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Foreword

Search engines are indexing several billions of webpages and thus enable an ex-
tremely quick access to all sorts of contents of the Web. Most of these requests
consist of one word. As result, several thousands of documents are delivered where
the first documents are not necessarily the needed ones. Where the specification
of the query depends on the searcher’s knowledge, the order of listed results de-
pends on the search engine used. Knowing the search engines leads to a better
understanding of results and helps developing specific Web-based sales strategies.

The present work “Analyzing and Influencing Search Engine Results” picks up
an up-to-date topic due to the fact that search engines have become an important
influence factor in economy and society.

The author presents a comprehensive overview of recent Web-search technol-
ogy. He describes the related problems from a search engine’s as well as from the
user’s perspective. Driven by the users’ needs, new approaches for searching the
Web are developed, implemented and tested.

Readers of this work will become familiar with the precautions that have to be
taken for reaching upper result page positions. Different strategies are explained
including spamming techniques that are used to influence the results of ranking
methods.

Following the principle of business informatics, the author explores the topic
from a business and a technology view. He complements the scientific view by
approaches for practical problems and gives concrete instructions for practitioners.
The work delivers a deep insight into the methods and problems of Web search and
is well suited for Website owners that want to improve their visibility in the Web.

Seeing the high relevance of search engines in many different areas, I expect
this work to attract high attention of the scientific community and the practice.

Professor Dr. Erwin Pesch
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Introduction

TheWorld WideWeb can be compared with a giant warehouse containing millions
of products that are stored in shelves without any order. In this image, socks would
lie next to sausages, and soap maybe in the freezer near the newspapers. Even
worse, many products could not be found at all because they are buried underneath
heaps of other products. Besides the domain name system (DNS) which regulates
Internet addresses, there is not any helpful intrinsic structure in the Web.

Search engines can assist in navigating through the Web. Many Internet users
employ them as an entry point into the World Wide Web. But often, search engines
yield an overwhelming and confusing amount of results for a search query. Thus,
the order of webpages presented to the user has a major impact on which offers
of the Web are used. The quality of a search engine cannot only be evaluated
with respect to the quantity of obtained search results. This might have been the
case at the beginning of Web search several years ago. Besides the result quality,
determined by e.g. finding the right answer for a search query or the absence of
irrelevant results, the ability to present search results in a clear manner has become
a crucial point of interest.

This work gives an overview of current Web search techniques and delivers new
solutions for search related problems to the three parties involved in the search
process: Web search users, search engine operators, and website providers.

Overview

The first chapter (Web Search) illustrates the importance of Web search showing
the development of Internet usage as well as search engine usage. The existing
information demand is represented by the user’s information need and the user
behavior. After describing search tools used to fulfill this demand, current meth-
ods used by search engines to deliver results are explained. A new approach for
measuring relevancy is presented. The chapter closes with the evolution history of
search engines and an outlook to possible future search engines.

Chapter 2 (Web Structure) deals with the World Wide Web’s role as an infor-
mation supplier. After an analysis of the Web’s contents and its graph structure,
different methods are presented that benefit from the characteristics of the Web’s
structure. Own data structures for storing Web search results are presented. Their
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practical relevance is shown by their implementation and test for the use of real-life
data.

In Chapter 3 (Result Clustering), methods for improving results gained from
a search engine are developed. Different methods for clustering search engine
results are implemented and tested. They are evaluated based on practical tests on
real data.

Chapter 4 (Search Engine Optimization, SEO) analyzes the impact of search
techniques for website owners and shows how they can use these techniques to
improve their sites’ visibility in the World Wide Web. After analyzing the objec-
tives of website owners, the possibilities and means of search engine optimization
are explained. New models for keyword selection are introduced as a basis for
optimization efforts. They are implemented in the framework of an SEO process
that is developed in co-operation with a Web service provider. The success of the
process implementation is proved on two different real-life projects.

The scientific contributions of this work and their practical applications are sum-
marized and complemented by opportunities for further work in Chapter 5 (Con-
clusion).

Explanation of Basic Terms

For a common understanding, some basic terms used in this work are explained in
the following.

A webpage is a document made available on the World WideWeb. It is typically
accessed via the Internet through a Web browser and displayed on a computer. A
webpage is usually written in plain text with formatting instructions of Hypertext
Markup Language (HTML, XHTML). Descriptions of the webpage that will not
be displayed can be entered in metatags. A webpage may provide navigation func-
tionality to other webpages via hypertext links. A webpage may also incorporate
elements from other webpages.

A webpage can be accessed using a uniform resource locator (URL) that is
e.g. typed in the address field of a Web browser. The URL specifies where the
resources are available on the World Wide Web and the technical mechanism for
retrieving it. It is also referred to as Web address.

A hypertext link (often referred to as hyperlink or link) on a webpage is a ref-
erence to another document or piece of information. The part of the webpage
that contains a hyperlink is called anchor (or anchor text if it consists of words).
The referenced piece of information is called target and is usually specified by
the target’s URL. With other words, the hyperlink on a webpage points to the tar-
get. Using webpages as vertices and hyperlinks as edges, a Web graph can be
constructed.
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A website is a collection of related webpages (or images, videos or other digital
assets) under a common ownership that are addressed with a common domain
name (e.g. youtube.com) or IP address (e.g. 141.99.1.1). It is hosted on at least
one Web server (host) that can be identified by its hostname. The Web server
usually writes data of all events of document access in a log file, e.g. the requested
URL, the time, the referring URL and some information about the user’s technical
equipment.
Search engines are tools that are designed to retrieve information on the World

Wide Web. The input of a search engine usually is a query consisting of one
or more keywords building a query term. The output can be webpages, images
and other types of files. The results are presented on a search-engine result-page
(SERP) and are called hits. The SERP lists hyperlinks pointing to the information
found together with a describing text (snippet or teaser). The database a search
engine uses to store webpage information is usually referred to as index.
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Among the most used top-ten Internet activities of Internet users, search engine us-
age holds position two after email usage (Fallows, 2008; PEW, 2009). More than
sixty percent of U.S. Internet users are using search engines on an average day,
compared to eighty percent of the users who are sending or receiving emails on a
typical day. These activities are followed by looking for news and job-related re-
search (Rainie and Shermak, 2005). Table 1.1 shows the complete list of activities
combined with the proportion of U.S. Internet users. For many of these activities
like getting news or job-related research, search engines are the starting point to
enter the World Wide Web.

The PEW Internet &American Life Project regularly examines people’s Internet-
usage habits. Figure 1.1 shows the percentage of the American population using
email and search engines on an average day; see Rainie and Shermak (2005) and
PEW (2007). Looking at the whole American population (adults of the age 18 and
older), search engine usage has increased from about thirty percent in 2002 up to
almost forty-five percent in 2006. Note that the basis for the percentage in Figure
1.1 is the whole population of the U.S., whereas Table 1.1 regards only Internet

Internet activities Proportion of Internet users
Email 80 %

Search engine 63 %
Get news 46 %

Do job-related research 29 %
Use instant messaging 18 %
Do online banking 18 %

Take part in chat room 8 %
Make a travel reservation 5 %

Read blogs 3 %
Participate in online auction 3 %

Table 1.1: Internet activities of U.S. Internet users on a typical online day (Rainie and Sher-
mak, 2005)
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Figure 1.1: Email and search engine usage of the U.S. population on an average day

users. In the same time, the leading activity email has only increased from 48 %
to 58 %. This means that search engine usage is approaching email as a primary
Internet activity.

Asking Internet users if they have ever performed certain Internet activities,
there is hardly a difference between the size of email-using population and the size
of search engine using population. The survey shows that 91 % of all Internet users
had ever sent or received email and 90 % of Internet users had ever used search
engines.

Another PEW Report (Fallows, 2005) states that one third of surveyed Inter-
net searchers “can’t live without search engines”. As the Internet usage itself, the
search engine usage becomes more and more part of people’s daily life and influ-
ences their decision making process in every area of life. This trend is supported
by recent surveys of Internet usage PEW (2009).

As a result of the increasing relevancy for consumption decisions, distributing
and sales companies are focusing on potential buyers coming from search engines.
They try to populate the search-engine result-list using one or more of the follow-
ing three major channels:

1. Paid advertisement: Advertisements appearing appropriately labeled on the
top or the upper right of the result page.
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2. Search engine optimization: Using methods that are approved by search
engines in order to make the pages more readable and to be found under
appropriate keywords at a favorable position (see Chapter 4).

3. Search engine spamming: Using methods that contradict the search engine
rules, e.g. in order to appear on a top position for a keyword that does not
necessarily correspond to the website’s content (see Subsection 4.4.1).

A sharp distinction between the latter two methods is difficult to make, because
it is the user who individually decides, whether the optimization effects valuable
results or spam. This and more will be discussed in the next section.

1.1 Information Demand

One of the first things people try when they start using the Internet is using a search
engine. Most users quickly feel comfortable with the act of searching (Fallows,
2005). They are confident in the search results they achieve as well as in their
searching capabilities. The majority of users think that search engines are a fair
and unbiased source of information. How neutral the selection of search results
and – what is even more important – how neutral their sequence can be, this will
be discussed in Section 1.3. Anyway, Internet users are very positive about their
online search experiences.

Beyond the technical part of a search engine, which basically produces a certain
output for a given input, it is essential to understand why users perform searches
on search engines. What users want and what they get will be presented in the next
section. Search engines reach to fulfill an existing information demand of the user
(Subsection 1.1.1) with an information supply (Section 2.1) existing on the Web.

1.1.1 User’s Information Need

The motivation of using a search engine results from various aspects. In the theory
of Information Retrieval (IR), originating from library sciences, the search process
starts with a so-called information need. The user is seeking for some information
and formulates a query in a specific query language. A system then returns those
documents from a document collection (corpus) that match the query.

In lots of cases, a search inquiry leads to a very large amount of results. The
user then faces the challenge of finding those results that are most relevant for him
or her out of a number of sometimes several dozen result pages.
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Figure 1.2: Classical search model adapted to Web search (Broder, 2002b)

In the world of the Web, besides the information need some further need behind
the query can trigger a search process. Whereas the user may in most cases be
aware of his or her need behind the query, it is almost impossible for the search
engine to “know” about it. Anyway, the more precise the knowledge about the
need, the better the delivered results can be. Broder (2002b) looks first at the task
a user wants to have accomplished by the query. What kind of tasks this typically
can be will be discussed later in this section. Figure 1.2 shows the classical search
model adapted to Web search. A task generates an information need, which the
user formulates towards a verbal form. He picks some keywords from the verbal
form and creates a query to send to the search engine. If the results returned from
the existing corpus do not match the user’s expectations, he typically specifies the
query in a query-refinement step and sends the refined query to the search engine.

The search model will be explained using a short example: A bank employee
is assigned to the task “Create a Dow Jones stock portfolio”. Thus, the employee
needs information about shares in the Dow Jones Industrial Average index. This
information need can be verbally formulated into “Which shares are contained in
the Dow Jones index?”. A query could be “Dow Jones”, which probably leads to
the Dow Jones Company and some different indexes. A suitable query refinement
is “Dow Jones index” or “Dow Jones Industrial Average Index”, which leads to a
website with information about the composition of the index. The user can now
use the information gathered to accomplish his initial task.
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On the sometimes long way from the original task to suitable results different
pitfalls may appear:

1. A misconception can lead to the situation that information thought as neces-
sary is not what is really needed for the specific task.

2. A mistranslation is problematic in case the verbalization does not or not
completely reflect the information need.

3. Amisformulation of the query is the case if its formulation does not correctly
reflect the verbal form of the information need.

4. Polysemy (i.e. one word has multiple meanings) leads to search results from
a different topic which do not fit the information need.

5. Synonymy (i.e. the same concept can be expressed by different words) in the
query term can prevent some results matching the information need from
being found by the search engine.

Several approaches aim to help users overcoming these pitfalls. These approaches
are part of the newest generation of search engines or of forthcoming search en-
gines. Both will be described in detail in Section 1.5. All of the approaches have
in common that they want to help the users to perform their tasks or to reach their
goals, respectively.

One problem of classic search engines is that they cannot be aware of the user’s
goal. In the simplest case, the only thing the search engine “knows” about the
user is his query consisting of a few words. Understanding the goals may become
an important factor for future search interfaces. Broder (2002a,b) has classified
typical goals in the following four areas:

1. Information: the user wants to learn or to get to know something.

2. Navigation: the user wants to be directed to a certain webpage.

3. Transaction: the user wants to carry out something using the Web.

4. Combinations of the former mentioned points.

In the first case, namely the informational query, the user assumes the informa-
tion to be present on one or more webpages. He does not want to perform any
further interaction except reading. In other words, the information is available in
a somewhat static form. In this context, the term “static” does not refer to the
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technical method of Web content creation, e.g. static HTML-pages versus dynam-
ically created PHP-pages. It rather means that the query itself does not trigger the
generation of content. The content was already there before the query process.

When the user poses a navigational query, he already knows about the existence
of the webpage searched for, or at least he assumes that this webpage exists. This
kind of query has usually one “correct” result, apart from the existence of syntactic
or semantic aliases. A good link collection in the result list containing the target
page may in this case also be acceptable for the user. A kind of navigational
search was implemented by the search engine GOOGLE in terms of the “I’m feeling
Lucky” button.1

The goal of transactional queries is to reach a website where further interaction
can be conducted. This interaction can be any Web-mediated activity, e.g. online
purchases, downloads, or bank transactions. The result quality of transactional
queries is hard to evaluate. Often external factors (i.e. those outside the scope of
search engines) are important for the users (e.g. prices, speed of service, quality).

In addition, the user may want combinations of the above mentioned goals. E.g.,
users look for a good hub (which means a starting point for further searches) or
they want to know which sites exist for a certain topic.

A more detailed examination of the user goals and different methods to discover
the goals of real users will be subject of the next subsection.

1.1.2 User Behavior

As seen in the previous subsection, users may have completely different goals
when they search the Web. It is difficult to find out for what reasons people are
typing a certain query in a search engine. Assuming the majority of users is not
searching just for fun, there is a goal behind each query. Two possibilities to
determine the user’s goals are discussed in the following. Firstly, one can ask
search engine users, e.g. on the query page to voluntarily click at a goal category
(user survey). The second method is to analyze the queries logged by the search
engine and try to determine the user’s goal while reading the query (log analysis).
Data mining approaches of log analysis can be found in Baeza-Yates (2004).

Broder (2002a) conducted both, a user survey of ALTAVISTA2 users as well as a
query log analysis. One surprising result is that a big part of users “abuse” search
engines to navigate to websites they already know. Before the times of WorldWide
Web, a full-text search predominantly served informational goals. Table 1.2 shows

1www.google.com/features.html#lucky
2www.altavista.com
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Goal
User Survey
Broder 2002

Log Analysis
Broder 2002

Log Analysis
Rose/Levinson

2004

Log Analysis
Jansen et al.

2007

Informational ∼ 39 % 48 % 61.9 % 80.6 %

Navigational 24.5 % 20 % 13.5 % 10.2 %

Transactional/
Resource

∼ 36 % 30 % 24.6 % 9.2 %

Table 1.2: Distribution of search engine user’s goals

that following the survey almost one quarter of the users asked have navigational
goals. The users express that only 39 percent of the queries possess informational
character. The third goal was, like the navigation, simultaneously emerging with
the Web: about 36 percent of the queries were transactionally motivated.

Users were randomly selected and the response ratio was about ten percent.
A problem results from the fact that the users decided themselves whether they
participate. This may somewhat bias the outcome.

The query-log analysis performed by Broder (2002a) shows results slightly dif-
ferent from the user survey. A noticeable shift away from the navigational tasks
towards informational and transactional tasks can be observed in Table 1.2. A rea-
son for the difference is that the original user goals are not definitely known by the
analyst but the query analysis leads to assumptions of these goals. The tendency
to fewer navigational queries is also supported by the log analysis of Rose and
Levinson (2004). Contrary to Broder’s classification performed by human beings,
the latter use automated analysis methods.

Rose and Levinson have started with a manual classification of Web search
queries, too. By looking at what people are searching for they tried to find out
why people are searching in order to understand the underlying goals. The input
was not limited to the query itself. They supplemented this information by results
returned by a search engine, results clicked on by the user, and further searches or
other actions of the user. Some granularity was added to the goal categories based
on real-world queries analyzed. Each identified search goal is shown in Table 1.3
on the following page. The second column of the table contains a description of
each search goal. A sample query is only added to the lowest goal level. An
example for an “open directed informational query” (Goal 2.1.2) is “Why are met-
als shiny”. It is not meaningful to assign examples to the higher level “directed
informational query”. The transactional search is replaced by the more general
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Search Goal Description Examples

1 Navigational My goal is to go to specific known website that I already
have in mind. The only reason I’m searching is that it’s
more convenient than typing the URL, or perhaps I don’t
know the URL.

aloha airlines; duke
university hospital;
kelly blue book

2 Informational My goal is to learn something by reading or viewing web-
pages.

2.1 Directed I want to learn something in particular about my topic.
2.1.1 Closed I want to get an answer to a question that has a single,

unambiguous answer.
what is a

supercharger; 2004
election dates

2.1.2 Open I want to get an answer to an open-ended question, or one
with unconstrained depth.

baseball death and
injury; why are metals

shiny
2.2 Undir-

ected
I want to learn anything/everything about my topic. A
query for topic X might be interpreted as “tell me about
X.”

color blindness; jfk jr

2.3 Advice I want to get advice, ideas, suggestions, or instructions. help quitting
smoking; walking

with weights
2.4 Locate My goal is to find out whether/where some real world ser-

vice or product can be obtained.
pella windows; phone

card
2.5 List My goal is to get a list of plausible suggested websites

(I.e. the search result list itself), each of which might be
candidates for helping me achieve some underlying, un-
specified goal.

travel; amsterdam
universities;

florida newspapers

3 Resource My goal is to obtain a resource (not information) available
on webpages.

3.1 Download My goal is to download a resource that must be on my
computer or other device to be useful.

kazaa lite; mame roms

3.2 Entertain-
ment

My goal is to be entertained simply by viewing items
available on the result page.

xxx porno movie free;
live camera in l.a.

3.3 Interact My goal is to interact with a resource using another pro-
gram/service available on the website I find.

weather; measure
converter

3.4 Obtain My goal is to obtain a resource that does not require a
computer to use. I may print it out, but I can also just
look at it on the screen. I’m not obtaining it to learn some
information, but because I want to use the resource itself.

free jack o lantern
patterns; ellis island
lesson plans; house
document no. 587

Table 1.3: Search goal hierarchy (Rose and Levinson, 2004)

resource category, which comprises searches for resources other than information
planned to use in the offline world.

The categorization process and its result help us to understand the space of user
goals. Based on the manual categorization, Rose and Levinson defined rules for
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automatically assigning queries to goals. Averaging over their three studies, they
came up with almost forty percent non-informational queries (compare Table 1.2).
The part of navigational queries only adds up to 13.5 %, whereas the transactional
queries only come to almost one quarter of the queries.

Differences to Broder can result from the automatism as well as from the fact
that the latter sampled all queries performed, whereas here only session-initial
queries were regarded. Navigational sessions are likely to be shorter than other
sessions.

Jansen et al. (2007) made more recent classifications of Web queries exclusively
using an automatic process. They came to eighty percent of informational queries,
whereas navigational and transactional queries accumulated to a little more and a
little less than ten percent, respectively. White and Drucker (2007) have identified
two classes of extreme users, navigators and explorers.

Knowing and understanding the user goals is an important prerequisite to fulfill
them. A deeper understanding can help search engine developers to improve their
products. For example, requirements for the ranking algorithm, which determines
the presentation of search results, change with the user’s goals. Queries with the
need for advice can be answered using connectivity (link) based relevance because
other users have “voted” for the best results (see Subsection 1.3.5 for ranking al-
gorithms). For queries for an open-ended research, traditional IR measures like
term frequency may create better results.

In order to fulfill the various user needs and goals, search engines access a lot
of different types of information sources, which will be described in Section 2.1.

1.2 Search Tools

The information demand of an Internet user faces an enormous, more or less struc-
tured information supply in the World Wide Web. Using search tools is one way
of trying to find a match between the information demand and the information
supply. This section will describe different principles of search tools.

In order to quickly answer a search query, search tools make use of an already
existing own or a foreign database. In this database, a part of the information
available on the Web is being kept ready for quick access. Search tools can be dif-
ferentiated according to the origin of data into portals and result providers. Portals
send the search query to one (or in the special case of meta-search engines to more
than one) foreign databases. Result providers make their search results available
for the portals using own databases. In practice, there often exist combinations of
both.
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Search tools can also be distinguished based on the generative mechanism of
their database into search engines and Web catalogs. In every-day language use,
the term “search engine” is often used for both. But the way their data basis was
created makes a big difference. Web catalogs or directories as e.g. YAHOO or
the Open Directory Project DMOZ3 are editorially arranged by human beings
whereas search engines, like e.g. GOOGLE4, produce their databases by machines.
Catalogs are created by dividing webpages into one or more content related cate-
gories (which were chosen after a preselection that considers qualitative criteria).
The result of this procedure is a high-quality database. The user can either look
into the individual categories or carry out a full-text search through the whole
database. If a category of the directory already fulfills the user’s information need,
he/she can obtain results without an explicit search query. Even if there are very
comprehensive catalogs, these will hardly reach the extent of machine-generated
data volumes created by search engines. Furthermore, the databases of catalogs
cannot be kept up to date that frequently because of the high manual efforts.

Search engines create their results using a standardized automated process with-
out any manual or human help. A crawler or robot reads, stores, and analyzes Web
content. Search engines generate their data basis starting with a given set of web-
pages by following the hyperlinks of these pages and by thus considering certain
decision criteria. The so found new pages are then added to their databases. The
database is prepared by creating different indexes (e.g. a word and a phrase in-
dex) in a way that enables a quick reply of the search inquiries. The output of
the search results is being presented in form of a list that is sorted according to a
relevance measure in traditional search engines. Normally, this relevance is being
determined by a static relevance, which is assigned to the webpage, and a dynamic
relevance stating how good the result meets the search inquiry (Arasu et al., 2001b;
Brin and Page, 1998; Deo and Gupta, 2001a). The static as well as the dynamic
relevance – applied to the most frequently posed search queries – is being used
by the VOX POPULI ALGORITHM (VPA) (Schaale et al., 2003) in order to prefer-
ably add those relevant webpages to the database for which content most users
frequently search. The functioning of search engines will be described in-depth in
the next chapter.

Many of the existing search tools cannot be put in only one of the above de-
scribed categories. They use for example directory and machine search results in
the same result page. In Figure 1.3 on the next page some of the major search tools
are exemplarily assigned to one or more categories, knowing that a sharp classifi-

3www.yahoo.com, www.dmoz.org
4www.google.com
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Figure 1.3: Characteristics of search tools

cation is impossible. The figure rather indicates the characteristic properties of the
tools, their past development, and the importance of their business in the respective
area.

Looking in the upper left field of Figure 1.3, the WEB.DE5 and YAHOO6 are
well-known portals. That does not mean that they do not provide own results. Both
started with a manually administered directory which is still actively searchable.
Currently, their primary search results come from machine search. WEB.DE uses
GOOGLE’s machine search results whereas YAHOO uses its own search technology
providing machine search results, too. Both providers are perceived mainly as
information portals.

In the upper right field, we find directories with principally own results. A
typical representative of this category is the OPEN DIRECTORY PROJECT DMOZ
(ODP)7. The ODP is an open-content Web directory maintained by a community
of editors. It offers a basic search interface, but it plays its main role delivering
their categorization data to other search tools. E.g. GOOGLE uses ODP’s results
in order to add information to their machine search results. Social bookmarking
tools like DELI.ICIO.US8 may also fit in this category.

5www.web.de
6www.yahoo.com
7www.dmoz.org
8http://del.icio.us
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A special case of directory results are provider of commercial advertisements.
They return as results advertisements, also known as paid listings or sponsored
links, which either fit to the query, or at least somebody paid for them because of
any existing relationship to the query. One provider of paid listings is OVERTURE9

(now part of YAHOO), which does not possess a search portal but exclusively de-
livers results to other search tools.

An example for a pure machine search portal without any own results is ALLTHE-
WEB10. It used to receive its results from the Web-search-technology provider
FAST11, a pure machine-search result-provider, until the latter sold their Web-
search division to OVERTURE. Machine search portals with own results are MSN12

and GOOGLE13. T-ONLINE14 is a portal that returns both, machine search results
(from GOOGLE) and directory results from their own information supply.

Another special case can be found in meta-search engines that send the user’s
query to multiple search engines or directories and aggregate the results. They
consist of portals without any own results. A typical representative is METAGER15.

Users may not always be aware of the different types of result generation, al-
though result quality depends on the generative mechanism and the database used.
For simple needs, it may be sufficient to enter something in the search box to get
appropriate results without knowing their origin. A further typology of search
tools can e.g. be found in Lewandowski (2008).

The complex relations between result providers and portals are shown in Fig-
ure 1.4 and Figure 1.5. The arrows indicate the flow of results. In most cases,
they point from a result provider towards a portal or another result provider. If
the search tool uses external search results as its main source they are called pri-
mary results. Otherwise, they are called secondary results. The above described
directory results are divided into genuine directory results and paid results.

9www.overture.com
10www.alltheweb.com
11www.fast.no
12www.msn.com and www.bing.com (belonging to MSN)
13www.google.com
14www.t-online.de
15www.metager.de
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(a) 2002

(b) 2004

Figure 1.4: Search engine relationship chart – development 2002–2004 (Clay, 2009)
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(a) 2006

(b) 2009

Figure 1.5: Search engine relationship chart – development 2006–2009 (Clay, 2009)
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In the year 2002, the search tool landscape was still complex. Results were
passed in chains of up to four search tools. Looking at the following years 2004
and 2006, the picture has significantly changed. The consolidation on the search
market reduced the number of actors. The bigger search companies tended to
prefer own results and databases, so the number of interconnections decreased,
too. In 2009, the search landscape’s complexity diminished even more as shown
in the lower graph of Figure 1.5b.

As the entry and search processes in directories are straightforward, the next
section will focus on machine search, explaining the various steps from crawling
until presentation of results.

1.3 How Search Engines Work

Various different search engines provide their services on the Internet. Although
their overall goal is to help the customers with finding information on theWeb each
search engine uses its technology to differentiate their service from their competi-
tors. The expression “search engine” may suggest to some users that the whole
Web will be searched for their specific query directly after they have entered it in
the Web browser. Such a user may cast doubts on this as soon as he is asked if
he believes that it is possible for that engine to browse through the whole World
Wide Web, search for his keywords and present him the ranked results after a split
second. He may also wonder if somebody is able to store the whole Web content
or at least huge parts of it in a searchable index. Anyway, the core competency
of most search engines is not only the search and retrieve functionality, but also
a management of very large databases. Search engines generate large databases
containing Web information to be able to quickly answer the requests. Some
providers also use external databases in addition to or instead of maintaining an
own database. Existing search engines use a similar fundamental approach to gen-
erate and provide their databases and results. This leads into a general architecture
of key components which is shown in Figure 1.6 on the following page.

A search engine can be divided into five modules shown in Figure 1.6: a crawler,
an indexer, an analyzer, a searcher and a presenter. The crawler module typically
establishes the first and only contact of the search engine with theWorldWideWeb
data. He gathers information from theWeb which will then be further processed by
the indexer and analyzer module. Their results are made accessible to the searcher
module in one or more central databases. The searcher answers a user’s search
queries using the database and gives the results to the presenter module to format
a result page out of them.
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Figure 1.6: Search engine result flow

Each module belongs to one of the following two asynchronous independent
processes: a back-office process which works user and query independent in the
background, and a front-office process which answers the user’s query at run-time.
The back-office process consists of the crawler, the indexer, and the analyzer. The
front-office process is performed by the searcher and the presenter. Some of the
processes are allowed to access the central database. The database consists of a
document repository, an inverted index, and a link database. Depending on the
search engine, some additional utility indexes can be stored, e.g. a database of
anchor texts.

This illustration does not necessarily mean that every search engine follows ex-
actly the described scheme. It rather intends to describe the general functionality
and the modules that are necessary to run a search engine. The following subsec-
tions will describe the single modules in detail.

1.3.1 Crawler

The first module processing the search engine result flow is the crawler. The
behavior of the crawler in the Web is comparable to the one of a standard Web
browser used by a human being. The crawler collects either as many pages as
possible from the Web or the necessary amount of pages to reach his goal. Some
goals of a crawler will be described in Section 2.3.
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Algorithm 1.1 Simple Crawler (Baldi et al., 2003)
SIMPLE-CRAWLER(S0,D,E)

Q← S0
while Q �= /0
do u← DEQUEUE(Q)

d(u)← FETCH(u)
STORE (D,d(u),u)
L← PARSE (d (u))
for each v in L
do STORE (E,(u,v))

if ¬(v ∈ D∨ v ∈ Q)
then ENQUEUE(Q,v)

The crawling process starts with an initial set of URLs S0, it downloads and
stores the corresponding webpages (or parts of them) and follows the containing
hyperlinks according to an algorithm which may differ from crawler to crawler.
Different heuristics define which sites how often will be visited. Newly-found
URLs are put on a list of URLs to visit.

Crawling Process

The crawling process will be illustrated with Algorithm 1.1 which basically per-
forms a graph visit (Cormen et al., 2001). Starting with S0 as seed or initial set
of URLs in the queue Q, the algorithm visits the webpages u ∈ Q according to a
predefined order. If one uses a first-in first-out (FIFO) approach for accessing Q
(DEQUEUE), the crawler performs a breadth-first search.

The FETCH process downloads the document d(u) of URL u coming from the
queue. The document’s content will then be stored together with its URL in the
document repository D. The PARSE function collects the references to other web-
pages found in d(u). The set of these references of URLs is called L. The link
or edge (u,v) between the URLs u and v are stored in the link database E using a
STORE function for all documents v in L. Those documents v that are neither in
the document set D nor in the queue Q are added to the queue using the ENQUEUE

function.

Crawler Problems

As the list of URLs to visit grows very quickly while traversing the Web it must
be very selectively created. The search engine has to make decisions on the choice
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of sites during the crawl process, because resource capacity in terms of computing
power and storage is restricted. Arasu et al. (2001a) describe four key questions
the crawler has to consider given the enormous size and the change rate of the
Web:

1. What pages should the crawler download? Even though some search en-
gines seem to aim to download the pages of the entire Web, they are only
able to crawl a relatively small part of it. Some search engines specialize on
specific topics or content types like news or video files. A prioritization of
the pages to visit may support decisions such as which page to visit first.

2. How often should the crawler visit the pages? After one crawl process is
completed, the crawler needs to keep its repository up-to-date. He decides
upon the revisit interval of each webpage. A news site may for example
change much more often than a certain content of a private picture archive.
For this reason, the crawler measures past change frequencies and uses them
for future activities. Using this information, it can minimize the work load
by visiting seldom changing pages less often than frequently changed pages.

3. How to minimize the load on visited websites? As the crawler acts more or
less like a user browsing along websites, it uses different resources of the
website provider: On the one hand, the content provider’s server performs
some work answering the HTTP request or even a runtime database request,
and on the other hand the bandwidth of the provider’s Internet connection is
used. Assuming the provider has to pay for both and several search engines
access his sites a few times per day downloading either the whole or big parts
of the content each time, this could cause an enormous impact on his profit
and loss statement. So the provider may exclude a resource-consuming
search engine from accessing his server. Consequently, the crawler needs
to be run by a sensitive concept of resource consumption.

4. How to parallelize the crawling process? The tremendous size of the Web
causes the need of distributing the crawling workload on different machines.
This parallelization is necessary during the download of webpages and for
further processing of the fetched data. The coordination of crawling tasks
is a critical point in order to avoid double workload on the machines and
– what may be even more important – to avoid visiting the same website
multiple times.

Commercial search engines use several optimization techniques in order to obtain
the best possible performance out of a given hardware. Computations are some-
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Figure 1.7: MapReduce task processing (Cutting, 2005)

times distributed over many computers in order to accomplish the task in a reason-
able amount of time. GOOGLE for example uses more than 100’000 servers to run
their search engine (Arnold, 2005). They use low-cost hardware (commodity PCs),
working around the bottlenecks of standard operation systems by adapting Linux
system to their own needs. The PCs are organized into large clusters of thousands
of machines, which typically use dual INTEL processors with 4 GB of memory
per machine (Dean and Ghemawat, 2008). They are connected with commodity
networking hardware and store the data on inexpensive IDE disks. For these rea-
sons machine failures indeed are common, but they are compensated by intelligent
methods to handle breakdowns. A distributed file system is used to access data on
the different machines (Ghemawat et al., 2003). A job scheduling system assigns
tasks to the machines.

MapReduce

Dean and Ghemawat (2004) describe a programming model and an associated im-
plementation for processing and generating large data sets on large clusters called
MapReduce. The MapReduce framework addresses several issues occurring dur-
ing the programming of search-engine software.

The large data amounts processed by search engines makes it necessary to run
processes in parallel on multiple computers and to store data on several storage
devices. MapReduce addresses the issues of how to parallelize the computation,
distribute the data, and handle failures avoiding large amounts of complex code.
Inspired by the map and reduce functionality of LISP and other functional lan-
guages, MapReduce prevents the developer from the need to explicitly consider
these issues by himself.

It offers standardized methods to divide the computations on large data sets in a
way that tasks can be processed at the same time on different machines (see Figure
1.7). The challenge is to find an appropriate partition. Running different tasks in
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Figure 1.8: MapReduce sample input for log file analysis

parallel must not alter the solution. The output data can be wrong in the case of
neglecting crucial dependencies between the tasks.

In order to use a standard framework that can be applied to different problems,
the input and output data have to exist in a standard structure. The data must
be organized in a data base format defined by a key k for each data record (corre-
sponding to a row in a table) and a value v holding the data of the data set (compare
example in Figure 1.8).

If the computation applied on a pair of key and value (k,v) fits in the fol-
lowing general scheme it can easily be parallelized and its data can be accord-
ingly partitioned. In the first step a map operation transforms the input data
into an intermediate representation map(k1,v1)→ list(k2,v2). In a second step
a reduce function recombines the intermediate representation into a final output
reduce(k2, list(v2))→ list(v2).

The functionality of MapReduce is explained using the following simple exam-
ple. The task is to determine the access frequency of a URL during the analysis
of the log files of a website. The host computer delivering the pages of a website
usually stores the URL of each single request in a log file. It generates log files
for certain time periods, e.g. on a daily basis. In other words, the task consists of
counting the occurrences of each URL in multiple large files. Each log file con-
tains a list of the website’s URLs u ∈ {A,B,C} accessed during a certain period
(e.g. one day). Two sample log files are shown in Figure 1.8. In this example, the
key k1 represents the offset (or line number) in the log file and the value v1 the line
content (here the URL) at this offset.

The goal is to calculate the number of occurrences of the pages A and C repre-
sented by their URLs in the log files. Because log files can consist of many and
large files, it can be necessary to process them in a parallelized way. Algorithm
1.2 shows the map and the reduce function adapted for this task.
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Algorithm 1.2 MapReduce example: log file analysis

map(String key, String value):
// key: file offset f
// value: line contents u
for each file offset f:

EmitIntermediate(u, "1");

reduce(String key, Iterator values):
// key: a URL
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Map Step
(k1,v1)→ list(k2,v2)
(0,C)→ [〈C,1〉]
(2,B)→ []
(4,C)→ [〈C,1〉]
(6,B)→ []
(0,A)→ [〈A,1〉]
(2,C)→ [〈C,1〉]

Reduce Step
(k2, list(v2))→ list(v2)
〈A, [1]〉 → 〈A,1〉
〈C, [1,1,1]〉 → 〈C,3〉

Figure 1.9: Map and reduce step for log file analysis example

The first step is performed by the map function processing the log files. It ana-
lyzes the log files and produces a tuple 〈k2,v2〉= 〈u,1〉 for each URL it finds in the
log files. These tuples form the list(k2,v2). The Table “Map Step” in Figure 1.9
shows the intermediate output. This map function can now be processed in parallel
on different machines. The input file or the input files are split if necessary into
an appropriate number of files, which are then distributed on the machines (see
Figure 1.7).

The second step is done by the reduce function. It adds up all values for the same
URL 〈k2,v2〉= 〈URL,total count〉. The output (represented by reduce(k2, list(v2))
→ list(v2)) is shown in the Table “Reduce Step” in Figure 1.9. This step can now
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URL Count
k2 v2
A 1
C 3

Figure 1.10: MapReduce output for log file analysis example

also be performed in a distributed way without changing the final output. The
result is shown in Figure 1.10.

The principle solution steps of MapReduce (here explained by means of the sim-
ple example) can be deployed on much more complex problems, as long as they fit
in the above mentioned scheme. In the search-engine context, the MapReduce pro-
gramming model can be applied on the following examples (Dean and Ghemawat,
2004):

1. The creation of a reverse link graph. It is easy and straight forward to get
to know the outgoing links of a webpage by analyzing the HTML-Code of
this page. More difficult is to get to know all links pointing to a certain
page, because one has to consider all pages possibly linking to that page.
MapReduce addresses this problem by creating 〈target,source〉 pairs for each
link to a target URL found in a page named source in the map function. The
reduce function merges the pairs of all source URLs for each target URL to
the output 〈target, list(source)〉.

2. The calculation of a term vector per host. For topic-specific crawling pur-
poses the knowledge of the term vectors located on a certain host is help-
ful. A term vector consists of information about the webpage’s content
represented by its most important terms, and their frequency in the doc-
ument 〈term, frequency〉. In the first step, the map function produces a
list〈hostname, term vector〉 for each input document (where the hostname
is extracted from the document’s URL). The reduce functions then adds all
per-document term vectors for a given host producing the final 〈hostname ,
term vector〉.

3. The creation of an inverted index. The inverted index, used for basic retrieval
functions, lists for a specific word or term those documents which contain
this word or term. The inverted index will be described in more detail in Sub-
section 1.3.2. The map function analyzes each document and outputs a list of
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Figure 1.11: MapReduce execution overview (Dean and Ghemawat, 2008)

〈word,document ID〉 pairs. The reduce function sorts the documents IDs for
a specific word and outputs the inverted index as 〈word, list(document ID)〉.

A search engine typically performs the tasks of the examples 1–3. The MapRe-
duce concept is used by e.g. the search engine GOOGLE and the open-source Web-
search software NUTCH16 (White, 2006) in order to improve their operations. Af-
ter adapting the tasks to the MapReduce scheme, the search-engine software can
call the map and reduce functions as subroutines. MapReduce performs several
steps in order to automatically split the input files, distribute the processes on dif-
ferent machines (workers) and concatenate the output files.

Figure 1.11 shows the steps (1–6) performed when a program of the GOOGLE

system calls the MapReduce function. First, the input files (for Example 1: Web
documents) are split into several (here: M = 5) pieces, and the user program (in
this case the GOOGLE indexer) is started multiple times on a cluster of machines
(1). One copy of the program is a master which assigns M map tasks and R re-
duce tasks to the other programs called workers depending on their work load (2).
16www.nutch.org
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Workers with map tasks read the corresponding input data split, parse key/value
pairs and process the user-defined map function (3). This output is periodically
written to local disks, partitioned into R regions (4). The master will be notified
about the data and assign a reduce worker who starts with grouping together same
intermediate keys (5) and process them in the same reduce task (6). The master
returns the process back to the user code.

The NUTCH development project implemented MapReduce functionality in or-
der to improve the software’s scalability (Cutting, 2005). NUTCH used to be
limited to approximate 100 million pages processed on a handful of machines.
Together with the implementation of the distributed file system HADOOP DFS
(Borthakur, 2007), a distributed computing platform was needed to partition stages
(jobs) into work units (tasks), and to allocate, start, monitor, kill or re-start these
tasks if necessary. MapReduce has made the code of NUTCH substantially smaller
and simpler and permits multi-billion page collections. Some extensions have been
implemented for a better performance: the output can be split to multiple files in
order to save subsequent input/output operations and mixed input value types are
now allowed in order to save value conversions. The scalability of NUTCH was
examined in more detail by Moreira et al. (2007) and Michael et al. (2007).

Ranger et al. (2007) have evaluated the suitability of MapReduce as a program-
ming environment for shared-memory systems. They found that the simplicity
of the parallel code exhibits a promising model for scalable performance also on
multi-core and multi-processor systems.

Scheduling a Crawl for First Visits

The above described methods help to distribute the crawling task on multiple com-
puters. Taking into account the enormous size of the Web, the resulting perfor-
mance improvements can still not be sufficient to crawl the entire Web in a rea-
sonable amount of time. Even if the computational task is split and processed
on multiple machines, the sub-tasks still remain huge. Consequently, the crawl-
ing task itself became subject of different improvement measures. Differences in
server responsiveness can be considered as well as different user needs and change
ratios in order to improve the crawling process.

Several intelligent strategies have been developed to fulfill as much as possible
of the crawler’s goals in a given time frame. Castillo et al. (2004) distinguish be-
tween approaches for scheduling first-time visits and revisits of webpages. They
have proposed and evaluated several strategies for webpage ordering during the
crawling of previously un-visited webpages. The crawler has to work in the frame-
work of the following parameters which will be the basis for restrictions:



1.3 How Search Engines Work 29

1. The time interval w (in seconds) between connections to a single website
should have a minimum size. Web servers usually have a limited capacity
of answering requests coming either from user-driven browsers or automatic
crawlers. Thus, they consider those crawlers as impolite that send too many
requests per time unit. Crawlers have to control the number of requests
to a single website, because the website operator may ban them from the
servers in case their access frequency becomes too high. Koster, one of the
first authors to point out the problems caused by Web crawlers, proposed in
1995 an interval of w = 60 seconds (Koster, 1995). Today, an interval of
greater than w= 15 seconds seems to be acceptable.

2. The number of pages k a crawler is able to download per connection with
the same website can be increased. Common crawlers use each HTTP-
connection to download only one webpage at a time. The keep-alive header
of HTTP/1.1 can be used to re-use an open connection and hence decrease
the servers’ workload. Thus, some of the time consuming opening processes
can be avoided.

3. The number of simultaneous requests r to different websites determines the
degree of parallelization of a crawler. A serial process is the result of r = 1.
If the crawler is restricted to one connection to a given website, the number
of websites to be visited in the queue is the maximum useful number of
simultaneous requests r. Towards the end of a crawl, a decreasing queue can
limit the crawler’s performance.

4. The bandwidth B (measured in bytes per seconds) of a crawler is usually
larger than the maximal bandwidth BMAXi Web servers can deliver their pages
i with.

In the following simple case, the download time for visiting webpages can be
determined straight forward. A crawler must download the pages i ∈ {1, . . . ,5}
with file sizes Pi. A trivial solution of this problem disregarding other limits than
the bandwidth B is to download all pages simultaneously at a speed Bi proportional
to page sizes Pi:

Bi =
Pi
T ∗

with an optimal download time T ∗:

T ∗ = ∑i Pi
B

.
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Figure 1.12: Trivial schedule of Web crawling (without restrictions) (Castillo et al., 2004)

Figure 1.12 shows a solution for this trivial case. The optimal download time,
calculated as T ∗, is hard to reach under more realistic constraints. Taking into
account the intervals w between two downloads and assuming different maximum
bandwidth BMAXi of the webpages i, gaps between the downloads may become
necessary. The bandwidth restrictions and the gaps can lead to a schedule where
the crawler’s bandwidth is not always fully used.

The time span Ti the Web server needs to deliver page i is determined by the file
size Pi and the maximum bandwidth BMAXi as

Ti =
Pi

BMAXi
.

In Figure 1.13, an example schedule is shown assuming that webpages 1 and 2
as well as 4 and 5 belong to the same website (and consequently are located on
the same host server), so that the minimum time interval w has to be taken into
consideration. Let us assume that the number of connections per server is limited
to two. The time interval w causes a greater minimum time span T ∗∗, in this case
resulting from the critical path determined by the delivering times of pages 4 and
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Figure 1.13: Sample schedule of Web crawling (shaded areas indicate wasted bandwidth)
(Castillo et al., 2004)

5 and the minimum time interval for the common server:

T ∗∗ = T4 +w+ T5

=
P4

BMAX4
+w+

P5
BMAX5

.

Bandwidth B of the crawler is wasted because of the maximum bandwidths
BMAXi of the Web servers that deliver the pages i, in the figure shown for BMAX3
during the download of P3 (shaded areas in Figure 1.13). The bandwidth of the
crawler cannot be exhausted, because the download of P3 cannot start in parallel
with P1 and P4 due to the limit of the crawler to two connections at the same
time. Thus, the download time without restrictions T ∗ cannot be reached, and the
download needs a time of T ∗∗.

If possible, these problems can be overcome by downloading pages from prefer-
ably different websites at the same time.

Crawl Strategies

Castillo et al. (2004) have applied different crawl strategies for the usage of band-
width and varied the restrictions of the above mentioned parameters. They used
the cumulative sum of PageRank of crawled pages as an objective function for
evaluating the strategies. Other importance metrics are proposed by Cho et al.
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(1998). The experimental setup consists of a downloaded crawl of 3.5 million
pages from over 50’000 websites. A simulator was run on a Web graph using dif-
ferent scheduling strategies. In a hierarchical approach, websites were queued first
(long-term scheduling) and then the pages of each site were put into a crawl order
(short-term-scheduling).

Three long-term strategies using PageRank-values (called “Optimal”, “Batch”
and “Partial”) were compared with two simple strategies (called “Depth” and
“Length”). The “Optimal” strategy uses precalculated PageRank values (which
are not available during a real crawl) and crawls sites with high PageRank first.
The “Batch” strategy calculates PageRank during the crawl process on the basis
of the so-far downloaded pages (batch). The “Partial” strategy supplements this
strategy with a kind of “temporary” PageRank calculated for those pages that are
not downloaded yet but that are already referenced by known pages. The “Depth”
strategy crawls those pages first that can be reached by following the fewest hy-
perlinks. The “Length” strategy crawls those sites first that have the most pages in
its queue.

As one can expect, the “Optimal” strategy produces a high increase of PageRank
at the beginning of the crawl. After having retrieved about 75 percent of the pages,
however, the “Length” strategy becomes better and dominates even the other types
of strategies.

Update Strategies

Another way of using given resources in a more economical way is to adapt the
update strategy of a crawl to the above mentioned needs. During the update, the
crawler revisits webpages he has already downloaded within a previous crawl. Tra-
ditional crawlers fetch pages until a certain stop criterion is fulfilled. For example,
this criterion can be a reached size limit of collected data or the achievement of a
predefined set of (topic specific) pages to crawl. A few days or weeks later, when
the collection has to be refreshed following a time schedule, the crawler builds a
new collection from scratch using the same process again. Cho and Garcia-Molina
(2000) refer to this type of crawler as a periodic crawler.

A more economic approach to refresh the collection can be followed by an in-
cremental crawler which refreshes and replaces existing pages without erasing the
whole collection each time. During the incremental update, the crawler replaces
outdated “less important” with new and “more important” pages. For this purpose
the crawler estimates how often pages change only revisit them if their probability
of having changed is high. The effect of this optimization shows up in savings in
network usage and improvement in the freshness of a collection.
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Other Strategies

Various strategies have been introduced for improving quality and speed of the
crawling procedure. Cho and Garcia-Molina (2003) show that webpage changes
can be regarded as a Poisson process. Risvik and Michelsen (2002b) estimate the
refresh frequency of a document based on its change intervals in the past. Arasu
et al. (2001a) describe a freshness metric and a refresh strategy which aims to
guarantee a data quality for a given resource usage.

Different crawling strategies with the aim of crawling the most important pages
first are presented in Cho et al. (1998). A new strategy based on the users’ interests
which is discovered by analyzing query logs is shown in Schaale et al. (2003). This
strategy is used in the VOX POPULI ALGORITHM (VPA) and will be the subject
of Section 1.4.

Focusing on certain topics is another possible way of reducing the crawler load
(Chakrabarti et al., 1999b; Diligenti et al., 2000). Ahlers and Boll (2008) present
crawling approaches that focus on the regional location of the users.

1.3.2 Indexer

After the crawler has downloaded and stored a set of webpages, two major modules
continue processing the gained data: the indexer and the analyzer. The indexer
organizes the collected webpages. It stores webpage information into an index in
order to enable a later fast locating of pages during the query answering process.

The information stored can be differentiated in a text index, a link index, and
multiple utility indexes. Arasu et al. (2001a) call the indexes text, structure, and
utility indexes. His view of the search engine architecture is shown in Figure 1.14.
Brin and Page (1998) mention not only a text index but a document index as well
as a lexicon. The indexer may also build a document repository in order to show
the (at crawl time) stored webpages to the user at query time. A utility index
may for example contain anchor texts. The architecture they have used for the
GOOGLE search engine is shown in Figure 1.15. Anyway, most engines maintain
a document database where whole documents are stored and a separate text index
for accessing the documents.

The text index contains the information necessary to answer a text-based query.
For this reason the indexer extracts words and useful terms from a webpage and
memorizes the URL or a document identifier pointing to the webpage. It results
in very large “lookup table” that provides all those URLs of pages where a given
word or term occurs (Arasu et al., 2001a). This data structure is often referred to
as inverted index or inverted file. The inverted file stores a list of (all searchable)
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Figure 1.14: General search engine architecture (Arasu et al., 2001a)

words with pointers to the location in the data collection of each word (Risvik
and Michelsen, 2002a). Brin and Page (1998) represent documents and words in
the databases by document IDs and word IDs. Even though the inverted index is
limited to the pages that have been crawled, the size of the Web causes large index
files.

Stata et al. (2000) make use of the vector space model of information retrieval.
They store vectors in a high-dimensional space of terms representing the docu-
ments. The terms are weighted by their importance in the document and in the
set of documents. This representation allows the comparison of different types of
documents and even of queries with documents. They have built-up a term vector
database, which makes the comparison of documents and terms much faster.

The link index contains the graph representation of theWeb with vertices (pages)
and edges (hyperlinks). For this reason, outgoing links are identified in the fetched
documents. The database stores the links between pairs of documents accessible
from both directions (i.e., incoming links as well as outgoing links). The graph
will be used for ranking purposes and for extracting neighborhood information.
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Figure 1.15: High level GOOGLE architecture (Brin and Page, 1998)

An implementation of a very large and scalable link index called the connectivity
server is described by Bharat et al. (1998). For each URL a list of incoming links
as well as a list of outgoing links is maintained.

The number and type of the utility indexes depend on the features of the query
engine. There are e.g. related-page finders or a site index that stores the domain
name with pages belonging to this domain. Some features like PageRank calcu-
lations are performed in a later phase by the analyzer module. The indexer also
builds an URL repository to resolve the URL of a document.

1.3.3 Analyzer

Based on the databases created by the indexer, the analyzer performs several pre-
liminary calculations for different purposes concerning the search, depending on
the purpose and functionality of the search engine. One example is the creation
and maintenance of a site index. This can be an index containing only pages of one
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website or domain allowing searches on this specific site or domain (Arasu et al.,
2001a).

A common application is the calculation of PageRank. Brin and Page (1998)
have introduced PageRank in order to calculate a quality ranking for each web-
page. The link structure of the Web is used as basis to evaluate webpages. The idea
behind is to apply methods from academic literature citation to the Web. Counting
citations or backlinks of a page gives an approximation of a page’s importance or
quality. Like in academic citation, a link or citation is seen as a vote for the page
or academic paper, respectively. The number of inlinks can be used as a simple
measure of quality.

PageRank extends the simple counting by a weight of the citing page, like in
academic literature, where it is more valuable to be cited by a paper in an excellent
journal. Furthermore, the number of links on a page will be normalized.

The PageRank measure can be used as one criterion for the output sorting of
Web-search results. The calculation is recursive and will be described in more
detail in Subsection 2.4.1 where different ranking methods are presented.

1.3.4 Searcher

The searcher (also known as query engine or query processor) receives search
queries from the Web user. It scans the indexed database for documents that match
the query best. The searcher looks-up the terms of the query in the inverted index
and retrieves a set of document IDs that contain the queried words. Some search
engines state to have more than four billions of webpages in their database. There-
fore, and because of the fact that most queries consist of only one or two words,
the number of returned pages can be quite huge. Large result sets follow especially
from short and general queries. The presenter will later bring these documents in
an appropriate order.

One crucial attribute of a good query engine is to return results within a very
short time. Typical search engine users tend to follow a trial-and-error approach
when formulating the query. They do not spend much energy on formulating a
precise query but look what they get after their first trial. If they are not satisfied,
they start the query refinement loop as shown in the classical search model in
Figure 1.2 on page 8. This approach can only work if the response time of the
searcher is small, i.e. significantly smaller than one second.
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Rank on Result Page Percentage of Users Viewing the Result
Rank 1 100 %
Rank 2 100 %
Rank 3 100 %
Rank 4 85 %
Rank 5 60 %
Rank 6 50 %
Rank 8 30 %
Rank 9 30 %
Rank 10 20 %

Table 1.4: Organic search results viewed on result page by rank (Sherman, 2005)

1.3.5 Presenter

The presenter is responsible for the way of presenting the results. Search engines
present their output on so-called result pages (search-engine result-page, SERP).
In the early days of Web search a query’s result set was quite manageable because
of the small amount of existing websites. Solely text based search engines sorted
the results using the frequency of the query term appearing in the documents. A
list of webpages was the result of the query. Higher weights were applied to key-
words (or query terms) appearing in the headers of webpages. Typical users were
already pleased if they found anything at all concerning the specified topic. With
an increasing number of webpages in the Internet, the quantity of results has aug-
mented. Thus, the presentation of Web-search results has become the new chal-
lenge for search engines.

The presenter may get a huge number of results back from the searcher. Because
the searcher does not “know” about the user’s information need, he takes all results
into account that fit to the search query. Thus, the probability for the expected
results to be among the delivered results will be higher. However, the probability
for the user to actually find the expected results will decrease with a higher quantity
of results. Even experienced search engine users who are able to use intelligent
search queries are sometimes frustrated with the quality or order of the presented
results. In order to prevent the emergence of an information overload for the user,
the presenter reduces the set of answers obtained. Different strategies are used
for this reduction process. Various search engines deliver very different kinds of
output even if the same query has been used.
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Traditional search engines yield their results as a sorted list, which – in the best
case – presents its most suitable results on the top of the list. In the worst case, the
user has to flip through many pages in order to find the results he/she is looking for.
The number of results per page is configurable in most search engines. Anyway,
the first result page is the most important because many Web users do not look
beyond this page. For them, it matters most which pages are listed on top of the
list. It is less important whether ten thousands or one million results are available.
Eye-tracking studies on search result pages show that only the first three ranks
are viewed by all users (Sherman, 2005). Table 1.4 shows that the ranks from six
downwards are only viewed by at most fifty percent of the users. On a GOOGLE

result page, most users looked at results in an “F” shaped scan pattern. Their eyes
traveled vertically along the left side of the result page looking for relevant words
and then scanning to right. The resulting pattern is also called a “golden triangle”
of search and shown in Figure 1.16 on the facing page.

Thus, the sorting of the results (ranking) is playing an essential role during the
presentation of results. In the case a query leads to results belonging to different
topics, it may happen that the results related to one of these topics are considered
to be more relevant than the other topics’ results. If this topic has many relevant
results (e.g. more than 100) ranked on the top, the user will hardly get to know
about the results of other topics. Ranking methods are discussed in more detail in
Subsection 2.4.1.

Another kind of result presentation is shown by clustering search engines. They
divide the results into thematic groups in order to facilitate the user’s navigation
through a bigger amount of search results. Examples are VIVISIMO and KAR-
TOO17. The functionality of clustering in the Web is the subject of Subsection
3.2.

1.4 A New Approach to Relevancy

In this section, we introduce an algorithm improving the relevancy of Web search
results. The main idea is to extend existing crawling algorithms by a component
that reflects the users’ interests more than existing methods. The VOX POPULI

ALGORITHM (VPA) creates a user feedback to the content of the searchable index
(Schaale et al., 2003). The feedback derived from user query analysis is used to
modify existing crawling algorithms. The VPA controls the distribution of crawler
resources in a way that privileges content with stronger user demand.

17www.vivisimo.com, www.kartoo.com
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Figure 1.16: F-shape of search (Sherman, 2005)

The basic components for the mathematical description of user interests, result
relevancy and the crawling process are defined as follows. Users of search en-
gines express their interests through queries �qi, which they address to a searchable
database (index). Assuming the users address H queries consisting of I keywords
qi (1≤ i≤ I) to this index, the query will be presented as vector

�qh = (q1, ...,qI)h (1≤ h≤ H). (1.1)

I is the query length in words. The average number of keywords per query is I′ ≈ 2.

The objects users are searching for are documents d j (1≤ j≤ J) (HTML pages,
tables, text processing documents, ...) containing information. These documents
are grouped (organized) inK domainsDk (1≤ k≤K) presenting sets of documents
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under a common editorial responsibility and address:

Dk =
⋃
j∈Jk

d j (1≤ k ≤ K), (1.2)

where Jk ⊆ {1, . . . ,J} holds the numbers of those documents belonging to a com-
mon domain Dk. The number of domains is about K′ ≈ 12 millions in Ger-
many (DENIC, 2008) and the number of documents per domain is in the range
1≤ |Dk| ≤ 108. The number of domains K is growing by approximately one mil-
lion per annum.

Each document d j contains searchable information. In general, the searchable
information is limited to text information. Content that is hidden for current search
technology in non-indexable formats (bitmaps, scripts, etc.) will be neglected here
and in the following (for hidden Web or deep Web see Section 2.2). For the eval-
uation of the content it is not only important which keywords occur in a document
but where in the document they occur. Keywords can be located in the body text of
a document as well as in headers, in metatags, in tables, in links or in other HTML
format elements of the document. Thus, a document d j is characterized by the
content of keywords qi (i = 1, . . . , I) and their position in certain format elements
el (l = 1, . . . ,L).

During the crawling and indexing process, the image d̂ j of a document d j in the
searchable index (with Ĵ documents in the index)

D̂=
Ĵ⋃
j=1

d̂ j (1.3)

contains a reduced set of information – the keywords and their position in the
format elements of the document. When a query is addressed to the index D̂,
the ranking algorithm generates a set of documents (links) which is ordered by
the relevancy of the documents found. In order to describe the document ranking
process which generates a result set for each query, the density ρ j

i,l of keywords qi
within the format elements el of a document d j is introduced:

ρ j
i,l =

n(qi,el)
nel

, (1.4)

where n(qi,el) is the number of the occurrences of the keyword qi in the format
element el and nel is the total number of words in this format element. There are
two basic ranking methods – the dynamic and the static ranking. Their distinction
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is named according to the ranking’s calculation point in time. The dynamic rank
is (dynamically) calculated at search time whereas the static ranking is already
calculated at crawl time (and remains static from this time).

The dynamic rank of a document depends on two factors only – the keywords qi
of the query and the content of the documents. This means expressed in a “thumb
rule”: the higher the keyword density in the document the higher is the dynamic
rank of this document. The relevancy function Rd(qi), defining the dynamic rank
of a document for a query qi, can be written as:

Rd(qi,d j)∼
L

∑
l=1

μl ρ l
i, j (1.5)

for a single keyword query. The coefficients μl are free parameters, defining the
importance or weight of each format element el . For example, the occurrence
of a keyword in an URL is usually much more important than in the document
text itself (μURL > μtext ). Usually, these functions become modified for different
purposes such as suppression of unwanted information (spam).

The practical work on search engines has shown that using only a document
related, dynamic ranking is insufficient. In order to also include the importance
or the popularity of a domain (popularity among the webmasters, not necessarily
among Internet users), a new type of algorithms was invented – the static ranking
(Brin and Page, 1998). The static rank Rs of a document d j ∈ Dk is related to the
importance of the corresponding domain Dk the document is located underneath.
The idea of the static rank of a domain Dk can be expressed in the following form:

Rs (Dk)∼ ∑
j∈inlinks(Dk)

Rs (Dj) , (1.6)

where the Rs (Dj) is the static rank of the sites linking to the domainDk. A detailed
description of static ranking can be found in Subsection 2.4.1.

The resulting rank of a document is a function of the dynamic rank (1.5) and
the static rank (1.6). There is no unique or even optimal way of constructing this
function. A reasonable way is to choose the resulting relevancy Rds as a product
of the dynamic and static rank:

Rds(qi,d j) = Rd(qi,d j) ·Rs(d j). (1.7)

Using the product operator, a higher dynamic rank as well as a higher static rank
will increase the resulting relevancy. Analyzing (1.7) a usual approach would be
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using Rs(Dk) instead of Rs(d j). In practice, the static component of a document
does not only depend on the static rank of the domain Dk containing d j ∈ Dk, but
also on the document’s position in the domain (link topology of the domain). At
present, these kind of ranking algorithms are in use in every major commercial
Web search engine.

The algorithms described above do indeed meet the needs of the users. This
approach is reasonable from an academic point of view and it has produced re-
markable results in the past. Today it has become more difficult to make use of the
link topology – very often the links are not set according to the content relevancy,
but for other (i.e. economic) reasons. To the extent that the search engines have be-
come the most important information retrieval tool, they have also become a target
of spamming (site owners try to fake the search engines, virtually presenting more
important content than there really is). Applying filter mechanisms and modifying
the parameters of the dynamic and the static relevancy calculation, one can “fine
tune” the quality of the Web search engines.

The two methods described above explicitly do not take into account the most
important factor, the interest of the users searching for information. The dynamic
and the static relevancy of a document are influenced by the content of the site and
by the “citation” by other sites. There is no methodical component that reflects the
voice of the searching people. This will be done by the VOX POPULI ALGORITHM

(VPA, people’s voice) described in the following.
The main idea of the VPA is to use the information that is extractable from the

user query analysis to enhance the quality of the search. This can be done in two
different ways, by modifying either the ranking or the crawling algorithm. The
VPA focuses on the crawling algorithm. The crawling algorithm defines which
domain and how much of the content will be included into the search index. Sites
that are not included cannot be found by the best ranking algorithm. At present,
only a small fraction (< 10%) of the websites is indexed by commercial search
engines. The much bigger part of the Web is not visible in any of the search
engines.

The source of information is the analysis of the queries �q, reflecting the users’
interests and needs. The query set Q may contain all single and multiple keyword
queries of the users (1.1). Based on these queries a multidimensional array Ω
with the dimension Imax can be defined, containing the frequencies of all keyword
combinations:

dim[Ω(Q)] = Imax (1.8)

Imax is the maximum length of a query – theoretically it can be infinite. Practically,
the amount of queries having i > 6 keywords is less than 1%, while the average
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query has about i = 2 keywords. In order to simplify the further calculations one
can reduce the dimensionality of (1.8) in the following way:

ΩImax(Q)→ Ω̃I=2(Q)≡Ω. (1.9)

In this reduction algorithm, the queries with more than two keywords are re-
placed by two-keyword queries, containing all possible paired combinations. For
example, a three keyword query is equivalent to three two-keyword queries and so
on.

The matrixΩ is a frequency matrix of all keyword combinations of the query set
Q that is analyzed. It contains in column i and row g the frequency of the keyword
combination (qi,qg). Ω is a symmetric matrix.

The analysis of the keyword order shows a statistical asymmetry for the key-
words’ sequence, i.e. N(q1,q2) �= N(q2,q1), where N denominates the number of
queries. Users interested in the explicit order of the keywords can use the option
called “exact phrase”, which is available on any modern search engine. Therefore,
it is reasonable to assume that the order of the keywords is not important for the
users in the case they make simple queries. More than 90 % of all queries are of
this type. Here, the approximation (qi,qg) = (qg,qi) will be used.

One can calculate the eigenvectors and eigenvalues ofΩ, transforming it into its
diagonal form:

C−1ΩC =Ωdiag. (1.10)

For the details of the diagonalization procedure, see Bronstein and Semedjajew
(1981) or any other standard textbook on mathematics. It is now important to
understand the practical meaning of the matricesC and Ωdiag.

The matrix C consists of eigenvectors which are interpreted as weighted key-
word combinations:

CT =

⎛
⎜⎜⎝

�c1

�c2

�c3

...

⎞
⎟⎟⎠ (1.11)

where each eigenvector has the coordinates

�ch = (ch1,c
h
2, ...). (1.12)

The coefficients chi are positive numbers, giving each keyword qi (similar to the
definition 1.1) some “weight” compared to the other ones (“How frequent do the
users ask for this keyword?”). The coefficients determine the relative importance
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of a keyword within an eigenvector. A typical eigenvector (or better “eigenquery”)
assigns weights to the keywords of a query, e.g. a query “free mp3 downloads”
can consist of weights like c11 = 1.00 for the keyword “mp3”, c12 = 0.71 for the
keyword “downloads” and c13 = 0.23 for the keyword “free”.

This query shows how the average user is asking, when he is searching for mp3
downloads at no costs. For an intuitive understanding, the matrix Ω is normalized
to Ω′ containing the relative frequencies of each term combination summing up to
100%. The reduced (N=3) keyword matrix of the example above has the form:

Ω′ =

⎛
⎜⎜⎝

mp3 download free
mp3 37.2% 8.8% 2.7%

download 8.8% 19.2% 3.6%
free 2.7% 3.6% 13.4%

⎞
⎟⎟⎠ .

The difference between the typical keyword search at present and this approach
is that the words here have different weights, determining their relative importance
for the users expressed by the relative query frequency.

Additional important information about the significance of keyword combina-
tions is contained in the matrix Ωdiag:

Ωdiag =

⎛
⎜⎜⎜⎜⎝

λ1 0 0 ... 0
0 λ2 0 ... 0
0 0 ... ... ...
0 0 ... λN−1 0
0 0 ... 0 λN

⎞
⎟⎟⎟⎟⎠ . (1.13)

Each eigenvalue λi corresponds to an eigenvector in (1.12). The eigenvalue can
be interpreted as the importance of the corresponding eigenvector – it defines the
importance of a query for the users.

Finally, tools have to be defined how a search engine can use the information
of the user queries to determine which content should be enhanced or reduced in
the index D̂. Based on the described algorithm it is possible to determine which
content is the “most wanted” content and which sites deliver this type of content:

(c1,c2, ...) → search engine → list of ranked domains.

Crawling the Internet, each domain are given certain resources of the search
engine, such as CPU time and memory in the index (alternatively also the number
of crawled documents or other parameters, depending on the settings of the search
engine).
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Algorithm 1.3 VOX POPULI ALGORITHM (VPA)

1. Generate a ranking of domains by addressing the users’ eigenqueries (1.12)
to the existing searchable index and determining a crawl priority for each
domain according to the eigenvalues (1.13).

2. Adapt the list of crawler resources to be spent for each domain with respect
to the ranking.

3. Crawl the Web according to the modified crawler resource distribution. Cre-
ate a new searchable index.

4. Repeat the cycle.

The practical realization of the VPA as an extension of an existing Web search
engine can be performed using the procedure outlined in Algorithm 1.3. It assigns
priority values to domains. These priority values will be used to decide which
domains will be crawled firstly and which domains will be crawled at all.

In order to determine which sites best fit the eigenqueries, it is useful to calculate
a dynamic rank for a whole domain, not just for a single document. A simple
method is to summarize the total rank of all documents in one domain:

RDk(qi)∼ ∑
j∈JK

Rdj (qi). (1.14)

Assume that the amount of resources (CPU time, number of documents, data
volume, etc.) assigned to each domain during the crawling process can be ex-
pressed in a function M, with

M =M (Dk,Rs, ...) . (1.15)

In order to apply the VPA one can modify (1.15) in the following way:

M→ M̂ =M ·RVPA. (1.16)

The function RVPA defines the VPA-correction with regard to the old crawling
algorithm. The function RVPA can be presented in different ways. The basic re-
quirement concerning the function is that it is monotone concerning the parameters
λi which quantitatively define how relevant a query for the users is. Following Oc-
cam’s principle of simplicity (Entities should not be unnecessarily multiplied.) this
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function should only use a minimum set of free parameters, which will allow the
adoption (or “fine tuning”) the algorithm to the local requirements:

RVPA(Dk) =
(
1+α ·λ β

k

)
α,β > 0. (1.17)

The parameter α and β can be freely chosen as a “tuning” parameter. In the
limit, the new algorithm generates the existing results in (1.16)

lim
λi→0

M̂ =M.

In this section has been shown how the analysis of queries can be used to en-
hance the relevant and “most wanted” content in a search index. This way the
subjective relevancy of the search results should grow – the users will find more of
what they are searching for. The existing system of the relevancy ranking of doc-
uments or domains can remain unchanged. The algorithm’s aim is not to replace
existing crawling and ranking algorithms, but the VPA can make Web search more
relevant and more efficient.

1.5 Evolution of Web Search Engines

Since the emergence of commercial and non-commercial Web search engines in
the nineties of the last century, a tremendous evolution has taken place. This con-
siders the quality of results, the manner the results were created and also the scale
in terms of size of the Web as well as the quantity of indexed pages.

Search engines have moved away from purely text-oriented information retrieval
towards trying to satisfy the need behind the query (see Subsection 1.1.1). This
implies a shift from the syntactic response on a query to the point of a semantic
analysis of a query, of websites, and the user’s context. In the following, three
different stages of search engines will be identified (Broder, 2002a) and an outlook
to a possible fourth generation of search will be given (Broder, 2006b).

First Generation

The first generation of search engines analyzed mainly on-page data like text, for-
matting and meta-tags. Players on the search market where ALTAVISTA, EXCITE,
LYCOS, and others. They have basically adapted textbook algorithms of classical
information retrieval to “large” corpuses.

The retrieved pages were ranked using word-frequency measurements. This was
state of the art in the years 1994 – 1997, and these algorithms performed pretty
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well in answering informational queries. But the use of on-page data for ranking
has opened many opportunities for the webpage creator to influence the ranking.
From the point of view of search engines and search engine users, this influence
can negatively bias the ranking quality. This influence on ranking is from a certain
extend on perceived as spam. It was one trigger for the development of the next
search engine generation.

Second Generation

The second generation of search engines added off-page, Web-specific data to their
systems. They used link information, anchor-text and click-through data to get
information about a webpage. All this data is not part of the regarded page. It
can be seen as a kind of meta-data, i.e. data about data. The anchor-text of a
link pointing to a webpage can for example be interpreted as a description of the
content.

Taking e.g. “big blue” as nickname for the company IBM, you will rather find
these two words in links pointing to IBM’s webpage than on the webpage itself.
Sophisticated mathematical methods were introduced for the connectivity analysis
of webpages (see 2.4.1).

These techniques were made popular by GOOGLE in 1998 – 1999, and were
quickly adopted by almost every other search engine. The second generation is
capable to answer both informational and navigational queries.

Third Generation

The third generation of search engines tries to answer the “need behind the query”
by using multiple data sources. Several, sometimes simple but effective methods
are implemented to find out what the users may want. This generation is subject
to a continuing improvement process.

For example, if you type in “New York”, it understands this term as a town’s
name and presents maps, weather forecast or hotel offers. A different treatment
is applied to queries containing personalities (triggered on names), cities, medi-
cal info, stock and currency quotes (triggered on stock or currency symbol), or
company names. After language detection, different ranking methods are used
for different languages. Several user helps like spell checking, query refinement,
query suggestion are offered.

Besides informational and navigational queries, also transactional queries are
supported. This generation has moved away from syntactic to semantic matching
of the query, but it still relies on the input in form of a query.
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Figure 1.17: Fourth generation of search: information supply engine (Broder, 2006a)

Fourth Generation

The fourth generation does not need an explicitly formulated query. An increased
usage of the user’s context aims to substitute the explicit demand for information
by an active information supply. As shown in Figure 1.17, three categories of in-
put run into an information supply engine (ISE): the user profile (e.g. age, gender,
...) and user context (e.g. the location of the user), the activity context (e.g. previ-
ously performed activities of the user) and the available information supply (e.g.
a searchable index). The information supply engine matches these categories in
order to deliver something the user might need. The user action or a direct user
feedback is used to evaluate the quality of answer. Both will be used to improve
the current and future information supply.

An example is contextual advertisement, that is shown on news sites and that is
related to the articles a user has chosen to read. Broder (2006a) differentiates the
current approaches by the kind of needs they fulfill: Recurrent needs are for ex-
ample fulfilled by subscriptions and news alerts. Temporary needs can be fulfilled
by showing accessories, commentaries or related purchases on e-commerce sites,
contextual help on personal computers, automatic annotations on news and oth-
ers. It makes the information supply more convenient than information retrieval,
because the user does not have to type a query anymore.

Anyway, it is still not easy to identify the user’s need, and consequently the
offered information sometimes does not match the need at all.
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The relation between providing websites and searching for information in the
World Wide Web can be compared to a market place in economic terms. The
two sides of a market, supply and demand, can be identified. The information
supply consists of the billions of companies, organizations, administrations, and
individuals that offer almost any kind of information on the Web for multiple rea-
sons. On the demand side, there are people with very different interests looking for
information. Their motivations and informational needs were already described in
Subsection 1.1.1.

Search Engines provide very popular means to match the user’s demand with
the information supply. Information Retrieval methods can help to describe and
analyze the structure of the Web (see e.g. Manning et al., 2008). The Web’s role
as information supplier will be regarded in this chapter by first looking at the Web
content, then the Web graph and finally methods of link analysis.

2.1 Evolution of Information Supply

The World Wide Web (simply referred to as the Web) is a large repository of all
kinds of different data. The data is structured around hypertext documents consist-
ing primarily of text as well as of links to other documents (hyperlinks).

Building of the Web started in the late eighties of the last century. Tim Berners-
Lee is acknowledged to be the founder of the World Wide Web. At the CERN, the
institution he worked for at that time, he wanted to simplify finding of different
types of data such as reports, experimental data, electronic mail address lists and
many other sets of data. The different locations were indeed already connected
by the means of Internet, but until then, there did not exist a common method to
access the data in the heterogeneous network environment. In order to cross the
borders between different computer systems and network structures, he created
and implemented a hyperlink protocol and a corresponding user-interface called
browser (Berners-Lee and Cailliau, 1990).

Even though the concept of hyperlinking had already somewhat existed for a
much longer time in the form of academic citation, the connection with the Internet
enabled a direct and automatic access to the linked documents. The development
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of HTML, a markup language for rendering hypertext, and of HTTP, a hypertext
transport protocol, in combination with the user-friendly graphical user-interface
(GUI) MOSAIC, formed the basis of the widespread adoption of the World Wide
Web.

The basic concept behind hypertext is forming a web of information nodes in-
stead of a traditional hierarchical tree or a sorted list. Section 2.2 “Web Content”
will regard the different types of content on the Web. The focus of Section 2.3
“The Web as a Graph” will be put on their connecting links.

2.2 Web Content

The World Wide Web is being created by millions of individuals around the globe.
Besides the variety of professionally designed and maintained websites, actually
every piece of data made publicly available can become part of the Web. Anything
you can store on a hard disk will be part of the Web as soon as there is a hyperlink
pointing to it. In addition to the static data, dynamic streaming techniques like
voice, video, or other data streams can become part of the Web even without being
statically stored.

The focus of many research activities lies on the structure of the Web rather than
on its content. Nevertheless, it is worth to look at the types of content. A catego-
rization of Web content can be performed using the subgroups of informational
and resource content presented in Table 1.3. But its output strongly depends on
the goals of the specific user who is in the focus. This approach is limited by the
fact that the same Web content can satisfy another goal category if you consider a
different user. The same webpage may as well answer a closed question as it may
contain a list of interesting suggested websites.

Whereas in the early days of the Web, it consisted of mainly static HTML-
pages, soon a trend evolved towards documents generated at run-time. Today,
only a small part of Web content consists of static HTML-pages. Already in 1997,
studies conducted by Lawrence and Giles came to the result that eighty percent of
theWeb content has been dynamically generated, and this number is assumed to be
increasing (Lawrence and Giles, 1998). The dynamism is one of the reasons why
search engines have to try hard to keep up with the size of Web. The goal to build
an index for almost the entire Web turns out to be a moving target, which is not
necessarily achievable by the centralized architecture of existing search engines.

In order to gain an idea of the total size of the Web, Lawrence and Giles ana-
lyzed the overlap among different engines. For this purpose, they did not consider
those documents that are not easily accessible. These documents are e.g. only
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Figure 2.1: Classification of Web content based on the impact on Web crawlers (Raghavan
and Garcia-Molina, 2001)

presented after filling out a search form on a webpage or they are marked as not
available for search engines in a robots.txt-file using the robots exclusion pro-
tocol1 or an authentication is required in order to access them. This part of the
Web is not reachable by only following hypertext links. It is often referred to as
the hidden Web or deep Web to draw a distinction to the indexable Web captured
by search engines. In the hidden Web, a large amount of high-quality information
is assumed to be provided online by organizations (like Census Bureau, Patents
and Trademark Office, News media companies) using a Web front-end to access
their database. If the content cannot be reached by hyperlinks, traditional search
engines are not able to find it.

Two fundamental problems arise crawling the hidden Web. First, the hidden
Web makes up a non-negligible amount of the whole Web. Bergman (2001) esti-
mates that public information available through searchable online databases (that
means invisible for crawlers) is 400 to 550 times larger than the static Web, which
consists of seldom or never changing pages. Second, the interfaces to access these
databases are intended for use by humans and, consequently, not easily accessible
by robots. Thus, a big part of the Web is not covered by traditional search engines.

1see www.robotstxt.org
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Within the context of crawling the hidden Web, Raghavan and Garcia-Molina
(2001) have analyzed Web content by its type of dynamism as well as based on
its generative mechanism used to implement the dynamism. A page is defined
to be dynamic if a part or all of its content is generated at run-time. This means
that the HTML page is generated after the request of e.g. a user or a search engine,
whereas the HTML code of a static page is stored in files already before the request
(compare Figure 2.1) independently of any user action. For example, news sites
aim to present different content to the same user if he returns to the website on
the same day in order to give the impression of freshness. Backstrom et al. (2009)
describe approaches how to present fresh content to news site visitors.

The types of dynamism are derived from common motives for constructing
Web content in a dynamic way: information that change over time (temporal dy-
namism), customization of the content for different users (client-based dynamism),
and information that depends on a user’s input (input dynamism). Figure 2.1 differ-
entiates in its columns static from dynamic content and assigns crawling strategies
to the types of dynamism as follows.

First, a webpage showing information that depends on the time of reading (like
stock tickers or news headlines) features temporal dynamism. This means that
requests of the same page at different points in time may lead to different results.
Whereas today’s search engines do index temporally dynamic content, the key
question is how old the content of their databases is. Lewandowski et al. (2006)
have analyzed and compared the freshness of different search engine’s databases.
Cho and Garcia-Molina (2003) propose some methods to estimate the frequency
of change and apply the results for improving Web crawlers.

Second, webpages showing information that is custom generated for a particular
user feature client-based dynamism. The user is identified, e.g. by cookies or his
login, in order to adapt the content, design, or behavior of the website to his antic-
ipated need. Typically, a website “remembers” settings a user has made during his
last session, it may recommend products that are similar to the ones the user has
already purchased, or it tries to identify a suitable language using the IP-address
or the browser settings. While many of the pages generated in such way are ob-
viously not useful for all users, it may still be helpful to crawl the same Website
multiple times, i.e. in different languages. This type of webpages is addressed by
a restricted crawler which will be equipped with cookies and/or user names and
passwords.

Third, webpages returning information depending on the input of a user feature
input dynamism. This can be the case when querying an online database. The
content of the hidden Web falls in this category. The methods of Raghavan and
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Garcia-Molina (2001) focus on crawling this content. The three types of dynamism
described above can occur on the same webpage, e.g. an AMAZON2 page may
contain book recommendations based on the user profile (user-based dynamism),
new publications (temporal dynamism) as well as the results of a user’s book query
(input dynamism).

Dynamic webpages can be generated by a number of different methods and
mechanisms, which are divided in the following three categories (compare Fig-
ure 2.1): Server-side programs and embedded code with server-side execution
both produce either complete HTML-pages or static HTML-text with dynamically
generated portions of a page. Common Gateway Interface (CGI), Java servlets,
Active Server Pages (ASP), JavaServer Pages (JSP) or PHP Hypertext Processor
(PHP) are typical technologies to create pages at run-time. As their outputs do not
technically differ from static HTML-pages, they do not exceptionally challenge
traditional crawlers, once the page has been downloaded. Thus, if these pages
only exhibit temporal dynamism, they belong to the publicly indexable Web. As
soon as they are created with client-based dynamism, they are only accessible by
restricted crawlers and belong to the customized Web. Webpages generated by
server-side programs or embedded code with server-side execution whose con-
tent exhibits input-dynamism belong to the hidden Web. The embedded code with
client-side execution, by contrast, may require special runtime-environments on
the client-side machines. In this case, a crawler trying to emulate a Web browser
has to execute the code by himself (e.g. using a Java Virtual Machine, JVM) which
heavily complicates the crawling process.

Whereas for the last type (embedded code with client-side execution) a public
available crawler does not yet exist, the customized Web and the hidden Web are
being automatically crawled, even though for the latter a human assistance in the
crawling improves its quality significantly.

2.3 The Web Graph

Already in the first design paper of the World Wide Web, Berners-Lee and Cail-
liau (1990) have defined – as one of its key properties – that Web elements are
connected with other Web elements using hyperlinks. Thus, the Web can be mod-
eled as a directed graph in terms of graph theory, considering hyperlinks as edges
and webpages or websites as vertices. The resulting graph is only partially static:
A huge part of the links and webpages do not change very often, whereas other

2www.amazon.com
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pages may change their content as well as their links very frequently. That means
in terms of graph theory, that not only the values assigned to vertices and edge
weights may change, but also the directions of the edges are subject to modifica-
tion, or new edges may be generated or eliminated.

This leads to two fundamentally different approaches towards the Web: Static
approaches describe the Web regarding a snapshot of a current state of the Web.
Dynamic approaches consider the growth process of the Web.

After looking at the benefits, goals and reasons for regarding the Web graph,
different models of the Web graph and their implications, problems and benefits
will be discussed in this chapter. Afterwards, different approaches of storing the
Web graph, accessing it, and considering its ongoing changes in the storing process
will be shown.

2.3.1 Reasons for Regarding the Web Graph

There are several reasons and goals to analyze the Web’s graph structure. Un-
derstanding this structure can help reaching the goals described in the following
when searching the Web. Comparable reasons underlie the studies of Broder et al.
(2000).

1. Develop and evaluate crawling strategies. Crawling strategies may max-
imize the amount of crawled webpages given certain resources, or gather
a predefined set of webpages with a minimum resource usage, or look for
certain communities on the Web.

2. Establish a ranking function. The Web structure is also used to calculate an
importance measure for webpages. Hyperlinks pointing to a page can be re-
garded as votes for this page, where the votes of “important” webpages have
a larger weight than the ones of “less important” webpages. An importance
measure derived from this concept is used to sort search results. Different
approaches will be shown in Section 2.4.

3. Grouping webpages. Under the assumption that strongly linked webpages
are more probably dealing with a similar topic than webpages which are
poorly connected among each other (or not linked at all), webpages can be
grouped by identifying communities or clusters. Different approaches will
be shown in Chapter 3.

4. Identifying spam. If the analysis of the Web structure identifies some kind
of “natural” link structure this knowledge can help to identify also mainly
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“artificially” linked groups of webpages. Spam clusters (e.g. link farms) of-
ten create thousands of linked webpages without any significant content, for
the only purpose of attracting users (and potential customers) and especially
search engines to their sites. Those search engines that are able to identify
the special structure of spam will also be able to filter this spam and improve
result quality in this way. Different approaches will be shown in Subsection
4.4.1.

A theoretical foundation can support the reaching of the goals 1 – 4. Under-
standing the structure of the Web and its development in the past helps to make
predictions about the future development of the Web. The research performed in
this area will be discussed in the following subsections.

2.3.2 Properties of the Web Graph

TheWeb graph’s properties can be considered from different perspectives and used
for different purposes. Static approaches describe the Web regarding a snapshot
of a current state of the Web, whereas dynamic approaches try to explain the gen-
erative mechanisms leading to the creation of the Web graph and try to predict its
future.

Depending on the research purpose, different entities representingWeb elements
might be represented by vertices. The most intuitive way may be to regard a graph
where webpages act as vertices. Assuming that a vertex should represent an atomic
entity of content, this can also be a frame on the page, a paragraph or (as smallest
linkable entity) the anchor text or the graphic connected to the link. The anchor
text is often used by search engines as an independent context descriptor for the
webpage linked to. It can be considered as independent if the link’s target belongs
to the website of another host or provider. This decision can be supported by a
graph consisting of websites as vertices and by analyzing the links of a subgraph
containing this site. Another way of creating a Web graph is looking at single IP
addresses or IP groups of the hosting Web servers as vertices. IPs are also used by
search engines to identify false or artificial links that are created just for the reason
of influencing result-page positions (spam).

The edges of the Web graph are formed by hyperlinks between the above enu-
merated entities – either webpages or websites. Depending on the purpose, they
can be seen as directed or undirected edges. Weights can be assigned to the edges
relative to the age of the link in order to obtain a graph that is more stable than the
real Web and to overcome problems that occur with respect to the very dynamic
graph. Another way to achieve a more stable graph is to gather only a small snap-
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shot of a subgraph of the Web. Even in this case, one can never fetch all pages
at exactly the same point in time. Thus, the resulting subgraph will not be a well
defined graph. In order to get a clear model, the static approach regards a slowly
changing subgraph of the Web.

Bharat et al. (2001) see the Web as a hierarchically nested graph with domains,
hosts and websites as intermediate levels of affiliation. They studied the Web con-
nectivity on a host graph with hosts as vertices and weighted edges representing
the number of hyperlinks between pages on the corresponding host. Analyzing
the relatedness of hosts by link frequency, they identified several explanations for
strongly connected host pairs that did not seem to be related for any other reasons
as the following:

1. Large hosts: Hosts like www.geocities.com and members.aol.com have
a large number of connections because of their immense size.

2. Boilerplate: Hosts using a page template on all pages lead to many cross-
host links (e.g. mirrors of the Open Directory Project tend to point to
www.dmoz.org on every page).

3. Multi-host sites: A site that spans multiple hosts may have many references
between the hosts.

4. Spam: Search engine optimizers try to build up highly connected graphs to
promote specific websites.

5. Affiliate programs: Website owners encourage third party websites to put
links back to their sites rewarding them for the traffic sent through (like
www.amazon.com).

A directed graph with vertices corresponding to static webpages and edges corre-
sponding to links between the pages was studied in deep by Broder et al. (2000).
They have analyzed the graph’s properties like its diameter, degree distributions,
connected components and its macroscopic structure. Experiments based on a
Web crawl of 200 million pages and 1.5 billion links where conducted to verify
that the degree distributions in terms of links on a page follow a power law. Fur-
ther analysis of the connectivity among webpages results into a classification into
differently connected components of theWeb. Pennock et al. (2002) have analyzed
distributions of links among subcategories of pages.

In the following, a selection of Web graph models is described in more detail.
After the explanation of random graph models, an analysis of the connectivity of
the Web is presented and some dynamic models are introduced.
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(a) Erdös-Rényi random graph with 10 ver-
tices and 9 edges

(b) A ring lattice (n=10, d=4)

Figure 2.2: Random-graph examples I (Deo and Gupta, 2001b)

Random Graph Models

Deo and Gupta (2001b) use random-graph models for the description of the Web.
The Erdös and Rényi Model (Erdös and Rényi, 1960) was the earliest model of a
random graph. It explains the structure of a randomly created graph starting with
n isolated vertices where each of the n(n−1)

2 pairs is connected with an edge with
the same probability p (compare example in Figure 2.2a). This static model has
two major disadvantages. It does not take into account the increasing number of
vertices in the Web, and the edge formation is based on a non-uniform probability.

More suitable for describing the Web are small-world networks which were
first described by Milgram (1967) in a social sciences context. Small-world net-
works are characterized by sparseness, small diameter and cliquishness. There are
two variations of small-world models: the edge-reassigning and the edge-addition
small-world network.

In the edge-reassigning model (Watts and Strogatz, 1998), the creation of a net-
work starts with a ring lattice where each vertex is connected to its d nearest neigh-
bors (see Figure 2.2b). In a reassignment step, each of the n·d

2 edges is randomly
removed and added to another vertex with a probability 0 ≤ σ ≤ 1 (compare ex-
ample in Figure 2.3a). The value of σ determines the evolution of the network:
Setting σ = 0 will not change the graph at all. Increasing σ will decrease the
shortest paths between two vertices in the network rapidly. A value of σ = 1 will
lead to the same results as the Erdös-Rényi model.
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(a) Six edges of ring lattice reassigned (b) Four edges added to ring lattice

Figure 2.3: Random-graph examples II (Deo and Gupta, 2001b)

In the edge-addition small-world network (Newman et al., 2000), σ ·n·d
2 new

edges are added randomly to an existing ring lattice. For this purpose, two vertices
are randomly selected and connected by the new edge. σ denotes again a new-
edge-probability, d the degree of each vertex in the original ring-lattice, and n the
number of vertices (compare example in Figure 2.3b).

Both models are characterized by a small diameter of the resulting graph. That
means in the Web that the number of clicks between two pages on the Web is rela-
tively small. Kleinberg (2000) uses this phenomenon to create algorithms for nav-
igation in these networks. These networks are built with many local connections
and few long-range connections following the paradigm of Watts and Strogatz.
Instead of starting with a ring, a two-dimensional grid is used as basic structure
(Figure 2.4a). Edges are allowed to be directed. Based on a distance measure
using steps on the lattice, each vertex has connections to local neighbors and –
with a certain probability – to distant vertices (see Figure 2.4b). The geographic
interpretation is simple. Individuals have some local neighbors as well as a certain
number of acquaintances distributed more broadly across the grid. In this model,
routing messages from one point to any other is feasible using local information,
if there is a correlation between the local structure and long-range connections.

Connectivity of the Web

During several experiments, Kleinberg et al. (1999) studied some of the local prop-
erties of the Web graph. Traditional random-graph models could not well explain



2.3 The Web Graph 59

(a) A two-dimensional grid network with
local neighbors of one step distance

(b) Node u with four local contacts and
two long-range contacts v and w

Figure 2.4: Grid network model of Kleinberg (2000)

their observations. The number of links pointing to a webpage defines the in-
degree of the corresponding vertex, and the number of links coming from a page
the out-degree, respectively. Kleinberg et al. found that the probability for a vertex
having an in-degree i is proportional to a power-law distribution 1/iα (with α ≈ 2).
A random-graph model does not suitably describe the creation of this distribution,
because its in-degrees exhibit either a Poisson or a binomial distribution. The same
is true for the out-degree, because it also follows a power-law distribution.

Broder et al. (2000) describe a slightly higher exponent α ≈ 2.72 for the out-
degree. The exponents turned out to be stable over different crawls. Moreover,
they searched for connected components in the Web graph. A component of an
undirected graph is defined as a set of vertices in which for any pair of vertices u
and v in the set, there is a path from u to v. The undirected graph is created by
ignoring the directions of links in the directed graph.

The components obtained in such manner are referred to as weakly connected
components of the directed graph. In a crawl of approximately 203 million ver-
tices, Broder et al. (2000) identified a weakly connected component of 184 million
vertices which correspondents to a proportion of over 90 %.

Looking at the directed graph, this component can be broken down into four
major pieces. A strongly connected component (SCC) of a directed graph is a set
of vertices in which for any pair of vertices u and v in the set there is a directed path
from u to v. The strongly connected component made up 56 million vertices in the
above mentioned crawl (see Figure 2.5). Another piece consists of pages that can
reach the SCC, but cannot be reached from it. It possibly consists of new sites that
people have not yet discovered and linked to. This piece called IN consists of 44
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Figure 2.5: Connectivity of the Web – the “bow tie” structure (Broder et al., 2000)

million vertices. Pages that are accessible from the SCC, but do not link back to
it, are part of the piece OUT, which also consists of 44 million vertices. These can
be e.g. corporate websites that contain only internal links. The last piece called
TENDRILS contain pages that can neither reach the SCC nor can be reached from
the SCC.

The four pieces of the Web graph where put together in the “bow tie” graph
shown in Figure 2.5, named after the shape of a bow tie. About 16 million vertices
are not connected with the weak component at all.

Dynamic Models

The models described above are static and do not take into account the fact that
new webpages are created, that new links are created, and links and pages are
deleted. The preferential-attachment model (Barabási and Albert, 1999) repro-
duces one important finding of the Web. The probability that a page or a vertex i
has degree di follows a power law. The exponent of the power law distribution was
empirically found to be γ = 2.9± 0.1, independent of time and number of edges.
Barabási et al. (2000) analytically derived this exponent and found it to be γ = 3.
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This model is criticized because it only adds edges to newly created vertices. But
reconnections of existing edges or new connections between old vertices are also
being established in the Web. Huberman and Adamic (1999) try to overcome these
problems with their website-growth model, where the number of pages added to a
site at a given time is considered proportional to those already existing on the site.

2.3.3 Representation and Storage of the Web Graph

With respect to the data forming the Web, one can distinguish between the Web’s
content data and its link data. The storage of content and its particular require-
ments were discussed in Section 1.3. The graph structure is built up by hyperlinks,
and thus other, additional problems occur during its storage process. As with the
textual storage of content, the amount of data consisting of link relations can grow
very large. Consequently, access speed also becomes a critical issue during the
specification of data structures.

A main difference to the search in textual content results from the fact that one
might want to traverse the graph’s vertices in both directions, even if the under-
lying graph is directed. Using link analysis methods, a quite common question
concerning a webpage is which other pages point to this webpage. Information of
hyperlinks pointing from a page a to a page b can be found only in the HTML code
of page a. Knowing the code of page a, it is trivial to find all links pointing from
it. These links are called outlinks or successors of a. But there is no information in
the code of page a about the pages that point to page a. Consequently, one needs
to know and to analyze the whole graph in order to find those hyperlinks pointing
to page a. These hyperlinks are also called inlinks or predecessors of a. Moreover,
one needs to store this graph in a structure that allows for this kind of request.

Connectivity Server

To resolve the above described problems, Bharat et al. (1998) have designed ap-
propriate data structures, which are described in the following. They implemented
these structures and introduced real Web data. The result was put into practice
creating the so-called connectivity server. Its system architecture allows a fast
navigation on the Web graph via the predecessor/successor relation. The server
accepts queries consisting of a set of one or more URLs and returns a list of all
incoming and outgoing links of this set.

In order to define appropriate data structures, webpages will be represented by
vertices in the graph and hyperlinks on page a pointing to page b as directed edges
between the vertices a and b. The set of vertices is stored in an array (node table),
and for each vertex, an adjacency list containing its successors is maintained (see
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Figure 2.6: The Connectivity Server: Representation of the Web graph (Bharat et al., 1998)

Figure 2.6). An inverted adjacency list containing the predecessors is maintained
for each vertex, too. The successor lists are stored in a common outlist table with
pointers from the node table, and the predecessor lists are stored in a common
inlist table.

The URL for each vertex or webpage is stored lexicographically sorted in a
separate URL database. Since the common prefix between two URLs from the
same server is often quite long, only the difference between the current and the
previous URL is stored. This results in a size reduction of about 70 %.

The connectivity server performs three steps in order to process queries. It trans-
lates the query URLs to vertex IDs, returns the Web graph information around
these vertices, and translates the resulting IDs back to URLs. The processing time
on a 300 MHz Digital Alpha with 4 GB memory was approximately 0.1 ms per
URL in the result set, working on a crawl of size of 100 million URLs. The third
step takes most of the processing time, so applications working with internal IDs
only can expect faster processing times.

Apart from a direct query interface a visualization of connectivity data in the
neighborhood graph is being delivered by the server. Further applications where a
fast access to link structures is needed will be described in Section 2.4. Compres-
sion techniques for reducing the database size are introduced by Suel and Yuan
(2001) and Boldi and Vigna (2004).

Node Table

URL Database

ptr to URL ptr to inlist table ptr to outlist table

Outlist TableInlist Table
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Figure 2.7: S-Node representation – two-level representation of aWeb graph (Raghavan and
Garcia-Molina, 2003)

Supernode Representation

Raghavan and Garcia-Molina (2003) point out the performance issues of a naïve
graph representation. A lack of a schema to describe the structure of Web graphs
can significantly increase query execution times and thus limit the utility of Web
repositories. They propose the Supernode (S-Node) representation of the Web
graph, which is highly space-efficient, and therefore enables in-memory process-
ing of large Web graphs.

This representation also allows for queries that exceed the capabilities typically
provided by commercial search engines. Their databases are mainly created for
the purpose of responding simple keyword or phrase queries. Even their “expert”
interfaces provide only simple extensions like limiting results to a specific domain.
More sophisticated queries to the Web graph (such as “generate a list of universi-
ties that refer to Stanford researchers working with mobile devices”) are not sup-
ported by commercial search engines. Without efficient data structures and access
methods, search engines are not capable of answering complex graph queries in
acceptable time.

The proposed more complex query systems provide users with the ability to use
three different views on the Web repository at the same time:

1. a collection of text documents which can be searched, ranked, and classified
using keywords or phrases,

2. a huge navigable directed graph with vertices representing pages and di-
rected edges representing hyperlinks, and
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Figure 2.8: Partitioning the Web graph – S-Node representation example (Raghavan and
Garcia-Molina, 2003)

3. a set of relational tables storing properties of webpages (like PageRank,
length, title, and domain) on which relational queries can be applied.

The design process of a system that efficiently answers the queries described above
leads to several challenges. The size and the growth of theWeb lead to correspond-
ing sizes ofWeb repositories, so that even relatively small repositories often consist
of more than a hundred million webpages. Web graphs do not belong to a family
of graphs for which efficient storage structures have yet been developed in graph-
compression literature. Consequently, a direct adaption of known procedures is
not possible.

The S-Node representation helps to face these challenges and to access a Web
repository using the above mentioned three views simultaneously. TheWeb graph’s
nodes and edges are partitioned into two levels of graphs (see Figure 2.7). On the
lower level, several smaller directed graphs are created, each of them containing
only the interconnection within a small subset of webpages. On the top level, a
directed graph is built using low-level graphs as nodes (so-called supernodes). Su-
pernodes are connected with superedges containing link information between the
low level graphs. Observed properties of the Web graph (see Broder et al., 2000;
Kumar et al., 2000) are used to conduct the grouping of pages into supernodes and
the compressing of the lower-level directed graphs.

Note that the S-Node representation does not drop any information belonging to
the original graph. The structure will be defined as follows.

The directed graph of the Web will be denoted with G= (V,E). V (G) refers to
the vertex set of graph G, and E(G) to its edge set. A graph vertex representing a
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page P will also be denoted by P. For a partition P = {N1,N2, . . . ,Nn} of V (G)
(Ni ⊆ V (G) ∀i and Ni ∩Nj = /0∀i �= j), several directed graphs are defined: a su-
pernode graph, n intranode graphs, n positive superedge graphs and n negative
superedge graphs. The different types of graphs are explained in the following us-
ing the simple Web graph example in Figure 2.8, which consists of five webpages
P1, . . . ,P5 that are connected with eight directed links.

The supernode graph contains for each of the n partitions Ni a vertex called
supernode. The five webpages from the example are assigned to one of three
partitions, e.g. pages P1 and P2 form the partition N1. The directed edges between
two supernodes are called superedges. They are created using the following rule:
a directed superedge Ei, j is created from Ni to Nj if there is at least one page in
Ni that points to some page in Nj. In the example, the supernode graph contains
a superedge E1,2 because P2 ∈ N1 points to P3 ∈ N2. Four superedges exist: E1,2,
E1,3, E3,1, and E3,2. A superedge E2, j does not exist for any j, because N2 is only
consisting of P3, which does not have any outlinks.

The interconnections between pages belonging to the same partition Ni are
stored in an intranode graph IntraNodei. In partition N1 of the example, Intranode1
consists of the hyperlinks between page P1 and page P2.

For the links between pages of different partitions, two types of superedge
graphs are defined. Both types can be alternatively used. A positive superedge
graph SEdgePosi,j is a bipartite graph containing those links that point from pages
in Ni to pages in Nj. In the example of Figure 2.8, SEdgePos1,2 contains two
edges representing the two links from P1 ∈ N1 and P2 ∈ N1 pointing to P3 ∈ N2.
SEdgePosi, j is only defined, if there exists a corresponding superedge Ei, j. A neg-
ative superedge graph SEdgeNegi, j is also defined as a directed bipartite graph. It
contains out of all possible links that may point from pages in Ni to pages in Nj
those links that do not exist in the actual Web graph. In the example, SEdgeNeg3,2
contains the link from P5 ∈ N3 to P3 ∈ N2, because out of the two possible links,
the link from P4 ∈ N3 to P3 ∈ N2 exists in the original Web graph. Since all pages
of N1 point to all pages of N2, SEdgeNeg1,2 does not contain any edges.

For each partition P on the vertex set V (G) of G, an S-Node representation
of G, denoted as SNode(G,P), can be constructed using a supernode graph that
points to a set of intranode graphs and to a set of positive or negative superedge
graphs. For memory-economic reasons, either the corresponding positive superedge
graph or the corresponding negative superedge graph is stored for each superedge
Ei, j, depending on which of the two superedge graphs has the smaller number of
edges. The resulting representation of the example is shown in Figure 2.9. As



66 2 Web Structure

Figure 2.9: S-Node representation of a Web graph example (Raghavan and Garcia-Molina,
2003)

SEdgeNeg1,2 has fewer edges than SEdgePos1,2, the superedge E1,2 points to the
negative superedge graph.

The partition of the Web graph must produce intranode and superedge graphs
that are highly compressible, and it must enable queries to be executed only on a
relatively small number of intranode and superedge graphs. Therefore, the gener-
ation of the partition makes use of some observations about Web graphs. Often,
new pages on the Web add links by copying links from an existing page. These
pages have very similar adjacency lists. In this case, a significant number of links
on a page point to other pages from the same domain. Pages with similar adja-
cency lists are likely to be related to each other. These properties of the Web graph
lead to the postulation of the following properties of a well suited partition:

1. Pages with similar adjacency lists are tried to be grouped together.

2. All pages of each partition element belong to the same domain.

3. Out of pages belonging to the same host, those with lexicographically simi-
lar URLs are more likely to be grouped together.

Compared to other schemes for representing Web graphs (see Adler and Mitzen-
macher, 2001; Randall et al., 2002), the S-Node representation reaches a higher
compression and therefore, it scales better, especially if the graph fits in the mem-
ory. This leads to a significant reduction in query execution time. It proves to be 10
to 15 times faster than other schemes. The S-Node representation can also serve
as a high-performing data structure for the methods described in Section 2.4.



2.4 Link Analysis 67

2.4 Link Analysis

Search engines that purely consider textual information when creating their results
face several problems. If they, for example, measure the relevance of a webpage
based on keyword frequencies, they can easily be tricked by webpages stuffed with
these keywords. In the opposite case, webpages may not contain certain keywords,
even if they well describe their contents.

By means of link analysis, additional information can be extracted from theWeb
graph to overcome these problems. This section describes several methods of link
analysis.

2.4.1 Ranking

Link analysis has become an important means for ranking search engine results.
An importance measure can be determined by counting the inlinks of a webpage
and weighting them again with the importance of the linking site. The underlying
hypothesis is that a hyperlink can be seen as a vote from one webpage to another.
In this context, a vote from a more important webpage weighs more than a vote
from a less relevant site. The importance weight of a webpage is then shared
over the webpages it votes for. This leads to a simple recursive definition of the
PageRank ru of a webpage u (Page et al., 1998):

ru = c ∑
v∈Bu

rv
Nv

,

where the PageRank values rv of all webpages v∈Bu that contain hyperlinks point-
ing towards u (backlinks) is divided by the number of links Nv the webpage v con-
tains. A factor c ≤ 1 is introduced for normalization so that the total rank for all
webpages stays constant. The factor c is smaller than one because there are pages
that do not contain any outgoing links. The recursive equation may be computed
by starting with any set of ranks and iterating the computation until it converges.
Arasu et al. (2001b) have shown the convergence of the computation.

Figure 2.10a demonstrates the PageRank of a simple graph using a small exam-
ple of five webpages (Arasu et al., 2001a). For the sake of simplicity, the factor c
is set to c= 1. Webpage 2 distributes its PageRank of r2 = 0.286 via its outgoing
links to webpage 1 and 3. Each webpage receives half of the rank

( r2
2 = 0.143

)
be-

cause page 2 possesses two links. Since page 3 does not have any other incoming
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Figure 2.10: PageRank calculation examples: (a) Simple PageRank (b) Modified PageRank
with c= 0.8 (Arasu et al., 2001a)

links, its rank becomes r3 = 0.143. The rank of page 1 calculates as

r1 =
r2
2
+
r3
2
+
r5
2
= 0.143+0,0715+0,0715= 0,286.

The rank of page 1 is relatively high because page 1 has three incoming links.
In the simple model, page 2 has the same rank as page 1, because it receives all
the rank from page 1. The sum of all ranks is ∑u ru = 1.

Another notation and calculation of the PageRank is starting with a square ma-
trix A with rows and columns corresponding to webpages. Au,v = 1/Nu if a link
is pointing from u to v. Otherwise it is 0. Letting R be a PageRank vector over
webpages, then cR=AR. R is an eigenvector of Awith eigenvalue c> 0. An eigen-
vector of Amay be computed by repeatedly applying A to any non-degenerate start
vector.

In this simplified model, a problem occurs if for example two pages point to
each other but have no outgoing links. This will happen after removing the dotted
arrow in Figure 2.10a between page 5 and 1. If another webpage points to one of
these pages (in this case, page 3 points to page 4), the loop consisting of 5 and 4
will accumulate rank during the iteration but will never distribute any rank to other
pages. For this reason, this kind of loop is called a rank sink.

The sink problem can be faced by assigning the decay factor c to a value 0 <
c< 1, that means assigning only the fraction c of the PageRank to the nodes, and
distributing the remaining rank among all the pages on the Web. This leads to the
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modified PageRank definition r′u:

r′u = c ∑
v∈Bu

r′v
Nv

+
(1− c)
m

,

where m is the total number of nodes in the graph. The sample in Figure 2.10b
shows the graph of Figure 2.10a without the link 1→ 5 and ranks calculated for
c= 0.8. Pages 5 and 4 now have higher ranks, because they “collect” rank which
they do not give away.

Another, quite intuitive interpretation of PageRank leads to the random surfer
model. Corresponding to the simple PageRank definition, the model bases on the
assumption that there is a person randomly surfing the Web, that means he or she
clicks on successive links of visited webpages at random. The probability of being
on a certain page corresponds to the PageRank vector R. It follows the rules of a
random walk (Motwani and Raghavan, 1995) on the Web graph.

In the simple model (Figure 2.10a), the random surfer can get stuck in the loop
between the pages 4 and 5. The additional summand in the modified model (Figure
2.10b) expresses that the surfer periodically gets “bored” and jumps to a random
page on the Web instead of following a link. The factor c specifies the frequency
the surfer gets bored.

The calculation of PageRank using power iteration is described by Arasu et al.
(2001b). They have compared different methods and graph structures, under which
the convergence of iterations works faster than computing the eigenvector.

Another approach for computing ranks is also based on the random surfer model.
The Page Reputation algorithm proposed by Rafiei and Mendelzon (2000) extends
the PageRank algorithm by considering the search term τ in the calculation. The
reputation of a page u is defined as the probability that a random surfer who looks
for the topic τ visits page u.

Let |Uτ | be the total number of pages on the Web containing the term τ . The
probability that the surfer visits page u in a random jump is

R0(u,τ) =

{
c
|Uτ | if term τ appears on page u

0 otherwise.

If one considers that the surfer follows n links before he reaches a certain page,
the reputation can be calculated in an iterative process. Let Nu be the number of
outgoing links of page u. Intuitively, the probability that a surfer visits page u
after visiting page v through the link v→ u is 1−c

Nv
Rn−1(v,τ) where Rn−1(v,τ) is

the probability that the surfer visits page v for topic τ .
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Thus, the probability Rn(u,τ) of visiting page u for topic τ after n steps can be
determined as follows:

Rn(u,τ) =

⎧⎨
⎩

c
|Uτ | +(1− c)∑v∈Bu R

n−1(u,τ)
Nv

if term τ appears on page u

(1− c)∑v∈Bu R
n−1(u,τ)
Nv

otherwise.

When increasing the number of iterations during the calculation of probabilities
Rn(u,τ), the reputation rank πu,τ of a page u on a topic τ is defined as

πu,τ = lim
n→∞R

n(u,τ).

Rafiei and Mendelzon prove that the notion of reputation rank is well-defined,
i.e. for every term τ and every parameter 0 < c < 1, there is a unique probability
distribution πu,τ , provided that every page has at least one outgoing link. They
calculate the matrix R where a row corresponds to a webpage and a column to
each term that appears in the webpage containing the reputation values using an
iterative process and show the convergence of the algorithm.

Zhang and Dong (2000) extend the random surfer model with more parameters
and let the random surfer follow a tendency matrix when jumping from page to
page. Let the relevance ω · sim(Su,q)measure the similarity of the content of web-
page Su and the user’s query q and let the authority μ be a measure of references
made to the webpage. Further, let the integrativity θ measure the references made
in the webpage and let the novelty metric ε measure the difference of a webpage
from other pages. At each time of the random walk, the random surfer viewing a
webpage Su from the set of pages returned by a search engine at time t has four
choices: staying on pages Su,, clicking on a link v, going back, or selecting another
webpage from the results.

The tendency matrixW showing his possible behavior is represented as

Wuv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω · sim(Su,q) if u= v
μ if v ∈ Nu
θ if u ∈ Nv
ε otherwise,

with the relevance sim(Su,q) of result Su for the query q and 0< ω,μ,θ ,ε < 1 and
ω +μ +θ + ε = 1.

The normalized tendency matrix results in a probability matrix T for the set of
webpages S. A holomorphic and homogeneous Markov chain with the transition
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matrix T converges in a unique distribution, which can then be used as a ranking
criterion.

Agarwal and Chakrabarti (2007) have analyzed and enhanced algorithms for
random walks that are used for ranking vertices in graphs. A link-based ranking
scheme for search engines that are focused on a certain topic is presented by Abou-
Assaleh et al. (2007).

2.4.2 Authorities and Hubs

Beyond the ranking of search results, link based techniques can help to identify
webpages that serve as authorities or hubs for a certain topic in the Web. Klein-
berg (1999) introduced the notion of authority in relation to a broad-topic query.
The question raised for a particular webpage is how to determine whether this web-
page is authoritative in the context of the topic regarded. An appropriate model is
supposed to filter the most authoritative pages out of a collection of relevant pages.

Such a model quickly reaches the limits of purely text-based analysis. Assuming
for example that one of the most authoritative sources for the query “Harvard” will
be the homepage www.harvard.edu of the Harvard University. Looking at the
millions of pages this query returns, most of them contain the word “harvard”
and there is no purely endogenous measure based on information contained in
each page that can lead to a decision about its authority. Among the pages found,
www.harvard.edu is neither the one that uses the term “Harvard” most often nor
gives it any other valid hints, why this page should be more authoritative than other
pages.

The problem for text-based search engines grows if the search term does not
occur at all on natural authority sites. E.g., the query term “search engine” should
lead to some major search engines, but many of them do not use this term on their
pages. The same is true for big automobile brands, who do not write the term
“automobile manufacturer” on their website.

Analyzing the hyperlink structure can help to overcome the above mentioned
problems. Like in the context of PageRank, a hyperlink is interpreted as a consid-
erable amount of latent human judgment. The creator of a page a linking to a page
b has conferred authority to page b. Measuring the authority by regarding inlinks
helps to solve the problem that many pages are not self-descriptive.

As basis for the HITS (Hyperlink Induced Topic Search) algorithm a link-based
model for the conferral of authority is proposed. It focuses on the relationship
between the authorities for a topic and those pages that link to many related au-
thorities. Latter pages are called hubs.
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Figure 2.11: The HITS algorithm – base-set creation

The algorithm works on a focused subgraph of the Web that will be constructed
from the results of a keyword query sent to a text-based search engine (see Figure
2.11). The focused subgraph consists of a root set and an expanded set (base set)
of webpages related to the topic of the original query. After the construction of
the focused subgraph, which is described in the following, its link structure will be
analyzed to identify authorities and hubs.

Like earlier in this chapter, the Web will be regarded as a directed graph G =
(V,E) based on webpages (set of verticesV ) and hyperlinks (set of edges E). G [W ]
is a subgraph consisting of a subset of pagesW ⊆V and its edges that correspond
to all the links between the pages inW .

An ideal subset used as a focused collection of pages for further analysis should
own the following properties:

1. The collection is relatively small. This helps to limit the computing times to
a manageable amount.

2. The collection is rich in relevant pages. This makes it easier to find good
authorities.

3. The collection contains most (or many) of the strongest authorities. This is
a prerequisite to achieve good results.

For the creation of such a collection, Kleinberg (1999) proposes the process shown
in Figure 2.11. Instead of using the whole result setQσ of a query σ , the following
approach is chosen mainly for two reasons. First, the set Qσ is in many cases two
large to satisfy condition 1. Second, not all authorities do necessarily contain the
query term σ , and for this reason, they may not be contained in Qσ . Thus, the
result set will be limited to t pages (typically t := 200). In a second step, the set
will be expanded by pages linking from or to the result set.

The base-set generation process will be described by means of Algorithm 2.1.
The CREATESUBGRAPH procedure starts with a keyword query σ sent to a text-
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Algorithm 2.1 HITS algorithm: Base set generation (Kleinberg, 1999)

CREATESUBGRAPH(σ ,E , t,d)
σ: a query string
E : a text-based search engine
t,d: natural numbers

let Rσ denote the top t results of E on σ
set Sσ := Rσ
for each page p ∈ Rσ do
let Γ+(p) denote the set of all pages p points to
let Γ−(p) denote the set of all pages pointing to p
add all pages in Γ+(p) to Sσ

if |Γ−(p)| ≤ d then
add all pages in Γ−(p) to Sσ

else
add an arbitrary set of d pages from Γ−(p) to Sσ

end
return Sσ

based search engine E . The top t results, building the root set Rσ , are stored as
the initial base set Sσ . For every p in the root set, all pages in the set Γ+(p)
page p links to (outlinks) are added to the base set Sσ . Figure 2.12 illustrates the
relationship between the root set and the base set. Γ−(p) denotes those pages that
link to page p (inlinks). A maximum number of d pages of Γ−(p) is added to the
base set Sσ .

Constructing a base set using the CREATESUBGRAPH procedure with t = 200
and d = 50 typically satisfies the properties 1 – 3. and returns a base set in the
range of 1000 – 5000 pages. In order to avoid links that are only created for
navigational purposes on the same website, all links between pages in the same
domain are deleted. The resulting subgraph will be denoted as Gσ .

After having created a small subgraph Gσ that is relatively focused on the query
topic and contains relevant pages and strong authorities, the next step is to extract
these authorities. Ranking the pages only by in-degree involves some significant
problems. In the subgraph Gσ , there may exist strong authorities regarding the
search topic as well as universally popular pages that are not necessarily authorities
with respect to the topic. An analysis of those pages that point to authorities shows
an overlap in the sets of these pages. Those pages that have links to multiple
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Figure 2.12: HITS algorithm – Expanding the root set into a base set (Kleinberg, 1999)

relevant authority pages are called hub pages. Hub pages group together authorities
of a common topic and help to discriminate unrelated pages of large in-degree.

This leads to a definition of hubs and authorities based on their mutually rein-
forcing relationship:

1. A good hub is a page that points to many good authorities.

2. A good authority is a page that is pointed to by many good hubs.

The quality of authorities and hubs is expressed with weights assigned to the web-
pages in the subgraphGσ . Each page pwill be assigned an authority weight xp and
a hub weight yp. Both are maintained in a normalized way so that ∑p∈Gσ (x

p)2 = 1
and ∑p∈Gσ (y

p)2 = 1. Thus, the authority weights are calculated as

xp := ∑
q|(q,p)∈E

yq

(later referred to as I operation), and the hub weights are calculated as

yp := ∑
q|(p,q)∈E

xq

(later referred to as O operation).
Both operations are performed in alternation during the ITERATE process (see

Algorithm 2.2), storing the weights xp in a vector x and yp in a vector y. The
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Algorithm 2.2 HITS algorithm: calculation of hubs and authority values (Klein-
berg, 1999)

ITERATE(G,k)
G: a collection of n linked pages
k: a natural number

let z denote the vector (1,1,1, . . . ,1) ∈ Rn
set x0 := z
set y0 := z
for i := 1 to k
apply the I operation to (xi−1,yi−1)

obtaining new x-weights x′i
apply the O operation to

(
x′i−1,yi−1

)
obtaining new x-weights y′i

normalize x′i obtaining xi
normalize y′i obtaining yi

end
return(xk,yk)

1 2 3

4 5 6

y1=0
x1=0.408

Authorities

y4=0.408
x4=0

Hubs

y2=0
x2=0.816

y5=0.816
x5=0

y3=0
x3=0.408

y6=0.408
x6=0

Figure 2.13: Authority and hub values of a simple graph

sequences of vectors xk and yk converge to fixed points x∗ and y∗, respectively, for
sufficiently large values of k. For a proof of convergence see Kleinberg (1999).
Figure 2.13 shows the authority and hub values after the execution of the HITS
algorithm on a simple graph.
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The procedure can also be formulated in matrix notation as follows. Based on
an n×n adjacency matrix A containing the values

ai, j =

{
1 if page i points to page j
0 otherwise,

the authority values written as vector x= (x1,x2, . . . ,xn) and the hub values written
as vector y= (y1,y2, . . . ,yn) can be calculated as x← AT y and y← Ax.

This leads to the calculation of the authority vector

x← AT y← ATAx=
(
ATA

)
x

and the hub vector
y← Ax← AAT y=

(
AAT

)
y.

For any non-degenerate choice of the initial vector, the result of applying the
power iteration technique to ATA converges to the principal eigenvector of ATA
(Kleinberg et al., 1999).

The output of the HITS algorithm consists of a hub list and an authority list
sorted by the respective weights. The first step (creation of the subgraph) uses
textual search engines whereas the second step (iterative calculation of the values)
totally ignores textual information. Anyway, the HITS algorithm returns good
results for different types of queries.

The quality of the results depends not only on meeting the above described
properties of the graph and a sufficient number of links in the graph. Bharat and
Henzinger (1998) have discovered further conditions under which the algorithm
does not come to satisfying results:

1. Mutually reinforcing relationships between hosts may distort the result, if
for example a set of documents from one host points to a single document
on a second host. The first host’s contribution to the authority score does not
reflect the real impact of this host. In the reverse case, the hub score can be
influenced by a document pointing to multiple pages of a second host.

2. Automatically generated links of Web authoring tools do not reflect a hu-
man’s “vote” for a page and may distort the results.

3. Non-relevant pages can be often found in the neighborhood graph. If there
are different well-connected nodes belonging to another topic, they can lead
to a topic drift. In this case, high-ranked authorities and hubs do not belong
to the original topic.
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The first problem can be solved by distributing the fractions of one vote from one
host to one page of another host, i.e. weighting the links from k pages from one
host to another with 1

k . Problems 2 and 3 can be addressed by an additional content
analysis of the neighborhood graph, leading to an improved algorithm. Chakrabarti
et al. (1999a) address the limitations of HITS by assigning non-negative weights
to each link, depending on the query terms and the endpoints of the links.

Further improvements of the HITS algorithms are described by Borodin et al.
(2001). An evaluation of the effectiveness of HITS in comparison with other link-
based ranking algorithms was performed by Najork et al. (2007). HITS outper-
formed PageRank in a large-scale study based on a crawl of 463 million webpages
containing 17.6 billion hyperlinks and referencing 2.9 billion distinct URLs.

The combination of link-based and text retrieval algorithms delivers better re-
sults than PageRank in many contexts. Link-based features generally perform bet-
ter for general queries, whereas text-based algorithms perform better for specific
queries.

2.4.3 Other Link-based Methods

Besides the ranking algorithms and the authority/hub calculation, link analysis
can serve for a variety of different Web mining applications. The following exam-
ples present link information as a valuable input for Web search and Web analysis
methods.

Related Webpages

Dean and Henzinger (1999) use connectivity information in order to find related
pages on the Web. Here, the search process is triggered by a URL, where tradi-
tional search engines receive user queries. The output is a set of related webpages,
i.e. webpages that address the same topic as the original page.

Two algorithms, the companion algorithm and the co-citation algorithm, are
purely based on linkage, neglecting the content and the usage of pages. The com-
panion algorithm calculates hub and authority scores using the modified version
of HITS (Kleinberg, 1999) based on a vicinity graph of the input URL u. In the
definition of the vicinity graph, the terms parent and child are used for linked web-
pages as follows: if a hyperlink points from page w to page v, then w is a parent of
v and v is a child of w. The vicinity graph of u consists of

1. the page u itself (the query URL),

2. up to B parents of u (“go back”), and for each parent up to BF of its children
different from u (“back-forward”), and
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Figure 2.14: Vicinity graph of a page u

3. up to F children of u (“go forward”), and for each child up to FB of its
parents different from u (“forward-back”).

After eliminating certain URLs which are obviously unrelated to most queries (one
example is a link to www.yahoo.com), the vicinity graph is built selecting parents
and children from the Web graph (compare Figure 2.14). If a parent pi has too
many children, e.g. more than BF + 1 children, those BF

2 children preceding the
link from pi to page u and those BF

2 children succeeding the link from pi to page u
on page pi are chosen.

In a next step, duplicates are eliminated, because many pages are duplicated
across different hosts. Two pages are defined as near-duplicates if they have more
than ten links and if they have at least 95 % of their links in common.

Edge weights are assigned following the improved model of Bharat and Hen-
zinger (1998), described in 2.4.2. On the resulting weighted graph, the improved
HITS algorithm is used to determine the highest authority scores (excluding u it-
self) as result.

A simple alternative approach for finding related pages is to use the co-citation
algorithm. Two pages are co-cited if they are siblings, i.e. if they have a common
parent. The degree of co-citation is determined by the number of common parents.
The algorithm chooses up to B arbitrary parents of u. For the parent pi, it adds up
to BF children of pi to a set S. The result of the algorithm consists of those pages
of the set S that are most frequently co-cited with u.

In a user study, both algorithms outperform the precision of NETSCAPE browser’s
“What’s related?” feature (Version 4.06) for finding related pages, even though
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NETSCAPE takes into account user behavior as well as content data additionally to
hyperlinks.

Hub Synthesis

The model of Achlioptas et al. (2001) uses three components of Web search in
a combined approach: the link structure of the Web, the content generation pro-
cess and the human searcher’s query generation. They investigate the correlations
between these components and present a Web search algorithm based on spectral
techniques.

Related Hosts in the Host Graph

Bharat et al. (2001) regard the Web graph with vertices on different hierarchical
levels. Domains, hosts and websites build intermediate levels of affiliation. They
represent the connectivity between hosts by a directed graph, with hosts as vertices
and weighted edges representing the number of hyperlinks between the pages of
different hosts. Based on the host graph, they describe an algorithm which finds
related hosts with high precision.

Categorization

Chakrabarti et al. (1998) expand text-classification algorithms by hyperlink infor-
mation. They extract semantic information contained in hyperlink relations. Since
link information is noisy, naïve use of terms in the link neighborhood of a docu-
ment can even degrade accuracy. They propose statistical models and a classifi-
cation technique by exploiting link information in a small neighborhood around
documents. Their experimental results show that using hyperlink classifiers in ad-
dition to text classifiers significantly reduces the error that may emerge during the
classification process.

Identification of Communities

The Web graph is also used to identify communities in the Web, i.e. groups of
individuals who share a common interest (Kumar et al., 1999). Explicitly-defined
communities are easy to find in appropriate newsgroups, portals, Web rings, or
resource collections in directories. In addition to that, the chaotic nature of content
creation in the Web has resulted in many more implicitly-defined communities.
These communities often focus on a level of detail typically too fine to build large
resource sites. Kumar et al. developed methods to identify implicit communities
by analysis of the Web graph for three reasons:

1. Implicit communities can provide valuable information resources for a user,
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Figure 2.15: Community identification with maximum flow methods (Flake et al., 2002)

2. studying implicit communities gives insights into the evolution of the Web
because they somewhat represent its sociology, and

3. distinguishing between these communities can target advertising at a very
precise level.

Kumar et al. characterize communities by dense directed subgraphs of the Web.
For the identification algorithm, the notion of potential fans is introduced. Fans
are derived from specialized hubs created by e.g. a HITS algorithm. Based on
in-degree and out-degree analysis of potential fans, appropriate candidates are se-
lected and combined into non-overlapping cores. Experimental studies brought up
several communities that were not explicitly described in the Web before.

Flake et al. (2002) use maximum flow algorithms to identify communities. They
define a community as a collection of webpages built in such a manner that each
member page has more links within the community than outside of the community.
Maximum flow methods separate a graph into two subgraphs (see example in Fig-
ure 2.15) with any choice of a source vertex and a sink vertex. In the example, the
three dashed links are removed to separate the left from the right subgraph. Flake
et al. repeatedly apply a maximum flow procedure on a graph to identify multi-
ple communities. Generally, the identification of a naturally formed community
is intractable, because the basic procedures belong to the family of NP-complete
graph-partitioning problems Garey and Johnson (1979). Assuming the existence
of one or more seed websites, an algorithm based on the s− t maximum flow
problem (Ahuja et al., 1993) is proposed that efficiently identifies communities in
a polynomial time.
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Algorithm 2.3 Maximum flow community (Flake et al., 2002)

procedure Maximum-Flow-Community
input: graph G= (V,E); set S⊂V; integer k .

Create artificial vertices, s and t and add to V.
for all v ∈ S do
Add (s,v) to E with c(s,v)≡ ∞.

end for
for all (u,v) ∈ E do
Set c(u,v)≡ k.
if (v,u) /∈ E then add (v,u) to E with c(v,u)≡ k.

end for
for all v ∈V; v /∈ S∪{s, t} do
Add (v, t) to E with c(v, t)≡ 1.

end for
call: Max-Flow(G,s, t).
output: all v ∈V still connected to s.

The s− t maximum flow problem is defined on a directed graph G = (V,E)
with edge capacities c(u,v) ∈ Z+ and two vertices s, t ∈ V . Its goal is to find the
maximum flow that can be routed from the source vertex s to the sink vertex t and
that obeys all capacity constraints. The maximum flow of the network is the same
as the flow through the minimum cut that separates s and t (Ford and Fulkerson,
1956).

The algorithm (compare Algorithm 2.3) interprets the hyperlinks as undirected
edges. Starting with a set of seed webpages S ⊂V , it identifies one community at
a time applying the max-flow algorithm on the graph G.

Experimental results have identified communities of approximately 200 web-
pages, where the majority was found to be highly topically related.

Spam Identification

As already mentioned in the context of the algorithm of Dean and Henzinger,
analyzing the link structure can also discover links that are artificially created for
the only purpose of distorting results of search engines.

Spam in the context of static rank means, that webmaster are creating site clus-
ters, which often consist of very similar sites, finally linking to one domain or
document only. This kind of spam cluster can consist of millions of sites, not con-
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taining any valuable content. This way, the static rank is becoming more and more
a measure of the marketing budget of a site or the cleverness of the webmaster of
a domain, rather than a measure of “real” reputation or content quality. As a result
of this development, the importance of the static rank as a tool for determining the
quality or the relevancy of a site is decreasing. A classification of different types
of spam can be found in Henzinger et al. (2002).

If a link structure of a subgraph differs significantly from naturally created struc-
tures, this is an identifier for spam (see Subsection 4.4.1). In the following, an
algorithm is proposed to identify the kind of spamming that targets the static rank.
The basic idea of the static rank is reasonable – the more important sites refer (link)
to a site, the more important it is. There is a way to discriminate between “natural
grown” link clusters and “artificial” ones (spam).

In order to find a quantitative method that can discriminate between these two
types of link clusters, the statistical distribution of the relevancy Rsj is analyzed
(for the definition of Rsj see Section 1.4). A function is introduced that describes
the statistical distribution of the relevancy Rsj of the documents d j pointing to the
document di:

φ(Rsj) = e−
(Rsj−Rs0)

2

σ2 ,

where Rs0 is the average static rank of all sites, linking to the center of this cluster
di. The parameter σ defines the standard deviation of the distribution.

The above mentioned types of clusters can be discriminated, using the distribu-
tion φ – natural grown clusters contain links from an inhomogeneous set of sites,
for example, the links to a site of a well known university will come from very
small (amateur) sites of students, employees and alumni (with a low PageRank),
via semi professional institutional sites (spin offs, research partners, ...) up to sites
of other highly ranked universities or institutes. The artificial link cluster con-
sists of automatically generated sites, each of them usually optimized for different
keywords, but having approximately the same static rank. As a result of this it is
possible to introduce a “cut off” criteria based on the above distribution function.
A cluster is most likely spam, if the condition

σspam < σcritical (2.1)

is fulfilled. Here σcritical is an empirical parameter, which can be determined from
the analysis of known natural and artificial clusters (or from the software, gener-
ating the sites of the spam cluster). Estimates have shown, that one can expect a
result like σnatural� σartificial.
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A short test example can demonstrate this: the distribution of the PageRanks of
sites linking to the homepage of Steven Hawking3 analyzed based on the distribu-
tion function above have a width of σ2 = 1.1, while the sites belonging to a typical
spam cluster have a PageRank distribution with σ2= 0.5...0.74. The parameter σ
can be used for separating between these two types of link clusters.

Further methods for detecting spam using link information can be found in Bec-
chetti et al. (2006) and Gyöngyi et al. (2006). Saito et al. (2007) have compared
different graph algorithms for spam detection in a large-scale study.

Clustering and more

Clustering algorithms based on link analysis will be described in Chapter 3. More
graph-theoretic Web algorithms can be found in Deo and Gupta (2001a).

2.5 Data Structures

This section compares different data structures for storing the Web graph and an-
alyzes their applicability on the HITS algorithm. As discussed in Section 1.3 and
Subsection 2.3.3, the selection of data structures used to store Web content has a
great impact on the possibilities of processing the data. In the context of the HITS
algorithm, URL names, links with other pages in the base set, hub and authority
values have to be stored for each page involved.

When evaluating data structures for their suitability, one has to take into account
the following properties:

1. Performance: How fast can data be read or written, and how fast is data
access?

2. Scalability: How do performance and manageability change with increasing
amounts of data?

3. Memory requirements: How much memory is used by data structures, and
how is its impact on performance and scalability?

4. Compatibility to the ranking algorithm: Is the data stored in a structure that
is optimized for the algorithm used, or are additional data transformations
necessary?

3www.hawking.org.uk
4The data of this example is based on the PageRank indicator of the GOOGLE toolbar (toolbar.

google.com/intl/de).
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Figure 2.16: Sample link structure with URL table and adjacency matrix A

2.5.1 Feasible Data Structures

Based on the list of requirements, three different data structures are chosen to
be regarded in detail. After describing the implementation of a straight-forward
approach of the matrix notation (compare Subsection 2.4.2), two alternative data
structures will be described.

Adjacency Matrix

The subgraph of the base set G(V,E) is stored in a |V |× |V | adjacency matrix A.
The implementation of the adjacency matrix approach will be described using an
example.

Figure 2.16 shows a sample link structure consisting of a subgraph of eight
vertices, named with the letters a to h. The vertices correspond to the URLs
www.node-a.de to www.node-h.de. The table in the center of the figure shows
an assignment of matrix column and row numbers to the URL name.

The adjacency matrix A in Figure 2.16 consists of a row i and a column j for
each page of the base set. Row i contains information of the outlinks of page a, i.e.
the entry “1” in each column j for a page of the URL list page a is pointing to. An
algorithm is able to perform calculations based on this matrix without accessing
the base-set data.

For the calculation of an iteration of the HITS algorithm, only two additional
array structures are needed to store hub and authority values besides the adjacency
matrix. The authority values xi of iteration k are calculated out of the adjacency
matrix and the hub values y j of iteration (k−1) using the I operation to
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and the hub values using theP operation analogously to⎛
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.

Each update operation only consists of one matrix multiplication. In this case,
the data structure is adapted to the one of the original algorithm. Two problems
arise using the matrix data structure. The sizes of the base set and thus of the
adjacency matrix are not known a priori, so that the algorithm cannot allocate the
memory in advance. In practice, link densities of base sets are typically lower than
1 %. The consequence is a sparse adjacency matrix with many zero entries that
lead to more than 99 % of operations without contribution to the result.

If one assumes a sample base set with 5’000 vertices and a link density of
0.5 %, resulting in an adjacency matrix of 5’000 · 5’000 = 25’000’000 entries,
then 25’000’000 ·0.995= 24’875’000 entries are zero entries. After 20 iterations
of the algorithm, almost one billion irrelevant operations are performed (2 · 20 ·
24’875’000= 995’000’000).

A solution for both problems can be achieved by storing only those matrix en-
tries that are relevant for the calculation.

Transformation into an Array Structure

In the following, a data structure for storing only relevant values of the adjacency
matrix will be introduced. Two array structures are used to store inlink and outlink
data. Even though both arrays contain the same information, the redundancy of
using two arrays will be accepted for the sake of an easy access to both information
types.

The array structures are filled as follows. The adjacency matrix is processed
column by column from the left to the right side in order to extract inlink informa-
tion. In the example, the vertex with number i = 1 has the vertices with numbers



86 2 Web Structure

Figure 2.17: Transformation of adjacency matrix into two arrays

j = 5, j = 6 and j = 7 as inlink, thus the inlink array stores these numbers as
shown in Figure 2.17. A separator value “−1” occurs in the array after the entries
of each column’s vertices. For creating the outlink array, the rows of the matrix
are processed analogously.

Whereas the adjacency matrix of the example needs to store 8 · 8 = 64 entries,
both arrays with 15 entries each (including separators) together consume only 30
entries, thus less than half of the memory consumption. In more complex link
topologies the difference increases even more because the proportion of separators
compared with the total of entries decreases.

For the HITS algorithm, each array only has to be processed once per iteration.
During each iteration, the array only needs to be sequentially passed through, with-
out any additional transformations or jumps. In order to calculate the hub value y0
for vertex 0, the outlink array is read up to the first separator value. The resulting
values are the outlinks {2,3}. Using these values in the formula of the I oper-
ation, the hub value calculates to y0 = x2 + x3. The next value in the array is 4,
which leads to the calculation y1 = x4. The complete set of calculations performed
for each iteration resulting from the inlink and outlink array is shown in Table 2.1.

Even though the array structure significantly reduces the number of calcula-
tions, there are two remaining disadvantages. The array structure needs memory
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# Authority Value (I
operation)

0 x0 = y5
1 x1 = y5+ y6+ y7
2 x2 = y0
3 x3 = y0
4 x4 = y1
5 x5 = 0
6 x6 = 0
7 x7 = 0

# Hub Value (O
operation)

0 y0 = x2+ x3
1 y1 = x4
2 y2 = 0
3 y3 = 0
4 y4 = 0
5 y5 = x0+ x1
6 y6 = x1
7 y7 = x1

Table 2.1: Calculation of authority and hub values based on the array information

additional to the adjacency matrix, and the transformation process needs a lot of
computation time without any information gain.

List Structure

In order to overcome the problems of the array structure, a data structure without
using an array for the adjacency matrix is presented in the following.

Two possibilities are considered to store the base-set data. First, each vertex of
the base set can be stored together with their inlinks and outlinks. Second, the set
of inlinks and the set of outlinks can be stored as two separate objects.

The first alternative results in a large number of lists in the memory (one per
page) and thus in a worse performance. A better performance will be expected
from the second alternative as only two instances (one for inlinks and one for
outlinks) have to be accessed.

The array structure of the adjacency matrix allows for reading links from both
directions, i.e. it is as easy to directly read the inlinks of any page as to read its
outlinks. Modeling the data structures without an array still leads to maintaining
two different structures for inlinks and outlinks to ensure a quick access, even
though both structures contain the same information.

Storing the inlink and outlink information in an array using the above described
line-by-line and column-by-column approach is not possible without an adjacency
matrix array. Processing one link after the other leads to a situation that at least the
starting vertices or the ending vertices of the links are not sorted in an ascending
order. That means for the storage in an array, that the storage position, e.g. for an
outlink, cannot be known in advance if there are outlinks not yet processed to be
stored prior in the array. The problem of the unknown position can be solved by
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Figure 2.18: Graph modeling using doubly-linked lists

either leaving vacant spaces in the array to be filled later or by not leaving spaces
and later – if necessary – perform insert operations on the array. The first solution
destroys the memory advantages and the second solution the performance gains of
the array structure.

Both problems can be avoided by using doubly-linked lists, because new ele-
ments can be inserted at arbitrary locations in the list. After creating an inlink
and an outlink list, two pointers to elements of each list have to be stored for each
URL like shown in Figure 2.18. The navigation through the lists can be performed
analogously to the one used for the above described array structures. Thus, the
adaption to the HITS algorithm is similar to the array from the transformed adja-
cency matrix. It needs less memory, because the lists’ sizes only exhibit a linear
growth with the base-set size. The lists can be filled without the time-consuming
transformation process. The navigation through the lists is slower than through
arrays. A more profound analysis of performance, memory needs and scalability
is subject of the next subsection.
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Array Structure List Structure
Base Set one-dimensional

string array
one-dimensional

string array
Connection pointers to array

positions
pointers to list

elements
Inlinks one-dimensional

integer array
doubly-linked list

Outlinks one-dimensional
integer array

doubly-linked list

Adjacency Matrix two-dimensional
Boolean array

-

Table 2.2: Evaluated data structures

2.5.2 Evaluation

Among the data structures presented in Subsection 2.5.1, the first one – the adja-
cency matrix – will be excluded from further consideration because of its scala-
bility problems. The remaining two structures – the adjacency matrix transformed
into an array structure and the list structure – will be evaluated based on their
memory demand, their performance and their scalability. For this purpose, both
data structures were implemented in a program calculating the hub and authority
values with the HITS algorithm. Table 2.2 gives an overview of the main elements
of both data structures.

Resources

The data structures and algorithms were implemented in C++ under MICROSOFT

VISUAL STUDIO .NET 2003. For the measurements, a personal computer with
an ATHLON XP 1800+ CPU and 256 MB RAM connected with a 266 MHz bus
was used. WINDOWS XP was used as operating system. During the tests, only
necessary processes of the operating system were active. Test times are deter-
mined using the clock-operation of the system clock in milliseconds (ms). Values
lower than 10 ms cannot be captured and will be replaced in the tables by “< 10”.
The memory demand is determined using the task manager of WINDOWS XP and
recorded in kilobyte (kB).

Experimental Data

For the following measurements, eight data sets of different sizes and link densities
were created using arbitrary search queries and two different search engines. The
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Set Query
Search
Engine

URLs
in

Root
Set

URLs
in

Base
Set

In-
links

Out-
links

Link
Density

A “Sport Basketball” Alltheweb 25 422 93 364 0.257 %

B “Rentenreform” Alltheweb 500 1866 482 1791 0.065 %

C “Riesterrente” Alltheweb 500 2043 605 5880 0.155 %

D “Suchmaschine” Google 100 3811 2867 1359 0.029 %

E “Suchmaschinen” Google 100 3843 1388 3329 0.032 %

F “Kleinberg Hits” Google 250 4287 481 4134 0.025 %

G “Lastminute” Alltheweb 150 7656 6361 2035 0.014 %

H “Search Engines” Alltheweb 100 9065 4745 5943 0.013 %

Table 2.3: Test data sets

content of the query and the search engine used only have an inferior impact on
the time measurement results.

Table 2.3 lists the examined data sets A to H. Based on root sets of 25 – 500
URLs, base sets of between 422 and 9’065 URLs are generated. Their link density

|E|
|V | · (|V |−1)

is calculated as the number of edges |E| of the base set graph G(V,E) divided by
the maximum possible number of existing links |V | · (|V |−1). The link density
varies from 0.013 % to 0.257 %. The base sets were selected in a way that the
relation from inlinks and outlinks varies, because the storage methods for both
link types differ.

Memory Demand

The memory demand of both data structures depends on the preset maximum size
(MAX) of URL sets, because the program reserves system resources based on this
value. For a maximum size of MAX=10’000 URLs, the adjacency matrix needs an
array of 10’000 fields in order to store the URLs and a matrix of 10’000·10’000
entries to store the link information. The list-based software starts with an array
for the URLs and dynamically creates lists for the link structures during run-time.

Table 2.4 shows the observed memory demand of both data structures for dif-
ferent maximum sizes of URL sets during the experiments conducted. All values
contain a fix minimum memory demand of approximately 7’500 kB for the user
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URL Limit
(MAX) 1’000 5’000 10’000 100’000

Array
Structure

∼9’160 kB ∼57’000 kB ∼205’000 kB ·

Linked List ∼7’800 kB ∼8’900 kB ∼10’500 kB ∼28’500 kB
Table 2.4: Observed memory demand of different maximum base-set sizes

interface and methods. The memory demand for the array structure of 100’000
URLs could not be experimentally determined due to memory restrictions of the
hardware used. This memory demand is estimated to be ≥20’000 kB.

Whereas the array structure’s memory exhibits quadratic growth with the value
MAX, the linked list’s growth is linear, both adjusted by the fix minimum memory
demand of 7’500 kB. The linked list’s memory demand additionally depends on
the actual link structure and is hardly predictable in advance.

Performance and Scalability

For time-measurement purposes, several breakpoints are set into the program flow,
in a way that other operations like read or write to harddisk or Web access are
excluded. The starting and ending points of a measurement are always placed
directly before and after the corresponding operation, respectively.

The breakpoints are explained in the chronological order of the program flow.
The first breakpoint is placed in the load routine of the root set. It measures the
time the program needs to store links into memory using the appendmethod. Due
to the low quantity of URLs processed, the durations are lower than the minimum
measurable time of ten milliseconds and thus cannot be considered.

The next two breakpoints are placed in the load routine, where inlink and out-
links are stored in the respective data structure. Each set was processed three
times, and the mean values of processing times between the start and the end of
the appendmethod were calculated. Table 2.5 shows the processing times of load-
ing the inlink and outlink information of each test data set in the array structure as
well as in the linked list.

Larger data sets need more time to append all links (inlinks and outlinks) than
smaller sets. The processing time exhibit an approximately quadratic growth with
additional URLs. A reason for this observation is that each newly found URL
has to be verified whether it already exists in the base set. Moreover, a multiple
insertion of the same link has to be avoided. For this reason, the set of already
captured links has to be scanned for the existence of the new link.
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Store Inlinks (append) Store Outlinks (append)
(ms) (ms)

Set
Array

Structure Linked List Array
Structure Linked List

A 44 48 70 100
B 791 801 1’533 1’762
C 1’072 1’154 3’235 3’853
D 7’761 7’962 1’062 1’202
E 4’946 4’932 3’996 4’577
F 2’003 2’063 9’229 10’305
G 35’632 36’924 2’304 2’364
H 36’263 38’495 5’547 5’679

Table 2.5: Duration of load routines

A significant difference between the results of inlinks and outlinks can be no-
ticed. This difference results from the program sequence where the outlinks are
always added to the set earlier than the inlinks. The verification for existence of a
URL has to be performed at the time inlinks are added. The probability of a URL
already being in the set increases with the number of links between sites. The
time the verification needs depends on how quick the URL is found, what again
depends on how early the URL is found in the array or list.

Regarding only the outlinks, the array structure is always faster than the linked
list. Its speed advantage decreases with a growing number of links to add. This
behavior can also be explained with the time consumption of the existence check.

The next measurements are performed during the navigation through the data
structures. Reading the complete data set is for example necessary during the
presentation of the link structure on screen, to store it to harddisk or to perform
a search on the set. The breakpoints are placed into three memory routines, and
their times are added up in order to gain one value for the complete pass of the
navigation.

Table 2.6 reveals a clear advantage of the list structure over the array structure.
The list structure needs considerably less operations for this task because it does
not have to run through all fields of the matrix for checking the contents. It is suf-
ficient for the list-based software to only sequentially process list entries for each
root URL and jump to the next URL. Because of the above described limits of the
system clock, the duration needed for one additional URL cannot be determined.
The number of operations allows an estimation of the behavior of both algorithms.
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Navigation Navigation
through Inlinks (ms) through Outlinks (ms)

Set
Array

Structure Linked List Array
Structure Linked List

A <10 <10 <10 <10
B 141 <10 119 <10
C 160 <10 152 29
D 80 <10 50 20
E 70 11 61 21
F 231 10 150 21
G 361 16 151 26
H 291 15 132 40

Table 2.6: Duration of navigation

Using the array structure, the number of operations exhibits a quadratic growth
with the number of URLs. The number of operations on the list structure depends
on the number of links stored. It is at least as high as the number of root links.
Only in the worst case, that is a complete linkage of all pages, the same amount
of operations as for the array structure is needed. Thus, the processing time of the
list based software grows by a smaller or the same amount compared to the array
based software.

The last breakpoints are set during the ranking algorithm. They are divided into
the duration of initialization (transformation) of the data, the ranking algorithm
itself, and the sorting of values and output in form of an array. The measurements
are performed with fifteen iterations each. For the sake of clarity, Table 2.7 shows
the totals for separately measured times of hubs and authorities.

For the list structure, the data transformation is not necessary, and, consequently,
it does not consume any time. The iterations of hub and authority calculation using
the array structure only takes about half of the time the list structure uses. The
time for sorting the values and creating an output vector is about the same for both
structures. Summing up all values, the time the array structure spends for the data
transformation exceeds the one it saves during the iterations by a multiple.

2.5.3 Selection

In order to select a suitable data structure to store Web graphs for ranking algo-
rithms, i.e. the HITS algorithm, all measurements are regarded together. From a
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Transformation Iterations Sort and Output
(ms) (ms) Vector (ms)

Set
Array

Structure
Linked
List

Array
Structure

Linked
List

Array
Structure

Linked
List

A 40 0 18 21 120 120
B 1’091 0 31 78 2’383 2’407
C 1’302 0 61 139 2’502 3’042
D 5’228 0 52 141 8’441 8’562
E 5’328 0 61 151 8’922 9’076
F 7’630 0 59 150 9’714 9’812
G 34’322 0 103 261 34’677 35’211
H 48’957 0 110 329 45’201 45’409

Table 2.7: Duration of ranking algorithm

Array Structure List Structure
↑ proximity to mathematical

notation
↑ simplicity of implementation

↓ implementational complexity

↓ high memory demand
↓ inefficient on low link density ↑ low memory demand

↓ quadratic memory growth ↑ linear memory growth
↓ quadratic time consumption ↑ speed

Table 2.8: Advantages (↑) and disadvantages (↓) of evaluated data structures

practical point of view, already the smaller memory demand of the list structure
makes it preferable to the array structure. It also scales better in terms of memory
and speed. The higher speed of the array structure during the ranking calculation
does not carry that much importance because this calculation only takes about ten
percent of the complete processing time.

The higher implementation effort of the list structure pays off in better run-
time performance regarding time and memory. An overview of advantages and
disadvantages of both data structures is outlined in Table 2.8.
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2.6 HITS in Practice

This section describes practical impacts of the HITS algorithm. For this purpose,
an own implementation of the algorithm was programmed and tested. It is used to
evaluate both, data structures and result quality. The program calculates hubs and
authority values of the results returned for a given search query.

2.6.1 Implementation of the Algorithm

The HITS algorithm is implemented in the programming language C++. The goal
of the software is to retrieve hub and authority websites fitting to a given user
query.

The program’s process flow is triggered by a query entered by the user in a field
of the user interface. The information flow of the process is explained using Figure
2.19. The query is sent to a public available search engine that has prepared data
from the Web at its disposal. Here, the search engines GOOGLE and ALLTHEWEB

are used. The URLs of the top n pages are parsed from the search-engine result-
page and are stored in memory. These URLs build the root set. In order to expand
the root set to a base set, those pages linking to pages of the root set (inlinks) and
those pages linked-to by pages of the root set (outlinks) are needed. Both types of
links are usually not contained in the result page.

Inlinks and outlinks are gathered using two different methods. As the inlink in-
formation is not contained on the regarded website, an external source is needed.
Search engines deliver URLs of those pages linking to a specified page when
queried with the link-operator. During the program flow, these URLs are re-
quested from the search engine, and the result page is again parsed. The inlink
information is being stored in the chosen data structure. The outlink information
is contained in the HTML code of the webpages belonging to the root set. These
pages are downloaded directly from the Web. The outgoing links are parsed from
the HTML code and stored to the chosen data structure.

As soon as all needed inlinks and outlinks are stored, the iterative hub and au-
thority value calculation starts according to Algorithm 2.2. The results are sorted
and then presented to the user on the internal result page.

Classes

The above described process flow is implemented into nine C++ classes. The
classes can be assigned to five areas. Figure 2.20 shows the following class areas,
together with their access possibilities that are marked with arrows:
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Figure 2.19: HITS architecture – information flow

1. Main: This area contains one class that serves as main class and as entry
point of the program.

2. User Interface: Three classes perform the dialog with the user.

3. Access Control: One class provides Web access and harddisk storage oper-
ations.

4. Data Structures: Two classes provide the data structures.

5. Ranking: Two classes perform the ranking calculations.

At program start, the class RankDataDlg instantiates an object of the user in-
terface which creates the application’s main window. It is able to create objects of
the classes SetCrawlerDlg and RankDlg that serve for the entry of settings and
for the output of ranking results.

Both classes access the class CrawlFunctions in order to start the parsing of
search-engine result-pages or webpages respectively and to change their settings.
The class CrawlFunctions stores the links gained into memory using the data
structures classes. The class Memory defines the data structure used and provides
access functionality to the data, like inserting URLs into the root set. Depending
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Figure 2.20: HITS Software architecture – class view

on the data structure chosen, the class List is used for the administration of the
base set in form of either an adjacency matrix array or a linked list.

The class Ranking accesses the content of memory and lists in order to calculate
hub and authority values. It is triggered by the class RankDlg of the user interface.
An object of the class RankingVector is created that contains the results in sorted
order.

Filling Data Structures

The data structure implementation will be described on the basis of the linked list,
which has proved to be superior to the array structure (compare Subsection 2.5.3).
However, both data structures were implemented for the purpose of evaluation.

The class Memory provides storage capabilities for the root set. It consists of an
array of memory elements, containing for each URL its name, a pointer to the first
element of the list of outlinks and a pointer to the first element of the list of inlinks.

The following methods grant the access to the linked lists storing the focused
subgraph. The append method inserts an URL in the main list if it is not yet part
of the list. The search method returns the storage position where the name of a
given URL can be found. Two methods can be used to append URLs as links to
the lists. The appendOutlink method checks whether the URL already exists in
the main list. If not, it is inserted in the main list. The URL is appended to the
outlink list of the referencing URL. The referencing URL is inserted in the inlink
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list of the added URL. The appendInlink method analogously adds the URL to
the main list, if necessary, and updates the link lists.

The link lists are designed as doubly linked lists. The list class provides meth-
ods to append and to get values from the list. After the insertion of the URLs and
their linkage information, the new URLs are tested for links among each other.
Detected links are added to the corresponding lists.

Crawl Functions

The class CrawlFunctions fills the data structures with root URLs, inlink URLs
and outlink URLs. It provides methods for

1. the access to search engines,

2. the parsing of search-engine result-pages,

3. the direct access to other webpages,

4. the parsing of link URLs from webpages, and

5. the input and output of data to harddisk.

The class CrawlFunctions creates objects of the type Memory and Ranking, and
uses their methods to display the results on the user interface.

The methods getAlltheweb and getGoogle create an adapted HTTP-request
string for the access to search engines. This string corresponds to the string a
search engines HTML page sends to its server after the user has entered the query
and pressed the search button. It contains the same information in the same for-
mat, and must be adapted to the chosen search-engine’s semantics. Using this
string, the method getHtmlSource returns the result page. If the search engine is
used to deliver inlink information, a switch makes sure that the string contains the
corresponding link command.

The methods parseAlltheweb or parseGoogle parses the result page for hy-
perlink information contained. These methods have to be adapted to the chosen
search-engine’s semantic, too. Navigational links and links created for advertise-
ment purposes are excluded. Also secondary URLs, also referred to as “more re-
sults from the same page”, are ignored in order to make sure that only top-ranked
pages are considered.

Links from webpages belonging to root-set URLs can be easily gathered using
the following two methods. The method getHtmlSource retrieves the HTML
source of a webpage and the method parsePage searches it for outlinks in this
source.
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Three methods each for loading and writing URLs and data from and to harddisk
are provided. They can store the results as well as the subgraph and retrieve them
for further investigations.

Algorithm

The Ranking class stores hub and authority values in two arrays each. In order
to avoid copy operations between the iterations, two arrays exist for each type of
values that are alternately used for current and past ranking values.

Before the iterations start, ranking values are initialized to xi = 1 and yi = 1
(∀i = 1, . . . ,n) using the method init. Authority and hub values for URLs from
the main list are stored at the corresponding position number. Ranking values
can be calculated without accessing the main list. The method iterateRanking
performs the ranking calculations. It determines the hub value of entry i from the
sum of those authority values contained in the outlink list of entry i (see Algorithm
2.2). The authority value of entry i is calculated from the sum of those hub values
contained in the inlink list of entry i. After an iteration, both the authority and the
hub vector are normalized to ∑ni=1 ei = 1 using the method normalize.

After the iterations are performed, the result values are connected with the cor-
responding URL names using the class RankingVector. It produces an array
containing URLs and ranking values, which is sorted by the method makeSort
using the bubble-sort algorithm in order to present the URLs in a sequence start-
ing with the best result and ending with the worst result.

User Interface

Three windows constitute the user interface: a main window, a settings window
and a ranking window. The main window contains a query entry mask and three
output areas for root links, inlinks and outlinks. A screenshot of the main window
containing sample data is shown in Figure 2.21. Some parameters like the number
of links in the root set, the number of iteration steps, the maximum number of
outlinks considered per domain, and the name of the search engine used can be set
in the main window. A check box for using extended links can expand the root set
to the URLs of the base set, so that an additional level of link distance can be used.

Additional parameters can be set in the settings window. The ranking window
shows two output areas for the sorted output of URLs and their hub values. Figure
2.22 shows a sample output of this window.
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2.6.2 Experimental Results and Evaluation

The implemented software is used to evaluate the practical relevance and the func-
tionality of the HITS algorithm. One of the algorithm’s strengths results from the
possibility to answer broad queries by identifying authorities and hubs. Even if
the first results do not contain good authorities for a query, the user may find some
good authorities in the link list of a high-ranked hub. Showing the authority and
hub values provides the user with additional information about the results’ good-
ness in order to improve his judging potential.

Description of Page Content

The PageRank algorithm only uses linkage information of a Web subgraph to de-
termine ranks. HITS expands this approach by using content information addition-
ally to link information. The expansion of the root set by considering inlinks and
outlinks set the basis for the following observation. The HITS algorithm is able to
find pages with high hub values that did not appear in the original root set. These
hub pages contribute valuable link lists relating to the search query. The retrieved
hub pages sometimes outperform search engines in terms of quality, structure, and
visualization of their links.

A query for the term “search engine” on ALLTHEWEB, for example, brought
as result a few meta search engines, but did not show authorities like GOOGLE or
ALTAVISTA. Using link based information of the subgraph, HITS included these
search engines in the base set and ranked them with high authority values.

Topic Drift

Within the evaluation of results, some weaknesses of HITS were observed. One
problem is caused from different prevailing topics of root set and base set. This
phenomenon is known as topic drift (Bharat and Henzinger, 1998) and may occur
if pages added to the root set deal with differing topics.

A query for German politics (“deutsche politik”) illustrates these obser-
vations. The root set of one hundred pages contains several organizations like
research institutes, federal bank, and foreign office. These results are followed by
21 links to German embassies throughout the world. The base set did only contain
three regional webpages of political parties. Applying the HITS algorithm on this
data, the top-twenty authority-values are concentrated on German embassies. The
focus on embassies overlays other topics because of their strong presence in the
root set in connection with a strong linkage among each other and links from dif-
ferent hubs. The hub ranking does not show one single page of the root set among
the ranks one to five. Among the top-ten hub-pages, there is only one page of the
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original result page. On the second place of hub values, there is a page containing
hundreds of links to ministries and political parties.

Sometimes, the authorities of the original search query are replaced by related
authorities with a higher global impact and a higher link density in the subgraph.
This case can be characterized as a “zoom-out” of the original topics onto a broader
level. This phenomenon is illustrated using a search query for the name of a young
and hardly known rock-band. The GOOGLE search delivered the band’s official
website and a few CD reviews and CD offers. The expansion of the root set has
added some music clubs to the base set. These clubs appeared on the first authority
ranks and contained a few other, more popular bands. Among the top hub-pages
were link lists that point to bands of the same genre. Thus, the algorithm expanded
the horizon to geographically and musically related bands.

However, a generalization or complete drift of the context often is not what the
user wants and may lead to unsatisfying results.

Spamming

If webpages in the result set of a query use techniques to artificially manipulate
their ranking in search engines (spam), this can negatively affect the HITS result
quality. Spammers create for example different websites and provide these sites
with links among each other for the only purpose of gaining high ranking values
from link-based search engines. These websites do not necessarily contain relevant
information concerning the keywords on their pages.

In the HITS results, such pages are able to displace “real” authorities and hubs
from higher ranks. After the initial search query has generated the root set, there
is not any further content evaluation performed by the HITS algorithm. Thus, the
algorithm is not able to discriminate between valuable information and spam. The
denser the internal link structure of the spam pages compared to the remaining
base set is, the higher is its impact on the final result.

A possible solution for this problem is to limit the number of links on the same
domain when creating the base set. In this way, the links’ influence on the ranking
can be reduced.

Link Concentration on same Domains

An analogical problem may occur if pages of the root set contain many naviga-
tional links to pages of another domain. Such a link structure brings high authority
values to the referenced pages which again lead to a high hub value of the refer-
encing page. The probability of links set only for navigational reasons to belong
to the same topic is low. This is especially the case if the target domain does not
contain any relevant information, like it is in the case of advertisements.
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Figure 2.21: Main window showing outlink concentration on same domain

(a) Without restriction of outlinks (b) With restriction of outlinks

Figure 2.22: Authority values before and after restriction of same domain’s outlinks

Again, a solution is to set a limit for the number of outlinks to the same domain
for each entry in the base set. The number of inlinks coming from the same domain
is limited, too. Implementing these limits as an optional parameter in the HITS
software improves the ranking quality as shown in the following example.
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A sample search without the link-limiting parameter set comes to the results in
Figure 2.21. The lower right box of the main window shows a remarkable number
of outlinks pointing to the same domain 216.138.240.200. The outlinks contain
strings that are not obviously related to the query. A closer look revealed that these
links belong to a search engine and refer to categories of their site. Although they
do not contribute any value to the result, the search engine’s pages occupy the
highest authority ranks (see Figure 2.22a) because of their link structure. Running
the algorithm with a restriction to a maximum number of links per domain leads
to the authority values of Figure 2.22b, which provides a more realistic image of
the authorities. The results with authority values greater than zero do not contain
any obvious spam.
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This chapter describes various methods for structuring search results in the World
Wide Web. The emphasis lies on grouping (clustering) of similar search results
and their clear illustration.

The common purpose of clustering methods is the division of data into groups of
similar objects. Grouping of Web search results according to their topic will help
to achieve a better overview over the available information. In the case of search
results belonging to different topics, clustering methods help identifying different
topic groups and displaying them in a clearly arranged manner.

The following example illustrates a typical case for clustering methods applied
on Web search results. A query for the term “Burlington” returns results from a
wide range of results from different topics associated with the name “Burlington”.
Among the results are a few tens of towns worldwide bearing this name and web-
sites related to this town as well as a textile manufacturer registered under this
same name. Persons with the surname Burlington are following on lower ranks
and hence are hard to find. Here, the limits of a classic PageRank oriented search
engine become visible. It can only determine one overall relevancy value for each
result. In this case, the PageRank calculation is not able to differentiate between
webpages related to the towns and those related to the persons.

Clustering methods can help to overcome these weaknesses. They are able to
find similarities among these webpages belonging e.g. to the same town or the
same person, respectively. This information can be used for grouping the results
according to the similarities found, and it improves usability.

After presenting some common clustering methods in Section 3.1, the require-
ments for adapting these methods to Web search are analyzed in Section 3.2. Sec-
tion 3.3 presents existing text-based approaches for clustering of Web search re-
sults. In Section 3.4, new clustering algorithms based on the link information in
the Web graph are introduced, implemented and evaluated. Several combined ap-
proaches of text-based and link-based methods are arranged and tested using a
common architecture and are evaluated in Section 3.5.
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3.1 Clustering Methods

A variety of different clustering methods for multiple purposes has been published.
Berkhin (2006) provides a comprehensive overview about existing clustering tech-
niques.

Traditionally, one distinguishes between hierarchical and partitioning cluster-
ing methods. Hierarchical methods either start with single points (data items) and
gradually assemble them into clusters (agglomerative or bottom-up approach) or
start with one cluster containing all points and gradually disassemble them into
clusters (binary divisive or top-down approach). Different approaches are used by
partitioning methods. They aim to directly identify clusters. For this reason, they
either iteratively relocate points between subsets (partitioning relocation cluster-
ing) or directly identify areas heavily populated with data (density-based cluster-
ing).

The hierarchical clustering uses the following procedure. In the agglomerative
case, at the beginning each point builds a singleton cluster. In each iteration, the
two most appropriate clusters are chosen and merged together. The process con-
tinues until either a stopping criterion is achieved or all points belong to only one
cluster. In the divisive case, all points build one common cluster at start. In each
iteration, one cluster is split into two new clusters following a decision criterion.
This process continues until either a stopping criterion is fulfilled or each cluster
consists only of one point.

In order to decide about which clusters to merge or to split, distances or simi-
larities between subsets have to be calculated. The distances between subsets of
points can be derived from the distances of the single points in different ways.
If d(x,y) is a distance measure between the points x and y, derived distances be-
tween two clusters C1 and C2 can be calculated with different linkage methods,
here determined by a mutable operator Op:

d (C1,C2) = Op{d(x,y)|x ∈C1,y ∈C2} .

Depending on the operation Op different concepts of closeness and connectivity
can be modeled. This includes e.g. the single link case (Op = min), where the
distance of two clusters is determined by those two points belonging to a different
cluster each, that have the lowest distance. In the average link case (Op= avg), the
average of the distances over all pairs of points from different clusters is calculated.
The complete link method (Op= max) takes the maximum distance between two
points of the clusters as the cluster distance.
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Hierarchical methods exhibit a high flexibility regarding the level of granular-
ity because the clustering process can be stopped at any depth of the resulting
tree. They can easily handle any form of similarity or distance, and, consequently,
they are applicable to any attribute types. A problem is to establish an appropri-
ate termination criterion. A hierarchical algorithm adapted for categorical data is
introduced by Guha et al. (2000) and will be deployed in Subsection 3.4.
Partitioning methods (also and more precisely known as partitioning relocation

clustering) directly divide data into several subsets. They use heuristics in the form
of iterative optimization because checking all possible subset combinations is in
general not feasible in reasonable time. Different relocation schemes iteratively
reassign points between a preset number of clusters. A good representation for the
underlying data can lead to clusters that allow clear interpretations.

Probabilistic methods fall in the category of partitioning methods. They try to
characterize and identify the statistical distributions the data may be constructed
of. The functionality of probabilistic clustering will be analyzed in more detail in
Subsection 3.5.4.

The partitioning methods k-medoids and k-means build a preset number k of
clusters by minimizing the distance to a representative. One of the clusters’ points
represents the cluster in the k-medoids methods, whereas k-means uses the weighted
average of the cluster’s points as representative for the cluster. The weighted aver-
age can also be interpreted as the centroid of the cluster. If minimizing the sum of
squares of errors between the points is the objective function, the k-means methods
can be regarded as a special case of probabilistic clustering.

Representing the data points as vertices of a graph and assigning distances as
edge weights, a clique-partitioning approach can be used for dividing the graph
into clusters. Dorndorf and Pesch (1994) have implemented this approach in an
ejection chain algorithm that is deployed on the Web in Subsection 3.5.4.

For the clustering of documents, binary divisive partitioning methods are par-
ticularly suitable (Berry and Browne, 1999; Steinbach et al., 2000). Cutting et al.
(1992) have developed procedures for the clustering of larger document sets and
have tested them for news collections. The documents are represented in vecto-
rial shape, weighted with the tf-idf1-scheme and set into relation to each other by
using the cosine measure. In the Vector Space Model (Salton, 1989) documents
are represented by vectors in the Euclidean space whereas each term corresponds
to a vector dimension. Manning et al. (2008) explain the usage of basic cluster-
ing methods on the Web. A survey containing clustering methods for the Web is
presented by Berry and Castellanos (2008).

1term frequency/inverse document frequency (Salton, 1989)
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3.2 Web Clustering

Applying clustering methods on Web search poses several challenges. In order to
establish efficient clustering mechanisms working on large document sets, deci-
sions about the sort and the scope of the base data used have to be made. Public
available search engines that offer clustering facilities run their algorithm on a
subset of Web documents that is small enough for running cluster algorithms in
a reasonable time. If they do not maintain an own searchable index, they typi-
cally make use of the results returned by other search engines in the same way
meta-search engines do. In this case, they use the few text lines of information
contained in the short descriptions (also called snippets or teasers) returned on the
search-engine result-page.

Base data

Clustering of webpages can be performed on different types of base data. Besides
the textual information of a webpage and the snippets generated by search engines,
the link information of the Web graph can be used as base data for the clustering
process. The link information can be – like the snippets – gathered from search
engines that offer the output of incoming links (inlinks) for a webpage in their
index. Under the assumption that webpages connected with hyperlinks are with
a certain probability also topically linked with each other, this information can be
used for clustering purposes, too.

In comparison with the textual information of a webpage, the exploitation of
the hyperlinks is independent of the webpage language. A link between two pages
dealing with the same topic but that are written in different languages can con-
tribute to the creation of clusters of good quality. The inclusion of link information
may also help to distinguish ambiguous terms like in the “Burlington” example.

Requirements

Zamir and Etzioni (1998) have defined requirements for clustering methods re-
garding Web search. Many conventional document-clustering algorithms are car-
ried out offline and on complete documents. In the Web, the number of documents
to be clustered is very extensive, and the documents quickly change. Assuming
that clustering is carried out on a computer that is independent of the search tool
and that gets search results as an input, the following characteristics are demanded:

1. Relevance: Documents that are relevant to the search query should be sepa-
rated from irrelevant documents.

2. Clear cluster descriptions: The user should be able to recognize at first sight
the content of the cluster.
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3. Overlapping: If documents cover different ranges of topics, an assignment
to several clusters should be possible.

4. Snippet-Tolerance: Based on snippets given by search engines high-quality
clusters should be yielded.

5. Speed: Clusters should be delivered within a few seconds as the Web user
expects short reply-times.

6. Incremental procedure: Each snippet should be processed as soon as it was
received from the Web in order to save time.

3.3 Text Based Approaches

Especially for the clustering of Web documents, a procedure that firstly extracts
descriptions for each cluster and afterwards assigns documents to the according de-
scriptions (Cluster Description First) was developed by Zamir and Etzioni (1999).
As basis for the clustering, all phrases that are shared by at least two documents are
determined first. Later, exactly those documents that contain the cluster’s descrip-
tion as a phrase are assigned to the cluster. A suffix-tree is used as data structure
for storing the phrases (Baeza-Yates and Ribeiro-Neto, 1999). A good running
time can be achieved by not taking the whole number of documents as a basis for
the clustering, but only the snippets yielded by a conventional search engine.

SHOC

The approach of SHOC (Semantic Hierarchical Online Clustering; Zhang and
Dong, 2004) extracts phrases for the description of cluster contents, too. This
approach determines the underlying concepts of a document set using the Latent
Semantic Indexing (LSI; see Deerwester et al., 1990 and Subsection 3.5.3) for the
production of clusters. Natural language offers various alternative possibilities of
expression for the formulation of a certain concept (or circumstance). The aim
of LSI is to identify the underlying concepts of the documents by using Singular
Value Decomposition (SVD; compare Subsection 3.5.3).

LINGO

The Label Induction Grouping Algorithm (LINGO; Osinski et al., 2004) uses a sin-
gular value decomposition approach, too. Different to SHOC where SVD is used
for the identification of cluster contents, LINGO uses SVD for the determination
of suitable concepts and cluster names. The procedure of LINGO can be divided
into four phases:
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1. Snippet Acquisition: During this phase, a search query is sent to a search
engine available on the Web and the received snippets are stored.

2. Preprocessing: During this phase, first HTML-Tags are being filtered (text
filtering) and special characters (e.g. “$”, “%”, “#”) are deleted, except for
punctuation marks (e.g. “.”, “?”, “!”). Punctuation marks will be used later
on within the scope of phrase identification. Then, the language of the snip-
pets is determined (language identification) based on stop words by using
the small word technique (Grefenstette, 1995). If there is a stemmer (Porter,
1980) available for the according language, this stemmer will be used in
order to treat derived forms of a word as a single term (stemming).

3. Feature Selection: After identifying words that do not contribute much to
the content (stop words marking), the third phase called feature selection
begins. In this phase, as complete as possible coherent phrases are identi-
fied (Phrase Discovery Algorithm; Zhang and Dong, 2004). This helps to
avoid an extraction of incomplete fragments of phrases. Afterwards, pos-
sible cluster descriptions are generated from the texts. For this purpose,
a term-document matrix is built first by using the tf-idf scheme (compare
Subsection 3.5.3). On this matrix, a singular value decomposition is carried
out in order to gain concepts of the documents (abstract concept discovery).
These abstract concepts are compared to earlier extracted phrases as well
as to terms using the cosine measure (phrase matching). As a result, those
phrases that best represent the respective concept are gained. Cluster de-
scriptions that are too similar to each other are eliminated (candidate label
pruning). This is the case if the cosine of the angles between two cluster
description vectors is too small.

4. Clustering: In the fourth phase the snippets are assigned to cluster descrip-
tions. For this reason, the vector space model (VSM) is used again. Instead
of a search query, the snippets are matched with the cluster descriptions
(cluster content discovery). Finally, the clusters are sorted by using a clus-
ter score that puts relatively well described and extensive groups at the top
(final cluster formation).

VIVISIMO and KARTOO

Examples for publicly available search engines that provide clustering capabilities
are VIVISIMO and KARTOO.

VIVISIMO works as a meta-search engine using the data of other search en-
gines and showing the grouped results as a hierarchical tree. VIVISIMO deploys
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Figure 3.1: Sample result window of vivisimo.com

a cluster-description-first approach and yields quite a good quality of cluster de-
scriptions. Applying this procedure, cluster descriptions are generated before the
identification of clusters. In a second step, the documents are assigned to these de-
scriptions denominating clusters. Figure 3.1 shows sample output of VIVISIMO.

KARTOO also works as a meta-search engine. Here, the search results are graph-
ically shown in a two-dimensional area. The groups are represented through the
proximity of results to each other, through differently colored coverings as well as
through connecting lines between the results (see Figure 3.2).

Already when taking a superficial view the quality of results does not reach the
results of VIVISIMO. Neither the authors of KARTOO nor the authors of VIVISIMO

give further information about the kind of procedures used.

Other Methods

Broder et al. (1997) introduce a clustering algorithm that is based on fingerprints
that are generated from the textual content of a webpage. Clustering algorithms us-
ing both, text and link information are developed by Modha and Spangler (2000).
Zamir and Etzioni (1998) evaluate different methods of Web clustering.
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Figure 3.2: Sample result window of kartoo.com

3.4 Link Based Approaches

Besides the link analysis approaches shown in Section 2.4, the link structure of
the Web graph can be used for clustering webpages. Assuming that two webpages
connected with a hyperlink are more probably belonging to the same topic than
two webpages not linked to each other, a measurement of the quality and quantity
of links can serve as a distance measure for the clustering process. Webpages
with a higher link density among each other can be joined to a cluster as shown
in the example of Figure 3.3. The big circles group webpages with multiple links
within the circle to a cluster, whereas the number of links between the big circles
is relatively small.

Clustering based on the linkage graph among websites brings several advan-
tages. As the link information does not contain any language specific properties,
the clustering can be performed independently of the language the webpage con-
tent is written in and independently of the query language. This leads to another
advantage. If the query contains ambiguous words, the link based clustering is
able to keep apart the different meanings.

In this section, we introduce a new approach to purely link based clustering.
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Figure 3.3: Webpage grouping by linkage

3.4.1 Robust Clustering Algorithm

An algorithm that has originally been created by Guha et al. (2000) for clustering
of categorical data is particularly suited for hyperlinks because of his data rep-
resentation: The algorithm ROCK (RObust Clustering using linKs) differentiates
between neighbors and links of points. In the following, these links are called
ROCK-links in order to avoid confusion with hyperlinks. Two points x and y are
defined as neighbors if the value of a similarity function sim : X×Y →R+ exceeds
a certain threshold sim(x,y)≥ θ (0≤ θ < 1). Later, the comparison of the similar-
ity value with a threshold will be replaced by different definitions adapted for the
Web graph. Thus, the function sim will not be needed anymore. In any case, the
number of common neighbors of two points x and y is denominated as ROCK-link
rocklink(x,y).

The algorithm performs hierarchical agglomerative clustering and produces clus-
ters with a high degree of connectivity. It stops the agglomeration if a specified
number k ∈ N of clusters is constructed. The ROCK algorithm maximizes the
following objective function

E =
k

∑
i=1

(
ni · ∑

x,y∈Ci

rocklink(x,y)

n1+2 f (θ)
i

)

=
k

∑
i=1

(
n−2 f (θ)i · ∑

x,y∈Ci
rocklink(x,y)

)
,
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where ni = |Ci| is the number of points contained in cluster i. The choice of the
function f (θ) depends on the underlying data and the kind of clusters one is inter-
ested in. It is proposed as f (θ) = 1−θ

1+θ . The derivation of this function is described
in detail in Guha et al. (2000). The numbers ni of points in the clusters i are in-
cluded in the objection function in order to prevent a clustering in which all points
are assigned to one single cluster. The function f (θ) has the following property.
Each point in cluster Ci has approximately n f (θ)i neighbors in Ci. If such a func-
tion does exist, each point in cluster Ci contributes n

2 f (θ)
i ROCK-links – one for

each pair of its neighbors. Thus, n1+2 f (θ)
i is an estimation for the total number of

ROCK-links in clusterCi.

The goal of the algorithm is to maximize the sum of ROCK-links in the single
clusters. This leads to a minimization of the number of ROCK-links in different
clusters.

Goodness Measure

The objective function described above is used to estimate the goodness of clusters.
In order to determine the best pair of clusters (Ci,Cj) to be merged at each step of
the algorithm, a goodness measure is introduced:

g(Ci,Cj) =
rocklink [Ci,Cj]

nexp(i, j)
,

where the number of ROCK-links between two clusters is calculated as sum of
ROCK-links between the points of different clusters

rocklink [Ci,Cj] = ∑
x∈Ci
y∈Cj

rocklink (x,y)

and a weighting function nexp : K×K→ R+ is introduced.

Intuitively, it seems reasonable to merge in each step those two clusters with
the largest number of connecting ROCK-links between each other. This may work
for well-separated clusters, but in case of outliers or clusters with points that are
neighbors, a large cluster may absorb other clusters because a large cluster typi-
cally has more links with other clusters. For this reason, the ROCK-link value of
the goodness measure is divided by the difference of the expected number nexp(i, j)
of ROCK-links after merging the clustersCi andCj. Guha et al. (2000) propose

nexp(i, j) = (ni+n j)
1+2 f (θ)−n1+2 f (θ)

i −n1+2 f (θ)
j .
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Figure 3.4: ROCK-link calculation for undirected graph

Figure 3.5: Undirected graph example with ROCK-link values

The expected change of the number of ROCK-links consists of the expected ROCK-
link number of the newly merged cluster minus the expected ROCK-link numbers
of the former clusters.

Computation of ROCK-links

In contrast to the original algorithm, the ROCK-links do not have to be created
using the similarity threshold θ when dealing with hyperlinks in a Web graph. For
the Web clustering, hyperlinks can be used as a basis for ROCK-links like shown
in Figure 3.4. In a simple definition neglecting the direction of hyperlinks, two
webpages i and k are neighbors, if there is a hyperlink pointing from i to k or from
k to i. If the webpages i and j have only k as a neighbor, then rocklink(i, j) = 1 .

A sample graph in Figure 3.5 illustrates the ROCK-link calculation. Webpages
1 and 5 have the two webpages 2 and 4 as common neighbors (in the graph marked
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Algorithm 3.1 ROCK-link computation (Guha et al., 2000)

procedure compute_links(S)
compute nbrlist[i] for every point i in S
set rocklink[i, j] to be zero for all i, j
for i := 1 to |S| do {
N := nbrlist[i]
for j := 1 to |N|−1 do
for l := j+1 to |N| do
rocklink [N[ j],N[l]] := rocklink [N[ j],N[l]]+1

}

with solid lines), and thus rocklink(1,5) = 2 (in the graph marked with a dashed
line labeled with the number of ROCK-links).

Even though the threshold θ is not needed for a comparison with the similarity
function, a value of θ is used in the goodness function. For the following cal-
culations, it will be set to θ := 0.5 which results in f (θ) = 1−θ

1+θ = 1
3 , and thus

1+2 f (θ) = 5
3 .

Algorithm 3.1 describes the calculation of ROCK-link values. It consists of the
procedure compute_links that starts with the initialization of all link values to
rocklink[i, j] = 0. For each webpage i in the set of webpages S it selects its neigh-
bors N = nbrlist[i]. Each time two common neighbors j and l of i are identified,
their ROCK-link value is increased by one. The complete matrix of ROCK-links
after the calculation based on the sample graph is shown in Figure 3.6.

Algorithm

The ROCK algorithm (Algorithm 3.2) starts the identification of clusters with the
calculation of ROCK-link values. Each vertex s of the set of vertices S is regarded
as an initial cluster. The procedure compute_links calculates the number of
ROCK-links for every pair of clusters or vertices in S. Based on these values,
the procedure build_local_heap constructs a heap q [s] for every cluster s ∈ S.
Each local heap q [i] is filled with every cluster Cj with rocklink [i, j] > 0 in de-
creasing order of their goodness g(Ci,Cj). A global heap Q containing all clusters
is build by the procedure build_global_heap. Here, the clusters Ci are stored
in decreasing order of their best goodness measure contained in the corresponding
local heap q [i].
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Figure 3.6: Matrix of ROCK-links for undirected graph

The following loop is repeatedly processed as long as the global heap contains
more than the desired output number k of clusters. The cluster u with the highest
goodness value (with any other cluster) is chosen from the global heap. The cluster
v with the highest goodness value (with cluster u) is chosen from the local heap
q [u]. The clusters u and v are merged into a new cluster w. This operation leads to
the maximum possible increase of the criterion function in this step. The rocklink
array is updated for the new cluster wwith all involved clusters, u and v are deleted
from the affected local heaps and w is inserted in the local heaps. The local heap
Q is updated and the new cluster w is inserted to Q together with a new local heap
q [w].

The result of the ROCK algorithm consists of k clusters. Running the loop |S|
times leads to one remaining cluster containing all original vertices. k clusters need
(|S|− k) iterations. The tree in Figure 3.7 shows the results after each iteration
for the undirected graph example. The global heap Q contains for example after
the fourth iteration the clusters {0,1,2,3,6,7}, of which the clusters {1,2,3,7}
consist of two vertices each and are named by one of their merged clusters. One
can observe that the strongly linked clusters {1,5,2,4} are grouped together first.
The webpages 10 and 11 will remain in singleton clusters because they do not
possess enough links and are thus omitted in the solution tree.
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Algorithm 3.2 ROCK clustering algorithm (Guha et al., 2000)

procedure Cluster(S,k)
rocklink:=compute_links(S)
for each s ∈ S do
q[s] := build_local_heap(rocklink,s)

Q := build_global_heap(S,q)
while size(Q)> k do {
u := extract_max(Q)
if u= 0 then stop
v := max(q[u])
delete(Q,v)
w := merge(u,v)
for each x ∈ q[u]∪q[v] do {
rocklink[x,w] := rocklink[x,u]+ rocklink[x,v]
delete(q[x],u); delete(q[x],v)
insert(q[x],w,g(x;w)); insert(q[w],x,g(x,w))
update(Q,x,q[x])

}
insert(Q,w,q[w])
deallocate(q[u]); deallocate(q[v])

}

Figure 3.7: Solution tree after nine iterations for undirected graph example
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(a) Indirect links (b) Direct links

Figure 3.8: ROCK-link calculation for directed graph

3.4.2 Inclusion of Link Direction

So far, the ROCK-link calculation neglects the direction of the hyperlinks. In the
following, the ROCK-link calculation is extended by the capability to consider
directed links. Four cases of directed links that connect two webpages via a third
one are listed in Figure 3.8a. If a webpage k contains hyperlinks to webpages i and
j (i← k→ j), their ROCK-link value will be increased to

rocklink [i, j] = rocklink [i, j]+1

because i and j may deal with the same topic with a high probability. If two pages
i and j have links to the same webpage k (i→ k← j), they are assumed to deal
with the same topic with a smaller probability and receive a value of

rocklink [i, j] = rocklink [i, j]+0.75.

If webpage i links only indirectly to j by linking to k which again links to j (i→
k→ j) a value of

rocklink [i, j] = rocklink [i, j]+0.5
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Algorithm 3.3 Extended ROCK-link calculation

procedure compute_links(S)
compute nbrlist[i] for every point i in S
set rocklink[i, j] to be zero for all i, j
for all k do {
for all i ∈ succ(k) do {
for all j ∈ succ(k)\i
rocklink [i, j] := rocklink [i, j]+1 // i← k→ j

for all j ∈ pred(k)\i
rocklink [ j, i] := rocklink [i, j]+0.5 // i← k← j

rocklink [i,k] := rocklink [i,k]+0.25 // k→ i
}
for all i ∈ pred(k) do
for all j ∈ pred(k) do
rocklink [i, j] = rocklink [i, j]+0.75 // i→ k← j

}

is set. The same value will be added, if i is only indirectly linked by j (i← k← j).
For direct links (i→ j) a small value

rocklink [i, j] = rocklink [i, j]+0.25

is added to take into account the original hyperlinks, but not to weight them too
much. The ROCK-link values for direct links are illustrated in Figure 3.8b.

The calculation of ROCK-link values under consideration of link directions is
performed by an extended compute_links procedure, shown in Algorithm 3.3.
It replaces Algorithm 3.1 and assigns different weights for the four cases of indi-
rect links (Figure 3.8a) and for the direct links (Figure 3.8b). The algorithm uses
the successor set succ(i) that contains all webpages the page i is linking to. The
predecessor set pred(i) consists of those webpages that contain a link to page i.

The sample directed graph in Figure 3.9 leads to the solution tree shown in
Figure 3.10. Comparing this graph with the solution shown in Figure 3.7 reveals
the influence of the link directions on the clustering process. Vertex 5 remains the
first one to be clustered, but because of the link directions it is merged with vertex
2 instead of 1. The clusters 1 and 6 are merged earlier in the process because a
common predecessor (in this case 4) adds a relatively high ROCK-link value. The
solution tree of the directed graph example shows a different order of inclusion
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Figure 3.9: Sample directed graph

Figure 3.10: Solution tree for directed graph example

of vertices into clusters and thus results into different clustering solutions after
completing the iterations.

3.4.3 Architecture

The ROCK algorithm is applied on Web-search results using the following archi-
tecture. The search-result and link data for a specified query is gathered from an
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Figure 3.11: Architecture for running ROCK on Web query results

existing Web-search engine. The ROCK algorithm runs on a graph built from the
URL information returned. Four different modules that store their intermediate
results in different files (shown in Figure 3.11) perform the process.

The first module SE_Robot sends the specified search query to a publicly avail-
able search engine. The number of results delivered on one page can be increased,
but it is limited by the search-engine provider, often to 100 results. Thus, multi-
ple different requests to the search engine are necessary in order to gain enough
results for a Web graph of sufficient size. The result pages returned are stored in
files named query_1.htm until query_N.htm (with the total number of result
pages N). In a second step, the SE_Robot module extracts all URLs from the re-
sult pages and stores them in the file URLs.txt. This file is the input for the next
module.

The module Get_Linked_URLs generates queries based on the URLs from
URLs.txt. The queries are sent to the search engine in order to request linkage
information. Again, the search engine’s result pages are stored in files. For each
URL, one link file is generated (URL_links_1.htm until URL_links_M.htm,
for M URLs).

The module URL_Analysis generates a link matrix from the URL-file and the
link files and stores it in the link_matrix.txt file. This file serves as basis
for the ROCK module, which calculates the distances (ROCK-links) and runs the
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clustering algorithm in order to determine the clusters. The URL-names for the
cluster members which were not part of the link matrix are recovered from the
URL file and are assigned to the output clusters. The results are stored in the file
rock_out.txt. Besides the clusters, this file contains statistical data concerning
the clustering process like the number of hyperlinks (neighbors), ROCK-links and
the link-degree.

The architecture was implemented in C++ on a 3.6 GHz P4 personal computer
using MICROSOFT VISUAL STUDIO .NET. The results returned by this architec-
ture are analyzed in the next subsection.

3.4.4 Experimental Results

The ROCK algorithm is tested using search results of GOOGLE. GOOGLE is
able to return up to 1’100 results per query even though it often states to dis-
pose of many more results. If available, up to 1’100 links were gathered by the
Get_Linked_URLs module for each of the result URLs.

A sample output for the query “computer” consisting of eleven clusters with
four URLs each is exemplarily shown in Table 3.1. For the sake of clarity, only
the first clusters generated by the ROCK algorithm are shown. At the first glance,
the search results are composed to reasonable clusters. However, the interpretation
of the clusters is not obvious because of the lack of a helpful description. There
is no straight-forward approach for the generation of cluster descriptions based
on hyperlink data. This problem can be solved by including textual data in the
clustering process. A method for obtaining clusters including descriptions will be
presented in the Section 3.5.

Another problem of the purely link based approach follows from the densities
of the link matrices. Table 3.2 shows metrics for link matrices of different sizes for
a typical query. In a matrix of |S|= 100 pages, there were only eleven hyperlinks
resulting in six ROCK-links. Running the ROCK algorithm without limiting the
cluster number k, 95 clusters are created. That means that there is a maximum of
100− 95 = 5 clusters that do consist of more than one webpage. Webpages that
neither contain inlinks nor outlinks to other webpages in the result set are not added
to any cluster. The link degree calculated by the number of neighbors divided by
the number of pages in this matrix is at 0.11. A low link degree limits the merging
process of clusters.
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1: http://www.computer.org/;
3: http://www.computer.org/computer;

333: http://www.computer.org/careers;
866: http://www.computer.org/computer/about.htm;
229: http://www.december.com/cmc/mag;
332: http://www.december.com/cmc/info;
41: http://www.computer.com/;

157: http://www.computer.is/;
983: http://www.old-computers.com/;

1078: http://www.ocm.com/;
450: http://www.cambridge-computers.com/;
978: http://www.ocm.com/;
945: http://www.sarc.com/;

1045: http://www.sarc.com/;
2: http://www.cai.com/;

15: http://www.cert.org/;
956: http://www.dell.com/jp;

1022: http://www.secureroot.com/;
12: http://www.planet.nl/computer;
84: http://hoaxbusters.ciac.org/;

436: http://www.eicar.org/;
727: http://www.mcafee.com/;
233: http://antivirus.cai.com/;
361: http://results.about.com/computer;
740: http://web.planet.nl/computer;
922: http://www.secureroot.com/;
139: http://www.yahoo.com/Science/Computer_Science;
814: http://www.computer-consulting.com/;

6: http://www.computer.de/;
517: http://www.computer-computer.de/;
150: http://www.computer-archiv.de/;
314: http://www.internet-verzeichnis.de/computer&software;
97: http://www.computer.shops-here.com/;

135: http://www.computer-woerterbuch.de/;
196: http://www.supportnet.de/;
419: http://www.glossar.de/glossar/z_computer.htm;
498: http://directory.google.com/Top/World/Deutsch/Computer;
882: http://www.yahoo.com/Computers_and_Internet/Security_...
204: http://www.computer-dating.com/;
688: http://www.comp-connection.com/;
142: http://www.computer-expo.ch/;
163: http://www.bcs.org.uk/;
800: http://www.cs.umass.edu/;
810: http://www.cs.brown.edu/;

Table 3.1: First clusters for the query “computer”
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Increasing the number of pages up to 4’000 in the link matrix, the link degree
grows very slowly and reaches only a value of 0.47, which corresponds to only
1’869 links in the 4’000×4’000 matrix. The sparseness of the matrix is illustrated
in Figure 3.12, where every symbol2 corresponds to a hyperlink from an URL
plotted on the abscissa to an URL plotted on the ordinate.

The next section describes a combined approach that tries to overcome the prob-
lems of the purely link based approach.

3.5 Combined Approaches

In this section, we introduce an approach combining text based and link based
methods (Lieberam-Schmidt and Pesch, 2008). This approach aims at compen-
sating the weaknesses identified for purely text based and purely link based al-
gorithms. Several clustering methods will be tested and analyzed using the same
framework based on textual and link information.

3.5.1 Architecture

A common architecture is used to implement the different combinations of clus-
tering approaches. The architecture is explained along the information flow shown
in Figure 3.13. The user triggers the process by sending a query to the system.
Results from publicly available search engines (external result page) are gathered
and stored.

2Here, the shape and the color of the symbols are not relevant.

Number
of Pages

Number of
Neighbors

(Hyperlinks)

Number of
ROCK-links

Number of
Clusters Link-Degree

100 11 6 95 0.11
500 145 424 413 0.29

1’000 318 930 782 0.32
2’000 811 3’276 1’549 0.41
3’000 1’377 1’388 2’252 0.46
4’000 1’869 13’637 3’023 0.47

Table 3.2: ROCK statistics
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Figure 3.12: Link density

The following preprocessing steps prepare the data for the clustering process.
The steps’ elements are described in the next subsection. The different clustering
methods use the same preprocessing. Depending on the clustering method used,
different distance measures and document representations are required. The docu-
ment representation is explained in Subsection 3.5.3.

After the calculation of distance values, one of the clustering methods described
in Subsection 3.5.4 is performed. Depending on the method, either the cluster de-
scription is derived from the determined cluster elements, or suitable descriptions
are determined before the cluster elements are assigned to them. All methods re-
turn their results to the user on the internal result page.

3.5.2 Preprocessing

At first, a data basis of Web search results is created and appropriately stored
after the data gathering and preparation. Three preprocessing steps are performed
before the clustering process can be started. The lower left box in Figure 3.13
contains the following steps that will be explained in this subsection:
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Figure 3.13: Clustering architecture – information flow

1. Snippet Parsing

2. Stemming

3. Stop Word Reduction

Snippet Parsing

In order to build a data basis, a search query is placed at a publicly available search
engine (for this work we chose GOOGLE and LOOKSMART3) and it stores the
results. The procedure described in Subsection 2.6.1 is used for gathering link
information. The gained amount of webpages is called root set. The root set can be
extended to a base set. The extension helps to include additional documents which
might be relevant but which would otherwise not have been considered. A non-
consideration can result from documents that were not found by the search engine,
as they do not contain the keywords of the query even if they would thematically
fit in the search query. Data structures for storing the link matrices and snippets of
the different sets are described in Section 2.5. Two ways to create the base set are
introduced in the following.

3www.google.com and www.looksmart.com
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The first approach is oriented at the one of the HITS algorithm (Hyperlink In-
duced Topic Search; Kleinberg, 1999). The HITS algorithm differentiates web-
pages not only concerning their relevance to a search query (authority), but addi-
tionally considers their quality as a guide (hub) to relevant Web pages (compare
Subsection 2.4.2). Kleinberg starts with a root set of approximately 100 – 200
webpages that are yielded as a result to a query by an existing search engine.
This root set does not necessarily contain all pages relevant for the search term.
However, with a certain probability these sites have hyperlinks to or from relevant
pages. Therefore, two kinds of pages are determined in a second step. First, pages
which contain links to pages of the root set and second, those pages the pages of
the root point to. In the HITS algorithm, approximately 50 hyperlinks per page
are considered so that the extended set, the so-called base set, normally consists
of 1’000 to 5’000 webpages. For each page included in the base set the HITS
algorithm determines authority and hub values. The generation of a base set is of
particular importance for this work in order to cluster documents on its basis.

The base-set generation of the HITS algorithm can lead to a so-called topic drift
– in particular with precisely formulated search queries. Besides, the thematic fo-
cus of the content of documents can shift to a more general context that mostly
covers the particular query context as a subset. We suggest the Aroundlink Algo-
rithm (ALA), which is oriented at the Cocitation Algorithm of Dean and Henzinger
(1999) as an alternative means for gaining of document sets.

The starting point of the aroundlink algorithm is – as it is with the HITS al-
gorithm – a root set containing 100 – 200 documents. But the extension of the
amount is being carried out in another way: For a number of documents – deter-
mined by the user – that contain hyperlinks (inlinks) which point to documents of
the root set, hyperlinks are added as follows. Those hyperlinks that are located
in the HTML-text in proximity of the inlinks extend the root set in the sequence
of their appearance. This proceeding is based on the assumption that many hubs
contain links that are assorted by topics, whereby links to documents with similar
content can be found in proximity to each other. In this way, we can avoid – with
respect to extensive hubs – the admission of links that are thematically located far
away from the search context. The documents of the inlinks itself are not admitted
into the document set but are only used as a source of information.

Stemming and Stop Word reduction

After extension of the root set, two preparing steps, i.e. stop-word elimination and
stemming, are carried out in order to more precisely describe the semantic content
of the collected documents. Those words that do not possess any direct connection
with the topic of the text, e.g. articles, pronouns and prepositions, are called stop-
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words. In order to avoid these stop words from being included into the similarity
measurement of the documents they are eliminated from the data basis. This can
either be done after completion of the information acquisition or directly during
the admission of the text.

In a further step, words of the same root are tracked back to their common origin.
Four stemming procedures (Frakes, 1992) are examined:

Using the table lookup method, the term is being searched in a global table
and is being traced back to the origin registered in the table. For this purpose,
the precondition is an elaborated and extensive table containing all words of a
language.

The aim of the successor variety procedure is to isolate morphemes of a term.
Morphemes are the smallest, frequently appearing logic and inseparable character
strings of a language. The successor variety of a substring of a word is calculated
by counting the number of different characters that follow it in words in the doc-
ument set. A precipitous increase of the successor variety indicates a morpheme
end.

The n-grams method looks at small character strings included in a word. Typi-
cally, two or three consecutive letters are used called digrams or trigrams. A string
with n characters is called n-gram. The number of unique n-grams two words
have in common is used as similarity measure. Words whose similarity exceeds a
certain threshold are considered to be of the same stem.

In the suffix removal procedure, known word-endings (suffixes) of a language
are removed according to defined rules and so the word is reduced to its infini-
tive (Lovins, 1968). The algorithm searches in an iterative procedure the longest
character string (suffix) at the word’s end which meets these rules and removes
them. The algorithm of Porter (1980) is often used because of its compact struc-
ture and small need of computing time. The Porter algorithm examines three types
of conditions concerning the (determined) origin, the kind of word ending and the
replacements already made. Afterwards, it carries out one or more replacement
rules: By placing minimum requirements to the quality of the resulting word ori-
gin, it prevents a reduction to too short stems. For this reason, the algorithm evalu-
ates the origin with a measure counting the number of alternating vowel consonant
sequences.

While running times of the successor variety and the n-grams method depend
on the whole number of words and the running time of table lookup depends on
the size of the word-table, the running time of the Porter algorithm is determined
only by a double-digit number of rules. Due to the favorable characteristics of
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running time and the easy implementation with qualitatively good results, we use
the Porter algorithm for this research.

3.5.3 Document Representation

The next issue to regard is the format of document representation. It determines the
data access possibilities and the functions that can be carried out on the documents.

Vector Space Model based on Term Frequency

The vector space model (VSM; Salton, 1989) represents text documents as vec-
tors in the Euclidean space. Each term of a document corresponds to one vector
dimension. The text of a search query can be modeled as a vector in the same way.

A term-document matrix A = (aik)1≤i≤N,1≤k≤M represents the document set.
Each entry aik ∈ R+

0 states the relative contribution of a term i (1 ≤ i ≤ N) to the
representation of the document k (1 ≤ k ≤ M). The matrix entry aik can – in the
simple case – reflect the state if the term at all exists in the document (binary
weighting), or the number of its appearances in the document (term frequency, tf).

Let fik ∈ N be the number of occurrences of term i in document k, then the
matrix entry for binary weighting is defined as

abinaryik =

{
1 if fik > 0
0 otherwise

.

Under the assumption that a term has a higher impact on the content the more
often it appears in the document, the matrix can be defined by

atfik = fik.

In order to consider furthermore that one term the more discriminates docu-
ments from each other the less it exists in other documents, the term frequency
is weighted with the inverse frequency of these documents (inverse document fre-
quency, idf) in which this term exists (tf-idf):

atfidfik = fik log
(
N
df i

)
,

where df i is the number of documents with fik > 0. Hereby, words appearing in
very many documents receive a smaller weight than seldom occurring words. The
logarithm function smoothes the effect of very rare words.
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These values can be normalized using the L2-norm as follows in order to prevent
large documents from dominating the document space:

aik =
fik log

(
N
df i

)
√

M

∑
k′=1

(
fik′ log

(
N
df i

))2

=
fik√

M

∑
k′=1

( fik′)
2

.

In order to compare documents to each other, similarity or distance measures are
needed. The cosine coefficient cosγ is often used as a similarity measure because
it can be intuitively interpreted as an angle γ between two vectors in the underlying
vector space. Moreover, it is easy to calculate. The angle between two vectors v1
and v2 is determined with

cosγ =
〈v1,v2〉
‖v1‖ · ‖v2‖ ,

where 〈v1,v2〉 is the standard scalar product of the vectors and ‖v1‖ the Euclidean
norm of vector v1.

Thus, the similarity of two documents dh and d j can be calculated using the
cosine coefficient as

simtfidf
cos (dh,d j) =

N

∑
i=1

fih log
(
N
df i

)
fi j log

(
N
df i

)
√

N

∑
i=1

(
fih log

(
N
df i

))2√ N

∑
i=1

(
fi j log

(
N
df i

))2 .

If the tf-idf vectors dh,d j exist already in the above described normalized form,
the calculation can be performed as scalar product

simtfidf
cos (dh,d j) =

〈
dh,d j

〉
.

The words of a search query can be presented as a vector (like a document).
Thus, best suitable documents for a query can be determined by using this simi-
larity measure to compare a query vector with the document vectors in the same
vector space.
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In the vector space model exclusively those words are regarded to be equal that
are literally equal. Furthermore, the VSM contains the implicit assumption that the
words of a document appear independently from each other. Normally, this is not
the case as the words have a common context. Without considering the context of
single words, redundant information would be stored in the term-document matrix.
Not considering the context leads to the fact that different words with identical
meaning (synonyms) cannot be found. Moreover, identically spelled words with
different meanings (polysemes) in this case cannot be differentiated by looking at
the context.

Other applications of the vector space model are e.g. presented by Aasheim
and Koehler (2006) who have used the VSM for classifying the content of Web
documents.

Latent Semantic Indexing

Latent Semantic Indexing (LSI; Deerwester et al., 1990) tries to avoid the known
problems of the VSM by considering concepts instead of single words. Thereby, it
is assumed that the words used in a document form an intrinsic or latent structure,
which is concealed by the variability of selection of words. In order to identify the
concepts existing behind this structure, a Singular Value Decomposition (SVD) is
being carried out on the term-document-matrix A. The matrix A can be decom-
posed in the following matrices, because any rectangular matrix can be decom-
posed into the product of three other matrices (compare Deerwester et al., 1990):

A=UΣVT .

The columns of matrix U contain the orthogonal eigenvectors of matrix AAT and
the columns of matrix V contain the orthogonal eigenvectors of ATA. The values
on the diagonal of the matrix

Σ= diag(σ1...σr)

are called singular values σi. There are r = rang(A) singular values. The smaller
the singular values are the more similar are the corresponding vectors. By discard-
ing some of the singular values, the size of the basis can be reduced.

If we only keep the k biggest singular values in the matrix Σ and call this matrix
Σk, this will lead to a k-rank approximation. Figure 3.14 shows the principle of the
k-rank approximation for k = 2. The resulting matrix

Ak =UΣkVT



3.5 Combined Approaches 133

Figure 3.14: k-rank-approximation (Osinski, 2003)

presents the best approximation of matrix A for a given k using the L2-norm. The
approximation Ak tries to keep as much information of A as possible for a given
k. By keeping only the highest singular values, those singular values are kept that
describe best the relationship between terms and documents. If two documents do
not differ very much from each other, they probably belong to the same concept.
That means that these documents are only separated by a lower singular value.
Removing the smaller singular values may show that these documents belong to a
common concept.

Thus, documents containing many common terms – and therefore probably a
similar concept – get a similar representation in the vector area. The number of
concepts to be extracted can be arbitrarily chosen by setting a value for k. The con-
cepts of the SVD can be used as basis for clustering. Moreover, search results are
getting more robust against different spellings and polysemy of the search terms.

3.5.4 Clustering Method Combination

In the following, different methods of clustering implemented in the context of
this work are described. First, the Probabilistic Latent Semantic Indexing model
(PLSI) and the Probabilistic HITSmodel (PHITS) are introduced. Both models are
based on probability processes. Where in the PLSI model (in a similar way like
with LSI) words represent a document, in the PHITS model the link-structures of
the document-set (like in the HITS model) are examined.

The PLSI-PHITS Clustering approach (PPC) combines these two models. It
generates descriptions fitting to the latent classes and builds clusters from docu-
ments matching these descriptions. In Figure 3.15, the components of PPC are
connected with a dashed line.
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Figure 3.15: Method combination

The hierarchical agglomerative clustering (HAC) and the Ejection Chain heuris-
tics (EC and OEC) first build clusters based on cosine distances based on PLSI/PHITS
and tf-idf and then generate phrases that best match these clusters. In Figure 3.15,
the components of HAC and EC/OEC are connected with a solid line.

This subsection explains the elemental methods and their combination resulting
in cluster procedures as shown in Figure 3.15.

Probabilistic Latent Semantic Indexing Model (PLSI)

The Probabilistic Latent Semantic Indexing Model (PLSI; Hofmann, 1999a,b) is
based on a statistical approach that was published under the name Aspect Model
and Aggregate Markov Model (Saul and Pereira, 1997). The goal of the PLSI
model is to identify the abstract concepts in a document collection. For this reason,
the creation of the documents

d ∈ D= {d1, ...,dN}

from the words
w ∈W = {w1, ...,wM}

is regarded as a generative, statistical process. Thereby, class variables

z ∈ Z = {z1, ...,zK}
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Figure 3.16: Generative process

are introduced through which the appearance of a word w in a document d is
explained. Class variables can be interpreted as different topics or clusters, which
are assigned to documents based of the words they contain. The class variables
correspond to the abstract concepts and the first k singular-values of the k-rank
approximation in the LSI procedure.

The goal of the PLSI is to extract the abstract concepts defined by latent classes.
For this reason, we assume that a generative process exists that creates words from
latent classes that are created from documents. We further assume, that the genera-
tive process can be described with probability functions. The probability functions
are not known in advance, but their determination helps to identify latent classes,
as described in the following.
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Figure 3.17: PLSI – graphical model (Hofmann, 2001)

The generative process consists of three steps (compare Figure 3.16):

1. Choose a document d with the probability P(d).

2. Choose a latent class z for a document d with the probability P(z|d).

3. Create a word w for a latent class z with the probability P(w|z).
On the basis of this generative process a probability distribution for the common
appearance of a document d and a word w can be described as follows:

P(d,w) = P(d) ·P(w|d)

with
P(w|d) = ∑

z∈Z
P(w|z)P(z|d).

Thus, we assume the independent creation of all document-word pairs as well
as the independence of a word and a document from the state of a given class
variable.

The relationship among the different sets involved and the probabilities can be
explained by means of Figure 3.17. The outer box represents the whole document
collection D. In a single document of the collection (represented by the middle
box), the occurrences of a word are represented by the inner box. The generation
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(a) (b)

Figure 3.18: PLSI bottleneck (Hofmann, 2001)

of a word w out of a latent class z can be described by two probabilities. P(z|d) is
the same for all words in the document. P(w|z) is the same for all documents in
the collection. Summing up the product of both probabilities for all z ∈ Z leads to
the calculation of P(w|d).

The introduction of the latent classes z can be interpreted as a bottleneck (com-
pare Figure 3.18). The number of probabilities involved reduces from |D|·(|W |−1)=
N ·(M−1) (Figure 3.18a) to |D| ·(|Z|−1)+ |Z| ·(|W |−1) =N ·(K−1)+K ·(W−
1) (Figure 3.18b).

Now the probability distributions P(d), P(z|d) and P(w|z) for a given document
set D with wordsW as well as a given number K of class variables zi are searched
for. This is performed by the maximization of the log-likelihood function

L= ∑
d∈D

∑
w∈W

n(d,w) logP(d,w),

where n(d,w) denotes the number of the common appearance of the word w and
document d:

n(d,w) =
∣∣{ (i, j)| i ∈ {1, ...,N}∧ j ∈ {1, ...,N}∧di = d∧wj = w

}∣∣ .
For the estimation of parameters we use a numerical procedure, the Expectation

Maximization (EM) algorithm (Dempster et al., 1977), as the log-likelihood func-
tion is difficult to be solved analytically. The EM algorithm finds approximations
for the probabilities of class variables z by first determining a lower bound for the
log-likelihood function and approaching the probability distribution in a two-step
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iterative procedure. The approximation is split into two steps, the expectation step
(E-step) and the maximization step (M-step). The steps are performed in alterna-
tion as follows. The E-step estimates the probabilities as

P(z|d,w) = P(z,d,w)
P(d,w)

=
P(z)P(d,w|z)
∑
z′∈Z

P(z′,d,w)

=
P(z)P(d|z)P(w|z)

∑
z′∈Z

P(z′)P(d|z′)P(w|z′)

and the M-step estimates the probabilities as

P(w|z) =
∑
d∈D

n(d,w)P(z|d,w)

∑
d∈D

∑
w′∈W

n(d,w′)P(z|d,w′) ,

P(d|z) =
∑
w∈W

n(d,w)P(z|d,w)

∑
d′∈D

∑
w′∈W

n(d′,w′)P(z|d′,w′) ,

and

P(z) =
∑
d∈D

∑
w∈W

n(d,w)P(z|d,w)

∑
d∈D

∑
w∈W

n(d,w)
.

P(z|d,w) denominates the probability that a word w in a document d is ex-
plained by a factor corresponding to the class z. The probabilities are initialized
with random values. The convergence of the EM algorithm was proven by Demp-
ster et al. (1977). In order to avoid an overfitting to the given data – which can e.g.
emerge from the existence of only a small number of non-trivial data – the algo-
rithm is extended with techniques of Deterministic Annealing (Rose et al., 1990)
to a tempered EM (TEM) algorithm. By using a parameter β (0 < β < 1) dis-
tributions of the posterior probabilities (with decreasing β ) are converged to the
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equipartition:

Pβ (z|d,w) =
(P(z)P(d|z)P(w|z))β

∑
z′∈Z

(P(z′)P(d|z′)P(w|z′))β .

The parameter β is initialized with β := 1 and reduced using a factor η (0 <
η < 1) in each iteration. After β has reached a certain threshold, a fixed number
iterations of the (non-tempered) EM algorithm is performed. Experiments have
shown, that after five iteration of the EM algorithm stable solutions are reached.
The reduction of the relative influence counteracts the phenomenon of overfitting.
The procedure is shown in Algorithm 3.4.

As the number of the basic class variables is not determined by the EM-algorithm,
this number has to be specified separately. As the approaches for the determina-
tion of an optimal number that can be found in literature (Monte Carlo Approach
(Smyth, 1996) and Penalized Likelihood (Moore, 1999)) considerably interfere
with the running time, the number of resulting class variables is specified by the
user.

For the demonstration of the relation between PLSI and LSI, the aspect model
can be formulated in the matrix notation as follows.
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Algorithm 3.4 Tempered EM algorithm (Hofmann, 1999a)

procedure tempered_EM(D)
chose a random subset D∗ from document set D
set D# = D\D∗
initialize β ← 1, i:=0, j:=0
initialize probabilities P(z)z∈Z, P

(
d#|z)d#∈D#,z∈Z and

P(w|z)w∈W,z∈Z with random values
calculate start value
Lnew = ∑

d∗∈D∗
∑
w∈W

n(d∗,w) logP(d∗,w)

do
do
set L= Lnew, i← i+1
calculate probabilities of modified E-step:
Pβ
(
z|d#,w)z∈Z,d#∈D#,w∈W

calculate probabilities of M-step:
P(z)z∈Z, P

(
d#|z)d#∈D#,z∈Z and P(w|z)w∈W,z∈Z

calculate new value of log-likelihood
Lnew = ∑

d∗∈D∗
∑
w∈W

n(d∗,w) logP(d∗,w)

while (Lnew−L> 0 and i<max_inner_loop)
set β ← ηβ with 0< η < 1

while (β ≥threshold and j<max_outer_loop)
for i = 1 to 5 do {
calculate probabilities of E-step:
P
(
z|d#,w)z∈Z,d#∈D#,w∈W

calculate probabilities of M-step:
P(z)z∈Z, P

(
d#|z)d#∈D#,z∈Z and P(w|z)w∈W,z∈Z

}

Let
UK = (P(d|z))d∈D,z∈Z

and
VK = (P(w|z))w∈W,z∈Z

and
ΣK = diag(P(z)z∈Z) ,
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where diag(·) describes a diagonal matrix with ΣK(i, j) = 0 for i �= j. Then, the
word-document matrix

AK = (P(d,w))d∈D,w∈W

can be written as
AK =UKΣKVT

K .

A comparison of this decomposition with the k-rank-approximation of the LSI
shows that the singular values of the SVD are replaced by the probabilities of the
class variables. However, both models are based on different assumptions of the
probability distribution. As LSI uses the distances of the L2-norm and thus implies
a Gauss distribution, the PLSI model is based on the likelihood function that was
generated by maximization of the model’s prediction capability.

Now, for PLSI exist (like for the LSI) the following two applicabilities: On the
one hand, latent classes can be interpreted as clusters where a value P(w|z) desig-
nates the topical contribution of a word w in the concept z. On the other hand, the
document representations gained can be the basis for calculating pairwise similar-
ities between documents in order to use them for a document clustering procedure.
Examples in Hofmann (1999a,b) show that the PLSI identifies meaningful topical
groups in different databases for the documents contained and comes to a suitable
allocation. Within the framework of our application of the PLSI model on Web-
based documents, we found out, however, that some of the latent class vectors
extracted contain topics of different subject areas. This is often not only a matter
of very random combinations but a matter of mixtures of two or three different
topics. Concerning the use on Web documents, we suggest an embedding of the
PLSI procedure into a cluster-description-first approach.

In the Suffix Tree Clustering Algorithm (Zamir and Etzioni, 1998) phrases ex-
tracted by suffix array were used for the first time for the selection of suitable
cluster descriptions. Thus, we can make sure that the descriptions of the clusters
are contained in the documents of the clusters and that they counter a mixing of
different subject areas or a topic drift. Zhang and Dong (2004) connected with
their Semantic Hierarchical Online Clustering (SHOC) the LSI and the extracted
document-phrases. In LINGO (Osinski et al., 2004) this procedure is combined
with a cluster-description-first procedure. The cluster-description-first approach is
combined with the PLSI approach in the following.

If we summarize all values P(w|z) in a M×K matrix containing latent classes

C = (P(w|z))1≤w≤M,1≤z≤K ,
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the K column vectors form the textual representation of the basic latent classes. In
order to enable a comparison of the descriptions with the column vectors of this
matrix, each phrase Pt is being interpreted as a pseudo-document Pt = {p1, ..., pM}T ,
which shows an entity of the same word space as the documents. After evaluation
of the entries of the phrase vector using tf-idf, the phrase-vector and the latent class
vector are normalized regarding the L2-norm. A matrix multiplication Mt = PTt C
yields a K×1-vector with similarity values of the phrase t to the K latent classes.
A multiplication for all phrases t is yielded by theM×K-matrixM = PTC, which
shows as column vectors the similarities between the amount of phrases and the la-
tent class represented by the column. In order to obtain as concise cluster descrip-
tions as possible, we now select those phrases with the highest, strongly positive
similarity value that consists of at least two words and do not contain any other
phrases as a part-phrase.

The allocation of the documents to the extracted cluster descriptions is carried
out by assigning those documents to the cluster that exactly contain this description
as a text.

Probabilistic HITS (PHITS)

Similar to the HITS algorithms, the Probabilistic HITS Algorithm (PHITS; Cohn
and Chang, 2000) analyzes the hyperlink structure of the underlying document
set. The generation of the subgraph that corresponds to the search query follows
the modus operandi of the HITS algorithm. A generative process analogous to
the PLSI modeling is used for the document grouping. Thus, we are also able to
determine multiple authorities.

The model describes the choice of documents d ∈D= {d1, ...,dN} and citations
c ∈C = {c1, ...,cL} by using class-variables z ∈ Z = {z1, ...,zK} in three steps:

1. Choose a document d with the probability P(d).

2. Choose a latent class z with the probability P(z|d).

3. Create a citation c with the probability P(c|z).

There,C as well as D refers to the document set. Both sets can be identical but are
differentiated because of their function: C contains cited documents and D citing
documents. Two assumptions are made: The creation of a document-citation pair
is carried out independently of other pairs. For a given factor z, the creation of a
citation and the creation of a document are carried out independently from each
other.
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The number of citations between c and d is denoted by

n(d,c) =
∣∣{ (di,c j)∣∣di = d∧ c j = c

}∣∣ .
The log-likelihood function

L= ∑
d∈D
∑
c∈C

n(d,c) logP(d,c)

is maximized by using the tempered EM algorithm like in PLSI. The expectation
step and the maximization step are performed analogously to the PLSI procedure
(Algorithm 3.4) with a control parameter β . The result can be used – as with PLSI
– either directly for the clustering or for the representation in order to create a
document-similarity measure for the clustering procedure. In contrast to PLSI, the
complete latency class vector is used for clustering here.

PLSI-PHITS Clustering (PPC)

Web documents contain textual information as well as interconnecting hyperlinks,
which – like referring citations – can express content relations between the linked
documents. Therefore, we want to use both types of information in a common
model. PLSI and PHITS are furthermore based on very similar modeling ap-
proaches. Thus, both models can be additively linked in a relatively easy way
(here with a weighting-factor of α (0≤ α ≤ 1)) with the following log-likelihood
function (Cohn and Hofmann, 2001):

L = ∑
d∈D

⎛
⎜⎝α ∑

w∈W

fwd log
(
N
nw

)
∑

w∗∈W
fw∗d log

(
N
nw∗

) log∑
z∈Z

P(w|z)P(z|d)

+(1−α)∑
c∈C

n(c,d)
∑

c∗∈C
n(c∗,d)

log∑
z∈Z

P(c|z)P(z|d)

⎞
⎟⎠ .

The generating of the underlying document set is carried out either analogously
to the modus operandi of the HITS algorithm or by using the aroundlink algorithm
(ALA, compare Subsection 3.5.2). The number of words as well as the number of
citations is normalized per document to the document’s whole number of words or
citations, respectively, in order to consider each document with the same weight-
ing. Instead of the tf-evaluation in Cohn and Hofmann (2001) the word proba-
bilities are weighted by tf-idf. Solving the log-likelihood function is carried out
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by using the tempered EM-algorithm (Algorithm 3.4), analogously to the single
models.

As a result, we obtain for each latent class z the vectors (P(w|z))1≤w≤M for the
textual as well as (P(c|z))1≤c≤N for the link-based descriptions. These vectors are
not created independently from each other but are folded with each other through
the probability produced in the maximization-step.

Similar to the single-models, the results can serve for clustering procedures as
well as for document representations from which a similarity measure can be cal-
culated. By directly using the latent classes as clusters, those words and documents
are extracted for each class that were generated with the highest probability from
this class.

The clustering process is performed using the following scheme:

1. Generate a document set for the search query using HITS or ALA.

2. Perform extraction of links and text extraction, stop-word elimination and
stemming.

3. Create a suffix tree in order to gain phrases.

4. Create cluster vectors with PLSI-PHITS with modified EM (Algorithm 3.4).

5. Extract cluster descriptions.

6. Assign documents to cluster descriptions.

Research of Hofmann (2000) leads to clusters which are on the one hand of a
good quality but on the other hand mix subjects or seem to be randomly created.
For this reason, the PLSI-PHITS model is implemented together with a cluster-
description-first approach (analogously to the proceeding with the PLSI model).
During the selection of the textual description, we only consider the textual in-
formation whereas with generating the latent classes textual as well as link-based
information is considered.

As described in the PLSI model, using the suffix tree those phrases are selected
among the extracted phrases that best fit to the latent classes. If a phrase is already
used for a cluster then reject it. All documents that contain the phrase in their
textual representation are assigned to a common cluster.

As a result, clusters are yielded with well-defined subjects, which have a quali-
tatively higher allocation compared to the results of Hofmann (2000).
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Hierarchical Agglomerative Clustering (HAC)

The similarity measure gained based on PLSI-PHITS document-representation
can be the basis for further clustering procedures. The following hierarchical-
agglomerative clustering (HAC) procedure is characterized by its simple concept
and its flexibility with regard to granularity. As a result it yields a hierarchical tree
of clusters, which is also called dendrogram.

The procedure starts with a state where each document di ∈ {d1, ...,dN} is con-
tained in an own cluster cl j ∈ {c1, ...,cK}, so initially K = N. It merges in each
iteration-step those two clusters that fulfill the criteria of the target function best be-
cause of their pairwise similarities. The similarity between the documents within
a cluster shall be as big as possible, and the similarity between two clusters shall
be as small as possible.

The cosine coefficient is used as similarity measure. Combining the textual
(simT ) and the linkage (simL) similarity leads to a total similarity of

sim(di,d j) = α · simT (di,d j)+(1−α) · simL (di,d j) ,

with given α (0≤ α ≤ 1).

Besides document similarities, we also need a measure of similarities between
the clusters. Here, we use the average linkage method that calculates the average
similarity of all document pairs (dr,ds) of the clusters cli and cl j with dr ∈ cli and
ds ∈ cl j as follows:

sim(cli,cl j) =
1
nin j

∑
dr∈cli
ds∈cl j

sim(dr,ds).

For the similarity simρ(dr,ds) of two documents dr and ds we use the cosine mea-
sure with ρ = T for the text-based and with ρ = L for the link-based calculation:

simT (dr,ds) = λ · simtfidf
cos (dr,ds)+(1−λ ) · simPLSI

cos (dr,ds)

simL (dr,ds) = simPHITS
cos (dr,ds)

with 0≤ λ ≤ 1.

The decision whether to merge two clusters or not depends on the self similarity
of the resulting document group. The self-similarity of a group Φ of documents is
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calculated as

sim(Φ) =
2

|Φ|(|Φ|−1)

(
α · ∑

di,d j∈Φ
simT

(
di,d j

)
+(1−α) · ∑

di,d j∈Φ
simL

(
di,d j

))

with 0≤ α ≤ 1.
As the vector-space representation of the documents already exists in the L2-

normalized form, the similarities sim(di,d j) correspond to the dot-product
〈
�di, �d j

〉
of the vector representation �d of the documents. Each group Φ of documents is
represented by two group-profile vectors

gρ(Φ) := ∑
d∈Φ

�dρ

with ρ ∈ {L,T}.
The self-similarity measure proposed by Chakrabarti (2003)

sims(Φ) =
〈
gρ(Φ),gρ(Φ)

〉−|Φ|
|Φ|(|Φ|−1)

is expanded for the combined consideration of link and text based information to

sim(Φ) =
α 〈gT (Φ),gT (Φ)〉+(1−α)〈gL(Φ),gL(Φ)〉− |Φ|

|Φ|(|Φ|−1)
.

Here, the calculation of the pairwise similarity-values can be reduced to the exe-
cution of dot-product calculations.

The number of clusters can be given by the number of iterations that are exe-
cuted (here N

2 ). As an alternative stop-criterion, we can draw on the difference of
the similarity values between two iterations.

After completion of the cluster generation, we look for descriptions for all clus-
ters. Thus, we choose the phrase from the suffix array that exists in the most
documents of the respective cluster. In case there are more candidates, we choose
the phrase that consists of the most words.

The determination of the clusters is performed by the following scheme:

1. Generate a document set for the search query using HITS or ALA.

2. Perform extraction of links and text extraction, stop-word elimination and
stemming.

3. Create a suffix tree in order to gain phrases.
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Algorithm 3.5 Hierarchical agglomerative clustering (HAC) algo-
rithm

procedure HAC(D)
initialize set of clusters G with one-document
clusters {di}: set G= {{di}|1≤ i≤ N)}

while |G|> N
2 do {

chose clusters Φ,Γ ∈
G with highest similarity sim(Φ,Γ)

remove Φ and Γ from G
set Δ=Φ∪Γ
insert Δ into G

}

4. Create vector representation of documents with PLSI-PHITS with modified
EM (Algorithm 3.4).

5. Create a document-document similarity matrix.

6. Determine clusters with HAC (Algorithm 3.5).

7. Assign description to each cluster.

8. Verify cluster descriptions.

Ejection Chain Heuristic (EC and OEC)

Web documents can be regarded as vertices of a complete graph whose edges are
weighted with pairwise similarities wi j. A clustering of the documents can be
achieved by partitioning the graph into subgraphs. Dorndorf and Pesch (1994)
create with their Ejection Chain heuristic (EC) solutions for the problem known
as Clique Partitioning Problem. In contrast to the probabilistic methods and the
HAC, the number of clusters is not given and belongs to the model’s output.

The target function can be formulated as a maximization of the sum of all edge
weights wi j within a cluster:

max ∑
1≤k≤n

∑
i, j∈Vk
i�= j

wi j

with the set Vk of vertices of the cluster k and n as number of the graph’s vertices.
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Introducing a variable

xi j :=

{
1 ∃k ∈ {1, ...,n}|i ∈Vk ∧ j ∈Vk
0 otherwise

for every edge (i, j), the clique partitioning problem can be formalized as follows:

max ∑
1≤i< j≤n

wi jxi j

s.t.

xi j ≤ 1 (1≤ i< j ≤ n)
xi j+ x jk− xik ≤ 1 (1≤ i< j < k ≤ n)
xi j− x jk+ xik ≤ 1 (1≤ i< j < k ≤ n)
−xi j+ x jk+ xik ≤ 1 (1≤ i< j < k ≤ n)

|{k ∈ {1, ...,n}|i ∈Vk ∧ j ∈Vk}|= xi j (1≤ i< j ≤ n)
|{k ∈ {1, ...,n}|i ∈Vk}|= 1 (1≤ i≤ n)

If all edge weights are nonnegative or nonpositive, trivial solutions are produced
consisting of all vertices in one cluster or each vertex in its own cluster. In order
to obtain both, positive and negative edge weights, the mean value μsim of the
similarity values is subtracted from each value:

wi j = sim(di,d j)−μsim,

where the PLSI-PHITS cosine measure is used for the similarity measure sim(di,d j).
The EC heuristic starts with the feasible solution X consisting of a random al-

location of vertices to clusters. A feasible solution X ′ is called a neighbor of X
if exactly one vertex is allocated to another cluster. By carrying out the right se-
quence of new allocations one gets from an arbitrary starting-point to the optimal
solution of the clique-partitioning problem. In an iterative procedure, we choose
that neighbor of the starting point that leads to a maximum improvement of the
objective function value.

Let v(u) be the actual cluster label of the vertex u and let V1, ...,Vk, ...,Vn be
the clusters of the actual solution, so vertex u is located in cluster Vv(u). For each
vertex u we calculate as internal costs

I(u) = ∑
i∈Vv(u)
i�=u

wui
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the sum of all edge weights combining vertex u with the vertex in the same cluster.
We calculate for each vertex u as external costs

E(u,k) = ∑
i∈Vk
i�=u

wui

the sum of all edge weights that combine u with the vertices of cluster k.
On re-arranging the vertex u to cluster k we yield as a gain

g(u,k) = E(u,k)− I(u).

Now, a sequence is created from n best new allocations by choosing the allo-
cation with the highest gain, respectively. The highest gain is delivered by the
allocation

g(u∗,k∗) =max
u∈V

⎧⎨
⎩ max

1≤k≤n
k �=v(u)

{g(u,k)}
⎫⎬
⎭.

A reassignment of a vertex u∗ from the cluster Vv(u∗) to cluster Vk∗ leads to the
following changes:

E (u,v(u∗))← E (u,v(u∗))−wu∗u ∀u ∈V\{u∗}
E (u,k∗)← E (u,k∗)+wu∗u ∀u ∈V\{u∗} .

A problem of local search is that often only local optima will be reached that
are far from the global optimum. By using tabu-markings, a further displacement
of an already displaced vertex is avoided.

From the first n sub-sequences we choose the one whose r = r∗ allocations
mostly improves the objective function value and the process is started over again.
If there is no improvement, the original allocation is used (see Algorithm 3.6).

As Web documents can often not be thematically assigned to only one cluster,
the EC heuristic is extended with the ability of creating overlapping clusters. This
is reached by replacing the last constraint of the formal model by

|{k ∈ {1, ...,n}|i ∈Vk}|> 0 (1≤ i≤ n) .

This constraint forces each vertex to be assigned to at least one cluster, which
implies that each vertex is allowed to be in more than one cluster.

The Overlapping EC heuristic (OEC) introduces a duplication step to each it-
eration in which documents can be assigned to one or more clusters, additional to
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Algorithm 3.6 Ejection Chain heuristic (EC) (Dorndorf and Pesch,
1994)

procedure OEC(D)
initialization:
randomly generate a feasible solution,
compute all external and internal costs.

repeat
duplicate the current solution and
mark all vertices as non-tabu.

for i := 1 to n do { // find a seq. of n best moves)
// move phase
determine a non-tabu vertex that maximizes the
gain g(u,k) for all u,k ∈

V and denominate this
maximum g(u∗,k∗)

perform the corresponding move and
mark vertex u∗ tabu.

update matrix E.
}
// improve the solution
among all subsequences of the first 0≤ r ≤ n
moves of the sequence of n moves let r∗
be a number of moves of a subsequence
such that these first r∗ moves improve
the solution at most.

if r∗ > 0 then replace the current
solution by its duplicate after
performing these r∗ moves.

until r* = 0;

their previous cluster. For monitoring the number of clusters, this step is carried
out depending upon the fact that a defined minimum value of the resulting gain is
exceeded.
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The duplication of a vertex u in a new cluster k is performed as long as the
following inequation is fulfilled:

E (u∗,k∗) =max
u∈V

⎧⎨
⎩ max

1≤k≤n
k �=v(u)

{E (u,k)}
⎫⎬
⎭> |k| threshold,

where |k| is the number of vertices assigned to cluster k. The value threshold
(threshold ∈ R) sets a minimum value for the average similarity of a vertex u with
all vertices uk of the clusters k.

After completion of the clustering procedure, we need descriptions for the cre-
ated clusters. They are chosen – like in the HAC procedure – from the amount
of phrases extracted using the suffix-tree. The clustering procedure consists of
following scheme:

1. Generate a document set for the search query using HITS or ALA.

2. Perform extraction of links and text extraction, stop-word elimination and
stemming.

3. Create a suffix tree in order to gain phrases.

4. Create vector representation of documents with PLSI-PHITS with modified
EM (Algorithm 3.4).

5. Create a document-document similarity matrix.

6. Reduce similarity values by the mean value.

7. Determine clusters with Overlapping EC.

8. Assign description to each cluster.

9. Verify cluster descriptions.

In the following, only the overlapping variant of the ejection chain algorithm is
used. Thus, each mention of the ejection chain or EC method will refer to the
overlapping EC (OEC) method.

3.5.5 Implementation

The described methods were implemented in the C++ programming language. Fig-
ure 3.19 shows the main classes in a simplified way. The preprocessing and the
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Figure 3.19: Framework of implemented classes

cluster algorithm are grouped around the two central classes: The memory class
holds the data structures needed for the clustering process and the user interface
class controls the execution of the different classes.

The user interface of the implemented solution (Figure 3.20) shows the choice
of different methods and the (empty) result boxes. It contains three areas:

1. Creation of a data set (upper area)

2. Clustering procedure with result boxes (central area)

3. Status bar (lower area)

The creation of a data set is performed after the entry of a query term. An existing
data set can also be loaded or stored by the system. The crawler class requests
search engine result pages and transmits the HTML code to the parser class. The
parser creates sets of words and eliminates stop words. The stemmer writes the
words that are reduced to their stem as well as the original (unstemmed) words
into the memory. Phrases are stored in the suffix tree from words that were not
reduced.

After choosing a clustering method in the central area of the main window, the
corresponding classes are invoked.

The PLSI-PHITS representation is created by the PLSI class and forwards their
results to the document clustering methods HAC and EC/OEC. The HAC and the
EC/OEC can also directly access the memory. Both methods transmit their results
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Figure 3.20: User interface

to the cluster description class that creates appropriate descriptions. As the PPC
approach generates cluster descriptions itself, there are no further classes needed.
The results of the PLSI-PHITS representation directly provide clusters and their
descriptions.

The left result box of the central area contains the determined cluster descrip-
tions with the number of documents contained in the cluster. The right box holds
the document URLs included in the cluster selected by the users.

The status box informs the user of the current working status of the program.

3.5.6 Experimental Results

In order to evaluate the results we need a benchmark for their quality. This bench-
mark can be the distance to an “ideal” solution. An “ideal solution” consists of
finding the “right” clusters and of the “right” allocation of the documents to these
clusters. In the context of a document categorization, we know the categories in
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Dataset A B
Query “jaguar” “statistical

learning”
Variant I II III I
Textual Information yes yes yes yes
Links (Generation
Method)

no
(–)

yes
(ALA)

yes
(HITS)

no
(–)

Documents 100 107 93 100
Words 812 588 486 664
Words after
Reduction

176 95 106 169

Phrases 3853 2171 1655 3164
Phrases after
Reduction

223 108 143 367

Table 3.3: Test datasets with variants – content type and item counts

advance and it is sufficient to determine the quality of the procedures from the
quality of allocation. Furthermore, categorization procedures imply that an allo-
cation of the documents is at least possible using the given information. Existing
Web directories can also be used as a comparison. In the directories, however,
general categories are installed that are not specific to a certain kind of research.

In the following, the results of the procedure presented here are qualitatively
examined. Therefore, two test-data sets are created from results of the search
engine GOOGLE.

In Dataset A, we choose as an example for an unspecified inquiry the search
word “Jaguar” from which we expect search results from very different areas. Be-
sides the wild animal the word “Jaguar” stands e.g. for an automobile brand or a
version of the system software MAC OS. The search results are generated in three
ways: Variant I exclusively uses textual information, Variant II uses textual infor-
mation as well as the link information determined with ALA, and Variant III uses
textual information and the link information determined with the HITS algorithm.
The search query of Dataset B contains a more specific issue and consists of the
term “statistical learning”. For the Dataset B we exclusively use Variant I.

Table 3.3 gives an overview of the contents and generation methods of the
datasets and their variants. It shows the number of documents in the sets, the
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(a) Dataset A (Variant I) (b) Dataset B (Variant I)

Figure 3.21: Results for HAC after 90 iterations – cluster labels and numbers of documents
contained

number of words before and after stop-word reduction, and the number of phrases
before and after the reduction.

Text Based Clustering

First, an evaluation of the clustering procedures based on Variant I of the datasets
A and B containing only textual information is carried out.

During the HAC procedure, the number of clusters is determined through the
number of iteration steps, which can be arbitrarily chosen. After 50 iteration steps
94 documents have been assigned to 34 clusters. A tendency towards descriptions
that only consist of one word shows up. It is sometimes difficult to deduce the
topic from the description without regarding the cluster content, especially in the
case of one-word descriptions. In the result set, there is for example a cluster with
the description “production”. It does neither become clear which production is
meant nor to which product it refers.

In approximately 14 % (Dataset A) and 13 % (Dataset B) of the cases, doc-
uments are assigned to wrong clusters, i.e. clusters whose remaining documents
do not possess a visible coherence to them. An increase of the number of iter-
ation steps to 90 leads to different observations on the datasets. The number of
clusters decreases, whereas the number of documents per cluster grows. The un-
specific query of Dataset A results in larger clusters of the core topics like the
animal (“panthera”), the operating system (“OS”), the car, or the video game con-
sole (“atari”). Figure 3.21a shows the results after 90 iterations. The less specific
query of Dataset B leads to a stronger concentrations of the documents in the first
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(a) Dataset A (Variant I) (b) Dataset B (Variant I)

Figure 3.22: Results for EC-PLSI – cluster labels and numbers of documents contained

clusters, because the topics of the query are not that distinctive (compare Figure
3.21b).

However, the allocation accuracy decreases with increase of the number of iter-
ation steps. E.g., some automobile related URLs are allocated to the cluster “os”
even though there is not any relation to the operating system visible. The same
tendency can be observed in all clusters of both datasets. In Dataset A, 38 % of the
documents are allocated to wrong clusters compared to 35 % of wrong allocations
in Dataset B.

The EC heuristic combined with the PLSI yields only a small number of clus-
ters. One reason for this is the (arbitrary) positioning of the algebraic-sign-limit
by subtraction of the average value from the similarity value. It determines the
number of clusters that could be changed by a different weighting. The clusters
well present the groups of subjects (see Figure 3.22). The precision of the cluster
contents show a slightly minor accuracy compared to the other methods described.
The clusters of both datasets contain over 40 % of documents from different topics.

In contrast to HAC and EC, the PPC procedure yields longer and more precise
cluster descriptions (compare Figure 3.23). The cluster descriptions contain better
information about the cluster content. The results for Dataset A contain the core
topics already described. Particularly in Dataset B, the PPC procedure yields with
a similar number of clusters considerably more significant descriptions.

A reason for the better performance of PPC is the use of the cluster-description-
first procedure. It prevents the allocation of documents to clusters to which they
have no or only a slight reference. Therefore, there are no allocations from docu-
ments to clusters with diverging topics. The superior performance of the cluster-
description-first method results from the often poor quality of base data. In many
datasets extracted for a certain query, there are documents without a content rela-
tionship with the context of the query. This phenomenon basically occurs because
of the expansion of the document set with e.g. HITS or ALA. The extraction of
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(a) Dataset A (Variant I) (b) Dataset B (Variant I)

Figure 3.23: Results for PPC – cluster labels and numbers of documents contained

PLSI-PHITS Clustering Total
HAC (50 iterations) 5.4 s 1.8 s 7.2 s

EC 5.3 s 1.2 s 6.5 s
PPC 5.5 s – 5.5 s

Table 3.4: Processing times of clustering methods

cluster descriptions by PLSI-PHITS excludes these documents because they be-
long to different topics and do not possess textual similarities with relevant docu-
ments. In contrast, the document clustering methods (HAC, EC and OEC) assign
at least one cluster to every document. This negatively influences the cluster qual-
ity.

Processing Times

Table 3.4 shows the processing times for the analyzed methods. For the document
clustering methods HAC and EC, the times needed for processing the document
representation (PLSI-PHITS) and the clustering algorithm are distinguished. Since
the PPC approach only consists of one step, it does not consume any time for a
supplemental clustering algorithm.

All times are measured using the clock operation based on the system clock of
the computer (PC with AMD Athlon XP 2500+ CPU and 512 MB RAM).
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(a) Dataset A (Variant II, ALA) (b) Dataset A (Variant III, HITS)

Figure 3.24: Results for PPC including link structure (α = 0.5)

The PLSI-PHITS algorithm runs up to three times longer than the clustering
algorithm. All methods need more than 5.5 seconds. This duration is basically
caused by the complex PLSI-PHITS procedure (compare Table 3.4). The cluster-
ing part of the EC algorithm only needs 30 % less processing time than the HAC
algorithm. Regarding the total processing times, the PPC is the fastest algorithm.

Influence of Link Structure

Based on the PPC procedure, which yielded the best clusters, the influence of link-
based information on the result is examined. For this purpose, link-information is
included in two variants of Dataset A. In Variant II of Dataset A the aroundlink
algorithm (ALA) is used to gather links. The HITS algorithm is used to gain the
links included in Variant III of Dataset A. The textual information and the link
structure are equally weighted with α = 0.5 and thus (1−α) = 0.5, respectively,
in the similarity matrix (compare Section 3.5).

A comparison of the results of Variant II including the link structure gained with
ALA (Figure 3.24a) with the results of Variant I (Figure 3.23a) yields the following
observations. Fewer clusters are determined, and the clusters are smaller although
a similar number of documents is included. Two new clusters called “jaguar rac-
ing” and “parts racing” are added. All other cluster descriptions of Variant I were
already contained in Variant II in identical or comparable form. A few other topics
got lost compared to the text-only variant. This loss can be explained by the dif-
ferent formation of the datasets. The influence of the link structure on the results
of PPC is minor. A change of the link proportion to (1−α) = 0 yields seven of
ten clusters that are identical.
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Figure 3.25: Results for PPC with 40 latency classes (Dataset B, Variant I)

A comparison of the results of the HITS based Variant III (Figure 3.24b) with
the text-based Variant I (Figure 3.23a) yields similar observations. In this case
also, fewer and smaller clusters are created. Some of the clusters (like “business
directory” or “add link”) do not have any coherence with the query. This can be
explained by an additional topic drift that occurs with the HITS algorithm (com-
pare Subsections 2.4.2 and 2.6.2). Here, URLs that are not relevant with regard to
the query were incorporated in the datasets.

Influence of Latency Classes

In the PLSI-PHITS model, the number of latency classes used can be modified.
Increasing the number of latency classes from K = 20 to K = 40 doubles the run-
ning time of the whole clustering process. The results for Dataset B Variant I with
K = 40 shown in Figure 3.25 are compared with Figure 3.23b (K = 20). There
are some identical clusters (like “statistical learning theory”). The additionally oc-
curring clusters bear a high resemblance with the results of 20 classes. The high
number of clusters leads to very specific cluster descriptions and overlapping clus-
ters like “theory is the support vector machine” and “support vector machines”.



160 3 Result Clustering

(a) Dataset A (b) Dataset B

Figure 3.26: Results of VIVISIMO

Comparison with Vivisimo

If we compare the PPC procedure to the clustering engine VIVISIMO similar clus-
ters are extracted (see Figure 3.26). Because of the bigger data basis of VIVISIMO,
a higher number of clusters is created. Despite the smaller data basis, the PPC pro-
cedure is able to identify a big part of the subjects and to extract further subjects.
Thus, PPC partly produces more accurate cluster descriptions, but VIVISIMO re-
turns results in a shorter timeframe.

Summary and Outlook

The procedures presented here are suited to offer an additional value to the user
by adequately summarizing search results into clusters. In comparison, the PLSI-
PHITS clustering performs better and faster than the hierarchical-agglomerative
clustering and the ejection-chain procedure. Advantages in the (perceived) quality
of clusters arise from the cluster-description-first procedure. The form of link-
information generation with the ALA and the HITS procedure seems to deteriorate
the results because of the topic drift and therefore leads to a minor performance of
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these procedures that use the link-information. The simultaneous usage of textual
descriptions and link-based methods currently creates some inaccuracy. A better
use of the link-information can be the subject of further work so that their use can
better contribute to the quality of results.



4 Search Engine Optimization

Companies, organizations or persons that are offering websites in the Internet are
interested in people regarding their content. Depending on the goals of the spe-
cific website, they usually want a high number of the “right” people to visit their
website. The goals can be to spread information or opinions for a certain topic or
make the visitor perform some transactions. Ideally, the goals of the website owner
correspond to one or some of the users’ needs described in Subsection 1.1.1.

Since most people use search engines and the corresponding user numbers are
increasing (compare Figure 1.1, Table 1.1 and Chapter 1) and these users concen-
trate their attention on the first results on the result pages (compare Table 1.4 and
Subsection 1.3.5), it has become important for website owners to appear on high
ranks in order to be found by their addressees. The process of improving the vol-
ume and the quality of visitors on a website coming via search engines is called
search engine optimization (SEO). Most SEO activities aim for high positions on
the result pages because click rates are usually higher on top positions.

After showing the goals, possibilities and limits of search engine optimization,
the effects will be tested and evaluated in a practical project implementing SEO
methods in a Web design process.

4.1 Objectives

The website owner pursues certain goals by publishing his content in the World
Wide Web. Independent of the fact if he or she runs a shop, distributes opinions
or establishes a Web community, the owner is interested in reaching the target
audience. These efforts of the website owner can be subsumed under his marketing
activities.

Search engine optimization can be one component of the owner’s marketing ac-
tivities. The well known marketing mix model established by McCarthy (1975)
consists of four areas (the so-called four “P”s): Product, Price, Place and Promo-
tion. SEO activities fall under the promotion area (also known as communication
policy). The promotion consists of individual and mass communication, brand
management and corporate identity (compare standard marketing literature like
Kotler and Keller, 2008). A good search engine placement of a website does not
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Measure Short description

1. Traditional Media Measures
Recall Remembrance of an advertisement
Recognition Recognition of an advertisement

2. Contact Measures
Hits Number of requested files
Page Impressions Number of views of a webpage
Ad Impressions Number of views of an advertisement
Visits Number of visits of a website
Unique Users / Visitors Number of unique visitors on a website
Banner Reach Number of visitors having viewed the banner
Banner Frequency Number of views per visitor

3. Interactivity Measures
AdClick Number of clicks on a banner
AdClick Point-in-Time Point in time of a click on a banner

4. Result Oriented Measures
Transactions Number of transactions performed
Turnover Realized turnover
Contribution Margin Realized contribution margin
New customer registration Number of newly registered customers

Table 4.1: Advertising effectiveness measures (Skiera and Spann, 2000)

only serve the mass communication component. SEO can also contribute to the
success of brand management and the communication of a corporate identity.

If applying SEO, the SEO goals have to be adapted to those of the regarded web-
site’s owner. For persons or companies offering their products or services on the
Web, the typical economic goals of communication policy are to increase trans-
action volume, turnover, market share, or profit. They may also want to decrease
costs. The website owner’s communication policy often pursues psychographic
goals, too: The owner may want to improve the awareness of a product, service or
company. He aims at increasing the publicity of his brand or to distribute knowl-
edge about it. A positive attitude towards a brand and a brand image shall be
established. The preference for the offered good or a purchase intention shall be
awoken. These psychographic goals can be easily adapted to non-profit organiza-
tions, too.
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SEO helps to reach these goals by aiming to increase the quality and quantity of
visitors on a website. Skiera and Spann (2000) have assembled effectiveness mea-
sures for advertisements and have structured them into four groups: traditional me-
dia measures, contact measures, interactivity measures, and result oriented mea-
sures (compare Table 4.1). While the first group refers to classical advertisements
and the third group only aims at banner advertisements, the measures contained in
the second and fourth group (contact measures and result oriented measures) are
suitable for monitoring the ability of SEO and thus are considered in more detail.

The first contact measure, the number of hits, counts all files requested by a
browser and delivered by the server. As an HTML page may consist of multi-
ple elements (and files), multiple hits can be counted after a user has viewed only
one single page. The page impression measure overcomes this problem by count-
ing all hits on the same page’s elements as one page impression. For monitoring
banner advertisements on webpages, the ad impressions measure is relevant. The
visits measure counts multiple, consecutive page impressions of the same user on
pages of the same website as one visit. The number of unique users or visitors is
measured by assigning a unique identification attribute (like a cookie) for a longer
time period in order to identify revisits. On this basis, the number of visitors hav-
ing contact with a banner at all (banner reach) and their average contact frequency
over a time period (banner frequency) can be measured. Thus, for measuring the
achievement of website goals with SEO means, the numbers of page impressions
and visitors are used.

While contact measures can be used to monitor both, economic and psycho-
graphic goals, the result oriented measures refer to purely economic indicators.
These can be e.g. the number of transactions, the turnover, the contribution mar-
gin or the number of newly registered customers.

Figure 4.1 illustrates the necessary steps towards the achievement of economic
goals using the example of an online shop. The shop is assumed to aim at max-
imizing its turnover and its profit (economic goals, measured by result oriented
measures of Table 4.1). This can be reached by increasing the number and volume
of transactions on the store’s website performed by existing and new customers.

The achievement of economic goals can be positively influenced by increasing
the number of page impressions and visitors on the website (website goals). The
achievement of website goals can be monitored by the contact measures of Table
4.1.

Subsection 4.1.1 describes methods capable of increasing the number and qual-
ity of visitors. The number of visitors on a website can be augmented by reaching
upper positions on search-engine result-pages (SERP). Table 1.4 and Subsection



166 4 Search Engine Optimization

Figure 4.1: SEO impact chain

1.3.5 show that upper positions are mostly viewed and consequently mostly clicked
upon. Thus, reaching high positions on SERPs and influencing the dynamic and
static relevancy as well as the visibility of webpages are SEO goals. The function-
ing of these influence mechanisms is described in Subsection 4.1.2.

The different SEO means to reach the SEO goals will be described in Section
4.2. Using the right technology assures a webpage’s visibility for search engines.
The link structure including suitable URL names and anchor texts positively in-
fluences the static relevance of a webpage. Finally, the right content assures that
the webpage will be found by the right users. For this purpose, different keyword
selection models will be introduced in Section 4.3.

4.1.1 Website Visitors

One of the goals of a website owner is to maximize the number of visitors on the
website. The positions on which the webpages of a site appear on a search-engine
result-page influence the number of users visiting this website. The following
model aims at explaining this impact.

We assume that there are H webpages, represented by the documents dh (h =
1, ...,H). For the sake of a simple model, websites will not be considered sepa-
rately of webpages. Thus, webpages are the subject of analysis. The conclusions
for webpages can be transformed to websites as they can be regarded as a set of
webpages.
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Let the number of different query terms that can be entered in the search engine
be specified by I ∈ N0. There are ui ∈ N0 users (searchers) searching for a query
term qi ∈ Q (i = 1, ..., I), where Q ⊆ strings is a set of possible query terms. The
number of users ui is constant for each i (i= 1, ..., I) and is given exogenously. Let
us define a function

position : {1, . . . ,H}×{1, . . . , I}→ N

that assigns a position on the SERP to every document h for each query i. A
possible definition of this function is presented in Subsection 4.1.2. For this model,
the position jhi of a document h on the SERP for a query i is determined by the
position function as

jhi = position(dh,qi) .

There are J positions available: jhi ∈ {1, . . . ,J}. A value of jhi = 1 denominates
the top position on the SERP.

The total number of visitors vh on a document dh consists of the sum of visi-
tors vsh ∈ N0 coming from search engines and visitors veh ∈ N0 coming from other
sources: vh = veh+vsh (h= 1, ...,H). veh is assumed to be constant because it cannot
be influenced in the framework of this model. vsh consists of the sum of all visitors
reaching the document h via different queries i:

vsh =
I

∑
i=1
vhi (h= 1, . . . ,H),

where vhi ∈ N0 is determined by a function

visitors : {1, . . . ,J}×{1, . . . , I}→ N0.

The observations described in Subsection 1.3.5 show that documents on higher
positions are viewed more often than those on lower positions. Thus, the number
of visitors

vhi = visitors( jhi,ui)

depends on the position jhi of document h for a search term i and the number of
users ui that search for the term i. The function is assumed to have the follow-
ing property for a given number of users ui. For a given i and for each pair of
documents (dh,dm) with h,m ∈ {1, . . . ,H} and h �= m the conclusion

jhi < jmi⇒ vhi ≥ vmi
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is true. This means for each query i that if document h holds a higher position
(thus a lower value of jhi) as document m then the number of visitors of document
h is not lower than the one of document m.

The underlying assumptions allow the following conclusions. For maximizing
the total number of visitors reaching document h by applying

vh = veh+
I

∑
i=1
vhi→max,

the values vhi must be as high as possible for every i. From the relationships of
positions with visitor numbers follows

vh →max

⇔ vhi →max (∀i)
⇔ jhi →min (∀i) .

The highest number of visitors is expected on a document h if the position value
for as many as possible search terms is as low as possible.

Assuming that a part of the visitors on a document generate sales or transactions
with a constant contribution margin, the profit can be maximized by minimizing
the position values, too. This relation will be used in the keyword selection models
in Section 4.3. The next subsection explains how the position can be influenced.

4.1.2 Result Page Position

The position of a document on the SERP depends on multiple factors. The main
influence factors can be grouped into three categories.

The visibility of a document determines whether a search engine is able to read
a document at all or not. Invisibility is often caused by the technology used to
construct the website. Most search engines can only interpret information that is
available in textual form. Words that are e.g. for layout reasons transformed into
bitmap pictures are usually not recognized as long as these words are not added as
alternative text for the picture. The same is true for most textual content included
in script languages. A document can either be visible or not visible for a search
engine. A state in between is not possible.

For each visible document that is included in a search engine’s index, a static
relevance value can be calculated. It measures a kind of importance of the doc-
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Figure 4.2: Effects of static and dynamic relevance on visible pages

ument among all other documents on the Web. Methods to calculate relevance
values are presented in Subsection 2.4.1.

The dynamic relevance measures the relevance of a document with regard to a
certain query. It estimates how good a document may fit to the query.

Effects of static and dynamic relevance

The combination of static and dynamic relevance values decides on the order docu-
ments appear on the SERP. Figure 4.2 shows the impact of the relevance measures
on the webpage position.

If the static relevance of a page is low related to other pages the page may only
appear at the bottom of the result list or it will not appear at all. In practice, the
latter two alternatives do not make a big difference because the user’s main focus
is on the upper positions, anyway. Moreover, a high dynamic relevance for certain
keywords is not able to bring webpages to top positions if the static relevancy is
low.

If the static relevance of a document is high but the dynamic relevance for a
query is low, the page cannot be found by these queries. It remains on lower
position and may only be found accidentally.

If the static relevancy of a document is high and the dynamic relevance is only
high for keywords that do not fit to the contents of the page (for irrelevant key-
words) users may find the webpage although they are searching for a different
topic. If the positioning of the document complicates the search for relevant doc-
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uments, i.e. if the user searching for a keyword finds only irrelevant documents,
they can be perceived as spam.

Only if both, the static and the dynamic relevance for the right keywords contain
high values, the document will be found by the right users.

Visitor Position Model

The following model explains the interrelation between visibility, static and dy-
namic relevance, and the position on the SERP. The position function introduced
in Subsection 4.1.1 assigns a position to each document h for a query i. The po-
sition of a document depends on the relevance values the search engine calculates
for documents in relation to all other documents fitting to the query. Assuming
the relevance values are assigned by a function R : {1, . . . ,H}×{1, . . . , I} → R,
the position of a document h depends on the relevance of the document h itself in
relation to all other documents m ∈ {1, . . . ,H}\h:

position(dh,qi)

= f (R(d1,qi) , . . . ,R(dh−1,qi) ,R(dh,qi) ,R(dh+1,qi) , . . . ,R(dH ,qi))

= f (R(dh,qi) ,{R(dm,qi) |m ∈ {1, . . . ,H}\h}) .

The website owner is able to influence the relevance value of his own docu-
ments. Assuming that he is not interested in improving the relevance value of other
documents and that he is not able to downgrade other documents, the relevance val-
ues for all documents m ∈ {1, . . . ,H}\h are external parameters in respect to the
minimization of the position value. Consequently, a reasonable influence is only
possible on the document h. Thus, maximizing R(dh,qi) is sufficient in order to
minimize position(dh,qi) for a query i:

position(dh,qi)→min

⇔R(dh,qi)→max .

It follows from the relation between visitors and position derived in Subsection
4.1.1 that the maximization of relevance values leads to the maximization of the
visitor numbers on document h:

∀i : R(dh,qi)→max⇔∀i : position(dh,qi)→min

⇒∀i : vh,i→max

⇒vh→max .
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Even though the exact parameters for the calculation of relevance performed by
public available search engines is kept secret, knowing the main calculation ele-
ments is sufficient for influencing the ranking position. A relevance function can
be written (analogously to the consideration in Schaale et al., 2003) as a product
of three factors

R(dh,qi) = Rv (dh) ·Rs (dh) ·Rd (dh,qi) (i= 1, ..., I;h= 1, ...,H).

The binary variable Rv (dh) ∈ {0;1} indicates the visibility status of document
dh. Regular HTML documents that can be found by search engines are usually
visible, thus receive a value of Rv = 1. If a document dh cannot be found or
cannot be read by search engines, the visibility gets a value of Rv (dh) := 0. If
a document h is not visible, the search engine consequently assigns a relevance
value of R(dh,qi) = 0 for any query i to the document.

Depending on the quality and quantity of incoming links, each document re-
ceives a static relevance value Rs (dh) ∈ R+ that does not dependent on the query.
Higher static relevance increases the total relevance if the visibility and dynamic
relevance contain values greater than zero.

The better a document h fits to a query i, the higher its dynamic relevance
Rd (dh,qi) ∈ R+ will be. As with the static relevance, Rd can only positively af-
fect the total relevance if the visibility and the static relevance consist of positive
non-zero values, too.

Thus, all three factors need to be regarded in order to reach high total relevance
values. The function will not be filled with numerical parameters as the exact
algorithms of search engines are not published and are subject of continuous mod-
ifications. For the purpose of improving the total relevance, it suffices to analyze
the direction of causality. Possibilities and means to influence the factors are topic
of the next section.

The model can be extended by regarding the quality of visitors additionally to
the visitor quantity. The quality can be measured according to the economic goals
enumerated, e.g. by the expected transaction volume. This variant will be regarded
in separate keyword selection models.

4.2 Possibilities and Means

This section presents different possibilities and means to increase the relevance
values and thus improve the position and number of visitors of a website. This
does not include those positions on SERPs that are reached by paying money
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Figure 4.3: Approaches for increasing rank and visibility by location, effect and type

to the search engine owner (paid advertisement). Here, only the mechanisms to
reach better positions by improving relevance and visibility (organic listing) are
regarded.

The approaches can be classified by different dimensions (compare Figure 4.3):
by location, effect and type. SEO activities can be performed on two locations:
on the webpage itself (on-page or internal) and on other webpages (off-page or
external). They can also be classified by their effect into the three factors of the
position model: dynamic rank, static rank and visibility. The circles in Figure 4.3
represent different types of SEO activities. Their positions on the figure indicate
their assignments to their activity location and relevance factor.

There is a multitude of practical advices in literature that describe how to in-
crease result-page positions (see e.g. Alby and Karzaunikat, 2007; Schwarz, 2008;
Erlhofer, 2007; Glöggler, 2003; Chung and Klündler, 2007). This section takes a
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selection of promising methods and categorizes them under the factors of the posi-
tion model prior to integrating them in a Web design process presented in Section
4.5.

4.2.1 Visibility

The visibility of a webpage is a necessary precondition for the inclusion into a
search engine’s index. Even though a regular HTML page should be readable for
search engines, there may occur circumstances under which the webpage becomes
invisible for crawlers. An analysis of a Web document’s visibility helps its owner
to correct or to avoid errors in this regard.

Firstly, it must be assured that the URL of the webpage is known or at least can
be known by search engines. One possibility is to announce the URL at one or
multiple search engines that provide forms to fill out on their website. Usually, it
is sufficient to place the URL on another webpage that is already in the index of a
search engine. In this case, the crawler of the search engine can find the URL at its
next crawling process and adds it to his list of pages to be visited. When changing
the URL name of a page, the problem of publishing this URL must be considered,
too.

Secondly, the indexing of the document should not be forbidden by entries in
the file robots.txt (compare Section 2.2). Even though some search engines do
not respect the robots exclusion protocol1 and read excluded pages anyway, such
exclusion may hinder the webpage from being crawled. Whether a document is
included in a search engine’s index or not can be easily checked.

After these two preconditions for making the document findable have been ful-
filled, some measures have to be taken in order to make the document furthermore
readable. Since a search engine only stores the textual part of a Web document, the
amount of stored information can be checked by using a text browser like LYNX

or the text mode of the OPERA browser.2 These tools visualize the image a search
engine receives of the document. The case that some of the information which the
website presents to a human audience is missing in this image can be caused by
several, mostly technical reasons (as indicated in Figure 4.3).

Search engines will only add a limited amount of data per webpage to their
indexes. All information that exceeds this amount will be cut off. Consequently,
the webpage cannot be found using parts of the missing content in the search query.
A possible solution is to divide large pages into multiple smaller pages.

1see www.robotstxt.org
2www.opera.com; lynx.isc.org
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Another problem occurs if a webpage consists of multiple frames. Although
the human viewer of the page perceives only one webpage consisting of different
elements, search engines regard each element as a single document. Thus, if key-
words of the same query are distributed over different elements, the search engine
will not be able to implicate the relation between the elements and consequently
will not return multiple frames of the same webpage as one result.

In case a search engine returns one sub-frame of a webpage because it has found
the keywords in this sub-frame, only this frame will be shown on the result page.
The search-engine user will only see this sub-frame after clicking on the result, un-
less the website owner has implemented an automatism that reloads the remaining
sub-frames of the webpage.

A webpage has to consist of correct HTML code. Otherwise a search engine
may possibly not read the content as intended. The webpage can be validated
manually or using HTML validator tools in order to assure that correct HTML
code is used.

Also the usage of dynamically generated pages may cause some problems for
search engines. In this case, some webpage content is stored in databases and
will only be generated and transformed into HTML at runtime. A webpage may
be adapted to a user request that is expressed in parameters or session IDs. The
problems search engines may have with such URL structures can be addressed
by rewritten URL names. Some content management systems (CMS) offer this
service. The content of dynamically generated pages and of those pages built by
script languages like JAVASCRIPT can be additionally provided using plain HTML
that can be read by search engines.

Finally, a reliable Web server is an important precondition for visible Web doc-
uments. Even if the Web server fails only at the time the crawler visits one of the
hosted documents, this can lead to the fact that these documents will not be listed
in the search index.

4.2.2 Static Relevance

The measures for increasing the static relevance of a webpage are mainly related
to the link structure. This comprises the (internal, on-page) hyperlink structure of
a website and the (external, off-page) hyperlink connections with other websites,
as well as the structure of URL names (on-page) and anchor texts (off-page) on
other pages (compare Figure 4.3). The effect of these measures is restricted by the
limits described in Section 4.4.
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On-page Measures

The analysis of the internal link structure needs to regard the single documents as
well as the whole website. All webpages should be reachable from the homepage
of the website. A flat hierarchy of documents helps the crawler to reach the docu-
ments on a short way. As documents further down the structure tend to be valued
as less important, essential documents should be connected as directly as possible
to the homepage. This implies also a short URL name, which is also an attribute
of an important document. The number of outgoing links of a webpage should
not be too high, as it dilutes the distribution of PageRank and may be seen as a
characteristic of spam.

The choice of the URL names can support the perception of a flat hierarchy if
a long structure with multiple slash separators is avoided in favor of short names.
A content management system can perform the renaming of URLs if necessary.
In order to have sustainable effects of these measures, the URL names should not
change more often than necessary over time.

Off-page Measures

The most effective but also most difficult method to increase the static relevance of
a webpage is to add external hyperlinks pointing to it. According to the PageRank
definition (compare Section 2.4.1), a webpage receives a high rank value if other
pages possessing a high rank point to it. For this reason, hyperlinks on highly
ranked pages are treasured by many website owners and accordingly hard to get.

The website owner needs to seek for opportunities to place valuable links. Links
can also be placed in return for payment (paid links) or in return to a placed link
on the own page (link exchange). Both methods are not appreciated by search
engines as they undermine their algorithms’ output quality. As with other SEO
methods, this can lead to a total exclusion of this link from the PageRank calcu-
lation (compare limits in Section 4.4). The text related to the placed link (anchor
text) itself does not contribute to the static rank, but it may help to increase the
dynamic relevance of the linked page.

4.2.3 Dynamic Relevance

The dynamic relevance is calculated in order to evaluate the suitability of a Web
document for a certain query. Thus, the query term or a part of it must either occur
in the Web document or the URL name or stand in any other relation with the
document, e.g. through an anchor text. The dynamic relevance mainly depends on
the textual content of webpages, anchors and URLs.
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The constitution of appropriate content depends on the website goals. If the
website owner wants to increase only the number of users regardless of their qual-
ity, he or she may want to reach high positions on the result pages independently
from the query used. Here, a strategy is to fill the webpage with keywords many
users are searching for. Another strategy is to use keywords in the document’s
content that preferably few other Web documents contain. Those website owners
that want a certain clientele to visit their sites can adapt the page content to the
keywords this clientele is supposed to search for. In this work, the focus lies on
the latter group of website owners. A model for selecting the right keywords is
presented in Section 4.3.

The content of a webpage needs to be relevant to the searcher. If it is unique, it
is easier to reach higher result-page positions for related queries. As there are web-
pages stuffed with certain keywords for the only reason of attaining high result-
page positions, search engines try to separate such artificial content from natural
content. Webpages with artificial content are threatened to be excluded from the
search index. Thus, the text structure of Web documents should be as natural as
possible with the right keywords occurring in a natural quantity. The word density
distribution should not differ from other natural texts. In order to adapt to the va-
riety of search terms, keywords should be used with different flection. Company
specific or technical terms should be translated into everyday language. Also, us-
ing synonyms helps the potential searcher to find the webpage using other words.
Adding a glossary of the terms used is an appropriate tool for comprising different
explanations for keywords.

The HTML structure elements (e.g. “<h1>...</h1>” and “<h2>...</h2>”
for header level 1 and 2 or “<title>...</title>” for the document title) can
be used to emphasize certain keywords in the document. Here, a modest usage
of the elements is recommendable. Table 4.2 shows metatags the website owner
can use to describe the document content and give additional information about
its author, language, keywords and more. These metatags are also used by search
engines. Some display the description tag’s content on their result page.

HTML elements can also be used to describe the content of pictures that oth-
erwise cannot come into the searchable index. If the alternative text of images is
filled with appropriate keywords, the webpage can also be found in this way.

4.3 Keyword Selection

The selection of the right keywords is crucial for the search engine optimization
process. Regarding the SEO impact chain in Figure 4.1, the keyword selection
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<meta http-equiv="Content-Type" content="text/html>
<meta http-equiv="Content-Language" content="de">
<meta name="audience" content="alle,all">
<meta name="Author" content="XXXXXXXXXX">
<meta name="copyright" content="XXXXXX">
<meta name="Description" content="XXXXXX">
<meta name="GENERATOR" content="XXXXXXXXX">
<meta name="KeyWords" content="XXXXX">
<meta name="language" content="de">
<meta name="page-topic" content="XXXXXX">
<meta name="page-type" content="XXXXXX">
<meta name="publisher" content="XXXXX">
<meta name="revisit-after" content="10 days">
<meta name="robots" content="index,follow">

Table 4.2: Sample Metatags

influences the dynamic relevance of a Web document and thus its total relevance.
In SEO literature, the search terms a webpage is optimized for are often referred to
as keywords. In order to consider also queries consisting of more than one word,
the more exact notion search term is used in the model description. The models
are named using the more common notion keyword, anyway.

The position of a webpage on the search-engine result-page depends on the
search term entered. Increasing the positions for the right keywords positively in-
fluences the quality and the quantity of visitors, which are the basis for generating
profit out of the website.

This section presents different models that explain the interrelation between the
influenceable parameters and the business goal. Each model aims at maximizing
the profit by selling products. A fix amount of customers ui (ui ∈ N0) comes
via search engines to the website after looking for certain search terms qi (i ∈
{1, ..., I}). It is assumed that the website owner is able to improve the position of
his webpages by putting in a certain effort. This effort is expressed by an amount
of money spent. The cost of reaching the top position for search term qi amounts
toCi ∈ R+.

The percent sign is used as an operator that divides the preceding percentage by
100. The function % : R→ R is defined by p%= p

100 .
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4.3.1 Keyword Selection Position Model (KSPM)

In this subsection, a Keyword Selection Position Model (KSPM) is introduced. It
determines how much effort a website owner should put into the optimization for
which keyword or search term. By doing so, the model is able to select those
search terms that can be profitably used for SEO.

Product, Document and Search Term Variables

For creating a simple model, we assume that one webpage relates to exactly one
product. This webpage can be reached by the search term qi so that i relates to a
product, a Web document and a search term at the same time. The profit margin of
each product i is given by mp

i ∈ R+. With a given percentage of visitors vbi ∈ R+,
0≤ vbi ≤ 1, that buy product i after searching for search term qi, one can calculate
an expected profit margin of search term qi per visit on document i as mi = mp

i v
b
i .

Position Variables

The positions on the search-engine result-page are numbered with j = 1, ...,J
where j = 1 denominates the top position. Users click on a listed webpage with a
probability k j (0≤ k j ≤ 1) that depends on the position j. A smaller position num-
ber leads to a higher click rate so that j < q⇒ k j ≥ kq is true for each j = 1, ...,J
and each q = j+ 1, ...,J. It is assumed that the cost for reaching a position j can
be calculated as percentage c j (0≤ c j ≤ 1) of the cost for reaching the top position
Ci. Here, a smaller position number is related with higher relative cost, so that
j < q⇒ c j ≥ cq is true for j = 1, ...,J and q= j+1, ...,J.

Model

The expected profit for a product i is calculated from the expected revenues less
the costs spent for the placement of the product on the result page. The revenue
is generated by an expected number of visitors vi j = k jui on the webpage i if it is
listed on position j. The profit margin of each of these visitors is expected to be
mi, which leads to an expected revenue of k juimi. The cost of reaching position j
for document i can be calculated as c jCi.

After introducing the binary decision variable

xi j :=

{
1 if document i appears on position j
0 otherwise,
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j c j k j
c j−c j+1
k j−k j+1

1 100% 15% 20
2 60% 13% 10
3 30% 10% c j

k j
= 3

Table 4.3: Sample position parameters

the model maximizing the profit can be formulated as

max
I

∑
i=1

J

∑
j=1

(k juimi− c jCi)xi j

s.t.
J

∑
j=1

xi j ≤ 1 (i= 1, . . . , I)

xi j ∈ {0;1} (i= 1, . . . , I; j = 1, . . . ,J) .

The constraints assure that each search term i is assigned to at most one each
result page position j.

The best solution for each term i can be calculated determining

j∗i = j
∣∣(k juimi− c jCi)→max .

The effort put in the improvement of the search engine position of product i is
profitable if k j∗i uimi ≥ c j∗i Ci is true. With other words, one can spend up to an
amount of k j∗i uimi for placing product i on position j∗i .

Example

The model is explained using an example with I = 5 products, search terms and
webpages and J= 3 positions. Search engine users viewing a result page click with
a probability of k1 = 0.15 on the first position, and with k2 = 0.13 and k3 = 0.1 on
the following positions. Table 4.3 gives an overview over the values used. The cost
for reaching the top position of a keyword is defined by c1 ·Ci = 100% ·Ci =Ci.
The following positions cost c2 = 60% and c3 = 30% of the top positions costCi.

Five products are represented by five webpages (see Table 4.4). Each webpage
is reached by exactly one search term which is the same as the product name. The
parameters are explained using the first product (i = 1) called “mobile phone”.
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i 1 2 3 4 5
product
webpage

search term

mobile
phone

organizer music
player

navigation
system

camera

ui 800 1’200 600 400 50
vbi 5% 8.5% 3% 2% 6%
mp
i 320 200 400 100 300

mi 16 17 12 2 18
Ci 200 1’500 800 200 400
uimi 12’800 20’400 7’200 800 900
uimi
Ci

64 13.6 9 4 2.25
Table 4.4: Sample product parameters

i 1 2 3 4 5
j = 1 * 1’720 1’560 280 –80 –265
j = 2 1’544 * 1’752 456 –16 –123
j = 3 1’220 1’590 * 480 * 20 * –30

Table 4.5: Solution of example – expected profit of product per position

u1 = 800 users are searching for the term “mobile phone” during the regarded
time period. If a user clicks on a search result and visits the webpage for mobile
phone, he or she buys this product with a probability of vb1 = 5%. Considering the
profit margin of mp

1 = 320 achieved at the sale of a mobile phone, this leads to an
expected profit margin per user of

m1 = mp
1v

b
1 = 320 ·5%= 16.

The cost of reaching the top position for the search term “mobile phone” is C1 =
200. The second position on the result page costs c2 ·C1 = 60% ·200= 120.

Calculating the expected profit of the second position for search term “mobile
phone” results to an expected revenue of

k2u1m1 = 13% ·800 ·16= 1’664.
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This revenue is achieved spending c2C1 = 120 and thus, a profit of

k2u1m1− c2C1 = 1’544

is achieved. Table 4.5 shows the results for all products and positions. In this
example, choosing the maximum value per column leads to an optimal solution
(marked by an asterisk in the table). The table shows as result that it is worth to
spend money to reach the first position for mobile phone, as this position generates
the highest profit. In this solution, the second position is optimal for an organizer.
As the profit is negative for all positions, it is not worth to spend any money at all
for reaching one of the top three positions for the product i= 5 camera.

Influence of Position Parameters

The influence of the position parameters c j and k j can be analyzed as follows.
Subtracting the condition for j

k juimi ≥ c jCi
from the condition for j+1

k j+1uimi ≥ c j+1Ci

leads to (
k j− k j+1

)
uimi ≥

(
c j− c j+1

)
Ci.

Because of k j > k j+1 andCi > 0, a transformation to

uimi

Ci
≥ c j− c j+1

k j− k j+1

is feasible.
The inequality for product i= 2 is true for position j = 2:

u2m2

C2
= 13.6≥ c2− c3

k2− k3 = 10.

It is not true for position j = 1 :

u2m2

C2
= 13.6�

c1− c2
k1− k2 = 20.

Thus, the optimal solution for i = 2 is j∗2 = 2. This means that the product i = 2
“organizer” should be placed on the result-page position 2 for a maximum profit.
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Conclusion

Using this model, the website owner can determine for which search terms he
should invest in SEO activities in order to maximize his profit. With the same
calculation, the maximum profitable cost spent for SEO activities for reaching a
certain position can be determined.

A problem of the model arises because of the assumption that each webpage is
only reached by one search term. In practice, there are multiple different search
terms leading to the same webpage. The next subsection introduces a solution for
this problem.

4.3.2 Enhanced Keyword Selection Position Model (EKSPM)

The Enhanced Keyword Selection Position Model (EKSPM) aims at overcoming
the problems arising out of the unity of document and search terms. Thus, it allows
multiple search terms per single webpage.

Product and Document Variables

For this reason, a new index h∈{1, ...,H} is introduced forH products represented
by one Web document each. The profit margin mp

h ∈ R+ accordingly refers to the
product h.

Search Term Variables

Each document h can be reached by different search terms i ∈ Ih. The set of search
terms Ih is a subset of all possible search terms (Ih ⊆ {1, ..., I}) for h = 1, ...,H).
The number of users ui searching for term i and the cost Ci for reaching the top
position for term i are defined as in 4.3.1.

Search Term and Product Variables

A new parameter vbhi is introduced for modeling the percentage of visitors that buy
product h if they have searched for term i (0≤ vbhi ≤ 1). This is caused by the fact
that in practice, different buying frequencies are observed on the same webpage
depending on the search term the visitor has used. By setting vbhi := 0 for every
i /∈ Ih and h = 1, ...,H, the mathematical formulation does not have to explicitly
consider the single subsets Ih but can regard all search terms.

Consequently, the expected profit margin for a product h also depends on the
search term the users come from. It is calculated as mhi = mp

h · vbhi.
Position Variables

The position variables j = 1, ...,J, k j and c j are defined as in Subsection 4.3.1.



4.3 Keyword Selection 183

Model

Introducing the decision variable

xhi j :=

{
1 if document h appears on position j for query term i
0 otherwise

,

the EKSPM can be formulated as

max
H

∑
h=1

I

∑
i=1

J

∑
j=1

(
k juim

p
hv

b
hi− c jCi

)
xhi j

s.t.
J

∑
j=1

xhi j ≤ 1 (h= 1, ...,H; i= 1, . . . , I)

H

∑
h=1

xhi j ≤ 1 (i= 1, . . . , I; j = 1, . . . ,J)

xhi j ∈ {0;1} (h= 1, ...,H; i= 1, . . . , I; j = 1, . . . ,J) .

As in the KSPM, the profit is maximized. The first constraint assures that each
document h is assigned to at most one position j on the search-engine result-page
for search term i. The second constraint assures that each position j of a result
page for search term i is only filled with one document h.

The introduction of separate parameters for search terms and documents leads to
more difficulties when trying to find a feasible solution of the problem. A solution
can be to split the model into different models for each search term and solve these
models separately for each search term. By doing so, the relation between Web
document and search term is kept, but their interdependencies are neglected.

Input Values and Problems

Some of the input values are more difficult to obtain than others. The profit mar-
gin mp

h for each product h is known by the shop owner. The number of users ui
searching for a term i is published by search engines (e.g. GOOGLE ADWORDS)
and can be downloaded on their websites. The buyer percentage of visitors vbhi can
be estimated from the analysis of historical values using the website’s log files in
combination with the sales system. The cost Ci for reaching the top position for a
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term i is more difficult to determine. As estimation, one can use the cost for search
engines advertisements like GOOGLE ADWORDS. These values do not directly
refer to the cost of reaching the top position, but they indicate the relation between
the prices of different search terms.

Problems occur during the estimation of the position related parameters. The
relative click rates k j of the positions j are usually not published by search engines.
One possibility is the application of general values coming out of user studies. This
implies the assumption that the k j is constant over different keywords which is not
necessarily true. Similar problems occur for the relative costs c j. These costs are
hard to obtain as they are not publicly available. Also the relative costs may vary
from search term to search term and should not be assumed to be constant.

4.3.3 Keyword Selection Top Position Model (KSTPM)

The Keyword Selection Top Position Model (KSTPM) overcomes problems arising
from the insufficient availability of the data needed for the EKSPM. By focusing
only on top positions of documents for specific search terms, different values for
k j and c j are not needed anymore. This model is of great practical relevance for
the case that the EKSPM is not applicable because k j and c j cannot be (properly)
determined. The KSTPM answers the question which search term to focus on. The
answer to this question is crucial for practical SEO applications.

Thus, a constant rate k1of users clicking on the position of a result page is as-
sumed. This leads to a number of users searching for term i of u′i = ui · k1. The
remaining variables are defined as in the EKSPM.

Model

Introducing the decision variable

xhi :=

{
1 if document h appears on top position for query term i
0 otherwise

,
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the profit maximization of the KSTPM can be formulated as

max
H

∑
h=1

I

∑
i=1

(
u′im

p
hv

b
hi−Ci

)
xhi

s.t.
H

∑
h=1

xhi ≤ 1 (i= 1, . . . , I)

xhi ∈ {0;1} (h= 1, ...,H; i= 1, . . . , I) .

The constraints assure that for each keyword i only one document h can reach
the top position.

This model is relatively easy to solve as follows. Profitable search terms i can
be determined with

i∗h = i
∣∣∣(u′imp

hv
b
hi−Ci

)
→max

for each product h ∈ {1, . . . ,H}. The effort put into the improvement of the search
engine position of search term i for product h is profitable if u′im

p
hv

b
hi ≥Ci is true.

Thus, the website owner can spend an amount of u′im
p
hv

b
hi for the search term i in

order to promote product h.
As this model is easy to solve and all input data is available, the KSTPM is well

suitable for practical application. With its help, appropriate search terms can be
chosen as basis for processing the SEO task list, which is presented in Section 4.5.

4.4 Limits

The effects of the possibilities and means described for improving the SERP posi-
tion of a webpage are limited by several factors. Limits are caused by other website
owners, by user behavior, by cost or capacity restrictions, or by search engines.

Usually, there are different actors in the Web canvassing visitors with similar
interests. If there are other website owners competing for good SERP positions
in respect to the same keywords, the own success is limited by the success of the
competitors. The more interesting a keyword is for the website owners, the more
the top positions are fought over. Game theoretic approaches can help to explain
these interrelations.

If users find websites with a poor connection to the query on top positions and
this is caused by extensive SEO measures of these websites, they may perceive
these websites as spam, and the site owners may lose reputation. This is espe-
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cially the case if the documents the users expect to find are displaced onto worse
positions.

In case there are users that click on heavily promoted pages, the website owner
will more fulfill his website goal to increase page impressions or visitors. But if
these users are not at all interested in the product or service offered, the website
owner will not approach his business goals like sales volume. On the contrary,
more visitors on a page consume bandwidth and sometimes the related costs are
charged by the Internet provider. Moreover, a huge amount of visitors may exceed
the Web server capacities. Under these circumstances, SEO measures can even
counteract the business goals.

As search engines provide a service to their users, one of their primary interests
is to satisfy them. This comprises the fulfillment of the users’ needs to find what
they are searching for. If some website owners overuse the possibilities and means
of SEO with the consequence of a worse SERP quality, this counteracts the search
engines’ efforts to deliver as relevant results as possible.

4.4.1 Search Engine Spam

Users perceive webpages as unwanted content or spam, if these pages appear on
the SERP and are not related to the query or only very distantly related. This
perception of the same document may vary from user to user and thus, its evalua-
tion is a subjective decision. One of the challenges search engines are faced is to
identify spam and remove it from their indexes (compare Henzinger et al., 2002).
The website owner using SEO methods needs to be careful that his measures are
not classified as spamming by the search engines, because an exclusion from the
index of an important search engine can significantly influence visitor numbers.
The exclusion also forms a kind of punishment and thus may last longer than the
original SEO measure taken is present. Besides the exclusion of a single webpage,
the whole domain, the IP address or the IP group can be excluded.

In order to avoid confusions over which SEOmeasures are forbidden, search en-
gines establish rules for webmasters. The quality guidelines of GOOGLE (Google,
2009) advise webmasters to avoid tricks intended to improve search engine rank-
ings. The specific guidelines recommend not using the following techniques that
are explained in more detail in the next subsection:

• Hidden text or hidden links.

• Cloaking or sneaky redirects.

• Loading pages with irrelevant keywords.
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• Creating multiple pages, sub-domains, or domains with substantially dupli-
cate content.

• "Doorway" pages created just for search engines, or other "cookie cutter"
approaches such as affiliate programs with little or no original content.

Website owners try to find new ways that are not (yet) forbidden or cannot be easily
detected by search engines to improve the positions of their pages. This leads to
an enduring competition between search engines and optimizers.

Search engines continuously verify their index for abnormalities. In order to
identify content that is artificially generated, e.g. word densities are measured
(Ntoulas et al., 2006). Duplicate content is identified by comparison of differ-
ent webpages. The methods presented in Subsection 2.4.3 can be used to identify
artificially placed hyperlinks.

The following subsection will give an overview of typical and often used spam-
ming techniques.

4.4.2 Spamming Methods

When optimizing webpages, one has to be careful not to cross the fine line be-
tween good optimization and spam. A high competition between webmasters can
occur during the process of webpage optimization for commercially interesting
keywords. Sometimes, aggressive methods can result in short term success, but on
the long run, search engines will suppress the results of these methods. Anyway,
in high competitive areas like pharmacy products or pornography, website owners
go beyond the limits defined by search engines for the purpose of getting ahead
of other competitors even by a narrow margin. This subsection gives an overview
over aggressive methods that are occasionally perceived as spamming.

Text spamming

Some webpages are created for the only purpose of attracting the searchers of one
single keyword. These pages are stuffed with this keyword, but try not to attract
attention of search engines. Different locations in the HTML code of the page
come into consideration for placing the keywords. The keywords are repeatedly
inserted in the text body of the document. In order to not confuse the human reader
of the document, the keywords are written in color of the background or beyond the
visible areas of the document. Thus, the keywords are only visible for the search
engine and not for the visitor. Keywords are also repeatedly placed in the title or
other meta-tags of the documents, in HTML comments or in alternative attributes
of pictures. Sometimes multiple title tags are used. The latter methods can be
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classified as spam if the keywords are repeatedly used or if they do not have any
further relation with the document’s content. Only using these tags for moderate
placement of keywords usually is not a problem for search engines. Another way
to attract users is to copy content from other sources like DMOZ or WIKIPEDIA.
Search engines try to identify this duplicate content. The challenge is to find out
which page is the original one and which one is the copy.

Link spamming

Analogous methods are used for placing hyperlinks. Some spammers create large
networks of webpages linked among each other for the purpose of increasing the
PageRank (so called link farms). In doing so, they create multiple different URLs
for pages with the same content (shadow domains). Hyperlinks are placed in hid-
den form on own webpages, e.g. using one-pixel pictures. Publicly available guest
books, bulletin boards or blogs are filled with comments containing hyperlinks.
For this reasons, some search engines do not take into account entries of guest
books while calculating ranking values.

Page spamming

There are also whole pages with content created for the only purpose of attracting
search engine users. So called doorway pages are optimized for single keywords.
Multiple of these pages are placed on the Web, sometimes only slightly varying
from each other in order not to raise suspicion of being duplicate pages. For this
reason, they present other content to the search engines as to the users (cloaking).
This is achieved using technical methods by e.g. forwarding the user with the re-
fresh meta-tag, with JAVASCRIPT, CGI or with dynamically generated pages (PHP,
ASP).

Webmasters using these spamming methods face the risk of being punished by
the search engines. Thus, these methods should not be used by serious website
owners. When using search engine optimization methods, one needs to thoroughly
consider these limits in order to achieve ones goals.

For further reading, see Castillo et al. (2008) who give an overview of literature
about web spam.

4.5 Implementation

A list of SEO tasks was elaborated for the implementation of possibilities and
means of optimization described in Section 4.2. This list can be used as a checklist
for existing websites and is presented in the following subsection. Thereafter, a
website creation process is modeled and the SEO tasks are assigned to the process
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phases for the purpose of considering SEO measures during the creation of new
websites.

4.5.1 Tasks

After defining SEO tasks based on the possibilities and means, the single tasks
were compiled into the list shown in the Figure 4.4. The list contains tasks to be
performed for improving the quality of a website with respect to high positions in
search-engine result-pages. The tasks are grouped into ten areas explained in the
following. Different measures are identified additionally to tasks belonging to the
five SEO approaches shown in Figure 4.3. The last three columns of the SEO task
list are explained and used in the next subsection.

The identification and definition of keywords is separated from the content mea-
sures because it has to be performed independently from implementation of key-
words. The keyword selection models presented in Subsection 4.3 can support in
completing the tasks of this area.

The content area comprises different tasks to adapt the content to the needs of
increasing the dynamic relevance for the identified keywords. The technology area
mainly supports the visibility of the webpages. The tasks of the link structure area
aim for increasing the static relevance.
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Figure 4.4: SEO tasks per area assigned to process phases and reports
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The URL area assures appropriate domain names and internal link structures. In
addition, the site map of the website is registered at search engines to ensure that
all pages of the site are at least known by the search engines.

The anchor and PageRank area contains tasks for increasing the dynamic as
well as the static relevance. For the static relevance, links are added to different
locations in the Web. From the different locations, the hyperlinks in the OPEN

DIRECTORY PROJECT DMOZ usually have a considerable impact on the rele-
vance values. An organic link structure means that the links should not give the
impression to be artifically created.

In the result control area, the inclusion status of webpages in search engines is
monitored. The PageRank values are recorded to be able to react on changes by in-
tensifying the application of some measures or identifying and correcting possible
errors. If duplicate content is detected in search engines, it will be eliminated.

The user area does only indirectly belong to the SEO tasks. The user task aims
in the first instance for possibilities to put the own domain or URL name on the
Web where target user may click it. This increases the visitor number, and as a
side effect makes search engines finding the URL in the right context.

The analysis area contains a task to evaluate and monitor the results the websites
returns. The access logs are analyzed using custom made or publicly available
tracking tools (e.g. ETRACKER or GOOGLE ANALYTICS3).

The last area (other) contains a task that becomes necessary if a new domain is
registered. A trademark protection of the own domain name should be applied for
in order to be sure to keep the domain under own control after having increased
the PageRank.

4.5.2 Website Creation Process

Amore convenient way to implement the SEO tasks is to incorporate them already
when creating a new website. For this reason, a Website creation process is mod-
eled. The process is designed from the point of view of a company that constructs
websites for external clients. The goal of modeling the process is to identify the
process steps where the SEO tasks have to be performed.

Process Phases

The process consists of six phases numbered from P1 to P6 (compare Table 4.6). It
starts with the acquisition of a new project (P1) and marketing activities (P2). The
implementation (P4) is performed based on a detail concept created in phase P3.

3www.etracker.com; www.google.com/analytics
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No. Process Phase
P1 Acquisition
P2 Marketing
P3 Detail Concept
P4 Implementation
P5 Launch
P6 Operation

Table 4.6: Phases of website creation process

After the launch (P5) of the website, an operation phase (P6) follows. Each task
of the SEO task list is assigned to one of the process phases in the third column of
Figure 4.4.

Process Flow

Figure 4.5 illustrates the process flow of the website creation. In the first two
columns, it differentiates the process steps performed by the Web design company
together with the client from the steps performed internally by the Web design
company by itself. The content creating tasks and the SEO tasks are assigned to
each phase in the third and fourth column of the process flow.

In the first phase (P1 Acquisition), the Web design company communicates their
online marketing knowledge to potential customers. During this phase, there are
not any SEO tasks performed yet.

The second phase (P2 Marketing) starts with the collection of ideas, which re-
sults in a discussion concept. This basic concept is discussed together with the
client. It is agreed upon the amount of necessary client co-operation. The basic
concept already contains a definition of the amount and structure of the website
to be developed. Based on the concept, an offer is submitted to the client. If an
agreement is achieved and the client approves the offer, the next phase can start.

An internal project meeting elaborates a detail concept during the third phase
(P3 Detail Concept). The detail concept contains the functionality, the menu struc-
ture, the SEO measures and the keywords the website should be found with using
search engines. For this purpose, the content of the website must be defined, that
means either received from the client or generated by the Web design company. In
this phase, the first SEO tasks are conducted. The domain name is registered and a
webpage announcing the forthcoming website is created. If necessary, an applica-
tion for trademark protection should be filed. Opportunities for placing hyperlinks
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pointing to the announcing webpage are identified and some preliminary links are
placed in order to start building a static relevancy.

After the agreement upon the detail concept with the client, the fourth phase
(P4 Implementation) can start. The implementation tasks are performed internally.
Based on the detail concept, a graphical site layout is created and implemented in
HTML. After the website is programmed, an internal quality and usability check is
performed. During this phase, the website content is integrated in either a database
or a content management system (CMS). Furthermore, different implementational
SEO tasks are performed. Besides the tasks of the content and technology area,
the internal link structure is created and assured to be consistent. An error catching
page is created.

In the fifth phase (P5 Launch), the implemented website is presented to the
client. The website is launched after the client agreement and approval. In this
phase, a current site map is registered at search engines.

The launch is followed by the last phase (P6 Operation). Change requests are
collected during the operation of the website. A reporting and success measure-
ment is set up for internal and client information purposes. The content is contin-
uously maintained and different SEO measures are taken. The hyperlinks on the
website are verified and removed if necessary. External hyperlinks pointing to the
own site with appropriate anchor texts are created in the Web. The results returned
by search engines are controlled for important keywords. The fourth column of
the SEO task list shows a suggested repetition period for the ongoing tasks. The
data used as a basis for reporting is marked in the fifth column of the task list.
If necessary, larger change requests of the website are implemented in a second
release of the website.
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Figure 4.5: Website creation process
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4.6 Practical Results

The effects of the possibilities and means of search engine optimization enumer-
ated are tested for their practical suitability. Two existing website projects are sub-
ject for the following analysis. The applicability of the SEO task list introduced
is measured against typical websites goals like visitor numbers and turnover. The
listed means are simultaneously applied to the websites. Analyzing single means
separately does not appear to be sensible because applying the different methods in
common usually produces synergy and better effects. Moreover, as the tests were
conducted on productive real-life websites, a step-by-step approach with different
measures cannot be economically justified to the website owners.

In the following, the setup of a project for improving ranking positions is de-
scribed. Websites with two different goals are subject of investigation. Finally, the
results are analyzed over a time period with a length between two and three years.

4.6.1 Project and Test Websites

In co-operation with a company that offers Web services, two of their websites
projects were identified and chosen for the test of the SEOmeasures. The company
runs multiple Internet platforms. The websites create turnover from advertisement
and shop sales. The amount of turnover depends on the number and quality of
visitors that reach these sites. New customers often reach the websites coming
through search engines.

No. Project Phase Tasks
1 Analysis Workshop: Review of Current Situation

Definition of Success Factors
2 Quick Win

Implementation
Technical Quick Wins
Content Quick Wins

3 In-depth Analysis Client Analysis
Competitor Analysis
Technical Analysis
Content Analysis
Definition of Actions Planned

4 Implementation Realization of Planned Actions
Table 4.7: Project phases
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A project was established with the goal of increasing the number and quality of
Web users reaching the websites as well as the amount of shop sales generated by
existing and new customers. The project was funded by the Web service company
and the European Social Fund (ESF). A project plan was created consisting of four
phases (compare Table 4.7). During the project run time, the tasks of the different
phases were concretized.

Analysis Phase

During the first phase, the Analysis Phase, a review of the current situation was
performed. A workshop is conducted to gain an overview over existing clients,
their projects and which services are offered to them. The goals of the different
websites are analyzed. Success factors for the websites are defined. A first analysis
of websites with respect to SEO is performed. For this reason, the access log files
of the websites are analyzed. The following two websites are chosen for a close
examination.

Websites

The first website regarded is a directory of suppliers in the leisure industry con-
nected with geographic and cartographic information. Before the project started,
the directory had about 30’000 page impressions (compare Table 4.1) per month.
This corresponds to about 5’000 unique visitors monthly. The goal of the website
is to attract as many visitors as possible to the website. The website owner re-
ceives money for directory entries by its customers and for advertisements placed
on the directory pages. Thus, the website goal is to increase the number of page
impressions and visitors (compare Figure 4.1).

The second website regarded is an online shop. It sells products for the outdoor
leisure industry. It had realized a monthly turnover of several hundred thousand
Euros with the online shop. The website owner is interested in increasing his
turnover resulting from sales of the online shop. He differentiates between sales
of new customers and existing customers. The business goal was to particularly
increase the number and sales volume of new customers by SEO means. A sub-
ordinate goal was to increase the number of visitors on the website. Before the
start of the project, about 500’000 page impressions were counted per month on
the website. This corresponds to about 45’000 unique visitors monthly.

The goals of both websites can be approached by increasing their positions in
the search-engine result-pages of appropriate keywords.

Quick Win Implementation Phase

Based on the results of the first analysis of the websites, those measures are iden-
tified that can be quickly implemented with low effort (quick wins). These are
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especially measures from the content area like missing keywords. In the tech-
nology area, e.g. meaningful URLs are introduced. The identified measures are
implemented in this phase as far as possible.

In-depth Analysis Phase

The In-depth Analysis Phase comprises the analysis of different areas. The cir-
cumstances of the clients and their competitors are analyzed. The results of this
analysis are already incorporated into the keyword definition. Besides a technical
and content analysis, all areas of the SEO task list are regarded. Specific tasks for
websites are defined. The process of website creation is captured and modeled.
The SEO tasks are mapped to the different process steps as shown in Figure 4.5.

Implementation Phase

During the Implementation Phase, the defined tasks are put into practice. In order
to quantify the success, some measure points are defined (see Report column of
Figure 4.4) and reporting tools analyzing the user access to the regarded websites
are implemented.

4.6.2 Reporting and Results

The effects of the SEO task list application are measured against different goals of
the websites regarded.

For both, the directory and the online shop, the website goals of the SEO impact
chain are relevant. The website goals are to increase the number of page impres-
sions and the number of visitors on the website. Both numbers can be measured by
tracking tools. For this analysis, the public available ETRACKER tool was chosen
and implemented on the websites.

For the online shop, additional business goals are pursued. In order to increase
the shop’s profit, the total sales volume shall be boosted by attracting more visitors
on the website. The sales volume can be increased by the number of sales or the
turnover per sales transaction. For this reason, the number of sales is measured
separately. The sales volume and the number of sales are captured by the internal
accounting software of the shop.

Directory

The SEO tasks for the directory website were implemented from April to Octo-
ber 2006. The number of visitors and page impressions were already tracked be-
fore the implementation start (since May 2005). In the total measurement period
fromMay 2005 until December 2007, about 2.5 millions of page impressions were
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May –
Dec 2005

2006 2007 Total

Page Impressions 236’215 606’801 1’611’825 2’454’841
Visitors 39’384 182’050 247’254 468’688

Correlation between
PI and Visitors 0.83 0.91 0.77 0.76

Table 4.8: Page impressions and visitors for the directory

Figure 4.6: Directory – page impressions and visitors per month

counted (compare Table 4.8). They are generated by almost half a million visitors.
An increase of both measures from 2006 to 2007 can already be observed.

The monthly figures in Figure 4.6 allow a more detailed analysis. The charts
show the parallel development of visitors and page impressions on the directory
from May 2005 until the year’s end of 2007. The values are linked by a high
correlation of 0.76 over the whole measurement period. The correlations of the
single years are slightly higher. All correlation values can be found in Table 4.8.

In both charts, a seasonal increase during the summer months can be observed.
This can be explained by the nature of the directory’s topic. The directory holds in-
formation needed for outdoor leisure activities that are primarily practiced in sum-
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Figure 4.7: Directory – visitors per month over the courses of the years 2005–2007

Jan–Oct
2007

Nov–Dec
2007

Jan–Oct
2008

Total

Page Impressions 5’375’569 797’077 6’805’202 12’977’848
Visitors 470’498 76’775 622’677 1’169’950

Table 4.9: Page impressions and visitors for the online shop

mer. Consequently, most people access the directory during the summer months.
Another peak can be observed in each January, where a yearly exhibition on the
same topic takes place.

As the seasonal variations of the visitor numbers can bias the measurement of
SEO effects, the visitor numbers over the courses of the years are assembled in
Figure 4.7. A comparison of the samemonths of different years allows a seasonally
adjusted analysis of the visitor numbers. An increase of the visitor numbers in the
summer of 2006 compared to the summer of 2005 is clearly visible. The chart of
2007 exhibits another increase in visitor numbers taking place compared to 2006.

Online Shop

For analyzing the effects on the online shop, page impressions and visitors on the
website were captured from January 2007 to October 2008 using the ETRACKER

tool. The turnover figures of the shop’s internal accounting are available from
January 2007 to November 2008.
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Correlation
between: and: Jan–Dec

2007
Jan–Oct
2008

Jan 2007
–Oct 2008

Page Impressions Visitors 0.96 0.96 0.96
Visitors Number of Sales 0.90 0.87 0.84

Visitors
Number of New
Customers’ Sales

0.88 0.90 0.88

Visitors
New Customers’
Sales Volume

0.85 0.81 0.86

Number of New
Customers’ Sales

Number of Existing
Customers’ Sales

0.91 0.86 0.89

New Customers’
Sales Volume

Existing
Customers’ Sales

Volume
0.92 0.84 0.89

Table 4.10: Correlation coefficients for the online shop

The SEO tasks were implemented in the period from May 2007 until November
2007. In the observation period of the website, almost 13 million page impressions
were counted (see Table 4.9). They were generated by nearly 1.2 million unique
visitors. The number of monthly page impressions is strongly correlated with the
visitor number (compare Table 4.10). The number of visitors on the shop’s website
depends on the season (like it is the case at the directory). For this reason, it is
sensible to compare the same periods of different years. As the visitor numbers for
2008 are measured from January to October, they are compared with the numbers
of January to October 2007. The visitor number has increased by about 30 %. An
increase of the page impressions can be observed, too. A more detailed analysis
on a monthly basis is performed with respect to the sales generated by the visitors,
because the sales volume and the number of visitors are the final business goals
pursued by the website owner.

In the total analysis period from January 2007 until November 2008, a turnover
of more than three million Euros was achieved (see Table 4.11). Thirty thousand
sales transactions have produced this turnover. This leads to an average sales vol-
ume of 109 C per transaction.

For a more detailed analysis of the effects, the customers are differentiated by
three types. Those customers that have already bought via mail-order before the
shop went online are called existing customers. They have produced more than
18’000 sales transaction with a total volume of more than two million Euros.
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Sales of Number of
Sales

Sales
Volume

Avg. Volume per
Sale

Existing Customers 18’567 2’079’000 C 112 C
New Customers 8’255 855’000 C 104 C

Follow-up Customers 3’184 351’000 C 110 C
Total 30’006 3’285’000 C 109 C

Table 4.11: Sales of customer type for online shop for January 2007 – November 2008

Figure 4.8: Shop – visitors and number of new customers’ sales per month

Those customers that buy the first time in the online store and have not used the
mail-order store before are called new customers. They make up roughly one third
of the sales volume and the number of sales of existing customers. Follow-up cus-
tomers constitute the third group. These are those new customers that buy again at
the online shop. Their number of sales and sales volume is about one sixth of the
values of the existing customers. All customer types have an average sales volume
of a little more than one hundred Euros per transaction.

The most relevant customer group for the evaluation of the effects of the SEO
measures is the group of new customers. Thus, the sales of new customers are
analyzed in more detail. Figure 4.8 shows the number of sales performed by new
customers for the single months of the observation period. The peaks in the sum-
mer months exhibit the seasonal character of the business. The number of sales
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Figure 4.9: Shop – visitors and new customers’ sales per month

also strongly correlates with the number of visitors on the website with correlation
coefficients near 0.9 (compare Table 4.10). An increase of both, the numbers of
visitors and of sales, is clearly visible in 2008 compared to 2007.

Similar observations can be made comparing the visitors with the new cus-
tomers’ sales per month (see Figure 4.9). These values are correlated with a cor-
relation coefficient of more than 0.9. An increase of the sales volume of new
customers in 2008 against 2007 is clearly visible. Together with the strong cor-
relation of visitor numbers and sales volumes, this allows the conclusion that the
visitor number positively influences the sales volume produced by new customers.

It is also possible that other external factors positively influence the sales vol-
umes of new customers. This can e.g. be caused by a higher general disposition
to buy, better weather conditions or different price structures. In order to exclude
these factors from the analysis, it is assumed that external factors affect the sales of
existing customers and new customers in the same way and by the same amount.
This means that if existing customers buy more because of better weather then
sales of new customers increase in the same relation. Calculating a quotient of new
customers’ sales and existing customers’ sales eliminates the effect of weather or
other external factors. This approach simultaneously implies an adjustment for
seasonal variations.

Figure 4.10 shows the quota of new customers’ sales volume and existing cus-
tomers’ sales volume for each month of the observation period. The sub-figures
(a) and (b) oppose the development of the years 2007 and 2008. As there is not any
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(a) 2007

(b) 2008

Figure 4.10: New sales quota with trend line

data captured for December 2008, also in this graph the December 2007 values are
omitted.

Even though the sales volumes of existing and new customers are strongly cor-
related (compare Table 4.10), they diverge over time. Both values increase, but
the trend line (calculated as linear regression) shows that the sales volumes of new
customers stronger increase than those of existing customers. The trend line of
the year 2008 is even steeper than the one of 2007. This implies (besides an abso-
lute growth) also a relative growth of the new customers’ sales volume. The fact
that the sales volume generated by new customers grows stronger than the one of
existing customers allows the conclusion that comparably more Web customers
are generated in the observation period. As most new visitors come from search
engines this indicates the positive effects of the SEO measures performed in the
context of this work on the shop’s sales volume.



5 Conclusion

For a user who is searching for information, it is of minor importance if this infor-
mation does not exist in the Web or if this information only cannot be found in the
Web. If the information is out of sight, the user cannot benefit from its existence.
The important question is not anymore where to look for information, but how to
find it. Here, the need for powerful search tools becomes visible.

This work contributes to both, the scientific and the practical evolution of Web
search. New theoretical concepts are developed and successfully tested for practi-
cal usage.

The information demand of users is satisfied with different search tools. The
VOX POPULI algorithm is developed in order to better meet the users’ needs. It
allocates crawler and storage resources according to the information demand. The
importance of the VOX POPULI algorithm has already been shown by a wide reso-
nance in the scientific community through several citations in journals and books.
In the framework of future works, the opportunity can be taken to apply the algo-
rithm in large commercial search engines.

The information supply is represented by the Web contents connected with hy-
perlinks. Extracting structures out of the Web graph contributes to the creation
of appropriate search results. Own data structures are generated to store search
results for the purpose of further processing. The data structures are implemented
and tested for their applicability on actual search engine results. A suitable data
structure was selected based on the criteria memory demand, performance and
scalability. Its practical usability is proved upon an implementation of the HITS
algorithm.

For matching the information need with the information supply, presentation
methods are introduced that address the quality of search results. Different cluster-
ing algorithms are examined for their applicability on Web search. Combinations
of several different clustering methods are implemented and tested on practical
data. A comparison of their experimental results yields a method combination that
is best suitable for improving result quality.

Finally, the influence that Web suppliers are able to exert on search results is
exposed. Their objectives are analyzed and integrated in an impact chain, which
shows how search engine optimization activities can support them in reaching their
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economic goals. The interaction between website visitors and result positions is
analyzed using mathematical notation. Three new keyword selection models are
introduced to build a basis for search engine optimization efforts. Recommended
efforts are described in detail resulting in a SEO task list that is implemented in a
self-established website creation process. The effectiveness of the proposed mea-
sures is proved by positive developments of page impressions, visitors and sales
volumes. Here, a deeper analysis of the impacts per single keywords can be subject
of further work.

This work highlights several aspects of bringing order into the complexity of
the World Wide Web by analyzing search engine results and the possibilities to
influence these results. In different areas, the scientific perspective of business
and technology impacts on Web information retrieval facilitates the achievement
of better results in practice.
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