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Preface

Molecular response functions (MRF) are basic properties which characterize a
molecular system in terms of the changes in its Quantum Mechanical (QM)
observables when it is perturbed by some agent [1–5].1 The MRF may be defined
with respect to very general perturbations, which may be both physical fields and
other material systems, and their use pervades many aspects of the Quantum-
Chemical interpretation of chemical processes [6–15], including those occurring in
solution.

A large part of the primary molecular events in chemical processes takes place
in liquid solutions, or in more complex environments, and from a QM perspective
the effects of the environment may be usefully expressed in terms of the effect of
the solvent on the QM molecular response functions [16–24] of molecular systems
involved.

In general, the description of solvation effects is an important issue in quantum
chemistry. There are two main approaches, making use the first of a discrete
representation of the solvent, and the second of a continuous responsive
distribution.

The discrete models (QM/MM) combine a QM calculation for the molecular
solute with a computer simulation (MC/MD) for the solvent, in which all the
numerous degrees of freedom of the solvent molecules have to be explicitly
considered.

The QM continuum solvation methods (QM/CSM) have a more simple physical
and computational structure, as no explicit molecular degrees of freedom of the
solvent enter into the calculation. The procedure is based on the definition of an
effective Hamiltonian for the molecular solute, which is composed by the Ham-
iltonian of the isolated solute accompanied by a solute–solvent integral operators,
with a nonlinear kernel, and describing the solute in the presence of the solvent
reaction potential. The solution of the corresponding nonlinear Schrödinger
equation, obtained at ab-initio QM level and with an iterative procedure, deter-
mines the properties of the molecular solute in the presence of the solvent, with a
complete description of the solvent effects.

1 These changes refer to a suitable reference unperturbed state of the molecular system.
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There are three current approaches to continuum solvation models [25–27],
according to three different approaches to the solution of the basic electrostatic
problem (Poisson problem): The Generalized Born approximation, the methods
based on multipolar expansions of the electrostatic potential for the analytical
solution of the electrostatic problem, and the methods based on a direct numerical
integration of the electrostatic problem.2

In the QM/GB method, the molecular charge distribution of the solute is
reduced to a sum of atomic point charges, each placed within a sphere of appro-
priate radius, and the solvent reaction potential produced by these charges is
evaluated with an approximated formula generalizing the Born expressions for a
single charge within a sphere, and introduced into the Hamiltonian of the solute
(for a review see [26]).

Multipolar expansions methods (MPE) have problems with the description of
the solvent reaction field for solutes of irregular shape. The QM/MPE method
developed by Rivail and coworkers have been for a long time limited to ellipsoidal
cavities [28–29]. Mikkelsen adopts the spherical cavity [30–34], and uses the
SCRF approach in combination with high-quality QM procedures for the evalu-
ation of the molecular response functions.

Within the approaches based on the numerical integration of the electrostatic
problem, the so called apparent surface charges (ASC) method, is by far com-
putationally faster.

The first ASC method, known as Polarizable Continuum Model (PCM), has
been proposed by Tomasi and coworker in 1981 [35] and since then has been
continuously developed (see Tomasi et al. [27] for a recent review). Actually, there
is a family of PCM methods: C-PCM [36], a version widely used, and the integral
equation formalism IEF-PCM [37–39], the SCI-PCM [40], developed by K.B.
Wiberg, and the recent CSC-PCM [41] developed by G. Scalmani and M. J. Frisch.
Other ASC methods amply used are COSMO [42], developed by A. Klamt and the
SVEP [43] developed by D. Chipman.

The PCM model contains the largest variety of extensions for the calculation of
the properties for the ground and excites states of molecular systems in solution
[44–49] and these extensions have been accomplished at HF level and at various
QM electron correlation methods [27, 50–57]. There are also version based on
semi-empirical QM methods: we quote here only those based on ZINDO [58].

The aim of this book is to present the basic aspects of the molecular response
function theory for molecular systems in solution described with the Polarizable
Continuum Model, giving special emphasis both to the physical basis of the theory
and to its quantum chemical formalism. The QM formalism will be presented in
the form of the coupled-cluster theory, as it is the most recent and less known
formulation for the QM calculation of molecular properties within the PCM

2 Note that we are here speaking about the electrostatic problem only, discarding the non-
electrostatic components of the solute–solvent interaction. For a detailed discussion of these
interactions See Ref. [27].
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model. Although the book is focused on the description based on the PCM many of
the topics that will be treated can be easily translated into the discrete solvation
models, and also in other forms of the Continuum Models.

The book is organized as follows. Chapter 1 introduces the basic definitions of
the PCM model. The focus is on the electrostatic problem for the determination of
the solute–solvent integral operator and on the associated nonlinear QM problem,
which is exemplified at the Hartree-Fock and at the Coupled-cluster methods.
Chapter 2 considers the derivatives of the basic energy functional of the PCM
model with respect to perturbing fields, the related generalized Helmann-Feynman
theorem, and their analytical evaluation at the coupled-cluster level. Chapter 3
presents the general aspects response theory for the PCM model. They include the
descriptions of the non-equilibrium solvation, the variational formulation of the
time-dependent nonlinear QM problem, and the connection of the molecular
response functions with the corresponding macroscopic counterparts. Chapter 4
presents the properties of the excited states of molecular solutes as determined
from the transition properties of the coupled-cluster linear response function
described in Chap. 3. Finally, the Appendix collects several interesting details
concerning the physics and the QM formalism of the PCM model, including also a
formulation of the corresponding molecular electronic virial theorem.

Parma, March 2013 Roberto Cammi
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Chapter 1
The PCM Model

Abstract This chapter introduces to the basic definitions of the PCM model for a
molecular solute. The basic electrostatic problem for the determination of the solute-
solvent interaction is described within the Integral Equation Formalism (IEF-PCM),
and the QM problem associated to the effective Hamiltonian of the molecular solute
is formulated in terms of a basic energy functional which has the thermodynamic
status of a free-energy for the entire solute-solvent system. The QM problems for the
molecular solute is exemplified at the Hartree-Fock and at the coupled-cluster level
methods.

1.1 The PCM: Basic Concepts and Definitions

The PCM [1] is an ab-initio quantum mechanical (QM) method to describe the
solvent effect on the properties of a molecular systems. In its basic version, the PCM
model represents the solvent as a homogeneous and infinite dielectric medium having
the same dielectric permittivity ε of the pure solvent, and hosting the molecular solute
within an accurately modeled void cavity.

The effective electronic Hamiltonian1 for the molecular solute M is [2]:

H = Ho + V (Ψ ) (1.1)

where Ho is the electronic Hamiltonian of the isolated molecule and V (Ψ ) is an
effective solute-solvent interaction operator. In the basic PCM, V (Ψ ) is expressed
in terms the solvent reaction potential (see Vσ in next Eq. (1.2)) generated by the
dielectric medium polarized by the whole (electronic and nuclear) charge distribu-
tion ρM = ρe

M + ρn
M of the molecular solute. The argument of the solute-solvent

1 We assume the usual Born-Oppenheimer non relativistic approximation and H is the electronic
Hamiltonian for the molecule solute with fixed nuclei coordinates R.

R. Cammi, Molecular Response Functions for the Polarizable Continuum Model, 1
Springer Briefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
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interaction potential V (Ψ ) indicates its dependence on the solute wavefunction Ψ

via the electronic charge density ρe
M (r).

As other QM continuum models, the PCM model requires the solution of two
coupled problems: an electrostatic classical problem for the determination of the
solvent reaction potential Vσ induced by the total charge distribution ρM ; and a
quantum mechanical problem for the determination of the wavefunction Ψ of the
solute described by the effective QM Hamiltonian (1.1). The two problems are nested
and they must be solved simultaneously.

With respect to other QM continuum models, the PCM method represents of the
interaction operator V (Ψ ) (i.e. of the solvent reaction potential Vσ ) in terms of an
apparent surface charge (ASC) charge distribution σ spread on the boundary Γ of
the cavity (C) hosting the solute M.

1.1.1 The Definition of Cavity

The cavity is a constitutive component in all the continuum methods [2, 3]. In the
PCM model the cavity may be accurately modeled on the shape of the molecular
solute M. The basic PCM cavity is defined as a set of interlocking spheres centered
on the nuclei of atoms of M, with radii related to the corresponding atomic van
der Waals radii.2 Actually, the PCM model uses several variants of the basic cavity,
which may introduce additional spheres [4, 5], to take into account of the portions of
space not occupied by the charge distribution of molecular solute but non accessible
or excluded to the solvent molecules.

1.1.2 The Electrostatic Problem

The physics of the solute-solvent interaction potential V (Ψ ) of Eq. (1.1) is simple.
The total charge distribution ρM of the molecular solute polarizes the dielectric
medium, which in turn becomes source of an additional electrostatic potential Vσ

(the solvent reaction potential) for the electrons and nuclei of the molecular solute.
V (Ψ ) can be written as

V (Ψ ) =
N∑

i=1

−Vσ (r) +
M∑

α=1

ZαVσ (Rα) (1.2)

for a system of N electrons with coordinates ri and M nuclei with fixed
coordinates Rα .

2 The radius of the atomic spheres is an adjustable parameter of the PCM model.
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The solvent reaction potential Vσ in Eq. (1.2) is determined by solving the
classical electrostatic Poisson equation which governs total electrostatic potential
V = VM + Vσ (VM is the electrostatic potential produced by the electronic and
nuclear charge distribution of the solute). The Poisson problem has the form of a
partial differential equations with domain in the whole three-dimensional space [2]3

−∇2V (r) = 4πρM (r) r ⊆ C
−∇2V (r) = 0 r � C

(1.3)

with the additional boundary conditions on the total electrostatic potential V at the
infinity, and across of the cavity surface Γ .4

The solve the Poisson problem (1.3), the PCM model exploits an integral repre-
sentation5 of the solvent reaction potential Vσ :

Vσ (r) =
∫

Γ

σ(s)
|r − s|ds s ⊂ Γ (1.4)

where σ(s) is an Apparent Surface Charges (ASC) distribution spread on the cavity
surface Γ .6

In computational practice, the ASC distribution σ(s) in (1.4) is discretized in terms
of a finite set of point charges {q(sk)} uniformly distributed on the cavity surface Γ

(at the positions sk), and the Poisson problem is transformed into a matrix equation
(PCM equation) for the unknown apparent charges {q(sk)} [2].

There are several variants of the PCM matrix equation (see Ref. [2]). The most
general form is based on the Integral Equation Formalism (PCM-IEF) [6] and, for

3 r ⊆ C and r � C denote, respectively, points inside and outside of the cavity C
4 The boundary conditions for the total electrostatic potential V are: at the infinity

limr→∞ r V (r) = 0
limr→∞ r2∇V (r) = 0

and across the boundary Γ of the cavity

Vin(s) = Vout (s)
∂Vin(s)

∂n = ε
∂Vout (s)

∂n

with s ⊂ Γ
5 The PCM approach is related to the Boundary Elements Methods (BEM), a numerical method to
solve the solve complex partial differential equations with domain in the whole three-dimensional
space via numerical integration of integral equation with domain in two-dimensional boundary sur-
faces. For more information on the BEM see the Website http://www.boundary-elements-methods.
com.
6 The Poisson problem is then converted into a single integral equation with domain on the cavity
boundary Γ , for the unknown ASC distribution σ(s) :

(
2π

ε + 1

ε − 1
+ D∗

)
σ(s) = ∂VM (s)

∂ns
s ⊂ Γ (1.5)

http://www.boundary-elements-methods.com
http://www.boundary-elements-methods.com
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the case of a homogeneous dielectric, it determines the polarization charges from the
electrostatic potential produced by the solute at the cavity cavity surface.

More specifically, the PCM matrix equation may be written as

Q̄(Ψ ) = T < Ψ |V|Ψ > (1.6)

where:

• Q̄ is a vector column collecting the polarization charges {q(sk)}:

[Q̄]K = q(sk)

• T is a matrix which represents the responsive polarization of the solvent, depending
on its static dielectric permittivity ε0 of the medium and on the geometry Γ of the
cavity hosting the solute,

• V is vector collecting the electrostatic potential operator (2.9) of the solute at
positions sk :

[V]K = VM (sK )

with the electrostatic potential operator V̂M (s), sum of its electronic and nuclear
contributions7:

V̂M (s) = V̂M (s)el + V̂M (s)nuc (1.7)

The solvent polarization charges Q̄(Ψ ) of Eq. (1.6) may rewritten as an expectation
value [7]

Q̄(Ψ ) =< Ψ |Q|Ψ > (1.8)

where Q is the apparent charge operator defined as

Q = T · V (1.9)

In terms of the polarization charges Q̄ (1.8) the solute-solvent interaction operator
V (Ψ ) may be written as:

(Footnote 6 continued)
Here:
• D∗ is an integral operator [6] defined as

D∗σ(s) =
∫

Γ

(
ns · ∇ 1

|s − s′|
)

σ(s′)ds′)

• ∂VM (s)/∂ns is directional derivatives, normal to the cavity surface, of the total molecular elec-
trostatic potential.

7 The electronic and nuclear electrostatic potential operators are: V̂M ((s))el = ∑N
i

−1
|ri −s| and

V̂M ((s))n = ∑N
α

−1
|R−s| .
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V (Ψ ) = < Ψ |Q|Ψ > ·V

and the effective Hamiltonian (1.1) becomes

H = Ho+ < Ψ |Q|Ψ > ·V (1.10)

1.1.3 The Quantum Mechanical Problem

An effective approach to the QM problem for the PCM model is based on the defin-
ition of a suitable basic QM energy functional [2]:

G =< Ψ |Ho + 1

2
< Ψ |Q|Ψ > ·V|Ψ > (1.11)

, which does not correspond to the expectation valued of the effective Hamiltonian
(1.1) E =< Ψ |Ho+ < Ψ |Q|Ψ > ·V|Ψ > as a consequence of the dependence on
the solute wavefunction Ψ of the solute-solvent operator8 [8].

The energy functional G of Eq. (1.11) is also called free-energy functional because
it has the thermodynamical status of the free-energy of the whole solute-solvent
systems. More specifically, it refers to a reference state given by the non interacting
electron and nuclei of the molecular solute, at rest, and by the unperturbed, pure
solvent at the standard thermodynamic conditions of temperature and pressure.

For the QM energy functional (1.11) hold the following properties:

• The stationarity condition

δG = δ < Ψ |Ho + 1

2
< Ψ |Q|Ψ > ·V|Ψ >= 0, (1.12)

supplemented by the usual constraint of normalization on the wavefunction <

Ψ |Ψ >= 1 leads to the time-independent non-linear Schrödinger equation for the
effective Hamiltonian (1.10)

[Ho+ < Ψ |Q|Ψ > ·V]|Ψ >= E |Ψ > (1.13)

All the information on the electronic structure and properties in the stationary
states of a molecular solute can be determined by the solution of Eq. (1.13).

• The free-energy functional G(R) is defined at a given fixed nuclei position of
the molecular solute. Therefore, using the standard Born-Oppenheimer approach,
the free energy functional G(R) may be considered as a function of the nuclear

8 We note that the difference between the free-energy functional (1.11) and the expectation value
of the effective Hamiltonian (1.1) corresponds to virtual work needed to polarize the solvent in the
absence of the molecular solute.
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coordinates, and the surface formed by G(R) as function of the nuclear coordinate
is the potential energy surface (PES) for the nuclei of the molecular solute.

• The free-functional G(R) is also the basic energy quantity for the determination
of the time-independent properties of the molecular solutes, as will be discussed
in Chap. 3.

In the following subsections we will consider the electronic wavefunction of the
molecular solute at the Hartree-Fock level and at the coupled-cluster level of the QM
theory.

1.1.4 The PCM Hartree-Fock Equations

In a N-electron system with spin-orbitals expanded over a set of atomic orbitals (AO)
{χμ, χν, . . .}, the free-energy functional G (2.17) may be written as [8]:

G H F =
∑

μν

P H F
μν (hμν + jμν) + 1

2

∑

μνλσ

P H F
μν P H F

λσ

[〈μλ||νσ 〉 + Bμν,λσ

] + ṼN N

(1.14)
where hμν are the matrix elements, in the AO basis, of the one-electron core operator,
〈μλ||νσ 〉 are the antisymmetrized combination of regular two-electron repulsion
integrals (ERIs) and P H F

μν indicates the elements of the Hartree-Fock density matrix
in the AO basis. The matrix elements jμν , and Bμν,λσ , representing the solute-
solvent interactions within the PCM-Fock operator, follow from the partition of the
solvent reaction potential into two components, one related to the solvent polarization
induced by the nuclei charge distribution of the molecular solute, and the other on
the solvent polarization due to the corresponding electronic charge distribution 9

More specifically, the one-particle AO integrals jμν and the pseudo two-electrons

9 The partition of the electrostatic potential operator of Eq. (1.7), with the consequent partition of
the vector operator V = Ve + Vn , leads a parallel partition of the apparent charges Q̄(Ψ ) into
electronic and nuclear contributions:

Q̄(Ψ ) = Q̄(Ψ )e + Q̄n (1.15)

with
Q̄(Ψ )e =< Ψ |Qe|Ψ >, Qe = TVe

Q̄n = Qn = TVn

where Ve and Vn are, respectively the electronic and nuclear contribution to the vectorial
operator V.

http://dx.doi.org/10.1007/978-3-319-00987-2_3
http://dx.doi.org/10.1007/978-3-319-00987-2_2
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integrals Bμν,λσ represent, respectively, the interactions with the nuclear and with
the electronic components of the ASC charges. The solvent integrals jμν , Bμν,λσ

may be expressed in the following form [8]

jμν = vμν · Qnuc (1.16)

Bμν,λσ = vμν · qλσ (1.17)

where vμν is a vector collecting the AO integrals of the electrostatic potential operator
evaluated at the positions sk of the ASC charges, < χμ| − 1/|r − sk |χν >; Qnuc is
the vector collecting the ASC charges produced by the nuclear charge distribution;
qλσ is a vector collecting the apparent charges produced by the elementary charge
distribution χ∗

λ (r)χσ (r).10

The last term of Eq. (1.14), ṼN N is the nuclei–nuclei interaction contribution

ṼN N = VN N + 1/2Vnuc · Q̄nuc

where VN N is the nuclear repulsion energy and the second term of the right side is
electrostatic interaction between the nuclei and the polarization charges induced by
the nuclei itself.

Requiring that the free-energy function (1.14) be stationary (δG H F = 0) with
respect the variation of MO expansion coefficients, with the usual ortho-normality
constraints on the MO, we obtain the PCM-HF equations:

∑

ν

(
f PC M
μν − εp Sμν

)
cνp = 0 (1.18)

where Sμν and f PC M
μν are, respectively the matrix elements of the overlap matrix

and of the PCM Fock matrix, in the AO basis, and εp and cνp are, respectively, the
orbital energy and the expansion coefficients of the p MO; the PCM Fock matrix
elements are given by:

f PC M
μν = (hμν + jμν) +

∑

λσ

P H F
λσ

[〈μλ||νσ 〉 + Bμν,λσ

]
(1.19)

10 In terms of the PCM-IEF Eq. (1.6), the polarization charge vector qλσ is given by

qλσ = TVλσ

where vλσ is a vectors collecting the electrostatic potential produced by the elementary charge
distribution χ∗

λ (r)χσ (r), at the positions of the ASC charges.
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1.2 The Coupled-Cluster Theory for PCM

The PCM coupled-cluster (PCM-CC) theory [9–13] introduces an explicit description
of the coupling between the electron-correlation (dynamic) of the molecular solute
and the solute reaction potential. The electron-correlation modifies the charge distri-
bution ρM of the solute. The changes in charge distribution ρM modify the solvent
reaction potential Vσ , which in turn influence the electron-correlation. If the coupling
between the dynamical electronic correlation of the solute and the polarization of
the solvent is neglected the dynamic electron-correlation of the molecular solutes is
evaluated in the presence of the fixed Hartree-Fock solvent reaction potential. This
approximated form of the PCM-CC theory is denoted with the acronym PTE (i.e.
Perturbation Theory on the Energy) which derives from a many-body perturbation
analysis of the solute-solvent interaction [14].

The coupled-cluster wave function is defined by the exponential ansatz [15–18]

|CC >= eT |H F > (1.20)

where |H F > is the single determinant Hartree-Fock state of the molecular solute,
and the cluster operator T is given as a sum of all possible excitation operators over
the N electrons

T = T1 + T2 + · · · + TN ; Tn = 1

(n!)2

∑

aibj ...

tab...
i j ... a†

aai a
†
ba j . . . (1.21)

weighted by the amplitude ta
i , tab

i j , etc. The excitation operators are here repre-

sented as products of second quantization electron creation (a†
i , a†

b) and annihilation
operators (ai , ab). As usual, indexes (i, j, k, . . .) and (a, b, c, . . .) denote, respec-
tively, occupied and vacant spin orbitals MO, while (p, q, r, . . .) denote general spin
orbitals.
At the coupled-cluster level, the PCM energy functional may be written as [9]:

ΔGCC =< H F |(1 + Λ)e−T
[

H(0)N + 1

2
Q̄N (T,Λ) · VN

]
eT |H F > (1.22)

where

• Λ is a de-excitation operator,

Λ = Λ1 + Λ2 + · · · + ΛN ; Λn = 1

(n!)2

∑

i jkabc...

λ
i jk...
abc...a

†
i aaa†

j aba†
k ac . . .

(1.23)

• H(0)N is the normal ordered form of Hamiltonian of the solute in the pres-
ence of the apparent charges determined by the Hartree-Fock reference function
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(|H F >), defined as:

H(0)N = Ho
N + Q̄(H F) · VN (1.24)

where Ho
N is the normal ordered Hamiltonian of the isolated molecule, and

Q̄(H F) =< H F |Q|H F > collects the Hartree-Fock polarization charges, and
VN is a normal ordered vector collecting the electrostatic potential operators of
the molecular solute evaluated at the positions of the ACS charges (see Table 1.1).

• Q̄N is the coupled-cluster expectation value for the apparent charge operator
QN [9]

Q̄N (T,Λ) =< H F |(1 + Λ)e−T QN eT |H F > (1.25)

being QN the normal ordered operator of the polarization charges (see Table 1.1).

The stationary condition of the PCM-coupled-cluster functional ΔGCC (Λ, T )

(1.22) with respect to the Λ amplitudes leads to equations for the T amplitudes

∂ΔGCC

∂λ
i j ...
ab...

=< H F |τ †
pe−T HN eT |H F >= 0 (1.26)

where τ
†
p is the adjoint of an elementary excitation operator τp = a†

aai a
†
ba j . . ., and

HN is the effective Hamiltonian of the molecular solute:

HN = H(0)N + Q̄N (T,Λ) · VN (1.27)

being H(0)N the normal ordered form of Hamiltonian of the solute in the presence of
the frozen HF polarization charges [9], and Q̄N · VN the coupled-cluster component
of the solvent reaction potential.

Equation (1.26) shows that the T amplitude equations correspond to the projection
of the coupled-cluster Schrödinger equation for the molecular solute

[H(0)N + Q̄N (Λ, T ) · VN ]eT |H F >= ΔECC eT |H F > (1.28)

Table 1.1 Definition of the normal ordered operators H(0)N , QN , and VN

V̄H F =< H F |V|H F > Q̄H F =< H F |Q|H F >

VN = V − V̄H F QN = Q − Q̄H F

Ho
N = Ho− < H F |Ho|H F >

Ho is the Hamiltonian operator of the isolated molecule, Q and V are, respectively, the apparent
charge operator and the molecular electrostatic potential operator
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where the correlation energy ΔECC is given by

ΔECC =< H F |(1 + Λ)e−T [
H(0)N + Q̄N (Λ, T ) · VN

]
eT |H F > (1.29)

Conversely,11 the stationary conditions of ΔGCC (Λ, T ) with respect to the T
amplitudes leads to equations for the Λ amplitudes:

∂ΔGCC

∂tab...
i j ...

=< H F |(1 + Λ)e−T [HN , τp]eT |H F >= 0 (1.30)

The Λ Eq. (1.30) are coupled with the T Eq. (1.26) as they involves effective Hamil-
tonian HN (1.27) which depends on both T and Λ amplitudes, and vice-versa. There-
fore Eqs. (1.30) and (1.26) must be solved simultaneously.

The PCM coupled-cluster theory has been presented at the coupled-cluster single
and double (CCSD) excitation level approximation [9, 11], at the Brueckner doubles
(BD) coupled-cluster level [12], and within the symmetry adapted cluster (SAC)
method [10].

1.2.1 The PCM-CC-PTE Approximation

In the PTE approximation, which neglect effect of the electron-correlation on the
solvent reaction potential, the PCM free-energy functional becomes

ΔG PT E
CC =< H F |(1 + Λ)e−T H(0)N eT |H F > (1.31)

and the stationary conditions for the T and Λ amplitudes become:

< H F |τpe−T H(0)N eT |H F >= 0 (1.32a)

< H F |(1 + Λ)e−T H(0)N , τp]eT |H F >= 0 (1.32b)

where the T amplitude Eq. (1.32a) correspond to the projection of the coupled-
cluster Schrödinger equation for the molecular solute

H(0)N eT |H F >= ΔE PT E
CC eT |H F > (1.33)

where ΔE PT E
CC = ΔG PT E

CC is the correlation energy.

11 The correlation energyΔECC differs from the the free-energy functional ΔGCC by the work spent
to produce the coupled-cluster apparent charges Q̄N , corresponding to one-half of the solute-solvent
interaction Q̄N (Λ, T ) · V̄N .
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Within the PTE approximation, the T and Λ Eqs. (1.32a) and (1.32b) are
independent, and the solution of Eq. (1.32b) is not more necessary to compute the
PCM free-energy functional.12
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Chapter 2
Analytical Derivatives Theory for Molecular
Solutes

Abstract This chapter shows how the static properties of the molecular solutes can
be expressed as derivatives of the basic energy functional of the PCM model with
respect to suitable perturbing fields.

The time-independent properties of the molecular solutes can be expressed as
derivatives of the PCM free-energy functional (1.10) with respect to suitable per-
turbing fields as a consequence of a generalized Helmann-Feynman theorem [1],
and analytical expressions and algorithms of these derivatives have been developed
for a wide range of perturbations of different nature for the most common quantum
chemical levels (see Table 2.1).

As an example of the analytical derivatives of the PCM energy functional, which
can be formulated in agreement with a (2n+1) Wigner perturbation rule [1, 2], we
will consider the analytical derivatives for the coupled-cluster level up to third order
of differentiation.

2.1 The Hellmann-Feynman Theorem for the PCM

The exact eigenfunctions of the effective PCM Hamiltonian (1.12) obey to a gen-
eralized Hellmann-Feynman, theorem according to which the first derivative of the
free-energy functional G (1.10) with respect to a perturbation parameter λ may be
compute as expectation value with the unperturbed wavefunction:

dG

dλ
=< Ψ |H [λ]|Ψ > (2.1)

where the operator H [λ] is

∂ H

∂λ
= Ho,λ + 1

2
[〈Ψ |Q̂λ|Ψ 〉 · V̂ + 〈Ψ |Q̂|Ψ 〉 · V̂λ] (2.2)

with the upper-scripts of the operators on the right side of (2.2) denoting differenti-
ation with respect to the parameter λ.
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Table 2.1 Selected
properties of molecular
solutes defined as analytical
derivatives of the basic PCM
free-energy functional The
perturbations are R, nuclear
coordinates, E an external
electric field, EM a Maxwell
electric field in the medium
(see Appendix), B an external
magnetic field, µI a magnetic
nuclear moment

Property Derivative

Forces on the nuclei [3] ∂G
∂R

Electric dipole moment [3] ∂G
∂E

Effective electric dipole moment [4] ∂G
∂EM

Magnetic dipole moment [6] ∂G
∂B

Electric polarizability [1] ∂2G
∂E∂E

Nuclear shielding constant [5, 6] ∂2G
∂B∂µI

Nuclear Spin–Spin Couplings [7] ∂2G
∂µJ ∂µI

Harmonic vibrational frequencies [3, 8–10] ∂2G
∂R∂R

Infrared harmonic absorption intensities [11] ∂2G
∂R∂E

Anharmonic vibrational frequencies [12] ∂3G
∂R∂R∂R

Raman intensities (harmonic
approximation) [13, 14]

∂3G
∂R∂E∂E

Static first electric hyper-polarizability [1] ∂3G
∂E∂E∂E

The H-F theorem (2.1) can be derived as follow. The direct differentiation of the
free-energy functional (1.10) gives:

dG
dλ

= 〈dΨ/dλ|Ho + 1
2 〈Ψ |Q̂|Ψ 〉 · V̂|Ψ 〉 + 〈Ψ |Ho + 1

2 〈Ψ |Q̂|Ψ 〉 · V̂|dΨ/dλ〉
+ 1

2 [〈dΨ/dλ|Q|Ψ 〉 · 〈Ψ |V̂|Ψ 〉 + 〈Ψ |Q|Ψ 〉 · 〈dΨ/dλ|V̂|Ψ 〉]
+〈Ψ |Ho,(λ) + 1

2 [〈Ψ |Q̂λ|Ψ 〉 · V̂ + 〈Ψ |Q̂|Ψ 〉 · V̂λ]|Ψ 〉
(2.3)

Introducing the identity

〈dΨ/dλ|Q|Ψ 〉 · 〈Ψ |V̂|Ψ 〉 = 〈Ψ |Q|Ψ 〉 · 〈dΨ/dλ|V̂|Ψ 〉

due the symmetry of the kernel of the electrostatic solute-solvent interaction, we can
rewrite Eq. (2.3) as

dG
dλ

= 〈dΨ/dλ|Ho + 〈Ψ |Q̂|Ψ 〉 · V̂|Ψ 〉 + c.c. + 〈Ψ |H (λ)|Ψ 〉 (2.4)

In the case of exact eigenfunctions the first two terms of Eq. (2.4) became equal zero,
because of the normalization constraint of the wave function, and we obtain the H-F
theorem (2.1).

The Helmann-Feynman theorem (2.1) implies that the expectation value of the
first-order observable of the molecular solute can be expressed as first derivative of
the free energy functional G with respect to a suitable perturbation. If we consider
as external perturbation the operator λÔ corresponding to the observable of interest
Ô times a scalar factor λ:

H = Ho + 〈Ψ |Q̂|Ψ 〉 · V̂ + λÔ (2.5)

http://dx.doi.org/10.1007/978-3-319-00987-2_1
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from Eqs. (2.1, 2.2) it follows

dG

dλ
= 〈Ψ |Ô|Ψ 〉 (2.6)

The H-F theorem (2.1), and its more specific form (2.6), hold also for approxi-
mated variational wavefunctions if they are optimized with respect to all the vari-
ational parameters (e.g. HF or MCSCF wavefunctions) and if the basis functions
used for the expansion of the molecular orbitals are independent on the perturbing
parameter λ.

The H-F theorem (2.1) is also involved in formulation of the molecular electronic
virial theorem for the PCM model, as shown in Appendix A.2.

2.2 The PCM-CC Analytical Gradients

Let us consider the first derivative of the CM-CC functional ΔGCC (1.20) respect
to a perturbation parameter α. As shown in Ref. [15], it can be expressed in the
following form:

ΔGα
CC = 〈H F |(1 + Λ)|e−T [ ˆH(0)

α

N eT |H F〉
+ 1

2 〈H F |(1 + Λ)|e−T Q̂α
N eT |H F〉 · V̄N (Λ, T )

+ 1
2 Q̄N (Λ, T ) · 〈H F |(1 + Λ)|e−T V̂α

N eT |H F〉
(2.7)

where the upper-script α of the various normal ordered operators denotes the total
derivative of their second-quantization form. A key feature of Eq. (2.7) is that it
does not contain the first derivative of the T ,Λ amplitudes, as a consequence of the
stationary of the PCM coupled-cluster energy functional ΔGCC with respect to all
the coupled-cluster amplitudes parameters and therefore it represents a generalized
Helmann-Feynman theorem for molecular solute described at the coupled-cluster
level.

The PCM-CC analytical gradients (2.7) can also rewritten in terms of contraction
of differentiated one- and two-electron integrals in the MO basis as

ΔGα
CC =

∑

ab

f PC M,α
ab γ

CC−resp
ab +

∑

i j

f PC M,α
i j γ

CC−resp
i j (2.8)

+
∑

ai

f PC M,α
ai γ

CC−resp
ai +

∑

ia

f PC M,α
ia γ

CC−resp
ia

+1

2

∑

pqrs

Bα
pq,rsγ

CC−resp
pq γ

CC−resp
rs + 1

4

∑

pqrs

〈pq||rs〉α	rspq

where f α
p,q , 〈pq||rs〉α ,Bα

pq,rs denote the total first derivatives of the PCM-Fock
matrix elements and of the usual two-electron integrals, both in the MO basis;

http://dx.doi.org/10.1007/978-3-319-00987-2_1
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γ
CC−resp
pq are elements of the one-particle density matrix [15] and 	rspq are elements

of the effective two-particle density matrix 	 [16]. The derivate matrix elements f α
p,q

may be written in terms of the derivatives of the constituting MO integrals

f PC M,α
pq = hα

pq + jαpq +
occ∑

j

(〈pj ||q j〉α + Bα
j j,pq) (2.9)

where the derivatives of the solvent integrals jαpq and Bα
j j,pq are given by

jαpq = vα
pq · qNuc + vpq · qα

Nuc (2.10)

Bα
pq,rs = vα

μν · qrs + vμν · qα
rs (2.11)

where qα
p,q vα

p,q are, respectively, the differentiated apparent charges integrals and
the differentiated electrostatic potential integrals [21].

Equation (2.8) is the most general form of analytical gradients of the PCM
coupled-cluster functional ΔGα

CC , which can be applied to the two alternative forms
of the PCM-CC analytical derivatives: the so called non-relaxed MO form [17],
which neglects the perturbation α on the MO of the reference determinant, and the
so called relaxed MO form, which includes effects of the perturbation of the MO
[18]. The use of unrelaxed derivatives may be exploited [17] for the calculation of
electrical properties. The approach with orbital relaxation effect is mandatory in all
cases where perturbation-dependent basis functions are employed as for example, in
the case of geometrical derivatives.

2.3 PCM-CC Analytical Gradients with Relaxed MO

When the MO relaxation is admitted the occupied-virtual block of the derivative
of the PCM-Fock matrix, f α

a,i , vanishes by the stationary condition the Hartree-
Fock reference state in the presence of the perturbation, and the gradients ΔGα

CC of
Eq. (2.8) can be written as:

ΔGα
CC =

∑

ab

f PC M,α
ab γ

CC−resp
ab +

∑

i j

f PC M,α
i j γ

CC−resp
i j (2.12)

+1

2

∑

pqrs

(qα
pq · vrs + qpq · vα

rs)γ
CC−resp
pq γ

CC−resp
rs

+1

4

∑

pqrs

〈pq||rs〉α	rspq

• The first derivatives of the PCM-Fock matrix of Eq. (2.9) expressed in terms of
the derivatives of the MO
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f PC M,α
pq = f PC M,[α]

pq +
M O∑

r

(
Uα

r p f PC M
rq + Uα

rq f PC M
pr

) ∑

r,s

Uα
rsδsm

(〈pr ||qs〉

+ 〈ps||qr〉 + 2Bpq,rs
)

(2.13)

where f PC M,[α]
pq are the skeleton derivatives of the PCM Fock matrix and U a

mi
are the derivatives of the MO coefficients cμp, in MO basis [19], which can be
obtained as solutions of the Coupled-Perturbed Hartree-Fock (CPHF) equations
properly extended to the PCM model [1, 8].
The skeleton derivatives1 f PC M,[α]

pq are given by

f PC M,[α]
pq = h[α]

pq + j [α]
pq +

occ∑

j

(〈pj ||q j〉[α] + B[α]
j j,pq) (2.14)

with the skeleton PCM derivative terms j [α]
pq and B[α]

pq,kk defined as [15]

j [α]
pq = v[α]

pq · qNuc + vpq · qα
Nuc (2.15)

B[α]
pq,rs = v[α]

μν · qrs + vμν · q[α]
rs (2.16)

where q[α]
p,q and v[α]

p,q are, respectively, the skeleton derivatives of the apparent
charges integrals and of the electrostatic potential integrals.

• The derivatives of MO integrals qα
pq and vα

pq involved in Eq. (2.12) may be
expressed as

qα
pq = q[α]

pq +
∑

r

(
qrqUα∗

r p + qpr Uα
rq

)
(2.17)

vα
pq = v[α]

pq +
∑

r

(
vrqUα∗

r p + vpr Uα
rq

)

• The first derivatives of the two-electron integrals of Eq. (2.12) may be expressed
as

〈pq||rs〉α = 〈pq||rs〉[α] +
∑

t

[〈tq||rs〉U a
tp + 〈pt ||rs〉U a

tq (2.18)

+ 〈pq||ts〉U a
tr + 〈pq||r t〉U a

ts

]

Then, introducing Eqs. (2.13)–(2.17), and taking into account of the SC F condi-
tion for the contractions of the Fock matrix elements involving occupied-occupied
and virtual-virtual blocks, the gradients ΔGα

CC may be written as

1 The skeleton derivative of integrals on MO basis are the contraction of the differentiated integrals
in the AO basis: x [α]pq = ∑

μν c∗
μpcνq x [α]μν .
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ΔGα
CC =

∑

ab

γ
CC−resp
ab f PC M,[α]

ab +
∑

i j

γ
CC−resp
i j f PC M,[α]

i j (2.19)

+1

2

∑

rs

γ
CC−resp
rs

[
q[α]

rs · V̄N + Q̄N · v[α]
rs

] +
∑

pqrs

	pq,rs〈pq||rs〉[α]

+
∑

pq

I ′
pqUα

pq

where I ′
pq are auxiliary matrix elements (see Tab. VI in Ref. [15]).

Equation (2.19) may be further transformed to avoid the explicit evaluation of
the derivative of the MO coefficients Uα

i j with respect to the specific perturbation
α. Using the orthonormality constraint of the perturbed orbitals, we can set the
occupied-occupied, virtual-virtual and occupied-virtual CPHF coefficients to Uα

i j =
− 1

2 S[α]
i j , Uα

ab = − 1
2 S[α]

ab , Uα
ia = −Uai − 1

2 S[α]
ia . The resulting expression of the

PCM-CC gradients is given by:

ΔGα
CC =

∑

ab

γ
CC−resp
ab f PC M,[α]

ab +
∑

i j

γ
CC−resp
i j f PC M,[α]

i j (2.20)

+1

2

∑

rs

γ
CC−resp
rs

[
q[α]

rs · V̄N + Q̄N · v[α]
rs

] +
∑

pqrs

	pq,rs〈pq||rs〉[α]

+2
∑

ai

XaiU
α
ai +

∑

i j

I ′′
i j S[α]

i j +
∑

ab

I ′′
ab S[α]

ab − 2
∑

ai

I ′′
ia S[α]

ai

with Xai = I ′
ai − I ′

ia and I ′′
pq = I ′

qp, if (p, q) = (a, i), otherwise I ′′
pq = I ′

pq .

2.3.1 The PCM-Z-Vector Method

The block of vacant-occupied CPHF coefficients Uα
ai of Eq. (2.20), which depend on

the specific perturbation α, may be eliminated by using the interchange (Z-vector)
method of Handy and Schaefer [20], properly extended to the PCM framework [21]:

∑

ai

XaiU
α
ai =

∑

ai

γ
M O−resp

ai Qα
ai (2.21)

where γ
M O−resp

ai is the vacant-occupied block of the orbital response one-particle
density matrix, independent form the perturbation α, and matrix elements Qα

ai are
given by

Qα
ai = f PC M,[α]

ai − Sα
ai f PC M

ii −
∑

kl

S[α]
kl

[〈al||ik〉 + Bai,kl
]
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The matrix elements γ
M O−resp

ai are obtained as the solution of a linear system of
equations:

∑

jb

[〈i j ||ab〉 + 〈aj ||ib〉 + 2Bai,bj
]
γ

M O−resp
bj

+ δimδea

(
f PC M
ea − f PC M

im

)
γ

(M O−resp)
ai = Xai

Then, from Eq. (2.21) the PCM-CC gradients may be expressed in terms of one-
particle density matrix independent from the perturbation:

ΔGα
CC =

∑

ab

γ
CC−resp
ab f PC M,[α]

ab +
∑

i j

γ
CC−resp
i j f PC M,[α]

i j (2.22)

+
∑

i j

γ
M O−resp

ai f PC M,[α]
ai + 1

2

∑

rs

γ
CC−resp
rs

[
q[α]

rs · V̄N + Q̄N · v[α]
rs

]

+
∑

pqrs

	pq,rs〈pq||rs〉[α] +
∑

i j

Ĩi j S[α]
i j +

∑

ab

I "ab S[α]
ab − 2

∑

ai

Ĩia S[α]
ai

where Ĩia = I ′′
ia − γ

M O−resp
ai f PC M

ii , and Ĩi j are given by

Ĩi j = I ′′
i j −

∑

em

γ
M O−resp

em
(〈ei ||mj〉 + 〈im|| je〉 + 2Bem,i j

)

The expression of the PCM-CC gradients can be easily reverted from the MO to
the AO representation of the matrices elements:

ΔGα
CC =

∑

μν

γ CC−M O
μν

(
hα

μν + jαμν

) +
∑

μν

I ′
μν Sα

μν (2.23)

+
∑

μνρσ

(γ CC−M O
μν P H F

σρ + 1

2
γ CC−resp
μν γ CC−resp

σρ )Bα
μνσρ

+
∑

μνσρ

	′
μν,σρ〈μσ ||ρσ 〉α

where γ CC−M O
μν = γ

CC−resp
μν + γ

M O−resp
μν 	′

μν,σρ = 	μν,σρ + γ CC−M O
μν P H F

σρ . A
similar expression can be derived for the analytical gradients of the PCM-CC-PTE
approximation [15].
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2.4 PCM Analytical Derivatives with Unrelaxed MO: The 2n+1
Rule

We now consider the first and higher orders of the PCM-CC free-energy functional
(1.20) within the approximation which neglects the effect of the perturbations on the
MO of the Hartree-Fock reference state |H F〉. The derivatives will be with respect to
the amplitude parameters α, β, . . ., associated to the perturbing operators X, Y, . . .,
of the effective Hamiltonian effective Hamiltonian of the molecular solute:

HN = H(0)N + Q̄N (T,Λ) · VN + αX N + βYN + · · · (2.24)

where X N , YN , ... denote the normal ordered form of the perturbing operators (X N =
X − 〈H F |X |H F〉, YN = Y − 〈H F |X |H F〉).
• The first derivative ΔGα

CC , with respect to the perturbation α of Eq. (2.24) is given
by:

ΔGα
CC = 〈H F |(1 + Λ)e−T X N eT |H F〉 (2.25)

Equation (2.25) follows directly from Eq. (2.7), and represents a form of the gen-
eralized Hellmann-Feynman theorem (2.1) for the Coupled-cluster method.

• The second derivative ∂2ΔGCC/∂α∂β = ΔGαβ
CC , can be obtained by differentia-

tion of the analytical gradients of Eq. (2.25) with respect to a second perturbation β:

ΔGβα
CC = 〈H F | ∂Λ

∂β
e−T XeT |H F〉

+〈H F |(1 + Λ)[e−T XeT , ∂T
∂β

]|H F〉 (2.26)

where T β and Λβ are the first order corrections of the T and Λ cluster amplitudes,
respectively, with respect to the perturbation amplitude β.
The first order amplitudes T β can be determined by the perturbative expansion of
the T amplitude Eq. (1.24) limited to the first order in the perturbation:

0 = 〈H F |τ †
pe−T Ỹ eT |H F〉 + 〈H F |τ †

p[e−T HN eT , ∂T
∂β

]|H F〉 (2.27)

The first order amplitudes Λβ can be determined in a similar way from the Λ

Eq. (1.28)

0 = 〈H F |(1 + Λ)[e−T Ỹ eT , τp]|H F〉
+〈H F |(1 + Λ)[[e−T HN eT , ∂T

∂β
], τp]|H F〉

+〈H F | ∂Λ
∂β

e−T [HN , τp]eT |H F〉
(2.28)

where Ỹ is an effective perturbing operator:

http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
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ỸN = YN + Q̄β
N · VN (2.29)

being Y the operator representing the external perturbation having amplitude β,
and Q̄Y

N is given by

Q̄β
N = 〈H F |(1 + Λ)e−T [QN , ∂T

∂β
]eT |H F〉 + 〈H F | ∂Λ

∂β
e−T QN eT |H F〉

(2.30)
An alternative expression of the second derivative ΔGαβ

CC can be obtained by
differentiating Eq. (1.20) and eliminating the second-order terms of the derivatives
of the T,Λ amplitudes, as a consequence of the stationary of the unperturbed free-
energy functional, in agreement with the (2n+1) rule:

ΔGβα
CC = P(XY )〈H F |(1 + Λ)e−T |[X, ∂T

∂β
]eT |H F〉

+〈H F |(1 + Λ)e−T |[[HN , ∂T
∂α

], ∂T
∂β

]eT |H F〉 1
2 P(XY )

〈H F |(1 + Λ)e−T [QN , ∂T
∂α

]eT |H F〉
·〈H F |(1 + Λ)e−T [VN , ∂T

∂β
]eT |H F〉 1

2 P(XY )

〈H F | ∂Λ
∂α

QN eT |H F〉 · 〈H F | ∂Λ
∂β

VN eT |H F〉

(2.31)

where P(x, y) is a permutation operator between x and y.
• The third derivatives ∂3ΔGCC/∂α∂β∂γ = ΔGαβγ

CC can be obtained differentiating
three times Eq. (1.20) and eliminating higher-order terms according to the (2n+1)
rule2:

ΔGαβγ

CC = P3(XY Z)〈H F |(1 + Λ)e−T |[[X, ∂T
∂β

, ∂T
∂γ

]eT |H F〉
+P6(XY Z)〈H F | ∂Λ

∂α
e−T [Y, ∂T

∂γ
]eT |H F〉

+〈H F |(1 + Λ)e−T [[[HN , ∂T
∂α

], ∂T
∂β

], ∂T
∂γ

]eT |H F〉
+P3(XY Z)〈H F | ∂Λ

∂α
e−T [[HN , ∂T

∂β
], ∂T

∂γ
]eT |H F〉

1
2 P3(XY Z)

(
Q̃αβ

N · V̄γ

N + Q̄α
N · Ṽβγ

N

)

(2.32)

where V̄β
N is defined by an expression similar to Eq. (2.30), while the explicit

solvent factors Q̃α
N , and Ṽβγ

N are defined, respectively, as:

Q̃αβ
N = 〈H F |(1 + Λ)e−T [[QN , ∂T

∂α
, ∂T

∂β
]eT |H F〉

+P(XY )〈H F | ∂Λ
∂α

e−T [QN , ∂T
∂β

]eT |H F〉

2 Third- and second-order derivatives of the T,Λ amplitudes are eliminated, respectively, by the
zero- and first order stationarity of the free-energy functional ΔGCC .

http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
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Ṽαβ
N = 〈H F |(1 + Λ)e−T [[VN , ∂T

∂α
, ∂T

∂β
]eT |H F〉

+P(XY )〈H F | ∂Λ
∂α

e−T [VN , ∂T
∂β

]eT |H F〉

The symbols P3(xyz) and P6(xyz) denotes, respectively the cyclic permutation
operator and the full permutation operator of their arguments.
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Chapter 3
General Response Theory for the Polarizable
Continuum Model

Abstract This chapter presents the general aspects of the response theory for
molecular solutes in the presence of time-dependent perturbing fields: (i) the non-
equilibrium solvation, (ii) the variational formulation of the time-dependent non-
linear QM problem, and (iii) the connection of the molecular response functions
with their macroscopic counterparts. The linear and quadratic molecular response
functions are described at the coupled-cluster level.

The response functions theory the PCM method [1] is an extension of the response
theory for molecules in the gas phase [2, 3]. This latter is based on a variational-
perturbation approach for the description of the variations of the electronic wave
function and of the changes of the observables properties at the various orders of
perturbation with respect to the perturbing fields, and no restrictions are posed on
the nature of the observables and on the nature of the perturbing fields, and the
theory gives also access to a direct determination of the transition properties (i.e.
transition energies and transition probabilities) associated with transitions between
the stationary states of the molecular systems. The PCM response theory adds to this
framework several new elements.

The new elements are required to describe new interaction phenomena that
involve, in an entangled way, the molecular system, the medium (i.e. the solvent)
and the external time-dependent perturbing fields. The couplings has two main
effects. The first effect is to add a non-linearity in the time-dependent QM prob-
lem. More specifically, the time-dependent QM problem requires a proper extension
of the time-dependent variation principle. The second effect is to induce a time-
dependence in the solute-solvent responsive interaction, which must be described in
a non-equilibrium solvation scheme.1 The PCM response theory face also the com-
plex problem of the connection of the response functions of the molecular solutes

1 The concept of non-equilibrium solvation has been introduced to describe the solvent polarization
in processes involving dynamic, or sudden, variations of solute charge distribution of the solute,
and it takes into account that during the time-scale of a fast event not all the degrees of freedoms of
the solvent molecules (nuclear, translational, rotational,vibrational; electronic) are able to respond
to the variations of the charge distribution of the solute (see Appendix).

R. Cammi, Molecular Response Functions for the Polarizable Continuum Model, 23
Springer Briefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
DOI: 10.1007/978-3-319-00987-2_3, © The Author(s) 2013
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with the corresponding macroscopic counterpart (i.e. the macroscopic susceptibili-
ties) measured in the experiments, as the molecular solutes are locally subjected to
perturbing fields which are different to that measured by the experimenter.

The PCM response function theory has been developed for linear and non-linear
response functions and at several QM levels, including the variational wavefunctions
methods (SCF,MCSCF) and the Density Functional Theory [4–18] and more recently
at the Coupled-Cluster level [19, 20].

3.1 The Variational Time-Dependent Theory for the Polarizable
Continuum Model

Let us consider the time-dependent non-linear Schrödinger equation (TDNLSE) for
a molecular solutes

i
∂

∂t
|Ψ̄ (t) >= H |Ψ̄ (t) > (3.1)

where H is the effective time-dependent Hamiltonian for the solute:

H = H0 + Q̄(Ψ ; t) · V + V ′(t) (3.2)

where H0 is the Hamiltonian of the isolated molecule, Q̄(Ψ ; t) · V is the potential
energy term representing the solute-solvent electrostatic interaction, and V ′(t) is a
generic time-dependent external perturbation.2

In Eq. (3.2), Q(Ψ ; t) represents the polarization charges induced by the solute
on the boundary of the cavity hosting the solute within the dielectric medium repre-
senting the solvent, the dot represents a vectorial inner product, and V̂ is a vectorial
operator representing the electrostatic potential of the solute at the boundary cav-
ity. The solvent polarization charges collected in Q(Ψ ; t) depend parametrically on
time, as they are determined to by the first-order density matrix Ψ ∗(t)Ψ (t) of the
molecular solute; the most general form of Q̄(Ψ ; t) must take into account of the
non-equilibrium solvation effects related to the intrinsic dynamics of solvent polar-
ization.

In the presence of a generic time-dependent perturbation V (t), the time-dependent
polarization charges Q(Ψ ; t) may be formally defined as:

Q̄(Ψ ; t) =
∫ t

−∞
< Ψ (t ′)|Q(t − t ′)|Ψ (t ′) > dt ′ (3.3)

where Q(t − t ′) is an apparent charge operator non-local in time, describing a gen-
eral non-equilibrium solvation regime where, the description of polarization of the
medium cannot be given in terms of a single value of the dielectric permittivity of
the medium (as in the case of the equilibrium solvation), but it requires in principle

2 We assume that V ′(t) is applied adiabatically so that it vanishes at t = −∞.
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knowledge of the whole spectrum of the frequency-dependent dielectric permittivity
ε(ω) [21].

3.1.1 The Time-Dependent Quasi-Free-Energy and its Variational
Principle

It has been shown [22] that the time-dependent non- linear Schrödinger Eq. (3.1) can
be obtained from the Hamilton principle when a suitable QM Lagrangian density is
defined (see Appendix A.1), and that this Lagrangian density implies an extension
of the time-dependent Frenkel’s variational principle [23].

Let us consider the time-dependent wave function Ψ̄ (t) > expressed in the phase
isolated form

|Ψ̄ (t) >= e−i F(t)|Ψ (t) > (3.4)

where F(t) is a function of time, and |Ψ (t) > is the so-called regular wave function,
which depends only parametrically on time and which reduces in the unperturbed
limit (i.e. t = −∞) to the time-independent wave function describing a stationary
state of the molecular solute.

The phase F(t) is determined by substituting Eq. (3.4) into the TDNLSE (3.1):

Ḟ(t) =< Ψ (t)|H − i
∂

∂t
|Ψ (t) >

The regular wave function |Ψ (t) > satisfies a generalized time-dependent Frenkel
variational principles [24] for an arbitrary variation δΨ

δG (t) + i
∂

∂t
< Ψ |δΨ >= 0 (3.5)

where G (t) is the time-dependent quasi-free energy functional [19]

G (t) =< Ψ (t)|Ho + 1

2
Q̄(Ψ ; t) · V − i

∂

∂t
|Ψ (t) > (3.6)

that in the time-independent (i.e. unperturbed) limit reduces to the time-independent
PCM free energy functional G =< Ψ |Ho + 1

2 Q̄(Ψ ) · V|Ψ >.
Let us now consider the case of a periodic time-dependent perturbation:

V (t + T ; ε) = V (t; ε) (3.7)
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with period T , frequency ω = 2π
T , and perturbation strength ε. In this case, the

phase-isolated form of the wavefunction acquires the same periodicity T 3:

|Ψ (t + T ) >= |Ψ (t) > (3.8)

and satisfies the stationarity condition:

δ{G (t)}T = δ{< Ψ (t)|Ho + 1

2
Q̄(Ψ ; t) · V − i

∂

∂t
|Ψ (t)}T = 0 (3.9)

where {G (t)}T is the time-averaged4 quasi-free-energy functional

{G(t)}T = 1

T

∫ T/2

−T/2
< Ψ (t)|Ho + 1

2
Q̄(Ψ ; t) · V − i

∂

∂t
|Ψ (t) > dt (3.10)

From the variational condition (3.9), {G (t)}T satisfies a generalization of the time-
dependent Hellmann–Feynman theorem, and if we consider in the Hamiltonian (3.2)
an external perturbation εV (ω) with amplitude ε and periodicity T = 2π/ω, we
obtain

d{G(t)}T
dε)

= {〈Ψ (t)| ∂ H
∂ε

|Ψ (t)〉}T= {〈Ψ (t)|V (ω)|Ψ (t)〉}T
(3.11)

where {〈Ψ (t)|V (ω)|Ψ (t)〉} is the time-average of the expectation value of the per-
turbing operator V (ω).

The time-dependent stationary conditions (3.9) and the corresponding Hellmann–
Feynman theorem (3.11) are the basic equations for the determination of the response
functions of the molecular solutes in the presence of periodic external perturbations.

3.1.2 The Response Functions of Molecular Solutes

Let us consider the case of a time-dependent perturbation V (t) having several peri-
odic components:

3 The time-dependent wavefunction (3.8) are also known as Floquet states [24–28], a particular
set of solutions of the time-dependent Schrödinger equation for systems under the influence of an
external time-dependent periodic perturbation.
4 The time-average over a period T for a general time-dependent function g(t) is defined as

{g(t)}T = 1

T

∫ T/2

−T/2
g(t)dt



3.1 The Variational Time-Dependent Theory for the Polarizable Continuum Model 27

V (t) =
K∑

j =−K

∑

x

e(−iω j t)εX (ω j )X (3.12)

where X is a perturbation operator, εX (ωi ) is the perturbation amplitude, and ωi is
the corresponding frequency.5 In the case of a perturbing agent given by an electro-
magnetic field in the medium, (i.e. the macroscopic Maxwell field), the X operator
corresponds to an effective electric dipole operator which takes into account the effect
of the cavity boundary on the Maxwell field (see Sect. 3.3 below and Appendix A.4)
[33]. For the sake of simplicity, in the following we assume the X operator to be the
interaction operator of the molecular solute with a perturbing agent in the medium,
unmodified by the cavity boundary.

The response functions are the coefficients of a Fourier-perturbation expansion
of the time-dependent expectation values of a generic observable X , < X (t) >=<
Ψ (t)|X |Ψ (t) > of the molecular solute in order of the perturbations V (t) [2]:

< Ψ (t)|X |Ψ (t) > =< X >0 + ∑
j,y e(−iωi t) << X; Y >>ω j εy(ωi )

+ 1
2

∑
i, j,y,z e(−i(ωi +ω j )t) << X; Y, Z >>ωy+ωz εy(ωi )εz(ω j ) + · · ·(3.13)

where << X; Y >>ωY represents the linear-response function describing the
contribution of X (t) of first-order in the perturbation Y with frequency ωY , <<

X; Y, Z >>ωY ,ωZ denotes the quadratic-response function describing the contribu-
tion of X (t) quadratic in the perturbations Y, Z with frequencies ωY , ωZ , and in a sim-
ilar way are defined the higer-order response functions << X; Y, Z , .. >>ωY ,ωZ ,..

(see Table 3.1).
Within the variational time-dependent approach of Sect. 3.1.1, the molecular

response functions (3.13) are determined by expanding the time-dependent wave-
function |Ψ (t) > and the time-averaged free-energy functional (3.10) in orders of the
perturbation, and by imposing that the variational condition (3.9) is satisfied at the
various order. The response functions are then identified by means of the Hellmann–
Feynman theorem (3.11), as terms of the expansion of the quasi-free-energy.

3.2 The Coupled-Cluster Response Functions Theory

The time-dependent coupled-cluster wavefunction may be expressed in the phase-
isolated form as [29]:

|CC(t) >= e−i F(t)eT (t)|H F > (3.14)

5 Being the perturbing operator V (t) Hermitian, we have that: X† = X , ω− j = −ω j , ε(ω j )
∗ =

ε(ω− j ).
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Table 3.1 Selected response functions << X; Y, Z , .. >>ωY ,ωZ ,.. of molecular solutes. The
operators are μα , Cartesian components of the electric dipole operator, 	α,β , element of the electric
quadrupolar tensor, mα Cartesian component of the magnetic dipole operator

Response function Property

<< μα; μβ >>ω [4] Dipole polarizability αα,β(−ω; ω)

i << mα; μβ >>ω [7] Optical rotation tensor G ′
α,β(ω)

<< μα; 	β >>ω [15] Quadrupolar polarizability tensor αα,β(−ω; ω)

<< μα; μβ,μγ >>ω [4] First polarizability βα,β,γ (−ωα; ωβ, ωγ )

<< μα; μβ,μγ , μδ >>ωα,ωβ ,ωδ [4] Second polarizability βα,β,γ (−ωα; ωβ, ωγ )

− << μα; μβ, mγ, mδ >>ω,0,0

+ << μα; μβ, mγ, mδ >>ω,0,0 [11] Frequency dependent mixed electric magnetic
hyper-magnetizability ηα,β,γ,δ(−ω; ω, 0, 0)

where the reference state |H F > is the fixed, time-independent Hartree–Fock ground
state of the solvated molecules6; the phase factor F(t) is a function of time and T (t)
is the time-dependent cluster excitation operator.

The coupled-cluster phase factor F(t) is then determined as:

Ḟ(t) =< H F |(1 + Λ)e−T
(

H(0)N + Q̄N (t) · VN + V (t) − i
∂

∂t

)
eT |H F >

where Λ(t) is the time-dependent coupled-cluster de-excitation operator, and the
time-dependent apparent charges Q̄N (t) are formally given as

Q̄N (t) =
∫ t

∞
< H F |(1 + Λ(t))e−T (t)QN (t, t ′)eT (t)|H F > dt ′ (3.15)

where QN is an apparent charge operator non-local with respect to the time (see Eq.
(3.3), and Λ is a time-dependent de-excitation operator.

The time-dependent coupled-cluster T (t) and Λ(t) amplitudes are obtained from
the variational criterion (see Eq. 3.9) applied to the following quasi-free-energy
functional

{ΔGCC (t)}T = 1
T

∫ T/2
−T/2 < H F |(1 + Λ(t))e−T (t)

[
H(0)N

+ 1
2 Q̄N (t) · VN + V (t) − i ∂

∂t

]
eT (t)|H F > dt

(3.16)

where the time integration is over a common multiple of periods, T, such that
V (t + T ) = V (t).

The corresponding variational condition may be written as

δ{ΔGCC (t)}T = 0 (3.17)

6 We here consider the Molecular Orbital (MO) “unrelaxed” approach in which the reference state
does not depend on the perturbation V (t).
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Equation (3.17) is then solved by a variational-perturbative procedure, where the
coupled-cluster T and Λ amplitudes are expanded with respect to the components
of the perturbation V (t):

T (t) = T (0) + T (1) + T (2)... (3.18a)

Λ(t) = Λ(0) + Λ(1) + Λ(2)... (3.18b)

with:

T (1) = ∑
i exp(−iωi t)

∑
x εX (ωi )T X (ωi )

T (1) = 1
2

∑
i, j exp(−i(ωi + ω j )t)

∑
X,Y εX (ωi )εY (ω j )T XY (ωi , ω j )...

(3.19a)

Λ(1) = Λ(0) + ∑
i exp(−iωi t)

∑
x εX (ωi )Λ

X (ωi )

Λ(2) = 1
2

∑
i, j exp(−i(ωi + ω j )t)

∑
X,Y εX (ωi )εY (ω j )Λ

XY (ωi , ω j )...
(3.19b)

The expansions (3.19a), (3.19b), lead to a corresponding expansion of the quasi-
free energy functional (3.16):

{ΔG(t)CC }T =
{
ΔG(0)

CC

}

T
+

{
ΔG(1)

CC

}

T
+

{
ΔG(2)

CC

}

T
+ ... (3.20)

with the n-th order term
{
ΔG(n)

CC

}

T
given by

{
ΔG(n)

CC

}

T
= 1

n!
∑

i, j,...

∑

x,y,z

εX (ωi )εY (ω j ) · · · × G XY ...(ωi , ω j , · · · ) (3.21)

where G XY ...(ωi , ω j , · · · ) are defined as

G XY ...(ωi , ω j , · · · ) = dn
{
ΔG(n)

}
T

dεi dε j . . .
(3.22)

with ωi + ω j + · · · = 0.7

Then, introducing the perturbation expansion of Eq. (3.20) into the time-average
variational criterion (3.17), and separating by orders, we arrive to a set of variational
criteria on the Fourier components G XY ...(ωi , ω j , · · · ) of Eq. (3.22)

7 The expansions (3.18a and 3.18b) imply an expansion in time-dependent polarization charges of
(3.15):

Q̄N (t) = Q̄N (t)(0) + Q̄N (t)(1) + · · ·
where Q̄N (t)(n) are terms of n-th order in the perturbation.
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δG XY ...(ωi , ω j , · · · ) = 0 (3.23)

that determine the Fourier coefficients T XY ···(ωi , ω j , · · ·) and ΛXY ···(ωi , ω j , · · ·)
for the T and Λ amplitudes (3.19a) and (3.19b).8

When the variational conditions (3.23) are satisfied, the response functions
of the molecular solutes can be recognize as the stationary Fourier components
G XY ...(ωi , ω j , · · · ):

<< X; Y >>ωi = G̃ XY (ωi , ω j )

<< X; Y, Z >>ωi = G̃ XY Z (ωi , ω j , ωk)
... = ...

<< X; Y, Z , · · · >>ωi = G̃ XY Z ...(ωi , ω j , . . . )

(3.24)

where the tilde peaks denotes stationarity. The response functions (3.24) satisfy a
generalized (2n + 1) rule with respect to the perturbed T and Λ amplitudes.

3.2.1 Coupled-Cluster Linear Response Equations

Let us consider the first order equations for the coupled-cluster Fourier amplitudes
ΛX (±ω) T X (±ω). They are determined from the stationary of the second order
time-averaged quasi-free energy G XY (−ω,ω):

G XY (−ω,ω) = P(XY ) < H F |(1 + Λ)e−T |[X, T Y (ω)]eT |H F >

+ < H F |(1 + Λ)e−T [[HN , T X (−ω)], T Y (ω)]eT |H F >

− ωP(XY ) < H F |ΛX (−ω)T Y (ω)|H F >

+ P(XY ) < H F |ΛX (−ω)e−T [Y + [HN , T Y (ω)]eT |H F >

1

2
P(XY )Q̄X

N (−ω) · V̄Y
N (ω) (3.25)

Here, HN = HN (0) + Q̄(0)
N · V is the unperturbed Hamiltonian of the molecular

solute; Q̄X
N (−ω) and VY

N (ω) are given by

Q̄X
N (−ω) = < H F |(1 + Λ)e−T [Q|ω|

N , T X (−ω)]eT |H F >

+ < H F |ΛX (−ω)e−T Q|ω|
N eT |H F >

(3.26a)

V̄Y
N (ω) = < H F |(1 + Λ)e−T [VN , T Y (ω)]eT |H F >

+ < H F |ΛY (ω)e−T VN eT |H F >
(3.26b)

8 The variational criteria at the zero and first order are satisfied when the Coupled-cluster wave-
functions are solution of the PCM coupled-cluster Eqs. (1.24) and (1.28).

http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
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In Eq. (3.26a) the polarization charges operator Q|ω|
N is defined as

Q|ω|
N = T(ω) · VN (3.27)

where T(ω) is the frequency dependent PCM response matrix evaluated with the
dielectric permittivity ε(ω) of the solvent at the frequency ω (see Appendix A.3).

• The stationary condition δG XY (−ω,ω) = 0 with respect to the first orderΛX (±ω)

amplitudes give the equations for the first order T X (±ω) amplitudes:

0 = < H F |τ †
pe−T Ỹ (ω)eT |H F >

+ < H F |τ †
p[e−T HN eT , T Y (ω)] − ωT Y (ω)|H F >

(3.28)

where Ỹ (ω) is an effective perturbing operator:

Ỹ (ω) = Y + Q̄Y
N (ω) · VN (3.29)

Here, the term “effective” indicates that in addition to the direct perturbation (Y),
there is an indirect source of perturbation, Q̄Y

N (ω)·VN , due to the coupling between
the direct perturbation and the solute-solvent interaction.

• The stationary condition δG XY (−ω,ω) = 0 with respect to the first order T X (±ω)

amplitudes give the equations for the first order ΛX (±ω) amplitudes:

0 = < H F |(1 + Λ)e−T [Ỹ (ω), τp]eT |H F >

+ < H F |(1 + Λ)e−T [[HN , τp], T Y (ω)]eT |H F >

−ω < H F |ΛY (ω)τp|H F > + < H F |ΛY (ω)e−T [HN , τp]eT |H F >

(3.30)

3.2.2 Coupled-Cluster Linear and Quadratic Response Functions

• The linear response functions << X; Y >>ω can then be obtained from
Eq. (3.24) by introducing the stationary condition (3.28) into the second order
quasi-free-energy (3.25)

<< X; Y >>ω = G̃ XY

= 1
2 C±ω{P(XY ) < H F |(1 + Λ)e−T |[X, T Y (ω)]eT |H F >

+ < H F |(1 + Λ)e−T |[[HN , T X (−ω)], T Y (ω)]eT |H F >
1
2 P(XY ) < H F |(1 + Λ)e−T [Q|ω|

N , T X (−ω)]eT |H F >

· < H F |(1 + Λ)e−T [VN , T Y (ω)]eT |H F >
1
2 P(XY ) < H F |ΛX (−ω)Q|ω|

N eT |H F > · < H F |ΛY (ω)VN eT |H F >}
(3.31)

where C±ω is a symmetrization operator with respect to sign change of the fre-
quencies to ensure that only the real part of the response function is retained, and
P(x, y) is a permutation operator between x and y.
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Alternatively, introducing the stationary condition (3.30) in to the second order
quasi-free-energy (3.25) we can write the linear response functions as

<< X; Y >>ω = 1
2 C±ω{< H F |(1 + Λ)e−T [X, T Y (ω)]eT |H F >

+ < H F |ΛY (ω)e−T XeT |H F >} (3.32)

• The quadratic response functions << X; Y, Z >>ωY ,ωY can be obtained in agree-
ment with the (2n + 1) rule9 as:

<< X; Y, Z >>ωY ,ωY = G̃ XY Z

= 1

2
C±ω{P3(XY Z) < H F |(1 + Λ)e−T |[[X, T Y (ωY ), T Z (ωZ )]eT |H F >

+P6(XY Z) < H F |ΛX (ωX )e−T [Y, T Z (ωZ )]eT |H F >

+ < H F |(1 + Λ)e−T [[[HN , T X (ωX )], T Y (ωY )], T Z (ωZ )]eT |H F >

+P3(XY Z) < H F |ΛX (ωX )e−T [[HN , T Y (ωY )], T Z (ωZ )]eT |H F >

1

2
P3(XY Z)

(
Q̃XY

N (ωX + ωY ) · V̄Z
N (ωZ ) + Q̄X

N (ωX ) · ṼY Z
N (ωY + ωZ )

)
} (3.33)

where P3(xyz) and P6(xyz) denotes, respectively the cyclic permutation operator
and the full permutation operator of their arguments, while Q̃XY

N (ωX +ωY )10 and
ṼY Z

N (ωY + ωZ ) are defined as

Q̃XY
N (ωX + ωY ) = < H F |(1 + Λ)e−T [[Q|ωX +ωY |

N , T X (ωX ), T Y (ωY )]eT |H F>

+P(XY ) < H F |ΛX (ωX )e−T [Q|ωZ |
N , T Y (ωY )]eT |H F >

(3.34a)
ṼY Z

N (ωY + ωZ ) = < H F |(1 + Λ)e−T [[VN , T X (ωX ), T Y (ωY )]eT |H F >

P(XY ) < H F |ΛX (ωX )e−T [VN , T Y (ωY )]eT |H F >

(3.34b)

In the zero-frequency limit, the linear response functions (3.32) give, respectively,
the second derivative of the free-energy functional (2.25) and (2.31). Similarly,
the quadratic response function (3.33) gives, in the zero-frequency limit the third-
derivative of the time-independent free energy functional (2.32).

3.2.2.1 The Response Functions in the PTE Approximation

In the PCM-CC-PTE approximation , i.e. in the presence of the fixed HF reaction field.
The response functions are still given by Eqs. (3.31), (3.32) and (3.33), respectively.

9 Third- and second-order derivatives of the T,Λ amplitudes are eliminated, respectively, by the
zero- and first order stationarity of the quasi-free-energy functional ΔGCC .
10 The polarization charges operator Q|ωX + ωY |

N is evaluated from Eq. (3.27) using the dielectric
permittivity ε(|ωX + ωY |) of the solvent at the frequency |ωX + ωY |. Therefore, Eq. (3.34a) is
able to describe the non-equilibrium solvation effects in the quadratic response function describing
general second-order molecular processes [4] (see Appendix B in Ref. [19]).

http://dx.doi.org/10.1007/978-3-319-00987-2_2
http://dx.doi.org/10.1007/978-3-319-00987-2_2
http://dx.doi.org/10.1007/978-3-319-00987-2_2
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However, the zero order T and Λ amplitudes to be used are those determined from
the PCM-PTE Eqs. (1.30a) and (1.30b), while the corresponding first order T Y and
ΛY amplitudes must be obtained from modified first-order Eqs. (3.28) and (3.30),
respectively. The modified first-order response equations are obtained by substituting
the effective Hamiltonian HN of Eq. (1.25) appearing in these equations with the
PCM-PTE Hamiltonian H(0)N .

3.3 Effective Response Functions and Macroscopic
Susceptibilities

The molecular response functions defined in the previous section correspond to
changes of the properties of a molecular solute when it is subjected to perturbing
electric or magnetic fields whose amplitudes are defined within the cavity hosting the
solute. However, these cavity fields are not measurable quantities and the molecular
response functions cannot be directly connected with their experimental counter-
part, the macroscopic susceptibilities. The macroscopic susceptibilities are response
function describing the changes of the the properties of macroscopic portion of the
medium with respect to the electromagnetic field in the medium, also called Maxwell
field (see Appendix A.4). In the presence of the cavity boundary the Maxwell field
is modified and the effective field acting on the molecular solute, i.e. the cavity field,
include these modifications. The problem to connect the Maxwell field to the cavity
field is known as the “local field” problem. The solution that has been proposed
within the PCM model has lead to the definition of the so called effective response
properties [30].

The effective response theory describes the variation of the properties of the
molecular solute when subjected to an external perturbing field which correspond to
the Maxwell electromagnetic field in the medium. The resulting molecular response
properties, represent effective response properties which can be directly related to
macroscopic observables, after a proper averaging over the orientational states of the
molecular solutes [31–33].

The effective Hamiltonian of the molecular solute M in the presence of a Maxwell
field E in the dielectric medium can be written as

H = H0 + Q̄(Ψ ; t) · V + V ′(E, t) (3.35)

where H0 and Q̄(Ψ ; t) · V have the same meaning as in Eq. (4.2), and V ′(E, t)
denotes the effective operator describing the interaction of the molecular solute with
a Maxwell field E, uniform far from the cavity C hosting the molecular solute.

In the case of a monochromatic field E(ω) of frequency ω and uniform far from
the cavity effective perturbation V ′(E, t) can be written in terms of the electric-
dipole interaction with E(ω), and in terms of the interaction with an additional set
of apparent surface charges Q̃E spread on the cavity surface Γ :11

11 The contribution is due to the effect of the boundary condition of the cavity on the Maxwell field.

http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987_4


34 3 General Response Theory for the Polarizable Continuum Model

V ′(E, t) = −E · (μ̂ + m)(e−iωt + e+iωt ) (3.36)

Here, μ̂ = ∑N
i ri is the usual electric dipole operator, and m is a vectorial operator

having Cartesian components:
mi = Q̃E

i · V (3.37)

where, Q̃E
i collects the additional apparent charges induces by the i-th Cartesian

components of a Maxwell field having unitary amplitude, and V is the familiar
vector operator of the electrostatic potential at the positions of the charges Q̃E

i .12

Introducing Eq. (3.36), the effective Hamiltonian of the molecular solute M can
be written as

H = H0 + Q̄(Ψ ; t) · V − E · μ̃(e−iωt + e+iωt ) (3.38)

where μ̃ = μ + m is an effective electric-dipole operator describing the effective
interaction with the Maxwell perturbing field.

The response theory described in the Sect. (3.2) can be used to describe the
response of the molecular solute to the macroscopic Maxwell field in the medium.
More specifically, the effective response functions are the coefficients of a Fourier-
perturbation expansion of the time-dependent expectation values of a generic observ-
able X , < X (t) >=< Ψ (t)|X |Ψ (t) > of the molecular solute in order of the
perturbing Maxwell field E:

< Ψ (t)|X |Ψ (t) > =< X >0 +
∑

j,y

e(−iωi t) << X; Ỹ >>ω j εy(ωi )

+ 1

2

∑

i, j,y,z

e(−i(ωi +ω j )t) << X; Ỹ , Z̃ >>ωy+ωz εy(ωi )εz(ω j ) + · · ·

(3.39)

where << X; Ỹ >>ωY represents the effective linear-response function describing
the contribution of X (t) of first-order in the effective perturbation Ỹ with frequency
ωY , << X; Ỹ , Z̃ >>ωY ,ωZ denotes the quadratic-response function describing the
contribution of X (t) quadratic in the effective perturbations Ỹ , Z̃ with frequencies
ωY , ωZ , and in a similar way are defined the higher-order response functions <<

12 The charges Q̃E
i are obtained as solution of the electrostatic problem (i.e. the Laplace problem)

describing the Maxwell field E in the presence of the void cavity. The corresponding integral
equation with domain on the PCM cavity boundary � is:

(
2π

ε + 1

ε − 1
+ D∗

)
σ E

i (s) = −Ei ni (s) s ⊂ �

where Ei and ni are, respectively the i-th Cartesian component of the Maxwell field E and of a unit
vector n(r) normal to the cavity surface at the point s, and σ E

i (s) is the apparent surface charge
density determined by the Maxwell field.
The discretization of the the apparent surface charge density σ E

i (s) leads then to the discrete set of
charges Q̃E

i .
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Table 3.2 Examples of effective response functions properties and of the corresponding
macroscopic susceptibilities

Effective response function Effective molecular
properties

Macroscopic
susceptibility

<< X; Ỹ >>ω=0 [31] Static polarizability,
α̃XY (0; 0)

Static dielectric
constant, ε(0)

<< X; Ỹ >>ω [11–13, 32] Dynamic
polarizability,
α̃XY (−ω; ω)

First order
susceptibility,
χ(1)(−ω : ω)

<< X; Ỹ , Z̃ >>ω,0 [13] First hyper-
polarizability,
β̃XY Z (−ω; ω, 0)

Third-order
susceptibility,
χ(3)(−ω : ω, 0, 0)

Kerr constant
<< X; Ỹ , Z̃ >>ω,ω [11, 32] First hyper-

polarizability,
β̃XY Z (−2ω; ω,ω)

Third-order
susceptibility,
χ(3)(−2ω :
ω,ω, 0) EFISH
process

X , denotes a Cartesian component of the electric dipole operator μ̂, while Ỹ denotes a Cartesian
component of the effective dipole operator μ̃, and χ(n) denotes a macroscopic susceptibilities of
nth-order

X; Ỹ , Z̃ , .. >>ωY ,ωZ ,... Selected examples of effective molecular response functions
and of the corresponding macroscopic susceptibilities are reported in Table 3.2.
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Chapter 4
Excitation Energies and Transition Moments
from the PCM Linear Response Functions

Abstract This chapter considers the properties of the molecular solute in electronic
excited states determined from the linear response functions described in the pre-
vious Chap. 3. Transition energies and transition moments are determined from a
generalized eigenvalue equations, and the first-order properties in electronic excited
states are expressed as analytical gradients of the corresponding transition energies
with respect to suitable perturbations.

4.1 Excitation Energies and Transition Moments from the
PCM-CC Linear Response Functions

The linear response functions << X; Y >>ωX described in the previous Chap. 3
provide direct information about the transition properties of the unperturbed molec-
ular solutes. The poles (ωK ) of << X; Y >>ωX correspond to the transition energies
from the ground state 1, while the residues determine the associated transition matrix
elements. However, at variance with the case of an isolated molecule, the excitation
energies from linear response functions of a molecular solute do not correspond to
the excitation energies obtained as differences of the energies of the excited states
described explicitly by a CI-like wavefunction expansion [1–3].

The lack of correspondence between the LR methods and the CI approaches have
been analyzed by Kongsted [1] and Cammi and Corni [2, 3]. Methods based on
the LR functions give the excitation energies and transition moments by solving a
single eigenvalue problem for all the excited states. Moreover, the LR base methods
give a descriptions of the solute-solvent interaction in the excites states which does
not depend on the one-particle density of the molecular solutes. On the contrary,
the methods based on a CI-like expansion of excited states lead to a state-specific
approach which requires the solution of a separate CI-type eigenvalue equation for

1 Here we consider the linear response function for the electronic ground state of the molecular
solute.

R. Cammi, Molecular Response Functions for the Polarizable Continuum Model, 37
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each of the different excited states of interest. Each excited state is characterized
by a different Hamiltonian, due to the explicit dependence of the solute-solvent
interaction operator on the wavefunction of excited state via the corresponding one-
particle density.

Within the PCM framework, coupled-cluster methods for excited states based on
the CI-like expansion EOM-CC [4] and SAC-CI [5], have already been presented in
Refs. [6–8] and [9, 10], respectively.

4.1.1 Poles of the PCM-CC Linear Response Functions

To determines spectral form of the PCM-CC linear response function << X; Y >>ω

of Eq. (3.31) we combine the T X and ΛX first-order response Eqs. (3.28–3.30) into
a single matrix response equation:

[(
G[2],†

t,λ G[2]
t,t

G[2]
λ,λ G[2]

t,λ

)
− ω

(−I 0
0 +I

)] (
λX (ωX )†

tX (ωX )

)
=

(
X[1],†

λ

X[1]
t

)
(4.1)

Here, ω is the frequency of the perturbation, λX (ωX )† and t X (ωX ) are column vectors
collecting, respectively, the amplitudes of the first-order ΛX and T X amplitudes;
X[1]

λ and X[1],†
t are column vectors collecting, respectively, the matrix elements

< H F |(1 + Λ)e−T [Y, τp]eT |H F > and < H F |τ †
pe−T Y eT |H F >; finally, the

diagonal blocks G[2]
λ,t and the out-of-diagonal blocks, G[2]

t,t and G[2]
λ,λ are defined:

G[2]
λ,t (p, q) =< H F |τ †

p

[
e−T HN eT , τq

]
|H F > +Q[1]

λp
· V[1]

tp
(4.2)

G[2]
t,t (p, q) =< H F |(1 + Λ)e−T [[HN , τp], τq ]eT |H F > +Q[1]

tp
· V[1]

tp
(4.3)

G[2]
λ,λ(p, q) = Q[1]

λp
· V[1]

λq
(4.4)

with
Q[1]

λp
=< H F |τ †

p|e−T Q|ω|
N eT |H F >

V[1]
tp

=< H F |(1 + Λ)e−T [VN , τq ]eT |H F >

Q[1]
tp

=< H F |(1 + Λ)e−T [Q|ω|
N , τp]eT |H F >

V[1]
λq

=< H F |τ †
q |e−T VN eT |H F >

http://dx.doi.org/10.1007/978-3-319-00987-2_3
http://dx.doi.org/10.1007/978-3-319-00987-2_3
http://dx.doi.org/10.1007/978-3-319-00987-2_3
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From a formal solution of the response Eq. (4.1) the linear response functions
(3.32) is rewritten as

<< X; Y >>ω =
(

Y[1],†
λ

Y[1]
t

)† (
λX (ωX )†

tX (ωX )

)

=
(

Y[1],†
λ

Y[1]
t

)† [(
G[2],†

t,λ G[2]
t,t

G[2]
λ,λ G[2]

t,λ

)
− ω

(−I 0
0 +I

)]−1 (
X[1],†

λ

X[1]
t

)

(4.5)
From Eq. (4.5) it follows that the linear response functions is singular when the
frequency ω of the perturbation corresponds to the eigenvalues of the generalized
eigenvalue equation:

(
G[2],†

t,λ G[2]
t,t

G[2]
λ,λ G[2]

t,λ

)(
L†

K
RK

)
= ωK

(−I 0
0 I

) (
L†

K
RK

)
(4.6)

This eigenvalue problem has a dimension double with respect to the corresponding
problem for an isolated molecule [11]. However, by neglecting the out-of-diagonal
block G[2]

λ,λ responsible of the coupling between the T X and ΛX response equations
[12], the linear response functions (4.5) reduces to

<< X; Y >>ω=
(

Y[1],†
λ

Y[1]
t

)† [(
G[2],†

t,λ G[2]
t,t

0 G[2]
t,λ

)
− ω

(−I 0
0 +I

)]−1 (
X[1],†

λ

X[1]
t

)

(4.7)
and its poles are obtained from the solution of the eigenvalue problem involving only
by the diagonal matrix G[2]

t,λ (5.2). Since matrix G[2]
t,λ is not Hermitian, it has left and

right eigenvectors:
G[2]

t,λR f = ω f R f (4.8)

L f G[2]
t,λ = ω f L f (4.9)

with the left and right eigenvectors bi-orthogonal and that may be chosen to satisfy
the normalization condition,

L f R f = 1 (4.10)

The eigenvalues ω f of Eqs. (4.8) and (4.9) are the excitation energies of the molecular
solute within the linear response coupled-cluster (LR-CC) approximation. They can
be then written in the following functional form

ωK = < H F |L f

[
e−T HN eT , R f

]
|H F >

+ < H F |L f e−T Q|ω|
N eT |H F > · < H F |(1 + Λ)e−T [VN , R f ]eT |H F >

(4.11)

http://dx.doi.org/10.1007/978-3-319-00987-2_3
http://dx.doi.org/10.1007/978-3-319-00987-2_5
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where R f and L f are linear combination, respectively, of elementary excitation/

de-excitation operators τp/ τ
†
q having as coefficients the components r f

p /l f
p of the

column eigenvector R f and of the row eigenvector L f

R f =
∑

q

r f
p τp; L f =

∑

q

l f
q τ †

q (4.12)

Equation (4.11) makes evident the physical meaning of the LR-CC excitation
energies:

• The first term in (4.11) represents the excitation energy of a molecular solute in
the presence of the reaction field of the ground state.

• The second term of Eq. (4.11) represents the contribution to the excitation energy
due to the relaxation of the solvent in response to the electronic excitation of
the molecular solutes. The nature of the solute-solvent relaxation contribution
is related to the transition moment associated to the electronic excitation (see
Sect. 4.1).

4.1.1.1 The LR Excitation Energies in the PTE Approximation

If in the ground state of the molecular solute the electron-correlation contribution to
the solute-solvent interaction is neglected (i.e. in the PCM-CC-PTE approximation
of Sect. (1.2.1)), the LR-CC excitation energies are:

ωPT E
f = < HF|L f

[
e−T H(0)N eT , R f

]
|HF >

+< HF|L f e−T Q|ω|
N eT |HF > · < HF|(1+Λ)e−T [VN , R f ]eT |HF>

(4.13)

where the T and Λ amplitudes to be used are those determined from the PCM-PTE
Eqs. (1.30a) and (1.30b), while the left and right eigenvector L and R are obtained
from modified left and right eigenvalue Eqs. (4.9b), respectively, in which the Hessian
matrix G[2]

λ,t is obtained from Eq. (4.2) by substituting the PCM-CC Hamiltonian HN

of Eq. (1.25) with the uncoupled Hamiltonian H(0)N (1.22).

4.1.2 Transition Strengths and Solute-Solvent Interaction
Contribution to the Excitation Energies

The transition moments associated to the excitation energies (4.8–4.9) are determined
by the residues of the linear response functions:

http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
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lim
ω→ωK

(ω − ωK ) << X; Y >>ω= 1

2

(
T X

of T Y
f o + (T X

of T Y
f o)

∗) (4.14)

where << X; Y >>ω is the linear response function of Eq. (4.7), and e T X
of , T X

f o, are
respectively, the “left” and “right” transition moments

T X
of = < H F |L f e−T XeT |H F > (4.15a)

T X
f o =< H F |(1 + Λ)[e−T XeT , R f ]|H F > + < H F |M e−T XeT |H F >

(4.15b)

where M = ∑
K μK τ

†
K is a de-excitation operator whose amplitudes are determined

as solution of a perturbation independent equation.2

The “left” and “right” transition moments of Eqs. (4.15a, 4.15b) determine the
solute-solvent interaction in the linear response excitation energies ω f (4.11). This
it can be shown by a perturbative analysis of Eq. (4.11). Let us consider as zero-
order solutions the eigenvalues ω

(0)
K and eigenvector R(0)

K , and L(0) corresponding to
excited-states in the presence of the fixed reaction field of the coupled-cluster ground
state. At the first order in the solvent perturbation, we can write the excitation energies
as

ω
(1)
f � < H F (0)|L(0)

f

[
e−T HN eT , R(0)

f

]
|H F > +TQ

of · TV
f o (4.16)

with
TQ

of =< H F |L(0)
f e−T Q|ω|

N eT |H F >

TV
f o =< H F |(1 + Λ)e−T [VN , R(0)

f ]eT |H F >

Here, TQ
of denotes the left transition moment (4.15a) associated to the polarization

charge operator QωK |
N , while TV

f o denotes an approximated form of the right transition
moment (4.15b), associated to the electrostatic potential operator, V, of the molecular
solute.

We note that:

2 The amplitudes of de-excitation operator M = ∑
K μK τ

†
K are determined by the perturbation

independent equation

< H F |(1 + Λ)[[e−T HN eT , τK ], R f ]|H F >

+ < H F |(1 + Λ)|e−T [Q|ω|
N , τK ]eT |H F > · < H F |(1 + Λ)|e−T [VN , R f ]eT |H F >

+ < H F |M[e−T HN eT , τK ]|H F >

+ < H F |Me−T Q|ω|
N eT |H F > · < H F |(1 + Λ)|e−T [VN , τK ]eT |H F > +ω μK = 0
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• The first term of Eq. (4.16) corresponds to the excitation energies of the solute in
the presence of the PCM-CC fixed solvent reaction potential

• the second term represents a solute-solvent contribution determined by the inter-
action of the right transition density of the molecular solute represented by TV

f o

with the polarization charges TQ
of induced by the left transition density matrix.

4.2 Excited State Properties

A wide range of first-order properties of the electronic excited-states of molecules
in solution can be computed in terms of the gradients of the excitation energies
ωK with respect to external or internal perturbations. In this section, we discuss the
analytical theory for the gradient of the excitation energies (4.11) computed from
the coupled-cluster linear response.

4.2.1 Analytical Gradients Theory of the PCM-LRCC Excitation
Energies

The first derivative the excitation energies ω f (4.11) can be determined by means of
a Lagrangian formulation [13, 14], to avoids the evaluation of the first derivative of
the coupled-cluster ground state T and Λ amplitudes.

The PCM-LRCC Lagrangian is defined as

F(T,Λ, L f , R f , ω f ) = < H F |L f
[
e−T HN eT , R f

] |H F >

+ < H F |L f e−T Q|ω|
N eT |H F >

· < H F |(1 + Λ)e−T [VN , R f ]eT |H F >

+ < H F |Z f e−T HN eT |H F >

+ < H F |(1 + Λ)e−T [HN ,T f ]eT |H F >

+ωK (1− < H F |L f R f |H F >)

(4.18)

where the last term of Eq. (4.18) introduces the bi-orthonormalization condition
(4.10), and Z f and T f are linear combinations, perturbation independent, of de-
excitation and excitation operators τ

†
q :

Z f =
∑

q

ζ
f

q τ †
q , T =

∑

q

ξ
f

q τ †
q

The Lagrangian of Eq. (4.18) is required to be stationary with respect to all
its arguments T,Λ, L f , R f , ω f . Tacking the derivative with respect to the exci-
tation energy we recover the normalization condition (4.10); tacking the derivative
of F with respect to the coefficients of L f gives the right eigenvalue Eq. (4.8) for
R f , and vice-versa the coefficients of R f gives the left eigenvalue Eq. (4.9) for
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L f ; tacking the derivative of F with respect to the coefficients of Z f and T f

give, respectively, the Eqs. (1.24, 1.28) for the T and Λ amplitudes. Finally, the
stationary conditions of the functional F with respect to the variations of the coupled-
cluster T and Λ amplitudes lead to a sets of coupled equations3 which has the two
set of Lagrange multipliers Z f and T f as solution.

The derivatives of the excitation energies ω f (4.11), with respect any perturbation
α, can then be expressed as derivatives of the stationary functional (4.18)4:

∂ F

∂α
= ∂ω f

∂α
= ωα

f

= < H F |L f

[
e−T H [α]

N eT , R f

]
|H F >

+ < H F |L f e−T Q|ω|,α
N eT |H F >

· < H F |(1 + Λ)e−T [VN , R f ]eT |H F >

+ < H F |L f e−T Q|ω|
N eT |H F >

· < H F |(1 + Λ)e−T [Vα
N , R f ]eT |H F >

+ < H F |Z f e−T H [α]
N eT |H F >

+ < H F |(1 + Λ)e−T [H [α]
N ,T f ]eT |H F >

(4.19)

where H [α]
N denotes a total derivative of the PCM-CC Hamiltonian:

H [α]
N = HN (0)α + Q̄α

N · VN + Q̄N · Vα
N

with Q̄α
N =< H F |(1 + Λ)e−T Qα

N eT |H F >.

3 The coefficients of the Z f and T f operators are determined from the following set of equations:

0 = < H F |L f

[
[e−T HN eT , τp], R f

]
|H F >

+ < H F |(1 + Λ)[e−T QN eT , τp]|H F > · < H F |L f [e−T VN eT , R f ]|H F >

+ < H F |L f [e−T Q|ω|
N eT , τp]|H F > · < H F |(1 + Λ)e−T [[VN , τp], R f ]eT |H F >

+ < H F |Z f [e−T HN eT , τp]|H F >

+ < H F |(1 + Λ)e−T [[HN , τp], T f ]eT |H F >

and

0 = < H F |L f

[
e−T < H F |τ †

q e−T QN eT |H F > ·VN eT , R f

]
|H F >

+ < H F |L f e−T Q|ω|
N eT |H F > · < H F |τ †

q e−T [VN , R f ]eT |H F >

+ < H F |Z f e−T > H F |τ †
q e−T QN eT |H F > ·VN eT |H F >

+ < H F |τ †
q e−T [HN , T f ]eT |H F >

+ < H F |(1 + Λ)e−T [> H F |τ †
q e−T QN eT |H F > ·VN , T f ]eT |H F >

4 Note that, as the PCM-CC Eqs. (1.24, 1.28), and the PCM-LR-CC Eqs. (4.8) and (4.9) are assumed
to be satisfied, the Lagrangian (4.18) is equal to the excitation energy, F = ω f .

http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
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4.2.2 Properties of Excited States: MO Relaxation,
and Non-equilibrium Solvation

The analytical gradients (4.19) may be applied both to the geometrical
gradients, for the exploration of the excited states PES of the molecular solute, and
to the first derivatives with respect to the amplitude of an external, or internal static
perturbation, for the determination of the first order properties of the excited states.

However, the two cases differ both with respect to the relaxation of the molecular
orbitals (MO) of the Hartree-Fock reference state of the solute, and with respect to
the presence of non-equilibrium solvation effects.

• For the geometrical gradients it is mandatory to consider the effects of the MO
relaxation [15]. In this case, the gradients Eq. (4.19) may be reformulated in terms
of contractions of effective density matrices and of differentiated one and two-
electron MO integrals:

ωα
f =

∑

rs

f PC M,α
rs γ

f
rs + 1

2

∑

rstu

(qrs · vtu)αγ
0 f
rs γ

f 0
tu + 1

4

∑

rstu

< rs||tu >α �
f

rstu

(4.20)

where f PC M,α
rs and < rs||tu >α are, respectively, the derivative of the PCM

Fock matrix elements [6] and of the antisymmetrized two-electron integrals, in the
MO basis; γ

f
rs and �

f
rstu are matrix elements of the one and two-particle density

matrices, respectively [16] 5 γ
0 f
rs and γ

f 0
rs are matrix elements of the transition one-

particle transition density matrix see footnote 5. The differentiated MO integrals
involve derivative of the MO coefficients, which can be avoided by solving, or by
exploiting the PCM-Z-vector method [17].
For the geometrical gradients it is also convenient to consider of derivatives
of the excitation energies (4.11) within an equilibrium solvation regime, [18].
This implies that the excitation energies (4.11), and the perturbation independent
Lagrange multipliers Z f and T f see footnote 3 involved in the evaluation of the
geometrical gradients, must be evaluated with the solvent polarization operator
Q|ω|

N in the limit of the static dielectric permittivity (i.e. at ω = ω0).

5 The one particle density matrix elements γ
f

rs , γ
0 f
rs and γ

f 0
rs are defined as:

γ
f

rs = < H F |L f

[
e−T {τ †

pτq }eT , R f

]
|H F >

+ < H F |(1 + Λ)e−T [{τ †
pτq }, T f ]eT |H F >

+ < H F |Z f e−T {τ †
pτq }eT |H F >

γ
0 f
rs = < H F |(1+)e−T [{τ †

pτq }, R f ]eT |H F >

γ
f 0

rs =< H F |L f e−T {τ †
pτq }eT |H F >

where {τ †
pτq }eT |H F denote a normal ordered sequences of the creation/annihilation operators.
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• For the gradients of the excitation energies with respect to external fields we can
exploit a MO unrelaxed approach [19], and Eq. (4.20) reduces to the form of an
expectation value of the observable X in the excited state f :

ω
α,eq/neq
f = < H F |L f

[
e−T XeT , R f

] |H F > + < H F |Z f e−T XeT |H F >

+ < H F |(1 + Λ)e−T [X,T f ]eT |H F >

= ∑
rs γ

f
rs xrs

(4.21)

where xrs are the one-electron MO integrals for the perturbation X , and the upper-
script eq/neq denotes the equilibrium/non equilibrium solvation regime. The sol-
vation regime depends on the choice of solvent operator Q|ω|

N involved in the
calculation of the multipliers Z f and T f (see footnote 3).
Accordingly to the phenomenological theory of the solvent polarization (see
Appendix A.3), the non-equilibrium solvation is required to describe the prop-
erties of the excites states immediately after a fast vertical excitation/de-excitation
process, while an equilibrium solvation may be used to describe the changes in
the the excited states properties of the solvated chromophores after the solvent
relaxation which follows a vertical excitation process [20, 21].
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Appendix A

A.1 Molecular Electronic Virial Theorem for the Polarizable
Continuum Model

The electronic virial theorem (EVT) plays a key role in the QM description of
molecular systems [1]. For isolated molecules, the EVT consists in a relation involv-
ing the kinetics energy, the potential energies and the Cartesian forces on the nuclei
of the molecular system. In passing to a molecular solute, the EVT theorem involves
additional terms regarding, the electrostatic- solute-solvent interaction energy and
the molecular electric field acting on the polarization charges at the boundary of the
PCM cavity.

The virial theorem for the PCM model is a consequence of the variational nature
of the free-energy functional G (1.10) for exact wavefunction, as it can be proved
with the method of the scaling of the electronic wavefunction.

Let us consider a uniform scaling of the electronic coordinates of the exact wave-
function:

Ψα(ri ) = α3N/2Ψ (αri ) (A.1)

where α is a scaling factor (with α = 1 for the exact wavefunction), N is the number
of electrons of the molecular solutes, and α3N/2 is a normalization factor such that
< Ψα|Ψα >= 1.

With the scaled wavefunction Ψα the corresponding free-energy functional Gα

(1.10) can be written as

Gα(R, s) =< Ψα|Ho(R) + 1

2
< Ψα|T · V(R, s)|Ψα > ·V(R, s)|Ψα > (A.2)

where
Ho(R) = T + V (R)

T = 1
2

∑N
i ∇2

i
V (R) = ∑

i> j
1

|ri −r j | − ∑
I

Z I|ri −RI | + ∑
I>J

Z I Z J|RI −RJ |
(A.3)
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T is the PCM-IEF matrix (see Eq. (1.5)) for the polarization charges, and the
vectorial PCM operator V (see Eq. (1.5)) collecting the total molecular electrostatic
potential at the positions si of the polarization charges on the cavity surface Γ ; Z I

and RI are, respectively, the charge and the Cartesian vector position of the nuclei.
For our purpose, it is convenient the introduce the electronic and nuclear compo-

nents of the vector operator V

V(R, s) = Ve(R, s) + Vn(R, s) (A.4)

having elements
[Ve(R, s)]K = ∑

i
1

|ri −sK |
[Vn(R, s)]K = ∑

I
Z I|RI −sK |

(A.5)

Let us now introduce the following identities

< Ψα|T |Ψα > = α2 < Ψ |T |Ψ >

< Ψα|V (R)|Ψα > = α < Ψ |V (αR)|Ψ >

< Ψα|V(R, s)|Ψα > = α < Ψ |V(αR, αs)|Ψ >

(A.6)

with
V (αR) = ∑

i> j
1

|ri −r j | − ∑
I

Z I|ri −αRI | + ∑
I>J

Z I Z J
α|RI −RJ | (A.7)

and
V(αR, αs) = Ve(αs) + Vn(αR, αs)
V(αs)e = ∑

i
1

|ri −αsi |
V(αR, αs)n = ∑

I
Z I|αRI −αsi |

(A.8)

By substituting Eq. (A.6) in to the free energy functional Gα (A.2) we have

Gα(R, s) = α2 < Ψ |T |Ψ > +α < Ψ |V (α)R)|Ψ >

+α2

2 < Ψ |T · V(αR, αs)|Ψ > · < Ψ |V(αR, αs)|� >
(A.9)

Let us now impose the variational condition of the exact wavefunction (α = 1)
on the free energy functional Gα of Eq. (A.9), with respect to the scaling factor α

∂

∂α
Gα(R, s)|α=1 = 0 (A.10)

The variational condition (A.10) lead to

http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_1
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2 <Ψ |T |Ψ > + < Ψ |V (R)|Ψ > + < Ψ |V(R, s)|Ψ > · < Ψ |V(R, s)|Ψ >

= < Ψ | ∂

∂α
V (αR)|α=1|Ψ > +1

2

{
< Ψ |T · ∂

∂α
V(αR, αs)|α=1|Ψ > · < Ψ |V(R, s)|Ψ >

+ < Ψ |T · V(R, s)|Ψ > · < Ψ | ∂

∂α
V(αR, αs)|α=1|Ψ >

}
(A.11)

Eq. (A.11) constitutes the quantum mechanical virial theorem for molecular solutes
described within the PCM model, which involves, on the left side, the kinetic and
the total potential energies for exact state-wavefunctions. The terms on right side
of Eq. (A.11) have a physical meaning which can be clarified with the aid of the
Hellmann-Feynman theorem discussed in Chap. 2 (see Eq. 2.1 ).

Let us now consider for the molecular solute a perturbation corresponding to
the uniform scaling of the Cartesian co-ordinates of the nuclei and of the Cartesian
co-ordinates of the polarization point charges:

G(αR, αs) =< Ψ |T + V (αR + 1

2
< Ψ |T · V(αR, αs)|Ψ > ·V(αR, αs)|Ψ >

(A.12)
By applying the Hellmann-Feynman theorem (2.1), the first derivative of the free-
energy functional (A.12) with respect to the scaling factor α can be written as:

dG(αR, αs)
α

∣∣∣∣
α=1

=< Ψ | ∂

∂α
V (αR)|α=1|Ψ >

+ 1

2

{
< Ψ |T · ∂

∂α
V(αR, αs)|α=1|Ψ > · < Ψ |V(R, s)|Ψ >

+ < Ψ |T · V(R, s)|Ψ > · < Ψ | ∂

∂α
V(αR, αs)|α=1|Ψ >

}
(A.13)

Therefore, by introducing Eq. (A.13) into Eq. (A.11) we obtain:

2 < Ψ |T |� > + < Ψ |V (αR)|Ψ >

+ < Ψ |V(R, αs)|Ψ > · < Ψ |V(R, s)|Ψ > = dG(αR,αs)
α

∣∣∣
α=1

(A.14)

Eq. (A.14) shows that the sum of two-times the kinetic energy with the total poten-
tial energy, including the solute-solvent interaction, is equal to the first derivative
of the free-energy functional G with respect to a uniform scaling of the Cartesian
co-ordinates of the nuclei and of the position of the polarization charges. Equa-
tion. (A.13) reduces to VT case for isolated molecules if all the solvation contribution
are neglected.

It can be also be shown [2] that the right side of Eq. (A.14) can be expressed in
terms of the Cartesian forces on the nuclei (FI ), and the total molecular electric field
(EK (sK )) at the boundary Γ of the PCM cavity hosting the molecular solute:

http://dx.doi.org/10.1007/978-3-319-00987-2_2
http://dx.doi.org/10.1007/978-3-319-00987-2_2
http://dx.doi.org/10.1007/978-3-319-00987-2_2
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d

dα
G(αR, αs) =

∑

I

Ri · FI +
∑

K

sK · EK qK (A.15)

where FI = dG(R)/dRI are Cartesian forces on the nuclei, and EK (sK ) =
d[V (R, s)]K /dsK is the electric field at the position sK .

Introducing Eq. (A.15) into the virial theorem (A.14) we obtain a relation between
the various components (kinetic and potential) of the molecular solute and the Carte-
sian forces on the nuclei, and the total molecular electric field at the boundary Γ of
the PCM cavity hosting the molecular solute

2 < Ψ |T |Ψ > + < Ψ |V (R)|Ψ >

+ < Ψ |V(R, s)|Ψ > · < Ψ |V(R, s)|Ψ > =∑
I Ri · FI + ∑

K sK · EI qK

(A.16)

A.2 Time-Dependent Schrödinger Equation for Nonlinear
Hamiltonians

Let us consider a system characterized by the presence in the Hamiltonian of a
nonlinear potential energy term, depending on the wavefunction Ψ of the system:

H = Ho + V(�) = −1

2

N∑

j=1

∇2
j + U(ri) + V(�) (A.17)

H is the effective non-linear Hamiltonian, Ho its linear part, and V(�) the non-
linear component (atomic units are assumed).

We assume that V(�) is a functional of the first order density matrix ρ = ρ(�∗�)

having the following form:
V(�) = Â[(�∗�)] (A.18)

where Â is a suitable integral operator.
We also assume that H explicitly depends on time. This means that in general

there will be an explicit dependence on time, t, in the potential energy operator:
U(r, t) = Uso(r) + U′(r, t) , and that there will be an implicit time dependence in
V(�) being Ψ function of time.

The equation of motion for this problem:

H� = i
∂

∂t
� (A.19)

may be obtained from the Hamilton principle by making use of well known tech-
niques [3, 4]:
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δI =
∫ t

to
dt′

∫
drL = 0 (A.20)

when a suitable Lagrangian density, L , is defined.
The Lagrangian density for the nonlinear QM problem (A.19–A.20) has the form

L = 1

2

∑

j

∇j�
∗ · ∇j� + �∗�[U + 1

2
V(�)] − i

2
[�∗�̇ − �̇∗�] (A.21)

In fact, by introducing in the Euler-Lagrange equations associated to the Hamilton
principle (A.20) we have:

∂

∂�
L −

3N∑

k=1

∂

∂xk

∂L

∂(∂�/∂xk)
− ∂

∂t

∂L

∂�̇
= 0 (A.22)

∂

∂�∗ L −
3N∑

k=1

∂

∂xk

∂L

∂(∂�∗/∂xk)
− ∂

∂t

∂L

∂�̇∗ = 0 (A.23)

with the Lagrangian density given by Eq. (A.21), one obtains the following expres-
sions for the separate terms of Eq. (A.22):

∂

∂�
L = ∂

∂�
[U�∗� + 1

q + 1
V(�)�∗� + i

2
��̇∗]

= U�∗ + V(�)�∗ + i

2
�̇∗ (A.24)

3N∑

k=1

∂

∂xk

∂L

∂(∂�/∂xk)
= 1

2

N∑

j=1

∇2
j �

∗ (A.25)

(with j = 1 + int (k−1)
3 ), and:

∂

∂t

∂L

∂�̇∗ = − i

2
�̇∗ (A.26)

Substituting expressions (A.24)–(A.26) in Eq. (A.22), one has:

− 1

2

N∑

j

∇2
j �∗ + U�∗ + V(�)�∗ = −i

∂

∂t
�∗ (A.27)

which is just the conjugate of Eq. (A.19).
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A.3 Non-equilibrium Solvation: The Fourier Components
of the PCM Polarization Charges

The macroscopic polarization of a molecular dielectric medium results from several
processes involving all the molecular degrees of freedom: translational, rotational,
vibrational and electronic, which span a very wide range of characteristic relaxation
times required to reach a degree of polarization thermodynamically in equilibrium
with the polarizing electric field [5]. Translational contributions have characteris-
tic time 10−6s, rotational contributions 10−9s, vibrational contribution 10−12s and
electronic contribution 10−15s. For a static perturbing field, or when the changes of
the time-dependent electric field varies slowly on the scale of the molecular motions,
there is time to reach always a polarization in equilibrium with the perturbing field.
In this regime, which is called equilibrium polarization (i.e. equilibrium solvation)
the relation between the polarization and the electric field is phenomenologically
described by the static dielectric constant (ε0) of the medium.

On the contrary, when the time-dependent electric field varies on a time scale faster
than the relaxation time of one or more molecular degrees of freedom there is not time
to reach at any moment a time-dependent polarization which is in equilibrium with the
electric field. In this regime, which is called non-equilibrium polarization, the actual
value of polarization will also depend values of the electric field at previous time, and
the relation between the polarization of a dielectric medium and the time-dependent
polarizing field is phenomenologically described in terms of the whole spectrum of
the dielectric permittivity as a function of the frequency ω of the oscillating electric
field.

In the equilibrium polarization regime the polarization charges Q̄ (1.7) of the
PCM model can be expressed as an expectation value the apparent charge operator
Q,

Q̄(Ψ ) =< Ψ |Q|� > (A.28)

with
Q = T(ε0) · V (A.29)

Here:

• Q̄ is a vector column collecting the polarization charges {q(sk)}
• T is a matrix which represents the responsive polarization of the solvent, depending

on its static dielectric permittivity ε0 of the medium and on the geometry Γ of the
cavity hosting the solute,

• V is vector collecting the electrostatic potential operator (2.9) of the solute at
positions sk :

[V]K = VM (sK ) (A.30)

In the non-equilibrium polarization regime, the time-dependent polarization
charges of the PCM model may be written as

http://dx.doi.org/10.1007/978-3-319-00987-2_1
http://dx.doi.org/10.1007/978-3-319-00987-2_2
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Q̄(Ψ ; t) =
∫ ∞

0
< Ψ (t − τ)|Q(τ )|Ψ (t − τ) > dτ τ = t − t ′ (A.31)

where the polarization charges operator Q(τ ) is defined as

Q(τ ) = T(τ ) · V (A.32)

being T(τ ) the time-dependent IEF-PCM response matrix of the medium.
From (A.32), the non-equilibrium polarization charges (A.31) are given as

Q̄(Ψ ; t) =
∫ ∞

0
T(τ ) · V̄(t − τ)dτ (A.33)

where V̄(t − τ) is
V̄(t − τ) =< Ψ (t − τ)|V|Ψ (t − τ) > (A.34)

Further, from Eq. (A.33) we can define a frequency dependent PCM response
matrix ω

T(ω) =
∫ ∞

0
T(τ )e−iωτ dτ (A.35)

The PCM response matrix T(ω) connects the Fourier components of polarization
charges Q̄(Ψ ; t) with the corresponding Fourier components of the molecular elec-
trostatic potential V̄(t):

Q̄(ω) = T(ω) · V̄(ω) (A.36)

Eq. (A.36) can be easily shown by Fourier decomposition of the Eq. (A.33):

∫ ∞
−∞ Q̄(ω)eiω(t)dω = ∫ ∞

0 T(τ )e−iωτ) · ∫ ∞
−∞ V̄(ω)eiω(t)dω

= ∫ ∞
−∞ T(ω) · V̄(ω)eiω(t)dω

(A.37)

The frequency dependent PCM matrix T(ω) has the physical meaning of the IEF-
PCM response matrix for a medium in the presence of a component of molecular
electrostatic potential oscillating at the frequency ω, and it can be obtained from
the corresponding equilibrium matrix T (A.32) by substituting the static dielectric
permittivity ε0 with the frequency dependent dielectric permittivity ε(ω).

A.4 Maxwell Field and Macroscopic Susceptibilities

The Maxwell electric field E is the electric component of the macroscopic electro-
magnetic field in material media described by the celebrate Maxwell equations. The
Maxwell field E is coupled to the dielectric polarization field P, by the flowing form
of the Maxwell equations:
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∇ × ∇ × E(r, t) = −μ0
∂2

∂t
(ε0E(r, t) + P(r, t)) (A.38)

where the polarization field P describes the induced dipole per volume in the material
media induced by the action of the Maxwell field E on the electron and nuclei of the
constituting particles of the media.

The macroscopic susceptibilities are the coefficients of a series expansion of the
polarization field P with respect to the components of the Maxwell electric field E.
Given the Maxwell field

E(t) = E0 + Eω(e−iωt + eiωt ) (A.39)

the dielectric polarization response of the medium can be expressed as

P = ∑
j,y e(−iωi t)χ(1)(−ω j ;ω jεy(ωi )+

+ 1
2

∑
i, j,y,z e(−i(ωi +ω j )t)χ(2)ωy + ωzεy(ωi )εz(ω j ) + · · · (A.40)

The χ(n) are the nth-order susceptibilities.1 Many of these susceptibilities are mea-
surable quantities in experiments of linear and non-linear optics (see Table A.1).

A.5 The PCM-EOM Wavefunctions and Energy Functional

In the PCM-EOM-CC/SACCI approximation the excited electronic states are repre-
sented by a linear (CI-like) expansion build-up on the coupled-cluster wavefunction
for the ground state [6–8]. We use the PTE couple-cluster wavefunction, computed
in the presence of the frozen Hartree-Fock reaction field, as it leads to a more sim-
pler and physically transparent PCM-EOM theory. The EOM-CC theory leads to a
non-Hermitian eigenvalue problem with right and left eigenvalues.

The EOM-CC right wavefunction for the K-th state is defined as

|ΨK >= RK eT |H F > (A.41)

where eT |H F > is the couple-cluster state obtained by solving the PCM-PTE equa-
tion (See Eq. (1.30a, b)), and RK is a quasi-particle excitation operator

RK = RK ,1 + RK ,2 + ... (A.42)

RK ,n = 1

n!2
∑

i jkl...abc...

rabc...
i jk... (K )a†

aai a
†
ba j a

†
c ak · · ·

The EOM-CC left wavefunction is given by

1 The susceptibilities χ(n) are tensors of rank n + 1 with 3(n+1) components.

http://dx.doi.org/10.1007/978-3-319-00987-2_1
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< Ψ̃K | =< H F |LK e−T (A.43)

where LK is a de-excitation operator

LK = LK ,1 + LK ,2 + ... (A.44)

LK ,n = 1

n!2
∑

i jkl...abc...

labc...
i jk... (K )a†

i aaa†
j aba†

k ac · · ·

The set ket and bra wavefunctionsLK andRK satisfy the property of bi-orthogonality
many-body systems

< Ψ̃K |ΨL >=< H FLK |RL H F >= δK L (A.45)

The PCM-EOM free energy functional, �G K , for the state of interest is defined
as

�G K =< H F |LK e−T HN (0)eT RK |H F > +1

2
Q̄K

N · V̄K
N (A.46)

where H(0)N is the normal ordered form of Hamiltonian of the solute in presence
of the frozen Hartree-Fock reaction field, and V̄K

N and, Q̄K
N are the EOM expectation

values for the state K of normal ordered form of the apparent charge operator and of
the electrostatic potential operator defined in Table 1.1:

Q̄K
N =< H F |LK e−T V̂N eT RK |H F > (A.47)

V̄K
N =< H F |LK e−T Q̂N eT RK |H F > (A.48)

Imposing �G K (A.46) stationary with respect to the RK and LK , amplitudes we
obtain a right-hand and a left-hand eigenvalue equations:

Table A.1 Selected examples of macroscopic susceptibilities and of the corresponding optical
process

Macroscopic
susceptibilities

Optical process

χ(1)(0; 0) Dielectric constant at zero frequency, ε0

χ(1)(−ω; ω) Refraction index at the frequency ω, nω

χ(2)(−ω; ω, 0) Change of the refraction index induced by an external
static field (Pockels susceptibility)

χ(3)(−ω; ω, 0, 0) Change of the refraction index induced by an external
static field (Kerr susceptibility)

χ(2)(−2ω; ω,ω) Second harmonic generation (SHG)
χ(3)(−2ω; ω,ω, 0) Electric field induced Second harmonic generation

(EFISHG)

http://dx.doi.org/10.1007/978-3-319-00987-2_1
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HK RK |H F >= �EK RK |H F > (A.49)

< H F |LK �EK =< H F |LK HK (A.50)

where HK is the similarity transformed Hamiltonian for the molecular solute in the
Kth excited

HK = e−T H K
N eT (A.51)

H K
N = HN (0) + Q̄K

N · VN (A.52)

The first term of Eq. (A.52) correspond to the Hamiltonian in the presence of
the Hartree-Fock polarization charges (see Eq. (1.24)), while the second term,
Q̄E O M

K ·VN , represents the interaction of the solute with the polarization charges
produced by the solute in the excited state K-th.

The PCM-EOM energy functional of Eq. (A.46) corresponds to the excitation
energyState specific excitation energies from the PCM-CC ground state2 to the K-th
excited states written as sum of two contributions. For a comparison with the the
corresponding expression (4.55) of the excitation energy from the PCM-CC-LR
theory we note that:

• The first term of (A.46) corresponds to the vertical excitation of the solute in the
presence of the fixed ground state solvent reaction potential, as in the case of the
PCM-CC-LR theory

• The second term of (A.46) represents the solute-solvent contribution due to the
interaction with the polarization charges induced by the one-particle density matrix
of the K-th excited states. Here the difference with the corresponding term in the
LR approach (4.8, 4.9) is clearly evident.

• The evaluation of the excitation energy (A.46) requires the solution of a state
specific eigenvalue problem (A.49) or (A.50). Instead, the PCM-LRCC approach
requires the solution of a unique eigenvalue problem (4.8) or (4.9) for all the
excited states.
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