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Preface First Edition

At least 10 years have elapsed since a comprehensive monograph concerned with

the broad subject of cryogenics has been published. During this time a considerable

quantity of research and development has been carried out in the field of cryogenics.

Furthermore, there has been a certain degree of redirection of effort within the field,

mostly driven by the variety of new applications, ranging from superconductive

magnet systems to microelectronics. Greater emphasis is now being placed on low-

temperature cryogenics, particularly that of liquid helium. Until now cryogenic

books have provided a broad survey of materials and fluid properties over the entire

cryogenic regime, T≲120 K. This approach does not allow sufficient detail in any

particular area to bring the reader to the current level of understanding in the

subject. In addition, the behavior of helium has been lumped with that of other

cryogenic fluids, although the properties of helium are in many cases quite unique.

As a result, a clear relationship has not been established between the fundamental

understanding of helium fluids and their potential applications.

The present book has been written to fill this void. The approach is to survey the

field of cryogenics, specifically as it pertains to helium fluids. This approach is more

specialized than that contained in previous cryogenics books. Furthermore, the

level of treatment is more advanced and a certain knowledge of fundamental

engineering and physics principles has been assumed. Unlike previous books on

liquid helium, the present treatment contains both engineering and physical descrip-

tions. The goal throughout the work is to bridge the gap between the physics and

engineering aspects of helium fluids to encourage their use and enhance their

usefulness in low-temperature systems.

The content of the book is based on a course first offered at the University of

Wisconsin–Madison. Students who register for this course are almost exclusively at

the graduate level. As a result, a reasonable background knowledge of physics and

engineering has been assumed. Recommended prerequisites include a working

knowledge of thermodynamics and statistical physics, heat transfer and fluid

mechanics, and elementary solid-state physics. Without this background, the reader
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may find it necessary to review one or more of these subjects. A number of useful

references are given at the end of the book.

The material contained in this book is divided into nine chapters. Chapter 1

introduces the basic principles of cryogenics, including a discussion of applications.

Chapter 2 describes the properties of materials at low temperatures, concentrating

on solids. This is not only a useful background review but it also introduces some

fundamental physics, which is used in later chapters. Chapter 3 introduces helium

as a classical fluid, concentrating on its physical aspects as they can be described

using classical models. Chapter 4 then discusses helium as a quantum fluid,

emphasizing the theory and experimental evidence associated with superfluidity.

Chapter 5 turns to the engineering problem of heat transfer in superfluid helium, and

how the fundamental understanding of helium introduced in Chapter 4 can be used

to describe its characteristics. Chapter 6 concentrates on the problem of heat

transfer in pool boiling normal helium. Chapter 7 extends the discussion of helium

to fluid flow, including heat transfer and pressure drop. Chapter 8 discusses the

thermodynamic aspects of liquefaction and refrigeration systems, including a

discussion of actual refrigeration systems in use today. Finally, Chapter 9 sum-

marizes some special topics of interest to both helium cryogenics and related

disciplines. The goal here is to survey a few very specific areas of helium cryogen-

ics and related disciplines which, although slightly outside the main scope of the

text, are still important in low-temperature applications.

Throughout the writing of this book, I have received considerable assistance and

encouragement from colleagues, students, and friends. Their support should not go

unrecognized. I would like to particularly give thanks to two of my students,

D. Scott Holmes and John G. Weisend II, for their critical review of the partially

completed manuscript and for assisting in developing problems. A number of

colleagues read sections of the manuscript and made substantive suggestions on

improvements to be made. They are Drs. A. F. Clark, F. R. Fickett, and V. Arp, all

of the National Bureau of Standards; Dr. L. Dresner, Oak Ridge National Labora-

tory; Prof. O. E. Vilches, University of Washington; Prof. J. T. Tough, Ohio State

University; and Prof. R. F. Barron, Louisiana Tech University. Their help is greatly

appreciated. The conversion of my handwritten version to a readable typewritten

text was due to the efforts of Ms. Kay Ewers. This task was certainly second only to

the actual writing in terms of the amount of effort involved. Production of the

graphics must be credited to Ms. Helga Fack and her staff. Finally, I would like to

acknowledge the indirect help that my family has provided in terms of encourage-

ment and willingness to forego some leisure activities so that time could be devoted

to the effort of writing this book. In retrospect, it has been worthwhile.

Madison, WI, USA Steven W. Van Sciver
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Preface Second Edition

A lot of cryogenic development has occurred in the 25+ years since the first edition of

Helium Cryogenics (1986) was published. The field has seen the completion of

the Large Hadron Collider (LHC) in Geneva, Switzerland with its associated enor-

mous helium cryogenic refrigeration system. Numerous superconducting fusion

engineering projects have been completed and the International Thermonuclear

Experimental Reactor (ITER) is under development. Also, a variety of space-based

cryogenic instruments have been successfully launched, many of which have

contained hundreds of liters of liquid helium in a near zero-g environment. On a

different plane, one of the most notable related developments has been the discovery

of and now applications for high temperature superconductors (HTS). This field has

impacted cryogenics in a fundamental way encouraging the development of cryo-

genic systems in the intermediate temperature regime (20–80 K). This along with

other applications such as space-based instruments has brought about a broad and

sustained effort at small scale cryocooler R&Dwith the most prominent being that of

pulse tube coolers.

The author has also aged over this period with the associated gains of experience

and somewhat different perspective on the subject. Given these changes and the

opportunity to incorporate them into a new edition, it seemed a good time to

undertake such a project. Before you is the result of this effort. Hopefully, it will

be viewed to be a significant improvement over the first edition and a useful

addition to the library of scientists and engineers interested in the field of low

temperature science and technology.

This edition of Helium Cryogenics has undergone considerable revision and

updating. Since the first edition was written prior to the widespread availability of

word processing, the first task was to convert the available hard copy to electronic

form. This task was ably assisted at FSU by Ms. Lindsay Hardy. Once the author

had access to a revisable document, the real work began. Much of the updating was

accomplished during the author’s sabbatical leave from FSU, which was spent as a

Visiting Erskine Fellow in the Mechanical Engineering Department at the Univer-

sity of Canterbury in Christchurch, New Zealand in fall (spring in the southern
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hemisphere) 2010. Without that opportunity it would have been very difficult to

carry out the project. Also, the author received help and suggestions from a number

of colleagues. Valuable suggestions and comments on the first draft were provided

by Dr. Dogan Celik, Dr. David Hilton, Ernesto Bosque and Mark Vanderlaan of

FSU, Prof. John Weisend II of Michigan State University, Dr. Ting Xu of Oak

Ridge National Laboratory, Prof. Andrew Rowe of the University of Victoria and

Prof. John Pfotenhauer of the University of Wisconsin.

The resulting second edition has been reorganized with several additions and a

few deletions. Chapters 1 through 3 have been revised to include a few new sections

and updated data. After that the book has undergone a major reorganization. Since

Chap. 3 concerns helium as a classical fluid it seemed appropriate to move the

classical transport properties of fluid mechanics and heat transfer to occupy the next

two chapters, Chaps. 4 and 5. Chapter 6 (formerly Chap. 4) then concerns helium as

a quantum fluid. This is followed by Chap. 7 (He II Heat and Mass Transfer). For

those familiar with the first edition, a most notable change is in the expanded and

enhanced discussion of He II heat and mass transfer owing to the considerable

research advances in the interim. Chapter 8 is again about liquefaction and refrig-

eration of helium and has been updated considerably from the first edition including

more discussions on cryocoolers and He II refrigeration technology. Chapter 9, now

titled “He3 and Refrigeration Below 1 K”, concentrates on the properties and

applications for the rare isotope of helium. Finally, a new Chap. 10 has been created

that incorporates a few special topics that do not fit easily within the content of the

first nine chapters. These include cryogenic insulation, helium adsorption and

magnetic refrigeration. The other generally noticeable enhancement is that the

questions and problems at the end of each chapter have been expanded and revised.

Also, within each chapter there are more short examples to illustrate the theory for

the reader.

This text has been used in a course primarily taught for graduate students in the

Mechanical Engineering Department at the FAMU-FSU College of Engineering. It

has also been used as a supplement to numerous short courses taught by the author

at various locations around the world. Through this process, many of the detailed

explanations have been clarified and supplemented. It is my hope that you will find

Helium Cryogenics, Second Edition to be a worthy improvement and a valuable

asset for your research and development activities.

Tallahassee, FL, USA Steven W. Van Sciver
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Chapter 1

Cryogenic Principles and Applications

Cryogenics is generally referred to as the science and technology of producing

a low-temperature environment for applications. The word cryogenics has its

origin in the Greek language where “kryos” means frost or cold and “gen” is a

common root for the English verb to generate. Strictly speaking, cryogenics means

to produce cold, yet the term has developed a more general connotation over years

of usage by engineers and scientists. Today, the word cryogenics is associated with

the production and study of low-temperature environments with a cryogenic engi-

neer being a person who specializes in these areas. The expertise of a cryogenic

engineer can vary considerably within this discipline. For example, he or she may

be concerned mostly with heat transfer aspects of low-temperature fluids such as

liquid hydrogen or helium or alternatively may be a specialist in methods of

producing low temperatures such as various refrigeration technologies. Expertise

in cryogenic engineering is in demand in a wide variety of technical fields including

advanced energy production and storage technologies, transportation and space

programs, and a wide variety of physics and engineering research efforts. As a

result, the field is very interdisciplinary consisting of essentially all engineering

fields focused on low temperature technology.

Over the years, the word cryogenics has developed several common usages.

A cryogenic fluid is one that is used in the production of cold, while cryogenic

machinery is the hardware used in achieving low-temperature environments.

At first it would appear that all machinery and fluids used in cooling would be

identified as cryogenic. However, it is generally accepted that the word cryogenics

is reserved for those processes that take place below about 120 K. This distinction is

somewhat arbitrarily established as it represents the point where permanent gases

such as N2, O2, Ar and methane (CH4) begin to liquefy. Sometimes cryogenics

is used in reference to higher temperature processes such as cryo-preservation or

cryo-surgery; however, these topics are outside the present discussion and therefore

will not be considered as part of traditional cryogenics.
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1.1 Temperature Scale

Assuming it is possible to refer to a range of temperature as being the cryogenic

regime and that the range spans from absolute zero to about 120 K, one might ask

the following question: “Why all the excitement over a range of temperature

spanning only about a hundred kelvin?” The answer to this question lies in the

thermodynamic description of the temperature scale.

One normally thinks of the process of producing low temperatures as reduction

of entropy, where the entropy is a state function defined as,

s ¼
ðT

0

dQR

T
(1.1)

with T being the absolute temperature and the entropy is taken to be identically zero

at absolute zero. The third law of thermodynamics states that as absolute zero is

approached, not only does the entropy of a system go to zero, but the entropy

change associated with an adiabatic process must also go to zero. In other words,

the lower the absolute temperature the more difficult it is to obtain a unit tempera-

ture decrease. Among other phenomena, this principle manifests itself in the

thermodynamic efficiency of refrigerators decreasing with temperature.

It is therefore often more meaningful to identify temperature as having a

logarithmic rather than linear scale. On a logarithmic temperature scale, the cryo-

genic range occupies a very large portion of achievable temperatures. Plotted in

Fig. 1.1 is the temperature scale with the range of physical phenomena

superimposed.

It should be immediately clear that cryogenic temperature range occupies nearly

half of the achievable temperatures. From the physical point of view, this range

is interesting for the large number of phenomena that occur within it. A few

examples of these include: phase changes of many common elements, magnetic

ordering, solid-state transformations, and the quantum effects including the onset of

superconductivity and superfluidity.

A subfield of cryogenics is identified with the most permanent of all gases,

helium. Although helium is a fairly rare element, there is probably more known

about low temperature helium than any other fluid with the possible exception of

water. Helium has a number of important applications in welding and lighter than

air vehicles, but of greater interest to the present discussion is its use as a low

temperature coolant. The refrigeration and liquefaction of helium are somewhat

specialized fields because of the extremely low temperatures involved. However,

the existence of low temperature helium enables a wide variety of technological

applications. It is also a fluid with extremely interesting physical properties.

These topics will be discussed in later sections.

The field of helium cryogenics spans a smaller range of temperature than

classical cryogenics in part because the critical point of the most common isotope,
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4He, is only 5.2 K. However, one of the more unique features of helium is that it

does not solidify except under an external pressure exceeding 2.5 MPa (~25 atm) at

low temperatures, thus allowing fluid properties to be studied to as low a

temperatures as physically possible. At the present time the minimum achievable

bulk temperature for liquid helium (in this case, the rare isotope 3He) is below

100 mK. The technology of achieving these ultralow temperatures is special and

relevant primarily to fundamental studies of condensed-matter and astrophysics.

Since the emphasis of this book is on the technological applications of helium

cryogenics, the phenomena associated with ultralow temperatures are not consid-

ered in much detail. Thus, helium cryogenics as described here emphasizes the

range of temperature where the fluid has large scale potential applications as a

coolant, 1 K ≲ T ≲ 10 K. In Chap. 9 we will consider helium cryogenics for

temperatures below 1 K both in terms of the technology of achieving these

temperatures as well as the physical phenomena that occur in this range. However,

it is important to keep in mind that this regime is only accessible through the use of

the rare isotope of helium (3He).

Fig. 1.1 Logarithmic temperature scale with superimposed physical phenomena. Note that E ¼
kBT and 1 eV is equivalent to 11,609 K
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1.2 Historical Background

Research and development into the field of cryogenics began more than 100 years

ago. Perhaps the most significant discovery in that time frame was the realization

that common fluids such as air and water have similar behavior when cooled to

temperatures near their respective critical points. In the early 1860s, substantial

theoretical and experimental evidence was put forth identifying the concepts of

phase separation and critical phenomena [1]. These ideas, which are mostly taken

for granted today, form essential background to the understanding and application

of the liquefaction and refrigeration processes.

To summarize phase separation and critical phenomena, reference is made to a

useful general figure (Fig. 1.2) showing the states of matter when temperature T
is plotted versus entropy S. Here the critical temperature Tc is the maximum of

the two-phase coexistence region, which for obvious reasons is often refer to as

“the dome”.

As a rule of thumb, the normal boiling point Tnbp of a liquid is about Tc/2,
although there is considerable deviation from this rule particularly for cryogenic

fluids like helium where Tnbp/Tc � 0.8.

Three major scientific developments in the late nineteenth century provided the

essential framework for the successful liquefaction of helium and thus the begin-

ning of helium cryogenics. The first of these occurred during the study of low

temperature O2 in 1877 by two separate investigators in Europe, Cailletet in France

and Pictet in Switzerland. Each of these workers demonstrated the concepts of

liquid–vapor coexistence in permanent gases near their normal boiling point.

Furthermore, Pictet’s method used the cascade principle to produce liquid O2,

Fig. 1.2 Typical

temperature-entropy diagram

for a pure substance
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where gases are successively cooled to lower temperature by exchanging heat with

a higher normal boiling point liquid. This method is later used in the first successful

liquefaction of helium by H. K. Onnes.

The second major development occurred in 1892 when Sir James Dewar of the

Royal Institution in London introduced the vacuum insulated flask as a storage

container for liquid cryogens. His concept, which consisted of a glass double-

walled vacuum vessel with inner walls silvered to reduce thermal radiation heat

transfer, finally allowed collection of a significant quantity of liquid cryogen.

A drawing of a simple “dewar” vessel that could be used for liquid helium is

shown in Fig. 1.3. In this case, liquid nitrogen shielding is provided to reduce

further the thermal radiation heat leak.

The dewar is essential for the storage of liquid helium because of the fluid’s

extremely small latent heat. Modern liquid helium dewars are significantly more

sophisticated than that shown in Fig. 1.3, but they still use vacuum and highly

reflective surfaces to achieve efficient thermal insulating systems.

Sir James Dewar made the final development that led the way to the liquefaction

of helium when he demonstrated the use of a Joule-Thomson valve to produce

liquefaction of hydrogen, the last of the permanent gases with boiling points above

that of helium. It is particularly significant that Dewar employed a Joule-Thomson

valve, which produces essentially an isenthalpic expansion, because this method

also can be used in the production of liquid helium. With liquid hydrogen available

Fig. 1.3 Schematic of an

early dewar vessel for

containing liquid helium. The

outer liquid nitrogen dewar

provides a thermal radiation

intercept
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(with a normal boiling point Tnbp ¼ 20.4 K), it became possible to consider

liquefying helium by a combination of the cascade principle and Joule-Thomson

expansion. The chief remaining difficulty was that helium gas was a rare

commodity around 1900.

It took another 10 years for helium to be successfully liquefied. At the time, two

laboratories were vying to be the first to accomplish the task: Sir James Dewar’s lab

in London and H. Kamerlingh Onnes lab at the University of Leiden. For a variety

of technical reasons, the Onnes group came out on top in the competition success-

fully achieving liquefaction of helium in 1908. At that time their total helium

inventory in their lab was only 360 STP gaseous liters (equivalent to about

0.5 liquid liter), and yet as a result of this early success the Leiden rapidly became

the world-wide center of liquid helium research. Among the achievements

attributed to Onnes’ group are included the discovery of superconductivity in

many of the elements.

For the next 30 years, production of liquid helium and its associated research and

applications were limited primarily to a few specialized laboratories. Researchers

actively investigated the properties of materials as well as those of liquid helium

down to temperatures below 1 K. Included among their discoveries are: super-

fluidity in 4He, identification of numerous superconducting materials, and the use of

magnetic cooling to achieve temperatures below 1 K. At the same time, researchers

envisioned large-scale applications of helium cryogenics but lacked the motivation

and resources to develop these technologies.

In the 1940s commercial development of hydrogen and helium liquefaction

equipment began, owing to a large extent to the efforts of Prof. Samuel Collins of

MIT and the Arthur D. Little Company. For the first time, laboratories could

purchase helium liquefaction plants and liquid helium become available on the

open market. Liquid helium research became more widely practiced. This point in

time marked the beginning of large-scale cryogenic engineering, which required

individuals skilled at design and handling of cryogenic equipment. At first, military

and space applications led the field. Later major thrusts in applications of super-

conductivity began to dominate low temperature applications. As a result of this

growth, helium cryogenic engineering has developed into a substantial discipline.

Since the development of commercial helium refrigerators, major progress has

been made on the two fronts of research and development. In basic research, the

ready access to large quantities of liquid helium has freed the researchers to push

toward lower temperatures. Milestones in this progress must include: the develop-

ment of 3He-4He dilution refrigeration technology permitting continuous cooling in

the millikelvin temperature range; the approach to submillikelvin temperatures

using techniques such as Pomaranchuk cooling and nuclear demagnetization;

and the discovery of superfluidity in 3He at about 2 mK.

Commercial development has also progressed substantially since the 1940s.

Larger and larger liquefiers and refrigerators are being produced. Huge helium

liquefaction plants with capacities in the 1,000s of liters/hour operate in various

parts of the world separating helium from its primary source in natural gas wells.

Supplying liquid helium for superconductivity applications has similarly increased
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in scale and sophistication. Installations like the Large Hadron Collider particle

physics experiment at CERN in Geneva, Switzerland now have fully automated

refrigeration plants in the multi-kW range supplying liquid as well as cold gas

helium to a variety of thermal loads within the accelerator facility. In addition to

these larger-sized refrigerators, there has also been broad and extensive develop-

ment of small stand-alone refrigerators, or cryocoolers, with cooling capacities in

the 1–100 W range for cooling a wide variety of low-power applications including

superconductors and infrared detectors.

Overall, helium cryogenics has now evolved into a well-established discipline

providing the environment for a wide range of technologies. What is in store in

the future? Trends include development of a wider range of standard products

both from the very small refrigerators to the largest ones. New demands are being

placed on the systems being produced: higher thermodynamic efficiency, greater

reliability, and cleaner operation, and lower cost. Considerable research is aiding

this progress and new technologies such as applications of high temperature

superconductors are putting special demands on helium cryogenic systems. There

continues to be unique and challenging applications that require low temperatures

and cryogenic facilities. Thus, there is a steady demand for engineers and scientists

with cryogenic engineering skills.

1.3 Applications for Cryogenics

As motivation to the discussion of the properties and production of low-temperature

fluids, it is useful to identify the major applications for cryogenics technology

today. Some of these are commercial enterprises, while others are still primarily

in the stages of research and development. It is possible to separate these

applications into at least six major categories:

1. Storage and transport of gases

2. Separation of gases

3. Biological and medical applications

4. Altering material properties by reduced temperature

5. Electronics

6. Superconductivity

Large-quantity storage and transport of gases are best achieved with the help

of cryogenics. It is much more efficient from the standpoint of total weight,

to transport cryogenic fluids in the liquid state rather than as a pressurized gas.

Furthermore, the gases evolved from a storage dewar can maintain a lower impurity

content than is common in high-pressure gas storage. There are a number of

examples where cryogenic storage and transport are widely practiced. At relatively

high temperatures, liquid natural gas (LNG) is transported on a large scale in tanker

ships containing over 100,000 m3 of liquid. Liquid oxygen is stored in large

quantities for applications in steel production as well as to provide high-purity
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gaseous oxygen supplies for hospitals. Another major application for cryogenic

storage and transport is in liquid fuel rockets where LO2 and LH2 are common

propellants. Even helium is often transported in the liquid state. This is not only

because many users do not possess the necessary liquefaction equipment but also

to save weight for transportation.

The separation of gas mixtures such as air or natural gas is a commercial

enterprise in which cryogenics plays a major role. By using the physical properties

of adsorption, that is, the tendency for gases to condense on cold surfaces,

it is possible to separate gas mixtures by differences in their adsorption rates.

This procedure is used commonly in extracting O2 and N2 from air, for purification

of LNG or separation of rare gases such as Ne or He. Related to gas separation is the

technology of cryopumping, where the physical process of adsorption provides a

mechanism for clean, oil free, high-speed pumping systems. For this process to be

effective, the pumping surfaces must be well below the critical temperature of

the gas to be pumped.

Biological and medical uses for cryogenics are extensive. In these applications

the goal is to store, modify, or destroy a biological structure by reducing its

temperature. Storage of cellular structures in liquid nitrogen is a common practice,

the largest of these being the storage of blood plasma. Other examples of this

technology include storing cattle semen for artificial insemination and the preser-

vation of food. Apart from cellular storage, medicine is making increasing use of

cryogenics. In a procedure known as cryosurgery, selected areas of tissue are frozen

and removed with less difficulty or trauma to the patient than by conventional

surgical methods. Such techniques are commonly experienced by almost anyone

who has visited a dermatologist.

The basic properties of materials change as the temperature is reduced and

these effects are used in several engineering applications of cryogenics. A good

application for material property variation is in the recycling industry. Cryogenic

recycling uses low temperatures to separate materials. The approach takes advan-

tage of differential thermal contraction and the increased brittle nature of materials

at low temperatures. There are numerous examples of composite materials that can

be recycled by this method. Thermal contraction can also be used in the construc-

tion of mechanical structures. The assembly of a close tolerance connection can be

facilitated if one of the components is first cooled in a cryogenic fluid to make it

slightly smaller. In these applications there is little need to reduce the temperature

below the normal boiling point of liquid nitrogen because very little thermal

contraction occurs below this temperature.

Besides mechanical properties, low temperatures also are used to change elec-

trical properties of materials. One of the major applications of this process is in the

cooling of detectors and other electronic sensors. The low temperature reduces

the thermal noise and provides an isothermal environment for the sensor. Examples

of devices that use low temperatures include infrared detectors for everything from

night vision equipment to large-scale astrophysical science experiments.

The technology of superconductivity warrants special attention as an application

that depends on cryogenics. The largest-scale application of superconductivity is in
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magnet technology. At present, superconducting magnets are an integral part of

high-energy physics accelerators, magnetic fusion confinement systems, energy

storage, magnetic levitation, whole-body magnetic resonance imaging (MRI)

scanners as well as specialized research magnets. Additionally, RF particle

accelerators us superconducting Nb cavities that must be cooled to low temperature

(T ~ 2 K) to achieve the required performance. Most of these systems operate at

low temperature (T < 10 K) and thus require fairly complex helium refrigeration

systems.

The discovery and development of high temperature superconductors has sig-

nificantly impacted the development of cryogenic systems. Large-scale HTS

superconducting applications such as are proposed for the power industry are

now contemplated to operate at significantly higher temperatures, T > 30 K.

Small-scale applications of HTS are also being developed many of which only

require a few watts of cooling. These applications have had a major impact on

the development of small-scale, intermediate temperature refrigeration systems.

The development of cryocoolers for such applications has been an active thrust area

of the field in recent years.

1.4 Thermodynamic Laws

Thermodynamic principles and concepts are of fundamental importance to the field

of cryogenics. Thermodynamics forms the basis for calculations of the properties of

cryogenic fluids as well as the performance of refrigeration and liquefaction

systems.

There are three basic laws of thermodynamics that apply to all systems and are of

particular interest to the discussion here. Although it is assumed that the reader

is familiar with these laws through a previous course in thermodynamics, for

completeness and commonality of notation a review of the subject is presented

here. For further details, the reader should consult one of many thermodynamics

text books.

1.4.1 First and Second Laws of Thermodynamics

The first law of thermodynamics involves conservation of energy in a closed

system. Consider two thermodynamic states characterized by their internal energy,

Ei and Ef. If we connect these two states by an adiabatic path, that is a process taking

the system from one thermodynamic state to another without the production or

absorption of heat, the workW needed is exactly equal to the change in the internal

energy. This statement can be considered a definition of work; that is, work done on

an adiabatic system is equal to the increase in the potential energy.
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On the other hand, if the process is not adiabatic, an amount of heat Q is

produced during the process and conservation of energy demands that the amount

of extra heat be included in the total amount of work done. This statement leads to

the mathematical formulation of the first law of thermodynamics which is written,

Q ¼ Ef � Ei þW (1.2)

It is important to keep in mind that the internal energy is a state function and its

change only depends on the initial and final points of a path in thermodynamic

space. This is to be compared to the heat and work functions which are path

dependent.

Now consider a cyclic process where a system in question is taken from the

initial state through the final state and back to the initial state by some other path.

This process, shown schematically in Fig. 1.4, may be a heat engine or a cycle used

to refrigerate a cryogenic fluid. The principal distinction between an engine and a

refrigerator is with the sign of the work process. Since the cycle closes on itself, the

change in internal energy (DE) around the cycle is zero and the first law (1.2)

demands that the difference between the heat and work for the two paths must be

equal in magnitude but opposite in sign. For the entire cycle, the sum of the heat and

work must be identically zero. However, the amount of work that must be done to

accomplish the cycle is proportional to the enclosed area in Fig. 1.4. The larger the

area, the more work that is done per cycle and in turn the larger amount of heat that

must be generated.

Before discussing the other thermodynamic laws, it is useful to go into a little

more detail about the work as part of a thermodynamic process. To make the first

law into a more useful form for application, the initial and final states can be

brought arbitrarily close together resulting in the differential form of the first law,

dQ ¼ dEþ dW (1.3)

For a thermodynamic process, the differential work term dW in (1.3) can take on

several forms, dependent on what type of system is of interest. Of particular interest

to cryogenics are:

Liquid–gas system:

dW ¼ p dV (1.4a)

Fig. 1.4 Adiabatic paths

between two thermodynamic

states
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Magnetic system:

dW ¼ �mo H � dM (1.4b)

Electric system:

dW ¼ �E � dP (1.4c)

The pdV work term is the most common since most refrigerators use gas cycles.

However, magnetic refrigerators have special applications, which will be discussed

in later sections. Note that the latter two differentials are vector quantities depen-

dent on the direction of the applied fields, while the pdV product is directionally

independent. Fortunately, it is a rare occurrence for more than one type of work to

be important in a particular system or process. The differential form of the first

law is preferred in process calculations as the process variables usually change

continuously within the cycle.

Moving on, the second law of thermodynamics is concerned with the conversion

of heat into work and the efficiency with which this can take place. The second law

works in concert with the first law to describe correctly the behavior of an ideal

thermodynamic process. The second law is often defined in terms of heat engines

and their performance of work [1]:

It is impossible to construct an engine that does work while exchanging heat with only one
reservoir.

Thus, according to the second law, any engine that performs work must have at

least two reservoirs. By analogy, a refrigerator, which is simply an heat engine

running in reverse, also requires two reservoirs; the low temperature one from

which heat is absorbed and the high temperature one into which heat is rejected.

Schematic configurations of a heat engine and a refrigerator are shown in Fig. 1.5.

Fig. 1.5 Schematics of a heat engine and a refrigerator
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The attached subscripts refer to the hot (H) and cold (C) reservoirs. Note that the

engine supplies work while the refrigerator requires work to complete the process.

The combined first and second law therefore require an engine or refrigerator

to operate between two reservoirs at different temperatures. For an engine, the

thermodynamic efficiency � for such a process is given in terms of the work

output W divided by the heat input, QH.

� ¼ W

QH
¼ QH � QC

QH
(1.5)

Note that we have used the first law for the thermodynamic cycle to replace W
with QH – QC, which explicitly shows why � must always be less than unity. It is

apparent that an efficiency of unity can never be achieved because the second law

requires two reservoirs and QC is always finite.

For a refrigerator, the important quantity to optimize is the coefficient of

performance (COP), which is defined as the ratio of the heat extracted from the

low temperature reservoir to the work done on the system,

COP ¼ QC

W
¼ QC

QH � QC
(1.6)

Thus the COP is just the inverse of the efficiency. For the case of an engine, the

work done is given by the area enclosed by the cycle and the heat is expelled at TC.
On the other hand, for a refrigerator, the heat is expelled at TH and the cycle uses

the work to extract heat at TC.
The entropy S is a state function that is commonly used in cryogenic systems

because it better defines the process variable that one is trying to minimize. For

example, the most efficient process available for refrigeration is isentropic, DS ¼ 0

and this is only achievable if the processes are fully reversible. On the other hand, if

the process is done irreversibly (such as Joule-Thomson isenthalpic expansion)

or with exchange of heat, then DS > 0 and there is entropy generated. The Clausius

theorem, which is part of the second law, refers to the entropy associated with a

closed cycle. If such a cycle follows reversible paths, the Clausius theorem states

that the entropy change through the cycle is identically zero.

Like all thermodynamic variables, entropy also has a definition based on statis-

tical mechanics. The statistical definition of entropy is associated with order in

the system. The greater the order the lower the entropy. Thus, a condensed liquid is

in a lower entropy state than its coexisting vapor. Normally, the solid state of a

substance is in a lower entropy state than the liquid state because the crystal

periodicity implies a more ordered system. In a magnetic system, if the spins are

all aligned with the applied magnetic field they are more ordered and in a lower

entropy state than if they are randomly oriented. This would suggest that if absolute

zero were attainable, the system would be completely ordered, i.e. all the spins

would be aligned and the solid would be perfectly periodic. Helium is an exception

to this general rule, as will be discussed later, because of its quantum nature the

lowest entropy state of helium is liquid.
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In statistical mechanics, the definition of entropy evolves from introduction of

a thermodynamic probability function O, which is a measure of the occupation

of the states in the thermodynamic system. Entropy is given mathematically by a

function of this probability,

S ¼ kBlnO (1.7)

where kB, is the Boltzmann constant equal to 1.38 � 10�23 J/K molecule.

Incidentally, other state functions of the system are also defined in terms of O.
The statistical definition of entropy leads to a natural physical understanding of

absolute zero temperature. At absolute zero, the system is in a ground state with the

probability of that state being occupied at unity. Consequently, the probability

function is equal to unity (O ¼ 1) and by the definition in (1.7) S0 � 0.

A useful application of the entropy concept is obtained by considering a Carnot

refrigerator. The Carnot cycle is shown schematically by the four-step process in

Fig. 1.6. The first step in the cycle takes the thermodynamic system isothermally

(at constant temperature) from (a) to (b), decreasing the entropy from S2 to S1. This
process could be for example the isothermal compression of a gas at high tempera-

ture. The second step is an isentropic process (constant entropy) that reduces the

temperature of the system from TH to TC, taking it from (b) to (c). The third

step then heat exchanges with the low-temperature reservoir, a process (c) to (d)

that takes place isothermally. Finally, the cycle is completed by an isentropic return

to the original point (a). Since the Carnot cycle is reversible the work done is

equal to the area enclosed by the cycle. The amount of heat absorbed from the low-

temperature reservoir is QC ¼ TCDS and the heat ejected in the hot reservoir is

QH ¼ TH DS. Therefore, for a Carnot cycle the ratio of QC to QH is simply the ratio

of absolute temperatures,

QC

QH
¼ TC

TH
(1.8)

Fig. 1.6 Carnot cycle
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From (1.6), it is easy to show that the COP of a Carnot refrigerator is,

COP ¼ TC
TH � TC

(1.9)

The ideal Carnot refrigerator is used as a comparative standard for practical

refrigeration systems. Any real refrigeration system operates at a fraction of Carnot

performance due to the non-ideal nature of the processes involved in the cycle.

1.4.2 Third Law of Thermodynamics

The unattainability of absolute zero, the third law of thermodynamics, has funda-

mental significance in numerous aspects of cryogenics. Since the difficulty in

achieving low temperatures increases as the temperature is decreased, cryogenics,

by definition, is an attempt to fight this thermodynamic law. Additionally, the third

law helps us understand the behavior of thermodynamic variables as absolute zero

is approached. For example, considering an isothermal change in pressure in a

liquid–gas system, we can express the entropy change as

SðT; pÞ � SðT; 0Þ ¼ �
ðp
0

@V

@T

� �
p

dp (1.10)

an expression obtained by integrating one of Maxwell’s relations [1]. Similarly, for

a magnetic system, an isothermal change in magnetic field leads to the following

expression:

SðT;HÞ � SðT; 0Þ ¼ m0

ðH
0

@M

@T

� �
H

dH (1.11)

where M is the magnetization of the material. By combining (1.10) and (1.11) with

the third law of thermodynamics a statement can be made about the behavior of V
and M as absolute zero is approached. Specifically, since DS approaches zero as

T ! 0, both the volume and magnetization must approach constant values.

In addition to the above conventional statement of the third law and

unattainability of absolute zero, the Nernst-Simon statement concerns itself specifi-

cally with entropy change [1]:

Entropy change associated with an isothermal reversible process in a condensed system
approaches zero as T ! 0.

Since the Nernst-Simon statement deals only with the entropy change, the

absolute entropy of a system at T ¼ 0 must be a universal constant. It can be

shown further that this constant can arbitrarily be set identical to zero.
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The unattainability of absolute zero can be demonstrated by a number of

examples. One useful example is based on the Nernst-Simon statement of the

third law (DS ! 0). Consider the schematic T-S diagram in Fig. 1.7 showing two

isobars (constant pressure curves). For this type of system, it is fairly straight-

forward to achieve cooling and reduce the temperature by performing a constant

entropy (isentropic) expansion from Ti to Tf. It would appear possible to extend this
procedure toward absolute zero by a repeated application of isothermal compres-

sion from pl to p2 and subsequently isentropic expansion from p2 to p1. However,
the third law states that DS0 ¼ 0 so the two isobars must approach the same value of

the entropy at T ! 0. Thus, it should take an infinite number of steps to reach

absolute zero by this process.

These concepts are integral to the processes and properties that make up cryogenic

systems. In engineering systems operating near room temperature, it is common to

treat many of the process variables as constants or at least as simple functions of

temperature. These kinds of simplifications are generally not suitable for cryogenic

system analysis as will become clear in subsequent sections of this book.

Questions

1. Why is it more efficient to store and transport industrial gasses as cryogenic

liquids?

2. What are the principal differences between a heat engine and a refrigerator?

3. What does the third law of thermodynamics tell us about the heat capacity of a

solid as T approaches 0 K?

Fig. 1.7 Schematic T-S diagram showing isothermal and isentropic properties
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4. Show that the thermodynamic definition of entropy leads to a logarithmic

temperature scale.

5. Compare Tb/Tc for some common cryogenic fluids. Comment on the relative

values.

Further Readings

1. Absolute Zero, Public Broadcasting Special: http://www.pbs.org/wgbh/nova/zero/about.html

2. R. de Bruyn Ouboter, Superconductivity: Discoveries during the Early Years of Low

Temperature Research at Leiden, IEEE Trans. on Magnetics, Vol. Mag-23, 355 (1987).

3. K. Mendelssohn, Quest for Absolute Zero, World University Press, 1966.

4. R. G. Scurlock, History and Origins of Cryogenics, Oxford Science Publications, 1992.

5. T. Shachman, Absolute Zero and the Conquest of Cold, Houghton Mifflin Co. New York, 1999.
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7. M. W. Zemansky, Heat and Thermodynamics, McGraw Hill, New York, 1968.
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Chapter 2

Low-Temperature Materials Properties

Before delving into the fluids and processes associated with helium cryogenics, it is

important to first have a working knowledge of the relevant properties of other

materials at low temperatures. This knowledge is valuable in part because materials

have behavior that must be taken into account when considering the problems

of refrigeration, heat transfer, or storage of low temperature helium. In addition

as seen in subsequent chapters, many of the properties of helium are understood in

terms of physical models that were primarily developed to treat the properties of

different materials at low temperatures.

The study of material properties at low temperatures continues to be an active

field of research. Current investigations include studies of the properties of

materials at ultralow temperatures, T� 1 mK, new materials such as alloys and

composites as they depend on external variables such as temperature, pressure and

magnetic field, and new types of investigation on traditional materials. Much of this

work is fundamental in nature. On the other hand, since many material properties

play an important role in the design and construction of low-temperature systems,

it is essential to have a thorough knowledge of their behavior.

The present chapter is a survey of those properties that are of greatest importance

to cryogenic applications. Included in the discussion are the behavior of state

properties such as the internal energy and heat capacity, thermal expansion or

contraction, transport properties including the electrical and thermal conductivities,

and finally mechanical properties. The discussion concentrates on solid elements

and alloys. The special properties of superconductors will also be included although

the discussion is brief due to space limitations. Most of the descriptions are based

on either thermodynamic or solid-state physics principles. More extensive dis-

cussions of these topics may be found in textbooks on the relevant subjects [1, 2].

In addition, for applications there are a number of property databases [3, 4] and

books [5, 6] that collate available experimental data and can be useful in analysis

and design.
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2.1 Heat Capacity

The heat capacity is a fundamental state property of matter. It represents the amount

of energy needed to raise the temperature of a known quantity of a material one

degree. The heat capacity per unit mass is called the specific heat. In cryogenic

systems, the heat capacity of a material is integral to numerous calculations

including: the dynamics of cooling devices from superconducting magnets to

sensors, thermal energy storage, dynamic thermal loading on refrigeration systems,

and transient heat transfer.

As with many physical properties, the heat capacity is defined in terms of

other thermodynamic state variables. In particular, it can be written as a derivative

of either the entropy S or internal energy E. Because these state functions are

described in a liquid–gas system in terms of an equation of state relating

pressure p, temperature T, and specific volume v, one variable usually must be

held constant in the definition of the heat capacity or specific heat. For example,

the constant volume heat capacity is written in terms of a derivative of the entropy

or internal energy as,

Cv ¼ T
@S

@T

� �
v

¼ @E

@T

� �
v

(2.1)

while the constant pressure heat capacity may be written

Cp ¼ T
@S

@T

� �
p

¼ @E

@T

� �
p

þ p
@v

@T

� �
p

(2.2)

It is also possible to define the heat capacity with other external variables held

constant. For systems where magnetic properties are of importance, CH or CM may

be used to designate the heat capacity at constant applied magnetic field or

magnetization. This topic is of particular interest in magnetic cooling systems and

is discussed in Chap. 10.

A useful relationship between Cp and Cv is obtained from thermodynamic

expressions and is given by

Cp � Cv ¼ �T
@v

@T

� �2

p

@p

@v

� �
T

¼ Tvb2

k
(2.3)

where b ¼ 1
v

@v
@T

� �
p
is the volume expansivity and k ¼ � 1

v
@v
@p

� �
T
is the isothermal

compressibility.

An extensive amount of experimental data exists for the heat capacity of solids

at low-temperatures. For simple solid materials such as metals and crystalline

insulators, there is a very good match between experiment and theory. For example,

measurements near and above room temperature give close correspondence with
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the classical model of harmonic oscillators due to DuLong and Petit for which

the heat capacity is equal to 3N0kB¼ 3R, where N0 is Avogadro’s number¼
6.023� 1023 molecules/mole and kB is Boltzmann’s constant¼ 1.38� 10�23 J/

molecule K. The gas constant R¼ 8.31 J/mol K. This classical model is based on

the equipartition of energy which assigns ½kBT to each of the three kinetic energy

and three potential energy degrees of freedom in the three-dimensional solid.

At low temperatures, there is markedly different behavior according to the type

of solid considered. Over most of the cryogenic range for crystalline solids, the

dominant temperature dependence is proportional to T3. At very low temperatures,

T≲ 10 K, crystalline insulators maintain the T3-dependence while metals have heat

capacities that become linearly proportional to temperature as T! 0.

Non-crystalline amorphous materials also have a heat capacity is proportional to

Tn where n ~ 3. Finally, the difference between Cv and Cp becomes negligible as

T! 0 for all solids. This fact can be used in conjunction with (2.3) to show that

the volume expansivity, b, must also go to zero at very low temperatures.

2.1.1 Lattice Heat Capacity

Two relatively simple theories are available to describe the general behavior of

the heat capacity of metals and crystalline insulators over the entire temperature

range of interest [1]. The first such theory is based on the energy contained in the

quantized lattice vibrations or phonons that exist in a solid. For most solids, except

metals at very low temperatures, this phonon contribution to the heat capacity

dominates.

To calculate the phonon heat capacity, we begin with an expression for the

internal energy Eph of an ensemble of phonons as a function of their characteristic

frequencies o,

Eph ¼ h

2p

ð
DðoÞnðoÞodo (2.4)

In this case, D(o), the phonon density of states, describes the fraction of

phonons that occupy a particular energy level characterized by its frequency o.
The function n(o) is the statistical distribution function, which for phonons obeying
Bose-Einstein statistics, is given by [7],

nðoÞ ¼ 1

eho=2pkBT � 1
(2.5)

with h¼ 6.63� 10�23 J s is Planck’s constant. The model-dependent choice in the

theory is included in the selection of the proper density of states function, D(o).
This problem can be quite complicated depending on the detailed nature of the

excitations within the solid. Fortunately, many materials at least approximately

obey the simplifying assumptions inherent in the Debye model.
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The Debye model assumes that the density of states is described by a continuum of

levels up to the characteristic frequency oD, referred to as the Debye frequency. The

density of states is then proportional to o2 and is shown schematically in Fig. 2.1.

Inserting the Debye density of states and distribution function into the equation

for the internal energy of the phonons, (2.4), a nearly closed-form solution for this

quantity is obtained,

Eph ¼ 9RT
T

YD

� �3 ðxD
0

x3

ex � 1
dx (2.6)

where x¼ ho/2pkBT, xD�YD/T. The Debye temperature YD is defined in terms of

the maximum phonon frequency, oD, see Fig. 2.1. The Debye temperature is

characteristic to a particular material and has a simple form,

YD ¼ hc

2pkB
6p2

N

V

� �1=3

(2.7)

where c is the speed of sound in the material and N/V is the number of molecules

per unit volume. In real materials, the Debye temperature may be a function of more

variables than just the number density as described in (2.7), so the above description

is only an approximation [1].

The heat capacity in the Debye model can be calculated directly from differen-

tiation of the internal energy, (2.6), with respect to temperature

Cph ¼ 9R
T

YD

� �3 Z xD

0

x4ex

ðex � 1Þ2 dx (2.8)

Fig. 2.1 Density of states

D(o) versus o for the Debye

model for a constant phonon

velocity
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The definite integration within (2.8) can be easily performed numerically once YD

is known. However, one can obtain considerable insight be studying the limiting

form of Cph, which can be checked by evaluating (2.8) at either high or low

temperatures relative to YD.

In the high temperature limit, xD� 1, the exponentials within the integral may

be expanded as ex ~ 1+ x and simply integrated leading to a constant value for Cph

Cph ¼ 3R for T � YD (2.9)

which is the classical Dulong-Petit limit. Note that the heat capacity per mole is

constant in this range and on the order of 25 J/mole K. On the other hand, at low

temperatures, xD � 1, the upper limit of the integral may be taken to be infinite,

which makes the exponential terms dominant. The result leads to constant value for

the definite integral and a cubic temperature dependence for the heat capacity,

Cph ¼ 12p4

5
R

T

YD

� �3

for T � YD (2.10)

which accurately reproduces the cubic temperature dependence of the heat capacity

observed for many materials at low temperatures. Thus, a measurement of the

heat capacity of a solid at low temperature is one way of determining the Debye

temperature. Note that (2.10) indicates that low Debye temperature materials will

have relatively larger heat capacities at low temperature, which is technically

significant for refrigeration.

The simplicity of the Debye model and the dominance of the phonon contribu-

tion to the heat capacity over most of the relevant temperature range makes it a

useful tool for approximate calculations in cryogenics. One can simply tabulate the

Cph and Eph/T in terms of T/YD as is shown graphically in Fig. 2.2. These are

universal forms for the Debye phonon heat capacity and internal energy in Joules/

mole K that depend only on the value of YD. For most solid materials, the Debye

temperatures range from 100 to 1,000 K with examples listed in Table 2.1. This

simple analysis is usually accurate to within 20%.

Example 2.1

Using the Debye model, Fig. 2.2, estimate the change in internal energy of a 1 kg

copper block when it is cooled from 300 to 80 K.

Molar weight of copper is 0.0635 kg/mol. Thus, 1 kg¼ 15.75 mol.

The Debye temperature of copper is 343 K (see Table 2.1).

At 300 K, T/YD¼ 0.87 and at 80 K, T/YD¼ 0.23

From the graph, Eph/T (300 K) ~ 15 J/mol K; and Eph/T (80 K) ~ 6 J/mol K

Thus, the internal energy is dominated by its 300 K value. For the 1 kg copper

block,

Eph ~ [15 J/mol K � 300 K+ 6 J/mol K � 80 K] � 15.75 mol¼ 63 kJ.

Note: This problem could also be solved numerically by integration of (2.8).
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Fig. 2.2 Debye specific heat and internal energy functions

Table 2.1 Debye temperatures for com-

mon elements in cryogenics [1]

Element YD (K)

Al 428

Au 165

Cd 209

Cr 630

Cu 343

Fe 470

Ga 320

Hf 252

Hg 71.9

In 108

Nb 275

Ni 450

Pb 105

Sn 200

Ti 420

V 380

Zn 327
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2.1.2 Electronic Heat Capacity

For metals at low temperatures, T< 10 K, there is an additional significant contri-

bution to the heat capacity due to the energy contained in the conduction electrons.

Fortunately, as with the phonon contribution, the electron contribution to the heat

capacity can also be approximately described by a simple theory. The free-electron

model treats the conduction electrons as a non-interacting gas of spin ½ particles.

Thus, as in the case of the Debye model, the internal energy of the electron gas Ee is

written in terms of the density of states D(e) [1],

Ee ¼
ð
DðeÞf ðeÞede (2.11)

where e is the electron energy used as a variable in this case instead of frequency

in the Debye model. The density of states in the free-electron model is written,

DðeÞ ¼ V

2p2
m

2p2

� �3=2

e1=2 (2.12)

Since electrons are spin ½, they must obey Fermi-Dirac statistics, which means

that each energy level can have no more than one electron. The Fermi – Dirac

distribution function is [7],

f ðeÞ ¼ 1

eðe�mÞ kBT= þ 1
(2.13)

where m is the chemical potential, which is approximately equal to the Fermi

energy, ef, at low temperatures [1].

The free-electron model defines the Fermi energy ef in terms of the total number

of free electrons per unit volume, Ne/V

ef ¼ h2

8p2me
3p2

Ne

V

� �2=3
(2.14)

where me is the mass of an electron equal to 9.11� 10�31 kg. Thus, the Fermi

energy only depends on the number density of electrons. One can also define a

characteristic temperature, called the Fermi temperature, TF¼ eF/kB ~ 10
4 K.

Ordinarily and certainly in cryogenics, the electron temperature in a metal is far

below the Fermi temperature so that only a small fraction of the electrons near the

Fermi surface contribute to the thermal properties. Because T� TF, the electrons in
a metal generally are referred to as a degenerate Fermi gas. For a degenerate Fermi

gas the internal energy (2.11) can be simply evaluated. The electronic contribution

to the heat capacity then turns out to be linearly proportional to the absolute

temperature,

Ce ¼ gT (2.15)
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where g ¼ 1
3
p2DðeFÞk2B is sometimes called the Sommerfeld constant with D(eF)

being the electron density of states evaluated at the Fermi energy (2.14). The

Sommerfeld constant has been measured for many metals and some typical values

are listed in Table 2.2. To give a rough idea of the importance of the electronic

contribution to heat capacity, one should note that for copper the electron and

phonon contributions are equal at about 3.8 K.

2.1.3 Heat Capacity of Special Materials

The above general trends in the heat capacity of solid materials are fairly universal.

However, they do not describe all materials and the usefulness of the Debye and

free electron models is limited. In other cases, the knowledge of the heat capacity of

materials is more empirical.

Figure 2.3 is a plot of the specific heat of a variety of materials used in

cryogenics [6]. Note that these materials display similar trends in Cp to the theory

discussed above. The pure metals (Fe, Cu, Al, Be) show a linear dependence at low

temperatures (T< 10 K) followed by a transition region where Cp is proportional to

T3 and finally appproach a near constant value above 100 K. The metallic alloys

(stainless steel, brass) generally do not display the linear region due to a smaller

contribution by free electrons otherwise their behavior is similar to that of pure

metals. Non-metals (Pyrex, glass resin) show only a Tn dependence (n ~ 3) at low
temperatures due to the dominance of the phonon excitations.

Also, there are certain special materials that have anomalous low temperature

heat capacities that are unique and also significant for cryogenic applications.

Table 2.2 Coefficient of the electronic specific heat

for various metallic elements of technical interest [1]

Element g(mJ/mol K2)

Ag 0.646

Al 1.35

Au 0.729

Cr 1.40

Cu 0.695

Fe 4.98

Ga 0.596

Hg 1.79

In 1.69

Nb 7.79

Ni 7.02

Pb 2.98

Sn 1.78

Ti 3.35

V 9.26

Zn 0.64
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One such class of materials are those that undergo magnetic ordering transitions

at low temperatures. These transitions produce a large peak in the specific heat,

see Fig. 2.4. Most of these materials consist of rare earth compounds where the

magnetic ions such as gadolinium (Gd++) undergo ordering at low temperatures.

These materials are useful as thermal capacity stores in low temperature cryocooler

regenerators, a topic discussed in that context in Chap. 8. They are also used in

magnetic refrigeration where the order – disorder transition can be driven by

application of a magnetic field. This topic is discussed in Chap. 10.

Finally, superconducting materials undergo phase transitions with a discontinu-

ity in the heat capacity at the onset of the superconducting state, T¼ Tc. Below Tc,
the heat capacity of a superconductor decreases rapidly below that of the normal

state, particularly at very low temperatures where the phonon contribution is small.

Fig. 2.3 Specific heat capacity of technical materials used in cryogenics (Reprinted from

Ekin [6])
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This behavior has to do with the very nature of superconductivity, a topic that is

discussed further in Sect. 2.5.

2.2 Thermal Contraction

All materials experience a change in physical dimension when cooled to low

temperatures. This effect, normally referred to as thermal contraction in the field

of cryogenics, is typically on the order of a few tenths of a percent change in volume

in most materials between room temperature and liquid helium temperatures.

Although the effect is not large in absolute magnitude, it can have a profound

impact on the design of engineering devices operating in a low-temperature envi-

ronment. The thermal contraction coefficients of different materials vary by as

much as an order of magnitude. Furthermore, since most devices constructed to

Fig. 2.4 Volumetric specific heat to metallic compounds with low temperature phase transitions

(Reprinted from Nageo, et al [8])
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operate in cryogenic systems are fabricated at room temperature out of a number of

different materials, one of the major concerns is the effect of the differential thermal

contraction and the associated thermal stress that may occur when two dissimilar

materials are bonded together. Differential contraction is especially important to the

design of low temperature vacuum seals, structural supports, and electrical insula-

tion systems. Thus, it is of considerable importance to understand this behavior of

technical materials. There are a number of good reviews in the literature on this

subject [9–12].

The thermal contraction or expansion has a thermodynamic definition, which

can be combined with other state properties to make predictions of the details of

the properties of materials at low temperatures. For liquids and gases, the most

meaningful form to consider is the volume expansivity defined as,

b ¼ 1

V

@V

@T

� �
p

(2.16)

where b is in general a function of temperature. For solids, where the changes

in individual dimensions may be different due to anisotropic effects, the linear

thermal expansion coefficient,

a ¼ 1

L

@L

@T

� �
p

(2.17)

is a more appropriate and common factor to consider and is the value that is

tabulated in the literature. For isotropic materials, a¼1/3b to first order. For many

common solids near room temperature, the linear expansion coefficient is approxi-

mately constant.

In a solid, the thermal expansion is caused by anharmonic terms in the restoring

potential between the individual molecules. Recall that the Debye model assumes

that a solid is comprised of a set of harmonic oscillators. Therefore, the Debye

model in its simplest form does not predict the existence of thermal expansion.

Anharmonic terms in the interaction potential are what cause the non-zero b. For
molecules in a solid, the anharmonic terms can be represented as variations in the

Debye temperature YD with the specific volume. This variation may be written,

gG � � dðlnYDÞ
dðlnVÞ (2.18)

where gG is referred to as the Gr€uneisen coefficient, values of which for a few

elements are listed in Table 2.3. The Gr€uneisen coefficient, which is nearly constant
over a temperature range down to T�YD/5, can be used along with other thermo-

dynamic properties to calculate the thermal expansion coefficient,

a ¼ gGCvk
3v

(2.19)
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where k is the isothermal compressibility. For metals at low temperatures,

T<YD/25, the dominant temperature dependence of a is in the specific heat,

Cv� gT+ bT3.
At low temperatures, the expansion coefficient is far from linear and actually

approaches absolute zero with zero slope, a fact that can be understood in terms of

thermodynamics. In (2.3), the difference between the constant volume and constant

pressure heat capacity is shown to be proportional to the square of the volume

expansivity b. Since according to the Third Law of Thermodynamics, the quantity

(Cp – Cv) must go to zero as T! 0, it follows that b also must do so. This effect

makes sense physically because the harmonic terms would be expected to dominate

the interatomic potential at such low temperatures.

Because of the nonlinear nature of a and b, it is often more useful to have the

integrated thermal contraction for the purpose of design. Figure 2.5 displays the

integrated linear contraction of a number of common materials used in cryogenic

applications [6]. Note that metals typically have total contractions in the range of

0.5% or less with the lowest value being for Invar, which is a special metal designed

to have a low value of a. Polymers such as epoxy or Teflon contract about three

times as much as metals and can have a total contraction between 300 and 4 K as

high as 2%. Some amorphous materials, particularly Pyrex, have nearly zero or

sometimes negative thermal contraction coefficients.

Composite materials often can have their thermal contraction predicted based on

a linear combination of the two individual materials, taking into account the elastic

modulus of each constituent. This approach to estimating the thermal contraction of

a composite is referred to as the rule of mixtures. However, composite materials are

frequently anisotropic by design, which makes their linear contraction coefficients

dependent on the internal structure and orientation of the component materials.

A clear example of this behavior can be seen in the structural material, G-10, which

is a composite of epoxy and fiberglass. In this case, the thermal contraction of the

composite depends on the volume ratios of the two materials and the orientation of

the fibers within the composite. For example, the integrated DL/L from 300 to 4.2 K

is about 0.25% for G-10 in the fiber direction (wrap) and about 0.75% normal to the

fiber direction.

Table 2.3 Values for the Gr€uneisen
coefficient yG for common elements [1]

Element yG

Ag 2.40

Al 2.17

Cu 1.96

Fe 1.6

Ni 1.88

Pt 2.54
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2.3 Conductivities: Electrical and Thermal

The electrical and thermal conductivities are non-equilibrium transport properties

that determine, among other things, the heat generated due to current flow or the

heat flow due to a temperature difference. In general, the electrical and thermal

conductivity of pure metals is higher than that of alloys, which is why pure copper,

Fig. 2.5 Total thermal expansion/contraction for materials commonly used in cryogenics:

(a) metals; (b) non-metals (Reprinted from Ekin [6])
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aluminum and silver are common electrical conductors or thermal conduction straps

in cryogenic systems. On the other hand, insulating materials and composites do not

carry electrical current at all and for the most part have lower thermal conductivities,

which makes such materials best for thermal and electrical insulating supports.

Some special crystalline insulators have high thermal conductivities that are useful

for electrical insulating connections that require good thermal contact.

2.3.1 Electrical Resistivity of Metals

Near room temperature, the electrical resistivity of most pure metals decreases

monotonically with temperature following an approximately linear relationship.

This trend is the result of electron–phonon scattering and is the dominant tempera-

ture-dependent contribution to the resistivity r(T). At low temperatures, the resis-

tivity trends to a constant value, which is approached when the metal is near liquid

helium temperature. The constant value of low temperature is referred to as the

residual resistivity r0 and is strongly dependent on the purity and amount and

distribution of lattice imperfections in the metal. Generally, these two effects are

additive, obeying what is known as Matthiessen’s rule that the total resistivity is the

sum of two contributions,

r ¼ r0 þ rðTÞ (2.20)

As an example of the behavior of electrical resistivity consider Fig. 2.6, which is

a plot of r(T) for various purities of copper, defined in terms of the residual

resistivity ratio [RRR¼ r(273 K)/r (4.2 K)]. The more pure and defect free the

metal, the higher its RRR value. It should also be noted that the temperature at

which essentially constant resistivity is obtained decreases with increasing purity.

The other point of interest in the figure is that the high-temperature (T� 300 K)
resistivity is essentially independent of RRR, consistent with the dominance of

electron–phonon scattering. This universal form for the resistivity of pure metals

makes them very useful as temperature sensors. For example, platinum resistance

thermometers are often preferred for accurate measurements in the intermediate

temperature regime (30–300 K) where their sensitivity, dR/dT, is roughly constant.

The electrical resistivity is one of the easiest properties to measure and as a result

r(T) is known and tabulated for many elements and alloys of interest [13–18].

The theoretical interpretation of electrical conductivity of metals associates the

loss mechanism with scattering processes between the electrons and the lattice.

Considering a low-frequency transport of electrical current in a metal, we can relate

the conductivity to the mean scattering time, t� l/vF, where l is the mean free path

between electron scattering events and vF¼ (2Ef/m)
1/2 is the Fermi velocity. Ele-

mentary theory of electrical conductivity gives s as,

s ¼ ne2t
me

(2.21)
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where n¼Ne/V is the number of conduction electrons per unit volume and me is

the electron mass.

As mentioned above, there are two principal types of electron-lattice scatter-

ing that determine the magnitude of the electrical conductivity. For fairly high

temperatures, T�YD, the dominant mechanism is due to electron scattering

by quantized lattice vibrations, phonons. A simple way to see the temperature

dependence of this effect is to relate the magnitude of the phonon scattering with

the mean square displacement of the molecules in the lattice, <x2>. In a simple

harmonic solid, this quantity is proportional to kBT, the thermal energy of the

lattice. Assuming that the electrical resistivity is proportional to the magnitude of

phonon scattering, near room temperature the resistivity of metals should also

be proportional to T, a fact borne out at least approximately by the data.

For low temperatures, T<<YD, the phonon scattering decreases with T giving

way to scattering dominated by lattice imperfections. In this domain the resistivity

approaches a temperature-independent value determined primarily by the amount

of impurities and imperfections in the lattice. For metallic elements, a few parts

per million of impurities can have a profound effect on electron transport as can the

amount of cold work generated imperfections. At the lowest temperatures with

the purest samples, the mean free path of the electrons can become very large

approaching the sample size, such that scattering off the surface of the sample can

contribute a size effect dependence to the resistivity.

Fig. 2.6 Electrical resistivity versus temperature of differing purities of copper, r(273 K)

¼15.45nO m (Reprinted from Powell and Fickett [13])
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At intermediate temperatures, T�YD/3, the resistivity varies smoothly between

the two regions. Many metals have a roughly T5 dependence in this regime which

can be attributed to the phonon population being proportional to T3 and

the probability of scattering through large angle having a T2 dependence. The

resistivity is therefore proportional to the product of these two factors.

2.3.2 Magneto-Resistance in Metals

The electrical resistivity of pure metals generally increases with applied magnetic

field. This effect is most significant for pure metals at low temperatures because

of their relatively long mean free paths for electron scattering. Physically, magneto-

resistance comes about from the fact that the electrons in the metal are deflected

from a straight path in the presences of an applied magnetic field. Since the

deflected path will have a greater opportunity for the electrons to scatter, the

electrical resistivity would be expected to increase monotonically with applied

magnetic field. The magnitude of the effect depends on the type of metal, its purity

and the magnitude and orientation of the applied magnetic field.

No simple theory is available for calculating the magneto-resistance of a partic-

ular metal. However, a considerable amount of data exists and correlations are

available for calculating the magnitude of the effect in common metals. For copper,

the magneto-resistance is often tabulated in terms of what is known as a Kohler

plot [19], shown in Fig. 2.7. To utilize this plot one needs to know the RRR¼
r(273 K)/r (4.2 K) of the copper sample, the applied magnetic field (m0H), in this

case transverse to the axis of the sample, and the desired operating temperature.

Fig. 2.7 Kohler plot for magneto-resistance of copper (Reprinted from Fickett [19])
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From this information, one can calculate the magneto-resistance contribution to the

total value of RRR, which in turn allows determination of the effective resistivity

of the metal. However, it is important to keep in mind that this is an approxi-

mate correlation and only suitable for copper. By contrast, magneto-resistance

measurements on pure aluminum do not yield a similar universal correlation.

In general, the magneto-resistance makes the largest contribution to the resistivity

at high field and low temperatures for pure metals.

Example 2.2

For an applied magnetic field of m0H¼ 10 T, calculate the effective RRR for a

sample of copper, which has a RRR¼ 100 at m0H¼ 0.

In this example, the product, m0H � RRR¼ 1,000 T. Using the Kohler plot

for transverse magnetic field, Fig. 2.7, the magneto-resistance contribution can

be estimated to be DR/R0� 3. This value must be added to the resistance of the

metal at zero field, which makes the ratio R10/R0� 4. Thus, the sample has

approximately the same electrical resistivity as a RRR¼ 25 sample on zero

background field. The resistivity of copper at 273 K is 15.6 nO-m [3]. This
means that the resistivity of the copper at liquid helium temperature and B¼ 10 T

should be r ~ 0.62 nO-m, which compares reasonably well with tabulated data,

which gives a value of 0.56 nO-m for these conditions.

The electrical resistivity of metallic alloys is generally higher than that of

corresponding pure metals. Also, the temperature dependence of the resistivity of

alloys is much weaker. Mostly these effects are due to the large amount of lattice

imperfection scattering that occurs in concentrated alloys. The electrical resistivity

of a variety of metallic alloys is given in Table 2.4. Note that the RRR for most

of these metals, which varies from approximately unity for Constantan (Cu57%

Ni43%) and Manganin (Cu84%Mn12%Ni4%) to 2 or 3 for aluminum alloys and

over 30 for PbSn solder is considerably smaller than that of pure metals. Also, the

room temperature resistivity can be very high up to two orders of magnitude greater

than that of pure metals. Both of these features make alloy metals particularly

useful for heaters and instrumentation leads in cryogenic applications.

Table 2.4 Electrical resistivity of various technical alloys (units of nO-m) [3, 14]

Alloy 10 K 20 K 50 K 100 K 200 K 300 K RRR

AL 5083 30.3 30.3 31.3 35.5 47.9 59.2 1.95

AL 6061-T6 13.8 13.9 14.8 18.8 30.9 41.9 3

304 SUS 490 491 505 545 640 720 1.46

BeCu 56.2 57 58.9 63 72 83 1.48

Manganin 419 425 437 451 469 476 1.13

Constantan 461 461 461 467 480 491 1.07

Ti-6%Al-4%V 1,470 1,470 1,480 1,520 1,620 1,690 1.15

PbSn (56-44) 4.0 5.2 16.8 43.1 95.5 148 37

Pt – 0.367 7.35 28 69.2 107 290
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2.3.3 Electrical Conductivity of Semiconductors

Semiconductors have electrical resistivities that typically range from10�4 to 107O-m,

which is many orders of magnitude higher than that of most metals (r ~ 10�8 O-m).

However, in the case of semiconductors, the low conductivity is due more to the

limited number of charge carriers that exist than impurity or phonon scattering.

Semiconductors possess properties that are dependent on the existence of an energy

gap Eg in the electron density of states. Unlike pure metals, which do not have

an energy gap, the number of conduction electrons in a semiconductor varies

exponentially with temperature roughly as,

Nc � e
� Eg

kBT (2.22)

This exponential dependence dominates the resistivity leading to an increasing

value as the temperature decreases. Such variation can be quite strong with the

resistivity increasing over several orders of magnitude between room temperature

and liquid helium temperature with the exact variation depending on the details of

the semiconductor.

Pure semiconductors are insulators at absolute zero because the electrons

cannot be excited above the energy gap, see (2.22). To overcome this limitation,

the conductivity of a semiconductor can be increased by doping it with impurities

that introduce additional charge carriers. Small concentrations of impurities can

change the conductivity of a semiconductor by several orders of magnitude. Due to

the strong temperature dependence of their resistivity, semiconductors are most

commonly encountered in cryogenic applications as temperature sensors with high

negative temperature coefficients. For example, high levels of sensitivity at liquid

helium temperatures can be achieved using doped germanium as a sensor.

2.3.4 Thermal Conductivity of Metals

The thermal conductivity is a material property that determines the temperature

gradient across a substance in the presence of a heat flow. In all materials there are

several contributions to the thermal conductivity k. For metals, the principal

conduction mechanisms are electronic and lattice, with the electronic contribution

being dominant for pure metals. The electronic thermal conductivity can be under-

stood by a similar model as used for electrical conductivity.

By analogy to the process of electrical conductivity, the behavior of k can be

understood in terms of a kinetic theory model for gases of electrons and phonons [20].

Such simple models work very effectively to explain the limiting behavior of the

thermal conductivity. In particular, the thermal conductivity may be written,

k ¼ 1

3
Cvl (2.23)
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where C is the heat capacity per unit volume, v is the characteristic speed, and l is
the mean free path. Using the free-electron model, the electronic contribution to the

thermal conductivity can be calculated by inserting the electronic specific heat,

(2.15), and the Fermi velocity, vF¼ (2eF/m)
1/2, into (2.23). Thus,

ke ¼ p2nk2BTt
3m

(2.24)

where t is the mean scattering time identical to that considered for electrical

conductivity. At high temperatures, T>YD, t� T–1 due to the increase in the

lattice vibrations so that the thermal conductivity approaches a constant value.

At low temperatures, t is approximately constant, since impurity scattering

dominates there, implying the thermal conductivity should be proportional to T.
As an example, Fig. 2.8 shows plots of the thermal conductivities of copper

analogous to Fig. 2.6 for the electrical resistivity. The limiting behavior near

room temperature gives a near constant value k¼ 401 W/m K. With decreasing

temperature, the thermal conductivity rises through a maximum that depends on the

purity of the sample followed by a linear region (k ~ T) at the lowest temperatures.

This system is entirely consistent with the simplified theoretical picture.

Since the electronic thermal and electrical conductivities in pure metals have

similar scattering processes, a correspondence clearly should exist between these

Fig. 2.8 Thermal conductivity versus temperature of differing purities of copper (Reprinted from

Powell and Fickett [13])
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two properties. The Wiedemann-Franz Law generally assumes that for metals

the ratio of the thermal conductivity and electrical conductivity is a function of

temperature only. Furthermore, for the free-electron model, this ratio is a simple

expression,

ke
s
¼ p2

3

kB
e

� �2

T ¼ L0T (2.25)

where the quantity L0¼ (p2/3)(kB/e)
2¼ 2.45� 10�8 W O/K2 is the free

electron Lorenz number. L0 is totally independent of material properties and

temperature.

Experimental evidence indicates that the Wiedemann-Franz Law works only at

temperatures near room temperature and at very low temperatures (T�YD) [21].

This fact is related to the asymmetry imposed on the Fermi surface when it is

subjected to a thermal gradient resulting in the transport of electrons. At intermedi-

ate temperatures, the experimentally defined Lorenz ratio (L¼ k/sT) is almost

always less than L0. The amount of deviation is strongly dependent on the purity

of the sample, with the less pure having a smaller deviation. The overall behavior of

the Lorenz ratios with sample purity are plotted in Fig. 2.9. Considerable effort has

been applied to understanding these effects, the details of which are beyond the

scope of the present discussion.

Fig. 2.9 Electronic Lorentz ratio for pure metals and defect-free metals (Reprinted from Sparks

and Hurst [21])
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2.3.5 Lattice Thermal Conductivity

The lattice contribution to the thermal conductivity of metals, semiconductors and

insulators is also understood in terms of kinetic theory although the thermal carrier

in this case is a phonon gas of lattice vibrations. It is still possible to apply (2.23)

although the heat capacity must be that due to the lattice, Cph, which as we have

discussed above is proportional to T3 at low temperatures. Also, v is the speed of

sound and l is the phonon mean free path. Most insulators and semiconductors have

thermal conductivities that are several orders of magnitude lower than that of

common pure metals. At high temperatures their behavior is complicated by the

details of the phonon density of states, but generally the thermal conductivity

decreases monotonically with temperature. At low temperatures, where scattering

times become approximately independent of temperature, the thermal conductivity

decreases more rapidly, approaching zero as Tn where n� 3.

The thermal conductivity of some technical materials are shown in Fig. 2.10 and

listed in Table 2.5. Because the list includes a wide variety of alloys and amorphous

insulators, a considerable range in values is displayed. These contain only a limited

number of technically interesting materials, indicating that an area of continuing

research is the determination of thermal conductivities of new materials. This

need is particularly evident with the growing use of composite materials for low

temperature applications.

Because the thermal conductivity of most materials used in cryogenic systems

varies with temperature, it is often necessary to integrate the thermal conductivity

over the temperature range of interest to obtain a total or integrated value,

�k T1; T2ð Þ ¼
ðT2
T1

kðTÞdT (2.26)

which has units of W/m. If the temperature dependence of k is known, it is

straightforward to obtain �k for a particular temperature range. One can then

calculate the total heat flux, Q by multiplying the integrated thermal conductivity

by the area to length ratio, A/L.

Example 2.3

Estimate the integrated thermal conductivity for BeCu between 1 and 300 K.

Looking at Fig. 2.10a, the thermal conductivity of BeCu is nearly linear on the

log-log plot and therefore can be represented as k ~ aTn, where it can be shown

that n¼ 1.1 and a¼ 0.4 W/m K1+n as determined from the data. It then follows

that the integrated thermal conductivity is,

�k ¼
ð300

1

aTndT ¼ a

nþ 1
Tnþ1

����
300

1

¼ 0:19 3002:1 � 12:1
	 
 ¼ 30; 300½W=m	

Note that in this case, integrated thermal conductivity is mostly determined

by the upper temperature.
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Fig. 2.10 Thermal conductivity of various materials used in cryogenics: (a) metals; (b) non-

metals [3]. Symbols are used as identifiers for each material
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2.3.6 Contact Resistance

Thermal and electrical contact between materials is a topic of considerable

importance in cryogenics and yet it is only qualitatively understood. Contract

resistance occurring at conductor joints in magnets or other high power applications

can lead to undesirable electrical losses. Poor thermal contact at the interface of a

heat strap can significantly decrease the efficiency of a thermal link in a conduction

cooled system. Thermal contact is also critical in the mounting of sensors for

accurate temperature measurement, where failure to carefully consider this issue

can lead to erroneous results. Thus, it is important to have a basic understanding of

this topic for a wide variety of cryogenic system designs.

Whenever two materials are joined together for the purpose of transporting heat or

electrical current a localized resistance occurs at the boundary. The magnitude of this

resistance dependsonanumber of factors, including thepropertiesof thebulkmaterials,

the preparation of the interface between the twomaterials, whether there are bonding or

interface agents present, and external factors such as the applied pressure.

The electrical contact resistance is of greatest interest in the production of joints

between high purity metals such as copper, where its value can contribute or even

dominate the overall resistance of an electrical circuit. Generally, the contact

resistance in pure metals has a temperature dependence that scales with the

properties of the bulk material, displaying among other traits a purity dependent

RRR. For electrical contacts between pure metals without bonding materials like

solder, the value of the electrical contact resistance decreases with applied pressure

normal to the joint interface. This tendency results from an increase with pressure in

the effective contact area between the two bulk samples. To understand this effect,

consider that the two surfaces have microscale roughness due to how the surfaces

were prepared. As the pressure is increased normal to the surfaces, the asperities

tend to mechanically yield and deform increasing the effective area of contact.

As the bulk material has high conductivity, the contact resistance is mostly due to

the constriction of current flow that occurs at the small contact points [22]. As the

contact pressure is increased, the amount of constriction for current flow decreases,

thus reducing the contact resistance.

Figure 2.12 is a graphical summary of the measured electrical contact resistivity

for various unbonded samples as a function of applied pressure [23]. To obtain the

Table 2.5 Conductivity of various technical alloys (units are W/m K) [3]

Alloy 10 K 20 K 50 K 100 K 200 K 300 K

AL 5083 30.3 30.3 31.3 35.5 47.9 59.2

AL 6061-T6 23.8 50.1 100 120 135 160

304 SUS 0.77 1.95 5.8 9.4 13 14.9

BeCu 5.1 10.3 24 44.5 79.5 112

Manganin 1.7 4.1 10.1 14 17.2 22

Constantan 3.5 8.7 18.1 20 22.8 24.9

Ti-6%Al-4%V 0.87 1.5 2.6 4 5.9 7.7

PbSn (56-44) 20 28.5 40.7 45 48 51
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contact resistance, the contact resistivity should be divided by the contact area,

RB¼ rB/A. There are two things to observe in these results. First, at a particular

contact pressure, there is still a wide variation in the contact resistivity, a result that

is probably due to variations in sample preparation, treatment and oxidation.

Second, the contact resistance generally decreases with applied pressure. The line

in the graph is a rough correlation for the contact resistivity,

rB � 3 p= (2.27)

where p the pressure is in Pa and rB is in O-cm
2. This result is at least qualitatively

consistent with the expected increase in area with contact pressure.

For thermal contact resistance, there are two cases to consider. First is the

thermal contact resistance between metals, which would be expected correlate

with the electrical contact resistance much as with bulk metals. This correlation

is approximately correct for contacts between identical metals. However, if the

contact is between dissimilar metals or if there are solders or other interface metals

involved, the thermal contact resistance can no longer be scaled with rB. This latter
point is particularly significant at low temperatures where many soldiers are

superconducting (Fig. 2.12).

For thermal contact resistance between non-conducting materials, the funda-

mental limit even for ideal contacts is the mismatch in the phonon transport across

the interface [24]. Since the phonon spectra for the two materials are not the same

there is an impedance mismatch that leads to a resistance occurring within roughly

Fig. 2.11 Summary of low

temperature electrical contact

resistance versus pressure.

Dashed line is the fit (2.27)

[23]
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one phonon wavelength of the interface. This effect is known as Kapitza conduc-

tance and is also important for heat transfer in liquid helium, a topic that will be

revisited in Chap. 7. Overall, the theory of Kapitza conductance predicts a heat

transfer coefficient (h¼ 1/R),

hK ¼ 16

15

p5k4B
h3c2

� �
T3 (2.28)

where c is the speed of sound. Note that the speed of sound is proportional to the

Debye temperature, so that low YD materials would be expected to have higher

thermal conductances than materials with high Debye temperature. For most solids,

the factor in parentheses is on the order of 1 kW/m2 K4. Overall, (2.28) places an

upper bound on the magnitude of the thermal contact conductance for insulating

contacts. Real contacts between non-ideal surfaces are more complex and their

understanding is thus more qualitative.

For joints between real materials, the interface is irregular with intermittent

points of contact. In this case, the thermal contact conductance is more determined

by the constriction resistance at the asperities similarly to the electrical contact

resistance in metals. Thus, particularly for deformable materials without bonding

agents, the thermal contact conductance should increase with interface pressure.

Fig. 2.12 Thermal contact conductance as a function of temperature for a variety of contact

preparations and conditions. The contact assumes a 1 cm2 area. Data compiled by Radebaugh [25]

(Reprinted from Ekin [6])

2.3 Conductivities: Electrical and Thermal 41

http://dx.doi.org/10.1007/978-1-4419-9979-5_7


Experimentally, this correlation is born out with the thermal contact conductance

increasing with pressure as,

h � apn (2.29)

where n � 1 and a is an empirical coefficient [23].

Thermal contact conductance varies over a wide range depending on whether

the contact is insulating or conducting. Figure 2.12 displays a compilation of data for

low temperature thermal contacts [25]. Some general trends can be observed. First, the

thermal contact conductance values at low temperatures can range over six orders of

magnitude, depending onmaterials and surface preparation. This large range ismostly

due to variations of actual contact area and surface preparation. Second, contacts that

are bonded with solder of similar agents that fill the asperities generally have higher

thermal conductances than bare contacts. However, the bonding agents can also

contribute to the interface resistance particularly if the bond region is thick or electri-

cally insulating. In the low temperature region (T< 5 K), most of the data correlate

with a power law,h ~Tn, but there are twodistinct characteristic behaviors. Puremetal-

metal contacts have a temperature dependence that correlates with that of the bulk

metal. Thus, at low temperature h � aT, with the coefficient of proportionality being
mostly determined by sample purity and contact pressure but varying between 10�1

and 10�3 W/cm2K2. On the other hand, if the contact is bonded with solder or indium,

the conductance canbemuchhigher, but at low temperature suchcontactsmaybecome

superconducting. As discussed in the next section, metallic superconductors

have lower thermal conductivities than in the normal state with ks ~ T
3, so that the

thermal conductance can in principle be reduced by introduction of bonding agents.

Finally, if the interface is between two non-conducting materials, then electron

transport is non-existent and the thermal conductance is generally lower following

the correlation scaling with the bulk thermal conductivity, h¼ aTn, where n~ 3.
However, in some special cases involving crystalline insulators, such thermal

conductances can be very high as is seen with the bulk materials, see Fig. 2.10.

2.4 Mechanical Properties

The mechanical properties of materials are also very important to consider when

designing cryogenic systems. Most cryogenic systems require mechanical supports

to carry the loads between ambient temperature and low temperature components.

Thermal transport through structural supports often significantly contribute to the

overall low temperature heat load. Since the thermal conductivity of a structural

material determines the heat load and the structural properties determine the required

dimensions of the support, both the structural and thermal properties must be consid-

ered when designing and optimizing structural components in cryogenic systems.

The two properties that are most often of interest in a mechanical system are the

stress s¼F/A within the material and the modulus of elasticity Ey¼ s/e, where e is
the linear material strain, dx/x. These material properties enter into calculations

such as mechanical deflection and failure modes in mechanical structures.
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Most structural materials are characterized in terms of their uniaxial stress limits.

Typically, the yield stress of a material, sy, is defined as the load that creates a 0.2%
permanent deformation; however, this definition is sometimes not meaningful

particularly if one is considering a brittle material. The yield stress sometimes

refers to the load that produces a distinct change in the slope of the stress–strain

curve. In any case, for the design of structural components in systems, it is

advisable to stay well below the specified yield stress of the material in use;

typically to a maximum stress not exceeding 2/3sy. Furthermore, in an application

involving cyclic loading, this design value must be de-rated even further to take into

account the failure associated with repeated application of load.

The ultimate stress su, represents that level of stress necessary to cause failure

of a particular material under tensile load. In ductile materials, the ultimate stress

is considerably greater than sy and can be associated with substantial permanent

deformation. On the other hand, brittle materials have sy’ su. Composite structural

materials such as fiberglass epoxy have even more complex behavior.

For most common structural materials, the yield and ultimate stresses increase

with decreasing temperature. The magnitude of this increase varies from around

10% in some metallic alloys to over 100% in polymeric materials. The increase in

strength is seen to result from the reduced thermal excitations within the lattice,

which inhibits the spread of dislocations. Listed in Tables 2.6 and 2.7 are respec-

tively the yield and ultimate stress values for several materials commonly used in

cryogenic applications. Values listed are typical and considerable variation can

occur depending on the treatment and form of the particular materials. More

detailed tabulations can be found from several sources in the literature [4, 6].

Table 2.6 Yield stress sy of several materials (units are MPa) [26, 27]

Material sy (0 K) sy (80 K) sy (300 K)

304L-SS 1,350 1,300 1,150

6061-T6 Al 345 332 282

OFHC-Cu (Annealed) 90 88 75

Cu + 2 Be 752 690 552

Brass (70% Cu, 30% Zn) 506 473 420

Inconel X-750 940 905 815

G l0 – CR 758 703 414

Teflon 130 65 20

Table 2.7 Ultimate stress of several materials (units are MPa) [26, 27]

Material su (0 K) su (80 K) su (300 K)

304 L-SS 1,600 1,410 1,200

6061-T6 Al 580 422 312

OFHC Cu (annealed) 418 360 222

Cu + 2 Be 945 807 620

Brass (70% Cu, 30% Zn) 914 804 656

Inconel X-750 1,620 1,496 1,222

G-10 – CR 758 703 414

Teflon 194 86 21
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The modulus of elasticity, or Young’s modulus Ey, represents the change in

stress level needed to cause a unit change in strain while the material is in the elastic

region. Thus, Young’s modulus is simply the slope of the stress–strain curve for

small values of strain. As with the yield and ultimate stresses, Young’s modulus

also increases with decreasing temperature. A list of typical values for technical

materials is shown in Table 2.8. Unlike the limiting stress values, Young’s modulus

is not as strongly affected by material treatment and form.

Before leaving the subject of structural materials, it is worth mentioning a

method for determining the relative merits of different materials for structural

applications. In the simplest example, a figure of merit (FOM) can be constructed

based on the ratio of the allowable stress to the thermal conductivity (FOM¼ s/k)
of a particular material. Thus, high FOM materials have high strength and low

thermal conductivity, such as stainless steel or certain fiberglass composites (G-10).

On the other hand, a low FOM material would have high thermal conductivity and

low strength, e.g. pure metals like aluminum and copper.

Table 2.9 shows the figure of merit for several different materials as a function of

temperature. Note that the highest FOM is for G-10 composite due to its relatively

high strength. On the other hand, clearly pure copper is not suitable for structural

applications.

2.5 Superconductivity

Superconductivity occurs in a large number of elemental metals, alloys and

now in several classes of ceramic materials. This effect, which manifests itself

as an absence of electrical resistivity along with an expulsion of magnetic flux,

was first observed by H. Kamerlingh Onnes in 1911 as part of an investigation of

Table 2.8 Young’s modulus Ey of several materials (units are GPa) [26, 27]

Material Ey (0 K) Ey (80 K) Ey (300 K)

304 -SS 210 214 199

6061-T6 Al 78 77 70

OFHC-Cu (annealed) 139 139 128

Cu + 2 Be 134 130 118

Brass (70% Cu, 30% Zn) 110 110 103

Inconel(X-750) 252 223 210

G-10-CR 36 34 28

Teflon 0.7 2.8 4

Table 2.9 Figure of merit (s/k) for several different structural materials (units are MPa-m-K/W)

Material s/k (4 K) s/k (80 K) s/k (300 K)

304 ss 6,000 160 80

6061 T6 AL 36 3 2

G-10 12,000 1,600 500

Brass 150 9 3

Copper 2 2.5 3
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the electrical resistance of pure metals at low temperatures. First performing such

experiments with mercury, Onnes observed a sharp transition from the normal

resistive state to one which had immeasurably small electrical resistance at a

temperature near the normal boiling point of helium, T� 4.2 K. This new state,

termed by Onnes as “supraconductive,” has been the subject of much fundamental

theoretical and experimental research in the many years since its discovery [28].

In the 1960s, high-field superconductive materials, mainly as Nb3Sn and NbTi,

were discovered spawning a lot of activity in high current technical applications

[29]. In particular, superconductive magnets began to be developed for a wide

range of applications for everything from particle accelerators to magnetic reso-

nance imaging instruments. On a smaller scale, the high current densities in these

materials made possible superconductive electronics for sensors and computers.

Therefore, it is important to note that much of the interest in helium cryogenics is

brought about by the existence of these materials and their applications.

Late in the 1980s, the field of superconductivity was drastically changed with the

discovery of a new class of layered compounds that display superconductivity at

high temperatures, near the boiling point of liquid nitrogen. Today, these materials,

commonly referred to as high temperature superconductors (HTS), are actively

being studied for all sorts of applications as well as for their fundamental physical

properties. Their success still depends on cryogenic systems, but due to their higher

operating temperatures, more effort is being placed on the development of cryo-

genic refrigeration in the range from 20 to 80 K. However, large scale applications

of superconductivity for particle accelerators and fusion energy continue to utilize

NbTi and Nb3Sn and thus require liquid helium cryogenic systems.

In the present context, it is not possible to provide a thorough review of the physics

and properties of all superconductors. For this, the reader is encouraged to seek out

one of several monographs or texts on superconductivity and its applications. The

present discussion, therefore, provides only a brief review of the properties of

superconductors along with some discussion of their usefulness in applications.

2.5.1 Type I Superconductivity

There are two main types of superconductors with the distinction mainly associated

with their electromagnetic properties. Type I superconductors, which comprise

most of the pure elemental superconductors, have a sharp transition to the zero

resistance state and simultaneously a total screening of magnetic flux within

the bulk below Tc, the superconducting transition temperature. Thus, Type I

superconductors are often referred to as perfect diamagnetic materials. The normal

state in a Type I superconductor can be recovered by the application of an external

magnetic field greater than the critical field Hc. Unfortunately, for Type I super-

conductors and their potential applications, Hc has a rather low value, m0Hc≲
100 mT, making Type I superconductors unsuitable for magnet and other high

field applications. Type II superconductors, which sustain the superconducting state

to high fields, are usable for high field applications as discussed in the next section.
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The magnetic field-temperature boundary between the superconducting and

normal state in a Type I superconductor is given by an empirical relationship

between the critical temperature and field,

HcðTÞ ¼ H0 1� T

Tc

� �2
" #

(2.30)

where H0 is the critical field at T¼ 0 K. Listed in Table 2.10 are these parameters

for known Type I superconductors [30]. Note the range of transition temperatures

vary from the highest value of 7.2 K for Pb to 325 mK for Rh. A similar wide

variations in the critical field is evident. It is also interesting to note that metals that

are normally thought of as good conductors, copper, silver and gold, are not

superconductors. This fact is related to the fundamentals of the superconducting

state.

A Type I superconductor exposed to an external magnetic field H<Hc will

exclude the flux from penetrating into its bulk. This behavior, known as the

Meissner effect, is shown schematically in Fig. 2.13. There are essentially two

equivalent ways of looking at the Meissner state. The first is to note that because

the superconductor has no electrical resistance, persistent screening currents

are established on the surface opposing any change of the flux within the bulk.

These currents flow in a layer at the surface of thickness l� 50 nm, known as the

London penetration depth. The London penetration depth is one of two fundamental

characteristic lengths used to define the behavior of a superconductor. The alternate

Table 2.10 Critical temperature and critical field of Type I superconductors [30]

Material Tc(K) m0H0(mT)

Aluminum 1.2 9.9

Cadmium 0.52 3.0

Gallium 1.1 5.1

Indium 3.4 27.6

Iridium 0.11 1.6

Lead 7.2 80.3

Mercury / 4.2 41.3

Mercury b 4.0 34.0

Osmium 0.7 6.3

Rhenium 1.7 20.1

Rhodium 0.0003 4.9

Ruthenium 0.5 6.6

Tantalum 4.5 83.0

Thalium 2.4 17.1

Thorium 1.4 16.2

Tin 3.7 30.6

Tungsten 0.016 0.12

Zinc 0.9 5.3

Zirconium 0.8 4.7

46 2 Low-Temperature Materials Properties



picture is to consider the superconductor as if it were a perfectly diagmagnetic body

such that its magnetization always equals the negative of the applied field,M¼ –H.
In the superconducting state, these two interpretations lead to equivalent physics.

Mainly, describing a superconductor as being a perfect diamagnet has the advan-

tage of always predicting the flux exclusion condition independent of the order of

the applied field and immersion in a low-temperature environment.

Superconductivity is brought about by the electrons in the metal forming what

are known as Cooper pairs with integer spin and thus obeying Bose – Einstein

statistics. This is a complex quantum mechanical phenomenon. However, one

can get an appreciation for the properties of Type I superconductors that does

not require advanced quantum mechanics by studying the thermodynamics of the

superconducting to normal transition. In the normal state, the thermodynamic and

transport properties of Type I superconductors are essentially the same as those of

other normal metals and are only weakly magnetic (M ~ 0). On the other hand, in the

superconducting state a metal is perfectly diamagnetic withM¼ -H. In follows that
at the transition between the superconducting and normal states, the Gibbs free

energies of the two states must be equal. The differential form for Gibbs free energy

for a magnetic material is written,

dg ¼ �sdT þ vdp� 1

2
m0H

2
c (2.31)

At the critical temperature, the phase transition occurs at constant temperature

and pressure so that gn(Hc)¼ gs(Hc). However, since the normal state is non-

magnetic gn(Hc)¼ gn(0) while the superconducting state is diamagnetic, and gs(Hc)
> gs(0) by the magnetic energy density, 1

2
m0H

2. Thus, the difference between the

Gibbs free energies at zero field may be written as,

gnð0Þ � gsð0Þ ¼ 1

2
m0H

2
c (2.32)

Fig. 2.13 Meissner effect in a superconducting sphere cooled in a constant applied field. Below

Tc, B¼ 0 within the superconductor independent of the order of application of magnetic field and

low temperature environment
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Combining (2.32) with the empirical relationship for the temperature

dependence of the critical field (2.30) yields a relationship for the entropy differ-

ence, Sn � Ss ¼ � @
@T gn � gsð Þ between the two states,

Sn � Ss ¼ 2m0H
2
0

Tc
1� T

Tc

� �2
" #

T

Tc
(2.33)

where S¼ rs refers to the entropy per unit volume of the superconducting material.

Note that at Tc, DS¼ 0, which means that the transition is second order and there is

no latent heat associated with the superconducting-normal transition at zero applied

field. The heat capacity difference, Cn � Cs ¼ T @
@T Sn � Ssð Þ at the transition is

obtained from the derivative of the entropy,

Cn � Cs ¼ 2m0H
2
0

Tc
1� 3

T

Tc

� �2
" #

T

Tc

� �
(2.34)

At Tc, this expression predicts a discontinuous change in the specific heat, Cn �
Cs ¼ �4m0H

2
0 Tc= followed by a decrease proportional to T3 below Tc. Also, recall

from Sect. 2.1.2 that the electronic contribution to the specific heat of metals

dominates at low temperature, Ce¼ gT. Figure 2.14 displays these dependences.

Experiments have confirmed an approximately cubic temperature dependence of

the specific heat for T near Tc. However, at lower temperatures, T< 0.5 Tc,
an exponential temperature dependence is observed. Such behavior is indicative

of an energy gap in the electron density of states and is supporting evidence for the

microscopic theory of superconductivity.

The behavior of thermal conductivity of Type I superconductors can be of

considerable technical utility. Recall that the thermal conductivity of a metal has

two primary contributions due to the transport of electrons and phonons and that it

is proportional to the specific heat. For pure metals at low temperatures, the

electronic contribution tends to dominate. However, in a superconductor, some of

the electrons form Cooper pairs and undergo Bose-Einstein condensation into the

ground state, thus being unable to carry thermal energy. As a result, the thermal

Fig. 2.14 Normalized heat

capacity of superconducting

and normal state of a Type I

superconductor

48 2 Low-Temperature Materials Properties



conductivity of a pure Type I superconductor is less than that of the normal state for

T< Tc. In the vicinity of Tc, this dependence is approximately cubic in temperature

dropping off exponentially at low temperatures. This behavior is consistent with the

temperature dependence to the specific heat, see Fig. 2.14.

As the normal state can be restored by the application of a magnetic field greater

than Hc, the thermal conductivity of a pure Type I superconductor at T< Tc but
H>Hc should increase relative to that of the superconducting state. In particular, at

low temperatures the thermal conductivity should vary linearly with temperature,

k ~ T, consistent with the free electron model discussed in Sect. 2.3.4. Thus, the

thermal conductivity of a strip of Type I superconductor below Tc can be switched

by several orders of magnitude by application of an external magnetic field of

greater than Hc. This operating principle is useful as a thermal switch in very low

temperature refrigeration systems that cool samples to some very low temperature,

T< 1 K. In this application, once cooled the sample can be thermally isolated by

switching off the magnetic field and returning the strip to the superconducting state.

Example 2.4

A superconducting switch, consisting of a strip of tin (Tc¼ 3.7 K) surrounded by a

small magnet capable of H>Hc, connects the cold plate of a 3He refrigerator

(T¼ 0.5K) to a sample at the same temperature. Calculate the thermal conductivity

ratio (ks/kn) assuming kn¼ bT and ks¼ ae-(Tc/T) below Tc in the superconducting

state.

To find the ratio of the thermal conductivities, it is not necessary to know the

absolute values. However at Tc, the thermal conductivities of the two states must

be equal: kn(Tc)¼ ks(Tc) or bTc¼ ae�1. This means that b/a¼ 0.1 K�1. Note that

these are not thermal conductivity units, but that is not a problem as again the

goal is a dimensionless result. The important boundary condition is that the ratio

b/a at Tc be unity. At 0.5 K, the ratio of the thermal conductivities is,

knð0:5KÞ
ks 0:5Kð Þ ¼

bT
ae�Tc T=

¼ 0:1K�1 � 0:5K

e�7:2
¼ 67

So the switching ratio of the thermal link is nearly two orders of magnitude.

The critical current Ic is the maximum current that a superconductor can carry in

the zero resistance state. This is generally a function of magnetic field. In the case of

Type I superconductors, Ic is determined by the magnitude and direction of the

magnetic field at the surface of the conductor as compared to Hc (Silsbee’s

hypothesis). In self field,

Ic ¼ 2paHc (2.35)

where a is the radius of the wire. Although Hc is relatively low, Type I super-

conductors can have large currents. For example, a 1 mm radius lead wire at 4.2 K

in its self field can carry in excess of 260 A of resistanceless current. However, since
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Hc is so low, Type I superconductors are not suitable for high field magnets.

For this, fortunately we have Type II superconductors. As seen in the next section,

Ic in Type II superconductors results from an entirely different mechanism having

to do with the details of the microstructure.

Before leaving the subject of Type I superconductivity, it is worth mentioning a

few aspects of the microscopic theory of superconductivity. The complete theory of

superconductivity is based on microscopic interactions between the electrons and

phonons within the lattice, leading to correlated behavior of the electrons, known as

Cooper pairing. The mathematical treatment of this model is quite complex,

requiring a thorough knowledge of advanced quantum mechanics, and is well

beyond the scope of this brief survey. Nevertheless, there are some important

results of the microscopic theory which are helpful in understanding the general

behavior of superconductors.

One major success of the microscopic theory is its ability to predict the

superconducting transition temperature of a metal based on knowledge of the

electron and phonon energy distributions. The electron–phonon interaction which

produces Cooper pairing causes a gap in the density of electron states. This gap

is the origin of the exponential specific heat at low temperatures. The width of

the gap is directly proportional to the superconducting transition temperature. In the

microscopic theory the exact formula is derived for the critical temperature Tc,

Tc ¼ 1:14YD exp
�1

UDðeFÞ
� �

(2.36)

whereYD is the Debye temperature, and D(eF) is the electron density of states a the
Fermi surface. The attractive potential U is due to the electron–phonon interaction

which leads to Cooper pairing of the superconducting electrons. Two interesting

conclusions follow from (2.35). First, metals with high resistances near room

temperature thus possessing large electron–phonon interactions and a high normal

state resistivity, will also be more likely to be superconductors. This result, which is

approximately borne out by experiment, explains why copper is not a superconduc-

tor. Second, metals with even numbers of valence electrons having a smaller D(eF),
since they have fewer free electrons are less likely to be superconductors. Empiri-

cally, it is found that the transition temperatures of superconductors peak with

odd numbers of valence electrons in support of this theoretical conclusion [31, 32].

In its fully developed formalism, the microscopic theory of superconductivity is

considered to be one of the major triumphs of theoretical solid-state physics.

2.5.2 Type II Superconductivity

Most theories of superconductivity introduce a second characteristic length, known

as the coherence length, x. In the microscopic theory, the coherence length is

roughly the size of a Cooper pair, while in macroscopic theory it represents the
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spatial distance over which the superconducting to normal transition occurs.

The coherence length is a strong function of the crystal structure and lattice

imperfections. Superconductors with large values of x> l are Type I, while Type

II superconductivity occurs for those materials where x< l.
The fundamental distinction between Type II and Type I superconductors can be

seen by comparing their magnetic behavior. As we discussed above, in a Type I

superconductor the magnetic flux is totally excluded provided H<Hc(T).
By comparison, in a Type II superconductor penetration of magnetic flux is allowed

under certain circumstances. In an ideal Type II superconductor, the magnetic

penetration is quantized in units of fluxons, f 0¼ h/2e, and forms a regular trian-

gular array, called a fluxon lattice, based on the magnitude of the external field. In

effect, this brings small regions of the superconductor into the normal state. Such

behavior, which is clearly a deviation from the perfectly diamagnetic Meissner

state, is referred to as the mixed state in Type II superconductivity.

Because of flux penetration, the Type II superconductor in the mixed state is no

longer a perfect diamagnet. A typical magnetization curve of a Type II supercon-

ductor is shown in Fig. 2.15. Also indicated is a magnetization curve for the same

material if it were Type I; however in the case of Type II superconductors Hc is only

defined in the thermodynamic sense and does not represent an actual magnetic

transition. In Type II superconductors there are two critical fields. The lower critical

field Hc1 represents the transition from the Meissner state to the mixed state, while

the upper critical field Hc2 marks the maximum field for which any superconduc-

tivity is present. Listed in Table 2.11 are the metallic Type II superconductors that

Fig. 2.15 Typical

magnetization curves for

metal that is either Type I or

Type II superconductor. Note

that for a Type II

superconductor, Hc has only a

thermodynamic definition

Table 2.11 Critical temperature and upper critical field of common Type II superconductors [35]

Material Tc(K) m0Hc2(T)

Nb 9.3 0.29

V 5.4 0.7

NbTi 9.3 13

Nb3 Sn 18 23

V3Ga 15 23

Nb3 Ge 20.5 41

2.5 Superconductivity 51



were known prior to 1986 [32–34]. These materials are sometimes referred to as

low temperature superconductors (LTS) and continue to be the materials of choice

for most large superconducting magnet applications. Note that for these materials,

although the critical temperature is only slightly higher than that of some Type I

superconductors, Hc2 is often orders of magnitude higher than Hc.

The mixed state in a well annealed Type II superconductor has an equilibrium

condition consisting of a uniform fluxon lattice. In such a Type II superconductor,

these flux lines are free to move about within the crystal. If the superconductor is

subjected simultaneously to an external field and transport current, the flux lines

will move under the influence of the Lorentz force, FL¼ J�B, causing dissipation.
This is an undesirable condition leading to a relatively low value of the critical

current Ic. Fortunately, Type II superconductors have been developed that contain

imperfections and crystal defects to pin the individual flux lines and thus restrict

flux flow. Flux pinning by various forms of lattice imperfections is the dominant

mechanism that allows practical superconductors to carry substantial transport

currents in magnetic fields approaching Hc2. It is an interesting feature of super-

conductivity that the best properties in Type I superconductors are achieved with

high purity, defect free metals while Type II superconductors performance

improves by additions of impurities.

For high-field applications there are a limited number of commercially available

superconductors. The two materials that are employed most often in magnets are

NbTi and Nb3Sn. NbTi is a binary alloy of approximately equal weight percent of

each constituent. It has good mechanical properties, is easily processed in a

composite with copper, and has a reasonably high m0Hc2� 15 T and Tc� 10 K.

As a result, NbTi is the preferred superconductor for all magnetic devices with the

exception of those requiring the highest fields, m0H ≳ 10 T. The other common

practical superconductor, Nb3Sn, is an intermetallic compound of the general class

known as the A-15 s. Its mechanical properties are not as good, being very brittle,

but Nb3Sn has superior high-field characteristics, m0Hc2� 28 T and Tc’ 18 K,

making it particularly well suited for very high-field magnetic devices. Both of

these materials can be made with sufficient flux pinning to achieve high critical

current densities. Also, they can be processed into multifilament wire form with

copper providing a reliable product that can be cabled and wound into a wide

variety of magnet designs.

Figure 2.16 shows schematically how the critical current density, Jc [A/mm2],

varies with magnetic field and temperature for NbTi and Nb3Sn. The numerical

values given in this graph are not state of the art, but rather are shown here for

general trends with intrinsic variables. Also shown in the figure are the range of

temperatures obtainable by the two lowest-temperature cryogenic fluids, liquid

helium and liquid hydrogen. For reasonable current densities in high magnetic

fields, it is apparent that low temperature helium provides the only practical coolant

for these materials.

The discovery and rapid development of high temperature superconductors has

introduced new opportunities for applications. This class of materials are distinct

from most LTS because they are non-metals with very poor normal state conduc-

tivity. Their mechanical properties are poor and the superconducting properties are
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more difficult to optimize due to complexities in their reaction heat treatment. Also,

in most cases, these superconductors are layered structures with anisotropic

properties that depend on their orientation with respect to the applied magnetic

field.

Table 2.12 is a list of materials that fall broadly into the class of HTS. Note that

all these materials superconducting properties are Type II. In most cases, m0Hc2

is only approximately known since its value is so high that it is difficult to

measure. These materials are manufactured by different processes than LTS with

the procedures being too complex to discuss in the current review. Production

of HTS wire suitable for applications also depends on material selection.

Fig. 2.16 Upper critical field, temperature, and current density for commercial superconducting

materials NbTi and Nb3Sn [35]

Table 2.12 Critical properties of HTS materials. Two

values of Hc2 indicate anisotropic material property [34]

Superconductor Tc(K) m0Hc2(T)

MgB2 39 16/2.5

LaSrCuO 40 50

YBCO 90 670/120

Bi2Sr2CaCu2O8 90 280/32

Bi2Sr2Ca2Cu3O10 110

TlBaCaCuO10 110

TlBaCaCuO10 125 ~120

HgBa2Ca2Cu3O8 133 ~160
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Some materials, such as the BSCCO based conductors, are produced in a silver

matrix, which provides the needed parallel path for electric current. Other materials

such as YBCO can be formed on a variety of substrate materials.

Overall, HTSmaterials have transition temperatures that are sufficiently high to use

other coolants such as liquid neon or nitrogen or by a closed cycle cryocooler.

However, since the superconducting properties (Jc, Hc2) of thesematerials all improve

with decreasing temperature, some HTS applications are still utilizing helium cooling

all be it at somewhat elevated temperatures. Certainly, HTS applications have

stimulated the development of small scale cryocoolers, a topic discussed in Chap. 8.

The problems of superconducting materials are of great concern to helium

cryogenics. Superconducting materials require helium temperature environments

to achieve their properties, but more importantly, the behavior of superconductive

devices are governed largely by problems of heat transfer, efficient cooling, and

safety. For example, the properties of a superconductor are conducive to carrying

electric current provided the material remains below the local critical temperature

and field. Thermal equilibrium is not always possible so superconductors must

be fabricated in a low-resistance matrix material like copper or aluminum to

provide the current-carrying capacity should the superconductor enter the normal

state. Proper analysis of this problem requires knowledge of the heat transfer

and fluid flow conditions present in the particular magnetic device.

Questions

1. Why does the electrical conductivity of a metal increase while that of a

semiconductor decrease with decreasing temperature?

2. Why do alloys generally have lower thermal conductivity than pure metals?

What does this say about material selection for structural supports in cryogenic

systems?

3. Explain using thermodynamic arguments why the thermal expansion coefficient,

a, of a material goes to zero as absolute zero is approached.

4. Why do materials normally get stronger as the temperature decreases?

5. Calculate the ratio sy/k for beryllium copper and Teflon at 300, 80 and 4 K.

Compare with values in Table 2.8. Comment on their relative usefulness as

structural materials.

Problems

1. Calculate the heat content in a two tonne (2,000 kg) iron magnet at 300 K. How

much liquid nitrogen is required to cool this magnet to 80 K? How much liquid

helium is required to cool this magnet from 80 to 4 K? (Hint: Assume that the

internal energy change is entirely absorbed by the liquid resulting is a mass of

vapor. Use the Debye model to calculate the change in internal energy,YD(Fe)

¼ 460 K; hfg(He@ 4 K)¼ 21 kJ/kg; hfg (N2 @ 80 K¼ 200 kJ/kg)).

2. Calculate the difference between the constant pressure and constant volume

heat capacities of aluminum at 300 K.
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3. Derive an expression for the temperature at which the electron and phonon

contributions to the heat capacity are equal. Of the elements listed in Tables 2.1

and 2.2, which has the highest value of this temperature?

4. The thermal conductivity of 304 stainless steel varies with temperature as k
(T)¼ 1.5 T0.4 [W/m K]. Calculate the total conduction heat transfer for a

10 mm diameter rod, 100 mm in length. One end of the rod is at 80 K and

the other is at 300 K.

5. A Pt resistance thermometer consists of a 1 m long thin wire of pure annealed

platnium. Calculate the diameter of the wire based on the requirement that the

power dissipation not exceed 0.1 mW at room temperature and the current

be less than 10 mA. What is the sensitivity of this sensor, dR/dT?
6. Derive (2.34) starting with the Gibbs free energy change and the empirical form

for the critical field of a Type I superconductor,

Hc ¼ H0 1� T

Tc

� �2
" #

a. Adiabatic magnetization is the constant entropy application of the magnetic

field that brings the superconductor into the normal state. Derive an expres-

sion for the final temperature Tf as a function of H0, Tc and Ti.
b. Choose aType I superconductor and calculate the value ofDTmax, themaximum

value for the temperature difference occurring from adiabatic magnetization.

Hint: You may assume that the normal state specific heat Cn¼ gT and neglect

the phonon heat capacity.

7. Thermal conductivity of copper

a. Determine the mean free path in a copper sample with a residual resistivity

ratio, RRR¼ 50 for temperatures below 10 K. Use the following values for

copper: Fermi velocity vF¼ 1.57� 106 m/s and the electron concentration

n¼ 8.45� 1028 m�3.

b. Estimate the thermal conductivity of the same copper at 2 K.

8. The maximum electrical current that can be carried by a Type I superconductor

wire is limited to the current that produces the critical field Hc at the conductor

surface (Silsbee’s Law).

a. Derive an expression for the critical current of a cylindrical superconducting

wire of radius R as a function of temperature.

b. How much current can a 1 mm diameter indium wire carry at 1.8 K? [Hint:

Use Ampere’s Law to determine themagnetic field at the surface of the wire.]

9. A normal metal wire carrying an electrical current will produce heat, raising the

temperature of the wire. Estimate the time required for a copper wire carrying a

current density of 100 A/mm2 to heat up from 4.2 to 300 K if it is thermally
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insulated from the environment. Assume Cp¼Cv and use approximations for

both the resistivity and the specific heat as functions of temperature.

10. A sample of wire is made by codrawing a copper tube over an aluminum rod. The

aluminum has a cross-sectional area A1 and the copper A2. The wire is stress free

at ambient temperature, T¼ 293 K. Derive a relationship for the stress in either

component of the wire as a function of A1, A2, and material properties when the

wire is cooled to 4.2 K. For equal cross-sectional areas (A1¼A2), calculate the

stress in the copper and compare it with the yield of annealed OFHC copper.

11. A temperature sensor located at 4.2 K requires four Manganin instrument leads

to 300 K. The length of the wires is 1 m and the sensor operating current

(for two of the leads) is I¼ 10 mA. Calculate the required wire diameter such

that the thermal conduction heat load is equal to the Joule heat (I2R) when the

two leads are energized.

12. Consider a material that has a thermal conductivity varying with temperature as

k¼ bT2 and a constant thermal contraction coefficient, a. Derive a relationship
for the overall change in length of a rod of initial length L as a function of

the temperature difference between the two ends of the rod. Show the result

for the special case where the low temperature end is at 0 K. Compare the

answer to that for k¼ constant.

13. Same as Problem 12 except let the thermal conductivity be a linear function of

temperature, k¼ bT.
14. Calculate the Lorentz ratio (L¼ kr/T) for one of the materials in Tables 2.4 and

2.5. Compare to the free electron value, L0.
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Chapter 3

Helium as a Classical Fluid

Of all the cryogenic fluids, helium exhibits behavior that most nearly approximates

that of an ideal fluid. This fact is caused mostly by the weak intermolecular

potential that helium enjoys. It further manifests itself in the fact that 4He has

the lowest critical point of all fluids, Tc ¼ 5.195 K, pc ¼ 0.227 MPa and rc ¼
69.7 kg/m3. As a result of this near ideality, much of the behavior of gaseous and

even liquid helium above the superfluid transition can be treated in terms of

classical models. This is not to say that quantum effects do not contribute to the

behavior. Rather, certain features of helium in this temperature and pressure range

are controlled by a combination of physical phenomena, which can be qualitatively

if not quantitatively described in terms of classical physics models. Conversely,

certain characteristics of helium, most notably that of the liquid state below the

superfluid transition and also the solid state, have properties which are so deter-

mined by quantum mechanics that classical physics cannot be used in a meaningful

way to interpret their behavior. The present chapter focuses on those properties of
4He that are at least semi-classical. The quantum aspects, particularly superfluidity

and Bose-Einstein condensation are discussed separately in Chap. 4. This chapter

also does not consider the properties of the lighter isotope, 3He, a subject that is

covered in Chap. 9. Therefore in the present discussion, we will use helium in a

generic sense to mean the abundant isotope, 4He.

3.1 Helium Phase Diagram

As a beginning point to the description of liquid and gaseous helium, it is useful to

make reference to the p-T phase diagram, Fig. 3.1. In addition to the conventional

characteristics such as the critical point and two-phase coexistence, there are

several unique features to this phase diagram which should be noted. First, unlike

all other substances, the solid state of helium is not obtainable at any temperature

unless an external pressure in excess of 2.5 MPa is applied. This characteristic,

an artifact of the quantum nature of helium, is caused by the large zero point energy
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of the helium molecule. Thus, the lowest energy state of helium is that of the liquid,

albeit the superfluid state, He II.

Helium is also exceptional in that it has two liquid phases. He I is the normal

liquid with characteristics that are typical of classical fluids. In this region, helium

acts in many ways as a weakly interacting gas, which is at least in part due to its

weak intermolecular interaction and low viscosity. The dynamic viscosity of He I

is comparable to that of air at room temperature.

He II, or superfluid helium, has physical features that are truly exceptional.

Most notable of these features are the transport properties, with a vanishingly small

viscosity and an apparent thermal conductivity many orders of magnitude larger

than liquids or even high-conductivity solids. The line that separates the two liquid

states is termed the l-line. This designation was adopted because the specific

heat near the transition has the shape of the Greek letter l. The l-transition
temperature is 2.178 K at saturated vapor pressure and decreases gradually with

increasing pressure until it intersects the solid coexistence boundary at 1.763 K,

p ¼ 2.974 MPa [1].

The phase diagram of helium is also unique in that it lacks a triple point of

coexistence between liquid, vapor, and solid, because the solid state can exist only

under an external pressure. The intersection of the l-line with the two phase

coexistence regions of liquid and vapor or solid and liquid is not a triple point,

Fig. 3.1 4He phase diagram
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although it occasionally is identified incorrectly as such. As is discussed in the next

chapter, the l-transition is a second-order phase transition, which means it has a

discontinuous slope in the temperature dependence of the entropy. There is no

latent heat of formation of the He II state and coexistence of He II and He I under

equilibrium conditions is not possible.

In the present chapter the properties of helium which are best described in terms

of classical models are surveyed. Thus, the subject matter is dominated by the

gaseous and normal liquid state, He I. Even with this somewhat arbitrary separa-

tion, it is not possible to analyze fully the properties of these “classical” fluids

without some reference to the effect of quantum statistics on their behavior.

Chapter 4 is reserved for the description of helium as a quantum fluid. Therefore,

the bulk of the quantum mechanical analysis of helium is presented there with

comparison to the quantum fluid, He II.

3.2 Gaseous Helium

Helium at temperatures substantially above its normal boiling point behaves more

like an ideal gas than any other commonly known fluid. This fact is the result of the

weak interatomic potential and the spherically symmetric molecular configuration.

Of course, at some point gaseous helium must deviate from ideality, otherwise

physical phenomena such as the Joule Thomson effect and liquefaction would not

occur. However, because of its similarity to an ideal gas, it is often most beneficial

to consider properties of gaseous helium in terms of extensions from the ideal

gas model.

The first goal of a physical model used to describe helium gas is the development

of an understanding of its state properties. From an experimental viewpoint, the

most common measurements are those of specific heat, Cp and Cv, and the state

properties of pressure, temperature, and specific volume. The latter measurements

lead to the equation of state for the gas, which in its complete form can be combined

with the thermodynamic principles to determine the relevant state functions

including entropy and enthalpy.

The equation of state, which is a functional relationship among p, V, and T,
cannot be determined exactly for a particular real gas. However, there exist a

number of approximate relationships that also give considerable physical insight

into the processes involved. The most notable approximation to the equation of

state is known as the virial expansion, which is an expansion involving intermolec-

ular interactions. Furthermore, in developing a model to describe the interactions

between helium gas molecules, particularly near the critical point Tc ¼ 5.2 K,

a concern for quantum mechanical effects is needed. The most common isotope

of helium, 4He, obeys Bose-Einstein statistics, which must be taken into account in

the complete description of the gas.
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3.2.1 Intermolecular Interactions

Any microscopic model for the behavior of helium has as its basis an understanding

of the intermolecular potential [2, 3]. This interaction is exactly that which is

ignored in the ideal gas model. The intermolecular potential involves the forces

between the individual molecules caused by their finite size and mutual attraction.

If the helium molecule obeyed classical mechanics and the intermolecular potential

were known, then in principle it would be possible to compute the state properties

directly. However, in any real sample of gas, there are far too many molecules

(~ 1026/m3) to realistically carry out this calculation. As a result, the normal

approach is to use empirical potentials which describe the average molecular

interactions. To properly model the problem, these potentials must contain the

physics of the molecular interaction, which is composed primarily of two terms:

(1) the hard core repulsive interaction and (2) the weaker attractive interaction

due to what is called the London-dispersion mechanism.

The hard core repulsive interaction can be understood in rather simple terms.

Molecules occupy volume and therefore collide with each other defining what

is known as a scattering cross section and a mean free path between collisions.

The details of this collision interaction are contained in the steepness of the

repulsive potential. The hard core interaction would ultimately be expected to

cause deviations from ideal gas behavior because the latter model assumes the

molecules are non-interacting point particles. Thus, the hard core repulsion makes

its largest correction to the equation of state at high density and temperature.

The attractive term in the molecular interactions is brought on by a mechanism

known as the London-dispersion interaction, so termed because it is the same

process responsible for light dispersion by molecules. To understand this inter-

action, it is important to note that a helium molecule is not truly inert. Actually, it is

composed of a nucleus containing the positive charge and a “sea” of negative

electrical charge surrounding the nucleus. The negative charge has a tendency to

oscillate about the nuclear center of the molecule causing a time varying dipole

moment. Because of this oscillating dipole, there is a momentary electrostatic

potential set up in the vicinity of the molecule which varies as Vd(r) � 1/r3.
When two molecules are in close proximity and have oscillating dipole moments

that are out of phase, there will be net attractive interaction. This interaction scales

as the product of the two oscillating dipole moments, Fa(r) � 1/r6. Detailed

quantum mechanical analysis by London has suggested that the attractive interac-

tion is a sum of terms, the first of which is the dipole contribution. As with the hard

core potential, the attractive interaction causes deviations from the ideal gas

equation of state. It has the largest effect at low temperatures and high densities,

resulting in a tendency for the molecules to exhibit collective behavior which can

eventually lead to liquefaction.

Numerous examples of empirical potentials have been proposed to describe

the total interaction of inert spherically symmetric molecules such as helium.
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Probably the most successful, because of its mathematical simplicity and physical

basis, is the Lennard-Jones 12–6 potential. This potential has a mathematical form,

FLJðrÞ ¼ 4e0
r0
r

� �12
� r0

r

� �6��
(3.1)

that depends on the determination of two parameters: e0, which is a measure of the

depth of the potential well, and r0, which is a dimensional scale of the molecular

radius. Plotted in Fig. 3.2 is the Lennard-Jones potential for a helium molecule with

the quantities e0, r0, and rm, the radius of the potential minimum, all indicated.

Listed in Table 3.1 are these parameters for some common cryogenic fluids as

comparison [2].

Fig. 3.2 Lennard-Jones 12–6

potential for 4He

Table 3.1 Coefficients of the Lennard-Jones 12–6 potential for common cryogenic fluids [2]

r0 (nm) rm (nm) e0/kB
He 0.2556 0.2869 10.22

Ne 0.2789 0.3131 35.7

N2 0.3681 0.4132 91.5

O2 0.3433 0.3853 113.0

Ar 0.3418 0.3837 124.0
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Other examples of empirical intermolecular potentials that are occasionally used

to approximate real gas behavior include the hard sphere potential, square well

potential, and the Buckingham exp-6 [4].

3.2.2 Virial Expansion

Suitable selection of the intermolecular potential is insufficient in itself for

approximation of the equation of state. It is also necessary to adopt a form for the

equation of state which incorporates the preferred form of the intermolecular

potential. Such a relationship has numerous forms, but the best for physical

interpretations is the so-called virial expansion, which can be written as an expan-

sion in the specific volume v:

pv ¼ RT 1þ B

v
þ C

v2
þ D

v3
þ :::

� �
(3.2)

The quantities B, C, D, and so on are called the second, third, fourth, and higher-

order virial coefficients. Note that a special case of the virial expansion is that of

the van der Waal equation of state, which will be discussed later.

The physical basis for the virial expansion in the form shown in (3.2) is for each

coefficient to describe a particular type of interaction. Thus, the second virial

coefficient B should incorporate corrections to the equation of state due to two-

body interactions. The third virial coefficient C incorporates corrections due to

three-body interactions, and higher-order terms follow the same sequence. The

requirement for any theoretical description of the virial coefficients is that it must

include the many-body interactions and use a physically realistic potential.

Based on this sequence it should be clear that the second virial coefficient is the

largest term in the expansion and therefore makes the largest correction to the ideal

gas law. For classical fluids, the second virial coefficient is written,

Bcl ¼ �N

2

ð1
0

ðe
�FðrÞ
kBT � 1Þ4pr2dr (3.3)

whereF(r) is the interaction potential assumed to be spherically symmetric and N is

the total number of molecules per unit volume. By considering (3.3) it is easy to

see that the problem of analytical determination of B becomes quite difficult when

complex potentials are employed.

The virial expansion becomes even more difficult to evaluate when considering

gaseous helium at relatively low temperatures because of the need to include

quantum mechanical effects in the analysis. A complete description of the quantum

virial expansion problem is beyond the scope of this book [4]. However, it is

instructive to briefly survey the problem to understand better some of the difficulties.
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To determine the quantum virial expansion, the equation of state is expanded in

terms of a quantity known as the fugacity, z ¼ e�m=kBT, where m is the chemical

potential. This is a fairly standard approach in quantum statistical mechanics [4, 5].

The result is an expression for the pressure in terms of this quantity,

p

kBT
¼

X
k

bkz
k (3.4)

where bk contains the physics of the problem. These coefficients must be deter-

mined by substitution in the time-independent Schr€odinger equation,

� h2

2mr
r2rcþ lðlþ 1Þ

r2
rc

� �
þ FðrÞrc ¼ Erc (3.5)

where mr ¼ m1m2/(m1 + m2) is the reduced mass, l is the angular momentum

quantum number, and is the spherically symmetric wave function. The solution

to the above problem leads to a set of energy levels, some of which are bound

states and some of which are in the continuum. Applying quantum mechanical

scattering methods, we calculate the phase shift �l(q), where q is the energy

parameter. The phase shift serves the purpose of incorporating interactions into

one parameter. The wave function solution to the Schr€odinger equation includes

the phase shift as part of its argument,

c � sinðqr � 1

2
plþ �lÞ (3.6)

The virial coefficients are then found by summing over all states, bound and

continuum. For 4He this exercise leads to the computed second virial coefficient

shown in Fig. 3.3. Also shown in the figure is the second virial coefficient obtained

from the classical calculation for comparison. Clearly, the two quantities are

different, particularly below the Boyle temperature, defined by the second virial

coefficient going to zero; for 4He TBo ~ 20 K. At temperatures below around 10 K,

there is about a factor of two difference between the classical and quantum second

virial coefficients. Also displayed in Fig. 3.3 are the experimentally determined

virial coefficient values, which show close agreement with the calculated quantum

coefficient using the Lennard-Jones potential [4].

In addition to virial expansion coefficient values obtained from basic principles,

there are also a number of empirical representations of the second virial coefficient

that are useful for calculations. A simple general form for the function is described

by McCarty [1],

BðTÞ ¼
X
i

biT
ð3�iÞ=2 (3.7)
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where on the order of nine terms in the expansion are required to fit adequately the

temperature dependence over the whole range. Also, a less cumbersome empirical

fit suitable below the Boyle temperature has been suggested by Keller [4],

BðTÞ ¼ a� b

T
(3.8)

where, for 4He, a ¼ 23.05 cm3/mol and b ¼ 421.77 cm3 K/mol.

Example 3.1

Use the empirical expression for the second virial coefficient (3.8) to estimate

the Boyle temperature.

The Boyle temperature is approximately that corresponding to B (TBo) ¼ 0.

From (3.8), this means that TBo ~ b/a ¼ 18.3 K.

Before leaving the subject of the Boyle temperature, it is useful to consider its

physical significance in terms of the equation of state. Since TBo marks the tran-

sition between a positive and a negative virial coefficient, it indicates the regions

where different parts of the interaction potential dominate. Below TBo, B is

Fig. 3.3 Second virial

coefficient for 4He, from

Keller4
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negative, implying that the pressure is less than would occur for a truly ideal gas.

Since the molecules must be attracted to each other to cause this behavior,

the London dispersion forces must be the more important in this regime. On the

other hand, above TBo, B is positive, implying the gas pressure is actually greater

than that of an ideal gas. To have this effect requires an excess repulsion and

therefore the hard core potential must be the more important contribution to the

potential in this region. Thus, although the Boyle temperature does not represent

a true transition temperature for a particular gas, it does define the range of

dominance of the various contributions to the intermolecular interaction.

The third virial coefficient C is more difficult to calculate because it involves

three-body interactions. For the classical picture and the hard sphere potential,

C can be shown to vary as the square of the molecular volume [4]. Thus, this

coefficient is of little importance except at relatively high densities and low

temperatures. Efforts to calculate the third and higher virial coefficients for helium

have been hampered by the lack of experimental data. Furthermore, the exact

form of these coefficients is less important to application than the development of

an empirical equation of state suitable for modeling the helium properties over a

wide range of temperatures and pressures.

3.2.3 Empirical Equations of State

Development of the theory of quantum virial expansions is helpful for under-

standing the complexities of gaseous helium at low temperatures. However, for

applications, the above format is far too cumbersome to allow rapid calculation

of properties. For this reason, empirical equations of state have been developed

which make no attempt to fully understand the physical problem, but rather

provide a tool for calculation. With a closed-form solution for the equation of

state, it is a rather straightforward process to derive the other important thermo-

dynamic properties.

The simplest empirical equation of state takes into account the deviations from

ideal behavior in terms of a compressibility factor z. As defined, the compressibility

factor may be written

z ¼ pv

RT
(3.9)

which obviously is equal to unity for an ideal gas. In the virial expansion, z is

defined as the quantity in parenthesis in (3.2). Historically, the value of z is given
empirically in either graphical or tabular forms since it depends on state variables;

z for helium are displayed graphically in Appendix A.1.

The most common classical equation of state for a real gas is due to van derWaals,

pþ a

v2

� �
v� bð Þ ¼ RT (3.10)
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Here a and b are constants that depend on the particular gas. Physically, b is related
to the strength of the hard core potential so that even at T ¼ 0, the fluid occupies a

finite volume. a is an effective reduction in pressure due to intermolecular

attraction.

The law of corresponding states [2, 6] is a useful tool to characterize a real fluid

particularly near its critical point. This law defines a general equation of state as a

function of the reduced variables: T/Tc, p/pc, and v/vc, that is,

p

pc
¼ f T=Tc; v=vcð Þ (3.11)

where f is an undetermined function that relates these quantities. The van der

Waals gas is a special case of (3.11). For the law of corresponding states to apply,

several assumptions are needed. First of all, the law ignores quantum effects. Since

helium has substantial quantum effects in its real gas behavior it would be expected

to deviate from the law of corresponding states. A second assumption has to do with

the symmetry of interaction. The law is established on the basis of symmetric

molecular potentials. In fact, many molecules have very asymmetric bonding and

configuration. A good example of an asymmetric potential is H2O, but others

include CO2 and organic compounds like CH4. The law of corresponding states

ignores these effects.

The law of corresponding states can be used to determine numerical values for

the coefficients in a particular equation of state. In the vicinity of the critical point,

all isotherms have an inflection point; see, for example, Fig. 1.2. Thus, it follows

that the equation of state must have a zero in its first and second derivative when

evaluated at the critical point, i.e.:

@p

@v

� �
Tc

¼ @2p

@v2

� �
Tc

¼ 0 (3.12)

This represents two equations which must be satisfied by the equation of state.

Consider for example the van der Waals equation of state, where there are two

coefficients, a and b, that must be determined for a particular gas. Differentiating as

in (3.10) these quantities are immediately determined in terms of critical pressure

and temperature,

a ¼ 27

64

R2T2
c

pc
(3.13)

and

b ¼ RTc
8pc

(3.14)
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Thus, to apply the van der Waals equation of state for a particular gas, one only

needs values for the critical pressure and temperature. Listed in Table 3.2 are values

of these coefficients appropriate for various gases of interest to cryogenics. These

values are calculated using known critical parameters and (3.13) and (3.14).

Finally, one can show by expanding the van der Waal equation of state that the

Boyle temperature can be written as,

TBo ¼ a

bR
(3.15)

which can be used to calculate values for common fluids. Table 3.2 lists the

calculated Boyle temperature for the listed fluids. For helium, the value of 17.6 K

is close to the value obtained from (3.8), see Example 3.1.

Several more complete empirical equations of state have been developed for

gaseous helium [1]. In general, it is not possible to describe adequately the entire

p-v-T surface using one equation. The forms of the expansions have pressure as a

dependent variable:

pv ¼ RT 1þ BðTÞ
v

� �
þ
X
k

gkðTÞ
vkþ2

� �
(3.16)

where gk(T) is a complex summation function over temperature with empirically

determined coefficients. By this method, correlations to existing data have been

found. Properties derived from these correlations are readily available in tabular

form or computer data bases such as REFPROP® [7] and HEPAK®[8]. A sample

of these derived properties is reproduced in Appendix 2.

3.3 State Properties of Liquid He I

Helium has such a weak intermolecular interaction that it only liquefies at very low

temperatures; the normal boiling point of liquid helium is 4.2 K. In the liquid state it

has a relatively low density: the specific gravity of liquid helium at saturated vapor

pressure varies between 0.145 and 0.0675 at Tc, making it, next to hydrogen, the

Table 3.2 Critical point coefficients to the van der Waals equation of state for various cryogenic

fluids [7]

Fluid Tc (K) pc (MPa) a (m6kPa/kmol2) b (m3/kmol) TBo (K)

He 5.195 0.2275 3.46 0.0237 17.6

H2 33.19 1.315 24.4 0.0262 112

Ne 44.49 2.678 21.5 0.0173 149

Air 133.0 3.867 133 0.0357 448

N2 126.2 3.396 137 0.0386 427

Ar 150.7 4.863 136 0.0322 508

O2 154.6 5.043 138 0.0318 522
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lowest-density condensed fluid. Appendix 2 lists some of the thermodynamic and

transport properties of helium as obtained from HEPAK [8]. Provided here is a

summary of the properties of liquid helium with emphasis on those characteristics

that are unique compared to other fluids.

3.3.1 Density

The saturation density r is one of the more important thermodynamic properties

of He I because it can be used to derive the equation of state for the liquid. In the

He I regime, the liquid density increases continuously from 67.5 kg/m3 at Tc to
145 kg/m3 just above Tl. Plotted in Fig. 3.4 is the saturated density of liquid helium
from Tc to below Tl. Also shown for scale in the graph is the density of the saturated
vapor over the same temperature range. A useful quantity to keep in mind is that the

saturated liquid is about 7.4 times more dense than its vapor at the normal boiling

point, 4.2 K. This point is worth noting as in many cases, the helium vapor

mass makes a significant contribution to the total fluid mass in a system. Below

Tl the liquid density is only weakly temperature dependent decreasing slightly

before becoming essentially constant for T ≲ 2.0 K. This point will be discussed

further in Chap. 4.

The slope of the density profile is a direct measure of the volume expansivity b.
Under saturated vapor pressure, this quantity is plotted in Fig. 3.5 from results of

Fig. 3.4 Density of saturated liquid helium

70 3 Helium as a Classical Fluid

http://dx.doi.org/10.1007/978-1-4419-9979-5_4


Kerr and Taylor [9]. By definition the volume expansivity at saturated vapor

pressure is given by,

bsat ¼ � 1

r
@r
@T

� �
sat

(3.17)

where the magnitude and slope of the density along the saturated vapor pressure

curve are important. Note that not only does bsat go through zero at Tl, but it has a
discontinuity in slope.

There exists a thermodynamic relationship between the expansion coefficient along

the saturated vapor pressure curve, bsat, and the same quantity at constant pressure,

bp ¼ bsat þ k
@p

@T

� �
sat

(3.18)

where the bulk isothermal compressibility,

k ¼ � 1

V

@V

@p

� �
T

(3.19)

is an additional parameter that must be known to compute bp. The bulk isothermal

compressibility is not strongly temperature dependent except near the critical

temperature. Typical values for k are in the range of 10�7 Pa�1. However, the

compressibility does have a discontinuity at the l point which is consistent with

the signature of a second-order phase transition. For comparison, the compressibility

of water at 20 C is less than 10�9 Pa�1.

Fig. 3.5 Bulk thermal

expansivity of 4He at

saturated vapor pressure
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3.3.2 Thermal Properties

Of the thermodynamic properties of liquid helium, the entropy, specific heat, and

latent heat of vaporization have some of the most unique behavior. Shown in

Fig. 3.6a–c are these three quantities as determined along the saturated vapor

pressure curve. The most pronounced changes in the behavior of the thermal

properties occur below Tl. This region will be discussed in Chap. 4, which is

concerned specifically with the properties of He II.

Fig. 3.6 (a) Specific heat of liquid helium at saturated vapor pressure. (b) Entropy of liquid

helium at saturated vapor pressure. (c) Latent heat of vaporization of liquid helium
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The entropy and specific heat above Tl are not expected to have thermal

behavior strongly different from that of a gas. For example, the specific heat of

an ideal monatomic gas at constant volume is Cv ¼ 3/2R and at constant pressure

is Cp ¼ 5/2R. An ideal gas of mass 4 would therefore have a Cv ¼ 3.12 kJ/kg K and

a Cp ¼ 5.19 kJ/kg K, respectively. As can be seen in Fig. 3.6a, the specific heat of

liquid helium under saturated vapor pressure varies from 2.3 kJ/kg K just above Tl
to 5.2 kJ/kg K at 4.2 K. At temperatures much below Tc, the volume expansivity is a

small contribution, making Csat approach that of Cv. However, near Tc the volume

expansion makes a substantial contribution, and the saturated values are more

similar to constant pressure, Csat � Cp. That the specific heat of liquid He I brackets

that of an ideal monatomic gas indicates that, in many instances, He I is treatable in

terms of modified gas laws. The importance of this statement will become evident

in the next section on transport properties.

The latent heat of vaporization hfg of liquid helium is displayed in Fig. 3.6c.

This quantity, which is only defined along the saturated vapor pressure curve,

is given by the Clausius-Clapeyron equation,

dp

dT

� �
sat

¼ hfg
Tðvg � vlÞ (3.20)

where vg and v1 are the specific volumes of the gas and liquid, respectively.

The heat of vaporization represents the energy required to take a unit mass of

helium from the liquid to the vapor state. It is therefore an indirect measure of the

strength of the intermolecular bonds associated with the formation of the liquid

state. It is possible to compute hfg from intermolecular empirical potentials. This

problem is beyond the scope of the present treatment; however, on the experimental

side there is a somewhat useful relationship between the heat of vaporization and

the normal boiling point of many liquids. Trouton’s rule [10] suggests that the ratio

of hfg to Tb should be approximately constant,

Fig. 3.6 (continued)
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hfg
Tb

� constant (3.21)

where the constant has a value of about 75 J/mol K. This law, which is based

primarily on experimental evidence, is obeyed to within 20% for most common

liquids. However, it does not do as well for cryogenic liquids. The largest deviation

from Trouton’s rule occurs for helium where the ratio of hfg/Tb � 20 J/mol K.

3.3.3 Vapor Pressure

The vapor pressure of any fluid is related to the heat of vaporization through (3.20).

Furthermore, the vapor pressure is an important parameter as it is directly related to

the liquid temperature and can be used an absolute temperature standard as well as a

method of reducing the temperature of a liquid by evacuation of its coexisting vapor.

Figure 3.7 is a plot of the vapor pressure and derivative, dp=pdT for liquid helium.

Example 3.2

Use the data in Fig. 3.6 to estimate the heat of vaporization for liquid helium at

1 K

Consider (3.20),

dp

dT

� �
sat

¼ hfg
Tðvg � vlÞ �

hfg
Tvg

Fig. 3.7 Vapor pressure and

its slope for liquid helium
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Where we have used the fact the vg >> vl. Then assuming that the low density

helium vapor can be approximated as an ideal gas such that,

vg ¼ RT

Mp

In this case, M is the mole weight of helium, 4 kg/kJ and is necessary in the

above equation so that vg is in kg/m3. Substituting into the vapor pressure

derivative equation and rearranging,

hfg ¼ RT2

p

dp

dT

At 1 K,
1

p

dp

dT
� 10K�1. Substituting other values, one obtains hfg ¼ 83 J/mole

(21 kJ/kg).

3.3.4 Surface Tension

Before leaving the discussion of He I state properties, it is useful to touch briefly on

the subject of surface tension. The surface tension has units of energy per area and is

associated with the increased energy of the liquid state caused by it having a free

surface. Microscopically, the surface tension results from the molecules at the

interface being at a higher energy because they have fewer nearest neighbors than

those in the bulk. The surface tension, as with the heat of vaporization, goes to zero

at Tc where the distinction between the liquid and vapor vanishes.

For liquid helium, the surface tension is quite small again due to its weak

intermolecular binding. For classical liquids, the temperature-dependent relation-

ship for s should take the form,

sðTÞ ¼ s0 1� T

Tc

� �
(3.22)

This expression when applied to He I gives a value for so ’ 0.5308 mJ/m2, but

does not fit the data well below Tl. An alternative polynomial fit to s which

includes the He II regime follows the form,

sðTÞ ffi s0 � s1T þ s2T2 (3.23)

where s0 ¼ 0.3534 mJ/m2, s1 ¼ 1.737 � 10�2 mJ/m2K and s2 ¼ 2.154 �
10�2 mJ/m2K2. Plotted in Fig. 3.8 is a fit to the surface tension of liquid helium

based on data from HEPAK [8]. The classical formulation (3.22) agrees well with

the data above the l-point where quantum effects become important. Below Tl,
the fit described by (3.23) seems to be in better agreement with the data.
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3.4 Transport Properties of Gaseous and Liquid He I

To derive a model that describes the transport properties of helium, account must

be taken of the same effects introduced in the development of the equation of

state. More specifically, any complete transport theory must include particle-

particle interactions and quantum effects at low temperatures. This approach

involves the computation of transport coefficient, similar to virial coefficients in

the equation of state, which contain the physics of the interaction. Once these

transport coefficients are determined, they can be used to describe the deviation

from ideal classical behavior of a fluid such as helium. Several accounts of

the theory of the quantum mechanical transport coefficients exist in the literature.

Since a fundamental understanding of the derivation of this theory is not particu-

larly necessary for the use of helium transport properties in subsequent chapters,

only a cursory review of the principles is included here. For a more complete

description of the theory of transport coefficients the reader is encouraged to review

the appropriate references [4, 5].

Transport properties such as thermal conductivity and viscosity are set aside

from the state properties because they are associated with nonequilibrium phenom-

ena. In fact, these properties are fundamental to the understanding of how a system

returns to equilibrium through collision mechanics. Thus, the viscosity and thermal

conductivity are applied directly to the interpretation of the behavior of helium

under fluid flow and heat transfer conditions.

Fig. 3.8 Surface tension

of liquid 4He. Data from

HEPAK [8]
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3.4.1 Modeling Transport Properties

The beginning point for any model used to describe transport phenomena in a fluid is

usually the Maxwell-Boltzmann distribution function, which is the basis of kinetic

theory. This function, fo(v), is a measure of the probability of finding amolecule with

velocity v in a volume at constant temperature T with number density n:

f0ðvÞ ¼ n
m

2pkBT

� �3=2

e�mðv�v0Þ2=kBT (3.24)

where vo is the average velocity of the molecules in the gas. The distribution is

peaked at the most probable velocity, v ¼ ð2kBT=mÞ1=2 as seen in Fig. 3.9. The root
mean square velocity is defined by taking the square root of the integral of

this function times v2 over velocity space, with the result vrms ¼ (3kB,T/m)
1/2.

The Maxwell-Boltzmann distribution function represents the equilibrium velocity

profile. Consequently, a good measure of the degree to which a particular system

deviates from equilibrium is through the difference between its true distribution

and the Maxwell-Boltzmann distribution.

Consider a system containing a fluid which is slightly out of equilibrium. The

important quantity to determine for this system is the rate at which it returns to

equilibrium through inter-particle collisions. To find this rate, it is first necessary

to evaluate the number of collisions that occur between molecules in the system.

The number of collisions per unit volume and time at a given position r is defined as

Z ¼
ðð

stot v1 � v2j j f ðr; v1; tÞf ðr;v2; tÞd3v1d3v2 (3.25)

where a new quantity has been introduced, stot, the total scattering cross section,

which is an averaged quantity evaluated at the difference in the mean velocities

of the two distribution functions.

Before proceeding with the development of the transport coefficients, it is useful

to make some rough numerical estimates of quantities defined above. The number

of collisions per unit time can be estimated by assuming the scattering cross section

Fig. 3.9 Maxwell-

Boltzmann distribution

function
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stot � constant � 4pa2, the overlapping cross-sectional area of a two molecule

collision. It is then possible to take stot out of the integral making it easy to evaluate.

In this approximation, the total number of collisions becomes,

Z ¼ 8

p

� �1=2

n2stotv (3.26)

Considering helium gas at 4.2 K, 0.1 MPa, just below saturation pressure.

For these parameters, the most probable velocity v ¼ ð2kBT=mÞ
1=2 ¼ 132m=s and

n ¼ 2:51 � 1027m�3, which is approximately inversely proportional to T at

constant p. To estimate the cross section, it is necessary to know the molecular

radius. This quantity is not well defined for a quantum mechanical system such

as helium at low temperatures. For the present example, the hard core radius

defined by the zero of the Lennard-Jones potential is r0 ¼ 0.2556 nm, which

gives a value of stot ’ 80 � 10�20 m2. This value leads to a particle collision

rate Z ¼ 2.73 � 1038 m�3 s�1.

The number of collisions Z is not the most useful parameter to evaluate for

numerical estimate purposes. A more physically meaningful quantity to estimate is

the mean free path l between collisions. Consider a unit volume in space position r

as shown in Fig. 3.10, containing nmolecules per unit volume. The total number of

collision paths is equal to the total number of collisions divided by two because

it requires two molecules to produce a collision. The mean free path can be written

in terms of these quantities, such that

l ¼ n

2Z
v (3.27)

As with the example above, again considered helium gas at 4.2 K, 0.1 MPa. For

this case, the mean free path works out to be about 0.6 nm, which is only slightly

larger than the molecular diameter. The mean scattering time t is simply related to

the mean free path by t ¼ l=v. For helium gas at 4.2 K, t � 4.6 � 10�12 s. Thus,

each helium molecule is undergoing nearly a trillion collisions every second.

To develop expressions for the transport coefficients, it is necessary to introduce

non-equilibrium features into the distribution function and then apply these to a

Fig. 3.10 Unit volume in

particle space
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relationship between the dynamic variables, such as mass flux, momentum, and

energy. The latter relationship is established in terms of the classical Boltzmann

integral differential equation,

@f

@t
¼ �p

@f

@r
þ Jðff Þ (3.28)

where f is the actual distribution function of the system, p is the momentum vector,

and J(ff) is a collision term. The collision term introduces some simplicity into the

problem because its argument restricts the dynamics of binary collisions.

Following the established correspondence between variables as given by (3.28),

the next step is to define a relationship between the actual distribution function and

the equilibrium form. One solution to this problem is to write the distribution

function as a power series such that

f ¼ f0 þ af1 þ ::: (3.29)

where fo is the Maxwell-Boltzmann distribution. Inherent in this assumed form is

the requirement that the correction terms, a f1, and so on, be small compared to fo so
the series will converge with a finite number of terms. If only the first term in (3.29)

is applied to the relationship between dynamic variables, the result is Euler’s

equation for ideal fluids. If the first two terms in the expansion are used, the ensuing

differential equation is the Navier–Stokes equation. The function f1 is comprised of

the gradients in temperature and velocity.

To determine the transport coefficients and ultimately the transport properties,

such as thermal conductivity and viscosity, it is necessary to introduce a set of

temperature-dependent integrals O(n,s) that describe the dynamics of the two-

particle collisions:

Oðn;sÞ ¼ 2pkBT
mr

� �1=2 ð1
0

ð1
0

e�g2g2sþ3ð1� cosnwÞb db dg (3.30)

where b is the impact parameter of the collision and mr is the reduced mass; mr ¼
m1m2/(m1 + m2) ¼ m/2 for identical particles. The other terms contained in the

integral include g, the reduced velocity, and w the angle of deflection after collision,
which is a function of the inter-particle potential and impact parameter b. Obviously,
the evaluation of (3.30) is complicated and varies considerably between systems.

3.4.2 Transport Properties

The transport properties of a pure gas such as helium are given in terms of the

integrals of the form in (3.30). In particular, the viscosity m can be determined by

m ¼ 5

8

kBT

Oð2;2Þ (3.31)
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and the thermal conductivity k as

k ¼ 25

16

CvkBT

Oð2;2Þ (3.32)

Note that the ratio k/m is independent of the behavior of O(2,2), having a value equal
to 5

2
Cv. At high temperature and low density, this ratio should approach the value

of 15
4
R ¼ 7:79 kJ/kg K, consistent with that of an ideal gas.

Before considering how these models apply to the example of helium, it is

worthwhile to discuss briefly the changes brought on by introducing quantum

mechanics into the treatment. The approach has a similar impact to that of the

quantum virial expansion. In particular, the integral expressions introduced in

(3.30) now must include the full quantum mechanical scattering process. As before,

this requires the development of a phase shift analysis for two-particle scattering.

This approach is beyond the scope of the present discussion. Ultimately, the full

quantum mechanical treatment can rely on the correspondence principle which

states that at high temperature and low density the classical limit should be reached,

giving way to agreement with the above described model.

For the specific case of helium in the gaseous or liquid state, the transport

properties are reasonably well-established experimental quantities. In Fig. 3.11a,

b are plotted the thermal conductivity and viscosity of helium for their applied

pressures, 1.0, 0.1, and 0.01 MPa. At low temperatures, the three cases represent

supercritical helium, normal helium at atmospheric pressure with associated change

of state at 4.2 K, and sub-atmospheric helium with a change of state near 2.5 K.

These two orders of magnitude in applied pressure represent the most interesting

region for applications involving gaseous or liquid He I.

The first feature of these properties to note is their apparent insensitivity to

pressure above about 30 K. Below this temperature, the attractive part of the

potential contributes substantially to the interaction. At high temperatures, it is

mostly hard core potential which is important. The continuously increasing values

for k and m at high temperatures suggest a power law dependence that varies like Tn

for both quantities. In fact, the data above 30 K approximately follow this law with

n � 0.6. Referring to the temperature-dependent integrals (3.30). the leading terms

suggest that O � T1/2, depending on the terms within the integral being weak

functions of temperature. Assuming this to be the case, it would be expected that

k � m � T1/2, which is not far from the experimental result for T > 30 K, where Cv

is temperature independent.

Apart from the temperature dependence, the magnitude of the transport

properties of helium gas need to be compared to theoretical expressions. Consider-

ing the ratio of k/m as a function of temperature above 30 K, we see that this ratio

makes a gradual increase from 7.4 to 7.8 kJ/kg K at 300 K. According to theory,

k/m ¼ 5
2
Cv ¼ 7.79 kJ/kg K for an ideal monatomic gas. Thus, helium at high

temperatures is a very good example of near ideality in a real gas. At low tempera-

ture, several factors cause a deviation from ideal behavior. The two main ones are

the effect of quantum statistics and inter-particle interactions. Both these have

increasing importance as the temperature is decreased.
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As can be seen from the above theoretical review of transport properties, first

principle calculations of the thermal conductivity and viscosity of a real fluid

are very difficult and must be conducted by various expansion techniques. For the

purposes of the user of helium gas or liquid, the fundamental approach is beyond

interest. Of much greater concern is the behavior of a given fluid, which may

be in the liquid or gaseous state, under certain sets of conditions. The approach

employed, which will be considered in greater detail in Chaps. 6 and 7, is to develop

Fig. 3.11 (a) Thermal

conductivity 4He as functions

of T and p. (b) Viscosity of
4He as functions of T and

p (Data from HEPAK [8])
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sets of dimensionless numbers. These dimensionless numbers provide a fully

general method of analyzing experimental data.

The concept of dimensionless numbers is introduced here because one of them,

namely the Prandtl number Pr, is determined by a ratio of the transport properties.

Based on dimensional analysis, combining the three properties of viscosity,

heat capacity, and thermal conductivity yields the form

Pr ¼ mCp

k
(3.33)

where the heat capacity is taken at constant pressure. The Prandtl number is a

measure of the relative importance of thermal diffusion and mass flow for the

transport of heat. For Pr � 1, the velocity and temperature profiles are similar

under conditions of a small pressure gradient.

For an ideal monatomic gas, the analyses developed in this section can be used to

predict the Prandtl number. Inverting the ratio of transport properties a numerical

quantity is obtained,

mCv

k
¼ 2

5
(3.34)

which is close to the form of the Prandtl number in (3.32) with the exception that the

specific heat is measured at constant volume. For an ideal monatomic gas Cp/

Cv ¼ 5/3 where this ratio sometimes enters computations of gas expansion. The

above terms give a theoretical prediction of the Prandtl number for an ideal

monatomic gas, Pr � 2/3. Plotted in Fig. 3.12 is the Prandtl number for helium

Fig. 3.12 Prandtl number for 4He as a function of T and p
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gas and liquid at 1.0, 0.1, and 0.01 MPa. At high temperature the experimental

values asymptotically approach 0.67 in agreement with prediction. For comparison,

listed in Table 3.3 are the Prandtl numbers for a variety of liquids at both cryogenic

and room temperatures. It is important to note that helium exhibits behavior nearest

to that of an ideal gas. Liquids that exhibit anomalously large thermal conductivity,

such as liquid metals, have correspondingly small Prandtl numbers.

Questions

1. What is the definition of supercritical fluid; two phase and subcooled liquid?

Sketch the p-v phase diagram for low temperature helium and show the super-

critical, two phase and subcooled liquid regimes.

2. Helium in large quantities is normally transported as a liquid. Explain why.

3. Why does the phase diagram of helium lack a triple point?

4. What is the significance of the Boyle temperature in a real gas? How is it

determined?

Problems

1. Gas approximations

a. Calculate the classical second virial coefficient using the square well potential

’(r)/kB ¼1 r < 0.25 nm

¼�10 K 0.25 < r < 0.5 nm

¼0 0.5 nm < r

b. Find the Boyle temperature, Tb.

2. Given a closed container of volume 1 L containing 50 g of helium gas, calculate

the following:

a. The pressure at T ¼ 6 K, assuming that the gas is an ideal gas.

b. The pressure at T ¼ 6 K, assuming that the gas obeys van derWaal’s equation

of state.

c. The pressure at T ¼ 6 K, assuming that the gas obeys the virial equation of

state truncated after the second term.

Table 3.3 Experimental value of the Prandtl number

for some common liquids under saturated conditions

Liquid T (K) Pr

N2 77 2.20

O2 90 2.21

H2 20.4 1.17

H2O 311 4.52

Hg 750 0.004

He 4.2 1.15
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d. The state of the fluid at T ¼ 4.2 K. (Hint: 4.2 K is below Tc and 50 kg/m3 is

greater than rv @ 4.2 K.)

4. Compute the ratio of the surface tension, s, to the latent heat, hfg, for helium

between 2.2 K and Tc. Comment on the behavior.

5. Calculate the mean free path and collision frequency for helium gas at 20 K,

0.1 MPa.

6. Estimate themagnitude of the third virial coefficient for helium at the critical point.
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Chapter 4

Classical Helium Fluid Mechanics

In many applications of cryogenics, cooling is best achieved by confining the

coolant to a tube or duct and circulating it through the system in a closed loop.

In this configuration, the fluid that circulates through the system may be a single

phase liquid, single phase gas or a two – phase flow of liquid and vapor. The

principal variables in a single phase system are the pressure, temperature and mass

flow rate. In two phase flows, additional variables are needed to characterize the

state and dynamics. From the engineering point of view, the main quantity of

interest is the pressure drop caused by the flowing fluid. In Chap. 5, we will consider

the heat transfer issues associated with flowing normal helium.

There are numerous examples where low temperature helium flow is used as

a coolant. These include but are not restricted to:

1. The flow of helium in refrigeration piping and heat exchangers. Refrigeration

systems that use helium include conventional 4He cycles as well as special

devices such as 3He–4He dilution refrigerators for very low temperature

research. In the former case, the helium is usually well above the critical

temperature and therefore single phase. The major consideration in this appli-

cation is the appropriate optimization of the trade-off between heat transfer and

pressure drop within the flow circuit. In the latter case, the flow may involve

passages containing porous media. This is a special case of interest.

2. The flow of liquid helium in transfer piping is also a common application.

It occurs whenever liquid is delivered from one storage or distribution system

to another. In this case, the flow is nearly adiabatic and heat transfer is not a

primary concern. However, since helium transfer usually occurs near the

saturated vapor pressure, the process often involves two-phase flow.

3. The use of forced flow helium as a coolant for superconducting magnet systems

is also a fairly common application. The general approach here is to force the

helium through a duct containing or attached to the composite superconductor.

The internal cooling of composite superconductors serves two purposes: to

remove steady heating and to thermally stabilize the conductor against electro-

magnetic disturbances. Thus, this application critically involves both pressure
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drop and heat transfer to the flowing coolant. An important example of this

technology is the Cable in Conduit Conductor (CICC), which consists of

many strands of composite superconductor within a metal conduit or jacket.

Such conductors are commonly used in high field magnets for fusion.

To understand the details of forced flow helium, it is necessary to be aware of the

physical principles associated with heat transfer and fluid flow. These principles

are common to a variety of fluid dynamics problems and are based on general

engineering science. Since space is limited and the scope of the present discussion

quite specialized, only a brief review of this subject is included here. For additional

detail, the reader is referred to more extended treatments in books on fluid mechanics.

4.1 Single Phase Internal Flow

Internal flow of classical Newtonian fluids has been studied extensively and is a

fairly well understood process. This does not mean that the problems have all

been solved because, in general, fluid dynamics is sufficiently complicated to be

exactly soluble only in very special cases or by complicated computer codes.

Rather, the mode of problem solving is based on a combination of theoretical

concepts and empirical evidence leading to semi-empirical correlating functions.

This is well established engineering practice.

4.1.1 General Considerations

The general problem to be discussed here concerns internal flow hydrodynamics

within a pipe or duct as shown schematically in Fig. 4.1. At any point within the

pipe, the state of the fluid is given by its thermodynamic relationship between

the local pressure p and temperature T. However, the fluid is not in global equilib-

rium because it is being transported through the pipe at a mass flow rate, _m.
Assuming there are no sinks or sources of fluid, the mass flow rate can be related

to the local fluid velocity through the expression

_m ¼ rAv (4.1)

where the density r and velocity v are averaged locally in the direction of flow,

and the pipe cross section is given b A.
The fluid is transported through the duct under the influence of externally

imposed forces. One such force might be gravity, which is the most important

when considering natural convection cooling loops. In most circumstances, the

helium within the tube is forced under the influence of an externally imposed

pressure head produced by a pump or compressor. These external forces are needed
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to induce flow since the existence of viscosity results in a pressure drop for any

finite mass flow rates. Furthermore, since heat transport is of primary concern

in forced flow helium, any heat flow in or out of the system must be determined.

This heat transfer rate may result from joule heating within the pipe such as for

superconducting cables in the normal state or heat transfer from an adjacent system

such as occurs during heat exchanger operation. Heat transfer causes the surface

temperatures Ts to be elevated above the local fluid temperature by an amount

dependent on the local transfer coefficient.

In general, there are three sets of equations which must be solved to determine

the behavior of a Newtonian fluid such as gaseous or liquid helium above Tl.
A complete development of these equations is available in numerous texts on

transport phenomena [1, 2]. The first is the continuity equation which is written

@r
@t

þr � rvð Þ ¼ 0 (4.2)

where v is a vector velocity and r is the local density. The continuity equation

is derived from conservation of mass in a fluid element. The second equation is

derived from conservation of momentum and is actually a tensor equation. How-

ever, for the special case of constant viscosity, the momentum equation reduces

to the fairly simple form,

r
dv

dt
¼ �rpþ mr2vþ rFb (4.3)

where Fb is the body force, that is, the force per unit mass of liquid and m is the

fluid viscosity. The total derivative of the velocity is given by

dv

dt
¼ @v

@t
þ v � rv (4.4)

The combination of (4.2) and (4.3) is generally referred to as the Navier–Stokes

equations. The final conservation equation used to describe Newtonian fluids is

the energy equation, which simply states that a fluid system must conserve energy.

This energy equation may be written

d

dt

1

2
v2 þ e

� �
¼ � 1

r
r � rvð Þ þ _qþ Fb � v (4.5)

Fig. 4.1 Schematic

representation of internal flow
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where e is the specific internal energy and _q is the specific rate of heat input.

The term Fb • v is the work done by an external force. It follows that complete

solution to problems of Newtonian fluid mechanics requires simultaneous analysis

of (4.2), (4.3), and (4.5). With the fluid properties varying with temperature, this

process usually requires a numerical approach.

One case, which is treated extensively in elementary fluid mechanics texts,

is that of a fluid flowing within a tube or duct. It follows that the velocity can

be described by two principal components – u in the direction of the duct axis and

v normal to the duct axis and away from the wall. In the present context, it is also

assumed that the fluid is in a fully developed steady-state flow pattern and that

it is incompressible, that is, r ¼ constant. This latter assumption is reasonable for

single phase liquid helium and helium gas at low velocity, but it is not suitable

for helium gas at high velocities as discussed in the next section.

The standard approach to developing approximate solutions to (4.5) is to invoke

what is known as the boundary layer approximation. This approach is based on

the following set of requirements for the velocities:

u � v and
@u

@y
� @u

@x
;
@v

@y
;
@v

@x

In the boundary layer approximation the momentum equation (4.3) reduces to

u
@u

@x
þ v

@u

@y
¼ � 1

r
@p

@x
þ m
r
@2u

@y2
(4.6)

4.1.2 One Dimensional Internal Flow

One problem that can be solved exactly for these conditions is laminar flow in the

fully developed region. Laminar fully developed flow implies that the velocity is

parallel to the axis of the duct and must obey the conditions

v ¼ 0 and
@u

@x
¼ 0 (4.7)

The solution to the fluid equations in this regime predicts a parabolic velocity

profile proportional to the pressure gradient divided by the viscosity. For a circular

cross section channel the solution takes the form

uðrÞ ¼ � 1

4m
dp

dx

� �
r20 1� r

r0

� �2" #
(4.8)
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where r0 is the radius of the tube. For this special condition, the average velocity

can be calculated by integration of (4.8) over the duct cross section,

�u ¼ r20
8m

dp

dx

����
���� (4.9)

To consider the more general problem of laminar or turbulent flow within a duct,

it is useful to define a friction factor fF given in terms of the relevant quantities1

fF � � dp=dxð ÞDh

2r�u2
(4.10)

where �u is the average velocity of the fluid along the duct axis. The hydraulic

diameter is given in terms of the duct geometry,

Dh ¼ 4A

P
(4.11)

for which P is the perimeter of the channel and A the cross-sectional area. This

quantity is referred to as the Fanning friction factor, and is literally the ratio of

the wall shear stress, t ’ m ∂u/∂y, divided by the kinetic energy density.

For the case of fully developed laminar flow in a circular duct, the Fanning

friction factor has an exact solution,

fF ¼ 16

ReD
(4.12)

where ReD ¼ r�u D/m. For non-circular cross section ducts, the friction factor is

similar to (4.12) although the numerical coefficient is slightly different and the

diameter must be replaced by the hydraulic diameter, Dh.

For turbulent flow, which occurs for Reynolds numbers in excess of about 1200,

no exact solution exists for the pressure drop. Rather, empirical values such as

those displayed in the Moody plot, Fig. 4.2, must be applied. These plots give the

friction factor as a function of Reynolds number for different surface roughness

conditions. For relatively smooth tubes for Reynolds numbers 1200 < ReD
< 10,000, the Blausius correlation is commonly used,

fF ¼ 0:079

Re
1
4

D

(4.13)

1Note that mechanical engineering books define the friction factor as being four times the value

given by (4.10).
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For higher Reynolds number (ReD > 10,000), the von Karman-Nikuradse

correlation is popular for smooth tubes,

1

f
1
2

F

¼ �1:737 ln
1:25

ReDfF
1
2

 !
(4.14)

If the tube is rough with a characteristic dimension k, then the Colebrook

correlation adds to (4.14) a surface roughness term,

1

fF
1
2

¼ �1:737 ln
k

3:7D
þ 1:25

ReDfF
1
2

 !
(4.15)

For more complex geometries such as cable-in-conduit conductors (CICC), the

above correlations are not suitable [3–5]. An approximate curve for the friction

factor of CICC is shown in Fig. 4.2. Also, Katheder [5] developed an empirical

correlation for the friction factor of these conductors.

fF ¼ 1

4n0:72
19:5

Re0:88Dh

þ 0:051

 !
(4.16)

where n is the void fraction (area void/total cross sectional area of cable).

Fig. 4.2 Fanning friction factor for smooth and rough tubing compared to that of cable-in-conduit

configuration (From Lue et al. [3])
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Example 4.1

To calculate the pressure drop for liquid helium flow through a smooth tube we

need to know the dimensions of the tube and the flow rate. Consider here a tube

of length 30 m and diameter 10 mm with a flow of 10 g/s of helium at 4 K,

100 kPa. Under these conditions, helium can be assumed to be incompressible.

The relevant properties of helium are: r ¼ 130 kg/m3; m ¼ 3.3 mPa.s.

To calculate the pressure drop, we first need to determine the Reynolds number:

ReD ¼ �uD

n
¼ 4 _m

pmD
¼ 3:86� 105

This value of Reynolds number qualifies for the von Karman-Nikuradse

correlation of friction factor or it may be obtained from the Moody plot which

gives,

fF ¼ 0:0035

The overall pressure drop is then obtained by integration of (4.10) over the

length of the tube and replacing the average velocity �u ¼ 4 _m pr= D to yield,

Dp ¼ 32

p2
fFL

_m2

rD5
¼ 2:58 kPa

Note that this pressure drop is small enough (Dp/p ~ 2.5%) so the incompress-

ible assumption is valid.

We assume in this example that the fluid is slightly subcooled, entering the tube at

4.0 K, 100 kPa. It will exit at a lower pressure of 97.4 kPa, which corresponds to a

saturation temperature of 4.18 K. Therefore the fluid is still subcooled liquid.

Finally, we consider one further point in this example. Any fluid undergoing

a pressure drop is exerting friction on the tube. This work is being supplied by

the compressor or other prime mover. The friction produces heat that will result

in a temperature increase of the fluid. We estimate this as follows,

_Wf ¼ _mDp
r

¼ uADp

which for the example at hand gives about 0.2 W. The friction work goes into

heat generation resulting in a temperature increase of the fluid. Since we have

assumed that the liquid is subcooled, no boiling occurs until the temperature

reaches Tb(p) ¼ 4.18 K. For this example, the temperature increase would

be only about 5 mK, which is therefore insufficient to result in boiling and the

associated two phase flow.
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4.2 Supercritical Helium

The discussion in Sect. 4.1 is intended to be a general introduction to the factors

affecting forced flow single phase helium cooling systems. The description is kept

simple intentionally so as to introduce the important physical quantities such as the

friction factor. However, the model presented is not particularly appropriate for

low-temperature helium mainly because of the incompressibility assumption.

Therefore, it is important to develop a more general fluid mechanics model to

treat the case where the helium is in the gaseous state. In developing this descrip-

tion, emphasis is placed on the special case of supercritical helium (p > 0.23 MPa)

where the fluid is single phase but at low temperature and therefore quite compress-

ible. It is assumed further that the temperature is above Tl so that the fluid properties
are describable by classical hydrodynamics.

4.2.1 Compressible Fluid Mechanics

To model the fluid mechanics of supercritical helium, the Navier–Stokes equations

including the effect of finite compressibility are used [6]. Compressibility factors

can have profound impact on the observed behavior of supercritical helium. For

the steady one-dimensional case discussed in Sect. 4.1, the pressure change in the

direction of flow can be derived from (4.2) and (4.3),

dp ¼ � 2fFru2

D
dxþ u2dr (4.17)

where the first term is identical to that introduced for incompressible fluids while

the second term represents the fluid acceleration due to density changes. It is

desirable to replace dr by a function of the extrinsic variables p and T in order to

model the flow in terms of external variables. This can be achieved if the equation

of state is known. However, a more general form can be developed through

thermodynamic manipulations. Since the density is a function of p and T it can

be expanded in terms of these variables:

dr ¼ @r
@p

� �
T

dpþ @r
@T

� �
p

dT (4.18)

According to the thermodynamic definitions the bulk compressibility:

k ¼ 1
r

@r
@p

� �
T
and the bulk expansivity: b ¼ 1

r
@r
@T

� �
p
. These quantities can be inserted

into (4.17) to give the relationship,

dr ¼ rk dp� rb dT (4.19)
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Due to density changes along the flow channel, the velocity of the compressible

fluid is not constant. However, in the steady state the mass flow is constant. It is

therefore convenient to replace the velocity in (4.17) with the specific mass flow

rate G � _m/Aflow ¼ ru, where Aflow is the channel cross section. Substituting this

quantity and collecting terms between (4.17) and (4.19), we obtain a coupled

relationship between the temperature and pressure variation along the tube:

1� kG2

r

� �
dp

dx
¼ � 2fF

rD
G2 þ bG2

r
dT

dx
(4.20)

Note that for small k and b, this expression simply reduces to the incompressible

form given by (4.10).

In addition to the fluid flow equation, we need to consider enthalpy conservation

in the fluid when it is subjected to a net heat flux per unit surface area of the tube, q.
This is achieved by evaluating the energy equation (4.5). The total heat input per

unit area of the tube is related directly to the time rate of change in the stagnation

enthalpy (enthalpy + kinetic energy). For a circular cross section with Aflow ¼
pD2/4, this expression is

q ¼ GD

4

@

@p
hþ u2

2

� �
dp

dx
þ GD

4

@

@T
hþ u2

2

� �
dT

dx
(4.21)

which is simply a one dimensional version of (4.5). Using the definitions of the

compressibility and expansivity and noting that the Joule–Thomson coefficient,

which governs isenthalpic expansion, is defined by the relationship

mj ¼ � 1

Cp

@h

@p

� �
T

(4.22)

we can simplify (4.21) to provide a second coupled relationship between the

variation of p and T with position along the tube:

q ¼ �GD

4
mjCp þ u2k
� � dp

dx
þ GD

4
Cp � u2b
� � dT

dx
(4.23)

Given the two relationships for the gradient T and p, it is a straightforward

calculation to eliminate variables by simultaneous solution, arriving at separate

equations for each gradient; that is,

dp

dx
¼ �2fFG

2rDþ 4qGb=rD Cp � u2b
� �

1� G2=rð Þ kþ bfð Þ (4.24)

and

dT

dx
¼ 4q=GD Cp � u2b

� �� 2fG2f=rD
1� G2=rð Þ kþ bfð Þ (4.25a)
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where an additional parameter has been defined,

f ¼ mjCp þ u2k
Cp � u2b

(4.25b)

Needless to say the above expressions (4.23), (4.24), and (4.25) are difficult to

apply unless the physical properties have relatively simple behavior. Arp [6] has

shown that by approximating the fluid by an ideal gas, with k � 1/p and b � 1/T,
the above expressions are reduced in complexity. Furthermore, if the velocities are

fairly low, u ≲ 10 m/s (4.24) and (4.25) take on more manageable forms:

dp

dx
¼ � 2G2fF

rD
þ 4qGb
rDCp

(4.26)

and

dT

dx
¼ 4q

GDCp
� 2fFG

2

rD
mj þ u2

k
Cp

� �
(4.27)

Note that the first two terms in (4.26) and (4.27) are identical to those for

incompressible fluids. It follows that the second term in (4.26) becomes important

at low velocities and high heat fluxes while in (4.27) the second term is significant at

high velocities and low heat fluxes.

4.2.2 Experimental Confirmation

The above analysis has been tested experimentally by Dean et al. [7] in a 500 m

long tube with an L/D � 105 operating in supercritical helium. Two sets of results

from their investigation are shown in Figs. 4.3 and 4.4. The two cases show

significantly different behavior. The data displayed in Fig. 4.3 represent the regime

where the heat flux is large and the flow rate is small. As a result, the temperature

profile is monotonically increasing in response to the dominance of the enthalpy

flow term, 4q/GDCp. At the same time, the pressure profile is linear owing to the

considerable impact of the incompressibility term in (4.26).

The second case, shown in Fig. 4.4, is an example of the regime where the heat

flux is not large but the mass flow is high. The pressure profile is only slightly

nonlinear since it is dominated by the friction-induced pressure drop. In this case,

the temperature profile actually has a negative slope owing to the Joule–Thomson

expansion effect. This process is well known and is applied in refrigeration systems

to achieve cooling. Isenthalpic expansion is discussed more extensively in Chap. 8.
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Fig. 4.3 Pressure and temperature profiles with 3.2 bar (0.32 MPa) pressure loss. Computer data

m ¼ 0.928 g/s, D ¼ 4.8 mm, Q ¼ 0.074 W/m, pin ¼ 4.2 bars (0.42 MPa), Tin ¼ 9.0 K,

fF ¼ 0.007, ReD ¼ 1 � 105. Measured flow ¼ 0.98 g/s. Solid line is computed value (From

Dean et al. [7])

Fig. 4.4 Pressure and temperature profiles with 9 bar (0.9 MPa) pressure loss. Computer data

m ¼ 3.15 g/s, D ¼ 4.8 mm, Q ¼ 0.062 W/m, pin ¼ 10 bars (1 MPa), and Tin ¼ 9.5 K,

fF ¼ 0.005, ReD ¼ 3–4 � 105. Measured flow ¼ 3.0 g/s. Solid line is computed value (From

Dean et al. [7])
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An analytical comparison of the above experiments with the compressible fluid

theory has been conducted and is shown by the solid curves in Figs. 4.3 and 4.4.

One adjustable parameter, the friction factor fF was used to fit both the pressure

drop and temperature profile data possibly due to minor losses in fittings within

the loop. Thus in both cases, the friction factor required to fit the data was above

that expected for turbulent flow at the Reynolds numbers corresponding to the

experimental system.

Supercritical helium represents a fairly good example of a simple, but relatively

high density compressible fluid. The hydrodynamic equations appropriate for

compressible flow adequately describe the pressure drop and heat transport char-

acter. However, the flow characteristics do not represent the entire problem.

In particular, it is also of interest to be able to predict the heat transfer coefficient

between the tube or duct and the helium stream. The conventional approach to this

problem demands the development of engineering correlations appropriate to

the particular configuration of interest discussed in Chap. 5.

Example 4.2

Use (4.26) to calculate the pressure gradient at the entrance to the tube in Dean’s

experiment for the case illustrated in Fig. 4.4. Compare the magnitudes of the

friction and acceleration contributions.

One needs to evaluate,

dp

dx
¼ � 2G2fF

rD
þ 4qGb
rDCp

For the following conditions: T ¼ 10 K: p ¼ 1 MPa; r ¼ 62 kg/m3; Cp ¼
7.6 kJ/kg K; b ¼ 1/T ¼ 0.1 K�1. The flow is _m ¼ 3 g/s, the heat flux/length is

Q ¼ 0.062 W/m and the tube diameter is D ¼ 4.8 mm; fF ¼ 0.005. These values

correspond to a surface heat flux of q ¼ Q/pD ¼ 4.1 W/m2 and a mass flux

G ¼ 4 _m/pD2 ¼ 165 kg/m2 s.

The friction contribution to the temperature gradient is:

dp

dx

����
f

¼ � 2G2fF
rD

¼ �923 Pa/m

The acceleration contribution is:

dp

dx

���� ¼ 4qGb
rDCp

¼ �119 Pa/m

Therefore, the acceleration increases the total pressure drop by about 13% over

the incompressible case.
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4.3 Helium Two-Phase Flow

Whenever liquid helium is allowed to flow at pressures less than the critical

pressure, pc ¼ 0.23 MPa, two-phase liquid vapor phenomena can occur. This

occurrence often is associated with boiling and heat transfer; however, adiabatic

systems can also experience two-phase flow simply as a result of pressure drop and

friction loss factors. Two-phase phenomena associated with heat transfer will be

discussed in Chap. 5. The present section is concentrated on flow phenomena.

Two-phase internal flow systems are very common and important in helium

cryogenic systems. Most often they are encountered in helium transfer systems

where the liquid helium is siphoned from one vessel to another through a vacuum

insulated line. Obvious factors of concern are the possibilities of excessive pressure

drop or flow oscillation, both of which contribute inefficiencies to the helium

transfer process. Another common application is for natural circulation cooling

loops on thermal shields and magnets. In this case, the two phase nature of the flow

can be used to achieve self sustaining flow without a prime mover.

Liquid helium transfer systems as well as other applications have made it

essential to be aware of the physical phenomena that commonly occur in flowing

subcritical liquid helium. Unfortunately, this subject has not received enough

attention from the research community and not a great deal is known. There are

several reasons for the incomplete understanding of two phase flowing helium.

First, a full understanding of this problem is an awesome task. It is a multi-valued

problem dependent on such factors as temperature, pressure, mass flow rate, system

configuration, and relationship between the two phases present (liquid and vapor).

Consequently, it would take a substantial quantity of empirical data to describe

the behavior even in a small number of special cases. Second, two-phase flow in

helium systems is very specialized because it is only occasionally used and in very

specific configurations. However, recently there has been a greater interest in

two phase helium in context of natural circulation loops for superconducting

magnet cooling systems [8]. By comparison, two-phase flow in water systems

has received a great deal of attention because of numerous engineering

applications [9].

4.3.1 Flow Regimes and Transitions

Consider the general character of two-phase flowing liquid and vapor helium. Based

on knowledge obtained from experiments with two-phase flows of non-cryogenic

fluids, some general statements can be made about the flow characteristics.

In conventional fluids, there are approximately seven different flow patterns that

can be obtained in a two-phase mixture [10]. These different patterns are shown

schematically in Fig. 4.5. The factors that determine which flow pattern is stable for

a particular set of conditions include the mass flow rate, densities of each of the

4.3 Helium Two-Phase Flow 97

http://dx.doi.org/10.1007/978-1-4419-9979-5


components, viscosity, heat of vaporization, and liquid surface tension. The

qualitative description of each of the flow regimes is as follows:

1. Bubble flow: Gas bubbles flow along with the liquid at approximately the same

velocity.

2. Plug flow: Gas bubbles coalesce to form plugs in the channel. This condition

usually occurs for higher mass flow rates and vapor volumes than in bubble flow.

3. Stratified flow: Complete separation of liquid and gas occurs owing to density

differences. The vapor and liquid occupy unchanging fractions of the cross-

sectional area. This flow pattern occurs most commonly in large-diameter

channels at low mass flow rate.

4. Wavy flow: Similar to stratified flow but due to higher mass flow rate, the

interface between liquid and vapor experiences an oscillatory motion.

5. Slug flow: The wave amplitude increases until it touches the tube wall resulting

in a pattern of vapor slugs separated by totally liquid regions.

6. Annular flow: At fairly high vapor fractions and velocities, the flow pattern

will overcome the gravitationally induced stratification causing the vapor to flow

through the center and the liquid to adhere to the walls. In this flow pattern,

the vapor velocity is much greater than that of the liquid.

7. Dispersed flow: The liquid film becomes unstable and breaks up into small

droplets which are carried along with the vapor stream. This flow regime occurs

at the highest mass flow rates.

Fig. 4.5 Sketches of flow patterns present in horizontal tubes (From Baker [10])
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The above list of flow patterns are at least approximately ordered in terms of

increasing flow rate and vapor fraction. Each of these flow patterns is potentially

present in liquid–vapor helium systems. Similar behavior is expected to occur in

vertically oriented tubes although with slightly different regimes of occurrence.

Based on empirical evidence from room temperature fluids, there have been several

attempts to correlate two-phase flow into a map which is dependent on system

parameters [10, 11]. Unfortunately, due to the limited existence of data on helium

systems, very few attempts have been made to compare the behavior of helium with

that of other common fluids [12–15].

To make a more qualitative discussion of the subject of two-phase flow, it is

necessary to define several physical quantities. The three main definitions

pertaining to two-phase flow are:

1. Void fraction a: Defined as the ratio of the local vapor volume to the total flow

volume. It is normally given in terms of the fraction of cross-sectional area

that is vapor, that is,

a ¼ Av

Al þ Av
(4.28)

2. Flow quality w: The ratio of vapor mass flow rate to total mass flow of both vapor

and liquid:

w ¼ _mv

_ml þ _mv
(4.29)

By definition, w is always less than or equal to unity.

3. Slip ratio S: Defined as the ratio of the vapor to liquid velocity,

S ¼ uv
ul

(4.30)

In two-phase flow the slip ratio is almost always greater than or equal to unity

since the less-dense vapor can more easily travel through the duct than can the

bulk liquid.

These quantities can be shown to relate to each other through the condition,

S ¼ w
1� w

� �
1� a
a

� �
rl
rv

� �
(4.31)

The most important two-phase flow problem for any liquid–gas system is to

be able to measure and model the behavior of all three quantities as a function

of external parameters.
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4.3.2 Pressure Drop Correlations

The pressure drop in two-phase helium systems has been investigated in a number

of experiments [13–15]. Across a tube of length L this quantity can be written as

a summation of three terms,

DpT ¼ Dpgr þ Dpa þ Dpf (4.32)

where Dpgr is the gravitational pressure drop due to change in elevation of the fluid;
Dpa is the acceleration contribution; and Dpf is that due to friction. . Unlike single-

phase incompressible flow, the pressure drop described by (4.32) must take into

account the variation in the fluid density along the channel. This contribution is

particularly important in flows involving heat transfer.

The gravitational pressure drop for vertically oriented tubes is given by the

relationship

Dpgr ¼ �g

Z L

0

rh idx (4.33)

where the average density rh i is defined in terms of the void fraction

rh i ¼ arv þ 1� að Þrl (4.34)

Therefore, it is necessary to obtain the void fraction before the gravitational

pressure drop can be determined. The acceleration contribution to the pressure

drop, Dpa, also has an established form dependent on void fraction and flow quality.

It is given by

Dpa ¼ G2 w2

arv
þ 1� wð Þ2 � 1

1� að Þrl

 !
(4.35)

where in this case it is necessary to have knowledge of both the void fraction and

flow quality. The final pressure drop contribution, Dpf, in two phase flow is that due

to frictional interaction between the tube and wall. This term is expected to

be similar in form to that obtained for single phase fluids with the additional

complication associated with the two-fluid nature of the problem.

There are several theoretical developments which have been successful at

interpreting certain aspects of the pressure drop in two-phase cooling systems.

One such approach is known as the Lockhart–Martinelli correlation [16]. The

explicit assumptions of this model are as follows:

1. The static pressure drop in the vapor phase is equal to that in the liquid phase for

all mass flow rates.
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2. The two-phase fluid volume is made up of a linear combination of the vapor and

liquid volumes.

3. Friction losses are assumed to dominate, and the effect of momentum change

and hydrostatic head are ignored.

The Lockhart–Martinelli correlation for pressure drop introduces several

parameters which are functions of measurable quantities. The first of these is

the dimensionless two-phase pressure gradient,

f2
l ¼

dp=dxð ÞTP
dp=dxð Þl

(4.36)

where the subscript TP stands for two-phase. The reference pressure gradient is that

of the liquid and corresponds to the traditional incompressible flow equation given

by (4.10). The other parameter which is commonly used in relating data to the

Lockhart–Martinelli correlation is a ratio of the pressure gradients associated with

each phase,

w2tt ¼
dp=dxð Þv
dp=dxð Þl

(4.37)

where the subscript tt refers to both phases being turbulent, a situation that is

usually the case for low-temperature helium systems. This parameter can be

correlated against the properties of each of the two fluids in the form,

wtt ¼
rv
rl

� �p ml
mv

� �q
1� w
w

� �r

(4.38)

where the coefficients take on values that are typically, for example, p ’ 0.6,

q ’ 0.1, and r ’ 1. Usually, correlations are indicated by plots of fl versus wtt [16].
Several simplified forms to the Lockhart–Martinelli correlation exist in the

literature. Levy [17] produced reasonable agreement when correlating experiments

to the form

f2
l ¼

1� wð Þ1:75
1� að Þ2 (4.39)

The above expression is based on a combination of the Lockhart–Martinelli corre-

lation and the relationship for void fraction.

Another rather direct model for pressure drop in two-phase systems that works

well for helium systems is referred to as the homogeneous model, which is based

on a similar set of assumptions as the Lockhart–Martinelli correlation. The homo-

geneous model describes a two-fluid system as having the following set of

characteristics:
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1. Equal liquid and vapor velocities (S ¼ 1).

2. Thermodynamic equilibrium between phases.

3. Applicability of the single-phase friction factor to the two-phase flow.

Based on these assumptions, the two-phase friction multiplier f2
l can be

expressed as

f2
l ¼ 1þ w

rl
rv

� 1

� �	 

1þ w

ml
mv

� 1

� �	 
�n

(4.40)

where based on use of the Blausius correlation the coefficient n is taken to be

approximately 0.25 in most analyses [18]. The above expression can be related to

experimental data if the variation of physical quantities with flow quality is known.

There have been only limited experimental investigations of two-phase pressure

drop in liquid helium. Khalil et al. [13] studied two-phase flow in a vertically

oriented tube with diameter 6.35 mm and pressures between 0.106 and 0.204 MPa.

This work included measurements of the pressure drop Dp, overall mass flow _m,
and local average void fraction ah i. These measurements allowed determination of

both void fraction and slip ratio as they depend on vapor quality. The void fraction

was compared with the available theoretical developments. Plotted in Fig. 4.6 is the

variation of void fraction with vapor quality for different mass flow rates at

0.12 MPa. The theoretical developments do not predict a variation of a with G
and no systematic dependence is observed in the data. As can be seen in the figure,

the Levy and homogeneous models do a better job of modeling behavior than

the Lockhart–Martinelli correlation, which predicts a higher void fraction at low

vapor qualities.

Fig. 4.6 Void fraction for helium flow as a function of vapor quality (From Khalil [13])
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Experimental results of the slip ratio variation with vapor quality are shown

in Fig. 4.7. The slip ratio is always greater than unity for finite mass flow rates,

with the biggest deviation occurring at the highest G.
Other measurements of two-phase pressure drop in helium confirm the analysis

based on the homogeneous model. Nakagawa et al. [19] studied the variation of the

two-phase friction multiplier (4.40) with vapor quality. This work was carried out

on two test loops of diameter 11.4 and 18.4 mm. A summary of these experimental

results is shown in Fig. 4.8. As with previous measurements of two-phase flow in

helium systems, the authors observed that the homogeneous model was better than

the Lockhart–Martinelli correlation for analyzing the data. It is surprising that the

homogeneous model, which assumes S ¼ 1, adequately describes the pressure

drop, particularly in light of the slip ratio measurements displayed in Fig. 4.7.

However, it is fortuitous since the homogeneous model is fairly easy to apply.

4.3.3 Natural Circulation Loops

One of the important uses of two phase helium flow in cryogenics is in the operation

of a natural circulation loop or thermo-siphon. This device uses the natural behavior

of two phase flow in vertical channels to remove heat from a source such as a

radiation shield or superconducting magnet. It is therefore a passive cooling device

that does not depend on a prime mover to create flow through to the heat load.

Natural circulation loops work on the principle that a heat load on a vertical

channel produces a two phase flow that is on average less dense than the liquid phase.

Fig. 4.7 Slip ratio as a function of vapor quality and mass flow rate at 0.12 MPa (From

Khalil [13])

4.3 Helium Two-Phase Flow 103



Thus, there is a gravitational instability lifting the two phase fluid and replacing

it with single phase liquid. For example, imagine a U-tube containing a liquid with

a free surface at the top such that the liquid is only subcooled by the hydrostatic

head (rgH), Fig. 4.9.
Now if one applies a heat load to one of the vertical legs of the U-tube the liquid

will increase in temperature until it reaches saturation after which vapor is formed

in the channel. Since the vapor is less dense than the liquid, the average density of

the two phase mixture will be less than that on the pure liquid side of the U-tube.

This will produce a net driving force for the flow given as,

DpD ¼ rlgH � g

ðH

0

rðzÞh idz (4.41)

Under steady operation, the driving force balances against the pressure drop

terms that are due to friction and fluid acceleration. The acceleration pressure

drop is caused by the decrease of the average density of the fluid as it circulates

through the loop. This acceleration may be related to the change in the vapor quality

from inlet to outlet.

Dpa ¼ G2 1

rv
� 1

ri

� �
wex � winð Þ (4.42)

At the inlet, win ¼ 0 since it is pure liquid. At the outlet, wex > 0 but probably

less than unity to avoid dry-out of the return line. In (4.42) G ¼ _m Aflow

�
the

Fig. 4.8 Dimensionless

pressure drop in two-phase

helium flow (From Nakagawa

et al. [19]). The solid circles
(●) are for the test loop with

11.4 mm ID and the open
circles (○) are for the test

loop with 18.4 mm ID
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mass flux. The other contribution to the pressure drop is due to friction from both

the single phase liquid and the two phase flow. On the liquid side, the friction

pressure drop is given by the classical expression with the friction factor being

a function of Reynolds number. Written in terms of the mass flux, G, this

contribution is,

Dpl ¼ f
G2L1
2rlDh

(4.43)

where L1 is the length of the loop that contains pure liquid. This may include part

of the return leg depending on where the heat load is applied and how much

subcooling of the liquid is occurring due to the hydrostatic head.

The pressure drop in the two phase portion of the loop can be determined from

the analysis presented in Sect. 4.3.2. However, under most circumstances there will

be two regimes. The adiabatic portion of the loop, where no heat is applied the void

fraction will be a constant value, wex. In this region, the friction pressure drop is,

DpA2p ¼ f
G2L2
2rlDh

f2
l wexð Þ (4.44)

Fig. 4.9 Schematic of a

natural circulation loop
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where fl
2 is the friction multiplier for the given vapor quality. If all the heat applied

to the return line goes into vaporizing the helium, then the vapor mass flow rate

and exit quality can be obtained from _mv ¼ _Q hfg
�

and wex ¼ _mv _m= .

In the region of the loop that receives the heat load, the vapor quality changes

along the line and that change needs to be considered in calculating the pressure

drop. Over the corresponding channel length, L3, the diabatic pressure drop

contribution is,

DpD2p ¼ f
G2L3
2rlDh

1

wex

ðwex
0

f2
l wð Þdw (4.45)

The variation of quality over the length of the section depends on the details of

the heat load. If the heat load is uniformly distributed along the line, then the quality

will increase approximately linearly.

To test the above theory, Huang et al. [20] constructed and operated a vertically

oriented natural circulation loop that contained a helium mass flow meter. The loop

had a vertical height of about 400 mm and tube diameter of 4.6 mm. A steady heat

load between zero and 20 W was applied over part of the length of the return line.

The results of this test are shown in Fig. 4.10. The solid line is the analysis based

on (4.41) through (4.45) applied to the particular conditions of the experiment.

Two results are worth noting. First, the analysis appears to agree to within 10% of

the experimental data. This is good confirmation of the theory and a suggestion that

Fig. 4.10 Flow rate through a model natural circulation loop as function of applied heat load

(Huang [20])
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two phase thermo-siphon modeling and design are achievable. Second and of

greater practical importance is the noted behavior of the mass flow rate with

increasing heat load. In this case for heat loads greater that 2 W, the observed

mass flow rate is approximately constant. This shows that a natural circulation

loop is a very stable device for remote cooling as it can accept a range of heat loads,

from cooldown to steady operation without causing hydrodynamic instabilities

in the flow.

Figure 4.11 displays a typical configuration of the natural circulation loop in an

application. As discussed above, it is important to apply the heat load to the return

leg of the loop. In practice, this is done by insulating the supply line from the

bottom of the supply vessel to the bottom of the cryogenic system before making

contact with the heat load. Once the heat load is in contact with the line, it must

have ever increasing elevation avoiding traps until it returns to the supply vessel.

One additional feature is to return the two phase flow above the liquid level in the

supply vessel to allow it to phase separate, returning the vapor to the refrigerator

and allowing the liquid the flow back into the loop. The refrigerator thus only needs

to supply enough liquid to the vessel to make up for the liquid boiled away by the

heat load.

Fig. 4.11 Schematic of a

conventional natural

circulation loop
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4.4 Flow Through Porous Media

There are a number of situations in the practice of helium cryogenics where the

fluid is made to flow through a porous solid structure. In this context, by porous

structure we mean a solid matrix made up of finely meshed sub-elements such as

small particles or screens, bonded together into a monolithic component. Typically,

the dimensional scale of the pores is much less than that of the containing channel

and the fluid dynamics is dominated by the small scale. A few examples of where

porous media enter into helium cryogenics are:

• Regenerators and heat exchangers for helium refrigerators: These include the

regenerators needed for cryocoolers and heat exchangers for micro-scale

recuperative refrigerators.

• Porous insulation for superconducting magnets: An innovative technique for

providing active cooling to magnet windings is to support the windings with

porous solid insulation that allows some portion of the helium coolant to

penetrate the winding.

• Porous plug phase separators for space based liquid helium cooled experiments.

In this application, the porous plug provides a back pressure due to the fountain

effect in He II to contain the liquid within a container even in zero-g conditions.

This topic is discussed further in Chap. 7 on He II heat and mass transfer.

The physical characteristics of porous media are described by a set of

dimensions defined as follows:

Pore size: This is the average dimension of the pores within the structure, dp. Most

porous media have a distribution of pore sizes due to the complex interconnected

nature of the medium. Thus, dp is some suitable average for flow channel dimen-

sion. The pore size is usually measured by microscopic analysis.

Porosity: This is a dimensionless quantity that describes the fraction of the media

that is void. The porosity, a, is literally defined as the ratio of the void volume to the

total volume of the media. Porosity can be measured by a variety of means,

although the typical method is by determination of the average density compared

to that of the bulk material. The porosity is also given as the actual flow cross

sectional area divided by the cross sectional area of the porous media.

Permeability: This is the quantity that characterizes the flow through the media.

The permeability, KD, is the physical quantity that relates the pressure drop to

the flow rate through the porous medium.

Specific surface area: This is the total particle surface area per unit volume of the

medium. Sv is related to the equivalent particle size or pore size when modeling the

medium such as consisting of uniform size spherical particles. The specific surface

area can be measured by gas adsorption as is discussed in Chap. 10.

Tortuosity: This quantity is theoretically defined as the effective increase in

hydraulic path length in a porous medium compared to the linear dimension of

the medium. o ¼ ‘ e= is defined in Fig. 4.12 and is always � 1.
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Now consider a sample of porous material (PM) that is placed within a duct, see

Fig. 4.13. If the sample is subjected to a one-dimensional flow of a fluid a pressure

drop, Dp, is established across the sample. If the flow rate is low, the pressure drop

is linearly proportional to the flow rate much like laminar duct flow. This is referred

to as the Darcy flow regime and is one method for obtaining the permeability of the

medium by measuring,

Dp
L

¼ m
KD

U (4.46)

Where U is the velocity averaged over the entire cross section of the sample.

This value is considerably different from the velocity of the fluid within the pores

which is nominally U/a. If one compares (4.46) to the pressure drop expression for

laminar flow, it is easy to show that KD is proportional to the square of an effective

pore diameter, dp. Equation (4.46) is a scalar relationship that drops the negative

sign associated with the pressure gradient through the sample.

As with flow in a one dimensional duct, the laminar flow regime in porous media

is limited to occur up to a certain value of the characteristic Reynolds number.

However, in porous media there are different Reynolds numbers. For example, one

can define a Reynolds number based on the permeability as,

ReK ¼ U
ffiffiffiffi
K

p

n
(4.47)

Fig. 4.12 Definition of

tortuosity and effective flow

area

Fig. 4.13 Sample of porous media subjected to a flow
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Using this definition, the laminar regime is limited to flow rates with ReK 	 1.

For higher Reynolds number, the pressure drop deviates from the linear relationship

adding a quadratic contribution that is associated with the form drag around the

particles that make up the porous medium. In this regime, the pressure drop is

correlated by the relationship,

Dp
L

¼ m
KD

U þ brU2 (4.48)

where b is empirically determined.

Ergun [21] confirmed the form of (4.48) by making measurements of the pressure

drop across beds of packed spheres. These results are shown in Fig. 4.14. In this case,

the Reynolds number is defined in terms of the particle diameter,

ReDp
¼ UDp

n
(4.49)

In this model Dp 
 10
ffiffiffiffi
K

p
, indicating the transition Reynolds number for the

onset of inertial terms to be ReDp

 10, as seen in Fig. 4.14.

The above discussion is completely general and based on the behavior of

classical fluids such as water and air. In the case of normal liquid helium flow

through porous media, there are only a limited number of reported measurements.

However, overall the behavior of liquid helium flow through porous media is not

Fig. 4.14 Porous media pressure drop correlation (From Ergun [21])
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substantially different from that of other classical fluids. One potential quantitative

variation is in the measured values of the porosity and permeability. Since liquid

helium has a very small viscosity and surface tension, it is reasonable to expect the

liquid to easily penetrate into the smallest pores in the media. Thus measurements

of the permeability and porosity can give higher values with liquid helium than with

other fluids, in particular water. This result is at least qualitatively born out by

experiment [22].

Helium flow through fine mesh screens is also important technically as many

regenerators use this structure rather than packed spheres. Correlations for classical

fluid flow through such structures are available in the literature [23, 24]. Again

these correlations are mostly based on measurements with classical fluids near

room temperature.

By far the most interesting and unique behavior of porous media in helium

cryogenics concerns its application as a phase separator in He II storage containers

for zero-g applications. We will therefore return to this subject later in that

context.

Example 4.3

We need a porous plug pressure drop device for operating as part of a refrigera-

tor. The flow rate is to be 1 g/s of helium supplied at 2 MPa and 6 K. Such a flow

might be in part of a recuperative refrigerator with the porous plug acting as a

Joule Thomson valve. The outlet pressure is to be 0.3 MPa to avoid two phase

flow. We begin by calculating the required permeability assuming that the flow

follows Darcy’s Law. The assumed physical dimensions are: Diameter of plug

¼ 10 mm; Length of plug ¼ 100 mm.

We first calculate the approach velocity, U,

U ¼ 4 _m

rD2
¼ 0:11 m/s

Rearranging Darcy’s law for these dimensions and values:

KD ¼ mLU
Dp

¼ 1:94� 10�14 m2

One can then confirm that Darcy’s law is appropriate if the Reynolds number

defined as,

ReK ¼ rU
ffiffiffiffiffiffi
KD

p
m

¼ 0:5

which is less than unity. The flow through the porous media is therefore not

affected by inertial terms in the friction factor.

(continued)
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Example 4.3 (continued)

What does it mean physically to have a permeability of order 10�14 m2?

Returning to the comment above about similarity between laminar duct flow and

Darcy’s law, one can show that,

KD � D2

32

up
U

Depending on the porosity of the sample, up can be larger than U by as much

as an order of magnitude. It follows then that D 
 ffiffiffiffiffiffi
KD

p 
 0:1mm. Such a pore

size would be obtained in a sample made of particles with diameters no greater

than 1 mm.

Questions

1. For adiabatic compressible fluid flow, the pressure will always decrease along

the tube, but the temperature can either increase or decrease. Explain how this

can occur.

2. Explain how a natural circulation loop works. List the requirements to achieve

stable flow.

3. List five applications for porous media in helium cryogenics. Discuss the overall

physical characteristics for each case.

Problems

1. Derive the separate equations for the one-dimensional pressure and temperature

gradients in a compressible single-phase fluid. Show that for low velocities and

nearly ideal gas behavior these expressions reduce to the forms given by (4.26)

and (4.27). Determine a relationship for the pressure gradient under the

condition where dT/dx ¼ 0.

2. Consider single phase liquid helium at 4 K flowing through a 10 mm tube of

length 30 m at a mass flow rate of 1 g/s. The mean surface roughness is 10 mm.

Calculate the Reynolds number for this flow condition and the overall pressure

drop. How much lower would the pressure drop be if the tube were smooth,

k ¼ 0?

3. Using the homogeneous model, make a plot of the two-phase friction multiplier

f2
l as a function of vapor quality w at 4.5 K and saturation conditions. Use the

following dimensions of the tube: L ¼ 5 m; d ¼ 5 mm; mass flow ¼ 1 g/s.

4. Consider the same tube as in problem 2, but in this case it receives a uniform

heat flux/length Q/L ¼ 1.25 W/m. (a) Calculate the exit quality of the flow;

(b) Calculate the total pressure drop.

5. A 10 mm diameter tube, 10 m in length has a constant flow of 3 g/s of helium.

The liquid helium enters as two phase liquid–vapor (w ¼ 0.4) at 4.5 K and
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0.13 MPa. Calculate the pressure drop, Dp, using both the homogeneous model

and the Lockhart Martinelli model.

6. Derive a relationship for the permeability of a porous plug made up of n parallel

channels of equal diameter, d, per unit area. Use Darcy’s law and the laminar

flow expression for duct flow.

7. Consider a “cable in conduit conductor” (CICC) consisting of a square cross

section tube with inner dimension 10 � 10 mm2 and containing 100 round wires

of 0.8 mm diameter. The flow rate of single phase liquid helium at 4.2 K is 3 g/s.

Calculate the hydraulic diameter and the pressure drop/m of conductor.
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Chapter 5

Classical Helium Heat Transfer

Normal helium (He I) is a simple liquid with state properties that can be described

reasonably well by classical models of the type introduced in Chap. 3. However, the

dynamics of heat and mass transfer are of particular interest to engineering

applications. Heat transfer, which is the subject of the present chapter, is probably

the most important single characteristic of cryogenic fluids. The subject has con-

siderable physical basis, and the models used to describe the phenomena are a

combination of fundamental physics and engineering correlations. Pool boiling heat

transfer is an often studied engineering problem related to cryogenic fluids includ-

ing liquid helium. Pool boiling is a common term used to describe an experimental

configuration consisting of a heater, either a plate or wire, immersed in a large bath

of the fluid. Normally, the bath has such an extent that it is possible to assume it to

be infinite in size relative to the heater sample. This problem is a classic in heat

transfer research; although more complex configurations are needed to model true

engineering systems. Heat transfer to forced flow helium is also an important topic

as it relates to the design of heat exchangers and superconducting magnets.

The fluid dynamics of forced flow helium was covered extensively in Chap. 4.

Here we concentrate on the processes of heat exchange. Of course, in the case of

forced flow helium the fluid dynamics problem and the heat transfer problem are

not completely separable.

There are a number of general characteristics of He I which are worth noting in

the context of heat transfer. First of all, it has a rather small thermal conductivity

and large specific heat, suggesting that conduction heat transport is of little signifi-

cance to the overall heat transfer picture. Particularly in the steady state, the heat

transport is dominated by convection mechanisms.

The traditional approach to the interpretation of heat transfer is best suited for

engineering applications. The general philosophy is to assume that the heat transfer

process is too complicated to understand from basic principles. A specific problem

requires solution of a complex set of equations which are only treatable in the

simplest geometries. Therefore, engineering problems are scaled on the basis

of dimensionless variables, which are functions of the properties of the system.

It is then possible to construct non-dimensional relationships which when fit to
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experimental data can be applied universally to other systems. The strength of this

approach is in its relative ease of application. These dimensionless relationships

have been explored extensively and their forms are available in the literature [1, 2].

Furthermore, the computation of the parameters for a given set of conditions allows

straightforward predictions for experimental data. When carried out correctly,

the correspondence between experiment and correlations is quite satisfactory. The

essential ingredient to this approach is sufficient quantity of experimental data, not

only for the particular fluid in question but also for other fluids with widely varying

properties. This need must be satisfied to instill reasonable confidence in the

particular correlation at hand. Fortunately, for most liquids this kind of ground

work has already been laid and the behavior of He I is in satisfactory agreement

with the accepted correlations. The quality of the agreement is in part the subject of

the present chapter.

For problems of heat transfer, the most important dimensionless quantity to

consider is the Nusselt number, Nu. It represents a dimensionless heat transfer

coefficient defined by the relationship

Nu ¼ hL

kf
(5.1)

where h ¼ q/(Ts – Tb), the heat transfer coefficient of the surface, Ts and Tb are the
local surface and bath temperatures, kf is the thermal conductivity of the fluid, and

L is the characteristic length scale in the problem. In pool boiling, L is the

dimension of the heater, that is, its diameter or width. In forced flow the length

scale is the diameter of the tube or cylinder. As we will see below, the Nusselt

number appears in correlations used to describe both free convection and forced

convection heat transfer.

In the case of free convection and pool boiling heat transfer the two relevant

dimensionless numbers are the Grashof number (Gr) and Prandtl number (Pr).

The Grashof number indicates the ratio of buoyancy forces relative to viscous

forces; it is represented by the relationship

Gr ¼ gb Ts � Tbð ÞL3
v2

(5.2)

where g is the acceleration of gravity, b is the bulk expansivity, and v is the

kinematic viscosity. The Prandtl number, discussed in Chap. 3, is the ratio of

the mass to thermal diffusivities of the fluid

Pr ¼ v

Dth
¼ mCp

k
(5.3)

where Dth ¼ k/rCp. For systems that are dominated by natural convection

mechanisms, that is, with negligible forced flow, the Nusselt number is a function

of these two numbers,
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Nu ¼ f Grð Þ cðPrÞ (5.4)

where f and c are functions that can be determined by the empirical correlation

of data.

Most empirical correlations for natural convection are given in terms of the

Rayleigh number, which is simply the product of the Grashof and Prandtl numbers,

Ra � Gr Pr ¼ gb Ts � Tbð ÞL3
Dthv

(5.5)

Simplified correlations can then be written in the form

Nu ¼ C Ran (5.6)

where C is an empirically determined parameter. The coefficient n is dependent

mostly on the geometrical and flow conditions. For a vertically oriented plate in an

open bath, n ¼ 1
4
and C ¼ 0.59 when the flow is laminar while n ¼ 1

3
and C ¼ 0.1

in the turbulent regime [2]. The type of heat transfer condition that exists in a

particular system can be described by the corresponding value of the Rayleigh

number. The critical Rayleigh number Rac defines the transition between these

regimes. For flat plates, the transition between pure conduction and convection

occurs for Rac � 103, while the transition between laminar and turbulent convec-

tion heat transfer usually occurs for Rac � 109. These concepts assume single-

phase heat transfer and consequently are not applicable in heat transfer processes

that involve change of phase.

5.1 Regimes of Heat Transfer

To obtain a better physical feeling for pool boiling heat transfer, it is helpful to

consider a hypothetical experimental system. Such an experiment, shown in

Fig. 5.1, consists of a flat heated plate with some arbitrary orientation exposed to

an effectively infinite bath of liquid helium. The experiment consists of heating the

plate from inside the insulated region and measuring the temperature difference

between the bath and surface, DTs, as it varies with heat flux q. There are a number

of variables that affect the results in this experiment. Among these are bath

temperature and pressure, surface orientation, physical characteristics of the heated

surface including coatings, and frequency of heat flux. The general impact of these

variables is described further below.

Given this experimental configuration, a measurement consists of determining

a relationship between the heat flux q and DTs. A typical example of such a

relationship is shown in Fig. 5.2. There are principally three regimes of heat transfer

as indicated in the figure: (1) natural convection, (2) nucleate boiling, and
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(3) film boiling. Each of these regimes has a characteristically different physical

description, a schematic representation of which is shown in Fig. 5.3. At the lowest

heat fluxes up to a few W/m2, heat is transferred by natural convection; see

Fig. 5.3a. No phase change is evident. This mechanism is characterized by den-

sity-driven convection currents near the heated surface. Surface temperature

differences can be determined by the type of correlation given in (5.6). As the

heat flux is increased, bubbles of helium vapor begin to form at preferred sites on

the surface. These are typically surface imperfections. In the natural convection

region, a certain amount of hysteresis in the heat transfer curve results from

the activation and deactivation of these nucleation sites.

Fig. 5.1 Schematic of pool

boiling heat transfer process

from a planar surface of

arbitrary orientation

Fig. 5.2 Typical heat

transfer relationship for pool

boiling liquid
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As the heat flux is increased further, the nucleation sites get fully activated,

meaning that each site contains one bubble. At this point the surface is referred to as

being “educated” since now increasing the heat flux only serves to accelerate the

rate of bubble growth and detachment. In the nucleate boiling regime, Fig. 5.3b,

there is a layer of superheated liquid adjacent to the heater surface. As a bubble

detaches, cold liquid from above rushes down to cool the surface. This bubble

growth and detachment causes macroscopic turbulence.

At still higher heat fluxes, the nucleate boiling bubbles get so large and are

detaching at such a great rate that they become unstable and coalesce into a

continuous vapor film; see Fig. 5.3c. The heat flux at which this occurs is referred

to as the peak nucleate boiling heat flux q*. This regime is called film boiling. The

condition is unstable and causes hysteresis in the heat transfer curve, as shown by

the upper region in Fig. 5.2. On decreasing the heat flux, it is necessary to go to a

value lower than q* for recovery to the nucleate boiling regime. This recovery value

is referred to as the minimum film boiling heat flux qmfb or recovery heat flux qR.
In the film boiling regime, the surface temperature difference is typically an order of

magnitude higher than with nucleate boiling. The hysteresis in this regime of heat

transfer is associated with the stability of a vapor film below a higher-density liquid.

Fig. 5.3 Schematic

representation of regimes

of heat transfer: (a) natural

convection, (b) nucleate

boiling, and (c) film boiling
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Numerous factors affect these heat transfer characteristics. For example, the

surface condition of the heat transfer sample can affect both the peak heat flux q*
and DTs, in the nucleate boiling regime. It is possible to obtain variations in these

quantities by as much as a factor of 2–3 between samples. The mechanism by which

surface preparation affects the heat transfer characteristics is believed to be

associated with the number of available nucleation sites.

Surface orientation has a profound effect on the heat transfer behavior. Variation

of the surface orientation with respect to the gravitational force can cause signifi-

cant changes in the heat flux and minimum film boiling heat flux. The highest

values for both these quantities occur with the surface facing upward, because the

buoyancy force aids bubble detachment. This argument supports the observed result

that q* and qmfb are minimum with the surface facing downward.

The thermodynamic state of the liquid helium bath is also an important para-

meter in the heat transfer process. The bath temperature has a significant effect on

various heat transfer parameters, particularly the peak nucleate boiling heat flux q*.
Similarly, the bath pressure affects these values, particularly when considering the

subcooled or supercritical state. These variables can be taken into account through

the changes in the helium properties with temperature and pressure.

The frequency with which the heat transfer event occurs is also important for

both the peak heat flux and temperature difference. At low frequencies up to

perhaps 10 Hz, the behavior does not deviate significantly from that of the

steady-state process. Heat transfer is controlled largely by convection mechanisms.

However, at higher frequencies approaching the kilohertz range there is insufficient

time for the bubble nucleation to occur. Consequently, the behavior becomes

dominated by simple heat diffusion in the liquid adjacent to the solid. Then

temperature differences are caused by two physical mechanisms – the thermal

conductivity of the helium and interfacial conductance (Kapitza conductance).

Finally, variations in geometry can have a profound effect on the heat transfer.

Many engineering systems consist of channels, tubes, or other complex geometries,

which are vastly different from the open infinite bath configuration. Such factors

can cause differences in the heat transfer at least in part caused by the limited

coolant volume. Some of the physical phenomena that can occur include heat-

induced natural circulation and vapor locking in narrow channels. In the following

sections, these issues will be discussed in further detail.

5.2 Convective Heat Transfer

At very low heat fluxes in liquid helium, q � 1 W/m2, heat is transferred by a

combination of conduction and convection. It is described by a heat transfer

coefficient h ¼ q/DTs, where h is only weakly dependent on DTs. This regime of

heat transfer has only limited technological application in liquid helium because the

heat fluxes are quite small. However, the problems of low heat flux heat transfer and

of transitions between conduction and convection do have fundamental physical
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significance. Certain special cases of heat transfer fall in the general area of exactly

soluble classical physics problems.

A good example of such a special interest is the problem of convection onset in a

layer of fluid that is heated from below. The main difference between this problem

and similar ones concerning pool boiling heat transfer is that the fluid layer is

to have a thickness dimension d that enters into the problem in one of the

dimensionalized parameters. This problem is referred to as Bénard convection

and the instability associated with the transition is called the Rayleigh-Bénard

instability. The transition is between conductive heat transfer and steady convec-

tion. As the heat flux is increased, the condition where the fluid is at rest carrying

heat by conduction is transformed to that where a polygonal convective cell

structure occurs. This type of structure has been observed in visual experiments

with room temperature fluids. These flows exhibit regularity and structure that have

inspired considerable theoretical research into the dynamics of small perturbations

in fluids heated from below. Theoretical modeling is achievable because the

disturbances are assumed to be sufficiently small that their description, at most,

adds linear terms to the fluid equations.

The theoretical description of Bénard convection begins with the continuity

equation and the equations for conservation of momentum and energy. The growth

or decay of perturbations in the velocity and temperature fields is governed by

the following linearized equations [3]:

r � v ¼ 0 (5.7a)

@v

@t
¼ � 1

r0
rpþ vr2v� gbT (5.7b)

@T

@t
¼ Dr2T � wg (5.7c)

Solutions to these equations establish the regions of convection growth or decay.

The boundary between these regions is defined by a “critical” Rayleigh number

which effectively is a nondimensional temperature difference. The most interesting

of the three equations is (5.7c) which describes the effect of motion on the

temperature gradient. Without the second term, wg, the expression is simply the

heat diffusion equation. The parameter g is defined as the undisturbed temperature

gradient due only to conduction (g ¼ q/k). The physical meaning of the term wg is
that of the motion generator. Heat is swept upward while the cold fluid returns. Heat

conduction is necessary to generate the initial temperature gradient, but since mass

flow is involved, viscosity enters to resist the growth of the perturbation.

The problem of Bénard convection in He I has been studied by a number of

workers. Experimental measurements normally consist of determining the variation

of the Nusselt number with the normalized Rayleigh number (Ra/Rac). For any

fluid, the Nusselt number represents the ratio of the effective thermal conductivity

to the actual thermal conductivity obtained without convection. Plotted in Fig. 5.4 is
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the normalized Nusselt number for one set of experiments on He I [4]. A number of

interesting facts can be gleaned from these data. For example, above Rac the

Nusselt number increases quite strongly with Ra. This is to be expected because

the convection currents improve the heat transport. However, it is worth noting that

the behavior of the Nu versus Ra/Rac plot appears to be somewhat universal in

form. Slight differences in the data displayed in Fig. 5.4 are attributed to geometri-

cal factors in the experiment.

The Rayleigh-Bénard instability is an interesting classical fluids problem.

Its connection with helium heat transfer in practical configurations is limited,

yet it does give fundamental insight into the fluid flow problem. As the heat flux

is increased above about 0.1 W/m2 bubbles begin to nucleate on the surface and

simple convection is no longer the generally applicable solution. This problem is

discussed in the next section.

Free convection heat transfer in cold helium gas is a more practically significant

process because it can involve large heat fluxes. Helium near the critical point and

in the supercritical regime has been studied fairly extensively [5–7]. Near the

critical point, the heat transfer is seen to be enhanced considerably. For example,

near 0.224 MPa, heat transfer coefficients as high as 100 kW/m2 K have been

observed. Such results correlate with the maxima in the thermodynamic properties

near the critical point. Away from the critical point, the results are correlated best as

a function of the Rayleigh number as (5.6). A reasonable fit to much of the helium

data in this regime can be obtained from the expression [8],

Nu ¼ 0:615 Ra0:258 (5.8)

Fig. 5.4 Nusselt number as a

function of Ra/Rac for

Rayleigh-Bénard instability

(From Behringer and

Ahlers [4])
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which is close to the form expected for laminar free-convection heat transfer.

A compilation of convective heat transfer results for supercritical helium is

shown in Fig. 5.5 along with several correlations. There is a characteristic trend

to the data; however, the agreement between various experiments is variable.

5.3 Nucleate Boiling Heat Transfer

Above a heat flux of a fewW/m2 in liquid helium the heat transfer surface begins to be

covered with a large number of small vapor bubbles. This heat transfer process is quite

different from that of natural convection because it is controlled mostly by the

hydrodynamics of bubble growth and detachment rather than convection in the liquid.

Two conditions must exist at or near the heat transfer interface before there can

be activation of bubble nucleation sites. First, there must be a boundary layer of

liquid adjacent to the surface which is in the superheated condition. The thickness

of this layer is determined by the thermal conductivity of the liquid, k, and the

allowable superheat, DTs ¼ Ts – Tb, where Ts is the maximum superheat tempera-

ture and Tb is the bath temperature. The thermal boundary layer thickness can

therefore be written

d � k DTs
q

(5.9)

Fig. 5.5 Comparison of data and correlations on free convection heat transfer to supercritical

helium (From Hilal [8])
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Typically, d is of the order of 1–10 mm for liquid helium near its normal boiling

point.

Second, local surface imperfections must exist. These imperfections are neces-

sary to provide preferential regions where bubbles can form. Shown schematically

in Fig. 5.6, these imperfections usually are envisioned to be grooves or slots which

allow a bubble to form with negative curvature, thus taking advantage of surface

tension to stimulate the bubble nucleation. There are two principal reasons why

the superheated boundary layer must form near the interface before substantial

vapor nucleation can occur. First, the liquid near the interface is subcooled by the

hydrostatic head (Dp ¼ rgh) such that the local temperature must increase above

ambient before the saturation condition can be attained. Second, and probably

more important, in order to have vapor bubbles of positive radius of curvature,

the surface tension of the liquid must be overcome.

5.3.1 Nucleation Theory

So far the discussion of nucleate boiling has been quite general and qualitative.

However, it is worth considering two specific questions of quantitative nature.

These concern the general vapor nucleation problem but are worked out as

examples for the case of boiling liquid helium. The first question pertains to the

growth of a vapor bubble on a nucleation site or actually anywhere in the bulk fluid.

For a given amount of superheat, a bubble will be stable against the surface tension

which is trying to collapse it. This problem involves consideration of the stability

of a vapor bubble immersed in the bulk liquid – a case similar to that shown

schematically in Fig. 5.6c.

The stability of a vapor bubble in the liquid can be evaluated in terms of the

Clausius–Clapeyron equation. Considering the change of state between the liquid and

vapor, thermodynamic stability requires that the vapor pressure derivative be given by

dp

dT

����
sat

¼ Ds
Dv

¼ hfg
T Dv

(5.10)

Fig. 5.6 Bubble nucleation on an imperfect surface: (a) negative radius of curvature, (b) positive

radius of curvature, and (c) critical radius
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where hfg is the latent heat of the liquid and Dv ¼ vg – vl is the difference between
the specific volumes of the vapor and liquid. For the interface of the bubble to be

stable, it must have a pressure inside, pv, which exceeds the local saturation

pressure, ps, by an amount related to the surface tension s. For a spherical bubble,
this requirement leads to the expression

pv � ps ¼ 2s
r

(5.11)

where r is the local bubble radius. Obviously, the smaller the bubble the larger must

be the pressure difference.

To get a feel for the order of magnitude of the quantities involved, assume that

helium vapor obeys the ideal gas law and that the specific volume of the vapor is

much greater than that of the liquid. These assumptions lead to the following

approximation:

Dv � vg � RT

p
(5.12)

Substituting (5.12) into (5.10) leads to a differential relationship

dp

p
¼ hfg

R

dT

T2
(5.13)

This expression must be integrated between saturation (Ts, ps) and the condition

inside the bubble (Tv, pv) as determined by the stability relationship (5.11). Such

a procedure yields a common relationship for the required vapor pressure within a

bubble.

pv ¼ pse
hfgDTs=RT2

s (5.14)

where a further approximation has been made that the temperature difference,

DTs ¼ Tv – Ts, is small compared to Ts.
The present discussion is aimed at determining the minimum radius of a stable

vapor bubble in the bulk liquid. Substituting the expression for equilibrium of a

vapor bubble (5.11) and allowing the radius to be undetermined, we obtain an

expression for the critical radius,

rc ¼ 2s
ps

ehfgDTs=RT
2
s � 1

� ��1

(5.15)

which subsequently can be solved to determine the approximate value of rc for

any fluid.
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Example 5.1

Calculate the critical radius for a vapor bubble in liquid helium at 4.2 K,

100 kPa. Assume that the vapor is superheated by 0.3 K. Estimate the number

of helium molecules within the bubble.

Under the assumed conditions, hfg ¼ 82 J/mol and s ¼ 0.15 mJ/m2 for a critical

temperature difference assume DT � 0.3 K. Inserting these numerical values

into (5.15)

rc ¼ 2s
ps

ehfgDTs=RT
2
s � 1

� ��1

yields a critical radius rc � 16.4 nm. The volume of the sphere is then,

V ¼ 4

3
pr3 ¼ 1:8� 10�23m3

But the number density of helium molecules at 4.2 K is about 2.6 � 1027/m3 so

the sphere contains approximately 104 atoms. It is reasonable to assume that the

bubble containing this many molecules represents a thermodynamic system.

Note that the above calculation is limited by the assumptions that vg � vl and the
ideal gas behavior for the vapor phase. These assumptions can lead to considerable

inaccuracies in calculations of both the critical radii and the nucleation temperature.

The above calculation contains an assumed value for the superheat required to

initiate the nucleation process, DTs. Experimentally determined superheats actually

vary by as much as half an order of magnitude. The highest values are obtained

for the most ideal surfaces where nucleation is assumed to be homogeneous. These

systems give nucleation superheats around 0.35 K at 4.2 K, 0.1 MPa. In fact,

homogeneous nucleation superheat has been measured over the entire He I range

and shown to agree with the empirical relationship [9]

DTs ¼ 4:322 1� Tb
Tc

� �1:534

(5.16)

An expression can be derived for the homogeneous nucleation temperature

based on a model suggested by Frenkel [10]. The analysis yields the rate of

formation of bubbles having the critical radius rc as defined by (5.11). As a function
of the fluid properties, the rate is given by

R ¼ nl
s
m

� �1=2
exp � 4p

3

s r2c
kBTs

� �
(5.17)

where nl is the number density in the liquid and m is the mass of a helium atom. The

critical radius rc is a function of the superheat DTs, as well as other parameters such

as absolute temperature Ts.
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The expression given by (5.17) can be used to calculate the critical radius rc or
preferably the superheat DTs. Such a calculation requires one arbitrary assumption:

that of the reaction rate for the onset of nucleation. However, since the critical

parameters enter into the exponential, the results are only weakly dependent on

the choice of R. Typical values for this quantity are assumed to be 1 cm–3�s–1.
Furthermore, it is not possible to use the form developed above for the critical

radius because the nonideality of the vapor phase plays an important role. Flint and

Van Cleve [11] were able to obtain good agreement between experiment and theory

if they used the actual behavior of the helium vapor pressure curve. The results of

their calculation are shown in Fig. 5.7 along with experimental values for the

nucleation superheat. These results were obtained on polished silicon chips oriented

vertically in a bath of saturated liquid helium. The critical temperature differences

are determined by noting the point where the hysteresis ended in a q versus DT
curve; see Fig. 5.2. These data indicate a close correspondence between homo-

geneous nucleation theory and experiment. Typically, nucleation temperatures on

real roughened surfaces are lower than those indicated in Fig. 5.7.

5.3.2 Heat Transfer Correlations

Once nucleation has occurred and the bubbles are large enough to be stable

against collapse in the bulk fluid, the heat transfer becomes dependent on the

hydrodynamics of bubble detachment and growth. To model the nucleate boiling

heat transfer in this regime, it is necessary to know a number of quantities including

Fig. 5.7 Homogeneous

nucleation limit for liquid

helium heat transfer (From

Flint and Van Cleve [11])
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the rate of bubble growth, frequency of detachment, and something of the

hydrodynamics of the two-phase fluid consisting of the liquid in the vicinity of

the bubble. A conceptual picture of the hydrodynamics of an individual bubble is

beneficial in understanding the heat transfer mechanisms.

In the vicinity of the nucleation site, it was observed by Hsu and Graham [12]

that a departing bubble took with it an area of superheated liquid equal to approxi-

mately twice the projected area of the bubble. Based on this hypothesis, shown

schematically in Fig. 5.8, it is possible to account for the heat removed by one

bubble as a sum of two quantities [13]

qb ¼ 4p
3
hfgrv

Z
A

nfr3b dAþ 2pDTsClrld
Z
A

nfr2b dA (5.18)

where n is the number of nuclei per unit area of surface and the integrals are over the

entire heat transfer surface area. The first quantity on the right-hand side is that due

to the latent heat of the helium within the bubble, while the second is the heat

required to superheat a new layer of liquid that replenishes the layer taken away

with the departing bubble. The difficulties associated with applying (5.18) to real

problems are multifold. First, the frequency of detachment f is involved with both

terms in (5.18). The heat flux is proportional to f, which is largely an experimental

quantity. The quantity is dependent on n, the number of nucleation sites per area,

and rc, the critical size of a departing bubble. The amount of superheat DTs also
enters (5.18) in the second term. In principle, this quantity can be determined from

(5.17); however, for real surfaces it can vary considerably.

An additional complication enters when attempting to determine the total heat

transferred in the nucleate boiling regime. In an actual process, there are two

heat transfer terms: one due to bubble hydrodynamics, qb, and one due to natural

convection in the bulk fluid, qnc:

qnb ¼ qb þ qnc (5.19)

There may be an additional contribution due to the interaction between natural

convection and boiling, but it is unclear what form it would take. It is tempting to

Fig. 5.8 Schematic of

departing bubble and area

of superheated liquid

(From Bald [13])
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neglect the natural convection term, assuming it is small; however, this is not

always possible. Except in very special geometries, it is not possible to determine

qnc exactly. Therefore, engineering correlations are needed to describe the second

term in (5.19). In general, the natural convection heat transfer can be written as a

function of the dimensionless Rayleigh number as given by (5.6).

The above analysis has the potential of being able to describe the heat transfer in

the nucleate boiling region. However, difficulty arises when determining the

variables that enter (5.18) and (5.19). These variables mostly include the functional

form of the natural convection, the amount of superheat DTs, the bubble density n,
and detachment frequency f. Since this analysis has limited practical usefulness,

the preferred approach is to characterize the total heat transfer in terms of an

engineering correlation.

The most popular and probably the best correlation used to describe the nucleate

boiling regime is due to Kutateladze [14]. It is based on theory and experimental

scaling of heat transfer to many different fluids:

h

kl

s
grl

� �1=2

¼ 3:25� 10�4 qCplrl
hfgrvkl

s
grl

� �1=2
" #0:6

� g
rl
ml

� �2 s
grl

� �3=2
" #0:125

p

sgrlð Þ1=2
 !0:7

(5.20)

where g is the acceleration of gravity and hfg is the latent heat of vaporization.

Although (5.20) is a complex expression, it does predict a reasonably correct

functional dependence for the nucleate boiling heat transfer. Rearranging (5.20)

into a more manageable form leads to the relationship

q ¼ 1:90� 10�9 g
rl
ml

� �2

w3
" #0:3125

pw
s

� �1:75 rl
rv

� �1:5

� Cpl

hfg

� �1:5 kl
w

� �
Ts � Tbð Þ2:5 (5.21a)

where

w ¼ s
grl

� �1=2

(5.21b)

and Ts and Tb are the surface and bath temperatures, respectively. The expression

given by (5.21) is evaluated more easily. For the case of He I at 4.2 K, 0.1 MPa,

the coefficient of proportionality can be calculated to equal 58 kW/m2K5.

The Kutateladze correlation is in reasonable accord with experimental measure-

ments of heat transfer in He I. However, there is a wide variation in experimental
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data owing to the differences in sample preparation and surface material and

orientation [15]. It is not too surprising, based on the hydrodynamic arguments

above, that different surface preparations would yield much different results.

Figure 5.9 is a compilation of nucleate pool boiling data for flat copper surfaces

facing upward and experiencing an increasing heat flux. The data vary over at least

half an order of magnitude in DT with the smoothest surfaces apparently allowing

a larger superheat. The larger superheat seen in smooth surfaces is consistent with

the homogeneous nucleation arguments presented at the beginning of this section.

Finally, note that an empirical fit used by Schmidt [16] to describe the data is also

plotted in Fig. 5.9. This fit, which is quite close to the Kutateladze correlation with

the exception of the coefficient of proportionality, is a conservative form useful for

engineering applications.

5.3.3 Maximum Nucleate Boiling Heat Flux

The qualitative picture applied to the understanding of the maximum heat flux in

pool boiling He I is as follows. Imagine a surface populated with a number of

nucleation sites. At high heat fluxes, these sites are actively nucleating bubbles that

grow to a stable size and detach at a frequency f controlled by buoyancy forces.

With increasing heat flux, the number and size of these bubbles grow until a point

is reached where they cover a sizable fraction of the heater surface. At this point,

the individual bubbles are no longer the lowest-energy condition. They will prefer

Fig. 5.9 Nucleate boiling heat transfer to He I (Compilation of data and suggested correlation

from Schmidt [16])
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to coalesce into a continuous vapor film which will blanket the entire heat transfer

surface. This condition usually is referred to as the onset of film boiling. The

difficulty is in being able to understand and predict the value of heat flux at

which this event occurs, q*.
To obtain some physical feeling for the occurrence of the maximum heat

flux, consider an idealized surface facing upward as in Fig. 5.3b. The vapor bubbles

are departing at velocity vv while the replenishing liquid moves in the opposite

direction at velocity vl. These velocities are not independent variables because

the heat flow is determined by the rate of growth and departure of the vapor

bubbles.

The hydrodynamics of this process is described by the Helmholtz instability

[17], which pertains to the critical velocity of immiscible fluids moving relative

to each other. Assume the liquid and vapor phases represent these two immiscible

fluids. Then the boundary separating the two fluids would show an upward-moving

vapor and downward-moving liquid. For these two fluids to pass each other

undisturbed, the boundary that separates them must remain stable. The stability

of this boundary is a function of a number of parameters including the relative

velocities and densities of the two fluids. This is believed to be the condition that

imposes the peak heat flux limit in classical liquids including He I.

Because of the relative motion of each fluid, there can be a surface wave set

up at the interface. The velocity of this wave, cs, is dependent on a number of

factors including the surface tension and properties of the individual phases.

The relationship for the surface wave velocity is

c2s ¼
sm

rl þ rv
� rlrv

rl þ rvð Þ2 vv � vlð Þ2 (5.22)

where m ¼ 2p/l is the wave number of the surface wave. Since (5.22) consists of a

difference between two positive quantities, it is possible for c2S to have either a

positive or negative value. For c2S>0 the surface wave can exist. If c2S>0 the surface

wave velocity is imaginary, implying an instability in the interface. Therefore, the

condition for maximum vapor velocity is obtained by equating c2S to zero. Using

conservation of mass flow, that is, rvvv + rlvl ¼ 0, a simple expression is obtained:

v�v ¼ rlsm
rv rl þ rvð Þ
� �1=2

(5.23)

If the vapor velocity exceeds the value given by (5.23) there should be an unstable

two-phase flow. The result is destruction of the interface between the two phases,

which in turn leads to a condition where the vapor film blankets the heat transfer

surface. This condition occurs at the maximum heat flux.

Zuber et al. [18] used the above reasoning to predict analytically the maximum

heat flux q*. Assuming that the heat is transported primarily by the vapor velocity

and that the latent heat of the liquid that goes into the formation of the bubble is the
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dominant energy, Zuber and coworkers argued that the maximum heat flux can be

written as a product of these quantities, that is,

q� ¼ Khfgrv
s rl � rvð Þg

r2v

� �1=4 rl
rl þ rv

� �1=2

(5.24)

where K is a numerical factor which in the case under consideration has a value of

p/24. It is possible to derive a similar relationship for q* from dimensionless group

analysis. Based on experimental evidence, a similar relationship has developed

acceptance [19, 20] that is,

q� ¼ 0:16hfgr1=2v sg rl � rvð Þ½ 	1=4 (5.25)

which is in close agreement with (5.24) with the exception of the last factor. The

numerical factor in (5.25) is determined by correlation of numerous experimental

results. For a numerical comparison, (5.25) predicts for liquid helium at 4.2 K,

0.1 MPa a value of q* ¼ 8.5 kW/m2, which is in reasonable agreement with

experimental results ranging from 5 kW/m2 to around 15 kW/m2. However, to test

the relationship represented by (5.25) for a particular fluid, it is necessary to make

measurements over a wide range of vapor densities or temperatures. Furthermore,

to determine whether the correlation is universally acceptable, measurements of q*
for a variety of fluids are required. These experimental investigations determine the

empirical constant of proportionality. Plotted in Fig. 5.10 are normalized measure-

ments of q*/hfgrv versus the density function given in (5.25) [20]. Reasonable

agreement with the correlation is seen for the three cryogenic fluids considered.

Fig. 5.10 Comparison of

peak nucleate boiling heat

fluxes with Kutateladze

correlation (From Lyon [20])
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It is worthwhile considering the temperature and orientation dependencies of q* in
comparison to (5.25). At high temperatures, q* would be expected to decrease

because as the critical point is approached there is no phase change associated with

boiling and the latent heat vanishes. The theoretical expression indicates that the peak

heat flux should go as the latent heat times the fourth root of the density difference.

Both quantities vanish at the critical point. At low temperatures the latent heat

approaches a constant and the temperature dependence is determined by the square

root of the vapor density, which in turn decreases with temperature. Therefore, there

should be a maximum in the peak heat flux. Analogous although somewhat less

successful arguments can be used to describe the orientation dependence of q*. Since
the peak heat flux is proportional to the square root of the gravitational acceleration g,
the buoyancy effects should decrease as the surface is turned from facing upward to

facing downward. In fact, based on this simple argument, a surface facing downward

should have q* ¼ 0. Experimentally, q* obtains a minimum value a 180
 orientation
although its value is considerably greater than zero.

Measurements of the temperature and orientation dependence of q* have been

conducted most comprehensively by Lyon [20]. The orientation dependence of the

maximum nucleate boiling heat flux is shown in Fig. 5.11. Note that for these

experiments q* ¼ 8 kW/m2 at 4.2 K which is quite close to the theoretical predic-

tion. Furthermore, for each orientation there is a maximum value in the temperature

dependence of q*. Experimentally, this maximum occurs around 3.6 K. Finally, the

Fig. 5.11 Orientation

dependence to the nucleate

boiling heat flux (From Lyon

[20])
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orientation dependence is in qualitative agreement with theory. A minimum in q*
does occur at y ¼ 180
, that is facing downward. However, the value of q* at

y ¼ 180
 is still quite sizable, being about 25% of q* for y ¼ 0
.
The above correlations do not apply when the helium is subcooled to a state

substantially off the saturated vapor pressure curve. In this case there can be no

coexisting vapor. Some work [21–23] on the effect of subcooling on heat transfer

has attempted to treat the peak heat flux correlation in terms of a subcooled

temperature difference DTsub. The subcooled temperature difference is defined as

the difference between the bath temperature Tb and the temperature corresponding

to saturation Tsat. As heat is applied from the heat transfer surface, the temperature

rises. However, in subcooled He I a larger temperature difference is required than in

saturated He I. This is due to the need to bring the local environment first to

saturation followed by the amount of superheat needed to initiate nucleate boiling.

Therefore, the absolute temperature needed to cause boiling at a given pressure

should be independent of bath temperature. Such a hypothesis leads to a correlation

for the enhancement of peak heat flux q* with subcooling

q�sub
q�sat

¼ 1þ aCpDTsub
hfg

(5.26)

where a is an empirical parameter found to be close to 1.75. Comparison of

experimental results with the correlation given by (5.26) are shown in Fig. 5.12.

Agreement is reasonable although the theory has received only limited application.

5.4 Film Boiling

Once the film boiling condition has been established, normally by exceeding q*
under steady-state conditions, a wholly different heat transfer process takes place.

In the vicinity of the heat transfer interface the helium takes on a stable two-phase

Fig. 5.12 Variation of the

peak nucleate boiling heat

flux with subcooling (From

Ibrahim et al. [21])
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condition with a thin vapor layer blanketing the surface from the He I bath. For a

surface facing upward, this condition is gravitationally unstable since the density

of the liquid is considerably greater than that of the vapor. Experimentally, it is

found that return to the nucleate boiling state requires a decrease in heat flux to qR
or qmfb, which can be substantially less than q* for most configurations. It follows

that there are two principal issues that should be addressed when evaluating the

film boiling state. First, given the conditions of film boiling, how is the recovery

process explained? In particular, is it possible to predict qR? This process has to

do with the stability of the He I–vapor interface. The second question pertains to

the need to correlate the heat transfer coefficient in the film boiling condition.

This process normally relies on dimensionless group analysis developed for

other liquids.

5.4.1 Minimum Film Boiling Heat Flux

The stability of the vapor film blanketing the heat transfer surface can be evaluated

in terms of a hydrodynamic condition referred to as the Taylor instability [17].

This interpretation is a standard approach to treating the interface between two

dissimilar fluids. Imagine the condition shown in Fig. 5.13 which is an idealized

film boiling heat transfer process. The liquid helium is heavier than the vapor so it

would prefer to rewet the surface; however, it is being maintained in the present

condition by the high-temperature vapor film. The stability of the liquid-vapor

interface is controlled by the behavior of surface wave oscillations. The wave can

be assumed to have an amplitude �0, and a wavelength l. Surface waves must be

damped for the interface to be stable, otherwise the amplitude would grow beyond

the vapor film thickness and rewet the surface. It is therefore reasonable to

construct a model based on the assumption that the stability of these waves controls

the recovery process.

To be more quantitative about the above argument, assume that the stability of a

surface wave is assured if the energy associated with surface tension exceeds the

combination of the kinetic and potential energies in the wave. Both these terms are

related to the amplitude of the surface oscillation �0, as well as physical parameters

Fig. 5.13 Idealized film

boiling heat transfer process
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such as densities and surface tension. The kinetic and potential energies can be

related as

E

l�

������
KP

¼ g rl þ rvð Þ�20
2

(5.27)

where l� is the wavelength of the surface oscillation and g is the gravitational

acceleration. Similarly, the surface term can be written

E

l�

������
s

¼ 1

l�

Z l�

0

Dp � dx (5.28)

where Dp is taken to be the pressure difference and � is a sinusoidal varying wave,

that is � ¼ �0 sin 2px=l�. By integrating over the wavelength of the oscillation and

using the approximation that the surface wave oscillation is small compared to l� ,
we can evaluate the integral (5.28):

E

l�

������
s

¼ 4ps�20
l�
2

(5.29)

As already stated, the condition for stability demands that the surface energy

exceed the dynamic energy. This leads to a condition on l� by demanding that

(5.29) not exceed (5.27), that is,

l�<2p
2s

g rl � rvð Þ
� �1

2

(5.30)

For liquid helium near 4.2 K, (5.30) is obeyed for wavelengths less than about

2 mm, a dimension that must be comparable to a characteristic distance in the heat

transfer problem, for example, the typical bubble dimension.

The minimum film boiling heat flux qR can be understood by application of the

Taylor instability theory to the film boiling heat transfer condition. Lienhard and

Wong [24] and Zuber [18] used this analysis, identifying the breakdown of film

boiling with the amplitude of the surface wave. The general relationship has one

empirical constant and an explicit diameter dependence. For the special case of a

flat plane, the correlation is simplified considerably:

q
R
¼ 0:16 hfgrv

gs rl � rvð Þ
rl þ rvð Þ2

 !1=4

(5.31)
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It is interesting to compare (5.31) with (5.24), which predicts the peak heat flux

q*. Taking a ratio of these two expressions, the only important parameters turn out

to be the relative densities of the liquid and vapor,

q
R

q� ¼ rv
rl þ rv

� �1=2

(5.32)

For example, considering liquid helium at 4.2 K, we find that the ratio described

by (5.32) has a value of 0.35 at atmospheric pressure. Therefore, assuming

q* ¼ 8.5 kW/m2 as measured by Lyon [21] we find that (5.32) predicts a minimum

film boiling heat flux of about 3 kW/m2 in close agreement with experimental

measurements.

The pressure dependence of the recovery heat flux is worth considering in light

of the noted behavior of q*(p). As was observed in the previous section, subcooling
increases q* by about 50% per degree of DTsub near atmospheric pressure. The

subcooling effect on qR is greater, as can be seen in Fig. 5.14. Note that qR increases
by about 90% per degree of DTsub near atmospheric pressure [18]. The correlating

relationships for the minimum film boiling heat flux predict this effect. Subcooling

increases the ratio of the vapor to liquid density at saturation, which would result in

an increase in qR/q*, as observed by experiment.

Fig. 5.14 Minimum film boiling heat flux for subcooled He I (from Ibrahim et al. [21])
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5.4.2 Heat Transfer Correlations

Once stable film boiling is established, it is of interest to be able to predict the

magnitude of the film boiling heat transfer coefficient hfb or the rate of heat flux qfb
for a given DT. Experimentally, hfb has values that range over more than an order of

magnitude between about 0.3 kW/m2 K and nearly 10 kW/m2 K, with the latter

being achieved for fine wires with diameters of ~10 mm. The film boiling heat

transfer also depends on fluid properties, being a function of the vapor and liquid

densities, latent heat, and surface tension s.
A number of semi-empirical correlations exist for prediction of heat transfer on

the film boiling condition. The best known and perhaps most accepted of those is

due to Breen and Westwater [25]. As in the case of the minimum film boiling heat

flux qR, these authors base their theory on the Taylor instability. They consider the

wavelength condition given by (5.30) as the minimum required to release vapor

bubbles into the bulk fluid from the boiling film. The correlation depends on the

thermal properties of the fluid including specific heat and viscosity in addition

to geometrical conditions such as the diameter of the heat transfer sample.

The correlation relates the film boiling heat transfer coefficient to these quantities

and a number of numerical constants:

hfb
s

g rl � rvð Þ
� �1=8 mv Ts � Tbð Þ

k3vrv rl � rvð Þgl0
� �1=4

¼ 0:37þ 0:28
s

gD2 rl � ruð Þ
� �1=2

(5.33a)

where

l0 ¼ hfg þ 0:34Cpv Ts � Tbð Þ� �2
hfg

(5.33b)

and represents an effective latent heat. Ts and Tb are the surface and bath

temperatures, respectively. D is the diameter of the heater surface, which for film

boiling has an effect on the heat transfer coefficient. For the special case where the

heater diameter is greater than a few millimeters, the second term on the right-hand

side is small and (5.33) may be approximated by the relationship

hfb ¼ 0:37
g rl � rvð Þ

s

� �1=8 k3vrv rl � ruð Þgl0
mv Ts � Tbð Þ

� �1=4

(5.34)

Furthermore, in helium for moderate temperature differences, that is DT ≳ 5 K,

the second term in (5.33b) is dominant. Under these conditions, it can be shown

easily that film boiling heat transfer q � (Ts – Tb)
3/4

.
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In summary, Fig. 5.15 is a plot of the various predictive relationships for nucleate

and film boiling heat transfer [26]. A Comparison between data for nucleate boiling

and minimum film boiling has been made already. For the case of film boiling heat

transfer, the Breen–Westwater correlation is onlymoderately successful a predicting

experimental data [19]. In general, film boiling heat transfer coefficients measured

on fine wires has yielded consistently higher heat transfer coefficients than

calculated from the above correlation.

5.5 Surface Effects

For the most part, heat transfer analysis for He I takes little account of the character

of the surface. In steady-state heat transfer, the surface is discussed only qualitatively

in terms of activated nucleation sites. Heat transfer correlations used to describe

nucleate boiling and both critical heat fluxes make no attempt to include the surface

character in their treatment. This clearly is a weakness in the theory for there are

considerable surface-induced changes in these values. For transient heat transfer, a

greater effort is put forth to include the surface physics. As was discussed in Sect. 5.6

Kapitza conductance, which is a solid-state interfacial result, must be included when

attempting to understand the transient conduction heat transfer. Since surface

characteristics are not generally included in engineering correlations, it is of interest

to consider how variations in surface character affect experimental results.

There has not been a great deal of research conducted on surface-dependent

heat transfer in He I [27–29]. In the case of steady-state investigations, surface

Fig. 5.15 A summary of pool boiling heat transfer correlations for He I
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roughness, as measured by the coarseness of the surface abrasive, strongly affects

the nucleate boiling regime. This effect can be understood qualitatively by consid-

ering arguments of activated nucleation sites. The smoother the surface, the fewer

active nucleation sites. Since activated sites induce convection, a polished surface

should have a larger surface temperature difference DTs for the same heat flux. This

result has been observed by Boissin et al. [27]. Chemical treatment also has shown

to affect the nucleate boiling regime [29]. These coatings combined with gross

surface roughness have been employed to enhance cooling of composite conductors

for large superconducting magnets.

Surface coatings also have been shown to affect the values of peak and recovery

heat fluxes, q* and qR. The correlations used to describe these events in heat transfer
do not include any of the surface characteristics. Cummings and Smith [28]

have shown a clear increase in both the peak heat flux q* and recovery value qR
with increased surface coatings. In their results shown in Fig. 5.16, the coatings

were obtained by condensing H2O crystals on the surface. Similar behavior was

observed by Ogata and Nakayama [29] on chemically treated surfaces. These

results are not understood in terms of heat transfer models, but they represent

interesting and technically significant improvements.

5.6 Channel Heat Transfer

As a very interesting and technically significant special case of pool boiling heat

transfer, consider the channel heat transfer problem described schematically in

Fig. 5.17. A channel of width w is formed between a heat transfer surface and a

Fig. 5.16 Influence of H2O coatings on pool boiling heat transfer (From Cummings and Smith

[28])
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second adjacent surface. The channel may be oriented at any angle between vertical

and horizontal leading to variations of the heat transfer conditions. This particular

problem is significant because it models an open cooling channel in a technical

device such as a superconducting magnet. When heat is applied to the surface, the

liquid can circulate owing to the thermosiphon effect where bubbles are transported

under the influence of buoyancy forces, as discussed in Sect. 4.3.3.

If the channel is heated over its length, then the fluid accumulates vapor and

the quality increases. If a low-quality fluid enters a heated tube section from below.

Initially, nucleate boiling occurs at the fluid-tube interface. These bubbles are

stripped from the wall and produce local bubbly flow. As the fluid continues through

the tube more heat is transferred, increasing the vapor quality until slug flow and

finally annular flow occur. This sequence of events is illustrated in Fig. 5.18.

Also, as the heat flux from the surface is increased, film boiling may eventually

initiate at the top of the channel where the vapor quality is greatest. Because of

the induced flow, the peak heat flux at the channel bottom can be quite large.

The position dependence of the peak heat flux in one set of experiments is shown in

Fig. 5.19. For vertically oriented surfaces in an open bath at 4.2 K, the peak heat

flux is usually in the neighborhood of 6 kW/m2. Therefore, the bottom of the

channel has q* quite close to that observed in an open bath. As the helium is

vaporized and transported up the channel, the local peak heat flux is depressed.

In the present example, the peak heat flux near the top approaches 3.4 kW/m2,

almost a 50% reduction.

Wilson [31] conducted one study of channel heat transfer in an experiment

having variable height and width. The following set of observations were made.

Fig. 5.17 Schematic of a

heat transfer channel
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First, for small width w, the peak heat flux averaged over the entire surface area

was directly proportional to the heat flux in the helium channel and therefore

proportional to w. This suggests that the peak heat flux is governed by the bulk

fluid flow. Second, for constant w, the peak heat flux was found to be inversely

proportional to the square root of the channel height z. Based on the results as they

depend on w, this indicates that the bulk heat flow varies as z–1/2. Finally, it was
found that for w/z > 0.1, the channel behaved effectively as an open bath with q*
approaching that of a vertically oriented surface, q* ~ 6 kW/m2.

Sydoriak and Roberts [32] derived a general relationship for frictionless homo-

geneous flow of a fluid in a evaporator, which Wilson applied to this channel heat

Fig. 5.18 Flow patterns in

a vertical heated channel

(From Tong [17])

Fig. 5.19 Position

dependence of the peak heat

flux in a He I cooled channel

(Lehangre et al. [30])
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transfer problem. The prediction for the critical power per unit area of heated

surface, Q*/As, is given by

Q�
As

¼ wffiffi
z

p hfgrl
2

g~q

b� 1
1� ln 1þ ~q b� 1ð Þ½ 	

~q b� 1ð Þ
� �
 �1=2

(5.35)

where b ¼ rl/rv and ~q is the “critical quality” – the mass ratio of vapor to total

(liquid plus vapor) at the channel top when film boiling initiates. This last quantity

must be determined empirically although in general it should be a scalable function

for different fluids.

A plot of the critical power versus channel width w for different channel lengths

z should give a linear plot from which the proportionality function Q*z1/2/wAs can

be determined. Such a plot is displayed in Fig. 5.20 for four different channel

heights. The linear plot obtained yields a critical quality ~q ranging from 0.33 to

0.26 in the case of the largest channel. Thus, for calculations, (5.35) should be a

reasonable approximation for Q*/As assuming a constant value for ~q � 0:3.
One difficulty with the above described analysis is that it does not naturally lead

into the open bath limit for w/z > 0.1. In an effort to develop a more general

equation for channel heat transfer, Lehangre et al. [30] suggested a correlation

based on a series of experiments of different configuration:

Q�
As

¼ 10

1:7þ 0:125 z=Dhð Þ0:88 (5.36)

Fig. 5.20 Critical power versus channel width for He I heat transfer (From Wilson [31]).
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where Q*/As is in kW/m2. The quantity Dh is the hydraulic diameter which is

equal to four times the ratio of the flow cross section to the heated perimeter.

Equation (5.36) has the appropriate limit for w/z large; however, for channels other
than in the vertical orientation it is not applicable.

Chen and Van Sciver [33] noted that for wide channels the maximum heat flux

q* should correlate with the open bath pool boiling results by Lyon [20]

(see Fig. 5.11). The results of these experiments are shown in Fig. 5.21, where

the angle y is measured from the vertical orientation. There are two physical

processes that lead to the observed angular dependence of q*. The first process is

nucleate boiling associated with movement of vapor bubbles normal to the heated

surface. This effect, which is maximum at an angle of 90
, can be assumed to

control the heat transfer process for large w. The other process is associated with

the natural circulation of the heated fluid, where the movement is parallel to the

heated surface. The natural circulation process is a maximum at y ¼ 0
 and should

Fig. 5.21 Variation of the peak heat flux with channel orientation and width at 4.2 K. Channel is

127 mm in length [33]
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dominate the heat transfer in the limit of small w. The combination of these two

processes is necessary to describe the variation of q* with y and w. In particular,

one would expect the maximum value of q* to vary continuously between 0
 and
90
 as the channel width is increased.

A general correlation used to describe the angle and width dependencies of q* is
of the form

q� ¼ b sin
yþ 90


2

� �
þ c cos yð Þ1=2 (5.37)

where b and c are adjustable parameters, which should be functions of w only.

The width dependence of these parameters is shown in Fig. 5.22. The basis for

(5.37) is purely empirical evidence. The first term is used to describe the nucleate

boiling heat transfer process. The angular dependence is in reasonable agree-

ment with Lyon’s pool boiling data. The second term represents the natural

circulation process. The (cos y)1/2 angular dependence not only fits the experi-

mental data for small w but is consistent with the Wilson’s correlation which

predicts q* / g1/2.

Fig. 5.22 Parameters used to fit the variation of q* with y in (5.37)
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As a final comment on channel heat transfer, the steady-state conditions as

described above generally take a considerable time to become established. This is

because the natural circulation requires a substantial temperature rise and vapor

production before it is fully established. Naturally, the time to reach steady state

depends on the magnitude of Q*/As, but for significant heat fluxes, of the order of

1 kW/m2, this characteristic time can be as much as a second. The existence of a

characteristic time for the development of steady-state heat transfer has strong

impact on technical applications. Since many systems experience transient heat

transfer processes, which are on the millisecond time scale, it is important to

appreciate that these heat transfer processes are far from steady state.

5.7 Forced Convection Heat Transfer

The process of heat transfer to forced flow helium is closely tied to the dynamics of

the flow states, a topic covered in Sect. 4.1. In the present section, we would like to

extend that discussion to include solutions to the energy equation that can be used

to treat convective transfer.

5.7.1 General Considerations

The problem of interest involves heat transfer from a surface exposed to flowing

liquid helium. If the predominant flow is in the x-direction and the heat transfer is

in the direction perpendicular to that of the flow (y-direction), the energy equation

may be simplified by using the thermal boundary layer approximation,

@T

@y
� @T

@x

which is analogous to that assumed for the velocity profile. Assuming for simplicity

that the fluid possesses constant properties r, Cp, k, and m, we obtain the corres-

ponding thermal boundary layer equation [2],

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
þ m
rCp

@u

@y

� �2

(5.38)

where a ¼ k/rCp is the thermal diffusivity. The first term on the right-hand side

of (5.38) represents thermal diffusion. For most fluids of interest in cryogenics, this

term is not large and can be neglected.

By suitable normalization, (5.38) can be shown to lead to the definition of the

Nusselt number as a general function of Reynolds number and Prandtl number, that is,

Nu ¼ f ReD; Prð Þ (5.39)
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For internal flow, the Nusselt number is defined as:

NuDh
¼ hDh

kf
(5.40)

where k is a suitably averaged fluid thermal conductivity. In fact, (5.40) is general

and not dependent on the boundary layer approximation. Most empirical heat

transfer correlations are constructed in a form consistent with (5.39).

5.7.2 Heat Transfer Correlations

Investigations of heat transfer to forced convection helium have shown that tradi-

tional engineering correlations are best at describing the data. Results of analysis of

the thermal boundary layer indicate that the average Nusselt number should be

couched in a form consistent with (5.39). As an aside, be aware that the local heat

transfer coefficient can be a considerable function of temperature and therefore

varies along the length of the tube. The local heat transfer coefficient is also defined

in terms of the local mean fluid temperature,

h ¼ q

Ts � Tm
(5.41)

where Tm is obtained by taking an appropriate average across the channel.

There are numerous single-phase fluid heat transfer correlations for internal

flow. Several important factors must be considered when selecting a correlation

to apply to a particular system. First, determine whether the fluid is in the laminar

or turbulent flow regime. The critical Reynolds number for single-phase internal

flow is around 1,200. Second, determine whether the entry region has significant

impact on either the hydrodynamics or temperature development. This requirement

demands fairly large L/D ratios. Helium has a Prandtl number of the order of unity,

so it is expected that these developments will occur almost simultaneously. Finally,

once the conditions of flow are established, it is necessary to select among several

possible correlations dependent on whether the range of parameters is appropriate

for the particular empirical fit.

In fully developed laminar internal flow, there are analytic solutions to the

thermal boundary layer equations of the form,

NuD ¼ constant (5.42)

Where theconstantdependsonboundary conditions being4.36 for constant heat flux

boundary conditions and 3.66 for constant wall temperature boundary conditions.

However, for most helium cryogenic problems, laminar flow almost never occurs.

One exception involves flow within porous media a topic discussed below.
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For turbulent flows, all engineering correlations are of the form of (5.39) where

the average Nusselt number is a function of the fluid Reynolds and Prandtl numbers.

In this regime, a number of good correlations exist for single-phase turbulent heat

transfer. The Dittos–Boelter expression is perhaps the most common such

heat transfer correlation [2],

Nu ¼ 0:023Re
4 5=
D Pr2=5 (5.43)

where Nu represents the average Nusselt number over the tube length. Correct

application of this expression demands consideration of the temperature depen-

dence of the fluid properties. The appropriate properties must be evaluated at the

film temperature Tf, defined by

Tf ¼ Ts þ Tm
2

(5.44)

which is a simple average between the surface and mean fluid temperatures. The

Dittus-Boelter correlation has been used quite effectively for a variety of cryogenic

heat transfer problems [34].

In the case of supercritical helium, Giarratano et al. [35] have suggested

that a prefactor of 0.022 gives a better fit to their data with a standard deviation of

Fig. 5.23 Experimental and predicted heat transfer results for supercritical helium using (5.45)

(From Giarratano et al. [35])
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14.8% obtained between experimental results and correlation. An improved fit to

the experimental data was achieved by use of a slightly modified correlation of

the form [13]

Nu ¼ 0:0259 Re
4=5
D Pr2=5

Ts
Tm

� ��0:716

(5.45)

where now explicit temperature variation of the properties is taken into account

by the last factor. The relationship given by (5.45) correlated to a standard devia-

tion of 8.3% with several sources of experimental data. A normalized form of this

comparison is shown in Fig. 5.23, where the heat transfer coefficient is plotted

against reduced temperature Tb/Tc, where Tc is the critical temperature.

In general, heat transfer to fully developed forced flow single phase helium can

be assumed to have a well-established engineering basis. Since the fluid is single

phase, its hydrodynamics can be evaluated in terms of the Navier–Stokes equation

of motion including compressibility factors. This problem is quite difficult owing to

the variability of physical properties with pressure and temperature. Consequently,

its solution requires numerical integration of complicated nonlinear equations.

Be aware that this particular problem represents only one special case of forced

flow helium. Other problems concerning two-phase flow and transient effects,

subjects of subsequent sections in this chapter, are more complex in physical nature.

Example 5.2

Consider a thin walled copper tube of diameter 10 mm carrying liquid helium

at 1 g/s and subject to a surface heat flux of 0.1 kW/m2. The helium enters the

tube at 4.2 K and 0.2 MPa. Calculate the tube wall temperature.

At the given temperature and pressure, the properties of helium are: r ¼ 125 kg/

m3; m ¼ 3 � 10�6 Pa s; kf ¼ 0.018 W/m K; Pr ¼ 0.792

For the given flow conditions, the Reynolds number is,

ReD ¼ ruD
m

¼ 4 _m

pmD
¼ 42; 441

Using the Dittus Boelter correlation,

Nu¼ 0:023Re
4 5=
D Pr2 5= ¼ 105

And the heat transfer coefficient,

h ¼ Nu � kf
D

¼ 190W m2 K
�

For a surface heat flux of 1 kW/m2, this means that the tube surface is 0.526 K

above that of the fluid or 4.726 K.
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5.7.3 Two Phase Flow Heat Transfer

Two-phase flow in subcritical helium is a complex problem as was discussed in

section 4.3; however, the difficulty in understanding the processes involved in two

phase flow increases significantly when heat transfer is included. In addition to

mass flow rate, vapor quality, and void fraction determining the flow conditions, the

effect of heat flux into the fluid also must be considered. In particular, heat transfer

can lead to rapid variations of vapor quality along the tube section.

Experimental investigations of two-phase flow heat transfer have been carried

out by de La Harpe et al. [36] and Johannes [37]. These studies consist principally

of forced flow helium at 4.2 K confined to a tube of a few mm ID with temperature

and pressure probes necessary to determine the heat transfer coefficient and critical

heat flux for boiling. The latter quantity is strongly geometry dependent and cannot

be generalized easily in other systems.

The heat transfer coefficient obtained for two-phase helium is discussed best in

terms of classical correlating relationships. The approach is to determine first the

Nusselt number corresponding to the Dittus–Boelter equation for the liquid flow

only, that is,

Nul ¼ 0:023 Relð Þ0:8 Prlð Þ0:4 1� wð Þ0:8 (5.46)

where the last multiplier is to indicate the contribution of only the liquid. Note

that Nul ¼ hDh/kl, where kl is the liquid thermal conductivity. Measurements

of the two-phase heat transfer coefficient have shown that the actual Nusselt

number normalized to (5.46) can be correlated to the Lockhart–Martinelli para-

meter, wtt, as

Nuexp
Nul

¼ Aw�n
tt (5.47)

where wtt is discussed in Chap. 4 and repeated here for convenience,

w2tt ¼
dp=dxð Þv
dp=dxð Þl

(4.37)

The best fit to the data of Johannes [37] of the form of (5.47) are displayed in

Fig. 5.24 for which the appropriate values are A ¼ 5.40 and n ¼ 0.385. Results of

de La Harpe [36] are also displayed as the dashed line in the figure with agreement

in form to the data of Johannes, although possessing substantially different values

for the coefficient A. Although the above correlation seems appropriate for low to

150 5 Classical Helium Heat Transfer

http://dx.doi.org/10.1007/978-1-4419-9979-5_4


moderate values of the Lockhart–Martinelli parameter, in the limit of large wtt,
which occurs for small vapor quality, the ratio given by (5.47) must approach unity.

Therefore, to be universally applicable the correlation should reflect this fact.

Two-phase heat transfer as with two-phase flow is a complex process which is

very difficult to understand fully. If faced with a problem in this area, the best

approach is to apply one of the accepted correlations. However, these calculations

are only approximate and should be used only as a guide. If greater accuracy

is required, experimental modeling is the required approach.

5.8 Transient Heat Transfer

In the previous sections, it was assumed that the heat transfer process had been

underway for sufficient time that steady-state conditions existed. The characteristic

time required for the steady state to be achieved is equivalent to the time required

for convection to become fully established. For nucleate boiling, enough heat must

be transferred to vaporize bubbles and allow them to detach. In film boiling the

characteristic time is associated with sufficient energy flux to vaporize a layer of

helium. This can be represented approximately by

Dt � rhfgd
q

(5.48)

where d is the vapor film thickness. For an order-of-magnitude analysis assume that

d � 10 mm. Using the physical quantities for He I at 4.2 K, 0.1 MPa, (5.48) predicts

Dt � 3/qms, where q is in W/cm2. For a heat flux of a few W/cm2, the steady-state

conditions are not established until well in excess of a few milliseconds. For times

shorter than this value, the heat transfer processes are governed by nonconvective

mechanisms such as conduction and radiation.

It is of considerable importance to be able to understand transient heat transfer in

liquid helium. Transient heat transfer is fundamental to the analysis of a number of

problems including the stability of superconducting magnets. There are several

Fig. 5.24 Two-phase heat

transfer correlation for helium

(From Johannes [37]). The

dashed line is a comparison to

previous measurements of de

La Harpe et al. [36]
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aspects to this problem which are worth noting at the beginning. First, for very short

times, that is, Dt < 1 ms, heat transfer processes turn out to be controlled by

physical mechanisms similar to those developed for the case of He II, that is,

Kapitza conductance. Second, the transition between the region of heat transfer

space governed by conduction and that which resembles the steady-state process

is important. This transition occurs on time scales consistent with the rough

calculation in above. There are several parameters that are associated with transient

heat transfer. (1) the peak heat flux q*(t) or critical energy DE* ¼ q* Dt*; (2) the
interfacial temperature difference DTs; and (3) the effective heat transfer

coefficient h. These parameters are governed primarily by the physical properties

of helium and the rate of heat transfer.

The various regimes of transient heat transfer can be described best in terms of

an idealized experiment, which in fact is not very different from actual experiments

performed to investigate the problem. Imagine a solid heat transfer surface as

shown in Fig. 5.25, which in this particular case is oriented vertically. Recall that

the peak steady-state heat flux for this configuration is in the neighborhood of

6 kW/m2. In this experimental configuration, a step function heat flux q0 beginning
at t0 is applied to the sample. With suitable thermometry, which must have a

response time faster than a millisecond, the surface temperature is recorded as it

varies with time following the initiation of heat transfer.

As an example of the kind of data collected from this type of experiment,

measurements by Steward [38] are shown in Fig. 5.26. In this particular case, the

heat transfer surface is a thin carbon film which is both heater and thermometer.

Fig. 5.25 Schematic

representation of the transient

heat transfer process
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Note that for very short times, the surface temperature rise is not large, although it is

an increasing function of heat flux. This short time regime, which is generally much

less than 1 ms, is controlled by transient conduction mechanisms. As time

progresses, the nucleation of convective mechanisms begins. For low heat fluxes,

the heat transfer process eventually transforms to steady-state nucleate boiling.

At high heat fluxes, that is, q > 10 kW/m2 (1 W/cm2), there is a transition to the

film boiling state. This latter transition has associated with it an increase in DTs of
about an order of magnitude, consistent with the steady-state film boiling heat

transfer characteristics. In the steady-state regime, the temperature differences

presumably can be described in terms of the correlations introduced in previous

sections of this chapter. There are, however, two effects in these data which need

further discussion: (1) the size of the heat transfer coefficient in the transient

conduction regime and (2) the time associated with the transition to steady-state

heat transfer mechanisms.

5.8.1 Surface Temperature Difference

Consider first the problem of the surface temperature difference during transient

conduction. Since this mechanism is conduction dominated, it should be possible

to understand in terms of diffusion theory. Returning to Fig. 5.25, imagine a steady

heat flux through the interface. There are two potential contributors to the

associated temperature difference. First, there is a thin fluid layer of thickness d
into which the heat diffuses. The temperature difference across the layer, defined as

DTf, should be determined exclusively by heat diffusion in the bulk fluid. Second,

there is an interfacial temperature difference that is due to the mismatch of phonon

heat transport between the two media. This mechanism, referred to as Kapitza

conductance, which will be discussed in Chap. 7. It is a truly interfacial process

occurring within a few atomic layers of the solid-helium boundary. The temperature

difference due to Kapitza conductance is given the designation DTk.
To evaluate the heat diffusion temperature difference, it is necessary to solve

the heat diffusion equation with the proper set of boundary conditions. In one

dimension this equation can be written

@2DTf
@x2

¼ 1

D

@DTf
@t

(5.49)

given a number of simplifying assumptions. In particular, it is assumed that the

thermal diffusivity,D ¼ k/rC, is a constant independent of temperature or position.

Of course, this is not a particularly good assumption for liquid helium, however, it

simplifies the model considerably to do so. Furthermore, it is assumed that the solid

does not play a major role in the heat diffusion. This approximation has a negligible
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effect if the heat transfer surface has small heat capacity. The boundary conditions

which are applied to solve (5.49) include

DTf x; 0ð Þ ¼ 0 (5.50a)

DTf 1; tð Þ ¼ 0 (5.50b)

and

q ¼ �k
@DTf
@x

����
x¼0

(5.50c)

The last condition, being consistent with the constant flux assumption at the

interface, is true only if the heat capacity of the heat transfer surface is neglected.

The general solution to (5.49) with the above set of boundary conditions leads to

DTf ¼ q

k
2

Dt

p

� �1=2

exp
�x2

4 Dt

� �
� x erfc

x

2 Dtð Þ1=2
 !" #

(5.51)

where x is the dimension measured into the fluid. At the solid-fluid interface, x ¼ 0,

the relationship simplifies considerably to yield

DTf ¼ 2qffiffiffi
p

p t

rkC

� �1=2

(5.52)

For example, consider liquid helium at 4.2 K subjected to a heat flux of 1 W/cm2

for a time of 10 ms, which is in the transient conduction regime. These conditions

lead to a computed value for DTf of about 0.3 K, which is approximately equal to

the superheat required to produce homogeneous nucleation computed in Sect. 5.3.

It is also worth noting that DTf � 0.3 K corresponds to about 1/3 the measured DT
in Fig. 5.26.

The second mechanism which can lead to an interfacial temperature difference

during transient heat transfer is due to Kapitza conductance. The temperature

dependence of the Kapitza conductance is understood but the absolute value of

the heat transfer coefficient is not predictable. Assuming. that the mechanisms are

the same independent of whether the fluid is He I or He II, it is reasonable to write

DTK ’ q

hK
(5.53a)

where hK ’ AT3, consistent with experimental measurements of Kapitza conduc-

tance. For a copper surface below Tl, A has been measured to have values around

0.1 W/cm2�K4, but with considerable uncertainty. Using this value for Tb ¼ 4.2 K

in He I, the interfacial temperature difference due to Kapitza conductance should
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vary as DTK � 0.13 q. Therefore, for copper, the Kapitza temperature difference

would be the same order as but somewhat smaller than that due to transient

conduction except at very short times, t ≲ 1 ms.
On a very short time scale the heat flux dependence of the heat transfer coefficient

in He I generally obeys the processes described above. Plotted in Fig. 5.27 is the

surface temperature difference for copper samples measured in He I compared to

that for He II [39]. On the right-hand side, the figure shows a typical DTs versus q
dependence observed for He II. Initially, there is a linear region; however, as the heat

flux increases a considerable deviation from linearity occurs because the actual heat

transfer varies as Tn
s � Tn

b where n � 3. A somewhat different effect is observed for

the case of He I. Here the dependence of DT versus q for high heat fluxes is almost

linear, indicating a constant heat transfer coefficient. However, at low heat fluxes the

surface temperature does not appear to extrapolate to the origin, indicating some

failure in the linear modeling over the regime for which the linear relationship holds.

The Kapitza conductance appears to obey the cubic temperature dependence.

In principle, the temperature difference corresponding to a transient heat transfer

event can be determined by a series summation of the two contributions described

above. It follows that

DTs ¼ DTK þ DTf (5.53b)

where, dependent on the choice of surface materials, one term can dominate the

process. For comparison with theory, it should be possible to separate the two

quantities in (5.53b) based on their different time dependencies.

Fig. 5.27 Surface temperature difference for copper samples versus heat flux: (a) He I at 4.2 K and

(b) He II at 1.8 K. Numbers on the straight lines refer to h values in W/cm�K (From Schmidt [39])
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5.8.2 Transition to Film Boiling

The other fundamental question related to transient heat transfer concerns the onset

of film boiling. For a given heat flux q*, the time required to reach the film boiling

state, Dt*, is of interest. This quantity establishes the limits to which enhanced heat

transfer due to transient conduction can be credited in a heat transfer problem.

The problem is understandable by means of a rather simple picture. Given that the

transition is associated with the formation of a vapor film, a critical energy is

defined as that required to vaporize the helium adjacent to the heat transfer surface

and create the film.

A more quantitative model can be developed by assuming that DE* is the energy
needed to vaporize a layer of thickness d, which corresponds to the diffusion length.
Employing the transient diffusion model, we note that the diffusion length can be

approximated by

d ¼ p
2

Dtð Þ1=2 (5.54)

where again D is the thermal diffusivity. On a unit area basis, the critical energy

is written

DE� ¼ q�Dt� ¼ dhfg (5.55)

where hfg is the heat of vaporization of liquid helium at the existing temperature

and pressure conditions. Substituting (5.54) into (5.55), we find that the heat flux

needed to achieve film boiling is given by

q� ¼ p
2
rhfg

k

rC Dt�
� �1=2

(5.56)

which for values associated with He I at 4.2 K, 1 bar, simplifies to

q� ¼ 0:07 Dt�
 ��1=2
(5.57)

where q* is in W/cm2 and Dt* is in seconds. Note that this correlating equation does
not contain any adjustable parameters. Plotted in Fig. 5.28 are numerous experi-

mentally determined values for q* along with the simple diffusion model fit given

by (5.57). The correspondence is surprisingly good, which supports the basic

physical ingredients to the critical energy analysis included in the simple model.

A more precise empirical fit has been suggested [39]:

q� ¼ 0:127 Dt�
 ��0:4
(5.58)

This form is seen to agree with the data, particularly in the sub-millisecond regime.
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As a final comment, the transient heat transfer analysis given above is

oversimplified. Only two problems have been discussed, the heat transfer coeffi-

cient in the conduction regime and the critical energy for the onset of film boiling.

In between these two regimes is the transition to film boiling including the dyna-

mics of nucleation and the creation of the vapor film. These are considerably more

complex phenomena than can be discussed here. This regime has been analyzed to

some extent by Steward [38] by evaluating the orientation and pressure dependence

to the type of data displayed in Fig. 5.26. The observations gleaned from this

work are more qualitative but suggest that the transition regime is at least in part

controlled by conventional heat transfer phenomena. Further work is required to

grasp more fully the various aspects of the transient heat transfer problem.

Questions

1. For pool boiling liquids, why is the heat transfer coefficient in nucleate boiling

higher than the heat transfer coefficient in free convection?

2. In pool boiling heat transfer, q* depends on surface orientation. Discuss in terms

of the bubble formation and detachment picture, why surface orientation should

make a difference and what would be the expected trend. q* > 0 in pool boiling

heat transfer even for the face down condition, Y ¼ 180. Why?

3. Discuss the trends in the He I nucleate boiling curve (Fig. 5.9). Is there any

correlation with surface roughness? If so, how would this trend be explained in

terms of bubble nucleation theory?

Problems

1. Calculate the critical radius of a vapor nucleus in He I at 4.2 and 2.5 K under

saturated vapor pressure. Assume a reaction rate of 1 cm–3�s–1. Compare this

value with the radius determined from (5.15). Estimate the reaction rate

consistent with the radius determined from (5.15).

Fig. 5.28 Heat flux versus time for transition to film boiling (As compiled by Schmidt [39])
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2. Determine the surface temperature at which the maximum in the peak nucleate

boiling heat flux q* in saturated He I occurs. What would be the change in this

value if the system we pressurized to p ¼ 200 kPa?

3. A vertically oriented, circular cross section channel containing He I at 4.2 K is

exposed to a heat flux which varies linearly with height:

QðzÞ ¼ Qm
z

H

� �

where H is the total channel height. Determine as a function of Qm the position

where the peak heat flux is first exceeded.

4. The Schmidt model for the transition to film boiling during transient heat

transfer, (5.56), implies that the transition occurs when the surface reaches a

temperature that is a constant for a given helium bath. Find an expression for the

critical surface temperature in the Schmidt model and calculate its value for a

saturated He I bath at 4.2 K. Compare your answer with the homogeneous

nucleation temperature for the same conditions.

5. Consider film boiling heat transfer from a flat plate in He I. Calculate the plate

surface temperature at the minimum film boiling heat flux qR.
6. A heat exchanger cools supercritical helium at 1 MPa from 6 to 4.5 K. The

design consists of a tube immersed in the saturated bath of He I at 4.2 K.

Determine the length and diameter of the tube consistent with the following

specification: _m ¼ 1 g s= and Dp ¼ 0:01 MPa . For simplicity assume isothermal

conditions on the external surface of the tube.

7. A pool boiling cooled superconducting magnet uses a monolithic conductor

30 mm wide and 3 mm thick. The conductor is cooled on one face by liquid

helium in the gap between adjacent turns of 0.5 mm. Calculate the peak heat flux

for this conductor in helium at T ¼ 4.6 K, 0.14 MPa, if the wide surface is

vertical. How would this result change if the conductor were exposed to an open

bath of liquid helium instead of a narrow channel?
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Chapter 6

Helium as a Quantum Fluid

Some of the quantum mechanical aspects of gaseous and liquid helium have been

introduced in Chap. 3 to explain deviations from the traditional classical fluid

behavior. In particular, it was shown that the equation of state and transport

properties must be modeled in terms of quantum mechanical scattering theory

rather than relying on fully classical treatments. These are not the most dramatic

quantum features of helium. In fact, liquid helium below Tl ¼ 2.177 K at saturated

vapor pressure behaves in such a way that its physical properties can be understood

only by using a fully quantum mechanical model with a sizable fraction of the

particles in the “condensed” ground state. This condensed state is envisioned to

have a number of unique characteristics including zero entropy and viscosity.

In advance of discussing the quantum features of helium, it is worthwhile to

ask two related questions: (1) What makes helium behave as a quantum fluid and

(2) why don’t other fluids possess similar characteristics? To answer these

questions, it is helpful to consider the most obvious quantum mechanical charac-

teristic of liquid helium. This characteristic is not the existence of superfluidity, but

rather the fact that helium does not solidify even at absolute zero unless subjected to

a sizable external pressure (p � 2.5 MPa)! The explanation for this phenomenon

can only be satisfying if one includes the quantum mechanical interpretation of

matter. In this interpretation the position of a helium molecule cannot be defined

absolutely but rather is limited by the spread of its wave function. Furthermore, the

Heisenberg Uncertainty Principle describes the extent to which the position x of a
molecule and its momentum P can be defined simultaneously:

DPDx � �h (6.1)

where �h ¼ h/2p and h ¼ Planck’s constant ¼ 6.63 � 10�34 J�s.Among other things,

the Heisenberg uncertainty principle can be used to estimate the zero point energy

of molecules.

An elementary application of the Heisenberg Uncertainty Principle can suggest

why the liquid is apparently the lowest energy state of helium at absolute zero.

The argument goes as follows. For the solid state to exist it must possess some
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degree of long-range order. To have this long-range order, the lattice structure must

be periodic with fixed positions for the helium molecules. The extent to which this

localization is required is somewhat ill-defined, but for the sake of the present

discussion assume that the position of a given molecule must be defined to within

10% of the inter-atomic spacing in the lattice. For the case of solid helium the inter-

atomic spacing is of the order of two atomic radii or 0.5 nm. Therefore, we will

require that the position of a molecule must be defined vis a’ vis (6.1) to within

� 0.05 nm. Uncertainty in the helium molecule position leads to an uncertainty

in the momentum, which is related to the zero point energy. The momentum

uncertainty is directly related to the kinetic energy uncertainty, DE � (DP)2/2 m,
which may be defined as the zero point energy. Therefore,

DE
kB

� �h2

2mkBðDxÞ2
(6.2)

For the case of the common helium isotopes 4He, with a Dx � 0.05 nm, the zero

point energy in temperature units turns out to be DE/kB � 24 K. This energy

is considerably larger than the attractive potential energy well depth for helium,

f/kB � 10 K, see Fig. 3.2. Therefore, based on this simple argument helium would

not be expected to solidify.

For comparison consider the case for hydrogen solidification. Since hydrogen is

a diatomic molecule with a total mass half that of helium, its zero point energy

should be about twice that of helium or DE/kB � 50 K. However, since it is

a diatomic molecule, hydrogen has a much stronger intermolecular potential,

f/kB � 100 K, brought on by the non-spherical molecular symmetry. As a result

of this stronger potential, hydrogen is observed to solidify with a triple point

occurring around 14 K.

Thus, helium is the only molecule that can exist in the liquid state at absolute

zero. It is therefore an ideal system to study as a quantum fluid. Since the common

isotope of helium is 4He, the molecule has integer spin and obeys Bose-Einstein

statistics. A fundamental premise of this statistical model is to allow a large fraction

of the population to be in the ground state, thereby affecting the physical behavior.

It is worth noting that the other stable isotope of helium, 3He, obeys Fermi-Dirac

statistics because of the odd number of neutrons and would be expected to behave

very differently from 4He. In particular, Fermi-Dirac statistics denies the existence

of a highly populated ground state by the Pauli exclusion principle. As can be

seen in a more detailed discussion of 3He in Chap. 9, the lighter helium isotope

has physical properties that are quite different from those of 4He although it too

does not easily solidify due to its large zero point energy.

In the present chapter, the concept of quantum fluids is introduced with helium

as the example. Where possible, the bridge between experimental evidence and

theory is described. The discussion focuses on the physical understanding of liquid

helium including its transport properties. In Chap. 7, the bulk heat and mass

transport of He II will be discussed more from an applications viewpoint.
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6.1 Ideal Quantum Gases

A system of non-interacting particles obeying quantum statistics is considered to be

an ideal quantum gas. There are a number of physical systems in nature that display

quantum gas behavior. Common examples include the behavior of electrons and

phonons in solids. Also, low density gas molecules at low temperatures can show

quantum mechanical behavior as we discussed in Chap. 3. Of most recent interest

are gases made up of Rb or H atoms that undergo Bose-Einstein condensation.

Helium is also a good example of a quantum gas; however, its gaseous state does

not exist at sufficiently low temperature or high density to show pronounced

quantum effects. Liquid helium below Tl, He II see Fig. 3.1, shows a number of

unique quantum features although it can hardly be considered a non-interacting

fluid. However, understanding the behavior of an ideal quantum gas in the same

temperature and density regime as that of He II can be a helpful tool in interpreting

the some of the behavior of the liquid. To appreciate more fully the physics of

quantum gases, particularly helium, the present section develops a theoretical

description of an ideal Bose gas. A number of physical properties are calculated

including entropy, specific heat, and phase transition thermodynamics. Several of

these features are remarkably similar to those of liquid He II.

The theory of an ideal quantum gas begins with the correct statistical picture.

For details on how to go about this development, the reader is referred to one of

numerous monographs on statistical mechanics [1, 2]. Since it is beneficial for

appreciation of different statistical systems, the general concepts of quantum

statistical mechanics as they apply to the helium problem are surveyed here.

Consider an ideal quantum gas consisting of N non-interacting point particles

where N is a large number on the order of 1023. We define the Hamiltonian H
for this system:

H ¼
XN
i¼1

P2
i

2m
(6.3)

where P is the momentum of the ith particle and m is the particle mass. The

Hamiltonian is the kinetic energy operator for the wave equation that describes

the group of particles that make up the gas. In this case, it is independent of particle

position. In its present form (6.3) is cumbersome since it is a sum over all N
particles. To simplify the analysis it is necessary to introduce a complete set of

eigenfunctions to the Hamiltonian which are also eigenfunctions of the particular

statistical picture. These eigenfunctions must obey Bose statistics and are therefore

symmetric under the interchange of particles. By contrast, the eigenfunctions of

a Fermi system are anti-symmetric under particle interchange.

For the ideal non-interacting system, energy eigenvalues are defined according

to single-particle energy levels. It is possible to divide these single-particle

levels into groups containing gi, levels, with an assigned average energy ei.
The occupation number of the ith cell is then given by ni where this value is
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assumed to be small compared to gi. It follows that the total particle number N and

total energy E are sums over these levels,

N ¼
X
i

ni (6.4a)

and

E ¼
X
i

niei (6.4b)

The difference between statistical pictures becomes evident through the

allowable population density of each level within a given cell. For the Bose system

any number of particles may occupy a given state. In the Fermi system the

occupation number of a given state is restricted to being either 0 or 1.

The classical limit of either statistical picture must lead to the Boltzmann

statistical distribution. The correspondence principle is a formal statement of this

limit. For quantum gases, it is required that both Fermi and Bose gases obey

Boltzmann statistics in the limit of high temperature. As with a Bose gas, the

Boltzmann gas does not restrict the occupation number of a particular level.

However, the state that results from the interchange of particles is considered to

be new for the Boltzmann gas but is indistinguishable for the Bose gas.

For each statistical picture presented above, there is a distribution function that

describes the probability that a particle occupies a particular energy level. Since the

number of particles in a given state is large, the difference between the actual and

the most probable distribution functions is insignificant. The distribution function

for each of the statistical pictures can be written in terms of the energy of the

ith level:

ni ¼ 1

z�1ebei þ g
(6.5)

where the particular statistical pictures determine the value of g. For Bose-Einstein
statistics g ¼ �1, for Fermi-Dirac g ¼ +1, and for Boltzmann g ¼ 0. In the above

equations z is referred to as the fugacity and is explicitly written z ¼ ebm, where m is

the chemical potential and b ¼ 1/kB T.Given the above expressions and description
it is possible to solve for the properties of any particular system once the

eigenvalues and boundary conditions are known.

Consider an ideal quantum gas confined to a cubical volume of linear dimension L.
Since the particles are non-interacting, the potential energy can be neglected.

The problem then reduces to solving the time-independent Schrodinger equation,

� �h2

2m
r2cn ¼ encn (6.6)
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where cn are eigenfunctions of the system. Application of proper boundary

conditions including continuity of the wave function and its derivative leads to a

set of eigenvalues,

en ¼ h2n2

2mL2
(6.7)

where the momentum is also quantized such that P ¼ n(h/L) ¼ n(dP). The quantity
dP ¼ h/L can be considered to be the dimensions of the momentum space lattice.

The ideal gas problem deals with such a large number of particles that the

discreteness of the momentum lattice becomes unimportant. It is therefore possible

to make what is termed the continuum approximation which is equivalent to

making the lattice dimension go to zero, dP ! 0. The approximation replaces the

summation by an integral over momentum space. The total particle number may

then be written

N ¼
X
i

ni ’ V

h3

ð
n d3P (6.8)

As is discussed below, care must be exercised when making this continuum

approximation for the Bose system. Because of the potentially large number of

particles in the zero momentum state, the discreteness of the lattice must be

maintained for this state.

The integral in (6.8) is written explicitly by including the distribution function in

the equation for the particle number density:

N

V
¼ 2p

h3
ð2mÞ3=2

ð1
0

e1=2de
z�1ebe þ g

(6.9)

Often the density of energy states D(e) in the particular statistical picture is defined
in terms of the proportionality factor in (6.9) such that

DðeÞ ¼ 2pV
h3

ð2mÞ3=2e1=2 (6.10)

A similar expression was introduced in Chap. 2 as part of the description of electron

and phonon gas models in solids.

As an example, consider the statistical expression for the particle density (6.9)

for a Boltzmann gas. For this special case, (6.9) can be simplified because g ¼ 0:

N

V
¼ 2pð2mÞ3=2

h3
z

ð1
0

e1=2e�bede ¼ 1

l3T
z (6.11)

where lT ¼ (h2/2pmkBT)
1/2 is referred to as the thermal de Broglie wavelength.

At the very least, (6.11) explicitly defines the fugacity z as a function of temperature

6.1 Ideal Quantum Gases 167

http://dx.doi.org/10.1007/978-1-4419-9979-5_2


and density. This quantity is used in the computation of the total energy, entropy,

or other thermodynamic quantities of the Boltzmann gas.

The thermal de Broglie wavelength is a characteristic quantity that determines

when quantum mechanics becomes an important factor in the behavior of a system.

In the wave nature of matter, this quantity is the characteristic wavelength. There-

fore, an estimate can be made for the temperature at which quantum effects become

important by allowing lT to be of the order of the particle size. For the helium

molecule, the thermal de Broglie wavelength is,

lTð4He) � 0:87nm

T1=2
(6.12)

Equating lT with the particle diameter in liquid helium (d ’ 2rm ’ 0.51 nm), we

find that the temperature at which quantum effects should become important is

around 2.9 K. Although this temperature is rather close to the superfluid transition

in liquid helium, Tl ¼ 2.177 K, it should not be construed as a prediction of this

effect. The thermal de Broglie wavelength being comparable to atomic dimensions

makes no prediction of Bose-Einstein condensation or the superfluid transition

in He II. Rather, it indicates approximately where to expect to observe the onset

of pronounced quantum effects. Because of its smaller mass, 3He would have a

slightly higher temperature onset of quantum phenomena based on the above

argument, see Chap. 9.

6.1.1 Density of an Ideal Bose Gas

Now consider a Bose gas contained in a volume V. In a similar fashion to the

above discussion, an expression can be written for the number density subject to

Bose-Einstein statistics:

N

V
¼ 1

lT

� �3
2ffiffiffi
p

p
ð1
0

x1=2dx

z�1ex � 1
þ 1

V

z

1� z

� �
(6.13)

Here it has been necessary to separate off the population of the zero momentum

state because of an anomaly that results when the discrete sum is taken to the

integral form. The second term in (6.13) is therefore introduced to take care of the

discontinuity when z ! 1. The above expression is a complete representation of

the number density of an ideal Bose gas. It has the proper high-temperature limit

when e b(e–m) � 1, which leads to the exact Boltzmann form of (6.11).

The integral contained in the first term of (6.13) is a general function,

g
3=2
ðzÞ ¼ 2ffiffiffi

p
p
ð1
0

x1=2dx

z�1ex � 1
(6.14)
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that is a specific example of a Riemann zeta function. This function actually is

defined as a summation

gnðzÞ ¼
X1
l¼1

zl

ln
(6.15)

where it is only bounded for values of 0 � z � 1. The Riemann zeta function has

been studied extensively and is tabulated in the literature [2]. For the special case in

(6.14), Fig. 6.1 shows the form of this function. It is relatively well behaved,

monotonically increasing from zero to g3/2(1) ¼ 2.612.

Returning to the expression for the number density of a Bose gas, (6.13), the first

term on the right-hand side represents the number of particles in the non-condensed

state. The second term is the density of particles in the ground state, N0/V.
Rearranging (6.13) to give an explicit expression for this quantity,

N0

V
¼ N

V
� 1

l3T
g

3=2
ðzÞ (6.16)

In the above form, it is apparent that for the population of the zero momentum state

to be finite, the right-hand side must be greater than zero. This requirement predicts

a transition in a Bose gas. The transition temperature Tc is defined as the highest

temperature that can sustain nonzero N0/V, i.e. for g3/2(1). Substituting this value

and rearranging to make an expression for Tc, we obtain

Tc ¼ h2

2pmkB

1

vcg3=2
ð1Þ

 !2=3

(6.17)

where vc ¼ (V/N)Tc is the critical specific volume. Note that the population of

the zero momentum state is a continuous function and not until the system is at

absolute zero do all the particles occupy this state. By combining (6.16) and (6.17)

Fig. 6.1 Riemann zeta

function for n ¼ 3/2
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it is easy to show that the ground state population is a temperature-dependent

quantity normalized only by the critical temperature:

N0

N
¼ 1� T

Tc

� �3=2

for T � Tc (6.18a)

¼ 0 for T>Tc (6.18b)

This result is shown graphically in Fig. 6.2. Note that although the actual

value for N0 varies continuously through the transition, there is a discontinuity

in dN0/dT at Tc.

6.1.2 Internal Energy of an Ideal Bose Gas

The internal energy E of an ideal Bose gas can be computed similarly. In terms of

the discrete system, the expression for E is given in (6.4b) as a sum over the product

niei for each of the particle states. This form is converted by means of the continuum

approximation to an integral over the density of states function D(e):

E ¼ 2p
h3

ð2mÞ3=2V
ð1
0

e3=2de
z�1ebe � 1

(6.19)

Note that in this case there is no longer a problem with the continuum approxima-

tion because although the population of the p ¼ 0 state may be finite the energy per

particle in that state is identically zero, by definition.

Because the internal energy has a different form dependent on whether it is

below or above Tc, it is useful to evaluate its behavior as a function of temperature.

Substituting the quantities introduced as part of the density expression into (6.19),

the internal energy may be written

Fig. 6.2 Fraction of particles

in the ground state as a

function of reduced

temperature for an ideal Bose

gas
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E

N
¼ 3

2

1

lT

� �3

vkBTg5=2ð1Þ for T � Tc (6.20a)

¼ 3

2

1

lT

� �3

vkBTg5=2ðzÞ for T>Tc (6.20b)

where g5/2(z) is the same Riemann zeta function defined in (6.15). In integral form,

g5=2ðzÞ ¼ 4

3
ffiffiffi
p

p
ð1
0

x3=2dx

z�1ex � 1
(6.21)

As with g3/2(z), the above quantity is a smoothly varying function from 0 to its

maximum value of 1.341 at z ! 1 (Fig. 6.3).

At this point, it is instructive to check the correspondence principle as it applies

to the high-temperature limit of a Bose gas. Referring to the discrete form of the

Riemann zeta function (6.15), we see that at high temperatures gn(z) � z + � � � for
all n. Substituting only the leading term into the equations for the density and

internal energy of a Bose gas, we obtain the classical limiting form E=N ¼ 3
2
kBT,

which is consistent with the principle of equipartition of energy, i.e. 1
2
kBT for each

degree of freedom. Therefore, the theory as developed to this point has the proper

high-temperature limit.

6.1.3 Specific Heat of an Ideal Bose Gas

The constant volume specific heat Cv is related simply to the internal energy

through its temperature derivative, Cv ¼ (dE/dT)v. Therefore, taking derivatives

of (6.20) with respect to temperature yields

Cv

NkB
¼ 15

4
g5=2ð1Þ

v

l3T
for T � Tc (6.22a)

Fig. 6.3 Riemann zeta

function for n ¼ 5
2
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Cv

NkB
¼ 15

4
g5=2ðzÞ v

l3T
� 9

4

g3=2ðzÞ
g1=2ðzÞ

for T>Tc (6.22b)

The shape of the constant volume specific heat is shown graphically in Fig. 6.4.

There are three notable features in the form of the specific heat of an ideal Bose gas.

First, at high temperatures T � Tc, gn(z) ! z � l3T /v, which asymptotes to the

classical result that Cv ¼ 3/2NkB. This is to be expected based on similar arguments

about the behavior of the internal energy. Second, below Tc the Riemann zeta

function takes on a constant value and the specific heat is determined by the

temperature dependence of the thermal de Broglie wavelength. Therefore below

Tc, Cv goes to zero as T
3/2. It is possible to think of this behavior in a different way.

Since the ground state has no energy of excitation, Cv is only a measure of the

fraction of molecules in the excited states. Since this fraction decreases as T3/2,
it follows directly that the specific heat should have a similar dependence. The third

aspect to the ideal Bose gas specific heat is that of its transition. The form as

developed above does not predict a discontinuity in value of Cv but does show a

cusp characteristic of a discontinuity of slope. A similar set of calculations for the

constant pressure heat capacity Cp yields results that are not altogether different.

As expected at high temperatures, the form of Cp/NkB approaches 5
2
, the classical

limit. However, at the transition the value of Cp shows a discontinuity consistent in

form to the behavior of a first-order phase transition.

6.1.4 Vapor Pressure of an Ideal Bose Gas

The discontinuity in specific heat is analogous to that of a first-order phase

transition. Another question to ask might be: What is the behavior of the pressure

over the same range of temperature? If there is a first-order phase transition, two

Fig. 6.4 Specific heat

constant volume of an ideal

Bose gas
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phases should coexist although the phases would be of different character to

classical liquid–gas coexistence. In the case of an ideal Bose gas the two phases

would be the normal vapor and the vapor that is in the BE condensed state.

To develop an expression for the equilibrium pressure for a Bose gas, it is best to

use the fact that the pressure-volume product is simply related to the internal energy

for all ideal gases through the expression

pv ¼ 2

3

E

N
(6.23)

It then follows that the equilibrium pressure can be written

p

kBT
¼ 1

l3T
g5=2ð1Þ for v � vc (6.24a)

¼ 1

l3T
g5=2ðzÞ for v 	 vc (6.24b)

where vc is the critical specific volume. Note that according to (6.24a) the pressure

of an ideal Bose gas is zero at absolute zero. A more subtle fact to consider is that

the pressure for v < vc (6.24a) is independent of the actual volume. This fact can

be seen in Fig. 6.5, which is a p-v diagram for an ideal Bose gas. The region below

the transition line at Tc has a horizontal vapor pressure curve indicative of a two-

phase region. Two-phase coexistence normally implies the transition is first order;

however, a useful way of checking this fact is to compute the latent heat of

transformation.

Fig. 6.5 Vapor pressure isotherms of an ideal Bose gas

6.1 Ideal Quantum Gases 173



6.1.5 Latent Heat of an Ideal Bose Gas

If the phase transition associated with condensation in the ideal Bose gas is first

order, then it should have a latent heat. The latent heat hfg of transformation is

defined in by the Clausius-Clapeyron equation,

dp

dT

� �
Tc

¼ hfg
TDv

(6.25)

where the vapor pressure derivative is taken at the transition temperature and Dv
represents the specific volume difference between the two phases. Since the

condensed phase can be assumed to occupy zero volume, the volume change is

the specific volume at the critical temperature,

Dv ¼ vc ¼ l3T
g3=2ð1Þ

(6.26)

Taking the derivative of the vapor pressure as given by (6.24a), the expression for

the Clausius-Clapeyron equation becomes

dp

dT

� �
Tc

¼ 1

Tcvc

5

2
kBT

g5=2ð1Þ
g3=2ð1Þ

� �
(6.27)

where the quantity in brackets is the latent heat of transformation, hfg ¼ 1.284kB T,
on a per molecule basis. On an absolute scale, this energy is quite large, being

comparable to the internal energy of an ideal classical monatomic gas at the same

temperature.

The theory of an ideal Bose gas is instructive to consider because it shows how

quantum mechanics affects the behavior of an ideal non-interacting gas. In nature,
4He exists as a liquid at low temperatures and as one might expect its behavior is not

that close to that of an ideal gas. Liquid 4He is known to undergo a phase transition

to superfluid state, referred to as He II, at a temperature Tl ¼ 2.177 K under

saturated vapor pressure. Substituting the specific volume of liquid 4He in the

equation for Tc, (6.17), we can predict that an ideal Bose gas would have a transition
at 3.14 K. Although Tc and Tl are fairly close in value, the correspondence should

not necessarily be taken as indicating that Tl marks the beginning of Bose-Einstein

condensation in liquid 4He. This is because there are several dissimilarities between

the behavior of an ideal Bose gas and liquid 4He. First the transition in between He I

and He II is known to be second order with a discontinuity in slope of the entropy.

The specific heat has a logarithmic infinity in value at Tl. Consequently, the Bose-
Einstein interpretation of the l-transition appears to be an oversimplification in that

the order of the two transitions is not the same. The other noted difference occurs in

the low-temperature properties. Below Tc the Bose gas has a specific heat that goes
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as T3/2 which is related to the changing population of the ground state. This is

markedly different as we will see from the behavior of liquid He II, which has a

specific heat that goes as Tn where n varies from 3 at low temperatures, T<1 K,

to around 6 near Tl. Further, in He II the temperature dependence to the specific

heat is due to the characteristics of the excitation spectrum in the fluid rather than

the changing population density in of the ground state.

Although there are several noted differences between the behavior of an ideal

Bose gas and that of liquid 4He, there is little doubt that the transition between He I

and He II is affected by Bose-Einstein quantum statistics. He II has a number of

unique properties that make it very different from conventional fluids. As will be

seen in subsequent sections, many of these properties can be interpreted in terms of

physical models that rely heavily on the existence of a condensed phase. The

physics of this condensed phase is clearly more complex than that of the condensed

ideal Bose gas. This is due, at least in part, to the fact that the excitation spectrum

and interactions of the He II system are more complex than assumed in the ideal

Bose gas.

6.2 Liquid He II Properties

When considering theoretical descriptions of He II, it is necessary to extend the

models beyond that of the ideal gas. Two major features to the theory must

be included: (1) a description of the excitation spectrum which is relevant to the

state properties and (2) a fluid mechanics model that can be used to describe the

transport properties. The first component of the theory, although having relatively

little engineering application, is most effective at interpreting such physical

properties as specific heat and entropy. The latter model emphasizes understanding

of the transport properties such as viscosity and thermal conductivity. Both models

are useful for understanding the unique properties of He II.

To provide a better basis for the theoretical description, we begin with survey

of the properties of He II. In performing this survey, the emphasis is placed on

those properties that are particularly important for the applications. For a further

description of other He II properties, the reader should consult one of several

references on the physics of liquid helium.

As has already been discussed in the introduction to Chap. 3, liquid helium can

exist in either of two phases. Liquid helium above Tl is referred to as normal helium

or He I, and has properties similar to other monatomic liquids. Superfluid

helium as it is commonly called, or He II, is the equilibrium state below Tl and

has a number of outstanding features particularly associated with its transport

properties. The l-line separates these two liquid states as shown in Fig. 3.1, the

phase diagram of helium. The l-line stretches between the liquid–vapor phase

transition at low pressure and the solid–liquid phase boundary at high pressure

(p � 3 MPa). The actual values of the pressure, temperature, and density of liquid

helium at the l-transition are listed in Table 6.1 [3]. The transition between these
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two states of the liquid is associated with a change in slope of the entropy. Thus, the

l-transition is second-order as defined by Ehrenfest and has no latent heat of

transformation. The physical significance of a second-order phase transition here

is that the two phases cannot coexist in equilibrium. This fact has limited practical

significance because near the l-transition thermal relaxation times are long and

small deviations from equilibrium are achieved easily in actual experimental

systems.

It is the goal of the present section to survey the properties of He II which are

of greatest technical significance. These properties can be categorized into two

principal types: (1) state properties: specifically the density, entropy and specific

heat and (2) transport properties: viscosity and heat conductivity. As will become

evident, this is a natural separation of the properties in light of the theoretical

description of He II.

6.2.1 State Properties of He II

The state properties that are particularly useful for practical applications are those

of specific heat, entropy, and density. The former two are also quite important for

further understanding of the He II excitation spectrum. Consider the specific heat,

shown graphically in Fig. 6.6 on a log-log plot. In presenting the specific heat in

this form, several interesting features can be seen in addition to the l-transition.
At very low temperatures, T≲0.6 K, the specific heat obeys a cubic dependence as,

C ¼ 20:4� 0:4ð ÞT3 J=kgK (6.28)

where C refers to the specific heat at saturated vapor pressure. In this temperature

regime, the differences between C, Cp, and Cv are insignificant. The physical

Table 6.1 l-transition as a function of
temperature, pressure, and density [3]

T(K) p(MPa) r(kg/m3)

1.767 3.015 179.8

1.80 2.827 178.4

1.85 2.528 176.1

1.90 2.211 173.5

1.95 1.876 170.5

2.00 1.52 167.1

2.05 1.141 163.0

2.10 0.733 158.0

2.15 0.282 151.3

2.177 0.005 146.2
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explanation for this dependence is presented in the next section; however, at this

point it is worth recalling that the low-temperature specific heat of a phonon gas is

also proportional to T3. This effect is important supportive evidence for the Landau

theory of He II, which is based on an excitation spectrum dominated by longitudinal

phonons for T � 0.6 K.

At higher temperatures, the apparent power law to the specific heat increases by

about a factor of two. Historically, the region has been divided into two segments

where the temperature dependence goes as

C ¼ 108 T6:7 J=kgK for 0:6< T< 1:1 K (6.29a)

¼ 117T5:6 J/kgK for 1:1 � T � 2:17 K (6.29b)

In the Landau theory a new excitation termed the “roton” is introduced to explain

the behavior of the heat capacity in this region, which is clearly unique to liquid

helium.

The entropy of liquid helium is shown in Fig. 6.7 also on a log-log scale. At the

l-transition, the discontinuity of slope can be seen quite clearly, indicating a

second-order phase transition. Based on the general theory of phase transitions

introduced by Ehrenfest, a first-order phase transition has associated with it both a

Fig. 6.6 Specific heat of

liquid helium under saturated

vapor pressure
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change in entropy and molar volume. These quantities are related through the

Clausius-Clapeyron equation,

dp

dT

� �
Tc

¼ Ds
Dv

(6.30)

where the changes in s and v occur at the transition. The above expression

follows directly from the continuity of the Gibbs potential at the transition.

A second-order phase transition must have both continuity of Gibbs potential and

entropy. Therefore, the analogous expression to (6.30) becomes,

d2p

dT2

� �
Tc

¼ DCp

TvDb
¼ Db

Dk
(6.31)

where b is the bulk expansivity and k the bulk isothermal compressibility. It follows

that for a second-order phase transition Cp, b, and k are discontinuous. As discussed

in Chap. 3, these effects are observed in the properties of liquid helium near the

l-transition.
Finally, the density of He II as shown in Fig. 6.8 displays some interesting

characteristics. At saturated vapor pressure, the density goes through a broad

Fig. 6.7 Entropy of liquid

helium under saturated vapor

pressure
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maximumwith a discontinuity in slope at 6 mK above the l-transition. Below that

temperature, He II has a negative thermal expansion coefficient. The density of He

II under saturated vapor pressure approaches a near constant value of 145.3 kg/m3

which is 0.55% less dense than at its maximum but is 16% more dense than He I

at its normal boiling point, 4.2 K, 0.1 MPa where r ¼ 125 kg/m3. Thus, the

bulk expansivity of He II is near zero, which is required by the third law of

thermodynamics as the temperature approaches absolute zero.

The existence of a negative thermal expansion coefficient leaves open some

interesting potential applications. One possibility that has been investigated to some

degree is that of performing isentropic compression of the fluid to produce cooling.

Consider, as an example, the effectiveness of isentropic compressive cooling of

He II initially at 2.100 K and saturated vapor pressure. Isentropic compression is

achieved by reversibly applying pressure to a piston while the system is isolated

from the environment. For numerical calculations take the final pressure to be

pf ¼ 2 MPa. The statement of isentropic compression equates the specific

entropies:

sðTf ; 2 MPaÞ ¼ sð2:1 K, SVPÞ (6.32)

As a result of this compression, the final temperature should be 1.932 K, which

represents a 0.168 K reduction in temperature.

6.2.2 Transport Properties of He II

The behavior of He II when subjected to a mass or heat flow clearly demonstrates

the unique character of the fluid since the observed effects are totally different from

that which would be expected based on classical fluid mechanics. In considering

Fig. 6.8 Density of liquid

helium under saturated vapor

pressure
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He II under mass flow conditions, the most obvious property to evaluate is the form

of the viscosity. Surprisingly however, for He II this property depends on the way it

is measured. One can measure the apparent viscosity of He II by essentially two

different methods: (1) by measuring the pressure drop in laminar flow through

capillaries and (2) by measuring damping of a rotating disk immersed in the liquid.

At the outset, it should be noted that both methods yield essentially the same results

for ordinary liquids including He I.

To measure the viscosity of He II flowing through a capillary, a pressure gradient

must be established and a mass flow measured. Since the viscosity to be measured is

extremely small, ~1 mPa or 1/1000th that of water, the capillary must have a very

small diameter (d ~ mm) to ensure that the flow is laminar. For this case, experi-

mental evidence shows that almost independent of channel dimension the viscosity

becomes immeasurably small just below the l-transition. This result is contrary to

that obtained using a rotating viscometer. Here the measurement consists of a

change in moment of inertia of a disk rotated in the fluid. For He II, the viscosity

measured by a rotating viscometer obeys a more conventional form, actually

increasing with decreasing temperature. Thus, an important test of any theory of

He II is that it must be able to describe these very different mass transport results.

The heat transport character of He II is also quite unique. In general, the apparent

thermal conductivity of He II is extremely large, being at least several orders of

magnitude greater than other liquids or even high-conductivity metals. Further-

more, the heat conductivity cannot simply be described as a property like the bulk

thermal conductivity. This behavior can be seen most clearly by reference to a

specific experimental measurement. For a channel containing He II and subjected to

an axial heat current, the temperature gradient displays two regimes, shown

schematically in Fig. 6.9. For low heat fluxes up to a critical value qc, the helium

Fig. 6.9 Temperature

gradient in a He II filled

channel as a function of heat

flux density q. The critical
heat flux qc, represents a
transition between laminar

and turbulent flow. Note

d1 ~ 1 mm if T ’ 1.9 K
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obeys a heat transport relationship with the temperature gradient being directly

proportional to heat flux. However, unlike the bulk thermal conductivity, the

proportionality constant in this regime has a very strong diameter dependence,

with the helium getting less conductive as the diameter decreases. Additionally, in

this heat flow regime a corresponding pressure difference is set up across the

channel with the value being proportional to the temperature difference such that,

D p ¼ rsDT (6.33)

where the proportionality factor is the product of density r and specific entropy s.
This relationship between pressure and temperature gradients, known as London’s

equation, gives rise to the so-called fountain effect which causes He II to flow

through very small channels driven by a temperature difference.

Above the critical heat flux qc, He II enters another heat transport regime where

the temperature gradient becomes roughly proportional to the cube of the heat flux

and independent of channel dimensions. For reasons that will become apparent later

in this chapter, this regime is generally associated with the onset of a unique kind of

turbulence in the He II. It should also be noted that the transition point between the

two heat flow regimes in He II is diameter dependent.

6.2.3 Fountain Effect

In addition to the above described heat flow behavior, there are other unique

features in the transport properties of He II. One, commonly referred to as the

fountain effect, results from the noted relationship between the pressure and

temperature difference in He II, London’s equation (6.33). This effect can have

quite spectacular results. Consider, for example, the idealized experiment shown in

Fig. 6.10. A vessel containing He II is placed in a bath also of He II initially at the

Fig. 6.10 Experiment to

demonstrate the fountain

effect
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same temperature. A porous material forms a semi-permeable separation between

the two vessels and the inner vessel is instrumented with a heater. In equilibrium, all

temperatures and pressures are equal. However, if heat is applied to the inner vessel,

its temperature rises. As a consequence of the unique properties of He II described

by (6.33), the pressure rises in the inner vessel and the helium level will increase

until it squirts out the top channel forming a fountain from which the effect gets its

name. Although this effect is quite fantastic, we will see shortly that it is based on

sound physical principles in the theory of He II.

Related to the fountain effect is the existence of what is known as helium film

flow. It is a known physical phenomenon that liquids at saturation will form

multilayer films adsorbed on surfaces in the vicinity of the bulk liquid. What is

unique about He II is that this saturated film, which is typically less than a

micrometer thick, is mobile. Mobility of the He II film permits the liquid to flow

under the influence of the fountain pressure. Again consider an idealized experi-

ment. Assume a bath of He II contains a separate, smaller vessel with an open top

above the bath surface; see Fig. 6.11. As the inner vessel is lowered into the liquid a

pressure difference is established due to hydrostatic head, Dp ¼ rg Dh. But all
surfaces are coated with helium film, so that the fluid can flow between the two

reservoirs driven by the pressure difference. The flow rate depends on the details of

the experimental conditions; however, it is generally fast enough to see the inner

level increase. If the inner vessel is lifted out of the helium bath, the hydrostatic

pressure difference works in the opposite direction, causing the liquid to flow out

of the vessel.

The existence of helium film flow was first observed by H. Kamerlingh Onnes in

1922; however, he interpreted it in terms of an evaporation and condensation

mechanism. In 1937, Rollin and Simon were able to show that the mobility of the

helium film is based on the theory of He II. As a result, this film flow process is

sometimes referred to as the Rollin film. Considerable research has been conducted

to expand the understanding of He II film flow. Factors that affect the thickness of

Fig. 6.11 Schematic of a film flow experiment
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the film include height above the helium bath, substrate material, and temperature.

Empirical relationships have been suggested which relate the film thickness d with

the height H above the helium bath:

d ¼ K

Hn
(6.34)

where H is the film height in cm, K ’ 3 � 10�6 cmn+1 and n is between 0.3 and

0.45. For numerical values, note that the film at about 1 cm above the liquid is

approximately 30 nm (300 Å) thick, which corresponds to around 80 atomic layers.

Mobility of He II films has been demonstrated down to thickness of a few atomic

layers, see Sect. 10.2.

The practical significance of the Rollin film is that in addition to mass flow

through the film there can also be heat flow. The existence of heat flow through the

mobile He II film can affect strongly the system performance. One particular

example is the pumping work required to maintain He II at constant temperature.

If the helium is contained in a vessel with an opening for pumping at the top, the

film will climb the walls of the container. Heat will be conducted between the point

on the container, which may be as high as Tl, and the bath. If the opening to the

container is large, this heat flow can cause a sizable load on the bath. The best

method to reduce this heat inflow is to restrict the free surface of helium on which

the pump is working. This will reduce proportionally the helium film flow.

This topic is discussed further in Chaps. 8 and 9.

6.3 Excitations in He II

Until the 1930s, the unique properties of He II had little fundamental theoretical

understanding. London was the first to point out the close correspondence between

the behavior of a Bose gas and He II [4]. This observation resolved only part of the

problem because the gas models do not adequately describe the transport properties.

Furthermore as discussed above, the state properties of He II are quite different

from those predicted by the Bose gas model, both in terms of the order of the

transition and the low-temperature specific heat.

The first attempt to develop a more complete theory of He II was introduced by

Tisza [5]. Tisza suggested that liquid He II may be thought to consist of two

interpenetrating fluids, a concept which is similar to a model developed by Gorter

and Cashmir to qualitatively describe the behavior of superconductors [6].

Although the two-fluid model was chronologically the first theory to advance

significantly the understanding of He II, it did not satisfactorily address the behav-

ior of the state properties. The Landau theory [7] of excitations in He II both

explains the physics of properties such as the specific heat and entropy as well as

providing a more fundamental understanding of the two fluid nature of He II.

The latter topic is addressed in the next section.
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Landau approached the problem of He II by introducing an excitation spectrum

that might consist of a number of different modes. The spectrum is semi-empirical

in that it is adjusted to predict experimental data in a consistent manner. Two types

of excitation were introduced as part of the model, each having different regions of

significance. First, like all liquids, He II is envisioned to possess longitudinal

phonon excitations; transverse phonons can exist only in the solid state. These

longitudinal phonons are characterized by a velocity cl, such that its energy

spectrum can be written,

e ¼ clP (6.35)

where P is the momentum of the phonon given explicitly by P ¼ hk with k being
the wave number.

The other excitation mechanism unique to He II is referred to as the “roton”.

The name “roton” originally was attached to this mechanism because of the feeling

that it may represent some form of quantized circulation. However, this suggestion

is of no practical significance. It is most important to note that the rotons bring

about a higher wave-number excitations in the He II spectrum. These are char-

acterized by a minimum in the spectrum and has the general form

e ¼ Dþ ðP� P0Þ2
2m

(6.36)

where D is the minimum energy to excite one roton and P0 and m are empirically

determined quantities. Based on experimental data, numerical values for these

parameters are [8]:

D
kB

¼ 8:65 K

P0

�h
¼ 0:191 nm�1

m ¼ 0:16m4

where m4 is the atomic mass of a helium atom. Combining the two excitation

mechanisms into one continuous spectrum results in the dispersion curve, shown in

Fig. 6.12. The regions described by the two types of excitation are highlighted on

the curve. Note that D in particular is temperature dependent.

The test of the theory is in its ability to predict experimental data. It is relatively

easy to calculate the specific heat for the phonon part of the spectrum. Using the

Debye model for longitudinal phonons, the specific heat at low temperatures may

be written as,

Cph ¼ 2p2k4B
15r�h3c3l

T3 (6.37)
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which can be evaluated for the properties of He II to give, Cph ¼ 20:7T3 J/kg K.

This value is an extremely good prediction of experimental results given by the

empirical correlation in (6.28).

A further check for the existence of phonon excitations in He II is in the behavior

of the thermal conductivity at low temperatures. For T ≲0.6 K, the normal fluid

density is nearly zero so the heat cannot be transported by the internal convection

mechanism, which was briefly discussed in the introduction to this chapter and

is covered in more detail in the next section. Rather in this temperature regime,

the thermal conductivity of He II behaves like that of a dielectric solid at low

temperatures where,

kph ¼ 1

3
rCphv1l (6.38)

The velocity v1 is the speed of first sound (longitudinal phonons) in liquid helium

~240 m/s and l is the mean free path for the phonons. The phonon mean free path

at low temperatures is often dominated by boundary scattering so that l ~ d, the
tube diameter [8]. For a tube of 1 mm diameter, (6.38) predicts k ~50 W/m K at

0.5 K with a temperature dependence of T3.
The roton excitations in He II dominate the physical behavior for high

temperatures, T ≳1 K. As with phonons, rotons are collective excitations in the

liquid. Since the roton region of the dispersion curve is at high temperatures,

the physical processes obey Boltzmann statistics. Applying Landau’s dispersion

relationship to the He II, one can derive expressions for the thermodynamic

Fig. 6.12 Dispersion curve

indicating the elementary

excitations of the Landau

theory
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properties. As expected, these expressions are exponential in the roton energy

gap D. In particular, the entropy may be written,

sr ¼ 2ðkBmÞ1=2P2
0D

ð2pÞ3=2r�h3T1=2
1þ 3kBT

2D

� �
e�D=kBT (6.39)

and the specific heat contribution,

Cr ¼ 2m1=2P2
0D

2

ð2pÞ3=2r�h3k1=2B T3=2
1þ kBT

D
þ 3

4

kBT

D

� �2
" #

e�D=kBT (6.40)

All of which are functions of kBT/D. It is important to note that all expressions have

an exponential cutoff at low temperatures, indicating a relatively small roton

contribution for T <1 K. Also, although indicated as a constant in (6.39) and

(6.40), D decreases somewhat as T approaches Tl.
The theoretical expression for the roton contribution to the specific heat (6.40)

does not obviously agree with the empirical expression (6.29) where C � T5.6.
Since the specific heat is dominated by rotons only between 1.1 and 2.1 K,

the distinction between the power law and an exponential form is not large, see

problem 8. Nonetheless, it should be noted that the variation of specific heat near Tl
is one method to measure energy gap associated with the roton minimum, D,
indicating a fairly close correspondence with (6.40). The empirical expression

(6.29) is used mostly for calculations of an engineering and applied nature.

6.4 Two-Fluid Model

Although the theory of excitations in He II advanced by Landau and others has

considerable physical basis, it is not very useful for describing the transport

properties. The two fluid model, which was originally suggested by Tisza and

later refined by Landau, treats He II as if it were made up of two fully miscible

fluid components and takes the state properties of entropy and specific heat as given

quantities. This two-fluid model is then a description of the fluid mechanics of

He II, which is particularly successful at describing heat and mass transport.

The two-fluid model envisions the He II to be comprised of two interpenetrating

fluid components: normal fluid, which contains the excitations in the liquid, and the

superfluid. At this point it is worth making a comment about nomenclature. Often in

generic terms, He II is referred to as “superfluid” because this was the word used to

describe its behavior before the existence of the two-fluid model. Subsequent to the

introduction of the two-fluid model, it has been more correct to refer to liquid

helium below Tl as He II and the component in the two-fluid model as superfluid.

This convention, which assumes some knowledge of the physics of He II, will be

used throughout this book.
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The normal fluid component to the He II is assumed to behave as an ordinary

liquid. It is described by having a density rn, viscosity mn, and specific entropy sn.
On the contrary, the superfluid component has density rs, no viscosity (ms ¼ 0),

and no entropy (ss ¼ 0). The properties of the fluid must be comprised of a linear

combination of the two components. Thus, the density is a sum of the two

component densities,

r ¼ rs þ rn (6.41)

Since the superfluid has no entropy, it follows that the He II entropy can be

written in terms of the normal fluid component alone:

rs ¼ rnsn (6.42)

As was discussed in the previous section, the entropy of He II is strongly

temperature dependent, going approximately as T5.6 between 1.1 K and Tl. For the
two-fluid model, it is assumed that sn ¼ sl, the entropy at the l-point, and that all

the temperature dependence in (6.42) enters through the variation of the normal

fluid density. It is therefore possible to write

rn
r

¼ T

Tl

� �5:6

for T � Tl (6.43)

as the temperature dependence of the normal fluid density. The ratios of normal and

superfluid densities to that of the bulk liquid are shown in Fig. 6.13. Recall that for He

II the density has a rather weak temperature dependence so these curves closely

correspond to the total density profile for each component. Due to this strong temper-

ature dependence, the superfluid component composes about 99% of He II at 1 K.

Concerning the viscosity, the model assumes that ms ¼ 0 and the dissipative

interaction is due only to the normal fluid. This assumption corresponds to the

Fig. 6.13 Ratio of normal

and superfluid densities

in He II
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physical fact that the superfluid experiences no resistance to flow and therefore no

turbulence. The superfluid can flow through a channel without viscous drag along

the boundaries. In other words, the velocity of the fluid will be the same at the

center of the channel as near the sides. The equivalent mathematical expression for

this statement is to say that the superfluid velocity can have no curl:

r� vs ¼ 0 (6.44)

This description of the superfluid viscous interaction is only partially correct.

Above a certain critical velocity vc, the superfluid does transition to a turbulent

state but by itself remains an invicid fluid consistent with (6.44).

6.4.1 Equations of Motion

As described by the two-fluid model, He II can be thought to consist of two separate

interpenetrating fluids. This picture should not be taken too literally. It is only a

model and the existence of superfluid and normal fluid components is a hypothesis.

Nonetheless, the existence of this model allows equations of motion to be written

that describe the behavior of the fluid.

In particular, the momentum density j of He II can be written as a sum of the

momentum density components,

j ¼ rsvs þ rnvn (6.45)

where vs and vn are the superfluid and normal fluid velocities. An interesting and

important special case of (6.45) is when there is no net mass flow and j ¼ 0. Thus,

the bulk He II is static although the superfluid and normal fluid components can

flow in opposite directions consistent with the requirement that,

rsvs ¼ �rnvn (6.46)

This expression leads to the notion of “internal convection” or “counterflow” where

the two fluids can flow and carry entropy in He II without experiencing macroscopic

mass flow.

In addition to the expressions for density (6.41) and momentum (6.45), the

two-fluid model relies heavily on conventional fluid mechanics which is used to

describe the behavior of each component. The continuity equation describes the

rate of change of the density in a given volume of space, that is,

r � j ¼ � @r
@t

(6.47)
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where each component of He II must obey this relationship. Euler’s equation

describes the acceleration of an ideal fluid. An ideal fluid supports no shear stress

even in motion and has negligible viscosity. As a consequence, the only force acting

on the fluid is that due to its pressure gradients:

@v

@t
þ v � rv ¼ � 1

r
rp (6.48)

The above expression is analogous to Newton’s second law applied to fluids; stated

simply, it defines the rate of acceleration of a fluid subjected to a force per unit

volume rp.
For the development of the two-fluid model we start by reducing (6.48) to a

linear expression. Since the second term on the left-hand side goes as v2 for small

velocities, it is neglected and assuming an incompressible fluid leads to

@j

@t
’ �rp (6.49)

The suitability of Euler’s equation to describe the behavior of the superfluid

component should appear obvious. By definition the superfluid does not support

shear flow or have a viscous interaction. However, for the normal fluid there is an

important viscous term that enters a number of physical processes including heat

transport. In the description of these processes, more complex fluid mechanics are

required in the form of the Navier–Stokes equation applied to the normal fluid.

Finally, we need to develop an expression for the behavior of the entropy flow of

He II. Since fluids described by Euler’s equation experience no dissipative inter-

action, all processes are reversible. Reversibility of fluid flow processes implies

that entropy must be conserved. It is therefore possible to write an expression

for entropy conservation which is analogous to mass conservation in the continuity

equation. Consider a volume containing helium with density r and specific

entropy s; (see Fig. 6.14). Here the entropy per unit volume is rs ¼ rnsn ¼ rnsl

Fig. 6.14 Schematic volume

containing He II
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since the normal fluid is the only component with nonzero entropy. Furthermore,

the rate of flow of entropy into the volume is determined by the flow of the normal

fluid at velocity vn. This process can be treated by an expression that relates the

entropy content to the entropy flow:

@

@t
ðrsÞ ¼ �r � ðrsvnÞ (6.50)

This expression is analogous to the continuity equation for mass conservation.

The first step in development of the equations of motion for He II is to consider

the superfluid component. To do this, it is helpful to imagine an idealized experi-

ment. Assume there exists a volume containing a number of helium atoms with a

total mass m. A conceptual picture of this system is shown in Fig. 6.15. The volume

is connected to another volume containing helium but there is a special valve

between these two volumes, which only allows the superfluid component to flow.

In practice, such a valve can be made by packing fine powder into the tube which

clamps the normal fluid by viscous interaction but allows the superfluid to flow.

The thermodynamic function that is useful in describing the change in the

internal energy of the system associated with a change in mass dm is the Gibbs

potential per unit mass, g. Assuming the system is open only to the addition of

superfluid, we can write the differential form of the first and second laws of

thermodynamics as

dE ¼ T ds� p dvþ gdm (6.51)

Two initial assumptions can be used to simplify the (6.51). First, for a constant

volume process, dv ¼ 0, so that the second term is eliminated. More importantly,

the entropy is constant, ds ¼ 0, since the fluid that is being added to the box is only

superfluid with all particles in the ground state. Therefore, the change in internal

energy is proportional to the change in mass, that is,

dE ¼ gdm (6.52)

Fig. 6.15 Isentropic process involving He II
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It is sometimes more helpful to think of this process in terms of a thermodynamic

driving force that is the gradient of the potential. The acceleration of the superfluid

is equal to the negative of the thermodynamic driving force:

dvs
dt

¼ �rg (6.53)

This expression can be written in terms of common thermodynamic quantities by

using the differential form of the specific Gibbs potential,

dg ¼ �s dT þ v dp (6.54)

and since this is a total differential, (6.53) can be inserted to provide an equation of

motion for the superfluid component:

@vs
@t

¼ srT � 1

r
rp (6.55)

Note that between (6.53) and (6.55) the velocity derivative has been changed

from a total to partial derivative. This approximation, which is good to terms of

order v2, is useful in placing the equation in its well known form. The above

expression, (6.55), is of fundamental importance to understanding the behavior of

He II. Although its existence seems to be based on an idealized example, it is

extremely effective at predicting numerous physical aspects of He II including the

fountain effect and sound propagation both of which are discussed next.

6.4.2 Thermomechanical Effect

The thermomechanical effect, or fountain effect as it is more commonly known,

is predictable from the equation of motion for the superfluid component in the two-

fluid model. As has already been discussed in the properties section of this chapter,

there exists a relationship between temperature difference and pressure difference

in He II known as London’s equation, (6.33). Furthermore, the proportionality

factor is the volumetric entropy rs. To see how this relationship originates, consider

the experimental setup shown in Fig. 6.16. Two containers each filled with He II are

connected together through a superfluid filter or fine capillary having a diameter

<1 mm. The capillary allows superfluid component to flow from one container to

the other while the normal fluid is clamped by the viscous interaction to the walls of

the capillary.

In steady state, the two containers have equal Gibbs potentials, and, further-

more, the fluid will not be accelerating; that is @vs=@t ¼ 0. It follows that by
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setting the left-hand side of (6.54) to zero, the fountain pressure relationship is

derived:

dp

dT
¼ rs (6.56)

If, as in Fig. 6.16, the temperature on either side of the capillary is not equal, there

will be a flow of helium under the influence of the induced pressure difference.

This process will continue until the hydrostatic head (rg Dh) equals the fountain

pressure (rs DT). It is worth noting the order of magnitude of this effect. At 1.8 K,

dp/dT ¼ 80 Pa/mK or about 5% of the vapor pressure per millikelvin. Thus, a 1 mK

temperature difference between the two sides in Fig. 6.16 will, cause a 80 Pa

pressure difference which corresponds to about a 60 mm helium liquid level

difference.

A corollary to the thermomechanical effect is something called the

mechanocaloric effect, which relates the heat flow brought on by physically forcing

the helium from one side to the other. Consider the system as described above in

equilibrium where initially TA ¼ TB and the two heights are the same. Now imagine

that a movable, insulating piston on the left-hand side pushes the helium down and

through the capillary; see Fig. 6.17. Since only the superfluid can pass through the

capillary, the effect of the flow will be to reduce the entropy per unit volume on the

right, B, and increase it on the left, A. In other words, the temperature on the right

Fig. 6.16 Thermomechanical effect: He II reservoirs connected by a narrow capillary maintain

level difference due to temperature difference, Dp = rsDT
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will go down and on the left it will go up. The effect is similar to heating the fluid on

the left and cooling it on the right. The equivalent heat that it transferred is,

Q
 ¼ rsTDV (6.57)

where DV is the volume of helium flowing between these two vessels.

To bring this system back to equilibrium the amount of heat Q* must be

transferred between the two vessels through some other means than through the

capillary. One method would be if these two vessels were immersed in a constant

temperature bath of He II. In that case, the higher temperature side would liberate

heat into the bath and the low temperature side would absorb the same quantity of

heat. However since the process is isentropic, the final state would be identical to

the initial condition.

As a final comment, the above thought experiment is definitely idealized.

It requires two frictionless, insulating pistons. This is because if the helium is in

contact with its vapor, heat will also be transferred through the vapor phase by

evaporation and condensation processes. The lower-entropy fluid on the right will

absorb heat from the vapor by condensation while the higher-entropy fluid on the left

will reduce its temperature by evaporating some of the liquid into the vapor phase.

6.4.3 Sound Propagation

One of the most interesting characteristics of He II is ability to transmit more than

one type of sound wave. In addition to ordinary or first sound, which is a density

variation brought on by local pressure gradients, there is a mechanism called second

Fig. 6.17 Mechanocaloric

effect: He II forced to flow

between reservoirs connected

by a narrow capillary. Excess

heat content Q* is transferred

to the surroundings from A

and received from

surroundings to B
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sound, which is propagation of thermal waves as a result of fluctuations in the local

entropy. The existence of second sound is predicted by the two-fluid model.

To begin, we consider briefly the origin of ordinary first sound. Sinusoidal wave

propagation can be obtained analytically by combining the continuity equation

(6.47) with Euler’s equation for an ideal fluid with linear response (6.48). The

result is a wave equation that associates pressure and density:

r2p ¼ @2r
@t2

(6.58)

This differential equation has the standard solution of a sine wave varying function.

The wave packet has a characteristic speed c1 given by,

c21 ¼
@p

@r

� �
s

¼ g
rk

(6.59)

where the partial differentiation is taken at constant entropy and g is the ratio

of the specific heats, Cp/Cv. The speed of first sound in liquid helium is of the

order 200 m/s.

Second sound is the result of entropy fluctuation rather than density fluctuations

as in ordinary sound. Beginning with the entropy conservation equation (6.50) and

the equation of motion for the superfluid component (6.55) the pressure gradient

may be rewritten as

�rp ¼ r
@vs
@t

� srT

� �
(6.60)

The time rate of change of the momentum is equal to the negative of the pressure

gradient. Taking the derivative of (6.45) and dropping all except linear terms in

velocity, we obtain

@j

@t
¼ �rp ’ rs

@vs
@t

þ rn
@vn
@t

(6.61)

which combined with (6.60) results in an expression for the difference in the

acceleration of the two fluid components:

@vn
@t

� @vs
@t

¼ � r
rn

srT (6.62)

The above expression can be used to illustrate some important physical facts.

In non-dissipative He II, a temperature gradient produces a relative acceleration of

the two fluid components. Because the relative densities of the two fluid components

are related to the entropy, a temperature gradient implies a variation in rs/rn.
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To make (6.62) approach more closely a wave equation, one can take the

divergence of each side and then replace the superfluid velocity with the continuity

equation. The results are simpler if it is assumed that the total density is constant,

∂r/∂t � 0. A relationship is then obtained for the normal fluid velocity in terms of

the second derivative of the temperature,

rn
rs

@

@t
ðrr � vnÞ ¼ �rsr2T (6.63)

The left-hand side may be written in terms of the fluid entropy by the conservation

of entropy equation, (6.50). This result is reduced to a fairly simple form if the

entropy does not vary significantly with time and position; that is,

@2s

@t2
¼ s2rs

rn
r2T (6.64)

which is referred to as the linearized second sound equation. It predicts a sine wave

varying function propagating with speed c2 given by

c22 ¼
s2rs
rn

@T

@s

� �
r
’ rs

rn

Ts2

Cv
(6.65)

The expression for the speed of second sound turns out to be quite accurate and is

even used as a method of measuring the entropy of He II [9]. Typical values for c2
are around 20 m/s between 1 and 2 K.

It is worth noting at this juncture the different methods available for measure-

ment of second sound. As might be expected, these methods have analogues in the

measurement of first sound, except that a travelling temperature wave is detected

with a thermometer rather than a travelling pressure wave being detected with a

pressure transducer. There are principally two methods of measuring the velocity of

second sound. The most obvious is the time-of-flight method shown schematically

in Fig. 6.18a. A heater is located some distance away from the source providing a

pulse that travels the length of the channel. The pulse is detected at some time later,

t ¼ L/c2. This method, although effective, is cumbersome since the channel must

be fairly long to have good resolution, but in that case there can be attenuation

of the pulse due to other considerations to be discussed below. Consequently, the

time-of-flight method is not the most convenient for measuring c2.
Second sound may also be measured by a resonance method. In this case, a

channel is constructed with a closed end, as in Fig. 6.18b. Within the channel there

is a heater that can be driven at variable frequency. Also installed in the channel

is a movable thermometer located between the heater and closed end of the tube.

The principle, which was originally employed by Peshkov [10] to determine c2, is to
drive the heater at a resonant frequency of the channel, v ¼ n c2/2L, where n is an

integer. The temperature sensor is then moved along the tube, detecting the
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resultant standing wave. Besides simplicity, there are other advantages of this

resonant method for detecting second sound. In such a device, one can continuously

monitor the amplitude of the second sound wave. As we will discuss below, the

amplitude of the second sound wave is attenuated by turbulence in a fairly well

understood manner. Therefore, a continuously operating second sound resonator

can be used as a local detector of turbulence in He II.

Another method for detecting second sound is based on the associated oscillating

relative motion of the two fluid components [11]. A thin metallic foil containing sub-

micron diameter holes and immersed in He II can deflect a time variation of rs/rn.
This occurs because the normal fluid is unable to flow through the holes and thus will

exert a pressure on the foil, while the superfluid component will flow through the

sub-micron holes. Such a devise can be driven at a desired frequency to produce a

traveling wave of second sound. Similarly, the device can detect the arrival of the

second sound as a deflection of a detector foil of the samematerial. One advantage of

using such a second sound detector is that it does not generate as much entropy as the

heater-thermometer system.

Second sound has been measured extensively everywhere from Tl to near

absolute zero and as a function of pressure. Values for c2 at near saturated vapor

pressure are compared to cl in Fig. 6.19. Note that c2 is approximately constant

(~20 m/s) over the range 1–2 K. At lower temperatures the second sound speed

increases rapidly as T ! 0 K. Theory predicts that the limiting low-temperature

value of second sound speed is c1/
ffiffiffi
3

p ’ 137 m/s, although it is difficult to measure

below 1 K due to the very low normal fluid density.

In summary, the important factors controlling first sound and second sound are

listed in Table 6.2. For He II and the two-fluid model, first sound requires that the

Fig. 6.18 Measurements of the velocity of second sound: (a) time-of-flight method and (b)

resonance method
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two component velocities be in the same direction, while second sound is

associated with a counterflow having vs in the opposite sense to vn. The existence

of second sound in He II can be used as a diagnostic tool since it is attenuated by

forces of interaction between the two fluid components. Thus, the variation of the

second sound amplitude can give information about the local state of the helium.

6.4.4 Viscous Flow

Until now we have not fully considered the impact of viscosity in the two-fluid

model for He II. In the prediction of second sound the viscosity of each component

is assumed to be negligible, allowing the use of a linearized form of Euler’s

equation. On the other hand, in analyzing the thermomolecular fountain effect,

Fig. 6.19 Speeds of sound

in liquid helium

Table 6.2 Comparison of sound propagation in He II

First sound Second sound

Driving force dp dT
Propagator dr ds
Density (r) Wavelike ~ constant (rnvn � �rsvs)
Temperature (T) ~ constant (vs � vn) Wavelike

Speed
c1 ¼ g

rk

� �1=2 � 240 m/s c2 ¼ rs
rn

Ts2

Cv

� �1=2 � 20 m/s

Relationship r2p ¼ @2r
@t2

r2T ¼ rn
s2rs

@2s
@t2
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the normal component has been given sufficient viscosity that it cannot flow at all

through a capillary with d < 1 mm. In actual fact, neither of these assumptions are

correct since the normal fluid has a measurable viscosity which is of the order of

1 mPa-s in the regime of interest. The present section examines how the introduction

of the normal viscosity mn into the two-fluid model aids in the prediction of several

important physical phenomena.

To begin, a viscous term is introduced into the linearized Euler’s equation (6.49),

resulting in an expression for the rate of change of the momentum that includes

dissipation,

@j

@t
¼ �rpþ mr2v (6.66)

where the viscosity m enters along with the second-order derivative of the velocity.

Note that the superfluid viscosity is zero in the two-fluid model and that the

momentum can be written as a sum of the two components, j ¼ rsvs + rnvn
(6.45). Combining these facts and keeping only terms which are linear we can

rewrite (6.66) a

rs
@vs
@t

þ rn
@vn
@t

¼ �rpþ mnr2vn (6.67)

where the left-hand side is simplified by the assumption that rs and rn are weak

functions of time. Recall that a relationship for the time derivative of the superfluid

component has already been derived (6.55). Combining that relationship with

(6.67) gives the two linearized equations that describe the flow of He II including

the normal fluid viscosity,

rs
@vs
@t

¼ rssrT � rs
r
rp (6.68)

and

rn
@vn
@t

¼ �rssrT � rn
r
rpþ mnr2vn (6.69)

The above expression (6.69) is generally referred to as the Navier–Stokes equation

for the normal fluid component. It is of interest here to determine how well these

equations predict the transport properties of He II.

As mentioned in Sect. 6.2.2, there are two principal methods for measuring the

viscosity of a fluid: Poiseuille type flow through a capillary and the damping of

an oscillating disk. For the case of ordinary liquids, these two methods yield

essentially identical results. However, in the case of He II, very different results

are obtained which can be understood only in terms of the two-fluid model.
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Let us first consider Poiseuille flow. If two vessels containing He II at different

temperatures are connected together through a capillary of very small diameter,

we have previously stated that the apparent viscosity of the helium is extremely

small if not zero. Some measurements have indicated that m ≲ 10�12 Pa-s, which is

about six orders of magnitude less than the viscosity of He I. A further surprising

feature of these measurements is the relationship between mass flow or fluid

velocity and pressure difference. To first order, the mass flow is independent of

Dp. These results can also be interpreted in terms of the two-fluid model. In the

channel, the normal fluid interacts strongly with the boundaries and is therefore

locked in place. The superfluid component has zero viscosity and thus can flow

through the channel without losses. The fluid in motion is the superfluid component

and the apparent viscosity should be extremely small. This result is consistent of

course with the fountain effect, requiring that the pressure difference be propor-

tional to temperature difference. If the above description were complete, the

superfluid component would be expected to accelerate indefinitely. However, this

does not occur and the superfluid appears to transport itself at constant velocity

nearly independent of the pressure difference. This velocity is termed the critical

velocity vc and also as we will see impacts the behavior of the heat transport.

Briefly, above the critical velocity the superfluid becomes turbulent, which brings

about new interactive mechanisms between the two fluid components.

The alternative method of measuring the viscosity of He II is to oscillate a disk in

the liquid and measure the damping; see Fig. 6.20. Since the damping of the

oscillation is a function of moment of inertia and drag with the fluid, the oscillatory

mass is related closely to the viscosity of the liquid. The results of this measure-

ment are substantially different from the Poiseuille experiment discussed above. In

fact, what is observed is more traditional behavior for the viscosity; see Fig. 6.21.

Below the l-point the measured viscosity decreases, forming a broad minimum of a

nearly constant value around 1.4 mPa-s between 2.0 and 1.5 K. Below this temper-

ature the viscosity increases almost exponentially with decreasing temperature. It is

of primary interest to interpret these results in terms of the two fluid model.

Unlike Poiseuille flow, the oscillating disk technique forces the normal fluid to

Fig. 6.20 Oscillating disk

for viscosity measurement
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flow against its own viscous drag forces. Since the normal fluid interacts strongly

with the boundaries, the oscillating disk directly measures its viscosity. Therefore,

the results plotted in Fig. 6.21 actually represent the behavior of the normal fluid

viscosity mn.
One of the landmark experiments involving rotating He II was performed by

E. Andronikashvili [12]. This work is of great significance for it clearly supports the

concept of the two fluid model and agrees very well with other measurements of He II

properties. The basic idea of the experiment is shown in Fig. 6.22. It employs a

rotating viscometer; however, unlike the measurement described above, this device is

fitted with a large number of narrowly spaced parallel plates. The plate spacings were

chosen so that they were less than the viscous penetration length, d < (2mn/ro)
1/2.

This condition requires all the viscous fluid to rotate with the plates. The two fluid

model demands that the only fluid in motion would be the normal fluid and thus

the moment of inertia would be proportional to rn. Thus the Andronikashvili experi-
ment directly measures the normal fluid density. The results of this experiment are

shown in Fig. 6.23, which is a plot of rn/r versus temperature. Also indicated in the

graph are values of rn/r measured by second sound (6.65). The agreement between

the two experimental findings is remarkable and adds considerable support to the

physical basis of the two fluid model.

6.4.5 Heat Transport

The behavior of He II subjected to a heat flow can be interpreted similarly in terms

of the two-fluid model. Consider two reservoirs containing He II and connected by a

channel of diameter d. At this point it is important to require that d be small, of the

Fig. 6.21 Viscosity of He II

as measured by oscillating

disk
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Fig. 6.22 Schematic diagram

of Andronikashvili

experiment [12]

Fig. 6.23 rn/r as a function

of temperature compared with

experimental results of

Andronikashvili: ●, from

second sound measurements

and ○, from rotating

viscometer
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order 10 mm or less; however, the actual physical limitations are defined more

clearly in the next section. If heat Q is applied to one reservoir, the temperature will

rise and heat will be conducted through the connecting channel to the other

reservoir. As long as the helium obeys ideal two-fluid hydrodynamics, the relation-

ship between the temperature difference and pressure difference is established from

London’s equation, Dp ¼ rsDT.
To solve the heat flow problem in the steady state, the two fluid equations are

combined, noting that ∂vs/∂t ¼ ∂vn/∂t ¼ 0, to yield

rp ¼ mnr2vn (6.70)

which is known as the Poiseuille equation. It is interesting to note that (6.70)

indicates a nonzero normal fluid velocity no matter how small the channel diameter.

Thus, the assumptions that lead to the fountain effect are oversimplified.

Given a one dimensional channel of constant diameter d, (6.70) can be simplified

to relate the normal fluid velocity along the channel axis vn to the pressure and

temperature gradients:

dp

dx
¼ rs

dT

dx
¼ � bmnvn

d2
(6.71)

where x is the distance along the channel and b is a numerical constant determined

by the geometrical conditions. Note that b ¼ 12 for parallel plates or large aspect

ratio rectangular cross sections and b ¼ 32 for circular tubes.

Recall that in He II heat can only be carried by the normal fluid component.

Thus, for the case where the net mass flow is zero, v ¼ 0, the heat flux density q is

directly proportional to vn:

q ¼ rsTvn (6.72)

Subsequently, (6.72) will be shown to have a more general form when considering

nonzero net mass flow. Eliminating vn from the Poiseuille equation, (6.71), we

obtain a heat conductivity equation that should describe the behavior of the

ideal He II:

q ¼ � d2ðrsÞ2T
bmn

dT

dx
(6.73)

Note that this expression has a form similar to pure conduction although the

function of proportionality, which is like an effective thermal conductivity keff,
varies as the square of the diameter. Consider as an example heat flow in a 10 mm
diameter circular tube containing He II at 1.9 K. By inserting the appropriate

physical properties for He II, we can calculate an effective thermal conductivity

of 49 kW/mK. This quantity increases strongly with temperature dominated by the

dependence of (rs)2 T � T12. Thus, although keff is around 100 times greater than

that of high-purity copper at 1.9 K it is only about 25 W/mK at 1 K.

202 6 Helium as a Quantum Fluid



If (6.73) were the only expression determining the heat transport in He II,

it would be possible to increase the effective thermal conductivity indefinitely by

simply increasing the diameter, since keff ~ d2. However, there is a physical

limitation resulting from the existence of a critical velocity in the superfluid

component. This critical velocity is the same one that limits the rate of helium

flow through a channel under Poiseuille flow. It marks the transition to turbulent

states in He II. This turbulence can occur in both the normal fluid and superfluid

components, and as we will see has significant impact on both heat and mass

transport behavior of He II.

Example 6.1

A 5 mm diameter circular cross section capillary contains He II at 1.8 K. For a

heat flux q ¼ 1 kW/m2, calculate the temperature gradient and pressure gradient

assuming the flow is ideal.

Inverting (6.72) solving for the magnitude of the temperature gradient,

dT

dx
¼ 32mn

d2ðrsÞ2T q

Substituting numerical values for the various properties, gives a value of

dT/dx ¼ 0.15 K/m. Then the pressure gradient is obtained from London’s

equation, dp=dx ¼ rsdT=dx ¼ 12:2 kPa=m .

6.5 Vortices and Turbulence in He II

As outlined in the previous section, He II has a number of unique physical

properties, the most notable being its transport properties. However, the two fluid

model developed so far is incomplete because it contains no upper limit for the

special heat and mass flow processes. Such behavior is not observed experimen-

tally. Rather what is seen is a limiting critical velocity vc above which the He II

begins to exhibit viscous-like flow and nonideal heat transport. The subject of the

present section is to convey the significance of this critical velocity and how it

affects the unique properties of He II. In particular, we will show the origin of a new

dissipative mechanism that controls heat transport in large systems.

6.5.1 Helium II in Rotation

In considering the flow of He II in the two-fluid model, an assumption was made

that the superfluid component has zero viscosity, that is ms ¼ 0. This assumption

leads to the requirement that superfluid velocity cannot have a gradient
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perpendicular to the flow direction, that isr� vs ¼ 0. An interesting contradiction

occurs when this condition is applied to He II in rotation.

Consider a vessel containing He II rotating with an angular frequency o. For the
case in discussion, the temperature of the fluid will be taken to be below 1 K so

there is hardly any normal fluid present and rs ’ r. Also to simplify the descrip-

tion, it will be assumed that the fluid is incompressible allowing r ’ constant and

dr/dt ¼ 0. It follows from the continuity equation that r � j ¼ 0, and since the

normal fluid density is essentially zero,

r � vs ¼ 0 (6.74)

or the divergence of the superfluid velocity must vanish also. Combining (6.74)

with r� vs ¼ 0 requires that the superfluid obey Laplace’s equation, with the

curl-free relationship for the superfluid velocity,

r2vs ¼ 0 (6.75)

which for a simple rotating vessel like in Fig. 6.24 has only one solution: that the

He II must be at rest with vs ¼ 0.

It is a straightforward argument to show that vs ¼ 0 for any fluid that obeys

Laplace’s equation. Introducing the concept of circulation, we define

C ¼
þ
vs � dl (6.76)

where the integral is taken around any simple path in the fluid. The circulation is a

measure of the rotation of the fluid. Stokes’ law can be applied to (6.76), yielding

Fig. 6.24 Simple rotating

bucket as used by Osborne

[13]
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þ
vs � dl ¼

ð
s

r� vs � ds (6.77)

where ds is the integral over the surface enclosed by C. But for the superfluid,

r� vs ¼ 0, which can be satisfied only by

þ
vs � dl ¼ 0 (6.78)

a condition that requires vs ¼ 0.

The above conclusion is in contradiction to experiment. In 1950, Osborne [13]

reported an experiment that measured the rotation of a single bucket of He II as

shown in Fig. 6.24. The remarkable result is that he found under all conditions that

the helium rotated with a parabolic meniscus as with a classical fluid. Furthermore,

if all the helium rotated, the vertical height z of the meniscus should be given by

the simple relationship

z ¼ o2

2g
r2 (6.79)

where g is the acceleration of gravity, o is the rotation frequency and r is the radial
coordinate. Note that if only the normal fluid component rotated there would be a

ratio rn/r multiplying the right-hand side of (6.79). Osborne’s experiments were in

general agreement with (6.79), which leads to the conclusion that He II behaves

as an ordinary liquid when rotating in a simple bucket.

The explanation for the apparent contradiction between experiment and theory

of He II lies in the method by which turbulence is introduced into the liquid. The

qualitative picture of He II above its critical velocity imagines the existence of an

array of vortex lines brought on by the rotation of the fluid. Each vortex line

contains a unit of angular momentum and can be used to explain numerous physical

phenomena associated with He II. London first postulated the existence of vortex

lines, but their actual observation did not occur until nearly 30 years later.

The vortex line array exists as follows. Rotating He II contains vortex cores

shown in Fig. 6.25. The array is similar to the fluxoid array in a Type II super-

conductor. Each vortex core contains a unit of circulation. The behavior of this

array is governed by quantummechanics to the extent that each unit of circulation is

determined by the quantization rule,

þ
P � dq ¼ nh (6.80)

where P ¼ mv is the momentum and dq ¼ dl. It is apparent that the circulation C is

quantized based on (6.80) which may be rewritten as

þ
vs � dl ¼ n

h

m
(6.81)

6.5 Vortices and Turbulence in He II 205



where h/m is a unit of circulation. For a regular array, each vortex core contains one

unit of circulation equal to h/m.
The existence of a regular array of vortex lines is helpful in resolving the

apparent contradiction between experiment and the two-fluid model. In particular,

if the array is as shown in Fig. 6.25, the circulation cancels locally because each

vortex borders another and the line separating the two has zero velocity. Therefore,

taking an arbitrary path containing numerous vortices, we find that the net circu-

lation within this path is zero. However, at the boundary of the container, the

circulation does not cancel, leaving a net value around this path consistent with

the entire fluid in rotation. Thus, the contradiction can be resolved by assuming

the existence of a vortex array.

The density of vortex lines depends on the angular frequency. To compute this

density n0, begin by determining the total circulation of a path of radius r in the

rotating He II. For the case with the rotation at constant angular frequency o0,

integration of (6.76) yields

C ¼ 2pr2o0 (6.82)

Because this path contains a total number of vortex lines N ¼ n0(pr
2), the total

circulation is N(h/m) or

C ¼ n0
h

m
pr2 (6.83)

Equating (6.82) and (6.83), we can calculate density of vortex lines that depends

only on the angular frequency:

n0 ¼ 2o0m

h
ffi 20o0 per mm2 (6.84)

Fig. 6.25 Idealized vortex

array in rotating He II
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where o0, is in rad/s. For a reasonable angular frequency of perhaps 1 rad/s, (6.84)

indicates a sizable vortex line density. It should therefore be possible to observe

vortex lines in rotating helium if they could somehow be made visible.

Visual observation of vortex lines in rotating helium was first achieved by

Williams and Packard in 1974 [14]. In their experiment, the vortex lines were

made visible by trapping electrons in the vortex core. It is an established character-

istic to the behavior of electrons in liquid helium that they will form small voids or

bubbles on the order of a few nanometers in diameter. These electron bubbles are

attracted to the vortex core as a result of the Bernoulli potential, caused by the

electron bubbles’ tendency to reduce its surface energy. In the vortex line visuali-

zation experiment, electrons emanating from a b-decay of a radioactive source were
trapped on the vortices in a rotating bucket of liquid He II. The electrons subse-

quently were accelerated through an electrostatic potential, striking a phosphorus

screen with the existence of a vortex line being recorded as a flash of light. One

aspect to these measurements, which was not predicted, was the mobility of the

vortex lines. A vortex appeared to be created and destroyed at the boundaries of the

rotating bucket. Also, the vortices moved throughout the fluid at a rate which made

it necessary to add some 3He to the rotating bucket to produce viscous damping.

Figure 6.26 are images of the vortex line array seen by Williams and Packard [14].

More recently, Bewley et al. [15] performed a new series of vortex line visuali-

zation experiments in rotating He II using a different method. In these experiments

the lines were decorated with micron scale solid hydrogen particles, illuminated

with laser light and digitally recorded with a CCD camera. In this case, the vortex

lines were observed from the side, as seen in Fig. 6.27, as an array of parallel lines

with hydrogen particles approximately equally spaced along them. These

experiments were performed near Tl presumably with sufficient normal fluid

present to dampen the vortex line motion.

The observations accrued from both these experiments on visualization of vortex

lines overall appear consistent with the description of the turbulent state. The

number of vortex lines were seen to be proportional to angular frequency o0, as

predicted by (6.84) and the spacing between lines was approximately equal to (h/
2o0m)

1/2, both consistent with theory. As can be seen in these results, the turbulent

superfluid component in He II has unique characteristics.

6.5.2 Critical Velocities

At this point it may appear that there is a contradiction in the description of

experiments which involve rotating He II. Recall the Andronikashvili experiment

which consisted of rotating closely spaced disks in liquid helium. In that work only

the normal fluid component rotated with the device. This result appears to be in

contradiction with the rotating bucket experiments of Osborne where the entire

helium fluid is seen to be in motion. A distinction between these two observations

can be made in terms of the magnitude of rotation velocity. To put the entire bucket

of helium in rotation it is necessary to exceed a critical velocity to establish an
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interaction between the normal and superfluid components. This critical velocity is

also of prime importance in the development of a complete picture of the heat

transport of He II.

The critical velocities of the two components in He II have different origins.

For the superfluid, the critical velocity vsc is that which is necessary to create

quantized vortex lines, which are in the form of a random tangle characterized by

a line density per unit volume, L. The normal fluid component on the other hand

can be thought of as having a critical velocity vnc associated with the transition

from ordinary laminar to turbulent flow. The normal fluid critical velocity can be

considered in terms of classical hydrodynamic principles such as exceeding a

critical Reynolds number. Finally, with the two-fluid model there exists the

Fig. 6.26 Photographic

reproduction of vortex line

array in rotating He II (from

Yarmchuk and Packard [14]):

(a) through (l) indicate

increasing angular frequency

208 6 Helium as a Quantum Fluid



possibility of a critical velocity associated with the relative motion of the two

components, |vn–vs|c. It should be emphasized that all three of these critical

velocities may impact the behavior of mass and heat flow in He II.

First, consider the superfluid critical velocity vsc. Recall that the superfluid

velocity is more or less independent of pressure difference for flow within a

channel. The equation of motion for the superfluid component predicts an acceler-

ation of this component under the influence of a pressure gradient,rp. Clearly, the
acceleration cannot go on indefinitely; the superfluid has some limiting or critical

velocity above which frictional forces may contribute. It is possible to under-

stand the concept of a superfluid critical velocity by invoking the following

semi-classical argument.

Imagine that the He II is confined to flow in a channel of dimension d. At very
small velocities, the flow will be laminar. However, with increasing vs, there

comes a point where the ideal laminar flow breaks down and turbulence is created.

Thus, the critical velocity is that which is necessary to create turbulence or vortices

in the channel. In He II the behavior of vortices is controlled to a large extent by

quantum mechanics where a vortex contains one quantum of circulation. One might

then ask, what is the characteristic size of a vortex? Employing the Heisenberg

uncertainty principle, Dp Dx � h, the position of a helium molecule in rotation

around the vortex must be defined to within some fraction of the radius.

Fig. 6.27 Micron size solid hydrogen particles attached to superfluid vortex lines produced

by rotation at a frequency O ¼ 0.3 Hz. Measurements were made slightly below Tl. (From

Bewley et al. [15])
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Furthermore, the vortex must fit within the channel which has a characteristic

dimension d. For the sake of discussion, we choose Dx � d/10 for the vortex to

exist. This numerical assumption leads to an equation for vsc:

vsc � 10h

md
� 10�4

d
m/s (6.85)

where m is the mass of the helium molecule. Clearly, the above picture is

oversimplified. A more detailed theoretical development due to Feynmann [16]

however, results in a similar expression for vsc:

vsc ¼ h

pmd
ln
4d

a0
� K0

� �
(6.86)

where a0 is the size of a vortex core (a0 ~ 1 nm) and K0 is a numerical constant. It is

interesting to note that although the Feynmann equation (6.86) has a stronger

theoretical basis than (6.85) it still is dominated by an inverse diameter dependence.

Although the above theoretical arguments seem reasonable, the superfluid criti-

cal velocity is an empirically determined quantity. Plotted in Fig. 6.28 are different

theoretical expressions for vsc as well as an empirical fit to existing data in the

literature. The experimental data appears to roughly follow a d�1/4 law,

vsc ’ d�1=4in cm=s (6.87)

based on results in small diameter channels, with d in cm. It should be noted that

the measurement of critical velocity in the superfluid component is sometimes

Fig. 6.28 Superfluid critical velocity: –– experimental d1/4 law; – – – Feynmann theory; - - -

Eq. (6.85)
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disturbed by the existence of a similar transition in the normal fluid. Consequently,

some discrepancy between theory and experiment may be attributed to experimental

variations.

In addition to superfluid turbulence it is possible to have turbulence in the normal

fluid component of He II. This effect can be described in terms of more con-

ventional fluid dynamic models. It is generally assumed that the nonzero normal

fluid viscosity (mn ~ 1 Pa s) that causes a transition from laminar to turbulent flow in

the normal fluid component. In this picture, there exists a critical velocity vnc that

describes the unstable transition from laminar to turbulent flow. In classical fluids

this transition is defined in terms of a critical Reynolds number Rec, which is a

dimensionless quantity made up of the ratio between inertial and viscous forces. For

most classical fluids, the critical Reynolds number for flow in a tube occurs near

Rec ¼ rvcd
m

� 1200 (6.88)

For He II, the appropriate critical Reynolds number should be made up of the

normal fluid velocity and viscosity,

ReðvncÞ ¼ rvncd
mn

(6.89)

Note that this expression contains the total density of He II and not just that of

the normal fluid component. Equation (6.89) predicts a fairly strong temperature

dependence of the normal fluid critical velocity. At low temperatures, T <1.5 K,

the temperature dependence of vnc is dominated by the normal fluid viscosity mn
which goes as T–5.

Example 6.2

Consider a 1 mm diameter channel filled with He II at 1.8 K and estimate the

critical velocities with the corresponding heat flux in thermal counterflow.

As a consequence, the helium is made to flow by the introduction of a heat flux

q. Since the superfluid component can carry no entropy, the normal fluid

velocity vn is determined entirely by the heat transport expression, (6.72). The

critical heat flux for the introduction of normal fluid turbulence can then be

given by the combination of (6.72) and (6.88) such that

qnc ¼ sT
mn
d
ReðvncÞ

which for 1.8 K a tube diameter of 1 mm, and a critical Reynolds number

Rec ~ 1,200 yields qnc ’ 1.50 kW/m2.

(continued)
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Example 6.2 (continued)

The value of the critical heat flux necessary to induce turbulence in the

superfluid component is determined by rearrangement of (6.72). Keeping in

mind that zero net mass flow implies rsvs ¼ �rnvn, we calculate the critical

heat flux for the onset of superfluid turbulence as

qsc ¼ rsr
rn

sTvsc

For the empirically determined values for vsc, (6.86) gives qsc ’ 3.6 kW/m2 at

1.8 K. Of course, these numbers vary considerably with diameter and fluid

temperature.

The practical significance of both critical velocities is in their signaling transitions in

the behavior of vs and vn. In particular, the onset of turbulence is expected to affect

both the heat transport and fluid flow. Above these critical velocities, additional

interactive terms must be included in the fluid flow equation which describes the

temperature and pressure gradients. The two contributions of greatest importance

are the turbulent pressure gradient and what is known as the mutual friction interac-

tion that determines the temperature gradient. Typical behavior of the pressure and

temperature difference across a channel is shown in Fig. 6.29.

The first issue to consider when introducing turbulence into the problem is how

its existence affects the pressure gradient measured within the fluid in counterflow.

As already noted, in the Poiseuille regime, the pressure gradient along a capillary is

proportional to the normal fluid velocity which in turn is proportional to the heat

Fig. 6.29 Typical behavior

of the temperature and

pressure difference across a

channel as a function of heat

flux in counterflow He II.

Note the transition at qc
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flux. This relationship is no longer accurate above the critical velocity of the normal

fluid, vnc, where turbulence contributes to the behavior of the fluid.

One way to look at the pressure gradient due to the flow of the normal fluid is

in terms of classical fluid mechanics. In the turbulent regime, the normal fluid

friction factor is greater than that in the laminar regime due to the thinning of the

boundary layer. If we assume that the Blausius correlation for the friction factor

f ¼ 0:079=Re1=4 applies for the turbulent normal fluid component, then the pressure

gradient is,

dp

dx
¼ � 0:158m1=4n r3 4=

d5=4
v7 4=
n (6.90)

which in turn can be written in terms of the heat flux by substitution of q ¼ rsTvn
(6.49). This relationship predicts a non-linear pressure dependence in counter-

flow above the critical heat flux, a result that has been shown to be accurate of

small diameter channels (d ≲ 100 mm) as is shown qualitatively in Fig. 6.29. How-

ever, as is discussed below, this picture is not entirely complete since the interaction

between the normal and superfluid components eventually dominates the behavior.

6.5.3 Mutual Friction

Referring to Fig. 6.29, one can see that the transition in the temperature difference

in turbulent He II is more pronounced. The new interaction that brings about this

change is hypothesized to be the result of a viscous-like drag between the normal

fluid component containing the excitations and the turbulent superfluid component

with vortices. The existence of this force was first introduced to help explain heat

transport data by Gorter and Mellink [17]. It has since been given a physical basis

by several experimental and theoretical studies.

The basic idea of the mutual friction interaction is as follows. In turbulent He II

there are two fluid components, a normal fluid containing excitations and the

superfluid component with associated quantized vortices. For the present

argument’s sake, these two components will be assumed to be travelling in opposite

directions in thermal counterflow. The vortex will be taken to be travelling at vL,

vortex line velocity, which is of the order of vs. A schematic representation of this

situation is shown in Fig. 6.30.

The force per unit length on vortex is dependent on the relative velocities of vL
and vn as well as the densities of each. Theoretical justification for the exact form of

this quantity is beyond the scope of the present discussion. However, using dimen-

sional analysis alone, one would expected that the force per unit length of the vortex

would be of the form,

f ¼ rsrn
r2

mn vn � vsj j (6.91)
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where mn is the only possibility relevant viscosity. It is assumed that f is propor-

tional to the product of rs and rn, so that the interaction would be a maximumwhere

these two quantities are approximately equal. Other arguments can be made to

justify f going as |vn – vs|, which are based on classical turbulent interactive

mechanisms.

To determine the total interaction per unit volume of He II, we consider the

macroscopic picture of the turbulent state. As envisioned, the He II consists of a

tangled mass of vortex lines schematically shown in Fig. 6.31a and displayed

visually by decorating the lines with solid hydrogen particles in Fig. 6.31b. Unlike

the picture of rotating He II with a regular matrix of vortex lines, heat-induced

vortex lines form an isotropic mass which is assumed to be spatially non-varying.

This assumption is not generally true but it simplifies the physical explanation. The

vortex array is described by two quantities: L, the vortex line length per unit volume

Fig. 6.30 Schematic of the

normal fluid and superfluid

vortex interaction

Fig. 6.31 (a) Schematic representation of a vortex array with d ~ L�1/2 being the average vortex

line spacing; (b) photo of vortex lines decorated with micron scale solid hydrogen particles [18]
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of fluid, and d, the mean spacing between vortex lines. For a given set of conditions,

the vortex line length has one stable value. In the model first proposed by

Vinen [19], the steady-state length is seen as a balance between the rate of genera-

tion of vortex lines and the rate of decay. Therefore, in steady state,

dL

dt

				
gen

¼ dL

dt

				
decay

(6.92)

and the line length takes on the constant value L0. The total force per unit volume of

He II is the product of the line force f and the line length L0.
Vinen used dimensional arguments to show the variation of the vortex line

length with velocity. For the two quantities defined in (6.92), the fundamental

dependencies may be written

dL

dt

				
gen

¼ w1Brn
2r

vnsL
3=2 (6.93)

where vns ¼ |vn – vs| is the relative velocity of the normal and superfluid

components and w1 and B are parameters describing the interaction between normal

fluid and a vortex. The decay of the vortex lines also has a simple functional form,

dL

dt

				
decay

¼ � w2h
2pm

L2 (6.94)

where w2 is of order unity and a function of temperature. Equating (6.93) and (6.94)

in the appropriate form, we obtain the steady-state vortex line length, to within

numerical constants, as

L0 ¼ aðTÞ rn
r
vns

� �2

(6.95)

where a(T), which is of order 1013 s2/m4 at 1.8 K, is a temperature dependent

coefficient that can be estimated from theory or measured experimentally [20].

Note that (6.95) indicates that L0 ~ |vn – vs|
2. In thermal counterflow, rnvn ¼ �rsvs

and q ¼ rsTvn, which can be substituted into (6.95) to predict the equilibrium

vortex line density,

L0 ¼ aðTÞ rn
rs

� �2 q

rsTvn

� �2

(6.96)

At a heat flux of 10 kW/m2, (6.96) estimates L0 ~ 1010/m2, which corresponds to a

vortex line spacing ~10 mm. It is worth pointing out that this distance is 3–4 orders

of magnitude larger than the vortex core size.
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Using the above form for the vortex line length and force per unit length, we can

write the total mutual friction force per unit volume of He II. The treatment

developed originally by Vinen and extended by Schwarz [21] includes a small

velocity offset v0, such that the final equation has the form

Fns ¼ L0f ¼ AGMrnrsðvn � vs � v0Þ2ðvn � vsÞ (6.97)

where AGM is termed the Gorter-Mellink mutual friction coefficient. According to

the model presented above, AGM � r2n/r
3, but because the physical quantities w1

and w2 are undetermined, the coefficient must be evaluated empirically.

There have been a wide variety of measurements of the Gorter-Mellink parame-

ter with typical values displayed in Fig. 6.32. The theory presented by Vinen also

predicts a temperature and pressure dependence which should be dominated by

the square of the normal fluid density rn. The quantity r2n/r
3 has a strong tempera-

ture dependence going roughly as (T/Tl)
13, while the experimentally determined

value for AGM exhibits a much weaker temperature dependence, that is AGM � T 3.

The pressure dependence of the Gorter-Mellink coefficient is less well

established. Some work has shown that the variation of the heat conductivity of

turbulent He II with pressure can be interpreted only by a pressure dependence of

AGM. Since this quantity varies as r2n/r
3, its pressure variation is not a large effect

except near the l-transition. For example, at T ¼ 2.0 K, the ratio between r2n/r
3 at

0.25 MPa and saturated vapor pressure is 1.17. This should be compared to the

experimental ratio of AGM(0.25)/AGM(0) of 1.19 � 0.05 at 2 K. Such a comparison,

although within experimental error, does not established fully the pressure depen-

dence of AGM.

Given the existence of this additional interactive mechanism between the two

components in He II, the two-fluid hydrodynamic equations can be modified to

Fig. 6.32 Gorter-Mellink

mutual friction parameter

(Data are from Refs. [22–25])
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include these terms. The result of this modification are equations for each of the

two fluids:

rn
@vn
@t

¼ � rn
r
rp� rssrT þ mnr2vn þ AGMrnrs vn � vsj j3 (6.98)

rs
@vs
@t

¼ � rs
r
rpþ rssrT � AGMrnrs vn � vsj j3 (6.99)

which are similar to (6.56) and (6.70) except that they add the terms due to mutual

friction. The expressions as given above are somewhat simplified over those used

by Vinen and others. In particular, (6.98) and (6.99) lack any explicit indication of

either critical velocity, vsc or vnc. Critical velocity can be taken into account by

introduction of a small velocity offset v0, as shown in (6.97). However, since this

correction is quite small, it is neglected in the present treatment of turbulent He II.

6.5.4 Steady-State Heat Transport

Consider the problem of steady-state heat transport, dvs/dt ¼ dvn/dt ¼ 0, in a one

dimensional channel containing He II. This problem, which has already been

discussed for the non-turbulent case, can be solved analytically to give an expres-

sion for the temperature gradient in terms of the velocities of each component:

dT

dx
¼ � bmnvn

rsd2
� AGMrn

s
vn � vsj j3 (6.100)

where b is defined previously. Note that (6.100) is a scalar equation established with

the understanding that dT=dx is negative in the direction of vn. If there is no net

mass flow, that is, counterflow is the only important transport mechanism, then

rsvs ¼ � rnvn and the temperature gradient may be written to depend only on the

heat flux:

dT

dx
¼ � bmnq

d2ðrsÞ2T � AGMrn
r3s s4T3

q3 (6.101)

where use has been made use of q ¼ rsTvn. Note that the first term in (6.101) is the

same as developed to describe the viscous flow of non-turbulent He II. The second

term describes the mutual friction contribution. Because it lacks diameter depen-

dence and goes as the cube of the heat flux, the second term dominates the

temperature gradient at high heat fluxes and large diameter channels, that is,

d ≳1 mm. For example, at 1.9 K, a 1 mm diameter circular cross-section channel

will have the largest contribution to the temperature gradient from the mutual
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friction for heat fluxes in excess in 100 W/m2. For many practical applications,

larger heat fluxes are of interest indicating that under these circumstances the first

term can be ignored in the description of heat transport in He II.

There is a fundamental assumption that enters into the description of He II heat

transport as given by (6.100). The concept of critical velocity has been introduced

to separate the regions of turbulent and non-turbulent heat transport. However,

simply adding the laminar and turbulent terms to describe heat transport in He II

assumes that the transition between these two regions is continuous. This is not

what is observed experimentally.

The actual situation concerning the heat flux dependence of the temperature

and pressure gradients in counterflowing turbulent and non-turbulent He II is

more complex. At very low heat fluxes, much less than that necessary to create

turbulence, the laminar expression suitably describes the heat transport and the

temperature and pressure gradients are proportional to q. Similarly, at very high

heat fluxes, the turbulent expression does an adequate job of explaining experimen-

tal data. However, the behavior in the transition region is more variable. Around qc,
there is often hysteresis in the relationships between DT or Dp and q. Sometimes

the turbulent character is suppressed beyond qc, because of the need to nucleate

vortices. Once the turbulent state exists, the vortices do not dissipate easily,

persisting below qc. Hysteresis is common in the temperature gradient behavior

and sometimes two transitions are observed [20, 26]. Similar character is seen

often in the pressure gradient near qc. At this point it is not clear whether a

simple addition of terms as in (6.100) is correct. Far enough away from qc either
the laminar or turbulent expression dominates so that the details of the transition

region are of small consequence. This is often the case in practical applications

of He II.

6.5.5 Forced Convection Heat Transport

Up to now, the heat transport has been assumed to occur in static He II; that is pure

thermal counterflow with zero net momentum ( j ¼ 0). This is an important

assumption leading to the derivation of the heat flow equations. It is of interest,

however, to consider the effect of net mass flow when the entire fluid is driven by a

pressure gradient, resulting in a total fluid velocity v. Pressure-gradient-induced

flow in He II is really only possible if the thermo-mechanical effect is small because

the normal fluid velocity can be affected significantly by viscous drag. For small-

diameter channels where the thermo-mechanical effect is considerable, mass flow is

controlled essentially by the superfluid velocity. As this situation leads to consider-

able complication, it will not be discussed here. Rather, the other heat transport

regime will be considered, which is demonstrated by the mutual friction term.

There are numerous examples in the literature where vs and vn are independently

controlled variables.
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Neglecting the laminar term in the temperature gradient expression (6.100) and

assuming one dimensional flow, we obtain a simplified expression that does not

depend on net mass flow:

dT

dx
¼ �AGMrn

s
vn � vsj j3 (6.102)

Now since momentum conservation must be obeyed in the two-fluid model (6.46),

a more general relationship for q as a function of velocity is:

q ¼ rsT vn � vÞð (6.103)

which reduces to the previous form when v ¼ 0. This relationship can be derived in

general by applying conservation of momentum and energy to the He II in a moving

reference frame. It can also be shown to be the correct assumption when solving

the problem of forced flow with no net heat flux, that is, q ¼ 0.

Substitution of (6.102) into (6.101) leads to the somewhat surprising result

that the temperature gradient in forced flow He II is independent of velocity; that

is for all velocities,

dT

dx
¼ �AGMrn

r3s s4T3
q3 (6.104)

which is identical to the mutual friction term in (6.101). It should be emphasized

that this derivation has not included the potentially important term associated with

the net enthalpy transport of the flowing helium, rCvDT. Because enthalpy trans-

port is actually more relevant to the practical heat transfer character of forced flow

He II, this subject is considered further in the next chapter. It is the purpose of

the present discussion to principally identify the invariance of (6.104) with fluid

velocity.

6.5.6 Attenuation of Second Sound

An alternative method to study the turbulent state of He II is to measure the

attenuation of second sound. The principle is based on the fact that relative motion

of the two fluid components in second sound can be affected by the mutual friction

interaction. In the turbulent regime, the solution of the time-varying wave propa-

gation equation (6.65) is modified. It can be shown by using (6.98) and (6.99) that

second sound obeys the expression

@2T

@t2
¼ c22r2T þ AGMrq2

r2s s2T2

@T

@t
(6.105)
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where the second term on the right-hand side causes the attenuation and is

additional to the normal linearized second sound equation. The rate at which this

attenuation takes place leads to an exponential process with a coefficient

a ¼ AGMrq2

2r2s s2T2c2
(6.106)

The Gorter-Mellink coefficient AGM enters explicitly in (6.106), allowing its value

to be determined directly by measurement of a.
Experimentally, the amplitude of a traveling wave is proportional to e–ax.

In thermal counterflow, the quantity a is found generally to consist of two terms,

a ¼ a0 þ a0ðqÞ (6.107)

where the first term is more or less independent of heat currents and the second

term is the result of the mutual friction interaction. The second term in (6.107)

is seen to vary as the square of the heat flux q, such that

a0 ¼ C q� q0ð Þ2 (6.108)

where the proportionally factor, C, is a function of temperature and pressure.

Measurements by Vinen [27] which show the q2 dependence to a are displayed in

Fig. 6.33. Quite apparent in these measurements is the onset of attenuation at the

critical velocity. Below qc, there is no heat-flux-dependent attenuation. Also, note

the approximate magnitude of q0 � 5 mW/cm2 by extrapolation of the attenuation

coefficient to a’ ¼ 0. This value is in close agreement with the critical heat flux q,
estimated from Fig. 6.28.

The second sound attenuation method is a powerful probe of the mutual friction

interaction. It represents an effectively independent method for determining the

mutual friction coefficient AGM. This point was exploited by Vinen who made a

Fig. 6.33 Measurements

of the attenuation of

second sound in He II

(From Vinen [27])
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simultaneous measurement of AGM by both methods on the same channel.

The results of these measurements strongly demonstrate that the two methods are

for all practical purposes equivalent. However, the possibility of geometrical

factors affecting A is somewhat less well established.

6.5.7 Development of Turbulence

In the preceding development, it has been assumed generally that the He II is either

in the non-turbulent state, obeying isentropic laminar flow models, or in the turbu-

lent state with the additional mutual friction interaction. Here we consider the rate

at which the turbulent state is created when the fluid is initially in the ideal vortex-

free condition. This problem has received extensive experimental investigation. The

general approach is to measure the time rate of change of the second sound attenua-

tion after a steady heat flux is applied that is q > qc. The general character of the

results indicates a characteristic time for the development of the fully turbulent state.

This characteristic time tf has been shown to be both heat flux and temperature

dependent. Typical results for an experiment by Vinen are shown in Fig. 6.34.

An empirical fit to these data indicate that the time constant has the simple form,

t ¼ aq�3=2 (6.109)

Fig. 6.34 Characteristic time

for buildup of turbulence in

He II at 1.41 K. The symbols

represent different channel

configurations (From

Vinen [27])
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where a is a temperature and geometry-dependent quantity. Chase [28] has

measured this coefficient for a number of channel configurations ranging from

open ducts to complex geometries. Figure 6.35 displays the empirically determined

coefficients a. The variation is between a factor of 3 and 5. It should be noted that

this quantity is not always reproducible and will be shorter if the helium is

not allowed to reach equilibrium without turbulence before a measurement. Full

recovery to the non-turbulent state can take on the order of hundreds of seconds.

6.5.8 Second Sound Shock

The above discussion of transient phenomena assumes that the turbulence develops

in a globally uniform, homogeneous fashion. However, highly transient thermal

counter flow does not allow the development in a uniform way because there is a

propagation velocity for the turbulent front. This propagation velocity is related to

the velocity of second sound just as the ordinary sound velocity determines the

propagation of pressure waves.

One can think about this process in terms of a small, short duration, Dt ~ 1 ms,

rectangular heat pulse applied at the end of a channel containing initially quiescent

He II. If the amplitude of the pulse is low, DT ~ 1 mK, it will propagate at the

second sound velocity. There may be some attenuation due to residual turbulence,

but generally speaking most of the energy will travel at c2.
If the amplitude of the pulse is significantly increased to DT ~ 100 mK, several

changes to the propagating pulse are observed [29, 30]. One is that the shape of the

pulse changes being no longer rectangular due to an amplitude dependence of

the second sound velocity. This effect can lead to either a forward or backward

sloping pulse.

Fig. 6.35 Coefficient of the

turbulence buildup expression

for different channels (From

Chase [28])
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However, of greater interest is the apparent limit to the allowable energy content

in the pulse. As the amplitude of the heat pulse that generates the second sound

is increased, the temperature change DT also increases up to a limit after which it

tends to plateau. Since the duration of the pulse is approximately constant, the

temperature plateau means that there is limit to the amount of energy that can be

carried by the second sound pulse. Experiments have shown this limit, sometimes

referred to as the breakpoint energy, to be of order 100 kJ/m2 [31, 32]. An alternate

way to present this result is in terms of the energy transport fraction,

xf ¼ DEp

DE0

�
Ð
rCdTp
qDtH

(6.110)

where DEp is the energy carries by the heat pulse and DE0 is the energy supplied to

the pulse by the heater. The behavior of the energy fraction is shown qualitatively in

Fig. 6.36. Below the breakpoint energy, the energy transport fraction is close to

unity. Above that value, the transport fraction decreases as E0
�n, where n ~1.

The physical interpretation of this result is suggest that the intense second

sound pulse produces such a large thermal gradient and counterflow relative

velocity that intense turbulence is generated, probably on the back side of the

front. This turbulence in turn produces strong attenuation of second sound by

mutual friction. This will in turn mean that the heat transport is now more of a

diffusive process. This diffusive process is what controls transient heat transport

in turbulent He II. Since this topic is of significant technical interest, it will be

discussed further in the next chapter along with the other more applied

characteristics to heat and mass transport in He II.

Questions

1. List and briefly discuss the properties of liquid helium below Tl that make it a

superfluid?

2. How does the Two Fluid Model for He II differ from models for mixtures of

two classical fluids?

3. Can He II be modeled as an ideal Bose gas? If not, what properties of He II are

different from those of the Bose gas?

4. Why does He II remain in the liquid state at very low temperatures?

Fig. 6.36 Schematic of the

behavior of the energy

transport fraction (6.110) as a

function of applied pulse

energy
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Problems

1. Make a plot of the temperature and pressure gradients versus heat flux in a

50 mm diameter tube containing He II at 1.8 K. Consider both the normal fluid

viscous and mutual friction interactions. Indicate the location of and the impor-

tance of critical velocities.

2. Starting with the equation for the vapor pressure of an ideal Bose gas (6.24a),

cast it in the form of the virial expansion as discussed in Chap. 3. Placed in this

form, the second term represents the ideal quantum gas correction which appears

as part of the second virial coefficient. Compare the value of this correction to

the difference between the classical and quantum second virial coefficients at

4 K (see Fig. 3.3).

3. Calculate the latent heat per mole of an ideal Bose gas at 2 and 4 K, Compare

these values with the latent heat of liquid helium at the same temperatures.

4. Using the empirical relationships for the entropy, specific heat, and normal and

superfluid densities, derive an expression for the temperature dependence of the

second sound velocity c2. Plot your result and compare it to Fig. 6.19.

5. Calculate the angular frequency at which one vortex could exist in a 1 cm

diameter tube containing He II and spinning about its longitudinal axis. One

method to prevent vortex formation in rotating He II is to subdivide the helium

pool into many cells, perhaps with a honeycomb structure or porous medium.

Calculate the cell radius necessary to prevent the formation of vortices in a

bucket rotating at an angular frequency of o ¼ 1 rad/s.

6. Consider a rectangular cross section chamber containing He II. Second sound

can be generated and detected across the 10 mm width of the chamber, while a

steady-state heat can be applied perpendicularly down the length of the chamber.

Assume that the helium bath temperature is 1.8 K.

(a) Calculate the second sound velocity and the frequency of the lowest har-

monic standing wave which could be set up within the chamber;

(b) If the standing wave has an amplitude of 5 mK at the generator, what will be

the amplitude at the detector if a 10 kW/m2 steady-stare heat flux is applied

perpendicular to the second sound standing wave.

7. Consider a small capillary tube of length 10 mm and diameter 2 mm connecting

two reservoirs of He II. One reservoir is maintained at 1.8 K. The other reservoir

is heated to some temperature higher than 1.8 K but not greater than Tl.

Calculate the temperature difference, DT, and pressure difference, Dp, between
the two reservoirs as a function heat flow, Q. Hint: You may assume that the

flow is laminar, but you will need to consider the temperature dependent

properties of He II.

8. Make a graphical comparison between the roton contribution to the specific

heat, (6.40), and the empirical form for the specific heat (6.29) between 1.1

and 2.1 K.
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Chapter 7

He II Heat and Mass Transfer

Chapter 6 emphasized the physics of He II including heat transport in the laminar

flow and the turbulent mutual friction regimes. These mechanisms are fundamental

to the behavior of He II, although that discussion mostly described idealized

behavior. In the present chapter we will build on the fundamental understanding

of He II to treat practical heat and mass transfer problems that may occur in He II

systems. In doing so, the concepts already developed must be extended into regimes

that are more usable in engineering calculations. To be more specific, the emphasis

of Chap. 6 has been to understand the interactive mechanisms and the two fluid

nature of He II. Thus, of principal concern is the behavior of the transport properties

including mainly the normal fluid viscosity mn and the turbulent state with the

associated mutual friction parameter AGM. Of interest now is to use these concepts

in understanding such phenomena as the maximum heat flux, q*, the maximum

energy deposition, DE*, and the corresponding temperature difference, which can

be either within the fluid or across a solid-fluid interface. The goal of the present

chapter is to establish a connection between the engineering parameters q*, DE*,
and DT and the physical properties of the fluid and solid-fluid boundaries.

In establishing this connection there are a number of subjects of practical interest

which must be addressed. These include steady-state heat transport, transient heat

transport, forced flow pressure drop and heat transport, surface Kapitza boundary

conductance, and film boiling. Some of these phenomena are also important in pool

boiling He I heat transfer, which is the subject of Chap. 5.

Before delving into these individual subjects, it is worth describing, in a general

way, the surface heat transfer character of liquid He II. This character in actuality is

quite similar qualitatively to that of He I or other conventional fluids, although as

we will see the numerical values and physical explanations are considerably

different. Figure 7.1 shows a typical steady-state heat transfer curve for a metal

surface at the end of a duct containing He II, see Fig. 7.2. As is discussed below, the

duct also may contain a temperature difference (Tm – Tb). Figure 7.1 is intended

only to display the regions of heat transfer. As is demonstrated in what follows,

actual numerical values of these regimes are strongly dependent on geometry,

temperature, pressure, and surface conditions. That the heat transfer surface is
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located at the end of a channel rather than in an open bath is also important in

determining critical values. As we will see, the very high effective thermal conduc-

tivity of He II results in a thermal boundary layer that can take on the dimensions of

the duct, thus controlling much of the heat transfer process.

For small q up to q*, the surface temperature difference, DTs, is governed by

interfacial phenomena having more to do with the character of the solid than that of

the liquid helium. This is called the Kapitza regime. In this regime, there is no

surface boiling, rather the temperature difference is a result of thermal impedance

between the two dissimilar materials, the metal or insulating solid and liquid He II.

Also, the maximum heat flux q* is strongly geometry and helium state dependent

and is characterized by the point where the helium adjacent to the interface exceeds

the local boiling point. The maximum heat flux is also time dependent, achieving

very high values for short-duration heat pulses. Once this maximum is exceeded, the

heat transfer transitions to a film boiling process where a film consisting of either He

I, vapor, or both blankets the surface. Finally, in some configurations there is

Fig. 7.1 A typical steady-state beat transfer curve for a metal surface at the end of a duct

containing He II

Fig. 7.2 Schematic of a horizontal duct of length L containing He II
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observed a hysteresis in the heat transfer curve exemplified by the requirement to

reduce q below q* in order to return to theKapitza regime. This process is reasonably

well understood in He I and other classical fluids, being described by a hydrody-

namic instability which leads to an engineering correlation. However, in He II the

problem is more complex and has received less attention, owing to the experimental

difficulty of achieving steady state and strong variations with configuration. It is the

physical understanding of this heat transfer curve that is the goal of the present

chapter. The description is based heavily on the physics of heat transport in He II

contained in Chap. 6.

7.1 Steady-State He II Heat Transport in Wide Channels

The first question to ask is: What are the limitations to heat transport in a channel

containing He II? Since the heat transport equations for He II have already been

developed, it should be straightforward to apply this theory to determine practical

heat transfer limitations. In doing so, it is assumed that the heat transport

equations can be applied over finite temperature differences simply by taking into

consideration the temperature dependence of the fluid properties. Note that He II

cannot exist above the l-transition, 2.177 K at SVP, which at least establishes

liquid temperature boundaries to the heat transfer problem. For a channel of finite

length L, as shown in Fig. 7.2, subjected to a constant heat flux q, there is a

temperature difference established across its length, that is DTHe II ¼ Tm – Tb.
In general, this temperature difference occurs because of two loss mechanisms

discussed in Chap. 6: (1) the normal fluid viscous interactions with the channel

walls and (2) the mutual friction between the two fluid components. We therefore

consider here two classes of problems. The first concerns the heat and mass

transfer in large systems such as occur in superconducting magnets and particle

accelerators. In this case, the channel diameters and heat fluxes are sufficiently

large to allow the mutual friction term to dominate the heat flow process. Thus, for

this class of problems, the normal fluid viscous contribution to the temperature and

pressure gradient can be neglected. The second class of problems which we will

discuss subsequently involve heat and mass transfer through very small diameter

capillaries or porous media. This heat transfer regime is mostly of interest in space

applications and small scale cooling channels such as occur in some high current

density magnets. In this latter case, at low heat fluxes, the flow is ideal and the

pressure and temperature gradients obey London’s equation with viscous flow

dominating the normal fluid. At moderate to high heat fluxes, both laminar and

turbulent contributions must be included in the analysis. Problems in this regime are

the most complex to analyze.
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7.1.1 He II Heat Conductivity Function

Forwide channels, the normal fluid viscous term can generally be neglected so that the

He II temperature gradient equation (6.101) may be simplified in one dimension as,

dT

dx
¼ �f ðT; pÞqm (7.1)

where we define f(T, p) ¼ AGMrn/(rss
4T3) with AGM being the mutual friction

parameter and rn and rs are the normal and superfluid densities, respectively.

According to theory m ~ 3; however, experimentally m has been shown to vary

from about 3 to nearly 4 as the temperature approaches Tl [1, 2].A good mean value

for practical calculations is to setm ¼ 3.4, which is consistent with experiment over

the temperature range from 1.7 K to Tl [3–5]. The physics behind (7.1) is discussed
extensively in Sect. 6.5. The quantity f –1(T, p) behaves much like a thermal

conductivity in that it is a fluid property that controls the temperature gradient

in the presence of a heat flux. It is therefore of interest to understand the variation

of f –1(T, p) with state variables. Plotted in Fig. 7.3 is this function as it depends on

temperature and pressure between 1.4 K and Tl and p ¼ SVP and 2.5 MPa for the

case where m ¼ 3. Note that the temperature dependence is quite strong with a

maximum occurring around T � 1.9 K at SVP. The pressure dependence is weaker.

Fig. 7.3 Heat conductivity function for turbulent He II
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In the data presented in Fig. 7.3, Vinen’s [1] values for the Gorter-Mellink parameter

have been used. Furthermore, it has been assumed that AGM ~ rr2n=r
3 which is

based on theory [6]. Then based on an empirical fit to the Gorter-Mellink parameter,

it is possible to write an analytic expression for the heat conductivity function,

f�1 T; pð Þ ¼ gðTlÞ t5�7ð1� t5�7Þ� �3
(7.2)

where g(Tl) ¼ r2s4lT
3
l=Al, t ¼ T/Tl, Sl ¼ 1559 J/kg�K, and Al ¼ AGM(Tl) ’ 1450

m�s/kg. Note the maximum in (7.2) occurs at t ¼ 0.885, which is 1.929 K at SVP.

The values presented in Fig. 7.3 are good to about�10% at saturated vapor pressure

and have been compared to experiment up to about 0.7 MPa. Numerical values for

f –1(T, p) are listed in Appendix A.3.

Recently, Sato et al. [7–10] performed extensive measurements of the average

heat conductivity in turbulent He II over a wider range of temperatures and

pressures up to 1.5 MPa. This work confirmed that the best fit to the heat conduc-

tivity function follows a power law m ¼ 3.4 � 0.1. This extensive set of data was

then used by Sato to develop an improved correlation for the turbulent heat

conductivity function. The form of this correlation is similar to (7.1) where

m ¼ 3.4 and the heat conductivity function is written as a product of two terms,

f�1 T; pð Þ ¼ hðtÞgpeakðpÞ (7.3)

where the reduced temperature t ¼ T/Tl and h(t,p) and gpeak(p) are empirical

functions. The normalized empirical function h(t, p) is shown in Fig. 7.4 indicating
a high quality correlation. This function has a peak at tpeak ¼ 0.882.

Sato fit this quantity to a polynomial function,

hðtÞ ¼ 1þ t� tpeak
� �2X9

n¼0

an t� 1ð Þnf g (7.4)

where the polynomial coefficients are given in Table 7.1

The pressure dependent function was also fit to a polynomial as,

gpeakðpÞ ¼ exp aþ bpþ cp2
� �

(7.5)

where the coefficients (a, b and c) and the fit are shown in Fig. 7.5. This correlation

is clearly an improvement over (7.2) and Fig. 7.3 and is recommended for more

accurate numerical calculations. However, for approximate calculations particu-

larly when they involve analytic solution, it is often more convenient to use the

simplified form and keep the value of m ¼ 3.
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7.1.2 Peak Heat Flux in Wide Channels

We now consider the limits to steady state heat transport in a finite-length channel.

For a given steady heat flux, it is possible to determine the corresponding DT by

integration of (7.1) (or the more refined Sato correlation, 7.3) for specified boundary

conditions, e.g. Tb ¼ constant. The maximum heat flux q* is then established

according to the maximum allowable temperature difference the channel, which

for a given bath temperature Tb is DTm ~ (Tl � Tb). It follows that for a channel of
length L

q� ¼ 1

L

ðTl
Tb

dT

f ðT; pÞ
� �1=m

(7.6)

Table 7.1 Polynomial

coefficients for (7.4)

(Sato [6])

a0 ¼ �71.818 a1 ¼ 1.2172617 � 103

a2 ¼ �1.4992321 �104 a3 ¼ �3.9491398 � 105

a4 ¼ �2.9716249 � 106 a5 ¼ �1.2716045 � 107

a6 ¼ �3.8519949 � 107 a7 ¼ �8.6644230 � 107

a8 ¼ �1.2501488 � 108 a9 ¼ �8.1273591 � 107

Fig. 7.4 Normalized thermal conductivity function at various pressures (Sato [6])
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This integral is mostly a function of Tb and only weakly dependent on other

factors such as pressure. The integrated heat conductivity function is then defined as,

q�L1=m � ZðTbÞ ¼
ðTl
Tb

dT

f ðT; pÞ
� �1=m

(7.7)

which should be independent of channel length. Plotted in Fig. 7.6 are experimentally

determined peak heat fluxes q* for different channel lengths varying everywhere from
0.1 to 3 m. Two different correlations of the data are displayed: Z’(Tb) for m ¼ 3 and

Z(Tb) the other form ¼ 3.4. In either case, the agreement between data and correlation

is acceptable.

By a similar analysis it is possible to determine the pressure dependence of the

maximum heat flux q*. Integration of the corresponding heat conductivity function
f –1(T, p) predicts a decreasing maximum heat flux with elevated pressure. By

analytic integration of (7.2), a prediction can be made for the behavior of q* with

pressure. The results of this analysis for four bath temperatures are displayed in

Fig. 7.7. Also displayed are experimentally observed [4, 12] maximum heat fluxes

for short channels up to 0.3 MPa. The agreement is again reasonable for the

available data. As discussed above, an improved correlation can be obtained by

using m ¼ 3.4 and the Sato form for the heat conductivity function.

Fig. 7.5 Pressure dependence of the peak value of the thermal conductivity function (Sato [6])
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Fig. 7.6 Generalized steady-state limiting heat flux in He II (as compiled by Seyfert [11]). (a) is

for the case wherem ¼ 3.4; (b) for the case withm ¼ 3. The dashed line in (b) corresponds to near
saturation boiling for a hydrostatic head of 0.1 m

Fig. 7.7 Maximum heat flux in a He II-containing channel as a function of pressure (Data from

Refs. [4] and [12])
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It should be kept in mind that the form and physical explanation for heat transport

in He II place no fundamental limit to the maximum steady state value for q*.
Everything depends on the allowable temperature difference. For example, with

Tb ¼ 1.8 K and m ¼ 3, Fig. 7.4 predicts a product q*L1/3 ¼ 7.4 W/cm5/3. Therefore,

for a channel of length 10 mm, this analysis would predict a q* in excess of 70W/cm2

(700 kW/m2) truly a remarkable heat flux for liquid helium temperatures.

Example 7.1

Consider a 1 m long, 1 cm2 cross section channel (see Fig. 7.2) containing He II

at 2 K but pressurized to 0.5 MPa. Calculate the maximum heat flux in the He II

channel.

To calculate the maximum heat flux, one needs to integrate the function. We use

the simplified correlation with m ¼ 3.

q�L1=3 � ZðTbÞ ¼
 ðTl

Tb

dT

f T; pð Þ

!1 3=

Between 2 K and Tl (p ¼ 0.5 MPa). Since the channel is pressurized to

0.5 MPa, however, the appropriate form for f-1(T,p) must be used, see Fig. 7.3.

Fortunately, this integration has already been performed in Fig. 7.7. At 2 K and

0.5 MPa, q*L1/3 ¼ 3 W/cm5/3. Thus, the a 1 m long, 1 cm2 cross section channel,

Q* ¼ 0.65 W.

7.1.3 Peak Heat Flux in Saturated He II

In the discussion above, it has been assumed arbitrarily that the peak heat flux q* is
determined by the condition where the helium adjacent to the heater surface reaches

the l-point. This limit is not always met particularly in He II near its saturated vapor

pressure for reasons having to do with the helium temperature distribution and the

phase diagram, displayed in Fig. 7.8. We begin with the assumption that due to the

high effective thermal conductivity of He II, the helium within the heat transfer

region obeys equilibrium thermodynamics. This assumption allows the state of the

helium everywhere in an experiment or engineering system to be described by a

point on the equilibrium phase diagram.

Now consider a simple example, that of the heat transfer process occurring at the

bottom of a vertical channel containing saturated liquid helium at 1.8 K, 1.6 kPa

(12.5 torr). The heat transfer process is occurring at a certain depth, h, below the

liquid-vapor interface; see Fig. 7.9. Thus, without any heat being applied, the state

of the helium at the bottom of the channel can be described by location ① on the

phase diagram in Fig. 7.8. The pressure applied at the heat transfer surface is

therefore p ¼ p0 + rgh, where h is the hydrostatic head of the liquid helium. If heat
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is applied to induce heat transfer in the system, there will be a local temperature

excursion DT that is determined by heat flow mechanisms as discussed above. The

local temperature increases but the pressure is fixed, unless the experimental

configuration is small enough for the thermomolecular effect to make a significant

contribution. Neglecting this complication for the time being, as an increasing heat

flux is applied, the temperature at the bottom of the channel will increase following

a horizontal line as shown in the inset of Fig. 7.8 until at a certain heat flux it meets

the liquid-vapor interface at which point boiling commences.

The value of the maximum temperature excursion is determined by the slope of

the vapor pressure curve such that for finite DT,

DTm ¼
ðp0þpgh

p0

dT

dp

� �
dp (7.8)

Fig. 7.8 Phase diagram of helium showing condition ① of near saturation and condition ②
of subcooled helium to p ¼ 100 kPa

236 7 He II Heat and Mass Transfer



The slope of the pressure curve, (dT/dp)sat can be obtained from helium property

tables or database codes. However, it is also known from thermodynamics through

the Clausius-Clapeyron equation,

dp

dT

����
sat

¼ hfg
TDv

� hfg
Tvg

(7.9)

which can be further simplified by assuming the helium vapor to be an ideal gas, that

is vg ¼ RT/p. This results in an approximate form for the allowable temperature

increase,

DTm ’ RT2

hfg
ln 1þ rgh

p0

� �
(7.10)

This expression is suitable for DTm 	 Tb. For larger values of DT it is better to

evaluate the saturation temperature at the pressure corresponding to the given

hydrostatic head.

Under saturation conditions, this means that the maximum DTm the He II can

sustain may be less than that in pressurized liquid where Tm ¼ Tl. How does this

impact the maximum heat flux? Returning to (7.6) and replacing Tl with Tm, we
note that the peak heat flux, q* will be suppressed relative to the results shown in

Fig. 7.6 with the amount of suppression dependent on h, the hydrostatic head.

Considering the example above and let h ¼ 0.1 m, we can recalculate the quantity

q*L1/3 for is case. The result as a function of bath temperature is shown by the

dashed line in Fig. 7.6b. Note that the magnitude of the suppression is small near Tl,
but becomes significant at lower temperatures since in that case, the maximum

temperature, Tm is well below Tl.

Fig. 7.9 Vertical channel

containing in near saturated

He II
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It is worth noting that the pressure corresponding to the l-point is pl ¼ 4.97 kPa

(37 torr), which is equivalent to a column of helium about 3.55 m high. This fact is

important because if a saturated vapor pressure He II system with vertical dimen-

sion larger than several meters is constructed, it would experience a heat transfer

limitation determined by Tl rather than the saturation line.

Example 7.2

Consider a 0.1 m long vertical channel (see Fig. 7.9) containing He II boiling at

1.638 kPa corresponding to a saturated vapor pressure at 1.8 K. Thus, the liquid

free surface is at 1.8 K. If a heat flux is applied to the bottom of the channel, the

temperature at that point will increase until it reaches local saturation at which

point local boiling will occur. Calculate the maximum temperature of the He II

at the bottom of the channel.

Since the liquid level is not very large, we can use the approximate expression

for DTm (7.10),

DTm ffi RT2

hfg
ln 1þ rgh

p0

� �

Substituting values, h ¼ 0.1 m, hfg ¼ 23 kJ/kg, the resulting DTm ¼ 0.025 K and

Tm ¼ 1.825 K. As indicated, this is an approximate result. The more accurate

result would be obtained by calculating the saturation temperature, Ts, corres-
ponding to the pressure p ¼ p0 + rgh ¼ 1,638 Pa + 145 kg/m3 � 9.8 m/s2 �
0.1 m ¼ 1,780 Pa. Then referring to a data base code, one obtains Ts
(p ¼ 1780 Pa) ¼ 1.824 K. These values are very close, since the head is not

large. The result would not be as good if the level were significantly larger.

Alternatively, it is possible to create a subcooled liquid condition whereby the

pressure at the heat transfer surface is higher than that due to the hydrostatic head.

This condition can occur, for example, in a closed volume He II region cooled by a

saturated bath heat exchanger. In this case, the pressure on the closed volume can

take on any value between saturation and the solid line at 2.5 MPa. The subcooled

He II state is shown on the phase diagram, Fig. 7.8, by position②. Here it is assumed

that the applied pressure is 100 kPa. A similar argument to that presented above

applies when determining the temperature excursion; however, in the subcooled

case the maximum temperature is governed by the l-transition (at p ¼ 100 kPa,

Tl ¼ 2.168 K). In this case, the limit on maximum temperature relatively well fixed

and only weakly dependent on applied pressure.

The conditions that exist once the maximum heat flux is exceeded are of great

importance to understanding the heat transfer in this regime, a topic which is

discussed more extensively in Sect. 7.6. Generally, there are two cases that can
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occur, each of which is associated with one of the two conditions indicated on

the phase diagram in Fig. 7.8. For the saturation case, which applies to position ①,

q* corresponds to the helium adjacent to the interface achieving saturation

conditions. A schematic representation of the resulting physical condition for

q > q* is shown in Fig. 7.10a. Displayed is a solid heat transfer surface blanketed

by a vapor film which in turn is bounded by the He II at local saturation

temperatures. This phase boundary is defined clearly because the He II-vapor

transition is first order.

The alternative film boiling heat transfer situation occurs whenever q* is

exceeded under subcooled conditions, such as ② in Fig. 7.8. For this case the

phase transition is between He II and normal liquid He I. Since, with rare

exception, the maximum heat flux in He I is substantially less than that in He II,

exceeding q* under subcooled conditions invariably results in a double transition,

first creating a film of liquid He I followed by boiling of the He I to form a vapor

film. This triple-phase phenomenon brings all three helium states in close proximity

to the heat transfer interface. A schematic representation of this process is shown

in Fig. 7.10b. Through the He II–He I interface, shown as a dotted line in the

figure, the density r and temperature T should be continuous. Visualization

experiments of boiling in saturated and subcooled He II have observed the

interfaces between the vapor-He I and the He I-He II phases [13]. This result

is shown in Fig. 7.11. Being able to observe the He I – He II phase boundary is

particularly significant since the physical properties of helium should be continuous

through the phase transition.

7.1.4 He II Heat Transfer in Cylindrical Geometries

Besides the simple linear geometry represented by a one-dimensional tube with

constantheat flux, there has been considerable work carried out on cylindrical

geometries consisting of a heated cylinder or wire immersed in a large bath of

He II [14–16]. It is easy to show, by assuming that the Gorter-Mellink equations

Fig. 7.10 Schematic of boiling in He II: (a) saturation condition and (b) subcooled condition
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apply in cylindrical geometry, that the steady-state heat transport equation can be

written as

dT

dr
¼ �f ðTÞqm0

r0
r

	 
m
(7.11)

where q0 is the heat flux per unit area of the heated cylinder of radius r0. The
difference in (7.11) occurs because the heat flux decreases as the radius increases.

Comparison of (7.11) with experiment has given reasonable agreement, with

essentially the same heat conductivity function as applies in linear geometries

[17, 18]. In a similar fashion to that applied to (7.3), integration of (7.11) leads to

the maximum heat flux,

q�0 ¼
m� 1

r0

ðTl
Tb

dt

f ðTÞ

 !1=m

(7.12)

The important observation to make about (7.12) is that the peak heat flux q�0 has
as its scaling length r0 rather than L as in the linear system. This means that,

provided the radius of the container is much larger than that of the heater, the

boundary conditions far from the heater should not affect q* significantly. This is

certainly contrary to the behavior in linear geometries.

Fig. 7.11 Subcooled He II boiling showing the He I-vapor and He II – He I phase boundaries [13]
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Unlike the linear one-dimensional system, there have been fewer attempts to

correlate the peak heat transport in cylindrical geometries with that of (7.12). This is

due in part to the lack of reliable data, which are more difficult to obtain in

cylindrical geometries. In one experiment, data were fit for small temperature

differences DT � 10 mK in the range of Tb ¼ 1.8 K [17, 18]. It was found that

the expression given by (7.11) is not entirely suitable to correlate the experimental

values of q�0 without introducing a radius-dependent quantity C defined by

q�0 ¼
2C
r0

ðT0

Tb

dT

f ðTÞ

 !1=3

(7.13)

where T 0 ’ Tb + 0.01 K. C was found empirically to depend on radius, being

roughly proportional to r
1=2
0 . The results of this correlation are shown in Fig. 7.12.

Note thatC is always less than 1, indicating that the peak heat flux is always less than

that predicted by the idealized theory. This fact is somewhat surprising because the

temperature gradients appear to be given accurately by (7.11).

7.1.5 Static Bath He II Heat Exchangers

He II heat exchangers are indispensable components for superconducting magnets

and other systems cooled with pressurized He II. However, because of the unusual

properties of He II, specifically the high effective heat conductivity and strong

Fig. 7.12 Empirical correlating function for heat transfer in cylindrical geometries [17, 18]
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temperature dependent heat capacity, conventional heat exchanger design methods,

such as effectiveness or NTU, are not suitable. In this section, we discuss the design

of He II heat exchangers based on the available transport equations.

There have been a number of He II heat exchangers designed and developed for

applications. The most common of these is the static bath type system, shown

schematically in Fig. 7.13. The principal component of this system is a saturated He

II reservoir of active length L and cross section A in thermal contact through its

surface to a surrounding pressurized He II reservoir. Any heat generated in the

pressurized He II reservoir must be transferred through the solid wall to the

saturated bath where it is removed by evaporation of the liquid. For this type of

system, there are three design criteria:

1. The surface area of the heat exchanger must be large enough to transfer the heat

with minimal DT between the two reservoirs. Normally, the surface heat transfer

process is controlled by the Kapitza conductance of the heat exchanger material

and possibly thermal conduction through the solid wall. These quantities com-

bine into an overall heat transfer coefficient, U. It is important to make the heat

exchanger of copper or other high conductivity material to avoid a significant

conduction thermal resistance.

2. Boiling in the bulk liquid within the heat exchanger should be avoided. This

means that the liquid should be subcooled by the hydrostatic head enough to

avoid surface boiling which could degrade performance.

3. There must be sufficient He II cross section in the saturated bath to transport the

heat by counterflow with a small temperature gradient.

The beginning point for the analysis of a static He II heat exchanger is the steady

state He II heat equation with surface heat transfer,

d

dx
f ðTÞ�1 @T

@x

� �1
3

� PU

A
T � Tbð Þ ¼ 0 (7.14)

Fig. 7.13 Schematic of a

simple static He II heat

exchanger
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where f(T)�1 is the He II heat conductivity function appropriate for fully developed

turbulent conditions and T is the temperature of He II within the heat exchanger.

U is the overall heat transfer coefficient between the two reservoirs. Equation (7.14)

can be simplified by making the following change of variables:

Y ¼ Tb � T

Tb � T0
(7.15a)

and

mHeII ¼ PU Tb � T0ð Þ2 3=

f�
1
3A

" #3
4

(7.15b)

With the constant properties assumption the following dimensionless equation

results,

d

dx

dY
dx

� �1 3=

� mHeII
4
3Y ¼ 0 (7.15c)

Equation (7.15a) is analogous to the classical fin equation in conduction heat

transfer except for the non-linear thermal conduction feature of the He II. However,

the solution to (7.15a) is similar and can be preformed semi-analytically depending

on boundary conditions [19]. Just as in the case of the fin equation, the boundary

condition at the end of the heat exchanger determines the exact form of the solution.

If we define the origin at the surface of the He II, the boundary condition at x ¼ 0

isY ¼ 1 by definition. The fluid temperature increases away from the free surface.

The boundary condition at the bottom of the heat exchanger (x ¼ 1) can have

difference cases:

1. Convection heat transfer: f�1 dY
dx

� �1
3 ¼ UYL Tb � T0ð Þ23

2. Adiabatic: dY
dx

� �1
3

L
¼ 0

3. Prescribed temperature: Y x ¼ Lð Þ ¼ YL

4. Infinite length: Yðx ¼ LÞ�!L¼1
0

and mHeIIL is dimensionless fin length. Each case has a slightly different form for

the solution. Typically, in a good design mHeIIL ~ 1; however, it can take on any

value. If mHeIIL >> 1, then the heat transfer process is only weakly affected by the

boundary condition at x ¼ L and the infinite length solution is a good approxima-

tion for all cases.

To calculate the total heat transfer through the heat exchanger, one integrates

(7.15c) one time to obtain the temperature gradient, dY/dx. This quantity is then

evaluated at x ¼ 0 such that,

Q ¼ �A f�1 dT

dx

� �1
3

x¼0

(7.16)
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The result of this calculation is an expression for the total heat transfer,

Q ¼ MHeII 1� gð Þ14 (7.17)

Where MHeII ¼ 1.19A[mHeII f
�1(Tb – T0)]

1/3 which is analogous to the total heat

transfer expression obtained from the fin equation. The dimensionless quantity g is

a function of the particular boundary conditions imposed at x ¼ L. The

corresponding form for g is listed in Table 7.2. Note that if g << 1, the total heat

transfer is only a weak function of the boundary conditions at x ¼ L and the infinite

length heat exchanger is a good approximation with Q ¼ MHeII.

The temperature profile along the heat exchanger can be further calculated by

integrating (7.15c) a second time. This solution depends on the choice of boundary

condition at x ¼ L. The resulting general solution for the temperature profile is

obtained by solving the integral,

ð1
YL

dY

Y2 � g
� �3

4

¼ 1:68mHeIIx (7.18)

For all boundary conditions except the infinite heat exchanger, the solution of

(7.18) requires numerical methods. For the special case of the infinite channel,

g ¼ 0 and QL ¼ 0, which leads to the closed form solution,

YðxÞ ¼ 1

0:84mHeIIxþ 1

� �2
(7.19)

One can compare the numerical solution for fixed boundary conditions at x ¼ L
to that of the infinite channel. The results for adiabatic solution are shown in

Fig. 7.14.

The performance of a He II heat exchanger can also be treated in a fashion

similar to that of ordinary fins. Using the conventional expression for the effective-

ness of a fin, we obtain

Table 7.2 Coefficients of (7.17) for different boundary conditions:

b ¼ AU3 Tb � T0ð Þ2=2Pf�1 (From Ref. [19])

Boundary condition g Y2
L

Convection heat transfer Y2
L � bY2

L 1
2b � 1

4b2
� 1�ðQ=MHellÞ4

b

h i1=2
Adiabatic Y2

L 1� ðQ=MHellÞ4
Prescribed temperature { {
Infinite length 0 0
{Value is determined by implicit solution
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ef ¼ Qactual

UA Tb � T0ð Þ ¼
2Pf�1ð1� gÞ
U3A Tb � T0ð Þ2
" #1

4

(7.20)

Note that for typical values, f -1 ¼ 10,000 kW3/m5 K, U ¼ 2 kW/m2 K and

(Tb – T0) ¼ 50 mK we obtain ef ~ 30 (P/A)1/4 in SI units. Therefore, for all

reasonable geometries, ef >>1. For short heat exchangers with YL ~ 1, ef is
simply equal to the ratio of the actual surface area to the base area. For long

heat exchangers, whereYL <<1, the effectiveness is still generally much greater

than unity because of the high effective thermal conductivity of the He II.

In a similar fashion, the fin efficiency can be defined as,

�f ¼
Q

UAfinðTb � T0Þ ¼ ef
A

Afin

� �
(7.21)

This quantity is almost always of order unity unlessYL << 1. Typically, �f ~ 1

unless mHeIIL > 1.

Before leaving the subject of He II heat exchangers, it is important to comment

on one of the other limitations to the performance of static saturated bath heat

exchangers. This is related to item 2 above in the list of design considerations. For a

heat exchanger to perform well, the heat transfer process should be only governed

by Kapitza conductance at the heat exchange surface. However, if boiling occurs

Fig. 7.14 Dimensionless temperature profile along a He II heat exchanger. The data points are

obtained by numerical solution of (7.15) for adiabatic boundary conditions with different values of g.
Also shown by the solid line is the analytic solution for g ¼ 0 (7.19)
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within the heat exchanger, it is possible that the performance will be degraded. To

avoid bulk boiling in the bath, we therefore need to ensure that nowhere the heat

exchanger does the He II reach saturation conditions. Such conditions can occur at

various points within the heat exchanger due to the non-linear temperature profile

and varying heat flux within the He II column.

Figure 7.15 illustrates this situation. The free surface of the heat exchanger is

assumed to be fixed at T0, while below that point the liquid is subcooled by the

hydrostatic head (rgh). With no heat load, the temperature in the heat exchanger is

uniform at T0. However, with a heat load, the temperature below the surface

increases due to the Gorter-Mellink heat transfer. The temperature profile is

steepest at the surface of the liquid due to the accumulation of heat flux (q(x))
along the channel. Two representative temperature profiles are shown in the figure.

Boiling will occur if the predicted temperature profile crosses the saturation line,

see Tq2(x). In this case, the slope of the temperature profile at the surface is steeper

than the slope of the saturated vapor curve allowing the bulk liquid to boil locally. If

the heat flux is increases, the boiling region will expand within the heat exchanger.

The critical condition for boiling can be made more quantitative by equating the

slope of the temperature profile at the free surface (x ¼ 0) to the slope of the

saturated vapor pressure line,

dT

dx

����
x¼0

¼ rlg
dT

dp

����
svp

(7.22)

As before, the slope of the saturated vapor pressure line is given by the Clausius-

Clapeyron equation as,

dp

dT

����
svp

¼ hfg
TDv

� hfgp

RT2
(7.23)

Fig. 7.15 Localized region

of the He II phase diagram

illustrating the boiling

condition that can occur in a

static, saturated bath heat

exchanger
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where the last approximate form results from assuming the saturated helium vapor

obeys the ideal gas law. Substituting the form for the counterflow heat transport in

the He II (7.1) and assuming for simplicity that m ¼ 3, the following expression

occurs,

qmax ¼ rlgRT
2f�1

hfgp0

� �1
3

(7.24)

This expression has a peak near 1.87 K at qmax ¼ 14 kW/m2. It decreases from

the peak dominated by the temperature dependence of the heat conductivity func-

tion, f�1(T, p).

7.1.6 He II Two Phase Heat Transfer and Flow

In recent years, applications have emerged that use of He II in a horizontal tube in

co-existence with its saturated vapor. The first of these involves the use of a near

horizontal He II – vapor heat exchanger to cool subcooled He II for the LHC

accelerator magnets [20]. The other recent application involves the use of horizon-

tal two phase He II – vapor lines in large RF cavity accelerators [21]. Proper design

of these systems depends on a thorough picture of the relevant helium

hydrodynamics.

We begin by considering a long, horizontal tube that is partially filled with near

static He II, see Fig. 7.16. In such a system, there are three basic heat transfer

mechanisms: (1) Gorter-Mellink counterflow in the bulk liquid; (2) forced convec-

tion mass transport in the vapor phase; and (3) mass exchange by evaporation or

condensation between the two phases. The addition of the mass transfer between

the two phases makes the heat transfer process in two-phase He II far more complex

problem than that of single-phase He II.

Fig. 7.16 Schematic of He II-vapor two phase flow system

7.1 Steady-State He II Heat Transport in Wide Channels 247



We first discuss the semi-analytic solution to this problem for which several

simplifying assumptions required. First, the liquid within the tube is assumed to be

in a stratified flow condition with a near horizontal interface between the liquid and

vapor. This is a reasonable assumption based on experiments. Next, thermal

gradients normal to the axis of the tube are assumed to be negligible so that the

problem becomes that of two coupled one-dimensional systems. Finally, the liquid

is assumed to be in local thermodynamic equilibrium with its vapor so that TL(z)
¼ Tv(z), where z is the axial dimension coordinate. The goal is to construct a model

to predict the behavior of the temperature profile, T(z), liquid level or void fraction

(a ¼ Av/A), and liquid, vapor mass flow rates, _ml; _mv and total heat transfer, Q.
For most cases of interest the liquid is nearly static so that the pressure drop

along the tube is determined primarily by friction in the vapor phase, which is given

by the expression,

dp

dz
¼ � 2fF

rvDH

_mv

aA

� �2

(7.25)

where fF is the Fanning friction factor, a is the void fraction and A is the total cross

section of the tube. In (7.25), _mv and a will in general be functions of z so that dp/dz
is not a constant. In a stratified flow system, a is directly related to the liquid level.

At any point along the channel, the total heat flux is a combination of two terms:

the flux of vapor due to evaporation and the counterflow heat flux through the He II.

These two terms sum directly,

QðzÞ ¼ _mvhfg � 1� að ÞA f�1 dT

dz

� �1
3

(7.26)

where the first term on the right is the heat carried by convection of the vapor and

the second is the liquid counterflow heat transport. hfg is the heat of vaporization. In
(7.26) there are three unknowns: _mv, a and dT/dz.

Since the He II and vapor are in thermodynamic equilibrium, it follows that the

pressure gradient may be written in terms of the derivative along the saturation line

of He II and the local temperature gradient,

dp

dz
¼ dp

dT

����
svp

dT

dz
� rvhfg

T

dT

dz
(7.27)

where use has been made of the Clausius-Clapeyron equation, dp/dT)svp ¼ Ds/Dv �
rvhfg/T for an ideal gas which approximates low density helium vapor. Combining

(7.25) and (7.27), we obtain a relation for the temperature gradient in terms of the

vapor mass flux,

dT

dz
¼ �2fDT

r2vhfgDH

_mv

aA

� �2

(7.28)

which is again a relationship between three unknowns dT/dz, _mv and a.
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The third relationship between the unknowns in the problem is obtained by

considering the He II to be essentially static, vl � 0 and using the hydrostatic head

condition on the pressure. In this case with the saturation condition, we can state

that the pressure at the bottom of the channel is a sum of the saturation pressure plus

the hydrostatic head, p0 ¼ ps(T) + rgy where y is the liquid level. Taking p0 to be a
constant and differentiating, it follows that the pressure gradient is directly propor-

tional to the void fraction gradient or slope in the liquid/vapor interface,

dp

dz
¼ �rlg

dy

dz
(7.29)

Again making use of the chain rule and Clausius-Clapeyron equation for an ideal

gas, we obtain a relationship between the temperature and void fraction gradient,

dy

dz
¼ � rvhfg

rlgT
dT

dz
(7.30)

Equation (7.30) suggests that a large temperature gradient will result in a large

slope of the liquid/vapor interface as indicated in Fig. 7.16.

The above expressions has an analytic solution for a rectangular cross section

channel with a constant heat flux [22], which simplifies the problem of relating the

liquid level (y) to the void fraction, a. The results of the analysis were successfully
compared to experiment. An important outcome of the analysis was to show that for

typical geometries of horizontal He II heat exchangers, the heat transported by the

coexisting vapor is roughly ten times as efficient as that carried by counterflow.

Thus, the benefits of horizontal two phase He II cooling systems are evident.

Numerical studies of near horizontal two phase He II-vapor systems has been

performed in the context of RF cavity accelerator development [23]. The goal of

this work was to be able to model the temperatures, flow rates and liquid levels in

existing cryogenic facilities. Such a modeling effort has been sufficiently successful

to add credence to the belief that similar two phase He II systems can be designed

and successfully operated.

An important application of a near horizontal He II – vapor system is the so

called bayonet heat exchanger developed for the LHC, shown schematically in

Fig. 7.17 [24]. This unique design uses a corrugated tube partially filled with He II

to extract the heat loads from the accelerator magnets. The two phase liquid from

Fig. 7.17 Configuration of the He II bayonet heat exchanger [24]
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the refrigerator is expanded into the far end of the heat exchanger with the vapor

returning above the stratified liquid. The heat exchanger works by a similar

principle as discussed above, but in this case the heat flux is determined by the

heat exchange through the wall of the tube into the saturated two phase flow.

The heat transfer rate is determined by the overall heat transfer coefficient of

the heat exchanger, which is equal to the series thermal resistance of the two surface

heat transfer coefficients and the thermal resistance of the corrugated tube. Since

the saturated bath side of the heat exchanger is only partially filled with liquid,

the wetted surface area is not well defined. However, experiments have shown that

a combination of He II film flow and liquid droplet entrainment in the vapor

provides a very effective heat exchange process even for high void fraction [25].

A simplified analysis [24] of the bayonet heat exchanger is based on similar

assumptions as were discussed above in two phase He II flow modeling. In the case

of the heat exchanger, the following assumptions are made. First, the void fraction is

sufficiently high that the pressure drop is determined entirely by the vapor flow rate,

dp

dz
¼ � 2fD

rvDH

_mv

A

� �2

(7.31)

Second, that the total heat transfer, Q ¼ qL, determines the overall change in the

vapor mass flow rate,

Q ¼ qL ¼ hfg _mout � _minð Þ (7.32)

where q ¼ UP(To�Ti), the heat removed per unit length of the heat exchanger.

Third, the vapor quality, w ¼ _mv _mout= at the outlet is assumed to be unity, pure

vapor flow and w0 ¼ _min _mout= . For these conditions, (7.31) can be integrated over

the length of the heat exchanger assuming a circular cross section tube of diameter

D, to yield the total pressure drop,

Dp ¼ 32fD
3p2

q2

rvh
2
fg

L3

D5

1� w30
1� w0ð Þ3

 !
(7.33)

This equation establishes the minimum diameter that meets the pressure drop

requirements. In addition, a criterion is suggested on the maximum vapor velocity

of 5 m/s to ensure that the flow is stratified. This leads to,

A� qL

hfgrvvmax

1

1� w0
(7.34)

Depending on boundary conditions, the two criteria based on (7.33) and (7.34)

yield similar constraints on the heat exchanger design. For example, a 100 m long

bayonet heat exchanger with a 1 W/m heat load would need to have diameter of
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about 50 mm for a DT of 50 mK. This is to be compared to 180 mm diameter tube

that would be required to carry the same heat load over the same temperature

difference in pure thermal counterflow in bulk He II.

7.2 Transient Heat Transport in Wide Channels

A thorough understanding of the time evolution of the temperature distribution in He

II is of the utmost importance to fully describe the heat transfer process. Up until this

point, the assumption has been made that the heat transfer is steady-state and can be

interpreted by using equilibrium thermodynamic models and the helium phase

diagram. This assumption is certainly an oversimplification because there are a

number of time-dependent phenomena that affect the heat transport properties of

He II. To determine the relative significance of transient phenomena in a heat

transfer problem, the following questions must be asked: At what point in time

does a system exposed to some change in the heat flux reach steady state? What are

the physical processes that control this time development? To answer these

questions it is necessary to take account of the energy scales associated with heat

transport in He II.

We begin by considering a one-dimensional channel of length L cooled by a

constant temperature bath at one end, see Fig. 7.2. Initially, the temperature of this

system is uniform at Tb. However, if a heat flux is applied at the end away from the

bath, a temperature distribution will evolve until eventually a steady-state condition

is achieved with the temperature at the heated end being Tm > Tb. Typical transient
and steady-state temperature distributions are shown schematically in Fig. 7.18.

There are a number of energy inputs required to achieve the steady-state

temperature distribution in He II. The first of these we may associate with the

acceleration of the two fluid components, normal and superfluid, to vn and vs,

respectively. Since the fluids are initially at rest, it is necessary to apply sufficient

kinetic energy for steady-state counterflow to be established. For typical heat

Fig. 7.18 Schematic

temperature distributions in

He II under steady-state and

transient conditions
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fluxes, the normal fluid and superfluid velocities are of the order of a few tens of

mm/s. This value leads to a kinetic energy density of considerably less than 1 J/m3,

which we will see is very small on the scale of interest.

Since the He II is initially in the non-turbulent state, a second energy flux which

must be applied to the system is that necessary to create the turbulence. This process

has been described physically in Chap. 6 with an expression for the time required to

create turbulence in a channel being,

t ¼ aq�3=2 (6.109)

The coefficient a is a temperature-dependent function of the order of 105W3/2�s/m3.

Equation (6.109) has no length dependence, presumably because the growth of

turbulence travels at the velocity of second sound and therefore would be essentially

uniform in a short channel at moderate heat flux. Rearranging (6.109) we can

determine the energy required to produce turbulence as,

qt ¼ aq�1=2 (7.35)

which for heat fluxes in the range of a few tens of kW/m2 gives an estimated value

of about 1 kJ/m2. For a channel having a length of the order of 1 m, the energy

density associated with the creation of turbulence works out to be qt � 1 kJ/m3
.

Also of concern is the energy carried by the second sound pulse itself. This

mechanism is probably most important at the highest values of heat flux. Second

sound shock was discussed in Chap. 6 and it was shown that depending on

conditions, an energy as large as 100 J/m2 can propagate along a channel in advance

of the turbulent front. For very short times, this can be the dominant mechanism for

heat transfer and as was mentioned above is probably the mechanism for turbulence

propagation. Still this is not a large amount of energy compared to the heat content

of the He II itself.

The final principal energy input required to create the steady-state temperature

distribution in Fig. 7.18 is that of the enthalpy content of the He II itself. The heat

capacity of liquid helium is very large, particularly near the l-transition where on a
volumetric basis it is of the order of 1 MJ/m3 K. Therefore to establish the steady-

state temperature distribution sufficient heat must be applied to increase the fluid

temperature from that of the bath to its local steady-state value T(x). In practical

systems this increase is of the order of 0.1 K. The required energy density needed to

achieve a given temperature distribution can be written

eC ¼ r
A0L

ðL
0

dx

ðTðxÞ
Tb

CpðTÞdT (7.36)

which is of the order of 100 kJ/m3. Furthermore, as the length of the channel

increases the dominance of this term increases, particularly for long channels with

L ≳ 1 m. Because the enthalpy profile dominates the transient heat input, other
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energies associated with this problem rarely are considered. Therefore, it is

assumed that at least for engineering systems experiencing moderate heat fluxes

(q ~ 10 kW/m2), the transient temperature distribution is controlled by heat trans-

port and enthalpy considerations. As a result, a diffusion like model has been shown

to describe the problem effectively.

7.2.1 He II Diffusion Equation

For background, we consider the time dependent heat transport in a conductive

solid. This process is described by a well-known diffusion equation, which in one

dimension is,

@T

@t
¼ Dth

@2T

@x2
(7.37)

whereDth ¼ k/rC is the thermal diffusivity having units of m2/s. The form of (7.37)

has the inherent assumption of constant properties, k, r, and C. Otherwise, the
equation is somewhat more complex. Equation (7.37) has been solved for a wide

variety of boundary conditions with non-dimensional results applicable to many of

the problems. However, without going through a specific solution for a particular

set of conditions, some physical discussion of its implications can be made.

In particular, it is possible to construct a characteristic time, called the diffusion

time tD, which is obtained by non-dimensionalizing (7.37) and has the form

tD ¼ L2

Dth
(7.38)

where the length L is the total length of the conduction path. For the case of the one-

dimensional rod heated at one end, L is the overall length. The diffusion time is a

measure of the thermal relaxation of the system. In most diffusion problems, the

solution is scaled in terms of the dimensionless Fourier number,

Fo ¼ t

tD
(7.39)

Since the conduction is dominated by exponential terms, tD is not the actual

relaxation time but is proportional to the time required to reach the steady state. For

Fo >> 1, the problem is essentially in steady state, while for Fo ≲ 1, the full

diffusion equation must be considered.

To achieve a high rate of heat diffusion it is necessary to have a high thermal

diffusivity. Solids possessing the largest values of Dth are high-conductivity metals

at low temperatures, where not only if k large, but the specific heat C is small.
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For example, high-purity copper near 4 K has rC � 1 kJ/m3 and a thermal

conductivity k � 1 kW/m K which gives Dth � 1 m2/s. For high-purity metals at

low temperatures the diffusion time constant, assuming a characteristic length

L � 1 m, is of the order of seconds.

Although He II clearly does not obey the simple diffusion equation (7.37), it is

useful nonetheless for physical understanding to make some order-of-magnitude

comparisons. Since turbulent He II in one dimension obeys the nonlinear heat flow

equation given by (7.1), it is possible to define an effective thermal conductivity,

albeit dependent on heat flux,

keff ¼ 1

f ðT; pÞq2 (7.40)

As can be seen in Fig. 7.3, the quantity, f �1(T, p) typically has a value around

10,000 kW3/m5 K near 1.8 K and saturated pressure. Therefore, for a heat flux

q ¼ 10 kW/m2, the effective thermal conductivity is of order 100 kW/m K, which

is about two orders of magnitude larger than for high-purity metals at low temper-

atures. Of course, the heat flux dependence of keff works against the transport of large
heat fluxes. At 100 kW/m2, keff, is reduced by two orders of magnitude to around

1 kW/m K, which is comparable to that of copper in the same temperature range.

The effective thermal diffusivity of He II, Deff, can also be defined according to

the analogy with solid conduction. Around 1.9 K, rC � 0.5 MJ/m3 K, which gives

a value for Deff � 0.2 m2/s. For a characteristic length of 1 m, this effective thermal

diffusivity leads to a characteristic time constant tD � 5 s. Furthermore, since the

diffusion time goes as the square of the characteristic dimension, larger systems

have time constants that can be very long compared to other time constants in

the problem.

To properly treat transient heat transfer problems in He II; however, it is necessary

to use a general heat diffusion equation. The derivation of the equation is analogous to

that of the ordinary diffusion equation although the thermal conduction relationship

must be replaced with the nonlinear Gorter-Mellink expression (7.1). The result may

be written in the form of a one-dimensional heat diffusion-like equation,

rCp
@T

@t
¼ @

@x

1

f ðTÞ
@T

@x

� �1=3
(7.41)

where again we assume for simplicity thatm ¼ 3 in the counterflow heat conduction

term. This expression has a very similar appearance to the ordinary diffusion

equation, with the one exception that it involves an unusual power of the temperature

gradient. Because of the nonlinear character of (7.41), it is apparent that extraordi-

nary efforts are needed to solve this equation. There are in fact several methods

available to treat this equation, here we will only consider approximate analytic

solutions. Numerical solution of the He II energy equation will be discussed in a

subsequent section.
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We begin by casting (7.41) into a dimensionless form by introducing the

variables,

Y� ¼ T � Tb
Tl � Tb

(7.42a)

and

x� ¼ x

L
(7.42b)

t � t

f 1=3rCðTl � TbÞ2=3L4 3=
(7.42c)

Which then reduces (7.41) to dimensionless form as,

@Y�

@t
¼ @

@x�
@Y�

@x�

� �1=3
" #

(7.43)

By analogy to (7.37) one can interpret the quantity DHeII ¼ 1=f 1 3= rC Tl � Tbð Þ2 3=

like a thermal diffusivity for He II with the characteristic diffusion time being

proportional to L4/3. This is a notable difference from classical heat diffusion. In that

case, doubling the characteristic length increases the thermal relaxation time by a

factor of four, while in He II the increase is by a factor of 24/3 ¼ 2.52.

7.2.2 Analytic Solution Methods

One solution method for the nonlinear heat transport equation (7.43) employs a

technique known as similarity solutions [26–28]. This approachmakes use of changes

of variables which reduce the nonlinear partial differential equation (7.43) to a

nonlinear ordinary differential equation that is inherently easier to solve. Thenmaking

the approximation that the heat conductivity function and specific heat are constant

over the range of interest (7.43) can be integrated to obtain the solution. Note that the

constant properties assumption is only a good approximation forY* << 1.

The similarity solution method uses what are termed stretching transformations

which leave the partial differential equation unchanged. The solution of (7.43) is

then determined by choice of boundary conditions. We considered here two

problems of interest. The first problem concerns the application of a constant heat

flux q at x ¼ 0, which is referred to as the clamped flux problem. It leads to

boundary conditions of the form

@Y�

@x�

����
x¼0

¼ � q3fL

Tl � Tb
for all t (7.44a)
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and

Y�ðx; 0Þ ¼ 0 (7.44b)

Y�ð1; tÞ ¼ 0 (7.44c)

The first of these conditions originates from the requirement that the heat flux

q obey the nonlinear heat conductivity equation at x ¼ 0.

It can be shown that the general solution for the temperature distribution should

take a functional form [26],

Y=t1=2 ¼ yðx=t1=2Þ (7.45)

Therefore, a plot of experimental data in this form should provide a universal curve

representing the function y. Displayed in Fig. 7.19 are interpolated results from the

long one-dimensional channel described earlier. The data do in fact follow a

universal curve. In addition, the magnitude of the general solution can be deter-

mined to have a simple form when evaluated at x ¼ 0, that is

DT
t1=2

����
x¼0

¼ a2q2
f

rC

� �1=2

(7.46)

Fig. 7.19 Calculated normalized temperature profile for clamped flux in He II at Tb ¼ 1.8 K and

q ¼ 22 kW/m2 model by Dresner [26] compared to experimental data (inset) [29]
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where a is a proportionality constant of order unity. At large values of x, the result
approaches an asymptotic dependence such that

DT
t1=2

���� ¼ 4
ffiffiffi
3

p

9

� �
1

rC

� �3=2
1

f

� �1=2 t

x2
(7.47)

This expression is exemplified by the linear region on a log-log plot for large x/t1/2.
The above analysis is also able to predict the critical energy flux DE* beyond

which the heat transfer enters film boiling. For the clamped flux problem, this

quantity has been measured experimentally by detecting the time to film boiling,

Dt*, for a given heat flux. A relationship that fits the experimental data has the

simple form

Dt� ¼ kq�4 (7.48)

where k is a temperature-dependent function [29]. The same relationship also

follows from the above theoretical analysis, and k is predicted to take the form

k ¼ rcðTl � TbÞ2
fa4

(7.49)

where a is the same numerical coefficient as given in (7.46). By inserting average

values for the heat conductivity function and the volumetric specific heat into (7.49),

the predicted coefficient k agrees with experiment to within about 20%.

The other problem of interest in one-dimensional transient heat transfer is the

determination of the temperature profile resulting from a given energy deposition.

This pulsed-source problem, which can also be solved by the similarity solution

method, must obey the boundary conditions

ð1
�1

rCðT � TbÞdx ¼DE for all time (7.50a)

Yðx; 0Þ ¼ 0 (7.50b)

Yð1; tÞ ¼ 0 (7.50c)

where DE ¼ qDt is the total thermal energy applied per unit channel area. Again

using the similarity solution method, it can be shown that the pulsed-source

problem has a general solution of the form [27],

Yt3=2 ¼ y0ðx=t3=2Þ (7.51)
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where y0 is another undetermined function. As in the clamped flux problem, (7.51)

is a powerful result because it indicates the form in which to plot data. Plotted in

terms of these variables, the experimental data should follow a universal curve.

By substitution of (7.51) into (7.43), a solution to the temperature distribution

can be obtained with the simplifying assumption of constant properties. The

resulting equation takes the form

DT t3=2 ¼ 4

3
ffiffiffi
3

p DE
f

rC

� �1=2
1

Z4 þ b4

� �1=2

(7.52a)

where

Z ¼ xDEðrCf Þ1=2t�3=2 (7.52b)

and

b ¼ 2 G 1
4

� �� �
3
ffiffiffi
3

p
p

2

¼ 2:855 (7.52c)

That this solution fits the original heat conductivity equation can be verified by the

reader.

Experimental verification of the above analysis is displayed in Fig. 7.20. The

inset shows the time variation of the temperature distribution after a discrete energy

pulse is applied. These data, plotted in the form suggested by the similarity solution,

map out the universal curve given by (7.52a). The universal curve plotted in the

figure has as its necessary input average values for the heat conductivity function

and heat capacity, but when DT is small, these properties do not vary substantially

over the range of interest. The agreement between experiment and theory is entirely

adequate for engineering applications.

7.2.3 Numerical Solution of the He II Diffusion Equation

The above analytical treatment is useful for providing a physical description of the

problem as well as developing scaling relationships to correlate data. However, a

complete solution including the temperature dependence of the physical parameters

is only possible by numerical methods. The usual approach is to apply finite

difference methods. Here the exact differentials in T, x, and t are replaced by finite

differences with an appropriate choice of mesh size. These in turn lead to a set of

simultaneous equations for the temperature at the nodes in the mesh. Solutions of

this type have been carried out for two different boundary conditions [30]. In both

cases the clamped heat flux condition at x ¼ 0 is assumed. However, different
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boundary conditions are applied at x ¼ L where the channel contacts the reservoir.

These conditions have two forms,

dY
dx

����
x¼L

¼ 0 adiabatic end (7.53a)

and

Yjx¼L ¼ 0 isothermal end (7.53b)

Particularly for the first case, it is useful to scale the data in terms of a ratio of

energies (DE*/DE0), where these quantities are defined individually as

DE� ¼ q Dt� (7.54)

Fig. 7.20 Normalized temperature distribution for the helium channel subjected to a pulsed heat

source (From Dresner [27])
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and

DE0 ¼ L

ðTl
Tb

rCp dT (7.55)

Therefore, (7.55) represents the energy applied through the heat transfer surface

which is necessary to reach film boiling at Dt*. The other energy, DE0, represents

the total enthalpy available within the constant cross section channel of length L.
Obviously, for the adiabatic end condition, the ratio DE*/DE0 �1. For short, high-
energy heat pulses such that the heat diffusion length is much shorter than the total

channel length L, the solution is independent of choice of boundary condition

established at x ¼ L.
Plotted in Fig. 7.21 are the numerical solutions to the one-dimensional heat

transfer problem for two different bath temperatures, 1.8 and 2.0 K. In either case

the ratio of energy is plotted versus the scaling parameter qL1/m, where in this case

m ¼ 3.4 by selection of the authors [30]. The data give comparable agreement

for m ¼ 3. Note that for values of qL1/.34 in excess of 10 at 1.8 K and 5 at 2.0 K,

there is no significant difference between the two boundary conditions at x ¼ L.
The steady-state limit corresponds to the results presented in Sect. 7.1.2.

In conclusion, a general comment is in order concerning transient heat transfer in

He II. As noted above the time constant to establish the steady state can be quite

Fig. 7.21 Maximum energy flux for a step-function heat pulse. Steady-state peak heat flux

represents the open-channel solution. DE*/DE0 � 1 is the closed-channel solution: (a) 1.8 K

and (b) 2.0 K (as compiled by Seyfert et al. [30])
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large, particularly in long one-dimensional system. Although this fact may be

surprising considering the extremely high effective thermal conductivity of He II,

it is due to the large heat capacity of He II resulting in a finite thermal diffusivity.

Therefore, care should be exercised when applying steady-state heat transfer

models. It is best first to estimate the thermal diffusion time to determine whether

the system is actually in the steady state. For transient problems, the heat diffusion

model is generally suitable. Unfortunately, it is not known whether there are limits

of this model, and extrapolation beyond the regions where experimental data exist

should be avoided.

7.3 Forced Convection Heat Transport in Wide Channels

We now extend the topic of turbulent He II heat transport to include the effect of

forced convection or net flow velocity. This subject is a somewhat more general

heat transport problem than has been considered so far because it includes an

additional variable, the net flow velocity, v. Forced convection was introduced in

Chap. 6 as part of the two-fluid model applied to He II heat transport.

A general configuration for a forced flow heat transfer problem is shown in

Fig. 7.22. A channel of constant cross section and length L connects two reservoirs

at temperatures T1 and T2. A steady state or transient heat q flux is applied in this case
at one end of the channel and the temperature gradient within the fluid is established.

Breakdown of heat transfer occurs at a peak heat flux, q*, which depends on a

number of factors including the fluid velocity. In fact, this configuration is not easily

obtainable because a temperature difference normally corresponds to a pressure

difference under saturation conditions. However at least in principle, it is possible to

create the appropriate conditions with a frictionless piston that forces the liquid from

volume 1 to volume 2 at velocity v. Alternatively, one could establish these

conditions by forcing He II to flow through a channel of length 2L with both ends

in thermal contact with a reservoir at temperature T2.

Fig. 7.22 Schematic representation of configuration required to obtain forced flow He II
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7.3.1 He II Energy Equation

We begin by developing the heat balance equation that describes the forced flow He

II system [31]. In developing this equation, two fundamental assumptions are made

about the physical behavior of He II. These assumptions are not proved here but are

justified by the analysis of experimental data.

The first assumption is that the heat flow by internal convection mechanisms is

not affected by the net velocity of the fluid. This point has been discussed as part of

the two-fluid model in Chap. 6. As an aside, it is possible to understand physically

the invariance to velocity by analogy to an ordinary heat conduction mechanism. In

the latter case, heat transported by conduction in a moving medium is no different

from that of the medium at rest provided v 	 c, the speed of sound. Furthermore, by

making the normal set of simplifications to reduce the problem to one-dimensional

heat flow in turbulent He II, the nonlinear heat conductivity equation can be used to

describe the heat conducted by internal convection,

qic ¼ � f ðT; pÞ�1 dT

dx

� �1=3

(7.56)

where f-1(T,p) is the same temperature-dependent heat conductivity function. The

power law dependence of (7.56) has been assumed to be 1/3 although the analysis

follows essentially the same procedure if a different coefficient is assumed.

The second assumption is that the heat carried by ordinary convection

mechanisms can be described by the flow of enthalpy between two points in the

system,

qfc ¼ rv Dh (7.57)

where dh ¼ h1 – h2 represents the specific enthalpy difference between

temperatures T1 and T2. For simplicity (7.57) assumes the fluid density to be

constant, which is a reasonably good approximation for He II.

The above two assumptions lead to an equation that is appropriate for analyzing

the temperature profile in forced flow He II. This is achieved by combining

differential forms of (7.56) and (7.57) and equating them to the time rate of change

of the local enthalpy. The resultant equation is similar to the time-dependent heat

equation for static He II except that it contains the extra convection term. In one

dimension this expression takes the form,

r
@h

@t
� @

@x

1

f

@T

@x

� �1=3
" #

þ rv
@h

@x
¼ q0 (7.58)

where the temperature and pressure dependence of the heat conductivity function

is implied. This equation is sometimes referred to as the He II energy equation.
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Given the boundary conditions for a channel containing He II, it is a straightforward

problem to integrate (7.58) and thus determine the temperature profile as a function of

flow velocity and time. Unfortunately, a general solution to (7.58) requires numerical

methods because the equation is nonlinear and the functions such as h and f have rather
strong temperature dependencies.

7.3.2 Steady State Heat Transport: Analytic Solution

A good approximate solution to the steady-state problem, @h @t= ¼ 0, can be

obtained by assuming constant properties, f and Cp, and neglecting pressure drop

effects such that dh ¼ Cp dT. This approximation leads to an exactly soluble one

dimensional differential equation. Making the following change of variables,

Y� ¼ T � T2
T1 � T2

(7.59a)

x� ¼ x

L
(7.59b)

and defining the dimensionless variable,

Kv ¼ rCpvðfLÞ1=3ðT1 � T2Þ2=3 (7.59c)

an exactly soluble form of the Bernoulli equation results,

� d

dx�
dY�

dx�

� �1=3
" #

þ Kv
dY�

dx�
¼ 0 (7.60)

where q0 ¼ 0 has been assumed. Equation (7.60) coupled with the appropriate

boundary conditions can determine the steady-state temperature profile in a one-

dimensional channel.

Before proceeding to the solution, the physical interpretation of the dimension-

less number Kv deserves some comment. As it represents the ratio of the heat

carried by forced convection, rCpvDT, to that carried by counterflow, (f-1DT/L)1/3,
Kv is analogous to the classical Peclet number, Pe ¼ rCpvL k= , that is the ratio of

forced convection to thermal conduction in classical liquids. Therefore, Kv ~ 1

marks the boundary between thermal counterflow dominated heat transfer and

forced convection dominated heat transfer in He II.

The results of integrating (7.60) for a channel of length 2L with its center at T1
and ends fixed at T2 are displayed in Fig. 7.23. The left-hand side of the figure can

be interpreted as the case where the velocity of flow is in the opposite direction to

the heat flow by counterflow while the right-hand side refers to these quantities

working in parallel. Note that the limitations of to the accuracy of this solution are
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primarily in terms of the temperature dependence of the heat capacity Cp and heat

conductivity function f-1(T,p). The solution should be quite good for small DT ¼ T1
– T2 such that DT/T 	 1. The impact of this approximation is seen in the zero

velocity profile (Kv ¼ 0) which is linear, while in fact for large DT the profile has

considerable curvature. Also note that the nonzero velocity profiles for positive and

negative Kv are symmetric about the line corresponding to Kv ¼ 0.

There have been several reports of measured temperature profiles within forced

flow He II which have been compared to numerical analyses based on the theory

described above [32–34]. In general, these measurements have shown temperature

profiles analogous to those displayed in Fig. 7.23. In those cases, (7.60) was solved

numerically and compared to experimental data with good agreement.

Given the solution to the temperature profile it is straightforward to determine

the total heat transport, q ¼ qfc + qic, by integration of (7.60). This result can be

normalized to the form

q

q0
¼ � dY�

dx�

� �1=3

þ KvY� (7.61)

where Kv is defined above and

q0 � T1 � T2
fL

� �1=3

(7.62)

which represents the heat carried by the internal convection mechanisms for He II

having zero velocity (Kv ¼ 0). The results of this calculation are shown by the solid

Fig. 7.23 Normalized temperature distribution in forced flow He II with fixed temperature

boundary conditions Kv ¼ rCpvðfLÞ1=3ðT1 � T2Þ2=3
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curves in Fig. 7.24. The data points are from an experiment by Johnson and Jones [34].

Although there is considerable enhancement of heat transport in the direction of flow

even for small Kv, values of Kv greater than unity are required before the total heat

transport is enhanced significantly in a midpoint heated channel of length 2L. This
result occurs because forced flow suppresses the total heat transport when the velocity

and heat flux are anti-parallel.

7.3.3 Pressure Drop in Turbulent He II

The above solution to the steady state He II energy equation neglected any effect

due to the pressure drop along the channel thus allowing the simplification, dh ¼
Cp dT. However, in forced flow He II, there can be a significant pressure drop

associated with flow. The pressure drop in fully turbulent He II has been measured

for a variety of channel geometries with the most notable feature of these

measurements being the similarity of friction factor to that for classical fluids. In

other words, the pressure drop may be correlated with the expression,

Dp ¼ 2f
F
rv2

L

D

� �
(7.63)

Fig. 7.24 Normalized peak heat flux for forced flow He II with Kv ¼ rCpv(.fL)
1/3 (T1 – T2)

2/3

(Data from Jones and Johnson [34])
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where the Fanning friction factor, fF, is similar to that observed for classical fluids.

For example, for a smooth tube, the friction factors for He II in the Reynolds

number regime ReD > 2 � 104 appear to be fairly well described by the von

Karman-Nikuradse correlation,

1

fF
1
2

¼ �1:737 ln
1:25

ReDfF
1
2

 !
(7.64)

where the Reynolds number is defined by ReD ¼ rvD mn= . At high Reynolds

number, the tube surface roughness begins to play a role in the observed friction

factor tending to an almost constant value. In this regime, the Colebrook correlation

is preferred,

1

fF
1
2

¼ �1:737 ln
k

3:7D
þ 1:25

ReDfF
1
2

 !
(7.65)

Note that both these correlations were discussed in Chap. 4 in the context of

pressure drop in classical helium flow. For non circular cross section channels,

present evidence suggests that the friction factor may also be correlated by classical

correlations based on the Reynolds number.

Figure 7.25 shows measurements of the turbulent friction factor for He II

compared to the classical correlations above [35]. Similar results have been obtained

for other geometries [36–39]. One can easily see that the agreement is reasonable.

Fig. 7.25 Friction factor for He II forced flow compared to classical correlations (Fuzier [35])

266 7 He II Heat and Mass Transfer

http://dx.doi.org/10.1007/978-1-4419-9979-5_4


This result can be understood in terms of the two fluid model. In relatively high

Reynolds number flows, both fluid components can be assumed to be fully turbulent

with the superfluid component containing a very high vortex line density that

interacts with the normal fluid component. In this case, the two fluids are strongly

coupled together in motion. On the other hand in the viscous boundary layer, the

normal fluid velocity profile is what controls the wall friction. Thus, the friction

factor should scale with the classical Reynolds number with the relevant density and

velocity being that of the total fluid while the viscosity scale is that of the normal

fluid component, mn.
The above development for the most part assumes that the helium flow is fully

developed and turbulent. This allows both the use of the turbulent pressure drop

correlations and the turbulent heat transport relation. More complex phenomena

can occur particularly in flow systems consisting of narrow channels in laminar

flow, which can lead to fountain effect driven flows. We return to this topic in a later

section.

7.3.4 He II Joule Thomson Effect

Walstrom considered the problem of steady state forced flow He II with pressure

drop [40]. In this case, the enthalpy gradient must include the pressure terms,

@h

@x
¼ @h

@T

� �
p

@T

@x
� @T

@p

� �
h

@p

@x

� �� �
¼ Cp

@T

@x
� mj

@p

@x

� �
(7.66)

where mj ¼ bT�1
rCp

is the Joule Thomson coefficient with b being the bulk expansivity.

For He II, b is relatively small and negative (b ~ �0.01 K-1) so that mj is negative
and dominated by the incompressible term. In addition, since the pressure gradient

may be large in this case, it is no longer possible to neglect that contribution to the

He II two fluid equations (6.98) and (6.99). If one further makes the assumption that

the pressure gradient can be replaced by Dp/L and replace mj by �1/rCp, then the

full energy equation results,

rCp
@T

@t
� @

@x

1

f

1

rs
Dp
L

þ @T

@x

� �� �1
3

þ rvCp
@T

@x
� v

Dp
L

¼ q0 (7.67)

The full solution to this equation requires numerical methods.

Before discussing the solution to (7.67), it is instructive to gauge the relative

importance of the pressure and temperature gradient terms. Obviously, if the pres-

sure drop is small, then (7.67) reduces to (7.58). On the other hand, if the pressure

drop approaches Dp ~ rCpDT, then its impact must be considered. A typical value

for rCp ~ 1 MJ/m3 K and DT ~ 0.1 K. Therefore, as long as Dp<<100 kPa (1 atm)
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the impact on the temperature profile will be small. For high velocity flows or very

long channels, this condition is not met and one must use the full energy equation.

In steady state He II flow, the above expression predicts a monatonically

increasing temperature profile along the channel. Walstrom solved the steady

state problem analytically by making the following substitutions,

T0 ¼ 1

rCp

q0L

v
þ Dp

� �
(7.68a)

x� ¼ x

L
(7.68b)

t ¼ T

T0
(7.68c)

b ¼ fL rvCp

� �3
T2
0 (7.68d)

and

c ¼ Cp=s

1þ q0L vDp=ð Þ (7.68e)

Note that according to the empirical fit to the heat capacity of He II (6.29b), the

numerator in (7.68e) can be approximated by a constant, Cp s= � 5:6.
Consider the case where q0 ¼ 0, such that the resulting temperature gradient is

entirely due to friction. In classical non-conductive fluids, this condition results in a

continuous temperature increase with the slope of the temperature profile is directly

proportional to the Joule-Thomson coefficient, mj. Figure 7.26 shows the calculated
temperature profile for fixed temperature boundary conditions.

7.3.5 Transient Heat Transport in Forced Flow He II:
Numerical Solution

There have been a number of efforts at modeling transient heat transport in forced

flow He II [41–44]. In the present context, there is insufficient space to discuss the

methods in detail and the reader is encouraged to consult the original references for

more information. Here we summarize the methods used by Fuzier to model this

problem [44].

The principal challenge to the numerical solution of (7.67) is the non-linear

nature of the partial differential equation. In particular, the fractional power to the
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heat conductivity function must be handled with care to avoid numerical

instabilities. Fuzier used a semi-implicit finite difference scheme to discretize the

energy equation:
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(7.69)

where Xn
i represents the value of X at the node i after n time intervals. This scheme is

first order accurate in time and second order accurate in space. This model was used

to compare to transient heat transfer measurements on a 0.86 m long, 10 mm ID

channel at fluid velocities up to 20 m/s. A uniform grid consisting of 8,000 nodal

Fig. 7.26 Dimensionless temperature profile due to the Joule Thomson effect in He II forced

flow with constant temperature boundary conditions. In this case, q0 ¼ 0 and T0 ¼ Dp/rCp (From

Walstrom [40])
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points was used to represent the length of the test section. Time steps of order 10 ms
were typically used for the solution. The initial condition before the generation of

the pulse corresponds to the steady-state, linearly increasing temperature profile in

the test section due to the Joule-Thomson effect.

A heat pulse that is deposited locally in a channel containing forced flow He II

will produce a temperature rise that propagates along the channel at approximately

the net flow velocity, v. As the thermal pulse moves along the channel, it will

experience an overall increase in its background temperature due to the Joule

Thomson effect. For example, at a velocity of 10 m/s and T ¼ 1.7 K, forced flow

He II increases its temperature at about 30 mK/m of channel length. In addition, the

pulse temperature profile will broaden due to diffusion in the He II. The time scale

for this process is similar to that discussed in Sect. 7.2, but is not generally

dependent on the fluid velocity.

As an example, Fig. 7.27 displays two cases of transient heat transfer experimental

results compared to the numerical model. Both are for the same base temperature,

Tb ¼ 1.7 K and the same heat pulse, 99 kW/m2 for 20 ms. The only difference is the

fluid velocity which is 2 m/s in Fig. 7.26a and 16m/s in Fig. 7.26b. It is quite apparent

that the He II energy equation does a good job of modeling the shape and propagation

of the heat pulse. One should note that this level of agreement is not always achieved.

In particular, at intermediate velocities (4 m/s < v < 14 m/s), the model deviates

from the experimental results. At present, this observation appears to be the result of

the formulation of the solution. In the case where there is significant pressure drop, the

heat flux in the He II is given by,

q ¼ � 1

f

1

rs
Dp
L

þ @T

@x

� �� �1
3

(7.70)

The problem occurs when the pressure drop and temperature gradient are of roughly

equal magnitude and opposite sign, which can occur in regions on the trailing edge

of the pulse. This is a physically unrealistic aspect of the model.

7.4 Heat and Mass Transfer in Porous Media

7.4.1 Steady Laminar Heat Transport in He II

The problem of He II heat and mass flow through porous media is significantly

different from flow in wide channels. In particular, much of the porous media fluid

dynamics is in the laminar regime and the transition to turbulence. Further, the

geometry of porousmedia is not well characterized as one has with a one-dimensional

channel and involves multidimensional flow. Thus, we need to consider issues of how

to model the geometry of the porous media. These issues are similar to those

appropriate for classical fluids in porous media, a subject introduced in Sect. 4.4.
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As was discussed in Chap. 6, laminar flow conditions occur in He II whenever

the fluid velocity is below the critical velocity. These conditions can occur even in

static He II, since heat transport causes a relative velocity of the two fluid com-

ponents. In He II there are two relevant critical velocities: vsc which is associated

with the onset of turbulence in the superfluid component and vnc for the normal fluid

component. vsc depends strongly on the method by which it is measured. To remind

the reader from Chap. 6, most experimental data are correlated to the empirical

relationship,

Fig. 7.27 Experimental and numerical time evolution of the temperature profile at various

locations in a 0.86 m long, 10 mm ID channel. The smooth lines correspond to the numerical

model. A 20 m long, rectangular heat pulse of power density 99 kW/m2 was generated at t ¼ 0.

Tb ¼ 1.7 K. The flow velocity: (a) 2 m/s, (b) 16 m/s [44]
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vsc ’ d�1=4 in cgs units (6.86)

where d is the characteristic diameter of the channel. On the other hand, the normal

fluid critical velocity is interpreted in terms of classical turbulent onset such that,

vnc � mnRec
rd

(6.88)

where the critical Reynolds number is Rec � 1,200. Note that this relationship

involves the normal fluid viscosity but the total density.

Laminar heat flow in He II, which occurs for low normal fluid velocities in narrow

channels, the heat conductivity equation may be written in a form similar to Fourier’s

law although the function of proportionality varies as the square of the diameter,

q ¼ �ðrsdÞ2T
b�n

dT

dx
¼ �gðTÞ d

2

b
dT

dx
(7.71)

where g(T) ¼ (rs)2T/mn. b is a numerical coefficient that depends on channel

geometry; b ¼ 12 for parallel plates and b ¼ 32 for circular tubes. The laminar

flow heat conductivity function, g(T), increases strongly with temperature

dominated by the dependence of (rs)2T ~ T12. Figure 7.28 displays g(T) between
1.2 K and Tl. Appendix A.3 gives numerical values for this coefficient at saturated

vapor pressure.

Fig. 7.28 Proportionality function in the He II laminar flow equation
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In the laminar flow regime, due to the isentropic nature of the system, the pressure

drop due to flow is related to the temperature gradient through London’s Equation,

dp

dx
¼ rs

dT

dx
(7.72)

The Fountain Effect, a unique feature of He II, can be understood in terms of this

expression. Specifically, in ideal superflow, a temperature gradient induces a

pressure gradient, which in practice can lead to net mass flow of the fluid.

In the laminar flow regime, the heat flow induced pressure gradient is related to

the temperature gradient through London’s equation. The result is given by,

q ¼ � rsd2T
bmn

dp

dx
¼ �gðTÞ d2

rsb
dp

dx
(7.73)

where b is the same geometrical factor as in (7.71). This relationship can be easily

integrated over finite lengths and temperature difference to give practical results.

7.4.2 He II Heat and Mass Transfer Through Porous Media

In porous media, the geometry is not as well defined and the characteristic dimen-

sion, d, is more difficult to know. In laminar (Darcy) flow, the pressure gradient is

related to the permeability KD of the medium,

dp

dx
¼ � m

KD
U (7.74)

where U is the average approach velocity. KD is proportional to the square of the

pore diameter times the porosity, a. For a typical pore diameter dp ¼ 1 mm and

porosity of 10%, that means the KD ~ 10-13 m2. By analogy in the case of He II flow

through porous media, one can write the laminar flow equation as,

dp

dx
¼ �o

mn
KDn

Un (7.75)

where Un is the normal fluid velocity averaged over the sample cross section. This

equation also contains the tortuosity factor, o, to account for the increase in

effective path length compared to the overall thickness of the sample. By definition,

Un ¼ avn, where vn is the normal fluid velocity in the pores. In pure counterflow,

q ¼ rsTvn, so one can substitute for the normal fluid velocity,

dp

dx
¼ �o

mn
KDn

�q

rsT

� �
(7.76)

where as written �q is the heat flux averaged over the sample area, �q ¼ aq.
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In the laminar regime, He II obeys London’s equation (7.72), so the temperature

gradient may simply be written,

dT

dx
¼ �o

mn
KDn

�q

ðrsÞ2T

 !
(7.77)

which can be rearranged to,

�q ¼ �gðTÞKDn

o
dT

dx
¼ � gðTÞ

rs
KDn

o
dp

dx
(7.78)

where KDn is the permeability for the normal fluid and g(T) is the temperature

dependent function in Fig. 7.27.

Equation (7.78) can be used to measure the permeability of a porous medium by

recording either the pressure or temperature difference across a sample subjected to

a heat flux [45, 46]. Note that the the value of KDn/o may be different from the

permeability measured by other methods due to the unique properties of He II.

Baudouy et al. [47] even found KDn to be temperature dependent.

Above the critical velocity, the flow through the porous media is no longer ideal

and mutual friction begins to contribute to the temperature gradient. In that case, the

temperature gradient through the material should be described by a modified

version of (7.1),

dT

dx
¼ �f ðT; pÞq3

which becomes,

dT

dx
¼ �of ðT; pÞ �q

a

� �3

(7.79)

where x is the dimension measured through the sample.

Equations (7.77) and (7.79) probably oversimplify the difficulty in calculating

the temperature gradient in He II counterflow through porous media. The quantities,

KDn, a and o are at best approximately known and depend on the method of

measurement. In the turbulent regime, the situation is even more complex due to

the non-linear heat equation (7.1). In the porous medium, the channel cross section

can vary significantly through out the material. Since the temperature gradient is

proportional to q3, regions that constrict the flow will have an even larger effect on

the temperature difference. In fact, there is not much known about the behavior of

the Gorter-Mellink equation in regions of high gradient. Thus, this is a topic worthy

of continued study.
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7.4.3 He II Fountain Pumps

Fountain Effect Pumps (FEPs), shown schematically in Fig. 7.29, are unique to

He II. Essentially, this type of pump uses the Fountain Effect to force He II to flow

through a porous plug. A heater at the outlet of the pump provides the chemical

potential difference to drive the fluid flow. Such a device, which has been devel-

oped and demonstrated for space based applications, usually consists of a sintered

ceramic disk or plug with a heater located on the downstream side. Typical pore

size of the material is of order 0.1 mm.

An ideal fountain pump obeys the London Equation and produces a pressure

head corresponding to the temperature difference produced by a heater down-

stream of the flow. If one integrates the London equation (7.72) along lines of

constant chemical potential the corresponding static pressure head is given in

Fig. 7.30. Thus, for an ideal fountain pump, the maximum pressure head is about

50 kPa for a bath at 1.8 K. Higher pump heads can be accomplished by running

several pumps in series. However, the pump head decreases significantly with

increasing mass flow rate.

For an ideal fountain pump, the corresponding mass flow rate is given by the

relationship,

Q ¼ _mSoTo (7.80)

where the subscript o applies to the conditions at the pump outlet. This relationship

suggests that the pump flow rate can be increased by simply adding more heat

downstream, but there are limitations [49]. In a FEP, the addition of heat increases

the temperature of the helium on the upstream side of the pump due to the removal of

the superfluid component. This heat must be extracted by a He II refrigeration system

to maintain low temperature at the pump inlet. Another important limit is the onset of

turbulence above the superfluid critical velocity. To avoid this limit the design a

fountain pump must have sufficient cross sectional area to ensure that the velocity

within the pores does not exceed vc, typically about 100 mm/s for porous media.

Fig. 7.29 Schematic of a Fountain effect pump
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For a porosity of 30%, this velocity corresponds to an approach velocity of about

30 mm/s. Equation (7.80) can be rearranged in terms of the inlet conditions to yield,

_m ¼
_Q

ð1þ Cp=sÞDp rþ siTi=
(7.81)

where si is the entropy at the inlet to the fountain pump and Dp is the hydraulic

pressure head.

Another limitation to the application of FEP is the overall low thermodynamic

efficiency. For an ideal FEP, the ideal thermodynamic efficiency is given as,

� ¼ Dp
rq

¼ 1

1þ Cp=s
ffi 1

6:6
¼ 15% (7.82)

Fig. 7.30 He II phase diagram showing lines of constant chemical potential [48]
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However, this is an upper limit and real pumps have even lower performance. This

efficiency should be compared to typical mechanical pump efficiencies which is of

order 50%. Therefore, the main advantage of a fountain pump is in its ease of

application. The pump consists of a heater and porous plug. There are nomoving parts.

The design of practical FEPs goes beyond the above discussion. To maintain

ideal flow conditions in the pump corresponding to an approach velocity below a

few 10s mm/s, the pump surface area is frequently much larger than the pipe cross

section in the attached flow circuit. If these conditions are exceeded, pump perfor-

mance will degrade; however, the FEP will continue to pump the helium until the

inlet temperature exceeds Tl.

7.4.4 He II Vapor: Liquid Phase Separators

Another unique application for porous media is with He II- vapor phase separators

(VPS) that have been developed for containment of He II in space applications. A

VPS consists of a porous plug, frequently made from sintered stainless steel

powder, which extracts the heat from a He II reservoir by allowing evaporation at

the surface of the plug. In this application, the characteristic pore size is larger than

for the FEP, because it is required to have some flow of the normal fluid component

to ensure operation. A schematic of a VPS is shown in Fig. 7.31.

A He II-vapor phase separator provides a pressure difference across it given by

the London equation (7.72). In use, the upstream side of the phase separator is

wetted with He II while the downstream side is pumped to low pressure, lower than

the saturated vapor pressure of the liquid. The phase separator works in the

following way. Heat generated in the He II reservoir is carried through the porous

plug by thermal counterflow to the liquid-vapor interface, which preferably occurs

within the body of the plug. The heat is then removed by evaporation of the liquid at

low pressure. The associated temperature difference across the plug provides the

fountain pressure to hold the liquid within the He II reservoir. The total vapor mass

flow is determined by this rate of heat generation, _m ¼ Q=hfg. To supply the vapor,

p0, T0 pHe II, THe II

Dp = rsDT

liquidvapor
m

Liquid–vapor phase boundary

VPS

Q

Fig. 7.31 Schematic of a vapor phase separator

7.4 Heat and Mass Transfer in Porous Media 277



liquid must flow through the plug to the liquid-vapor interface. The heat flow in the

liquid is also given by,

Q ¼ aArsT vn � vð Þ (7.83)

where A is the plug cross section and a is the void fraction. Setting the two forms of

the heat flow equal to each other and substituting v ¼ _m raA= one obtains an

expression for the pressure drop as a function of vn. Then assuming purely laminar

flow in the phase separator, v < vc, the critical velocity, the mass flow rate can then

be written as,

_m ¼ rKDn

b�n

sT

sT þ hfg

� �
Dp
L

(7.84)

where KDn is defined in (7.75). This relationship appears to fit experimental data for

small mass flow rates. If the velocity within the plug exceeds vc, turbulence in the

superfluid degrades the performance and themass flow increasesmore slowlywithDp.
The design of a porous plug phase separator is dependent on first knowing the

mass flow needed to extract the heat load to the He II reservoir. The pressure drop

across the plug is determined by the desired operating temperature of that reservoir.

The physical dimensions and pore size of the porous plug follow by analysis of

(7.84). Most phase separators developed for space applications consist of a sintered

stainless steel structure with a typical pore size is between 1 and 10 mm [50, 51].

7.5 Kapitza Conductance

A very different problem of heat transfer in He II relates to that which occurs at an

interface between a solid and the liquid. This process is in contrast to heat transport

in the bulk fluid, which has been the subject so far. Surface heat transfer is more

controlled by the interfacial character, including the properties of the solid state,

rather than that of the bulk He II. In general, there are two regimes of surface heat

transfer in He II as exemplified by the two positive slope portions of the heat

transfer curve; see Fig. 7.1. At low DT, no boiling occurs and the heat transfer is

controlled by a phenomenon called Kapitza conductance. At high DT and for heat

fluxes greater than q*, the surface is blanketed by a film of He I or vapor or both. In

this region, the heat transfer is determined primarily by the character of the vapor

film. The present section concerns itself with the first problem, that of heat transfer

directly from the solid surface into the liquid He II or Kapitza conductance.

Section 7.6 overviews the subject of film boiling heat transfer.

Thermal boundary conductance occurring at the interface between a solid and

liquid He II was first studied by Kapitza [52] in 1941 during an experiment on the

flow of heat around a copper block immersed in the liquid. Within the liquid helium

278 7 He II Heat and Mass Transfer



the temperature gradients were seen to be negligible; however, a sizable temperature

difference did occur between the copper block and the He II. This discovery

spawned a considerable quantity of fundamental and applied research some of

which is discussed in the present section. However, Kapitza conductance is also of

great technical interest because it often results in the largest temperature differences

in a He II heat transfer problem. For an order of magnitude comparison, a heat flux of

1 kW/m2 can lead to a temperature difference of about 0.1 K across an interface due

to this effect. Within turbulent He II the same heat flux would require about 1,000 m

of one-dimensional channel to produce an equivalent temperature difference!

The general term Kapitza conductance has taken on much broader connotation

over the years since its discovery. In particular, it now refers to the interfacial

thermal boundary conductance which occurs between any two dissimilar materials

where electronic transport does not contribute. Thus, Kapitza conductance occurs at

the interface between a metal and water at room temperature. However, since the

effect is strongly temperature dependent it makes a negligible contribution to the

heat transfer coefficient except at low temperatures. For example, Kapitza conduc-

tance does contribute to the heat transfer process between a metal and He I at high

heat flux, as is discussed in Chap. 5, but in general is neglected in classical fluid heat

transfer because the thermal boundary layer dominates the process.

The measurement of Kapitza conductance is achieved by a method shown

schematically in Fig. 7.32a. A solid of some finite thermal conductivity is in

intimate contact with He II in a one-dimensional configuration. The temperature

at various points within the solid and He II are measured as they vary with applied

heat flux q. In the steady state, a temperature profile is obtained as shown

schematically in Fig. 7.32b. The profile can be extrapolated to the He II-solid

Fig. 7.32 Schematic of Kapitza conductance experiment: (a) temperature sensors located in the

vicinity of a solid-He II interface and (b) temperature profile
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interface to determine the surface temperature difference DTs. By this method, the

bulk properties of the two media can be eliminated from the measured temperature

differences.

Kapitza conductance usually is given an empirical definition; ideally defined in

the limit where q and DTs are vanishingly small,

hK0
¼ lim

DTs!0

q

DTs
(7.85)

where the 0 subscript refers to the limit asDTs ! 0. This quantity has a fairly strong
temperature dependence going as T n with n varying anywhere between 2 and 4. A

more general definition of Kapitza conductance simply relates it to finite values of

q and DTs:

hK ¼ q

DTs
(7.86)

Because of its nonlinear nature, definition (7.86) is of more practical interest to

engineering applications.

There are a number of applications for He II where knowledge of the Kapitza

conductance is of substantial importance. In refrigeration involving He II, its value

strongly impacts the proper design of components, particularly heat exchangers.

Because of the strong temperature dependence, the importance of Kapitza conduc-

tance to heat transfer problems increases with decreasing temperature. In very-low-

temperature dilution refrigeration the Kapitza conductance becomes the

dominating heat transfer process. Knowledge of the Kapitza conductance of

materials at higher temperatures, T > 1 K, is also important. Here the desire is to

cool large devices such as superconducting magnets or space instruments. For

proper design of these devices, it is necessary to have a good knowledge for the

effective heat transfer coefficient.

Although Kapitza conductance is an experimentally defined quantity, there has

been considerable theoretical work aimed at understanding this complex phenome-

non. Therefore, before discussing the empirical behavior of hK any further, a review
of the physical theories used to explain its behavior is presented.

7.5.1 Phonon Radiation Limit

The first theory to successfully characterize the qualitative features of Kapitza

conductance is referred to simply as the phonon radiation limit [53, 54]. The

model is an overestimate of the true Kapitza conductance because it includes too

many energy transport mechanisms. However, the theory does show the proper

temperature dependence of hK.
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A body above absolute zero contains thermal energy, which in the case of

insulators is in the form of a phonon spectrum while for conductors it may be due

partially to the electrons. Phonons are quantized lattice vibrations and are analo-

gous to photons, which of course are quantized electromagnetic radiation. Ignoring

for the moment any effect electrons may have on these concepts, it is reasonably

straightforward to identify the phonon energy spectrum for a particular solid (see

Chap. 2). Since the Kapitza conductance is mainly of interest at low temperatures, it

is not a bad approximation to use the Debye theory to describe this energy

spectrum. In the Debye model, the internal energy may be written as a tempera-

ture-dependent quantity,

Eph ¼ aT4 (7.87)

where a ¼ 3
5
p4ðN=VÞ kB=Y3

D and T 	 YD, the Debye temperature. For most

solids, the Debye temperature is in the range of several hundred Kelvin, making

this approximation quite reasonable for the Kapitza conductance at helium

temperatures.

To quantify the problem of phonon radiation between two media, assume there is

a unit interfacial area dA on which phonons are incident at velocity c. A schematic

of the hemispherical region surrounding this elemental area is shown in Fig. 7.33.

The angle of incidence of the phonon is given in spherical coordinates by y and C,
but only the perpendicular component of the incident phonon transmits the energy.

More detailed theory discussed later includes the coupling of transverse phonons at

the interface, but for simplicity the present treatment will neglect this effect. The

perpendicular component of the velocity can be writtenin terms of the angle y such
that

c? ¼ c cos y (7.88)

The heat flux into the area dA is the then product of the energy density and

perpendicular velocity component such that dq ¼ c⊥ Eph. It follows that the net heat

Fig. 7.33 Hemispherical

region surrounding an

elemental surface area for

phonon heat transfer
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flux per unit area is obtained by integration of dq over the hemisphere in y and C.
This procedure yields

q ¼ 1

4p

ð2p
0

cEph sin y cos ydy ¼ 1

4
cEph (7.89)

In the Debye approximation, the speed of sound in a solid is given as

c ¼ kBYD

�h

6p2N
V

� ��1=3

(7.90)

where for solids c is of the order of 3 km/s while for He II the speed of sound never

exceeds 240 m/s. Substituting (7.90) and (7.87) into (7.89), we obtain an equation

for the total heat flux carried by phonon radiation:

q ¼ sT4 (7.91a)

and

s ¼ p4

10�h

kB
YD

� �2
3N

4pV

� �2=3

(7.91b)

The reader who is familiar with radiation heat transfer should recognize this

form to be analogous to the heat transported by photon radiation. Note that (7.91b)

includes the variable material properties through the molar volume (N/V) and

Debye temperature. The quantity s can vary considerably between materials,

which according to the theory leads to a quite different heat transfer coefficients.

For example, since s is inversely proportional to c2, it follows that the ratio of heat

fluxes by phonon radiation should differ by a factor of 100 between He II and solids

at low temperatures. This is one of the major weaknesses of the phonon radiation

theory in that it only considers the thermal character of the solid.

Now consider the radiation of phonons between two different media, between

which there exists an interface. For the sake of discussion, assume there is no

appreciable temperature gradient occurring in either bulk material and that the flow

of heat from one side to the other produces an interfacial temperature difference

DTs. In order for this interface to be defined as a boundary between two bulk media,

it must be confined to a thickness that is small compared to the characteristic

phonon wavelength, lD ¼ hc/kBYD. For solids lD � 100 mm, which is large

compared to most interfacial dimensions.

The net heat flux through the interface is actually a difference between two

values, the radiant energy incident on the high-temperature side, q(T + DT ),minus

that incident from the low-temperature side, q(T ),

qnet ¼ q T þ DTð Þ � qðTÞ (7.92)
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Assuming that both these quantities can be described in terms of the phonon heat

flux expression (7.91a) and also that the coefficient s is the same in either media, it

follows that the net heat flux is a difference between the phonon radiation

expressions of the two media:

qnet ¼ s T þ DTð Þ4 � sðTÞ4 (7.93a)

which can be expanded to

qnet ¼ 4sT3DT 1þ 3

2

DT
T

þ DT
T

� �2

þ 1

4

DT
T

� �3
" #

(7.93b)

In the limit of small DT, (7.93b) gives an explicit definition for the phonon

radiation limit Kapitza conductance in terms of s:

hpK ¼ 4sT3 (7.94)

where the superscript p refers to the phonon radiation limit. The assumption that s
is independent of media clearly is not accurate, particularly when dealing with

interfaces between solids and He II. However, it is argued that the smaller value of

s (that of the solid) controls the heat transfer because the net heat flux qnet must be

in the direction from high to low temperature. As a reference point, the phonon

radiation limit applied to copper (YD ¼ 343 K, N/V ¼ 0.86 � 1023 cm–3) predicts

a Kapitza conductance of

hpK ¼ 4:4T3 kW/m2 � K (7.95)

or 30 kW/m2 K at 1.9 K. We now compare the Kapitza conductance predicted by

the phonon radiation limit with experiment values.

Listed in Table 7.3 are calculated values from the phonon radiation limit and the

highest values obtained experimentally for typical metals and nonmetals. It is

important to note that the experimental values for the same material vary consider-

ably, in some cases by as much as an order of magnitude. However, since the

phonon radiation limit should represent an overestimate of hK, it is most appropriate

to compare it to the highest measured values. The first result gleaned from this

comparison is that the phonon radiation calculation always gives values for hK that

are higher than experiment, sometimes by as much as an order of magnitude. This

fact is consistent with the understanding that the phonon radiation limit overe-

stimates hK. Second, although it is not apparent from the tabular data, the general

temperature dependence of hK predicted by the phonon radiation limit is borne out.

Recall that experiment yielded a form for hK � T nwith 2 < n < 4. Finally, as with
the phonon radiation limit, there is a measurable dependence of hK on the value of

YD for the particular solid. This fact can be seen most clearly in Fig. 7.31, which is
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a log plot of hK versus Y�1
D . The linear interpolation indicates there is a coloration

of the form

hK / Y�n
D (7.96)

where the phonon radiation limit predicts n ¼ 2 and experiment, as shown in

Fig. 7.34, yields values of n � 1.

There are a number of problems with the phonon radiation limit, particularly

when it applies to solid–He II interfaces. It is clearly a crude approximation to a

complex problem and is limited by the numerous factors incorrectly accounted for

in the theory. These factors include:

1. A failure to distinguish adequately between the different media on either side of

the interface. The Debye temperatures that enter the problems are associated

with the solid media. Any correction to the theory should include the

characteristics of both media.

2. An assumed coupling between both longitudinal and transverse phonon modes.

This is particularly a problem for He II where transverse phonons cannot be

sustained.

3. Reflections at boundaries are not considered, implying a perfect transmission

coefficient. This assumption clearly overestimates the heat transport. A finite

reflection coefficient at the interface would be expected, particularly for

solid–He II interfaces where the phonon spectra are so different.

4. Crystal structure at the interface is ignored. This is potentially an important

factor owing to the solid having long-range order while the liquid is not periodic.

5. Phonons are assumed to be the only heat transport mechanism. However, some

experiments have shown that electrons in metals play a significant role in the

heat transfer at the interface.

Table 7.3 Comparison of highest experimental values for the Kapitza conductance with the

phonon radiation limit (Compiled by Snyder [54])

Solid YD (K) hPK (1.9 K) (kW/m2�K) h K (1.9 K) (kW/m2�K)
Hg 72 440 30

Pb 100 190 32

In 111 171 11

Au 162 155 8.8

Ag 226 55 6

Sn 195 54 12.5

Cu 343 30 7.5

Ni 440 19 4.0

W 405 18 2.5

KCI 230 22 6.9

SiO2 (quartz) 290 19 5.7

Si 636 6.4 4.2

LiF 750 5.1 4.5

A12O3 1,000 1.5 1.6
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6. The existence of interfacial films or impurities is not considered. Layers of

adsorbed impurities can have substantial effect on the heat transfer from practi-

cal surfaces. However, even for clean surfaces the detailed character of the

helium adjacent to the interface must be considered.

The above factors are part of improved theories of Kapitza conductances. The

first such improvement was due to Khalatnikov in 1952 [56]. It basically addresses

the first three objections to the phonon radiation limit as listed above.

7.5.2 Acoustic Mismatch Theory

The first real advance in the theory of Kapitza conductance was made by the

development of the acoustic mismatch theory of Khalatnikov [56]. This theory is

based on an analogy with classical acoustics or boundary scattering in optics.

Fig. 7.34 Kapitza conductance at 1.5 K —largest values observed for each solid (Compiled by

Challis [55])
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In some ways the theory is similar to the phonon radiation limit except that it

includes a very important additional mechanism; that of the finite reflection coeffi-

cient at the boundary between the two media. The basic approach involves the

derivation of the phonon transmission coefficient using conservation of momentum

and energy at the boundary. Because the acoustic mismatch theory explicitly

accounts for the difference between the two media, it is expected to be a better

description for the solid–He II case where the speed of sound differs by an order of

magnitude on either side of the interface.

Consider an interfacial region between two media, for example, a solid and He

II. This example is of current interest so it will be emphasized throughout the

following discussion. The liquid is able to transmit only longitudinal phonons. A

schematic of the interface is shown in Fig. 7.35. By analogy with optics, these

regions can be thought of as a low-refractive-index solid adjacent to a high-

refractive-index liquid. Because of the difference in refractive index, a phonon

that is incident on the boundary from the liquid side would be reflected off the

interface unless its angle of incidence is less than a critical value, ycL. Within this

angle the transmitted phonons are diffracted to an angle ys, on the solid side. The

locus of maximum angles ycL forms a cone of transmission which is determined

solely by the speed of sound ratio in the two media:

ycL ¼ arcsin
cL
cs

� �
(7.97)

For interfaces between metals and He II, the ratio cL/cs is about 0.1, which

corresponds to a critical angle of about 6
. The acoustic mismatch theory assumes

Fig. 7.35 Schematic of

interface between solid and

He II
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that phonons strike the interface between the two media at an angle ys, but only
those that are scattered into an angle less than ycL can be transmitted. All other

phonons are reflected internally.

The above argument can be extended to describe the phonon heat transport

across an interface. The total heat transport is determined by integration over the

cone of transmission, much as was accomplished above for phonon radiation

although now only angles less than ycL are allowed:

q ¼ 1

4p

ð2p
0

dC
ðycL
0

cLEph sin y cos ydy ¼ 1

4
csEph

cL
cs

� �3
(7.98)

Note that (7.98) is similar in form to the phonon radiation limit result except that it is

modified by the ratio (cL/cs)
3, which for solid–He II interfaces is of the order of 10–3.

The above expression theoretically predicts the heat transport carried by

phonons that are refracted into the angle ycL. However, not all phonons that fall

within this cone are actually transmitted, because there is a finite transmission

coefficient for phonons incident on the boundary. This transmission coefficient t is
given in terms of the acoustic impedance Z of each medium:

t ¼ 4ZLZs

ZL þ Zsð Þ2 (7.99)

where ZL ¼ rLcL and Zs ¼ rscs. For the case concerning the solid–He II interface it
is apparent that Zs � ZL and (7.99) can be simplified such that

t ¼ 4
ZL
Zs

¼ 4
rLcL
rscs

(7.100)

As an example, consider the interface between He II and copper. In this case

Zs � 103 ZL, which corresponds to a transmission coefficient of approximately 0.5%.

Combining the equations for the heat flux (7.98) and the transmission coefficient

(7.100), we find that an expression for the transmitted heat flux is

q
t
¼ q� t ¼ rLc

4
L

rsc4s

� �
csEph (7.101)

which is similar to the phonon radiation limit except for the extra term in the

parentheses.

An additional aspect to the acoustic mismatch theory concerns the fact that the

fluid can sustain only longitudinal phonons. Instead of the expression for the energy

density used in the phonon radiation limit, in the acoustic mismatch theory the

expression must include only longitudinal phonons. Thus, the corresponding form

for the energy density is
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EL
ph ¼

4p5k4BT
4

15�h3c3L
(7.102)

Combining the energy density equation for longitudinal phonons (7.102) with

the transmitted heat flux, we obtain qt given by (7.101), a temperature-dependent

expression for the transmitted heat flux:

qt ¼ 4p5k4BrLcL
15�h3rsc3s

T4 (7.103)

As with the phonon radiation limit it is possible to replace the prefactor in

(7.103) by s.
The net heat flux across the interface is obtained by subtracting the incident flux

on either boundary. By suitably redefining s it is possible to use (7.93) and (7.94) to

predict the Kapitza conductance in the acoustic mismatch theory. For a small

interfacial temperature difference, the result is

hAK ¼ 16p5k4BrLcL
15�h3rsc3s

T3 (7.104)

where the superscript A refers to the acoustic mismatch theory. Note that the

expression for the Kapitza conductance derived from the acoustic mismatch theory

is determined by the properties of both media, a dependence left out of the phonon

radiation limit. A more rigorous calculation in the acoustic mismatch theory

replaces the sound speed in the solid, cs, by its transverse component, ct.
It is more convenient to have an expression for the Kapitza conductance in terms

of the Debye temperature and other properties of the media. By replacing the

transverse speed of sound ct by its expression in terms of the Debye temperature

YD, a simplified expression is obtained:

hAK ¼ 6p4

5

� �
RFrLcLT

3

MY3
D

(7.105)

where R ¼ 8.31 J/mol K is the universal gas constant and M is the molecular

weight. The multiplicative factor F, which is a function of the ratio ct/c, is included,
but for most solids, F is of the order of unity and so is not a particularly important

factor in (7.105). For helium properties at saturation pressure and assuming

F ¼ 1.6, we can simplify to a useful form,

hAK ¼ 5:5� 107
T3

MY3
D

� �
kW=m2 � K� �

(7.106)
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where M is in units of g/mol. As is the case with the phonon radiation limit, the

acoustic mismatch theory predicts a variation of hAK with the Debye temperature as

hAK �Y�3
D .This dependence is similar to that of the phonon radiation limit, hPK � Y�2

D .
However, both theoretical approaches overestimate the experimentally determined

Debye temperature variation, hK � Y�n
D where n � 1.

7.5.3 Small Heat Flux Kapitza Conductance (DT 	 T)

Now consider the relationship between the above theoretical treatments and actual

experimental data. Plotted in Fig. 7.35 are model calculations and experimental data

for the Kapitza conductance of a He II-copper interface at temperatures above 1.3 K.

As can be seen in the figure, the phonon radiation limit forms an upper bound to

experimental data consistent with the model excluding boundary scattering effects.

Similarly, the Khalatnikov acoustic mismatch theory predicts a Kapitza conduc-

tance about 200 times smaller than the phonon radiation limit. Insertion of numerical

values for copper into (7.106) results in the expression for the Kapitza conductance,

hAK ¼ 0:021T3 kW/m2 � K (7.107)

The experimental data displayed in Fig. 7.35 show basically the same tempera-

ture dependence with some variations. The best fit to these data indicate hK
proportional to Tn with n ranging between 2 and 4. Perhaps more surprisingly

from the experimental viewpoint is that the magnitude of hK at a given temperature

varies by at least an order of magnitude among samples. Part of this variation can be

attributed to surface morphology. The upper shaded region in the figure is for

copper surfaces that are cleaned carefully either chemically or mechanically and

perhaps recrystallized at room temperature to reduce surface strain. On the other

hand, lower values are generally obtained for dirty surfaces, indicated by the lower

shaded region, for which less effort was made to maintain surface cleanliness.

Based on the available experimental data, approximate forms for the Kapitza

conductance in this temperature range are suggested:

hK ’ 0:9T3 kW/m2 � K for clean surface (7.108)

’ 0:4T3 kW/m2 � K for dirty surface (7.109)

with potentially as much as a factor of two variation in value.

It can be seen from Fig. 7.36 that although the theoretical treatments bracket the

experimental data, neither does a particularly good job of predicting the results.

Nevertheless, the physical interpretation contained in the acoustic mismatch theory

generally is believed to be correct. In fact, the theory does a much better job of

interpreting the magnitude of hK in the very-low-temperature regime, T < 0.3 K [57].
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Therefore, the problem with the theory appears to be that it does not include additional

thermal coupling mechanisms which can make a large contribution, particularly at

relatively high temperatures, T > 1 K.

A number of improvements to the acoustic mismatch theory have attempted to

bring the calculations in closer agreement with experiment. One such improvement

adds to the model a high-density helium layer at the interface between the solid and

bulk liquid [57–60]. The existence of this layer has been demonstrated in helium

adsorption studies, see Sect. 10.2. It occurs because the helium molecules are bound

tightly to the surface by van der Waal interactions. Since the interfacial region

consists of several components––the solid, perhaps two high-density atomic layers

of solid helium, and then the liquid – it is possible to have boundary scattering occur

at each of these interfaces. Finite phonon transmission and reflection coefficients

can be assumed to occur at each boundary. Defining the phonon absorption coeffi-

cient v as the fraction of incident phonons that are absorbed, we can make this an

adjustable parameter and fit the data to the best choice of 0 < v < l. This approach

allows for a good fit to experimental data above 0.5 K [54].

Fig. 7.36 Experimental values for the Kapitza conductance of copper between 1.3 K and Tl
(Compiled by Snyder [54])
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There are several additional features to the Kapitza conductance which are worth

noting, partly because they prove the existence of additional physical processes but

also because they relate to problems of applied interest. The first feature to consider

is the dependence of the Kapitza conductance on externally applied pressure.

Plotted in Fig. 7.37 are the ratio of the measured Kapitza resistance (1/hK) at

2 MPa to that at saturated vapor pressure [58, 62]. Also displayed in the figure

are two theoretical treatments, the Khalatnikov theory and the same theory

modified to include the dense helium layer without finite reflection coefficients.

Note first that the experimentally determined ratio is not much different from unity,

particularly in the range of technical interest, above 1 K. The unmodified

Khalatnikov theory on the contrary predicts a sizable effect for all temperatures,

mostly due to the variation of the fluid properties with pressure. For the modified

theory a smaller ratio is predicted, particularly at high temperatures, although it is

still above the experimental results. Because the pressure dependence of the

Kapitza conductance is not a large effect, it is generally not considered in practical

calculations.

A second factor that leads to variations in hK is the application of a magnetic

field. This is an important physical observation for it indicates that there must be

other heat transport mechanisms contributing at the interface. In particular, since

electrons in the solid are affected by a magnetic field, there must be a coupling

between electrons in the metal and phonons in the helium adding to the heat

transport. Two types of experiment have been performed to investigate this effect.

The first has shown a larger Kapitza conductance for a Type I superconductor for

fields above BC. For lead the ratio hK (normal)/hK (superconductor) has been shown

to vary between 1.3 and 3 for different samples. This observation is probably the

most direct evidence of some type of electron-phonon coupling at the interface. For

normal metals such as copper, there have been fewer investigations of the effect of

magnetic field on Kapitza conductance. Some reports have indicated hK for normal

metals increases by about 10% in a 1 T magnetic field. However, there is insuffi-

cient data available to predict this effect to higher magnetic fields.

Fig. 7.37 The ratio of the

Kapitza resistance under

saturated vapor pressure and

under a pressure of 2 MPa

(R0/R20): �, experimental

points; - - -, Khalatnikov

theory; –––, dense-layer

theory (From Wilks [61])
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Beyond the above two experimental features, there is evidence that the Kapitza

conductance is affected strongly by the application of interfacial coatings to the

solid, either in the form of applied materials or adsorbed gases. Generally, coatings

decrease the apparent Kapitza conductance because they tend to the insulating

materials with low thermal conductivities. The effect of a few monolayers of

adsorbed gas has not been investigated thoroughly, although it has little importance

for practical applications where the surfaces are not kept very clean.

7.5.4 Large Heat Flux Kapitza Conductance (DT � T)

Up until this point, the theory and experiments associated with the Kapitza conduc-

tance for small DT have been emphasized. However, in applications of He II large

heat fluxes can occur, which in turn result in large temperature differences across

the interface such that DT � T. Because of this occurrence, it is desirable to

develop a method of handling the heat transfer process for finite DT. Returning to

the simplest theories, either phonon radiation limit or acoustic mismatch for finite

DT, the heat flux through the interface may be written as a sum of terms involving

the ratio (DT/T ), (7.93). It follows that the Kapitza conductance for finite DT is

larger than hK, by the magnitude of this expansion,

hKðDTÞ ¼ hK0
1þ 3

2

DT
T

þ DT
T

� �2

þ 1

4

DT
T

� �3
" #

(7.110)

where for DT/T � 0.5, the bracketed quantity is approximately equal to 2. Note that

the expansion given by (7.110) makes the initial assumption of an explicit T3

dependence of hK0 consistent with theory. However, experimental measurements

vary considerably from this exact form, obeying power laws varying between T2

and T4. Some additional characteristic to the Kapitza conductance may also be

expected to occur when the surface temperature exceeds Tl.
There have been several attempts [62–67] to correlate the Kapitza conductance

for finite DT with the form of (7.110). These have not been entirely successful

largely because of the deviation between the theory and experimental temperature

dependence of this effect. An alternative correlation suggested [65] for practical

applications is:

qs ¼ a Tn
s � Tn

b

� �
(7.111)

where a and n are adjustable parameters. Note that if one equation is able to fit the

experimental data for one sample over the whole temperature difference range, then

it should be possible to expand (7.111) consistent with the low heat flux temperature

dependence. Similar to the behavior of the experimental data for small DT, the high
DT Kapitza conductance also varies considerably with sample. Plotted in Fig. 7.38
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are measurements of Ts as it depends on qs for different materials. A range of results

for copper are shownwhich indicate the variation with surface preparation. Listed in

Table 7.4 is a summary of published data for Kapitza conductance of pure metals at

high DT. Displayed are the surface preparation, surface temperature at a heat flux

q ¼ 10 kW/m2, and the best-fit functional form to these data. Note that most of the

fits give values of n ¼ 3 � 0.5, which is systematically lower than the theoretical

value of n ¼ 4. Also, the best fit to the coefficient in (7.111) is for a ’ 0.05

W/cm2�Kn+1 but with substantial variation. Finally, it is interesting to note that the

variation in Kapitza conductances at large DT is not nearly as great as is obtained in

the limit DT ! 0, where an order-of-magnitude deviation in hk is seen.

Fig. 7.38 Surface temperature versus heat flux for large DT Kapitza conductance

Table 7.4 High heat flux Kapitza conductance fitting parameters for metals at 1.8 K

Metal Surface condition Ts at 10 kW/m2 a (kW/m2�Kn) n References

Cu As received 3.1 0.486 2.8

Brushed and baked 2.85 to

Annealed 2.95 0.2 3.8 [65]

Polished 2.67 0.455 3.45 [67]

Oxidized in air for 1 month 2.68 0.46 3.46 [67]

Oxidized in air at 200
C for 40 min 2.46 0.52 3.7 [67]

50-50 PbSn solder coated 2.43 0.76 3.4 [67]

Varnish coated 4.0 0.735 2.05 [67]

Pt Machined 3.9 0.19 3.0 [62]

Ag Polished 2.8 0.6 3.0 [62]

Al Polished 2.66 0.49 3.4 [63]

7.5 Kapitza Conductance 293



Example 7.3

Calculate the temperature of an “as received” copper surface when subjected to

a heat flux of 5 kW/m2 at 2.1 K using both the small DT approximation and the

empirical correlation for large DT.

For small DT, the Kapitza conductance of as received (dirty) copper is given by

the expression (7.109),

kK ¼ 0:4T3 kW/m2 K ¼ 3:7 kW/m2 K

Ts ¼ Tb þ q=hK ¼ 2:1þ 1:35 ¼ 3:45 K

For large DT, the empirical correlation is given by,

qs ¼ a Tn
s � Tn

b

� �
where for “as received” samples a ¼ 0.486 kW/m2 Kn and

n ¼ 2.8.

Solving for Ts,

Ts ¼ q

a
þ Tn

b

	 
1
n ¼ 2:82K

Note that this is about a factor of two difference in DT, being 1.35 K in the

small DT approximation and 0.72 K in the large flux correlation.

In classical fluid heat transfer, the heat transfer coefficient usually increases with

fluid velocity or Reynolds number, see Chap. 5. This is because the net flow

velocity thins the boundary layer at the heater surface and induces convection. It

is therefore reasonable to ask whether non-boiling heat transfer in He II can

similarly be enhanced by flow. There have been several experimental investigations

on this topic [68, 69].

At first glance, one would not expect enhancement to heat transfer in the Kapitza

regime as long as the fluid remains below Tl. This is because the heat exchange is

controlled by phonon transport and that there is no significant thermal boundary

layer contribution the heat transfer coefficient. Experiments have generally

supported this position, however, the situation is not so simple when the helium

locally transitions to He I by exceeding Tl. In that case, since the fluid near the

heater is either He I or vapor, the helium flow can significantly improve the process.

Furthermore for local heat transfer within a tube, the action of the fluid flow will

also tend to sweep the hot helium away from the heated region which will allow a

more rapid recovery to the non-boiling state once the heat flux is reduced. This

effect is in addition to the overall enhancement to the He II heat transport that can

occur for relatively high fluid velocities, see Sect. 7.3.

294 7 He II Heat and Mass Transfer

http://dx.doi.org/10.1007/978-1-4419-9979-5_5


7.6 Film Boiling Heat Transfer

Until now the existence of boiling phenomena in He II has been mentioned only as

the condition reached when the critical heat flux q* is exceeded. However, there are
a number of complicated heat transfer processes that can occur above q* that

deserve more discussion. This regime of heat transfer is of significant technical

importance for its occurrence can lead to catastrophic events in cryogenic systems

where good heat transfer must be maintained continuously. Unfortunately, boiling

heat transfer in He II is one of the least understood process in He II heat transfer.

In He II above the peak heat flux, the fluid in the region of heat transfer can contain

several phases in coexistence. Consequently, the physical interpretation of the heat

transfer processes is more difficult than in single-phase He II. For heat fluxes above

q* there occurs a discontinuous jump in the surface temperature. This transition

marks the formation of a film of helium vapor, liquid He I, or both blanketing the heat

transfer surface. These general characteristics of the transition to film boiling are best

couched in the context of the surface heat transfer curve such as Fig. 7.1. In the film

boiling state, the heat transfer is much less effective because of the low thermal

conductivity vapor film insulating the surface from the bulk He II. Typical values for

the film boiling heat transfer coefficient hfb ¼ q/DTs are 10–100 times smaller than

the Kapitza conductance coefficient. However, these values are strongly dependent of

a number of physical parameters including heater configuration, bath temperature,

pressure, and saturated versus subcooled liquid state. An additional feature in the

heat transfer curve, also commonly observed in He I, is the occurrence of a recovery

heat flux qR that is less than q*. The existence of qR < q* causes hysteresis in the heat
transfer curve, see Fig. 7.1. However, unlike pool boiling He I, this hysteresis is not

observed universally in all He II heat transfer experiments.

There are three possible film boiling conditions that can exist in He II above q*.
To establish which condition is expected for a given set of externally imposed

factors, it is necessary to consider the helium state in the vicinity of the heat transfer

surface. The first condition corresponds to the local pressure at the heated surface

being less than the saturation pressure at the l-point, that is pl ¼ 5.04 kPa. This is

referred to as the saturation boiling condition. It is achieved by having a local

temperature excursion above Tsat, the saturation temperature at the local pressure.

The resulting boiling state is a coexistence of two phases; saturated vapor and He II.

The second condition occurs when the local pressure at the heat transfer surface

is large enough to exceed pl at the heat transfer surface. A consequence of

exceeding q* is the production of a film of low-thermal-conductivity He I which

covers the surface. If the heat flux q is not greater than the corresponding critical

heat flux in He I for that configuration, the heat transfer process will be stable,

allowing nucleate boiling to occur in the He I film and heat conduction in He II.

Note that the boundary between the He II and He I is not clearly defined in this case

because the phase transition from He I to He II is second order, allowing only a

continuous density profile. It is important to be aware that, because q* in He II is

under most circumstances much higher than that in He I, the limiting of this process

to two phases usually only occurs for temperatures near Tl.
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The third boiling condition occurs at the solid-helium interface when q* is

exceeded in subcooled He II for temperatures well below Tl, that is Tb < 2.1 K.

In this regime, the critical heat flux is greater than that in He I and the He I film

becomes unstable and enters film boiling. The result is a triple-phase process

consisting of vapor film blanketing the surface, a very thin He I film, and bulk He

II. As with the second condition, the He I-He II boundary is not sharply defined. It is

apparent that this third film boiling condition, although occurring commonly in

engineering systems employing subcooled He II, is the most complex to understand

because of the existence of multiphase processes.

There exists one additional type of boiling in He II which does not fall in any of

the three above categories. This type of boiling occurs in the bulk fluid rather than at

the interface. It can be achieved only in special configurations where the surface

heat flux does not exceed q* but the channel heat flux surpasses the local boiling

condition. For example, this condition was discussed in the context of the design of

static He II heat exchangers, Sect. 7.1.4. As a result, He I and vapor are nucleated in

the bulk and the heat transport properties of the fluid are modified. This process is

analogous to bulk boiling in ordinary fluids.

The fundamental description of the film boiling heat transfer clearly requires a

more complex theoretical description than considered so far. Furthermore, it appears

that there is no broadly applicable theory capable of handling the multiphase boiling

processes. As a result, most research on this problem is of the category of engineering

correlations combined with empirical evidence. Since the understanding of the

process relies heavily on suitable experimental data, a review of measurements of

film boiling heat transfer coefficients is presented first. Subsequently, a comparison is

made between the available theories and experimental results. Finally, a description

is included of some of the less understood heat transfer phenomena such as recovery

from the film boiling state and time-dependent effects.

7.6.1 Film Boiling Heat Transfer Experiments

The film boiling heat transfer process depends strongly on several factors. The first

of these has to do with the configuration of the heater. Experiments to date have

mainly focused on two heater configurations, flat surfaces and round wires. In the

case of the flat surfaces, some are placed at the end of a He II duct while others are

in an open bath. Round wire heat transfer experiments are almost all done within an

open bath. Recall that the onset of film boiling is determined by the integrated

thermal gradient in the He II, thus in a one-dimensional linear geometry the duct

length and cross section are important factors affecting q*. On the other hand, in a

cylindrical geometry, as discussed in Sect. 7.1.4, the thermal boundary layer is

restricted to occur within a few radii of the heater. Thus, the heat transfer from

cylinders can be studied in a large bath without loss of generality.

The experimental measurements of the film boiling heat transfer coefficient for

various heater configurations have been extensive; however, they have also been

rather restrictive in regime of investigation. The most obvious restriction is
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associated with the total allowable heat transfer, which is a system limitation.

Therefore, film boiling heat transfer surfaces are usually much less than 1 cm2 in

area, which places rather strict constraints on the sample. Historically, most

experiments have been carried out in near saturated He II, leading to a boiling

state consisting of vapor-He II coexistence. More recently, more measurements

have been performed in subcooled He II primarily due to the interest in its

application in large superconducting magnet systems. Thus, the second important

factor impacting the film boiling heat transfer process is the state of the He II bath;

mainly its temperature and pressure.

In near saturation He II, there exist two different regimes of film boiling heat

transfer. These are referred to as “noisy” and “silent” boiling. Noisy boiling is

apparent by the existence of audible sound emanating from the heat transfer region.

Silent boiling, on the other hand, is film boiling without this audible sound.

Frequencies observed in noisy boiling can vary anywhere from a few Hz to tens

of kHz. The frequency is generally a function of heat flux although in no well-

established pattern. The regions of noisy and silent boiling are seen to depend on

bath temperature and depth of immersion.

Plotted in Fig. 7.39 is a map of these two regimes based on one set of data on

wire heaters [70]. This map should not be construed as universally applicable.

It appears from these results that noisy boiling occurs for larger immersion depths

and lower temperatures. The occurrence of noisy or silent boiling also has a

significant effect on the heat transfer coefficient hfb. In regimes of overlap where

either noisy or silent boiling is seen to occur, it is usually the case that a slightly

higher heat transfer coefficient is measured during silent boiling. This effect, which

appears systematic in published experiments, is nonetheless only of the order of

10–20% in the majority of reported results [71–75].

Fig. 7.39 Regimesof noisy and silent boiling fromwire heaters in saturatedHe II (FromLeonard [70])
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Recent experiments performed in saturated and subcooled He II have revealed

the existence of four film boiling regimes in He II [76]. These are the two saturated

boiling states, noisy and silent boiling and two new subcooled boiling states:

strongly and weakly subcooled boiling. A map showing the regime of existence

for these four states for a flate heater is given in Fig. 7.40. Note that the strongly and

weakly subcooled boiling states only exist at pressures above pl.
The existence of the four film boiling states have been confirmed by a variety of

measurement techniques including pressure and temperature fluctuations as well as

visualization. In particular, Takada et al. [77] performed a series of visualization

studies on film boiling on a 50 mm diameter round wire. This work revealed clear

differences in the hydrodynamics of boiling as can be seen in Fig. 7.41. Of note is

the periodic nature of the film boundary for silent and subcooled boiling states

while the noisy boiling is more stochastic. These results can also be used to obtain

an average vapor film thickness that can be correlated with the heat transfer

coefficient.

Fig. 7.40 Regimes of noisy and silent boiling from wire heaters in saturated He II. q ¼ 10 W/cm2

(From Nozawa et al. [76])
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We now consider the film boiling heat transfer coefficient. Table 7.5 lists some

typical values for hfb under different conditions and for different configurations.

There is a notable wide range of values of hfb depending on surface temperature,

fluid pressure and heater configuration. However, a few trends are immediately

evident from the data in Table 7.5. First, hfb is generally largest for small diameter

wires such that there occurs approximately a factor of two increase in value with an

order-of-magnitude decrease in heater diameter, dH. As is discussed below, this

behavior can be interpreted in terms of a fairly simple vapor film conduction model.

In addition to the diameter dependence, hfb for cylindrical heaters as well as for flat
plates is also a function of depth of immersion in the saturated helium or externally

applied pressure. Any theoretical effort to model the film boiling heat transfer

coefficient therefore must consider these issues.

As mentioned above, the film boiling heat transfer coefficient is seen to depend

on diameter in a significant way. Plotted in Fig. 7.42 is typical behavior of hfb for
fixed bath temperature and a specific hydrostatic head [72]. The general tendency is

for hfb to increase with decreasing diameter. Also, plotted in Fig. 7.43 are typical

heat transfer coefficients for heated wires as a function of hydrostatic head h and

Fig. 7.41 Visualization of four boiling states in He II heat transfer from a round wire: (a) silent

boiling at 2 K under saturated vapor pressure, q ¼ 19.3 kW/m2; (b) noisy boiling at 2.1 K and

5.3 kPa, q ¼ 373 kW/m2; (c) weakly subcooled boiling at 2.1 K and 16 kPa, q ¼ 601 kW/m2;

(d) strongly subcooled boiling at 2.1 K and 100 kPa, q ¼ 396 kW/m2 (From Takada et al. [77])
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surface temperature, Ts. In general, the heat transfer coefficient increases with

helium head and decreases with surface temperature. At small depths, the relation-

ship is roughly linear with h [72].

The situation that occurs in subcooled He II, where the boiling is associated with

multiphase phenomena, is generally more complex. In addition, there have been

fewer experiments performed under these conditions so data are less prevalent.

Table 7.5 Typical film boiling heat transfer coefficients

Sample Tb (K) Ts (K) Dp (kPa)a h (kW/m2�K) References

Wire (d ¼ 25 mm) 1.8 150 0.56 2.2 [79]

Wire (d ¼ 50 mm) 2.1 80 100 3.6 [77]

2.1 50 10 6.2 “

Wire (d ¼ 76 mm) 1.8 150 0.42 1.1 [79]

Wire (d ¼ 200 mm) 2.05 150 0.14 0.66 [74]

Cylinder (d ¼ 1.45 mm) 1.78 80 0.06 0.22 [75]

Cylinder (d ¼ 14.6 mm) 1.88 40 0.10 0.2 [73]

2.14 40 0.10 0.2 “

Flat plate

Flat rectangular plate 1.8 75 0.14 0.22 [72]

(39 mm � 11 mm) 1.8 75 0.28 0.3 “

1.8 75 0.84 0.55 “

Flat surface (d ¼ 13.7 mm) 2.01 40 0.13 0.69 [4]

2.01 25 0.237 0.98 “
a1 kPa ¼ 7.5 torr ¼ 703 mm He II

Fig. 7.42 Film boiling heat transfer coefficients as a function of heater diameter for constant

hydrostatic head (h ¼ 10 cm)
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However, in general it is observed that the film boiling heat transfer coefficient is

higher in the subcooled condition compared to that at saturation. Furthermore,

higher pressures on subcooled He II tend to increase hfb. This latter effect may be

caused by the increased thermal conductivity of the helium vapor film for higher

pressures. Few investigations of the dependence of hfb on heater diameter have been

reported for subcooled He II.

7.6.2 Theoretical Models for Film Boiling Heat Transfer

A simple model can be constructed to show the origin of the diameter dependence

to the film boiling heat transfer. The model is based on an assumption that heat is

transported through the vapor film by thermal conduction only. The conceptual

picture therefore would represent a stable vapor film of constant thickness d
surrounding the heat transfer surface. Consider a cylindrical heater of radius r as
shown in Fig. 7.43. An estimate of the vapor film thickness d can be obtained from

the relationship

d ¼ k

hfb
(7.112)

where the mean thermal conductivity �k is taken over the temperature range between

the bath Tb and surface Ts. As an example, in Table 7.5 the heat transfer coefficient

for a 76 mm diameter wire is about 1.1 kW/m2 K, obtained for a surface tempera-

ture of 150 K. The average thermal conductivity of helium gas in this temperature

Fig. 7.43 Film boiling heat transfer coefficients versus immersion depth (From Betts and Leonard

[72])
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range is �k � 0:06 W/m K, which corresponds to d ~ 50 mm. This thickness is fairly

large compared to typical heater wire diameter. Also, note that the mean free path in

the vapor is of the order of 1 mm, which is much shorter than the film thickness so

this thermal conduction model could provide a reasonable approximation.

The simple heat conduction model can be used to interpret the diameter depen-

dence of hfb shown in Fig. 7.42. Making one further assumption that the vapor film

thickness does not vary appreciably with heater radius, a relationship can be derived

for the ratio of heat transfer coefficients by simply integrating the conduction heat

transfer through the film (Fig. 7.44):

hðrÞ
h0

����
fb

¼ d=r
ln 1þ d=rð Þ (7.113)

where h0 refers to the film boiling heat transfer coefficients obtained for flat plates.

Thus, as the radius of the heater decreases the film boiling heat transfer coefficient

is expected to increase purely as a result of radial heat conduction. Generally, such a

result is borne out by experiment, see Fig. 7.42.

An alternative model suggested by Takada et al. [77] is based on the steady state

heat transport equation in cylindrical coordinates (7.13). The basis of the model is

to assume that the heat flux through the surface of the vapor film is equal to the heat

conducted through the bulk He II. The stable thickness of the vapor film is then set

by the condition that the heat flux in the He II is q*. Therefore, as the heat generated
in the wire increases, the outer radius of the vapor film must increase to limit the

heat flux. The thicker film would have a lower average thermal conduction, which

would translate to a lower overall heat transfer coefficient. Such a trend can be seen

in Fig. 7.43 as the average heat transfer coefficient decreases with increasing heater

temperature.

A more detailed theoretical attempt to correlate film boiling heat transfer is due

to Rivers and McFadden [78]. This work treats film boiling heat transfer in

saturated He II in terms of a boundary layer model. The equations that describe

Fig. 7.44 Schematic of

cylindrical beater surrounded

by a vapor film
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the problem are conservation of mass, momentum, and energy for two-dimensional,

steady-state heat transfer. In rectangular coordinates these equations may be written

@u

@x
þ @v

@y
¼ 0 (7.114)

u
@u

@x
þ v

@v

@y
¼ 1

rf
Fb þ

mf
rf

@2u

@x2
(7.115)

and

u
@T

@x
þ v

@T

@y
¼ kf

rf Cpf

@2T

@x2
(7.116)

where the body force Fb represents the buoyancy of the vapor film. The solution of

this set of equations has been accomplished by assuming fourth-order polynomials

for the temperature and velocity profiled and matching boundary conditions at the

wall and the vapor–He II interface. The result is a dimensionless form to the Nusselt

number,

Nu Gr�1=4 ¼ f Qb;Gr,Hi;Prð Þ (7.117)

where the Prandtl number for the film is

Pr ¼ mfCpf

kf
(7.118)

and the Grashof number,

Gr ¼
g D3rf rb � rf

	 

m2f

(7.119)

describes the heat transfer process. To determine the exact form of (7.117) for a

given problem it is necessary to apply numerical integration. The end product of

this analysis is a solution for the Nusselt number and steady-state film thickness as a

function of the interfacial heat flux. Two regimes become evident in this result. The

transition between these two regimes occurs at a value of Qb Gr
–1/4 � 1, where Qb

is the dimensionless interfacial heat flux,

Qb ¼ Dqb
kfDTf

(7.120)
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For values of Qb Gr
–1/4 < 1, the heat transfer is dominated by convection. In

this regime, the heat transfer coefficient is a function of the integral enthalpy which

can be normalized to the form

Hi ¼ Dhi
CpfDTf

(7.121)

For values of Qb Gr
–1/4 > 1, the heat transfer is via conduction mechanisms.

Comparison between experiment and the theory described above is only partially

successful.

An alternative approach to the theory of film boiling heat transfer has been

suggested by Labuntzov and Ametistov [79]. This theory is based on the idea that

film boiling is a nonequilibrium process involving heat and mass transfer at the

vapor–He II interface. Thus, it is essential to account for the processes of vaporiza-

tion and condensation. These processes have been investigated theoretically in

detail; the following relationships for the dimensionless fluxes of mass, momentum,

and heat have been obtained:

D~p� 2
ffiffiffi
p

p 1� 0:4b
b

~j ¼ 0:44~q (7.122a)

where

D~p ¼ p00 � ps
ps

(7.122b)

�q ¼ q

ps 2R0Tið Þ1=2
(7.122c)

~j ¼ j

rs 2R0Tið Þ1=2
(7.122d)

In theaboveequationsR’ is thegasconstant forhelium(R’ ¼ R/M ¼ 2,079 J/kg •K),

Ti is the temperature of the liquid helium at the interface, b is the condensation

coefficient,rs andps are the equilibriumdensity and pressure corresponding toTi, and
p" is the vapor pressure corresponding to the helium vapor film at the interface. The

derivation of (7.122a) is beyond the scope of the present treatment although it is

obtained analytically from the Boltzmann kinetic equation [80]. Equation (7.122a)

can be applied to the solution of interface mass and heat transfer for ordinary liquids

as well as He II. However, for ordinary liquids heat transfer is controlled by convec-

tive processes in the bulk. For He II these convective processes are enhanced by two-

fluid internal convectionwhich dominates the heat transfer inmost cases. The formof

(7.122a) is approximate since it is assumed thatD ~P	 1, ~j	 1. If this is not the case,
it is necessary to use the full nonlinear solutions.
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Now consider the existence of a film boiling state as shown schematically in

Fig. 7.45. In the steady state the vapor film is of constant thickness d, and

consequently j ¼ 0. There is no net mass flow across the He II–vapor interface.

Under these conditions, (7.122a) can be simplified to

D~p ¼ 0:44~q (7.123)

or for a given hydrostatic head

q ¼ 2:27rgh 2RTið Þ1=2 (7.124)

The physical meaning of (7.124) is that it represents the heat flux necessary to

establish a stable vapor film in He II. Note that this is a considerably different

interpretation for the critical heat flux than that based on the peak temperature

difference within the bulk fluid. Thus, there is some contradiction between the

results of Sect. 7.1 and (7.124). There are several possible resolutions for this

contradiction.

The first explanation is to imagine conceptually that the film boiling state can be

obtained spontaneously anytime the condition described by (7.124) is satisfied.

However, this argument is contradictory to experiment, particularly for critical heat

fluxes in one-dimensional channels. On the other hand, there is some disagreement

between experiment and the He II peak heat flux predicted by turbulent heat

transport in cylindrical geometries. It is possible that the condition described by

(7.124) is a clue to this discrepancy; however, this point has yet to be analyzed.

As an alternate explanation [80], it is to suggest that the film boiling state once

established obeys the kinetic relationship derived above. This idea is not contradic-

tory to the peak heat flux being the point where the helium temperature near the

Fig. 7.45 Heat mass transfer

process in film boiling He II
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interface reaches Tsat or Tl. However, once this film is established it will remain

stable against collapse until the heat flux falls below the value given by (7.124),

provided it is less than the applied heat flux. Thought of in this manner, the

molecular kinetic theory provides a mechanism of interpreting the minimum film

boiling heat flux in He II, that is qR.
The connection between these two alternate concepts for recovery from film

boiling has been investigated analytically for heated cylinders in saturated He II.

The comparison of this model with experiment has been carried out for the few

configurations where minimum film boiling heat flux data are available [81]. The

best agreement occurs with data acquired on small-diameter wires. Plotted in

Fig. 7.46 are the experimentally measured peak and minimum film boiling heat

fluxes versus temperature for a cylindrical wire of diameter 76.2 mm [82]. The

theoretical plot for qR is also shown to provide quite close agreement with experi-

ment. Unfortunately, the correspondence between theory and experiment for other

Fig. 7.46 Comparison of calculations using the kinetic theory with experimental results (From

Kryukov and Van Sciver [81])
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configurations of larger dimension is not nearly as close. Consequently, there is still

considerable disagreement as to the correct mechanism needed to describe the film

boiling state in He II.

An alternate approach for the recovery from the film boiling state has been

suggested by experiments that have shown a correlation between the minimum film

boiling heat flux and the film boiling heat transfer coefficient. For a specific configu-

ration consisting of a flat plate at the end of a duct, the value of qR was shown to

increase monotonically with hfb. This condition was observed to prevail in both

saturated and subcooled He II. Furthermore, the ratio qR/hfb was found to take on an

essentially constant value of about 23 K, suggesting the existence of a critical

temperature difference for recovery from film boiling. This critical temperature

difference should be related in some fundamental way to the collapse of the vapor film.

7.6.3 Transient Film Boiling Heat Transfer

Typically, the heat transfer process to He II is transient in nature with associated

time dependent phenomena. This occurs when film boiling is caused by a rapid

transient disturbance such as might happen when a superconducting magnet

quenches or a He II cryostat has a loss of vacuum accident. Understanding the

heat transfer in this regime is helpful with the design and safe operation of large

scale He II systems.

We consider the case where film boiling has been established by exceeding the

critical heat flux followed by a reduction of the heat flux to some lower value. If the

heat flux is reduced below the minimum film boiling flux qR, recovery to the

nonboiling state should begin. This dynamic process is governed by transient heat

transfer within the system.

We first consider the time dependent recovery from the film boiling state. It is

assumed that at time t ¼ 0 the film boiling state is initiated and that a steady heat

rate Q is applied for a time Dtf. Since Q is greater than the peak heat flux, the

temperature of the surface will increase dependent on the mass and heat capacity of

the heated section. For long times, this process would lead to a steady temperature

based on the balance between the heat rate and film boiling heat transfer. After Dtf,
the heat generation ceases (Q ¼ 0) and the recovery process begins. Empirically,

the recovery process is found to take a length of time DtR which is a function of Dtf
before the vapor film collapses [83]. It is assumed further that the controlling

mechanism for recovery is the enthalpy stored within the heated sample and the

film boiling heat transfer coefficient is a constant, h. The fluid simply acts as a

constant temperature bath. Using the Debye approximation to the specific heat, we

can show that the above assumptions lead to a correlation between Dtf and DtR
which can be written explicitly as
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QDtf ¼ 0:176YD
M

mR

� �1=3

hADtRð Þ4=3 1þ 4

5
aþ 4

6
a2 þ :::

� �
(7.125)

where a ¼ hTm/Q � 1 with Tm being the maximum temperature of the heat transfer

surface. The total mass of the heat transfer sample is m and its cooled surface has

area A. The properties of the heat transfer sample enter through its molecular weight

M and Debye temperature YD.

The correlation suggested by (7.125) has shown reasonable agreement with

experiment. By allowing the heat transfer coefficient h to be a constant adjustable

parameter, one can fit experimental data for the relationship between Dtf and DtR.
This fit is shown in Fig. 7.47. By establishing the correlation based on only the

leading term in (7.125), the best-fit heat transfer coefficients are h ¼ 0.18 kW/m2 K

at SVP and h ¼ 0.62 kW/m2 K at 0.13 MPa. It is interesting to note that these

values of h are roughly 60% of typical steady-state film boiling heat transfer

coefficients for flat plates.

The other problem of interest is to the understand transient recovery in

subcooled He II. This problem has more to do with the time-dependent heat

transport in the bulk fluid than film boiling heat transfer. Rather than correlating

the time to recovery based on the thermal capacity of the heater, the approach here

is to determine the maximum steady-state heat flux which allows recovery after an

intense short-duration heat pulse is applied to a heat transfer sample. The short-

duration heat pulse is assumed to be larger than the maximum energy flux to locally

Fig. 7.47 Correlation between the energy applied to a film boiling heat transfer sample and the

time to recovery
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bring the He II to Tl and thus break down heat transfer. Consequently, the heat

transfer at the solid-helium interface breaks down and further heat is stored in the

solid or in the helium adjacent to the heater. After the heat pulse, the excess heat can

be transferred through the He II by the established transient heat transfer

mechanisms. Now if the steady-state heat flux is not too large, the combination of

it with the remaining excess energy being released from the heat transfer sample

will not exceed the maximum transient energy flux in the He II. The result is a

temporary recovery to the non-boiling state. Recovery is temporary only if the

steady-state heat flux is larger than the maximum steady-state heat flux in He II for

that particular configuration.

The above set of conditions are illustrated graphically in Fig. 7.48, which is a

normalized transient heat transfer plot for He II at 1.8 K. The solid curve represents

the maximum heat flux that can be applied for a given time before breakdown of He

II heat transfer occurs. This condition is established according to Sect. 7.2. Now

consider a short-duration, high-level heat pulse applied to the heat transfer sample.

Since this energy is larger than that transferable by the He II, the excess is stored in

the heat transfer sample. The total energy contained in the pulse is shown by region

I in the figure. Subsequent to the pulse, the heat flux is dropped to a lower level qp
which is still above the maximum steady-state meat flux q*. However, temporary

recovery will occur because the transient heat transfer mechanism can continue.

Fig. 7.48 Schematic description of the transient recovery process in He II with post-heating

(From Seyfert [30])
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Thus, the sum of the two areas I and P determines the length of time before

unrecoverable thermal breakdown occurs. This model has been compared success-

fully to transient heat transfer experiments in He II [60]. The problem is of

significant practical interest to superconducting magnet technology.

Example 7.4

For the rectangular flat plate film boiling heat transfer data at T ¼ 1.8 K and

Dp ¼ 0.14 kPa in Table 7.5, estimate the thickness of the vapor film assuming

that heat is carried only by gaseous conduction. Compare the calculated thick-

ness to the mean free path in the vapor.

In this case, the average thermal conductivity can be approximated bykHeð40ÞK
¼ 0.4W/m K. The approximate thickness of the film is then,

t ¼ �k hfb
� ¼ 0:4 W/m K/220 W/m2 K ¼ 2 mm

The mean free path is calculated by

The mean free path is calculated by,

l � 1

ns
� kBT

pd2p
¼ 1:38� 10�23J=K � 40K

p 2:56� 10�10m
� �2 � 1600Pa

¼ 1:67 mm

Questions

1. Heat transfer from a solid surface to a bath of He II does not have a nucleate

boiling regime. Why?

2. One method to increase the heat transfer coefficient in the Kapitza regime would

be to roughen the surface, thereby increasing the effective area. What are the

practical limits to this approach? [Two points to keep in mind are that the surface

material has a finite thermal conductivity and the phonon coupling is over a

certain range.]

3. Assume that you wish to design a He II heat exchanger that consists of a U-tube

immersed in a pressurized He II reservoir. The upper ends of the tube empty into a

saturated bath of He II maintained at a constant 1.7 K. For these conditions, draw a

sketch of the temperature profile along the U-tube from one end to the other.

4. For Question 3 above, suppose that you wanted to enhance the performance of

the heat exchanger. Would there be a benefit to putting a pump in the line to

force the He II through the U-tube. List the design constraints on selecting the

parameters for the circulation system.

Problems

1. Consider a sphere of radius r0 in a large bath of He II. Derive an expression for

the steady-state temperature gradient as a function of radial coordinate r.
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Determine the peak heat flux as it depends on bath temperature. Assume that

mutual friction is the only important interaction and the ambient pressure is 0.1

MPa. [Hint: This problem is analogous to that of heat transfer in cylindrical

geometries discussed in Sect. 7.1.4.]

2. Estimate the maximum surface heat flux q0 for a cylindrical wire of diameter 1

mm in He II at 1.8 K, 0.1 MPa. What would be the effect of increasing the

external pressure to 1 MPa?

3. Show that the transient heat transfer solution given by (7.52) for the fixed energy

deposition obeys the heat conductivity equation for He II.

4. Estimate the Kapitza conductance at 1.9 K of aluminum for small DT, by each of
the following methods:

a. Phonon radiation limit.

b. Acoustic mismatch theory.

c. Experimental results listed in Table 7.3.

5. Show that the variation of the film boiling heat transfer coefficient with heater

radius may be written in the form given by (7.113). For the data listed in

Table 7.5 from Ref. [79] (d ¼ 25 and 76 mm), estimate the film thickness d
and the limiting heat transfer coefficient h0 for large radii.

6. A metallic copper heater is located at the bottom of a 50 cm long vertical channel

containing He II at 1.9 K. Assume the pressure at the top of the channel is

saturation and that heat flow is governed by mutual friction.

a. Find the peak heat flux q*. [Note: Although (7.10) is valid for this case, it is

more accurate to use tabulated vapor pressure of helium].

b. Estimate the heater surface temperature just below q*.

7. Consider a 2 m long, 5 mm ID smooth tube which contains 1.8 K He II flowing at

a mass flow rate of 20 gm/s. Calculate the total pressure drop across the tube

assuming the flow is fully developed and turbulent. Estimate the total tempera-

ture rise in the He II flow due to the Joule Thomson effect. [Hint: you may use

the simplified form for the JT coefficient of an incompressible liquid].

8. Derive (7.84) for the mass flow through an ideal vapor – He II phase separator.
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Chapter 8

Liquefaction and Refrigeration Systems

Although the emphasis of this book is on the development of a physical understanding

of helium as a cryogenic fluid, the discussion would be incomplete without at least an

overview of the various methods of obtaining low-temperature helium. Such

methods are based solidly in engineering thermodynamics and rely primarily on a

combination of processes that make up a thermodynamic cycle. A thermodynamic

cycle consists of a closed circuit where the working fluid, for example helium, is

compressed, expanded, and heat exchanged in such a way as to achieve cooling. The

most thermodynamically ideal cycle is the Carnot cycle which consists of a combi-

nation of isothermal and isentropic processes. However, the Carnot cycle is difficult,

if not impossible, to achieve in a practical system. Real refrigeration and liquefaction

systems are made up of similar processes and are usually compared in their perfor-

mance to that of the ideal Carnot cycle. These issues form the content of the present

chapter.

Here we will only consider cycles that use working fluids in their processes. The

topic of refrigeration using magnetic materials is discussed in Chap. 10. In most gas

refrigeration cycles, the cooling is achieved by an expansion process from high to

low pressure. There are mainly two types of gas expansion that we will consider.

Isentropic expansion is that where the fluid does work and expands slowly and

reversibly such that its entropy is constant (DS ¼ 0). This is the best method of

expansion because there is no entropy generation and it therefore produces the

largest temperature change for a given pressure change. The other common gas

expansion process is isenthalpic expansion, where the fluid undergoes a pressure

change without heat transfer (DQ ¼ 0) but no work is done and the process is

irreversible. Isenthalpic expansion is common in practical refrigeration systems for

its ease of use. However, it is of lower thermodynamic efficiency because it is an

irreversible process resulting in an increase of entropy (DS > 0).

A further distinction between different refrigeration cycles has to do with

whether the cycle involves steady flows or oscillatory flows. In the former case,

the flow that initiates at the high pressure point at the exit of the compressor passes

continuously through a closed circuit consisting of heat exchangers and expansion

devices extracting the heat load and ultimately returning to the compressor inlet.
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Such cycles are referred to as recuperative. The other class of refrigeration cycles

involves oscillatory flows that intermittently expand and compress the gas exchang-

ing heat with a thermal reservoir or regenerator. In these cycles a unit of fluid moves

back and forth between regions of high and low pressure and temperature exchang-

ing heat with a regenerator. These cycles are therefore referred to as regenerative.
The present chapter begins with an ideal liquefaction process as a point of

comparison. A number of practical recuperative cycles commonly used for cryo-

genics are then discussed. A comparison between liquefaction and refrigeration is

given including some aspects of component non-ideality. This discussion is then

followed by an introduction to regenerative refrigeration cycles and their practical

embodiment in modern cryogenic refrigerators.

8.1 Ideal Liquefaction

The thermodynamic limitations of the liquefaction process can be demonstrated

best by consideration of an ideal system, that is, a cycle that performs at Carnot

efficiency and consequently consists of reversible isothermal and isentropic pro-

cesses. The purpose of this cycle is to cool a fluid from ambient to its normal boiling

point and then condense it into liquid.

Wewill first consider a Carnot refrigerator producing cooling to a low-temperature

reservoir. Furthermore, unlike the discussion in the previous section, we assume that

the refrigerator consists of a large number of cycles each producing an incremental

temperature decrease of the working fluid. This process can be thought to occur

physically by a large number of reservoirs operating at intermediate temperatures Ti
as in Fig. 8.1. The total cycle is then the sum over all these cycles, the continuous

version of which becomes an integral between TH and TC.
Therefore, an ideal Carnot refrigerator achieves a certain amount of cooling at

TC by performing a continuous process [1]. The work done to carry out this process

can be approximated by an integral expression,

w ¼ �
ðTC
TH

dQ

T
TH � Tð Þ (8.1)

where each increment of refrigeration operates between TH and T. To produce

liquefaction in a liquid–gas system, there are two contributions to the work that

must be included:

1. wg is the work required to cool a unit mass of gas from ambient temperature to its

boiling point Tbp.
2. wl is the work required to convert a unit mass of gas at Tbp to a unit mass of

liquid.
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The second term, which is the liquefaction work, always operates between Tbp
and TH. For this term dQ ¼TDs ¼ hfg, the latent heat per unit mass of liquefied gas.

The integral in (8.1) then collapses to its value at the low temperature end Tbp,
yielding the second contribution to the work,

wl ¼ hfg
TH
Tbp

� 1

� �
(8.2)

It is quite apparent in (8.2) that the term in brackets simply represents the coefficient

of performance of a Carnot refrigerator operating between Tbp and TH.
The total work wT to liquefy a unit mass of gas is simply a sum of the above two

terms. Rearranging wT in a form that is easier to evaluate, we obtain

wT ¼ TH

ðTH
Tbp

Cp

T
dT þ hfg

Tbp

 !
�

ðTH
Tbp

CpdT þ hfg

 !
(8.3)

Cast in this way, the total work can be seen to consist of two quantities. The first

represents the entropy difference between the gas at room temperature and the

liquid at Tbp. The second term is the heat or enthalpy difference between the gas at

room temperature and the liquid at Tbp. Note that this quantity enters as a negative

because it is thermodynamically recoverable.

The above definitions can be placed on clearer footing by consideration of a T-S
diagram for a real fluid. An idealized example of such a diagram is shown in

Fig. 8.2. Achievement of liquefaction as described above can be identified on this

TH

Ti

δWi

Ti-1

δWi-1

TC+1
δWC+1

Ti-2

δWi-2

TC

δWC

Fig. 8.1 A series of

infinitesimal Carnot

refrigerators
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diagram by the path 1-2-3. Here, step 1–2 is an isothermal process followed by step

2–3 which is an isentropic expansion of the fluid to the normal boiling point Tbp.
In practical terms, the flow circuit used to achieve this process is shown in

Fig. 8.3. Here there are two principal components. An isothermal compressor brings

the fluid to high pressure, p2, at which point the entropy is the same as the liquid at

the normal boiling point. The isentropic expansion engine then reduces the fluid

temperature until it is converted to a liquid. The total work per unit mass of fluid

(8.3) is therefore given by the difference in the state functions evaluated at the end

points of the ideal liquefaction path,

wt ¼ TH s1 � s3ð Þ � h1 � h3ð Þ (8.4)

Typically, for real fluids, these quantities are tabulated, permitting the above

calculation to be performed trivially. However, for the case concerning helium,

which is nearly an ideal gas, these functions can also be calculated with reasonable

accuracy from (8.3). It is instructive to perform this calculation as an example to

appreciate better the numerical values associated with the liquefaction process.

The two contributions to the liquefaction work of helium are the enthalpy and

entropy terms. The enthalpy term is

Dh ¼
ðTH
Tbp

CpdT þ hfg: (8.5)

Fig. 8.2 T-S diagram showing ideal liquefaction process 1 ! 3
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Since helium is a good approximation to an ideal monatomic gas, we substitute a

constant value for the heat capacity, Cp ’ 5
2
R ¼ 20:8 J/mol K. The latent heat of

helium is tabulated and is a temperature-dependent quantity but at its normal

boiling point of 4.2 K, hfg ¼ 84 J/mol. Combining these two contributions in

(8.5) the result is

Dh ¼ 20:8 J=mol K 300� 4:2ð ÞK þ 84 J=mol ¼ 6237J=mol

where the high temperature is set arbitrarily to 300 K. Note that helium has a very

small latent heat compared to other common fluids, a fact due to weak intermolec-

ular binding which is discussed further in Chap. 3; thus, the vast majority of the

work to liquefy helium goes into cooling the gas to the liquefaction temperature.

This is not necessarily the case for liquefaction of other cryogenic fluids.

The entropy contribution to the liquefaction of helium can be calculated

similarly,

Ds ¼
ðTH
Tbp

Cp

T
dT þ hfg

Tbp
(8.6)

which for helium, as a nearly ideal gas, can also be evaluated directly between

ambient temperature and the normal boiling point as,

Fig. 8.3 Flow circuit for ideal expansion liquefier
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Ds ’ 20:8
J

molK
ln

300

4:2

� �
þ 84

4:2

J

molK
¼ 109 J=molK

Here it is useful to note that the latent heat contribution is significant, representing

about 20% of the entropy difference term. Combining the enthalpy and entropy

terms, we calculate that the ideal work to liquefy a unit of helium as 26,463 J/mol or

6615 kJ/kg. At saturated vapor pressure densities this work per unit volume of

liquid is 0.236 kW h/L. Thus, it appears that for an ideal liquefier the cost of

liquefaction in terms of electricity is not a major factor. It should be emphasized,

however, that real liquefiers of helium are far from ideal, typically operating at

between 2% and 25% Carnot efficiency, see Sect. 8.8.

As has already been indicated, the above calculation was performed to demon-

strate the importance of different terms in the liquefaction process. A simpler and

more accurate procedure uses tabulated values for entropy and enthalpy; then

calculates the work trivially by means of (8.4). T-S-H diagrams that give these

values for helium in graphical form are given in Appendix A.5. Also, there are

tabulated data available in the literature [2] and in database programs [3, 4]. To use
the T-S-H diagrams directly to calculate ideal liquefaction work, points (1) and (3) of

the liquefaction path must be located. Point (1) represents helium at a temperature

and pressure of 300 K and 0.1 MPa. At this point the entropy and enthalpy are [3],

s1 ¼ 31:6kJ=kg K and h1 ¼ 1574kJ=kg

At point (3), the saturated liquid state at 4.2 K and 0.1 MPa,

s3 ¼ 3:55kJ=kg K and h3 ¼ 9:9kJ=kg

Insertion of these values into (8.4) yields wT ¼ 6850 kJ/kg, quite close to that

calculated using the ideal gas law above. This result is in part a demonstration of the

near ideality of helium gas.

In summary and for comparison, Table 8.1 lists most of the common cryogenic

fluids including helium with their ideal work to liquefy a unit mass and volume. In

each case, these values are obtained from the tabulated state properties of the

respective fluids. It is interesting to note that all these fluids have wT within 20%

of 0.2 kW h/L, a quantity that has no fundamental significance but is useful to keep

in mind for calculation purposes.

Table 8.1 Ideal liquefaction work of cryogenic fluids

Fluid Tbp (K) WT (kJ/kg) WT (kW h/L)

O2 90 634 0.202

Ar 87 476 0.188

Air 80 722 0.176

N2 77 761 0.171

H2 20.4 11,890 0.231

He 4.2 6,850 0.236
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8.2 First Law of Steady Flows

In advance of discussing the more practical aspects of helium liquefaction and

cooling, it is necessary to introduce the important concept known as the first law of

steady flows. This concept is useful because actual liquefaction processes occur in

the steady flow conditions through a cycle and not strictly at thermodynamic

equilibrium.

The first law of steady flows can be understood best by reference to Fig. 8.4.

Here a unit volume of helium is considered where the symbols are identified as

follows:

• Rate of heat removed from unit volume, _Q
• Rate of work done on the fluid in volume, _W
• Mass flow rate, _m
• Specific enthalpy of the fluid, h
• Specific entropy of the fluid, s

For simplicity we neglect changes in the potential and kinetic energies. For

helium these terms are generally quite small and their inclusion would serve only to

complicate the derivations at hand. Now although the unit of fluid is in motion, it

still represents a thermodynamic system. One can understand this statement by

transforming into the frame of reference of the moving fluid. In the frame moving at

a velocity, u ¼ _m rA= , a unit mass of fluid moves throughout the cycle undergoing

various thermodynamic processes which can be calculated as if it were in thermo-

dynamic equilibrium. Of course, one additional requirement is that the fluid veloc-

ity be low compared to the sound speed to avoid compressibility effects.

It is reassuring to note that introduction of the above concept does not signifi-

cantly modify the thermodynamic relationship already introduced for the work

necessary to liquefy a unit mass of fluid (8.4). The only variation is to redefine

the work on a unit mass flow basissuch that (8.4) is rewritten in the form,

_W

_m
¼ THDs� Dh (8.7)

where the entropy and enthalpy differences are per unit mass.

Fig. 8.4 Unit volume

illustrating the first law of

steady flows

8.2 First Law of Steady Flows 323



To understand better the discussion of practical refrigeration systems, it is

helpful to define several quantities related to continuous flow refrigeration:

• Work per unit mass compressed, _W= _m.
• Work per unit mass liquefied, _W= _ml.
• Fraction of mass flow liquefied or yield, y ¼ _ml= _m.

An optimized practical design endeavors to minimize _W= _ml, and maximize the

yield y. In addition, there are several terms useful in the identification of the

thermodynamic efficiency of a particular refrigeration cycle. It follows from (1.6)

that the coefficient of performance (COP) in a flow system is the ratio of the heat

removed at low temperature to the work at high temperature:

COP ¼
_Qc

_W
(8.8)

Obviously, for a Carnot cycle, COP ¼ TC/(TH – TC). As a measure of the

deviation from Carnot efficiency, a quantity referred to as the figure of merit

(FOM) is defined as the ratio of the ideal Carnot work _Wi

� �
and actual rate of

work done _W
� �

such that

FOM ¼
_Wi

_W
(8.9)

Proper design will attempt to maximize FOM as much as is reasonable. Typically,

the highest efficiency helium refrigerators have FOM � 25%.

8.3 Isenthalpic Expansion

Up until now refrigeration or liquefaction has been considered only in terms of the

ideal processes involved. Furthermore, the methods by which this refrigeration occurs

have not been thoroughly identified. In an effort to approach more realistic refrigera-

tion systems, the present section considers one of the most common refrigeration/

liquefaction processes, that of isenthalpic expansion also known as the

Joule–Thomson effect. As will become evident, this process is most useful in refrig-

eration systems involving higher boiling point cryogens (e.g. LN2, LO2). Its use in

helium liquefaction is mainly in the final expansion stage of a more complex cycle.

8.3.1 Joule–Thomson Effect

The Joule–Thomson effect was one of the first methods used in liquefaction of

cryogenic fluids. The method consists of performing an isenthalpic expansion of the
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fluid through a valve or other flow constriction capable of sustaining a relatively large

pressure drop. By definition there is no work done by the fluid but the process can be

made to be adiabatic by insulating the constriction; it is still irreversible. In practice,

there are several methods by which the Joule–Thomson effect is achieved. A simple

and direct method is to place a porous plug within an insulated channel such that the

pressure drop through the media is about right for the desired flow conditions. This

concept, illustrated in Fig. 8.5a, can be nearly isenthalpic because the channel is

insulated, giving adiabatic conditions ð _Q ¼ 0Þ. However, porous plugs are not

adjustable so care must be exercised in choosing the proper flow resistance for the

desired operating conditions. An alternative to the porous plug J-T valve is to use an

adjustable needle valve that restricts the pressure drop to occur over a small region

(Fig. 8.5b). For the needle valve, thermodynamic ideality is not strictly achieved

because the system is not totally insulated due at least to the conducted heat load down

the valve stem. However, this inefficiency must be weighted against the adjustability

and ease of operation that accompany the JT valve.

In either case, the J-T valve has one purpose and that is to allow isenthalpic

expansion of the fluid. Isenthalpic expansion means that the specific enthalpy of the

fluid entering the valve must equal that of the exiting fluid, which is at lower

pressure. It follows that differential cooling can only be achieved if the constant

enthalpy curve in p-T space has a positive slope. This requirement can be explained

in more common terms by introduction of what is called the Joule–Thomson

coefficient mj, which is simply the slope of a constant enthalpy curve in p-T space:

mj �
@T

@p

� �
h

(8.10)

To achieve cooling by the Joule–Thomson effect, this quantity must be positive.

However, for real gases, mj can be either positive or negative depending on the state
of the fluid. Note that the Joule–Thomson coefficient was previously introduced in

Fig. 8.5 Two types of Joule–Thomson valve: (a) porous plug and (b) controllable needle valve
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the discussion of real gas behavior in Chap. 3 and to explain the temperature profile

in forced flow compressible helium in Chap 4.

The form of mj as given in (8.10) is not particularly useful for understanding the

physical processes involved; however, it can be cast in more meaningful context by

some standard thermodynamic manipulations. Using a theorem of partial differen-

tiation, we can rewrite the Joule–Thomson coefficient as

mj ¼ � @T

@h

� �
p

@h

@p

� �
T

(8.11)

The enthalpy h is a state function that can be expanded in terms of p and T such

that

dh ¼ @h

@T

� �
p

dT þ @h

@p

� �
T

dp (8.12)

But the enthalpy also has a familiar differential form,

dh ¼ T dsþ v dp (8.13)

The first term on the right-hand side of (8.13) can be rearranged by use of a T ds
equation for single phase fluids,

T ds ¼ CpdT � T
@v

@T

� �
p

dp (8.14)

where the constant pressure specific heat is,

Cp ¼ T
@s

@T

� �
p

(8.15)

and the second term was modified by the use of the Maxwell relation,

@v

@T

� �
p

¼ � @s

@p

� �
T

(8.16)

Equating common terms in (8.12), (8.13), and (8.14), we can do a straightforward

calculation to produce the relationship for mj, in terms of useful thermodynamic

functions:

mj ¼
1

Cp
T

@v

@T

� �
p

� v

" #
(8.17)
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Based on (8.17), the only additional information required to complete the form for

mj are the equation of state and the constant pressure specific heatCp. In actual fact, the

most important issue is to determine the locus of points in p-T space below which the

Joule–Thomson coefficient is positive. The curve that describes these points is referred

to as the inversion curve and is defined by the location where mj ¼ 0.

The inversion curve can be derived for any gas with an established equation of

state. The most simple of equations of state is that for an ideal gas, pv ¼ RT, for
which the Joule–Thomson coefficient is always zero as can be seen by substitution

into (8.17). Therefore, there would be no cooling (or warming) of an ideal gas that

undergoes isenthalpic expansion. This is a clear statement that the Joule–Thomson

effect is a second-order process brought on by non-ideality of gases.

To understand physically how mj can be nonzero, we return to the original thermo-

dynamic relationship (8.11) and note that the specific enthalpy may be written

h ¼ eþ pv (8.18)

where e is the specific internal energy of the fluid. Substituting (8.18) into (8.11),

one obtains a different relationship for mj,

mj ¼ � 1

Cp

@e

@p

� �
T

þ @ pvð Þ
@p

� �
T

� �
(8.19)

The first term within the parentheses, (∂e/∂p)T, represents the deviation from

ideal gas behavior of Joule’s law; since e¼CvT. For an ideal gas this term is zero, but

for real gases where there are interactive potentials between molecules, (∂e/∂p)T
is always negative. It is easy to understand why this is true. Consider a volume

containing a unit mass of gas at constant temperature. If the volume is reduced, a

result of increasing the external pressure, the average intermolecular spacing

decreases. Joule’s law is derived by assuming all the energy within the gas is in

the form of random kinetic energy of the molecules. However, as the real gas is

compressed, some of this kinetic energy is converted to potential energy, thus

decreasing the internal energy of the system and making (∂e/∂p)T < 0.
The second term in (8.19) can be either positive or negative. In simple terms, it

measures the deviation from Boyle’s law, which states that pv ¼ f(T) only, a

behavior obviously obeyed by an ideal gas. This term can be understood best by

taking limiting values. At high temperature and high pressure, the molecules in the

gas are brought close together but have large kinetic energies so that they are mostly

affected by the repulsive term in the potential. The temperature must be high so the

effect of the attractive term in the potential is negligible. This effect was discussed

in Chap. 3 and manifests itself in a compressibility factor, Z > 1. Therefore, since

the repulsive interaction makes the gas less compressible than an ideal gas,

@ pvð Þ
@p

� �
T

>0
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The behavior of this term at relatively low pressures and temperatures is

considerably different. Specifically, this region is more strongly affected by the

attractive term of the potential. This term tends to make the gas effectively more

compressible because the fluid is approaching the condensation temperature and

@ pvð Þ
@p

� �
T

<0

The behavior of both contributions to the pv term in (8.19) are summarized in

Fig. 8.6.

8.3.2 Joule–Thomson Coefficient of Real Gases

The thermodynamic properties of a real gas are described best in terms of an

empirical equation of state. In Chap. 3, several equations of state appropriate for

helium gas have been introduced. Here the Joule–Thomson coefficient is evaluated

using one of these classical equations of state.

The most common classical equation of state is that of a van der Waals gas, see

Sect. 3.2.3. As stated previously, this equation of state is given by the expression

pþ a

v2

� 	
v� bð Þ ¼ RT (8.20)

Here a and b are constants listed in Table 3.2 that depend on the particular gas being
approximated. For helium the values of these two constants are a ¼ 3.46 m6 kPa/

kmol2 and b¼ 0.0237 m3/kmol. For the van der Waals equation of state the form of

mj can be computed by differentiation and rearrangement of (8.20). Specifically, the

volume derivative can be shown to be

Fig. 8.6 Variation of pv as a function of absolute pressure for a real gas (From Barron [5]).
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@v

@T

� �
p

¼ R

RT= v� bð Þ � 2a=v3ð Þ v� bð Þ (8.21)

Substituting into (8.15) yields the equation for the Joule–Thomson coefficient,

mj ¼
1

Cp

2a=RTð Þ 1� b=vð Þ2 � b

1� 2a=vRTð Þ 1� b=vð Þ2
" #

(8.22)

The above equation can be used to compute values of mj for a van der Waals gas

as a function of temperature and specific volume, albeit a tedious process, see

problem 8.3. As has been mentioned above, one point of interest is the location of

the inversion temperature, below which the Joule–Thomson effect produces

cooling. Since the inversion temperature Tinv is defined at mj ¼ 0, its form for a

van der Waals gas can be determined by setting the numerator of (8.22) to zero.

This gives,

Tinv ¼ 2a

bR
1� b

v

� �2

(8.23)

which appears to be a relatively simple solution except for the fact that v is coupled
to T through the equation of state. In p-T space the inversion curve of a van der

Waals gas is a polynomial function.

A useful value to compute from the inversion curve is that of the maximum

inversion temperatures Tm
inv. This value can be easily calculated from (8.23) by

taking the low-density limit, i.e. taking p ! 0 or v ! 1. For a van der Waals gas

the solution for Tm
inv is in terms of the constants a and b:

Tm
inv ¼

2a

Rb
(8.24)

Substituting the values for helium into (8.24) yields the value of Tm
inv ¼ 35.2 K.

Plotted in Fig. 8.7 is the actual inversion curve for helium [6]. Because of the small

slope to the high-temperature isenthalps, it is difficult to determine accurately Tm
inv;

however, for helium Tm
inv � 45 K, a quantity reasonably close to that determined by

the van der Waals gas model.

There is practical significance to the fact that the helium inversion curve lies

below 45 K. To achieve cooling by isenthalpic expansion requires that the helium

entering the Joule–Thomson valve be at a temperature substantially below this

value. Hydrogen and neon are the only fluids with normal boiling points below

45 K, hydrogen being the most abundant of the two. Consequently, in the early

development of helium liquefaction capability it was necessary first to liquefy

hydrogen and then to use the hydrogen bath to precool the incoming helium flow.

Subsequently, other methods were developed to allow liquefaction without LH2
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precooling. However, it still remains a challenge to precool the helium to below the

inversion curve so that the Joule–Thomson effect can be used.

Recall from Chap. 3 that the Law of Corresponding States and the van der Waals

equation of state indicate that the two coefficients, a and b are given in terms of

critical properties as,

a ¼ 27

64

R2T2
c

pc
(8.25)

and

b ¼ RTc
8pc

(8.26)

Since the Joule–Thomson coefficient is a function of the equation of state, the

Law of Corresponding States should also give the inversion curve as universal

function in terms of the reduced quantities, t ¼ T/Tc and p ¼ p/pc. For a van der

Waals gas, the ratio of the maximum inversion temperature given by (8.24) to the

critical temperature has a constant value of 6.75. Furthermore, the entire curve can

be shown to obey a reduced form displayed in Fig. 8.8 [6]. This graph can be used to

determine an approximate inversion curve for most common gases. However, it

should be pointed out that the van der Waals equation of state is only one approxi-

mation to a real gas and others equations exist that give comparable shape to the

inversion curve, see for example problem 8.1. Listed in Table 8.2 are the critical

Fig. 8.7 Inversion curve for helium
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temperatures and maximum inversion temperatures for some cryogenic fluids. The

reduced inversion temperature is approximately constant, with an increase for the

case of helium where quantum effects would be expected to be largest.

Isenthalpic expansion for cooling of cryogenic fluids has advantages and

disadvantages. What makes the method so useful is its ease of application. No

moving parts are required and the J-T value is a relatively small, inexpensive

component. A further advantage is that there is no major problem with expanding

into the region of two-phase liquid vapor coexistence. Thus, the common application

of a J-T value is at the final stage of a helium liquefaction system where the liquid

actually is produced. However, as discussed above it is not possible to achieve

helium liquefaction with only the Joule–Thomson effect unless the incoming fluid is

somehow cooled to below 40 K. Thus, additional methods must be combined with

the J-T expansion stage to achieve liquefaction. These methods, which are discussed

below, may include precooling with another cryogenic fluid (like liquid hydrogen at

20 K) or adiabatic expansion of the incoming fluid requiring it to do work. The latter

method has definite advantages as it uses the same working fluid and can be more

efficient. This topic will be discussed further in Sect. 8.5.

Fig. 8.8 Inversion curve for a van der Waals gas in terms of reduced pressure (p ¼ p/pc) and
temperature (t ¼ T/Tc) [6]

Table 8.2 Critical point coefficients to the van der Waals equation of state and maximum

inversion temperature for various cryogenic fluids

Fluid Tc (K) pc (MPa) a (m6 kPa/kmol2) b (m3/kmol) Tm
inv (K) Tm

inv=Tc

He 5.2 0.227 3.46 0.0237 45 8.3

H2 33.2 1.315 24.4 0.0262 202 6.1

Ne 44.5 2.678 21.5 0.0173 260 5.9

N2 126.2 3.396 137 0.0386 623 4.9

O2 154.6 5.043 138 0.0318 761 4.9

8.3 Isenthalpic Expansion 331



8.3.3 Joule–Thomson Liquefier

The simplest practical method to achieve liquefaction of helium is by direct appli-

cation of the Joule–Thomson effect. However as was discussed above, it is necessary

to begin this process inside the inversion curve, which for helium implies an initial

temperature below about 40 K. This requirement will be overlooked for the time

being. Future discussion will indicate how to bring the fluid below the inversion

temperature initially. The Joule–Thomson liquefier is sometimes referred to as a

simple Linde–Hampson system. This system provides a simple inexpensive method

for liquefaction of a gas whose inversion temperature is above ambient, i.e. all gases

except neon, hydrogen and helium. This method is also the basis for a wide range of

small scale cryocoolers operating at intermediate temperatures (T ~ 100 K).

The principal components of the Joule–Thomson liquefier are shown in Fig. 8.9.

In addition to the compressor stage, the system requires two components: a heat

exchanger and a Joule–Thomson value. The heat exchanger, schematically shown in

Fig. 8.9, is actually a rather complex component to design. A good heat exchanger

has a number of desirable traits, all of which require careful attention to detail:

1. Maximum surface area for heat transfer.

2. Minimum resistance to fluid flow (Dp small).

3. Minimum mass (for cooldown).

Of the three characteristics listed, 1 and 2 are at least moderately counteractive,

and therefore good design involves trade-offs between these two characteristics. It

is necessary to be familiar with heat transfer and fluid flow characteristics of helium

before discussing heat exchanger design. Chapters 4 and 5 consider these topics for

helium in some detail. For the present discussion, it will be assumed that the heat

exchanger is an ideal component, meaning that there is only heat transfer between the

Fig. 8.9 Schematic diagram of Joule–Thomson liquefier
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high and low pressure gas flows, otherwise the system is adiabatic, _Q ¼ 0. Further-

more, friction pressure drop across the heat exchanger will be neglected. It should be

noted that the above assumptions can be substantially different from isothermal

conditions, where the temperatures of the two gas streams are the same. This distinc-

tion will be clearer as examples are considered. In the thermodynamic language of

cryogenic systems, heat exchangers are assumed to conserve enthalpy flow.

The other major component in the simple liquefier shown in Fig. 8.9 is the

Joule–Thomson valve. As described in the previous section, the J-T valve performs

an isenthalpic expansion of the high-pressure stream. Provided the inlet tempera-

ture is well below the inversion curve, the J-T expansion can produce a two-phase

mixture of liquid and vapor helium. The yield of this expansion stage is determined

by an enthalpy balance between the incoming high-pressure stream and the two

coexisting phases at ambient pressure.

Another way of looking at the yield of a Joule–Thomson refrigerator is by

reference to a T-S diagram; see Fig. 8.10. Here the points on the flow chart in

Fig. 8.9 are indicated. The compressor stage involves step (1)–(2). A truly

isothermal compression would follow a horizontal line on the T-S diagram; how-

ever, this is not realistic. Also shown in the figure is the path of a five-stage real

compression process that consists of a series of isentropic compressions followed

by an isobaric heat transfer to the reservoir. The reasons for this multistage process

are discussed later.

Fig. 8.10 T-S diagram

showing isenthalpic

expansion processes
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The compression stage is followed by an isobaric heat exchange process that

brings the gas from (2) to (3), reducing its temperature and entropy. The cooling

used to bring the gas from (2) to (3) is transferred from the return low-pressure

stream through the heat exchanger where the exiting gas is brought back to ambient

conditions. Point (3) represents the inlet to the J-T valve. Step (3)–(4) is then an

isenthalpic expansion into the two-phase coexistence region. In principle, it is easy

to determine the liquefaction yield y by balancing the enthalpy of the high pressure
fluid at the valve inlet to that of a mixture of the low pressure liquid plus vapor at the

outlet. The fraction of gas which is not liquefied follows the isobaric return stage (g)

to (1), where its enthalpy is used to cool the incoming fluid through the heat

exchanger. Finally, since the return gas has a smaller mass flow by the amount

liquefied, in advance of recompression there is a make-up flow added to the stream

to maintain _m constant.

The above description is a qualitative indication of the type of analysis that is

necessary in the design of a Joule–Thomson liquefier. To make a more quantitative

determination of the liquefaction fraction or yield of this system, it is necessary to

invoke the first law of steady flows. For simplicity,we assume nowork or external heat

is applied to the system and that the heat exchanger conserves enthalpy. With this set

of assumptions, the analysis requires writing down enthalpy conservation for the

combination of the heat exchanger, Joule–Thomson valve, and liquid yield, that is,

_mh2 ¼ _m� _mlð Þhl þ _mlhl (8.27)

where _ml is the liquid mass flow rate and hl is the specific enthalpy of the liquid.

Defining the yield or fraction liquefied as y ¼ _ml= _m,we can rearrange (8.27) to give
an expression for this value as,

y ¼ h1 � h2
h1 � hl

(8.28)

It is apparent from (8.28) that the working fluid must be below the inversion curve

for the fluid to cool through the J-T valve. Unless the specific enthalpy of the high-

pressure stream, h2, is less than that of the low-pressure side, h1, the quantity described
by the right-hand side of (8.28) will always be negative, indicating that no liquid yield

is possible. Note that the yield is only a function of the fluid properties and the

compression ratio p2/p1. For a given fluid and initial temperature, the pressure is the

only quantity that may be varied in the optimization process. This is a standard

procedure for determining the best operating conditions of a particular system.

The maximum yield for the simple Joule–Thomson refrigerator occurs when h2
in (8.28) is a minimum. This is a result of h1 and hl being fixed by boundary

conditions. The minimum in h2 is found by taking its derivative with respect to

pressure and setting it equal to zero:

@h2
@p

� �
T

¼ 0 (8.29)

334 8 Liquefaction and Refrigeration Systems



Referring to the definition of the Joule–Thomson coefficient, (8.10), we note that

the above derivative can be written in terms of mj:

@h

@p

� �
T

¼ �mjCp (8.30)

Therefore, the best place to begin an isenthalpic expansion is on the inversion

curve, i.e. where mj ¼ 0.

Example 8.1

Calculate the yield for a simple Joule–Thomson system operating such that

points (1) and (2) are fixed at 20 K.

Although this seems like an unphysical system, in principle it could be achieved

by precooling the helium with a liquid hydrogen bath. The first question to ask is:

What is the best operating pressure for p2? The answer of course is derived by

reference to the inversion curve, Fig. 8.7. Here at 20 K, the pressure corresponding

to the inversion curve is about 3.8 MPa, a not unreasonable value for a helium

compressor. Given the initial temperature and pressure, it is a straightforward

process to determine the yield by substituting the tabulated values for the specific

enthalpies into (8.28):

h1ð20 K; 0:1 MPa) ¼ 118:6kJ=kg

h2ð20K; 3:8 MPa) ¼ 108:0kJ=kg

hlð4:2K; 0:1 MPa) ¼ 9:9kJ=kg

The result of that calculation gives y ¼ 0.098.

The yield of the liquefaction system is not the only factor to be considered when

evaluating the quality of design. In particular, it is important to have a thermody-

namically efficient process to minimize the work required. For an idealized system,

such as the one considered here, it is possible to evaluate the work required to

produce a unit mass of liquid and compare this value with the thermodynamically

ideal process described earlier. To perform this calculation, we again assume that

the various thermodynamic processes in the cycle are ideal. The work required for

liquefaction is entirely that of the compressor which operates at constant tempera-

ture. The first law of steady flows, when applied to the compressor in the

Joule–Thomson refrigerator, gives an expression for the compressor work

_Wc

_m
¼ T s1 � s2ð Þ � h1 � h2ð Þ (8.31)

where _m is the total mass flow. To cast (8.31) in a form that is better compared with

an ideal system, substitute the definition of yield,
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y ¼ _ml

_m
¼ h1 � h2

h1 � hl
:

A general expression for the work per unit mass liquefied by this process is then

_Wc

_ml
¼ h1 � hl

h1 � h2

� �
T s1 � s2ð Þ � h1 � h2ð Þ½ � (8.32)

Rather than work out the value for (8.32) given a particular system, it may be

more instructive to compare it with the ideal liquefaction system given by

_Wi

_ml
¼ T s1 � slð Þ � h1 � hlð Þ (8.33)

Then for the Joule–Thomson liquefier, the ratio of these two quantities, (8.32)

and (8.33), gives the figure of merit,

FOM ¼ h1 � h2
h1 � hl

� �
T s1 � slð Þ � h1 � hlð Þ
T s1 � s2ð Þ � h1 � h2ð Þ
� �

(8.34)

Example 8.2

Considered the above helium Joule–Thomson liquefier (Example 8.1) and

calculate the figure of merit (FOM).

Since the system is initially at 20 K, with the high-pressure side at 3.8 MPa,

the entropy of each state is known:

s1ð0:1 MPa; 20 K) ¼ 17:52kJ=kgK

s2ð3:8 MPa; 20 KÞ ¼ 9:35kJ=kgK

s3ð0:1 MPa; 4:2 KÞ ¼ 3:55kJ=kgK

Using these values gives a figure of merit of FOM ¼ 11.4%. It should be noted

that this value only takes into consideration the liquefaction between 20 and

4.2 K. To consider the overall efficiency of the liquefaction process, it would be

necessary to include the stage operating between 300 K and 20 K. The above

proviso makes the calculation of the work per unit mass liquefied from ð _Wc= _mlÞ
(8.32) incomplete as well.

A number of factors can contribute to inefficiencies in the system, tending to

reduce the FOM below what is calculated for an ideal system. With respect to the

compression stage, it must be borne in mind that a truly isothermal compressor is

not realizable. Real compressors actually operate in a two-step process, the first

being a near adiabatic compression followed by heat exchange with an isothermal
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reservoir. This process, which is sometimes referred to as polytropic, is shown

schematically in step (1)–(2) of Fig. 8.10. The isothermal compression is

approximated by a multistage two-step process. The necessity to provide a multi-

stage process occurs because the adiabatic compression causes rather large temper-

ature increases in the gas that can cause damage to the equipment. Furthermore, a

multistage process more closely approaches an isothermal process, as can be seen in

the T-S diagram, and consequently is more thermodynamically efficient.

The problem of temperature rise in the adiabatic compression stage is

demonstrated most dramatically by reference to an example. Assume it were

desirable to achieve a single-stage compression of helium between 0.1 and

1.0 MPa at 300 K. This would consist of an adiabatic compression stage followed

by an isothermal heat exchange. We can find out the result of this process by

equating the entropy before and after compression,

s1ð300 K; 0:1 MPa) ¼ s2ðT2; 1 MPa)

which determines the maximum temperature T2. The result gives a rather high

temperature at the end of compression, T2 � 750 K. This condition can cause a

number of undesirable effects including physical damage to the compressor and its

lubricants. For efficiency as well as hardware limitations, it is therefore desirable to

carry out multistage compression.

The above discussion assumes that the liquefaction system already has achieved

the steady state and consequently all temperatures (1) through (4) are constant. In

practice, the cooldown process is of equal concern particularly for dynamic cooling

devices. The partial cooldown of a simple Joule–Thomson liquefier may be

represented on the T-S diagram by the cycle (1)–(2)–(30)–(40). During this interme-

diate stage of operation, there would be no liquefaction and the mass flow would be

constant throughout. The net effect of continuing the cooldown would be to reduce

gradually (30)–(3) and (40) into the two-phase region to (4). Naturally, the rate at

which the cooldown takes place depends on the thermal capacity of the system,

mainly the heat exchangers. This fact points out the desirability of minimizing the

mass of the refrigeration components, which is trait 3 of the characteristics of good

refrigerator and heat exchanger design.

During the cooldown process, the fluid entering the JT expansion valve may

temporarily have a temperature and pressure corresponding to a point outside the

inversioncurve.Thiswould seem to imply anegative JTcoefficient and thusnocooling.

However, it is important to note that it is the integrated value of the JT coefficient over a

finite pressure drop that determines whether cooling is achieved through a cycle. This

point has been studied for many different fluids and conditions by Maytal [7].

8.3.4 Cascade JT Liquefier

The use of the intermediate-temperature fluids in the liquefaction of low-temperature

liquids has been an established technique since the beginning of cryogenics. In fact the
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concept was used by Pictet in the first liquefaction of O2. The cascade liquefaction

system, which is a special case of this concept, consists of a series of closed-cycle

systems each using the change of state from liquid to gas to achieve cooling. Thus, a

true cascade system employs working fluids with overlapping two-phase coexistence

regions. The cascade system can have high thermodynamic efficiency but it is

generally cumbersome because of the number of stages required. Furthermore, it is

not possible to have a true cascade liquefier that produces liquid helium or even liquid

hydrogen and neon because the critical points of these fluids are below the triple point

of the next higher-temperature liquid. However, some aspects of the cascade system

can be applied in the liquefaction of helium. Precooling of the gas in a liquefier

consisting of heat exchangers, expansion engines, and a Joule–Thomson valve, cannot

be considered a true cascade system, but the benefits are similar [8].

Figure 8.11 displays a hybrid JT-cascade system for liquefaction of helium. The

flow diagram is for a helium liquefier using this method combined with a simple

Joule–Thomson liquefier. The system consists of several circuits, each containing a

different working fluid. All circuits, except the helium liquefier, operate in a closed-

cycle mode, where the liquid reservoir simply provides the refrigeration for the next

lower stage. Since this system uses the Joule–Thomson effect, it is only necessary

for the working fluid to be below its inversion temperature before cooling can

occur. Consequently, each working fluid can have a wider temperature span than

with a conventional cascade system. The working fluids must have inversion

temperatures above the boiling point of the next-higher working fluid in the system.

In the case displayed in Fig. 8.11, the helium is precooled by a closed-cycle

hydrogen liquefier. In turn, since the inversion temperature of hydrogen is 202 K,

it can be precooled by liquid nitrogen or a similar boiling fluid with Tbp < 202 K. In

this circuit it is possible to produce the liquid necessary to precool the hydrogen

circuit with a simple nitrogen cycle, since Tinv of nitrogen is above room tempera-

ture. In principle, the above described hybrid JT-cascade system could be expected

to produce liquid helium, although probably with low thermodynamic efficiency

because of the compounding effect of numerous Joule–Thomson liquefiers, all of

which operate at rather low figures of merit.

8.3.5 He II JT Liquefier

Production of the low-temperature phase of liquid helium, He II, is an area of

special interest. Unlike normal helium liquefiers, these systems are not mass

produced, but with the developments around such projects as the Large Hadron

Collider, there is now considerable experience with large scale He II liquefaction

and refrigeration [9, 10].

In most cases, He II liquefaction systems exist as an addendum to a normal

helium closed-cycle refrigeration. Thus, the starting point for the low-temperature

(T � 1.8 K) stage is often an isothermal bath of liquid helium near atmospheric

pressure and about 4.2 K. This approach is not essential because it is equally
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possible to expand directly to corresponding low pressures (p < 5 kPa). However,

the existence of a normal helium bath allows its use in other parts of the system or to

intercept heat leaks at higher temperature with improved thermodynamic

efficiency.

A schematic of a He II liquefaction system using this concept is shown in

Fig. 8.12. A second J-T valve operates between the normal helium bath and the

low-temperature heat exchanger dropping the saturation pressure to p � 1.6 kPa

corresponding to Tb ¼ 1.8 K. The return flow of helium vapor is then available to

precool the incoming fluid. This heat exchanger may be of an unconventional

design because the low-density vapor has considerably different heat transfer and

fluid flow characteristics [11].

Above the heat exchanger a compressor returns the flow to complete the circuit.

The simplest approach, suitable for relatively small systems (Qc < 100 W), is to

recompress the helium vapor at ambient temperature with a conventional high-

capacity vacuum pump operating between 1.6 and 100 kPa. Since the vacuum pump

output is near atmospheric pressure it can then feed into the return line of the

liquefier compressor. The disadvantage of this approach is that the vapor density is

Fig. 8.11 Flow diagram for a hybrid cascade system for liquefaction of helium [8]
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too low to allow good heat exchange with incoming fluids, which works against the

thermodynamic efficiency of the cycle.

An alternative method that is in use with large He II liquefier/refrigeration

systems involves the use of cold compressors [12]. This method seems to contradict

thermodynamic principle by performing work on a fluid at low temperature.

However, the main advantage of improved heat transfer with the higher density

gas is more important than the added compressor work. Such cold compressors

typically have compression ratios (pout/pin) of about 10 requiring that there be

multiple units in series to bring the gas pressure above ambient.

As a quantitative example of this technology, consider an isenthalpic expansion of

helium from0.1MPa, 4.2K to 1.6 kPa corresponding to the saturated vapor pressure at

1.8 K. A low-temperature helium T-S diagram is shown in Fig. 8.13. The expansion

follows along path (1)–(2). Determination of the yield for the process is analogous to

the methods applied above in conventional J-T helium liquefaction. By equating the

enthalpies before and after expansion, we obtain an expression for the yield,

y ¼ hv � h1
hv � hl

(8.35)

Fig. 8.12 Schematic of He II liquefaction/refrigeration system
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where the subscripts apply to the various locations on the T-S diagram. For the

process under consideration, the yield y ¼ 62%. Although this yield is fairly high it

can be improved considerably by precooling the incoming fluid with the return

vapor flow. For example if one is able to subcool the inlet to the J-T valve to 2.2 K,

just above the l-temperature, the isenthalpic expansion will follow path (10)–(20)
with a corresponding yield y ¼ 89%. See problem 8.8.

Before leaving the current subject, it is worth mentioning one potentially unique

feature of a He II liquefaction/refrigeration system. As was discussed in Chap. 6,

the saturated He II film attached to the surfaces above the liquid level in a bath can

flow and carry heat as a result of a pressure or temperature difference. This film is

known as the Rollin film. A potential technical problem occurs if the Rollin film

reaches regions of higher than bath temperature and in turn conducts heat back into

the bath. Also, the saturated film will have a higher vapor pressure than that of the

bulk allowing preferential evaporation.

This problem is of greatest concern in small He II baths such as in laboratory size

systems designed to reach as low temperature as possible. Since the film thickness

is a function of the height above the liquid, small systems have a greater propensity

for this problem. It probably has a negligible influence on large He II refrigeration

systems such as for example are part of the LHC.

Fig. 8.13 Low temperature T-S diagram for helium showing both He I and He II regions and

isenthalpic expansion to 1.8 K
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8.4 Isentropic Expansion

A thermodynamically more efficient method to achieve cooling of a liquid–gas

system is to make the fluid do expansion work. If done carefully, this kind of

expansion can be nearly adiabatic and reversible, thereby approaching an isentropic

process, Ds ¼ 0. Since the Carnot cycle is comprised of isothermal and isentropic

stages, it is clear that the expansion by the performance of work is a very good

method to produce cooling.

To determine the effectiveness of an expansion process for the production of

cooling it is useful to define a parameter similar to the Joule–Thomson coefficient.

This parameter, referred to as the isentropic expansion coefficient, ms, is equal to the
slope of the constant entropy line in p-T space:

ms ¼
@T

@p

� �
s

(8.36)

As before, this quantity may be expressed in terms of other common thermody-

namic variables. By using an identity of partial differential equations and a Max-

well relation, the expression for ms becomes

ms ¼
T

Cp

@v

@T

� �
p

(8.37)

where use has been made of the definition for the constant pressure specific heat,

Cp ¼ T
@s

@T

� �
p

. Comparison of (8.37) with (8.17) produces a simple relationship

between the Joule–Thomson coefficient mj and the isentropic expansion coefficient ms:

mj ¼ ms �
v

Cp
(8.38)

Recall that for an ideal gas, mj ¼ 0, so in that case ms ¼ n/Cp. This latter

expression clearly shows that isentropic expansion always produces a temperature

drop since v/Cp is always a positive quantity. Thus, the isentropic process is not

dependent on real gas behavior to achieve cooling.

Normally, one is interested in the change of the temperature caused by a finite

pressure drop. For an ideal gas, where pv¼RT, one can easily show by integration of

(8.37) that the temperature ratio resulting from a given isentropic expansion pressure

ratio is,

ln
Ti
Tf

� �
¼ R

Cp
ln

pi
pf

� �
: (8.39)
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For helium, which is nearly an ideal gas above 30 K, R/Cp ~ 2/5. For a pressure
ratio of 10, the corresponding temperature ratio should be about 2.5; i.e. adiabatic

expansion of helium gas from 1MPa and 300 K to 0.1 MPa should result in final gas

temperature of about 120 K.

For a real gas, ms and thus the temperature drop can be either greater or less than

the value computed above. In particular, for the case of a van der Waals gas,

applying the equation of state (8.20)–(8.37) yields an expression for ms,

ms ¼
v

Cp

1� b=v

1� 2a=vRTð Þ 1� b=vð Þ2
" #

(8.40)

where consistent with the initial statement, the quantity in brackets can be either

greater or less than unity. However, unless the density and temperature are close to

the critical point, this value does not deviate markedly from that of an ideal gas.

8.4.1 Claude Liquefier

The present section summarizes how to employ isentropic expansion by the perfor-

mance of work as part of a helium liquefaction or refrigeration system. Since the

maximum inversion temperature for helium is about 40 K, allowing the gas to

performance work is an essential feature of a modern helium liquefier. Without this

procedure, it would only be possible to liquefy helium by using the Linde-Hampson

cycle with precooling the gas using either liquid hydrogen (T� 20 K) or liquid neon

(T � 27 K). Fortunately, by diverting some of the high-pressure gas flow stream

through an expansion engine, near-isentropic processes can instead be used to

precool the helium stream to below Tinv.
It is most instructive to deal with this subject by way of a specific system. The

Claude cycle as it was first developed provides a good working example. A flow

scheme for the Claude liquefaction system is shown in Fig. 8.14. The system

consists of a compressor, three heat exchangers with an expansion engine operating

on the second, and a Joule–Thomson valve for the final expansion stage. The

purpose of the expansion circuit is to divert a fraction of the incoming high-pressure

gas stream through an engine performing work as the gas expands to the low-

pressure side. Modern liquefiers and refrigerators are more complex than the

Claude cycle but use similar combinations of expansion processes.

Two coupled expansion circuits, such as the Claude cycle provides, have several

advantages over the simple Linde-Hampson cycle. First, such a cycle has the

potential of being more efficient because part of the process stream is undergoing

isentropic expansion with inherently higher thermodynamic efficiency. Second, in

principle the overall efficiency of the cycle can be improved by taking advantage of

8.4 Isentropic Expansion 343



the work produced by the expansion circuit, an option that makes sense particularly

for large systems. Finally, since there are now two or more coupled flow circuits,

the main cooling circuit and that through the expander, it is possible to vary the

fraction of the flow that is diverted in order to optimize the performance.

The Claude cycle is displayed on a T-S diagram in Fig. 8.15. Note that the points

as indicated on the flow chart are also shown in Fig. 8.14. Point (3) is particularly

interesting because it indicates the position where the two circuits separate. The

isentropic expansion reduces the temperature to point (e). The higher-pressure

stream continues until point (5) where the J-T valve produces an isenthalpic

expansion into the two-phase region. Thus, in the Claude system there are two

free parameters to select, the high-pressure value, p2, and the fraction of gas through
the expansion engine circuit, _me= _m ¼ x. To see how these parameters enter the

calculations of yield and net work, it is necessary to consider the thermodynamics

of both processes.

Applying the first law of steady flows to the entire system and assuming that the

expander work is recoverable; the energy balance through the main circuit then

yields,

�
_We

_m
¼ 1� yð Þh1 þ yhl � h2 (8.41)

where as before y ¼ _ml= _m. The expander work _We enters (8.41) in the negative

sense because the gas is doing work against an external load. In addition to the

above expression, one can obtain a separate independent equation by applying the

first law on the expansion circuit,

Fig. 8.14 Flow scheme for Claude liquefaction system
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�
_We

_m
¼ x he � h3ð Þ (8.42)

where the fraction of flow through the expansion circuit, x ¼ _me= _m, is an adjustable
parameter. The above two equations allow the determination of the net yield y and
the thermodynamic efficiency or FOM of the Claude cycle.

The yield is independent of whether the expander work is used in the thermody-

namic cycle. An expression for y can be established by simply equating (8.41) and

(8.42) which gives

y ¼ h1 � h2
h1 � hl

� �
þ x

h3 � he
h1 � hl

� �
(8.43)

Note that the first term in (8.43) is identical to the yield of the simple

Joule–Thomson liquefier. As has already been discussed, this quantity is only

positive when T < Tinv. However, the second term is always positive and so it is

possible, based on suitable choices of x and p2, to have a positive yield at

temperatures above the inversion curve. Two cautionary steps must be exercised

when evaluating the yield from (8.43). First, conservation of mass is not a compo-

nent of this analysis. Based only on (8.43), it appears that to maximize the yield x

Fig. 8.15 T-S diagram for operating Claude system
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should take on its maximum value; however, conservation of mass flow requires

that y + x � 1. Furthermore, it is unreasonable to set y + x ¼ 1 because this would

allow no mass flow on the low-pressure side of the last heat exchanger, a physically

undesirable situation since the heat exchanged is cooled by this return flow.

Optimizing the Claude cycle requires fixing the mass flow fraction x at its

optimum value. However, determination of the optimum conditions can only be

achieved by analyzing the complete cycle on a component basis. This is done by

balancing the enthalpy flow through the heat exchangers, taking into consideration

inefficiencies, to obtain temperatures at each node in the cycle, see Fig. 8.14. As

these equations are coupled, they must be solved simultaneously to obtain the best

choice for flow through the expansion circuit for maximizing yield.

The second step that must be taken when evaluating the yield of a system that

includes an expander is to establish the absolute value of the enthalpy at either the

inlet or outlet of the engine. Since the pressure drop is given, the absolute values of

he or h3 must be known to establish h3 – he. This quantity should be maximized to

achieve maximum yield. Obviously, he and/or h3 are not free parameters and are

established by absolute temperatures at (3) and (e). As can be seen in Fig. 8.14, T3 is
always less than T2. However, the value of T3 cannot be established without

resorting to the more complex analysis of heat transfer and fluid flow for a particular

system, which is beyond the scope of the present discussion. The examples

presented below are based on assumptions for these values. A particular set of

assumptions can be checked for consistency against thermodynamic laws, such as

an efficiency value greater than that of a Carnot cycle, but these are only approxi-

mate calculations to show the overall framework of the analysis.

In addition to the yield of the Claude system, one can also determine the net work

involved in liquefying a unit mass of fluid. Assuming that the net work is equal to the

difference between the compressor work and expander work ð _W ¼ _Wc � _WeÞ,
we obtain

_W

_m
¼ T s1 � s2ð Þ � h1 � h2ð Þ½ � � x h3 � heð Þ (8.44)

The first term in (8.44) is identical to that of the Joule–Thomson refrigerator,

while the second term is the net gain achieved by using the expander work. As with

the yield, to minimize the net work the second term should be optimized. Clearly,

the net work for the Claude system must be greater than the ideal expansion system

allowing the assumptions applied to (8.44) to be checked for correctness.

To evaluate the practical aspects of the above discussion, consider the use of the

Claude cycle for liquefaction of helium. Here for the sake of clarity, we assume that

all processes are thermodynamically ideal, that is the expansion engine operates

isentropically, Ds¼ 0 and the J-T valve provides isenthalpic expansion. The Claude

cycle is as described above and displayed schematically in Fig. 8.14. The first

parameter that must be selected is the value of the compressor output pressure, p2.

346 8 Liquefaction and Refrigeration Systems



Two practical considerations enter here. First, whether the hardware can withstand

the pressure difference particularly in terms of compressor and expander pressure

drop. Second, since the last step of the process is through a J-T valve, it probably

makes little sense to have p2 above the maximum inversion pressure. With these

factors under consideration, a realistic value to choose in this example is p2 ¼
2.0 MPa. Therefore, the thermodynamic states at three points on the cycle are

established:

1. Low-pressure return side:

p1 ¼ 0:1MPa

T1 ¼ 300 K

s1 ¼ 31:6 kJ=kg K

h1 ¼ 1574 kJ=kg

2. High-pressure inlet side:

p2 ¼ 2MPa

T2 ¼ 300 K

s2 ¼ 25:4 kJ=kg K

h2 ¼ 1580 kJ=kg

(l) Saturated liquid state:

p3 ¼ 0:1MPa

T3 ¼ 4:2K

s3 ¼ 3:5 kJ=kg K

h3 ¼ 9:9 kJ=kg

As has been stated above, there are two values to select in determining the yield and

net work, namely, x and T3. Based on (8.43), a desirable choice is amaximumvalue for

x; however, mass conservation sets an upper limit for y ¼ 1 – x. For the present
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discussion we therefore somewhat arbitrarily assume x¼ 0.33 and T3¼ 200 K. These

assumptions establish the thermodynamic state at point (3):

3. Inlet to expansion engine:

p3 ¼ 2MPa

T3 ¼ 200 K

s3 ¼ 23:3kJ=kg K

h3 ¼ 1060kJ=kg

The expansion engine performs an isentropic expansion on the gas, defining the

thermodynamic state of the exiting gas (se ¼ s3):
(e) Exit from expansion engine:

pe ¼ 0:1MPa

Te ¼ 60:6K

se ¼ 23:3kJ=kg K

he ¼ 326kJ=kg

With the above four thermodynamic states and the value of x fixed, it is a

straightforward computation to determine y by substitution of numerical values

into (8.43). This calculation results in a yield of y ¼ 0.15. Note that once T3 is

selected, the yield is directly proportional to x. For this set of parameters x + y ¼
0.48, which seems reasonable but possibly not optimum.

It is also an easy calculation to determine the net work for the Claude system and

to compare this value with a thermodynamically ideal system. Since (8.44) is

written on a per unit mass compressed basis (W/m), we can simply divide it by

the yield from (8.43) to get the work per unit mass liquefied, which is more directly

comparable with an ideal system. For the example above, the net work per unit mass

of liquid can be determined as:

_W

_ml
¼ 1

y

_W

_m

� �
¼ 10; 834kJ=kg

This value has little physical significance by itself but does when compared with

the thermodynamically ideal case ð _Wi= _mÞ:

_Wi

_ml
¼ Tðs1 � slÞ � ðh1 � hlÞ ¼ 6866 kJ=kg
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The ratio of these two values gives the figure of merit for this particular Claude

system:

FOM ¼
_Wi

_W
¼ 64%

Determination of the figure of merit represents a thermodynamic check on the

correctness of the above assumptions. If the FOM computed above worked out to be

greater than unity, it would be in violation of the second law of thermodynamics.

Nothing in the analysis so far prevents this from happening. Clearly, a complete

calculation, which must be done numerically, has built into it a check to prevent this

unphysical condition from occurring. The above example indicates the advantages

of performance of work on an ideal liquefaction system. Although the Claude

system is very simple in its introduction of this concept, it accrues advantages. In

fact, modern refrigerators and liquefiers of helium use cycles employing the same

basic principles. As the systems evolve into complexity, the ability to evaluate their

performance analytically diminishes, leading to an increased number of numerical

assumptions.

8.4.2 Collins Helium Liquefaction System

In the 1940s the Collins helium liquefier evolved out of an effort to produce a

commercial system using expansion engines to precool several heat exchangers [13].

Today, the Collins cycle is the basis of virtually all large scale helium liquefiers. The

Collins system is actually quite similar to theClaude systemexcept that the former uses

between two and five expansion engines rather than just one. A schematic diagram of a

two-engineCollins system is shown in Fig. 8.16. In designing the Collins system, there

are a greater number of degrees of freedom over that of the Claude system. Depending

on the number of expansion circuits, i, there are an equal number of expansion circuit

mass flows to select, _mei. Furthermore, the temperature at the inlet to each expansion

enginemust be determined to compute the yield.Once these quantities are known it is a

straightforward computation to determine the yield for the Collins system,

y ¼ h1 � h2
h1 � hl

þ x1
Dhe1
h1 � hl

þ x2
Dhe2
h2 � hl

þ ::: (8.45)

whereDhei is the enthalpy change through the ith expansion engine and xi is the mass

flow ratio through the ith circuit. Conservation of mass requires that y + Si xi � 1.

The first Collins liquefiers were developed with two expansion engines. Typical

working temperature ranges for the expanders are from 60 to 30 K and 15 to 8 K,

respectively. During steady-state operation the approximate values for the expander

mass flow fractions are x1 ¼ 0.30 and x2 ¼ 0.55 at 1.5 MPa. Insertion of these
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numerical values into (8.45) leads to a yield of only 3.6%. However, it has been

demonstrated that the liquid yield could be improved by a factor of 2–3 by using a

liquid nitrogen precooler above the first heat exchanger. Precooling with liquid

nitrogen is a fairly common approach for moderate size systems. In addition to

improving the liquid yield, the liquid nitrogen can also be used to cool adsorption

beds for extracting impurities from the helium stream.

8.5 Closed–Cycle Refrigeration

Until this point, the discussion has concentrated on systems whose primary purpose

it is to liquefy helium. Thus, the principal questions that have been asked are: What

is the yield of a particular liquefaction cycle and what is the work per unit mass

Fig. 8.16 Schematic diagram of Collins liquefaction system
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liquefied? In either case these questions relate only to the production of liquid

helium. It is assumed that the helium is used to cool some device. However, there

are many cases where it is more appropriate to integrate the helium supply with the

application whether it is to supply liquid or extract heat at low temperature. In

practice, many large systems have, as part of their standard operation, a closed-

cycle refrigerator to provide continuous cooling at low temperature, _Qc. This

approach is desirable because it can achieve a higher thermodynamic efficiency

and dedicated operation with the closed-cycle nature reducing the probability of

helium vapor losses and contamination. The further advantage of a closed-cycle

refrigerator in terms of thermodynamic efficiency can be seen most clearly by a

single but instructive example.

Consider two different methods of cooling a system to liquid helium

temperatures. One method is shown schematically in Fig. 8.17a. Here the cooling

of the device is achieved in two stages. First, helium is liquefied and stored in a

container. Subsequently, or possibly simultaneously, helium is transferred from the

storage container to the system to be cooled. Heat generated in the system Qc and

absorbed at low temperatures is removed by the latent heat of the liquid helium. In

this case, the enthalpy of the evaporated helium is lost because the heat is being

generated at low temperatures and the cold gas escapes to be recovered and re-

liquefied later. Certainly, if Qc were the result of conduction from the external

environment, the situation would be considerably different. In that case, the vapor

can cool the structure continuously, thereby reducing the total heat absorbed by the

liquid helium. Liquid helium has a relatively small latent heat, hfg ~ 21 kJ/kg at

4.2 K. This value is equivalent to 0.73 W h/L at saturated vapor pressure densities.

A useful quantity to keep in mind is that 3/4 W dissipated in liquid helium for 1 h

will boil away 1 liquid liter. The work required to produce a unit mass of liquid in

an ideal Carnot cycle has been computed above to be 6,866 kJ/kg. The coefficient of

performance (COP) is defined in terms of the number of watts that must be

dissipated at 300 K to produce 1 W of cooling at low temperatures. For the above

open-cycle system, the COP ¼ hfg= _Wi ¼ 1=326 ¼ 0:0031.

Fig. 8.17 Two different approaches to cooling a system with liquid helium
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Now compare the above computation with a closed-cycle refrigerator, such as

shown schematically in Fig. 8.17b. Closed cycle means that the helium gas is

recovered cold through the refrigeration system. This approach allows the enthalpy

of the gas to be returned through the cycle to precool the incoming high-pressure

stream by means of one or more heat exchangers. The efficiency of such a device is

inherently much higher. If the system were based on an ideal Carnot refrigerator,

the COP would be given in terms of the absolute temperatures TC and TH that is,

COP ¼ TC/(TH – TC)¼ 1/70.4¼ 0.0142, about a factor of 4.6 higher than the open-

cycle system. Real systems that perform at less than Carnot efficiency have a

similar ratio of efficiency for closed versus open-cycle operation.

Listed in Table 8.3 are values for power requirements of open and closed-cycle

refrigeration assuming ideal thermodynamic efficiencies. Comparison of the second

and third columns indicates that helium accrues the greatest thermodynamic advan-

tage by operating as a closed cycle. This is because the latent heat of liquid helium

is small compared to the enthalpy of the gas between 300 K and Tbp. The ratio of

columns 2 and 3 decreases as the boiling point of the liquids increase. For the high-

temperature cryogenic fluids such as O2 and N2, the latent heat is larger than the

enthalpy of the gas between Tb and 300 K. The last column in Table 8.3 indicates

the minimum power requirements to liquefy a liter assuming an ideal process. This

quantity is computed by using (8.33) and dividing by the density of the liquid at

saturated vapor pressure.

As is the case for liquefaction systems, real low temperature refrigerators

operating on a particular cycle achieve a fraction of ideal thermodynamic efficiency.

That fraction is called the figure of merit (FOM). Thus, real refrigerators have a

similar makeup to real liquefiers. However, there exists a clear distinction between

refrigerators and liquefiers in that the refrigerator is to provide cooling while the

liquefier is to condense fluid. For liquid–gas refrigeration systems there are primarily

two methods of extracting the low-temperature heat load. With isothermal refriger-
ation the heat load is absorbed by a constant temperature liquid reservoir producing

saturated vapor that returns through the cycle. This approach is nearly identical to

liquefaction with the heat load being taken by the phase change. Alternatively, the

heat load may be absorbed over a range of temperatures not determined by the

boiling point of specified liquids. Such systems are not designed to produce liquid

Table 8.3 Power requirements for various ideal refrigeration modes

Fluid T(K)

Closed-cycle

refrigeration

(W300 K/W4.2 K)

Open-cycle refrigeration

(W300 K/W4.2 K)

Ideal liquefaction

(W�h/L)
He 4.2 70.4 326.0 236

H2 20.4 13.7 31.7 278

Ne 27.1 10.1 15.5 447

N2 77.4 2.88 3.87 173

Ar 87.3 2.44 2.95 185

O2 90.2 2.33 2.89 195
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but rather are specified in terms of the low temperature refrigeration performance that

depends on the temperature, Qc(T). These systems include the regenerative

cryocoolers that operate on a different class of cycle than do the recuperative cycles

discussed so far. In this section, we begin with a discussion of isothermal refrigeration

system design. We next present the topic of isobaric refrigeration based on recupera-
tive cycles but where liquid is not produced and the gaseous enthalpy is used to absorb

the heat load. Finally, we discuss the entire subject of regenerative cycle design,which
is based on a totally different approach to low temperature refrigeration.

8.5.1 Isothermal Refrigeration

There is not a large difference between the system configuration for an isothermal

refrigerator and that of a liquefier. In fact, the only distinction is that heat _Qc is

applied to an evaporator bath rather than liquid being extracted. Consequently,

unlike a liquefier that requires makeup gas, the mass flow _m in the isothermal

refrigerator is the same throughout the cycle. This distinction will result is slightly

different performance of heat exchangers, since the mass flow rate is now equal on

both sides. Beyond that one issue, the optimization of the cycle is identical to that of

a liquefier.

An example of an isothermal refrigerator based on the Claude cycle is displayed

in Fig. 8.18. Note the similarity between that figure and Fig. 8.14. Applying the first

law of thermodynamics to the isothermal Claude cycle, the rate of heat extraction at

low temperatures may be written

_QC

_m
¼ h1 � h2ð Þ þ x h3 � heð Þ (8.46)

which is related to the yield equation for the liquefaction cycle. In fact, it is

generally true for isothermal refrigeration that

y ¼
_QC

_m h1 � hlð Þ (8.47)

a quantity that is equal to the ratio of actual refrigeration to ideal refrigeration.

However, one should be careful in application of (8.46) and (8.47). Since the mass

flow is now conserved throughput the cycle, the condition applied to the return side

heat exchangers is somewhat different. This affects the low-temperature end of the

refrigerator and allows more latitude in the selection of mass flow through the

various parallel circuits. It should result in slightly higher yield than in a pure

liquefier and overall better performance.

Apart from this one fact, isothermal refrigeration is related directly to the

liquefaction process. Thus, the optimization procedure follows a set of criteria

similar to those outlined in Sect. 8.3.1.
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8.5.2 Isobaric Refrigeration

If refrigeration is needed at temperatures outside the liquid regime, then one

approach is to use an isobaric gas cycle refrigerator. Here the heat load is absorbed

in the vapor enthalpy at low temperatures producing a specific temperature

increase. There are several reasons why this mode of operation is useful as a type

of refrigeration. For one, it permits the operating temperature of the low end to be a

free parameter adjustable within design constraints and not restricted to the boiling

point of the cryogenic fluid. For helium, isobaric refrigerators are particularly

useful for systems operating above Tc¼ 5.2 K. Avoiding the two-phase coexistence

region permits the refrigerator to be constructed without a Joule–Thomson expan-

sion stage. This approach may permit higher thermodynamic efficiency.

A common cold gas isobaric refrigeration cycle is also known as the Reverse

Brayton cycle. This cycle is shown in Fig. 8.19 and its T-S diagram in Fig. 8.20.

Actually, the cycle shown in the T-S diagram is not strictly a Brayton cycle because

the compression shown is isothermal. The system uses the expansion engine to

provide cooling to a low-temperature heat sink. The amount of heat absorbed at low

temperature is equal to the enthalpy change of the gas as it passes through the low-

temperature heat sink. This quantity may be written

_QC

_m
¼ h5 � h4 (8.48)

Fig. 8.18 Schematic of isothermal refrigerator based on Claude cycle
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Fig. 8.19 Schematic of isobaric (Reverse Brayton cycle) refrigerator

Fig. 8.20 T-S diagram of isobaric (Reverse Brayton cycle) refrigerator
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The various locations on the flow chart are also indicated on the T-S diagram.

Note that (5) is at a temperature that is comparable to (3), the inlet to the expansion

engine.

As has been the case for the liquefier design, the isobaric refrigerator is not

determined fully by thermodynamic considerations. Applying the first law of steady

flows to the entire cycle gives an alternate expression for the refrigeration,

_QC

_m
¼ h1 � h2ð Þ þ h3 � h4ð Þ (8.49)

where the first term is the isenthalpic contribution is only positive provided T < Tinv.
The second term in (8.49) is the cooling produced by the isentropic expansion engine

and is always positive. For the presently considered cycle, (8.48) and (8.49) do not

determine fully the refrigeration power. However, if one additional constraint is

established such as the desired exit temperature to the load heat exchanger, there is

enough information to determine the performance.

Example 8.3

Calculate the cooling power per unit mass flow rate for a Reverse Brayton cycle

that is to provide refrigeration at 100K.Assume that the compressor outlet pressure

is 2 MPa.

The refrigerator should operate such that the maximum temperature at the

exit of the low temperature heat exchanger not to exceed 100 K. Therefore, in

addition to (8.48) and (8.49), it is known that T5 ¼ 100 K. Furthermore, let us

establish the usual set of starting conditions: at low pressure (l),

p1 ¼ 0:1 MPa

T1 ¼ 300 K

s1 ¼ 31:6kJ=kgK

h1 ¼ 1574kJ=kg

at high pressure (2),

p2 ¼ 2MPa

T2 ¼ 300 K

s2 ¼ 25:2kJ=kgK

h2 ¼ 1580kJ=kg
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and exiting the low-temperature heat exchanger (5),

p5 ¼ 0:1 MPa

T5 ¼ 100 K

s5 ¼ 25:7 kJ=kg � K

h5 ¼ 534 kJ=kg

Combining (8.48) and (8.49), an expression for conservation of enthalpy

through the first heat exchanger is obtained:

h3 ¼ h2 � h1 þ h5 ¼ 540 kJ=kg

it then follows that state (3) is established:

p3 ¼ 2MPa

T3 ¼ 100K

s3 ¼ 19:5kJ=kgK

h3 ¼ 540kJ=kg

Finally, h4 and T4 are fixed by isentropic expansion:

p4 ¼ 0:1MPa

T4 ¼ 30K

s4 ¼ 19:5kJ=kgK

h4 ¼ 170kJ=kg

Now returning to either (8.48) or (8.49) we obtain the cooling power of the

refrigerator:

_QC

_m
¼ 364 kJ=kg

(continued)
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Example 8.3 (continued)

To determine the efficiency of this cycle it is useful to compare the value of _Qc

with the total work done. This exercise establishes the coefficient of performance.

The network is computed by assuming the expansion enginework can be utilized:

_W

_m
¼ T2ðs1 � s2Þ � ðh1 � h2Þ � ðh3 � h4Þ ¼ 1496 kJ=kg

These values are based on a specific example, however, it is still useful to

compare the coefficients of performance to that of an ideal cycle. For the above

example,

COP ¼
_QC

_m
¼ 0:243

While for an isothermal Carnot refrigerator operating between 100 K and

300 K the coefficient of performance is,

COP ¼ TC
TH � TC

¼ 0:50

That the above designed refrigerator operates at a figure of merit less than 50%

is due largely to the isobaric operation. Because the system must cool the gaseous

helium to 30 K and then heat it isobarically to 100 K, its efficiency would be lower

when compared to an isothermal system operating continuously at 100 K.

8.6 Regenerative Referigeration Cycles

Regenerative refrigeration cycles are distinguishable from recuperative cycles as they

involve cyclic processes that do work to extract heat from the cold point in the cycle

with the low temperature being stored in a refrigerator component known as the

regenerator. A regenerator is much like a recuperative heat exchanger with the

principal difference being that the former needs to have a large volumetric heat

capacity to store as much thermal energy as possible as the fluid streams alternately

flow through the matrix. During the cyclic process, a significant amount of heat is

alternately stored in, and released by, the regenerator, a feature that is different from

recuperative cycles where heat is continually transferred from one fluid stream

through the solid heat exchanger to the other fluid stream, while the solid components

remain at a steady state temperature. In general, cryogenic refrigerators based on

regenerative cycles are suitable for lower cooling power applications compared to the

larger recuperative cycle machines.

There are several regenerative refrigeration cycles of interest in helium cryogenics.

To cover this subject completely, however, would require far more space than is
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allocated here. Therefore, the present discussion is limited to presentation of the

Stirling cycle and the Gifford McMahon (GM) cycle, both of which are in common

and widespread use today in cryogenics. In addition, these two cycles have been the

main venue for development of what are commonly known as pulse tube cryocoolers.

The primary distinction between the conventional regenerative cryocoolers and the

pulse tube cryocoolers exists in the method used to produce the necessary phase shift

between the flow and pressure oscillations, and the optimum value of that phase shift.

In their conventional embodiment, the Stirling and GM cycles control the motion of a

displacer to move the refrigerated fluid through the regenerator. The timing of the

displacer motion with respect to the production of low and high pressures determines

the phase shift for the Stirling and GM cryocoolers. In the more modern pulse tube

refrigerators the necessary phase shift is achieved without the use of any cold moving

parts, such as a displacer. Instead, one of various room temperature mechanisms can

be used to optimize the phase shift. The lack of any cold moving parts and the

associated long-term reliability explain the attractiveness of pulse tube refrigerators.

A complete description of pulse tube refrigeration cycles is beyond the scope of the

present discussion, however a few of its salient features are provided below.

8.6.1 Stirling Cycle

The Stirling cycle refrigerator evolved from the heat engine cycle invented by

Robert Stirling in 1827 [1]. Operated in reverse, the Stirling engine produces

cooling. The Phillips Company was the first to commercially produce refrigerators

that operated on this cycle. The Stirling cycle may be approximated as consisting of

two isothermal and two isochoric (constant volume) processes. A schematic repre-

sentation of the cycle is shown in Fig. 8.21. Refrigeration is achieved by isothermal

expansion of the working fluid. There are three main components shown: regenera-

tor (R), compressor/expander, and displacer (D). The displacer works in concert

with the compressor during the compression, expansion, and shuttle processes to

move the alternately high- and low-pressure working fluid through the regenerator.

The four stages displayed in Fig. 8.21 outline a procedure whereby these

components produce cooling. Once the process has achieved the steady state it

can be described in terms of p-V and T-S diagrams as in Fig. 8.22. However it is

important to keep in mind that the fluid does not flow continuously around the cycle

as in a recuperative refrigerator.

The cycle is described as follows. At (1) a unit of helium is compressed but

resides in the upper compression chamber at high temperature since the displacer is

at its lowest position. From (1) to (2), the displacer is moved to its upper position

forcing the fluid through the regenerator into the expansion chamber. This process

takes place at constant volume. Since the expansion end of the regenerator is colder

than the helium the pressure of the gas decreases to (2). Step (2)–(3) is an isothermal

expansion of the fluid in the lower chamber achieved by moving the displacer

upward with the compressor. This process extracts heat from the regenerator at Tc.

Between (3) and (4) the displacer is returned to its lowest position, forcing the cold
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fluid back through the regenerator to the compression chamber. Heat is extracted

from the regenerator since the gas is now colder and the working fluid is then

recompressed to (1) isothermally. Because of the periodic nature of the cycle,

cooling is not continuous. However, if the regenerator has sufficient heat capacity,

temperature fluctuations at the low end can be minimized.

The regenerator is a component not present in most recuperative refrigeration

cycles. It performs a similar function to the counterflow heat exchanger in a

recuperative refrigerator with a few exceptions. A properly designed regenerator

should have the following characteristics:

1. Minimum flow resistance.

2. Minimum longitudinal heat conductance.

Fig. 8.21 Stirling cycle refrigerator

Fig. 8.22 p-V and T-S diagrams for Stirling cycle
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3. Large surface area formaximumheat transfer between the fluid and the solidmatrix.

4. Large volumetric heat capacity of the solid matrix.

5. Minimum void volume.

The characteristics of regenerators appear similar to those of good recuperative

heat exchangers, with the exception of the large heat capacity. This requirement is

particularly difficult in the application of the Stirling cycle to helium liquefaction or

refrigeration because, as discussed in Chap. 2, most solid materials have rather low

specific heats at liquid helium temperatures. As a result, metals with low Debye

temperature (YD) like lead or tin are often used in the lower end of a regenerator.

However, even these metals become unusable for regenerators below about 10 K.

To achieve refrigeration below 10 K, recuperative refrigerators use special

materials with specific heat anomalies that are associated with magnetic ordering

phase transitions. These materials are discussed further in Sect. 2.1.3.

For an ideal Stirling cycle, the total refrigeration resulting from the isothermal

expansion of a gas from p2 to p3 is given by the relationship

Qc

m
¼ R

M
Tc ln

p2
p3

(8.50)

where Tc is the expansion temperature, M is the molar mass of the working fluid

(4 kg/kmol for helium). Ideally, the cooling rate would be linearly proportional to

the cycle frequency. However, in actual applications frictional losses and other non-

idealities increase with frequency, providing optimum performance parameters for

practical refrigerators.

Example 8.4

Calculate the performance of a Stirling cycle refrigerator is to operate between

100 and 300 K with an inlet pressure of 0.1 MPa and compressor output at

2 MPa. This can be compared to the Reverse Brayton cycle refrigerator

discussed above.

Since these temperatures and pressures are far above the critical point for

helium, it is fair to approximate the helium gas as an ideal gas for the present

calculations. Since steps (1)–(2) and (3)–(4) are isochoric, we can use the ideal

gas law to calculate p2 and p4,

p1 ¼ 2 MPa; p2 ¼ p1ðT2=T1Þ ¼ 0:67 MPa; p3 ¼ 0:1 MPa;

p4 ¼ p3ðT4=T3Þ ¼ 0:3 MPa

Then the isothermal heat removal rate at low temperature is,

Qc

m
¼ R

M
Tc ln

p2
p3

¼ 2:08 kJ=kgK� 100 K� lnð0:67=0:1Þ ¼ 395 kJ=kg

(continued)
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Example 8.4 (continued)

And the heat rejected into the high temperature reservoir is,

Qh

m
¼ R

M
Th ln

p4
p1

¼ 2:08 kJ/kg K� 300 K� lnð0:33=2Þ ¼ �1184 kJ=kg

Thus, the coefficient of performance for this cycle is,

COP ¼ Qc

Qh � Qc
¼ 395

1184� 395
¼ 0:5 ¼ Tc

Th � Tc

Note that this is the same COP as for a Carnot cycle. Although the Stirling

cycle has theoretically the same COP as the Carnot cycle, there is an important

difference. Since the Stirling cycle has two isochoric processes, heat is stored (or

recovered) at constant volume during those stages of the cycle. Thus, the Stirling

cycle moves more heat for the same cooling power, which can result in further

inefficiencies in its practical application. On the other hand, as a Stirling cycle

refrigerator does not require such high compression ratios as Carnot it provides a

more practical approach for applications.

There are a number of factors that lead to less than ideal behavior in a Stirling

cycle refrigerator. One area of critical importance is in the regenerator design. It is

desirable to have the regenerator effectiveness be as high as possible meaning large

surface area and small flow passages, but this may not be possible in practice. Real

regenerators contain a non-zero void volume that traps gas during the cycle. The gas

in the void volume does not provide any cooling during expansion and reduces the

overall system efficiency. Also, the regenerators contribute to the overall pressure

drop of the cycle and axial conduction can lead to entropy generation.

8.6.2 Gifford McMahon Cycle

The Gifford–McMahon cycle was originally proposed in the early 1960s as a

regenerative cycle that could potentially reach the helium temperature range [14, 15].

TheGMcycle is similar to the Stirling cycle except that the oscillatory flow is achieved

by cycling valves that select where the flow distributes in the cycle, see Fig. 8.23.

The GM cycle description is shown in Fig. 8.24. At the beginning of the first

stage of the cycle, the displacer is at its lowest position with the outlet (return) valve

closed. The inlet (high pressure) valve is opened to allow high pressure helium gas

to fill the regenerator and space above the displacer at room temperature. Then, with

the inlet valve still open, the displacer is moved to its upper position. The high

pressure gas passes through the regenerator and is cooled isobarically by the matrix.

Cold gas then fills the space below the displacer. Next, with the displacer at its
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upper position, the inlet valve is closed and the outlet valve is opened. The gas in

the regenerator and cold space below the displacer undergoes expansion, which

produces the refrigeration. Finally, with the outlet valve still open, the displacer

moves back to the lowest position. The low pressure cold gas is warmed

isobarically by the matrix refilling the space above the displacer at room tempera-

ture completing the cycle.

Thermodynamically, the GM cycle is slightly more complex than the Stirling

cycle. The cooling and warming processes are isobaric while the compression and

expansion processes are isothermal. However, neither the compression nor expan-

sion processes involve a constant mass since there is flow into and out of the system

through the valves. The significant pressure drop occurring at the valves reduces the

Qload

Tload

Qrej

Trej oscillator
valves

continuous
compressor

Win

regenerator

Fig. 8.23 Gifford–McMahon

cycle

Fig. 8.24 Cycle description for the GM refrigerator
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overall thermodynamic efficiency of the GM cycle compared with that of the

Stirling cycle.

Figure 8.25displays typical cooling characteristics of large commercial single stage

GM cryocoolers. Performance is usually quoted in terms of cooling power at 80 K

(for which these machines are in the range of 300 W). Note that the cooling power

drops by about an order of magnitude at 10 K. Better low temperature (T < 10 K)

performance can be obtained with a two stage machine, but usually with reduced

cooling power at higher temperatures. Suchmachines require about 7 kWof compres-

sor power therefore operating at about 10% of Carnot efficiency.

8.6.3 Pulse Tube Cryocoolers

Pulse tube cryocoolers come in a variety of configurations and space does not

permit a complete explanation of all aspects of pulse tube technology [16]. Here we

consider two variations of the design. Both are based on the orifice pulse tube with

the distinction being in the compressor configuration. Figure 8.26 shows these two

configurations. For the Stirling type pulse tube cryocooler, the cycle frequency is

established by the compressor frequency, which is typically of order 100 Hz. On the

other hand, the GM cycle based pulse tube has a cycle frequency set by the cycling

of the valves and is generally of lower frequency, a few Hz.

As with the conventional Stirling and GM cycles, the pulse tube contains a

regenerator through which the cold and hot fluid is periodically cycled. The thermal

gradient in the regenerator is established in steady state with the low temperature

end in direct contact with the cold end of the pulse tube. However, a pulse tube does

Fig. 8.25 Typical cooling capacity of commercial Gifford McMahon cryocoolers
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not have a displacer. Rather the pulse tube component, that is simply a tube with

heat exchangers at either end, produces a net amount of cooling over the cycle by a

work transfer of energy from the cold to warm end. The work transfer can be

envisioned to occur through the action of a ‘squishy’ gas piston in the open pulse

tube volume. In such a conceptualization, the gas piston is comprised of the gas that

never travels far enough during any part of the cycle to leave the pulse tube at either

end. During the compression portion of the cycle the gas at the cold end pushes on

the gas piston moving it toward the warm end, while during the expansion portion

of the cycle, the gas piston pushes back on the cold end gas. Since the pressure is

higher during the first part of this cycle, and lower during the latter, a net flow of

work occurs from the cold to the warm end.

Optimized cooling with a pulse tube requires a proper phase shift between the

pressure and flow oscillations. A variety of phase-shifting mechanisms have been

developed to accomplish this objective.

Currently, there are a number of pulse tube cryocoolers that can achieve cooling

powers in excess of 1 W at 4.2 K. Examples of their application include small

capacity liquefiers and conduction cooling of low temperature superconducting

magnets as well as helium temperature electronic systems.

8.6.4 Hybrid Helium Liquefiers

Although the regenerative refrigeration cycles are not primarily used for liquefaction,

systems are being developed based on combining a two-stage pulse tube cooler with

other cycles to produce small scale liquid helium plants. In this case, the cryocooler is

used in place of an expansion engine to reduce the helium temperature to a low enough

temperature so that isenthalpic expansion can produce liquid. Such a hybrid system

Fig. 8.26 Comparison of Stirling type and GM type pulse tube cryocoolers [16]

8.6 Regenerative Referigeration Cycles 365



based on a modified Linde Hampson cycle is shown in Fig. 8.27. In this case, the

incoming helium stream is cooled by passing through three heat exchangers. Between

the first and second heat exchanger, the high pressure stream passes through a heat

exchanger attached to the first stage of the cryocooler. The flow then passes through

another heat exchanger before heat exchanging with the second stage of the

cryocooler. After the final heat exchanger, the flow expands through a JT valve. The

temperature of the helium stream at the inlet to the JT valve will depend on the mass

flow rate and the cooling power of the cryocooler.

A typical modern cryocooler may have a first stage cooling power of 50 W at

50 K and second stage power of 10 W at 10 K. This is generally a small capacity

compared to recuperative refrigerators and thus limits the liquefaction rate for such

systems to of order 1 liquid liter/h.

Fig. 8.27 Helium liquefier based on a two stage cryocooler precooling the Linde-Hampson cycle
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8.7 Nonideal Refrigeration Components

Practical refrigeration components are not capable of operating ideally or

reversibly. Heat exchangers must always transfer heat across a finite temperature

difference and expanders always allow some heat transfer between the working

fluid and the device. Compressors are not fully isothermal as discussed above. The

net effect of irreversible operation is to increase the work required per unit of

refrigeration produced. The optimum operating parameters (e.g., pressure ratio,

inlet temperatures, and mass flow fractions for expanders) for a particular cycle are

critically dependent on the degree of reversibility in each component in the system.

The degree of reversibility of a component is usually expressed as a ratio of

actual performance to the ideal performance obtained by a reversible process. The

performance parameter of interest for an isentropic compressor or expander is the

change in enthalpy experienced by the fluid. The efficiency, �, is defined as the

actual change in enthalpy divided by the maximum enthalpy change for a reversible

process:

� ¼ Dhactual
Dhreversible

(8.51)

For example, the efficiency of the expander in the cycle depicted in Fig. 8.20 can

be expressed as

ne ¼ h3 � h40

h3 � h4
(8.52)

where h3 – h4 is the enthalpy change produced by an isentropic expansion. Typical

expansion efficiencies are in the range of 70% for state-of-the-art machinery.

The thermal effectiveness is a similar measure of performance for heat

exchangers. According to the first law of thermodynamics for a flowing system,

enthalpy must be conserved in a heat exchanger. The second law requires that the

outlet temperature cannot be lower than the inlet temperature at the cold end of a

counterflow heat exchanger. At the hot end, the outlet temperature cannot be higher

than the inlet temperature. Using the points shown in Figs. 8.19 and 8.20, these

three constraints can be expressed as

_mi h2 � h3ð Þ ¼ _mo h1 � h5ð Þ (8.53a)

T5 � T3 (8.53b)

and

T1 � T2 (8.53c)
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where _mi and _mo are the inlet and outlet mass flow rates. The maximum possible

enthalpy transferable is always the lesser of the enthalpy difference on the two sides

of the heat exchanger. The largest possible enthalpy difference occurs when the

fluid is at the maximum temperature occurring within the heat exchanger at one end

and at the minimum temperature at the other end. Note that a difference in mass

flow rates between the two heat exchanger legs can produce a large difference in the

maximum enthalpy change possible in each of the two legs. The thermal effective-

ness of the heat exchanger is defined as the ratio of the actual enthalpy change in a

leg of the heat exchanger divided by the maximum possible enthalpy change,

Dhactual
Dhmax

(8.54)

As an example, consider the heat exchanger in the cycle depicted in Fig. 8.20.

For the high-pressure leg of the heat exchanger, the maximum possible enthalpy

drop would occur if the fluid entered at temperature T2 and left at temperature T5.
Therefore, the maximum possible enthalpy differences in the two legs of the heat

exchanger are

Dhmax2�3 ¼ h p2; T2ð Þ � h p3; T5ð Þ (8.55a)

and

Dhmax5�6 ¼ h p1; T2ð Þ � h p5; T5ð Þ (8.55b)

The maximum possible enthalpy change for either fluid stream is the lesser of these

two quantities. The thermal effectiveness can be written in terms of the actual

enthalpy change by inserting (8.54) into (8.55). The thermal effectiveness for heat

exchangers used in refrigeration systems typically ranges around 90%. Heat

exchangers with larger thermal effectiveness are large and expensive and must be

made with care to minimize the pressure drop.

8.8 Refrigeration Technology

When designing and constructing a helium cryogenic system for a particular

application, it is necessary to keep in mind a number of factors that are influenced

by economics and operational methods. Included among these are:

1. Duty cycle: Is the system to be operated on a short-term basis or is it part of a

dedicated, closed cycle system?

2. Owning and operating cost: A system may be costly to operate because of large

running costs including power, labor, or materials.

3. Overall size of the system.
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Within the context of the above factors there are several choices that can be

exercised when providing the helium coolant to a system. One of four methods is

appropriate for cooling the system to liquid helium temperatures.

1. Purchase liquid helium and vent the helium vapor that evolves.

2. Purchase helium gas, liquefy it on a batch basis, and vent the vapor.

3. Purchase helium gas, liquefy it on a batch basis, and recover the evolved vapor

which is then re-liquefied.

4. Purchase helium gas and a closed-cycle refrigerator. Run the system on a

continuous basis, recovering the gas cold.

Of the above four methods, the first is suitable only for small systems with low

duty cycles. Because helium is a rare and expensive commodity, this approach

should be limited in use. More typically, a combination of the second and third

methods is used in small research laboratories, where the percentage of helium

recovery depends on the care with which the system is operated. The last method,

although most efficient, is actually only suitable for systems that have the cryogen-

ics as an integral part. Clearly, economics is the major factor that determines the

cooling method best suited for a particular application.

Actual refrigeration systems operate far from the ideal efficiency. This fact occurs

because practical cycles deviate fromCarnot and the system components operate at less

than ideal efficiency. Some of the non-idealities of components have been described

above; however, those components that have the greatest tendency for nonideal perfor-

mance are the moving parts, including compressors and expansion engines.

The usual way of displaying actual refrigerator efficiencies is to display them as

a fraction of Carnot efficiency, TC/(TH – TC). Plotted in Fig. 8.28 are actual

Fig. 8.28 Efficiency of cryogenic refrigeration systems (From Strobridge [17] and revised by

Burns and Green [19])
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efficiencies (as a % of Carnot) of various cryogenic systems versus their 4.5 K

refrigeration capacity [18, 19]. This graph is revised from the original survey by

Strobridge [18]. It is significant to note that the most important factor in the

efficiency is the 4.5 K capacity of the machine. The reasons for the increase in

efficiency with size are twofold. For larger refrigerators, there is more to be gained

by making the system more efficient. The total power saved can be a significant cost

item and worth pursuing. Also, larger systems can justify more stages of refrigera-

tion and expansion, thus allowing the cycle to be tuned closer to ideal conditions.

An actual refrigeration system is made up of a number of individual components.

The cost of refrigeration components has been surveyed by a number of authors.

Plotted in Fig. 8.29 are costs as summarized by Burns and Green [18]. Plotted is the

capital cost in M$US versus that refrigeration capacity at 4.5 K based on the most

recent study. The graph suggests a relationship for the cost of refrigeration of

the form

C ¼ sPn (8.56)

where s is an empirical coefficient and n is an exponent less than unity. For C to be

the cost in millions of dollars and P be the 4.5 K cooling power in kilowatts, in 1997

Burns and Green found s ¼ 6000 and n ¼ 0.7 to be the best-fit parameters. This

relationship appears to fit all the data to within a factor of two. Furthermore, as

standard units become available, the empirical relationship suggested by Fig. 8.29

has an exponent closer to unity. This fact is the result of certain fixed costs such as

engineering and design that enter in the development of a new system. The

nonlinearity of capital cost coupled with the costs of operation and maintenance

Fig. 8.29 Cost of low-temperature refrigerators and liquefiers as a function of 4.5 K capacity

(From Burns and Green [19])
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are factors which must be considered when determining which cooling scheme is

appropriate for a particular system.

A schematic representation [20] of the way these components fit together in the

system is shown in Fig. 8.30. Besides the helium refrigerator or liquefier, there must

be storage of gaseous and liquid helium and nitrogen. Furthermore, in the helium

system, there must be some form of purifier to recycle the gas. Finally, there must

be a system of vacuum insulated transfer lines to take the fluids from storage or

liquefier to the system.

8.9 Summary

The foregoing chapter presents a survey of the principles of refrigeration and

liquefaction applied to helium. Greater detail can be considered particularly with

respect to real systems and components. However, as the goal of this book is the

emphasis of basic principles rather than hardware, no further discussion of this

subject is given here. For the reader who is particularly interested in this subject,

several of the references listed at the end this chapter will provide greater detail.

Questions

1. What is the primary difference between a cryogenic refrigerator and a liquefier?

How does that difference affect design of the flow circuit?

Fig. 8.30 Components making up a cryogenic system (From Robinson [21])
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2. Why does it take more energy to cool something from room temperature to 4 K,

than it does to warm the same thing from 4 K to room temperature?

3. What feature on a T-S diagram identifies the optimum discharge pressure for a

simple Linde-Hampson liquefier or refrigerator?

4. A cascade helium liquefier based on a Linde-Hampson cycle requires pre-cooling

with LH2 and LN2. Why is this? Discuss the thermodynamic efficiency of such a

cycle compared to that of a simple Claude cycle, which may not require pre-

cooling.

5. Most practical refrigeration cycles have a Figure of Merit less than that of the

Carnot cycle. Why?

6. List as many sources as you can of inefficiency in a real refrigerator based on a

Claude cycle.

7. Discuss the difference between closed and open cycle isothermal refrigeration.

What are the principal advantages to closed cycle systems?

8. Discuss the design of a heat exchanger versus that of a regenerator. What is the

function of each? What are the primary differences?

9. Compare the thermodynamic efficiency of a Stirling cycle to that of a Gifford-

McMahon cycle. Why is one more efficient than the other?

Problems

1. An alternate equation of state for real gases is described by the relationship

pv ¼ RT

1� b=4vð Þ4 �
a

v

(a) Using the universal behavior of gases near the critical point, determine

the coefficients a and b as functions of critical parameters. Evaluate a and

b for helium.

(b) Derive a relationship for the inversion temperature Tinv and calculate its

reduced maximum value ðTm
inv=TcÞ.

(c) Derive an expression for the Joule–Thomson coefficient mj and determine its

value for helium at the critical point.

2. (a) Calculate the ideal liquefaction work for helium that is initially at liquid

nitrogen temperature, 77 K.

(b) Determine the minimum quantity of liquid nitrogen required to precool a

unit mass of helium gas from 300 to 77 K. (hfg ¼ 198 kJ/kg for LN2).

(c) Compare the total work required for the liquid nitrogen precooling method

to that of an ideal liquefier.

3. Calculate the temperature corresponding to the maximum inversion pressure for

a van der Waals gas. Determine the corresponding temperature and pressure

for helium gas.
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4. Derive the following relationship for the entropy change for a van der Waals gas:

s2 � s1 ¼ Cp ln
T2
T1

� �
þ R ln

v2 � b

v1 � b

� �

Begin from a total differential of the entropy. Find the relationship between

temperatures and specific volumes for an isentropic change in state.

5. A particular piston compressor can achieve a maximum pressure ratio of p2/p1 ¼
100 by either isentropic or isothermal compression of a gas. The compressor is to be

used in one of two processes within a refrigeration cycle: (1) isentropic compres-

sion followed by isochoric cooling of the gas in the cylinder, or (2) isothermal

compression. Calculate the entropy change, heat removed from the gas, and the

maximumgas temperature for each process. Assume an ideal gas that begins at p¼
0.1MPa, T¼ 300K and ends up at T¼ 300K.Given that the pressure ratio and that

the maximum operating temperature will always be limited for real compressors,

which process should be used in the refrigeration cycle?

6. The Collins helium liquefaction system uses five heat exchangers and two

expanders, one cooling heat exchanger #2 and one cooling heat exchanger #4.

Draw the refrigeration cycle for this system showing the locations of all

components. Label the various stages of cooling on a helium T-S diagram.

Assume the following:

p1 ¼ 0:1 MPax1 ¼ 0:25Te1 ¼ 70 K

p2 ¼ 2 MPa x2 ¼ 0:5 Te1 ¼ 10 K

TH ¼ 300 K

Calculate the yield, compressor work, and figure of merit for an ideal liquefier.

7. Consider the ideal isothermal helium refrigerator based on the Claude cycle with

the first heat exchanger fixed by liquid nitrogen precooling at 77 K.

(a) Calculate the cooling per unit mass flow. Determine an optimum based on

varying me.

(b) Estimate the liquid nitrogen consumption.

(c) Determine the effective FOM for the entire system. Assume that T1 ¼ T2 ¼
300 K and p1 ¼ 0.1 MPa; p2 ¼ 3 MPa.

8. For the simple He II refrigerator shown schematically in Fig. 8.12, assume the

inlet temperature to JT2 is at 2.2 K, 0.1 MPa and the system is in steady-state

operation.

(a) Calculate the refrigeration capacity per unit mass flow.

(b) Estimate the temperature of the vapor which is exiting the heat exchanger on

the return side.
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9. A Stirling refrigerator is used to cool an infrared sensor. The working fluid is

helium gas which may be treated as ideal. 1f the pressure and temperature at

point 1 (see Fig. 8.16) are 0.5 MPa and 100 K, the volume ratio (V3/V2) is 10

and p2 is 0.1 MPa, Find:

(a) The pressure, temperature, and volume at points l through 4.

(b) The temperature of the regenerator after steps 1 and 2 if it consists of 0.1 kg

of copper and has an initial temperature of 100 K.

(c) Repeat part b if the regenerator consists of 0.1 kg of lead.

(d) On the basis of thermodynamics alone, which of the above materials is

preferable for use in the regenerator?

(e) Find the coefficient of performance (COP).

10. An isobaric refrigerator is to be designed with an inlet temperature T1 ¼ T2 ¼
300 K and an inlet pressure p1 ¼ 0.1 MPa to provide cooling at temperatures at

or below 18.5 K. Assume the refrigerator is too small to use the work produced

by the expander.

(a) For a heat exchanger effectiveness and an expander efficiency of unity, calcu-

late the compressor work per unit of cooling produced ð _W= _QcÞ for isothermal

compressoroutlet pressures of 0.5, 1, 2, 4, and10MPa. Plot _W= _Qc as a function

of the compression ratio p2/p1 and fit the curve with an equation.
(b) Redo the calculation in part a assuming a heat exchanger effectiveness of

0.95 and expander efficiency of 0.7.

11. Starting with the relationship for the entropy of an ideal gas,

s ¼ Cp lnT � R ln pþ s0

estimate the pressure necessary to reduce the entropy of 300 K helium gas to

that of the liquid phase at 4.2 K, 0.1 MPa. Use the ideal gas equation of state to

estimate the inter-molecular spacing. Is this physically possible?

12. Use the typical cooling capacity for a GM cryocooler (Fig. 8.25) to calculate the

time needed to cool a 10 kg mass of copper from 80–10 K. Assume that the

copper and cryocooler are thermally insulated from the environment so that the

only heat to remove is the internal energy of the copper mass. Redo the

calculation for the case where the mass has a steady heat generation of 10 W.

13. A counterflow heat exchanger is to be used to cool high pressure (ph ¼ 2 MPa)

helium gas at 20 K and amass flow rate of 1 kg/s. The low pressure return stream

is at 0.1 MPa and enters the heat exchanger at 5 K.

(a) Assuming the heat exchanger is 100% effective, what are the outlet fluid

stream temperatures?

(b) Calculate the same quantities for e ¼ 90%. For this case, calculate the log-

mean temperature difference and the required UA.

(c) Make a sketch of the temperature profile along the heat exchanger for both

cases.
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Chapter 9
3He and Refrigeration Below 1 K

By far, the most abundant naturally occurring isotope of helium is 4He. However,

there exists one other stable isotope, 3He, which is only about 0.1 ppm of natural

helium but can be obtained readily as a byproduct of nuclear reactions. The physical

behavior of low-temperature 3He is fundamentally quite different from that of the

common isotope and 3He has application in a number of areas in cryogenics; most

notable of these is the role it plays in the achievement of temperatures below 1 K.

This temperature range is primarily of interest in the studies of basic physical

phenomena.

Interest in performing experiments with 3He was not raised significantly until the

mid 1940s, when it was determined that 3He was a by-product of the Li6 neutron

capture reaction,

6Liþ n !3Hþ a

! 3Heþ b

t ¼ 12:5 year

and therefore could be isolated in quantities sufficient for low-temperature experi-

mentation. 6Li is relatively abundant, occurring as 7.5% of natural lithium, and the

tritium b-decay reaction has a half-life of 12.5 year. Consequently, the wide

availability of neutrons in experimental fission reactors has made 3He available to

numerous researchers in low-temperature physics. Although the gas is a relatively

expensive commodity, costing more than $ 100 to $1000US per STP liter, it is still

orders of magnitude less costly than it would be to separate 3He from natural

helium. In recent years, the cost of 3He has escalated significantly as a result of

increased demand mostly as a detector of neutrons [1]. This development has put

heavy financial and access burdens on low temperature physicists working in the

sub-Kelvin temperature range.
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9.1 Properties of Pure 3He

Some properties of liquid 3He are listed in Table 9.1. Note that the critical point is

below the normal boiling point of 4He. This should not be surprising given the

lighter molecule. In fact, when 3He was first discovered and separated there was

some doubt about whether it would liquefy at all due to the very high zero point

energy. Today 3He is used in a number of low temperature experimental systems

and usually condensed by heat exchange with a boiling pot of boiling 4He (He II) at

T � 1 K.

The relatively low binding energy of 3He also causes the vapor pressure to be

significantly higher than that of the common isotope. This fact is important for

distillation of 3He–4He mixtures as well as reducing the pumping speed required for

very low temperature (T < 1 K) refrigerators. One other important feature of 3He is

that is possesses a nonzero magnetic moment due to the unpaired nuclear spin. The

magnetic moment is responsible for a large spin entropy which contributes a major

fraction of the fluid entropy over much of its temperature range. For example, the

ratio of specific heats of 3He and 4He at 1 K is about 40, a ratio that increases with

decreasing temperature.
3He is observed to experience a superfluid transition at about 2.6 mK, about three

orders of magnitude in temperature below the l-point of 4He. This ratio should also
not be surprising owing to the wholly different statistical character of the two fluids,

see Table 9.2. 4He has integral nuclear spin and obeys Bose–Einstein statistics. 3He,

on the other hand, has half-integer spin and a nuclear magnetic moment, and thus

obeys Fermi–Dirac statistics, similar to that of electrons. These two statistical

models predict very different physical behavior. Consider for example, the conden-

sation mechanisms associated with superfluid transitions in 3He and 4He. The

superfluid transition from 4He is described approximately by Bose–Einstein (BE)

Table 9.1 Some properties of liquid 3He [2]

Normal boiling point (K) 3.191

Critical constants

Tc (K) 3.324

pc (MPa) 0.115

rc (kg/m
3) 41.3

Density at 0 K (kg/m3) 82.3

Compressibility at 0 K (mm3/J) 361

Heat of vaporization at 0 K (J/mol) 20.56

Surface tension at 0 K (mJ/m2) 0.16

Velocity of sound at 0 K (m/s) 183

Thermal conductivity at 3.2 K (W/mK) 0.020

Viscosity at 3.2 K (mPa s) 1.9

Magnetic moment (nuclear magnetons) �2.127

Vapor pressure at 1.7 K (kPa) 10.9

Specific heat at 1.0 K(J/mol � K) 4.222

Superfluid transition (mK) 2.6
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condensation. In the case of 3He, the condensation is more analogous to that

occurring in a superconductor which requires pairing of the Fermi particles to

create the Bose condensate.

The vapor pressure of 3He is greater than that of 4He, allowing a lower tempera-

ture to be achieved by simply pumping on the liquid. A graphical comparison of the

vapor pressure as a function of temperature for the two isotopes is shown in Fig. 9.1.

Note that the pressure is on a semi-log scale in this graph and that the 3He vapor

pressure is between one and two orders of magnitude greater than that of 4He for the

same bath temperature. Therefore, it is much more efficient to operate a pumped
3He refrigerator. However, since 3He is a very expensive commodity, it is generally

only available in gaseous form. Therefore, the design a 3He evaporative refrigerator

must include a boiling 4He pot to provide the heat sink to condense the circulating
3He. This pot also offers a thermal barrier and heat sink to minimize the conductive

and radiative heat loading on the 3He stage.

The practical embodiment of such a system is shown schematically in Fig 9.2.

The incoming 3He is condensed to liquid by thermal contact with the boiling 4He

bath. The operating temperature of this bath is normally in the 1–1.3 K range

depending on the overall heat loading and ultimate pressure of the pump or cold

compressor (0.1–1 torr). A separate pump loop circulates the 3He at a pressure of

0.1 torr achieving temperatures in the range of 0.4 K. Unfortunately, even though

Table 9.2 Statistical comparison of Helium isotopes
4He 3He

Nuclear spin Integer Half integer

Statistics Bose–Einstein Fermi–Dirac

Magnetic moment None –2.127 mB
Condensation BE type BCS type

Fig 9.1 Vapor pressure of 3He and 4He (From Huang [3])
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this is significantly below the temperature achievable using 4He, it still is not low

enough for many low temperature experiments of interest. Fortunately, there is

another refrigeration method that uses the characteristics of 3He-4He mixtures to

achieve steady temperatures in a millikelvin range.

9.2 3He–4He Mixtures and Dilution Refrigeration

We now consider the behavior of mixtures of 3He and 4He. Before doing so, we

should keep in mind that the only difference between these two isotopes is that 3He

has one fewer neutron in the nucleus. This means that the two isotopes obey

different statistical models, which clearly manifests itself in divergent behavior of

the two fluids. Otherwise, they are chemically identical. One should keep in mind

the significant difference between the behavior of mixtures of 3He and 4He versus

mixtures of soluble classical fluids like liquid O2 and N2.
3He and 4He mixtures are technically important for they allow improved methods

of cooling at very low temperatures. How this works can be understood by reference

to the equilibrium phase diagram of the 3He–4He mixture system is shown in

Fig. 9.3. The first thing to note in this diagram is that the l-point, which marks the

Fig 9.2 Schematic of 3He

refrigerator
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phase transition between He I and He II, is depressed by the addition of 3He. In fact,

this transition disappears at 66.9% 3He where it terminates at the tri-critical point

(TCP). Significant for refrigeration is the existence of a phase-separation region

below this point. 3He–4Hemixtures are the only systems that experience a separation

of phases due to isotopic mass differences!

In the temperature-concentration plane, the TCP occurs at T ¼ 0.872 K and

x ¼ 66.9%. The TCP is physically quite interesting because it represents the intersec-

tion of three phase boundaries, one being a second-order phase transition, the l-line.
Another feature apparent in Fig. 9.3 is the finite solubility of 3He in the 4He-rich phase.

At absolute zero the phase boundary intersects the concentration axis at x ¼ 6.4%.

This effect is contrary to classical physical arguments which would require a two-

phase region in equilibrium at absolute zero to be completely separated to achieve

minimum entropy. However, this is not a classical system. The occurrence of finite

solubility of 3He in 4He even at absolute zero is the result of the quantum statistical

character of the system. More important technically is that this feature allows dilution

refrigerators to operate achieving near absolute zero temperature.

The existence of a finite solubility allows heat to be removed from the system by

transferring 3He from the pure component to the dilute component and thereby

extracting the entropy of mixing, which is finite even at absolute zero. In a two-

phase system, the entropy of mixing can be written

Ds ¼ R

M
x ln xþ 1� xð Þ ln 1� xð Þ½ � (9.1)

whereM, the molecular weight of 3He, is equal to 3 kg/kmol. For 3He–4He mixtures

at T ’ 50 mK, x ¼ 0.064 and thus Ds ¼ 0.66 kJ/kg K. At any finite temperature, a

very sizable amount of heat can be removed by this mechanism. The process forms

the basis for dilution refrigeration. The principles of which are described here only

briefly. The reader who is interested in further detail should consult one of various

books on low temperature physics [2, 4].

Fig. 9.3 Phase diagram

of 3He–4He mixtures
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The principal components of a continuously operating dilution refrigerator are

shown in Fig. 9.4. The system consists of a closed-loop circulation system in which
3He is usually the circulating component. Refrigeration is obtained by locating the

phase boundary between the two fluid components in the mixing chamber at the

lower end of the system. Then by circulating the 3He, the entropy of mixing is

removed from this region. The rate of cooling, independent of nonideal loss

mechanisms, is

Q ¼ _m

M
TDs ¼ _m

M
RT x ln xþ 1� xð Þ ln 1� xð Þ½ � (9.2)

Based on (9.2) a mass flow rate of 0.3 mg/s is required to obtain a cooling power of

10 mW at 50 mK, a reasonable value for a moderate-size dilution refrigeration

system. The state-of-the-art in this technology is continuous cooling in the range of

a few millikelvin.

Fig. 9.4 Principal parts of a continuously operating dilution refrigerator [2]
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In addition to the mixing chamber, there are several other important components

to the dilution refrigerator. The 4He pot, which operates around 1.2 K, condenses the

circulating 3He similarly as in a conventional 3He refrigerator and provides a low-

temperature heat sink for heat leaks into the system. Usually a combination of

concentric counterflow and discrete heat exchangers are used in dilution

refrigerators. The latter type are more effective at obtaining the lowest temperatures.

The still is the point in the cooling circuit where the 3He is preferentially evaporated

to produce the circulation. Due to its high value, the low pressure 3He gas is

circulated through a special vacuum pump to prevent loss of product and then

returned to the refrigerator by condensation with the 4He pot. Typically, the still

operates around 0.5 K where the 3He vapor pressure is high enough to obtain sizable

mass flow easily. Often a special 4He film flow inhibitor or orifice is installed in the

still pumping line so that the superfluid film will not creep up and cause significant
4He evaporation. Circulation of 4He can result in degradation of the performance of a
3He–4He dilution refrigerator.

Dilution refrigerators are the best method of obtaining continuous cooling a

temperatures below 0.4 K and modern systems now reach below 10 mK. Also,

recently developed are dilution refrigerators that operate with cryocoolers to

replace the liquid 4He bath [5]. Other options include adiabatic demagnetization

can be employed to reach the millikelvin regime using paramagnetic salts as

working elements. This topic is discussed in Sect. 10.3. It is also possible to

reach the micro-kelvin regime using adiabatic demagnetization of nuclear spins.

However, in both these cases, it is generally not possible to obtain continuous

cooling.

9.3 Statistical Models for Pure 3He

We now delve briefly into the physics of 3He to provide a better understanding of

the unique features of this fluid. By analogy to the treatment of pure 4He in Chap. 6,

it is appropriate to discuss the physical models for 3He in terms of deviations from

the ideal quantum gas model. In this case, we consider quantum statistical mechan-

ics applied to particles obeying Fermi–Dirac statistics. This problem is basically

similar to the free-electron model in metals with the relative temperature range and

densities being the main differences.

As is the case for the ideal Bose gas model, the properties of an ideal Fermi gas

are established in terms of a summation over discrete energy levels. The properties

of an ideal quantum gas can be obtained by taking these discrete levels in the

density of states to be infinitesimal and converting the summation to an integral.

The resulting expression for the number density can be written

N

V
¼ 2p

h3
2mð Þ3=2

ð1
0

e1=2de
z�1ebe þ 1

(9.3)
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where, as in the case of the Bose gas, z ¼ ebm is the fugacity, m the chemical

potential and b ¼ 1/kBT. Equation (9.3) is an application of (6.9) for the special

case of a system of particles obeying Fermi–Dirac statistics. Note that an important

corollary to Fermi statistics is that the system of particles must obey the Pauli

exclusion and therefore can have energy level occupation numbers of 0 or 1. This

fact is important because there is no need to be concerned with substantial occupa-

tion numbers in the ground state as is the case in Bose statistics. By further analogy

with the discussion in Chap. 6, the energy density of a set of Fermi particles is

E

V
¼ 2p

h3
2mð Þ3=2

ð1
0

e1=2de
z�1ebe þ 1

(9.4)

which can be used in consort with (9.3) to derive the properties of the gas. Note that

for a set of Fermi particles having spin s, the energy levels have a (2s + 1)

degeneracy, which is only removed by splitting the levels in a magnetic held. At

T ¼ 0, all levels are occupied up to the Fermi energy which is defined by the

expression

eF ¼ �h2

2m

6p2

2sþ 1ð Þ
N

V

� �2=3

¼ kBTF (9.5)

Introducing numerical values appropriate to 3He with spin 1
2
, the Fermi tempera-

ture TF is computed to be 4.9 K. Therefore, considerable effects of degeneracy in
3He are expected at low temperatures. For a finite temperature, a fraction of the

particles are excited above the Fermi energy, the result of which is a smearing of the

distribution function eF.
The specific heat of an ideal Fermi gas is obtained from the derivative of the

internal energy per particle:

Cv

NkB
¼ 1

NkB

@E

@T

� �
v

(9.6)

The result of this calculation [5] is plotted in Fig. 9.5 for a range of energies

including eF.Note that at high temperatures, kBT > eF; the specific heat asymptotically

Fig. 9.5 Specific heat of an ideal Fermi gas [5]
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approaches the Boltzmann limit ofCv ¼ 3/2NkB. At low temperatures, kB T � eF; the
behavior of a degenerate Fermi gas is evident with a linear temperature dependence of

the specific heat,

Cv

NkB
’ p2

2

T

TF
(9.7)

which is the same result obtained for the free-electron model in Chap. 2.

The behavior of liquid 3He is different from that of an ideal Fermi gas. This is

primarily the result of the sizable interparticle interactions which occur in the fluid.

Landau’s theory of Fermi liquids is a fairly straightforward approach to this

problem [5–7]. This theory, which is primarily a modification to the ideal quantum

gas model, calls for introducing an effective mass m*, which in turn modifies the

relationship for the physical properties of the Fermi liquid. The effective mass

should then be calculable and compared with experimental results for 3He.

Considering the behavior of the specific heat at low temperatures, the Landau

theory predicts that

Cv

NkB
¼ m�

m

Cv

NkB

� �
ideal

’ p2

2

T

T�
F

� �
(9.8)

where in this case the modified Fermi temperature is given by the expression

T�
F ¼ m

m�
� �

TF (9.9)

By comparing (9.8) with experiment it is possible to determine the effective mass

appropriate to 3He. For example, plotted in Fig. 9.6 is the specific heat of liquid
3He compared to that of an ideal Fermi gas of liquid density, TF ¼ 4.9 K. Clearly,

the ideal gas model is a poor representation of the experimental data. A better fit

to the low-temperature specific heat is obtained with a choice of effective mass

about twice that of the 3He nucleus, which indicates the Fermi temperature appro-

priate to the Landau model is closer to 2.5 K.

The transport properties of 3He can also be understood in terms of Fermi liquid

theory. The theoretical development of this problem stems from a solution to the

semi-classical Boltzmann equation. In this model the viscous and thermal

interactions are associated with the scattering of quasiparticles at the Fermi surface.

For an isotropic fluid, the relationship for the viscosity may be written in the general

form for T < Tf

m � A

T2
(9.10)

where A is a function of the effective mass. At low temperatures, T ≲ 0.1 K, the

viscosity of 3He has been shown to be consistent with the inverse square relationship
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in (9.10) with A ¼ 0.38 � 0.06 mPa s K2. This means that the viscosity of 3He is

about 100 mPa s at 3 mK, a value close to that of light machine oil.

The thermal conductivity according to Fermi liquid theory should go as,

k � B

T
(9.11)

The inverse temperature dependence of the thermal conductivity comes from the

fact that a degenerate Fermi liquid has Cv proportional to T which when coupled

with the form of the viscosity yields k � T�1. Experimental results generally

support this conclusion although only at very low temperatures, T < 20 mK,

where Cv is linear with temperature with B ~ 0.4 mW/m [9]. As a point of

reference, the thermal conductivity of liquid 3He at 3 mK is approximately equal

to that of pure copper at the same temperature.

9.4 Submillikelvin Refrigeration

To study the behavior of 3He or any other material below a few millikelvin, it has

been necessary to use additional cooling mechanisms beyond that of dilution

refrigeration. There are primarily two methods to achieve lower temperatures,

one being adiabatic demagnetization of nuclear spins and the other Pomeranchuk

cooling.

Fig. 9.6 Specific heat of liquid 3He compared to curves for ideal Fermi gas [8]
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Adiabatic demagnetization has been used extensively for very low temperature

refrigeration [10, 11]. It is usually a single-cycle process. To achieve cooling by

adiabatic demagnetization it is necessary to have a working magnetic material

which has weakly interacting spins so that the ordering temperature is below the

minimum temperature to be achieved. For submillikelvin refrigeration, the only

presently successful method is demagnetization of nuclear spins in materials such

as Cu or PrNi5.

An alternative method used to cool 3He to about 1 mK is adiabatic compression

of 3He along its melting line. In fact, this was the method used to originally discover

the superfluid transition in 3He. The method was first suggested by Pomeranchuk

[12], who predicted the existence of a minimum in the solid–liquid phase boundary

for pure 3He (Tmin ¼ 319 mK, pmin ¼ 2.913 MPa). The minimum exists because

the spin ordering in the liquid occurs at higher temperatures than that in the solid.

Therefore, between the ordering temperature of the liquid and that of the solid, the

entropy of the solid is greater and cooling can be achieved by adiabatically

compressing the liquid through the solid–liquid phase transition.

The thermodynamics of Pomeranchuk cooling are reasonably straightforward

given the existence of the minimum in the solid–liquid phase boundary in 3He.

Using the Clausius–Clapeyron equation for the phase transition,

dp

dT
¼ s1 � ss

vl � vs
(9.12)

for temperatures below the minimum the liquid state has a greater specific volume

than that of the solid. Below about 40 mK, the denominator in (9.12) takes on

approximately a constant value of 1.31 cm3/mol. The entropy of each phase is

dominated by the spin contribution. The liquid has an entropy that is approximately

linear with temperature,

sl ¼ R

M

T

T��
F

� �
ln 2 (9.13)

where T��
F is the pressure-dependent magnetic Fermi temperature. The entropy of

the solid is nearly constant until its magnetic ordering temperature, TN ¼ 1.1 mK.

The relationship for the solid entropy is more complex, involving the nuclear

exchange interaction, J, that is,

ss ¼ R

M

� �
ln 2� 1

M

X
n

An
J

kBT

� �nþ1

(9.14)

where An are weighting factors in the summation. The behavior of the entropy of

each phase is shown in Fig. 9.7.

Pomeranchuk cooling is achieved by first bringing the system to thermodynamic

equilibrium at a temperature below the minimum in the solid–liquid phase boundary.

This is best carried out by using a continuously operating dilution refrigerator. With

the fluid compressed to just below the melting line, the Pomeranchuk cell is then
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isolated from the dilution refrigerator and adiabatically compressed across the phase

boundary. Temperature reductions of at least an order of magnitude are possible. For

example, startingwith the systemat 30mK, point① in Fig. 9.7, adiabatic compression

along line ① to ② achieves a minimum temperature of about 1 mK. Obviously, as

with adiabatic demagnetization, thismethod is not suited to continuous refrigeration at

the lower temperature. Furthermore, the end product of the cooling stage is a two-

phase mixture of solid and liquid 3He, which has the added difficulty of separating the

physical phenomena occurring in each phase. This situation can lead to confusion

when one of the phases is experiencing most unusual behavior as occurs in 3He below

3mK.As a result of these complications and the interest in studying the magnetic field

dependence of 3He, the most popular method for cooling 3He to submillikelvin

temperatures is adiabatic demagnetization.

9.5 Superfluid 3He

Predictions as early as the 1960s indicated that 3He would become superfluid by a

mechanism similar to that occurring in superconductors. The uncertainty was based

mainly on determining the transition temperature. The physical basis known as

BCS-type interaction has a well established form for the transition temperature,

Tc ¼ 2:28
�hP2

F

kBm� exp
p
2

h2

m�
PF

f Uj jPFh i
� �

(9.15)

where U is the exchange interaction and f is the particle wave function. It is

difficult to predict Tc from first principles because m*, the effective mass, is

primarily an experimental quantity. Since m* enters in the denominator of the

exponential argument, small changes in its value can have profound effect on Tc.

Fig. 9.7 Entropy of solid and liquid 3He along the melting curve. Temperatures indicated include

Tmin, the minimum in the melting curve and TN, the spin ordering temperature in the solid
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However, with liquid helium research perpetually pursuing lower temperatures, it

was only a matter of time before superfluid He would be discovered.

The first observations attributed to a new phase transition in 3He were made by

Osheroff, Richardson and Lee [13]. Their results were eventually shown to be the

first observation of the superfluid transition in 3He for which they were awarded the

Nobel Prize. Their experiment was an investigation of the pressure variations along

the liquid–solid phase boundary using a Pomeranchuk cell. Two phase transitions

were observed. The first, referred to as the A-transition, occurred at 2.65 mK and

was associated with a slope change in the pressure variation of the cell, suggesting a

higher-order phase transition. The lower-temperature phase transition B, occurring

at 1.8 mK, was seen as a first-order transition with an associated latent heat. Since

that time, an enormous amount of research has been conducted on these new phases

of 3He. In this brief review, it is not possible to do justice to the state-of-the-art in

superfluid 3He research. Fortunately, a number of excellent reviews are available in

the literature [14]. The present section presents some of the interesting properties of

these new phases of 3He.

To begin, consider the phase diagram of 3He in the very-low-temperature regime

as it depends on pressure, temperature, and magnetic field; see Fig. 9.8. The

dependence on magnetic field is quite unique for pure liquids. The diagram

indicates the existence of primarily three phases in addition to the normal Fermi

liquid occurring above Tc. The intersection point between the A, B, and normal

Fermi liquid phases at zero magnetic field is referred to as the polycritical point

(PCP). Note that the A phase takes precedence over the B phase with increasing

magnetic field, indicating A is more strongly magnetic than B.

Fig. 9.8 P-T-H phase diagram of very-low-temperature 3He
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The theoretical description of superfluid 3He is extremely complex and beyond

the scope of the present discussion. Evidence suggests that three phases occur in 3He

because it is a magnetic superfluid that pairs in a triplet state. This fact establishes an

important difference between the interactions occurring in superfluid 3He and those

in conventional superconductors. In the latter case the pairing is in the singlet state

and consequently only one phase is present. In 3He three orientations are possible for

the nuclear spins, two with parallel and one with anti-parallel alignment. Since the A

phases are more strongly magnetic, it is expected that they contain mostly parallel

spin orientations. The B phase being less magnetic must contain a significant

fraction of anti-parallel aligned spins. This effect has been shown experimentally

through susceptibility measurements. The A andA, phases have magnetic properties

approximately the same as the normal Fermi liquid with a temperature-independent

susceptibility. The B phase has a decreasing susceptibility with temperature sugges-

tive of an anti-ferromagnetic ordering.

Perhaps themost interesting aspects of 3He in this low-temperature regime are those

normally associated with superfluidity, that is, anomalous behavior in the energy

transport mechanisms. As discussed in Chap. 6, superfluid 4He (He II) has a number

of very unique transport properties. Among these are new sound propagation

mechanisms (second sound), viscosity that depends on the mechanism used for mea-

surement, the existence of vortex lines in the bulk fluid, and extremely high heat

transport capability. The latter featuremakesHe II a technically useful fluid. Generally,

these properties are explained successfully in terms of the reasonably simple two-fluid

model. It is therefore of interest to consider similar characteristics of superfluid 3He.

One property that makes a superfluid very different from ordinary fluids is its

unique sound propagation mechanisms. In addition to ordinary sound propagation,

there is second sound and fourth sound which is propagation through a superleak.

This latter sound propagation mechanism is one of several methods used to measure

the superfluid density. In fact, it can be shown from the two-fluid model that the

superfluid density rs is related directly to the fourth and first sound velocities:

rs
r
¼ c4

c1

� �2

(9.16)

Since rs is an important parameter in the theory of superfluidity, experimental

determinations of r can be compared with calculation. Such an analysis, based on a

renormalized theoretical calculation, is well beyond the scope of the present

discussion. However, it is important to be aware of the substantial difference

between the behavior of rs in
3He and that for the same parameter in 4He. These

properties have different temperature dependencies owing to the different conden-

sation mechanisms. In the BCS theory, which is appropriate for superfluid 3He, the

superfluid density goes as the order parameter squared which is approximately

linear with temperature near Tc:

rs
r
� 1� T

Tc
(9.17)
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This equation is roughly consistent with experiment. By contrast, the temperature

dependence of rs for
4He varies as 1 – (T/Tl) [5, 6].

Now turn to the problem of viscous flow in superfluid 3He. Above Tc, the

viscosity of 3He is that of a normal Fermi liquid, which increases with decreasing

temperature as 1/T2. Therefore, in the millikelvin range, the viscosity is very large.

The viscosity of 3He decreases for temperatures below Tc; it never becomes

vanishingly small. In fact, there is a minimum in the viscosity occurring around

1.6 mK for which the ratio to that of the Fermi liquid at the A transition is

approximately 0.2. Therefore, although superfluid 3He has a decreasing viscosity,

it is still orders of magnitude more viscous than 4He.

Heat transport in superfluid 3He canbediscussed in termsof two-fluid hydrodynamics.

Therefore, the mechanism which is appropriate for describing heat flow is internal

convection between the normal and superfluid components. For fine capillary tubes

of diameter d, at low heat fluxes and laminar flow conditions, the dominant mecha-

nism is the normal fluid viscous interaction with the tube walls. In this case, an

effective thermal conductivity ke, may be defined as

ke ¼ d2 rsð Þ2T
32mn

(9.18)

where mn is the normal fluid viscosity. However, in the case of 3He the value of mn is
about four orders of magnitude larger than mn for

4He around 1.5 K. Therefore, the

effective thermal conductivity of superfluid 3He in small-diameter channels should

be much less than occurs in 4He. To establish some rough numerical values for this

property, note that the thermal conductivity of the normal Fermi liquid increases

with decreasing temperature until it reaches a value of 0.1 W/m K just above Tc.
Below Tc, the effective thermal conductivity in a channel of diameter 3 mm, is

about 10 times higher or 1 W/m K. Although superfluid 3He does not possess the

phenomenally high heat conductivity capability evident in superfluid 4He, it exists

at much lower temperatures where its heat conductivity is comparable to that of

pure metals.

In the above brief description of the properties of 3He, both normal and superfluid, a

number of interesting features have been reviewed. A great deal more is known about
3He, however, space and theoretical limitations do not permit further analysis of this

interesting system. There are a number of other unique properties of superfluid 3He not

described heretofore. These properties include the anisotropic nature of the system.

Because of magnetic properties, the fluid can be oriented in a magnetic field. Also,

superfluid 3He is believed to possess some spatial correlations called “textures,”

referring to correlated behavior of 3He over dimensions long compared to the coher-

ence length. Needless to say, these are very new theoretical and experimental topics,

which explains the substantial research effort in this very exciting field.
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Questions

1. What are the unique features of the 3He-4He phase diagram that make possible

dilution refrigeration at millikelvin temperatures?

2. Why does 3He have a higher vapor pressure than 4He?

References

1. D. Kramer, DOE Begins Rationing 3He, Physics Today, Vol. 63, 23, June 2010 and D. Shea

and D. Morgan, The 3He shortage: Supply, Demand and Options for Congress Report to

Congress Dec, 22, 2010.

2. V. Lounasmaa, Experimental Principles and Methods Below 1 K, Academic Press, London,

1974.

3. Y. H. Huang and G. B. Chen, A Practical Vapor Pressure Equation for Helium-3 from 0.01 K

to the Critical Point, Cryogenics Vol. 46, 833 (2006).

4. P.V.E McClintock, D. J. Meredith and J. K. Wigmore, Matter at Low Temperatures, Blackie
and Sons, Ltd, Glasgow, UK (1984).

5. K. Uhlig, 3He/4He dilution refrigerator with high cooling capacity and direct pulse tube pre-

cooling, Cryogenics Vol. 48, 511 (2008).

6. L. D. Landau, The Theory of a Fermi Liquid, Sov. Phys. JETP 3, 920 (1957); 5, 101 (1957);

8, 70 (1959).

7. D. M. Lee and R. C. Richardson, Superfluid 3He, in The Physics of Liquid and Solid Helium,
Part II, K. H. Bennemann and J. B. Ketterson (Eds.), Chap. 4, Wiley, New York, 1978.

8. W. F. Keller, Helium 3 and Helium 4, Plenum Press, London, 1969.

9. J. C. Wheatly, Experimental Properties of Liquid 3He, in The Helium Liquids. J. G. M.

Armitage and I. E. Farquar (Eds.), Academic Press, London, 1975.

10. K. Andres and O. V. Lounasmaa, Recent Progress in Nuclear Cooling, Prog. Low Temp. Phys.
8, 221 1982.

11. V. Lounasmaa, The Pursuit of Absolute Zero, Adv. Cryog. Eng. 29, 551 (1984).

12. I. Pomeranchuk, On the Theory of Liquid 3He, Zh. Eksp. Teor. Fiz. 20, 919 (1950).

13. D. D. Osheroff, R. C. Richardson, and D. M. Lee, Evidence for a New Phase of Solid 3He,

Phys. Rev. Lett. 28, 885 (1972).

14. J. C. Wheatly, Superfluid Phases of Helium Three, Phys. Today 29, 32 (1976).

Further Readings

W. F. Keller, Helium 3 and Helium 4, Plenum Press, London, 1969.

O. V. Lounasmaa, Experimental Principles and Methods Below 1 K, Academic Press, London,

1974.

P.V.E McClintock, D. J. Meredith and J. K. Wigmore, Matter at Low Temperatures, Blackie and
Sons, Ltd, Glasgow, UK (1984).

G. K. White and P. J. Meeson, Experimental Techniques in Low-Temperature Physics, 4th Ed,

Oxford Science Publication, 2002.

J. Wilks, The Properties of Liquid and Solid Helium, Clarendon Press, Oxford, 1967.

392 9 3He and Refrigeration Below 1 K



Chapter 10

Special Topics in Helium Cryogenics

In the preceding chapters, the emphasis has been on the properties of helium and its

applications. However, there are numerous other topics in cryogenics which do not

fall in this specific context but still have considerable relevance to the general

subject of helium cryogenics. In the present chapter, three such topics are

overviewed: (1) thermal insulation systems, (2) helium adsorption, and (3) mag-

netic refrigeration. The review of these subjects is not all-inclusive but rather

represents a few areas of potential interest to the general subject of low-temperature

phenomena important to the useful application of helium cryogenics.

10.1 Thermal Insulation

In the design of any cryogenic system, thermal isolation of the low-temperature

environment must be achieved effectively. This is particularly true for low temper-

ature helium systems owing to the small value of the latent heat of liquid helium and

high cost per watt of refrigeration in this temperature range.

No thermal insulation system is perfect. The level of insulation can vary

depending on the requirements of the application and the amount of effort applied.

For very long life liquid storage tanks, the insulation is complicated and optimized

to minimize the heat leak. Other systems that can tolerate a lower level of thermal

isolation can have much simpler thermal insulation. However in any cryogenic

application, the design and implementation of the thermal insulation system is a

critical task.

There are various modes of heat transfer at play in a thermal insulation system.

These involve different forms of the three principal modes of heat transfer:

1. Solid heat conduction through the structural supports, instrumentation wires and

any insulating material.

2. Heat transport through any residual gas that may exist in the insulating vacuum

space.

S.W. Van Sciver, Helium Cryogenics, International Cryogenics Monograph Series,
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3. Radiant heat transfer from the surrounding to the low temperature environment.

Each of these modes is discussed below in the context of how it affects cryogenic

insulation.

10.1.1 Solid Conduction

Solid conduction involves heat transport from high to low temperature through the

materials of the insulating vessel. Some of these materials may be structural

supports and others may be part of the insulation itself. This mode of heat transfer

can be minimized by use of materials with low thermal conductivity and if

necessary high strength. The relative importance of this mechanism depends on

design. If the system demands a great deal of load transfer to ambient temperature,

then the conduction heat leak will probably be an important contribution to the

overall performance of the cryogenic system.

The conduction heat transfer can be calculated by application of Fourier’s law

for heat conduction,

~q ¼ �kðTÞ ~rT (10.1)

where k(T) represents the temperature dependent material thermal conductivity

and ~rT represents the temperature gradient in the direction of the heat flux, q.
This property has been discussed for solid isotropic materials to a considerable

extent in Chap. 2. For insulating materials, which are often anisotropic, the thermal

conductivity will vary with direction as well as temperature.

Many practical problems involve one-dimensional conduction over a finite

temperature difference. A commonly useful quantity in this case is the integrated

or mean thermal conductivity, �k, which can be used for determining the total heat

conduction between two fixed temperatures. The integrated thermal conductivity is

defined by the expression

�k ¼ 1

T2 � T1ð Þ
ðT2
T1

kðTÞdT (10.2)

where T2 and T1 are the two end temperatures. In general, k(T) is a complex function

of temperature making evaluation of (10.2) difficult. However, these thermal

conductivity integrals have been tabulated for many materials of interest in cryo-

genics [1, 2].

For many materials at low temperatures, k(T) can be approximated over a limited

temperature range by an expression of the form

kðTÞ ¼ ATn (10.3)
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where for metals in the helium temperature range n � 1 and for insulators n � 3.

In that case, the integrated thermal conductivity (10.2) may be written

�k ¼ A

nþ 1ð Þ
Tnþ1
2 � Tnþ1

1

T2 � T1

� �
(10.4)

Equation 10.4 indicates that as long as the thermal conductivity is a monotonically

increasing function of temperature, �k is dominated by the high-temperature end.

Table 10.1 gives some typical �k values for materials that are common in low-

temperature insulation systems. These are given for usual fixed boundary

temperatures. To determine the conduction heat leak between temperatures other

than those listed in Table 10.1, it is necessary to evaluate (10.2).

Some insulating foam materials have tabulated thermal conductivities that can

be used for design of moderate performance cryogenic storage vessels, but nor-

mally not for the helium temperature range. The average thermal conductivity for

two of these materials (polystyrene and Styrofoam) are also listed in Table 10.1.

Normally, these foam materials have lower thermal conductivities than monolithic

solids, with the possible exception of the very low temperature end. Note that the

thermal conductivity of foam materials is a very complicated process because it

involves solid conduction and conduction in the residual gas. Thus, the average

thermal conductivity can vary depending on the application. For example, the

thermal conductivity can increase by as much as 40% if air diffuses into the cells.

This effect is even larger if light gases such as helium or hydrogen replace the air in

the foam [4]. The thermal conductivity of foam can also be affected by moisture

content [5]. Thus, the values for the foam insulations in Table 10.1 should be only

used for approximate calculations.

10.1.2 Gas Conduction

The second important mode of heat transfer in a cryogenic storage container is

conduction through the residual gas in the vacuum space surrounding the low-

temperature environment. In principle, this mode can be made arbitrarily small by

Table 10.1 Integrated thermal conductivity in W/m K of several materials

useful for low-temperature cryogenic storage applications [3]

Material
k0j 4

1
k0j 77

4
k0j 300

77

Stainless steel 0.2 4.5 12.3

G-10 0.04 0.27 0.66

Teflon 0.02 0.18 0.25

Nylon 0.005 0.13 0.28

Polystyrene 0.02 0.036 0.075

Styrofoam 0.009 0.011 0.023

10.1 Thermal Insulation 395



reducing of the residual pressure to a very low value (typically <10�3 Pa); how-

ever, such conditions are not always achievable. It is therefore important to be able

to estimate the heat load due to a moderate vacuum condition.

To estimate the magnitude of the gas conduction heat leak, consider an ideal

planer system consisting of two flat surfaces at different temperatures with a

residual gas between them at pressure p. There are primarily two regimes of heat

transport in the residual gas. The first represents the case where the mean free path

l is short compared to the spacing between the two surfaces. Under this circum-

stance, the gas thermal conductivity and thus the heat leak is nearly independent of

pressure except at low temperatures and high pressures (see Sect. 3.4). Gaseous

conduction dominates the heat transfer for pressures in the range 1 Pa to 1 kPa. If

the pressure is higher that this range free convection may further enhance the heat

exchange with a process that is dependent on the geometry of the container, see

Chap. 5. Such a situation would be catastrophic for a cryogenic storage vessel as it

would result in a very high heat load.

Formost applications pertaining to cryogenics, the residual pressure is considerably

lower than this value. For lower pressures (p < 0.1 Pa) the heat transfer process is

represented by a second regime, where the mean free path is greater than the distance

between the two surfaces. Themean free path of a gas is discussed in detail in Chap. 3.

This quantity is roughly equal to the inverse product of the number density, n, and the
scattering cross section, s,

l � 1

ns
� kBT

pd2p
(10.5)

assuming ideal gas behavior with kB being Boltzmann’s constant. For a residual

pressure of 0.1 Pa, the mean free path for helium at 4.2 K is about 1 mm.

The regime where the mean free path is greater than the distance between the

two surfaces can be evaluated in terms of molecular kinetic theory. The physical

picture is that of molecules making several collision-free trips between the two

surfaces before interacting with other molecules in the volume. Thus, the rate of

heat transfer is more determined by the molecule-wall interaction than intermolec-

ular behavior. In this regime, the heat transfer is approximately proportional to the

absolute pressure. The molecule-wall energy exchange process is related to the

extent to which the molecules come into thermal equilibrium with the wall. This

process is measured in terms of an accommodation coefficient a given by [6]

a ¼ Ti � Te
Ti � Tw

(10.6)

where Ti is the effective temperature of the incident molecule, Te that of the emitted or

reflectedmolecule, and Tw thewall temperature. Themaximumvalue for a is of course
unity, associated with the molecule coming into complete thermal equilibrium with

the wall.

396 10 Special Topics in Helium Cryogenics

http://dx.doi.org/10.1007/978-1-4419-9979-5_3
http://dx.doi.org/10.1007/978-1-4419-9979-5_5
http://dx.doi.org/10.1007/978-1-4419-9979-5_3


For parallel surfaces at temperatures T1 and T2, the heat flux by gas conduction at
low pressures is given by the relationship

q ¼ a0
4

gþ 1

g� 1

2R

pMT

� �1=2

p T1 � T2ð Þ (10.7)

Here g is the ratio of the specific heats (g ¼ 5/3 for helium), and R is the universal

gas constant in J/mol K, T ¼ (T1 + T2)/2 is the average temperature and M is the

molecular weight in kg/mole. The quantity a0 is an averaged accommodation

coefficient dependent on the individual accommodation coefficient and surface

areas. For unequal values of a and A, the quantity a0 must be averaged over the

two surfaces, that is,

a0 ¼ a1a2
a2 þ A2=A1ð Þ 1� a2ð Þa1 (10.8)

The difficulty with applying this theory is that the value of a is known only

approximately. For example, for very clean metallic surfaces near room tempera-

ture, the accommodation coefficient for helium gas is quite small because the

molecules make nearly elastic collisions. A good approximate value for this regime

is 0.025 [7]. At low temperatures, a increases approaching a value of about 0.6 at

20 K [8]. For many low-temperature applications, helium gas is the major contrib-

utor to gaseous conduction heat leak because most other gases condense or adsorb

on the cold surfaces. For helium gas a reasonably good value to assume for average

accommodation coefficients is around 0.5.

10.1.3 Radiation Heat Transfer

Thermal radiation represents the third mode of heat transfer which is of concern in

cryogenic insulation systems. This mechanism is independent of residual gas

pressure or structural supports. The usual method for reducing radiation heat

leaks is to use one of various forms of multilayer shielding, a topic which is

discussed later. In preparation for that discussion, the present section considers

the basic aspects of radiant heat transfer at low temperatures.

The starting point for the description of thermal radiation heat transfer is to

consider the spectral energy density associated with a black body, which is an

idealized concept that assumes a body radiates the maximum energy flux as a

function of wavelength. This energy flux is given by,

eb T; lð Þ ¼ 8phc

l5
1

ehc=lkBT � 1

� �
(10.9)
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where l is the wavelength of the thermal radiation. This relationship has a well-known

form shown in Fig. 10.1. At very high temperatures, the peak occurs in the range of

visible spectrum, while at low temperatures the peak is shifted to longer wavelengths

and has smaller amplitude. Wien’s displacement law quantifies the temperature

dependence of the peak wavelength:

lmT ¼ 2898mm � K (10.10)

Note that for surfaces at 4.2 K, the corresponding peak wavelength is 0.69 mm,

which is in the far infrared. Such long wavelengths can have potentially important

diffractive effects when the physical spacing between radiant surfaces approaches

that of the peak wavelength [9].

For a black body the total radiant energy flux can be obtained by integration of

(10.9) over all wavelengths. The integration produces what is known as the

Stefan–Boltzmann law,

Eb ¼
ð1
0

ebðT; lÞdl ¼ sT4 (10.11)

where s is the Stefan–Boltzmann constant taking the value 5.67 � 10�8 W/m2.

Most surfaces encountered in cryogenics do not approximate black bodies. In

fact, the effort in cryogenics is usually one of minimization of the thermal radiation

heat leak. If a surface is not black, its spectral energy density is smaller in

proportion to its emissivity el. The emissivity is actually dependent on wavelength

and is defined by the relationship

er l; Tð Þ ¼ eleb l; Tð Þ (10.12)

Fig. 10.1 Spectral energy density of black body radiation
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where el is less than unity for nonblack surfaces.

It is often possible to make an approximation for radiant heat transfer which

allows nonblack surfaces to be handled in a fairly straightforward manner. This

assumption is to characterize surfaces as having constant emissivity less than unity,

which is independent of wavelength. This is known as the gray body approximation

and allows the writing of the total radiant energy flux as

Er ¼ esT4 (10.13)

where the emissivity is determined for the appropriate set of conditions for the

system of interest.

There are a number of implicit assumptions that enter into the gray body
approximation. The first, already mentioned above, is that the emissivity must be

wavelength independent over the range of wavelengths appropriate to the problem.

Second, it is necessary to be able to equate the emissivity with the absorptivity a,
which is a measure of the rate of energy absorption by the gray surface. The total

absorptivity is defined by the relationship

Ea ¼ aEi (10.14)

where Ei is the incident energy flux usually defined according to (10.13). Finally,

for the gray body assumption to be reasonable, all surfaces must be diffuse

scatterers of radiation. This is certainly far from the case for highly polished shields

that often are present in cryogenic systems; however, it simplifies calculations

considerably.

There have been numerous attempts to measure and tabulate the emissivities of

different materials at low temperatures [10, 11]. Generally, these values are deter-

mined for radiant energy flux between ambient (273 or 300 K), liquid nitrogen

(77 K), and liquid helium temperatures (4.2 K). A compiled graphical representa-

tion of emissivity measurements is shown in Fig. 10.2 [11]. To achieve low values

of emissivity, it is necessary to have highly polished, high-conductivity surfaces

made from gold, silver, copper, or aluminum. It has also been indicated [7] that

since the emissivity is related to surface conductivity, it is best to polish the surfaces

with a strain-free technique such as chemical etches. Finally, to estimate the radiant

energy flux between surfaces of unknown emissivity, it is necessary to choose an

approximate average value for e. If the surface in question is dielectric, it is

reasonable to assume black body heat transfer. If, on the other hand, the surface

is a metal and polished, a conservative choice is e � 0.1. However, as can be seen

in Fig. 10.2, to achieve emissivities much less than 0.1, special care must be taken

with the surface preparation.

The radiant heat transfer between parallel surfaces, shown schematically in

Fig. 10.3, is a function of the properties of both surfaces. The rate at which energy

is radiated from surface 1 is proportional to the emissivity e1, and the fourth power

of the temperature T1. A similar situation occurs for surface 2. In the simple case
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Fig. 10.2 The average

emissivity of different

metallic surfaces at fixed

temperatures (Source: From

Obert et al. [11])

Fig. 10.3 Schematic of the

radiant heat transfer process

between two surfaces at

different temperatures
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that the surfaces can be approximated as black bodies, that is, e1 ¼ e2 ¼ 1, the net

radiant heat flux is the difference between these two values:

qr ¼ s T 4
1 � T4

2

� �
(10.15)

In the general case where the emissivity is considerably less than unity, the

situation is more complicated. This is because the incident radiation from one

surface can either be absorbed by the other or reflected back to the original surface.

This problem can be solved by summing the infinite series of contributions to the

radiant energy flux. The result for the net radiant heat flux for gray surfaces is

qr ¼ e1e2
e1 þ e2 � e1e2

� �
s T 4

1 � T4
2

� �
(10.16)

Note that in the special case often encountered in cryogenics where e1 ’ e2 ’
e � l, the quantity in brackets reduces to simply e/2.

Example 10.1

Consider the heat leak to a vacuum insulated liquid helium container both with

and without liquid nitrogen shielding. Assume that the residual vacuum is

sufficiently low to be able to neglect gas conduction heat leak. Assume a fairly

optimistic value for e ¼ 0.05 for both surfaces, and calculate the heat load/unit

area.

Solution: Equation 10.16 yields a radiant heat leak between 77 and 4.2 K of

qr(77 K) � 50 mW/m2, which for most systems is acceptable because it

represents about 60 mL/h or liquid helium consumption per square meter of

container surface area. If, on the other hand, the exterior surface is maintained at

ambient temperature, 300 K, the heat leak is increased by approximately a factor

of 300 which represents almost 3 L/h�m2 of helium boil-off. Obviously, there is

considerable benefit in liquid nitrogen shielding of liquid helium containers.

The above situation can be generalized to multiple radiation shields, which

represents a fairly good approximation for aluminized mylar multilayer insulation

(MLI) at low packing density, discussed below. For the case of n shields between

two parallel surfaces, the radiant heat flux becomes

qr ¼ eiek
n� 1ð Þei þ 2ek

� �
s T 4

1 � T 4
2

� �
(10.17a)

where

ei � e0es
es þ e0 � e0es

(10.17b)
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and

ek ¼ es
2� es

(10.17c)

for which e0 is the emissivity of the two parallel surfaces and es is that of the shields.
For the special case where e0 ¼ es ¼ e, (10.17) can be simplified considerably:

qr ¼ e
nþ 1ð Þð2� eÞ

� �
s T 4

1 � T4
2

� �
(10.18)

Note that for e � 1, (10.18) predicts a heat leak reduced by the factor (n + 1)�1

from that without the multilayer shields.

Example 10.2

Calculate the temperature of a thermally isolated radiation shield that is

suspended between two fixed surfaces (T1 ¼ 80 K and T2 ¼ 300 K). Assume

that all surfaces have a constant emissivity of 0.1.

Solution: If the shield is isolated then the only mode of heat transfer is by

radiation. If we set the temperature of the shield as unknown, Ts, then the net

radiant heat flux from the high temperature wall (T2 ¼ 300 K) to the shield must

equal the net radiant flux from the shield to the low temperature wall

(T1 ¼ 80 K),

qr ¼ e
2

� �
s T4

2 � T4
s

� � ¼ e
2

� �
s T4

s � T 4
1

� �

Solving for Ts,

TS ¼ T 4
1 þ T4

2

2

� �1
4

¼ 252:6 K

It is an exercise for the student to show that the shield temperature is nearly

independent of the T1.

10.1.4 Multilayer Insulation (MLI)

Aluminized mylar with low-density fibrous insulating spacers between many

layers, represents a special case of a multilayer insulation system. Since there is

interlayer material present, it is no longer possible to assume that each of the n
shields is isolated from the others except for the radiant heat transfer. This material

is sometimes referred to as superinsulation or simply MLI (multi-layer insulation).
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Combined with high vacuum, MLI is the best insulating medium for low tempera-

ture systems and has become the standard for almost all cryogenic systems that

operate in the liquid helium range.

With MLI there are two contributing heat transfer heat transfer mechanisms

which are both functions of density and total number of shields. On the one hand,

there is radiant heat transfer that decreases with increasing number of radiation

shields, that is, layers of aluminized mylar. However, on the other hand, as the

packing density increases, the heat transferred by conduction though the fibrous

insulating spacers begins to make a larger contribution to the total heat leak. These

two competing processes theoretically lead to an optimum layer density for practi-

cal multilayer insulations. Note that the solid-state conduction heat leak can be

reduced by increasing the spacing between walls for the same packing density while

the radiation contribution is only a function of number of layers. Therefore, the

optimum number of layers should also be a function of the total insulation thickness

or total number of layers.

The existence of a minimum in the layer density dependence of the heat transfer

through MLI has been demonstrated experimentally [12, 13]. Plotted in Fig. 10.4 is

one set of results for the heat flux throughMLI between 4.2 and 77 K as a function of

the numbers of layers [13]. The existence of a broad minimum near 0.5 layers/mm

indicates the density where the solid-state conduction begins to play a substantial

role. Note that the exact position of the minimum is not critical since a factor of two

change in packing density increases the heat flux by less than 10%. Obviously, these

results are not universal because the conduction and radiation contributions scale

differently. However, MLI at low densities, less than 0.5 layers/mm, can bemodeled

fairly accurately by pure radiant heat transfer. For these results, the best choice for

the emissivity of aluminized mylar is e ¼ 0.011 at 4.2 K and 0.03 at 77 K.

Fig. 10.4 Total heat exchange between two surfaces at 77 and 4.2 K as a function of layers of MLI

(Source: Leung et al. [13])
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10.1.5 Powder Insulations

Glass powder insulation (the most common form is known as perlite) is also used to

fill spaces between vacuum walls in insulating cryogenic vessels although it is not

very common in helium systems [14]. This is because, in general, the performance

of these materials is inferior to MLI. These materials generally are comprised of

powders or glass microspheres with diameters in the range 10–1,000 mm. They

have one clear advantage over MLI in that the material is easier to install, cheaper,

and the residual vacuum requirements are not generally as stringent. However, the

disadvantages of powder insulation technology are that it requires long and careful

pump-down procedures and that the residual effective thermal conductivity is

considerably greater than can be achieved with properly installed MLI at high

vacuum. It is because of these latter two factors that powder insulations are most

commonly used in large cryogenic storage tanks that contain the higher temperature

cryogenic (LN2, LNG).

The apparent thermal conductivity of perlite materials is a reasonably well-known

quantity. Measurements have been carried out on the variation of this quantity with

residual gas pressure. Most results are reported in the range of 77–300 K. Plotted in

Fig. 10.5 are typical values for the apparent thermal conductivity of perlite versus

residual gas pressure [15]. Note that minimum conductivity is achieved for pressures

around 10�2 torr (~1 Pa) so lower pressures are not needed. For comparison, the figure

also shows the apparent conductivity of superinsulation (MLI). In this case, a much

Fig. 10.5 Apparent mean thermal conductivity of glass powder and multilayer insulation versus

residual gas pressure (Source: As compiled by Lady [15])
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value is achievable at low pressures (p � 10�4 torr or 10�2 Pa); however, at

intermediate pressures, the benefits of superinsulation are minimal. At high pressures,

p ≳ 10 Pa, superinsulation actually has higher thermal conductivity than the powders.

Recently, there has been a considerable effort at developing other porous

insulations based on Aerogel, which is a very low density material containing a

nano-pore structure. Some evidence suggests that these materials even in the

intermediate pressure range have lower conductivities than perlite.

As a final comment, an additionally interesting problem concerns the refrigera-

tion of radiation shields in cryogenic systems [16]. In large systems where radiation

contributes substantially to the heat leak, it is possible to optimize the thermal

performance by actively cooling the radiation shields. There are two main

approaches to this problem. One approach, which is commonly used in cryostats

that contain a stored cryogen (liquid helium storage vessels, for example) is to use

the vented cryogen through tubes attached to the radiation shields. The vapor

leaving the liquid container is nominally at the boiling point of the liquid and

thus can intercept the radiant heat load at an intermediate temperature before

venting from the cryostat.

An alternative approach that works with systems that are actively cooled is to

again cool the radiation shields at intermediate temperatures but in this case with

closed-cycle refrigerators. The advantage here is that improved overall thermody-

namics can be achieved since radiation heat leaks from ambient temperature can be

absorbed at higher temperatures, thus taking advantage of higher refrigeration

efficiency. This approach often couples the conduction heat load to the intermediate

cooling station for the same reasons. The thermodynamic principles needed to carry

out this analysis are discussed in Chap. 8. For further details, the reader should

consult references in the literature.

10.2 Helium Adsorption

Another interesting and technically significant topic related to the field of helium

cryogenics is that of physical adsorption. Physical adsorption is a general term used

to describe the process whereby an inert molecule comes in contact with and

adheres to an inert surface or substrate. The inert character of each component is

important because if substantial chemical reaction occurs, the process is referred to

as chemisorption and the thermodynamics of the process are quite different. Since

helium is inert and does not bond chemically to any other element, the adsorption

process is described by physical mechanisms similar to those encountered in bulk

condensation. It is often possible to treat the adsorbed film as an independent

system, with the substrate forming the non-interactive boundaries much like walls

of a container form the boundaries to bulk fluids.

Studies of adsorbed gases over the past few decades have expanded the under-

standing of the basic physical processes.Growth in the field can be attributed primarily

to two factors. First, recent developments have introduced a number of experimental

techniques for surface investigation. Several of these techniques are sensitive to less
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than one atomic layer, allowing investigations of monolayer and submonolayer films.

Second, scientists have discovered substrates that are regular and homogeneous and

permit nearly ideal film behavior. Due to surface morphology, real surfaces tend to

have considerable variability in adsorption potential which can result in inhomoge-

neous films. Although this situation is realistic in practice, it gives little insight into the

detailed physical behavior of the film itself.

Physical adsorption has considerable technical importance in the field of cryogenics.

One application is in cryopumping, a process whereby a gas is pumped from a system

by exposing it to a large surface at low temperatures. This technology is used in

numerous cryogenic devices and naturally occurs in liquid helium systems because

the surfaces are so cold. When properly designed and used, cryopumps provide clean,

oil-free vacuum systemswith high capacities and essentially nomoving parts. Another

area of technical application for adsorption is in the separation of rarified gases. In this

method, more strongly interacting molecules are adsorbed onto the substrate leaving

the vapor phase enriched with the lighter more weakly bound molecules. Subse-

quently, the substrate can be “regenerated” by raising its temperature to desorb the

heavier species. A major sector of the technology of air separation is based on this

concept. Finally, adsorption is employed in a certain class of refrigerators that use the

alternate condensation and evaporation of a fluid by adsorption/desorption as a process

tool much like a compressor in a conventional cycle.

In addition to these technical uses, physically adsorbed layers can significantly

impact the behavior of cryogenic processes and systems. For example, boiling

surface heat transfer can be affected by the existence of adsorbed solid films

which can interfere with the bubble nucleation process. Surface films can also

impact the solid–liquid helium heat transfer process of Kapitza conductance by

modifying the phonon transport. Radiative heat transfer can also be affected by

variation of emissivity due to cryo-deposits on the surfaces. Finally, the adsorption

of gas onto cold surfaces can represent a significant heat load to the system that can

result in loss of stored cryogen. This topic was discussed in the context of the

accommodation coefficient for molecular-kinetic heat exchange. All these factors

make knowledge of the physical adsorption process important for proper under-

standing of the behavior of low-temperature systems.

10.2.1 Adsorption Thermodynamics

To begin, consider a simple thermodynamic description of the adsorption process.

A closed container, shown in Fig. 10.6a, has Nv molecules in the vapor state at

temperature Tv and an equilibrium pressure p. Assume that Tv is high enough that

the molecules do not adhere in any significant numbers to the container walls,

which are also at Tv. One of the container walls forms the adsorption substrate at a

temperature Ts that can be independently regulated relative to Tv. Of interest are the
physical processes that take place as the substrate temperature is reduced below Tv.
Initially, as Ts decreases, the pressure will decrease also in rough proportion
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because the vapor temperature will be some thermodynamic average of Ts and Tv.
However, once Ts reaches a temperature of the order of the critical temperature of

the vapor species, ~5 K in the case of 4He, a substantial quantity of the gas will

begin to adhere to the substrate.

The mechanism whereby this adherence occurs is the van der Waals interaction

between the oscillating electric dipoles. A number of approximate potentials exist to

model this interaction. One of these is the Lennard-Jones (LJ) 12-6 potential, which

was introduced in Chap. 3 to describe interactions in real gases. In the case of an ideal

two-dimensional planar surface comprised of substrate atoms, it is possible to write a

modified form of the LJ potential for a gas atom a distance d above the plane [17],

UðdÞ ¼ 4pens
s12

45d9
� s6

6d3

� �
(10.19)

where ns represents the density of substrate atoms and s and e are the Lennard-Jones
parameters for the gas–substrate atom interaction.

Now consider the impact of introducing a small quantity of gas dN to the system.

This situation is illustrated in Fig. 10.6b. If Ts is sufficiently low, some of the gas

will be adsorbed, increasing the total particle number on the substrate by dNf. The
remainder will stay in the vapor such that dNv ¼ dN – dNf. For a closed system in

which this extra gas is introduced reversibly, the chemical potentials of each phase

must be equal, mf ¼ mv. This condition establishes a relationship between the

entropy of each phase:

@Sf
@Nf

� �
E;A;V

¼ @Sv
@Nv

� �
E;A;V

(10.20)

Fig. 10.6 Schematic representation of adsorption. (a) A closed volume with Nv, molecules in

the vapor phase. The number of molecules adsorbed, Nf, is small compared to Nv because Ts 	 Tc.
(b) The same volume with Ts ≲ Tc so appreciable adsorption occurs
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The behaviors of the two phases are related inherently through thermodynamics.

For example, detailed information about the state of the film can be extracted from

measurements of pressure of the equilibrium vapor phase.

In bulk matter, the behavior of the system is determined by an equation of state, a

relationship between pressure, temperature, and volume. By analogy, in a film

system an equation of state exists relating the three surface relevant parameters:

spreading pressure ’, temperature T, and coverage or capacity x. However, under
most conditions it is not possible to measure the film spreading pressure directly so

that it must be inferred from bulk vapor pressure determinations. The most common

situation is to construct an equation of state relating bulk vapor pressure, tempera-

ture, and capacity. Such a relationship is shown schematically in Fig. 10.7 which

represents a surface equilibrium of an adsorption system. Note that processes

occurring at constant capacity are referred to as “isosteric” by analogy with

isochoric or constant volume processes in bulk systems.

One of the most important parameters in an adsorption system is the isosteric heat

of adsorption, qst. This quantity is defined as the amount of energy required to bring a

molecule from the film into its equilibrium vapor. In the limit of zero coverage and at

absolute zero, the isosteric heat is simply the single-particle binding energy to the

substrate. As the film grows, this value decreases until for very thick films qst ! hfg,
the heat of vaporization of a bulk condensate comprised of film molecules. These

values form the limits for qst. However, the detailed structure of this quantity can

give considerable information about the thermodynamic state of the film.

The thermodynamic definition of qst is given in terms of the entropy change at

constant coverage:

qst ¼ �T
@S

@Nf

� �
T;p;A

(10.21)

Fig. 10.7 An adsorption

equilibrium surface. Lines of

constant surface coverage are

called isosteres
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By holding T, p, and A constant the variation of qst is essentially along a constant
coverage isostere; see Fig. 10.7. Substituting the relationship for equilibrium

between the film and vapor, (10.20), we can rewrite (10.21) as a function of

individual component entropies,

qst ¼ �T
@Sf
@Nf

� �
T;A

� @Sv
@Nv

� �
T;p

" #
(10.22)

An alternate definition for the isosteric heat is given in terms of a temperature

derivative of the equilibrium vapor pressure. This expression, which can be derived

explicitly from (10.22) and is analogous to the Clausius-Clapeyron equation, is a

function of easily measurable quantities:

qst ¼ kBT
2 @ ln pð Þ

@T

� �
Nf ;A

(10.23)

In the simplest case where qst is a constant, integration of (10.23) establishes an

experimental form of the equilibrium vapor pressure,

p

p0
¼ e�qst=kBT (10.24)

where p0 is a constant of integration. This expression identifies the importance that

the isoteric heat plays in determining the ultimate pressure of an adsorption system.

The traditional method used for measurement of qst is by vapor pressure

isotherms. The behavior of the isotherms depends strongly on the type of substrate

material and adsorbed gas. Substrate materials considered range from nearly ideal

single-crystal surfaces to more practical inhomogeneous surfaces composed by

polycrystalline metals or insulators. In addition, a given surface can be modified

by first pre-plating the substrate with a more strongly adsorbed gas which then

forms the new substrate for subsequent adsorption. Experimental data exist for

numerous systems including almost all commonly available gaseous elements and a

number of compounds. The temperature range of investigation in these studies is

determined mostly by the strength of the gas–substrate interaction.

Most substrates encountered in practical adsorption problems are inhomogeneous,

composed of polycrystalline or amorphous materials. Because of their non-unifor-

mity, only qualitative models are available to describe their behavior. For inhomoge-

neous substrates the vapor pressure isotherm follows the general form shown in

Fig. 10.8. Initially, the vapor pressure is quite low because the first layer is bound

strongly. However, as the film builds thickness, the pressure increases rapidly until it

asymptotically approaches that of the bulk liquid, ps. An expression can be derived to
compare with the results of Fig. 10.8 by assuming a layer-dependent form of qst in
(10.24). Considering only the attractive term in the van der Waals expression (10.19),

we obtain the Frenkel–Halsey–Hill equation [17].
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p

ps
¼ exp

�a

kBT �d
3

 !
(10.25)

where a represents the strength of the attractive potential on the bare substrate and

should be approximately equal to qs, at low coverage, and d is the number of atomic

layers. A comparison between the adsorption of 4He on a mylar surface and that

derived from (10.25) is made in Fig. 10.8. Theory and experiment are in qualitative

agreement although the theory is not particularly sensitive to the detailed nature of qst.
The limiting value of qst is determined from the slope of low-coverage

isotherms. One can also obtain information on the isosteric heat of adsorption by

measuring the temperature dependence of the vapor pressure at constant coverage.

For example, plotted in Fig. 10.9 is the absolute pressure versus T�1 for 4He

adsorbed on a copper sponge substrate. Note that the general form of (10.24) is

obeyed. Furthermore, by extrapolation to zero coverage, it is possible to deduce an

effective qst for the substrate. These data yield a value qst/kB ~ 160 K. A number of

different measurements of qst for
4He at low coverage are listed in Table 10.2. Note

that the values of qst for submonolayer 4He are at least an order of magnitude larger

than the latent heat of vaporization for helium, ~10 K. As a result, there can be a

significant amount of adsorption of 4He even at temperatures above Tc. However,
the total quantities adsorbed are strong functions of temperature and are small

because the process has an exponential dependence.

Fig. 10.8 An adsorption isotherm for a mylar substrate representing typical inhomogeneous

character. The curve is based on the Frenkel–Halsey–Hill expression (10.25) (Source: Reprinted

from Dash [17])
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As more gas is adsorbed on the surface the vapor pressure increases quite

strongly. This effect can be seen most clearly in Fig. 10.8. Initially, the equilibrium

vapor pressure is quite low due to the large value of qst. However, as Nf increases,

qst decreases until for films having an equivalent thickness of four to six atomic

layers the vapor pressure is essentially that of the bulk liquid or solid. The quantity

of adsorbed gas necessary to complete one monolayer is an important parameter.

Not only is this parameter an effective method of determining the surface area of

the substrate but it also can be used as a fiducial point for estimating the density of

submonolayer films. A number of methods exist for measuring monolayer comple-

tion. The most direct is to measure the vapor pressure isotherm. Above layer

completion, the average position of the next absorbed gas molecule must be further

from the substrate, and thus the molecule experiences a weaker binding. In an ideal

Fig. 10.9 Temperature

dependence of the vapor

pressure for constant

coverage films on copper

sponge. x refers to fractional

monolayer coverage (Source:

Reprinted from Princehouse

[18])

Table 10.2 Isosteric heat of

adsorption at low coverage

for 4He on various substrates

Substrate qst/kB (K) References

Copper 160 [18, 19]

Argon plated TiO2 230 [20]

Exfoliated graphite 143–156 [21, 22]

Zeolite (13X) 220 [24]
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system the value of qst would decrease discontinuously. However, most substrates

are inhomogeneous and the layers are compressible so that, more commonly, qst
undergoes a change in slope at layer completion. The precise value of layer

completion is also quite temperature dependent, owing to thermal excitations in

the film, and therefore is defined only approximately for any substrate.

Listed in Table 10.3 are measured values for monolayer capacities of different

substrates. Note that the capacity per unit area of substrate does not vary greatly

from substrate to substrate. This is because the surface area is determined primarily

by the hard sphere radius of the adsorbed molecule. On the other hand, there are

wide variations of effective surface areas per gram of substrate material. Consider-

able benefit for cryopumping can be obtained by use of one of the high-surface-area

materials. It should be pointed out that high adsorption capacity does not necessar-

ily imply good cryopumping characteristics because the latter is a rate-dependent

process. The rate at which adsorption occurs in high-surface-area materials is

mostly a function of gas flow hydrodynamics within the material, a characteristic

not necessarily desirable for high-speed cryopumps.

Vapor pressure isotherms are most commonly of the type described above,

having a smoothly varying relationship between Nf and p. However, for some

substrates that are very uniform this dependence is not observed. In these systems

a discontinuous slope change in the vapor pressure isotherm occurs at monolayer

completion. Further adsorption occurs on the second layer with a correspondingly

lower value of qst. This process continues until layer completion where a second

step in the isotherm occurs. In the ideal case this mechanism for layer growth would

continue indefinitely until the thermal excitations of the molecule of the order of

kBT blur the distinction between individual layers.

10.2.2 Physical Properties of Helium Films

Through the introduction of large-surface-area uniform substrates, it has become

possible to investigate a number of interesting quasi-two-dimensional phases

occurring mostly in the first one or two layers. The models that describe the

physical processes emphasize the two-dimensional nature of the system. At low

densities, much less than one atomic layer, helium adsorbed on graphite behaves

much as a two-dimensional quantum gas. At high temperatures, its specific heat

Table 10.3 4He capacities of various adsorbent materials

Substrate

Monolayer capacity

(STP-cm3/m2)

Area

(m2/g) References

Sintered Cu sponge

(~mm3 particles)

0.24 0.41 [18]

Zeolite 13X 0.29 527 [19, 23]

Exfoliated graphite 0.36 25 [22, 24]

Vycor glass 0.41 130 [25]
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asymptotically approaches a constant value of C � NkB, while at lower

temperatures, quantum effects brought on by statistical correlations reduce the

specific heat in a manner similar to the bulk fluids. At intermediate surface

coverages, behavior occurs which can be correlated with regularity in the adsorbed

gas. This effect is brought on by the adsorbed gas being affected by the periodicity

of the substrate. At still higher coverages up to layer completion, the adsorbed gas

sometimes behaves much as a two-dimensional solid with low-temperature specific

heat varying as T2, consistent with a two-dimensional Debye model. For these high

coverages, melting transitions in the specific heat are observed at intermediate to

high temperatures above which fluid-like behavior occurs. An interesting artifact of

surface phases in adsorption systems is the occurrence of two-dimensional solids

even though bulk helium does not solidify unless considerable external pressure is

applied. In this case, the adsorption interaction compresses the molecules on the

substrate to densities similar to those that occur in the bulk solid. These high

densities allow the formation of long range order and crystal structure.

Of interest in unsaturated 4He films is the question of when does superfluidity

manifest itself. Clearly as was discussed in Chap. 6, thick saturated films display

superfluidity in the form of film mobility (Rollin Film) and heat transport. For the

case of unsaturated helium films of more than a few atomic layers, superfluidity is

observed both in the l-transition in the specific heat [24] as well as the onset of

mobility [26]. The latter case is displayed in Fig. 10.10, which is a plot of the onset

of superfluidity as a function of pressure ratio. Note the depression of the onset

temperature with reduced film thickness as measured by the vapor pressure.

As was stated early on in this section, gas separation, cryopumping and adsorption

refrigeration are themain applications for physical adsorption in cryogenic systems. In

the first case the desired characteristics of the adsorbent are light weight, small heat

Fig. 10.10 Superfluid onset temperatures of 4He films on different substrates and measured by

different techniques (Source: From Herb and Dash [26])
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capacity, and large surface area. Typical materials used are activated charcoal, silica

gel, activated alumina, or molecular sieves. The specific area of these materials are in

the range 300–1,200 m2/g and bulk densities less than 1 g/cm3. No particular concern

is given to surface uniformity. Applications generally call for designing an adsorption

“bed” which provides good adsorption characteristics yet still allows for bulk flow.

This application depends strongly on details of design.

In terms of cryopumping applications of adsorption, the choice of substrate

material and configuration is more dependent on specific application. If high-

speed pumping is required, the surface must not restrict the flow of gas. Therefore,

the most common design is to use a planar metallic surface. To achieve substantial

total pumping capacity before regeneration, this type of surface is necessarily quite

large, a fact that leads to problems with reducing the radiation heat leak to warm

surrounding surfaces. A number of standard techniques are available for providing

radiation shields that allow high flow rates of gas. If high pumping speed is not

necessary, use can be made of numerous high-surface-area materials, called

“getters,” thermally well anchored to a low-temperature heat sink. Getters of this

type often are sealed into closed helium dewars to maintain good vacuum quality

over an extended period of time.

Example 10.3

Calculate the vapor pressure of a three layer helium film adsorbed on a copper

substrate at 4.2 K. Use the Frenkel–Halsey–Hill equation and assume qst/kB
¼ 160 K. Compare the result with Fig. 10.8. Now use the same expression to

estimate the vapor pressure of a monolayer film.

It is only necessary to calculate the ratio of the pressures,

p

p0
¼ e� a kBTd

3=ð Þ

For three layers (d ¼ 3), this expression yields p/p0 ¼ 0.24, which is close to

the value in Fig. 10.8. Now for d ¼ 1 film, one calculates p/p0 ¼ 2.8 � 10�17,

which is a physically unrealistic value but still emphasizes the strength of the

adsorption process.

10.3 Magnetic Refrigeration

The use of the spin entropy of a magnetic system for cooling was first suggested in

1925 by Debye and Giauque [27–29]. It was then implemented by a number of groups

in the 1930s. Today,magnetic refrigeration has been developed into awell-established

technique for a number of specialized applications. The present section reviews this

topic.We begin with a description of the physics ofmagnetic materials that is relevant

to low temperature cooling. This discussion should provide the necessary understand-

ing of the relevant properties of this special class of low-temperature materials.
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Emphasis is given to the properties of some representative materials that have or are

being used in magnetic coolers. Finally, some discussion of the practical aspects of

magnetic refrigeration is presented with comments on the state of the art. The

treatment is intended to introduce the microscopic and macroscopic aspects of para-

magnetic cooling systems. For details, the reader should consult one of several recent

publications on the subject.

There are essentially two distinct classes of magnetic refrigerators. One type of

refrigerator operates down to the mK temperature range and is based on the electron

spin states of paramagnetic materials. This refrigerator type will be emphasized

here. The other type of magnetic refrigerator uses the nuclear spins of metallic

elements to achieve temperatures in the mK range and as a result is more an

expertise of low temperature physics.

10.3.1 Paramagnetic Materials

The paramagnetic salts are most commonly used in magnetic refrigerators. These

materials have a number of characteristics in common. They are comprised of

multi-component ionic molecules, one ion of which is magnetic. The magnetic ion

is sufficiently dilute within the material that at high temperature it approximates a

free non-interacting spin system. The strength of interaction determines the order-

ing temperature, below which the materials usually become diamagnetic. The

ordering temperature of most paramagnetic salts is in the range below 1 K.

The theory of paramagnetic spin systems is developed around the statistical

behavior of free magnetic ion systems. Any free magnetic molecule has two types

of magnetic moment associated with its electron orbital structure. The first, due to

orbital motion of the electron, is given the quantum number L. The other, resulting
from uncompensated electron spins, has a quantum number S. The total angular

momentum number J is the resultant of these two individual magnetic moments. In

general, atoms have nonzero values of L and S. However, certain ions, particularly

magnetic Fe3+ and Cr3+ and Gd3+, have effectively an inert-gas orbital structure, so

that L ¼ 0, but they have uncompensated electron spins, such that J ¼ S.
There are mi different quantum numbers associated with each spin state of the

atom, where mi can take on values from –J to J. Therefore, within each atom there

are 2J + 1 individual energy levels. Without the application of an external magnetic

field, these levels are degenerate meaning that there is no distinction or energy level

difference between them. However, in an external field this degeneracy is lifted,

shifting the energy levels by an amount given by,

ei ¼ �gmBm0Hmi (10.26)

where mB is the Bohr magneton which is a ratio of fundamental constants, mB ¼ eh/
4pme ¼ 0.927 � 10�23 J/T with e/me being the charge-to-mass ratio of an electron.

The magnetic field is that which is felt locally by the atom and can be substantially
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different from the applied magnetic field from external sources. The quantity g in

(10.26) is known as the Landé g factor [30]. For many paramagnetic coolants with

L ¼ 0, g ¼ 2.

For a material like gadolinium sulfate with g ¼ 2, J ¼ 7/2, the eight individual

energy levels within the magnetic system have a level separation, De ¼ 2mBmoH,
directly proportional to the magnetic field. At absolute zero in an applied magnetic

field, all ions will occupy the lowest energy level. However, at finite temperature,

some of the ions will be excited into higher levels based on their statistical

distribution. Equating that energy level difference to the thermal energy of the

ions, kBT, one can show the significance of thermal excitation to the population of

different levels.

m0H
T

� kB
2mB

� 0:75
T

K

� 	
(10.27)

This relationship more or less establishes the boundary between the two regimes

of ordering in a magnetic ion subsystem. The low-field, high-temperature regime

occurs when the ratio m0H/T � 0.75 T/K. In this regime, the magnetic ions

essentially are disordered with the level spacing being small compared to kBT.
Since this is a disordered state, it is of higher entropy. On the other end of the

spectrum, the high-field, low-temperature regime, m0H/T 	 0.75 T/K, corresponds
to the majority of the spins occupying the lowest energy level. This is a lower

entropy state for the spins.

Since the magnetic ion system consists of indistinguishable particles, it is

appropriate to describe the behavior using Boltzmann statistics. The starting point

for statistical analysis is the definition of a partition function, Z. For a magnetic ion

system, the assumption is made that the total partition function is a product of the

internal nonmagnetic part and the magnetic contribution,

Ztotal ¼ ZintZB (10.28)

In a magnetic ion system ZB essentially is due to the Zeeman effect, the magnetic

splitting in an external field. It can be shown that the Zeeman contribution to the

partition function is [28],

ZB ¼ sinh J þ 1
2

� �
a

sinhða=2Þ (10.29)

where the parameter a ¼ gmBm0H/kBT is a measure of the ordering.

The low-temperature thermal properties of a magnetic ion system are consider-

ably different from other more ordinary materials. Although these systems possess

phonon excitations, a more dominant mechanism contributing to their thermal

behavior at low temperature is due to the crystal field splitting of the ionic energy

levels within the lattice [30]. Recall (Chap. 2) that the phonon specific heat is
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proportional to T3 at low temperatures. On the other hand the crystal field splitting,

also referred to as the Stark effect, is caused by the ionic electric fields establishing

different energy levels analogous to those from the magnetic Zeeman effect. The

level splitting is small, typically on the order of 10–100 mK, and consequently only

becomes important at low temperatures.

To derive an expression that adequately describes the Stark effect, we begin by

making some simplifying assumptions concerning the structure of the energy

levels. Often, crystal field splitting has associated with it two levels separated by

an energy d, with each level having a degeneracy gn that is not lifted by the crystal

field. In this case, we can write the partition function associated with the internal

system as,

Zint ¼ g0 þ g1e
�d=kBT (10.30)

where g0 and g1 are the degeneracies of the ground and first excited states. The

product of the two contributions to the partition function can be used to calculate

the thermodynamic properties of the magnetic ion system.

The total entropy of such a system of spins is therefore made up of two terms,

S ¼ NmkBT
@ ln Z

@T

� �
H

þ NmkB ln Z (10.31)

where Nm is the number of magnetic ions. Equation 10.31 can be differentiated to

yield the specific heat and other thermodynamic variables. For example, the internal

energy of the magnetic ion system is a function of the total partition function,

E ¼ NmkBT
2 @ ln Z

@T

� �
H

þ m0HM (10.32)

The specific heat capacity at constant magnetization is just the temperature

derivative of the internal energy, CM ¼ (@E/@T)M. It therefore follows from

(10.32) that the constant magnetization heat capacity is

CM

NmkB
¼ 1

NmkB

@E

@T

� �
M

¼ d2

k2BT
2

ðg0=g1Þed=kBT
1þ ðg0=g1Þed=kBT½ 
2

(10.33)

This expression, known as the Schottky equation, is plotted in Fig. 10.11 for

different ratios of g0/g1. Note that the maximum in the Schottky heat capacity is

approximately ½NkB, which is very large compared to the other solid-state

contributions at low temperatures. Note that Nm is the number of magnetic ions,

which is generally much less than N, the total particle number. Also, typically,

d/kB � 100 mK so that this term dominates the zero field heat capacity at lower

temperatures, T < 1 K.
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For many magnetic refrigeration applications, the operating temperature is

significantly above the Schottky anomaly temperature, d/kB. In this regime it is

possible to take a high-temperature limiting form of (10.33) which yields

CM ¼ A

T2
(10.34)

where A, the specific heat coefficient, has a value

A ¼ NmkB
g0=g1

1þ g0=g1ð Þ2
d
kB

� �2

(10.35)

It is important to bear in mind that the above analysis applies to a system of Nm

magnetic ions. Typically, in paramagnetic salts the magnetic ion number is much

smaller than the total number of particles in the crystal. Therefore, if the heat

capacity per unit mass or unit volume is desired, it is necessary to take into

consideration the total molecular weight of the ionic salt.

The other important contribution to the specific heat of a magnetic ion system is

that due to phonon excitations which at low temperatures, see Chap. 2. At low

temperatures, this contribution may be approximated by the Debye model,

Cph ¼ 234NkB
T

YD

� �3

forT � YD (10.36)

where N is the total atomic number and YD is the Debye temperature typically

>100 K.

Fig. 10.11 Schottky heat capacity of a magnetic ion sub-system whose lowest energy level in the

absence of any external magnetic fields is split into two states with degeneracies g0 and g1 (Source:

From Zemansky [30])
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We can compare the relative importance of the phonon and Schottky heat

capacities based on the above discussion. Assuming for example that g0/g1 ¼ 0.5

and taking the ratio of (10.34) to (10.36), we obtain

Cph

CM
¼ 936

N

Nm

� �
T

YD

� �3 kBT

d

� �2

(10.37)

For a magnetic material like iron ammonium alum with d/kB ¼ 242 mK,

YD ¼ 250 K, and N/Nm ’ 50, the above ratio at T ¼ 1 K takes on the numerical

value Cph/CM ¼ 0.052. Therefore, the phonon contribution to the specific heat is

already a minor (~5%) contributor at 1 K and becomes smaller as the temperature

decreases, since the ratio goes as T5. As a consequence, it is possible to neglect the

phonon term for low temperature, T < 1 K applications. However, for many

systems it must be included, particularly at high temperatures.

We now consider the magnetic properties of the paramagnetic materials. These

are also given in terms of the magnetic partition function. For example, the

magnetization can be obtained from a derivative of Z with respect to the applied

magnetic field,

M ¼ NmkBT
@ ln Z

@m0H

� �
¼ NmgmBJBJðaÞ (10.38a)

where the quantity BJ(a) is the Brillouin function,

BJðaÞ ¼ 1

J
J þ 1

2

� �
coth J þ 1

2

� �
a� 1

2
coth

1

2
a

� 	
(10.38b)

where as a reminder a ¼ gmBm0H/kBT. In the limit of large a, there is a high degree

of magnetic ordering and the magnetization approaches a constant value,

M ¼ NgmBJ for gmBm0H 	 kBT (10.39)

while at small values of a, the magnetic system is weakly ordered and the Brillouin

function becomes linear with a. In this regime it is shown easily that the magneti-

zation can be expressed as

M ¼ m0gCH
T

for gmBB � kBT (10.40a)

where gC is the Curie constant defined by expansion of the Brillouin function,

gC ¼ Nmg
2m2BJ J þ 1ð Þ
3kB

(10.40b)

Listed in Table 10.4 are specific heat coefficients for several paramagnetic

materials along with other relevant properties.
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10.3.2 Thermodynamics of Magnetic Refrigeration

The thermodynamic principles by which magnetic cooling can be achieved are seen

easily by analogy with a fluid system. For the sake of simplicity, assume that the

magnetic system is composed of a solid material so that pressure–volume work is

negligible. In this case, the combination of the first and second laws of thermody-

namics can be written

T dS ¼ dE� m0H dM (10.41)

where M is the magnetization of the material. Thus, the second term on the right-

hand side is magnetic work done on the system by direct analogy to p dV, the work
done in a fluid system.

Adiabatic demagnetization is analogous to isentropic expansion in a fluid sys-

tem. The important parameter that controls this process is the isentropic coefficient,

which for a magnetic system is the derivative of the temperature with respect to

applied field at constant entropy:

mm ¼ 1

m0

@T

@H

� �
s

(10.42)

Note the similarity between (10.42) and the isentropic expansion coefficient defined

in Chap. 8. Normally, mm is referred to as the magneto-caloric coefficient.

Table 10.5 presents a comparison between parameters and coefficients relevant to

magnetic and fluid refrigeration systems.

It is straightforward to show that mm is a function of the temperature dependence

of the magnetization of the spin system,

mm ¼ � T

CH

@M

@T

� �
H

(10.43)

Table 10.4 Selected properties of magnetic refrigerant materialsa

Material

Specific volume

(cm3/g�ion)
Curie constant gC
(J�K/g ion T2)

Debye

temperature YD

(K) A (J K/g�ion)
2Ce(NO3)3�3M g

(NO3)2�24H2O

366 0–3.17b 60 5 � 10�5

Cr2(SO4)3�K2SO4�24H2O 273 18.4 – 0.15

Fe2(SO4)3(NH4)

2SO4�24H2O

282 43.8 250 0.108

Gd2(SO4)3�8H2O 124 78 105 –

Gd3Ga5O12 48 78 203 0.13
aSee Refs. [29–33]
bAnisotropic material
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The application of (10.43) for a particular magnetic refrigeration system requires

knowledge of two quantities, CH and the temperature dependence of M. where the

constant field heat capacity is

CH ¼ T
@S

@T

� �
H

(10.44)

Returning to the relationship for the magneto-caloric coefficient and considering

a weakly interacting magnetic system obeying the Curie law, we find that mm takes

on a simplified form,

mm ¼ M

CH
(10.45)

which is analogous to the isentropic expansion coefficient for an ideal gas.

The other term needed to establish the behavior of a magnetic refrigeration

system is CH, the specific heat at constant magnetic field. A relationship for this

quantity can be derived through application of the first and second laws of thermo-

dynamics for a magnetic system (10.41). Defining the constant magnetization

specific heat as

CM ¼ T
@S

@T

� �
M

¼ @E

@T

� �
M

(10.46)

then (10.41) can be recast into the form

T dS ¼ CMdT � m0H dM (10.47)

Further restricting (10.47) to a constant magnetic field process, the expansion of

the temperature differential defines the specific heat at constant field:

CH ¼ T
@S

@T

� �
H

(10.48)

Table 10.5 Comparison of parameters and

coefficients in magnetic and fluid refrigeration

systems

Fluid Magnetic

Extensive variable V M

Intensive variable p m0H
Work p dV –m0H dM

Isentropic coefficient ms ¼ @T
@p

� �
s

ms ¼ @T
@H

� �
s
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It follows that CH may be written

CH ¼ CM � m0H
@M

@T

� �
H

(10.49)

As discussed above, the constant magnetization specific heat CM is made up to

several independent contributions. The relative importance of each contribution

depends on the type of magnetic material involved and the temperature range over

which cooling is to be achieved. Neglecting the phonon term, we obtain a simplified

expression for the magneto-caloric coefficient:

mm ¼ m0gCHT
Aþ gCm20H2

(10.50)

Subject to the above set of assumptions, this expression can be employed to

determine the final temperature achieved by adiabatic demagnetization of a mag-

netic material. Here we simply integrate (10.50) over a finite change in field and

temperature,

ðTf
Ti

dT

T
¼
ðm0Hf

m0Hi

m0gCHT
Aþ gCm20H2

d m0Hð Þ (10.51)

which by demagnetization to zero applied field, Hf ¼ 0, results in the expression

Ti
Tf

¼ 1þ gCm
2
0H

2
i

A

� �1=2

(10.52)

Example 10.4

Calculate the final temperature due to demagnetization of iron ammonium alum

from 0.1 T initially at 1 K.

Inserting the appropriate values from Table 10.4: A ¼ 0.108 J � K/mol and

gC ¼ 43.8 J �K/mol into (10.52), the ratio of temperatures for m0Hi ¼ 0.1 T

becomes Ti/Tf ¼ 2.25. Therefore, with the material initially at 1 K the final

temperature as a result of adiabatic demagnetization would be Tf ¼ 0.45 K. In

practice, demagnetizing fields much larger than 0.1 T allow lower final

temperatures, but the simplified expression derived above does not apply in

that case since we have used the low field approximate solution.

Another way of approaching this problem is to consider the entropy in magnetic

ion systems. In the limit of small magnetic field, gmBm0H � kBT and for T 	 d/kB
the spin entropy can be shown to obey the relationship [30]

S ¼ NmkB ln 2J þ 1ð Þ � 2 Aþ m0gCH
2ð Þ

RT2

� �
(10.53)
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where J is the total angular momentum quantum number. Generally, except at very

low temperatures (T � 1 K), the first term in (10.53) is the dominant contribution

to the spin entropy. This situation is desirable for magnetic cooling because the

entropy change between the magnetized and demagnetized materials is what

produces the cooling.

In the high magnetic field limit, gmBm0H 	 kBT, a considerably different situa-

tion occurs. Here the magnetic moments of the dipoles approach complete align-

ment with the magnetic field. The magnetic field is imposing a greater degree of

order on the system, thus lowering the entropy. In the extreme case the spin entropy

approaches zero, leaving the only remaining term associated with the Stark effect

and the lattice, the latter of which can be neglected at low temperatures. In this

limit, the principal behavior of the entropy is obtained by integration of the heat

capacity (10.33). This analysis leads to an exponentially decaying entropy for the

limit where d/kB 	 T,

S ¼ NmkB 1þ d
kBT

� �
g0
g1

e�d=kBT (10.54)

As the exact calculation of the entropy in a magnetic ion subsystem is dependent

on choice of materials and operating range, it will not be carried out here. However,

in order to calculate the final temperature of an adiabatic demagnetization, one

needs to equate (10.53) with (10.54) and solve for the final temperature. This is a

tedious, but straightforward calculation.

A schematic representation of the entropy of a magnetic ion subsystem is shown

in Fig. 10.12. At high temperatures, T 	 d/kB and T 	 gmBm0H/kB, the entropy

difference between the magnetized and unmagnetized state decreases because the

Fig. 10.12 Temperature–

entropy diagram for a

magnetic material
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magnetic field is not very effective at magnetizing the sample. On the other hand, at

very low temperatures, T � d/kB and T 	 gmBm0H/kB, the entropy difference

decreases because the crystal field orders the system independent of the applied

magnetic field. There is a range, indicated by the dashed lines in Fig. 10.12, over

which the entropy difference DS ~ NkBln(2 J +1), thereby allowing for efficient

magnetic cooling. Obviously, the exact temperature range over which this region

occurs depends on the particular paramagnetic material in question.

10.3.3 Continuous Magnetic Refrigerators

With the above survey of the thermodynamics of magnetic cooling, we now turn to

the practical problems associated with achieving continuous refrigeration with

magnetic materials. In this discussion emphasis is placed on continuous refrigera-

tion rather than single-cycle adiabatic demagnetization, which was outlined above.

The material that goes into a magnetic refrigerator must have a number of unique

characteristics which set it apart from materials for other applications. Some of

these characteristics have been introduced above, but a complete summary includes

the following:

1. Magnetic refrigeration materials should have a small electronic and lattice

specific heat. The energy used to cool the electrons and lattice is wasted and

only reduces the efficiency of the cycle.

2. The magnetic level splitting due to the crystal field Stark effect, d/kB, should be

below the range of operating temperatures. Otherwise, the entropy change with

magnetization is reduced.

3. The magnetic contribution to the entropy should be large to allow more thermal

energy to be cycled through the demagnetization process.

4. To achieve good thermal exchange with the systems to be refrigerated, it is

desirable that the magnetic material have good heat transfer characteristics.

Whenever possible, magnetic refrigeration materials should have a high thermal

diffusivity.

5. Any material to be used in a device must be able to be fabricated into the

configurations necessary for effective operation.

The principles of idealized closed-cycle magnetic refrigeration are similar to

those for systems using fluids as working media. The most thermodynamically

efficient cycle is the Carnot cycle which is a combination of isothermal and

isentropic processes. This cycle can be achieved in a magnetic ion subsystem by

a method shown schematically in Fig. 10.13, which is an actual T-S diagram for

gadolinium sulfate. In this example, the Carnot cycle is shown as operating between

two isothermal reservoirs at 15 and 1.7 K. This particular temperature range is

attractive for magnetic refrigeration because helium gas–liquid cycles are limited to

rather low thermodynamic efficiencies compared to the Carnot cycle. Also the

maximum magnetization field of 10 T is a practical limitation because it allows
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for the use of state-of-the-art but not prohibitively expensive superconducting

magnet technology.

Consider the methods whereby Carnot refrigeration in a magnetic system can be

achieved. A schematic diagram of the system is shown in Fig. 10.14. Apart from the

reservoirs, the refrigerator consists of three principal components: the working

material made of a magnetic salt, a magnet for aligning the spins of this material,

and two thermal switches, one to either reservoir for exchange between the working

material and isothermal baths. The Carnot cycle is a four-step process of magneti-

zation, demagnetization, and heat exchange to the isothermal reservoirs.

The methods by which the Carnot cycle can be achieved are seen best by

referring to the cycle ABCD in Fig. 10.13. With the thermal switch 1 (TS 1) closed

and the working material in good contact with the heat reservoir (HR), the magnetic

field is applied up to a maximum of 10 T represented by point D. Here the spins

have the maximum alignment at this temperature.

Next, TS 1 is opened, isolating the magnetic material, and the field is decreased

slowly, cooling the working material to point A at 1.7 K. Note that this point is not

at zero field. Thermal switch 2 (TS 2) is then closed and the working material comes

into the thermal equilibrium with the heat source. This step, which occurs isother-

mally, must be accompanied by a further slight demagnetization of the material to

point B at which point all the heat has been transferred. Thermal switch 2 is then

opened and the working material is magnetized slowly back to the high temperature

represented by point C. Once the working material reaches the heat reservoir

temperature, TS 1 is closed and further magnetization occurs isothermally to

point D, completing the cycle. This process, as represented in Fig. 10.13, is able

Fig. 10.13 Thermodynamic

cycle executed by Gd2(SO4)3 ·

8H2O in a magnetic Carnot

cycle (from Steyert30)
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to pump 27 J per liter of material per cycle, which if achievable at modest

frequencies around 1 Hz could provide a rather high cooling rate in a very small

volume. Of course, the difficulty in achieving this kind of cooling power lies in the

practical aspects of creating a magnetic refrigerator.

In recent years there have been several devices built that are intended to bring the

above concepts to realization on a practical scale [33–37]. In most cases the devices

were developed to operate in the low-temperature region, T < 4.2 K, and to provide

cooling power at the low end of the order of 1 W. Materials employed are either

gadolinium sulfate or gadolinium gallium garnet (GGG), Gd3Ga5O12. The latter

material has shown superior thermal properties. In one particular case, a prototype

refrigerator has been operated between 1.8 and 4.2 K with a cooling power of 1.2 W

and an achieved figure of merit in the range of 45% [37].

10.3.4 Nuclear Demagnetization

To produce much lower temperatures with magnetic refrigeration it soon becomes

inefficient to use paramagnetic salts as the working media because their spins will

already be aligned. At these temperatures, which can span into the submillikelvin

regime, it is possible to use the unpaired magnetic moment associated with the

nuclei. The nuclear magnetic moment mN is smaller than the Bohr magneton by the

ratio of nucleon to electron mass (mn/me ¼ 1,840). Thus, the nuclear spins can be

aligned only by very high magnetic fields at low temperatures. This method was

Fig. 10.14 Schematic diagram of magnetic Carnot refrigerator (Source: From Steyert [32])
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first applied in 1956 by Simon and Kurti at Oxford where spin temperatures in the

neighborhood of 10 mK were achieved through adiabatic demagnetization of the

nuclei of a paramagnetic salt. However, the spin temperatures are not the same as

the lattice temperatures and entropy must be transferred from one system to the

other. The time constant that controls this process, called the spin–lattice relaxation

time, can be large at very low temperatures, providing a severe hindrance to the

ultimately achievable a microkelvin lattice temperature. In recent times, it has

become more advantageous to achieve nuclear demagnetization using nuclei of

metallic elements. In those systems the density of magnetic moments is much

greater and the spin–lattice relaxation time shorter, allowing for minimum actual

bulk temperatures. Record minimum bulk temperature of ~100 pK (10�10 K) have

been achieved by multistage devices for which the last stage is nuclear demagneti-

zation [38].

Questions

1. Explain why the apparent thermal conductivity of MLI has a minimum at a

particular layer density. Sketch a graph of kapp vs. layer density. How would the

graph be different if thickness of the MLI blanket were half as great, but the

same number of layers used? Be as quantitative as possible.

2. If you wanted to improve heat exchange between two surfaces at low tempera-

ture, what would be the best gas to use? Why?

Problems

1. A 100 L spherical liquid helium Dewar consists of an inner vessel with a liquid

nitrogen cooled shield surrounding the inner vessel. Both the helium vessel and

nitrogen shield are suspended in a vacuum vessel. Assume that the emissivity of

all surfaces is 0.1.

(a) Calculate the heat load and liquid nitrogen consumption at 77 K.

(b) Calculate the heat load at 4.2 K and liquid helium consumption.

Neglect any contribution to the heat leak due to structural supports.

2. A liquid helium vessel (outer surface ¼ 300 K) is surrounded by two, thermally

insulated radiation shields. Assume that all surfaces have emissivities ¼ 0.05.

Calculate the temperature of the two shields and the heat leak per unit area to 4.2 K.

3. Calculate the pressure corresponding to a mean free path of 10 mm for a helium

molecule at 80 K. Estimate the apparent thermal conductivity of helium gas

under these conditions (Hint: you may assume that this is a free molecular flow

condition). Let the spacing between walls be 10 mm.

4. Assume a monolayer of helium molecules forms a hexagonal closed packed

structure. Use the hard core radius of a helium molecule to calculate the amount

of gas at STP necessary to form one complete layer at low temperature. Compare

your result with the data in Table 10.3.
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Appendix A2.2 Pressure 0.1 MPa

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

1.0 146.90 0.697 0.016 0.102 0.102

1.2 146.90 0.737 0.051 0.322 0.322

1.4 146.90 0.843 0.132 0.787 0.787

1.6 147.00 1.075 0.287 1.614 1.612

1.8 147.20 1.522 0.548 2.959 2.953

2.0 147.50 2.319 0.966 5.249 5.227

Tl ¼ 2.168 148.00 3.56 1.56 27.88 25.67

2.2 148.00 3.719 1.631 3.777 3.765 2.715 13.859

2.4 147.40 4.257 1.866 2.282 2.173 3.140 14.746

2.6 146.30 4.696 2.042 2.233 2.029 3.364 15.529

2.8 145.00 5.147 2.209 2.308 1.978 3.515 16.226

3.0 143.30 5.623 2.373 2.496 2.017 3.634 16.844

3.2 141.40 6.150 2.543 2.784 2.135 3.715 17.383

3.4 139.10 6.739 2.721 3.108 2.253 3.718 17.838

3.6 136.50 7.395 2.909 3.463 2.353 3.585 18.204

3.8 133.50 8.128 3.107 3.874 2.432 3.456 18.469

4.0 129.90 8.952 3.318 4.396 2.495 3.327 18.624

4.2 125.40 9.902 3.550 5.161 2.547 3.181 18.651

Tsvp ¼ 4.2163 125.01 9.987 3.570 5.243 2.551 3.168 18.648

Tsvp ¼ 4.2163 16.533 31.81 8.510 9.015 3.240 1.241 9.004

4.4 14.940 32.37 8.872 8.056 3.217 1.274 9.275

4.6 13.640 33.92 9.215 7.436 3.194 1.312 9.586

4.8 12.620 35.36 9.523 7.027 3.175 1.350 9.901

5.0 11.780 36.74 9.803 6.735 3.159 1.389 10.216

5.2 11.070 38.06 10.06 6.517 3.146 0.000 10.528

6 9.028 43.05 10.96 6.011 3.120 1.579 11.736

7 7.426 48.89 11.86 5.724 3.111 1.761 13.161

8 6.344 54.54 12.61 5.575 3.111 1.935 14.491

9 5.555 60.06 13.26 5.485 3.113 2.100 15.729

10 4.949 65.52 13.84 5.426 3.115 2.258 16.889

12 4.074 76.29 14.82 5.353 3.118 2.557 19.025

14 3.468 86.95 15.64 5.310 3.120 2.835 20.983

16 3.023 97.54 16.35 5.282 3.120 3.097 22.811

18 2.680 108.1 16.97 5.264 3.121 3.345 24.543

20 2.408 118.6 17.52 5.250 3.121 3.582 26.198

22 2.187 129.1 18.02 5.240 3.121 3.808 27.792

24 2.003 139.6 18.48 5.232 3.120 4.025 29.333

26 1.848 150.0 18.90 5.226 3.120 4.235 30.831

28 1.716 160.5 19.28 5.221 3.120 4.437 32.290

30 1.601 170.9 19.64 5.218 3.120 4.634 33.716

40 1.200 223.0 21.14 5.206 3.119 5.542 40.444

50 0.961 275.0 22.30 5.201 3.118 6.360 46.678

60 0.801 327.0 23.25 5.198 3.118 7.116 52.552

70 0.686 379.0 24.05 5.196 3.117 7.827 58.149

(continued)
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Appendix A2.3 Pressure 0.2 MPa

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/mK)

1.0 148.50 1.374 0.016 0.104 0.104

1.2 148.50 1.414 0.052 0.328 0.328

1.4 148.50 1.522 0.134 0.797 0.796

1.6 148.60 1.757 0.290 1.631 1.628

1.8 148.90 2.208 0.554 2.990 2.979

2.0 149.30 3.015 0.977 5.323 5.285

Tl ¼ 2.158 149.90 4.185 1.537 25.010 22.860

2.2 149.90 4.375 1.625 3.419 3.406 2.846 14.135

2.4 149.30 4.885 1.847 2.195 2.097 3.260 15.048

2.6 148.30 5.306 2.016 2.153 1.972 3.471 15.860

2.8 147.10 5.738 2.175 2.209 1.918 3.613 16.590

3.0 145.70 6.192 2.332 2.387 1.966 3.733 17.247

3.2 143.90 6.695 2.494 2.653 2.087 3.834 17.830

3.4 141.90 7.255 2.664 2.943 2.209 3.881 18.337

3.6 139.70 7.874 2.841 3.246 2.310 3.809 18.710

3.8 137.10 8.555 3.025 3.570 2.390 3.675 19.053

4.0 134.10 9.305 3.217 3.940 2.451 3.557 19.304

4.2 130.70 10.140 3.420 4.395 2.499 3.432 19.459

4.4 126.60 11.070 3.638 5.014 2.540 3.298 19.512

4.6 121.60 12.160 3.880 5.984 2.579 3.147 19.470

4.8 114.80 13.530 4.170 7.942 2.623 2.964 19.352

5.0 102.80 15.680 4.608 16.580 2.696 2.683 19.294

Tsvp ¼ 5.0356 98.60 16.387 4.749 24.548 2.722 2.593 19.439

Tsvp ¼ 5.0356 40.36 27.842 7.023 34.804 3.040 1.721 14.136

5.2 32.030 31.140 7.669 14.290 3.081 1.670 12.791

6 21.260 38.840 9.057 7.737 3.096 1.734 12.768

7 16.260 45.850 10.140 6.519 3.095 1.882 13.834

8 13.450 52.110 10.980 6.064 3.100 2.036 15.040

(continued)

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

80 0.601 431.0 24.75 5.195 3.117 8.503 63.518

90 0.534 482.9 25.36 5.195 3.117 9.152 68.697

100 0.481 534.9 25.91 5.194 3.117 9.778 73.713

125 0.385 664.7 27.07 5.194 3.116 11.090 85.663

150 0.321 794.6 28.01 5.193 3.116 12.500 96.937

175 0.275 924.4 28.81 5.193 3.116 13.850 107.679

200 0.241 1,054 29.51 5.193 3.116 15.140 117.982

225 0.214 1,184 30.12 5.193 3.116 16.390 127.917

250 0.193 1,314 30.66 5.193 3.116 17.600 137.535

275 0.175 1,444 31.16 5.193 3.116 18.780 146.877

300 0.160 1,574 31.61 5.193 3.116 19.930 155.973

Appendix A2.2 (continued)
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Appendix A2.4 Pressure 0.5 MPa

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

1.0 152.80 3.365 0.016 0.109 0.109

1.2 152.80 3.407 0.054 0.346 0.346

1.4 152.90 3.520 0.140 0.838 0.836

1.6 153.10 3.767 0.304 1.705 1.697

1.8 153.40 4.238 0.579 3.117 3.088

2.0 154.00 5.081 1.021 5.604 5.510

Tl ¼ 2.127 154.80 6.024 1.477 39.540 30.460

2.2 154.80 6.301 1.605 2.696 2.681 3.308 15.561

2.4 154.20 6.743 1.798 1.985 1.900 3.685 16.538

2.6 153.50 7.125 1.951 1.976 1.830 3.852 17.424

2.8 152.50 7.513 2.095 1.993 1.774 3.962 18.236

3.0 151.40 7.920 2.235 2.151 1.839 4.075 18.982

3.2 150.10 8.373 2.381 2.385 1.972 4.209 19.665

(continued)

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/mK)

9 11.560 58.050 11.680 5.828 3.106 2.188 16.203

10 10.180 63.800 12.280 5.685 3.112 2.337 17.308

12 8.271 74.990 13.300 5.520 3.119 2.622 19.368

14 6.994 85.930 14.150 5.429 3.123 2.891 21.274

16 6.071 96.720 14.870 5.372 3.125 3.146 23.066

18 5.370 107.400 15.500 5.334 3.125 3.389 24.769

20 4.818 118.100 16.060 5.306 3.125 3.621 26.403

22 4.371 128.700 16.560 5.286 3.125 3.844 27.979

24 4.001 139.200 17.020 5.271 3.125 4.059 29.507

26 3.690 149.700 17.440 5.259 3.124 4.266 30.993

28 3.424 160.300 17.830 5.249 3.124 4.467 32.443

30 3.194 170.700 18.190 5.242 3.124 4.661 33.861

40 2.395 223.000 19.700 5.219 3.122 5.564 40.563

50 1.916 275.200 20.860 5.209 3.120 6.379 46.783

60 1.598 327.200 21.810 5.203 3.119 7.134 52.650

70 1.370 379.200 22.610 5.200 3.119 7.843 58.242

80 1.199 431.200 23.310 5.198 3.118 8.518 63.608

90 1.066 483.200 23.920 5.197 3.118 9.165 68.785

100 0.960 535.100 24.470 5.196 3.118 9.791 73.799

125 0.768 665.000 25.630 5.194 3.117 11.100 85.746

150 0.641 794.900 26.570 5.194 3.117 12.510 97.019

175 0.549 924.700 27.370 5.193 3.117 13.860 107.759

200 0.481 1,055.000 28.070 5.193 3.116 15.150 118.062

225 0.427 1,184.000 28.680 5.193 3.116 16.400 127.996

250 0.385 1,314.000 29.230 5.193 3.116 17.610 137.614

275 0.350 1,444.000 29.720 5.193 3.116 18.790 146.955

300 0.321 1,574.000 30.170 5.193 3.116 19.930 156.050

Appendix A2.3 (continued)
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T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

3.4 148.50 8.874 2.533 2.629 2.101 4.338 20.283

3.6 146.80 9.424 2.690 2.864 2.208 4.387 19.937

3.8 145.00 10.020 2.851 3.093 2.291 4.244 20.421

4.0 142.90 10.660 3.016 3.321 2.354 4.133 20.836

4.2 140.60 11.350 3.183 3.558 2.402 4.020 21.180

4.4 138.10 12.090 3.355 3.815 2.439 3.909 21.453

4.6 135.40 12.880 3.531 4.104 2.470 3.797 21.655

4.8 132.40 13.730 3.712 4.440 2.497 3.685 21.789

5.0 129.00 14.660 3.901 4.846 2.523 3.573 21.861

5.2 125.20 15.680 4.101 5.354 2.548 3.458 21.879

6 102.10 21.420 5.121 10.040 2.689 2.942 21.179

7 59.44 33.930 7.047 11.650 2.946 2.443 17.870

8 41.34 43.780 8.366 8.505 3.031 2.412 17.670

9 32.87 51.560 9.285 7.241 3.068 2.488 18.308

10 27.76 58.470 10.010 6.635 3.090 2.592 19.111

12 21.60 71.080 11.160 6.065 3.116 2.824 20.810

14 17.89 82.920 12.080 5.796 3.129 3.061 22.495

16 15.35 94.340 12.840 5.641 3.135 3.294 24.131

18 13.49 105.500 13.500 5.541 3.137 3.520 25.717

20 12.05 116.500 14.080 5.472 3.138 3.740 27.259

22 10.90 127.400 14.600 5.422 3.138 3.952 28.762

24 9.957 138.200 15.070 5.384 3.137 4.159 30.229

26 9.171 149.000 15.500 5.354 3.137 4.359 31.664

28 8.503 159.600 15.890 5.331 3.136 4.554 33.071

30 7.929 170.300 16.260 5.312 3.135 4.744 34.452

40 5.940 223.100 17.780 5.257 3.130 5.631 41.030

50 4.756 275.500 18.950 5.231 3.127 6.437 47.180

60 3.968 327.800 19.900 5.218 3.125 7.185 53.005

70 3.405 379.900 20.710 5.210 3.123 7.890 58.568

80 2.982 432.000 21.400 5.205 3.122 8.561 63.914

90 2.653 484.000 22.010 5.202 3.121 9.206 69.077

100 2.390 536.000 22.560 5.199 3.120 9.829 74.080

125 1.914 665.900 23.720 5.196 3.119 11.130 86.010

150 1.597 795.800 24.670 5.195 3.118 12.540 97.272

175 1.370 925.700 25.470 5.194 3.118 13.880 108.005

200 1.199 1,056.000 26.160 5.193 3.117 15.170 118.303

225 1.066 1,185.000 26.780 5.193 3.117 16.420 128.233

250 0.960 1,315.000 27.320 5.193 3.117 17.620 137.847

275 0.873 1,445.000 27.820 5.193 3.117 18.800 147.184

300 0.801 1,575.000 28.270 5.193 3.117 19.940 0.156

Appendix A2.4 (continued)
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Appendix A2.5 Pressure 1.0 MPa

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

1.0 158.70 6.578 0.020 0.133 0.133

1.2 158.80 6.627 0.064 0.393 0.391

1.4 159.00 6.753 0.160 0.919 0.911

1.6 159.30 7.021 0.338 1.842 1.820

1.8 159.80 7.530 0.636 3.384 3.320

2.0 160.80 8.471 1.128 6.538 6.243

Tl ¼ 2.068 161.40 9.020 1.398 39.200 25.520

2.2 161.40 9.388 1.571 2.026 2.003 4.215 15.604

2.4 160.80 9.753 1.730 1.730 1.652 4.497 16.671

2.6 160.20 10.09 1.868 1.777 1.661 4.569 17.655

2.8 159.60 10.44 1.997 1.761 1.602 4.607 18.574

3.0 158.70 10.80 2.121 1.900 1.683 4.689 19.433

3.2 157.70 11.20 2.250 2.115 1.829 4.842 20.234

3.4 156.50 11.64 2.385 2.331 1.967 5.039 20.978

3.6 155.30 12.13 2.524 2.530 2.082 5.217 21.508

3.8 153.90 12.65 2.665 2.712 2.171 5.090 22.134

4.0 152.40 13.21 2.809 2.882 2.238 4.962 22.698

4.2 150.80 13.81 2.954 3.045 2.290 4.837 23.203

4.4 149.10 14.43 3.099 3.206 2.330 4.716 23.648

4.6 147.30 15.09 3.245 3.369 2.363 4.599 24.033

4.8 145.40 15.78 3.392 3.539 2.391 4.487 24.360

5.0 143.30 16.51 3.540 3.718 2.416 4.379 24.631

5.2 141.10 17.27 3.690 3.909 2.439 4.276 24.848

6 130.90 20.75 4.311 4.849 2.531 3.901 25.217

7 114.10 26.41 5.180 6.584 2.659 3.506 24.643

8 93.31 33.93 6.181 8.248 2.806 3.215 23.462

9 74.62 42.33 7.170 8.341 2.932 3.083 22.862

10 61.35 50.42 8.023 7.819 3.013 3.066 22.888

12 45.58 65.06 9.361 6.898 3.094 3.172 23.747

14 36.76 78.28 10.38 6.370 3.128 3.345 24.974

16 31.07 90.68 11.21 6.060 3.145 3.537 26.308

18 27.04 102.6 11.91 5.863 3.153 3.735 27.671

20 24.02 114.2 12.52 5.728 3.156 3.933 29.039

22 21.65 125.5 13.06 5.631 3.157 4.129 30.399

24 19.73 136.7 13.55 5.558 3.156 4.322 31.747

26 18.14 147.8 13.99 5.502 3.155 4.512 33.081

28 16.81 158.7 14.40 5.458 3.153 4.698 34.401

30 15.66 169.6 14.77 5.422 3.152 4.880 35.706

40 11.72 223.2 16.32 5.316 3.143 5.740 42.014

50 9.397 276.1 17.50 5.268 3.137 6.531 48.003

60 7.850 328.7 18.45 5.242 3.133 7.269 53.721

70 6.743 381.0 19.26 5.226 3.130 7.967 59.211

80 5.912 433.2 19.96 5.217 3.128 8.633 64.504

90 5.264 485.3 20.57 5.210 3.126 9.273 69.627

100 4.745 537.4 21.12 5.206 3.125 9.892 74.600

125 3.806 667.5 22.28 5.199 3.122 11.190 86.478

(continued)
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Appendix A2.6 Pressure 1.5 MPa

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

1.0 163.80 9.685 0.028 0.169 0.168

1.2 164.00 9.744 0.080 0.448 0.445

1.4 164.20 9.883 0.187 1.007 0.996

1.6 164.60 10.18 0.380 2.012 1.973

1.8 165.30 10.74 0.710 3.818 3.669

2.0 166.80 11.89 1.310 10.310 8.875

Tl ¼ 2.003 166.90 11.92 1.326 31.620 18.990

2.2 166.80 12.36 1.536 1.654 1.624 5.198 16.101

2.4 166.30 12.67 1.673 1.586 1.515 5.335 17.249

2.6 165.70 12.99 1.803 1.634 1.540 5.276 18.317

2.8 165.20 13.31 1.924 1.593 1.471 5.228 19.324

3.0 164.40 13.64 2.037 1.730 1.565 5.277 20.275

3.2 163.60 14.01 2.155 1.935 1.718 5.448 21.172

3.4 162.70 14.42 2.279 2.138 1.862 5.702 22.012

3.6 161.70 14.86 2.406 2.322 1.981 5.993 22.792

3.8 160.50 15.34 2.536 2.486 2.074 5.903 23.519

4.0 159.40 15.85 2.668 2.634 2.146 5.748 24.188

4.2 158.10 16.40 2.800 2.773 2.201 5.600 24.800

4.4 156.70 16.96 2.932 2.905 2.245 5.457 25.354

4.6 155.30 17.56 3.064 3.035 2.281 5.321 25.852

4.8 153.80 18.18 3.196 3.166 2.311 5.192 26.295

5.0 152.20 18.82 3.328 3.299 2.339 5.070 26.685

5.2 150.50 19.50 3.460 3.436 2.365 4.953 27.023

6 143.00 22.48 3.992 4.040 2.462 4.548 27.904

7 131.70 26.96 4.681 4.952 2.584 4.152 28.124

8 118.50 32.44 5.411 6.006 2.706 3.858 27.677

9 103.90 38.93 6.175 6.925 2.821 3.655 27.024

10 89.98 46.11 6.930 7.337 2.922 3.546 26.587

12 68.77 60.71 8.262 7.145 3.054 3.524 26.683

14 55.39 74.56 9.330 6.713 3.117 3.626 27.478

16 46.58 87.62 10.20 6.369 3.148 3.776 28.535

18 40.37 100.10 10.94 6.121 3.163 3.945 29.698

20 35.75 112.20 11.57 5.943 3.170 4.122 30.909

22 32.15 123.90 12.13 5.812 3.172 4.302 32.140

(continued)

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

150 3.178 797.4 23.23 5.196 3.121 12.590 97.709

175 2.728 927.3 24.03 5.195 3.120 13.930 108.421

200 2.390 1,057.0 24.72 5.194 3.119 15.210 118.704

225 2.126 1,187.0 25.34 5.193 3.119 16.450 128.623

250 1.915 1,317.0 25.88 5.193 3.118 17.650 138.228

275 1.742 1,447.0 26.38 5.192 3.118 18.820 147.558

300 1.597 1,576.0 26.83 5.192 3.118 19.960 156.645

Appendix A2.5 (continued)
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Appendix A2.7 Pressure 2.0 MPa

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

1.0 168.40 12.70 0.035 0.198 0.197

1.2 168.50 12.77 0.095 0.503 0.500

1.4 168.70 12.92 0.214 1.126 1.112

1.6 169.20 13.25 0.433 2.290 2.218

1.8 170.20 13.91 0.817 4.570 4.216

Tl ¼ 1.932 171.60 14.74 1.258 31.000 15.730

2.0 171.80 14.92 1.351 1.926 1.926 5.664E-06 15.358

2.2 171.50 15.24 1.502 1.429 1.394 6.172E-06 16.654

2.4 171.00 15.52 1.624 1.511 1.447 6.111E-06 17.875

2.6 170.40 15.83 1.751 1.525 1.446 5.904E-06 19.021

2.8 169.90 16.14 1.867 1.463 1.367 5.776E-06 20.107

3.0 169.30 16.44 1.972 1.602 1.471 5.817E-06 21.139

3.2 168.50 16.78 2.082 1.799 1.627 6.035E-06 22.118

3.4 167.80 17.16 2.197 1.993 1.774 6.364E-06 23.043

3.6 166.90 17.58 2.316 2.167 1.895 6.774E-06 23.911

3.8 166.00 18.03 2.437 2.321 1.991 6.720E-06 24.723

4.0 164.90 18.51 2.560 2.459 2.065 6.534E-06 25.478

4.2 163.90 19.01 2.683 2.585 2.123 6.355E-06 26.176

4.4 162.70 19.54 2.806 2.704 2.170 6.186E-06 26.817

4.6 161.50 20.09 2.929 2.819 2.209 6.025E-06 27.403

4.8 160.20 20.67 3.051 2.933 2.242 5.874E-06 27.934

5.0 158.90 21.26 3.173 3.047 2.273 5.730E-06 28.412

(continued)

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

24 29.26 135.40 12.63 5.711 3.172 4.482 33.378

26 26.88 146.80 13.09 5.634 3.171 4.661 34.618

28 24.88 158.00 13.50 5.572 3.169 4.838 35.854

30 23.18 169.10 13.89 5.522 3.167 5.012 37.085

40 17.36 223.40 15.45 5.372 3.156 5.847 43.119

50 13.93 276.80 16.64 5.303 3.148 6.624 48.930

60 11.65 329.60 17.60 5.265 3.141 7.352 54.526

70 10.02 382.10 18.41 5.242 3.137 8.043 59.928

80 8.792 434.50 19.11 5.228 3.133 8.704 65.156

90 7.834 486.70 19.73 5.219 3.131 9.339 70.228

100 7.066 538.80 20.28 5.212 3.129 9.955 75.161

125 5.677 669.00 21.44 5.203 3.125 11.240 86.971

150 4.745 799.00 22.39 5.198 3.123 12.640 98.159

175 4.076 928.90 23.19 5.195 3.122 13.970 108.842

200 3.572 1,059.00 23.88 5.194 3.121 15.250 119.105

225 3.179 1,189.00 24.49 5.193 3.120 16.480 129.009

250 2.864 1,318.00 25.04 5.192 3.119 17.680 138.602

275 2.606 1,448.00 25.54 5.192 3.119 18.840 147.923

300 2.391 1,578.00 25.99 5.192 3.119 19.980 157.003

Appendix A2.6 (continued)
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T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

5.2 157.50 21.89 3.295 3.163 2.301 5.596E-06 28.839

6 151.30 24.61 3.781 3.652 2.408 5.131E-06 30.080

7 142.30 28.59 4.394 4.333 2.539 4.690E-06 30.754

8 132.10 33.29 5.021 5.074 2.662 4.367E-06 30.738

9 120.90 38.74 5.662 5.814 2.773 4.137E-06 30.345

10 109.30 44.88 6.307 6.420 2.870 3.985E-06 29.875

12 88.17 58.35 7.534 6.892 3.016 3.866E-06 29.463

14 72.39 72.05 8.590 6.766 3.101 3.902E-06 29.847

16 61.22 85.34 9.478 6.517 3.146 4.010E-06 30.649

18 53.13 98.14 10.230 6.288 3.169 4.150E-06 31.639

20 47.04 110.50 10.880 6.101 3.180 4.307E-06 32.717

22 42.29 122.60 11.460 5.954 3.185 4.471E-06 33.841

24 38.48 134.40 11.970 5.838 3.186 4.638E-06 34.989

26 35.34 145.90 12.430 5.745 3.186 4.807E-06 36.148

28 32.71 157.30 12.860 5.671 3.184 4.975E-06 37.313

30 30.47 168.60 13.250 5.609 3.181 5.142E-06 38.480

40 22.84 223.70 14.830 5.424 3.168 5.953E-06 44.265

50 18.35 277.40 16.030 5.335 3.157 6.715E-06 49.905

60 15.37 330.50 17.000 5.287 3.149 7.435E-06 55.378

70 13.23 383.20 17.810 5.258 3.143 8.119E-06 60.687

80 11.62 435.70 18.510 5.239 3.139 8.774E-06 65.844

90 10.36 488.00 19.130 5.227 3.136 9.405E-06 70.860

100 9.355 540.30 19.680 5.218 3.133 1.002E-05 75.749

125 7.526 670.50 20.840 5.206 3.128 1.129E-05 87.480

150 6.296 800.60 21.790 5.199 3.126 1.268E-05 98.618

175 5.412 930.50 22.590 5.196 3.124 1.401E-05 109.267

200 4.746 1,060.0 23.290 5.194 3.122 1.528E-05 119.505

225 4.226 1,190.0 23.900 5.193 3.121 1.651E-05 129.391

250 3.809 1,320.0 24.440 5.192 3.120 1.770E-05 138.971

275 3.466 1,450.0 24.940 5.192 3.120 1.886E-05 148.281

300 3.180 1,580.0 25.390 5.192 3.119 2.000E-05 157.352

Appendix A2.7 (continued)

Appendix A2.8 Pressure 2.5 MPa

T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

1.0 172.50 15.640 0.041 0.220 0.220

1.2 172.60 15.720 0.107 0.569 0.566

1.4 172.80 15.890 0.244 1.304 1.280

1.6 173.50 16.280 0.501 2.734 2.583

1.8 175.00 17.090 0.976 5.937 5.042

Tl ¼ 1.855 175.90 17.500 1.195 29.960 12.640

2.0 176.00 17.780 1.342 1.412 1.404 6.878 15.783

2.2 175.70 18.040 1.468 1.287 1.248 7.050 17.147

2.4 175.10 18.300 1.582 1.465 1.405 6.757 18.438

2.6 174.60 18.620 1.708 1.441 1.373 6.412 19.656

(continued)
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T(K) r(kg/m3) h(kJ/kg) s(kJ/kg K) Cp(kJ/kg K) Cv(kJ/kg K) m(mPa s) k(mW/m K)

2.8 174.00 18.920 1.821 1.365 1.287 6.243 20.816

3.0 173.50 19.200 1.919 1.501 1.393 6.329 21.923

3.2 172.80 19.520 2.022 1.690 1.549 6.645 22.977

3.4 172.10 19.880 2.130 1.877 1.696 7.088 23.977

3.6 171.40 20.270 2.242 2.044 1.818 7.608 24.921

3.8 170.60 20.690 2.357 2.191 1.915 7.557 25.808

4.0 169.70 21.140 2.473 2.321 1.992 7.334 26.639

4.2 168.70 21.620 2.589 2.440 2.052 7.122 27.412

4.4 167.70 22.120 2.705 2.551 2.102 6.922 28.128

4.6 166.70 22.640 2.821 2.657 2.143 6.733 28.788

4.8 165.60 23.180 2.936 2.762 2.179 6.555 29.393

5.0 164.40 23.740 3.051 2.866 2.213 6.387 29.945

5.2 163.20 24.330 3.165 2.971 2.244 6.230 30.445

6 157.80 26.880 3.620 3.405 2.361 5.693 31.974

7 150.10 30.570 4.188 3.984 2.501 5.189 32.991

8 141.60 34.850 4.759 4.588 2.631 4.824 33.280

9 132.30 39.740 5.335 5.189 2.746 4.562 33.115

10 122.50 45.210 5.911 5.740 2.843 4.379 32.743

12 103.30 57.520 7.030 6.461 2.992 4.194 32.111

14 87.03 70.680 8.044 6.627 3.087 4.171 32.122

16 74.51 83.850 8.924 6.528 3.142 4.239 32.657

18 65.02 96.750 9.684 6.362 3.173 4.351 33.473

20 57.72 109.30 10.35 6.198 3.189 4.487 34.430

22 51.97 121.60 10.93 6.055 3.196 4.636 35.461

24 47.32 133.50 11.45 5.935 3.199 4.791 36.531

26 43.49 145.30 11.92 5.836 3.199 4.950 37.624

28 40.27 156.90 12.35 5.753 3.197 5.110 38.730

30 37.52 168.30 12.75 5.685 3.195 5.270 39.843

40 28.16 224.00 14.35 5.471 3.179 6.057 45.413

50 22.66 278.10 15.56 5.366 3.167 6.806 50.897

60 19.00 331.40 16.53 5.308 3.157 7.516 56.251

70 16.38 384.30 17.34 5.273 3.150 8.193 61.469

80 14.40 436.90 18.05 5.250 3.145 8.843 66.553

90 12.86 489.40 18.66 5.235 3.140 9.470 71.512

100 11.61 541.70 19.22 5.224 3.137 10.080 76.354

125 9.353 672.10 20.38 5.209 3.132 11.350 88.000

150 7.832 802.20 21.33 5.201 3.128 12.730 99.083

175 6.738 932.10 22.13 5.197 3.126 14.050 109.694

200 5.911 1,062.00 22.82 5.194 3.124 15.320 119.905

225 5.266 1,192.00 23.43 5.193 3.123 16.540 129.770

250 4.747 1,322.00 23.98 5.192 3.122 17.730 139.334

275 4.322 1,451.00 24.48 5.192 3.121 18.880 148.633

300 3.966 1,581.00 24.93 5.191 3.120 20.010 157.693

Appendix A2.8 (continued)
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Appendix 3

He II Heat Conductivity Function

Appendix A3 Turbulent He II heat conductivity function, f�1(T,p), kW3/m5 K

TEMP

(K) SVP 0.1 MPa 0.25 MPa 0.5 MPa 1 MPa 1.5 MPa 2 MPa 2.5 MPa

1.4 396.88 389.91 374.74 356.23 343.23 322.94 291.98 279.18

1.42 492.09 483.16 464.00 440.23 421.71 394.09 352.60 331.46

1.44 607.04 595.63 571.54 541.13 515.08 477.78 422.59 389.82

1.46 745.02 730.50 700.32 661.55 625.36 575.38 502.50 453.88

1.48 909.64 891.23 853.58 804.33 754.62 688.14 592.62 522.84

1.5 1,104.84 1,081.57 1,034.78 972.45 904.87 817.11 692.86 595.36

1.52 1,334.81 1,305.52 1,247.60 1,169.02 1,078.03 963.05 802.68 669.54

1.54 1,603.96 1,567.21 1,495.81 1,397.13 1,275.74 1,126.23 920.88 742.74

1.56 1,916.77 1,870.84 1,783.17 1,659.73 1,499.25 1,306.30 1,045.52 811.63

1.58 2,277.66 2,220.49 2,113.27 1,959.50 1,749.17 1,502.09 1,173.75 872.13

1.6 2,690.81 2,619.91 2,489.35 2,298.61 2,025.27 1,711.38 1,301.68 919.55

1.62 3,159.86 3,072.31 2,914.01 2,678.47 2,326.23 1,930.69 1,424.35 948.79

1.64 3,687.69 3,580.03 3,388.95 3,099.42 2,649.33 2,155.11 1,535.63 954.68

1.66 4,275.95 4,144.16 3,914.56 3,560.40 2,990.12 2,378.07 1,628.42 932.58

1.68 4,924.68 4,764.10 4,489.55 4,058.54 3,342.20 2,591.24 1,694.78 879.06

1.7 5,631.79 5,437.10 5,110.43 4,588.75 3,696.87 2,784.58 1,726.45 792.94

1.72 6,392.53 6,157.71 5,771.08 5,143.29 4,042.96 2,946.41 1,715.47 676.33

1.74 7,198.86 6,917.20 6,462.18 5,711.32 4,366.75 3,063.84 1,655.15 535.73

1.76 8,038.89 7,703.03 7,170.71 6,278.62 4,652.08 3,123.42 1,541.29 382.86

1.78 8,896.31 8,498.36 7,879.58 6,827.27 4,880.66 3,112.10 1,373.74 234.57

1.8 9,749.90 9,281.59 8,567.29 7,335.65 5,032.79 3,018.70 1,157.98 111.09

1.82 10,573.23 10,026.21 9,207.86 7,778.62 5,088.44 2,835.73 906.67 31.12

1.84 11,334.63 10,700.85 9,771.03 8,128.11 5,028.94 2,561.60 640.58 1.49

1.86 11,997.49 11,269.75 10,222.94 8,354.22 4,839.10 2,203.13 388.07

1.88 12,521.14 11,693.80 10,527.32 8,426.88 4,510.05 1,777.95 181.76

1.9 12,862.33 11,932.24 10,647.41 8,318.24 4,042.50 1,316.21 50.37

1.92 12,977.62 11,945.21 10,548.69 8,005.91 3,450.25 860.57 2.39

1.94 12,826.67 11,697.28 10,202.53 7,476.91 2,763.44 462.82

1.96 12,376.63 11,161.98 9,590.84 6,732.33 2,030.59 174.52

(continued)
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TEMP

(K) SVP 0.1 MPa 0.25 MPa 0.5 MPa 1 MPa 1.5 MPa 2 MPa 2.5 MPa

1.98 11,607.65 10,327.35 8,711.42 5,792.32 1,317.94 27.72

2 10,519.24 9,202.22 7,583.96 4,700.74 703.69 0.00

2.02 9,137.17 7,822.67 6,255.61 3,528.19 263.46

2.04 7,520.03 6,257.67 4,805.26 2,371.58 41.55

2.06 5,763.86 4,612.16 3,344.14 1,347.17 0.00

2.08 4,002.59 3,024.66 2,009.69 572.35

2.1 2,400.26 1,655.30 947.80 129.50

2.12 1,129.61 657.73 276.12 1.99

2.14 328.41 125.60 18.18

2.16 21.57 0.35

Appendix A3 (continued)
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Appendix 4

Temperature-Entropy Diagrams for Helium

Appendix A4 Normal fluid viscosity and laminar flow heat conductivity function

T(K) mn(10
�7 Pa.s) g(T) (W/m3 K) � 10�13

1.20 21.35 3.08

1.22 20.35 4.03

1.26 18.67 6.77

1.28 17.97 8.67

1.30 17.35 11.03

1.32 16.80 13.94

1.34 16.33 17.47

1.36 15.91 21.77

1.38 15.54 26.96

1.40 15.22 33.18

1.44 14.70 49.30

1.46 14.48 59.71

1.48 14.30 71.88

1.50 14.13 86.16

1.52 13.99 102.85

1.54 13.86 122.20

1.56 13.74 144.94

1.60 13.54 201.08

1.62 13.45 235.78

1.64 13.37 275.56

1.66 13.29 321.19

1.68 13.22 373.07

1.70 13.16 432.22

1.72 13.11 499.82

1.74 13.06 576.22

1.76 13.03 661.50

1.78 13.00 758.24

1.80 13.00 865.32

1.82 13.02 984.22

1.84 13.05 1,118.40

(continued)
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T(K) mn(10
�7 Pa.s) g(T) (W/m3 K) � 10�13

1.86 13.12 1,263.00

1.88 13.22 1,420.90

1.90 13.36 1,591.30

1.92 13.54 1,775.30

1.94 13.78 1,972.20

1.96 14.07 2,178.60

1.98 14.44 2,391.80

2.00 14.88 2,617.60

2.02 15.40 2,846.10

2.04 16.03 3,075.70

2.06 16.77 3,310.70

2.10 18.67 3,777.20

2.12 19.87 3,999.40

2.14 21.29 4,229.60

2.16 23.03 4,456.50

2.18 25.25 4,677.10

Appendix A4 (continued)
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Appendix 5

T-S Diagrams in He II Region
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Appendix 6

Helium T-S Diagrams
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456 Appendix 6 Helium T-S Diagrams



Conversion Factors

Unit/unit system SI CGS English

Length 1 m 100 cm 3.281 ft

Area 1 m2 104 cm2 10.76 ft2

Volume 1 m3 (103 L) 106 cm3 35.31 ft3

Mass 1 kg 1,000 g 2.205 lbm
Density 1 kg/m3 10�3 g/cm3 6.243 � 10�2 lbm/ft

3

Velocity 1 m/s 100 cm/s 3.281 ft/s

Force 1 N 105 dynes 0.2248 lbF
Pressure 1 Pa 10 dynes/cm2 1.45 � 10�4 lbf/in

2

10�5 bar 9.869 � 10�6 atm

7.501 � 10�3 torr

Temperature 1 K 1 K 9/5�R
Energy 1 J 107 erg 9.479 � 10�4 Btu

Heat transfer rate 1 W 107 erg/s 3.412 Btu/hr

Heat transfer coefficient 1 W/m2 K 10�4 W/cm2 K 0.176 Btu/hr ft2�R
Viscosity 1 Pa s 10 poise 5.8 � 10�6 lbf hr/ft

2

Thermal conductivity 1 W/m K 10�2 W/cm K 0.578 Btu/hr ft�R
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Physical Constants

Universal gas constant R ¼ 0.0823 L atm/mole K; 8.31 J/mole K

Speed of light in vacuum c ¼ 2.998 � 108 m/s

Avogadro’s number No ¼ 6.024 � 1023 molecules/mole

Boltzmann constant kB ¼ 1.38 � 10�23 J/K molecule

Planck’s constant h ¼ 6.625 � 10�34 J s/molecule

Stefan-Boltzmann constant s ¼ 5.67 � 10�8 W/m2 K4

Electron mass me ¼ 9.11 � 10�31 kg

Proton mass mp ¼ 1.67 � 10�27 kg

Permeability constant mo ¼ 1.26 � 10�6 H/m

Permittivity constant eo ¼ 8.85 � 10�12 F/m

Bohr magneton me ¼ 0.927 � 10�23 J/T

Elementary charge e ¼ 1.60 � 10�19 Coul

Gravitational acceleration g ¼ 9.807 m/s2
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Index

A

Absolute zero, 2, 12–15, 28, 34, 54, 163,

164, 169, 173, 179, 196, 281,

381, 408, 416

Absorptivity, 399

Accommodation coefficient, 396,

397, 406

Acoustic mismatch theory, 285–290, 311

Andronikashvili experiment, 201, 207

Attractive potential

in Cooper pairs, 50

in inert gases, 63

B

BCS theory, 390

Bénard convection, 121

Blasius correlation, 89, 102, 213

Boltzmann statistics

in a magnetic ion subsystem, 416

in an ideal gas, 396

Bose–Einstein condensation, 168

Bose–Einstein statistics

applied to helium, 61, 164, 175

phonon gas, 19

Boundary layer

in film boiling, He II, 228, 279,

296, 302

in forced convection, 146, 147

Boyle temperature, 65–67, 69, 83

Breen and Westwater correlation, 139

Brillouin function, 419

C

Carnot cycle

in a gas system, 342

in a magnetic ion system, 424

Carnot efficiency

in refrigeration, 324, 352, 369

thermodynamic definition, 318

versus refrigerator size, 318, 352, 369
Claude cycle

isothermal refrigerator, 353, 354

liquefier, 343, 353

Clausius–Clapeyron equation

saturated He II, 237, 246, 248

solid-liquid helium, 387

vapor nucleation theory, 124

Coefficient of performance (COP)

in a Carnot cycle, 324, 351, 362

in a Stirling cycle, 362

in an isobaric refrigerator, 358

Compressibility

factor, 67, 92, 149, 327, 431–433

isothermal, 28, 71, 178

of liquid He, 92, 178

Compressors, 86, 91, 317, 320, 332, 333,

335337, 339, 340, 343, 346, 347,

356, 359, 361, 364, 367, 369, 373,

374, 379, 406

Conductivity, 30, 31, 34–36, 39, 53, 242,

253, 399, 404

Contact conductance

electrical, 41

thermal, 41

461



Continuity equation

internal flow, 87

two-fluid model, 188, 194

Cooper pairs, 47, 48, 50

Critical energy

in He I, 159

in He II, 257, 259

in Type I superconductors, 46, 50

in Type II superconductors, 51, 53

Critical field, 45, 46, 48, 51, 53, 55

Critical heat flux

in He I, 139, 295

in He II, 180, 181, 294, 295, 305

Critical point

of 4He, 59

of common fluids, 4

Critical temperature

in 3He, 388

ideal Bose gas, 169

Critical velocity. See Velocity, critical
Cryogenics

applications of, 1–17, 24, 28, 33, 34, 43,

85, 111, 393

definition of, 1

Cryopumping, 8, 406, 412–414

Curie constant, 419, 420

D

Darcy permeability, 109, 111

Debye frequency, 20

Debye temperature

and Kapitza conductance, 40, 281, 288

definition (equation), 20

of common elements, 22

Debye theory, 281

Demagnetization

adiabatic, 383, 386–388, 420,

422–424, 427

nuclear, 6, 426–427

Density of

a Bose gas, 168–170

a Fermi gas, 385

He II under SVP, 179

liquid 4He, 70

normal fluid component, 187

superfluid component, 187

Density of states

Debye model, 20

free electron model, 23

phonon gas, 19, 37

Diffusion

heat in He I, 151

heat in He II, 253–255, 258–261, 270

time, 253–255, 261

Dilution refrigeration, 6, 280, 380–383, 386

Dulong and Petit heat capacity, 19, 21

E

Efficiency

of a refrigeration system, 352, 369

thermodynamic, 2, 7, 12, 276, 317,

324, 338–340, 343, 345, 351,

352, 354, 363

Emissivity

definition, 398, 399

of aluminized mylar, 403

of various metallic surfaces, 400

Energy equation

classical fluids, 265

of He II, 254, 262–263, 265, 270

Entropy

of He II at SVP, 178

of liquid 3He, 388

of liquid 4He, 72

of mixing 3He-4He, 381

of mixing in two phase helium, 381

of paramagnetic salts, 427

statistical definition, 12, 13

thermodynamic definition, 16, 408

transition from superconducting

to normal state, 55

Equation of state

empirical form, 67–69

van der Waal’s, 64, 67–69, 328, 330,

331, 343

virial expansion, 64

Euler’s equation, 79, 189, 194, 197, 198

Excitations in He II

contributions to state properties, 175–179, 183

dispersion relation, 185

phonon, 184–185

rotons, 184–186

Expansion engine

in Claude cycle, 343, 344, 346, 349

irreversibilities in, 367

Expansivity

liquid 4He, 71

liquid helium, 70

solids, 18, 19, 27

supercritical helium, 92, 93
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F

Fermi energy (temperature)

effective (Landau theory), 385

free electron model, 23

ideal gas, 384, 385

Fermi–Dirac statistics

for an ideal gas, 164, 383

free electron model, 23, 383

in 4He, 164, 378

Feynmann theory, 210

Figure of merit (FOM)

definition of, 44, 352

in a Claude liquefier, 345, 349

in a Joule–Thomson liquefier, 336

Film boiling

in He I, 135, 159, 227, 239, 295, 296

in He II, 239, 294–298, 301, 302, 306, 307

transition (time dependence), 151, 154,

157–159, 228, 239, 295, 307–310

Flow quality, 99, 100, 102

Forced convection

heat transfer correlations, 147–149

transient effects, 149

Fountain effect (thermomechanical effect)

experiments, 108, 181, 182, 191

in the two-fluid model, 191, 197, 199

Frenkel–Halsey–Hill equation, 409, 410, 414

Friction factor

characteristics of, 89, 96, 213, 266

in He II, 265, 266

laminar flow, 89, 213

Moody diagram, 89, 91

G

Gaseous helium

equation of state, 61, 62, 64, 67–69

second virial coefficient, 64–66

transport properties of, 70, 73, 76–83

Gibbs potential (free energy)

superconductor-normal transition, 47

superfluid component, 190, 191

Gorter–Mellink Mutual friction

in He II, 216, 246, 247, 254

parameter, 216, 231

Grashof number (Gr), 116, 117, 303, 304

Gr€uneisen coefficient, 27, 28

H

He I

density of, 69–71, 239

heat transfer film boiling, 239, 295, 296

in channels, 239

pool boiling, 130, 139, 227, 295

Prandtl number (Pr), 83

state properties of, 69–76, 115

subcooled state, 134, 137, 239, 240, 295

transient heat transfer, 151, 153, 156

transport properties of, 73, 76–83

Heat capacity. See also Specific heat

conduction electrons, 23

gases, 18, 19, 23, 321

helium, 155, 177, 252, 321, 361

liquids, 18, 155, 177, 252

magnetic, 18, 25, 417, 418, 421, 423

phonon, 19–21, 23–25, 37

Schottky, 417, 418

solids at low temperatures, 18

superconductor-normal transition, 48

Heat conductivity. See also Thermal

conductivity

function for He II, 180, 202, 216, 230–232,

243, 262, 447–448

in gases at low pressures, 81

insulation, 394, 395

Heat exchangers

He II, 241–247, 249, 296

thermal effectiveness, 368

Heat flux. See also Recovery heat flux

effect of subcooling, 134, 137

for forced convection, 147, 219, 261, 265

for He II in cylindrical geometries, 240,

241, 305

in He I, 130, 142, 156, 239, 295

in He II, 181, 212, 234–239, 270, 295, 302,

306, 309

peak in He I, 131, 142, 305

peak in He II, 235–239, 265, 295, 305

pool boiling, 117, 130, 144

radiant, 282, 401, 402

Heat transfer. See Heat transfer coefficient;
Heat transport

Heat transfer coefficient. See also Heat

transfer correlations

channel in He I, 150, 156

convective in He I, 121, 123, 146

film boiling, 138, 139, 295, 296, 299–302,

307, 308, 311

in He II, 243, 295, 301

nucleate boiling, 123–134

radiation, 5, 151, 397–402

surface effects in He I, 139

transient in He I, 151, 155, 156, 294

Heat transfer correlations

Dittus–Boelter, 148
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Heat transfer correlations (cont.)
free convection, 147

in pool boiling, 139

in two-phase flow, 149–151

Kutateladze correlation, 129

transient in He I, 139

Heat transport in He II. See also Heat transfer

forced convection, 218–219, 261–270

Poiseuille equation, 200, 202

transient, 223, 251–261, 268–270, 307, 309

with mutual friction, 227, 229, 230, 274

Heisenberg uncertainty principle, 163, 209

Helium films

adsorption, 412–414

flow of, 182, 183

phases of, 412, 413

properties of, 412–414

Helmholtz instability, 131

Hydraulic diameter, 89, 113, 144

I

Index, 286

Internal energy

free electron model, 23

ideal Bose gas, 170–174

ideal Fermi gas, 384

paramagnetic ion system, 416, 417

phonon gas, 19–21, 23, 177, 281

Inversion curve, 327, 329–335, 337, 345

Isenthalpic expansion. See also Joule–Thomson

effect

coefficient (see Joule–Thomson coefficient)

definition of, 93, 317, 324, 325

in liquefaction, 5, 317, 324–341, 346

internal flow, 93

Isentropic expansion

coefficient, 342, 420, 421

definition of, 317, 342

in liquefaction, 317, 320, 342–350, 356,

357, 367

Isosteric heat, 408–411

Isotherm

adsorption, 409, 410, 412

definition of, 409, 411

J

Joule–Thomson coefficient

definition of, 93, 268, 325

in He II, 267

van der Waal gas, 328–331

Joule–Thomson effect, 270, 324–332, 338

Joule–Thomson liquefier, 332–341, 345

Joule–Thomson value, 332

K

Kapitza conductance

acoustic mismatch theory, 285–290, 311

at large heat flux, 292–294

dependence on Debye temperature,

40, 41, 281, 282, 284, 288, 289

experimental values, 283, 284, 290

helium pressure dependence, 291

in He I, 155, 156, 295

in He II, 278, 280, 289, 292, 294

magnetic field dependence, 291

phonon radiation limit, 280–285,

287–289, 292

L

Lambda transition

compared toBose–Einstein condensation, 174

dependence on temperature and pressure,

216, 229, 230

in 3He-4He mixtures, 380, 381

in 4He films, 413

Laminar flow

in He II, 180, 209, 221, 227, 271–273

Landau theory

in 3He, 385

in He II, 177, 183–186

Latent heat

ideal bose gas, 174–175

of 4He, 410

superconductors, 48

Law of corresponding states

in van der Waal’s gas, 68, 330

Lennard–Jones potential, 63, 65, 78, 407

Levy model, 102

Linde–Hampson system. See Joule–Thomson

liquefier

Liquefaction

by isenthalpic expansion, 5, 317, 324–341,

344, 346, 365

of common cryogenic fluids, 322

Liquefier

cascade system, 338

Claude, 343–349

Collins, 349, 350

Joule–Thomson, 332–341, 345

Lockhart–Martinelli correlation, 100–103

London-dispersion interaction, 62

Lorentz ratio, 36, 56

464 Index



M

Magnetic susceptibility. See Magnetization

Magnetization

adiabatic, 55

of paramagnetic ions, 415–420

of superconductors, 47, 51

Magnetocaloric coefficient, 420–422

Matthiessen’s rule, 30

Maxwell–Boltzmann distribution, 77, 79

Mean free path

in low pressure gases, 396, 427

of electrons in metals, 32

of phonons in solids, 185

Mean square displacement, 31

Mechanocaloric effect, 192, 193. See also
Fountain effect

Meissner effect, 46, 47

Modulus of elasticity, 42, 43

Momentum equation, 87

Multilayer insulation (MLI), 401–404, 427

Mutual friction, 212–221, 223, 224, 227,

229, 230, 274, 311

N

Natural circulation loop, 97, 103–107, 112

Natural convection

Bénard, 121

free convection correlation, 116, 123

in He I, 118, 122

Navier–Stokes equations

of classical fluids, 87

two-fluid model, 189, 198

Nucleate boiling

correlations for, 132, 139

in He I, 130, 158, 159, 295

theory of, 127, 129

Nusselt number, 116, 121, 122, 146–148,

150, 303

P

Paramagnetic salts

entropy of, 427

magnetization of, 419

Partition function, 416, 417, 419

Pauli exclusion principle, 164

Perite insulation, 403

Permeability, 108, 109, 111–113, 273, 274

Poiseuille flow, 199, 200, 202.

See also laminar flow

in classical fluids, 88

in He II, 199, 202

Polycritical point (3He), 389

Pomaranchuk cooling, 6

Prandtl number

helium, 82, 147

ideal gas, 82

of common liquids, 83

Pressure drop

compressible fluid, 93

incompressible fluid, 91

natural circulation loop, 104

two-phase flow, 97, 100

Q

Quantum gases

ideal Bose, 165, 383

ideal Fermi, 383

in two-dimension, 412

R

Rayleigh number

critical value, 117, 121, 122

Rayleigh–Benard instability,

121, 122

Recovery heat flux, 119, 137, 140, 295

Refrigeration

Carnot cycle, 317, 324, 342, 346, 351,

362, 372, 424, 425

closed cycle, 338, 350–358

cost of, 368, 370, 393

dilution, 6, 280, 380–383, 386, 392

Gifford McMahon, 359, 362–364

isobaric, 354–358

isothermal, 352–354, 372

magnetic, 25, 393, 414–427

pulse tube, 359

Stirling cycle, 359–363

submillikelvin, 386–392

Regenerator, 108, 111, 318, 358–360, 362,

364, 372, 374

Resistivity of metals, 30–32.

See also Conductivity

Reynolds number, definition of, 109–111,

146, 211, 266

Riemann–Zeta function, 169, 171, 172

Rollin film, 182, 183, 341, 413

S

Schrodinger equation, 166

Second virial coefficient

classical expression for, 65, 83

empirical expression for, 64–67

quantum, 224
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Slip ratio, 99, 102, 103

Sommerfeld constant, 24

Sound

attenuation of second sound, 219–221

first, 185, 193–197

in the two-fluid model, 194, 196, 262, 390

second of 4He, 193

Sound speed

in 3He, 378

in 4He, 193

Specific heat. See also Heat capacity

coefficient of electronic, 24

ideal Bose gas, 171, 172, 174, 175

ideal Fermi gas, 35, 384–386

of 3He, 378, 384–386

of 4He, 378

Spin systems. See Paramagnetic salts

Stark effect, 417, 423, 424

Stefan–Boltzmann Law, 398

Stokes’ law, 204

Stress

tensile, 43

ultimate, 43

yield, 42, 43

Superconductors

applications of, 6, 7, 45

high Tc, 13, 169, 172, 391

properties of, 6, 17, 45, 47, 54, 241

Type I, 45–52, 55, 291

Type II, 45, 50–56, 205

Supercritical helium, 80, 92–96, 123, 148, 159.

See also Forced convection

Superfluid
3He, 386–391
4He, 390, 391

component in two-fluid model, 191

Superheat

critical normal fluid, 125

in nucleate boiling He I, 130

in saturated He II, 239

Superinsulation, 402, 404

Surface tension

of 3He, 378

of 4He, 76

T

Taylor instability, 135, 136, 138

Temperature

critical for 3He, 85, 378

critical for 4He, 85, 378

critical for superconductors, 7, 9, 25, 45, 46,

48, 50, 52, 54, 388, 390

Fermi (see Fermi energy)

lambda, 167, 168, 171

scale, 2–3, 7, 16, 39, 40, 70, 116, 174, 229,

270, 332, 365, 379, 426

transition of an ideal Bose gas, 165, 172,

174, 175

Thermal conductivity. See also Heat

conductivity

effective in He II, 175, 202, 228, 235,

241, 245, 254, 261, 295

in superfluid 4He, 391

integrated value, 37

lattice contribution, 37–39

metals, 29, 34–38, 44, 48, 54, 83, 180,

254, 395

of 3He, 386, 391

pure gases, 79

technical materials, 37

Thermal contraction

of metals, 28

of non-metals, 29

thermodynamic definition, 27

Thermal de Broglie wavelength, 167,

168, 172

Thermodynamic laws

Clausius’ statement, 12

first, 9–14, 190, 346, 353, 356, 367,

420, 421

first of steady flows, 323–324, 335,

344, 356

Nernst–Simon statement, 14–15

second, 9–14, 190, 346, 349, 367,

420, 421

third, 2, 14–16, 28, 179, 346

Tortuosity, 108, 109, 273

Transport properties

of gaseous helium, 74–83, 183

of He I, 60, 76–84

of He II, 60, 175, 179–181, 183, 186,

198, 203

Tricritical point, 381

Trouton’s Law, 74

Turbulence

development of, 221–222

normal fluid, 202, 211, 271

superfluid, 202, 211, 212, 271

Two-fluid model, 183, 186–203, 206, 208, 219,

261, 262, 390

Two-phase flow

flow regimes, 97, 98

homogeneous model, 101, 103, 112, 113

Lockhart–Martinelli correlation, 100,

101, 150, 151
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V

Vapor pressure

of 3He, 378, 379, 383, 392

of 4He, 71, 174, 379, 383, 392, 410

of an ideal Bose gas, 172–173

Velocity

critical, 68, 173, 188, 199, 202, 203,

205, 207–212, 217, 218, 220,

271, 274, 275, 278, 279

fermi, 30, 35, 55

normal fluid, 188, 190, 195, 197, 200,

202, 211–213, 215, 217, 218,

251, 273, 278

superfluid, 188, 195, 197, 203, 209,

212, 213, 215, 218, 251

Virial expansion, 61, 64–67, 80, 224

Viscosity

measurement of, 111

of 3He, 385, 386, 390, 391

of 4He, 81, 390, 391

of superfluid 3He, 391

of the normal fluid, 198, 200, 211, 227,

272, 391, 450

pure gases, 79

Void fraction, 90, 99–102, 105, 150,

248–250, 278

Vortex line, 205–209, 213–216, 267, 390

Vortices

force acting on, 213

in rotating He II, 205–208, 214, 224

length of, 213, 224

visual observation, 206

W

Wiedemann–Franz Law, 36

Work

compressor, 91, 317, 320, 335, 336, 340,

343, 346, 359, 367, 373, 374

electric system, 11

expansion engine, 320, 338, 343, 344,

346, 348, 349, 358, 365

friction, 91, 103

liquefaction, 318–322, 334, 335, 350, 372

liquid-gas system, 318, 342

magnetic system, 11, 420

Y

Yield

definition of, 335

in a Claude cycle, 343–346, 373

in a He II system, 180, 198, 200, 206, 211

in a Joule–Thomson liquefier, 334, 345

in an isothermal refrigerator, 353–354

Young’s Modulus. See Modulus of elasticity

Z

Zeeman effect, 416, 417

Zero point energy, 59, 163, 164, 378

Zuber correlation, 132, 136
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