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Preface

In 1988, the European Federation of Biotechnology EFB founded a new Working
Party with the target to deal with measurement and control of bioprocesses. This
was an ambitious move. Now, some two decades later a myriad of new issues
within this broad scope have arisen: bioprocess performance monitoring, fault
detection, experimental design, modelling of bioreactors and bioprocesses, fighting
‘‘data drowning’’, detection and monitoring of impurities, faster product innova-
tion together with the reconfiguration control and integrated design. There is also a
growing need to foster these aspects in teaching and training within the relevant
higher education programmes. The M3C reflects those drivers for measurement,
monitoring, modelling and control and is the brand name used by the European
Federation of Biotechnology and the European Society of Biochemical Engi-
neering Science. This collection of contributions on M3C provides an update of a
previous volume in this series and represents a state-of-the-art assessment of the
different elements of M3C. It brings together leading academics and industrial
practitioners, from global institutions, to provide expert analysis and opinion in a
pragmatic and useful format.

(i) The book begins with two chapters which provide overviews of the two
original main areas of M3C: measurement techniques and control methods.

Bernhard Sonnleitner provides an overview of the state-of-the-art of moni-
toring and measurement devices that are appropriate tools for development
and operation of biotechnological production processes. In particular, he
describes these tools from a user perspective, i.e. what can be measured and
how the tools contribute to the regulatory requirements in industry and,
importantly, concludes with what we still are lacking.

Marc Stanke and Bernd Hitzmann continue with an overview of state-of-the-
art of control methods currently applied in biochemical engineering. In
particular, they highlight closed-loop control techniques to construct hybrid
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systems and of applications of soft sensors in combination with PID control.
Gerald Striedner and Karl Bayer show how modern M3C is applied to one of
the most pertinent production systems in biotechnology, recombinant pro-
teins. They provide an overview of the complications of monitoring and
controlling the intrinsic physiology in E. coli when a heterologous protein
production is initiated and how the current analytical tools for measurement
and monitoring should be employed to carry out the control. They exemplify
this with extensive experience from their own laboratory.

Sunil Chhatre develops the theme of ultra scale-down (USD). The material
shows how a combination of USD mimics and mathematical models can be
used to simulate the behaviour of bioprocesses. This is especially important
for chromatographic separations where a range of miniaturised formats now
exist. In the second chapter, Chhatre moves on to detail the characteristics of
the different available techniques for high throughput chromatography scale
down, the benefits and relative advantages.

(ii) The third M in M3C refers to modelling. The complexity of biological sys-
tems brings a very strong motivation of using modelling methods in a pro-
duction context. Two of the contributions are dedicated to this.

Krist Gernaey and colleagues discuss how mechanistic modelling, in their
view, best can use mathematical modelling methods. They provide and
exposé of current mechanistic modelling methods under the frame of a well-
known process example—Baker’s yeast production.

Jarka Glassey reviews the use of statistical methods for the modelling of
bioprocesses. She describes the basics of a range chemometric approaches
and illustrates the nature of the insights that can be gained from adoption of
the non-traditional method of process modelling. In particular, she details the
importance of data pre-processing as a step before the construction of sta-
tistical models and in so-doing provides a very practical update to this
growing area of research and application.

Rui Oliveira and colleagues explore the basic tools for the design of bio-
process monitoring, optimisation and control algorithms that incorporate a
priori knowledge of metabolic networks. The main advantage is that this
ultimately enables the targeting of intracellular control variables such as
metabolic reactions or metabolic pathways directly linked with productivity
and product quality.

(iii) Process Analytical Technology PAT and Quality by Design (QbD) are cru-
cially important features of the regulatory landscape and this book brings
together key contributions to help in the understanding of how best industry
can respond to these demands.
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Anurag Rathore and colleagues discuss the basis behind Quality by Design
(QbD) and also the concept of Process Analytical Technologies (PAT). They
present a structured framework for data management and present a series of
elegant case histories that demonstrate some of the features necessary for
achieving PAT from a regulatory perspective.

Ian Marison and colleagues continue the PAT theme and show how these and
other tools can be employed for monitoring and control of bioprocesses
where biomass, substrates and products are the main critical process
parameters. In particular, they highlight the opportunity of using biocalori-
metry as PAT methods with a very interesting potential.

We hope that the content will not only educate, but also provide a valuable
resource for practitioners in industry and for academics as we move forward in this
rapidly evolving sector of biotechnology. The scope and impact of M3C tech-
nologies are broad and critical. Our vision is that this text will provide a useful
marker in time of the relevant developments and the basis for future debate.

March 2013 C.-F. Mandenius
N. J. Titchener-Hooker
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Automated Measurement and Monitoring
of Bioprocesses: Key Elements
of the M3C Strategy

Bernhard Sonnleitner

Abstract The state-of-routine monitoring items established in the bioprocess
industry as well as some important state-of-the-art methods are briefly described
and the potential pitfalls discussed. Among those are physical and chemical
variables such as temperature, pressure, weight, volume, mass and volumetric flow
rates, pH, redox potential, gas partial pressures in the liquid and molar fractions in
the gas phase, infrared spectral analysis of the liquid phase, and calorimetry over
an entire reactor. Classical as well as new optical versions are addressed. Biomass
and bio-activity monitoring (as opposed to ‘‘measurement’’) via turbidity, per-
mittivity, in situ microscopy, and fluorescence are critically analyzed. Some
new(er) instrumental analytical tools, interfaced to bioprocesses, are explained.
Among those are chromatographic methods, mass spectrometry, flow and
sequential injection analyses, field flow fractionation, capillary electrophoresis,
and flow cytometry. This chapter surveys the principles of monitoring rather than
compiling instruments.

Keywords Bio-activity � Biomass � Chemical variables � Physical variables �
Products � Substrates
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1 Introduction

Successful process monitoring and control in industry depends heavily on proper
and functioning measurement and monitoring techniques. Especially in the bio-
process industry, the demands on measurements and bioprocess analysis are great
challenges for inventors, instrument suppliers, and industrial users for a number of
reasons. One reason is that biological systems are very complex from an analytical
perspective, with components of varying molecular size and concentration, all in a
quite complicated and dynamically changing matrix. Another reason is the fact
that most bioprocesses in research or industrial production are operated behind a
sterile barrier and must provide some bio-active product with critical quality
attributes. This makes the task of quantifying critical process variables directly in
or at the process and (almost) in real time more demanding than measuring
withdrawn samples in the laboratory. As a consequence, only a few sensors are
routinely used and only a few instrumental analytical methods and instruments are
adapted to and supported as process analyzers for bioprocess engineering [1–3].
However, the process analytical technology (PAT) initiative and the more recent
Guidance for Industry: Process Validation of the Food and Drug Administration
(FDA, USA) strongly support and favor these developments [4, 5]. This forms a
central subset of the M3C strategy. The papers cited above should be used to find
references to older literature.

In the following, some technical terms will be used and may result in some
confusion. For instance, the term ‘‘online’’ has recently often been used when
results are made available in a short time after sampling and/or on a computer.
Here, ‘‘online’’ is used in the sense of ‘‘fully automatic,’’ meaning that no manual
interaction by an operator is required to provide results on a process computer. ‘‘In
situ’’ is used in the sense of ‘‘mounted and exposed to a representative volume
element inside’’ the bioreactor. ‘‘In bypass’’ is used to indicate that a representative
volume flux is withdrawn from the reactor and analyzed aside but close to the
reactor. This sample may be returned to the reactor if the analyzer works nonin-
vasively (i.e., does not affect the sample) and does not compromise the sterile
barrier; however, the sample must probably be treated in some harmful way before
analysis and therefore discarded thereafter. ‘‘In real time’’ is used in the sense that
the result is available ‘‘quickly enough’’ that it can be used to affect the process,
i.e., to close a control loop, meaning that delay or dead times are reasonably low
with respect to the dynamics of a bioprocess. This time horizon is of course shorter
for rapidly growing cells than for slowly growing ones; it should be as short as
possible in very dynamic situations, for instance, when the physiological status of
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a population changes, probably due to an overfeed of substrate. Exhaust gas is
usually analyzed in the exiting gas stream, outside the sterile barrier (behind the
off-gas filter) since all fermentation setups are open for the gas phase. Technical
terms such as ‘‘at-line’’ or ‘‘inline’’ are often used ambiguously and will be
avoided in this context.

Many in situ sensors deliver a continuous signal which is often gained in real
time and noninvasively—this is the monitoring part—while interfaced analytical
subsystems (such as chromatographs) deliver their results discretely and the time
steps between available data can be quite long—this is the measurement part. This
may be acceptable in slow bioprocesses but poses problems in highly dynamic
processes; in such cases, mathematical models are needed. Generally, sensors and
instruments with short, constant, and—very importantly—well-known response
behavior should be preferred.

Many sensors can be calibrated in usual units. One should take care of the
calibration status of the individual sensors, since systematic errors make the results
false. However, most of those sensors cannot be calibrated or recalibrated after
sterilization. This fact poses extra demands in terms of long-term stability, little
drift, and minimized effects due to sterilization.

Several sensors and process analyzers produce ‘‘relative’’ signals rather than
crisp concentration values. This is not a priori ‘‘bad’’ but has to be accounted for
accordingly. Especially in production processes, during which the design space
should not be exceeded, such signals can be compared automatically and in real
time with the respective time trajectories of historical (e.g., reference or valida-
tion) processes and, thus, give instantaneous information about deviations from
expected development, or are useful for fault detection. These relative signals are
also quite valuable in R&D environments because they make ‘‘additional’’
information available that would otherwise be skipped: modeling and chemometric
techniques can extract ‘‘hidden’’ information from such signals or can reveal
otherwise unseen, yet useful correlations. Modeling is an essential element in
bioprocess monitoring and state estimation [6–8]; however, this aspect will be left
out here since Chaps. 2 and 6 focus on this.

The structure of this chapter tries to depict the present situation in online
bioprocess monitoring: The state-of-routine section covers process variables that
are generally monitored and often also kept under closed-loop control. This holds
also for industrial production processes. Obviously, most of these variables are
physical and chemical variables rather than biological ones [9]. The state-of-the-
art section addresses all variables that can be accessed online, although they are,
with few exceptions, acquired in academic laboratories and in industrial R&D
laboratories and pilot plants only. A similar structure was used by Olsson et al.
[10], who discussed several advantages and disadvantages of the various methods
for academia and industry.

Variables are those properties of the system which vary in time, and whose
dynamic properties are therefore determined by the values of the parameters [11].
The parameters of a system are those properties which are inherent to the system.
What we can measure are the variables of a system; all bioprocesses are multivariate
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systems and should, therefore, be monitored using multi-analyzer techniques [12,
13]. We can retrieve the parameters by appropriate evaluation of the variables,
which is also known as the inverse problem or system identification problem. The
entire chapter will use this definition in spite of the widespread misuse of the term
‘‘process parameter’’ in place of process variable.

2 State of Routine

The variables treated in this section are also quite important for nonbiological or
chemical processes; they are not typical of or particular to bioprocesses. However,
the respective commercially available sensors are robust, reliable, and quite mature.

2.1 Monitoring Physical Variables

Among these are sensors for agitator speed, aeration flux, weight of vessels, and
probably electrical power consumption. They are not critical with respect to con-
tamination risks because all these measurements take place outside the sterile barrier.

Gas flow rates can be measured as volumetric or mass flow rates. The latter are
recommended because gas mass flow rates occur in the respective mass balances
needed to evaluate process data, e.g., to determine a volumetric or specific oxygen
consumption rate. The instruments at hand are thermoanemometers provided by
various companies.

Some care must be taken when using balances or scales to determine the weights
of vessels and to conclude from these weights the respective filling degrees or
changes thereof; liquid feed or harvest mass flow rates can be accurately and pre-
cisely derived from the time trajectories. However, a proper force-neutral mechan-
ical setup is required and must not be changed during the entire operation period.

Omnipresent is the monitoring of temperature and, although usually not at the
very small scale, pressure. Respective sensors and amplifiers are available from
various suppliers. However, these sensors, as well as those discussed in the fol-
lowing, are to be mounted in situ. They must not be prone to drifts or gain changes
during sterilization, and their housing, installation method, and sterile sealing are
critical with respect to contamination.

2.2 Monitoring Chemical Variables

When moving from physical to chemical variables, the sensors are more typical for
biochemical processes, namely those that are specific or selective for protons,
dissolved gases, and dissolved redox couples. Several alternative brands are
available commercially.
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The classical electrodes for pH, redox, and pCO2 monitoring measure an
electrical potential difference and, therefore, require good cabling and amplifiers
with high input impedance. The classical electrodes for pO2 monitoring measure
an electrical current which is quite low; therefore, the demands with respect to
electrical components are also high. Temperature compensation of the raw signals
is often implemented in combination electrodes and the amplifiers. New versions
of electrodes based on optical principles do not suffer from these electrical
constraints.

2.2.1 pH

Many currently used pH electrodes are constructed from special glass. Today, such
electrodes no longer suffer from a significant alkali error, they show very little drift
over time, and their lifetime is usually limited by (unintended) mechanical damage.
The electrodes are constructed as combination electrodes; i.e., they also contain the
reference electrode in a single rod. The reference is usually an Ag/AgCl electrode
dipped into a reference electrolyte and must be in electrical contact with the mea-
suring solution. If the reference electrolyte is a low-viscosity liquid, it must be
separated from the measuring solution by a diaphragm in order to minimize
exchange of the two liquids but satisfy the electrical connection. These diaphragms
are built of porous glass or ceramics and can clog, especially when proteins adsorb or
salts precipitate. The combination electrode will then drift (significantly) due to the
increasing electrical resistance of the diaphragm junction. This is sometimes
counterbalanced by pressurization of the reference electrolyte chamber, thus forcing
a small electrolyte efflux through and ‘‘cleaning’’ the diaphragm. Newer types of pH
electrode have a hydrogel-solidified reference electrolyte and no longer need a
diaphragm. Such electrodes are, in our experience, much more stable and show
practically no drift over their (mechanically limited) lifetime.

These classical pH electrodes are potentiometric electrodes: they determine a
potential difference. Hence, the amplifier must have very high input impedance
and the cable connecting the electrode to the amplifier should be as short as
possible and must be well shielded. Newer versions have the amplifier [plus some
further intelligence such as calibration data, therefore also being called intelligent
sensor management (ISM)] integrated on a built-in chip and transmit data in digital
form, in some cases also via a wireless path. This is certainly a timely improve-
ment compared with the critical transmission of analog raw data.

Specifically from food biotechnologists came the need to substitute glass—if a
glass electrode breaks in a production batch, they had to dump the whole batch;
imagine, if you were to eat a yoghurt containing broken glass. Suppliers were able to
come up with an alternative, i.e., the proton-selective field-effect transistor
(pH-FET), which is a derivative of the usual metal–oxide–semiconductor FET
(MOSFET). The gate electrode made, e.g., of Ta2O5 is not electrically charged but
exposed to the measuring solution, and so controls the current from source to drain.

Automated Measurement and Monitoring of Bioprocesses 5



The pH-FET also needs a reference electrode (with all the pitfalls discussed
above) but is constructed from unbreakable material. However, such pH electrodes
suffered from substantial drift during sterilization (up to 80 mV, corresponding to
[1 pH unit) and have, therefore, been partially taken off the market.

Another valuable alternative is the optical pH sensor, in which single or more
mixed and probably fluorescing pH indicator substances are immobilized in a thin
polymer film and mounted on a transparent carrier (e.g., a viewing glass or optical
window), which is exposed to the measuring solution. Optical fibers connected to
the transparent carrier allow excitation of the indicator(s) and reading of the
spectrum; depending on the indicator(s) used, the spectral data need to be con-
verted into pH units [14–16]. The indicator(s) must be biocompatible and show
sufficient long-term stability, especially against sterilization.

An indirect estimation of pH based on mid-infrared spectroscopy with a stan-
dard error of prediction [0.15 pH units was reported by Schenk et al. [17] for
microbial cultivations.

2.2.2 Redox Potential

The physical construction of redox electrodes is very similar to the above-
mentioned glass pH electrodes. However, the sensing element is a small ring or
wire made of noble metal such as Pt or Au instead of the proton-sensitive glass.
The noble metals sense the sum of all redox couples that are in solution, and the
signal represents an average of all those dissolved components. Most often it is
unclear what this means for aerobic cultivations, although sometimes one can
apply the interpretation that the signal mirrors ‘‘the general availability of elec-
trons’’ [18]. Although we normally do not know which compounds are captured by
this signal, the time trajectory of the redox potential may have a very typical shape.
This may allow discrimination between ‘‘good’’ and ‘‘bad’’ when comparing the
actual trajectory with historical ones. In some way, the redox potential depicts a
typical pattern (or signature) of qualitatively unknown bioreaction components. In
anaerobic cultivations, however, the redox signal gives a very good indication of
the degree of anaerobicity; strict anaerobes will not grow at redox potentials above
approximately -300 mV.

2.2.3 Oxygen Partial Pressure, pO2

A substantially important variable in aerobic cultivations is the oxygen partial
pressure (pO2, or DOT for dissolved oxygen tension). The availability of oxygen to
the cells can be decisive for a range of effects from simple changes in metabolism,
to altering the spectrum of (by-)products, to loss of energy and even cell death.
Being aware of such effects and knowing the oxygen availability from a sensor
signal we can (in principle) steer the development of a bioprocess by applying
closed-loop control; the measured variable is the pO2 (reflecting what the cells
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experience), and the manipulated variables may be the stirring power or speed,
aeration rate, pressure, or fresh gas composition (or combination thereof).

The classical pO2 electrodes are membrane-covered amperometric electrodes,
so-called Clark(-type) electrodes. The membrane separates the measuring solution
from the electrode. The flux of oxygen through the membrane is diffusion con-
trolled but decisive for the sensitivity and response time. This is also why the
electrode reflects the partial pressure rather than the dissolved gas concentration.
The membrane is also responsible for the selectivity towards oxygen, since it
permits only gases and volatiles to diffuse. Membranes are usually made of silicon
or Teflon, or are a sandwich of both. The inner electrode consists of an anode made
from Ag and a cathode made from Pt, and the potential between them is usually
tuned to between 600 and 700 mV, but kept constant. Under these conditions,
oxygen is consumed (namely reduced) at the cathode, while four electrons per O2

come from the anode, which converts to 4 Ag+ (and finally, in a chloride-con-
taining electrolyte, AgCl, which must be removed from time to time in order to
keep the Ag accessible). The electron flux is low (typically in the range of nA) and
must be amplified to yield a useful signal. The rate-limiting step is the diffusion
through the membrane, which makes the electrode slow at low pO2.

Optical alternatives have been commercially available for several years. They
consist of an immobilized ruthenium or platinum complex that fluoresces in the
absence of oxygen; this fluorescence, however, is quenched in the presence of
oxygen. Oxygen is not consumed by these sensors, nor are parts of the sensor itself
consumed (such as the Ag anode in the amperometric type). Furthermore, there is
no more need to change the inner electrolyte of the electrode once in a while and,
probably, the patch-holding electrode tip is mechanically more resistant than the
membrane and needs less frequent exchange. The very thin patch of the immo-
bilized complex, which must be biocompatible and sterilizable, can be glued onto
a (glass) window, a shaking flask, a translucent plastic container, or directly on top
of fiber optics; the patches are inside while the optics are outside the sterile barrier
[19]. Contrary to the amperometric sensor, the signal is maximal at minimal pO2,
and therefore the signal-to-noise ratio is best under oxygen-limited conditions. We
propose to use both amperometric and optical pO2 sensors at the same time
(mounted close to each other) to take full advantage of their different sensitivity
regimes [20]. More detailed information about optical sensors can be found in the
review by Lam and Kostov [21].

2.2.4 Carbon Dioxide Partial Pressure, pCO2

pCO2 electrodes are membrane-covered pH electrodes. The membrane separates
the pH electrode from the measuring solution. The flux of carbon dioxide through
the membrane is diffusion controlled, as in pO2 electrodes. CO2, an acidic gas,
dissolves in the inner electrolyte buffer and provokes a pH drop which is detected
by the pH electrode, whose signal is proportional to the (decadic) logarithm of
pCO2. This provides an elegant means to estimate the exponential character of a
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cultivation at a glance: if the fully growth-associated CO2 production happens to
be exponential, the raw (logarithmic) signal of the pCO2 electrode develops lin-
early with time; from its slope, one can directly derive the specific growth rate.
The response time of pCO2 electrodes is usually longer than that of pO2 or pH
electrodes, since the equilibration of the inner electrolyte buffer is slow. With time,
this buffer becomes saturated, thus limiting the useful lifetime of the electrode.
However, pH measurement is not selective for CO2. This implies that all acidic or
alkaline components that can diffuse through the membrane, e.g., H2S, formic,
acetic acid etc. or NH3 in alkalophilic cultivations, must also contribute to the final
signal; i.e., they exhibit cross-talk.

Of course, optical variants have also been described, even with low cost, for
instance by Ge et al. [22]. The correlation between the signal and the dissolved
CO2 is not linear, but stability of at least 10 days is claimed.

2.2.5 Composition of the Gas Phase

Oxygen and carbon dioxide are the noninert components of the gas phase in a great
majority of bioprocesses. Various analyzers of exhaust gas are on the market from
different suppliers. Depending on the construction of the analyzer (and its price),
signals represent the particle density per volume of the measuring cuvette and not
a percentage, i.e., the molar ratio times 100: n/V = p/R/T.

If the analyzer cuvette (with constant volume) is ventilated against atmosphere,
then the signal is directly affected by pressure changes, which must be accounted for.
The measuring cuvettes are usually thermostated, so temperature variations are less
critical.

Carbon dioxide is a greenhouse gas, and this effect is often exploited to quantify
it via its infrared absorption. Water (vapor) is a greenhouse gas and absorbs IR
radiation as well. Therefore, water should be eliminated prior to measurement (by
a gas cooler and/or dryer) because water is always present in the exhaust gas of a
bioprocess.

Oxygen is one of the few paramagnetic gases and certainly the only one which
can be tolerated in bioprocesses. The respective analyzers are usually mechani-
cally sensitive to water vapor, and therefore the gas should also be dried before
measurement.

The sound velocity in a gas depends on its composition; it is proportional to
M–0.5, where M is the molar mass of the gas [23]. So, electroacoustic measure-
ments are also valuable alternatives to determine CO2. Magnetoacoustic instru-
ments are the alternatives for oxygen.

If other gases such as H2 or CH4 or volatiles such as alcohols and aldehydes
need to be determined too, mass spectrometry is obviously the most usual choice
because it is so versatile. A relatively inexpensive instrument with electron impact
ionization and a quadrupole mass filter can cover all the relevant gases. Magnetic-
field mass filters are probably more stable. If greater sensitivity and excellent
dynamics are required, chemical ionization techniques, e.g., PTR-MS instruments,
are used [6, 24, and Chapter by Striedener and Bayer].
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In most cases, such instruments are shared among several reactors. This is
accomplished by multiplexing the analyzer’s inlet using revolving selection valves
connected to the individual exhaust gases. Up to 256 ports have been reported. It is
necessary to purge theses lines well, in order to avoid long dead and delay times.
A more complete survey of methods, techniques, and instrumentation is given by
Pollard and Christensen [25].

Several interesting variables—from a technical as well as from a physiological
point of view—can be derived from exhaust gas analyses. Most important is the
physiological variable RQ, the respiratory quotient. It is defined as the quotient of
CO2 production rate over O2 consumption rate in units of mol mol–1 and can be
directly derived from gas composition data. In a first approximation, the RQ is the
negative slope of the line connecting data points in a phase-plane plot of CO2

content versus O2 content (Fig. 1).
Strictly, this is true only if the RQ equals unity. If the RQ deviates from 1, the

gas mass flow rates of fresh and exhaust gas differ; rather than measuring each flow
rate individually, one can assume that all gas components except O2 and CO2 are
inert (if appropriate) and calculate the exhaust gas flux from the respective inert
gas balance and, after rearrangement, the RQ as

RQ ¼
yout

CO2
� yin

CO2
� yin

O2
yout

CO2
þ yout

O2
yin

CO2

yin
O2
� yout

O2
� yin

O2
yout

CO2
þ yout

O2
yin

CO2

;

where y denotes the molar fractions of O2 and CO2 in the fresh (superscript ‘‘in’’)
and exhaust (superscript ‘‘out’’) gas, respectively. Care must be taken that the gas
analyzers are well calibrated because, otherwise, the quadratic terms (coming from
the inert gas balance) can lead to dramatic error propagation. If gases other than O2

and CO2 are involved in the bioreaction, the term ‘‘inert’’ needs to be redefined
appropriately of course.

Yet another error can be caused by chemisorption of CO2 to HCO3
- or even

CO3
2-, at neutral pH but specifically under alkaline process conditions. This

reaction is almost negligible under acidic conditions, e.g., for cultivation of yeasts,
fungi or lactic acid bacteria.

Knowing one gas mass flow rate explicitly, one can calculate the oxygen
consumption (or uptake) rate (OUR) and the carbon dioxide production rate (CPR)
of the entire plant from the gas analysis data. Further knowing also the working
volume of the liquid phase, the respective gas transfer rates can be deduced and,
knowing the biomass concentration as well, the specific gas turnover rates (qO2 and
qCO2) are easily calculated.

3 State-of-the-Art: Biomass, Substrates, and Products

Although the biomass is the (most) crucial variable in bioprocesses, online moni-
toring does not seem to be accepted as a general standard. The problem is posed by
the interferences that are captured by many online techniques. The respective results
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are often not trusted, even though good coincidence between actual but relative data
with those of approved reference cultivations should be sufficient indication of good
reproducibility (of the process). Obviously, many people rely on offline reference
methods only. Madrid and Felice [26] compiled a broad comparison of all those
methods and differentiated nicely what a method can and cannot detect.

3.1 Biomass

To my knowledge, no fully automatic version of the SOP for manual determina-
tion of cell dry weight has been commercialized to date. The sensors and instru-
ments useful to quantify biomass are either indirect methods—and deliver
estimates—or methods implementing counting of suspended particles—and these
deliver a cell number concentration rather than a cell mass concentration.

Fig. 1 Phase-plane plot of CO2 versus O2 content (as molar fraction, y) in the exhaust gas during
a batch and a consecutive fed-batch cultivation of Saccharomyces cerevisiae. The time
information is lost in a phase-plane plot. Three typical ‘‘straight lines’’—almost linear domains—
are visible, and the negative slopes estimate the RQ: the steepest domain was observed during
oxido-reductive batch growth on glucose with concomitant ethanol excretion (RQ & 3), the
flattest domain characterizes the consecutive growth of the cells on ethanol (RQ & 0.5), and the
middle domain was recorded during the controlled glucose feed phase in the final fed-batch
(RQ & 1). Linear regression of the data domains must be applied with the objective of
minimizing the orthogonal distances of data points from the regression line (where transition
phases should be omitted since the RQ changes dynamically)
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3.1.1 Optical Density

Various sensors that measure the turbidity of a suspension have been commercially
available for many years. Their major drawback is that they also ‘‘see’’ gas bubbles
and particles as well as cells, e.g., precipitates in the suspension or particulate
medium components. There are a few tricks reported to minimize the effect of gas
bubbles: one can capture a volume aliquot in the optical path from time to time, let
it degas through a vent hole, read the absorbance, and open the optical path again
for fresh suspension to enter (Foxboro Cerex). Older instruments sucked a sus-
pension aliquot out of the reactor and, after reading, pushed it back; however,
contamination problems occurred (Fundalux). One can also protect the optical path
from gas bubbles by surrounding this space (at the tip of the sensor) with a fine
grid, the mesh size of which permits cells to pass but gas bubbles to be excluded
(Komatsugawa). These sensors are also sensitive to the absorption of light due to
the color of the medium. To circumvent this effect, most instruments exploit light
sources (nowadays LEDs or lasers) with wavelengths in the near-infrared instead
of visible range. Some sensors determine the attenuation of light in the forward
direction (turbidimetry), while others measure light scattered at a 908 angle
(nephelometry) and others the reflected light. Some prototypes may also analyze a
combination of these. None of these sensors can discriminate between live and
active versus dead and inactive cells or abiotic particles. The control goal to keep
the optical density of a continuous culture constant is called a ‘‘turbidostat’’; i.e.,
the turbidity is forced to be pseudostatic.

3.1.2 Impedance (Permittivity)

Another type of sensor is based on the fact that all intact cells are enclosed by a
cytoplasmic membrane which functions somehow as an electrical insulator. If the
cells are exposed to an alternating electrical field, the charged species inside the
cells are attracted to one or the other side of the field, but they cannot leave
the cells. This mirrors an electrical capacitor, where the capacitance depends on
the size and the contents of the membrane-enclosed volume and the frequency of
the electrical field. Furthermore, the capacitance can be ‘‘short-circuited’’ by the
conductivity (like a parallel resistor) of the medium (i.e., the freely moving
charged species not enclosed by a membrane). The breakdown of the impedance
DC (also known as b-dispersion) provides an estimate of the cellular volume, and
the critical frequency at which this breakdown occurs provides an estimate of the
size of the cells. Nowadays, there are instruments on the market that can resolve
(or scan) a range of frequencies (from approximately 100 KHz to 20 MHz) and so
deliver dielectric spectroscopy information. This method usually works better with
large cells, for instance, CHO cell lines (e.g., [27]). It reaches its operating limits
when the conductivity of the medium is high (or rapidly changing); changes in
aeration also affect the signal. However, it estimates the intact biomass volume.
Sarrafzadeh et al. [28, 29] were able to distinguish quite clearly between growing
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and sporulating cells as well as mature spores of Bacillus during endotoxin
production. Maskow et al. [30] monitored lipid storage in yeasts using this tech-
nique (scanning for the critical frequency). The operating scheme that keeps this
signal (the so-called permittivity) constant in continuous culture mode is known as
a permittistat [31].

Common to all these sensor types is that they need to be calibrated specifically
for the biological system under investigation against at least one reference gold
standard: both optical and electrical properties differ between biosystems.

3.1.3 In Situ Microscopy

One such gold standard, especially in animal cell cultivation, is the determination
of cell number concentration. A manual procedure involves a desktop microscope,
yet special microscopes have also been mounted and used in situ and fully auto-
matically; actually, the objective, illumination source (e.g., a LED), and probably
some mechanical actuators are inside the sterile barrier, and can be sterilized in
situ, whereas the rest, including the camera and computer, are of course outside.
The sample zone (in front of the objective) is on the order of 50 lm (and can
probably be adjusted to obtain ‘‘optical dilution’’ to adapt the method to the actual
cell density) for the observation of animal cells; the sample zone is usually open
and thus permits the acquisition of sequences of images (with exposure times of
1 ms or less). Microbubbles can be quite easily detected by image evaluation
software due to their size and almost perfectly spherical shape; because they
occupy part of the measured volume, this must be taken into account during
calculation of the cell number concentration.

Bluma et al. [32], Hoepfner et al. [33], Rudolph et al. [34], and Ulber et al. ([35]
including other optical sensors) have compiled comprehensive surveys of the in situ
instruments in use and also versions in bypass interfaced to the process via a flow
injection system. Recently, they reported the use of in situ microscopy also for the
monitoring of processes with immobilized enzymes and two liquid phases [36].

3.1.4 Online Flow Cytometry

Another technique (being more powerful than just counting; see Sect. 3.2.5) is
counting cells with a flow cytometer (FCM). Such an instrument must be linked to
the bioprocess via an interface (see Sect. 3.2.4) that is at least able to dilute the
suspension (see also Sect. 3.3.1) and, probably, to stain the cells too. The first
group to employ such a setup used a degassing unit in bypass to the reactor and,
further, a sequential injection analysis (SIA)-type interface to first stain the cells,
wash them in a membrane-covered microchamber, and eventually feed them to the
flow cytometer [37, 38]. The microchamber was also used to dilute the cells
appropriately in order to achieve a cell density of approximately 106 ml-1 (or less)
for the FCM measurement. Around 105 events were then evaluated at an event rate
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of 103 s-1. The online counts were found to be ‘‘extremely accurate’’ for dilute
suspensions (i.e., B107 cells ml-1) with respect to the offline gold standard;
however, accuracy was limited due to errors caused by the dilution, which has to
be increased with increasing cell density during the batch cultivation. Kinetics and
growth dynamics could be derived from these datasets with high resolution (ca.
every 15 min [39]). The FCM-determined cell number concentration has also been
used to control continuous cultivation, in a so-called cytostat, in which the cell
number concentration is the time-invariant variable in steady state [40].

3.2 Bio-Activity

As stated above, the biomass concentration is a variable of great importance. To be
exact, it is the mass of living and metabolically active cells that has to be targeted,
because this represents the amount of available biocatalyst in kinetic and balance
equations.

3.2.1 Calorimetry

Calorimetry is a relatively simple method to derive information about the activity
of a population, yet it is very seldom exploited. It has long been known that the
specific heat production rate is closely—and almost constantly—correlated with
the specific oxygen uptake rate; this is also known as the oxocaloric yield (YQ/O2),
having a value of around 450 kJ mol-1 [41, 42]. The signals necessary to calculate
the heat flux are usually available but not evaluated: in most bioreactors, the
temperature of the biosuspension is well known because a temperature controller is
employed; such controllers are often cascaded controllers which also require the
temperature of the coolant as an input. If only the flow rate of the coolant is known
(or at least kept constant) too, one can simply derive the heat flux from these data.
The larger the scale of the reactor, the less important are errors added due to heat
transfer to the ambient (i.e., the ‘‘more adiabatic’’ the reactor), but the technique is
also reported for bench-scale bioreactors, with sensitivity as low as 50 mW l-1

[43]. This provides a simple, heat-based biomass and specific growth rate esti-
mator for microbial cultures [44]. Of course, there are some systematic distur-
bances included in this result such as mechanical power dissipation to the liquid,
friction converted to heat in bearings and sealing, or the evaporation loss of heat
when dry air is used to aerate a fermenter. However, all these effects can be
quantified in abiotic control experiments and, later, accounted for in the real
fermentation processes (e.g., [45, 46]). Since this technique balances the entire
reactor, one gets a direct estimate for the performance of a production lot.
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3.2.2 Gas Balancing Techniques

A very similar situation holds for the gas balancing techniques. Gas analysis is
quite straightforward (see Sect. 2.2.5), and the aeration rate is usually also well
known. A simple gas balance over the reactor yields quantitative gas consumption
and production rates (independent of the oxocaloric information). Knowing the
working volume of the reactor as well allows one to derive the gas transfer rates
that a reactor is able to achieve under given operating conditions very accurately,
precisely, and simply. Since these all represent rate information, one can also
deduce the specific growth rate of a growing culture from these signals (or soft
sensors): provided the CO2 production is strictly growth associated—an assump-
tion that very often holds true—and chemisorption of CO2 is not a great problem
(due to a nonalkaline and well-controlled pH value), a linear regression of the
natural logarithm of the rate versus time reveals the specific growth rate as the
slope. All these calculations are simple arithmetic and should be implemented on
process controllers or computers—for the time being, this information source is
left unexploited (exceptions may confirm this rule). We also recommend inte-
grating the CO2 production rate over time (numerically) in order to calculate the
carbon recovery in every bioprocess, provided the amounts or concentrations of
other ‘‘important’’ carbon-containing reactants are known. If the carbon recovery
does not match 100 ± a few percent, then there are actually ‘‘important’’ con-
tributors (substrates or byproducts) that are simply not known; this fact—by
itself—is ‘‘important,’’ as it reveals a poor understanding of the process which,
according to the PAT initiative, should be urgently overcome.

Gas, redox, charge, elemental, and proton balancing methods have been
exploited for online data reconciliation, along with predictions derived from online
infrared and dielectric spectroscopic datasets and offline calibrated models [47].
The data reconciliation algorithm could be directly implemented into the predic-
tion algorithms of the online spectrometers.

3.2.3 In Situ Fluorescence Monitoring

Fluorescence monitoring at a distinct wavelength (couple: one specific excitation
and one specific emission) or with scanning extensions (so-called two-dimensional
fluorescence monitoring) is of course less expensive than FCM but yields a pop-
ulation average only. For many purposes, this may be sufficient and desirable, as
one can follow growth, product formation, or physiological changes of a popu-
lation extremely rapidly and noninvasively. The interpretation of the resulting
signals deserves some care, however, as illustrated by the disaster of one pio-
neering fluorescence sensor, built specifically for NAD(P)H (both components that
are essential for every living cell); however, the conclusion (and marketing
argument) that such a sensor would monitor the biomass concentration was false.
Indeed, every living cell contains NADH and NADPH, but depending on the
balance state of growth, the ratio between the reduced and oxidized forms can
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change very rapidly, in seconds to minutes for the entire population in a bioreactor.
Since only the reduced forms fluoresce, the sensor signal reflects the (inner) redox
state of a population rather than the biomass concentration. If this fact is not
absolutely clear, the user of this sensor will eventually be completely misled. The
commercial solution to this dilemma was withdrawal of the sensor from the
market.

Meanwhile, there are other commercially available sensors that allow the
monitoring of other fluorophores inside the cells, for instance, pyridoxins, flavines,
or various fluorescent proteins [48–51]. Skibsted et al. [52] scanned P. fluorescens
cultivations (270–550 nm excitation, 310–590 nm emission) and related the
spectral information to other process variables using partial least-squares regres-
sion models. From that, they concluded that this sensor could also predict—with
the model, of course—the states of nonfluorescent compounds such as nitrate and
succinate. Haack et al. [53] estimated the cell mass concentration of baker’s yeast
grown in a defined medium from 2D fluorescence spectra including tryptophan,
NAD(P)H, and riboflavin using a chemometric model. The method was also
reported to be used online during downstream processing [54].

Since the in situ sensors always pick up the excitation light as scattered (or
reflected) light, it is worth considering the use of fluorescent reporter proteins that
have a maximal separation between excitation and emission wavelength, for
instance, wild-type GFP (395/509 nm) rather than the enhanced variant (eGFP:
484/507 nm), in order to achieve a reasonable separation of the desired signal from
the unwanted stray light band, a notorious disturbance.

3.2.4 Interfacing Axenic Bioprocesses to Process Analyzers

The techniques described thus far either exploit (heat or mass) balancing techniques
or consist of in situ sensors that tolerate sterilization. Hence, no problem of com-
promising the sterile barrier is to be expected. The use of process analyzers, how-
ever, requires an interface to the process that must—in most cases of scientifically
and industrially exploited processes with pure cultures—secure the axenic state of
the process. In many cases, this interface will also have the task of defoaming and
degassing the sample aliquot removed to feed the process analyzer, simply because
this is practically always a volumetric dosage. Defoaming and degassing require
some nonnegligible hydraulic residence time, independent of whether a small settler
(the sample being sucked out of its core volume after an appropriate batch time for
degassing) or a gas-permeable membrane (over which the sample flows) is used. An
extremely decisive aspect is the transport of the sample through the interface into the
process analyzer: the biocatalysts will continue to metabolize en route and can so
falsify the results obtained after the finite transfer time, even if the analyzer is error
free. In this context, the use of an autosampler (and a multifunctional analyzer) is
questionable, since the connection to the bioprocess is quite long (see, e.g., [55],
where the 1-mm capillary is 3 m long).
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The simplest way to acquire a (continuous or—not recommended—
intermittent) sample stream from a reactor is by using a one-way pump. If a sample
shall be taken at discrete time intervals, a sampling valve will be the right choice;
this can work without a pump if the reactor is (slightly) pressurized. If a valve is
employed, this should (a) have a minimized dead volume, (b) seal at the reactor
wall or reach into a turbulent reactor zone, (c) have a connection to a steam line for
cleaning and hygienizing the valve’s dead volume before and/or after sampling,
and (d) probably have a connection to a sterile air line for drying after cleaning;
these extra efforts help to avoid nonrepresentative results, carryover, and dilution
of samples. Cells are not affected by this type of sample acquisition as long as the
time required is (very) short, e.g., between a few 100 ms and a few seconds,
depending on the cell density and specific substrate consumption rates. If it takes
longer, substrates and, most probably first, oxygen will become limiting. However,
cell properties can be determined in samples prepared in this way.

If, however, one is not interested in cell properties but in concentrations of
dissolved reactants only, the option is either to remove or inactivate the cells
during sample acquisition, in which case (micro)filtration, poisoning, heating or
cooling right at the exit of the reactor can be technical solutions. Filters can be
mounted in situ or in bypass. The in situ version needs a proper mount point in a
turbulent space of the reactor in order to avoid fouling or even clogging of the filter
(e.g., [56]). The bypass version has the advantage that the filter can be changed
during cultivation, if necessary, but it has the disadvantage that the mean residence
time of cells in contact with the liquid outside the (well-mixed) reactor is nonzero,
thus giving rise to falsification of the subsequent analyses. A promising alterna-
tive—and one that is easy to miniaturize—could be dielectrophoretic cell reten-
tion, as described by Gastrock et al. [57].

Poisoning the removed biosuspension with cyanide or azide (or any other
appropriate agent) in a double-lumen catheter stops only a portion of the metabolic
actions of the cells: they are not completely inactivated, and one has to choose the
poison appropriately. Heating will destroy all thermolabile molecules, including
intracellular biomolecules (certainly most enzymes) and probably also extracel-
lular components one might be interested in. Cooling is usually restricted by the
solidification of the suspension at something like 2 �C, which might not be low
enough to arrest significant metabolic reactions that could introduce systematic
errors. If the suspension is mixed with prechilled solvent, such as methanol at
–40 �C, one can reach much lower temperatures, albeit at the expense of dilution
and probably extraction of intracellular components into the aqueous liquid.

3.2.5 Online Flow Cytometry

Flow cytometry (FCM) has only very recently been connected to bioprocesses in a
fully automated manner [37, 38, 58]. FCM is the only technique that permits
analysis of populations from a bioprocess at the single cell level [59]. Depending
on the staining method applied, one can, therefore, evaluate what percentage of a
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population is, e.g., highly active, what percentage is dormant but functional, and
what percentage is dead. Viability probes can be selected from a wide variety of
commercially available fluorescent dyes, depending on the instrument equipment
available (lasers, filters, and detectors) and the focus of the analysis, for instance,
membrane integrity, intracellular enzymatic activity, uptake of substrates, or
conversion of substrates [60, 61]. Part of the dyes is membrane permeant and
another part is membrane impermeant, which can be exploited for differentiation.
Multiple staining could be used to monitor cell physiological responses of bacterial
batch cultures and provided important physiological information at the single cell
level [62].

An alternative is the exploitation of fluorescent reporter molecules produced by
the cells, e.g., green fluorescent protein (GFP). For instance, this can be linked to a
protein of interest and used to indirectly monitor the cell-specific production of the
target product, as long as this is associated with the cells (intracellular or peri-
plasmic). The method may involve a fusion protein [51] or linkage by an internal
ribosome entry site [63]. Using online FCM, Broger et al. [58] found that, in a
Pichia pastoris cultivation, only 75 % of the cells growing in the population were
able to produce, with widely varying titers, whereas 25 % of all cells were absolute
nonproducers. Such distinction at the single cell level and thus quantitative
characterization of the performance of the production strain cannot be acquired
with any other technique established to analyze products in a population-averaging
manner (e.g., gel electrophoresis, blotting, ELISA, chromatography, mass spec-
trometry, etc.) nor with in situ online fluorescence sensors.

Cell cycle and synchronization studies are predestined to use FCM (e.g., [64,
65]): a great variety of nucleic acid (both DNA and RNA) dyes are readily
available nowadays. They also permit quite sensitive analysis for contaminants
accumulating in a bioprocess [66], specifically because several tens or hundreds of
thousands of events can be screened in a short time.

Besides fluorescence events, FCM also detects light scattering events. The
small-angle forward-scattered light is linked to the size of a particle, whereas side-
scattered light is linked to the granularity or intracellular structure of a cell. Both
characteristic properties may undergo significant changes during a bioprocess.
A review of recent developments, including online applications of FCM, is given
by Diaz et al. [67], highlighting features such as obtaining population distribution
information at the single cell level, validating more accurate kinetic models, and
using the data for process control and optimization.

3.2.6 Sizing of Particles and Solutes

After a decade or so of dormancy, field flow fractionation (FFF) techniques and
apparatuses recently appeared on the market. However, FFF is mostly used in lab-
oratories, not online during processes, although this may only be a matter of time.
FFF is an elution/separation technique suitable for molecules with molecular weight
of approximately [1,000 Da up to particle size of some 100 lm. A separating
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external field force is applied perpendicular to a laminar liquid flow of sample in a
carrier, forcing all analytes towards the ‘‘accumulation wall’’ of the flow channel and
so causing different species to be placed in different stream lines. Small molecules
and particles (less than *1 lm) are separated due to their different diffusivities: the
larger ones are less mobile and remain longer near to the accumulation wall, where
the flow velocity is smallest; hence, they are eluted later—‘‘normal mode’’. Particles
larger than *1 lm are, for geometric reasons, permanently exposed to the stream
lines of higher velocity and therefore eluted more quickly—‘‘steric mode’’. Useful
fields are gravity, temperature, cross flow, and electrical charge (among others). The
range of the (molecular) size of the analytes covered by FFF usually exceeds that
which can be determined by classical laboratory analytical methods such as size-
exclusion chromatography in a single run. Reports on investigated substances are
widespread and cover applications such as the separation and characterization of
proteins and enzymes, of viruses and mammalian cells, isolation of plasmid DNA, or
the molecular weight and particle size distribution of polymers. Langwost et al. [68]
have provided a comprehensive survey of various applications in biomonitoring.
Although not online, Hawe et al. [69] investigated the aggregation of IgG with an
asymmetrical-flow FFF.

3.3 Components Dissolved in the Medium

The biocatalysts consume substrates dissolved in the medium and produce prod-
ucts, many of which are excreted in soluble form into the medium. The masses or
concentrations of these components are important state variables and need to be
known. For many solutes online methods are available, as discussed in the fol-
lowing; however, the methods for estimating recombinant proteins are currently
laboratory techniques that are not fully automatically coupled to the processes
[70]; important exceptions are—at least potentially—fluorescence-tagged proteins
[51, 63, 71–74].

3.3.1 Flow Injection Analysis

Flow injection analysis (FIA) is an extremely versatile tool to (a) automate
(bio)chemical analyses, (b) combine various chemical or physical reaction steps
into a sequence, and (c) dilute samples appropriately. Any kind of appropriate
detector can be implemented at the end of the line. The automation may produce
systematic errors if calibration is done improperly and/or recalibration is omitted.
Frequent recalibration may be necessary if peristaltic pumps are used. FIA systems
are usually constructed as mini- or even microfluidic assemblies, and all the dif-
ficult problems associated with this technology apply for FIA as well, specifically
the formation and entrapment of gas bubbles in the system.
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FIA was originally defined as ‘‘… information gathering from a concentration
gradient formed from an injected, well-defined zone of a fluid, dispersed into a
continuous unsegmented stream of a carrier …’’ [75]. Accordingly, basic com-
ponents of any FIA equipment are a transport system consisting of tubing, pumps,
valves, and a carrier stream into which a system (practically always an injection
valve attached to an injection loop of defined, constant volume) injects a sample.
Rehbock et al. [76] assign FIA a major key role in bioprocess monitoring. In
contrast, a sequential injection analysis (SIA) system does not work continuously,
since it must aspirate the necessary components sequentially and ejects them
afterwards, and the flow may be segmented; however, this setup can save reagents
and reduce waste. The principles are briefly sketched in Fig. 2.

A central element in the FIA is the injection valve used to load an injection loop
(position as shown: sample is pumped through the loop and further to waste) and
then expel this defined volume with carrier fluid after switching of the valve. The
sample can be diluted (not shown) and mixed with reagent(s). The mixture is
allowed to react for a time given by the flow rate and the volume of the residence
time reactor, usually a long, thin tube (tubular microreactor), and finally directed to
a flowthrough detector.

The SIA works with a precise bidirectional pump, usually a syringe pump. It
first aspirates an appropriate amount of the sample and—in sequence, using the
selection valve—the necessary reagents (in appropriate amounts), which are then
expelled into a (micro)reactor to be mixed and react. Thereafter, the reaction
mixture is pumped to a detector.

A fascinating property of FIA is the elegant implementation of the dilution step
(Fig. 3). This is highly desirable for monitoring batch and probably also fed-batch
processes: some components change their concentrations more than a few decades
during a cultivation, but good resolution at low concentrations (e.g., while a
substrate is being limiting) is highly desirable.

Whenever injection loops are implemented, it is mandatory to avoid the
occurrence of gas bubbles in the sample stream, since they falsify the volumetric
dosage. This error would, of course, be propagated by the dilution factor.
Degassing vessels (i.e., sedimenters for the liquid phase) are simple to make but
add a mixing device upstream of the dilution and/or analysis, whereas degassing
membranes may not be as effective but they do not mix (they just disperse axially).

Downstream of the dilution section everything can be arranged to work in
continuous flow mode, e.g., adding reagents ahead of static mixers, ‘‘inactive’’
tubes to achieve a necessary hydraulic residence time, flowthrough cartridges
hosting immobilized (bio)catalysts, membrane reactors retaining cells but allowing
to wash them, etc. Finally, there is a detector, appropriately selected for the final
product to be quantified. Optical and electrochemical detectors qualify well, and
biosensors are equally useful in this position since they need not be sterilized there
[77]. However, any other instrument is welcome if appropriate: as described in
Sect. 3.2.5, a flow cytometer is the final detector and certainly much more
expensive than the preceding FIA. Vojinovic et al. [78] have compared several
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variants of flow analytical approaches: continuous flow, segmented flow, flow
injection, segmented injection, and bead injection.

Almeida et al. [79] exploited several FIA options for online analysis of cutinase
activity in a single setup: sampling, dilution, clarification by a micro- or ultrafilter,
and reaction. Bracewell et al. [80] linked an optical biosensor (dual channel to
compensate for unspecific reactions) with an FIA to the bioprocess. Haouz and
Stieg [81] reported the use of copolymerized glucose oxidase and lactate oxidase
for simultaneous quantification of glucose and lactic acid on top of an oxygen
electrode mounted in an FIA system, which could be used continuously for up to
3 months. With an FIA system containing enzymes immobilized in highly porous
agarose, Nandakumar et al. [82] monitored intracellular b-galactosidase (as a
reporter enzyme for cellular activities) with a cycle time of 13 min, and glucose
plus cell density with a cycle time of 3 min.

An SIA was employed by Horstkotte et al. [83] for monitoring of sorbitol in
mixed feed cultivations of Pichia. No crosstalk of methanol was observed, and the
achievable frequency was quite high at 17 analyses per hour. An interesting trick

(a)

(b)

Fig. 2 Minimal schematic sketch of (a) flow injection analysis (FIA) and (b) sequential injection
analysis (SIA) setups. Many extensions to these very basic setups are conceivable, such as a
dilution section (Fig. 3)
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to eliminate gas bubbles, namely repetitive flushing with small volumes of ace-
tonitrile, was applied. Sohn et al. [84] packed immobilized enzymes into an SIA,
considering further miniaturization on microfluidic chips. In this work, glucose

Fig. 3 Schematic of the dilution setup in an FIA: injection valve 1 is shown in the loop loading
position. When it is switched (by a 608 rotation), the reactor is fed with the contents of the loop
first and then with carrier fluid only (upper time course of cin). Given that the reactor behaves as
an ideally mixed continuous stirred tank, the concentration at the outlet (equal to that loaded into
injection valve 2) follows the trajectory shown at the bottom for a ratio of loop volume to reactor
volume of 0.02; in other words, a thousand-fold dilution can be achieved after roughly three mean
residence times. It is a matter of timing when injection valve 2 is switched to determine the
desired dilution used further downstream in the FIA
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oxidase and lactate dehydrogenase were immobilized onto magnetic nanoparticles,
which were held in place with a permanent magnet.

3.3.2 Chromatography (GC and LC)

Either gas or liquid chromatographs (GC or LC) are standard equipment in ana-
lytical laboratories. However, process samples can be directly transferred to
chromatographs provided that an appropriate interface makes the link, i.e., one that
is safe for the process in not compromising its sterile barrier and safe for the
instrument by preparing the sample accordingly, e.g., filtering cells off, diluting, or
even derivatizing. Again, an FIA is a good choice here. A closer look at the
operation of a chromatograph makes this clear: it is a special case of FIA, since
there is a continuous, unsegmented flow of an inert carrier, either gas or liquid, into
which a sample is injected; downstream of the injection, the only ‘‘reaction’’ that
takes place is the separation of sample components according to the properties of
the selected chromatographic column and carrier fluid. The final detector may be a
simple flame ionization detector (FID) or a mass spectrometer (LC–MS),
depending on the problem to be solved.

A gas chromatograph is certainly useful to separate gases or volatile com-
pounds, taken either from the exhaust gas—which is least demanding for the
interface—or from the culture supernatant—which requires an interface capable of
at least filtering and degassing. Injection valves or pistons with a metering groove
are more convenient than syringes. An interesting example is the combination of
gas chromatography with pyrolytic methylation as the sample preparation proce-
dure for determination of dihydroxyacetone [85].

Liquid chromatographs are used to analyze sugars, amino acids, and even
proteins such as vaccines [86].

A recent report described automatic analysis of extracellular glucose, ethanol,
glycerol, and acetic acid in 5-min intervals, with good consistency for three
comparable batch cultivations of S. cerevisiae [87]. Warth et al. [88] reported use
of online HPLC data to calculate volumetric and specific reaction rates (which are
themselves, then, software sensors). Cos et al. [89] reviewed the importance of
monitoring and control of methanol concentration during the induction and feed
phase in P. pastoris cultivation, which should not be too low and be kept constant
for the production of foreign proteins. Even very complex and demanding setups
have been reported for online monitoring of starting materials and intermediates in
bioprocesses, e.g., HPLC with diode array detection coupled to an electrospray
tandem mass spectrometer (ESI–MS/MS [90]).

3.3.3 Capillary Electrophoresis

Capillary electrophoresis (CE) seems to be developing rapidly along with chro-
matographic methods because it can provide higher resolution and higher speed,
works with smaller samples, and needs less carrier liquid (buffer). It is more
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suitable for miniaturization using microfluidic components compared with chro-
matography (e.g., [91]). There is also no need for probably tedious column
equilibration, and the columns themselves are less expensive. Sample preparation
can be omitted, as shown during degradation studies of phenols with Rhodococcus
[92]. However, monitoring of organic acids from lactic acid bacteria had to use a
membrane interface to the bioreactor prior to loading the samples into CE [93]; the
time resolution could be reduced to 2 min in this case.

CE comprises a system in which fluids are transported (by either micropumps or
air pressure, or electroosmotically) while separation of dissolved components takes
place in an electrical field. Since this ranges into the 10-kV domain, the materials
used for construction must sustain this high voltage: good electrical insulators are
needed, and PEEK, PTFE or glass are materials of choice.

The method is versatile and enables the separation of small ionic species (e.g.,
trace elements [94]) over organic acids up to (charged) biopolymers. The vari-
ability (or heterogeneity) of the substances that can be separated in one run is
usually broader than in chromatographic techniques. Applicable detectors are
either electrochemical or optical, e.g., UV/Vis or laser-induced fluorescence
detectors. The degree of downsizing (miniaturization) is nowadays limited by the
sensitivity of the detectors.

3.3.4 Mass Spectrometry

Mass spectrometers may be the detectors at the end of the analytical line (for
instance as a LC–MS chain) or may be the analytical instrument of choice per se.

If more than two gasses, or gasses other than O2 and CO2, should be analyzed,
or if one needs to follow aroma components or simply volatiles, a mass spec-
trometer would be the ideal instrument (see also Sect. 2.2.5). A capillary inlet is
appropriate for this goal. A mass spectrometer is essential even for CO2 (and other
gases or volatiles) when its isotopic distribution is of interest; for instance, in the
case of tracing the fate of a 13C-labeled substrate, the mass spectrometer can
distinguish between 12CO2 and 13CO2, whereas other instruments cannot. This
may be of significant importance in metabolomic, regulomic, or fluxomic studies
[95, 96].

Sampling directly from the gassed biosuspension is possible and has been done
using membrane interfaces in which the membrane serves as (a) a sterile barrier,
(b) a pressure barrier, and (c) a selective gate to avoid or permit entry of various
species. However, one has to order a new mass spectrometer (at least the high-
vacuum parts) if the membrane happens to fail, which is not attractive for pro-
duction facilities. Chemical ionization MS (CIMS) was used by Custer et al. [24]
to follow many volatiles produced during a B. subtilis cultivation, namely acet-
aldehyde, ethanol, acetone, butanol, acetoin, diacetyl, and isoprene, with simul-
taneous gas chromatography as reference. This technique is also being applied in
the food industry, for instance, laser-ionization time-of-flight mass spectroscopy in
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very rapid coffee roasting processes [97] or proton transfer reaction mass
spectroscopy (PTR-MS) for analysis of odorous volatile organic compounds [98].

Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-
tof–MS) has even been reported as ‘‘intact cell mass spectrometry, ICM,’’ being
not online but ‘‘rapid’’ [99]. With rapid cell pretreatment, viability could be
estimated from mass spectral data, and discrimination among cell lines with dif-
ferent recombinant proteins or different productivities could be achieved.

3.3.5 Infrared Spectroscopy

Most molecules can be excited with infrared light to perform typical molecular
vibrations. This is exploited in infrared (IR) spectroscopy. The far IR is not very
informative since water—the solvent of most bioprocesses—absorbs massively in
this range and most of the primary or fundamental molecular vibrations are excited
in the mid-infrared (MIR), which lies in the wavenumber range from 200 to
4,000 cm-1. The respective absorption bands are relatively narrow and can, in the
case of pure compounds, be attributed to typical chemical bonds such as –C–O–C–,
[C = O, –CHO, –O–H, or –S–H groups and so on. At higher wavenumbers
(4,000–13,000 cm-1), the near-infrared (NIR), vibrational combinations or simply
overtones are excited. In this region, the absorption bands are much broader due to
the smaller energy separations of the excited states. NIR and MIR are used in
process monitoring. This is much simpler for the case of chemical processes with
fewer components at higher concentrations—as already established by the phar-
maceutical industry in production processes (e.g., [100–102])—when compared
with biological processes: the various absorption bands of many components must
necessarily overlap, which makes the (qualitative) identification procedure quite
cumbersome. Some components in low concentration will contribute to a minute
absorption on top of another band from a major component, and, therefore,
deconvolution of the spectral information and estimation of concentrations
therefrom are not easy. In bioprocesses, we always work with multicomponent
solutions, and therefore we need multivariate evaluation algorithms, typically
chemometric procedures (see Chaps. 2 and 9). Furthermore, near-infrared spectra
of mycelial biomass appear to be influenced by morphological changes of the cells,
too [103].

Calibration models are typically built from spectrometric analyses of solutions
of pure substances or (synthetic) mixtures of a few components in known con-
centrations. Spiking of spent culture supernatants with known amounts of one
single component is a good method to test the calibration model: if the model
predicts a change in only this single concentration while the predictions for the
other components remain constant, the calibration model reflects an analytically
crisp fact. If, however, other predictions move too, although the concentrations of
those components have not been changed, the calibration model is likely to have
learnt a nonanalytic correlation, most often a biological one; for instance, when
substrate concentration is high, the product concentration is low, and vice versa.
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Exactly this may happen when spent culture supernatants are used for calibration
purposes rather than well-designed synthetic mixtures. An exciting and good
example of a successful test by spiking substances directly into a batch culture of
S. cerevisiae is reported in Schenk et al. [17, 104]; such a test is likely to be
performed in academia only and not in producing industry.

Two great advantages of IR process spectroscopy are the high speed—there is
practically no delay, and highly dynamic systems can be analyzed—and the abso-
lutely noninvasive and nondestructive character of the analysis—IR intensities are
usually very low and will not harm cells or biomolecules. A significant disadvantage
is the interference from gas bubbles in (highly) gassed reactors. Probe fouling and
vibrational effects caused by agitation are also mentioned as drawbacks of in situ IR
probes [105].

The MIR range allows determination of components in aqueous solution at
much lower concentrations than the NIR range. MIR has a higher degree of
spectral resolution than NIR. The combination of the Fourier-transform (FT)
method with attenuated total reflection (ATR) probes (see below) renders MIR
monitoring ideal for analysis of complex mixtures in aqueous solutions [106].
Although fiber optics are available (and constantly improving), their strong
attenuation of light intensity makes the use of so-called conduits the method of
choice (or waveguides, an assembly consisting of blackened tubes, linked over
junctions and mirrors). However, if one changes the geometry only slightly, one
has to recalibrate; otherwise, stability over 3 years is reported [107]. NIR instru-
ments need a better signal-to-noise ratio than MIR since ‘‘only’’ broadband
overtones are analyzed. The use of fiber optics is more advanced in the NIR range
(e.g., [108]). The sensor itself is nowadays mostly an ATR tip. The IR beam is
totally reflected a few or more times at the interface of the crystal tip to the
measuring solution; the evanescent field or wave interacts with the solutes and is
changed in intensity before it is guided back to the detector in the instrument. ATR
crystals are ideally made of diamond (with a high refractive index). Transflective-
and transmissive-mode sensors have also been described [109]. McGovern et al.
[110] analyzed metabolites in complex industrial media by FT-IR, Raman spec-
troscopy, and pyrolysis mass spectrometry. Lee [111] estimated glucose, phenyl-
alanine, and organic acids by Raman spectroscopy in E. coli cultivations online;
the observed estimation accuracy was found to be limited by errors in the physical
model for the system and the limited stability of the optical window material.

Examples of monitored components were recently summarized by Landgrebe
et al. [112], including sugars such as glucose and fructose, alcohols such as
methanol, ethanol, and glycerol, the amino acid glutamine, organic acids such as
acetic and lactic acid, element sources such as ammonia and phosphate, and
products such as biomass itself, antibodies or clavulinic acid. With a stop-and-go
strategy to let cells settle on the ATR surface, Jarute et al. [113] monitored PHB in
an ATR flow through cell after sample preparation using an SIA. Kansiz et al.
[114] also used an SIA in combination with FT-IR spectroscopy to follow ace-
tone–butanol fermentations and could perform 30 analyte determinations per hour.
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Sensors monitoring optical density are sometimes also considered as NIR
probes, since the wavelength range used in many instruments is on the order of
900–1,100 nm; however, these sensors determine the intensity of just one wave-
length peak and are not spectrometers (e.g., [88]).

3.3.6 Orphaned Sensors and Methods

Several types of sensors or analyzers have not yet been discussed here but are the
subject of and are referred to in other papers. Some of these seem to have been a
short-lived hype and have faded away in the recent scientific literature and/or have
not made their way to commercialization for process monitoring.

One example is biosensors. These cannot be used inside the sterile barrier (in
situ) because they do not withstand proper sterilization. However, their use in a
process analyzer operated in bypass mode (and with the sample not returned to the
process but discarded) is feasible [115]. In spite of extensive studies in the past,
many authors have come to the conclusion that implementation of biosensors is
strongly hindered by their limited stability. Improvements are reported for a few
enzymes, but the results are obviously not very satisfactory: Vojinovic et al. [116]
stated in this context that operational stability allowing ‘‘up to 8 h continuous
lactate conversion’’ with a lactate oxidase-based sensor and virtually no activity
loss had been achieved. This is definitely less than the usual duration of a (batch)
production process. In another work [117], they investigated immobilized glucose
(GO), alcohol (AO), lactate (LO), galactose (GalO), and L-amino acid oxidases
(LAAO) together with horseradish peroxidase (HPR) and found that shelf-life was
as high as 6 months for GO/HRP, AO/HRP, and LAAO/HRP. After 1,400 and
8,000 FIA injections, respectively, GalO and LAAO had lost half of their original
activity. Katrlik et al. [118] employed sensors made with Gluconobacter oxydans
for 1,3-propanediol measurements, but those analyses were made manually after
sampling.

Another example is electronic noses (arrays of gas sensor elements) and elec-
tronic tongues (arrays of potentiometric or voltammetric elements). Although such
arrays have been used to characterize biologically important aspects such as the
metabolic burden of recombinant organisms or the indirect estimation of product
concentration [119, 120], the number of such publications has decreased signifi-
cantly in the last decade. The background is probably that (a) one does not know
(exactly) what the sensor array elements do or could sense, (b) the limited stability
of the (gas sensor) array elements, and (c) the evaluation of the high-dimensional
datasets (with probably more than 1,000 array elements = dimensions) requires
multivariate regression models (chemometrics) which are not easy to build and to
validate. However, recently, an electronic nose was used to distinguish various
physiological forms of microbes, e.g., vegetatively growing and sporulating/
sporulated Bacilli [121], and electronic tongues have been used to monitor
methane [122] or to discriminate between species that can often occur as unwanted
food contaminants [123].
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Prototype instruments of an ATP analyzer are described as a useful PAT tool
[124]. However, to my knowledge, not many analyzers have been sold and are in use.

Practically all immunoassays such as surface-based fluoroimmunoassays are
postprocess analyses and not online, despite being described as ‘‘during cell cul-
ture’’ (e.g., [125]); a similar statement holds true for protein and DNA chip
technologies [126].

4 Conclusions

Few new sensors and process analyzers have invaded production facilities in the last
decade, in spite of the PAT initiative of the FDA published 8 years ago. However, a
considerable improvement is obvious in the R&D process domain and in academia
over this time, although automation of laboratory techniques and use of automated
laboratory analyzers (as opposed to process analyzers) has proceeded at a much
faster pace and, obviously, brings much greater return on investment, because this
market is larger and healthcare oriented rather than technically focused. The
(commercially producing) biotechnology and pharmaceutical industry seems to be
conservative and very reluctant to implement these process analyzer tools, probably
because the potential benefits are not routinely investigated, evaluated, and dem-
onstrated, probably because of the short-sighted, shareholder-oriented manager
attitudes resulting in never-ending personnel and budget cuts.
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Automatic Control of Bioprocesses

Marc Stanke and Bernd Hitzmann

Abstract In this chapter, different approaches for open-loop and closed-loop
control applied in bioprocess automation are discussed. Although in recent years
many contributions dealing with closed-loop control have been published, only a
minority were actually applied in real bioprocesses, the majority being simula-
tions. As a result of the diversity of bioprocess requirements, a single control
algorithm cannot be applied in all cases; rather, different approaches are necessary.
Most publications combine different closed-loop control techniques to construct
hybrid systems. These systems are supposed to combine the advantages of each
approach into a well-performing control strategy. The majority of applications are
soft sensors in combination with a proportional–integral–derivative (PID) con-
troller. The fact that soft sensors have become this importance for control purposes
demonstrates the lack of direct measurements or their large additional expense for
robust and reliable online measurement systems. The importance of model pre-
dictive control is increasing; however, reliable and robust process models are
required, as well as very powerful computers to address the computational needs.
The lack of theoretical bioprocess models is compensated by hybrid systems
combining theoretical models, fuzzy logic, and/or artificial neural network meth-
odology. Although many authors suggest a possible transfer of their presented
control application to other bioprocesses, the algorithms are mostly specialized to
certain organisms or certain cultivation conditions as well as to a specific mea-
surement system.
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Fb(t) Feeding rate due to feedback part
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t Time
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1 Introduction

Due to competition, industry tends to increase the degree of automation in pro-
duction processes. Only an automated system is never tired and always attentive,
will act reliable, and therefore can provide optimal process operation. It can react
quickly to changes in raw material quality as well as changes in environmental
conditions. As a result, energy and material input can be decreased and process
safety and product yield and quality can be increased. This applies, of course, also
for bioprocesses. The operation of these processes is usually carried out in three
successive steps:

Upstreaming (filling, sterilization, and mixing)
Cultivation/enzyme reaction (growth of cells, bioconversion, and production)
Downstreaming (harvesting, separation, concentrating, and crystallization)

Each step demands a high degree of automation. In the first step, standard
automatic sequence control units are available. The quality of raw materials is of
special importance for the subsequent steps. The automation in the second step is
more complicated, since complex transport processes are combined with a mul-
titude of dynamic biochemical reactions during cultivation. Therefore, one has to
deal with a complex, nonlinear, multiparameter, time-variant system. Little
detailed comprehensive knowledge is available. The microorganisms used for the
synthesis of the product have many inherent closed-loop systems of their own,
which can only be manipulated indirectly through environmental conditions
by physical and chemical variables. Frequently, open-loop control systems are
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employed to control cultivation processes. In order to realize closed-loop control,
reliable system measurements are vital. However, the application of closed-loop
control is still rare, due to many reasons:

In many cases important process variables can be determined online only with
excessive effort. They become available delayed by a dead time as well as lag
elements and also discontinuously. Most bioprocesses are batch or fed-batch
processes; therefore, one has to deal with a transient (not stationary) process,
where the automation task is to provide an optimal environment for the micro-
organism. The typical goals of automation of bioprocesses are to:

• Compensate failure of any kind
• Minimize energy and raw materials
• Maximize yield and product quality
• Guarantee safe operation
• Prevent substrate, overflow metabolite, or product inhibition
• Ensure well-directed induction and repression of enzyme production
• Prevent high shear stress
• Present an optimal environment for the organism for growth as well as

production

With the help of standard control algorithms, some of these goals can already
be achieved. Basic bioreactor equipment often includes control algorithms for the
volume, temperature, pH, dissolved oxygen, and addition of antifoam agents.
However, these basic controllers are not always sufficient for special applications.

In this chapter, state-of-the-art bioprocess automation and recent progress are
discussed. An overview of the discussed application is presented in Table 1.

2 Controller Design

2.1 Direct Measurements

Especially for closed-loop control purposes, measurements are fundamental. For
bioprocesses, in situ measurements such as temperature, pH, dissolved oxygen
concentration (DO), optical density, and pressure and at-line measurements such
as the exhaust gas composition are performed most frequently and can be used as
input variables for a controller [1, 2]. At-line measurements based on spectro-
photometric, mass-spectrometric, HPLC, GC, and flow injection analysis (FIA)
systems are applied less frequently for online measurements and even less often as
input variables for a controller [1–3]. Due to the fact that direct measurements of
important variables such as growth rate, substrate uptake rate, and carbon dioxide
production rate are missing, soft sensors have been established to enable a kind of
indirect measurement that can provide access to relevant variables using different
techniques.
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2.2 Soft Sensors

Economist and business consultant Peter Drucker once said: ‘‘If you can’t measure
it, you can’t manage it.’’ Although he did not mean bioprocesses, it can also be
applied here. Keeping that in mind, soft sensors will here be introduced to
‘‘manage the immeasurable.’’ Soft sensors or virtual sensors are employed to
calculate variables from one or more of the directly measured variables. Com-
monly employed indirect measurements based on theoretical models are oxygen
uptake rate (OUR), oxygen transfer rate (OTR), carbon dioxide production rate
(CPR), and the respiration coefficient, which are calculated from exhaust gas
measurements and the aeration rate. The identification of critical needs to suc-
cessfully develop state-of-the-art soft sensors is presented by Luttmann et al. [4].
They particularly discuss soft sensor methods for bioprocess engineering and
pharmaceutical applications.

Data-driven soft sensors use chemometric models for the estimation of process
variables [2, 3, 5]. An example is the calculation of the glucose concentration and
dry cell mass concentration from fluorescence data [6]. When using these data-
driven approaches, one has to be careful not to leave the calibration range.
Therefore, theoretical model-based soft sensors usually have a broader range of
application. An important class of these soft sensors is based on state observers.

2.2.1 State Observer

A state observer uses a dynamic theoretical model (state model) of the process to
estimate process variables (state variables). Using available measurements, the
state observer corrects the estimated state variable in such a way that its values will
converge to the true process values. For the implementation of a state observer,
detailed knowledge of the process is necessary. The advantage of state observers is
the determination of immeasurable process variables which can be used for pro-
cess automation.

An example is given by Jenzsch et al. [7]. They estimated the biomass using a
mass-balance-based state observer by employing the relation between OUR, CPR,
and base consumption. One kind of standard state observer is the Luenberger
observer [8] and the Kalman filter. A special class of Kalman filter is discussed in
the next section.

2.2.2 Extended Kalman Filter

To smooth noisy measurement signals as well as to estimate immeasurable process
variables, different Kalman filters have been applied for controller implementation.
For this purpose, process knowledge is required in the form of a dynamic state
model, a measurement model, and known measurement noise. The main idea of
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the Kalman filter [9] is minimization of the error covariance of the estimation of
the state variables. Therefore, not only the process model, but also the estimated
error covariance differential equations have to be integrated online. If a nonlinear
state model is used, the filter is called an extended Kalman filter (EKF). A con-
tinuous–discrete EKF uses a continuous nonlinear state model and a discrete
measurement model. The differential equations are integrated as long as no new
measurement value is available. If a new measurement is available, the filter
equation is applied. As a result, the estimation error covariance is minimized and
the estimated values of the state variables are adjusted to the measurements. By
using a Kalman filter, the time-varying characteristics of cultivation processes can
be implemented in a control algorithm.

A general overview of specialized state observers is given by Kawohl et al.
[10], who compared different optimization-based state estimation algorithms to
judge their estimation quality. The Bayesian maximum, an a posteriori-based
constrained extended Kalman filter, the moving-horizon state estimation, and the
classical unconstrained extended Kalman filter are compared through Monte Carlo
simulation experiments. The authors conclude that the moving-horizon state
estimation shows greater potential for state estimation in small systems. For
higher-order systems, the adjustments of the filter parameters as well as the
numerical optimizations were more difficult.

2.3 Control Action

The control action (actuating variable) is the resulting action that the controller
performs corresponding to the control law, e.g., setting the substrate flow rate to
the appropriate value. Figure 1 shows the principle of a closed-loop controller. The
control action is the result of the feedback given by the process measurement,
which might be further processed by a soft sensor, and the control algorithm. The
overall goal is to minimize the deviation between the set-point and the controlled
variable.

The next sections discuss a wide variety of state-of-the-art control applications
for bioprocess automation. First, PID-based controllers in combination with dif-
ferent soft sensors are presented, and then model linearization approaches are
discussed. This is followed by fuzzy logic- and artificial neural network-based
controllers, a model predictive controller, as well as combinations of the three
latter methods. Lastly, probing feeding, extremum-seeking control, and a heuristic
control strategy are discussed.

A very basic approach is presented by Lindgren et al. [11] and Kriz et al. [12]
based on a real-time in situ SIRE� biosensor system combined with a two-step
controller (on/off control) for yeast cultivation at different biomass concentrations.
Their controller could manage a set-point of 10 mM glucose for 60 min with
standard deviation of 0.99 mM at biomass concentration up to 80 gL-1.
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3 State-of-the-Art Control Algorithm

The most common closed-loop control algorithm is the PID controller. Here, e(t),
the difference between the controlled variable and the set-point at time t, is used to
calculate the control action. Equation (1) is the general form of a PID controller,
with Kp as the proportional gain, Ki the integral gain, Kd the derivative gain
parameter, and u(t) as the control action.

u tð Þ ¼ Kpe tð Þ þ Ki

Zt

0

e sð Þdsþ Kd

d
dt

e tð Þ: ð1Þ

Basic PID control is an algorithm responding to current changes with constant
parameters, in which the knowledge of the process is presented. A special form of
the PID controller is the PI controller, which lacks the derivative part (i.e.,
Kd = 0), leading to a steadier system in the presence of noisy measurement data.
This type of controller can be found most frequently.

3.1 Open Loop–Closed Loop Controller

The simplest control action for a cultivation process is open-loop control. One can
rearrange typical mass balance equations describing a cultivation process in a
stirred tank reactor to obtain, e.g., Eq. (2), representing the feeding law for sub-
strate. This is basically an assumption of a known, constant substrate consumption
rate as well as a predetermined constant specific growth rate lsp, which is smaller
than the maximal specific growth rate.

Fig. 1 General schematic of different (alternative) closed-loop control schemes
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F0ðtÞ ¼
lsp

YXS

þ m

� �
V0X0

Cfeed

elsp t�t0ð Þ ð2Þ

X0 ¼ X t ¼ 0ð Þ V0 ¼ Vðt ¼ 0Þ

Using such a controller, the cultivation feed is performed following a prede-
fined trajectory. Knowledge of the inoculum size as well as the specific growth rate
and the yield factors is obviously needed to perform this kind of open-loop control,
which is called feed forward control. Advantages and disadvantages of open-loop
control are presented by Gnoth et al. [13]. In case of disturbances (e.g., wrong pH
value as a result of a failure), the system’s behavior will differ from the prediction.
In this case, the feed is predicted incorrectly and the result of the cultivation is not
as designated, resulting in a waste of resources. To prevent this, the plainest
closed-loop control approach is to add a feedback to the feed forward term for
regulatory action. These feed forward/feedback controllers are usually a class of
single-input single-output (SISO) controller. The control law Eq. (4) is the sum of
the feed forward part F0, which is the estimation of the approximately needed feed
rate Eq. (2) at time t, and the feedback part Fb, in this case delivered by a PI
algorithm Eq. (3).

FbðtÞ ¼ KPe tð Þ þ Ki

Zt

0

eðsÞds ð3Þ

uðtÞ ¼ Fb tð Þ þ F0 tð Þ ð4Þ

3.2 PID Control Based on Soft Sensors Measurements

Controllers with more than one input value are classified as multiple-input single-
output (MISO) or multiple-input multiple-output (MIMO) and are represented as
multiloop PID or cascade PI controllers. MIMO systems couple their input values
according to the interaction and are therefore able to map higher complexities of
the controlled process. They are supposed to be more accurate in their control
action than SISO systems. The structures of both controllers (SISO and MIMO)
are shown in Fig. 2.

Applications of these controller types for bioprocess automation are discussed
in the following sections.

3.2.1 Single-Input Single-Output Control

The combination of a Kalman filter, whose measurements came from a glucose FIA
system, and a PI controller is presented by Arndt and Hitzmann [14]. The system was
applied to S. cerevisiae cultivation to control the glucose concentration. The Kalman
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filter estimates the glucose and biomass concentration, the volume of culture broth,
and the maximal specific growth rate. The predicted values were used for a PI
feedback controller with set-points of 0.08 and 0.05 gL-1. The controller established
well-defined growth conditions over several hours. The authors demonstrated that, in
contrast to the higher set-point, no ethanol was produced at the lower set-point. A
similar approach was applied by Arndt et al. [15] for E. coli cultivation to produce
phytase. They discussed the response of the controller during a failure of the glucose
FIA measurement. After the process analyzer was fixed, the online glucose mea-
surement returned after 0.2 h to the set-point of 0.2 gL-1 and in a total of 0.4 h to the
intended performance. Control strategies based on DO set-points between 5 and
10 % did not result in higher yield of phytase, as shown by Kleist et al. [16].

A set-point substrate controller for the glucose concentration in baker yeast
fermentation was presented by Klockow et al. [17]. They compensated the dead
time of 6 min caused by the FIA measurement system using an extended Kalman
filter in combination with a ring buffer, where the estimated variables as well as the
pumping rate are stored. If a new measurement value from the FIA system is sent
to the Kalman filter, the dead time is considered by taking the historical process
variable data of that time point out of the ring buffer and the ordinary filtering is
carried out followed by simulation up to the current time. Since during the control
phase the relative standard deviation of the measured values and the set-point were
2.9 and 4.4 % for the set-point of 0.07 and 0.5 gL-1, respectively, the authors
concluded that the control was successful.

Roever and Slavov [18, 19] presented a closed-loop control for the application
of E. coli cultivation. They also used measurements from a glucose FIA system for
substrate control of the bioprocess. They tested three different approaches by
using: FIA measurements with a PI controller, measurements processed by an EKF
and a PI controller, as well as measurements processed by an EKF combined with
a Smith predictor and a PI controller. The latter was used to compensate the dead
time of the FIA measurements. The authors claim satisfactory control of glucose
concentration and emphasize the superiority of the control employing an EKF,
resulting in higher biomass yields.

Fig. 2 Scheme of a SISO controller compared with a MIMO controller
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3.2.2 Multiple-Input Single/Multiple-Output Control

Wahab et al. [20] applied a multiple-input single-output controller for DO and
nitrate control in a wastewater treatment process (WWT). They carried out
extensive simulation studies on a nonlinear model to demonstrate the superior
performance concerning set-point tracking and disturbance robustness.

Another MISO approach is given by Jenzsch et al. [7], representing a nonlinear
adaptive controller based on multiple inputs (oxygen uptake rate, carbon dioxide
production rate, and base consumption) to estimate the specific growth rate. They
compare the results of their generic model control with the control performance
employing only a PI controller. The generic model control shows better perfor-
mance due to the model-based feedforward part and online adjusted control
parameters obtained from the state estimation.

Cascade PI/PID controllers are employed to increase the precision of the PI
principle, mostly for nonlinear control problems. Typically a so-called slave
(inner) control loop is nested within a master (outer) control loop, as shown in
Fig. 3.

Biener et al. [21] used this principle to precisely control the temperature in the
reactor, considering a controller cascade for the reactor jacket and the reactor
interior. The temperature inside the reactor is the main target of this control.
Therefore, it is the outer cascade circle that is called the master loop. The tem-
perature of the reactor jacket is used for the inner, slave loop. The state observer
for the process control uses a heat balance equation that calculates the specific
growth rate from the heat flow supposed to result from cell metabolism. Based on
the specific growth rate estimation, they formulate a control law for the substrate
feed rate. This controller design was employed in high-cell-density cultivation
(HCDC) of E. coli producing green fluorescent protein. The authors suggested that
the method is advantageous for HCDC because of the high heat flow due to the
high cell density and describe a gain of sensitivity with increasing biomass. The
specific growth rate can be controlled just below the critical growth rate where
overflow metabolites occur. The authors demonstrate that no other measurement is
necessary except DO concentration to guarantee an aerobic milieu. The heat flow
generated by the cells and therefore the specific growth rate can be estimated
reliably. Since the method only uses easily and quickly measurable process vari-
ables, they suggest its potential application in standard industrial bioprocesses.
They recently applied the described method to a Saccharomyces cerevisiae

Fig. 3 Scheme of a cascade process control system
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cultivation [22], demonstrating the transfer of the technique to another organism.
However, this method is applied to standard cell growth in 15 and 30-L reactors.
The method is not applicable after, e.g., product induction, due to the changing
heat balance while the cells change their metabolism.

Soons et al. [23] applied the cascade principle to precisely control the dissolved
oxygen using the oxygen in the reactor headspace (slave loop) and the dissolved
oxygen in the medium (master loop). They employ a closed-loop control based on
the DO concentration. With the simplification that the oxygen uptake rate is
proportional to the OTR, the specific growth rate of the cultivation can be held at a
constant level by controlling the DO concentration. This is shown in Eq. (5).
According to Fig. 3, the closed-loop control of the dissolved oxygen is carried out
through the cascade control. The outer loop (Eq. 7) compares the measured DO
(DOsensor) with the set-point. The result is handed to the inner loop (Eq. 8), cal-
culating the controller output through the difference between headspace and
medium.

OUR ¼ OTR ¼ kLa O2;head � DO
� �

ð5Þ

dO2;head

dt
¼ F02

Vhead

O2;in � O2;head

� �
� OTR ð6Þ

O2;a ¼ Kp DOset � DO tð Þsensor

� �
þ Ki

Zt

0

DOset � DO sð Þsensor

� �
ds ð7Þ

O2;in ¼ Kp O tð Þ2;a�O tð Þ2;head

� �
þ Ki

Zt

0

O sð Þ2;a�O sð Þ2;head

� �
ds ð8Þ

The cascade is realized by using the result of the PI control action of Eq. (7) in
the control action of Eq. (8). This provides more flexible and sophisticated control
compared with if only one PI controller were to be employed, because not only the
transport of oxygen between the gas flow and the medium is considered, but also
the transport from the headspace of the reactor into the medium. Further, Soons
et al. use a Kalman filter to calculate the specific growth rate from the oxygen
consumption provided from the DO control cascade. They demonstrated the
implementation of a stable and robust closed-loop controller for specific growth
rate control. The method does not need an online model and therefore lacks a
complex implementation. They show through simulations and fed-batch experi-
ments that the controller is robust against disturbances and able to maintain the
specific growth rate of vaccine-producing Bordetella pertussis at a constant level
of l = 0.05 h-1.

Bodizs et al. [24] observed that a simple PI controller for DO does not perform
well enough in their system and therefore employed a cascade controller. Since
they implemented the controller for an established reactor, they used a set of
available multiple inputs, namely OUR, CPR, DO, and volume. The process is a
2,700-L fed-batch filamentous fungal fermentation. The control is applied to
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substitute a predetermined feeding strategy that is employed to guarantee no
limitation of oxygen. The dissolved oxygen consumption rate rDOXt is measured
via a soft sensor using the approximation of Eq. (9), whereas b is a proportionality
factor and CER is the carbon dioxide evolution rate, which is assumed to be
approximately the carbon dioxide transfer rate.

rDOXt ¼ b
OUR þ CER

V
ð9Þ

The master-loop controls the specific consumption rate rDO. The slave loop
controller is applied to control the feed rate based on OUR and CPR measure-
ments. It is possible to efficiently control the specific consumption rate of oxygen.
The main advantage is that it is not limited to a specific strain of microorganisms
and applicable for a wide variety of fungal fermentations.

Another application for MIMO-PID bioprocess control is a multiloop PID
feedback controller for HCDC control applied by Chung et al. [25], coupling the
OTR and the CPR. They compared the method with a model predictive controller
and presented better results for their MIMO-PID using simulation studies. The
controller can compensate for disturbances in the exhaust gas measurement data.
Ranjan and Gomes [26] also applied a cascade MIMO, showing a performance
enhancement compared with a normal PI controller.

For all these previously described applications, the parameters of the PID
controller must be determined. Different approaches to determine the PID
parameters are discussed in the next section.

3.2.3 PID Tuning

The obviously crucial part for all PID control-based approaches is the determi-
nation of the corresponding PID parameter values. Changes in the process dynamic
will most likely lead to suboptimal control actions. Ideally, a tuned controller
should show a minimum of oscillation and lead the system quickly and reliably to
the set-point.

Tuning methods can be divided into two groups: parametric model and non-
parametric. Parametric methods use either model or experimental data to deter-
mine the controller parameters and are mostly described as offline tuning methods,
though online approaches have also been tested. Nonparametric methods only
partially use models such as critical states and are suitable for online use as well as
for implementation without previous extensive plant studies. Wahab et al. [20]
compared four nonparametric methods for multivariable PID tuning, introducing
one on their own and comparing it with established methods from Davison [27],
Penttinen–Koivo [28], and Maciejowski [29]. Soons et al. [23] used a parametric
tuning algorithm proposed by Bastin and Dochain [30], guaranteeing stable
behavior and fast convergence towards the set-point. Other parametric approaches
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to tune a PID controller are described in many publications [19, 20, 31–33] where
the authors use, e.g., genetic algorithms to obtain the optimal parameters.

Online estimation of control parameters is described by Bastin and Dochain
[30] as well as by Perrier et al. [34]. This is used in various control strategies
[35–38], where the upper bound of the estimation error is minimized online and
the resulting parameters are considered to be the optimal ones. Another approach
in this direction is given by Kansha et al. [39], introducing a self-tuning PID design
applying just-in-time learning. This algorithm compares a given database with the
state of the process online and adjusts the gain parameter according to the obtained
results, performing self-tuning derived from the Lyapunov method [40] to guar-
antee convergence of the given gain parameters.

3.3 Model Linearization-Based Control

Due to the inherent complexity, nonlinearity, and nonstationarity of bioprocesses,
Renard et al. [41] proposed a so-called RTS control scheme with Youla parame-
terization to overcome these problems. They develop their control approach for
S. cerevisiae cultivation, controlling the ethanol concentration to a nonzero value.
For substrate concentrations higher than the critical substrate concentration Scrit,
the occurrence of overflow metabolism is assumed. Since Scrit for yeast fermen-
tations is 0.1 gL-1, the authors suggest respirofermentative conditions and a
quasisteady state of the substrate concentration (considering no accumulation of
substrate and instantaneous consumption, as long as the process does not deviate
dramatically from the predetermined operation conditions). They obtain a model
for the relation between the feed Fin and the measured ethanol concentration as
well as a discrete time transfer function mapping the feeding rate to the ethanol
concentration, which is linearized for the purpose of control law application. The
controller considers cell growth as an unstable exponential disturbance. This
control method is based only on online measurement of ethanol. For the yield
coefficient, a rough estimation (e.g., from literature) seems sufficient. They identify
the state between fermentative and respirative operation as another way to control
the specific growth rate close to the critical value when overflow metabolism
occurs. They initially employed the controller in laboratory-scale fermentation
[41] with a set-point of 0.7 gL-1 ethanol concentration, achieving very small
errors in the controlled variable. Later in the cultivation, they observe an accu-
mulation of ethanol, considering the limitation of oxygen. This is considered in a
subsequent investigation [42], leading to a redesign in the controller scheme
employing a feedforward term and determination of the OTR from exhaust gas
measurements. The performance of the new proposed controller is evaluated via
simulation studies of the process with offline data. The same control algorithm was
later [43] employed in an industrial fermentation process. The authors claim 40 %
increased productivity using their algorithm compared with the previously used
open-loop control.
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Cannizzaro et al. [44] and Valentinotti et al. [45] describe a linearization approach
capturing the main macroscopic processes, exponential substrate uptake, and very
low ethanol production at laboratory scale. They suggest it as another way to control
the specific growth rate close to the critical value when overflow metabolism occurs.
They maintain the overflow metabolite concentration (ethanol and acetate for yeast
and E. coli, respectively) and view cell growth as a perturbation to the system.
They introduce an adaptive control strategy for the unstable exponential disturbance
and are able to hold the ethanol concentration at 0.7 gL-1 while the biomass grows
exponentially at a specific growth rate of 0.1 h-1, despite only the overflow
metabolite being obtained online. Hocalar and Türker [46] present an upscaling
of this control approach to a 25-m3 airlift reactor with online ethanol, CO2, and O2

measurements. They present good results for ethanol control around 0.7 gL-1

and high biomass concentration of up to 75 gL-1 with mean specific growth rate
of 0.1 h-1.

3.4 Fuzzy Logic-Based Control

Fuzzy logic uses linguistic expressions to handle uncertainties. It does not need a
mathematical model but rule-based process knowledge of an expert operator. In
fuzzy control the control action is executed by a predefined rule basis, using rather
imprecise linguistic expressions. The expansion of crisp, true/false-based logic to a
vague, partially true linguistic concept is required, because operators are more
familiar with this. In fuzzy logic, process variables such as pH and temperature
whose values can be very high, low, or middle are formulated in expressions. Then,
fuzzy sets are used to represent these linguistic values. A classical set such as
A = {x | 5 \ x \ 7, x e <} contains all the real numbers between 5 and 7. An
extended version of this classical, crisp set is a fuzzy set. The fuzzy set B is defined
as a set of ordered pairs B = {(x, lB(x)) | x e X, lB: X ? [0, 1]}, where X contains
all elements of measurement values that can occur, and lB(x) is the membership
function of x in B that maps each element of X to a membership value. An element
belongs to a set to a certain degree, which is expressed by the membership
function, which can be a value between 0 and 1 (e.g., ‘‘the temperature in the
reactor is high to a degree of 0.7’’). The membership function can be of any shape.
Triangual, Gaussian, or sigmoidal functions are often used. To demonstrate the
operation of a fuzzy controller, a simplified example is presented in Fig. 4 with
just two rules:

Rule 1: If substrate is low OR DO is high then feeding rate is high;
Rule 2: If substrate is high AND DO is low then feeding rate is low.

The control action is calculated in three steps: (1) fuzzification, (2) inference,
and (3) defuzzification. In the fuzzification step the membership function is used to
calculate the membership value of the measurements for the corresponding lin-
guistic term. In the inference step the fuzzy operators (here OR and AND) are
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applied, which is equivalent to the maximum and minimum determination of the
membership values of a rule, respectively. For each rule the so-obtained value is
used as the upper limit value for the conclusion (‘‘then’’ part) of the rule. During
the defuzzification, the output fuzzy sets of all rules are aggregated to one output
fuzzy set as shown in Fig. 4. The centroid of the output fuzzy set is calculated as
the value for the actuating variable of the controller.

A fuzzy controller using nine rules was implemented by Ruano et al. [47] for a
biological nitrification process in a pilot plant with wastewater from a full-scale
plant. Instead of using an expensive nitrogen sensor, they employed several pH,
oxidation–reduction potential (ORP), and DO sensors. Their fuzzy controller
comprises two independent controllers: the nitrification as well as the denitrifi-
cation process controller. The former works as a supervisory control of the aera-
tion control system, whereas the latter modifies the internal recycle flow rate from
the aerobic to the anoxic reactor. The authors demonstrated that using low-cost
sensors in combination with their fuzzy controller leads to a minimized energy
consumption of the process.

For the temperature control of a batch reactor, Causa et al. [48] compared
different versions of a hybrid fuzzy predictive controller. Two on/off input valves
and a discrete-position mixing valve were used as controlled variables. The
authors concluded that the hybrid fuzzy predictive control in combination with an
optimization algorithm based on a genetic algorithm gives similar performance to
that of a typical hybrid predictive control strategy but a significant saving with

Fig. 4 Basic fuzzy logic scheme for two input values, two rules, and one output value
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respect to computation time. Compared with a nonlinear optimization algorithm
[49–51], the genetic algorithms make a time saving of approximately 25 %.

A nonlinear fuzzy controller was presented by Cosenza and Galluzzo [52] for
the control of pH and temperature during a penicillin production process. In their
application the authors used the so-called type 2 fuzzy set, where uncertainty in the
membership function is also implemented. If no uncertainty is present, the
membership function is as described above, which is called type 1. In simulations,
the performance of the type 2 fuzzy controller was compared with an ordinary
(type 1) fuzzy controller as well as a PID controller. It was concluded by the
authors that, due to the nonlinearities and uncertainty of the process, the PID
controller cannot be compared with the fuzzy controller equitable. The best results
were obtained with the type 2 fuzzy controller. When increasing the measurement
noise level, the difference between type 1 and type 2 becomes more evident.

A special controller based on fuzzy logic has been developed by Takagi and
Sugeno [53]. The difference from the abovementioned fuzzy logic systems is that, in
the conclusion part, a function is defined with the input values as arguments. The
conclusion of the whole rule system is the sum of the function values weighted by the
corresponding membership functions. Belchior et al. [54] implemented an adaptive
Takagi–Sugeno (TS) fuzzy control algorithm for DO of an activated sludge waste-
water treatment process, where the parameters of the conclusion were adapted
online. The controller was constructed by using the Lyapunov synthesis approach
with a parameter projection algorithm. Parallel to the adaptive control algorithm, the
authors implemented a supervisory fuzzy control with a smooth switching scheme
between supervisory and nonsupervisory modes. In simulations, they could dem-
onstrate that the error obtained by the fuzzy controller was less than 2 %, whereas a
PI controller produced peaks greater than 10 %.

3.5 Artificial Neural Network-Based Control

Artificial neural networks copy the functionality as well as the structure of bio-
logical neural networks by using a mathematical model. In such networks, a
possibly very complex input vector (e.g., a visual and/or acoustical signal) can be
transferred via various neurons to condense information. Figure 5 presents a basic
artificial neural network (ANN) with four inputs in the input layer, five neurons in
the hidden layer, and two outputs in the output layer. The structure of an ANN can
vary in the number of layers, the connections of the layers, and the number of
neurons in each layer, depending on the complexity the network is supposed to
map. Even more outputs than available inputs can be generated. To determine
whether an artificial neuron will ‘‘transmit’’ a signal, all its weighted input values
are employed as arguments of a transfer function, which can be, e.g., a sigmoidal
function for smooth transitions or a step function for on/off behavior.

Corresponding to a biological neural network, an artificial neural network needs
to be trained for pattern recognition or decision making. During training the
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parameters, here called weighting factors, are calculated by an optimization
algorithm. The weighting factors are used to weight each input of a neuron. The
sum of the weighted inputs is used as an argument of the activation function to
calculate the output of the neuron. A vast amount of different training data is
necessary to build the training sets for a certain problem. Greater variety in the
training data leads to better prediction performance in unknown scenarios and
prevents that the training data are only memorized.

Karakuzo et al. [55] presented an ANN soft sensor with fuzzy controller for fed-
batch fermentations of baker’s yeast. The performance of the controller was
compared with that of a controller using a theoretical model-based estimation of
the specific growth rate. As input to the network, the exhaust gas O2 and CO2

concentrations, the feeding rate, as well as the temperature and pH were used (five
input neurons). The neural network consists of six neurons in the hidden layer and
one output neuron to estimate the specific growth rate. For globally robust training
data of their ANN, cultivation datasets under a lot of different process conditions
were necessary: The authors generated a training dataset containing 360 patterns
and an evaluation dataset with the same number of patterns from cultivation data.
The results of the model predictive controller they used for comparison gave
satisfactory estimation for the specific growth rate, however only under fixed
inoculum sizes. The potential of their ANN becomes obvious during the change of
inoculum sizes. The ANN continues to generate reliable estimations for the spe-
cific growth rate. They also applied a fuzzy logic controller for air flow and
feeding control based on the ANN soft sensor specific growth rate estimation.
They performed simulation studies with this controller setup, leading to acceptable
results for large-scale applications.

Gadkar et al. [56] presented an online adaptive neural network as a soft sensor
that estimates the substrate, ethanol, and biomass concentrations based on dis-
solved oxygen measurements (one input neuron, three output neurons) during
S. cerevisiae fermentation. Their neural network had three hidden layers with ten,
eight, and four neurons, respectively. They discuss the performance with and

Fig. 5 Basic artificial neural network with four inputs in the input layer, five neurons in the
hidden layer, and two outputs in the output layer
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without online adaption of the weights in the layers of the ANN. Based on the
estimation and a mass balance equation, the feed rate was calculated by the
controller to maintain the glucose concentration at the desired set-point. During
controlled substrate fermentations with concentrations between 0.8 and 1.0 gL-1

and specific growth rate around 0.2 h-1, the functional efficiency of the control
algorithm was demonstrated. The calculation time for the weight adaption is 1–2 s,
allowing online implementation. They admit the need from a priori offline data,
mirroring different cultivation behaviors for training purposes, although in
industrial plants such information is usually available. Furthermore, they carried
out simulation studies with more than one measured variable and concluded that
more than one measured variable will significantly increase the precision of the
control. Especially the online adaption of the weighting factors of the ANN seems
promising, leading to a broader range of applications even outside the training
domain.

3.6 Model Predictive Control

In the model predictive control (MPC) strategy a dynamic model of a process is
applied to simulate the future evolution of the process depending on possible
simulated values of the controlled variable. Typically the future evolution will
only be calculated up to a predefined prediction horizon. Using an optimization
algorithm the best value of the controlled variable is calculated using a cost
function. Due to the fact that a differential equation system must be solved online,
MPC is computationally demanding. Therefore, for MPC a state estimator as well
as a controller is required.

Improved understanding of penicillin formation mechanisms, morphological
features, and the role of mycelia in the synthesis led Ashoori et al. [57] to
implement a detailed unstructured model of penicillin production in a fed-batch
fermenter. This model was used to implement a nonlinear MPC (NMPC) to control
the feed rate to increase penicillin formation. As the controller input they apply
online measurements of pH and temperature. They propose a novel cost function,
applying the inverse of the product rather than the common quadratic relation. This
is implemented to avoid ordinary differential equation solver problems where it is
not possible to guarantee the efficiency of set-point tracking. They compare the
control performance with a regular autotuned PID controller and identify the
NMPC as superior with higher process yields. The NMPC controls the acid as well
as the base flow, and the cooling water system. Due to the more sophisticated
model, the control achieves better performance than in a previous work by Birol
et al. [58]. To address the computational cost of this more detailed model, they
propose the application of a locally linear model tree (LoLiMoT) to simplify the
original nonlinear model, as described in the next section.

Certainly due to the high computational power that needs to be provided for a
MPC, many NMPC approaches are still only proven by simulation but have not yet
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been applied to real processes. Santos et al. [59] are working on simulated E. coli
NMPC-controlled cultivations. They assume the measurement of the substrate
concentration and keep the specific growth rate at the maximum oxidative capacity
as well as inhibiting product formation. They applied a special NMPC scheme
named min–max-based robustness consideration. Another new NMPC method as
well as a comparative performance assessment were presented by Kawohl et al.
[10]. They compared the performance of NMPC and NMPC–EKF for input signal
prediction to a method called online trajectory planning (OT). OT is basically an
NMPC in which the estimation horizon is extended to the end of the cultivation. If
the system is strongly disturbed, this method has certain advantages for the esti-
mation in order to return to optimal productivity, albeit at the cost of computa-
tional power. The experiments were carried out through Monte Carlo simulations,
simulating experiments through disturbance scenarios. The aim of the experiments
was to maintain the optimal productivity of the product penicillin. The authors
show the potential of this closed-loop control by improving the mean productivity
by 25 % for the MPC and 28 % for the OT method compared with open-loop
control, where these methods especially increase the minimum productivity due to
disturbances.

3.6.1 ANN–Fuzzy Hybrid-Based Estimation for NMPC Control

A possibility to decrease the complexity of nonlinear models in control algorithms
such as MPC is provided by locally linear models, which are applied in a hybrid
structure by combining the abilities of a neural network and fuzzy logic. The basic
structure is displayed in Fig. 6. Each neuron in the hidden layer consists of a
membership function and a local linear model (LLM). The arguments of the
membership function are the input value xi. The function value itself indicates the
validity of the corresponding LLM, which is in fact a multilinear regression model.
The estimate of this model type is the sum of the LLM output weighted by the
normalized membership function.

The algorithm was successfully applied by Ashoori et al. [57] to generate a
neuro–fuzzy model to replace equations in a mass balance model for penicillin
formation. The authors assessed the resulting computational costs as very
acceptable for a real-time process. They showed results which are comparable to
results generated by the whole model. Although the method is rarely applied for
biotechnological applications, it provides opportunities to overcome frequently
mentioned computational limits.

Simulation studies for optimal model training, parameter identification, and
comparisons between closed-loop performance are presented by Xu et al. [60–62].
Among others, they employed the LOLIMOT algorithm to achieve optimal
parameters for the membership function as well as for the LLM. The LOLIMOT
algorithm is an incremental tree-based learning algorithm. A detailed description
can be found in Nelles [63]. The algorithm adds consecutive locally linear model
neurons and thereby optimizes the error of calibration. Obviously, a large number
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of neurons will describe a trajectory best, but will possibly not decrease the
required computational power.

3.6.2 ANN-Based Estimation for NMPC

Meleiro et al. [64] presented results of a MPC strategy of a fuel-ethanol fermen-
tation process using simulations. A neural network was applied as the internal
model for the controller. The authors used an optimization algorithm to determine
the neural network structure as well as the shape of their activation functions,
guiding the parsimonious network architecture. The inputs were the feed flow rate,
cell recycle rate, and flash recycle rate; the output were the biomass, substrate, and
product concentrations. The authors presented results demonstrating successful
control of the biomass, substrate, and ethanol concentrations with set-points
varying between 37 and 32 gL-1, 10 and 3 gL-1, and 45 and 40 gL-1, respectively.

3.7 Probing Feeding Controller Strategy

Velut et al. [65] presented a probing feeding strategy for E. coli fermentations,
operating close to the maximum oxygen transfer rate capacity. The principle of the
probing feeding strategy is to superimpose a short glucose pulse onto the glucose
feeding flow and evaluate the response in the dissolved oxygen signal. If the
dissolved oxygen level decreases, the feed rate is increased, due to the determined
capacity. If no response can be detected, the feeding rate is decreased. The
technique is combined with DO control, which is performed by adjusting the
stirrer speed and the temperature control to decrease the oxygen demand when
the reactor is at its maximum oxygen transfer capacity. They present the perfor-
mance of the combined controller in an E. coli cultivation. Due to the probing

Fig. 6 Basic structure of a fuzzy–ANN local linear model
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feeding control, no acetate was produced. The dissolved oxygen concentration was
adjusted to a set point of 30 % over 22 h while decreasing the temperature from
36 to 25 �C.

For the probing feeding strategy, Velut et al. [66] examined the effect of reactor
scale as well as the influence of different medium types. They applied 1.5-min
glucose pulses for laboratory-scale fermenters and longer pulses of 3 min for
large-scale fermenters to compensate for their slower response. The probing
feeding strategy showed good results independent of the medium used. However,
the use of a complex medium leads to complications in the interpretation of the
pulse response. They determine that the pulsed feeding does not harm the pro-
ductivity and propose an optimized predetermined feeding trajectory with addi-
tional superimposed pulses only for monitoring purposes.

This control strategy was also employed by Xue and Fan [67] at laboratory and
pilot plant (500 L) scale for a recombinant E. coli strain producing human-like
collagen. For the laboratory-scale experiments, they obtained similar results to
previous optimized studies with 69.1 gL-1 dry cell weight and 13.1 gL-1 human-
like collagen. Compared with previous experiments, they observe a reduction of
the resulting dry cell weight when applied to the pilot plant. They assume that this
results from the different oxygen transfer capacity. However, the collagen pro-
duction of 9.6 gL-1 was a satisfying result. They therefore present a successful
application of the probing feeding strategy in a pilot-plant-scale fermentation
process.

3.8 Extremum-Seeking Control

Extremum-seeking control is a gradient method to determine online unknown
parameters through the analysis of measurement results as a response to a peri-
odical excitation signal called dither. Dochain et al. [68] present a survey on two
important classes of extremum-seeking control: the perturbation-based and the
model-based methods. They investigate the applicability to processes and reaction
systems using theoretical models and show the theoretical efficiency of this closed-
loop control algorithm. Cougnon et al. [69] carried out numerical simulation
studies on a fed-batch process model to illustrate their performance for closed-loop
control of bioprocesses. They present an adaptive extremum-seeking controller.
The controller drives the system to an unknown desired set-point in order to
maximize biomass production. In this contribution the authors assume that the
primary carbon source is measurable.

Dewasme et al. [70] note that model-based controls are subject to high
uncertainty. Therefore, they present a model-free extremum-seeking strategy in a
simulation study on S. cerevisiae. They present simulations where the tracking of
the critical substrate level (border between fermentative and reparative metabo-
lism) is correctly performed by two different gradient estimation procedures. The
input variables for the algorithm are OUR and CPR. The actuating variable is the
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feeding rate. When parameter uncertainties and noise disturbances occur, they
determined that a recursive least-squares formulation was simple to implement and
improved the resulting set-point tracking.

3.9 Control Based on A Heuristic Procedure

Spectroscopic measurements provide a wide range of information based on the
interaction of electromagnetic radiation with matter. At the same time, this abun-
dance of information is the reason why it is often difficult to interpret. Advanced
mathematical tools such as partial least squares or principle component analysis are
employed to overcome this information overload. Hantelmann et al. [71] present a
new method to monitor and control S. cerevisiae cultivations by two-dimensional
(2D) in situ fluorescence spectroscopy. They introduce a chemometric model that is
derived from multivariate data analysis. The glucose feeding rate is thereby con-
trolled, predicting the metabolic state directly from the fluorescence intensities. The
glucose concentration was held between 0.4 and 0.5 g L-1 over 11 h, completely
avoiding ethanol formation. They point out that the BioView� technology that they
used for cultivation control is suitable for industrial environments.

Schenk et al. [72] present a soft sensor based on mid-infrared spectroscopy.
They introduce a simple and fast method to calibrate the instrument for Pichia
pastoris fermentations. For this purpose, they assume that only the substrate
concentration will change significantly during the cultivation and that the absor-
bance is proportional to the concentration. The control action is performed using a
PI controller. They propose that, in some cases such as Pichia pastoris, a multi-
variate calibration procedure is not necessary and the measurement of one com-
pound of interest is sufficient (methanol in the case of P. pastoris). The calibration
is performed in situ using two points: one spectrum at the beginning without
carbon source, and one with carbon source. They carried out six cultivations in the
range of 0.8–15 gL-1 to demonstrate the performance of the control system. The
standard error of prediction over all cultivations was 0.12 gL-1. They point out
that long-term baseline instability had an influence on the accuracy, which could
be addressed using linear correction of the signal. Even though the method was
designed for the special case of P. pastoris, the authors mention a possible
application for other microorganisms.

4 Conclusions

In this chapter, different approaches of open-loop and closed-loop control for
bioprocess automation are discussed. As a result of the diversity of bioprocess
requirements, a single control algorithm cannot be applied in all cases; rather,
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different approaches are necessary. During the last 6 years (2006–2012), 97
contributions dealing with closed-loop control for fermentation processes have
been published (according to Science Direct, found by ‘‘closed loop control’’ AND
fermentation OR cultivation). However, only a minority of up to 30 applications
were actually applied to real bioprocesses; the majority were based on theoretical
applications using simulated processes.

For closed-loop control applications, in the majority of cases, a soft sensor is
combined with a PID controller to determine the feeding rate of substrate or the
specific growth rate. This approach can be combined with a forward loop, to
reduce the problems generated by the dynamics of the bioprocess. The reason why
soft sensors have attained this level of importance for control purposes is the lack
of direct measurements or their large additional expense for robust and reliable
online measurement systems.

Model predictive control has been successfully applied in other application
fields, and its importance will increase in bioprocess automation as well. However,
reliable and robust process models are required, as well as very powerful com-
puters to address the computational demands. The lack of theoretical bioprocess
models is compensated by hybrid systems combining theoretical models, fuzzy
logic, and/or artificial neural network methodology. These systems are supposed to
combine the advantages of each approach into a well-performing control strategy.

Some applications involve control of fermentations at their oxidative maximal
capacity such as the probing feeding approach or control based on the metabolic
state, tolerating small amounts of overflow metabolism. Again, both approaches
demonstrate the ability to control the system without direct measurements of
important process variables such as oxidative capacity or the metabolic state of
microorganisms.

Although many authors suggest a possible transfer of their presented control
application to other bioprocesses, the algorithms are mostly specialized to certain
organisms or certain cultivation condition as well as to a specific measurement
system. The effort required to adapt the algorithm and the required measurement
system to a specific application is still very large. Therefore, in the near future,
closed-loop control of the feeding rate or growth rate will remain a challenge.

Furthermore, as Max Planck said, ‘‘A new scientific truth does not triumph by
convincing its opponents and making them see the light, but rather because its
opponents eventually die, and a new generation grows up that is familiar with it.’’
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An Advanced Monitoring Platform
for Rational Design of Recombinant
Processes

G. Striedner and K. Bayer

Abstract Bioprocess engineering is an application-oriented science in an
interdisciplinary environment, and a meaningful combination of different scientific
disciplines is the only way to meet the challenges of bioprocess complexity.
Setting up a reasoned process monitoring platform is the first step in an iterative
procedure aiming at process and systems understanding, being the key to rational
and innovative bioprocess design. This chapter describes a comprehensive process
monitoring platform and how the resulting knowledge is translated into new
strategies in process and/or host cell design.

Keywords Chemometrics � Host and process design � Prediction � Process
monitoring � Recombinant protein production
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1 Introduction

Recombinant biopharmaceutical production processes require qualified process and
systems understanding for rational host and process design. As in other industrial
processes, yield and product quality are the most important targets in biotechno-
logical production. Due to tight regulatory requirements for manufacturing of
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biopharmaceuticals for human use, additional demanding targets with respect to
product homogeneity, batch-to-batch reproducibility, and process stability must
also be met. Because of this, the pharmaceutical industry sticks to already well-
established process designs, control strategies, and expression systems. Also, the
approval procedure for new strategies, expression systems, or even changes to
existing processes is time and cost intensive.

The state-of-the-art approach in quality assurance is based on comprehensive
testing of final product quality, i.e., the so-called quality-by-testing approach. As a
consequence, the quality and specification of the final product can only be assured
by running the entire process under tight control of a limited number of state
variables and by evaluation of the process performance by extensive testing of the
product quality afterwards. A resulting problem is that systematic ongoing process
optimization and rational process design as practiced in many other industries are
widely ruled out. In comparison with standards established in other production
industries, bioprocess monitoring and control are less well developed.

The recent guidelines for pharmaceutical development by the International
Conference on Harmonisation, e.g., ICH Q8 [1], strongly emphasize the provision of
comprehensive understanding of product and manufacturing processes for regula-
tory inspections. Greater understanding of pharmaceutical manufacturing creates a
basis for more flexible regulatory approaches. The information gained from phar-
maceutical development studies and manufacturing experience provides scientific
understanding for the establishment of the design space, specifications, and manu-
facturing controls (see also the chapter on QbD and PAT by Rathore et al.).

To realize this flexibility, the applicant should demonstrate enhanced knowl-
edge of product performance over a range of material attributes, manufacturing
process options, and process parameters. Such understanding can be gained by
application of, for example, formal experimental designs, PAT, and/or prior
knowledge. Appropriate use of quality risk management principles can be helpful
in prioritizing additional pharmaceutical development studies to collect such
knowledge.

This chapter describes how improved process understanding can be accom-
plished in recombinant protein production processes with E. coli by M3C tech-
nology. It is shown how iterative process and systems development using an
advanced online and offline process monitoring platform has been achieved, new
concepts for process control have been introduced, and strategies for host cell
design have been successfully put into practice.

1.1 Bioprocess Monitoring

Historically, process monitoring methods employed in bioprocessing were directly
transferred from chemical engineering. Although this approach was very efficient,
upstream bioprocessing is still viewed as a black box and far behind the state of the
art in chemical industry, where real-time measurements of quality properties and
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important process variables as well as automatic process control techniques are
well established [2]. The main reasons for this difference are that cell-based
processes are far more complex than pure chemical processes, that real-time access
to physiologically relevant variables is not available, and that proteins as products
are large molecules that are extremely sensitive to the manufacturing process.
In spite of significant progress in sensor and analyzer technologies, only a few
systems have been qualified for bioprocess monitoring [3–5]. The main challenge
in this context is to perform measurements under common bioprocess conditions in
a sterile environment with living cells as a solid phase in a gas–liquid mixture.
Currently, routine online data acquisition is focused on classical variables such as
pH, pO2, pCO2, rpm, air flow, stirrer speed, temperature, flow rates, and analysis of
O2/CO2 in exhaust gas (cf. the chapter by Sonnleitner). Exhaust gas analysis can
be used to calculate the oxygen uptake rate (OUR), the carbon dioxide evolution
rate (CER), and the respiration quotient (RQ), but none of the state variables
provide metabolism-related information [6]. State-of-the-art online monitoring
tools, such as infrared spectroscopy [7–9], fluorescence spectroscopy [10–13], and
dielectric spectroscopy [14, 15], reflect changes in the process, but signals cannot
be directly assigned to biological process variables and host cell physiology [16].

More advanced methods include the application of analyzer technologies
connected to the bioreactor via accurate interfaces, such as high-performance
liquid chromatography [17, 18], gas chromatography [19], mass spectrometry [20],
or flow cytometry [21, 22]. By following such strategies, timely information on
metabolites, intermediate compounds, or end-products of metabolism excreted to
the medium can be obtained. Each of these at-line technologies requires a sam-
pling procedure, sample preparation steps, and a certain time to run the analysis.
In this sense, such applications represent the link to offline analysis.

Quantitative and qualitative data on intracellular components definitely yield
the highest level of physiology-related information, but are not accessible via
direct online measurements [23]. To gain this essential process information,
sample preparation steps and biochemical analysis are required.

Setting up an offline measurement platform is a nontrivial task as the set of
selected techniques (i) must cover the wide diversity of all molecules of interest
and (ii) should allow high sampling frequencies combined with low sample vol-
umes, and (iii) cost–time demands must not exceed justifiable quantities. For more
or less all molecule classes in a cellular system, various analytical methods are
available but only a limited number meet the above-mentioned criteria. Hence,
careful selection and combination of methods is imperative. Directly related to the
analytical method and the analyte is the sampling strategy. Accurate sampling
and quenching procedures are of highest priority to guarantee representative
samples, and the sampling frequency must allow for adaptation to the expected
kinetics of molecules of interest. Progress in this field has been strongly sup-
ported by systems-biology-based approaches and the development of -omics
techniques [24, 25].

The shortcomings in real-time access to physiology-relevant variables can be
circumvented by application of chemometric-based approaches. As mentioned,
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bioprocess monitoring is heavily impaired by the lack of direct readable online and
in situ sensor equipment. However, there has been significant progress in online
signal acquisition and sensor technology as well as expansive development in the
field of offline biochemical and molecular-biology-based analytical equipment.
Therefore, the objective and the opportunity are to close the gap between the broad
spectrum of bioanalytical offline methods and online devices. This can be done by
the application of mathematical models, multivariate data analysis (MVDA), and
computer science to set up ‘‘soft sensors’’ [26]. These sensors can be based on
calculations utilizing online-accessible process variables or on correlations
between online and offline datasets. Such soft sensors trained on historical datasets
can be used to predict complex variables from previously unseen datasets by
statistical modeling, such as artificial neural networks (ANNs) or partial least
squares (PLS) (cf. chapters by Glassey and by Gernaey). In this context it is
important to note that the prediction is only valid for datasets within the previously
trained solution space; data cannot be extrapolated.

Moreover, the availability of these complex variables enables the implemen-
tation of control strategies that were previously not realizable. In addition to the
improved observability of the process, the availability of these complex variables
provides clues for the design of new control strategies.

1.2 Recombinant Protein Expression in E. coli Systems

For recombinant organisms the complexity of monitoring is even more pro-
nounced because there are additional variables that have a strong impact on pro-
cess performance. Genetic engineering techniques offer possibilities to modulate
growth and product formation independently from each other, and also provide
increased and subtle opportunities to develop process monitoring and control.
From a pure control perspective, the genetic features of recombinant host–vector
systems should allow improved controllability compared with nonrecombinant
production strains, such as inducible promoter systems allowing for control of the
recombinant protein synthesis rate. However, current development of recombinant
protein production processes is widely empirically driven with restricted
predictability.

In E. coli the expression of recombinant proteins is generally achieved by placing
the foreign gene into a multicopy plasmid vector under control of a constitutive or
inducible promoter. In the early use of industrial recombinant processes, only weak
expression systems were available and even high-copy-number plasmids did not
enable full exploitation of the metabolic potential of the host cell.

Subsequently, genetic-based optimization strategies led to the development of
very strong and inducible expression systems such as the T7 system [27]. However,
these strong vector systems could not be used efficiently because the product for-
mation period is limited by metabolic breakdown of cells triggered by too high
recombinant gene expression rates [28–31]. Hence, the potential of the cell factories
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cannot be fully exploited, resulting in too low yield and noncompliant product
quality.

During evolution, cellular systems have developed a multitude of mechanisms
to cope with a broad range of stress situations, and a complex regulatory network
guarantees optimal response reactions [32]. Stress triggered by recombinant gene
expression originates in the cell, and the recombinant system is not or only partly
controlled by the cellular regulatory network. In consequence, countermeasures of
the cellular stress response system are not adequate and often inefficient [30, 31].
The main challenge in host cell design is that understanding of the biology of
protein expression is still fragmentary and incomplete.

2 A Process Monitoring Platform for Recombinant
Protein Production

The configuration of the established platform for monitoring of recombinant
protein production processes with E. coli as the host cell is designed according to
the demands of these processes. Beside routine monitoring of physical (e.g.,
agitator speed, flow rates, and temperature) and chemical variables (e.g., pH, pO2,
and CO2 and O2 in the off-gas), a series of state-of-the-art bioprocess monitoring
devices are implemented in the established online monitoring platform. Online
techniques are combined with accurate offline methods to allow for monitoring and
measurement of cell growth and cell viability, quantification of recombinant
compounds, and characterization of the cellular response to recombinant gene
expression. This section describes how we developed such a platform for
recombinant protein expression in E. coli.

2.1 Monitoring of Biomass and Growth

Biomass, viability, and growth kinetics are among the most critical bioprocess
variables and therefore attractive monitoring targets for the process monitoring
platform. The classical offline methods for determination of biomass are optical
density measurements and gravimetric cell dry mass quantification. In face of the
importance of these variables, development of methods for in situ measurement
was a focus of the research [33–35]. Despite all these efforts and achievements,
real-time measurement remains challenging.

Optical density probes are the most commonly used in situ devices for online
biomass estimation. The TruCellTM cell growth monitor (Finesse Solutions AG,
Bonaduz, Switzerland), an optical transmission sensor that enables in situ
monitoring of fermentation processes, was selected from among the available
optical probes.
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Recombinant protein production exposes cells to high stress levels and can
cause cell death in the course of the production process. As the employed NIR
technology does not give any information on cell viability, dielectric spectroscopy
was selected as an alternative. This technique makes use of the electrical properties
of cells exposed to a radiofrequency electrical field. The nonconducting nature of
the cell plasma membrane allows a buildup of charge, so that cells with intact
plasma membranes act as capacitors. The resulting capacitance is proportional to
the membrane enclosed volume and thereby to the concentration of viable cells
[36, 37]. The ABER biomass monitor BM214 M allowing for capacity measure-
ments at two frequencies is employed (Aber Instruments Ltd., Aberystwyth, UK).
Although the capacity signal shows a strong correlation with the cell dry mass
(CDM), a direct calibration of capacity versus CDM is not feasible as there are
changes in cell size in the course of the process [38].

Flow cytometry is used (i) to gain offline information on total cell number
(TCN) via ratiometric counting and (ii) to determine the percentage of dead cells
(DC) by discrimination of dead cells via staining with propidium [38].

In addition to this set of methods, additional information on cell growth is
derived from measurement of base consumption during the process. During growth
of bacteria, acids are produced, and there is a close correlation of cell growth with
release of acidic metabolites and thereby also with the amount of base needed to
maintain the pH at a constant level. In case of using NH4OH for pH control, for
each uptake of NH4

+ a proton is excreted, which in turn triggers the addition of
NH4OH. By considering the buffer capacity of the nutrient medium, a close cor-
relation between NH4OH consumption and growth can be derived.

2.2 Monitoring of Metabolites and Cell Compounds

The composition of the extracellular medium changes continuously during the
process. There are decreasing concentrations of media compounds but also
changes in the concentrations of cellular metabolites secreted by the cells.

HPLC methods (offline mode) are used to quantify concentrations of sugars,
amino acids, and metabolites such as acetate and ethanol in the fermentation broth
medium [39].

In addition, a method for online measurement of volatile organic compounds
(VOC) is implemented [40]. The commercially available method of proton transfer
reaction mass spectrometry (PTR-MS; Ionicon Analytik GmbH, Innsbruck, Aus-
tria) [41, 42] is a highly sensitive chemical ionization technique that enables soft
ionization without fractionation and measurements of individual VOCs ranging
from pptV (10-12 [vol/vol]) to ppmV (10-6 [vol/vol]) levels. VOCs are ionized via
proton transfer reactions from H3O+ ions and are detected by MS at 1 atomic mass
unit (amu) higher (M+1) than the relative molecular weight (Mr) of the neutral
compounds. This device allows real-time VOC quantification and noninvasive
sampling without any sample preparation steps.
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To overcome the limitation that dielectric spectroscopy and optical transmission
cannot deliver information on intracellular components, 2D multiwavelength
fluorescence spectroscopy has been used as a complementary monitoring system.
Therefore, the BioView� spectrofluorometer (DELTA; Light & Optics, Lyngby,
Denmark), which is specially designed for online measurements [10, 13], was
implemented in our process monitoring platform. The scan of one complete
excitation–emission matrix (150 excitation–emission wavelength pairs) takes
about 90 s, which enables almost continuous measurement. Within a cell, fluo-
rescent components such as tyrosine, tryptophan, riboflavin, and pyridoxine are
present, and their fluorescence depends to a certain degree on the cellular state.
Although wavelength combinations can be associated with these fluorescent
compounds, direct calibration of fluorescence signals versus process variables was
not possible [38].

2.3 Monitoring of Products from the Recombinant System

When recombinant cellular systems are used, quantification and monitoring of
expressed products are of high priority. In particular, there are effects triggered by
the recombinant system which are significant. Hence, a target-oriented offline
monitoring approach must aim at qualification and quantification of recombinant
components and simultaneously allow for measurement of the dynamics of the
cellular responses triggered by the recombinant gene expression.

One-dimensional sodium dodecyl sulfate (SDS) gel technology is often employed
for semiquantitative product analysis, for determination of the solubility distribution
(ratio of soluble to insoluble recombinant protein), and in combination with Western
blotting, for identification of target proteins and fragments thereof [43].

Enzyme-linked immunosorbent assay (ELISA) technology was used for
quantification of green fluorescent protein (GFP) and human superoxide dismutase
(SOD), two model proteins used to evaluate the platform. Protein-specific prop-
erties such as the autofluorescence of GFP or the enzyme activity of SOD can also
be exploited to gain information on protein quantity and quality [44–46].
Formation of isoforms of the recombinant target proteins, e.g., due to addition of
acetyl residues or phosphoryl groups or false processing during synthesis, is
another important aspect of protein quality. To obtain this information, product
samples are separated by narrow-range 2D electrophoresis gels and analyzed by
MS after excision and digestion. Figure 1 shows isoforms of SOD produced with
E. coli HMS174(DE3)(pET11aSOD) [47, 48].

The plasmid copy number representing the gene dosage is calculated from
plasmid and chromosomal DNA according to Breuer et al. [49].

Real-time PCR (RT-PCR) is used to quantify messenger RNAs (mRNAs) for
recombinant product genes and T7 RNA polymerase [50].
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Determination of plasmid-containing cells is done by counting colony-forming
units (cfu) after 24 h of cultivation on LB agar plates containing antibiotics
depending on the resistance marker used for clone screening (100 mg/mL ampi-
cillin or 50 mg/mL kanamycin). The same technique is also used to determine the
genetic stability of integrated cartridges in plasmid-free expression systems.

Fig. 1 Spot patterns of samples (1500 past induction) from a cultivation of E. coli HMS174
(DE3)pET11a (mock strain) (a) and from a cultivation of E. coli HMS174 (DE3)pET11a SOD
(b) on gels separating proteins in the pH range of 3–10 on 18 cm. c Image of a 2D narrow range
gel in the pH range of 5.3–6.5 on 24 cm (same sample as used in b). Red circles indicate spots of
presumable SOD isoforms which were picked for MS identification. Arrows indicate the
identified SOD isoforms
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2.4 Monitoring of Cellular Response to Recombinant
Gene Expression

2.4.1 Nucleotides

Monitoring of nucleotides such as guanosine tetraphosphate (ppGpp), the central
molecule of the stringent response system, and cyclic adenosine monophosphate
(cAMP), a signal molecule involved in metabolite repression, is of great interest.
Hence, a method for quantification of these molecules was developed, providing
the ppGpp stress response to recombinant gene expression [51]. Monitoring of
concentration levels of these molecules yields valuable information on cellular
state and product formation. As shown in Fig. 2a, recombinant protein is accu-
mulated in the cells after induction for approximately 7 h. After this period, the
metabolism became overloaded and cells were no longer able to maintain growth
and product formation. The level of ppGpp shows a similar course, with a sig-
nificant increase after induction clearly indicating the high stress level in the cells.
In Fig. 2b, cAMP and quantitative plasmid data from a plasmid production process
are shown. The course of cAMP is very similar to the trend of specific plasmid
content in the cells [52]. This finding strengthens the hypothesis that plasmids
affect host metabolism through the perturbation of the cAMP–CRP complex, as
postulated by Ricci et al. [29].

2.4.2 Proteome and Transcriptome Analysis

Since recombinant gene expression affects the host cell metabolism on a genome-
wide scale, it is advisable to extend the investigations on this level. In terms of a
systems-biology-based approach, changes to the transcriptome and proteome
pattern can provide host and recombinant protein-specific information and valu-
able clues for metabolic engineering targets to cope with physiological bottlenecks
of the host metabolism.

Fig. 2 a Courses of ppGpp and specific recombinant protein per gram cell dry mass in carbon-
limited exponential fed-batch cultivation (growth rate 0.1 h-1) of E. coli HMS174(DE3)(pET30a-
SOD). b Courses of cAMP and specific content of plasmid per gram cell dry mass in carbon-limited
exponential fed-batch cultivation (growth rate 0.1 h-1) of E. coli JM108(pMCP-1)
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The protein pattern and expression levels of cellular proteins during
recombinant gene expression were monitored by 2D electrophoresis [47, 48, 50].

To monitor transcription profiles in the course of experiments, custom-made
DNA microarrays for E. coli K-12 or E. coli BL21 were designed (Eurofins/MWG/
Operon, Ebersberg, Germany). Based on sequence data of both strains and infor-
mation on genes of recombinant compounds (DE3 lysogen, T7 RNA polymerase,
plasmid-related genes), oligo probe sets were assembled on the microarray [53].
The array design (accession numbers A-MARS-11 for the BL21 array and A-MARS-
12 for the K-12 array) is accessible via ArrayExpress (http://www.ebi.ac.uk/
microarray-as/ae/) [54]. The workflow for analysis of microarray data is described in
Scharl et al. [55], and the gcExplorer is available at the Comprehensive R Archive
Network (CRAN, http://cran.R-project.org/package=gcExplorer).

2.4.3 GFP Online Stress Marker

To obtain real-time information on the cellular stress level during production of
recombinant proteins, an approach based on GFP fused to a stress-responsive pro-
moter, introduced into the production host either on a plasmid or integrated into the
genome, has been established. In a first step, the GFP signal and its capability for
online stress monitoring of recombinant fermentation processes were evaluated
[44]. The fluorescence signal of expressed GFP was measured by 2D multiwave-
length fluorescence spectroscopy, thereby allowing noninvasive in vivo stress
monitoring online (Fig. 3). Results of these stress monitoring approaches are
detailed by Nemecek et al. [56].

Fig. 3 Difference in online fluorescence signals of two fed-batch cultivations of E. coli HMS174(DE3)
pET30ahSOD with and without the stress-monitoring plasmid pMMB67HE:dnaKp:GFPmut3.1.
Selected wavelength combinations: ex450/em490/510/530/550/570/590; ex470/em510/530/550/570/
590; ex490/em530/550/570/590. Sample number indicates measurement intervals of 5 min; sample 0
represents the first measurement after feed start
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3 Chemometry and Prediction

The process monitoring platform described above delivers comprehensive online
and offline datasets, but although advanced sensor systems are employed, direct
measurement of key biological process variables (cell dry mass, product titer, and
stress markers) is not possible. The problem is that physiology-relevant informa-
tion delivered by offline analytics is not accessible in real time and most of the
online sensors reflect changes in the process not directly linked to biological
process variables per se. Statistical and mathematical modeling is indispensable to
bridge this gap to key physiology-relevant variables to improve understanding of
the process [57]. The application of mathematical methods, including multivariate
data analysis, chemometrics, and statistical methods, enables the extraction of
meaningful information from a variety of signals from online sensors and their
assignment to complex offline variables.

The applicability of this approach has been demonstrated for the prediction of
biomass, TCN, recombinant protein content, and plasmid copy number in E. coli
cultivation processes. PLS regression and a radial basis function neural network
(RBF-NN) model were tested for their predictive power. The best results were
obtained with the RBF network model with a selected set of online data highly
correlated to offline variables (Fig. 4).

Fig. 4 Prediction of target process variables (CDM, TCN, DC, product, and PCN) by a RBF
model generated from selected input signals
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As the precision of PLS improves with the number of input signals, PLS cannot
benefit from selected input signals.

The lowest root-mean-square errors of prediction (RMSEPs) for the selected set
of target offline variables were obtained when applying a nonlinear RBF model
that used selected online signals of dielectric and optical spectroscopy as inputs
(Fig. 4). The availability of versatile datasets from the different analytical devices
enabled the individual assessment of each dataset with regard to the quality of
prediction of the particular variable. In addition, benchmarking of different sta-
tistical approaches could be carried out. To apply the previously created model for
online prediction during a cultivation process, a MATLABTM function was pro-
grammed to perform data input, chemometric modeling, and display of estimated
results online during a cultivation process [38].

Recently, an additional analytical device, the proton transfer mass spectrometry
(PTR-MS) for analysis of VOCs, became available. This instrument fits perfectly
into the monitoring platform due to its continuous and noninvasive measurement,
which allows more accurate assignment of the acquired signals to individual
compounds than the signal derived from 2D multiwavelength fluorescence and
dielectric spectroscopy [16]. Datasets from such analyses will further contribute to
prediction quality.

4 Process and Systems Design

Optimization of recombinant protein production in E. coli can be obtained by
either engineering- or genetic-based solutions. In retrospect, it is obvious that
concepts for cultivation of cells (e.g., high-cell-density cultivation, fed-batch
cultivation with diverse feed profiles, or chemostat cultivation), including process
monitoring and control strategies, were successfully developed in the first period
of recombinant protein production. After this period, progress in process engi-
neering slowed down because of limited monitoring capabilities and fragmentary
understanding of the biological systems. In this situation, genetic-based solutions
became dominant drivers for higher yields in recombinant protein production.
Today, a multitude of very powerful expression systems are available, but in many
cases the capacity of the cell factory is not only exploited but overstrained in these
systems. As a consequence, cultivation of such overbred strains is far more
demanding, process stability and reproducibility are reduced, and in many cases,
product quality negatively affected. The logical conclusion is that further opti-
mization calls for harmonization of measures in process engineering and host cell
engineering.

In this section, such an integrated process optimization approach is presented.
The frequently used T7-based E. coli expression system serves as a model system.
A typical example of the output of a standard process is shown in Fig. 5.

Induction of recombinant gene expression initiates a very high recombinant
gene expression level. In parallel, a drastic increase in plasmid copy number from
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40 to 300 takes place. These two phenomena are interlinked in a kind of self-
amplifying stress-generating cascade, resulting in a high stress level, metabolic
overload, and a significantly reduced period of product formation. Cellular growth
can no longer be maintained, and simultaneously process control by limiting the
carbon source no longer works. The challenging question is which measures
should be followed, as this cannot be determined from the obtained data if the
induction level or the increase in plasmid copy number and gene dosage is the
main source of cellular stress. Therefore, these two phenomena are treated in
separate approaches.

4.1 Transcription Tuning

Expression of recombinant protein at high rates is an energy-demanding process
that drains a significant part of the host cells’ synthesis capacity. If this exceeds a
certain level, cell functionality becomes impaired because the required cellular
infrastructure can no longer be maintained. The solution to this problem is to
reduce the recombinant gene expression to a physiologically tolerable level. This
can be accomplished by limiting the amount of inducer continuously supplied to
the process [58]. The outcome of this engineering-based transcription tuning
strategy is presented in Table 1.

A physiologically tolerable induction level allows for a prolonged product
formation period, and thereby a higher specific product concentration was
obtained. The volumetric yield in experiments with IPTG as inducer was increased
by a factor of more than three. As the inducer was continuously supplied to the
culture, use of lactose as the native inducer is also possible, and again higher
specific and volumetric yields can be obtained. The data on growth behavior, PCN,
and ppGpp indicate that there remains potential for further process optimization.
Even though cells are able to maintain growth under such conditions, the glucose
yield is reduced after induction of recombinant protein production. The tran-
scription tuning concept is based on the assumption of a constant glucose yield

Fig. 5 Response of E. coli
HMS174(DE3)(pET11aSOD)
to induction of recombinant
gene expression in a standard
fed-batch cultivation regime
(exponential carbon-limited
feed profile; defined medium;
growth rate of 0.1 h-1; single
pulse induction with
0.4 g L-1 IPTG)
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coefficient (YX/S), and consequently reduction of YX/S results in an increasing
inducer/CDM ratio.

The ppGpp level increases to even higher values than in the standard process,
indicating high stress levels, and there is still an increase in PCN after induction.
This effect is attenuated compared with the standard process, but as the lacI repressor
gene is encoded on the plasmid, a variation in the number of repressor molecules
must be expected, which interferes with the concept of transcription tuning.

4.2 Stabilized Plasmid Copy Number

Increasing the plasmid copy number imposes additional stress on the host cell. The
plasmid used in our experiments, pET11a, is a ColE1-derived plasmid (with a ColE1
origin of replication). Replication control of this plasmid type based on two RNA
molecules (RNAII, the primer for replication, and RNAI, an antisense RNA) is well
investigated and described in detail [59–62]. Under starvation conditions, uncharged
transfer RNAs (tRNAs) can interact with these regulatory molecules, thereby
interfering with plasmid replication control [63, 64]. The shortage of metabolic
resources and the depletion of amino acids after induction lead to increased levels of
uncharged tRNAs and generate starvation-like conditions. Therefore, we conclude
that the drastic increase in plasmid copy number is driven by interactions of
uncharged tRNAs with RNAI and RNAII, respectively. To reduce interference of
the tRNA with the replication regulatory system, homologies between tRNAs and
RNAI were decreased by changing the RNAI sequence into its complementary
sequence without inverting it [65]. The experiments with E. coli HMS174(DE3)
harboring the newly designed pEARL plasmid clearly show that replication control
can be maintained even under conditions of full induction (Fig. 6).

The product formation rate in this experiment is similar to that of the reference
experiment with the wild-type plasmid (Fig. 5), and consequently the influence of
the stabilized plasmid copy number on cell growth and stress level after induction
is not significant. This means that a copy number of approximately 40 plasmids per
cell is already too high and cellular capacities are exceeded even with the pEARL
plasmid. Consequently, reduction of the gene dosage in T7-based systems should
be the next step in process optimization.

Table 1 Comparison of production processes with E. coli HMS174(DE3)(pET11aSOD): con-
ventional full induction versus limited induction with IPTG or lactose

Standard
process

Limited induction with
IPTG

Limited induction with
lactose

Spec. SOD [mg/g CDM] 64 179 88.1
Volumetric yield [g/L] 0.92 2.87 2.02
Increase of volumetric

yield
1 3.12 2.20
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5 Plasmid-Free Systems

To protect host cells from too high a gene dosage and plasmid-mediated increases
in metabolic load, we developed a plasmid-free, T7-based E. coli expression
system in which the target gene is site-specifically integrated in the genome of the
host. As shown in Fig. 7, the performance of plasmid-free genome-encoding
expression systems is superior to plasmid-based reference systems. Depending on
the host and protein, up to threefold increases in yield are obtained without any
significant effects on cell growth. In combination with the transcription tuning
concept, genome-encoding systems allow for unlimited control of the expression
level, and in chemostat culture the period of product formation can be maintained
for more than 10 doublings. Relative to conventional pET systems, this system

Fig. 7 Process performance of conventional pET and plasmid-free T7-based E. coli expression
systems

Fig. 6 Response of E. coli HMS174(DE3)(pEARL) to induction of recombinant gene expression
in a standard fed-batch cultivation regime compared with the reference system E. coli
HMS174(DE3)(pET11aSOD) with a conventional plasmid (exponential carbon-limited feed
profile; defined medium; growth rate of 0.1 h-1; single pulse induction with 0.4 g L-1 IPTG)
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permits improved process stability and increases the host cell’s capacity for
recombinant gene expression, resulting in higher product yields [66].

6 Conclusions

The established integrated approach for process and systems optimization is
mainly based on a process monitoring platform. This platform significantly con-
tributes to improve process understanding and to implement PAT and QbD con-
cepts in bioprocessing. Moreover, the platform approach complies with
pharmaceutical quality guidelines, in particular with ICH Q8, aiming at increasing
product and manufacturing knowledge, which in turn will decrease the time
required for marketing authorization.

Using the platform in combination with modeling techniques and predictive
soft sensors, new and better process control strategies and improved process
performance can be accomplished. Variables otherwise only available offline can
be acquired in real time, enabling novel control regimes; For instance, real-time
access to CDM could allow implementation of a model-based inducer feeding
regime, and thereby the unwanted effects of increasing inducer/CDM ratios can be
eliminated by using the established transcription tuning concept. This strategy
could also allow growth of cells under conditions that have not been practically
possible to date, where detailed analysis of such cells could deliver new insights
into their metabolism.

Iterative process and systems optimization generates knowledge on the process
and the cellular system. Based on the improved understanding of the cellular
response to recombinant gene expression, such as metabolic bottlenecks, imbal-
ances in the supply of building blocks, and interaction of the recombinant protein
with the host metabolism, rational design of the host cell and process operation is
possible.
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Modelling Approaches
for Bio-Manufacturing Operations

Sunil Chhatre

Abstract Fast and cost-effective methods are needed to reduce the time and
money needed for drug commercialisation and to determine the risks involved in
adopting specific manufacturing strategies. Simulations offer one such approach
for exploring design spaces before significant process development is carried out
and can be used from the very earliest development stages through to scale-up and
optimisation of operating conditions and resource deployment patterns both before
and after plant start-up. The advantages this brings in terms of financial savings
can be considerable, but to achieve these requires a full appreciation of the
complexities of processes and how best to represent them mathematically within
the context of in silico software. This chapter provides a summary of some of the
work that has been carried out in the areas of mathematical modelling and discrete
event simulations for production, recovery and purification operations when
designing bio-pharmaceutical processes, looking at both financial and technical
modelling.

Keywords CFD � Modelling � Sensitivity analysis � Simulation � Window of
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1 Introduction

1.1 Overview of Bioprocess Modelling

Simulation as a strategy for assisting with bioprocess design is a field that has
developed within the last 25 years, with many publications on the subject focus-
sing upon commercial packages such as BioProcess Simulator (AspenTech) and
SuperPro Designer (Intelligen). For example, Varadaraju et al. [40] described the
creation of a process and economic model in SuperPro Designer to evaluate a
membrane-based process as an alternative to the packed bed capture and purifi-
cation of monoclonal antibodies. A number of papers using these packages have
also been presented by the creators of the software, e.g. Petrides et al. [33], who
looked at the simulation of fill-finish facilities using the Intelligen software.
Nevertheless, historically the use of software to drive bioprocess design and
optimisation has been relatively uncommon compared with sectors such as
chemical engineering, in part due to the absence of adequately predictive math-
ematical models and a lack of trained personnel available for model development
[30]. More recently, however, growing manufacturing costs and the shorter
timescales available for development have resulted in simulations attracting
greater interest for process design and the evaluation of flowsheets on technical,
resource, scheduling and economic grounds. The need to change existing pro-
cesses to satisfy unexpectedly high market demands or to reduce the impact of
process inefficiencies has created additional cost drivers for process modelling and
simulation. In the simplest cases such as for a straightforward material balance
calculation, modelling can be conducted on a custom basis using spreadsheet
software. Such an approach becomes difficult or impossible, however, if one needs
to represent dynamic properties such as resource allocation and its impact upon
plant throughput [25]. In these circumstances, using dynamic computer simula-
tions instead can help to improve the efficiency of design activities. These methods
can be used early to evaluate multiple process flowsheets and operating conditions
rapidly while potentially reducing the need for expensive pilot studies and
focussing later work on the most feasible manufacturing strategies. Decisions can
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thus be made earlier and with due attention paid to aspects such as facility or
corporate constraints that may affect the choice of process strategy.

1.2 Advantages in Developing Bioprocess Models

In respect of some of the challenges outlined above, modelling can be a very useful
way to combat the resulting cost and time pressures for a wide variety of scenarios
that require process- or strategic-related decision making (Table 1). Mathematical
simulations are a potentially useful method for designing and developing bio-
processes [48], reducing the costs and times required to conduct process devel-
opment and manufacturing activities while maximising productivity [21, 22, 29,
39]. Simulations can be used to identify input parameters or parts of a process
which have an especially pronounced effect upon technical or cost performance,
hence giving an estimation of process robustness [29]. Models can help to compare
different flowsheet choices in a virtual setting [25], enabling selection of robust
manufacturing protocols and optimising plant capacity utilisation in order to
maximise throughput at minimised production costs. Manufacturing routes can
also be evaluated in terms of likely capital expenditure when deciding whether to
commit resources to a project or not [8, 25]. If implemented across process
development groups and other functions, simulations can provide a common
language to facilitate communication between different groups such as fermenta-
tion, primary recovery and purification [26, 31]. Models can be technical in nature
for determining material balances for individual unit operations or whole pro-
cesses, or as is increasingly the case, they can also address business concerns. This
allows an engineer to answer both technical and financial questions simultaneously
[9], enabling a more holistic optimal process synthesis to be completed more
rapidly than if done by experimentation alone. Models help to provide focus to
experimental studies, thus reducing the total amount of time spent in the laboratory
or pilot plant [32]. Models can also allow the investigation of an experimental
design in order to shed light on the validity of model assumptions [19]. Another
area in which models are of use is that of determining resource utilisation. Sim-
ulations provide a useful way to synthesise many manufacturing activities into a
single portal from which it becomes possible to see where resources are in high
demand and where bottlenecks may exist [32, 46]. The availability of resources
such as labour, equipment and ancillary supplies is critical in allowing a plant to
run smoothly. At times of high demand, simulations can indicate where a process
is at greatest risk if resources become unavailable e.g. due to the maintenance or
emergency shutdown of equipment or because operators are unavailable.

Evaluating process changes is another task to which models are well suited, and
they can be applied for quantifying the impacts to determine whether the addi-
tional expenditure is worth the effort and to determine whether a process or facility
can accommodate changes; For example, if titre improvements are made in a
fermentation stage, then models can be used to check whether the downstream
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process can cope with the potentially higher recovery and purification duty placed
upon it or whether the plant can supply adequate additional quantities of ancillary
services such as steam or water. Such insights can help to determine whether an
upstream improvement will really deliver whole process benefits in terms of
yields, costs, times and throughputs [16, 35]. This is especially useful where the
impacts of process change are unexpected or counter-intuitive [43]. A classic
example considers a pair of steps in which a homogeniser used for cell rupture is
followed by a clarifying centrifugation step [16]. Although increasing the
homogeniser pressure or the number of passes can increase product release, it will
also micronise the debris, making it harder for the clarifying centrifuge to remove
debris from the supernatant. Hence there is a trade-off between the operation of
these two steps, and this would need to be determined on a case-by-case basis.
Evaluating the impact of process interactions and identifying conditions for every
individual unit operation that deliver the overall required process performance is a
task that is well suited to a computer simulation that can evaluate many combi-
nations of conditions to determine the best trade-off.

1.3 Challenges in Developing Bioprocess Models

Driven by the needs outlined in the previous section, modelling software has
gained prominence rapidly within the manufacturing sector as a whole, driven also
by a growth in the size, cost and intricacy of projects and the need to achieve
success the first time around [15]. Despite the aggressive deployment of simulators
for process design in sectors such as polymers or chemicals [25], however, as

Table 1 Some examples of typical scenarios examined by modelling approaches

Modelling
scenario

Example

Process design Determining which process flowsheet out of several alternatives is the best
one

Investment
decisions

Determining whether to build a new facility or contract out the manufacturing
process

Economic
evaluation

Determination of financial feasibility (NPV) of a project

Facility fit Determining whether a process as designed and at a specific scale can be
accommodated within the capabilities and footprint of the facility and
whether the available resources are sufficient to support manufacture
without causing bottlenecks. Simulation results could be used to determine
whether plant retrofitting is required

Scheduling Organising batches or campaigns to maximise throughput
Process

improvement
Determining how changing an existing process might affect its operating

capabilities e.g. the impact of increasing upstream titre upon downstream
scheduling and process duties, or moving to new or unconventional
technologies e.g. disposable systems versus stainless steel
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noted above, their acceptance in the bioprocessing industry has been notably
slower [30, 37] and the technique remains underdeveloped for the description of
industrial-scale bio-manufacturing processes due to a number of factors. One key
challenge lies in performing process optimisation in the face of complex and often
multi-variable design problems [45]. Models aimed at assisting with these must
cope with the use of mixed operating modes (e.g. batch and semi-batch), strong
process interactions and run-to-run process variability with complex feeds [47].
Although the basic theory and fundamental equations share at least some com-
monality with the chemical engineering literature for a range of unit operations,
naturally one must account for the specific nature of bioprocess problems. Com-
plex and uncertain biophysical phenomena can mean additionally that unit oper-
ations may be only poorly characterised, and the use of different modes i.e. both
discrete pass and continuous processing [26] can complicate modelling efforts.
Often, the complex nature of bioprocess feedstocks can mean that physical
property data of adequate quantity and quality may be absent and default
assumptions need to be made. This can reduce the predictive power of a model. In
such situations, empirical or semi-empirical models may be needed, with experi-
mental data used to calibrate the equations. Even with such approaches, in many
cases, the properties of such material can vary within and between studies, com-
plicating attempts to quantify process behaviour. Process materials can sometimes
be highly sensitivity to even small changes in the design of a manufacturing unit or
facility. Added to this complexity is the wide variety of product types that are now
considered for bio-manufacturing processes, including proteins, nucleic acids and
whole cells, for which properties may be unknown or be highly variable from one
batch to the next. Where default values are used for selected mass transport
properties, this can make it difficult to construct valid, robust simulations. This
lack of available process data is one of the key stumbling blocks when starting to
create a model, and in such cases, it is necessary to acquire information from as
many sources as possible, including known expertise in the literature, accepted
industrial best practices, pre-existing development studies and full-scale manu-
facturing experience. In the latter case, a key problem is that data are often highly
correlated or co-linear, meaning that it can fail to cover a wide search space and
will instead focus upon selected combinations of operating conditions alone. In
such cases, it may be necessary to develop qualified scale-down process mimics in
order to acquire the additional information (Chap. 7).

1.4 Technical Versus Business Modelling

Historically, the task of modelling the technical performance of manufacturing
processes has been treated as separate from examining the business aspects. This
has resulted in a gap between models that use sometimes quite sophisticated

Modelling Approaches for Bio-Manufacturing Operations 89

http://dx.doi.org/10.1007/10_2012_7


engineering equations to quantify technical performance on one side and to
explore issues of expenditure, facility fit, scheduling and risk on the other. Process
modelling has focussed on relating input variables to outputs through explicit
mathematical relationships in order to complete material balances or to analyse
process sensitivities. In some cases, such models have been conceptually simple
enough to require only spreadsheets or non-specialist simulation engines to solve
the necessary equations [9]. In other cases, more complex modelling frameworks
have been used, such as computational fluid dynamics, in which powerful software
is used to simulate momentum or mass transport properties. A key challenge lies in
linking different model types together to provide whole process/facility level
understanding and not just evaluating the technical outcomes of a specific unit
operation. Traditional software approaches for bioprocess development have ten-
ded to make limited provision for incorporating business information. Growing
cost pressures mean that it is now becoming increasingly important to make
manufacturing decisions from both financial and process-related perspectives [29].
Business-process modelling has therefore gained significant ground in recent years
as a way of managing process development activities from both technical and
corporate perspectives.

2 Setting Up a Model

2.1 Establishing the Mathematical Basis for Modelling

When creating a model, it is important to realise that not every feature of a
bioprocess will be critical, and where possible, simplifying assumptions should be
made. This should apply both for making the equations themselves more man-
ageable as well as for minimising the data requirement. Of clear importance then is
availability in the literature of a sufficient, accurate set of values and default
choices for bioprocess properties. With the types of highly complex biological
material processed industrially, however, the assumptions underlying these data
may not be valid and experimental studies will then be needed to acquire the
appropriate values. Depending upon the depth of information needed, various
types of modelling equations can be formulated for a range of unit operations, and
thus the type and quantity of data will bear a close relation to the nature of the
models. These range from the simple to the complex and are specified according to
end-user needs; For example, a straightforward capture chromatography model
may assume a given dynamic binding capacity and then use that to evaluate
outputs such as processing times or consumable costs. On the other hand, more
complicated models will calculate dynamic binding capacity by quantifying
uptake and adsorption/desorption events from first principles using mass transport
equations, calibrated using experimental studies.

90 S. Chhatre



2.2 User Interfaces

When developing a model, one important feature is to provide a user-friendly front
end for data entry or retrieval of the simulated outcomes. A simulation may be
used by those involved directly in bench-scale process development activities or
those in more supervisory or managerial positions. Hence where applicable and to
cater for this potentially wide range of users, it is important that the software is as
intuitive as possible. Appropriate user interfaces are needed to make it easy for
people to enter data, and a simple, clean interface with clear labels for exactly
which data values are needed is essential, ideally with the capability to validate the
inputs so as to avoid basic mistakes.

2.3 Modelling Inputs

Depending upon the type of model, various classes of input parameters (or choices
for modelling) may be needed. Some of these may be categorised as follows under
the appropriate property heading, although depending upon the nature of the model
there may be additional factors to consider such as those relating to other parts of
the supply chain or production that sit ‘outside’ the scope of the principal man-
ufacturing process steps:

• Feed E.g. selection of volumes or titres
These properties have a direct impact upon processing schedules,
since larger quantities of product will require either a larger
downstream process capacity or may necessitate the process to be
cycled more often to cope with the higher overall throughput. The
use of higher feed titres may also have other effects that may need
to be modelled e.g. to adjust column loading times to prevent
excessive breakthrough and product loss.

• Equipment E.g. the number, type and sequence of unit operations
The quantity and sizing of unit operations are critical in ensuring
that the production, recovery and purification duty can be satisfied
e.g. making sure that a centrifuge bowl or a filter membrane provides
an adequate separation area to carry out its task. Models can be used
to determine whether the individual unit operations in a process are
the most suitable e.g. whether a pre-clarification membrane step
before a column is indeed adequate or whether additional steps are
needed to remove foulants and thus maximise column lifetime.

• Operational E.g. flow rates, agitator driveshaft speeds and bowl RCF values
These key parameters have a direct influence upon the performance
of a process step. Appropriate values should be chosen so as to
satisfy the objectives of the entire process sequence. Such terms
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form the basis of mathematically ‘rigorous’ equations used to
calculate yield, purity, throughput etc. and can thus enable material
or volumetric balancing.

• Facility E.g. related to provision of ancillary utilities
General plant-related items will have an impact upon overall pro-
cess costs as well as the capability to run a process on time and
within schedule e.g. reliable access to services such as steam,
glycol, chilled water etc.

• Times E.g. process durations and hold times
Inputs such as processing times can be set either directly or cal-
culated based upon other values e.g. flow rates, process volumes
etc. Models can be used to determine how best to arrange batches
within a campaign in order to ensure that all can be processed on
time. Hold times may also be critical if a product is sensitive or if
excessive downtime causes undesirable events such as degradation,
and such aspects should be included within a model. Using a
model, the impact of process changes upon manufacturing times
can be determined to see whether bottlenecks will be formed and
how to avoid them. Such scheduling considerations are related to
resource availability aspects, as discussed below.

• Resources E.g. disposable bags, chromatography resins, membranes, buffers
or labour
Typically, resource pools will exist within a facility and a model
will need to represent the quantity of these and their availability
(e.g. for labour, the impact of shift patterns will need to be
reflected). Resource availability will also impinge upon the like-
lihood of a process running into bottlenecks and may prompt the
acquisition of additional capital or consumable resources to prevent
these from impeding processing. Costs will also be associated with
the acquisition and usage of these resources, and so this needs to be
factored into a process simulation.

• Costs E.g. for capital, development or running costs, including overheads
In addition to those costs mentioned already (e.g. for resources or
overheads), there are other expenses which need to be included e.g.
capital expenditure, maintenance, taxes and also the cost of failed
batches (see below).

• Risk factors E.g. probabilities of batch failure
Risk factors and their impact upon annual product throughput and
process costs should also be incorporated, as this can give an
indication of not only the likely outcome on process or economic
grounds but also the probability that a process will succeed or fail
to meet its annual targets.

Related to the last point, although it is possible to model solely using fixed
values for the input parameters identified above (i.e. a deterministic analysis), it is
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also possible that, in reality, values will vary between batches or over time; For
example, the initial product concentration in a bioprocess feedstock may vary, as
indeed may market demand from 1 year to the next. Calculating production
requirements and process costs in the face of uncertainty can be achieved by
assigning probability distributions to ranges of the input factors and then running
the model repeatedly i.e. using Monte Carlo simulation to obtain probability ranges
for output values [10]. This can enable identification of both the most likely out-
come as well as the range of other potential outcomes and hence the probability of
satisfying a threshold performance. This can enable one to plot the risk associated
with a given development or manufacturing option against the reward that may be
possible if it can be made to work. The types of risks include technical (i.e. process-
related), economic, scale-up or technology transfer, facility-level and strategic.
Assimilating uncertainties into the analysis can enable a more realistic comparison
of production scenarios when selecting the most favourable option. Examples of
these are discussed later.

2.4 Modelling Outputs

For technical process modelling, normally some sort of material and volumetric
balancing data set will be generated as an output, but depending upon the type of
model and the depth or detail of the input parameters and equations, other outputs
may also be created; For example, as one moves closer towards incorporating
business-related issues, other aspects become significant:

• In-process and final product specifications (yield, quality, purity, concentration
and volume)

• Product/batch throughput and hence manufacturing times/schedules
• Resource utilisation profiles
• Capital and operating costs (e.g. net present value)
• Probabilities of achieving specified results

In respect of these outputs, it becomes possible to make many types of deci-
sions, such as those at the facility level (e.g. whether to use stainless steel or
disposables), at the process level (e.g. using expanded bed chromatography or
conventional recovery steps) and also from the capacity planning perspective (e.g.
selecting a downstream process capacity to cope with current demands and
expected requirements resulting from future upstream improvements). Hence one
can determine whether a process within a facility as designed and operated is
likely to meet its targets or whether alterations are needed. Although some outputs
may be strategic or corporate in nature and others are more process related, in
reality they are all connected to one another and separating outputs into different
groups is somewhat artificial. In such cases, the different output values must be
judged together when deciding whether a manufacturing strategy is worthwhile or
not. It is possible that multiple outputs may conflict with one another,
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improvements in one being obtained at the expense of others deteriorating. To
ensure that a holistically balanced result is achieved, it may be necessary for several
output metrics to be integrated together into a single objective value. One way to do
this is to use multi-attribute decision making techniques, which combine several
output values—possibly with the inclusion of additional weighting values to
provide greater prominence to the more critical outputs—to generate a single
assessment value to judge the overall feasibility of a process strategy [10]. This can
apply to both quantitative metrics and qualitative measures including intangible
items such as process reliability and flexibility. By assigning arbitrary, user-defined
numerical values to these and then using multi-attribute decision making to obtain a
single output metric, this can simplify the evaluation of a strategy. Such an
approach can enable multiple conflicting outputs to be traded off to find the most
appropriate final balancing point.

3 Types of Bioprocess Models

3.1 Process Models of Bio-Manufacturing Operations

A convenient way to set up a model is to apply simple percentage step efficiencies
to individual unit operations to determine overall process recoveries. Such an
approach is clearly straightforward and may be valid during the preliminary stages
of assessing project feasibility, but more accurate models that use engineering
understanding are more helpful when specifying operating conditions. Thus
models which rely upon more mathematically ‘rigorous’ equations (i.e. those
which provide a systematic connection between design/operating parameters and
process outputs) can offer valuable insight. Some of these may be derived from
standard engineering theory, while others may be developed on an empirical or
semi-empirical basis using laboratory data. As indicated above, such models may
be established using spreadsheets if the mathematical basis permits, or alterna-
tively one may need a more specialised numerical solver. The technical modelling
of biopharmaceutical operations draws at least in part upon standard process
engineering concepts for describing mass or momentum transport phenomena.
These may include mixing conditions, aeration rates or impeller specifications (for
fermenters), pressures and the number of passes (for homogenisers), flow rates and
separation surface areas (for centrifuges and membranes), uptake kinetics, equi-
librium or diffusive properties (for chromatography) etc. An exhaustive list of the
equations used to model all the main bioprocess unit operations is beyond the
scope of this chapter, and the exact equations used for specific steps can be found
in numerous texts and journal articles. Specific unit operation models vary in terms
of complexity, with some being relatively straightforward to solve e.g. the first-
order cell rupture expression [18] or the sigma concept for equating the flow rate-
to-sedimentation area ratio between centrifuges at different scales [1]. Other
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expressions become more complicated, e.g. in chromatography, the mass transport
phenomena are often represented by a complex series of non-linear partial dif-
ferential equations that may require access to powerful PCs equipped with
appropriate numerical solving software. Hence simplifying assumptions can often
be useful in reducing model complexity. This becomes especially true if one seeks
to link models of different unit operations in a process flowsheet, since the com-
putational time can otherwise become significant.

The current generation of bioprocess simulations produced by academic
research groups or end-users themselves have focussed predominantly on indi-
vidual unit operations alone [16, 34], often involving the solution of complex
equations to evaluate material balances such as for fermentation [7, 13, 20],
homogenisation [38, 44], primary recovery such as filtration or centrifugation
[6, 28, 36, 37] and chromatography [12, 24]. By definition, models of individual
unit operations fail to consider the likely interactions between process steps, and
although they constitute a useful first step toward the production of robust and
predictive modelling packages, it is the simultaneous consideration of all opera-
tions and replication of the interactions between them that is needed for the
assessment of whole process feasibility. Unit operations do not operate in isola-
tion, and even small changes at any given stage can affect operation there and
further downstream dramatically. Optimising individual operations separately with
respect to objectives defined for one stage alone runs the risk that performance of
the overall process may well be suboptimal [16]. Thus linkage is vital for quan-
tifying trade-offs between successive process steps, and this can be done most
easily by simulations. Examples of integrated process modelling are provided by
Groep et al. [16] and Varga et al. [41], who used models to investigate how, for
example, varying the number of homogeniser cycles affected technical and eco-
nomic outcomes during the recovery of an intracellular protein (alcohol dehy-
drogenase) produced by yeast fermentations.

3.2 Computational Fluid Dynamics

Computational fluid dynamics (CFD) modelling provides the capability to produce
an in silico imitation of the hydrodynamic environment within large-scale bio-
processing equipment. This can enable one to quantify phenomena such as shear
stresses at solid–liquid or gas–liquid interfaces. Such information may be neces-
sary in the context of design space mapping because small-scale devices on their
own may be inadequate for mimicking the hydrodynamic large-scale environment,
and hence any predictions made may need to be adjusted. A classic example of
this is in centrifuge bowls operated in a non-flooded manner. Small-scale rotors
tend to invoke far less powerful shear than at commercial scale, where forces
exerted as fluids impinge upon solid surfaces such as in the feed zone can damage
delicate materials including cells or shear-sensitive precipitates. Thus some form
of regime analysis is necessary to quantify large-scale shear, e.g. by using CFD to
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characterise the energy dissipation profile. The damaging effects of this upon the
material can be replicated at bench scale e.g. by using shear devices to induce an
equivalent level of solids damage observed upon scale-up. Such strategies have
been employed in several studies, e.g. by Boychyn et al. [4]; Boulding et al. [2]
and Boychyn et al. [5], to improve the accuracy of scale-up predictions.

Other unit operations can also benefit from CFD, such as chromatography.
Determining the rate of mass transport in either the bulk fluid or the stationary
phases can be facilitated by CFD to solve equations such as the general rate model
in order to predict breakthrough and elution profiles [14]. Modelling uptake pro-
files can require access to data such as mass transfer equilibrium parameters or rate
coefficients; these can be used to calibrate the terms within the CFD models, and
normally such information will come from small-scale (lL or mL) experiments
(see Chap. 7). Computational fluid dynamics requires considerable experience
with the available commercial software packages to perform such types of analysis
and also far more processing power than is found in a conventional PC. This may
owe much to the need to perform repeated iterations of the same equations; e.g. the
solution to the general rate model [17] involves discretising the column dimen-
sions into a series of coordinate points and then numerically solving a large system
of ordinary differential equations. Hence as indicated above, it is important to
introduce simplifying assumptions wherever possible to ensure that the numerical
solution does not become intractable. Often, the nature of the operation (and
similar prior examples) can provide much valuable data about which mass
transport phenomena are the most significant and thus how the equations can be
simplified; For example, in cases where mass transfer inside the macropores of the
resin beads is known to be the dominating mass transport step, the pore diffusion
model of chromatography can be solved using CFD software. If, however, the
isotherm is sufficiently rectangular, then the shrinking core assumptions [42] may
be used to reduce the pore diffusion model into a simpler set of equations that may
be evaluated using a spreadsheet.

3.3 Factorial Design Models

One way to model a process is to use purely empirical data and to fit regression
models to the data values, and in principle this could be done in a custom manner
by an end-user in a spreadsheet or similar piece of software. In practice, it is more
common to use commercial factorial design software which assists with selection
of an experimental design, statistical data analysis and the generation of a
regression model accompanied by statistical parameters that indicate the quality of
fit between data and model. Choosing the most suitable regression model from the
many which may be suggested by the software requires some skill and in particular
may rely upon the understanding possessed by an end-user when interpreting the
fitness statistics. Before conducting a factorial design, it is necessary to have some
idea of which parameters are likely to be important, since this can be used to limit
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the size of the experimental study. For a given unit operation, there are normally a
set of operating parameters which are conventionally known to be potentially
significant, and this list can be supplemented using information gained during
process development, e.g. by using Ishikawa diagrams or failure modes and effects
analysis (FMEA). Subsequently, one would conduct a series of factorial designs, at
each stage with increasing density of test points and/or fewer variables, as one
seeks to characterise the process design space with respect to its controlling
parameters. From a quality-by-design perspective, such an approach would be
carried out using qualified small-scale models to generate the empirical data; For
example in one study, Looby et al. [27] employed a combination of FMEA, small-
scale experiments, analysis of variance (ANOVA) modelling and Monte Carlo
analysis to define a process design space to identify operating conditions that
minimised the risk of manufacturing out-of-specification material. Thus design of
experiments (DOE) can help to achieve thorough process characterisation and gain
valuable understanding of which parameters are important to control, along with
their acceptable ranges. This information can be particularly useful in uncovering
interactions between steps and ultimately can help to achieve the most robust
manufacturing strategy that tolerates process variations without compromising on
product quality.

3.4 Business-Process Models

The types of models discussed above have focussed predominantly upon creating
mathematical relationships to connect process parameters with technical manu-
facturing outcomes such as recovery, clarification, purity and quality. Another
class of models considers financial aspects instead to evaluate process economics
in terms of both capital and running expenditure. Ideally, such models must
examine not only the main manufacturing tasks but also ancillary activities such as
equipment, intermediate or buffer preparation, cleaning-in-place, steaming-
in-place and validation. Such facility- or process-related issues must be looked at
in context with strategic or corporate priorities such as clinical supply schedules.
Although business and process concerns have often been seen and modelled as
separate aspects, in reality they must be connected quantitatively to deliver the
most efficient and cohesive process development programme. Thus recently, there
has been an attempt to combine these model types together to perform process
flowsheet evaluations from both perspectives. Such models evaluate both direct
and indirect process expenditure by assigning costs to objects such as resources
and then accumulating a cost within the simulation environment every time a
resource item is either used or purchased (e.g. for consumable items such as resins
or membranes). Other costs may be calculated as a fraction of capital investment
or running costs (e.g. for estimation of overheads, depreciation, maintenance or
taxes). Visualising these costs on either a unit operation basis (i.e. for each process
step) or on a cost category basis (e.g. buffers, labour, ancillary items, overheads,
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energy etc.) can enable a process development group to target optimisation efforts
at the most significant cost centres. Such methods have been used to explore a
number of issues in recent years, including:

• Deciding how to structure multiple campaigns within a multi-use facility
• Determining how increasing the number of manufactured batches per annum

affects throughput and scheduling
• Exploring how to manage process changes within an existing manufacturing

facility e.g. how upstream changes may affect downstream purification or
scheduling capabilities

• Evaluating whether to use stainless steel or disposable bioprocessing equipment
• Comparing the outcomes of different fermentation strategies e.g. batch, fed-

batch or perfusion cultures

The following sections outline some of these examples.
Example 1
Farid et al. [9] discuss the creation of a prototype in silico method for bio-

pharmaceutical manufacturing, driven by a hierarchical framework to maximise
user flexibility when constructing the simulation. The hierarchical framework is
modular and enables a simulation to be built to varying levels of detail depending
upon available information. Thus, additional details can be added whenever nee-
ded, enabling a production batch or campaign to be represented at different levels
of complexity; For example, simulating tasks at a very high level can deliver an
overview of the process to obtain a summary of key technical and financial out-
comes, whereas drilling down to lower levels enables the higher-level activities to
be split into individual tasks of increasing definition, with a concomitant increase
in the amount and accuracy of data that are required. In the hierarchical decom-
position, a facility can be said to house one or more manufacturing campaigns,
which can be broken down into individual feed/in-process batches, which com-
prise an ordered series of unit operations and ancillary supplies. These can be split
into a set of individual unit operations and associated specific tasks, all requiring
their own resources and with associated costs, resource utilisation profiles and
material balancing properties. Hence, using a hierarchical approach, one can
obtain many different pieces of knowledge such as:

• Facility level, e.g. capital expenditure, ancillary equipment requirements,
ancillary costs and resource pools

• Campaign level, e.g. the number of campaigns scheduled in a year (especially
important for cases such as contract manufacturers where batches from different
customers need to fit in around one another), operating expenditure (direct and
indirect) and the final manufactured product mass

• Batch level, e.g. the number of batches, batch time and cost, productivity and
failure rates

• Unit operation level, e.g. the time taken to complete a task/sub-task, the
expenditure associated with those specific tasks and resource requirements for
those tasks
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The approach was exemplified by using it to evaluate the impact of manufacturing
decisions upon technical and business outcomes in a case study focussing upon a
mammalian cell culture process delivering clinical trial material. The model was
used to track resource utilisation profiles and running costs incurred by different
manufacturing options, thus enabling the provision of adequate resources, material
balancing and cost calculation. Cost models were based upon conventional chem-
ical engineering-style calculations, but they also accounted for the additional
expenditure incurred by implementing stringent cGMP rules. The manufacturing
process was represented as a set of unit operation and ancillary tasks in a dynamic,
discrete event simulation environment, for which resource pools were available for
entities such as capital equipment, membranes, chromatography columns, bags,
buffers and labour. Values for these were initialised at the start of the simulation and
updated as appropriate during the run whenever new stocks were purchased or
prepared. Hence the financial and time-related impacts of operating in a resource-
constrained environment could be evaluated. This meant that batches were pro-
cessed only if adequate resources were available for that to occur. Otherwise, a
batch was forced to wait until resources become available in sufficient quantities.
This represents the same situation that would occur in a real plant and can thus
enable identification of bottlenecks. The simulation contained pre-programmed
blocks that represented specific tasks such as a culture or purification operation. The
blocks were cloned to a workspace and then connected together to simulate the
sequence of steps in an entire process flowsheet, with the generic blocks customised
for specific requirements of the relevant step for its location in the process. A batch
of process material is represented by an ‘item’ i.e. a computer-generated entity that
is ‘loaded’ with stream properties and which is modified as it passes from one
simulated unit operation to the next. Items were passed through the model, updating
cost, resource and material balance property data such as volume, titre, impurity
level etc. over the course of the simulation.

Example 2
Models are also useful when deciding whether or not to conduct a plant retrofit,

where typical commercial questions might focus upon the timing of the retrofit and
also for determining whether the altered final process merits the production
downtime and retrofit cost. Mustafa et al. [30] describe a model which evaluated
the economic impacts of an expanded bed retrofit in place of a centrifuge and
packed bed-based protein separation. The study sought to simulate and trade off a
higher product yield on one hand with the costs of plant shutdown (loss of pro-
duction), capital investment and process re-validation on the other. The method
enabled strategic, process and economic evaluation of the two options. In this
specific case, the results indicated that the re-validation cost and the timing of the
retrofit were important, as was the effective downtime cost associated with lost
production. In a related study, Mustafa et al. [29] developed a software method to
evaluate the business and process aspects of two different manufacturing flow-
sheets employing packed bed chromatography in one case and expanded bed
adsorption in the other. The method assessed the advantages of expanded bed in
terms of capital cost reduction and higher product yield compared with the higher
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cost of the more expensive expanded bed matrices with lower resin lifetimes. The
effects upon cost of goods by parameters such as the yield emerging from the
expanded bed process as well as matrix cost, capacity and lifetime were examined.
Both direct product handling activities and ancillary tasks were modelled
explicitly to ensure that the costs included categories that might otherwise be
overlooked, and in this case, the expanded bed option was preferential owing to a
lower cost of goods and higher robustness.

Example 3
In a similar dynamic discrete-event example, Lim et al. [25] proposed another

hierarchically structured simulation which, alongside material balancing, cost
calculations etc., additionally included regulatory compliance activities such as
QA/QC, batch documentation and post-batch lot review. Animation features
enabled visualisation of batch (item) flow through the simulated process, thus
helping to identify and eliminate mistakes. Model outputs included annual
throughput, the total number of manufactured batches and resource utilisation
curves over time (thus identifying both resource under-utilisation and bottlenecks
hindering product throughput). The software was used to simulate the hypothetical
full-scale manufacture of monoclonal antibodies using perfusion culture to
determine the throughput, cost and resource impact of varying the culture broth
pooling frequency, assuming an unchanged downstream process. Determining the
optimal pooling interval is important to maximise resource utilisation but also to
minimise expenditure and contamination risks. One could either employ only a
small DSP capacity and then pool more frequently for purification or conversely
choose a plant with a larger DSP capacity with less frequent pooling of the
supernatant. Pooling more often makes greater use of DSP capital equipment since
there are larger numbers of downstream batches that need to be purified, although
with a smaller capacity the capital expenditure is lower in the first place. Using
equipment more often, however, increases the need for equipment preparation and
draws more heavily upon ancillary services, in addition to higher QC/QA costs
since these activities are completed more frequently. Conversely, less frequent
pooling makes lower demands for ancillary services or preparation of equipment
or regulatory requirements, but will lead to a higher capital investment. Product
stability is also an important factor since this affects the optimal choice of pooling
frequency. The authors used modelling approaches to examine the trade-offs
between such strategies.

3.5 Deterministic Versus Stochastic Modelling

As discussed earlier, modelling approaches should provide ideally not just a
deterministic analysis of feasible operating conditions but also an indication of the
impact of uncertainty within routine bio-manufacturing. Deterministic models will
assign just one value to every parameter, giving a ‘single-point’ output. In reality,
there are many possible risks that affect outcomes such as annual production levels
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or operating costs, and modelling can help to determine the effects of these risks.
Stochastic modelling involves assigning probabilities to ranges for specified inputs
to enable a user to determine the range of possible outcomes and hence the
confidence one can have in a given outcome or the risk of failing to meet specific
process performance criteria. Modelling the random nature of a bioprocess or
market-related forces can help to predict the most likely outcome, thus forming the
basis of risk assessments and mitigation strategies (e.g. to ensure that market
demand is satisfied or to avoid going over budget). Following on from the Lim
et al. paper discussed in the preceding section, another study was used to assess
perfusion pooling strategies for a mammalian cell culture expressing mAbs. Monte
Carlo analysis was used to simulate random run-to-run changes [26] by averaging
the outputs achieved over repeated model runs. Hence frequency distributions
were created for the amount of mAb produced annually and the cost of goods. Risk
factors that were modelled included the chances of contamination caused by
having larger numbers of interventions over extended culture durations as well as
the impact of uncertainties in mAb titre and the cost of the broth media. As part of
this, the study also tried to identify a manufacturing strategy which used resources
most efficiently at commercial scale. Other variations which could be modelled
include resource costs, dosage level and market demand. A similar Monte Carlo
business-process modelling approach was used by Farid et al. [11] in a case study
designed to determine whether a start-up company should invest in either stainless
facilities or disposable equipment for making material for early clinical trials. The
impact of variable product demand and product concentration in the culture step
were analysed in order to quantify the attractiveness of different manufacturing
options.

Aside from Monte Carlo techniques, another way of determining the impact of
variability is to use sensitivity analysis techniques which determine the effect of
changing chosen input parameters upon the required outputs. This is discussed in
more detail below.

4 Sensitivity Analysis

The task of choosing which parameters to test in a model is complicated by the
plethora of choices. Flow rates, feed concentrations, residence times etc. are just a
few of the parameters that can influence the performance of many unit operations.
Although Ishikawa diagrams and FMEA-style analysis coupled to heuristics and
prior experience can help to narrow down the parameters to the most fruitful ones,
a more ostensibly quantitative assessment can also be invaluable. Quantitative
understanding about which input variables are the most significant can help to
focus modelling and thus ultimately experimental development efforts upon the
key attributes that control manufacturing performance. This can be particularly
relevant when considering interactions between inputs that can complicate the
selection of bioprocess operating conditions. In a simple model with a clear
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mathematical structure, it may be relatively intuitive to work out the most critical
inputs by visual inspection. On the other hand, where there are many terms and
when numerous or complicated mathematical equations are involved (e.g. a series
of highly non-linear or differential equations), inspection may be impossible and
more sophisticated approaches such as sensitivity analysis techniques are required.
These enable the identification of critical variables, thus reducing the dimen-
sionality of the search space and decreasing the scope of both modelling and
subsequently experimental work.

Sensitivity analysis methods involve determining how variations in model
outputs are affected by input changes. Local sensitivity analysis (LSA), for
example, involves determining the importance of a given input by computing the
partial derivative at a specific point on an output function. Although this is useful
in providing sensitivity information about that location and its immediate prox-
imity, it is not satisfactory for describing model characteristics elsewhere. In such
instances, partial derivatives would need to be evaluated at every point of interest,
which depending upon the type of model and the number of points could be
computationally intensive. Additionally, local sensitivity analysis is restricted to
analysing only one input at a time, meaning that complete characterisation would
necessitate separate calculations for every variable. Alternatively, global sensi-
tivity analysis (GSA) is a more powerful method that assesses all input variables
simultaneously over the whole model and ranks them to determine the average
contribution made by every parameter over a stipulated set of input ranges. Var-
iable rankings quantify both the impact of individual variables as well as their
interactions. King et al. [23] showed how GSA could be applied with beneficial
effects in bioprocess development when determining sensitivities during the disk-
stack centrifugation of mammalian and yeast cell culture broths. The impact of
feed flow rate, particle size, solid–liquid density difference and viscosity on the
achievable clarification was quantified using a validated centrifuge model. Vari-
ation in the values of process sensitivities as a consequence of making significant
changes to the manufacturing set-point conditions could also be investigated. This
can be important when dealing with post-approval process changes; For example,
if upstream improvements result in higher cell densities, this may change the
product–impurity profile that passes into the recovery and purification process,
necessitating downstream changes to maintain product quality at its validated
level. As these changes occur, it can be useful to determine whether previously
important variables remain critical or whether other ones become more significant.
This can prompt changes in either the design or the control mechanisms down-
stream to avoid ill effects caused by variations in specific parameters, thus
maintaining satisfactory process robustness.

Multivariable analysis such as GSA is consistent with other approaches such as
factorial design where one seeks to explore the influence of all variables over their
full ranges to determine whether any synergistic effects exist between parameters.
Where one has potentially several variables in a factorial design and depending
upon the number of levels for each factor, this can result in fairly large experi-
mental matrices. If a model of the experimental system exists already, the
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application of GSA has the potential to reduce the number of design variables, thus
limiting laboratory effort and cost.

5 Visualising Search Spaces

Once the critical parameters have been identified and evaluated through modelling
approaches, one needs comprehensible ways to understand the resulting data in
order to make decisions. Models can generate large amounts of information, and
although in certain cases simple graphs may suffice to understand the location of
an operating optimum, in other situations this may not be the case. The issue of
process interactions is a case in point; to develop operating policies that select
values of process variables that lead to optimal whole process performance, they
must account for the interplay between process steps and thus trade off the
potential beneficial effects of an upstream improvement against additional com-
plexities that this may induce further downstream. As indicated earlier, a classical
example of this considers a high-pressure homogeniser in which elevated pressures
or numbers of passes cause greater product release but at the expense of a more
heavily micronised debris that is more difficult to remove from the supernatant in a
following centrifugation step. Working out the best trade-off in conditions between
the two steps for yield and clarification requires use of suitable methods for
graphically identifying the shape and size of the search space. Hence there is a
need for approaches that can visualise outputs intuitively to identify combinations
of operating parameters that satisfy required performance levels. Methods such as
windows of operation can assist with this activity, in the homogeniser–centrifuge
case, for example, by selecting conditions which meet levels for both minimum
product recovery and debris removal. Thus, windows are a powerful way to extract
design information from quite complex mathematical models and so inform an
engineer about which conditions are process-relevant.

Windows of operation are formed by plotting critically important input
parameters on the axes and then applying chemical, physical, biological, process
or financial constraints to the search space to identify a bounded region that
simultaneously satisfies all threshold values for process outputs and product
specifications. Windows may be used to define feasible regions of either parts of
processes or sequences of steps. The method can be used during both initial
process design as well as for post-approval changes to identify operating bound-
aries and to judge process robustness in response to changes in constraints or
parameter ranges. Sensitivity analysis as discussed above can also be useful for
determining how the ranges of operating variables and their interactions may affect
the shape and size of the windows. Woodley and Titchener-Hooker [45] describe
how bioprocess design windows can be used to find acceptable operating regions
in both qualitative and quantitative forms. In the former case, theoretical infor-
mation can be used to get a rough idea of the characteristics of a search space,
while in the latter case and with the right models, input data and understanding of
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process constraints, these can provide numerical understanding of where to
operate. Windows are shown conventionally as a series of two-dimensional maps;
three-dimensional windows can also be used and are defined by an operating
volume by plotting three variables on each of three axes [22]. Ultimately, such
information can enable the definition of suitable operating protocols. In one
example for chromatography, windows of operation were used by Boushaba et al.
[3], in which the general rate model was calibrated using experimental break-
through curves from feedstocks generated at variable levels of centrifugal pre-
clarification. The calibrated model was then used to plot windows of operation that
related the input load volume and flow rate to the yield and throughput. The results
showed how the size and position of the feasible load volume–flow rate operating
window changed as the clarification efficiency of the preceding centrifuge was
altered.

6 Conclusions

This chapter has sought to evaluate some of the modelling approaches used in the
bioprocessing sector to evaluate the technical and economic performance of both
individual unit operations and also process flowsheets. Modelling methods have
the potential to augment development approaches by enabling the rapid, cost-
effective evaluation of process options. To achieve this however requires access to
suitable modelling equations and adequate amounts of data or use of sensible
assumptions to deliver relevant, accurate predictions of the technical and economic
performance of a manufacturing process or facility. Aside from issues of yield,
purity or cost of goods, other important aspects addressed by models include
scheduling, facility fit and wider strategic issues which determine how best to
enhance the development and manufacturing platforms of a company. Modelling
frameworks need to be seen in the context of other approaches such as microscale
methods (Chap. 7) and rapid analytical techniques that form a portfolio of tech-
nologies developed in the last decade for accelerating the design, development and
optimisation of biopharmaceutical production operations.
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Extreme Scale-Down Approaches
for Rapid Chromatography Column
Design and Scale-Up During Bioprocess
Development

Sunil Chhatre

Abstract Chromatography is a ubiquitous protein purification step owing to its
unparalleled ability to recover and purify molecules from highly complex indus-
trial feedstocks. Traditionally, column development has been driven by a combi-
nation of prior experience and empirical studies in order to make the best choices
for design variables. Economic constraints now demand that companies engage
with a more systematic exploration of a chromatographic design space. To deliver
this capability using purely conventional laboratory columns, however, would
require considerable resources to identify practical and economical operating
protocols. Hence, recently there has been increased use of extremely small-scale
devices that gather data quickly and with minimal feed requirements. Such
information can be obtained either during early development for screening and
trend-finding purposes or later for more accurate scale-up prediction. This chapter
describes some of the key drivers for these small-scale studies and the different
types of extreme scale-down chromatography formats that exist and illustrates
their use through published case studies. Since extreme scale-down experimen-
tation is linked to fundamental mechanistic engineering approaches as well, the
utility of these in delivering process understanding is also highlighted.
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1 Introduction

Designing a chromatographic separation for a protein product is one of the most
important steps in biopharmaceutical development for achieving satisfactory levels
of purification [22], and achieving this capability may require up to a few dozen
column runs during development studies [7]. Initial studies may employ small col-
umns which are both significantly shorter and narrower than at final manufacturing
scale; For example, pre-packed columns of a few millilitres in size may be used to
determine whether a putative separation space exists and, if so, to identify a smaller
subset of conditions to explore in larger laboratory columns of up to around 20 cm
length (40–50 mL volume). At this stage, the bed height is fixed along with the linear
operating velocity and the feed load expected for larger columns, and the bed
diameter is changed whenever required to accommodate the larger feed challenges
that are representative of later development. Cumulatively, the feed material needed
to supply such work may be considerable (tens to hundreds of millilitres) and may
become a limiting factor if many resins need to be evaluated before finding one that
offers the required capacity and selectivity. Additionally, development timelines are
often compressed, and this prevents lengthy experimentation across a wide param-
eter space using resource-intensive laboratory columns. Such studies are also limited
by the availability of the expensive laboratory equipment required to operate these
columns [4, 34]. Although some degree of automated control is possible with these
systems, e.g. using predefined method protocols, there can still be many occasions
where manual intervention is required; e.g. if pre-packed columns of the required
matrix type, volumes or dimensions are unavailable, then column set-up, packing and
HETP/asymmetry testing are needed. As a result of these factors, sample throughput
at laboratory scale tends to be fairly low, and since columns tend to be operated in
series, only one combination of operating conditions can be tested at a time, making
the sequential examination of many parameters time-consuming [27, 31].
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Consequently, very few manufacturing options may be studied in practice [19],
and instead column design may be driven more by prior experience or heuristics
when selecting a resin or buffer composition. This can result in sub-optimal pro-
cesses that overlook superior operating conditions in order to accelerate com-
mercialisation [30]. Techniques developed recently in the extreme scale-down
field can alleviate some of these problems by evaluating feed, resin and mobile
phase properties more systematically and at lower resource cost to try and identify
operating strategies for economic and robust column separations. Extreme scale-
down enables the collection of large amounts of empirical knowledge that can
improve process understanding and manufacturing flexibility. Although such
studies do not eliminate larger laboratory or pilot column studies, they focus
efforts upon what is most feasible upon scale-up. The scale-down data restrict
larger column experiments to verifying, refining or fine-tuning scale-down pre-
dictions (Fig. 1), and if operated in a way that can represent column hydrody-
namics, the data can assist ultimately in specifying an optimal column operating
protocol [37]. There are a number of extreme scale-down devices, including small
columns of around 1 mL in volume, batch incubation methods, miniature columns
and chromatography pipette tips which use up to a few hundred microlitres of
resin, and microfluidic devices (with a few microlitres of resin). Such methods are
consistent with the limited feed quantities available in early development and thus
can cover a larger number of conditions in parallel and thus in a shorter period of
time than might otherwise be the case in a conventional laboratory column. This
makes development faster and cheaper and provides better focus for larger trials
[15, 16, 33]. By mapping chromatographic design spaces, extreme scale-down can
help ultimately in the design and control of processes that deliver the required
product specification consistently. Nevertheless, extreme scale-down requires
consideration of many factors, including which device is the most suitable and
how easily it can be operated to deliver the required information. This chapter
includes some of the general considerations for extreme scale-down process
development and presents a summary of the different types of devices. It also
provides an overview of selected case studies involving these devices. Allied
issues of analysis and experimental design are also discussed.

2 General Considerations for Extreme Scale-Down

In extreme scale-down devices, the physical layout of matrix may be quite dif-
ferent from that of a normal packed column owing to the difference in geometries
of the methods at the two scales. Thus, if extreme scale-down data are gathered
early in development in the form of high-throughput screening (HTS), these dif-
ferences may allow the acquisition of only qualitative trends in the search space,
rather than quantitatively predictive information about scale-up outcomes.
Although these qualitative data in themselves do not constitute a design space,
they provide an approximate idea about the location of an operating area and can
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thus act as a precursor to more detailed operating space characterisation by con-
ventional column runs. Alternatively, it may be possible to use engineering
understanding, empirical equations or mathematical models to adjust the scale-
down outputs and thereby create quantitative column predictions. On this basis, the
necessary transient and equilibrium properties may need to be measured at scale-
down and then used in conjunction with appropriate correlations to predict the rate
and extent of adsorption or desorption at scale-up. In either case, there are four
principles that govern extreme scale-down chromatography, which are applicable
to varying degrees depending upon exactly which type of device is used and its
mode of operation [3]:

• Miniaturisation: This can lower the volume of reagents required and results in
faster experimental processing, which reduces costs and times. Miniaturisation

Fig. 1 Data derived from extreme scale-down operation focusses subsequent experimentation
upon key manufacturing choices and ultimately enables the development of an optimal column
design
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during process development has evolved from test-tubes using millilitre-scale
quantities through to micro-well-plate-based development and now into chip-
based applications.

• Automation: This encourages fast, accurate and reliable process development
and requires liquid handling systems capable of transferring microlitre- to
millilitre-scale sample volumes. At these scales it is important to control phe-
nomena such as hold-up loss, evaporation and surface tension effects to enable
fast, accurate and precise dispensing. Automation reduces operator burden,
enabling that person to conduct other activities while routine operations are
carried out.

• Parallelisation: Running multiple conditions simultaneously brings clear
throughput benefits and also enables more replicates to be run, increasing
confidence in the data. Additionally, this reduces down-time when samples
would otherwise have to be stored to await processing. Storage can be prob-
lematic with conventional serial column operations if one is dealing with crude
feed material and unstable products, owing to the deleterious effects of phe-
nomena such as enzymatic breakdown, aggregation or precipitation.

• Data transformation: For quantitative scale-up, empirical correlations may be
needed to account for scale differences where these cannot be compensated fully
by experimental means. Alternatively, mathematical models can use the scale-
down data to simulate performance at larger scales. Regime analysis and
computational fluid dynamics can be useful in providing the mechanistic
framework for scale-up. The output results can then be displayed through dia-
grams such as windows of operation.

Implementing these extreme scale-down principles permits the generation of
information-rich response surfaces [34] when searching for robust operating
regions. Some of these principles are more applicable to microlitre operations than
millilitre scale-down. The following sections of this chapter summarise the devices
available, discuss key considerations and look at published examples of their
application.

3 Millilitre Scale-Down

3.1 General Considerations

3.1.1 Scale of Operation

Millilitre-scale approaches use columns containing only one or a few millilitres of
resin. First-principles or experimental correlations may be applied to the output
data to correct for differences from larger columns. In comparison with standard
laboratory beds, millilitre-scale columns reduce feedstock requirements consid-
erably by using very small bed heights and diameters.
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3.1.2 Feed Material

Ideally, the feed material used to conduct any form of scale-down chromatography
should be as representative of the process-scale product and impurity profile as
possible. This implies that the scale of the upstream process should be consistent
with the quantities needed to conduct the scale-down chromatographic step. Fur-
thermore, the feed consumed per test condition should be minimised to cover as
much of the search space as possible.

3.1.3 Mechanistic Modelling

Chromatography models can help to increase process understanding when used in
conjunction with extreme scale-down devices, but require the use of mechanistic
equations to represent mass transport, diffusion, dispersion and equilibrium
properties accurately [29]. Models that account for every one of these effects can
be quite complex and may require advanced mathematical understanding. Fortu-
nately, however, not all mass transport effects are critical in a given separation, and
this can enable model simplification. Some mass transport terms can be combined
together while still reflecting the necessary chromatographic properties. After a
model has been chosen, the remaining unknown parameters need to be determined
experimentally in order to calibrate the model. These can be obtained more
quickly and cheaply using extreme scale-down devices than at conventional col-
umn scale. An example of mechanistic scale-up modelling is given later.

3.1.4 Graphical Representations

Beyond providing mechanistic outputs, an added requirement of in silico
approaches is their facile representation in order that the consequence of process
choices can be visualised easily. User interfaces can be constructed to portray
likely windows of operation and thus enable the determination of specific com-
binations of process parameters that satisfy performance targets. Fractionation
diagrams may also be useful in this context [21].

3.1.5 Techniques for Visualising Adsorption

Techniques for labelling proteins and visualising their adsorption onto resin beads
can be a useful way of gathering intra-particle diffusion data [12]. These can give
both qualitative and quantitative information about uptake rates and the maximum
extent of adsorption to support scale-down studies; For example, confocal scan-
ning laser microscopy can be used to track product uptake onto resin beads [32] or
for fouling studies [28], determining the effectiveness of cleaning procedures and
so column lifetimes.
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3.2 Empirical Scale-Up Example

This example illustrates the use of equations to adjust elution peaks generated in a
millilitre-scale column separation to predict the height, width and retention times
of larger-scale elution profiles. Two key differences between the scales are the
dispersion and retention volumes; For example, band broadening occurs inside and
outside a chromatography column, and as column sizes reduce, extra-column
effects become increasingly important in determining overall peak spreading.
Failing to account for this can lead to incorrect selection of cut points and/or
inaccurate peak volume estimation during scale-up, thus complicating the opera-
tion of subsequent steps; e.g. an unexpectedly dilute eluate may require longer
downstream processing times. Correcting for the impact of retentive and dispersive
effects upon an elution profile during scale-up is crucial and is especially important
for columns of around 1 mL in size, since this packed bed volume may be similar
to or smaller than the extra-column volume. Hutchinson et al. [11] describe how
experimental correction factors derived from conductivity changes can be used to
correct small-scale dispersion and retention effects and thus enable accurate pre-
diction of the shape, size and position of larger laboratory and pilot elution profiles
from a Protein A column. The approach was exemplified by using data from a
1-mL Protein A column challenged with a chimeric monoclonal antibody to
predict the elution peaks from 3-mL laboratory and 18.3-L pilot columns. Tran-
sition analysis was conducted in 5-mm-diameter columns with bed heights ranging
between 20 and 205 mm. The transitions were brought about as a high-conduc-
tivity equilibration buffer was replaced by a low-conductivity elutant, and thus the
relationship between total dispersion and column height was determined. This was
used to correct the small-scale elution profiles for dispersion when predicting the
larger packed bed outcomes. A simple mathematical approach was also used to
correct for retention effects. The corrected 1-mL data provided good predictions of
elution profiles of both the 3-mL and 18.3-L columns. Such information could then
be used to determine the most suitable adjustments to apply at extreme scale-down
to achieve the same eluate volume and concentration as obtained at scale-up and
which would thus be suitable for experimentation in small-scale mimics of sub-
sequent unit operations.

3.3 Mechanistic Scale-Up Example

Mechanistic understanding has also been used for scale-up predictions; For example,
Gerontas et al. [9] developed methods to derive process understanding from a highly
minimal set of column runs to predict larger-scale elution profiles generated by
varying the salt concentration. Computational fluid dynamics (CFD) and 1-mL
column data were used to make the predictions. This involved using the general rate
model (GRM) to account systematically for properties such as axial dispersion, film
mass transfer, intra-particle diffusion and binding kinetics. GRM parameters were
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calibrated from runs with three cation exchange matrices in 1-mL pre-packed col-
umns to separate bovine serum albumin (BSA) and lactoferrin. The principles of the
Hutchinson et al. [11] study described above were also taken into account in the
prediction of scale-up profiles. The model was used to predict the laboratory- and
manufacturing-scale performance at different liquid velocities (at 50–100 % larger
than the 1-mL column), different bed heights (from 2.5 cm at 1-mL scale to 20-cm-
tall columns with volumes ranging between 40 mL and 160 L) and different sample
volumes (from 1 CV in the 1-mL column to 0.4 CV in larger columns). When the
model was used to simulate the scale-up chromatograms, there was tailing in the
experimental peaks which was not observed in the modelled peak, but in all cases the
location of the peaks (i.e. their retention times) were predicted well.

The decision as to whether to use mechanistic approaches or not depends upon
factors such as the understanding gained from using similar feedstocks and the
complexity of the separation challenge. Furthermore, the increased instance of
protein heterogeneity in ‘real’ bioprocess feedstocks increases the separation
difficulty and makes it harder to predict the scale-up column performance. Thus,
the empirical equations used to quantify axial dispersion and the film mass transfer
coefficient in the Gerontas et al. study for BSA and lactoferrin may be insufficient
to describe the adsorptive behaviour of more realistic feeds involving the sepa-
ration of a product from highly crude materials at high protein loading levels.
Furthermore, a great deal of computing power and user experience is needed to
achieve successful CFD-based scale-up predictions, whereas purely experimental
approaches offer greater simplicity and familiarity to bench-scale scientists.

3.4 Other Issues

Although millilitre-scale columns can provide highly valuable process development
data, issues of parallelisation and automation remain. A typical liquid pumping
system with a single set of ultraviolet (UV)/conductivity detectors can be used to
control only one column at a time. Although some automation is possible, there are
still many manual steps involved, such as resin packing (where pre-packed beds of
the required volume are unavailable). Ideally, the principle of miniaturisation could
also be taken further by reducing the resin volume. Automating multiple miniature
devices is a task more characteristic of microlitre scale-down, as described below.

4 Microlitre Scale-Down

4.1 Overview

Microlitre-scale chromatography takes the form of three different types of device:
batch incubation , pipette tips and miniaturised columns, and all three formats can
be used with many different off-the-shelf and custom resins. The formats differ in
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operation, sample handling and how the matrix is arranged physically. These
formats have become widely recognised as useful techniques in early process
development (some of the variables examined by HTS are shown in Fig. 2).
Compared with larger-scale operation, feed and time savings using high-
throughput automated systems can be up to a couple of orders of magnitude. The
resulting data can then be used to home in on feasible operating ranges. Microscale
data can be used to elucidate capacity, selectivity, kinetic and thermodynamic
data, but conversion of outputs into column predictions is complicated by scale
and operating differences. Thus, the scale-down data can be used in their raw form
for approximate screening, or through theoretical or empirical models for more
accurate scale-up predictions.

4.2 General Considerations

4.2.1 Robotic Versus Manual Operation

It is possible to operate all three microlitre scale-down formats manually, although
doing so with tips or miniature columns while maintaining a consistent fluid flow
rate/contact time is prone to error. Robotic platforms can simplify sample han-
dling, accuracy and reproducibility. Such systems have multiple pumping channels
and can be specified with manipulating arms to grip microtitre plates and move
them to other equipment e.g. for agitation, solid–liquid separation or spectro-
photometry. The ultimate form of this is ‘walkaway’ automation, which minimises
the requirement for user intervention for routine activities.

4.2.2 Scale and Convenience Issues

The selection of matrix volume depends in part upon the type of study being
conducted; e.g. for an overloading study used to determine maximum binding
capacities, using as small a resin volume as possible will minimise the sample
volume needed for saturation. Nevertheless, there is a practical limit to how low
the feed volume can be, and it may be limited by robotic precision and accuracy.
Batch incubation filter plates are available for selected commercial matrices,
containing small pre-dispensed resin aliquots (e.g. 2-lL GE plates). Atoll GmbH
sells packed miniature columns with between 50 and 600 lL and PhyNexus sells
chromatography pipette tips with between 5 and 320 lL of matrix. In all cases,
resin volumes are available at discrete values within the specified ranges. Self-
dispensed plates can be used for any combination of resin type/volume from pre-
existing stocks, leaving the filter plate as the main consumable cost and making
this format cheaper than self-dispensed plates. Conversely, pre-dispensed plates
remove the need to aliquot matrix and offer consistent resin volumes.
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4.3 Microlitre Batch Incubation

4.3.1 Summary of the Technique

Millilitre-scale batch studies in stirred vessels or agitated tubes are used commonly
in early development to examine many variables simultaneously and thus provide
thermodynamic, selectivity and kinetic data [7, 37]. Normally, agitated 96-well
dead-end or filter plates are used, where each well is dosed manually or robotically
with matrix slurries or plaques of known volume. Feed and resin are mixed
together and maintained in suspension for a specified contact time, and the
resulting data can be used to extract information about dynamic column behaviour
[2]. Incubation with feed or buffers requires a defined volume per wash and may be
conducted several times if needed to ensure resin saturation or thorough immer-
sion. After incubation, the supernatant is removed, and in dead-end plates, this can
be achieved by gravity or centrifugal sedimentation, followed by careful manual
liquid removal. This method may be time-consuming and risks accidental resin
particle removal; the alternative involves drawing liquid quickly through a filter
plate into a collection plate by centrifugation or under vacuum. Batch plates may
be self- or pre-dispensed, and there are several key factors for successful operation,
including resin and liquid handling, mixing and separation conditions, liquid hold-
up and phase ratios [7], as discussed below.

4.3.2 Robotic Slurry Dispensing

Resin is mixed in a reservoir to ensure a homogeneous particle distribution prior to
aliquoting. Resin can be dispensed manually [20, 23], but consistently accurate
resin volumes are more easily achieved robotically, provided that one regulates the
many controlling factors [7]; For example, the full resin aliquot must be dispensed

Fig. 2 Types of variables
which can be examined using
microlitre-scale
chromatography devices
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such that little remains occluded inside the tip or on the lumen/outer tip surface.
One key point is to minimise the distance that the tips descend into the slurry
reservoir and to dip the tips into buffer after pipetting to eliminate anything
adhering to the outside of the tips as well as to rehydrate dried resin at the base of
the tip [20]. To avoid matrix retention inside the tip after dispensing, buffer should
be aspirated prior to the slurry to wash the tip clean during dispensing.

4.3.3 Resin Aliquoting Devices

Another way of generating 96-well batch plates is to use devices that create resin
plaques from loose slurries. Herrmann et al. [10] described a system in which resin
cylinders were separated from liquid through a mesh by vacuum to form.
A commercial version of this device is available (MediaScout ResiQuot, Atoll
GmbH), creating cylinders of 8, 21 and 51 lL. The device comes with a 96-spike
tool to push plaques into a microtitre plate. Such devices have been used to
measure isotherms [8] and static capacities [17].

4.3.4 Mixing Conditions

Plates can be mixed magnetically, by an end-over-end stirrer or in an orbital plate
shaker. Protein uptake depends upon agitation speed, and values of 1,000 rpm or
above are useful as a starting point, using an orbital shaker with a throw radius of a
few millimetres to ensure that resin remains suspended. For intra-particle diffusive
cases where the mixing speed exceeds a threshold value, no significant change in
uptake rate will be observed as speed increases, but if the speed is significantly
below the threshold, uptake will be slow and bulk fluid mass transport up to the
bead surface may be limiting. The threshold depends upon well dimensions, throw
distance as well as matrix and feed properties.

4.3.5 Feed Incubation Times and Theoretical Plate Number Aspects

Choosing the incubation time is critical to acquire column-relevant kinetic and
thermodynamic data. This time may be defined by uptake curves when an
acceptably high percentage of equilibrium has been achieved. Also of relevance (if
known) is the column loading time (contact time) i.e. the total duration for which
matrix is exposed to feed. This is more relevant than column residence time (the
average duration taken by a feed molecule to pass through the bed), because
uptake depends more upon cumulative resin exposure to feed over the course of a
loading step, which in a process column could be several hours. Such a time is
incompatible with HTS, and during early studies, matrix exposure to feed should
be greater than residence times but shorter than column loading times. As protein
challenges increase (e.g. in later development), extended incubations may be
needed to attain equilibrium.
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If the resin in each well represents a defined number of theoretical plates found
in a section of a column operated under the same mass transport regime, then
choosing the correct incubation time enables the beads to be saturated to a similar
level as a column. As a guide, a 20–60-min incubation may be relevant, although
column beds contain thousands of theoretical plates per metre and reducing this
number in a batch plate may necessitate use of mathematical models.

4.3.6 Other Mass Transport Aspects

Unlike a column, which uses constant fluid flow to achieve feed–resin contact, a
plate involves agitation of the bulk liquid. Nevertheless, unless very high flow
rates are used, adsorption rates of small proteins at moderate to high concentra-
tions in porous media are governed by internal bead diffusion. The same may not
apply for large macromolecules where bead exclusion reduces internal diffusion
and where convective mass transfer or external film diffusion may be rate limiting.
In such instances, using an incubation time that equals column load time may not
imitate column mass transport [2].

4.3.7 Liquid Evacuation

Liquid evacuation can be accomplished in three ways. Direct pipetting for dead-end
plates [31] is simple, but it is important to minimise resin entrainment, and manual
pipetting is especially prone to variable liquid hold-up. Vacuum filtration is another
option, but if foaming occurs, there may be carry-over between wells. Coffman et al.
[7] found centrifugation to be robust in achieving consistent liquid recovery from
each well with minimal carry-over, while vacuums failed to provide reproducible
hold-up volumes. Hold-up after liquid removal can be measured using high and low
salt buffer [7] or by a protein to account for dilution effects in the following stage [20].

4.3.8 Self-Dispensed Resin Plate Examples

There are several examples illustrating robotic HTS in self-dispensed plates e.g.
for monoclonal antibodies by ion-exchange purification [13, 14]. Charlton et al. [4]
used robotic self-dispensed plates to carry out HTS of different IEX ligands and
buffers. In another study, Coffman et al. [7] used a 96-well plate to screen con-
ditions using 50–100 lL of resin per well. A 20-min incubation was used as a fast
way to approximate HIC and AEX column binding conditions for a monoclonal
antibody and an Fc-fusion protein. The HTS generated hundreds of chromato-
grams in under an hour and compared well with millilitre- and litre-scale columns.
Differences occurred due to hold-up and plate number issues, but agreement
between batch and column data was sufficient to predict column yields/purities and
guide subsequent activities.
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4.3.9 Pre-Dispensed Resin Plate Examples

Bergander et al. [2] used pre-dispensed PreDictor filter plates (GE Healthcare) to
predict column capacity measurements. This involved two different applications
for binding human polyclonal IgG to Protein A and amyloglucosidase adsorption
to a weak anion exchanger. To verify plate predictions, dynamic column binding
capacities were generated by frontal analysis using loading flow rates calculated to
achieve a desired residence time. The impact of this parameter upon dynamic
binding capacity normally involves many tedious and feed-intensive column runs
at different flow rates. Transient batch uptake data at varying feed–resin contact
times offer a useful alternative to understand column dynamics. An uptake curve
was developed in the filter plate, with the incubation data from every well being
used to generate a single data point on the curve. Feed was added to one well at a
time at suitable intervals, such that the first well exposed to protein represented the
longest incubation time and the last one represented the shortest time (Fig. 3).
After all wells were exposed to feed, liquid was recovered in UV-transparent
plates for 280-nm quantification. Mass transport equations were applied to the data
to calculate column binding capacities.

Batch uptake can be used either qualitatively with limited data to screen search
space trends or with more comprehensive data for quantitative capacity predictions.
Bergander et al. [2] used a qualitative approach to acquire trends of how varying the
pH and ionic strength affected dynamic capacities of amyloglucosidase on an anion
exchanger. By contrast, the quantitative method generated a more accurate rela-
tionship between binding capacity and column residence time by combining the
larger data sets with a mathematical model. In this context, Bergander et al. [2] used
filter plates to study human IgG adsorption to Protein A. In cases where macropore
diffusion is the dominant rate-limiting step and when the isotherm is sufficiently
rectangular, the shrinking core model can be used to predict binding capacities.
Langmuir adsorption parameters were estimated from 60-min-long uptake curves,
which were then sufficiently shallow to approximate equilibrium. Using these and
fitted pore diffusion coefficients, 10 % dynamic binding capacities were calculated.
Capacities found by the plate method correlated well with column data, and the
authors estimated savings in time and sample of 10- and 50-fold, respectively,
compared with packed columns.

4.4 Chromatography Pipette Tips

4.4.1 Summary of the Technique

There are important differences between packed pipette tips [26, 38] and a normal
column. The height and diameter of the tip column are significantly smaller, and it is
tapered in shape (wider at the top), meaning that the linear flow rate changes along the
bed length. Bidirectional flow is used to bring feed molecules into contact with the
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Fig. 3 A method for creating uptake curve data using batch filter plate experimentation
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matrix. Automating batch devices may pose certain challenges [36], such as the need
to move plates from the robot to plate shakers or solid–liquid separation equipment.
Pre-prepared tips and miniature columns avoid some of these issues by passing liquid
through a resin bed constrained between two frits/filters.

In general, tips are pre-packed (e.g. PhyNexus, CA, USA), with resin volumes
varying between a few microlitres and a few hundred microlitres. Feed samples
and buffers can be held in either a multi-well plate or troughs and are pipetted up
and down through the resin at a specified flow rate to achieve a desired contact
time. Selection of the number of up–down cycles and the flow rate needs to be
determined on a case-by-case basis. The time for which matrix is exposed to feed
influences uptake and affects the ability to predict scale-up performance. It is
possible that mimicking a column contact time may be too time-consuming, and it
may be necessary to reduce the contact time and then apply correction factors.
Within this context, there are several considerations for pipette tips:

4.4.2 Contact Time

Since very short beds are used in pipette tips, the per-pass residence time is low
and unlikely to reflect column uptake. Although increasing the number of cycles
will increase adsorption, the chosen number needs to be practical to prevent
excessive sample pipetting. The cut-off point represents a compromise between
uptake and throughput, and it may be useful to create uptake curves to determine
percentage adsorption after successive feed application cycles.

4.4.3 Volumetric Flow Rate

Volumetric flow rates should be lower than normal robotic pipetting speeds i.e. up to
around 20 lL/s (compared with normal speeds of a few hundred lL/s). Depending
upon the resin volume and the volumetric flow rate, it therefore becomes possible to
realise linear velocities between a few hundred and a few thousand cm/h. Generally,
the superficial flow rate is set to around 300–1,500 cm/h, resulting in an equivalent
volumetric flow rate of around 5–20 lL/s.

4.4.4 Impact of Resin Bed Upon Aspirate–Dispense Operations

Compared with an empty tip, the packed bed at the base of the tip hinders liquid
flow and means that, at a specified robotic flow rate, it may not be possible to
pipette the full intended volume over the duration of the pipetting step. This can be
overcome by adding a delay time after aspiration/dispensing to allow the liquid to
‘catch up’ or by adjusting the robotic flow rate or pipetted volume to compensate.
The delay time is feed and matrix specific, and gravimetric analysis can be useful
in this context [36].
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4.4.5 Pipette Tip Example

Wenger et al. [36] used PhyNexus tips to mimic a chromatographic process used to
purify recombinant VLP. In the downstream processing following fermentation,
the cells were disrupted by high-pressure homogenisation, clarified by centrifu-
gation and then purified by cation exchange followed by ceramic hydroxyapatite
chromatography. Direct product titre analysis from the ruptured culture medium
was found to be inadequate, as it did not correlate well with the amount of protein
recovered after chromatographic purification. This necessitated an entire purifi-
cation sequence to obtain accurate data about how changing the fermentation
conditions affected downstream performance, using a two-step chromatographic
purification at 30- and 80-mL laboratory column scales for the CEX and CHT,
respectively. This scale meant that assessing the impact of changing fermentation
conditions involved considerable feed volumes, time and labour. Purification
throughput was increased by miniaturising the chromatography by three orders of
magnitude using robotically controlled chromatography tips packed with either 40
or 80 lL of the relevant resin. The tips and the laboratory columns were compared
by examining product recovery for a large number of fermentation conditions and
for multiple product types for both the cation exchange and the hydroxyapatite
steps. Despite the differences in scale and format, the tips were found to be
predictive of laboratory VLP recovery and purity while increasing throughput
tenfold. The comparison in recovery between the two scales showed close linear
agreement.

4.5 Miniaturised Packed Columns

4.5.1 Summary of the Technique

Whereas the dimensions and operating protocols for tips and plates are signifi-
cantly different from normal columns, the appearance, dimensions, matrix
arrangement and principles of operation of packed miniature columns are closer to
conventional columns. Very small columns of up to a few hundred microlitres are
available (up to 600 lL) and can be controlled manually or robotically. Miniature
columns have quite small heights (as low as a few millimetres) and are operated in
a single direction. Especially with the shortest bed heights, this can result in very
low residence times, and hence the potential effect upon breakthrough may be
important. A supplier of miniature columns is Atoll GmbH (Weingarten, Ger-
many), which provides pre-packed columns in a 96-array format that can be
organised as a series of blocks, each containing eight columns arranged side-
by-side. Different blocks can then be packed with different resins. Liquid that has
passed through the columns can be collected in 96-well plates for analysis, and if
required, individual liquid droplets can be pooled to create fractions for generation
of pseudo-chromatograms.
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4.5.2 Types of Miniature Columns

Centrifuge Columns

There are three types of miniature column supplied by Atoll. The first is operated
centrifugally, with a reservoir located above the resin bed and through which
buffers or feed solutions can be spun. The size of the reservoir varies according to
the resin bed volume underneath; e.g. the 50-lL bed has a 315-lL reservoir,
whereas the 200-lL bed has a 230-lL reservoir. Such columns are best employed
where there are many samples available for processing but where robotic platforms
are unavailable. Liquids are driven through at between a few hundred and a few
thousand rpm (with recommended values of 1,000 rpm for 60 s, although the
impact of this upon residence time needs to be borne in mind). Centrifuge columns
enable very fast initial screening. It is important to check that the centrifuge bowl
in question can accommodate the full height and footprint of the column stack.

Pipette Columns

The second column type relies upon manual or motorised handheld pipetting to
pass liquid through a bed using a standard pipette tip and an adaptor at the top of
the column which forms a seal around the tip. The recommended dispense rate is
around 0.5 mL/min. This format is useful when one needs to regulate liquid flow
through the bed but where automated workstations are unavailable and again are
useful for early-stage resin screening. ‘Starter kits’ are also available, being
designed for simultaneous screening of eight different resins in pipette-compliant
miniature columns.

Robotic columns

The third column type is controlled robotically, with an inlet adaptor enabling a
reversible seal to be formed with fixed tips to introduce buffers or feed. The
column inlet possesses a conical duct which enables the fixed tip to be directed
into the column inlet, where an O-ring ensures a tight seal. A frit is located at the
top of the bed. The volume of liquid that can be delivered in one go is limited by
the pipetting capacity of each liquid handling channel, and where the total volume
exceeds the channel capacity, several cycles are used. Fractionation in microtitre
plates can be achieved by automation, with devices used to position a plate
underneath the column stack to collect liquid droplets.
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4.5.3 Fraction Collection

When collecting fractions using the robotic shuttle set-up, the exact droplet vol-
ume can vary within and between studies depending upon the rate of liquid flow,
geometry of the outlet piece on the column and buffer properties such as interfacial
liquid tension [34]. Well-to-well variations will cause considerable noise, and so
liquid sensing on the robot is useful to determine the real well volumes and so
correct data values such as absorbance measurements for the actual liquid path
length. Furthermore, if one seeks to quantify the droplet concentration by spec-
trophotometry and depending on the number of droplets collected per fraction,
different types of collection plates may be needed to increase the height of the
liquid column to obtain an adequate signal.

4.5.4 Hold-Up and Wall Effects

It is important to note that dead volumes upstream and downstream are particularly
significant for very small beds such as miniature columns, since they can dominate
peak retention and dispersion. Similarly, one other potentially important factor for
an accurate miniature column (and pipette tip) separation that seeks to be poten-
tially representative of a larger-scale column is the impact of the wall effect.

4.5.5 Miniature Column Examples

Wiendahl et al. [34] used a robot combined with 200-lL miniature columns to
generate breakthrough and elution curves [35]. Breakthrough curves were gener-
ated and fractions were collected in a 96-well plate. Miniature columns were also
operated on the ÄKTA chromatography pumping system, and scale-up runs were
performed using a 5-mm-diameter, 10-cm-long column on the same system. The
linear gradients on the ÄKTA used the same length, slope and initial concentra-
tions as the step gradients on the robot. Generally, dynamic capacities reflect the
quantity of a target molecule bound to a resin at a specific percentage on the
breakthrough curve, and for those molecules which are highly valuable such as
those found in the biopharmaceutical arena, a typical value quoted is at 10 %
breakthrough or lower. Breakthrough curves were generated on miniature columns
for bovine serum albumin when applied to a range of ion exchangers. The
breakthrough curve method was shown to be acceptably reproducible

Elution studies involved separating three different protein mixtures. The first
was BSA and Lipolase, where an identical sample load was used at scale-down
and scale-up. After loading the protein solution, which contained 2 mg/mL BSA
and 2 mg/mL Lipolase, a complex elution gradient was used consisting of three
phases, each with different buffer concentrations and numbers of column volumes.
The elution time of the BSA elution peak maxima in the miniature column mat-
ched closely with that of a larger column, and the use of successive incremental
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elution steps at scale-down provided an adequate mimic of the linear gradient
established over the larger column when operated on the ÄKTA. In the second
study, separation of human growth hormone (hGH) and a precursor was attempted.
This is challenging due to the structural similarity between the proteins as well as
the use of only very small feed quantities, meaning that any spectrophotometric
quantification may experience limit-of-detection problems. Elution was performed
by an increasing salt gradient, and different resins and elution buffers were tested.
The shape and position of the UV peaks using the HTS robot compared well with
the curves produced by the miniature column and the laboratory column on the
ÄKTA. Finally, an insulin precursor and a process-relevant contaminant were
separated. Retention volumes and resolution were studied using an elution gra-
dient, and this study showed general agreement in peak shape and position pro-
duced by the robotic separation compared with the ÄKTA.

In another case, Susanto et al. [29] used scale-down experiments to populate
models that predicted scale-up column outcomes in which lysozyme adsorbs to a
strong cation exchange matrix. This study looked at the suitability of HTS (batch
uptake and miniature columns) to determine parameters for a lumped rate column
model that accounted explicitly for axial dispersion effects while lumping other
phenomena into a rate coefficient. These authors studied binding behaviour at
different ionic strengths and determined isotherm parameters on a robot. Studies
were conducted in a filter plate prepared with resin from the ResiQuot device. The
model was validated by using it to predict the behaviour of a preparative column.

4.6 Microfluidic Chromatography

Especially when operated on robotic platforms, none of the microscale technologies
discussed above provide a true representation of the continuous liquid flow obtained
in a normal column. Microfluidic chip technology provides one possible route for
achieving this. Shapiro et al. [24, 25] described the fabrication and flow character-
isation of a microfluidic chromatography device for evaluating adsorption and res-
olution-based separations during early development. These authors developed a
system for generating a packed IEX microfluidic column containing a 1-cm-high,
1.5-lL bed. This consisted of a glass chip with a 10-mm-long column into which
compressible 6 % agarose beads were packed in a two-bead-thick layer. This was
compared with a conventional-scale laboratory column with respect to the packing
quality and similarity of breakthrough and elution profiles for egg proteins. Break-
through curves were generated using a fluorescently labelled protein at linear
velocities that fell within the range used in normal columns (between 60 and 270 cm/
h). Binding capacities were found to be similar to those achieved in conventional
laboratory beds, and microfluidic gradient elutions equated well with laboratory
columns that were 1,000 times larger. Advantages of this method included a
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reduction in the feed protein requirement by over 100-fold for breakthrough
measurements and 3,000-fold for elution measurements between microfluidic and
30-mL laboratory columns.

5 Related Issues and Challenges

5.1 Analytics

Although scale-down work (especially that used robotically in a high-throughput
format) reduces manual workload and increases throughput, this has the potential
to shift the bottleneck away from process characterisation and over to the analysis
[7]. To achieve the complete throughput benefits offered by high-throughput
techniques requires one to address the potential impact of the analytical bottleneck.
Depending upon the method used and the total number of samples, it is possible
for the analysis to take longer than the primary high-throughput characterisation
itself. In these circumstances, it is necessary to reduce analytical timescales as far
as possible, and suitable approaches include:

• Using previously gathered knowledge to focus scale-down studies towards those
regions of a search space that are most likely to be process-relevant, thus
improving the intrinsic value of any analysis carried out in those areas;

• Stratifying the analysis by performing coarse screens such as simple absorbance
measurements during initial studies and switching later to more rigorous, time-
consuming techniques such as HPLC or ELISA for more detailed assessment of
specific product or impurities. This minimises the upfront analytical burden and
means that only the most feasible regions are subject to the most time-consuming
assays;

• Managing data generated by the use of high-throughput analytics in an efficient
way is important; For example, the 96-well batch format is compatible with a
number of medium-throughput analytical devices such as plate readers for rapid
spectrophotometric measurements. As a consequence, however, scale-down
chromatography may generate very large, complex data sets that require effi-
cient methods for their collection, storage and use. Failure to do so may over-
whelm the capacities that a company has for analysing samples and archiving
the data [1, 18];

• Employing high-throughput, parallel assays will become advantageous; com-
mercial systems for doing this include microfluidic gel electrophoresis, chro-
matographic or ELISA-based assays. Since the ultimate aim of scale-down
chromatography is to link such devices with scale-down mimics of other steps
and since the smallest devices may use only minimal feed volumes themselves,
significant loss to analysis or hold-up will mean that insufficient amounts remain
to process in scale-down mimics of subsequent operations. This can force one to
repeat a study to generate enough feed for the next step downstream. By
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reducing analyte volumes, microfluidics may help to facilitate integrated
micro-approaches for sequences of process steps;

• Automating assays wherever possible can improve data consistency and release
operator time to perform other tasks such as data evaluation. Robots can also be
used to perform preparative steps such as buffer make-up, potentially on the
same system used to execute the main microscale experiment.

One example where assay automation and parallelisation can be beneficial lies
in antibody titre determination by Protein G HPLC. HPLC systems work in a serial
fashion, meaning that the timescales involved can become long. Although com-
mercial equipment is available for processing many samples at the same time, this
requires standalone and costly equipment. Especially if a high-throughput screen is
conducted on a robotic system, then the use of a more integrated form of analysis
would be preferential such that the analysis takes place on the same robot
(reducing down-time by starting analysis directly after the main experiment and
thus returning data to the end user more rapidly). A recent study developed a high-
throughput antibody assay as a replacement for HPLC using an eight-channel
liquid handling robot to manipulate chromatography pipette tips containing 40 lL
of Protein G [5]. The study evaluated a number of analytical properties, including
range and detection limits, linearity, accuracy, precision and specificity. After this,
the method was tested by quantifying the titre in an ovine feedstock used com-
mercially for making an approved therapeutic product. The average titre calculated
using the chromatography tips was comparable to that determined by HPLC, but
the eight-channel robotic tip approach delivered results in less than 40 % of the
HPLC time. The potential for further time savings by using higher-capacity robots
was also identified, with a 96-channel pipetting system offering the possibility of
saving approximately 90 % of the time. Integrating the analytical set-up together
with the main scale-down experiment such as robotic systems thus offers the
potential for ‘walkaway’ automation.

5.2 Experimental Design Methods

5.2.1 Factorial and Iterative Designs

Appropriate experimental design techniques are needed for HTS to maximise
search space coverage, although this must be balanced with the amount of labo-
ratory effort required. Although it is possible to carry out ‘brute force’ experi-
mentation by HTS, this would consume large quantities of materials, time and
money and result in a considerable analytical workload. A better approach is to
reduce the experimental requirements to the minimum needed to deliver the
required process knowledge in a timely fashion. Thus test conditions can be
chosen to provide approximately the same level of information as a brute force
design but with a far lower experimental burden; For example, factorial designs
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and response surface methods are used commonly to explore a search space. An
initial design such as a fractional two-level factorial with replicate centre points
might be sufficient to indicate where an optimal area might exist for closer
examination by full factorial or response surface methods. There are many choices
of design, and the selection of the number and location of test conditions must
strike a balance between the depth of information on one hand and the time needed
to gather the data on the other [19].

Ideally, experimental designs should minimise the total number of conditions
that need to be evaluated, allowing a researcher to arrive at an optimum by
selecting test conditions judiciously while still delivering sufficient process
knowledge to enable efficient chromatographic operation [30]. One way to do this
is to ‘step’ through a design space using the information gathered from previously
tested conditions in order to determine the most suitable direction in which to
continue searching for an upward gradient in the underlying response surface
towards a good operating region. This can help to drive the experimental focus
towards more desirable regions and so minimise the total number of experiments
that are conducted before an optimum is found. One such technique is the simplex
algorithm, which offers a rapid alternative to more conventional factorial designs
during the very early stages of development. Design of experiments (DoE)
involves regressing models to data values, but if the fitness of the regressed
equation is found to be statistically insufficient, then additional laboratory work
has to be carried out to supplement the existing data set and therefore provide more
information to enable the identification of a more suitable regression model. The
requirement for additional work may become difficult during very early devel-
opment when feed material availability is highly limited. The use of such resources
may be a particular wastage if a large number of the tested conditions transpire to
be so highly sub-optimal that they are of no use whatsoever in defining a potential
bioprocess design space for subsequent exploration at larger scales. The simplex
method is different in that it uses accumulated information from conditions that
have been tested already to direct its focus away from poor areas of the search
space and instead towards better areas. A study conducted recently described the
use of the simplex method in a chromatography case study [6]. When conventional
two-level and face-centred central composite design models were created for the
data sets, they were found to fit the data poorly, prompting further experiments to
provide additional data in order to verify the location of the robust regions in the
search space. By comparison, the simplex algorithm identified a good operating
point using up to 70 % fewer conditions. Such methods therefore have some value
during the very early stages of process development when resources are highly
constrained and thus were it is necessary to extract as much value from the
experimental studies as possible. An additional point to note is that the simplex
method is sequential and therefore does not benefit directly from the parallel
processing capabilities of a high-throughput screening device, but is relevant for
systems where analytical timescales are long and so where it is advantageous that
the majority of tested conditions should head successively towards a viable
potential operating position. It should be noted, however, that the simplex method
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is not necessarily suitable in every situation, and other design-of-experiments
methodologies may be more suitable in those cases. The simplex method is
essentially suited to early-stage process development when trying to identify a
feasible operating point that merits further characterisation in later studies. Sub-
sequent work (e.g. upon scale-up in later development) is perhaps best conducted
using more conventional factorial design models such as two-level factorials or
response surface methodologies to provide the type of robust design space char-
acterisation that ends up supporting a regulatory filing. Table 1 summarises the
circumstances in which one would use the simplex method versus an alternative.

5.2.2 Genetic Algorithm-Based Methods

There are other ways of structuring an experimental campaign, such as genetic
algorithms, which are suitable for complex problems involving numerous variables
and which are robust in the presence of experimental noise. Susanto et al. [30]
proposed a way of performing chromatographic process optimisation at very small
scales in a resource- and time-efficient manner by using closed-loop (i.e. no
manual intervention) and semi-closed-loop strategies that integrated HTS robotics
together with genetic algorithms. The procedure carries out process exploration,
data analysis and optimization iteratively and was illustrated through two IEX case
studies. The first was a closed-loop case looking at the capture of lysozyme from a
solution also containing cytochrome and focussed upon how varying the equili-
bration buffer pH and NaCl concentration affected capacity and selectivity. The
study was conducted in a robotically controlled batch plate to enable prediction of
a 1-mL column. Resin slurries were aliquoted using the Atoll ResiQuot device to
provide a 7.7 lL settled resin volume per well. Closed-loop optimisation was used
to drive the search, and in spite of analytical noise, successive iterations enabled
the search to converge to a global optimum within 4 h (96 experiments). After this,
optimal and sub-optimal conditions identified by HTS were verified in a 1-mL bed.

The second study involved an interesting approach to predict the optimal elu-
tion gradient shape. The method involved deconvoluting the A280 ‘total’ protein
absorbance signal into individual component peaks, alongside the use of mass
balance and prior user knowledge, to distinguish the position and size of individual
peaks for a three-protein mixture and so assess peak resolution. The study used
robotically operated 200-lL miniature columns to look at the optimisation of the
shape of a multilinear elution gradient consisting of two different linear slopes in
order to maximise peak resolution for a mixture containing ribonuclease, cyto-
chrome and lysozyme. Eight columns were run simultaneously using different
elution conditions, and a 96-well UV-transparent plate was used to collect frac-
tions by moving the plate underneath the outlet of the column row. The two
successive linear slopes were converted into a succession of discrete step gradients
that incremented the eluate salt concentration appropriately. The elution gradient
was optimized by using a genetic algorithm, but instead of using a fully automatic
closed loop, this second example involved a semi-closed case that demonstrated
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the utility of integrating user expertise into the optimization. A semi-closed loop
enables data evaluation and optimisation during a GA iteration to be regulated by
an operator to allow process understanding to be injected where appropriate. Thus,
the initial experiments defined for the first GA iteration were chosen in part by the
user to ensure good coverage of the entire variable range and to ensure that a large
number of gradient shapes were evaluated during the study in the search for the
optimal multilinear gradient shape.

Table 1 Situations in which to use the simplex method and where to employ an alternative

Issue Use the simplex algorithm Use an alternative

Stage of
development

Deploy during early process
development when the main aim
is to head in the right direction
within a design space

Use a factorial design later in
process development, either as
part of a design space
submission to a regulator, or as
the basis of a model for large-
scale process control

Experimental cost
versus value of
process
understanding

Use the simplex method when it is
necessary to extract process
knowledge from very small
quantities of material, thus
maximising the value of every
experiment early in
development. Alternatively, if a
good scale-down model does not
exist and hence when one is
relying upon time- and resource-
consuming operations e.g. at a
large laboratory scale, then the
simplex algorithm allows one to
make best use of that
experimental effort

If feed material availability is not an
issue, or when achieving a good
result from every data point is
not as critical e.g. when one can
afford the occasional misleading
result or experimental failure,
the simplex approach may not
be as relevant; For example, if
highly parallelised microscale
operation on robotic platforms is
being considered, typically this
will generate large quantities of
data and the general trends
within the resulting response
surfaces may be sufficient to
overcome a small number of
failures

Analytical burden When the analytical burden is
significant or time-consuming, it
may be necessary to reduce the
total number of test conditions
to avoid bottlenecks. Thus again
it becomes necessary to
maximise the value of every
data point in an experiment and
the simplex technique can
facilitate this aim

If analysis is fast enough that one
does not need to resort to using
only the bare minimum number
of runs to prevent throughput
bottlenecks, then the simplex
technique may not be as
pertinent
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6 Conclusions

This chapter has reviewed a range of resource-efficient methods for the extreme
scale-down development of chromatographic separations along with selected case
study examples. Such methods allow engineers to obtain information early in
development about how a large-scale process could perform. The outcome of a
scale-down device can be either information about general trends across a search
space or the provision of more accurate information for predicting scale-up per-
formance. Direct scale-up prediction will require knowledge of the large-scale
engineering environment to be replicated satisfactorily in the small devices. This
may be possible by direct calibration of the scale-down devices, or it may also
need the use of mathematical modelling to adjust scale-down outputs. Of addi-
tional importance are the principles of parallelisation and automation, which
increase throughput significantly and thus allow many more options to be con-
sidered than might otherwise be the case. This increases process confidence and
understanding and allows a rational basis for choosing a specific process design,
thus enabling efficient and cost-effective column development.
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monitored and controlled tightly. Mechanistic models should be combined with
proper model analysis tools, such as uncertainty and sensitivity analysis. When
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1 Introduction

The pharmaceutical industry is changing rapidly nowadays. One important change,
compared with the situation 10 or 20 years ago, is undoubtedly the increased focus
on development of more efficient production processes. The introduction of pro-
cess analytical technology (PAT) by the Food and Drug Administration [2] forms
an important milestone here, since its publication ended a long period of regulatory
uncertainty. The PAT guidance indeed makes it clear that regulatory bodies are in
favor of more efficient production methods, as long as a safe product can be
guaranteed. This opens up new and exciting possibilities for innovation in phar-
maceutical production processes.

One of the central concepts in PAT is the design space, which is defined as ‘‘the
multi-dimensional combination of critical input variables and critical process
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parameters that lead to the right critical quality attributes’’ [2]. The term ‘‘critical’’
should be interpreted as ‘‘having a significant influence on final product quality.’’
Changing the process within the design space is therefore not considered as a
change. As a consequence, no regulatory postapproval of the process is required
for a change within the design space. Almost naturally, this opens up the possi-
bility of increased use of optimization methods for pharmaceutical processes in the
future, methods that have been used for a long time in, for example, the chemical
industry [3].

Small-molecule (MW \ 1,000) drug substances (APIs, NCEs) are typically
produced via organic synthesis. In such a production system, the available process
knowledge is often relatively large. Process systems engineering (PSE) methods
and tools—especially those relying on mechanistic models to represent available
process knowledge—are therefore increasingly applied in the frame of pharma-
ceutical process development and innovation of small-molecule drugs [4], with the
aim of shortening time to market while yielding an efficient production process. In
essence, mechanistic models rely on deterministic principles to represent available
process knowledge on the basis of mass, energy, and momentum balances; given
initial conditions, future system behavior can be predicted.

It is, however, not the intention here to provide a detailed review on mecha-
nistic models for biobased production processes of pharmaceuticals. There are
excellent textbooks and review articles on the general principles of mechanistic
modeling of fermentation processes [5–8], biocatalysis [9, 10], and mammalian
cell culture [11].

Biotechnology research has resulted in a new class of biomolecular drugs—
typically larger molecules, also called biologics or NBEs—which includes
monoclonal antibodies, cytokines, tissue growth factors, and therapeutic proteins.
The production of biomolecular drugs is usually complicated and extremely
expensive. The level of process understanding is therefore in many cases lower,
compared with small-molecule drug substances, and as a consequence, PSE
methods and tools relying on mechanistic models are usually not applied to the
same extent in production of biomolecular drugs, despite the fact that quite a
number of articles have been published throughout the years on the development
of mechanistic models for such processes.

This chapter focuses on the potential use of mechanistic models within bio-
based production of drug products, as well as the use of good modeling practice
(GMoP) when using such mechanistic models [12]. A case study with the yeast
model by Sonnleitner and Käppeli [1] is used to illustrate how a mechanistic
model can be formulated in a well-organized and easy-to-interpret matrix notation.
This model is then analyzed using uncertainty and sensitivity analysis, an analysis
that serves as a starting point for a discussion on the potential application of such
methods. Strategies for mechanistic model-building are highlighted in the final
discussion.
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2 Case Study: Aerobic Cultivation of Budding Yeast

Saccharomyces cerevisiae is one of the most relevant and intensively studied
microorganisms in biotechnology and bioprocess engineering; For example, out of
151 recombinant biopharmaceuticals that had been approved by the FDA and
EMEA in January 2009, 28 (or 18.5 %) were produced in S. cerevisiae [13].
Sonnleitner and Käppeli [1] proposed a widely accepted mechanistic model
describing the aerobic growth of budding yeast, and this model is used here to
exemplify how a mechanistic model of a bioprocess can be applied to create more
in-depth process knowledge. Optimally, the process knowledge should be trans-
lated into a mechanistic model, and the model should be updated whenever
additional details of the process are unraveled. This model should capture the key
phenomena taking place in the process, and be further employed in the develop-
ment of process control strategies.

However, when developing and using mechanistic models, reliability of the
model (hence the credibility of model-based applications) is an important issue,
which needs to be assessed using appropriate methods and tools including iden-
tifiability, sensitivity, and uncertainty analysis techniques. Unfortunately, literature
reporting on mechanistic model developments often lacks the results of such
analysis—confidence intervals on estimated parameters, for example, are only
sporadically reported—and as a consequence it is not possible to conclude about
the quality of the model and its predictions. Seen from a PAT perspective, it is of
utmost importance to document that one has constructed a reliable mechanistic
model; For example, in case this model would be used later for simulations to help
in determining where to put the borders of the design space, it would be difficult to
defend the resulting design space—for example, towards the FDA—in case the
reliability of the model cannot be documented sufficiently.

One of the challenges in modeling is the identifiability problem, defined as
‘‘given a set of data, how well can the unknown model parameters be estimated,
hence identified.’’ Typically, the number of parameters in a mechanistic model is
relatively high, and therefore it is often not possible to uniquely estimate all the
parameters by fitting the model predictions to experimental measurements. An
indication of the parameters that can be estimated based on available data can be
obtained by performing an identifiability analysis prior to the parameter
estimation.

Furthermore, the model predictions will depend on the values of all parameters.
Some of the parameters will, however, have a stronger influence than others. An
uncertainty and sensitivity analysis can be performed to determine which are the
parameters whose variability contributes most to the variance of the different
model outputs.

In this case study, a systematic model analysis is performed following the
workflow presented in Fig. 1. This workflow is rather generic, and could easily be
transferred to another case study with a similar model.

140 R. Lencastre Fernandes et al.



2.1 Model Formulation

Under aerobic conditions, budding yeast may exclusively oxidize glucose (respi-
ratory metabolism), or simultaneously oxidize and reduce glucose (fermentative
metabolism) if the respiratory capacity of the cells is exceeded. The described
overflow metabolism is commonly referred to as the Crabtree effect. Cells pref-
erably oxidize glucose, as the energetic yield is more favorable for respiration than
fermentation. In case the respiratory capacity is reached, the excess of glucose
(i.e., overflow of glucose) is reduced using fermentative pathways that result in the
production of ethanol. Moreover, in a second growth phase, yeast will then con-
sume the produced ethanol, but only after depletion of glucose, as the latter
inhibits the consumption of any other carbon source. Also acetate and glycerol are
formed and consumed, although the corresponding concentrations are typically
much lower than for ethanol.

The Sonnleitner and Käppeli [1] model describes the glucose-limited growth of
Saccharomyces cerevisiae. This model is able to account for the overflow
metabolism, and to predict the concentrations of biomass, glucose, ethanol, and
oxygen throughout an aerobic cultivation in a stirred tank reactor. Acetate and
glycerol are not included for simplification purposes. The model relies on three
stoichiometric reactions describing the growth of biomass on glucose by respira-
tion (Eq. 1) and by fermentation (Eq. 2), as well as the growth of biomass on
ethanol by respiration (Eq. 3). The stoichiometry of the three different pathways
can be summarized in a matrix form (Table 1) describing how the consumption of
glucose, ethanol, and oxygen are correlated with the production of biomass and
ethanol, i.e., the yields of the reactions. The mol-based stoichiometric coefficients
can be converted into the corresponding mass-based yields, e.g., YXG

Oxid = b 9

MW(biomass)/MW(glucose).

C6H12O6 þ aO2 þ b 0:15 NH3½ � ! bC1H1:79O0:57N0:15 þ cCO2 þ dH2O ð1Þ

C6H12O6 þ g 0:15 NH3½ � ! gC1H1:79O0:57N0:15 þ hCO2 þ iH2O þ jC2H6O

ð2Þ

Fig. 1 Schematic workflow for the model analysis
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C6H6Oþ kO2 þ l 0:15 NH3½ � ! lC1H1:79O0:57N0:15 þ mCO2 þ nH2O ð3Þ

For each pathway, a mass balance can be established for each atomic element
(e.g. C or N). To solve such elemental balances for carbon, hydrogen, and oxygen,
one stoichiometric coefficient for each pathway has to be assumed. Since the
biomass yield coefficients are often easily estimated from experimental data, they
are typically the ones that are assumed. Therefore, only the coefficients b, g and l,
or the corresponding mass yields YXG

Oxid, YXG
Red, and YXE will be considered as model

parameters; i.e., the other stoichiometric coefficients are fixed based on Eqs. 1–3.
Furthermore, a process matrix can be used to describe the rates of consumption

and production of each of the model variables (glucose, ethanol, oxygen, and
biomass), as well as the fluxes in each pathway. Details on the use of this matrix
notation are provided by Sin and colleagues [14]. The interested reader can find
additional details on elemental mass and energy balances applied to fermentation
processes elsewhere [15, 16].

In the case of the model used as an example here, the total glucose consumption
and ethanol consumption rates (when considered individually) are mathematically
described using Monod-type kinetics (Eqs. 4–6). The maximum uptake rates for
glucose, ethanol, and oxygen (ri,max) are model parameters, and they are character-
istic of the S. cerevisiae strain being used. The same goes for the substrate saturation
constants: KG, KE, and KO. The maximum oxygen uptake rate (rO,max) corresponds to
the respiratory capacity, as it reflects the maximum rate for oxidation of glucose or
ethanol when any of these carbon sources is in excess. The ethanol uptake rate
includes a term accounting for glucose repression; i.e., ethanol consumption is only
observed for low concentrations of glucose. The strength of inhibition (i.e., how low
the glucose concentration should be before ethanol consumption is allowed) is
defined by the inhibition constant Ki. The specific growth rate of biomass is defined as
the sum of the growth resulting from each pathway, and is estimated based on the
yield of biomass on the substrate and the corresponding uptake rate (Eq. 7).

rTotal
G ¼ rG;max

G
G + KG

¼ rOxid
G þ rRed

G ð4Þ

Table 1 Stoichiometric matrix describing aerobic growth of budding yeast

Component i ? C1

Glucose
C2

Ethanol
C3

Oxygen
C4

Biomass

Symbols G E O X
Units mol l-1 g l-1 mol l-1 g l-1 mol l-1 g l-1 C-mol l-1 g l-1

Process j ;
Biomass growth by glucose

oxidation (Eq. 1)
-1 -1 0 0 a YOG b YXG

Oxid

Biomass growth by glucose
reduction (Eq. 2)

-1 -1 j YEG 0 0 g YXG
Red

Biomass growth by ethanol
oxidation (Eq. 3)

0 0 -1 -1 k YOE l YXE
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rE ¼ rE;max

E
Eþ KE

Ki

Gþ Ki
ð5Þ

rO ¼ rO;max

O
Oþ KO

ð6Þ

lTotal ¼ þYOxid
XG � rOxid

G þ YRed
XG � rRed

G þ YXE � rOxid
E ð7Þ

The rate of oxidation and the rate of reduction of glucose are defined based on
the maximum oxygen uptake rate: if the oxygen demand that is stoichiometrically
required for oxidation of the total glucose flux (YOG 9 rG

Total) exceeds the max-
imum oxygen uptake rate (rO,max), the difference between the two fluxes corre-
sponds to the overflow reductive flux. With regard to the oxidation of ethanol, the
observed rate of ethanol oxidation depends on the ethanol availability (Eq. 5) and
it is further limited by the respiratory capacity: not only the maximum capacity of
the cell, but also the capacity remaining after considering metabolism of glucose
(Table 2).

In addition to the reactions taking place in the cells, oxygen is continuously
supplied to the bioreactor. This supply is described based on the mass transfer
coefficient (kLa) and the difference between the dissolved oxygen concentration
(O) and the saturation concentration of oxygen in water (O*) as a driving force.
kLa is dependent on the aeration intensity and the mixing conditions in a given
fermentor. It is also dependent on the biomass concentration, although this
dependence is often disregarded. The rates for each component can be obtained
from the process model matrix (Table 2) by multiplying the transpose of the
stoichiometric matrix (Z’) by the process rate vector (q): rm;1 ¼ Z0nxm � qnx1,
where m corresponds to the number of components (or model variables) and n is
the number of processes. In Table 3, a nomenclature list of vectors and matrices is
presented.

The model matrix in Table 2 provides a compact overview of the model
equations. In the example here, it contains information about the biological
reactions and the transfer of oxygen from the gas to the liquid phase. Of course,
depending on the purpose of the model, the model matrix could be extended with
additional equations, for instance, aiming at a more detailed description of the
biological reactions, e.g., by including additional state variables, or aiming at the
description of the mass transfer of additional components, e.g., CO2 stripping from
the fermentation broth. Sin and colleagues [14] provided an example of the
extension of the model matrix with chemical processes for the kinetic description
of mixed weak acid–base systems. The latter is important in case pH prediction is
part of the purpose of the model. In the work of Sin and colleagues [14], the yield
coefficients are all part of the stoichiometric matrix. In our case here, an alternative
rate vector is presented, where all rates are normalized with regard to glucose.
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2.2 Parameter Identifiability Analysis

The model described in the previous sections has four variables—glucose (G),
ethanol (E), oxygen (O), and biomass (X)—and 11 parameters. In addition, the
oxygen saturation concentration in water (at growth temperature) is necessary for
solving the model. A list of the parameters and their descriptions is provided in
Table 4.

The maximum specific growth rate on ethanol ðlE;maxÞ is defined as the product
of the yield of biomass on ethanol ðYXEÞ and the maximum specific ethanol uptake
rate ðrOxid

E;maxÞ. For consistency between parameters, the ethanol specific uptake rate
is used as a parameter in this example.

The number of parameters is considerably larger than the number of model
variables (or outputs), which is typical for this type of model. It is therefore
questionable whether all parameters can be estimated based on experimental data,
even if the four model variables were to be measured simultaneously. This is the
subject of identifiability analysis, which seeks to identify which of the parameters

Table 3 Nomenclature list
of matrices and vectors used
in the model formulation and
model analysis

Unit Description

Z Stoichiometric matrix
q Process rate vector
h Vector of model parameters
Ssc Scaled sensitivity matrix
sj Column vector of the sensitivity matrix:

corresponding to sensitivity
of the various model outputs to the parameter j

sij Scaled sensitivity of the output i to the parameter j
dj Importance index of parameter j
sc Scaling factors

Table 4 Model parameters, corresponding units, and numerical values [12]

Parameter Value Units

rG;max Maximal specific glucose uptake rate 3.5 g G g-1 X h-1

rO;max Maximal specific oxygen uptake rate 8 9 10-3 mol O g-1 X h-1

YOxid
XG

Yield of biomass on glucose (oxidation) 0.49 g X g-1 G

Y red
XG

Yield of biomass on glucose (reduction) 0.05 g X g-1 G

YXE Yield of biomass on ethanol 0.72 g X g-1 E
lE;max Maximal specific growth rate on ethanol 0.17 h-1

KG Saturation parameter for glucose uptake 0.5 g l-1

KO Saturation parameter for oxygen uptake 1 9 10-4 g l-1

KE Saturation parameter for ethanol uptake 0.1 g l-1

Ki Inhibition parameter: free glucose inhibits ethanol uptake 0.1 g l-1

kLa Mass transfer coefficient 1,000 h-1
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can be estimated with high degree of confidence based on the available experi-
mental measurements.

The main purpose of such an identifiability analysis is in fact to increase the
reliability of parameter estimation efforts from a given set of data [17]. One
method available to perform such an analysis is the two-step procedure based on
sensitivity and collinearity index analysis proposed by Brun and colleagues [18].
Accordingly, the method calculates two identifiability measures: (1) the parameter
importance index (d) that reflects the sensitivity of the model outputs to single
parameters, and (2) the collinearity index (c) which reflects the degree of near-
linear dependence of the sensitivity functions of parameter subsets. A parameter
subset (a combination of model parameters) is said to be identifiable if (1) the data
are sufficiently sensitive to the parameter subset (above a cutoff value), and (2) the
collinearity index is sufficiently low (below a cutoff value).

2.2.1 Local Sensitivity Analysis: Parameter Importance Indices d

The local importance of an individual parameter to a model output for small
changes (Dh) in the parameter values (h) at a specific location (h0) can be mea-
sured by the estimation of a dimension-free scaled sensitivity matrix Ssc = {sij},
where the index i refers to a specific model variable (output) and j denotes the
model parameter. For further details, the reader is referred to the original paper of
Brun and colleagues [18]. The mean squared norm of column sj, denoted by dj, is a
measure of the importance of parameter hj (see Eqs 8–10). A large norm indicates
that the parameter is identifiable with the available data if all other parameters are
fixed. A parameter importance ranking can be obtained by ranking the parameters
according to their d indices. The lower the value of d, the lower the importance of
that parameter.

For this first analysis, the parameter values (Table 4) provided in the original
paper [1] are used as nominal values at which sensitivity functions are calculated.
The scaled sensitivity matrix S and the resulting rank of d importance indices were
calculated using Eqs. 8–10, and are graphically compared in Fig. 2. It is note-
worthy that the d indices are very sensitive to: (1) the choice of variation range
defined for each parameter (Dh), (2) scaling factors (sc) used to calculate the
sensitivity matrix, and (3) the original set of parameters (h0), naturally as this is a
local analysis. In this example the sc were defined as the mean of the experimental
observations for each variable.

vij ¼
ogiðhjÞ

ohj

����
h�h0

ð8Þ

Sij ¼ vij
Dhj

SCj
ð9Þ
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dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

s2
ij

s
ð10Þ

The results of the parameter significance ranking indicate that the yield coef-
ficient YXG

Oxid is the parameter that most affects all four model outputs. Variations in
the maximum uptake rates will also have a significant effect on the model outputs.
As may be expected, the glucose maximum uptake rate is most significant with
regard to the model prediction for glucose, whereas the maximum uptake rate of
ethanol is most important for the prediction of ethanol and dissolved oxygen.

Fig. 2 Parameter importance indices (d) for the four model variables: glucose, ethanol, dissolved
oxygen and biomass
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The prediction of biomass is also greatly affected by the yield of biomass on
ethanol, in addition to the yield on glucose (oxidative metabolism). The impact of
the saturation constants is rather limited for any of the model variables.

2.2.2 Identifiability of Parameter Subsets: Collinearity Index cK

In addition to understanding the importance of individual parameters to the model
output, it is necessary to take the joint influence of all parameters into account as
well ([h1, …, hj=J]). If columns sj are nearly linearly dependent, the change of a
parameter hj can be compensated by a change in the other parameter values. This
means that the parameters [h1, …, hJ] are not uniquely identifiable.

The collinearity index cK assesses the degree of near-linear dependence
between a subset of K (2 B K B J) parameters, i.e., columns of the scaled sen-
sitivity matrix.1

A high value of a collinearity index indicates that the parameter set is poorly
identifiable. In practice, cK is calculated for all subsets of K parameters out of the
11 parameters and is plotted in Fig. 3. Also the subset size for each case is shown.
In this case, a subset was considered identifiable if the corresponding collinearity
index was smaller than 5. This threshold has to be defined a priori. Brun and
colleagues [18] suggested as a rule of thumb that this threshold should lie in the
range 5–20, where the lowest collinearity index corresponds to the strictest cri-
terion. In practice, this decision on the threshold value is dependent on prior
experience of the model user, and thus an iterative process.

All the model variables were considered in this analysis, implying as well that
all could be measured experimentally. As illustrated in Fig. 3, a maximum of eight
parameters can be identified, and the collinearity index increases with the number
of parameters. The maximum collinearity index observed for combinations of
eight parameters was 22.34, while the best identifiable sets of eight parameters
correspond to a cK value of approximately 2.65. These parameter subsets are listed
in Table 5.

It is indeed known that a change in the maximum uptake rate of glucose can be
compensated with a change of biomass yield coefficients. Also, based on the model
structure, it is clear that changes in yields for the oxidative and reductive con-
sumptions of glucose can compensate each other. It is therefore not surprising that
the parameter subsets that have higher collinearity index include these parameters.
When comparing the subset of six parameters with the lowest collinearity index
(last row in Table 5) with the ‘‘best’’ subset of eight parameters (shaded row in
Table 5), the two parameters that have been removed in the subset of six
parameters are the maximum uptake rates of ethanol and oxygen.

1 Further discussion and equations are provided in the paper by Brun et al. (2002).
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The collinearity between the uptake rates and the yield coefficients explains
why, even though they are the parameters with greatest importance for the model
outputs (Fig. 2), they are not all included in the identifiable parameter subsets.

2.3 Parameter Estimation

Two datasets corresponding to two replicate batch fermentations of S. cerevisiae
were available. For further details on the experimental data collection methods the
reader is referred to the work of Carlquist et al. [19]. The dynamic profiles of
glucose, ethanol, and biomass (as optical density, OD) were available for the two
datasets, while oxygen data were only available for one of them. The OD mea-
surements were converted into biomass dry weight (DW) values using a previously
determined linear correlation (DW = 0.1815 9 OD).

The parameters in the ‘‘best’’ identifiable subset were estimated by minimization
of the weighted least-square errors. The weights for each variable i were defined by

wi ¼ 1
.

scið Þ2, and the scaled factors (also used in Eq. 9) were defined as the mean of

the experimental observations for each given variable. The estimation was done
simultaneously for the two datasets. The new estimates of the identifiable parameters

Fig. 3 Collinearity index and size corresponding to parameter subsets of increasing size. The top
plot refers to all the parameter subsets evaluated in the analysis, whereas the bottom figure refers
exclusively to the subsets that complied with the a priori defined collinearity threshold
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are presented in Table 6. In Fig. 4, the model predictions obtained with the estimated
set of parameters are compared with the experimental data.

Generally, the model predictions are in good agreement with the experimental
data. An overprediction of the biomass concentration and a slight underestimation
of the ethanol concentration are however observed. The oxygen profile describes
the drop of the dissolved oxygen concentration during the growth, and a steep
increase upon the depletion of ethanol and the resulting growth arrest. The
dynamics of oxygen described by the model assumes a constant mass transfer
coefficient (kLa) and equilibrium between the gas and liquid phases. It is worth
mentioning that the formation of other metabolites (i.e., glycerol and acetate) that
are not considered in the model may explain the discrepancies to some degree. In
fact, the overestimation of biomass which can be observed in Fig. 4 may be caused
by the fact that other carbon-containing metabolites have not been taken into
account.

When assessing the goodness of fit of the mechanistic model, it is important to
consider that the experimental measurements have an associated error as well.
Model predictions may not give a ‘‘perfect’’ fit at first sight, but they may well be
within the experimental error. While such error might be relatively low for the
measurement of glucose and ethanol by high-performance liquid chromatography

Table 6 Estimated values for the identifiable subset of parameters

Parameter Initial guess Estimated value Units

rG;max 3.5 2.9 g G g-1 X h-1

rO;max 8 9 10-3 5.5 9 10-3 mol O g-1 X h-1

rE;max 0.24 0.32 g E g-1 X h-1

YXE 0.72 0.47 g X g-1 E
KG 0.5 0.17 g G l-1

KE 0.1 0.56 g E l-1

Ki 0.1 0.31 g G l-1

kLa 1,000 930 h-1

Table 5 Identifiable parameter subsets with maximum number of parameters and corresponding
collinearity index

Parameter subset Collinearity
index

Identifiable
parameter
Set

rG;max rE;max YOxid
XG YRed

XG
YXE KG KE kLa 22.34 No

rG;max rO;max rE;max YOxid
XG YRed

XG
YXE KG kLa 22.10 No

rG;max rE;max YOxid
XG YRed

XG
YXE KG Ki kLa 22.10 No

rG;max rO;max rE;max YXE KG KE Ki kLa 2.65 Yes
rG;max rE;max YRed

XG
YXE KG KE Ki kLa 2.75 Yes

rG;max rE;max YXE KG KO KE Ki kLa 2.75 Yes
rG;max rE;max YOxid

XG
YXE KG KE Ki kLa 2.85 Yes

rG;max YXE KG KE Ki kLa – – 1.75 Yes

150 R. Lencastre Fernandes et al.



(HPLC), it is significantly higher for dry weight measurements, which are less
reliable, especially for low biomass concentrations (too large sample volumes
would be required for increasing accuracy). Additionally, at the end of the fer-
mentation, the biomass dry weight may include a fraction of nonviable and/or
dormant cells.

2.3.1 Confidence Intervals for Estimated Parameters

The estimated parameter values as such only have limited value if they are not
presented in combination with a measure of the degree of confidence that one can
have in them. Therefore, the confidence intervals for each of the parameters are
defined based on the covariance matrix and Student t-probability distribution. The
covariance matrix is calculated using the residuals between model predictions and
the standard deviations of the experimental measurements (further details are
provided by Sin et al. [14]). An experimental error of 5 % was assumed for
glucose and ethanol measurement by high-performance liquid chromatography
(HPLC), as well as for the oxygen measurements using a gas analyzer for deter-
mining the composition of the exhaust gas, and a 20 % error for the determination
of the cell dry weight. The confidence intervals at (1 - a) confidence level were

Fig. 4 Comparison of model predictions versus experimental data collected for cultivation 1
(black line model prediction, black circles experimental data) and cultivation 2 (blue dashed line
model prediction, blue stars, experimental data)
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calculated using Eq. 11, where COV is the covariance matrix of the parameter
estimators, t(N - M, a/2) is the t-distribution value corresponding to the a/2
percentile, N is the total number of experimental observations (45 samples for the
two cultivations), and M is the total number of parameters. The confidence
intervals for the estimated parameters are presented in Table 7.

h1�a ¼ h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðCOVðhÞÞ

p
� t N �M;

a
2

� �
: ð11Þ

None of the confidence intervals include zero, giving a first indication that all
parameters are significant to a certain degree and the model does not seem to be
overparameterized. In the case of the inhibition constant Ki, the confidence interval
is rather large. This is most likely a consequence of the low sensitivity of model
outputs to this variable (Fig. 2). Furthermore, the confidence intervals of the
Monod half-saturation constants KG and KE are quite large as well, which might be
related to the fact that their estimated values are rather low. The latter means that
the collected data do not contain that many data points which can be used during
the parameter estimation for extracting information on the exact values of KG and
KE Indeed, only the data corresponding to relatively low glucose and ethanol
concentrations can be used, since the specific rates will be relatively constant and
close to maximum for higher substrate concentrations.

It is furthermore also a good idea to analyze the values of the parameter
confidence intervals simultaneously with the correlation matrix (Table 8); For
example, the correlation matrix shows that rE,max is correlated with KE and that
rO,max is correlated with KO. Both correlations are inherent to the model structure;
i.e., correlation between the parameters related to the maximum specific growth
rate and the substrate affinity constant in Monod-like kinetics expressions are quite
common, and point towards a structural identifiability issue.

Note also that the significant correlations found between some of the model
parameters (Table 8) seem to conflict with the results of the collinearity index
analysis which was reported earlier (Fig. 3; Table 5). That is one of the reasons
also for the identifiability analysis to be an iterative process.

Table 7 Confidence intervals for the identifiable subset of parameters for 95 % confidence level

Parameter Estimated value Confidence interval Units

rG;max 2.9 ±9.8 9 10-2 (3.4 %) g G g-1 X h-1

rO;max 5.5 9 10-3 ±6.3 9 10-4 (11.6 %) mol O g-1 X h-1

rE;max 0.32 ±0.24 (75.7 %) g E g-1 X h-1

YXE 0.47 ±3.1 9 10-2 (6.6 %) g X g-1 E
KG 0.17 ±8.4 9 10-2 (50.2 %) g G l-1

KE 0.56 ±0.44 (78.9 %) g E l-1

Ki 0.31 ±0.30 (97.5 %) g G l-1

kLa 930 ±49 (5.2 %) h-1
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2.4 Uncertainty Analysis

Uncertainty analysis allows for understanding the variance of the model outputs as
a consequence of the variability in the input parameters. Such an analysis can be
performed using the Monte Carlo procedure, which consists of three steps:
(1) definition of the parameter space, (2) generation of samples of the parameter
space, i.e., combinations of parameters, and (3) simulation of the model using the
set of samples generated in the previous step. In this case study, a sample set of
1,000 combinations of parameter values was generated using the Latin hypercube
sampling procedure [20]. This sampling technique can be set up such that it takes
the correlations between parameters, i.e., information resulting from the parameter
estimation, into account (as explained by Sin et al. [12]). The correlation matrix for
all the parameters was estimated and is presented in Table 8. For each parameter,
minimum and maximum values have to be defined: for the estimated parameters
the limits of the 95 % confidence intervals were used, while a variability of 30 %
around the default values was assumed for the remaining parameters.

The correlation between two parameters can take values between -1 and 1.
A positive correlation indicates that an increase in the parameter value will result
in an increase in the value of the other parameter as well. On the contrary, a
negative value indicates an inverse proportionality. In Fig. 5, the sampling space is
illustrated by scatter plots of combinations of two parameters. A high correlation

Fig. 5 Latin hypercube sampling for the model parameters, taking into account the correlation
between them
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(in absolute value) will lead to an elliptical or linear cloud of sampling points, as,
for example, for YXG

Oxid and YXG
Red [corr(YXG

Oxid, YXG
Red) = -0.98 in Table 8], as well as

rE,max and KE, and rO,max and KO.
The number of samples and the assumed range of variability of each parameter

(i.e., the parameter space) is defined by the expert performing the analysis. The
higher the number of samples, the more effectively the parameter space will be
covered, at the expense of increased computational time. The range of the
parameter space should rely on previous knowledge of the process: (1) the initial
guess of the parameter numerical values can be obtained from the literature or
estimated in a first rough estimation where all parameters are included; (2) the
variability (range) for each parameter can be determined by the confidence
intervals, in case a parameter estimation has been done, or be defined based on
expert knowledge as discussed by Sin et al. [12].

The estimations for the four model variables (outputs) and the corresponding
mean and a prediction band defined by 10 and 90 % percentiles are presented in
Fig. 6. The narrow prediction bands (including 80 % of the model predictions) for
glucose reflect the robustness of the predictions for this model variable, while the
wide bands observed, for example, for oxygen show the need for a more accurate
estimate of the parameters in order to obtain a good model prediction.

Fig. 6 Representation of uncertainty in the model predictions for glucose, ethanol, dissolved
oxygen, and biomass: Monte Carlo simulations (blue), mean, and the 10th and 90th percentile of
the predictions (black)
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2.5 Sensitivity Analysis: Linear Regression
of Monte Carlo Simulations

Based on the Monte Carlo simulations, a global sensitivity analysis can be con-
ducted. The aim of the sensitivity analysis is to break down the output uncertainty
with respect to input (parameter) uncertainty. The linear regression method is a
rather simple yet powerful analysis that assumes a linear relation between the
parameter values and the model outputs. The sensitivity of the model outputs to the
individual parameters, for a given time point, is summarized by a ranking of
parameters according to the absolute value for the standardized regression coef-
ficient (SRC). In a dimensionless form, the linear regression is described by
Eq. 12, where syik is the scalar value for the kth output, bjk is the SRC of the jth
input parameter, hj, for the kth model output, yk, and its magnitude relates to how
strongly the input parameter contributes to the output.

syik � lsyk

rsyk

¼
XM

j¼1

bjk �
hij � lhj

rhj

þ eik ð12Þ

In the case of nonlinear dependence of the model variable on a parameter, this
method can still be used, although with caution. As a rule of thumb, if the model
coefficient of determination (R2) is lower than 0.7, this analysis is not conclusive.
The SRC for each parameter has, by definition, a value between -1 and 1, where a
negative sign indicates that the output value will decrease when there is an
increase in the value of the parameter. Oppositely, a positive SRC indicates direct
proportionality between the parameter value and the model output. Sin et al. [12]
describe further details on how to perform the analysis.

In the model example, different growth phases are described, and therefore the
importance of the parameters is expected to change with time. Therefore, the
analysis was performed for a selection of time points up to 62 h.

The suitability of applying the linear regression method was in this case also
assessed for each time point and each output. The R2 values are presented in Fig. 7
as a function of time.

While the regression method seems to be suitable for all time points in the case
of biomass, the same is not observed for glucose, ethanol, and oxygen.. With
regard to glucose, the model uncertainty is very small (narrow spread of the model
predictions plotted in Fig. 6). The depletion of glucose is estimated to occur at
time of approximately 22 h for all cases. The sensitivity analysis when the glucose
concentrations are virtually zero is not expected to be significant, and it is thus not
surprising that the R2 value decreases abruptly at approximately the same time
point that glucose is depleted. Simultaneously, the uncertainty in ethanol con-
centration predictions increases substantially. This may explain the temporary
drop in the R2 value for ethanol at this time point. A similar drop in R2 is observed
for oxygen around the time that ethanol is depleted, and a sudden rise in the
dissolved oxygen concentration is observed. Upon ethanol depletion, the R2 value

156 R. Lencastre Fernandes et al.



for ethanol falls under the threshold, similarly to what was observed for glucose at
its depletion.

In Fig. 8, an overview of the SRCs for each parameter and model output is
presented. Interpretation of parameter ranking and SRC should be made cau-
tiously. All model outputs seem to be sensitive to the yield coefficient of biomass
on oxidized glucose, even during the growth phase on ethanol (after glucose
depletion).

The ranking of each parameter according to the SRC for each model output is
illustrated in Fig. 9. When analyzing this ranking, it is possible to see the decrease
in sensitivity of the glucose prediction towards the maximum glucose uptake rate,
as well as the simultaneous increase in sensitivity towards the maximum oxygen
uptake rate, during the growth phase on glucose. This is in agreement with the fact
that the consumption of glucose is initially only limited by the maximum uptake
rate (excess of glucose in the media), and afterwards as the biomass concentration
increases and glucose concentration decreases, the observed uptake rate is no
longer maximal. Similar figures for the parameter ranking regarding ethanol,
oxygen and biomass can be drawn.

With regard to the model predictions for ethanol, this model output is most
sensitive to the maximum glucose uptake rate and biomass yield on glucose
(reduction pathway) during the first growth phase, and later on the maximum
ethanol uptake rate. This is in good agreement with the fact that the production of
ethanol is a result of the reduction of glucose, and its consumption only takes place

Fig. 7 Regression correlation coefficient (R2) for each model output, indicating the goodness of
the linear regression used for estimating the sensitivity of each model output to various
parameters. For R2 values lower than 0.7, the corresponding standardized regression coefficient
(SRC) may yield erroneous information
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Fig. 8 Standardized regression coefficients (SRC) for the four model outputs as a function of
time. Only the time points for which R2 [ 0.7 was observed are presented. Each color
corresponds to a model parameter
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during the second growth phase following the depletion of glucose. A similar
pattern was observed with regard to the model predictions for oxygen.

To analyze the sensitivity of the outputs to the parameters in more detail, two
time points during the exponential growth phase on glucose (t = 17 h) and on
ethanol (t = 27 h) were selected. The SRC and corresponding rank position for
these time points are provided in Table 9a and b, respectively. As could be
expected, during the growth on glucose, the parameters that most influence the
prediction of glucose are the biomass yield parameters (for the two pathways) and
the maximum uptake rate. The two yield coefficients have, however, a different
effect on the glucose prediction: while an increase in the oxidative yield will lead
to a lower predicted concentration, an increase in the reductive yield seems to
imply an increase in the predicted concentration. This may reflect the fact that the
oxidative pathway is the most effective way of transforming glucose into biomass.

The maximum glucose uptake rate is also the most influential parameter for the
prediction of the ethanol concentration (produced by reduction of glucose), during
this first growth phase. The glucose saturation rate plays an important role,
however not as significant as the maximum uptake rate (rG,max: SRC = 0.74;
KG: SRC = -0.48).

Obviously, the results of the global sensitivity analysis (SRC) should be
compared with the results of local sensitivity analysis (Fig. 2). It can be seen that
both methods rank the biomass yield on glucose (oxidation) as the most influential
parameter. For the ranking of the other parameters, there are quite some differ-
ences between the results obtained by the two methods.

Fig. 9 Ranking of each model parameter according to the magnitude of the SRC for each model
output: a rank of 1 indicates that the model output is most sensitive to that parameter, while a rank
of 11 indicates that the parameter contributes the least to the variance of the model output
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2.5.1 Morris Screening

As discussed by Sin et al. [11], an alternative to the linear regression method,
especially when low R2 values are observed, is Morris screening. Similarly to the
linear regression method, a sampling-based approach is used. The method is based
on Morris sampling, which is an efficient sampling strategy for performing ran-
domized calculation of one-factor-at-a-time (OAT) sensitivity analysis. The
parameters are assigned uniform distributions with lower and upper bounds
defined by the confidence intervals for estimated parameters and by 30 % vari-
ability for the remaining ones (as done previously for the Latin hypercube sam-
pling). The number of repetitions (r) was set to 90, corresponding to a sampling
matrix with 1,080 [90 9 (11 ? 1)] different parameter combinations. The model
was simulated for all the parameter combinations, and the results are summarized
in Fig. 10.

The elementary effects (EE) were estimated as described by Sin et al. [12].
These EEs are described as random observations of a certain distribution function
F, and are defined by Eq. 13, where D is a predetermined perturbation factor of hj,
syk(h1, h2, hj,…, hM) is the scalar model output evaluated at input parameters
(h1, h2, hj,…, hM), whereas syk(h1, h2, hj ? D,…, hM) is the scalar model output
corresponding to a D change in hj.

Fig. 10 Model simulation results using Morris sampling of parameter space: model simulations
for glucose, ethanol, dissolved oxygen, and biomass showing simulations (blue), mean, and the
10th and 90th percentile of the simulations (black) (not to be confused with uncertainty analysis)
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EEjk ¼
osyk

ohj

¼ sykðh1; h2; hj þ D; . . .; hMÞ � sykðh1; h2; hj; . . .; hMÞ
D

ð13Þ

The results obtained are compared with the mean and the standard deviation of
this distribution. Often, the EEs obtained for each parameter are plotted together
with two lines defined by Meani ± semi, where Meani is the mean effect for output
i and semi is the standard error of the mean ðsemi ¼ std deviationi=

ffiffi
r
p
Þ. The EEs

are scaled, and thus a comparison across parameters is possible.
Also this analysis has to be performed for a selected time point, or using a time-

series average. As the cultivation has distinct phases, several time points were
selected. The results for the growth phase on glucose (t = 17.2 h) and the growth
phase on ethanol (t = 27.2 h) are presented in Figs. 11 and 12, respectively.

Parameters that lie in the area in between the two curves (inside the wedge) are
said to have an insignificant effect on the output, while parameters outside the
wedge have a significant effect. Moreover, nonzero standard deviations indicate
nonlinear effects, implying that parameters with zero standard deviation and
nonzero mean have a linear effect on the outputs.

Fig. 11 Elementary effects during growth phase on glucose: estimated mean and standard
deviation of the distributions of elementary effects of the 11 parameters on the model outputs.
The two lines drawn in each subplot correspond to Meani � 2semi (see text)
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During growth on glucose (Fig. 11) only a few parameters show a significant
effect on the model outputs. While YXG

Oxid seems to have a nonlinear effect on the
glucose prediction, rG,max has a linear one. The effects of other parameters are
mostly nonlinear, as expected given the structure of the model used in the
example. The former parameter has also a significant effect on oxygen and bio-
mass, while the latter parameter has a significant effect on ethanol.

With regard to results for a time point during growth on ethanol, it is important
to note that YXG

Oxid appears to have a significant effect on the ethanol, oxygen, and
biomass predictions, although the glucose has been depleted. This may reflect the
impact of the biomass concentration (originated during the prior growth on glu-
cose) on the total amount of ethanol produced, as well as its consumption and the
consumption of oxygen for the observed time point.

There is good agreement of the results of the Morris analysis with the previ-
ously presented SRC ranking obtained for the linear regression method. In Figs. 11
and 12, the parameters most distant from the wedge are the parameters ranked as
the most influential on the model outputs (Table 9a, b).

Fig. 12 Elementary effects during growth phase on ethanol: estimated mean and standard
deviation of the distributions of elementary effects of the 11 parameters on the model outputs.
The two lines drawn in each subplot correspond to Meani � 2semi (see text)
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3 Discussion

A mechanistic model of glucose oxidation by Saccharomyces cerevisiae has been
taken as an example and has been analyzed rigorously with a number of methods.
The chosen case study is purposely kept relatively simple in order to better illu-
minate how the different methods work and what kind of information is gained in
each step. In practice, the presented analysis methods are generic and can be
applied to a wide range of process models to assess their reliability. Each step of
the analysis has been commented in detail already. However, one thing that cannot
be emphasized enough is the importance of collecting proper datasets: biological

Table 9a Ranking and SRC value of the model parameters for each model output, for a time
point during the exponential growth phase on glucose

t = 17.2 h Glucose Ethanol Oxygen Biomass

SRC Rank SRC Rank SRC Rank SRC Rank

rG;max -0.0089 2 0.7423 1 -0.0858 6 0.1111 4
rO;max 0.0006 8 -0.1591 3 -0.5768 2 -0.0129 10
rE;max 0.0002 11 -0.0837 5 0.0210 10 -0.0400 7

YOxid
xg -0.0107 1 -0.0777 6 -0.7884 1 0.9746 1

YRed
xg 0.0060 3 0.0467 8 -0.1599 4 0.1697 2

YXe 0.0008 7 0.0070 10 0.0452 7 -0.0643 5
KG 0.0058 4 -0.4819 2 -0.0301 8 0.0328 8
KO 0.0042 5 0.0279 9 0.1142 5 -0.1664 3
KE -0.0005 9 0.0756 7 0.0027 11 -0.0103 11
Ki 0.0013 6 -0.1324 4 0.0273 9 -0.0420 6
kLa -0.0005 10 -0.0070 11 0.2380 3 0.0170 9

Table 9b Ranking and SRC value of the model parameters for each model output, for a time
point during the exponential growth phase on ethanol

t = 27.2 h Glucose Ethanol Oxygen Biomass

SRC Rank SRC Rank SRC Rank SRC Rank

rG;max -0.0253 11 -0.0003 11 0.0356 8
rO;max -0.1310 3 -0.2484 3 0.0409 5
rE;max -0.1700 2 -0.2534 2 -0.0208 9

YOxid
xg -0.9504 1 -0.6101 1 0.9812 1

YRed
xg -0.0653 7 0.0936 4 0.1157 3

Yxe 0.0281 10 0.0105 9 -0.0357 6
KG -0.1195 4 -0.0710 6 0.0997 4
KO 0.1150 5 0.0748 5 -0.1279 2
KE 0.0394 8 -0.0010 10 -0.0120 11
Ki -0.1110 6 0.0596 7 -0.0356 7
kLan -0.0284 9 0.0560 8 0.0202 10

Values corresponding to the prediction of glucose are not shown, as the linear regression was
found not to be suitable for this time point and model output (R2 \ 0.7)
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replicates (duplicate/triplicate fermentations) but also sample replicates are needed
to know the error of the measurements. If the quality of the collected data is not
sufficiently high, this might later raise severe questions about the reliability of the
resulting model.

Assuming that a decision has been taken to develop a mechanistic model of a
pharmaceutical production process, or one of its unit operations, one could, of
course, wonder how such a model can be established, and how it can support PAT
objectives. In general, construction of a mechanistic model is considered time-
consuming, which may explain why data-driven models and chemometrics have
been more popular than mechanistic approaches, despite the PAT guidance. How-
ever, during the past 5 years, this situation has already changed considerably for
small-molecule drug substances [4]. According to us, the tools presented here can be
helpful in setting up and structuring the model equations in an efficient way, for
example, by making use of matrix notation, which can facilitate transfer of the model
equations between different users. Such sharing of modeling knowledge is essential
in multidisciplinary process development. As discussed by Sin et al [14], a signif-
icant part of such a model matrix can be transferred from one system to a second or a
third, which undoubtedly makes the whole model-building exercise more efficient.

Finally, we would also like to emphasize that one should move ahead in small
steps when constructing a mechanistic model of a process or unit operation. One
should rather start with a smaller model with limited scope, for example, an
unstructured model [21]. Such a model could then be gradually extended with more
detail, while the development of the production process at laboratory and pilot scale
is ongoing. The model analysis tools presented here can then be used in the different
stages of the model-building as continuous quality checks of the model.

Once a model is considered ready for use, a first application that is relevant for
such a model is to use simulations to propose more informative experiments
leading to more accurate estimation of the model parameters, for example, by
applying optimal experimental design (OED) [22]. Furthermore, the mechanistic
model can be helpful in process design, optimization, and in development of
suitable control strategies [23]. The latter applications of the model are essential
for implementing PAT principles, and can potentially contribute to more efficient
process development, replacing data collection and experiments by simulations
whenever possible.

4 Conclusions

Mechanistic models form an attractive alternative for structuring and representing
process knowledge, also for production processes in biotechnology. The reliability
of such models can be confirmed by performing identifiability, uncertainty, and
sensitivity analyses on the resulting model. Tools for performing such analyses can
be considered as standard engineering tools and are increasingly available on
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different software platforms. Once it can be documented that the model is reliable,
it can be used for design of experiments, for process optimization and design, and
for investigating the usefulness of novel control strategies.
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Multivariate Data Analysis for Advancing
the Interpretation of Bioprocess
Measurement and Monitoring Data

Jarka Glassey

Abstract The advances in measurement techniques, the growing use of high-
throughput screening and the exploitation of ‘omics’ measurements in bioprocess
development and monitoring increase the need for effective data pre-processing
and interpretation. The multi-dimensional character of the data requires the
application of advanced multivariate data analysis (MVDA) tools. An overview of
both linear and non-linear MVDA tools most frequently used in bioprocess data
analysis is presented. These include principal component analysis (PCA), partial
least squares (PLS) and their variants as well as various types of artificial neural
networks (ANNs). A brief description of the basic principles of each of the
techniques is given with emphasis on the possible application areas within bio-
processing and relevant examples.

Keywords Data pre-processing � Feature extraction methods � Neural networks �
Regression methods
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1 Introduction

Chapter 1 overviewed the state of routine and state of the art in bioprocess monitoring
and provided an indication of the amount and the complex nature of data monitored
routinely during bioprocess operation. Individual sensors measuring physical,
chemical and biological variables at various stages of the production process
typically yield extensive data sets with high sampling frequency. Sensor arrays, such
as electronic noses and tongues referred to in Chapter 1, and multianalyte analysers,
such as spectroscopic and fluorescence measurements, further increase the com-
plexity of the data structures collected and stored for ‘post mortem’ analysis of
process behaviour. A plethora of methods used to check the quality of the product
during various stages of processing, such as various chromatographic techniques and
ELISA assays, typically yield discrete data points with varying sampling frequencies
as well as accuracy. In addition a rapid expansion and improvements in methods of
genomic, trascriptomic, proteomic, metabolomic or environomic (Chap. 8) data
collection open up the possibilities of much better process understanding during the
development stage, as required by a quality by design (QbD) framework (Chaps. 4, 8
and 9). The latter methods result in data arrays with structures which are much more
complex and extensive than the data routinely monitored during process operation;
however these data also dramatically increase the potential benefits to be gained.

With such extensive data collection, the importance, and benefits of, effective
and robust data pre-processing and analysis become critical from both the
bioprocess development and monitoring and control points of view. This chapter
concentrates on data pre-processing, conditioning, reconciliation and multivariate
data analysis (MVDA) methods that enable advanced interpretation of process
measurement data for effective monitoring and control, whilst also being appli-
cable to process development. This chapter provides a basic overview of the
fundamental principles of both linear and non-linear methods most frequently used
for pattern recognition and regression building, with examples of application from
various stages of bioprocess operation. However, it is not possible to provide a
detailed description of each of the methods and all aspects of their applications.
Readers are referred to appropriate literature sources for more details on individual
techniques or relevant application examples.

It is important to stress that a number of data analysis methods described in this
chapter are well established and applied routinely in other scientific disciplines
(e.g. chemometric methods widely applied in chemistry) and industrial sectors,
and thus extensive resources, in terms of both literature and computing packages
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utilising these methods, are available. However, bioprocessing, and in particular
the biopharmaceutical industry, can be said to lag significantly behind other
industrial sectors, such as the chemical industry and manufacturing, in terms of
routine application of these methods in large-scale processing. This is often
explained by the strict regulatory nature of the industry, although there are also
fundamental differences in the principles of application within each of these areas;
For example in the chemical analysis area where chemometric methods were
originally developed, there is usually a ‘known’ solution to the task, i.e. known
concentrations of analytes in question, whereas in biological applications, MVDA
techniques are often used as exploratory techniques to investigate what relation-
ships exist (or are evident from the data) between measured variables.

However, the successful implementation of the QbD and PAT initiatives,
introduced in this sector almost a decade ago, depends to a great extent on the
effective integration of the MVDA methods within the monitoring and control
framework. Thus, it is important that a wider understanding and application of
these methods within this industry sector is championed and illustrated on
successful, industrially relevant case studies. On the other hand, caution is advised
in the use of chemometric methods, for example by Brereton [6], who expresses a
concern at ‘lots of people, often without a good mathematical or computational
background, wanting to use’ them quickly, without gaining much insight.
The following material is presented very much with this caveat in mind.

2 Data Pre-Processing

Data pre-processing and reconciliation is by no means a novel concept, and it is
widely applied in industrial facilities such as refineries or bulk chemical production
plants. As early as 1961 Kuehn and Davidson [27] described data reconciliation, and
alternative mathematical approaches have been explored since then with a multitude
of applications of data reconciliation in the field of engineering being suggested.

The importance of data pre-processing is universally acknowledged, and most
users of chemometric and MVDA methods would agree that the data preparation
steps take up most of the analysis time and can either ‘make or break’ the success
of any pattern recognition or model development efforts. One particular issue in
MVDA analysis is the removal of outliers, as highlighted by MØller et al. [37].
They argue that, since MVDA methods are usually based on a least-squares or
similar criterion, they are sensitive to outliers, which can lead to incorrect
conclusions. They describe a range of robust methods for outlier removal.

Further data pre-processing is then usually required, depending on a particular
application; For example in NIR spectra analysis, a range of specific data pre-
processing approaches has been developed (for more detail on pre-processing of
spectral data see Chap. 9). These include smoothing noisy data using a Savitzky-
Golay filter, baseline shift correction, multiplicative scatter correction (MSC) and
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standard normal variate (SNV) [38]. Frequently a range of data pre-processing
methods are compared and their effectiveness for a particular application is
assessed by the outcome of the classification or modelling task required.

2.1 Data Characteristics

The introduction section indicated how complex the data structures collected
during bioprocess operation can be. Figure 1 illustrates this, albeit in a somewhat
simplified manner, by including data from raw material quality assessment through
to downstream process monitoring.

In order to gain maximum benefit from data analysis and modelling, the quality
data on raw materials, monitored over time and often using several (multianalyte)
sensors, will need to be linked with quality data monitored during the batch/fed-
batch cultivation at various frequencies for various quality attributes and merged
with online data available from both the cultivation and downstream processing
unit operations.

The varying frequency of sampling and issues with missing, inaccurate and
noisy data, often with significantly varying means and ranges of individual process
variables, often require significant data pre-processing before any meaningful data
interpretation and modelling can be carried out.

2.2 Data Scaling

Brereton [6] offers an extensive description of various data scaling approaches,
ranging from single measurement transformations (which should not be required
frequently) to scaling individual variables over all samples or individual samples
over all variables. Various transformations, such as logarithmic or power trans-
formations, are well established and used in a range of applications. Equally, there
are various methods of scaling, from simple mean or weighted centring for
applications with varying numbers of samples from different populations to
standardisation (or normalisation or autoscaling, as this approach is often referred
to). Whilst centring scaling simply aligns the means of all the variables without
scaling their ranges, standardisation ensures, as a result of mean centring and
dividing by the standard deviation, that each variable has a similar influence upon
the resulting model. Alternative methods of adjusting the range of individual
variables prior to the analysis and modelling stage include scaling within a
particular range (usually between 0 and 1 by using the maximum and minimum
values of each of the variables) or block scaling and weighting, which is partic-
ularly useful in applications where data from various analytical techniques, such as
NIR spectra, are combined with a process data measurement matrix of much
smaller dimensions.
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In each application it is very important to apply process understanding at the
data pre-processing stage and then to decide which method of scaling is appro-
priate for a particular application and will not result in the introduction of artificial
features into the data set.

2.3 Data Reconciliation

Data scaling and pre-processing methods described in Sects. 2.1 and 2.2 represent
only a small proportion of the extensive variety of data reconciliation methods
applied in a range of industrial sectors. A plethora of methods for eliminating
random and gross errors, such as calibration errors, malfunction in devices or post-
calibration drifts, from process data employ model-based approaches to data
reconciliation and treat this problem as a model identification and parameter
estimation problem [3]. Various model representations have been used for this
purpose, ranging from straightforward material and energy balances [58], extended
Kalman filters [20], through to some of the MVDA approaches, such as support
vector regression [35], described in more detail in Sect. 3.3.

The selection of an appropriate model structure for data reconciliation is not a
straightforward issue, in particular in bioprocessing, where a range of models from
black box to metabolic to synthetic mechanistic models can be used (see Chap. 6
and Sect. 3.3). The choice of the right level of model complexity is crucial, but
might in reality also be influenced by the availability of measurements, although
recent advances in real-time process measurement (Chaps. 1 and 9) have reduced
this challenge significantly.

3 Feature Extraction Methods

Exploratory data analysis, feature extraction, pattern recognition, classification and
clustering are very important in bioprocess data analysis for a number of reasons.
The complexity and the amount of data obtained from the various measurements
taken during bioprocess operation or an experiment preclude a comprehensive and
robust analysis of trends ‘by eye’ even if carried out by the best trained and most
experienced personnel. Traditional chemometric methods, such as principal
component analysis (PCA), allow significant data reduction to eliminate correla-
tion and noise in the data and thus provide a clearer depiction of the relationships
captured by the data. However, the basic assumption of a linear correlation within
the data structures is often highlighted as a major limitation of such techniques
within bioprocess applications, as the clear non-linear and complex nature of the
studied systems is assumed (and proven in a number of applications) to be difficult
to capture by linear methods. Hence a range of non-linear feature extraction
techniques have also been applied to bioprocess data analysis [39, 42].
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Two major categories of methods can be distinguished regardless of the linear/
non-linear character of the technique used. In the supervised mode, a ‘known’
solution is assumed to exist and examples of data representing various classes are
used during model development to establish classification boundaries between
these. On the other hand, when no underlining classification is assumed or known,
a clustering of data features is identified on the basis of a defined similarity in data
characteristics. In fact, the distinction between classification (supervised pattern
recognition) and clustering (unsupervised) is often not fully recognised [12].

Only a selection of the most frequently used methods of clustering and clas-
sification with relevant bioprocessing examples can be discussed in this chapter,
but an extensive range of literature is available covering various aspects of clus-
tering and classification in the biosciences [12, 54].

3.1 Application Areas in Biosciences and Bioprocessing

Exploratory data analysis and clustering are widely applied in biosciences for a
range of tasks. Probably the most widely described are the bioinformatics tools used
for identifying patterns in gene expression data under various conditions, whether in
medical applications for identifying biomarkers of particular diseases or for bio-
synthesis of particular products or taxonomic studies of biodiversity and evolution of
microorganisms [25, 51]. Various clustering methods, ranging from hierarchical
clustering and k-means clustering to soft clustering methods, fuzzy c-means and
their variations [19], rely on the specification of a ‘similarity’ measure or distance
metric that is used to assess whether two data points are sufficiently similar to be
assigned to the same class of objects. These metrics significantly affect the resulting
clustering, and given that the ‘correct’ clustering is not known in these applications,
the biological plausibility of the resulting cluster structure is typically used to assess
the effectiveness of the analysis. In bioprocessing, the situation is often simplified
when analysing historical data, for which clusters can be user-defined. The cluster
boundaries could be based on, for example, high/low final productivity or nominal
behaviour/deviation, depending on the application [9].

The extension of the use of MVDA tools to the analysis of the remaining
‘omics’ data is an expected development in data analysis [17]. Although tech-
niques and case studies currently more directly associated with bioprocess mon-
itoring and control will be discussed in more detail below, it is important to point
out that ‘omics’ data are increasingly used in combination with more traditional
process monitoring [49], and thus MVDA methods used for the interpretation of
such data are becoming more important from the bioprocessing point of view. The
most frequently reported applications of MVDA will be highlighted with each
technique in the following subsections.
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3.2 Principal Component Analysis

Principal component analysis (PCA) [7] is probably the most established MVDA
method of feature extraction. It works by generating a new group of uncorrelated
variables (principal components, PCs) from a high-dimensional data set. The
approach transforms a matrix [X], containing measurements from n measured
variables, into a matrix of mutually uncorrelated PCs, tk (where k = 1 to n), which
are transforms of the original data into a new basis defined by a set of orthogonal
loading vectors, pk. The individual values of the principal components are called
scores. The transformation can be described by Eq. (1):

X½ � ¼
Xnp\n

k¼1

tkpT
k þ E ð1Þ

The loadings are the eigenvectors of the data covariance matrix, XTX. The tk

and pk pairs are ordered such that the first pair captures the largest amount of
variation in the data and the last pair captures the least. This means that fewer PCs
are required to describe the relationship than the original process variables. This
data compression allows for easier visualisation of the data for the purposes of
feature extraction, which can be used in a variety of applications within
bioprocessing.

Literature sources on PCA applications within bioprocess data analysis are
numerous and cover all aspects of bioprocessing from raw material, seed culti-
vation, production batch or downstream process quality monitoring [2, 9, 44].
Typically in these applications, high-dimensional process data are compressed into
a set of principal components which are used either as inputs for further MVDA
process models or as a monitoring tool within a multivariate statistical process
control (MSPC) scheme.

3.2.1 Variants of PCA

There are a number of reported variants of PCA, introduced due to specific
application requirements; for example, Alexandrakis [1] discusses the need to
increase the robustness of PCA models in the analysis of NIR spectral data in order
to deal with external factors influencing the spectra in the industrial setting. These
factors include not only instrument effects not observed at laboratory scale during
process development (e.g. temperature effects and stray light), but more signifi-
cantly sample- (e.g. differences in particle sizes) and process-related effects (e.g.
variability in unit operation conditions). Whilst a number of alternative methods
have been discussed to address these issues, the use of orthogonal methods, such as
external parameter orthogonalization (EPO), transfer by orthogonal projection
(TOP) and dynamic orthogonal projection (DOP) [22, 46] are highlighted as useful
tools for such an application.

Multivariate Data Analysis 173



The batch character of the data typically collected from bioprocesses, as indicated
in Fig. 1, introduces additional non-linearities that a number of researchers claimed
must be addressed by modified PCA approaches. There are a range of non-linear
variants of PCA, including kernel PCA [50] and principled curves and surfaces [52],
the mathematical principles of which are reviewed in Yin and Huang [64].

An alternative approach to addressing the issue of non-linearity is the batch
transformation, termed multiway PCA, initially proposed by Wold et al. [61]. Since
then, other authors have adopted the approach and applied the method to a number of
processes [40]; for example, Gregersen and JØrgensen [16] investigated the detec-
tion of faults in a fed-batch fermentation process, and Kompany-Zareh [24] used this
methodology for online monitoring of a continuous pharmaceutical process.

The multiway technique re-arranges the data into a two-dimensional matrix as
demonstrated in Fig. 2. As also indicated in the figure, a number of possibilities
exist when unfolding the array, with batch-wise decomposition (horizontal slice in
Fig. 2) being the more traditional method.

The case study demonstrated in this chapter is based on this alternative
unfolding approach, resulting in a matrix of size (i 9 kj), where each row repre-
sents one batch (and thus is represented by a single symbol in the principal
component plots, see Figs. 3 and 4). The first j columns represent the time tra-
jectory of the first variable. The next j columns represent the second variable, and
so on. Thus when the data are normalised by subtracting the mean and dividing by
the standard deviation at each sample point, the deviations from the mean tra-
jectory are investigated and the major source of the non-linearity (due to the batch
mode of culture growth not attaining a steady state) is eliminated.

It should be noted that there are a range of alternative methods, such as parallel
factor analysis (PARAFAC) and trilinear decomposition (TLD) [24], that have
been successfully used in the analysis of data array structures illustrated in Fig. 2,
but these are outside the scope of this text.

Fig. 1 Typical data structures collected during bioprocess operation, highlighting the different
frequencies of data collection and discrete character of the quality data as well as the online data
array structure resulting from the collection of measurements for a number of variables over time
from a number of batches

174 J. Glassey



3.2.2 PCA-Based Feature Extraction Case Study

In an unsupervised mode, PCA can reveal similarities between individual
bioprocessing batches, although a more frequent application is the detection of
deviation from ‘nominal’ or expected process behaviour. In this type of applica-
tion, historical examples of data representing ‘nominal’ or desired behaviour (e.g.
high concentration or quality/purity of desired product) are used together with
examples of process data deviating from this behaviour. Interrogation of score
plots may reveal the reason for the deviation between the batches, thus furthering
process understanding and enabling more effective process control and operation.

Figure 3 illustrates an example of a bivariate plot of the scores resulting from a
multivariate PCA analysis of historical process data collected during a typical
recombinant monoclonal antibody fragment production cultivation, with typical
online and offline measurements collected during the cultivations. In this particular
model 7 online variables, including pH, dissolved oxygen concentration and
temperature, and 13 design variables (whose values are changed during process
development) were used. Note that each batch is represented by a single symbol on
the plot. Given that the results, in terms of product concentration, are known at the
time of the analysis, it is possible to represent each high-producing batch in one
colour (in this case red) and low-producing batches in a different colour (green in this
case).

Figure 3 illustrates potential issues with the interpretation of the results.
A researcher may believe they achieved a very good clustering and be tempted to
draw arbitrary clusters A and B as indicated in Fig. 3. However, when the same
figure is re-drawn with a different colour scheme, this time using black colour for
feed composition 1 (one of the design variables) and red for feed composition 2,
there is a much better separation, with one type of batch (high and low producing)
contained at the left-hand part of Fig. 4 while cultivations carried out with feed
composition 2 lie entirely at the right-hand side of the figure. Note that the

Fig. 2 Multiway
decomposition of a typical
3D bioprocess data array
consisting of time trajectories
of various variables for a
range of batches resulting in a
2D matrix with indicated
dimensions
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Fig. 3 Example bivariate plot of PC1 versus PC2 for a PCA model of recombinant monoclonal
antibody production cultivation, indicating high (red) and low (red) productivity
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arbitrary clusters A and B are re-drawn for easy comparison with Fig. 3. It is also
obvious that feed composition 1 appears to result in cultivations with much more
variable outcomes. Such analysis can lead to further investigations as to the causes
of variability where the loadings of process variables used in the model can
indicate possible causes of deviation/variability.

When Multiwat Principal Componetnt Analysis (MPCA) is used within a
MSPC scheme, the issues with cluster boundaries are addressed typically by
constructing confidence limits around the cluster of nominal behaviour and using
Hotteling’s T2 statistics to identify any deviation from such behaviour. For an
example of MSPC application to bioprocess monitoring see e.g. Nucci et al. [41],
where PCA was used for monitoring of penicillin G acylase production.

3.3 Neural Networks and Non-Linear Approaches

Neural networks represent an alternative non-linear feature extraction approach
that has been successfully applied in biosciences in the past. Although traditional
types of neural networks, such as feedforward or radial basis function (RBF)
networks (see Sect. 4.3.1) can be used to predict correct class membership on the
basis of input data, there are types of neural networks that were specifically
developed for feature extraction. These include probabilistic neural networks
(PNNs) with Bayesian decision strategies used as a basis of classification
boundaries, which were used for example for growth phase classification [29],
pharmaceutical applications [47] or biosystem reverse engineering [30].

Kramer [26] developed autoassociative neural networks as an alternative to PCA,
claiming that the bottleneck layer in this neural network structure (Fig. 5) extracts
essential non-linear features contained in the data in order to perform an accurate
unity mapping of process data onto the same space. Such networks were shown to
yield important information in fault detection for bioprocess monitoring [15, 21].

The category of non-linear approaches and neural networks utilising competi-
tive training includes learning vector quantisation (LVQ), self-organising maps
(SOM) and support vector machines (SVM). LVQ is based on the principle of a
competitive learning algorithm defining a reduced set of reference vectors that
cover the same space as the original training set patterns and has been shown to be
effective in the interpretation of sensor array data [48]. The SOM network uses a
‘best matching unit’ (BMU, similarly to the reference vectors of LVQ) to map
each new training data point onto one of the nodes in the map [23, 63]. The BMU
(Fig. 6) is assigned on the basis of appropriate distance metrics, and the network
parameters (weights) are adjusted to match the presented training examples as
closely as possible. In this process, the original regular, usually two-dimensional
grid warps to map the topological characteristics of the training data.

This non-linear mapping of high-dimensional bioprocess data enables the SOM
to be used as a visualisation tool, as reported for example by Nikhil et al. [39],
where they were used to detect three distinct metabolic states during biohydrogen
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production through dark fermentation. However, SOMs were also used to analyse
2D fluorescence data collected during the cultivation of recombinant E. col and
Saccharomyces cerevisiae, where they successfully captured the relationships
between the spectra and process parameters [45].

3.4 Neural Network-Based Feature Extraction Case Study

Sections 3.2 and 3.3 concentrated on linear and non-linear MVDA methods,
respectively, although it is important to stress that these two categories of methods
are often used in combination to increase the accuracy of the resulting

Fig. 5 Autoassociative neural network structure, indicating five layers performing unity mapping;
only a selection of network weights are illustrated to reduce the complexity of the figure

Fig. 6 Two different self-organising map arrangements with best matching unit (B) and
neighbouring nodes, whose weights are adjusted upon matching the input pattern to B
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representations. The following case study demonstrates how PCA and canonical
variate analysis (CVA) can be combined with PNNs to predict physiological states
(PS) during E. col cultivations producing an industrially relevant recombinant
protein at laboratory scale.

Pyrolysis mass spectrometry (PyMS, ) [60] was used to reflect the changes in
the composition of the offline biomass samples taken during the cultivation. PyMS
represents a fingerprinting method where the changes in composition of the sample
are detected without necessarily indicating the component responsible for such a
change. This kind of analysis, similarly to NIR spectroscopy, can be highly ben-
eficial in bioprocess monitoring where measurements of individual metabolites
may not fully reflect the PS of the culture even if they were technically and
economically feasible.

Since PyMS yields a large multivariate matrix of measurements, it is necessary
to reduce and cluster the data into individual PSs. PCA-CVA has been applied
successfully to identify patterns in Fourier-transform infrared (FTIR) spectra [53]
and is suitable for this purpose. In most analytical studies including PyMS anal-
yses, samples are generally analysed in duplicate or triplicate in order to assess the
reproducibility of sample preparation and analytical conditions. A subset of
spectra, in principle from identical sample material, is referred to as a group. Most
PyMS studies are concerned with identifying the chemical components which
account for the differences between the groups. CVA is able to account for the
information contained in the replicate samples and highlights the differences
between the groups.

In several respects, CVA is similar to PCA. Both result in linear combinations
of variables chosen to maximise a particular quantity. The difference is that PCA
maximises the variance of the derived variables whilst CVA maximises the
covariance or correlation between corresponding members of a pair of derived
variables. The solution in both algorithms is provided by singular value decom-
position (SVD).

CVA can be described briefly as shown in Eq. (2).

x ¼ akuk

y ¼ bkvk
ð2Þ

where x and y are the observed variables; ak and bk are the coefficients which
maximise the correlation between uk and vk; vectors uk and vk are the resulting
derived new variables. CVA seeks to maximise the dimensionless correlation
coefficient rk between uk and vk. In PyMS data analysis, CVA is used to maximise
the ratio of between-group to within-group variance.

Figure 7 illustrates the PyMS data resulting from analysing two different
samples from the same cultivation. Samples of consecutive time points (2.5 and
3 h post-inoculation) are shown to demonstrate the differences between individual
samples within the same cultivation. Figure 7 also clearly demonstrates the mul-
tivariate character of the data and indicates the difficulties faced in identifying
changes in the sample composition.
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Each PyMS data file consists of 150 mass to ion charge (m/z) data reflecting the
composition of the sample. Triplicates of each of the samples were analysed using
PCA-CVA to minimise the variance between the triplicates (within-group
variance) and to maximise the variance between the individual time-point samples
(between-group variance). The results are shown in Fig. 8.

Finally, for an online application of PS inferential estimation and control, as
proposed in Fig. 9, methods capable of assigning online data into individual PSs
without relying upon the time-consuming and often un-economical offline analyses
have to be developed.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145
Mass (m/z)

P
er

ce
n

ta
g

e 
io

n
 c

o
u

n
t

AJA018_2.5hours AJA018_3hours

Fig. 7 Comparison of PyMS data from the same cultivation using two consecutive time-point
samples in blue and red colour

Fig. 8 Clustering of data from a recombinant E. col cultivation. Triplicates of individual time-
point samples are represented by full circles and connected by lines. Each of the triplicates is
additionally labelled to indicate the fermentation and time post-inoculation
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In an inferential control scheme as proposed in Fig. 9, a classification method is
required to allow offline and online prediction of the physiological state of the
culture and therefore allow the appropriate estimation model (Mod 1, Mod 2 or
Mod n in Fig. 9) to be used to estimate the process variable of interest, y(est), and
thus drive the controller to maintain the desired set-point.

The PNN approach, described in Sect. 3.3, was used in this particular case study to
predict three PSs, assigned on the basis of the PCA-CVA, using online data typically
measured during cultivation (e.g. dissolved oxygen, pH, and CO2 and O2 concen-
tration in the exhaust gas). Whilst the network successfully predicted the PS for most
of the cultivations throughout the duration of the experiment, further improvement
was required in assigning data into a particular PS based on the PyMS data.

4 Regression Methods

Exploratory data analysis, clustering and classification are important during
bioprocess development and monitoring as highlighted in Sect. 3. For a range of
applications, in particular for software sensors (Chap. 1), it is very important to use
regression methods which allow the prediction of a desired variable from process
data presented to the model. Given the issues with the measurement of important
biological variables during bioprocessing highlighted in Chap. 1, it is not
surprising that MVDA applications in this area are abundant in the literature.
The most pertinent of these are mentioned below.

Fig. 9 Physiological state (PS)-based inferential bioprocess control scheme indicating a number
of PS-specific models used for estimating the process variable of interest
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4.1 Application areas in Bioprocessing

Luttmann et al. [33] provide a status report on the use of software sensors in the
bioprocess area, highlighting industrial implications in particular. All aspects of
bioprocessing, from raw material and seed quality assessment, through bioreactor
monitoring for a range of microbial and cell culture processes, to downstream
process monitoring, are discussed in the report with relevant examples drawn from
literature sources.

A range of modelling methods are used in software sensors, although from the
perspective of this chapter, those of most interest are the MVDA regression
methods. These can be broadly divided into linear and non-linear methods, and the
most frequently used methods are described in Sects. 4.2 and 4.3 with reported
bioprocess applications of each technique.

4.2 Linear Regression Methods

Although a range of simple linear regression models, including multiple linear
regression (MLR) and principal component regression (PCR) [14], have been used
to correlate cause (X) and effect (Y) variables for a range of processes, the partial
least squares (PLS) method and its variations are arguably the most frequently
used MVDA regression tools in this application area. The PLS algorithm operates
by projecting the cause and effect data onto a number of latent variables and then
modelling the relationships between these new variables (the so-called inner
models) by single-input single-output linear regression as described by Eqs. (3)
and (4):

X ¼
Xnp\nx

k¼1

tkpT
k þ E and Y ¼

Xnp\nx

k¼1

ukqT
k þ F� ð3Þ

where E and F are residual matrices, np is the number of inner components that are
used in the model and nx is the number of causal variables,

uk ¼ bktk þ ek ð4Þ

where bk is a regression coefficient, and ek refers to the prediction error.
Whilst the PLS algorithm is developed as a method of dealing with large-

dimensional data sets, the multianalyte measurement methods, such as NIR or 2D
fluorescence spectroscopy (Chap. 1), being introduced more frequently into bio-
process monitoring, often lead to data sets with a very large number of variables,
particularly when combined with a number of traditional process measurements or
with data collected from other unit operations up- or downstream of the investi-
gated unit. Building separate models representing individual unit operations and
even individual measurement techniques is an approach that can be used to address
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the issues of large numbers of PLS model parameters and their interpretation.
However, there are also alternative approaches that can be applied, and these are
discussed in Sect. 4.2.1 with relevant bioprocessing examples.

4.2.1 Variants of PLS

Hierarchical PLS modelling, where causal (and sometimes also effect) variables
are split into blocks of related variables, has been reported to result in simplified
interpretation of PLS models if not in more accurate predictions [62]. The
temptation with MVDA methods is typically to include all available process data
in the analysis. However, it is now widely accepted and reported in literature that
prediction quality and the complexity of the multivariate models can be signifi-
cantly improved by eliminating variables with low informational content prior to
model building. Methods such as genetic algorithms, the jack-knife method or
bootstrapping have been used successfully [28]; For example Wold et al. [62]
argue that an interactive variable selection (IVS) strategy is not only simple and
straightforward, but more robust than other methods in the sense that it ‘does not
forget the eliminated variables and thus does not distort the interpretation of the
model’. Ödman et al. [43] compared four different methods of variable selection,
namely genetic algorithms, interval PLS, principal variable (PV) selection and
three-way stepwise variable elimination, for predicting biomass and substrate
concentrations in fed-batch cultivations of Streptomyces coelicolor producing the
antibiotic actinorhodin. They observed that the variable elimination methods
yielded improved PLS models for both effect variables, although the methods did
not pre-select the same wavelength combination for biomass prediction.

Another modification of the PLS algorithm developed for spectral filtering
(similar to that mentioned in Sect. 3.2.1) is orthogonalised PLS (O-PLS), where
elimination of orthogonal variation with respect to effect variables Y from a given
causal variable set X is performed to improve the model predictions; For example
Guebel et al. [18] used this methodology to analyse the data from a continuous
E. col culture under glycerol pulse experiments, and stressed and successfully
demonstrated increased understanding of the metabolic pathways and responses of
the organism under these conditions.

A particular class of PLS model variations aims to address the issues associated
with the non-linear character of the data, in particular in bioprocessing. These
include incorporating polynomial relationships into the PLS structure [62], using
artificial neural networks (ANNs) as inner PLS models [31] or hybrid structures
incorporating mass balance equations based on first-principles understanding of
the process [55].
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4.2.2 Process Improvement Case Study

The importance of overall process understanding and optimisation is growing.
In the case study reported here, manufacturing process data from a series of
downstream processing units of an industrially relevant recombinant protein
process were used to demonstrate that real-time optimisation of operating condi-
tions in response to the process behaviour in upstream units can lead to significant
improvements in overall product yield and recovery.

A series of three chromatographic columns with typical process data collected
from such processes were used to develop PLS and O-PLS models predicting
either product recovery or quality. The predictions of the best performing models
were subsequently used in an optimisation scheme where the operational settings
of the subsequent columns were adjusted within a pre-specified operating window
to maximise the recovery of the product whilst maintaining the required levels of
product quality.

Following offline development of the modelling and optimisation scheme using
historical process data, pilot-scale experiments with online monitoring and opti-
misation were performed. Figure 10 illustrates the comparison of two validation
batches that used optimised settings for the manipulated variables for each of the
columns with two batches running with standard operating condition settings for
each of the columns.

Clearly, significant improvements can be observed in the recovery of the
product in each of the batches used for comparison. The benefit of using a well-
established modelling methodology, on which this optimisation scheme is based, is
that in the highly regulated biopharmaceutical industry such an approach provides
a more straightforward route to implementation within a validated environment.

A similar approach of overall process optimisation based on soft sensors
combined with mechanistic models of individual unit operations has been reported
by Gao et al. [13]. The multi-agent system reported by the authors comprised a

Fig. 10 Comparison of optimised (red) and standard (blue) settings of operating conditions for
three chromatography columns in the recovery of an industrially relevant recombinant protein
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process knowledge base, MVDA and first-principles process models and a group
of functional agents. The role of the agent components was to cooperate with each
other in ‘describing the whole process behaviour, evaluating process operating
conditions, monitoring of the operating processes, predicting critical process
performance, and providing guidance to decision-making when coping with pro-
cess deviations’. This demonstrated that, for the protein model system used in this
case, the overall agent-based framework provided superior process performance
compared with the traditional approach of optimising individual processing steps.

4.3 Non-Linear Regression Methods

Section 4.2.1 introduced non-linear variants of PLS with ANNs as one of the
means of building non-linear capability into a standard PLS model. ANNs, in
particular feedforward (sometimes referred to as multilayer perceptrons, MLPs, or
back propagation) and RBF networks, have been reported extensively in the
literature in the last two decades as providing an effective means of predicting a
range of important biological variables during bioprocessing. The basic principles
of these techniques are described in Sect. 4.3.1 with appropriate examples of
application.

However, it should be noted that there are also successful bioprocess applica-
tions of alternative non-linear methods reported in the literature. These include
methods such as genetic algorithms [10] and support vector regression [11] and
Petri nets [8] amongst others. These applications cover optimisation of operating
conditions, predictions of various process variables, such as biomass and product/
metabolite concentrations and representation of biological systems.

4.3.1 Neural Networks

Initially developed in the 1940s from research to model the operation of a
biological neuron by McCulloh [36], their applications increased significantly with
the introduction of the back propagation learning algorithm in the 1980s [59].
ANNs share many of the characteristics of biological systems such as parallel
computation, robustness, insensitivity to noise, adaptability and good generaliza-
tion properties i.e. the ability to predict data different from that contained in the
training data set [4]. They also have demonstrated an ability to generate acceptable
models from limited data sets [34].

A typical neural network consists of a number of neurons arranged in layers as
indicated for example in Fig. 11. The neurons in the input layer distribute the
process data through the network of weighted connections to the hidden layer(s),
which perform a non-linear transformation of the data before passing the output
through another set of weights to the output neurons.
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A typical non-linear transformation of MLPs is a sigmoidal function, although
other non-linear functions can also be applied. The algorithm for adjusting the
weighted connections is typically based on the ‘back-propagation’ of the error
between the actual output and the network estimation.

In RBFs the data in the input space are non-linearly transformed from the input
layer space to the hidden layer space, typically using a form of a Gaussian
function, and then the transformation from the hidden layer space to the output
layer space is linear. This type of mapping allows a non-linearly separable clas-
sification problem to be transformed into a linearly separable one, which is easier
to solve. RBF networks are thus capable of faster learning and are less sensitive to
the order in which the training data are presented to the model. However, a very
large number of RBF may be required to span the input space adequately.

An added benefit of using an RBF network is the indication of the reliability of
the network estimations, based on the data density estimation. During model
development, the number of radial basis units is specified and the centre of each
function is found by k-means clustering, where the data matrix is arranged into a
number of clusters, the average positions of the data points in each cluster are
taken to be the cluster centres, and the data included within each cluster are
optimised so that the distance between the data points and the centre of the cluster
is minimised. The final cluster centres represent the centres of the RBF of the
trained network. Once these centres have been found, the width of each function is
defined based on a p-nearest-neighbour heuristic [57]. The number of nearest
neighbours (NN) is user-specified, and the distance between each of the function
centres is calculated. The width of each function is adjusted so that it overlaps with
the centres of NN functions around it. This structure allows an indication of the
reliability of the model prediction, as it indicates when new data points are pre-
sented to the network outside the data space used for the model development.

Fig. 11 A typical artificial neural network structure, indicating layers of neurons; only a
selection of network weights is illustrated to reduce the complexity of the figure

186 J. Glassey



The applications of ANNs in process industries range from multisensor data
interpretation in chemical processes [65], through NIR spectra calibration with
RBF [56] to enzyme engineering [32]. Most of these publications demonstrate the
applicability of ANNs as a non-linear modelling tool in the bioprocess area, but
often also raise issues with model parsimony and the ability to deal with unseen
data. The latest developments thus combine these ‘black box’ approaches with
first-principles modelling (see Chap. 6). In such hybrid schemes, biological
understanding of the first principles is complemented by MVDA models capturing
the dynamic characteristics of the system to improve the overall performance of
the hybrid modelling framework [5, 13, 55].

5 Conclusions

This chapter set out to provide a brief overview of MVDA methods used to
advance the interpretation of measurement and monitoring data from a bioprocess.
Methods used for exploratory data analysis, clustering and classification together
with regression methods were described with a brief description of the funda-
mental characteristics of the most frequently used linear and non-linear methods in
each category. Readers are referred to relevant literature for more details on any
particular technique. The bioprocess case studies used in this chapter have been
selected to demonstrate the areas of successful application throughout bioprocess
development and monitoring and control across typical unit operations encoun-
tered in bioprocess manufacturing.

Issues with regards to industrial applicability were highlighted, where relevant,
and it is important to note that significant progress in the industrial implementation
of MVDA techniques within the PAT and QbD frameworks remains to be realised.
However, continuous developments in the robustness and reliability of sensors and
data analysis techniques provide the necessary requirements for much wider take-
up and implementation of such frameworks within the (biopharmaceutical)
industry. Whilst the highly regulated nature of this particular sector may appear to
preclude the application of certain types of MVDA methods, it is important to
emphasise that the regulatory environment has advanced in this respect over the
past decade and fundamental process understanding and risk-based approaches to
process development and operation are actively encouraged. The MVDA methods
described above represent a useful tool for achieving this goal and have already
been proven to enhance bioprocess performance at varying scales of manufac-
turing process. More sophisticated measurement techniques will push further the
boundaries of MVDA method development, which in turn will lead to wider
acceptance of these techniques by the industry.
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Design of Pathway-Level Bioprocess
Monitoring and Control Strategies
Supported by Metabolic Networks

Inês A. Isidro, Ana R. Ferreira, João J. Clemente, António E. Cunha,
João M. L. Dias and Rui Oliveira

Abstract In this chapter we explore the basic tools for the design of bioprocess
monitoring, optimization, and control algorithms that incorporate a priori knowl-
edge of metabolic networks. The main advantage is that this ultimately enables the
targeting of intracellular control variables such as metabolic reactions or metabolic
pathways directly linked with productivity and product quality. We analyze in
particular design methods that target elementary modes of metabolic networks.
The topics covered include the analysis of the structure of metabolic networks,
computation and reduction of elementary modes, measurement methods for the
envirome, envirome-guided metabolic reconstruction, and macroscopic dynamic
modeling and control. These topics are illustrated with applications to a cultivation
process of a recombinant Pichia pastoris X33 strain expressing a single-chain
antibody fragment (scFv).

Keywords Bioprocess control � Dynamic modeling � Elementary modes � En-
virome measurement � Metabolic networks
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1 Introduction

Historically, process control for cell culture has relied on empirical models with
cells treated as ‘‘black boxes.’’ Purely descriptive empirical models based on
measurements of the concentrations of biomass and normally only a few extracel-
lular compounds, which completely neglect the structure of the intracellular com-
partment, have been widely used for bioprocess optimization and control [1]. With
the advances in systems biology, molecular biology data and mechanistic models for
microorganisms of industrial interest are becoming available. Systems biology is
expected to have a great impact on biotechnological processes including process
control, enough to justify the coining of the term ‘‘industrial systems biology’’ [2].

Cell factories consist of complex, intricate networks of a large number of genes,
proteins, and metabolites. At a higher hierarchical level, cells are part of larger
networks comprising the environment as well as other cells or organisms [3]. As
we learn more from genome-scale network reconstruction projects, it becomes
apparent that the number of molecular interactions between the extracellular and
intracellular environments is very large. Borenstein et al. [4] estimated that
8–11 % of the metabolites in the metabolic networks of prokaryotic species
originate from the environment. Indeed, cells take a large number of compounds
from the environment to carry out their metabolic activity. These include inorganic
ions and a large array of low-molecular-weight organic molecules such as sugars,
vitamins, fatty acids, and amino acids. As a consequence, cells leave a complex
and informative metabolic footprint in the environment, which in yeast cultures
may account for more than 100 metabolites [5]. Moreover, experiments with
single-gene deletion mutants have shown that the metabolic footprint was suffi-
ciently informative to classify the different mutants [6]. Larger macromolecules
present in the environment, such as proteins, carbohydrates, and lipids, also play
an important role in signal transduction pathways. Both the low- and high-
molecular-weight extracellular molecules form a natural extension of the intra-
cellular biochemical networks of considerable complexity. Understanding the
molecular interplay between extra- and intracellular components is essential to
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engineer the environment of cells more efficiently, namely for optimization of
culture medium composition and design of process monitoring and control strat-
egies that target intracellular control variables.

Metabolic networks can be used to interpret metabolic footprinting data and to
study how the extracellular environment can be manipulated to control intracel-
lular processes [7]. A few studies have addressed the development of dynamic
macroscopic models for process control derived from metabolic networks. Haag
et al. [8] showed that, for a class of macroscopic dynamic models, systems with
complex intracellular reaction networks can be represented by macroscopic
reactions relating extracellular components only with equivalent ‘‘input–output’’
behavior. Following a similar approach, Provost and Bastin [9] have developed
macroscopic dynamic models for Chinese hamster ovary (CHO) cultures wherein
the reaction mechanism is defined by the elementary modes (EMs) of the meta-
bolic network. An elementary mode can be defined as a minimal set of metabolic
reactions able to operate at steady-state, with the enzymes weighted by the relative
flux they need to carry for the mode to function [10]. As a result, each elementary
mode can be viewed as a metabolic subnetwork, which, under the steady-state
assumption, can be equivalently represented by a macroscopic reaction involving
only extracellular substrates and end-products.

The main difficulty in macroscopic dynamic modeling based on elementary
modes lies in the definition of the elementary mode weighting factors. As dis-
cussed later, any particular set of metabolic fluxes, or fluxome (i.e., phenotypic
state), can be represented as a weighted sum of elementary modes. The magnitude
of a weighting factor thus quantifies the contribution of the particular elementary
mode to the overall phenotypic state. In Provost and Bastin [9], the elementary
mode weighting factors were modeled by Michaelis–Menten kinetic laws as
functions of extracellular concentrations. The analogy between Michaelis–Menten
kinetics and elementary mode weighting factors is, however, not founded on
mechanistic principles. Moreover, this approach gives rise to very complex non-
linear systems, which are difficult to identify. In Teixeira et al. [11] we developed
hybrid macroscopic models structured by elementary flux modes for baby hamster
kidney (BHK) cells. Instead of Michaelis–Menten kinetic laws, empirical mod-
eling, namely artificial neural networks, was employed to model the elementary
mode weighting factors as functions of extracellular physicochemical variables.

Another difficulty in macroscopic dynamic modeling based on elementary
modes lies in the typically very high number of elementary modes. Indeed, the
number of elementary modes increases exponentially with the size and complexity
of the network [12]. However, most of these elementary modes are not active at
preset environmental conditions [13]. It is thus not necessary to use the full set of
elementary modes for a specific application. Of particular interest is the subset of
elementary modes describing a collection of measured phenotypic data. The
importance of this lies in the fact that the internal fluxes are not independently
distributed but strictly constrained by external fluxes through the pathways at
steady-state [14]. Therefore, the challenge is how to select the subset of elemen-
tary modes that describe a physiological state of interest. Effective reduction of
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elementary modes is mandatory to reduce the complexity of the final model and
facilitate the design of process control.

In this chapter we explore the basic tools to design bioprocess modeling,
monitoring, and control algorithms based on metabolic networks. We start by
reviewing basic properties of metabolic networks, metabolic modeling, and ele-
mentary modes. The envirome layer of information affects critical bioprocess
monitoring and control challenges. The envirome consists of the total quantitative
collection of physicochemical properties that define the extracellular environment.
These are the properties that can be individually or collectively manipulated in a
process and also the ones that are more easily measured in real time. We thus
dedicate a section to the measurement of the envirome. In a recent paper we
explored the possibility of metabolic reconstruction from envirome dynamic data.
We have named this technique ‘‘cell functional enviromics’’ [7]. We show here
how this methodology can be used to design bioprocess control algorithms that
target intracellular control variables such as fluxes or pathways.

2 Genome-Scale Networks Lay the Foundation

In January 2012, the genome online database (GOLD) recorded 3,065 completed
bacterial genome sequences and 7,755 more sequencing projects underway [15].
Furthermore, the metagenomes (genome of mixed cultures) of 340 sample com-
munities were also recorded in the same database, with 9 % of them from engi-
neered mixed microbial systems (wastewater, solid waste, or bioremediation) [16].
Genome-scale networks are constructed on the basis of the complete genome
annotation. Identified genes may be associated with metabolic enzymes, mem-
brane transporters, signal transduction, or regulatory control. Combining genome
annotation with basic biochemical information currently available in several dat-
abases (e.g., KEGG [17] and BioCyc [18] databases), it is possible to reconstruct
the majority of the metabolic reactions network and also the associated exome-
tabolome [19]. At least 62 genome-scale metabolic models have been recon-
structed for single organisms, representing 37 genera [20, 21], including organisms
of industrial relevance such as Escherichia coli [22], Saccharomyces cerevisiae
[23], Pichia pastoris [24, 25], and many others. Metabolic networks convey
critical information about the interaction between the extra- and intracellular
phases, which is essential for design of advanced process control strategies that
target intracellular control variables.

2.1 Structure of Metabolic Networks

Studies on the architecture of metabolic networks of microorganisms from the
different domains of life (Eukarya, Bacteria, and Archaea) have shown that cellular
metabolism has a scale-free topology, which means that most metabolites
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participate in only one or two reactions, while a few, such as adenosine triphos-
phate (ATP) or pyruvate, are metabolic hubs participating in dozens of metabolic
reactions [26]. In the context of bioprocess control it is particularly relevant to
analyze how metabolic networks interact with the extracellular environment.
Bernhardsson et al. [27] have analyzed the metabolic networks of 134 bacterial
species and concluded that common reactions are found at the center of the net-
work and decrease as we move to the periphery of the metabolic network, i.e.,
closer to the metabolites that cross the cellular membrane. Borenstein et al. [4]
have determined the seed set compounds (i.e., exogenously acquired compounds)
for each of the 478 prokaryotic species with metabolic networks available in the
KEGG database. They found that about 8–11 % of the compounds in the whole
metabolic network correspond to the seed set and that each organism possesses a
characteristic seed set. Moreover, comparing the seed set of the different organ-
isms enabled them to trace the evolutionary history of both metabolic networks
and growth environments across the tree of life, supporting the ‘‘reverse ecology’’
principle. These structural features are pivotal for the design of process control
strategies based on metabolic networks. On the one hand, given the high number
and specificity of metabolites that cross the cellular membrane, the measurement
of the metabolic footprint, i.e., the complete set of extracellular metabolites, might
carry sufficient information to reconstruct a large number of intracellular metabolic
processes. On the other hand, the concentrations of many such extracellular
metabolites can be manipulated in order to control intracellular processes linked to
product yield and quality.

2.2 Material Balances

The list of metabolic reactions identified in a genome-scale reconstruction project
can be translated into a stoichiometric matrix, A, with dim(A) = m 9 q, where
m is the number of intracellular metabolites and q is the number of metabolic
reactions. The material balances over the intracellular metabolites take the fol-
lowing general form:

dci

dt
¼ A� v� l � ci; ð1Þ

where ci is the vector of intracellular concentrations [dim(ci) = m], v is the vector
of intracellular fluxes, and l is the specific growth rate. Under the pseudo-steady-
state hypothesis, intracellular metabolites do not accumulate and the dilution term
is much smaller than the net turnover of metabolites, thus Eq. (1) simplifies to

0 ¼ Av
vj� 0

�
ð2Þ
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The inequality constraints in Eq. (2) refer to the subset j of irreversible reactions
with nonnegative flux values. Equation (2) expresses an undetermined system of
algebraic equations because q [[ m, and thus it has no unique solution. The
universe of solutions of Eq. (2) forms a polyhedral cone in the fluxome solution
space whose edges correspond to independent elementary modes (elementary
modes are discussed in more detailed in the next section).

Equation (2) applies only to balanced intracellular metabolites. For extracel-
lular metabolites the net accumulation is nonzero and the following equation
applies:

b ¼ A0v
vj� 0

�
ð3Þ

with b the vector of fluxes of extracellular metabolites across the cellular mem-
brane and A0 the stoichiometric matrix of such extracellular metabolites.

2.3 Elementary Modes

Elementary mode analysis has become a widespread technique for systems-level
metabolic pathway analysis [28, 29]. An elementary mode can be defined as a
minimal set of enzymes able to operate at steady state, with the enzymes weighted
by the relative flux they need to carry for the mode to function [10]. The universe
of elementary modes of a given metabolic network defines the full set of nonde-
composable steady-state flux distributions that the network can support. Any
particular steady-state flux distribution can be expressed as a nonnegative linear
combination of elementary modes.

As such, the phenotype of a cell, as defined by its fluxome, v, can be expressed
as a weighted sum of the contribution of each elementary mode

v ¼ k1 � e1 þ k2 � e2 þ . . .þ kk � ek ¼
XK

i¼1

ki � ei; ð4Þ

where ei is an elementary mode vector with dim(ei) = q, ki is the weighting factor
of ei, K is the number of elementary modes, and dim(v) = dim(ei) = q is the
number of metabolic reactions of the metabolic network. Geometrically the ele-
mentary modes correspond to the edges of the polyhedral cone in the fluxome
solution space (Fig. 1).

The elementary mode matrix, EM, is obtained by concatenating all the ei

vectors into a q 9 K matrix

EM ¼ e1 e2 � � � eK½ �: ð5Þ

Multiplying the EM matrix by the stoichiometric matrix of the extracellular
metabolites, A0, one obtains the elementary mode stoichiometric matrix
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AEM ¼ A0 � EM: ð6Þ

The dimension of AEM is m0 9 K, where m0 is the number of extracellular
metabolites. Each column of AEM contains the stoichiometry of extracellular
metabolites for the particular elementary mode. This matrix holds critical infor-
mation for process control, since it defines the theoretical metabolic footprint of
each elementary biochemical state of the cell. The specific reaction rates of
extracellular compounds are given by

b ¼ AEM � k: ð7Þ

As shown later, these rates can be used to formulate macroscopic dynamic
models of extracellular compounds.

2.4 Example: Elementary Modes of P. pastoris

To illustrate the elementary mode concept, we have built a P. pastoris metabolic
network based on the KEGG database and papers by Chung et al. [24] and Çelik et al.
[30]. The genes associated with each reaction are in most cases known and can be
found in [24]. The network included the following processes/pathways: uptake
reactions (glycerol, sulfate, phosphate, and ammonia), glycolysis/gluconeogenesis,
pentose phosphate pathway, tricarboxylic acid cycle (TCA), biosynthesis of amino
acids, biosynthesis of macromolecular components of biomass (nucleotides, lipids,
carbohydrates, and proteins), and biosynthesis of a single-chain variable fragment
(scFv), interconversion of folate compounds, oxidative phosphorylation, and energy
interconversions. The metabolic network was further simplified by lumping together
in single reactions the consecutive reactions in the pathways for synthesis and
degradation of biomass and product precursors . The stoichiometry of ATP, nico-
tinamide adenine dinucleotide (NADH2), nicotinamide adenine dinucleotide

Fig. 1 Fluxome solution
space of a metabolic network
in steady state obeying the
material balances of Eq. (2).
The solution space has the
shape of a polyhedral cone
whose edges are the
elementary modes
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phosphate (NADPH2), flavin adenine dinucleotide (FADH2), and H2O were also
accounted for in the metabolic reactions in order to close the balance of oxygen,
hydrogen, and phosphorus. It was assumed a fixed P/O ratio of 2 mol-ATP/mol-
NAD(P)H2 and of 1 mol-ATP/mol-FADH2. The resulting metabolic network for
glycerol as carbon source has 104 reactions (thus 104 fluxes), 90 intracellular
metabolites, and 16 extracellular metabolites (17 % of all metabolites).

The open-source bioinformatics software METATOOL 5.0 [31] was used to
compute the elementary modes of the P. pastoris metabolic network. The total
number of elementary modes was 4,119. Figure 2 shows a representation of the
yields of biomass and product on glycerol and oxygen obtained through stoichi-
ometric analysis of elementary modes.

The number of elementary modes for glycerol feeding was 2,520, 960, 600, and
39 for biomass growth, scFv synthesis, simultaneous biomass growth and scFv
synthesis, and catabolism, respectively. From Fig. 2 it can be seen that the yields on
glycerol for biomass growth and scFv synthesis vary from 0.42 to 0.73 g-X/g-S and
0.26 to 0.64 g-X/g-S, respectively, and that the yields on oxygen increase with the
yields on glycerol. The elementary modes with lowest yields on glycerol and oxygen
are those that include the metabolic reactions involved in the secretion of organic
acids from TCA, namely succinate for biomass growth and citrate for scFv synthesis.
On the other hand, the elementary modes with the highest yields on glycerol and
oxygen involve the metabolic reaction of the pentose phosphate pathway.

3 Measuring the Envirome

The whole set of physical and chemical properties that define the environment of
cells is known as the ‘‘envirome’’. The envirome is the critical layer of information
for bioprocess monitoring and control, since it can be readily measured and/or
manipulated in real time. The vast majority of envirome components are also

Fig. 2 Bounded convex hull
in the space of yields of
biomass (blue crosses) and
product (green crosses) on
glycerol and oxygen
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metabolites, of which some are provided by the culture medium and many others
are produced inside the cells and then secreted or excreted into the environment.

The ‘‘metabolome’’ was defined by Oliver et al. [32] as the qualitative and
quantitative collection of all metabolites, that is, all the low-molecular-weight
molecules present in a cell, which are also participants in general metabolic reac-
tions and that are required for the maintenance, growth, and normal function of the
cell. The metabolome can be subdivided into the endometabolome (intracellular
metabolites) and exometabolome (extracellular metabolites) [33]. Depending on
whether the analysis is being targeted for the endo- or exometabolome and
depending on the analytical detail and quantitative power desired, there are several
measurement strategies available (Table 1); some such strategies have the potential
for real-time monitoring and are therefore suitable for process control.

Measuring the endometabolome (metabolic fingerprinting) is not as straight-
forward as measuring the exometabolome (metabolic footprinting) given the
complex sample preparation protocols and the higher number of intracellular
metabolites. Endometabolome analysis requires separation of cells from extra-
cellular medium followed by cell breakage. In addition, the rapid turnover inherent
to intracellular metabolites, which can be under one second for microbial systems
[36], results in the need for a rapid quenching step to halt metabolism. In contrast,
the turnover rates of exometabolites are much lower given the low volume ratio
between the intracellular and extracellular phases.

Table 1 Different levels of metabolome analysis

Metabolite target analysis Identification and quantification focused on one or a few
metabolites related to a specific pathway [34]

Metabolite profiling (or
metabolic profiling)

Identification and quantification of a selected group of
metabolites, e.g., metabolites from a specific metabolic
pathway or a specific compound class, such as amino acids,
organic acids, or carbohydrates [34]

Metabolomics Identification and quantification of all metabolites in a biological
system. Sample preparation method must retain all
metabolites. Analytical technique must be suited to measure
metabolites over a broad range of concentrations and needs
high discriminatory power

Metabonomics Analysis of tissues and/or biological fluids to detect changes
caused by disease or therapeutic treatments [35]

Metabolic fingerprinting Fast, high-throughput analysis of intracellular metabolites to
provide a characterization of the cells for sample
classification. Analytical technique must allow sample
discrimination, but it is not required to identify and quantify
all the metabolites individually [34]

Metabolic footprinting Fast, high-throughput analysis of the surrounding medium to
characterize the cells based on their exometabolome. As with
fingerprinting, it is not necessary to identify and quantify all
the metabolites individually to allow sample discrimination
[6]
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Current analytical techniques for exo- or endometabolome analysis include
nuclear magnetic resonance (NMR) spectrometry [37, 38] and mass spectrometry
(MS) [39]. Either of them can be coupled to separation methods for higher reso-
lution. These hyphenated methods include, for instance, capillary electrophoresis
coupled to mass spectrometry (CE-MS) [40], gas chromatography mass spec-
trometry (GC–MS) [41], and liquid chromatography coupled to nuclear magnetic
resonance spectrometry (LC-NMR) [42]. For a detailed review on the application
of such methods to metabolomics refer to [5, 43, 44].

A fast and low-cost technique is 1H-NMR. The time of spectral acquisition
ranges from 2 to 10 min per sample, and automatic samplers can be used. Figure 3
shows a 1H-NMR spectrum of the supernatant of P. pastoris culture samples. In
preliminary offline tests with this technique we detected over 20 metabolites in the
extracellular phase. Bundy and coworkers [45] have detected over 80 metabolites
in the extracellular medium of P. pastoris cultures using 1H-NMR and GC–MS as
complementary techniques.

Knowledge of the metabolome is useful since it is very closely related to
cellular phenotype. Because changes upstream accumulate downstream, changes
in the transcriptome and proteome are found amplified in the metabolome. As a
result, the metabolome allows the detection of changes that have a very small
effect on metabolic fluxes [37, 46]. Metabolic fluxes, which can be regarded as the
phenotype of a cell, are regulated not only at transcription and translation levels,
but also by means of posttranslational events, and as such the metabolome is
considered closer to the phenotype than the transcriptome or proteome [34, 47].

Fig. 3 1H-NMR spectrum for a P. pastoris supernatant sample. The black line is the acquired
spectrum, whereas the red line is the estimated sum of the individual spectra for identified
metabolites. Looking more closely into specific regions of the spectrum it is possible to identify
key metabolites
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Moreover, metabolites are not organism specific, which means the techniques are
equally applicable to prokaryotic, fungal, plant and animal cells.

Even though a lot of progress has been made towards enabling whole metab-
olome quantification, these techniques still face challenges related to the inherent
characteristics of the metabolome. The size of the metabolome varies greatly,
depending on the organism studied. The nature of the metabolites, whether they
are polar or nonpolar, volatile or nonvolatile, also influences the analysis, and most
methods are biased towards some group of metabolites. In addition, the concen-
tration of different metabolites extends over several orders of magnitude [48], thus
adding difficulty to the task of quantifying all metabolites with a single technique.
However, quantification of the whole metabolome is not essential for the purposes
of process monitoring and control, as a subset of key metabolites is enough to infer
cell function.

4 Elementary Mode Reduction

The number of elementary modes increases geometrically with the size of the
network. The typically very high number of elementary modes denotes the innate
adaptability and robustness of biological networks. As a consequence, the com-
putation of elementary modes suffers from combinatorial explosion, particular for
genome-scale networks. The central carbon metabolism of a genome-scale
reconstructed E. coli metabolic network has approximately 26 million EMs [49]. It
is essential to reduce such large numbers of elementary modes according to some
criterion in order to decrease the computational power requirements. Indeed, not
all calculated elementary modes are thermodynamically feasible or even physio-
logically reachable [50]. Several methods have been developed to reduce the
number of elementary modes, founded on different principles. In what follows we
review some of them.

4.1 Reduction Based on Network Structural Properties

Elementary modes can be reduced on the basis of structural information of the
metabolic network without the use of experimental data. de Figueiredo et al. [51]
presented a method based on the ranking of elementary modes in increasing order
of number of reactions. This approach enables identification of the K shortest
elementary modes, which are in principle energetically more efficient. Song and
Ramkrishna [14] proposed a reduction algorithm based on the effect of elementary
modes on the convex hull volume. The principle consists in removing the ele-
mentary modes with negligible contribution to the convex hull volume of the
original network. This allowed a priori reduction from the initial 369 to a final set
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of 35 elementary modes for a yeast metabolic network fermenting both glucose
and xylose without using experimental data.

4.2 Reduction Based on Thermodynamic Properties

Elementary modes can also be discriminated and reduced on the basis of metabolic
reaction thermodynamics. The main assumption is that metabolic networks have
evolved over time in the sense that cellular regulatory mechanisms were created
that favor efficient pathways with low entropy generation. Wlaschin et al. [52]
demonstrated with experimentally determined intracellular fluxes that elementary
mode weighting factors are inversely correlated with the entropy generated by the
involved metabolic reactions. Zhao and Kurata [53] proposed a method for cor-
relating enzyme activity and flux distribution which uses Shannon’s maximum-
entropy principle, a measure of system complexity, as an objective function to
estimate the enzyme control flux.

4.3 Reduction Based on Flux Data

Several methods have been proposed to eliminate elementary modes on the basis
of measured flux data. The equation that applies here is Eq. (4); however, the
number of elementary mode weighting factors is in general much larger than the
number of metabolic fluxes, thus the system is largely undetermined. Palsson and
coworkers [54, 55] suggested linear optimization methods to determine how
extreme pathways (the systemically independent subset of elementary modes)
contribute to a given (measured) steady-state flux distribution. There is a range of
possible nonnegative weighting values associated to extreme pathways that pro-
duce a given steady-state flux distribution. This range was calculated by maxi-
mizing and minimizing the extreme pathway weighting factors, resulting in the so-
called a-spectrum. The allowable ranges for the values of ki were computed as

max ki

subject to Eq:ð4Þ; i ¼ 1; . . .;K 0� ki� 1

min ki

subject to Eq:ð4Þ; i ¼ 1; . . .;K 0� ki� 1

ð8Þ

Wang et al. [56] presented a method to calculate the elementary mode coeffi-
cients for a large set of elementary modes by devising a quadratic program to
explore the possibility and performance of using a subset of the elementary modes
to reconstruct flux distributions. Alternatively, a framework based on elementary
mode analysis and the convex properties of elementary modes was developed to
calculate flux regulation coefficients (FRC) corresponding to an appropriate
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fractional operation of this mode within the complete set of elementary modes
[57].

Schwartz and Kanehisa [58] showed that a combination of structural and kinetic
modeling in yeast glycolysis significantly constrains the range of possible
behaviors of a metabolic system. All elementary modes are not equal contributors
to physiological cellular states, and this approach may open a direction towards a
broader identification of physiologically relevant elementary modes among the
very large number of stoichiometrically possible modes.

Very recently, Bastin et al. [59] developed a methodology to compute a
decomposition of admissible flux vectors in a minimal number of elementary
modes without explicitly enumerating all of them. They demonstrated that the
vector of admissible weighting vectors (k) rewritten as

k ¼
X

k

bi � hi bi� 0
X

k

bi ¼ 1 ð9Þ

is necessarily an admissible k satisfying Eq. (7). In this case, the convex polytope,
H ¼ h1 h2 � � � hk½ �, contains a number of solutions equal to the number of
measurements p. Each polytope solution represents a minimal flux distribution
given by v̂i ¼ EM � hi and may be viewed as the simplest pathways that satisfy the
pseudo-steady-state assumption and the constraints imposed by the extracellular
measurements defined in Eq. (7).

4.4 Example: Reduction of the Elementary Modes by Weighting
Factor Minimization

Here we illustrate the method proposed by Schwartz and Kanehisa [58] for ele-
mentary mode reduction. This method identifies a subset of elementary modes by
minimizing the sum of weighting factors (k):

min
Xk

i¼1

ki

subject to Eq: ð4Þ
ð10Þ

This method was applied to the previously described P. pastoris metabolic
network including 4,119 elementary modes. The results are shown in Table 2 for
three distinct time points. Only 17 elementary modes were obtained with nonzero
weighting factors. Several of these are selected at least twice in the three different
phases of the culture. Note that this method basically selects the elementary modes
which are closest to the actual biological state by minimizing the sum of weighting
factors.
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5 Pathway-Level Process Control

Upon the identification of the most significant elementary modes, macroscopic
dynamic models can be derived with implicit intracellular structure, which can
then be used for process monitoring and control. For a stirred tank bioreactor, such
material balance equations take the following general form:

dc

dt
¼ bX � Dðc� cinÞ þQ: ð11Þ

In Eq. (11), the state space vector, c, is formed by the concentrations of
extracellular compounds, X is the biomass concentration, D is the dilution rate, cin

is the concentration of extracellular compounds in the inlet stream, and Q is the
vector of gas–liquid transfer rates of volatile extracellular compounds. Note that
Eq. (11) is analogous to the state-space equation proposed by Dochain and Bastin
to design adaptive state estimation and control algorithms [1]. The main difference
lies in the fact that the extracellular fluxes, b, and the intracellular fluxes, v, are
functions of the elementary flux mode weighting factors instead of the traditional
reaction kinetics:

v
b

� �
¼ EM

A0 � EM

� �
� k ð12Þ

An important implication is that any state-space solution of Eqs. (11, 12) obeys
the steady-state stoichiometric constraints imposed by the metabolic network.

The main difficulty in deriving these models is the definition of the elementary
mode weighting factors as functions of environmental properties. Provost and
Bastin [9] employed Michaelis–Menten kinetic laws, resulting in very complex
nonlinear systems, which are very difficult to identify. Teixeira et al. [11] have
developed hybrid macroscopic models structured by elementary modes using
neural networks to model the respective weighting factors. In any case, the

Table 2 Elementary mode reduction results for three distinct culture time points

t = 30.7 h t = 71 h t = 119 h

#EM k #EM k #EM k

EM29 0.5324 EM228a 0.9691 EM228a 0.0745
EM153 0.2148 EM193a 0.4303 EM193a 0.0370
EM128 0.1480 EM219 0.1038 EM144 0.0110
EM189a 0.1259 EM185a 0.0773 EM189a 0.0075
EM159 0.0021 EM189a 0.0554 EM18a 0.0067
EM51 0.0002 EM290 0.0449 EM290a 0.0052

EM206 0.0028 EM185a 0.0010
EM18a 0.0002 EM45 0.0007

EM120 0.0006
EM177 0.0003

a Elementary modes that are selected at least twice
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effective reduction of the initially very large number of elementary modes is
critical to decrease the complexity and to obtain a final parsimonious model.

In a set of recent studies [11, 13] we investigated the systematic reconstruction
of metabolic processes based on regression analysis of elementary mode weighting
factors against measured environmental effectors. We have called this technique
‘‘cell functional enviromics’’ [7]. The principle is depicted in Fig. 4. While the
genome sets the structure of elementary modes, the envirome sets the relative
contribution of each elementary mode to a given flux phenotype observation.
While functional genomics studies genome-wide cellular function reconstruction
through the collection and analysis of transcriptome or proteome data over time,
functional enviromics studies the reconstruction of cellular function through the
collection and analysis of dynamic envirome data. Functional enviromics applies
the following main steps:

(i) Compute the elementary mode matrix, EM, from the microorganism meta-
bolic network.

(ii) Acquire informative envirome data over time and organize it in the form of a
envirome data matrix X ¼ ci;j

� �
, a M � N matrix of M envirome factors, ci,j,

and respective measured flux data, R ¼ bif g, a M � q0 matrix of measured
fluxes.

(iii) Apply systems-level analysis of dynamical envirome data X and R to find
relationships between environmental variables, ci,j, and elementary modes
weighting factors, ki,j.

In what follows, we describe a possible functional enviromics algorithm based
on the previous work by Ferreira et al. [13].

Fig. 4 Functional genomics versus functional enviromics. The genome sets the structure of
elementary modes. The activation of elementary modes is controlled by the environment
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5.1 Functional Enviromics Algorithm

Among the whole set of elementary modes, the subset that is tightly linked to the
envirome can be effectively determined by regression analysis of flux data,
R ¼ bif g, against envirome data, X ¼ ci;j

� �
, satisfying the following criteria:

(a) Maximize the captured variance of envirome data X ¼ ci;j

� �
and of flux data

R ¼ bif g.
(b) Maximize the correlation between elementary mode weighting factors and

envirome variables.
(c) Minimize the number of elementary modes required to capture a given vari-

ance of R ¼ bif g and X ¼ ci;j

� �
, i.e., minimize redundancy.

These criteria can be fulfilled by maximizing the covariance between envirome
data, X ¼ ci;j

� �
, and respective measured flux data, R ¼ bif g, according to the

formula

Maximize
I

cov X;Rð Þ

s:t:
R ¼ K� EMT

K ¼ X� IT

� ð13Þ

with EM ¼ eif g a q� K matrix of K elementary cellular functions,
ei dim eið Þ ¼ q½ �, K ¼ kif g a M � K matrix of weight vectors ki of elementary
modes dim kið Þ ¼ M½ �, and I ¼ Ii;j

� �
a K � N matrix of intensity parameters,

which are the degrees in Eq. (13). Several methods can be used to solve Eq. (6).
One efficient method consists in one-by-one decomposition of elementary modes
according to Eqs. (14–16)

X ¼ T�WT þ EFX ð14Þ

R ¼ K� EMT þ EFR ð15Þ

K ¼ T� BT þ EFK ð16Þ

with EFi residuals matrices that are minimized, W a matrix of loading coefficients,
and B a matrix of regression coefficients. Finally, the intensity matrix I is given by

I ¼ B�WT ð17Þ

The result of this procedure is the discrimination of a minimal set of elementary
modes that are tightly linked with medium composition. The information can
finally be organized into an N 9 K data array, called a functional enviromics map:

Functional enviromics map ¼ IT ¼ Ij;i

� �
; j ¼ 1; . . .;N; i ¼ 1; . . .;K ð18Þ
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The rows represent envirome factors, the columns represent elementary modes,
and Ij,i is the relative ‘‘intensity’’ of up- or downregulation of elementary cellular
function i by medium factor j.

5.2 Example: Metabolic Process Control of P. pastoris Cultures

We study here the optimization and control of a pilot 50-L fermentation of a
constitutive P. pastoris X33 strain expressing a single-chain antibody fragment;
for details see [60]. The reactor was inoculated at a starting volume of 15 L.
Cultivation temperature was controlled at 30 �C, and pH was controlled at 5.0 with
addition of ammonium hydroxide 25 %, which was also the main nitrogen source
for the culture. The airflow rate was kept constant at 1,800 L/h throughout the
fermentation. Overhead pressure was controlled at 200 mbar. Glycerol feeding and
dissolved oxygen (DO) control was divided into three phases:

(i) Glycerol batch phase—The reactor was operated initially in batch mode,
starting with a glycerol concentration of 40 g/L. DO drops very slowly and
remains close to saturation levels.

(ii) Glycerol fed-batch phase—An exponential feeding program is initiated once
the concentration of biomass reaches the level of 18 g DCW/L. It is in this
phase that cell density increases significantly and DO decreases more rapidly.
Once the DO reaches 50 %, it is kept at that level by automatic closed-loop
control, manipulating the stirrer speed between 300 and 1,000 rpm.

(iii) Oxygen transfer limitation phase—Once the stirrer speed reaches the maxi-
mum level of 1,000 rpm, DO decreases very rapidly and the glycerol feeding
program is aborted. From this point on, the DO is kept constant at a low level
(e.g., 3–5 %) by closed-loop manipulation of the glycerol feeding rate (DO-
stat feeding control strategy).

We have investigated how the calculated elementary modes in the example in
Sect. 2.4 correlate with the environmental parameters by applying the previously
described functional enviromics algorithm. Measured environmental parameters
comprised the temperature (T), pH, stirrer speed (Ni), pressure (Press), and the
concentrations of dissolved oxygen (DO), glycerol (Gly), biomass (X), product
(scFv), and inorganic compounds ([NH4

+], [K+], [Ca2+], [Mg2+], [S], and [P]).
From the concentrations of inorganic salts we have calculated the ionic strength
(IS) and the osmolarity (Osm). The measured rates were those of biomass (l),
glycerol (vGly), oxygen (vO2), carbon dioxide (vCO2), and product (vscFv).

The initial number of elementary modes was 4,119, of which a small set of six
elementary modes were discriminated by functional enviromics (Fig. 5b). The
total explained variance of measured fluxes was 81.4 %, and the correlation
between predicted and measured fluxes was acceptable (Fig. 5c) given the high
level of noise in the measured rates.
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Of the six identified elementary modes, three make by far the largest contri-
bution. Elementary modes 68 and 69 describe the biomass growth, and elementary
mode 63 describes the product synthesis (marked in pink in the network of Fig. 5).
We have built a macroscopic model with these three elementary modes.

dX

dt
¼

X
i

aXei;Xki

 !
X � DX ð19Þ

Fig. 5 Functional enviromics of a P. pastoris X33 strain expressing a single-chain antibody
fragment (scFv): a metabolic network, b subset of elementary modes with highest correlation
with the environmental variables. Elementary mode 63 (marked in pink in the network and in the
table) refers to the scFv biosynthesis. c Predicted versus measured fluxes by the method of Eq.
(11)
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dP

dt
¼

X
i

aPei;Pki

 !
X � DP ð20Þ

A comparison between the model simulation and experimental measurements is
shown in Fig. 6.

From the initial 4,119 elementary modes, 2,520, 960, 600, and 39 are for
biomass growth, scFv synthesis, simultaneous biomass growth and scFv synthesis,
and catabolism, respectively. It is interesting to note that the functional enviromics
algorithm identified EM 63 for product synthesis, which belongs to the second
group of 960 elementary modes. This suggested that the product is cell growth
dissociated, which is in agreement with our previous study [60]. Analysis of the
weighting factor dynamics (Fig. 6b) clearly shows that the product synthesis
elementary mode peaks when the weighting factors for cell growth are almost
zero. The analysis of three additional fermentations further confirmed that product
synthesis is cell growth dissociated and that the final product titer increases with
the biomass concentration time integral. The maximum product titer and pro-
ductivity could be achieved by maximizing the glycerol feeding rate by applying
an accurate DO-stat glycerol feeding controller at very low DO set-points in the
range of 3–5 % [60].

Fig. 6 Simulation of biomass and product dynamic profiles on the basis of three elementary
modes (EM 63, EM 68, and EM 69) identified by functional enviromics: a biomass and product
concentration over time, and b elementary mode weighting factors over time
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6 Conclusions

In a typical cell culture process there is a large number of environmental variables
that shape cellular physiology. One important implication is that the design space
for process development, namely culture medium optimization and process con-
trol, is potentially very large. Current process development methodologies in the
industry are essentially of empirical nature. Empirical methods are not well suited
to handle high-dimensional design spaces unless a substantial level of reduction-
ism is applied, and even then with potential reduction of performance.

With the advances in systems biology, accurate genome-scale metabolic net-
works are becoming available for several microorganisms used in industry. Such
metabolic networks contain the required information to enumerate all the opera-
tional modes of cells (i.e., elementary modes). With adequate systems biology
tools such as functional enviromics, one can learn how such operational modes are
controlled by the environment and/or how they modify the environment. This
paves the way for pathway-level process development strategies, which are much
more efficient than traditional empirical methods.

Here, we have laid out a process development methodology that can be sum-
marized in the following main steps

(i) Formulation of an accurate (genome-scale) metabolic network
(ii) Computation of the elementary modes and pre-reduction of the same

(iii) Discrimination of elementary modes with high correlation with environ-
mental variables by functional enviromics

(iv) Formulation of macroscopic material balances with explicit envirome-cor-
related elementary modes

(v) Process optimization oriented to the manipulation of elementary mode
weighting factors

Such design tools can be used to optimize culture media and for advanced
process control. A main advantage is the significant reduction of the number of
experiments for very large design spaces. This is possible because the structure of
the metabolic network constrains the manipulation of the environment. Another
big benefit is the possibility to target intracellular control variables such as met-
abolic reactions or metabolic pathways directly linked with productivity and
product quality. All in all, such techniques have the potential to considerably
accelerate process development speed, to improve the mechanistic interpretability,
and to increase process performance.
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Knowledge Management and Process
Monitoring of Pharmaceutical Processes
in the Quality by Design Paradigm

Anurag S. Rathore, Anshuman Bansal and Jaspinder Hans

Abstract Pharmaceutical processes are complex and highly variable in nature.
The complexity and variability associated with these processes result in incon-
sistent and sometimes unpredictable process outcomes. To deal with the com-
plexity and understand the causes of variability in these processes, in-depth
knowledge and thorough understanding of the process and the various factors
affecting the process performance become critical. This makes knowledge man-
agement and process monitoring an indispensable part of the process improvement
efforts for any pharmaceutical organization.
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1 Process Data and Knowledge Management

1.1 Background

Commercial Current good manufacturing practices (cGMP) manufacturing of a
therapeutic product has to continuously go through various checks in terms of
process, people, raw materials, equipment, facility and processing environment.
Availability of and instant access to information regarding past and current records
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from these would lead to faster and better decision making, since the final product
quality is a complex interaction of all these interdependent functional areas. For a
data-intensive industry such as pharmaceuticals, access to data and information
enables organizations to understand and streamline operational and business
processes. However, most organizations fail to leverage this information for better
decisions due to the lack of proper means of managing information. The next few
sections of this chapter explore the challenges and complexities associated with
capture, storage and retrieval of information and current best practices.

1.2 D–I–K Hierarchy

Data, information and knowledge are often referred to interchangeably, however in
practice they have different meanings [1] and follow a defined hierarchy as shown
in Fig. 1. Data usually means raw numbers that have no context. To a bioprocess
professional, this means data entered into enterprise resource planning (ERP)
systems, datasheets or data captured in real time by sensors on process equipment.
Information provides meaning or context to data. To a bioprocess professional this
means the ERP reports, batch records and process execution reports and trends.
Knowledge is processed information that results in action. To a bioprocess
professional this means technical and investigation reports that contain process
knowledge, based on which process execution schemes, corrective and preventative

Fig. 1 Relationship between data, information and knowledge in the bioprocess context [6]
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actions are defined. Each of these requires different skills and tools for effective
storage, retrieval and management of its lifecycle.

1.3 Understanding Bioprocess Data

1.3.1 Data Sources

Processes involved in commercial manufacture of therapeutic proteins are mostly
batch processes that involve process data generated from diverse sources, often
isolated by data ownership across various departments and functions within an
organization. Information regarding a single process batch is located within the
following business systems:

• Batch production record (BPR): A BPR is a record of process execution, pro-
viding a step-by-step account of product-specific processing. BPRs are usually
paper based, but many organizations are adopting electronic BPR systems.

• Log books and operator notebooks: The information within these notebooks and
logs provides important contextual information regarding the chronological
sequence of events, activities, material exchanges, equipment status etc. which
may prove to be vital information in identifying root causes and resolving
process non-conformances.

• Supervisory control and data acquisition (SCADA) system: SCADA systems on
process equipment monitor and control the processes in real time. The system
captures streaming data from the sensors [e.g. temperature, pH, dissolved
oxygen (DO) etc.] installed on this equipment. The raw data are usually stored
within these systems, where the raw data storage format varies for each vendor
supplying the process equipment. Due to limited storage capacity in these
systems and the sheer volume of data generated, organizations sometime deploy
data historians to extract the data from these SCADA systems, and compress
and store the raw data.

• Laboratory information management systems (LIMS): In a pharmaceutical
manufacturing organization, LIMS is typically utilized to capture and manage
information from analytical tests performed on test samples of product inter-
mediates, bulk drug substances and all raw materials utilized in a manufacturing
process. Along with the test results, the LIMS also tracks the logistics of the test
samples (who, what, when, and where) throughout the sample lifecycle. If LIMS
is not deployed in test laboratories inside organizations, this information usually
resides in various spreadsheets and paper test reports.

• ERP systems: An ERP system within an organization captures all supply-chain
and inventory-related information. This is important in providing useful logis-
tics information regarding quality of raw materials, intermediate products and
process equipment. Organizations that do not have an ERP system deploy
manual procedural control, workflow and paper records to achieve this goal.
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• Quality management systems (QMS): Records of controlled documents such as
BPRs, standard operating procedures (SOP), non-conformance investigation
reports and operator training records are all maintained for the full lifecycle of
the product. The main process execution compliance systems are interlinked to
each other as shown in Fig. 2 and are an integral part of the complete knowledge
infrastructure. These carry useful information including batch reports, non-
conformances, investigational and technical reports that contain vital process
knowledge that is important for continuous improvement initiatives.

1.3.2 Data Capture Modes

Bioprocess execution data are typically captured in three modes: offline, at-line,
and online. These modes are defined by the data sampling frequency, the time it
takes to obtain the results and the distance the test sample has to travel. The modes
are explained as follows:

• Offline data capture: Offline data comprise mainly test results on samples taken
during processing that need to be sent for testing to a location outside of the
processing room. Typically these data are captured and maintained by quality
control laboratories within an organization or off-site testing agencies. The data
are recorded in paper records, spreadsheets, custom databases or LIMS systems.

• At-line data capture: At-line data are manual data captured near the process
equipment on the processing floor, being recorded in paper records, spread-
sheets, custom databases or electronic batch records (e.g. cell count data,
metabolite data, processing times etc.). These data are typically recorded by
scientists or operators executing the process batch.

Fig. 2 Elements of a quality
management system
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• Online data capture: Online data comprise real-time streaming data coming
from sensors installed on process equipment that captures process parameters
[e.g. pH, DO, temperature, conductivity etc.]. This capture mode has the highest
data volume and is recorded every few seconds or according to a set, periodic
data sampling frequency. Due to their high volume, these data are usually
retrieved from the native SCADA system storage (since there is limited native
data storage capacity), being compressed and stored by plant-wide data histo-
rians. The data from the historians are then decompressed on demand.

1.3.3 Data Types and Dimensionality

Captured process data can be in numeric, alphanumeric or purely text form.
Numeric data comprise parameter values that are either recorded manually or
captured automatically by the automation system of process equipment. Alpha-
numeric data are typically metadata comprising a numbering system used to
encode identification of materials (e.g. raw materials, product intermediate bat-
ches, equipment etc.). Finally, pure text data comprise all events and observations
related to the process execution. Metadata such as parameter names, product
names and equipment names also comprise full-text data.

The data for parameters (also referred to as time-series parameters) that are
captured at regular time intervals while the batch is progressing are three
dimensional in nature. The Batch IDs constitute the first dimension, the process
time the second dimension and the parameter names (e.g. daily viable cell density,
daily lactate concentration, daily temperature etc.) constitute the third dimension,
as shown in Fig. 3. In contrast, parameters (usually referred to as single value) that
are captured once per process execution (e.g. step yield, harvest titre etc.) are two
dimensional in nature, with Batch IDs as the first dimension and parameters as the
second dimension, as shown in Fig. 3.

1.3.4 Multi-Unit Batch Processing Involving Splits and Combinations

Bioprocesses are typically batch processes comprising many unit operations,
usually executed in series (Fig. 4a). Processes that involve multiple cycles of
chromatography operations also involve batches running in parallel for that unit

Fig. 3 Dimensionality of
time-series and single-value
parameters
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operation. Due to biological uncertainty and inherent process variability, the
upstream titres at the cell culture stage dictate the overall process sequence and
hence the need for flexible downstream processing. This flexibility usually results
in various splits, combinations and process step cycles, as shown in Fig. 4b, and
poses a significant challenge in data management and root cause resolution.

1.4 Data Flow Map

Biomanufacturing involves leveraging a large amount of information for suc-
cessful process execution and continuous improvement. This information set
consists of not only process data from the current batch/run but also data from
historical batches and execution-related information, including:

• Data from process development runs and technology transfer reports.
• Previously executed commercial batches.
• Equipment usage and maintenance records.
• Clean-room environment data.
• Personnel training data.
• Current and historical process non-conformances and deviations.

Figure 5 shows various data, information and knowledge repositories and how
the content flows from one to another during normal execution of the commercial
manufacturing process lifecycle of a product batch. The information is maintained
in systems owned by various functional groups such as process development,
engineering, quality control, quality assurance and manufacturing.

As shown in Fig. 5, process development engineers and scientists conduct
experiments to understand and develop a robust production process for manu-
facturing. The outcome of these experiments is development and technology
transfer reports. These reports form the basis of process validation activities for

Fig. 4 a Example execution sequence of bioprocess unit operations. b Lot genealogy, involving
multiple splits and combinations
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‘‘process fitness’’ on the manufacturing floor. After a successful validation exer-
cise, BPRs are created to capture process execution data.

Engineering groups in an organization are involved in ensuring that utilities
(air, gases and water) that are supplied and the process equipment that is used are
fit to execute the process. To achieve this goal, engineering teams maintain
metrology records and maintenance logs/schedules for all the equipment and
instruments used during process execution.

The facility management group ensures that the clean-room environment is
maintained according to cGMP standards and that the batch is not jeopardized due
to contamination issues. This group also maintains a cleaning log/schedule for all
the clean rooms used during the process execution.

Test samples are regularly collected to check for in-process controls, and these
are sent to an internal quality control laboratory for testing. The test results are
compared against the specification limits set in the process development tech-
nology transfer reports. Any out of specification (OOS) or deviations are reported
to the execution and quality assurance teams.

The manufacturing team investigates all batch OOS, non-conformances and
deviations observed during the process execution. Such root cause investigation
draws upon information captured at all stages by various groups (process develop-
ment, engineering, facility, quality) as shown in Fig. 6. The corrective and preven-
tative actions derived from these investigation reports form the basis of process
change control. The change control system is logged and maintained by the quality
assurance group, which then feeds information for improvement initiatives back into
various systems across various functional groups as shown in Fig. 6.

Fig. 5 Process knowledge repositories and the flow of information during process execution
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Figures 5 and 6 shows the lifecycle of various data, information and knowledge
repositories used in bioprocess manufacturing. An open and unified data man-
agement approach across all functional groups involved in process execution
within an organization will significantly help in efficient bioprocess knowledge
management.

2 Process Monitoring

2.1 Introduction

Process monitoring can be defined as an approach involving collection of process
data and statistical evaluation of parameters to verify or demonstrate that the
process is operating in a state of control, identify possible process changes and
shifts and promote continuous improvement. Consistency in product quality each
time the batch is executed requires maintaining process variables within the
specified limits for each batch. In pharmaceutical manufacturing, where the pro-
cesses are complex and have interdependent multistage operations, each of which
has numerous variables that affect the process, achieving consistent quality
becomes a challenging goal. This makes it even more important to monitor these
variables from batch to batch.

Generally, the process monitoring program starts with identifying the param-
eters relevant to the process and then recording the behaviour of those parameters

Fig. 6 Flow of information during the root cause investigation process
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every time the process is executed. Once the important parameters are identified
and captured, the data from these parameters are represented in the form of various
charts and visualizations that can help in detection of trends and deviations
occurring in the process. This type of regular monitoring helps in decision making,
fault detection and root cause investigations whenever unusual process activity is
encountered [11].

2.2 Tools and Approaches

The approaches for process monitoring can be mainly divided into two broad
levels. Under each of these levels there are various tools, charts and graphs that
help to assess the process performance from various angles and provide useful
insights regarding areas of improvement. These two levels are:

• Level 1: basic visual monitoring.
• Level 2: statistics-based monitoring.

2.2.1 Basic Visual Monitoring

Basic visual monitoring mainly consists of basic displays of data that are easily
understood by a wider audience without having advanced knowledge of statistics.
The main focus of tools/displays at this level is communication of process trends to
easily identify unusual events and anomalies that occurred during the process
execution. This makes the process stakeholders (operators, manufacturing super-
visors) aware of and efficient at handling and troubleshooting of day-to-day
operational issues. Another benefit gained from the usage of these basic displays of
data is that they provide standard views to represent parameter trends, parameter-
to-parameter relationships and comparison of batches. This standardisation pro-
vides a single language to discuss data and process issues and thus enables healthy
communication among all stakeholders.

Some of the charts/displays that are useful at this level for monitoring of
pharmaceutical data are as follows:

• Parameter profiles.
• Bubble charts (scatter plots).
• Parallel coordinates.
• Treemaps.

Parameter profiles display the behaviour of a particular parameter over a period
of time. As pharmaceutical data consist of many parameters that follow a par-
ticular trajectory for a process, to achieve consistent output it is important to
monitor these parameters to ensure that they always follow the same trajectory for
a given process. There are two approaches to show this kind of data:
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• To monitor multiple time-series parameters belonging to the same unit operation
for a single batch in one view, parameters of interest can be displayed on
multiple Y-axes, one for each parameter, whereas the X-axis can show the
process time. This gives a complete picture of the parameter profiles for one
batch (Fig. 7).

• Another way of visualizing this kind of data is to compare profiles for a single
parameter for different batches in one view. The X-axis again shows the process
time, while the Y-axis shows the parameter of interest and the various graphs on
the chart correspond to different batches (Fig. 8).

A bubble chart is a variation of a scatter plot where the markers of the scatter
plot are replaced by bubbles and a third dimension of ‘‘bubble size’’ is plotted
along with the two dimensions (X and Y) of the scatter plot. It can therefore be
used to study three parameters at a time, each represented by one dimension
(X-axis, Y-axis and bubble size). Such a chart provides a visual representation of
the relationship that exists among three parameters and how the change in one
affects the other two. Also, by plotting the values of three parameters for different
batches, it conveys useful information about the region where most of the values
lie for the three parameters for the majority of the batches and may help in easily
detecting outliers; For example, the chart in Fig. 9 shows time-series data for three
cell culture parameters: lactate concentration, ammonia concentration and product
titre. Data from 15 historical batches are plotted on the chart, each represented by a
different marker colour. Two patterns quickly emerge from this chart:

• At lower titres (small bubble size) both lactate and ammonia concentrations in
the culture broth are increasing. This indicates the early phase of the cell culture
process.

• The end of the cell culture process is indicated by higher titres (larger bubble
size). It can be seen that, in this portion of the process, the lactate concentration

Fig. 7 Profiles of three parameters for a single batch of a cell culture process
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decreases. This is indicative of lactate consumption by the cells. The ammonia
concentration, however, continues to increase in the culture broth with time.

A parallel coordinates chart is a useful way of presenting data that involve
multiple parameters and where the aim is to study the effect of those parameters on
the final process output (e.g. yield, recovery etc.). In this chart, each parameter is
represented on the horizontal axis and a vertical reference line is drawn for each

Fig. 8 Chart comparing the profile of the same parameter for different batches

Fig. 9 Scatter plot for three time-series parameters: lactate concentration, ammonia concentra-
tion and titre values, represented by the Y-axis, X-axis, and bubble size, respectively. For each
batch, there are a series of values for all three parameters according to culture age. Different
batches are represented in different colours
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parameter to indicate its scale. One batch is taken at a time, and all the parameters
of interest are plotted for that batch on the vertical axis. All the points for that
batch on these vertical reference lines are then connected with a line. Multiple
batches can be similarly plotted on the chart, with each line representing one batch.
In this way, each line represents the profile of one batch and can be compared with
the profiles of other batches. Thus, this allows comparison of different batches
across various dimensions (parameters), which helps to detect patterns, correla-
tions or exceptional profiles.

Figure 10 shows a parallel coordinate chart for multiple parameters relating to
different stages of the process. As the parameter scales are different, the scales have
been normalized, with 0 % representing the minimum value of a parameter and
100 % representing its maximum value for a given dataset. The highlighted lines
represent the batches with exceptional profiles (batch 5 and batch 6 in this example).

A treemap is used mainly to visualize large datasets. It provides a useful means
of displaying data with hierarchical structure. It represents the hierarchy in the
dataset by forming a hierarchical structure of rectangles inside rectangles. The
rectangles at the lowest level mainly represent the metrics that need to be tracked.
The size and colour of the rectangles can be used to represent various dimensions
of data.

Figure 11 shows a representation of the step recovery for various batches
belonging to different unit operations of the process. The first level of the hierarchy
consists of four rectangles, each representing a different unit operation. The second
level of the hierarchy consists of 14 rectangles inside each unit operation, repre-
senting the executed batches of that particular unit operation. The colour of these
rectangles represents the parameter ‘‘ % step recovery’’ for that batch and unit
operation. This can provide a useful visualization to quickly answer questions such
as:

Fig. 10 Parallel coordinates chart of various parameters for different batches on a scale of
0–100 %, where 0 % denotes the minimum value and 100 % denotes the maximum historical
value of each parameter
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• Which were the batches where the step recovery was highest?
• Which were the batches that had low step recovery?
• Which unit operation had highest step recovery?

On the one hand such quick answers to these questions can provide employees
with faster process knowledge, while at the same time they serve as a powerful
tool to trigger root cause investigations and process improvement initiatives by
representing the process in a concise and easy-to-understand format.

Many types of view can be generated for a process based on a treemap; another
example is presented in Fig. 12. This view can help a process engineer/scientist to
visually compare all important parameters for a single batch against its respective
specification limits, providing a quick snapshot of all the parameters that are
approaching specification limits. In this example, each step is represented by larger
rectangles, within which the parameters for that step are represented by smaller
rectangles. Since the values of parameters differ in scale, these have been nor-
malized based on the specification limits for the parameter, where 0 % denotes the
lower limit and 100 % represents the upper limit. The colour shade of the smaller
rectangles (parameters) is scaled according to the value obtained after this nor-
malization, where parameters approaching upper limits are coloured red and those
approaching lower limits are coloured green.

2.2.2 Statistics-Based Monitoring

The next level of process monitoring involves various tools and charts that are
based on principles of statistics and need a specialised skill-set and expertise to
understand and infer useful conclusions. Most of these apply statistical process

Fig. 11 Treemap of batches for four steps (Drug Substance, ChromI, ChromII and ChromIII) of
a process, coloured according to the ‘‘% step recovery’’ value obtained in those batches; darker
colour indicates higher recovery
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control and the multivariate analysis approach to understand the bioprocess vari-
ability and relationships between different parameters. In basic visual monitoring
tools (described in the previous subsection) the focus is easier detection of unusual
trends and patterns in the data to enable troubleshooting, whereas the focus for
statistical monitoring tools is to provide a quantitative measure of the inherent
variability in the process, assess the current state of control and enable process
improvement.

The various tools that are used for statistical monitoring are:

• Univariate control charts.
• Multivariate control charts.

Among such statistical monitoring tools, univariate control charts are the most
basic and widely used tool for monitoring process performance. These charts are
used to monitor whether or not the process is in control (where the sources of
variation are common). Analysis of such charts can provide an indication
regarding when a particular cause occurred (if any) resulting in the process going
out of control.

Univariate control charts plot a single parameter in one display where the Y-axis
represents the value of the parameter for the corresponding batches on the X-axis.
The data points for all the batches are then connected with a line that shows the
trend of the values for that parameter. A centreline is drawn based on the average
of the parameter values. Two lines (one above and one below the average line)
represent the statistical limits of the process that are calculated based on
±3 standard deviations (SDs). The statistical limits are the bounds for the
parameter, where a value inside this region signifies that the variability in the
process is due to inherent variability of the process (i.e. the process is in control)

Fig. 12 Treemap representing parameter values of four steps of a process for a single batch.
Each coloured rectangle represents a parameter. The colour is scaled from red to green, where
red indicates that the parameter value is approaching the upper alert limit and green indicates that
the value is approaching the lower alert limit
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Fig. 13 Control chart showing the first four violations of the Nelson rules: a Nelson rule 1: one
point is more than 3 SDs from the mean, b Nelson rule 2: nine (or more) points in a row are on the
same side of the mean, c Nelson rule 3: six or more points in a row are continually increasing or
decreasing, d Nelson rule 4: fourteen or more pints in a row alternate in direction
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and there are no special causes involved. A value lying outside this region signifies
the presence of special causes for the resulting process variability, making the
corresponding batch an outlier among the rest of the batches. There are various
rules, such as the Nelson rules and Western Electric rules, that when applied to the
control chart give an indication about the trends and systematic patterns that can
ultimately lead to an out-of-control situation. This makes the control chart an
important aid in preventing loss of future batches caused by some special cause of
variation.

Figure 13 shows a control chart. There is one horizontal line each for the
average, ±1SD, ±2SD, and ±3SD. The various data points that violate the Nelson
rules are marked according to the rule that they violate.

Though univariate Statistical Process Control (SPC) charts are easy to generate
and interpret, they are susceptible to giving false positives if the monitored vari-
ables are highly interrelated. For this reason, the bioprocessing industry is rapidly
adopting more sophisticated tools such as multivariate statistics for deeper insights
into the process. These tools, however, require advanced algorithms for data pre-
processing and modelling [4, 13, 20]. This has enabled analysis of multidimen-
sional data in an efficient way in the form of various multivariate control charts.

Multivariate control charts are used to monitor several related parameters at the
same time. In univariate control charts, the focus is on one parameter at a time,
whereas multivariate control charts take into account the fact that most of these
parameters are related to each other and therefore it is essential to investigate these
interactions and correlations to benchmark the process performance. These charts
combine the principles of multivariate analysis and statistical process control to
trend and analyse the process data. Most of these are based on principal component
analysis (PCA) and partial least squares (PLS) techniques. These are projection
methods that project the data into lower-dimensional spaces to facilitate analysis.
PCA is mainly used to reduce the number of variables that require monitoring by
combining the variables to generate new variables called principal components
that are fewer in number than the original variables and are less correlated com-
pared with the original variables. In this way, it focuses on deriving a model based
on the data where the variance between the projection coordinates is maximum.
PLS, on the other hand, analyses the covariance between a set of variables with the
focus on finding the directions that represent variation in process variables as well
as how such variation in process variables affects quality variables.

Most of these methods operate by first constructing a process model based on
historical data. Subsequent batches are then studied based on that model to detect
shifts and deviations in the process. There are several charts based on these
principles that can be used for multivariate process monitoring:

• T2 control charts based on Hotelling’s statistics are used to detect shifts and
deviations of principal components from the normal behaviour defined by the
model;

• Score plots are used to detect out-of-control behaviour of the latent variables
from the control limits defined by the reference data;
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• Squared prediction error (SPE) charts detect deviations from normal behaviour
that are not defined by the model. These are based on the error between raw data
and the PCA model fitted to those data;

• Contribution plots provide an indication about the process variables that are
responsible for a particular deviation;

• Loading plots represent the relative contribution of each process variable
towards a particular principal component;

• Variable importance for the projection (VIP) plots provide a method to quantify
the relative importance of various variables used in the PLS model;

• Batch control charts are used to identify the time point at which the process
starts deviating from the normal behaviour on the basis of the ±3SD limits.

These charts are used in combination to detect variation and for predictive
modelling of the process. A combination of Hottelings T2 charts and contribution
plots provides a powerful method for fault detection and diagnosis, where the T2

chart provides an indication of the shift and the contribution plots are then used to
determine the cause of the deviation [14]. These charts also prove useful for real-
time monitoring of bioprocesses. This is illustrated by two case studies, where this
approach could save future batches by identification of equipment issues related to
lower viability in a particular bioreactor and probe failure in a chromatography
column as the cause of the out-of-control trend [23]. Score plots have been used as
a preliminary aid in identifying abnormal batches based on a model developed
from historical batches that can take into account multiple input parameters [23].
These plots also act as a fingerprint for the process and help to identify batch
evolution and progression trends [10].

Over the years, the term ‘‘process monitoring’’ has evolved from being not just
a basic review of process trends and has come to include various types of advanced
statistics. The applications of ‘‘process monitoring’’ are not limited to fault
detection and diagnosis but have proliferated into real-time monitoring, feedback
and control as well. However, the success of these advanced tools requires instant
access to process information, which mandates efficient process knowledge
management as a prerequisite.

3 Knowledge Management and Process Monitoring
in the Quality by Design Paradigm

3.1 Quality by Design

Quality by design (QbD) is defined in the ICH Q8 guideline as ‘‘a systematic
approach to development that begins with predefined objectives and emphasizes
product and process understanding and process control, based on sound science and
quality risk management’’ [18].The publication of the Food and Drug Administra-
tion’s (FDA) PAT—A Framework for Innovative Pharmaceutical Manufacturing
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and Quality Assurance initiated an effort that eventually evolved into QbD [15]. The
underlying principles of science and risk-based process and product development
and commercialization are also reflected in the contents of the International Con-
ference on Harmonization (ICH) guidelines: ICH Q8 Pharmaceutical Development,
ICH Q9 Quality Risk Management and ICH Q10 Pharmaceutical Quality System
(ICH Guideline Q8, Q9, Q10) [7, 8, 9]. The recently issued Guidance on Process
Validation from the US Food and Drug Administration (US FDA) also imbibes these
principles [5]. The last 5 years have seen QbD gaining widespread adoption in the
pharmaceutical industry, with several publications attempting to elucidate a path
forward for implementation of QbD and resolving the various issues that otherwise
serve as detriments to successful implementation [12, 17, 18].

In the traditional approach to pharmaceutical production (Fig. 14), manufac-
turers define a process and run it consistently such that the process parameters are
controlled within a narrow range to maintain consistent product quality. This has
been the approach adopted for the vast majority of pharmaceutical products on the
market today. The major downside of this approach is that, since the process
controls are fixed, variability in raw materials and process manifests as variability
in product quality and sometimes results in lot failures. Since variability is not
eliminated at any step, it accumulates as the process advances from one step to the
next, with the final product quality varying significantly. In contrast, in the QbD
paradigm, the control strategy is dynamic and allows the process to be run dif-
ferently to deal with incoming variability in characteristics of feed material and
raw materials. The net result of this is that the incoming variability is either
reduced or eliminated and the resulting product quality is very consistent. This is
best shown by the data presented in a recent publication [19]. As seen in Table 1,
when a process analytical technology (PAT)-based control scheme was used for

Traditional Control Strategy (Fixed controls)

Adaptive
Operating
Ranges

Adaptive
Operating
Ranges

Design Space

Knowledge Space

Failures

Normal
Operating
Ranges

Design Space

Knowledge Space

Failures

Dynamic Control Strategy

Variability in 
characteristics
of feed material
and raw materials

Variability in 
characteristics
of feed material
and raw materials

Variability in 
product quality

Consistency in 
product quality

Fig. 14 Illustration of different control strategy approaches for a pharmaceutical process.
Adapted from Rathore [17]
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pooling of a process chromatography column, up to 20 % variability in the quality
of the incoming feed material results in less than 1 % variability in the product
quality of the resulting pool. If the same occurs at every step of the process,
variability can systematically be reduced or eliminated and the quality of the final
product will be very consistent.

Figure 15 illustrates the roadmap for QbD implementation and shows the key
steps that need to be taken for successful implementation of QbD for a pharma-
ceutical product [17, 18]. Key steps are: identification of the product attributes that
are of significant importance to the product’s safety and/or efficacy [target product
profile and critical quality attributes (CQA)]; design of the process to deliver these
attributes; a robust control strategy to ensure consistent process performance;
validation and filing of the process, demonstrating the effectiveness of the control
strategy; and finally ongoing monitoring to ensure robust process performance
over the lifecycle of the product. Furthermore, risk assessment and management,
raw material management, use of statistical approaches and process analytical
technology (PAT) provide a foundation for these activities.

Table 1 Data demonstrating the effectiveness of a process analytical technology-based control
scheme in eliminating process variability. Adapted from Rathore et al. [19]

Run Load purity (% ) PAT pooling

Pool purity (% ) Yield (% )

1 62.8 91.6 81.9
2 72.2 91.1 83.8
3 81.6 90.2 87.8

Identify TPP

Identify CQA

Define Control Strategy

Define Product Design Space

Define Process Design Space

Refine Product Design Space

Process Validation

Process Monitoring

Filing

Risk Assessment

Risk Assessment

Process Characterization

Risk Assessment

Fig. 15 Steps that need to be taken for implementation of QbD for pharmaceutical product
development. Adapted from Rathore and Winkle [18] and Rathore [17]
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3.2 Knowledge Management and Process Monitoring
in the QbD Paradigm

3.2.1 Knowledge Management

The role of quality control in traditional pharmaceutical manufacturing was lim-
ited to doing end product testing. Most such analysis was performed retrospec-
tively, after the product had already been manufactured, thus leaving the
manufacturer the choices of either accepting or rejecting a product lot. Lot
rejection results in an increase in the cost of manufacturing the product. In the
QbD/PAT paradigm, there is an emphasis of putting in place a more holistic
approach for determination of product quality and establishment of process control
to ensure consistent product quality.

While the need for efficient knowledge management in a complex and
knowledge-intensive industry such as the pharmaceutical industry was always
there, the need for efficiency and thereby the cost of inefficiency of managing
knowledge within a company have become critical in the QbD/PAT paradigm. At
present, knowledge transfer within companies is somewhat limited across the
different departments, namely clinical, commercial, quality and regulatory. A lot
of information is documented in the form of technical reports which may not even
be accessible outside the function that created them. Even if such reports are
accessible, raw data may not be easy to obtain. This is especially true if the author
of the technical report is no longer an employee of the company. It is clear that
companies that are successful in the future will be characterized by efficient
knowledge management networks that ensure that the right knowledge reaches the
right person at the right time.

The following are some salient points of knowledge management in the QbD
paradigm:

1. Companies are spending a lot more effort upfront to meet the higher expecta-
tions from QbD activities such as identification of CQA and of critical process
parameters (CPP). With the known complexity of pharmaceutical products,
budgetary and timeline constraints require a company to leverage knowledge
from multiple sources. These include:

(a) Prior experience in process and product development that the company has
in developing the product in the earlier stages of product development
(discovery, toxicity etc.).

(b) Prior experience in process and product development that the company may
have in developing similar kinds of products (monoclonal antibody,
globular protein etc.), the clinical indication and the mechanism of action
of the product.

(c) Published literature from other companies that may be working on similar
products and clinical indications
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2. The lag between the time when the manufacturing process is designed and the
time when routine manufacturing of the product is started in the commercial
facility can be anywhere from 5 to 10 years. A deviation at the time of man-
ufacturing may result in non-conformance, which in turn may require an
investigation to find the root cause and take the necessary preventive and/or
corrective action. If the data created during the development of the process are
available after such a gap of time, they can be used for closure of the non-
conformance. Otherwise, as is typical in the pharmaceutical industry today,
data need to be recreated so that the necessary investigation can be completed,
resulting in spending resources for recreating process data that already exist in
the company. Further, release of the lot will be delayed until such data have
been created and the investigation has been completed.

3. The significant advancements in analytical/bioanalytical chemistry with respect
to development and implementation of new tools, combined with a similar
increase in our ability to collect and store data, have resulted in a very sig-
nificant increase in the amount of data that is routinely generated in a phar-
maceutical company. This has, however, resulted in a challenge with respect to
timely analysis of the data as well as the sharing of the results of the analysis
with the broader organization. This issue has been dealt with in a recent pub-
lication, and the following recommendations were made [2]:

(a) We need to apply risk management principles towards data analysis. It is
not optimal to collect and analyse all available information with uniform
rigor. For all parameters, a company may continue to record all data on

Fig. 16 Outcome of risk analysis for prioritization of various input and output parameters that
are typically encountered when performing mammalian cell culture processes. Adapted from
Bansal et al. [2] with copyright permission from Advanstar Communications
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paper (such as batch records) or in electronic format. However, more
sophisticated forms of data archiving, visualization and analysis may be
reserved for parameters that have been prioritized. An example of such an
approach is illustrated in Fig. 16.

(b) Create domain-specific visualizations that can help to monitor processes
and serve as a standard way of communication of process data across the
organization. Such visualizations will represent the relationship between
different types of data (e.g. batch performance data, time profiles, batch
events etc.) and would be accessible to all who are associated with the
process and the product.

(c) Perform advanced data capture and statistical analysis to gain deeper
insights into the process for chosen parameters (Fig. 16). These advanced
tools should be used (or piloted) by a smaller subset of the organization.

3.2.2 Process Monitoring

As defined earlier, process monitoring involves collection of process data and
statistical evaluation of parameters to serve multiple purposes ranging from
demonstration of process control to identification of opportunities for process
improvements. In the USA, this is a requirement in the Code of Federal Regula-
tions (21CFR Part 211) specifying ‘‘application of suitable statistical procedures
where appropriate’’, with in-process specifications ‘‘derived from previous
acceptable process average and process variability estimates’’ [16].

In the QbD paradigm, process monitoring has gradually evolved from just being a
retrospective analysis of data for the annual product review to a more dynamic
process involving more real-time analysis of data and linkages to the quality systems
of the company [11]. The latter include systems related to non-conformances, cor-
rective and preventive actions, lot release as well as other key activities associated
with GMP manufacturing of pharmaceuticals. This thinking is also reflected in
recently published documents from the different regulatory agencies and the Inter-
national Conference on Harmonisation (ICH). The ICH Q8 guideline states that
‘‘Collection of process monitoring data during the development of the manufacturing
process can provide useful information to enhance process understanding.’’ [7]. The
PAT guidance further states that ‘‘Process monitoring and control strategies are
intended to monitor the state of a process and actively manipulate it to maintain a
desired state. Strategies should accommodate the attributes of input materials, the
ability and reliability of process analyzers to measure critical attributes, and the
achievement of process end points to ensure consistent quality of the output materials
and the final product.’’ (FDA’s PAT Guidance). The ICH Q10 guidance identifies
monitoring as a key element of the pharmaceutical quality system and states that
‘‘Pharmaceutical companies should plan and execute a system for the monitoring of
process performance and product quality to ensure a state of control is maintained.
An effective monitoring system provides assurance of the continued capability of
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processes and controls to meet product quality and to identify areas for continual
improvement.’’ [9].

More recently, the newly issued Draft Guidance on Process Validation by the
US FDA makes several references to process monitoring. Some excerpts in this
regard are as follows:

1. Section 211.110(a), Sampling and testing of in-process materials and drug
products, requires that control procedures ‘‘… be established to monitor the
output and to validate the performance of those manufacturing processes that
may be responsible for causing variability in the characteristics of in-process
material and the drug product’’.

2. Special attention to control of the process through operational limits and
in-process monitoring is essential (1) where the product attribute is not readily
measurable due to limitations of sampling or detectability (e.g., viral clearance
or microbial contamination), or (2) when intermediates and products cannot be
highly characterized and well-defined quality attributes cannot be identified.

3. In most cases, process qualification (PQ) will have a higher level of sampling,
additional testing, and greater scrutiny of process performance. The level of
monitoring and testing should be sufficient to confirm uniform product quality
throughout the batch during processing. This greater scrutiny accompanied by a
higher level of sampling should continue through the process verification stage,
as appropriate.

4. We recommend continued monitoring and/or sampling at the level established
during the PQ stage until sufficient data is available to generate significant
variability estimates. Once the variability is known, sampling and/or moni-
toring should be adjusted to a statistically appropriate and representative level.
Process variability should be periodically assessed and sampling and/or mon-
itoring adjusted accordingly.

5. Maintenance of the facility, utilities, and equipment is another important aspect
of ensuring that a process remains in control. Once established, qualification
status must be maintained through routine monitoring, maintenance, and cali-
bration procedures and schedules (21 CFR part 211, subparts C and D).

6. Process flow diagrams should describe each unit operation, its placement in the
overall process, monitoring and control points, and the component, as well as
other processing material inputs (e.g., processing aids) and expected outputs
(i.e., in-process materials and finished 611 product).

It is clear from the above references that both the industry and regulators are
opting for implementation of a holistic approach where process characterization,
process validation and process monitoring are closely intertwined, being capable
of initiating one another as needed. The future of process monitoring lies in
combined use of powerful analytical tools capable of supporting real-time decision
making and sophisticated statistical tools that can analyse complex datasets in an
efficient and effective manner [3]. Several examples in the literature demonstrate
the benefits of such monitoring schemes [10, 21, 22, 24].
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4 Case Studies

Any cGMP campaign involves resolution of deviations and non-conformances that
occur during process execution. Resolution of these process issues requires a
detailed root cause investigation so that effective corrective actions can be taken to
prevent future occurrences. A typical root cause investigation starts with
answering some of the following questions:

• What was the observation?
• At what stage (process step) was it observed in the process?
• Was any other abnormal behaviour observed for this process step?
• Was everything OK with raw materials or intermediate products that feed this

process step?
• Does a similar trend or observation exist in earlier steps that feed the current

process step?

An efficient process monitoring and knowledge management program (as dis-
cussed in earlier sections) will equip the organization with the information
required to answer these questions. The cases discussed next detail the investi-
gative procedure usually followed for a root cause investigation or process
improvements.

Fig. 17 Statistical process control chart for a downstream process parameter
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4.1 Case Study 1: Root Cause Investigation

4.1.1 Problem Statement

Company A has a process monitoring program in place that mandates it to perform
periodic process reviews. During one such review it was observed on a run control
chart that the final protein yield for the Ultrafiltration/ Diafiltration (UF/DF) step
for two batches (batch 25 and batch 26) was unusually lower than for other
batches, as shown in Fig. 17. Since these batches met all batch release criteria,
these observations went unnoticed during regular batch release activity.

4.1.2 Investigation

Tracing the lot genealogy (Figs. 18 and 19) for batches 25 and 26, the related
batches that fed these outlier batches in the UF/DF step were investigated.

Trends for various parameters in these steps involving these related batches
were investigated, and it was observed that PF-Batch 15 and PF-Batch 17 at the
fermentation step had abnormal titre at harvest (Fig. 20) and slower cell growth
profiles (Fig. 21) compared with other batches.

Going back to the lot genealogy (Figs. 18 and 19), it was observed that a
common batch SF-Batch 35 (at the seed fermentation stage) fed both the abnormal

Fig. 18 Lot genealogy for batch 25 of the UF/DF step

Fig. 19 Lot genealogy for batch 26 of the UF/DF step
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fermentation batches. Scanning through various process parameters for the seed
fermentation step, it was found that the SF-Batch 35 transfer age was unusually
higher than for other batches, as shown in Fig. 22. A review of the batch record of
SF-Batch 35 indicated that the root cause was delay due to scheduling issues that
caused the delay in transfer by 1 day.

Fig. 20 Statistical process control chart for a cell culture process parameter

Fig. 21 Viable cell density profiles for various batches for a cell culture process
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4.2 Case Study 2: Process Improvement

During another process review, a cyclic trend of gradual decrease in step yields
after 30 batches was observed for a chromatography step in the process (Fig. 23).
As shown in the control chart (Fig. 23), yields returned to normal after every 40
batches.

Plotting the step yields against the number of column cycles (Fig. 24) clearly
differentiated the batches processed with the same column pack up to 30 cycles
from those processed after 30 cycles. Also, the host cell DNA (HCD) was plotted
using the marker size, clearly indicating a loss in column performance for columns
used after 30 cycles, as indicated by a loss in yield and increase in output HCD

Fig. 22 Statistical process control chart for a seed culture process parameter

Fig. 23 Statistical process control chart of % step yield of a chromatography process
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(increase in marker size). On the basis of this analysis, a process change was
initiated to repack the column every 30 cycles, replacing the current practice of
packing after every 40 cycles.

Fig. 24 Bubble chart showing the relationship between cycle number and % step yield of a
chromatography step (X- and Y-axes) compared with HCD concentration (marker size) at BDS
step

Fig. 25 Real-time multivariate monitoring of a seed bioreactor (detection, diagnosis and
inspection steps). Published with copyright permission from Advanstar Communications from
Konold et al. [11]
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4.3 Case Study 3: Real-Time Process Monitoring

As an example of real-time multivariate statistical process monitoring (RT-MSPM),
we present a case study involving development of a PCA-based model for monitoring
of a mammalian cell culture bioreactor at commercial scale [11]. Data were collected
during operation of a seed bioreactor train in a manufacturing plant. The dataset
consisted of 11 process variables that were measured online for 30 batches. The
resulting model was able to explain overall process variability with three principal
components. New production batches were then monitored against this model in real
time. The outcome of the analysis is illustrated in Fig. 25. In step 1, a T2 chart was
used to detect a deviation. Step 2 involved diagnosis at the variable level, which
indicated that the pH probe is reading less than historical averages, i.e. outside of ±3
SDs. Finally, in step 3, inspection of the pH trace was performed. This allowed
scientists and engineers to start troubleshooting the probe and other operational
factors to better understand and monitor the process via this simple three-step
process.

5 Conclusion

As the pharmaceutical industry implements QbD principles towards process and
product development and commercialization, it is critical that pharmaceutical
companies have an efficient and effective approach towards knowledge manage-
ment and process monitoring. The combination of data visualization and sophis-
ticated statistical techniques, such as those discussed in this chapter, and advanced
analytical tools will facilitate efficient process monitoring. This in turn will result
in increased consistency of product quality as well as efficiency in manufacturing
of pharmaceutical products and bring us closer to full implementation of QbD and
realizing its benefits.
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Abstract With increasing pressure from regulatory authorities on industry to
develop processes embracing process analytical technology (PAT) initiatives,
there is a growing demand to establish reliable tools and systems capable of
meeting this need. With regard to monitoring and control of bioprocesses, this
need translates to a search for robust instrumentation capable of monitoring the
critical process parameters in real time. The application of such technologies at all
stages of the process, from the initial R&D phase to process optimisation and
production, enhances process understanding and paves the way for the develop-
ment of control platforms. An examination of the PAT concept and selected tools
(NIR, MIR, Raman, dielectric spectroscopy and calorimetry) are presented here. A
description of each tool is given, with particular emphasis on the nature of the
signal produced and how these relate to measurements of biomass, metabolites and
product. A description of the signal processing that is necessary to gain meaningful
results from the different tools is also given, together with online data reconcili-
ation techniques based on mass and energy balances. Many techniques such as
those based on vibrational spectroscopy are of particular interest, since they are
capable of monitoring several critical process parameters which are typically
controlled in a bioprocess. A window of application for each of the techniques,
when used in the area of bioprocessing, is suggested based on their uses and
inherent limitations.
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1 Introduction

The last decade has introduced a significant number of changes to the pharma-
ceutical and biopharmaceutical industries, not least in the areas of quality assur-
ance and regulatory compliance. This new focus has largely been driven by the
Food and Drug Administration (FDA). In 2002 the FDA announced a new ini-
tiative, ‘‘Pharmaceutical cGMPs for the 21st century’’, the purpose of which was to
modernise the regulation of pharmaceutical quality. The initiative supports and
promotes the use of risk-based and science-based approaches for regulatory
decision making, throughout the entire lifecycle of a product [1]. After 2 years in
development, the final report outlines the envisioned direction in which the
pharmaceutical and biopharmaceutical industries should be moving, but also
provides guidance on how to make the proposed changes and embrace the new
concepts put forward.

Central to the implementation of this new system is the use of science and
engineering knowledge to establish boundaries and evaluate processes. Previously,
a manufacturing process was developed and quality control and assurance tests
were then applied to ensure compliance. This new initiative aims to use knowledge
to mitigate risk, by reducing process and product variability and applying con-
tinuous process improvement. Industry guidelines published by the FDA in May
2006, ‘‘Q8 Pharmaceutical Development’’, state, ‘‘quality cannot be tested into the
products, it should be built in by design’’ [2]. Essentially this means that the
rigorous testing of the past cannot improve product quality or enhance the process
but rather quality should be pivotal throughout the lifecycle of a process and a key
factor from the initial stages of development and process design. This introduces
the concept of ‘‘quality by design’’ (QbD), whereby a ‘‘design space’’ is estab-
lished, within which the product quality profile is defined, the critical quality
attributes (CQAs) and critical process parameters (CPPs) are identified and the
manufacturing process is controlled. Process changes that occur within the design
space are acceptable, as the design space would have been subject to regulatory
assessment and approval at the time the manufacturing process was filed. However
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movement outside the design boundary is considered a change and as such would
most likely require regulatory post-approval.

In order to establish a design space that will allow for maximum process
flexibility while ensuring all CPPs and CQAs are identified and maintained, a large
degree of process understanding is essential. Process analytical technology (PAT)
is a ‘‘pillar/guiding principle’’ of the cGMP initiative [1]. The PAT framework
published in September 2004 defines process understanding and highlights the
tools required to achieve this standard of process knowledge:

A process is generally considered well understood when (1) all critical sources of vari-
ability are identified and explained; (2) variability is managed by the process; and, (3)
product quality attributes can be accurately and reliably predicted over the design space
established [3].

PAT provides in-depth process understanding, but to implement PAT and
operate under the principle of quality by design the process must be well under-
stood. Many in the industry have applied these to processes to glean greater
process knowledge. However, although PAT is a relatively new concept, it has
evolved over the last decade. It has transitioned from being an analysis in the
process, to supplement quality control, to being an analysis of the process [4]. As a
result of PAT being embraced by industry, tools that are capable of real-time
monitoring and control must be developed. Currently, few developed tools exist
and even fewer have actually been implemented in a manufacturing environment.

This chapter explores the use of selected PAT tools which can be used in the
context of M3C in bioprocess applications and looks at the advantages and limi-
tations of each. Calorimetry is examined in terms of its operating principle and
signal processing methods. A description of the current state and potential future
developments is provided along with a summary of its reported use as a PAT tool.
The history of the development of dielectric spectroscopy for bioprocess purposes
is then described within the scope of PAT, and a detailed overview of the different
applications in the field of process engineering in the production of biological
products is provided. Issues relating to correlation and data pre-processing tech-
niques are also discussed as well as the potential industrial applications of
dielectric spectroscopy. The final set of PAT analysers considered are those based
on vibrational spectroscopy. The theory behind the use of MIR, NIR and Raman
spectroscopy for bioprocessing applications is outlined, and the necessity of using
multivariate data processing is explained. Reported uses of these techniques for
bioprocess monitoring and control applications are summarised, and the current
state of the different technologies are compared.

Finally, a synopsis of available control strategies for bioprocesses based on
measurements from PAT tools and data analysis is given.
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2 Techniques for Bioprocessing Monitoring

2.1 Heat-Flow Biocalorimetry

Bioprocesses are complex systems involving multiple ongoing biochemical reac-
tions at both intra- and extra-cellular levels. According to classical biothermody-
namics ‘‘All living cells involve heat exchange with their surroundings in order to
sustain their cell metabolism’’. The heat generated during cell metabolism is due to
dissipation of excessive internal (Gibb’s) energy stored inside the living cell. The
amount of heat generated by a living cell is determined by the metabolic activity of
the cell itself. Each living cell sustains the balance between the anabolic and cata-
bolic processes by regulating the amount of heat dissipation and, hence, persists as
metabolically active under different process conditions [5]. As a result, the mea-
surement of metabolic heat production should provide valuable information on the
physiological activity of the organism and may be regarded as a ‘metabolic variable’
of any bioprocess system. The measurement of metabolic heat has been gaining
attention in both industry and academia due to its non-specific, non-invasive and
insensitive properties in relation to the process systems to which it is applied [6–8].

2.1.1 Working Principle and Operation

Reaction calorimeters have been especially designed for bioprocess monitoring.
This section deals only with advances concerning bench-scale heat-flow biocalo-
rimeters; related fields such as micro-calorimetry are not discussed here. Several
reports are available which describe the principle of heat-flow biocalorimetry
[9, 10], which is similar to a bench-scale fermenter but with additional calorimetric
sensors for metabolic heat flow rate measurement.

2.1.2 Development of Biocalorimetry

‘Biocalorimetry’ is an old branch of science that dates back to the eighteenth
century. It facilitates a quantitative interpretation of metabolic heat generated from
living systems as a useful ‘process signal’ for monitoring purposes [11]. Since the
start of the nineteenth century, temperature sensors with improved sensitivity and
sophisticated measurement techniques have become available, and these have been
deployed by several research groups for metabolic heat measurements, rendering
‘biocalorimetry’ popular among scientists and academics. Micro-calorimeters
were primitive models of biocalorimeters used in the mid-nineteenth century to
effectively monitor fermentation processes [12, 13]. Micro-calorimeters accom-
plished high-sensitivity measurements of heat flow signals; however the technical
difficulties associated with the design, viz. pH control, mixing and oxygen supply,
remained a hurdle for technical applications [7]. These technical challenges led to
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the development of a calorimetric technique that could be readily integrated into a
bench-scale bioreactor, known as ‘heat-flow calorimetry’ [11]. Ciba-Geigy AG
(Basel, Switzerland) developed a new bench-scale calorimeter based on the heat
flow calorimetric technique, commercialised by Mettler Instruments AG (Swit-
zerland) as a ‘reaction calorimeter, RC1’ suitable for monitoring chemical reac-
tions [14]. The advent of bench-scale reaction calorimetry in the 1980s paved the
way for biocalorimetrists all over world to make advances in calorimetric science
[15]. A high-resolution version of the reaction calorimeter suitable for monitoring
biochemical reactions was developed by Marison et al. [16], and it caused a
paradigm shift in biocalorimetric research and demonstrated the usefulness of
heat-flow biocalorimeters in bioprocess monitoring. Further studies illustrated that
heat-flow biocalorimeters are high-performing (bio)reactors suitable for all kinds
of bioprocess applications, viz. cultivation of different cell lines, quantitative
studies including process monitoring and control [17] and biothermodyanamic
studies [5]. Due to their versatile nature, heat-flow biocalorimeters are widely
employed nowadays for bioprocess monitoring and control applications. More-
over, the decreasing surface-to-volume ratio in large-scale bioreactors results in a
good-quality heat flow signal. Hence huge scope exists for deploying heat-flow
calorimetry in industrial-scale bioreactors in the near future. Though several
research works employing bench-scale biocalorimeters have been reported, their
real potential is yet to be realised in the industrial biotechnology sector.

2.1.3 High-Resolution Heat Flow Rate Signal

The successful application of calorimetric techniques to bioprocess monitoring is
inherently related to the sensitivity of the instrument and the signal noise [16].
García-Payo et al. improved the resolution to 4–12 mW L-1, and this is regarded
as a significant milestone in heat-flow biocalorimetric research [18], paving the
way for employing heat-flow calorimetry to monitor weakly exothermic reactions,
viz. anaerobic and animal cell growth processes. However, long-term signal noise
during calorimetric measurements is still an issue. Long-term noise disturbances in
measured calorimetric signals are attributed to ambient temperature fluctuations
and could be minimised by effectively thermostatting both the reactor housing and
its head plate. Such signal noise becomes less important with large-scale reactors
since the heat balances around the reactor would compensate for these.

2.1.4 Scope for Bench- and Large-Scale Biocalorimetry in General as a PAT
Process Analyser

Direct measurement of the metabolic activity of organisms is desirable, and this
may be achieved by quantitative measurement of metabolic activity via heat flow
rate measurements. Table 1 chronologically summarises the significant progress
achieved in biocalorimetry in real-time monitoring and control applications for a
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variety of bioprocess systems. These findings show the versatility for investigation
of almost all types of cell metabolism, viz. aerobic, fermentative, anaerobic,
anoxic, photoautotrophic and mixotrophic. Changes in the measured heat flow rate
profile were effectively used by several research groups to understand anomalies
encountered in a bioprocess system such as diauxic growth, change in physiology
of organism, dual substrate limitation and substrate and toxic inhibitions [19–21].
Furthermore, the estimation of heat yield coefficients could confirm the existence
of these anomalies, e.g., values of heat yield due to cell growth (YQ/X) and oxy-
calorific coefficient (YQ/O) could provide quantitative information on diauxic
behaviour and metabolic shifts in an ongoing bioprocess [12]. The development of
a high-sensitivity biocalorimetry [22] proved its ability to monitor weakly exo-
thermic biochemical reactions encountered in anaerobic and WWT systems; For
instance, Liu et al. first reported the existence of endothermic microbial growth by
cultivation of the acetotrophic methanogen Methanosarcina barkeri [23]. Also,
Daverio et al. successfully monitored acidogenic and methanogenic phases of
anaerobic granular sludge originating from an up-flow anaerobic sludge blanket
(UASB) digester [24]. Calorimetric investigations in micro-algal cultures, viz.
Chlorella vulgaris and Chlorella sorokiniana, were carried out using an improved
‘photobiocalorimeter’ [25, 26]. The heat flow measurements were utilised to
quantify the stored chemical energy (converted from incident light) inside algal
biomass and to estimate photosynthetic efficiency.

Recent studies by the authors proved the robustness of a heat flow signal
compared with process signals acquired in parallel to PAT process analysers such
as dielectric spectroscopy and exhaust gas analysers [35]. Apart from monitoring,
the measured heat flow rate signal can also serve as an input to control the
bioprocess in order to improve the product yield, e.g. initiating limiting substrate
feed during fed-batch culture and/or the induction phase. This is illustrated in
Fig. 1, which represents a typical heat flow rate (power–time) profile during
aerobic respiratory growth of Kluyveromyces marxianus. Since there is no fer-
mentative by-product formation during respiratory metabolism, the majority of the
heat generation is from the cell growth process. This phenomenon can be inferred
from Fig. 1, since the measured heat flow rate signal clearly depicts distinct phases
of cell growth. The logarithmic growth phase of K. marxianus corresponds to an
exponential rise in the heat flow rate, while substrate (glucose) limitation leads to a
dramatic fall in the heat profile at approximately 8 h after inoculation. This shift in
heat profile was used as the signal to start the fed-batch operation in order to
maintain the growth trajectory of K. marxianus in the exponential mode (Fig. 1).
A further improvement has been achieved via feedback control employing heat
flow rate measurements and a proposed real-time fed-batch control [35]. A simple
estimator was developed for biomass and specific growth rate using heat flow rate
measurements, and its reliability was investigated in a fed-batch process in real
time [36]. The robustness of feedback control to maintain specific growth rate at a
desired set value employing such estimators is shown in Fig. 2. It can be seen that
the average tracking error between the controlled and the actual set value
(0.21 h-1) of the specific growth rate is 0.03 h-1 over a 5-h period. These results
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are encouraging and suggest that heat flow calorimetry may be a potential PAT
process analyser in a variety of bioprocess systems.

Very few reports have been published on the use of heat-flow calorimetry using
mammalian bioprocess systems. Real-time monitoring and control of mammalian
bioprocesses is gaining considerable attention in the biopharmaceutical industry to
achieve high yields of monoclonal antibodies (mAbs) and other recombinant
proteins. Mammalian cell growth processes are slow reactions and weakly exo-
thermic compared with microbial anaerobic systems [16], and may require mod-
ifications to increase instrument sensitivity or to yield a high-resolution signal by
minimizing the heat losses to the environment through insulation and ambient
temperature control. Signal quality could also be improved by employing robust
noise filtering techniques.
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2.1.5 Custom Bioreactors—The Future Biocalorimeters?

Recently, conversion of industrial-scale bioreactors into biocalorimeters is
attracting interest due to the ease of measurement, the non-invasive nature of the
measurement and cost-effectiveness. The move from bench-scale to industrial-scale
biocalorimeters results in a decrease in surface area-to-volume ratio. This facilitates
heat measurements by reducing the heat transfer surface, resulting in better signal
quality [33]. Voisard et al. first converted a pilot-scale (300-L) fermenter into a
calorimeter and successfully monitored the growth of B. sphaericus [32]. An
approach for conversion of bioreactors, irrespective of size, to biocalorimeters by
integrating suitable calorimetric measurement principles has been proposed [34,
39]. However, a power compensation technique for heat flow rate measurements
was employed, and this is not feasible in industrial-scale bioreactors, which are
usually jacketed vessels in which the reactor temperature is controlled using
cooling fluid circulating through the jacket. Moreover, the measured heat signal
sensitivity was 50 mW L-1, signal stability was of the order of 0.2 mW L-1 and the
response time was in the range of 1–2 min. Technical-scale calorimetric monitoring
demands a high-sensitivity heat flow rate signal (short-term noise\0.003 mW L-1)
and dynamic temperature sensors (time constant\10 s). Current progress in tem-
perature sensor instrumentation and data acquisition (DAQ) tools may render the
conversion of large-scale bioreactors into high-sensitivity biocalorimeters.
Integration of a heat flow biocalorimeter into a PAT platform would provide the
end-user with insight into metabolic changes encountered in an ongoing bioprocess
and ensure a robust process control leading to high-titre product yield.

2.2 Dielectric Spectroscopy

Dielectric spectroscopy exploits the complex electrical properties of viable cells.
Any such complex, passive, electrical system can be defined by two characteris-
tics: capacitance measured in farads (F) and conductance measured in siemens (S).
Dielectric spectroscopy can provide information on the total and viable cell vol-
ume, since only cells with intact membranes act like capacitors when placed in an
electrical field. Obtaining information about the viable cell volume is important,
since monitoring the growth of the organism of interest can be crucial to the
process, for instance to determine the appropriate time for induction of recombi-
nant protein production. In addition, some interesting products are growth related
and may be indirectly monitored using dielectric spectroscopy. The measurement
of the evolution of the viable cell volume may identify the specific product for-
mation rate. In order to design control strategies to maintain a particular specific
growth rate or act on the product formation rate, it is crucial to make in situ
measurements of biomass or bioactivity. As highlighted in Chap. 1, such mea-
surements should be in real time, a feature which is possible with dielectric
spectroscopy.
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2.2.1 History of the Development of the Technique

Dielectric spectroscopy is based on impedance, as highlighted in Chap. 1, and is
used extensively in different fields, such as electronic engineering and chemistry.
The first publication relating to biological applications reported the use of radio-
frequency impendence to measure viable biomass [40]. Since its origin in the
biotechnology area, the technique has gained in importance, particularly since the
PAT initiative, as shown in a recent review [41].

2.2.2 Dielectric Spectroscopy in the Scope of the PAT Initiative

Process analysers are an important part of the PAT initiative [42], and they should
provide real-time process-related information, if possible of multivariate nature,
through non-destructive, non-invasive measurements. Currently, commercially
available dielectric spectrometers are built to withstand cleaning–in-place (CIP)
and sterilisation-in-place (SIP) while allowing in situ monitoring to provide real-
time information through high-frequency measurements. Most available devices
are highly customized and include a wide range of approved filtering and data pre-
processing techniques. The instruments are versatile and applicable to all types of
cells. On the other hand, capacitance measurements show dependence on tem-
perature, pressure, mixing rate, aeration rate, reactor volume, probe position and
proximity to metal components. However, the signal is reasonably stable if all the
above-mentioned parameters are kept as constant as possible [43]. The validity and
reliability of the gathered process information is highly dependent on correlation
to off-line measurements, as discussed later. Despite the advantages of dielectric
spectroscopy as a process analyser, its application is concentrated in the academic
field rather than in industry, with the exception of brewing [44–48].

The evolution of the application of dielectric spectroscopy over time, the
importance of data processing and the range of cell densities measured are sum-
marized in Tables 2 and 3. ‘‘Application’’ refers to the cell type and cell line used,
as well as to the culture conditions and experimental set-up. ‘‘Settings’’ summa-
rizes, as far as the information available, the frequency settings used, the ranges
scanned and the interval for acquiring data applied.

Dielectric spectroscopy finds its application in fields such as molecular biology,
monitoring of transfection efficiency [72, 73], protein folding [74] and food
technology [75]. Alternative but related methods include dielectrophoresis [60, 76]
and electrochemical impedance spectroscopy [77].

Early work in dielectric spectroscopy was mostly concerned with improving the
instrumentation and the mathematical translation of the signal [45, 47–50, 78] as
well as exploration of the dielectric properties of cells [79, 80]. A series of papers
was dedicated to exploring the frequency dependence of the capacitance mea-
surements and the appropriate techniques to extract meaningful information from
the obtained data [44, 45, 81, 82]. Several types of corrections for changes in the
conductivity of the medium were proposed, and the most appropriate ones are now
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built into the most recent developed devices. Once the technique had reached a
sufficient level of reliability, the vast majority of processes involving commer-
cially relevant cell types (animal cells [71, 83], plant cells [66] and industrially
exploited microbes) were monitored with the aim of drawing correlations [61] and
developing prediction models [62]. The method became increasingly popular for
monitoring process singularities or particular events such as storage of intracellular
compounds [58], virus production within infected animal cells [84] or bacterio-
phage production [85]. A number of authors have reviewed the application of
dielectric spectroscopy to cell monitoring [41, 86–89].

Table 3 Summary of applications of dielectric spectroscopy to monitor growth and physiology
of animal and plant cell cultures, with details of the device and settings used, the data processing
applied and the cell density range measured

Device Application Settings and data pre-
processing

Cell density Reference

– Erythrocytes – – [40]
Aber

Bugmeter
Catharanthus

roseus,
Nicotiana
tabacum,
Cinchona robust
(plant cells)

Measurements at 0.4 MHz Up to 44 g/L [66]

Aber viable
cell
monitor

CHO 320 producing
interferon-c

Raw signal smoothening by
moving-point average

Detection limit:
3.5 9 105

cells cm -3

[67]

Aber BM
214 A

Mouse/mouse
hybridoma
expressing mAB
EGF

Single frequency, 0.6 MHz,
frequency chosen as
‘‘best compromise’’
between sensitivity and
extensive independence
from changes in
conductivity of the
medium in the given
system, high range and
low-pass filter at 1 s

Up to 14 9 105

cells/mL
[68]

Aber BM
214 M

CHO SSF3,
immobilized and
freely suspended

Calibration by differential
method

Up to 1.6 9 106

cells/mL
[69]

Aber BM
214 M

CHO SSF3,
immobilized and
freely suspended

0.6 MHz single-frequency
mode with low-pass
filter at 5 s

Up to 7 9 106

cells/mL
measurement
range

[70]

Aber BM
214 M

CHO SSF3 Operated at ‘‘high range’’
with a maximal
conductivity of 36
mS/cm, low-pass filter
with time constant of
5 s, frequency scanning;
Moving-point average
over 5 points

5 9 106 cells/mL [71]
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2.2.3 Reference Methods for Use in Dielectric Spectroscopic Correlations

The quest for a reference standard for the correlation of the capacitance reading to
relevant biological information is still ongoing, as highlighted in Chap. 1.
Regardless of the nature of the cells considered, the capacitance of a lipid mem-
brane is on average 0.5–1 lF per cm2 of membrane area [45]. The capacitance
measurement still needs to be transformed into relevant information depending on
the aim of the study. Research groups have described several correlation methods
over the past two decades (Table 4). Xiong et al. [61] compared the most common
techniques, namely optical density at 600 nm, dry cell weight (DCW), packed
mycelial volume and colony-forming units (CFU), and obtained linear correlations
in the range 3.1 9 106 cell/mL to 9.2 9 109 cells/mL for Saccharomyces cere-
visiae with all techniques. Cell counting methods, especially when associated with
Trypan blue staining to differentiate between viable and non-viable cells, are
commonly used to correlate capacitance measurements to cell number or cell
viability for animal cells. However, if crystal violet is used for nuclei counting,
deviations from linearity can be observed if cells tend to be multi-nucleated under
specific culture conditions [70]. Neves et al. [54] observed linear correlations of
capacitance with DNA, packed mycelial volume and CO2 production during the
exponential growth phase, while correlations between DCW and capacitance
measurements tended to be linear during exponential, transition and stationary
phases. Correlations tend to be linear as long as no metabolic, physiological or
morphological changes occur within the culture [61]. Indeed, as mentioned pre-
viously, dielectric spectroscopy is not only a tool to measure viable cell volume,
but also to detect changes during biotechnological processes [73, 84]. Maskow
et al. discussed the reasons and implication of non-linear correlations between
biomass and capacitance correlations in the scope of bioprocess monitoring and
control [59].

Table 4 Reference
techniques used for
correlating dielectric
spectroscopy signals

Technique References

Cell counts and staining methods [61, 70, 71]
Cell diameter, size [56, 58, 59, 73]
Colony-forming units (CFU) [61]
Cross-sectional area [58, 59]
Dry cell weight (DCW) [43, 54, 57, 61, 66, 90]
DNA [54]
NTP [68]
Packed (mycelium) volume [57, 61, 66]
OD/turbidity [43, 57]
Viscosity [54, 55]
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2.2.4 Data Pre-Treatment and Enhancement

Finding and exploiting an appropriate correlation method is not the only challenge
to be tackled when implementing dielectric spectroscopy for monitoring a process.
Signal noise and lack of robustness are the principal hurdles that need to be
overcome. The former issue has been extensively addressed by implementing
appropriate filtering techniques [44, 45, 49, 50, 81, 87]. Noise resulting from
agitation can be filtered out using a low-pass filter with time constant of 1 s [49,
50] Most manufacturers of dielectric spectrometers have integrated appropriate
filters into the provided software. However, there is still a need to correct for
changes in conditions over time. Predictive modelling [46] as well as data rec-
onciliation [63] can improve the reliability of the measurements.

2.2.5 Range of Measurement and Limits of Application

Dielectric spectroscopy gives real-time information about cell volume and viable
cell number and, depending on the application, even insights into changes in
physiology or morphology of cells. Commercially available devices have different
ranges of validity and linearity of measurements and also find different applica-
tions. Real-time culture monitoring in a 96-well plate is possible using the
xCELLigence system and is applied to mammalian cell cultures at micro-scale
[91]. Aber Instruments as well as the more recent Fogal range of devices find their
application in monitoring cultures of all types of organisms, but mostly at labo-
ratory scale. Aber devices are very commonly used in brewing industry, where
there are even well-established control tools. Devices from Hewlett Packard [43,
90, 92–94] and Edgerton et al. [81], as well as some micro-devices [80, 95, 96]
only play a marginal role in the field of bioprocess monitoring by dielectric
spectroscopy. The most commonly encountered devices have validity ranges from
2 9 105 cell/mL to a maximum of 109 cell/mL, corresponding to approximately
1–200 g/L of dry cell weight for yeast cells. When working with Gram-positive
organisms, it should be kept in mind that the a-dispersion, not relevant when
working with animal cells or Gram-negative microbes, plays an important role [45,
81, 97]. Cultures involving highly conductive medium cannot be monitored by
traditional dielectric spectrometers since these have an upper conductivity limit of
100 mS/cm [61]. The sensitivity of the method, especially at low cell concentra-
tion, is limited [98].

2.2.6 Potential of Industrial Application: Perspectives and Limitations

Monitoring and process understanding is one part of PAT; process control is quite
another. Dielectric spectroscopy is a potentially important tool to gain better
process understanding and to monitor one of the most vital process parameters in
biotechnology. Applications in the area of bioprocess control are less common.
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A combination of capacitance and heat-flow measurements has been suggested and
simulated by Guan et al. [67] and later applied to control the bacterial conversion
of toxic substrates into polyhydroxyalkanoates [53]. Noll et al. [68] correlated
capacitance to glutamine consumption rate and based a successful feeding strategy
on this particular correlation. Dielectric spectroscopy measurements were used to
trigger automated cell harvest [57], and Dabros et al. [63] used biomass measured
by dielectric spectroscopy as the main control variable. Justice et al. [41] reviewed
the different control applications of dielectric spectroscopy at laboratory scale.
Dielectric spectroscopy is not yet widely applied in industrial production processes
for biological, and this is probably due to requirements in terms of data pre-
processing, filtering or predictive modelling. On the other hand, in the brewing
industry, the technique is routinely used both for monitoring and control. Inter-
esting fields of application are automatic pitching rate control or automatic yeast
recovery control to minimize biowaste [97]. Applications in pharmaceutical pro-
cesses have been reported by Eli Lilly (Pichia pastoris cultures for recombinant
protein production [99]) and by Novo Nordisk (processes involving the culture of
BHK cells [100]). The need to find appropriate correlation methods and develop a
suitable technique to reduce noise may outweigh the advantages that dielectric
spectroscopy has in some cases.

2.3 Vibrational Spectroscopy

Infrared spectroscopy is concerned with the region of the electromagnetic spec-
trum between the visible and microwave regions. This region, the infrared region,
is further broken down into the near-infrared region (12,500–4,000 cm-1 or
800–2,500 nm), mid-infrared region (4,000–400 cm-1 or 2,500–25,000 nm) and
far-infrared region (\400 cm-1 or [25,000 nm). Energy in the mid-infrared
region has lower frequency and so lower energy than that of the near-infrared
region. Mid-infrared spectroscopy looks at the change in energy when the mole-
cule is radiated and moves from the ground state to the next excited energy level.
As a result, absorption bands within the mid-infrared region can be attributed to
specific molecules or functional groups within the molecule; hence MIR spec-
troscopy is sometimes referred to as a ‘‘fingerprinting’’ technique. The higher
energy of the near-infrared region results in the radiated molecule moving from the
ground state to excited energy levels above the fundamental absorption state,
therefore NIR is focussed on the combination bands and overtones.

Spectra are most commonly presented in terms of intensity or absorbance
versus wavenumber v. The absorbance and concentration can be calculated using
the Beer–Lambert law (Eq. 1).

Av ¼ - log10
Iv

Iv;0

� �
¼ ebc; ð1Þ
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where Av is the absorbance at wavenumber v (no units), Iv is the intensity of light
emitted from the sample at wavenumber v (arbitrary units), Iv, 0 is the intensity of
light emitted from the background at wavenumber v (arbitrary units), e is the molar
absorption coefficient (M-1 cm-1), b is the path length (cm), and c is the con-
centration (M).

Raman spectroscopy is a complementary technique to infrared spectroscopy
and is based on the scattering of light [101, 102].

To transform spectral data into meaningful results, it is necessary to develop a
calibration model which relates the spectra to a process parameter e.g. concen-
tration values of a substrate. Chemometric techniques are exploited to extract the
relevant data (see Chap. 7).

2.3.1 Development of MIR Spectroscopy

Infrared radiation was discovered in 1800 by Sir William Herschel, and following
this, the first mid-infrared spectrometer was constructed by Melloni in 1833. The
first half of the twentieth century saw little development in FT-IR spectroscopy,
and its potential as an analytical tool remained largely untapped until the late
1950s and early 1960s. Since the commercial debut of the FT-IR system in the
1970s, the technology has been embraced by manufacturing industries and
research communities alike. Instruments have been adapted and improved to meet
the specific needs of the end user.

MIR immersion probes have been available since the late 1980s. At the early
stages of development MIR, optic fibres suffered from high material absorption
and scattering and poor mechanical and chemical stability, therefore ‘‘fixed’’ arm
probes with parallel light pipes using internal reflection spectroscopy were found
to be more suitable. However, when placed in a process environment, this design is
far from ideal. These probes need to be precisely aligned and are highly sensitive
to vibrations in the surrounding area, which can result in alignment changes and
hence spectral differences [103–105]. There have been major advances in the
development of fibre-optic materials over the last 10 years, and these improve-
ments have had far-reaching consequences. In the case of MIR instrumentation,
this has resulted in flexible, more robust immersion probes which address many of
the problems encountered with the rigid conduit probes. However, regardless of
probe type, process disturbances will regularly impact the spectra collected, and
these disturbances need to be accounted for when developing multivariate cali-
bration models. The short path length of MIR, when compared with that of NIR,
means that from a sampling perspective MIR does not penetrate as far into the
material and may not be as representative of the sample as NIR would be; how-
ever, in the presence of particulate matter the shorter path length of MIR reduces
light scattering, which is commonly experienced when NIR is used in a similar
situation [106].

266 I. Marison et al.



2.3.2 Development of NIR Spectroscopy

The development of NIR spectroscopy as a quality and process control tool is
largely due to the availability of efficient chemometric techniques and varying
spectrometer configurations [107].

Process environments vary considerably, and selecting the most appropriate
sampling interface is of paramount importance. A large degree of process
understanding is vital prior to choosing the sampling interface. The physical,
chemical and optical nature of the process stream should be known in order to
determine if the results will be significantly impacted by light scattering. This is
particularly important where NIR is concerned, as the strong light source and the
weak absorbance allow infrared radiation to penetrate further into the sample,
allowing particulates present in a suspension or slurry to cause light scattering.
Other aspects such as the potential of the process fluid to foul the probe or sample
system should also be evaluated [107]. Typically NIR sampling systems for in situ
process monitoring are in the form of one of the following two types: extractive
sampling systems, or immersion probe sampling. A number of variations of each
of the above two types exist. Invariably, it is the process conditions which dictate
the system of choice.

2.3.3 Development of Raman Spectroscopy

During the 1920s, scattering effect theory was investigated by a number of
researchers, including the physicist C. V. Raman, who in 1928 was the first to
experimentally demonstrate the Raman effect in liquids [108]. A modified FT-IR
instrument was also used to collect Raman spectra, and the use of such instruments
is now known as FT-Raman spectroscopy. Dispersive Raman spectroscopy and
FT-Raman spectroscopy each have their own specific advantages, and both con-
tinue to be used for different applications [109–111].

The basic components of any Raman spectrometer are the excitation source, the
spectrometer and the detector. Significant advances in all three areas have led to
the possibility of using Raman spectroscopy as a PAT tool.

2.3.4 Interpretation of Spectral Data Using Chemometrics

It is almost impossible to discuss the use of spectral data without a brief discussion
on the concept of chemometrics, as the various chemometric techniques maximise
the information available from spectroscopic instruments. Chemometrics can be
defined as the chemical discipline that uses mathematical, statistical and other
methods employing formal logic (a) to design or select optimal measurement
procedures and experiments, and (b) to provide maximum relevant chemical
information by analysing chemical data [112] (see also Chap. 7). When applied to
spectra collected online during a bioprocess by MIR, NIR or Raman spectrometers,
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it is the second function of chemometrics that is of most interest. Process data from
a spectrometer are analysed in a multivariate rather than a univariate way; i.e. for
each sample, the responses at multiple wavenumbers are taken into account. If the
spectrum of a sample was recorded at three wavenumbers using any spectroscopic
technique, a simple two-dimensional plot of response versus wavenumber could be
used to visualise the data. The same data can also represented by a single point in
three dimensions, where each dimension corresponds to a wavenumber.

An individual spectrum recorded on a spectrometer can have hundreds of data
points, and a single component can have a response in multiple places within the
one region, making the data highly correlated [113]. Rather than representing the
spectral data in two-dimensional space, chemometric techniques use multi-
dimensional space or hyperspace to represent the same spectrum by a single point.
As there is usually much redundant information in spectra due to variables being
highly correlated, data do not need to be represented in space with as many
dimensions as the original data points. The spectral data containing hundreds of
data points can be fully characterised in as few as 20 dimensions [114]. Chemo-
metric or multivariate calibration techniques allow the concentration of a given
analyte to be related to spectral features. They are also useful for distinguishing
real chemical information from instrument noise [113].

Pre-Treatments

Prior to analysing spectral data, a mathematical pre-treatment may be necessary.
Common pre-treatments include mean centring, mean normalisation and using the
first or second derivative of the spectra [114]. Leverage is a measure of how
extreme a data point is compared with the majority. A data point with high
leverage will have a high influence on any model created. Mean normalisation is
an adjustment to a data set that equalizes the magnitude of each sample. When the
spectra have been normalized, qualitative information that distinguishes one
sample from another is retained but information that would separate two samples
of identical composition but different concentration is removed. A standard normal
variate (SNV) pre-treatment is one which centres and scales individual spectra.
The effect of this pre-treatment is that on the vertical scale each spectrum is
centred on zero and varies roughly from -2 to +2. This effectively removes the
multiplicative interferences of scatter and particle size in spectral data [115].

The first derivate of a spectrum is the slope of the curve at every point. It has
peaks where the original has maximum slope and crosses zero where there was a
peak in the original spectrum. As the slope is not affected by additive baseline
offsets in the spectrum, calculating the first derivative is an effective method of
removing baseline effects. The second derivative is the slope of the first derivative.
It has peaks in roughly the same places as the original spectrum, but these peaks
are in the inverted direction. Calculating the second derivative of a spectrum
will remove additive baseline effects as well as multiplicative baseline effects
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[116, 117]. Small spectral differences are enhanced and overlapping peaks are
separated by the use of derivative pre-treatments.

As a measured spectrum is not a continuous mathematic curve, but rather a
series of equally spaced points, traditional derivative calculation performed by
using the difference in values between two adjacent points has the effect of
reducing the signal-to-noise ratio in the data. It is therefore necessary to include
some form of smoothing in the calculation. One method of calculating the derivate
of the spectra is to use the algorithm described by Savitzky and Golay [118]. This
works by taking a narrow window centred at the wavelength of interest, and fitting
a low-order polynomial to the data points in this window using least squares. The
calculated polynomial is a continuous curve of the form y = a ? bx ? cx2…,
where x is the wavelength and y is the spectral response. The first and second
derivatives of this fitted curve are then used as estimates of the derivatives of the
underlying spectrum.

The choice of pre-treatment can depend on the type of spectra being analysed;
e.g. Raman and NIR will often have derivative pre-treatments applied [119–121].
A multi-component mixture or a sample collected online which may be subject to
instrument drift will also be pre-treated with a procedure such as SNV or deriv-
atives. Many other pre-treatments are possible, and the nature of the application
will dictate the most suitable one or indeed combination to choose.

Quantitative Analysis

Interpretation of spectra can be a challenge, as many different components can
have a response in similar regions of the electromagnetic spectrum. This becomes
an issue when the aim is to identify and quantify individual components in a
mixture. The first step in developing a calibration model is to do a simple feasi-
bility study such as that described in the ASTM international standards [122] for
each component of interest. The procedure described involves the collection of
spectra from 30–50 samples incorporating the expected variations in particle size,
sample presentation and process conditions which are expected during analysis. If
the results of this simple study are favourable as judged by error values from cross-
validation methods and the required precision was obtained, the study can be
expanded to see if multi-component mixtures can be adequately modelled.

To make a good calibration model, a suitable experimental design must be
employed. The samples used for developing the model are known as the training or
calibration set and should ideally comprise several uniformly distributed con-
centrations for each component of interest. The factors in an experimental design
for a multi-component mixture are the individual components, and these factors
should be mutually independent or orthogonal; i.e. the correlation coefficient
between each pair of factors should be zero [123]. There has been some discussion
in the literature on the importance of using uncorrelated samples in the develop-
ment of chemometric models for online metabolite monitoring [124–126]. As the
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performance of any model is directly affected by the training set used in its
development, the training set should fulfil certain criteria. It should:

• Contain all expected components
• Span the concentration ranges of interest
• Span the conditions of interest
• Contain mutually independent samples.

The calibration should also be validated using a set of samples (validation set)
which is independent of the training set. Strategies on how to determine an
experimental design which will achieve these aims can be found elsewhere
[123, 127, 128].

Partial Least-Squares Regression

An often-used chemometric calibration technique for bioprocessing applications is
partial least-squares regression (PLS). This is a multivariate statistical technique
developed from classical least-squares and inverse least-squares regression used in
economic forecasting and later in chemical applications [127] (see Chap. 7).

2.3.5 PAT Applications of Vibrational Spectroscopy in Bioprocessing

The applications or potential applications of vibrational spectroscopy in biopro-
cessing are largely dependent on the sampling interfaces available. A number of
instruments exist, and sample interfaces vary from sample cavities using cuvettes
or vials to immersion probes. Where real-time data are required for monitoring and
control purposes, the type of available instruments is very much reduced, as all
offline techniques are eliminated. Bioprocess applications to date have used either
flow cells, where the sample of interest is passed through a measuring chamber, or
immersion probes, where a probe is inserted into a reactor and the sample is
scanned in situ by transflectance, transmission or reflectance methods. The
development of high-quality fibre optics and autoclavable probes has increased the
capabilities of these techniques. The most common applications in bioprocessing
are analyte, metabolite and biomass monitoring, with monitoring systems in some
cases further developed to enable process control.

MIR Applications

MIR lags behind its infrared counterpart, NIR, when it comes to applications in
bioprocessing. Despite the fact that MIR can detect and quantify components in
aqueous solutions at significantly lower levels than NIR [121], MIR is less
extensively used. Only in the last decade has MIR been considered a potentially
useful tool for bioprocess monitoring. Work to date has mainly focussed on
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detection of substrates and metabolites in yeast and bacterial cultures, but it has
also been applied to suspended and immobilised animal cell cultures [129]. Most
methods use synthetic samples or samples taken from cell cultures to build mul-
tivariate models capable of predicting changing concentration values.

The most common component modelled is glucose. This is the predominant
substrate in cell culturing and, so, is of most interest from a detection and monitoring
point of view [130–132]. Other substrates detected using online MIR techniques
include fructose, lactose, galactose, ammonia and methyl oleate [106, 133, 134].
Accuracy values vary between studies, with standard prediction errors ranging from
0.26 to 0.86 g/L for glucose. Subtle differences exist between the various techniques
developed. The sample presentation method is of some importance for this appli-
cation, as many cell cultures require aeration, resulting in gas bubbles forming on the
probe tip. Automated flow systems can help mitigate this problem, while a recessed
geometry of the probe tip can facilitate the formation of pockets on the crystal
surface [121]. In addition to the sampling interface, the models employed are specific
to each individual set-up. Although multivariate chemometric modelling is used to
develop these models, each model is unique.

This technique has also been applied to determine the rate of product formation.
Cell culture products that have been successfully detected using MIR include
ethanol, lactic acid and glucuronic acid [131, 132, 135].

Online MIR measurements have been used not just to detect or monitor cell
culture substrates and metabolites, but also to control cultures. Kornmann et al.
used Gluconacetobactor xylinus to develop a control strategy based on the
depletion of two substrates, fructose and ethanol [136]. Real-time spectroscopic
scans were collected every 5 min, concentrations were sent to an adaptive control
algorithm, and fructose and ethanol were fed to the culture in controlled volumes.
Schenk et al. showed that a similar system could be used to control methanol
feeding to Pichia pastoris cultures [137].

NIR Applications

NIR spectroscopy can provide online information on substrate, biomass, product
and metabolite concentrations [138]. This information can be further used to
control and optimise cell cultures. Extensive work has been carried out in this area
to date. NIR has been used to monitor concentration changes in yeast, bacterial and
even mammalian cell cultures. Crowley et al. used NIR to monitor the main
substrates, glycerol and methanol, as well as biomass, in a Pichia pastoris culture
[139], Petersen et al. used NIR to predict the changing concentrations of glucose,
ammonium and biomass in a Streptomyces coelicolor culture [126], while Ro-
drigues et al. developed an NIR model to monitor clavulanic acid, the product of a
fed-batch process with S. clavuligerus [140].

The technique has also been applied to monitoring of mammalian cell cultures.
Four key analytes of a CHO-K1 mammalian cell culture, i.e. glucose, lactate,
glutamine and ammonia, were monitored by Arnold et al. [141], and this work was
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further developed by Roychoudhury et al. [142], who used a multiplexed
calibration technique.

As with MIR, NIR predictive models have also been applied to control systems
in order to allow fed-batch cultures to react in ‘‘real time’’. As early as 1994
Vaccari et al. proposed the use of NIR to control the glucose feed in the production
of lactic acid by Lactobacillus casei [143]. Many others have developed control
strategies for various yeast and microbial cultures [144, 145].

Raman Applications

The reported use of Raman spectroscopy for monitoring bioprocesses in situ and in
real time is limited, and this is most likely due to the need for low-frequency lasers
to avoid fluorescence, which can have heating effects due to the long exposure
times necessary for such lasers. Most reported studies describe use of Raman
spectroscopy to monitor yeast cultures. One of the earliest applications of in situ
Raman spectroscopy was monitoring the production of ethanol in yeast fermen-
tations [146]. In this study the concentrations of fructose and glucose were also
measured. Shaw et al. used a dispersive Raman instrument to monitor the change
in substrate and metabolite concentrations as well as product formation in yeast
fermentation and found it necessary to include a by-pass filter to remove cells as
they were causing interference to the photon scattering process [147]. The pro-
duction of carotenoids in Phaffia rhodozyma cultures has also been monitored by
dispersive Raman spectroscopy [148]. Bacterial cultures with monitoring of glu-
cose, acetate, formate, lactate and phenylalanine by in situ measurements have also
being reported [149]. In a more recent study, Raman spectra were collected in situ
in a mammalian cell bioreactor. As well as monitoring substrates and metabolites,
the spectra were correlated to total cell density and viable cell density, showing
that it may be possible for Raman spectroscopy to distinguish between live and
dead cells [119]. While these studies all demonstrate the potential of Raman
spectroscopy as a monitoring tool, it has yet to be proved capable of control in
industrial bioprocesses.

Although separate techniques, both MIR and NIR have similar applications in
bioprocessing; both have been used for monitoring and control purposes. Raman
spectroscopy has been used to monitor bioprocesses, but to a lesser degree than the
other vibrational spectroscopies. The manner in which these techniques are
exploited is similar. In all cases, multivariate chemometric models are developed
based on synthetic, semi-synthetic or actual samples from a cell culture. Typically,
these models are then validated and applied to a culture online. These techniques
all have their benefits and limitations, but to date NIR has been the subject of more
investigation and as a result is more developed in terms of applications in bio-
processing. However, the potential of MIR and Raman should not be underesti-
mated or overshadowed.
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3 Conclusions

Choosing a suitable online analytical technique and data processing method for
bioprocess applications is essential if reliable monitoring and control are to be
achieved. Each of the process analysers described here has the potential to be used
for online measurement, but it is only through proper understanding of their
specific advantages and limitations that they can be applied to monitor the
appropriate process variables. The relationship between the measureable param-
eters and critical process parameters needs to be recognised in order to develop
calibrations for the critical process parameters of interest, and knowledge of the
likely signal interferences will allow the employment of data treatments which can
minimise or even eliminate their effects. Advanced data processing methods such
as data reconciliation and artificial neural networks can also enhance the accuracy
of the measured variables by using inputs from a number of online sensors. The
combination of suitable analytical techniques and data processing methods should
provide an increase in bioprocess knowledge, which will in turn allow the process
to be tightly controlled and operate within a previously established design space.
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