = 1.67 x 107" kg

to = 1.26 x 107° H/m

&, = 8.85 x 1072 F/m

pe = 0.927 x 1072 J/T

e =1.60 x 107" Coul

¢ = 9.807 m/s?
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Index

A
Absolute zero, 2, 12-15, 28, 34, 54, 163,
164, 169, 173, 179, 196, 281,
381, 408, 416
Absorptivity, 399
Accommodation coefficient, 396,
397, 406
Acoustic mismatch theory, 285-290, 311
Andronikashvili experiment, 201, 207
Attractive potential
in Cooper pairs, 50
in inert gases, 63

B
BCS theory, 390
Bénard convection, 121
Blasius correlation, 89, 102, 213
Boltzmann statistics
in a magnetic ion subsystem, 416
in an ideal gas, 396
Bose-Einstein condensation, 168
Bose—Einstein statistics
applied to helium, 61, 164, 175
phonon gas, 19
Boundary layer
in film boiling, He 11, 228, 279,
296, 302
in forced convection, 146, 147
Boyle temperature, 65-67, 69, 83
Breen and Westwater correlation, 139
Brillouin function, 419

C
Carnot cycle

in a gas system, 342

in a magnetic ion system, 424
Carnot efficiency

in refrigeration, 324, 352, 369

thermodynamic definition, 318

versus refrigerator size, 318, 352, 369
Claude cycle

isothermal refrigerator, 353, 354

liquefier, 343, 353
Clausius—Clapeyron equation

saturated He II, 237, 246, 248

solid-liquid helium, 387

vapor nucleation theory, 124
Coefficient of performance (COP)

in a Carnot cycle, 324, 351, 362

in a Stirling cycle, 362

in an isobaric refrigerator, 358
Compressibility

factor, 67, 92, 149, 327, 431-433

isothermal, 28, 71, 178

of liquid He, 92, 178
Compressors, 86, 91, 317, 320, 332, 333,

335337, 339, 340, 343, 346, 347,
356, 359, 361, 364, 367, 369, 373,

374, 379, 406
Conductivity, 30, 31, 34-36, 39, 53, 242,
253, 399, 404
Contact conductance
electrical, 41
thermal, 41
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Continuity equation

internal flow, 87

two-fluid model, 188, 194
Cooper pairs, 47, 48, 50
Critical energy

in He I, 159

in He II, 257, 259

in Type I superconductors, 46, 50

in Type II superconductors, 51, 53
Critical field, 45, 46, 48, 51, 53, 55
Critical heat flux

in He I, 139, 295

in He II, 180, 181, 294, 295, 305
Critical point

of *He, 59

of common fluids, 4
Critical temperature

in *He, 388

ideal Bose gas, 169
Critical velocity. See Velocity, critical
Cryogenics

applications of, 1-17, 24, 28, 33, 34, 43,

85, 111, 393
definition of, 1
Cryopumping, 8, 406, 412414
Curie constant, 419, 420

D

Darcy permeability, 109, 111
Debye frequency, 20

Debye temperature

and Kapitza conductance, 40, 281, 288

definition (equation), 20

of common elements, 22
Debye theory, 281
Demagnetization

adiabatic, 383, 386388, 420,

422-424, 427

nuclear, 6, 426427
Density of

a Bose gas, 168-170

a Fermi gas, 385

He II under SVP, 179

liquid *He, 70

normal fluid component, 187

superfluid component, 187
Density of states

Debye model, 20

free electron model, 23

phonon gas, 19, 37

Diffusion
heat in He I, 151

Index

heat in He II, 253-255, 258-261, 270

time, 253-255, 261

Dilution refrigeration, 6, 280, 380-383, 386

Dulong and Petit heat capacity, 19, 21

E
Efficiency
of a refrigeration system, 352, 369
thermodynamic, 2, 7, 12, 276, 317,
324, 338-340, 343, 345, 351,
352, 354, 363
Emissivity
definition, 398, 399
of aluminized mylar, 403
of various metallic surfaces, 400
Energy equation
classical fluids, 265
of He II, 254, 262-263, 265, 270
Entropy
of He IT at SVP, 178
of liquid *He, 388
of liquid “He, 72
of mixing *He-*He, 381
of mixing in two phase helium, 381
of paramagnetic salts, 427
statistical definition, 12, 13
thermodynamic definition, 16, 408
transition from superconducting
to normal state, 55
Equation of state
empirical form, 67-69

van der Waal’s, 64, 67-69, 328, 330,

331, 343
virial expansion, 64

Euler’s equation, 79, 189, 194, 197, 198

Excitations in He II

contributions to state properties, 175-179, 183

dispersion relation, 185

phonon, 184-185

rotons, 184—-186
Expansion engine

in Claude cycle, 343, 344, 346, 349

irreversibilities in, 367
Expansivity

liquid “He, 71

liquid helium, 70

solids, 18, 19, 27

supercritical helium, 92, 93
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F
Fermi energy (temperature)
effective (Landau theory), 385
free electron model, 23
ideal gas, 384, 385
Fermi-Dirac statistics
for an ideal gas, 164, 383
free electron model, 23, 383
in “He, 164, 378
Feynmann theory, 210
Figure of merit (FOM)
definition of, 44, 352
in a Claude liquefier, 345, 349
in a Joule-Thomson liquefier, 336
Film boiling
in He I, 135, 159, 227, 239, 295, 296
in He 11, 239, 294-298, 301, 302, 306, 307
transition (time dependence), 151, 154,
157-159, 228, 239, 295, 307-310
Flow quality, 99, 100, 102
Forced convection
heat transfer correlations, 147-149
transient effects, 149
Fountain effect (thermomechanical effect)
experiments, 108, 181, 182, 191
in the two-fluid model, 191, 197, 199
Frenkel-Halsey—Hill equation, 409, 410, 414
Friction factor
characteristics of, 89, 96, 213, 266
in He II, 265, 266
laminar flow, 89, 213
Moody diagram, 89, 91

G
Gaseous helium
equation of state, 61, 62, 64, 67-69
second virial coefficient, 64—66
transport properties of, 70, 73, 76-83
Gibbs potential (free energy)
superconductor-normal transition, 47
superfluid component, 190, 191
Gorter—Mellink Mutual friction
in He II, 216, 246, 247, 254
parameter, 216, 231
Grashof number (Gr), 116, 117, 303, 304
Griineisen coefficient, 27, 28

H
Hel
density of, 69-71, 239
heat transfer film boiling, 239, 295, 296
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in channels, 239
pool boiling, 130, 139, 227, 295
Prandtl number (Pr), 83
state properties of, 69-76, 115
subcooled state, 134, 137, 239, 240, 295
transient heat transfer, 151, 153, 156
transport properties of, 73, 76-83
Heat capacity. See also Specific heat
conduction electrons, 23
gases, 18, 19, 23, 321
helium, 155, 177, 252, 321, 361
liquids, 18, 155, 177, 252
magnetic, 18, 25, 417, 418, 421, 423
phonon, 19-21, 23-25, 37
Schottky, 417, 418
solids at low temperatures, 18
superconductor-normal transition, 48
Heat conductivity. See also Thermal
conductivity
function for He II, 180, 202, 216, 230-232,
243, 262, 447448
in gases at low pressures, 81
insulation, 394, 395
Heat exchangers
He 11, 241-247, 249, 296
thermal effectiveness, 368
Heat flux. See also Recovery heat flux
effect of subcooling, 134, 137
for forced convection, 147, 219, 261, 265
for He II in cylindrical geometries, 240,
241, 305
in He 1, 130, 142, 156, 239, 295
in He II, 181, 212, 234-239, 270, 295, 302,
306, 309
peak in He I, 131, 142, 305
peak in He II, 235-239, 265, 295, 305
pool boiling, 117, 130, 144
radiant, 282, 401, 402
Heat transfer. See Heat transfer coefficient;
Heat transport
Heat transfer coefficient. See also Heat
transfer correlations
channel in He I, 150, 156
convective in He I, 121, 123, 146
film boiling, 138, 139, 295, 296, 299-302,
307, 308, 311
in He II, 243, 295, 301
nucleate boiling, 123-134
radiation, 5, 151, 397402
surface effects in He I, 139
transient in He I, 151, 155, 156, 294
Heat transfer correlations
Dittus—Boelter, 148
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Heat transfer correlations (cont.)
free convection, 147
in pool boiling, 139
in two-phase flow, 149-151
Kutateladze correlation, 129
transient in He I, 139
Heat transport in He II. See also Heat transfer
forced convection, 218-219, 261-270
Poiseuille equation, 200, 202
transient, 223, 251-261, 268-270, 307, 309
with mutual friction, 227, 229, 230, 274
Heisenberg uncertainty principle, 163, 209
Helium films
adsorption, 412414
flow of, 182, 183
phases of, 412, 413
properties of, 412414
Helmbholtz instability, 131
Hydraulic diameter, 89, 113, 144

1
Index, 286
Internal energy
free electron model, 23
ideal Bose gas, 170-174
ideal Fermi gas, 384
paramagnetic ion system, 416, 417
phonon gas, 19-21, 23, 177, 281
Inversion curve, 327, 329-335, 337, 345
Isenthalpic expansion. See also Joule-Thomson
effect
coefficient (see Joule-Thomson coefficient)
definition of, 93, 317, 324, 325
in liquefaction, 5, 317, 324-341, 346
internal flow, 93
Isentropic expansion
coefficient, 342, 420, 421
definition of, 317, 342
in liquefaction, 317, 320, 342-350, 356,
357, 367
Isosteric heat, 408411
Isotherm
adsorption, 409, 410, 412
definition of, 409, 411

J
Joule—-Thomson coefficient

definition of, 93, 268, 325

in He II, 267

van der Waal gas, 328-331
Joule-Thomson effect, 270, 324-332, 338

Index

Joule—Thomson liquefier, 332-341, 345
Joule-Thomson value, 332

K
Kapitza conductance
acoustic mismatch theory, 285-290, 311
at large heat flux, 292-294
dependence on Debye temperature,
40, 41, 281, 282, 284, 288, 289
experimental values, 283, 284, 290
helium pressure dependence, 291
in He I, 155, 156, 295
in He II, 278, 280, 289, 292, 294
magnetic field dependence, 291
phonon radiation limit, 280285,
287-289, 292

L
Lambda transition
compared to Bose—Einstein condensation, 174
dependence on temperature and pressure,
216, 229, 230
in *He-*He mixtures, 380, 381
in “He films, 413
Laminar flow
in He II, 180, 209, 221, 227, 271-273
Landau theory
in *He, 385
in He II, 177, 183-186
Latent heat
ideal bose gas, 174-175
of “He, 410
superconductors, 48
Law of corresponding states
in van der Waal’s gas, 68, 330
Lennard—Jones potential, 63, 65, 78, 407
Levy model, 102
Linde—-Hampson system. See Joule-Thomson
liquefier
Liquefaction
by isenthalpic expansion, 5, 317, 324-341,
344, 346, 365
of common cryogenic fluids, 322
Liquefier
cascade system, 338
Claude, 343-349
Collins, 349, 350
Joule-Thomson, 332-341, 345
Lockhart—Martinelli correlation, 100—103
London-dispersion interaction, 62
Lorentz ratio, 36, 56
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M
Magnetic susceptibility. See Magnetization
Magnetization

adiabatic, 55

of paramagnetic ions, 415-420

of superconductors, 47, 51
Magnetocaloric coefficient, 420-422
Matthiessen’s rule, 30
Maxwell-Boltzmann distribution, 77, 79
Mean free path

in low pressure gases, 396, 427

of electrons in metals, 32

of phonons in solids, 185
Mean square displacement, 31
Mechanocaloric effect, 192, 193. See also

Fountain effect
Meissner effect, 46, 47
Modulus of elasticity, 42, 43
Momentum equation, 87
Multilayer insulation (MLI), 401-404, 427
Mutual friction, 212-221, 223, 224, 227,
229, 230, 274, 311

N
Natural circulation loop, 97, 103-107, 112
Natural convection
Bénard, 121
free convection correlation, 116, 123
in He I, 118, 122
Navier—Stokes equations
of classical fluids, 87
two-fluid model, 189, 198
Nucleate boiling
correlations for, 132, 139
in He I, 130, 158, 159, 295
theory of, 127, 129
Nusselt number, 116, 121, 122, 146-148,
150, 303

P
Paramagnetic salts
entropy of, 427
magnetization of, 419
Partition function, 416, 417, 419
Pauli exclusion principle, 164
Perite insulation, 403
Permeability, 108, 109, 111-113, 273, 274
Poiseuille flow, 199, 200, 202.
See also laminar flow
in classical fluids, 88
in He 11, 199, 202
Polycritical point (*He), 389
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Pomaranchuk cooling, 6
Prandtl number
helium, 82, 147
ideal gas, 82
of common liquids, 83
Pressure drop
compressible fluid, 93
incompressible fluid, 91
natural circulation loop, 104
two-phase flow, 97, 100

Q

Quantum gases
ideal Bose, 165, 383
ideal Fermi, 383
in two-dimension, 412

R
Rayleigh number
critical value, 117, 121, 122
Rayleigh—-Benard instability,
121, 122
Recovery heat flux, 119, 137, 140, 295
Refrigeration
Carnot cycle, 317, 324, 342, 346, 351,
362, 372, 424, 425
closed cycle, 338, 350-358
cost of, 368, 370, 393
dilution, 6, 280, 380-383, 386, 392
Gifford McMahon, 359, 362-364
isobaric, 354-358
isothermal, 352-354, 372
magnetic, 25, 393, 414427
pulse tube, 359
Stirling cycle, 359-363
submillikelvin, 386-392
Regenerator, 108, 111, 318, 358-360, 362,
364, 372, 374
Resistivity of metals, 30-32.
See also Conductivity
Reynolds number, definition of, 109-111,
146, 211, 266
Riemann—Zeta function, 169, 171, 172
Rollin film, 182, 183, 341, 413

S

Schrodinger equation, 166

Second virial coefficient
classical expression for, 65, 83
empirical expression for, 64—67
quantum, 224
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Slip ratio, 99, 102, 103
Sommerfeld constant, 24
Sound
attenuation of second sound, 219-221
first, 185, 193-197
in the two-fluid model, 194, 196, 262, 390
second of 4He, 193
Sound speed
in *He, 378
in “He, 193
Specific heat. See also Heat capacity
coefficient of electronic, 24
ideal Bose gas, 171, 172, 174, 175
ideal Fermi gas, 35, 384-386
of *He, 378, 384-386
of *He, 378
Spin systems. See Paramagnetic salts
Stark effect, 417, 423, 424
Stefan—-Boltzmann Law, 398
Stokes’ law, 204
Stress
tensile, 43
ultimate, 43
yield, 42, 43
Superconductors
applications of, 6, 7, 45
high Tc, 13, 169, 172, 391
properties of, 6, 17, 45, 47, 54, 241
Type I, 45-52, 55, 291
Type 11, 45, 50-56, 205
Supercritical helium, 80, 92-96, 123, 148, 159.
See also Forced convection
Superfluid
*He, 386-391
“He, 390, 391
component in two-fluid model, 191
Superheat
critical normal fluid, 125
in nucleate boiling He I, 130
in saturated He II, 239
Superinsulation, 402, 404
Surface tension
of *He, 378
of 4He, 76

T
Taylor instability, 135, 136, 138
Temperature
critical for *He, 85, 378
critical for “He, 85, 378
critical for superconductors, 7, 9, 25, 45, 46,
48, 50, 52, 54, 388, 390

Index

Fermi (see Fermi energy)
lambda, 167, 168, 171
scale, 2-3, 7, 16, 39, 40, 70, 116, 174, 229,
270, 332, 365, 379, 426
transition of an ideal Bose gas, 165, 172,
174, 175
Thermal conductivity. See also Heat
conductivity
effective in He 11, 175, 202, 228, 235,
241, 245, 254, 261, 295
in superfluid “He, 391
integrated value, 37
lattice contribution, 37-39
metals, 29, 34-38, 44, 48, 54, 83, 180,
254, 395
of *He, 386, 391
pure gases, 79
technical materials, 37
Thermal contraction
of metals, 28
of non-metals, 29
thermodynamic definition, 27
Thermal de Broglie wavelength, 167,
168, 172
Thermodynamic laws
Clausius’ statement, 12
first, 9-14, 190, 346, 353, 356, 367,
420, 421
first of steady flows, 323-324, 335,
344, 356
Nernst—Simon statement, 14—15
second, 9-14, 190, 346, 349, 367,
420, 421
third, 2, 14-16, 28, 179, 346
Tortuosity, 108, 109, 273
Transport properties
of gaseous helium, 74-83, 183
of He I, 60, 76-84
of He II, 60, 175, 179-181, 183, 186,
198, 203
Tricritical point, 381
Trouton’s Law, 74
Turbulence
development of, 221-222
normal fluid, 202, 211, 271
superfluid, 202, 211, 212, 271
Two-fluid model, 183, 186-203, 206, 208, 219,
261, 262, 390
Two-phase flow
flow regimes, 97, 98
homogeneous model, 101, 103, 112, 113
Lockhart—Martinelli correlation, 100,
101, 150, 151
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\'%
Vapor pressure
of *He, 378, 379, 383, 392
of *He, 71, 174, 379, 383, 392, 410
of an ideal Bose gas, 172-173
Velocity
critical, 68, 173, 188, 199, 202, 203,
205, 207-212, 217, 218, 220,
271,274, 275, 278, 279
fermi, 30, 35, 55
normal fluid, 188, 190, 195, 197, 200,
202, 211-213, 215, 217, 218,
251,273,278
superfluid, 188, 195, 197, 203, 209,
212, 213, 215, 218, 251
Virial expansion, 61, 64-67, 80, 224
Viscosity
measurement of, 111
of *He, 385, 386, 390, 391
of *He, 81, 390, 391
of superfluid *He, 391
of the normal fluid, 198, 200, 211, 227,
272, 391, 450
pure gases, 79
Void fraction, 90, 99-102, 105, 150,
248-250, 278
Vortex line, 205-209, 213-216, 267, 390
Vortices
force acting on, 213
in rotating He II, 205-208, 214, 224
length of, 213, 224
visual observation, 206
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w
Wiedemann—Franz Law, 36
Work
compressor, 91, 317, 320, 335, 336, 340,
343, 346, 359, 367, 373, 374
electric system, 11
expansion engine, 320, 338, 343, 344,
346, 348, 349, 358, 365
friction, 91, 103
liquefaction, 318-322, 334, 335, 350, 372
liquid-gas system, 318, 342
magnetic system, 11, 420

Y
Yield
definition of, 335
in a Claude cycle, 343-346, 373
in a He II system, 180, 198, 200, 206, 211
in a Joule-Thomson liquefier, 334, 345
in an isothermal refrigerator, 353-354
Young’s Modulus. See Modulus of elasticity

V4

Zeeman effect, 416, 417

Zero point energy, 59, 163, 164, 378
Zuber correlation, 132, 136
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